* elf-bfd.h (enum elf_object_id): Add HPPA_ELF_TDATA.
[binutils-gdb.git] / bfd / elf64-ppc.c
1 /* PowerPC64-specific support for 64-bit ELF.
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
3 Free Software Foundation, Inc.
4 Written by Linus Nordberg, Swox AB <info@swox.com>,
5 based on elf32-ppc.c by Ian Lance Taylor.
6 Largely rewritten by Alan Modra <amodra@bigpond.net.au>
7
8 This file is part of BFD, the Binary File Descriptor library.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License along
21 with this program; if not, write to the Free Software Foundation, Inc.,
22 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
23
24
25 /* The 64-bit PowerPC ELF ABI may be found at
26 http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi.txt, and
27 http://www.linuxbase.org/spec/ELF/ppc64/spec/book1.html */
28
29 #include "sysdep.h"
30 #include <stdarg.h>
31 #include "bfd.h"
32 #include "bfdlink.h"
33 #include "libbfd.h"
34 #include "elf-bfd.h"
35 #include "elf/ppc64.h"
36 #include "elf64-ppc.h"
37
38 static bfd_reloc_status_type ppc64_elf_ha_reloc
39 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
40 static bfd_reloc_status_type ppc64_elf_branch_reloc
41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
42 static bfd_reloc_status_type ppc64_elf_brtaken_reloc
43 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
44 static bfd_reloc_status_type ppc64_elf_sectoff_reloc
45 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
46 static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc
47 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
48 static bfd_reloc_status_type ppc64_elf_toc_reloc
49 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
50 static bfd_reloc_status_type ppc64_elf_toc_ha_reloc
51 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
52 static bfd_reloc_status_type ppc64_elf_toc64_reloc
53 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
54 static bfd_reloc_status_type ppc64_elf_unhandled_reloc
55 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
56 static bfd_vma opd_entry_value
57 (asection *, bfd_vma, asection **, bfd_vma *);
58
59 #define TARGET_LITTLE_SYM bfd_elf64_powerpcle_vec
60 #define TARGET_LITTLE_NAME "elf64-powerpcle"
61 #define TARGET_BIG_SYM bfd_elf64_powerpc_vec
62 #define TARGET_BIG_NAME "elf64-powerpc"
63 #define ELF_ARCH bfd_arch_powerpc
64 #define ELF_MACHINE_CODE EM_PPC64
65 #define ELF_MAXPAGESIZE 0x10000
66 #define ELF_COMMONPAGESIZE 0x1000
67 #define elf_info_to_howto ppc64_elf_info_to_howto
68
69 #define elf_backend_want_got_sym 0
70 #define elf_backend_want_plt_sym 0
71 #define elf_backend_plt_alignment 3
72 #define elf_backend_plt_not_loaded 1
73 #define elf_backend_got_header_size 8
74 #define elf_backend_can_gc_sections 1
75 #define elf_backend_can_refcount 1
76 #define elf_backend_rela_normal 1
77 #define elf_backend_default_execstack 0
78
79 #define bfd_elf64_mkobject ppc64_elf_mkobject
80 #define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup
81 #define bfd_elf64_bfd_reloc_name_lookup ppc64_elf_reloc_name_lookup
82 #define bfd_elf64_bfd_merge_private_bfd_data ppc64_elf_merge_private_bfd_data
83 #define bfd_elf64_new_section_hook ppc64_elf_new_section_hook
84 #define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create
85 #define bfd_elf64_bfd_link_hash_table_free ppc64_elf_link_hash_table_free
86 #define bfd_elf64_get_synthetic_symtab ppc64_elf_get_synthetic_symtab
87
88 #define elf_backend_object_p ppc64_elf_object_p
89 #define elf_backend_grok_prstatus ppc64_elf_grok_prstatus
90 #define elf_backend_grok_psinfo ppc64_elf_grok_psinfo
91 #define elf_backend_write_core_note ppc64_elf_write_core_note
92 #define elf_backend_create_dynamic_sections ppc64_elf_create_dynamic_sections
93 #define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol
94 #define elf_backend_add_symbol_hook ppc64_elf_add_symbol_hook
95 #define elf_backend_check_directives ppc64_elf_check_directives
96 #define elf_backend_as_needed_cleanup ppc64_elf_as_needed_cleanup
97 #define elf_backend_archive_symbol_lookup ppc64_elf_archive_symbol_lookup
98 #define elf_backend_check_relocs ppc64_elf_check_relocs
99 #define elf_backend_gc_keep ppc64_elf_gc_keep
100 #define elf_backend_gc_mark_dynamic_ref ppc64_elf_gc_mark_dynamic_ref
101 #define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook
102 #define elf_backend_gc_sweep_hook ppc64_elf_gc_sweep_hook
103 #define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol
104 #define elf_backend_hide_symbol ppc64_elf_hide_symbol
105 #define elf_backend_always_size_sections ppc64_elf_func_desc_adjust
106 #define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections
107 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
108 #define elf_backend_action_discarded ppc64_elf_action_discarded
109 #define elf_backend_relocate_section ppc64_elf_relocate_section
110 #define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol
111 #define elf_backend_reloc_type_class ppc64_elf_reloc_type_class
112 #define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections
113 #define elf_backend_link_output_symbol_hook ppc64_elf_output_symbol_hook
114 #define elf_backend_special_sections ppc64_elf_special_sections
115
116 /* The name of the dynamic interpreter. This is put in the .interp
117 section. */
118 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
119
120 /* The size in bytes of an entry in the procedure linkage table. */
121 #define PLT_ENTRY_SIZE 24
122
123 /* The initial size of the plt reserved for the dynamic linker. */
124 #define PLT_INITIAL_ENTRY_SIZE PLT_ENTRY_SIZE
125
126 /* TOC base pointers offset from start of TOC. */
127 #define TOC_BASE_OFF 0x8000
128
129 /* Offset of tp and dtp pointers from start of TLS block. */
130 #define TP_OFFSET 0x7000
131 #define DTP_OFFSET 0x8000
132
133 /* .plt call stub instructions. The normal stub is like this, but
134 sometimes the .plt entry crosses a 64k boundary and we need to
135 insert an addi to adjust r12. */
136 #define PLT_CALL_STUB_SIZE (7*4)
137 #define ADDIS_R12_R2 0x3d820000 /* addis %r12,%r2,xxx@ha */
138 #define STD_R2_40R1 0xf8410028 /* std %r2,40(%r1) */
139 #define LD_R11_0R12 0xe96c0000 /* ld %r11,xxx+0@l(%r12) */
140 #define MTCTR_R11 0x7d6903a6 /* mtctr %r11 */
141 #define LD_R2_0R12 0xe84c0000 /* ld %r2,xxx+8@l(%r12) */
142 /* ld %r11,xxx+16@l(%r12) */
143 #define BCTR 0x4e800420 /* bctr */
144
145
146 #define ADDIS_R12_R12 0x3d8c0000 /* addis %r12,%r12,off@ha */
147 #define ADDI_R12_R12 0x398c0000 /* addi %r12,%r12,off@l */
148 #define ADDIS_R2_R2 0x3c420000 /* addis %r2,%r2,off@ha */
149 #define ADDI_R2_R2 0x38420000 /* addi %r2,%r2,off@l */
150
151 #define LD_R11_0R2 0xe9620000 /* ld %r11,xxx+0(%r2) */
152 #define LD_R2_0R2 0xe8420000 /* ld %r2,xxx+0(%r2) */
153
154 #define LD_R2_40R1 0xe8410028 /* ld %r2,40(%r1) */
155
156 /* glink call stub instructions. We enter with the index in R0. */
157 #define GLINK_CALL_STUB_SIZE (16*4)
158 /* 0: */
159 /* .quad plt0-1f */
160 /* __glink: */
161 #define MFLR_R12 0x7d8802a6 /* mflr %12 */
162 #define BCL_20_31 0x429f0005 /* bcl 20,31,1f */
163 /* 1: */
164 #define MFLR_R11 0x7d6802a6 /* mflr %11 */
165 #define LD_R2_M16R11 0xe84bfff0 /* ld %2,(0b-1b)(%11) */
166 #define MTLR_R12 0x7d8803a6 /* mtlr %12 */
167 #define ADD_R12_R2_R11 0x7d825a14 /* add %12,%2,%11 */
168 /* ld %11,0(%12) */
169 /* ld %2,8(%12) */
170 /* mtctr %11 */
171 /* ld %11,16(%12) */
172 /* bctr */
173
174 /* Pad with this. */
175 #define NOP 0x60000000
176
177 /* Some other nops. */
178 #define CROR_151515 0x4def7b82
179 #define CROR_313131 0x4ffffb82
180
181 /* .glink entries for the first 32k functions are two instructions. */
182 #define LI_R0_0 0x38000000 /* li %r0,0 */
183 #define B_DOT 0x48000000 /* b . */
184
185 /* After that, we need two instructions to load the index, followed by
186 a branch. */
187 #define LIS_R0_0 0x3c000000 /* lis %r0,0 */
188 #define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */
189
190 /* Instructions used by the save and restore reg functions. */
191 #define STD_R0_0R1 0xf8010000 /* std %r0,0(%r1) */
192 #define STD_R0_0R12 0xf80c0000 /* std %r0,0(%r12) */
193 #define LD_R0_0R1 0xe8010000 /* ld %r0,0(%r1) */
194 #define LD_R0_0R12 0xe80c0000 /* ld %r0,0(%r12) */
195 #define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */
196 #define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */
197 #define LI_R12_0 0x39800000 /* li %r12,0 */
198 #define STVX_VR0_R12_R0 0x7c0c01ce /* stvx %v0,%r12,%r0 */
199 #define LVX_VR0_R12_R0 0x7c0c00ce /* lvx %v0,%r12,%r0 */
200 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
201 #define BLR 0x4e800020 /* blr */
202
203 /* Since .opd is an array of descriptors and each entry will end up
204 with identical R_PPC64_RELATIVE relocs, there is really no need to
205 propagate .opd relocs; The dynamic linker should be taught to
206 relocate .opd without reloc entries. */
207 #ifndef NO_OPD_RELOCS
208 #define NO_OPD_RELOCS 0
209 #endif
210 \f
211 #define ONES(n) (((bfd_vma) 1 << ((n) - 1) << 1) - 1)
212
213 /* Relocation HOWTO's. */
214 static reloc_howto_type *ppc64_elf_howto_table[(int) R_PPC64_max];
215
216 static reloc_howto_type ppc64_elf_howto_raw[] = {
217 /* This reloc does nothing. */
218 HOWTO (R_PPC64_NONE, /* type */
219 0, /* rightshift */
220 2, /* size (0 = byte, 1 = short, 2 = long) */
221 32, /* bitsize */
222 FALSE, /* pc_relative */
223 0, /* bitpos */
224 complain_overflow_dont, /* complain_on_overflow */
225 bfd_elf_generic_reloc, /* special_function */
226 "R_PPC64_NONE", /* name */
227 FALSE, /* partial_inplace */
228 0, /* src_mask */
229 0, /* dst_mask */
230 FALSE), /* pcrel_offset */
231
232 /* A standard 32 bit relocation. */
233 HOWTO (R_PPC64_ADDR32, /* type */
234 0, /* rightshift */
235 2, /* size (0 = byte, 1 = short, 2 = long) */
236 32, /* bitsize */
237 FALSE, /* pc_relative */
238 0, /* bitpos */
239 complain_overflow_bitfield, /* complain_on_overflow */
240 bfd_elf_generic_reloc, /* special_function */
241 "R_PPC64_ADDR32", /* name */
242 FALSE, /* partial_inplace */
243 0, /* src_mask */
244 0xffffffff, /* dst_mask */
245 FALSE), /* pcrel_offset */
246
247 /* An absolute 26 bit branch; the lower two bits must be zero.
248 FIXME: we don't check that, we just clear them. */
249 HOWTO (R_PPC64_ADDR24, /* type */
250 0, /* rightshift */
251 2, /* size (0 = byte, 1 = short, 2 = long) */
252 26, /* bitsize */
253 FALSE, /* pc_relative */
254 0, /* bitpos */
255 complain_overflow_bitfield, /* complain_on_overflow */
256 bfd_elf_generic_reloc, /* special_function */
257 "R_PPC64_ADDR24", /* name */
258 FALSE, /* partial_inplace */
259 0, /* src_mask */
260 0x03fffffc, /* dst_mask */
261 FALSE), /* pcrel_offset */
262
263 /* A standard 16 bit relocation. */
264 HOWTO (R_PPC64_ADDR16, /* type */
265 0, /* rightshift */
266 1, /* size (0 = byte, 1 = short, 2 = long) */
267 16, /* bitsize */
268 FALSE, /* pc_relative */
269 0, /* bitpos */
270 complain_overflow_bitfield, /* complain_on_overflow */
271 bfd_elf_generic_reloc, /* special_function */
272 "R_PPC64_ADDR16", /* name */
273 FALSE, /* partial_inplace */
274 0, /* src_mask */
275 0xffff, /* dst_mask */
276 FALSE), /* pcrel_offset */
277
278 /* A 16 bit relocation without overflow. */
279 HOWTO (R_PPC64_ADDR16_LO, /* type */
280 0, /* rightshift */
281 1, /* size (0 = byte, 1 = short, 2 = long) */
282 16, /* bitsize */
283 FALSE, /* pc_relative */
284 0, /* bitpos */
285 complain_overflow_dont,/* complain_on_overflow */
286 bfd_elf_generic_reloc, /* special_function */
287 "R_PPC64_ADDR16_LO", /* name */
288 FALSE, /* partial_inplace */
289 0, /* src_mask */
290 0xffff, /* dst_mask */
291 FALSE), /* pcrel_offset */
292
293 /* Bits 16-31 of an address. */
294 HOWTO (R_PPC64_ADDR16_HI, /* type */
295 16, /* rightshift */
296 1, /* size (0 = byte, 1 = short, 2 = long) */
297 16, /* bitsize */
298 FALSE, /* pc_relative */
299 0, /* bitpos */
300 complain_overflow_dont, /* complain_on_overflow */
301 bfd_elf_generic_reloc, /* special_function */
302 "R_PPC64_ADDR16_HI", /* name */
303 FALSE, /* partial_inplace */
304 0, /* src_mask */
305 0xffff, /* dst_mask */
306 FALSE), /* pcrel_offset */
307
308 /* Bits 16-31 of an address, plus 1 if the contents of the low 16
309 bits, treated as a signed number, is negative. */
310 HOWTO (R_PPC64_ADDR16_HA, /* type */
311 16, /* rightshift */
312 1, /* size (0 = byte, 1 = short, 2 = long) */
313 16, /* bitsize */
314 FALSE, /* pc_relative */
315 0, /* bitpos */
316 complain_overflow_dont, /* complain_on_overflow */
317 ppc64_elf_ha_reloc, /* special_function */
318 "R_PPC64_ADDR16_HA", /* name */
319 FALSE, /* partial_inplace */
320 0, /* src_mask */
321 0xffff, /* dst_mask */
322 FALSE), /* pcrel_offset */
323
324 /* An absolute 16 bit branch; the lower two bits must be zero.
325 FIXME: we don't check that, we just clear them. */
326 HOWTO (R_PPC64_ADDR14, /* type */
327 0, /* rightshift */
328 2, /* size (0 = byte, 1 = short, 2 = long) */
329 16, /* bitsize */
330 FALSE, /* pc_relative */
331 0, /* bitpos */
332 complain_overflow_bitfield, /* complain_on_overflow */
333 ppc64_elf_branch_reloc, /* special_function */
334 "R_PPC64_ADDR14", /* name */
335 FALSE, /* partial_inplace */
336 0, /* src_mask */
337 0x0000fffc, /* dst_mask */
338 FALSE), /* pcrel_offset */
339
340 /* An absolute 16 bit branch, for which bit 10 should be set to
341 indicate that the branch is expected to be taken. The lower two
342 bits must be zero. */
343 HOWTO (R_PPC64_ADDR14_BRTAKEN, /* type */
344 0, /* rightshift */
345 2, /* size (0 = byte, 1 = short, 2 = long) */
346 16, /* bitsize */
347 FALSE, /* pc_relative */
348 0, /* bitpos */
349 complain_overflow_bitfield, /* complain_on_overflow */
350 ppc64_elf_brtaken_reloc, /* special_function */
351 "R_PPC64_ADDR14_BRTAKEN",/* name */
352 FALSE, /* partial_inplace */
353 0, /* src_mask */
354 0x0000fffc, /* dst_mask */
355 FALSE), /* pcrel_offset */
356
357 /* An absolute 16 bit branch, for which bit 10 should be set to
358 indicate that the branch is not expected to be taken. The lower
359 two bits must be zero. */
360 HOWTO (R_PPC64_ADDR14_BRNTAKEN, /* type */
361 0, /* rightshift */
362 2, /* size (0 = byte, 1 = short, 2 = long) */
363 16, /* bitsize */
364 FALSE, /* pc_relative */
365 0, /* bitpos */
366 complain_overflow_bitfield, /* complain_on_overflow */
367 ppc64_elf_brtaken_reloc, /* special_function */
368 "R_PPC64_ADDR14_BRNTAKEN",/* name */
369 FALSE, /* partial_inplace */
370 0, /* src_mask */
371 0x0000fffc, /* dst_mask */
372 FALSE), /* pcrel_offset */
373
374 /* A relative 26 bit branch; the lower two bits must be zero. */
375 HOWTO (R_PPC64_REL24, /* type */
376 0, /* rightshift */
377 2, /* size (0 = byte, 1 = short, 2 = long) */
378 26, /* bitsize */
379 TRUE, /* pc_relative */
380 0, /* bitpos */
381 complain_overflow_signed, /* complain_on_overflow */
382 ppc64_elf_branch_reloc, /* special_function */
383 "R_PPC64_REL24", /* name */
384 FALSE, /* partial_inplace */
385 0, /* src_mask */
386 0x03fffffc, /* dst_mask */
387 TRUE), /* pcrel_offset */
388
389 /* A relative 16 bit branch; the lower two bits must be zero. */
390 HOWTO (R_PPC64_REL14, /* type */
391 0, /* rightshift */
392 2, /* size (0 = byte, 1 = short, 2 = long) */
393 16, /* bitsize */
394 TRUE, /* pc_relative */
395 0, /* bitpos */
396 complain_overflow_signed, /* complain_on_overflow */
397 ppc64_elf_branch_reloc, /* special_function */
398 "R_PPC64_REL14", /* name */
399 FALSE, /* partial_inplace */
400 0, /* src_mask */
401 0x0000fffc, /* dst_mask */
402 TRUE), /* pcrel_offset */
403
404 /* A relative 16 bit branch. Bit 10 should be set to indicate that
405 the branch is expected to be taken. The lower two bits must be
406 zero. */
407 HOWTO (R_PPC64_REL14_BRTAKEN, /* type */
408 0, /* rightshift */
409 2, /* size (0 = byte, 1 = short, 2 = long) */
410 16, /* bitsize */
411 TRUE, /* pc_relative */
412 0, /* bitpos */
413 complain_overflow_signed, /* complain_on_overflow */
414 ppc64_elf_brtaken_reloc, /* special_function */
415 "R_PPC64_REL14_BRTAKEN", /* name */
416 FALSE, /* partial_inplace */
417 0, /* src_mask */
418 0x0000fffc, /* dst_mask */
419 TRUE), /* pcrel_offset */
420
421 /* A relative 16 bit branch. Bit 10 should be set to indicate that
422 the branch is not expected to be taken. The lower two bits must
423 be zero. */
424 HOWTO (R_PPC64_REL14_BRNTAKEN, /* type */
425 0, /* rightshift */
426 2, /* size (0 = byte, 1 = short, 2 = long) */
427 16, /* bitsize */
428 TRUE, /* pc_relative */
429 0, /* bitpos */
430 complain_overflow_signed, /* complain_on_overflow */
431 ppc64_elf_brtaken_reloc, /* special_function */
432 "R_PPC64_REL14_BRNTAKEN",/* name */
433 FALSE, /* partial_inplace */
434 0, /* src_mask */
435 0x0000fffc, /* dst_mask */
436 TRUE), /* pcrel_offset */
437
438 /* Like R_PPC64_ADDR16, but referring to the GOT table entry for the
439 symbol. */
440 HOWTO (R_PPC64_GOT16, /* type */
441 0, /* rightshift */
442 1, /* size (0 = byte, 1 = short, 2 = long) */
443 16, /* bitsize */
444 FALSE, /* pc_relative */
445 0, /* bitpos */
446 complain_overflow_signed, /* complain_on_overflow */
447 ppc64_elf_unhandled_reloc, /* special_function */
448 "R_PPC64_GOT16", /* name */
449 FALSE, /* partial_inplace */
450 0, /* src_mask */
451 0xffff, /* dst_mask */
452 FALSE), /* pcrel_offset */
453
454 /* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for
455 the symbol. */
456 HOWTO (R_PPC64_GOT16_LO, /* type */
457 0, /* rightshift */
458 1, /* size (0 = byte, 1 = short, 2 = long) */
459 16, /* bitsize */
460 FALSE, /* pc_relative */
461 0, /* bitpos */
462 complain_overflow_dont, /* complain_on_overflow */
463 ppc64_elf_unhandled_reloc, /* special_function */
464 "R_PPC64_GOT16_LO", /* name */
465 FALSE, /* partial_inplace */
466 0, /* src_mask */
467 0xffff, /* dst_mask */
468 FALSE), /* pcrel_offset */
469
470 /* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for
471 the symbol. */
472 HOWTO (R_PPC64_GOT16_HI, /* type */
473 16, /* rightshift */
474 1, /* size (0 = byte, 1 = short, 2 = long) */
475 16, /* bitsize */
476 FALSE, /* pc_relative */
477 0, /* bitpos */
478 complain_overflow_dont,/* complain_on_overflow */
479 ppc64_elf_unhandled_reloc, /* special_function */
480 "R_PPC64_GOT16_HI", /* name */
481 FALSE, /* partial_inplace */
482 0, /* src_mask */
483 0xffff, /* dst_mask */
484 FALSE), /* pcrel_offset */
485
486 /* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for
487 the symbol. */
488 HOWTO (R_PPC64_GOT16_HA, /* type */
489 16, /* rightshift */
490 1, /* size (0 = byte, 1 = short, 2 = long) */
491 16, /* bitsize */
492 FALSE, /* pc_relative */
493 0, /* bitpos */
494 complain_overflow_dont,/* complain_on_overflow */
495 ppc64_elf_unhandled_reloc, /* special_function */
496 "R_PPC64_GOT16_HA", /* name */
497 FALSE, /* partial_inplace */
498 0, /* src_mask */
499 0xffff, /* dst_mask */
500 FALSE), /* pcrel_offset */
501
502 /* This is used only by the dynamic linker. The symbol should exist
503 both in the object being run and in some shared library. The
504 dynamic linker copies the data addressed by the symbol from the
505 shared library into the object, because the object being
506 run has to have the data at some particular address. */
507 HOWTO (R_PPC64_COPY, /* type */
508 0, /* rightshift */
509 0, /* this one is variable size */
510 0, /* bitsize */
511 FALSE, /* pc_relative */
512 0, /* bitpos */
513 complain_overflow_dont, /* complain_on_overflow */
514 ppc64_elf_unhandled_reloc, /* special_function */
515 "R_PPC64_COPY", /* name */
516 FALSE, /* partial_inplace */
517 0, /* src_mask */
518 0, /* dst_mask */
519 FALSE), /* pcrel_offset */
520
521 /* Like R_PPC64_ADDR64, but used when setting global offset table
522 entries. */
523 HOWTO (R_PPC64_GLOB_DAT, /* type */
524 0, /* rightshift */
525 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
526 64, /* bitsize */
527 FALSE, /* pc_relative */
528 0, /* bitpos */
529 complain_overflow_dont, /* complain_on_overflow */
530 ppc64_elf_unhandled_reloc, /* special_function */
531 "R_PPC64_GLOB_DAT", /* name */
532 FALSE, /* partial_inplace */
533 0, /* src_mask */
534 ONES (64), /* dst_mask */
535 FALSE), /* pcrel_offset */
536
537 /* Created by the link editor. Marks a procedure linkage table
538 entry for a symbol. */
539 HOWTO (R_PPC64_JMP_SLOT, /* type */
540 0, /* rightshift */
541 0, /* size (0 = byte, 1 = short, 2 = long) */
542 0, /* bitsize */
543 FALSE, /* pc_relative */
544 0, /* bitpos */
545 complain_overflow_dont, /* complain_on_overflow */
546 ppc64_elf_unhandled_reloc, /* special_function */
547 "R_PPC64_JMP_SLOT", /* name */
548 FALSE, /* partial_inplace */
549 0, /* src_mask */
550 0, /* dst_mask */
551 FALSE), /* pcrel_offset */
552
553 /* Used only by the dynamic linker. When the object is run, this
554 doubleword64 is set to the load address of the object, plus the
555 addend. */
556 HOWTO (R_PPC64_RELATIVE, /* type */
557 0, /* rightshift */
558 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
559 64, /* bitsize */
560 FALSE, /* pc_relative */
561 0, /* bitpos */
562 complain_overflow_dont, /* complain_on_overflow */
563 bfd_elf_generic_reloc, /* special_function */
564 "R_PPC64_RELATIVE", /* name */
565 FALSE, /* partial_inplace */
566 0, /* src_mask */
567 ONES (64), /* dst_mask */
568 FALSE), /* pcrel_offset */
569
570 /* Like R_PPC64_ADDR32, but may be unaligned. */
571 HOWTO (R_PPC64_UADDR32, /* type */
572 0, /* rightshift */
573 2, /* size (0 = byte, 1 = short, 2 = long) */
574 32, /* bitsize */
575 FALSE, /* pc_relative */
576 0, /* bitpos */
577 complain_overflow_bitfield, /* complain_on_overflow */
578 bfd_elf_generic_reloc, /* special_function */
579 "R_PPC64_UADDR32", /* name */
580 FALSE, /* partial_inplace */
581 0, /* src_mask */
582 0xffffffff, /* dst_mask */
583 FALSE), /* pcrel_offset */
584
585 /* Like R_PPC64_ADDR16, but may be unaligned. */
586 HOWTO (R_PPC64_UADDR16, /* type */
587 0, /* rightshift */
588 1, /* size (0 = byte, 1 = short, 2 = long) */
589 16, /* bitsize */
590 FALSE, /* pc_relative */
591 0, /* bitpos */
592 complain_overflow_bitfield, /* complain_on_overflow */
593 bfd_elf_generic_reloc, /* special_function */
594 "R_PPC64_UADDR16", /* name */
595 FALSE, /* partial_inplace */
596 0, /* src_mask */
597 0xffff, /* dst_mask */
598 FALSE), /* pcrel_offset */
599
600 /* 32-bit PC relative. */
601 HOWTO (R_PPC64_REL32, /* type */
602 0, /* rightshift */
603 2, /* size (0 = byte, 1 = short, 2 = long) */
604 32, /* bitsize */
605 TRUE, /* pc_relative */
606 0, /* bitpos */
607 /* FIXME: Verify. Was complain_overflow_bitfield. */
608 complain_overflow_signed, /* complain_on_overflow */
609 bfd_elf_generic_reloc, /* special_function */
610 "R_PPC64_REL32", /* name */
611 FALSE, /* partial_inplace */
612 0, /* src_mask */
613 0xffffffff, /* dst_mask */
614 TRUE), /* pcrel_offset */
615
616 /* 32-bit relocation to the symbol's procedure linkage table. */
617 HOWTO (R_PPC64_PLT32, /* type */
618 0, /* rightshift */
619 2, /* size (0 = byte, 1 = short, 2 = long) */
620 32, /* bitsize */
621 FALSE, /* pc_relative */
622 0, /* bitpos */
623 complain_overflow_bitfield, /* complain_on_overflow */
624 ppc64_elf_unhandled_reloc, /* special_function */
625 "R_PPC64_PLT32", /* name */
626 FALSE, /* partial_inplace */
627 0, /* src_mask */
628 0xffffffff, /* dst_mask */
629 FALSE), /* pcrel_offset */
630
631 /* 32-bit PC relative relocation to the symbol's procedure linkage table.
632 FIXME: R_PPC64_PLTREL32 not supported. */
633 HOWTO (R_PPC64_PLTREL32, /* type */
634 0, /* rightshift */
635 2, /* size (0 = byte, 1 = short, 2 = long) */
636 32, /* bitsize */
637 TRUE, /* pc_relative */
638 0, /* bitpos */
639 complain_overflow_signed, /* complain_on_overflow */
640 bfd_elf_generic_reloc, /* special_function */
641 "R_PPC64_PLTREL32", /* name */
642 FALSE, /* partial_inplace */
643 0, /* src_mask */
644 0xffffffff, /* dst_mask */
645 TRUE), /* pcrel_offset */
646
647 /* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for
648 the symbol. */
649 HOWTO (R_PPC64_PLT16_LO, /* type */
650 0, /* rightshift */
651 1, /* size (0 = byte, 1 = short, 2 = long) */
652 16, /* bitsize */
653 FALSE, /* pc_relative */
654 0, /* bitpos */
655 complain_overflow_dont, /* complain_on_overflow */
656 ppc64_elf_unhandled_reloc, /* special_function */
657 "R_PPC64_PLT16_LO", /* name */
658 FALSE, /* partial_inplace */
659 0, /* src_mask */
660 0xffff, /* dst_mask */
661 FALSE), /* pcrel_offset */
662
663 /* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for
664 the symbol. */
665 HOWTO (R_PPC64_PLT16_HI, /* type */
666 16, /* rightshift */
667 1, /* size (0 = byte, 1 = short, 2 = long) */
668 16, /* bitsize */
669 FALSE, /* pc_relative */
670 0, /* bitpos */
671 complain_overflow_dont, /* complain_on_overflow */
672 ppc64_elf_unhandled_reloc, /* special_function */
673 "R_PPC64_PLT16_HI", /* name */
674 FALSE, /* partial_inplace */
675 0, /* src_mask */
676 0xffff, /* dst_mask */
677 FALSE), /* pcrel_offset */
678
679 /* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for
680 the symbol. */
681 HOWTO (R_PPC64_PLT16_HA, /* type */
682 16, /* rightshift */
683 1, /* size (0 = byte, 1 = short, 2 = long) */
684 16, /* bitsize */
685 FALSE, /* pc_relative */
686 0, /* bitpos */
687 complain_overflow_dont, /* complain_on_overflow */
688 ppc64_elf_unhandled_reloc, /* special_function */
689 "R_PPC64_PLT16_HA", /* name */
690 FALSE, /* partial_inplace */
691 0, /* src_mask */
692 0xffff, /* dst_mask */
693 FALSE), /* pcrel_offset */
694
695 /* 16-bit section relative relocation. */
696 HOWTO (R_PPC64_SECTOFF, /* type */
697 0, /* rightshift */
698 1, /* size (0 = byte, 1 = short, 2 = long) */
699 16, /* bitsize */
700 FALSE, /* pc_relative */
701 0, /* bitpos */
702 complain_overflow_bitfield, /* complain_on_overflow */
703 ppc64_elf_sectoff_reloc, /* special_function */
704 "R_PPC64_SECTOFF", /* name */
705 FALSE, /* partial_inplace */
706 0, /* src_mask */
707 0xffff, /* dst_mask */
708 FALSE), /* pcrel_offset */
709
710 /* Like R_PPC64_SECTOFF, but no overflow warning. */
711 HOWTO (R_PPC64_SECTOFF_LO, /* type */
712 0, /* rightshift */
713 1, /* size (0 = byte, 1 = short, 2 = long) */
714 16, /* bitsize */
715 FALSE, /* pc_relative */
716 0, /* bitpos */
717 complain_overflow_dont, /* complain_on_overflow */
718 ppc64_elf_sectoff_reloc, /* special_function */
719 "R_PPC64_SECTOFF_LO", /* name */
720 FALSE, /* partial_inplace */
721 0, /* src_mask */
722 0xffff, /* dst_mask */
723 FALSE), /* pcrel_offset */
724
725 /* 16-bit upper half section relative relocation. */
726 HOWTO (R_PPC64_SECTOFF_HI, /* type */
727 16, /* rightshift */
728 1, /* size (0 = byte, 1 = short, 2 = long) */
729 16, /* bitsize */
730 FALSE, /* pc_relative */
731 0, /* bitpos */
732 complain_overflow_dont, /* complain_on_overflow */
733 ppc64_elf_sectoff_reloc, /* special_function */
734 "R_PPC64_SECTOFF_HI", /* name */
735 FALSE, /* partial_inplace */
736 0, /* src_mask */
737 0xffff, /* dst_mask */
738 FALSE), /* pcrel_offset */
739
740 /* 16-bit upper half adjusted section relative relocation. */
741 HOWTO (R_PPC64_SECTOFF_HA, /* type */
742 16, /* rightshift */
743 1, /* size (0 = byte, 1 = short, 2 = long) */
744 16, /* bitsize */
745 FALSE, /* pc_relative */
746 0, /* bitpos */
747 complain_overflow_dont, /* complain_on_overflow */
748 ppc64_elf_sectoff_ha_reloc, /* special_function */
749 "R_PPC64_SECTOFF_HA", /* name */
750 FALSE, /* partial_inplace */
751 0, /* src_mask */
752 0xffff, /* dst_mask */
753 FALSE), /* pcrel_offset */
754
755 /* Like R_PPC64_REL24 without touching the two least significant bits. */
756 HOWTO (R_PPC64_REL30, /* type */
757 2, /* rightshift */
758 2, /* size (0 = byte, 1 = short, 2 = long) */
759 30, /* bitsize */
760 TRUE, /* pc_relative */
761 0, /* bitpos */
762 complain_overflow_dont, /* complain_on_overflow */
763 bfd_elf_generic_reloc, /* special_function */
764 "R_PPC64_REL30", /* name */
765 FALSE, /* partial_inplace */
766 0, /* src_mask */
767 0xfffffffc, /* dst_mask */
768 TRUE), /* pcrel_offset */
769
770 /* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */
771
772 /* A standard 64-bit relocation. */
773 HOWTO (R_PPC64_ADDR64, /* type */
774 0, /* rightshift */
775 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
776 64, /* bitsize */
777 FALSE, /* pc_relative */
778 0, /* bitpos */
779 complain_overflow_dont, /* complain_on_overflow */
780 bfd_elf_generic_reloc, /* special_function */
781 "R_PPC64_ADDR64", /* name */
782 FALSE, /* partial_inplace */
783 0, /* src_mask */
784 ONES (64), /* dst_mask */
785 FALSE), /* pcrel_offset */
786
787 /* The bits 32-47 of an address. */
788 HOWTO (R_PPC64_ADDR16_HIGHER, /* type */
789 32, /* rightshift */
790 1, /* size (0 = byte, 1 = short, 2 = long) */
791 16, /* bitsize */
792 FALSE, /* pc_relative */
793 0, /* bitpos */
794 complain_overflow_dont, /* complain_on_overflow */
795 bfd_elf_generic_reloc, /* special_function */
796 "R_PPC64_ADDR16_HIGHER", /* name */
797 FALSE, /* partial_inplace */
798 0, /* src_mask */
799 0xffff, /* dst_mask */
800 FALSE), /* pcrel_offset */
801
802 /* The bits 32-47 of an address, plus 1 if the contents of the low
803 16 bits, treated as a signed number, is negative. */
804 HOWTO (R_PPC64_ADDR16_HIGHERA, /* type */
805 32, /* rightshift */
806 1, /* size (0 = byte, 1 = short, 2 = long) */
807 16, /* bitsize */
808 FALSE, /* pc_relative */
809 0, /* bitpos */
810 complain_overflow_dont, /* complain_on_overflow */
811 ppc64_elf_ha_reloc, /* special_function */
812 "R_PPC64_ADDR16_HIGHERA", /* name */
813 FALSE, /* partial_inplace */
814 0, /* src_mask */
815 0xffff, /* dst_mask */
816 FALSE), /* pcrel_offset */
817
818 /* The bits 48-63 of an address. */
819 HOWTO (R_PPC64_ADDR16_HIGHEST,/* type */
820 48, /* rightshift */
821 1, /* size (0 = byte, 1 = short, 2 = long) */
822 16, /* bitsize */
823 FALSE, /* pc_relative */
824 0, /* bitpos */
825 complain_overflow_dont, /* complain_on_overflow */
826 bfd_elf_generic_reloc, /* special_function */
827 "R_PPC64_ADDR16_HIGHEST", /* name */
828 FALSE, /* partial_inplace */
829 0, /* src_mask */
830 0xffff, /* dst_mask */
831 FALSE), /* pcrel_offset */
832
833 /* The bits 48-63 of an address, plus 1 if the contents of the low
834 16 bits, treated as a signed number, is negative. */
835 HOWTO (R_PPC64_ADDR16_HIGHESTA,/* type */
836 48, /* rightshift */
837 1, /* size (0 = byte, 1 = short, 2 = long) */
838 16, /* bitsize */
839 FALSE, /* pc_relative */
840 0, /* bitpos */
841 complain_overflow_dont, /* complain_on_overflow */
842 ppc64_elf_ha_reloc, /* special_function */
843 "R_PPC64_ADDR16_HIGHESTA", /* name */
844 FALSE, /* partial_inplace */
845 0, /* src_mask */
846 0xffff, /* dst_mask */
847 FALSE), /* pcrel_offset */
848
849 /* Like ADDR64, but may be unaligned. */
850 HOWTO (R_PPC64_UADDR64, /* type */
851 0, /* rightshift */
852 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
853 64, /* bitsize */
854 FALSE, /* pc_relative */
855 0, /* bitpos */
856 complain_overflow_dont, /* complain_on_overflow */
857 bfd_elf_generic_reloc, /* special_function */
858 "R_PPC64_UADDR64", /* name */
859 FALSE, /* partial_inplace */
860 0, /* src_mask */
861 ONES (64), /* dst_mask */
862 FALSE), /* pcrel_offset */
863
864 /* 64-bit relative relocation. */
865 HOWTO (R_PPC64_REL64, /* type */
866 0, /* rightshift */
867 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
868 64, /* bitsize */
869 TRUE, /* pc_relative */
870 0, /* bitpos */
871 complain_overflow_dont, /* complain_on_overflow */
872 bfd_elf_generic_reloc, /* special_function */
873 "R_PPC64_REL64", /* name */
874 FALSE, /* partial_inplace */
875 0, /* src_mask */
876 ONES (64), /* dst_mask */
877 TRUE), /* pcrel_offset */
878
879 /* 64-bit relocation to the symbol's procedure linkage table. */
880 HOWTO (R_PPC64_PLT64, /* type */
881 0, /* rightshift */
882 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
883 64, /* bitsize */
884 FALSE, /* pc_relative */
885 0, /* bitpos */
886 complain_overflow_dont, /* complain_on_overflow */
887 ppc64_elf_unhandled_reloc, /* special_function */
888 "R_PPC64_PLT64", /* name */
889 FALSE, /* partial_inplace */
890 0, /* src_mask */
891 ONES (64), /* dst_mask */
892 FALSE), /* pcrel_offset */
893
894 /* 64-bit PC relative relocation to the symbol's procedure linkage
895 table. */
896 /* FIXME: R_PPC64_PLTREL64 not supported. */
897 HOWTO (R_PPC64_PLTREL64, /* type */
898 0, /* rightshift */
899 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
900 64, /* bitsize */
901 TRUE, /* pc_relative */
902 0, /* bitpos */
903 complain_overflow_dont, /* complain_on_overflow */
904 ppc64_elf_unhandled_reloc, /* special_function */
905 "R_PPC64_PLTREL64", /* name */
906 FALSE, /* partial_inplace */
907 0, /* src_mask */
908 ONES (64), /* dst_mask */
909 TRUE), /* pcrel_offset */
910
911 /* 16 bit TOC-relative relocation. */
912
913 /* R_PPC64_TOC16 47 half16* S + A - .TOC. */
914 HOWTO (R_PPC64_TOC16, /* type */
915 0, /* rightshift */
916 1, /* size (0 = byte, 1 = short, 2 = long) */
917 16, /* bitsize */
918 FALSE, /* pc_relative */
919 0, /* bitpos */
920 complain_overflow_signed, /* complain_on_overflow */
921 ppc64_elf_toc_reloc, /* special_function */
922 "R_PPC64_TOC16", /* name */
923 FALSE, /* partial_inplace */
924 0, /* src_mask */
925 0xffff, /* dst_mask */
926 FALSE), /* pcrel_offset */
927
928 /* 16 bit TOC-relative relocation without overflow. */
929
930 /* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */
931 HOWTO (R_PPC64_TOC16_LO, /* type */
932 0, /* rightshift */
933 1, /* size (0 = byte, 1 = short, 2 = long) */
934 16, /* bitsize */
935 FALSE, /* pc_relative */
936 0, /* bitpos */
937 complain_overflow_dont, /* complain_on_overflow */
938 ppc64_elf_toc_reloc, /* special_function */
939 "R_PPC64_TOC16_LO", /* name */
940 FALSE, /* partial_inplace */
941 0, /* src_mask */
942 0xffff, /* dst_mask */
943 FALSE), /* pcrel_offset */
944
945 /* 16 bit TOC-relative relocation, high 16 bits. */
946
947 /* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */
948 HOWTO (R_PPC64_TOC16_HI, /* type */
949 16, /* rightshift */
950 1, /* size (0 = byte, 1 = short, 2 = long) */
951 16, /* bitsize */
952 FALSE, /* pc_relative */
953 0, /* bitpos */
954 complain_overflow_dont, /* complain_on_overflow */
955 ppc64_elf_toc_reloc, /* special_function */
956 "R_PPC64_TOC16_HI", /* name */
957 FALSE, /* partial_inplace */
958 0, /* src_mask */
959 0xffff, /* dst_mask */
960 FALSE), /* pcrel_offset */
961
962 /* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the
963 contents of the low 16 bits, treated as a signed number, is
964 negative. */
965
966 /* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */
967 HOWTO (R_PPC64_TOC16_HA, /* type */
968 16, /* rightshift */
969 1, /* size (0 = byte, 1 = short, 2 = long) */
970 16, /* bitsize */
971 FALSE, /* pc_relative */
972 0, /* bitpos */
973 complain_overflow_dont, /* complain_on_overflow */
974 ppc64_elf_toc_ha_reloc, /* special_function */
975 "R_PPC64_TOC16_HA", /* name */
976 FALSE, /* partial_inplace */
977 0, /* src_mask */
978 0xffff, /* dst_mask */
979 FALSE), /* pcrel_offset */
980
981 /* 64-bit relocation; insert value of TOC base (.TOC.). */
982
983 /* R_PPC64_TOC 51 doubleword64 .TOC. */
984 HOWTO (R_PPC64_TOC, /* type */
985 0, /* rightshift */
986 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
987 64, /* bitsize */
988 FALSE, /* pc_relative */
989 0, /* bitpos */
990 complain_overflow_bitfield, /* complain_on_overflow */
991 ppc64_elf_toc64_reloc, /* special_function */
992 "R_PPC64_TOC", /* name */
993 FALSE, /* partial_inplace */
994 0, /* src_mask */
995 ONES (64), /* dst_mask */
996 FALSE), /* pcrel_offset */
997
998 /* Like R_PPC64_GOT16, but also informs the link editor that the
999 value to relocate may (!) refer to a PLT entry which the link
1000 editor (a) may replace with the symbol value. If the link editor
1001 is unable to fully resolve the symbol, it may (b) create a PLT
1002 entry and store the address to the new PLT entry in the GOT.
1003 This permits lazy resolution of function symbols at run time.
1004 The link editor may also skip all of this and just (c) emit a
1005 R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */
1006 /* FIXME: R_PPC64_PLTGOT16 not implemented. */
1007 HOWTO (R_PPC64_PLTGOT16, /* type */
1008 0, /* rightshift */
1009 1, /* size (0 = byte, 1 = short, 2 = long) */
1010 16, /* bitsize */
1011 FALSE, /* pc_relative */
1012 0, /* bitpos */
1013 complain_overflow_signed, /* complain_on_overflow */
1014 ppc64_elf_unhandled_reloc, /* special_function */
1015 "R_PPC64_PLTGOT16", /* name */
1016 FALSE, /* partial_inplace */
1017 0, /* src_mask */
1018 0xffff, /* dst_mask */
1019 FALSE), /* pcrel_offset */
1020
1021 /* Like R_PPC64_PLTGOT16, but without overflow. */
1022 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1023 HOWTO (R_PPC64_PLTGOT16_LO, /* type */
1024 0, /* rightshift */
1025 1, /* size (0 = byte, 1 = short, 2 = long) */
1026 16, /* bitsize */
1027 FALSE, /* pc_relative */
1028 0, /* bitpos */
1029 complain_overflow_dont, /* complain_on_overflow */
1030 ppc64_elf_unhandled_reloc, /* special_function */
1031 "R_PPC64_PLTGOT16_LO", /* name */
1032 FALSE, /* partial_inplace */
1033 0, /* src_mask */
1034 0xffff, /* dst_mask */
1035 FALSE), /* pcrel_offset */
1036
1037 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */
1038 /* FIXME: R_PPC64_PLTGOT16_HI not implemented. */
1039 HOWTO (R_PPC64_PLTGOT16_HI, /* type */
1040 16, /* rightshift */
1041 1, /* size (0 = byte, 1 = short, 2 = long) */
1042 16, /* bitsize */
1043 FALSE, /* pc_relative */
1044 0, /* bitpos */
1045 complain_overflow_dont, /* complain_on_overflow */
1046 ppc64_elf_unhandled_reloc, /* special_function */
1047 "R_PPC64_PLTGOT16_HI", /* name */
1048 FALSE, /* partial_inplace */
1049 0, /* src_mask */
1050 0xffff, /* dst_mask */
1051 FALSE), /* pcrel_offset */
1052
1053 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus
1054 1 if the contents of the low 16 bits, treated as a signed number,
1055 is negative. */
1056 /* FIXME: R_PPC64_PLTGOT16_HA not implemented. */
1057 HOWTO (R_PPC64_PLTGOT16_HA, /* type */
1058 16, /* rightshift */
1059 1, /* size (0 = byte, 1 = short, 2 = long) */
1060 16, /* bitsize */
1061 FALSE, /* pc_relative */
1062 0, /* bitpos */
1063 complain_overflow_dont,/* complain_on_overflow */
1064 ppc64_elf_unhandled_reloc, /* special_function */
1065 "R_PPC64_PLTGOT16_HA", /* name */
1066 FALSE, /* partial_inplace */
1067 0, /* src_mask */
1068 0xffff, /* dst_mask */
1069 FALSE), /* pcrel_offset */
1070
1071 /* Like R_PPC64_ADDR16, but for instructions with a DS field. */
1072 HOWTO (R_PPC64_ADDR16_DS, /* type */
1073 0, /* rightshift */
1074 1, /* size (0 = byte, 1 = short, 2 = long) */
1075 16, /* bitsize */
1076 FALSE, /* pc_relative */
1077 0, /* bitpos */
1078 complain_overflow_bitfield, /* complain_on_overflow */
1079 bfd_elf_generic_reloc, /* special_function */
1080 "R_PPC64_ADDR16_DS", /* name */
1081 FALSE, /* partial_inplace */
1082 0, /* src_mask */
1083 0xfffc, /* dst_mask */
1084 FALSE), /* pcrel_offset */
1085
1086 /* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */
1087 HOWTO (R_PPC64_ADDR16_LO_DS, /* type */
1088 0, /* rightshift */
1089 1, /* size (0 = byte, 1 = short, 2 = long) */
1090 16, /* bitsize */
1091 FALSE, /* pc_relative */
1092 0, /* bitpos */
1093 complain_overflow_dont,/* complain_on_overflow */
1094 bfd_elf_generic_reloc, /* special_function */
1095 "R_PPC64_ADDR16_LO_DS",/* name */
1096 FALSE, /* partial_inplace */
1097 0, /* src_mask */
1098 0xfffc, /* dst_mask */
1099 FALSE), /* pcrel_offset */
1100
1101 /* Like R_PPC64_GOT16, but for instructions with a DS field. */
1102 HOWTO (R_PPC64_GOT16_DS, /* type */
1103 0, /* rightshift */
1104 1, /* size (0 = byte, 1 = short, 2 = long) */
1105 16, /* bitsize */
1106 FALSE, /* pc_relative */
1107 0, /* bitpos */
1108 complain_overflow_signed, /* complain_on_overflow */
1109 ppc64_elf_unhandled_reloc, /* special_function */
1110 "R_PPC64_GOT16_DS", /* name */
1111 FALSE, /* partial_inplace */
1112 0, /* src_mask */
1113 0xfffc, /* dst_mask */
1114 FALSE), /* pcrel_offset */
1115
1116 /* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */
1117 HOWTO (R_PPC64_GOT16_LO_DS, /* type */
1118 0, /* rightshift */
1119 1, /* size (0 = byte, 1 = short, 2 = long) */
1120 16, /* bitsize */
1121 FALSE, /* pc_relative */
1122 0, /* bitpos */
1123 complain_overflow_dont, /* complain_on_overflow */
1124 ppc64_elf_unhandled_reloc, /* special_function */
1125 "R_PPC64_GOT16_LO_DS", /* name */
1126 FALSE, /* partial_inplace */
1127 0, /* src_mask */
1128 0xfffc, /* dst_mask */
1129 FALSE), /* pcrel_offset */
1130
1131 /* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */
1132 HOWTO (R_PPC64_PLT16_LO_DS, /* type */
1133 0, /* rightshift */
1134 1, /* size (0 = byte, 1 = short, 2 = long) */
1135 16, /* bitsize */
1136 FALSE, /* pc_relative */
1137 0, /* bitpos */
1138 complain_overflow_dont, /* complain_on_overflow */
1139 ppc64_elf_unhandled_reloc, /* special_function */
1140 "R_PPC64_PLT16_LO_DS", /* name */
1141 FALSE, /* partial_inplace */
1142 0, /* src_mask */
1143 0xfffc, /* dst_mask */
1144 FALSE), /* pcrel_offset */
1145
1146 /* Like R_PPC64_SECTOFF, but for instructions with a DS field. */
1147 HOWTO (R_PPC64_SECTOFF_DS, /* type */
1148 0, /* rightshift */
1149 1, /* size (0 = byte, 1 = short, 2 = long) */
1150 16, /* bitsize */
1151 FALSE, /* pc_relative */
1152 0, /* bitpos */
1153 complain_overflow_bitfield, /* complain_on_overflow */
1154 ppc64_elf_sectoff_reloc, /* special_function */
1155 "R_PPC64_SECTOFF_DS", /* name */
1156 FALSE, /* partial_inplace */
1157 0, /* src_mask */
1158 0xfffc, /* dst_mask */
1159 FALSE), /* pcrel_offset */
1160
1161 /* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */
1162 HOWTO (R_PPC64_SECTOFF_LO_DS, /* type */
1163 0, /* rightshift */
1164 1, /* size (0 = byte, 1 = short, 2 = long) */
1165 16, /* bitsize */
1166 FALSE, /* pc_relative */
1167 0, /* bitpos */
1168 complain_overflow_dont, /* complain_on_overflow */
1169 ppc64_elf_sectoff_reloc, /* special_function */
1170 "R_PPC64_SECTOFF_LO_DS",/* name */
1171 FALSE, /* partial_inplace */
1172 0, /* src_mask */
1173 0xfffc, /* dst_mask */
1174 FALSE), /* pcrel_offset */
1175
1176 /* Like R_PPC64_TOC16, but for instructions with a DS field. */
1177 HOWTO (R_PPC64_TOC16_DS, /* type */
1178 0, /* rightshift */
1179 1, /* size (0 = byte, 1 = short, 2 = long) */
1180 16, /* bitsize */
1181 FALSE, /* pc_relative */
1182 0, /* bitpos */
1183 complain_overflow_signed, /* complain_on_overflow */
1184 ppc64_elf_toc_reloc, /* special_function */
1185 "R_PPC64_TOC16_DS", /* name */
1186 FALSE, /* partial_inplace */
1187 0, /* src_mask */
1188 0xfffc, /* dst_mask */
1189 FALSE), /* pcrel_offset */
1190
1191 /* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */
1192 HOWTO (R_PPC64_TOC16_LO_DS, /* type */
1193 0, /* rightshift */
1194 1, /* size (0 = byte, 1 = short, 2 = long) */
1195 16, /* bitsize */
1196 FALSE, /* pc_relative */
1197 0, /* bitpos */
1198 complain_overflow_dont, /* complain_on_overflow */
1199 ppc64_elf_toc_reloc, /* special_function */
1200 "R_PPC64_TOC16_LO_DS", /* name */
1201 FALSE, /* partial_inplace */
1202 0, /* src_mask */
1203 0xfffc, /* dst_mask */
1204 FALSE), /* pcrel_offset */
1205
1206 /* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */
1207 /* FIXME: R_PPC64_PLTGOT16_DS not implemented. */
1208 HOWTO (R_PPC64_PLTGOT16_DS, /* type */
1209 0, /* rightshift */
1210 1, /* size (0 = byte, 1 = short, 2 = long) */
1211 16, /* bitsize */
1212 FALSE, /* pc_relative */
1213 0, /* bitpos */
1214 complain_overflow_signed, /* complain_on_overflow */
1215 ppc64_elf_unhandled_reloc, /* special_function */
1216 "R_PPC64_PLTGOT16_DS", /* name */
1217 FALSE, /* partial_inplace */
1218 0, /* src_mask */
1219 0xfffc, /* dst_mask */
1220 FALSE), /* pcrel_offset */
1221
1222 /* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */
1223 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1224 HOWTO (R_PPC64_PLTGOT16_LO_DS,/* type */
1225 0, /* rightshift */
1226 1, /* size (0 = byte, 1 = short, 2 = long) */
1227 16, /* bitsize */
1228 FALSE, /* pc_relative */
1229 0, /* bitpos */
1230 complain_overflow_dont, /* complain_on_overflow */
1231 ppc64_elf_unhandled_reloc, /* special_function */
1232 "R_PPC64_PLTGOT16_LO_DS",/* name */
1233 FALSE, /* partial_inplace */
1234 0, /* src_mask */
1235 0xfffc, /* dst_mask */
1236 FALSE), /* pcrel_offset */
1237
1238 /* Marker reloc for TLS. */
1239 HOWTO (R_PPC64_TLS,
1240 0, /* rightshift */
1241 2, /* size (0 = byte, 1 = short, 2 = long) */
1242 32, /* bitsize */
1243 FALSE, /* pc_relative */
1244 0, /* bitpos */
1245 complain_overflow_dont, /* complain_on_overflow */
1246 bfd_elf_generic_reloc, /* special_function */
1247 "R_PPC64_TLS", /* name */
1248 FALSE, /* partial_inplace */
1249 0, /* src_mask */
1250 0, /* dst_mask */
1251 FALSE), /* pcrel_offset */
1252
1253 /* Computes the load module index of the load module that contains the
1254 definition of its TLS sym. */
1255 HOWTO (R_PPC64_DTPMOD64,
1256 0, /* rightshift */
1257 4, /* size (0 = byte, 1 = short, 2 = long) */
1258 64, /* bitsize */
1259 FALSE, /* pc_relative */
1260 0, /* bitpos */
1261 complain_overflow_dont, /* complain_on_overflow */
1262 ppc64_elf_unhandled_reloc, /* special_function */
1263 "R_PPC64_DTPMOD64", /* name */
1264 FALSE, /* partial_inplace */
1265 0, /* src_mask */
1266 ONES (64), /* dst_mask */
1267 FALSE), /* pcrel_offset */
1268
1269 /* Computes a dtv-relative displacement, the difference between the value
1270 of sym+add and the base address of the thread-local storage block that
1271 contains the definition of sym, minus 0x8000. */
1272 HOWTO (R_PPC64_DTPREL64,
1273 0, /* rightshift */
1274 4, /* size (0 = byte, 1 = short, 2 = long) */
1275 64, /* bitsize */
1276 FALSE, /* pc_relative */
1277 0, /* bitpos */
1278 complain_overflow_dont, /* complain_on_overflow */
1279 ppc64_elf_unhandled_reloc, /* special_function */
1280 "R_PPC64_DTPREL64", /* name */
1281 FALSE, /* partial_inplace */
1282 0, /* src_mask */
1283 ONES (64), /* dst_mask */
1284 FALSE), /* pcrel_offset */
1285
1286 /* A 16 bit dtprel reloc. */
1287 HOWTO (R_PPC64_DTPREL16,
1288 0, /* rightshift */
1289 1, /* size (0 = byte, 1 = short, 2 = long) */
1290 16, /* bitsize */
1291 FALSE, /* pc_relative */
1292 0, /* bitpos */
1293 complain_overflow_signed, /* complain_on_overflow */
1294 ppc64_elf_unhandled_reloc, /* special_function */
1295 "R_PPC64_DTPREL16", /* name */
1296 FALSE, /* partial_inplace */
1297 0, /* src_mask */
1298 0xffff, /* dst_mask */
1299 FALSE), /* pcrel_offset */
1300
1301 /* Like DTPREL16, but no overflow. */
1302 HOWTO (R_PPC64_DTPREL16_LO,
1303 0, /* rightshift */
1304 1, /* size (0 = byte, 1 = short, 2 = long) */
1305 16, /* bitsize */
1306 FALSE, /* pc_relative */
1307 0, /* bitpos */
1308 complain_overflow_dont, /* complain_on_overflow */
1309 ppc64_elf_unhandled_reloc, /* special_function */
1310 "R_PPC64_DTPREL16_LO", /* name */
1311 FALSE, /* partial_inplace */
1312 0, /* src_mask */
1313 0xffff, /* dst_mask */
1314 FALSE), /* pcrel_offset */
1315
1316 /* Like DTPREL16_LO, but next higher group of 16 bits. */
1317 HOWTO (R_PPC64_DTPREL16_HI,
1318 16, /* rightshift */
1319 1, /* size (0 = byte, 1 = short, 2 = long) */
1320 16, /* bitsize */
1321 FALSE, /* pc_relative */
1322 0, /* bitpos */
1323 complain_overflow_dont, /* complain_on_overflow */
1324 ppc64_elf_unhandled_reloc, /* special_function */
1325 "R_PPC64_DTPREL16_HI", /* name */
1326 FALSE, /* partial_inplace */
1327 0, /* src_mask */
1328 0xffff, /* dst_mask */
1329 FALSE), /* pcrel_offset */
1330
1331 /* Like DTPREL16_HI, but adjust for low 16 bits. */
1332 HOWTO (R_PPC64_DTPREL16_HA,
1333 16, /* rightshift */
1334 1, /* size (0 = byte, 1 = short, 2 = long) */
1335 16, /* bitsize */
1336 FALSE, /* pc_relative */
1337 0, /* bitpos */
1338 complain_overflow_dont, /* complain_on_overflow */
1339 ppc64_elf_unhandled_reloc, /* special_function */
1340 "R_PPC64_DTPREL16_HA", /* name */
1341 FALSE, /* partial_inplace */
1342 0, /* src_mask */
1343 0xffff, /* dst_mask */
1344 FALSE), /* pcrel_offset */
1345
1346 /* Like DTPREL16_HI, but next higher group of 16 bits. */
1347 HOWTO (R_PPC64_DTPREL16_HIGHER,
1348 32, /* rightshift */
1349 1, /* size (0 = byte, 1 = short, 2 = long) */
1350 16, /* bitsize */
1351 FALSE, /* pc_relative */
1352 0, /* bitpos */
1353 complain_overflow_dont, /* complain_on_overflow */
1354 ppc64_elf_unhandled_reloc, /* special_function */
1355 "R_PPC64_DTPREL16_HIGHER", /* name */
1356 FALSE, /* partial_inplace */
1357 0, /* src_mask */
1358 0xffff, /* dst_mask */
1359 FALSE), /* pcrel_offset */
1360
1361 /* Like DTPREL16_HIGHER, but adjust for low 16 bits. */
1362 HOWTO (R_PPC64_DTPREL16_HIGHERA,
1363 32, /* rightshift */
1364 1, /* size (0 = byte, 1 = short, 2 = long) */
1365 16, /* bitsize */
1366 FALSE, /* pc_relative */
1367 0, /* bitpos */
1368 complain_overflow_dont, /* complain_on_overflow */
1369 ppc64_elf_unhandled_reloc, /* special_function */
1370 "R_PPC64_DTPREL16_HIGHERA", /* name */
1371 FALSE, /* partial_inplace */
1372 0, /* src_mask */
1373 0xffff, /* dst_mask */
1374 FALSE), /* pcrel_offset */
1375
1376 /* Like DTPREL16_HIGHER, but next higher group of 16 bits. */
1377 HOWTO (R_PPC64_DTPREL16_HIGHEST,
1378 48, /* rightshift */
1379 1, /* size (0 = byte, 1 = short, 2 = long) */
1380 16, /* bitsize */
1381 FALSE, /* pc_relative */
1382 0, /* bitpos */
1383 complain_overflow_dont, /* complain_on_overflow */
1384 ppc64_elf_unhandled_reloc, /* special_function */
1385 "R_PPC64_DTPREL16_HIGHEST", /* name */
1386 FALSE, /* partial_inplace */
1387 0, /* src_mask */
1388 0xffff, /* dst_mask */
1389 FALSE), /* pcrel_offset */
1390
1391 /* Like DTPREL16_HIGHEST, but adjust for low 16 bits. */
1392 HOWTO (R_PPC64_DTPREL16_HIGHESTA,
1393 48, /* rightshift */
1394 1, /* size (0 = byte, 1 = short, 2 = long) */
1395 16, /* bitsize */
1396 FALSE, /* pc_relative */
1397 0, /* bitpos */
1398 complain_overflow_dont, /* complain_on_overflow */
1399 ppc64_elf_unhandled_reloc, /* special_function */
1400 "R_PPC64_DTPREL16_HIGHESTA", /* name */
1401 FALSE, /* partial_inplace */
1402 0, /* src_mask */
1403 0xffff, /* dst_mask */
1404 FALSE), /* pcrel_offset */
1405
1406 /* Like DTPREL16, but for insns with a DS field. */
1407 HOWTO (R_PPC64_DTPREL16_DS,
1408 0, /* rightshift */
1409 1, /* size (0 = byte, 1 = short, 2 = long) */
1410 16, /* bitsize */
1411 FALSE, /* pc_relative */
1412 0, /* bitpos */
1413 complain_overflow_signed, /* complain_on_overflow */
1414 ppc64_elf_unhandled_reloc, /* special_function */
1415 "R_PPC64_DTPREL16_DS", /* name */
1416 FALSE, /* partial_inplace */
1417 0, /* src_mask */
1418 0xfffc, /* dst_mask */
1419 FALSE), /* pcrel_offset */
1420
1421 /* Like DTPREL16_DS, but no overflow. */
1422 HOWTO (R_PPC64_DTPREL16_LO_DS,
1423 0, /* rightshift */
1424 1, /* size (0 = byte, 1 = short, 2 = long) */
1425 16, /* bitsize */
1426 FALSE, /* pc_relative */
1427 0, /* bitpos */
1428 complain_overflow_dont, /* complain_on_overflow */
1429 ppc64_elf_unhandled_reloc, /* special_function */
1430 "R_PPC64_DTPREL16_LO_DS", /* name */
1431 FALSE, /* partial_inplace */
1432 0, /* src_mask */
1433 0xfffc, /* dst_mask */
1434 FALSE), /* pcrel_offset */
1435
1436 /* Computes a tp-relative displacement, the difference between the value of
1437 sym+add and the value of the thread pointer (r13). */
1438 HOWTO (R_PPC64_TPREL64,
1439 0, /* rightshift */
1440 4, /* size (0 = byte, 1 = short, 2 = long) */
1441 64, /* bitsize */
1442 FALSE, /* pc_relative */
1443 0, /* bitpos */
1444 complain_overflow_dont, /* complain_on_overflow */
1445 ppc64_elf_unhandled_reloc, /* special_function */
1446 "R_PPC64_TPREL64", /* name */
1447 FALSE, /* partial_inplace */
1448 0, /* src_mask */
1449 ONES (64), /* dst_mask */
1450 FALSE), /* pcrel_offset */
1451
1452 /* A 16 bit tprel reloc. */
1453 HOWTO (R_PPC64_TPREL16,
1454 0, /* rightshift */
1455 1, /* size (0 = byte, 1 = short, 2 = long) */
1456 16, /* bitsize */
1457 FALSE, /* pc_relative */
1458 0, /* bitpos */
1459 complain_overflow_signed, /* complain_on_overflow */
1460 ppc64_elf_unhandled_reloc, /* special_function */
1461 "R_PPC64_TPREL16", /* name */
1462 FALSE, /* partial_inplace */
1463 0, /* src_mask */
1464 0xffff, /* dst_mask */
1465 FALSE), /* pcrel_offset */
1466
1467 /* Like TPREL16, but no overflow. */
1468 HOWTO (R_PPC64_TPREL16_LO,
1469 0, /* rightshift */
1470 1, /* size (0 = byte, 1 = short, 2 = long) */
1471 16, /* bitsize */
1472 FALSE, /* pc_relative */
1473 0, /* bitpos */
1474 complain_overflow_dont, /* complain_on_overflow */
1475 ppc64_elf_unhandled_reloc, /* special_function */
1476 "R_PPC64_TPREL16_LO", /* name */
1477 FALSE, /* partial_inplace */
1478 0, /* src_mask */
1479 0xffff, /* dst_mask */
1480 FALSE), /* pcrel_offset */
1481
1482 /* Like TPREL16_LO, but next higher group of 16 bits. */
1483 HOWTO (R_PPC64_TPREL16_HI,
1484 16, /* rightshift */
1485 1, /* size (0 = byte, 1 = short, 2 = long) */
1486 16, /* bitsize */
1487 FALSE, /* pc_relative */
1488 0, /* bitpos */
1489 complain_overflow_dont, /* complain_on_overflow */
1490 ppc64_elf_unhandled_reloc, /* special_function */
1491 "R_PPC64_TPREL16_HI", /* name */
1492 FALSE, /* partial_inplace */
1493 0, /* src_mask */
1494 0xffff, /* dst_mask */
1495 FALSE), /* pcrel_offset */
1496
1497 /* Like TPREL16_HI, but adjust for low 16 bits. */
1498 HOWTO (R_PPC64_TPREL16_HA,
1499 16, /* rightshift */
1500 1, /* size (0 = byte, 1 = short, 2 = long) */
1501 16, /* bitsize */
1502 FALSE, /* pc_relative */
1503 0, /* bitpos */
1504 complain_overflow_dont, /* complain_on_overflow */
1505 ppc64_elf_unhandled_reloc, /* special_function */
1506 "R_PPC64_TPREL16_HA", /* name */
1507 FALSE, /* partial_inplace */
1508 0, /* src_mask */
1509 0xffff, /* dst_mask */
1510 FALSE), /* pcrel_offset */
1511
1512 /* Like TPREL16_HI, but next higher group of 16 bits. */
1513 HOWTO (R_PPC64_TPREL16_HIGHER,
1514 32, /* rightshift */
1515 1, /* size (0 = byte, 1 = short, 2 = long) */
1516 16, /* bitsize */
1517 FALSE, /* pc_relative */
1518 0, /* bitpos */
1519 complain_overflow_dont, /* complain_on_overflow */
1520 ppc64_elf_unhandled_reloc, /* special_function */
1521 "R_PPC64_TPREL16_HIGHER", /* name */
1522 FALSE, /* partial_inplace */
1523 0, /* src_mask */
1524 0xffff, /* dst_mask */
1525 FALSE), /* pcrel_offset */
1526
1527 /* Like TPREL16_HIGHER, but adjust for low 16 bits. */
1528 HOWTO (R_PPC64_TPREL16_HIGHERA,
1529 32, /* rightshift */
1530 1, /* size (0 = byte, 1 = short, 2 = long) */
1531 16, /* bitsize */
1532 FALSE, /* pc_relative */
1533 0, /* bitpos */
1534 complain_overflow_dont, /* complain_on_overflow */
1535 ppc64_elf_unhandled_reloc, /* special_function */
1536 "R_PPC64_TPREL16_HIGHERA", /* name */
1537 FALSE, /* partial_inplace */
1538 0, /* src_mask */
1539 0xffff, /* dst_mask */
1540 FALSE), /* pcrel_offset */
1541
1542 /* Like TPREL16_HIGHER, but next higher group of 16 bits. */
1543 HOWTO (R_PPC64_TPREL16_HIGHEST,
1544 48, /* rightshift */
1545 1, /* size (0 = byte, 1 = short, 2 = long) */
1546 16, /* bitsize */
1547 FALSE, /* pc_relative */
1548 0, /* bitpos */
1549 complain_overflow_dont, /* complain_on_overflow */
1550 ppc64_elf_unhandled_reloc, /* special_function */
1551 "R_PPC64_TPREL16_HIGHEST", /* name */
1552 FALSE, /* partial_inplace */
1553 0, /* src_mask */
1554 0xffff, /* dst_mask */
1555 FALSE), /* pcrel_offset */
1556
1557 /* Like TPREL16_HIGHEST, but adjust for low 16 bits. */
1558 HOWTO (R_PPC64_TPREL16_HIGHESTA,
1559 48, /* rightshift */
1560 1, /* size (0 = byte, 1 = short, 2 = long) */
1561 16, /* bitsize */
1562 FALSE, /* pc_relative */
1563 0, /* bitpos */
1564 complain_overflow_dont, /* complain_on_overflow */
1565 ppc64_elf_unhandled_reloc, /* special_function */
1566 "R_PPC64_TPREL16_HIGHESTA", /* name */
1567 FALSE, /* partial_inplace */
1568 0, /* src_mask */
1569 0xffff, /* dst_mask */
1570 FALSE), /* pcrel_offset */
1571
1572 /* Like TPREL16, but for insns with a DS field. */
1573 HOWTO (R_PPC64_TPREL16_DS,
1574 0, /* rightshift */
1575 1, /* size (0 = byte, 1 = short, 2 = long) */
1576 16, /* bitsize */
1577 FALSE, /* pc_relative */
1578 0, /* bitpos */
1579 complain_overflow_signed, /* complain_on_overflow */
1580 ppc64_elf_unhandled_reloc, /* special_function */
1581 "R_PPC64_TPREL16_DS", /* name */
1582 FALSE, /* partial_inplace */
1583 0, /* src_mask */
1584 0xfffc, /* dst_mask */
1585 FALSE), /* pcrel_offset */
1586
1587 /* Like TPREL16_DS, but no overflow. */
1588 HOWTO (R_PPC64_TPREL16_LO_DS,
1589 0, /* rightshift */
1590 1, /* size (0 = byte, 1 = short, 2 = long) */
1591 16, /* bitsize */
1592 FALSE, /* pc_relative */
1593 0, /* bitpos */
1594 complain_overflow_dont, /* complain_on_overflow */
1595 ppc64_elf_unhandled_reloc, /* special_function */
1596 "R_PPC64_TPREL16_LO_DS", /* name */
1597 FALSE, /* partial_inplace */
1598 0, /* src_mask */
1599 0xfffc, /* dst_mask */
1600 FALSE), /* pcrel_offset */
1601
1602 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1603 with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset
1604 to the first entry relative to the TOC base (r2). */
1605 HOWTO (R_PPC64_GOT_TLSGD16,
1606 0, /* rightshift */
1607 1, /* size (0 = byte, 1 = short, 2 = long) */
1608 16, /* bitsize */
1609 FALSE, /* pc_relative */
1610 0, /* bitpos */
1611 complain_overflow_signed, /* complain_on_overflow */
1612 ppc64_elf_unhandled_reloc, /* special_function */
1613 "R_PPC64_GOT_TLSGD16", /* name */
1614 FALSE, /* partial_inplace */
1615 0, /* src_mask */
1616 0xffff, /* dst_mask */
1617 FALSE), /* pcrel_offset */
1618
1619 /* Like GOT_TLSGD16, but no overflow. */
1620 HOWTO (R_PPC64_GOT_TLSGD16_LO,
1621 0, /* rightshift */
1622 1, /* size (0 = byte, 1 = short, 2 = long) */
1623 16, /* bitsize */
1624 FALSE, /* pc_relative */
1625 0, /* bitpos */
1626 complain_overflow_dont, /* complain_on_overflow */
1627 ppc64_elf_unhandled_reloc, /* special_function */
1628 "R_PPC64_GOT_TLSGD16_LO", /* name */
1629 FALSE, /* partial_inplace */
1630 0, /* src_mask */
1631 0xffff, /* dst_mask */
1632 FALSE), /* pcrel_offset */
1633
1634 /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */
1635 HOWTO (R_PPC64_GOT_TLSGD16_HI,
1636 16, /* rightshift */
1637 1, /* size (0 = byte, 1 = short, 2 = long) */
1638 16, /* bitsize */
1639 FALSE, /* pc_relative */
1640 0, /* bitpos */
1641 complain_overflow_dont, /* complain_on_overflow */
1642 ppc64_elf_unhandled_reloc, /* special_function */
1643 "R_PPC64_GOT_TLSGD16_HI", /* name */
1644 FALSE, /* partial_inplace */
1645 0, /* src_mask */
1646 0xffff, /* dst_mask */
1647 FALSE), /* pcrel_offset */
1648
1649 /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */
1650 HOWTO (R_PPC64_GOT_TLSGD16_HA,
1651 16, /* rightshift */
1652 1, /* size (0 = byte, 1 = short, 2 = long) */
1653 16, /* bitsize */
1654 FALSE, /* pc_relative */
1655 0, /* bitpos */
1656 complain_overflow_dont, /* complain_on_overflow */
1657 ppc64_elf_unhandled_reloc, /* special_function */
1658 "R_PPC64_GOT_TLSGD16_HA", /* name */
1659 FALSE, /* partial_inplace */
1660 0, /* src_mask */
1661 0xffff, /* dst_mask */
1662 FALSE), /* pcrel_offset */
1663
1664 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1665 with values (sym+add)@dtpmod and zero, and computes the offset to the
1666 first entry relative to the TOC base (r2). */
1667 HOWTO (R_PPC64_GOT_TLSLD16,
1668 0, /* rightshift */
1669 1, /* size (0 = byte, 1 = short, 2 = long) */
1670 16, /* bitsize */
1671 FALSE, /* pc_relative */
1672 0, /* bitpos */
1673 complain_overflow_signed, /* complain_on_overflow */
1674 ppc64_elf_unhandled_reloc, /* special_function */
1675 "R_PPC64_GOT_TLSLD16", /* name */
1676 FALSE, /* partial_inplace */
1677 0, /* src_mask */
1678 0xffff, /* dst_mask */
1679 FALSE), /* pcrel_offset */
1680
1681 /* Like GOT_TLSLD16, but no overflow. */
1682 HOWTO (R_PPC64_GOT_TLSLD16_LO,
1683 0, /* rightshift */
1684 1, /* size (0 = byte, 1 = short, 2 = long) */
1685 16, /* bitsize */
1686 FALSE, /* pc_relative */
1687 0, /* bitpos */
1688 complain_overflow_dont, /* complain_on_overflow */
1689 ppc64_elf_unhandled_reloc, /* special_function */
1690 "R_PPC64_GOT_TLSLD16_LO", /* name */
1691 FALSE, /* partial_inplace */
1692 0, /* src_mask */
1693 0xffff, /* dst_mask */
1694 FALSE), /* pcrel_offset */
1695
1696 /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */
1697 HOWTO (R_PPC64_GOT_TLSLD16_HI,
1698 16, /* rightshift */
1699 1, /* size (0 = byte, 1 = short, 2 = long) */
1700 16, /* bitsize */
1701 FALSE, /* pc_relative */
1702 0, /* bitpos */
1703 complain_overflow_dont, /* complain_on_overflow */
1704 ppc64_elf_unhandled_reloc, /* special_function */
1705 "R_PPC64_GOT_TLSLD16_HI", /* name */
1706 FALSE, /* partial_inplace */
1707 0, /* src_mask */
1708 0xffff, /* dst_mask */
1709 FALSE), /* pcrel_offset */
1710
1711 /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */
1712 HOWTO (R_PPC64_GOT_TLSLD16_HA,
1713 16, /* rightshift */
1714 1, /* size (0 = byte, 1 = short, 2 = long) */
1715 16, /* bitsize */
1716 FALSE, /* pc_relative */
1717 0, /* bitpos */
1718 complain_overflow_dont, /* complain_on_overflow */
1719 ppc64_elf_unhandled_reloc, /* special_function */
1720 "R_PPC64_GOT_TLSLD16_HA", /* name */
1721 FALSE, /* partial_inplace */
1722 0, /* src_mask */
1723 0xffff, /* dst_mask */
1724 FALSE), /* pcrel_offset */
1725
1726 /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes
1727 the offset to the entry relative to the TOC base (r2). */
1728 HOWTO (R_PPC64_GOT_DTPREL16_DS,
1729 0, /* rightshift */
1730 1, /* size (0 = byte, 1 = short, 2 = long) */
1731 16, /* bitsize */
1732 FALSE, /* pc_relative */
1733 0, /* bitpos */
1734 complain_overflow_signed, /* complain_on_overflow */
1735 ppc64_elf_unhandled_reloc, /* special_function */
1736 "R_PPC64_GOT_DTPREL16_DS", /* name */
1737 FALSE, /* partial_inplace */
1738 0, /* src_mask */
1739 0xfffc, /* dst_mask */
1740 FALSE), /* pcrel_offset */
1741
1742 /* Like GOT_DTPREL16_DS, but no overflow. */
1743 HOWTO (R_PPC64_GOT_DTPREL16_LO_DS,
1744 0, /* rightshift */
1745 1, /* size (0 = byte, 1 = short, 2 = long) */
1746 16, /* bitsize */
1747 FALSE, /* pc_relative */
1748 0, /* bitpos */
1749 complain_overflow_dont, /* complain_on_overflow */
1750 ppc64_elf_unhandled_reloc, /* special_function */
1751 "R_PPC64_GOT_DTPREL16_LO_DS", /* name */
1752 FALSE, /* partial_inplace */
1753 0, /* src_mask */
1754 0xfffc, /* dst_mask */
1755 FALSE), /* pcrel_offset */
1756
1757 /* Like GOT_DTPREL16_LO_DS, but next higher group of 16 bits. */
1758 HOWTO (R_PPC64_GOT_DTPREL16_HI,
1759 16, /* rightshift */
1760 1, /* size (0 = byte, 1 = short, 2 = long) */
1761 16, /* bitsize */
1762 FALSE, /* pc_relative */
1763 0, /* bitpos */
1764 complain_overflow_dont, /* complain_on_overflow */
1765 ppc64_elf_unhandled_reloc, /* special_function */
1766 "R_PPC64_GOT_DTPREL16_HI", /* name */
1767 FALSE, /* partial_inplace */
1768 0, /* src_mask */
1769 0xffff, /* dst_mask */
1770 FALSE), /* pcrel_offset */
1771
1772 /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */
1773 HOWTO (R_PPC64_GOT_DTPREL16_HA,
1774 16, /* rightshift */
1775 1, /* size (0 = byte, 1 = short, 2 = long) */
1776 16, /* bitsize */
1777 FALSE, /* pc_relative */
1778 0, /* bitpos */
1779 complain_overflow_dont, /* complain_on_overflow */
1780 ppc64_elf_unhandled_reloc, /* special_function */
1781 "R_PPC64_GOT_DTPREL16_HA", /* name */
1782 FALSE, /* partial_inplace */
1783 0, /* src_mask */
1784 0xffff, /* dst_mask */
1785 FALSE), /* pcrel_offset */
1786
1787 /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the
1788 offset to the entry relative to the TOC base (r2). */
1789 HOWTO (R_PPC64_GOT_TPREL16_DS,
1790 0, /* rightshift */
1791 1, /* size (0 = byte, 1 = short, 2 = long) */
1792 16, /* bitsize */
1793 FALSE, /* pc_relative */
1794 0, /* bitpos */
1795 complain_overflow_signed, /* complain_on_overflow */
1796 ppc64_elf_unhandled_reloc, /* special_function */
1797 "R_PPC64_GOT_TPREL16_DS", /* name */
1798 FALSE, /* partial_inplace */
1799 0, /* src_mask */
1800 0xfffc, /* dst_mask */
1801 FALSE), /* pcrel_offset */
1802
1803 /* Like GOT_TPREL16_DS, but no overflow. */
1804 HOWTO (R_PPC64_GOT_TPREL16_LO_DS,
1805 0, /* rightshift */
1806 1, /* size (0 = byte, 1 = short, 2 = long) */
1807 16, /* bitsize */
1808 FALSE, /* pc_relative */
1809 0, /* bitpos */
1810 complain_overflow_dont, /* complain_on_overflow */
1811 ppc64_elf_unhandled_reloc, /* special_function */
1812 "R_PPC64_GOT_TPREL16_LO_DS", /* name */
1813 FALSE, /* partial_inplace */
1814 0, /* src_mask */
1815 0xfffc, /* dst_mask */
1816 FALSE), /* pcrel_offset */
1817
1818 /* Like GOT_TPREL16_LO_DS, but next higher group of 16 bits. */
1819 HOWTO (R_PPC64_GOT_TPREL16_HI,
1820 16, /* rightshift */
1821 1, /* size (0 = byte, 1 = short, 2 = long) */
1822 16, /* bitsize */
1823 FALSE, /* pc_relative */
1824 0, /* bitpos */
1825 complain_overflow_dont, /* complain_on_overflow */
1826 ppc64_elf_unhandled_reloc, /* special_function */
1827 "R_PPC64_GOT_TPREL16_HI", /* name */
1828 FALSE, /* partial_inplace */
1829 0, /* src_mask */
1830 0xffff, /* dst_mask */
1831 FALSE), /* pcrel_offset */
1832
1833 /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */
1834 HOWTO (R_PPC64_GOT_TPREL16_HA,
1835 16, /* rightshift */
1836 1, /* size (0 = byte, 1 = short, 2 = long) */
1837 16, /* bitsize */
1838 FALSE, /* pc_relative */
1839 0, /* bitpos */
1840 complain_overflow_dont, /* complain_on_overflow */
1841 ppc64_elf_unhandled_reloc, /* special_function */
1842 "R_PPC64_GOT_TPREL16_HA", /* name */
1843 FALSE, /* partial_inplace */
1844 0, /* src_mask */
1845 0xffff, /* dst_mask */
1846 FALSE), /* pcrel_offset */
1847
1848 /* GNU extension to record C++ vtable hierarchy. */
1849 HOWTO (R_PPC64_GNU_VTINHERIT, /* type */
1850 0, /* rightshift */
1851 0, /* size (0 = byte, 1 = short, 2 = long) */
1852 0, /* bitsize */
1853 FALSE, /* pc_relative */
1854 0, /* bitpos */
1855 complain_overflow_dont, /* complain_on_overflow */
1856 NULL, /* special_function */
1857 "R_PPC64_GNU_VTINHERIT", /* name */
1858 FALSE, /* partial_inplace */
1859 0, /* src_mask */
1860 0, /* dst_mask */
1861 FALSE), /* pcrel_offset */
1862
1863 /* GNU extension to record C++ vtable member usage. */
1864 HOWTO (R_PPC64_GNU_VTENTRY, /* type */
1865 0, /* rightshift */
1866 0, /* size (0 = byte, 1 = short, 2 = long) */
1867 0, /* bitsize */
1868 FALSE, /* pc_relative */
1869 0, /* bitpos */
1870 complain_overflow_dont, /* complain_on_overflow */
1871 NULL, /* special_function */
1872 "R_PPC64_GNU_VTENTRY", /* name */
1873 FALSE, /* partial_inplace */
1874 0, /* src_mask */
1875 0, /* dst_mask */
1876 FALSE), /* pcrel_offset */
1877 };
1878
1879 \f
1880 /* Initialize the ppc64_elf_howto_table, so that linear accesses can
1881 be done. */
1882
1883 static void
1884 ppc_howto_init (void)
1885 {
1886 unsigned int i, type;
1887
1888 for (i = 0;
1889 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
1890 i++)
1891 {
1892 type = ppc64_elf_howto_raw[i].type;
1893 BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table)
1894 / sizeof (ppc64_elf_howto_table[0])));
1895 ppc64_elf_howto_table[type] = &ppc64_elf_howto_raw[i];
1896 }
1897 }
1898
1899 static reloc_howto_type *
1900 ppc64_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1901 bfd_reloc_code_real_type code)
1902 {
1903 enum elf_ppc64_reloc_type r = R_PPC64_NONE;
1904
1905 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
1906 /* Initialize howto table if needed. */
1907 ppc_howto_init ();
1908
1909 switch (code)
1910 {
1911 default:
1912 return NULL;
1913
1914 case BFD_RELOC_NONE: r = R_PPC64_NONE;
1915 break;
1916 case BFD_RELOC_32: r = R_PPC64_ADDR32;
1917 break;
1918 case BFD_RELOC_PPC_BA26: r = R_PPC64_ADDR24;
1919 break;
1920 case BFD_RELOC_16: r = R_PPC64_ADDR16;
1921 break;
1922 case BFD_RELOC_LO16: r = R_PPC64_ADDR16_LO;
1923 break;
1924 case BFD_RELOC_HI16: r = R_PPC64_ADDR16_HI;
1925 break;
1926 case BFD_RELOC_HI16_S: r = R_PPC64_ADDR16_HA;
1927 break;
1928 case BFD_RELOC_PPC_BA16: r = R_PPC64_ADDR14;
1929 break;
1930 case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC64_ADDR14_BRTAKEN;
1931 break;
1932 case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC64_ADDR14_BRNTAKEN;
1933 break;
1934 case BFD_RELOC_PPC_B26: r = R_PPC64_REL24;
1935 break;
1936 case BFD_RELOC_PPC_B16: r = R_PPC64_REL14;
1937 break;
1938 case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC64_REL14_BRTAKEN;
1939 break;
1940 case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC64_REL14_BRNTAKEN;
1941 break;
1942 case BFD_RELOC_16_GOTOFF: r = R_PPC64_GOT16;
1943 break;
1944 case BFD_RELOC_LO16_GOTOFF: r = R_PPC64_GOT16_LO;
1945 break;
1946 case BFD_RELOC_HI16_GOTOFF: r = R_PPC64_GOT16_HI;
1947 break;
1948 case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC64_GOT16_HA;
1949 break;
1950 case BFD_RELOC_PPC_COPY: r = R_PPC64_COPY;
1951 break;
1952 case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC64_GLOB_DAT;
1953 break;
1954 case BFD_RELOC_32_PCREL: r = R_PPC64_REL32;
1955 break;
1956 case BFD_RELOC_32_PLTOFF: r = R_PPC64_PLT32;
1957 break;
1958 case BFD_RELOC_32_PLT_PCREL: r = R_PPC64_PLTREL32;
1959 break;
1960 case BFD_RELOC_LO16_PLTOFF: r = R_PPC64_PLT16_LO;
1961 break;
1962 case BFD_RELOC_HI16_PLTOFF: r = R_PPC64_PLT16_HI;
1963 break;
1964 case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC64_PLT16_HA;
1965 break;
1966 case BFD_RELOC_16_BASEREL: r = R_PPC64_SECTOFF;
1967 break;
1968 case BFD_RELOC_LO16_BASEREL: r = R_PPC64_SECTOFF_LO;
1969 break;
1970 case BFD_RELOC_HI16_BASEREL: r = R_PPC64_SECTOFF_HI;
1971 break;
1972 case BFD_RELOC_HI16_S_BASEREL: r = R_PPC64_SECTOFF_HA;
1973 break;
1974 case BFD_RELOC_CTOR: r = R_PPC64_ADDR64;
1975 break;
1976 case BFD_RELOC_64: r = R_PPC64_ADDR64;
1977 break;
1978 case BFD_RELOC_PPC64_HIGHER: r = R_PPC64_ADDR16_HIGHER;
1979 break;
1980 case BFD_RELOC_PPC64_HIGHER_S: r = R_PPC64_ADDR16_HIGHERA;
1981 break;
1982 case BFD_RELOC_PPC64_HIGHEST: r = R_PPC64_ADDR16_HIGHEST;
1983 break;
1984 case BFD_RELOC_PPC64_HIGHEST_S: r = R_PPC64_ADDR16_HIGHESTA;
1985 break;
1986 case BFD_RELOC_64_PCREL: r = R_PPC64_REL64;
1987 break;
1988 case BFD_RELOC_64_PLTOFF: r = R_PPC64_PLT64;
1989 break;
1990 case BFD_RELOC_64_PLT_PCREL: r = R_PPC64_PLTREL64;
1991 break;
1992 case BFD_RELOC_PPC_TOC16: r = R_PPC64_TOC16;
1993 break;
1994 case BFD_RELOC_PPC64_TOC16_LO: r = R_PPC64_TOC16_LO;
1995 break;
1996 case BFD_RELOC_PPC64_TOC16_HI: r = R_PPC64_TOC16_HI;
1997 break;
1998 case BFD_RELOC_PPC64_TOC16_HA: r = R_PPC64_TOC16_HA;
1999 break;
2000 case BFD_RELOC_PPC64_TOC: r = R_PPC64_TOC;
2001 break;
2002 case BFD_RELOC_PPC64_PLTGOT16: r = R_PPC64_PLTGOT16;
2003 break;
2004 case BFD_RELOC_PPC64_PLTGOT16_LO: r = R_PPC64_PLTGOT16_LO;
2005 break;
2006 case BFD_RELOC_PPC64_PLTGOT16_HI: r = R_PPC64_PLTGOT16_HI;
2007 break;
2008 case BFD_RELOC_PPC64_PLTGOT16_HA: r = R_PPC64_PLTGOT16_HA;
2009 break;
2010 case BFD_RELOC_PPC64_ADDR16_DS: r = R_PPC64_ADDR16_DS;
2011 break;
2012 case BFD_RELOC_PPC64_ADDR16_LO_DS: r = R_PPC64_ADDR16_LO_DS;
2013 break;
2014 case BFD_RELOC_PPC64_GOT16_DS: r = R_PPC64_GOT16_DS;
2015 break;
2016 case BFD_RELOC_PPC64_GOT16_LO_DS: r = R_PPC64_GOT16_LO_DS;
2017 break;
2018 case BFD_RELOC_PPC64_PLT16_LO_DS: r = R_PPC64_PLT16_LO_DS;
2019 break;
2020 case BFD_RELOC_PPC64_SECTOFF_DS: r = R_PPC64_SECTOFF_DS;
2021 break;
2022 case BFD_RELOC_PPC64_SECTOFF_LO_DS: r = R_PPC64_SECTOFF_LO_DS;
2023 break;
2024 case BFD_RELOC_PPC64_TOC16_DS: r = R_PPC64_TOC16_DS;
2025 break;
2026 case BFD_RELOC_PPC64_TOC16_LO_DS: r = R_PPC64_TOC16_LO_DS;
2027 break;
2028 case BFD_RELOC_PPC64_PLTGOT16_DS: r = R_PPC64_PLTGOT16_DS;
2029 break;
2030 case BFD_RELOC_PPC64_PLTGOT16_LO_DS: r = R_PPC64_PLTGOT16_LO_DS;
2031 break;
2032 case BFD_RELOC_PPC_TLS: r = R_PPC64_TLS;
2033 break;
2034 case BFD_RELOC_PPC_DTPMOD: r = R_PPC64_DTPMOD64;
2035 break;
2036 case BFD_RELOC_PPC_TPREL16: r = R_PPC64_TPREL16;
2037 break;
2038 case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC64_TPREL16_LO;
2039 break;
2040 case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC64_TPREL16_HI;
2041 break;
2042 case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC64_TPREL16_HA;
2043 break;
2044 case BFD_RELOC_PPC_TPREL: r = R_PPC64_TPREL64;
2045 break;
2046 case BFD_RELOC_PPC_DTPREL16: r = R_PPC64_DTPREL16;
2047 break;
2048 case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC64_DTPREL16_LO;
2049 break;
2050 case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC64_DTPREL16_HI;
2051 break;
2052 case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC64_DTPREL16_HA;
2053 break;
2054 case BFD_RELOC_PPC_DTPREL: r = R_PPC64_DTPREL64;
2055 break;
2056 case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC64_GOT_TLSGD16;
2057 break;
2058 case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC64_GOT_TLSGD16_LO;
2059 break;
2060 case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC64_GOT_TLSGD16_HI;
2061 break;
2062 case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC64_GOT_TLSGD16_HA;
2063 break;
2064 case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC64_GOT_TLSLD16;
2065 break;
2066 case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC64_GOT_TLSLD16_LO;
2067 break;
2068 case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC64_GOT_TLSLD16_HI;
2069 break;
2070 case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC64_GOT_TLSLD16_HA;
2071 break;
2072 case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC64_GOT_TPREL16_DS;
2073 break;
2074 case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC64_GOT_TPREL16_LO_DS;
2075 break;
2076 case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC64_GOT_TPREL16_HI;
2077 break;
2078 case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC64_GOT_TPREL16_HA;
2079 break;
2080 case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC64_GOT_DTPREL16_DS;
2081 break;
2082 case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC64_GOT_DTPREL16_LO_DS;
2083 break;
2084 case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC64_GOT_DTPREL16_HI;
2085 break;
2086 case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC64_GOT_DTPREL16_HA;
2087 break;
2088 case BFD_RELOC_PPC64_TPREL16_DS: r = R_PPC64_TPREL16_DS;
2089 break;
2090 case BFD_RELOC_PPC64_TPREL16_LO_DS: r = R_PPC64_TPREL16_LO_DS;
2091 break;
2092 case BFD_RELOC_PPC64_TPREL16_HIGHER: r = R_PPC64_TPREL16_HIGHER;
2093 break;
2094 case BFD_RELOC_PPC64_TPREL16_HIGHERA: r = R_PPC64_TPREL16_HIGHERA;
2095 break;
2096 case BFD_RELOC_PPC64_TPREL16_HIGHEST: r = R_PPC64_TPREL16_HIGHEST;
2097 break;
2098 case BFD_RELOC_PPC64_TPREL16_HIGHESTA: r = R_PPC64_TPREL16_HIGHESTA;
2099 break;
2100 case BFD_RELOC_PPC64_DTPREL16_DS: r = R_PPC64_DTPREL16_DS;
2101 break;
2102 case BFD_RELOC_PPC64_DTPREL16_LO_DS: r = R_PPC64_DTPREL16_LO_DS;
2103 break;
2104 case BFD_RELOC_PPC64_DTPREL16_HIGHER: r = R_PPC64_DTPREL16_HIGHER;
2105 break;
2106 case BFD_RELOC_PPC64_DTPREL16_HIGHERA: r = R_PPC64_DTPREL16_HIGHERA;
2107 break;
2108 case BFD_RELOC_PPC64_DTPREL16_HIGHEST: r = R_PPC64_DTPREL16_HIGHEST;
2109 break;
2110 case BFD_RELOC_PPC64_DTPREL16_HIGHESTA: r = R_PPC64_DTPREL16_HIGHESTA;
2111 break;
2112 case BFD_RELOC_VTABLE_INHERIT: r = R_PPC64_GNU_VTINHERIT;
2113 break;
2114 case BFD_RELOC_VTABLE_ENTRY: r = R_PPC64_GNU_VTENTRY;
2115 break;
2116 }
2117
2118 return ppc64_elf_howto_table[r];
2119 };
2120
2121 static reloc_howto_type *
2122 ppc64_elf_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2123 const char *r_name)
2124 {
2125 unsigned int i;
2126
2127 for (i = 0;
2128 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
2129 i++)
2130 if (ppc64_elf_howto_raw[i].name != NULL
2131 && strcasecmp (ppc64_elf_howto_raw[i].name, r_name) == 0)
2132 return &ppc64_elf_howto_raw[i];
2133
2134 return NULL;
2135 }
2136
2137 /* Set the howto pointer for a PowerPC ELF reloc. */
2138
2139 static void
2140 ppc64_elf_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
2141 Elf_Internal_Rela *dst)
2142 {
2143 unsigned int type;
2144
2145 /* Initialize howto table if needed. */
2146 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2147 ppc_howto_init ();
2148
2149 type = ELF64_R_TYPE (dst->r_info);
2150 if (type >= (sizeof (ppc64_elf_howto_table)
2151 / sizeof (ppc64_elf_howto_table[0])))
2152 {
2153 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
2154 abfd, (int) type);
2155 type = R_PPC64_NONE;
2156 }
2157 cache_ptr->howto = ppc64_elf_howto_table[type];
2158 }
2159
2160 /* Handle the R_PPC64_ADDR16_HA and similar relocs. */
2161
2162 static bfd_reloc_status_type
2163 ppc64_elf_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2164 void *data, asection *input_section,
2165 bfd *output_bfd, char **error_message)
2166 {
2167 /* If this is a relocatable link (output_bfd test tells us), just
2168 call the generic function. Any adjustment will be done at final
2169 link time. */
2170 if (output_bfd != NULL)
2171 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2172 input_section, output_bfd, error_message);
2173
2174 /* Adjust the addend for sign extension of the low 16 bits.
2175 We won't actually be using the low 16 bits, so trashing them
2176 doesn't matter. */
2177 reloc_entry->addend += 0x8000;
2178 return bfd_reloc_continue;
2179 }
2180
2181 static bfd_reloc_status_type
2182 ppc64_elf_branch_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2183 void *data, asection *input_section,
2184 bfd *output_bfd, char **error_message)
2185 {
2186 if (output_bfd != NULL)
2187 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2188 input_section, output_bfd, error_message);
2189
2190 if (strcmp (symbol->section->name, ".opd") == 0
2191 && (symbol->section->owner->flags & DYNAMIC) == 0)
2192 {
2193 bfd_vma dest = opd_entry_value (symbol->section,
2194 symbol->value + reloc_entry->addend,
2195 NULL, NULL);
2196 if (dest != (bfd_vma) -1)
2197 reloc_entry->addend = dest - (symbol->value
2198 + symbol->section->output_section->vma
2199 + symbol->section->output_offset);
2200 }
2201 return bfd_reloc_continue;
2202 }
2203
2204 static bfd_reloc_status_type
2205 ppc64_elf_brtaken_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2206 void *data, asection *input_section,
2207 bfd *output_bfd, char **error_message)
2208 {
2209 long insn;
2210 enum elf_ppc64_reloc_type r_type;
2211 bfd_size_type octets;
2212 /* Disabled until we sort out how ld should choose 'y' vs 'at'. */
2213 bfd_boolean is_power4 = FALSE;
2214
2215 /* If this is a relocatable link (output_bfd test tells us), just
2216 call the generic function. Any adjustment will be done at final
2217 link time. */
2218 if (output_bfd != NULL)
2219 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2220 input_section, output_bfd, error_message);
2221
2222 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2223 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
2224 insn &= ~(0x01 << 21);
2225 r_type = reloc_entry->howto->type;
2226 if (r_type == R_PPC64_ADDR14_BRTAKEN
2227 || r_type == R_PPC64_REL14_BRTAKEN)
2228 insn |= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
2229
2230 if (is_power4)
2231 {
2232 /* Set 'a' bit. This is 0b00010 in BO field for branch
2233 on CR(BI) insns (BO == 001at or 011at), and 0b01000
2234 for branch on CTR insns (BO == 1a00t or 1a01t). */
2235 if ((insn & (0x14 << 21)) == (0x04 << 21))
2236 insn |= 0x02 << 21;
2237 else if ((insn & (0x14 << 21)) == (0x10 << 21))
2238 insn |= 0x08 << 21;
2239 else
2240 goto out;
2241 }
2242 else
2243 {
2244 bfd_vma target = 0;
2245 bfd_vma from;
2246
2247 if (!bfd_is_com_section (symbol->section))
2248 target = symbol->value;
2249 target += symbol->section->output_section->vma;
2250 target += symbol->section->output_offset;
2251 target += reloc_entry->addend;
2252
2253 from = (reloc_entry->address
2254 + input_section->output_offset
2255 + input_section->output_section->vma);
2256
2257 /* Invert 'y' bit if not the default. */
2258 if ((bfd_signed_vma) (target - from) < 0)
2259 insn ^= 0x01 << 21;
2260 }
2261 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
2262 out:
2263 return ppc64_elf_branch_reloc (abfd, reloc_entry, symbol, data,
2264 input_section, output_bfd, error_message);
2265 }
2266
2267 static bfd_reloc_status_type
2268 ppc64_elf_sectoff_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2269 void *data, asection *input_section,
2270 bfd *output_bfd, char **error_message)
2271 {
2272 /* If this is a relocatable link (output_bfd test tells us), just
2273 call the generic function. Any adjustment will be done at final
2274 link time. */
2275 if (output_bfd != NULL)
2276 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2277 input_section, output_bfd, error_message);
2278
2279 /* Subtract the symbol section base address. */
2280 reloc_entry->addend -= symbol->section->output_section->vma;
2281 return bfd_reloc_continue;
2282 }
2283
2284 static bfd_reloc_status_type
2285 ppc64_elf_sectoff_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2286 void *data, asection *input_section,
2287 bfd *output_bfd, char **error_message)
2288 {
2289 /* If this is a relocatable link (output_bfd test tells us), just
2290 call the generic function. Any adjustment will be done at final
2291 link time. */
2292 if (output_bfd != NULL)
2293 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2294 input_section, output_bfd, error_message);
2295
2296 /* Subtract the symbol section base address. */
2297 reloc_entry->addend -= symbol->section->output_section->vma;
2298
2299 /* Adjust the addend for sign extension of the low 16 bits. */
2300 reloc_entry->addend += 0x8000;
2301 return bfd_reloc_continue;
2302 }
2303
2304 static bfd_reloc_status_type
2305 ppc64_elf_toc_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2306 void *data, asection *input_section,
2307 bfd *output_bfd, char **error_message)
2308 {
2309 bfd_vma TOCstart;
2310
2311 /* If this is a relocatable link (output_bfd test tells us), just
2312 call the generic function. Any adjustment will be done at final
2313 link time. */
2314 if (output_bfd != NULL)
2315 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2316 input_section, output_bfd, error_message);
2317
2318 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2319 if (TOCstart == 0)
2320 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2321
2322 /* Subtract the TOC base address. */
2323 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2324 return bfd_reloc_continue;
2325 }
2326
2327 static bfd_reloc_status_type
2328 ppc64_elf_toc_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2329 void *data, asection *input_section,
2330 bfd *output_bfd, char **error_message)
2331 {
2332 bfd_vma TOCstart;
2333
2334 /* If this is a relocatable link (output_bfd test tells us), just
2335 call the generic function. Any adjustment will be done at final
2336 link time. */
2337 if (output_bfd != NULL)
2338 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2339 input_section, output_bfd, error_message);
2340
2341 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2342 if (TOCstart == 0)
2343 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2344
2345 /* Subtract the TOC base address. */
2346 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2347
2348 /* Adjust the addend for sign extension of the low 16 bits. */
2349 reloc_entry->addend += 0x8000;
2350 return bfd_reloc_continue;
2351 }
2352
2353 static bfd_reloc_status_type
2354 ppc64_elf_toc64_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2355 void *data, asection *input_section,
2356 bfd *output_bfd, char **error_message)
2357 {
2358 bfd_vma TOCstart;
2359 bfd_size_type octets;
2360
2361 /* If this is a relocatable link (output_bfd test tells us), just
2362 call the generic function. Any adjustment will be done at final
2363 link time. */
2364 if (output_bfd != NULL)
2365 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2366 input_section, output_bfd, error_message);
2367
2368 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2369 if (TOCstart == 0)
2370 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2371
2372 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2373 bfd_put_64 (abfd, TOCstart + TOC_BASE_OFF, (bfd_byte *) data + octets);
2374 return bfd_reloc_ok;
2375 }
2376
2377 static bfd_reloc_status_type
2378 ppc64_elf_unhandled_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2379 void *data, asection *input_section,
2380 bfd *output_bfd, char **error_message)
2381 {
2382 /* If this is a relocatable link (output_bfd test tells us), just
2383 call the generic function. Any adjustment will be done at final
2384 link time. */
2385 if (output_bfd != NULL)
2386 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2387 input_section, output_bfd, error_message);
2388
2389 if (error_message != NULL)
2390 {
2391 static char buf[60];
2392 sprintf (buf, "generic linker can't handle %s",
2393 reloc_entry->howto->name);
2394 *error_message = buf;
2395 }
2396 return bfd_reloc_dangerous;
2397 }
2398
2399 struct ppc64_elf_obj_tdata
2400 {
2401 struct elf_obj_tdata elf;
2402
2403 /* Shortcuts to dynamic linker sections. */
2404 asection *got;
2405 asection *relgot;
2406
2407 /* Used during garbage collection. We attach global symbols defined
2408 on removed .opd entries to this section so that the sym is removed. */
2409 asection *deleted_section;
2410
2411 /* TLS local dynamic got entry handling. Suppose for multiple GOT
2412 sections means we potentially need one of these for each input bfd. */
2413 union {
2414 bfd_signed_vma refcount;
2415 bfd_vma offset;
2416 } tlsld_got;
2417
2418 /* A copy of relocs before they are modified for --emit-relocs. */
2419 Elf_Internal_Rela *opd_relocs;
2420 };
2421
2422 #define ppc64_elf_tdata(bfd) \
2423 ((struct ppc64_elf_obj_tdata *) (bfd)->tdata.any)
2424
2425 #define ppc64_tlsld_got(bfd) \
2426 (&ppc64_elf_tdata (bfd)->tlsld_got)
2427
2428 #define is_ppc64_elf(bfd) \
2429 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2430 && elf_object_id (bfd) == PPC64_ELF_TDATA)
2431
2432 /* Override the generic function because we store some extras. */
2433
2434 static bfd_boolean
2435 ppc64_elf_mkobject (bfd *abfd)
2436 {
2437 return bfd_elf_allocate_object (abfd, sizeof (struct ppc64_elf_obj_tdata),
2438 PPC64_ELF_TDATA);
2439 }
2440
2441 /* Fix bad default arch selected for a 64 bit input bfd when the
2442 default is 32 bit. */
2443
2444 static bfd_boolean
2445 ppc64_elf_object_p (bfd *abfd)
2446 {
2447 if (abfd->arch_info->the_default && abfd->arch_info->bits_per_word == 32)
2448 {
2449 Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd);
2450
2451 if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS64)
2452 {
2453 /* Relies on arch after 32 bit default being 64 bit default. */
2454 abfd->arch_info = abfd->arch_info->next;
2455 BFD_ASSERT (abfd->arch_info->bits_per_word == 64);
2456 }
2457 }
2458 return TRUE;
2459 }
2460
2461 /* Support for core dump NOTE sections. */
2462
2463 static bfd_boolean
2464 ppc64_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2465 {
2466 size_t offset, size;
2467
2468 if (note->descsz != 504)
2469 return FALSE;
2470
2471 /* pr_cursig */
2472 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
2473
2474 /* pr_pid */
2475 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 32);
2476
2477 /* pr_reg */
2478 offset = 112;
2479 size = 384;
2480
2481 /* Make a ".reg/999" section. */
2482 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2483 size, note->descpos + offset);
2484 }
2485
2486 static bfd_boolean
2487 ppc64_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2488 {
2489 if (note->descsz != 136)
2490 return FALSE;
2491
2492 elf_tdata (abfd)->core_program
2493 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2494 elf_tdata (abfd)->core_command
2495 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2496
2497 return TRUE;
2498 }
2499
2500 static char *
2501 ppc64_elf_write_core_note (bfd *abfd, char *buf, int *bufsiz, int note_type,
2502 ...)
2503 {
2504 switch (note_type)
2505 {
2506 default:
2507 return NULL;
2508
2509 case NT_PRPSINFO:
2510 {
2511 char data[136];
2512 va_list ap;
2513
2514 va_start (ap, note_type);
2515 memset (data, 0, 40);
2516 strncpy (data + 40, va_arg (ap, const char *), 16);
2517 strncpy (data + 56, va_arg (ap, const char *), 80);
2518 va_end (ap);
2519 return elfcore_write_note (abfd, buf, bufsiz,
2520 "CORE", note_type, data, sizeof (data));
2521 }
2522
2523 case NT_PRSTATUS:
2524 {
2525 char data[504];
2526 va_list ap;
2527 long pid;
2528 int cursig;
2529 const void *greg;
2530
2531 va_start (ap, note_type);
2532 memset (data, 0, 112);
2533 pid = va_arg (ap, long);
2534 bfd_put_32 (abfd, pid, data + 32);
2535 cursig = va_arg (ap, int);
2536 bfd_put_16 (abfd, cursig, data + 12);
2537 greg = va_arg (ap, const void *);
2538 memcpy (data + 112, greg, 384);
2539 memset (data + 496, 0, 8);
2540 va_end (ap);
2541 return elfcore_write_note (abfd, buf, bufsiz,
2542 "CORE", note_type, data, sizeof (data));
2543 }
2544 }
2545 }
2546
2547 /* Merge backend specific data from an object file to the output
2548 object file when linking. */
2549
2550 static bfd_boolean
2551 ppc64_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
2552 {
2553 /* Check if we have the same endianess. */
2554 if (ibfd->xvec->byteorder != obfd->xvec->byteorder
2555 && ibfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN
2556 && obfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN)
2557 {
2558 const char *msg;
2559
2560 if (bfd_big_endian (ibfd))
2561 msg = _("%B: compiled for a big endian system "
2562 "and target is little endian");
2563 else
2564 msg = _("%B: compiled for a little endian system "
2565 "and target is big endian");
2566
2567 (*_bfd_error_handler) (msg, ibfd);
2568
2569 bfd_set_error (bfd_error_wrong_format);
2570 return FALSE;
2571 }
2572
2573 return TRUE;
2574 }
2575
2576 /* Add extra PPC sections. */
2577
2578 static const struct bfd_elf_special_section ppc64_elf_special_sections[]=
2579 {
2580 { STRING_COMMA_LEN (".plt"), 0, SHT_NOBITS, 0 },
2581 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2582 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2583 { STRING_COMMA_LEN (".toc"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2584 { STRING_COMMA_LEN (".toc1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2585 { STRING_COMMA_LEN (".tocbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2586 { NULL, 0, 0, 0, 0 }
2587 };
2588
2589 enum _ppc64_sec_type {
2590 sec_normal = 0,
2591 sec_opd = 1,
2592 sec_toc = 2
2593 };
2594
2595 struct _ppc64_elf_section_data
2596 {
2597 struct bfd_elf_section_data elf;
2598
2599 union
2600 {
2601 /* An array with one entry for each opd function descriptor. */
2602 struct _opd_sec_data
2603 {
2604 /* Points to the function code section for local opd entries. */
2605 asection **func_sec;
2606
2607 /* After editing .opd, adjust references to opd local syms. */
2608 long *adjust;
2609 } opd;
2610
2611 /* An array for toc sections, indexed by offset/8.
2612 Specifies the relocation symbol index used at a given toc offset. */
2613 unsigned *t_symndx;
2614 } u;
2615
2616 enum _ppc64_sec_type sec_type:2;
2617
2618 /* Flag set when small branches are detected. Used to
2619 select suitable defaults for the stub group size. */
2620 unsigned int has_14bit_branch:1;
2621 };
2622
2623 #define ppc64_elf_section_data(sec) \
2624 ((struct _ppc64_elf_section_data *) elf_section_data (sec))
2625
2626 static bfd_boolean
2627 ppc64_elf_new_section_hook (bfd *abfd, asection *sec)
2628 {
2629 if (!sec->used_by_bfd)
2630 {
2631 struct _ppc64_elf_section_data *sdata;
2632 bfd_size_type amt = sizeof (*sdata);
2633
2634 sdata = bfd_zalloc (abfd, amt);
2635 if (sdata == NULL)
2636 return FALSE;
2637 sec->used_by_bfd = sdata;
2638 }
2639
2640 return _bfd_elf_new_section_hook (abfd, sec);
2641 }
2642
2643 static struct _opd_sec_data *
2644 get_opd_info (asection * sec)
2645 {
2646 if (sec != NULL
2647 && ppc64_elf_section_data (sec) != NULL
2648 && ppc64_elf_section_data (sec)->sec_type == sec_opd)
2649 return &ppc64_elf_section_data (sec)->u.opd;
2650 return NULL;
2651 }
2652 \f
2653 /* Parameters for the qsort hook. */
2654 static asection *synthetic_opd;
2655 static bfd_boolean synthetic_relocatable;
2656
2657 /* qsort comparison function for ppc64_elf_get_synthetic_symtab. */
2658
2659 static int
2660 compare_symbols (const void *ap, const void *bp)
2661 {
2662 const asymbol *a = * (const asymbol **) ap;
2663 const asymbol *b = * (const asymbol **) bp;
2664
2665 /* Section symbols first. */
2666 if ((a->flags & BSF_SECTION_SYM) && !(b->flags & BSF_SECTION_SYM))
2667 return -1;
2668 if (!(a->flags & BSF_SECTION_SYM) && (b->flags & BSF_SECTION_SYM))
2669 return 1;
2670
2671 /* then .opd symbols. */
2672 if (a->section == synthetic_opd && b->section != synthetic_opd)
2673 return -1;
2674 if (a->section != synthetic_opd && b->section == synthetic_opd)
2675 return 1;
2676
2677 /* then other code symbols. */
2678 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2679 == (SEC_CODE | SEC_ALLOC)
2680 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2681 != (SEC_CODE | SEC_ALLOC))
2682 return -1;
2683
2684 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2685 != (SEC_CODE | SEC_ALLOC)
2686 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2687 == (SEC_CODE | SEC_ALLOC))
2688 return 1;
2689
2690 if (synthetic_relocatable)
2691 {
2692 if (a->section->id < b->section->id)
2693 return -1;
2694
2695 if (a->section->id > b->section->id)
2696 return 1;
2697 }
2698
2699 if (a->value + a->section->vma < b->value + b->section->vma)
2700 return -1;
2701
2702 if (a->value + a->section->vma > b->value + b->section->vma)
2703 return 1;
2704
2705 /* For syms with the same value, prefer strong dynamic global function
2706 syms over other syms. */
2707 if ((a->flags & BSF_GLOBAL) != 0 && (b->flags & BSF_GLOBAL) == 0)
2708 return -1;
2709
2710 if ((a->flags & BSF_GLOBAL) == 0 && (b->flags & BSF_GLOBAL) != 0)
2711 return 1;
2712
2713 if ((a->flags & BSF_FUNCTION) != 0 && (b->flags & BSF_FUNCTION) == 0)
2714 return -1;
2715
2716 if ((a->flags & BSF_FUNCTION) == 0 && (b->flags & BSF_FUNCTION) != 0)
2717 return 1;
2718
2719 if ((a->flags & BSF_WEAK) == 0 && (b->flags & BSF_WEAK) != 0)
2720 return -1;
2721
2722 if ((a->flags & BSF_WEAK) != 0 && (b->flags & BSF_WEAK) == 0)
2723 return 1;
2724
2725 if ((a->flags & BSF_DYNAMIC) != 0 && (b->flags & BSF_DYNAMIC) == 0)
2726 return -1;
2727
2728 if ((a->flags & BSF_DYNAMIC) == 0 && (b->flags & BSF_DYNAMIC) != 0)
2729 return 1;
2730
2731 return 0;
2732 }
2733
2734 /* Search SYMS for a symbol of the given VALUE. */
2735
2736 static asymbol *
2737 sym_exists_at (asymbol **syms, long lo, long hi, int id, bfd_vma value)
2738 {
2739 long mid;
2740
2741 if (id == -1)
2742 {
2743 while (lo < hi)
2744 {
2745 mid = (lo + hi) >> 1;
2746 if (syms[mid]->value + syms[mid]->section->vma < value)
2747 lo = mid + 1;
2748 else if (syms[mid]->value + syms[mid]->section->vma > value)
2749 hi = mid;
2750 else
2751 return syms[mid];
2752 }
2753 }
2754 else
2755 {
2756 while (lo < hi)
2757 {
2758 mid = (lo + hi) >> 1;
2759 if (syms[mid]->section->id < id)
2760 lo = mid + 1;
2761 else if (syms[mid]->section->id > id)
2762 hi = mid;
2763 else if (syms[mid]->value < value)
2764 lo = mid + 1;
2765 else if (syms[mid]->value > value)
2766 hi = mid;
2767 else
2768 return syms[mid];
2769 }
2770 }
2771 return NULL;
2772 }
2773
2774 /* Create synthetic symbols, effectively restoring "dot-symbol" function
2775 entry syms. */
2776
2777 static long
2778 ppc64_elf_get_synthetic_symtab (bfd *abfd,
2779 long static_count, asymbol **static_syms,
2780 long dyn_count, asymbol **dyn_syms,
2781 asymbol **ret)
2782 {
2783 asymbol *s;
2784 long i;
2785 long count;
2786 char *names;
2787 long symcount, codesecsym, codesecsymend, secsymend, opdsymend;
2788 asection *opd;
2789 bfd_boolean relocatable = (abfd->flags & (EXEC_P | DYNAMIC)) == 0;
2790 asymbol **syms;
2791
2792 *ret = NULL;
2793
2794 opd = bfd_get_section_by_name (abfd, ".opd");
2795 if (opd == NULL)
2796 return 0;
2797
2798 symcount = static_count;
2799 if (!relocatable)
2800 symcount += dyn_count;
2801 if (symcount == 0)
2802 return 0;
2803
2804 syms = bfd_malloc ((symcount + 1) * sizeof (*syms));
2805 if (syms == NULL)
2806 return -1;
2807
2808 if (!relocatable && static_count != 0 && dyn_count != 0)
2809 {
2810 /* Use both symbol tables. */
2811 memcpy (syms, static_syms, static_count * sizeof (*syms));
2812 memcpy (syms + static_count, dyn_syms, (dyn_count + 1) * sizeof (*syms));
2813 }
2814 else if (!relocatable && static_count == 0)
2815 memcpy (syms, dyn_syms, (symcount + 1) * sizeof (*syms));
2816 else
2817 memcpy (syms, static_syms, (symcount + 1) * sizeof (*syms));
2818
2819 synthetic_opd = opd;
2820 synthetic_relocatable = relocatable;
2821 qsort (syms, symcount, sizeof (*syms), compare_symbols);
2822
2823 if (!relocatable && symcount > 1)
2824 {
2825 long j;
2826 /* Trim duplicate syms, since we may have merged the normal and
2827 dynamic symbols. Actually, we only care about syms that have
2828 different values, so trim any with the same value. */
2829 for (i = 1, j = 1; i < symcount; ++i)
2830 if (syms[i - 1]->value + syms[i - 1]->section->vma
2831 != syms[i]->value + syms[i]->section->vma)
2832 syms[j++] = syms[i];
2833 symcount = j;
2834 }
2835
2836 i = 0;
2837 if (syms[i]->section == opd)
2838 ++i;
2839 codesecsym = i;
2840
2841 for (; i < symcount; ++i)
2842 if (((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2843 != (SEC_CODE | SEC_ALLOC))
2844 || (syms[i]->flags & BSF_SECTION_SYM) == 0)
2845 break;
2846 codesecsymend = i;
2847
2848 for (; i < symcount; ++i)
2849 if ((syms[i]->flags & BSF_SECTION_SYM) == 0)
2850 break;
2851 secsymend = i;
2852
2853 for (; i < symcount; ++i)
2854 if (syms[i]->section != opd)
2855 break;
2856 opdsymend = i;
2857
2858 for (; i < symcount; ++i)
2859 if ((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2860 != (SEC_CODE | SEC_ALLOC))
2861 break;
2862 symcount = i;
2863
2864 count = 0;
2865 if (opdsymend == secsymend)
2866 goto done;
2867
2868 if (relocatable)
2869 {
2870 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
2871 arelent *r;
2872 size_t size;
2873 long relcount;
2874
2875 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
2876 relcount = (opd->flags & SEC_RELOC) ? opd->reloc_count : 0;
2877 if (relcount == 0)
2878 goto done;
2879
2880 if (!(*slurp_relocs) (abfd, opd, static_syms, FALSE))
2881 {
2882 count = -1;
2883 goto done;
2884 }
2885
2886 size = 0;
2887 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
2888 {
2889 asymbol *sym;
2890
2891 while (r < opd->relocation + relcount
2892 && r->address < syms[i]->value + opd->vma)
2893 ++r;
2894
2895 if (r == opd->relocation + relcount)
2896 break;
2897
2898 if (r->address != syms[i]->value + opd->vma)
2899 continue;
2900
2901 if (r->howto->type != R_PPC64_ADDR64)
2902 continue;
2903
2904 sym = *r->sym_ptr_ptr;
2905 if (!sym_exists_at (syms, opdsymend, symcount,
2906 sym->section->id, sym->value + r->addend))
2907 {
2908 ++count;
2909 size += sizeof (asymbol);
2910 size += strlen (syms[i]->name) + 2;
2911 }
2912 }
2913
2914 s = *ret = bfd_malloc (size);
2915 if (s == NULL)
2916 {
2917 count = -1;
2918 goto done;
2919 }
2920
2921 names = (char *) (s + count);
2922
2923 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
2924 {
2925 asymbol *sym;
2926
2927 while (r < opd->relocation + relcount
2928 && r->address < syms[i]->value + opd->vma)
2929 ++r;
2930
2931 if (r == opd->relocation + relcount)
2932 break;
2933
2934 if (r->address != syms[i]->value + opd->vma)
2935 continue;
2936
2937 if (r->howto->type != R_PPC64_ADDR64)
2938 continue;
2939
2940 sym = *r->sym_ptr_ptr;
2941 if (!sym_exists_at (syms, opdsymend, symcount,
2942 sym->section->id, sym->value + r->addend))
2943 {
2944 size_t len;
2945
2946 *s = *syms[i];
2947 s->section = sym->section;
2948 s->value = sym->value + r->addend;
2949 s->name = names;
2950 *names++ = '.';
2951 len = strlen (syms[i]->name);
2952 memcpy (names, syms[i]->name, len + 1);
2953 names += len + 1;
2954 /* Have udata.p point back to the original symbol this
2955 synthetic symbol was derived from. */
2956 s->udata.p = syms[i];
2957 s++;
2958 }
2959 }
2960 }
2961 else
2962 {
2963 bfd_byte *contents;
2964 size_t size;
2965
2966 if (!bfd_malloc_and_get_section (abfd, opd, &contents))
2967 {
2968 if (contents)
2969 {
2970 free_contents_and_exit:
2971 free (contents);
2972 }
2973 count = -1;
2974 goto done;
2975 }
2976
2977 size = 0;
2978 for (i = secsymend; i < opdsymend; ++i)
2979 {
2980 bfd_vma ent;
2981
2982 ent = bfd_get_64 (abfd, contents + syms[i]->value);
2983 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
2984 {
2985 ++count;
2986 size += sizeof (asymbol);
2987 size += strlen (syms[i]->name) + 2;
2988 }
2989 }
2990
2991 s = *ret = bfd_malloc (size);
2992 if (s == NULL)
2993 goto free_contents_and_exit;
2994
2995 names = (char *) (s + count);
2996
2997 for (i = secsymend; i < opdsymend; ++i)
2998 {
2999 bfd_vma ent;
3000
3001 ent = bfd_get_64 (abfd, contents + syms[i]->value);
3002 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
3003 {
3004 long lo, hi;
3005 size_t len;
3006 asection *sec = abfd->sections;
3007
3008 *s = *syms[i];
3009 lo = codesecsym;
3010 hi = codesecsymend;
3011 while (lo < hi)
3012 {
3013 long mid = (lo + hi) >> 1;
3014 if (syms[mid]->section->vma < ent)
3015 lo = mid + 1;
3016 else if (syms[mid]->section->vma > ent)
3017 hi = mid;
3018 else
3019 {
3020 sec = syms[mid]->section;
3021 break;
3022 }
3023 }
3024
3025 if (lo >= hi && lo > codesecsym)
3026 sec = syms[lo - 1]->section;
3027
3028 for (; sec != NULL; sec = sec->next)
3029 {
3030 if (sec->vma > ent)
3031 break;
3032 if ((sec->flags & SEC_ALLOC) == 0
3033 || (sec->flags & SEC_LOAD) == 0)
3034 break;
3035 if ((sec->flags & SEC_CODE) != 0)
3036 s->section = sec;
3037 }
3038 s->value = ent - s->section->vma;
3039 s->name = names;
3040 *names++ = '.';
3041 len = strlen (syms[i]->name);
3042 memcpy (names, syms[i]->name, len + 1);
3043 names += len + 1;
3044 /* Have udata.p point back to the original symbol this
3045 synthetic symbol was derived from. */
3046 s->udata.p = syms[i];
3047 s++;
3048 }
3049 }
3050 free (contents);
3051 }
3052
3053 done:
3054 free (syms);
3055 return count;
3056 }
3057 \f
3058 /* The following functions are specific to the ELF linker, while
3059 functions above are used generally. Those named ppc64_elf_* are
3060 called by the main ELF linker code. They appear in this file more
3061 or less in the order in which they are called. eg.
3062 ppc64_elf_check_relocs is called early in the link process,
3063 ppc64_elf_finish_dynamic_sections is one of the last functions
3064 called.
3065
3066 PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that
3067 functions have both a function code symbol and a function descriptor
3068 symbol. A call to foo in a relocatable object file looks like:
3069
3070 . .text
3071 . x:
3072 . bl .foo
3073 . nop
3074
3075 The function definition in another object file might be:
3076
3077 . .section .opd
3078 . foo: .quad .foo
3079 . .quad .TOC.@tocbase
3080 . .quad 0
3081 .
3082 . .text
3083 . .foo: blr
3084
3085 When the linker resolves the call during a static link, the branch
3086 unsurprisingly just goes to .foo and the .opd information is unused.
3087 If the function definition is in a shared library, things are a little
3088 different: The call goes via a plt call stub, the opd information gets
3089 copied to the plt, and the linker patches the nop.
3090
3091 . x:
3092 . bl .foo_stub
3093 . ld 2,40(1)
3094 .
3095 .
3096 . .foo_stub:
3097 . addis 12,2,Lfoo@toc@ha # in practice, the call stub
3098 . addi 12,12,Lfoo@toc@l # is slightly optimized, but
3099 . std 2,40(1) # this is the general idea
3100 . ld 11,0(12)
3101 . ld 2,8(12)
3102 . mtctr 11
3103 . ld 11,16(12)
3104 . bctr
3105 .
3106 . .section .plt
3107 . Lfoo: reloc (R_PPC64_JMP_SLOT, foo)
3108
3109 The "reloc ()" notation is supposed to indicate that the linker emits
3110 an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd
3111 copying.
3112
3113 What are the difficulties here? Well, firstly, the relocations
3114 examined by the linker in check_relocs are against the function code
3115 sym .foo, while the dynamic relocation in the plt is emitted against
3116 the function descriptor symbol, foo. Somewhere along the line, we need
3117 to carefully copy dynamic link information from one symbol to the other.
3118 Secondly, the generic part of the elf linker will make .foo a dynamic
3119 symbol as is normal for most other backends. We need foo dynamic
3120 instead, at least for an application final link. However, when
3121 creating a shared library containing foo, we need to have both symbols
3122 dynamic so that references to .foo are satisfied during the early
3123 stages of linking. Otherwise the linker might decide to pull in a
3124 definition from some other object, eg. a static library.
3125
3126 Update: As of August 2004, we support a new convention. Function
3127 calls may use the function descriptor symbol, ie. "bl foo". This
3128 behaves exactly as "bl .foo". */
3129
3130 /* The linker needs to keep track of the number of relocs that it
3131 decides to copy as dynamic relocs in check_relocs for each symbol.
3132 This is so that it can later discard them if they are found to be
3133 unnecessary. We store the information in a field extending the
3134 regular ELF linker hash table. */
3135
3136 struct ppc_dyn_relocs
3137 {
3138 struct ppc_dyn_relocs *next;
3139
3140 /* The input section of the reloc. */
3141 asection *sec;
3142
3143 /* Total number of relocs copied for the input section. */
3144 bfd_size_type count;
3145
3146 /* Number of pc-relative relocs copied for the input section. */
3147 bfd_size_type pc_count;
3148 };
3149
3150 /* Track GOT entries needed for a given symbol. We might need more
3151 than one got entry per symbol. */
3152 struct got_entry
3153 {
3154 struct got_entry *next;
3155
3156 /* The symbol addend that we'll be placing in the GOT. */
3157 bfd_vma addend;
3158
3159 /* Unlike other ELF targets, we use separate GOT entries for the same
3160 symbol referenced from different input files. This is to support
3161 automatic multiple TOC/GOT sections, where the TOC base can vary
3162 from one input file to another. FIXME: After group_sections we
3163 ought to merge entries within the group.
3164
3165 Point to the BFD owning this GOT entry. */
3166 bfd *owner;
3167
3168 /* Zero for non-tls entries, or TLS_TLS and one of TLS_GD, TLS_LD,
3169 TLS_TPREL or TLS_DTPREL for tls entries. */
3170 char tls_type;
3171
3172 /* Reference count until size_dynamic_sections, GOT offset thereafter. */
3173 union
3174 {
3175 bfd_signed_vma refcount;
3176 bfd_vma offset;
3177 } got;
3178 };
3179
3180 /* The same for PLT. */
3181 struct plt_entry
3182 {
3183 struct plt_entry *next;
3184
3185 bfd_vma addend;
3186
3187 union
3188 {
3189 bfd_signed_vma refcount;
3190 bfd_vma offset;
3191 } plt;
3192 };
3193
3194 /* Of those relocs that might be copied as dynamic relocs, this macro
3195 selects those that must be copied when linking a shared library,
3196 even when the symbol is local. */
3197
3198 #define MUST_BE_DYN_RELOC(RTYPE) \
3199 ((RTYPE) != R_PPC64_REL32 \
3200 && (RTYPE) != R_PPC64_REL64 \
3201 && (RTYPE) != R_PPC64_REL30)
3202
3203 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
3204 copying dynamic variables from a shared lib into an app's dynbss
3205 section, and instead use a dynamic relocation to point into the
3206 shared lib. With code that gcc generates, it's vital that this be
3207 enabled; In the PowerPC64 ABI, the address of a function is actually
3208 the address of a function descriptor, which resides in the .opd
3209 section. gcc uses the descriptor directly rather than going via the
3210 GOT as some other ABI's do, which means that initialized function
3211 pointers must reference the descriptor. Thus, a function pointer
3212 initialized to the address of a function in a shared library will
3213 either require a copy reloc, or a dynamic reloc. Using a copy reloc
3214 redefines the function descriptor symbol to point to the copy. This
3215 presents a problem as a plt entry for that function is also
3216 initialized from the function descriptor symbol and the copy reloc
3217 may not be initialized first. */
3218 #define ELIMINATE_COPY_RELOCS 1
3219
3220 /* Section name for stubs is the associated section name plus this
3221 string. */
3222 #define STUB_SUFFIX ".stub"
3223
3224 /* Linker stubs.
3225 ppc_stub_long_branch:
3226 Used when a 14 bit branch (or even a 24 bit branch) can't reach its
3227 destination, but a 24 bit branch in a stub section will reach.
3228 . b dest
3229
3230 ppc_stub_plt_branch:
3231 Similar to the above, but a 24 bit branch in the stub section won't
3232 reach its destination.
3233 . addis %r12,%r2,xxx@toc@ha
3234 . ld %r11,xxx@toc@l(%r12)
3235 . mtctr %r11
3236 . bctr
3237
3238 ppc_stub_plt_call:
3239 Used to call a function in a shared library. If it so happens that
3240 the plt entry referenced crosses a 64k boundary, then an extra
3241 "addi %r12,%r12,xxx@toc@l" will be inserted before the "mtctr".
3242 . addis %r12,%r2,xxx@toc@ha
3243 . std %r2,40(%r1)
3244 . ld %r11,xxx+0@toc@l(%r12)
3245 . mtctr %r11
3246 . ld %r2,xxx+8@toc@l(%r12)
3247 . ld %r11,xxx+16@toc@l(%r12)
3248 . bctr
3249
3250 ppc_stub_long_branch and ppc_stub_plt_branch may also have additional
3251 code to adjust the value and save r2 to support multiple toc sections.
3252 A ppc_stub_long_branch with an r2 offset looks like:
3253 . std %r2,40(%r1)
3254 . addis %r2,%r2,off@ha
3255 . addi %r2,%r2,off@l
3256 . b dest
3257
3258 A ppc_stub_plt_branch with an r2 offset looks like:
3259 . std %r2,40(%r1)
3260 . addis %r12,%r2,xxx@toc@ha
3261 . ld %r11,xxx@toc@l(%r12)
3262 . addis %r2,%r2,off@ha
3263 . addi %r2,%r2,off@l
3264 . mtctr %r11
3265 . bctr
3266
3267 In cases where the "addis" instruction would add zero, the "addis" is
3268 omitted and following instructions modified slightly in some cases.
3269 */
3270
3271 enum ppc_stub_type {
3272 ppc_stub_none,
3273 ppc_stub_long_branch,
3274 ppc_stub_long_branch_r2off,
3275 ppc_stub_plt_branch,
3276 ppc_stub_plt_branch_r2off,
3277 ppc_stub_plt_call
3278 };
3279
3280 struct ppc_stub_hash_entry {
3281
3282 /* Base hash table entry structure. */
3283 struct bfd_hash_entry root;
3284
3285 enum ppc_stub_type stub_type;
3286
3287 /* The stub section. */
3288 asection *stub_sec;
3289
3290 /* Offset within stub_sec of the beginning of this stub. */
3291 bfd_vma stub_offset;
3292
3293 /* Given the symbol's value and its section we can determine its final
3294 value when building the stubs (so the stub knows where to jump. */
3295 bfd_vma target_value;
3296 asection *target_section;
3297
3298 /* The symbol table entry, if any, that this was derived from. */
3299 struct ppc_link_hash_entry *h;
3300
3301 /* And the reloc addend that this was derived from. */
3302 bfd_vma addend;
3303
3304 /* Where this stub is being called from, or, in the case of combined
3305 stub sections, the first input section in the group. */
3306 asection *id_sec;
3307 };
3308
3309 struct ppc_branch_hash_entry {
3310
3311 /* Base hash table entry structure. */
3312 struct bfd_hash_entry root;
3313
3314 /* Offset within branch lookup table. */
3315 unsigned int offset;
3316
3317 /* Generation marker. */
3318 unsigned int iter;
3319 };
3320
3321 struct ppc_link_hash_entry
3322 {
3323 struct elf_link_hash_entry elf;
3324
3325 union {
3326 /* A pointer to the most recently used stub hash entry against this
3327 symbol. */
3328 struct ppc_stub_hash_entry *stub_cache;
3329
3330 /* A pointer to the next symbol starting with a '.' */
3331 struct ppc_link_hash_entry *next_dot_sym;
3332 } u;
3333
3334 /* Track dynamic relocs copied for this symbol. */
3335 struct ppc_dyn_relocs *dyn_relocs;
3336
3337 /* Link between function code and descriptor symbols. */
3338 struct ppc_link_hash_entry *oh;
3339
3340 /* Flag function code and descriptor symbols. */
3341 unsigned int is_func:1;
3342 unsigned int is_func_descriptor:1;
3343 unsigned int fake:1;
3344
3345 /* Whether global opd/toc sym has been adjusted or not.
3346 After ppc64_elf_edit_opd/ppc64_elf_edit_toc has run, this flag
3347 should be set for all globals defined in any opd/toc section. */
3348 unsigned int adjust_done:1;
3349
3350 /* Set if we twiddled this symbol to weak at some stage. */
3351 unsigned int was_undefined:1;
3352
3353 /* Contexts in which symbol is used in the GOT (or TOC).
3354 TLS_GD .. TLS_EXPLICIT bits are or'd into the mask as the
3355 corresponding relocs are encountered during check_relocs.
3356 tls_optimize clears TLS_GD .. TLS_TPREL when optimizing to
3357 indicate the corresponding GOT entry type is not needed.
3358 tls_optimize may also set TLS_TPRELGD when a GD reloc turns into
3359 a TPREL one. We use a separate flag rather than setting TPREL
3360 just for convenience in distinguishing the two cases. */
3361 #define TLS_GD 1 /* GD reloc. */
3362 #define TLS_LD 2 /* LD reloc. */
3363 #define TLS_TPREL 4 /* TPREL reloc, => IE. */
3364 #define TLS_DTPREL 8 /* DTPREL reloc, => LD. */
3365 #define TLS_TLS 16 /* Any TLS reloc. */
3366 #define TLS_EXPLICIT 32 /* Marks TOC section TLS relocs. */
3367 #define TLS_TPRELGD 64 /* TPREL reloc resulting from GD->IE. */
3368 char tls_mask;
3369 };
3370
3371 /* ppc64 ELF linker hash table. */
3372
3373 struct ppc_link_hash_table
3374 {
3375 struct elf_link_hash_table elf;
3376
3377 /* The stub hash table. */
3378 struct bfd_hash_table stub_hash_table;
3379
3380 /* Another hash table for plt_branch stubs. */
3381 struct bfd_hash_table branch_hash_table;
3382
3383 /* Linker stub bfd. */
3384 bfd *stub_bfd;
3385
3386 /* Linker call-backs. */
3387 asection * (*add_stub_section) (const char *, asection *);
3388 void (*layout_sections_again) (void);
3389
3390 /* Array to keep track of which stub sections have been created, and
3391 information on stub grouping. */
3392 struct map_stub {
3393 /* This is the section to which stubs in the group will be attached. */
3394 asection *link_sec;
3395 /* The stub section. */
3396 asection *stub_sec;
3397 /* Along with elf_gp, specifies the TOC pointer used in this group. */
3398 bfd_vma toc_off;
3399 } *stub_group;
3400
3401 /* Temp used when calculating TOC pointers. */
3402 bfd_vma toc_curr;
3403
3404 /* Highest input section id. */
3405 int top_id;
3406
3407 /* Highest output section index. */
3408 int top_index;
3409
3410 /* Used when adding symbols. */
3411 struct ppc_link_hash_entry *dot_syms;
3412
3413 /* List of input sections for each output section. */
3414 asection **input_list;
3415
3416 /* Short-cuts to get to dynamic linker sections. */
3417 asection *got;
3418 asection *plt;
3419 asection *relplt;
3420 asection *dynbss;
3421 asection *relbss;
3422 asection *glink;
3423 asection *sfpr;
3424 asection *brlt;
3425 asection *relbrlt;
3426
3427 /* Shortcut to .__tls_get_addr and __tls_get_addr. */
3428 struct ppc_link_hash_entry *tls_get_addr;
3429 struct ppc_link_hash_entry *tls_get_addr_fd;
3430
3431 /* Statistics. */
3432 unsigned long stub_count[ppc_stub_plt_call];
3433
3434 /* Number of stubs against global syms. */
3435 unsigned long stub_globals;
3436
3437 /* Set if we should emit symbols for stubs. */
3438 unsigned int emit_stub_syms:1;
3439
3440 /* Support for multiple toc sections. */
3441 unsigned int no_multi_toc:1;
3442 unsigned int multi_toc_needed:1;
3443
3444 /* Set on error. */
3445 unsigned int stub_error:1;
3446
3447 /* Temp used by ppc64_elf_check_directives. */
3448 unsigned int twiddled_syms:1;
3449
3450 /* Incremented every time we size stubs. */
3451 unsigned int stub_iteration;
3452
3453 /* Small local sym to section mapping cache. */
3454 struct sym_sec_cache sym_sec;
3455 };
3456
3457 /* Rename some of the generic section flags to better document how they
3458 are used here. */
3459 #define has_toc_reloc has_gp_reloc
3460 #define makes_toc_func_call need_finalize_relax
3461 #define call_check_in_progress reloc_done
3462
3463 /* Get the ppc64 ELF linker hash table from a link_info structure. */
3464
3465 #define ppc_hash_table(p) \
3466 ((struct ppc_link_hash_table *) ((p)->hash))
3467
3468 #define ppc_stub_hash_lookup(table, string, create, copy) \
3469 ((struct ppc_stub_hash_entry *) \
3470 bfd_hash_lookup ((table), (string), (create), (copy)))
3471
3472 #define ppc_branch_hash_lookup(table, string, create, copy) \
3473 ((struct ppc_branch_hash_entry *) \
3474 bfd_hash_lookup ((table), (string), (create), (copy)))
3475
3476 /* Create an entry in the stub hash table. */
3477
3478 static struct bfd_hash_entry *
3479 stub_hash_newfunc (struct bfd_hash_entry *entry,
3480 struct bfd_hash_table *table,
3481 const char *string)
3482 {
3483 /* Allocate the structure if it has not already been allocated by a
3484 subclass. */
3485 if (entry == NULL)
3486 {
3487 entry = bfd_hash_allocate (table, sizeof (struct ppc_stub_hash_entry));
3488 if (entry == NULL)
3489 return entry;
3490 }
3491
3492 /* Call the allocation method of the superclass. */
3493 entry = bfd_hash_newfunc (entry, table, string);
3494 if (entry != NULL)
3495 {
3496 struct ppc_stub_hash_entry *eh;
3497
3498 /* Initialize the local fields. */
3499 eh = (struct ppc_stub_hash_entry *) entry;
3500 eh->stub_type = ppc_stub_none;
3501 eh->stub_sec = NULL;
3502 eh->stub_offset = 0;
3503 eh->target_value = 0;
3504 eh->target_section = NULL;
3505 eh->h = NULL;
3506 eh->id_sec = NULL;
3507 }
3508
3509 return entry;
3510 }
3511
3512 /* Create an entry in the branch hash table. */
3513
3514 static struct bfd_hash_entry *
3515 branch_hash_newfunc (struct bfd_hash_entry *entry,
3516 struct bfd_hash_table *table,
3517 const char *string)
3518 {
3519 /* Allocate the structure if it has not already been allocated by a
3520 subclass. */
3521 if (entry == NULL)
3522 {
3523 entry = bfd_hash_allocate (table, sizeof (struct ppc_branch_hash_entry));
3524 if (entry == NULL)
3525 return entry;
3526 }
3527
3528 /* Call the allocation method of the superclass. */
3529 entry = bfd_hash_newfunc (entry, table, string);
3530 if (entry != NULL)
3531 {
3532 struct ppc_branch_hash_entry *eh;
3533
3534 /* Initialize the local fields. */
3535 eh = (struct ppc_branch_hash_entry *) entry;
3536 eh->offset = 0;
3537 eh->iter = 0;
3538 }
3539
3540 return entry;
3541 }
3542
3543 /* Create an entry in a ppc64 ELF linker hash table. */
3544
3545 static struct bfd_hash_entry *
3546 link_hash_newfunc (struct bfd_hash_entry *entry,
3547 struct bfd_hash_table *table,
3548 const char *string)
3549 {
3550 /* Allocate the structure if it has not already been allocated by a
3551 subclass. */
3552 if (entry == NULL)
3553 {
3554 entry = bfd_hash_allocate (table, sizeof (struct ppc_link_hash_entry));
3555 if (entry == NULL)
3556 return entry;
3557 }
3558
3559 /* Call the allocation method of the superclass. */
3560 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
3561 if (entry != NULL)
3562 {
3563 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) entry;
3564
3565 memset (&eh->u.stub_cache, 0,
3566 (sizeof (struct ppc_link_hash_entry)
3567 - offsetof (struct ppc_link_hash_entry, u.stub_cache)));
3568
3569 /* When making function calls, old ABI code references function entry
3570 points (dot symbols), while new ABI code references the function
3571 descriptor symbol. We need to make any combination of reference and
3572 definition work together, without breaking archive linking.
3573
3574 For a defined function "foo" and an undefined call to "bar":
3575 An old object defines "foo" and ".foo", references ".bar" (possibly
3576 "bar" too).
3577 A new object defines "foo" and references "bar".
3578
3579 A new object thus has no problem with its undefined symbols being
3580 satisfied by definitions in an old object. On the other hand, the
3581 old object won't have ".bar" satisfied by a new object.
3582
3583 Keep a list of newly added dot-symbols. */
3584
3585 if (string[0] == '.')
3586 {
3587 struct ppc_link_hash_table *htab;
3588
3589 htab = (struct ppc_link_hash_table *) table;
3590 eh->u.next_dot_sym = htab->dot_syms;
3591 htab->dot_syms = eh;
3592 }
3593 }
3594
3595 return entry;
3596 }
3597
3598 /* Create a ppc64 ELF linker hash table. */
3599
3600 static struct bfd_link_hash_table *
3601 ppc64_elf_link_hash_table_create (bfd *abfd)
3602 {
3603 struct ppc_link_hash_table *htab;
3604 bfd_size_type amt = sizeof (struct ppc_link_hash_table);
3605
3606 htab = bfd_zmalloc (amt);
3607 if (htab == NULL)
3608 return NULL;
3609
3610 if (!_bfd_elf_link_hash_table_init (&htab->elf, abfd, link_hash_newfunc,
3611 sizeof (struct ppc_link_hash_entry)))
3612 {
3613 free (htab);
3614 return NULL;
3615 }
3616
3617 /* Init the stub hash table too. */
3618 if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc,
3619 sizeof (struct ppc_stub_hash_entry)))
3620 return NULL;
3621
3622 /* And the branch hash table. */
3623 if (!bfd_hash_table_init (&htab->branch_hash_table, branch_hash_newfunc,
3624 sizeof (struct ppc_branch_hash_entry)))
3625 return NULL;
3626
3627 /* Initializing two fields of the union is just cosmetic. We really
3628 only care about glist, but when compiled on a 32-bit host the
3629 bfd_vma fields are larger. Setting the bfd_vma to zero makes
3630 debugger inspection of these fields look nicer. */
3631 htab->elf.init_got_refcount.refcount = 0;
3632 htab->elf.init_got_refcount.glist = NULL;
3633 htab->elf.init_plt_refcount.refcount = 0;
3634 htab->elf.init_plt_refcount.glist = NULL;
3635 htab->elf.init_got_offset.offset = 0;
3636 htab->elf.init_got_offset.glist = NULL;
3637 htab->elf.init_plt_offset.offset = 0;
3638 htab->elf.init_plt_offset.glist = NULL;
3639
3640 return &htab->elf.root;
3641 }
3642
3643 /* Free the derived linker hash table. */
3644
3645 static void
3646 ppc64_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
3647 {
3648 struct ppc_link_hash_table *ret = (struct ppc_link_hash_table *) hash;
3649
3650 bfd_hash_table_free (&ret->stub_hash_table);
3651 bfd_hash_table_free (&ret->branch_hash_table);
3652 _bfd_generic_link_hash_table_free (hash);
3653 }
3654
3655 /* Satisfy the ELF linker by filling in some fields in our fake bfd. */
3656
3657 void
3658 ppc64_elf_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
3659 {
3660 struct ppc_link_hash_table *htab;
3661
3662 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS64;
3663
3664 /* Always hook our dynamic sections into the first bfd, which is the
3665 linker created stub bfd. This ensures that the GOT header is at
3666 the start of the output TOC section. */
3667 htab = ppc_hash_table (info);
3668 htab->stub_bfd = abfd;
3669 htab->elf.dynobj = abfd;
3670 }
3671
3672 /* Build a name for an entry in the stub hash table. */
3673
3674 static char *
3675 ppc_stub_name (const asection *input_section,
3676 const asection *sym_sec,
3677 const struct ppc_link_hash_entry *h,
3678 const Elf_Internal_Rela *rel)
3679 {
3680 char *stub_name;
3681 bfd_size_type len;
3682
3683 /* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31
3684 offsets from a sym as a branch target? In fact, we could
3685 probably assume the addend is always zero. */
3686 BFD_ASSERT (((int) rel->r_addend & 0xffffffff) == rel->r_addend);
3687
3688 if (h)
3689 {
3690 len = 8 + 1 + strlen (h->elf.root.root.string) + 1 + 8 + 1;
3691 stub_name = bfd_malloc (len);
3692 if (stub_name == NULL)
3693 return stub_name;
3694
3695 sprintf (stub_name, "%08x.%s+%x",
3696 input_section->id & 0xffffffff,
3697 h->elf.root.root.string,
3698 (int) rel->r_addend & 0xffffffff);
3699 }
3700 else
3701 {
3702 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
3703 stub_name = bfd_malloc (len);
3704 if (stub_name == NULL)
3705 return stub_name;
3706
3707 sprintf (stub_name, "%08x.%x:%x+%x",
3708 input_section->id & 0xffffffff,
3709 sym_sec->id & 0xffffffff,
3710 (int) ELF64_R_SYM (rel->r_info) & 0xffffffff,
3711 (int) rel->r_addend & 0xffffffff);
3712 }
3713 if (stub_name[len - 2] == '+' && stub_name[len - 1] == '0')
3714 stub_name[len - 2] = 0;
3715 return stub_name;
3716 }
3717
3718 /* Look up an entry in the stub hash. Stub entries are cached because
3719 creating the stub name takes a bit of time. */
3720
3721 static struct ppc_stub_hash_entry *
3722 ppc_get_stub_entry (const asection *input_section,
3723 const asection *sym_sec,
3724 struct ppc_link_hash_entry *h,
3725 const Elf_Internal_Rela *rel,
3726 struct ppc_link_hash_table *htab)
3727 {
3728 struct ppc_stub_hash_entry *stub_entry;
3729 const asection *id_sec;
3730
3731 /* If this input section is part of a group of sections sharing one
3732 stub section, then use the id of the first section in the group.
3733 Stub names need to include a section id, as there may well be
3734 more than one stub used to reach say, printf, and we need to
3735 distinguish between them. */
3736 id_sec = htab->stub_group[input_section->id].link_sec;
3737
3738 if (h != NULL && h->u.stub_cache != NULL
3739 && h->u.stub_cache->h == h
3740 && h->u.stub_cache->id_sec == id_sec)
3741 {
3742 stub_entry = h->u.stub_cache;
3743 }
3744 else
3745 {
3746 char *stub_name;
3747
3748 stub_name = ppc_stub_name (id_sec, sym_sec, h, rel);
3749 if (stub_name == NULL)
3750 return NULL;
3751
3752 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
3753 stub_name, FALSE, FALSE);
3754 if (h != NULL)
3755 h->u.stub_cache = stub_entry;
3756
3757 free (stub_name);
3758 }
3759
3760 return stub_entry;
3761 }
3762
3763 /* Add a new stub entry to the stub hash. Not all fields of the new
3764 stub entry are initialised. */
3765
3766 static struct ppc_stub_hash_entry *
3767 ppc_add_stub (const char *stub_name,
3768 asection *section,
3769 struct ppc_link_hash_table *htab)
3770 {
3771 asection *link_sec;
3772 asection *stub_sec;
3773 struct ppc_stub_hash_entry *stub_entry;
3774
3775 link_sec = htab->stub_group[section->id].link_sec;
3776 stub_sec = htab->stub_group[section->id].stub_sec;
3777 if (stub_sec == NULL)
3778 {
3779 stub_sec = htab->stub_group[link_sec->id].stub_sec;
3780 if (stub_sec == NULL)
3781 {
3782 size_t namelen;
3783 bfd_size_type len;
3784 char *s_name;
3785
3786 namelen = strlen (link_sec->name);
3787 len = namelen + sizeof (STUB_SUFFIX);
3788 s_name = bfd_alloc (htab->stub_bfd, len);
3789 if (s_name == NULL)
3790 return NULL;
3791
3792 memcpy (s_name, link_sec->name, namelen);
3793 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3794 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
3795 if (stub_sec == NULL)
3796 return NULL;
3797 htab->stub_group[link_sec->id].stub_sec = stub_sec;
3798 }
3799 htab->stub_group[section->id].stub_sec = stub_sec;
3800 }
3801
3802 /* Enter this entry into the linker stub hash table. */
3803 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3804 TRUE, FALSE);
3805 if (stub_entry == NULL)
3806 {
3807 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
3808 section->owner, stub_name);
3809 return NULL;
3810 }
3811
3812 stub_entry->stub_sec = stub_sec;
3813 stub_entry->stub_offset = 0;
3814 stub_entry->id_sec = link_sec;
3815 return stub_entry;
3816 }
3817
3818 /* Create sections for linker generated code. */
3819
3820 static bfd_boolean
3821 create_linkage_sections (bfd *dynobj, struct bfd_link_info *info)
3822 {
3823 struct ppc_link_hash_table *htab;
3824 flagword flags;
3825
3826 htab = ppc_hash_table (info);
3827
3828 /* Create .sfpr for code to save and restore fp regs. */
3829 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
3830 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3831 htab->sfpr = bfd_make_section_anyway_with_flags (dynobj, ".sfpr",
3832 flags);
3833 if (htab->sfpr == NULL
3834 || ! bfd_set_section_alignment (dynobj, htab->sfpr, 2))
3835 return FALSE;
3836
3837 /* Create .glink for lazy dynamic linking support. */
3838 htab->glink = bfd_make_section_anyway_with_flags (dynobj, ".glink",
3839 flags);
3840 if (htab->glink == NULL
3841 || ! bfd_set_section_alignment (dynobj, htab->glink, 3))
3842 return FALSE;
3843
3844 /* Create branch lookup table for plt_branch stubs. */
3845 flags = (SEC_ALLOC | SEC_LOAD
3846 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3847 htab->brlt = bfd_make_section_anyway_with_flags (dynobj, ".branch_lt",
3848 flags);
3849 if (htab->brlt == NULL
3850 || ! bfd_set_section_alignment (dynobj, htab->brlt, 3))
3851 return FALSE;
3852
3853 if (!info->shared)
3854 return TRUE;
3855
3856 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
3857 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3858 htab->relbrlt = bfd_make_section_anyway_with_flags (dynobj,
3859 ".rela.branch_lt",
3860 flags);
3861 if (!htab->relbrlt
3862 || ! bfd_set_section_alignment (dynobj, htab->relbrlt, 3))
3863 return FALSE;
3864
3865 return TRUE;
3866 }
3867
3868 /* Create .got and .rela.got sections in ABFD, and .got in dynobj if
3869 not already done. */
3870
3871 static bfd_boolean
3872 create_got_section (bfd *abfd, struct bfd_link_info *info)
3873 {
3874 asection *got, *relgot;
3875 flagword flags;
3876 struct ppc_link_hash_table *htab = ppc_hash_table (info);
3877
3878 if (!is_ppc64_elf (abfd))
3879 return FALSE;
3880
3881 if (!htab->got)
3882 {
3883 if (! _bfd_elf_create_got_section (htab->elf.dynobj, info))
3884 return FALSE;
3885
3886 htab->got = bfd_get_section_by_name (htab->elf.dynobj, ".got");
3887 if (!htab->got)
3888 abort ();
3889 }
3890
3891 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3892 | SEC_LINKER_CREATED);
3893
3894 got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
3895 if (!got
3896 || !bfd_set_section_alignment (abfd, got, 3))
3897 return FALSE;
3898
3899 relgot = bfd_make_section_anyway_with_flags (abfd, ".rela.got",
3900 flags | SEC_READONLY);
3901 if (!relgot
3902 || ! bfd_set_section_alignment (abfd, relgot, 3))
3903 return FALSE;
3904
3905 ppc64_elf_tdata (abfd)->got = got;
3906 ppc64_elf_tdata (abfd)->relgot = relgot;
3907 return TRUE;
3908 }
3909
3910 /* Create the dynamic sections, and set up shortcuts. */
3911
3912 static bfd_boolean
3913 ppc64_elf_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3914 {
3915 struct ppc_link_hash_table *htab;
3916
3917 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3918 return FALSE;
3919
3920 htab = ppc_hash_table (info);
3921 if (!htab->got)
3922 htab->got = bfd_get_section_by_name (dynobj, ".got");
3923 htab->plt = bfd_get_section_by_name (dynobj, ".plt");
3924 htab->relplt = bfd_get_section_by_name (dynobj, ".rela.plt");
3925 htab->dynbss = bfd_get_section_by_name (dynobj, ".dynbss");
3926 if (!info->shared)
3927 htab->relbss = bfd_get_section_by_name (dynobj, ".rela.bss");
3928
3929 if (!htab->got || !htab->plt || !htab->relplt || !htab->dynbss
3930 || (!info->shared && !htab->relbss))
3931 abort ();
3932
3933 return TRUE;
3934 }
3935
3936 /* Merge PLT info on FROM with that on TO. */
3937
3938 static void
3939 move_plt_plist (struct ppc_link_hash_entry *from,
3940 struct ppc_link_hash_entry *to)
3941 {
3942 if (from->elf.plt.plist != NULL)
3943 {
3944 if (to->elf.plt.plist != NULL)
3945 {
3946 struct plt_entry **entp;
3947 struct plt_entry *ent;
3948
3949 for (entp = &from->elf.plt.plist; (ent = *entp) != NULL; )
3950 {
3951 struct plt_entry *dent;
3952
3953 for (dent = to->elf.plt.plist; dent != NULL; dent = dent->next)
3954 if (dent->addend == ent->addend)
3955 {
3956 dent->plt.refcount += ent->plt.refcount;
3957 *entp = ent->next;
3958 break;
3959 }
3960 if (dent == NULL)
3961 entp = &ent->next;
3962 }
3963 *entp = to->elf.plt.plist;
3964 }
3965
3966 to->elf.plt.plist = from->elf.plt.plist;
3967 from->elf.plt.plist = NULL;
3968 }
3969 }
3970
3971 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3972
3973 static void
3974 ppc64_elf_copy_indirect_symbol (struct bfd_link_info *info,
3975 struct elf_link_hash_entry *dir,
3976 struct elf_link_hash_entry *ind)
3977 {
3978 struct ppc_link_hash_entry *edir, *eind;
3979
3980 edir = (struct ppc_link_hash_entry *) dir;
3981 eind = (struct ppc_link_hash_entry *) ind;
3982
3983 /* Copy over any dynamic relocs we may have on the indirect sym. */
3984 if (eind->dyn_relocs != NULL)
3985 {
3986 if (edir->dyn_relocs != NULL)
3987 {
3988 struct ppc_dyn_relocs **pp;
3989 struct ppc_dyn_relocs *p;
3990
3991 /* Add reloc counts against the indirect sym to the direct sym
3992 list. Merge any entries against the same section. */
3993 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
3994 {
3995 struct ppc_dyn_relocs *q;
3996
3997 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3998 if (q->sec == p->sec)
3999 {
4000 q->pc_count += p->pc_count;
4001 q->count += p->count;
4002 *pp = p->next;
4003 break;
4004 }
4005 if (q == NULL)
4006 pp = &p->next;
4007 }
4008 *pp = edir->dyn_relocs;
4009 }
4010
4011 edir->dyn_relocs = eind->dyn_relocs;
4012 eind->dyn_relocs = NULL;
4013 }
4014
4015 edir->is_func |= eind->is_func;
4016 edir->is_func_descriptor |= eind->is_func_descriptor;
4017 edir->tls_mask |= eind->tls_mask;
4018
4019 /* If called to transfer flags for a weakdef during processing
4020 of elf_adjust_dynamic_symbol, don't copy NON_GOT_REF.
4021 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
4022 if (!(ELIMINATE_COPY_RELOCS
4023 && eind->elf.root.type != bfd_link_hash_indirect
4024 && edir->elf.dynamic_adjusted))
4025 edir->elf.non_got_ref |= eind->elf.non_got_ref;
4026
4027 edir->elf.ref_dynamic |= eind->elf.ref_dynamic;
4028 edir->elf.ref_regular |= eind->elf.ref_regular;
4029 edir->elf.ref_regular_nonweak |= eind->elf.ref_regular_nonweak;
4030 edir->elf.needs_plt |= eind->elf.needs_plt;
4031
4032 /* If we were called to copy over info for a weak sym, that's all. */
4033 if (eind->elf.root.type != bfd_link_hash_indirect)
4034 return;
4035
4036 /* Copy over got entries that we may have already seen to the
4037 symbol which just became indirect. */
4038 if (eind->elf.got.glist != NULL)
4039 {
4040 if (edir->elf.got.glist != NULL)
4041 {
4042 struct got_entry **entp;
4043 struct got_entry *ent;
4044
4045 for (entp = &eind->elf.got.glist; (ent = *entp) != NULL; )
4046 {
4047 struct got_entry *dent;
4048
4049 for (dent = edir->elf.got.glist; dent != NULL; dent = dent->next)
4050 if (dent->addend == ent->addend
4051 && dent->owner == ent->owner
4052 && dent->tls_type == ent->tls_type)
4053 {
4054 dent->got.refcount += ent->got.refcount;
4055 *entp = ent->next;
4056 break;
4057 }
4058 if (dent == NULL)
4059 entp = &ent->next;
4060 }
4061 *entp = edir->elf.got.glist;
4062 }
4063
4064 edir->elf.got.glist = eind->elf.got.glist;
4065 eind->elf.got.glist = NULL;
4066 }
4067
4068 /* And plt entries. */
4069 move_plt_plist (eind, edir);
4070
4071 if (eind->elf.dynindx != -1)
4072 {
4073 if (edir->elf.dynindx != -1)
4074 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
4075 edir->elf.dynstr_index);
4076 edir->elf.dynindx = eind->elf.dynindx;
4077 edir->elf.dynstr_index = eind->elf.dynstr_index;
4078 eind->elf.dynindx = -1;
4079 eind->elf.dynstr_index = 0;
4080 }
4081 }
4082
4083 /* Find the function descriptor hash entry from the given function code
4084 hash entry FH. Link the entries via their OH fields. */
4085
4086 static struct ppc_link_hash_entry *
4087 get_fdh (struct ppc_link_hash_entry *fh, struct ppc_link_hash_table *htab)
4088 {
4089 struct ppc_link_hash_entry *fdh = fh->oh;
4090
4091 if (fdh == NULL)
4092 {
4093 const char *fd_name = fh->elf.root.root.string + 1;
4094
4095 fdh = (struct ppc_link_hash_entry *)
4096 elf_link_hash_lookup (&htab->elf, fd_name, FALSE, FALSE, FALSE);
4097 if (fdh != NULL)
4098 {
4099 fdh->is_func_descriptor = 1;
4100 fdh->oh = fh;
4101 fh->is_func = 1;
4102 fh->oh = fdh;
4103 }
4104 }
4105
4106 return fdh;
4107 }
4108
4109 /* Make a fake function descriptor sym for the code sym FH. */
4110
4111 static struct ppc_link_hash_entry *
4112 make_fdh (struct bfd_link_info *info,
4113 struct ppc_link_hash_entry *fh)
4114 {
4115 bfd *abfd;
4116 asymbol *newsym;
4117 struct bfd_link_hash_entry *bh;
4118 struct ppc_link_hash_entry *fdh;
4119
4120 abfd = fh->elf.root.u.undef.abfd;
4121 newsym = bfd_make_empty_symbol (abfd);
4122 newsym->name = fh->elf.root.root.string + 1;
4123 newsym->section = bfd_und_section_ptr;
4124 newsym->value = 0;
4125 newsym->flags = BSF_WEAK;
4126
4127 bh = NULL;
4128 if (!_bfd_generic_link_add_one_symbol (info, abfd, newsym->name,
4129 newsym->flags, newsym->section,
4130 newsym->value, NULL, FALSE, FALSE,
4131 &bh))
4132 return NULL;
4133
4134 fdh = (struct ppc_link_hash_entry *) bh;
4135 fdh->elf.non_elf = 0;
4136 fdh->fake = 1;
4137 fdh->is_func_descriptor = 1;
4138 fdh->oh = fh;
4139 fh->is_func = 1;
4140 fh->oh = fdh;
4141 return fdh;
4142 }
4143
4144 /* Fix function descriptor symbols defined in .opd sections to be
4145 function type. */
4146
4147 static bfd_boolean
4148 ppc64_elf_add_symbol_hook (bfd *ibfd ATTRIBUTE_UNUSED,
4149 struct bfd_link_info *info ATTRIBUTE_UNUSED,
4150 Elf_Internal_Sym *isym,
4151 const char **name ATTRIBUTE_UNUSED,
4152 flagword *flags ATTRIBUTE_UNUSED,
4153 asection **sec,
4154 bfd_vma *value ATTRIBUTE_UNUSED)
4155 {
4156 if (*sec != NULL
4157 && strcmp (bfd_get_section_name (ibfd, *sec), ".opd") == 0)
4158 isym->st_info = ELF_ST_INFO (ELF_ST_BIND (isym->st_info), STT_FUNC);
4159
4160 return TRUE;
4161 }
4162
4163 /* This function makes an old ABI object reference to ".bar" cause the
4164 inclusion of a new ABI object archive that defines "bar".
4165 NAME is a symbol defined in an archive. Return a symbol in the hash
4166 table that might be satisfied by the archive symbols. */
4167
4168 static struct elf_link_hash_entry *
4169 ppc64_elf_archive_symbol_lookup (bfd *abfd,
4170 struct bfd_link_info *info,
4171 const char *name)
4172 {
4173 struct elf_link_hash_entry *h;
4174 char *dot_name;
4175 size_t len;
4176
4177 h = _bfd_elf_archive_symbol_lookup (abfd, info, name);
4178 if (h != NULL
4179 /* Don't return this sym if it is a fake function descriptor
4180 created by add_symbol_adjust. */
4181 && !(h->root.type == bfd_link_hash_undefweak
4182 && ((struct ppc_link_hash_entry *) h)->fake))
4183 return h;
4184
4185 if (name[0] == '.')
4186 return h;
4187
4188 len = strlen (name);
4189 dot_name = bfd_alloc (abfd, len + 2);
4190 if (dot_name == NULL)
4191 return (struct elf_link_hash_entry *) 0 - 1;
4192 dot_name[0] = '.';
4193 memcpy (dot_name + 1, name, len + 1);
4194 h = _bfd_elf_archive_symbol_lookup (abfd, info, dot_name);
4195 bfd_release (abfd, dot_name);
4196 return h;
4197 }
4198
4199 /* This function satisfies all old ABI object references to ".bar" if a
4200 new ABI object defines "bar". Well, at least, undefined dot symbols
4201 are made weak. This stops later archive searches from including an
4202 object if we already have a function descriptor definition. It also
4203 prevents the linker complaining about undefined symbols.
4204 We also check and correct mismatched symbol visibility here. The
4205 most restrictive visibility of the function descriptor and the
4206 function entry symbol is used. */
4207
4208 static bfd_boolean
4209 add_symbol_adjust (struct ppc_link_hash_entry *eh, struct bfd_link_info *info)
4210 {
4211 struct ppc_link_hash_table *htab;
4212 struct ppc_link_hash_entry *fdh;
4213
4214 if (eh->elf.root.type == bfd_link_hash_indirect)
4215 return TRUE;
4216
4217 if (eh->elf.root.type == bfd_link_hash_warning)
4218 eh = (struct ppc_link_hash_entry *) eh->elf.root.u.i.link;
4219
4220 if (eh->elf.root.root.string[0] != '.')
4221 abort ();
4222
4223 htab = ppc_hash_table (info);
4224 fdh = get_fdh (eh, htab);
4225 if (fdh == NULL
4226 && !info->relocatable
4227 && (eh->elf.root.type == bfd_link_hash_undefined
4228 || eh->elf.root.type == bfd_link_hash_undefweak)
4229 && eh->elf.ref_regular)
4230 {
4231 /* Make an undefweak function descriptor sym, which is enough to
4232 pull in an --as-needed shared lib, but won't cause link
4233 errors. Archives are handled elsewhere. */
4234 fdh = make_fdh (info, eh);
4235 if (fdh == NULL)
4236 return FALSE;
4237 else
4238 fdh->elf.ref_regular = 1;
4239 }
4240 else if (fdh != NULL)
4241 {
4242 unsigned entry_vis = ELF_ST_VISIBILITY (eh->elf.other) - 1;
4243 unsigned descr_vis = ELF_ST_VISIBILITY (fdh->elf.other) - 1;
4244 if (entry_vis < descr_vis)
4245 fdh->elf.other += entry_vis - descr_vis;
4246 else if (entry_vis > descr_vis)
4247 eh->elf.other += descr_vis - entry_vis;
4248
4249 if ((fdh->elf.root.type == bfd_link_hash_defined
4250 || fdh->elf.root.type == bfd_link_hash_defweak)
4251 && eh->elf.root.type == bfd_link_hash_undefined)
4252 {
4253 eh->elf.root.type = bfd_link_hash_undefweak;
4254 eh->was_undefined = 1;
4255 htab->twiddled_syms = 1;
4256 }
4257 }
4258
4259 return TRUE;
4260 }
4261
4262 /* Process list of dot-symbols we made in link_hash_newfunc. */
4263
4264 static bfd_boolean
4265 ppc64_elf_check_directives (bfd *ibfd, struct bfd_link_info *info)
4266 {
4267 struct ppc_link_hash_table *htab;
4268 struct ppc_link_hash_entry **p, *eh;
4269
4270 htab = ppc_hash_table (info);
4271 if (!is_ppc64_elf (info->output_bfd))
4272 return TRUE;
4273
4274 if (is_ppc64_elf (ibfd))
4275 {
4276 p = &htab->dot_syms;
4277 while ((eh = *p) != NULL)
4278 {
4279 *p = NULL;
4280 if (!add_symbol_adjust (eh, info))
4281 return FALSE;
4282 p = &eh->u.next_dot_sym;
4283 }
4284 }
4285
4286 /* Clear the list for non-ppc64 input files. */
4287 p = &htab->dot_syms;
4288 while ((eh = *p) != NULL)
4289 {
4290 *p = NULL;
4291 p = &eh->u.next_dot_sym;
4292 }
4293
4294 /* We need to fix the undefs list for any syms we have twiddled to
4295 undef_weak. */
4296 if (htab->twiddled_syms)
4297 {
4298 bfd_link_repair_undef_list (&htab->elf.root);
4299 htab->twiddled_syms = 0;
4300 }
4301 return TRUE;
4302 }
4303
4304 /* Undo hash table changes when an --as-needed input file is determined
4305 not to be needed. */
4306
4307 static bfd_boolean
4308 ppc64_elf_as_needed_cleanup (bfd *ibfd ATTRIBUTE_UNUSED,
4309 struct bfd_link_info *info)
4310 {
4311 ppc_hash_table (info)->dot_syms = NULL;
4312 return TRUE;
4313 }
4314
4315 static bfd_boolean
4316 update_local_sym_info (bfd *abfd, Elf_Internal_Shdr *symtab_hdr,
4317 unsigned long r_symndx, bfd_vma r_addend, int tls_type)
4318 {
4319 struct got_entry **local_got_ents = elf_local_got_ents (abfd);
4320 char *local_got_tls_masks;
4321
4322 if (local_got_ents == NULL)
4323 {
4324 bfd_size_type size = symtab_hdr->sh_info;
4325
4326 size *= sizeof (*local_got_ents) + sizeof (*local_got_tls_masks);
4327 local_got_ents = bfd_zalloc (abfd, size);
4328 if (local_got_ents == NULL)
4329 return FALSE;
4330 elf_local_got_ents (abfd) = local_got_ents;
4331 }
4332
4333 if ((tls_type & TLS_EXPLICIT) == 0)
4334 {
4335 struct got_entry *ent;
4336
4337 for (ent = local_got_ents[r_symndx]; ent != NULL; ent = ent->next)
4338 if (ent->addend == r_addend
4339 && ent->owner == abfd
4340 && ent->tls_type == tls_type)
4341 break;
4342 if (ent == NULL)
4343 {
4344 bfd_size_type amt = sizeof (*ent);
4345 ent = bfd_alloc (abfd, amt);
4346 if (ent == NULL)
4347 return FALSE;
4348 ent->next = local_got_ents[r_symndx];
4349 ent->addend = r_addend;
4350 ent->owner = abfd;
4351 ent->tls_type = tls_type;
4352 ent->got.refcount = 0;
4353 local_got_ents[r_symndx] = ent;
4354 }
4355 ent->got.refcount += 1;
4356 }
4357
4358 local_got_tls_masks = (char *) (local_got_ents + symtab_hdr->sh_info);
4359 local_got_tls_masks[r_symndx] |= tls_type;
4360 return TRUE;
4361 }
4362
4363 static bfd_boolean
4364 update_plt_info (bfd *abfd, struct ppc_link_hash_entry *eh, bfd_vma addend)
4365 {
4366 struct plt_entry *ent;
4367
4368 for (ent = eh->elf.plt.plist; ent != NULL; ent = ent->next)
4369 if (ent->addend == addend)
4370 break;
4371 if (ent == NULL)
4372 {
4373 bfd_size_type amt = sizeof (*ent);
4374 ent = bfd_alloc (abfd, amt);
4375 if (ent == NULL)
4376 return FALSE;
4377 ent->next = eh->elf.plt.plist;
4378 ent->addend = addend;
4379 ent->plt.refcount = 0;
4380 eh->elf.plt.plist = ent;
4381 }
4382 ent->plt.refcount += 1;
4383 eh->elf.needs_plt = 1;
4384 if (eh->elf.root.root.string[0] == '.'
4385 && eh->elf.root.root.string[1] != '\0')
4386 eh->is_func = 1;
4387 return TRUE;
4388 }
4389
4390 /* Look through the relocs for a section during the first phase, and
4391 calculate needed space in the global offset table, procedure
4392 linkage table, and dynamic reloc sections. */
4393
4394 static bfd_boolean
4395 ppc64_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
4396 asection *sec, const Elf_Internal_Rela *relocs)
4397 {
4398 struct ppc_link_hash_table *htab;
4399 Elf_Internal_Shdr *symtab_hdr;
4400 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
4401 const Elf_Internal_Rela *rel;
4402 const Elf_Internal_Rela *rel_end;
4403 asection *sreloc;
4404 asection **opd_sym_map;
4405
4406 if (info->relocatable)
4407 return TRUE;
4408
4409 /* Don't do anything special with non-loaded, non-alloced sections.
4410 In particular, any relocs in such sections should not affect GOT
4411 and PLT reference counting (ie. we don't allow them to create GOT
4412 or PLT entries), there's no possibility or desire to optimize TLS
4413 relocs, and there's not much point in propagating relocs to shared
4414 libs that the dynamic linker won't relocate. */
4415 if ((sec->flags & SEC_ALLOC) == 0)
4416 return TRUE;
4417
4418 BFD_ASSERT (is_ppc64_elf (abfd));
4419
4420 htab = ppc_hash_table (info);
4421 symtab_hdr = &elf_symtab_hdr (abfd);
4422
4423 sym_hashes = elf_sym_hashes (abfd);
4424 sym_hashes_end = (sym_hashes
4425 + symtab_hdr->sh_size / sizeof (Elf64_External_Sym)
4426 - symtab_hdr->sh_info);
4427
4428 sreloc = NULL;
4429 opd_sym_map = NULL;
4430 if (strcmp (bfd_get_section_name (abfd, sec), ".opd") == 0)
4431 {
4432 /* Garbage collection needs some extra help with .opd sections.
4433 We don't want to necessarily keep everything referenced by
4434 relocs in .opd, as that would keep all functions. Instead,
4435 if we reference an .opd symbol (a function descriptor), we
4436 want to keep the function code symbol's section. This is
4437 easy for global symbols, but for local syms we need to keep
4438 information about the associated function section. */
4439 bfd_size_type amt;
4440
4441 amt = sec->size * sizeof (*opd_sym_map) / 8;
4442 opd_sym_map = bfd_zalloc (abfd, amt);
4443 if (opd_sym_map == NULL)
4444 return FALSE;
4445 ppc64_elf_section_data (sec)->u.opd.func_sec = opd_sym_map;
4446 BFD_ASSERT (ppc64_elf_section_data (sec)->sec_type == sec_normal);
4447 ppc64_elf_section_data (sec)->sec_type = sec_opd;
4448 }
4449
4450 if (htab->sfpr == NULL
4451 && !create_linkage_sections (htab->elf.dynobj, info))
4452 return FALSE;
4453
4454 rel_end = relocs + sec->reloc_count;
4455 for (rel = relocs; rel < rel_end; rel++)
4456 {
4457 unsigned long r_symndx;
4458 struct elf_link_hash_entry *h;
4459 enum elf_ppc64_reloc_type r_type;
4460 int tls_type = 0;
4461 struct _ppc64_elf_section_data *ppc64_sec;
4462
4463 r_symndx = ELF64_R_SYM (rel->r_info);
4464 if (r_symndx < symtab_hdr->sh_info)
4465 h = NULL;
4466 else
4467 {
4468 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4469 while (h->root.type == bfd_link_hash_indirect
4470 || h->root.type == bfd_link_hash_warning)
4471 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4472 }
4473
4474 r_type = ELF64_R_TYPE (rel->r_info);
4475 switch (r_type)
4476 {
4477 case R_PPC64_GOT_TLSLD16:
4478 case R_PPC64_GOT_TLSLD16_LO:
4479 case R_PPC64_GOT_TLSLD16_HI:
4480 case R_PPC64_GOT_TLSLD16_HA:
4481 tls_type = TLS_TLS | TLS_LD;
4482 goto dogottls;
4483
4484 case R_PPC64_GOT_TLSGD16:
4485 case R_PPC64_GOT_TLSGD16_LO:
4486 case R_PPC64_GOT_TLSGD16_HI:
4487 case R_PPC64_GOT_TLSGD16_HA:
4488 tls_type = TLS_TLS | TLS_GD;
4489 goto dogottls;
4490
4491 case R_PPC64_GOT_TPREL16_DS:
4492 case R_PPC64_GOT_TPREL16_LO_DS:
4493 case R_PPC64_GOT_TPREL16_HI:
4494 case R_PPC64_GOT_TPREL16_HA:
4495 if (info->shared)
4496 info->flags |= DF_STATIC_TLS;
4497 tls_type = TLS_TLS | TLS_TPREL;
4498 goto dogottls;
4499
4500 case R_PPC64_GOT_DTPREL16_DS:
4501 case R_PPC64_GOT_DTPREL16_LO_DS:
4502 case R_PPC64_GOT_DTPREL16_HI:
4503 case R_PPC64_GOT_DTPREL16_HA:
4504 tls_type = TLS_TLS | TLS_DTPREL;
4505 dogottls:
4506 sec->has_tls_reloc = 1;
4507 /* Fall thru */
4508
4509 case R_PPC64_GOT16:
4510 case R_PPC64_GOT16_DS:
4511 case R_PPC64_GOT16_HA:
4512 case R_PPC64_GOT16_HI:
4513 case R_PPC64_GOT16_LO:
4514 case R_PPC64_GOT16_LO_DS:
4515 /* This symbol requires a global offset table entry. */
4516 sec->has_toc_reloc = 1;
4517 if (ppc64_elf_tdata (abfd)->got == NULL
4518 && !create_got_section (abfd, info))
4519 return FALSE;
4520
4521 if (h != NULL)
4522 {
4523 struct ppc_link_hash_entry *eh;
4524 struct got_entry *ent;
4525
4526 eh = (struct ppc_link_hash_entry *) h;
4527 for (ent = eh->elf.got.glist; ent != NULL; ent = ent->next)
4528 if (ent->addend == rel->r_addend
4529 && ent->owner == abfd
4530 && ent->tls_type == tls_type)
4531 break;
4532 if (ent == NULL)
4533 {
4534 bfd_size_type amt = sizeof (*ent);
4535 ent = bfd_alloc (abfd, amt);
4536 if (ent == NULL)
4537 return FALSE;
4538 ent->next = eh->elf.got.glist;
4539 ent->addend = rel->r_addend;
4540 ent->owner = abfd;
4541 ent->tls_type = tls_type;
4542 ent->got.refcount = 0;
4543 eh->elf.got.glist = ent;
4544 }
4545 ent->got.refcount += 1;
4546 eh->tls_mask |= tls_type;
4547 }
4548 else
4549 /* This is a global offset table entry for a local symbol. */
4550 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4551 rel->r_addend, tls_type))
4552 return FALSE;
4553 break;
4554
4555 case R_PPC64_PLT16_HA:
4556 case R_PPC64_PLT16_HI:
4557 case R_PPC64_PLT16_LO:
4558 case R_PPC64_PLT32:
4559 case R_PPC64_PLT64:
4560 /* This symbol requires a procedure linkage table entry. We
4561 actually build the entry in adjust_dynamic_symbol,
4562 because this might be a case of linking PIC code without
4563 linking in any dynamic objects, in which case we don't
4564 need to generate a procedure linkage table after all. */
4565 if (h == NULL)
4566 {
4567 /* It does not make sense to have a procedure linkage
4568 table entry for a local symbol. */
4569 bfd_set_error (bfd_error_bad_value);
4570 return FALSE;
4571 }
4572 else
4573 if (!update_plt_info (abfd, (struct ppc_link_hash_entry *) h,
4574 rel->r_addend))
4575 return FALSE;
4576 break;
4577
4578 /* The following relocations don't need to propagate the
4579 relocation if linking a shared object since they are
4580 section relative. */
4581 case R_PPC64_SECTOFF:
4582 case R_PPC64_SECTOFF_LO:
4583 case R_PPC64_SECTOFF_HI:
4584 case R_PPC64_SECTOFF_HA:
4585 case R_PPC64_SECTOFF_DS:
4586 case R_PPC64_SECTOFF_LO_DS:
4587 case R_PPC64_DTPREL16:
4588 case R_PPC64_DTPREL16_LO:
4589 case R_PPC64_DTPREL16_HI:
4590 case R_PPC64_DTPREL16_HA:
4591 case R_PPC64_DTPREL16_DS:
4592 case R_PPC64_DTPREL16_LO_DS:
4593 case R_PPC64_DTPREL16_HIGHER:
4594 case R_PPC64_DTPREL16_HIGHERA:
4595 case R_PPC64_DTPREL16_HIGHEST:
4596 case R_PPC64_DTPREL16_HIGHESTA:
4597 break;
4598
4599 /* Nor do these. */
4600 case R_PPC64_TOC16:
4601 case R_PPC64_TOC16_LO:
4602 case R_PPC64_TOC16_HI:
4603 case R_PPC64_TOC16_HA:
4604 case R_PPC64_TOC16_DS:
4605 case R_PPC64_TOC16_LO_DS:
4606 sec->has_toc_reloc = 1;
4607 break;
4608
4609 /* This relocation describes the C++ object vtable hierarchy.
4610 Reconstruct it for later use during GC. */
4611 case R_PPC64_GNU_VTINHERIT:
4612 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
4613 return FALSE;
4614 break;
4615
4616 /* This relocation describes which C++ vtable entries are actually
4617 used. Record for later use during GC. */
4618 case R_PPC64_GNU_VTENTRY:
4619 BFD_ASSERT (h != NULL);
4620 if (h != NULL
4621 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
4622 return FALSE;
4623 break;
4624
4625 case R_PPC64_REL14:
4626 case R_PPC64_REL14_BRTAKEN:
4627 case R_PPC64_REL14_BRNTAKEN:
4628 {
4629 asection *dest = NULL;
4630
4631 /* Heuristic: If jumping outside our section, chances are
4632 we are going to need a stub. */
4633 if (h != NULL)
4634 {
4635 /* If the sym is weak it may be overridden later, so
4636 don't assume we know where a weak sym lives. */
4637 if (h->root.type == bfd_link_hash_defined)
4638 dest = h->root.u.def.section;
4639 }
4640 else
4641 dest = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
4642 sec, r_symndx);
4643 if (dest != sec)
4644 ppc64_elf_section_data (sec)->has_14bit_branch = 1;
4645 }
4646 /* Fall through. */
4647
4648 case R_PPC64_REL24:
4649 if (h != NULL)
4650 {
4651 /* We may need a .plt entry if the function this reloc
4652 refers to is in a shared lib. */
4653 if (!update_plt_info (abfd, (struct ppc_link_hash_entry *) h,
4654 rel->r_addend))
4655 return FALSE;
4656 if (h == &htab->tls_get_addr->elf
4657 || h == &htab->tls_get_addr_fd->elf)
4658 sec->has_tls_reloc = 1;
4659 else if (htab->tls_get_addr == NULL
4660 && CONST_STRNEQ (h->root.root.string, ".__tls_get_addr")
4661 && (h->root.root.string[15] == 0
4662 || h->root.root.string[15] == '@'))
4663 {
4664 htab->tls_get_addr = (struct ppc_link_hash_entry *) h;
4665 sec->has_tls_reloc = 1;
4666 }
4667 else if (htab->tls_get_addr_fd == NULL
4668 && CONST_STRNEQ (h->root.root.string, "__tls_get_addr")
4669 && (h->root.root.string[14] == 0
4670 || h->root.root.string[14] == '@'))
4671 {
4672 htab->tls_get_addr_fd = (struct ppc_link_hash_entry *) h;
4673 sec->has_tls_reloc = 1;
4674 }
4675 }
4676 break;
4677
4678 case R_PPC64_TPREL64:
4679 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_TPREL;
4680 if (info->shared)
4681 info->flags |= DF_STATIC_TLS;
4682 goto dotlstoc;
4683
4684 case R_PPC64_DTPMOD64:
4685 if (rel + 1 < rel_end
4686 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
4687 && rel[1].r_offset == rel->r_offset + 8)
4688 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_GD;
4689 else
4690 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_LD;
4691 goto dotlstoc;
4692
4693 case R_PPC64_DTPREL64:
4694 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_DTPREL;
4695 if (rel != relocs
4696 && rel[-1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPMOD64)
4697 && rel[-1].r_offset == rel->r_offset - 8)
4698 /* This is the second reloc of a dtpmod, dtprel pair.
4699 Don't mark with TLS_DTPREL. */
4700 goto dodyn;
4701
4702 dotlstoc:
4703 sec->has_tls_reloc = 1;
4704 if (h != NULL)
4705 {
4706 struct ppc_link_hash_entry *eh;
4707 eh = (struct ppc_link_hash_entry *) h;
4708 eh->tls_mask |= tls_type;
4709 }
4710 else
4711 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4712 rel->r_addend, tls_type))
4713 return FALSE;
4714
4715 ppc64_sec = ppc64_elf_section_data (sec);
4716 if (ppc64_sec->sec_type != sec_toc)
4717 {
4718 /* One extra to simplify get_tls_mask. */
4719 bfd_size_type amt = sec->size * sizeof (unsigned) / 8 + 1;
4720 ppc64_sec->u.t_symndx = bfd_zalloc (abfd, amt);
4721 if (ppc64_sec->u.t_symndx == NULL)
4722 return FALSE;
4723 BFD_ASSERT (ppc64_sec->sec_type == sec_normal);
4724 ppc64_sec->sec_type = sec_toc;
4725 }
4726 BFD_ASSERT (rel->r_offset % 8 == 0);
4727 ppc64_sec->u.t_symndx[rel->r_offset / 8] = r_symndx;
4728
4729 /* Mark the second slot of a GD or LD entry.
4730 -1 to indicate GD and -2 to indicate LD. */
4731 if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_GD))
4732 ppc64_sec->u.t_symndx[rel->r_offset / 8 + 1] = -1;
4733 else if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_LD))
4734 ppc64_sec->u.t_symndx[rel->r_offset / 8 + 1] = -2;
4735 goto dodyn;
4736
4737 case R_PPC64_TPREL16:
4738 case R_PPC64_TPREL16_LO:
4739 case R_PPC64_TPREL16_HI:
4740 case R_PPC64_TPREL16_HA:
4741 case R_PPC64_TPREL16_DS:
4742 case R_PPC64_TPREL16_LO_DS:
4743 case R_PPC64_TPREL16_HIGHER:
4744 case R_PPC64_TPREL16_HIGHERA:
4745 case R_PPC64_TPREL16_HIGHEST:
4746 case R_PPC64_TPREL16_HIGHESTA:
4747 if (info->shared)
4748 {
4749 info->flags |= DF_STATIC_TLS;
4750 goto dodyn;
4751 }
4752 break;
4753
4754 case R_PPC64_ADDR64:
4755 if (opd_sym_map != NULL
4756 && rel + 1 < rel_end
4757 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC)
4758 {
4759 if (h != NULL)
4760 {
4761 if (h->root.root.string[0] == '.'
4762 && h->root.root.string[1] != 0
4763 && get_fdh ((struct ppc_link_hash_entry *) h, htab))
4764 ;
4765 else
4766 ((struct ppc_link_hash_entry *) h)->is_func = 1;
4767 }
4768 else
4769 {
4770 asection *s;
4771
4772 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec, sec,
4773 r_symndx);
4774 if (s == NULL)
4775 return FALSE;
4776 else if (s != sec)
4777 opd_sym_map[rel->r_offset / 8] = s;
4778 }
4779 }
4780 /* Fall through. */
4781
4782 case R_PPC64_REL30:
4783 case R_PPC64_REL32:
4784 case R_PPC64_REL64:
4785 case R_PPC64_ADDR14:
4786 case R_PPC64_ADDR14_BRNTAKEN:
4787 case R_PPC64_ADDR14_BRTAKEN:
4788 case R_PPC64_ADDR16:
4789 case R_PPC64_ADDR16_DS:
4790 case R_PPC64_ADDR16_HA:
4791 case R_PPC64_ADDR16_HI:
4792 case R_PPC64_ADDR16_HIGHER:
4793 case R_PPC64_ADDR16_HIGHERA:
4794 case R_PPC64_ADDR16_HIGHEST:
4795 case R_PPC64_ADDR16_HIGHESTA:
4796 case R_PPC64_ADDR16_LO:
4797 case R_PPC64_ADDR16_LO_DS:
4798 case R_PPC64_ADDR24:
4799 case R_PPC64_ADDR32:
4800 case R_PPC64_UADDR16:
4801 case R_PPC64_UADDR32:
4802 case R_PPC64_UADDR64:
4803 case R_PPC64_TOC:
4804 if (h != NULL && !info->shared)
4805 /* We may need a copy reloc. */
4806 h->non_got_ref = 1;
4807
4808 /* Don't propagate .opd relocs. */
4809 if (NO_OPD_RELOCS && opd_sym_map != NULL)
4810 break;
4811
4812 /* If we are creating a shared library, and this is a reloc
4813 against a global symbol, or a non PC relative reloc
4814 against a local symbol, then we need to copy the reloc
4815 into the shared library. However, if we are linking with
4816 -Bsymbolic, we do not need to copy a reloc against a
4817 global symbol which is defined in an object we are
4818 including in the link (i.e., DEF_REGULAR is set). At
4819 this point we have not seen all the input files, so it is
4820 possible that DEF_REGULAR is not set now but will be set
4821 later (it is never cleared). In case of a weak definition,
4822 DEF_REGULAR may be cleared later by a strong definition in
4823 a shared library. We account for that possibility below by
4824 storing information in the dyn_relocs field of the hash
4825 table entry. A similar situation occurs when creating
4826 shared libraries and symbol visibility changes render the
4827 symbol local.
4828
4829 If on the other hand, we are creating an executable, we
4830 may need to keep relocations for symbols satisfied by a
4831 dynamic library if we manage to avoid copy relocs for the
4832 symbol. */
4833 dodyn:
4834 if ((info->shared
4835 && (MUST_BE_DYN_RELOC (r_type)
4836 || (h != NULL
4837 && (! info->symbolic
4838 || h->root.type == bfd_link_hash_defweak
4839 || !h->def_regular))))
4840 || (ELIMINATE_COPY_RELOCS
4841 && !info->shared
4842 && h != NULL
4843 && (h->root.type == bfd_link_hash_defweak
4844 || !h->def_regular)))
4845 {
4846 struct ppc_dyn_relocs *p;
4847 struct ppc_dyn_relocs **head;
4848
4849 /* We must copy these reloc types into the output file.
4850 Create a reloc section in dynobj and make room for
4851 this reloc. */
4852 if (sreloc == NULL)
4853 {
4854 const char *name;
4855 bfd *dynobj;
4856
4857 name = (bfd_elf_string_from_elf_section
4858 (abfd,
4859 elf_elfheader (abfd)->e_shstrndx,
4860 elf_section_data (sec)->rel_hdr.sh_name));
4861 if (name == NULL)
4862 return FALSE;
4863
4864 if (! CONST_STRNEQ (name, ".rela")
4865 || strcmp (bfd_get_section_name (abfd, sec),
4866 name + 5) != 0)
4867 {
4868 (*_bfd_error_handler)
4869 (_("%B: bad relocation section name `%s\'"),
4870 abfd, name);
4871 bfd_set_error (bfd_error_bad_value);
4872 }
4873
4874 dynobj = htab->elf.dynobj;
4875 sreloc = bfd_get_section_by_name (dynobj, name);
4876 if (sreloc == NULL)
4877 {
4878 flagword flags;
4879
4880 flags = (SEC_HAS_CONTENTS | SEC_READONLY
4881 | SEC_IN_MEMORY | SEC_LINKER_CREATED
4882 | SEC_ALLOC | SEC_LOAD);
4883 sreloc = bfd_make_section_with_flags (dynobj,
4884 name,
4885 flags);
4886 if (sreloc == NULL
4887 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
4888 return FALSE;
4889 }
4890 elf_section_data (sec)->sreloc = sreloc;
4891 }
4892
4893 /* If this is a global symbol, we count the number of
4894 relocations we need for this symbol. */
4895 if (h != NULL)
4896 {
4897 head = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
4898 }
4899 else
4900 {
4901 /* Track dynamic relocs needed for local syms too.
4902 We really need local syms available to do this
4903 easily. Oh well. */
4904
4905 asection *s;
4906 void *vpp;
4907
4908 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
4909 sec, r_symndx);
4910 if (s == NULL)
4911 return FALSE;
4912
4913 vpp = &elf_section_data (s)->local_dynrel;
4914 head = (struct ppc_dyn_relocs **) vpp;
4915 }
4916
4917 p = *head;
4918 if (p == NULL || p->sec != sec)
4919 {
4920 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
4921 if (p == NULL)
4922 return FALSE;
4923 p->next = *head;
4924 *head = p;
4925 p->sec = sec;
4926 p->count = 0;
4927 p->pc_count = 0;
4928 }
4929
4930 p->count += 1;
4931 if (!MUST_BE_DYN_RELOC (r_type))
4932 p->pc_count += 1;
4933 }
4934 break;
4935
4936 default:
4937 break;
4938 }
4939 }
4940
4941 return TRUE;
4942 }
4943
4944 /* OFFSET in OPD_SEC specifies a function descriptor. Return the address
4945 of the code entry point, and its section. */
4946
4947 static bfd_vma
4948 opd_entry_value (asection *opd_sec,
4949 bfd_vma offset,
4950 asection **code_sec,
4951 bfd_vma *code_off)
4952 {
4953 bfd *opd_bfd = opd_sec->owner;
4954 Elf_Internal_Rela *relocs;
4955 Elf_Internal_Rela *lo, *hi, *look;
4956 bfd_vma val;
4957
4958 /* No relocs implies we are linking a --just-symbols object. */
4959 if (opd_sec->reloc_count == 0)
4960 {
4961 bfd_vma val;
4962
4963 if (!bfd_get_section_contents (opd_bfd, opd_sec, &val, offset, 8))
4964 return (bfd_vma) -1;
4965
4966 if (code_sec != NULL)
4967 {
4968 asection *sec, *likely = NULL;
4969 for (sec = opd_bfd->sections; sec != NULL; sec = sec->next)
4970 if (sec->vma <= val
4971 && (sec->flags & SEC_LOAD) != 0
4972 && (sec->flags & SEC_ALLOC) != 0)
4973 likely = sec;
4974 if (likely != NULL)
4975 {
4976 *code_sec = likely;
4977 if (code_off != NULL)
4978 *code_off = val - likely->vma;
4979 }
4980 }
4981 return val;
4982 }
4983
4984 BFD_ASSERT (is_ppc64_elf (opd_bfd));
4985
4986 relocs = ppc64_elf_tdata (opd_bfd)->opd_relocs;
4987 if (relocs == NULL)
4988 relocs = _bfd_elf_link_read_relocs (opd_bfd, opd_sec, NULL, NULL, TRUE);
4989
4990 /* Go find the opd reloc at the sym address. */
4991 lo = relocs;
4992 BFD_ASSERT (lo != NULL);
4993 hi = lo + opd_sec->reloc_count - 1; /* ignore last reloc */
4994 val = (bfd_vma) -1;
4995 while (lo < hi)
4996 {
4997 look = lo + (hi - lo) / 2;
4998 if (look->r_offset < offset)
4999 lo = look + 1;
5000 else if (look->r_offset > offset)
5001 hi = look;
5002 else
5003 {
5004 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (opd_bfd);
5005
5006 if (ELF64_R_TYPE (look->r_info) == R_PPC64_ADDR64
5007 && ELF64_R_TYPE ((look + 1)->r_info) == R_PPC64_TOC)
5008 {
5009 unsigned long symndx = ELF64_R_SYM (look->r_info);
5010 asection *sec;
5011
5012 if (symndx < symtab_hdr->sh_info)
5013 {
5014 Elf_Internal_Sym *sym;
5015
5016 sym = (Elf_Internal_Sym *) symtab_hdr->contents;
5017 if (sym == NULL)
5018 {
5019 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
5020 symtab_hdr->sh_info,
5021 0, NULL, NULL, NULL);
5022 if (sym == NULL)
5023 break;
5024 symtab_hdr->contents = (bfd_byte *) sym;
5025 }
5026
5027 sym += symndx;
5028 val = sym->st_value;
5029 sec = NULL;
5030 if ((sym->st_shndx != SHN_UNDEF
5031 && sym->st_shndx < SHN_LORESERVE)
5032 || sym->st_shndx > SHN_HIRESERVE)
5033 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
5034 BFD_ASSERT ((sec->flags & SEC_MERGE) == 0);
5035 }
5036 else
5037 {
5038 struct elf_link_hash_entry **sym_hashes;
5039 struct elf_link_hash_entry *rh;
5040
5041 sym_hashes = elf_sym_hashes (opd_bfd);
5042 rh = sym_hashes[symndx - symtab_hdr->sh_info];
5043 while (rh->root.type == bfd_link_hash_indirect
5044 || rh->root.type == bfd_link_hash_warning)
5045 rh = ((struct elf_link_hash_entry *) rh->root.u.i.link);
5046 BFD_ASSERT (rh->root.type == bfd_link_hash_defined
5047 || rh->root.type == bfd_link_hash_defweak);
5048 val = rh->root.u.def.value;
5049 sec = rh->root.u.def.section;
5050 }
5051 val += look->r_addend;
5052 if (code_off != NULL)
5053 *code_off = val;
5054 if (code_sec != NULL)
5055 *code_sec = sec;
5056 if (sec != NULL && sec->output_section != NULL)
5057 val += sec->output_section->vma + sec->output_offset;
5058 }
5059 break;
5060 }
5061 }
5062
5063 return val;
5064 }
5065
5066 /* Mark all our entry sym sections, both opd and code section. */
5067
5068 static void
5069 ppc64_elf_gc_keep (struct bfd_link_info *info)
5070 {
5071 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5072 struct bfd_sym_chain *sym;
5073
5074 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
5075 {
5076 struct ppc_link_hash_entry *eh;
5077 asection *sec;
5078
5079 eh = (struct ppc_link_hash_entry *)
5080 elf_link_hash_lookup (&htab->elf, sym->name, FALSE, FALSE, FALSE);
5081 if (eh == NULL)
5082 continue;
5083 if (eh->elf.root.type != bfd_link_hash_defined
5084 && eh->elf.root.type != bfd_link_hash_defweak)
5085 continue;
5086
5087 if (eh->is_func_descriptor
5088 && (eh->oh->elf.root.type == bfd_link_hash_defined
5089 || eh->oh->elf.root.type == bfd_link_hash_defweak))
5090 {
5091 sec = eh->oh->elf.root.u.def.section;
5092 sec->flags |= SEC_KEEP;
5093 }
5094 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5095 && opd_entry_value (eh->elf.root.u.def.section,
5096 eh->elf.root.u.def.value,
5097 &sec, NULL) != (bfd_vma) -1)
5098 sec->flags |= SEC_KEEP;
5099
5100 sec = eh->elf.root.u.def.section;
5101 sec->flags |= SEC_KEEP;
5102 }
5103 }
5104
5105 /* Mark sections containing dynamically referenced symbols. When
5106 building shared libraries, we must assume that any visible symbol is
5107 referenced. */
5108
5109 static bfd_boolean
5110 ppc64_elf_gc_mark_dynamic_ref (struct elf_link_hash_entry *h, void *inf)
5111 {
5112 struct bfd_link_info *info = (struct bfd_link_info *) inf;
5113 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
5114
5115 if (eh->elf.root.type == bfd_link_hash_warning)
5116 eh = (struct ppc_link_hash_entry *) eh->elf.root.u.i.link;
5117
5118 /* Dynamic linking info is on the func descriptor sym. */
5119 if (eh->oh != NULL
5120 && eh->oh->is_func_descriptor
5121 && (eh->oh->elf.root.type == bfd_link_hash_defined
5122 || eh->oh->elf.root.type == bfd_link_hash_defweak))
5123 eh = eh->oh;
5124
5125 if ((eh->elf.root.type == bfd_link_hash_defined
5126 || eh->elf.root.type == bfd_link_hash_defweak)
5127 && (eh->elf.ref_dynamic
5128 || (!info->executable
5129 && eh->elf.def_regular
5130 && ELF_ST_VISIBILITY (eh->elf.other) != STV_INTERNAL
5131 && ELF_ST_VISIBILITY (eh->elf.other) != STV_HIDDEN)))
5132 {
5133 asection *code_sec;
5134
5135 eh->elf.root.u.def.section->flags |= SEC_KEEP;
5136
5137 /* Function descriptor syms cause the associated
5138 function code sym section to be marked. */
5139 if (eh->is_func_descriptor
5140 && (eh->oh->elf.root.type == bfd_link_hash_defined
5141 || eh->oh->elf.root.type == bfd_link_hash_defweak))
5142 eh->oh->elf.root.u.def.section->flags |= SEC_KEEP;
5143 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5144 && opd_entry_value (eh->elf.root.u.def.section,
5145 eh->elf.root.u.def.value,
5146 &code_sec, NULL) != (bfd_vma) -1)
5147 code_sec->flags |= SEC_KEEP;
5148 }
5149
5150 return TRUE;
5151 }
5152
5153 /* Return the section that should be marked against GC for a given
5154 relocation. */
5155
5156 static asection *
5157 ppc64_elf_gc_mark_hook (asection *sec,
5158 struct bfd_link_info *info ATTRIBUTE_UNUSED,
5159 Elf_Internal_Rela *rel,
5160 struct elf_link_hash_entry *h,
5161 Elf_Internal_Sym *sym)
5162 {
5163 asection *rsec;
5164
5165 /* Syms return NULL if we're marking .opd, so we avoid marking all
5166 function sections, as all functions are referenced in .opd. */
5167 rsec = NULL;
5168 if (get_opd_info (sec) != NULL)
5169 return rsec;
5170
5171 if (h != NULL)
5172 {
5173 enum elf_ppc64_reloc_type r_type;
5174 struct ppc_link_hash_entry *eh;
5175
5176 r_type = ELF64_R_TYPE (rel->r_info);
5177 switch (r_type)
5178 {
5179 case R_PPC64_GNU_VTINHERIT:
5180 case R_PPC64_GNU_VTENTRY:
5181 break;
5182
5183 default:
5184 switch (h->root.type)
5185 {
5186 case bfd_link_hash_defined:
5187 case bfd_link_hash_defweak:
5188 eh = (struct ppc_link_hash_entry *) h;
5189 if (eh->oh != NULL
5190 && eh->oh->is_func_descriptor
5191 && (eh->oh->elf.root.type == bfd_link_hash_defined
5192 || eh->oh->elf.root.type == bfd_link_hash_defweak))
5193 eh = eh->oh;
5194
5195 /* Function descriptor syms cause the associated
5196 function code sym section to be marked. */
5197 if (eh->is_func_descriptor
5198 && (eh->oh->elf.root.type == bfd_link_hash_defined
5199 || eh->oh->elf.root.type == bfd_link_hash_defweak))
5200 {
5201 /* They also mark their opd section. */
5202 eh->elf.root.u.def.section->gc_mark = 1;
5203
5204 rsec = eh->oh->elf.root.u.def.section;
5205 }
5206 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5207 && opd_entry_value (eh->elf.root.u.def.section,
5208 eh->elf.root.u.def.value,
5209 &rsec, NULL) != (bfd_vma) -1)
5210 eh->elf.root.u.def.section->gc_mark = 1;
5211 else
5212 rsec = h->root.u.def.section;
5213 break;
5214
5215 case bfd_link_hash_common:
5216 rsec = h->root.u.c.p->section;
5217 break;
5218
5219 default:
5220 break;
5221 }
5222 }
5223 }
5224 else
5225 {
5226 struct _opd_sec_data *opd;
5227
5228 rsec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
5229 opd = get_opd_info (rsec);
5230 if (opd != NULL && opd->func_sec != NULL)
5231 {
5232 rsec->gc_mark = 1;
5233
5234 rsec = opd->func_sec[(sym->st_value + rel->r_addend) / 8];
5235 }
5236 }
5237
5238 return rsec;
5239 }
5240
5241 /* Update the .got, .plt. and dynamic reloc reference counts for the
5242 section being removed. */
5243
5244 static bfd_boolean
5245 ppc64_elf_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
5246 asection *sec, const Elf_Internal_Rela *relocs)
5247 {
5248 struct ppc_link_hash_table *htab;
5249 Elf_Internal_Shdr *symtab_hdr;
5250 struct elf_link_hash_entry **sym_hashes;
5251 struct got_entry **local_got_ents;
5252 const Elf_Internal_Rela *rel, *relend;
5253
5254 if (info->relocatable)
5255 return TRUE;
5256
5257 if ((sec->flags & SEC_ALLOC) == 0)
5258 return TRUE;
5259
5260 elf_section_data (sec)->local_dynrel = NULL;
5261
5262 htab = ppc_hash_table (info);
5263 symtab_hdr = &elf_symtab_hdr (abfd);
5264 sym_hashes = elf_sym_hashes (abfd);
5265 local_got_ents = elf_local_got_ents (abfd);
5266
5267 relend = relocs + sec->reloc_count;
5268 for (rel = relocs; rel < relend; rel++)
5269 {
5270 unsigned long r_symndx;
5271 enum elf_ppc64_reloc_type r_type;
5272 struct elf_link_hash_entry *h = NULL;
5273 char tls_type = 0;
5274
5275 r_symndx = ELF64_R_SYM (rel->r_info);
5276 r_type = ELF64_R_TYPE (rel->r_info);
5277 if (r_symndx >= symtab_hdr->sh_info)
5278 {
5279 struct ppc_link_hash_entry *eh;
5280 struct ppc_dyn_relocs **pp;
5281 struct ppc_dyn_relocs *p;
5282
5283 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5284 while (h->root.type == bfd_link_hash_indirect
5285 || h->root.type == bfd_link_hash_warning)
5286 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5287 eh = (struct ppc_link_hash_entry *) h;
5288
5289 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
5290 if (p->sec == sec)
5291 {
5292 /* Everything must go for SEC. */
5293 *pp = p->next;
5294 break;
5295 }
5296 }
5297
5298 switch (r_type)
5299 {
5300 case R_PPC64_GOT_TLSLD16:
5301 case R_PPC64_GOT_TLSLD16_LO:
5302 case R_PPC64_GOT_TLSLD16_HI:
5303 case R_PPC64_GOT_TLSLD16_HA:
5304 tls_type = TLS_TLS | TLS_LD;
5305 goto dogot;
5306
5307 case R_PPC64_GOT_TLSGD16:
5308 case R_PPC64_GOT_TLSGD16_LO:
5309 case R_PPC64_GOT_TLSGD16_HI:
5310 case R_PPC64_GOT_TLSGD16_HA:
5311 tls_type = TLS_TLS | TLS_GD;
5312 goto dogot;
5313
5314 case R_PPC64_GOT_TPREL16_DS:
5315 case R_PPC64_GOT_TPREL16_LO_DS:
5316 case R_PPC64_GOT_TPREL16_HI:
5317 case R_PPC64_GOT_TPREL16_HA:
5318 tls_type = TLS_TLS | TLS_TPREL;
5319 goto dogot;
5320
5321 case R_PPC64_GOT_DTPREL16_DS:
5322 case R_PPC64_GOT_DTPREL16_LO_DS:
5323 case R_PPC64_GOT_DTPREL16_HI:
5324 case R_PPC64_GOT_DTPREL16_HA:
5325 tls_type = TLS_TLS | TLS_DTPREL;
5326 goto dogot;
5327
5328 case R_PPC64_GOT16:
5329 case R_PPC64_GOT16_DS:
5330 case R_PPC64_GOT16_HA:
5331 case R_PPC64_GOT16_HI:
5332 case R_PPC64_GOT16_LO:
5333 case R_PPC64_GOT16_LO_DS:
5334 dogot:
5335 {
5336 struct got_entry *ent;
5337
5338 if (h != NULL)
5339 ent = h->got.glist;
5340 else
5341 ent = local_got_ents[r_symndx];
5342
5343 for (; ent != NULL; ent = ent->next)
5344 if (ent->addend == rel->r_addend
5345 && ent->owner == abfd
5346 && ent->tls_type == tls_type)
5347 break;
5348 if (ent == NULL)
5349 abort ();
5350 if (ent->got.refcount > 0)
5351 ent->got.refcount -= 1;
5352 }
5353 break;
5354
5355 case R_PPC64_PLT16_HA:
5356 case R_PPC64_PLT16_HI:
5357 case R_PPC64_PLT16_LO:
5358 case R_PPC64_PLT32:
5359 case R_PPC64_PLT64:
5360 case R_PPC64_REL14:
5361 case R_PPC64_REL14_BRNTAKEN:
5362 case R_PPC64_REL14_BRTAKEN:
5363 case R_PPC64_REL24:
5364 if (h != NULL)
5365 {
5366 struct plt_entry *ent;
5367
5368 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
5369 if (ent->addend == rel->r_addend)
5370 break;
5371 if (ent == NULL)
5372 abort ();
5373 if (ent->plt.refcount > 0)
5374 ent->plt.refcount -= 1;
5375 }
5376 break;
5377
5378 default:
5379 break;
5380 }
5381 }
5382 return TRUE;
5383 }
5384
5385 /* The maximum size of .sfpr. */
5386 #define SFPR_MAX (218*4)
5387
5388 struct sfpr_def_parms
5389 {
5390 const char name[12];
5391 unsigned char lo, hi;
5392 bfd_byte * (*write_ent) (bfd *, bfd_byte *, int);
5393 bfd_byte * (*write_tail) (bfd *, bfd_byte *, int);
5394 };
5395
5396 /* Auto-generate _save*, _rest* functions in .sfpr. */
5397
5398 static unsigned int
5399 sfpr_define (struct bfd_link_info *info, const struct sfpr_def_parms *parm)
5400 {
5401 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5402 unsigned int i;
5403 size_t len = strlen (parm->name);
5404 bfd_boolean writing = FALSE;
5405 char sym[16];
5406
5407 memcpy (sym, parm->name, len);
5408 sym[len + 2] = 0;
5409
5410 for (i = parm->lo; i <= parm->hi; i++)
5411 {
5412 struct elf_link_hash_entry *h;
5413
5414 sym[len + 0] = i / 10 + '0';
5415 sym[len + 1] = i % 10 + '0';
5416 h = elf_link_hash_lookup (&htab->elf, sym, FALSE, FALSE, TRUE);
5417 if (h != NULL
5418 && !h->def_regular)
5419 {
5420 h->root.type = bfd_link_hash_defined;
5421 h->root.u.def.section = htab->sfpr;
5422 h->root.u.def.value = htab->sfpr->size;
5423 h->type = STT_FUNC;
5424 h->def_regular = 1;
5425 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
5426 writing = TRUE;
5427 if (htab->sfpr->contents == NULL)
5428 {
5429 htab->sfpr->contents = bfd_alloc (htab->elf.dynobj, SFPR_MAX);
5430 if (htab->sfpr->contents == NULL)
5431 return FALSE;
5432 }
5433 }
5434 if (writing)
5435 {
5436 bfd_byte *p = htab->sfpr->contents + htab->sfpr->size;
5437 if (i != parm->hi)
5438 p = (*parm->write_ent) (htab->elf.dynobj, p, i);
5439 else
5440 p = (*parm->write_tail) (htab->elf.dynobj, p, i);
5441 htab->sfpr->size = p - htab->sfpr->contents;
5442 }
5443 }
5444
5445 return TRUE;
5446 }
5447
5448 static bfd_byte *
5449 savegpr0 (bfd *abfd, bfd_byte *p, int r)
5450 {
5451 bfd_put_32 (abfd, STD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5452 return p + 4;
5453 }
5454
5455 static bfd_byte *
5456 savegpr0_tail (bfd *abfd, bfd_byte *p, int r)
5457 {
5458 p = savegpr0 (abfd, p, r);
5459 bfd_put_32 (abfd, STD_R0_0R1 + 16, p);
5460 p = p + 4;
5461 bfd_put_32 (abfd, BLR, p);
5462 return p + 4;
5463 }
5464
5465 static bfd_byte *
5466 restgpr0 (bfd *abfd, bfd_byte *p, int r)
5467 {
5468 bfd_put_32 (abfd, LD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5469 return p + 4;
5470 }
5471
5472 static bfd_byte *
5473 restgpr0_tail (bfd *abfd, bfd_byte *p, int r)
5474 {
5475 bfd_put_32 (abfd, LD_R0_0R1 + 16, p);
5476 p = p + 4;
5477 p = restgpr0 (abfd, p, r);
5478 bfd_put_32 (abfd, MTLR_R0, p);
5479 p = p + 4;
5480 if (r == 29)
5481 {
5482 p = restgpr0 (abfd, p, 30);
5483 p = restgpr0 (abfd, p, 31);
5484 }
5485 bfd_put_32 (abfd, BLR, p);
5486 return p + 4;
5487 }
5488
5489 static bfd_byte *
5490 savegpr1 (bfd *abfd, bfd_byte *p, int r)
5491 {
5492 bfd_put_32 (abfd, STD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5493 return p + 4;
5494 }
5495
5496 static bfd_byte *
5497 savegpr1_tail (bfd *abfd, bfd_byte *p, int r)
5498 {
5499 p = savegpr1 (abfd, p, r);
5500 bfd_put_32 (abfd, BLR, p);
5501 return p + 4;
5502 }
5503
5504 static bfd_byte *
5505 restgpr1 (bfd *abfd, bfd_byte *p, int r)
5506 {
5507 bfd_put_32 (abfd, LD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5508 return p + 4;
5509 }
5510
5511 static bfd_byte *
5512 restgpr1_tail (bfd *abfd, bfd_byte *p, int r)
5513 {
5514 p = restgpr1 (abfd, p, r);
5515 bfd_put_32 (abfd, BLR, p);
5516 return p + 4;
5517 }
5518
5519 static bfd_byte *
5520 savefpr (bfd *abfd, bfd_byte *p, int r)
5521 {
5522 bfd_put_32 (abfd, STFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5523 return p + 4;
5524 }
5525
5526 static bfd_byte *
5527 savefpr0_tail (bfd *abfd, bfd_byte *p, int r)
5528 {
5529 p = savefpr (abfd, p, r);
5530 bfd_put_32 (abfd, STD_R0_0R1 + 16, p);
5531 p = p + 4;
5532 bfd_put_32 (abfd, BLR, p);
5533 return p + 4;
5534 }
5535
5536 static bfd_byte *
5537 restfpr (bfd *abfd, bfd_byte *p, int r)
5538 {
5539 bfd_put_32 (abfd, LFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5540 return p + 4;
5541 }
5542
5543 static bfd_byte *
5544 restfpr0_tail (bfd *abfd, bfd_byte *p, int r)
5545 {
5546 bfd_put_32 (abfd, LD_R0_0R1 + 16, p);
5547 p = p + 4;
5548 p = restfpr (abfd, p, r);
5549 bfd_put_32 (abfd, MTLR_R0, p);
5550 p = p + 4;
5551 if (r == 29)
5552 {
5553 p = restfpr (abfd, p, 30);
5554 p = restfpr (abfd, p, 31);
5555 }
5556 bfd_put_32 (abfd, BLR, p);
5557 return p + 4;
5558 }
5559
5560 static bfd_byte *
5561 savefpr1_tail (bfd *abfd, bfd_byte *p, int r)
5562 {
5563 p = savefpr (abfd, p, r);
5564 bfd_put_32 (abfd, BLR, p);
5565 return p + 4;
5566 }
5567
5568 static bfd_byte *
5569 restfpr1_tail (bfd *abfd, bfd_byte *p, int r)
5570 {
5571 p = restfpr (abfd, p, r);
5572 bfd_put_32 (abfd, BLR, p);
5573 return p + 4;
5574 }
5575
5576 static bfd_byte *
5577 savevr (bfd *abfd, bfd_byte *p, int r)
5578 {
5579 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
5580 p = p + 4;
5581 bfd_put_32 (abfd, STVX_VR0_R12_R0 + (r << 21), p);
5582 return p + 4;
5583 }
5584
5585 static bfd_byte *
5586 savevr_tail (bfd *abfd, bfd_byte *p, int r)
5587 {
5588 p = savevr (abfd, p, r);
5589 bfd_put_32 (abfd, BLR, p);
5590 return p + 4;
5591 }
5592
5593 static bfd_byte *
5594 restvr (bfd *abfd, bfd_byte *p, int r)
5595 {
5596 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
5597 p = p + 4;
5598 bfd_put_32 (abfd, LVX_VR0_R12_R0 + (r << 21), p);
5599 return p + 4;
5600 }
5601
5602 static bfd_byte *
5603 restvr_tail (bfd *abfd, bfd_byte *p, int r)
5604 {
5605 p = restvr (abfd, p, r);
5606 bfd_put_32 (abfd, BLR, p);
5607 return p + 4;
5608 }
5609
5610 /* Called via elf_link_hash_traverse to transfer dynamic linking
5611 information on function code symbol entries to their corresponding
5612 function descriptor symbol entries. */
5613
5614 static bfd_boolean
5615 func_desc_adjust (struct elf_link_hash_entry *h, void *inf)
5616 {
5617 struct bfd_link_info *info;
5618 struct ppc_link_hash_table *htab;
5619 struct plt_entry *ent;
5620 struct ppc_link_hash_entry *fh;
5621 struct ppc_link_hash_entry *fdh;
5622 bfd_boolean force_local;
5623
5624 fh = (struct ppc_link_hash_entry *) h;
5625 if (fh->elf.root.type == bfd_link_hash_indirect)
5626 return TRUE;
5627
5628 if (fh->elf.root.type == bfd_link_hash_warning)
5629 fh = (struct ppc_link_hash_entry *) fh->elf.root.u.i.link;
5630
5631 info = inf;
5632 htab = ppc_hash_table (info);
5633
5634 /* Resolve undefined references to dot-symbols as the value
5635 in the function descriptor, if we have one in a regular object.
5636 This is to satisfy cases like ".quad .foo". Calls to functions
5637 in dynamic objects are handled elsewhere. */
5638 if (fh->elf.root.type == bfd_link_hash_undefweak
5639 && fh->was_undefined
5640 && (fh->oh->elf.root.type == bfd_link_hash_defined
5641 || fh->oh->elf.root.type == bfd_link_hash_defweak)
5642 && get_opd_info (fh->oh->elf.root.u.def.section) != NULL
5643 && opd_entry_value (fh->oh->elf.root.u.def.section,
5644 fh->oh->elf.root.u.def.value,
5645 &fh->elf.root.u.def.section,
5646 &fh->elf.root.u.def.value) != (bfd_vma) -1)
5647 {
5648 fh->elf.root.type = fh->oh->elf.root.type;
5649 fh->elf.forced_local = 1;
5650 fh->elf.def_regular = fh->oh->elf.def_regular;
5651 fh->elf.def_dynamic = fh->oh->elf.def_dynamic;
5652 }
5653
5654 /* If this is a function code symbol, transfer dynamic linking
5655 information to the function descriptor symbol. */
5656 if (!fh->is_func)
5657 return TRUE;
5658
5659 for (ent = fh->elf.plt.plist; ent != NULL; ent = ent->next)
5660 if (ent->plt.refcount > 0)
5661 break;
5662 if (ent == NULL
5663 || fh->elf.root.root.string[0] != '.'
5664 || fh->elf.root.root.string[1] == '\0')
5665 return TRUE;
5666
5667 /* Find the corresponding function descriptor symbol. Create it
5668 as undefined if necessary. */
5669
5670 fdh = get_fdh (fh, htab);
5671 if (fdh != NULL)
5672 while (fdh->elf.root.type == bfd_link_hash_indirect
5673 || fdh->elf.root.type == bfd_link_hash_warning)
5674 fdh = (struct ppc_link_hash_entry *) fdh->elf.root.u.i.link;
5675
5676 if (fdh == NULL
5677 && info->shared
5678 && (fh->elf.root.type == bfd_link_hash_undefined
5679 || fh->elf.root.type == bfd_link_hash_undefweak))
5680 {
5681 fdh = make_fdh (info, fh);
5682 if (fdh == NULL)
5683 return FALSE;
5684 }
5685
5686 /* Fake function descriptors are made undefweak. If the function
5687 code symbol is strong undefined, make the fake sym the same.
5688 If the function code symbol is defined, then force the fake
5689 descriptor local; We can't support overriding of symbols in a
5690 shared library on a fake descriptor. */
5691
5692 if (fdh != NULL
5693 && fdh->fake
5694 && fdh->elf.root.type == bfd_link_hash_undefweak)
5695 {
5696 if (fh->elf.root.type == bfd_link_hash_undefined)
5697 {
5698 fdh->elf.root.type = bfd_link_hash_undefined;
5699 bfd_link_add_undef (&htab->elf.root, &fdh->elf.root);
5700 }
5701 else if (fh->elf.root.type == bfd_link_hash_defined
5702 || fh->elf.root.type == bfd_link_hash_defweak)
5703 {
5704 _bfd_elf_link_hash_hide_symbol (info, &fdh->elf, TRUE);
5705 }
5706 }
5707
5708 if (fdh != NULL
5709 && !fdh->elf.forced_local
5710 && (info->shared
5711 || fdh->elf.def_dynamic
5712 || fdh->elf.ref_dynamic
5713 || (fdh->elf.root.type == bfd_link_hash_undefweak
5714 && ELF_ST_VISIBILITY (fdh->elf.other) == STV_DEFAULT)))
5715 {
5716 if (fdh->elf.dynindx == -1)
5717 if (! bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
5718 return FALSE;
5719 fdh->elf.ref_regular |= fh->elf.ref_regular;
5720 fdh->elf.ref_dynamic |= fh->elf.ref_dynamic;
5721 fdh->elf.ref_regular_nonweak |= fh->elf.ref_regular_nonweak;
5722 fdh->elf.non_got_ref |= fh->elf.non_got_ref;
5723 if (ELF_ST_VISIBILITY (fh->elf.other) == STV_DEFAULT)
5724 {
5725 move_plt_plist (fh, fdh);
5726 fdh->elf.needs_plt = 1;
5727 }
5728 fdh->is_func_descriptor = 1;
5729 fdh->oh = fh;
5730 fh->oh = fdh;
5731 }
5732
5733 /* Now that the info is on the function descriptor, clear the
5734 function code sym info. Any function code syms for which we
5735 don't have a definition in a regular file, we force local.
5736 This prevents a shared library from exporting syms that have
5737 been imported from another library. Function code syms that
5738 are really in the library we must leave global to prevent the
5739 linker dragging in a definition from a static library. */
5740 force_local = (!fh->elf.def_regular
5741 || fdh == NULL
5742 || !fdh->elf.def_regular
5743 || fdh->elf.forced_local);
5744 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
5745
5746 return TRUE;
5747 }
5748
5749 /* Called near the start of bfd_elf_size_dynamic_sections. We use
5750 this hook to a) provide some gcc support functions, and b) transfer
5751 dynamic linking information gathered so far on function code symbol
5752 entries, to their corresponding function descriptor symbol entries. */
5753
5754 static bfd_boolean
5755 ppc64_elf_func_desc_adjust (bfd *obfd ATTRIBUTE_UNUSED,
5756 struct bfd_link_info *info)
5757 {
5758 struct ppc_link_hash_table *htab;
5759 unsigned int i;
5760 const struct sfpr_def_parms funcs[] =
5761 {
5762 { "_savegpr0_", 14, 31, savegpr0, savegpr0_tail },
5763 { "_restgpr0_", 14, 29, restgpr0, restgpr0_tail },
5764 { "_restgpr0_", 30, 31, restgpr0, restgpr0_tail },
5765 { "_savegpr1_", 14, 31, savegpr1, savegpr1_tail },
5766 { "_restgpr1_", 14, 31, restgpr1, restgpr1_tail },
5767 { "_savefpr_", 14, 31, savefpr, savefpr0_tail },
5768 { "_restfpr_", 14, 29, restfpr, restfpr0_tail },
5769 { "_restfpr_", 30, 31, restfpr, restfpr0_tail },
5770 { "._savef", 14, 31, savefpr, savefpr1_tail },
5771 { "._restf", 14, 31, restfpr, restfpr1_tail },
5772 { "_savevr_", 20, 31, savevr, savevr_tail },
5773 { "_restvr_", 20, 31, restvr, restvr_tail }
5774 };
5775
5776 htab = ppc_hash_table (info);
5777 if (htab->sfpr == NULL)
5778 /* We don't have any relocs. */
5779 return TRUE;
5780
5781 /* Provide any missing _save* and _rest* functions. */
5782 htab->sfpr->size = 0;
5783 for (i = 0; i < sizeof (funcs) / sizeof (funcs[0]); i++)
5784 if (!sfpr_define (info, &funcs[i]))
5785 return FALSE;
5786
5787 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
5788
5789 if (htab->sfpr->size == 0)
5790 htab->sfpr->flags |= SEC_EXCLUDE;
5791
5792 return TRUE;
5793 }
5794
5795 /* Adjust a symbol defined by a dynamic object and referenced by a
5796 regular object. The current definition is in some section of the
5797 dynamic object, but we're not including those sections. We have to
5798 change the definition to something the rest of the link can
5799 understand. */
5800
5801 static bfd_boolean
5802 ppc64_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
5803 struct elf_link_hash_entry *h)
5804 {
5805 struct ppc_link_hash_table *htab;
5806 asection *s;
5807
5808 htab = ppc_hash_table (info);
5809
5810 /* Deal with function syms. */
5811 if (h->type == STT_FUNC
5812 || h->needs_plt)
5813 {
5814 /* Clear procedure linkage table information for any symbol that
5815 won't need a .plt entry. */
5816 struct plt_entry *ent;
5817 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
5818 if (ent->plt.refcount > 0)
5819 break;
5820 if (ent == NULL
5821 || SYMBOL_CALLS_LOCAL (info, h)
5822 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
5823 && h->root.type == bfd_link_hash_undefweak))
5824 {
5825 h->plt.plist = NULL;
5826 h->needs_plt = 0;
5827 }
5828 }
5829 else
5830 h->plt.plist = NULL;
5831
5832 /* If this is a weak symbol, and there is a real definition, the
5833 processor independent code will have arranged for us to see the
5834 real definition first, and we can just use the same value. */
5835 if (h->u.weakdef != NULL)
5836 {
5837 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
5838 || h->u.weakdef->root.type == bfd_link_hash_defweak);
5839 h->root.u.def.section = h->u.weakdef->root.u.def.section;
5840 h->root.u.def.value = h->u.weakdef->root.u.def.value;
5841 if (ELIMINATE_COPY_RELOCS)
5842 h->non_got_ref = h->u.weakdef->non_got_ref;
5843 return TRUE;
5844 }
5845
5846 /* If we are creating a shared library, we must presume that the
5847 only references to the symbol are via the global offset table.
5848 For such cases we need not do anything here; the relocations will
5849 be handled correctly by relocate_section. */
5850 if (info->shared)
5851 return TRUE;
5852
5853 /* If there are no references to this symbol that do not use the
5854 GOT, we don't need to generate a copy reloc. */
5855 if (!h->non_got_ref)
5856 return TRUE;
5857
5858 /* Don't generate a copy reloc for symbols defined in the executable. */
5859 if (!h->def_dynamic || !h->ref_regular || h->def_regular)
5860 return TRUE;
5861
5862 if (ELIMINATE_COPY_RELOCS)
5863 {
5864 struct ppc_link_hash_entry * eh;
5865 struct ppc_dyn_relocs *p;
5866
5867 eh = (struct ppc_link_hash_entry *) h;
5868 for (p = eh->dyn_relocs; p != NULL; p = p->next)
5869 {
5870 s = p->sec->output_section;
5871 if (s != NULL && (s->flags & SEC_READONLY) != 0)
5872 break;
5873 }
5874
5875 /* If we didn't find any dynamic relocs in read-only sections, then
5876 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
5877 if (p == NULL)
5878 {
5879 h->non_got_ref = 0;
5880 return TRUE;
5881 }
5882 }
5883
5884 if (h->plt.plist != NULL)
5885 {
5886 /* We should never get here, but unfortunately there are versions
5887 of gcc out there that improperly (for this ABI) put initialized
5888 function pointers, vtable refs and suchlike in read-only
5889 sections. Allow them to proceed, but warn that this might
5890 break at runtime. */
5891 (*_bfd_error_handler)
5892 (_("copy reloc against `%s' requires lazy plt linking; "
5893 "avoid setting LD_BIND_NOW=1 or upgrade gcc"),
5894 h->root.root.string);
5895 }
5896
5897 /* This is a reference to a symbol defined by a dynamic object which
5898 is not a function. */
5899
5900 if (h->size == 0)
5901 {
5902 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
5903 h->root.root.string);
5904 return TRUE;
5905 }
5906
5907 /* We must allocate the symbol in our .dynbss section, which will
5908 become part of the .bss section of the executable. There will be
5909 an entry for this symbol in the .dynsym section. The dynamic
5910 object will contain position independent code, so all references
5911 from the dynamic object to this symbol will go through the global
5912 offset table. The dynamic linker will use the .dynsym entry to
5913 determine the address it must put in the global offset table, so
5914 both the dynamic object and the regular object will refer to the
5915 same memory location for the variable. */
5916
5917 /* We must generate a R_PPC64_COPY reloc to tell the dynamic linker
5918 to copy the initial value out of the dynamic object and into the
5919 runtime process image. We need to remember the offset into the
5920 .rela.bss section we are going to use. */
5921 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
5922 {
5923 htab->relbss->size += sizeof (Elf64_External_Rela);
5924 h->needs_copy = 1;
5925 }
5926
5927 s = htab->dynbss;
5928
5929 return _bfd_elf_adjust_dynamic_copy (h, s);
5930 }
5931
5932 /* If given a function descriptor symbol, hide both the function code
5933 sym and the descriptor. */
5934 static void
5935 ppc64_elf_hide_symbol (struct bfd_link_info *info,
5936 struct elf_link_hash_entry *h,
5937 bfd_boolean force_local)
5938 {
5939 struct ppc_link_hash_entry *eh;
5940 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
5941
5942 eh = (struct ppc_link_hash_entry *) h;
5943 if (eh->is_func_descriptor)
5944 {
5945 struct ppc_link_hash_entry *fh = eh->oh;
5946
5947 if (fh == NULL)
5948 {
5949 const char *p, *q;
5950 struct ppc_link_hash_table *htab;
5951 char save;
5952
5953 /* We aren't supposed to use alloca in BFD because on
5954 systems which do not have alloca the version in libiberty
5955 calls xmalloc, which might cause the program to crash
5956 when it runs out of memory. This function doesn't have a
5957 return status, so there's no way to gracefully return an
5958 error. So cheat. We know that string[-1] can be safely
5959 accessed; It's either a string in an ELF string table,
5960 or allocated in an objalloc structure. */
5961
5962 p = eh->elf.root.root.string - 1;
5963 save = *p;
5964 *(char *) p = '.';
5965 htab = ppc_hash_table (info);
5966 fh = (struct ppc_link_hash_entry *)
5967 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
5968 *(char *) p = save;
5969
5970 /* Unfortunately, if it so happens that the string we were
5971 looking for was allocated immediately before this string,
5972 then we overwrote the string terminator. That's the only
5973 reason the lookup should fail. */
5974 if (fh == NULL)
5975 {
5976 q = eh->elf.root.root.string + strlen (eh->elf.root.root.string);
5977 while (q >= eh->elf.root.root.string && *q == *p)
5978 --q, --p;
5979 if (q < eh->elf.root.root.string && *p == '.')
5980 fh = (struct ppc_link_hash_entry *)
5981 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
5982 }
5983 if (fh != NULL)
5984 {
5985 eh->oh = fh;
5986 fh->oh = eh;
5987 }
5988 }
5989 if (fh != NULL)
5990 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
5991 }
5992 }
5993
5994 static bfd_boolean
5995 get_sym_h (struct elf_link_hash_entry **hp,
5996 Elf_Internal_Sym **symp,
5997 asection **symsecp,
5998 char **tls_maskp,
5999 Elf_Internal_Sym **locsymsp,
6000 unsigned long r_symndx,
6001 bfd *ibfd)
6002 {
6003 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
6004
6005 if (r_symndx >= symtab_hdr->sh_info)
6006 {
6007 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
6008 struct elf_link_hash_entry *h;
6009
6010 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6011 while (h->root.type == bfd_link_hash_indirect
6012 || h->root.type == bfd_link_hash_warning)
6013 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6014
6015 if (hp != NULL)
6016 *hp = h;
6017
6018 if (symp != NULL)
6019 *symp = NULL;
6020
6021 if (symsecp != NULL)
6022 {
6023 asection *symsec = NULL;
6024 if (h->root.type == bfd_link_hash_defined
6025 || h->root.type == bfd_link_hash_defweak)
6026 symsec = h->root.u.def.section;
6027 *symsecp = symsec;
6028 }
6029
6030 if (tls_maskp != NULL)
6031 {
6032 struct ppc_link_hash_entry *eh;
6033
6034 eh = (struct ppc_link_hash_entry *) h;
6035 *tls_maskp = &eh->tls_mask;
6036 }
6037 }
6038 else
6039 {
6040 Elf_Internal_Sym *sym;
6041 Elf_Internal_Sym *locsyms = *locsymsp;
6042
6043 if (locsyms == NULL)
6044 {
6045 locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
6046 if (locsyms == NULL)
6047 locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
6048 symtab_hdr->sh_info,
6049 0, NULL, NULL, NULL);
6050 if (locsyms == NULL)
6051 return FALSE;
6052 *locsymsp = locsyms;
6053 }
6054 sym = locsyms + r_symndx;
6055
6056 if (hp != NULL)
6057 *hp = NULL;
6058
6059 if (symp != NULL)
6060 *symp = sym;
6061
6062 if (symsecp != NULL)
6063 {
6064 asection *symsec = NULL;
6065 if ((sym->st_shndx != SHN_UNDEF
6066 && sym->st_shndx < SHN_LORESERVE)
6067 || sym->st_shndx > SHN_HIRESERVE)
6068 symsec = bfd_section_from_elf_index (ibfd, sym->st_shndx);
6069 *symsecp = symsec;
6070 }
6071
6072 if (tls_maskp != NULL)
6073 {
6074 struct got_entry **lgot_ents;
6075 char *tls_mask;
6076
6077 tls_mask = NULL;
6078 lgot_ents = elf_local_got_ents (ibfd);
6079 if (lgot_ents != NULL)
6080 {
6081 char *lgot_masks = (char *) (lgot_ents + symtab_hdr->sh_info);
6082 tls_mask = &lgot_masks[r_symndx];
6083 }
6084 *tls_maskp = tls_mask;
6085 }
6086 }
6087 return TRUE;
6088 }
6089
6090 /* Returns TLS_MASKP for the given REL symbol. Function return is 0 on
6091 error, 2 on a toc GD type suitable for optimization, 3 on a toc LD
6092 type suitable for optimization, and 1 otherwise. */
6093
6094 static int
6095 get_tls_mask (char **tls_maskp, unsigned long *toc_symndx,
6096 Elf_Internal_Sym **locsymsp,
6097 const Elf_Internal_Rela *rel, bfd *ibfd)
6098 {
6099 unsigned long r_symndx;
6100 int next_r;
6101 struct elf_link_hash_entry *h;
6102 Elf_Internal_Sym *sym;
6103 asection *sec;
6104 bfd_vma off;
6105
6106 r_symndx = ELF64_R_SYM (rel->r_info);
6107 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
6108 return 0;
6109
6110 if ((*tls_maskp != NULL && **tls_maskp != 0)
6111 || sec == NULL
6112 || ppc64_elf_section_data (sec)->sec_type != sec_toc)
6113 return 1;
6114
6115 /* Look inside a TOC section too. */
6116 if (h != NULL)
6117 {
6118 BFD_ASSERT (h->root.type == bfd_link_hash_defined);
6119 off = h->root.u.def.value;
6120 }
6121 else
6122 off = sym->st_value;
6123 off += rel->r_addend;
6124 BFD_ASSERT (off % 8 == 0);
6125 r_symndx = ppc64_elf_section_data (sec)->u.t_symndx[off / 8];
6126 next_r = ppc64_elf_section_data (sec)->u.t_symndx[off / 8 + 1];
6127 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
6128 return 0;
6129 if (toc_symndx != NULL)
6130 *toc_symndx = r_symndx;
6131 if ((h == NULL
6132 || ((h->root.type == bfd_link_hash_defined
6133 || h->root.type == bfd_link_hash_defweak)
6134 && !h->def_dynamic))
6135 && (next_r == -1 || next_r == -2))
6136 return 1 - next_r;
6137 return 1;
6138 }
6139
6140 /* Adjust all global syms defined in opd sections. In gcc generated
6141 code for the old ABI, these will already have been done. */
6142
6143 static bfd_boolean
6144 adjust_opd_syms (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
6145 {
6146 struct ppc_link_hash_entry *eh;
6147 asection *sym_sec;
6148 struct _opd_sec_data *opd;
6149
6150 if (h->root.type == bfd_link_hash_indirect)
6151 return TRUE;
6152
6153 if (h->root.type == bfd_link_hash_warning)
6154 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6155
6156 if (h->root.type != bfd_link_hash_defined
6157 && h->root.type != bfd_link_hash_defweak)
6158 return TRUE;
6159
6160 eh = (struct ppc_link_hash_entry *) h;
6161 if (eh->adjust_done)
6162 return TRUE;
6163
6164 sym_sec = eh->elf.root.u.def.section;
6165 opd = get_opd_info (sym_sec);
6166 if (opd != NULL && opd->adjust != NULL)
6167 {
6168 long adjust = opd->adjust[eh->elf.root.u.def.value / 8];
6169 if (adjust == -1)
6170 {
6171 /* This entry has been deleted. */
6172 asection *dsec = ppc64_elf_tdata (sym_sec->owner)->deleted_section;
6173 if (dsec == NULL)
6174 {
6175 for (dsec = sym_sec->owner->sections; dsec; dsec = dsec->next)
6176 if (elf_discarded_section (dsec))
6177 {
6178 ppc64_elf_tdata (sym_sec->owner)->deleted_section = dsec;
6179 break;
6180 }
6181 }
6182 eh->elf.root.u.def.value = 0;
6183 eh->elf.root.u.def.section = dsec;
6184 }
6185 else
6186 eh->elf.root.u.def.value += adjust;
6187 eh->adjust_done = 1;
6188 }
6189 return TRUE;
6190 }
6191
6192 /* Handles decrementing dynamic reloc counts for the reloc specified by
6193 R_INFO in section SEC. If LOCAL_SYMS is NULL, then H and SYM_SEC
6194 have already been determined. */
6195
6196 static bfd_boolean
6197 dec_dynrel_count (bfd_vma r_info,
6198 asection *sec,
6199 struct bfd_link_info *info,
6200 Elf_Internal_Sym **local_syms,
6201 struct elf_link_hash_entry *h,
6202 asection *sym_sec)
6203 {
6204 enum elf_ppc64_reloc_type r_type;
6205 struct ppc_dyn_relocs *p;
6206 struct ppc_dyn_relocs **pp;
6207
6208 /* Can this reloc be dynamic? This switch, and later tests here
6209 should be kept in sync with the code in check_relocs. */
6210 r_type = ELF64_R_TYPE (r_info);
6211 switch (r_type)
6212 {
6213 default:
6214 return TRUE;
6215
6216 case R_PPC64_TPREL16:
6217 case R_PPC64_TPREL16_LO:
6218 case R_PPC64_TPREL16_HI:
6219 case R_PPC64_TPREL16_HA:
6220 case R_PPC64_TPREL16_DS:
6221 case R_PPC64_TPREL16_LO_DS:
6222 case R_PPC64_TPREL16_HIGHER:
6223 case R_PPC64_TPREL16_HIGHERA:
6224 case R_PPC64_TPREL16_HIGHEST:
6225 case R_PPC64_TPREL16_HIGHESTA:
6226 if (!info->shared)
6227 return TRUE;
6228
6229 case R_PPC64_TPREL64:
6230 case R_PPC64_DTPMOD64:
6231 case R_PPC64_DTPREL64:
6232 case R_PPC64_ADDR64:
6233 case R_PPC64_REL30:
6234 case R_PPC64_REL32:
6235 case R_PPC64_REL64:
6236 case R_PPC64_ADDR14:
6237 case R_PPC64_ADDR14_BRNTAKEN:
6238 case R_PPC64_ADDR14_BRTAKEN:
6239 case R_PPC64_ADDR16:
6240 case R_PPC64_ADDR16_DS:
6241 case R_PPC64_ADDR16_HA:
6242 case R_PPC64_ADDR16_HI:
6243 case R_PPC64_ADDR16_HIGHER:
6244 case R_PPC64_ADDR16_HIGHERA:
6245 case R_PPC64_ADDR16_HIGHEST:
6246 case R_PPC64_ADDR16_HIGHESTA:
6247 case R_PPC64_ADDR16_LO:
6248 case R_PPC64_ADDR16_LO_DS:
6249 case R_PPC64_ADDR24:
6250 case R_PPC64_ADDR32:
6251 case R_PPC64_UADDR16:
6252 case R_PPC64_UADDR32:
6253 case R_PPC64_UADDR64:
6254 case R_PPC64_TOC:
6255 break;
6256 }
6257
6258 if (local_syms != NULL)
6259 {
6260 unsigned long r_symndx;
6261 Elf_Internal_Sym *sym;
6262 bfd *ibfd = sec->owner;
6263
6264 r_symndx = ELF64_R_SYM (r_info);
6265 if (!get_sym_h (&h, &sym, &sym_sec, NULL, local_syms, r_symndx, ibfd))
6266 return FALSE;
6267 }
6268
6269 if ((info->shared
6270 && (MUST_BE_DYN_RELOC (r_type)
6271 || (h != NULL
6272 && (!info->symbolic
6273 || h->root.type == bfd_link_hash_defweak
6274 || !h->def_regular))))
6275 || (ELIMINATE_COPY_RELOCS
6276 && !info->shared
6277 && h != NULL
6278 && (h->root.type == bfd_link_hash_defweak
6279 || !h->def_regular)))
6280 ;
6281 else
6282 return TRUE;
6283
6284 if (h != NULL)
6285 pp = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
6286 else
6287 {
6288 if (sym_sec != NULL)
6289 {
6290 void *vpp = &elf_section_data (sym_sec)->local_dynrel;
6291 pp = (struct ppc_dyn_relocs **) vpp;
6292 }
6293 else
6294 {
6295 void *vpp = &elf_section_data (sec)->local_dynrel;
6296 pp = (struct ppc_dyn_relocs **) vpp;
6297 }
6298
6299 /* elf_gc_sweep may have already removed all dyn relocs associated
6300 with local syms for a given section. Don't report a dynreloc
6301 miscount. */
6302 if (*pp == NULL)
6303 return TRUE;
6304 }
6305
6306 while ((p = *pp) != NULL)
6307 {
6308 if (p->sec == sec)
6309 {
6310 if (!MUST_BE_DYN_RELOC (r_type))
6311 p->pc_count -= 1;
6312 p->count -= 1;
6313 if (p->count == 0)
6314 *pp = p->next;
6315 return TRUE;
6316 }
6317 pp = &p->next;
6318 }
6319
6320 (*_bfd_error_handler) (_("dynreloc miscount for %B, section %A"),
6321 sec->owner, sec);
6322 bfd_set_error (bfd_error_bad_value);
6323 return FALSE;
6324 }
6325
6326 /* Remove unused Official Procedure Descriptor entries. Currently we
6327 only remove those associated with functions in discarded link-once
6328 sections, or weakly defined functions that have been overridden. It
6329 would be possible to remove many more entries for statically linked
6330 applications. */
6331
6332 bfd_boolean
6333 ppc64_elf_edit_opd (bfd *obfd, struct bfd_link_info *info,
6334 bfd_boolean non_overlapping)
6335 {
6336 bfd *ibfd;
6337 bfd_boolean some_edited = FALSE;
6338 asection *need_pad = NULL;
6339
6340 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6341 {
6342 asection *sec;
6343 Elf_Internal_Rela *relstart, *rel, *relend;
6344 Elf_Internal_Shdr *symtab_hdr;
6345 Elf_Internal_Sym *local_syms;
6346 struct elf_link_hash_entry **sym_hashes;
6347 bfd_vma offset;
6348 struct _opd_sec_data *opd;
6349 bfd_boolean need_edit, add_aux_fields;
6350 bfd_size_type cnt_16b = 0;
6351
6352 sec = bfd_get_section_by_name (ibfd, ".opd");
6353 if (sec == NULL || sec->size == 0)
6354 continue;
6355
6356 if (sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
6357 continue;
6358
6359 if (sec->output_section == bfd_abs_section_ptr)
6360 continue;
6361
6362 /* Look through the section relocs. */
6363 if ((sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0)
6364 continue;
6365
6366 local_syms = NULL;
6367 symtab_hdr = &elf_symtab_hdr (ibfd);
6368 sym_hashes = elf_sym_hashes (ibfd);
6369
6370 /* Read the relocations. */
6371 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
6372 info->keep_memory);
6373 if (relstart == NULL)
6374 return FALSE;
6375
6376 /* First run through the relocs to check they are sane, and to
6377 determine whether we need to edit this opd section. */
6378 need_edit = FALSE;
6379 need_pad = sec;
6380 offset = 0;
6381 relend = relstart + sec->reloc_count;
6382 for (rel = relstart; rel < relend; )
6383 {
6384 enum elf_ppc64_reloc_type r_type;
6385 unsigned long r_symndx;
6386 asection *sym_sec;
6387 struct elf_link_hash_entry *h;
6388 Elf_Internal_Sym *sym;
6389
6390 /* .opd contains a regular array of 16 or 24 byte entries. We're
6391 only interested in the reloc pointing to a function entry
6392 point. */
6393 if (rel->r_offset != offset
6394 || rel + 1 >= relend
6395 || (rel + 1)->r_offset != offset + 8)
6396 {
6397 /* If someone messes with .opd alignment then after a
6398 "ld -r" we might have padding in the middle of .opd.
6399 Also, there's nothing to prevent someone putting
6400 something silly in .opd with the assembler. No .opd
6401 optimization for them! */
6402 broken_opd:
6403 (*_bfd_error_handler)
6404 (_("%B: .opd is not a regular array of opd entries"), ibfd);
6405 need_edit = FALSE;
6406 break;
6407 }
6408
6409 if ((r_type = ELF64_R_TYPE (rel->r_info)) != R_PPC64_ADDR64
6410 || (r_type = ELF64_R_TYPE ((rel + 1)->r_info)) != R_PPC64_TOC)
6411 {
6412 (*_bfd_error_handler)
6413 (_("%B: unexpected reloc type %u in .opd section"),
6414 ibfd, r_type);
6415 need_edit = FALSE;
6416 break;
6417 }
6418
6419 r_symndx = ELF64_R_SYM (rel->r_info);
6420 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
6421 r_symndx, ibfd))
6422 goto error_ret;
6423
6424 if (sym_sec == NULL || sym_sec->owner == NULL)
6425 {
6426 const char *sym_name;
6427 if (h != NULL)
6428 sym_name = h->root.root.string;
6429 else
6430 sym_name = bfd_elf_sym_name (ibfd, symtab_hdr, sym,
6431 sym_sec);
6432
6433 (*_bfd_error_handler)
6434 (_("%B: undefined sym `%s' in .opd section"),
6435 ibfd, sym_name);
6436 need_edit = FALSE;
6437 break;
6438 }
6439
6440 /* opd entries are always for functions defined in the
6441 current input bfd. If the symbol isn't defined in the
6442 input bfd, then we won't be using the function in this
6443 bfd; It must be defined in a linkonce section in another
6444 bfd, or is weak. It's also possible that we are
6445 discarding the function due to a linker script /DISCARD/,
6446 which we test for via the output_section. */
6447 if (sym_sec->owner != ibfd
6448 || sym_sec->output_section == bfd_abs_section_ptr)
6449 need_edit = TRUE;
6450
6451 rel += 2;
6452 if (rel == relend
6453 || (rel + 1 == relend && rel->r_offset == offset + 16))
6454 {
6455 if (sec->size == offset + 24)
6456 {
6457 need_pad = NULL;
6458 break;
6459 }
6460 if (rel == relend && sec->size == offset + 16)
6461 {
6462 cnt_16b++;
6463 break;
6464 }
6465 goto broken_opd;
6466 }
6467
6468 if (rel->r_offset == offset + 24)
6469 offset += 24;
6470 else if (rel->r_offset != offset + 16)
6471 goto broken_opd;
6472 else if (rel + 1 < relend
6473 && ELF64_R_TYPE (rel[0].r_info) == R_PPC64_ADDR64
6474 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOC)
6475 {
6476 offset += 16;
6477 cnt_16b++;
6478 }
6479 else if (rel + 2 < relend
6480 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_ADDR64
6481 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_TOC)
6482 {
6483 offset += 24;
6484 rel += 1;
6485 }
6486 else
6487 goto broken_opd;
6488 }
6489
6490 add_aux_fields = non_overlapping && cnt_16b > 0;
6491
6492 if (need_edit || add_aux_fields)
6493 {
6494 Elf_Internal_Rela *write_rel;
6495 bfd_byte *rptr, *wptr;
6496 bfd_byte *new_contents = NULL;
6497 bfd_boolean skip;
6498 long opd_ent_size;
6499 bfd_size_type amt;
6500
6501 amt = sec->size * sizeof (long) / 8;
6502 opd = &ppc64_elf_section_data (sec)->u.opd;
6503 opd->adjust = bfd_zalloc (obfd, amt);
6504 if (opd->adjust == NULL)
6505 return FALSE;
6506 ppc64_elf_section_data (sec)->sec_type = sec_opd;
6507
6508 /* This seems a waste of time as input .opd sections are all
6509 zeros as generated by gcc, but I suppose there's no reason
6510 this will always be so. We might start putting something in
6511 the third word of .opd entries. */
6512 if ((sec->flags & SEC_IN_MEMORY) == 0)
6513 {
6514 bfd_byte *loc;
6515 if (!bfd_malloc_and_get_section (ibfd, sec, &loc))
6516 {
6517 if (loc != NULL)
6518 free (loc);
6519 error_ret:
6520 if (local_syms != NULL
6521 && symtab_hdr->contents != (unsigned char *) local_syms)
6522 free (local_syms);
6523 if (elf_section_data (sec)->relocs != relstart)
6524 free (relstart);
6525 return FALSE;
6526 }
6527 sec->contents = loc;
6528 sec->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
6529 }
6530
6531 elf_section_data (sec)->relocs = relstart;
6532
6533 new_contents = sec->contents;
6534 if (add_aux_fields)
6535 {
6536 new_contents = bfd_malloc (sec->size + cnt_16b * 8);
6537 if (new_contents == NULL)
6538 return FALSE;
6539 need_pad = FALSE;
6540 }
6541 wptr = new_contents;
6542 rptr = sec->contents;
6543
6544 write_rel = relstart;
6545 skip = FALSE;
6546 offset = 0;
6547 opd_ent_size = 0;
6548 for (rel = relstart; rel < relend; rel++)
6549 {
6550 unsigned long r_symndx;
6551 asection *sym_sec;
6552 struct elf_link_hash_entry *h;
6553 Elf_Internal_Sym *sym;
6554
6555 r_symndx = ELF64_R_SYM (rel->r_info);
6556 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
6557 r_symndx, ibfd))
6558 goto error_ret;
6559
6560 if (rel->r_offset == offset)
6561 {
6562 struct ppc_link_hash_entry *fdh = NULL;
6563
6564 /* See if the .opd entry is full 24 byte or
6565 16 byte (with fd_aux entry overlapped with next
6566 fd_func). */
6567 opd_ent_size = 24;
6568 if ((rel + 2 == relend && sec->size == offset + 16)
6569 || (rel + 3 < relend
6570 && rel[2].r_offset == offset + 16
6571 && rel[3].r_offset == offset + 24
6572 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_ADDR64
6573 && ELF64_R_TYPE (rel[3].r_info) == R_PPC64_TOC))
6574 opd_ent_size = 16;
6575
6576 if (h != NULL
6577 && h->root.root.string[0] == '.')
6578 {
6579 fdh = get_fdh ((struct ppc_link_hash_entry *) h,
6580 ppc_hash_table (info));
6581 if (fdh != NULL
6582 && fdh->elf.root.type != bfd_link_hash_defined
6583 && fdh->elf.root.type != bfd_link_hash_defweak)
6584 fdh = NULL;
6585 }
6586
6587 skip = (sym_sec->owner != ibfd
6588 || sym_sec->output_section == bfd_abs_section_ptr);
6589 if (skip)
6590 {
6591 if (fdh != NULL && sym_sec->owner == ibfd)
6592 {
6593 /* Arrange for the function descriptor sym
6594 to be dropped. */
6595 fdh->elf.root.u.def.value = 0;
6596 fdh->elf.root.u.def.section = sym_sec;
6597 }
6598 opd->adjust[rel->r_offset / 8] = -1;
6599 }
6600 else
6601 {
6602 /* We'll be keeping this opd entry. */
6603
6604 if (fdh != NULL)
6605 {
6606 /* Redefine the function descriptor symbol to
6607 this location in the opd section. It is
6608 necessary to update the value here rather
6609 than using an array of adjustments as we do
6610 for local symbols, because various places
6611 in the generic ELF code use the value
6612 stored in u.def.value. */
6613 fdh->elf.root.u.def.value = wptr - new_contents;
6614 fdh->adjust_done = 1;
6615 }
6616
6617 /* Local syms are a bit tricky. We could
6618 tweak them as they can be cached, but
6619 we'd need to look through the local syms
6620 for the function descriptor sym which we
6621 don't have at the moment. So keep an
6622 array of adjustments. */
6623 opd->adjust[rel->r_offset / 8]
6624 = (wptr - new_contents) - (rptr - sec->contents);
6625
6626 if (wptr != rptr)
6627 memcpy (wptr, rptr, opd_ent_size);
6628 wptr += opd_ent_size;
6629 if (add_aux_fields && opd_ent_size == 16)
6630 {
6631 memset (wptr, '\0', 8);
6632 wptr += 8;
6633 }
6634 }
6635 rptr += opd_ent_size;
6636 offset += opd_ent_size;
6637 }
6638
6639 if (skip)
6640 {
6641 if (!NO_OPD_RELOCS
6642 && !info->relocatable
6643 && !dec_dynrel_count (rel->r_info, sec, info,
6644 NULL, h, sym_sec))
6645 goto error_ret;
6646 }
6647 else
6648 {
6649 /* We need to adjust any reloc offsets to point to the
6650 new opd entries. While we're at it, we may as well
6651 remove redundant relocs. */
6652 rel->r_offset += opd->adjust[(offset - opd_ent_size) / 8];
6653 if (write_rel != rel)
6654 memcpy (write_rel, rel, sizeof (*rel));
6655 ++write_rel;
6656 }
6657 }
6658
6659 sec->size = wptr - new_contents;
6660 sec->reloc_count = write_rel - relstart;
6661 if (add_aux_fields)
6662 {
6663 free (sec->contents);
6664 sec->contents = new_contents;
6665 }
6666
6667 /* Fudge the header size too, as this is used later in
6668 elf_bfd_final_link if we are emitting relocs. */
6669 elf_section_data (sec)->rel_hdr.sh_size
6670 = sec->reloc_count * elf_section_data (sec)->rel_hdr.sh_entsize;
6671 BFD_ASSERT (elf_section_data (sec)->rel_hdr2 == NULL);
6672 some_edited = TRUE;
6673 }
6674 else if (elf_section_data (sec)->relocs != relstart)
6675 free (relstart);
6676
6677 if (local_syms != NULL
6678 && symtab_hdr->contents != (unsigned char *) local_syms)
6679 {
6680 if (!info->keep_memory)
6681 free (local_syms);
6682 else
6683 symtab_hdr->contents = (unsigned char *) local_syms;
6684 }
6685 }
6686
6687 if (some_edited)
6688 elf_link_hash_traverse (elf_hash_table (info), adjust_opd_syms, NULL);
6689
6690 /* If we are doing a final link and the last .opd entry is just 16 byte
6691 long, add a 8 byte padding after it. */
6692 if (need_pad != NULL && !info->relocatable)
6693 {
6694 bfd_byte *p;
6695
6696 if ((need_pad->flags & SEC_IN_MEMORY) == 0)
6697 {
6698 BFD_ASSERT (need_pad->size > 0);
6699
6700 p = bfd_malloc (need_pad->size + 8);
6701 if (p == NULL)
6702 return FALSE;
6703
6704 if (! bfd_get_section_contents (need_pad->owner, need_pad,
6705 p, 0, need_pad->size))
6706 return FALSE;
6707
6708 need_pad->contents = p;
6709 need_pad->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
6710 }
6711 else
6712 {
6713 p = bfd_realloc (need_pad->contents, need_pad->size + 8);
6714 if (p == NULL)
6715 return FALSE;
6716
6717 need_pad->contents = p;
6718 }
6719
6720 memset (need_pad->contents + need_pad->size, 0, 8);
6721 need_pad->size += 8;
6722 }
6723
6724 return TRUE;
6725 }
6726
6727 /* Set htab->tls_get_addr and call the generic ELF tls_setup function. */
6728
6729 asection *
6730 ppc64_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
6731 {
6732 struct ppc_link_hash_table *htab;
6733
6734 htab = ppc_hash_table (info);
6735 if (htab->tls_get_addr != NULL)
6736 {
6737 struct ppc_link_hash_entry *h = htab->tls_get_addr;
6738
6739 while (h->elf.root.type == bfd_link_hash_indirect
6740 || h->elf.root.type == bfd_link_hash_warning)
6741 h = (struct ppc_link_hash_entry *) h->elf.root.u.i.link;
6742
6743 htab->tls_get_addr = h;
6744
6745 if (htab->tls_get_addr_fd == NULL
6746 && h->oh != NULL
6747 && h->oh->is_func_descriptor
6748 && (h->oh->elf.root.type == bfd_link_hash_defined
6749 || h->oh->elf.root.type == bfd_link_hash_defweak))
6750 htab->tls_get_addr_fd = h->oh;
6751 }
6752
6753 if (htab->tls_get_addr_fd != NULL)
6754 {
6755 struct ppc_link_hash_entry *h = htab->tls_get_addr_fd;
6756
6757 while (h->elf.root.type == bfd_link_hash_indirect
6758 || h->elf.root.type == bfd_link_hash_warning)
6759 h = (struct ppc_link_hash_entry *) h->elf.root.u.i.link;
6760
6761 htab->tls_get_addr_fd = h;
6762 }
6763
6764 return _bfd_elf_tls_setup (obfd, info);
6765 }
6766
6767 /* Run through all the TLS relocs looking for optimization
6768 opportunities. The linker has been hacked (see ppc64elf.em) to do
6769 a preliminary section layout so that we know the TLS segment
6770 offsets. We can't optimize earlier because some optimizations need
6771 to know the tp offset, and we need to optimize before allocating
6772 dynamic relocations. */
6773
6774 bfd_boolean
6775 ppc64_elf_tls_optimize (bfd *obfd ATTRIBUTE_UNUSED, struct bfd_link_info *info)
6776 {
6777 bfd *ibfd;
6778 asection *sec;
6779 struct ppc_link_hash_table *htab;
6780 int pass;
6781
6782 if (info->relocatable || info->shared)
6783 return TRUE;
6784
6785 htab = ppc_hash_table (info);
6786 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6787 {
6788 Elf_Internal_Sym *locsyms = NULL;
6789 asection *toc = bfd_get_section_by_name (ibfd, ".toc");
6790 unsigned char *toc_ref = NULL;
6791
6792 /* Look at all the sections for this file. Make two passes over
6793 the relocs. On the first pass, mark toc entries involved
6794 with tls relocs, and check that tls relocs involved in
6795 setting up a tls_get_addr call are indeed followed by such a
6796 call. If they are not, exclude them from the optimizations
6797 done on the second pass. */
6798 for (pass = 0; pass < 2; ++pass)
6799 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6800 if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section))
6801 {
6802 Elf_Internal_Rela *relstart, *rel, *relend;
6803
6804 /* Read the relocations. */
6805 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
6806 info->keep_memory);
6807 if (relstart == NULL)
6808 return FALSE;
6809
6810 relend = relstart + sec->reloc_count;
6811 for (rel = relstart; rel < relend; rel++)
6812 {
6813 enum elf_ppc64_reloc_type r_type;
6814 unsigned long r_symndx;
6815 struct elf_link_hash_entry *h;
6816 Elf_Internal_Sym *sym;
6817 asection *sym_sec;
6818 char *tls_mask;
6819 char tls_set, tls_clear, tls_type = 0;
6820 bfd_vma value;
6821 bfd_boolean ok_tprel, is_local;
6822 long toc_ref_index = 0;
6823 int expecting_tls_get_addr = 0;
6824
6825 r_symndx = ELF64_R_SYM (rel->r_info);
6826 if (!get_sym_h (&h, &sym, &sym_sec, &tls_mask, &locsyms,
6827 r_symndx, ibfd))
6828 {
6829 err_free_rel:
6830 if (elf_section_data (sec)->relocs != relstart)
6831 free (relstart);
6832 if (toc_ref != NULL)
6833 free (toc_ref);
6834 if (locsyms != NULL
6835 && (elf_symtab_hdr (ibfd).contents
6836 != (unsigned char *) locsyms))
6837 free (locsyms);
6838 return FALSE;
6839 }
6840
6841 if (h != NULL)
6842 {
6843 if (h->root.type != bfd_link_hash_defined
6844 && h->root.type != bfd_link_hash_defweak)
6845 continue;
6846 value = h->root.u.def.value;
6847 }
6848 else
6849 /* Symbols referenced by TLS relocs must be of type
6850 STT_TLS. So no need for .opd local sym adjust. */
6851 value = sym->st_value;
6852
6853 ok_tprel = FALSE;
6854 is_local = FALSE;
6855 if (h == NULL
6856 || !h->def_dynamic)
6857 {
6858 is_local = TRUE;
6859 value += sym_sec->output_offset;
6860 value += sym_sec->output_section->vma;
6861 value -= htab->elf.tls_sec->vma;
6862 ok_tprel = (value + TP_OFFSET + ((bfd_vma) 1 << 31)
6863 < (bfd_vma) 1 << 32);
6864 }
6865
6866 r_type = ELF64_R_TYPE (rel->r_info);
6867 switch (r_type)
6868 {
6869 case R_PPC64_GOT_TLSLD16:
6870 case R_PPC64_GOT_TLSLD16_LO:
6871 expecting_tls_get_addr = 1;
6872 /* Fall thru */
6873
6874 case R_PPC64_GOT_TLSLD16_HI:
6875 case R_PPC64_GOT_TLSLD16_HA:
6876 /* These relocs should never be against a symbol
6877 defined in a shared lib. Leave them alone if
6878 that turns out to be the case. */
6879 if (!is_local)
6880 continue;
6881
6882 /* LD -> LE */
6883 tls_set = 0;
6884 tls_clear = TLS_LD;
6885 tls_type = TLS_TLS | TLS_LD;
6886 break;
6887
6888 case R_PPC64_GOT_TLSGD16:
6889 case R_PPC64_GOT_TLSGD16_LO:
6890 expecting_tls_get_addr = 1;
6891 /* Fall thru */
6892
6893 case R_PPC64_GOT_TLSGD16_HI:
6894 case R_PPC64_GOT_TLSGD16_HA:
6895 if (ok_tprel)
6896 /* GD -> LE */
6897 tls_set = 0;
6898 else
6899 /* GD -> IE */
6900 tls_set = TLS_TLS | TLS_TPRELGD;
6901 tls_clear = TLS_GD;
6902 tls_type = TLS_TLS | TLS_GD;
6903 break;
6904
6905 case R_PPC64_GOT_TPREL16_DS:
6906 case R_PPC64_GOT_TPREL16_LO_DS:
6907 case R_PPC64_GOT_TPREL16_HI:
6908 case R_PPC64_GOT_TPREL16_HA:
6909 if (ok_tprel)
6910 {
6911 /* IE -> LE */
6912 tls_set = 0;
6913 tls_clear = TLS_TPREL;
6914 tls_type = TLS_TLS | TLS_TPREL;
6915 break;
6916 }
6917 continue;
6918
6919 case R_PPC64_TOC16:
6920 case R_PPC64_TOC16_LO:
6921 case R_PPC64_TLS:
6922 if (sym_sec == NULL || sym_sec != toc)
6923 continue;
6924
6925 /* Mark this toc entry as referenced by a TLS
6926 code sequence. We can do that now in the
6927 case of R_PPC64_TLS, and after checking for
6928 tls_get_addr for the TOC16 relocs. */
6929 if (toc_ref == NULL)
6930 {
6931 toc_ref = bfd_zmalloc (toc->size / 8);
6932 if (toc_ref == NULL)
6933 goto err_free_rel;
6934 }
6935 if (h != NULL)
6936 value = h->root.u.def.value;
6937 else
6938 value = sym->st_value;
6939 value += rel->r_addend;
6940 BFD_ASSERT (value < toc->size && value % 8 == 0);
6941 toc_ref_index = value / 8;
6942 if (r_type == R_PPC64_TLS)
6943 {
6944 toc_ref[toc_ref_index] = 1;
6945 continue;
6946 }
6947
6948 if (pass != 0 && toc_ref[toc_ref_index] == 0)
6949 continue;
6950
6951 tls_set = 0;
6952 tls_clear = 0;
6953 expecting_tls_get_addr = 2;
6954 break;
6955
6956 case R_PPC64_TPREL64:
6957 if (pass == 0
6958 || sec != toc
6959 || toc_ref == NULL
6960 || !toc_ref[rel->r_offset / 8])
6961 continue;
6962 if (ok_tprel)
6963 {
6964 /* IE -> LE */
6965 tls_set = TLS_EXPLICIT;
6966 tls_clear = TLS_TPREL;
6967 break;
6968 }
6969 continue;
6970
6971 case R_PPC64_DTPMOD64:
6972 if (pass == 0
6973 || sec != toc
6974 || toc_ref == NULL
6975 || !toc_ref[rel->r_offset / 8])
6976 continue;
6977 if (rel + 1 < relend
6978 && (rel[1].r_info
6979 == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64))
6980 && rel[1].r_offset == rel->r_offset + 8)
6981 {
6982 if (ok_tprel)
6983 /* GD -> LE */
6984 tls_set = TLS_EXPLICIT | TLS_GD;
6985 else
6986 /* GD -> IE */
6987 tls_set = TLS_EXPLICIT | TLS_GD | TLS_TPRELGD;
6988 tls_clear = TLS_GD;
6989 }
6990 else
6991 {
6992 if (!is_local)
6993 continue;
6994
6995 /* LD -> LE */
6996 tls_set = TLS_EXPLICIT;
6997 tls_clear = TLS_LD;
6998 }
6999 break;
7000
7001 default:
7002 continue;
7003 }
7004
7005 if (pass == 0)
7006 {
7007 if (!expecting_tls_get_addr)
7008 continue;
7009
7010 if (rel + 1 < relend)
7011 {
7012 Elf_Internal_Shdr *symtab_hdr;
7013 enum elf_ppc64_reloc_type r_type2;
7014 unsigned long r_symndx2;
7015 struct elf_link_hash_entry *h2;
7016
7017 symtab_hdr = &elf_symtab_hdr (ibfd);
7018
7019 /* The next instruction should be a call to
7020 __tls_get_addr. Peek at the reloc to be sure. */
7021 r_type2 = ELF64_R_TYPE (rel[1].r_info);
7022 r_symndx2 = ELF64_R_SYM (rel[1].r_info);
7023 if (r_symndx2 >= symtab_hdr->sh_info
7024 && (r_type2 == R_PPC64_REL14
7025 || r_type2 == R_PPC64_REL14_BRTAKEN
7026 || r_type2 == R_PPC64_REL14_BRNTAKEN
7027 || r_type2 == R_PPC64_REL24))
7028 {
7029 struct elf_link_hash_entry **sym_hashes;
7030
7031 sym_hashes = elf_sym_hashes (ibfd);
7032
7033 h2 = sym_hashes[r_symndx2 - symtab_hdr->sh_info];
7034 while (h2->root.type == bfd_link_hash_indirect
7035 || h2->root.type == bfd_link_hash_warning)
7036 h2 = ((struct elf_link_hash_entry *)
7037 h2->root.u.i.link);
7038 if (h2 != NULL
7039 && (h2 == &htab->tls_get_addr->elf
7040 || h2 == &htab->tls_get_addr_fd->elf))
7041 {
7042 if (expecting_tls_get_addr == 2)
7043 {
7044 /* Check for toc tls entries. */
7045 char *toc_tls;
7046 int retval;
7047
7048 retval = get_tls_mask (&toc_tls, NULL,
7049 &locsyms,
7050 rel, ibfd);
7051 if (retval == 0)
7052 goto err_free_rel;
7053 if (retval > 1 && toc_tls != NULL)
7054 toc_ref[toc_ref_index] = 1;
7055 }
7056 continue;
7057 }
7058 }
7059 }
7060
7061 if (expecting_tls_get_addr != 1)
7062 continue;
7063
7064 /* Uh oh, we didn't find the expected call. We
7065 could just mark this symbol to exclude it
7066 from tls optimization but it's safer to skip
7067 the entire section. */
7068 sec->has_tls_reloc = 0;
7069 break;
7070 }
7071
7072 if (expecting_tls_get_addr && htab->tls_get_addr != NULL)
7073 {
7074 struct plt_entry *ent;
7075 for (ent = htab->tls_get_addr->elf.plt.plist;
7076 ent != NULL;
7077 ent = ent->next)
7078 if (ent->addend == 0)
7079 {
7080 if (ent->plt.refcount > 0)
7081 {
7082 ent->plt.refcount -= 1;
7083 expecting_tls_get_addr = 0;
7084 }
7085 break;
7086 }
7087 }
7088
7089 if (expecting_tls_get_addr && htab->tls_get_addr_fd != NULL)
7090 {
7091 struct plt_entry *ent;
7092 for (ent = htab->tls_get_addr_fd->elf.plt.plist;
7093 ent != NULL;
7094 ent = ent->next)
7095 if (ent->addend == 0)
7096 {
7097 if (ent->plt.refcount > 0)
7098 ent->plt.refcount -= 1;
7099 break;
7100 }
7101 }
7102
7103 if (tls_clear == 0)
7104 continue;
7105
7106 if ((tls_set & TLS_EXPLICIT) == 0)
7107 {
7108 struct got_entry *ent;
7109
7110 /* Adjust got entry for this reloc. */
7111 if (h != NULL)
7112 ent = h->got.glist;
7113 else
7114 ent = elf_local_got_ents (ibfd)[r_symndx];
7115
7116 for (; ent != NULL; ent = ent->next)
7117 if (ent->addend == rel->r_addend
7118 && ent->owner == ibfd
7119 && ent->tls_type == tls_type)
7120 break;
7121 if (ent == NULL)
7122 abort ();
7123
7124 if (tls_set == 0)
7125 {
7126 /* We managed to get rid of a got entry. */
7127 if (ent->got.refcount > 0)
7128 ent->got.refcount -= 1;
7129 }
7130 }
7131 else
7132 {
7133 /* If we got rid of a DTPMOD/DTPREL reloc pair then
7134 we'll lose one or two dyn relocs. */
7135 if (!dec_dynrel_count (rel->r_info, sec, info,
7136 NULL, h, sym_sec))
7137 return FALSE;
7138
7139 if (tls_set == (TLS_EXPLICIT | TLS_GD))
7140 {
7141 if (!dec_dynrel_count ((rel + 1)->r_info, sec, info,
7142 NULL, h, sym_sec))
7143 return FALSE;
7144 }
7145 }
7146
7147 *tls_mask |= tls_set;
7148 *tls_mask &= ~tls_clear;
7149 }
7150
7151 if (elf_section_data (sec)->relocs != relstart)
7152 free (relstart);
7153 }
7154
7155 if (toc_ref != NULL)
7156 free (toc_ref);
7157
7158 if (locsyms != NULL
7159 && (elf_symtab_hdr (ibfd).contents != (unsigned char *) locsyms))
7160 {
7161 if (!info->keep_memory)
7162 free (locsyms);
7163 else
7164 elf_symtab_hdr (ibfd).contents = (unsigned char *) locsyms;
7165 }
7166 }
7167 return TRUE;
7168 }
7169
7170 /* Called via elf_link_hash_traverse from ppc64_elf_edit_toc to adjust
7171 the values of any global symbols in a toc section that has been
7172 edited. Globals in toc sections should be a rarity, so this function
7173 sets a flag if any are found in toc sections other than the one just
7174 edited, so that futher hash table traversals can be avoided. */
7175
7176 struct adjust_toc_info
7177 {
7178 asection *toc;
7179 unsigned long *skip;
7180 bfd_boolean global_toc_syms;
7181 };
7182
7183 static bfd_boolean
7184 adjust_toc_syms (struct elf_link_hash_entry *h, void *inf)
7185 {
7186 struct ppc_link_hash_entry *eh;
7187 struct adjust_toc_info *toc_inf = (struct adjust_toc_info *) inf;
7188
7189 if (h->root.type == bfd_link_hash_indirect)
7190 return TRUE;
7191
7192 if (h->root.type == bfd_link_hash_warning)
7193 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7194
7195 if (h->root.type != bfd_link_hash_defined
7196 && h->root.type != bfd_link_hash_defweak)
7197 return TRUE;
7198
7199 eh = (struct ppc_link_hash_entry *) h;
7200 if (eh->adjust_done)
7201 return TRUE;
7202
7203 if (eh->elf.root.u.def.section == toc_inf->toc)
7204 {
7205 unsigned long skip = toc_inf->skip[eh->elf.root.u.def.value >> 3];
7206 if (skip != (unsigned long) -1)
7207 eh->elf.root.u.def.value -= skip;
7208 else
7209 {
7210 (*_bfd_error_handler)
7211 (_("%s defined in removed toc entry"), eh->elf.root.root.string);
7212 eh->elf.root.u.def.section = &bfd_abs_section;
7213 eh->elf.root.u.def.value = 0;
7214 }
7215 eh->adjust_done = 1;
7216 }
7217 else if (strcmp (eh->elf.root.u.def.section->name, ".toc") == 0)
7218 toc_inf->global_toc_syms = TRUE;
7219
7220 return TRUE;
7221 }
7222
7223 /* Examine all relocs referencing .toc sections in order to remove
7224 unused .toc entries. */
7225
7226 bfd_boolean
7227 ppc64_elf_edit_toc (bfd *obfd ATTRIBUTE_UNUSED, struct bfd_link_info *info)
7228 {
7229 bfd *ibfd;
7230 struct adjust_toc_info toc_inf;
7231
7232 toc_inf.global_toc_syms = TRUE;
7233 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
7234 {
7235 asection *toc, *sec;
7236 Elf_Internal_Shdr *symtab_hdr;
7237 Elf_Internal_Sym *local_syms;
7238 struct elf_link_hash_entry **sym_hashes;
7239 Elf_Internal_Rela *relstart, *rel;
7240 unsigned long *skip, *drop;
7241 unsigned char *used;
7242 unsigned char *keep, last, some_unused;
7243
7244 toc = bfd_get_section_by_name (ibfd, ".toc");
7245 if (toc == NULL
7246 || toc->size == 0
7247 || toc->sec_info_type == ELF_INFO_TYPE_JUST_SYMS
7248 || elf_discarded_section (toc))
7249 continue;
7250
7251 local_syms = NULL;
7252 symtab_hdr = &elf_symtab_hdr (ibfd);
7253 sym_hashes = elf_sym_hashes (ibfd);
7254
7255 /* Look at sections dropped from the final link. */
7256 skip = NULL;
7257 relstart = NULL;
7258 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7259 {
7260 if (sec->reloc_count == 0
7261 || !elf_discarded_section (sec)
7262 || get_opd_info (sec)
7263 || (sec->flags & SEC_ALLOC) == 0
7264 || (sec->flags & SEC_DEBUGGING) != 0)
7265 continue;
7266
7267 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, FALSE);
7268 if (relstart == NULL)
7269 goto error_ret;
7270
7271 /* Run through the relocs to see which toc entries might be
7272 unused. */
7273 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
7274 {
7275 enum elf_ppc64_reloc_type r_type;
7276 unsigned long r_symndx;
7277 asection *sym_sec;
7278 struct elf_link_hash_entry *h;
7279 Elf_Internal_Sym *sym;
7280 bfd_vma val;
7281
7282 r_type = ELF64_R_TYPE (rel->r_info);
7283 switch (r_type)
7284 {
7285 default:
7286 continue;
7287
7288 case R_PPC64_TOC16:
7289 case R_PPC64_TOC16_LO:
7290 case R_PPC64_TOC16_HI:
7291 case R_PPC64_TOC16_HA:
7292 case R_PPC64_TOC16_DS:
7293 case R_PPC64_TOC16_LO_DS:
7294 break;
7295 }
7296
7297 r_symndx = ELF64_R_SYM (rel->r_info);
7298 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7299 r_symndx, ibfd))
7300 goto error_ret;
7301
7302 if (sym_sec != toc)
7303 continue;
7304
7305 if (h != NULL)
7306 val = h->root.u.def.value;
7307 else
7308 val = sym->st_value;
7309 val += rel->r_addend;
7310
7311 if (val >= toc->size)
7312 continue;
7313
7314 /* Anything in the toc ought to be aligned to 8 bytes.
7315 If not, don't mark as unused. */
7316 if (val & 7)
7317 continue;
7318
7319 if (skip == NULL)
7320 {
7321 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 7) / 8);
7322 if (skip == NULL)
7323 goto error_ret;
7324 }
7325
7326 skip[val >> 3] = 1;
7327 }
7328
7329 if (elf_section_data (sec)->relocs != relstart)
7330 free (relstart);
7331 }
7332
7333 if (skip == NULL)
7334 continue;
7335
7336 used = bfd_zmalloc (sizeof (*used) * (toc->size + 7) / 8);
7337 if (used == NULL)
7338 {
7339 error_ret:
7340 if (local_syms != NULL
7341 && symtab_hdr->contents != (unsigned char *) local_syms)
7342 free (local_syms);
7343 if (sec != NULL
7344 && relstart != NULL
7345 && elf_section_data (sec)->relocs != relstart)
7346 free (relstart);
7347 if (skip != NULL)
7348 free (skip);
7349 return FALSE;
7350 }
7351
7352 /* Now check all kept sections that might reference the toc.
7353 Check the toc itself last. */
7354 for (sec = (ibfd->sections == toc && toc->next ? toc->next
7355 : ibfd->sections);
7356 sec != NULL;
7357 sec = (sec == toc ? NULL
7358 : sec->next == NULL ? toc
7359 : sec->next == toc && toc->next ? toc->next
7360 : sec->next))
7361 {
7362 int repeat;
7363
7364 if (sec->reloc_count == 0
7365 || elf_discarded_section (sec)
7366 || get_opd_info (sec)
7367 || (sec->flags & SEC_ALLOC) == 0
7368 || (sec->flags & SEC_DEBUGGING) != 0)
7369 continue;
7370
7371 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, TRUE);
7372 if (relstart == NULL)
7373 goto error_ret;
7374
7375 /* Mark toc entries referenced as used. */
7376 repeat = 0;
7377 do
7378 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
7379 {
7380 enum elf_ppc64_reloc_type r_type;
7381 unsigned long r_symndx;
7382 asection *sym_sec;
7383 struct elf_link_hash_entry *h;
7384 Elf_Internal_Sym *sym;
7385 bfd_vma val;
7386
7387 r_type = ELF64_R_TYPE (rel->r_info);
7388 switch (r_type)
7389 {
7390 case R_PPC64_TOC16:
7391 case R_PPC64_TOC16_LO:
7392 case R_PPC64_TOC16_HI:
7393 case R_PPC64_TOC16_HA:
7394 case R_PPC64_TOC16_DS:
7395 case R_PPC64_TOC16_LO_DS:
7396 /* In case we're taking addresses of toc entries. */
7397 case R_PPC64_ADDR64:
7398 break;
7399
7400 default:
7401 continue;
7402 }
7403
7404 r_symndx = ELF64_R_SYM (rel->r_info);
7405 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7406 r_symndx, ibfd))
7407 {
7408 free (used);
7409 goto error_ret;
7410 }
7411
7412 if (sym_sec != toc)
7413 continue;
7414
7415 if (h != NULL)
7416 val = h->root.u.def.value;
7417 else
7418 val = sym->st_value;
7419 val += rel->r_addend;
7420
7421 if (val >= toc->size)
7422 continue;
7423
7424 /* For the toc section, we only mark as used if
7425 this entry itself isn't unused. */
7426 if (sec == toc
7427 && !used[val >> 3]
7428 && (used[rel->r_offset >> 3]
7429 || !skip[rel->r_offset >> 3]))
7430 /* Do all the relocs again, to catch reference
7431 chains. */
7432 repeat = 1;
7433
7434 used[val >> 3] = 1;
7435 }
7436 while (repeat);
7437 }
7438
7439 /* Merge the used and skip arrays. Assume that TOC
7440 doublewords not appearing as either used or unused belong
7441 to to an entry more than one doubleword in size. */
7442 for (drop = skip, keep = used, last = 0, some_unused = 0;
7443 drop < skip + (toc->size + 7) / 8;
7444 ++drop, ++keep)
7445 {
7446 if (*keep)
7447 {
7448 *drop = 0;
7449 last = 0;
7450 }
7451 else if (*drop)
7452 {
7453 some_unused = 1;
7454 last = 1;
7455 }
7456 else
7457 *drop = last;
7458 }
7459
7460 free (used);
7461
7462 if (some_unused)
7463 {
7464 bfd_byte *contents, *src;
7465 unsigned long off;
7466
7467 /* Shuffle the toc contents, and at the same time convert the
7468 skip array from booleans into offsets. */
7469 if (!bfd_malloc_and_get_section (ibfd, toc, &contents))
7470 goto error_ret;
7471
7472 elf_section_data (toc)->this_hdr.contents = contents;
7473
7474 for (src = contents, off = 0, drop = skip;
7475 src < contents + toc->size;
7476 src += 8, ++drop)
7477 {
7478 if (*drop)
7479 {
7480 *drop = (unsigned long) -1;
7481 off += 8;
7482 }
7483 else if (off != 0)
7484 {
7485 *drop = off;
7486 memcpy (src - off, src, 8);
7487 }
7488 }
7489 toc->rawsize = toc->size;
7490 toc->size = src - contents - off;
7491
7492 if (toc->reloc_count != 0)
7493 {
7494 Elf_Internal_Rela *wrel;
7495 bfd_size_type sz;
7496
7497 /* Read toc relocs. */
7498 relstart = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
7499 TRUE);
7500 if (relstart == NULL)
7501 goto error_ret;
7502
7503 /* Remove unused toc relocs, and adjust those we keep. */
7504 wrel = relstart;
7505 for (rel = relstart; rel < relstart + toc->reloc_count; ++rel)
7506 if (skip[rel->r_offset >> 3] != (unsigned long) -1)
7507 {
7508 wrel->r_offset = rel->r_offset - skip[rel->r_offset >> 3];
7509 wrel->r_info = rel->r_info;
7510 wrel->r_addend = rel->r_addend;
7511 ++wrel;
7512 }
7513 else if (!dec_dynrel_count (rel->r_info, toc, info,
7514 &local_syms, NULL, NULL))
7515 goto error_ret;
7516
7517 toc->reloc_count = wrel - relstart;
7518 sz = elf_section_data (toc)->rel_hdr.sh_entsize;
7519 elf_section_data (toc)->rel_hdr.sh_size = toc->reloc_count * sz;
7520 BFD_ASSERT (elf_section_data (toc)->rel_hdr2 == NULL);
7521 }
7522
7523 /* Adjust addends for relocs against the toc section sym. */
7524 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7525 {
7526 if (sec->reloc_count == 0
7527 || elf_discarded_section (sec))
7528 continue;
7529
7530 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7531 TRUE);
7532 if (relstart == NULL)
7533 goto error_ret;
7534
7535 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
7536 {
7537 enum elf_ppc64_reloc_type r_type;
7538 unsigned long r_symndx;
7539 asection *sym_sec;
7540 struct elf_link_hash_entry *h;
7541 Elf_Internal_Sym *sym;
7542
7543 r_type = ELF64_R_TYPE (rel->r_info);
7544 switch (r_type)
7545 {
7546 default:
7547 continue;
7548
7549 case R_PPC64_TOC16:
7550 case R_PPC64_TOC16_LO:
7551 case R_PPC64_TOC16_HI:
7552 case R_PPC64_TOC16_HA:
7553 case R_PPC64_TOC16_DS:
7554 case R_PPC64_TOC16_LO_DS:
7555 case R_PPC64_ADDR64:
7556 break;
7557 }
7558
7559 r_symndx = ELF64_R_SYM (rel->r_info);
7560 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7561 r_symndx, ibfd))
7562 goto error_ret;
7563
7564 if (sym_sec != toc || h != NULL || sym->st_value != 0)
7565 continue;
7566
7567 rel->r_addend -= skip[rel->r_addend >> 3];
7568 }
7569 }
7570
7571 /* We shouldn't have local or global symbols defined in the TOC,
7572 but handle them anyway. */
7573 if (local_syms != NULL)
7574 {
7575 Elf_Internal_Sym *sym;
7576
7577 for (sym = local_syms;
7578 sym < local_syms + symtab_hdr->sh_info;
7579 ++sym)
7580 if (sym->st_shndx != SHN_UNDEF
7581 && (sym->st_shndx < SHN_LORESERVE
7582 || sym->st_shndx > SHN_HIRESERVE)
7583 && sym->st_value != 0
7584 && bfd_section_from_elf_index (ibfd, sym->st_shndx) == toc)
7585 {
7586 if (skip[sym->st_value >> 3] != (unsigned long) -1)
7587 sym->st_value -= skip[sym->st_value >> 3];
7588 else
7589 {
7590 (*_bfd_error_handler)
7591 (_("%s defined in removed toc entry"),
7592 bfd_elf_sym_name (ibfd, symtab_hdr, sym,
7593 NULL));
7594 sym->st_value = 0;
7595 sym->st_shndx = SHN_ABS;
7596 }
7597 symtab_hdr->contents = (unsigned char *) local_syms;
7598 }
7599 }
7600
7601 /* Finally, adjust any global syms defined in the toc. */
7602 if (toc_inf.global_toc_syms)
7603 {
7604 toc_inf.toc = toc;
7605 toc_inf.skip = skip;
7606 toc_inf.global_toc_syms = FALSE;
7607 elf_link_hash_traverse (elf_hash_table (info), adjust_toc_syms,
7608 &toc_inf);
7609 }
7610 }
7611
7612 if (local_syms != NULL
7613 && symtab_hdr->contents != (unsigned char *) local_syms)
7614 {
7615 if (!info->keep_memory)
7616 free (local_syms);
7617 else
7618 symtab_hdr->contents = (unsigned char *) local_syms;
7619 }
7620 free (skip);
7621 }
7622
7623 return TRUE;
7624 }
7625
7626 /* Allocate space in .plt, .got and associated reloc sections for
7627 dynamic relocs. */
7628
7629 static bfd_boolean
7630 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
7631 {
7632 struct bfd_link_info *info;
7633 struct ppc_link_hash_table *htab;
7634 asection *s;
7635 struct ppc_link_hash_entry *eh;
7636 struct ppc_dyn_relocs *p;
7637 struct got_entry *gent;
7638
7639 if (h->root.type == bfd_link_hash_indirect)
7640 return TRUE;
7641
7642 if (h->root.type == bfd_link_hash_warning)
7643 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7644
7645 info = (struct bfd_link_info *) inf;
7646 htab = ppc_hash_table (info);
7647
7648 if (htab->elf.dynamic_sections_created
7649 && h->dynindx != -1
7650 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, h))
7651 {
7652 struct plt_entry *pent;
7653 bfd_boolean doneone = FALSE;
7654 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
7655 if (pent->plt.refcount > 0)
7656 {
7657 /* If this is the first .plt entry, make room for the special
7658 first entry. */
7659 s = htab->plt;
7660 if (s->size == 0)
7661 s->size += PLT_INITIAL_ENTRY_SIZE;
7662
7663 pent->plt.offset = s->size;
7664
7665 /* Make room for this entry. */
7666 s->size += PLT_ENTRY_SIZE;
7667
7668 /* Make room for the .glink code. */
7669 s = htab->glink;
7670 if (s->size == 0)
7671 s->size += GLINK_CALL_STUB_SIZE;
7672 /* We need bigger stubs past index 32767. */
7673 if (s->size >= GLINK_CALL_STUB_SIZE + 32768*2*4)
7674 s->size += 4;
7675 s->size += 2*4;
7676
7677 /* We also need to make an entry in the .rela.plt section. */
7678 s = htab->relplt;
7679 s->size += sizeof (Elf64_External_Rela);
7680 doneone = TRUE;
7681 }
7682 else
7683 pent->plt.offset = (bfd_vma) -1;
7684 if (!doneone)
7685 {
7686 h->plt.plist = NULL;
7687 h->needs_plt = 0;
7688 }
7689 }
7690 else
7691 {
7692 h->plt.plist = NULL;
7693 h->needs_plt = 0;
7694 }
7695
7696 eh = (struct ppc_link_hash_entry *) h;
7697 /* Run through the TLS GD got entries first if we're changing them
7698 to TPREL. */
7699 if ((eh->tls_mask & TLS_TPRELGD) != 0)
7700 for (gent = h->got.glist; gent != NULL; gent = gent->next)
7701 if (gent->got.refcount > 0
7702 && (gent->tls_type & TLS_GD) != 0)
7703 {
7704 /* This was a GD entry that has been converted to TPREL. If
7705 there happens to be a TPREL entry we can use that one. */
7706 struct got_entry *ent;
7707 for (ent = h->got.glist; ent != NULL; ent = ent->next)
7708 if (ent->got.refcount > 0
7709 && (ent->tls_type & TLS_TPREL) != 0
7710 && ent->addend == gent->addend
7711 && ent->owner == gent->owner)
7712 {
7713 gent->got.refcount = 0;
7714 break;
7715 }
7716
7717 /* If not, then we'll be using our own TPREL entry. */
7718 if (gent->got.refcount != 0)
7719 gent->tls_type = TLS_TLS | TLS_TPREL;
7720 }
7721
7722 for (gent = h->got.glist; gent != NULL; gent = gent->next)
7723 if (gent->got.refcount > 0)
7724 {
7725 bfd_boolean dyn;
7726
7727 /* Make sure this symbol is output as a dynamic symbol.
7728 Undefined weak syms won't yet be marked as dynamic,
7729 nor will all TLS symbols. */
7730 if (h->dynindx == -1
7731 && !h->forced_local)
7732 {
7733 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7734 return FALSE;
7735 }
7736
7737 if ((gent->tls_type & TLS_LD) != 0
7738 && !h->def_dynamic)
7739 {
7740 ppc64_tlsld_got (gent->owner)->refcount += 1;
7741 gent->got.offset = (bfd_vma) -1;
7742 continue;
7743 }
7744
7745 if (!is_ppc64_elf (gent->owner))
7746 continue;
7747
7748 s = ppc64_elf_tdata (gent->owner)->got;
7749 gent->got.offset = s->size;
7750 s->size
7751 += (gent->tls_type & eh->tls_mask & (TLS_GD | TLS_LD)) ? 16 : 8;
7752 dyn = htab->elf.dynamic_sections_created;
7753 if ((info->shared
7754 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
7755 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7756 || h->root.type != bfd_link_hash_undefweak))
7757 ppc64_elf_tdata (gent->owner)->relgot->size
7758 += (gent->tls_type & eh->tls_mask & TLS_GD
7759 ? 2 * sizeof (Elf64_External_Rela)
7760 : sizeof (Elf64_External_Rela));
7761 }
7762 else
7763 gent->got.offset = (bfd_vma) -1;
7764
7765 if (eh->dyn_relocs == NULL)
7766 return TRUE;
7767
7768 /* In the shared -Bsymbolic case, discard space allocated for
7769 dynamic pc-relative relocs against symbols which turn out to be
7770 defined in regular objects. For the normal shared case, discard
7771 space for relocs that have become local due to symbol visibility
7772 changes. */
7773
7774 if (info->shared)
7775 {
7776 /* Relocs that use pc_count are those that appear on a call insn,
7777 or certain REL relocs (see MUST_BE_DYN_RELOC) that can be
7778 generated via assembly. We want calls to protected symbols to
7779 resolve directly to the function rather than going via the plt.
7780 If people want function pointer comparisons to work as expected
7781 then they should avoid writing weird assembly. */
7782 if (SYMBOL_CALLS_LOCAL (info, h))
7783 {
7784 struct ppc_dyn_relocs **pp;
7785
7786 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
7787 {
7788 p->count -= p->pc_count;
7789 p->pc_count = 0;
7790 if (p->count == 0)
7791 *pp = p->next;
7792 else
7793 pp = &p->next;
7794 }
7795 }
7796
7797 /* Also discard relocs on undefined weak syms with non-default
7798 visibility. */
7799 if (eh->dyn_relocs != NULL
7800 && h->root.type == bfd_link_hash_undefweak)
7801 {
7802 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
7803 eh->dyn_relocs = NULL;
7804
7805 /* Make sure this symbol is output as a dynamic symbol.
7806 Undefined weak syms won't yet be marked as dynamic. */
7807 else if (h->dynindx == -1
7808 && !h->forced_local)
7809 {
7810 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7811 return FALSE;
7812 }
7813 }
7814 }
7815 else if (ELIMINATE_COPY_RELOCS)
7816 {
7817 /* For the non-shared case, discard space for relocs against
7818 symbols which turn out to need copy relocs or are not
7819 dynamic. */
7820
7821 if (!h->non_got_ref
7822 && h->def_dynamic
7823 && !h->def_regular)
7824 {
7825 /* Make sure this symbol is output as a dynamic symbol.
7826 Undefined weak syms won't yet be marked as dynamic. */
7827 if (h->dynindx == -1
7828 && !h->forced_local)
7829 {
7830 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7831 return FALSE;
7832 }
7833
7834 /* If that succeeded, we know we'll be keeping all the
7835 relocs. */
7836 if (h->dynindx != -1)
7837 goto keep;
7838 }
7839
7840 eh->dyn_relocs = NULL;
7841
7842 keep: ;
7843 }
7844
7845 /* Finally, allocate space. */
7846 for (p = eh->dyn_relocs; p != NULL; p = p->next)
7847 {
7848 asection *sreloc = elf_section_data (p->sec)->sreloc;
7849 sreloc->size += p->count * sizeof (Elf64_External_Rela);
7850 }
7851
7852 return TRUE;
7853 }
7854
7855 /* Find any dynamic relocs that apply to read-only sections. */
7856
7857 static bfd_boolean
7858 readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf)
7859 {
7860 struct ppc_link_hash_entry *eh;
7861 struct ppc_dyn_relocs *p;
7862
7863 if (h->root.type == bfd_link_hash_warning)
7864 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7865
7866 eh = (struct ppc_link_hash_entry *) h;
7867 for (p = eh->dyn_relocs; p != NULL; p = p->next)
7868 {
7869 asection *s = p->sec->output_section;
7870
7871 if (s != NULL && (s->flags & SEC_READONLY) != 0)
7872 {
7873 struct bfd_link_info *info = inf;
7874
7875 info->flags |= DF_TEXTREL;
7876
7877 /* Not an error, just cut short the traversal. */
7878 return FALSE;
7879 }
7880 }
7881 return TRUE;
7882 }
7883
7884 /* Set the sizes of the dynamic sections. */
7885
7886 static bfd_boolean
7887 ppc64_elf_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
7888 struct bfd_link_info *info)
7889 {
7890 struct ppc_link_hash_table *htab;
7891 bfd *dynobj;
7892 asection *s;
7893 bfd_boolean relocs;
7894 bfd *ibfd;
7895
7896 htab = ppc_hash_table (info);
7897 dynobj = htab->elf.dynobj;
7898 if (dynobj == NULL)
7899 abort ();
7900
7901 if (htab->elf.dynamic_sections_created)
7902 {
7903 /* Set the contents of the .interp section to the interpreter. */
7904 if (info->executable)
7905 {
7906 s = bfd_get_section_by_name (dynobj, ".interp");
7907 if (s == NULL)
7908 abort ();
7909 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
7910 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
7911 }
7912 }
7913
7914 /* Set up .got offsets for local syms, and space for local dynamic
7915 relocs. */
7916 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
7917 {
7918 struct got_entry **lgot_ents;
7919 struct got_entry **end_lgot_ents;
7920 char *lgot_masks;
7921 bfd_size_type locsymcount;
7922 Elf_Internal_Shdr *symtab_hdr;
7923 asection *srel;
7924
7925 if (!is_ppc64_elf (ibfd))
7926 continue;
7927
7928 for (s = ibfd->sections; s != NULL; s = s->next)
7929 {
7930 struct ppc_dyn_relocs *p;
7931
7932 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
7933 {
7934 if (!bfd_is_abs_section (p->sec)
7935 && bfd_is_abs_section (p->sec->output_section))
7936 {
7937 /* Input section has been discarded, either because
7938 it is a copy of a linkonce section or due to
7939 linker script /DISCARD/, so we'll be discarding
7940 the relocs too. */
7941 }
7942 else if (p->count != 0)
7943 {
7944 srel = elf_section_data (p->sec)->sreloc;
7945 srel->size += p->count * sizeof (Elf64_External_Rela);
7946 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
7947 info->flags |= DF_TEXTREL;
7948 }
7949 }
7950 }
7951
7952 lgot_ents = elf_local_got_ents (ibfd);
7953 if (!lgot_ents)
7954 continue;
7955
7956 symtab_hdr = &elf_symtab_hdr (ibfd);
7957 locsymcount = symtab_hdr->sh_info;
7958 end_lgot_ents = lgot_ents + locsymcount;
7959 lgot_masks = (char *) end_lgot_ents;
7960 s = ppc64_elf_tdata (ibfd)->got;
7961 srel = ppc64_elf_tdata (ibfd)->relgot;
7962 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
7963 {
7964 struct got_entry *ent;
7965
7966 for (ent = *lgot_ents; ent != NULL; ent = ent->next)
7967 if (ent->got.refcount > 0)
7968 {
7969 if ((ent->tls_type & *lgot_masks & TLS_LD) != 0)
7970 {
7971 ppc64_tlsld_got (ibfd)->refcount += 1;
7972 ent->got.offset = (bfd_vma) -1;
7973 }
7974 else
7975 {
7976 ent->got.offset = s->size;
7977 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
7978 {
7979 s->size += 16;
7980 if (info->shared)
7981 srel->size += 2 * sizeof (Elf64_External_Rela);
7982 }
7983 else
7984 {
7985 s->size += 8;
7986 if (info->shared)
7987 srel->size += sizeof (Elf64_External_Rela);
7988 }
7989 }
7990 }
7991 else
7992 ent->got.offset = (bfd_vma) -1;
7993 }
7994 }
7995
7996 /* Allocate global sym .plt and .got entries, and space for global
7997 sym dynamic relocs. */
7998 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
7999
8000 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
8001 {
8002 if (!is_ppc64_elf (ibfd))
8003 continue;
8004
8005 if (ppc64_tlsld_got (ibfd)->refcount > 0)
8006 {
8007 s = ppc64_elf_tdata (ibfd)->got;
8008 ppc64_tlsld_got (ibfd)->offset = s->size;
8009 s->size += 16;
8010 if (info->shared)
8011 {
8012 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
8013 srel->size += sizeof (Elf64_External_Rela);
8014 }
8015 }
8016 else
8017 ppc64_tlsld_got (ibfd)->offset = (bfd_vma) -1;
8018 }
8019
8020 /* We now have determined the sizes of the various dynamic sections.
8021 Allocate memory for them. */
8022 relocs = FALSE;
8023 for (s = dynobj->sections; s != NULL; s = s->next)
8024 {
8025 if ((s->flags & SEC_LINKER_CREATED) == 0)
8026 continue;
8027
8028 if (s == htab->brlt || s == htab->relbrlt)
8029 /* These haven't been allocated yet; don't strip. */
8030 continue;
8031 else if (s == htab->got
8032 || s == htab->plt
8033 || s == htab->glink
8034 || s == htab->dynbss)
8035 {
8036 /* Strip this section if we don't need it; see the
8037 comment below. */
8038 }
8039 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
8040 {
8041 if (s->size != 0)
8042 {
8043 if (s != htab->relplt)
8044 relocs = TRUE;
8045
8046 /* We use the reloc_count field as a counter if we need
8047 to copy relocs into the output file. */
8048 s->reloc_count = 0;
8049 }
8050 }
8051 else
8052 {
8053 /* It's not one of our sections, so don't allocate space. */
8054 continue;
8055 }
8056
8057 if (s->size == 0)
8058 {
8059 /* If we don't need this section, strip it from the
8060 output file. This is mostly to handle .rela.bss and
8061 .rela.plt. We must create both sections in
8062 create_dynamic_sections, because they must be created
8063 before the linker maps input sections to output
8064 sections. The linker does that before
8065 adjust_dynamic_symbol is called, and it is that
8066 function which decides whether anything needs to go
8067 into these sections. */
8068 s->flags |= SEC_EXCLUDE;
8069 continue;
8070 }
8071
8072 if ((s->flags & SEC_HAS_CONTENTS) == 0)
8073 continue;
8074
8075 /* Allocate memory for the section contents. We use bfd_zalloc
8076 here in case unused entries are not reclaimed before the
8077 section's contents are written out. This should not happen,
8078 but this way if it does we get a R_PPC64_NONE reloc in .rela
8079 sections instead of garbage.
8080 We also rely on the section contents being zero when writing
8081 the GOT. */
8082 s->contents = bfd_zalloc (dynobj, s->size);
8083 if (s->contents == NULL)
8084 return FALSE;
8085 }
8086
8087 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
8088 {
8089 if (!is_ppc64_elf (ibfd))
8090 continue;
8091
8092 s = ppc64_elf_tdata (ibfd)->got;
8093 if (s != NULL && s != htab->got)
8094 {
8095 if (s->size == 0)
8096 s->flags |= SEC_EXCLUDE;
8097 else
8098 {
8099 s->contents = bfd_zalloc (ibfd, s->size);
8100 if (s->contents == NULL)
8101 return FALSE;
8102 }
8103 }
8104 s = ppc64_elf_tdata (ibfd)->relgot;
8105 if (s != NULL)
8106 {
8107 if (s->size == 0)
8108 s->flags |= SEC_EXCLUDE;
8109 else
8110 {
8111 s->contents = bfd_zalloc (ibfd, s->size);
8112 if (s->contents == NULL)
8113 return FALSE;
8114 relocs = TRUE;
8115 s->reloc_count = 0;
8116 }
8117 }
8118 }
8119
8120 if (htab->elf.dynamic_sections_created)
8121 {
8122 /* Add some entries to the .dynamic section. We fill in the
8123 values later, in ppc64_elf_finish_dynamic_sections, but we
8124 must add the entries now so that we get the correct size for
8125 the .dynamic section. The DT_DEBUG entry is filled in by the
8126 dynamic linker and used by the debugger. */
8127 #define add_dynamic_entry(TAG, VAL) \
8128 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
8129
8130 if (info->executable)
8131 {
8132 if (!add_dynamic_entry (DT_DEBUG, 0))
8133 return FALSE;
8134 }
8135
8136 if (htab->plt != NULL && htab->plt->size != 0)
8137 {
8138 if (!add_dynamic_entry (DT_PLTGOT, 0)
8139 || !add_dynamic_entry (DT_PLTRELSZ, 0)
8140 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
8141 || !add_dynamic_entry (DT_JMPREL, 0)
8142 || !add_dynamic_entry (DT_PPC64_GLINK, 0))
8143 return FALSE;
8144 }
8145
8146 if (NO_OPD_RELOCS)
8147 {
8148 if (!add_dynamic_entry (DT_PPC64_OPD, 0)
8149 || !add_dynamic_entry (DT_PPC64_OPDSZ, 0))
8150 return FALSE;
8151 }
8152
8153 if (relocs)
8154 {
8155 if (!add_dynamic_entry (DT_RELA, 0)
8156 || !add_dynamic_entry (DT_RELASZ, 0)
8157 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
8158 return FALSE;
8159
8160 /* If any dynamic relocs apply to a read-only section,
8161 then we need a DT_TEXTREL entry. */
8162 if ((info->flags & DF_TEXTREL) == 0)
8163 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, info);
8164
8165 if ((info->flags & DF_TEXTREL) != 0)
8166 {
8167 if (!add_dynamic_entry (DT_TEXTREL, 0))
8168 return FALSE;
8169 }
8170 }
8171 }
8172 #undef add_dynamic_entry
8173
8174 return TRUE;
8175 }
8176
8177 /* Determine the type of stub needed, if any, for a call. */
8178
8179 static inline enum ppc_stub_type
8180 ppc_type_of_stub (asection *input_sec,
8181 const Elf_Internal_Rela *rel,
8182 struct ppc_link_hash_entry **hash,
8183 bfd_vma destination)
8184 {
8185 struct ppc_link_hash_entry *h = *hash;
8186 bfd_vma location;
8187 bfd_vma branch_offset;
8188 bfd_vma max_branch_offset;
8189 enum elf_ppc64_reloc_type r_type;
8190
8191 if (h != NULL)
8192 {
8193 struct ppc_link_hash_entry *fdh = h;
8194 if (fdh->oh != NULL
8195 && fdh->oh->is_func_descriptor)
8196 fdh = fdh->oh;
8197
8198 if (fdh->elf.dynindx != -1)
8199 {
8200 struct plt_entry *ent;
8201
8202 for (ent = fdh->elf.plt.plist; ent != NULL; ent = ent->next)
8203 if (ent->addend == rel->r_addend
8204 && ent->plt.offset != (bfd_vma) -1)
8205 {
8206 *hash = fdh;
8207 return ppc_stub_plt_call;
8208 }
8209 }
8210
8211 /* Here, we know we don't have a plt entry. If we don't have a
8212 either a defined function descriptor or a defined entry symbol
8213 in a regular object file, then it is pointless trying to make
8214 any other type of stub. */
8215 if (!((fdh->elf.root.type == bfd_link_hash_defined
8216 || fdh->elf.root.type == bfd_link_hash_defweak)
8217 && fdh->elf.root.u.def.section->output_section != NULL)
8218 && !((h->elf.root.type == bfd_link_hash_defined
8219 || h->elf.root.type == bfd_link_hash_defweak)
8220 && h->elf.root.u.def.section->output_section != NULL))
8221 return ppc_stub_none;
8222 }
8223
8224 /* Determine where the call point is. */
8225 location = (input_sec->output_offset
8226 + input_sec->output_section->vma
8227 + rel->r_offset);
8228
8229 branch_offset = destination - location;
8230 r_type = ELF64_R_TYPE (rel->r_info);
8231
8232 /* Determine if a long branch stub is needed. */
8233 max_branch_offset = 1 << 25;
8234 if (r_type != R_PPC64_REL24)
8235 max_branch_offset = 1 << 15;
8236
8237 if (branch_offset + max_branch_offset >= 2 * max_branch_offset)
8238 /* We need a stub. Figure out whether a long_branch or plt_branch
8239 is needed later. */
8240 return ppc_stub_long_branch;
8241
8242 return ppc_stub_none;
8243 }
8244
8245 /* Build a .plt call stub. */
8246
8247 static inline bfd_byte *
8248 build_plt_stub (bfd *obfd, bfd_byte *p, int offset)
8249 {
8250 #define PPC_LO(v) ((v) & 0xffff)
8251 #define PPC_HI(v) (((v) >> 16) & 0xffff)
8252 #define PPC_HA(v) PPC_HI ((v) + 0x8000)
8253
8254 if (PPC_HA (offset) != 0)
8255 {
8256 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (offset), p), p += 4;
8257 bfd_put_32 (obfd, STD_R2_40R1, p), p += 4;
8258 bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset), p), p += 4;
8259 if (PPC_HA (offset + 16) != PPC_HA (offset))
8260 {
8261 bfd_put_32 (obfd, ADDI_R12_R12 | PPC_LO (offset), p), p += 4;
8262 offset = 0;
8263 }
8264 bfd_put_32 (obfd, MTCTR_R11, p), p += 4;
8265 bfd_put_32 (obfd, LD_R2_0R12 | PPC_LO (offset + 8), p), p += 4;
8266 bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset + 16), p), p += 4;
8267 bfd_put_32 (obfd, BCTR, p), p += 4;
8268 }
8269 else
8270 {
8271 bfd_put_32 (obfd, STD_R2_40R1, p), p += 4;
8272 bfd_put_32 (obfd, LD_R11_0R2 | PPC_LO (offset), p), p += 4;
8273 if (PPC_HA (offset + 16) != PPC_HA (offset))
8274 {
8275 bfd_put_32 (obfd, ADDI_R2_R2 | PPC_LO (offset), p), p += 4;
8276 offset = 0;
8277 }
8278 bfd_put_32 (obfd, MTCTR_R11, p), p += 4;
8279 bfd_put_32 (obfd, LD_R11_0R2 | PPC_LO (offset + 16), p), p += 4;
8280 bfd_put_32 (obfd, LD_R2_0R2 | PPC_LO (offset + 8), p), p += 4;
8281 bfd_put_32 (obfd, BCTR, p), p += 4;
8282 }
8283 return p;
8284 }
8285
8286 static bfd_boolean
8287 ppc_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
8288 {
8289 struct ppc_stub_hash_entry *stub_entry;
8290 struct ppc_branch_hash_entry *br_entry;
8291 struct bfd_link_info *info;
8292 struct ppc_link_hash_table *htab;
8293 bfd_byte *loc;
8294 bfd_byte *p;
8295 unsigned int indx;
8296 struct plt_entry *ent;
8297 bfd_vma dest, off;
8298 int size;
8299
8300 /* Massage our args to the form they really have. */
8301 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
8302 info = in_arg;
8303
8304 htab = ppc_hash_table (info);
8305
8306 /* Make a note of the offset within the stubs for this entry. */
8307 stub_entry->stub_offset = stub_entry->stub_sec->size;
8308 loc = stub_entry->stub_sec->contents + stub_entry->stub_offset;
8309
8310 htab->stub_count[stub_entry->stub_type - 1] += 1;
8311 switch (stub_entry->stub_type)
8312 {
8313 case ppc_stub_long_branch:
8314 case ppc_stub_long_branch_r2off:
8315 /* Branches are relative. This is where we are going to. */
8316 off = dest = (stub_entry->target_value
8317 + stub_entry->target_section->output_offset
8318 + stub_entry->target_section->output_section->vma);
8319
8320 /* And this is where we are coming from. */
8321 off -= (stub_entry->stub_offset
8322 + stub_entry->stub_sec->output_offset
8323 + stub_entry->stub_sec->output_section->vma);
8324
8325 size = 4;
8326 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
8327 {
8328 bfd_vma r2off;
8329
8330 r2off = (htab->stub_group[stub_entry->target_section->id].toc_off
8331 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8332 bfd_put_32 (htab->stub_bfd, STD_R2_40R1, loc);
8333 loc += 4;
8334 size = 12;
8335 if (PPC_HA (r2off) != 0)
8336 {
8337 size = 16;
8338 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
8339 loc += 4;
8340 }
8341 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
8342 loc += 4;
8343 off -= size - 4;
8344 }
8345 bfd_put_32 (htab->stub_bfd, B_DOT | (off & 0x3fffffc), loc);
8346
8347 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
8348 {
8349 (*_bfd_error_handler) (_("long branch stub `%s' offset overflow"),
8350 stub_entry->root.string);
8351 htab->stub_error = TRUE;
8352 return FALSE;
8353 }
8354
8355 if (info->emitrelocations)
8356 {
8357 Elf_Internal_Rela *relocs, *r;
8358 struct bfd_elf_section_data *elfsec_data;
8359
8360 elfsec_data = elf_section_data (stub_entry->stub_sec);
8361 relocs = elfsec_data->relocs;
8362 if (relocs == NULL)
8363 {
8364 bfd_size_type relsize;
8365 relsize = stub_entry->stub_sec->reloc_count * sizeof (*relocs);
8366 relocs = bfd_alloc (htab->stub_bfd, relsize);
8367 if (relocs == NULL)
8368 return FALSE;
8369 elfsec_data->relocs = relocs;
8370 elfsec_data->rel_hdr.sh_size = (stub_entry->stub_sec->reloc_count
8371 * sizeof (Elf64_External_Rela));
8372 elfsec_data->rel_hdr.sh_entsize = sizeof (Elf64_External_Rela);
8373 stub_entry->stub_sec->reloc_count = 0;
8374 }
8375 r = relocs + stub_entry->stub_sec->reloc_count;
8376 stub_entry->stub_sec->reloc_count += 1;
8377 r->r_offset = loc - stub_entry->stub_sec->contents;
8378 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
8379 r->r_addend = dest;
8380 if (stub_entry->h != NULL)
8381 {
8382 struct elf_link_hash_entry **hashes;
8383 unsigned long symndx;
8384 struct ppc_link_hash_entry *h;
8385
8386 hashes = elf_sym_hashes (htab->stub_bfd);
8387 if (hashes == NULL)
8388 {
8389 bfd_size_type hsize;
8390
8391 hsize = (htab->stub_globals + 1) * sizeof (*hashes);
8392 hashes = bfd_zalloc (htab->stub_bfd, hsize);
8393 if (hashes == NULL)
8394 return FALSE;
8395 elf_sym_hashes (htab->stub_bfd) = hashes;
8396 htab->stub_globals = 1;
8397 }
8398 symndx = htab->stub_globals++;
8399 h = stub_entry->h;
8400 hashes[symndx] = &h->elf;
8401 r->r_info = ELF64_R_INFO (symndx, R_PPC64_REL24);
8402 if (h->oh != NULL && h->oh->is_func)
8403 h = h->oh;
8404 if (h->elf.root.u.def.section != stub_entry->target_section)
8405 /* H is an opd symbol. The addend must be zero. */
8406 r->r_addend = 0;
8407 else
8408 {
8409 off = (h->elf.root.u.def.value
8410 + h->elf.root.u.def.section->output_offset
8411 + h->elf.root.u.def.section->output_section->vma);
8412 r->r_addend -= off;
8413 }
8414 }
8415 }
8416 break;
8417
8418 case ppc_stub_plt_branch:
8419 case ppc_stub_plt_branch_r2off:
8420 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
8421 stub_entry->root.string + 9,
8422 FALSE, FALSE);
8423 if (br_entry == NULL)
8424 {
8425 (*_bfd_error_handler) (_("can't find branch stub `%s'"),
8426 stub_entry->root.string);
8427 htab->stub_error = TRUE;
8428 return FALSE;
8429 }
8430
8431 off = (stub_entry->target_value
8432 + stub_entry->target_section->output_offset
8433 + stub_entry->target_section->output_section->vma);
8434
8435 bfd_put_64 (htab->brlt->owner, off,
8436 htab->brlt->contents + br_entry->offset);
8437
8438 if (br_entry->iter == htab->stub_iteration)
8439 {
8440 br_entry->iter = 0;
8441
8442 if (htab->relbrlt != NULL)
8443 {
8444 /* Create a reloc for the branch lookup table entry. */
8445 Elf_Internal_Rela rela;
8446 bfd_byte *rl;
8447
8448 rela.r_offset = (br_entry->offset
8449 + htab->brlt->output_offset
8450 + htab->brlt->output_section->vma);
8451 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
8452 rela.r_addend = off;
8453
8454 rl = htab->relbrlt->contents;
8455 rl += (htab->relbrlt->reloc_count++
8456 * sizeof (Elf64_External_Rela));
8457 bfd_elf64_swap_reloca_out (htab->relbrlt->owner, &rela, rl);
8458 }
8459 else if (info->emitrelocations)
8460 {
8461 Elf_Internal_Rela *relocs, *r;
8462 struct bfd_elf_section_data *elfsec_data;
8463
8464 elfsec_data = elf_section_data (htab->brlt);
8465 relocs = elfsec_data->relocs;
8466 if (relocs == NULL)
8467 {
8468 bfd_size_type relsize;
8469 relsize = htab->brlt->reloc_count * sizeof (*relocs);
8470 relocs = bfd_alloc (htab->brlt->owner, relsize);
8471 if (relocs == NULL)
8472 return FALSE;
8473 elfsec_data->relocs = relocs;
8474 elfsec_data->rel_hdr.sh_size
8475 = (stub_entry->stub_sec->reloc_count
8476 * sizeof (Elf64_External_Rela));
8477 elfsec_data->rel_hdr.sh_entsize
8478 = sizeof (Elf64_External_Rela);
8479 htab->brlt->reloc_count = 0;
8480 }
8481 r = relocs + htab->brlt->reloc_count;
8482 htab->brlt->reloc_count += 1;
8483 r->r_offset = (br_entry->offset
8484 + htab->brlt->output_offset
8485 + htab->brlt->output_section->vma);
8486 r->r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
8487 r->r_addend = off;
8488 }
8489 }
8490
8491 off = (br_entry->offset
8492 + htab->brlt->output_offset
8493 + htab->brlt->output_section->vma
8494 - elf_gp (htab->brlt->output_section->owner)
8495 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8496
8497 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
8498 {
8499 (*_bfd_error_handler)
8500 (_("linkage table error against `%s'"),
8501 stub_entry->root.string);
8502 bfd_set_error (bfd_error_bad_value);
8503 htab->stub_error = TRUE;
8504 return FALSE;
8505 }
8506
8507 indx = off;
8508 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
8509 {
8510 if (PPC_HA (indx) != 0)
8511 {
8512 size = 16;
8513 bfd_put_32 (htab->stub_bfd, ADDIS_R12_R2 | PPC_HA (indx), loc);
8514 loc += 4;
8515 bfd_put_32 (htab->stub_bfd, LD_R11_0R12 | PPC_LO (indx), loc);
8516 }
8517 else
8518 {
8519 size = 12;
8520 bfd_put_32 (htab->stub_bfd, LD_R11_0R2 | PPC_LO (indx), loc);
8521 }
8522 }
8523 else
8524 {
8525 bfd_vma r2off;
8526
8527 r2off = (htab->stub_group[stub_entry->target_section->id].toc_off
8528 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8529 bfd_put_32 (htab->stub_bfd, STD_R2_40R1, loc);
8530 loc += 4;
8531 size = 20;
8532 if (PPC_HA (indx) != 0)
8533 {
8534 size += 4;
8535 bfd_put_32 (htab->stub_bfd, ADDIS_R12_R2 | PPC_HA (indx), loc);
8536 loc += 4;
8537 bfd_put_32 (htab->stub_bfd, LD_R11_0R12 | PPC_LO (indx), loc);
8538 loc += 4;
8539 }
8540 else
8541 {
8542 bfd_put_32 (htab->stub_bfd, LD_R11_0R2 | PPC_LO (indx), loc);
8543 loc += 4;
8544 }
8545
8546 if (PPC_HA (r2off) != 0)
8547 {
8548 size += 4;
8549 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
8550 loc += 4;
8551 }
8552 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
8553 }
8554 loc += 4;
8555 bfd_put_32 (htab->stub_bfd, MTCTR_R11, loc);
8556 loc += 4;
8557 bfd_put_32 (htab->stub_bfd, BCTR, loc);
8558 break;
8559
8560 case ppc_stub_plt_call:
8561 /* Do the best we can for shared libraries built without
8562 exporting ".foo" for each "foo". This can happen when symbol
8563 versioning scripts strip all bar a subset of symbols. */
8564 if (stub_entry->h->oh != NULL
8565 && stub_entry->h->oh->elf.root.type != bfd_link_hash_defined
8566 && stub_entry->h->oh->elf.root.type != bfd_link_hash_defweak)
8567 {
8568 /* Point the symbol at the stub. There may be multiple stubs,
8569 we don't really care; The main thing is to make this sym
8570 defined somewhere. Maybe defining the symbol in the stub
8571 section is a silly idea. If we didn't do this, htab->top_id
8572 could disappear. */
8573 stub_entry->h->oh->elf.root.type = bfd_link_hash_defined;
8574 stub_entry->h->oh->elf.root.u.def.section = stub_entry->stub_sec;
8575 stub_entry->h->oh->elf.root.u.def.value = stub_entry->stub_offset;
8576 }
8577
8578 /* Now build the stub. */
8579 off = (bfd_vma) -1;
8580 for (ent = stub_entry->h->elf.plt.plist; ent != NULL; ent = ent->next)
8581 if (ent->addend == stub_entry->addend)
8582 {
8583 off = ent->plt.offset;
8584 break;
8585 }
8586 if (off >= (bfd_vma) -2)
8587 abort ();
8588
8589 off &= ~ (bfd_vma) 1;
8590 off += (htab->plt->output_offset
8591 + htab->plt->output_section->vma
8592 - elf_gp (htab->plt->output_section->owner)
8593 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8594
8595 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
8596 {
8597 (*_bfd_error_handler)
8598 (_("linkage table error against `%s'"),
8599 stub_entry->h->elf.root.root.string);
8600 bfd_set_error (bfd_error_bad_value);
8601 htab->stub_error = TRUE;
8602 return FALSE;
8603 }
8604
8605 p = build_plt_stub (htab->stub_bfd, loc, off);
8606 size = p - loc;
8607 break;
8608
8609 default:
8610 BFD_FAIL ();
8611 return FALSE;
8612 }
8613
8614 stub_entry->stub_sec->size += size;
8615
8616 if (htab->emit_stub_syms)
8617 {
8618 struct elf_link_hash_entry *h;
8619 size_t len1, len2;
8620 char *name;
8621 const char *const stub_str[] = { "long_branch",
8622 "long_branch_r2off",
8623 "plt_branch",
8624 "plt_branch_r2off",
8625 "plt_call" };
8626
8627 len1 = strlen (stub_str[stub_entry->stub_type - 1]);
8628 len2 = strlen (stub_entry->root.string);
8629 name = bfd_malloc (len1 + len2 + 2);
8630 if (name == NULL)
8631 return FALSE;
8632 memcpy (name, stub_entry->root.string, 9);
8633 memcpy (name + 9, stub_str[stub_entry->stub_type - 1], len1);
8634 memcpy (name + len1 + 9, stub_entry->root.string + 8, len2 - 8 + 1);
8635 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
8636 if (h == NULL)
8637 return FALSE;
8638 if (h->root.type == bfd_link_hash_new)
8639 {
8640 h->root.type = bfd_link_hash_defined;
8641 h->root.u.def.section = stub_entry->stub_sec;
8642 h->root.u.def.value = stub_entry->stub_offset;
8643 h->ref_regular = 1;
8644 h->def_regular = 1;
8645 h->ref_regular_nonweak = 1;
8646 h->forced_local = 1;
8647 h->non_elf = 0;
8648 }
8649 }
8650
8651 return TRUE;
8652 }
8653
8654 /* As above, but don't actually build the stub. Just bump offset so
8655 we know stub section sizes, and select plt_branch stubs where
8656 long_branch stubs won't do. */
8657
8658 static bfd_boolean
8659 ppc_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
8660 {
8661 struct ppc_stub_hash_entry *stub_entry;
8662 struct bfd_link_info *info;
8663 struct ppc_link_hash_table *htab;
8664 bfd_vma off;
8665 int size;
8666
8667 /* Massage our args to the form they really have. */
8668 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
8669 info = in_arg;
8670
8671 htab = ppc_hash_table (info);
8672
8673 if (stub_entry->stub_type == ppc_stub_plt_call)
8674 {
8675 struct plt_entry *ent;
8676 off = (bfd_vma) -1;
8677 for (ent = stub_entry->h->elf.plt.plist; ent != NULL; ent = ent->next)
8678 if (ent->addend == stub_entry->addend)
8679 {
8680 off = ent->plt.offset & ~(bfd_vma) 1;
8681 break;
8682 }
8683 if (off >= (bfd_vma) -2)
8684 abort ();
8685 off += (htab->plt->output_offset
8686 + htab->plt->output_section->vma
8687 - elf_gp (htab->plt->output_section->owner)
8688 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8689
8690 size = PLT_CALL_STUB_SIZE;
8691 if (PPC_HA (off) == 0)
8692 size -= 4;
8693 if (PPC_HA (off + 16) != PPC_HA (off))
8694 size += 4;
8695 }
8696 else
8697 {
8698 /* ppc_stub_long_branch or ppc_stub_plt_branch, or their r2off
8699 variants. */
8700 bfd_vma r2off = 0;
8701
8702 off = (stub_entry->target_value
8703 + stub_entry->target_section->output_offset
8704 + stub_entry->target_section->output_section->vma);
8705 off -= (stub_entry->stub_sec->size
8706 + stub_entry->stub_sec->output_offset
8707 + stub_entry->stub_sec->output_section->vma);
8708
8709 /* Reset the stub type from the plt variant in case we now
8710 can reach with a shorter stub. */
8711 if (stub_entry->stub_type >= ppc_stub_plt_branch)
8712 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
8713
8714 size = 4;
8715 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
8716 {
8717 r2off = (htab->stub_group[stub_entry->target_section->id].toc_off
8718 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8719 size = 12;
8720 if (PPC_HA (r2off) != 0)
8721 size = 16;
8722 off -= size - 4;
8723 }
8724
8725 /* If the branch offset if too big, use a ppc_stub_plt_branch. */
8726 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
8727 {
8728 struct ppc_branch_hash_entry *br_entry;
8729 unsigned int indx;
8730
8731 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
8732 stub_entry->root.string + 9,
8733 TRUE, FALSE);
8734 if (br_entry == NULL)
8735 {
8736 (*_bfd_error_handler) (_("can't build branch stub `%s'"),
8737 stub_entry->root.string);
8738 htab->stub_error = TRUE;
8739 return FALSE;
8740 }
8741
8742 if (br_entry->iter != htab->stub_iteration)
8743 {
8744 br_entry->iter = htab->stub_iteration;
8745 br_entry->offset = htab->brlt->size;
8746 htab->brlt->size += 8;
8747
8748 if (htab->relbrlt != NULL)
8749 htab->relbrlt->size += sizeof (Elf64_External_Rela);
8750 else if (info->emitrelocations)
8751 {
8752 htab->brlt->reloc_count += 1;
8753 htab->brlt->flags |= SEC_RELOC;
8754 }
8755 }
8756
8757 stub_entry->stub_type += ppc_stub_plt_branch - ppc_stub_long_branch;
8758 off = (br_entry->offset
8759 + htab->brlt->output_offset
8760 + htab->brlt->output_section->vma
8761 - elf_gp (htab->brlt->output_section->owner)
8762 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8763
8764 indx = off;
8765 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
8766 {
8767 size = 12;
8768 if (PPC_HA (indx) != 0)
8769 size = 16;
8770 }
8771 else
8772 {
8773 size = 20;
8774 if (PPC_HA (indx) != 0)
8775 size += 4;
8776
8777 if (PPC_HA (r2off) != 0)
8778 size += 4;
8779 }
8780 }
8781 else if (info->emitrelocations)
8782 {
8783 stub_entry->stub_sec->reloc_count += 1;
8784 stub_entry->stub_sec->flags |= SEC_RELOC;
8785 }
8786 }
8787
8788 stub_entry->stub_sec->size += size;
8789 return TRUE;
8790 }
8791
8792 /* Set up various things so that we can make a list of input sections
8793 for each output section included in the link. Returns -1 on error,
8794 0 when no stubs will be needed, and 1 on success. */
8795
8796 int
8797 ppc64_elf_setup_section_lists (bfd *output_bfd,
8798 struct bfd_link_info *info,
8799 int no_multi_toc)
8800 {
8801 bfd *input_bfd;
8802 int top_id, top_index, id;
8803 asection *section;
8804 asection **input_list;
8805 bfd_size_type amt;
8806 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8807
8808 htab->no_multi_toc = no_multi_toc;
8809
8810 if (htab->brlt == NULL)
8811 return 0;
8812
8813 /* Find the top input section id. */
8814 for (input_bfd = info->input_bfds, top_id = 3;
8815 input_bfd != NULL;
8816 input_bfd = input_bfd->link_next)
8817 {
8818 for (section = input_bfd->sections;
8819 section != NULL;
8820 section = section->next)
8821 {
8822 if (top_id < section->id)
8823 top_id = section->id;
8824 }
8825 }
8826
8827 htab->top_id = top_id;
8828 amt = sizeof (struct map_stub) * (top_id + 1);
8829 htab->stub_group = bfd_zmalloc (amt);
8830 if (htab->stub_group == NULL)
8831 return -1;
8832
8833 /* Set toc_off for com, und, abs and ind sections. */
8834 for (id = 0; id < 3; id++)
8835 htab->stub_group[id].toc_off = TOC_BASE_OFF;
8836
8837 elf_gp (output_bfd) = htab->toc_curr = ppc64_elf_toc (output_bfd);
8838
8839 /* We can't use output_bfd->section_count here to find the top output
8840 section index as some sections may have been removed, and
8841 strip_excluded_output_sections doesn't renumber the indices. */
8842 for (section = output_bfd->sections, top_index = 0;
8843 section != NULL;
8844 section = section->next)
8845 {
8846 if (top_index < section->index)
8847 top_index = section->index;
8848 }
8849
8850 htab->top_index = top_index;
8851 amt = sizeof (asection *) * (top_index + 1);
8852 input_list = bfd_zmalloc (amt);
8853 htab->input_list = input_list;
8854 if (input_list == NULL)
8855 return -1;
8856
8857 return 1;
8858 }
8859
8860 /* The linker repeatedly calls this function for each TOC input section
8861 and linker generated GOT section. Group input bfds such that the toc
8862 within a group is less than 64k in size. Will break with cute linker
8863 scripts that play games with dot in the output toc section. */
8864
8865 void
8866 ppc64_elf_next_toc_section (struct bfd_link_info *info, asection *isec)
8867 {
8868 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8869
8870 if (!htab->no_multi_toc)
8871 {
8872 bfd_vma addr = isec->output_offset + isec->output_section->vma;
8873 bfd_vma off = addr - htab->toc_curr;
8874
8875 if (off + isec->size > 0x10000)
8876 htab->toc_curr = addr;
8877
8878 elf_gp (isec->owner) = (htab->toc_curr
8879 - elf_gp (isec->output_section->owner)
8880 + TOC_BASE_OFF);
8881 }
8882 }
8883
8884 /* Called after the last call to the above function. */
8885
8886 void
8887 ppc64_elf_reinit_toc (bfd *output_bfd, struct bfd_link_info *info)
8888 {
8889 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8890
8891 htab->multi_toc_needed = htab->toc_curr != elf_gp (output_bfd);
8892
8893 /* toc_curr tracks the TOC offset used for code sections below in
8894 ppc64_elf_next_input_section. Start off at 0x8000. */
8895 htab->toc_curr = TOC_BASE_OFF;
8896 }
8897
8898 /* No toc references were found in ISEC. If the code in ISEC makes no
8899 calls, then there's no need to use toc adjusting stubs when branching
8900 into ISEC. Actually, indirect calls from ISEC are OK as they will
8901 load r2. Returns -1 on error, 0 for no stub needed, 1 for stub
8902 needed, and 2 if a cyclical call-graph was found but no other reason
8903 for a stub was detected. If called from the top level, a return of
8904 2 means the same as a return of 0. */
8905
8906 static int
8907 toc_adjusting_stub_needed (struct bfd_link_info *info, asection *isec)
8908 {
8909 Elf_Internal_Rela *relstart, *rel;
8910 Elf_Internal_Sym *local_syms;
8911 int ret;
8912 struct ppc_link_hash_table *htab;
8913
8914 /* We know none of our code bearing sections will need toc stubs. */
8915 if ((isec->flags & SEC_LINKER_CREATED) != 0)
8916 return 0;
8917
8918 if (isec->size == 0)
8919 return 0;
8920
8921 if (isec->output_section == NULL)
8922 return 0;
8923
8924 if (isec->reloc_count == 0)
8925 return 0;
8926
8927 relstart = _bfd_elf_link_read_relocs (isec->owner, isec, NULL, NULL,
8928 info->keep_memory);
8929 if (relstart == NULL)
8930 return -1;
8931
8932 /* Look for branches to outside of this section. */
8933 local_syms = NULL;
8934 ret = 0;
8935 htab = ppc_hash_table (info);
8936 for (rel = relstart; rel < relstart + isec->reloc_count; ++rel)
8937 {
8938 enum elf_ppc64_reloc_type r_type;
8939 unsigned long r_symndx;
8940 struct elf_link_hash_entry *h;
8941 Elf_Internal_Sym *sym;
8942 asection *sym_sec;
8943 struct _opd_sec_data *opd;
8944 bfd_vma sym_value;
8945 bfd_vma dest;
8946
8947 r_type = ELF64_R_TYPE (rel->r_info);
8948 if (r_type != R_PPC64_REL24
8949 && r_type != R_PPC64_REL14
8950 && r_type != R_PPC64_REL14_BRTAKEN
8951 && r_type != R_PPC64_REL14_BRNTAKEN)
8952 continue;
8953
8954 r_symndx = ELF64_R_SYM (rel->r_info);
8955 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, r_symndx,
8956 isec->owner))
8957 {
8958 ret = -1;
8959 break;
8960 }
8961
8962 /* Calls to dynamic lib functions go through a plt call stub
8963 that uses r2. Branches to undefined symbols might be a call
8964 using old-style dot symbols that can be satisfied by a plt
8965 call into a new-style dynamic library. */
8966 if (sym_sec == NULL)
8967 {
8968 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
8969 if (eh != NULL
8970 && eh->oh != NULL
8971 && eh->oh->elf.plt.plist != NULL)
8972 {
8973 ret = 1;
8974 break;
8975 }
8976
8977 /* Ignore other undefined symbols. */
8978 continue;
8979 }
8980
8981 /* Assume branches to other sections not included in the link need
8982 stubs too, to cover -R and absolute syms. */
8983 if (sym_sec->output_section == NULL)
8984 {
8985 ret = 1;
8986 break;
8987 }
8988
8989 if (h == NULL)
8990 sym_value = sym->st_value;
8991 else
8992 {
8993 if (h->root.type != bfd_link_hash_defined
8994 && h->root.type != bfd_link_hash_defweak)
8995 abort ();
8996 sym_value = h->root.u.def.value;
8997 }
8998 sym_value += rel->r_addend;
8999
9000 /* If this branch reloc uses an opd sym, find the code section. */
9001 opd = get_opd_info (sym_sec);
9002 if (opd != NULL)
9003 {
9004 if (h == NULL && opd->adjust != NULL)
9005 {
9006 long adjust;
9007
9008 adjust = opd->adjust[sym->st_value / 8];
9009 if (adjust == -1)
9010 /* Assume deleted functions won't ever be called. */
9011 continue;
9012 sym_value += adjust;
9013 }
9014
9015 dest = opd_entry_value (sym_sec, sym_value, &sym_sec, NULL);
9016 if (dest == (bfd_vma) -1)
9017 continue;
9018 }
9019 else
9020 dest = (sym_value
9021 + sym_sec->output_offset
9022 + sym_sec->output_section->vma);
9023
9024 /* Ignore branch to self. */
9025 if (sym_sec == isec)
9026 continue;
9027
9028 /* If the called function uses the toc, we need a stub. */
9029 if (sym_sec->has_toc_reloc
9030 || sym_sec->makes_toc_func_call)
9031 {
9032 ret = 1;
9033 break;
9034 }
9035
9036 /* Assume any branch that needs a long branch stub might in fact
9037 need a plt_branch stub. A plt_branch stub uses r2. */
9038 else if (dest - (isec->output_offset
9039 + isec->output_section->vma
9040 + rel->r_offset) + (1 << 25) >= (2 << 25))
9041 {
9042 ret = 1;
9043 break;
9044 }
9045
9046 /* If calling back to a section in the process of being tested, we
9047 can't say for sure that no toc adjusting stubs are needed, so
9048 don't return zero. */
9049 else if (sym_sec->call_check_in_progress)
9050 ret = 2;
9051
9052 /* Branches to another section that itself doesn't have any TOC
9053 references are OK. Recursively call ourselves to check. */
9054 else if (sym_sec->id <= htab->top_id
9055 && htab->stub_group[sym_sec->id].toc_off == 0)
9056 {
9057 int recur;
9058
9059 /* Mark current section as indeterminate, so that other
9060 sections that call back to current won't be marked as
9061 known. */
9062 isec->call_check_in_progress = 1;
9063 recur = toc_adjusting_stub_needed (info, sym_sec);
9064 isec->call_check_in_progress = 0;
9065
9066 if (recur < 0)
9067 {
9068 /* An error. Exit. */
9069 ret = -1;
9070 break;
9071 }
9072 else if (recur <= 1)
9073 {
9074 /* Known result. Mark as checked and set section flag. */
9075 htab->stub_group[sym_sec->id].toc_off = 1;
9076 if (recur != 0)
9077 {
9078 sym_sec->makes_toc_func_call = 1;
9079 ret = 1;
9080 break;
9081 }
9082 }
9083 else
9084 {
9085 /* Unknown result. Continue checking. */
9086 ret = 2;
9087 }
9088 }
9089 }
9090
9091 if (local_syms != NULL
9092 && (elf_symtab_hdr (isec->owner).contents != (unsigned char *) local_syms))
9093 free (local_syms);
9094 if (elf_section_data (isec)->relocs != relstart)
9095 free (relstart);
9096
9097 return ret;
9098 }
9099
9100 /* The linker repeatedly calls this function for each input section,
9101 in the order that input sections are linked into output sections.
9102 Build lists of input sections to determine groupings between which
9103 we may insert linker stubs. */
9104
9105 bfd_boolean
9106 ppc64_elf_next_input_section (struct bfd_link_info *info, asection *isec)
9107 {
9108 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9109
9110 if ((isec->output_section->flags & SEC_CODE) != 0
9111 && isec->output_section->index <= htab->top_index)
9112 {
9113 asection **list = htab->input_list + isec->output_section->index;
9114 /* Steal the link_sec pointer for our list. */
9115 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
9116 /* This happens to make the list in reverse order,
9117 which is what we want. */
9118 PREV_SEC (isec) = *list;
9119 *list = isec;
9120 }
9121
9122 if (htab->multi_toc_needed)
9123 {
9124 /* If a code section has a function that uses the TOC then we need
9125 to use the right TOC (obviously). Also, make sure that .opd gets
9126 the correct TOC value for R_PPC64_TOC relocs that don't have or
9127 can't find their function symbol (shouldn't ever happen now).
9128 Also specially treat .fixup for the linux kernel. .fixup
9129 contains branches, but only back to the function that hit an
9130 exception. */
9131 if (isec->has_toc_reloc
9132 || (isec->flags & SEC_CODE) == 0
9133 || strcmp (isec->name, ".fixup") == 0)
9134 {
9135 if (elf_gp (isec->owner) != 0)
9136 htab->toc_curr = elf_gp (isec->owner);
9137 }
9138 else if (htab->stub_group[isec->id].toc_off == 0)
9139 {
9140 int ret = toc_adjusting_stub_needed (info, isec);
9141 if (ret < 0)
9142 return FALSE;
9143 else
9144 isec->makes_toc_func_call = ret & 1;
9145 }
9146 }
9147
9148 /* Functions that don't use the TOC can belong in any TOC group.
9149 Use the last TOC base. This happens to make _init and _fini
9150 pasting work. */
9151 htab->stub_group[isec->id].toc_off = htab->toc_curr;
9152 return TRUE;
9153 }
9154
9155 /* See whether we can group stub sections together. Grouping stub
9156 sections may result in fewer stubs. More importantly, we need to
9157 put all .init* and .fini* stubs at the beginning of the .init or
9158 .fini output sections respectively, because glibc splits the
9159 _init and _fini functions into multiple parts. Putting a stub in
9160 the middle of a function is not a good idea. */
9161
9162 static void
9163 group_sections (struct ppc_link_hash_table *htab,
9164 bfd_size_type stub_group_size,
9165 bfd_boolean stubs_always_before_branch)
9166 {
9167 asection **list;
9168 bfd_size_type stub14_group_size;
9169 bfd_boolean suppress_size_errors;
9170
9171 suppress_size_errors = FALSE;
9172 stub14_group_size = stub_group_size;
9173 if (stub_group_size == 1)
9174 {
9175 /* Default values. */
9176 if (stubs_always_before_branch)
9177 {
9178 stub_group_size = 0x1e00000;
9179 stub14_group_size = 0x7800;
9180 }
9181 else
9182 {
9183 stub_group_size = 0x1c00000;
9184 stub14_group_size = 0x7000;
9185 }
9186 suppress_size_errors = TRUE;
9187 }
9188
9189 list = htab->input_list + htab->top_index;
9190 do
9191 {
9192 asection *tail = *list;
9193 while (tail != NULL)
9194 {
9195 asection *curr;
9196 asection *prev;
9197 bfd_size_type total;
9198 bfd_boolean big_sec;
9199 bfd_vma curr_toc;
9200
9201 curr = tail;
9202 total = tail->size;
9203 big_sec = total > (ppc64_elf_section_data (tail)->has_14bit_branch
9204 ? stub14_group_size : stub_group_size);
9205 if (big_sec && !suppress_size_errors)
9206 (*_bfd_error_handler) (_("%B section %A exceeds stub group size"),
9207 tail->owner, tail);
9208 curr_toc = htab->stub_group[tail->id].toc_off;
9209
9210 while ((prev = PREV_SEC (curr)) != NULL
9211 && ((total += curr->output_offset - prev->output_offset)
9212 < (ppc64_elf_section_data (prev)->has_14bit_branch
9213 ? stub14_group_size : stub_group_size))
9214 && htab->stub_group[prev->id].toc_off == curr_toc)
9215 curr = prev;
9216
9217 /* OK, the size from the start of CURR to the end is less
9218 than stub_group_size and thus can be handled by one stub
9219 section. (or the tail section is itself larger than
9220 stub_group_size, in which case we may be toast.) We
9221 should really be keeping track of the total size of stubs
9222 added here, as stubs contribute to the final output
9223 section size. That's a little tricky, and this way will
9224 only break if stubs added make the total size more than
9225 2^25, ie. for the default stub_group_size, if stubs total
9226 more than 2097152 bytes, or nearly 75000 plt call stubs. */
9227 do
9228 {
9229 prev = PREV_SEC (tail);
9230 /* Set up this stub group. */
9231 htab->stub_group[tail->id].link_sec = curr;
9232 }
9233 while (tail != curr && (tail = prev) != NULL);
9234
9235 /* But wait, there's more! Input sections up to stub_group_size
9236 bytes before the stub section can be handled by it too.
9237 Don't do this if we have a really large section after the
9238 stubs, as adding more stubs increases the chance that
9239 branches may not reach into the stub section. */
9240 if (!stubs_always_before_branch && !big_sec)
9241 {
9242 total = 0;
9243 while (prev != NULL
9244 && ((total += tail->output_offset - prev->output_offset)
9245 < (ppc64_elf_section_data (prev)->has_14bit_branch
9246 ? stub14_group_size : stub_group_size))
9247 && htab->stub_group[prev->id].toc_off == curr_toc)
9248 {
9249 tail = prev;
9250 prev = PREV_SEC (tail);
9251 htab->stub_group[tail->id].link_sec = curr;
9252 }
9253 }
9254 tail = prev;
9255 }
9256 }
9257 while (list-- != htab->input_list);
9258 free (htab->input_list);
9259 #undef PREV_SEC
9260 }
9261
9262 /* Determine and set the size of the stub section for a final link.
9263
9264 The basic idea here is to examine all the relocations looking for
9265 PC-relative calls to a target that is unreachable with a "bl"
9266 instruction. */
9267
9268 bfd_boolean
9269 ppc64_elf_size_stubs (bfd *output_bfd,
9270 struct bfd_link_info *info,
9271 bfd_signed_vma group_size,
9272 asection *(*add_stub_section) (const char *, asection *),
9273 void (*layout_sections_again) (void))
9274 {
9275 bfd_size_type stub_group_size;
9276 bfd_boolean stubs_always_before_branch;
9277 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9278
9279 /* Stash our params away. */
9280 htab->add_stub_section = add_stub_section;
9281 htab->layout_sections_again = layout_sections_again;
9282 stubs_always_before_branch = group_size < 0;
9283 if (group_size < 0)
9284 stub_group_size = -group_size;
9285 else
9286 stub_group_size = group_size;
9287
9288 group_sections (htab, stub_group_size, stubs_always_before_branch);
9289
9290 while (1)
9291 {
9292 bfd *input_bfd;
9293 unsigned int bfd_indx;
9294 asection *stub_sec;
9295
9296 htab->stub_iteration += 1;
9297
9298 for (input_bfd = info->input_bfds, bfd_indx = 0;
9299 input_bfd != NULL;
9300 input_bfd = input_bfd->link_next, bfd_indx++)
9301 {
9302 Elf_Internal_Shdr *symtab_hdr;
9303 asection *section;
9304 Elf_Internal_Sym *local_syms = NULL;
9305
9306 if (!is_ppc64_elf (input_bfd))
9307 continue;
9308
9309 /* We'll need the symbol table in a second. */
9310 symtab_hdr = &elf_symtab_hdr (input_bfd);
9311 if (symtab_hdr->sh_info == 0)
9312 continue;
9313
9314 /* Walk over each section attached to the input bfd. */
9315 for (section = input_bfd->sections;
9316 section != NULL;
9317 section = section->next)
9318 {
9319 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
9320
9321 /* If there aren't any relocs, then there's nothing more
9322 to do. */
9323 if ((section->flags & SEC_RELOC) == 0
9324 || (section->flags & SEC_ALLOC) == 0
9325 || (section->flags & SEC_LOAD) == 0
9326 || (section->flags & SEC_CODE) == 0
9327 || section->reloc_count == 0)
9328 continue;
9329
9330 /* If this section is a link-once section that will be
9331 discarded, then don't create any stubs. */
9332 if (section->output_section == NULL
9333 || section->output_section->owner != output_bfd)
9334 continue;
9335
9336 /* Get the relocs. */
9337 internal_relocs
9338 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
9339 info->keep_memory);
9340 if (internal_relocs == NULL)
9341 goto error_ret_free_local;
9342
9343 /* Now examine each relocation. */
9344 irela = internal_relocs;
9345 irelaend = irela + section->reloc_count;
9346 for (; irela < irelaend; irela++)
9347 {
9348 enum elf_ppc64_reloc_type r_type;
9349 unsigned int r_indx;
9350 enum ppc_stub_type stub_type;
9351 struct ppc_stub_hash_entry *stub_entry;
9352 asection *sym_sec, *code_sec;
9353 bfd_vma sym_value;
9354 bfd_vma destination;
9355 bfd_boolean ok_dest;
9356 struct ppc_link_hash_entry *hash;
9357 struct ppc_link_hash_entry *fdh;
9358 struct elf_link_hash_entry *h;
9359 Elf_Internal_Sym *sym;
9360 char *stub_name;
9361 const asection *id_sec;
9362 struct _opd_sec_data *opd;
9363
9364 r_type = ELF64_R_TYPE (irela->r_info);
9365 r_indx = ELF64_R_SYM (irela->r_info);
9366
9367 if (r_type >= R_PPC64_max)
9368 {
9369 bfd_set_error (bfd_error_bad_value);
9370 goto error_ret_free_internal;
9371 }
9372
9373 /* Only look for stubs on branch instructions. */
9374 if (r_type != R_PPC64_REL24
9375 && r_type != R_PPC64_REL14
9376 && r_type != R_PPC64_REL14_BRTAKEN
9377 && r_type != R_PPC64_REL14_BRNTAKEN)
9378 continue;
9379
9380 /* Now determine the call target, its name, value,
9381 section. */
9382 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
9383 r_indx, input_bfd))
9384 goto error_ret_free_internal;
9385 hash = (struct ppc_link_hash_entry *) h;
9386
9387 ok_dest = FALSE;
9388 fdh = NULL;
9389 sym_value = 0;
9390 if (hash == NULL)
9391 {
9392 sym_value = sym->st_value;
9393 ok_dest = TRUE;
9394 }
9395 else if (hash->elf.root.type == bfd_link_hash_defined
9396 || hash->elf.root.type == bfd_link_hash_defweak)
9397 {
9398 sym_value = hash->elf.root.u.def.value;
9399 if (sym_sec->output_section != NULL)
9400 ok_dest = TRUE;
9401 }
9402 else if (hash->elf.root.type == bfd_link_hash_undefweak
9403 || hash->elf.root.type == bfd_link_hash_undefined)
9404 {
9405 /* Recognise an old ABI func code entry sym, and
9406 use the func descriptor sym instead if it is
9407 defined. */
9408 if (hash->elf.root.root.string[0] == '.'
9409 && (fdh = get_fdh (hash, htab)) != NULL)
9410 {
9411 if (fdh->elf.root.type == bfd_link_hash_defined
9412 || fdh->elf.root.type == bfd_link_hash_defweak)
9413 {
9414 sym_sec = fdh->elf.root.u.def.section;
9415 sym_value = fdh->elf.root.u.def.value;
9416 if (sym_sec->output_section != NULL)
9417 ok_dest = TRUE;
9418 }
9419 else
9420 fdh = NULL;
9421 }
9422 }
9423 else
9424 {
9425 bfd_set_error (bfd_error_bad_value);
9426 goto error_ret_free_internal;
9427 }
9428
9429 destination = 0;
9430 if (ok_dest)
9431 {
9432 sym_value += irela->r_addend;
9433 destination = (sym_value
9434 + sym_sec->output_offset
9435 + sym_sec->output_section->vma);
9436 }
9437
9438 code_sec = sym_sec;
9439 opd = get_opd_info (sym_sec);
9440 if (opd != NULL)
9441 {
9442 bfd_vma dest;
9443
9444 if (hash == NULL && opd->adjust != NULL)
9445 {
9446 long adjust = opd->adjust[sym_value / 8];
9447 if (adjust == -1)
9448 continue;
9449 sym_value += adjust;
9450 }
9451 dest = opd_entry_value (sym_sec, sym_value,
9452 &code_sec, &sym_value);
9453 if (dest != (bfd_vma) -1)
9454 {
9455 destination = dest;
9456 if (fdh != NULL)
9457 {
9458 /* Fixup old ABI sym to point at code
9459 entry. */
9460 hash->elf.root.type = bfd_link_hash_defweak;
9461 hash->elf.root.u.def.section = code_sec;
9462 hash->elf.root.u.def.value = sym_value;
9463 }
9464 }
9465 }
9466
9467 /* Determine what (if any) linker stub is needed. */
9468 stub_type = ppc_type_of_stub (section, irela, &hash,
9469 destination);
9470
9471 if (stub_type != ppc_stub_plt_call)
9472 {
9473 /* Check whether we need a TOC adjusting stub.
9474 Since the linker pastes together pieces from
9475 different object files when creating the
9476 _init and _fini functions, it may be that a
9477 call to what looks like a local sym is in
9478 fact a call needing a TOC adjustment. */
9479 if (code_sec != NULL
9480 && code_sec->output_section != NULL
9481 && (htab->stub_group[code_sec->id].toc_off
9482 != htab->stub_group[section->id].toc_off)
9483 && (code_sec->has_toc_reloc
9484 || code_sec->makes_toc_func_call))
9485 stub_type = ppc_stub_long_branch_r2off;
9486 }
9487
9488 if (stub_type == ppc_stub_none)
9489 continue;
9490
9491 /* __tls_get_addr calls might be eliminated. */
9492 if (stub_type != ppc_stub_plt_call
9493 && hash != NULL
9494 && (hash == htab->tls_get_addr
9495 || hash == htab->tls_get_addr_fd)
9496 && section->has_tls_reloc
9497 && irela != internal_relocs)
9498 {
9499 /* Get tls info. */
9500 char *tls_mask;
9501
9502 if (!get_tls_mask (&tls_mask, NULL, &local_syms,
9503 irela - 1, input_bfd))
9504 goto error_ret_free_internal;
9505 if (*tls_mask != 0)
9506 continue;
9507 }
9508
9509 /* Support for grouping stub sections. */
9510 id_sec = htab->stub_group[section->id].link_sec;
9511
9512 /* Get the name of this stub. */
9513 stub_name = ppc_stub_name (id_sec, sym_sec, hash, irela);
9514 if (!stub_name)
9515 goto error_ret_free_internal;
9516
9517 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
9518 stub_name, FALSE, FALSE);
9519 if (stub_entry != NULL)
9520 {
9521 /* The proper stub has already been created. */
9522 free (stub_name);
9523 continue;
9524 }
9525
9526 stub_entry = ppc_add_stub (stub_name, section, htab);
9527 if (stub_entry == NULL)
9528 {
9529 free (stub_name);
9530 error_ret_free_internal:
9531 if (elf_section_data (section)->relocs == NULL)
9532 free (internal_relocs);
9533 error_ret_free_local:
9534 if (local_syms != NULL
9535 && (symtab_hdr->contents
9536 != (unsigned char *) local_syms))
9537 free (local_syms);
9538 return FALSE;
9539 }
9540
9541 stub_entry->stub_type = stub_type;
9542 stub_entry->target_value = sym_value;
9543 stub_entry->target_section = code_sec;
9544 stub_entry->h = hash;
9545 stub_entry->addend = irela->r_addend;
9546
9547 if (stub_entry->h != NULL)
9548 htab->stub_globals += 1;
9549 }
9550
9551 /* We're done with the internal relocs, free them. */
9552 if (elf_section_data (section)->relocs != internal_relocs)
9553 free (internal_relocs);
9554 }
9555
9556 if (local_syms != NULL
9557 && symtab_hdr->contents != (unsigned char *) local_syms)
9558 {
9559 if (!info->keep_memory)
9560 free (local_syms);
9561 else
9562 symtab_hdr->contents = (unsigned char *) local_syms;
9563 }
9564 }
9565
9566 /* We may have added some stubs. Find out the new size of the
9567 stub sections. */
9568 for (stub_sec = htab->stub_bfd->sections;
9569 stub_sec != NULL;
9570 stub_sec = stub_sec->next)
9571 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
9572 {
9573 stub_sec->rawsize = stub_sec->size;
9574 stub_sec->size = 0;
9575 stub_sec->reloc_count = 0;
9576 stub_sec->flags &= ~SEC_RELOC;
9577 }
9578
9579 htab->brlt->size = 0;
9580 htab->brlt->reloc_count = 0;
9581 htab->brlt->flags &= ~SEC_RELOC;
9582 if (htab->relbrlt != NULL)
9583 htab->relbrlt->size = 0;
9584
9585 bfd_hash_traverse (&htab->stub_hash_table, ppc_size_one_stub, info);
9586
9587 for (stub_sec = htab->stub_bfd->sections;
9588 stub_sec != NULL;
9589 stub_sec = stub_sec->next)
9590 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
9591 && stub_sec->rawsize != stub_sec->size)
9592 break;
9593
9594 /* Exit from this loop when no stubs have been added, and no stubs
9595 have changed size. */
9596 if (stub_sec == NULL)
9597 break;
9598
9599 /* Ask the linker to do its stuff. */
9600 (*htab->layout_sections_again) ();
9601 }
9602
9603 /* It would be nice to strip htab->brlt from the output if the
9604 section is empty, but it's too late. If we strip sections here,
9605 the dynamic symbol table is corrupted since the section symbol
9606 for the stripped section isn't written. */
9607
9608 return TRUE;
9609 }
9610
9611 /* Called after we have determined section placement. If sections
9612 move, we'll be called again. Provide a value for TOCstart. */
9613
9614 bfd_vma
9615 ppc64_elf_toc (bfd *obfd)
9616 {
9617 asection *s;
9618 bfd_vma TOCstart;
9619
9620 /* The TOC consists of sections .got, .toc, .tocbss, .plt in that
9621 order. The TOC starts where the first of these sections starts. */
9622 s = bfd_get_section_by_name (obfd, ".got");
9623 if (s == NULL)
9624 s = bfd_get_section_by_name (obfd, ".toc");
9625 if (s == NULL)
9626 s = bfd_get_section_by_name (obfd, ".tocbss");
9627 if (s == NULL)
9628 s = bfd_get_section_by_name (obfd, ".plt");
9629 if (s == NULL)
9630 {
9631 /* This may happen for
9632 o references to TOC base (SYM@toc / TOC[tc0]) without a
9633 .toc directive
9634 o bad linker script
9635 o --gc-sections and empty TOC sections
9636
9637 FIXME: Warn user? */
9638
9639 /* Look for a likely section. We probably won't even be
9640 using TOCstart. */
9641 for (s = obfd->sections; s != NULL; s = s->next)
9642 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_READONLY))
9643 == (SEC_ALLOC | SEC_SMALL_DATA))
9644 break;
9645 if (s == NULL)
9646 for (s = obfd->sections; s != NULL; s = s->next)
9647 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA))
9648 == (SEC_ALLOC | SEC_SMALL_DATA))
9649 break;
9650 if (s == NULL)
9651 for (s = obfd->sections; s != NULL; s = s->next)
9652 if ((s->flags & (SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
9653 break;
9654 if (s == NULL)
9655 for (s = obfd->sections; s != NULL; s = s->next)
9656 if ((s->flags & SEC_ALLOC) == SEC_ALLOC)
9657 break;
9658 }
9659
9660 TOCstart = 0;
9661 if (s != NULL)
9662 TOCstart = s->output_section->vma + s->output_offset;
9663
9664 return TOCstart;
9665 }
9666
9667 /* Build all the stubs associated with the current output file.
9668 The stubs are kept in a hash table attached to the main linker
9669 hash table. This function is called via gldelf64ppc_finish. */
9670
9671 bfd_boolean
9672 ppc64_elf_build_stubs (bfd_boolean emit_stub_syms,
9673 struct bfd_link_info *info,
9674 char **stats)
9675 {
9676 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9677 asection *stub_sec;
9678 bfd_byte *p;
9679 int stub_sec_count = 0;
9680
9681 htab->emit_stub_syms = emit_stub_syms;
9682
9683 /* Allocate memory to hold the linker stubs. */
9684 for (stub_sec = htab->stub_bfd->sections;
9685 stub_sec != NULL;
9686 stub_sec = stub_sec->next)
9687 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
9688 && stub_sec->size != 0)
9689 {
9690 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
9691 if (stub_sec->contents == NULL)
9692 return FALSE;
9693 /* We want to check that built size is the same as calculated
9694 size. rawsize is a convenient location to use. */
9695 stub_sec->rawsize = stub_sec->size;
9696 stub_sec->size = 0;
9697 }
9698
9699 if (htab->glink != NULL && htab->glink->size != 0)
9700 {
9701 unsigned int indx;
9702 bfd_vma plt0;
9703
9704 /* Build the .glink plt call stub. */
9705 if (htab->emit_stub_syms)
9706 {
9707 struct elf_link_hash_entry *h;
9708 h = elf_link_hash_lookup (&htab->elf, "__glink", TRUE, FALSE, FALSE);
9709 if (h == NULL)
9710 return FALSE;
9711 if (h->root.type == bfd_link_hash_new)
9712 {
9713 h->root.type = bfd_link_hash_defined;
9714 h->root.u.def.section = htab->glink;
9715 h->root.u.def.value = 8;
9716 h->ref_regular = 1;
9717 h->def_regular = 1;
9718 h->ref_regular_nonweak = 1;
9719 h->forced_local = 1;
9720 h->non_elf = 0;
9721 }
9722 }
9723 p = htab->glink->contents;
9724 plt0 = (htab->plt->output_section->vma
9725 + htab->plt->output_offset
9726 - (htab->glink->output_section->vma
9727 + htab->glink->output_offset
9728 + 16));
9729 bfd_put_64 (htab->glink->owner, plt0, p);
9730 p += 8;
9731 bfd_put_32 (htab->glink->owner, MFLR_R12, p);
9732 p += 4;
9733 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
9734 p += 4;
9735 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
9736 p += 4;
9737 bfd_put_32 (htab->glink->owner, LD_R2_M16R11, p);
9738 p += 4;
9739 bfd_put_32 (htab->glink->owner, MTLR_R12, p);
9740 p += 4;
9741 bfd_put_32 (htab->glink->owner, ADD_R12_R2_R11, p);
9742 p += 4;
9743 bfd_put_32 (htab->glink->owner, LD_R11_0R12, p);
9744 p += 4;
9745 bfd_put_32 (htab->glink->owner, LD_R2_0R12 | 8, p);
9746 p += 4;
9747 bfd_put_32 (htab->glink->owner, MTCTR_R11, p);
9748 p += 4;
9749 bfd_put_32 (htab->glink->owner, LD_R11_0R12 | 16, p);
9750 p += 4;
9751 bfd_put_32 (htab->glink->owner, BCTR, p);
9752 p += 4;
9753 while (p - htab->glink->contents < GLINK_CALL_STUB_SIZE)
9754 {
9755 bfd_put_32 (htab->glink->owner, NOP, p);
9756 p += 4;
9757 }
9758
9759 /* Build the .glink lazy link call stubs. */
9760 indx = 0;
9761 while (p < htab->glink->contents + htab->glink->size)
9762 {
9763 if (indx < 0x8000)
9764 {
9765 bfd_put_32 (htab->glink->owner, LI_R0_0 | indx, p);
9766 p += 4;
9767 }
9768 else
9769 {
9770 bfd_put_32 (htab->glink->owner, LIS_R0_0 | PPC_HI (indx), p);
9771 p += 4;
9772 bfd_put_32 (htab->glink->owner, ORI_R0_R0_0 | PPC_LO (indx), p);
9773 p += 4;
9774 }
9775 bfd_put_32 (htab->glink->owner,
9776 B_DOT | ((htab->glink->contents - p + 8) & 0x3fffffc), p);
9777 indx++;
9778 p += 4;
9779 }
9780 htab->glink->rawsize = p - htab->glink->contents;
9781 }
9782
9783 if (htab->brlt->size != 0)
9784 {
9785 htab->brlt->contents = bfd_zalloc (htab->brlt->owner,
9786 htab->brlt->size);
9787 if (htab->brlt->contents == NULL)
9788 return FALSE;
9789 }
9790 if (htab->relbrlt != NULL && htab->relbrlt->size != 0)
9791 {
9792 htab->relbrlt->contents = bfd_zalloc (htab->relbrlt->owner,
9793 htab->relbrlt->size);
9794 if (htab->relbrlt->contents == NULL)
9795 return FALSE;
9796 }
9797
9798 /* Build the stubs as directed by the stub hash table. */
9799 bfd_hash_traverse (&htab->stub_hash_table, ppc_build_one_stub, info);
9800
9801 if (htab->relbrlt != NULL)
9802 htab->relbrlt->reloc_count = 0;
9803
9804 for (stub_sec = htab->stub_bfd->sections;
9805 stub_sec != NULL;
9806 stub_sec = stub_sec->next)
9807 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
9808 {
9809 stub_sec_count += 1;
9810 if (stub_sec->rawsize != stub_sec->size)
9811 break;
9812 }
9813
9814 if (stub_sec != NULL
9815 || htab->glink->rawsize != htab->glink->size)
9816 {
9817 htab->stub_error = TRUE;
9818 (*_bfd_error_handler) (_("stubs don't match calculated size"));
9819 }
9820
9821 if (htab->stub_error)
9822 return FALSE;
9823
9824 if (stats != NULL)
9825 {
9826 *stats = bfd_malloc (500);
9827 if (*stats == NULL)
9828 return FALSE;
9829
9830 sprintf (*stats, _("linker stubs in %u group%s\n"
9831 " branch %lu\n"
9832 " toc adjust %lu\n"
9833 " long branch %lu\n"
9834 " long toc adj %lu\n"
9835 " plt call %lu"),
9836 stub_sec_count,
9837 stub_sec_count == 1 ? "" : "s",
9838 htab->stub_count[ppc_stub_long_branch - 1],
9839 htab->stub_count[ppc_stub_long_branch_r2off - 1],
9840 htab->stub_count[ppc_stub_plt_branch - 1],
9841 htab->stub_count[ppc_stub_plt_branch_r2off - 1],
9842 htab->stub_count[ppc_stub_plt_call - 1]);
9843 }
9844 return TRUE;
9845 }
9846
9847 /* This function undoes the changes made by add_symbol_adjust. */
9848
9849 static bfd_boolean
9850 undo_symbol_twiddle (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
9851 {
9852 struct ppc_link_hash_entry *eh;
9853
9854 if (h->root.type == bfd_link_hash_indirect)
9855 return TRUE;
9856
9857 if (h->root.type == bfd_link_hash_warning)
9858 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9859
9860 eh = (struct ppc_link_hash_entry *) h;
9861 if (eh->elf.root.type != bfd_link_hash_undefweak || !eh->was_undefined)
9862 return TRUE;
9863
9864 eh->elf.root.type = bfd_link_hash_undefined;
9865 return TRUE;
9866 }
9867
9868 void
9869 ppc64_elf_restore_symbols (struct bfd_link_info *info)
9870 {
9871 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9872 elf_link_hash_traverse (&htab->elf, undo_symbol_twiddle, info);
9873 }
9874
9875 /* What to do when ld finds relocations against symbols defined in
9876 discarded sections. */
9877
9878 static unsigned int
9879 ppc64_elf_action_discarded (asection *sec)
9880 {
9881 if (strcmp (".opd", sec->name) == 0)
9882 return 0;
9883
9884 if (strcmp (".toc", sec->name) == 0)
9885 return 0;
9886
9887 if (strcmp (".toc1", sec->name) == 0)
9888 return 0;
9889
9890 return _bfd_elf_default_action_discarded (sec);
9891 }
9892
9893 /* The RELOCATE_SECTION function is called by the ELF backend linker
9894 to handle the relocations for a section.
9895
9896 The relocs are always passed as Rela structures; if the section
9897 actually uses Rel structures, the r_addend field will always be
9898 zero.
9899
9900 This function is responsible for adjust the section contents as
9901 necessary, and (if using Rela relocs and generating a
9902 relocatable output file) adjusting the reloc addend as
9903 necessary.
9904
9905 This function does not have to worry about setting the reloc
9906 address or the reloc symbol index.
9907
9908 LOCAL_SYMS is a pointer to the swapped in local symbols.
9909
9910 LOCAL_SECTIONS is an array giving the section in the input file
9911 corresponding to the st_shndx field of each local symbol.
9912
9913 The global hash table entry for the global symbols can be found
9914 via elf_sym_hashes (input_bfd).
9915
9916 When generating relocatable output, this function must handle
9917 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
9918 going to be the section symbol corresponding to the output
9919 section, which means that the addend must be adjusted
9920 accordingly. */
9921
9922 static bfd_boolean
9923 ppc64_elf_relocate_section (bfd *output_bfd,
9924 struct bfd_link_info *info,
9925 bfd *input_bfd,
9926 asection *input_section,
9927 bfd_byte *contents,
9928 Elf_Internal_Rela *relocs,
9929 Elf_Internal_Sym *local_syms,
9930 asection **local_sections)
9931 {
9932 struct ppc_link_hash_table *htab;
9933 Elf_Internal_Shdr *symtab_hdr;
9934 struct elf_link_hash_entry **sym_hashes;
9935 Elf_Internal_Rela *rel;
9936 Elf_Internal_Rela *relend;
9937 Elf_Internal_Rela outrel;
9938 bfd_byte *loc;
9939 struct got_entry **local_got_ents;
9940 bfd_vma TOCstart;
9941 bfd_boolean ret = TRUE;
9942 bfd_boolean is_opd;
9943 /* Disabled until we sort out how ld should choose 'y' vs 'at'. */
9944 bfd_boolean is_power4 = FALSE;
9945 bfd_vma d_offset = (bfd_big_endian (output_bfd) ? 2 : 0);
9946
9947 /* Initialize howto table if needed. */
9948 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
9949 ppc_howto_init ();
9950
9951 htab = ppc_hash_table (info);
9952
9953 /* Don't relocate stub sections. */
9954 if (input_section->owner == htab->stub_bfd)
9955 return TRUE;
9956
9957 BFD_ASSERT (is_ppc64_elf (input_bfd));
9958
9959 local_got_ents = elf_local_got_ents (input_bfd);
9960 TOCstart = elf_gp (output_bfd);
9961 symtab_hdr = &elf_symtab_hdr (input_bfd);
9962 sym_hashes = elf_sym_hashes (input_bfd);
9963 is_opd = ppc64_elf_section_data (input_section)->sec_type == sec_opd;
9964
9965 rel = relocs;
9966 relend = relocs + input_section->reloc_count;
9967 for (; rel < relend; rel++)
9968 {
9969 enum elf_ppc64_reloc_type r_type;
9970 bfd_vma addend, orig_addend;
9971 bfd_reloc_status_type r;
9972 Elf_Internal_Sym *sym;
9973 asection *sec;
9974 struct elf_link_hash_entry *h_elf;
9975 struct ppc_link_hash_entry *h;
9976 struct ppc_link_hash_entry *fdh;
9977 const char *sym_name;
9978 unsigned long r_symndx, toc_symndx;
9979 char tls_mask, tls_gd, tls_type;
9980 char sym_type;
9981 bfd_vma relocation;
9982 bfd_boolean unresolved_reloc;
9983 bfd_boolean warned;
9984 unsigned long insn, mask;
9985 struct ppc_stub_hash_entry *stub_entry;
9986 bfd_vma max_br_offset;
9987 bfd_vma from;
9988
9989 r_type = ELF64_R_TYPE (rel->r_info);
9990 r_symndx = ELF64_R_SYM (rel->r_info);
9991
9992 /* For old style R_PPC64_TOC relocs with a zero symbol, use the
9993 symbol of the previous ADDR64 reloc. The symbol gives us the
9994 proper TOC base to use. */
9995 if (rel->r_info == ELF64_R_INFO (0, R_PPC64_TOC)
9996 && rel != relocs
9997 && ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_ADDR64
9998 && is_opd)
9999 r_symndx = ELF64_R_SYM (rel[-1].r_info);
10000
10001 sym = NULL;
10002 sec = NULL;
10003 h_elf = NULL;
10004 sym_name = NULL;
10005 unresolved_reloc = FALSE;
10006 warned = FALSE;
10007 orig_addend = rel->r_addend;
10008
10009 if (r_symndx < symtab_hdr->sh_info)
10010 {
10011 /* It's a local symbol. */
10012 struct _opd_sec_data *opd;
10013
10014 sym = local_syms + r_symndx;
10015 sec = local_sections[r_symndx];
10016 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, sec);
10017 sym_type = ELF64_ST_TYPE (sym->st_info);
10018 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10019 opd = get_opd_info (sec);
10020 if (opd != NULL && opd->adjust != NULL)
10021 {
10022 long adjust = opd->adjust[(sym->st_value + rel->r_addend) / 8];
10023 if (adjust == -1)
10024 relocation = 0;
10025 else
10026 {
10027 /* If this is a relocation against the opd section sym
10028 and we have edited .opd, adjust the reloc addend so
10029 that ld -r and ld --emit-relocs output is correct.
10030 If it is a reloc against some other .opd symbol,
10031 then the symbol value will be adjusted later. */
10032 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10033 rel->r_addend += adjust;
10034 else
10035 relocation += adjust;
10036 }
10037 }
10038 }
10039 else
10040 {
10041 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
10042 r_symndx, symtab_hdr, sym_hashes,
10043 h_elf, sec, relocation,
10044 unresolved_reloc, warned);
10045 sym_name = h_elf->root.root.string;
10046 sym_type = h_elf->type;
10047 }
10048 h = (struct ppc_link_hash_entry *) h_elf;
10049
10050 if (sec != NULL && elf_discarded_section (sec))
10051 {
10052 /* For relocs against symbols from removed linkonce sections,
10053 or sections discarded by a linker script, we just want the
10054 section contents zeroed. Avoid any special processing. */
10055 _bfd_clear_contents (ppc64_elf_howto_table[r_type], input_bfd,
10056 contents + rel->r_offset);
10057 rel->r_info = 0;
10058 rel->r_addend = 0;
10059 continue;
10060 }
10061
10062 if (info->relocatable)
10063 continue;
10064
10065 /* TLS optimizations. Replace instruction sequences and relocs
10066 based on information we collected in tls_optimize. We edit
10067 RELOCS so that --emit-relocs will output something sensible
10068 for the final instruction stream. */
10069 tls_mask = 0;
10070 tls_gd = 0;
10071 toc_symndx = 0;
10072 if (IS_PPC64_TLS_RELOC (r_type))
10073 {
10074 if (h != NULL)
10075 tls_mask = h->tls_mask;
10076 else if (local_got_ents != NULL)
10077 {
10078 char *lgot_masks;
10079 lgot_masks = (char *) (local_got_ents + symtab_hdr->sh_info);
10080 tls_mask = lgot_masks[r_symndx];
10081 }
10082 if (tls_mask == 0 && r_type == R_PPC64_TLS)
10083 {
10084 /* Check for toc tls entries. */
10085 char *toc_tls;
10086
10087 if (!get_tls_mask (&toc_tls, &toc_symndx, &local_syms,
10088 rel, input_bfd))
10089 return FALSE;
10090
10091 if (toc_tls)
10092 tls_mask = *toc_tls;
10093 }
10094 }
10095
10096 /* Check that tls relocs are used with tls syms, and non-tls
10097 relocs are used with non-tls syms. */
10098 if (r_symndx != 0
10099 && r_type != R_PPC64_NONE
10100 && (h == NULL
10101 || h->elf.root.type == bfd_link_hash_defined
10102 || h->elf.root.type == bfd_link_hash_defweak)
10103 && IS_PPC64_TLS_RELOC (r_type) != (sym_type == STT_TLS))
10104 {
10105 if (r_type == R_PPC64_TLS && tls_mask != 0)
10106 /* R_PPC64_TLS is OK against a symbol in the TOC. */
10107 ;
10108 else
10109 (*_bfd_error_handler)
10110 (sym_type == STT_TLS
10111 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
10112 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s"),
10113 input_bfd,
10114 input_section,
10115 (long) rel->r_offset,
10116 ppc64_elf_howto_table[r_type]->name,
10117 sym_name);
10118 }
10119
10120 /* Ensure reloc mapping code below stays sane. */
10121 if (R_PPC64_TOC16_LO_DS != R_PPC64_TOC16_DS + 1
10122 || R_PPC64_TOC16_LO != R_PPC64_TOC16 + 1
10123 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TLSGD16 & 3)
10124 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TLSGD16_LO & 3)
10125 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TLSGD16_HI & 3)
10126 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TLSGD16_HA & 3)
10127 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TPREL16_DS & 3)
10128 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TPREL16_LO_DS & 3)
10129 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TPREL16_HI & 3)
10130 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TPREL16_HA & 3))
10131 abort ();
10132
10133 switch (r_type)
10134 {
10135 default:
10136 break;
10137
10138 case R_PPC64_TOC16:
10139 case R_PPC64_TOC16_LO:
10140 case R_PPC64_TOC16_DS:
10141 case R_PPC64_TOC16_LO_DS:
10142 {
10143 /* Check for toc tls entries. */
10144 char *toc_tls;
10145 int retval;
10146
10147 retval = get_tls_mask (&toc_tls, &toc_symndx, &local_syms,
10148 rel, input_bfd);
10149 if (retval == 0)
10150 return FALSE;
10151
10152 if (toc_tls)
10153 {
10154 tls_mask = *toc_tls;
10155 if (r_type == R_PPC64_TOC16_DS
10156 || r_type == R_PPC64_TOC16_LO_DS)
10157 {
10158 if (tls_mask != 0
10159 && (tls_mask & (TLS_DTPREL | TLS_TPREL)) == 0)
10160 goto toctprel;
10161 }
10162 else
10163 {
10164 /* If we found a GD reloc pair, then we might be
10165 doing a GD->IE transition. */
10166 if (retval == 2)
10167 {
10168 tls_gd = TLS_TPRELGD;
10169 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
10170 goto tls_ldgd_opt;
10171 }
10172 else if (retval == 3)
10173 {
10174 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
10175 goto tls_ldgd_opt;
10176 }
10177 }
10178 }
10179 }
10180 break;
10181
10182 case R_PPC64_GOT_TPREL16_DS:
10183 case R_PPC64_GOT_TPREL16_LO_DS:
10184 if (tls_mask != 0
10185 && (tls_mask & TLS_TPREL) == 0)
10186 {
10187 toctprel:
10188 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - d_offset);
10189 insn &= 31 << 21;
10190 insn |= 0x3c0d0000; /* addis 0,13,0 */
10191 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - d_offset);
10192 r_type = R_PPC64_TPREL16_HA;
10193 if (toc_symndx != 0)
10194 {
10195 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
10196 /* We changed the symbol. Start over in order to
10197 get h, sym, sec etc. right. */
10198 rel--;
10199 continue;
10200 }
10201 else
10202 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
10203 }
10204 break;
10205
10206 case R_PPC64_TLS:
10207 if (tls_mask != 0
10208 && (tls_mask & TLS_TPREL) == 0)
10209 {
10210 bfd_vma rtra;
10211 insn = bfd_get_32 (output_bfd, contents + rel->r_offset);
10212 if ((insn & ((0x3f << 26) | (31 << 11)))
10213 == ((31 << 26) | (13 << 11)))
10214 rtra = insn & ((1 << 26) - (1 << 16));
10215 else if ((insn & ((0x3f << 26) | (31 << 16)))
10216 == ((31 << 26) | (13 << 16)))
10217 rtra = (insn & (31 << 21)) | ((insn & (31 << 11)) << 5);
10218 else
10219 abort ();
10220 if ((insn & ((1 << 11) - (1 << 1))) == 266 << 1)
10221 /* add -> addi. */
10222 insn = 14 << 26;
10223 else if ((insn & (31 << 1)) == 23 << 1
10224 && ((insn & (31 << 6)) < 14 << 6
10225 || ((insn & (31 << 6)) >= 16 << 6
10226 && (insn & (31 << 6)) < 24 << 6)))
10227 /* load and store indexed -> dform. */
10228 insn = (32 | ((insn >> 6) & 31)) << 26;
10229 else if ((insn & (31 << 1)) == 21 << 1
10230 && (insn & (0x1a << 6)) == 0)
10231 /* ldx, ldux, stdx, stdux -> ld, ldu, std, stdu. */
10232 insn = (((58 | ((insn >> 6) & 4)) << 26)
10233 | ((insn >> 6) & 1));
10234 else if ((insn & (31 << 1)) == 21 << 1
10235 && (insn & ((1 << 11) - (1 << 1))) == 341 << 1)
10236 /* lwax -> lwa. */
10237 insn = (58 << 26) | 2;
10238 else
10239 abort ();
10240 insn |= rtra;
10241 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
10242 /* Was PPC64_TLS which sits on insn boundary, now
10243 PPC64_TPREL16_LO which is at low-order half-word. */
10244 rel->r_offset += d_offset;
10245 r_type = R_PPC64_TPREL16_LO;
10246 if (toc_symndx != 0)
10247 {
10248 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
10249 /* We changed the symbol. Start over in order to
10250 get h, sym, sec etc. right. */
10251 rel--;
10252 continue;
10253 }
10254 else
10255 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
10256 }
10257 break;
10258
10259 case R_PPC64_GOT_TLSGD16_HI:
10260 case R_PPC64_GOT_TLSGD16_HA:
10261 tls_gd = TLS_TPRELGD;
10262 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
10263 goto tls_gdld_hi;
10264 break;
10265
10266 case R_PPC64_GOT_TLSLD16_HI:
10267 case R_PPC64_GOT_TLSLD16_HA:
10268 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
10269 {
10270 tls_gdld_hi:
10271 if ((tls_mask & tls_gd) != 0)
10272 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
10273 + R_PPC64_GOT_TPREL16_DS);
10274 else
10275 {
10276 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
10277 rel->r_offset -= d_offset;
10278 r_type = R_PPC64_NONE;
10279 }
10280 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
10281 }
10282 break;
10283
10284 case R_PPC64_GOT_TLSGD16:
10285 case R_PPC64_GOT_TLSGD16_LO:
10286 tls_gd = TLS_TPRELGD;
10287 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
10288 goto tls_ldgd_opt;
10289 break;
10290
10291 case R_PPC64_GOT_TLSLD16:
10292 case R_PPC64_GOT_TLSLD16_LO:
10293 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
10294 {
10295 bfd_vma insn1, insn2, insn3;
10296 bfd_vma offset;
10297
10298 tls_ldgd_opt:
10299 /* We know that the next reloc is on a tls_get_addr
10300 call, since ppc64_elf_tls_optimize checks this. */
10301 offset = rel[1].r_offset;
10302 insn1 = bfd_get_32 (output_bfd,
10303 contents + rel->r_offset - d_offset);
10304 insn3 = bfd_get_32 (output_bfd,
10305 contents + offset + 4);
10306 if ((tls_mask & tls_gd) != 0)
10307 {
10308 /* IE */
10309 insn1 &= (1 << 26) - (1 << 2);
10310 insn1 |= 58 << 26; /* ld */
10311 insn2 = 0x7c636a14; /* add 3,3,13 */
10312 rel[1].r_info = ELF64_R_INFO (ELF64_R_SYM (rel[1].r_info),
10313 R_PPC64_NONE);
10314 if ((tls_mask & TLS_EXPLICIT) == 0)
10315 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
10316 + R_PPC64_GOT_TPREL16_DS);
10317 else
10318 r_type += R_PPC64_TOC16_DS - R_PPC64_TOC16;
10319 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
10320 }
10321 else
10322 {
10323 /* LE */
10324 insn1 = 0x3c6d0000; /* addis 3,13,0 */
10325 insn2 = 0x38630000; /* addi 3,3,0 */
10326 if (tls_gd == 0)
10327 {
10328 /* Was an LD reloc. */
10329 r_symndx = 0;
10330 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
10331 rel[1].r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
10332 }
10333 else if (toc_symndx != 0)
10334 r_symndx = toc_symndx;
10335 r_type = R_PPC64_TPREL16_HA;
10336 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
10337 rel[1].r_info = ELF64_R_INFO (r_symndx,
10338 R_PPC64_TPREL16_LO);
10339 rel[1].r_offset += d_offset;
10340 }
10341 if (insn3 == NOP
10342 || insn3 == CROR_151515 || insn3 == CROR_313131)
10343 {
10344 insn3 = insn2;
10345 insn2 = NOP;
10346 rel[1].r_offset += 4;
10347 }
10348 bfd_put_32 (output_bfd, insn1,
10349 contents + rel->r_offset - d_offset);
10350 bfd_put_32 (output_bfd, insn2, contents + offset);
10351 bfd_put_32 (output_bfd, insn3, contents + offset + 4);
10352 if (tls_gd == 0 || toc_symndx != 0)
10353 {
10354 /* We changed the symbol. Start over in order
10355 to get h, sym, sec etc. right. */
10356 rel--;
10357 continue;
10358 }
10359 }
10360 break;
10361
10362 case R_PPC64_DTPMOD64:
10363 if (rel + 1 < relend
10364 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
10365 && rel[1].r_offset == rel->r_offset + 8)
10366 {
10367 if ((tls_mask & TLS_GD) == 0)
10368 {
10369 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_NONE);
10370 if ((tls_mask & TLS_TPRELGD) != 0)
10371 r_type = R_PPC64_TPREL64;
10372 else
10373 {
10374 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
10375 r_type = R_PPC64_NONE;
10376 }
10377 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
10378 }
10379 }
10380 else
10381 {
10382 if ((tls_mask & TLS_LD) == 0)
10383 {
10384 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
10385 r_type = R_PPC64_NONE;
10386 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
10387 }
10388 }
10389 break;
10390
10391 case R_PPC64_TPREL64:
10392 if ((tls_mask & TLS_TPREL) == 0)
10393 {
10394 r_type = R_PPC64_NONE;
10395 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
10396 }
10397 break;
10398 }
10399
10400 /* Handle other relocations that tweak non-addend part of insn. */
10401 insn = 0;
10402 max_br_offset = 1 << 25;
10403 addend = rel->r_addend;
10404 switch (r_type)
10405 {
10406 default:
10407 break;
10408
10409 /* Branch taken prediction relocations. */
10410 case R_PPC64_ADDR14_BRTAKEN:
10411 case R_PPC64_REL14_BRTAKEN:
10412 insn = 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
10413 /* Fall thru. */
10414
10415 /* Branch not taken prediction relocations. */
10416 case R_PPC64_ADDR14_BRNTAKEN:
10417 case R_PPC64_REL14_BRNTAKEN:
10418 insn |= bfd_get_32 (output_bfd,
10419 contents + rel->r_offset) & ~(0x01 << 21);
10420 /* Fall thru. */
10421
10422 case R_PPC64_REL14:
10423 max_br_offset = 1 << 15;
10424 /* Fall thru. */
10425
10426 case R_PPC64_REL24:
10427 /* Calls to functions with a different TOC, such as calls to
10428 shared objects, need to alter the TOC pointer. This is
10429 done using a linkage stub. A REL24 branching to these
10430 linkage stubs needs to be followed by a nop, as the nop
10431 will be replaced with an instruction to restore the TOC
10432 base pointer. */
10433 stub_entry = NULL;
10434 fdh = h;
10435 if (((h != NULL
10436 && (((fdh = h->oh) != NULL
10437 && fdh->elf.plt.plist != NULL)
10438 || (fdh = h)->elf.plt.plist != NULL))
10439 || (sec != NULL
10440 && sec->output_section != NULL
10441 && sec->id <= htab->top_id
10442 && (htab->stub_group[sec->id].toc_off
10443 != htab->stub_group[input_section->id].toc_off)))
10444 && (stub_entry = ppc_get_stub_entry (input_section, sec, fdh,
10445 rel, htab)) != NULL
10446 && (stub_entry->stub_type == ppc_stub_plt_call
10447 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
10448 || stub_entry->stub_type == ppc_stub_long_branch_r2off))
10449 {
10450 bfd_boolean can_plt_call = FALSE;
10451
10452 if (rel->r_offset + 8 <= input_section->size)
10453 {
10454 unsigned long nop;
10455 nop = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
10456 if (nop == NOP
10457 || nop == CROR_151515 || nop == CROR_313131)
10458 {
10459 bfd_put_32 (input_bfd, LD_R2_40R1,
10460 contents + rel->r_offset + 4);
10461 can_plt_call = TRUE;
10462 }
10463 }
10464
10465 if (!can_plt_call)
10466 {
10467 if (stub_entry->stub_type == ppc_stub_plt_call)
10468 {
10469 /* If this is a plain branch rather than a branch
10470 and link, don't require a nop. However, don't
10471 allow tail calls in a shared library as they
10472 will result in r2 being corrupted. */
10473 unsigned long br;
10474 br = bfd_get_32 (input_bfd, contents + rel->r_offset);
10475 if (info->executable && (br & 1) == 0)
10476 can_plt_call = TRUE;
10477 else
10478 stub_entry = NULL;
10479 }
10480 else if (h != NULL
10481 && strcmp (h->elf.root.root.string,
10482 ".__libc_start_main") == 0)
10483 {
10484 /* Allow crt1 branch to go via a toc adjusting stub. */
10485 can_plt_call = TRUE;
10486 }
10487 else
10488 {
10489 if (strcmp (input_section->output_section->name,
10490 ".init") == 0
10491 || strcmp (input_section->output_section->name,
10492 ".fini") == 0)
10493 (*_bfd_error_handler)
10494 (_("%B(%A+0x%lx): automatic multiple TOCs "
10495 "not supported using your crt files; "
10496 "recompile with -mminimal-toc or upgrade gcc"),
10497 input_bfd,
10498 input_section,
10499 (long) rel->r_offset);
10500 else
10501 (*_bfd_error_handler)
10502 (_("%B(%A+0x%lx): sibling call optimization to `%s' "
10503 "does not allow automatic multiple TOCs; "
10504 "recompile with -mminimal-toc or "
10505 "-fno-optimize-sibling-calls, "
10506 "or make `%s' extern"),
10507 input_bfd,
10508 input_section,
10509 (long) rel->r_offset,
10510 sym_name,
10511 sym_name);
10512 bfd_set_error (bfd_error_bad_value);
10513 ret = FALSE;
10514 }
10515 }
10516
10517 if (can_plt_call
10518 && stub_entry->stub_type == ppc_stub_plt_call)
10519 unresolved_reloc = FALSE;
10520 }
10521
10522 if (stub_entry == NULL
10523 && get_opd_info (sec) != NULL)
10524 {
10525 /* The branch destination is the value of the opd entry. */
10526 bfd_vma off = (relocation + addend
10527 - sec->output_section->vma
10528 - sec->output_offset);
10529 bfd_vma dest = opd_entry_value (sec, off, NULL, NULL);
10530 if (dest != (bfd_vma) -1)
10531 {
10532 relocation = dest;
10533 addend = 0;
10534 }
10535 }
10536
10537 /* If the branch is out of reach we ought to have a long
10538 branch stub. */
10539 from = (rel->r_offset
10540 + input_section->output_offset
10541 + input_section->output_section->vma);
10542
10543 if (stub_entry == NULL
10544 && (relocation + addend - from + max_br_offset
10545 >= 2 * max_br_offset)
10546 && r_type != R_PPC64_ADDR14_BRTAKEN
10547 && r_type != R_PPC64_ADDR14_BRNTAKEN)
10548 stub_entry = ppc_get_stub_entry (input_section, sec, h, rel,
10549 htab);
10550
10551 if (stub_entry != NULL)
10552 {
10553 /* Munge up the value and addend so that we call the stub
10554 rather than the procedure directly. */
10555 relocation = (stub_entry->stub_offset
10556 + stub_entry->stub_sec->output_offset
10557 + stub_entry->stub_sec->output_section->vma);
10558 addend = 0;
10559 }
10560
10561 if (insn != 0)
10562 {
10563 if (is_power4)
10564 {
10565 /* Set 'a' bit. This is 0b00010 in BO field for branch
10566 on CR(BI) insns (BO == 001at or 011at), and 0b01000
10567 for branch on CTR insns (BO == 1a00t or 1a01t). */
10568 if ((insn & (0x14 << 21)) == (0x04 << 21))
10569 insn |= 0x02 << 21;
10570 else if ((insn & (0x14 << 21)) == (0x10 << 21))
10571 insn |= 0x08 << 21;
10572 else
10573 break;
10574 }
10575 else
10576 {
10577 /* Invert 'y' bit if not the default. */
10578 if ((bfd_signed_vma) (relocation + addend - from) < 0)
10579 insn ^= 0x01 << 21;
10580 }
10581
10582 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
10583 }
10584
10585 /* NOP out calls to undefined weak functions.
10586 We can thus call a weak function without first
10587 checking whether the function is defined. */
10588 else if (h != NULL
10589 && h->elf.root.type == bfd_link_hash_undefweak
10590 && r_type == R_PPC64_REL24
10591 && relocation == 0
10592 && addend == 0)
10593 {
10594 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
10595 continue;
10596 }
10597 break;
10598 }
10599
10600 /* Set `addend'. */
10601 tls_type = 0;
10602 switch (r_type)
10603 {
10604 default:
10605 (*_bfd_error_handler)
10606 (_("%B: unknown relocation type %d for symbol %s"),
10607 input_bfd, (int) r_type, sym_name);
10608
10609 bfd_set_error (bfd_error_bad_value);
10610 ret = FALSE;
10611 continue;
10612
10613 case R_PPC64_NONE:
10614 case R_PPC64_TLS:
10615 case R_PPC64_GNU_VTINHERIT:
10616 case R_PPC64_GNU_VTENTRY:
10617 continue;
10618
10619 /* GOT16 relocations. Like an ADDR16 using the symbol's
10620 address in the GOT as relocation value instead of the
10621 symbol's value itself. Also, create a GOT entry for the
10622 symbol and put the symbol value there. */
10623 case R_PPC64_GOT_TLSGD16:
10624 case R_PPC64_GOT_TLSGD16_LO:
10625 case R_PPC64_GOT_TLSGD16_HI:
10626 case R_PPC64_GOT_TLSGD16_HA:
10627 tls_type = TLS_TLS | TLS_GD;
10628 goto dogot;
10629
10630 case R_PPC64_GOT_TLSLD16:
10631 case R_PPC64_GOT_TLSLD16_LO:
10632 case R_PPC64_GOT_TLSLD16_HI:
10633 case R_PPC64_GOT_TLSLD16_HA:
10634 tls_type = TLS_TLS | TLS_LD;
10635 goto dogot;
10636
10637 case R_PPC64_GOT_TPREL16_DS:
10638 case R_PPC64_GOT_TPREL16_LO_DS:
10639 case R_PPC64_GOT_TPREL16_HI:
10640 case R_PPC64_GOT_TPREL16_HA:
10641 tls_type = TLS_TLS | TLS_TPREL;
10642 goto dogot;
10643
10644 case R_PPC64_GOT_DTPREL16_DS:
10645 case R_PPC64_GOT_DTPREL16_LO_DS:
10646 case R_PPC64_GOT_DTPREL16_HI:
10647 case R_PPC64_GOT_DTPREL16_HA:
10648 tls_type = TLS_TLS | TLS_DTPREL;
10649 goto dogot;
10650
10651 case R_PPC64_GOT16:
10652 case R_PPC64_GOT16_LO:
10653 case R_PPC64_GOT16_HI:
10654 case R_PPC64_GOT16_HA:
10655 case R_PPC64_GOT16_DS:
10656 case R_PPC64_GOT16_LO_DS:
10657 dogot:
10658 {
10659 /* Relocation is to the entry for this symbol in the global
10660 offset table. */
10661 asection *got;
10662 bfd_vma *offp;
10663 bfd_vma off;
10664 unsigned long indx = 0;
10665
10666 if (tls_type == (TLS_TLS | TLS_LD)
10667 && (h == NULL
10668 || !h->elf.def_dynamic))
10669 offp = &ppc64_tlsld_got (input_bfd)->offset;
10670 else
10671 {
10672 struct got_entry *ent;
10673
10674 if (h != NULL)
10675 {
10676 bfd_boolean dyn = htab->elf.dynamic_sections_created;
10677 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
10678 &h->elf)
10679 || (info->shared
10680 && SYMBOL_REFERENCES_LOCAL (info, &h->elf)))
10681 /* This is actually a static link, or it is a
10682 -Bsymbolic link and the symbol is defined
10683 locally, or the symbol was forced to be local
10684 because of a version file. */
10685 ;
10686 else
10687 {
10688 indx = h->elf.dynindx;
10689 unresolved_reloc = FALSE;
10690 }
10691 ent = h->elf.got.glist;
10692 }
10693 else
10694 {
10695 if (local_got_ents == NULL)
10696 abort ();
10697 ent = local_got_ents[r_symndx];
10698 }
10699
10700 for (; ent != NULL; ent = ent->next)
10701 if (ent->addend == orig_addend
10702 && ent->owner == input_bfd
10703 && ent->tls_type == tls_type)
10704 break;
10705 if (ent == NULL)
10706 abort ();
10707 offp = &ent->got.offset;
10708 }
10709
10710 got = ppc64_elf_tdata (input_bfd)->got;
10711 if (got == NULL)
10712 abort ();
10713
10714 /* The offset must always be a multiple of 8. We use the
10715 least significant bit to record whether we have already
10716 processed this entry. */
10717 off = *offp;
10718 if ((off & 1) != 0)
10719 off &= ~1;
10720 else
10721 {
10722 /* Generate relocs for the dynamic linker, except in
10723 the case of TLSLD where we'll use one entry per
10724 module. */
10725 asection *relgot = ppc64_elf_tdata (input_bfd)->relgot;
10726
10727 *offp = off | 1;
10728 if ((info->shared || indx != 0)
10729 && (h == NULL
10730 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
10731 || h->elf.root.type != bfd_link_hash_undefweak))
10732 {
10733 outrel.r_offset = (got->output_section->vma
10734 + got->output_offset
10735 + off);
10736 outrel.r_addend = addend;
10737 if (tls_type & (TLS_LD | TLS_GD))
10738 {
10739 outrel.r_addend = 0;
10740 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPMOD64);
10741 if (tls_type == (TLS_TLS | TLS_GD))
10742 {
10743 loc = relgot->contents;
10744 loc += (relgot->reloc_count++
10745 * sizeof (Elf64_External_Rela));
10746 bfd_elf64_swap_reloca_out (output_bfd,
10747 &outrel, loc);
10748 outrel.r_offset += 8;
10749 outrel.r_addend = addend;
10750 outrel.r_info
10751 = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
10752 }
10753 }
10754 else if (tls_type == (TLS_TLS | TLS_DTPREL))
10755 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
10756 else if (tls_type == (TLS_TLS | TLS_TPREL))
10757 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_TPREL64);
10758 else if (indx == 0)
10759 {
10760 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_RELATIVE);
10761
10762 /* Write the .got section contents for the sake
10763 of prelink. */
10764 loc = got->contents + off;
10765 bfd_put_64 (output_bfd, outrel.r_addend + relocation,
10766 loc);
10767 }
10768 else
10769 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_GLOB_DAT);
10770
10771 if (indx == 0 && tls_type != (TLS_TLS | TLS_LD))
10772 {
10773 outrel.r_addend += relocation;
10774 if (tls_type & (TLS_GD | TLS_DTPREL | TLS_TPREL))
10775 outrel.r_addend -= htab->elf.tls_sec->vma;
10776 }
10777 loc = relgot->contents;
10778 loc += (relgot->reloc_count++
10779 * sizeof (Elf64_External_Rela));
10780 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
10781 }
10782
10783 /* Init the .got section contents here if we're not
10784 emitting a reloc. */
10785 else
10786 {
10787 relocation += addend;
10788 if (tls_type == (TLS_TLS | TLS_LD))
10789 relocation = 1;
10790 else if (tls_type != 0)
10791 {
10792 relocation -= htab->elf.tls_sec->vma + DTP_OFFSET;
10793 if (tls_type == (TLS_TLS | TLS_TPREL))
10794 relocation += DTP_OFFSET - TP_OFFSET;
10795
10796 if (tls_type == (TLS_TLS | TLS_GD))
10797 {
10798 bfd_put_64 (output_bfd, relocation,
10799 got->contents + off + 8);
10800 relocation = 1;
10801 }
10802 }
10803
10804 bfd_put_64 (output_bfd, relocation,
10805 got->contents + off);
10806 }
10807 }
10808
10809 if (off >= (bfd_vma) -2)
10810 abort ();
10811
10812 relocation = got->output_offset + off;
10813
10814 /* TOC base (r2) is TOC start plus 0x8000. */
10815 addend = -TOC_BASE_OFF;
10816 }
10817 break;
10818
10819 case R_PPC64_PLT16_HA:
10820 case R_PPC64_PLT16_HI:
10821 case R_PPC64_PLT16_LO:
10822 case R_PPC64_PLT32:
10823 case R_PPC64_PLT64:
10824 /* Relocation is to the entry for this symbol in the
10825 procedure linkage table. */
10826
10827 /* Resolve a PLT reloc against a local symbol directly,
10828 without using the procedure linkage table. */
10829 if (h == NULL)
10830 break;
10831
10832 /* It's possible that we didn't make a PLT entry for this
10833 symbol. This happens when statically linking PIC code,
10834 or when using -Bsymbolic. Go find a match if there is a
10835 PLT entry. */
10836 if (htab->plt != NULL)
10837 {
10838 struct plt_entry *ent;
10839 for (ent = h->elf.plt.plist; ent != NULL; ent = ent->next)
10840 if (ent->addend == orig_addend
10841 && ent->plt.offset != (bfd_vma) -1)
10842 {
10843 relocation = (htab->plt->output_section->vma
10844 + htab->plt->output_offset
10845 + ent->plt.offset);
10846 unresolved_reloc = FALSE;
10847 }
10848 }
10849 break;
10850
10851 case R_PPC64_TOC:
10852 /* Relocation value is TOC base. */
10853 relocation = TOCstart;
10854 if (r_symndx == 0)
10855 relocation += htab->stub_group[input_section->id].toc_off;
10856 else if (unresolved_reloc)
10857 ;
10858 else if (sec != NULL && sec->id <= htab->top_id)
10859 relocation += htab->stub_group[sec->id].toc_off;
10860 else
10861 unresolved_reloc = TRUE;
10862 goto dodyn;
10863
10864 /* TOC16 relocs. We want the offset relative to the TOC base,
10865 which is the address of the start of the TOC plus 0x8000.
10866 The TOC consists of sections .got, .toc, .tocbss, and .plt,
10867 in this order. */
10868 case R_PPC64_TOC16:
10869 case R_PPC64_TOC16_LO:
10870 case R_PPC64_TOC16_HI:
10871 case R_PPC64_TOC16_DS:
10872 case R_PPC64_TOC16_LO_DS:
10873 case R_PPC64_TOC16_HA:
10874 addend -= TOCstart + htab->stub_group[input_section->id].toc_off;
10875 break;
10876
10877 /* Relocate against the beginning of the section. */
10878 case R_PPC64_SECTOFF:
10879 case R_PPC64_SECTOFF_LO:
10880 case R_PPC64_SECTOFF_HI:
10881 case R_PPC64_SECTOFF_DS:
10882 case R_PPC64_SECTOFF_LO_DS:
10883 case R_PPC64_SECTOFF_HA:
10884 if (sec != NULL)
10885 addend -= sec->output_section->vma;
10886 break;
10887
10888 case R_PPC64_REL14:
10889 case R_PPC64_REL14_BRNTAKEN:
10890 case R_PPC64_REL14_BRTAKEN:
10891 case R_PPC64_REL24:
10892 break;
10893
10894 case R_PPC64_TPREL16:
10895 case R_PPC64_TPREL16_LO:
10896 case R_PPC64_TPREL16_HI:
10897 case R_PPC64_TPREL16_HA:
10898 case R_PPC64_TPREL16_DS:
10899 case R_PPC64_TPREL16_LO_DS:
10900 case R_PPC64_TPREL16_HIGHER:
10901 case R_PPC64_TPREL16_HIGHERA:
10902 case R_PPC64_TPREL16_HIGHEST:
10903 case R_PPC64_TPREL16_HIGHESTA:
10904 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
10905 if (info->shared)
10906 /* The TPREL16 relocs shouldn't really be used in shared
10907 libs as they will result in DT_TEXTREL being set, but
10908 support them anyway. */
10909 goto dodyn;
10910 break;
10911
10912 case R_PPC64_DTPREL16:
10913 case R_PPC64_DTPREL16_LO:
10914 case R_PPC64_DTPREL16_HI:
10915 case R_PPC64_DTPREL16_HA:
10916 case R_PPC64_DTPREL16_DS:
10917 case R_PPC64_DTPREL16_LO_DS:
10918 case R_PPC64_DTPREL16_HIGHER:
10919 case R_PPC64_DTPREL16_HIGHERA:
10920 case R_PPC64_DTPREL16_HIGHEST:
10921 case R_PPC64_DTPREL16_HIGHESTA:
10922 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
10923 break;
10924
10925 case R_PPC64_DTPMOD64:
10926 relocation = 1;
10927 addend = 0;
10928 goto dodyn;
10929
10930 case R_PPC64_TPREL64:
10931 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
10932 goto dodyn;
10933
10934 case R_PPC64_DTPREL64:
10935 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
10936 /* Fall thru */
10937
10938 /* Relocations that may need to be propagated if this is a
10939 dynamic object. */
10940 case R_PPC64_REL30:
10941 case R_PPC64_REL32:
10942 case R_PPC64_REL64:
10943 case R_PPC64_ADDR14:
10944 case R_PPC64_ADDR14_BRNTAKEN:
10945 case R_PPC64_ADDR14_BRTAKEN:
10946 case R_PPC64_ADDR16:
10947 case R_PPC64_ADDR16_DS:
10948 case R_PPC64_ADDR16_HA:
10949 case R_PPC64_ADDR16_HI:
10950 case R_PPC64_ADDR16_HIGHER:
10951 case R_PPC64_ADDR16_HIGHERA:
10952 case R_PPC64_ADDR16_HIGHEST:
10953 case R_PPC64_ADDR16_HIGHESTA:
10954 case R_PPC64_ADDR16_LO:
10955 case R_PPC64_ADDR16_LO_DS:
10956 case R_PPC64_ADDR24:
10957 case R_PPC64_ADDR32:
10958 case R_PPC64_ADDR64:
10959 case R_PPC64_UADDR16:
10960 case R_PPC64_UADDR32:
10961 case R_PPC64_UADDR64:
10962 dodyn:
10963 if ((input_section->flags & SEC_ALLOC) == 0)
10964 break;
10965
10966 if (NO_OPD_RELOCS && is_opd)
10967 break;
10968
10969 if ((info->shared
10970 && (h == NULL
10971 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
10972 || h->elf.root.type != bfd_link_hash_undefweak)
10973 && (MUST_BE_DYN_RELOC (r_type)
10974 || !SYMBOL_CALLS_LOCAL (info, &h->elf)))
10975 || (ELIMINATE_COPY_RELOCS
10976 && !info->shared
10977 && h != NULL
10978 && h->elf.dynindx != -1
10979 && !h->elf.non_got_ref
10980 && h->elf.def_dynamic
10981 && !h->elf.def_regular))
10982 {
10983 Elf_Internal_Rela outrel;
10984 bfd_boolean skip, relocate;
10985 asection *sreloc;
10986 bfd_byte *loc;
10987 bfd_vma out_off;
10988
10989 /* When generating a dynamic object, these relocations
10990 are copied into the output file to be resolved at run
10991 time. */
10992
10993 skip = FALSE;
10994 relocate = FALSE;
10995
10996 out_off = _bfd_elf_section_offset (output_bfd, info,
10997 input_section, rel->r_offset);
10998 if (out_off == (bfd_vma) -1)
10999 skip = TRUE;
11000 else if (out_off == (bfd_vma) -2)
11001 skip = TRUE, relocate = TRUE;
11002 out_off += (input_section->output_section->vma
11003 + input_section->output_offset);
11004 outrel.r_offset = out_off;
11005 outrel.r_addend = rel->r_addend;
11006
11007 /* Optimize unaligned reloc use. */
11008 if ((r_type == R_PPC64_ADDR64 && (out_off & 7) != 0)
11009 || (r_type == R_PPC64_UADDR64 && (out_off & 7) == 0))
11010 r_type ^= R_PPC64_ADDR64 ^ R_PPC64_UADDR64;
11011 else if ((r_type == R_PPC64_ADDR32 && (out_off & 3) != 0)
11012 || (r_type == R_PPC64_UADDR32 && (out_off & 3) == 0))
11013 r_type ^= R_PPC64_ADDR32 ^ R_PPC64_UADDR32;
11014 else if ((r_type == R_PPC64_ADDR16 && (out_off & 1) != 0)
11015 || (r_type == R_PPC64_UADDR16 && (out_off & 1) == 0))
11016 r_type ^= R_PPC64_ADDR16 ^ R_PPC64_UADDR16;
11017
11018 if (skip)
11019 memset (&outrel, 0, sizeof outrel);
11020 else if (!SYMBOL_REFERENCES_LOCAL (info, &h->elf)
11021 && !is_opd
11022 && r_type != R_PPC64_TOC)
11023 outrel.r_info = ELF64_R_INFO (h->elf.dynindx, r_type);
11024 else
11025 {
11026 /* This symbol is local, or marked to become local,
11027 or this is an opd section reloc which must point
11028 at a local function. */
11029 outrel.r_addend += relocation;
11030 if (r_type == R_PPC64_ADDR64 || r_type == R_PPC64_TOC)
11031 {
11032 if (is_opd && h != NULL)
11033 {
11034 /* Lie about opd entries. This case occurs
11035 when building shared libraries and we
11036 reference a function in another shared
11037 lib. The same thing happens for a weak
11038 definition in an application that's
11039 overridden by a strong definition in a
11040 shared lib. (I believe this is a generic
11041 bug in binutils handling of weak syms.)
11042 In these cases we won't use the opd
11043 entry in this lib. */
11044 unresolved_reloc = FALSE;
11045 }
11046 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
11047
11048 /* We need to relocate .opd contents for ld.so.
11049 Prelink also wants simple and consistent rules
11050 for relocs. This make all RELATIVE relocs have
11051 *r_offset equal to r_addend. */
11052 relocate = TRUE;
11053 }
11054 else
11055 {
11056 long indx = 0;
11057
11058 if (bfd_is_abs_section (sec))
11059 ;
11060 else if (sec == NULL || sec->owner == NULL)
11061 {
11062 bfd_set_error (bfd_error_bad_value);
11063 return FALSE;
11064 }
11065 else
11066 {
11067 asection *osec;
11068
11069 osec = sec->output_section;
11070 indx = elf_section_data (osec)->dynindx;
11071
11072 if (indx == 0)
11073 {
11074 if ((osec->flags & SEC_READONLY) == 0
11075 && htab->elf.data_index_section != NULL)
11076 osec = htab->elf.data_index_section;
11077 else
11078 osec = htab->elf.text_index_section;
11079 indx = elf_section_data (osec)->dynindx;
11080 }
11081 BFD_ASSERT (indx != 0);
11082
11083 /* We are turning this relocation into one
11084 against a section symbol, so subtract out
11085 the output section's address but not the
11086 offset of the input section in the output
11087 section. */
11088 outrel.r_addend -= osec->vma;
11089 }
11090
11091 outrel.r_info = ELF64_R_INFO (indx, r_type);
11092 }
11093 }
11094
11095 sreloc = elf_section_data (input_section)->sreloc;
11096 if (sreloc == NULL)
11097 abort ();
11098
11099 if (sreloc->reloc_count * sizeof (Elf64_External_Rela)
11100 >= sreloc->size)
11101 abort ();
11102 loc = sreloc->contents;
11103 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
11104 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
11105
11106 /* If this reloc is against an external symbol, it will
11107 be computed at runtime, so there's no need to do
11108 anything now. However, for the sake of prelink ensure
11109 that the section contents are a known value. */
11110 if (! relocate)
11111 {
11112 unresolved_reloc = FALSE;
11113 /* The value chosen here is quite arbitrary as ld.so
11114 ignores section contents except for the special
11115 case of .opd where the contents might be accessed
11116 before relocation. Choose zero, as that won't
11117 cause reloc overflow. */
11118 relocation = 0;
11119 addend = 0;
11120 /* Use *r_offset == r_addend for R_PPC64_ADDR64 relocs
11121 to improve backward compatibility with older
11122 versions of ld. */
11123 if (r_type == R_PPC64_ADDR64)
11124 addend = outrel.r_addend;
11125 /* Adjust pc_relative relocs to have zero in *r_offset. */
11126 else if (ppc64_elf_howto_table[r_type]->pc_relative)
11127 addend = (input_section->output_section->vma
11128 + input_section->output_offset
11129 + rel->r_offset);
11130 }
11131 }
11132 break;
11133
11134 case R_PPC64_COPY:
11135 case R_PPC64_GLOB_DAT:
11136 case R_PPC64_JMP_SLOT:
11137 case R_PPC64_RELATIVE:
11138 /* We shouldn't ever see these dynamic relocs in relocatable
11139 files. */
11140 /* Fall through. */
11141
11142 case R_PPC64_PLTGOT16:
11143 case R_PPC64_PLTGOT16_DS:
11144 case R_PPC64_PLTGOT16_HA:
11145 case R_PPC64_PLTGOT16_HI:
11146 case R_PPC64_PLTGOT16_LO:
11147 case R_PPC64_PLTGOT16_LO_DS:
11148 case R_PPC64_PLTREL32:
11149 case R_PPC64_PLTREL64:
11150 /* These ones haven't been implemented yet. */
11151
11152 (*_bfd_error_handler)
11153 (_("%B: relocation %s is not supported for symbol %s."),
11154 input_bfd,
11155 ppc64_elf_howto_table[r_type]->name, sym_name);
11156
11157 bfd_set_error (bfd_error_invalid_operation);
11158 ret = FALSE;
11159 continue;
11160 }
11161
11162 /* Do any further special processing. */
11163 switch (r_type)
11164 {
11165 default:
11166 break;
11167
11168 case R_PPC64_ADDR16_HA:
11169 case R_PPC64_ADDR16_HIGHERA:
11170 case R_PPC64_ADDR16_HIGHESTA:
11171 case R_PPC64_TOC16_HA:
11172 case R_PPC64_SECTOFF_HA:
11173 case R_PPC64_TPREL16_HA:
11174 case R_PPC64_DTPREL16_HA:
11175 case R_PPC64_TPREL16_HIGHER:
11176 case R_PPC64_TPREL16_HIGHERA:
11177 case R_PPC64_TPREL16_HIGHEST:
11178 case R_PPC64_TPREL16_HIGHESTA:
11179 case R_PPC64_DTPREL16_HIGHER:
11180 case R_PPC64_DTPREL16_HIGHERA:
11181 case R_PPC64_DTPREL16_HIGHEST:
11182 case R_PPC64_DTPREL16_HIGHESTA:
11183 /* It's just possible that this symbol is a weak symbol
11184 that's not actually defined anywhere. In that case,
11185 'sec' would be NULL, and we should leave the symbol
11186 alone (it will be set to zero elsewhere in the link). */
11187 if (sec == NULL)
11188 break;
11189 /* Fall thru */
11190
11191 case R_PPC64_GOT16_HA:
11192 case R_PPC64_PLTGOT16_HA:
11193 case R_PPC64_PLT16_HA:
11194 case R_PPC64_GOT_TLSGD16_HA:
11195 case R_PPC64_GOT_TLSLD16_HA:
11196 case R_PPC64_GOT_TPREL16_HA:
11197 case R_PPC64_GOT_DTPREL16_HA:
11198 /* Add 0x10000 if sign bit in 0:15 is set.
11199 Bits 0:15 are not used. */
11200 addend += 0x8000;
11201 break;
11202
11203 case R_PPC64_ADDR16_DS:
11204 case R_PPC64_ADDR16_LO_DS:
11205 case R_PPC64_GOT16_DS:
11206 case R_PPC64_GOT16_LO_DS:
11207 case R_PPC64_PLT16_LO_DS:
11208 case R_PPC64_SECTOFF_DS:
11209 case R_PPC64_SECTOFF_LO_DS:
11210 case R_PPC64_TOC16_DS:
11211 case R_PPC64_TOC16_LO_DS:
11212 case R_PPC64_PLTGOT16_DS:
11213 case R_PPC64_PLTGOT16_LO_DS:
11214 case R_PPC64_GOT_TPREL16_DS:
11215 case R_PPC64_GOT_TPREL16_LO_DS:
11216 case R_PPC64_GOT_DTPREL16_DS:
11217 case R_PPC64_GOT_DTPREL16_LO_DS:
11218 case R_PPC64_TPREL16_DS:
11219 case R_PPC64_TPREL16_LO_DS:
11220 case R_PPC64_DTPREL16_DS:
11221 case R_PPC64_DTPREL16_LO_DS:
11222 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
11223 mask = 3;
11224 /* If this reloc is against an lq insn, then the value must be
11225 a multiple of 16. This is somewhat of a hack, but the
11226 "correct" way to do this by defining _DQ forms of all the
11227 _DS relocs bloats all reloc switches in this file. It
11228 doesn't seem to make much sense to use any of these relocs
11229 in data, so testing the insn should be safe. */
11230 if ((insn & (0x3f << 26)) == (56u << 26))
11231 mask = 15;
11232 if (((relocation + addend) & mask) != 0)
11233 {
11234 (*_bfd_error_handler)
11235 (_("%B: error: relocation %s not a multiple of %d"),
11236 input_bfd,
11237 ppc64_elf_howto_table[r_type]->name,
11238 mask + 1);
11239 bfd_set_error (bfd_error_bad_value);
11240 ret = FALSE;
11241 continue;
11242 }
11243 break;
11244 }
11245
11246 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
11247 because such sections are not SEC_ALLOC and thus ld.so will
11248 not process them. */
11249 if (unresolved_reloc
11250 && !((input_section->flags & SEC_DEBUGGING) != 0
11251 && h->elf.def_dynamic))
11252 {
11253 (*_bfd_error_handler)
11254 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
11255 input_bfd,
11256 input_section,
11257 (long) rel->r_offset,
11258 ppc64_elf_howto_table[(int) r_type]->name,
11259 h->elf.root.root.string);
11260 ret = FALSE;
11261 }
11262
11263 r = _bfd_final_link_relocate (ppc64_elf_howto_table[(int) r_type],
11264 input_bfd,
11265 input_section,
11266 contents,
11267 rel->r_offset,
11268 relocation,
11269 addend);
11270
11271 if (r != bfd_reloc_ok)
11272 {
11273 if (sym_name == NULL)
11274 sym_name = "(null)";
11275 if (r == bfd_reloc_overflow)
11276 {
11277 if (warned)
11278 continue;
11279 if (h != NULL
11280 && h->elf.root.type == bfd_link_hash_undefweak
11281 && ppc64_elf_howto_table[r_type]->pc_relative)
11282 {
11283 /* Assume this is a call protected by other code that
11284 detects the symbol is undefined. If this is the case,
11285 we can safely ignore the overflow. If not, the
11286 program is hosed anyway, and a little warning isn't
11287 going to help. */
11288
11289 continue;
11290 }
11291
11292 if (!((*info->callbacks->reloc_overflow)
11293 (info, (h ? &h->elf.root : NULL), sym_name,
11294 ppc64_elf_howto_table[r_type]->name,
11295 orig_addend, input_bfd, input_section, rel->r_offset)))
11296 return FALSE;
11297 }
11298 else
11299 {
11300 (*_bfd_error_handler)
11301 (_("%B(%A+0x%lx): %s reloc against `%s': error %d"),
11302 input_bfd,
11303 input_section,
11304 (long) rel->r_offset,
11305 ppc64_elf_howto_table[r_type]->name,
11306 sym_name,
11307 (int) r);
11308 ret = FALSE;
11309 }
11310 }
11311 }
11312
11313 /* If we're emitting relocations, then shortly after this function
11314 returns, reloc offsets and addends for this section will be
11315 adjusted. Worse, reloc symbol indices will be for the output
11316 file rather than the input. Save a copy of the relocs for
11317 opd_entry_value. */
11318 if (is_opd && (info->emitrelocations || info->relocatable))
11319 {
11320 bfd_size_type amt;
11321 amt = input_section->reloc_count * sizeof (Elf_Internal_Rela);
11322 rel = bfd_alloc (input_bfd, amt);
11323 BFD_ASSERT (ppc64_elf_tdata (input_bfd)->opd_relocs == NULL);
11324 ppc64_elf_tdata (input_bfd)->opd_relocs = rel;
11325 if (rel == NULL)
11326 return FALSE;
11327 memcpy (rel, relocs, amt);
11328 }
11329 return ret;
11330 }
11331
11332 /* Adjust the value of any local symbols in opd sections. */
11333
11334 static bfd_boolean
11335 ppc64_elf_output_symbol_hook (struct bfd_link_info *info,
11336 const char *name ATTRIBUTE_UNUSED,
11337 Elf_Internal_Sym *elfsym,
11338 asection *input_sec,
11339 struct elf_link_hash_entry *h)
11340 {
11341 struct _opd_sec_data *opd;
11342 long adjust;
11343 bfd_vma value;
11344
11345 if (h != NULL)
11346 return TRUE;
11347
11348 opd = get_opd_info (input_sec);
11349 if (opd == NULL || opd->adjust == NULL)
11350 return TRUE;
11351
11352 value = elfsym->st_value - input_sec->output_offset;
11353 if (!info->relocatable)
11354 value -= input_sec->output_section->vma;
11355
11356 adjust = opd->adjust[value / 8];
11357 if (adjust == -1)
11358 elfsym->st_value = 0;
11359 else
11360 elfsym->st_value += adjust;
11361 return TRUE;
11362 }
11363
11364 /* Finish up dynamic symbol handling. We set the contents of various
11365 dynamic sections here. */
11366
11367 static bfd_boolean
11368 ppc64_elf_finish_dynamic_symbol (bfd *output_bfd,
11369 struct bfd_link_info *info,
11370 struct elf_link_hash_entry *h,
11371 Elf_Internal_Sym *sym)
11372 {
11373 struct ppc_link_hash_table *htab;
11374 struct plt_entry *ent;
11375 Elf_Internal_Rela rela;
11376 bfd_byte *loc;
11377
11378 htab = ppc_hash_table (info);
11379
11380 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
11381 if (ent->plt.offset != (bfd_vma) -1)
11382 {
11383 /* This symbol has an entry in the procedure linkage
11384 table. Set it up. */
11385
11386 if (htab->plt == NULL
11387 || htab->relplt == NULL
11388 || htab->glink == NULL)
11389 abort ();
11390
11391 /* Create a JMP_SLOT reloc to inform the dynamic linker to
11392 fill in the PLT entry. */
11393 rela.r_offset = (htab->plt->output_section->vma
11394 + htab->plt->output_offset
11395 + ent->plt.offset);
11396 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_JMP_SLOT);
11397 rela.r_addend = ent->addend;
11398
11399 loc = htab->relplt->contents;
11400 loc += ((ent->plt.offset - PLT_INITIAL_ENTRY_SIZE) / PLT_ENTRY_SIZE
11401 * sizeof (Elf64_External_Rela));
11402 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
11403 }
11404
11405 if (h->needs_copy)
11406 {
11407 Elf_Internal_Rela rela;
11408 bfd_byte *loc;
11409
11410 /* This symbol needs a copy reloc. Set it up. */
11411
11412 if (h->dynindx == -1
11413 || (h->root.type != bfd_link_hash_defined
11414 && h->root.type != bfd_link_hash_defweak)
11415 || htab->relbss == NULL)
11416 abort ();
11417
11418 rela.r_offset = (h->root.u.def.value
11419 + h->root.u.def.section->output_section->vma
11420 + h->root.u.def.section->output_offset);
11421 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_COPY);
11422 rela.r_addend = 0;
11423 loc = htab->relbss->contents;
11424 loc += htab->relbss->reloc_count++ * sizeof (Elf64_External_Rela);
11425 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
11426 }
11427
11428 /* Mark some specially defined symbols as absolute. */
11429 if (strcmp (h->root.root.string, "_DYNAMIC") == 0)
11430 sym->st_shndx = SHN_ABS;
11431
11432 return TRUE;
11433 }
11434
11435 /* Used to decide how to sort relocs in an optimal manner for the
11436 dynamic linker, before writing them out. */
11437
11438 static enum elf_reloc_type_class
11439 ppc64_elf_reloc_type_class (const Elf_Internal_Rela *rela)
11440 {
11441 enum elf_ppc64_reloc_type r_type;
11442
11443 r_type = ELF64_R_TYPE (rela->r_info);
11444 switch (r_type)
11445 {
11446 case R_PPC64_RELATIVE:
11447 return reloc_class_relative;
11448 case R_PPC64_JMP_SLOT:
11449 return reloc_class_plt;
11450 case R_PPC64_COPY:
11451 return reloc_class_copy;
11452 default:
11453 return reloc_class_normal;
11454 }
11455 }
11456
11457 /* Finish up the dynamic sections. */
11458
11459 static bfd_boolean
11460 ppc64_elf_finish_dynamic_sections (bfd *output_bfd,
11461 struct bfd_link_info *info)
11462 {
11463 struct ppc_link_hash_table *htab;
11464 bfd *dynobj;
11465 asection *sdyn;
11466
11467 htab = ppc_hash_table (info);
11468 dynobj = htab->elf.dynobj;
11469 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
11470
11471 if (htab->elf.dynamic_sections_created)
11472 {
11473 Elf64_External_Dyn *dyncon, *dynconend;
11474
11475 if (sdyn == NULL || htab->got == NULL)
11476 abort ();
11477
11478 dyncon = (Elf64_External_Dyn *) sdyn->contents;
11479 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
11480 for (; dyncon < dynconend; dyncon++)
11481 {
11482 Elf_Internal_Dyn dyn;
11483 asection *s;
11484
11485 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
11486
11487 switch (dyn.d_tag)
11488 {
11489 default:
11490 continue;
11491
11492 case DT_PPC64_GLINK:
11493 s = htab->glink;
11494 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11495 /* We stupidly defined DT_PPC64_GLINK to be the start
11496 of glink rather than the first entry point, which is
11497 what ld.so needs, and now have a bigger stub to
11498 support automatic multiple TOCs. */
11499 dyn.d_un.d_ptr += GLINK_CALL_STUB_SIZE - 32;
11500 break;
11501
11502 case DT_PPC64_OPD:
11503 s = bfd_get_section_by_name (output_bfd, ".opd");
11504 if (s == NULL)
11505 continue;
11506 dyn.d_un.d_ptr = s->vma;
11507 break;
11508
11509 case DT_PPC64_OPDSZ:
11510 s = bfd_get_section_by_name (output_bfd, ".opd");
11511 if (s == NULL)
11512 continue;
11513 dyn.d_un.d_val = s->size;
11514 break;
11515
11516 case DT_PLTGOT:
11517 s = htab->plt;
11518 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11519 break;
11520
11521 case DT_JMPREL:
11522 s = htab->relplt;
11523 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11524 break;
11525
11526 case DT_PLTRELSZ:
11527 dyn.d_un.d_val = htab->relplt->size;
11528 break;
11529
11530 case DT_RELASZ:
11531 /* Don't count procedure linkage table relocs in the
11532 overall reloc count. */
11533 s = htab->relplt;
11534 if (s == NULL)
11535 continue;
11536 dyn.d_un.d_val -= s->size;
11537 break;
11538
11539 case DT_RELA:
11540 /* We may not be using the standard ELF linker script.
11541 If .rela.plt is the first .rela section, we adjust
11542 DT_RELA to not include it. */
11543 s = htab->relplt;
11544 if (s == NULL)
11545 continue;
11546 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
11547 continue;
11548 dyn.d_un.d_ptr += s->size;
11549 break;
11550 }
11551
11552 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
11553 }
11554 }
11555
11556 if (htab->got != NULL && htab->got->size != 0)
11557 {
11558 /* Fill in the first entry in the global offset table.
11559 We use it to hold the link-time TOCbase. */
11560 bfd_put_64 (output_bfd,
11561 elf_gp (output_bfd) + TOC_BASE_OFF,
11562 htab->got->contents);
11563
11564 /* Set .got entry size. */
11565 elf_section_data (htab->got->output_section)->this_hdr.sh_entsize = 8;
11566 }
11567
11568 if (htab->plt != NULL && htab->plt->size != 0)
11569 {
11570 /* Set .plt entry size. */
11571 elf_section_data (htab->plt->output_section)->this_hdr.sh_entsize
11572 = PLT_ENTRY_SIZE;
11573 }
11574
11575 /* brlt is SEC_LINKER_CREATED, so we need to write out relocs for
11576 brlt ourselves if emitrelocations. */
11577 if (htab->brlt != NULL
11578 && htab->brlt->reloc_count != 0
11579 && !_bfd_elf_link_output_relocs (output_bfd,
11580 htab->brlt,
11581 &elf_section_data (htab->brlt)->rel_hdr,
11582 elf_section_data (htab->brlt)->relocs,
11583 NULL))
11584 return FALSE;
11585
11586 /* We need to handle writing out multiple GOT sections ourselves,
11587 since we didn't add them to DYNOBJ. We know dynobj is the first
11588 bfd. */
11589 while ((dynobj = dynobj->link_next) != NULL)
11590 {
11591 asection *s;
11592
11593 if (!is_ppc64_elf (dynobj))
11594 continue;
11595
11596 s = ppc64_elf_tdata (dynobj)->got;
11597 if (s != NULL
11598 && s->size != 0
11599 && s->output_section != bfd_abs_section_ptr
11600 && !bfd_set_section_contents (output_bfd, s->output_section,
11601 s->contents, s->output_offset,
11602 s->size))
11603 return FALSE;
11604 s = ppc64_elf_tdata (dynobj)->relgot;
11605 if (s != NULL
11606 && s->size != 0
11607 && s->output_section != bfd_abs_section_ptr
11608 && !bfd_set_section_contents (output_bfd, s->output_section,
11609 s->contents, s->output_offset,
11610 s->size))
11611 return FALSE;
11612 }
11613
11614 return TRUE;
11615 }
11616
11617 #include "elf64-target.h"