Properly place the NULL STT_FILE symbol revistited
[binutils-gdb.git] / bfd / elf64-ppc.c
1 /* PowerPC64-specific support for 64-bit ELF.
2 Copyright (C) 1999-2015 Free Software Foundation, Inc.
3 Written by Linus Nordberg, Swox AB <info@swox.com>,
4 based on elf32-ppc.c by Ian Lance Taylor.
5 Largely rewritten by Alan Modra.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License along
20 with this program; if not, write to the Free Software Foundation, Inc.,
21 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
22
23
24 /* The 64-bit PowerPC ELF ABI may be found at
25 http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi.txt, and
26 http://www.linuxbase.org/spec/ELF/ppc64/spec/book1.html */
27
28 #include "sysdep.h"
29 #include <stdarg.h>
30 #include "bfd.h"
31 #include "bfdlink.h"
32 #include "libbfd.h"
33 #include "elf-bfd.h"
34 #include "elf/ppc64.h"
35 #include "elf64-ppc.h"
36 #include "dwarf2.h"
37
38 static bfd_reloc_status_type ppc64_elf_ha_reloc
39 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
40 static bfd_reloc_status_type ppc64_elf_branch_reloc
41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
42 static bfd_reloc_status_type ppc64_elf_brtaken_reloc
43 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
44 static bfd_reloc_status_type ppc64_elf_sectoff_reloc
45 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
46 static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc
47 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
48 static bfd_reloc_status_type ppc64_elf_toc_reloc
49 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
50 static bfd_reloc_status_type ppc64_elf_toc_ha_reloc
51 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
52 static bfd_reloc_status_type ppc64_elf_toc64_reloc
53 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
54 static bfd_reloc_status_type ppc64_elf_unhandled_reloc
55 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
56 static bfd_vma opd_entry_value
57 (asection *, bfd_vma, asection **, bfd_vma *, bfd_boolean);
58
59 #define TARGET_LITTLE_SYM powerpc_elf64_le_vec
60 #define TARGET_LITTLE_NAME "elf64-powerpcle"
61 #define TARGET_BIG_SYM powerpc_elf64_vec
62 #define TARGET_BIG_NAME "elf64-powerpc"
63 #define ELF_ARCH bfd_arch_powerpc
64 #define ELF_TARGET_ID PPC64_ELF_DATA
65 #define ELF_MACHINE_CODE EM_PPC64
66 #define ELF_MAXPAGESIZE 0x10000
67 #define ELF_COMMONPAGESIZE 0x10000
68 #define elf_info_to_howto ppc64_elf_info_to_howto
69
70 #define elf_backend_want_got_sym 0
71 #define elf_backend_want_plt_sym 0
72 #define elf_backend_plt_alignment 3
73 #define elf_backend_plt_not_loaded 1
74 #define elf_backend_got_header_size 8
75 #define elf_backend_can_gc_sections 1
76 #define elf_backend_can_refcount 1
77 #define elf_backend_rela_normal 1
78 #define elf_backend_default_execstack 0
79
80 #define bfd_elf64_mkobject ppc64_elf_mkobject
81 #define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup
82 #define bfd_elf64_bfd_reloc_name_lookup ppc64_elf_reloc_name_lookup
83 #define bfd_elf64_bfd_merge_private_bfd_data ppc64_elf_merge_private_bfd_data
84 #define bfd_elf64_bfd_print_private_bfd_data ppc64_elf_print_private_bfd_data
85 #define bfd_elf64_new_section_hook ppc64_elf_new_section_hook
86 #define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create
87 #define bfd_elf64_get_synthetic_symtab ppc64_elf_get_synthetic_symtab
88 #define bfd_elf64_bfd_link_just_syms ppc64_elf_link_just_syms
89
90 #define elf_backend_object_p ppc64_elf_object_p
91 #define elf_backend_grok_prstatus ppc64_elf_grok_prstatus
92 #define elf_backend_grok_psinfo ppc64_elf_grok_psinfo
93 #define elf_backend_write_core_note ppc64_elf_write_core_note
94 #define elf_backend_create_dynamic_sections ppc64_elf_create_dynamic_sections
95 #define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol
96 #define elf_backend_add_symbol_hook ppc64_elf_add_symbol_hook
97 #define elf_backend_check_directives ppc64_elf_before_check_relocs
98 #define elf_backend_notice_as_needed ppc64_elf_notice_as_needed
99 #define elf_backend_archive_symbol_lookup ppc64_elf_archive_symbol_lookup
100 #define elf_backend_check_relocs ppc64_elf_check_relocs
101 #define elf_backend_gc_keep ppc64_elf_gc_keep
102 #define elf_backend_gc_mark_dynamic_ref ppc64_elf_gc_mark_dynamic_ref
103 #define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook
104 #define elf_backend_gc_sweep_hook ppc64_elf_gc_sweep_hook
105 #define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol
106 #define elf_backend_hide_symbol ppc64_elf_hide_symbol
107 #define elf_backend_maybe_function_sym ppc64_elf_maybe_function_sym
108 #define elf_backend_always_size_sections ppc64_elf_func_desc_adjust
109 #define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections
110 #define elf_backend_hash_symbol ppc64_elf_hash_symbol
111 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
112 #define elf_backend_action_discarded ppc64_elf_action_discarded
113 #define elf_backend_relocate_section ppc64_elf_relocate_section
114 #define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol
115 #define elf_backend_reloc_type_class ppc64_elf_reloc_type_class
116 #define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections
117 #define elf_backend_link_output_symbol_hook ppc64_elf_output_symbol_hook
118 #define elf_backend_special_sections ppc64_elf_special_sections
119 #define elf_backend_merge_symbol_attribute ppc64_elf_merge_symbol_attribute
120
121 /* The name of the dynamic interpreter. This is put in the .interp
122 section. */
123 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
124
125 /* The size in bytes of an entry in the procedure linkage table. */
126 #define PLT_ENTRY_SIZE(htab) (htab->opd_abi ? 24 : 8)
127
128 /* The initial size of the plt reserved for the dynamic linker. */
129 #define PLT_INITIAL_ENTRY_SIZE(htab) (htab->opd_abi ? 24 : 16)
130
131 /* Offsets to some stack save slots. */
132 #define STK_LR 16
133 #define STK_TOC(htab) (htab->opd_abi ? 40 : 24)
134 /* This one is dodgy. ELFv2 does not have a linker word, so use the
135 CR save slot. Used only by optimised __tls_get_addr call stub,
136 relying on __tls_get_addr_opt not saving CR.. */
137 #define STK_LINKER(htab) (htab->opd_abi ? 32 : 8)
138
139 /* TOC base pointers offset from start of TOC. */
140 #define TOC_BASE_OFF 0x8000
141
142 /* Offset of tp and dtp pointers from start of TLS block. */
143 #define TP_OFFSET 0x7000
144 #define DTP_OFFSET 0x8000
145
146 /* .plt call stub instructions. The normal stub is like this, but
147 sometimes the .plt entry crosses a 64k boundary and we need to
148 insert an addi to adjust r11. */
149 #define STD_R2_0R1 0xf8410000 /* std %r2,0+40(%r1) */
150 #define ADDIS_R11_R2 0x3d620000 /* addis %r11,%r2,xxx@ha */
151 #define LD_R12_0R11 0xe98b0000 /* ld %r12,xxx+0@l(%r11) */
152 #define MTCTR_R12 0x7d8903a6 /* mtctr %r12 */
153 #define LD_R2_0R11 0xe84b0000 /* ld %r2,xxx+8@l(%r11) */
154 #define LD_R11_0R11 0xe96b0000 /* ld %r11,xxx+16@l(%r11) */
155 #define BCTR 0x4e800420 /* bctr */
156
157 #define ADDI_R11_R11 0x396b0000 /* addi %r11,%r11,off@l */
158 #define ADDIS_R2_R2 0x3c420000 /* addis %r2,%r2,off@ha */
159 #define ADDI_R2_R2 0x38420000 /* addi %r2,%r2,off@l */
160
161 #define XOR_R2_R12_R12 0x7d826278 /* xor %r2,%r12,%r12 */
162 #define ADD_R11_R11_R2 0x7d6b1214 /* add %r11,%r11,%r2 */
163 #define XOR_R11_R12_R12 0x7d8b6278 /* xor %r11,%r12,%r12 */
164 #define ADD_R2_R2_R11 0x7c425a14 /* add %r2,%r2,%r11 */
165 #define CMPLDI_R2_0 0x28220000 /* cmpldi %r2,0 */
166 #define BNECTR 0x4ca20420 /* bnectr+ */
167 #define BNECTR_P4 0x4ce20420 /* bnectr+ */
168
169 #define LD_R12_0R2 0xe9820000 /* ld %r12,xxx+0(%r2) */
170 #define LD_R11_0R2 0xe9620000 /* ld %r11,xxx+0(%r2) */
171 #define LD_R2_0R2 0xe8420000 /* ld %r2,xxx+0(%r2) */
172
173 #define LD_R2_0R1 0xe8410000 /* ld %r2,0(%r1) */
174
175 #define ADDIS_R12_R2 0x3d820000 /* addis %r12,%r2,xxx@ha */
176 #define ADDIS_R12_R12 0x3d8c0000 /* addis %r12,%r12,xxx@ha */
177 #define LD_R12_0R12 0xe98c0000 /* ld %r12,xxx@l(%r12) */
178
179 /* glink call stub instructions. We enter with the index in R0. */
180 #define GLINK_CALL_STUB_SIZE (16*4)
181 /* 0: */
182 /* .quad plt0-1f */
183 /* __glink: */
184 #define MFLR_R12 0x7d8802a6 /* mflr %12 */
185 #define BCL_20_31 0x429f0005 /* bcl 20,31,1f */
186 /* 1: */
187 #define MFLR_R11 0x7d6802a6 /* mflr %11 */
188 /* ld %2,(0b-1b)(%11) */
189 #define MTLR_R12 0x7d8803a6 /* mtlr %12 */
190 #define ADD_R11_R2_R11 0x7d625a14 /* add %11,%2,%11 */
191 /* ld %12,0(%11) */
192 /* ld %2,8(%11) */
193 /* mtctr %12 */
194 /* ld %11,16(%11) */
195 /* bctr */
196 #define MFLR_R0 0x7c0802a6 /* mflr %r0 */
197 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
198 #define SUB_R12_R12_R11 0x7d8b6050 /* subf %r12,%r11,%r12 */
199 #define ADDI_R0_R12 0x380c0000 /* addi %r0,%r12,0 */
200 #define SRDI_R0_R0_2 0x7800f082 /* rldicl %r0,%r0,62,2 */
201
202 /* Pad with this. */
203 #define NOP 0x60000000
204
205 /* Some other nops. */
206 #define CROR_151515 0x4def7b82
207 #define CROR_313131 0x4ffffb82
208
209 /* .glink entries for the first 32k functions are two instructions. */
210 #define LI_R0_0 0x38000000 /* li %r0,0 */
211 #define B_DOT 0x48000000 /* b . */
212
213 /* After that, we need two instructions to load the index, followed by
214 a branch. */
215 #define LIS_R0_0 0x3c000000 /* lis %r0,0 */
216 #define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */
217
218 /* Instructions used by the save and restore reg functions. */
219 #define STD_R0_0R1 0xf8010000 /* std %r0,0(%r1) */
220 #define STD_R0_0R12 0xf80c0000 /* std %r0,0(%r12) */
221 #define LD_R0_0R1 0xe8010000 /* ld %r0,0(%r1) */
222 #define LD_R0_0R12 0xe80c0000 /* ld %r0,0(%r12) */
223 #define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */
224 #define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */
225 #define LI_R12_0 0x39800000 /* li %r12,0 */
226 #define STVX_VR0_R12_R0 0x7c0c01ce /* stvx %v0,%r12,%r0 */
227 #define LVX_VR0_R12_R0 0x7c0c00ce /* lvx %v0,%r12,%r0 */
228 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
229 #define BLR 0x4e800020 /* blr */
230
231 /* Since .opd is an array of descriptors and each entry will end up
232 with identical R_PPC64_RELATIVE relocs, there is really no need to
233 propagate .opd relocs; The dynamic linker should be taught to
234 relocate .opd without reloc entries. */
235 #ifndef NO_OPD_RELOCS
236 #define NO_OPD_RELOCS 0
237 #endif
238
239 static inline int
240 abiversion (bfd *abfd)
241 {
242 return elf_elfheader (abfd)->e_flags & EF_PPC64_ABI;
243 }
244
245 static inline void
246 set_abiversion (bfd *abfd, int ver)
247 {
248 elf_elfheader (abfd)->e_flags &= ~EF_PPC64_ABI;
249 elf_elfheader (abfd)->e_flags |= ver & EF_PPC64_ABI;
250 }
251 \f
252 #define ONES(n) (((bfd_vma) 1 << ((n) - 1) << 1) - 1)
253
254 /* Relocation HOWTO's. */
255 static reloc_howto_type *ppc64_elf_howto_table[(int) R_PPC64_max];
256
257 static reloc_howto_type ppc64_elf_howto_raw[] = {
258 /* This reloc does nothing. */
259 HOWTO (R_PPC64_NONE, /* type */
260 0, /* rightshift */
261 3, /* size (0 = byte, 1 = short, 2 = long) */
262 0, /* bitsize */
263 FALSE, /* pc_relative */
264 0, /* bitpos */
265 complain_overflow_dont, /* complain_on_overflow */
266 bfd_elf_generic_reloc, /* special_function */
267 "R_PPC64_NONE", /* name */
268 FALSE, /* partial_inplace */
269 0, /* src_mask */
270 0, /* dst_mask */
271 FALSE), /* pcrel_offset */
272
273 /* A standard 32 bit relocation. */
274 HOWTO (R_PPC64_ADDR32, /* type */
275 0, /* rightshift */
276 2, /* size (0 = byte, 1 = short, 2 = long) */
277 32, /* bitsize */
278 FALSE, /* pc_relative */
279 0, /* bitpos */
280 complain_overflow_bitfield, /* complain_on_overflow */
281 bfd_elf_generic_reloc, /* special_function */
282 "R_PPC64_ADDR32", /* name */
283 FALSE, /* partial_inplace */
284 0, /* src_mask */
285 0xffffffff, /* dst_mask */
286 FALSE), /* pcrel_offset */
287
288 /* An absolute 26 bit branch; the lower two bits must be zero.
289 FIXME: we don't check that, we just clear them. */
290 HOWTO (R_PPC64_ADDR24, /* type */
291 0, /* rightshift */
292 2, /* size (0 = byte, 1 = short, 2 = long) */
293 26, /* bitsize */
294 FALSE, /* pc_relative */
295 0, /* bitpos */
296 complain_overflow_bitfield, /* complain_on_overflow */
297 bfd_elf_generic_reloc, /* special_function */
298 "R_PPC64_ADDR24", /* name */
299 FALSE, /* partial_inplace */
300 0, /* src_mask */
301 0x03fffffc, /* dst_mask */
302 FALSE), /* pcrel_offset */
303
304 /* A standard 16 bit relocation. */
305 HOWTO (R_PPC64_ADDR16, /* type */
306 0, /* rightshift */
307 1, /* size (0 = byte, 1 = short, 2 = long) */
308 16, /* bitsize */
309 FALSE, /* pc_relative */
310 0, /* bitpos */
311 complain_overflow_bitfield, /* complain_on_overflow */
312 bfd_elf_generic_reloc, /* special_function */
313 "R_PPC64_ADDR16", /* name */
314 FALSE, /* partial_inplace */
315 0, /* src_mask */
316 0xffff, /* dst_mask */
317 FALSE), /* pcrel_offset */
318
319 /* A 16 bit relocation without overflow. */
320 HOWTO (R_PPC64_ADDR16_LO, /* type */
321 0, /* rightshift */
322 1, /* size (0 = byte, 1 = short, 2 = long) */
323 16, /* bitsize */
324 FALSE, /* pc_relative */
325 0, /* bitpos */
326 complain_overflow_dont,/* complain_on_overflow */
327 bfd_elf_generic_reloc, /* special_function */
328 "R_PPC64_ADDR16_LO", /* name */
329 FALSE, /* partial_inplace */
330 0, /* src_mask */
331 0xffff, /* dst_mask */
332 FALSE), /* pcrel_offset */
333
334 /* Bits 16-31 of an address. */
335 HOWTO (R_PPC64_ADDR16_HI, /* type */
336 16, /* rightshift */
337 1, /* size (0 = byte, 1 = short, 2 = long) */
338 16, /* bitsize */
339 FALSE, /* pc_relative */
340 0, /* bitpos */
341 complain_overflow_signed, /* complain_on_overflow */
342 bfd_elf_generic_reloc, /* special_function */
343 "R_PPC64_ADDR16_HI", /* name */
344 FALSE, /* partial_inplace */
345 0, /* src_mask */
346 0xffff, /* dst_mask */
347 FALSE), /* pcrel_offset */
348
349 /* Bits 16-31 of an address, plus 1 if the contents of the low 16
350 bits, treated as a signed number, is negative. */
351 HOWTO (R_PPC64_ADDR16_HA, /* type */
352 16, /* rightshift */
353 1, /* size (0 = byte, 1 = short, 2 = long) */
354 16, /* bitsize */
355 FALSE, /* pc_relative */
356 0, /* bitpos */
357 complain_overflow_signed, /* complain_on_overflow */
358 ppc64_elf_ha_reloc, /* special_function */
359 "R_PPC64_ADDR16_HA", /* name */
360 FALSE, /* partial_inplace */
361 0, /* src_mask */
362 0xffff, /* dst_mask */
363 FALSE), /* pcrel_offset */
364
365 /* An absolute 16 bit branch; the lower two bits must be zero.
366 FIXME: we don't check that, we just clear them. */
367 HOWTO (R_PPC64_ADDR14, /* type */
368 0, /* rightshift */
369 2, /* size (0 = byte, 1 = short, 2 = long) */
370 16, /* bitsize */
371 FALSE, /* pc_relative */
372 0, /* bitpos */
373 complain_overflow_signed, /* complain_on_overflow */
374 ppc64_elf_branch_reloc, /* special_function */
375 "R_PPC64_ADDR14", /* name */
376 FALSE, /* partial_inplace */
377 0, /* src_mask */
378 0x0000fffc, /* dst_mask */
379 FALSE), /* pcrel_offset */
380
381 /* An absolute 16 bit branch, for which bit 10 should be set to
382 indicate that the branch is expected to be taken. The lower two
383 bits must be zero. */
384 HOWTO (R_PPC64_ADDR14_BRTAKEN, /* type */
385 0, /* rightshift */
386 2, /* size (0 = byte, 1 = short, 2 = long) */
387 16, /* bitsize */
388 FALSE, /* pc_relative */
389 0, /* bitpos */
390 complain_overflow_signed, /* complain_on_overflow */
391 ppc64_elf_brtaken_reloc, /* special_function */
392 "R_PPC64_ADDR14_BRTAKEN",/* name */
393 FALSE, /* partial_inplace */
394 0, /* src_mask */
395 0x0000fffc, /* dst_mask */
396 FALSE), /* pcrel_offset */
397
398 /* An absolute 16 bit branch, for which bit 10 should be set to
399 indicate that the branch is not expected to be taken. The lower
400 two bits must be zero. */
401 HOWTO (R_PPC64_ADDR14_BRNTAKEN, /* type */
402 0, /* rightshift */
403 2, /* size (0 = byte, 1 = short, 2 = long) */
404 16, /* bitsize */
405 FALSE, /* pc_relative */
406 0, /* bitpos */
407 complain_overflow_signed, /* complain_on_overflow */
408 ppc64_elf_brtaken_reloc, /* special_function */
409 "R_PPC64_ADDR14_BRNTAKEN",/* name */
410 FALSE, /* partial_inplace */
411 0, /* src_mask */
412 0x0000fffc, /* dst_mask */
413 FALSE), /* pcrel_offset */
414
415 /* A relative 26 bit branch; the lower two bits must be zero. */
416 HOWTO (R_PPC64_REL24, /* type */
417 0, /* rightshift */
418 2, /* size (0 = byte, 1 = short, 2 = long) */
419 26, /* bitsize */
420 TRUE, /* pc_relative */
421 0, /* bitpos */
422 complain_overflow_signed, /* complain_on_overflow */
423 ppc64_elf_branch_reloc, /* special_function */
424 "R_PPC64_REL24", /* name */
425 FALSE, /* partial_inplace */
426 0, /* src_mask */
427 0x03fffffc, /* dst_mask */
428 TRUE), /* pcrel_offset */
429
430 /* A relative 16 bit branch; the lower two bits must be zero. */
431 HOWTO (R_PPC64_REL14, /* type */
432 0, /* rightshift */
433 2, /* size (0 = byte, 1 = short, 2 = long) */
434 16, /* bitsize */
435 TRUE, /* pc_relative */
436 0, /* bitpos */
437 complain_overflow_signed, /* complain_on_overflow */
438 ppc64_elf_branch_reloc, /* special_function */
439 "R_PPC64_REL14", /* name */
440 FALSE, /* partial_inplace */
441 0, /* src_mask */
442 0x0000fffc, /* dst_mask */
443 TRUE), /* pcrel_offset */
444
445 /* A relative 16 bit branch. Bit 10 should be set to indicate that
446 the branch is expected to be taken. The lower two bits must be
447 zero. */
448 HOWTO (R_PPC64_REL14_BRTAKEN, /* type */
449 0, /* rightshift */
450 2, /* size (0 = byte, 1 = short, 2 = long) */
451 16, /* bitsize */
452 TRUE, /* pc_relative */
453 0, /* bitpos */
454 complain_overflow_signed, /* complain_on_overflow */
455 ppc64_elf_brtaken_reloc, /* special_function */
456 "R_PPC64_REL14_BRTAKEN", /* name */
457 FALSE, /* partial_inplace */
458 0, /* src_mask */
459 0x0000fffc, /* dst_mask */
460 TRUE), /* pcrel_offset */
461
462 /* A relative 16 bit branch. Bit 10 should be set to indicate that
463 the branch is not expected to be taken. The lower two bits must
464 be zero. */
465 HOWTO (R_PPC64_REL14_BRNTAKEN, /* type */
466 0, /* rightshift */
467 2, /* size (0 = byte, 1 = short, 2 = long) */
468 16, /* bitsize */
469 TRUE, /* pc_relative */
470 0, /* bitpos */
471 complain_overflow_signed, /* complain_on_overflow */
472 ppc64_elf_brtaken_reloc, /* special_function */
473 "R_PPC64_REL14_BRNTAKEN",/* name */
474 FALSE, /* partial_inplace */
475 0, /* src_mask */
476 0x0000fffc, /* dst_mask */
477 TRUE), /* pcrel_offset */
478
479 /* Like R_PPC64_ADDR16, but referring to the GOT table entry for the
480 symbol. */
481 HOWTO (R_PPC64_GOT16, /* type */
482 0, /* rightshift */
483 1, /* size (0 = byte, 1 = short, 2 = long) */
484 16, /* bitsize */
485 FALSE, /* pc_relative */
486 0, /* bitpos */
487 complain_overflow_signed, /* complain_on_overflow */
488 ppc64_elf_unhandled_reloc, /* special_function */
489 "R_PPC64_GOT16", /* name */
490 FALSE, /* partial_inplace */
491 0, /* src_mask */
492 0xffff, /* dst_mask */
493 FALSE), /* pcrel_offset */
494
495 /* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for
496 the symbol. */
497 HOWTO (R_PPC64_GOT16_LO, /* type */
498 0, /* rightshift */
499 1, /* size (0 = byte, 1 = short, 2 = long) */
500 16, /* bitsize */
501 FALSE, /* pc_relative */
502 0, /* bitpos */
503 complain_overflow_dont, /* complain_on_overflow */
504 ppc64_elf_unhandled_reloc, /* special_function */
505 "R_PPC64_GOT16_LO", /* name */
506 FALSE, /* partial_inplace */
507 0, /* src_mask */
508 0xffff, /* dst_mask */
509 FALSE), /* pcrel_offset */
510
511 /* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for
512 the symbol. */
513 HOWTO (R_PPC64_GOT16_HI, /* type */
514 16, /* rightshift */
515 1, /* size (0 = byte, 1 = short, 2 = long) */
516 16, /* bitsize */
517 FALSE, /* pc_relative */
518 0, /* bitpos */
519 complain_overflow_signed,/* complain_on_overflow */
520 ppc64_elf_unhandled_reloc, /* special_function */
521 "R_PPC64_GOT16_HI", /* name */
522 FALSE, /* partial_inplace */
523 0, /* src_mask */
524 0xffff, /* dst_mask */
525 FALSE), /* pcrel_offset */
526
527 /* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for
528 the symbol. */
529 HOWTO (R_PPC64_GOT16_HA, /* type */
530 16, /* rightshift */
531 1, /* size (0 = byte, 1 = short, 2 = long) */
532 16, /* bitsize */
533 FALSE, /* pc_relative */
534 0, /* bitpos */
535 complain_overflow_signed,/* complain_on_overflow */
536 ppc64_elf_unhandled_reloc, /* special_function */
537 "R_PPC64_GOT16_HA", /* name */
538 FALSE, /* partial_inplace */
539 0, /* src_mask */
540 0xffff, /* dst_mask */
541 FALSE), /* pcrel_offset */
542
543 /* This is used only by the dynamic linker. The symbol should exist
544 both in the object being run and in some shared library. The
545 dynamic linker copies the data addressed by the symbol from the
546 shared library into the object, because the object being
547 run has to have the data at some particular address. */
548 HOWTO (R_PPC64_COPY, /* type */
549 0, /* rightshift */
550 0, /* this one is variable size */
551 0, /* bitsize */
552 FALSE, /* pc_relative */
553 0, /* bitpos */
554 complain_overflow_dont, /* complain_on_overflow */
555 ppc64_elf_unhandled_reloc, /* special_function */
556 "R_PPC64_COPY", /* name */
557 FALSE, /* partial_inplace */
558 0, /* src_mask */
559 0, /* dst_mask */
560 FALSE), /* pcrel_offset */
561
562 /* Like R_PPC64_ADDR64, but used when setting global offset table
563 entries. */
564 HOWTO (R_PPC64_GLOB_DAT, /* type */
565 0, /* rightshift */
566 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
567 64, /* bitsize */
568 FALSE, /* pc_relative */
569 0, /* bitpos */
570 complain_overflow_dont, /* complain_on_overflow */
571 ppc64_elf_unhandled_reloc, /* special_function */
572 "R_PPC64_GLOB_DAT", /* name */
573 FALSE, /* partial_inplace */
574 0, /* src_mask */
575 ONES (64), /* dst_mask */
576 FALSE), /* pcrel_offset */
577
578 /* Created by the link editor. Marks a procedure linkage table
579 entry for a symbol. */
580 HOWTO (R_PPC64_JMP_SLOT, /* type */
581 0, /* rightshift */
582 0, /* size (0 = byte, 1 = short, 2 = long) */
583 0, /* bitsize */
584 FALSE, /* pc_relative */
585 0, /* bitpos */
586 complain_overflow_dont, /* complain_on_overflow */
587 ppc64_elf_unhandled_reloc, /* special_function */
588 "R_PPC64_JMP_SLOT", /* name */
589 FALSE, /* partial_inplace */
590 0, /* src_mask */
591 0, /* dst_mask */
592 FALSE), /* pcrel_offset */
593
594 /* Used only by the dynamic linker. When the object is run, this
595 doubleword64 is set to the load address of the object, plus the
596 addend. */
597 HOWTO (R_PPC64_RELATIVE, /* type */
598 0, /* rightshift */
599 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
600 64, /* bitsize */
601 FALSE, /* pc_relative */
602 0, /* bitpos */
603 complain_overflow_dont, /* complain_on_overflow */
604 bfd_elf_generic_reloc, /* special_function */
605 "R_PPC64_RELATIVE", /* name */
606 FALSE, /* partial_inplace */
607 0, /* src_mask */
608 ONES (64), /* dst_mask */
609 FALSE), /* pcrel_offset */
610
611 /* Like R_PPC64_ADDR32, but may be unaligned. */
612 HOWTO (R_PPC64_UADDR32, /* type */
613 0, /* rightshift */
614 2, /* size (0 = byte, 1 = short, 2 = long) */
615 32, /* bitsize */
616 FALSE, /* pc_relative */
617 0, /* bitpos */
618 complain_overflow_bitfield, /* complain_on_overflow */
619 bfd_elf_generic_reloc, /* special_function */
620 "R_PPC64_UADDR32", /* name */
621 FALSE, /* partial_inplace */
622 0, /* src_mask */
623 0xffffffff, /* dst_mask */
624 FALSE), /* pcrel_offset */
625
626 /* Like R_PPC64_ADDR16, but may be unaligned. */
627 HOWTO (R_PPC64_UADDR16, /* type */
628 0, /* rightshift */
629 1, /* size (0 = byte, 1 = short, 2 = long) */
630 16, /* bitsize */
631 FALSE, /* pc_relative */
632 0, /* bitpos */
633 complain_overflow_bitfield, /* complain_on_overflow */
634 bfd_elf_generic_reloc, /* special_function */
635 "R_PPC64_UADDR16", /* name */
636 FALSE, /* partial_inplace */
637 0, /* src_mask */
638 0xffff, /* dst_mask */
639 FALSE), /* pcrel_offset */
640
641 /* 32-bit PC relative. */
642 HOWTO (R_PPC64_REL32, /* type */
643 0, /* rightshift */
644 2, /* size (0 = byte, 1 = short, 2 = long) */
645 32, /* bitsize */
646 TRUE, /* pc_relative */
647 0, /* bitpos */
648 complain_overflow_signed, /* complain_on_overflow */
649 bfd_elf_generic_reloc, /* special_function */
650 "R_PPC64_REL32", /* name */
651 FALSE, /* partial_inplace */
652 0, /* src_mask */
653 0xffffffff, /* dst_mask */
654 TRUE), /* pcrel_offset */
655
656 /* 32-bit relocation to the symbol's procedure linkage table. */
657 HOWTO (R_PPC64_PLT32, /* type */
658 0, /* rightshift */
659 2, /* size (0 = byte, 1 = short, 2 = long) */
660 32, /* bitsize */
661 FALSE, /* pc_relative */
662 0, /* bitpos */
663 complain_overflow_bitfield, /* complain_on_overflow */
664 ppc64_elf_unhandled_reloc, /* special_function */
665 "R_PPC64_PLT32", /* name */
666 FALSE, /* partial_inplace */
667 0, /* src_mask */
668 0xffffffff, /* dst_mask */
669 FALSE), /* pcrel_offset */
670
671 /* 32-bit PC relative relocation to the symbol's procedure linkage table.
672 FIXME: R_PPC64_PLTREL32 not supported. */
673 HOWTO (R_PPC64_PLTREL32, /* type */
674 0, /* rightshift */
675 2, /* size (0 = byte, 1 = short, 2 = long) */
676 32, /* bitsize */
677 TRUE, /* pc_relative */
678 0, /* bitpos */
679 complain_overflow_signed, /* complain_on_overflow */
680 bfd_elf_generic_reloc, /* special_function */
681 "R_PPC64_PLTREL32", /* name */
682 FALSE, /* partial_inplace */
683 0, /* src_mask */
684 0xffffffff, /* dst_mask */
685 TRUE), /* pcrel_offset */
686
687 /* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for
688 the symbol. */
689 HOWTO (R_PPC64_PLT16_LO, /* type */
690 0, /* rightshift */
691 1, /* size (0 = byte, 1 = short, 2 = long) */
692 16, /* bitsize */
693 FALSE, /* pc_relative */
694 0, /* bitpos */
695 complain_overflow_dont, /* complain_on_overflow */
696 ppc64_elf_unhandled_reloc, /* special_function */
697 "R_PPC64_PLT16_LO", /* name */
698 FALSE, /* partial_inplace */
699 0, /* src_mask */
700 0xffff, /* dst_mask */
701 FALSE), /* pcrel_offset */
702
703 /* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for
704 the symbol. */
705 HOWTO (R_PPC64_PLT16_HI, /* type */
706 16, /* rightshift */
707 1, /* size (0 = byte, 1 = short, 2 = long) */
708 16, /* bitsize */
709 FALSE, /* pc_relative */
710 0, /* bitpos */
711 complain_overflow_signed, /* complain_on_overflow */
712 ppc64_elf_unhandled_reloc, /* special_function */
713 "R_PPC64_PLT16_HI", /* name */
714 FALSE, /* partial_inplace */
715 0, /* src_mask */
716 0xffff, /* dst_mask */
717 FALSE), /* pcrel_offset */
718
719 /* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for
720 the symbol. */
721 HOWTO (R_PPC64_PLT16_HA, /* type */
722 16, /* rightshift */
723 1, /* size (0 = byte, 1 = short, 2 = long) */
724 16, /* bitsize */
725 FALSE, /* pc_relative */
726 0, /* bitpos */
727 complain_overflow_signed, /* complain_on_overflow */
728 ppc64_elf_unhandled_reloc, /* special_function */
729 "R_PPC64_PLT16_HA", /* name */
730 FALSE, /* partial_inplace */
731 0, /* src_mask */
732 0xffff, /* dst_mask */
733 FALSE), /* pcrel_offset */
734
735 /* 16-bit section relative relocation. */
736 HOWTO (R_PPC64_SECTOFF, /* type */
737 0, /* rightshift */
738 1, /* size (0 = byte, 1 = short, 2 = long) */
739 16, /* bitsize */
740 FALSE, /* pc_relative */
741 0, /* bitpos */
742 complain_overflow_signed, /* complain_on_overflow */
743 ppc64_elf_sectoff_reloc, /* special_function */
744 "R_PPC64_SECTOFF", /* name */
745 FALSE, /* partial_inplace */
746 0, /* src_mask */
747 0xffff, /* dst_mask */
748 FALSE), /* pcrel_offset */
749
750 /* Like R_PPC64_SECTOFF, but no overflow warning. */
751 HOWTO (R_PPC64_SECTOFF_LO, /* type */
752 0, /* rightshift */
753 1, /* size (0 = byte, 1 = short, 2 = long) */
754 16, /* bitsize */
755 FALSE, /* pc_relative */
756 0, /* bitpos */
757 complain_overflow_dont, /* complain_on_overflow */
758 ppc64_elf_sectoff_reloc, /* special_function */
759 "R_PPC64_SECTOFF_LO", /* name */
760 FALSE, /* partial_inplace */
761 0, /* src_mask */
762 0xffff, /* dst_mask */
763 FALSE), /* pcrel_offset */
764
765 /* 16-bit upper half section relative relocation. */
766 HOWTO (R_PPC64_SECTOFF_HI, /* type */
767 16, /* rightshift */
768 1, /* size (0 = byte, 1 = short, 2 = long) */
769 16, /* bitsize */
770 FALSE, /* pc_relative */
771 0, /* bitpos */
772 complain_overflow_signed, /* complain_on_overflow */
773 ppc64_elf_sectoff_reloc, /* special_function */
774 "R_PPC64_SECTOFF_HI", /* name */
775 FALSE, /* partial_inplace */
776 0, /* src_mask */
777 0xffff, /* dst_mask */
778 FALSE), /* pcrel_offset */
779
780 /* 16-bit upper half adjusted section relative relocation. */
781 HOWTO (R_PPC64_SECTOFF_HA, /* type */
782 16, /* rightshift */
783 1, /* size (0 = byte, 1 = short, 2 = long) */
784 16, /* bitsize */
785 FALSE, /* pc_relative */
786 0, /* bitpos */
787 complain_overflow_signed, /* complain_on_overflow */
788 ppc64_elf_sectoff_ha_reloc, /* special_function */
789 "R_PPC64_SECTOFF_HA", /* name */
790 FALSE, /* partial_inplace */
791 0, /* src_mask */
792 0xffff, /* dst_mask */
793 FALSE), /* pcrel_offset */
794
795 /* Like R_PPC64_REL24 without touching the two least significant bits. */
796 HOWTO (R_PPC64_REL30, /* type */
797 2, /* rightshift */
798 2, /* size (0 = byte, 1 = short, 2 = long) */
799 30, /* bitsize */
800 TRUE, /* pc_relative */
801 0, /* bitpos */
802 complain_overflow_dont, /* complain_on_overflow */
803 bfd_elf_generic_reloc, /* special_function */
804 "R_PPC64_REL30", /* name */
805 FALSE, /* partial_inplace */
806 0, /* src_mask */
807 0xfffffffc, /* dst_mask */
808 TRUE), /* pcrel_offset */
809
810 /* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */
811
812 /* A standard 64-bit relocation. */
813 HOWTO (R_PPC64_ADDR64, /* type */
814 0, /* rightshift */
815 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
816 64, /* bitsize */
817 FALSE, /* pc_relative */
818 0, /* bitpos */
819 complain_overflow_dont, /* complain_on_overflow */
820 bfd_elf_generic_reloc, /* special_function */
821 "R_PPC64_ADDR64", /* name */
822 FALSE, /* partial_inplace */
823 0, /* src_mask */
824 ONES (64), /* dst_mask */
825 FALSE), /* pcrel_offset */
826
827 /* The bits 32-47 of an address. */
828 HOWTO (R_PPC64_ADDR16_HIGHER, /* type */
829 32, /* rightshift */
830 1, /* size (0 = byte, 1 = short, 2 = long) */
831 16, /* bitsize */
832 FALSE, /* pc_relative */
833 0, /* bitpos */
834 complain_overflow_dont, /* complain_on_overflow */
835 bfd_elf_generic_reloc, /* special_function */
836 "R_PPC64_ADDR16_HIGHER", /* name */
837 FALSE, /* partial_inplace */
838 0, /* src_mask */
839 0xffff, /* dst_mask */
840 FALSE), /* pcrel_offset */
841
842 /* The bits 32-47 of an address, plus 1 if the contents of the low
843 16 bits, treated as a signed number, is negative. */
844 HOWTO (R_PPC64_ADDR16_HIGHERA, /* type */
845 32, /* rightshift */
846 1, /* size (0 = byte, 1 = short, 2 = long) */
847 16, /* bitsize */
848 FALSE, /* pc_relative */
849 0, /* bitpos */
850 complain_overflow_dont, /* complain_on_overflow */
851 ppc64_elf_ha_reloc, /* special_function */
852 "R_PPC64_ADDR16_HIGHERA", /* name */
853 FALSE, /* partial_inplace */
854 0, /* src_mask */
855 0xffff, /* dst_mask */
856 FALSE), /* pcrel_offset */
857
858 /* The bits 48-63 of an address. */
859 HOWTO (R_PPC64_ADDR16_HIGHEST,/* type */
860 48, /* rightshift */
861 1, /* size (0 = byte, 1 = short, 2 = long) */
862 16, /* bitsize */
863 FALSE, /* pc_relative */
864 0, /* bitpos */
865 complain_overflow_dont, /* complain_on_overflow */
866 bfd_elf_generic_reloc, /* special_function */
867 "R_PPC64_ADDR16_HIGHEST", /* name */
868 FALSE, /* partial_inplace */
869 0, /* src_mask */
870 0xffff, /* dst_mask */
871 FALSE), /* pcrel_offset */
872
873 /* The bits 48-63 of an address, plus 1 if the contents of the low
874 16 bits, treated as a signed number, is negative. */
875 HOWTO (R_PPC64_ADDR16_HIGHESTA,/* type */
876 48, /* rightshift */
877 1, /* size (0 = byte, 1 = short, 2 = long) */
878 16, /* bitsize */
879 FALSE, /* pc_relative */
880 0, /* bitpos */
881 complain_overflow_dont, /* complain_on_overflow */
882 ppc64_elf_ha_reloc, /* special_function */
883 "R_PPC64_ADDR16_HIGHESTA", /* name */
884 FALSE, /* partial_inplace */
885 0, /* src_mask */
886 0xffff, /* dst_mask */
887 FALSE), /* pcrel_offset */
888
889 /* Like ADDR64, but may be unaligned. */
890 HOWTO (R_PPC64_UADDR64, /* type */
891 0, /* rightshift */
892 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
893 64, /* bitsize */
894 FALSE, /* pc_relative */
895 0, /* bitpos */
896 complain_overflow_dont, /* complain_on_overflow */
897 bfd_elf_generic_reloc, /* special_function */
898 "R_PPC64_UADDR64", /* name */
899 FALSE, /* partial_inplace */
900 0, /* src_mask */
901 ONES (64), /* dst_mask */
902 FALSE), /* pcrel_offset */
903
904 /* 64-bit relative relocation. */
905 HOWTO (R_PPC64_REL64, /* type */
906 0, /* rightshift */
907 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
908 64, /* bitsize */
909 TRUE, /* pc_relative */
910 0, /* bitpos */
911 complain_overflow_dont, /* complain_on_overflow */
912 bfd_elf_generic_reloc, /* special_function */
913 "R_PPC64_REL64", /* name */
914 FALSE, /* partial_inplace */
915 0, /* src_mask */
916 ONES (64), /* dst_mask */
917 TRUE), /* pcrel_offset */
918
919 /* 64-bit relocation to the symbol's procedure linkage table. */
920 HOWTO (R_PPC64_PLT64, /* type */
921 0, /* rightshift */
922 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
923 64, /* bitsize */
924 FALSE, /* pc_relative */
925 0, /* bitpos */
926 complain_overflow_dont, /* complain_on_overflow */
927 ppc64_elf_unhandled_reloc, /* special_function */
928 "R_PPC64_PLT64", /* name */
929 FALSE, /* partial_inplace */
930 0, /* src_mask */
931 ONES (64), /* dst_mask */
932 FALSE), /* pcrel_offset */
933
934 /* 64-bit PC relative relocation to the symbol's procedure linkage
935 table. */
936 /* FIXME: R_PPC64_PLTREL64 not supported. */
937 HOWTO (R_PPC64_PLTREL64, /* type */
938 0, /* rightshift */
939 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
940 64, /* bitsize */
941 TRUE, /* pc_relative */
942 0, /* bitpos */
943 complain_overflow_dont, /* complain_on_overflow */
944 ppc64_elf_unhandled_reloc, /* special_function */
945 "R_PPC64_PLTREL64", /* name */
946 FALSE, /* partial_inplace */
947 0, /* src_mask */
948 ONES (64), /* dst_mask */
949 TRUE), /* pcrel_offset */
950
951 /* 16 bit TOC-relative relocation. */
952
953 /* R_PPC64_TOC16 47 half16* S + A - .TOC. */
954 HOWTO (R_PPC64_TOC16, /* type */
955 0, /* rightshift */
956 1, /* size (0 = byte, 1 = short, 2 = long) */
957 16, /* bitsize */
958 FALSE, /* pc_relative */
959 0, /* bitpos */
960 complain_overflow_signed, /* complain_on_overflow */
961 ppc64_elf_toc_reloc, /* special_function */
962 "R_PPC64_TOC16", /* name */
963 FALSE, /* partial_inplace */
964 0, /* src_mask */
965 0xffff, /* dst_mask */
966 FALSE), /* pcrel_offset */
967
968 /* 16 bit TOC-relative relocation without overflow. */
969
970 /* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */
971 HOWTO (R_PPC64_TOC16_LO, /* type */
972 0, /* rightshift */
973 1, /* size (0 = byte, 1 = short, 2 = long) */
974 16, /* bitsize */
975 FALSE, /* pc_relative */
976 0, /* bitpos */
977 complain_overflow_dont, /* complain_on_overflow */
978 ppc64_elf_toc_reloc, /* special_function */
979 "R_PPC64_TOC16_LO", /* name */
980 FALSE, /* partial_inplace */
981 0, /* src_mask */
982 0xffff, /* dst_mask */
983 FALSE), /* pcrel_offset */
984
985 /* 16 bit TOC-relative relocation, high 16 bits. */
986
987 /* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */
988 HOWTO (R_PPC64_TOC16_HI, /* type */
989 16, /* rightshift */
990 1, /* size (0 = byte, 1 = short, 2 = long) */
991 16, /* bitsize */
992 FALSE, /* pc_relative */
993 0, /* bitpos */
994 complain_overflow_signed, /* complain_on_overflow */
995 ppc64_elf_toc_reloc, /* special_function */
996 "R_PPC64_TOC16_HI", /* name */
997 FALSE, /* partial_inplace */
998 0, /* src_mask */
999 0xffff, /* dst_mask */
1000 FALSE), /* pcrel_offset */
1001
1002 /* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the
1003 contents of the low 16 bits, treated as a signed number, is
1004 negative. */
1005
1006 /* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */
1007 HOWTO (R_PPC64_TOC16_HA, /* type */
1008 16, /* rightshift */
1009 1, /* size (0 = byte, 1 = short, 2 = long) */
1010 16, /* bitsize */
1011 FALSE, /* pc_relative */
1012 0, /* bitpos */
1013 complain_overflow_signed, /* complain_on_overflow */
1014 ppc64_elf_toc_ha_reloc, /* special_function */
1015 "R_PPC64_TOC16_HA", /* name */
1016 FALSE, /* partial_inplace */
1017 0, /* src_mask */
1018 0xffff, /* dst_mask */
1019 FALSE), /* pcrel_offset */
1020
1021 /* 64-bit relocation; insert value of TOC base (.TOC.). */
1022
1023 /* R_PPC64_TOC 51 doubleword64 .TOC. */
1024 HOWTO (R_PPC64_TOC, /* type */
1025 0, /* rightshift */
1026 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1027 64, /* bitsize */
1028 FALSE, /* pc_relative */
1029 0, /* bitpos */
1030 complain_overflow_dont, /* complain_on_overflow */
1031 ppc64_elf_toc64_reloc, /* special_function */
1032 "R_PPC64_TOC", /* name */
1033 FALSE, /* partial_inplace */
1034 0, /* src_mask */
1035 ONES (64), /* dst_mask */
1036 FALSE), /* pcrel_offset */
1037
1038 /* Like R_PPC64_GOT16, but also informs the link editor that the
1039 value to relocate may (!) refer to a PLT entry which the link
1040 editor (a) may replace with the symbol value. If the link editor
1041 is unable to fully resolve the symbol, it may (b) create a PLT
1042 entry and store the address to the new PLT entry in the GOT.
1043 This permits lazy resolution of function symbols at run time.
1044 The link editor may also skip all of this and just (c) emit a
1045 R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */
1046 /* FIXME: R_PPC64_PLTGOT16 not implemented. */
1047 HOWTO (R_PPC64_PLTGOT16, /* type */
1048 0, /* rightshift */
1049 1, /* size (0 = byte, 1 = short, 2 = long) */
1050 16, /* bitsize */
1051 FALSE, /* pc_relative */
1052 0, /* bitpos */
1053 complain_overflow_signed, /* complain_on_overflow */
1054 ppc64_elf_unhandled_reloc, /* special_function */
1055 "R_PPC64_PLTGOT16", /* name */
1056 FALSE, /* partial_inplace */
1057 0, /* src_mask */
1058 0xffff, /* dst_mask */
1059 FALSE), /* pcrel_offset */
1060
1061 /* Like R_PPC64_PLTGOT16, but without overflow. */
1062 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1063 HOWTO (R_PPC64_PLTGOT16_LO, /* type */
1064 0, /* rightshift */
1065 1, /* size (0 = byte, 1 = short, 2 = long) */
1066 16, /* bitsize */
1067 FALSE, /* pc_relative */
1068 0, /* bitpos */
1069 complain_overflow_dont, /* complain_on_overflow */
1070 ppc64_elf_unhandled_reloc, /* special_function */
1071 "R_PPC64_PLTGOT16_LO", /* name */
1072 FALSE, /* partial_inplace */
1073 0, /* src_mask */
1074 0xffff, /* dst_mask */
1075 FALSE), /* pcrel_offset */
1076
1077 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */
1078 /* FIXME: R_PPC64_PLTGOT16_HI not implemented. */
1079 HOWTO (R_PPC64_PLTGOT16_HI, /* type */
1080 16, /* rightshift */
1081 1, /* size (0 = byte, 1 = short, 2 = long) */
1082 16, /* bitsize */
1083 FALSE, /* pc_relative */
1084 0, /* bitpos */
1085 complain_overflow_signed, /* complain_on_overflow */
1086 ppc64_elf_unhandled_reloc, /* special_function */
1087 "R_PPC64_PLTGOT16_HI", /* name */
1088 FALSE, /* partial_inplace */
1089 0, /* src_mask */
1090 0xffff, /* dst_mask */
1091 FALSE), /* pcrel_offset */
1092
1093 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus
1094 1 if the contents of the low 16 bits, treated as a signed number,
1095 is negative. */
1096 /* FIXME: R_PPC64_PLTGOT16_HA not implemented. */
1097 HOWTO (R_PPC64_PLTGOT16_HA, /* type */
1098 16, /* rightshift */
1099 1, /* size (0 = byte, 1 = short, 2 = long) */
1100 16, /* bitsize */
1101 FALSE, /* pc_relative */
1102 0, /* bitpos */
1103 complain_overflow_signed, /* complain_on_overflow */
1104 ppc64_elf_unhandled_reloc, /* special_function */
1105 "R_PPC64_PLTGOT16_HA", /* name */
1106 FALSE, /* partial_inplace */
1107 0, /* src_mask */
1108 0xffff, /* dst_mask */
1109 FALSE), /* pcrel_offset */
1110
1111 /* Like R_PPC64_ADDR16, but for instructions with a DS field. */
1112 HOWTO (R_PPC64_ADDR16_DS, /* type */
1113 0, /* rightshift */
1114 1, /* size (0 = byte, 1 = short, 2 = long) */
1115 16, /* bitsize */
1116 FALSE, /* pc_relative */
1117 0, /* bitpos */
1118 complain_overflow_signed, /* complain_on_overflow */
1119 bfd_elf_generic_reloc, /* special_function */
1120 "R_PPC64_ADDR16_DS", /* name */
1121 FALSE, /* partial_inplace */
1122 0, /* src_mask */
1123 0xfffc, /* dst_mask */
1124 FALSE), /* pcrel_offset */
1125
1126 /* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */
1127 HOWTO (R_PPC64_ADDR16_LO_DS, /* type */
1128 0, /* rightshift */
1129 1, /* size (0 = byte, 1 = short, 2 = long) */
1130 16, /* bitsize */
1131 FALSE, /* pc_relative */
1132 0, /* bitpos */
1133 complain_overflow_dont,/* complain_on_overflow */
1134 bfd_elf_generic_reloc, /* special_function */
1135 "R_PPC64_ADDR16_LO_DS",/* name */
1136 FALSE, /* partial_inplace */
1137 0, /* src_mask */
1138 0xfffc, /* dst_mask */
1139 FALSE), /* pcrel_offset */
1140
1141 /* Like R_PPC64_GOT16, but for instructions with a DS field. */
1142 HOWTO (R_PPC64_GOT16_DS, /* type */
1143 0, /* rightshift */
1144 1, /* size (0 = byte, 1 = short, 2 = long) */
1145 16, /* bitsize */
1146 FALSE, /* pc_relative */
1147 0, /* bitpos */
1148 complain_overflow_signed, /* complain_on_overflow */
1149 ppc64_elf_unhandled_reloc, /* special_function */
1150 "R_PPC64_GOT16_DS", /* name */
1151 FALSE, /* partial_inplace */
1152 0, /* src_mask */
1153 0xfffc, /* dst_mask */
1154 FALSE), /* pcrel_offset */
1155
1156 /* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */
1157 HOWTO (R_PPC64_GOT16_LO_DS, /* type */
1158 0, /* rightshift */
1159 1, /* size (0 = byte, 1 = short, 2 = long) */
1160 16, /* bitsize */
1161 FALSE, /* pc_relative */
1162 0, /* bitpos */
1163 complain_overflow_dont, /* complain_on_overflow */
1164 ppc64_elf_unhandled_reloc, /* special_function */
1165 "R_PPC64_GOT16_LO_DS", /* name */
1166 FALSE, /* partial_inplace */
1167 0, /* src_mask */
1168 0xfffc, /* dst_mask */
1169 FALSE), /* pcrel_offset */
1170
1171 /* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */
1172 HOWTO (R_PPC64_PLT16_LO_DS, /* type */
1173 0, /* rightshift */
1174 1, /* size (0 = byte, 1 = short, 2 = long) */
1175 16, /* bitsize */
1176 FALSE, /* pc_relative */
1177 0, /* bitpos */
1178 complain_overflow_dont, /* complain_on_overflow */
1179 ppc64_elf_unhandled_reloc, /* special_function */
1180 "R_PPC64_PLT16_LO_DS", /* name */
1181 FALSE, /* partial_inplace */
1182 0, /* src_mask */
1183 0xfffc, /* dst_mask */
1184 FALSE), /* pcrel_offset */
1185
1186 /* Like R_PPC64_SECTOFF, but for instructions with a DS field. */
1187 HOWTO (R_PPC64_SECTOFF_DS, /* type */
1188 0, /* rightshift */
1189 1, /* size (0 = byte, 1 = short, 2 = long) */
1190 16, /* bitsize */
1191 FALSE, /* pc_relative */
1192 0, /* bitpos */
1193 complain_overflow_signed, /* complain_on_overflow */
1194 ppc64_elf_sectoff_reloc, /* special_function */
1195 "R_PPC64_SECTOFF_DS", /* name */
1196 FALSE, /* partial_inplace */
1197 0, /* src_mask */
1198 0xfffc, /* dst_mask */
1199 FALSE), /* pcrel_offset */
1200
1201 /* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */
1202 HOWTO (R_PPC64_SECTOFF_LO_DS, /* type */
1203 0, /* rightshift */
1204 1, /* size (0 = byte, 1 = short, 2 = long) */
1205 16, /* bitsize */
1206 FALSE, /* pc_relative */
1207 0, /* bitpos */
1208 complain_overflow_dont, /* complain_on_overflow */
1209 ppc64_elf_sectoff_reloc, /* special_function */
1210 "R_PPC64_SECTOFF_LO_DS",/* name */
1211 FALSE, /* partial_inplace */
1212 0, /* src_mask */
1213 0xfffc, /* dst_mask */
1214 FALSE), /* pcrel_offset */
1215
1216 /* Like R_PPC64_TOC16, but for instructions with a DS field. */
1217 HOWTO (R_PPC64_TOC16_DS, /* type */
1218 0, /* rightshift */
1219 1, /* size (0 = byte, 1 = short, 2 = long) */
1220 16, /* bitsize */
1221 FALSE, /* pc_relative */
1222 0, /* bitpos */
1223 complain_overflow_signed, /* complain_on_overflow */
1224 ppc64_elf_toc_reloc, /* special_function */
1225 "R_PPC64_TOC16_DS", /* name */
1226 FALSE, /* partial_inplace */
1227 0, /* src_mask */
1228 0xfffc, /* dst_mask */
1229 FALSE), /* pcrel_offset */
1230
1231 /* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */
1232 HOWTO (R_PPC64_TOC16_LO_DS, /* type */
1233 0, /* rightshift */
1234 1, /* size (0 = byte, 1 = short, 2 = long) */
1235 16, /* bitsize */
1236 FALSE, /* pc_relative */
1237 0, /* bitpos */
1238 complain_overflow_dont, /* complain_on_overflow */
1239 ppc64_elf_toc_reloc, /* special_function */
1240 "R_PPC64_TOC16_LO_DS", /* name */
1241 FALSE, /* partial_inplace */
1242 0, /* src_mask */
1243 0xfffc, /* dst_mask */
1244 FALSE), /* pcrel_offset */
1245
1246 /* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */
1247 /* FIXME: R_PPC64_PLTGOT16_DS not implemented. */
1248 HOWTO (R_PPC64_PLTGOT16_DS, /* type */
1249 0, /* rightshift */
1250 1, /* size (0 = byte, 1 = short, 2 = long) */
1251 16, /* bitsize */
1252 FALSE, /* pc_relative */
1253 0, /* bitpos */
1254 complain_overflow_signed, /* complain_on_overflow */
1255 ppc64_elf_unhandled_reloc, /* special_function */
1256 "R_PPC64_PLTGOT16_DS", /* name */
1257 FALSE, /* partial_inplace */
1258 0, /* src_mask */
1259 0xfffc, /* dst_mask */
1260 FALSE), /* pcrel_offset */
1261
1262 /* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */
1263 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1264 HOWTO (R_PPC64_PLTGOT16_LO_DS,/* type */
1265 0, /* rightshift */
1266 1, /* size (0 = byte, 1 = short, 2 = long) */
1267 16, /* bitsize */
1268 FALSE, /* pc_relative */
1269 0, /* bitpos */
1270 complain_overflow_dont, /* complain_on_overflow */
1271 ppc64_elf_unhandled_reloc, /* special_function */
1272 "R_PPC64_PLTGOT16_LO_DS",/* name */
1273 FALSE, /* partial_inplace */
1274 0, /* src_mask */
1275 0xfffc, /* dst_mask */
1276 FALSE), /* pcrel_offset */
1277
1278 /* Marker relocs for TLS. */
1279 HOWTO (R_PPC64_TLS,
1280 0, /* rightshift */
1281 2, /* size (0 = byte, 1 = short, 2 = long) */
1282 32, /* bitsize */
1283 FALSE, /* pc_relative */
1284 0, /* bitpos */
1285 complain_overflow_dont, /* complain_on_overflow */
1286 bfd_elf_generic_reloc, /* special_function */
1287 "R_PPC64_TLS", /* name */
1288 FALSE, /* partial_inplace */
1289 0, /* src_mask */
1290 0, /* dst_mask */
1291 FALSE), /* pcrel_offset */
1292
1293 HOWTO (R_PPC64_TLSGD,
1294 0, /* rightshift */
1295 2, /* size (0 = byte, 1 = short, 2 = long) */
1296 32, /* bitsize */
1297 FALSE, /* pc_relative */
1298 0, /* bitpos */
1299 complain_overflow_dont, /* complain_on_overflow */
1300 bfd_elf_generic_reloc, /* special_function */
1301 "R_PPC64_TLSGD", /* name */
1302 FALSE, /* partial_inplace */
1303 0, /* src_mask */
1304 0, /* dst_mask */
1305 FALSE), /* pcrel_offset */
1306
1307 HOWTO (R_PPC64_TLSLD,
1308 0, /* rightshift */
1309 2, /* size (0 = byte, 1 = short, 2 = long) */
1310 32, /* bitsize */
1311 FALSE, /* pc_relative */
1312 0, /* bitpos */
1313 complain_overflow_dont, /* complain_on_overflow */
1314 bfd_elf_generic_reloc, /* special_function */
1315 "R_PPC64_TLSLD", /* name */
1316 FALSE, /* partial_inplace */
1317 0, /* src_mask */
1318 0, /* dst_mask */
1319 FALSE), /* pcrel_offset */
1320
1321 HOWTO (R_PPC64_TOCSAVE,
1322 0, /* rightshift */
1323 2, /* size (0 = byte, 1 = short, 2 = long) */
1324 32, /* bitsize */
1325 FALSE, /* pc_relative */
1326 0, /* bitpos */
1327 complain_overflow_dont, /* complain_on_overflow */
1328 bfd_elf_generic_reloc, /* special_function */
1329 "R_PPC64_TOCSAVE", /* name */
1330 FALSE, /* partial_inplace */
1331 0, /* src_mask */
1332 0, /* dst_mask */
1333 FALSE), /* pcrel_offset */
1334
1335 /* Computes the load module index of the load module that contains the
1336 definition of its TLS sym. */
1337 HOWTO (R_PPC64_DTPMOD64,
1338 0, /* rightshift */
1339 4, /* size (0 = byte, 1 = short, 2 = long) */
1340 64, /* bitsize */
1341 FALSE, /* pc_relative */
1342 0, /* bitpos */
1343 complain_overflow_dont, /* complain_on_overflow */
1344 ppc64_elf_unhandled_reloc, /* special_function */
1345 "R_PPC64_DTPMOD64", /* name */
1346 FALSE, /* partial_inplace */
1347 0, /* src_mask */
1348 ONES (64), /* dst_mask */
1349 FALSE), /* pcrel_offset */
1350
1351 /* Computes a dtv-relative displacement, the difference between the value
1352 of sym+add and the base address of the thread-local storage block that
1353 contains the definition of sym, minus 0x8000. */
1354 HOWTO (R_PPC64_DTPREL64,
1355 0, /* rightshift */
1356 4, /* size (0 = byte, 1 = short, 2 = long) */
1357 64, /* bitsize */
1358 FALSE, /* pc_relative */
1359 0, /* bitpos */
1360 complain_overflow_dont, /* complain_on_overflow */
1361 ppc64_elf_unhandled_reloc, /* special_function */
1362 "R_PPC64_DTPREL64", /* name */
1363 FALSE, /* partial_inplace */
1364 0, /* src_mask */
1365 ONES (64), /* dst_mask */
1366 FALSE), /* pcrel_offset */
1367
1368 /* A 16 bit dtprel reloc. */
1369 HOWTO (R_PPC64_DTPREL16,
1370 0, /* rightshift */
1371 1, /* size (0 = byte, 1 = short, 2 = long) */
1372 16, /* bitsize */
1373 FALSE, /* pc_relative */
1374 0, /* bitpos */
1375 complain_overflow_signed, /* complain_on_overflow */
1376 ppc64_elf_unhandled_reloc, /* special_function */
1377 "R_PPC64_DTPREL16", /* name */
1378 FALSE, /* partial_inplace */
1379 0, /* src_mask */
1380 0xffff, /* dst_mask */
1381 FALSE), /* pcrel_offset */
1382
1383 /* Like DTPREL16, but no overflow. */
1384 HOWTO (R_PPC64_DTPREL16_LO,
1385 0, /* rightshift */
1386 1, /* size (0 = byte, 1 = short, 2 = long) */
1387 16, /* bitsize */
1388 FALSE, /* pc_relative */
1389 0, /* bitpos */
1390 complain_overflow_dont, /* complain_on_overflow */
1391 ppc64_elf_unhandled_reloc, /* special_function */
1392 "R_PPC64_DTPREL16_LO", /* name */
1393 FALSE, /* partial_inplace */
1394 0, /* src_mask */
1395 0xffff, /* dst_mask */
1396 FALSE), /* pcrel_offset */
1397
1398 /* Like DTPREL16_LO, but next higher group of 16 bits. */
1399 HOWTO (R_PPC64_DTPREL16_HI,
1400 16, /* rightshift */
1401 1, /* size (0 = byte, 1 = short, 2 = long) */
1402 16, /* bitsize */
1403 FALSE, /* pc_relative */
1404 0, /* bitpos */
1405 complain_overflow_signed, /* complain_on_overflow */
1406 ppc64_elf_unhandled_reloc, /* special_function */
1407 "R_PPC64_DTPREL16_HI", /* name */
1408 FALSE, /* partial_inplace */
1409 0, /* src_mask */
1410 0xffff, /* dst_mask */
1411 FALSE), /* pcrel_offset */
1412
1413 /* Like DTPREL16_HI, but adjust for low 16 bits. */
1414 HOWTO (R_PPC64_DTPREL16_HA,
1415 16, /* rightshift */
1416 1, /* size (0 = byte, 1 = short, 2 = long) */
1417 16, /* bitsize */
1418 FALSE, /* pc_relative */
1419 0, /* bitpos */
1420 complain_overflow_signed, /* complain_on_overflow */
1421 ppc64_elf_unhandled_reloc, /* special_function */
1422 "R_PPC64_DTPREL16_HA", /* name */
1423 FALSE, /* partial_inplace */
1424 0, /* src_mask */
1425 0xffff, /* dst_mask */
1426 FALSE), /* pcrel_offset */
1427
1428 /* Like DTPREL16_HI, but next higher group of 16 bits. */
1429 HOWTO (R_PPC64_DTPREL16_HIGHER,
1430 32, /* rightshift */
1431 1, /* size (0 = byte, 1 = short, 2 = long) */
1432 16, /* bitsize */
1433 FALSE, /* pc_relative */
1434 0, /* bitpos */
1435 complain_overflow_dont, /* complain_on_overflow */
1436 ppc64_elf_unhandled_reloc, /* special_function */
1437 "R_PPC64_DTPREL16_HIGHER", /* name */
1438 FALSE, /* partial_inplace */
1439 0, /* src_mask */
1440 0xffff, /* dst_mask */
1441 FALSE), /* pcrel_offset */
1442
1443 /* Like DTPREL16_HIGHER, but adjust for low 16 bits. */
1444 HOWTO (R_PPC64_DTPREL16_HIGHERA,
1445 32, /* rightshift */
1446 1, /* size (0 = byte, 1 = short, 2 = long) */
1447 16, /* bitsize */
1448 FALSE, /* pc_relative */
1449 0, /* bitpos */
1450 complain_overflow_dont, /* complain_on_overflow */
1451 ppc64_elf_unhandled_reloc, /* special_function */
1452 "R_PPC64_DTPREL16_HIGHERA", /* name */
1453 FALSE, /* partial_inplace */
1454 0, /* src_mask */
1455 0xffff, /* dst_mask */
1456 FALSE), /* pcrel_offset */
1457
1458 /* Like DTPREL16_HIGHER, but next higher group of 16 bits. */
1459 HOWTO (R_PPC64_DTPREL16_HIGHEST,
1460 48, /* rightshift */
1461 1, /* size (0 = byte, 1 = short, 2 = long) */
1462 16, /* bitsize */
1463 FALSE, /* pc_relative */
1464 0, /* bitpos */
1465 complain_overflow_dont, /* complain_on_overflow */
1466 ppc64_elf_unhandled_reloc, /* special_function */
1467 "R_PPC64_DTPREL16_HIGHEST", /* name */
1468 FALSE, /* partial_inplace */
1469 0, /* src_mask */
1470 0xffff, /* dst_mask */
1471 FALSE), /* pcrel_offset */
1472
1473 /* Like DTPREL16_HIGHEST, but adjust for low 16 bits. */
1474 HOWTO (R_PPC64_DTPREL16_HIGHESTA,
1475 48, /* rightshift */
1476 1, /* size (0 = byte, 1 = short, 2 = long) */
1477 16, /* bitsize */
1478 FALSE, /* pc_relative */
1479 0, /* bitpos */
1480 complain_overflow_dont, /* complain_on_overflow */
1481 ppc64_elf_unhandled_reloc, /* special_function */
1482 "R_PPC64_DTPREL16_HIGHESTA", /* name */
1483 FALSE, /* partial_inplace */
1484 0, /* src_mask */
1485 0xffff, /* dst_mask */
1486 FALSE), /* pcrel_offset */
1487
1488 /* Like DTPREL16, but for insns with a DS field. */
1489 HOWTO (R_PPC64_DTPREL16_DS,
1490 0, /* rightshift */
1491 1, /* size (0 = byte, 1 = short, 2 = long) */
1492 16, /* bitsize */
1493 FALSE, /* pc_relative */
1494 0, /* bitpos */
1495 complain_overflow_signed, /* complain_on_overflow */
1496 ppc64_elf_unhandled_reloc, /* special_function */
1497 "R_PPC64_DTPREL16_DS", /* name */
1498 FALSE, /* partial_inplace */
1499 0, /* src_mask */
1500 0xfffc, /* dst_mask */
1501 FALSE), /* pcrel_offset */
1502
1503 /* Like DTPREL16_DS, but no overflow. */
1504 HOWTO (R_PPC64_DTPREL16_LO_DS,
1505 0, /* rightshift */
1506 1, /* size (0 = byte, 1 = short, 2 = long) */
1507 16, /* bitsize */
1508 FALSE, /* pc_relative */
1509 0, /* bitpos */
1510 complain_overflow_dont, /* complain_on_overflow */
1511 ppc64_elf_unhandled_reloc, /* special_function */
1512 "R_PPC64_DTPREL16_LO_DS", /* name */
1513 FALSE, /* partial_inplace */
1514 0, /* src_mask */
1515 0xfffc, /* dst_mask */
1516 FALSE), /* pcrel_offset */
1517
1518 /* Computes a tp-relative displacement, the difference between the value of
1519 sym+add and the value of the thread pointer (r13). */
1520 HOWTO (R_PPC64_TPREL64,
1521 0, /* rightshift */
1522 4, /* size (0 = byte, 1 = short, 2 = long) */
1523 64, /* bitsize */
1524 FALSE, /* pc_relative */
1525 0, /* bitpos */
1526 complain_overflow_dont, /* complain_on_overflow */
1527 ppc64_elf_unhandled_reloc, /* special_function */
1528 "R_PPC64_TPREL64", /* name */
1529 FALSE, /* partial_inplace */
1530 0, /* src_mask */
1531 ONES (64), /* dst_mask */
1532 FALSE), /* pcrel_offset */
1533
1534 /* A 16 bit tprel reloc. */
1535 HOWTO (R_PPC64_TPREL16,
1536 0, /* rightshift */
1537 1, /* size (0 = byte, 1 = short, 2 = long) */
1538 16, /* bitsize */
1539 FALSE, /* pc_relative */
1540 0, /* bitpos */
1541 complain_overflow_signed, /* complain_on_overflow */
1542 ppc64_elf_unhandled_reloc, /* special_function */
1543 "R_PPC64_TPREL16", /* name */
1544 FALSE, /* partial_inplace */
1545 0, /* src_mask */
1546 0xffff, /* dst_mask */
1547 FALSE), /* pcrel_offset */
1548
1549 /* Like TPREL16, but no overflow. */
1550 HOWTO (R_PPC64_TPREL16_LO,
1551 0, /* rightshift */
1552 1, /* size (0 = byte, 1 = short, 2 = long) */
1553 16, /* bitsize */
1554 FALSE, /* pc_relative */
1555 0, /* bitpos */
1556 complain_overflow_dont, /* complain_on_overflow */
1557 ppc64_elf_unhandled_reloc, /* special_function */
1558 "R_PPC64_TPREL16_LO", /* name */
1559 FALSE, /* partial_inplace */
1560 0, /* src_mask */
1561 0xffff, /* dst_mask */
1562 FALSE), /* pcrel_offset */
1563
1564 /* Like TPREL16_LO, but next higher group of 16 bits. */
1565 HOWTO (R_PPC64_TPREL16_HI,
1566 16, /* rightshift */
1567 1, /* size (0 = byte, 1 = short, 2 = long) */
1568 16, /* bitsize */
1569 FALSE, /* pc_relative */
1570 0, /* bitpos */
1571 complain_overflow_signed, /* complain_on_overflow */
1572 ppc64_elf_unhandled_reloc, /* special_function */
1573 "R_PPC64_TPREL16_HI", /* name */
1574 FALSE, /* partial_inplace */
1575 0, /* src_mask */
1576 0xffff, /* dst_mask */
1577 FALSE), /* pcrel_offset */
1578
1579 /* Like TPREL16_HI, but adjust for low 16 bits. */
1580 HOWTO (R_PPC64_TPREL16_HA,
1581 16, /* rightshift */
1582 1, /* size (0 = byte, 1 = short, 2 = long) */
1583 16, /* bitsize */
1584 FALSE, /* pc_relative */
1585 0, /* bitpos */
1586 complain_overflow_signed, /* complain_on_overflow */
1587 ppc64_elf_unhandled_reloc, /* special_function */
1588 "R_PPC64_TPREL16_HA", /* name */
1589 FALSE, /* partial_inplace */
1590 0, /* src_mask */
1591 0xffff, /* dst_mask */
1592 FALSE), /* pcrel_offset */
1593
1594 /* Like TPREL16_HI, but next higher group of 16 bits. */
1595 HOWTO (R_PPC64_TPREL16_HIGHER,
1596 32, /* rightshift */
1597 1, /* size (0 = byte, 1 = short, 2 = long) */
1598 16, /* bitsize */
1599 FALSE, /* pc_relative */
1600 0, /* bitpos */
1601 complain_overflow_dont, /* complain_on_overflow */
1602 ppc64_elf_unhandled_reloc, /* special_function */
1603 "R_PPC64_TPREL16_HIGHER", /* name */
1604 FALSE, /* partial_inplace */
1605 0, /* src_mask */
1606 0xffff, /* dst_mask */
1607 FALSE), /* pcrel_offset */
1608
1609 /* Like TPREL16_HIGHER, but adjust for low 16 bits. */
1610 HOWTO (R_PPC64_TPREL16_HIGHERA,
1611 32, /* rightshift */
1612 1, /* size (0 = byte, 1 = short, 2 = long) */
1613 16, /* bitsize */
1614 FALSE, /* pc_relative */
1615 0, /* bitpos */
1616 complain_overflow_dont, /* complain_on_overflow */
1617 ppc64_elf_unhandled_reloc, /* special_function */
1618 "R_PPC64_TPREL16_HIGHERA", /* name */
1619 FALSE, /* partial_inplace */
1620 0, /* src_mask */
1621 0xffff, /* dst_mask */
1622 FALSE), /* pcrel_offset */
1623
1624 /* Like TPREL16_HIGHER, but next higher group of 16 bits. */
1625 HOWTO (R_PPC64_TPREL16_HIGHEST,
1626 48, /* rightshift */
1627 1, /* size (0 = byte, 1 = short, 2 = long) */
1628 16, /* bitsize */
1629 FALSE, /* pc_relative */
1630 0, /* bitpos */
1631 complain_overflow_dont, /* complain_on_overflow */
1632 ppc64_elf_unhandled_reloc, /* special_function */
1633 "R_PPC64_TPREL16_HIGHEST", /* name */
1634 FALSE, /* partial_inplace */
1635 0, /* src_mask */
1636 0xffff, /* dst_mask */
1637 FALSE), /* pcrel_offset */
1638
1639 /* Like TPREL16_HIGHEST, but adjust for low 16 bits. */
1640 HOWTO (R_PPC64_TPREL16_HIGHESTA,
1641 48, /* rightshift */
1642 1, /* size (0 = byte, 1 = short, 2 = long) */
1643 16, /* bitsize */
1644 FALSE, /* pc_relative */
1645 0, /* bitpos */
1646 complain_overflow_dont, /* complain_on_overflow */
1647 ppc64_elf_unhandled_reloc, /* special_function */
1648 "R_PPC64_TPREL16_HIGHESTA", /* name */
1649 FALSE, /* partial_inplace */
1650 0, /* src_mask */
1651 0xffff, /* dst_mask */
1652 FALSE), /* pcrel_offset */
1653
1654 /* Like TPREL16, but for insns with a DS field. */
1655 HOWTO (R_PPC64_TPREL16_DS,
1656 0, /* rightshift */
1657 1, /* size (0 = byte, 1 = short, 2 = long) */
1658 16, /* bitsize */
1659 FALSE, /* pc_relative */
1660 0, /* bitpos */
1661 complain_overflow_signed, /* complain_on_overflow */
1662 ppc64_elf_unhandled_reloc, /* special_function */
1663 "R_PPC64_TPREL16_DS", /* name */
1664 FALSE, /* partial_inplace */
1665 0, /* src_mask */
1666 0xfffc, /* dst_mask */
1667 FALSE), /* pcrel_offset */
1668
1669 /* Like TPREL16_DS, but no overflow. */
1670 HOWTO (R_PPC64_TPREL16_LO_DS,
1671 0, /* rightshift */
1672 1, /* size (0 = byte, 1 = short, 2 = long) */
1673 16, /* bitsize */
1674 FALSE, /* pc_relative */
1675 0, /* bitpos */
1676 complain_overflow_dont, /* complain_on_overflow */
1677 ppc64_elf_unhandled_reloc, /* special_function */
1678 "R_PPC64_TPREL16_LO_DS", /* name */
1679 FALSE, /* partial_inplace */
1680 0, /* src_mask */
1681 0xfffc, /* dst_mask */
1682 FALSE), /* pcrel_offset */
1683
1684 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1685 with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset
1686 to the first entry relative to the TOC base (r2). */
1687 HOWTO (R_PPC64_GOT_TLSGD16,
1688 0, /* rightshift */
1689 1, /* size (0 = byte, 1 = short, 2 = long) */
1690 16, /* bitsize */
1691 FALSE, /* pc_relative */
1692 0, /* bitpos */
1693 complain_overflow_signed, /* complain_on_overflow */
1694 ppc64_elf_unhandled_reloc, /* special_function */
1695 "R_PPC64_GOT_TLSGD16", /* name */
1696 FALSE, /* partial_inplace */
1697 0, /* src_mask */
1698 0xffff, /* dst_mask */
1699 FALSE), /* pcrel_offset */
1700
1701 /* Like GOT_TLSGD16, but no overflow. */
1702 HOWTO (R_PPC64_GOT_TLSGD16_LO,
1703 0, /* rightshift */
1704 1, /* size (0 = byte, 1 = short, 2 = long) */
1705 16, /* bitsize */
1706 FALSE, /* pc_relative */
1707 0, /* bitpos */
1708 complain_overflow_dont, /* complain_on_overflow */
1709 ppc64_elf_unhandled_reloc, /* special_function */
1710 "R_PPC64_GOT_TLSGD16_LO", /* name */
1711 FALSE, /* partial_inplace */
1712 0, /* src_mask */
1713 0xffff, /* dst_mask */
1714 FALSE), /* pcrel_offset */
1715
1716 /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */
1717 HOWTO (R_PPC64_GOT_TLSGD16_HI,
1718 16, /* rightshift */
1719 1, /* size (0 = byte, 1 = short, 2 = long) */
1720 16, /* bitsize */
1721 FALSE, /* pc_relative */
1722 0, /* bitpos */
1723 complain_overflow_signed, /* complain_on_overflow */
1724 ppc64_elf_unhandled_reloc, /* special_function */
1725 "R_PPC64_GOT_TLSGD16_HI", /* name */
1726 FALSE, /* partial_inplace */
1727 0, /* src_mask */
1728 0xffff, /* dst_mask */
1729 FALSE), /* pcrel_offset */
1730
1731 /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */
1732 HOWTO (R_PPC64_GOT_TLSGD16_HA,
1733 16, /* rightshift */
1734 1, /* size (0 = byte, 1 = short, 2 = long) */
1735 16, /* bitsize */
1736 FALSE, /* pc_relative */
1737 0, /* bitpos */
1738 complain_overflow_signed, /* complain_on_overflow */
1739 ppc64_elf_unhandled_reloc, /* special_function */
1740 "R_PPC64_GOT_TLSGD16_HA", /* name */
1741 FALSE, /* partial_inplace */
1742 0, /* src_mask */
1743 0xffff, /* dst_mask */
1744 FALSE), /* pcrel_offset */
1745
1746 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1747 with values (sym+add)@dtpmod and zero, and computes the offset to the
1748 first entry relative to the TOC base (r2). */
1749 HOWTO (R_PPC64_GOT_TLSLD16,
1750 0, /* rightshift */
1751 1, /* size (0 = byte, 1 = short, 2 = long) */
1752 16, /* bitsize */
1753 FALSE, /* pc_relative */
1754 0, /* bitpos */
1755 complain_overflow_signed, /* complain_on_overflow */
1756 ppc64_elf_unhandled_reloc, /* special_function */
1757 "R_PPC64_GOT_TLSLD16", /* name */
1758 FALSE, /* partial_inplace */
1759 0, /* src_mask */
1760 0xffff, /* dst_mask */
1761 FALSE), /* pcrel_offset */
1762
1763 /* Like GOT_TLSLD16, but no overflow. */
1764 HOWTO (R_PPC64_GOT_TLSLD16_LO,
1765 0, /* rightshift */
1766 1, /* size (0 = byte, 1 = short, 2 = long) */
1767 16, /* bitsize */
1768 FALSE, /* pc_relative */
1769 0, /* bitpos */
1770 complain_overflow_dont, /* complain_on_overflow */
1771 ppc64_elf_unhandled_reloc, /* special_function */
1772 "R_PPC64_GOT_TLSLD16_LO", /* name */
1773 FALSE, /* partial_inplace */
1774 0, /* src_mask */
1775 0xffff, /* dst_mask */
1776 FALSE), /* pcrel_offset */
1777
1778 /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */
1779 HOWTO (R_PPC64_GOT_TLSLD16_HI,
1780 16, /* rightshift */
1781 1, /* size (0 = byte, 1 = short, 2 = long) */
1782 16, /* bitsize */
1783 FALSE, /* pc_relative */
1784 0, /* bitpos */
1785 complain_overflow_signed, /* complain_on_overflow */
1786 ppc64_elf_unhandled_reloc, /* special_function */
1787 "R_PPC64_GOT_TLSLD16_HI", /* name */
1788 FALSE, /* partial_inplace */
1789 0, /* src_mask */
1790 0xffff, /* dst_mask */
1791 FALSE), /* pcrel_offset */
1792
1793 /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */
1794 HOWTO (R_PPC64_GOT_TLSLD16_HA,
1795 16, /* rightshift */
1796 1, /* size (0 = byte, 1 = short, 2 = long) */
1797 16, /* bitsize */
1798 FALSE, /* pc_relative */
1799 0, /* bitpos */
1800 complain_overflow_signed, /* complain_on_overflow */
1801 ppc64_elf_unhandled_reloc, /* special_function */
1802 "R_PPC64_GOT_TLSLD16_HA", /* name */
1803 FALSE, /* partial_inplace */
1804 0, /* src_mask */
1805 0xffff, /* dst_mask */
1806 FALSE), /* pcrel_offset */
1807
1808 /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes
1809 the offset to the entry relative to the TOC base (r2). */
1810 HOWTO (R_PPC64_GOT_DTPREL16_DS,
1811 0, /* rightshift */
1812 1, /* size (0 = byte, 1 = short, 2 = long) */
1813 16, /* bitsize */
1814 FALSE, /* pc_relative */
1815 0, /* bitpos */
1816 complain_overflow_signed, /* complain_on_overflow */
1817 ppc64_elf_unhandled_reloc, /* special_function */
1818 "R_PPC64_GOT_DTPREL16_DS", /* name */
1819 FALSE, /* partial_inplace */
1820 0, /* src_mask */
1821 0xfffc, /* dst_mask */
1822 FALSE), /* pcrel_offset */
1823
1824 /* Like GOT_DTPREL16_DS, but no overflow. */
1825 HOWTO (R_PPC64_GOT_DTPREL16_LO_DS,
1826 0, /* rightshift */
1827 1, /* size (0 = byte, 1 = short, 2 = long) */
1828 16, /* bitsize */
1829 FALSE, /* pc_relative */
1830 0, /* bitpos */
1831 complain_overflow_dont, /* complain_on_overflow */
1832 ppc64_elf_unhandled_reloc, /* special_function */
1833 "R_PPC64_GOT_DTPREL16_LO_DS", /* name */
1834 FALSE, /* partial_inplace */
1835 0, /* src_mask */
1836 0xfffc, /* dst_mask */
1837 FALSE), /* pcrel_offset */
1838
1839 /* Like GOT_DTPREL16_LO_DS, but next higher group of 16 bits. */
1840 HOWTO (R_PPC64_GOT_DTPREL16_HI,
1841 16, /* rightshift */
1842 1, /* size (0 = byte, 1 = short, 2 = long) */
1843 16, /* bitsize */
1844 FALSE, /* pc_relative */
1845 0, /* bitpos */
1846 complain_overflow_signed, /* complain_on_overflow */
1847 ppc64_elf_unhandled_reloc, /* special_function */
1848 "R_PPC64_GOT_DTPREL16_HI", /* name */
1849 FALSE, /* partial_inplace */
1850 0, /* src_mask */
1851 0xffff, /* dst_mask */
1852 FALSE), /* pcrel_offset */
1853
1854 /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */
1855 HOWTO (R_PPC64_GOT_DTPREL16_HA,
1856 16, /* rightshift */
1857 1, /* size (0 = byte, 1 = short, 2 = long) */
1858 16, /* bitsize */
1859 FALSE, /* pc_relative */
1860 0, /* bitpos */
1861 complain_overflow_signed, /* complain_on_overflow */
1862 ppc64_elf_unhandled_reloc, /* special_function */
1863 "R_PPC64_GOT_DTPREL16_HA", /* name */
1864 FALSE, /* partial_inplace */
1865 0, /* src_mask */
1866 0xffff, /* dst_mask */
1867 FALSE), /* pcrel_offset */
1868
1869 /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the
1870 offset to the entry relative to the TOC base (r2). */
1871 HOWTO (R_PPC64_GOT_TPREL16_DS,
1872 0, /* rightshift */
1873 1, /* size (0 = byte, 1 = short, 2 = long) */
1874 16, /* bitsize */
1875 FALSE, /* pc_relative */
1876 0, /* bitpos */
1877 complain_overflow_signed, /* complain_on_overflow */
1878 ppc64_elf_unhandled_reloc, /* special_function */
1879 "R_PPC64_GOT_TPREL16_DS", /* name */
1880 FALSE, /* partial_inplace */
1881 0, /* src_mask */
1882 0xfffc, /* dst_mask */
1883 FALSE), /* pcrel_offset */
1884
1885 /* Like GOT_TPREL16_DS, but no overflow. */
1886 HOWTO (R_PPC64_GOT_TPREL16_LO_DS,
1887 0, /* rightshift */
1888 1, /* size (0 = byte, 1 = short, 2 = long) */
1889 16, /* bitsize */
1890 FALSE, /* pc_relative */
1891 0, /* bitpos */
1892 complain_overflow_dont, /* complain_on_overflow */
1893 ppc64_elf_unhandled_reloc, /* special_function */
1894 "R_PPC64_GOT_TPREL16_LO_DS", /* name */
1895 FALSE, /* partial_inplace */
1896 0, /* src_mask */
1897 0xfffc, /* dst_mask */
1898 FALSE), /* pcrel_offset */
1899
1900 /* Like GOT_TPREL16_LO_DS, but next higher group of 16 bits. */
1901 HOWTO (R_PPC64_GOT_TPREL16_HI,
1902 16, /* rightshift */
1903 1, /* size (0 = byte, 1 = short, 2 = long) */
1904 16, /* bitsize */
1905 FALSE, /* pc_relative */
1906 0, /* bitpos */
1907 complain_overflow_signed, /* complain_on_overflow */
1908 ppc64_elf_unhandled_reloc, /* special_function */
1909 "R_PPC64_GOT_TPREL16_HI", /* name */
1910 FALSE, /* partial_inplace */
1911 0, /* src_mask */
1912 0xffff, /* dst_mask */
1913 FALSE), /* pcrel_offset */
1914
1915 /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */
1916 HOWTO (R_PPC64_GOT_TPREL16_HA,
1917 16, /* rightshift */
1918 1, /* size (0 = byte, 1 = short, 2 = long) */
1919 16, /* bitsize */
1920 FALSE, /* pc_relative */
1921 0, /* bitpos */
1922 complain_overflow_signed, /* complain_on_overflow */
1923 ppc64_elf_unhandled_reloc, /* special_function */
1924 "R_PPC64_GOT_TPREL16_HA", /* name */
1925 FALSE, /* partial_inplace */
1926 0, /* src_mask */
1927 0xffff, /* dst_mask */
1928 FALSE), /* pcrel_offset */
1929
1930 HOWTO (R_PPC64_JMP_IREL, /* type */
1931 0, /* rightshift */
1932 0, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1933 0, /* bitsize */
1934 FALSE, /* pc_relative */
1935 0, /* bitpos */
1936 complain_overflow_dont, /* complain_on_overflow */
1937 ppc64_elf_unhandled_reloc, /* special_function */
1938 "R_PPC64_JMP_IREL", /* name */
1939 FALSE, /* partial_inplace */
1940 0, /* src_mask */
1941 0, /* dst_mask */
1942 FALSE), /* pcrel_offset */
1943
1944 HOWTO (R_PPC64_IRELATIVE, /* type */
1945 0, /* rightshift */
1946 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1947 64, /* bitsize */
1948 FALSE, /* pc_relative */
1949 0, /* bitpos */
1950 complain_overflow_dont, /* complain_on_overflow */
1951 bfd_elf_generic_reloc, /* special_function */
1952 "R_PPC64_IRELATIVE", /* name */
1953 FALSE, /* partial_inplace */
1954 0, /* src_mask */
1955 ONES (64), /* dst_mask */
1956 FALSE), /* pcrel_offset */
1957
1958 /* A 16 bit relative relocation. */
1959 HOWTO (R_PPC64_REL16, /* type */
1960 0, /* rightshift */
1961 1, /* size (0 = byte, 1 = short, 2 = long) */
1962 16, /* bitsize */
1963 TRUE, /* pc_relative */
1964 0, /* bitpos */
1965 complain_overflow_signed, /* complain_on_overflow */
1966 bfd_elf_generic_reloc, /* special_function */
1967 "R_PPC64_REL16", /* name */
1968 FALSE, /* partial_inplace */
1969 0, /* src_mask */
1970 0xffff, /* dst_mask */
1971 TRUE), /* pcrel_offset */
1972
1973 /* A 16 bit relative relocation without overflow. */
1974 HOWTO (R_PPC64_REL16_LO, /* type */
1975 0, /* rightshift */
1976 1, /* size (0 = byte, 1 = short, 2 = long) */
1977 16, /* bitsize */
1978 TRUE, /* pc_relative */
1979 0, /* bitpos */
1980 complain_overflow_dont,/* complain_on_overflow */
1981 bfd_elf_generic_reloc, /* special_function */
1982 "R_PPC64_REL16_LO", /* name */
1983 FALSE, /* partial_inplace */
1984 0, /* src_mask */
1985 0xffff, /* dst_mask */
1986 TRUE), /* pcrel_offset */
1987
1988 /* The high order 16 bits of a relative address. */
1989 HOWTO (R_PPC64_REL16_HI, /* type */
1990 16, /* rightshift */
1991 1, /* size (0 = byte, 1 = short, 2 = long) */
1992 16, /* bitsize */
1993 TRUE, /* pc_relative */
1994 0, /* bitpos */
1995 complain_overflow_signed, /* complain_on_overflow */
1996 bfd_elf_generic_reloc, /* special_function */
1997 "R_PPC64_REL16_HI", /* name */
1998 FALSE, /* partial_inplace */
1999 0, /* src_mask */
2000 0xffff, /* dst_mask */
2001 TRUE), /* pcrel_offset */
2002
2003 /* The high order 16 bits of a relative address, plus 1 if the contents of
2004 the low 16 bits, treated as a signed number, is negative. */
2005 HOWTO (R_PPC64_REL16_HA, /* type */
2006 16, /* rightshift */
2007 1, /* size (0 = byte, 1 = short, 2 = long) */
2008 16, /* bitsize */
2009 TRUE, /* pc_relative */
2010 0, /* bitpos */
2011 complain_overflow_signed, /* complain_on_overflow */
2012 ppc64_elf_ha_reloc, /* special_function */
2013 "R_PPC64_REL16_HA", /* name */
2014 FALSE, /* partial_inplace */
2015 0, /* src_mask */
2016 0xffff, /* dst_mask */
2017 TRUE), /* pcrel_offset */
2018
2019 /* Like R_PPC64_ADDR16_HI, but no overflow. */
2020 HOWTO (R_PPC64_ADDR16_HIGH, /* type */
2021 16, /* rightshift */
2022 1, /* size (0 = byte, 1 = short, 2 = long) */
2023 16, /* bitsize */
2024 FALSE, /* pc_relative */
2025 0, /* bitpos */
2026 complain_overflow_dont, /* complain_on_overflow */
2027 bfd_elf_generic_reloc, /* special_function */
2028 "R_PPC64_ADDR16_HIGH", /* name */
2029 FALSE, /* partial_inplace */
2030 0, /* src_mask */
2031 0xffff, /* dst_mask */
2032 FALSE), /* pcrel_offset */
2033
2034 /* Like R_PPC64_ADDR16_HA, but no overflow. */
2035 HOWTO (R_PPC64_ADDR16_HIGHA, /* type */
2036 16, /* rightshift */
2037 1, /* size (0 = byte, 1 = short, 2 = long) */
2038 16, /* bitsize */
2039 FALSE, /* pc_relative */
2040 0, /* bitpos */
2041 complain_overflow_dont, /* complain_on_overflow */
2042 ppc64_elf_ha_reloc, /* special_function */
2043 "R_PPC64_ADDR16_HIGHA", /* name */
2044 FALSE, /* partial_inplace */
2045 0, /* src_mask */
2046 0xffff, /* dst_mask */
2047 FALSE), /* pcrel_offset */
2048
2049 /* Like R_PPC64_DTPREL16_HI, but no overflow. */
2050 HOWTO (R_PPC64_DTPREL16_HIGH,
2051 16, /* rightshift */
2052 1, /* size (0 = byte, 1 = short, 2 = long) */
2053 16, /* bitsize */
2054 FALSE, /* pc_relative */
2055 0, /* bitpos */
2056 complain_overflow_dont, /* complain_on_overflow */
2057 ppc64_elf_unhandled_reloc, /* special_function */
2058 "R_PPC64_DTPREL16_HIGH", /* name */
2059 FALSE, /* partial_inplace */
2060 0, /* src_mask */
2061 0xffff, /* dst_mask */
2062 FALSE), /* pcrel_offset */
2063
2064 /* Like R_PPC64_DTPREL16_HA, but no overflow. */
2065 HOWTO (R_PPC64_DTPREL16_HIGHA,
2066 16, /* rightshift */
2067 1, /* size (0 = byte, 1 = short, 2 = long) */
2068 16, /* bitsize */
2069 FALSE, /* pc_relative */
2070 0, /* bitpos */
2071 complain_overflow_dont, /* complain_on_overflow */
2072 ppc64_elf_unhandled_reloc, /* special_function */
2073 "R_PPC64_DTPREL16_HIGHA", /* name */
2074 FALSE, /* partial_inplace */
2075 0, /* src_mask */
2076 0xffff, /* dst_mask */
2077 FALSE), /* pcrel_offset */
2078
2079 /* Like R_PPC64_TPREL16_HI, but no overflow. */
2080 HOWTO (R_PPC64_TPREL16_HIGH,
2081 16, /* rightshift */
2082 1, /* size (0 = byte, 1 = short, 2 = long) */
2083 16, /* bitsize */
2084 FALSE, /* pc_relative */
2085 0, /* bitpos */
2086 complain_overflow_dont, /* complain_on_overflow */
2087 ppc64_elf_unhandled_reloc, /* special_function */
2088 "R_PPC64_TPREL16_HIGH", /* name */
2089 FALSE, /* partial_inplace */
2090 0, /* src_mask */
2091 0xffff, /* dst_mask */
2092 FALSE), /* pcrel_offset */
2093
2094 /* Like R_PPC64_TPREL16_HA, but no overflow. */
2095 HOWTO (R_PPC64_TPREL16_HIGHA,
2096 16, /* rightshift */
2097 1, /* size (0 = byte, 1 = short, 2 = long) */
2098 16, /* bitsize */
2099 FALSE, /* pc_relative */
2100 0, /* bitpos */
2101 complain_overflow_dont, /* complain_on_overflow */
2102 ppc64_elf_unhandled_reloc, /* special_function */
2103 "R_PPC64_TPREL16_HIGHA", /* name */
2104 FALSE, /* partial_inplace */
2105 0, /* src_mask */
2106 0xffff, /* dst_mask */
2107 FALSE), /* pcrel_offset */
2108
2109 /* Like ADDR64, but use local entry point of function. */
2110 HOWTO (R_PPC64_ADDR64_LOCAL, /* type */
2111 0, /* rightshift */
2112 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
2113 64, /* bitsize */
2114 FALSE, /* pc_relative */
2115 0, /* bitpos */
2116 complain_overflow_dont, /* complain_on_overflow */
2117 bfd_elf_generic_reloc, /* special_function */
2118 "R_PPC64_ADDR64_LOCAL", /* name */
2119 FALSE, /* partial_inplace */
2120 0, /* src_mask */
2121 ONES (64), /* dst_mask */
2122 FALSE), /* pcrel_offset */
2123
2124 /* GNU extension to record C++ vtable hierarchy. */
2125 HOWTO (R_PPC64_GNU_VTINHERIT, /* type */
2126 0, /* rightshift */
2127 0, /* size (0 = byte, 1 = short, 2 = long) */
2128 0, /* bitsize */
2129 FALSE, /* pc_relative */
2130 0, /* bitpos */
2131 complain_overflow_dont, /* complain_on_overflow */
2132 NULL, /* special_function */
2133 "R_PPC64_GNU_VTINHERIT", /* name */
2134 FALSE, /* partial_inplace */
2135 0, /* src_mask */
2136 0, /* dst_mask */
2137 FALSE), /* pcrel_offset */
2138
2139 /* GNU extension to record C++ vtable member usage. */
2140 HOWTO (R_PPC64_GNU_VTENTRY, /* type */
2141 0, /* rightshift */
2142 0, /* size (0 = byte, 1 = short, 2 = long) */
2143 0, /* bitsize */
2144 FALSE, /* pc_relative */
2145 0, /* bitpos */
2146 complain_overflow_dont, /* complain_on_overflow */
2147 NULL, /* special_function */
2148 "R_PPC64_GNU_VTENTRY", /* name */
2149 FALSE, /* partial_inplace */
2150 0, /* src_mask */
2151 0, /* dst_mask */
2152 FALSE), /* pcrel_offset */
2153 };
2154
2155 \f
2156 /* Initialize the ppc64_elf_howto_table, so that linear accesses can
2157 be done. */
2158
2159 static void
2160 ppc_howto_init (void)
2161 {
2162 unsigned int i, type;
2163
2164 for (i = 0;
2165 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
2166 i++)
2167 {
2168 type = ppc64_elf_howto_raw[i].type;
2169 BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table)
2170 / sizeof (ppc64_elf_howto_table[0])));
2171 ppc64_elf_howto_table[type] = &ppc64_elf_howto_raw[i];
2172 }
2173 }
2174
2175 static reloc_howto_type *
2176 ppc64_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2177 bfd_reloc_code_real_type code)
2178 {
2179 enum elf_ppc64_reloc_type r = R_PPC64_NONE;
2180
2181 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2182 /* Initialize howto table if needed. */
2183 ppc_howto_init ();
2184
2185 switch (code)
2186 {
2187 default:
2188 return NULL;
2189
2190 case BFD_RELOC_NONE: r = R_PPC64_NONE;
2191 break;
2192 case BFD_RELOC_32: r = R_PPC64_ADDR32;
2193 break;
2194 case BFD_RELOC_PPC_BA26: r = R_PPC64_ADDR24;
2195 break;
2196 case BFD_RELOC_16: r = R_PPC64_ADDR16;
2197 break;
2198 case BFD_RELOC_LO16: r = R_PPC64_ADDR16_LO;
2199 break;
2200 case BFD_RELOC_HI16: r = R_PPC64_ADDR16_HI;
2201 break;
2202 case BFD_RELOC_PPC64_ADDR16_HIGH: r = R_PPC64_ADDR16_HIGH;
2203 break;
2204 case BFD_RELOC_HI16_S: r = R_PPC64_ADDR16_HA;
2205 break;
2206 case BFD_RELOC_PPC64_ADDR16_HIGHA: r = R_PPC64_ADDR16_HIGHA;
2207 break;
2208 case BFD_RELOC_PPC_BA16: r = R_PPC64_ADDR14;
2209 break;
2210 case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC64_ADDR14_BRTAKEN;
2211 break;
2212 case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC64_ADDR14_BRNTAKEN;
2213 break;
2214 case BFD_RELOC_PPC_B26: r = R_PPC64_REL24;
2215 break;
2216 case BFD_RELOC_PPC_B16: r = R_PPC64_REL14;
2217 break;
2218 case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC64_REL14_BRTAKEN;
2219 break;
2220 case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC64_REL14_BRNTAKEN;
2221 break;
2222 case BFD_RELOC_16_GOTOFF: r = R_PPC64_GOT16;
2223 break;
2224 case BFD_RELOC_LO16_GOTOFF: r = R_PPC64_GOT16_LO;
2225 break;
2226 case BFD_RELOC_HI16_GOTOFF: r = R_PPC64_GOT16_HI;
2227 break;
2228 case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC64_GOT16_HA;
2229 break;
2230 case BFD_RELOC_PPC_COPY: r = R_PPC64_COPY;
2231 break;
2232 case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC64_GLOB_DAT;
2233 break;
2234 case BFD_RELOC_32_PCREL: r = R_PPC64_REL32;
2235 break;
2236 case BFD_RELOC_32_PLTOFF: r = R_PPC64_PLT32;
2237 break;
2238 case BFD_RELOC_32_PLT_PCREL: r = R_PPC64_PLTREL32;
2239 break;
2240 case BFD_RELOC_LO16_PLTOFF: r = R_PPC64_PLT16_LO;
2241 break;
2242 case BFD_RELOC_HI16_PLTOFF: r = R_PPC64_PLT16_HI;
2243 break;
2244 case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC64_PLT16_HA;
2245 break;
2246 case BFD_RELOC_16_BASEREL: r = R_PPC64_SECTOFF;
2247 break;
2248 case BFD_RELOC_LO16_BASEREL: r = R_PPC64_SECTOFF_LO;
2249 break;
2250 case BFD_RELOC_HI16_BASEREL: r = R_PPC64_SECTOFF_HI;
2251 break;
2252 case BFD_RELOC_HI16_S_BASEREL: r = R_PPC64_SECTOFF_HA;
2253 break;
2254 case BFD_RELOC_CTOR: r = R_PPC64_ADDR64;
2255 break;
2256 case BFD_RELOC_64: r = R_PPC64_ADDR64;
2257 break;
2258 case BFD_RELOC_PPC64_HIGHER: r = R_PPC64_ADDR16_HIGHER;
2259 break;
2260 case BFD_RELOC_PPC64_HIGHER_S: r = R_PPC64_ADDR16_HIGHERA;
2261 break;
2262 case BFD_RELOC_PPC64_HIGHEST: r = R_PPC64_ADDR16_HIGHEST;
2263 break;
2264 case BFD_RELOC_PPC64_HIGHEST_S: r = R_PPC64_ADDR16_HIGHESTA;
2265 break;
2266 case BFD_RELOC_64_PCREL: r = R_PPC64_REL64;
2267 break;
2268 case BFD_RELOC_64_PLTOFF: r = R_PPC64_PLT64;
2269 break;
2270 case BFD_RELOC_64_PLT_PCREL: r = R_PPC64_PLTREL64;
2271 break;
2272 case BFD_RELOC_PPC_TOC16: r = R_PPC64_TOC16;
2273 break;
2274 case BFD_RELOC_PPC64_TOC16_LO: r = R_PPC64_TOC16_LO;
2275 break;
2276 case BFD_RELOC_PPC64_TOC16_HI: r = R_PPC64_TOC16_HI;
2277 break;
2278 case BFD_RELOC_PPC64_TOC16_HA: r = R_PPC64_TOC16_HA;
2279 break;
2280 case BFD_RELOC_PPC64_TOC: r = R_PPC64_TOC;
2281 break;
2282 case BFD_RELOC_PPC64_PLTGOT16: r = R_PPC64_PLTGOT16;
2283 break;
2284 case BFD_RELOC_PPC64_PLTGOT16_LO: r = R_PPC64_PLTGOT16_LO;
2285 break;
2286 case BFD_RELOC_PPC64_PLTGOT16_HI: r = R_PPC64_PLTGOT16_HI;
2287 break;
2288 case BFD_RELOC_PPC64_PLTGOT16_HA: r = R_PPC64_PLTGOT16_HA;
2289 break;
2290 case BFD_RELOC_PPC64_ADDR16_DS: r = R_PPC64_ADDR16_DS;
2291 break;
2292 case BFD_RELOC_PPC64_ADDR16_LO_DS: r = R_PPC64_ADDR16_LO_DS;
2293 break;
2294 case BFD_RELOC_PPC64_GOT16_DS: r = R_PPC64_GOT16_DS;
2295 break;
2296 case BFD_RELOC_PPC64_GOT16_LO_DS: r = R_PPC64_GOT16_LO_DS;
2297 break;
2298 case BFD_RELOC_PPC64_PLT16_LO_DS: r = R_PPC64_PLT16_LO_DS;
2299 break;
2300 case BFD_RELOC_PPC64_SECTOFF_DS: r = R_PPC64_SECTOFF_DS;
2301 break;
2302 case BFD_RELOC_PPC64_SECTOFF_LO_DS: r = R_PPC64_SECTOFF_LO_DS;
2303 break;
2304 case BFD_RELOC_PPC64_TOC16_DS: r = R_PPC64_TOC16_DS;
2305 break;
2306 case BFD_RELOC_PPC64_TOC16_LO_DS: r = R_PPC64_TOC16_LO_DS;
2307 break;
2308 case BFD_RELOC_PPC64_PLTGOT16_DS: r = R_PPC64_PLTGOT16_DS;
2309 break;
2310 case BFD_RELOC_PPC64_PLTGOT16_LO_DS: r = R_PPC64_PLTGOT16_LO_DS;
2311 break;
2312 case BFD_RELOC_PPC_TLS: r = R_PPC64_TLS;
2313 break;
2314 case BFD_RELOC_PPC_TLSGD: r = R_PPC64_TLSGD;
2315 break;
2316 case BFD_RELOC_PPC_TLSLD: r = R_PPC64_TLSLD;
2317 break;
2318 case BFD_RELOC_PPC_DTPMOD: r = R_PPC64_DTPMOD64;
2319 break;
2320 case BFD_RELOC_PPC_TPREL16: r = R_PPC64_TPREL16;
2321 break;
2322 case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC64_TPREL16_LO;
2323 break;
2324 case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC64_TPREL16_HI;
2325 break;
2326 case BFD_RELOC_PPC64_TPREL16_HIGH: r = R_PPC64_TPREL16_HIGH;
2327 break;
2328 case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC64_TPREL16_HA;
2329 break;
2330 case BFD_RELOC_PPC64_TPREL16_HIGHA: r = R_PPC64_TPREL16_HIGHA;
2331 break;
2332 case BFD_RELOC_PPC_TPREL: r = R_PPC64_TPREL64;
2333 break;
2334 case BFD_RELOC_PPC_DTPREL16: r = R_PPC64_DTPREL16;
2335 break;
2336 case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC64_DTPREL16_LO;
2337 break;
2338 case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC64_DTPREL16_HI;
2339 break;
2340 case BFD_RELOC_PPC64_DTPREL16_HIGH: r = R_PPC64_DTPREL16_HIGH;
2341 break;
2342 case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC64_DTPREL16_HA;
2343 break;
2344 case BFD_RELOC_PPC64_DTPREL16_HIGHA: r = R_PPC64_DTPREL16_HIGHA;
2345 break;
2346 case BFD_RELOC_PPC_DTPREL: r = R_PPC64_DTPREL64;
2347 break;
2348 case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC64_GOT_TLSGD16;
2349 break;
2350 case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC64_GOT_TLSGD16_LO;
2351 break;
2352 case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC64_GOT_TLSGD16_HI;
2353 break;
2354 case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC64_GOT_TLSGD16_HA;
2355 break;
2356 case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC64_GOT_TLSLD16;
2357 break;
2358 case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC64_GOT_TLSLD16_LO;
2359 break;
2360 case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC64_GOT_TLSLD16_HI;
2361 break;
2362 case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC64_GOT_TLSLD16_HA;
2363 break;
2364 case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC64_GOT_TPREL16_DS;
2365 break;
2366 case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC64_GOT_TPREL16_LO_DS;
2367 break;
2368 case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC64_GOT_TPREL16_HI;
2369 break;
2370 case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC64_GOT_TPREL16_HA;
2371 break;
2372 case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC64_GOT_DTPREL16_DS;
2373 break;
2374 case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC64_GOT_DTPREL16_LO_DS;
2375 break;
2376 case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC64_GOT_DTPREL16_HI;
2377 break;
2378 case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC64_GOT_DTPREL16_HA;
2379 break;
2380 case BFD_RELOC_PPC64_TPREL16_DS: r = R_PPC64_TPREL16_DS;
2381 break;
2382 case BFD_RELOC_PPC64_TPREL16_LO_DS: r = R_PPC64_TPREL16_LO_DS;
2383 break;
2384 case BFD_RELOC_PPC64_TPREL16_HIGHER: r = R_PPC64_TPREL16_HIGHER;
2385 break;
2386 case BFD_RELOC_PPC64_TPREL16_HIGHERA: r = R_PPC64_TPREL16_HIGHERA;
2387 break;
2388 case BFD_RELOC_PPC64_TPREL16_HIGHEST: r = R_PPC64_TPREL16_HIGHEST;
2389 break;
2390 case BFD_RELOC_PPC64_TPREL16_HIGHESTA: r = R_PPC64_TPREL16_HIGHESTA;
2391 break;
2392 case BFD_RELOC_PPC64_DTPREL16_DS: r = R_PPC64_DTPREL16_DS;
2393 break;
2394 case BFD_RELOC_PPC64_DTPREL16_LO_DS: r = R_PPC64_DTPREL16_LO_DS;
2395 break;
2396 case BFD_RELOC_PPC64_DTPREL16_HIGHER: r = R_PPC64_DTPREL16_HIGHER;
2397 break;
2398 case BFD_RELOC_PPC64_DTPREL16_HIGHERA: r = R_PPC64_DTPREL16_HIGHERA;
2399 break;
2400 case BFD_RELOC_PPC64_DTPREL16_HIGHEST: r = R_PPC64_DTPREL16_HIGHEST;
2401 break;
2402 case BFD_RELOC_PPC64_DTPREL16_HIGHESTA: r = R_PPC64_DTPREL16_HIGHESTA;
2403 break;
2404 case BFD_RELOC_16_PCREL: r = R_PPC64_REL16;
2405 break;
2406 case BFD_RELOC_LO16_PCREL: r = R_PPC64_REL16_LO;
2407 break;
2408 case BFD_RELOC_HI16_PCREL: r = R_PPC64_REL16_HI;
2409 break;
2410 case BFD_RELOC_HI16_S_PCREL: r = R_PPC64_REL16_HA;
2411 break;
2412 case BFD_RELOC_PPC64_ADDR64_LOCAL: r = R_PPC64_ADDR64_LOCAL;
2413 break;
2414 case BFD_RELOC_VTABLE_INHERIT: r = R_PPC64_GNU_VTINHERIT;
2415 break;
2416 case BFD_RELOC_VTABLE_ENTRY: r = R_PPC64_GNU_VTENTRY;
2417 break;
2418 }
2419
2420 return ppc64_elf_howto_table[r];
2421 };
2422
2423 static reloc_howto_type *
2424 ppc64_elf_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2425 const char *r_name)
2426 {
2427 unsigned int i;
2428
2429 for (i = 0;
2430 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
2431 i++)
2432 if (ppc64_elf_howto_raw[i].name != NULL
2433 && strcasecmp (ppc64_elf_howto_raw[i].name, r_name) == 0)
2434 return &ppc64_elf_howto_raw[i];
2435
2436 return NULL;
2437 }
2438
2439 /* Set the howto pointer for a PowerPC ELF reloc. */
2440
2441 static void
2442 ppc64_elf_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
2443 Elf_Internal_Rela *dst)
2444 {
2445 unsigned int type;
2446
2447 /* Initialize howto table if needed. */
2448 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2449 ppc_howto_init ();
2450
2451 type = ELF64_R_TYPE (dst->r_info);
2452 if (type >= (sizeof (ppc64_elf_howto_table)
2453 / sizeof (ppc64_elf_howto_table[0])))
2454 {
2455 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
2456 abfd, (int) type);
2457 type = R_PPC64_NONE;
2458 }
2459 cache_ptr->howto = ppc64_elf_howto_table[type];
2460 }
2461
2462 /* Handle the R_PPC64_ADDR16_HA and similar relocs. */
2463
2464 static bfd_reloc_status_type
2465 ppc64_elf_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2466 void *data, asection *input_section,
2467 bfd *output_bfd, char **error_message)
2468 {
2469 /* If this is a relocatable link (output_bfd test tells us), just
2470 call the generic function. Any adjustment will be done at final
2471 link time. */
2472 if (output_bfd != NULL)
2473 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2474 input_section, output_bfd, error_message);
2475
2476 /* Adjust the addend for sign extension of the low 16 bits.
2477 We won't actually be using the low 16 bits, so trashing them
2478 doesn't matter. */
2479 reloc_entry->addend += 0x8000;
2480 return bfd_reloc_continue;
2481 }
2482
2483 static bfd_reloc_status_type
2484 ppc64_elf_branch_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2485 void *data, asection *input_section,
2486 bfd *output_bfd, char **error_message)
2487 {
2488 if (output_bfd != NULL)
2489 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2490 input_section, output_bfd, error_message);
2491
2492 if (strcmp (symbol->section->name, ".opd") == 0
2493 && (symbol->section->owner->flags & DYNAMIC) == 0)
2494 {
2495 bfd_vma dest = opd_entry_value (symbol->section,
2496 symbol->value + reloc_entry->addend,
2497 NULL, NULL, FALSE);
2498 if (dest != (bfd_vma) -1)
2499 reloc_entry->addend = dest - (symbol->value
2500 + symbol->section->output_section->vma
2501 + symbol->section->output_offset);
2502 }
2503 else
2504 {
2505 elf_symbol_type *elfsym = (elf_symbol_type *) symbol;
2506
2507 if (symbol->section->owner != abfd
2508 && abiversion (symbol->section->owner) >= 2)
2509 {
2510 unsigned int i;
2511
2512 for (i = 0; i < symbol->section->owner->symcount; ++i)
2513 {
2514 asymbol *symdef = symbol->section->owner->outsymbols[i];
2515
2516 if (strcmp (symdef->name, symbol->name) == 0)
2517 {
2518 elfsym = (elf_symbol_type *) symdef;
2519 break;
2520 }
2521 }
2522 }
2523 reloc_entry->addend
2524 += PPC64_LOCAL_ENTRY_OFFSET (elfsym->internal_elf_sym.st_other);
2525 }
2526 return bfd_reloc_continue;
2527 }
2528
2529 static bfd_reloc_status_type
2530 ppc64_elf_brtaken_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2531 void *data, asection *input_section,
2532 bfd *output_bfd, char **error_message)
2533 {
2534 long insn;
2535 enum elf_ppc64_reloc_type r_type;
2536 bfd_size_type octets;
2537 /* Assume 'at' branch hints. */
2538 bfd_boolean is_isa_v2 = TRUE;
2539
2540 /* If this is a relocatable link (output_bfd test tells us), just
2541 call the generic function. Any adjustment will be done at final
2542 link time. */
2543 if (output_bfd != NULL)
2544 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2545 input_section, output_bfd, error_message);
2546
2547 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2548 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
2549 insn &= ~(0x01 << 21);
2550 r_type = reloc_entry->howto->type;
2551 if (r_type == R_PPC64_ADDR14_BRTAKEN
2552 || r_type == R_PPC64_REL14_BRTAKEN)
2553 insn |= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
2554
2555 if (is_isa_v2)
2556 {
2557 /* Set 'a' bit. This is 0b00010 in BO field for branch
2558 on CR(BI) insns (BO == 001at or 011at), and 0b01000
2559 for branch on CTR insns (BO == 1a00t or 1a01t). */
2560 if ((insn & (0x14 << 21)) == (0x04 << 21))
2561 insn |= 0x02 << 21;
2562 else if ((insn & (0x14 << 21)) == (0x10 << 21))
2563 insn |= 0x08 << 21;
2564 else
2565 goto out;
2566 }
2567 else
2568 {
2569 bfd_vma target = 0;
2570 bfd_vma from;
2571
2572 if (!bfd_is_com_section (symbol->section))
2573 target = symbol->value;
2574 target += symbol->section->output_section->vma;
2575 target += symbol->section->output_offset;
2576 target += reloc_entry->addend;
2577
2578 from = (reloc_entry->address
2579 + input_section->output_offset
2580 + input_section->output_section->vma);
2581
2582 /* Invert 'y' bit if not the default. */
2583 if ((bfd_signed_vma) (target - from) < 0)
2584 insn ^= 0x01 << 21;
2585 }
2586 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
2587 out:
2588 return ppc64_elf_branch_reloc (abfd, reloc_entry, symbol, data,
2589 input_section, output_bfd, error_message);
2590 }
2591
2592 static bfd_reloc_status_type
2593 ppc64_elf_sectoff_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2594 void *data, asection *input_section,
2595 bfd *output_bfd, char **error_message)
2596 {
2597 /* If this is a relocatable link (output_bfd test tells us), just
2598 call the generic function. Any adjustment will be done at final
2599 link time. */
2600 if (output_bfd != NULL)
2601 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2602 input_section, output_bfd, error_message);
2603
2604 /* Subtract the symbol section base address. */
2605 reloc_entry->addend -= symbol->section->output_section->vma;
2606 return bfd_reloc_continue;
2607 }
2608
2609 static bfd_reloc_status_type
2610 ppc64_elf_sectoff_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2611 void *data, asection *input_section,
2612 bfd *output_bfd, char **error_message)
2613 {
2614 /* If this is a relocatable link (output_bfd test tells us), just
2615 call the generic function. Any adjustment will be done at final
2616 link time. */
2617 if (output_bfd != NULL)
2618 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2619 input_section, output_bfd, error_message);
2620
2621 /* Subtract the symbol section base address. */
2622 reloc_entry->addend -= symbol->section->output_section->vma;
2623
2624 /* Adjust the addend for sign extension of the low 16 bits. */
2625 reloc_entry->addend += 0x8000;
2626 return bfd_reloc_continue;
2627 }
2628
2629 static bfd_reloc_status_type
2630 ppc64_elf_toc_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2631 void *data, asection *input_section,
2632 bfd *output_bfd, char **error_message)
2633 {
2634 bfd_vma TOCstart;
2635
2636 /* If this is a relocatable link (output_bfd test tells us), just
2637 call the generic function. Any adjustment will be done at final
2638 link time. */
2639 if (output_bfd != NULL)
2640 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2641 input_section, output_bfd, error_message);
2642
2643 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2644 if (TOCstart == 0)
2645 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
2646
2647 /* Subtract the TOC base address. */
2648 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2649 return bfd_reloc_continue;
2650 }
2651
2652 static bfd_reloc_status_type
2653 ppc64_elf_toc_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2654 void *data, asection *input_section,
2655 bfd *output_bfd, char **error_message)
2656 {
2657 bfd_vma TOCstart;
2658
2659 /* If this is a relocatable link (output_bfd test tells us), just
2660 call the generic function. Any adjustment will be done at final
2661 link time. */
2662 if (output_bfd != NULL)
2663 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2664 input_section, output_bfd, error_message);
2665
2666 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2667 if (TOCstart == 0)
2668 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
2669
2670 /* Subtract the TOC base address. */
2671 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2672
2673 /* Adjust the addend for sign extension of the low 16 bits. */
2674 reloc_entry->addend += 0x8000;
2675 return bfd_reloc_continue;
2676 }
2677
2678 static bfd_reloc_status_type
2679 ppc64_elf_toc64_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2680 void *data, asection *input_section,
2681 bfd *output_bfd, char **error_message)
2682 {
2683 bfd_vma TOCstart;
2684 bfd_size_type octets;
2685
2686 /* If this is a relocatable link (output_bfd test tells us), just
2687 call the generic function. Any adjustment will be done at final
2688 link time. */
2689 if (output_bfd != NULL)
2690 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2691 input_section, output_bfd, error_message);
2692
2693 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2694 if (TOCstart == 0)
2695 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
2696
2697 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2698 bfd_put_64 (abfd, TOCstart + TOC_BASE_OFF, (bfd_byte *) data + octets);
2699 return bfd_reloc_ok;
2700 }
2701
2702 static bfd_reloc_status_type
2703 ppc64_elf_unhandled_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2704 void *data, asection *input_section,
2705 bfd *output_bfd, char **error_message)
2706 {
2707 /* If this is a relocatable link (output_bfd test tells us), just
2708 call the generic function. Any adjustment will be done at final
2709 link time. */
2710 if (output_bfd != NULL)
2711 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2712 input_section, output_bfd, error_message);
2713
2714 if (error_message != NULL)
2715 {
2716 static char buf[60];
2717 sprintf (buf, "generic linker can't handle %s",
2718 reloc_entry->howto->name);
2719 *error_message = buf;
2720 }
2721 return bfd_reloc_dangerous;
2722 }
2723
2724 /* Track GOT entries needed for a given symbol. We might need more
2725 than one got entry per symbol. */
2726 struct got_entry
2727 {
2728 struct got_entry *next;
2729
2730 /* The symbol addend that we'll be placing in the GOT. */
2731 bfd_vma addend;
2732
2733 /* Unlike other ELF targets, we use separate GOT entries for the same
2734 symbol referenced from different input files. This is to support
2735 automatic multiple TOC/GOT sections, where the TOC base can vary
2736 from one input file to another. After partitioning into TOC groups
2737 we merge entries within the group.
2738
2739 Point to the BFD owning this GOT entry. */
2740 bfd *owner;
2741
2742 /* Zero for non-tls entries, or TLS_TLS and one of TLS_GD, TLS_LD,
2743 TLS_TPREL or TLS_DTPREL for tls entries. */
2744 unsigned char tls_type;
2745
2746 /* Non-zero if got.ent points to real entry. */
2747 unsigned char is_indirect;
2748
2749 /* Reference count until size_dynamic_sections, GOT offset thereafter. */
2750 union
2751 {
2752 bfd_signed_vma refcount;
2753 bfd_vma offset;
2754 struct got_entry *ent;
2755 } got;
2756 };
2757
2758 /* The same for PLT. */
2759 struct plt_entry
2760 {
2761 struct plt_entry *next;
2762
2763 bfd_vma addend;
2764
2765 union
2766 {
2767 bfd_signed_vma refcount;
2768 bfd_vma offset;
2769 } plt;
2770 };
2771
2772 struct ppc64_elf_obj_tdata
2773 {
2774 struct elf_obj_tdata elf;
2775
2776 /* Shortcuts to dynamic linker sections. */
2777 asection *got;
2778 asection *relgot;
2779
2780 /* Used during garbage collection. We attach global symbols defined
2781 on removed .opd entries to this section so that the sym is removed. */
2782 asection *deleted_section;
2783
2784 /* TLS local dynamic got entry handling. Support for multiple GOT
2785 sections means we potentially need one of these for each input bfd. */
2786 struct got_entry tlsld_got;
2787
2788 union {
2789 /* A copy of relocs before they are modified for --emit-relocs. */
2790 Elf_Internal_Rela *relocs;
2791
2792 /* Section contents. */
2793 bfd_byte *contents;
2794 } opd;
2795
2796 /* Nonzero if this bfd has small toc/got relocs, ie. that expect
2797 the reloc to be in the range -32768 to 32767. */
2798 unsigned int has_small_toc_reloc : 1;
2799
2800 /* Set if toc/got ha relocs detected not using r2, or lo reloc
2801 instruction not one we handle. */
2802 unsigned int unexpected_toc_insn : 1;
2803 };
2804
2805 #define ppc64_elf_tdata(bfd) \
2806 ((struct ppc64_elf_obj_tdata *) (bfd)->tdata.any)
2807
2808 #define ppc64_tlsld_got(bfd) \
2809 (&ppc64_elf_tdata (bfd)->tlsld_got)
2810
2811 #define is_ppc64_elf(bfd) \
2812 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2813 && elf_object_id (bfd) == PPC64_ELF_DATA)
2814
2815 /* Override the generic function because we store some extras. */
2816
2817 static bfd_boolean
2818 ppc64_elf_mkobject (bfd *abfd)
2819 {
2820 return bfd_elf_allocate_object (abfd, sizeof (struct ppc64_elf_obj_tdata),
2821 PPC64_ELF_DATA);
2822 }
2823
2824 /* Fix bad default arch selected for a 64 bit input bfd when the
2825 default is 32 bit. */
2826
2827 static bfd_boolean
2828 ppc64_elf_object_p (bfd *abfd)
2829 {
2830 if (abfd->arch_info->the_default && abfd->arch_info->bits_per_word == 32)
2831 {
2832 Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd);
2833
2834 if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS64)
2835 {
2836 /* Relies on arch after 32 bit default being 64 bit default. */
2837 abfd->arch_info = abfd->arch_info->next;
2838 BFD_ASSERT (abfd->arch_info->bits_per_word == 64);
2839 }
2840 }
2841 return TRUE;
2842 }
2843
2844 /* Support for core dump NOTE sections. */
2845
2846 static bfd_boolean
2847 ppc64_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2848 {
2849 size_t offset, size;
2850
2851 if (note->descsz != 504)
2852 return FALSE;
2853
2854 /* pr_cursig */
2855 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2856
2857 /* pr_pid */
2858 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 32);
2859
2860 /* pr_reg */
2861 offset = 112;
2862 size = 384;
2863
2864 /* Make a ".reg/999" section. */
2865 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2866 size, note->descpos + offset);
2867 }
2868
2869 static bfd_boolean
2870 ppc64_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2871 {
2872 if (note->descsz != 136)
2873 return FALSE;
2874
2875 elf_tdata (abfd)->core->pid
2876 = bfd_get_32 (abfd, note->descdata + 24);
2877 elf_tdata (abfd)->core->program
2878 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2879 elf_tdata (abfd)->core->command
2880 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2881
2882 return TRUE;
2883 }
2884
2885 static char *
2886 ppc64_elf_write_core_note (bfd *abfd, char *buf, int *bufsiz, int note_type,
2887 ...)
2888 {
2889 switch (note_type)
2890 {
2891 default:
2892 return NULL;
2893
2894 case NT_PRPSINFO:
2895 {
2896 char data[136];
2897 va_list ap;
2898
2899 va_start (ap, note_type);
2900 memset (data, 0, sizeof (data));
2901 strncpy (data + 40, va_arg (ap, const char *), 16);
2902 strncpy (data + 56, va_arg (ap, const char *), 80);
2903 va_end (ap);
2904 return elfcore_write_note (abfd, buf, bufsiz,
2905 "CORE", note_type, data, sizeof (data));
2906 }
2907
2908 case NT_PRSTATUS:
2909 {
2910 char data[504];
2911 va_list ap;
2912 long pid;
2913 int cursig;
2914 const void *greg;
2915
2916 va_start (ap, note_type);
2917 memset (data, 0, 112);
2918 pid = va_arg (ap, long);
2919 bfd_put_32 (abfd, pid, data + 32);
2920 cursig = va_arg (ap, int);
2921 bfd_put_16 (abfd, cursig, data + 12);
2922 greg = va_arg (ap, const void *);
2923 memcpy (data + 112, greg, 384);
2924 memset (data + 496, 0, 8);
2925 va_end (ap);
2926 return elfcore_write_note (abfd, buf, bufsiz,
2927 "CORE", note_type, data, sizeof (data));
2928 }
2929 }
2930 }
2931
2932 /* Add extra PPC sections. */
2933
2934 static const struct bfd_elf_special_section ppc64_elf_special_sections[]=
2935 {
2936 { STRING_COMMA_LEN (".plt"), 0, SHT_NOBITS, 0 },
2937 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2938 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2939 { STRING_COMMA_LEN (".toc"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2940 { STRING_COMMA_LEN (".toc1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2941 { STRING_COMMA_LEN (".tocbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2942 { NULL, 0, 0, 0, 0 }
2943 };
2944
2945 enum _ppc64_sec_type {
2946 sec_normal = 0,
2947 sec_opd = 1,
2948 sec_toc = 2
2949 };
2950
2951 struct _ppc64_elf_section_data
2952 {
2953 struct bfd_elf_section_data elf;
2954
2955 union
2956 {
2957 /* An array with one entry for each opd function descriptor,
2958 and some spares since opd entries may be either 16 or 24 bytes. */
2959 #define OPD_NDX(OFF) ((OFF) >> 4)
2960 struct _opd_sec_data
2961 {
2962 /* Points to the function code section for local opd entries. */
2963 asection **func_sec;
2964
2965 /* After editing .opd, adjust references to opd local syms. */
2966 long *adjust;
2967 } opd;
2968
2969 /* An array for toc sections, indexed by offset/8. */
2970 struct _toc_sec_data
2971 {
2972 /* Specifies the relocation symbol index used at a given toc offset. */
2973 unsigned *symndx;
2974
2975 /* And the relocation addend. */
2976 bfd_vma *add;
2977 } toc;
2978 } u;
2979
2980 enum _ppc64_sec_type sec_type:2;
2981
2982 /* Flag set when small branches are detected. Used to
2983 select suitable defaults for the stub group size. */
2984 unsigned int has_14bit_branch:1;
2985 };
2986
2987 #define ppc64_elf_section_data(sec) \
2988 ((struct _ppc64_elf_section_data *) elf_section_data (sec))
2989
2990 static bfd_boolean
2991 ppc64_elf_new_section_hook (bfd *abfd, asection *sec)
2992 {
2993 if (!sec->used_by_bfd)
2994 {
2995 struct _ppc64_elf_section_data *sdata;
2996 bfd_size_type amt = sizeof (*sdata);
2997
2998 sdata = bfd_zalloc (abfd, amt);
2999 if (sdata == NULL)
3000 return FALSE;
3001 sec->used_by_bfd = sdata;
3002 }
3003
3004 return _bfd_elf_new_section_hook (abfd, sec);
3005 }
3006
3007 static struct _opd_sec_data *
3008 get_opd_info (asection * sec)
3009 {
3010 if (sec != NULL
3011 && ppc64_elf_section_data (sec) != NULL
3012 && ppc64_elf_section_data (sec)->sec_type == sec_opd)
3013 return &ppc64_elf_section_data (sec)->u.opd;
3014 return NULL;
3015 }
3016 \f
3017 /* Parameters for the qsort hook. */
3018 static bfd_boolean synthetic_relocatable;
3019
3020 /* qsort comparison function for ppc64_elf_get_synthetic_symtab. */
3021
3022 static int
3023 compare_symbols (const void *ap, const void *bp)
3024 {
3025 const asymbol *a = * (const asymbol **) ap;
3026 const asymbol *b = * (const asymbol **) bp;
3027
3028 /* Section symbols first. */
3029 if ((a->flags & BSF_SECTION_SYM) && !(b->flags & BSF_SECTION_SYM))
3030 return -1;
3031 if (!(a->flags & BSF_SECTION_SYM) && (b->flags & BSF_SECTION_SYM))
3032 return 1;
3033
3034 /* then .opd symbols. */
3035 if (strcmp (a->section->name, ".opd") == 0
3036 && strcmp (b->section->name, ".opd") != 0)
3037 return -1;
3038 if (strcmp (a->section->name, ".opd") != 0
3039 && strcmp (b->section->name, ".opd") == 0)
3040 return 1;
3041
3042 /* then other code symbols. */
3043 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3044 == (SEC_CODE | SEC_ALLOC)
3045 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3046 != (SEC_CODE | SEC_ALLOC))
3047 return -1;
3048
3049 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3050 != (SEC_CODE | SEC_ALLOC)
3051 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3052 == (SEC_CODE | SEC_ALLOC))
3053 return 1;
3054
3055 if (synthetic_relocatable)
3056 {
3057 if (a->section->id < b->section->id)
3058 return -1;
3059
3060 if (a->section->id > b->section->id)
3061 return 1;
3062 }
3063
3064 if (a->value + a->section->vma < b->value + b->section->vma)
3065 return -1;
3066
3067 if (a->value + a->section->vma > b->value + b->section->vma)
3068 return 1;
3069
3070 /* For syms with the same value, prefer strong dynamic global function
3071 syms over other syms. */
3072 if ((a->flags & BSF_GLOBAL) != 0 && (b->flags & BSF_GLOBAL) == 0)
3073 return -1;
3074
3075 if ((a->flags & BSF_GLOBAL) == 0 && (b->flags & BSF_GLOBAL) != 0)
3076 return 1;
3077
3078 if ((a->flags & BSF_FUNCTION) != 0 && (b->flags & BSF_FUNCTION) == 0)
3079 return -1;
3080
3081 if ((a->flags & BSF_FUNCTION) == 0 && (b->flags & BSF_FUNCTION) != 0)
3082 return 1;
3083
3084 if ((a->flags & BSF_WEAK) == 0 && (b->flags & BSF_WEAK) != 0)
3085 return -1;
3086
3087 if ((a->flags & BSF_WEAK) != 0 && (b->flags & BSF_WEAK) == 0)
3088 return 1;
3089
3090 if ((a->flags & BSF_DYNAMIC) != 0 && (b->flags & BSF_DYNAMIC) == 0)
3091 return -1;
3092
3093 if ((a->flags & BSF_DYNAMIC) == 0 && (b->flags & BSF_DYNAMIC) != 0)
3094 return 1;
3095
3096 return 0;
3097 }
3098
3099 /* Search SYMS for a symbol of the given VALUE. */
3100
3101 static asymbol *
3102 sym_exists_at (asymbol **syms, long lo, long hi, int id, bfd_vma value)
3103 {
3104 long mid;
3105
3106 if (id == -1)
3107 {
3108 while (lo < hi)
3109 {
3110 mid = (lo + hi) >> 1;
3111 if (syms[mid]->value + syms[mid]->section->vma < value)
3112 lo = mid + 1;
3113 else if (syms[mid]->value + syms[mid]->section->vma > value)
3114 hi = mid;
3115 else
3116 return syms[mid];
3117 }
3118 }
3119 else
3120 {
3121 while (lo < hi)
3122 {
3123 mid = (lo + hi) >> 1;
3124 if (syms[mid]->section->id < id)
3125 lo = mid + 1;
3126 else if (syms[mid]->section->id > id)
3127 hi = mid;
3128 else if (syms[mid]->value < value)
3129 lo = mid + 1;
3130 else if (syms[mid]->value > value)
3131 hi = mid;
3132 else
3133 return syms[mid];
3134 }
3135 }
3136 return NULL;
3137 }
3138
3139 static bfd_boolean
3140 section_covers_vma (bfd *abfd ATTRIBUTE_UNUSED, asection *section, void *ptr)
3141 {
3142 bfd_vma vma = *(bfd_vma *) ptr;
3143 return ((section->flags & SEC_ALLOC) != 0
3144 && section->vma <= vma
3145 && vma < section->vma + section->size);
3146 }
3147
3148 /* Create synthetic symbols, effectively restoring "dot-symbol" function
3149 entry syms. Also generate @plt symbols for the glink branch table. */
3150
3151 static long
3152 ppc64_elf_get_synthetic_symtab (bfd *abfd,
3153 long static_count, asymbol **static_syms,
3154 long dyn_count, asymbol **dyn_syms,
3155 asymbol **ret)
3156 {
3157 asymbol *s;
3158 long i;
3159 long count;
3160 char *names;
3161 long symcount, codesecsym, codesecsymend, secsymend, opdsymend;
3162 asection *opd = NULL;
3163 bfd_boolean relocatable = (abfd->flags & (EXEC_P | DYNAMIC)) == 0;
3164 asymbol **syms;
3165 int abi = abiversion (abfd);
3166
3167 *ret = NULL;
3168
3169 if (abi < 2)
3170 {
3171 opd = bfd_get_section_by_name (abfd, ".opd");
3172 if (opd == NULL && abi == 1)
3173 return 0;
3174 }
3175
3176 symcount = static_count;
3177 if (!relocatable)
3178 symcount += dyn_count;
3179 if (symcount == 0)
3180 return 0;
3181
3182 syms = bfd_malloc ((symcount + 1) * sizeof (*syms));
3183 if (syms == NULL)
3184 return -1;
3185
3186 if (!relocatable && static_count != 0 && dyn_count != 0)
3187 {
3188 /* Use both symbol tables. */
3189 memcpy (syms, static_syms, static_count * sizeof (*syms));
3190 memcpy (syms + static_count, dyn_syms, (dyn_count + 1) * sizeof (*syms));
3191 }
3192 else if (!relocatable && static_count == 0)
3193 memcpy (syms, dyn_syms, (symcount + 1) * sizeof (*syms));
3194 else
3195 memcpy (syms, static_syms, (symcount + 1) * sizeof (*syms));
3196
3197 synthetic_relocatable = relocatable;
3198 qsort (syms, symcount, sizeof (*syms), compare_symbols);
3199
3200 if (!relocatable && symcount > 1)
3201 {
3202 long j;
3203 /* Trim duplicate syms, since we may have merged the normal and
3204 dynamic symbols. Actually, we only care about syms that have
3205 different values, so trim any with the same value. */
3206 for (i = 1, j = 1; i < symcount; ++i)
3207 if (syms[i - 1]->value + syms[i - 1]->section->vma
3208 != syms[i]->value + syms[i]->section->vma)
3209 syms[j++] = syms[i];
3210 symcount = j;
3211 }
3212
3213 i = 0;
3214 if (strcmp (syms[i]->section->name, ".opd") == 0)
3215 ++i;
3216 codesecsym = i;
3217
3218 for (; i < symcount; ++i)
3219 if (((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3220 != (SEC_CODE | SEC_ALLOC))
3221 || (syms[i]->flags & BSF_SECTION_SYM) == 0)
3222 break;
3223 codesecsymend = i;
3224
3225 for (; i < symcount; ++i)
3226 if ((syms[i]->flags & BSF_SECTION_SYM) == 0)
3227 break;
3228 secsymend = i;
3229
3230 for (; i < symcount; ++i)
3231 if (strcmp (syms[i]->section->name, ".opd") != 0)
3232 break;
3233 opdsymend = i;
3234
3235 for (; i < symcount; ++i)
3236 if ((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3237 != (SEC_CODE | SEC_ALLOC))
3238 break;
3239 symcount = i;
3240
3241 count = 0;
3242
3243 if (relocatable)
3244 {
3245 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
3246 arelent *r;
3247 size_t size;
3248 long relcount;
3249
3250 if (opdsymend == secsymend)
3251 goto done;
3252
3253 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
3254 relcount = (opd->flags & SEC_RELOC) ? opd->reloc_count : 0;
3255 if (relcount == 0)
3256 goto done;
3257
3258 if (!(*slurp_relocs) (abfd, opd, static_syms, FALSE))
3259 {
3260 count = -1;
3261 goto done;
3262 }
3263
3264 size = 0;
3265 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
3266 {
3267 asymbol *sym;
3268
3269 while (r < opd->relocation + relcount
3270 && r->address < syms[i]->value + opd->vma)
3271 ++r;
3272
3273 if (r == opd->relocation + relcount)
3274 break;
3275
3276 if (r->address != syms[i]->value + opd->vma)
3277 continue;
3278
3279 if (r->howto->type != R_PPC64_ADDR64)
3280 continue;
3281
3282 sym = *r->sym_ptr_ptr;
3283 if (!sym_exists_at (syms, opdsymend, symcount,
3284 sym->section->id, sym->value + r->addend))
3285 {
3286 ++count;
3287 size += sizeof (asymbol);
3288 size += strlen (syms[i]->name) + 2;
3289 }
3290 }
3291
3292 s = *ret = bfd_malloc (size);
3293 if (s == NULL)
3294 {
3295 count = -1;
3296 goto done;
3297 }
3298
3299 names = (char *) (s + count);
3300
3301 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
3302 {
3303 asymbol *sym;
3304
3305 while (r < opd->relocation + relcount
3306 && r->address < syms[i]->value + opd->vma)
3307 ++r;
3308
3309 if (r == opd->relocation + relcount)
3310 break;
3311
3312 if (r->address != syms[i]->value + opd->vma)
3313 continue;
3314
3315 if (r->howto->type != R_PPC64_ADDR64)
3316 continue;
3317
3318 sym = *r->sym_ptr_ptr;
3319 if (!sym_exists_at (syms, opdsymend, symcount,
3320 sym->section->id, sym->value + r->addend))
3321 {
3322 size_t len;
3323
3324 *s = *syms[i];
3325 s->flags |= BSF_SYNTHETIC;
3326 s->section = sym->section;
3327 s->value = sym->value + r->addend;
3328 s->name = names;
3329 *names++ = '.';
3330 len = strlen (syms[i]->name);
3331 memcpy (names, syms[i]->name, len + 1);
3332 names += len + 1;
3333 /* Have udata.p point back to the original symbol this
3334 synthetic symbol was derived from. */
3335 s->udata.p = syms[i];
3336 s++;
3337 }
3338 }
3339 }
3340 else
3341 {
3342 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
3343 bfd_byte *contents = NULL;
3344 size_t size;
3345 long plt_count = 0;
3346 bfd_vma glink_vma = 0, resolv_vma = 0;
3347 asection *dynamic, *glink = NULL, *relplt = NULL;
3348 arelent *p;
3349
3350 if (opd != NULL && !bfd_malloc_and_get_section (abfd, opd, &contents))
3351 {
3352 free_contents_and_exit:
3353 if (contents)
3354 free (contents);
3355 count = -1;
3356 goto done;
3357 }
3358
3359 size = 0;
3360 for (i = secsymend; i < opdsymend; ++i)
3361 {
3362 bfd_vma ent;
3363
3364 /* Ignore bogus symbols. */
3365 if (syms[i]->value > opd->size - 8)
3366 continue;
3367
3368 ent = bfd_get_64 (abfd, contents + syms[i]->value);
3369 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
3370 {
3371 ++count;
3372 size += sizeof (asymbol);
3373 size += strlen (syms[i]->name) + 2;
3374 }
3375 }
3376
3377 /* Get start of .glink stubs from DT_PPC64_GLINK. */
3378 if (dyn_count != 0
3379 && (dynamic = bfd_get_section_by_name (abfd, ".dynamic")) != NULL)
3380 {
3381 bfd_byte *dynbuf, *extdyn, *extdynend;
3382 size_t extdynsize;
3383 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
3384
3385 if (!bfd_malloc_and_get_section (abfd, dynamic, &dynbuf))
3386 goto free_contents_and_exit;
3387
3388 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
3389 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
3390
3391 extdyn = dynbuf;
3392 extdynend = extdyn + dynamic->size;
3393 for (; extdyn < extdynend; extdyn += extdynsize)
3394 {
3395 Elf_Internal_Dyn dyn;
3396 (*swap_dyn_in) (abfd, extdyn, &dyn);
3397
3398 if (dyn.d_tag == DT_NULL)
3399 break;
3400
3401 if (dyn.d_tag == DT_PPC64_GLINK)
3402 {
3403 /* The first glink stub starts at offset 32; see
3404 comment in ppc64_elf_finish_dynamic_sections. */
3405 glink_vma = dyn.d_un.d_val + GLINK_CALL_STUB_SIZE - 8 * 4;
3406 /* The .glink section usually does not survive the final
3407 link; search for the section (usually .text) where the
3408 glink stubs now reside. */
3409 glink = bfd_sections_find_if (abfd, section_covers_vma,
3410 &glink_vma);
3411 break;
3412 }
3413 }
3414
3415 free (dynbuf);
3416 }
3417
3418 if (glink != NULL)
3419 {
3420 /* Determine __glink trampoline by reading the relative branch
3421 from the first glink stub. */
3422 bfd_byte buf[4];
3423 unsigned int off = 0;
3424
3425 while (bfd_get_section_contents (abfd, glink, buf,
3426 glink_vma + off - glink->vma, 4))
3427 {
3428 unsigned int insn = bfd_get_32 (abfd, buf);
3429 insn ^= B_DOT;
3430 if ((insn & ~0x3fffffc) == 0)
3431 {
3432 resolv_vma = glink_vma + off + (insn ^ 0x2000000) - 0x2000000;
3433 break;
3434 }
3435 off += 4;
3436 if (off > 4)
3437 break;
3438 }
3439
3440 if (resolv_vma)
3441 size += sizeof (asymbol) + sizeof ("__glink_PLTresolve");
3442
3443 relplt = bfd_get_section_by_name (abfd, ".rela.plt");
3444 if (relplt != NULL)
3445 {
3446 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
3447 if (! (*slurp_relocs) (abfd, relplt, dyn_syms, TRUE))
3448 goto free_contents_and_exit;
3449
3450 plt_count = relplt->size / sizeof (Elf64_External_Rela);
3451 size += plt_count * sizeof (asymbol);
3452
3453 p = relplt->relocation;
3454 for (i = 0; i < plt_count; i++, p++)
3455 {
3456 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
3457 if (p->addend != 0)
3458 size += sizeof ("+0x") - 1 + 16;
3459 }
3460 }
3461 }
3462
3463 s = *ret = bfd_malloc (size);
3464 if (s == NULL)
3465 goto free_contents_and_exit;
3466
3467 names = (char *) (s + count + plt_count + (resolv_vma != 0));
3468
3469 for (i = secsymend; i < opdsymend; ++i)
3470 {
3471 bfd_vma ent;
3472
3473 if (syms[i]->value > opd->size - 8)
3474 continue;
3475
3476 ent = bfd_get_64 (abfd, contents + syms[i]->value);
3477 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
3478 {
3479 long lo, hi;
3480 size_t len;
3481 asection *sec = abfd->sections;
3482
3483 *s = *syms[i];
3484 lo = codesecsym;
3485 hi = codesecsymend;
3486 while (lo < hi)
3487 {
3488 long mid = (lo + hi) >> 1;
3489 if (syms[mid]->section->vma < ent)
3490 lo = mid + 1;
3491 else if (syms[mid]->section->vma > ent)
3492 hi = mid;
3493 else
3494 {
3495 sec = syms[mid]->section;
3496 break;
3497 }
3498 }
3499
3500 if (lo >= hi && lo > codesecsym)
3501 sec = syms[lo - 1]->section;
3502
3503 for (; sec != NULL; sec = sec->next)
3504 {
3505 if (sec->vma > ent)
3506 break;
3507 /* SEC_LOAD may not be set if SEC is from a separate debug
3508 info file. */
3509 if ((sec->flags & SEC_ALLOC) == 0)
3510 break;
3511 if ((sec->flags & SEC_CODE) != 0)
3512 s->section = sec;
3513 }
3514 s->flags |= BSF_SYNTHETIC;
3515 s->value = ent - s->section->vma;
3516 s->name = names;
3517 *names++ = '.';
3518 len = strlen (syms[i]->name);
3519 memcpy (names, syms[i]->name, len + 1);
3520 names += len + 1;
3521 /* Have udata.p point back to the original symbol this
3522 synthetic symbol was derived from. */
3523 s->udata.p = syms[i];
3524 s++;
3525 }
3526 }
3527 free (contents);
3528
3529 if (glink != NULL && relplt != NULL)
3530 {
3531 if (resolv_vma)
3532 {
3533 /* Add a symbol for the main glink trampoline. */
3534 memset (s, 0, sizeof *s);
3535 s->the_bfd = abfd;
3536 s->flags = BSF_GLOBAL | BSF_SYNTHETIC;
3537 s->section = glink;
3538 s->value = resolv_vma - glink->vma;
3539 s->name = names;
3540 memcpy (names, "__glink_PLTresolve", sizeof ("__glink_PLTresolve"));
3541 names += sizeof ("__glink_PLTresolve");
3542 s++;
3543 count++;
3544 }
3545
3546 /* FIXME: It would be very much nicer to put sym@plt on the
3547 stub rather than on the glink branch table entry. The
3548 objdump disassembler would then use a sensible symbol
3549 name on plt calls. The difficulty in doing so is
3550 a) finding the stubs, and,
3551 b) matching stubs against plt entries, and,
3552 c) there can be multiple stubs for a given plt entry.
3553
3554 Solving (a) could be done by code scanning, but older
3555 ppc64 binaries used different stubs to current code.
3556 (b) is the tricky one since you need to known the toc
3557 pointer for at least one function that uses a pic stub to
3558 be able to calculate the plt address referenced.
3559 (c) means gdb would need to set multiple breakpoints (or
3560 find the glink branch itself) when setting breakpoints
3561 for pending shared library loads. */
3562 p = relplt->relocation;
3563 for (i = 0; i < plt_count; i++, p++)
3564 {
3565 size_t len;
3566
3567 *s = **p->sym_ptr_ptr;
3568 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
3569 we are defining a symbol, ensure one of them is set. */
3570 if ((s->flags & BSF_LOCAL) == 0)
3571 s->flags |= BSF_GLOBAL;
3572 s->flags |= BSF_SYNTHETIC;
3573 s->section = glink;
3574 s->value = glink_vma - glink->vma;
3575 s->name = names;
3576 s->udata.p = NULL;
3577 len = strlen ((*p->sym_ptr_ptr)->name);
3578 memcpy (names, (*p->sym_ptr_ptr)->name, len);
3579 names += len;
3580 if (p->addend != 0)
3581 {
3582 memcpy (names, "+0x", sizeof ("+0x") - 1);
3583 names += sizeof ("+0x") - 1;
3584 bfd_sprintf_vma (abfd, names, p->addend);
3585 names += strlen (names);
3586 }
3587 memcpy (names, "@plt", sizeof ("@plt"));
3588 names += sizeof ("@plt");
3589 s++;
3590 if (abi < 2)
3591 {
3592 glink_vma += 8;
3593 if (i >= 0x8000)
3594 glink_vma += 4;
3595 }
3596 else
3597 glink_vma += 4;
3598 }
3599 count += plt_count;
3600 }
3601 }
3602
3603 done:
3604 free (syms);
3605 return count;
3606 }
3607 \f
3608 /* The following functions are specific to the ELF linker, while
3609 functions above are used generally. Those named ppc64_elf_* are
3610 called by the main ELF linker code. They appear in this file more
3611 or less in the order in which they are called. eg.
3612 ppc64_elf_check_relocs is called early in the link process,
3613 ppc64_elf_finish_dynamic_sections is one of the last functions
3614 called.
3615
3616 PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that
3617 functions have both a function code symbol and a function descriptor
3618 symbol. A call to foo in a relocatable object file looks like:
3619
3620 . .text
3621 . x:
3622 . bl .foo
3623 . nop
3624
3625 The function definition in another object file might be:
3626
3627 . .section .opd
3628 . foo: .quad .foo
3629 . .quad .TOC.@tocbase
3630 . .quad 0
3631 .
3632 . .text
3633 . .foo: blr
3634
3635 When the linker resolves the call during a static link, the branch
3636 unsurprisingly just goes to .foo and the .opd information is unused.
3637 If the function definition is in a shared library, things are a little
3638 different: The call goes via a plt call stub, the opd information gets
3639 copied to the plt, and the linker patches the nop.
3640
3641 . x:
3642 . bl .foo_stub
3643 . ld 2,40(1)
3644 .
3645 .
3646 . .foo_stub:
3647 . std 2,40(1) # in practice, the call stub
3648 . addis 11,2,Lfoo@toc@ha # is slightly optimized, but
3649 . addi 11,11,Lfoo@toc@l # this is the general idea
3650 . ld 12,0(11)
3651 . ld 2,8(11)
3652 . mtctr 12
3653 . ld 11,16(11)
3654 . bctr
3655 .
3656 . .section .plt
3657 . Lfoo: reloc (R_PPC64_JMP_SLOT, foo)
3658
3659 The "reloc ()" notation is supposed to indicate that the linker emits
3660 an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd
3661 copying.
3662
3663 What are the difficulties here? Well, firstly, the relocations
3664 examined by the linker in check_relocs are against the function code
3665 sym .foo, while the dynamic relocation in the plt is emitted against
3666 the function descriptor symbol, foo. Somewhere along the line, we need
3667 to carefully copy dynamic link information from one symbol to the other.
3668 Secondly, the generic part of the elf linker will make .foo a dynamic
3669 symbol as is normal for most other backends. We need foo dynamic
3670 instead, at least for an application final link. However, when
3671 creating a shared library containing foo, we need to have both symbols
3672 dynamic so that references to .foo are satisfied during the early
3673 stages of linking. Otherwise the linker might decide to pull in a
3674 definition from some other object, eg. a static library.
3675
3676 Update: As of August 2004, we support a new convention. Function
3677 calls may use the function descriptor symbol, ie. "bl foo". This
3678 behaves exactly as "bl .foo". */
3679
3680 /* Of those relocs that might be copied as dynamic relocs, this function
3681 selects those that must be copied when linking a shared library,
3682 even when the symbol is local. */
3683
3684 static int
3685 must_be_dyn_reloc (struct bfd_link_info *info,
3686 enum elf_ppc64_reloc_type r_type)
3687 {
3688 switch (r_type)
3689 {
3690 default:
3691 return 1;
3692
3693 case R_PPC64_REL32:
3694 case R_PPC64_REL64:
3695 case R_PPC64_REL30:
3696 return 0;
3697
3698 case R_PPC64_TPREL16:
3699 case R_PPC64_TPREL16_LO:
3700 case R_PPC64_TPREL16_HI:
3701 case R_PPC64_TPREL16_HA:
3702 case R_PPC64_TPREL16_DS:
3703 case R_PPC64_TPREL16_LO_DS:
3704 case R_PPC64_TPREL16_HIGH:
3705 case R_PPC64_TPREL16_HIGHA:
3706 case R_PPC64_TPREL16_HIGHER:
3707 case R_PPC64_TPREL16_HIGHERA:
3708 case R_PPC64_TPREL16_HIGHEST:
3709 case R_PPC64_TPREL16_HIGHESTA:
3710 case R_PPC64_TPREL64:
3711 return !info->executable;
3712 }
3713 }
3714
3715 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
3716 copying dynamic variables from a shared lib into an app's dynbss
3717 section, and instead use a dynamic relocation to point into the
3718 shared lib. With code that gcc generates, it's vital that this be
3719 enabled; In the PowerPC64 ABI, the address of a function is actually
3720 the address of a function descriptor, which resides in the .opd
3721 section. gcc uses the descriptor directly rather than going via the
3722 GOT as some other ABI's do, which means that initialized function
3723 pointers must reference the descriptor. Thus, a function pointer
3724 initialized to the address of a function in a shared library will
3725 either require a copy reloc, or a dynamic reloc. Using a copy reloc
3726 redefines the function descriptor symbol to point to the copy. This
3727 presents a problem as a plt entry for that function is also
3728 initialized from the function descriptor symbol and the copy reloc
3729 may not be initialized first. */
3730 #define ELIMINATE_COPY_RELOCS 1
3731
3732 /* Section name for stubs is the associated section name plus this
3733 string. */
3734 #define STUB_SUFFIX ".stub"
3735
3736 /* Linker stubs.
3737 ppc_stub_long_branch:
3738 Used when a 14 bit branch (or even a 24 bit branch) can't reach its
3739 destination, but a 24 bit branch in a stub section will reach.
3740 . b dest
3741
3742 ppc_stub_plt_branch:
3743 Similar to the above, but a 24 bit branch in the stub section won't
3744 reach its destination.
3745 . addis %r11,%r2,xxx@toc@ha
3746 . ld %r12,xxx@toc@l(%r11)
3747 . mtctr %r12
3748 . bctr
3749
3750 ppc_stub_plt_call:
3751 Used to call a function in a shared library. If it so happens that
3752 the plt entry referenced crosses a 64k boundary, then an extra
3753 "addi %r11,%r11,xxx@toc@l" will be inserted before the "mtctr".
3754 . std %r2,40(%r1)
3755 . addis %r11,%r2,xxx@toc@ha
3756 . ld %r12,xxx+0@toc@l(%r11)
3757 . mtctr %r12
3758 . ld %r2,xxx+8@toc@l(%r11)
3759 . ld %r11,xxx+16@toc@l(%r11)
3760 . bctr
3761
3762 ppc_stub_long_branch and ppc_stub_plt_branch may also have additional
3763 code to adjust the value and save r2 to support multiple toc sections.
3764 A ppc_stub_long_branch with an r2 offset looks like:
3765 . std %r2,40(%r1)
3766 . addis %r2,%r2,off@ha
3767 . addi %r2,%r2,off@l
3768 . b dest
3769
3770 A ppc_stub_plt_branch with an r2 offset looks like:
3771 . std %r2,40(%r1)
3772 . addis %r11,%r2,xxx@toc@ha
3773 . ld %r12,xxx@toc@l(%r11)
3774 . addis %r2,%r2,off@ha
3775 . addi %r2,%r2,off@l
3776 . mtctr %r12
3777 . bctr
3778
3779 In cases where the "addis" instruction would add zero, the "addis" is
3780 omitted and following instructions modified slightly in some cases.
3781 */
3782
3783 enum ppc_stub_type {
3784 ppc_stub_none,
3785 ppc_stub_long_branch,
3786 ppc_stub_long_branch_r2off,
3787 ppc_stub_plt_branch,
3788 ppc_stub_plt_branch_r2off,
3789 ppc_stub_plt_call,
3790 ppc_stub_plt_call_r2save,
3791 ppc_stub_global_entry
3792 };
3793
3794 struct ppc_stub_hash_entry {
3795
3796 /* Base hash table entry structure. */
3797 struct bfd_hash_entry root;
3798
3799 enum ppc_stub_type stub_type;
3800
3801 /* The stub section. */
3802 asection *stub_sec;
3803
3804 /* Offset within stub_sec of the beginning of this stub. */
3805 bfd_vma stub_offset;
3806
3807 /* Given the symbol's value and its section we can determine its final
3808 value when building the stubs (so the stub knows where to jump. */
3809 bfd_vma target_value;
3810 asection *target_section;
3811
3812 /* The symbol table entry, if any, that this was derived from. */
3813 struct ppc_link_hash_entry *h;
3814 struct plt_entry *plt_ent;
3815
3816 /* Where this stub is being called from, or, in the case of combined
3817 stub sections, the first input section in the group. */
3818 asection *id_sec;
3819
3820 /* Symbol st_other. */
3821 unsigned char other;
3822 };
3823
3824 struct ppc_branch_hash_entry {
3825
3826 /* Base hash table entry structure. */
3827 struct bfd_hash_entry root;
3828
3829 /* Offset within branch lookup table. */
3830 unsigned int offset;
3831
3832 /* Generation marker. */
3833 unsigned int iter;
3834 };
3835
3836 /* Used to track dynamic relocations for local symbols. */
3837 struct ppc_dyn_relocs
3838 {
3839 struct ppc_dyn_relocs *next;
3840
3841 /* The input section of the reloc. */
3842 asection *sec;
3843
3844 /* Total number of relocs copied for the input section. */
3845 unsigned int count : 31;
3846
3847 /* Whether this entry is for STT_GNU_IFUNC symbols. */
3848 unsigned int ifunc : 1;
3849 };
3850
3851 struct ppc_link_hash_entry
3852 {
3853 struct elf_link_hash_entry elf;
3854
3855 union {
3856 /* A pointer to the most recently used stub hash entry against this
3857 symbol. */
3858 struct ppc_stub_hash_entry *stub_cache;
3859
3860 /* A pointer to the next symbol starting with a '.' */
3861 struct ppc_link_hash_entry *next_dot_sym;
3862 } u;
3863
3864 /* Track dynamic relocs copied for this symbol. */
3865 struct elf_dyn_relocs *dyn_relocs;
3866
3867 /* Link between function code and descriptor symbols. */
3868 struct ppc_link_hash_entry *oh;
3869
3870 /* Flag function code and descriptor symbols. */
3871 unsigned int is_func:1;
3872 unsigned int is_func_descriptor:1;
3873 unsigned int fake:1;
3874
3875 /* Whether global opd/toc sym has been adjusted or not.
3876 After ppc64_elf_edit_opd/ppc64_elf_edit_toc has run, this flag
3877 should be set for all globals defined in any opd/toc section. */
3878 unsigned int adjust_done:1;
3879
3880 /* Set if we twiddled this symbol to weak at some stage. */
3881 unsigned int was_undefined:1;
3882
3883 /* Contexts in which symbol is used in the GOT (or TOC).
3884 TLS_GD .. TLS_EXPLICIT bits are or'd into the mask as the
3885 corresponding relocs are encountered during check_relocs.
3886 tls_optimize clears TLS_GD .. TLS_TPREL when optimizing to
3887 indicate the corresponding GOT entry type is not needed.
3888 tls_optimize may also set TLS_TPRELGD when a GD reloc turns into
3889 a TPREL one. We use a separate flag rather than setting TPREL
3890 just for convenience in distinguishing the two cases. */
3891 #define TLS_GD 1 /* GD reloc. */
3892 #define TLS_LD 2 /* LD reloc. */
3893 #define TLS_TPREL 4 /* TPREL reloc, => IE. */
3894 #define TLS_DTPREL 8 /* DTPREL reloc, => LD. */
3895 #define TLS_TLS 16 /* Any TLS reloc. */
3896 #define TLS_EXPLICIT 32 /* Marks TOC section TLS relocs. */
3897 #define TLS_TPRELGD 64 /* TPREL reloc resulting from GD->IE. */
3898 #define PLT_IFUNC 128 /* STT_GNU_IFUNC. */
3899 unsigned char tls_mask;
3900 };
3901
3902 /* ppc64 ELF linker hash table. */
3903
3904 struct ppc_link_hash_table
3905 {
3906 struct elf_link_hash_table elf;
3907
3908 /* The stub hash table. */
3909 struct bfd_hash_table stub_hash_table;
3910
3911 /* Another hash table for plt_branch stubs. */
3912 struct bfd_hash_table branch_hash_table;
3913
3914 /* Hash table for function prologue tocsave. */
3915 htab_t tocsave_htab;
3916
3917 /* Various options and other info passed from the linker. */
3918 struct ppc64_elf_params *params;
3919
3920 /* Array to keep track of which stub sections have been created, and
3921 information on stub grouping. */
3922 struct map_stub {
3923 /* This is the section to which stubs in the group will be attached. */
3924 asection *link_sec;
3925 /* The stub section. */
3926 asection *stub_sec;
3927 /* Along with elf_gp, specifies the TOC pointer used in this group. */
3928 bfd_vma toc_off;
3929 } *stub_group;
3930
3931 /* Temp used when calculating TOC pointers. */
3932 bfd_vma toc_curr;
3933 bfd *toc_bfd;
3934 asection *toc_first_sec;
3935
3936 /* Highest input section id. */
3937 int top_id;
3938
3939 /* Highest output section index. */
3940 int top_index;
3941
3942 /* Used when adding symbols. */
3943 struct ppc_link_hash_entry *dot_syms;
3944
3945 /* List of input sections for each output section. */
3946 asection **input_list;
3947
3948 /* Shortcuts to get to dynamic linker sections. */
3949 asection *dynbss;
3950 asection *relbss;
3951 asection *glink;
3952 asection *sfpr;
3953 asection *brlt;
3954 asection *relbrlt;
3955 asection *glink_eh_frame;
3956
3957 /* Shortcut to .__tls_get_addr and __tls_get_addr. */
3958 struct ppc_link_hash_entry *tls_get_addr;
3959 struct ppc_link_hash_entry *tls_get_addr_fd;
3960
3961 /* The size of reliplt used by got entry relocs. */
3962 bfd_size_type got_reli_size;
3963
3964 /* Statistics. */
3965 unsigned long stub_count[ppc_stub_global_entry];
3966
3967 /* Number of stubs against global syms. */
3968 unsigned long stub_globals;
3969
3970 /* Set if we're linking code with function descriptors. */
3971 unsigned int opd_abi:1;
3972
3973 /* Support for multiple toc sections. */
3974 unsigned int do_multi_toc:1;
3975 unsigned int multi_toc_needed:1;
3976 unsigned int second_toc_pass:1;
3977 unsigned int do_toc_opt:1;
3978
3979 /* Set on error. */
3980 unsigned int stub_error:1;
3981
3982 /* Temp used by ppc64_elf_before_check_relocs. */
3983 unsigned int twiddled_syms:1;
3984
3985 /* Incremented every time we size stubs. */
3986 unsigned int stub_iteration;
3987
3988 /* Small local sym cache. */
3989 struct sym_cache sym_cache;
3990 };
3991
3992 /* Rename some of the generic section flags to better document how they
3993 are used here. */
3994
3995 /* Nonzero if this section has TLS related relocations. */
3996 #define has_tls_reloc sec_flg0
3997
3998 /* Nonzero if this section has a call to __tls_get_addr. */
3999 #define has_tls_get_addr_call sec_flg1
4000
4001 /* Nonzero if this section has any toc or got relocs. */
4002 #define has_toc_reloc sec_flg2
4003
4004 /* Nonzero if this section has a call to another section that uses
4005 the toc or got. */
4006 #define makes_toc_func_call sec_flg3
4007
4008 /* Recursion protection when determining above flag. */
4009 #define call_check_in_progress sec_flg4
4010 #define call_check_done sec_flg5
4011
4012 /* Get the ppc64 ELF linker hash table from a link_info structure. */
4013
4014 #define ppc_hash_table(p) \
4015 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
4016 == PPC64_ELF_DATA ? ((struct ppc_link_hash_table *) ((p)->hash)) : NULL)
4017
4018 #define ppc_stub_hash_lookup(table, string, create, copy) \
4019 ((struct ppc_stub_hash_entry *) \
4020 bfd_hash_lookup ((table), (string), (create), (copy)))
4021
4022 #define ppc_branch_hash_lookup(table, string, create, copy) \
4023 ((struct ppc_branch_hash_entry *) \
4024 bfd_hash_lookup ((table), (string), (create), (copy)))
4025
4026 /* Create an entry in the stub hash table. */
4027
4028 static struct bfd_hash_entry *
4029 stub_hash_newfunc (struct bfd_hash_entry *entry,
4030 struct bfd_hash_table *table,
4031 const char *string)
4032 {
4033 /* Allocate the structure if it has not already been allocated by a
4034 subclass. */
4035 if (entry == NULL)
4036 {
4037 entry = bfd_hash_allocate (table, sizeof (struct ppc_stub_hash_entry));
4038 if (entry == NULL)
4039 return entry;
4040 }
4041
4042 /* Call the allocation method of the superclass. */
4043 entry = bfd_hash_newfunc (entry, table, string);
4044 if (entry != NULL)
4045 {
4046 struct ppc_stub_hash_entry *eh;
4047
4048 /* Initialize the local fields. */
4049 eh = (struct ppc_stub_hash_entry *) entry;
4050 eh->stub_type = ppc_stub_none;
4051 eh->stub_sec = NULL;
4052 eh->stub_offset = 0;
4053 eh->target_value = 0;
4054 eh->target_section = NULL;
4055 eh->h = NULL;
4056 eh->plt_ent = NULL;
4057 eh->id_sec = NULL;
4058 eh->other = 0;
4059 }
4060
4061 return entry;
4062 }
4063
4064 /* Create an entry in the branch hash table. */
4065
4066 static struct bfd_hash_entry *
4067 branch_hash_newfunc (struct bfd_hash_entry *entry,
4068 struct bfd_hash_table *table,
4069 const char *string)
4070 {
4071 /* Allocate the structure if it has not already been allocated by a
4072 subclass. */
4073 if (entry == NULL)
4074 {
4075 entry = bfd_hash_allocate (table, sizeof (struct ppc_branch_hash_entry));
4076 if (entry == NULL)
4077 return entry;
4078 }
4079
4080 /* Call the allocation method of the superclass. */
4081 entry = bfd_hash_newfunc (entry, table, string);
4082 if (entry != NULL)
4083 {
4084 struct ppc_branch_hash_entry *eh;
4085
4086 /* Initialize the local fields. */
4087 eh = (struct ppc_branch_hash_entry *) entry;
4088 eh->offset = 0;
4089 eh->iter = 0;
4090 }
4091
4092 return entry;
4093 }
4094
4095 /* Create an entry in a ppc64 ELF linker hash table. */
4096
4097 static struct bfd_hash_entry *
4098 link_hash_newfunc (struct bfd_hash_entry *entry,
4099 struct bfd_hash_table *table,
4100 const char *string)
4101 {
4102 /* Allocate the structure if it has not already been allocated by a
4103 subclass. */
4104 if (entry == NULL)
4105 {
4106 entry = bfd_hash_allocate (table, sizeof (struct ppc_link_hash_entry));
4107 if (entry == NULL)
4108 return entry;
4109 }
4110
4111 /* Call the allocation method of the superclass. */
4112 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
4113 if (entry != NULL)
4114 {
4115 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) entry;
4116
4117 memset (&eh->u.stub_cache, 0,
4118 (sizeof (struct ppc_link_hash_entry)
4119 - offsetof (struct ppc_link_hash_entry, u.stub_cache)));
4120
4121 /* When making function calls, old ABI code references function entry
4122 points (dot symbols), while new ABI code references the function
4123 descriptor symbol. We need to make any combination of reference and
4124 definition work together, without breaking archive linking.
4125
4126 For a defined function "foo" and an undefined call to "bar":
4127 An old object defines "foo" and ".foo", references ".bar" (possibly
4128 "bar" too).
4129 A new object defines "foo" and references "bar".
4130
4131 A new object thus has no problem with its undefined symbols being
4132 satisfied by definitions in an old object. On the other hand, the
4133 old object won't have ".bar" satisfied by a new object.
4134
4135 Keep a list of newly added dot-symbols. */
4136
4137 if (string[0] == '.')
4138 {
4139 struct ppc_link_hash_table *htab;
4140
4141 htab = (struct ppc_link_hash_table *) table;
4142 eh->u.next_dot_sym = htab->dot_syms;
4143 htab->dot_syms = eh;
4144 }
4145 }
4146
4147 return entry;
4148 }
4149
4150 struct tocsave_entry {
4151 asection *sec;
4152 bfd_vma offset;
4153 };
4154
4155 static hashval_t
4156 tocsave_htab_hash (const void *p)
4157 {
4158 const struct tocsave_entry *e = (const struct tocsave_entry *) p;
4159 return ((bfd_vma)(intptr_t) e->sec ^ e->offset) >> 3;
4160 }
4161
4162 static int
4163 tocsave_htab_eq (const void *p1, const void *p2)
4164 {
4165 const struct tocsave_entry *e1 = (const struct tocsave_entry *) p1;
4166 const struct tocsave_entry *e2 = (const struct tocsave_entry *) p2;
4167 return e1->sec == e2->sec && e1->offset == e2->offset;
4168 }
4169
4170 /* Destroy a ppc64 ELF linker hash table. */
4171
4172 static void
4173 ppc64_elf_link_hash_table_free (bfd *obfd)
4174 {
4175 struct ppc_link_hash_table *htab;
4176
4177 htab = (struct ppc_link_hash_table *) obfd->link.hash;
4178 if (htab->tocsave_htab)
4179 htab_delete (htab->tocsave_htab);
4180 bfd_hash_table_free (&htab->branch_hash_table);
4181 bfd_hash_table_free (&htab->stub_hash_table);
4182 _bfd_elf_link_hash_table_free (obfd);
4183 }
4184
4185 /* Create a ppc64 ELF linker hash table. */
4186
4187 static struct bfd_link_hash_table *
4188 ppc64_elf_link_hash_table_create (bfd *abfd)
4189 {
4190 struct ppc_link_hash_table *htab;
4191 bfd_size_type amt = sizeof (struct ppc_link_hash_table);
4192
4193 htab = bfd_zmalloc (amt);
4194 if (htab == NULL)
4195 return NULL;
4196
4197 if (!_bfd_elf_link_hash_table_init (&htab->elf, abfd, link_hash_newfunc,
4198 sizeof (struct ppc_link_hash_entry),
4199 PPC64_ELF_DATA))
4200 {
4201 free (htab);
4202 return NULL;
4203 }
4204
4205 /* Init the stub hash table too. */
4206 if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc,
4207 sizeof (struct ppc_stub_hash_entry)))
4208 {
4209 _bfd_elf_link_hash_table_free (abfd);
4210 return NULL;
4211 }
4212
4213 /* And the branch hash table. */
4214 if (!bfd_hash_table_init (&htab->branch_hash_table, branch_hash_newfunc,
4215 sizeof (struct ppc_branch_hash_entry)))
4216 {
4217 bfd_hash_table_free (&htab->stub_hash_table);
4218 _bfd_elf_link_hash_table_free (abfd);
4219 return NULL;
4220 }
4221
4222 htab->tocsave_htab = htab_try_create (1024,
4223 tocsave_htab_hash,
4224 tocsave_htab_eq,
4225 NULL);
4226 if (htab->tocsave_htab == NULL)
4227 {
4228 ppc64_elf_link_hash_table_free (abfd);
4229 return NULL;
4230 }
4231 htab->elf.root.hash_table_free = ppc64_elf_link_hash_table_free;
4232
4233 /* Initializing two fields of the union is just cosmetic. We really
4234 only care about glist, but when compiled on a 32-bit host the
4235 bfd_vma fields are larger. Setting the bfd_vma to zero makes
4236 debugger inspection of these fields look nicer. */
4237 htab->elf.init_got_refcount.refcount = 0;
4238 htab->elf.init_got_refcount.glist = NULL;
4239 htab->elf.init_plt_refcount.refcount = 0;
4240 htab->elf.init_plt_refcount.glist = NULL;
4241 htab->elf.init_got_offset.offset = 0;
4242 htab->elf.init_got_offset.glist = NULL;
4243 htab->elf.init_plt_offset.offset = 0;
4244 htab->elf.init_plt_offset.glist = NULL;
4245
4246 return &htab->elf.root;
4247 }
4248
4249 /* Create sections for linker generated code. */
4250
4251 static bfd_boolean
4252 create_linkage_sections (bfd *dynobj, struct bfd_link_info *info)
4253 {
4254 struct ppc_link_hash_table *htab;
4255 flagword flags;
4256
4257 htab = ppc_hash_table (info);
4258
4259 /* Create .sfpr for code to save and restore fp regs. */
4260 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
4261 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4262 htab->sfpr = bfd_make_section_anyway_with_flags (dynobj, ".sfpr",
4263 flags);
4264 if (htab->sfpr == NULL
4265 || ! bfd_set_section_alignment (dynobj, htab->sfpr, 2))
4266 return FALSE;
4267
4268 /* Create .glink for lazy dynamic linking support. */
4269 htab->glink = bfd_make_section_anyway_with_flags (dynobj, ".glink",
4270 flags);
4271 if (htab->glink == NULL
4272 || ! bfd_set_section_alignment (dynobj, htab->glink, 3))
4273 return FALSE;
4274
4275 if (!info->no_ld_generated_unwind_info)
4276 {
4277 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_HAS_CONTENTS
4278 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4279 htab->glink_eh_frame = bfd_make_section_anyway_with_flags (dynobj,
4280 ".eh_frame",
4281 flags);
4282 if (htab->glink_eh_frame == NULL
4283 || !bfd_set_section_alignment (dynobj, htab->glink_eh_frame, 2))
4284 return FALSE;
4285 }
4286
4287 flags = SEC_ALLOC | SEC_LINKER_CREATED;
4288 htab->elf.iplt = bfd_make_section_anyway_with_flags (dynobj, ".iplt", flags);
4289 if (htab->elf.iplt == NULL
4290 || ! bfd_set_section_alignment (dynobj, htab->elf.iplt, 3))
4291 return FALSE;
4292
4293 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
4294 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4295 htab->elf.irelplt
4296 = bfd_make_section_anyway_with_flags (dynobj, ".rela.iplt", flags);
4297 if (htab->elf.irelplt == NULL
4298 || ! bfd_set_section_alignment (dynobj, htab->elf.irelplt, 3))
4299 return FALSE;
4300
4301 /* Create branch lookup table for plt_branch stubs. */
4302 flags = (SEC_ALLOC | SEC_LOAD
4303 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4304 htab->brlt = bfd_make_section_anyway_with_flags (dynobj, ".branch_lt",
4305 flags);
4306 if (htab->brlt == NULL
4307 || ! bfd_set_section_alignment (dynobj, htab->brlt, 3))
4308 return FALSE;
4309
4310 if (!info->shared)
4311 return TRUE;
4312
4313 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
4314 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4315 htab->relbrlt = bfd_make_section_anyway_with_flags (dynobj,
4316 ".rela.branch_lt",
4317 flags);
4318 if (htab->relbrlt == NULL
4319 || ! bfd_set_section_alignment (dynobj, htab->relbrlt, 3))
4320 return FALSE;
4321
4322 return TRUE;
4323 }
4324
4325 /* Satisfy the ELF linker by filling in some fields in our fake bfd. */
4326
4327 bfd_boolean
4328 ppc64_elf_init_stub_bfd (struct bfd_link_info *info,
4329 struct ppc64_elf_params *params)
4330 {
4331 struct ppc_link_hash_table *htab;
4332
4333 elf_elfheader (params->stub_bfd)->e_ident[EI_CLASS] = ELFCLASS64;
4334
4335 /* Always hook our dynamic sections into the first bfd, which is the
4336 linker created stub bfd. This ensures that the GOT header is at
4337 the start of the output TOC section. */
4338 htab = ppc_hash_table (info);
4339 if (htab == NULL)
4340 return FALSE;
4341 htab->elf.dynobj = params->stub_bfd;
4342 htab->params = params;
4343
4344 if (info->relocatable)
4345 return TRUE;
4346
4347 return create_linkage_sections (htab->elf.dynobj, info);
4348 }
4349
4350 /* Build a name for an entry in the stub hash table. */
4351
4352 static char *
4353 ppc_stub_name (const asection *input_section,
4354 const asection *sym_sec,
4355 const struct ppc_link_hash_entry *h,
4356 const Elf_Internal_Rela *rel)
4357 {
4358 char *stub_name;
4359 ssize_t len;
4360
4361 /* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31
4362 offsets from a sym as a branch target? In fact, we could
4363 probably assume the addend is always zero. */
4364 BFD_ASSERT (((int) rel->r_addend & 0xffffffff) == rel->r_addend);
4365
4366 if (h)
4367 {
4368 len = 8 + 1 + strlen (h->elf.root.root.string) + 1 + 8 + 1;
4369 stub_name = bfd_malloc (len);
4370 if (stub_name == NULL)
4371 return stub_name;
4372
4373 len = sprintf (stub_name, "%08x.%s+%x",
4374 input_section->id & 0xffffffff,
4375 h->elf.root.root.string,
4376 (int) rel->r_addend & 0xffffffff);
4377 }
4378 else
4379 {
4380 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
4381 stub_name = bfd_malloc (len);
4382 if (stub_name == NULL)
4383 return stub_name;
4384
4385 len = sprintf (stub_name, "%08x.%x:%x+%x",
4386 input_section->id & 0xffffffff,
4387 sym_sec->id & 0xffffffff,
4388 (int) ELF64_R_SYM (rel->r_info) & 0xffffffff,
4389 (int) rel->r_addend & 0xffffffff);
4390 }
4391 if (len > 2 && stub_name[len - 2] == '+' && stub_name[len - 1] == '0')
4392 stub_name[len - 2] = 0;
4393 return stub_name;
4394 }
4395
4396 /* Look up an entry in the stub hash. Stub entries are cached because
4397 creating the stub name takes a bit of time. */
4398
4399 static struct ppc_stub_hash_entry *
4400 ppc_get_stub_entry (const asection *input_section,
4401 const asection *sym_sec,
4402 struct ppc_link_hash_entry *h,
4403 const Elf_Internal_Rela *rel,
4404 struct ppc_link_hash_table *htab)
4405 {
4406 struct ppc_stub_hash_entry *stub_entry;
4407 const asection *id_sec;
4408
4409 /* If this input section is part of a group of sections sharing one
4410 stub section, then use the id of the first section in the group.
4411 Stub names need to include a section id, as there may well be
4412 more than one stub used to reach say, printf, and we need to
4413 distinguish between them. */
4414 id_sec = htab->stub_group[input_section->id].link_sec;
4415
4416 if (h != NULL && h->u.stub_cache != NULL
4417 && h->u.stub_cache->h == h
4418 && h->u.stub_cache->id_sec == id_sec)
4419 {
4420 stub_entry = h->u.stub_cache;
4421 }
4422 else
4423 {
4424 char *stub_name;
4425
4426 stub_name = ppc_stub_name (id_sec, sym_sec, h, rel);
4427 if (stub_name == NULL)
4428 return NULL;
4429
4430 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
4431 stub_name, FALSE, FALSE);
4432 if (h != NULL)
4433 h->u.stub_cache = stub_entry;
4434
4435 free (stub_name);
4436 }
4437
4438 return stub_entry;
4439 }
4440
4441 /* Add a new stub entry to the stub hash. Not all fields of the new
4442 stub entry are initialised. */
4443
4444 static struct ppc_stub_hash_entry *
4445 ppc_add_stub (const char *stub_name,
4446 asection *section,
4447 struct bfd_link_info *info)
4448 {
4449 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4450 asection *link_sec;
4451 asection *stub_sec;
4452 struct ppc_stub_hash_entry *stub_entry;
4453
4454 link_sec = htab->stub_group[section->id].link_sec;
4455 stub_sec = htab->stub_group[section->id].stub_sec;
4456 if (stub_sec == NULL)
4457 {
4458 stub_sec = htab->stub_group[link_sec->id].stub_sec;
4459 if (stub_sec == NULL)
4460 {
4461 size_t namelen;
4462 bfd_size_type len;
4463 char *s_name;
4464
4465 namelen = strlen (link_sec->name);
4466 len = namelen + sizeof (STUB_SUFFIX);
4467 s_name = bfd_alloc (htab->params->stub_bfd, len);
4468 if (s_name == NULL)
4469 return NULL;
4470
4471 memcpy (s_name, link_sec->name, namelen);
4472 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4473 stub_sec = (*htab->params->add_stub_section) (s_name, link_sec);
4474 if (stub_sec == NULL)
4475 return NULL;
4476 htab->stub_group[link_sec->id].stub_sec = stub_sec;
4477 }
4478 htab->stub_group[section->id].stub_sec = stub_sec;
4479 }
4480
4481 /* Enter this entry into the linker stub hash table. */
4482 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4483 TRUE, FALSE);
4484 if (stub_entry == NULL)
4485 {
4486 info->callbacks->einfo (_("%P: %B: cannot create stub entry %s\n"),
4487 section->owner, stub_name);
4488 return NULL;
4489 }
4490
4491 stub_entry->stub_sec = stub_sec;
4492 stub_entry->stub_offset = 0;
4493 stub_entry->id_sec = link_sec;
4494 return stub_entry;
4495 }
4496
4497 /* Create .got and .rela.got sections in ABFD, and .got in dynobj if
4498 not already done. */
4499
4500 static bfd_boolean
4501 create_got_section (bfd *abfd, struct bfd_link_info *info)
4502 {
4503 asection *got, *relgot;
4504 flagword flags;
4505 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4506
4507 if (!is_ppc64_elf (abfd))
4508 return FALSE;
4509 if (htab == NULL)
4510 return FALSE;
4511
4512 if (!htab->elf.sgot
4513 && !_bfd_elf_create_got_section (htab->elf.dynobj, info))
4514 return FALSE;
4515
4516 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4517 | SEC_LINKER_CREATED);
4518
4519 got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
4520 if (!got
4521 || !bfd_set_section_alignment (abfd, got, 3))
4522 return FALSE;
4523
4524 relgot = bfd_make_section_anyway_with_flags (abfd, ".rela.got",
4525 flags | SEC_READONLY);
4526 if (!relgot
4527 || ! bfd_set_section_alignment (abfd, relgot, 3))
4528 return FALSE;
4529
4530 ppc64_elf_tdata (abfd)->got = got;
4531 ppc64_elf_tdata (abfd)->relgot = relgot;
4532 return TRUE;
4533 }
4534
4535 /* Create the dynamic sections, and set up shortcuts. */
4536
4537 static bfd_boolean
4538 ppc64_elf_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
4539 {
4540 struct ppc_link_hash_table *htab;
4541
4542 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
4543 return FALSE;
4544
4545 htab = ppc_hash_table (info);
4546 if (htab == NULL)
4547 return FALSE;
4548
4549 htab->dynbss = bfd_get_linker_section (dynobj, ".dynbss");
4550 if (!info->shared)
4551 htab->relbss = bfd_get_linker_section (dynobj, ".rela.bss");
4552
4553 if (!htab->elf.sgot || !htab->elf.splt || !htab->elf.srelplt || !htab->dynbss
4554 || (!info->shared && !htab->relbss))
4555 abort ();
4556
4557 return TRUE;
4558 }
4559
4560 /* Follow indirect and warning symbol links. */
4561
4562 static inline struct bfd_link_hash_entry *
4563 follow_link (struct bfd_link_hash_entry *h)
4564 {
4565 while (h->type == bfd_link_hash_indirect
4566 || h->type == bfd_link_hash_warning)
4567 h = h->u.i.link;
4568 return h;
4569 }
4570
4571 static inline struct elf_link_hash_entry *
4572 elf_follow_link (struct elf_link_hash_entry *h)
4573 {
4574 return (struct elf_link_hash_entry *) follow_link (&h->root);
4575 }
4576
4577 static inline struct ppc_link_hash_entry *
4578 ppc_follow_link (struct ppc_link_hash_entry *h)
4579 {
4580 return (struct ppc_link_hash_entry *) follow_link (&h->elf.root);
4581 }
4582
4583 /* Merge PLT info on FROM with that on TO. */
4584
4585 static void
4586 move_plt_plist (struct ppc_link_hash_entry *from,
4587 struct ppc_link_hash_entry *to)
4588 {
4589 if (from->elf.plt.plist != NULL)
4590 {
4591 if (to->elf.plt.plist != NULL)
4592 {
4593 struct plt_entry **entp;
4594 struct plt_entry *ent;
4595
4596 for (entp = &from->elf.plt.plist; (ent = *entp) != NULL; )
4597 {
4598 struct plt_entry *dent;
4599
4600 for (dent = to->elf.plt.plist; dent != NULL; dent = dent->next)
4601 if (dent->addend == ent->addend)
4602 {
4603 dent->plt.refcount += ent->plt.refcount;
4604 *entp = ent->next;
4605 break;
4606 }
4607 if (dent == NULL)
4608 entp = &ent->next;
4609 }
4610 *entp = to->elf.plt.plist;
4611 }
4612
4613 to->elf.plt.plist = from->elf.plt.plist;
4614 from->elf.plt.plist = NULL;
4615 }
4616 }
4617
4618 /* Copy the extra info we tack onto an elf_link_hash_entry. */
4619
4620 static void
4621 ppc64_elf_copy_indirect_symbol (struct bfd_link_info *info,
4622 struct elf_link_hash_entry *dir,
4623 struct elf_link_hash_entry *ind)
4624 {
4625 struct ppc_link_hash_entry *edir, *eind;
4626
4627 edir = (struct ppc_link_hash_entry *) dir;
4628 eind = (struct ppc_link_hash_entry *) ind;
4629
4630 edir->is_func |= eind->is_func;
4631 edir->is_func_descriptor |= eind->is_func_descriptor;
4632 edir->tls_mask |= eind->tls_mask;
4633 if (eind->oh != NULL)
4634 edir->oh = ppc_follow_link (eind->oh);
4635
4636 /* If called to transfer flags for a weakdef during processing
4637 of elf_adjust_dynamic_symbol, don't copy NON_GOT_REF.
4638 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
4639 if (!(ELIMINATE_COPY_RELOCS
4640 && eind->elf.root.type != bfd_link_hash_indirect
4641 && edir->elf.dynamic_adjusted))
4642 edir->elf.non_got_ref |= eind->elf.non_got_ref;
4643
4644 edir->elf.ref_dynamic |= eind->elf.ref_dynamic;
4645 edir->elf.ref_regular |= eind->elf.ref_regular;
4646 edir->elf.ref_regular_nonweak |= eind->elf.ref_regular_nonweak;
4647 edir->elf.needs_plt |= eind->elf.needs_plt;
4648 edir->elf.pointer_equality_needed |= eind->elf.pointer_equality_needed;
4649
4650 /* Copy over any dynamic relocs we may have on the indirect sym. */
4651 if (eind->dyn_relocs != NULL)
4652 {
4653 if (edir->dyn_relocs != NULL)
4654 {
4655 struct elf_dyn_relocs **pp;
4656 struct elf_dyn_relocs *p;
4657
4658 /* Add reloc counts against the indirect sym to the direct sym
4659 list. Merge any entries against the same section. */
4660 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
4661 {
4662 struct elf_dyn_relocs *q;
4663
4664 for (q = edir->dyn_relocs; q != NULL; q = q->next)
4665 if (q->sec == p->sec)
4666 {
4667 q->pc_count += p->pc_count;
4668 q->count += p->count;
4669 *pp = p->next;
4670 break;
4671 }
4672 if (q == NULL)
4673 pp = &p->next;
4674 }
4675 *pp = edir->dyn_relocs;
4676 }
4677
4678 edir->dyn_relocs = eind->dyn_relocs;
4679 eind->dyn_relocs = NULL;
4680 }
4681
4682 /* If we were called to copy over info for a weak sym, that's all.
4683 You might think dyn_relocs need not be copied over; After all,
4684 both syms will be dynamic or both non-dynamic so we're just
4685 moving reloc accounting around. However, ELIMINATE_COPY_RELOCS
4686 code in ppc64_elf_adjust_dynamic_symbol needs to check for
4687 dyn_relocs in read-only sections, and it does so on what is the
4688 DIR sym here. */
4689 if (eind->elf.root.type != bfd_link_hash_indirect)
4690 return;
4691
4692 /* Copy over got entries that we may have already seen to the
4693 symbol which just became indirect. */
4694 if (eind->elf.got.glist != NULL)
4695 {
4696 if (edir->elf.got.glist != NULL)
4697 {
4698 struct got_entry **entp;
4699 struct got_entry *ent;
4700
4701 for (entp = &eind->elf.got.glist; (ent = *entp) != NULL; )
4702 {
4703 struct got_entry *dent;
4704
4705 for (dent = edir->elf.got.glist; dent != NULL; dent = dent->next)
4706 if (dent->addend == ent->addend
4707 && dent->owner == ent->owner
4708 && dent->tls_type == ent->tls_type)
4709 {
4710 dent->got.refcount += ent->got.refcount;
4711 *entp = ent->next;
4712 break;
4713 }
4714 if (dent == NULL)
4715 entp = &ent->next;
4716 }
4717 *entp = edir->elf.got.glist;
4718 }
4719
4720 edir->elf.got.glist = eind->elf.got.glist;
4721 eind->elf.got.glist = NULL;
4722 }
4723
4724 /* And plt entries. */
4725 move_plt_plist (eind, edir);
4726
4727 if (eind->elf.dynindx != -1)
4728 {
4729 if (edir->elf.dynindx != -1)
4730 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
4731 edir->elf.dynstr_index);
4732 edir->elf.dynindx = eind->elf.dynindx;
4733 edir->elf.dynstr_index = eind->elf.dynstr_index;
4734 eind->elf.dynindx = -1;
4735 eind->elf.dynstr_index = 0;
4736 }
4737 }
4738
4739 /* Find the function descriptor hash entry from the given function code
4740 hash entry FH. Link the entries via their OH fields. */
4741
4742 static struct ppc_link_hash_entry *
4743 lookup_fdh (struct ppc_link_hash_entry *fh, struct ppc_link_hash_table *htab)
4744 {
4745 struct ppc_link_hash_entry *fdh = fh->oh;
4746
4747 if (fdh == NULL)
4748 {
4749 const char *fd_name = fh->elf.root.root.string + 1;
4750
4751 fdh = (struct ppc_link_hash_entry *)
4752 elf_link_hash_lookup (&htab->elf, fd_name, FALSE, FALSE, FALSE);
4753 if (fdh == NULL)
4754 return fdh;
4755
4756 fdh->is_func_descriptor = 1;
4757 fdh->oh = fh;
4758 fh->is_func = 1;
4759 fh->oh = fdh;
4760 }
4761
4762 return ppc_follow_link (fdh);
4763 }
4764
4765 /* Make a fake function descriptor sym for the code sym FH. */
4766
4767 static struct ppc_link_hash_entry *
4768 make_fdh (struct bfd_link_info *info,
4769 struct ppc_link_hash_entry *fh)
4770 {
4771 bfd *abfd;
4772 asymbol *newsym;
4773 struct bfd_link_hash_entry *bh;
4774 struct ppc_link_hash_entry *fdh;
4775
4776 abfd = fh->elf.root.u.undef.abfd;
4777 newsym = bfd_make_empty_symbol (abfd);
4778 newsym->name = fh->elf.root.root.string + 1;
4779 newsym->section = bfd_und_section_ptr;
4780 newsym->value = 0;
4781 newsym->flags = BSF_WEAK;
4782
4783 bh = NULL;
4784 if (!_bfd_generic_link_add_one_symbol (info, abfd, newsym->name,
4785 newsym->flags, newsym->section,
4786 newsym->value, NULL, FALSE, FALSE,
4787 &bh))
4788 return NULL;
4789
4790 fdh = (struct ppc_link_hash_entry *) bh;
4791 fdh->elf.non_elf = 0;
4792 fdh->fake = 1;
4793 fdh->is_func_descriptor = 1;
4794 fdh->oh = fh;
4795 fh->is_func = 1;
4796 fh->oh = fdh;
4797 return fdh;
4798 }
4799
4800 /* Fix function descriptor symbols defined in .opd sections to be
4801 function type. */
4802
4803 static bfd_boolean
4804 ppc64_elf_add_symbol_hook (bfd *ibfd,
4805 struct bfd_link_info *info,
4806 Elf_Internal_Sym *isym,
4807 const char **name,
4808 flagword *flags ATTRIBUTE_UNUSED,
4809 asection **sec,
4810 bfd_vma *value)
4811 {
4812 if ((ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
4813 || ELF_ST_BIND (isym->st_info) == STB_GNU_UNIQUE)
4814 && (ibfd->flags & DYNAMIC) == 0
4815 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
4816 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4817
4818 if (*sec != NULL
4819 && strcmp ((*sec)->name, ".opd") == 0)
4820 {
4821 asection *code_sec;
4822
4823 if (!(ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
4824 || ELF_ST_TYPE (isym->st_info) == STT_FUNC))
4825 isym->st_info = ELF_ST_INFO (ELF_ST_BIND (isym->st_info), STT_FUNC);
4826
4827 /* If the symbol is a function defined in .opd, and the function
4828 code is in a discarded group, let it appear to be undefined. */
4829 if (!info->relocatable
4830 && (*sec)->reloc_count != 0
4831 && opd_entry_value (*sec, *value, &code_sec, NULL,
4832 FALSE) != (bfd_vma) -1
4833 && discarded_section (code_sec))
4834 {
4835 *sec = bfd_und_section_ptr;
4836 isym->st_shndx = SHN_UNDEF;
4837 }
4838 }
4839 else if (*sec != NULL
4840 && strcmp ((*sec)->name, ".toc") == 0
4841 && ELF_ST_TYPE (isym->st_info) == STT_OBJECT)
4842 {
4843 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4844 if (htab != NULL)
4845 htab->params->object_in_toc = 1;
4846 }
4847
4848 if ((STO_PPC64_LOCAL_MASK & isym->st_other) != 0)
4849 {
4850 if (abiversion (ibfd) == 0)
4851 set_abiversion (ibfd, 2);
4852 else if (abiversion (ibfd) == 1)
4853 {
4854 info->callbacks->einfo (_("%P: symbol '%s' has invalid st_other"
4855 " for ABI version 1\n"), name);
4856 bfd_set_error (bfd_error_bad_value);
4857 return FALSE;
4858 }
4859 }
4860
4861 return TRUE;
4862 }
4863
4864 /* Merge non-visibility st_other attributes: local entry point. */
4865
4866 static void
4867 ppc64_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
4868 const Elf_Internal_Sym *isym,
4869 bfd_boolean definition,
4870 bfd_boolean dynamic)
4871 {
4872 if (definition && !dynamic)
4873 h->other = ((isym->st_other & ~ELF_ST_VISIBILITY (-1))
4874 | ELF_ST_VISIBILITY (h->other));
4875 }
4876
4877 /* This function makes an old ABI object reference to ".bar" cause the
4878 inclusion of a new ABI object archive that defines "bar".
4879 NAME is a symbol defined in an archive. Return a symbol in the hash
4880 table that might be satisfied by the archive symbols. */
4881
4882 static struct elf_link_hash_entry *
4883 ppc64_elf_archive_symbol_lookup (bfd *abfd,
4884 struct bfd_link_info *info,
4885 const char *name)
4886 {
4887 struct elf_link_hash_entry *h;
4888 char *dot_name;
4889 size_t len;
4890
4891 h = _bfd_elf_archive_symbol_lookup (abfd, info, name);
4892 if (h != NULL
4893 /* Don't return this sym if it is a fake function descriptor
4894 created by add_symbol_adjust. */
4895 && !(h->root.type == bfd_link_hash_undefweak
4896 && ((struct ppc_link_hash_entry *) h)->fake))
4897 return h;
4898
4899 if (name[0] == '.')
4900 return h;
4901
4902 len = strlen (name);
4903 dot_name = bfd_alloc (abfd, len + 2);
4904 if (dot_name == NULL)
4905 return (struct elf_link_hash_entry *) 0 - 1;
4906 dot_name[0] = '.';
4907 memcpy (dot_name + 1, name, len + 1);
4908 h = _bfd_elf_archive_symbol_lookup (abfd, info, dot_name);
4909 bfd_release (abfd, dot_name);
4910 return h;
4911 }
4912
4913 /* This function satisfies all old ABI object references to ".bar" if a
4914 new ABI object defines "bar". Well, at least, undefined dot symbols
4915 are made weak. This stops later archive searches from including an
4916 object if we already have a function descriptor definition. It also
4917 prevents the linker complaining about undefined symbols.
4918 We also check and correct mismatched symbol visibility here. The
4919 most restrictive visibility of the function descriptor and the
4920 function entry symbol is used. */
4921
4922 static bfd_boolean
4923 add_symbol_adjust (struct ppc_link_hash_entry *eh, struct bfd_link_info *info)
4924 {
4925 struct ppc_link_hash_table *htab;
4926 struct ppc_link_hash_entry *fdh;
4927
4928 if (eh->elf.root.type == bfd_link_hash_indirect)
4929 return TRUE;
4930
4931 if (eh->elf.root.type == bfd_link_hash_warning)
4932 eh = (struct ppc_link_hash_entry *) eh->elf.root.u.i.link;
4933
4934 if (eh->elf.root.root.string[0] != '.')
4935 abort ();
4936
4937 htab = ppc_hash_table (info);
4938 if (htab == NULL)
4939 return FALSE;
4940
4941 fdh = lookup_fdh (eh, htab);
4942 if (fdh == NULL)
4943 {
4944 if (!info->relocatable
4945 && (eh->elf.root.type == bfd_link_hash_undefined
4946 || eh->elf.root.type == bfd_link_hash_undefweak)
4947 && eh->elf.ref_regular)
4948 {
4949 /* Make an undefweak function descriptor sym, which is enough to
4950 pull in an --as-needed shared lib, but won't cause link
4951 errors. Archives are handled elsewhere. */
4952 fdh = make_fdh (info, eh);
4953 if (fdh == NULL)
4954 return FALSE;
4955 fdh->elf.ref_regular = 1;
4956 }
4957 }
4958 else
4959 {
4960 unsigned entry_vis = ELF_ST_VISIBILITY (eh->elf.other) - 1;
4961 unsigned descr_vis = ELF_ST_VISIBILITY (fdh->elf.other) - 1;
4962 if (entry_vis < descr_vis)
4963 fdh->elf.other += entry_vis - descr_vis;
4964 else if (entry_vis > descr_vis)
4965 eh->elf.other += descr_vis - entry_vis;
4966
4967 if ((fdh->elf.root.type == bfd_link_hash_defined
4968 || fdh->elf.root.type == bfd_link_hash_defweak)
4969 && eh->elf.root.type == bfd_link_hash_undefined)
4970 {
4971 eh->elf.root.type = bfd_link_hash_undefweak;
4972 eh->was_undefined = 1;
4973 htab->twiddled_syms = 1;
4974 }
4975 }
4976
4977 return TRUE;
4978 }
4979
4980 /* Set up opd section info and abiversion for IBFD, and process list
4981 of dot-symbols we made in link_hash_newfunc. */
4982
4983 static bfd_boolean
4984 ppc64_elf_before_check_relocs (bfd *ibfd, struct bfd_link_info *info)
4985 {
4986 struct ppc_link_hash_table *htab;
4987 struct ppc_link_hash_entry **p, *eh;
4988 asection *opd = bfd_get_section_by_name (ibfd, ".opd");
4989
4990 if (opd != NULL && opd->size != 0)
4991 {
4992 if (abiversion (ibfd) == 0)
4993 set_abiversion (ibfd, 1);
4994 else if (abiversion (ibfd) == 2)
4995 {
4996 info->callbacks->einfo (_("%P: %B .opd not allowed in ABI"
4997 " version %d\n"),
4998 ibfd, abiversion (ibfd));
4999 bfd_set_error (bfd_error_bad_value);
5000 return FALSE;
5001 }
5002
5003 if ((ibfd->flags & DYNAMIC) == 0
5004 && (opd->flags & SEC_RELOC) != 0
5005 && opd->reloc_count != 0
5006 && !bfd_is_abs_section (opd->output_section))
5007 {
5008 /* Garbage collection needs some extra help with .opd sections.
5009 We don't want to necessarily keep everything referenced by
5010 relocs in .opd, as that would keep all functions. Instead,
5011 if we reference an .opd symbol (a function descriptor), we
5012 want to keep the function code symbol's section. This is
5013 easy for global symbols, but for local syms we need to keep
5014 information about the associated function section. */
5015 bfd_size_type amt;
5016 asection **opd_sym_map;
5017
5018 amt = OPD_NDX (opd->size) * sizeof (*opd_sym_map);
5019 opd_sym_map = bfd_zalloc (ibfd, amt);
5020 if (opd_sym_map == NULL)
5021 return FALSE;
5022 ppc64_elf_section_data (opd)->u.opd.func_sec = opd_sym_map;
5023 BFD_ASSERT (ppc64_elf_section_data (opd)->sec_type == sec_normal);
5024 ppc64_elf_section_data (opd)->sec_type = sec_opd;
5025 }
5026 }
5027
5028 if (!is_ppc64_elf (info->output_bfd))
5029 return TRUE;
5030 htab = ppc_hash_table (info);
5031 if (htab == NULL)
5032 return FALSE;
5033
5034 /* For input files without an explicit abiversion in e_flags
5035 we should have flagged any with symbol st_other bits set
5036 as ELFv1 and above flagged those with .opd as ELFv2.
5037 Set the output abiversion if not yet set, and for any input
5038 still ambiguous, take its abiversion from the output.
5039 Differences in ABI are reported later. */
5040 if (abiversion (info->output_bfd) == 0)
5041 set_abiversion (info->output_bfd, abiversion (ibfd));
5042 else if (abiversion (ibfd) == 0)
5043 set_abiversion (ibfd, abiversion (info->output_bfd));
5044
5045 p = &htab->dot_syms;
5046 while ((eh = *p) != NULL)
5047 {
5048 *p = NULL;
5049 if (&eh->elf == htab->elf.hgot)
5050 ;
5051 else if (htab->elf.hgot == NULL
5052 && strcmp (eh->elf.root.root.string, ".TOC.") == 0)
5053 htab->elf.hgot = &eh->elf;
5054 else if (!add_symbol_adjust (eh, info))
5055 return FALSE;
5056 p = &eh->u.next_dot_sym;
5057 }
5058
5059 /* Clear the list for non-ppc64 input files. */
5060 p = &htab->dot_syms;
5061 while ((eh = *p) != NULL)
5062 {
5063 *p = NULL;
5064 p = &eh->u.next_dot_sym;
5065 }
5066
5067 /* We need to fix the undefs list for any syms we have twiddled to
5068 undef_weak. */
5069 if (htab->twiddled_syms)
5070 {
5071 bfd_link_repair_undef_list (&htab->elf.root);
5072 htab->twiddled_syms = 0;
5073 }
5074 return TRUE;
5075 }
5076
5077 /* Undo hash table changes when an --as-needed input file is determined
5078 not to be needed. */
5079
5080 static bfd_boolean
5081 ppc64_elf_notice_as_needed (bfd *ibfd,
5082 struct bfd_link_info *info,
5083 enum notice_asneeded_action act)
5084 {
5085 if (act == notice_not_needed)
5086 {
5087 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5088
5089 if (htab == NULL)
5090 return FALSE;
5091
5092 htab->dot_syms = NULL;
5093 }
5094 return _bfd_elf_notice_as_needed (ibfd, info, act);
5095 }
5096
5097 /* If --just-symbols against a final linked binary, then assume we need
5098 toc adjusting stubs when calling functions defined there. */
5099
5100 static void
5101 ppc64_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
5102 {
5103 if ((sec->flags & SEC_CODE) != 0
5104 && (sec->owner->flags & (EXEC_P | DYNAMIC)) != 0
5105 && is_ppc64_elf (sec->owner))
5106 {
5107 if (abiversion (sec->owner) >= 2
5108 || bfd_get_section_by_name (sec->owner, ".opd") != NULL)
5109 sec->has_toc_reloc = 1;
5110 }
5111 _bfd_elf_link_just_syms (sec, info);
5112 }
5113
5114 static struct plt_entry **
5115 update_local_sym_info (bfd *abfd, Elf_Internal_Shdr *symtab_hdr,
5116 unsigned long r_symndx, bfd_vma r_addend, int tls_type)
5117 {
5118 struct got_entry **local_got_ents = elf_local_got_ents (abfd);
5119 struct plt_entry **local_plt;
5120 unsigned char *local_got_tls_masks;
5121
5122 if (local_got_ents == NULL)
5123 {
5124 bfd_size_type size = symtab_hdr->sh_info;
5125
5126 size *= (sizeof (*local_got_ents)
5127 + sizeof (*local_plt)
5128 + sizeof (*local_got_tls_masks));
5129 local_got_ents = bfd_zalloc (abfd, size);
5130 if (local_got_ents == NULL)
5131 return NULL;
5132 elf_local_got_ents (abfd) = local_got_ents;
5133 }
5134
5135 if ((tls_type & (PLT_IFUNC | TLS_EXPLICIT)) == 0)
5136 {
5137 struct got_entry *ent;
5138
5139 for (ent = local_got_ents[r_symndx]; ent != NULL; ent = ent->next)
5140 if (ent->addend == r_addend
5141 && ent->owner == abfd
5142 && ent->tls_type == tls_type)
5143 break;
5144 if (ent == NULL)
5145 {
5146 bfd_size_type amt = sizeof (*ent);
5147 ent = bfd_alloc (abfd, amt);
5148 if (ent == NULL)
5149 return FALSE;
5150 ent->next = local_got_ents[r_symndx];
5151 ent->addend = r_addend;
5152 ent->owner = abfd;
5153 ent->tls_type = tls_type;
5154 ent->is_indirect = FALSE;
5155 ent->got.refcount = 0;
5156 local_got_ents[r_symndx] = ent;
5157 }
5158 ent->got.refcount += 1;
5159 }
5160
5161 local_plt = (struct plt_entry **) (local_got_ents + symtab_hdr->sh_info);
5162 local_got_tls_masks = (unsigned char *) (local_plt + symtab_hdr->sh_info);
5163 local_got_tls_masks[r_symndx] |= tls_type;
5164
5165 return local_plt + r_symndx;
5166 }
5167
5168 static bfd_boolean
5169 update_plt_info (bfd *abfd, struct plt_entry **plist, bfd_vma addend)
5170 {
5171 struct plt_entry *ent;
5172
5173 for (ent = *plist; ent != NULL; ent = ent->next)
5174 if (ent->addend == addend)
5175 break;
5176 if (ent == NULL)
5177 {
5178 bfd_size_type amt = sizeof (*ent);
5179 ent = bfd_alloc (abfd, amt);
5180 if (ent == NULL)
5181 return FALSE;
5182 ent->next = *plist;
5183 ent->addend = addend;
5184 ent->plt.refcount = 0;
5185 *plist = ent;
5186 }
5187 ent->plt.refcount += 1;
5188 return TRUE;
5189 }
5190
5191 static bfd_boolean
5192 is_branch_reloc (enum elf_ppc64_reloc_type r_type)
5193 {
5194 return (r_type == R_PPC64_REL24
5195 || r_type == R_PPC64_REL14
5196 || r_type == R_PPC64_REL14_BRTAKEN
5197 || r_type == R_PPC64_REL14_BRNTAKEN
5198 || r_type == R_PPC64_ADDR24
5199 || r_type == R_PPC64_ADDR14
5200 || r_type == R_PPC64_ADDR14_BRTAKEN
5201 || r_type == R_PPC64_ADDR14_BRNTAKEN);
5202 }
5203
5204 /* Look through the relocs for a section during the first phase, and
5205 calculate needed space in the global offset table, procedure
5206 linkage table, and dynamic reloc sections. */
5207
5208 static bfd_boolean
5209 ppc64_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
5210 asection *sec, const Elf_Internal_Rela *relocs)
5211 {
5212 struct ppc_link_hash_table *htab;
5213 Elf_Internal_Shdr *symtab_hdr;
5214 struct elf_link_hash_entry **sym_hashes;
5215 const Elf_Internal_Rela *rel;
5216 const Elf_Internal_Rela *rel_end;
5217 asection *sreloc;
5218 asection **opd_sym_map;
5219 struct elf_link_hash_entry *tga, *dottga;
5220
5221 if (info->relocatable)
5222 return TRUE;
5223
5224 /* Don't do anything special with non-loaded, non-alloced sections.
5225 In particular, any relocs in such sections should not affect GOT
5226 and PLT reference counting (ie. we don't allow them to create GOT
5227 or PLT entries), there's no possibility or desire to optimize TLS
5228 relocs, and there's not much point in propagating relocs to shared
5229 libs that the dynamic linker won't relocate. */
5230 if ((sec->flags & SEC_ALLOC) == 0)
5231 return TRUE;
5232
5233 BFD_ASSERT (is_ppc64_elf (abfd));
5234
5235 htab = ppc_hash_table (info);
5236 if (htab == NULL)
5237 return FALSE;
5238
5239 tga = elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
5240 FALSE, FALSE, TRUE);
5241 dottga = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
5242 FALSE, FALSE, TRUE);
5243 symtab_hdr = &elf_symtab_hdr (abfd);
5244 sym_hashes = elf_sym_hashes (abfd);
5245 sreloc = NULL;
5246 opd_sym_map = NULL;
5247 if (ppc64_elf_section_data (sec) != NULL
5248 && ppc64_elf_section_data (sec)->sec_type == sec_opd)
5249 opd_sym_map = ppc64_elf_section_data (sec)->u.opd.func_sec;
5250
5251 rel_end = relocs + sec->reloc_count;
5252 for (rel = relocs; rel < rel_end; rel++)
5253 {
5254 unsigned long r_symndx;
5255 struct elf_link_hash_entry *h;
5256 enum elf_ppc64_reloc_type r_type;
5257 int tls_type;
5258 struct _ppc64_elf_section_data *ppc64_sec;
5259 struct plt_entry **ifunc;
5260
5261 r_symndx = ELF64_R_SYM (rel->r_info);
5262 if (r_symndx < symtab_hdr->sh_info)
5263 h = NULL;
5264 else
5265 {
5266 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5267 h = elf_follow_link (h);
5268
5269 /* PR15323, ref flags aren't set for references in the same
5270 object. */
5271 h->root.non_ir_ref = 1;
5272
5273 if (h == htab->elf.hgot)
5274 sec->has_toc_reloc = 1;
5275 }
5276
5277 tls_type = 0;
5278 ifunc = NULL;
5279 if (h != NULL)
5280 {
5281 if (h->type == STT_GNU_IFUNC)
5282 {
5283 h->needs_plt = 1;
5284 ifunc = &h->plt.plist;
5285 }
5286 }
5287 else
5288 {
5289 Elf_Internal_Sym *isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5290 abfd, r_symndx);
5291 if (isym == NULL)
5292 return FALSE;
5293
5294 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
5295 {
5296 ifunc = update_local_sym_info (abfd, symtab_hdr, r_symndx,
5297 rel->r_addend, PLT_IFUNC);
5298 if (ifunc == NULL)
5299 return FALSE;
5300 }
5301 }
5302 r_type = ELF64_R_TYPE (rel->r_info);
5303 if (is_branch_reloc (r_type))
5304 {
5305 if (h != NULL && (h == tga || h == dottga))
5306 {
5307 if (rel != relocs
5308 && (ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSGD
5309 || ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSLD))
5310 /* We have a new-style __tls_get_addr call with a marker
5311 reloc. */
5312 ;
5313 else
5314 /* Mark this section as having an old-style call. */
5315 sec->has_tls_get_addr_call = 1;
5316 }
5317
5318 /* STT_GNU_IFUNC symbols must have a PLT entry. */
5319 if (ifunc != NULL
5320 && !update_plt_info (abfd, ifunc, rel->r_addend))
5321 return FALSE;
5322 }
5323
5324 switch (r_type)
5325 {
5326 case R_PPC64_TLSGD:
5327 case R_PPC64_TLSLD:
5328 /* These special tls relocs tie a call to __tls_get_addr with
5329 its parameter symbol. */
5330 break;
5331
5332 case R_PPC64_GOT_TLSLD16:
5333 case R_PPC64_GOT_TLSLD16_LO:
5334 case R_PPC64_GOT_TLSLD16_HI:
5335 case R_PPC64_GOT_TLSLD16_HA:
5336 tls_type = TLS_TLS | TLS_LD;
5337 goto dogottls;
5338
5339 case R_PPC64_GOT_TLSGD16:
5340 case R_PPC64_GOT_TLSGD16_LO:
5341 case R_PPC64_GOT_TLSGD16_HI:
5342 case R_PPC64_GOT_TLSGD16_HA:
5343 tls_type = TLS_TLS | TLS_GD;
5344 goto dogottls;
5345
5346 case R_PPC64_GOT_TPREL16_DS:
5347 case R_PPC64_GOT_TPREL16_LO_DS:
5348 case R_PPC64_GOT_TPREL16_HI:
5349 case R_PPC64_GOT_TPREL16_HA:
5350 if (info->shared)
5351 info->flags |= DF_STATIC_TLS;
5352 tls_type = TLS_TLS | TLS_TPREL;
5353 goto dogottls;
5354
5355 case R_PPC64_GOT_DTPREL16_DS:
5356 case R_PPC64_GOT_DTPREL16_LO_DS:
5357 case R_PPC64_GOT_DTPREL16_HI:
5358 case R_PPC64_GOT_DTPREL16_HA:
5359 tls_type = TLS_TLS | TLS_DTPREL;
5360 dogottls:
5361 sec->has_tls_reloc = 1;
5362 /* Fall thru */
5363
5364 case R_PPC64_GOT16:
5365 case R_PPC64_GOT16_DS:
5366 case R_PPC64_GOT16_HA:
5367 case R_PPC64_GOT16_HI:
5368 case R_PPC64_GOT16_LO:
5369 case R_PPC64_GOT16_LO_DS:
5370 /* This symbol requires a global offset table entry. */
5371 sec->has_toc_reloc = 1;
5372 if (r_type == R_PPC64_GOT_TLSLD16
5373 || r_type == R_PPC64_GOT_TLSGD16
5374 || r_type == R_PPC64_GOT_TPREL16_DS
5375 || r_type == R_PPC64_GOT_DTPREL16_DS
5376 || r_type == R_PPC64_GOT16
5377 || r_type == R_PPC64_GOT16_DS)
5378 {
5379 htab->do_multi_toc = 1;
5380 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
5381 }
5382
5383 if (ppc64_elf_tdata (abfd)->got == NULL
5384 && !create_got_section (abfd, info))
5385 return FALSE;
5386
5387 if (h != NULL)
5388 {
5389 struct ppc_link_hash_entry *eh;
5390 struct got_entry *ent;
5391
5392 eh = (struct ppc_link_hash_entry *) h;
5393 for (ent = eh->elf.got.glist; ent != NULL; ent = ent->next)
5394 if (ent->addend == rel->r_addend
5395 && ent->owner == abfd
5396 && ent->tls_type == tls_type)
5397 break;
5398 if (ent == NULL)
5399 {
5400 bfd_size_type amt = sizeof (*ent);
5401 ent = bfd_alloc (abfd, amt);
5402 if (ent == NULL)
5403 return FALSE;
5404 ent->next = eh->elf.got.glist;
5405 ent->addend = rel->r_addend;
5406 ent->owner = abfd;
5407 ent->tls_type = tls_type;
5408 ent->is_indirect = FALSE;
5409 ent->got.refcount = 0;
5410 eh->elf.got.glist = ent;
5411 }
5412 ent->got.refcount += 1;
5413 eh->tls_mask |= tls_type;
5414 }
5415 else
5416 /* This is a global offset table entry for a local symbol. */
5417 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
5418 rel->r_addend, tls_type))
5419 return FALSE;
5420
5421 /* We may also need a plt entry if the symbol turns out to be
5422 an ifunc. */
5423 if (h != NULL && !info->shared && abiversion (abfd) != 1)
5424 {
5425 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5426 return FALSE;
5427 }
5428 break;
5429
5430 case R_PPC64_PLT16_HA:
5431 case R_PPC64_PLT16_HI:
5432 case R_PPC64_PLT16_LO:
5433 case R_PPC64_PLT32:
5434 case R_PPC64_PLT64:
5435 /* This symbol requires a procedure linkage table entry. We
5436 actually build the entry in adjust_dynamic_symbol,
5437 because this might be a case of linking PIC code without
5438 linking in any dynamic objects, in which case we don't
5439 need to generate a procedure linkage table after all. */
5440 if (h == NULL)
5441 {
5442 /* It does not make sense to have a procedure linkage
5443 table entry for a local symbol. */
5444 bfd_set_error (bfd_error_bad_value);
5445 return FALSE;
5446 }
5447 else
5448 {
5449 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5450 return FALSE;
5451 h->needs_plt = 1;
5452 if (h->root.root.string[0] == '.'
5453 && h->root.root.string[1] != '\0')
5454 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5455 }
5456 break;
5457
5458 /* The following relocations don't need to propagate the
5459 relocation if linking a shared object since they are
5460 section relative. */
5461 case R_PPC64_SECTOFF:
5462 case R_PPC64_SECTOFF_LO:
5463 case R_PPC64_SECTOFF_HI:
5464 case R_PPC64_SECTOFF_HA:
5465 case R_PPC64_SECTOFF_DS:
5466 case R_PPC64_SECTOFF_LO_DS:
5467 case R_PPC64_DTPREL16:
5468 case R_PPC64_DTPREL16_LO:
5469 case R_PPC64_DTPREL16_HI:
5470 case R_PPC64_DTPREL16_HA:
5471 case R_PPC64_DTPREL16_DS:
5472 case R_PPC64_DTPREL16_LO_DS:
5473 case R_PPC64_DTPREL16_HIGH:
5474 case R_PPC64_DTPREL16_HIGHA:
5475 case R_PPC64_DTPREL16_HIGHER:
5476 case R_PPC64_DTPREL16_HIGHERA:
5477 case R_PPC64_DTPREL16_HIGHEST:
5478 case R_PPC64_DTPREL16_HIGHESTA:
5479 break;
5480
5481 /* Nor do these. */
5482 case R_PPC64_REL16:
5483 case R_PPC64_REL16_LO:
5484 case R_PPC64_REL16_HI:
5485 case R_PPC64_REL16_HA:
5486 break;
5487
5488 /* Not supported as a dynamic relocation. */
5489 case R_PPC64_ADDR64_LOCAL:
5490 if (info->shared)
5491 {
5492 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
5493 ppc_howto_init ();
5494 info->callbacks->einfo (_("%P: %H: %s reloc unsupported "
5495 "in shared libraries and PIEs.\n"),
5496 abfd, sec, rel->r_offset,
5497 ppc64_elf_howto_table[r_type]->name);
5498 bfd_set_error (bfd_error_bad_value);
5499 return FALSE;
5500 }
5501 break;
5502
5503 case R_PPC64_TOC16:
5504 case R_PPC64_TOC16_DS:
5505 htab->do_multi_toc = 1;
5506 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
5507 case R_PPC64_TOC16_LO:
5508 case R_PPC64_TOC16_HI:
5509 case R_PPC64_TOC16_HA:
5510 case R_PPC64_TOC16_LO_DS:
5511 sec->has_toc_reloc = 1;
5512 break;
5513
5514 /* This relocation describes the C++ object vtable hierarchy.
5515 Reconstruct it for later use during GC. */
5516 case R_PPC64_GNU_VTINHERIT:
5517 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
5518 return FALSE;
5519 break;
5520
5521 /* This relocation describes which C++ vtable entries are actually
5522 used. Record for later use during GC. */
5523 case R_PPC64_GNU_VTENTRY:
5524 BFD_ASSERT (h != NULL);
5525 if (h != NULL
5526 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
5527 return FALSE;
5528 break;
5529
5530 case R_PPC64_REL14:
5531 case R_PPC64_REL14_BRTAKEN:
5532 case R_PPC64_REL14_BRNTAKEN:
5533 {
5534 asection *dest = NULL;
5535
5536 /* Heuristic: If jumping outside our section, chances are
5537 we are going to need a stub. */
5538 if (h != NULL)
5539 {
5540 /* If the sym is weak it may be overridden later, so
5541 don't assume we know where a weak sym lives. */
5542 if (h->root.type == bfd_link_hash_defined)
5543 dest = h->root.u.def.section;
5544 }
5545 else
5546 {
5547 Elf_Internal_Sym *isym;
5548
5549 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5550 abfd, r_symndx);
5551 if (isym == NULL)
5552 return FALSE;
5553
5554 dest = bfd_section_from_elf_index (abfd, isym->st_shndx);
5555 }
5556
5557 if (dest != sec)
5558 ppc64_elf_section_data (sec)->has_14bit_branch = 1;
5559 }
5560 /* Fall through. */
5561
5562 case R_PPC64_REL24:
5563 if (h != NULL && ifunc == NULL)
5564 {
5565 /* We may need a .plt entry if the function this reloc
5566 refers to is in a shared lib. */
5567 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5568 return FALSE;
5569 h->needs_plt = 1;
5570 if (h->root.root.string[0] == '.'
5571 && h->root.root.string[1] != '\0')
5572 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5573 if (h == tga || h == dottga)
5574 sec->has_tls_reloc = 1;
5575 }
5576 break;
5577
5578 case R_PPC64_TPREL64:
5579 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_TPREL;
5580 if (info->shared)
5581 info->flags |= DF_STATIC_TLS;
5582 goto dotlstoc;
5583
5584 case R_PPC64_DTPMOD64:
5585 if (rel + 1 < rel_end
5586 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
5587 && rel[1].r_offset == rel->r_offset + 8)
5588 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_GD;
5589 else
5590 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_LD;
5591 goto dotlstoc;
5592
5593 case R_PPC64_DTPREL64:
5594 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_DTPREL;
5595 if (rel != relocs
5596 && rel[-1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPMOD64)
5597 && rel[-1].r_offset == rel->r_offset - 8)
5598 /* This is the second reloc of a dtpmod, dtprel pair.
5599 Don't mark with TLS_DTPREL. */
5600 goto dodyn;
5601
5602 dotlstoc:
5603 sec->has_tls_reloc = 1;
5604 if (h != NULL)
5605 {
5606 struct ppc_link_hash_entry *eh;
5607 eh = (struct ppc_link_hash_entry *) h;
5608 eh->tls_mask |= tls_type;
5609 }
5610 else
5611 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
5612 rel->r_addend, tls_type))
5613 return FALSE;
5614
5615 ppc64_sec = ppc64_elf_section_data (sec);
5616 if (ppc64_sec->sec_type != sec_toc)
5617 {
5618 bfd_size_type amt;
5619
5620 /* One extra to simplify get_tls_mask. */
5621 amt = sec->size * sizeof (unsigned) / 8 + sizeof (unsigned);
5622 ppc64_sec->u.toc.symndx = bfd_zalloc (abfd, amt);
5623 if (ppc64_sec->u.toc.symndx == NULL)
5624 return FALSE;
5625 amt = sec->size * sizeof (bfd_vma) / 8;
5626 ppc64_sec->u.toc.add = bfd_zalloc (abfd, amt);
5627 if (ppc64_sec->u.toc.add == NULL)
5628 return FALSE;
5629 BFD_ASSERT (ppc64_sec->sec_type == sec_normal);
5630 ppc64_sec->sec_type = sec_toc;
5631 }
5632 BFD_ASSERT (rel->r_offset % 8 == 0);
5633 ppc64_sec->u.toc.symndx[rel->r_offset / 8] = r_symndx;
5634 ppc64_sec->u.toc.add[rel->r_offset / 8] = rel->r_addend;
5635
5636 /* Mark the second slot of a GD or LD entry.
5637 -1 to indicate GD and -2 to indicate LD. */
5638 if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_GD))
5639 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -1;
5640 else if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_LD))
5641 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -2;
5642 goto dodyn;
5643
5644 case R_PPC64_TPREL16:
5645 case R_PPC64_TPREL16_LO:
5646 case R_PPC64_TPREL16_HI:
5647 case R_PPC64_TPREL16_HA:
5648 case R_PPC64_TPREL16_DS:
5649 case R_PPC64_TPREL16_LO_DS:
5650 case R_PPC64_TPREL16_HIGH:
5651 case R_PPC64_TPREL16_HIGHA:
5652 case R_PPC64_TPREL16_HIGHER:
5653 case R_PPC64_TPREL16_HIGHERA:
5654 case R_PPC64_TPREL16_HIGHEST:
5655 case R_PPC64_TPREL16_HIGHESTA:
5656 if (info->shared)
5657 {
5658 info->flags |= DF_STATIC_TLS;
5659 goto dodyn;
5660 }
5661 break;
5662
5663 case R_PPC64_ADDR64:
5664 if (opd_sym_map != NULL
5665 && rel + 1 < rel_end
5666 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC)
5667 {
5668 if (h != NULL)
5669 {
5670 if (h->root.root.string[0] == '.'
5671 && h->root.root.string[1] != 0
5672 && lookup_fdh ((struct ppc_link_hash_entry *) h, htab))
5673 ;
5674 else
5675 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5676 }
5677 else
5678 {
5679 asection *s;
5680 Elf_Internal_Sym *isym;
5681
5682 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5683 abfd, r_symndx);
5684 if (isym == NULL)
5685 return FALSE;
5686
5687 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5688 if (s != NULL && s != sec)
5689 opd_sym_map[OPD_NDX (rel->r_offset)] = s;
5690 }
5691 }
5692 /* Fall through. */
5693
5694 case R_PPC64_ADDR16:
5695 case R_PPC64_ADDR16_DS:
5696 case R_PPC64_ADDR16_HA:
5697 case R_PPC64_ADDR16_HI:
5698 case R_PPC64_ADDR16_HIGH:
5699 case R_PPC64_ADDR16_HIGHA:
5700 case R_PPC64_ADDR16_HIGHER:
5701 case R_PPC64_ADDR16_HIGHERA:
5702 case R_PPC64_ADDR16_HIGHEST:
5703 case R_PPC64_ADDR16_HIGHESTA:
5704 case R_PPC64_ADDR16_LO:
5705 case R_PPC64_ADDR16_LO_DS:
5706 if (h != NULL && !info->shared && abiversion (abfd) != 1
5707 && rel->r_addend == 0)
5708 {
5709 /* We may need a .plt entry if this reloc refers to a
5710 function in a shared lib. */
5711 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5712 return FALSE;
5713 h->pointer_equality_needed = 1;
5714 }
5715 /* Fall through. */
5716
5717 case R_PPC64_REL30:
5718 case R_PPC64_REL32:
5719 case R_PPC64_REL64:
5720 case R_PPC64_ADDR14:
5721 case R_PPC64_ADDR14_BRNTAKEN:
5722 case R_PPC64_ADDR14_BRTAKEN:
5723 case R_PPC64_ADDR24:
5724 case R_PPC64_ADDR32:
5725 case R_PPC64_UADDR16:
5726 case R_PPC64_UADDR32:
5727 case R_PPC64_UADDR64:
5728 case R_PPC64_TOC:
5729 if (h != NULL && !info->shared)
5730 /* We may need a copy reloc. */
5731 h->non_got_ref = 1;
5732
5733 /* Don't propagate .opd relocs. */
5734 if (NO_OPD_RELOCS && opd_sym_map != NULL)
5735 break;
5736
5737 /* If we are creating a shared library, and this is a reloc
5738 against a global symbol, or a non PC relative reloc
5739 against a local symbol, then we need to copy the reloc
5740 into the shared library. However, if we are linking with
5741 -Bsymbolic, we do not need to copy a reloc against a
5742 global symbol which is defined in an object we are
5743 including in the link (i.e., DEF_REGULAR is set). At
5744 this point we have not seen all the input files, so it is
5745 possible that DEF_REGULAR is not set now but will be set
5746 later (it is never cleared). In case of a weak definition,
5747 DEF_REGULAR may be cleared later by a strong definition in
5748 a shared library. We account for that possibility below by
5749 storing information in the dyn_relocs field of the hash
5750 table entry. A similar situation occurs when creating
5751 shared libraries and symbol visibility changes render the
5752 symbol local.
5753
5754 If on the other hand, we are creating an executable, we
5755 may need to keep relocations for symbols satisfied by a
5756 dynamic library if we manage to avoid copy relocs for the
5757 symbol. */
5758 dodyn:
5759 if ((info->shared
5760 && (must_be_dyn_reloc (info, r_type)
5761 || (h != NULL
5762 && (!SYMBOLIC_BIND (info, h)
5763 || h->root.type == bfd_link_hash_defweak
5764 || !h->def_regular))))
5765 || (ELIMINATE_COPY_RELOCS
5766 && !info->shared
5767 && h != NULL
5768 && (h->root.type == bfd_link_hash_defweak
5769 || !h->def_regular))
5770 || (!info->shared
5771 && ifunc != NULL))
5772 {
5773 /* We must copy these reloc types into the output file.
5774 Create a reloc section in dynobj and make room for
5775 this reloc. */
5776 if (sreloc == NULL)
5777 {
5778 sreloc = _bfd_elf_make_dynamic_reloc_section
5779 (sec, htab->elf.dynobj, 3, abfd, /*rela?*/ TRUE);
5780
5781 if (sreloc == NULL)
5782 return FALSE;
5783 }
5784
5785 /* If this is a global symbol, we count the number of
5786 relocations we need for this symbol. */
5787 if (h != NULL)
5788 {
5789 struct elf_dyn_relocs *p;
5790 struct elf_dyn_relocs **head;
5791
5792 head = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
5793 p = *head;
5794 if (p == NULL || p->sec != sec)
5795 {
5796 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5797 if (p == NULL)
5798 return FALSE;
5799 p->next = *head;
5800 *head = p;
5801 p->sec = sec;
5802 p->count = 0;
5803 p->pc_count = 0;
5804 }
5805 p->count += 1;
5806 if (!must_be_dyn_reloc (info, r_type))
5807 p->pc_count += 1;
5808 }
5809 else
5810 {
5811 /* Track dynamic relocs needed for local syms too.
5812 We really need local syms available to do this
5813 easily. Oh well. */
5814 struct ppc_dyn_relocs *p;
5815 struct ppc_dyn_relocs **head;
5816 bfd_boolean is_ifunc;
5817 asection *s;
5818 void *vpp;
5819 Elf_Internal_Sym *isym;
5820
5821 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5822 abfd, r_symndx);
5823 if (isym == NULL)
5824 return FALSE;
5825
5826 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5827 if (s == NULL)
5828 s = sec;
5829
5830 vpp = &elf_section_data (s)->local_dynrel;
5831 head = (struct ppc_dyn_relocs **) vpp;
5832 is_ifunc = ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC;
5833 p = *head;
5834 if (p != NULL && p->sec == sec && p->ifunc != is_ifunc)
5835 p = p->next;
5836 if (p == NULL || p->sec != sec || p->ifunc != is_ifunc)
5837 {
5838 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5839 if (p == NULL)
5840 return FALSE;
5841 p->next = *head;
5842 *head = p;
5843 p->sec = sec;
5844 p->ifunc = is_ifunc;
5845 p->count = 0;
5846 }
5847 p->count += 1;
5848 }
5849 }
5850 break;
5851
5852 default:
5853 break;
5854 }
5855 }
5856
5857 return TRUE;
5858 }
5859
5860 /* Merge backend specific data from an object file to the output
5861 object file when linking. */
5862
5863 static bfd_boolean
5864 ppc64_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
5865 {
5866 unsigned long iflags, oflags;
5867
5868 if ((ibfd->flags & BFD_LINKER_CREATED) != 0)
5869 return TRUE;
5870
5871 if (!is_ppc64_elf (ibfd) || !is_ppc64_elf (obfd))
5872 return TRUE;
5873
5874 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
5875 return FALSE;
5876
5877 iflags = elf_elfheader (ibfd)->e_flags;
5878 oflags = elf_elfheader (obfd)->e_flags;
5879
5880 if (iflags & ~EF_PPC64_ABI)
5881 {
5882 (*_bfd_error_handler)
5883 (_("%B uses unknown e_flags 0x%lx"), ibfd, iflags);
5884 bfd_set_error (bfd_error_bad_value);
5885 return FALSE;
5886 }
5887 else if (iflags != oflags && iflags != 0)
5888 {
5889 (*_bfd_error_handler)
5890 (_("%B: ABI version %ld is not compatible with ABI version %ld output"),
5891 ibfd, iflags, oflags);
5892 bfd_set_error (bfd_error_bad_value);
5893 return FALSE;
5894 }
5895
5896 /* Merge Tag_compatibility attributes and any common GNU ones. */
5897 _bfd_elf_merge_object_attributes (ibfd, obfd);
5898
5899 return TRUE;
5900 }
5901
5902 static bfd_boolean
5903 ppc64_elf_print_private_bfd_data (bfd *abfd, void *ptr)
5904 {
5905 /* Print normal ELF private data. */
5906 _bfd_elf_print_private_bfd_data (abfd, ptr);
5907
5908 if (elf_elfheader (abfd)->e_flags != 0)
5909 {
5910 FILE *file = ptr;
5911
5912 /* xgettext:c-format */
5913 fprintf (file, _("private flags = 0x%lx:"),
5914 elf_elfheader (abfd)->e_flags);
5915
5916 if ((elf_elfheader (abfd)->e_flags & EF_PPC64_ABI) != 0)
5917 fprintf (file, _(" [abiv%ld]"),
5918 elf_elfheader (abfd)->e_flags & EF_PPC64_ABI);
5919 fputc ('\n', file);
5920 }
5921
5922 return TRUE;
5923 }
5924
5925 /* OFFSET in OPD_SEC specifies a function descriptor. Return the address
5926 of the code entry point, and its section, which must be in the same
5927 object as OPD_SEC. Returns (bfd_vma) -1 on error. */
5928
5929 static bfd_vma
5930 opd_entry_value (asection *opd_sec,
5931 bfd_vma offset,
5932 asection **code_sec,
5933 bfd_vma *code_off,
5934 bfd_boolean in_code_sec)
5935 {
5936 bfd *opd_bfd = opd_sec->owner;
5937 Elf_Internal_Rela *relocs;
5938 Elf_Internal_Rela *lo, *hi, *look;
5939 bfd_vma val;
5940
5941 /* No relocs implies we are linking a --just-symbols object, or looking
5942 at a final linked executable with addr2line or somesuch. */
5943 if (opd_sec->reloc_count == 0)
5944 {
5945 bfd_byte *contents = ppc64_elf_tdata (opd_bfd)->opd.contents;
5946
5947 if (contents == NULL)
5948 {
5949 if (!bfd_malloc_and_get_section (opd_bfd, opd_sec, &contents))
5950 return (bfd_vma) -1;
5951 ppc64_elf_tdata (opd_bfd)->opd.contents = contents;
5952 }
5953
5954 /* PR 17512: file: 64b9dfbb. */
5955 if (offset + 7 >= opd_sec->size || offset + 7 < offset)
5956 return (bfd_vma) -1;
5957
5958 val = bfd_get_64 (opd_bfd, contents + offset);
5959 if (code_sec != NULL)
5960 {
5961 asection *sec, *likely = NULL;
5962
5963 if (in_code_sec)
5964 {
5965 sec = *code_sec;
5966 if (sec->vma <= val
5967 && val < sec->vma + sec->size)
5968 likely = sec;
5969 else
5970 val = -1;
5971 }
5972 else
5973 for (sec = opd_bfd->sections; sec != NULL; sec = sec->next)
5974 if (sec->vma <= val
5975 && (sec->flags & SEC_LOAD) != 0
5976 && (sec->flags & SEC_ALLOC) != 0)
5977 likely = sec;
5978 if (likely != NULL)
5979 {
5980 *code_sec = likely;
5981 if (code_off != NULL)
5982 *code_off = val - likely->vma;
5983 }
5984 }
5985 return val;
5986 }
5987
5988 BFD_ASSERT (is_ppc64_elf (opd_bfd));
5989
5990 relocs = ppc64_elf_tdata (opd_bfd)->opd.relocs;
5991 if (relocs == NULL)
5992 relocs = _bfd_elf_link_read_relocs (opd_bfd, opd_sec, NULL, NULL, TRUE);
5993 /* PR 17512: file: df8e1fd6. */
5994 if (relocs == NULL)
5995 return (bfd_vma) -1;
5996
5997 /* Go find the opd reloc at the sym address. */
5998 lo = relocs;
5999 hi = lo + opd_sec->reloc_count - 1; /* ignore last reloc */
6000 val = (bfd_vma) -1;
6001 while (lo < hi)
6002 {
6003 look = lo + (hi - lo) / 2;
6004 if (look->r_offset < offset)
6005 lo = look + 1;
6006 else if (look->r_offset > offset)
6007 hi = look;
6008 else
6009 {
6010 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (opd_bfd);
6011
6012 if (ELF64_R_TYPE (look->r_info) == R_PPC64_ADDR64
6013 && ELF64_R_TYPE ((look + 1)->r_info) == R_PPC64_TOC)
6014 {
6015 unsigned long symndx = ELF64_R_SYM (look->r_info);
6016 asection *sec = NULL;
6017
6018 if (symndx >= symtab_hdr->sh_info
6019 && elf_sym_hashes (opd_bfd) != NULL)
6020 {
6021 struct elf_link_hash_entry **sym_hashes;
6022 struct elf_link_hash_entry *rh;
6023
6024 sym_hashes = elf_sym_hashes (opd_bfd);
6025 rh = sym_hashes[symndx - symtab_hdr->sh_info];
6026 if (rh != NULL)
6027 {
6028 rh = elf_follow_link (rh);
6029 BFD_ASSERT (rh->root.type == bfd_link_hash_defined
6030 || rh->root.type == bfd_link_hash_defweak);
6031 val = rh->root.u.def.value;
6032 sec = rh->root.u.def.section;
6033 if (sec->owner != opd_bfd)
6034 {
6035 sec = NULL;
6036 val = (bfd_vma) -1;
6037 }
6038 }
6039 }
6040
6041 if (sec == NULL)
6042 {
6043 Elf_Internal_Sym *sym;
6044
6045 if (symndx < symtab_hdr->sh_info)
6046 {
6047 sym = (Elf_Internal_Sym *) symtab_hdr->contents;
6048 if (sym == NULL)
6049 {
6050 size_t symcnt = symtab_hdr->sh_info;
6051 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
6052 symcnt, 0,
6053 NULL, NULL, NULL);
6054 if (sym == NULL)
6055 break;
6056 symtab_hdr->contents = (bfd_byte *) sym;
6057 }
6058 sym += symndx;
6059 }
6060 else
6061 {
6062 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
6063 1, symndx,
6064 NULL, NULL, NULL);
6065 if (sym == NULL)
6066 break;
6067 }
6068 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
6069 if (sec == NULL)
6070 break;
6071 BFD_ASSERT ((sec->flags & SEC_MERGE) == 0);
6072 val = sym->st_value;
6073 }
6074
6075 val += look->r_addend;
6076 if (code_off != NULL)
6077 *code_off = val;
6078 if (code_sec != NULL)
6079 {
6080 if (in_code_sec && *code_sec != sec)
6081 return -1;
6082 else
6083 *code_sec = sec;
6084 }
6085 if (sec->output_section != NULL)
6086 val += sec->output_section->vma + sec->output_offset;
6087 }
6088 break;
6089 }
6090 }
6091
6092 return val;
6093 }
6094
6095 /* If the ELF symbol SYM might be a function in SEC, return the
6096 function size and set *CODE_OFF to the function's entry point,
6097 otherwise return zero. */
6098
6099 static bfd_size_type
6100 ppc64_elf_maybe_function_sym (const asymbol *sym, asection *sec,
6101 bfd_vma *code_off)
6102 {
6103 bfd_size_type size;
6104
6105 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
6106 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0)
6107 return 0;
6108
6109 size = 0;
6110 if (!(sym->flags & BSF_SYNTHETIC))
6111 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
6112
6113 if (strcmp (sym->section->name, ".opd") == 0)
6114 {
6115 if (opd_entry_value (sym->section, sym->value,
6116 &sec, code_off, TRUE) == (bfd_vma) -1)
6117 return 0;
6118 /* An old ABI binary with dot-syms has a size of 24 on the .opd
6119 symbol. This size has nothing to do with the code size of the
6120 function, which is what we're supposed to return, but the
6121 code size isn't available without looking up the dot-sym.
6122 However, doing that would be a waste of time particularly
6123 since elf_find_function will look at the dot-sym anyway.
6124 Now, elf_find_function will keep the largest size of any
6125 function sym found at the code address of interest, so return
6126 1 here to avoid it incorrectly caching a larger function size
6127 for a small function. This does mean we return the wrong
6128 size for a new-ABI function of size 24, but all that does is
6129 disable caching for such functions. */
6130 if (size == 24)
6131 size = 1;
6132 }
6133 else
6134 {
6135 if (sym->section != sec)
6136 return 0;
6137 *code_off = sym->value;
6138 }
6139 if (size == 0)
6140 size = 1;
6141 return size;
6142 }
6143
6144 /* Return true if symbol is defined in a regular object file. */
6145
6146 static bfd_boolean
6147 is_static_defined (struct elf_link_hash_entry *h)
6148 {
6149 return ((h->root.type == bfd_link_hash_defined
6150 || h->root.type == bfd_link_hash_defweak)
6151 && h->root.u.def.section != NULL
6152 && h->root.u.def.section->output_section != NULL);
6153 }
6154
6155 /* If FDH is a function descriptor symbol, return the associated code
6156 entry symbol if it is defined. Return NULL otherwise. */
6157
6158 static struct ppc_link_hash_entry *
6159 defined_code_entry (struct ppc_link_hash_entry *fdh)
6160 {
6161 if (fdh->is_func_descriptor)
6162 {
6163 struct ppc_link_hash_entry *fh = ppc_follow_link (fdh->oh);
6164 if (fh->elf.root.type == bfd_link_hash_defined
6165 || fh->elf.root.type == bfd_link_hash_defweak)
6166 return fh;
6167 }
6168 return NULL;
6169 }
6170
6171 /* If FH is a function code entry symbol, return the associated
6172 function descriptor symbol if it is defined. Return NULL otherwise. */
6173
6174 static struct ppc_link_hash_entry *
6175 defined_func_desc (struct ppc_link_hash_entry *fh)
6176 {
6177 if (fh->oh != NULL
6178 && fh->oh->is_func_descriptor)
6179 {
6180 struct ppc_link_hash_entry *fdh = ppc_follow_link (fh->oh);
6181 if (fdh->elf.root.type == bfd_link_hash_defined
6182 || fdh->elf.root.type == bfd_link_hash_defweak)
6183 return fdh;
6184 }
6185 return NULL;
6186 }
6187
6188 /* Mark all our entry sym sections, both opd and code section. */
6189
6190 static void
6191 ppc64_elf_gc_keep (struct bfd_link_info *info)
6192 {
6193 struct ppc_link_hash_table *htab = ppc_hash_table (info);
6194 struct bfd_sym_chain *sym;
6195
6196 if (htab == NULL)
6197 return;
6198
6199 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
6200 {
6201 struct ppc_link_hash_entry *eh, *fh;
6202 asection *sec;
6203
6204 eh = (struct ppc_link_hash_entry *)
6205 elf_link_hash_lookup (&htab->elf, sym->name, FALSE, FALSE, TRUE);
6206 if (eh == NULL)
6207 continue;
6208 if (eh->elf.root.type != bfd_link_hash_defined
6209 && eh->elf.root.type != bfd_link_hash_defweak)
6210 continue;
6211
6212 fh = defined_code_entry (eh);
6213 if (fh != NULL)
6214 {
6215 sec = fh->elf.root.u.def.section;
6216 sec->flags |= SEC_KEEP;
6217 }
6218 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
6219 && opd_entry_value (eh->elf.root.u.def.section,
6220 eh->elf.root.u.def.value,
6221 &sec, NULL, FALSE) != (bfd_vma) -1)
6222 sec->flags |= SEC_KEEP;
6223
6224 sec = eh->elf.root.u.def.section;
6225 sec->flags |= SEC_KEEP;
6226 }
6227 }
6228
6229 /* Mark sections containing dynamically referenced symbols. When
6230 building shared libraries, we must assume that any visible symbol is
6231 referenced. */
6232
6233 static bfd_boolean
6234 ppc64_elf_gc_mark_dynamic_ref (struct elf_link_hash_entry *h, void *inf)
6235 {
6236 struct bfd_link_info *info = (struct bfd_link_info *) inf;
6237 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
6238 struct ppc_link_hash_entry *fdh;
6239 struct bfd_elf_dynamic_list *d = info->dynamic_list;
6240
6241 /* Dynamic linking info is on the func descriptor sym. */
6242 fdh = defined_func_desc (eh);
6243 if (fdh != NULL)
6244 eh = fdh;
6245
6246 if ((eh->elf.root.type == bfd_link_hash_defined
6247 || eh->elf.root.type == bfd_link_hash_defweak)
6248 && (eh->elf.ref_dynamic
6249 || ((eh->elf.def_regular || ELF_COMMON_DEF_P (&eh->elf))
6250 && ELF_ST_VISIBILITY (eh->elf.other) != STV_INTERNAL
6251 && ELF_ST_VISIBILITY (eh->elf.other) != STV_HIDDEN
6252 && (!info->executable
6253 || info->export_dynamic
6254 || (eh->elf.dynamic
6255 && d != NULL
6256 && (*d->match) (&d->head, NULL, eh->elf.root.root.string)))
6257 && (strchr (eh->elf.root.root.string, ELF_VER_CHR) != NULL
6258 || !bfd_hide_sym_by_version (info->version_info,
6259 eh->elf.root.root.string)))))
6260 {
6261 asection *code_sec;
6262 struct ppc_link_hash_entry *fh;
6263
6264 eh->elf.root.u.def.section->flags |= SEC_KEEP;
6265
6266 /* Function descriptor syms cause the associated
6267 function code sym section to be marked. */
6268 fh = defined_code_entry (eh);
6269 if (fh != NULL)
6270 {
6271 code_sec = fh->elf.root.u.def.section;
6272 code_sec->flags |= SEC_KEEP;
6273 }
6274 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
6275 && opd_entry_value (eh->elf.root.u.def.section,
6276 eh->elf.root.u.def.value,
6277 &code_sec, NULL, FALSE) != (bfd_vma) -1)
6278 code_sec->flags |= SEC_KEEP;
6279 }
6280
6281 return TRUE;
6282 }
6283
6284 /* Return the section that should be marked against GC for a given
6285 relocation. */
6286
6287 static asection *
6288 ppc64_elf_gc_mark_hook (asection *sec,
6289 struct bfd_link_info *info,
6290 Elf_Internal_Rela *rel,
6291 struct elf_link_hash_entry *h,
6292 Elf_Internal_Sym *sym)
6293 {
6294 asection *rsec;
6295
6296 /* Syms return NULL if we're marking .opd, so we avoid marking all
6297 function sections, as all functions are referenced in .opd. */
6298 rsec = NULL;
6299 if (get_opd_info (sec) != NULL)
6300 return rsec;
6301
6302 if (h != NULL)
6303 {
6304 enum elf_ppc64_reloc_type r_type;
6305 struct ppc_link_hash_entry *eh, *fh, *fdh;
6306
6307 r_type = ELF64_R_TYPE (rel->r_info);
6308 switch (r_type)
6309 {
6310 case R_PPC64_GNU_VTINHERIT:
6311 case R_PPC64_GNU_VTENTRY:
6312 break;
6313
6314 default:
6315 switch (h->root.type)
6316 {
6317 case bfd_link_hash_defined:
6318 case bfd_link_hash_defweak:
6319 eh = (struct ppc_link_hash_entry *) h;
6320 fdh = defined_func_desc (eh);
6321 if (fdh != NULL)
6322 eh = fdh;
6323
6324 /* Function descriptor syms cause the associated
6325 function code sym section to be marked. */
6326 fh = defined_code_entry (eh);
6327 if (fh != NULL)
6328 {
6329 /* They also mark their opd section. */
6330 eh->elf.root.u.def.section->gc_mark = 1;
6331
6332 rsec = fh->elf.root.u.def.section;
6333 }
6334 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
6335 && opd_entry_value (eh->elf.root.u.def.section,
6336 eh->elf.root.u.def.value,
6337 &rsec, NULL, FALSE) != (bfd_vma) -1)
6338 eh->elf.root.u.def.section->gc_mark = 1;
6339 else
6340 rsec = h->root.u.def.section;
6341 break;
6342
6343 case bfd_link_hash_common:
6344 rsec = h->root.u.c.p->section;
6345 break;
6346
6347 default:
6348 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
6349 }
6350 }
6351 }
6352 else
6353 {
6354 struct _opd_sec_data *opd;
6355
6356 rsec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
6357 opd = get_opd_info (rsec);
6358 if (opd != NULL && opd->func_sec != NULL)
6359 {
6360 rsec->gc_mark = 1;
6361
6362 rsec = opd->func_sec[OPD_NDX (sym->st_value + rel->r_addend)];
6363 }
6364 }
6365
6366 return rsec;
6367 }
6368
6369 /* Update the .got, .plt. and dynamic reloc reference counts for the
6370 section being removed. */
6371
6372 static bfd_boolean
6373 ppc64_elf_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
6374 asection *sec, const Elf_Internal_Rela *relocs)
6375 {
6376 struct ppc_link_hash_table *htab;
6377 Elf_Internal_Shdr *symtab_hdr;
6378 struct elf_link_hash_entry **sym_hashes;
6379 struct got_entry **local_got_ents;
6380 const Elf_Internal_Rela *rel, *relend;
6381
6382 if (info->relocatable)
6383 return TRUE;
6384
6385 if ((sec->flags & SEC_ALLOC) == 0)
6386 return TRUE;
6387
6388 elf_section_data (sec)->local_dynrel = NULL;
6389
6390 htab = ppc_hash_table (info);
6391 if (htab == NULL)
6392 return FALSE;
6393
6394 symtab_hdr = &elf_symtab_hdr (abfd);
6395 sym_hashes = elf_sym_hashes (abfd);
6396 local_got_ents = elf_local_got_ents (abfd);
6397
6398 relend = relocs + sec->reloc_count;
6399 for (rel = relocs; rel < relend; rel++)
6400 {
6401 unsigned long r_symndx;
6402 enum elf_ppc64_reloc_type r_type;
6403 struct elf_link_hash_entry *h = NULL;
6404 unsigned char tls_type = 0;
6405
6406 r_symndx = ELF64_R_SYM (rel->r_info);
6407 r_type = ELF64_R_TYPE (rel->r_info);
6408 if (r_symndx >= symtab_hdr->sh_info)
6409 {
6410 struct ppc_link_hash_entry *eh;
6411 struct elf_dyn_relocs **pp;
6412 struct elf_dyn_relocs *p;
6413
6414 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6415 h = elf_follow_link (h);
6416 eh = (struct ppc_link_hash_entry *) h;
6417
6418 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
6419 if (p->sec == sec)
6420 {
6421 /* Everything must go for SEC. */
6422 *pp = p->next;
6423 break;
6424 }
6425 }
6426
6427 if (is_branch_reloc (r_type))
6428 {
6429 struct plt_entry **ifunc = NULL;
6430 if (h != NULL)
6431 {
6432 if (h->type == STT_GNU_IFUNC)
6433 ifunc = &h->plt.plist;
6434 }
6435 else if (local_got_ents != NULL)
6436 {
6437 struct plt_entry **local_plt = (struct plt_entry **)
6438 (local_got_ents + symtab_hdr->sh_info);
6439 unsigned char *local_got_tls_masks = (unsigned char *)
6440 (local_plt + symtab_hdr->sh_info);
6441 if ((local_got_tls_masks[r_symndx] & PLT_IFUNC) != 0)
6442 ifunc = local_plt + r_symndx;
6443 }
6444 if (ifunc != NULL)
6445 {
6446 struct plt_entry *ent;
6447
6448 for (ent = *ifunc; ent != NULL; ent = ent->next)
6449 if (ent->addend == rel->r_addend)
6450 break;
6451 if (ent == NULL)
6452 abort ();
6453 if (ent->plt.refcount > 0)
6454 ent->plt.refcount -= 1;
6455 continue;
6456 }
6457 }
6458
6459 switch (r_type)
6460 {
6461 case R_PPC64_GOT_TLSLD16:
6462 case R_PPC64_GOT_TLSLD16_LO:
6463 case R_PPC64_GOT_TLSLD16_HI:
6464 case R_PPC64_GOT_TLSLD16_HA:
6465 tls_type = TLS_TLS | TLS_LD;
6466 goto dogot;
6467
6468 case R_PPC64_GOT_TLSGD16:
6469 case R_PPC64_GOT_TLSGD16_LO:
6470 case R_PPC64_GOT_TLSGD16_HI:
6471 case R_PPC64_GOT_TLSGD16_HA:
6472 tls_type = TLS_TLS | TLS_GD;
6473 goto dogot;
6474
6475 case R_PPC64_GOT_TPREL16_DS:
6476 case R_PPC64_GOT_TPREL16_LO_DS:
6477 case R_PPC64_GOT_TPREL16_HI:
6478 case R_PPC64_GOT_TPREL16_HA:
6479 tls_type = TLS_TLS | TLS_TPREL;
6480 goto dogot;
6481
6482 case R_PPC64_GOT_DTPREL16_DS:
6483 case R_PPC64_GOT_DTPREL16_LO_DS:
6484 case R_PPC64_GOT_DTPREL16_HI:
6485 case R_PPC64_GOT_DTPREL16_HA:
6486 tls_type = TLS_TLS | TLS_DTPREL;
6487 goto dogot;
6488
6489 case R_PPC64_GOT16:
6490 case R_PPC64_GOT16_DS:
6491 case R_PPC64_GOT16_HA:
6492 case R_PPC64_GOT16_HI:
6493 case R_PPC64_GOT16_LO:
6494 case R_PPC64_GOT16_LO_DS:
6495 dogot:
6496 {
6497 struct got_entry *ent;
6498
6499 if (h != NULL)
6500 ent = h->got.glist;
6501 else
6502 ent = local_got_ents[r_symndx];
6503
6504 for (; ent != NULL; ent = ent->next)
6505 if (ent->addend == rel->r_addend
6506 && ent->owner == abfd
6507 && ent->tls_type == tls_type)
6508 break;
6509 if (ent == NULL)
6510 abort ();
6511 if (ent->got.refcount > 0)
6512 ent->got.refcount -= 1;
6513 }
6514 break;
6515
6516 case R_PPC64_PLT16_HA:
6517 case R_PPC64_PLT16_HI:
6518 case R_PPC64_PLT16_LO:
6519 case R_PPC64_PLT32:
6520 case R_PPC64_PLT64:
6521 case R_PPC64_REL14:
6522 case R_PPC64_REL14_BRNTAKEN:
6523 case R_PPC64_REL14_BRTAKEN:
6524 case R_PPC64_REL24:
6525 if (h != NULL)
6526 {
6527 struct plt_entry *ent;
6528
6529 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
6530 if (ent->addend == rel->r_addend)
6531 break;
6532 if (ent != NULL && ent->plt.refcount > 0)
6533 ent->plt.refcount -= 1;
6534 }
6535 break;
6536
6537 default:
6538 break;
6539 }
6540 }
6541 return TRUE;
6542 }
6543
6544 /* The maximum size of .sfpr. */
6545 #define SFPR_MAX (218*4)
6546
6547 struct sfpr_def_parms
6548 {
6549 const char name[12];
6550 unsigned char lo, hi;
6551 bfd_byte * (*write_ent) (bfd *, bfd_byte *, int);
6552 bfd_byte * (*write_tail) (bfd *, bfd_byte *, int);
6553 };
6554
6555 /* Auto-generate _save*, _rest* functions in .sfpr. */
6556
6557 static bfd_boolean
6558 sfpr_define (struct bfd_link_info *info, const struct sfpr_def_parms *parm)
6559 {
6560 struct ppc_link_hash_table *htab = ppc_hash_table (info);
6561 unsigned int i;
6562 size_t len = strlen (parm->name);
6563 bfd_boolean writing = FALSE;
6564 char sym[16];
6565
6566 if (htab == NULL)
6567 return FALSE;
6568
6569 memcpy (sym, parm->name, len);
6570 sym[len + 2] = 0;
6571
6572 for (i = parm->lo; i <= parm->hi; i++)
6573 {
6574 struct elf_link_hash_entry *h;
6575
6576 sym[len + 0] = i / 10 + '0';
6577 sym[len + 1] = i % 10 + '0';
6578 h = elf_link_hash_lookup (&htab->elf, sym, FALSE, FALSE, TRUE);
6579 if (h != NULL
6580 && !h->def_regular)
6581 {
6582 h->root.type = bfd_link_hash_defined;
6583 h->root.u.def.section = htab->sfpr;
6584 h->root.u.def.value = htab->sfpr->size;
6585 h->type = STT_FUNC;
6586 h->def_regular = 1;
6587 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
6588 writing = TRUE;
6589 if (htab->sfpr->contents == NULL)
6590 {
6591 htab->sfpr->contents = bfd_alloc (htab->elf.dynobj, SFPR_MAX);
6592 if (htab->sfpr->contents == NULL)
6593 return FALSE;
6594 }
6595 }
6596 if (writing)
6597 {
6598 bfd_byte *p = htab->sfpr->contents + htab->sfpr->size;
6599 if (i != parm->hi)
6600 p = (*parm->write_ent) (htab->elf.dynobj, p, i);
6601 else
6602 p = (*parm->write_tail) (htab->elf.dynobj, p, i);
6603 htab->sfpr->size = p - htab->sfpr->contents;
6604 }
6605 }
6606
6607 return TRUE;
6608 }
6609
6610 static bfd_byte *
6611 savegpr0 (bfd *abfd, bfd_byte *p, int r)
6612 {
6613 bfd_put_32 (abfd, STD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6614 return p + 4;
6615 }
6616
6617 static bfd_byte *
6618 savegpr0_tail (bfd *abfd, bfd_byte *p, int r)
6619 {
6620 p = savegpr0 (abfd, p, r);
6621 bfd_put_32 (abfd, STD_R0_0R1 + STK_LR, p);
6622 p = p + 4;
6623 bfd_put_32 (abfd, BLR, p);
6624 return p + 4;
6625 }
6626
6627 static bfd_byte *
6628 restgpr0 (bfd *abfd, bfd_byte *p, int r)
6629 {
6630 bfd_put_32 (abfd, LD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6631 return p + 4;
6632 }
6633
6634 static bfd_byte *
6635 restgpr0_tail (bfd *abfd, bfd_byte *p, int r)
6636 {
6637 bfd_put_32 (abfd, LD_R0_0R1 + STK_LR, p);
6638 p = p + 4;
6639 p = restgpr0 (abfd, p, r);
6640 bfd_put_32 (abfd, MTLR_R0, p);
6641 p = p + 4;
6642 if (r == 29)
6643 {
6644 p = restgpr0 (abfd, p, 30);
6645 p = restgpr0 (abfd, p, 31);
6646 }
6647 bfd_put_32 (abfd, BLR, p);
6648 return p + 4;
6649 }
6650
6651 static bfd_byte *
6652 savegpr1 (bfd *abfd, bfd_byte *p, int r)
6653 {
6654 bfd_put_32 (abfd, STD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6655 return p + 4;
6656 }
6657
6658 static bfd_byte *
6659 savegpr1_tail (bfd *abfd, bfd_byte *p, int r)
6660 {
6661 p = savegpr1 (abfd, p, r);
6662 bfd_put_32 (abfd, BLR, p);
6663 return p + 4;
6664 }
6665
6666 static bfd_byte *
6667 restgpr1 (bfd *abfd, bfd_byte *p, int r)
6668 {
6669 bfd_put_32 (abfd, LD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6670 return p + 4;
6671 }
6672
6673 static bfd_byte *
6674 restgpr1_tail (bfd *abfd, bfd_byte *p, int r)
6675 {
6676 p = restgpr1 (abfd, p, r);
6677 bfd_put_32 (abfd, BLR, p);
6678 return p + 4;
6679 }
6680
6681 static bfd_byte *
6682 savefpr (bfd *abfd, bfd_byte *p, int r)
6683 {
6684 bfd_put_32 (abfd, STFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6685 return p + 4;
6686 }
6687
6688 static bfd_byte *
6689 savefpr0_tail (bfd *abfd, bfd_byte *p, int r)
6690 {
6691 p = savefpr (abfd, p, r);
6692 bfd_put_32 (abfd, STD_R0_0R1 + STK_LR, p);
6693 p = p + 4;
6694 bfd_put_32 (abfd, BLR, p);
6695 return p + 4;
6696 }
6697
6698 static bfd_byte *
6699 restfpr (bfd *abfd, bfd_byte *p, int r)
6700 {
6701 bfd_put_32 (abfd, LFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6702 return p + 4;
6703 }
6704
6705 static bfd_byte *
6706 restfpr0_tail (bfd *abfd, bfd_byte *p, int r)
6707 {
6708 bfd_put_32 (abfd, LD_R0_0R1 + STK_LR, p);
6709 p = p + 4;
6710 p = restfpr (abfd, p, r);
6711 bfd_put_32 (abfd, MTLR_R0, p);
6712 p = p + 4;
6713 if (r == 29)
6714 {
6715 p = restfpr (abfd, p, 30);
6716 p = restfpr (abfd, p, 31);
6717 }
6718 bfd_put_32 (abfd, BLR, p);
6719 return p + 4;
6720 }
6721
6722 static bfd_byte *
6723 savefpr1_tail (bfd *abfd, bfd_byte *p, int r)
6724 {
6725 p = savefpr (abfd, p, r);
6726 bfd_put_32 (abfd, BLR, p);
6727 return p + 4;
6728 }
6729
6730 static bfd_byte *
6731 restfpr1_tail (bfd *abfd, bfd_byte *p, int r)
6732 {
6733 p = restfpr (abfd, p, r);
6734 bfd_put_32 (abfd, BLR, p);
6735 return p + 4;
6736 }
6737
6738 static bfd_byte *
6739 savevr (bfd *abfd, bfd_byte *p, int r)
6740 {
6741 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6742 p = p + 4;
6743 bfd_put_32 (abfd, STVX_VR0_R12_R0 + (r << 21), p);
6744 return p + 4;
6745 }
6746
6747 static bfd_byte *
6748 savevr_tail (bfd *abfd, bfd_byte *p, int r)
6749 {
6750 p = savevr (abfd, p, r);
6751 bfd_put_32 (abfd, BLR, p);
6752 return p + 4;
6753 }
6754
6755 static bfd_byte *
6756 restvr (bfd *abfd, bfd_byte *p, int r)
6757 {
6758 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6759 p = p + 4;
6760 bfd_put_32 (abfd, LVX_VR0_R12_R0 + (r << 21), p);
6761 return p + 4;
6762 }
6763
6764 static bfd_byte *
6765 restvr_tail (bfd *abfd, bfd_byte *p, int r)
6766 {
6767 p = restvr (abfd, p, r);
6768 bfd_put_32 (abfd, BLR, p);
6769 return p + 4;
6770 }
6771
6772 /* Called via elf_link_hash_traverse to transfer dynamic linking
6773 information on function code symbol entries to their corresponding
6774 function descriptor symbol entries. */
6775
6776 static bfd_boolean
6777 func_desc_adjust (struct elf_link_hash_entry *h, void *inf)
6778 {
6779 struct bfd_link_info *info;
6780 struct ppc_link_hash_table *htab;
6781 struct plt_entry *ent;
6782 struct ppc_link_hash_entry *fh;
6783 struct ppc_link_hash_entry *fdh;
6784 bfd_boolean force_local;
6785
6786 fh = (struct ppc_link_hash_entry *) h;
6787 if (fh->elf.root.type == bfd_link_hash_indirect)
6788 return TRUE;
6789
6790 info = inf;
6791 htab = ppc_hash_table (info);
6792 if (htab == NULL)
6793 return FALSE;
6794
6795 /* Resolve undefined references to dot-symbols as the value
6796 in the function descriptor, if we have one in a regular object.
6797 This is to satisfy cases like ".quad .foo". Calls to functions
6798 in dynamic objects are handled elsewhere. */
6799 if (fh->elf.root.type == bfd_link_hash_undefweak
6800 && fh->was_undefined
6801 && (fdh = defined_func_desc (fh)) != NULL
6802 && get_opd_info (fdh->elf.root.u.def.section) != NULL
6803 && opd_entry_value (fdh->elf.root.u.def.section,
6804 fdh->elf.root.u.def.value,
6805 &fh->elf.root.u.def.section,
6806 &fh->elf.root.u.def.value, FALSE) != (bfd_vma) -1)
6807 {
6808 fh->elf.root.type = fdh->elf.root.type;
6809 fh->elf.forced_local = 1;
6810 fh->elf.def_regular = fdh->elf.def_regular;
6811 fh->elf.def_dynamic = fdh->elf.def_dynamic;
6812 }
6813
6814 /* If this is a function code symbol, transfer dynamic linking
6815 information to the function descriptor symbol. */
6816 if (!fh->is_func)
6817 return TRUE;
6818
6819 for (ent = fh->elf.plt.plist; ent != NULL; ent = ent->next)
6820 if (ent->plt.refcount > 0)
6821 break;
6822 if (ent == NULL
6823 || fh->elf.root.root.string[0] != '.'
6824 || fh->elf.root.root.string[1] == '\0')
6825 return TRUE;
6826
6827 /* Find the corresponding function descriptor symbol. Create it
6828 as undefined if necessary. */
6829
6830 fdh = lookup_fdh (fh, htab);
6831 if (fdh == NULL
6832 && !info->executable
6833 && (fh->elf.root.type == bfd_link_hash_undefined
6834 || fh->elf.root.type == bfd_link_hash_undefweak))
6835 {
6836 fdh = make_fdh (info, fh);
6837 if (fdh == NULL)
6838 return FALSE;
6839 }
6840
6841 /* Fake function descriptors are made undefweak. If the function
6842 code symbol is strong undefined, make the fake sym the same.
6843 If the function code symbol is defined, then force the fake
6844 descriptor local; We can't support overriding of symbols in a
6845 shared library on a fake descriptor. */
6846
6847 if (fdh != NULL
6848 && fdh->fake
6849 && fdh->elf.root.type == bfd_link_hash_undefweak)
6850 {
6851 if (fh->elf.root.type == bfd_link_hash_undefined)
6852 {
6853 fdh->elf.root.type = bfd_link_hash_undefined;
6854 bfd_link_add_undef (&htab->elf.root, &fdh->elf.root);
6855 }
6856 else if (fh->elf.root.type == bfd_link_hash_defined
6857 || fh->elf.root.type == bfd_link_hash_defweak)
6858 {
6859 _bfd_elf_link_hash_hide_symbol (info, &fdh->elf, TRUE);
6860 }
6861 }
6862
6863 if (fdh != NULL
6864 && !fdh->elf.forced_local
6865 && (!info->executable
6866 || fdh->elf.def_dynamic
6867 || fdh->elf.ref_dynamic
6868 || (fdh->elf.root.type == bfd_link_hash_undefweak
6869 && ELF_ST_VISIBILITY (fdh->elf.other) == STV_DEFAULT)))
6870 {
6871 if (fdh->elf.dynindx == -1)
6872 if (! bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
6873 return FALSE;
6874 fdh->elf.ref_regular |= fh->elf.ref_regular;
6875 fdh->elf.ref_dynamic |= fh->elf.ref_dynamic;
6876 fdh->elf.ref_regular_nonweak |= fh->elf.ref_regular_nonweak;
6877 fdh->elf.non_got_ref |= fh->elf.non_got_ref;
6878 if (ELF_ST_VISIBILITY (fh->elf.other) == STV_DEFAULT)
6879 {
6880 move_plt_plist (fh, fdh);
6881 fdh->elf.needs_plt = 1;
6882 }
6883 fdh->is_func_descriptor = 1;
6884 fdh->oh = fh;
6885 fh->oh = fdh;
6886 }
6887
6888 /* Now that the info is on the function descriptor, clear the
6889 function code sym info. Any function code syms for which we
6890 don't have a definition in a regular file, we force local.
6891 This prevents a shared library from exporting syms that have
6892 been imported from another library. Function code syms that
6893 are really in the library we must leave global to prevent the
6894 linker dragging in a definition from a static library. */
6895 force_local = (!fh->elf.def_regular
6896 || fdh == NULL
6897 || !fdh->elf.def_regular
6898 || fdh->elf.forced_local);
6899 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6900
6901 return TRUE;
6902 }
6903
6904 /* Called near the start of bfd_elf_size_dynamic_sections. We use
6905 this hook to a) provide some gcc support functions, and b) transfer
6906 dynamic linking information gathered so far on function code symbol
6907 entries, to their corresponding function descriptor symbol entries. */
6908
6909 static bfd_boolean
6910 ppc64_elf_func_desc_adjust (bfd *obfd ATTRIBUTE_UNUSED,
6911 struct bfd_link_info *info)
6912 {
6913 struct ppc_link_hash_table *htab;
6914 unsigned int i;
6915 static const struct sfpr_def_parms funcs[] =
6916 {
6917 { "_savegpr0_", 14, 31, savegpr0, savegpr0_tail },
6918 { "_restgpr0_", 14, 29, restgpr0, restgpr0_tail },
6919 { "_restgpr0_", 30, 31, restgpr0, restgpr0_tail },
6920 { "_savegpr1_", 14, 31, savegpr1, savegpr1_tail },
6921 { "_restgpr1_", 14, 31, restgpr1, restgpr1_tail },
6922 { "_savefpr_", 14, 31, savefpr, savefpr0_tail },
6923 { "_restfpr_", 14, 29, restfpr, restfpr0_tail },
6924 { "_restfpr_", 30, 31, restfpr, restfpr0_tail },
6925 { "._savef", 14, 31, savefpr, savefpr1_tail },
6926 { "._restf", 14, 31, restfpr, restfpr1_tail },
6927 { "_savevr_", 20, 31, savevr, savevr_tail },
6928 { "_restvr_", 20, 31, restvr, restvr_tail }
6929 };
6930
6931 htab = ppc_hash_table (info);
6932 if (htab == NULL)
6933 return FALSE;
6934
6935 if (!info->relocatable
6936 && htab->elf.hgot != NULL)
6937 {
6938 _bfd_elf_link_hash_hide_symbol (info, htab->elf.hgot, TRUE);
6939 /* Make .TOC. defined so as to prevent it being made dynamic.
6940 The wrong value here is fixed later in ppc64_elf_set_toc. */
6941 htab->elf.hgot->type = STT_OBJECT;
6942 htab->elf.hgot->root.type = bfd_link_hash_defined;
6943 htab->elf.hgot->root.u.def.value = 0;
6944 htab->elf.hgot->root.u.def.section = bfd_abs_section_ptr;
6945 htab->elf.hgot->def_regular = 1;
6946 htab->elf.hgot->other = ((htab->elf.hgot->other & ~ELF_ST_VISIBILITY (-1))
6947 | STV_HIDDEN);
6948 }
6949
6950 if (htab->sfpr == NULL)
6951 /* We don't have any relocs. */
6952 return TRUE;
6953
6954 /* Provide any missing _save* and _rest* functions. */
6955 htab->sfpr->size = 0;
6956 if (htab->params->save_restore_funcs)
6957 for (i = 0; i < sizeof (funcs) / sizeof (funcs[0]); i++)
6958 if (!sfpr_define (info, &funcs[i]))
6959 return FALSE;
6960
6961 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
6962
6963 if (htab->sfpr->size == 0)
6964 htab->sfpr->flags |= SEC_EXCLUDE;
6965
6966 return TRUE;
6967 }
6968
6969 /* Return true if we have dynamic relocs that apply to read-only sections. */
6970
6971 static bfd_boolean
6972 readonly_dynrelocs (struct elf_link_hash_entry *h)
6973 {
6974 struct ppc_link_hash_entry *eh;
6975 struct elf_dyn_relocs *p;
6976
6977 eh = (struct ppc_link_hash_entry *) h;
6978 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6979 {
6980 asection *s = p->sec->output_section;
6981
6982 if (s != NULL && (s->flags & SEC_READONLY) != 0)
6983 return TRUE;
6984 }
6985 return FALSE;
6986 }
6987
6988 /* Adjust a symbol defined by a dynamic object and referenced by a
6989 regular object. The current definition is in some section of the
6990 dynamic object, but we're not including those sections. We have to
6991 change the definition to something the rest of the link can
6992 understand. */
6993
6994 static bfd_boolean
6995 ppc64_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6996 struct elf_link_hash_entry *h)
6997 {
6998 struct ppc_link_hash_table *htab;
6999 asection *s;
7000
7001 htab = ppc_hash_table (info);
7002 if (htab == NULL)
7003 return FALSE;
7004
7005 /* Deal with function syms. */
7006 if (h->type == STT_FUNC
7007 || h->type == STT_GNU_IFUNC
7008 || h->needs_plt)
7009 {
7010 /* Clear procedure linkage table information for any symbol that
7011 won't need a .plt entry. */
7012 struct plt_entry *ent;
7013 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
7014 if (ent->plt.refcount > 0)
7015 break;
7016 if (ent == NULL
7017 || (h->type != STT_GNU_IFUNC
7018 && (SYMBOL_CALLS_LOCAL (info, h)
7019 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7020 && h->root.type == bfd_link_hash_undefweak))))
7021 {
7022 h->plt.plist = NULL;
7023 h->needs_plt = 0;
7024 h->pointer_equality_needed = 0;
7025 }
7026 else if (abiversion (info->output_bfd) == 2)
7027 {
7028 /* Taking a function's address in a read/write section
7029 doesn't require us to define the function symbol in the
7030 executable on a global entry stub. A dynamic reloc can
7031 be used instead. */
7032 if (h->pointer_equality_needed
7033 && h->type != STT_GNU_IFUNC
7034 && !readonly_dynrelocs (h))
7035 {
7036 h->pointer_equality_needed = 0;
7037 h->non_got_ref = 0;
7038 }
7039
7040 /* After adjust_dynamic_symbol, non_got_ref set in the
7041 non-shared case means that we have allocated space in
7042 .dynbss for the symbol and thus dyn_relocs for this
7043 symbol should be discarded.
7044 If we get here we know we are making a PLT entry for this
7045 symbol, and in an executable we'd normally resolve
7046 relocations against this symbol to the PLT entry. Allow
7047 dynamic relocs if the reference is weak, and the dynamic
7048 relocs will not cause text relocation. */
7049 else if (!h->ref_regular_nonweak
7050 && h->non_got_ref
7051 && h->type != STT_GNU_IFUNC
7052 && !readonly_dynrelocs (h))
7053 h->non_got_ref = 0;
7054
7055 /* If making a plt entry, then we don't need copy relocs. */
7056 return TRUE;
7057 }
7058 }
7059 else
7060 h->plt.plist = NULL;
7061
7062 /* If this is a weak symbol, and there is a real definition, the
7063 processor independent code will have arranged for us to see the
7064 real definition first, and we can just use the same value. */
7065 if (h->u.weakdef != NULL)
7066 {
7067 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7068 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7069 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7070 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7071 if (ELIMINATE_COPY_RELOCS)
7072 h->non_got_ref = h->u.weakdef->non_got_ref;
7073 return TRUE;
7074 }
7075
7076 /* If we are creating a shared library, we must presume that the
7077 only references to the symbol are via the global offset table.
7078 For such cases we need not do anything here; the relocations will
7079 be handled correctly by relocate_section. */
7080 if (info->shared)
7081 return TRUE;
7082
7083 /* If there are no references to this symbol that do not use the
7084 GOT, we don't need to generate a copy reloc. */
7085 if (!h->non_got_ref)
7086 return TRUE;
7087
7088 /* Don't generate a copy reloc for symbols defined in the executable. */
7089 if (!h->def_dynamic || !h->ref_regular || h->def_regular)
7090 return TRUE;
7091
7092 /* If we didn't find any dynamic relocs in read-only sections, then
7093 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
7094 if (ELIMINATE_COPY_RELOCS && !readonly_dynrelocs (h))
7095 {
7096 h->non_got_ref = 0;
7097 return TRUE;
7098 }
7099
7100 if (h->plt.plist != NULL)
7101 {
7102 /* We should never get here, but unfortunately there are versions
7103 of gcc out there that improperly (for this ABI) put initialized
7104 function pointers, vtable refs and suchlike in read-only
7105 sections. Allow them to proceed, but warn that this might
7106 break at runtime. */
7107 info->callbacks->einfo
7108 (_("%P: copy reloc against `%T' requires lazy plt linking; "
7109 "avoid setting LD_BIND_NOW=1 or upgrade gcc\n"),
7110 h->root.root.string);
7111 }
7112
7113 /* This is a reference to a symbol defined by a dynamic object which
7114 is not a function. */
7115
7116 /* We must allocate the symbol in our .dynbss section, which will
7117 become part of the .bss section of the executable. There will be
7118 an entry for this symbol in the .dynsym section. The dynamic
7119 object will contain position independent code, so all references
7120 from the dynamic object to this symbol will go through the global
7121 offset table. The dynamic linker will use the .dynsym entry to
7122 determine the address it must put in the global offset table, so
7123 both the dynamic object and the regular object will refer to the
7124 same memory location for the variable. */
7125
7126 /* We must generate a R_PPC64_COPY reloc to tell the dynamic linker
7127 to copy the initial value out of the dynamic object and into the
7128 runtime process image. We need to remember the offset into the
7129 .rela.bss section we are going to use. */
7130 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
7131 {
7132 htab->relbss->size += sizeof (Elf64_External_Rela);
7133 h->needs_copy = 1;
7134 }
7135
7136 s = htab->dynbss;
7137
7138 return _bfd_elf_adjust_dynamic_copy (info, h, s);
7139 }
7140
7141 /* If given a function descriptor symbol, hide both the function code
7142 sym and the descriptor. */
7143 static void
7144 ppc64_elf_hide_symbol (struct bfd_link_info *info,
7145 struct elf_link_hash_entry *h,
7146 bfd_boolean force_local)
7147 {
7148 struct ppc_link_hash_entry *eh;
7149 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
7150
7151 eh = (struct ppc_link_hash_entry *) h;
7152 if (eh->is_func_descriptor)
7153 {
7154 struct ppc_link_hash_entry *fh = eh->oh;
7155
7156 if (fh == NULL)
7157 {
7158 const char *p, *q;
7159 struct ppc_link_hash_table *htab;
7160 char save;
7161
7162 /* We aren't supposed to use alloca in BFD because on
7163 systems which do not have alloca the version in libiberty
7164 calls xmalloc, which might cause the program to crash
7165 when it runs out of memory. This function doesn't have a
7166 return status, so there's no way to gracefully return an
7167 error. So cheat. We know that string[-1] can be safely
7168 accessed; It's either a string in an ELF string table,
7169 or allocated in an objalloc structure. */
7170
7171 p = eh->elf.root.root.string - 1;
7172 save = *p;
7173 *(char *) p = '.';
7174 htab = ppc_hash_table (info);
7175 if (htab == NULL)
7176 return;
7177
7178 fh = (struct ppc_link_hash_entry *)
7179 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
7180 *(char *) p = save;
7181
7182 /* Unfortunately, if it so happens that the string we were
7183 looking for was allocated immediately before this string,
7184 then we overwrote the string terminator. That's the only
7185 reason the lookup should fail. */
7186 if (fh == NULL)
7187 {
7188 q = eh->elf.root.root.string + strlen (eh->elf.root.root.string);
7189 while (q >= eh->elf.root.root.string && *q == *p)
7190 --q, --p;
7191 if (q < eh->elf.root.root.string && *p == '.')
7192 fh = (struct ppc_link_hash_entry *)
7193 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
7194 }
7195 if (fh != NULL)
7196 {
7197 eh->oh = fh;
7198 fh->oh = eh;
7199 }
7200 }
7201 if (fh != NULL)
7202 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
7203 }
7204 }
7205
7206 static bfd_boolean
7207 get_sym_h (struct elf_link_hash_entry **hp,
7208 Elf_Internal_Sym **symp,
7209 asection **symsecp,
7210 unsigned char **tls_maskp,
7211 Elf_Internal_Sym **locsymsp,
7212 unsigned long r_symndx,
7213 bfd *ibfd)
7214 {
7215 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
7216
7217 if (r_symndx >= symtab_hdr->sh_info)
7218 {
7219 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
7220 struct elf_link_hash_entry *h;
7221
7222 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7223 h = elf_follow_link (h);
7224
7225 if (hp != NULL)
7226 *hp = h;
7227
7228 if (symp != NULL)
7229 *symp = NULL;
7230
7231 if (symsecp != NULL)
7232 {
7233 asection *symsec = NULL;
7234 if (h->root.type == bfd_link_hash_defined
7235 || h->root.type == bfd_link_hash_defweak)
7236 symsec = h->root.u.def.section;
7237 *symsecp = symsec;
7238 }
7239
7240 if (tls_maskp != NULL)
7241 {
7242 struct ppc_link_hash_entry *eh;
7243
7244 eh = (struct ppc_link_hash_entry *) h;
7245 *tls_maskp = &eh->tls_mask;
7246 }
7247 }
7248 else
7249 {
7250 Elf_Internal_Sym *sym;
7251 Elf_Internal_Sym *locsyms = *locsymsp;
7252
7253 if (locsyms == NULL)
7254 {
7255 locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
7256 if (locsyms == NULL)
7257 locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
7258 symtab_hdr->sh_info,
7259 0, NULL, NULL, NULL);
7260 if (locsyms == NULL)
7261 return FALSE;
7262 *locsymsp = locsyms;
7263 }
7264 sym = locsyms + r_symndx;
7265
7266 if (hp != NULL)
7267 *hp = NULL;
7268
7269 if (symp != NULL)
7270 *symp = sym;
7271
7272 if (symsecp != NULL)
7273 *symsecp = bfd_section_from_elf_index (ibfd, sym->st_shndx);
7274
7275 if (tls_maskp != NULL)
7276 {
7277 struct got_entry **lgot_ents;
7278 unsigned char *tls_mask;
7279
7280 tls_mask = NULL;
7281 lgot_ents = elf_local_got_ents (ibfd);
7282 if (lgot_ents != NULL)
7283 {
7284 struct plt_entry **local_plt = (struct plt_entry **)
7285 (lgot_ents + symtab_hdr->sh_info);
7286 unsigned char *lgot_masks = (unsigned char *)
7287 (local_plt + symtab_hdr->sh_info);
7288 tls_mask = &lgot_masks[r_symndx];
7289 }
7290 *tls_maskp = tls_mask;
7291 }
7292 }
7293 return TRUE;
7294 }
7295
7296 /* Returns TLS_MASKP for the given REL symbol. Function return is 0 on
7297 error, 2 on a toc GD type suitable for optimization, 3 on a toc LD
7298 type suitable for optimization, and 1 otherwise. */
7299
7300 static int
7301 get_tls_mask (unsigned char **tls_maskp,
7302 unsigned long *toc_symndx,
7303 bfd_vma *toc_addend,
7304 Elf_Internal_Sym **locsymsp,
7305 const Elf_Internal_Rela *rel,
7306 bfd *ibfd)
7307 {
7308 unsigned long r_symndx;
7309 int next_r;
7310 struct elf_link_hash_entry *h;
7311 Elf_Internal_Sym *sym;
7312 asection *sec;
7313 bfd_vma off;
7314
7315 r_symndx = ELF64_R_SYM (rel->r_info);
7316 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
7317 return 0;
7318
7319 if ((*tls_maskp != NULL && **tls_maskp != 0)
7320 || sec == NULL
7321 || ppc64_elf_section_data (sec) == NULL
7322 || ppc64_elf_section_data (sec)->sec_type != sec_toc)
7323 return 1;
7324
7325 /* Look inside a TOC section too. */
7326 if (h != NULL)
7327 {
7328 BFD_ASSERT (h->root.type == bfd_link_hash_defined);
7329 off = h->root.u.def.value;
7330 }
7331 else
7332 off = sym->st_value;
7333 off += rel->r_addend;
7334 BFD_ASSERT (off % 8 == 0);
7335 r_symndx = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8];
7336 next_r = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8 + 1];
7337 if (toc_symndx != NULL)
7338 *toc_symndx = r_symndx;
7339 if (toc_addend != NULL)
7340 *toc_addend = ppc64_elf_section_data (sec)->u.toc.add[off / 8];
7341 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
7342 return 0;
7343 if ((h == NULL || is_static_defined (h))
7344 && (next_r == -1 || next_r == -2))
7345 return 1 - next_r;
7346 return 1;
7347 }
7348
7349 /* Find (or create) an entry in the tocsave hash table. */
7350
7351 static struct tocsave_entry *
7352 tocsave_find (struct ppc_link_hash_table *htab,
7353 enum insert_option insert,
7354 Elf_Internal_Sym **local_syms,
7355 const Elf_Internal_Rela *irela,
7356 bfd *ibfd)
7357 {
7358 unsigned long r_indx;
7359 struct elf_link_hash_entry *h;
7360 Elf_Internal_Sym *sym;
7361 struct tocsave_entry ent, *p;
7362 hashval_t hash;
7363 struct tocsave_entry **slot;
7364
7365 r_indx = ELF64_R_SYM (irela->r_info);
7366 if (!get_sym_h (&h, &sym, &ent.sec, NULL, local_syms, r_indx, ibfd))
7367 return NULL;
7368 if (ent.sec == NULL || ent.sec->output_section == NULL)
7369 {
7370 (*_bfd_error_handler)
7371 (_("%B: undefined symbol on R_PPC64_TOCSAVE relocation"));
7372 return NULL;
7373 }
7374
7375 if (h != NULL)
7376 ent.offset = h->root.u.def.value;
7377 else
7378 ent.offset = sym->st_value;
7379 ent.offset += irela->r_addend;
7380
7381 hash = tocsave_htab_hash (&ent);
7382 slot = ((struct tocsave_entry **)
7383 htab_find_slot_with_hash (htab->tocsave_htab, &ent, hash, insert));
7384 if (slot == NULL)
7385 return NULL;
7386
7387 if (*slot == NULL)
7388 {
7389 p = (struct tocsave_entry *) bfd_alloc (ibfd, sizeof (*p));
7390 if (p == NULL)
7391 return NULL;
7392 *p = ent;
7393 *slot = p;
7394 }
7395 return *slot;
7396 }
7397
7398 /* Adjust all global syms defined in opd sections. In gcc generated
7399 code for the old ABI, these will already have been done. */
7400
7401 static bfd_boolean
7402 adjust_opd_syms (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
7403 {
7404 struct ppc_link_hash_entry *eh;
7405 asection *sym_sec;
7406 struct _opd_sec_data *opd;
7407
7408 if (h->root.type == bfd_link_hash_indirect)
7409 return TRUE;
7410
7411 if (h->root.type != bfd_link_hash_defined
7412 && h->root.type != bfd_link_hash_defweak)
7413 return TRUE;
7414
7415 eh = (struct ppc_link_hash_entry *) h;
7416 if (eh->adjust_done)
7417 return TRUE;
7418
7419 sym_sec = eh->elf.root.u.def.section;
7420 opd = get_opd_info (sym_sec);
7421 if (opd != NULL && opd->adjust != NULL)
7422 {
7423 long adjust = opd->adjust[OPD_NDX (eh->elf.root.u.def.value)];
7424 if (adjust == -1)
7425 {
7426 /* This entry has been deleted. */
7427 asection *dsec = ppc64_elf_tdata (sym_sec->owner)->deleted_section;
7428 if (dsec == NULL)
7429 {
7430 for (dsec = sym_sec->owner->sections; dsec; dsec = dsec->next)
7431 if (discarded_section (dsec))
7432 {
7433 ppc64_elf_tdata (sym_sec->owner)->deleted_section = dsec;
7434 break;
7435 }
7436 }
7437 eh->elf.root.u.def.value = 0;
7438 eh->elf.root.u.def.section = dsec;
7439 }
7440 else
7441 eh->elf.root.u.def.value += adjust;
7442 eh->adjust_done = 1;
7443 }
7444 return TRUE;
7445 }
7446
7447 /* Handles decrementing dynamic reloc counts for the reloc specified by
7448 R_INFO in section SEC. If LOCAL_SYMS is NULL, then H and SYM
7449 have already been determined. */
7450
7451 static bfd_boolean
7452 dec_dynrel_count (bfd_vma r_info,
7453 asection *sec,
7454 struct bfd_link_info *info,
7455 Elf_Internal_Sym **local_syms,
7456 struct elf_link_hash_entry *h,
7457 Elf_Internal_Sym *sym)
7458 {
7459 enum elf_ppc64_reloc_type r_type;
7460 asection *sym_sec = NULL;
7461
7462 /* Can this reloc be dynamic? This switch, and later tests here
7463 should be kept in sync with the code in check_relocs. */
7464 r_type = ELF64_R_TYPE (r_info);
7465 switch (r_type)
7466 {
7467 default:
7468 return TRUE;
7469
7470 case R_PPC64_TPREL16:
7471 case R_PPC64_TPREL16_LO:
7472 case R_PPC64_TPREL16_HI:
7473 case R_PPC64_TPREL16_HA:
7474 case R_PPC64_TPREL16_DS:
7475 case R_PPC64_TPREL16_LO_DS:
7476 case R_PPC64_TPREL16_HIGH:
7477 case R_PPC64_TPREL16_HIGHA:
7478 case R_PPC64_TPREL16_HIGHER:
7479 case R_PPC64_TPREL16_HIGHERA:
7480 case R_PPC64_TPREL16_HIGHEST:
7481 case R_PPC64_TPREL16_HIGHESTA:
7482 if (!info->shared)
7483 return TRUE;
7484
7485 case R_PPC64_TPREL64:
7486 case R_PPC64_DTPMOD64:
7487 case R_PPC64_DTPREL64:
7488 case R_PPC64_ADDR64:
7489 case R_PPC64_REL30:
7490 case R_PPC64_REL32:
7491 case R_PPC64_REL64:
7492 case R_PPC64_ADDR14:
7493 case R_PPC64_ADDR14_BRNTAKEN:
7494 case R_PPC64_ADDR14_BRTAKEN:
7495 case R_PPC64_ADDR16:
7496 case R_PPC64_ADDR16_DS:
7497 case R_PPC64_ADDR16_HA:
7498 case R_PPC64_ADDR16_HI:
7499 case R_PPC64_ADDR16_HIGH:
7500 case R_PPC64_ADDR16_HIGHA:
7501 case R_PPC64_ADDR16_HIGHER:
7502 case R_PPC64_ADDR16_HIGHERA:
7503 case R_PPC64_ADDR16_HIGHEST:
7504 case R_PPC64_ADDR16_HIGHESTA:
7505 case R_PPC64_ADDR16_LO:
7506 case R_PPC64_ADDR16_LO_DS:
7507 case R_PPC64_ADDR24:
7508 case R_PPC64_ADDR32:
7509 case R_PPC64_UADDR16:
7510 case R_PPC64_UADDR32:
7511 case R_PPC64_UADDR64:
7512 case R_PPC64_TOC:
7513 break;
7514 }
7515
7516 if (local_syms != NULL)
7517 {
7518 unsigned long r_symndx;
7519 bfd *ibfd = sec->owner;
7520
7521 r_symndx = ELF64_R_SYM (r_info);
7522 if (!get_sym_h (&h, &sym, &sym_sec, NULL, local_syms, r_symndx, ibfd))
7523 return FALSE;
7524 }
7525
7526 if ((info->shared
7527 && (must_be_dyn_reloc (info, r_type)
7528 || (h != NULL
7529 && (!SYMBOLIC_BIND (info, h)
7530 || h->root.type == bfd_link_hash_defweak
7531 || !h->def_regular))))
7532 || (ELIMINATE_COPY_RELOCS
7533 && !info->shared
7534 && h != NULL
7535 && (h->root.type == bfd_link_hash_defweak
7536 || !h->def_regular)))
7537 ;
7538 else
7539 return TRUE;
7540
7541 if (h != NULL)
7542 {
7543 struct elf_dyn_relocs *p;
7544 struct elf_dyn_relocs **pp;
7545 pp = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
7546
7547 /* elf_gc_sweep may have already removed all dyn relocs associated
7548 with local syms for a given section. Also, symbol flags are
7549 changed by elf_gc_sweep_symbol, confusing the test above. Don't
7550 report a dynreloc miscount. */
7551 if (*pp == NULL && info->gc_sections)
7552 return TRUE;
7553
7554 while ((p = *pp) != NULL)
7555 {
7556 if (p->sec == sec)
7557 {
7558 if (!must_be_dyn_reloc (info, r_type))
7559 p->pc_count -= 1;
7560 p->count -= 1;
7561 if (p->count == 0)
7562 *pp = p->next;
7563 return TRUE;
7564 }
7565 pp = &p->next;
7566 }
7567 }
7568 else
7569 {
7570 struct ppc_dyn_relocs *p;
7571 struct ppc_dyn_relocs **pp;
7572 void *vpp;
7573 bfd_boolean is_ifunc;
7574
7575 if (local_syms == NULL)
7576 sym_sec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
7577 if (sym_sec == NULL)
7578 sym_sec = sec;
7579
7580 vpp = &elf_section_data (sym_sec)->local_dynrel;
7581 pp = (struct ppc_dyn_relocs **) vpp;
7582
7583 if (*pp == NULL && info->gc_sections)
7584 return TRUE;
7585
7586 is_ifunc = ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC;
7587 while ((p = *pp) != NULL)
7588 {
7589 if (p->sec == sec && p->ifunc == is_ifunc)
7590 {
7591 p->count -= 1;
7592 if (p->count == 0)
7593 *pp = p->next;
7594 return TRUE;
7595 }
7596 pp = &p->next;
7597 }
7598 }
7599
7600 info->callbacks->einfo (_("%P: dynreloc miscount for %B, section %A\n"),
7601 sec->owner, sec);
7602 bfd_set_error (bfd_error_bad_value);
7603 return FALSE;
7604 }
7605
7606 /* Remove unused Official Procedure Descriptor entries. Currently we
7607 only remove those associated with functions in discarded link-once
7608 sections, or weakly defined functions that have been overridden. It
7609 would be possible to remove many more entries for statically linked
7610 applications. */
7611
7612 bfd_boolean
7613 ppc64_elf_edit_opd (struct bfd_link_info *info)
7614 {
7615 bfd *ibfd;
7616 bfd_boolean some_edited = FALSE;
7617 asection *need_pad = NULL;
7618 struct ppc_link_hash_table *htab;
7619
7620 htab = ppc_hash_table (info);
7621 if (htab == NULL)
7622 return FALSE;
7623
7624 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7625 {
7626 asection *sec;
7627 Elf_Internal_Rela *relstart, *rel, *relend;
7628 Elf_Internal_Shdr *symtab_hdr;
7629 Elf_Internal_Sym *local_syms;
7630 struct _opd_sec_data *opd;
7631 bfd_boolean need_edit, add_aux_fields, broken;
7632 bfd_size_type cnt_16b = 0;
7633
7634 if (!is_ppc64_elf (ibfd))
7635 continue;
7636
7637 sec = bfd_get_section_by_name (ibfd, ".opd");
7638 if (sec == NULL || sec->size == 0)
7639 continue;
7640
7641 if (sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
7642 continue;
7643
7644 if (sec->output_section == bfd_abs_section_ptr)
7645 continue;
7646
7647 /* Look through the section relocs. */
7648 if ((sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0)
7649 continue;
7650
7651 local_syms = NULL;
7652 symtab_hdr = &elf_symtab_hdr (ibfd);
7653
7654 /* Read the relocations. */
7655 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7656 info->keep_memory);
7657 if (relstart == NULL)
7658 return FALSE;
7659
7660 /* First run through the relocs to check they are sane, and to
7661 determine whether we need to edit this opd section. */
7662 need_edit = FALSE;
7663 broken = FALSE;
7664 need_pad = sec;
7665 relend = relstart + sec->reloc_count;
7666 for (rel = relstart; rel < relend; )
7667 {
7668 enum elf_ppc64_reloc_type r_type;
7669 unsigned long r_symndx;
7670 asection *sym_sec;
7671 struct elf_link_hash_entry *h;
7672 Elf_Internal_Sym *sym;
7673 bfd_vma offset;
7674
7675 /* .opd contains an array of 16 or 24 byte entries. We're
7676 only interested in the reloc pointing to a function entry
7677 point. */
7678 offset = rel->r_offset;
7679 if (rel + 1 == relend
7680 || rel[1].r_offset != offset + 8)
7681 {
7682 /* If someone messes with .opd alignment then after a
7683 "ld -r" we might have padding in the middle of .opd.
7684 Also, there's nothing to prevent someone putting
7685 something silly in .opd with the assembler. No .opd
7686 optimization for them! */
7687 broken_opd:
7688 (*_bfd_error_handler)
7689 (_("%B: .opd is not a regular array of opd entries"), ibfd);
7690 broken = TRUE;
7691 break;
7692 }
7693
7694 if ((r_type = ELF64_R_TYPE (rel->r_info)) != R_PPC64_ADDR64
7695 || (r_type = ELF64_R_TYPE ((rel + 1)->r_info)) != R_PPC64_TOC)
7696 {
7697 (*_bfd_error_handler)
7698 (_("%B: unexpected reloc type %u in .opd section"),
7699 ibfd, r_type);
7700 broken = TRUE;
7701 break;
7702 }
7703
7704 r_symndx = ELF64_R_SYM (rel->r_info);
7705 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7706 r_symndx, ibfd))
7707 goto error_ret;
7708
7709 if (sym_sec == NULL || sym_sec->owner == NULL)
7710 {
7711 const char *sym_name;
7712 if (h != NULL)
7713 sym_name = h->root.root.string;
7714 else
7715 sym_name = bfd_elf_sym_name (ibfd, symtab_hdr, sym,
7716 sym_sec);
7717
7718 (*_bfd_error_handler)
7719 (_("%B: undefined sym `%s' in .opd section"),
7720 ibfd, sym_name);
7721 broken = TRUE;
7722 break;
7723 }
7724
7725 /* opd entries are always for functions defined in the
7726 current input bfd. If the symbol isn't defined in the
7727 input bfd, then we won't be using the function in this
7728 bfd; It must be defined in a linkonce section in another
7729 bfd, or is weak. It's also possible that we are
7730 discarding the function due to a linker script /DISCARD/,
7731 which we test for via the output_section. */
7732 if (sym_sec->owner != ibfd
7733 || sym_sec->output_section == bfd_abs_section_ptr)
7734 need_edit = TRUE;
7735
7736 rel += 2;
7737 if (rel + 1 == relend
7738 || (rel + 2 < relend
7739 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_TOC))
7740 ++rel;
7741
7742 if (rel == relend)
7743 {
7744 if (sec->size == offset + 24)
7745 {
7746 need_pad = NULL;
7747 break;
7748 }
7749 if (sec->size == offset + 16)
7750 {
7751 cnt_16b++;
7752 break;
7753 }
7754 goto broken_opd;
7755 }
7756 else if (rel + 1 < relend
7757 && ELF64_R_TYPE (rel[0].r_info) == R_PPC64_ADDR64
7758 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOC)
7759 {
7760 if (rel[0].r_offset == offset + 16)
7761 cnt_16b++;
7762 else if (rel[0].r_offset != offset + 24)
7763 goto broken_opd;
7764 }
7765 else
7766 goto broken_opd;
7767 }
7768
7769 add_aux_fields = htab->params->non_overlapping_opd && cnt_16b > 0;
7770
7771 if (!broken && (need_edit || add_aux_fields))
7772 {
7773 Elf_Internal_Rela *write_rel;
7774 Elf_Internal_Shdr *rel_hdr;
7775 bfd_byte *rptr, *wptr;
7776 bfd_byte *new_contents;
7777 bfd_size_type amt;
7778
7779 new_contents = NULL;
7780 amt = OPD_NDX (sec->size) * sizeof (long);
7781 opd = &ppc64_elf_section_data (sec)->u.opd;
7782 opd->adjust = bfd_zalloc (sec->owner, amt);
7783 if (opd->adjust == NULL)
7784 return FALSE;
7785 ppc64_elf_section_data (sec)->sec_type = sec_opd;
7786
7787 /* This seems a waste of time as input .opd sections are all
7788 zeros as generated by gcc, but I suppose there's no reason
7789 this will always be so. We might start putting something in
7790 the third word of .opd entries. */
7791 if ((sec->flags & SEC_IN_MEMORY) == 0)
7792 {
7793 bfd_byte *loc;
7794 if (!bfd_malloc_and_get_section (ibfd, sec, &loc))
7795 {
7796 if (loc != NULL)
7797 free (loc);
7798 error_ret:
7799 if (local_syms != NULL
7800 && symtab_hdr->contents != (unsigned char *) local_syms)
7801 free (local_syms);
7802 if (elf_section_data (sec)->relocs != relstart)
7803 free (relstart);
7804 return FALSE;
7805 }
7806 sec->contents = loc;
7807 sec->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7808 }
7809
7810 elf_section_data (sec)->relocs = relstart;
7811
7812 new_contents = sec->contents;
7813 if (add_aux_fields)
7814 {
7815 new_contents = bfd_malloc (sec->size + cnt_16b * 8);
7816 if (new_contents == NULL)
7817 return FALSE;
7818 need_pad = NULL;
7819 }
7820 wptr = new_contents;
7821 rptr = sec->contents;
7822 write_rel = relstart;
7823 for (rel = relstart; rel < relend; )
7824 {
7825 unsigned long r_symndx;
7826 asection *sym_sec;
7827 struct elf_link_hash_entry *h;
7828 struct ppc_link_hash_entry *fdh = NULL;
7829 Elf_Internal_Sym *sym;
7830 long opd_ent_size;
7831 Elf_Internal_Rela *next_rel;
7832 bfd_boolean skip;
7833
7834 r_symndx = ELF64_R_SYM (rel->r_info);
7835 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7836 r_symndx, ibfd))
7837 goto error_ret;
7838
7839 next_rel = rel + 2;
7840 if (next_rel + 1 == relend
7841 || (next_rel + 2 < relend
7842 && ELF64_R_TYPE (next_rel[2].r_info) == R_PPC64_TOC))
7843 ++next_rel;
7844
7845 /* See if the .opd entry is full 24 byte or
7846 16 byte (with fd_aux entry overlapped with next
7847 fd_func). */
7848 opd_ent_size = 24;
7849 if (next_rel == relend)
7850 {
7851 if (sec->size == rel->r_offset + 16)
7852 opd_ent_size = 16;
7853 }
7854 else if (next_rel->r_offset == rel->r_offset + 16)
7855 opd_ent_size = 16;
7856
7857 if (h != NULL
7858 && h->root.root.string[0] == '.')
7859 {
7860 fdh = lookup_fdh ((struct ppc_link_hash_entry *) h, htab);
7861 if (fdh != NULL
7862 && fdh->elf.root.type != bfd_link_hash_defined
7863 && fdh->elf.root.type != bfd_link_hash_defweak)
7864 fdh = NULL;
7865 }
7866
7867 skip = (sym_sec->owner != ibfd
7868 || sym_sec->output_section == bfd_abs_section_ptr);
7869 if (skip)
7870 {
7871 if (fdh != NULL && sym_sec->owner == ibfd)
7872 {
7873 /* Arrange for the function descriptor sym
7874 to be dropped. */
7875 fdh->elf.root.u.def.value = 0;
7876 fdh->elf.root.u.def.section = sym_sec;
7877 }
7878 opd->adjust[OPD_NDX (rel->r_offset)] = -1;
7879
7880 if (NO_OPD_RELOCS || info->relocatable)
7881 rel = next_rel;
7882 else
7883 while (1)
7884 {
7885 if (!dec_dynrel_count (rel->r_info, sec, info,
7886 NULL, h, sym))
7887 goto error_ret;
7888
7889 if (++rel == next_rel)
7890 break;
7891
7892 r_symndx = ELF64_R_SYM (rel->r_info);
7893 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7894 r_symndx, ibfd))
7895 goto error_ret;
7896 }
7897 }
7898 else
7899 {
7900 /* We'll be keeping this opd entry. */
7901 long adjust;
7902
7903 if (fdh != NULL)
7904 {
7905 /* Redefine the function descriptor symbol to
7906 this location in the opd section. It is
7907 necessary to update the value here rather
7908 than using an array of adjustments as we do
7909 for local symbols, because various places
7910 in the generic ELF code use the value
7911 stored in u.def.value. */
7912 fdh->elf.root.u.def.value = wptr - new_contents;
7913 fdh->adjust_done = 1;
7914 }
7915
7916 /* Local syms are a bit tricky. We could
7917 tweak them as they can be cached, but
7918 we'd need to look through the local syms
7919 for the function descriptor sym which we
7920 don't have at the moment. So keep an
7921 array of adjustments. */
7922 adjust = (wptr - new_contents) - (rptr - sec->contents);
7923 opd->adjust[OPD_NDX (rel->r_offset)] = adjust;
7924
7925 if (wptr != rptr)
7926 memcpy (wptr, rptr, opd_ent_size);
7927 wptr += opd_ent_size;
7928 if (add_aux_fields && opd_ent_size == 16)
7929 {
7930 memset (wptr, '\0', 8);
7931 wptr += 8;
7932 }
7933
7934 /* We need to adjust any reloc offsets to point to the
7935 new opd entries. */
7936 for ( ; rel != next_rel; ++rel)
7937 {
7938 rel->r_offset += adjust;
7939 if (write_rel != rel)
7940 memcpy (write_rel, rel, sizeof (*rel));
7941 ++write_rel;
7942 }
7943 }
7944
7945 rptr += opd_ent_size;
7946 }
7947
7948 sec->size = wptr - new_contents;
7949 sec->reloc_count = write_rel - relstart;
7950 if (add_aux_fields)
7951 {
7952 free (sec->contents);
7953 sec->contents = new_contents;
7954 }
7955
7956 /* Fudge the header size too, as this is used later in
7957 elf_bfd_final_link if we are emitting relocs. */
7958 rel_hdr = _bfd_elf_single_rel_hdr (sec);
7959 rel_hdr->sh_size = sec->reloc_count * rel_hdr->sh_entsize;
7960 some_edited = TRUE;
7961 }
7962 else if (elf_section_data (sec)->relocs != relstart)
7963 free (relstart);
7964
7965 if (local_syms != NULL
7966 && symtab_hdr->contents != (unsigned char *) local_syms)
7967 {
7968 if (!info->keep_memory)
7969 free (local_syms);
7970 else
7971 symtab_hdr->contents = (unsigned char *) local_syms;
7972 }
7973 }
7974
7975 if (some_edited)
7976 elf_link_hash_traverse (elf_hash_table (info), adjust_opd_syms, NULL);
7977
7978 /* If we are doing a final link and the last .opd entry is just 16 byte
7979 long, add a 8 byte padding after it. */
7980 if (need_pad != NULL && !info->relocatable)
7981 {
7982 bfd_byte *p;
7983
7984 if ((need_pad->flags & SEC_IN_MEMORY) == 0)
7985 {
7986 BFD_ASSERT (need_pad->size > 0);
7987
7988 p = bfd_malloc (need_pad->size + 8);
7989 if (p == NULL)
7990 return FALSE;
7991
7992 if (! bfd_get_section_contents (need_pad->owner, need_pad,
7993 p, 0, need_pad->size))
7994 return FALSE;
7995
7996 need_pad->contents = p;
7997 need_pad->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7998 }
7999 else
8000 {
8001 p = bfd_realloc (need_pad->contents, need_pad->size + 8);
8002 if (p == NULL)
8003 return FALSE;
8004
8005 need_pad->contents = p;
8006 }
8007
8008 memset (need_pad->contents + need_pad->size, 0, 8);
8009 need_pad->size += 8;
8010 }
8011
8012 return TRUE;
8013 }
8014
8015 /* Set htab->tls_get_addr and call the generic ELF tls_setup function. */
8016
8017 asection *
8018 ppc64_elf_tls_setup (struct bfd_link_info *info)
8019 {
8020 struct ppc_link_hash_table *htab;
8021
8022 htab = ppc_hash_table (info);
8023 if (htab == NULL)
8024 return NULL;
8025
8026 if (abiversion (info->output_bfd) == 1)
8027 htab->opd_abi = 1;
8028
8029 if (htab->params->no_multi_toc)
8030 htab->do_multi_toc = 0;
8031 else if (!htab->do_multi_toc)
8032 htab->params->no_multi_toc = 1;
8033
8034 htab->tls_get_addr = ((struct ppc_link_hash_entry *)
8035 elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
8036 FALSE, FALSE, TRUE));
8037 /* Move dynamic linking info to the function descriptor sym. */
8038 if (htab->tls_get_addr != NULL)
8039 func_desc_adjust (&htab->tls_get_addr->elf, info);
8040 htab->tls_get_addr_fd = ((struct ppc_link_hash_entry *)
8041 elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
8042 FALSE, FALSE, TRUE));
8043 if (!htab->params->no_tls_get_addr_opt)
8044 {
8045 struct elf_link_hash_entry *opt, *opt_fd, *tga, *tga_fd;
8046
8047 opt = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr_opt",
8048 FALSE, FALSE, TRUE);
8049 if (opt != NULL)
8050 func_desc_adjust (opt, info);
8051 opt_fd = elf_link_hash_lookup (&htab->elf, "__tls_get_addr_opt",
8052 FALSE, FALSE, TRUE);
8053 if (opt_fd != NULL
8054 && (opt_fd->root.type == bfd_link_hash_defined
8055 || opt_fd->root.type == bfd_link_hash_defweak))
8056 {
8057 /* If glibc supports an optimized __tls_get_addr call stub,
8058 signalled by the presence of __tls_get_addr_opt, and we'll
8059 be calling __tls_get_addr via a plt call stub, then
8060 make __tls_get_addr point to __tls_get_addr_opt. */
8061 tga_fd = &htab->tls_get_addr_fd->elf;
8062 if (htab->elf.dynamic_sections_created
8063 && tga_fd != NULL
8064 && (tga_fd->type == STT_FUNC
8065 || tga_fd->needs_plt)
8066 && !(SYMBOL_CALLS_LOCAL (info, tga_fd)
8067 || (ELF_ST_VISIBILITY (tga_fd->other) != STV_DEFAULT
8068 && tga_fd->root.type == bfd_link_hash_undefweak)))
8069 {
8070 struct plt_entry *ent;
8071
8072 for (ent = tga_fd->plt.plist; ent != NULL; ent = ent->next)
8073 if (ent->plt.refcount > 0)
8074 break;
8075 if (ent != NULL)
8076 {
8077 tga_fd->root.type = bfd_link_hash_indirect;
8078 tga_fd->root.u.i.link = &opt_fd->root;
8079 ppc64_elf_copy_indirect_symbol (info, opt_fd, tga_fd);
8080 if (opt_fd->dynindx != -1)
8081 {
8082 /* Use __tls_get_addr_opt in dynamic relocations. */
8083 opt_fd->dynindx = -1;
8084 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
8085 opt_fd->dynstr_index);
8086 if (!bfd_elf_link_record_dynamic_symbol (info, opt_fd))
8087 return NULL;
8088 }
8089 htab->tls_get_addr_fd = (struct ppc_link_hash_entry *) opt_fd;
8090 tga = &htab->tls_get_addr->elf;
8091 if (opt != NULL && tga != NULL)
8092 {
8093 tga->root.type = bfd_link_hash_indirect;
8094 tga->root.u.i.link = &opt->root;
8095 ppc64_elf_copy_indirect_symbol (info, opt, tga);
8096 _bfd_elf_link_hash_hide_symbol (info, opt,
8097 tga->forced_local);
8098 htab->tls_get_addr = (struct ppc_link_hash_entry *) opt;
8099 }
8100 htab->tls_get_addr_fd->oh = htab->tls_get_addr;
8101 htab->tls_get_addr_fd->is_func_descriptor = 1;
8102 if (htab->tls_get_addr != NULL)
8103 {
8104 htab->tls_get_addr->oh = htab->tls_get_addr_fd;
8105 htab->tls_get_addr->is_func = 1;
8106 }
8107 }
8108 }
8109 }
8110 else
8111 htab->params->no_tls_get_addr_opt = TRUE;
8112 }
8113 return _bfd_elf_tls_setup (info->output_bfd, info);
8114 }
8115
8116 /* Return TRUE iff REL is a branch reloc with a global symbol matching
8117 HASH1 or HASH2. */
8118
8119 static bfd_boolean
8120 branch_reloc_hash_match (const bfd *ibfd,
8121 const Elf_Internal_Rela *rel,
8122 const struct ppc_link_hash_entry *hash1,
8123 const struct ppc_link_hash_entry *hash2)
8124 {
8125 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
8126 enum elf_ppc64_reloc_type r_type = ELF64_R_TYPE (rel->r_info);
8127 unsigned int r_symndx = ELF64_R_SYM (rel->r_info);
8128
8129 if (r_symndx >= symtab_hdr->sh_info && is_branch_reloc (r_type))
8130 {
8131 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
8132 struct elf_link_hash_entry *h;
8133
8134 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8135 h = elf_follow_link (h);
8136 if (h == &hash1->elf || h == &hash2->elf)
8137 return TRUE;
8138 }
8139 return FALSE;
8140 }
8141
8142 /* Run through all the TLS relocs looking for optimization
8143 opportunities. The linker has been hacked (see ppc64elf.em) to do
8144 a preliminary section layout so that we know the TLS segment
8145 offsets. We can't optimize earlier because some optimizations need
8146 to know the tp offset, and we need to optimize before allocating
8147 dynamic relocations. */
8148
8149 bfd_boolean
8150 ppc64_elf_tls_optimize (struct bfd_link_info *info)
8151 {
8152 bfd *ibfd;
8153 asection *sec;
8154 struct ppc_link_hash_table *htab;
8155 unsigned char *toc_ref;
8156 int pass;
8157
8158 if (info->relocatable || !info->executable)
8159 return TRUE;
8160
8161 htab = ppc_hash_table (info);
8162 if (htab == NULL)
8163 return FALSE;
8164
8165 /* Make two passes over the relocs. On the first pass, mark toc
8166 entries involved with tls relocs, and check that tls relocs
8167 involved in setting up a tls_get_addr call are indeed followed by
8168 such a call. If they are not, we can't do any tls optimization.
8169 On the second pass twiddle tls_mask flags to notify
8170 relocate_section that optimization can be done, and adjust got
8171 and plt refcounts. */
8172 toc_ref = NULL;
8173 for (pass = 0; pass < 2; ++pass)
8174 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8175 {
8176 Elf_Internal_Sym *locsyms = NULL;
8177 asection *toc = bfd_get_section_by_name (ibfd, ".toc");
8178
8179 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8180 if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section))
8181 {
8182 Elf_Internal_Rela *relstart, *rel, *relend;
8183 bfd_boolean found_tls_get_addr_arg = 0;
8184
8185 /* Read the relocations. */
8186 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8187 info->keep_memory);
8188 if (relstart == NULL)
8189 {
8190 free (toc_ref);
8191 return FALSE;
8192 }
8193
8194 relend = relstart + sec->reloc_count;
8195 for (rel = relstart; rel < relend; rel++)
8196 {
8197 enum elf_ppc64_reloc_type r_type;
8198 unsigned long r_symndx;
8199 struct elf_link_hash_entry *h;
8200 Elf_Internal_Sym *sym;
8201 asection *sym_sec;
8202 unsigned char *tls_mask;
8203 unsigned char tls_set, tls_clear, tls_type = 0;
8204 bfd_vma value;
8205 bfd_boolean ok_tprel, is_local;
8206 long toc_ref_index = 0;
8207 int expecting_tls_get_addr = 0;
8208 bfd_boolean ret = FALSE;
8209
8210 r_symndx = ELF64_R_SYM (rel->r_info);
8211 if (!get_sym_h (&h, &sym, &sym_sec, &tls_mask, &locsyms,
8212 r_symndx, ibfd))
8213 {
8214 err_free_rel:
8215 if (elf_section_data (sec)->relocs != relstart)
8216 free (relstart);
8217 if (toc_ref != NULL)
8218 free (toc_ref);
8219 if (locsyms != NULL
8220 && (elf_symtab_hdr (ibfd).contents
8221 != (unsigned char *) locsyms))
8222 free (locsyms);
8223 return ret;
8224 }
8225
8226 if (h != NULL)
8227 {
8228 if (h->root.type == bfd_link_hash_defined
8229 || h->root.type == bfd_link_hash_defweak)
8230 value = h->root.u.def.value;
8231 else if (h->root.type == bfd_link_hash_undefweak)
8232 value = 0;
8233 else
8234 {
8235 found_tls_get_addr_arg = 0;
8236 continue;
8237 }
8238 }
8239 else
8240 /* Symbols referenced by TLS relocs must be of type
8241 STT_TLS. So no need for .opd local sym adjust. */
8242 value = sym->st_value;
8243
8244 ok_tprel = FALSE;
8245 is_local = FALSE;
8246 if (h == NULL
8247 || !h->def_dynamic)
8248 {
8249 is_local = TRUE;
8250 if (h != NULL
8251 && h->root.type == bfd_link_hash_undefweak)
8252 ok_tprel = TRUE;
8253 else
8254 {
8255 value += sym_sec->output_offset;
8256 value += sym_sec->output_section->vma;
8257 value -= htab->elf.tls_sec->vma;
8258 ok_tprel = (value + TP_OFFSET + ((bfd_vma) 1 << 31)
8259 < (bfd_vma) 1 << 32);
8260 }
8261 }
8262
8263 r_type = ELF64_R_TYPE (rel->r_info);
8264 /* If this section has old-style __tls_get_addr calls
8265 without marker relocs, then check that each
8266 __tls_get_addr call reloc is preceded by a reloc
8267 that conceivably belongs to the __tls_get_addr arg
8268 setup insn. If we don't find matching arg setup
8269 relocs, don't do any tls optimization. */
8270 if (pass == 0
8271 && sec->has_tls_get_addr_call
8272 && h != NULL
8273 && (h == &htab->tls_get_addr->elf
8274 || h == &htab->tls_get_addr_fd->elf)
8275 && !found_tls_get_addr_arg
8276 && is_branch_reloc (r_type))
8277 {
8278 info->callbacks->minfo (_("%H __tls_get_addr lost arg, "
8279 "TLS optimization disabled\n"),
8280 ibfd, sec, rel->r_offset);
8281 ret = TRUE;
8282 goto err_free_rel;
8283 }
8284
8285 found_tls_get_addr_arg = 0;
8286 switch (r_type)
8287 {
8288 case R_PPC64_GOT_TLSLD16:
8289 case R_PPC64_GOT_TLSLD16_LO:
8290 expecting_tls_get_addr = 1;
8291 found_tls_get_addr_arg = 1;
8292 /* Fall thru */
8293
8294 case R_PPC64_GOT_TLSLD16_HI:
8295 case R_PPC64_GOT_TLSLD16_HA:
8296 /* These relocs should never be against a symbol
8297 defined in a shared lib. Leave them alone if
8298 that turns out to be the case. */
8299 if (!is_local)
8300 continue;
8301
8302 /* LD -> LE */
8303 tls_set = 0;
8304 tls_clear = TLS_LD;
8305 tls_type = TLS_TLS | TLS_LD;
8306 break;
8307
8308 case R_PPC64_GOT_TLSGD16:
8309 case R_PPC64_GOT_TLSGD16_LO:
8310 expecting_tls_get_addr = 1;
8311 found_tls_get_addr_arg = 1;
8312 /* Fall thru */
8313
8314 case R_PPC64_GOT_TLSGD16_HI:
8315 case R_PPC64_GOT_TLSGD16_HA:
8316 if (ok_tprel)
8317 /* GD -> LE */
8318 tls_set = 0;
8319 else
8320 /* GD -> IE */
8321 tls_set = TLS_TLS | TLS_TPRELGD;
8322 tls_clear = TLS_GD;
8323 tls_type = TLS_TLS | TLS_GD;
8324 break;
8325
8326 case R_PPC64_GOT_TPREL16_DS:
8327 case R_PPC64_GOT_TPREL16_LO_DS:
8328 case R_PPC64_GOT_TPREL16_HI:
8329 case R_PPC64_GOT_TPREL16_HA:
8330 if (ok_tprel)
8331 {
8332 /* IE -> LE */
8333 tls_set = 0;
8334 tls_clear = TLS_TPREL;
8335 tls_type = TLS_TLS | TLS_TPREL;
8336 break;
8337 }
8338 continue;
8339
8340 case R_PPC64_TLSGD:
8341 case R_PPC64_TLSLD:
8342 found_tls_get_addr_arg = 1;
8343 /* Fall thru */
8344
8345 case R_PPC64_TLS:
8346 case R_PPC64_TOC16:
8347 case R_PPC64_TOC16_LO:
8348 if (sym_sec == NULL || sym_sec != toc)
8349 continue;
8350
8351 /* Mark this toc entry as referenced by a TLS
8352 code sequence. We can do that now in the
8353 case of R_PPC64_TLS, and after checking for
8354 tls_get_addr for the TOC16 relocs. */
8355 if (toc_ref == NULL)
8356 toc_ref = bfd_zmalloc (toc->output_section->rawsize / 8);
8357 if (toc_ref == NULL)
8358 goto err_free_rel;
8359
8360 if (h != NULL)
8361 value = h->root.u.def.value;
8362 else
8363 value = sym->st_value;
8364 value += rel->r_addend;
8365 if (value % 8 != 0)
8366 continue;
8367 BFD_ASSERT (value < toc->size
8368 && toc->output_offset % 8 == 0);
8369 toc_ref_index = (value + toc->output_offset) / 8;
8370 if (r_type == R_PPC64_TLS
8371 || r_type == R_PPC64_TLSGD
8372 || r_type == R_PPC64_TLSLD)
8373 {
8374 toc_ref[toc_ref_index] = 1;
8375 continue;
8376 }
8377
8378 if (pass != 0 && toc_ref[toc_ref_index] == 0)
8379 continue;
8380
8381 tls_set = 0;
8382 tls_clear = 0;
8383 expecting_tls_get_addr = 2;
8384 break;
8385
8386 case R_PPC64_TPREL64:
8387 if (pass == 0
8388 || sec != toc
8389 || toc_ref == NULL
8390 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
8391 continue;
8392 if (ok_tprel)
8393 {
8394 /* IE -> LE */
8395 tls_set = TLS_EXPLICIT;
8396 tls_clear = TLS_TPREL;
8397 break;
8398 }
8399 continue;
8400
8401 case R_PPC64_DTPMOD64:
8402 if (pass == 0
8403 || sec != toc
8404 || toc_ref == NULL
8405 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
8406 continue;
8407 if (rel + 1 < relend
8408 && (rel[1].r_info
8409 == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64))
8410 && rel[1].r_offset == rel->r_offset + 8)
8411 {
8412 if (ok_tprel)
8413 /* GD -> LE */
8414 tls_set = TLS_EXPLICIT | TLS_GD;
8415 else
8416 /* GD -> IE */
8417 tls_set = TLS_EXPLICIT | TLS_GD | TLS_TPRELGD;
8418 tls_clear = TLS_GD;
8419 }
8420 else
8421 {
8422 if (!is_local)
8423 continue;
8424
8425 /* LD -> LE */
8426 tls_set = TLS_EXPLICIT;
8427 tls_clear = TLS_LD;
8428 }
8429 break;
8430
8431 default:
8432 continue;
8433 }
8434
8435 if (pass == 0)
8436 {
8437 if (!expecting_tls_get_addr
8438 || !sec->has_tls_get_addr_call)
8439 continue;
8440
8441 if (rel + 1 < relend
8442 && branch_reloc_hash_match (ibfd, rel + 1,
8443 htab->tls_get_addr,
8444 htab->tls_get_addr_fd))
8445 {
8446 if (expecting_tls_get_addr == 2)
8447 {
8448 /* Check for toc tls entries. */
8449 unsigned char *toc_tls;
8450 int retval;
8451
8452 retval = get_tls_mask (&toc_tls, NULL, NULL,
8453 &locsyms,
8454 rel, ibfd);
8455 if (retval == 0)
8456 goto err_free_rel;
8457 if (toc_tls != NULL)
8458 {
8459 if ((*toc_tls & (TLS_GD | TLS_LD)) != 0)
8460 found_tls_get_addr_arg = 1;
8461 if (retval > 1)
8462 toc_ref[toc_ref_index] = 1;
8463 }
8464 }
8465 continue;
8466 }
8467
8468 if (expecting_tls_get_addr != 1)
8469 continue;
8470
8471 /* Uh oh, we didn't find the expected call. We
8472 could just mark this symbol to exclude it
8473 from tls optimization but it's safer to skip
8474 the entire optimization. */
8475 info->callbacks->minfo (_("%H arg lost __tls_get_addr, "
8476 "TLS optimization disabled\n"),
8477 ibfd, sec, rel->r_offset);
8478 ret = TRUE;
8479 goto err_free_rel;
8480 }
8481
8482 if (expecting_tls_get_addr && htab->tls_get_addr != NULL)
8483 {
8484 struct plt_entry *ent;
8485 for (ent = htab->tls_get_addr->elf.plt.plist;
8486 ent != NULL;
8487 ent = ent->next)
8488 if (ent->addend == 0)
8489 {
8490 if (ent->plt.refcount > 0)
8491 {
8492 ent->plt.refcount -= 1;
8493 expecting_tls_get_addr = 0;
8494 }
8495 break;
8496 }
8497 }
8498
8499 if (expecting_tls_get_addr && htab->tls_get_addr_fd != NULL)
8500 {
8501 struct plt_entry *ent;
8502 for (ent = htab->tls_get_addr_fd->elf.plt.plist;
8503 ent != NULL;
8504 ent = ent->next)
8505 if (ent->addend == 0)
8506 {
8507 if (ent->plt.refcount > 0)
8508 ent->plt.refcount -= 1;
8509 break;
8510 }
8511 }
8512
8513 if (tls_clear == 0)
8514 continue;
8515
8516 if ((tls_set & TLS_EXPLICIT) == 0)
8517 {
8518 struct got_entry *ent;
8519
8520 /* Adjust got entry for this reloc. */
8521 if (h != NULL)
8522 ent = h->got.glist;
8523 else
8524 ent = elf_local_got_ents (ibfd)[r_symndx];
8525
8526 for (; ent != NULL; ent = ent->next)
8527 if (ent->addend == rel->r_addend
8528 && ent->owner == ibfd
8529 && ent->tls_type == tls_type)
8530 break;
8531 if (ent == NULL)
8532 abort ();
8533
8534 if (tls_set == 0)
8535 {
8536 /* We managed to get rid of a got entry. */
8537 if (ent->got.refcount > 0)
8538 ent->got.refcount -= 1;
8539 }
8540 }
8541 else
8542 {
8543 /* If we got rid of a DTPMOD/DTPREL reloc pair then
8544 we'll lose one or two dyn relocs. */
8545 if (!dec_dynrel_count (rel->r_info, sec, info,
8546 NULL, h, sym))
8547 return FALSE;
8548
8549 if (tls_set == (TLS_EXPLICIT | TLS_GD))
8550 {
8551 if (!dec_dynrel_count ((rel + 1)->r_info, sec, info,
8552 NULL, h, sym))
8553 return FALSE;
8554 }
8555 }
8556
8557 *tls_mask |= tls_set;
8558 *tls_mask &= ~tls_clear;
8559 }
8560
8561 if (elf_section_data (sec)->relocs != relstart)
8562 free (relstart);
8563 }
8564
8565 if (locsyms != NULL
8566 && (elf_symtab_hdr (ibfd).contents != (unsigned char *) locsyms))
8567 {
8568 if (!info->keep_memory)
8569 free (locsyms);
8570 else
8571 elf_symtab_hdr (ibfd).contents = (unsigned char *) locsyms;
8572 }
8573 }
8574
8575 if (toc_ref != NULL)
8576 free (toc_ref);
8577 return TRUE;
8578 }
8579
8580 /* Called via elf_link_hash_traverse from ppc64_elf_edit_toc to adjust
8581 the values of any global symbols in a toc section that has been
8582 edited. Globals in toc sections should be a rarity, so this function
8583 sets a flag if any are found in toc sections other than the one just
8584 edited, so that futher hash table traversals can be avoided. */
8585
8586 struct adjust_toc_info
8587 {
8588 asection *toc;
8589 unsigned long *skip;
8590 bfd_boolean global_toc_syms;
8591 };
8592
8593 enum toc_skip_enum { ref_from_discarded = 1, can_optimize = 2 };
8594
8595 static bfd_boolean
8596 adjust_toc_syms (struct elf_link_hash_entry *h, void *inf)
8597 {
8598 struct ppc_link_hash_entry *eh;
8599 struct adjust_toc_info *toc_inf = (struct adjust_toc_info *) inf;
8600 unsigned long i;
8601
8602 if (h->root.type != bfd_link_hash_defined
8603 && h->root.type != bfd_link_hash_defweak)
8604 return TRUE;
8605
8606 eh = (struct ppc_link_hash_entry *) h;
8607 if (eh->adjust_done)
8608 return TRUE;
8609
8610 if (eh->elf.root.u.def.section == toc_inf->toc)
8611 {
8612 if (eh->elf.root.u.def.value > toc_inf->toc->rawsize)
8613 i = toc_inf->toc->rawsize >> 3;
8614 else
8615 i = eh->elf.root.u.def.value >> 3;
8616
8617 if ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0)
8618 {
8619 (*_bfd_error_handler)
8620 (_("%s defined on removed toc entry"), eh->elf.root.root.string);
8621 do
8622 ++i;
8623 while ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0);
8624 eh->elf.root.u.def.value = (bfd_vma) i << 3;
8625 }
8626
8627 eh->elf.root.u.def.value -= toc_inf->skip[i];
8628 eh->adjust_done = 1;
8629 }
8630 else if (strcmp (eh->elf.root.u.def.section->name, ".toc") == 0)
8631 toc_inf->global_toc_syms = TRUE;
8632
8633 return TRUE;
8634 }
8635
8636 /* Return TRUE iff INSN is one we expect on a _LO variety toc/got reloc. */
8637
8638 static bfd_boolean
8639 ok_lo_toc_insn (unsigned int insn)
8640 {
8641 return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
8642 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
8643 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
8644 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
8645 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
8646 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
8647 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
8648 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
8649 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
8650 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
8651 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
8652 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
8653 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
8654 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
8655 || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
8656 && (insn & 3) != 1)
8657 || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
8658 && ((insn & 3) == 0 || (insn & 3) == 3))
8659 || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
8660 }
8661
8662 /* Examine all relocs referencing .toc sections in order to remove
8663 unused .toc entries. */
8664
8665 bfd_boolean
8666 ppc64_elf_edit_toc (struct bfd_link_info *info)
8667 {
8668 bfd *ibfd;
8669 struct adjust_toc_info toc_inf;
8670 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8671
8672 htab->do_toc_opt = 1;
8673 toc_inf.global_toc_syms = TRUE;
8674 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8675 {
8676 asection *toc, *sec;
8677 Elf_Internal_Shdr *symtab_hdr;
8678 Elf_Internal_Sym *local_syms;
8679 Elf_Internal_Rela *relstart, *rel, *toc_relocs;
8680 unsigned long *skip, *drop;
8681 unsigned char *used;
8682 unsigned char *keep, last, some_unused;
8683
8684 if (!is_ppc64_elf (ibfd))
8685 continue;
8686
8687 toc = bfd_get_section_by_name (ibfd, ".toc");
8688 if (toc == NULL
8689 || toc->size == 0
8690 || toc->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8691 || discarded_section (toc))
8692 continue;
8693
8694 toc_relocs = NULL;
8695 local_syms = NULL;
8696 symtab_hdr = &elf_symtab_hdr (ibfd);
8697
8698 /* Look at sections dropped from the final link. */
8699 skip = NULL;
8700 relstart = NULL;
8701 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8702 {
8703 if (sec->reloc_count == 0
8704 || !discarded_section (sec)
8705 || get_opd_info (sec)
8706 || (sec->flags & SEC_ALLOC) == 0
8707 || (sec->flags & SEC_DEBUGGING) != 0)
8708 continue;
8709
8710 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, FALSE);
8711 if (relstart == NULL)
8712 goto error_ret;
8713
8714 /* Run through the relocs to see which toc entries might be
8715 unused. */
8716 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8717 {
8718 enum elf_ppc64_reloc_type r_type;
8719 unsigned long r_symndx;
8720 asection *sym_sec;
8721 struct elf_link_hash_entry *h;
8722 Elf_Internal_Sym *sym;
8723 bfd_vma val;
8724
8725 r_type = ELF64_R_TYPE (rel->r_info);
8726 switch (r_type)
8727 {
8728 default:
8729 continue;
8730
8731 case R_PPC64_TOC16:
8732 case R_PPC64_TOC16_LO:
8733 case R_PPC64_TOC16_HI:
8734 case R_PPC64_TOC16_HA:
8735 case R_PPC64_TOC16_DS:
8736 case R_PPC64_TOC16_LO_DS:
8737 break;
8738 }
8739
8740 r_symndx = ELF64_R_SYM (rel->r_info);
8741 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8742 r_symndx, ibfd))
8743 goto error_ret;
8744
8745 if (sym_sec != toc)
8746 continue;
8747
8748 if (h != NULL)
8749 val = h->root.u.def.value;
8750 else
8751 val = sym->st_value;
8752 val += rel->r_addend;
8753
8754 if (val >= toc->size)
8755 continue;
8756
8757 /* Anything in the toc ought to be aligned to 8 bytes.
8758 If not, don't mark as unused. */
8759 if (val & 7)
8760 continue;
8761
8762 if (skip == NULL)
8763 {
8764 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8765 if (skip == NULL)
8766 goto error_ret;
8767 }
8768
8769 skip[val >> 3] = ref_from_discarded;
8770 }
8771
8772 if (elf_section_data (sec)->relocs != relstart)
8773 free (relstart);
8774 }
8775
8776 /* For largetoc loads of address constants, we can convert
8777 . addis rx,2,addr@got@ha
8778 . ld ry,addr@got@l(rx)
8779 to
8780 . addis rx,2,addr@toc@ha
8781 . addi ry,rx,addr@toc@l
8782 when addr is within 2G of the toc pointer. This then means
8783 that the word storing "addr" in the toc is no longer needed. */
8784
8785 if (!ppc64_elf_tdata (ibfd)->has_small_toc_reloc
8786 && toc->output_section->rawsize < (bfd_vma) 1 << 31
8787 && toc->reloc_count != 0)
8788 {
8789 /* Read toc relocs. */
8790 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
8791 info->keep_memory);
8792 if (toc_relocs == NULL)
8793 goto error_ret;
8794
8795 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
8796 {
8797 enum elf_ppc64_reloc_type r_type;
8798 unsigned long r_symndx;
8799 asection *sym_sec;
8800 struct elf_link_hash_entry *h;
8801 Elf_Internal_Sym *sym;
8802 bfd_vma val, addr;
8803
8804 r_type = ELF64_R_TYPE (rel->r_info);
8805 if (r_type != R_PPC64_ADDR64)
8806 continue;
8807
8808 r_symndx = ELF64_R_SYM (rel->r_info);
8809 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8810 r_symndx, ibfd))
8811 goto error_ret;
8812
8813 if (sym_sec == NULL
8814 || discarded_section (sym_sec))
8815 continue;
8816
8817 if (!SYMBOL_REFERENCES_LOCAL (info, h))
8818 continue;
8819
8820 if (h != NULL)
8821 {
8822 if (h->type == STT_GNU_IFUNC)
8823 continue;
8824 val = h->root.u.def.value;
8825 }
8826 else
8827 {
8828 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
8829 continue;
8830 val = sym->st_value;
8831 }
8832 val += rel->r_addend;
8833 val += sym_sec->output_section->vma + sym_sec->output_offset;
8834
8835 /* We don't yet know the exact toc pointer value, but we
8836 know it will be somewhere in the toc section. Don't
8837 optimize if the difference from any possible toc
8838 pointer is outside [ff..f80008000, 7fff7fff]. */
8839 addr = toc->output_section->vma + TOC_BASE_OFF;
8840 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8841 continue;
8842
8843 addr = toc->output_section->vma + toc->output_section->rawsize;
8844 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8845 continue;
8846
8847 if (skip == NULL)
8848 {
8849 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8850 if (skip == NULL)
8851 goto error_ret;
8852 }
8853
8854 skip[rel->r_offset >> 3]
8855 |= can_optimize | ((rel - toc_relocs) << 2);
8856 }
8857 }
8858
8859 if (skip == NULL)
8860 continue;
8861
8862 used = bfd_zmalloc (sizeof (*used) * (toc->size + 7) / 8);
8863 if (used == NULL)
8864 {
8865 error_ret:
8866 if (local_syms != NULL
8867 && symtab_hdr->contents != (unsigned char *) local_syms)
8868 free (local_syms);
8869 if (sec != NULL
8870 && relstart != NULL
8871 && elf_section_data (sec)->relocs != relstart)
8872 free (relstart);
8873 if (toc_relocs != NULL
8874 && elf_section_data (toc)->relocs != toc_relocs)
8875 free (toc_relocs);
8876 if (skip != NULL)
8877 free (skip);
8878 return FALSE;
8879 }
8880
8881 /* Now check all kept sections that might reference the toc.
8882 Check the toc itself last. */
8883 for (sec = (ibfd->sections == toc && toc->next ? toc->next
8884 : ibfd->sections);
8885 sec != NULL;
8886 sec = (sec == toc ? NULL
8887 : sec->next == NULL ? toc
8888 : sec->next == toc && toc->next ? toc->next
8889 : sec->next))
8890 {
8891 int repeat;
8892
8893 if (sec->reloc_count == 0
8894 || discarded_section (sec)
8895 || get_opd_info (sec)
8896 || (sec->flags & SEC_ALLOC) == 0
8897 || (sec->flags & SEC_DEBUGGING) != 0)
8898 continue;
8899
8900 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8901 info->keep_memory);
8902 if (relstart == NULL)
8903 {
8904 free (used);
8905 goto error_ret;
8906 }
8907
8908 /* Mark toc entries referenced as used. */
8909 do
8910 {
8911 repeat = 0;
8912 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8913 {
8914 enum elf_ppc64_reloc_type r_type;
8915 unsigned long r_symndx;
8916 asection *sym_sec;
8917 struct elf_link_hash_entry *h;
8918 Elf_Internal_Sym *sym;
8919 bfd_vma val;
8920 enum {no_check, check_lo, check_ha} insn_check;
8921
8922 r_type = ELF64_R_TYPE (rel->r_info);
8923 switch (r_type)
8924 {
8925 default:
8926 insn_check = no_check;
8927 break;
8928
8929 case R_PPC64_GOT_TLSLD16_HA:
8930 case R_PPC64_GOT_TLSGD16_HA:
8931 case R_PPC64_GOT_TPREL16_HA:
8932 case R_PPC64_GOT_DTPREL16_HA:
8933 case R_PPC64_GOT16_HA:
8934 case R_PPC64_TOC16_HA:
8935 insn_check = check_ha;
8936 break;
8937
8938 case R_PPC64_GOT_TLSLD16_LO:
8939 case R_PPC64_GOT_TLSGD16_LO:
8940 case R_PPC64_GOT_TPREL16_LO_DS:
8941 case R_PPC64_GOT_DTPREL16_LO_DS:
8942 case R_PPC64_GOT16_LO:
8943 case R_PPC64_GOT16_LO_DS:
8944 case R_PPC64_TOC16_LO:
8945 case R_PPC64_TOC16_LO_DS:
8946 insn_check = check_lo;
8947 break;
8948 }
8949
8950 if (insn_check != no_check)
8951 {
8952 bfd_vma off = rel->r_offset & ~3;
8953 unsigned char buf[4];
8954 unsigned int insn;
8955
8956 if (!bfd_get_section_contents (ibfd, sec, buf, off, 4))
8957 {
8958 free (used);
8959 goto error_ret;
8960 }
8961 insn = bfd_get_32 (ibfd, buf);
8962 if (insn_check == check_lo
8963 ? !ok_lo_toc_insn (insn)
8964 : ((insn & ((0x3f << 26) | 0x1f << 16))
8965 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
8966 {
8967 char str[12];
8968
8969 ppc64_elf_tdata (ibfd)->unexpected_toc_insn = 1;
8970 sprintf (str, "%#08x", insn);
8971 info->callbacks->einfo
8972 (_("%P: %H: toc optimization is not supported for"
8973 " %s instruction.\n"),
8974 ibfd, sec, rel->r_offset & ~3, str);
8975 }
8976 }
8977
8978 switch (r_type)
8979 {
8980 case R_PPC64_TOC16:
8981 case R_PPC64_TOC16_LO:
8982 case R_PPC64_TOC16_HI:
8983 case R_PPC64_TOC16_HA:
8984 case R_PPC64_TOC16_DS:
8985 case R_PPC64_TOC16_LO_DS:
8986 /* In case we're taking addresses of toc entries. */
8987 case R_PPC64_ADDR64:
8988 break;
8989
8990 default:
8991 continue;
8992 }
8993
8994 r_symndx = ELF64_R_SYM (rel->r_info);
8995 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8996 r_symndx, ibfd))
8997 {
8998 free (used);
8999 goto error_ret;
9000 }
9001
9002 if (sym_sec != toc)
9003 continue;
9004
9005 if (h != NULL)
9006 val = h->root.u.def.value;
9007 else
9008 val = sym->st_value;
9009 val += rel->r_addend;
9010
9011 if (val >= toc->size)
9012 continue;
9013
9014 if ((skip[val >> 3] & can_optimize) != 0)
9015 {
9016 bfd_vma off;
9017 unsigned char opc;
9018
9019 switch (r_type)
9020 {
9021 case R_PPC64_TOC16_HA:
9022 break;
9023
9024 case R_PPC64_TOC16_LO_DS:
9025 off = rel->r_offset;
9026 off += (bfd_big_endian (ibfd) ? -2 : 3);
9027 if (!bfd_get_section_contents (ibfd, sec, &opc,
9028 off, 1))
9029 {
9030 free (used);
9031 goto error_ret;
9032 }
9033 if ((opc & (0x3f << 2)) == (58u << 2))
9034 break;
9035 /* Fall thru */
9036
9037 default:
9038 /* Wrong sort of reloc, or not a ld. We may
9039 as well clear ref_from_discarded too. */
9040 skip[val >> 3] = 0;
9041 }
9042 }
9043
9044 if (sec != toc)
9045 used[val >> 3] = 1;
9046 /* For the toc section, we only mark as used if this
9047 entry itself isn't unused. */
9048 else if ((used[rel->r_offset >> 3]
9049 || !(skip[rel->r_offset >> 3] & ref_from_discarded))
9050 && !used[val >> 3])
9051 {
9052 /* Do all the relocs again, to catch reference
9053 chains. */
9054 repeat = 1;
9055 used[val >> 3] = 1;
9056 }
9057 }
9058 }
9059 while (repeat);
9060
9061 if (elf_section_data (sec)->relocs != relstart)
9062 free (relstart);
9063 }
9064
9065 /* Merge the used and skip arrays. Assume that TOC
9066 doublewords not appearing as either used or unused belong
9067 to to an entry more than one doubleword in size. */
9068 for (drop = skip, keep = used, last = 0, some_unused = 0;
9069 drop < skip + (toc->size + 7) / 8;
9070 ++drop, ++keep)
9071 {
9072 if (*keep)
9073 {
9074 *drop &= ~ref_from_discarded;
9075 if ((*drop & can_optimize) != 0)
9076 some_unused = 1;
9077 last = 0;
9078 }
9079 else if ((*drop & ref_from_discarded) != 0)
9080 {
9081 some_unused = 1;
9082 last = ref_from_discarded;
9083 }
9084 else
9085 *drop = last;
9086 }
9087
9088 free (used);
9089
9090 if (some_unused)
9091 {
9092 bfd_byte *contents, *src;
9093 unsigned long off;
9094 Elf_Internal_Sym *sym;
9095 bfd_boolean local_toc_syms = FALSE;
9096
9097 /* Shuffle the toc contents, and at the same time convert the
9098 skip array from booleans into offsets. */
9099 if (!bfd_malloc_and_get_section (ibfd, toc, &contents))
9100 goto error_ret;
9101
9102 elf_section_data (toc)->this_hdr.contents = contents;
9103
9104 for (src = contents, off = 0, drop = skip;
9105 src < contents + toc->size;
9106 src += 8, ++drop)
9107 {
9108 if ((*drop & (can_optimize | ref_from_discarded)) != 0)
9109 off += 8;
9110 else if (off != 0)
9111 {
9112 *drop = off;
9113 memcpy (src - off, src, 8);
9114 }
9115 }
9116 *drop = off;
9117 toc->rawsize = toc->size;
9118 toc->size = src - contents - off;
9119
9120 /* Adjust addends for relocs against the toc section sym,
9121 and optimize any accesses we can. */
9122 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9123 {
9124 if (sec->reloc_count == 0
9125 || discarded_section (sec))
9126 continue;
9127
9128 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
9129 info->keep_memory);
9130 if (relstart == NULL)
9131 goto error_ret;
9132
9133 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
9134 {
9135 enum elf_ppc64_reloc_type r_type;
9136 unsigned long r_symndx;
9137 asection *sym_sec;
9138 struct elf_link_hash_entry *h;
9139 bfd_vma val;
9140
9141 r_type = ELF64_R_TYPE (rel->r_info);
9142 switch (r_type)
9143 {
9144 default:
9145 continue;
9146
9147 case R_PPC64_TOC16:
9148 case R_PPC64_TOC16_LO:
9149 case R_PPC64_TOC16_HI:
9150 case R_PPC64_TOC16_HA:
9151 case R_PPC64_TOC16_DS:
9152 case R_PPC64_TOC16_LO_DS:
9153 case R_PPC64_ADDR64:
9154 break;
9155 }
9156
9157 r_symndx = ELF64_R_SYM (rel->r_info);
9158 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
9159 r_symndx, ibfd))
9160 goto error_ret;
9161
9162 if (sym_sec != toc)
9163 continue;
9164
9165 if (h != NULL)
9166 val = h->root.u.def.value;
9167 else
9168 {
9169 val = sym->st_value;
9170 if (val != 0)
9171 local_toc_syms = TRUE;
9172 }
9173
9174 val += rel->r_addend;
9175
9176 if (val > toc->rawsize)
9177 val = toc->rawsize;
9178 else if ((skip[val >> 3] & ref_from_discarded) != 0)
9179 continue;
9180 else if ((skip[val >> 3] & can_optimize) != 0)
9181 {
9182 Elf_Internal_Rela *tocrel
9183 = toc_relocs + (skip[val >> 3] >> 2);
9184 unsigned long tsym = ELF64_R_SYM (tocrel->r_info);
9185
9186 switch (r_type)
9187 {
9188 case R_PPC64_TOC16_HA:
9189 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_TOC16_HA);
9190 break;
9191
9192 case R_PPC64_TOC16_LO_DS:
9193 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_LO_DS_OPT);
9194 break;
9195
9196 default:
9197 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
9198 ppc_howto_init ();
9199 info->callbacks->einfo
9200 (_("%P: %H: %s references "
9201 "optimized away TOC entry\n"),
9202 ibfd, sec, rel->r_offset,
9203 ppc64_elf_howto_table[r_type]->name);
9204 bfd_set_error (bfd_error_bad_value);
9205 goto error_ret;
9206 }
9207 rel->r_addend = tocrel->r_addend;
9208 elf_section_data (sec)->relocs = relstart;
9209 continue;
9210 }
9211
9212 if (h != NULL || sym->st_value != 0)
9213 continue;
9214
9215 rel->r_addend -= skip[val >> 3];
9216 elf_section_data (sec)->relocs = relstart;
9217 }
9218
9219 if (elf_section_data (sec)->relocs != relstart)
9220 free (relstart);
9221 }
9222
9223 /* We shouldn't have local or global symbols defined in the TOC,
9224 but handle them anyway. */
9225 if (local_syms != NULL)
9226 for (sym = local_syms;
9227 sym < local_syms + symtab_hdr->sh_info;
9228 ++sym)
9229 if (sym->st_value != 0
9230 && bfd_section_from_elf_index (ibfd, sym->st_shndx) == toc)
9231 {
9232 unsigned long i;
9233
9234 if (sym->st_value > toc->rawsize)
9235 i = toc->rawsize >> 3;
9236 else
9237 i = sym->st_value >> 3;
9238
9239 if ((skip[i] & (ref_from_discarded | can_optimize)) != 0)
9240 {
9241 if (local_toc_syms)
9242 (*_bfd_error_handler)
9243 (_("%s defined on removed toc entry"),
9244 bfd_elf_sym_name (ibfd, symtab_hdr, sym, NULL));
9245 do
9246 ++i;
9247 while ((skip[i] & (ref_from_discarded | can_optimize)));
9248 sym->st_value = (bfd_vma) i << 3;
9249 }
9250
9251 sym->st_value -= skip[i];
9252 symtab_hdr->contents = (unsigned char *) local_syms;
9253 }
9254
9255 /* Adjust any global syms defined in this toc input section. */
9256 if (toc_inf.global_toc_syms)
9257 {
9258 toc_inf.toc = toc;
9259 toc_inf.skip = skip;
9260 toc_inf.global_toc_syms = FALSE;
9261 elf_link_hash_traverse (elf_hash_table (info), adjust_toc_syms,
9262 &toc_inf);
9263 }
9264
9265 if (toc->reloc_count != 0)
9266 {
9267 Elf_Internal_Shdr *rel_hdr;
9268 Elf_Internal_Rela *wrel;
9269 bfd_size_type sz;
9270
9271 /* Remove unused toc relocs, and adjust those we keep. */
9272 if (toc_relocs == NULL)
9273 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
9274 info->keep_memory);
9275 if (toc_relocs == NULL)
9276 goto error_ret;
9277
9278 wrel = toc_relocs;
9279 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
9280 if ((skip[rel->r_offset >> 3]
9281 & (ref_from_discarded | can_optimize)) == 0)
9282 {
9283 wrel->r_offset = rel->r_offset - skip[rel->r_offset >> 3];
9284 wrel->r_info = rel->r_info;
9285 wrel->r_addend = rel->r_addend;
9286 ++wrel;
9287 }
9288 else if (!dec_dynrel_count (rel->r_info, toc, info,
9289 &local_syms, NULL, NULL))
9290 goto error_ret;
9291
9292 elf_section_data (toc)->relocs = toc_relocs;
9293 toc->reloc_count = wrel - toc_relocs;
9294 rel_hdr = _bfd_elf_single_rel_hdr (toc);
9295 sz = rel_hdr->sh_entsize;
9296 rel_hdr->sh_size = toc->reloc_count * sz;
9297 }
9298 }
9299 else if (toc_relocs != NULL
9300 && elf_section_data (toc)->relocs != toc_relocs)
9301 free (toc_relocs);
9302
9303 if (local_syms != NULL
9304 && symtab_hdr->contents != (unsigned char *) local_syms)
9305 {
9306 if (!info->keep_memory)
9307 free (local_syms);
9308 else
9309 symtab_hdr->contents = (unsigned char *) local_syms;
9310 }
9311 free (skip);
9312 }
9313
9314 return TRUE;
9315 }
9316
9317 /* Return true iff input section I references the TOC using
9318 instructions limited to +/-32k offsets. */
9319
9320 bfd_boolean
9321 ppc64_elf_has_small_toc_reloc (asection *i)
9322 {
9323 return (is_ppc64_elf (i->owner)
9324 && ppc64_elf_tdata (i->owner)->has_small_toc_reloc);
9325 }
9326
9327 /* Allocate space for one GOT entry. */
9328
9329 static void
9330 allocate_got (struct elf_link_hash_entry *h,
9331 struct bfd_link_info *info,
9332 struct got_entry *gent)
9333 {
9334 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9335 bfd_boolean dyn;
9336 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
9337 int entsize = (gent->tls_type & eh->tls_mask & (TLS_GD | TLS_LD)
9338 ? 16 : 8);
9339 int rentsize = (gent->tls_type & eh->tls_mask & TLS_GD
9340 ? 2 : 1) * sizeof (Elf64_External_Rela);
9341 asection *got = ppc64_elf_tdata (gent->owner)->got;
9342
9343 gent->got.offset = got->size;
9344 got->size += entsize;
9345
9346 dyn = htab->elf.dynamic_sections_created;
9347 if (h->type == STT_GNU_IFUNC)
9348 {
9349 htab->elf.irelplt->size += rentsize;
9350 htab->got_reli_size += rentsize;
9351 }
9352 else if ((info->shared
9353 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
9354 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9355 || h->root.type != bfd_link_hash_undefweak))
9356 {
9357 asection *relgot = ppc64_elf_tdata (gent->owner)->relgot;
9358 relgot->size += rentsize;
9359 }
9360 }
9361
9362 /* This function merges got entries in the same toc group. */
9363
9364 static void
9365 merge_got_entries (struct got_entry **pent)
9366 {
9367 struct got_entry *ent, *ent2;
9368
9369 for (ent = *pent; ent != NULL; ent = ent->next)
9370 if (!ent->is_indirect)
9371 for (ent2 = ent->next; ent2 != NULL; ent2 = ent2->next)
9372 if (!ent2->is_indirect
9373 && ent2->addend == ent->addend
9374 && ent2->tls_type == ent->tls_type
9375 && elf_gp (ent2->owner) == elf_gp (ent->owner))
9376 {
9377 ent2->is_indirect = TRUE;
9378 ent2->got.ent = ent;
9379 }
9380 }
9381
9382 /* Allocate space in .plt, .got and associated reloc sections for
9383 dynamic relocs. */
9384
9385 static bfd_boolean
9386 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9387 {
9388 struct bfd_link_info *info;
9389 struct ppc_link_hash_table *htab;
9390 asection *s;
9391 struct ppc_link_hash_entry *eh;
9392 struct elf_dyn_relocs *p;
9393 struct got_entry **pgent, *gent;
9394
9395 if (h->root.type == bfd_link_hash_indirect)
9396 return TRUE;
9397
9398 info = (struct bfd_link_info *) inf;
9399 htab = ppc_hash_table (info);
9400 if (htab == NULL)
9401 return FALSE;
9402
9403 if ((htab->elf.dynamic_sections_created
9404 && h->dynindx != -1
9405 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, h))
9406 || h->type == STT_GNU_IFUNC)
9407 {
9408 struct plt_entry *pent;
9409 bfd_boolean doneone = FALSE;
9410 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
9411 if (pent->plt.refcount > 0)
9412 {
9413 if (!htab->elf.dynamic_sections_created
9414 || h->dynindx == -1)
9415 {
9416 s = htab->elf.iplt;
9417 pent->plt.offset = s->size;
9418 s->size += PLT_ENTRY_SIZE (htab);
9419 s = htab->elf.irelplt;
9420 }
9421 else
9422 {
9423 /* If this is the first .plt entry, make room for the special
9424 first entry. */
9425 s = htab->elf.splt;
9426 if (s->size == 0)
9427 s->size += PLT_INITIAL_ENTRY_SIZE (htab);
9428
9429 pent->plt.offset = s->size;
9430
9431 /* Make room for this entry. */
9432 s->size += PLT_ENTRY_SIZE (htab);
9433
9434 /* Make room for the .glink code. */
9435 s = htab->glink;
9436 if (s->size == 0)
9437 s->size += GLINK_CALL_STUB_SIZE;
9438 if (htab->opd_abi)
9439 {
9440 /* We need bigger stubs past index 32767. */
9441 if (s->size >= GLINK_CALL_STUB_SIZE + 32768*2*4)
9442 s->size += 4;
9443 s->size += 2*4;
9444 }
9445 else
9446 s->size += 4;
9447
9448 /* We also need to make an entry in the .rela.plt section. */
9449 s = htab->elf.srelplt;
9450 }
9451 s->size += sizeof (Elf64_External_Rela);
9452 doneone = TRUE;
9453 }
9454 else
9455 pent->plt.offset = (bfd_vma) -1;
9456 if (!doneone)
9457 {
9458 h->plt.plist = NULL;
9459 h->needs_plt = 0;
9460 }
9461 }
9462 else
9463 {
9464 h->plt.plist = NULL;
9465 h->needs_plt = 0;
9466 }
9467
9468 eh = (struct ppc_link_hash_entry *) h;
9469 /* Run through the TLS GD got entries first if we're changing them
9470 to TPREL. */
9471 if ((eh->tls_mask & TLS_TPRELGD) != 0)
9472 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9473 if (gent->got.refcount > 0
9474 && (gent->tls_type & TLS_GD) != 0)
9475 {
9476 /* This was a GD entry that has been converted to TPREL. If
9477 there happens to be a TPREL entry we can use that one. */
9478 struct got_entry *ent;
9479 for (ent = h->got.glist; ent != NULL; ent = ent->next)
9480 if (ent->got.refcount > 0
9481 && (ent->tls_type & TLS_TPREL) != 0
9482 && ent->addend == gent->addend
9483 && ent->owner == gent->owner)
9484 {
9485 gent->got.refcount = 0;
9486 break;
9487 }
9488
9489 /* If not, then we'll be using our own TPREL entry. */
9490 if (gent->got.refcount != 0)
9491 gent->tls_type = TLS_TLS | TLS_TPREL;
9492 }
9493
9494 /* Remove any list entry that won't generate a word in the GOT before
9495 we call merge_got_entries. Otherwise we risk merging to empty
9496 entries. */
9497 pgent = &h->got.glist;
9498 while ((gent = *pgent) != NULL)
9499 if (gent->got.refcount > 0)
9500 {
9501 if ((gent->tls_type & TLS_LD) != 0
9502 && !h->def_dynamic)
9503 {
9504 ppc64_tlsld_got (gent->owner)->got.refcount += 1;
9505 *pgent = gent->next;
9506 }
9507 else
9508 pgent = &gent->next;
9509 }
9510 else
9511 *pgent = gent->next;
9512
9513 if (!htab->do_multi_toc)
9514 merge_got_entries (&h->got.glist);
9515
9516 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9517 if (!gent->is_indirect)
9518 {
9519 /* Make sure this symbol is output as a dynamic symbol.
9520 Undefined weak syms won't yet be marked as dynamic,
9521 nor will all TLS symbols. */
9522 if (h->dynindx == -1
9523 && !h->forced_local
9524 && h->type != STT_GNU_IFUNC
9525 && htab->elf.dynamic_sections_created)
9526 {
9527 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9528 return FALSE;
9529 }
9530
9531 if (!is_ppc64_elf (gent->owner))
9532 abort ();
9533
9534 allocate_got (h, info, gent);
9535 }
9536
9537 if (eh->dyn_relocs == NULL
9538 || (!htab->elf.dynamic_sections_created
9539 && h->type != STT_GNU_IFUNC))
9540 return TRUE;
9541
9542 /* In the shared -Bsymbolic case, discard space allocated for
9543 dynamic pc-relative relocs against symbols which turn out to be
9544 defined in regular objects. For the normal shared case, discard
9545 space for relocs that have become local due to symbol visibility
9546 changes. */
9547
9548 if (info->shared)
9549 {
9550 /* Relocs that use pc_count are those that appear on a call insn,
9551 or certain REL relocs (see must_be_dyn_reloc) that can be
9552 generated via assembly. We want calls to protected symbols to
9553 resolve directly to the function rather than going via the plt.
9554 If people want function pointer comparisons to work as expected
9555 then they should avoid writing weird assembly. */
9556 if (SYMBOL_CALLS_LOCAL (info, h))
9557 {
9558 struct elf_dyn_relocs **pp;
9559
9560 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
9561 {
9562 p->count -= p->pc_count;
9563 p->pc_count = 0;
9564 if (p->count == 0)
9565 *pp = p->next;
9566 else
9567 pp = &p->next;
9568 }
9569 }
9570
9571 /* Also discard relocs on undefined weak syms with non-default
9572 visibility. */
9573 if (eh->dyn_relocs != NULL
9574 && h->root.type == bfd_link_hash_undefweak)
9575 {
9576 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9577 eh->dyn_relocs = NULL;
9578
9579 /* Make sure this symbol is output as a dynamic symbol.
9580 Undefined weak syms won't yet be marked as dynamic. */
9581 else if (h->dynindx == -1
9582 && !h->forced_local)
9583 {
9584 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9585 return FALSE;
9586 }
9587 }
9588 }
9589 else if (h->type == STT_GNU_IFUNC)
9590 {
9591 if (!h->non_got_ref)
9592 eh->dyn_relocs = NULL;
9593 }
9594 else if (ELIMINATE_COPY_RELOCS)
9595 {
9596 /* For the non-shared case, discard space for relocs against
9597 symbols which turn out to need copy relocs or are not
9598 dynamic. */
9599
9600 if (!h->non_got_ref
9601 && !h->def_regular)
9602 {
9603 /* Make sure this symbol is output as a dynamic symbol.
9604 Undefined weak syms won't yet be marked as dynamic. */
9605 if (h->dynindx == -1
9606 && !h->forced_local)
9607 {
9608 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9609 return FALSE;
9610 }
9611
9612 /* If that succeeded, we know we'll be keeping all the
9613 relocs. */
9614 if (h->dynindx != -1)
9615 goto keep;
9616 }
9617
9618 eh->dyn_relocs = NULL;
9619
9620 keep: ;
9621 }
9622
9623 /* Finally, allocate space. */
9624 for (p = eh->dyn_relocs; p != NULL; p = p->next)
9625 {
9626 asection *sreloc = elf_section_data (p->sec)->sreloc;
9627 if (eh->elf.type == STT_GNU_IFUNC)
9628 sreloc = htab->elf.irelplt;
9629 sreloc->size += p->count * sizeof (Elf64_External_Rela);
9630 }
9631
9632 return TRUE;
9633 }
9634
9635 /* Called via elf_link_hash_traverse from ppc64_elf_size_dynamic_sections
9636 to set up space for global entry stubs. These are put in glink,
9637 after the branch table. */
9638
9639 static bfd_boolean
9640 size_global_entry_stubs (struct elf_link_hash_entry *h, void *inf)
9641 {
9642 struct bfd_link_info *info;
9643 struct ppc_link_hash_table *htab;
9644 struct plt_entry *pent;
9645 asection *s;
9646
9647 if (h->root.type == bfd_link_hash_indirect)
9648 return TRUE;
9649
9650 if (!h->pointer_equality_needed)
9651 return TRUE;
9652
9653 if (h->def_regular)
9654 return TRUE;
9655
9656 info = inf;
9657 htab = ppc_hash_table (info);
9658 if (htab == NULL)
9659 return FALSE;
9660
9661 s = htab->glink;
9662 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
9663 if (pent->plt.offset != (bfd_vma) -1
9664 && pent->addend == 0)
9665 {
9666 /* For ELFv2, if this symbol is not defined in a regular file
9667 and we are not generating a shared library or pie, then we
9668 need to define the symbol in the executable on a call stub.
9669 This is to avoid text relocations. */
9670 s->size = (s->size + 15) & -16;
9671 h->root.u.def.section = s;
9672 h->root.u.def.value = s->size;
9673 s->size += 16;
9674 break;
9675 }
9676 return TRUE;
9677 }
9678
9679 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
9680 read-only sections. */
9681
9682 static bfd_boolean
9683 maybe_set_textrel (struct elf_link_hash_entry *h, void *info)
9684 {
9685 if (h->root.type == bfd_link_hash_indirect)
9686 return TRUE;
9687
9688 if (readonly_dynrelocs (h))
9689 {
9690 ((struct bfd_link_info *) info)->flags |= DF_TEXTREL;
9691
9692 /* Not an error, just cut short the traversal. */
9693 return FALSE;
9694 }
9695 return TRUE;
9696 }
9697
9698 /* Set the sizes of the dynamic sections. */
9699
9700 static bfd_boolean
9701 ppc64_elf_size_dynamic_sections (bfd *output_bfd,
9702 struct bfd_link_info *info)
9703 {
9704 struct ppc_link_hash_table *htab;
9705 bfd *dynobj;
9706 asection *s;
9707 bfd_boolean relocs;
9708 bfd *ibfd;
9709 struct got_entry *first_tlsld;
9710
9711 htab = ppc_hash_table (info);
9712 if (htab == NULL)
9713 return FALSE;
9714
9715 dynobj = htab->elf.dynobj;
9716 if (dynobj == NULL)
9717 abort ();
9718
9719 if (htab->elf.dynamic_sections_created)
9720 {
9721 /* Set the contents of the .interp section to the interpreter. */
9722 if (info->executable)
9723 {
9724 s = bfd_get_linker_section (dynobj, ".interp");
9725 if (s == NULL)
9726 abort ();
9727 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
9728 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
9729 }
9730 }
9731
9732 /* Set up .got offsets for local syms, and space for local dynamic
9733 relocs. */
9734 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9735 {
9736 struct got_entry **lgot_ents;
9737 struct got_entry **end_lgot_ents;
9738 struct plt_entry **local_plt;
9739 struct plt_entry **end_local_plt;
9740 unsigned char *lgot_masks;
9741 bfd_size_type locsymcount;
9742 Elf_Internal_Shdr *symtab_hdr;
9743
9744 if (!is_ppc64_elf (ibfd))
9745 continue;
9746
9747 for (s = ibfd->sections; s != NULL; s = s->next)
9748 {
9749 struct ppc_dyn_relocs *p;
9750
9751 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
9752 {
9753 if (!bfd_is_abs_section (p->sec)
9754 && bfd_is_abs_section (p->sec->output_section))
9755 {
9756 /* Input section has been discarded, either because
9757 it is a copy of a linkonce section or due to
9758 linker script /DISCARD/, so we'll be discarding
9759 the relocs too. */
9760 }
9761 else if (p->count != 0)
9762 {
9763 asection *srel = elf_section_data (p->sec)->sreloc;
9764 if (p->ifunc)
9765 srel = htab->elf.irelplt;
9766 srel->size += p->count * sizeof (Elf64_External_Rela);
9767 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
9768 info->flags |= DF_TEXTREL;
9769 }
9770 }
9771 }
9772
9773 lgot_ents = elf_local_got_ents (ibfd);
9774 if (!lgot_ents)
9775 continue;
9776
9777 symtab_hdr = &elf_symtab_hdr (ibfd);
9778 locsymcount = symtab_hdr->sh_info;
9779 end_lgot_ents = lgot_ents + locsymcount;
9780 local_plt = (struct plt_entry **) end_lgot_ents;
9781 end_local_plt = local_plt + locsymcount;
9782 lgot_masks = (unsigned char *) end_local_plt;
9783 s = ppc64_elf_tdata (ibfd)->got;
9784 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
9785 {
9786 struct got_entry **pent, *ent;
9787
9788 pent = lgot_ents;
9789 while ((ent = *pent) != NULL)
9790 if (ent->got.refcount > 0)
9791 {
9792 if ((ent->tls_type & *lgot_masks & TLS_LD) != 0)
9793 {
9794 ppc64_tlsld_got (ibfd)->got.refcount += 1;
9795 *pent = ent->next;
9796 }
9797 else
9798 {
9799 unsigned int ent_size = 8;
9800 unsigned int rel_size = sizeof (Elf64_External_Rela);
9801
9802 ent->got.offset = s->size;
9803 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
9804 {
9805 ent_size *= 2;
9806 rel_size *= 2;
9807 }
9808 s->size += ent_size;
9809 if ((*lgot_masks & PLT_IFUNC) != 0)
9810 {
9811 htab->elf.irelplt->size += rel_size;
9812 htab->got_reli_size += rel_size;
9813 }
9814 else if (info->shared)
9815 {
9816 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
9817 srel->size += rel_size;
9818 }
9819 pent = &ent->next;
9820 }
9821 }
9822 else
9823 *pent = ent->next;
9824 }
9825
9826 /* Allocate space for calls to local STT_GNU_IFUNC syms in .iplt. */
9827 for (; local_plt < end_local_plt; ++local_plt)
9828 {
9829 struct plt_entry *ent;
9830
9831 for (ent = *local_plt; ent != NULL; ent = ent->next)
9832 if (ent->plt.refcount > 0)
9833 {
9834 s = htab->elf.iplt;
9835 ent->plt.offset = s->size;
9836 s->size += PLT_ENTRY_SIZE (htab);
9837
9838 htab->elf.irelplt->size += sizeof (Elf64_External_Rela);
9839 }
9840 else
9841 ent->plt.offset = (bfd_vma) -1;
9842 }
9843 }
9844
9845 /* Allocate global sym .plt and .got entries, and space for global
9846 sym dynamic relocs. */
9847 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
9848 /* Stash the end of glink branch table. */
9849 if (htab->glink != NULL)
9850 htab->glink->rawsize = htab->glink->size;
9851
9852 if (!htab->opd_abi && !info->shared)
9853 elf_link_hash_traverse (&htab->elf, size_global_entry_stubs, info);
9854
9855 first_tlsld = NULL;
9856 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9857 {
9858 struct got_entry *ent;
9859
9860 if (!is_ppc64_elf (ibfd))
9861 continue;
9862
9863 ent = ppc64_tlsld_got (ibfd);
9864 if (ent->got.refcount > 0)
9865 {
9866 if (!htab->do_multi_toc && first_tlsld != NULL)
9867 {
9868 ent->is_indirect = TRUE;
9869 ent->got.ent = first_tlsld;
9870 }
9871 else
9872 {
9873 if (first_tlsld == NULL)
9874 first_tlsld = ent;
9875 s = ppc64_elf_tdata (ibfd)->got;
9876 ent->got.offset = s->size;
9877 ent->owner = ibfd;
9878 s->size += 16;
9879 if (info->shared)
9880 {
9881 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
9882 srel->size += sizeof (Elf64_External_Rela);
9883 }
9884 }
9885 }
9886 else
9887 ent->got.offset = (bfd_vma) -1;
9888 }
9889
9890 /* We now have determined the sizes of the various dynamic sections.
9891 Allocate memory for them. */
9892 relocs = FALSE;
9893 for (s = dynobj->sections; s != NULL; s = s->next)
9894 {
9895 if ((s->flags & SEC_LINKER_CREATED) == 0)
9896 continue;
9897
9898 if (s == htab->brlt || s == htab->relbrlt)
9899 /* These haven't been allocated yet; don't strip. */
9900 continue;
9901 else if (s == htab->elf.sgot
9902 || s == htab->elf.splt
9903 || s == htab->elf.iplt
9904 || s == htab->glink
9905 || s == htab->dynbss)
9906 {
9907 /* Strip this section if we don't need it; see the
9908 comment below. */
9909 }
9910 else if (s == htab->glink_eh_frame)
9911 {
9912 if (!bfd_is_abs_section (s->output_section))
9913 /* Not sized yet. */
9914 continue;
9915 }
9916 else if (CONST_STRNEQ (s->name, ".rela"))
9917 {
9918 if (s->size != 0)
9919 {
9920 if (s != htab->elf.srelplt)
9921 relocs = TRUE;
9922
9923 /* We use the reloc_count field as a counter if we need
9924 to copy relocs into the output file. */
9925 s->reloc_count = 0;
9926 }
9927 }
9928 else
9929 {
9930 /* It's not one of our sections, so don't allocate space. */
9931 continue;
9932 }
9933
9934 if (s->size == 0)
9935 {
9936 /* If we don't need this section, strip it from the
9937 output file. This is mostly to handle .rela.bss and
9938 .rela.plt. We must create both sections in
9939 create_dynamic_sections, because they must be created
9940 before the linker maps input sections to output
9941 sections. The linker does that before
9942 adjust_dynamic_symbol is called, and it is that
9943 function which decides whether anything needs to go
9944 into these sections. */
9945 s->flags |= SEC_EXCLUDE;
9946 continue;
9947 }
9948
9949 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9950 continue;
9951
9952 /* Allocate memory for the section contents. We use bfd_zalloc
9953 here in case unused entries are not reclaimed before the
9954 section's contents are written out. This should not happen,
9955 but this way if it does we get a R_PPC64_NONE reloc in .rela
9956 sections instead of garbage.
9957 We also rely on the section contents being zero when writing
9958 the GOT. */
9959 s->contents = bfd_zalloc (dynobj, s->size);
9960 if (s->contents == NULL)
9961 return FALSE;
9962 }
9963
9964 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9965 {
9966 if (!is_ppc64_elf (ibfd))
9967 continue;
9968
9969 s = ppc64_elf_tdata (ibfd)->got;
9970 if (s != NULL && s != htab->elf.sgot)
9971 {
9972 if (s->size == 0)
9973 s->flags |= SEC_EXCLUDE;
9974 else
9975 {
9976 s->contents = bfd_zalloc (ibfd, s->size);
9977 if (s->contents == NULL)
9978 return FALSE;
9979 }
9980 }
9981 s = ppc64_elf_tdata (ibfd)->relgot;
9982 if (s != NULL)
9983 {
9984 if (s->size == 0)
9985 s->flags |= SEC_EXCLUDE;
9986 else
9987 {
9988 s->contents = bfd_zalloc (ibfd, s->size);
9989 if (s->contents == NULL)
9990 return FALSE;
9991 relocs = TRUE;
9992 s->reloc_count = 0;
9993 }
9994 }
9995 }
9996
9997 if (htab->elf.dynamic_sections_created)
9998 {
9999 bfd_boolean tls_opt;
10000
10001 /* Add some entries to the .dynamic section. We fill in the
10002 values later, in ppc64_elf_finish_dynamic_sections, but we
10003 must add the entries now so that we get the correct size for
10004 the .dynamic section. The DT_DEBUG entry is filled in by the
10005 dynamic linker and used by the debugger. */
10006 #define add_dynamic_entry(TAG, VAL) \
10007 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
10008
10009 if (info->executable)
10010 {
10011 if (!add_dynamic_entry (DT_DEBUG, 0))
10012 return FALSE;
10013 }
10014
10015 if (htab->elf.splt != NULL && htab->elf.splt->size != 0)
10016 {
10017 if (!add_dynamic_entry (DT_PLTGOT, 0)
10018 || !add_dynamic_entry (DT_PLTRELSZ, 0)
10019 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
10020 || !add_dynamic_entry (DT_JMPREL, 0)
10021 || !add_dynamic_entry (DT_PPC64_GLINK, 0))
10022 return FALSE;
10023 }
10024
10025 if (NO_OPD_RELOCS && abiversion (output_bfd) <= 1)
10026 {
10027 if (!add_dynamic_entry (DT_PPC64_OPD, 0)
10028 || !add_dynamic_entry (DT_PPC64_OPDSZ, 0))
10029 return FALSE;
10030 }
10031
10032 tls_opt = (!htab->params->no_tls_get_addr_opt
10033 && htab->tls_get_addr_fd != NULL
10034 && htab->tls_get_addr_fd->elf.plt.plist != NULL);
10035 if (tls_opt || !htab->opd_abi)
10036 {
10037 if (!add_dynamic_entry (DT_PPC64_OPT, tls_opt ? PPC64_OPT_TLS : 0))
10038 return FALSE;
10039 }
10040
10041 if (relocs)
10042 {
10043 if (!add_dynamic_entry (DT_RELA, 0)
10044 || !add_dynamic_entry (DT_RELASZ, 0)
10045 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
10046 return FALSE;
10047
10048 /* If any dynamic relocs apply to a read-only section,
10049 then we need a DT_TEXTREL entry. */
10050 if ((info->flags & DF_TEXTREL) == 0)
10051 elf_link_hash_traverse (&htab->elf, maybe_set_textrel, info);
10052
10053 if ((info->flags & DF_TEXTREL) != 0)
10054 {
10055 if (!add_dynamic_entry (DT_TEXTREL, 0))
10056 return FALSE;
10057 }
10058 }
10059 }
10060 #undef add_dynamic_entry
10061
10062 return TRUE;
10063 }
10064
10065 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
10066
10067 static bfd_boolean
10068 ppc64_elf_hash_symbol (struct elf_link_hash_entry *h)
10069 {
10070 if (h->plt.plist != NULL
10071 && !h->def_regular
10072 && !h->pointer_equality_needed)
10073 return FALSE;
10074
10075 return _bfd_elf_hash_symbol (h);
10076 }
10077
10078 /* Determine the type of stub needed, if any, for a call. */
10079
10080 static inline enum ppc_stub_type
10081 ppc_type_of_stub (asection *input_sec,
10082 const Elf_Internal_Rela *rel,
10083 struct ppc_link_hash_entry **hash,
10084 struct plt_entry **plt_ent,
10085 bfd_vma destination,
10086 unsigned long local_off)
10087 {
10088 struct ppc_link_hash_entry *h = *hash;
10089 bfd_vma location;
10090 bfd_vma branch_offset;
10091 bfd_vma max_branch_offset;
10092 enum elf_ppc64_reloc_type r_type;
10093
10094 if (h != NULL)
10095 {
10096 struct plt_entry *ent;
10097 struct ppc_link_hash_entry *fdh = h;
10098 if (h->oh != NULL
10099 && h->oh->is_func_descriptor)
10100 {
10101 fdh = ppc_follow_link (h->oh);
10102 *hash = fdh;
10103 }
10104
10105 for (ent = fdh->elf.plt.plist; ent != NULL; ent = ent->next)
10106 if (ent->addend == rel->r_addend
10107 && ent->plt.offset != (bfd_vma) -1)
10108 {
10109 *plt_ent = ent;
10110 return ppc_stub_plt_call;
10111 }
10112
10113 /* Here, we know we don't have a plt entry. If we don't have a
10114 either a defined function descriptor or a defined entry symbol
10115 in a regular object file, then it is pointless trying to make
10116 any other type of stub. */
10117 if (!is_static_defined (&fdh->elf)
10118 && !is_static_defined (&h->elf))
10119 return ppc_stub_none;
10120 }
10121 else if (elf_local_got_ents (input_sec->owner) != NULL)
10122 {
10123 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_sec->owner);
10124 struct plt_entry **local_plt = (struct plt_entry **)
10125 elf_local_got_ents (input_sec->owner) + symtab_hdr->sh_info;
10126 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
10127
10128 if (local_plt[r_symndx] != NULL)
10129 {
10130 struct plt_entry *ent;
10131
10132 for (ent = local_plt[r_symndx]; ent != NULL; ent = ent->next)
10133 if (ent->addend == rel->r_addend
10134 && ent->plt.offset != (bfd_vma) -1)
10135 {
10136 *plt_ent = ent;
10137 return ppc_stub_plt_call;
10138 }
10139 }
10140 }
10141
10142 /* Determine where the call point is. */
10143 location = (input_sec->output_offset
10144 + input_sec->output_section->vma
10145 + rel->r_offset);
10146
10147 branch_offset = destination - location;
10148 r_type = ELF64_R_TYPE (rel->r_info);
10149
10150 /* Determine if a long branch stub is needed. */
10151 max_branch_offset = 1 << 25;
10152 if (r_type != R_PPC64_REL24)
10153 max_branch_offset = 1 << 15;
10154
10155 if (branch_offset + max_branch_offset >= 2 * max_branch_offset - local_off)
10156 /* We need a stub. Figure out whether a long_branch or plt_branch
10157 is needed later. */
10158 return ppc_stub_long_branch;
10159
10160 return ppc_stub_none;
10161 }
10162
10163 /* With power7 weakly ordered memory model, it is possible for ld.so
10164 to update a plt entry in one thread and have another thread see a
10165 stale zero toc entry. To avoid this we need some sort of acquire
10166 barrier in the call stub. One solution is to make the load of the
10167 toc word seem to appear to depend on the load of the function entry
10168 word. Another solution is to test for r2 being zero, and branch to
10169 the appropriate glink entry if so.
10170
10171 . fake dep barrier compare
10172 . ld 12,xxx(2) ld 12,xxx(2)
10173 . mtctr 12 mtctr 12
10174 . xor 11,12,12 ld 2,xxx+8(2)
10175 . add 2,2,11 cmpldi 2,0
10176 . ld 2,xxx+8(2) bnectr+
10177 . bctr b <glink_entry>
10178
10179 The solution involving the compare turns out to be faster, so
10180 that's what we use unless the branch won't reach. */
10181
10182 #define ALWAYS_USE_FAKE_DEP 0
10183 #define ALWAYS_EMIT_R2SAVE 0
10184
10185 #define PPC_LO(v) ((v) & 0xffff)
10186 #define PPC_HI(v) (((v) >> 16) & 0xffff)
10187 #define PPC_HA(v) PPC_HI ((v) + 0x8000)
10188
10189 static inline unsigned int
10190 plt_stub_size (struct ppc_link_hash_table *htab,
10191 struct ppc_stub_hash_entry *stub_entry,
10192 bfd_vma off)
10193 {
10194 unsigned size = 12;
10195
10196 if (ALWAYS_EMIT_R2SAVE
10197 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10198 size += 4;
10199 if (PPC_HA (off) != 0)
10200 size += 4;
10201 if (htab->opd_abi)
10202 {
10203 size += 4;
10204 if (htab->params->plt_static_chain)
10205 size += 4;
10206 if (htab->params->plt_thread_safe)
10207 size += 8;
10208 if (PPC_HA (off + 8 + 8 * htab->params->plt_static_chain) != PPC_HA (off))
10209 size += 4;
10210 }
10211 if (stub_entry->h != NULL
10212 && (stub_entry->h == htab->tls_get_addr_fd
10213 || stub_entry->h == htab->tls_get_addr)
10214 && !htab->params->no_tls_get_addr_opt)
10215 size += 13 * 4;
10216 return size;
10217 }
10218
10219 /* If this stub would cross fewer 2**plt_stub_align boundaries if we align,
10220 then return the padding needed to do so. */
10221 static inline unsigned int
10222 plt_stub_pad (struct ppc_link_hash_table *htab,
10223 struct ppc_stub_hash_entry *stub_entry,
10224 bfd_vma plt_off)
10225 {
10226 int stub_align = 1 << htab->params->plt_stub_align;
10227 unsigned stub_size = plt_stub_size (htab, stub_entry, plt_off);
10228 bfd_vma stub_off = stub_entry->stub_sec->size;
10229
10230 if (((stub_off + stub_size - 1) & -stub_align) - (stub_off & -stub_align)
10231 > ((stub_size - 1) & -stub_align))
10232 return stub_align - (stub_off & (stub_align - 1));
10233 return 0;
10234 }
10235
10236 /* Build a .plt call stub. */
10237
10238 static inline bfd_byte *
10239 build_plt_stub (struct ppc_link_hash_table *htab,
10240 struct ppc_stub_hash_entry *stub_entry,
10241 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
10242 {
10243 bfd *obfd = htab->params->stub_bfd;
10244 bfd_boolean plt_load_toc = htab->opd_abi;
10245 bfd_boolean plt_static_chain = htab->params->plt_static_chain;
10246 bfd_boolean plt_thread_safe = htab->params->plt_thread_safe;
10247 bfd_boolean use_fake_dep = plt_thread_safe;
10248 bfd_vma cmp_branch_off = 0;
10249
10250 if (!ALWAYS_USE_FAKE_DEP
10251 && plt_load_toc
10252 && plt_thread_safe
10253 && !(stub_entry->h != NULL
10254 && (stub_entry->h == htab->tls_get_addr_fd
10255 || stub_entry->h == htab->tls_get_addr)
10256 && !htab->params->no_tls_get_addr_opt))
10257 {
10258 bfd_vma pltoff = stub_entry->plt_ent->plt.offset & ~1;
10259 bfd_vma pltindex = ((pltoff - PLT_INITIAL_ENTRY_SIZE (htab))
10260 / PLT_ENTRY_SIZE (htab));
10261 bfd_vma glinkoff = GLINK_CALL_STUB_SIZE + pltindex * 8;
10262 bfd_vma to, from;
10263
10264 if (pltindex > 32768)
10265 glinkoff += (pltindex - 32768) * 4;
10266 to = (glinkoff
10267 + htab->glink->output_offset
10268 + htab->glink->output_section->vma);
10269 from = (p - stub_entry->stub_sec->contents
10270 + 4 * (ALWAYS_EMIT_R2SAVE
10271 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10272 + 4 * (PPC_HA (offset) != 0)
10273 + 4 * (PPC_HA (offset + 8 + 8 * plt_static_chain)
10274 != PPC_HA (offset))
10275 + 4 * (plt_static_chain != 0)
10276 + 20
10277 + stub_entry->stub_sec->output_offset
10278 + stub_entry->stub_sec->output_section->vma);
10279 cmp_branch_off = to - from;
10280 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
10281 }
10282
10283 if (PPC_HA (offset) != 0)
10284 {
10285 if (r != NULL)
10286 {
10287 if (ALWAYS_EMIT_R2SAVE
10288 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10289 r[0].r_offset += 4;
10290 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
10291 r[1].r_offset = r[0].r_offset + 4;
10292 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10293 r[1].r_addend = r[0].r_addend;
10294 if (plt_load_toc)
10295 {
10296 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10297 {
10298 r[2].r_offset = r[1].r_offset + 4;
10299 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO);
10300 r[2].r_addend = r[0].r_addend;
10301 }
10302 else
10303 {
10304 r[2].r_offset = r[1].r_offset + 8 + 8 * use_fake_dep;
10305 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10306 r[2].r_addend = r[0].r_addend + 8;
10307 if (plt_static_chain)
10308 {
10309 r[3].r_offset = r[2].r_offset + 4;
10310 r[3].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10311 r[3].r_addend = r[0].r_addend + 16;
10312 }
10313 }
10314 }
10315 }
10316 if (ALWAYS_EMIT_R2SAVE
10317 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10318 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p), p += 4;
10319 if (plt_load_toc)
10320 {
10321 bfd_put_32 (obfd, ADDIS_R11_R2 | PPC_HA (offset), p), p += 4;
10322 bfd_put_32 (obfd, LD_R12_0R11 | PPC_LO (offset), p), p += 4;
10323 }
10324 else
10325 {
10326 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (offset), p), p += 4;
10327 bfd_put_32 (obfd, LD_R12_0R12 | PPC_LO (offset), p), p += 4;
10328 }
10329 if (plt_load_toc
10330 && PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10331 {
10332 bfd_put_32 (obfd, ADDI_R11_R11 | PPC_LO (offset), p), p += 4;
10333 offset = 0;
10334 }
10335 bfd_put_32 (obfd, MTCTR_R12, p), p += 4;
10336 if (plt_load_toc)
10337 {
10338 if (use_fake_dep)
10339 {
10340 bfd_put_32 (obfd, XOR_R2_R12_R12, p), p += 4;
10341 bfd_put_32 (obfd, ADD_R11_R11_R2, p), p += 4;
10342 }
10343 bfd_put_32 (obfd, LD_R2_0R11 | PPC_LO (offset + 8), p), p += 4;
10344 if (plt_static_chain)
10345 bfd_put_32 (obfd, LD_R11_0R11 | PPC_LO (offset + 16), p), p += 4;
10346 }
10347 }
10348 else
10349 {
10350 if (r != NULL)
10351 {
10352 if (ALWAYS_EMIT_R2SAVE
10353 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10354 r[0].r_offset += 4;
10355 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10356 if (plt_load_toc)
10357 {
10358 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10359 {
10360 r[1].r_offset = r[0].r_offset + 4;
10361 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16);
10362 r[1].r_addend = r[0].r_addend;
10363 }
10364 else
10365 {
10366 r[1].r_offset = r[0].r_offset + 8 + 8 * use_fake_dep;
10367 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10368 r[1].r_addend = r[0].r_addend + 8 + 8 * plt_static_chain;
10369 if (plt_static_chain)
10370 {
10371 r[2].r_offset = r[1].r_offset + 4;
10372 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10373 r[2].r_addend = r[0].r_addend + 8;
10374 }
10375 }
10376 }
10377 }
10378 if (ALWAYS_EMIT_R2SAVE
10379 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10380 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p), p += 4;
10381 bfd_put_32 (obfd, LD_R12_0R2 | PPC_LO (offset), p), p += 4;
10382 if (plt_load_toc
10383 && PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10384 {
10385 bfd_put_32 (obfd, ADDI_R2_R2 | PPC_LO (offset), p), p += 4;
10386 offset = 0;
10387 }
10388 bfd_put_32 (obfd, MTCTR_R12, p), p += 4;
10389 if (plt_load_toc)
10390 {
10391 if (use_fake_dep)
10392 {
10393 bfd_put_32 (obfd, XOR_R11_R12_R12, p), p += 4;
10394 bfd_put_32 (obfd, ADD_R2_R2_R11, p), p += 4;
10395 }
10396 if (plt_static_chain)
10397 bfd_put_32 (obfd, LD_R11_0R2 | PPC_LO (offset + 16), p), p += 4;
10398 bfd_put_32 (obfd, LD_R2_0R2 | PPC_LO (offset + 8), p), p += 4;
10399 }
10400 }
10401 if (plt_load_toc && plt_thread_safe && !use_fake_dep)
10402 {
10403 bfd_put_32 (obfd, CMPLDI_R2_0, p), p += 4;
10404 bfd_put_32 (obfd, BNECTR_P4, p), p += 4;
10405 bfd_put_32 (obfd, B_DOT | (cmp_branch_off & 0x3fffffc), p), p += 4;
10406 }
10407 else
10408 bfd_put_32 (obfd, BCTR, p), p += 4;
10409 return p;
10410 }
10411
10412 /* Build a special .plt call stub for __tls_get_addr. */
10413
10414 #define LD_R11_0R3 0xe9630000
10415 #define LD_R12_0R3 0xe9830000
10416 #define MR_R0_R3 0x7c601b78
10417 #define CMPDI_R11_0 0x2c2b0000
10418 #define ADD_R3_R12_R13 0x7c6c6a14
10419 #define BEQLR 0x4d820020
10420 #define MR_R3_R0 0x7c030378
10421 #define STD_R11_0R1 0xf9610000
10422 #define BCTRL 0x4e800421
10423 #define LD_R11_0R1 0xe9610000
10424 #define MTLR_R11 0x7d6803a6
10425
10426 static inline bfd_byte *
10427 build_tls_get_addr_stub (struct ppc_link_hash_table *htab,
10428 struct ppc_stub_hash_entry *stub_entry,
10429 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
10430 {
10431 bfd *obfd = htab->params->stub_bfd;
10432
10433 bfd_put_32 (obfd, LD_R11_0R3 + 0, p), p += 4;
10434 bfd_put_32 (obfd, LD_R12_0R3 + 8, p), p += 4;
10435 bfd_put_32 (obfd, MR_R0_R3, p), p += 4;
10436 bfd_put_32 (obfd, CMPDI_R11_0, p), p += 4;
10437 bfd_put_32 (obfd, ADD_R3_R12_R13, p), p += 4;
10438 bfd_put_32 (obfd, BEQLR, p), p += 4;
10439 bfd_put_32 (obfd, MR_R3_R0, p), p += 4;
10440 bfd_put_32 (obfd, MFLR_R11, p), p += 4;
10441 bfd_put_32 (obfd, STD_R11_0R1 + STK_LINKER (htab), p), p += 4;
10442
10443 if (r != NULL)
10444 r[0].r_offset += 9 * 4;
10445 p = build_plt_stub (htab, stub_entry, p, offset, r);
10446 bfd_put_32 (obfd, BCTRL, p - 4);
10447
10448 bfd_put_32 (obfd, LD_R11_0R1 + STK_LINKER (htab), p), p += 4;
10449 bfd_put_32 (obfd, LD_R2_0R1 + STK_TOC (htab), p), p += 4;
10450 bfd_put_32 (obfd, MTLR_R11, p), p += 4;
10451 bfd_put_32 (obfd, BLR, p), p += 4;
10452
10453 return p;
10454 }
10455
10456 static Elf_Internal_Rela *
10457 get_relocs (asection *sec, int count)
10458 {
10459 Elf_Internal_Rela *relocs;
10460 struct bfd_elf_section_data *elfsec_data;
10461
10462 elfsec_data = elf_section_data (sec);
10463 relocs = elfsec_data->relocs;
10464 if (relocs == NULL)
10465 {
10466 bfd_size_type relsize;
10467 relsize = sec->reloc_count * sizeof (*relocs);
10468 relocs = bfd_alloc (sec->owner, relsize);
10469 if (relocs == NULL)
10470 return NULL;
10471 elfsec_data->relocs = relocs;
10472 elfsec_data->rela.hdr = bfd_zalloc (sec->owner,
10473 sizeof (Elf_Internal_Shdr));
10474 if (elfsec_data->rela.hdr == NULL)
10475 return NULL;
10476 elfsec_data->rela.hdr->sh_size = (sec->reloc_count
10477 * sizeof (Elf64_External_Rela));
10478 elfsec_data->rela.hdr->sh_entsize = sizeof (Elf64_External_Rela);
10479 sec->reloc_count = 0;
10480 }
10481 relocs += sec->reloc_count;
10482 sec->reloc_count += count;
10483 return relocs;
10484 }
10485
10486 static bfd_vma
10487 get_r2off (struct bfd_link_info *info,
10488 struct ppc_stub_hash_entry *stub_entry)
10489 {
10490 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10491 bfd_vma r2off = htab->stub_group[stub_entry->target_section->id].toc_off;
10492
10493 if (r2off == 0)
10494 {
10495 /* Support linking -R objects. Get the toc pointer from the
10496 opd entry. */
10497 char buf[8];
10498 if (!htab->opd_abi)
10499 return r2off;
10500 asection *opd = stub_entry->h->elf.root.u.def.section;
10501 bfd_vma opd_off = stub_entry->h->elf.root.u.def.value;
10502
10503 if (strcmp (opd->name, ".opd") != 0
10504 || opd->reloc_count != 0)
10505 {
10506 info->callbacks->einfo (_("%P: cannot find opd entry toc for `%T'\n"),
10507 stub_entry->h->elf.root.root.string);
10508 bfd_set_error (bfd_error_bad_value);
10509 return 0;
10510 }
10511 if (!bfd_get_section_contents (opd->owner, opd, buf, opd_off + 8, 8))
10512 return 0;
10513 r2off = bfd_get_64 (opd->owner, buf);
10514 r2off -= elf_gp (info->output_bfd);
10515 }
10516 r2off -= htab->stub_group[stub_entry->id_sec->id].toc_off;
10517 return r2off;
10518 }
10519
10520 static bfd_boolean
10521 ppc_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
10522 {
10523 struct ppc_stub_hash_entry *stub_entry;
10524 struct ppc_branch_hash_entry *br_entry;
10525 struct bfd_link_info *info;
10526 struct ppc_link_hash_table *htab;
10527 bfd_byte *loc;
10528 bfd_byte *p;
10529 bfd_vma dest, off;
10530 int size;
10531 Elf_Internal_Rela *r;
10532 asection *plt;
10533
10534 /* Massage our args to the form they really have. */
10535 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
10536 info = in_arg;
10537
10538 htab = ppc_hash_table (info);
10539 if (htab == NULL)
10540 return FALSE;
10541
10542 /* Make a note of the offset within the stubs for this entry. */
10543 stub_entry->stub_offset = stub_entry->stub_sec->size;
10544 loc = stub_entry->stub_sec->contents + stub_entry->stub_offset;
10545
10546 htab->stub_count[stub_entry->stub_type - 1] += 1;
10547 switch (stub_entry->stub_type)
10548 {
10549 case ppc_stub_long_branch:
10550 case ppc_stub_long_branch_r2off:
10551 /* Branches are relative. This is where we are going to. */
10552 dest = (stub_entry->target_value
10553 + stub_entry->target_section->output_offset
10554 + stub_entry->target_section->output_section->vma);
10555 dest += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
10556 off = dest;
10557
10558 /* And this is where we are coming from. */
10559 off -= (stub_entry->stub_offset
10560 + stub_entry->stub_sec->output_offset
10561 + stub_entry->stub_sec->output_section->vma);
10562
10563 size = 4;
10564 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
10565 {
10566 bfd_vma r2off = get_r2off (info, stub_entry);
10567
10568 if (r2off == 0)
10569 {
10570 htab->stub_error = TRUE;
10571 return FALSE;
10572 }
10573 bfd_put_32 (htab->params->stub_bfd, STD_R2_0R1 + STK_TOC (htab), loc);
10574 loc += 4;
10575 size = 12;
10576 if (PPC_HA (r2off) != 0)
10577 {
10578 size = 16;
10579 bfd_put_32 (htab->params->stub_bfd,
10580 ADDIS_R2_R2 | PPC_HA (r2off), loc);
10581 loc += 4;
10582 }
10583 bfd_put_32 (htab->params->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
10584 loc += 4;
10585 off -= size - 4;
10586 }
10587 bfd_put_32 (htab->params->stub_bfd, B_DOT | (off & 0x3fffffc), loc);
10588
10589 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
10590 {
10591 info->callbacks->einfo
10592 (_("%P: long branch stub `%s' offset overflow\n"),
10593 stub_entry->root.string);
10594 htab->stub_error = TRUE;
10595 return FALSE;
10596 }
10597
10598 if (info->emitrelocations)
10599 {
10600 r = get_relocs (stub_entry->stub_sec, 1);
10601 if (r == NULL)
10602 return FALSE;
10603 r->r_offset = loc - stub_entry->stub_sec->contents;
10604 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
10605 r->r_addend = dest;
10606 if (stub_entry->h != NULL)
10607 {
10608 struct elf_link_hash_entry **hashes;
10609 unsigned long symndx;
10610 struct ppc_link_hash_entry *h;
10611
10612 hashes = elf_sym_hashes (htab->params->stub_bfd);
10613 if (hashes == NULL)
10614 {
10615 bfd_size_type hsize;
10616
10617 hsize = (htab->stub_globals + 1) * sizeof (*hashes);
10618 hashes = bfd_zalloc (htab->params->stub_bfd, hsize);
10619 if (hashes == NULL)
10620 return FALSE;
10621 elf_sym_hashes (htab->params->stub_bfd) = hashes;
10622 htab->stub_globals = 1;
10623 }
10624 symndx = htab->stub_globals++;
10625 h = stub_entry->h;
10626 hashes[symndx] = &h->elf;
10627 r->r_info = ELF64_R_INFO (symndx, R_PPC64_REL24);
10628 if (h->oh != NULL && h->oh->is_func)
10629 h = ppc_follow_link (h->oh);
10630 if (h->elf.root.u.def.section != stub_entry->target_section)
10631 /* H is an opd symbol. The addend must be zero. */
10632 r->r_addend = 0;
10633 else
10634 {
10635 off = (h->elf.root.u.def.value
10636 + h->elf.root.u.def.section->output_offset
10637 + h->elf.root.u.def.section->output_section->vma);
10638 r->r_addend -= off;
10639 }
10640 }
10641 }
10642 break;
10643
10644 case ppc_stub_plt_branch:
10645 case ppc_stub_plt_branch_r2off:
10646 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
10647 stub_entry->root.string + 9,
10648 FALSE, FALSE);
10649 if (br_entry == NULL)
10650 {
10651 info->callbacks->einfo (_("%P: can't find branch stub `%s'\n"),
10652 stub_entry->root.string);
10653 htab->stub_error = TRUE;
10654 return FALSE;
10655 }
10656
10657 dest = (stub_entry->target_value
10658 + stub_entry->target_section->output_offset
10659 + stub_entry->target_section->output_section->vma);
10660 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
10661 dest += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
10662
10663 bfd_put_64 (htab->brlt->owner, dest,
10664 htab->brlt->contents + br_entry->offset);
10665
10666 if (br_entry->iter == htab->stub_iteration)
10667 {
10668 br_entry->iter = 0;
10669
10670 if (htab->relbrlt != NULL)
10671 {
10672 /* Create a reloc for the branch lookup table entry. */
10673 Elf_Internal_Rela rela;
10674 bfd_byte *rl;
10675
10676 rela.r_offset = (br_entry->offset
10677 + htab->brlt->output_offset
10678 + htab->brlt->output_section->vma);
10679 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10680 rela.r_addend = dest;
10681
10682 rl = htab->relbrlt->contents;
10683 rl += (htab->relbrlt->reloc_count++
10684 * sizeof (Elf64_External_Rela));
10685 bfd_elf64_swap_reloca_out (htab->relbrlt->owner, &rela, rl);
10686 }
10687 else if (info->emitrelocations)
10688 {
10689 r = get_relocs (htab->brlt, 1);
10690 if (r == NULL)
10691 return FALSE;
10692 /* brlt, being SEC_LINKER_CREATED does not go through the
10693 normal reloc processing. Symbols and offsets are not
10694 translated from input file to output file form, so
10695 set up the offset per the output file. */
10696 r->r_offset = (br_entry->offset
10697 + htab->brlt->output_offset
10698 + htab->brlt->output_section->vma);
10699 r->r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10700 r->r_addend = dest;
10701 }
10702 }
10703
10704 dest = (br_entry->offset
10705 + htab->brlt->output_offset
10706 + htab->brlt->output_section->vma);
10707
10708 off = (dest
10709 - elf_gp (htab->brlt->output_section->owner)
10710 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10711
10712 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
10713 {
10714 info->callbacks->einfo
10715 (_("%P: linkage table error against `%T'\n"),
10716 stub_entry->root.string);
10717 bfd_set_error (bfd_error_bad_value);
10718 htab->stub_error = TRUE;
10719 return FALSE;
10720 }
10721
10722 if (info->emitrelocations)
10723 {
10724 r = get_relocs (stub_entry->stub_sec, 1 + (PPC_HA (off) != 0));
10725 if (r == NULL)
10726 return FALSE;
10727 r[0].r_offset = loc - stub_entry->stub_sec->contents;
10728 if (bfd_big_endian (info->output_bfd))
10729 r[0].r_offset += 2;
10730 if (stub_entry->stub_type == ppc_stub_plt_branch_r2off)
10731 r[0].r_offset += 4;
10732 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10733 r[0].r_addend = dest;
10734 if (PPC_HA (off) != 0)
10735 {
10736 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
10737 r[1].r_offset = r[0].r_offset + 4;
10738 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10739 r[1].r_addend = r[0].r_addend;
10740 }
10741 }
10742
10743 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
10744 {
10745 if (PPC_HA (off) != 0)
10746 {
10747 size = 16;
10748 bfd_put_32 (htab->params->stub_bfd,
10749 ADDIS_R12_R2 | PPC_HA (off), loc);
10750 loc += 4;
10751 bfd_put_32 (htab->params->stub_bfd,
10752 LD_R12_0R12 | PPC_LO (off), loc);
10753 }
10754 else
10755 {
10756 size = 12;
10757 bfd_put_32 (htab->params->stub_bfd,
10758 LD_R12_0R2 | PPC_LO (off), loc);
10759 }
10760 }
10761 else
10762 {
10763 bfd_vma r2off = get_r2off (info, stub_entry);
10764
10765 if (r2off == 0 && htab->opd_abi)
10766 {
10767 htab->stub_error = TRUE;
10768 return FALSE;
10769 }
10770
10771 bfd_put_32 (htab->params->stub_bfd, STD_R2_0R1 + STK_TOC (htab), loc);
10772 loc += 4;
10773 size = 16;
10774 if (PPC_HA (off) != 0)
10775 {
10776 size += 4;
10777 bfd_put_32 (htab->params->stub_bfd,
10778 ADDIS_R12_R2 | PPC_HA (off), loc);
10779 loc += 4;
10780 bfd_put_32 (htab->params->stub_bfd,
10781 LD_R12_0R12 | PPC_LO (off), loc);
10782 }
10783 else
10784 bfd_put_32 (htab->params->stub_bfd, LD_R12_0R2 | PPC_LO (off), loc);
10785
10786 if (PPC_HA (r2off) != 0)
10787 {
10788 size += 4;
10789 loc += 4;
10790 bfd_put_32 (htab->params->stub_bfd,
10791 ADDIS_R2_R2 | PPC_HA (r2off), loc);
10792 }
10793 if (PPC_LO (r2off) != 0)
10794 {
10795 size += 4;
10796 loc += 4;
10797 bfd_put_32 (htab->params->stub_bfd,
10798 ADDI_R2_R2 | PPC_LO (r2off), loc);
10799 }
10800 }
10801 loc += 4;
10802 bfd_put_32 (htab->params->stub_bfd, MTCTR_R12, loc);
10803 loc += 4;
10804 bfd_put_32 (htab->params->stub_bfd, BCTR, loc);
10805 break;
10806
10807 case ppc_stub_plt_call:
10808 case ppc_stub_plt_call_r2save:
10809 if (stub_entry->h != NULL
10810 && stub_entry->h->is_func_descriptor
10811 && stub_entry->h->oh != NULL)
10812 {
10813 struct ppc_link_hash_entry *fh = ppc_follow_link (stub_entry->h->oh);
10814
10815 /* If the old-ABI "dot-symbol" is undefined make it weak so
10816 we don't get a link error from RELOC_FOR_GLOBAL_SYMBOL.
10817 FIXME: We used to define the symbol on one of the call
10818 stubs instead, which is why we test symbol section id
10819 against htab->top_id in various places. Likely all
10820 these checks could now disappear. */
10821 if (fh->elf.root.type == bfd_link_hash_undefined)
10822 fh->elf.root.type = bfd_link_hash_undefweak;
10823 /* Stop undo_symbol_twiddle changing it back to undefined. */
10824 fh->was_undefined = 0;
10825 }
10826
10827 /* Now build the stub. */
10828 dest = stub_entry->plt_ent->plt.offset & ~1;
10829 if (dest >= (bfd_vma) -2)
10830 abort ();
10831
10832 plt = htab->elf.splt;
10833 if (!htab->elf.dynamic_sections_created
10834 || stub_entry->h == NULL
10835 || stub_entry->h->elf.dynindx == -1)
10836 plt = htab->elf.iplt;
10837
10838 dest += plt->output_offset + plt->output_section->vma;
10839
10840 if (stub_entry->h == NULL
10841 && (stub_entry->plt_ent->plt.offset & 1) == 0)
10842 {
10843 Elf_Internal_Rela rela;
10844 bfd_byte *rl;
10845
10846 rela.r_offset = dest;
10847 if (htab->opd_abi)
10848 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
10849 else
10850 rela.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
10851 rela.r_addend = (stub_entry->target_value
10852 + stub_entry->target_section->output_offset
10853 + stub_entry->target_section->output_section->vma);
10854
10855 rl = (htab->elf.irelplt->contents
10856 + (htab->elf.irelplt->reloc_count++
10857 * sizeof (Elf64_External_Rela)));
10858 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, rl);
10859 stub_entry->plt_ent->plt.offset |= 1;
10860 }
10861
10862 off = (dest
10863 - elf_gp (plt->output_section->owner)
10864 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10865
10866 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
10867 {
10868 info->callbacks->einfo
10869 (_("%P: linkage table error against `%T'\n"),
10870 stub_entry->h != NULL
10871 ? stub_entry->h->elf.root.root.string
10872 : "<local sym>");
10873 bfd_set_error (bfd_error_bad_value);
10874 htab->stub_error = TRUE;
10875 return FALSE;
10876 }
10877
10878 if (htab->params->plt_stub_align != 0)
10879 {
10880 unsigned pad = plt_stub_pad (htab, stub_entry, off);
10881
10882 stub_entry->stub_sec->size += pad;
10883 stub_entry->stub_offset = stub_entry->stub_sec->size;
10884 loc += pad;
10885 }
10886
10887 r = NULL;
10888 if (info->emitrelocations)
10889 {
10890 r = get_relocs (stub_entry->stub_sec,
10891 ((PPC_HA (off) != 0)
10892 + (htab->opd_abi
10893 ? 2 + (htab->params->plt_static_chain
10894 && PPC_HA (off + 16) == PPC_HA (off))
10895 : 1)));
10896 if (r == NULL)
10897 return FALSE;
10898 r[0].r_offset = loc - stub_entry->stub_sec->contents;
10899 if (bfd_big_endian (info->output_bfd))
10900 r[0].r_offset += 2;
10901 r[0].r_addend = dest;
10902 }
10903 if (stub_entry->h != NULL
10904 && (stub_entry->h == htab->tls_get_addr_fd
10905 || stub_entry->h == htab->tls_get_addr)
10906 && !htab->params->no_tls_get_addr_opt)
10907 p = build_tls_get_addr_stub (htab, stub_entry, loc, off, r);
10908 else
10909 p = build_plt_stub (htab, stub_entry, loc, off, r);
10910 size = p - loc;
10911 break;
10912
10913 default:
10914 BFD_FAIL ();
10915 return FALSE;
10916 }
10917
10918 stub_entry->stub_sec->size += size;
10919
10920 if (htab->params->emit_stub_syms)
10921 {
10922 struct elf_link_hash_entry *h;
10923 size_t len1, len2;
10924 char *name;
10925 const char *const stub_str[] = { "long_branch",
10926 "long_branch_r2off",
10927 "plt_branch",
10928 "plt_branch_r2off",
10929 "plt_call",
10930 "plt_call" };
10931
10932 len1 = strlen (stub_str[stub_entry->stub_type - 1]);
10933 len2 = strlen (stub_entry->root.string);
10934 name = bfd_malloc (len1 + len2 + 2);
10935 if (name == NULL)
10936 return FALSE;
10937 memcpy (name, stub_entry->root.string, 9);
10938 memcpy (name + 9, stub_str[stub_entry->stub_type - 1], len1);
10939 memcpy (name + len1 + 9, stub_entry->root.string + 8, len2 - 8 + 1);
10940 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
10941 if (h == NULL)
10942 return FALSE;
10943 if (h->root.type == bfd_link_hash_new)
10944 {
10945 h->root.type = bfd_link_hash_defined;
10946 h->root.u.def.section = stub_entry->stub_sec;
10947 h->root.u.def.value = stub_entry->stub_offset;
10948 h->ref_regular = 1;
10949 h->def_regular = 1;
10950 h->ref_regular_nonweak = 1;
10951 h->forced_local = 1;
10952 h->non_elf = 0;
10953 h->root.linker_def = 1;
10954 }
10955 }
10956
10957 return TRUE;
10958 }
10959
10960 /* As above, but don't actually build the stub. Just bump offset so
10961 we know stub section sizes, and select plt_branch stubs where
10962 long_branch stubs won't do. */
10963
10964 static bfd_boolean
10965 ppc_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
10966 {
10967 struct ppc_stub_hash_entry *stub_entry;
10968 struct bfd_link_info *info;
10969 struct ppc_link_hash_table *htab;
10970 bfd_vma off;
10971 int size;
10972
10973 /* Massage our args to the form they really have. */
10974 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
10975 info = in_arg;
10976
10977 htab = ppc_hash_table (info);
10978 if (htab == NULL)
10979 return FALSE;
10980
10981 if (stub_entry->stub_type == ppc_stub_plt_call
10982 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10983 {
10984 asection *plt;
10985 off = stub_entry->plt_ent->plt.offset & ~(bfd_vma) 1;
10986 if (off >= (bfd_vma) -2)
10987 abort ();
10988 plt = htab->elf.splt;
10989 if (!htab->elf.dynamic_sections_created
10990 || stub_entry->h == NULL
10991 || stub_entry->h->elf.dynindx == -1)
10992 plt = htab->elf.iplt;
10993 off += (plt->output_offset
10994 + plt->output_section->vma
10995 - elf_gp (plt->output_section->owner)
10996 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10997
10998 size = plt_stub_size (htab, stub_entry, off);
10999 if (htab->params->plt_stub_align)
11000 size += plt_stub_pad (htab, stub_entry, off);
11001 if (info->emitrelocations)
11002 {
11003 stub_entry->stub_sec->reloc_count
11004 += ((PPC_HA (off) != 0)
11005 + (htab->opd_abi
11006 ? 2 + (htab->params->plt_static_chain
11007 && PPC_HA (off + 16) == PPC_HA (off))
11008 : 1));
11009 stub_entry->stub_sec->flags |= SEC_RELOC;
11010 }
11011 }
11012 else
11013 {
11014 /* ppc_stub_long_branch or ppc_stub_plt_branch, or their r2off
11015 variants. */
11016 bfd_vma r2off = 0;
11017 bfd_vma local_off = 0;
11018
11019 off = (stub_entry->target_value
11020 + stub_entry->target_section->output_offset
11021 + stub_entry->target_section->output_section->vma);
11022 off -= (stub_entry->stub_sec->size
11023 + stub_entry->stub_sec->output_offset
11024 + stub_entry->stub_sec->output_section->vma);
11025
11026 /* Reset the stub type from the plt variant in case we now
11027 can reach with a shorter stub. */
11028 if (stub_entry->stub_type >= ppc_stub_plt_branch)
11029 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
11030
11031 size = 4;
11032 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
11033 {
11034 r2off = get_r2off (info, stub_entry);
11035 if (r2off == 0 && htab->opd_abi)
11036 {
11037 htab->stub_error = TRUE;
11038 return FALSE;
11039 }
11040 size = 12;
11041 if (PPC_HA (r2off) != 0)
11042 size = 16;
11043 off -= size - 4;
11044 }
11045
11046 local_off = PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
11047
11048 /* If the branch offset if too big, use a ppc_stub_plt_branch.
11049 Do the same for -R objects without function descriptors. */
11050 if (off + (1 << 25) >= (bfd_vma) (1 << 26) - local_off
11051 || (stub_entry->stub_type == ppc_stub_long_branch_r2off
11052 && r2off == 0))
11053 {
11054 struct ppc_branch_hash_entry *br_entry;
11055
11056 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
11057 stub_entry->root.string + 9,
11058 TRUE, FALSE);
11059 if (br_entry == NULL)
11060 {
11061 info->callbacks->einfo (_("%P: can't build branch stub `%s'\n"),
11062 stub_entry->root.string);
11063 htab->stub_error = TRUE;
11064 return FALSE;
11065 }
11066
11067 if (br_entry->iter != htab->stub_iteration)
11068 {
11069 br_entry->iter = htab->stub_iteration;
11070 br_entry->offset = htab->brlt->size;
11071 htab->brlt->size += 8;
11072
11073 if (htab->relbrlt != NULL)
11074 htab->relbrlt->size += sizeof (Elf64_External_Rela);
11075 else if (info->emitrelocations)
11076 {
11077 htab->brlt->reloc_count += 1;
11078 htab->brlt->flags |= SEC_RELOC;
11079 }
11080 }
11081
11082 stub_entry->stub_type += ppc_stub_plt_branch - ppc_stub_long_branch;
11083 off = (br_entry->offset
11084 + htab->brlt->output_offset
11085 + htab->brlt->output_section->vma
11086 - elf_gp (htab->brlt->output_section->owner)
11087 - htab->stub_group[stub_entry->id_sec->id].toc_off);
11088
11089 if (info->emitrelocations)
11090 {
11091 stub_entry->stub_sec->reloc_count += 1 + (PPC_HA (off) != 0);
11092 stub_entry->stub_sec->flags |= SEC_RELOC;
11093 }
11094
11095 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
11096 {
11097 size = 12;
11098 if (PPC_HA (off) != 0)
11099 size = 16;
11100 }
11101 else
11102 {
11103 size = 16;
11104 if (PPC_HA (off) != 0)
11105 size += 4;
11106
11107 if (PPC_HA (r2off) != 0)
11108 size += 4;
11109 if (PPC_LO (r2off) != 0)
11110 size += 4;
11111 }
11112 }
11113 else if (info->emitrelocations)
11114 {
11115 stub_entry->stub_sec->reloc_count += 1;
11116 stub_entry->stub_sec->flags |= SEC_RELOC;
11117 }
11118 }
11119
11120 stub_entry->stub_sec->size += size;
11121 return TRUE;
11122 }
11123
11124 /* Set up various things so that we can make a list of input sections
11125 for each output section included in the link. Returns -1 on error,
11126 0 when no stubs will be needed, and 1 on success. */
11127
11128 int
11129 ppc64_elf_setup_section_lists (struct bfd_link_info *info)
11130 {
11131 bfd *input_bfd;
11132 int top_id, top_index, id;
11133 asection *section;
11134 asection **input_list;
11135 bfd_size_type amt;
11136 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11137
11138 if (htab == NULL)
11139 return -1;
11140
11141 /* Find the top input section id. */
11142 for (input_bfd = info->input_bfds, top_id = 3;
11143 input_bfd != NULL;
11144 input_bfd = input_bfd->link.next)
11145 {
11146 for (section = input_bfd->sections;
11147 section != NULL;
11148 section = section->next)
11149 {
11150 if (top_id < section->id)
11151 top_id = section->id;
11152 }
11153 }
11154
11155 htab->top_id = top_id;
11156 amt = sizeof (struct map_stub) * (top_id + 1);
11157 htab->stub_group = bfd_zmalloc (amt);
11158 if (htab->stub_group == NULL)
11159 return -1;
11160
11161 /* Set toc_off for com, und, abs and ind sections. */
11162 for (id = 0; id < 3; id++)
11163 htab->stub_group[id].toc_off = TOC_BASE_OFF;
11164
11165 /* We can't use output_bfd->section_count here to find the top output
11166 section index as some sections may have been removed, and
11167 strip_excluded_output_sections doesn't renumber the indices. */
11168 for (section = info->output_bfd->sections, top_index = 0;
11169 section != NULL;
11170 section = section->next)
11171 {
11172 if (top_index < section->index)
11173 top_index = section->index;
11174 }
11175
11176 htab->top_index = top_index;
11177 amt = sizeof (asection *) * (top_index + 1);
11178 input_list = bfd_zmalloc (amt);
11179 htab->input_list = input_list;
11180 if (input_list == NULL)
11181 return -1;
11182
11183 return 1;
11184 }
11185
11186 /* Set up for first pass at multitoc partitioning. */
11187
11188 void
11189 ppc64_elf_start_multitoc_partition (struct bfd_link_info *info)
11190 {
11191 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11192
11193 htab->toc_curr = ppc64_elf_set_toc (info, info->output_bfd);
11194 htab->toc_bfd = NULL;
11195 htab->toc_first_sec = NULL;
11196 }
11197
11198 /* The linker repeatedly calls this function for each TOC input section
11199 and linker generated GOT section. Group input bfds such that the toc
11200 within a group is less than 64k in size. */
11201
11202 bfd_boolean
11203 ppc64_elf_next_toc_section (struct bfd_link_info *info, asection *isec)
11204 {
11205 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11206 bfd_vma addr, off, limit;
11207
11208 if (htab == NULL)
11209 return FALSE;
11210
11211 if (!htab->second_toc_pass)
11212 {
11213 /* Keep track of the first .toc or .got section for this input bfd. */
11214 bfd_boolean new_bfd = htab->toc_bfd != isec->owner;
11215
11216 if (new_bfd)
11217 {
11218 htab->toc_bfd = isec->owner;
11219 htab->toc_first_sec = isec;
11220 }
11221
11222 addr = isec->output_offset + isec->output_section->vma;
11223 off = addr - htab->toc_curr;
11224 limit = 0x80008000;
11225 if (ppc64_elf_tdata (isec->owner)->has_small_toc_reloc)
11226 limit = 0x10000;
11227 if (off + isec->size > limit)
11228 {
11229 addr = (htab->toc_first_sec->output_offset
11230 + htab->toc_first_sec->output_section->vma);
11231 htab->toc_curr = addr;
11232 }
11233
11234 /* toc_curr is the base address of this toc group. Set elf_gp
11235 for the input section to be the offset relative to the
11236 output toc base plus 0x8000. Making the input elf_gp an
11237 offset allows us to move the toc as a whole without
11238 recalculating input elf_gp. */
11239 off = htab->toc_curr - elf_gp (isec->output_section->owner);
11240 off += TOC_BASE_OFF;
11241
11242 /* Die if someone uses a linker script that doesn't keep input
11243 file .toc and .got together. */
11244 if (new_bfd
11245 && elf_gp (isec->owner) != 0
11246 && elf_gp (isec->owner) != off)
11247 return FALSE;
11248
11249 elf_gp (isec->owner) = off;
11250 return TRUE;
11251 }
11252
11253 /* During the second pass toc_first_sec points to the start of
11254 a toc group, and toc_curr is used to track the old elf_gp.
11255 We use toc_bfd to ensure we only look at each bfd once. */
11256 if (htab->toc_bfd == isec->owner)
11257 return TRUE;
11258 htab->toc_bfd = isec->owner;
11259
11260 if (htab->toc_first_sec == NULL
11261 || htab->toc_curr != elf_gp (isec->owner))
11262 {
11263 htab->toc_curr = elf_gp (isec->owner);
11264 htab->toc_first_sec = isec;
11265 }
11266 addr = (htab->toc_first_sec->output_offset
11267 + htab->toc_first_sec->output_section->vma);
11268 off = addr - elf_gp (isec->output_section->owner) + TOC_BASE_OFF;
11269 elf_gp (isec->owner) = off;
11270
11271 return TRUE;
11272 }
11273
11274 /* Called via elf_link_hash_traverse to merge GOT entries for global
11275 symbol H. */
11276
11277 static bfd_boolean
11278 merge_global_got (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
11279 {
11280 if (h->root.type == bfd_link_hash_indirect)
11281 return TRUE;
11282
11283 merge_got_entries (&h->got.glist);
11284
11285 return TRUE;
11286 }
11287
11288 /* Called via elf_link_hash_traverse to allocate GOT entries for global
11289 symbol H. */
11290
11291 static bfd_boolean
11292 reallocate_got (struct elf_link_hash_entry *h, void *inf)
11293 {
11294 struct got_entry *gent;
11295
11296 if (h->root.type == bfd_link_hash_indirect)
11297 return TRUE;
11298
11299 for (gent = h->got.glist; gent != NULL; gent = gent->next)
11300 if (!gent->is_indirect)
11301 allocate_got (h, (struct bfd_link_info *) inf, gent);
11302 return TRUE;
11303 }
11304
11305 /* Called on the first multitoc pass after the last call to
11306 ppc64_elf_next_toc_section. This function removes duplicate GOT
11307 entries. */
11308
11309 bfd_boolean
11310 ppc64_elf_layout_multitoc (struct bfd_link_info *info)
11311 {
11312 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11313 struct bfd *ibfd, *ibfd2;
11314 bfd_boolean done_something;
11315
11316 htab->multi_toc_needed = htab->toc_curr != elf_gp (info->output_bfd);
11317
11318 if (!htab->do_multi_toc)
11319 return FALSE;
11320
11321 /* Merge global sym got entries within a toc group. */
11322 elf_link_hash_traverse (&htab->elf, merge_global_got, info);
11323
11324 /* And tlsld_got. */
11325 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11326 {
11327 struct got_entry *ent, *ent2;
11328
11329 if (!is_ppc64_elf (ibfd))
11330 continue;
11331
11332 ent = ppc64_tlsld_got (ibfd);
11333 if (!ent->is_indirect
11334 && ent->got.offset != (bfd_vma) -1)
11335 {
11336 for (ibfd2 = ibfd->link.next; ibfd2 != NULL; ibfd2 = ibfd2->link.next)
11337 {
11338 if (!is_ppc64_elf (ibfd2))
11339 continue;
11340
11341 ent2 = ppc64_tlsld_got (ibfd2);
11342 if (!ent2->is_indirect
11343 && ent2->got.offset != (bfd_vma) -1
11344 && elf_gp (ibfd2) == elf_gp (ibfd))
11345 {
11346 ent2->is_indirect = TRUE;
11347 ent2->got.ent = ent;
11348 }
11349 }
11350 }
11351 }
11352
11353 /* Zap sizes of got sections. */
11354 htab->elf.irelplt->rawsize = htab->elf.irelplt->size;
11355 htab->elf.irelplt->size -= htab->got_reli_size;
11356 htab->got_reli_size = 0;
11357
11358 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11359 {
11360 asection *got, *relgot;
11361
11362 if (!is_ppc64_elf (ibfd))
11363 continue;
11364
11365 got = ppc64_elf_tdata (ibfd)->got;
11366 if (got != NULL)
11367 {
11368 got->rawsize = got->size;
11369 got->size = 0;
11370 relgot = ppc64_elf_tdata (ibfd)->relgot;
11371 relgot->rawsize = relgot->size;
11372 relgot->size = 0;
11373 }
11374 }
11375
11376 /* Now reallocate the got, local syms first. We don't need to
11377 allocate section contents again since we never increase size. */
11378 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11379 {
11380 struct got_entry **lgot_ents;
11381 struct got_entry **end_lgot_ents;
11382 struct plt_entry **local_plt;
11383 struct plt_entry **end_local_plt;
11384 unsigned char *lgot_masks;
11385 bfd_size_type locsymcount;
11386 Elf_Internal_Shdr *symtab_hdr;
11387 asection *s;
11388
11389 if (!is_ppc64_elf (ibfd))
11390 continue;
11391
11392 lgot_ents = elf_local_got_ents (ibfd);
11393 if (!lgot_ents)
11394 continue;
11395
11396 symtab_hdr = &elf_symtab_hdr (ibfd);
11397 locsymcount = symtab_hdr->sh_info;
11398 end_lgot_ents = lgot_ents + locsymcount;
11399 local_plt = (struct plt_entry **) end_lgot_ents;
11400 end_local_plt = local_plt + locsymcount;
11401 lgot_masks = (unsigned char *) end_local_plt;
11402 s = ppc64_elf_tdata (ibfd)->got;
11403 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
11404 {
11405 struct got_entry *ent;
11406
11407 for (ent = *lgot_ents; ent != NULL; ent = ent->next)
11408 {
11409 unsigned int ent_size = 8;
11410 unsigned int rel_size = sizeof (Elf64_External_Rela);
11411
11412 ent->got.offset = s->size;
11413 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
11414 {
11415 ent_size *= 2;
11416 rel_size *= 2;
11417 }
11418 s->size += ent_size;
11419 if ((*lgot_masks & PLT_IFUNC) != 0)
11420 {
11421 htab->elf.irelplt->size += rel_size;
11422 htab->got_reli_size += rel_size;
11423 }
11424 else if (info->shared)
11425 {
11426 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
11427 srel->size += rel_size;
11428 }
11429 }
11430 }
11431 }
11432
11433 elf_link_hash_traverse (&htab->elf, reallocate_got, info);
11434
11435 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11436 {
11437 struct got_entry *ent;
11438
11439 if (!is_ppc64_elf (ibfd))
11440 continue;
11441
11442 ent = ppc64_tlsld_got (ibfd);
11443 if (!ent->is_indirect
11444 && ent->got.offset != (bfd_vma) -1)
11445 {
11446 asection *s = ppc64_elf_tdata (ibfd)->got;
11447 ent->got.offset = s->size;
11448 s->size += 16;
11449 if (info->shared)
11450 {
11451 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
11452 srel->size += sizeof (Elf64_External_Rela);
11453 }
11454 }
11455 }
11456
11457 done_something = htab->elf.irelplt->rawsize != htab->elf.irelplt->size;
11458 if (!done_something)
11459 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11460 {
11461 asection *got;
11462
11463 if (!is_ppc64_elf (ibfd))
11464 continue;
11465
11466 got = ppc64_elf_tdata (ibfd)->got;
11467 if (got != NULL)
11468 {
11469 done_something = got->rawsize != got->size;
11470 if (done_something)
11471 break;
11472 }
11473 }
11474
11475 if (done_something)
11476 (*htab->params->layout_sections_again) ();
11477
11478 /* Set up for second pass over toc sections to recalculate elf_gp
11479 on input sections. */
11480 htab->toc_bfd = NULL;
11481 htab->toc_first_sec = NULL;
11482 htab->second_toc_pass = TRUE;
11483 return done_something;
11484 }
11485
11486 /* Called after second pass of multitoc partitioning. */
11487
11488 void
11489 ppc64_elf_finish_multitoc_partition (struct bfd_link_info *info)
11490 {
11491 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11492
11493 /* After the second pass, toc_curr tracks the TOC offset used
11494 for code sections below in ppc64_elf_next_input_section. */
11495 htab->toc_curr = TOC_BASE_OFF;
11496 }
11497
11498 /* No toc references were found in ISEC. If the code in ISEC makes no
11499 calls, then there's no need to use toc adjusting stubs when branching
11500 into ISEC. Actually, indirect calls from ISEC are OK as they will
11501 load r2. Returns -1 on error, 0 for no stub needed, 1 for stub
11502 needed, and 2 if a cyclical call-graph was found but no other reason
11503 for a stub was detected. If called from the top level, a return of
11504 2 means the same as a return of 0. */
11505
11506 static int
11507 toc_adjusting_stub_needed (struct bfd_link_info *info, asection *isec)
11508 {
11509 int ret;
11510
11511 /* Mark this section as checked. */
11512 isec->call_check_done = 1;
11513
11514 /* We know none of our code bearing sections will need toc stubs. */
11515 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11516 return 0;
11517
11518 if (isec->size == 0)
11519 return 0;
11520
11521 if (isec->output_section == NULL)
11522 return 0;
11523
11524 ret = 0;
11525 if (isec->reloc_count != 0)
11526 {
11527 Elf_Internal_Rela *relstart, *rel;
11528 Elf_Internal_Sym *local_syms;
11529 struct ppc_link_hash_table *htab;
11530
11531 relstart = _bfd_elf_link_read_relocs (isec->owner, isec, NULL, NULL,
11532 info->keep_memory);
11533 if (relstart == NULL)
11534 return -1;
11535
11536 /* Look for branches to outside of this section. */
11537 local_syms = NULL;
11538 htab = ppc_hash_table (info);
11539 if (htab == NULL)
11540 return -1;
11541
11542 for (rel = relstart; rel < relstart + isec->reloc_count; ++rel)
11543 {
11544 enum elf_ppc64_reloc_type r_type;
11545 unsigned long r_symndx;
11546 struct elf_link_hash_entry *h;
11547 struct ppc_link_hash_entry *eh;
11548 Elf_Internal_Sym *sym;
11549 asection *sym_sec;
11550 struct _opd_sec_data *opd;
11551 bfd_vma sym_value;
11552 bfd_vma dest;
11553
11554 r_type = ELF64_R_TYPE (rel->r_info);
11555 if (r_type != R_PPC64_REL24
11556 && r_type != R_PPC64_REL14
11557 && r_type != R_PPC64_REL14_BRTAKEN
11558 && r_type != R_PPC64_REL14_BRNTAKEN)
11559 continue;
11560
11561 r_symndx = ELF64_R_SYM (rel->r_info);
11562 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, r_symndx,
11563 isec->owner))
11564 {
11565 ret = -1;
11566 break;
11567 }
11568
11569 /* Calls to dynamic lib functions go through a plt call stub
11570 that uses r2. */
11571 eh = (struct ppc_link_hash_entry *) h;
11572 if (eh != NULL
11573 && (eh->elf.plt.plist != NULL
11574 || (eh->oh != NULL
11575 && ppc_follow_link (eh->oh)->elf.plt.plist != NULL)))
11576 {
11577 ret = 1;
11578 break;
11579 }
11580
11581 if (sym_sec == NULL)
11582 /* Ignore other undefined symbols. */
11583 continue;
11584
11585 /* Assume branches to other sections not included in the
11586 link need stubs too, to cover -R and absolute syms. */
11587 if (sym_sec->output_section == NULL)
11588 {
11589 ret = 1;
11590 break;
11591 }
11592
11593 if (h == NULL)
11594 sym_value = sym->st_value;
11595 else
11596 {
11597 if (h->root.type != bfd_link_hash_defined
11598 && h->root.type != bfd_link_hash_defweak)
11599 abort ();
11600 sym_value = h->root.u.def.value;
11601 }
11602 sym_value += rel->r_addend;
11603
11604 /* If this branch reloc uses an opd sym, find the code section. */
11605 opd = get_opd_info (sym_sec);
11606 if (opd != NULL)
11607 {
11608 if (h == NULL && opd->adjust != NULL)
11609 {
11610 long adjust;
11611
11612 adjust = opd->adjust[OPD_NDX (sym->st_value)];
11613 if (adjust == -1)
11614 /* Assume deleted functions won't ever be called. */
11615 continue;
11616 sym_value += adjust;
11617 }
11618
11619 dest = opd_entry_value (sym_sec, sym_value,
11620 &sym_sec, NULL, FALSE);
11621 if (dest == (bfd_vma) -1)
11622 continue;
11623 }
11624 else
11625 dest = (sym_value
11626 + sym_sec->output_offset
11627 + sym_sec->output_section->vma);
11628
11629 /* Ignore branch to self. */
11630 if (sym_sec == isec)
11631 continue;
11632
11633 /* If the called function uses the toc, we need a stub. */
11634 if (sym_sec->has_toc_reloc
11635 || sym_sec->makes_toc_func_call)
11636 {
11637 ret = 1;
11638 break;
11639 }
11640
11641 /* Assume any branch that needs a long branch stub might in fact
11642 need a plt_branch stub. A plt_branch stub uses r2. */
11643 else if (dest - (isec->output_offset
11644 + isec->output_section->vma
11645 + rel->r_offset) + (1 << 25)
11646 >= (2u << 25) - PPC64_LOCAL_ENTRY_OFFSET (h
11647 ? h->other
11648 : sym->st_other))
11649 {
11650 ret = 1;
11651 break;
11652 }
11653
11654 /* If calling back to a section in the process of being
11655 tested, we can't say for sure that no toc adjusting stubs
11656 are needed, so don't return zero. */
11657 else if (sym_sec->call_check_in_progress)
11658 ret = 2;
11659
11660 /* Branches to another section that itself doesn't have any TOC
11661 references are OK. Recursively call ourselves to check. */
11662 else if (!sym_sec->call_check_done)
11663 {
11664 int recur;
11665
11666 /* Mark current section as indeterminate, so that other
11667 sections that call back to current won't be marked as
11668 known. */
11669 isec->call_check_in_progress = 1;
11670 recur = toc_adjusting_stub_needed (info, sym_sec);
11671 isec->call_check_in_progress = 0;
11672
11673 if (recur != 0)
11674 {
11675 ret = recur;
11676 if (recur != 2)
11677 break;
11678 }
11679 }
11680 }
11681
11682 if (local_syms != NULL
11683 && (elf_symtab_hdr (isec->owner).contents
11684 != (unsigned char *) local_syms))
11685 free (local_syms);
11686 if (elf_section_data (isec)->relocs != relstart)
11687 free (relstart);
11688 }
11689
11690 if ((ret & 1) == 0
11691 && isec->map_head.s != NULL
11692 && (strcmp (isec->output_section->name, ".init") == 0
11693 || strcmp (isec->output_section->name, ".fini") == 0))
11694 {
11695 if (isec->map_head.s->has_toc_reloc
11696 || isec->map_head.s->makes_toc_func_call)
11697 ret = 1;
11698 else if (!isec->map_head.s->call_check_done)
11699 {
11700 int recur;
11701 isec->call_check_in_progress = 1;
11702 recur = toc_adjusting_stub_needed (info, isec->map_head.s);
11703 isec->call_check_in_progress = 0;
11704 if (recur != 0)
11705 ret = recur;
11706 }
11707 }
11708
11709 if (ret == 1)
11710 isec->makes_toc_func_call = 1;
11711
11712 return ret;
11713 }
11714
11715 /* The linker repeatedly calls this function for each input section,
11716 in the order that input sections are linked into output sections.
11717 Build lists of input sections to determine groupings between which
11718 we may insert linker stubs. */
11719
11720 bfd_boolean
11721 ppc64_elf_next_input_section (struct bfd_link_info *info, asection *isec)
11722 {
11723 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11724
11725 if (htab == NULL)
11726 return FALSE;
11727
11728 if ((isec->output_section->flags & SEC_CODE) != 0
11729 && isec->output_section->index <= htab->top_index)
11730 {
11731 asection **list = htab->input_list + isec->output_section->index;
11732 /* Steal the link_sec pointer for our list. */
11733 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
11734 /* This happens to make the list in reverse order,
11735 which is what we want. */
11736 PREV_SEC (isec) = *list;
11737 *list = isec;
11738 }
11739
11740 if (htab->multi_toc_needed)
11741 {
11742 /* Analyse sections that aren't already flagged as needing a
11743 valid toc pointer. Exclude .fixup for the linux kernel.
11744 .fixup contains branches, but only back to the function that
11745 hit an exception. */
11746 if (!(isec->has_toc_reloc
11747 || (isec->flags & SEC_CODE) == 0
11748 || strcmp (isec->name, ".fixup") == 0
11749 || isec->call_check_done))
11750 {
11751 if (toc_adjusting_stub_needed (info, isec) < 0)
11752 return FALSE;
11753 }
11754 /* Make all sections use the TOC assigned for this object file.
11755 This will be wrong for pasted sections; We fix that in
11756 check_pasted_section(). */
11757 if (elf_gp (isec->owner) != 0)
11758 htab->toc_curr = elf_gp (isec->owner);
11759 }
11760
11761 htab->stub_group[isec->id].toc_off = htab->toc_curr;
11762 return TRUE;
11763 }
11764
11765 /* Check that all .init and .fini sections use the same toc, if they
11766 have toc relocs. */
11767
11768 static bfd_boolean
11769 check_pasted_section (struct bfd_link_info *info, const char *name)
11770 {
11771 asection *o = bfd_get_section_by_name (info->output_bfd, name);
11772
11773 if (o != NULL)
11774 {
11775 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11776 bfd_vma toc_off = 0;
11777 asection *i;
11778
11779 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11780 if (i->has_toc_reloc)
11781 {
11782 if (toc_off == 0)
11783 toc_off = htab->stub_group[i->id].toc_off;
11784 else if (toc_off != htab->stub_group[i->id].toc_off)
11785 return FALSE;
11786 }
11787
11788 if (toc_off == 0)
11789 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11790 if (i->makes_toc_func_call)
11791 {
11792 toc_off = htab->stub_group[i->id].toc_off;
11793 break;
11794 }
11795
11796 /* Make sure the whole pasted function uses the same toc offset. */
11797 if (toc_off != 0)
11798 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11799 htab->stub_group[i->id].toc_off = toc_off;
11800 }
11801 return TRUE;
11802 }
11803
11804 bfd_boolean
11805 ppc64_elf_check_init_fini (struct bfd_link_info *info)
11806 {
11807 return (check_pasted_section (info, ".init")
11808 & check_pasted_section (info, ".fini"));
11809 }
11810
11811 /* See whether we can group stub sections together. Grouping stub
11812 sections may result in fewer stubs. More importantly, we need to
11813 put all .init* and .fini* stubs at the beginning of the .init or
11814 .fini output sections respectively, because glibc splits the
11815 _init and _fini functions into multiple parts. Putting a stub in
11816 the middle of a function is not a good idea. */
11817
11818 static void
11819 group_sections (struct ppc_link_hash_table *htab,
11820 bfd_size_type stub_group_size,
11821 bfd_boolean stubs_always_before_branch)
11822 {
11823 asection **list;
11824 bfd_size_type stub14_group_size;
11825 bfd_boolean suppress_size_errors;
11826
11827 suppress_size_errors = FALSE;
11828 stub14_group_size = stub_group_size >> 10;
11829 if (stub_group_size == 1)
11830 {
11831 /* Default values. */
11832 if (stubs_always_before_branch)
11833 {
11834 stub_group_size = 0x1e00000;
11835 stub14_group_size = 0x7800;
11836 }
11837 else
11838 {
11839 stub_group_size = 0x1c00000;
11840 stub14_group_size = 0x7000;
11841 }
11842 suppress_size_errors = TRUE;
11843 }
11844
11845 list = htab->input_list + htab->top_index;
11846 do
11847 {
11848 asection *tail = *list;
11849 while (tail != NULL)
11850 {
11851 asection *curr;
11852 asection *prev;
11853 bfd_size_type total;
11854 bfd_boolean big_sec;
11855 bfd_vma curr_toc;
11856
11857 curr = tail;
11858 total = tail->size;
11859 big_sec = total > (ppc64_elf_section_data (tail) != NULL
11860 && ppc64_elf_section_data (tail)->has_14bit_branch
11861 ? stub14_group_size : stub_group_size);
11862 if (big_sec && !suppress_size_errors)
11863 (*_bfd_error_handler) (_("%B section %A exceeds stub group size"),
11864 tail->owner, tail);
11865 curr_toc = htab->stub_group[tail->id].toc_off;
11866
11867 while ((prev = PREV_SEC (curr)) != NULL
11868 && ((total += curr->output_offset - prev->output_offset)
11869 < (ppc64_elf_section_data (prev) != NULL
11870 && ppc64_elf_section_data (prev)->has_14bit_branch
11871 ? stub14_group_size : stub_group_size))
11872 && htab->stub_group[prev->id].toc_off == curr_toc)
11873 curr = prev;
11874
11875 /* OK, the size from the start of CURR to the end is less
11876 than stub_group_size and thus can be handled by one stub
11877 section. (or the tail section is itself larger than
11878 stub_group_size, in which case we may be toast.) We
11879 should really be keeping track of the total size of stubs
11880 added here, as stubs contribute to the final output
11881 section size. That's a little tricky, and this way will
11882 only break if stubs added make the total size more than
11883 2^25, ie. for the default stub_group_size, if stubs total
11884 more than 2097152 bytes, or nearly 75000 plt call stubs. */
11885 do
11886 {
11887 prev = PREV_SEC (tail);
11888 /* Set up this stub group. */
11889 htab->stub_group[tail->id].link_sec = curr;
11890 }
11891 while (tail != curr && (tail = prev) != NULL);
11892
11893 /* But wait, there's more! Input sections up to stub_group_size
11894 bytes before the stub section can be handled by it too.
11895 Don't do this if we have a really large section after the
11896 stubs, as adding more stubs increases the chance that
11897 branches may not reach into the stub section. */
11898 if (!stubs_always_before_branch && !big_sec)
11899 {
11900 total = 0;
11901 while (prev != NULL
11902 && ((total += tail->output_offset - prev->output_offset)
11903 < (ppc64_elf_section_data (prev) != NULL
11904 && ppc64_elf_section_data (prev)->has_14bit_branch
11905 ? stub14_group_size : stub_group_size))
11906 && htab->stub_group[prev->id].toc_off == curr_toc)
11907 {
11908 tail = prev;
11909 prev = PREV_SEC (tail);
11910 htab->stub_group[tail->id].link_sec = curr;
11911 }
11912 }
11913 tail = prev;
11914 }
11915 }
11916 while (list-- != htab->input_list);
11917 free (htab->input_list);
11918 #undef PREV_SEC
11919 }
11920
11921 static const unsigned char glink_eh_frame_cie[] =
11922 {
11923 0, 0, 0, 16, /* length. */
11924 0, 0, 0, 0, /* id. */
11925 1, /* CIE version. */
11926 'z', 'R', 0, /* Augmentation string. */
11927 4, /* Code alignment. */
11928 0x78, /* Data alignment. */
11929 65, /* RA reg. */
11930 1, /* Augmentation size. */
11931 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding. */
11932 DW_CFA_def_cfa, 1, 0, /* def_cfa: r1 offset 0. */
11933 0, 0, 0, 0
11934 };
11935
11936 /* Stripping output sections is normally done before dynamic section
11937 symbols have been allocated. This function is called later, and
11938 handles cases like htab->brlt which is mapped to its own output
11939 section. */
11940
11941 static void
11942 maybe_strip_output (struct bfd_link_info *info, asection *isec)
11943 {
11944 if (isec->size == 0
11945 && isec->output_section->size == 0
11946 && !(isec->output_section->flags & SEC_KEEP)
11947 && !bfd_section_removed_from_list (info->output_bfd,
11948 isec->output_section)
11949 && elf_section_data (isec->output_section)->dynindx == 0)
11950 {
11951 isec->output_section->flags |= SEC_EXCLUDE;
11952 bfd_section_list_remove (info->output_bfd, isec->output_section);
11953 info->output_bfd->section_count--;
11954 }
11955 }
11956
11957 /* Determine and set the size of the stub section for a final link.
11958
11959 The basic idea here is to examine all the relocations looking for
11960 PC-relative calls to a target that is unreachable with a "bl"
11961 instruction. */
11962
11963 bfd_boolean
11964 ppc64_elf_size_stubs (struct bfd_link_info *info)
11965 {
11966 bfd_size_type stub_group_size;
11967 bfd_boolean stubs_always_before_branch;
11968 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11969
11970 if (htab == NULL)
11971 return FALSE;
11972
11973 if (htab->params->plt_thread_safe == -1 && !info->executable)
11974 htab->params->plt_thread_safe = 1;
11975 if (!htab->opd_abi)
11976 htab->params->plt_thread_safe = 0;
11977 else if (htab->params->plt_thread_safe == -1)
11978 {
11979 static const char *const thread_starter[] =
11980 {
11981 "pthread_create",
11982 /* libstdc++ */
11983 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
11984 /* librt */
11985 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
11986 "mq_notify", "create_timer",
11987 /* libanl */
11988 "getaddrinfo_a",
11989 /* libgomp */
11990 "GOMP_parallel",
11991 "GOMP_parallel_start",
11992 "GOMP_parallel_loop_static",
11993 "GOMP_parallel_loop_static_start",
11994 "GOMP_parallel_loop_dynamic",
11995 "GOMP_parallel_loop_dynamic_start",
11996 "GOMP_parallel_loop_guided",
11997 "GOMP_parallel_loop_guided_start",
11998 "GOMP_parallel_loop_runtime",
11999 "GOMP_parallel_loop_runtime_start",
12000 "GOMP_parallel_sections",
12001 "GOMP_parallel_sections_start",
12002 /* libgo */
12003 "__go_go",
12004 };
12005 unsigned i;
12006
12007 for (i = 0; i < sizeof (thread_starter)/ sizeof (thread_starter[0]); i++)
12008 {
12009 struct elf_link_hash_entry *h;
12010 h = elf_link_hash_lookup (&htab->elf, thread_starter[i],
12011 FALSE, FALSE, TRUE);
12012 htab->params->plt_thread_safe = h != NULL && h->ref_regular;
12013 if (htab->params->plt_thread_safe)
12014 break;
12015 }
12016 }
12017 stubs_always_before_branch = htab->params->group_size < 0;
12018 if (htab->params->group_size < 0)
12019 stub_group_size = -htab->params->group_size;
12020 else
12021 stub_group_size = htab->params->group_size;
12022
12023 group_sections (htab, stub_group_size, stubs_always_before_branch);
12024
12025 while (1)
12026 {
12027 bfd *input_bfd;
12028 unsigned int bfd_indx;
12029 asection *stub_sec;
12030
12031 htab->stub_iteration += 1;
12032
12033 for (input_bfd = info->input_bfds, bfd_indx = 0;
12034 input_bfd != NULL;
12035 input_bfd = input_bfd->link.next, bfd_indx++)
12036 {
12037 Elf_Internal_Shdr *symtab_hdr;
12038 asection *section;
12039 Elf_Internal_Sym *local_syms = NULL;
12040
12041 if (!is_ppc64_elf (input_bfd))
12042 continue;
12043
12044 /* We'll need the symbol table in a second. */
12045 symtab_hdr = &elf_symtab_hdr (input_bfd);
12046 if (symtab_hdr->sh_info == 0)
12047 continue;
12048
12049 /* Walk over each section attached to the input bfd. */
12050 for (section = input_bfd->sections;
12051 section != NULL;
12052 section = section->next)
12053 {
12054 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
12055
12056 /* If there aren't any relocs, then there's nothing more
12057 to do. */
12058 if ((section->flags & SEC_RELOC) == 0
12059 || (section->flags & SEC_ALLOC) == 0
12060 || (section->flags & SEC_LOAD) == 0
12061 || (section->flags & SEC_CODE) == 0
12062 || section->reloc_count == 0)
12063 continue;
12064
12065 /* If this section is a link-once section that will be
12066 discarded, then don't create any stubs. */
12067 if (section->output_section == NULL
12068 || section->output_section->owner != info->output_bfd)
12069 continue;
12070
12071 /* Get the relocs. */
12072 internal_relocs
12073 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
12074 info->keep_memory);
12075 if (internal_relocs == NULL)
12076 goto error_ret_free_local;
12077
12078 /* Now examine each relocation. */
12079 irela = internal_relocs;
12080 irelaend = irela + section->reloc_count;
12081 for (; irela < irelaend; irela++)
12082 {
12083 enum elf_ppc64_reloc_type r_type;
12084 unsigned int r_indx;
12085 enum ppc_stub_type stub_type;
12086 struct ppc_stub_hash_entry *stub_entry;
12087 asection *sym_sec, *code_sec;
12088 bfd_vma sym_value, code_value;
12089 bfd_vma destination;
12090 unsigned long local_off;
12091 bfd_boolean ok_dest;
12092 struct ppc_link_hash_entry *hash;
12093 struct ppc_link_hash_entry *fdh;
12094 struct elf_link_hash_entry *h;
12095 Elf_Internal_Sym *sym;
12096 char *stub_name;
12097 const asection *id_sec;
12098 struct _opd_sec_data *opd;
12099 struct plt_entry *plt_ent;
12100
12101 r_type = ELF64_R_TYPE (irela->r_info);
12102 r_indx = ELF64_R_SYM (irela->r_info);
12103
12104 if (r_type >= R_PPC64_max)
12105 {
12106 bfd_set_error (bfd_error_bad_value);
12107 goto error_ret_free_internal;
12108 }
12109
12110 /* Only look for stubs on branch instructions. */
12111 if (r_type != R_PPC64_REL24
12112 && r_type != R_PPC64_REL14
12113 && r_type != R_PPC64_REL14_BRTAKEN
12114 && r_type != R_PPC64_REL14_BRNTAKEN)
12115 continue;
12116
12117 /* Now determine the call target, its name, value,
12118 section. */
12119 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
12120 r_indx, input_bfd))
12121 goto error_ret_free_internal;
12122 hash = (struct ppc_link_hash_entry *) h;
12123
12124 ok_dest = FALSE;
12125 fdh = NULL;
12126 sym_value = 0;
12127 if (hash == NULL)
12128 {
12129 sym_value = sym->st_value;
12130 ok_dest = TRUE;
12131 }
12132 else if (hash->elf.root.type == bfd_link_hash_defined
12133 || hash->elf.root.type == bfd_link_hash_defweak)
12134 {
12135 sym_value = hash->elf.root.u.def.value;
12136 if (sym_sec->output_section != NULL)
12137 ok_dest = TRUE;
12138 }
12139 else if (hash->elf.root.type == bfd_link_hash_undefweak
12140 || hash->elf.root.type == bfd_link_hash_undefined)
12141 {
12142 /* Recognise an old ABI func code entry sym, and
12143 use the func descriptor sym instead if it is
12144 defined. */
12145 if (hash->elf.root.root.string[0] == '.'
12146 && (fdh = lookup_fdh (hash, htab)) != NULL)
12147 {
12148 if (fdh->elf.root.type == bfd_link_hash_defined
12149 || fdh->elf.root.type == bfd_link_hash_defweak)
12150 {
12151 sym_sec = fdh->elf.root.u.def.section;
12152 sym_value = fdh->elf.root.u.def.value;
12153 if (sym_sec->output_section != NULL)
12154 ok_dest = TRUE;
12155 }
12156 else
12157 fdh = NULL;
12158 }
12159 }
12160 else
12161 {
12162 bfd_set_error (bfd_error_bad_value);
12163 goto error_ret_free_internal;
12164 }
12165
12166 destination = 0;
12167 local_off = 0;
12168 if (ok_dest)
12169 {
12170 sym_value += irela->r_addend;
12171 destination = (sym_value
12172 + sym_sec->output_offset
12173 + sym_sec->output_section->vma);
12174 local_off = PPC64_LOCAL_ENTRY_OFFSET (hash
12175 ? hash->elf.other
12176 : sym->st_other);
12177 }
12178
12179 code_sec = sym_sec;
12180 code_value = sym_value;
12181 opd = get_opd_info (sym_sec);
12182 if (opd != NULL)
12183 {
12184 bfd_vma dest;
12185
12186 if (hash == NULL && opd->adjust != NULL)
12187 {
12188 long adjust = opd->adjust[OPD_NDX (sym_value)];
12189 if (adjust == -1)
12190 continue;
12191 code_value += adjust;
12192 sym_value += adjust;
12193 }
12194 dest = opd_entry_value (sym_sec, sym_value,
12195 &code_sec, &code_value, FALSE);
12196 if (dest != (bfd_vma) -1)
12197 {
12198 destination = dest;
12199 if (fdh != NULL)
12200 {
12201 /* Fixup old ABI sym to point at code
12202 entry. */
12203 hash->elf.root.type = bfd_link_hash_defweak;
12204 hash->elf.root.u.def.section = code_sec;
12205 hash->elf.root.u.def.value = code_value;
12206 }
12207 }
12208 }
12209
12210 /* Determine what (if any) linker stub is needed. */
12211 plt_ent = NULL;
12212 stub_type = ppc_type_of_stub (section, irela, &hash,
12213 &plt_ent, destination,
12214 local_off);
12215
12216 if (stub_type != ppc_stub_plt_call)
12217 {
12218 /* Check whether we need a TOC adjusting stub.
12219 Since the linker pastes together pieces from
12220 different object files when creating the
12221 _init and _fini functions, it may be that a
12222 call to what looks like a local sym is in
12223 fact a call needing a TOC adjustment. */
12224 if (code_sec != NULL
12225 && code_sec->output_section != NULL
12226 && (htab->stub_group[code_sec->id].toc_off
12227 != htab->stub_group[section->id].toc_off)
12228 && (code_sec->has_toc_reloc
12229 || code_sec->makes_toc_func_call))
12230 stub_type = ppc_stub_long_branch_r2off;
12231 }
12232
12233 if (stub_type == ppc_stub_none)
12234 continue;
12235
12236 /* __tls_get_addr calls might be eliminated. */
12237 if (stub_type != ppc_stub_plt_call
12238 && hash != NULL
12239 && (hash == htab->tls_get_addr
12240 || hash == htab->tls_get_addr_fd)
12241 && section->has_tls_reloc
12242 && irela != internal_relocs)
12243 {
12244 /* Get tls info. */
12245 unsigned char *tls_mask;
12246
12247 if (!get_tls_mask (&tls_mask, NULL, NULL, &local_syms,
12248 irela - 1, input_bfd))
12249 goto error_ret_free_internal;
12250 if (*tls_mask != 0)
12251 continue;
12252 }
12253
12254 if (stub_type == ppc_stub_plt_call
12255 && irela + 1 < irelaend
12256 && irela[1].r_offset == irela->r_offset + 4
12257 && ELF64_R_TYPE (irela[1].r_info) == R_PPC64_TOCSAVE)
12258 {
12259 if (!tocsave_find (htab, INSERT,
12260 &local_syms, irela + 1, input_bfd))
12261 goto error_ret_free_internal;
12262 }
12263 else if (stub_type == ppc_stub_plt_call)
12264 stub_type = ppc_stub_plt_call_r2save;
12265
12266 /* Support for grouping stub sections. */
12267 id_sec = htab->stub_group[section->id].link_sec;
12268
12269 /* Get the name of this stub. */
12270 stub_name = ppc_stub_name (id_sec, sym_sec, hash, irela);
12271 if (!stub_name)
12272 goto error_ret_free_internal;
12273
12274 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
12275 stub_name, FALSE, FALSE);
12276 if (stub_entry != NULL)
12277 {
12278 /* The proper stub has already been created. */
12279 free (stub_name);
12280 if (stub_type == ppc_stub_plt_call_r2save)
12281 stub_entry->stub_type = stub_type;
12282 continue;
12283 }
12284
12285 stub_entry = ppc_add_stub (stub_name, section, info);
12286 if (stub_entry == NULL)
12287 {
12288 free (stub_name);
12289 error_ret_free_internal:
12290 if (elf_section_data (section)->relocs == NULL)
12291 free (internal_relocs);
12292 error_ret_free_local:
12293 if (local_syms != NULL
12294 && (symtab_hdr->contents
12295 != (unsigned char *) local_syms))
12296 free (local_syms);
12297 return FALSE;
12298 }
12299
12300 stub_entry->stub_type = stub_type;
12301 if (stub_type != ppc_stub_plt_call
12302 && stub_type != ppc_stub_plt_call_r2save)
12303 {
12304 stub_entry->target_value = code_value;
12305 stub_entry->target_section = code_sec;
12306 }
12307 else
12308 {
12309 stub_entry->target_value = sym_value;
12310 stub_entry->target_section = sym_sec;
12311 }
12312 stub_entry->h = hash;
12313 stub_entry->plt_ent = plt_ent;
12314 stub_entry->other = hash ? hash->elf.other : sym->st_other;
12315
12316 if (stub_entry->h != NULL)
12317 htab->stub_globals += 1;
12318 }
12319
12320 /* We're done with the internal relocs, free them. */
12321 if (elf_section_data (section)->relocs != internal_relocs)
12322 free (internal_relocs);
12323 }
12324
12325 if (local_syms != NULL
12326 && symtab_hdr->contents != (unsigned char *) local_syms)
12327 {
12328 if (!info->keep_memory)
12329 free (local_syms);
12330 else
12331 symtab_hdr->contents = (unsigned char *) local_syms;
12332 }
12333 }
12334
12335 /* We may have added some stubs. Find out the new size of the
12336 stub sections. */
12337 for (stub_sec = htab->params->stub_bfd->sections;
12338 stub_sec != NULL;
12339 stub_sec = stub_sec->next)
12340 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12341 {
12342 stub_sec->rawsize = stub_sec->size;
12343 stub_sec->size = 0;
12344 stub_sec->reloc_count = 0;
12345 stub_sec->flags &= ~SEC_RELOC;
12346 }
12347
12348 htab->brlt->size = 0;
12349 htab->brlt->reloc_count = 0;
12350 htab->brlt->flags &= ~SEC_RELOC;
12351 if (htab->relbrlt != NULL)
12352 htab->relbrlt->size = 0;
12353
12354 bfd_hash_traverse (&htab->stub_hash_table, ppc_size_one_stub, info);
12355
12356 if (info->emitrelocations
12357 && htab->glink != NULL && htab->glink->size != 0)
12358 {
12359 htab->glink->reloc_count = 1;
12360 htab->glink->flags |= SEC_RELOC;
12361 }
12362
12363 if (htab->glink_eh_frame != NULL
12364 && !bfd_is_abs_section (htab->glink_eh_frame->output_section)
12365 && htab->glink_eh_frame->output_section->size != 0)
12366 {
12367 size_t size = 0, align;
12368
12369 for (stub_sec = htab->params->stub_bfd->sections;
12370 stub_sec != NULL;
12371 stub_sec = stub_sec->next)
12372 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12373 size += 24;
12374 if (htab->glink != NULL && htab->glink->size != 0)
12375 size += 24;
12376 if (size != 0)
12377 size += sizeof (glink_eh_frame_cie);
12378 align = 1;
12379 align <<= htab->glink_eh_frame->output_section->alignment_power;
12380 align -= 1;
12381 size = (size + align) & ~align;
12382 htab->glink_eh_frame->rawsize = htab->glink_eh_frame->size;
12383 htab->glink_eh_frame->size = size;
12384 }
12385
12386 if (htab->params->plt_stub_align != 0)
12387 for (stub_sec = htab->params->stub_bfd->sections;
12388 stub_sec != NULL;
12389 stub_sec = stub_sec->next)
12390 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12391 stub_sec->size = ((stub_sec->size
12392 + (1 << htab->params->plt_stub_align) - 1)
12393 & (-1 << htab->params->plt_stub_align));
12394
12395 for (stub_sec = htab->params->stub_bfd->sections;
12396 stub_sec != NULL;
12397 stub_sec = stub_sec->next)
12398 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
12399 && stub_sec->rawsize != stub_sec->size)
12400 break;
12401
12402 /* Exit from this loop when no stubs have been added, and no stubs
12403 have changed size. */
12404 if (stub_sec == NULL
12405 && (htab->glink_eh_frame == NULL
12406 || htab->glink_eh_frame->rawsize == htab->glink_eh_frame->size))
12407 break;
12408
12409 /* Ask the linker to do its stuff. */
12410 (*htab->params->layout_sections_again) ();
12411 }
12412
12413 if (htab->glink_eh_frame != NULL
12414 && htab->glink_eh_frame->size != 0)
12415 {
12416 bfd_vma val;
12417 bfd_byte *p, *last_fde;
12418 size_t last_fde_len, size, align, pad;
12419 asection *stub_sec;
12420
12421 p = bfd_zalloc (htab->glink_eh_frame->owner, htab->glink_eh_frame->size);
12422 if (p == NULL)
12423 return FALSE;
12424 htab->glink_eh_frame->contents = p;
12425 last_fde = p;
12426
12427 memcpy (p, glink_eh_frame_cie, sizeof (glink_eh_frame_cie));
12428 /* CIE length (rewrite in case little-endian). */
12429 last_fde_len = sizeof (glink_eh_frame_cie) - 4;
12430 bfd_put_32 (htab->elf.dynobj, last_fde_len, p);
12431 p += sizeof (glink_eh_frame_cie);
12432
12433 for (stub_sec = htab->params->stub_bfd->sections;
12434 stub_sec != NULL;
12435 stub_sec = stub_sec->next)
12436 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12437 {
12438 last_fde = p;
12439 last_fde_len = 20;
12440 /* FDE length. */
12441 bfd_put_32 (htab->elf.dynobj, 20, p);
12442 p += 4;
12443 /* CIE pointer. */
12444 val = p - htab->glink_eh_frame->contents;
12445 bfd_put_32 (htab->elf.dynobj, val, p);
12446 p += 4;
12447 /* Offset to stub section, written later. */
12448 p += 4;
12449 /* stub section size. */
12450 bfd_put_32 (htab->elf.dynobj, stub_sec->size, p);
12451 p += 4;
12452 /* Augmentation. */
12453 p += 1;
12454 /* Pad. */
12455 p += 7;
12456 }
12457 if (htab->glink != NULL && htab->glink->size != 0)
12458 {
12459 last_fde = p;
12460 last_fde_len = 20;
12461 /* FDE length. */
12462 bfd_put_32 (htab->elf.dynobj, 20, p);
12463 p += 4;
12464 /* CIE pointer. */
12465 val = p - htab->glink_eh_frame->contents;
12466 bfd_put_32 (htab->elf.dynobj, val, p);
12467 p += 4;
12468 /* Offset to .glink, written later. */
12469 p += 4;
12470 /* .glink size. */
12471 bfd_put_32 (htab->elf.dynobj, htab->glink->size - 8, p);
12472 p += 4;
12473 /* Augmentation. */
12474 p += 1;
12475
12476 *p++ = DW_CFA_advance_loc + 1;
12477 *p++ = DW_CFA_register;
12478 *p++ = 65;
12479 *p++ = 12;
12480 *p++ = DW_CFA_advance_loc + 4;
12481 *p++ = DW_CFA_restore_extended;
12482 *p++ = 65;
12483 }
12484 /* Subsume any padding into the last FDE if user .eh_frame
12485 sections are aligned more than glink_eh_frame. Otherwise any
12486 zero padding will be seen as a terminator. */
12487 size = p - htab->glink_eh_frame->contents;
12488 align = 1;
12489 align <<= htab->glink_eh_frame->output_section->alignment_power;
12490 align -= 1;
12491 pad = ((size + align) & ~align) - size;
12492 htab->glink_eh_frame->size = size + pad;
12493 bfd_put_32 (htab->elf.dynobj, last_fde_len + pad, last_fde);
12494 }
12495
12496 maybe_strip_output (info, htab->brlt);
12497 if (htab->glink_eh_frame != NULL)
12498 maybe_strip_output (info, htab->glink_eh_frame);
12499
12500 return TRUE;
12501 }
12502
12503 /* Called after we have determined section placement. If sections
12504 move, we'll be called again. Provide a value for TOCstart. */
12505
12506 bfd_vma
12507 ppc64_elf_set_toc (struct bfd_link_info *info, bfd *obfd)
12508 {
12509 asection *s;
12510 bfd_vma TOCstart;
12511
12512 /* The TOC consists of sections .got, .toc, .tocbss, .plt in that
12513 order. The TOC starts where the first of these sections starts. */
12514 s = bfd_get_section_by_name (obfd, ".got");
12515 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12516 s = bfd_get_section_by_name (obfd, ".toc");
12517 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12518 s = bfd_get_section_by_name (obfd, ".tocbss");
12519 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12520 s = bfd_get_section_by_name (obfd, ".plt");
12521 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12522 {
12523 /* This may happen for
12524 o references to TOC base (SYM@toc / TOC[tc0]) without a
12525 .toc directive
12526 o bad linker script
12527 o --gc-sections and empty TOC sections
12528
12529 FIXME: Warn user? */
12530
12531 /* Look for a likely section. We probably won't even be
12532 using TOCstart. */
12533 for (s = obfd->sections; s != NULL; s = s->next)
12534 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_READONLY
12535 | SEC_EXCLUDE))
12536 == (SEC_ALLOC | SEC_SMALL_DATA))
12537 break;
12538 if (s == NULL)
12539 for (s = obfd->sections; s != NULL; s = s->next)
12540 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_EXCLUDE))
12541 == (SEC_ALLOC | SEC_SMALL_DATA))
12542 break;
12543 if (s == NULL)
12544 for (s = obfd->sections; s != NULL; s = s->next)
12545 if ((s->flags & (SEC_ALLOC | SEC_READONLY | SEC_EXCLUDE))
12546 == SEC_ALLOC)
12547 break;
12548 if (s == NULL)
12549 for (s = obfd->sections; s != NULL; s = s->next)
12550 if ((s->flags & (SEC_ALLOC | SEC_EXCLUDE)) == SEC_ALLOC)
12551 break;
12552 }
12553
12554 TOCstart = 0;
12555 if (s != NULL)
12556 TOCstart = s->output_section->vma + s->output_offset;
12557
12558 _bfd_set_gp_value (obfd, TOCstart);
12559
12560 if (info != NULL && s != NULL)
12561 {
12562 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12563
12564 if (htab != NULL)
12565 {
12566 if (htab->elf.hgot != NULL)
12567 {
12568 htab->elf.hgot->root.u.def.value = TOC_BASE_OFF;
12569 htab->elf.hgot->root.u.def.section = s;
12570 }
12571 }
12572 else
12573 {
12574 struct bfd_link_hash_entry *bh = NULL;
12575 _bfd_generic_link_add_one_symbol (info, obfd, ".TOC.", BSF_GLOBAL,
12576 s, TOC_BASE_OFF, NULL, FALSE,
12577 FALSE, &bh);
12578 }
12579 }
12580 return TOCstart;
12581 }
12582
12583 /* Called via elf_link_hash_traverse from ppc64_elf_build_stubs to
12584 write out any global entry stubs. */
12585
12586 static bfd_boolean
12587 build_global_entry_stubs (struct elf_link_hash_entry *h, void *inf)
12588 {
12589 struct bfd_link_info *info;
12590 struct ppc_link_hash_table *htab;
12591 struct plt_entry *pent;
12592 asection *s;
12593
12594 if (h->root.type == bfd_link_hash_indirect)
12595 return TRUE;
12596
12597 if (!h->pointer_equality_needed)
12598 return TRUE;
12599
12600 if (h->def_regular)
12601 return TRUE;
12602
12603 info = inf;
12604 htab = ppc_hash_table (info);
12605 if (htab == NULL)
12606 return FALSE;
12607
12608 s = htab->glink;
12609 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
12610 if (pent->plt.offset != (bfd_vma) -1
12611 && pent->addend == 0)
12612 {
12613 bfd_byte *p;
12614 asection *plt;
12615 bfd_vma off;
12616
12617 p = s->contents + h->root.u.def.value;
12618 plt = htab->elf.splt;
12619 if (!htab->elf.dynamic_sections_created
12620 || h->dynindx == -1)
12621 plt = htab->elf.iplt;
12622 off = pent->plt.offset + plt->output_offset + plt->output_section->vma;
12623 off -= h->root.u.def.value + s->output_offset + s->output_section->vma;
12624
12625 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
12626 {
12627 info->callbacks->einfo
12628 (_("%P: linkage table error against `%T'\n"),
12629 h->root.root.string);
12630 bfd_set_error (bfd_error_bad_value);
12631 htab->stub_error = TRUE;
12632 }
12633
12634 htab->stub_count[ppc_stub_global_entry - 1] += 1;
12635 if (htab->params->emit_stub_syms)
12636 {
12637 size_t len = strlen (h->root.root.string);
12638 char *name = bfd_malloc (sizeof "12345678.global_entry." + len);
12639
12640 if (name == NULL)
12641 return FALSE;
12642
12643 sprintf (name, "%08x.global_entry.%s", s->id, h->root.root.string);
12644 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
12645 if (h == NULL)
12646 return FALSE;
12647 if (h->root.type == bfd_link_hash_new)
12648 {
12649 h->root.type = bfd_link_hash_defined;
12650 h->root.u.def.section = s;
12651 h->root.u.def.value = p - s->contents;
12652 h->ref_regular = 1;
12653 h->def_regular = 1;
12654 h->ref_regular_nonweak = 1;
12655 h->forced_local = 1;
12656 h->non_elf = 0;
12657 h->root.linker_def = 1;
12658 }
12659 }
12660
12661 if (PPC_HA (off) != 0)
12662 {
12663 bfd_put_32 (s->owner, ADDIS_R12_R12 | PPC_HA (off), p);
12664 p += 4;
12665 }
12666 bfd_put_32 (s->owner, LD_R12_0R12 | PPC_LO (off), p);
12667 p += 4;
12668 bfd_put_32 (s->owner, MTCTR_R12, p);
12669 p += 4;
12670 bfd_put_32 (s->owner, BCTR, p);
12671 break;
12672 }
12673 return TRUE;
12674 }
12675
12676 /* Build all the stubs associated with the current output file.
12677 The stubs are kept in a hash table attached to the main linker
12678 hash table. This function is called via gldelf64ppc_finish. */
12679
12680 bfd_boolean
12681 ppc64_elf_build_stubs (struct bfd_link_info *info,
12682 char **stats)
12683 {
12684 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12685 asection *stub_sec;
12686 bfd_byte *p;
12687 int stub_sec_count = 0;
12688
12689 if (htab == NULL)
12690 return FALSE;
12691
12692 /* Allocate memory to hold the linker stubs. */
12693 for (stub_sec = htab->params->stub_bfd->sections;
12694 stub_sec != NULL;
12695 stub_sec = stub_sec->next)
12696 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
12697 && stub_sec->size != 0)
12698 {
12699 stub_sec->contents = bfd_zalloc (htab->params->stub_bfd, stub_sec->size);
12700 if (stub_sec->contents == NULL)
12701 return FALSE;
12702 /* We want to check that built size is the same as calculated
12703 size. rawsize is a convenient location to use. */
12704 stub_sec->rawsize = stub_sec->size;
12705 stub_sec->size = 0;
12706 }
12707
12708 if (htab->glink != NULL && htab->glink->size != 0)
12709 {
12710 unsigned int indx;
12711 bfd_vma plt0;
12712
12713 /* Build the .glink plt call stub. */
12714 if (htab->params->emit_stub_syms)
12715 {
12716 struct elf_link_hash_entry *h;
12717 h = elf_link_hash_lookup (&htab->elf, "__glink_PLTresolve",
12718 TRUE, FALSE, FALSE);
12719 if (h == NULL)
12720 return FALSE;
12721 if (h->root.type == bfd_link_hash_new)
12722 {
12723 h->root.type = bfd_link_hash_defined;
12724 h->root.u.def.section = htab->glink;
12725 h->root.u.def.value = 8;
12726 h->ref_regular = 1;
12727 h->def_regular = 1;
12728 h->ref_regular_nonweak = 1;
12729 h->forced_local = 1;
12730 h->non_elf = 0;
12731 h->root.linker_def = 1;
12732 }
12733 }
12734 plt0 = (htab->elf.splt->output_section->vma
12735 + htab->elf.splt->output_offset
12736 - 16);
12737 if (info->emitrelocations)
12738 {
12739 Elf_Internal_Rela *r = get_relocs (htab->glink, 1);
12740 if (r == NULL)
12741 return FALSE;
12742 r->r_offset = (htab->glink->output_offset
12743 + htab->glink->output_section->vma);
12744 r->r_info = ELF64_R_INFO (0, R_PPC64_REL64);
12745 r->r_addend = plt0;
12746 }
12747 p = htab->glink->contents;
12748 plt0 -= htab->glink->output_section->vma + htab->glink->output_offset;
12749 bfd_put_64 (htab->glink->owner, plt0, p);
12750 p += 8;
12751 if (htab->opd_abi)
12752 {
12753 bfd_put_32 (htab->glink->owner, MFLR_R12, p);
12754 p += 4;
12755 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
12756 p += 4;
12757 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
12758 p += 4;
12759 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | (-16 & 0xfffc), p);
12760 p += 4;
12761 bfd_put_32 (htab->glink->owner, MTLR_R12, p);
12762 p += 4;
12763 bfd_put_32 (htab->glink->owner, ADD_R11_R2_R11, p);
12764 p += 4;
12765 bfd_put_32 (htab->glink->owner, LD_R12_0R11, p);
12766 p += 4;
12767 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | 8, p);
12768 p += 4;
12769 bfd_put_32 (htab->glink->owner, MTCTR_R12, p);
12770 p += 4;
12771 bfd_put_32 (htab->glink->owner, LD_R11_0R11 | 16, p);
12772 p += 4;
12773 }
12774 else
12775 {
12776 bfd_put_32 (htab->glink->owner, MFLR_R0, p);
12777 p += 4;
12778 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
12779 p += 4;
12780 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
12781 p += 4;
12782 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | (-16 & 0xfffc), p);
12783 p += 4;
12784 bfd_put_32 (htab->glink->owner, MTLR_R0, p);
12785 p += 4;
12786 bfd_put_32 (htab->glink->owner, SUB_R12_R12_R11, p);
12787 p += 4;
12788 bfd_put_32 (htab->glink->owner, ADD_R11_R2_R11, p);
12789 p += 4;
12790 bfd_put_32 (htab->glink->owner, ADDI_R0_R12 | (-48 & 0xffff), p);
12791 p += 4;
12792 bfd_put_32 (htab->glink->owner, LD_R12_0R11, p);
12793 p += 4;
12794 bfd_put_32 (htab->glink->owner, SRDI_R0_R0_2, p);
12795 p += 4;
12796 bfd_put_32 (htab->glink->owner, MTCTR_R12, p);
12797 p += 4;
12798 bfd_put_32 (htab->glink->owner, LD_R11_0R11 | 8, p);
12799 p += 4;
12800 }
12801 bfd_put_32 (htab->glink->owner, BCTR, p);
12802 p += 4;
12803 while (p - htab->glink->contents < GLINK_CALL_STUB_SIZE)
12804 {
12805 bfd_put_32 (htab->glink->owner, NOP, p);
12806 p += 4;
12807 }
12808
12809 /* Build the .glink lazy link call stubs. */
12810 indx = 0;
12811 while (p < htab->glink->contents + htab->glink->rawsize)
12812 {
12813 if (htab->opd_abi)
12814 {
12815 if (indx < 0x8000)
12816 {
12817 bfd_put_32 (htab->glink->owner, LI_R0_0 | indx, p);
12818 p += 4;
12819 }
12820 else
12821 {
12822 bfd_put_32 (htab->glink->owner, LIS_R0_0 | PPC_HI (indx), p);
12823 p += 4;
12824 bfd_put_32 (htab->glink->owner, ORI_R0_R0_0 | PPC_LO (indx),
12825 p);
12826 p += 4;
12827 }
12828 }
12829 bfd_put_32 (htab->glink->owner,
12830 B_DOT | ((htab->glink->contents - p + 8) & 0x3fffffc), p);
12831 indx++;
12832 p += 4;
12833 }
12834
12835 /* Build .glink global entry stubs. */
12836 if (htab->glink->size > htab->glink->rawsize)
12837 elf_link_hash_traverse (&htab->elf, build_global_entry_stubs, info);
12838 }
12839
12840 if (htab->brlt != NULL && htab->brlt->size != 0)
12841 {
12842 htab->brlt->contents = bfd_zalloc (htab->brlt->owner,
12843 htab->brlt->size);
12844 if (htab->brlt->contents == NULL)
12845 return FALSE;
12846 }
12847 if (htab->relbrlt != NULL && htab->relbrlt->size != 0)
12848 {
12849 htab->relbrlt->contents = bfd_zalloc (htab->relbrlt->owner,
12850 htab->relbrlt->size);
12851 if (htab->relbrlt->contents == NULL)
12852 return FALSE;
12853 }
12854
12855 /* Build the stubs as directed by the stub hash table. */
12856 bfd_hash_traverse (&htab->stub_hash_table, ppc_build_one_stub, info);
12857
12858 if (htab->relbrlt != NULL)
12859 htab->relbrlt->reloc_count = 0;
12860
12861 if (htab->params->plt_stub_align != 0)
12862 for (stub_sec = htab->params->stub_bfd->sections;
12863 stub_sec != NULL;
12864 stub_sec = stub_sec->next)
12865 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12866 stub_sec->size = ((stub_sec->size
12867 + (1 << htab->params->plt_stub_align) - 1)
12868 & (-1 << htab->params->plt_stub_align));
12869
12870 for (stub_sec = htab->params->stub_bfd->sections;
12871 stub_sec != NULL;
12872 stub_sec = stub_sec->next)
12873 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12874 {
12875 stub_sec_count += 1;
12876 if (stub_sec->rawsize != stub_sec->size)
12877 break;
12878 }
12879
12880 /* Note that the glink_eh_frame check here is not only testing that
12881 the generated size matched the calculated size but also that
12882 bfd_elf_discard_info didn't make any changes to the section. */
12883 if (stub_sec != NULL
12884 || (htab->glink_eh_frame != NULL
12885 && htab->glink_eh_frame->rawsize != htab->glink_eh_frame->size))
12886 {
12887 htab->stub_error = TRUE;
12888 info->callbacks->einfo (_("%P: stubs don't match calculated size\n"));
12889 }
12890
12891 if (htab->stub_error)
12892 return FALSE;
12893
12894 if (stats != NULL)
12895 {
12896 *stats = bfd_malloc (500);
12897 if (*stats == NULL)
12898 return FALSE;
12899
12900 sprintf (*stats, _("linker stubs in %u group%s\n"
12901 " branch %lu\n"
12902 " toc adjust %lu\n"
12903 " long branch %lu\n"
12904 " long toc adj %lu\n"
12905 " plt call %lu\n"
12906 " plt call toc %lu\n"
12907 " global entry %lu"),
12908 stub_sec_count,
12909 stub_sec_count == 1 ? "" : "s",
12910 htab->stub_count[ppc_stub_long_branch - 1],
12911 htab->stub_count[ppc_stub_long_branch_r2off - 1],
12912 htab->stub_count[ppc_stub_plt_branch - 1],
12913 htab->stub_count[ppc_stub_plt_branch_r2off - 1],
12914 htab->stub_count[ppc_stub_plt_call - 1],
12915 htab->stub_count[ppc_stub_plt_call_r2save - 1],
12916 htab->stub_count[ppc_stub_global_entry - 1]);
12917 }
12918 return TRUE;
12919 }
12920
12921 /* This function undoes the changes made by add_symbol_adjust. */
12922
12923 static bfd_boolean
12924 undo_symbol_twiddle (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
12925 {
12926 struct ppc_link_hash_entry *eh;
12927
12928 if (h->root.type == bfd_link_hash_indirect)
12929 return TRUE;
12930
12931 eh = (struct ppc_link_hash_entry *) h;
12932 if (eh->elf.root.type != bfd_link_hash_undefweak || !eh->was_undefined)
12933 return TRUE;
12934
12935 eh->elf.root.type = bfd_link_hash_undefined;
12936 return TRUE;
12937 }
12938
12939 void
12940 ppc64_elf_restore_symbols (struct bfd_link_info *info)
12941 {
12942 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12943
12944 if (htab != NULL)
12945 elf_link_hash_traverse (&htab->elf, undo_symbol_twiddle, info);
12946 }
12947
12948 /* What to do when ld finds relocations against symbols defined in
12949 discarded sections. */
12950
12951 static unsigned int
12952 ppc64_elf_action_discarded (asection *sec)
12953 {
12954 if (strcmp (".opd", sec->name) == 0)
12955 return 0;
12956
12957 if (strcmp (".toc", sec->name) == 0)
12958 return 0;
12959
12960 if (strcmp (".toc1", sec->name) == 0)
12961 return 0;
12962
12963 return _bfd_elf_default_action_discarded (sec);
12964 }
12965
12966 /* The RELOCATE_SECTION function is called by the ELF backend linker
12967 to handle the relocations for a section.
12968
12969 The relocs are always passed as Rela structures; if the section
12970 actually uses Rel structures, the r_addend field will always be
12971 zero.
12972
12973 This function is responsible for adjust the section contents as
12974 necessary, and (if using Rela relocs and generating a
12975 relocatable output file) adjusting the reloc addend as
12976 necessary.
12977
12978 This function does not have to worry about setting the reloc
12979 address or the reloc symbol index.
12980
12981 LOCAL_SYMS is a pointer to the swapped in local symbols.
12982
12983 LOCAL_SECTIONS is an array giving the section in the input file
12984 corresponding to the st_shndx field of each local symbol.
12985
12986 The global hash table entry for the global symbols can be found
12987 via elf_sym_hashes (input_bfd).
12988
12989 When generating relocatable output, this function must handle
12990 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
12991 going to be the section symbol corresponding to the output
12992 section, which means that the addend must be adjusted
12993 accordingly. */
12994
12995 static bfd_boolean
12996 ppc64_elf_relocate_section (bfd *output_bfd,
12997 struct bfd_link_info *info,
12998 bfd *input_bfd,
12999 asection *input_section,
13000 bfd_byte *contents,
13001 Elf_Internal_Rela *relocs,
13002 Elf_Internal_Sym *local_syms,
13003 asection **local_sections)
13004 {
13005 struct ppc_link_hash_table *htab;
13006 Elf_Internal_Shdr *symtab_hdr;
13007 struct elf_link_hash_entry **sym_hashes;
13008 Elf_Internal_Rela *rel;
13009 Elf_Internal_Rela *relend;
13010 Elf_Internal_Rela outrel;
13011 bfd_byte *loc;
13012 struct got_entry **local_got_ents;
13013 bfd_vma TOCstart;
13014 bfd_boolean ret = TRUE;
13015 bfd_boolean is_opd;
13016 /* Assume 'at' branch hints. */
13017 bfd_boolean is_isa_v2 = TRUE;
13018 bfd_vma d_offset = (bfd_big_endian (output_bfd) ? 2 : 0);
13019
13020 /* Initialize howto table if needed. */
13021 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
13022 ppc_howto_init ();
13023
13024 htab = ppc_hash_table (info);
13025 if (htab == NULL)
13026 return FALSE;
13027
13028 /* Don't relocate stub sections. */
13029 if (input_section->owner == htab->params->stub_bfd)
13030 return TRUE;
13031
13032 BFD_ASSERT (is_ppc64_elf (input_bfd));
13033
13034 local_got_ents = elf_local_got_ents (input_bfd);
13035 TOCstart = elf_gp (output_bfd);
13036 symtab_hdr = &elf_symtab_hdr (input_bfd);
13037 sym_hashes = elf_sym_hashes (input_bfd);
13038 is_opd = ppc64_elf_section_data (input_section)->sec_type == sec_opd;
13039
13040 rel = relocs;
13041 relend = relocs + input_section->reloc_count;
13042 for (; rel < relend; rel++)
13043 {
13044 enum elf_ppc64_reloc_type r_type;
13045 bfd_vma addend;
13046 bfd_reloc_status_type r;
13047 Elf_Internal_Sym *sym;
13048 asection *sec;
13049 struct elf_link_hash_entry *h_elf;
13050 struct ppc_link_hash_entry *h;
13051 struct ppc_link_hash_entry *fdh;
13052 const char *sym_name;
13053 unsigned long r_symndx, toc_symndx;
13054 bfd_vma toc_addend;
13055 unsigned char tls_mask, tls_gd, tls_type;
13056 unsigned char sym_type;
13057 bfd_vma relocation;
13058 bfd_boolean unresolved_reloc;
13059 bfd_boolean warned;
13060 enum { DEST_NORMAL, DEST_OPD, DEST_STUB } reloc_dest;
13061 unsigned int insn;
13062 unsigned int mask;
13063 struct ppc_stub_hash_entry *stub_entry;
13064 bfd_vma max_br_offset;
13065 bfd_vma from;
13066 const Elf_Internal_Rela orig_rel = *rel;
13067 reloc_howto_type *howto;
13068 struct reloc_howto_struct alt_howto;
13069
13070 r_type = ELF64_R_TYPE (rel->r_info);
13071 r_symndx = ELF64_R_SYM (rel->r_info);
13072
13073 /* For old style R_PPC64_TOC relocs with a zero symbol, use the
13074 symbol of the previous ADDR64 reloc. The symbol gives us the
13075 proper TOC base to use. */
13076 if (rel->r_info == ELF64_R_INFO (0, R_PPC64_TOC)
13077 && rel != relocs
13078 && ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_ADDR64
13079 && is_opd)
13080 r_symndx = ELF64_R_SYM (rel[-1].r_info);
13081
13082 sym = NULL;
13083 sec = NULL;
13084 h_elf = NULL;
13085 sym_name = NULL;
13086 unresolved_reloc = FALSE;
13087 warned = FALSE;
13088
13089 if (r_symndx < symtab_hdr->sh_info)
13090 {
13091 /* It's a local symbol. */
13092 struct _opd_sec_data *opd;
13093
13094 sym = local_syms + r_symndx;
13095 sec = local_sections[r_symndx];
13096 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, sec);
13097 sym_type = ELF64_ST_TYPE (sym->st_info);
13098 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
13099 opd = get_opd_info (sec);
13100 if (opd != NULL && opd->adjust != NULL)
13101 {
13102 long adjust = opd->adjust[OPD_NDX (sym->st_value
13103 + rel->r_addend)];
13104 if (adjust == -1)
13105 relocation = 0;
13106 else
13107 {
13108 /* If this is a relocation against the opd section sym
13109 and we have edited .opd, adjust the reloc addend so
13110 that ld -r and ld --emit-relocs output is correct.
13111 If it is a reloc against some other .opd symbol,
13112 then the symbol value will be adjusted later. */
13113 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
13114 rel->r_addend += adjust;
13115 else
13116 relocation += adjust;
13117 }
13118 }
13119 }
13120 else
13121 {
13122 bfd_boolean ignored;
13123
13124 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
13125 r_symndx, symtab_hdr, sym_hashes,
13126 h_elf, sec, relocation,
13127 unresolved_reloc, warned, ignored);
13128 sym_name = h_elf->root.root.string;
13129 sym_type = h_elf->type;
13130 if (sec != NULL
13131 && sec->owner == output_bfd
13132 && strcmp (sec->name, ".opd") == 0)
13133 {
13134 /* This is a symbol defined in a linker script. All
13135 such are defined in output sections, even those
13136 defined by simple assignment from a symbol defined in
13137 an input section. Transfer the symbol to an
13138 appropriate input .opd section, so that a branch to
13139 this symbol will be mapped to the location specified
13140 by the opd entry. */
13141 struct bfd_link_order *lo;
13142 for (lo = sec->map_head.link_order; lo != NULL; lo = lo->next)
13143 if (lo->type == bfd_indirect_link_order)
13144 {
13145 asection *isec = lo->u.indirect.section;
13146 if (h_elf->root.u.def.value >= isec->output_offset
13147 && h_elf->root.u.def.value < (isec->output_offset
13148 + isec->size))
13149 {
13150 h_elf->root.u.def.value -= isec->output_offset;
13151 h_elf->root.u.def.section = isec;
13152 sec = isec;
13153 break;
13154 }
13155 }
13156 }
13157 }
13158 h = (struct ppc_link_hash_entry *) h_elf;
13159
13160 if (sec != NULL && discarded_section (sec))
13161 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
13162 rel, 1, relend,
13163 ppc64_elf_howto_table[r_type], 0,
13164 contents);
13165
13166 if (info->relocatable)
13167 continue;
13168
13169 if (h != NULL && &h->elf == htab->elf.hgot)
13170 {
13171 relocation = (TOCstart
13172 + htab->stub_group[input_section->id].toc_off);
13173 sec = bfd_abs_section_ptr;
13174 unresolved_reloc = FALSE;
13175 }
13176
13177 /* TLS optimizations. Replace instruction sequences and relocs
13178 based on information we collected in tls_optimize. We edit
13179 RELOCS so that --emit-relocs will output something sensible
13180 for the final instruction stream. */
13181 tls_mask = 0;
13182 tls_gd = 0;
13183 toc_symndx = 0;
13184 if (h != NULL)
13185 tls_mask = h->tls_mask;
13186 else if (local_got_ents != NULL)
13187 {
13188 struct plt_entry **local_plt = (struct plt_entry **)
13189 (local_got_ents + symtab_hdr->sh_info);
13190 unsigned char *lgot_masks = (unsigned char *)
13191 (local_plt + symtab_hdr->sh_info);
13192 tls_mask = lgot_masks[r_symndx];
13193 }
13194 if (tls_mask == 0
13195 && (r_type == R_PPC64_TLS
13196 || r_type == R_PPC64_TLSGD
13197 || r_type == R_PPC64_TLSLD))
13198 {
13199 /* Check for toc tls entries. */
13200 unsigned char *toc_tls;
13201
13202 if (!get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
13203 &local_syms, rel, input_bfd))
13204 return FALSE;
13205
13206 if (toc_tls)
13207 tls_mask = *toc_tls;
13208 }
13209
13210 /* Check that tls relocs are used with tls syms, and non-tls
13211 relocs are used with non-tls syms. */
13212 if (r_symndx != STN_UNDEF
13213 && r_type != R_PPC64_NONE
13214 && (h == NULL
13215 || h->elf.root.type == bfd_link_hash_defined
13216 || h->elf.root.type == bfd_link_hash_defweak)
13217 && (IS_PPC64_TLS_RELOC (r_type)
13218 != (sym_type == STT_TLS
13219 || (sym_type == STT_SECTION
13220 && (sec->flags & SEC_THREAD_LOCAL) != 0))))
13221 {
13222 if (tls_mask != 0
13223 && (r_type == R_PPC64_TLS
13224 || r_type == R_PPC64_TLSGD
13225 || r_type == R_PPC64_TLSLD))
13226 /* R_PPC64_TLS is OK against a symbol in the TOC. */
13227 ;
13228 else
13229 info->callbacks->einfo
13230 (!IS_PPC64_TLS_RELOC (r_type)
13231 ? _("%P: %H: %s used with TLS symbol `%T'\n")
13232 : _("%P: %H: %s used with non-TLS symbol `%T'\n"),
13233 input_bfd, input_section, rel->r_offset,
13234 ppc64_elf_howto_table[r_type]->name,
13235 sym_name);
13236 }
13237
13238 /* Ensure reloc mapping code below stays sane. */
13239 if (R_PPC64_TOC16_LO_DS != R_PPC64_TOC16_DS + 1
13240 || R_PPC64_TOC16_LO != R_PPC64_TOC16 + 1
13241 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TLSGD16 & 3)
13242 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TLSGD16_LO & 3)
13243 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TLSGD16_HI & 3)
13244 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TLSGD16_HA & 3)
13245 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TPREL16_DS & 3)
13246 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TPREL16_LO_DS & 3)
13247 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TPREL16_HI & 3)
13248 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TPREL16_HA & 3))
13249 abort ();
13250
13251 switch (r_type)
13252 {
13253 default:
13254 break;
13255
13256 case R_PPC64_LO_DS_OPT:
13257 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - d_offset);
13258 if ((insn & (0x3f << 26)) != 58u << 26)
13259 abort ();
13260 insn += (14u << 26) - (58u << 26);
13261 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - d_offset);
13262 r_type = R_PPC64_TOC16_LO;
13263 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13264 break;
13265
13266 case R_PPC64_TOC16:
13267 case R_PPC64_TOC16_LO:
13268 case R_PPC64_TOC16_DS:
13269 case R_PPC64_TOC16_LO_DS:
13270 {
13271 /* Check for toc tls entries. */
13272 unsigned char *toc_tls;
13273 int retval;
13274
13275 retval = get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
13276 &local_syms, rel, input_bfd);
13277 if (retval == 0)
13278 return FALSE;
13279
13280 if (toc_tls)
13281 {
13282 tls_mask = *toc_tls;
13283 if (r_type == R_PPC64_TOC16_DS
13284 || r_type == R_PPC64_TOC16_LO_DS)
13285 {
13286 if (tls_mask != 0
13287 && (tls_mask & (TLS_DTPREL | TLS_TPREL)) == 0)
13288 goto toctprel;
13289 }
13290 else
13291 {
13292 /* If we found a GD reloc pair, then we might be
13293 doing a GD->IE transition. */
13294 if (retval == 2)
13295 {
13296 tls_gd = TLS_TPRELGD;
13297 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13298 goto tls_ldgd_opt;
13299 }
13300 else if (retval == 3)
13301 {
13302 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13303 goto tls_ldgd_opt;
13304 }
13305 }
13306 }
13307 }
13308 break;
13309
13310 case R_PPC64_GOT_TPREL16_HI:
13311 case R_PPC64_GOT_TPREL16_HA:
13312 if (tls_mask != 0
13313 && (tls_mask & TLS_TPREL) == 0)
13314 {
13315 rel->r_offset -= d_offset;
13316 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
13317 r_type = R_PPC64_NONE;
13318 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13319 }
13320 break;
13321
13322 case R_PPC64_GOT_TPREL16_DS:
13323 case R_PPC64_GOT_TPREL16_LO_DS:
13324 if (tls_mask != 0
13325 && (tls_mask & TLS_TPREL) == 0)
13326 {
13327 toctprel:
13328 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - d_offset);
13329 insn &= 31 << 21;
13330 insn |= 0x3c0d0000; /* addis 0,13,0 */
13331 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - d_offset);
13332 r_type = R_PPC64_TPREL16_HA;
13333 if (toc_symndx != 0)
13334 {
13335 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
13336 rel->r_addend = toc_addend;
13337 /* We changed the symbol. Start over in order to
13338 get h, sym, sec etc. right. */
13339 rel--;
13340 continue;
13341 }
13342 else
13343 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13344 }
13345 break;
13346
13347 case R_PPC64_TLS:
13348 if (tls_mask != 0
13349 && (tls_mask & TLS_TPREL) == 0)
13350 {
13351 insn = bfd_get_32 (output_bfd, contents + rel->r_offset);
13352 insn = _bfd_elf_ppc_at_tls_transform (insn, 13);
13353 if (insn == 0)
13354 abort ();
13355 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
13356 /* Was PPC64_TLS which sits on insn boundary, now
13357 PPC64_TPREL16_LO which is at low-order half-word. */
13358 rel->r_offset += d_offset;
13359 r_type = R_PPC64_TPREL16_LO;
13360 if (toc_symndx != 0)
13361 {
13362 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
13363 rel->r_addend = toc_addend;
13364 /* We changed the symbol. Start over in order to
13365 get h, sym, sec etc. right. */
13366 rel--;
13367 continue;
13368 }
13369 else
13370 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13371 }
13372 break;
13373
13374 case R_PPC64_GOT_TLSGD16_HI:
13375 case R_PPC64_GOT_TLSGD16_HA:
13376 tls_gd = TLS_TPRELGD;
13377 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13378 goto tls_gdld_hi;
13379 break;
13380
13381 case R_PPC64_GOT_TLSLD16_HI:
13382 case R_PPC64_GOT_TLSLD16_HA:
13383 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13384 {
13385 tls_gdld_hi:
13386 if ((tls_mask & tls_gd) != 0)
13387 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
13388 + R_PPC64_GOT_TPREL16_DS);
13389 else
13390 {
13391 rel->r_offset -= d_offset;
13392 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
13393 r_type = R_PPC64_NONE;
13394 }
13395 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13396 }
13397 break;
13398
13399 case R_PPC64_GOT_TLSGD16:
13400 case R_PPC64_GOT_TLSGD16_LO:
13401 tls_gd = TLS_TPRELGD;
13402 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13403 goto tls_ldgd_opt;
13404 break;
13405
13406 case R_PPC64_GOT_TLSLD16:
13407 case R_PPC64_GOT_TLSLD16_LO:
13408 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13409 {
13410 unsigned int insn1, insn2, insn3;
13411 bfd_vma offset;
13412
13413 tls_ldgd_opt:
13414 offset = (bfd_vma) -1;
13415 /* If not using the newer R_PPC64_TLSGD/LD to mark
13416 __tls_get_addr calls, we must trust that the call
13417 stays with its arg setup insns, ie. that the next
13418 reloc is the __tls_get_addr call associated with
13419 the current reloc. Edit both insns. */
13420 if (input_section->has_tls_get_addr_call
13421 && rel + 1 < relend
13422 && branch_reloc_hash_match (input_bfd, rel + 1,
13423 htab->tls_get_addr,
13424 htab->tls_get_addr_fd))
13425 offset = rel[1].r_offset;
13426 /* We read the low GOT_TLS (or TOC16) insn because we
13427 need to keep the destination reg. It may be
13428 something other than the usual r3, and moved to r3
13429 before the call by intervening code. */
13430 insn1 = bfd_get_32 (output_bfd,
13431 contents + rel->r_offset - d_offset);
13432 if ((tls_mask & tls_gd) != 0)
13433 {
13434 /* IE */
13435 insn1 &= (0x1f << 21) | (0x1f << 16);
13436 insn1 |= 58 << 26; /* ld */
13437 insn2 = 0x7c636a14; /* add 3,3,13 */
13438 if (offset != (bfd_vma) -1)
13439 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
13440 if ((tls_mask & TLS_EXPLICIT) == 0)
13441 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
13442 + R_PPC64_GOT_TPREL16_DS);
13443 else
13444 r_type += R_PPC64_TOC16_DS - R_PPC64_TOC16;
13445 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13446 }
13447 else
13448 {
13449 /* LE */
13450 insn1 &= 0x1f << 21;
13451 insn1 |= 0x3c0d0000; /* addis r,13,0 */
13452 insn2 = 0x38630000; /* addi 3,3,0 */
13453 if (tls_gd == 0)
13454 {
13455 /* Was an LD reloc. */
13456 if (toc_symndx)
13457 sec = local_sections[toc_symndx];
13458 for (r_symndx = 0;
13459 r_symndx < symtab_hdr->sh_info;
13460 r_symndx++)
13461 if (local_sections[r_symndx] == sec)
13462 break;
13463 if (r_symndx >= symtab_hdr->sh_info)
13464 r_symndx = STN_UNDEF;
13465 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
13466 if (r_symndx != STN_UNDEF)
13467 rel->r_addend -= (local_syms[r_symndx].st_value
13468 + sec->output_offset
13469 + sec->output_section->vma);
13470 }
13471 else if (toc_symndx != 0)
13472 {
13473 r_symndx = toc_symndx;
13474 rel->r_addend = toc_addend;
13475 }
13476 r_type = R_PPC64_TPREL16_HA;
13477 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13478 if (offset != (bfd_vma) -1)
13479 {
13480 rel[1].r_info = ELF64_R_INFO (r_symndx,
13481 R_PPC64_TPREL16_LO);
13482 rel[1].r_offset = offset + d_offset;
13483 rel[1].r_addend = rel->r_addend;
13484 }
13485 }
13486 bfd_put_32 (output_bfd, insn1,
13487 contents + rel->r_offset - d_offset);
13488 if (offset != (bfd_vma) -1)
13489 {
13490 insn3 = bfd_get_32 (output_bfd,
13491 contents + offset + 4);
13492 if (insn3 == NOP
13493 || insn3 == CROR_151515 || insn3 == CROR_313131)
13494 {
13495 rel[1].r_offset += 4;
13496 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
13497 insn2 = NOP;
13498 }
13499 bfd_put_32 (output_bfd, insn2, contents + offset);
13500 }
13501 if ((tls_mask & tls_gd) == 0
13502 && (tls_gd == 0 || toc_symndx != 0))
13503 {
13504 /* We changed the symbol. Start over in order
13505 to get h, sym, sec etc. right. */
13506 rel--;
13507 continue;
13508 }
13509 }
13510 break;
13511
13512 case R_PPC64_TLSGD:
13513 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13514 {
13515 unsigned int insn2, insn3;
13516 bfd_vma offset = rel->r_offset;
13517
13518 if ((tls_mask & TLS_TPRELGD) != 0)
13519 {
13520 /* IE */
13521 r_type = R_PPC64_NONE;
13522 insn2 = 0x7c636a14; /* add 3,3,13 */
13523 }
13524 else
13525 {
13526 /* LE */
13527 if (toc_symndx != 0)
13528 {
13529 r_symndx = toc_symndx;
13530 rel->r_addend = toc_addend;
13531 }
13532 r_type = R_PPC64_TPREL16_LO;
13533 rel->r_offset = offset + d_offset;
13534 insn2 = 0x38630000; /* addi 3,3,0 */
13535 }
13536 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13537 /* Zap the reloc on the _tls_get_addr call too. */
13538 BFD_ASSERT (offset == rel[1].r_offset);
13539 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
13540 insn3 = bfd_get_32 (output_bfd,
13541 contents + offset + 4);
13542 if (insn3 == NOP
13543 || insn3 == CROR_151515 || insn3 == CROR_313131)
13544 {
13545 rel->r_offset += 4;
13546 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
13547 insn2 = NOP;
13548 }
13549 bfd_put_32 (output_bfd, insn2, contents + offset);
13550 if ((tls_mask & TLS_TPRELGD) == 0 && toc_symndx != 0)
13551 {
13552 rel--;
13553 continue;
13554 }
13555 }
13556 break;
13557
13558 case R_PPC64_TLSLD:
13559 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13560 {
13561 unsigned int insn2, insn3;
13562 bfd_vma offset = rel->r_offset;
13563
13564 if (toc_symndx)
13565 sec = local_sections[toc_symndx];
13566 for (r_symndx = 0;
13567 r_symndx < symtab_hdr->sh_info;
13568 r_symndx++)
13569 if (local_sections[r_symndx] == sec)
13570 break;
13571 if (r_symndx >= symtab_hdr->sh_info)
13572 r_symndx = STN_UNDEF;
13573 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
13574 if (r_symndx != STN_UNDEF)
13575 rel->r_addend -= (local_syms[r_symndx].st_value
13576 + sec->output_offset
13577 + sec->output_section->vma);
13578
13579 r_type = R_PPC64_TPREL16_LO;
13580 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13581 rel->r_offset = offset + d_offset;
13582 /* Zap the reloc on the _tls_get_addr call too. */
13583 BFD_ASSERT (offset == rel[1].r_offset);
13584 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
13585 insn2 = 0x38630000; /* addi 3,3,0 */
13586 insn3 = bfd_get_32 (output_bfd,
13587 contents + offset + 4);
13588 if (insn3 == NOP
13589 || insn3 == CROR_151515 || insn3 == CROR_313131)
13590 {
13591 rel->r_offset += 4;
13592 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
13593 insn2 = NOP;
13594 }
13595 bfd_put_32 (output_bfd, insn2, contents + offset);
13596 rel--;
13597 continue;
13598 }
13599 break;
13600
13601 case R_PPC64_DTPMOD64:
13602 if (rel + 1 < relend
13603 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
13604 && rel[1].r_offset == rel->r_offset + 8)
13605 {
13606 if ((tls_mask & TLS_GD) == 0)
13607 {
13608 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_NONE);
13609 if ((tls_mask & TLS_TPRELGD) != 0)
13610 r_type = R_PPC64_TPREL64;
13611 else
13612 {
13613 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
13614 r_type = R_PPC64_NONE;
13615 }
13616 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13617 }
13618 }
13619 else
13620 {
13621 if ((tls_mask & TLS_LD) == 0)
13622 {
13623 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
13624 r_type = R_PPC64_NONE;
13625 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13626 }
13627 }
13628 break;
13629
13630 case R_PPC64_TPREL64:
13631 if ((tls_mask & TLS_TPREL) == 0)
13632 {
13633 r_type = R_PPC64_NONE;
13634 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13635 }
13636 break;
13637
13638 case R_PPC64_REL16_HA:
13639 /* If we are generating a non-PIC executable, edit
13640 . 0: addis 2,12,.TOC.-0b@ha
13641 . addi 2,2,.TOC.-0b@l
13642 used by ELFv2 global entry points to set up r2, to
13643 . lis 2,.TOC.@ha
13644 . addi 2,2,.TOC.@l
13645 if .TOC. is in range. */
13646 if (!info->shared
13647 && !info->traditional_format
13648 && h != NULL && &h->elf == htab->elf.hgot
13649 && rel + 1 < relend
13650 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_REL16_LO)
13651 && rel[1].r_offset == rel->r_offset + 4
13652 && rel[1].r_addend == rel->r_addend + 4
13653 && relocation + 0x80008000 <= 0xffffffff)
13654 {
13655 unsigned int insn1, insn2;
13656 bfd_vma offset = rel->r_offset - d_offset;
13657 insn1 = bfd_get_32 (output_bfd, contents + offset);
13658 insn2 = bfd_get_32 (output_bfd, contents + offset + 4);
13659 if ((insn1 & 0xffff0000) == 0x3c4c0000 /* addis 2,12 */
13660 && (insn2 & 0xffff0000) == 0x38420000 /* addi 2,2 */)
13661 {
13662 r_type = R_PPC64_ADDR16_HA;
13663 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13664 rel->r_addend -= d_offset;
13665 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_ADDR16_LO);
13666 rel[1].r_addend -= d_offset + 4;
13667 bfd_put_32 (output_bfd, 0x3c400000, contents + offset);
13668 }
13669 }
13670 break;
13671 }
13672
13673 /* Handle other relocations that tweak non-addend part of insn. */
13674 insn = 0;
13675 max_br_offset = 1 << 25;
13676 addend = rel->r_addend;
13677 reloc_dest = DEST_NORMAL;
13678 switch (r_type)
13679 {
13680 default:
13681 break;
13682
13683 case R_PPC64_TOCSAVE:
13684 if (relocation + addend == (rel->r_offset
13685 + input_section->output_offset
13686 + input_section->output_section->vma)
13687 && tocsave_find (htab, NO_INSERT,
13688 &local_syms, rel, input_bfd))
13689 {
13690 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
13691 if (insn == NOP
13692 || insn == CROR_151515 || insn == CROR_313131)
13693 bfd_put_32 (input_bfd,
13694 STD_R2_0R1 + STK_TOC (htab),
13695 contents + rel->r_offset);
13696 }
13697 break;
13698
13699 /* Branch taken prediction relocations. */
13700 case R_PPC64_ADDR14_BRTAKEN:
13701 case R_PPC64_REL14_BRTAKEN:
13702 insn = 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
13703 /* Fall thru. */
13704
13705 /* Branch not taken prediction relocations. */
13706 case R_PPC64_ADDR14_BRNTAKEN:
13707 case R_PPC64_REL14_BRNTAKEN:
13708 insn |= bfd_get_32 (output_bfd,
13709 contents + rel->r_offset) & ~(0x01 << 21);
13710 /* Fall thru. */
13711
13712 case R_PPC64_REL14:
13713 max_br_offset = 1 << 15;
13714 /* Fall thru. */
13715
13716 case R_PPC64_REL24:
13717 /* Calls to functions with a different TOC, such as calls to
13718 shared objects, need to alter the TOC pointer. This is
13719 done using a linkage stub. A REL24 branching to these
13720 linkage stubs needs to be followed by a nop, as the nop
13721 will be replaced with an instruction to restore the TOC
13722 base pointer. */
13723 fdh = h;
13724 if (h != NULL
13725 && h->oh != NULL
13726 && h->oh->is_func_descriptor)
13727 fdh = ppc_follow_link (h->oh);
13728 stub_entry = ppc_get_stub_entry (input_section, sec, fdh, &orig_rel,
13729 htab);
13730 if (stub_entry != NULL
13731 && (stub_entry->stub_type == ppc_stub_plt_call
13732 || stub_entry->stub_type == ppc_stub_plt_call_r2save
13733 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
13734 || stub_entry->stub_type == ppc_stub_long_branch_r2off))
13735 {
13736 bfd_boolean can_plt_call = FALSE;
13737
13738 /* All of these stubs will modify r2, so there must be a
13739 branch and link followed by a nop. The nop is
13740 replaced by an insn to restore r2. */
13741 if (rel->r_offset + 8 <= input_section->size)
13742 {
13743 unsigned long br;
13744
13745 br = bfd_get_32 (input_bfd,
13746 contents + rel->r_offset);
13747 if ((br & 1) != 0)
13748 {
13749 unsigned long nop;
13750
13751 nop = bfd_get_32 (input_bfd,
13752 contents + rel->r_offset + 4);
13753 if (nop == NOP
13754 || nop == CROR_151515 || nop == CROR_313131)
13755 {
13756 if (h != NULL
13757 && (h == htab->tls_get_addr_fd
13758 || h == htab->tls_get_addr)
13759 && !htab->params->no_tls_get_addr_opt)
13760 {
13761 /* Special stub used, leave nop alone. */
13762 }
13763 else
13764 bfd_put_32 (input_bfd,
13765 LD_R2_0R1 + STK_TOC (htab),
13766 contents + rel->r_offset + 4);
13767 can_plt_call = TRUE;
13768 }
13769 }
13770 }
13771
13772 if (!can_plt_call && h != NULL)
13773 {
13774 const char *name = h->elf.root.root.string;
13775
13776 if (*name == '.')
13777 ++name;
13778
13779 if (strncmp (name, "__libc_start_main", 17) == 0
13780 && (name[17] == 0 || name[17] == '@'))
13781 {
13782 /* Allow crt1 branch to go via a toc adjusting
13783 stub. Other calls that never return could do
13784 the same, if we could detect such. */
13785 can_plt_call = TRUE;
13786 }
13787 }
13788
13789 if (!can_plt_call)
13790 {
13791 /* g++ as of 20130507 emits self-calls without a
13792 following nop. This is arguably wrong since we
13793 have conflicting information. On the one hand a
13794 global symbol and on the other a local call
13795 sequence, but don't error for this special case.
13796 It isn't possible to cheaply verify we have
13797 exactly such a call. Allow all calls to the same
13798 section. */
13799 asection *code_sec = sec;
13800
13801 if (get_opd_info (sec) != NULL)
13802 {
13803 bfd_vma off = (relocation + addend
13804 - sec->output_section->vma
13805 - sec->output_offset);
13806
13807 opd_entry_value (sec, off, &code_sec, NULL, FALSE);
13808 }
13809 if (code_sec == input_section)
13810 can_plt_call = TRUE;
13811 }
13812
13813 if (!can_plt_call)
13814 {
13815 if (stub_entry->stub_type == ppc_stub_plt_call
13816 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13817 info->callbacks->einfo
13818 (_("%P: %H: call to `%T' lacks nop, can't restore toc; "
13819 "recompile with -fPIC\n"),
13820 input_bfd, input_section, rel->r_offset, sym_name);
13821 else
13822 info->callbacks->einfo
13823 (_("%P: %H: call to `%T' lacks nop, can't restore toc; "
13824 "(-mcmodel=small toc adjust stub)\n"),
13825 input_bfd, input_section, rel->r_offset, sym_name);
13826
13827 bfd_set_error (bfd_error_bad_value);
13828 ret = FALSE;
13829 }
13830
13831 if (can_plt_call
13832 && (stub_entry->stub_type == ppc_stub_plt_call
13833 || stub_entry->stub_type == ppc_stub_plt_call_r2save))
13834 unresolved_reloc = FALSE;
13835 }
13836
13837 if ((stub_entry == NULL
13838 || stub_entry->stub_type == ppc_stub_long_branch
13839 || stub_entry->stub_type == ppc_stub_plt_branch)
13840 && get_opd_info (sec) != NULL)
13841 {
13842 /* The branch destination is the value of the opd entry. */
13843 bfd_vma off = (relocation + addend
13844 - sec->output_section->vma
13845 - sec->output_offset);
13846 bfd_vma dest = opd_entry_value (sec, off, NULL, NULL, FALSE);
13847 if (dest != (bfd_vma) -1)
13848 {
13849 relocation = dest;
13850 addend = 0;
13851 reloc_dest = DEST_OPD;
13852 }
13853 }
13854
13855 /* If the branch is out of reach we ought to have a long
13856 branch stub. */
13857 from = (rel->r_offset
13858 + input_section->output_offset
13859 + input_section->output_section->vma);
13860
13861 relocation += PPC64_LOCAL_ENTRY_OFFSET (fdh
13862 ? fdh->elf.other
13863 : sym->st_other);
13864
13865 if (stub_entry != NULL
13866 && (stub_entry->stub_type == ppc_stub_long_branch
13867 || stub_entry->stub_type == ppc_stub_plt_branch)
13868 && (r_type == R_PPC64_ADDR14_BRTAKEN
13869 || r_type == R_PPC64_ADDR14_BRNTAKEN
13870 || (relocation + addend - from + max_br_offset
13871 < 2 * max_br_offset)))
13872 /* Don't use the stub if this branch is in range. */
13873 stub_entry = NULL;
13874
13875 if (stub_entry != NULL)
13876 {
13877 /* Munge up the value and addend so that we call the stub
13878 rather than the procedure directly. */
13879 relocation = (stub_entry->stub_offset
13880 + stub_entry->stub_sec->output_offset
13881 + stub_entry->stub_sec->output_section->vma);
13882 addend = 0;
13883 reloc_dest = DEST_STUB;
13884
13885 if ((stub_entry->stub_type == ppc_stub_plt_call
13886 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13887 && (ALWAYS_EMIT_R2SAVE
13888 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13889 && rel + 1 < relend
13890 && rel[1].r_offset == rel->r_offset + 4
13891 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOCSAVE)
13892 relocation += 4;
13893 }
13894
13895 if (insn != 0)
13896 {
13897 if (is_isa_v2)
13898 {
13899 /* Set 'a' bit. This is 0b00010 in BO field for branch
13900 on CR(BI) insns (BO == 001at or 011at), and 0b01000
13901 for branch on CTR insns (BO == 1a00t or 1a01t). */
13902 if ((insn & (0x14 << 21)) == (0x04 << 21))
13903 insn |= 0x02 << 21;
13904 else if ((insn & (0x14 << 21)) == (0x10 << 21))
13905 insn |= 0x08 << 21;
13906 else
13907 break;
13908 }
13909 else
13910 {
13911 /* Invert 'y' bit if not the default. */
13912 if ((bfd_signed_vma) (relocation + addend - from) < 0)
13913 insn ^= 0x01 << 21;
13914 }
13915
13916 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
13917 }
13918
13919 /* NOP out calls to undefined weak functions.
13920 We can thus call a weak function without first
13921 checking whether the function is defined. */
13922 else if (h != NULL
13923 && h->elf.root.type == bfd_link_hash_undefweak
13924 && h->elf.dynindx == -1
13925 && r_type == R_PPC64_REL24
13926 && relocation == 0
13927 && addend == 0)
13928 {
13929 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
13930 continue;
13931 }
13932 break;
13933 }
13934
13935 /* Set `addend'. */
13936 tls_type = 0;
13937 switch (r_type)
13938 {
13939 default:
13940 info->callbacks->einfo
13941 (_("%P: %B: unknown relocation type %d for `%T'\n"),
13942 input_bfd, (int) r_type, sym_name);
13943
13944 bfd_set_error (bfd_error_bad_value);
13945 ret = FALSE;
13946 continue;
13947
13948 case R_PPC64_NONE:
13949 case R_PPC64_TLS:
13950 case R_PPC64_TLSGD:
13951 case R_PPC64_TLSLD:
13952 case R_PPC64_TOCSAVE:
13953 case R_PPC64_GNU_VTINHERIT:
13954 case R_PPC64_GNU_VTENTRY:
13955 continue;
13956
13957 /* GOT16 relocations. Like an ADDR16 using the symbol's
13958 address in the GOT as relocation value instead of the
13959 symbol's value itself. Also, create a GOT entry for the
13960 symbol and put the symbol value there. */
13961 case R_PPC64_GOT_TLSGD16:
13962 case R_PPC64_GOT_TLSGD16_LO:
13963 case R_PPC64_GOT_TLSGD16_HI:
13964 case R_PPC64_GOT_TLSGD16_HA:
13965 tls_type = TLS_TLS | TLS_GD;
13966 goto dogot;
13967
13968 case R_PPC64_GOT_TLSLD16:
13969 case R_PPC64_GOT_TLSLD16_LO:
13970 case R_PPC64_GOT_TLSLD16_HI:
13971 case R_PPC64_GOT_TLSLD16_HA:
13972 tls_type = TLS_TLS | TLS_LD;
13973 goto dogot;
13974
13975 case R_PPC64_GOT_TPREL16_DS:
13976 case R_PPC64_GOT_TPREL16_LO_DS:
13977 case R_PPC64_GOT_TPREL16_HI:
13978 case R_PPC64_GOT_TPREL16_HA:
13979 tls_type = TLS_TLS | TLS_TPREL;
13980 goto dogot;
13981
13982 case R_PPC64_GOT_DTPREL16_DS:
13983 case R_PPC64_GOT_DTPREL16_LO_DS:
13984 case R_PPC64_GOT_DTPREL16_HI:
13985 case R_PPC64_GOT_DTPREL16_HA:
13986 tls_type = TLS_TLS | TLS_DTPREL;
13987 goto dogot;
13988
13989 case R_PPC64_GOT16:
13990 case R_PPC64_GOT16_LO:
13991 case R_PPC64_GOT16_HI:
13992 case R_PPC64_GOT16_HA:
13993 case R_PPC64_GOT16_DS:
13994 case R_PPC64_GOT16_LO_DS:
13995 dogot:
13996 {
13997 /* Relocation is to the entry for this symbol in the global
13998 offset table. */
13999 asection *got;
14000 bfd_vma *offp;
14001 bfd_vma off;
14002 unsigned long indx = 0;
14003 struct got_entry *ent;
14004
14005 if (tls_type == (TLS_TLS | TLS_LD)
14006 && (h == NULL
14007 || !h->elf.def_dynamic))
14008 ent = ppc64_tlsld_got (input_bfd);
14009 else
14010 {
14011
14012 if (h != NULL)
14013 {
14014 bfd_boolean dyn = htab->elf.dynamic_sections_created;
14015 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
14016 &h->elf)
14017 || (info->shared
14018 && SYMBOL_REFERENCES_LOCAL (info, &h->elf)))
14019 /* This is actually a static link, or it is a
14020 -Bsymbolic link and the symbol is defined
14021 locally, or the symbol was forced to be local
14022 because of a version file. */
14023 ;
14024 else
14025 {
14026 BFD_ASSERT (h->elf.dynindx != -1);
14027 indx = h->elf.dynindx;
14028 unresolved_reloc = FALSE;
14029 }
14030 ent = h->elf.got.glist;
14031 }
14032 else
14033 {
14034 if (local_got_ents == NULL)
14035 abort ();
14036 ent = local_got_ents[r_symndx];
14037 }
14038
14039 for (; ent != NULL; ent = ent->next)
14040 if (ent->addend == orig_rel.r_addend
14041 && ent->owner == input_bfd
14042 && ent->tls_type == tls_type)
14043 break;
14044 }
14045
14046 if (ent == NULL)
14047 abort ();
14048 if (ent->is_indirect)
14049 ent = ent->got.ent;
14050 offp = &ent->got.offset;
14051 got = ppc64_elf_tdata (ent->owner)->got;
14052 if (got == NULL)
14053 abort ();
14054
14055 /* The offset must always be a multiple of 8. We use the
14056 least significant bit to record whether we have already
14057 processed this entry. */
14058 off = *offp;
14059 if ((off & 1) != 0)
14060 off &= ~1;
14061 else
14062 {
14063 /* Generate relocs for the dynamic linker, except in
14064 the case of TLSLD where we'll use one entry per
14065 module. */
14066 asection *relgot;
14067 bfd_boolean ifunc;
14068
14069 *offp = off | 1;
14070 relgot = NULL;
14071 ifunc = (h != NULL
14072 ? h->elf.type == STT_GNU_IFUNC
14073 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC);
14074 if (ifunc)
14075 relgot = htab->elf.irelplt;
14076 else if ((info->shared || indx != 0)
14077 && (h == NULL
14078 || (tls_type == (TLS_TLS | TLS_LD)
14079 && !h->elf.def_dynamic)
14080 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
14081 || h->elf.root.type != bfd_link_hash_undefweak))
14082 relgot = ppc64_elf_tdata (ent->owner)->relgot;
14083 if (relgot != NULL)
14084 {
14085 outrel.r_offset = (got->output_section->vma
14086 + got->output_offset
14087 + off);
14088 outrel.r_addend = addend;
14089 if (tls_type & (TLS_LD | TLS_GD))
14090 {
14091 outrel.r_addend = 0;
14092 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPMOD64);
14093 if (tls_type == (TLS_TLS | TLS_GD))
14094 {
14095 loc = relgot->contents;
14096 loc += (relgot->reloc_count++
14097 * sizeof (Elf64_External_Rela));
14098 bfd_elf64_swap_reloca_out (output_bfd,
14099 &outrel, loc);
14100 outrel.r_offset += 8;
14101 outrel.r_addend = addend;
14102 outrel.r_info
14103 = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
14104 }
14105 }
14106 else if (tls_type == (TLS_TLS | TLS_DTPREL))
14107 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
14108 else if (tls_type == (TLS_TLS | TLS_TPREL))
14109 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_TPREL64);
14110 else if (indx != 0)
14111 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_GLOB_DAT);
14112 else
14113 {
14114 if (ifunc)
14115 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
14116 else
14117 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
14118
14119 /* Write the .got section contents for the sake
14120 of prelink. */
14121 loc = got->contents + off;
14122 bfd_put_64 (output_bfd, outrel.r_addend + relocation,
14123 loc);
14124 }
14125
14126 if (indx == 0 && tls_type != (TLS_TLS | TLS_LD))
14127 {
14128 outrel.r_addend += relocation;
14129 if (tls_type & (TLS_GD | TLS_DTPREL | TLS_TPREL))
14130 {
14131 if (htab->elf.tls_sec == NULL)
14132 outrel.r_addend = 0;
14133 else
14134 outrel.r_addend -= htab->elf.tls_sec->vma;
14135 }
14136 }
14137 loc = relgot->contents;
14138 loc += (relgot->reloc_count++
14139 * sizeof (Elf64_External_Rela));
14140 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
14141 }
14142
14143 /* Init the .got section contents here if we're not
14144 emitting a reloc. */
14145 else
14146 {
14147 relocation += addend;
14148 if (tls_type == (TLS_TLS | TLS_LD))
14149 relocation = 1;
14150 else if (tls_type != 0)
14151 {
14152 if (htab->elf.tls_sec == NULL)
14153 relocation = 0;
14154 else
14155 {
14156 relocation -= htab->elf.tls_sec->vma + DTP_OFFSET;
14157 if (tls_type == (TLS_TLS | TLS_TPREL))
14158 relocation += DTP_OFFSET - TP_OFFSET;
14159 }
14160
14161 if (tls_type == (TLS_TLS | TLS_GD))
14162 {
14163 bfd_put_64 (output_bfd, relocation,
14164 got->contents + off + 8);
14165 relocation = 1;
14166 }
14167 }
14168
14169 bfd_put_64 (output_bfd, relocation,
14170 got->contents + off);
14171 }
14172 }
14173
14174 if (off >= (bfd_vma) -2)
14175 abort ();
14176
14177 relocation = got->output_section->vma + got->output_offset + off;
14178 addend = -(TOCstart + htab->stub_group[input_section->id].toc_off);
14179 }
14180 break;
14181
14182 case R_PPC64_PLT16_HA:
14183 case R_PPC64_PLT16_HI:
14184 case R_PPC64_PLT16_LO:
14185 case R_PPC64_PLT32:
14186 case R_PPC64_PLT64:
14187 /* Relocation is to the entry for this symbol in the
14188 procedure linkage table. */
14189
14190 /* Resolve a PLT reloc against a local symbol directly,
14191 without using the procedure linkage table. */
14192 if (h == NULL)
14193 break;
14194
14195 /* It's possible that we didn't make a PLT entry for this
14196 symbol. This happens when statically linking PIC code,
14197 or when using -Bsymbolic. Go find a match if there is a
14198 PLT entry. */
14199 if (htab->elf.splt != NULL)
14200 {
14201 struct plt_entry *ent;
14202 for (ent = h->elf.plt.plist; ent != NULL; ent = ent->next)
14203 if (ent->plt.offset != (bfd_vma) -1
14204 && ent->addend == orig_rel.r_addend)
14205 {
14206 relocation = (htab->elf.splt->output_section->vma
14207 + htab->elf.splt->output_offset
14208 + ent->plt.offset);
14209 unresolved_reloc = FALSE;
14210 break;
14211 }
14212 }
14213 break;
14214
14215 case R_PPC64_TOC:
14216 /* Relocation value is TOC base. */
14217 relocation = TOCstart;
14218 if (r_symndx == STN_UNDEF)
14219 relocation += htab->stub_group[input_section->id].toc_off;
14220 else if (unresolved_reloc)
14221 ;
14222 else if (sec != NULL && sec->id <= htab->top_id)
14223 relocation += htab->stub_group[sec->id].toc_off;
14224 else
14225 unresolved_reloc = TRUE;
14226 goto dodyn;
14227
14228 /* TOC16 relocs. We want the offset relative to the TOC base,
14229 which is the address of the start of the TOC plus 0x8000.
14230 The TOC consists of sections .got, .toc, .tocbss, and .plt,
14231 in this order. */
14232 case R_PPC64_TOC16:
14233 case R_PPC64_TOC16_LO:
14234 case R_PPC64_TOC16_HI:
14235 case R_PPC64_TOC16_DS:
14236 case R_PPC64_TOC16_LO_DS:
14237 case R_PPC64_TOC16_HA:
14238 addend -= TOCstart + htab->stub_group[input_section->id].toc_off;
14239 break;
14240
14241 /* Relocate against the beginning of the section. */
14242 case R_PPC64_SECTOFF:
14243 case R_PPC64_SECTOFF_LO:
14244 case R_PPC64_SECTOFF_HI:
14245 case R_PPC64_SECTOFF_DS:
14246 case R_PPC64_SECTOFF_LO_DS:
14247 case R_PPC64_SECTOFF_HA:
14248 if (sec != NULL)
14249 addend -= sec->output_section->vma;
14250 break;
14251
14252 case R_PPC64_REL16:
14253 case R_PPC64_REL16_LO:
14254 case R_PPC64_REL16_HI:
14255 case R_PPC64_REL16_HA:
14256 break;
14257
14258 case R_PPC64_REL14:
14259 case R_PPC64_REL14_BRNTAKEN:
14260 case R_PPC64_REL14_BRTAKEN:
14261 case R_PPC64_REL24:
14262 break;
14263
14264 case R_PPC64_TPREL16:
14265 case R_PPC64_TPREL16_LO:
14266 case R_PPC64_TPREL16_HI:
14267 case R_PPC64_TPREL16_HA:
14268 case R_PPC64_TPREL16_DS:
14269 case R_PPC64_TPREL16_LO_DS:
14270 case R_PPC64_TPREL16_HIGH:
14271 case R_PPC64_TPREL16_HIGHA:
14272 case R_PPC64_TPREL16_HIGHER:
14273 case R_PPC64_TPREL16_HIGHERA:
14274 case R_PPC64_TPREL16_HIGHEST:
14275 case R_PPC64_TPREL16_HIGHESTA:
14276 if (h != NULL
14277 && h->elf.root.type == bfd_link_hash_undefweak
14278 && h->elf.dynindx == -1)
14279 {
14280 /* Make this relocation against an undefined weak symbol
14281 resolve to zero. This is really just a tweak, since
14282 code using weak externs ought to check that they are
14283 defined before using them. */
14284 bfd_byte *p = contents + rel->r_offset - d_offset;
14285
14286 insn = bfd_get_32 (output_bfd, p);
14287 insn = _bfd_elf_ppc_at_tprel_transform (insn, 13);
14288 if (insn != 0)
14289 bfd_put_32 (output_bfd, insn, p);
14290 break;
14291 }
14292 if (htab->elf.tls_sec != NULL)
14293 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
14294 if (info->shared)
14295 /* The TPREL16 relocs shouldn't really be used in shared
14296 libs as they will result in DT_TEXTREL being set, but
14297 support them anyway. */
14298 goto dodyn;
14299 break;
14300
14301 case R_PPC64_DTPREL16:
14302 case R_PPC64_DTPREL16_LO:
14303 case R_PPC64_DTPREL16_HI:
14304 case R_PPC64_DTPREL16_HA:
14305 case R_PPC64_DTPREL16_DS:
14306 case R_PPC64_DTPREL16_LO_DS:
14307 case R_PPC64_DTPREL16_HIGH:
14308 case R_PPC64_DTPREL16_HIGHA:
14309 case R_PPC64_DTPREL16_HIGHER:
14310 case R_PPC64_DTPREL16_HIGHERA:
14311 case R_PPC64_DTPREL16_HIGHEST:
14312 case R_PPC64_DTPREL16_HIGHESTA:
14313 if (htab->elf.tls_sec != NULL)
14314 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
14315 break;
14316
14317 case R_PPC64_ADDR64_LOCAL:
14318 addend += PPC64_LOCAL_ENTRY_OFFSET (h != NULL
14319 ? h->elf.other
14320 : sym->st_other);
14321 break;
14322
14323 case R_PPC64_DTPMOD64:
14324 relocation = 1;
14325 addend = 0;
14326 goto dodyn;
14327
14328 case R_PPC64_TPREL64:
14329 if (htab->elf.tls_sec != NULL)
14330 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
14331 goto dodyn;
14332
14333 case R_PPC64_DTPREL64:
14334 if (htab->elf.tls_sec != NULL)
14335 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
14336 /* Fall thru */
14337
14338 /* Relocations that may need to be propagated if this is a
14339 dynamic object. */
14340 case R_PPC64_REL30:
14341 case R_PPC64_REL32:
14342 case R_PPC64_REL64:
14343 case R_PPC64_ADDR14:
14344 case R_PPC64_ADDR14_BRNTAKEN:
14345 case R_PPC64_ADDR14_BRTAKEN:
14346 case R_PPC64_ADDR16:
14347 case R_PPC64_ADDR16_DS:
14348 case R_PPC64_ADDR16_HA:
14349 case R_PPC64_ADDR16_HI:
14350 case R_PPC64_ADDR16_HIGH:
14351 case R_PPC64_ADDR16_HIGHA:
14352 case R_PPC64_ADDR16_HIGHER:
14353 case R_PPC64_ADDR16_HIGHERA:
14354 case R_PPC64_ADDR16_HIGHEST:
14355 case R_PPC64_ADDR16_HIGHESTA:
14356 case R_PPC64_ADDR16_LO:
14357 case R_PPC64_ADDR16_LO_DS:
14358 case R_PPC64_ADDR24:
14359 case R_PPC64_ADDR32:
14360 case R_PPC64_ADDR64:
14361 case R_PPC64_UADDR16:
14362 case R_PPC64_UADDR32:
14363 case R_PPC64_UADDR64:
14364 dodyn:
14365 if ((input_section->flags & SEC_ALLOC) == 0)
14366 break;
14367
14368 if (NO_OPD_RELOCS && is_opd)
14369 break;
14370
14371 if ((info->shared
14372 && (h == NULL
14373 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
14374 || h->elf.root.type != bfd_link_hash_undefweak)
14375 && (must_be_dyn_reloc (info, r_type)
14376 || !SYMBOL_CALLS_LOCAL (info, &h->elf)))
14377 || (ELIMINATE_COPY_RELOCS
14378 && !info->shared
14379 && h != NULL
14380 && h->elf.dynindx != -1
14381 && !h->elf.non_got_ref
14382 && !h->elf.def_regular)
14383 || (!info->shared
14384 && (h != NULL
14385 ? h->elf.type == STT_GNU_IFUNC
14386 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))
14387 {
14388 bfd_boolean skip, relocate;
14389 asection *sreloc;
14390 bfd_vma out_off;
14391
14392 /* When generating a dynamic object, these relocations
14393 are copied into the output file to be resolved at run
14394 time. */
14395
14396 skip = FALSE;
14397 relocate = FALSE;
14398
14399 out_off = _bfd_elf_section_offset (output_bfd, info,
14400 input_section, rel->r_offset);
14401 if (out_off == (bfd_vma) -1)
14402 skip = TRUE;
14403 else if (out_off == (bfd_vma) -2)
14404 skip = TRUE, relocate = TRUE;
14405 out_off += (input_section->output_section->vma
14406 + input_section->output_offset);
14407 outrel.r_offset = out_off;
14408 outrel.r_addend = rel->r_addend;
14409
14410 /* Optimize unaligned reloc use. */
14411 if ((r_type == R_PPC64_ADDR64 && (out_off & 7) != 0)
14412 || (r_type == R_PPC64_UADDR64 && (out_off & 7) == 0))
14413 r_type ^= R_PPC64_ADDR64 ^ R_PPC64_UADDR64;
14414 else if ((r_type == R_PPC64_ADDR32 && (out_off & 3) != 0)
14415 || (r_type == R_PPC64_UADDR32 && (out_off & 3) == 0))
14416 r_type ^= R_PPC64_ADDR32 ^ R_PPC64_UADDR32;
14417 else if ((r_type == R_PPC64_ADDR16 && (out_off & 1) != 0)
14418 || (r_type == R_PPC64_UADDR16 && (out_off & 1) == 0))
14419 r_type ^= R_PPC64_ADDR16 ^ R_PPC64_UADDR16;
14420
14421 if (skip)
14422 memset (&outrel, 0, sizeof outrel);
14423 else if (!SYMBOL_REFERENCES_LOCAL (info, &h->elf)
14424 && !is_opd
14425 && r_type != R_PPC64_TOC)
14426 {
14427 BFD_ASSERT (h->elf.dynindx != -1);
14428 outrel.r_info = ELF64_R_INFO (h->elf.dynindx, r_type);
14429 }
14430 else
14431 {
14432 /* This symbol is local, or marked to become local,
14433 or this is an opd section reloc which must point
14434 at a local function. */
14435 outrel.r_addend += relocation;
14436 if (r_type == R_PPC64_ADDR64 || r_type == R_PPC64_TOC)
14437 {
14438 if (is_opd && h != NULL)
14439 {
14440 /* Lie about opd entries. This case occurs
14441 when building shared libraries and we
14442 reference a function in another shared
14443 lib. The same thing happens for a weak
14444 definition in an application that's
14445 overridden by a strong definition in a
14446 shared lib. (I believe this is a generic
14447 bug in binutils handling of weak syms.)
14448 In these cases we won't use the opd
14449 entry in this lib. */
14450 unresolved_reloc = FALSE;
14451 }
14452 if (!is_opd
14453 && r_type == R_PPC64_ADDR64
14454 && (h != NULL
14455 ? h->elf.type == STT_GNU_IFUNC
14456 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC))
14457 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
14458 else
14459 {
14460 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
14461
14462 /* We need to relocate .opd contents for ld.so.
14463 Prelink also wants simple and consistent rules
14464 for relocs. This make all RELATIVE relocs have
14465 *r_offset equal to r_addend. */
14466 relocate = TRUE;
14467 }
14468 }
14469 else
14470 {
14471 long indx = 0;
14472
14473 if (h != NULL
14474 ? h->elf.type == STT_GNU_IFUNC
14475 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
14476 {
14477 info->callbacks->einfo
14478 (_("%P: %H: %s for indirect "
14479 "function `%T' unsupported\n"),
14480 input_bfd, input_section, rel->r_offset,
14481 ppc64_elf_howto_table[r_type]->name,
14482 sym_name);
14483 ret = FALSE;
14484 }
14485 else if (r_symndx == STN_UNDEF || bfd_is_abs_section (sec))
14486 ;
14487 else if (sec == NULL || sec->owner == NULL)
14488 {
14489 bfd_set_error (bfd_error_bad_value);
14490 return FALSE;
14491 }
14492 else
14493 {
14494 asection *osec;
14495
14496 osec = sec->output_section;
14497 indx = elf_section_data (osec)->dynindx;
14498
14499 if (indx == 0)
14500 {
14501 if ((osec->flags & SEC_READONLY) == 0
14502 && htab->elf.data_index_section != NULL)
14503 osec = htab->elf.data_index_section;
14504 else
14505 osec = htab->elf.text_index_section;
14506 indx = elf_section_data (osec)->dynindx;
14507 }
14508 BFD_ASSERT (indx != 0);
14509
14510 /* We are turning this relocation into one
14511 against a section symbol, so subtract out
14512 the output section's address but not the
14513 offset of the input section in the output
14514 section. */
14515 outrel.r_addend -= osec->vma;
14516 }
14517
14518 outrel.r_info = ELF64_R_INFO (indx, r_type);
14519 }
14520 }
14521
14522 sreloc = elf_section_data (input_section)->sreloc;
14523 if (h != NULL
14524 ? h->elf.type == STT_GNU_IFUNC
14525 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
14526 sreloc = htab->elf.irelplt;
14527 if (sreloc == NULL)
14528 abort ();
14529
14530 if (sreloc->reloc_count * sizeof (Elf64_External_Rela)
14531 >= sreloc->size)
14532 abort ();
14533 loc = sreloc->contents;
14534 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
14535 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
14536
14537 /* If this reloc is against an external symbol, it will
14538 be computed at runtime, so there's no need to do
14539 anything now. However, for the sake of prelink ensure
14540 that the section contents are a known value. */
14541 if (! relocate)
14542 {
14543 unresolved_reloc = FALSE;
14544 /* The value chosen here is quite arbitrary as ld.so
14545 ignores section contents except for the special
14546 case of .opd where the contents might be accessed
14547 before relocation. Choose zero, as that won't
14548 cause reloc overflow. */
14549 relocation = 0;
14550 addend = 0;
14551 /* Use *r_offset == r_addend for R_PPC64_ADDR64 relocs
14552 to improve backward compatibility with older
14553 versions of ld. */
14554 if (r_type == R_PPC64_ADDR64)
14555 addend = outrel.r_addend;
14556 /* Adjust pc_relative relocs to have zero in *r_offset. */
14557 else if (ppc64_elf_howto_table[r_type]->pc_relative)
14558 addend = (input_section->output_section->vma
14559 + input_section->output_offset
14560 + rel->r_offset);
14561 }
14562 }
14563 break;
14564
14565 case R_PPC64_COPY:
14566 case R_PPC64_GLOB_DAT:
14567 case R_PPC64_JMP_SLOT:
14568 case R_PPC64_JMP_IREL:
14569 case R_PPC64_RELATIVE:
14570 /* We shouldn't ever see these dynamic relocs in relocatable
14571 files. */
14572 /* Fall through. */
14573
14574 case R_PPC64_PLTGOT16:
14575 case R_PPC64_PLTGOT16_DS:
14576 case R_PPC64_PLTGOT16_HA:
14577 case R_PPC64_PLTGOT16_HI:
14578 case R_PPC64_PLTGOT16_LO:
14579 case R_PPC64_PLTGOT16_LO_DS:
14580 case R_PPC64_PLTREL32:
14581 case R_PPC64_PLTREL64:
14582 /* These ones haven't been implemented yet. */
14583
14584 info->callbacks->einfo
14585 (_("%P: %B: %s is not supported for `%T'\n"),
14586 input_bfd,
14587 ppc64_elf_howto_table[r_type]->name, sym_name);
14588
14589 bfd_set_error (bfd_error_invalid_operation);
14590 ret = FALSE;
14591 continue;
14592 }
14593
14594 /* Multi-instruction sequences that access the TOC can be
14595 optimized, eg. addis ra,r2,0; addi rb,ra,x;
14596 to nop; addi rb,r2,x; */
14597 switch (r_type)
14598 {
14599 default:
14600 break;
14601
14602 case R_PPC64_GOT_TLSLD16_HI:
14603 case R_PPC64_GOT_TLSGD16_HI:
14604 case R_PPC64_GOT_TPREL16_HI:
14605 case R_PPC64_GOT_DTPREL16_HI:
14606 case R_PPC64_GOT16_HI:
14607 case R_PPC64_TOC16_HI:
14608 /* These relocs would only be useful if building up an
14609 offset to later add to r2, perhaps in an indexed
14610 addressing mode instruction. Don't try to optimize.
14611 Unfortunately, the possibility of someone building up an
14612 offset like this or even with the HA relocs, means that
14613 we need to check the high insn when optimizing the low
14614 insn. */
14615 break;
14616
14617 case R_PPC64_GOT_TLSLD16_HA:
14618 case R_PPC64_GOT_TLSGD16_HA:
14619 case R_PPC64_GOT_TPREL16_HA:
14620 case R_PPC64_GOT_DTPREL16_HA:
14621 case R_PPC64_GOT16_HA:
14622 case R_PPC64_TOC16_HA:
14623 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
14624 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
14625 {
14626 bfd_byte *p = contents + (rel->r_offset & ~3);
14627 bfd_put_32 (input_bfd, NOP, p);
14628 }
14629 break;
14630
14631 case R_PPC64_GOT_TLSLD16_LO:
14632 case R_PPC64_GOT_TLSGD16_LO:
14633 case R_PPC64_GOT_TPREL16_LO_DS:
14634 case R_PPC64_GOT_DTPREL16_LO_DS:
14635 case R_PPC64_GOT16_LO:
14636 case R_PPC64_GOT16_LO_DS:
14637 case R_PPC64_TOC16_LO:
14638 case R_PPC64_TOC16_LO_DS:
14639 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
14640 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
14641 {
14642 bfd_byte *p = contents + (rel->r_offset & ~3);
14643 insn = bfd_get_32 (input_bfd, p);
14644 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
14645 {
14646 /* Transform addic to addi when we change reg. */
14647 insn &= ~((0x3f << 26) | (0x1f << 16));
14648 insn |= (14u << 26) | (2 << 16);
14649 }
14650 else
14651 {
14652 insn &= ~(0x1f << 16);
14653 insn |= 2 << 16;
14654 }
14655 bfd_put_32 (input_bfd, insn, p);
14656 }
14657 break;
14658 }
14659
14660 /* Do any further special processing. */
14661 howto = ppc64_elf_howto_table[(int) r_type];
14662 switch (r_type)
14663 {
14664 default:
14665 break;
14666
14667 case R_PPC64_REL16_HA:
14668 case R_PPC64_ADDR16_HA:
14669 case R_PPC64_ADDR16_HIGHA:
14670 case R_PPC64_ADDR16_HIGHERA:
14671 case R_PPC64_ADDR16_HIGHESTA:
14672 case R_PPC64_TOC16_HA:
14673 case R_PPC64_SECTOFF_HA:
14674 case R_PPC64_TPREL16_HA:
14675 case R_PPC64_TPREL16_HIGHA:
14676 case R_PPC64_TPREL16_HIGHERA:
14677 case R_PPC64_TPREL16_HIGHESTA:
14678 case R_PPC64_DTPREL16_HA:
14679 case R_PPC64_DTPREL16_HIGHA:
14680 case R_PPC64_DTPREL16_HIGHERA:
14681 case R_PPC64_DTPREL16_HIGHESTA:
14682 /* It's just possible that this symbol is a weak symbol
14683 that's not actually defined anywhere. In that case,
14684 'sec' would be NULL, and we should leave the symbol
14685 alone (it will be set to zero elsewhere in the link). */
14686 if (sec == NULL)
14687 break;
14688 /* Fall thru */
14689
14690 case R_PPC64_GOT16_HA:
14691 case R_PPC64_PLTGOT16_HA:
14692 case R_PPC64_PLT16_HA:
14693 case R_PPC64_GOT_TLSGD16_HA:
14694 case R_PPC64_GOT_TLSLD16_HA:
14695 case R_PPC64_GOT_TPREL16_HA:
14696 case R_PPC64_GOT_DTPREL16_HA:
14697 /* Add 0x10000 if sign bit in 0:15 is set.
14698 Bits 0:15 are not used. */
14699 addend += 0x8000;
14700 break;
14701
14702 case R_PPC64_ADDR16_DS:
14703 case R_PPC64_ADDR16_LO_DS:
14704 case R_PPC64_GOT16_DS:
14705 case R_PPC64_GOT16_LO_DS:
14706 case R_PPC64_PLT16_LO_DS:
14707 case R_PPC64_SECTOFF_DS:
14708 case R_PPC64_SECTOFF_LO_DS:
14709 case R_PPC64_TOC16_DS:
14710 case R_PPC64_TOC16_LO_DS:
14711 case R_PPC64_PLTGOT16_DS:
14712 case R_PPC64_PLTGOT16_LO_DS:
14713 case R_PPC64_GOT_TPREL16_DS:
14714 case R_PPC64_GOT_TPREL16_LO_DS:
14715 case R_PPC64_GOT_DTPREL16_DS:
14716 case R_PPC64_GOT_DTPREL16_LO_DS:
14717 case R_PPC64_TPREL16_DS:
14718 case R_PPC64_TPREL16_LO_DS:
14719 case R_PPC64_DTPREL16_DS:
14720 case R_PPC64_DTPREL16_LO_DS:
14721 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
14722 mask = 3;
14723 /* If this reloc is against an lq insn, then the value must be
14724 a multiple of 16. This is somewhat of a hack, but the
14725 "correct" way to do this by defining _DQ forms of all the
14726 _DS relocs bloats all reloc switches in this file. It
14727 doesn't seem to make much sense to use any of these relocs
14728 in data, so testing the insn should be safe. */
14729 if ((insn & (0x3f << 26)) == (56u << 26))
14730 mask = 15;
14731 if (((relocation + addend) & mask) != 0)
14732 {
14733 info->callbacks->einfo
14734 (_("%P: %H: error: %s not a multiple of %u\n"),
14735 input_bfd, input_section, rel->r_offset,
14736 howto->name,
14737 mask + 1);
14738 bfd_set_error (bfd_error_bad_value);
14739 ret = FALSE;
14740 continue;
14741 }
14742 break;
14743 }
14744
14745 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
14746 because such sections are not SEC_ALLOC and thus ld.so will
14747 not process them. */
14748 if (unresolved_reloc
14749 && !((input_section->flags & SEC_DEBUGGING) != 0
14750 && h->elf.def_dynamic)
14751 && _bfd_elf_section_offset (output_bfd, info, input_section,
14752 rel->r_offset) != (bfd_vma) -1)
14753 {
14754 info->callbacks->einfo
14755 (_("%P: %H: unresolvable %s against `%T'\n"),
14756 input_bfd, input_section, rel->r_offset,
14757 howto->name,
14758 h->elf.root.root.string);
14759 ret = FALSE;
14760 }
14761
14762 /* 16-bit fields in insns mostly have signed values, but a
14763 few insns have 16-bit unsigned values. Really, we should
14764 have different reloc types. */
14765 if (howto->complain_on_overflow != complain_overflow_dont
14766 && howto->dst_mask == 0xffff
14767 && (input_section->flags & SEC_CODE) != 0)
14768 {
14769 enum complain_overflow complain = complain_overflow_signed;
14770
14771 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
14772 if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
14773 complain = complain_overflow_bitfield;
14774 else if (howto->rightshift == 0
14775 ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
14776 || (insn & (0x3f << 26)) == 24u << 26 /* ori */
14777 || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
14778 : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
14779 || (insn & (0x3f << 26)) == 25u << 26 /* oris */
14780 || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
14781 complain = complain_overflow_unsigned;
14782 if (howto->complain_on_overflow != complain)
14783 {
14784 alt_howto = *howto;
14785 alt_howto.complain_on_overflow = complain;
14786 howto = &alt_howto;
14787 }
14788 }
14789
14790 r = _bfd_final_link_relocate (howto, input_bfd, input_section, contents,
14791 rel->r_offset, relocation, addend);
14792
14793 if (r != bfd_reloc_ok)
14794 {
14795 char *more_info = NULL;
14796 const char *reloc_name = howto->name;
14797
14798 if (reloc_dest != DEST_NORMAL)
14799 {
14800 more_info = bfd_malloc (strlen (reloc_name) + 8);
14801 if (more_info != NULL)
14802 {
14803 strcpy (more_info, reloc_name);
14804 strcat (more_info, (reloc_dest == DEST_OPD
14805 ? " (OPD)" : " (stub)"));
14806 reloc_name = more_info;
14807 }
14808 }
14809
14810 if (r == bfd_reloc_overflow)
14811 {
14812 if (warned)
14813 continue;
14814 if (h != NULL
14815 && h->elf.root.type == bfd_link_hash_undefweak
14816 && howto->pc_relative)
14817 {
14818 /* Assume this is a call protected by other code that
14819 detects the symbol is undefined. If this is the case,
14820 we can safely ignore the overflow. If not, the
14821 program is hosed anyway, and a little warning isn't
14822 going to help. */
14823
14824 continue;
14825 }
14826
14827 if (!((*info->callbacks->reloc_overflow)
14828 (info, &h->elf.root, sym_name,
14829 reloc_name, orig_rel.r_addend,
14830 input_bfd, input_section, rel->r_offset)))
14831 return FALSE;
14832 }
14833 else
14834 {
14835 info->callbacks->einfo
14836 (_("%P: %H: %s against `%T': error %d\n"),
14837 input_bfd, input_section, rel->r_offset,
14838 reloc_name, sym_name, (int) r);
14839 ret = FALSE;
14840 }
14841 if (more_info != NULL)
14842 free (more_info);
14843 }
14844 }
14845
14846 /* If we're emitting relocations, then shortly after this function
14847 returns, reloc offsets and addends for this section will be
14848 adjusted. Worse, reloc symbol indices will be for the output
14849 file rather than the input. Save a copy of the relocs for
14850 opd_entry_value. */
14851 if (is_opd && (info->emitrelocations || info->relocatable))
14852 {
14853 bfd_size_type amt;
14854 amt = input_section->reloc_count * sizeof (Elf_Internal_Rela);
14855 rel = bfd_alloc (input_bfd, amt);
14856 BFD_ASSERT (ppc64_elf_tdata (input_bfd)->opd.relocs == NULL);
14857 ppc64_elf_tdata (input_bfd)->opd.relocs = rel;
14858 if (rel == NULL)
14859 return FALSE;
14860 memcpy (rel, relocs, amt);
14861 }
14862 return ret;
14863 }
14864
14865 /* Adjust the value of any local symbols in opd sections. */
14866
14867 static int
14868 ppc64_elf_output_symbol_hook (struct bfd_link_info *info,
14869 const char *name ATTRIBUTE_UNUSED,
14870 Elf_Internal_Sym *elfsym,
14871 asection *input_sec,
14872 struct elf_link_hash_entry *h)
14873 {
14874 struct _opd_sec_data *opd;
14875 long adjust;
14876 bfd_vma value;
14877
14878 if (h != NULL)
14879 return 1;
14880
14881 opd = get_opd_info (input_sec);
14882 if (opd == NULL || opd->adjust == NULL)
14883 return 1;
14884
14885 value = elfsym->st_value - input_sec->output_offset;
14886 if (!info->relocatable)
14887 value -= input_sec->output_section->vma;
14888
14889 adjust = opd->adjust[OPD_NDX (value)];
14890 if (adjust == -1)
14891 return 2;
14892
14893 elfsym->st_value += adjust;
14894 return 1;
14895 }
14896
14897 /* Finish up dynamic symbol handling. We set the contents of various
14898 dynamic sections here. */
14899
14900 static bfd_boolean
14901 ppc64_elf_finish_dynamic_symbol (bfd *output_bfd,
14902 struct bfd_link_info *info,
14903 struct elf_link_hash_entry *h,
14904 Elf_Internal_Sym *sym ATTRIBUTE_UNUSED)
14905 {
14906 struct ppc_link_hash_table *htab;
14907 struct plt_entry *ent;
14908 Elf_Internal_Rela rela;
14909 bfd_byte *loc;
14910
14911 htab = ppc_hash_table (info);
14912 if (htab == NULL)
14913 return FALSE;
14914
14915 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
14916 if (ent->plt.offset != (bfd_vma) -1)
14917 {
14918 /* This symbol has an entry in the procedure linkage
14919 table. Set it up. */
14920 if (!htab->elf.dynamic_sections_created
14921 || h->dynindx == -1)
14922 {
14923 BFD_ASSERT (h->type == STT_GNU_IFUNC
14924 && h->def_regular
14925 && (h->root.type == bfd_link_hash_defined
14926 || h->root.type == bfd_link_hash_defweak));
14927 rela.r_offset = (htab->elf.iplt->output_section->vma
14928 + htab->elf.iplt->output_offset
14929 + ent->plt.offset);
14930 if (htab->opd_abi)
14931 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
14932 else
14933 rela.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
14934 rela.r_addend = (h->root.u.def.value
14935 + h->root.u.def.section->output_offset
14936 + h->root.u.def.section->output_section->vma
14937 + ent->addend);
14938 loc = (htab->elf.irelplt->contents
14939 + (htab->elf.irelplt->reloc_count++
14940 * sizeof (Elf64_External_Rela)));
14941 }
14942 else
14943 {
14944 rela.r_offset = (htab->elf.splt->output_section->vma
14945 + htab->elf.splt->output_offset
14946 + ent->plt.offset);
14947 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_JMP_SLOT);
14948 rela.r_addend = ent->addend;
14949 loc = (htab->elf.srelplt->contents
14950 + ((ent->plt.offset - PLT_INITIAL_ENTRY_SIZE (htab))
14951 / PLT_ENTRY_SIZE (htab) * sizeof (Elf64_External_Rela)));
14952 }
14953 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
14954
14955 if (!htab->opd_abi)
14956 {
14957 if (!h->def_regular)
14958 {
14959 /* Mark the symbol as undefined, rather than as
14960 defined in glink. Leave the value if there were
14961 any relocations where pointer equality matters
14962 (this is a clue for the dynamic linker, to make
14963 function pointer comparisons work between an
14964 application and shared library), otherwise set it
14965 to zero. */
14966 sym->st_shndx = SHN_UNDEF;
14967 if (!h->pointer_equality_needed)
14968 sym->st_value = 0;
14969 else if (!h->ref_regular_nonweak)
14970 {
14971 /* This breaks function pointer comparisons, but
14972 that is better than breaking tests for a NULL
14973 function pointer. */
14974 sym->st_value = 0;
14975 }
14976 }
14977 }
14978 }
14979
14980 if (h->needs_copy)
14981 {
14982 /* This symbol needs a copy reloc. Set it up. */
14983
14984 if (h->dynindx == -1
14985 || (h->root.type != bfd_link_hash_defined
14986 && h->root.type != bfd_link_hash_defweak)
14987 || htab->relbss == NULL)
14988 abort ();
14989
14990 rela.r_offset = (h->root.u.def.value
14991 + h->root.u.def.section->output_section->vma
14992 + h->root.u.def.section->output_offset);
14993 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_COPY);
14994 rela.r_addend = 0;
14995 loc = htab->relbss->contents;
14996 loc += htab->relbss->reloc_count++ * sizeof (Elf64_External_Rela);
14997 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
14998 }
14999
15000 return TRUE;
15001 }
15002
15003 /* Used to decide how to sort relocs in an optimal manner for the
15004 dynamic linker, before writing them out. */
15005
15006 static enum elf_reloc_type_class
15007 ppc64_elf_reloc_type_class (const struct bfd_link_info *info,
15008 const asection *rel_sec,
15009 const Elf_Internal_Rela *rela)
15010 {
15011 enum elf_ppc64_reloc_type r_type;
15012 struct ppc_link_hash_table *htab = ppc_hash_table (info);
15013
15014 if (rel_sec == htab->elf.irelplt)
15015 return reloc_class_ifunc;
15016
15017 r_type = ELF64_R_TYPE (rela->r_info);
15018 switch (r_type)
15019 {
15020 case R_PPC64_RELATIVE:
15021 return reloc_class_relative;
15022 case R_PPC64_JMP_SLOT:
15023 return reloc_class_plt;
15024 case R_PPC64_COPY:
15025 return reloc_class_copy;
15026 default:
15027 return reloc_class_normal;
15028 }
15029 }
15030
15031 /* Finish up the dynamic sections. */
15032
15033 static bfd_boolean
15034 ppc64_elf_finish_dynamic_sections (bfd *output_bfd,
15035 struct bfd_link_info *info)
15036 {
15037 struct ppc_link_hash_table *htab;
15038 bfd *dynobj;
15039 asection *sdyn;
15040
15041 htab = ppc_hash_table (info);
15042 if (htab == NULL)
15043 return FALSE;
15044
15045 dynobj = htab->elf.dynobj;
15046 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
15047
15048 if (htab->elf.dynamic_sections_created)
15049 {
15050 Elf64_External_Dyn *dyncon, *dynconend;
15051
15052 if (sdyn == NULL || htab->elf.sgot == NULL)
15053 abort ();
15054
15055 dyncon = (Elf64_External_Dyn *) sdyn->contents;
15056 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
15057 for (; dyncon < dynconend; dyncon++)
15058 {
15059 Elf_Internal_Dyn dyn;
15060 asection *s;
15061
15062 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
15063
15064 switch (dyn.d_tag)
15065 {
15066 default:
15067 continue;
15068
15069 case DT_PPC64_GLINK:
15070 s = htab->glink;
15071 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
15072 /* We stupidly defined DT_PPC64_GLINK to be the start
15073 of glink rather than the first entry point, which is
15074 what ld.so needs, and now have a bigger stub to
15075 support automatic multiple TOCs. */
15076 dyn.d_un.d_ptr += GLINK_CALL_STUB_SIZE - 8 * 4;
15077 break;
15078
15079 case DT_PPC64_OPD:
15080 s = bfd_get_section_by_name (output_bfd, ".opd");
15081 if (s == NULL)
15082 continue;
15083 dyn.d_un.d_ptr = s->vma;
15084 break;
15085
15086 case DT_PPC64_OPT:
15087 if (htab->do_multi_toc && htab->multi_toc_needed)
15088 dyn.d_un.d_val |= PPC64_OPT_MULTI_TOC;
15089 break;
15090
15091 case DT_PPC64_OPDSZ:
15092 s = bfd_get_section_by_name (output_bfd, ".opd");
15093 if (s == NULL)
15094 continue;
15095 dyn.d_un.d_val = s->size;
15096 break;
15097
15098 case DT_PLTGOT:
15099 s = htab->elf.splt;
15100 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
15101 break;
15102
15103 case DT_JMPREL:
15104 s = htab->elf.srelplt;
15105 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
15106 break;
15107
15108 case DT_PLTRELSZ:
15109 dyn.d_un.d_val = htab->elf.srelplt->size;
15110 break;
15111
15112 case DT_RELASZ:
15113 /* Don't count procedure linkage table relocs in the
15114 overall reloc count. */
15115 s = htab->elf.srelplt;
15116 if (s == NULL)
15117 continue;
15118 dyn.d_un.d_val -= s->size;
15119 break;
15120
15121 case DT_RELA:
15122 /* We may not be using the standard ELF linker script.
15123 If .rela.plt is the first .rela section, we adjust
15124 DT_RELA to not include it. */
15125 s = htab->elf.srelplt;
15126 if (s == NULL)
15127 continue;
15128 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
15129 continue;
15130 dyn.d_un.d_ptr += s->size;
15131 break;
15132 }
15133
15134 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
15135 }
15136 }
15137
15138 if (htab->elf.sgot != NULL && htab->elf.sgot->size != 0)
15139 {
15140 /* Fill in the first entry in the global offset table.
15141 We use it to hold the link-time TOCbase. */
15142 bfd_put_64 (output_bfd,
15143 elf_gp (output_bfd) + TOC_BASE_OFF,
15144 htab->elf.sgot->contents);
15145
15146 /* Set .got entry size. */
15147 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize = 8;
15148 }
15149
15150 if (htab->elf.splt != NULL && htab->elf.splt->size != 0)
15151 {
15152 /* Set .plt entry size. */
15153 elf_section_data (htab->elf.splt->output_section)->this_hdr.sh_entsize
15154 = PLT_ENTRY_SIZE (htab);
15155 }
15156
15157 /* brlt is SEC_LINKER_CREATED, so we need to write out relocs for
15158 brlt ourselves if emitrelocations. */
15159 if (htab->brlt != NULL
15160 && htab->brlt->reloc_count != 0
15161 && !_bfd_elf_link_output_relocs (output_bfd,
15162 htab->brlt,
15163 elf_section_data (htab->brlt)->rela.hdr,
15164 elf_section_data (htab->brlt)->relocs,
15165 NULL))
15166 return FALSE;
15167
15168 if (htab->glink != NULL
15169 && htab->glink->reloc_count != 0
15170 && !_bfd_elf_link_output_relocs (output_bfd,
15171 htab->glink,
15172 elf_section_data (htab->glink)->rela.hdr,
15173 elf_section_data (htab->glink)->relocs,
15174 NULL))
15175 return FALSE;
15176
15177 if (htab->glink_eh_frame != NULL
15178 && htab->glink_eh_frame->size != 0)
15179 {
15180 bfd_vma val;
15181 bfd_byte *p;
15182 asection *stub_sec;
15183
15184 p = htab->glink_eh_frame->contents + sizeof (glink_eh_frame_cie);
15185 for (stub_sec = htab->params->stub_bfd->sections;
15186 stub_sec != NULL;
15187 stub_sec = stub_sec->next)
15188 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
15189 {
15190 /* FDE length. */
15191 p += 4;
15192 /* CIE pointer. */
15193 p += 4;
15194 /* Offset to stub section. */
15195 val = (stub_sec->output_section->vma
15196 + stub_sec->output_offset);
15197 val -= (htab->glink_eh_frame->output_section->vma
15198 + htab->glink_eh_frame->output_offset
15199 + (p - htab->glink_eh_frame->contents));
15200 if (val + 0x80000000 > 0xffffffff)
15201 {
15202 info->callbacks->einfo
15203 (_("%P: %s offset too large for .eh_frame sdata4 encoding"),
15204 stub_sec->name);
15205 return FALSE;
15206 }
15207 bfd_put_32 (dynobj, val, p);
15208 p += 4;
15209 /* stub section size. */
15210 p += 4;
15211 /* Augmentation. */
15212 p += 1;
15213 /* Pad. */
15214 p += 7;
15215 }
15216 if (htab->glink != NULL && htab->glink->size != 0)
15217 {
15218 /* FDE length. */
15219 p += 4;
15220 /* CIE pointer. */
15221 p += 4;
15222 /* Offset to .glink. */
15223 val = (htab->glink->output_section->vma
15224 + htab->glink->output_offset
15225 + 8);
15226 val -= (htab->glink_eh_frame->output_section->vma
15227 + htab->glink_eh_frame->output_offset
15228 + (p - htab->glink_eh_frame->contents));
15229 if (val + 0x80000000 > 0xffffffff)
15230 {
15231 info->callbacks->einfo
15232 (_("%P: %s offset too large for .eh_frame sdata4 encoding"),
15233 htab->glink->name);
15234 return FALSE;
15235 }
15236 bfd_put_32 (dynobj, val, p);
15237 p += 4;
15238 /* .glink size. */
15239 p += 4;
15240 /* Augmentation. */
15241 p += 1;
15242 /* Ops. */
15243 p += 7;
15244 }
15245
15246 if (htab->glink_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME
15247 && !_bfd_elf_write_section_eh_frame (output_bfd, info,
15248 htab->glink_eh_frame,
15249 htab->glink_eh_frame->contents))
15250 return FALSE;
15251 }
15252
15253 /* We need to handle writing out multiple GOT sections ourselves,
15254 since we didn't add them to DYNOBJ. We know dynobj is the first
15255 bfd. */
15256 while ((dynobj = dynobj->link.next) != NULL)
15257 {
15258 asection *s;
15259
15260 if (!is_ppc64_elf (dynobj))
15261 continue;
15262
15263 s = ppc64_elf_tdata (dynobj)->got;
15264 if (s != NULL
15265 && s->size != 0
15266 && s->output_section != bfd_abs_section_ptr
15267 && !bfd_set_section_contents (output_bfd, s->output_section,
15268 s->contents, s->output_offset,
15269 s->size))
15270 return FALSE;
15271 s = ppc64_elf_tdata (dynobj)->relgot;
15272 if (s != NULL
15273 && s->size != 0
15274 && s->output_section != bfd_abs_section_ptr
15275 && !bfd_set_section_contents (output_bfd, s->output_section,
15276 s->contents, s->output_offset,
15277 s->size))
15278 return FALSE;
15279 }
15280
15281 return TRUE;
15282 }
15283
15284 #include "elf64-target.h"
15285
15286 /* FreeBSD support */
15287
15288 #undef TARGET_LITTLE_SYM
15289 #undef TARGET_LITTLE_NAME
15290
15291 #undef TARGET_BIG_SYM
15292 #define TARGET_BIG_SYM powerpc_elf64_fbsd_vec
15293 #undef TARGET_BIG_NAME
15294 #define TARGET_BIG_NAME "elf64-powerpc-freebsd"
15295
15296 #undef ELF_OSABI
15297 #define ELF_OSABI ELFOSABI_FREEBSD
15298
15299 #undef elf64_bed
15300 #define elf64_bed elf64_powerpc_fbsd_bed
15301
15302 #include "elf64-target.h"
15303