Add gcc-4.9 libgomp symbols requiring --plt-thread-safe for power7
[binutils-gdb.git] / bfd / elf64-ppc.c
1 /* PowerPC64-specific support for 64-bit ELF.
2 Copyright (C) 1999-2014 Free Software Foundation, Inc.
3 Written by Linus Nordberg, Swox AB <info@swox.com>,
4 based on elf32-ppc.c by Ian Lance Taylor.
5 Largely rewritten by Alan Modra.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License along
20 with this program; if not, write to the Free Software Foundation, Inc.,
21 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
22
23
24 /* The 64-bit PowerPC ELF ABI may be found at
25 http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi.txt, and
26 http://www.linuxbase.org/spec/ELF/ppc64/spec/book1.html */
27
28 #include "sysdep.h"
29 #include <stdarg.h>
30 #include "bfd.h"
31 #include "bfdlink.h"
32 #include "libbfd.h"
33 #include "elf-bfd.h"
34 #include "elf/ppc64.h"
35 #include "elf64-ppc.h"
36 #include "dwarf2.h"
37
38 static bfd_reloc_status_type ppc64_elf_ha_reloc
39 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
40 static bfd_reloc_status_type ppc64_elf_branch_reloc
41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
42 static bfd_reloc_status_type ppc64_elf_brtaken_reloc
43 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
44 static bfd_reloc_status_type ppc64_elf_sectoff_reloc
45 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
46 static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc
47 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
48 static bfd_reloc_status_type ppc64_elf_toc_reloc
49 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
50 static bfd_reloc_status_type ppc64_elf_toc_ha_reloc
51 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
52 static bfd_reloc_status_type ppc64_elf_toc64_reloc
53 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
54 static bfd_reloc_status_type ppc64_elf_unhandled_reloc
55 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
56 static bfd_vma opd_entry_value
57 (asection *, bfd_vma, asection **, bfd_vma *, bfd_boolean);
58
59 #define TARGET_LITTLE_SYM powerpc_elf64_le_vec
60 #define TARGET_LITTLE_NAME "elf64-powerpcle"
61 #define TARGET_BIG_SYM powerpc_elf64_vec
62 #define TARGET_BIG_NAME "elf64-powerpc"
63 #define ELF_ARCH bfd_arch_powerpc
64 #define ELF_TARGET_ID PPC64_ELF_DATA
65 #define ELF_MACHINE_CODE EM_PPC64
66 #define ELF_MAXPAGESIZE 0x10000
67 #define ELF_COMMONPAGESIZE 0x1000
68 #define elf_info_to_howto ppc64_elf_info_to_howto
69
70 #define elf_backend_want_got_sym 0
71 #define elf_backend_want_plt_sym 0
72 #define elf_backend_plt_alignment 3
73 #define elf_backend_plt_not_loaded 1
74 #define elf_backend_got_header_size 8
75 #define elf_backend_can_gc_sections 1
76 #define elf_backend_can_refcount 1
77 #define elf_backend_rela_normal 1
78 #define elf_backend_default_execstack 0
79
80 #define bfd_elf64_mkobject ppc64_elf_mkobject
81 #define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup
82 #define bfd_elf64_bfd_reloc_name_lookup ppc64_elf_reloc_name_lookup
83 #define bfd_elf64_bfd_merge_private_bfd_data ppc64_elf_merge_private_bfd_data
84 #define bfd_elf64_bfd_print_private_bfd_data ppc64_elf_print_private_bfd_data
85 #define bfd_elf64_new_section_hook ppc64_elf_new_section_hook
86 #define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create
87 #define bfd_elf64_get_synthetic_symtab ppc64_elf_get_synthetic_symtab
88 #define bfd_elf64_bfd_link_just_syms ppc64_elf_link_just_syms
89
90 #define elf_backend_object_p ppc64_elf_object_p
91 #define elf_backend_grok_prstatus ppc64_elf_grok_prstatus
92 #define elf_backend_grok_psinfo ppc64_elf_grok_psinfo
93 #define elf_backend_write_core_note ppc64_elf_write_core_note
94 #define elf_backend_create_dynamic_sections ppc64_elf_create_dynamic_sections
95 #define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol
96 #define elf_backend_add_symbol_hook ppc64_elf_add_symbol_hook
97 #define elf_backend_check_directives ppc64_elf_before_check_relocs
98 #define elf_backend_notice_as_needed ppc64_elf_notice_as_needed
99 #define elf_backend_archive_symbol_lookup ppc64_elf_archive_symbol_lookup
100 #define elf_backend_check_relocs ppc64_elf_check_relocs
101 #define elf_backend_gc_keep ppc64_elf_gc_keep
102 #define elf_backend_gc_mark_dynamic_ref ppc64_elf_gc_mark_dynamic_ref
103 #define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook
104 #define elf_backend_gc_sweep_hook ppc64_elf_gc_sweep_hook
105 #define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol
106 #define elf_backend_hide_symbol ppc64_elf_hide_symbol
107 #define elf_backend_maybe_function_sym ppc64_elf_maybe_function_sym
108 #define elf_backend_always_size_sections ppc64_elf_func_desc_adjust
109 #define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections
110 #define elf_backend_hash_symbol ppc64_elf_hash_symbol
111 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
112 #define elf_backend_action_discarded ppc64_elf_action_discarded
113 #define elf_backend_relocate_section ppc64_elf_relocate_section
114 #define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol
115 #define elf_backend_reloc_type_class ppc64_elf_reloc_type_class
116 #define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections
117 #define elf_backend_link_output_symbol_hook ppc64_elf_output_symbol_hook
118 #define elf_backend_special_sections ppc64_elf_special_sections
119 #define elf_backend_merge_symbol_attribute ppc64_elf_merge_symbol_attribute
120
121 /* The name of the dynamic interpreter. This is put in the .interp
122 section. */
123 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
124
125 /* The size in bytes of an entry in the procedure linkage table. */
126 #define PLT_ENTRY_SIZE(htab) (htab->opd_abi ? 24 : 8)
127
128 /* The initial size of the plt reserved for the dynamic linker. */
129 #define PLT_INITIAL_ENTRY_SIZE(htab) (htab->opd_abi ? 24 : 16)
130
131 /* Offsets to some stack save slots. */
132 #define STK_LR 16
133 #define STK_TOC(htab) (htab->opd_abi ? 40 : 24)
134 /* This one is dodgy. ELFv2 does not have a linker word, so use the
135 CR save slot. Used only by optimised __tls_get_addr call stub,
136 relying on __tls_get_addr_opt not saving CR.. */
137 #define STK_LINKER(htab) (htab->opd_abi ? 32 : 8)
138
139 /* TOC base pointers offset from start of TOC. */
140 #define TOC_BASE_OFF 0x8000
141
142 /* Offset of tp and dtp pointers from start of TLS block. */
143 #define TP_OFFSET 0x7000
144 #define DTP_OFFSET 0x8000
145
146 /* .plt call stub instructions. The normal stub is like this, but
147 sometimes the .plt entry crosses a 64k boundary and we need to
148 insert an addi to adjust r11. */
149 #define STD_R2_0R1 0xf8410000 /* std %r2,0+40(%r1) */
150 #define ADDIS_R11_R2 0x3d620000 /* addis %r11,%r2,xxx@ha */
151 #define LD_R12_0R11 0xe98b0000 /* ld %r12,xxx+0@l(%r11) */
152 #define MTCTR_R12 0x7d8903a6 /* mtctr %r12 */
153 #define LD_R2_0R11 0xe84b0000 /* ld %r2,xxx+8@l(%r11) */
154 #define LD_R11_0R11 0xe96b0000 /* ld %r11,xxx+16@l(%r11) */
155 #define BCTR 0x4e800420 /* bctr */
156
157 #define ADDI_R11_R11 0x396b0000 /* addi %r11,%r11,off@l */
158 #define ADDIS_R2_R2 0x3c420000 /* addis %r2,%r2,off@ha */
159 #define ADDI_R2_R2 0x38420000 /* addi %r2,%r2,off@l */
160
161 #define XOR_R2_R12_R12 0x7d826278 /* xor %r2,%r12,%r12 */
162 #define ADD_R11_R11_R2 0x7d6b1214 /* add %r11,%r11,%r2 */
163 #define XOR_R11_R12_R12 0x7d8b6278 /* xor %r11,%r12,%r12 */
164 #define ADD_R2_R2_R11 0x7c425a14 /* add %r2,%r2,%r11 */
165 #define CMPLDI_R2_0 0x28220000 /* cmpldi %r2,0 */
166 #define BNECTR 0x4ca20420 /* bnectr+ */
167 #define BNECTR_P4 0x4ce20420 /* bnectr+ */
168
169 #define LD_R12_0R2 0xe9820000 /* ld %r12,xxx+0(%r2) */
170 #define LD_R11_0R2 0xe9620000 /* ld %r11,xxx+0(%r2) */
171 #define LD_R2_0R2 0xe8420000 /* ld %r2,xxx+0(%r2) */
172
173 #define LD_R2_0R1 0xe8410000 /* ld %r2,0(%r1) */
174
175 #define ADDIS_R12_R2 0x3d820000 /* addis %r12,%r2,xxx@ha */
176 #define ADDIS_R12_R12 0x3d8c0000 /* addis %r12,%r12,xxx@ha */
177 #define LD_R12_0R12 0xe98c0000 /* ld %r12,xxx@l(%r12) */
178
179 /* glink call stub instructions. We enter with the index in R0. */
180 #define GLINK_CALL_STUB_SIZE (16*4)
181 /* 0: */
182 /* .quad plt0-1f */
183 /* __glink: */
184 #define MFLR_R12 0x7d8802a6 /* mflr %12 */
185 #define BCL_20_31 0x429f0005 /* bcl 20,31,1f */
186 /* 1: */
187 #define MFLR_R11 0x7d6802a6 /* mflr %11 */
188 /* ld %2,(0b-1b)(%11) */
189 #define MTLR_R12 0x7d8803a6 /* mtlr %12 */
190 #define ADD_R11_R2_R11 0x7d625a14 /* add %11,%2,%11 */
191 /* ld %12,0(%11) */
192 /* ld %2,8(%11) */
193 /* mtctr %12 */
194 /* ld %11,16(%11) */
195 /* bctr */
196 #define MFLR_R0 0x7c0802a6 /* mflr %r0 */
197 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
198 #define SUB_R12_R12_R11 0x7d8b6050 /* subf %r12,%r11,%r12 */
199 #define ADDI_R0_R12 0x380c0000 /* addi %r0,%r12,0 */
200 #define SRDI_R0_R0_2 0x7800f082 /* rldicl %r0,%r0,62,2 */
201
202 /* Pad with this. */
203 #define NOP 0x60000000
204
205 /* Some other nops. */
206 #define CROR_151515 0x4def7b82
207 #define CROR_313131 0x4ffffb82
208
209 /* .glink entries for the first 32k functions are two instructions. */
210 #define LI_R0_0 0x38000000 /* li %r0,0 */
211 #define B_DOT 0x48000000 /* b . */
212
213 /* After that, we need two instructions to load the index, followed by
214 a branch. */
215 #define LIS_R0_0 0x3c000000 /* lis %r0,0 */
216 #define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */
217
218 /* Instructions used by the save and restore reg functions. */
219 #define STD_R0_0R1 0xf8010000 /* std %r0,0(%r1) */
220 #define STD_R0_0R12 0xf80c0000 /* std %r0,0(%r12) */
221 #define LD_R0_0R1 0xe8010000 /* ld %r0,0(%r1) */
222 #define LD_R0_0R12 0xe80c0000 /* ld %r0,0(%r12) */
223 #define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */
224 #define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */
225 #define LI_R12_0 0x39800000 /* li %r12,0 */
226 #define STVX_VR0_R12_R0 0x7c0c01ce /* stvx %v0,%r12,%r0 */
227 #define LVX_VR0_R12_R0 0x7c0c00ce /* lvx %v0,%r12,%r0 */
228 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
229 #define BLR 0x4e800020 /* blr */
230
231 /* Since .opd is an array of descriptors and each entry will end up
232 with identical R_PPC64_RELATIVE relocs, there is really no need to
233 propagate .opd relocs; The dynamic linker should be taught to
234 relocate .opd without reloc entries. */
235 #ifndef NO_OPD_RELOCS
236 #define NO_OPD_RELOCS 0
237 #endif
238
239 static inline int
240 abiversion (bfd *abfd)
241 {
242 return elf_elfheader (abfd)->e_flags & EF_PPC64_ABI;
243 }
244
245 static inline void
246 set_abiversion (bfd *abfd, int ver)
247 {
248 elf_elfheader (abfd)->e_flags &= ~EF_PPC64_ABI;
249 elf_elfheader (abfd)->e_flags |= ver & EF_PPC64_ABI;
250 }
251 \f
252 #define ONES(n) (((bfd_vma) 1 << ((n) - 1) << 1) - 1)
253
254 /* Relocation HOWTO's. */
255 static reloc_howto_type *ppc64_elf_howto_table[(int) R_PPC64_max];
256
257 static reloc_howto_type ppc64_elf_howto_raw[] = {
258 /* This reloc does nothing. */
259 HOWTO (R_PPC64_NONE, /* type */
260 0, /* rightshift */
261 2, /* size (0 = byte, 1 = short, 2 = long) */
262 32, /* bitsize */
263 FALSE, /* pc_relative */
264 0, /* bitpos */
265 complain_overflow_dont, /* complain_on_overflow */
266 bfd_elf_generic_reloc, /* special_function */
267 "R_PPC64_NONE", /* name */
268 FALSE, /* partial_inplace */
269 0, /* src_mask */
270 0, /* dst_mask */
271 FALSE), /* pcrel_offset */
272
273 /* A standard 32 bit relocation. */
274 HOWTO (R_PPC64_ADDR32, /* type */
275 0, /* rightshift */
276 2, /* size (0 = byte, 1 = short, 2 = long) */
277 32, /* bitsize */
278 FALSE, /* pc_relative */
279 0, /* bitpos */
280 complain_overflow_bitfield, /* complain_on_overflow */
281 bfd_elf_generic_reloc, /* special_function */
282 "R_PPC64_ADDR32", /* name */
283 FALSE, /* partial_inplace */
284 0, /* src_mask */
285 0xffffffff, /* dst_mask */
286 FALSE), /* pcrel_offset */
287
288 /* An absolute 26 bit branch; the lower two bits must be zero.
289 FIXME: we don't check that, we just clear them. */
290 HOWTO (R_PPC64_ADDR24, /* type */
291 0, /* rightshift */
292 2, /* size (0 = byte, 1 = short, 2 = long) */
293 26, /* bitsize */
294 FALSE, /* pc_relative */
295 0, /* bitpos */
296 complain_overflow_bitfield, /* complain_on_overflow */
297 bfd_elf_generic_reloc, /* special_function */
298 "R_PPC64_ADDR24", /* name */
299 FALSE, /* partial_inplace */
300 0, /* src_mask */
301 0x03fffffc, /* dst_mask */
302 FALSE), /* pcrel_offset */
303
304 /* A standard 16 bit relocation. */
305 HOWTO (R_PPC64_ADDR16, /* type */
306 0, /* rightshift */
307 1, /* size (0 = byte, 1 = short, 2 = long) */
308 16, /* bitsize */
309 FALSE, /* pc_relative */
310 0, /* bitpos */
311 complain_overflow_bitfield, /* complain_on_overflow */
312 bfd_elf_generic_reloc, /* special_function */
313 "R_PPC64_ADDR16", /* name */
314 FALSE, /* partial_inplace */
315 0, /* src_mask */
316 0xffff, /* dst_mask */
317 FALSE), /* pcrel_offset */
318
319 /* A 16 bit relocation without overflow. */
320 HOWTO (R_PPC64_ADDR16_LO, /* type */
321 0, /* rightshift */
322 1, /* size (0 = byte, 1 = short, 2 = long) */
323 16, /* bitsize */
324 FALSE, /* pc_relative */
325 0, /* bitpos */
326 complain_overflow_dont,/* complain_on_overflow */
327 bfd_elf_generic_reloc, /* special_function */
328 "R_PPC64_ADDR16_LO", /* name */
329 FALSE, /* partial_inplace */
330 0, /* src_mask */
331 0xffff, /* dst_mask */
332 FALSE), /* pcrel_offset */
333
334 /* Bits 16-31 of an address. */
335 HOWTO (R_PPC64_ADDR16_HI, /* type */
336 16, /* rightshift */
337 1, /* size (0 = byte, 1 = short, 2 = long) */
338 16, /* bitsize */
339 FALSE, /* pc_relative */
340 0, /* bitpos */
341 complain_overflow_signed, /* complain_on_overflow */
342 bfd_elf_generic_reloc, /* special_function */
343 "R_PPC64_ADDR16_HI", /* name */
344 FALSE, /* partial_inplace */
345 0, /* src_mask */
346 0xffff, /* dst_mask */
347 FALSE), /* pcrel_offset */
348
349 /* Bits 16-31 of an address, plus 1 if the contents of the low 16
350 bits, treated as a signed number, is negative. */
351 HOWTO (R_PPC64_ADDR16_HA, /* type */
352 16, /* rightshift */
353 1, /* size (0 = byte, 1 = short, 2 = long) */
354 16, /* bitsize */
355 FALSE, /* pc_relative */
356 0, /* bitpos */
357 complain_overflow_signed, /* complain_on_overflow */
358 ppc64_elf_ha_reloc, /* special_function */
359 "R_PPC64_ADDR16_HA", /* name */
360 FALSE, /* partial_inplace */
361 0, /* src_mask */
362 0xffff, /* dst_mask */
363 FALSE), /* pcrel_offset */
364
365 /* An absolute 16 bit branch; the lower two bits must be zero.
366 FIXME: we don't check that, we just clear them. */
367 HOWTO (R_PPC64_ADDR14, /* type */
368 0, /* rightshift */
369 2, /* size (0 = byte, 1 = short, 2 = long) */
370 16, /* bitsize */
371 FALSE, /* pc_relative */
372 0, /* bitpos */
373 complain_overflow_signed, /* complain_on_overflow */
374 ppc64_elf_branch_reloc, /* special_function */
375 "R_PPC64_ADDR14", /* name */
376 FALSE, /* partial_inplace */
377 0, /* src_mask */
378 0x0000fffc, /* dst_mask */
379 FALSE), /* pcrel_offset */
380
381 /* An absolute 16 bit branch, for which bit 10 should be set to
382 indicate that the branch is expected to be taken. The lower two
383 bits must be zero. */
384 HOWTO (R_PPC64_ADDR14_BRTAKEN, /* type */
385 0, /* rightshift */
386 2, /* size (0 = byte, 1 = short, 2 = long) */
387 16, /* bitsize */
388 FALSE, /* pc_relative */
389 0, /* bitpos */
390 complain_overflow_signed, /* complain_on_overflow */
391 ppc64_elf_brtaken_reloc, /* special_function */
392 "R_PPC64_ADDR14_BRTAKEN",/* name */
393 FALSE, /* partial_inplace */
394 0, /* src_mask */
395 0x0000fffc, /* dst_mask */
396 FALSE), /* pcrel_offset */
397
398 /* An absolute 16 bit branch, for which bit 10 should be set to
399 indicate that the branch is not expected to be taken. The lower
400 two bits must be zero. */
401 HOWTO (R_PPC64_ADDR14_BRNTAKEN, /* type */
402 0, /* rightshift */
403 2, /* size (0 = byte, 1 = short, 2 = long) */
404 16, /* bitsize */
405 FALSE, /* pc_relative */
406 0, /* bitpos */
407 complain_overflow_signed, /* complain_on_overflow */
408 ppc64_elf_brtaken_reloc, /* special_function */
409 "R_PPC64_ADDR14_BRNTAKEN",/* name */
410 FALSE, /* partial_inplace */
411 0, /* src_mask */
412 0x0000fffc, /* dst_mask */
413 FALSE), /* pcrel_offset */
414
415 /* A relative 26 bit branch; the lower two bits must be zero. */
416 HOWTO (R_PPC64_REL24, /* type */
417 0, /* rightshift */
418 2, /* size (0 = byte, 1 = short, 2 = long) */
419 26, /* bitsize */
420 TRUE, /* pc_relative */
421 0, /* bitpos */
422 complain_overflow_signed, /* complain_on_overflow */
423 ppc64_elf_branch_reloc, /* special_function */
424 "R_PPC64_REL24", /* name */
425 FALSE, /* partial_inplace */
426 0, /* src_mask */
427 0x03fffffc, /* dst_mask */
428 TRUE), /* pcrel_offset */
429
430 /* A relative 16 bit branch; the lower two bits must be zero. */
431 HOWTO (R_PPC64_REL14, /* type */
432 0, /* rightshift */
433 2, /* size (0 = byte, 1 = short, 2 = long) */
434 16, /* bitsize */
435 TRUE, /* pc_relative */
436 0, /* bitpos */
437 complain_overflow_signed, /* complain_on_overflow */
438 ppc64_elf_branch_reloc, /* special_function */
439 "R_PPC64_REL14", /* name */
440 FALSE, /* partial_inplace */
441 0, /* src_mask */
442 0x0000fffc, /* dst_mask */
443 TRUE), /* pcrel_offset */
444
445 /* A relative 16 bit branch. Bit 10 should be set to indicate that
446 the branch is expected to be taken. The lower two bits must be
447 zero. */
448 HOWTO (R_PPC64_REL14_BRTAKEN, /* type */
449 0, /* rightshift */
450 2, /* size (0 = byte, 1 = short, 2 = long) */
451 16, /* bitsize */
452 TRUE, /* pc_relative */
453 0, /* bitpos */
454 complain_overflow_signed, /* complain_on_overflow */
455 ppc64_elf_brtaken_reloc, /* special_function */
456 "R_PPC64_REL14_BRTAKEN", /* name */
457 FALSE, /* partial_inplace */
458 0, /* src_mask */
459 0x0000fffc, /* dst_mask */
460 TRUE), /* pcrel_offset */
461
462 /* A relative 16 bit branch. Bit 10 should be set to indicate that
463 the branch is not expected to be taken. The lower two bits must
464 be zero. */
465 HOWTO (R_PPC64_REL14_BRNTAKEN, /* type */
466 0, /* rightshift */
467 2, /* size (0 = byte, 1 = short, 2 = long) */
468 16, /* bitsize */
469 TRUE, /* pc_relative */
470 0, /* bitpos */
471 complain_overflow_signed, /* complain_on_overflow */
472 ppc64_elf_brtaken_reloc, /* special_function */
473 "R_PPC64_REL14_BRNTAKEN",/* name */
474 FALSE, /* partial_inplace */
475 0, /* src_mask */
476 0x0000fffc, /* dst_mask */
477 TRUE), /* pcrel_offset */
478
479 /* Like R_PPC64_ADDR16, but referring to the GOT table entry for the
480 symbol. */
481 HOWTO (R_PPC64_GOT16, /* type */
482 0, /* rightshift */
483 1, /* size (0 = byte, 1 = short, 2 = long) */
484 16, /* bitsize */
485 FALSE, /* pc_relative */
486 0, /* bitpos */
487 complain_overflow_signed, /* complain_on_overflow */
488 ppc64_elf_unhandled_reloc, /* special_function */
489 "R_PPC64_GOT16", /* name */
490 FALSE, /* partial_inplace */
491 0, /* src_mask */
492 0xffff, /* dst_mask */
493 FALSE), /* pcrel_offset */
494
495 /* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for
496 the symbol. */
497 HOWTO (R_PPC64_GOT16_LO, /* type */
498 0, /* rightshift */
499 1, /* size (0 = byte, 1 = short, 2 = long) */
500 16, /* bitsize */
501 FALSE, /* pc_relative */
502 0, /* bitpos */
503 complain_overflow_dont, /* complain_on_overflow */
504 ppc64_elf_unhandled_reloc, /* special_function */
505 "R_PPC64_GOT16_LO", /* name */
506 FALSE, /* partial_inplace */
507 0, /* src_mask */
508 0xffff, /* dst_mask */
509 FALSE), /* pcrel_offset */
510
511 /* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for
512 the symbol. */
513 HOWTO (R_PPC64_GOT16_HI, /* type */
514 16, /* rightshift */
515 1, /* size (0 = byte, 1 = short, 2 = long) */
516 16, /* bitsize */
517 FALSE, /* pc_relative */
518 0, /* bitpos */
519 complain_overflow_signed,/* complain_on_overflow */
520 ppc64_elf_unhandled_reloc, /* special_function */
521 "R_PPC64_GOT16_HI", /* name */
522 FALSE, /* partial_inplace */
523 0, /* src_mask */
524 0xffff, /* dst_mask */
525 FALSE), /* pcrel_offset */
526
527 /* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for
528 the symbol. */
529 HOWTO (R_PPC64_GOT16_HA, /* type */
530 16, /* rightshift */
531 1, /* size (0 = byte, 1 = short, 2 = long) */
532 16, /* bitsize */
533 FALSE, /* pc_relative */
534 0, /* bitpos */
535 complain_overflow_signed,/* complain_on_overflow */
536 ppc64_elf_unhandled_reloc, /* special_function */
537 "R_PPC64_GOT16_HA", /* name */
538 FALSE, /* partial_inplace */
539 0, /* src_mask */
540 0xffff, /* dst_mask */
541 FALSE), /* pcrel_offset */
542
543 /* This is used only by the dynamic linker. The symbol should exist
544 both in the object being run and in some shared library. The
545 dynamic linker copies the data addressed by the symbol from the
546 shared library into the object, because the object being
547 run has to have the data at some particular address. */
548 HOWTO (R_PPC64_COPY, /* type */
549 0, /* rightshift */
550 0, /* this one is variable size */
551 0, /* bitsize */
552 FALSE, /* pc_relative */
553 0, /* bitpos */
554 complain_overflow_dont, /* complain_on_overflow */
555 ppc64_elf_unhandled_reloc, /* special_function */
556 "R_PPC64_COPY", /* name */
557 FALSE, /* partial_inplace */
558 0, /* src_mask */
559 0, /* dst_mask */
560 FALSE), /* pcrel_offset */
561
562 /* Like R_PPC64_ADDR64, but used when setting global offset table
563 entries. */
564 HOWTO (R_PPC64_GLOB_DAT, /* type */
565 0, /* rightshift */
566 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
567 64, /* bitsize */
568 FALSE, /* pc_relative */
569 0, /* bitpos */
570 complain_overflow_dont, /* complain_on_overflow */
571 ppc64_elf_unhandled_reloc, /* special_function */
572 "R_PPC64_GLOB_DAT", /* name */
573 FALSE, /* partial_inplace */
574 0, /* src_mask */
575 ONES (64), /* dst_mask */
576 FALSE), /* pcrel_offset */
577
578 /* Created by the link editor. Marks a procedure linkage table
579 entry for a symbol. */
580 HOWTO (R_PPC64_JMP_SLOT, /* type */
581 0, /* rightshift */
582 0, /* size (0 = byte, 1 = short, 2 = long) */
583 0, /* bitsize */
584 FALSE, /* pc_relative */
585 0, /* bitpos */
586 complain_overflow_dont, /* complain_on_overflow */
587 ppc64_elf_unhandled_reloc, /* special_function */
588 "R_PPC64_JMP_SLOT", /* name */
589 FALSE, /* partial_inplace */
590 0, /* src_mask */
591 0, /* dst_mask */
592 FALSE), /* pcrel_offset */
593
594 /* Used only by the dynamic linker. When the object is run, this
595 doubleword64 is set to the load address of the object, plus the
596 addend. */
597 HOWTO (R_PPC64_RELATIVE, /* type */
598 0, /* rightshift */
599 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
600 64, /* bitsize */
601 FALSE, /* pc_relative */
602 0, /* bitpos */
603 complain_overflow_dont, /* complain_on_overflow */
604 bfd_elf_generic_reloc, /* special_function */
605 "R_PPC64_RELATIVE", /* name */
606 FALSE, /* partial_inplace */
607 0, /* src_mask */
608 ONES (64), /* dst_mask */
609 FALSE), /* pcrel_offset */
610
611 /* Like R_PPC64_ADDR32, but may be unaligned. */
612 HOWTO (R_PPC64_UADDR32, /* type */
613 0, /* rightshift */
614 2, /* size (0 = byte, 1 = short, 2 = long) */
615 32, /* bitsize */
616 FALSE, /* pc_relative */
617 0, /* bitpos */
618 complain_overflow_bitfield, /* complain_on_overflow */
619 bfd_elf_generic_reloc, /* special_function */
620 "R_PPC64_UADDR32", /* name */
621 FALSE, /* partial_inplace */
622 0, /* src_mask */
623 0xffffffff, /* dst_mask */
624 FALSE), /* pcrel_offset */
625
626 /* Like R_PPC64_ADDR16, but may be unaligned. */
627 HOWTO (R_PPC64_UADDR16, /* type */
628 0, /* rightshift */
629 1, /* size (0 = byte, 1 = short, 2 = long) */
630 16, /* bitsize */
631 FALSE, /* pc_relative */
632 0, /* bitpos */
633 complain_overflow_bitfield, /* complain_on_overflow */
634 bfd_elf_generic_reloc, /* special_function */
635 "R_PPC64_UADDR16", /* name */
636 FALSE, /* partial_inplace */
637 0, /* src_mask */
638 0xffff, /* dst_mask */
639 FALSE), /* pcrel_offset */
640
641 /* 32-bit PC relative. */
642 HOWTO (R_PPC64_REL32, /* type */
643 0, /* rightshift */
644 2, /* size (0 = byte, 1 = short, 2 = long) */
645 32, /* bitsize */
646 TRUE, /* pc_relative */
647 0, /* bitpos */
648 complain_overflow_signed, /* complain_on_overflow */
649 bfd_elf_generic_reloc, /* special_function */
650 "R_PPC64_REL32", /* name */
651 FALSE, /* partial_inplace */
652 0, /* src_mask */
653 0xffffffff, /* dst_mask */
654 TRUE), /* pcrel_offset */
655
656 /* 32-bit relocation to the symbol's procedure linkage table. */
657 HOWTO (R_PPC64_PLT32, /* type */
658 0, /* rightshift */
659 2, /* size (0 = byte, 1 = short, 2 = long) */
660 32, /* bitsize */
661 FALSE, /* pc_relative */
662 0, /* bitpos */
663 complain_overflow_bitfield, /* complain_on_overflow */
664 ppc64_elf_unhandled_reloc, /* special_function */
665 "R_PPC64_PLT32", /* name */
666 FALSE, /* partial_inplace */
667 0, /* src_mask */
668 0xffffffff, /* dst_mask */
669 FALSE), /* pcrel_offset */
670
671 /* 32-bit PC relative relocation to the symbol's procedure linkage table.
672 FIXME: R_PPC64_PLTREL32 not supported. */
673 HOWTO (R_PPC64_PLTREL32, /* type */
674 0, /* rightshift */
675 2, /* size (0 = byte, 1 = short, 2 = long) */
676 32, /* bitsize */
677 TRUE, /* pc_relative */
678 0, /* bitpos */
679 complain_overflow_signed, /* complain_on_overflow */
680 bfd_elf_generic_reloc, /* special_function */
681 "R_PPC64_PLTREL32", /* name */
682 FALSE, /* partial_inplace */
683 0, /* src_mask */
684 0xffffffff, /* dst_mask */
685 TRUE), /* pcrel_offset */
686
687 /* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for
688 the symbol. */
689 HOWTO (R_PPC64_PLT16_LO, /* type */
690 0, /* rightshift */
691 1, /* size (0 = byte, 1 = short, 2 = long) */
692 16, /* bitsize */
693 FALSE, /* pc_relative */
694 0, /* bitpos */
695 complain_overflow_dont, /* complain_on_overflow */
696 ppc64_elf_unhandled_reloc, /* special_function */
697 "R_PPC64_PLT16_LO", /* name */
698 FALSE, /* partial_inplace */
699 0, /* src_mask */
700 0xffff, /* dst_mask */
701 FALSE), /* pcrel_offset */
702
703 /* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for
704 the symbol. */
705 HOWTO (R_PPC64_PLT16_HI, /* type */
706 16, /* rightshift */
707 1, /* size (0 = byte, 1 = short, 2 = long) */
708 16, /* bitsize */
709 FALSE, /* pc_relative */
710 0, /* bitpos */
711 complain_overflow_signed, /* complain_on_overflow */
712 ppc64_elf_unhandled_reloc, /* special_function */
713 "R_PPC64_PLT16_HI", /* name */
714 FALSE, /* partial_inplace */
715 0, /* src_mask */
716 0xffff, /* dst_mask */
717 FALSE), /* pcrel_offset */
718
719 /* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for
720 the symbol. */
721 HOWTO (R_PPC64_PLT16_HA, /* type */
722 16, /* rightshift */
723 1, /* size (0 = byte, 1 = short, 2 = long) */
724 16, /* bitsize */
725 FALSE, /* pc_relative */
726 0, /* bitpos */
727 complain_overflow_signed, /* complain_on_overflow */
728 ppc64_elf_unhandled_reloc, /* special_function */
729 "R_PPC64_PLT16_HA", /* name */
730 FALSE, /* partial_inplace */
731 0, /* src_mask */
732 0xffff, /* dst_mask */
733 FALSE), /* pcrel_offset */
734
735 /* 16-bit section relative relocation. */
736 HOWTO (R_PPC64_SECTOFF, /* type */
737 0, /* rightshift */
738 1, /* size (0 = byte, 1 = short, 2 = long) */
739 16, /* bitsize */
740 FALSE, /* pc_relative */
741 0, /* bitpos */
742 complain_overflow_signed, /* complain_on_overflow */
743 ppc64_elf_sectoff_reloc, /* special_function */
744 "R_PPC64_SECTOFF", /* name */
745 FALSE, /* partial_inplace */
746 0, /* src_mask */
747 0xffff, /* dst_mask */
748 FALSE), /* pcrel_offset */
749
750 /* Like R_PPC64_SECTOFF, but no overflow warning. */
751 HOWTO (R_PPC64_SECTOFF_LO, /* type */
752 0, /* rightshift */
753 1, /* size (0 = byte, 1 = short, 2 = long) */
754 16, /* bitsize */
755 FALSE, /* pc_relative */
756 0, /* bitpos */
757 complain_overflow_dont, /* complain_on_overflow */
758 ppc64_elf_sectoff_reloc, /* special_function */
759 "R_PPC64_SECTOFF_LO", /* name */
760 FALSE, /* partial_inplace */
761 0, /* src_mask */
762 0xffff, /* dst_mask */
763 FALSE), /* pcrel_offset */
764
765 /* 16-bit upper half section relative relocation. */
766 HOWTO (R_PPC64_SECTOFF_HI, /* type */
767 16, /* rightshift */
768 1, /* size (0 = byte, 1 = short, 2 = long) */
769 16, /* bitsize */
770 FALSE, /* pc_relative */
771 0, /* bitpos */
772 complain_overflow_signed, /* complain_on_overflow */
773 ppc64_elf_sectoff_reloc, /* special_function */
774 "R_PPC64_SECTOFF_HI", /* name */
775 FALSE, /* partial_inplace */
776 0, /* src_mask */
777 0xffff, /* dst_mask */
778 FALSE), /* pcrel_offset */
779
780 /* 16-bit upper half adjusted section relative relocation. */
781 HOWTO (R_PPC64_SECTOFF_HA, /* type */
782 16, /* rightshift */
783 1, /* size (0 = byte, 1 = short, 2 = long) */
784 16, /* bitsize */
785 FALSE, /* pc_relative */
786 0, /* bitpos */
787 complain_overflow_signed, /* complain_on_overflow */
788 ppc64_elf_sectoff_ha_reloc, /* special_function */
789 "R_PPC64_SECTOFF_HA", /* name */
790 FALSE, /* partial_inplace */
791 0, /* src_mask */
792 0xffff, /* dst_mask */
793 FALSE), /* pcrel_offset */
794
795 /* Like R_PPC64_REL24 without touching the two least significant bits. */
796 HOWTO (R_PPC64_REL30, /* type */
797 2, /* rightshift */
798 2, /* size (0 = byte, 1 = short, 2 = long) */
799 30, /* bitsize */
800 TRUE, /* pc_relative */
801 0, /* bitpos */
802 complain_overflow_dont, /* complain_on_overflow */
803 bfd_elf_generic_reloc, /* special_function */
804 "R_PPC64_REL30", /* name */
805 FALSE, /* partial_inplace */
806 0, /* src_mask */
807 0xfffffffc, /* dst_mask */
808 TRUE), /* pcrel_offset */
809
810 /* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */
811
812 /* A standard 64-bit relocation. */
813 HOWTO (R_PPC64_ADDR64, /* type */
814 0, /* rightshift */
815 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
816 64, /* bitsize */
817 FALSE, /* pc_relative */
818 0, /* bitpos */
819 complain_overflow_dont, /* complain_on_overflow */
820 bfd_elf_generic_reloc, /* special_function */
821 "R_PPC64_ADDR64", /* name */
822 FALSE, /* partial_inplace */
823 0, /* src_mask */
824 ONES (64), /* dst_mask */
825 FALSE), /* pcrel_offset */
826
827 /* The bits 32-47 of an address. */
828 HOWTO (R_PPC64_ADDR16_HIGHER, /* type */
829 32, /* rightshift */
830 1, /* size (0 = byte, 1 = short, 2 = long) */
831 16, /* bitsize */
832 FALSE, /* pc_relative */
833 0, /* bitpos */
834 complain_overflow_dont, /* complain_on_overflow */
835 bfd_elf_generic_reloc, /* special_function */
836 "R_PPC64_ADDR16_HIGHER", /* name */
837 FALSE, /* partial_inplace */
838 0, /* src_mask */
839 0xffff, /* dst_mask */
840 FALSE), /* pcrel_offset */
841
842 /* The bits 32-47 of an address, plus 1 if the contents of the low
843 16 bits, treated as a signed number, is negative. */
844 HOWTO (R_PPC64_ADDR16_HIGHERA, /* type */
845 32, /* rightshift */
846 1, /* size (0 = byte, 1 = short, 2 = long) */
847 16, /* bitsize */
848 FALSE, /* pc_relative */
849 0, /* bitpos */
850 complain_overflow_dont, /* complain_on_overflow */
851 ppc64_elf_ha_reloc, /* special_function */
852 "R_PPC64_ADDR16_HIGHERA", /* name */
853 FALSE, /* partial_inplace */
854 0, /* src_mask */
855 0xffff, /* dst_mask */
856 FALSE), /* pcrel_offset */
857
858 /* The bits 48-63 of an address. */
859 HOWTO (R_PPC64_ADDR16_HIGHEST,/* type */
860 48, /* rightshift */
861 1, /* size (0 = byte, 1 = short, 2 = long) */
862 16, /* bitsize */
863 FALSE, /* pc_relative */
864 0, /* bitpos */
865 complain_overflow_dont, /* complain_on_overflow */
866 bfd_elf_generic_reloc, /* special_function */
867 "R_PPC64_ADDR16_HIGHEST", /* name */
868 FALSE, /* partial_inplace */
869 0, /* src_mask */
870 0xffff, /* dst_mask */
871 FALSE), /* pcrel_offset */
872
873 /* The bits 48-63 of an address, plus 1 if the contents of the low
874 16 bits, treated as a signed number, is negative. */
875 HOWTO (R_PPC64_ADDR16_HIGHESTA,/* type */
876 48, /* rightshift */
877 1, /* size (0 = byte, 1 = short, 2 = long) */
878 16, /* bitsize */
879 FALSE, /* pc_relative */
880 0, /* bitpos */
881 complain_overflow_dont, /* complain_on_overflow */
882 ppc64_elf_ha_reloc, /* special_function */
883 "R_PPC64_ADDR16_HIGHESTA", /* name */
884 FALSE, /* partial_inplace */
885 0, /* src_mask */
886 0xffff, /* dst_mask */
887 FALSE), /* pcrel_offset */
888
889 /* Like ADDR64, but may be unaligned. */
890 HOWTO (R_PPC64_UADDR64, /* type */
891 0, /* rightshift */
892 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
893 64, /* bitsize */
894 FALSE, /* pc_relative */
895 0, /* bitpos */
896 complain_overflow_dont, /* complain_on_overflow */
897 bfd_elf_generic_reloc, /* special_function */
898 "R_PPC64_UADDR64", /* name */
899 FALSE, /* partial_inplace */
900 0, /* src_mask */
901 ONES (64), /* dst_mask */
902 FALSE), /* pcrel_offset */
903
904 /* 64-bit relative relocation. */
905 HOWTO (R_PPC64_REL64, /* type */
906 0, /* rightshift */
907 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
908 64, /* bitsize */
909 TRUE, /* pc_relative */
910 0, /* bitpos */
911 complain_overflow_dont, /* complain_on_overflow */
912 bfd_elf_generic_reloc, /* special_function */
913 "R_PPC64_REL64", /* name */
914 FALSE, /* partial_inplace */
915 0, /* src_mask */
916 ONES (64), /* dst_mask */
917 TRUE), /* pcrel_offset */
918
919 /* 64-bit relocation to the symbol's procedure linkage table. */
920 HOWTO (R_PPC64_PLT64, /* type */
921 0, /* rightshift */
922 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
923 64, /* bitsize */
924 FALSE, /* pc_relative */
925 0, /* bitpos */
926 complain_overflow_dont, /* complain_on_overflow */
927 ppc64_elf_unhandled_reloc, /* special_function */
928 "R_PPC64_PLT64", /* name */
929 FALSE, /* partial_inplace */
930 0, /* src_mask */
931 ONES (64), /* dst_mask */
932 FALSE), /* pcrel_offset */
933
934 /* 64-bit PC relative relocation to the symbol's procedure linkage
935 table. */
936 /* FIXME: R_PPC64_PLTREL64 not supported. */
937 HOWTO (R_PPC64_PLTREL64, /* type */
938 0, /* rightshift */
939 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
940 64, /* bitsize */
941 TRUE, /* pc_relative */
942 0, /* bitpos */
943 complain_overflow_dont, /* complain_on_overflow */
944 ppc64_elf_unhandled_reloc, /* special_function */
945 "R_PPC64_PLTREL64", /* name */
946 FALSE, /* partial_inplace */
947 0, /* src_mask */
948 ONES (64), /* dst_mask */
949 TRUE), /* pcrel_offset */
950
951 /* 16 bit TOC-relative relocation. */
952
953 /* R_PPC64_TOC16 47 half16* S + A - .TOC. */
954 HOWTO (R_PPC64_TOC16, /* type */
955 0, /* rightshift */
956 1, /* size (0 = byte, 1 = short, 2 = long) */
957 16, /* bitsize */
958 FALSE, /* pc_relative */
959 0, /* bitpos */
960 complain_overflow_signed, /* complain_on_overflow */
961 ppc64_elf_toc_reloc, /* special_function */
962 "R_PPC64_TOC16", /* name */
963 FALSE, /* partial_inplace */
964 0, /* src_mask */
965 0xffff, /* dst_mask */
966 FALSE), /* pcrel_offset */
967
968 /* 16 bit TOC-relative relocation without overflow. */
969
970 /* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */
971 HOWTO (R_PPC64_TOC16_LO, /* type */
972 0, /* rightshift */
973 1, /* size (0 = byte, 1 = short, 2 = long) */
974 16, /* bitsize */
975 FALSE, /* pc_relative */
976 0, /* bitpos */
977 complain_overflow_dont, /* complain_on_overflow */
978 ppc64_elf_toc_reloc, /* special_function */
979 "R_PPC64_TOC16_LO", /* name */
980 FALSE, /* partial_inplace */
981 0, /* src_mask */
982 0xffff, /* dst_mask */
983 FALSE), /* pcrel_offset */
984
985 /* 16 bit TOC-relative relocation, high 16 bits. */
986
987 /* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */
988 HOWTO (R_PPC64_TOC16_HI, /* type */
989 16, /* rightshift */
990 1, /* size (0 = byte, 1 = short, 2 = long) */
991 16, /* bitsize */
992 FALSE, /* pc_relative */
993 0, /* bitpos */
994 complain_overflow_signed, /* complain_on_overflow */
995 ppc64_elf_toc_reloc, /* special_function */
996 "R_PPC64_TOC16_HI", /* name */
997 FALSE, /* partial_inplace */
998 0, /* src_mask */
999 0xffff, /* dst_mask */
1000 FALSE), /* pcrel_offset */
1001
1002 /* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the
1003 contents of the low 16 bits, treated as a signed number, is
1004 negative. */
1005
1006 /* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */
1007 HOWTO (R_PPC64_TOC16_HA, /* type */
1008 16, /* rightshift */
1009 1, /* size (0 = byte, 1 = short, 2 = long) */
1010 16, /* bitsize */
1011 FALSE, /* pc_relative */
1012 0, /* bitpos */
1013 complain_overflow_signed, /* complain_on_overflow */
1014 ppc64_elf_toc_ha_reloc, /* special_function */
1015 "R_PPC64_TOC16_HA", /* name */
1016 FALSE, /* partial_inplace */
1017 0, /* src_mask */
1018 0xffff, /* dst_mask */
1019 FALSE), /* pcrel_offset */
1020
1021 /* 64-bit relocation; insert value of TOC base (.TOC.). */
1022
1023 /* R_PPC64_TOC 51 doubleword64 .TOC. */
1024 HOWTO (R_PPC64_TOC, /* type */
1025 0, /* rightshift */
1026 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1027 64, /* bitsize */
1028 FALSE, /* pc_relative */
1029 0, /* bitpos */
1030 complain_overflow_dont, /* complain_on_overflow */
1031 ppc64_elf_toc64_reloc, /* special_function */
1032 "R_PPC64_TOC", /* name */
1033 FALSE, /* partial_inplace */
1034 0, /* src_mask */
1035 ONES (64), /* dst_mask */
1036 FALSE), /* pcrel_offset */
1037
1038 /* Like R_PPC64_GOT16, but also informs the link editor that the
1039 value to relocate may (!) refer to a PLT entry which the link
1040 editor (a) may replace with the symbol value. If the link editor
1041 is unable to fully resolve the symbol, it may (b) create a PLT
1042 entry and store the address to the new PLT entry in the GOT.
1043 This permits lazy resolution of function symbols at run time.
1044 The link editor may also skip all of this and just (c) emit a
1045 R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */
1046 /* FIXME: R_PPC64_PLTGOT16 not implemented. */
1047 HOWTO (R_PPC64_PLTGOT16, /* type */
1048 0, /* rightshift */
1049 1, /* size (0 = byte, 1 = short, 2 = long) */
1050 16, /* bitsize */
1051 FALSE, /* pc_relative */
1052 0, /* bitpos */
1053 complain_overflow_signed, /* complain_on_overflow */
1054 ppc64_elf_unhandled_reloc, /* special_function */
1055 "R_PPC64_PLTGOT16", /* name */
1056 FALSE, /* partial_inplace */
1057 0, /* src_mask */
1058 0xffff, /* dst_mask */
1059 FALSE), /* pcrel_offset */
1060
1061 /* Like R_PPC64_PLTGOT16, but without overflow. */
1062 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1063 HOWTO (R_PPC64_PLTGOT16_LO, /* type */
1064 0, /* rightshift */
1065 1, /* size (0 = byte, 1 = short, 2 = long) */
1066 16, /* bitsize */
1067 FALSE, /* pc_relative */
1068 0, /* bitpos */
1069 complain_overflow_dont, /* complain_on_overflow */
1070 ppc64_elf_unhandled_reloc, /* special_function */
1071 "R_PPC64_PLTGOT16_LO", /* name */
1072 FALSE, /* partial_inplace */
1073 0, /* src_mask */
1074 0xffff, /* dst_mask */
1075 FALSE), /* pcrel_offset */
1076
1077 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */
1078 /* FIXME: R_PPC64_PLTGOT16_HI not implemented. */
1079 HOWTO (R_PPC64_PLTGOT16_HI, /* type */
1080 16, /* rightshift */
1081 1, /* size (0 = byte, 1 = short, 2 = long) */
1082 16, /* bitsize */
1083 FALSE, /* pc_relative */
1084 0, /* bitpos */
1085 complain_overflow_signed, /* complain_on_overflow */
1086 ppc64_elf_unhandled_reloc, /* special_function */
1087 "R_PPC64_PLTGOT16_HI", /* name */
1088 FALSE, /* partial_inplace */
1089 0, /* src_mask */
1090 0xffff, /* dst_mask */
1091 FALSE), /* pcrel_offset */
1092
1093 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus
1094 1 if the contents of the low 16 bits, treated as a signed number,
1095 is negative. */
1096 /* FIXME: R_PPC64_PLTGOT16_HA not implemented. */
1097 HOWTO (R_PPC64_PLTGOT16_HA, /* type */
1098 16, /* rightshift */
1099 1, /* size (0 = byte, 1 = short, 2 = long) */
1100 16, /* bitsize */
1101 FALSE, /* pc_relative */
1102 0, /* bitpos */
1103 complain_overflow_signed, /* complain_on_overflow */
1104 ppc64_elf_unhandled_reloc, /* special_function */
1105 "R_PPC64_PLTGOT16_HA", /* name */
1106 FALSE, /* partial_inplace */
1107 0, /* src_mask */
1108 0xffff, /* dst_mask */
1109 FALSE), /* pcrel_offset */
1110
1111 /* Like R_PPC64_ADDR16, but for instructions with a DS field. */
1112 HOWTO (R_PPC64_ADDR16_DS, /* type */
1113 0, /* rightshift */
1114 1, /* size (0 = byte, 1 = short, 2 = long) */
1115 16, /* bitsize */
1116 FALSE, /* pc_relative */
1117 0, /* bitpos */
1118 complain_overflow_signed, /* complain_on_overflow */
1119 bfd_elf_generic_reloc, /* special_function */
1120 "R_PPC64_ADDR16_DS", /* name */
1121 FALSE, /* partial_inplace */
1122 0, /* src_mask */
1123 0xfffc, /* dst_mask */
1124 FALSE), /* pcrel_offset */
1125
1126 /* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */
1127 HOWTO (R_PPC64_ADDR16_LO_DS, /* type */
1128 0, /* rightshift */
1129 1, /* size (0 = byte, 1 = short, 2 = long) */
1130 16, /* bitsize */
1131 FALSE, /* pc_relative */
1132 0, /* bitpos */
1133 complain_overflow_dont,/* complain_on_overflow */
1134 bfd_elf_generic_reloc, /* special_function */
1135 "R_PPC64_ADDR16_LO_DS",/* name */
1136 FALSE, /* partial_inplace */
1137 0, /* src_mask */
1138 0xfffc, /* dst_mask */
1139 FALSE), /* pcrel_offset */
1140
1141 /* Like R_PPC64_GOT16, but for instructions with a DS field. */
1142 HOWTO (R_PPC64_GOT16_DS, /* type */
1143 0, /* rightshift */
1144 1, /* size (0 = byte, 1 = short, 2 = long) */
1145 16, /* bitsize */
1146 FALSE, /* pc_relative */
1147 0, /* bitpos */
1148 complain_overflow_signed, /* complain_on_overflow */
1149 ppc64_elf_unhandled_reloc, /* special_function */
1150 "R_PPC64_GOT16_DS", /* name */
1151 FALSE, /* partial_inplace */
1152 0, /* src_mask */
1153 0xfffc, /* dst_mask */
1154 FALSE), /* pcrel_offset */
1155
1156 /* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */
1157 HOWTO (R_PPC64_GOT16_LO_DS, /* type */
1158 0, /* rightshift */
1159 1, /* size (0 = byte, 1 = short, 2 = long) */
1160 16, /* bitsize */
1161 FALSE, /* pc_relative */
1162 0, /* bitpos */
1163 complain_overflow_dont, /* complain_on_overflow */
1164 ppc64_elf_unhandled_reloc, /* special_function */
1165 "R_PPC64_GOT16_LO_DS", /* name */
1166 FALSE, /* partial_inplace */
1167 0, /* src_mask */
1168 0xfffc, /* dst_mask */
1169 FALSE), /* pcrel_offset */
1170
1171 /* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */
1172 HOWTO (R_PPC64_PLT16_LO_DS, /* type */
1173 0, /* rightshift */
1174 1, /* size (0 = byte, 1 = short, 2 = long) */
1175 16, /* bitsize */
1176 FALSE, /* pc_relative */
1177 0, /* bitpos */
1178 complain_overflow_dont, /* complain_on_overflow */
1179 ppc64_elf_unhandled_reloc, /* special_function */
1180 "R_PPC64_PLT16_LO_DS", /* name */
1181 FALSE, /* partial_inplace */
1182 0, /* src_mask */
1183 0xfffc, /* dst_mask */
1184 FALSE), /* pcrel_offset */
1185
1186 /* Like R_PPC64_SECTOFF, but for instructions with a DS field. */
1187 HOWTO (R_PPC64_SECTOFF_DS, /* type */
1188 0, /* rightshift */
1189 1, /* size (0 = byte, 1 = short, 2 = long) */
1190 16, /* bitsize */
1191 FALSE, /* pc_relative */
1192 0, /* bitpos */
1193 complain_overflow_signed, /* complain_on_overflow */
1194 ppc64_elf_sectoff_reloc, /* special_function */
1195 "R_PPC64_SECTOFF_DS", /* name */
1196 FALSE, /* partial_inplace */
1197 0, /* src_mask */
1198 0xfffc, /* dst_mask */
1199 FALSE), /* pcrel_offset */
1200
1201 /* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */
1202 HOWTO (R_PPC64_SECTOFF_LO_DS, /* type */
1203 0, /* rightshift */
1204 1, /* size (0 = byte, 1 = short, 2 = long) */
1205 16, /* bitsize */
1206 FALSE, /* pc_relative */
1207 0, /* bitpos */
1208 complain_overflow_dont, /* complain_on_overflow */
1209 ppc64_elf_sectoff_reloc, /* special_function */
1210 "R_PPC64_SECTOFF_LO_DS",/* name */
1211 FALSE, /* partial_inplace */
1212 0, /* src_mask */
1213 0xfffc, /* dst_mask */
1214 FALSE), /* pcrel_offset */
1215
1216 /* Like R_PPC64_TOC16, but for instructions with a DS field. */
1217 HOWTO (R_PPC64_TOC16_DS, /* type */
1218 0, /* rightshift */
1219 1, /* size (0 = byte, 1 = short, 2 = long) */
1220 16, /* bitsize */
1221 FALSE, /* pc_relative */
1222 0, /* bitpos */
1223 complain_overflow_signed, /* complain_on_overflow */
1224 ppc64_elf_toc_reloc, /* special_function */
1225 "R_PPC64_TOC16_DS", /* name */
1226 FALSE, /* partial_inplace */
1227 0, /* src_mask */
1228 0xfffc, /* dst_mask */
1229 FALSE), /* pcrel_offset */
1230
1231 /* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */
1232 HOWTO (R_PPC64_TOC16_LO_DS, /* type */
1233 0, /* rightshift */
1234 1, /* size (0 = byte, 1 = short, 2 = long) */
1235 16, /* bitsize */
1236 FALSE, /* pc_relative */
1237 0, /* bitpos */
1238 complain_overflow_dont, /* complain_on_overflow */
1239 ppc64_elf_toc_reloc, /* special_function */
1240 "R_PPC64_TOC16_LO_DS", /* name */
1241 FALSE, /* partial_inplace */
1242 0, /* src_mask */
1243 0xfffc, /* dst_mask */
1244 FALSE), /* pcrel_offset */
1245
1246 /* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */
1247 /* FIXME: R_PPC64_PLTGOT16_DS not implemented. */
1248 HOWTO (R_PPC64_PLTGOT16_DS, /* type */
1249 0, /* rightshift */
1250 1, /* size (0 = byte, 1 = short, 2 = long) */
1251 16, /* bitsize */
1252 FALSE, /* pc_relative */
1253 0, /* bitpos */
1254 complain_overflow_signed, /* complain_on_overflow */
1255 ppc64_elf_unhandled_reloc, /* special_function */
1256 "R_PPC64_PLTGOT16_DS", /* name */
1257 FALSE, /* partial_inplace */
1258 0, /* src_mask */
1259 0xfffc, /* dst_mask */
1260 FALSE), /* pcrel_offset */
1261
1262 /* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */
1263 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1264 HOWTO (R_PPC64_PLTGOT16_LO_DS,/* type */
1265 0, /* rightshift */
1266 1, /* size (0 = byte, 1 = short, 2 = long) */
1267 16, /* bitsize */
1268 FALSE, /* pc_relative */
1269 0, /* bitpos */
1270 complain_overflow_dont, /* complain_on_overflow */
1271 ppc64_elf_unhandled_reloc, /* special_function */
1272 "R_PPC64_PLTGOT16_LO_DS",/* name */
1273 FALSE, /* partial_inplace */
1274 0, /* src_mask */
1275 0xfffc, /* dst_mask */
1276 FALSE), /* pcrel_offset */
1277
1278 /* Marker relocs for TLS. */
1279 HOWTO (R_PPC64_TLS,
1280 0, /* rightshift */
1281 2, /* size (0 = byte, 1 = short, 2 = long) */
1282 32, /* bitsize */
1283 FALSE, /* pc_relative */
1284 0, /* bitpos */
1285 complain_overflow_dont, /* complain_on_overflow */
1286 bfd_elf_generic_reloc, /* special_function */
1287 "R_PPC64_TLS", /* name */
1288 FALSE, /* partial_inplace */
1289 0, /* src_mask */
1290 0, /* dst_mask */
1291 FALSE), /* pcrel_offset */
1292
1293 HOWTO (R_PPC64_TLSGD,
1294 0, /* rightshift */
1295 2, /* size (0 = byte, 1 = short, 2 = long) */
1296 32, /* bitsize */
1297 FALSE, /* pc_relative */
1298 0, /* bitpos */
1299 complain_overflow_dont, /* complain_on_overflow */
1300 bfd_elf_generic_reloc, /* special_function */
1301 "R_PPC64_TLSGD", /* name */
1302 FALSE, /* partial_inplace */
1303 0, /* src_mask */
1304 0, /* dst_mask */
1305 FALSE), /* pcrel_offset */
1306
1307 HOWTO (R_PPC64_TLSLD,
1308 0, /* rightshift */
1309 2, /* size (0 = byte, 1 = short, 2 = long) */
1310 32, /* bitsize */
1311 FALSE, /* pc_relative */
1312 0, /* bitpos */
1313 complain_overflow_dont, /* complain_on_overflow */
1314 bfd_elf_generic_reloc, /* special_function */
1315 "R_PPC64_TLSLD", /* name */
1316 FALSE, /* partial_inplace */
1317 0, /* src_mask */
1318 0, /* dst_mask */
1319 FALSE), /* pcrel_offset */
1320
1321 HOWTO (R_PPC64_TOCSAVE,
1322 0, /* rightshift */
1323 2, /* size (0 = byte, 1 = short, 2 = long) */
1324 32, /* bitsize */
1325 FALSE, /* pc_relative */
1326 0, /* bitpos */
1327 complain_overflow_dont, /* complain_on_overflow */
1328 bfd_elf_generic_reloc, /* special_function */
1329 "R_PPC64_TOCSAVE", /* name */
1330 FALSE, /* partial_inplace */
1331 0, /* src_mask */
1332 0, /* dst_mask */
1333 FALSE), /* pcrel_offset */
1334
1335 /* Computes the load module index of the load module that contains the
1336 definition of its TLS sym. */
1337 HOWTO (R_PPC64_DTPMOD64,
1338 0, /* rightshift */
1339 4, /* size (0 = byte, 1 = short, 2 = long) */
1340 64, /* bitsize */
1341 FALSE, /* pc_relative */
1342 0, /* bitpos */
1343 complain_overflow_dont, /* complain_on_overflow */
1344 ppc64_elf_unhandled_reloc, /* special_function */
1345 "R_PPC64_DTPMOD64", /* name */
1346 FALSE, /* partial_inplace */
1347 0, /* src_mask */
1348 ONES (64), /* dst_mask */
1349 FALSE), /* pcrel_offset */
1350
1351 /* Computes a dtv-relative displacement, the difference between the value
1352 of sym+add and the base address of the thread-local storage block that
1353 contains the definition of sym, minus 0x8000. */
1354 HOWTO (R_PPC64_DTPREL64,
1355 0, /* rightshift */
1356 4, /* size (0 = byte, 1 = short, 2 = long) */
1357 64, /* bitsize */
1358 FALSE, /* pc_relative */
1359 0, /* bitpos */
1360 complain_overflow_dont, /* complain_on_overflow */
1361 ppc64_elf_unhandled_reloc, /* special_function */
1362 "R_PPC64_DTPREL64", /* name */
1363 FALSE, /* partial_inplace */
1364 0, /* src_mask */
1365 ONES (64), /* dst_mask */
1366 FALSE), /* pcrel_offset */
1367
1368 /* A 16 bit dtprel reloc. */
1369 HOWTO (R_PPC64_DTPREL16,
1370 0, /* rightshift */
1371 1, /* size (0 = byte, 1 = short, 2 = long) */
1372 16, /* bitsize */
1373 FALSE, /* pc_relative */
1374 0, /* bitpos */
1375 complain_overflow_signed, /* complain_on_overflow */
1376 ppc64_elf_unhandled_reloc, /* special_function */
1377 "R_PPC64_DTPREL16", /* name */
1378 FALSE, /* partial_inplace */
1379 0, /* src_mask */
1380 0xffff, /* dst_mask */
1381 FALSE), /* pcrel_offset */
1382
1383 /* Like DTPREL16, but no overflow. */
1384 HOWTO (R_PPC64_DTPREL16_LO,
1385 0, /* rightshift */
1386 1, /* size (0 = byte, 1 = short, 2 = long) */
1387 16, /* bitsize */
1388 FALSE, /* pc_relative */
1389 0, /* bitpos */
1390 complain_overflow_dont, /* complain_on_overflow */
1391 ppc64_elf_unhandled_reloc, /* special_function */
1392 "R_PPC64_DTPREL16_LO", /* name */
1393 FALSE, /* partial_inplace */
1394 0, /* src_mask */
1395 0xffff, /* dst_mask */
1396 FALSE), /* pcrel_offset */
1397
1398 /* Like DTPREL16_LO, but next higher group of 16 bits. */
1399 HOWTO (R_PPC64_DTPREL16_HI,
1400 16, /* rightshift */
1401 1, /* size (0 = byte, 1 = short, 2 = long) */
1402 16, /* bitsize */
1403 FALSE, /* pc_relative */
1404 0, /* bitpos */
1405 complain_overflow_signed, /* complain_on_overflow */
1406 ppc64_elf_unhandled_reloc, /* special_function */
1407 "R_PPC64_DTPREL16_HI", /* name */
1408 FALSE, /* partial_inplace */
1409 0, /* src_mask */
1410 0xffff, /* dst_mask */
1411 FALSE), /* pcrel_offset */
1412
1413 /* Like DTPREL16_HI, but adjust for low 16 bits. */
1414 HOWTO (R_PPC64_DTPREL16_HA,
1415 16, /* rightshift */
1416 1, /* size (0 = byte, 1 = short, 2 = long) */
1417 16, /* bitsize */
1418 FALSE, /* pc_relative */
1419 0, /* bitpos */
1420 complain_overflow_signed, /* complain_on_overflow */
1421 ppc64_elf_unhandled_reloc, /* special_function */
1422 "R_PPC64_DTPREL16_HA", /* name */
1423 FALSE, /* partial_inplace */
1424 0, /* src_mask */
1425 0xffff, /* dst_mask */
1426 FALSE), /* pcrel_offset */
1427
1428 /* Like DTPREL16_HI, but next higher group of 16 bits. */
1429 HOWTO (R_PPC64_DTPREL16_HIGHER,
1430 32, /* rightshift */
1431 1, /* size (0 = byte, 1 = short, 2 = long) */
1432 16, /* bitsize */
1433 FALSE, /* pc_relative */
1434 0, /* bitpos */
1435 complain_overflow_dont, /* complain_on_overflow */
1436 ppc64_elf_unhandled_reloc, /* special_function */
1437 "R_PPC64_DTPREL16_HIGHER", /* name */
1438 FALSE, /* partial_inplace */
1439 0, /* src_mask */
1440 0xffff, /* dst_mask */
1441 FALSE), /* pcrel_offset */
1442
1443 /* Like DTPREL16_HIGHER, but adjust for low 16 bits. */
1444 HOWTO (R_PPC64_DTPREL16_HIGHERA,
1445 32, /* rightshift */
1446 1, /* size (0 = byte, 1 = short, 2 = long) */
1447 16, /* bitsize */
1448 FALSE, /* pc_relative */
1449 0, /* bitpos */
1450 complain_overflow_dont, /* complain_on_overflow */
1451 ppc64_elf_unhandled_reloc, /* special_function */
1452 "R_PPC64_DTPREL16_HIGHERA", /* name */
1453 FALSE, /* partial_inplace */
1454 0, /* src_mask */
1455 0xffff, /* dst_mask */
1456 FALSE), /* pcrel_offset */
1457
1458 /* Like DTPREL16_HIGHER, but next higher group of 16 bits. */
1459 HOWTO (R_PPC64_DTPREL16_HIGHEST,
1460 48, /* rightshift */
1461 1, /* size (0 = byte, 1 = short, 2 = long) */
1462 16, /* bitsize */
1463 FALSE, /* pc_relative */
1464 0, /* bitpos */
1465 complain_overflow_dont, /* complain_on_overflow */
1466 ppc64_elf_unhandled_reloc, /* special_function */
1467 "R_PPC64_DTPREL16_HIGHEST", /* name */
1468 FALSE, /* partial_inplace */
1469 0, /* src_mask */
1470 0xffff, /* dst_mask */
1471 FALSE), /* pcrel_offset */
1472
1473 /* Like DTPREL16_HIGHEST, but adjust for low 16 bits. */
1474 HOWTO (R_PPC64_DTPREL16_HIGHESTA,
1475 48, /* rightshift */
1476 1, /* size (0 = byte, 1 = short, 2 = long) */
1477 16, /* bitsize */
1478 FALSE, /* pc_relative */
1479 0, /* bitpos */
1480 complain_overflow_dont, /* complain_on_overflow */
1481 ppc64_elf_unhandled_reloc, /* special_function */
1482 "R_PPC64_DTPREL16_HIGHESTA", /* name */
1483 FALSE, /* partial_inplace */
1484 0, /* src_mask */
1485 0xffff, /* dst_mask */
1486 FALSE), /* pcrel_offset */
1487
1488 /* Like DTPREL16, but for insns with a DS field. */
1489 HOWTO (R_PPC64_DTPREL16_DS,
1490 0, /* rightshift */
1491 1, /* size (0 = byte, 1 = short, 2 = long) */
1492 16, /* bitsize */
1493 FALSE, /* pc_relative */
1494 0, /* bitpos */
1495 complain_overflow_signed, /* complain_on_overflow */
1496 ppc64_elf_unhandled_reloc, /* special_function */
1497 "R_PPC64_DTPREL16_DS", /* name */
1498 FALSE, /* partial_inplace */
1499 0, /* src_mask */
1500 0xfffc, /* dst_mask */
1501 FALSE), /* pcrel_offset */
1502
1503 /* Like DTPREL16_DS, but no overflow. */
1504 HOWTO (R_PPC64_DTPREL16_LO_DS,
1505 0, /* rightshift */
1506 1, /* size (0 = byte, 1 = short, 2 = long) */
1507 16, /* bitsize */
1508 FALSE, /* pc_relative */
1509 0, /* bitpos */
1510 complain_overflow_dont, /* complain_on_overflow */
1511 ppc64_elf_unhandled_reloc, /* special_function */
1512 "R_PPC64_DTPREL16_LO_DS", /* name */
1513 FALSE, /* partial_inplace */
1514 0, /* src_mask */
1515 0xfffc, /* dst_mask */
1516 FALSE), /* pcrel_offset */
1517
1518 /* Computes a tp-relative displacement, the difference between the value of
1519 sym+add and the value of the thread pointer (r13). */
1520 HOWTO (R_PPC64_TPREL64,
1521 0, /* rightshift */
1522 4, /* size (0 = byte, 1 = short, 2 = long) */
1523 64, /* bitsize */
1524 FALSE, /* pc_relative */
1525 0, /* bitpos */
1526 complain_overflow_dont, /* complain_on_overflow */
1527 ppc64_elf_unhandled_reloc, /* special_function */
1528 "R_PPC64_TPREL64", /* name */
1529 FALSE, /* partial_inplace */
1530 0, /* src_mask */
1531 ONES (64), /* dst_mask */
1532 FALSE), /* pcrel_offset */
1533
1534 /* A 16 bit tprel reloc. */
1535 HOWTO (R_PPC64_TPREL16,
1536 0, /* rightshift */
1537 1, /* size (0 = byte, 1 = short, 2 = long) */
1538 16, /* bitsize */
1539 FALSE, /* pc_relative */
1540 0, /* bitpos */
1541 complain_overflow_signed, /* complain_on_overflow */
1542 ppc64_elf_unhandled_reloc, /* special_function */
1543 "R_PPC64_TPREL16", /* name */
1544 FALSE, /* partial_inplace */
1545 0, /* src_mask */
1546 0xffff, /* dst_mask */
1547 FALSE), /* pcrel_offset */
1548
1549 /* Like TPREL16, but no overflow. */
1550 HOWTO (R_PPC64_TPREL16_LO,
1551 0, /* rightshift */
1552 1, /* size (0 = byte, 1 = short, 2 = long) */
1553 16, /* bitsize */
1554 FALSE, /* pc_relative */
1555 0, /* bitpos */
1556 complain_overflow_dont, /* complain_on_overflow */
1557 ppc64_elf_unhandled_reloc, /* special_function */
1558 "R_PPC64_TPREL16_LO", /* name */
1559 FALSE, /* partial_inplace */
1560 0, /* src_mask */
1561 0xffff, /* dst_mask */
1562 FALSE), /* pcrel_offset */
1563
1564 /* Like TPREL16_LO, but next higher group of 16 bits. */
1565 HOWTO (R_PPC64_TPREL16_HI,
1566 16, /* rightshift */
1567 1, /* size (0 = byte, 1 = short, 2 = long) */
1568 16, /* bitsize */
1569 FALSE, /* pc_relative */
1570 0, /* bitpos */
1571 complain_overflow_signed, /* complain_on_overflow */
1572 ppc64_elf_unhandled_reloc, /* special_function */
1573 "R_PPC64_TPREL16_HI", /* name */
1574 FALSE, /* partial_inplace */
1575 0, /* src_mask */
1576 0xffff, /* dst_mask */
1577 FALSE), /* pcrel_offset */
1578
1579 /* Like TPREL16_HI, but adjust for low 16 bits. */
1580 HOWTO (R_PPC64_TPREL16_HA,
1581 16, /* rightshift */
1582 1, /* size (0 = byte, 1 = short, 2 = long) */
1583 16, /* bitsize */
1584 FALSE, /* pc_relative */
1585 0, /* bitpos */
1586 complain_overflow_signed, /* complain_on_overflow */
1587 ppc64_elf_unhandled_reloc, /* special_function */
1588 "R_PPC64_TPREL16_HA", /* name */
1589 FALSE, /* partial_inplace */
1590 0, /* src_mask */
1591 0xffff, /* dst_mask */
1592 FALSE), /* pcrel_offset */
1593
1594 /* Like TPREL16_HI, but next higher group of 16 bits. */
1595 HOWTO (R_PPC64_TPREL16_HIGHER,
1596 32, /* rightshift */
1597 1, /* size (0 = byte, 1 = short, 2 = long) */
1598 16, /* bitsize */
1599 FALSE, /* pc_relative */
1600 0, /* bitpos */
1601 complain_overflow_dont, /* complain_on_overflow */
1602 ppc64_elf_unhandled_reloc, /* special_function */
1603 "R_PPC64_TPREL16_HIGHER", /* name */
1604 FALSE, /* partial_inplace */
1605 0, /* src_mask */
1606 0xffff, /* dst_mask */
1607 FALSE), /* pcrel_offset */
1608
1609 /* Like TPREL16_HIGHER, but adjust for low 16 bits. */
1610 HOWTO (R_PPC64_TPREL16_HIGHERA,
1611 32, /* rightshift */
1612 1, /* size (0 = byte, 1 = short, 2 = long) */
1613 16, /* bitsize */
1614 FALSE, /* pc_relative */
1615 0, /* bitpos */
1616 complain_overflow_dont, /* complain_on_overflow */
1617 ppc64_elf_unhandled_reloc, /* special_function */
1618 "R_PPC64_TPREL16_HIGHERA", /* name */
1619 FALSE, /* partial_inplace */
1620 0, /* src_mask */
1621 0xffff, /* dst_mask */
1622 FALSE), /* pcrel_offset */
1623
1624 /* Like TPREL16_HIGHER, but next higher group of 16 bits. */
1625 HOWTO (R_PPC64_TPREL16_HIGHEST,
1626 48, /* rightshift */
1627 1, /* size (0 = byte, 1 = short, 2 = long) */
1628 16, /* bitsize */
1629 FALSE, /* pc_relative */
1630 0, /* bitpos */
1631 complain_overflow_dont, /* complain_on_overflow */
1632 ppc64_elf_unhandled_reloc, /* special_function */
1633 "R_PPC64_TPREL16_HIGHEST", /* name */
1634 FALSE, /* partial_inplace */
1635 0, /* src_mask */
1636 0xffff, /* dst_mask */
1637 FALSE), /* pcrel_offset */
1638
1639 /* Like TPREL16_HIGHEST, but adjust for low 16 bits. */
1640 HOWTO (R_PPC64_TPREL16_HIGHESTA,
1641 48, /* rightshift */
1642 1, /* size (0 = byte, 1 = short, 2 = long) */
1643 16, /* bitsize */
1644 FALSE, /* pc_relative */
1645 0, /* bitpos */
1646 complain_overflow_dont, /* complain_on_overflow */
1647 ppc64_elf_unhandled_reloc, /* special_function */
1648 "R_PPC64_TPREL16_HIGHESTA", /* name */
1649 FALSE, /* partial_inplace */
1650 0, /* src_mask */
1651 0xffff, /* dst_mask */
1652 FALSE), /* pcrel_offset */
1653
1654 /* Like TPREL16, but for insns with a DS field. */
1655 HOWTO (R_PPC64_TPREL16_DS,
1656 0, /* rightshift */
1657 1, /* size (0 = byte, 1 = short, 2 = long) */
1658 16, /* bitsize */
1659 FALSE, /* pc_relative */
1660 0, /* bitpos */
1661 complain_overflow_signed, /* complain_on_overflow */
1662 ppc64_elf_unhandled_reloc, /* special_function */
1663 "R_PPC64_TPREL16_DS", /* name */
1664 FALSE, /* partial_inplace */
1665 0, /* src_mask */
1666 0xfffc, /* dst_mask */
1667 FALSE), /* pcrel_offset */
1668
1669 /* Like TPREL16_DS, but no overflow. */
1670 HOWTO (R_PPC64_TPREL16_LO_DS,
1671 0, /* rightshift */
1672 1, /* size (0 = byte, 1 = short, 2 = long) */
1673 16, /* bitsize */
1674 FALSE, /* pc_relative */
1675 0, /* bitpos */
1676 complain_overflow_dont, /* complain_on_overflow */
1677 ppc64_elf_unhandled_reloc, /* special_function */
1678 "R_PPC64_TPREL16_LO_DS", /* name */
1679 FALSE, /* partial_inplace */
1680 0, /* src_mask */
1681 0xfffc, /* dst_mask */
1682 FALSE), /* pcrel_offset */
1683
1684 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1685 with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset
1686 to the first entry relative to the TOC base (r2). */
1687 HOWTO (R_PPC64_GOT_TLSGD16,
1688 0, /* rightshift */
1689 1, /* size (0 = byte, 1 = short, 2 = long) */
1690 16, /* bitsize */
1691 FALSE, /* pc_relative */
1692 0, /* bitpos */
1693 complain_overflow_signed, /* complain_on_overflow */
1694 ppc64_elf_unhandled_reloc, /* special_function */
1695 "R_PPC64_GOT_TLSGD16", /* name */
1696 FALSE, /* partial_inplace */
1697 0, /* src_mask */
1698 0xffff, /* dst_mask */
1699 FALSE), /* pcrel_offset */
1700
1701 /* Like GOT_TLSGD16, but no overflow. */
1702 HOWTO (R_PPC64_GOT_TLSGD16_LO,
1703 0, /* rightshift */
1704 1, /* size (0 = byte, 1 = short, 2 = long) */
1705 16, /* bitsize */
1706 FALSE, /* pc_relative */
1707 0, /* bitpos */
1708 complain_overflow_dont, /* complain_on_overflow */
1709 ppc64_elf_unhandled_reloc, /* special_function */
1710 "R_PPC64_GOT_TLSGD16_LO", /* name */
1711 FALSE, /* partial_inplace */
1712 0, /* src_mask */
1713 0xffff, /* dst_mask */
1714 FALSE), /* pcrel_offset */
1715
1716 /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */
1717 HOWTO (R_PPC64_GOT_TLSGD16_HI,
1718 16, /* rightshift */
1719 1, /* size (0 = byte, 1 = short, 2 = long) */
1720 16, /* bitsize */
1721 FALSE, /* pc_relative */
1722 0, /* bitpos */
1723 complain_overflow_signed, /* complain_on_overflow */
1724 ppc64_elf_unhandled_reloc, /* special_function */
1725 "R_PPC64_GOT_TLSGD16_HI", /* name */
1726 FALSE, /* partial_inplace */
1727 0, /* src_mask */
1728 0xffff, /* dst_mask */
1729 FALSE), /* pcrel_offset */
1730
1731 /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */
1732 HOWTO (R_PPC64_GOT_TLSGD16_HA,
1733 16, /* rightshift */
1734 1, /* size (0 = byte, 1 = short, 2 = long) */
1735 16, /* bitsize */
1736 FALSE, /* pc_relative */
1737 0, /* bitpos */
1738 complain_overflow_signed, /* complain_on_overflow */
1739 ppc64_elf_unhandled_reloc, /* special_function */
1740 "R_PPC64_GOT_TLSGD16_HA", /* name */
1741 FALSE, /* partial_inplace */
1742 0, /* src_mask */
1743 0xffff, /* dst_mask */
1744 FALSE), /* pcrel_offset */
1745
1746 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1747 with values (sym+add)@dtpmod and zero, and computes the offset to the
1748 first entry relative to the TOC base (r2). */
1749 HOWTO (R_PPC64_GOT_TLSLD16,
1750 0, /* rightshift */
1751 1, /* size (0 = byte, 1 = short, 2 = long) */
1752 16, /* bitsize */
1753 FALSE, /* pc_relative */
1754 0, /* bitpos */
1755 complain_overflow_signed, /* complain_on_overflow */
1756 ppc64_elf_unhandled_reloc, /* special_function */
1757 "R_PPC64_GOT_TLSLD16", /* name */
1758 FALSE, /* partial_inplace */
1759 0, /* src_mask */
1760 0xffff, /* dst_mask */
1761 FALSE), /* pcrel_offset */
1762
1763 /* Like GOT_TLSLD16, but no overflow. */
1764 HOWTO (R_PPC64_GOT_TLSLD16_LO,
1765 0, /* rightshift */
1766 1, /* size (0 = byte, 1 = short, 2 = long) */
1767 16, /* bitsize */
1768 FALSE, /* pc_relative */
1769 0, /* bitpos */
1770 complain_overflow_dont, /* complain_on_overflow */
1771 ppc64_elf_unhandled_reloc, /* special_function */
1772 "R_PPC64_GOT_TLSLD16_LO", /* name */
1773 FALSE, /* partial_inplace */
1774 0, /* src_mask */
1775 0xffff, /* dst_mask */
1776 FALSE), /* pcrel_offset */
1777
1778 /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */
1779 HOWTO (R_PPC64_GOT_TLSLD16_HI,
1780 16, /* rightshift */
1781 1, /* size (0 = byte, 1 = short, 2 = long) */
1782 16, /* bitsize */
1783 FALSE, /* pc_relative */
1784 0, /* bitpos */
1785 complain_overflow_signed, /* complain_on_overflow */
1786 ppc64_elf_unhandled_reloc, /* special_function */
1787 "R_PPC64_GOT_TLSLD16_HI", /* name */
1788 FALSE, /* partial_inplace */
1789 0, /* src_mask */
1790 0xffff, /* dst_mask */
1791 FALSE), /* pcrel_offset */
1792
1793 /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */
1794 HOWTO (R_PPC64_GOT_TLSLD16_HA,
1795 16, /* rightshift */
1796 1, /* size (0 = byte, 1 = short, 2 = long) */
1797 16, /* bitsize */
1798 FALSE, /* pc_relative */
1799 0, /* bitpos */
1800 complain_overflow_signed, /* complain_on_overflow */
1801 ppc64_elf_unhandled_reloc, /* special_function */
1802 "R_PPC64_GOT_TLSLD16_HA", /* name */
1803 FALSE, /* partial_inplace */
1804 0, /* src_mask */
1805 0xffff, /* dst_mask */
1806 FALSE), /* pcrel_offset */
1807
1808 /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes
1809 the offset to the entry relative to the TOC base (r2). */
1810 HOWTO (R_PPC64_GOT_DTPREL16_DS,
1811 0, /* rightshift */
1812 1, /* size (0 = byte, 1 = short, 2 = long) */
1813 16, /* bitsize */
1814 FALSE, /* pc_relative */
1815 0, /* bitpos */
1816 complain_overflow_signed, /* complain_on_overflow */
1817 ppc64_elf_unhandled_reloc, /* special_function */
1818 "R_PPC64_GOT_DTPREL16_DS", /* name */
1819 FALSE, /* partial_inplace */
1820 0, /* src_mask */
1821 0xfffc, /* dst_mask */
1822 FALSE), /* pcrel_offset */
1823
1824 /* Like GOT_DTPREL16_DS, but no overflow. */
1825 HOWTO (R_PPC64_GOT_DTPREL16_LO_DS,
1826 0, /* rightshift */
1827 1, /* size (0 = byte, 1 = short, 2 = long) */
1828 16, /* bitsize */
1829 FALSE, /* pc_relative */
1830 0, /* bitpos */
1831 complain_overflow_dont, /* complain_on_overflow */
1832 ppc64_elf_unhandled_reloc, /* special_function */
1833 "R_PPC64_GOT_DTPREL16_LO_DS", /* name */
1834 FALSE, /* partial_inplace */
1835 0, /* src_mask */
1836 0xfffc, /* dst_mask */
1837 FALSE), /* pcrel_offset */
1838
1839 /* Like GOT_DTPREL16_LO_DS, but next higher group of 16 bits. */
1840 HOWTO (R_PPC64_GOT_DTPREL16_HI,
1841 16, /* rightshift */
1842 1, /* size (0 = byte, 1 = short, 2 = long) */
1843 16, /* bitsize */
1844 FALSE, /* pc_relative */
1845 0, /* bitpos */
1846 complain_overflow_signed, /* complain_on_overflow */
1847 ppc64_elf_unhandled_reloc, /* special_function */
1848 "R_PPC64_GOT_DTPREL16_HI", /* name */
1849 FALSE, /* partial_inplace */
1850 0, /* src_mask */
1851 0xffff, /* dst_mask */
1852 FALSE), /* pcrel_offset */
1853
1854 /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */
1855 HOWTO (R_PPC64_GOT_DTPREL16_HA,
1856 16, /* rightshift */
1857 1, /* size (0 = byte, 1 = short, 2 = long) */
1858 16, /* bitsize */
1859 FALSE, /* pc_relative */
1860 0, /* bitpos */
1861 complain_overflow_signed, /* complain_on_overflow */
1862 ppc64_elf_unhandled_reloc, /* special_function */
1863 "R_PPC64_GOT_DTPREL16_HA", /* name */
1864 FALSE, /* partial_inplace */
1865 0, /* src_mask */
1866 0xffff, /* dst_mask */
1867 FALSE), /* pcrel_offset */
1868
1869 /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the
1870 offset to the entry relative to the TOC base (r2). */
1871 HOWTO (R_PPC64_GOT_TPREL16_DS,
1872 0, /* rightshift */
1873 1, /* size (0 = byte, 1 = short, 2 = long) */
1874 16, /* bitsize */
1875 FALSE, /* pc_relative */
1876 0, /* bitpos */
1877 complain_overflow_signed, /* complain_on_overflow */
1878 ppc64_elf_unhandled_reloc, /* special_function */
1879 "R_PPC64_GOT_TPREL16_DS", /* name */
1880 FALSE, /* partial_inplace */
1881 0, /* src_mask */
1882 0xfffc, /* dst_mask */
1883 FALSE), /* pcrel_offset */
1884
1885 /* Like GOT_TPREL16_DS, but no overflow. */
1886 HOWTO (R_PPC64_GOT_TPREL16_LO_DS,
1887 0, /* rightshift */
1888 1, /* size (0 = byte, 1 = short, 2 = long) */
1889 16, /* bitsize */
1890 FALSE, /* pc_relative */
1891 0, /* bitpos */
1892 complain_overflow_dont, /* complain_on_overflow */
1893 ppc64_elf_unhandled_reloc, /* special_function */
1894 "R_PPC64_GOT_TPREL16_LO_DS", /* name */
1895 FALSE, /* partial_inplace */
1896 0, /* src_mask */
1897 0xfffc, /* dst_mask */
1898 FALSE), /* pcrel_offset */
1899
1900 /* Like GOT_TPREL16_LO_DS, but next higher group of 16 bits. */
1901 HOWTO (R_PPC64_GOT_TPREL16_HI,
1902 16, /* rightshift */
1903 1, /* size (0 = byte, 1 = short, 2 = long) */
1904 16, /* bitsize */
1905 FALSE, /* pc_relative */
1906 0, /* bitpos */
1907 complain_overflow_signed, /* complain_on_overflow */
1908 ppc64_elf_unhandled_reloc, /* special_function */
1909 "R_PPC64_GOT_TPREL16_HI", /* name */
1910 FALSE, /* partial_inplace */
1911 0, /* src_mask */
1912 0xffff, /* dst_mask */
1913 FALSE), /* pcrel_offset */
1914
1915 /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */
1916 HOWTO (R_PPC64_GOT_TPREL16_HA,
1917 16, /* rightshift */
1918 1, /* size (0 = byte, 1 = short, 2 = long) */
1919 16, /* bitsize */
1920 FALSE, /* pc_relative */
1921 0, /* bitpos */
1922 complain_overflow_signed, /* complain_on_overflow */
1923 ppc64_elf_unhandled_reloc, /* special_function */
1924 "R_PPC64_GOT_TPREL16_HA", /* name */
1925 FALSE, /* partial_inplace */
1926 0, /* src_mask */
1927 0xffff, /* dst_mask */
1928 FALSE), /* pcrel_offset */
1929
1930 HOWTO (R_PPC64_JMP_IREL, /* type */
1931 0, /* rightshift */
1932 0, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1933 0, /* bitsize */
1934 FALSE, /* pc_relative */
1935 0, /* bitpos */
1936 complain_overflow_dont, /* complain_on_overflow */
1937 ppc64_elf_unhandled_reloc, /* special_function */
1938 "R_PPC64_JMP_IREL", /* name */
1939 FALSE, /* partial_inplace */
1940 0, /* src_mask */
1941 0, /* dst_mask */
1942 FALSE), /* pcrel_offset */
1943
1944 HOWTO (R_PPC64_IRELATIVE, /* type */
1945 0, /* rightshift */
1946 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1947 64, /* bitsize */
1948 FALSE, /* pc_relative */
1949 0, /* bitpos */
1950 complain_overflow_dont, /* complain_on_overflow */
1951 bfd_elf_generic_reloc, /* special_function */
1952 "R_PPC64_IRELATIVE", /* name */
1953 FALSE, /* partial_inplace */
1954 0, /* src_mask */
1955 ONES (64), /* dst_mask */
1956 FALSE), /* pcrel_offset */
1957
1958 /* A 16 bit relative relocation. */
1959 HOWTO (R_PPC64_REL16, /* type */
1960 0, /* rightshift */
1961 1, /* size (0 = byte, 1 = short, 2 = long) */
1962 16, /* bitsize */
1963 TRUE, /* pc_relative */
1964 0, /* bitpos */
1965 complain_overflow_signed, /* complain_on_overflow */
1966 bfd_elf_generic_reloc, /* special_function */
1967 "R_PPC64_REL16", /* name */
1968 FALSE, /* partial_inplace */
1969 0, /* src_mask */
1970 0xffff, /* dst_mask */
1971 TRUE), /* pcrel_offset */
1972
1973 /* A 16 bit relative relocation without overflow. */
1974 HOWTO (R_PPC64_REL16_LO, /* type */
1975 0, /* rightshift */
1976 1, /* size (0 = byte, 1 = short, 2 = long) */
1977 16, /* bitsize */
1978 TRUE, /* pc_relative */
1979 0, /* bitpos */
1980 complain_overflow_dont,/* complain_on_overflow */
1981 bfd_elf_generic_reloc, /* special_function */
1982 "R_PPC64_REL16_LO", /* name */
1983 FALSE, /* partial_inplace */
1984 0, /* src_mask */
1985 0xffff, /* dst_mask */
1986 TRUE), /* pcrel_offset */
1987
1988 /* The high order 16 bits of a relative address. */
1989 HOWTO (R_PPC64_REL16_HI, /* type */
1990 16, /* rightshift */
1991 1, /* size (0 = byte, 1 = short, 2 = long) */
1992 16, /* bitsize */
1993 TRUE, /* pc_relative */
1994 0, /* bitpos */
1995 complain_overflow_signed, /* complain_on_overflow */
1996 bfd_elf_generic_reloc, /* special_function */
1997 "R_PPC64_REL16_HI", /* name */
1998 FALSE, /* partial_inplace */
1999 0, /* src_mask */
2000 0xffff, /* dst_mask */
2001 TRUE), /* pcrel_offset */
2002
2003 /* The high order 16 bits of a relative address, plus 1 if the contents of
2004 the low 16 bits, treated as a signed number, is negative. */
2005 HOWTO (R_PPC64_REL16_HA, /* type */
2006 16, /* rightshift */
2007 1, /* size (0 = byte, 1 = short, 2 = long) */
2008 16, /* bitsize */
2009 TRUE, /* pc_relative */
2010 0, /* bitpos */
2011 complain_overflow_signed, /* complain_on_overflow */
2012 ppc64_elf_ha_reloc, /* special_function */
2013 "R_PPC64_REL16_HA", /* name */
2014 FALSE, /* partial_inplace */
2015 0, /* src_mask */
2016 0xffff, /* dst_mask */
2017 TRUE), /* pcrel_offset */
2018
2019 /* Like R_PPC64_ADDR16_HI, but no overflow. */
2020 HOWTO (R_PPC64_ADDR16_HIGH, /* type */
2021 16, /* rightshift */
2022 1, /* size (0 = byte, 1 = short, 2 = long) */
2023 16, /* bitsize */
2024 FALSE, /* pc_relative */
2025 0, /* bitpos */
2026 complain_overflow_dont, /* complain_on_overflow */
2027 bfd_elf_generic_reloc, /* special_function */
2028 "R_PPC64_ADDR16_HIGH", /* name */
2029 FALSE, /* partial_inplace */
2030 0, /* src_mask */
2031 0xffff, /* dst_mask */
2032 FALSE), /* pcrel_offset */
2033
2034 /* Like R_PPC64_ADDR16_HA, but no overflow. */
2035 HOWTO (R_PPC64_ADDR16_HIGHA, /* type */
2036 16, /* rightshift */
2037 1, /* size (0 = byte, 1 = short, 2 = long) */
2038 16, /* bitsize */
2039 FALSE, /* pc_relative */
2040 0, /* bitpos */
2041 complain_overflow_dont, /* complain_on_overflow */
2042 ppc64_elf_ha_reloc, /* special_function */
2043 "R_PPC64_ADDR16_HIGHA", /* name */
2044 FALSE, /* partial_inplace */
2045 0, /* src_mask */
2046 0xffff, /* dst_mask */
2047 FALSE), /* pcrel_offset */
2048
2049 /* Like R_PPC64_DTPREL16_HI, but no overflow. */
2050 HOWTO (R_PPC64_DTPREL16_HIGH,
2051 16, /* rightshift */
2052 1, /* size (0 = byte, 1 = short, 2 = long) */
2053 16, /* bitsize */
2054 FALSE, /* pc_relative */
2055 0, /* bitpos */
2056 complain_overflow_dont, /* complain_on_overflow */
2057 ppc64_elf_unhandled_reloc, /* special_function */
2058 "R_PPC64_DTPREL16_HIGH", /* name */
2059 FALSE, /* partial_inplace */
2060 0, /* src_mask */
2061 0xffff, /* dst_mask */
2062 FALSE), /* pcrel_offset */
2063
2064 /* Like R_PPC64_DTPREL16_HA, but no overflow. */
2065 HOWTO (R_PPC64_DTPREL16_HIGHA,
2066 16, /* rightshift */
2067 1, /* size (0 = byte, 1 = short, 2 = long) */
2068 16, /* bitsize */
2069 FALSE, /* pc_relative */
2070 0, /* bitpos */
2071 complain_overflow_dont, /* complain_on_overflow */
2072 ppc64_elf_unhandled_reloc, /* special_function */
2073 "R_PPC64_DTPREL16_HIGHA", /* name */
2074 FALSE, /* partial_inplace */
2075 0, /* src_mask */
2076 0xffff, /* dst_mask */
2077 FALSE), /* pcrel_offset */
2078
2079 /* Like R_PPC64_TPREL16_HI, but no overflow. */
2080 HOWTO (R_PPC64_TPREL16_HIGH,
2081 16, /* rightshift */
2082 1, /* size (0 = byte, 1 = short, 2 = long) */
2083 16, /* bitsize */
2084 FALSE, /* pc_relative */
2085 0, /* bitpos */
2086 complain_overflow_dont, /* complain_on_overflow */
2087 ppc64_elf_unhandled_reloc, /* special_function */
2088 "R_PPC64_TPREL16_HIGH", /* name */
2089 FALSE, /* partial_inplace */
2090 0, /* src_mask */
2091 0xffff, /* dst_mask */
2092 FALSE), /* pcrel_offset */
2093
2094 /* Like R_PPC64_TPREL16_HA, but no overflow. */
2095 HOWTO (R_PPC64_TPREL16_HIGHA,
2096 16, /* rightshift */
2097 1, /* size (0 = byte, 1 = short, 2 = long) */
2098 16, /* bitsize */
2099 FALSE, /* pc_relative */
2100 0, /* bitpos */
2101 complain_overflow_dont, /* complain_on_overflow */
2102 ppc64_elf_unhandled_reloc, /* special_function */
2103 "R_PPC64_TPREL16_HIGHA", /* name */
2104 FALSE, /* partial_inplace */
2105 0, /* src_mask */
2106 0xffff, /* dst_mask */
2107 FALSE), /* pcrel_offset */
2108
2109 /* Like ADDR64, but use local entry point of function. */
2110 HOWTO (R_PPC64_ADDR64_LOCAL, /* type */
2111 0, /* rightshift */
2112 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
2113 64, /* bitsize */
2114 FALSE, /* pc_relative */
2115 0, /* bitpos */
2116 complain_overflow_dont, /* complain_on_overflow */
2117 bfd_elf_generic_reloc, /* special_function */
2118 "R_PPC64_ADDR64_LOCAL", /* name */
2119 FALSE, /* partial_inplace */
2120 0, /* src_mask */
2121 ONES (64), /* dst_mask */
2122 FALSE), /* pcrel_offset */
2123
2124 /* GNU extension to record C++ vtable hierarchy. */
2125 HOWTO (R_PPC64_GNU_VTINHERIT, /* type */
2126 0, /* rightshift */
2127 0, /* size (0 = byte, 1 = short, 2 = long) */
2128 0, /* bitsize */
2129 FALSE, /* pc_relative */
2130 0, /* bitpos */
2131 complain_overflow_dont, /* complain_on_overflow */
2132 NULL, /* special_function */
2133 "R_PPC64_GNU_VTINHERIT", /* name */
2134 FALSE, /* partial_inplace */
2135 0, /* src_mask */
2136 0, /* dst_mask */
2137 FALSE), /* pcrel_offset */
2138
2139 /* GNU extension to record C++ vtable member usage. */
2140 HOWTO (R_PPC64_GNU_VTENTRY, /* type */
2141 0, /* rightshift */
2142 0, /* size (0 = byte, 1 = short, 2 = long) */
2143 0, /* bitsize */
2144 FALSE, /* pc_relative */
2145 0, /* bitpos */
2146 complain_overflow_dont, /* complain_on_overflow */
2147 NULL, /* special_function */
2148 "R_PPC64_GNU_VTENTRY", /* name */
2149 FALSE, /* partial_inplace */
2150 0, /* src_mask */
2151 0, /* dst_mask */
2152 FALSE), /* pcrel_offset */
2153 };
2154
2155 \f
2156 /* Initialize the ppc64_elf_howto_table, so that linear accesses can
2157 be done. */
2158
2159 static void
2160 ppc_howto_init (void)
2161 {
2162 unsigned int i, type;
2163
2164 for (i = 0;
2165 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
2166 i++)
2167 {
2168 type = ppc64_elf_howto_raw[i].type;
2169 BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table)
2170 / sizeof (ppc64_elf_howto_table[0])));
2171 ppc64_elf_howto_table[type] = &ppc64_elf_howto_raw[i];
2172 }
2173 }
2174
2175 static reloc_howto_type *
2176 ppc64_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2177 bfd_reloc_code_real_type code)
2178 {
2179 enum elf_ppc64_reloc_type r = R_PPC64_NONE;
2180
2181 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2182 /* Initialize howto table if needed. */
2183 ppc_howto_init ();
2184
2185 switch (code)
2186 {
2187 default:
2188 return NULL;
2189
2190 case BFD_RELOC_NONE: r = R_PPC64_NONE;
2191 break;
2192 case BFD_RELOC_32: r = R_PPC64_ADDR32;
2193 break;
2194 case BFD_RELOC_PPC_BA26: r = R_PPC64_ADDR24;
2195 break;
2196 case BFD_RELOC_16: r = R_PPC64_ADDR16;
2197 break;
2198 case BFD_RELOC_LO16: r = R_PPC64_ADDR16_LO;
2199 break;
2200 case BFD_RELOC_HI16: r = R_PPC64_ADDR16_HI;
2201 break;
2202 case BFD_RELOC_PPC64_ADDR16_HIGH: r = R_PPC64_ADDR16_HIGH;
2203 break;
2204 case BFD_RELOC_HI16_S: r = R_PPC64_ADDR16_HA;
2205 break;
2206 case BFD_RELOC_PPC64_ADDR16_HIGHA: r = R_PPC64_ADDR16_HIGHA;
2207 break;
2208 case BFD_RELOC_PPC_BA16: r = R_PPC64_ADDR14;
2209 break;
2210 case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC64_ADDR14_BRTAKEN;
2211 break;
2212 case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC64_ADDR14_BRNTAKEN;
2213 break;
2214 case BFD_RELOC_PPC_B26: r = R_PPC64_REL24;
2215 break;
2216 case BFD_RELOC_PPC_B16: r = R_PPC64_REL14;
2217 break;
2218 case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC64_REL14_BRTAKEN;
2219 break;
2220 case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC64_REL14_BRNTAKEN;
2221 break;
2222 case BFD_RELOC_16_GOTOFF: r = R_PPC64_GOT16;
2223 break;
2224 case BFD_RELOC_LO16_GOTOFF: r = R_PPC64_GOT16_LO;
2225 break;
2226 case BFD_RELOC_HI16_GOTOFF: r = R_PPC64_GOT16_HI;
2227 break;
2228 case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC64_GOT16_HA;
2229 break;
2230 case BFD_RELOC_PPC_COPY: r = R_PPC64_COPY;
2231 break;
2232 case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC64_GLOB_DAT;
2233 break;
2234 case BFD_RELOC_32_PCREL: r = R_PPC64_REL32;
2235 break;
2236 case BFD_RELOC_32_PLTOFF: r = R_PPC64_PLT32;
2237 break;
2238 case BFD_RELOC_32_PLT_PCREL: r = R_PPC64_PLTREL32;
2239 break;
2240 case BFD_RELOC_LO16_PLTOFF: r = R_PPC64_PLT16_LO;
2241 break;
2242 case BFD_RELOC_HI16_PLTOFF: r = R_PPC64_PLT16_HI;
2243 break;
2244 case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC64_PLT16_HA;
2245 break;
2246 case BFD_RELOC_16_BASEREL: r = R_PPC64_SECTOFF;
2247 break;
2248 case BFD_RELOC_LO16_BASEREL: r = R_PPC64_SECTOFF_LO;
2249 break;
2250 case BFD_RELOC_HI16_BASEREL: r = R_PPC64_SECTOFF_HI;
2251 break;
2252 case BFD_RELOC_HI16_S_BASEREL: r = R_PPC64_SECTOFF_HA;
2253 break;
2254 case BFD_RELOC_CTOR: r = R_PPC64_ADDR64;
2255 break;
2256 case BFD_RELOC_64: r = R_PPC64_ADDR64;
2257 break;
2258 case BFD_RELOC_PPC64_HIGHER: r = R_PPC64_ADDR16_HIGHER;
2259 break;
2260 case BFD_RELOC_PPC64_HIGHER_S: r = R_PPC64_ADDR16_HIGHERA;
2261 break;
2262 case BFD_RELOC_PPC64_HIGHEST: r = R_PPC64_ADDR16_HIGHEST;
2263 break;
2264 case BFD_RELOC_PPC64_HIGHEST_S: r = R_PPC64_ADDR16_HIGHESTA;
2265 break;
2266 case BFD_RELOC_64_PCREL: r = R_PPC64_REL64;
2267 break;
2268 case BFD_RELOC_64_PLTOFF: r = R_PPC64_PLT64;
2269 break;
2270 case BFD_RELOC_64_PLT_PCREL: r = R_PPC64_PLTREL64;
2271 break;
2272 case BFD_RELOC_PPC_TOC16: r = R_PPC64_TOC16;
2273 break;
2274 case BFD_RELOC_PPC64_TOC16_LO: r = R_PPC64_TOC16_LO;
2275 break;
2276 case BFD_RELOC_PPC64_TOC16_HI: r = R_PPC64_TOC16_HI;
2277 break;
2278 case BFD_RELOC_PPC64_TOC16_HA: r = R_PPC64_TOC16_HA;
2279 break;
2280 case BFD_RELOC_PPC64_TOC: r = R_PPC64_TOC;
2281 break;
2282 case BFD_RELOC_PPC64_PLTGOT16: r = R_PPC64_PLTGOT16;
2283 break;
2284 case BFD_RELOC_PPC64_PLTGOT16_LO: r = R_PPC64_PLTGOT16_LO;
2285 break;
2286 case BFD_RELOC_PPC64_PLTGOT16_HI: r = R_PPC64_PLTGOT16_HI;
2287 break;
2288 case BFD_RELOC_PPC64_PLTGOT16_HA: r = R_PPC64_PLTGOT16_HA;
2289 break;
2290 case BFD_RELOC_PPC64_ADDR16_DS: r = R_PPC64_ADDR16_DS;
2291 break;
2292 case BFD_RELOC_PPC64_ADDR16_LO_DS: r = R_PPC64_ADDR16_LO_DS;
2293 break;
2294 case BFD_RELOC_PPC64_GOT16_DS: r = R_PPC64_GOT16_DS;
2295 break;
2296 case BFD_RELOC_PPC64_GOT16_LO_DS: r = R_PPC64_GOT16_LO_DS;
2297 break;
2298 case BFD_RELOC_PPC64_PLT16_LO_DS: r = R_PPC64_PLT16_LO_DS;
2299 break;
2300 case BFD_RELOC_PPC64_SECTOFF_DS: r = R_PPC64_SECTOFF_DS;
2301 break;
2302 case BFD_RELOC_PPC64_SECTOFF_LO_DS: r = R_PPC64_SECTOFF_LO_DS;
2303 break;
2304 case BFD_RELOC_PPC64_TOC16_DS: r = R_PPC64_TOC16_DS;
2305 break;
2306 case BFD_RELOC_PPC64_TOC16_LO_DS: r = R_PPC64_TOC16_LO_DS;
2307 break;
2308 case BFD_RELOC_PPC64_PLTGOT16_DS: r = R_PPC64_PLTGOT16_DS;
2309 break;
2310 case BFD_RELOC_PPC64_PLTGOT16_LO_DS: r = R_PPC64_PLTGOT16_LO_DS;
2311 break;
2312 case BFD_RELOC_PPC_TLS: r = R_PPC64_TLS;
2313 break;
2314 case BFD_RELOC_PPC_TLSGD: r = R_PPC64_TLSGD;
2315 break;
2316 case BFD_RELOC_PPC_TLSLD: r = R_PPC64_TLSLD;
2317 break;
2318 case BFD_RELOC_PPC_DTPMOD: r = R_PPC64_DTPMOD64;
2319 break;
2320 case BFD_RELOC_PPC_TPREL16: r = R_PPC64_TPREL16;
2321 break;
2322 case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC64_TPREL16_LO;
2323 break;
2324 case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC64_TPREL16_HI;
2325 break;
2326 case BFD_RELOC_PPC64_TPREL16_HIGH: r = R_PPC64_TPREL16_HIGH;
2327 break;
2328 case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC64_TPREL16_HA;
2329 break;
2330 case BFD_RELOC_PPC64_TPREL16_HIGHA: r = R_PPC64_TPREL16_HIGHA;
2331 break;
2332 case BFD_RELOC_PPC_TPREL: r = R_PPC64_TPREL64;
2333 break;
2334 case BFD_RELOC_PPC_DTPREL16: r = R_PPC64_DTPREL16;
2335 break;
2336 case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC64_DTPREL16_LO;
2337 break;
2338 case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC64_DTPREL16_HI;
2339 break;
2340 case BFD_RELOC_PPC64_DTPREL16_HIGH: r = R_PPC64_DTPREL16_HIGH;
2341 break;
2342 case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC64_DTPREL16_HA;
2343 break;
2344 case BFD_RELOC_PPC64_DTPREL16_HIGHA: r = R_PPC64_DTPREL16_HIGHA;
2345 break;
2346 case BFD_RELOC_PPC_DTPREL: r = R_PPC64_DTPREL64;
2347 break;
2348 case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC64_GOT_TLSGD16;
2349 break;
2350 case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC64_GOT_TLSGD16_LO;
2351 break;
2352 case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC64_GOT_TLSGD16_HI;
2353 break;
2354 case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC64_GOT_TLSGD16_HA;
2355 break;
2356 case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC64_GOT_TLSLD16;
2357 break;
2358 case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC64_GOT_TLSLD16_LO;
2359 break;
2360 case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC64_GOT_TLSLD16_HI;
2361 break;
2362 case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC64_GOT_TLSLD16_HA;
2363 break;
2364 case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC64_GOT_TPREL16_DS;
2365 break;
2366 case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC64_GOT_TPREL16_LO_DS;
2367 break;
2368 case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC64_GOT_TPREL16_HI;
2369 break;
2370 case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC64_GOT_TPREL16_HA;
2371 break;
2372 case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC64_GOT_DTPREL16_DS;
2373 break;
2374 case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC64_GOT_DTPREL16_LO_DS;
2375 break;
2376 case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC64_GOT_DTPREL16_HI;
2377 break;
2378 case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC64_GOT_DTPREL16_HA;
2379 break;
2380 case BFD_RELOC_PPC64_TPREL16_DS: r = R_PPC64_TPREL16_DS;
2381 break;
2382 case BFD_RELOC_PPC64_TPREL16_LO_DS: r = R_PPC64_TPREL16_LO_DS;
2383 break;
2384 case BFD_RELOC_PPC64_TPREL16_HIGHER: r = R_PPC64_TPREL16_HIGHER;
2385 break;
2386 case BFD_RELOC_PPC64_TPREL16_HIGHERA: r = R_PPC64_TPREL16_HIGHERA;
2387 break;
2388 case BFD_RELOC_PPC64_TPREL16_HIGHEST: r = R_PPC64_TPREL16_HIGHEST;
2389 break;
2390 case BFD_RELOC_PPC64_TPREL16_HIGHESTA: r = R_PPC64_TPREL16_HIGHESTA;
2391 break;
2392 case BFD_RELOC_PPC64_DTPREL16_DS: r = R_PPC64_DTPREL16_DS;
2393 break;
2394 case BFD_RELOC_PPC64_DTPREL16_LO_DS: r = R_PPC64_DTPREL16_LO_DS;
2395 break;
2396 case BFD_RELOC_PPC64_DTPREL16_HIGHER: r = R_PPC64_DTPREL16_HIGHER;
2397 break;
2398 case BFD_RELOC_PPC64_DTPREL16_HIGHERA: r = R_PPC64_DTPREL16_HIGHERA;
2399 break;
2400 case BFD_RELOC_PPC64_DTPREL16_HIGHEST: r = R_PPC64_DTPREL16_HIGHEST;
2401 break;
2402 case BFD_RELOC_PPC64_DTPREL16_HIGHESTA: r = R_PPC64_DTPREL16_HIGHESTA;
2403 break;
2404 case BFD_RELOC_16_PCREL: r = R_PPC64_REL16;
2405 break;
2406 case BFD_RELOC_LO16_PCREL: r = R_PPC64_REL16_LO;
2407 break;
2408 case BFD_RELOC_HI16_PCREL: r = R_PPC64_REL16_HI;
2409 break;
2410 case BFD_RELOC_HI16_S_PCREL: r = R_PPC64_REL16_HA;
2411 break;
2412 case BFD_RELOC_PPC64_ADDR64_LOCAL: r = R_PPC64_ADDR64_LOCAL;
2413 break;
2414 case BFD_RELOC_VTABLE_INHERIT: r = R_PPC64_GNU_VTINHERIT;
2415 break;
2416 case BFD_RELOC_VTABLE_ENTRY: r = R_PPC64_GNU_VTENTRY;
2417 break;
2418 }
2419
2420 return ppc64_elf_howto_table[r];
2421 };
2422
2423 static reloc_howto_type *
2424 ppc64_elf_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2425 const char *r_name)
2426 {
2427 unsigned int i;
2428
2429 for (i = 0;
2430 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
2431 i++)
2432 if (ppc64_elf_howto_raw[i].name != NULL
2433 && strcasecmp (ppc64_elf_howto_raw[i].name, r_name) == 0)
2434 return &ppc64_elf_howto_raw[i];
2435
2436 return NULL;
2437 }
2438
2439 /* Set the howto pointer for a PowerPC ELF reloc. */
2440
2441 static void
2442 ppc64_elf_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
2443 Elf_Internal_Rela *dst)
2444 {
2445 unsigned int type;
2446
2447 /* Initialize howto table if needed. */
2448 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2449 ppc_howto_init ();
2450
2451 type = ELF64_R_TYPE (dst->r_info);
2452 if (type >= (sizeof (ppc64_elf_howto_table)
2453 / sizeof (ppc64_elf_howto_table[0])))
2454 {
2455 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
2456 abfd, (int) type);
2457 type = R_PPC64_NONE;
2458 }
2459 cache_ptr->howto = ppc64_elf_howto_table[type];
2460 }
2461
2462 /* Handle the R_PPC64_ADDR16_HA and similar relocs. */
2463
2464 static bfd_reloc_status_type
2465 ppc64_elf_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2466 void *data, asection *input_section,
2467 bfd *output_bfd, char **error_message)
2468 {
2469 /* If this is a relocatable link (output_bfd test tells us), just
2470 call the generic function. Any adjustment will be done at final
2471 link time. */
2472 if (output_bfd != NULL)
2473 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2474 input_section, output_bfd, error_message);
2475
2476 /* Adjust the addend for sign extension of the low 16 bits.
2477 We won't actually be using the low 16 bits, so trashing them
2478 doesn't matter. */
2479 reloc_entry->addend += 0x8000;
2480 return bfd_reloc_continue;
2481 }
2482
2483 static bfd_reloc_status_type
2484 ppc64_elf_branch_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2485 void *data, asection *input_section,
2486 bfd *output_bfd, char **error_message)
2487 {
2488 if (output_bfd != NULL)
2489 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2490 input_section, output_bfd, error_message);
2491
2492 if (strcmp (symbol->section->name, ".opd") == 0
2493 && (symbol->section->owner->flags & DYNAMIC) == 0)
2494 {
2495 bfd_vma dest = opd_entry_value (symbol->section,
2496 symbol->value + reloc_entry->addend,
2497 NULL, NULL, FALSE);
2498 if (dest != (bfd_vma) -1)
2499 reloc_entry->addend = dest - (symbol->value
2500 + symbol->section->output_section->vma
2501 + symbol->section->output_offset);
2502 }
2503 else
2504 {
2505 elf_symbol_type *elfsym = (elf_symbol_type *) symbol;
2506
2507 if (symbol->section->owner != abfd
2508 && abiversion (symbol->section->owner) >= 2)
2509 {
2510 unsigned int i;
2511
2512 for (i = 0; i < symbol->section->owner->symcount; ++i)
2513 {
2514 asymbol *symdef = symbol->section->owner->outsymbols[i];
2515
2516 if (strcmp (symdef->name, symbol->name) == 0)
2517 {
2518 elfsym = (elf_symbol_type *) symdef;
2519 break;
2520 }
2521 }
2522 }
2523 reloc_entry->addend
2524 += PPC64_LOCAL_ENTRY_OFFSET (elfsym->internal_elf_sym.st_other);
2525 }
2526 return bfd_reloc_continue;
2527 }
2528
2529 static bfd_reloc_status_type
2530 ppc64_elf_brtaken_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2531 void *data, asection *input_section,
2532 bfd *output_bfd, char **error_message)
2533 {
2534 long insn;
2535 enum elf_ppc64_reloc_type r_type;
2536 bfd_size_type octets;
2537 /* Assume 'at' branch hints. */
2538 bfd_boolean is_isa_v2 = TRUE;
2539
2540 /* If this is a relocatable link (output_bfd test tells us), just
2541 call the generic function. Any adjustment will be done at final
2542 link time. */
2543 if (output_bfd != NULL)
2544 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2545 input_section, output_bfd, error_message);
2546
2547 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2548 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
2549 insn &= ~(0x01 << 21);
2550 r_type = reloc_entry->howto->type;
2551 if (r_type == R_PPC64_ADDR14_BRTAKEN
2552 || r_type == R_PPC64_REL14_BRTAKEN)
2553 insn |= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
2554
2555 if (is_isa_v2)
2556 {
2557 /* Set 'a' bit. This is 0b00010 in BO field for branch
2558 on CR(BI) insns (BO == 001at or 011at), and 0b01000
2559 for branch on CTR insns (BO == 1a00t or 1a01t). */
2560 if ((insn & (0x14 << 21)) == (0x04 << 21))
2561 insn |= 0x02 << 21;
2562 else if ((insn & (0x14 << 21)) == (0x10 << 21))
2563 insn |= 0x08 << 21;
2564 else
2565 goto out;
2566 }
2567 else
2568 {
2569 bfd_vma target = 0;
2570 bfd_vma from;
2571
2572 if (!bfd_is_com_section (symbol->section))
2573 target = symbol->value;
2574 target += symbol->section->output_section->vma;
2575 target += symbol->section->output_offset;
2576 target += reloc_entry->addend;
2577
2578 from = (reloc_entry->address
2579 + input_section->output_offset
2580 + input_section->output_section->vma);
2581
2582 /* Invert 'y' bit if not the default. */
2583 if ((bfd_signed_vma) (target - from) < 0)
2584 insn ^= 0x01 << 21;
2585 }
2586 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
2587 out:
2588 return ppc64_elf_branch_reloc (abfd, reloc_entry, symbol, data,
2589 input_section, output_bfd, error_message);
2590 }
2591
2592 static bfd_reloc_status_type
2593 ppc64_elf_sectoff_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2594 void *data, asection *input_section,
2595 bfd *output_bfd, char **error_message)
2596 {
2597 /* If this is a relocatable link (output_bfd test tells us), just
2598 call the generic function. Any adjustment will be done at final
2599 link time. */
2600 if (output_bfd != NULL)
2601 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2602 input_section, output_bfd, error_message);
2603
2604 /* Subtract the symbol section base address. */
2605 reloc_entry->addend -= symbol->section->output_section->vma;
2606 return bfd_reloc_continue;
2607 }
2608
2609 static bfd_reloc_status_type
2610 ppc64_elf_sectoff_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2611 void *data, asection *input_section,
2612 bfd *output_bfd, char **error_message)
2613 {
2614 /* If this is a relocatable link (output_bfd test tells us), just
2615 call the generic function. Any adjustment will be done at final
2616 link time. */
2617 if (output_bfd != NULL)
2618 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2619 input_section, output_bfd, error_message);
2620
2621 /* Subtract the symbol section base address. */
2622 reloc_entry->addend -= symbol->section->output_section->vma;
2623
2624 /* Adjust the addend for sign extension of the low 16 bits. */
2625 reloc_entry->addend += 0x8000;
2626 return bfd_reloc_continue;
2627 }
2628
2629 static bfd_reloc_status_type
2630 ppc64_elf_toc_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2631 void *data, asection *input_section,
2632 bfd *output_bfd, char **error_message)
2633 {
2634 bfd_vma TOCstart;
2635
2636 /* If this is a relocatable link (output_bfd test tells us), just
2637 call the generic function. Any adjustment will be done at final
2638 link time. */
2639 if (output_bfd != NULL)
2640 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2641 input_section, output_bfd, error_message);
2642
2643 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2644 if (TOCstart == 0)
2645 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
2646
2647 /* Subtract the TOC base address. */
2648 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2649 return bfd_reloc_continue;
2650 }
2651
2652 static bfd_reloc_status_type
2653 ppc64_elf_toc_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2654 void *data, asection *input_section,
2655 bfd *output_bfd, char **error_message)
2656 {
2657 bfd_vma TOCstart;
2658
2659 /* If this is a relocatable link (output_bfd test tells us), just
2660 call the generic function. Any adjustment will be done at final
2661 link time. */
2662 if (output_bfd != NULL)
2663 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2664 input_section, output_bfd, error_message);
2665
2666 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2667 if (TOCstart == 0)
2668 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
2669
2670 /* Subtract the TOC base address. */
2671 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2672
2673 /* Adjust the addend for sign extension of the low 16 bits. */
2674 reloc_entry->addend += 0x8000;
2675 return bfd_reloc_continue;
2676 }
2677
2678 static bfd_reloc_status_type
2679 ppc64_elf_toc64_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2680 void *data, asection *input_section,
2681 bfd *output_bfd, char **error_message)
2682 {
2683 bfd_vma TOCstart;
2684 bfd_size_type octets;
2685
2686 /* If this is a relocatable link (output_bfd test tells us), just
2687 call the generic function. Any adjustment will be done at final
2688 link time. */
2689 if (output_bfd != NULL)
2690 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2691 input_section, output_bfd, error_message);
2692
2693 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2694 if (TOCstart == 0)
2695 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
2696
2697 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2698 bfd_put_64 (abfd, TOCstart + TOC_BASE_OFF, (bfd_byte *) data + octets);
2699 return bfd_reloc_ok;
2700 }
2701
2702 static bfd_reloc_status_type
2703 ppc64_elf_unhandled_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2704 void *data, asection *input_section,
2705 bfd *output_bfd, char **error_message)
2706 {
2707 /* If this is a relocatable link (output_bfd test tells us), just
2708 call the generic function. Any adjustment will be done at final
2709 link time. */
2710 if (output_bfd != NULL)
2711 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2712 input_section, output_bfd, error_message);
2713
2714 if (error_message != NULL)
2715 {
2716 static char buf[60];
2717 sprintf (buf, "generic linker can't handle %s",
2718 reloc_entry->howto->name);
2719 *error_message = buf;
2720 }
2721 return bfd_reloc_dangerous;
2722 }
2723
2724 /* Track GOT entries needed for a given symbol. We might need more
2725 than one got entry per symbol. */
2726 struct got_entry
2727 {
2728 struct got_entry *next;
2729
2730 /* The symbol addend that we'll be placing in the GOT. */
2731 bfd_vma addend;
2732
2733 /* Unlike other ELF targets, we use separate GOT entries for the same
2734 symbol referenced from different input files. This is to support
2735 automatic multiple TOC/GOT sections, where the TOC base can vary
2736 from one input file to another. After partitioning into TOC groups
2737 we merge entries within the group.
2738
2739 Point to the BFD owning this GOT entry. */
2740 bfd *owner;
2741
2742 /* Zero for non-tls entries, or TLS_TLS and one of TLS_GD, TLS_LD,
2743 TLS_TPREL or TLS_DTPREL for tls entries. */
2744 unsigned char tls_type;
2745
2746 /* Non-zero if got.ent points to real entry. */
2747 unsigned char is_indirect;
2748
2749 /* Reference count until size_dynamic_sections, GOT offset thereafter. */
2750 union
2751 {
2752 bfd_signed_vma refcount;
2753 bfd_vma offset;
2754 struct got_entry *ent;
2755 } got;
2756 };
2757
2758 /* The same for PLT. */
2759 struct plt_entry
2760 {
2761 struct plt_entry *next;
2762
2763 bfd_vma addend;
2764
2765 union
2766 {
2767 bfd_signed_vma refcount;
2768 bfd_vma offset;
2769 } plt;
2770 };
2771
2772 struct ppc64_elf_obj_tdata
2773 {
2774 struct elf_obj_tdata elf;
2775
2776 /* Shortcuts to dynamic linker sections. */
2777 asection *got;
2778 asection *relgot;
2779
2780 /* Used during garbage collection. We attach global symbols defined
2781 on removed .opd entries to this section so that the sym is removed. */
2782 asection *deleted_section;
2783
2784 /* TLS local dynamic got entry handling. Support for multiple GOT
2785 sections means we potentially need one of these for each input bfd. */
2786 struct got_entry tlsld_got;
2787
2788 union {
2789 /* A copy of relocs before they are modified for --emit-relocs. */
2790 Elf_Internal_Rela *relocs;
2791
2792 /* Section contents. */
2793 bfd_byte *contents;
2794 } opd;
2795
2796 /* Nonzero if this bfd has small toc/got relocs, ie. that expect
2797 the reloc to be in the range -32768 to 32767. */
2798 unsigned int has_small_toc_reloc : 1;
2799
2800 /* Set if toc/got ha relocs detected not using r2, or lo reloc
2801 instruction not one we handle. */
2802 unsigned int unexpected_toc_insn : 1;
2803 };
2804
2805 #define ppc64_elf_tdata(bfd) \
2806 ((struct ppc64_elf_obj_tdata *) (bfd)->tdata.any)
2807
2808 #define ppc64_tlsld_got(bfd) \
2809 (&ppc64_elf_tdata (bfd)->tlsld_got)
2810
2811 #define is_ppc64_elf(bfd) \
2812 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2813 && elf_object_id (bfd) == PPC64_ELF_DATA)
2814
2815 /* Override the generic function because we store some extras. */
2816
2817 static bfd_boolean
2818 ppc64_elf_mkobject (bfd *abfd)
2819 {
2820 return bfd_elf_allocate_object (abfd, sizeof (struct ppc64_elf_obj_tdata),
2821 PPC64_ELF_DATA);
2822 }
2823
2824 /* Fix bad default arch selected for a 64 bit input bfd when the
2825 default is 32 bit. */
2826
2827 static bfd_boolean
2828 ppc64_elf_object_p (bfd *abfd)
2829 {
2830 if (abfd->arch_info->the_default && abfd->arch_info->bits_per_word == 32)
2831 {
2832 Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd);
2833
2834 if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS64)
2835 {
2836 /* Relies on arch after 32 bit default being 64 bit default. */
2837 abfd->arch_info = abfd->arch_info->next;
2838 BFD_ASSERT (abfd->arch_info->bits_per_word == 64);
2839 }
2840 }
2841 return TRUE;
2842 }
2843
2844 /* Support for core dump NOTE sections. */
2845
2846 static bfd_boolean
2847 ppc64_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2848 {
2849 size_t offset, size;
2850
2851 if (note->descsz != 504)
2852 return FALSE;
2853
2854 /* pr_cursig */
2855 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2856
2857 /* pr_pid */
2858 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 32);
2859
2860 /* pr_reg */
2861 offset = 112;
2862 size = 384;
2863
2864 /* Make a ".reg/999" section. */
2865 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2866 size, note->descpos + offset);
2867 }
2868
2869 static bfd_boolean
2870 ppc64_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2871 {
2872 if (note->descsz != 136)
2873 return FALSE;
2874
2875 elf_tdata (abfd)->core->pid
2876 = bfd_get_32 (abfd, note->descdata + 24);
2877 elf_tdata (abfd)->core->program
2878 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2879 elf_tdata (abfd)->core->command
2880 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2881
2882 return TRUE;
2883 }
2884
2885 static char *
2886 ppc64_elf_write_core_note (bfd *abfd, char *buf, int *bufsiz, int note_type,
2887 ...)
2888 {
2889 switch (note_type)
2890 {
2891 default:
2892 return NULL;
2893
2894 case NT_PRPSINFO:
2895 {
2896 char data[136];
2897 va_list ap;
2898
2899 va_start (ap, note_type);
2900 memset (data, 0, sizeof (data));
2901 strncpy (data + 40, va_arg (ap, const char *), 16);
2902 strncpy (data + 56, va_arg (ap, const char *), 80);
2903 va_end (ap);
2904 return elfcore_write_note (abfd, buf, bufsiz,
2905 "CORE", note_type, data, sizeof (data));
2906 }
2907
2908 case NT_PRSTATUS:
2909 {
2910 char data[504];
2911 va_list ap;
2912 long pid;
2913 int cursig;
2914 const void *greg;
2915
2916 va_start (ap, note_type);
2917 memset (data, 0, 112);
2918 pid = va_arg (ap, long);
2919 bfd_put_32 (abfd, pid, data + 32);
2920 cursig = va_arg (ap, int);
2921 bfd_put_16 (abfd, cursig, data + 12);
2922 greg = va_arg (ap, const void *);
2923 memcpy (data + 112, greg, 384);
2924 memset (data + 496, 0, 8);
2925 va_end (ap);
2926 return elfcore_write_note (abfd, buf, bufsiz,
2927 "CORE", note_type, data, sizeof (data));
2928 }
2929 }
2930 }
2931
2932 /* Add extra PPC sections. */
2933
2934 static const struct bfd_elf_special_section ppc64_elf_special_sections[]=
2935 {
2936 { STRING_COMMA_LEN (".plt"), 0, SHT_NOBITS, 0 },
2937 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2938 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2939 { STRING_COMMA_LEN (".toc"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2940 { STRING_COMMA_LEN (".toc1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2941 { STRING_COMMA_LEN (".tocbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2942 { NULL, 0, 0, 0, 0 }
2943 };
2944
2945 enum _ppc64_sec_type {
2946 sec_normal = 0,
2947 sec_opd = 1,
2948 sec_toc = 2
2949 };
2950
2951 struct _ppc64_elf_section_data
2952 {
2953 struct bfd_elf_section_data elf;
2954
2955 union
2956 {
2957 /* An array with one entry for each opd function descriptor. */
2958 struct _opd_sec_data
2959 {
2960 /* Points to the function code section for local opd entries. */
2961 asection **func_sec;
2962
2963 /* After editing .opd, adjust references to opd local syms. */
2964 long *adjust;
2965 } opd;
2966
2967 /* An array for toc sections, indexed by offset/8. */
2968 struct _toc_sec_data
2969 {
2970 /* Specifies the relocation symbol index used at a given toc offset. */
2971 unsigned *symndx;
2972
2973 /* And the relocation addend. */
2974 bfd_vma *add;
2975 } toc;
2976 } u;
2977
2978 enum _ppc64_sec_type sec_type:2;
2979
2980 /* Flag set when small branches are detected. Used to
2981 select suitable defaults for the stub group size. */
2982 unsigned int has_14bit_branch:1;
2983 };
2984
2985 #define ppc64_elf_section_data(sec) \
2986 ((struct _ppc64_elf_section_data *) elf_section_data (sec))
2987
2988 static bfd_boolean
2989 ppc64_elf_new_section_hook (bfd *abfd, asection *sec)
2990 {
2991 if (!sec->used_by_bfd)
2992 {
2993 struct _ppc64_elf_section_data *sdata;
2994 bfd_size_type amt = sizeof (*sdata);
2995
2996 sdata = bfd_zalloc (abfd, amt);
2997 if (sdata == NULL)
2998 return FALSE;
2999 sec->used_by_bfd = sdata;
3000 }
3001
3002 return _bfd_elf_new_section_hook (abfd, sec);
3003 }
3004
3005 static struct _opd_sec_data *
3006 get_opd_info (asection * sec)
3007 {
3008 if (sec != NULL
3009 && ppc64_elf_section_data (sec) != NULL
3010 && ppc64_elf_section_data (sec)->sec_type == sec_opd)
3011 return &ppc64_elf_section_data (sec)->u.opd;
3012 return NULL;
3013 }
3014 \f
3015 /* Parameters for the qsort hook. */
3016 static bfd_boolean synthetic_relocatable;
3017
3018 /* qsort comparison function for ppc64_elf_get_synthetic_symtab. */
3019
3020 static int
3021 compare_symbols (const void *ap, const void *bp)
3022 {
3023 const asymbol *a = * (const asymbol **) ap;
3024 const asymbol *b = * (const asymbol **) bp;
3025
3026 /* Section symbols first. */
3027 if ((a->flags & BSF_SECTION_SYM) && !(b->flags & BSF_SECTION_SYM))
3028 return -1;
3029 if (!(a->flags & BSF_SECTION_SYM) && (b->flags & BSF_SECTION_SYM))
3030 return 1;
3031
3032 /* then .opd symbols. */
3033 if (strcmp (a->section->name, ".opd") == 0
3034 && strcmp (b->section->name, ".opd") != 0)
3035 return -1;
3036 if (strcmp (a->section->name, ".opd") != 0
3037 && strcmp (b->section->name, ".opd") == 0)
3038 return 1;
3039
3040 /* then other code symbols. */
3041 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3042 == (SEC_CODE | SEC_ALLOC)
3043 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3044 != (SEC_CODE | SEC_ALLOC))
3045 return -1;
3046
3047 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3048 != (SEC_CODE | SEC_ALLOC)
3049 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3050 == (SEC_CODE | SEC_ALLOC))
3051 return 1;
3052
3053 if (synthetic_relocatable)
3054 {
3055 if (a->section->id < b->section->id)
3056 return -1;
3057
3058 if (a->section->id > b->section->id)
3059 return 1;
3060 }
3061
3062 if (a->value + a->section->vma < b->value + b->section->vma)
3063 return -1;
3064
3065 if (a->value + a->section->vma > b->value + b->section->vma)
3066 return 1;
3067
3068 /* For syms with the same value, prefer strong dynamic global function
3069 syms over other syms. */
3070 if ((a->flags & BSF_GLOBAL) != 0 && (b->flags & BSF_GLOBAL) == 0)
3071 return -1;
3072
3073 if ((a->flags & BSF_GLOBAL) == 0 && (b->flags & BSF_GLOBAL) != 0)
3074 return 1;
3075
3076 if ((a->flags & BSF_FUNCTION) != 0 && (b->flags & BSF_FUNCTION) == 0)
3077 return -1;
3078
3079 if ((a->flags & BSF_FUNCTION) == 0 && (b->flags & BSF_FUNCTION) != 0)
3080 return 1;
3081
3082 if ((a->flags & BSF_WEAK) == 0 && (b->flags & BSF_WEAK) != 0)
3083 return -1;
3084
3085 if ((a->flags & BSF_WEAK) != 0 && (b->flags & BSF_WEAK) == 0)
3086 return 1;
3087
3088 if ((a->flags & BSF_DYNAMIC) != 0 && (b->flags & BSF_DYNAMIC) == 0)
3089 return -1;
3090
3091 if ((a->flags & BSF_DYNAMIC) == 0 && (b->flags & BSF_DYNAMIC) != 0)
3092 return 1;
3093
3094 return 0;
3095 }
3096
3097 /* Search SYMS for a symbol of the given VALUE. */
3098
3099 static asymbol *
3100 sym_exists_at (asymbol **syms, long lo, long hi, int id, bfd_vma value)
3101 {
3102 long mid;
3103
3104 if (id == -1)
3105 {
3106 while (lo < hi)
3107 {
3108 mid = (lo + hi) >> 1;
3109 if (syms[mid]->value + syms[mid]->section->vma < value)
3110 lo = mid + 1;
3111 else if (syms[mid]->value + syms[mid]->section->vma > value)
3112 hi = mid;
3113 else
3114 return syms[mid];
3115 }
3116 }
3117 else
3118 {
3119 while (lo < hi)
3120 {
3121 mid = (lo + hi) >> 1;
3122 if (syms[mid]->section->id < id)
3123 lo = mid + 1;
3124 else if (syms[mid]->section->id > id)
3125 hi = mid;
3126 else if (syms[mid]->value < value)
3127 lo = mid + 1;
3128 else if (syms[mid]->value > value)
3129 hi = mid;
3130 else
3131 return syms[mid];
3132 }
3133 }
3134 return NULL;
3135 }
3136
3137 static bfd_boolean
3138 section_covers_vma (bfd *abfd ATTRIBUTE_UNUSED, asection *section, void *ptr)
3139 {
3140 bfd_vma vma = *(bfd_vma *) ptr;
3141 return ((section->flags & SEC_ALLOC) != 0
3142 && section->vma <= vma
3143 && vma < section->vma + section->size);
3144 }
3145
3146 /* Create synthetic symbols, effectively restoring "dot-symbol" function
3147 entry syms. Also generate @plt symbols for the glink branch table. */
3148
3149 static long
3150 ppc64_elf_get_synthetic_symtab (bfd *abfd,
3151 long static_count, asymbol **static_syms,
3152 long dyn_count, asymbol **dyn_syms,
3153 asymbol **ret)
3154 {
3155 asymbol *s;
3156 long i;
3157 long count;
3158 char *names;
3159 long symcount, codesecsym, codesecsymend, secsymend, opdsymend;
3160 asection *opd = NULL;
3161 bfd_boolean relocatable = (abfd->flags & (EXEC_P | DYNAMIC)) == 0;
3162 asymbol **syms;
3163 int abi = abiversion (abfd);
3164
3165 *ret = NULL;
3166
3167 if (abi < 2)
3168 {
3169 opd = bfd_get_section_by_name (abfd, ".opd");
3170 if (opd == NULL && abi == 1)
3171 return 0;
3172 }
3173
3174 symcount = static_count;
3175 if (!relocatable)
3176 symcount += dyn_count;
3177 if (symcount == 0)
3178 return 0;
3179
3180 syms = bfd_malloc ((symcount + 1) * sizeof (*syms));
3181 if (syms == NULL)
3182 return -1;
3183
3184 if (!relocatable && static_count != 0 && dyn_count != 0)
3185 {
3186 /* Use both symbol tables. */
3187 memcpy (syms, static_syms, static_count * sizeof (*syms));
3188 memcpy (syms + static_count, dyn_syms, (dyn_count + 1) * sizeof (*syms));
3189 }
3190 else if (!relocatable && static_count == 0)
3191 memcpy (syms, dyn_syms, (symcount + 1) * sizeof (*syms));
3192 else
3193 memcpy (syms, static_syms, (symcount + 1) * sizeof (*syms));
3194
3195 synthetic_relocatable = relocatable;
3196 qsort (syms, symcount, sizeof (*syms), compare_symbols);
3197
3198 if (!relocatable && symcount > 1)
3199 {
3200 long j;
3201 /* Trim duplicate syms, since we may have merged the normal and
3202 dynamic symbols. Actually, we only care about syms that have
3203 different values, so trim any with the same value. */
3204 for (i = 1, j = 1; i < symcount; ++i)
3205 if (syms[i - 1]->value + syms[i - 1]->section->vma
3206 != syms[i]->value + syms[i]->section->vma)
3207 syms[j++] = syms[i];
3208 symcount = j;
3209 }
3210
3211 i = 0;
3212 if (strcmp (syms[i]->section->name, ".opd") == 0)
3213 ++i;
3214 codesecsym = i;
3215
3216 for (; i < symcount; ++i)
3217 if (((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3218 != (SEC_CODE | SEC_ALLOC))
3219 || (syms[i]->flags & BSF_SECTION_SYM) == 0)
3220 break;
3221 codesecsymend = i;
3222
3223 for (; i < symcount; ++i)
3224 if ((syms[i]->flags & BSF_SECTION_SYM) == 0)
3225 break;
3226 secsymend = i;
3227
3228 for (; i < symcount; ++i)
3229 if (strcmp (syms[i]->section->name, ".opd") != 0)
3230 break;
3231 opdsymend = i;
3232
3233 for (; i < symcount; ++i)
3234 if ((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3235 != (SEC_CODE | SEC_ALLOC))
3236 break;
3237 symcount = i;
3238
3239 count = 0;
3240
3241 if (relocatable)
3242 {
3243 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
3244 arelent *r;
3245 size_t size;
3246 long relcount;
3247
3248 if (opdsymend == secsymend)
3249 goto done;
3250
3251 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
3252 relcount = (opd->flags & SEC_RELOC) ? opd->reloc_count : 0;
3253 if (relcount == 0)
3254 goto done;
3255
3256 if (!(*slurp_relocs) (abfd, opd, static_syms, FALSE))
3257 {
3258 count = -1;
3259 goto done;
3260 }
3261
3262 size = 0;
3263 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
3264 {
3265 asymbol *sym;
3266
3267 while (r < opd->relocation + relcount
3268 && r->address < syms[i]->value + opd->vma)
3269 ++r;
3270
3271 if (r == opd->relocation + relcount)
3272 break;
3273
3274 if (r->address != syms[i]->value + opd->vma)
3275 continue;
3276
3277 if (r->howto->type != R_PPC64_ADDR64)
3278 continue;
3279
3280 sym = *r->sym_ptr_ptr;
3281 if (!sym_exists_at (syms, opdsymend, symcount,
3282 sym->section->id, sym->value + r->addend))
3283 {
3284 ++count;
3285 size += sizeof (asymbol);
3286 size += strlen (syms[i]->name) + 2;
3287 }
3288 }
3289
3290 s = *ret = bfd_malloc (size);
3291 if (s == NULL)
3292 {
3293 count = -1;
3294 goto done;
3295 }
3296
3297 names = (char *) (s + count);
3298
3299 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
3300 {
3301 asymbol *sym;
3302
3303 while (r < opd->relocation + relcount
3304 && r->address < syms[i]->value + opd->vma)
3305 ++r;
3306
3307 if (r == opd->relocation + relcount)
3308 break;
3309
3310 if (r->address != syms[i]->value + opd->vma)
3311 continue;
3312
3313 if (r->howto->type != R_PPC64_ADDR64)
3314 continue;
3315
3316 sym = *r->sym_ptr_ptr;
3317 if (!sym_exists_at (syms, opdsymend, symcount,
3318 sym->section->id, sym->value + r->addend))
3319 {
3320 size_t len;
3321
3322 *s = *syms[i];
3323 s->flags |= BSF_SYNTHETIC;
3324 s->section = sym->section;
3325 s->value = sym->value + r->addend;
3326 s->name = names;
3327 *names++ = '.';
3328 len = strlen (syms[i]->name);
3329 memcpy (names, syms[i]->name, len + 1);
3330 names += len + 1;
3331 /* Have udata.p point back to the original symbol this
3332 synthetic symbol was derived from. */
3333 s->udata.p = syms[i];
3334 s++;
3335 }
3336 }
3337 }
3338 else
3339 {
3340 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
3341 bfd_byte *contents = NULL;
3342 size_t size;
3343 long plt_count = 0;
3344 bfd_vma glink_vma = 0, resolv_vma = 0;
3345 asection *dynamic, *glink = NULL, *relplt = NULL;
3346 arelent *p;
3347
3348 if (opd != NULL && !bfd_malloc_and_get_section (abfd, opd, &contents))
3349 {
3350 free_contents_and_exit:
3351 if (contents)
3352 free (contents);
3353 count = -1;
3354 goto done;
3355 }
3356
3357 size = 0;
3358 for (i = secsymend; i < opdsymend; ++i)
3359 {
3360 bfd_vma ent;
3361
3362 /* Ignore bogus symbols. */
3363 if (syms[i]->value > opd->size - 8)
3364 continue;
3365
3366 ent = bfd_get_64 (abfd, contents + syms[i]->value);
3367 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
3368 {
3369 ++count;
3370 size += sizeof (asymbol);
3371 size += strlen (syms[i]->name) + 2;
3372 }
3373 }
3374
3375 /* Get start of .glink stubs from DT_PPC64_GLINK. */
3376 if (dyn_count != 0
3377 && (dynamic = bfd_get_section_by_name (abfd, ".dynamic")) != NULL)
3378 {
3379 bfd_byte *dynbuf, *extdyn, *extdynend;
3380 size_t extdynsize;
3381 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
3382
3383 if (!bfd_malloc_and_get_section (abfd, dynamic, &dynbuf))
3384 goto free_contents_and_exit;
3385
3386 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
3387 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
3388
3389 extdyn = dynbuf;
3390 extdynend = extdyn + dynamic->size;
3391 for (; extdyn < extdynend; extdyn += extdynsize)
3392 {
3393 Elf_Internal_Dyn dyn;
3394 (*swap_dyn_in) (abfd, extdyn, &dyn);
3395
3396 if (dyn.d_tag == DT_NULL)
3397 break;
3398
3399 if (dyn.d_tag == DT_PPC64_GLINK)
3400 {
3401 /* The first glink stub starts at offset 32; see
3402 comment in ppc64_elf_finish_dynamic_sections. */
3403 glink_vma = dyn.d_un.d_val + GLINK_CALL_STUB_SIZE - 8 * 4;
3404 /* The .glink section usually does not survive the final
3405 link; search for the section (usually .text) where the
3406 glink stubs now reside. */
3407 glink = bfd_sections_find_if (abfd, section_covers_vma,
3408 &glink_vma);
3409 break;
3410 }
3411 }
3412
3413 free (dynbuf);
3414 }
3415
3416 if (glink != NULL)
3417 {
3418 /* Determine __glink trampoline by reading the relative branch
3419 from the first glink stub. */
3420 bfd_byte buf[4];
3421 unsigned int off = 0;
3422
3423 while (bfd_get_section_contents (abfd, glink, buf,
3424 glink_vma + off - glink->vma, 4))
3425 {
3426 unsigned int insn = bfd_get_32 (abfd, buf);
3427 insn ^= B_DOT;
3428 if ((insn & ~0x3fffffc) == 0)
3429 {
3430 resolv_vma = glink_vma + off + (insn ^ 0x2000000) - 0x2000000;
3431 break;
3432 }
3433 off += 4;
3434 if (off > 4)
3435 break;
3436 }
3437
3438 if (resolv_vma)
3439 size += sizeof (asymbol) + sizeof ("__glink_PLTresolve");
3440
3441 relplt = bfd_get_section_by_name (abfd, ".rela.plt");
3442 if (relplt != NULL)
3443 {
3444 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
3445 if (! (*slurp_relocs) (abfd, relplt, dyn_syms, TRUE))
3446 goto free_contents_and_exit;
3447
3448 plt_count = relplt->size / sizeof (Elf64_External_Rela);
3449 size += plt_count * sizeof (asymbol);
3450
3451 p = relplt->relocation;
3452 for (i = 0; i < plt_count; i++, p++)
3453 {
3454 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
3455 if (p->addend != 0)
3456 size += sizeof ("+0x") - 1 + 16;
3457 }
3458 }
3459 }
3460
3461 s = *ret = bfd_malloc (size);
3462 if (s == NULL)
3463 goto free_contents_and_exit;
3464
3465 names = (char *) (s + count + plt_count + (resolv_vma != 0));
3466
3467 for (i = secsymend; i < opdsymend; ++i)
3468 {
3469 bfd_vma ent;
3470
3471 if (syms[i]->value > opd->size - 8)
3472 continue;
3473
3474 ent = bfd_get_64 (abfd, contents + syms[i]->value);
3475 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
3476 {
3477 long lo, hi;
3478 size_t len;
3479 asection *sec = abfd->sections;
3480
3481 *s = *syms[i];
3482 lo = codesecsym;
3483 hi = codesecsymend;
3484 while (lo < hi)
3485 {
3486 long mid = (lo + hi) >> 1;
3487 if (syms[mid]->section->vma < ent)
3488 lo = mid + 1;
3489 else if (syms[mid]->section->vma > ent)
3490 hi = mid;
3491 else
3492 {
3493 sec = syms[mid]->section;
3494 break;
3495 }
3496 }
3497
3498 if (lo >= hi && lo > codesecsym)
3499 sec = syms[lo - 1]->section;
3500
3501 for (; sec != NULL; sec = sec->next)
3502 {
3503 if (sec->vma > ent)
3504 break;
3505 /* SEC_LOAD may not be set if SEC is from a separate debug
3506 info file. */
3507 if ((sec->flags & SEC_ALLOC) == 0)
3508 break;
3509 if ((sec->flags & SEC_CODE) != 0)
3510 s->section = sec;
3511 }
3512 s->flags |= BSF_SYNTHETIC;
3513 s->value = ent - s->section->vma;
3514 s->name = names;
3515 *names++ = '.';
3516 len = strlen (syms[i]->name);
3517 memcpy (names, syms[i]->name, len + 1);
3518 names += len + 1;
3519 /* Have udata.p point back to the original symbol this
3520 synthetic symbol was derived from. */
3521 s->udata.p = syms[i];
3522 s++;
3523 }
3524 }
3525 free (contents);
3526
3527 if (glink != NULL && relplt != NULL)
3528 {
3529 if (resolv_vma)
3530 {
3531 /* Add a symbol for the main glink trampoline. */
3532 memset (s, 0, sizeof *s);
3533 s->the_bfd = abfd;
3534 s->flags = BSF_GLOBAL | BSF_SYNTHETIC;
3535 s->section = glink;
3536 s->value = resolv_vma - glink->vma;
3537 s->name = names;
3538 memcpy (names, "__glink_PLTresolve", sizeof ("__glink_PLTresolve"));
3539 names += sizeof ("__glink_PLTresolve");
3540 s++;
3541 count++;
3542 }
3543
3544 /* FIXME: It would be very much nicer to put sym@plt on the
3545 stub rather than on the glink branch table entry. The
3546 objdump disassembler would then use a sensible symbol
3547 name on plt calls. The difficulty in doing so is
3548 a) finding the stubs, and,
3549 b) matching stubs against plt entries, and,
3550 c) there can be multiple stubs for a given plt entry.
3551
3552 Solving (a) could be done by code scanning, but older
3553 ppc64 binaries used different stubs to current code.
3554 (b) is the tricky one since you need to known the toc
3555 pointer for at least one function that uses a pic stub to
3556 be able to calculate the plt address referenced.
3557 (c) means gdb would need to set multiple breakpoints (or
3558 find the glink branch itself) when setting breakpoints
3559 for pending shared library loads. */
3560 p = relplt->relocation;
3561 for (i = 0; i < plt_count; i++, p++)
3562 {
3563 size_t len;
3564
3565 *s = **p->sym_ptr_ptr;
3566 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
3567 we are defining a symbol, ensure one of them is set. */
3568 if ((s->flags & BSF_LOCAL) == 0)
3569 s->flags |= BSF_GLOBAL;
3570 s->flags |= BSF_SYNTHETIC;
3571 s->section = glink;
3572 s->value = glink_vma - glink->vma;
3573 s->name = names;
3574 s->udata.p = NULL;
3575 len = strlen ((*p->sym_ptr_ptr)->name);
3576 memcpy (names, (*p->sym_ptr_ptr)->name, len);
3577 names += len;
3578 if (p->addend != 0)
3579 {
3580 memcpy (names, "+0x", sizeof ("+0x") - 1);
3581 names += sizeof ("+0x") - 1;
3582 bfd_sprintf_vma (abfd, names, p->addend);
3583 names += strlen (names);
3584 }
3585 memcpy (names, "@plt", sizeof ("@plt"));
3586 names += sizeof ("@plt");
3587 s++;
3588 if (abi < 2)
3589 {
3590 glink_vma += 8;
3591 if (i >= 0x8000)
3592 glink_vma += 4;
3593 }
3594 else
3595 glink_vma += 4;
3596 }
3597 count += plt_count;
3598 }
3599 }
3600
3601 done:
3602 free (syms);
3603 return count;
3604 }
3605 \f
3606 /* The following functions are specific to the ELF linker, while
3607 functions above are used generally. Those named ppc64_elf_* are
3608 called by the main ELF linker code. They appear in this file more
3609 or less in the order in which they are called. eg.
3610 ppc64_elf_check_relocs is called early in the link process,
3611 ppc64_elf_finish_dynamic_sections is one of the last functions
3612 called.
3613
3614 PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that
3615 functions have both a function code symbol and a function descriptor
3616 symbol. A call to foo in a relocatable object file looks like:
3617
3618 . .text
3619 . x:
3620 . bl .foo
3621 . nop
3622
3623 The function definition in another object file might be:
3624
3625 . .section .opd
3626 . foo: .quad .foo
3627 . .quad .TOC.@tocbase
3628 . .quad 0
3629 .
3630 . .text
3631 . .foo: blr
3632
3633 When the linker resolves the call during a static link, the branch
3634 unsurprisingly just goes to .foo and the .opd information is unused.
3635 If the function definition is in a shared library, things are a little
3636 different: The call goes via a plt call stub, the opd information gets
3637 copied to the plt, and the linker patches the nop.
3638
3639 . x:
3640 . bl .foo_stub
3641 . ld 2,40(1)
3642 .
3643 .
3644 . .foo_stub:
3645 . std 2,40(1) # in practice, the call stub
3646 . addis 11,2,Lfoo@toc@ha # is slightly optimized, but
3647 . addi 11,11,Lfoo@toc@l # this is the general idea
3648 . ld 12,0(11)
3649 . ld 2,8(11)
3650 . mtctr 12
3651 . ld 11,16(11)
3652 . bctr
3653 .
3654 . .section .plt
3655 . Lfoo: reloc (R_PPC64_JMP_SLOT, foo)
3656
3657 The "reloc ()" notation is supposed to indicate that the linker emits
3658 an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd
3659 copying.
3660
3661 What are the difficulties here? Well, firstly, the relocations
3662 examined by the linker in check_relocs are against the function code
3663 sym .foo, while the dynamic relocation in the plt is emitted against
3664 the function descriptor symbol, foo. Somewhere along the line, we need
3665 to carefully copy dynamic link information from one symbol to the other.
3666 Secondly, the generic part of the elf linker will make .foo a dynamic
3667 symbol as is normal for most other backends. We need foo dynamic
3668 instead, at least for an application final link. However, when
3669 creating a shared library containing foo, we need to have both symbols
3670 dynamic so that references to .foo are satisfied during the early
3671 stages of linking. Otherwise the linker might decide to pull in a
3672 definition from some other object, eg. a static library.
3673
3674 Update: As of August 2004, we support a new convention. Function
3675 calls may use the function descriptor symbol, ie. "bl foo". This
3676 behaves exactly as "bl .foo". */
3677
3678 /* Of those relocs that might be copied as dynamic relocs, this function
3679 selects those that must be copied when linking a shared library,
3680 even when the symbol is local. */
3681
3682 static int
3683 must_be_dyn_reloc (struct bfd_link_info *info,
3684 enum elf_ppc64_reloc_type r_type)
3685 {
3686 switch (r_type)
3687 {
3688 default:
3689 return 1;
3690
3691 case R_PPC64_REL32:
3692 case R_PPC64_REL64:
3693 case R_PPC64_REL30:
3694 return 0;
3695
3696 case R_PPC64_TPREL16:
3697 case R_PPC64_TPREL16_LO:
3698 case R_PPC64_TPREL16_HI:
3699 case R_PPC64_TPREL16_HA:
3700 case R_PPC64_TPREL16_DS:
3701 case R_PPC64_TPREL16_LO_DS:
3702 case R_PPC64_TPREL16_HIGH:
3703 case R_PPC64_TPREL16_HIGHA:
3704 case R_PPC64_TPREL16_HIGHER:
3705 case R_PPC64_TPREL16_HIGHERA:
3706 case R_PPC64_TPREL16_HIGHEST:
3707 case R_PPC64_TPREL16_HIGHESTA:
3708 case R_PPC64_TPREL64:
3709 return !info->executable;
3710 }
3711 }
3712
3713 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
3714 copying dynamic variables from a shared lib into an app's dynbss
3715 section, and instead use a dynamic relocation to point into the
3716 shared lib. With code that gcc generates, it's vital that this be
3717 enabled; In the PowerPC64 ABI, the address of a function is actually
3718 the address of a function descriptor, which resides in the .opd
3719 section. gcc uses the descriptor directly rather than going via the
3720 GOT as some other ABI's do, which means that initialized function
3721 pointers must reference the descriptor. Thus, a function pointer
3722 initialized to the address of a function in a shared library will
3723 either require a copy reloc, or a dynamic reloc. Using a copy reloc
3724 redefines the function descriptor symbol to point to the copy. This
3725 presents a problem as a plt entry for that function is also
3726 initialized from the function descriptor symbol and the copy reloc
3727 may not be initialized first. */
3728 #define ELIMINATE_COPY_RELOCS 1
3729
3730 /* Section name for stubs is the associated section name plus this
3731 string. */
3732 #define STUB_SUFFIX ".stub"
3733
3734 /* Linker stubs.
3735 ppc_stub_long_branch:
3736 Used when a 14 bit branch (or even a 24 bit branch) can't reach its
3737 destination, but a 24 bit branch in a stub section will reach.
3738 . b dest
3739
3740 ppc_stub_plt_branch:
3741 Similar to the above, but a 24 bit branch in the stub section won't
3742 reach its destination.
3743 . addis %r11,%r2,xxx@toc@ha
3744 . ld %r12,xxx@toc@l(%r11)
3745 . mtctr %r12
3746 . bctr
3747
3748 ppc_stub_plt_call:
3749 Used to call a function in a shared library. If it so happens that
3750 the plt entry referenced crosses a 64k boundary, then an extra
3751 "addi %r11,%r11,xxx@toc@l" will be inserted before the "mtctr".
3752 . std %r2,40(%r1)
3753 . addis %r11,%r2,xxx@toc@ha
3754 . ld %r12,xxx+0@toc@l(%r11)
3755 . mtctr %r12
3756 . ld %r2,xxx+8@toc@l(%r11)
3757 . ld %r11,xxx+16@toc@l(%r11)
3758 . bctr
3759
3760 ppc_stub_long_branch and ppc_stub_plt_branch may also have additional
3761 code to adjust the value and save r2 to support multiple toc sections.
3762 A ppc_stub_long_branch with an r2 offset looks like:
3763 . std %r2,40(%r1)
3764 . addis %r2,%r2,off@ha
3765 . addi %r2,%r2,off@l
3766 . b dest
3767
3768 A ppc_stub_plt_branch with an r2 offset looks like:
3769 . std %r2,40(%r1)
3770 . addis %r11,%r2,xxx@toc@ha
3771 . ld %r12,xxx@toc@l(%r11)
3772 . addis %r2,%r2,off@ha
3773 . addi %r2,%r2,off@l
3774 . mtctr %r12
3775 . bctr
3776
3777 In cases where the "addis" instruction would add zero, the "addis" is
3778 omitted and following instructions modified slightly in some cases.
3779 */
3780
3781 enum ppc_stub_type {
3782 ppc_stub_none,
3783 ppc_stub_long_branch,
3784 ppc_stub_long_branch_r2off,
3785 ppc_stub_plt_branch,
3786 ppc_stub_plt_branch_r2off,
3787 ppc_stub_plt_call,
3788 ppc_stub_plt_call_r2save,
3789 ppc_stub_global_entry
3790 };
3791
3792 struct ppc_stub_hash_entry {
3793
3794 /* Base hash table entry structure. */
3795 struct bfd_hash_entry root;
3796
3797 enum ppc_stub_type stub_type;
3798
3799 /* The stub section. */
3800 asection *stub_sec;
3801
3802 /* Offset within stub_sec of the beginning of this stub. */
3803 bfd_vma stub_offset;
3804
3805 /* Given the symbol's value and its section we can determine its final
3806 value when building the stubs (so the stub knows where to jump. */
3807 bfd_vma target_value;
3808 asection *target_section;
3809
3810 /* The symbol table entry, if any, that this was derived from. */
3811 struct ppc_link_hash_entry *h;
3812 struct plt_entry *plt_ent;
3813
3814 /* Where this stub is being called from, or, in the case of combined
3815 stub sections, the first input section in the group. */
3816 asection *id_sec;
3817
3818 /* Symbol st_other. */
3819 unsigned char other;
3820 };
3821
3822 struct ppc_branch_hash_entry {
3823
3824 /* Base hash table entry structure. */
3825 struct bfd_hash_entry root;
3826
3827 /* Offset within branch lookup table. */
3828 unsigned int offset;
3829
3830 /* Generation marker. */
3831 unsigned int iter;
3832 };
3833
3834 /* Used to track dynamic relocations for local symbols. */
3835 struct ppc_dyn_relocs
3836 {
3837 struct ppc_dyn_relocs *next;
3838
3839 /* The input section of the reloc. */
3840 asection *sec;
3841
3842 /* Total number of relocs copied for the input section. */
3843 unsigned int count : 31;
3844
3845 /* Whether this entry is for STT_GNU_IFUNC symbols. */
3846 unsigned int ifunc : 1;
3847 };
3848
3849 struct ppc_link_hash_entry
3850 {
3851 struct elf_link_hash_entry elf;
3852
3853 union {
3854 /* A pointer to the most recently used stub hash entry against this
3855 symbol. */
3856 struct ppc_stub_hash_entry *stub_cache;
3857
3858 /* A pointer to the next symbol starting with a '.' */
3859 struct ppc_link_hash_entry *next_dot_sym;
3860 } u;
3861
3862 /* Track dynamic relocs copied for this symbol. */
3863 struct elf_dyn_relocs *dyn_relocs;
3864
3865 /* Link between function code and descriptor symbols. */
3866 struct ppc_link_hash_entry *oh;
3867
3868 /* Flag function code and descriptor symbols. */
3869 unsigned int is_func:1;
3870 unsigned int is_func_descriptor:1;
3871 unsigned int fake:1;
3872
3873 /* Whether global opd/toc sym has been adjusted or not.
3874 After ppc64_elf_edit_opd/ppc64_elf_edit_toc has run, this flag
3875 should be set for all globals defined in any opd/toc section. */
3876 unsigned int adjust_done:1;
3877
3878 /* Set if we twiddled this symbol to weak at some stage. */
3879 unsigned int was_undefined:1;
3880
3881 /* Contexts in which symbol is used in the GOT (or TOC).
3882 TLS_GD .. TLS_EXPLICIT bits are or'd into the mask as the
3883 corresponding relocs are encountered during check_relocs.
3884 tls_optimize clears TLS_GD .. TLS_TPREL when optimizing to
3885 indicate the corresponding GOT entry type is not needed.
3886 tls_optimize may also set TLS_TPRELGD when a GD reloc turns into
3887 a TPREL one. We use a separate flag rather than setting TPREL
3888 just for convenience in distinguishing the two cases. */
3889 #define TLS_GD 1 /* GD reloc. */
3890 #define TLS_LD 2 /* LD reloc. */
3891 #define TLS_TPREL 4 /* TPREL reloc, => IE. */
3892 #define TLS_DTPREL 8 /* DTPREL reloc, => LD. */
3893 #define TLS_TLS 16 /* Any TLS reloc. */
3894 #define TLS_EXPLICIT 32 /* Marks TOC section TLS relocs. */
3895 #define TLS_TPRELGD 64 /* TPREL reloc resulting from GD->IE. */
3896 #define PLT_IFUNC 128 /* STT_GNU_IFUNC. */
3897 unsigned char tls_mask;
3898 };
3899
3900 /* ppc64 ELF linker hash table. */
3901
3902 struct ppc_link_hash_table
3903 {
3904 struct elf_link_hash_table elf;
3905
3906 /* The stub hash table. */
3907 struct bfd_hash_table stub_hash_table;
3908
3909 /* Another hash table for plt_branch stubs. */
3910 struct bfd_hash_table branch_hash_table;
3911
3912 /* Hash table for function prologue tocsave. */
3913 htab_t tocsave_htab;
3914
3915 /* Various options and other info passed from the linker. */
3916 struct ppc64_elf_params *params;
3917
3918 /* Array to keep track of which stub sections have been created, and
3919 information on stub grouping. */
3920 struct map_stub {
3921 /* This is the section to which stubs in the group will be attached. */
3922 asection *link_sec;
3923 /* The stub section. */
3924 asection *stub_sec;
3925 /* Along with elf_gp, specifies the TOC pointer used in this group. */
3926 bfd_vma toc_off;
3927 } *stub_group;
3928
3929 /* Temp used when calculating TOC pointers. */
3930 bfd_vma toc_curr;
3931 bfd *toc_bfd;
3932 asection *toc_first_sec;
3933
3934 /* Highest input section id. */
3935 int top_id;
3936
3937 /* Highest output section index. */
3938 int top_index;
3939
3940 /* Used when adding symbols. */
3941 struct ppc_link_hash_entry *dot_syms;
3942
3943 /* List of input sections for each output section. */
3944 asection **input_list;
3945
3946 /* Shortcuts to get to dynamic linker sections. */
3947 asection *dynbss;
3948 asection *relbss;
3949 asection *glink;
3950 asection *sfpr;
3951 asection *brlt;
3952 asection *relbrlt;
3953 asection *glink_eh_frame;
3954
3955 /* Shortcut to .__tls_get_addr and __tls_get_addr. */
3956 struct ppc_link_hash_entry *tls_get_addr;
3957 struct ppc_link_hash_entry *tls_get_addr_fd;
3958
3959 /* The size of reliplt used by got entry relocs. */
3960 bfd_size_type got_reli_size;
3961
3962 /* Statistics. */
3963 unsigned long stub_count[ppc_stub_global_entry];
3964
3965 /* Number of stubs against global syms. */
3966 unsigned long stub_globals;
3967
3968 /* Set if we're linking code with function descriptors. */
3969 unsigned int opd_abi:1;
3970
3971 /* Support for multiple toc sections. */
3972 unsigned int do_multi_toc:1;
3973 unsigned int multi_toc_needed:1;
3974 unsigned int second_toc_pass:1;
3975 unsigned int do_toc_opt:1;
3976
3977 /* Set on error. */
3978 unsigned int stub_error:1;
3979
3980 /* Temp used by ppc64_elf_before_check_relocs. */
3981 unsigned int twiddled_syms:1;
3982
3983 /* Incremented every time we size stubs. */
3984 unsigned int stub_iteration;
3985
3986 /* Small local sym cache. */
3987 struct sym_cache sym_cache;
3988 };
3989
3990 /* Rename some of the generic section flags to better document how they
3991 are used here. */
3992
3993 /* Nonzero if this section has TLS related relocations. */
3994 #define has_tls_reloc sec_flg0
3995
3996 /* Nonzero if this section has a call to __tls_get_addr. */
3997 #define has_tls_get_addr_call sec_flg1
3998
3999 /* Nonzero if this section has any toc or got relocs. */
4000 #define has_toc_reloc sec_flg2
4001
4002 /* Nonzero if this section has a call to another section that uses
4003 the toc or got. */
4004 #define makes_toc_func_call sec_flg3
4005
4006 /* Recursion protection when determining above flag. */
4007 #define call_check_in_progress sec_flg4
4008 #define call_check_done sec_flg5
4009
4010 /* Get the ppc64 ELF linker hash table from a link_info structure. */
4011
4012 #define ppc_hash_table(p) \
4013 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
4014 == PPC64_ELF_DATA ? ((struct ppc_link_hash_table *) ((p)->hash)) : NULL)
4015
4016 #define ppc_stub_hash_lookup(table, string, create, copy) \
4017 ((struct ppc_stub_hash_entry *) \
4018 bfd_hash_lookup ((table), (string), (create), (copy)))
4019
4020 #define ppc_branch_hash_lookup(table, string, create, copy) \
4021 ((struct ppc_branch_hash_entry *) \
4022 bfd_hash_lookup ((table), (string), (create), (copy)))
4023
4024 /* Create an entry in the stub hash table. */
4025
4026 static struct bfd_hash_entry *
4027 stub_hash_newfunc (struct bfd_hash_entry *entry,
4028 struct bfd_hash_table *table,
4029 const char *string)
4030 {
4031 /* Allocate the structure if it has not already been allocated by a
4032 subclass. */
4033 if (entry == NULL)
4034 {
4035 entry = bfd_hash_allocate (table, sizeof (struct ppc_stub_hash_entry));
4036 if (entry == NULL)
4037 return entry;
4038 }
4039
4040 /* Call the allocation method of the superclass. */
4041 entry = bfd_hash_newfunc (entry, table, string);
4042 if (entry != NULL)
4043 {
4044 struct ppc_stub_hash_entry *eh;
4045
4046 /* Initialize the local fields. */
4047 eh = (struct ppc_stub_hash_entry *) entry;
4048 eh->stub_type = ppc_stub_none;
4049 eh->stub_sec = NULL;
4050 eh->stub_offset = 0;
4051 eh->target_value = 0;
4052 eh->target_section = NULL;
4053 eh->h = NULL;
4054 eh->plt_ent = NULL;
4055 eh->id_sec = NULL;
4056 eh->other = 0;
4057 }
4058
4059 return entry;
4060 }
4061
4062 /* Create an entry in the branch hash table. */
4063
4064 static struct bfd_hash_entry *
4065 branch_hash_newfunc (struct bfd_hash_entry *entry,
4066 struct bfd_hash_table *table,
4067 const char *string)
4068 {
4069 /* Allocate the structure if it has not already been allocated by a
4070 subclass. */
4071 if (entry == NULL)
4072 {
4073 entry = bfd_hash_allocate (table, sizeof (struct ppc_branch_hash_entry));
4074 if (entry == NULL)
4075 return entry;
4076 }
4077
4078 /* Call the allocation method of the superclass. */
4079 entry = bfd_hash_newfunc (entry, table, string);
4080 if (entry != NULL)
4081 {
4082 struct ppc_branch_hash_entry *eh;
4083
4084 /* Initialize the local fields. */
4085 eh = (struct ppc_branch_hash_entry *) entry;
4086 eh->offset = 0;
4087 eh->iter = 0;
4088 }
4089
4090 return entry;
4091 }
4092
4093 /* Create an entry in a ppc64 ELF linker hash table. */
4094
4095 static struct bfd_hash_entry *
4096 link_hash_newfunc (struct bfd_hash_entry *entry,
4097 struct bfd_hash_table *table,
4098 const char *string)
4099 {
4100 /* Allocate the structure if it has not already been allocated by a
4101 subclass. */
4102 if (entry == NULL)
4103 {
4104 entry = bfd_hash_allocate (table, sizeof (struct ppc_link_hash_entry));
4105 if (entry == NULL)
4106 return entry;
4107 }
4108
4109 /* Call the allocation method of the superclass. */
4110 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
4111 if (entry != NULL)
4112 {
4113 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) entry;
4114
4115 memset (&eh->u.stub_cache, 0,
4116 (sizeof (struct ppc_link_hash_entry)
4117 - offsetof (struct ppc_link_hash_entry, u.stub_cache)));
4118
4119 /* When making function calls, old ABI code references function entry
4120 points (dot symbols), while new ABI code references the function
4121 descriptor symbol. We need to make any combination of reference and
4122 definition work together, without breaking archive linking.
4123
4124 For a defined function "foo" and an undefined call to "bar":
4125 An old object defines "foo" and ".foo", references ".bar" (possibly
4126 "bar" too).
4127 A new object defines "foo" and references "bar".
4128
4129 A new object thus has no problem with its undefined symbols being
4130 satisfied by definitions in an old object. On the other hand, the
4131 old object won't have ".bar" satisfied by a new object.
4132
4133 Keep a list of newly added dot-symbols. */
4134
4135 if (string[0] == '.')
4136 {
4137 struct ppc_link_hash_table *htab;
4138
4139 htab = (struct ppc_link_hash_table *) table;
4140 eh->u.next_dot_sym = htab->dot_syms;
4141 htab->dot_syms = eh;
4142 }
4143 }
4144
4145 return entry;
4146 }
4147
4148 struct tocsave_entry {
4149 asection *sec;
4150 bfd_vma offset;
4151 };
4152
4153 static hashval_t
4154 tocsave_htab_hash (const void *p)
4155 {
4156 const struct tocsave_entry *e = (const struct tocsave_entry *) p;
4157 return ((bfd_vma)(intptr_t) e->sec ^ e->offset) >> 3;
4158 }
4159
4160 static int
4161 tocsave_htab_eq (const void *p1, const void *p2)
4162 {
4163 const struct tocsave_entry *e1 = (const struct tocsave_entry *) p1;
4164 const struct tocsave_entry *e2 = (const struct tocsave_entry *) p2;
4165 return e1->sec == e2->sec && e1->offset == e2->offset;
4166 }
4167
4168 /* Destroy a ppc64 ELF linker hash table. */
4169
4170 static void
4171 ppc64_elf_link_hash_table_free (bfd *obfd)
4172 {
4173 struct ppc_link_hash_table *htab;
4174
4175 htab = (struct ppc_link_hash_table *) obfd->link.hash;
4176 if (htab->tocsave_htab)
4177 htab_delete (htab->tocsave_htab);
4178 bfd_hash_table_free (&htab->branch_hash_table);
4179 bfd_hash_table_free (&htab->stub_hash_table);
4180 _bfd_elf_link_hash_table_free (obfd);
4181 }
4182
4183 /* Create a ppc64 ELF linker hash table. */
4184
4185 static struct bfd_link_hash_table *
4186 ppc64_elf_link_hash_table_create (bfd *abfd)
4187 {
4188 struct ppc_link_hash_table *htab;
4189 bfd_size_type amt = sizeof (struct ppc_link_hash_table);
4190
4191 htab = bfd_zmalloc (amt);
4192 if (htab == NULL)
4193 return NULL;
4194
4195 if (!_bfd_elf_link_hash_table_init (&htab->elf, abfd, link_hash_newfunc,
4196 sizeof (struct ppc_link_hash_entry),
4197 PPC64_ELF_DATA))
4198 {
4199 free (htab);
4200 return NULL;
4201 }
4202
4203 /* Init the stub hash table too. */
4204 if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc,
4205 sizeof (struct ppc_stub_hash_entry)))
4206 {
4207 _bfd_elf_link_hash_table_free (abfd);
4208 return NULL;
4209 }
4210
4211 /* And the branch hash table. */
4212 if (!bfd_hash_table_init (&htab->branch_hash_table, branch_hash_newfunc,
4213 sizeof (struct ppc_branch_hash_entry)))
4214 {
4215 bfd_hash_table_free (&htab->stub_hash_table);
4216 _bfd_elf_link_hash_table_free (abfd);
4217 return NULL;
4218 }
4219
4220 htab->tocsave_htab = htab_try_create (1024,
4221 tocsave_htab_hash,
4222 tocsave_htab_eq,
4223 NULL);
4224 if (htab->tocsave_htab == NULL)
4225 {
4226 ppc64_elf_link_hash_table_free (abfd);
4227 return NULL;
4228 }
4229 htab->elf.root.hash_table_free = ppc64_elf_link_hash_table_free;
4230
4231 /* Initializing two fields of the union is just cosmetic. We really
4232 only care about glist, but when compiled on a 32-bit host the
4233 bfd_vma fields are larger. Setting the bfd_vma to zero makes
4234 debugger inspection of these fields look nicer. */
4235 htab->elf.init_got_refcount.refcount = 0;
4236 htab->elf.init_got_refcount.glist = NULL;
4237 htab->elf.init_plt_refcount.refcount = 0;
4238 htab->elf.init_plt_refcount.glist = NULL;
4239 htab->elf.init_got_offset.offset = 0;
4240 htab->elf.init_got_offset.glist = NULL;
4241 htab->elf.init_plt_offset.offset = 0;
4242 htab->elf.init_plt_offset.glist = NULL;
4243
4244 return &htab->elf.root;
4245 }
4246
4247 /* Create sections for linker generated code. */
4248
4249 static bfd_boolean
4250 create_linkage_sections (bfd *dynobj, struct bfd_link_info *info)
4251 {
4252 struct ppc_link_hash_table *htab;
4253 flagword flags;
4254
4255 htab = ppc_hash_table (info);
4256
4257 /* Create .sfpr for code to save and restore fp regs. */
4258 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
4259 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4260 htab->sfpr = bfd_make_section_anyway_with_flags (dynobj, ".sfpr",
4261 flags);
4262 if (htab->sfpr == NULL
4263 || ! bfd_set_section_alignment (dynobj, htab->sfpr, 2))
4264 return FALSE;
4265
4266 /* Create .glink for lazy dynamic linking support. */
4267 htab->glink = bfd_make_section_anyway_with_flags (dynobj, ".glink",
4268 flags);
4269 if (htab->glink == NULL
4270 || ! bfd_set_section_alignment (dynobj, htab->glink, 3))
4271 return FALSE;
4272
4273 if (!info->no_ld_generated_unwind_info)
4274 {
4275 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_HAS_CONTENTS
4276 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4277 htab->glink_eh_frame = bfd_make_section_anyway_with_flags (dynobj,
4278 ".eh_frame",
4279 flags);
4280 if (htab->glink_eh_frame == NULL
4281 || !bfd_set_section_alignment (dynobj, htab->glink_eh_frame, 2))
4282 return FALSE;
4283 }
4284
4285 flags = SEC_ALLOC | SEC_LINKER_CREATED;
4286 htab->elf.iplt = bfd_make_section_anyway_with_flags (dynobj, ".iplt", flags);
4287 if (htab->elf.iplt == NULL
4288 || ! bfd_set_section_alignment (dynobj, htab->elf.iplt, 3))
4289 return FALSE;
4290
4291 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
4292 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4293 htab->elf.irelplt
4294 = bfd_make_section_anyway_with_flags (dynobj, ".rela.iplt", flags);
4295 if (htab->elf.irelplt == NULL
4296 || ! bfd_set_section_alignment (dynobj, htab->elf.irelplt, 3))
4297 return FALSE;
4298
4299 /* Create branch lookup table for plt_branch stubs. */
4300 flags = (SEC_ALLOC | SEC_LOAD
4301 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4302 htab->brlt = bfd_make_section_anyway_with_flags (dynobj, ".branch_lt",
4303 flags);
4304 if (htab->brlt == NULL
4305 || ! bfd_set_section_alignment (dynobj, htab->brlt, 3))
4306 return FALSE;
4307
4308 if (!info->shared)
4309 return TRUE;
4310
4311 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
4312 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4313 htab->relbrlt = bfd_make_section_anyway_with_flags (dynobj,
4314 ".rela.branch_lt",
4315 flags);
4316 if (htab->relbrlt == NULL
4317 || ! bfd_set_section_alignment (dynobj, htab->relbrlt, 3))
4318 return FALSE;
4319
4320 return TRUE;
4321 }
4322
4323 /* Satisfy the ELF linker by filling in some fields in our fake bfd. */
4324
4325 bfd_boolean
4326 ppc64_elf_init_stub_bfd (struct bfd_link_info *info,
4327 struct ppc64_elf_params *params)
4328 {
4329 struct ppc_link_hash_table *htab;
4330
4331 elf_elfheader (params->stub_bfd)->e_ident[EI_CLASS] = ELFCLASS64;
4332
4333 /* Always hook our dynamic sections into the first bfd, which is the
4334 linker created stub bfd. This ensures that the GOT header is at
4335 the start of the output TOC section. */
4336 htab = ppc_hash_table (info);
4337 if (htab == NULL)
4338 return FALSE;
4339 htab->elf.dynobj = params->stub_bfd;
4340 htab->params = params;
4341
4342 if (info->relocatable)
4343 return TRUE;
4344
4345 return create_linkage_sections (htab->elf.dynobj, info);
4346 }
4347
4348 /* Build a name for an entry in the stub hash table. */
4349
4350 static char *
4351 ppc_stub_name (const asection *input_section,
4352 const asection *sym_sec,
4353 const struct ppc_link_hash_entry *h,
4354 const Elf_Internal_Rela *rel)
4355 {
4356 char *stub_name;
4357 ssize_t len;
4358
4359 /* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31
4360 offsets from a sym as a branch target? In fact, we could
4361 probably assume the addend is always zero. */
4362 BFD_ASSERT (((int) rel->r_addend & 0xffffffff) == rel->r_addend);
4363
4364 if (h)
4365 {
4366 len = 8 + 1 + strlen (h->elf.root.root.string) + 1 + 8 + 1;
4367 stub_name = bfd_malloc (len);
4368 if (stub_name == NULL)
4369 return stub_name;
4370
4371 len = sprintf (stub_name, "%08x.%s+%x",
4372 input_section->id & 0xffffffff,
4373 h->elf.root.root.string,
4374 (int) rel->r_addend & 0xffffffff);
4375 }
4376 else
4377 {
4378 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
4379 stub_name = bfd_malloc (len);
4380 if (stub_name == NULL)
4381 return stub_name;
4382
4383 len = sprintf (stub_name, "%08x.%x:%x+%x",
4384 input_section->id & 0xffffffff,
4385 sym_sec->id & 0xffffffff,
4386 (int) ELF64_R_SYM (rel->r_info) & 0xffffffff,
4387 (int) rel->r_addend & 0xffffffff);
4388 }
4389 if (len > 2 && stub_name[len - 2] == '+' && stub_name[len - 1] == '0')
4390 stub_name[len - 2] = 0;
4391 return stub_name;
4392 }
4393
4394 /* Look up an entry in the stub hash. Stub entries are cached because
4395 creating the stub name takes a bit of time. */
4396
4397 static struct ppc_stub_hash_entry *
4398 ppc_get_stub_entry (const asection *input_section,
4399 const asection *sym_sec,
4400 struct ppc_link_hash_entry *h,
4401 const Elf_Internal_Rela *rel,
4402 struct ppc_link_hash_table *htab)
4403 {
4404 struct ppc_stub_hash_entry *stub_entry;
4405 const asection *id_sec;
4406
4407 /* If this input section is part of a group of sections sharing one
4408 stub section, then use the id of the first section in the group.
4409 Stub names need to include a section id, as there may well be
4410 more than one stub used to reach say, printf, and we need to
4411 distinguish between them. */
4412 id_sec = htab->stub_group[input_section->id].link_sec;
4413
4414 if (h != NULL && h->u.stub_cache != NULL
4415 && h->u.stub_cache->h == h
4416 && h->u.stub_cache->id_sec == id_sec)
4417 {
4418 stub_entry = h->u.stub_cache;
4419 }
4420 else
4421 {
4422 char *stub_name;
4423
4424 stub_name = ppc_stub_name (id_sec, sym_sec, h, rel);
4425 if (stub_name == NULL)
4426 return NULL;
4427
4428 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
4429 stub_name, FALSE, FALSE);
4430 if (h != NULL)
4431 h->u.stub_cache = stub_entry;
4432
4433 free (stub_name);
4434 }
4435
4436 return stub_entry;
4437 }
4438
4439 /* Add a new stub entry to the stub hash. Not all fields of the new
4440 stub entry are initialised. */
4441
4442 static struct ppc_stub_hash_entry *
4443 ppc_add_stub (const char *stub_name,
4444 asection *section,
4445 struct bfd_link_info *info)
4446 {
4447 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4448 asection *link_sec;
4449 asection *stub_sec;
4450 struct ppc_stub_hash_entry *stub_entry;
4451
4452 link_sec = htab->stub_group[section->id].link_sec;
4453 stub_sec = htab->stub_group[section->id].stub_sec;
4454 if (stub_sec == NULL)
4455 {
4456 stub_sec = htab->stub_group[link_sec->id].stub_sec;
4457 if (stub_sec == NULL)
4458 {
4459 size_t namelen;
4460 bfd_size_type len;
4461 char *s_name;
4462
4463 namelen = strlen (link_sec->name);
4464 len = namelen + sizeof (STUB_SUFFIX);
4465 s_name = bfd_alloc (htab->params->stub_bfd, len);
4466 if (s_name == NULL)
4467 return NULL;
4468
4469 memcpy (s_name, link_sec->name, namelen);
4470 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4471 stub_sec = (*htab->params->add_stub_section) (s_name, link_sec);
4472 if (stub_sec == NULL)
4473 return NULL;
4474 htab->stub_group[link_sec->id].stub_sec = stub_sec;
4475 }
4476 htab->stub_group[section->id].stub_sec = stub_sec;
4477 }
4478
4479 /* Enter this entry into the linker stub hash table. */
4480 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4481 TRUE, FALSE);
4482 if (stub_entry == NULL)
4483 {
4484 info->callbacks->einfo (_("%P: %B: cannot create stub entry %s\n"),
4485 section->owner, stub_name);
4486 return NULL;
4487 }
4488
4489 stub_entry->stub_sec = stub_sec;
4490 stub_entry->stub_offset = 0;
4491 stub_entry->id_sec = link_sec;
4492 return stub_entry;
4493 }
4494
4495 /* Create .got and .rela.got sections in ABFD, and .got in dynobj if
4496 not already done. */
4497
4498 static bfd_boolean
4499 create_got_section (bfd *abfd, struct bfd_link_info *info)
4500 {
4501 asection *got, *relgot;
4502 flagword flags;
4503 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4504
4505 if (!is_ppc64_elf (abfd))
4506 return FALSE;
4507 if (htab == NULL)
4508 return FALSE;
4509
4510 if (!htab->elf.sgot
4511 && !_bfd_elf_create_got_section (htab->elf.dynobj, info))
4512 return FALSE;
4513
4514 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4515 | SEC_LINKER_CREATED);
4516
4517 got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
4518 if (!got
4519 || !bfd_set_section_alignment (abfd, got, 3))
4520 return FALSE;
4521
4522 relgot = bfd_make_section_anyway_with_flags (abfd, ".rela.got",
4523 flags | SEC_READONLY);
4524 if (!relgot
4525 || ! bfd_set_section_alignment (abfd, relgot, 3))
4526 return FALSE;
4527
4528 ppc64_elf_tdata (abfd)->got = got;
4529 ppc64_elf_tdata (abfd)->relgot = relgot;
4530 return TRUE;
4531 }
4532
4533 /* Create the dynamic sections, and set up shortcuts. */
4534
4535 static bfd_boolean
4536 ppc64_elf_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
4537 {
4538 struct ppc_link_hash_table *htab;
4539
4540 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
4541 return FALSE;
4542
4543 htab = ppc_hash_table (info);
4544 if (htab == NULL)
4545 return FALSE;
4546
4547 htab->dynbss = bfd_get_linker_section (dynobj, ".dynbss");
4548 if (!info->shared)
4549 htab->relbss = bfd_get_linker_section (dynobj, ".rela.bss");
4550
4551 if (!htab->elf.sgot || !htab->elf.splt || !htab->elf.srelplt || !htab->dynbss
4552 || (!info->shared && !htab->relbss))
4553 abort ();
4554
4555 return TRUE;
4556 }
4557
4558 /* Follow indirect and warning symbol links. */
4559
4560 static inline struct bfd_link_hash_entry *
4561 follow_link (struct bfd_link_hash_entry *h)
4562 {
4563 while (h->type == bfd_link_hash_indirect
4564 || h->type == bfd_link_hash_warning)
4565 h = h->u.i.link;
4566 return h;
4567 }
4568
4569 static inline struct elf_link_hash_entry *
4570 elf_follow_link (struct elf_link_hash_entry *h)
4571 {
4572 return (struct elf_link_hash_entry *) follow_link (&h->root);
4573 }
4574
4575 static inline struct ppc_link_hash_entry *
4576 ppc_follow_link (struct ppc_link_hash_entry *h)
4577 {
4578 return (struct ppc_link_hash_entry *) follow_link (&h->elf.root);
4579 }
4580
4581 /* Merge PLT info on FROM with that on TO. */
4582
4583 static void
4584 move_plt_plist (struct ppc_link_hash_entry *from,
4585 struct ppc_link_hash_entry *to)
4586 {
4587 if (from->elf.plt.plist != NULL)
4588 {
4589 if (to->elf.plt.plist != NULL)
4590 {
4591 struct plt_entry **entp;
4592 struct plt_entry *ent;
4593
4594 for (entp = &from->elf.plt.plist; (ent = *entp) != NULL; )
4595 {
4596 struct plt_entry *dent;
4597
4598 for (dent = to->elf.plt.plist; dent != NULL; dent = dent->next)
4599 if (dent->addend == ent->addend)
4600 {
4601 dent->plt.refcount += ent->plt.refcount;
4602 *entp = ent->next;
4603 break;
4604 }
4605 if (dent == NULL)
4606 entp = &ent->next;
4607 }
4608 *entp = to->elf.plt.plist;
4609 }
4610
4611 to->elf.plt.plist = from->elf.plt.plist;
4612 from->elf.plt.plist = NULL;
4613 }
4614 }
4615
4616 /* Copy the extra info we tack onto an elf_link_hash_entry. */
4617
4618 static void
4619 ppc64_elf_copy_indirect_symbol (struct bfd_link_info *info,
4620 struct elf_link_hash_entry *dir,
4621 struct elf_link_hash_entry *ind)
4622 {
4623 struct ppc_link_hash_entry *edir, *eind;
4624
4625 edir = (struct ppc_link_hash_entry *) dir;
4626 eind = (struct ppc_link_hash_entry *) ind;
4627
4628 edir->is_func |= eind->is_func;
4629 edir->is_func_descriptor |= eind->is_func_descriptor;
4630 edir->tls_mask |= eind->tls_mask;
4631 if (eind->oh != NULL)
4632 edir->oh = ppc_follow_link (eind->oh);
4633
4634 /* If called to transfer flags for a weakdef during processing
4635 of elf_adjust_dynamic_symbol, don't copy NON_GOT_REF.
4636 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
4637 if (!(ELIMINATE_COPY_RELOCS
4638 && eind->elf.root.type != bfd_link_hash_indirect
4639 && edir->elf.dynamic_adjusted))
4640 edir->elf.non_got_ref |= eind->elf.non_got_ref;
4641
4642 edir->elf.ref_dynamic |= eind->elf.ref_dynamic;
4643 edir->elf.ref_regular |= eind->elf.ref_regular;
4644 edir->elf.ref_regular_nonweak |= eind->elf.ref_regular_nonweak;
4645 edir->elf.needs_plt |= eind->elf.needs_plt;
4646 edir->elf.pointer_equality_needed |= eind->elf.pointer_equality_needed;
4647
4648 /* Copy over any dynamic relocs we may have on the indirect sym. */
4649 if (eind->dyn_relocs != NULL)
4650 {
4651 if (edir->dyn_relocs != NULL)
4652 {
4653 struct elf_dyn_relocs **pp;
4654 struct elf_dyn_relocs *p;
4655
4656 /* Add reloc counts against the indirect sym to the direct sym
4657 list. Merge any entries against the same section. */
4658 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
4659 {
4660 struct elf_dyn_relocs *q;
4661
4662 for (q = edir->dyn_relocs; q != NULL; q = q->next)
4663 if (q->sec == p->sec)
4664 {
4665 q->pc_count += p->pc_count;
4666 q->count += p->count;
4667 *pp = p->next;
4668 break;
4669 }
4670 if (q == NULL)
4671 pp = &p->next;
4672 }
4673 *pp = edir->dyn_relocs;
4674 }
4675
4676 edir->dyn_relocs = eind->dyn_relocs;
4677 eind->dyn_relocs = NULL;
4678 }
4679
4680 /* If we were called to copy over info for a weak sym, that's all.
4681 You might think dyn_relocs need not be copied over; After all,
4682 both syms will be dynamic or both non-dynamic so we're just
4683 moving reloc accounting around. However, ELIMINATE_COPY_RELOCS
4684 code in ppc64_elf_adjust_dynamic_symbol needs to check for
4685 dyn_relocs in read-only sections, and it does so on what is the
4686 DIR sym here. */
4687 if (eind->elf.root.type != bfd_link_hash_indirect)
4688 return;
4689
4690 /* Copy over got entries that we may have already seen to the
4691 symbol which just became indirect. */
4692 if (eind->elf.got.glist != NULL)
4693 {
4694 if (edir->elf.got.glist != NULL)
4695 {
4696 struct got_entry **entp;
4697 struct got_entry *ent;
4698
4699 for (entp = &eind->elf.got.glist; (ent = *entp) != NULL; )
4700 {
4701 struct got_entry *dent;
4702
4703 for (dent = edir->elf.got.glist; dent != NULL; dent = dent->next)
4704 if (dent->addend == ent->addend
4705 && dent->owner == ent->owner
4706 && dent->tls_type == ent->tls_type)
4707 {
4708 dent->got.refcount += ent->got.refcount;
4709 *entp = ent->next;
4710 break;
4711 }
4712 if (dent == NULL)
4713 entp = &ent->next;
4714 }
4715 *entp = edir->elf.got.glist;
4716 }
4717
4718 edir->elf.got.glist = eind->elf.got.glist;
4719 eind->elf.got.glist = NULL;
4720 }
4721
4722 /* And plt entries. */
4723 move_plt_plist (eind, edir);
4724
4725 if (eind->elf.dynindx != -1)
4726 {
4727 if (edir->elf.dynindx != -1)
4728 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
4729 edir->elf.dynstr_index);
4730 edir->elf.dynindx = eind->elf.dynindx;
4731 edir->elf.dynstr_index = eind->elf.dynstr_index;
4732 eind->elf.dynindx = -1;
4733 eind->elf.dynstr_index = 0;
4734 }
4735 }
4736
4737 /* Find the function descriptor hash entry from the given function code
4738 hash entry FH. Link the entries via their OH fields. */
4739
4740 static struct ppc_link_hash_entry *
4741 lookup_fdh (struct ppc_link_hash_entry *fh, struct ppc_link_hash_table *htab)
4742 {
4743 struct ppc_link_hash_entry *fdh = fh->oh;
4744
4745 if (fdh == NULL)
4746 {
4747 const char *fd_name = fh->elf.root.root.string + 1;
4748
4749 fdh = (struct ppc_link_hash_entry *)
4750 elf_link_hash_lookup (&htab->elf, fd_name, FALSE, FALSE, FALSE);
4751 if (fdh == NULL)
4752 return fdh;
4753
4754 fdh->is_func_descriptor = 1;
4755 fdh->oh = fh;
4756 fh->is_func = 1;
4757 fh->oh = fdh;
4758 }
4759
4760 return ppc_follow_link (fdh);
4761 }
4762
4763 /* Make a fake function descriptor sym for the code sym FH. */
4764
4765 static struct ppc_link_hash_entry *
4766 make_fdh (struct bfd_link_info *info,
4767 struct ppc_link_hash_entry *fh)
4768 {
4769 bfd *abfd;
4770 asymbol *newsym;
4771 struct bfd_link_hash_entry *bh;
4772 struct ppc_link_hash_entry *fdh;
4773
4774 abfd = fh->elf.root.u.undef.abfd;
4775 newsym = bfd_make_empty_symbol (abfd);
4776 newsym->name = fh->elf.root.root.string + 1;
4777 newsym->section = bfd_und_section_ptr;
4778 newsym->value = 0;
4779 newsym->flags = BSF_WEAK;
4780
4781 bh = NULL;
4782 if (!_bfd_generic_link_add_one_symbol (info, abfd, newsym->name,
4783 newsym->flags, newsym->section,
4784 newsym->value, NULL, FALSE, FALSE,
4785 &bh))
4786 return NULL;
4787
4788 fdh = (struct ppc_link_hash_entry *) bh;
4789 fdh->elf.non_elf = 0;
4790 fdh->fake = 1;
4791 fdh->is_func_descriptor = 1;
4792 fdh->oh = fh;
4793 fh->is_func = 1;
4794 fh->oh = fdh;
4795 return fdh;
4796 }
4797
4798 /* Fix function descriptor symbols defined in .opd sections to be
4799 function type. */
4800
4801 static bfd_boolean
4802 ppc64_elf_add_symbol_hook (bfd *ibfd,
4803 struct bfd_link_info *info,
4804 Elf_Internal_Sym *isym,
4805 const char **name,
4806 flagword *flags ATTRIBUTE_UNUSED,
4807 asection **sec,
4808 bfd_vma *value)
4809 {
4810 if ((ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
4811 || ELF_ST_BIND (isym->st_info) == STB_GNU_UNIQUE)
4812 && (ibfd->flags & DYNAMIC) == 0
4813 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
4814 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4815
4816 if (*sec != NULL
4817 && strcmp ((*sec)->name, ".opd") == 0)
4818 {
4819 asection *code_sec;
4820
4821 if (!(ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
4822 || ELF_ST_TYPE (isym->st_info) == STT_FUNC))
4823 isym->st_info = ELF_ST_INFO (ELF_ST_BIND (isym->st_info), STT_FUNC);
4824
4825 /* If the symbol is a function defined in .opd, and the function
4826 code is in a discarded group, let it appear to be undefined. */
4827 if (!info->relocatable
4828 && (*sec)->reloc_count != 0
4829 && opd_entry_value (*sec, *value, &code_sec, NULL,
4830 FALSE) != (bfd_vma) -1
4831 && discarded_section (code_sec))
4832 {
4833 *sec = bfd_und_section_ptr;
4834 isym->st_shndx = SHN_UNDEF;
4835 }
4836 }
4837
4838 if ((STO_PPC64_LOCAL_MASK & isym->st_other) != 0)
4839 {
4840 if (abiversion (ibfd) == 0)
4841 set_abiversion (ibfd, 2);
4842 else if (abiversion (ibfd) == 1)
4843 {
4844 info->callbacks->einfo (_("%P: symbol '%s' has invalid st_other"
4845 " for ABI version 1\n"), name);
4846 bfd_set_error (bfd_error_bad_value);
4847 return FALSE;
4848 }
4849 }
4850
4851 return TRUE;
4852 }
4853
4854 /* Merge non-visibility st_other attributes: local entry point. */
4855
4856 static void
4857 ppc64_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
4858 const Elf_Internal_Sym *isym,
4859 bfd_boolean definition,
4860 bfd_boolean dynamic)
4861 {
4862 if (definition && !dynamic)
4863 h->other = ((isym->st_other & ~ELF_ST_VISIBILITY (-1))
4864 | ELF_ST_VISIBILITY (h->other));
4865 }
4866
4867 /* This function makes an old ABI object reference to ".bar" cause the
4868 inclusion of a new ABI object archive that defines "bar".
4869 NAME is a symbol defined in an archive. Return a symbol in the hash
4870 table that might be satisfied by the archive symbols. */
4871
4872 static struct elf_link_hash_entry *
4873 ppc64_elf_archive_symbol_lookup (bfd *abfd,
4874 struct bfd_link_info *info,
4875 const char *name)
4876 {
4877 struct elf_link_hash_entry *h;
4878 char *dot_name;
4879 size_t len;
4880
4881 h = _bfd_elf_archive_symbol_lookup (abfd, info, name);
4882 if (h != NULL
4883 /* Don't return this sym if it is a fake function descriptor
4884 created by add_symbol_adjust. */
4885 && !(h->root.type == bfd_link_hash_undefweak
4886 && ((struct ppc_link_hash_entry *) h)->fake))
4887 return h;
4888
4889 if (name[0] == '.')
4890 return h;
4891
4892 len = strlen (name);
4893 dot_name = bfd_alloc (abfd, len + 2);
4894 if (dot_name == NULL)
4895 return (struct elf_link_hash_entry *) 0 - 1;
4896 dot_name[0] = '.';
4897 memcpy (dot_name + 1, name, len + 1);
4898 h = _bfd_elf_archive_symbol_lookup (abfd, info, dot_name);
4899 bfd_release (abfd, dot_name);
4900 return h;
4901 }
4902
4903 /* This function satisfies all old ABI object references to ".bar" if a
4904 new ABI object defines "bar". Well, at least, undefined dot symbols
4905 are made weak. This stops later archive searches from including an
4906 object if we already have a function descriptor definition. It also
4907 prevents the linker complaining about undefined symbols.
4908 We also check and correct mismatched symbol visibility here. The
4909 most restrictive visibility of the function descriptor and the
4910 function entry symbol is used. */
4911
4912 static bfd_boolean
4913 add_symbol_adjust (struct ppc_link_hash_entry *eh, struct bfd_link_info *info)
4914 {
4915 struct ppc_link_hash_table *htab;
4916 struct ppc_link_hash_entry *fdh;
4917
4918 if (eh->elf.root.type == bfd_link_hash_indirect)
4919 return TRUE;
4920
4921 if (eh->elf.root.type == bfd_link_hash_warning)
4922 eh = (struct ppc_link_hash_entry *) eh->elf.root.u.i.link;
4923
4924 if (eh->elf.root.root.string[0] != '.')
4925 abort ();
4926
4927 htab = ppc_hash_table (info);
4928 if (htab == NULL)
4929 return FALSE;
4930
4931 fdh = lookup_fdh (eh, htab);
4932 if (fdh == NULL)
4933 {
4934 if (!info->relocatable
4935 && (eh->elf.root.type == bfd_link_hash_undefined
4936 || eh->elf.root.type == bfd_link_hash_undefweak)
4937 && eh->elf.ref_regular)
4938 {
4939 /* Make an undefweak function descriptor sym, which is enough to
4940 pull in an --as-needed shared lib, but won't cause link
4941 errors. Archives are handled elsewhere. */
4942 fdh = make_fdh (info, eh);
4943 if (fdh == NULL)
4944 return FALSE;
4945 fdh->elf.ref_regular = 1;
4946 }
4947 }
4948 else
4949 {
4950 unsigned entry_vis = ELF_ST_VISIBILITY (eh->elf.other) - 1;
4951 unsigned descr_vis = ELF_ST_VISIBILITY (fdh->elf.other) - 1;
4952 if (entry_vis < descr_vis)
4953 fdh->elf.other += entry_vis - descr_vis;
4954 else if (entry_vis > descr_vis)
4955 eh->elf.other += descr_vis - entry_vis;
4956
4957 if ((fdh->elf.root.type == bfd_link_hash_defined
4958 || fdh->elf.root.type == bfd_link_hash_defweak)
4959 && eh->elf.root.type == bfd_link_hash_undefined)
4960 {
4961 eh->elf.root.type = bfd_link_hash_undefweak;
4962 eh->was_undefined = 1;
4963 htab->twiddled_syms = 1;
4964 }
4965 }
4966
4967 return TRUE;
4968 }
4969
4970 /* Set up opd section info and abiversion for IBFD, and process list
4971 of dot-symbols we made in link_hash_newfunc. */
4972
4973 static bfd_boolean
4974 ppc64_elf_before_check_relocs (bfd *ibfd, struct bfd_link_info *info)
4975 {
4976 struct ppc_link_hash_table *htab;
4977 struct ppc_link_hash_entry **p, *eh;
4978 asection *opd = bfd_get_section_by_name (ibfd, ".opd");
4979
4980 if (opd != NULL && opd->size != 0)
4981 {
4982 if (abiversion (ibfd) == 0)
4983 set_abiversion (ibfd, 1);
4984 else if (abiversion (ibfd) == 2)
4985 {
4986 info->callbacks->einfo (_("%P: %B .opd not allowed in ABI"
4987 " version %d\n"),
4988 ibfd, abiversion (ibfd));
4989 bfd_set_error (bfd_error_bad_value);
4990 return FALSE;
4991 }
4992
4993 if ((ibfd->flags & DYNAMIC) == 0
4994 && (opd->flags & SEC_RELOC) != 0
4995 && opd->reloc_count != 0
4996 && !bfd_is_abs_section (opd->output_section))
4997 {
4998 /* Garbage collection needs some extra help with .opd sections.
4999 We don't want to necessarily keep everything referenced by
5000 relocs in .opd, as that would keep all functions. Instead,
5001 if we reference an .opd symbol (a function descriptor), we
5002 want to keep the function code symbol's section. This is
5003 easy for global symbols, but for local syms we need to keep
5004 information about the associated function section. */
5005 bfd_size_type amt;
5006 asection **opd_sym_map;
5007
5008 amt = opd->size * sizeof (*opd_sym_map) / 8;
5009 opd_sym_map = bfd_zalloc (ibfd, amt);
5010 if (opd_sym_map == NULL)
5011 return FALSE;
5012 ppc64_elf_section_data (opd)->u.opd.func_sec = opd_sym_map;
5013 BFD_ASSERT (ppc64_elf_section_data (opd)->sec_type == sec_normal);
5014 ppc64_elf_section_data (opd)->sec_type = sec_opd;
5015 }
5016 }
5017
5018 if (!is_ppc64_elf (info->output_bfd))
5019 return TRUE;
5020 htab = ppc_hash_table (info);
5021 if (htab == NULL)
5022 return FALSE;
5023
5024 /* For input files without an explicit abiversion in e_flags
5025 we should have flagged any with symbol st_other bits set
5026 as ELFv1 and above flagged those with .opd as ELFv2.
5027 Set the output abiversion if not yet set, and for any input
5028 still ambiguous, take its abiversion from the output.
5029 Differences in ABI are reported later. */
5030 if (abiversion (info->output_bfd) == 0)
5031 set_abiversion (info->output_bfd, abiversion (ibfd));
5032 else if (abiversion (ibfd) == 0)
5033 set_abiversion (ibfd, abiversion (info->output_bfd));
5034
5035 p = &htab->dot_syms;
5036 while ((eh = *p) != NULL)
5037 {
5038 *p = NULL;
5039 if (&eh->elf == htab->elf.hgot)
5040 ;
5041 else if (htab->elf.hgot == NULL
5042 && strcmp (eh->elf.root.root.string, ".TOC.") == 0)
5043 htab->elf.hgot = &eh->elf;
5044 else if (!add_symbol_adjust (eh, info))
5045 return FALSE;
5046 p = &eh->u.next_dot_sym;
5047 }
5048
5049 /* Clear the list for non-ppc64 input files. */
5050 p = &htab->dot_syms;
5051 while ((eh = *p) != NULL)
5052 {
5053 *p = NULL;
5054 p = &eh->u.next_dot_sym;
5055 }
5056
5057 /* We need to fix the undefs list for any syms we have twiddled to
5058 undef_weak. */
5059 if (htab->twiddled_syms)
5060 {
5061 bfd_link_repair_undef_list (&htab->elf.root);
5062 htab->twiddled_syms = 0;
5063 }
5064 return TRUE;
5065 }
5066
5067 /* Undo hash table changes when an --as-needed input file is determined
5068 not to be needed. */
5069
5070 static bfd_boolean
5071 ppc64_elf_notice_as_needed (bfd *ibfd,
5072 struct bfd_link_info *info,
5073 enum notice_asneeded_action act)
5074 {
5075 if (act == notice_not_needed)
5076 {
5077 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5078
5079 if (htab == NULL)
5080 return FALSE;
5081
5082 htab->dot_syms = NULL;
5083 }
5084 return _bfd_elf_notice_as_needed (ibfd, info, act);
5085 }
5086
5087 /* If --just-symbols against a final linked binary, then assume we need
5088 toc adjusting stubs when calling functions defined there. */
5089
5090 static void
5091 ppc64_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
5092 {
5093 if ((sec->flags & SEC_CODE) != 0
5094 && (sec->owner->flags & (EXEC_P | DYNAMIC)) != 0
5095 && is_ppc64_elf (sec->owner))
5096 {
5097 if (abiversion (sec->owner) >= 2
5098 || bfd_get_section_by_name (sec->owner, ".opd") != NULL)
5099 sec->has_toc_reloc = 1;
5100 }
5101 _bfd_elf_link_just_syms (sec, info);
5102 }
5103
5104 static struct plt_entry **
5105 update_local_sym_info (bfd *abfd, Elf_Internal_Shdr *symtab_hdr,
5106 unsigned long r_symndx, bfd_vma r_addend, int tls_type)
5107 {
5108 struct got_entry **local_got_ents = elf_local_got_ents (abfd);
5109 struct plt_entry **local_plt;
5110 unsigned char *local_got_tls_masks;
5111
5112 if (local_got_ents == NULL)
5113 {
5114 bfd_size_type size = symtab_hdr->sh_info;
5115
5116 size *= (sizeof (*local_got_ents)
5117 + sizeof (*local_plt)
5118 + sizeof (*local_got_tls_masks));
5119 local_got_ents = bfd_zalloc (abfd, size);
5120 if (local_got_ents == NULL)
5121 return NULL;
5122 elf_local_got_ents (abfd) = local_got_ents;
5123 }
5124
5125 if ((tls_type & (PLT_IFUNC | TLS_EXPLICIT)) == 0)
5126 {
5127 struct got_entry *ent;
5128
5129 for (ent = local_got_ents[r_symndx]; ent != NULL; ent = ent->next)
5130 if (ent->addend == r_addend
5131 && ent->owner == abfd
5132 && ent->tls_type == tls_type)
5133 break;
5134 if (ent == NULL)
5135 {
5136 bfd_size_type amt = sizeof (*ent);
5137 ent = bfd_alloc (abfd, amt);
5138 if (ent == NULL)
5139 return FALSE;
5140 ent->next = local_got_ents[r_symndx];
5141 ent->addend = r_addend;
5142 ent->owner = abfd;
5143 ent->tls_type = tls_type;
5144 ent->is_indirect = FALSE;
5145 ent->got.refcount = 0;
5146 local_got_ents[r_symndx] = ent;
5147 }
5148 ent->got.refcount += 1;
5149 }
5150
5151 local_plt = (struct plt_entry **) (local_got_ents + symtab_hdr->sh_info);
5152 local_got_tls_masks = (unsigned char *) (local_plt + symtab_hdr->sh_info);
5153 local_got_tls_masks[r_symndx] |= tls_type;
5154
5155 return local_plt + r_symndx;
5156 }
5157
5158 static bfd_boolean
5159 update_plt_info (bfd *abfd, struct plt_entry **plist, bfd_vma addend)
5160 {
5161 struct plt_entry *ent;
5162
5163 for (ent = *plist; ent != NULL; ent = ent->next)
5164 if (ent->addend == addend)
5165 break;
5166 if (ent == NULL)
5167 {
5168 bfd_size_type amt = sizeof (*ent);
5169 ent = bfd_alloc (abfd, amt);
5170 if (ent == NULL)
5171 return FALSE;
5172 ent->next = *plist;
5173 ent->addend = addend;
5174 ent->plt.refcount = 0;
5175 *plist = ent;
5176 }
5177 ent->plt.refcount += 1;
5178 return TRUE;
5179 }
5180
5181 static bfd_boolean
5182 is_branch_reloc (enum elf_ppc64_reloc_type r_type)
5183 {
5184 return (r_type == R_PPC64_REL24
5185 || r_type == R_PPC64_REL14
5186 || r_type == R_PPC64_REL14_BRTAKEN
5187 || r_type == R_PPC64_REL14_BRNTAKEN
5188 || r_type == R_PPC64_ADDR24
5189 || r_type == R_PPC64_ADDR14
5190 || r_type == R_PPC64_ADDR14_BRTAKEN
5191 || r_type == R_PPC64_ADDR14_BRNTAKEN);
5192 }
5193
5194 /* Look through the relocs for a section during the first phase, and
5195 calculate needed space in the global offset table, procedure
5196 linkage table, and dynamic reloc sections. */
5197
5198 static bfd_boolean
5199 ppc64_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
5200 asection *sec, const Elf_Internal_Rela *relocs)
5201 {
5202 struct ppc_link_hash_table *htab;
5203 Elf_Internal_Shdr *symtab_hdr;
5204 struct elf_link_hash_entry **sym_hashes;
5205 const Elf_Internal_Rela *rel;
5206 const Elf_Internal_Rela *rel_end;
5207 asection *sreloc;
5208 asection **opd_sym_map;
5209 struct elf_link_hash_entry *tga, *dottga;
5210
5211 if (info->relocatable)
5212 return TRUE;
5213
5214 /* Don't do anything special with non-loaded, non-alloced sections.
5215 In particular, any relocs in such sections should not affect GOT
5216 and PLT reference counting (ie. we don't allow them to create GOT
5217 or PLT entries), there's no possibility or desire to optimize TLS
5218 relocs, and there's not much point in propagating relocs to shared
5219 libs that the dynamic linker won't relocate. */
5220 if ((sec->flags & SEC_ALLOC) == 0)
5221 return TRUE;
5222
5223 BFD_ASSERT (is_ppc64_elf (abfd));
5224
5225 htab = ppc_hash_table (info);
5226 if (htab == NULL)
5227 return FALSE;
5228
5229 tga = elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
5230 FALSE, FALSE, TRUE);
5231 dottga = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
5232 FALSE, FALSE, TRUE);
5233 symtab_hdr = &elf_symtab_hdr (abfd);
5234 sym_hashes = elf_sym_hashes (abfd);
5235 sreloc = NULL;
5236 opd_sym_map = NULL;
5237 if (ppc64_elf_section_data (sec) != NULL
5238 && ppc64_elf_section_data (sec)->sec_type == sec_opd)
5239 opd_sym_map = ppc64_elf_section_data (sec)->u.opd.func_sec;
5240
5241 rel_end = relocs + sec->reloc_count;
5242 for (rel = relocs; rel < rel_end; rel++)
5243 {
5244 unsigned long r_symndx;
5245 struct elf_link_hash_entry *h;
5246 enum elf_ppc64_reloc_type r_type;
5247 int tls_type;
5248 struct _ppc64_elf_section_data *ppc64_sec;
5249 struct plt_entry **ifunc;
5250
5251 r_symndx = ELF64_R_SYM (rel->r_info);
5252 if (r_symndx < symtab_hdr->sh_info)
5253 h = NULL;
5254 else
5255 {
5256 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5257 h = elf_follow_link (h);
5258
5259 /* PR15323, ref flags aren't set for references in the same
5260 object. */
5261 h->root.non_ir_ref = 1;
5262
5263 if (h == htab->elf.hgot)
5264 sec->has_toc_reloc = 1;
5265 }
5266
5267 tls_type = 0;
5268 ifunc = NULL;
5269 if (h != NULL)
5270 {
5271 if (h->type == STT_GNU_IFUNC)
5272 {
5273 h->needs_plt = 1;
5274 ifunc = &h->plt.plist;
5275 }
5276 }
5277 else
5278 {
5279 Elf_Internal_Sym *isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5280 abfd, r_symndx);
5281 if (isym == NULL)
5282 return FALSE;
5283
5284 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
5285 {
5286 ifunc = update_local_sym_info (abfd, symtab_hdr, r_symndx,
5287 rel->r_addend, PLT_IFUNC);
5288 if (ifunc == NULL)
5289 return FALSE;
5290 }
5291 }
5292 r_type = ELF64_R_TYPE (rel->r_info);
5293 if (is_branch_reloc (r_type))
5294 {
5295 if (h != NULL && (h == tga || h == dottga))
5296 {
5297 if (rel != relocs
5298 && (ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSGD
5299 || ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSLD))
5300 /* We have a new-style __tls_get_addr call with a marker
5301 reloc. */
5302 ;
5303 else
5304 /* Mark this section as having an old-style call. */
5305 sec->has_tls_get_addr_call = 1;
5306 }
5307
5308 /* STT_GNU_IFUNC symbols must have a PLT entry. */
5309 if (ifunc != NULL
5310 && !update_plt_info (abfd, ifunc, rel->r_addend))
5311 return FALSE;
5312 }
5313
5314 switch (r_type)
5315 {
5316 case R_PPC64_TLSGD:
5317 case R_PPC64_TLSLD:
5318 /* These special tls relocs tie a call to __tls_get_addr with
5319 its parameter symbol. */
5320 break;
5321
5322 case R_PPC64_GOT_TLSLD16:
5323 case R_PPC64_GOT_TLSLD16_LO:
5324 case R_PPC64_GOT_TLSLD16_HI:
5325 case R_PPC64_GOT_TLSLD16_HA:
5326 tls_type = TLS_TLS | TLS_LD;
5327 goto dogottls;
5328
5329 case R_PPC64_GOT_TLSGD16:
5330 case R_PPC64_GOT_TLSGD16_LO:
5331 case R_PPC64_GOT_TLSGD16_HI:
5332 case R_PPC64_GOT_TLSGD16_HA:
5333 tls_type = TLS_TLS | TLS_GD;
5334 goto dogottls;
5335
5336 case R_PPC64_GOT_TPREL16_DS:
5337 case R_PPC64_GOT_TPREL16_LO_DS:
5338 case R_PPC64_GOT_TPREL16_HI:
5339 case R_PPC64_GOT_TPREL16_HA:
5340 if (info->shared)
5341 info->flags |= DF_STATIC_TLS;
5342 tls_type = TLS_TLS | TLS_TPREL;
5343 goto dogottls;
5344
5345 case R_PPC64_GOT_DTPREL16_DS:
5346 case R_PPC64_GOT_DTPREL16_LO_DS:
5347 case R_PPC64_GOT_DTPREL16_HI:
5348 case R_PPC64_GOT_DTPREL16_HA:
5349 tls_type = TLS_TLS | TLS_DTPREL;
5350 dogottls:
5351 sec->has_tls_reloc = 1;
5352 /* Fall thru */
5353
5354 case R_PPC64_GOT16:
5355 case R_PPC64_GOT16_DS:
5356 case R_PPC64_GOT16_HA:
5357 case R_PPC64_GOT16_HI:
5358 case R_PPC64_GOT16_LO:
5359 case R_PPC64_GOT16_LO_DS:
5360 /* This symbol requires a global offset table entry. */
5361 sec->has_toc_reloc = 1;
5362 if (r_type == R_PPC64_GOT_TLSLD16
5363 || r_type == R_PPC64_GOT_TLSGD16
5364 || r_type == R_PPC64_GOT_TPREL16_DS
5365 || r_type == R_PPC64_GOT_DTPREL16_DS
5366 || r_type == R_PPC64_GOT16
5367 || r_type == R_PPC64_GOT16_DS)
5368 {
5369 htab->do_multi_toc = 1;
5370 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
5371 }
5372
5373 if (ppc64_elf_tdata (abfd)->got == NULL
5374 && !create_got_section (abfd, info))
5375 return FALSE;
5376
5377 if (h != NULL)
5378 {
5379 struct ppc_link_hash_entry *eh;
5380 struct got_entry *ent;
5381
5382 eh = (struct ppc_link_hash_entry *) h;
5383 for (ent = eh->elf.got.glist; ent != NULL; ent = ent->next)
5384 if (ent->addend == rel->r_addend
5385 && ent->owner == abfd
5386 && ent->tls_type == tls_type)
5387 break;
5388 if (ent == NULL)
5389 {
5390 bfd_size_type amt = sizeof (*ent);
5391 ent = bfd_alloc (abfd, amt);
5392 if (ent == NULL)
5393 return FALSE;
5394 ent->next = eh->elf.got.glist;
5395 ent->addend = rel->r_addend;
5396 ent->owner = abfd;
5397 ent->tls_type = tls_type;
5398 ent->is_indirect = FALSE;
5399 ent->got.refcount = 0;
5400 eh->elf.got.glist = ent;
5401 }
5402 ent->got.refcount += 1;
5403 eh->tls_mask |= tls_type;
5404 }
5405 else
5406 /* This is a global offset table entry for a local symbol. */
5407 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
5408 rel->r_addend, tls_type))
5409 return FALSE;
5410
5411 /* We may also need a plt entry if the symbol turns out to be
5412 an ifunc. */
5413 if (h != NULL && !info->shared && abiversion (abfd) != 1)
5414 {
5415 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5416 return FALSE;
5417 }
5418 break;
5419
5420 case R_PPC64_PLT16_HA:
5421 case R_PPC64_PLT16_HI:
5422 case R_PPC64_PLT16_LO:
5423 case R_PPC64_PLT32:
5424 case R_PPC64_PLT64:
5425 /* This symbol requires a procedure linkage table entry. We
5426 actually build the entry in adjust_dynamic_symbol,
5427 because this might be a case of linking PIC code without
5428 linking in any dynamic objects, in which case we don't
5429 need to generate a procedure linkage table after all. */
5430 if (h == NULL)
5431 {
5432 /* It does not make sense to have a procedure linkage
5433 table entry for a local symbol. */
5434 bfd_set_error (bfd_error_bad_value);
5435 return FALSE;
5436 }
5437 else
5438 {
5439 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5440 return FALSE;
5441 h->needs_plt = 1;
5442 if (h->root.root.string[0] == '.'
5443 && h->root.root.string[1] != '\0')
5444 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5445 }
5446 break;
5447
5448 /* The following relocations don't need to propagate the
5449 relocation if linking a shared object since they are
5450 section relative. */
5451 case R_PPC64_SECTOFF:
5452 case R_PPC64_SECTOFF_LO:
5453 case R_PPC64_SECTOFF_HI:
5454 case R_PPC64_SECTOFF_HA:
5455 case R_PPC64_SECTOFF_DS:
5456 case R_PPC64_SECTOFF_LO_DS:
5457 case R_PPC64_DTPREL16:
5458 case R_PPC64_DTPREL16_LO:
5459 case R_PPC64_DTPREL16_HI:
5460 case R_PPC64_DTPREL16_HA:
5461 case R_PPC64_DTPREL16_DS:
5462 case R_PPC64_DTPREL16_LO_DS:
5463 case R_PPC64_DTPREL16_HIGH:
5464 case R_PPC64_DTPREL16_HIGHA:
5465 case R_PPC64_DTPREL16_HIGHER:
5466 case R_PPC64_DTPREL16_HIGHERA:
5467 case R_PPC64_DTPREL16_HIGHEST:
5468 case R_PPC64_DTPREL16_HIGHESTA:
5469 break;
5470
5471 /* Nor do these. */
5472 case R_PPC64_REL16:
5473 case R_PPC64_REL16_LO:
5474 case R_PPC64_REL16_HI:
5475 case R_PPC64_REL16_HA:
5476 break;
5477
5478 /* Not supported as a dynamic relocation. */
5479 case R_PPC64_ADDR64_LOCAL:
5480 if (info->shared)
5481 {
5482 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
5483 ppc_howto_init ();
5484 info->callbacks->einfo (_("%P: %H: %s reloc unsupported "
5485 "in shared libraries and PIEs.\n"),
5486 abfd, sec, rel->r_offset,
5487 ppc64_elf_howto_table[r_type]->name);
5488 bfd_set_error (bfd_error_bad_value);
5489 return FALSE;
5490 }
5491 break;
5492
5493 case R_PPC64_TOC16:
5494 case R_PPC64_TOC16_DS:
5495 htab->do_multi_toc = 1;
5496 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
5497 case R_PPC64_TOC16_LO:
5498 case R_PPC64_TOC16_HI:
5499 case R_PPC64_TOC16_HA:
5500 case R_PPC64_TOC16_LO_DS:
5501 sec->has_toc_reloc = 1;
5502 break;
5503
5504 /* This relocation describes the C++ object vtable hierarchy.
5505 Reconstruct it for later use during GC. */
5506 case R_PPC64_GNU_VTINHERIT:
5507 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
5508 return FALSE;
5509 break;
5510
5511 /* This relocation describes which C++ vtable entries are actually
5512 used. Record for later use during GC. */
5513 case R_PPC64_GNU_VTENTRY:
5514 BFD_ASSERT (h != NULL);
5515 if (h != NULL
5516 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
5517 return FALSE;
5518 break;
5519
5520 case R_PPC64_REL14:
5521 case R_PPC64_REL14_BRTAKEN:
5522 case R_PPC64_REL14_BRNTAKEN:
5523 {
5524 asection *dest = NULL;
5525
5526 /* Heuristic: If jumping outside our section, chances are
5527 we are going to need a stub. */
5528 if (h != NULL)
5529 {
5530 /* If the sym is weak it may be overridden later, so
5531 don't assume we know where a weak sym lives. */
5532 if (h->root.type == bfd_link_hash_defined)
5533 dest = h->root.u.def.section;
5534 }
5535 else
5536 {
5537 Elf_Internal_Sym *isym;
5538
5539 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5540 abfd, r_symndx);
5541 if (isym == NULL)
5542 return FALSE;
5543
5544 dest = bfd_section_from_elf_index (abfd, isym->st_shndx);
5545 }
5546
5547 if (dest != sec)
5548 ppc64_elf_section_data (sec)->has_14bit_branch = 1;
5549 }
5550 /* Fall through. */
5551
5552 case R_PPC64_REL24:
5553 if (h != NULL && ifunc == NULL)
5554 {
5555 /* We may need a .plt entry if the function this reloc
5556 refers to is in a shared lib. */
5557 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5558 return FALSE;
5559 h->needs_plt = 1;
5560 if (h->root.root.string[0] == '.'
5561 && h->root.root.string[1] != '\0')
5562 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5563 if (h == tga || h == dottga)
5564 sec->has_tls_reloc = 1;
5565 }
5566 break;
5567
5568 case R_PPC64_TPREL64:
5569 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_TPREL;
5570 if (info->shared)
5571 info->flags |= DF_STATIC_TLS;
5572 goto dotlstoc;
5573
5574 case R_PPC64_DTPMOD64:
5575 if (rel + 1 < rel_end
5576 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
5577 && rel[1].r_offset == rel->r_offset + 8)
5578 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_GD;
5579 else
5580 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_LD;
5581 goto dotlstoc;
5582
5583 case R_PPC64_DTPREL64:
5584 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_DTPREL;
5585 if (rel != relocs
5586 && rel[-1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPMOD64)
5587 && rel[-1].r_offset == rel->r_offset - 8)
5588 /* This is the second reloc of a dtpmod, dtprel pair.
5589 Don't mark with TLS_DTPREL. */
5590 goto dodyn;
5591
5592 dotlstoc:
5593 sec->has_tls_reloc = 1;
5594 if (h != NULL)
5595 {
5596 struct ppc_link_hash_entry *eh;
5597 eh = (struct ppc_link_hash_entry *) h;
5598 eh->tls_mask |= tls_type;
5599 }
5600 else
5601 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
5602 rel->r_addend, tls_type))
5603 return FALSE;
5604
5605 ppc64_sec = ppc64_elf_section_data (sec);
5606 if (ppc64_sec->sec_type != sec_toc)
5607 {
5608 bfd_size_type amt;
5609
5610 /* One extra to simplify get_tls_mask. */
5611 amt = sec->size * sizeof (unsigned) / 8 + sizeof (unsigned);
5612 ppc64_sec->u.toc.symndx = bfd_zalloc (abfd, amt);
5613 if (ppc64_sec->u.toc.symndx == NULL)
5614 return FALSE;
5615 amt = sec->size * sizeof (bfd_vma) / 8;
5616 ppc64_sec->u.toc.add = bfd_zalloc (abfd, amt);
5617 if (ppc64_sec->u.toc.add == NULL)
5618 return FALSE;
5619 BFD_ASSERT (ppc64_sec->sec_type == sec_normal);
5620 ppc64_sec->sec_type = sec_toc;
5621 }
5622 BFD_ASSERT (rel->r_offset % 8 == 0);
5623 ppc64_sec->u.toc.symndx[rel->r_offset / 8] = r_symndx;
5624 ppc64_sec->u.toc.add[rel->r_offset / 8] = rel->r_addend;
5625
5626 /* Mark the second slot of a GD or LD entry.
5627 -1 to indicate GD and -2 to indicate LD. */
5628 if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_GD))
5629 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -1;
5630 else if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_LD))
5631 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -2;
5632 goto dodyn;
5633
5634 case R_PPC64_TPREL16:
5635 case R_PPC64_TPREL16_LO:
5636 case R_PPC64_TPREL16_HI:
5637 case R_PPC64_TPREL16_HA:
5638 case R_PPC64_TPREL16_DS:
5639 case R_PPC64_TPREL16_LO_DS:
5640 case R_PPC64_TPREL16_HIGH:
5641 case R_PPC64_TPREL16_HIGHA:
5642 case R_PPC64_TPREL16_HIGHER:
5643 case R_PPC64_TPREL16_HIGHERA:
5644 case R_PPC64_TPREL16_HIGHEST:
5645 case R_PPC64_TPREL16_HIGHESTA:
5646 if (info->shared)
5647 {
5648 info->flags |= DF_STATIC_TLS;
5649 goto dodyn;
5650 }
5651 break;
5652
5653 case R_PPC64_ADDR64:
5654 if (opd_sym_map != NULL
5655 && rel + 1 < rel_end
5656 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC)
5657 {
5658 if (h != NULL)
5659 {
5660 if (h->root.root.string[0] == '.'
5661 && h->root.root.string[1] != 0
5662 && lookup_fdh ((struct ppc_link_hash_entry *) h, htab))
5663 ;
5664 else
5665 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5666 }
5667 else
5668 {
5669 asection *s;
5670 Elf_Internal_Sym *isym;
5671
5672 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5673 abfd, r_symndx);
5674 if (isym == NULL)
5675 return FALSE;
5676
5677 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5678 if (s != NULL && s != sec)
5679 opd_sym_map[rel->r_offset / 8] = s;
5680 }
5681 }
5682 /* Fall through. */
5683
5684 case R_PPC64_ADDR16:
5685 case R_PPC64_ADDR16_DS:
5686 case R_PPC64_ADDR16_HA:
5687 case R_PPC64_ADDR16_HI:
5688 case R_PPC64_ADDR16_HIGH:
5689 case R_PPC64_ADDR16_HIGHA:
5690 case R_PPC64_ADDR16_HIGHER:
5691 case R_PPC64_ADDR16_HIGHERA:
5692 case R_PPC64_ADDR16_HIGHEST:
5693 case R_PPC64_ADDR16_HIGHESTA:
5694 case R_PPC64_ADDR16_LO:
5695 case R_PPC64_ADDR16_LO_DS:
5696 if (h != NULL && !info->shared && abiversion (abfd) != 1
5697 && rel->r_addend == 0)
5698 {
5699 /* We may need a .plt entry if this reloc refers to a
5700 function in a shared lib. */
5701 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5702 return FALSE;
5703 h->pointer_equality_needed = 1;
5704 }
5705 /* Fall through. */
5706
5707 case R_PPC64_REL30:
5708 case R_PPC64_REL32:
5709 case R_PPC64_REL64:
5710 case R_PPC64_ADDR14:
5711 case R_PPC64_ADDR14_BRNTAKEN:
5712 case R_PPC64_ADDR14_BRTAKEN:
5713 case R_PPC64_ADDR24:
5714 case R_PPC64_ADDR32:
5715 case R_PPC64_UADDR16:
5716 case R_PPC64_UADDR32:
5717 case R_PPC64_UADDR64:
5718 case R_PPC64_TOC:
5719 if (h != NULL && !info->shared)
5720 /* We may need a copy reloc. */
5721 h->non_got_ref = 1;
5722
5723 /* Don't propagate .opd relocs. */
5724 if (NO_OPD_RELOCS && opd_sym_map != NULL)
5725 break;
5726
5727 /* If we are creating a shared library, and this is a reloc
5728 against a global symbol, or a non PC relative reloc
5729 against a local symbol, then we need to copy the reloc
5730 into the shared library. However, if we are linking with
5731 -Bsymbolic, we do not need to copy a reloc against a
5732 global symbol which is defined in an object we are
5733 including in the link (i.e., DEF_REGULAR is set). At
5734 this point we have not seen all the input files, so it is
5735 possible that DEF_REGULAR is not set now but will be set
5736 later (it is never cleared). In case of a weak definition,
5737 DEF_REGULAR may be cleared later by a strong definition in
5738 a shared library. We account for that possibility below by
5739 storing information in the dyn_relocs field of the hash
5740 table entry. A similar situation occurs when creating
5741 shared libraries and symbol visibility changes render the
5742 symbol local.
5743
5744 If on the other hand, we are creating an executable, we
5745 may need to keep relocations for symbols satisfied by a
5746 dynamic library if we manage to avoid copy relocs for the
5747 symbol. */
5748 dodyn:
5749 if ((info->shared
5750 && (must_be_dyn_reloc (info, r_type)
5751 || (h != NULL
5752 && (!SYMBOLIC_BIND (info, h)
5753 || h->root.type == bfd_link_hash_defweak
5754 || !h->def_regular))))
5755 || (ELIMINATE_COPY_RELOCS
5756 && !info->shared
5757 && h != NULL
5758 && (h->root.type == bfd_link_hash_defweak
5759 || !h->def_regular))
5760 || (!info->shared
5761 && ifunc != NULL))
5762 {
5763 /* We must copy these reloc types into the output file.
5764 Create a reloc section in dynobj and make room for
5765 this reloc. */
5766 if (sreloc == NULL)
5767 {
5768 sreloc = _bfd_elf_make_dynamic_reloc_section
5769 (sec, htab->elf.dynobj, 3, abfd, /*rela?*/ TRUE);
5770
5771 if (sreloc == NULL)
5772 return FALSE;
5773 }
5774
5775 /* If this is a global symbol, we count the number of
5776 relocations we need for this symbol. */
5777 if (h != NULL)
5778 {
5779 struct elf_dyn_relocs *p;
5780 struct elf_dyn_relocs **head;
5781
5782 head = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
5783 p = *head;
5784 if (p == NULL || p->sec != sec)
5785 {
5786 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5787 if (p == NULL)
5788 return FALSE;
5789 p->next = *head;
5790 *head = p;
5791 p->sec = sec;
5792 p->count = 0;
5793 p->pc_count = 0;
5794 }
5795 p->count += 1;
5796 if (!must_be_dyn_reloc (info, r_type))
5797 p->pc_count += 1;
5798 }
5799 else
5800 {
5801 /* Track dynamic relocs needed for local syms too.
5802 We really need local syms available to do this
5803 easily. Oh well. */
5804 struct ppc_dyn_relocs *p;
5805 struct ppc_dyn_relocs **head;
5806 bfd_boolean is_ifunc;
5807 asection *s;
5808 void *vpp;
5809 Elf_Internal_Sym *isym;
5810
5811 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5812 abfd, r_symndx);
5813 if (isym == NULL)
5814 return FALSE;
5815
5816 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5817 if (s == NULL)
5818 s = sec;
5819
5820 vpp = &elf_section_data (s)->local_dynrel;
5821 head = (struct ppc_dyn_relocs **) vpp;
5822 is_ifunc = ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC;
5823 p = *head;
5824 if (p != NULL && p->sec == sec && p->ifunc != is_ifunc)
5825 p = p->next;
5826 if (p == NULL || p->sec != sec || p->ifunc != is_ifunc)
5827 {
5828 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5829 if (p == NULL)
5830 return FALSE;
5831 p->next = *head;
5832 *head = p;
5833 p->sec = sec;
5834 p->ifunc = is_ifunc;
5835 p->count = 0;
5836 }
5837 p->count += 1;
5838 }
5839 }
5840 break;
5841
5842 default:
5843 break;
5844 }
5845 }
5846
5847 return TRUE;
5848 }
5849
5850 /* Merge backend specific data from an object file to the output
5851 object file when linking. */
5852
5853 static bfd_boolean
5854 ppc64_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
5855 {
5856 unsigned long iflags, oflags;
5857
5858 if ((ibfd->flags & BFD_LINKER_CREATED) != 0)
5859 return TRUE;
5860
5861 if (!is_ppc64_elf (ibfd) || !is_ppc64_elf (obfd))
5862 return TRUE;
5863
5864 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
5865 return FALSE;
5866
5867 iflags = elf_elfheader (ibfd)->e_flags;
5868 oflags = elf_elfheader (obfd)->e_flags;
5869
5870 if (iflags & ~EF_PPC64_ABI)
5871 {
5872 (*_bfd_error_handler)
5873 (_("%B uses unknown e_flags 0x%lx"), ibfd, iflags);
5874 bfd_set_error (bfd_error_bad_value);
5875 return FALSE;
5876 }
5877 else if (iflags != oflags && iflags != 0)
5878 {
5879 (*_bfd_error_handler)
5880 (_("%B: ABI version %ld is not compatible with ABI version %ld output"),
5881 ibfd, iflags, oflags);
5882 bfd_set_error (bfd_error_bad_value);
5883 return FALSE;
5884 }
5885
5886 /* Merge Tag_compatibility attributes and any common GNU ones. */
5887 _bfd_elf_merge_object_attributes (ibfd, obfd);
5888
5889 return TRUE;
5890 }
5891
5892 static bfd_boolean
5893 ppc64_elf_print_private_bfd_data (bfd *abfd, void *ptr)
5894 {
5895 /* Print normal ELF private data. */
5896 _bfd_elf_print_private_bfd_data (abfd, ptr);
5897
5898 if (elf_elfheader (abfd)->e_flags != 0)
5899 {
5900 FILE *file = ptr;
5901
5902 /* xgettext:c-format */
5903 fprintf (file, _("private flags = 0x%lx:"),
5904 elf_elfheader (abfd)->e_flags);
5905
5906 if ((elf_elfheader (abfd)->e_flags & EF_PPC64_ABI) != 0)
5907 fprintf (file, _(" [abiv%ld]"),
5908 elf_elfheader (abfd)->e_flags & EF_PPC64_ABI);
5909 fputc ('\n', file);
5910 }
5911
5912 return TRUE;
5913 }
5914
5915 /* OFFSET in OPD_SEC specifies a function descriptor. Return the address
5916 of the code entry point, and its section, which must be in the same
5917 object as OPD_SEC. Returns (bfd_vma) -1 on error. */
5918
5919 static bfd_vma
5920 opd_entry_value (asection *opd_sec,
5921 bfd_vma offset,
5922 asection **code_sec,
5923 bfd_vma *code_off,
5924 bfd_boolean in_code_sec)
5925 {
5926 bfd *opd_bfd = opd_sec->owner;
5927 Elf_Internal_Rela *relocs;
5928 Elf_Internal_Rela *lo, *hi, *look;
5929 bfd_vma val;
5930
5931 /* No relocs implies we are linking a --just-symbols object, or looking
5932 at a final linked executable with addr2line or somesuch. */
5933 if (opd_sec->reloc_count == 0)
5934 {
5935 bfd_byte *contents = ppc64_elf_tdata (opd_bfd)->opd.contents;
5936
5937 if (contents == NULL)
5938 {
5939 if (!bfd_malloc_and_get_section (opd_bfd, opd_sec, &contents))
5940 return (bfd_vma) -1;
5941 ppc64_elf_tdata (opd_bfd)->opd.contents = contents;
5942 }
5943
5944 val = bfd_get_64 (opd_bfd, contents + offset);
5945 if (code_sec != NULL)
5946 {
5947 asection *sec, *likely = NULL;
5948
5949 if (in_code_sec)
5950 {
5951 sec = *code_sec;
5952 if (sec->vma <= val
5953 && val < sec->vma + sec->size)
5954 likely = sec;
5955 else
5956 val = -1;
5957 }
5958 else
5959 for (sec = opd_bfd->sections; sec != NULL; sec = sec->next)
5960 if (sec->vma <= val
5961 && (sec->flags & SEC_LOAD) != 0
5962 && (sec->flags & SEC_ALLOC) != 0)
5963 likely = sec;
5964 if (likely != NULL)
5965 {
5966 *code_sec = likely;
5967 if (code_off != NULL)
5968 *code_off = val - likely->vma;
5969 }
5970 }
5971 return val;
5972 }
5973
5974 BFD_ASSERT (is_ppc64_elf (opd_bfd));
5975
5976 relocs = ppc64_elf_tdata (opd_bfd)->opd.relocs;
5977 if (relocs == NULL)
5978 relocs = _bfd_elf_link_read_relocs (opd_bfd, opd_sec, NULL, NULL, TRUE);
5979
5980 /* Go find the opd reloc at the sym address. */
5981 lo = relocs;
5982 BFD_ASSERT (lo != NULL);
5983 hi = lo + opd_sec->reloc_count - 1; /* ignore last reloc */
5984 val = (bfd_vma) -1;
5985 while (lo < hi)
5986 {
5987 look = lo + (hi - lo) / 2;
5988 if (look->r_offset < offset)
5989 lo = look + 1;
5990 else if (look->r_offset > offset)
5991 hi = look;
5992 else
5993 {
5994 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (opd_bfd);
5995
5996 if (ELF64_R_TYPE (look->r_info) == R_PPC64_ADDR64
5997 && ELF64_R_TYPE ((look + 1)->r_info) == R_PPC64_TOC)
5998 {
5999 unsigned long symndx = ELF64_R_SYM (look->r_info);
6000 asection *sec = NULL;
6001
6002 if (symndx >= symtab_hdr->sh_info
6003 && elf_sym_hashes (opd_bfd) != NULL)
6004 {
6005 struct elf_link_hash_entry **sym_hashes;
6006 struct elf_link_hash_entry *rh;
6007
6008 sym_hashes = elf_sym_hashes (opd_bfd);
6009 rh = sym_hashes[symndx - symtab_hdr->sh_info];
6010 if (rh != NULL)
6011 {
6012 rh = elf_follow_link (rh);
6013 BFD_ASSERT (rh->root.type == bfd_link_hash_defined
6014 || rh->root.type == bfd_link_hash_defweak);
6015 val = rh->root.u.def.value;
6016 sec = rh->root.u.def.section;
6017 if (sec->owner != opd_bfd)
6018 {
6019 sec = NULL;
6020 val = (bfd_vma) -1;
6021 }
6022 }
6023 }
6024
6025 if (sec == NULL)
6026 {
6027 Elf_Internal_Sym *sym;
6028
6029 if (symndx < symtab_hdr->sh_info)
6030 {
6031 sym = (Elf_Internal_Sym *) symtab_hdr->contents;
6032 if (sym == NULL)
6033 {
6034 size_t symcnt = symtab_hdr->sh_info;
6035 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
6036 symcnt, 0,
6037 NULL, NULL, NULL);
6038 if (sym == NULL)
6039 break;
6040 symtab_hdr->contents = (bfd_byte *) sym;
6041 }
6042 sym += symndx;
6043 }
6044 else
6045 {
6046 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
6047 1, symndx,
6048 NULL, NULL, NULL);
6049 if (sym == NULL)
6050 break;
6051 }
6052 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
6053 if (sec == NULL)
6054 break;
6055 BFD_ASSERT ((sec->flags & SEC_MERGE) == 0);
6056 val = sym->st_value;
6057 }
6058
6059 val += look->r_addend;
6060 if (code_off != NULL)
6061 *code_off = val;
6062 if (code_sec != NULL)
6063 {
6064 if (in_code_sec && *code_sec != sec)
6065 return -1;
6066 else
6067 *code_sec = sec;
6068 }
6069 if (sec->output_section != NULL)
6070 val += sec->output_section->vma + sec->output_offset;
6071 }
6072 break;
6073 }
6074 }
6075
6076 return val;
6077 }
6078
6079 /* If the ELF symbol SYM might be a function in SEC, return the
6080 function size and set *CODE_OFF to the function's entry point,
6081 otherwise return zero. */
6082
6083 static bfd_size_type
6084 ppc64_elf_maybe_function_sym (const asymbol *sym, asection *sec,
6085 bfd_vma *code_off)
6086 {
6087 bfd_size_type size;
6088
6089 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
6090 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0)
6091 return 0;
6092
6093 size = 0;
6094 if (!(sym->flags & BSF_SYNTHETIC))
6095 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
6096
6097 if (strcmp (sym->section->name, ".opd") == 0)
6098 {
6099 if (opd_entry_value (sym->section, sym->value,
6100 &sec, code_off, TRUE) == (bfd_vma) -1)
6101 return 0;
6102 /* An old ABI binary with dot-syms has a size of 24 on the .opd
6103 symbol. This size has nothing to do with the code size of the
6104 function, which is what we're supposed to return, but the
6105 code size isn't available without looking up the dot-sym.
6106 However, doing that would be a waste of time particularly
6107 since elf_find_function will look at the dot-sym anyway.
6108 Now, elf_find_function will keep the largest size of any
6109 function sym found at the code address of interest, so return
6110 1 here to avoid it incorrectly caching a larger function size
6111 for a small function. This does mean we return the wrong
6112 size for a new-ABI function of size 24, but all that does is
6113 disable caching for such functions. */
6114 if (size == 24)
6115 size = 1;
6116 }
6117 else
6118 {
6119 if (sym->section != sec)
6120 return 0;
6121 *code_off = sym->value;
6122 }
6123 if (size == 0)
6124 size = 1;
6125 return size;
6126 }
6127
6128 /* Return true if symbol is defined in a regular object file. */
6129
6130 static bfd_boolean
6131 is_static_defined (struct elf_link_hash_entry *h)
6132 {
6133 return ((h->root.type == bfd_link_hash_defined
6134 || h->root.type == bfd_link_hash_defweak)
6135 && h->root.u.def.section != NULL
6136 && h->root.u.def.section->output_section != NULL);
6137 }
6138
6139 /* If FDH is a function descriptor symbol, return the associated code
6140 entry symbol if it is defined. Return NULL otherwise. */
6141
6142 static struct ppc_link_hash_entry *
6143 defined_code_entry (struct ppc_link_hash_entry *fdh)
6144 {
6145 if (fdh->is_func_descriptor)
6146 {
6147 struct ppc_link_hash_entry *fh = ppc_follow_link (fdh->oh);
6148 if (fh->elf.root.type == bfd_link_hash_defined
6149 || fh->elf.root.type == bfd_link_hash_defweak)
6150 return fh;
6151 }
6152 return NULL;
6153 }
6154
6155 /* If FH is a function code entry symbol, return the associated
6156 function descriptor symbol if it is defined. Return NULL otherwise. */
6157
6158 static struct ppc_link_hash_entry *
6159 defined_func_desc (struct ppc_link_hash_entry *fh)
6160 {
6161 if (fh->oh != NULL
6162 && fh->oh->is_func_descriptor)
6163 {
6164 struct ppc_link_hash_entry *fdh = ppc_follow_link (fh->oh);
6165 if (fdh->elf.root.type == bfd_link_hash_defined
6166 || fdh->elf.root.type == bfd_link_hash_defweak)
6167 return fdh;
6168 }
6169 return NULL;
6170 }
6171
6172 /* Mark all our entry sym sections, both opd and code section. */
6173
6174 static void
6175 ppc64_elf_gc_keep (struct bfd_link_info *info)
6176 {
6177 struct ppc_link_hash_table *htab = ppc_hash_table (info);
6178 struct bfd_sym_chain *sym;
6179
6180 if (htab == NULL)
6181 return;
6182
6183 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
6184 {
6185 struct ppc_link_hash_entry *eh, *fh;
6186 asection *sec;
6187
6188 eh = (struct ppc_link_hash_entry *)
6189 elf_link_hash_lookup (&htab->elf, sym->name, FALSE, FALSE, TRUE);
6190 if (eh == NULL)
6191 continue;
6192 if (eh->elf.root.type != bfd_link_hash_defined
6193 && eh->elf.root.type != bfd_link_hash_defweak)
6194 continue;
6195
6196 fh = defined_code_entry (eh);
6197 if (fh != NULL)
6198 {
6199 sec = fh->elf.root.u.def.section;
6200 sec->flags |= SEC_KEEP;
6201 }
6202 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
6203 && opd_entry_value (eh->elf.root.u.def.section,
6204 eh->elf.root.u.def.value,
6205 &sec, NULL, FALSE) != (bfd_vma) -1)
6206 sec->flags |= SEC_KEEP;
6207
6208 sec = eh->elf.root.u.def.section;
6209 sec->flags |= SEC_KEEP;
6210 }
6211 }
6212
6213 /* Mark sections containing dynamically referenced symbols. When
6214 building shared libraries, we must assume that any visible symbol is
6215 referenced. */
6216
6217 static bfd_boolean
6218 ppc64_elf_gc_mark_dynamic_ref (struct elf_link_hash_entry *h, void *inf)
6219 {
6220 struct bfd_link_info *info = (struct bfd_link_info *) inf;
6221 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
6222 struct ppc_link_hash_entry *fdh;
6223 struct bfd_elf_dynamic_list *d = info->dynamic_list;
6224
6225 /* Dynamic linking info is on the func descriptor sym. */
6226 fdh = defined_func_desc (eh);
6227 if (fdh != NULL)
6228 eh = fdh;
6229
6230 if ((eh->elf.root.type == bfd_link_hash_defined
6231 || eh->elf.root.type == bfd_link_hash_defweak)
6232 && (eh->elf.ref_dynamic
6233 || (eh->elf.def_regular
6234 && ELF_ST_VISIBILITY (eh->elf.other) != STV_INTERNAL
6235 && ELF_ST_VISIBILITY (eh->elf.other) != STV_HIDDEN
6236 && (!info->executable
6237 || info->export_dynamic
6238 || (eh->elf.dynamic
6239 && d != NULL
6240 && (*d->match) (&d->head, NULL, eh->elf.root.root.string)))
6241 && (strchr (eh->elf.root.root.string, ELF_VER_CHR) != NULL
6242 || !bfd_hide_sym_by_version (info->version_info,
6243 eh->elf.root.root.string)))))
6244 {
6245 asection *code_sec;
6246 struct ppc_link_hash_entry *fh;
6247
6248 eh->elf.root.u.def.section->flags |= SEC_KEEP;
6249
6250 /* Function descriptor syms cause the associated
6251 function code sym section to be marked. */
6252 fh = defined_code_entry (eh);
6253 if (fh != NULL)
6254 {
6255 code_sec = fh->elf.root.u.def.section;
6256 code_sec->flags |= SEC_KEEP;
6257 }
6258 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
6259 && opd_entry_value (eh->elf.root.u.def.section,
6260 eh->elf.root.u.def.value,
6261 &code_sec, NULL, FALSE) != (bfd_vma) -1)
6262 code_sec->flags |= SEC_KEEP;
6263 }
6264
6265 return TRUE;
6266 }
6267
6268 /* Return the section that should be marked against GC for a given
6269 relocation. */
6270
6271 static asection *
6272 ppc64_elf_gc_mark_hook (asection *sec,
6273 struct bfd_link_info *info,
6274 Elf_Internal_Rela *rel,
6275 struct elf_link_hash_entry *h,
6276 Elf_Internal_Sym *sym)
6277 {
6278 asection *rsec;
6279
6280 /* Syms return NULL if we're marking .opd, so we avoid marking all
6281 function sections, as all functions are referenced in .opd. */
6282 rsec = NULL;
6283 if (get_opd_info (sec) != NULL)
6284 return rsec;
6285
6286 if (h != NULL)
6287 {
6288 enum elf_ppc64_reloc_type r_type;
6289 struct ppc_link_hash_entry *eh, *fh, *fdh;
6290
6291 r_type = ELF64_R_TYPE (rel->r_info);
6292 switch (r_type)
6293 {
6294 case R_PPC64_GNU_VTINHERIT:
6295 case R_PPC64_GNU_VTENTRY:
6296 break;
6297
6298 default:
6299 switch (h->root.type)
6300 {
6301 case bfd_link_hash_defined:
6302 case bfd_link_hash_defweak:
6303 eh = (struct ppc_link_hash_entry *) h;
6304 fdh = defined_func_desc (eh);
6305 if (fdh != NULL)
6306 eh = fdh;
6307
6308 /* Function descriptor syms cause the associated
6309 function code sym section to be marked. */
6310 fh = defined_code_entry (eh);
6311 if (fh != NULL)
6312 {
6313 /* They also mark their opd section. */
6314 eh->elf.root.u.def.section->gc_mark = 1;
6315
6316 rsec = fh->elf.root.u.def.section;
6317 }
6318 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
6319 && opd_entry_value (eh->elf.root.u.def.section,
6320 eh->elf.root.u.def.value,
6321 &rsec, NULL, FALSE) != (bfd_vma) -1)
6322 eh->elf.root.u.def.section->gc_mark = 1;
6323 else
6324 rsec = h->root.u.def.section;
6325 break;
6326
6327 case bfd_link_hash_common:
6328 rsec = h->root.u.c.p->section;
6329 break;
6330
6331 default:
6332 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
6333 }
6334 }
6335 }
6336 else
6337 {
6338 struct _opd_sec_data *opd;
6339
6340 rsec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
6341 opd = get_opd_info (rsec);
6342 if (opd != NULL && opd->func_sec != NULL)
6343 {
6344 rsec->gc_mark = 1;
6345
6346 rsec = opd->func_sec[(sym->st_value + rel->r_addend) / 8];
6347 }
6348 }
6349
6350 return rsec;
6351 }
6352
6353 /* Update the .got, .plt. and dynamic reloc reference counts for the
6354 section being removed. */
6355
6356 static bfd_boolean
6357 ppc64_elf_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
6358 asection *sec, const Elf_Internal_Rela *relocs)
6359 {
6360 struct ppc_link_hash_table *htab;
6361 Elf_Internal_Shdr *symtab_hdr;
6362 struct elf_link_hash_entry **sym_hashes;
6363 struct got_entry **local_got_ents;
6364 const Elf_Internal_Rela *rel, *relend;
6365
6366 if (info->relocatable)
6367 return TRUE;
6368
6369 if ((sec->flags & SEC_ALLOC) == 0)
6370 return TRUE;
6371
6372 elf_section_data (sec)->local_dynrel = NULL;
6373
6374 htab = ppc_hash_table (info);
6375 if (htab == NULL)
6376 return FALSE;
6377
6378 symtab_hdr = &elf_symtab_hdr (abfd);
6379 sym_hashes = elf_sym_hashes (abfd);
6380 local_got_ents = elf_local_got_ents (abfd);
6381
6382 relend = relocs + sec->reloc_count;
6383 for (rel = relocs; rel < relend; rel++)
6384 {
6385 unsigned long r_symndx;
6386 enum elf_ppc64_reloc_type r_type;
6387 struct elf_link_hash_entry *h = NULL;
6388 unsigned char tls_type = 0;
6389
6390 r_symndx = ELF64_R_SYM (rel->r_info);
6391 r_type = ELF64_R_TYPE (rel->r_info);
6392 if (r_symndx >= symtab_hdr->sh_info)
6393 {
6394 struct ppc_link_hash_entry *eh;
6395 struct elf_dyn_relocs **pp;
6396 struct elf_dyn_relocs *p;
6397
6398 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6399 h = elf_follow_link (h);
6400 eh = (struct ppc_link_hash_entry *) h;
6401
6402 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
6403 if (p->sec == sec)
6404 {
6405 /* Everything must go for SEC. */
6406 *pp = p->next;
6407 break;
6408 }
6409 }
6410
6411 if (is_branch_reloc (r_type))
6412 {
6413 struct plt_entry **ifunc = NULL;
6414 if (h != NULL)
6415 {
6416 if (h->type == STT_GNU_IFUNC)
6417 ifunc = &h->plt.plist;
6418 }
6419 else if (local_got_ents != NULL)
6420 {
6421 struct plt_entry **local_plt = (struct plt_entry **)
6422 (local_got_ents + symtab_hdr->sh_info);
6423 unsigned char *local_got_tls_masks = (unsigned char *)
6424 (local_plt + symtab_hdr->sh_info);
6425 if ((local_got_tls_masks[r_symndx] & PLT_IFUNC) != 0)
6426 ifunc = local_plt + r_symndx;
6427 }
6428 if (ifunc != NULL)
6429 {
6430 struct plt_entry *ent;
6431
6432 for (ent = *ifunc; ent != NULL; ent = ent->next)
6433 if (ent->addend == rel->r_addend)
6434 break;
6435 if (ent == NULL)
6436 abort ();
6437 if (ent->plt.refcount > 0)
6438 ent->plt.refcount -= 1;
6439 continue;
6440 }
6441 }
6442
6443 switch (r_type)
6444 {
6445 case R_PPC64_GOT_TLSLD16:
6446 case R_PPC64_GOT_TLSLD16_LO:
6447 case R_PPC64_GOT_TLSLD16_HI:
6448 case R_PPC64_GOT_TLSLD16_HA:
6449 tls_type = TLS_TLS | TLS_LD;
6450 goto dogot;
6451
6452 case R_PPC64_GOT_TLSGD16:
6453 case R_PPC64_GOT_TLSGD16_LO:
6454 case R_PPC64_GOT_TLSGD16_HI:
6455 case R_PPC64_GOT_TLSGD16_HA:
6456 tls_type = TLS_TLS | TLS_GD;
6457 goto dogot;
6458
6459 case R_PPC64_GOT_TPREL16_DS:
6460 case R_PPC64_GOT_TPREL16_LO_DS:
6461 case R_PPC64_GOT_TPREL16_HI:
6462 case R_PPC64_GOT_TPREL16_HA:
6463 tls_type = TLS_TLS | TLS_TPREL;
6464 goto dogot;
6465
6466 case R_PPC64_GOT_DTPREL16_DS:
6467 case R_PPC64_GOT_DTPREL16_LO_DS:
6468 case R_PPC64_GOT_DTPREL16_HI:
6469 case R_PPC64_GOT_DTPREL16_HA:
6470 tls_type = TLS_TLS | TLS_DTPREL;
6471 goto dogot;
6472
6473 case R_PPC64_GOT16:
6474 case R_PPC64_GOT16_DS:
6475 case R_PPC64_GOT16_HA:
6476 case R_PPC64_GOT16_HI:
6477 case R_PPC64_GOT16_LO:
6478 case R_PPC64_GOT16_LO_DS:
6479 dogot:
6480 {
6481 struct got_entry *ent;
6482
6483 if (h != NULL)
6484 ent = h->got.glist;
6485 else
6486 ent = local_got_ents[r_symndx];
6487
6488 for (; ent != NULL; ent = ent->next)
6489 if (ent->addend == rel->r_addend
6490 && ent->owner == abfd
6491 && ent->tls_type == tls_type)
6492 break;
6493 if (ent == NULL)
6494 abort ();
6495 if (ent->got.refcount > 0)
6496 ent->got.refcount -= 1;
6497 }
6498 break;
6499
6500 case R_PPC64_PLT16_HA:
6501 case R_PPC64_PLT16_HI:
6502 case R_PPC64_PLT16_LO:
6503 case R_PPC64_PLT32:
6504 case R_PPC64_PLT64:
6505 case R_PPC64_REL14:
6506 case R_PPC64_REL14_BRNTAKEN:
6507 case R_PPC64_REL14_BRTAKEN:
6508 case R_PPC64_REL24:
6509 if (h != NULL)
6510 {
6511 struct plt_entry *ent;
6512
6513 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
6514 if (ent->addend == rel->r_addend)
6515 break;
6516 if (ent != NULL && ent->plt.refcount > 0)
6517 ent->plt.refcount -= 1;
6518 }
6519 break;
6520
6521 default:
6522 break;
6523 }
6524 }
6525 return TRUE;
6526 }
6527
6528 /* The maximum size of .sfpr. */
6529 #define SFPR_MAX (218*4)
6530
6531 struct sfpr_def_parms
6532 {
6533 const char name[12];
6534 unsigned char lo, hi;
6535 bfd_byte * (*write_ent) (bfd *, bfd_byte *, int);
6536 bfd_byte * (*write_tail) (bfd *, bfd_byte *, int);
6537 };
6538
6539 /* Auto-generate _save*, _rest* functions in .sfpr. */
6540
6541 static bfd_boolean
6542 sfpr_define (struct bfd_link_info *info, const struct sfpr_def_parms *parm)
6543 {
6544 struct ppc_link_hash_table *htab = ppc_hash_table (info);
6545 unsigned int i;
6546 size_t len = strlen (parm->name);
6547 bfd_boolean writing = FALSE;
6548 char sym[16];
6549
6550 if (htab == NULL)
6551 return FALSE;
6552
6553 memcpy (sym, parm->name, len);
6554 sym[len + 2] = 0;
6555
6556 for (i = parm->lo; i <= parm->hi; i++)
6557 {
6558 struct elf_link_hash_entry *h;
6559
6560 sym[len + 0] = i / 10 + '0';
6561 sym[len + 1] = i % 10 + '0';
6562 h = elf_link_hash_lookup (&htab->elf, sym, FALSE, FALSE, TRUE);
6563 if (h != NULL
6564 && !h->def_regular)
6565 {
6566 h->root.type = bfd_link_hash_defined;
6567 h->root.u.def.section = htab->sfpr;
6568 h->root.u.def.value = htab->sfpr->size;
6569 h->type = STT_FUNC;
6570 h->def_regular = 1;
6571 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
6572 writing = TRUE;
6573 if (htab->sfpr->contents == NULL)
6574 {
6575 htab->sfpr->contents = bfd_alloc (htab->elf.dynobj, SFPR_MAX);
6576 if (htab->sfpr->contents == NULL)
6577 return FALSE;
6578 }
6579 }
6580 if (writing)
6581 {
6582 bfd_byte *p = htab->sfpr->contents + htab->sfpr->size;
6583 if (i != parm->hi)
6584 p = (*parm->write_ent) (htab->elf.dynobj, p, i);
6585 else
6586 p = (*parm->write_tail) (htab->elf.dynobj, p, i);
6587 htab->sfpr->size = p - htab->sfpr->contents;
6588 }
6589 }
6590
6591 return TRUE;
6592 }
6593
6594 static bfd_byte *
6595 savegpr0 (bfd *abfd, bfd_byte *p, int r)
6596 {
6597 bfd_put_32 (abfd, STD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6598 return p + 4;
6599 }
6600
6601 static bfd_byte *
6602 savegpr0_tail (bfd *abfd, bfd_byte *p, int r)
6603 {
6604 p = savegpr0 (abfd, p, r);
6605 bfd_put_32 (abfd, STD_R0_0R1 + STK_LR, p);
6606 p = p + 4;
6607 bfd_put_32 (abfd, BLR, p);
6608 return p + 4;
6609 }
6610
6611 static bfd_byte *
6612 restgpr0 (bfd *abfd, bfd_byte *p, int r)
6613 {
6614 bfd_put_32 (abfd, LD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6615 return p + 4;
6616 }
6617
6618 static bfd_byte *
6619 restgpr0_tail (bfd *abfd, bfd_byte *p, int r)
6620 {
6621 bfd_put_32 (abfd, LD_R0_0R1 + STK_LR, p);
6622 p = p + 4;
6623 p = restgpr0 (abfd, p, r);
6624 bfd_put_32 (abfd, MTLR_R0, p);
6625 p = p + 4;
6626 if (r == 29)
6627 {
6628 p = restgpr0 (abfd, p, 30);
6629 p = restgpr0 (abfd, p, 31);
6630 }
6631 bfd_put_32 (abfd, BLR, p);
6632 return p + 4;
6633 }
6634
6635 static bfd_byte *
6636 savegpr1 (bfd *abfd, bfd_byte *p, int r)
6637 {
6638 bfd_put_32 (abfd, STD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6639 return p + 4;
6640 }
6641
6642 static bfd_byte *
6643 savegpr1_tail (bfd *abfd, bfd_byte *p, int r)
6644 {
6645 p = savegpr1 (abfd, p, r);
6646 bfd_put_32 (abfd, BLR, p);
6647 return p + 4;
6648 }
6649
6650 static bfd_byte *
6651 restgpr1 (bfd *abfd, bfd_byte *p, int r)
6652 {
6653 bfd_put_32 (abfd, LD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6654 return p + 4;
6655 }
6656
6657 static bfd_byte *
6658 restgpr1_tail (bfd *abfd, bfd_byte *p, int r)
6659 {
6660 p = restgpr1 (abfd, p, r);
6661 bfd_put_32 (abfd, BLR, p);
6662 return p + 4;
6663 }
6664
6665 static bfd_byte *
6666 savefpr (bfd *abfd, bfd_byte *p, int r)
6667 {
6668 bfd_put_32 (abfd, STFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6669 return p + 4;
6670 }
6671
6672 static bfd_byte *
6673 savefpr0_tail (bfd *abfd, bfd_byte *p, int r)
6674 {
6675 p = savefpr (abfd, p, r);
6676 bfd_put_32 (abfd, STD_R0_0R1 + STK_LR, p);
6677 p = p + 4;
6678 bfd_put_32 (abfd, BLR, p);
6679 return p + 4;
6680 }
6681
6682 static bfd_byte *
6683 restfpr (bfd *abfd, bfd_byte *p, int r)
6684 {
6685 bfd_put_32 (abfd, LFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6686 return p + 4;
6687 }
6688
6689 static bfd_byte *
6690 restfpr0_tail (bfd *abfd, bfd_byte *p, int r)
6691 {
6692 bfd_put_32 (abfd, LD_R0_0R1 + STK_LR, p);
6693 p = p + 4;
6694 p = restfpr (abfd, p, r);
6695 bfd_put_32 (abfd, MTLR_R0, p);
6696 p = p + 4;
6697 if (r == 29)
6698 {
6699 p = restfpr (abfd, p, 30);
6700 p = restfpr (abfd, p, 31);
6701 }
6702 bfd_put_32 (abfd, BLR, p);
6703 return p + 4;
6704 }
6705
6706 static bfd_byte *
6707 savefpr1_tail (bfd *abfd, bfd_byte *p, int r)
6708 {
6709 p = savefpr (abfd, p, r);
6710 bfd_put_32 (abfd, BLR, p);
6711 return p + 4;
6712 }
6713
6714 static bfd_byte *
6715 restfpr1_tail (bfd *abfd, bfd_byte *p, int r)
6716 {
6717 p = restfpr (abfd, p, r);
6718 bfd_put_32 (abfd, BLR, p);
6719 return p + 4;
6720 }
6721
6722 static bfd_byte *
6723 savevr (bfd *abfd, bfd_byte *p, int r)
6724 {
6725 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6726 p = p + 4;
6727 bfd_put_32 (abfd, STVX_VR0_R12_R0 + (r << 21), p);
6728 return p + 4;
6729 }
6730
6731 static bfd_byte *
6732 savevr_tail (bfd *abfd, bfd_byte *p, int r)
6733 {
6734 p = savevr (abfd, p, r);
6735 bfd_put_32 (abfd, BLR, p);
6736 return p + 4;
6737 }
6738
6739 static bfd_byte *
6740 restvr (bfd *abfd, bfd_byte *p, int r)
6741 {
6742 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6743 p = p + 4;
6744 bfd_put_32 (abfd, LVX_VR0_R12_R0 + (r << 21), p);
6745 return p + 4;
6746 }
6747
6748 static bfd_byte *
6749 restvr_tail (bfd *abfd, bfd_byte *p, int r)
6750 {
6751 p = restvr (abfd, p, r);
6752 bfd_put_32 (abfd, BLR, p);
6753 return p + 4;
6754 }
6755
6756 /* Called via elf_link_hash_traverse to transfer dynamic linking
6757 information on function code symbol entries to their corresponding
6758 function descriptor symbol entries. */
6759
6760 static bfd_boolean
6761 func_desc_adjust (struct elf_link_hash_entry *h, void *inf)
6762 {
6763 struct bfd_link_info *info;
6764 struct ppc_link_hash_table *htab;
6765 struct plt_entry *ent;
6766 struct ppc_link_hash_entry *fh;
6767 struct ppc_link_hash_entry *fdh;
6768 bfd_boolean force_local;
6769
6770 fh = (struct ppc_link_hash_entry *) h;
6771 if (fh->elf.root.type == bfd_link_hash_indirect)
6772 return TRUE;
6773
6774 info = inf;
6775 htab = ppc_hash_table (info);
6776 if (htab == NULL)
6777 return FALSE;
6778
6779 /* Resolve undefined references to dot-symbols as the value
6780 in the function descriptor, if we have one in a regular object.
6781 This is to satisfy cases like ".quad .foo". Calls to functions
6782 in dynamic objects are handled elsewhere. */
6783 if (fh->elf.root.type == bfd_link_hash_undefweak
6784 && fh->was_undefined
6785 && (fdh = defined_func_desc (fh)) != NULL
6786 && get_opd_info (fdh->elf.root.u.def.section) != NULL
6787 && opd_entry_value (fdh->elf.root.u.def.section,
6788 fdh->elf.root.u.def.value,
6789 &fh->elf.root.u.def.section,
6790 &fh->elf.root.u.def.value, FALSE) != (bfd_vma) -1)
6791 {
6792 fh->elf.root.type = fdh->elf.root.type;
6793 fh->elf.forced_local = 1;
6794 fh->elf.def_regular = fdh->elf.def_regular;
6795 fh->elf.def_dynamic = fdh->elf.def_dynamic;
6796 }
6797
6798 /* If this is a function code symbol, transfer dynamic linking
6799 information to the function descriptor symbol. */
6800 if (!fh->is_func)
6801 return TRUE;
6802
6803 for (ent = fh->elf.plt.plist; ent != NULL; ent = ent->next)
6804 if (ent->plt.refcount > 0)
6805 break;
6806 if (ent == NULL
6807 || fh->elf.root.root.string[0] != '.'
6808 || fh->elf.root.root.string[1] == '\0')
6809 return TRUE;
6810
6811 /* Find the corresponding function descriptor symbol. Create it
6812 as undefined if necessary. */
6813
6814 fdh = lookup_fdh (fh, htab);
6815 if (fdh == NULL
6816 && !info->executable
6817 && (fh->elf.root.type == bfd_link_hash_undefined
6818 || fh->elf.root.type == bfd_link_hash_undefweak))
6819 {
6820 fdh = make_fdh (info, fh);
6821 if (fdh == NULL)
6822 return FALSE;
6823 }
6824
6825 /* Fake function descriptors are made undefweak. If the function
6826 code symbol is strong undefined, make the fake sym the same.
6827 If the function code symbol is defined, then force the fake
6828 descriptor local; We can't support overriding of symbols in a
6829 shared library on a fake descriptor. */
6830
6831 if (fdh != NULL
6832 && fdh->fake
6833 && fdh->elf.root.type == bfd_link_hash_undefweak)
6834 {
6835 if (fh->elf.root.type == bfd_link_hash_undefined)
6836 {
6837 fdh->elf.root.type = bfd_link_hash_undefined;
6838 bfd_link_add_undef (&htab->elf.root, &fdh->elf.root);
6839 }
6840 else if (fh->elf.root.type == bfd_link_hash_defined
6841 || fh->elf.root.type == bfd_link_hash_defweak)
6842 {
6843 _bfd_elf_link_hash_hide_symbol (info, &fdh->elf, TRUE);
6844 }
6845 }
6846
6847 if (fdh != NULL
6848 && !fdh->elf.forced_local
6849 && (!info->executable
6850 || fdh->elf.def_dynamic
6851 || fdh->elf.ref_dynamic
6852 || (fdh->elf.root.type == bfd_link_hash_undefweak
6853 && ELF_ST_VISIBILITY (fdh->elf.other) == STV_DEFAULT)))
6854 {
6855 if (fdh->elf.dynindx == -1)
6856 if (! bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
6857 return FALSE;
6858 fdh->elf.ref_regular |= fh->elf.ref_regular;
6859 fdh->elf.ref_dynamic |= fh->elf.ref_dynamic;
6860 fdh->elf.ref_regular_nonweak |= fh->elf.ref_regular_nonweak;
6861 fdh->elf.non_got_ref |= fh->elf.non_got_ref;
6862 if (ELF_ST_VISIBILITY (fh->elf.other) == STV_DEFAULT)
6863 {
6864 move_plt_plist (fh, fdh);
6865 fdh->elf.needs_plt = 1;
6866 }
6867 fdh->is_func_descriptor = 1;
6868 fdh->oh = fh;
6869 fh->oh = fdh;
6870 }
6871
6872 /* Now that the info is on the function descriptor, clear the
6873 function code sym info. Any function code syms for which we
6874 don't have a definition in a regular file, we force local.
6875 This prevents a shared library from exporting syms that have
6876 been imported from another library. Function code syms that
6877 are really in the library we must leave global to prevent the
6878 linker dragging in a definition from a static library. */
6879 force_local = (!fh->elf.def_regular
6880 || fdh == NULL
6881 || !fdh->elf.def_regular
6882 || fdh->elf.forced_local);
6883 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6884
6885 return TRUE;
6886 }
6887
6888 /* Called near the start of bfd_elf_size_dynamic_sections. We use
6889 this hook to a) provide some gcc support functions, and b) transfer
6890 dynamic linking information gathered so far on function code symbol
6891 entries, to their corresponding function descriptor symbol entries. */
6892
6893 static bfd_boolean
6894 ppc64_elf_func_desc_adjust (bfd *obfd ATTRIBUTE_UNUSED,
6895 struct bfd_link_info *info)
6896 {
6897 struct ppc_link_hash_table *htab;
6898 unsigned int i;
6899 static const struct sfpr_def_parms funcs[] =
6900 {
6901 { "_savegpr0_", 14, 31, savegpr0, savegpr0_tail },
6902 { "_restgpr0_", 14, 29, restgpr0, restgpr0_tail },
6903 { "_restgpr0_", 30, 31, restgpr0, restgpr0_tail },
6904 { "_savegpr1_", 14, 31, savegpr1, savegpr1_tail },
6905 { "_restgpr1_", 14, 31, restgpr1, restgpr1_tail },
6906 { "_savefpr_", 14, 31, savefpr, savefpr0_tail },
6907 { "_restfpr_", 14, 29, restfpr, restfpr0_tail },
6908 { "_restfpr_", 30, 31, restfpr, restfpr0_tail },
6909 { "._savef", 14, 31, savefpr, savefpr1_tail },
6910 { "._restf", 14, 31, restfpr, restfpr1_tail },
6911 { "_savevr_", 20, 31, savevr, savevr_tail },
6912 { "_restvr_", 20, 31, restvr, restvr_tail }
6913 };
6914
6915 htab = ppc_hash_table (info);
6916 if (htab == NULL)
6917 return FALSE;
6918
6919 if (!info->relocatable
6920 && htab->elf.hgot != NULL)
6921 {
6922 _bfd_elf_link_hash_hide_symbol (info, htab->elf.hgot, TRUE);
6923 /* Make .TOC. defined so as to prevent it being made dynamic.
6924 The wrong value here is fixed later in ppc64_elf_set_toc. */
6925 htab->elf.hgot->type = STT_OBJECT;
6926 htab->elf.hgot->root.type = bfd_link_hash_defined;
6927 htab->elf.hgot->root.u.def.value = 0;
6928 htab->elf.hgot->root.u.def.section = bfd_abs_section_ptr;
6929 htab->elf.hgot->def_regular = 1;
6930 htab->elf.hgot->other = ((htab->elf.hgot->other & ~ELF_ST_VISIBILITY (-1))
6931 | STV_HIDDEN);
6932 }
6933
6934 if (htab->sfpr == NULL)
6935 /* We don't have any relocs. */
6936 return TRUE;
6937
6938 /* Provide any missing _save* and _rest* functions. */
6939 htab->sfpr->size = 0;
6940 if (htab->params->save_restore_funcs)
6941 for (i = 0; i < sizeof (funcs) / sizeof (funcs[0]); i++)
6942 if (!sfpr_define (info, &funcs[i]))
6943 return FALSE;
6944
6945 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
6946
6947 if (htab->sfpr->size == 0)
6948 htab->sfpr->flags |= SEC_EXCLUDE;
6949
6950 return TRUE;
6951 }
6952
6953 /* Return true if we have dynamic relocs that apply to read-only sections. */
6954
6955 static bfd_boolean
6956 readonly_dynrelocs (struct elf_link_hash_entry *h)
6957 {
6958 struct ppc_link_hash_entry *eh;
6959 struct elf_dyn_relocs *p;
6960
6961 eh = (struct ppc_link_hash_entry *) h;
6962 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6963 {
6964 asection *s = p->sec->output_section;
6965
6966 if (s != NULL && (s->flags & SEC_READONLY) != 0)
6967 return TRUE;
6968 }
6969 return FALSE;
6970 }
6971
6972 /* Adjust a symbol defined by a dynamic object and referenced by a
6973 regular object. The current definition is in some section of the
6974 dynamic object, but we're not including those sections. We have to
6975 change the definition to something the rest of the link can
6976 understand. */
6977
6978 static bfd_boolean
6979 ppc64_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6980 struct elf_link_hash_entry *h)
6981 {
6982 struct ppc_link_hash_table *htab;
6983 asection *s;
6984
6985 htab = ppc_hash_table (info);
6986 if (htab == NULL)
6987 return FALSE;
6988
6989 /* Deal with function syms. */
6990 if (h->type == STT_FUNC
6991 || h->type == STT_GNU_IFUNC
6992 || h->needs_plt)
6993 {
6994 /* Clear procedure linkage table information for any symbol that
6995 won't need a .plt entry. */
6996 struct plt_entry *ent;
6997 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
6998 if (ent->plt.refcount > 0)
6999 break;
7000 if (ent == NULL
7001 || (h->type != STT_GNU_IFUNC
7002 && (SYMBOL_CALLS_LOCAL (info, h)
7003 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7004 && h->root.type == bfd_link_hash_undefweak))))
7005 {
7006 h->plt.plist = NULL;
7007 h->needs_plt = 0;
7008 h->pointer_equality_needed = 0;
7009 }
7010 else if (abiversion (info->output_bfd) == 2)
7011 {
7012 /* Taking a function's address in a read/write section
7013 doesn't require us to define the function symbol in the
7014 executable on a global entry stub. A dynamic reloc can
7015 be used instead. */
7016 if (h->pointer_equality_needed
7017 && h->type != STT_GNU_IFUNC
7018 && !readonly_dynrelocs (h))
7019 {
7020 h->pointer_equality_needed = 0;
7021 h->non_got_ref = 0;
7022 }
7023
7024 /* After adjust_dynamic_symbol, non_got_ref set in the
7025 non-shared case means that we have allocated space in
7026 .dynbss for the symbol and thus dyn_relocs for this
7027 symbol should be discarded.
7028 If we get here we know we are making a PLT entry for this
7029 symbol, and in an executable we'd normally resolve
7030 relocations against this symbol to the PLT entry. Allow
7031 dynamic relocs if the reference is weak, and the dynamic
7032 relocs will not cause text relocation. */
7033 else if (!h->ref_regular_nonweak
7034 && h->non_got_ref
7035 && h->type != STT_GNU_IFUNC
7036 && !readonly_dynrelocs (h))
7037 h->non_got_ref = 0;
7038
7039 /* If making a plt entry, then we don't need copy relocs. */
7040 return TRUE;
7041 }
7042 }
7043 else
7044 h->plt.plist = NULL;
7045
7046 /* If this is a weak symbol, and there is a real definition, the
7047 processor independent code will have arranged for us to see the
7048 real definition first, and we can just use the same value. */
7049 if (h->u.weakdef != NULL)
7050 {
7051 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7052 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7053 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7054 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7055 if (ELIMINATE_COPY_RELOCS)
7056 h->non_got_ref = h->u.weakdef->non_got_ref;
7057 return TRUE;
7058 }
7059
7060 /* If we are creating a shared library, we must presume that the
7061 only references to the symbol are via the global offset table.
7062 For such cases we need not do anything here; the relocations will
7063 be handled correctly by relocate_section. */
7064 if (info->shared)
7065 return TRUE;
7066
7067 /* If there are no references to this symbol that do not use the
7068 GOT, we don't need to generate a copy reloc. */
7069 if (!h->non_got_ref)
7070 return TRUE;
7071
7072 /* Don't generate a copy reloc for symbols defined in the executable. */
7073 if (!h->def_dynamic || !h->ref_regular || h->def_regular)
7074 return TRUE;
7075
7076 /* If we didn't find any dynamic relocs in read-only sections, then
7077 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
7078 if (ELIMINATE_COPY_RELOCS && !readonly_dynrelocs (h))
7079 {
7080 h->non_got_ref = 0;
7081 return TRUE;
7082 }
7083
7084 if (h->plt.plist != NULL)
7085 {
7086 /* We should never get here, but unfortunately there are versions
7087 of gcc out there that improperly (for this ABI) put initialized
7088 function pointers, vtable refs and suchlike in read-only
7089 sections. Allow them to proceed, but warn that this might
7090 break at runtime. */
7091 info->callbacks->einfo
7092 (_("%P: copy reloc against `%T' requires lazy plt linking; "
7093 "avoid setting LD_BIND_NOW=1 or upgrade gcc\n"),
7094 h->root.root.string);
7095 }
7096
7097 /* This is a reference to a symbol defined by a dynamic object which
7098 is not a function. */
7099
7100 /* We must allocate the symbol in our .dynbss section, which will
7101 become part of the .bss section of the executable. There will be
7102 an entry for this symbol in the .dynsym section. The dynamic
7103 object will contain position independent code, so all references
7104 from the dynamic object to this symbol will go through the global
7105 offset table. The dynamic linker will use the .dynsym entry to
7106 determine the address it must put in the global offset table, so
7107 both the dynamic object and the regular object will refer to the
7108 same memory location for the variable. */
7109
7110 /* We must generate a R_PPC64_COPY reloc to tell the dynamic linker
7111 to copy the initial value out of the dynamic object and into the
7112 runtime process image. We need to remember the offset into the
7113 .rela.bss section we are going to use. */
7114 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
7115 {
7116 htab->relbss->size += sizeof (Elf64_External_Rela);
7117 h->needs_copy = 1;
7118 }
7119
7120 s = htab->dynbss;
7121
7122 return _bfd_elf_adjust_dynamic_copy (h, s);
7123 }
7124
7125 /* If given a function descriptor symbol, hide both the function code
7126 sym and the descriptor. */
7127 static void
7128 ppc64_elf_hide_symbol (struct bfd_link_info *info,
7129 struct elf_link_hash_entry *h,
7130 bfd_boolean force_local)
7131 {
7132 struct ppc_link_hash_entry *eh;
7133 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
7134
7135 eh = (struct ppc_link_hash_entry *) h;
7136 if (eh->is_func_descriptor)
7137 {
7138 struct ppc_link_hash_entry *fh = eh->oh;
7139
7140 if (fh == NULL)
7141 {
7142 const char *p, *q;
7143 struct ppc_link_hash_table *htab;
7144 char save;
7145
7146 /* We aren't supposed to use alloca in BFD because on
7147 systems which do not have alloca the version in libiberty
7148 calls xmalloc, which might cause the program to crash
7149 when it runs out of memory. This function doesn't have a
7150 return status, so there's no way to gracefully return an
7151 error. So cheat. We know that string[-1] can be safely
7152 accessed; It's either a string in an ELF string table,
7153 or allocated in an objalloc structure. */
7154
7155 p = eh->elf.root.root.string - 1;
7156 save = *p;
7157 *(char *) p = '.';
7158 htab = ppc_hash_table (info);
7159 if (htab == NULL)
7160 return;
7161
7162 fh = (struct ppc_link_hash_entry *)
7163 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
7164 *(char *) p = save;
7165
7166 /* Unfortunately, if it so happens that the string we were
7167 looking for was allocated immediately before this string,
7168 then we overwrote the string terminator. That's the only
7169 reason the lookup should fail. */
7170 if (fh == NULL)
7171 {
7172 q = eh->elf.root.root.string + strlen (eh->elf.root.root.string);
7173 while (q >= eh->elf.root.root.string && *q == *p)
7174 --q, --p;
7175 if (q < eh->elf.root.root.string && *p == '.')
7176 fh = (struct ppc_link_hash_entry *)
7177 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
7178 }
7179 if (fh != NULL)
7180 {
7181 eh->oh = fh;
7182 fh->oh = eh;
7183 }
7184 }
7185 if (fh != NULL)
7186 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
7187 }
7188 }
7189
7190 static bfd_boolean
7191 get_sym_h (struct elf_link_hash_entry **hp,
7192 Elf_Internal_Sym **symp,
7193 asection **symsecp,
7194 unsigned char **tls_maskp,
7195 Elf_Internal_Sym **locsymsp,
7196 unsigned long r_symndx,
7197 bfd *ibfd)
7198 {
7199 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
7200
7201 if (r_symndx >= symtab_hdr->sh_info)
7202 {
7203 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
7204 struct elf_link_hash_entry *h;
7205
7206 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7207 h = elf_follow_link (h);
7208
7209 if (hp != NULL)
7210 *hp = h;
7211
7212 if (symp != NULL)
7213 *symp = NULL;
7214
7215 if (symsecp != NULL)
7216 {
7217 asection *symsec = NULL;
7218 if (h->root.type == bfd_link_hash_defined
7219 || h->root.type == bfd_link_hash_defweak)
7220 symsec = h->root.u.def.section;
7221 *symsecp = symsec;
7222 }
7223
7224 if (tls_maskp != NULL)
7225 {
7226 struct ppc_link_hash_entry *eh;
7227
7228 eh = (struct ppc_link_hash_entry *) h;
7229 *tls_maskp = &eh->tls_mask;
7230 }
7231 }
7232 else
7233 {
7234 Elf_Internal_Sym *sym;
7235 Elf_Internal_Sym *locsyms = *locsymsp;
7236
7237 if (locsyms == NULL)
7238 {
7239 locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
7240 if (locsyms == NULL)
7241 locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
7242 symtab_hdr->sh_info,
7243 0, NULL, NULL, NULL);
7244 if (locsyms == NULL)
7245 return FALSE;
7246 *locsymsp = locsyms;
7247 }
7248 sym = locsyms + r_symndx;
7249
7250 if (hp != NULL)
7251 *hp = NULL;
7252
7253 if (symp != NULL)
7254 *symp = sym;
7255
7256 if (symsecp != NULL)
7257 *symsecp = bfd_section_from_elf_index (ibfd, sym->st_shndx);
7258
7259 if (tls_maskp != NULL)
7260 {
7261 struct got_entry **lgot_ents;
7262 unsigned char *tls_mask;
7263
7264 tls_mask = NULL;
7265 lgot_ents = elf_local_got_ents (ibfd);
7266 if (lgot_ents != NULL)
7267 {
7268 struct plt_entry **local_plt = (struct plt_entry **)
7269 (lgot_ents + symtab_hdr->sh_info);
7270 unsigned char *lgot_masks = (unsigned char *)
7271 (local_plt + symtab_hdr->sh_info);
7272 tls_mask = &lgot_masks[r_symndx];
7273 }
7274 *tls_maskp = tls_mask;
7275 }
7276 }
7277 return TRUE;
7278 }
7279
7280 /* Returns TLS_MASKP for the given REL symbol. Function return is 0 on
7281 error, 2 on a toc GD type suitable for optimization, 3 on a toc LD
7282 type suitable for optimization, and 1 otherwise. */
7283
7284 static int
7285 get_tls_mask (unsigned char **tls_maskp,
7286 unsigned long *toc_symndx,
7287 bfd_vma *toc_addend,
7288 Elf_Internal_Sym **locsymsp,
7289 const Elf_Internal_Rela *rel,
7290 bfd *ibfd)
7291 {
7292 unsigned long r_symndx;
7293 int next_r;
7294 struct elf_link_hash_entry *h;
7295 Elf_Internal_Sym *sym;
7296 asection *sec;
7297 bfd_vma off;
7298
7299 r_symndx = ELF64_R_SYM (rel->r_info);
7300 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
7301 return 0;
7302
7303 if ((*tls_maskp != NULL && **tls_maskp != 0)
7304 || sec == NULL
7305 || ppc64_elf_section_data (sec) == NULL
7306 || ppc64_elf_section_data (sec)->sec_type != sec_toc)
7307 return 1;
7308
7309 /* Look inside a TOC section too. */
7310 if (h != NULL)
7311 {
7312 BFD_ASSERT (h->root.type == bfd_link_hash_defined);
7313 off = h->root.u.def.value;
7314 }
7315 else
7316 off = sym->st_value;
7317 off += rel->r_addend;
7318 BFD_ASSERT (off % 8 == 0);
7319 r_symndx = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8];
7320 next_r = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8 + 1];
7321 if (toc_symndx != NULL)
7322 *toc_symndx = r_symndx;
7323 if (toc_addend != NULL)
7324 *toc_addend = ppc64_elf_section_data (sec)->u.toc.add[off / 8];
7325 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
7326 return 0;
7327 if ((h == NULL || is_static_defined (h))
7328 && (next_r == -1 || next_r == -2))
7329 return 1 - next_r;
7330 return 1;
7331 }
7332
7333 /* Find (or create) an entry in the tocsave hash table. */
7334
7335 static struct tocsave_entry *
7336 tocsave_find (struct ppc_link_hash_table *htab,
7337 enum insert_option insert,
7338 Elf_Internal_Sym **local_syms,
7339 const Elf_Internal_Rela *irela,
7340 bfd *ibfd)
7341 {
7342 unsigned long r_indx;
7343 struct elf_link_hash_entry *h;
7344 Elf_Internal_Sym *sym;
7345 struct tocsave_entry ent, *p;
7346 hashval_t hash;
7347 struct tocsave_entry **slot;
7348
7349 r_indx = ELF64_R_SYM (irela->r_info);
7350 if (!get_sym_h (&h, &sym, &ent.sec, NULL, local_syms, r_indx, ibfd))
7351 return NULL;
7352 if (ent.sec == NULL || ent.sec->output_section == NULL)
7353 {
7354 (*_bfd_error_handler)
7355 (_("%B: undefined symbol on R_PPC64_TOCSAVE relocation"));
7356 return NULL;
7357 }
7358
7359 if (h != NULL)
7360 ent.offset = h->root.u.def.value;
7361 else
7362 ent.offset = sym->st_value;
7363 ent.offset += irela->r_addend;
7364
7365 hash = tocsave_htab_hash (&ent);
7366 slot = ((struct tocsave_entry **)
7367 htab_find_slot_with_hash (htab->tocsave_htab, &ent, hash, insert));
7368 if (slot == NULL)
7369 return NULL;
7370
7371 if (*slot == NULL)
7372 {
7373 p = (struct tocsave_entry *) bfd_alloc (ibfd, sizeof (*p));
7374 if (p == NULL)
7375 return NULL;
7376 *p = ent;
7377 *slot = p;
7378 }
7379 return *slot;
7380 }
7381
7382 /* Adjust all global syms defined in opd sections. In gcc generated
7383 code for the old ABI, these will already have been done. */
7384
7385 static bfd_boolean
7386 adjust_opd_syms (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
7387 {
7388 struct ppc_link_hash_entry *eh;
7389 asection *sym_sec;
7390 struct _opd_sec_data *opd;
7391
7392 if (h->root.type == bfd_link_hash_indirect)
7393 return TRUE;
7394
7395 if (h->root.type != bfd_link_hash_defined
7396 && h->root.type != bfd_link_hash_defweak)
7397 return TRUE;
7398
7399 eh = (struct ppc_link_hash_entry *) h;
7400 if (eh->adjust_done)
7401 return TRUE;
7402
7403 sym_sec = eh->elf.root.u.def.section;
7404 opd = get_opd_info (sym_sec);
7405 if (opd != NULL && opd->adjust != NULL)
7406 {
7407 long adjust = opd->adjust[eh->elf.root.u.def.value / 8];
7408 if (adjust == -1)
7409 {
7410 /* This entry has been deleted. */
7411 asection *dsec = ppc64_elf_tdata (sym_sec->owner)->deleted_section;
7412 if (dsec == NULL)
7413 {
7414 for (dsec = sym_sec->owner->sections; dsec; dsec = dsec->next)
7415 if (discarded_section (dsec))
7416 {
7417 ppc64_elf_tdata (sym_sec->owner)->deleted_section = dsec;
7418 break;
7419 }
7420 }
7421 eh->elf.root.u.def.value = 0;
7422 eh->elf.root.u.def.section = dsec;
7423 }
7424 else
7425 eh->elf.root.u.def.value += adjust;
7426 eh->adjust_done = 1;
7427 }
7428 return TRUE;
7429 }
7430
7431 /* Handles decrementing dynamic reloc counts for the reloc specified by
7432 R_INFO in section SEC. If LOCAL_SYMS is NULL, then H and SYM
7433 have already been determined. */
7434
7435 static bfd_boolean
7436 dec_dynrel_count (bfd_vma r_info,
7437 asection *sec,
7438 struct bfd_link_info *info,
7439 Elf_Internal_Sym **local_syms,
7440 struct elf_link_hash_entry *h,
7441 Elf_Internal_Sym *sym)
7442 {
7443 enum elf_ppc64_reloc_type r_type;
7444 asection *sym_sec = NULL;
7445
7446 /* Can this reloc be dynamic? This switch, and later tests here
7447 should be kept in sync with the code in check_relocs. */
7448 r_type = ELF64_R_TYPE (r_info);
7449 switch (r_type)
7450 {
7451 default:
7452 return TRUE;
7453
7454 case R_PPC64_TPREL16:
7455 case R_PPC64_TPREL16_LO:
7456 case R_PPC64_TPREL16_HI:
7457 case R_PPC64_TPREL16_HA:
7458 case R_PPC64_TPREL16_DS:
7459 case R_PPC64_TPREL16_LO_DS:
7460 case R_PPC64_TPREL16_HIGH:
7461 case R_PPC64_TPREL16_HIGHA:
7462 case R_PPC64_TPREL16_HIGHER:
7463 case R_PPC64_TPREL16_HIGHERA:
7464 case R_PPC64_TPREL16_HIGHEST:
7465 case R_PPC64_TPREL16_HIGHESTA:
7466 if (!info->shared)
7467 return TRUE;
7468
7469 case R_PPC64_TPREL64:
7470 case R_PPC64_DTPMOD64:
7471 case R_PPC64_DTPREL64:
7472 case R_PPC64_ADDR64:
7473 case R_PPC64_REL30:
7474 case R_PPC64_REL32:
7475 case R_PPC64_REL64:
7476 case R_PPC64_ADDR14:
7477 case R_PPC64_ADDR14_BRNTAKEN:
7478 case R_PPC64_ADDR14_BRTAKEN:
7479 case R_PPC64_ADDR16:
7480 case R_PPC64_ADDR16_DS:
7481 case R_PPC64_ADDR16_HA:
7482 case R_PPC64_ADDR16_HI:
7483 case R_PPC64_ADDR16_HIGH:
7484 case R_PPC64_ADDR16_HIGHA:
7485 case R_PPC64_ADDR16_HIGHER:
7486 case R_PPC64_ADDR16_HIGHERA:
7487 case R_PPC64_ADDR16_HIGHEST:
7488 case R_PPC64_ADDR16_HIGHESTA:
7489 case R_PPC64_ADDR16_LO:
7490 case R_PPC64_ADDR16_LO_DS:
7491 case R_PPC64_ADDR24:
7492 case R_PPC64_ADDR32:
7493 case R_PPC64_UADDR16:
7494 case R_PPC64_UADDR32:
7495 case R_PPC64_UADDR64:
7496 case R_PPC64_TOC:
7497 break;
7498 }
7499
7500 if (local_syms != NULL)
7501 {
7502 unsigned long r_symndx;
7503 bfd *ibfd = sec->owner;
7504
7505 r_symndx = ELF64_R_SYM (r_info);
7506 if (!get_sym_h (&h, &sym, &sym_sec, NULL, local_syms, r_symndx, ibfd))
7507 return FALSE;
7508 }
7509
7510 if ((info->shared
7511 && (must_be_dyn_reloc (info, r_type)
7512 || (h != NULL
7513 && (!SYMBOLIC_BIND (info, h)
7514 || h->root.type == bfd_link_hash_defweak
7515 || !h->def_regular))))
7516 || (ELIMINATE_COPY_RELOCS
7517 && !info->shared
7518 && h != NULL
7519 && (h->root.type == bfd_link_hash_defweak
7520 || !h->def_regular)))
7521 ;
7522 else
7523 return TRUE;
7524
7525 if (h != NULL)
7526 {
7527 struct elf_dyn_relocs *p;
7528 struct elf_dyn_relocs **pp;
7529 pp = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
7530
7531 /* elf_gc_sweep may have already removed all dyn relocs associated
7532 with local syms for a given section. Also, symbol flags are
7533 changed by elf_gc_sweep_symbol, confusing the test above. Don't
7534 report a dynreloc miscount. */
7535 if (*pp == NULL && info->gc_sections)
7536 return TRUE;
7537
7538 while ((p = *pp) != NULL)
7539 {
7540 if (p->sec == sec)
7541 {
7542 if (!must_be_dyn_reloc (info, r_type))
7543 p->pc_count -= 1;
7544 p->count -= 1;
7545 if (p->count == 0)
7546 *pp = p->next;
7547 return TRUE;
7548 }
7549 pp = &p->next;
7550 }
7551 }
7552 else
7553 {
7554 struct ppc_dyn_relocs *p;
7555 struct ppc_dyn_relocs **pp;
7556 void *vpp;
7557 bfd_boolean is_ifunc;
7558
7559 if (local_syms == NULL)
7560 sym_sec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
7561 if (sym_sec == NULL)
7562 sym_sec = sec;
7563
7564 vpp = &elf_section_data (sym_sec)->local_dynrel;
7565 pp = (struct ppc_dyn_relocs **) vpp;
7566
7567 if (*pp == NULL && info->gc_sections)
7568 return TRUE;
7569
7570 is_ifunc = ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC;
7571 while ((p = *pp) != NULL)
7572 {
7573 if (p->sec == sec && p->ifunc == is_ifunc)
7574 {
7575 p->count -= 1;
7576 if (p->count == 0)
7577 *pp = p->next;
7578 return TRUE;
7579 }
7580 pp = &p->next;
7581 }
7582 }
7583
7584 info->callbacks->einfo (_("%P: dynreloc miscount for %B, section %A\n"),
7585 sec->owner, sec);
7586 bfd_set_error (bfd_error_bad_value);
7587 return FALSE;
7588 }
7589
7590 /* Remove unused Official Procedure Descriptor entries. Currently we
7591 only remove those associated with functions in discarded link-once
7592 sections, or weakly defined functions that have been overridden. It
7593 would be possible to remove many more entries for statically linked
7594 applications. */
7595
7596 bfd_boolean
7597 ppc64_elf_edit_opd (struct bfd_link_info *info)
7598 {
7599 bfd *ibfd;
7600 bfd_boolean some_edited = FALSE;
7601 asection *need_pad = NULL;
7602 struct ppc_link_hash_table *htab;
7603
7604 htab = ppc_hash_table (info);
7605 if (htab == NULL)
7606 return FALSE;
7607
7608 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7609 {
7610 asection *sec;
7611 Elf_Internal_Rela *relstart, *rel, *relend;
7612 Elf_Internal_Shdr *symtab_hdr;
7613 Elf_Internal_Sym *local_syms;
7614 bfd_vma offset;
7615 struct _opd_sec_data *opd;
7616 bfd_boolean need_edit, add_aux_fields;
7617 bfd_size_type cnt_16b = 0;
7618
7619 if (!is_ppc64_elf (ibfd))
7620 continue;
7621
7622 sec = bfd_get_section_by_name (ibfd, ".opd");
7623 if (sec == NULL || sec->size == 0)
7624 continue;
7625
7626 if (sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
7627 continue;
7628
7629 if (sec->output_section == bfd_abs_section_ptr)
7630 continue;
7631
7632 /* Look through the section relocs. */
7633 if ((sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0)
7634 continue;
7635
7636 local_syms = NULL;
7637 symtab_hdr = &elf_symtab_hdr (ibfd);
7638
7639 /* Read the relocations. */
7640 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7641 info->keep_memory);
7642 if (relstart == NULL)
7643 return FALSE;
7644
7645 /* First run through the relocs to check they are sane, and to
7646 determine whether we need to edit this opd section. */
7647 need_edit = FALSE;
7648 need_pad = sec;
7649 offset = 0;
7650 relend = relstart + sec->reloc_count;
7651 for (rel = relstart; rel < relend; )
7652 {
7653 enum elf_ppc64_reloc_type r_type;
7654 unsigned long r_symndx;
7655 asection *sym_sec;
7656 struct elf_link_hash_entry *h;
7657 Elf_Internal_Sym *sym;
7658
7659 /* .opd contains a regular array of 16 or 24 byte entries. We're
7660 only interested in the reloc pointing to a function entry
7661 point. */
7662 if (rel->r_offset != offset
7663 || rel + 1 >= relend
7664 || (rel + 1)->r_offset != offset + 8)
7665 {
7666 /* If someone messes with .opd alignment then after a
7667 "ld -r" we might have padding in the middle of .opd.
7668 Also, there's nothing to prevent someone putting
7669 something silly in .opd with the assembler. No .opd
7670 optimization for them! */
7671 broken_opd:
7672 (*_bfd_error_handler)
7673 (_("%B: .opd is not a regular array of opd entries"), ibfd);
7674 need_edit = FALSE;
7675 break;
7676 }
7677
7678 if ((r_type = ELF64_R_TYPE (rel->r_info)) != R_PPC64_ADDR64
7679 || (r_type = ELF64_R_TYPE ((rel + 1)->r_info)) != R_PPC64_TOC)
7680 {
7681 (*_bfd_error_handler)
7682 (_("%B: unexpected reloc type %u in .opd section"),
7683 ibfd, r_type);
7684 need_edit = FALSE;
7685 break;
7686 }
7687
7688 r_symndx = ELF64_R_SYM (rel->r_info);
7689 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7690 r_symndx, ibfd))
7691 goto error_ret;
7692
7693 if (sym_sec == NULL || sym_sec->owner == NULL)
7694 {
7695 const char *sym_name;
7696 if (h != NULL)
7697 sym_name = h->root.root.string;
7698 else
7699 sym_name = bfd_elf_sym_name (ibfd, symtab_hdr, sym,
7700 sym_sec);
7701
7702 (*_bfd_error_handler)
7703 (_("%B: undefined sym `%s' in .opd section"),
7704 ibfd, sym_name);
7705 need_edit = FALSE;
7706 break;
7707 }
7708
7709 /* opd entries are always for functions defined in the
7710 current input bfd. If the symbol isn't defined in the
7711 input bfd, then we won't be using the function in this
7712 bfd; It must be defined in a linkonce section in another
7713 bfd, or is weak. It's also possible that we are
7714 discarding the function due to a linker script /DISCARD/,
7715 which we test for via the output_section. */
7716 if (sym_sec->owner != ibfd
7717 || sym_sec->output_section == bfd_abs_section_ptr)
7718 need_edit = TRUE;
7719
7720 rel += 2;
7721 if (rel == relend
7722 || (rel + 1 == relend && rel->r_offset == offset + 16))
7723 {
7724 if (sec->size == offset + 24)
7725 {
7726 need_pad = NULL;
7727 break;
7728 }
7729 if (rel == relend && sec->size == offset + 16)
7730 {
7731 cnt_16b++;
7732 break;
7733 }
7734 goto broken_opd;
7735 }
7736
7737 if (rel->r_offset == offset + 24)
7738 offset += 24;
7739 else if (rel->r_offset != offset + 16)
7740 goto broken_opd;
7741 else if (rel + 1 < relend
7742 && ELF64_R_TYPE (rel[0].r_info) == R_PPC64_ADDR64
7743 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOC)
7744 {
7745 offset += 16;
7746 cnt_16b++;
7747 }
7748 else if (rel + 2 < relend
7749 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_ADDR64
7750 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_TOC)
7751 {
7752 offset += 24;
7753 rel += 1;
7754 }
7755 else
7756 goto broken_opd;
7757 }
7758
7759 add_aux_fields = htab->params->non_overlapping_opd && cnt_16b > 0;
7760
7761 if (need_edit || add_aux_fields)
7762 {
7763 Elf_Internal_Rela *write_rel;
7764 Elf_Internal_Shdr *rel_hdr;
7765 bfd_byte *rptr, *wptr;
7766 bfd_byte *new_contents;
7767 bfd_boolean skip;
7768 long opd_ent_size;
7769 bfd_size_type amt;
7770
7771 new_contents = NULL;
7772 amt = sec->size * sizeof (long) / 8;
7773 opd = &ppc64_elf_section_data (sec)->u.opd;
7774 opd->adjust = bfd_zalloc (sec->owner, amt);
7775 if (opd->adjust == NULL)
7776 return FALSE;
7777 ppc64_elf_section_data (sec)->sec_type = sec_opd;
7778
7779 /* This seems a waste of time as input .opd sections are all
7780 zeros as generated by gcc, but I suppose there's no reason
7781 this will always be so. We might start putting something in
7782 the third word of .opd entries. */
7783 if ((sec->flags & SEC_IN_MEMORY) == 0)
7784 {
7785 bfd_byte *loc;
7786 if (!bfd_malloc_and_get_section (ibfd, sec, &loc))
7787 {
7788 if (loc != NULL)
7789 free (loc);
7790 error_ret:
7791 if (local_syms != NULL
7792 && symtab_hdr->contents != (unsigned char *) local_syms)
7793 free (local_syms);
7794 if (elf_section_data (sec)->relocs != relstart)
7795 free (relstart);
7796 return FALSE;
7797 }
7798 sec->contents = loc;
7799 sec->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7800 }
7801
7802 elf_section_data (sec)->relocs = relstart;
7803
7804 new_contents = sec->contents;
7805 if (add_aux_fields)
7806 {
7807 new_contents = bfd_malloc (sec->size + cnt_16b * 8);
7808 if (new_contents == NULL)
7809 return FALSE;
7810 need_pad = FALSE;
7811 }
7812 wptr = new_contents;
7813 rptr = sec->contents;
7814
7815 write_rel = relstart;
7816 skip = FALSE;
7817 offset = 0;
7818 opd_ent_size = 0;
7819 for (rel = relstart; rel < relend; rel++)
7820 {
7821 unsigned long r_symndx;
7822 asection *sym_sec;
7823 struct elf_link_hash_entry *h;
7824 Elf_Internal_Sym *sym;
7825
7826 r_symndx = ELF64_R_SYM (rel->r_info);
7827 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7828 r_symndx, ibfd))
7829 goto error_ret;
7830
7831 if (rel->r_offset == offset)
7832 {
7833 struct ppc_link_hash_entry *fdh = NULL;
7834
7835 /* See if the .opd entry is full 24 byte or
7836 16 byte (with fd_aux entry overlapped with next
7837 fd_func). */
7838 opd_ent_size = 24;
7839 if ((rel + 2 == relend && sec->size == offset + 16)
7840 || (rel + 3 < relend
7841 && rel[2].r_offset == offset + 16
7842 && rel[3].r_offset == offset + 24
7843 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_ADDR64
7844 && ELF64_R_TYPE (rel[3].r_info) == R_PPC64_TOC))
7845 opd_ent_size = 16;
7846
7847 if (h != NULL
7848 && h->root.root.string[0] == '.')
7849 {
7850 fdh = lookup_fdh ((struct ppc_link_hash_entry *) h, htab);
7851 if (fdh != NULL
7852 && fdh->elf.root.type != bfd_link_hash_defined
7853 && fdh->elf.root.type != bfd_link_hash_defweak)
7854 fdh = NULL;
7855 }
7856
7857 skip = (sym_sec->owner != ibfd
7858 || sym_sec->output_section == bfd_abs_section_ptr);
7859 if (skip)
7860 {
7861 if (fdh != NULL && sym_sec->owner == ibfd)
7862 {
7863 /* Arrange for the function descriptor sym
7864 to be dropped. */
7865 fdh->elf.root.u.def.value = 0;
7866 fdh->elf.root.u.def.section = sym_sec;
7867 }
7868 opd->adjust[rel->r_offset / 8] = -1;
7869 }
7870 else
7871 {
7872 /* We'll be keeping this opd entry. */
7873
7874 if (fdh != NULL)
7875 {
7876 /* Redefine the function descriptor symbol to
7877 this location in the opd section. It is
7878 necessary to update the value here rather
7879 than using an array of adjustments as we do
7880 for local symbols, because various places
7881 in the generic ELF code use the value
7882 stored in u.def.value. */
7883 fdh->elf.root.u.def.value = wptr - new_contents;
7884 fdh->adjust_done = 1;
7885 }
7886
7887 /* Local syms are a bit tricky. We could
7888 tweak them as they can be cached, but
7889 we'd need to look through the local syms
7890 for the function descriptor sym which we
7891 don't have at the moment. So keep an
7892 array of adjustments. */
7893 opd->adjust[rel->r_offset / 8]
7894 = (wptr - new_contents) - (rptr - sec->contents);
7895
7896 if (wptr != rptr)
7897 memcpy (wptr, rptr, opd_ent_size);
7898 wptr += opd_ent_size;
7899 if (add_aux_fields && opd_ent_size == 16)
7900 {
7901 memset (wptr, '\0', 8);
7902 wptr += 8;
7903 }
7904 }
7905 rptr += opd_ent_size;
7906 offset += opd_ent_size;
7907 }
7908
7909 if (skip)
7910 {
7911 if (!NO_OPD_RELOCS
7912 && !info->relocatable
7913 && !dec_dynrel_count (rel->r_info, sec, info,
7914 NULL, h, sym))
7915 goto error_ret;
7916 }
7917 else
7918 {
7919 /* We need to adjust any reloc offsets to point to the
7920 new opd entries. While we're at it, we may as well
7921 remove redundant relocs. */
7922 rel->r_offset += opd->adjust[(offset - opd_ent_size) / 8];
7923 if (write_rel != rel)
7924 memcpy (write_rel, rel, sizeof (*rel));
7925 ++write_rel;
7926 }
7927 }
7928
7929 sec->size = wptr - new_contents;
7930 sec->reloc_count = write_rel - relstart;
7931 if (add_aux_fields)
7932 {
7933 free (sec->contents);
7934 sec->contents = new_contents;
7935 }
7936
7937 /* Fudge the header size too, as this is used later in
7938 elf_bfd_final_link if we are emitting relocs. */
7939 rel_hdr = _bfd_elf_single_rel_hdr (sec);
7940 rel_hdr->sh_size = sec->reloc_count * rel_hdr->sh_entsize;
7941 some_edited = TRUE;
7942 }
7943 else if (elf_section_data (sec)->relocs != relstart)
7944 free (relstart);
7945
7946 if (local_syms != NULL
7947 && symtab_hdr->contents != (unsigned char *) local_syms)
7948 {
7949 if (!info->keep_memory)
7950 free (local_syms);
7951 else
7952 symtab_hdr->contents = (unsigned char *) local_syms;
7953 }
7954 }
7955
7956 if (some_edited)
7957 elf_link_hash_traverse (elf_hash_table (info), adjust_opd_syms, NULL);
7958
7959 /* If we are doing a final link and the last .opd entry is just 16 byte
7960 long, add a 8 byte padding after it. */
7961 if (need_pad != NULL && !info->relocatable)
7962 {
7963 bfd_byte *p;
7964
7965 if ((need_pad->flags & SEC_IN_MEMORY) == 0)
7966 {
7967 BFD_ASSERT (need_pad->size > 0);
7968
7969 p = bfd_malloc (need_pad->size + 8);
7970 if (p == NULL)
7971 return FALSE;
7972
7973 if (! bfd_get_section_contents (need_pad->owner, need_pad,
7974 p, 0, need_pad->size))
7975 return FALSE;
7976
7977 need_pad->contents = p;
7978 need_pad->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7979 }
7980 else
7981 {
7982 p = bfd_realloc (need_pad->contents, need_pad->size + 8);
7983 if (p == NULL)
7984 return FALSE;
7985
7986 need_pad->contents = p;
7987 }
7988
7989 memset (need_pad->contents + need_pad->size, 0, 8);
7990 need_pad->size += 8;
7991 }
7992
7993 return TRUE;
7994 }
7995
7996 /* Set htab->tls_get_addr and call the generic ELF tls_setup function. */
7997
7998 asection *
7999 ppc64_elf_tls_setup (struct bfd_link_info *info)
8000 {
8001 struct ppc_link_hash_table *htab;
8002
8003 htab = ppc_hash_table (info);
8004 if (htab == NULL)
8005 return NULL;
8006
8007 if (abiversion (info->output_bfd) == 1)
8008 htab->opd_abi = 1;
8009
8010 if (htab->params->no_multi_toc)
8011 htab->do_multi_toc = 0;
8012 else if (!htab->do_multi_toc)
8013 htab->params->no_multi_toc = 1;
8014
8015 htab->tls_get_addr = ((struct ppc_link_hash_entry *)
8016 elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
8017 FALSE, FALSE, TRUE));
8018 /* Move dynamic linking info to the function descriptor sym. */
8019 if (htab->tls_get_addr != NULL)
8020 func_desc_adjust (&htab->tls_get_addr->elf, info);
8021 htab->tls_get_addr_fd = ((struct ppc_link_hash_entry *)
8022 elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
8023 FALSE, FALSE, TRUE));
8024 if (!htab->params->no_tls_get_addr_opt)
8025 {
8026 struct elf_link_hash_entry *opt, *opt_fd, *tga, *tga_fd;
8027
8028 opt = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr_opt",
8029 FALSE, FALSE, TRUE);
8030 if (opt != NULL)
8031 func_desc_adjust (opt, info);
8032 opt_fd = elf_link_hash_lookup (&htab->elf, "__tls_get_addr_opt",
8033 FALSE, FALSE, TRUE);
8034 if (opt_fd != NULL
8035 && (opt_fd->root.type == bfd_link_hash_defined
8036 || opt_fd->root.type == bfd_link_hash_defweak))
8037 {
8038 /* If glibc supports an optimized __tls_get_addr call stub,
8039 signalled by the presence of __tls_get_addr_opt, and we'll
8040 be calling __tls_get_addr via a plt call stub, then
8041 make __tls_get_addr point to __tls_get_addr_opt. */
8042 tga_fd = &htab->tls_get_addr_fd->elf;
8043 if (htab->elf.dynamic_sections_created
8044 && tga_fd != NULL
8045 && (tga_fd->type == STT_FUNC
8046 || tga_fd->needs_plt)
8047 && !(SYMBOL_CALLS_LOCAL (info, tga_fd)
8048 || (ELF_ST_VISIBILITY (tga_fd->other) != STV_DEFAULT
8049 && tga_fd->root.type == bfd_link_hash_undefweak)))
8050 {
8051 struct plt_entry *ent;
8052
8053 for (ent = tga_fd->plt.plist; ent != NULL; ent = ent->next)
8054 if (ent->plt.refcount > 0)
8055 break;
8056 if (ent != NULL)
8057 {
8058 tga_fd->root.type = bfd_link_hash_indirect;
8059 tga_fd->root.u.i.link = &opt_fd->root;
8060 ppc64_elf_copy_indirect_symbol (info, opt_fd, tga_fd);
8061 if (opt_fd->dynindx != -1)
8062 {
8063 /* Use __tls_get_addr_opt in dynamic relocations. */
8064 opt_fd->dynindx = -1;
8065 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
8066 opt_fd->dynstr_index);
8067 if (!bfd_elf_link_record_dynamic_symbol (info, opt_fd))
8068 return NULL;
8069 }
8070 htab->tls_get_addr_fd = (struct ppc_link_hash_entry *) opt_fd;
8071 tga = &htab->tls_get_addr->elf;
8072 if (opt != NULL && tga != NULL)
8073 {
8074 tga->root.type = bfd_link_hash_indirect;
8075 tga->root.u.i.link = &opt->root;
8076 ppc64_elf_copy_indirect_symbol (info, opt, tga);
8077 _bfd_elf_link_hash_hide_symbol (info, opt,
8078 tga->forced_local);
8079 htab->tls_get_addr = (struct ppc_link_hash_entry *) opt;
8080 }
8081 htab->tls_get_addr_fd->oh = htab->tls_get_addr;
8082 htab->tls_get_addr_fd->is_func_descriptor = 1;
8083 if (htab->tls_get_addr != NULL)
8084 {
8085 htab->tls_get_addr->oh = htab->tls_get_addr_fd;
8086 htab->tls_get_addr->is_func = 1;
8087 }
8088 }
8089 }
8090 }
8091 else
8092 htab->params->no_tls_get_addr_opt = TRUE;
8093 }
8094 return _bfd_elf_tls_setup (info->output_bfd, info);
8095 }
8096
8097 /* Return TRUE iff REL is a branch reloc with a global symbol matching
8098 HASH1 or HASH2. */
8099
8100 static bfd_boolean
8101 branch_reloc_hash_match (const bfd *ibfd,
8102 const Elf_Internal_Rela *rel,
8103 const struct ppc_link_hash_entry *hash1,
8104 const struct ppc_link_hash_entry *hash2)
8105 {
8106 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
8107 enum elf_ppc64_reloc_type r_type = ELF64_R_TYPE (rel->r_info);
8108 unsigned int r_symndx = ELF64_R_SYM (rel->r_info);
8109
8110 if (r_symndx >= symtab_hdr->sh_info && is_branch_reloc (r_type))
8111 {
8112 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
8113 struct elf_link_hash_entry *h;
8114
8115 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8116 h = elf_follow_link (h);
8117 if (h == &hash1->elf || h == &hash2->elf)
8118 return TRUE;
8119 }
8120 return FALSE;
8121 }
8122
8123 /* Run through all the TLS relocs looking for optimization
8124 opportunities. The linker has been hacked (see ppc64elf.em) to do
8125 a preliminary section layout so that we know the TLS segment
8126 offsets. We can't optimize earlier because some optimizations need
8127 to know the tp offset, and we need to optimize before allocating
8128 dynamic relocations. */
8129
8130 bfd_boolean
8131 ppc64_elf_tls_optimize (struct bfd_link_info *info)
8132 {
8133 bfd *ibfd;
8134 asection *sec;
8135 struct ppc_link_hash_table *htab;
8136 unsigned char *toc_ref;
8137 int pass;
8138
8139 if (info->relocatable || !info->executable)
8140 return TRUE;
8141
8142 htab = ppc_hash_table (info);
8143 if (htab == NULL)
8144 return FALSE;
8145
8146 /* Make two passes over the relocs. On the first pass, mark toc
8147 entries involved with tls relocs, and check that tls relocs
8148 involved in setting up a tls_get_addr call are indeed followed by
8149 such a call. If they are not, we can't do any tls optimization.
8150 On the second pass twiddle tls_mask flags to notify
8151 relocate_section that optimization can be done, and adjust got
8152 and plt refcounts. */
8153 toc_ref = NULL;
8154 for (pass = 0; pass < 2; ++pass)
8155 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8156 {
8157 Elf_Internal_Sym *locsyms = NULL;
8158 asection *toc = bfd_get_section_by_name (ibfd, ".toc");
8159
8160 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8161 if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section))
8162 {
8163 Elf_Internal_Rela *relstart, *rel, *relend;
8164 bfd_boolean found_tls_get_addr_arg = 0;
8165
8166 /* Read the relocations. */
8167 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8168 info->keep_memory);
8169 if (relstart == NULL)
8170 {
8171 free (toc_ref);
8172 return FALSE;
8173 }
8174
8175 relend = relstart + sec->reloc_count;
8176 for (rel = relstart; rel < relend; rel++)
8177 {
8178 enum elf_ppc64_reloc_type r_type;
8179 unsigned long r_symndx;
8180 struct elf_link_hash_entry *h;
8181 Elf_Internal_Sym *sym;
8182 asection *sym_sec;
8183 unsigned char *tls_mask;
8184 unsigned char tls_set, tls_clear, tls_type = 0;
8185 bfd_vma value;
8186 bfd_boolean ok_tprel, is_local;
8187 long toc_ref_index = 0;
8188 int expecting_tls_get_addr = 0;
8189 bfd_boolean ret = FALSE;
8190
8191 r_symndx = ELF64_R_SYM (rel->r_info);
8192 if (!get_sym_h (&h, &sym, &sym_sec, &tls_mask, &locsyms,
8193 r_symndx, ibfd))
8194 {
8195 err_free_rel:
8196 if (elf_section_data (sec)->relocs != relstart)
8197 free (relstart);
8198 if (toc_ref != NULL)
8199 free (toc_ref);
8200 if (locsyms != NULL
8201 && (elf_symtab_hdr (ibfd).contents
8202 != (unsigned char *) locsyms))
8203 free (locsyms);
8204 return ret;
8205 }
8206
8207 if (h != NULL)
8208 {
8209 if (h->root.type == bfd_link_hash_defined
8210 || h->root.type == bfd_link_hash_defweak)
8211 value = h->root.u.def.value;
8212 else if (h->root.type == bfd_link_hash_undefweak)
8213 value = 0;
8214 else
8215 {
8216 found_tls_get_addr_arg = 0;
8217 continue;
8218 }
8219 }
8220 else
8221 /* Symbols referenced by TLS relocs must be of type
8222 STT_TLS. So no need for .opd local sym adjust. */
8223 value = sym->st_value;
8224
8225 ok_tprel = FALSE;
8226 is_local = FALSE;
8227 if (h == NULL
8228 || !h->def_dynamic)
8229 {
8230 is_local = TRUE;
8231 if (h != NULL
8232 && h->root.type == bfd_link_hash_undefweak)
8233 ok_tprel = TRUE;
8234 else
8235 {
8236 value += sym_sec->output_offset;
8237 value += sym_sec->output_section->vma;
8238 value -= htab->elf.tls_sec->vma;
8239 ok_tprel = (value + TP_OFFSET + ((bfd_vma) 1 << 31)
8240 < (bfd_vma) 1 << 32);
8241 }
8242 }
8243
8244 r_type = ELF64_R_TYPE (rel->r_info);
8245 /* If this section has old-style __tls_get_addr calls
8246 without marker relocs, then check that each
8247 __tls_get_addr call reloc is preceded by a reloc
8248 that conceivably belongs to the __tls_get_addr arg
8249 setup insn. If we don't find matching arg setup
8250 relocs, don't do any tls optimization. */
8251 if (pass == 0
8252 && sec->has_tls_get_addr_call
8253 && h != NULL
8254 && (h == &htab->tls_get_addr->elf
8255 || h == &htab->tls_get_addr_fd->elf)
8256 && !found_tls_get_addr_arg
8257 && is_branch_reloc (r_type))
8258 {
8259 info->callbacks->minfo (_("%H __tls_get_addr lost arg, "
8260 "TLS optimization disabled\n"),
8261 ibfd, sec, rel->r_offset);
8262 ret = TRUE;
8263 goto err_free_rel;
8264 }
8265
8266 found_tls_get_addr_arg = 0;
8267 switch (r_type)
8268 {
8269 case R_PPC64_GOT_TLSLD16:
8270 case R_PPC64_GOT_TLSLD16_LO:
8271 expecting_tls_get_addr = 1;
8272 found_tls_get_addr_arg = 1;
8273 /* Fall thru */
8274
8275 case R_PPC64_GOT_TLSLD16_HI:
8276 case R_PPC64_GOT_TLSLD16_HA:
8277 /* These relocs should never be against a symbol
8278 defined in a shared lib. Leave them alone if
8279 that turns out to be the case. */
8280 if (!is_local)
8281 continue;
8282
8283 /* LD -> LE */
8284 tls_set = 0;
8285 tls_clear = TLS_LD;
8286 tls_type = TLS_TLS | TLS_LD;
8287 break;
8288
8289 case R_PPC64_GOT_TLSGD16:
8290 case R_PPC64_GOT_TLSGD16_LO:
8291 expecting_tls_get_addr = 1;
8292 found_tls_get_addr_arg = 1;
8293 /* Fall thru */
8294
8295 case R_PPC64_GOT_TLSGD16_HI:
8296 case R_PPC64_GOT_TLSGD16_HA:
8297 if (ok_tprel)
8298 /* GD -> LE */
8299 tls_set = 0;
8300 else
8301 /* GD -> IE */
8302 tls_set = TLS_TLS | TLS_TPRELGD;
8303 tls_clear = TLS_GD;
8304 tls_type = TLS_TLS | TLS_GD;
8305 break;
8306
8307 case R_PPC64_GOT_TPREL16_DS:
8308 case R_PPC64_GOT_TPREL16_LO_DS:
8309 case R_PPC64_GOT_TPREL16_HI:
8310 case R_PPC64_GOT_TPREL16_HA:
8311 if (ok_tprel)
8312 {
8313 /* IE -> LE */
8314 tls_set = 0;
8315 tls_clear = TLS_TPREL;
8316 tls_type = TLS_TLS | TLS_TPREL;
8317 break;
8318 }
8319 continue;
8320
8321 case R_PPC64_TLSGD:
8322 case R_PPC64_TLSLD:
8323 found_tls_get_addr_arg = 1;
8324 /* Fall thru */
8325
8326 case R_PPC64_TLS:
8327 case R_PPC64_TOC16:
8328 case R_PPC64_TOC16_LO:
8329 if (sym_sec == NULL || sym_sec != toc)
8330 continue;
8331
8332 /* Mark this toc entry as referenced by a TLS
8333 code sequence. We can do that now in the
8334 case of R_PPC64_TLS, and after checking for
8335 tls_get_addr for the TOC16 relocs. */
8336 if (toc_ref == NULL)
8337 toc_ref = bfd_zmalloc (toc->output_section->rawsize / 8);
8338 if (toc_ref == NULL)
8339 goto err_free_rel;
8340
8341 if (h != NULL)
8342 value = h->root.u.def.value;
8343 else
8344 value = sym->st_value;
8345 value += rel->r_addend;
8346 BFD_ASSERT (value < toc->size && value % 8 == 0);
8347 toc_ref_index = (value + toc->output_offset) / 8;
8348 if (r_type == R_PPC64_TLS
8349 || r_type == R_PPC64_TLSGD
8350 || r_type == R_PPC64_TLSLD)
8351 {
8352 toc_ref[toc_ref_index] = 1;
8353 continue;
8354 }
8355
8356 if (pass != 0 && toc_ref[toc_ref_index] == 0)
8357 continue;
8358
8359 tls_set = 0;
8360 tls_clear = 0;
8361 expecting_tls_get_addr = 2;
8362 break;
8363
8364 case R_PPC64_TPREL64:
8365 if (pass == 0
8366 || sec != toc
8367 || toc_ref == NULL
8368 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
8369 continue;
8370 if (ok_tprel)
8371 {
8372 /* IE -> LE */
8373 tls_set = TLS_EXPLICIT;
8374 tls_clear = TLS_TPREL;
8375 break;
8376 }
8377 continue;
8378
8379 case R_PPC64_DTPMOD64:
8380 if (pass == 0
8381 || sec != toc
8382 || toc_ref == NULL
8383 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
8384 continue;
8385 if (rel + 1 < relend
8386 && (rel[1].r_info
8387 == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64))
8388 && rel[1].r_offset == rel->r_offset + 8)
8389 {
8390 if (ok_tprel)
8391 /* GD -> LE */
8392 tls_set = TLS_EXPLICIT | TLS_GD;
8393 else
8394 /* GD -> IE */
8395 tls_set = TLS_EXPLICIT | TLS_GD | TLS_TPRELGD;
8396 tls_clear = TLS_GD;
8397 }
8398 else
8399 {
8400 if (!is_local)
8401 continue;
8402
8403 /* LD -> LE */
8404 tls_set = TLS_EXPLICIT;
8405 tls_clear = TLS_LD;
8406 }
8407 break;
8408
8409 default:
8410 continue;
8411 }
8412
8413 if (pass == 0)
8414 {
8415 if (!expecting_tls_get_addr
8416 || !sec->has_tls_get_addr_call)
8417 continue;
8418
8419 if (rel + 1 < relend
8420 && branch_reloc_hash_match (ibfd, rel + 1,
8421 htab->tls_get_addr,
8422 htab->tls_get_addr_fd))
8423 {
8424 if (expecting_tls_get_addr == 2)
8425 {
8426 /* Check for toc tls entries. */
8427 unsigned char *toc_tls;
8428 int retval;
8429
8430 retval = get_tls_mask (&toc_tls, NULL, NULL,
8431 &locsyms,
8432 rel, ibfd);
8433 if (retval == 0)
8434 goto err_free_rel;
8435 if (toc_tls != NULL)
8436 {
8437 if ((*toc_tls & (TLS_GD | TLS_LD)) != 0)
8438 found_tls_get_addr_arg = 1;
8439 if (retval > 1)
8440 toc_ref[toc_ref_index] = 1;
8441 }
8442 }
8443 continue;
8444 }
8445
8446 if (expecting_tls_get_addr != 1)
8447 continue;
8448
8449 /* Uh oh, we didn't find the expected call. We
8450 could just mark this symbol to exclude it
8451 from tls optimization but it's safer to skip
8452 the entire optimization. */
8453 info->callbacks->minfo (_("%H arg lost __tls_get_addr, "
8454 "TLS optimization disabled\n"),
8455 ibfd, sec, rel->r_offset);
8456 ret = TRUE;
8457 goto err_free_rel;
8458 }
8459
8460 if (expecting_tls_get_addr && htab->tls_get_addr != NULL)
8461 {
8462 struct plt_entry *ent;
8463 for (ent = htab->tls_get_addr->elf.plt.plist;
8464 ent != NULL;
8465 ent = ent->next)
8466 if (ent->addend == 0)
8467 {
8468 if (ent->plt.refcount > 0)
8469 {
8470 ent->plt.refcount -= 1;
8471 expecting_tls_get_addr = 0;
8472 }
8473 break;
8474 }
8475 }
8476
8477 if (expecting_tls_get_addr && htab->tls_get_addr_fd != NULL)
8478 {
8479 struct plt_entry *ent;
8480 for (ent = htab->tls_get_addr_fd->elf.plt.plist;
8481 ent != NULL;
8482 ent = ent->next)
8483 if (ent->addend == 0)
8484 {
8485 if (ent->plt.refcount > 0)
8486 ent->plt.refcount -= 1;
8487 break;
8488 }
8489 }
8490
8491 if (tls_clear == 0)
8492 continue;
8493
8494 if ((tls_set & TLS_EXPLICIT) == 0)
8495 {
8496 struct got_entry *ent;
8497
8498 /* Adjust got entry for this reloc. */
8499 if (h != NULL)
8500 ent = h->got.glist;
8501 else
8502 ent = elf_local_got_ents (ibfd)[r_symndx];
8503
8504 for (; ent != NULL; ent = ent->next)
8505 if (ent->addend == rel->r_addend
8506 && ent->owner == ibfd
8507 && ent->tls_type == tls_type)
8508 break;
8509 if (ent == NULL)
8510 abort ();
8511
8512 if (tls_set == 0)
8513 {
8514 /* We managed to get rid of a got entry. */
8515 if (ent->got.refcount > 0)
8516 ent->got.refcount -= 1;
8517 }
8518 }
8519 else
8520 {
8521 /* If we got rid of a DTPMOD/DTPREL reloc pair then
8522 we'll lose one or two dyn relocs. */
8523 if (!dec_dynrel_count (rel->r_info, sec, info,
8524 NULL, h, sym))
8525 return FALSE;
8526
8527 if (tls_set == (TLS_EXPLICIT | TLS_GD))
8528 {
8529 if (!dec_dynrel_count ((rel + 1)->r_info, sec, info,
8530 NULL, h, sym))
8531 return FALSE;
8532 }
8533 }
8534
8535 *tls_mask |= tls_set;
8536 *tls_mask &= ~tls_clear;
8537 }
8538
8539 if (elf_section_data (sec)->relocs != relstart)
8540 free (relstart);
8541 }
8542
8543 if (locsyms != NULL
8544 && (elf_symtab_hdr (ibfd).contents != (unsigned char *) locsyms))
8545 {
8546 if (!info->keep_memory)
8547 free (locsyms);
8548 else
8549 elf_symtab_hdr (ibfd).contents = (unsigned char *) locsyms;
8550 }
8551 }
8552
8553 if (toc_ref != NULL)
8554 free (toc_ref);
8555 return TRUE;
8556 }
8557
8558 /* Called via elf_link_hash_traverse from ppc64_elf_edit_toc to adjust
8559 the values of any global symbols in a toc section that has been
8560 edited. Globals in toc sections should be a rarity, so this function
8561 sets a flag if any are found in toc sections other than the one just
8562 edited, so that futher hash table traversals can be avoided. */
8563
8564 struct adjust_toc_info
8565 {
8566 asection *toc;
8567 unsigned long *skip;
8568 bfd_boolean global_toc_syms;
8569 };
8570
8571 enum toc_skip_enum { ref_from_discarded = 1, can_optimize = 2 };
8572
8573 static bfd_boolean
8574 adjust_toc_syms (struct elf_link_hash_entry *h, void *inf)
8575 {
8576 struct ppc_link_hash_entry *eh;
8577 struct adjust_toc_info *toc_inf = (struct adjust_toc_info *) inf;
8578 unsigned long i;
8579
8580 if (h->root.type != bfd_link_hash_defined
8581 && h->root.type != bfd_link_hash_defweak)
8582 return TRUE;
8583
8584 eh = (struct ppc_link_hash_entry *) h;
8585 if (eh->adjust_done)
8586 return TRUE;
8587
8588 if (eh->elf.root.u.def.section == toc_inf->toc)
8589 {
8590 if (eh->elf.root.u.def.value > toc_inf->toc->rawsize)
8591 i = toc_inf->toc->rawsize >> 3;
8592 else
8593 i = eh->elf.root.u.def.value >> 3;
8594
8595 if ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0)
8596 {
8597 (*_bfd_error_handler)
8598 (_("%s defined on removed toc entry"), eh->elf.root.root.string);
8599 do
8600 ++i;
8601 while ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0);
8602 eh->elf.root.u.def.value = (bfd_vma) i << 3;
8603 }
8604
8605 eh->elf.root.u.def.value -= toc_inf->skip[i];
8606 eh->adjust_done = 1;
8607 }
8608 else if (strcmp (eh->elf.root.u.def.section->name, ".toc") == 0)
8609 toc_inf->global_toc_syms = TRUE;
8610
8611 return TRUE;
8612 }
8613
8614 /* Return TRUE iff INSN is one we expect on a _LO variety toc/got reloc. */
8615
8616 static bfd_boolean
8617 ok_lo_toc_insn (unsigned int insn)
8618 {
8619 return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
8620 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
8621 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
8622 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
8623 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
8624 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
8625 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
8626 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
8627 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
8628 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
8629 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
8630 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
8631 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
8632 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
8633 || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
8634 && (insn & 3) != 1)
8635 || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
8636 && ((insn & 3) == 0 || (insn & 3) == 3))
8637 || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
8638 }
8639
8640 /* Examine all relocs referencing .toc sections in order to remove
8641 unused .toc entries. */
8642
8643 bfd_boolean
8644 ppc64_elf_edit_toc (struct bfd_link_info *info)
8645 {
8646 bfd *ibfd;
8647 struct adjust_toc_info toc_inf;
8648 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8649
8650 htab->do_toc_opt = 1;
8651 toc_inf.global_toc_syms = TRUE;
8652 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8653 {
8654 asection *toc, *sec;
8655 Elf_Internal_Shdr *symtab_hdr;
8656 Elf_Internal_Sym *local_syms;
8657 Elf_Internal_Rela *relstart, *rel, *toc_relocs;
8658 unsigned long *skip, *drop;
8659 unsigned char *used;
8660 unsigned char *keep, last, some_unused;
8661
8662 if (!is_ppc64_elf (ibfd))
8663 continue;
8664
8665 toc = bfd_get_section_by_name (ibfd, ".toc");
8666 if (toc == NULL
8667 || toc->size == 0
8668 || toc->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8669 || discarded_section (toc))
8670 continue;
8671
8672 toc_relocs = NULL;
8673 local_syms = NULL;
8674 symtab_hdr = &elf_symtab_hdr (ibfd);
8675
8676 /* Look at sections dropped from the final link. */
8677 skip = NULL;
8678 relstart = NULL;
8679 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8680 {
8681 if (sec->reloc_count == 0
8682 || !discarded_section (sec)
8683 || get_opd_info (sec)
8684 || (sec->flags & SEC_ALLOC) == 0
8685 || (sec->flags & SEC_DEBUGGING) != 0)
8686 continue;
8687
8688 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, FALSE);
8689 if (relstart == NULL)
8690 goto error_ret;
8691
8692 /* Run through the relocs to see which toc entries might be
8693 unused. */
8694 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8695 {
8696 enum elf_ppc64_reloc_type r_type;
8697 unsigned long r_symndx;
8698 asection *sym_sec;
8699 struct elf_link_hash_entry *h;
8700 Elf_Internal_Sym *sym;
8701 bfd_vma val;
8702
8703 r_type = ELF64_R_TYPE (rel->r_info);
8704 switch (r_type)
8705 {
8706 default:
8707 continue;
8708
8709 case R_PPC64_TOC16:
8710 case R_PPC64_TOC16_LO:
8711 case R_PPC64_TOC16_HI:
8712 case R_PPC64_TOC16_HA:
8713 case R_PPC64_TOC16_DS:
8714 case R_PPC64_TOC16_LO_DS:
8715 break;
8716 }
8717
8718 r_symndx = ELF64_R_SYM (rel->r_info);
8719 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8720 r_symndx, ibfd))
8721 goto error_ret;
8722
8723 if (sym_sec != toc)
8724 continue;
8725
8726 if (h != NULL)
8727 val = h->root.u.def.value;
8728 else
8729 val = sym->st_value;
8730 val += rel->r_addend;
8731
8732 if (val >= toc->size)
8733 continue;
8734
8735 /* Anything in the toc ought to be aligned to 8 bytes.
8736 If not, don't mark as unused. */
8737 if (val & 7)
8738 continue;
8739
8740 if (skip == NULL)
8741 {
8742 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8743 if (skip == NULL)
8744 goto error_ret;
8745 }
8746
8747 skip[val >> 3] = ref_from_discarded;
8748 }
8749
8750 if (elf_section_data (sec)->relocs != relstart)
8751 free (relstart);
8752 }
8753
8754 /* For largetoc loads of address constants, we can convert
8755 . addis rx,2,addr@got@ha
8756 . ld ry,addr@got@l(rx)
8757 to
8758 . addis rx,2,addr@toc@ha
8759 . addi ry,rx,addr@toc@l
8760 when addr is within 2G of the toc pointer. This then means
8761 that the word storing "addr" in the toc is no longer needed. */
8762
8763 if (!ppc64_elf_tdata (ibfd)->has_small_toc_reloc
8764 && toc->output_section->rawsize < (bfd_vma) 1 << 31
8765 && toc->reloc_count != 0)
8766 {
8767 /* Read toc relocs. */
8768 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
8769 info->keep_memory);
8770 if (toc_relocs == NULL)
8771 goto error_ret;
8772
8773 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
8774 {
8775 enum elf_ppc64_reloc_type r_type;
8776 unsigned long r_symndx;
8777 asection *sym_sec;
8778 struct elf_link_hash_entry *h;
8779 Elf_Internal_Sym *sym;
8780 bfd_vma val, addr;
8781
8782 r_type = ELF64_R_TYPE (rel->r_info);
8783 if (r_type != R_PPC64_ADDR64)
8784 continue;
8785
8786 r_symndx = ELF64_R_SYM (rel->r_info);
8787 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8788 r_symndx, ibfd))
8789 goto error_ret;
8790
8791 if (sym_sec == NULL
8792 || discarded_section (sym_sec))
8793 continue;
8794
8795 if (!SYMBOL_REFERENCES_LOCAL (info, h))
8796 continue;
8797
8798 if (h != NULL)
8799 {
8800 if (h->type == STT_GNU_IFUNC)
8801 continue;
8802 val = h->root.u.def.value;
8803 }
8804 else
8805 {
8806 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
8807 continue;
8808 val = sym->st_value;
8809 }
8810 val += rel->r_addend;
8811 val += sym_sec->output_section->vma + sym_sec->output_offset;
8812
8813 /* We don't yet know the exact toc pointer value, but we
8814 know it will be somewhere in the toc section. Don't
8815 optimize if the difference from any possible toc
8816 pointer is outside [ff..f80008000, 7fff7fff]. */
8817 addr = toc->output_section->vma + TOC_BASE_OFF;
8818 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8819 continue;
8820
8821 addr = toc->output_section->vma + toc->output_section->rawsize;
8822 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8823 continue;
8824
8825 if (skip == NULL)
8826 {
8827 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8828 if (skip == NULL)
8829 goto error_ret;
8830 }
8831
8832 skip[rel->r_offset >> 3]
8833 |= can_optimize | ((rel - toc_relocs) << 2);
8834 }
8835 }
8836
8837 if (skip == NULL)
8838 continue;
8839
8840 used = bfd_zmalloc (sizeof (*used) * (toc->size + 7) / 8);
8841 if (used == NULL)
8842 {
8843 error_ret:
8844 if (local_syms != NULL
8845 && symtab_hdr->contents != (unsigned char *) local_syms)
8846 free (local_syms);
8847 if (sec != NULL
8848 && relstart != NULL
8849 && elf_section_data (sec)->relocs != relstart)
8850 free (relstart);
8851 if (toc_relocs != NULL
8852 && elf_section_data (toc)->relocs != toc_relocs)
8853 free (toc_relocs);
8854 if (skip != NULL)
8855 free (skip);
8856 return FALSE;
8857 }
8858
8859 /* Now check all kept sections that might reference the toc.
8860 Check the toc itself last. */
8861 for (sec = (ibfd->sections == toc && toc->next ? toc->next
8862 : ibfd->sections);
8863 sec != NULL;
8864 sec = (sec == toc ? NULL
8865 : sec->next == NULL ? toc
8866 : sec->next == toc && toc->next ? toc->next
8867 : sec->next))
8868 {
8869 int repeat;
8870
8871 if (sec->reloc_count == 0
8872 || discarded_section (sec)
8873 || get_opd_info (sec)
8874 || (sec->flags & SEC_ALLOC) == 0
8875 || (sec->flags & SEC_DEBUGGING) != 0)
8876 continue;
8877
8878 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8879 info->keep_memory);
8880 if (relstart == NULL)
8881 {
8882 free (used);
8883 goto error_ret;
8884 }
8885
8886 /* Mark toc entries referenced as used. */
8887 do
8888 {
8889 repeat = 0;
8890 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8891 {
8892 enum elf_ppc64_reloc_type r_type;
8893 unsigned long r_symndx;
8894 asection *sym_sec;
8895 struct elf_link_hash_entry *h;
8896 Elf_Internal_Sym *sym;
8897 bfd_vma val;
8898 enum {no_check, check_lo, check_ha} insn_check;
8899
8900 r_type = ELF64_R_TYPE (rel->r_info);
8901 switch (r_type)
8902 {
8903 default:
8904 insn_check = no_check;
8905 break;
8906
8907 case R_PPC64_GOT_TLSLD16_HA:
8908 case R_PPC64_GOT_TLSGD16_HA:
8909 case R_PPC64_GOT_TPREL16_HA:
8910 case R_PPC64_GOT_DTPREL16_HA:
8911 case R_PPC64_GOT16_HA:
8912 case R_PPC64_TOC16_HA:
8913 insn_check = check_ha;
8914 break;
8915
8916 case R_PPC64_GOT_TLSLD16_LO:
8917 case R_PPC64_GOT_TLSGD16_LO:
8918 case R_PPC64_GOT_TPREL16_LO_DS:
8919 case R_PPC64_GOT_DTPREL16_LO_DS:
8920 case R_PPC64_GOT16_LO:
8921 case R_PPC64_GOT16_LO_DS:
8922 case R_PPC64_TOC16_LO:
8923 case R_PPC64_TOC16_LO_DS:
8924 insn_check = check_lo;
8925 break;
8926 }
8927
8928 if (insn_check != no_check)
8929 {
8930 bfd_vma off = rel->r_offset & ~3;
8931 unsigned char buf[4];
8932 unsigned int insn;
8933
8934 if (!bfd_get_section_contents (ibfd, sec, buf, off, 4))
8935 {
8936 free (used);
8937 goto error_ret;
8938 }
8939 insn = bfd_get_32 (ibfd, buf);
8940 if (insn_check == check_lo
8941 ? !ok_lo_toc_insn (insn)
8942 : ((insn & ((0x3f << 26) | 0x1f << 16))
8943 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
8944 {
8945 char str[12];
8946
8947 ppc64_elf_tdata (ibfd)->unexpected_toc_insn = 1;
8948 sprintf (str, "%#08x", insn);
8949 info->callbacks->einfo
8950 (_("%P: %H: toc optimization is not supported for"
8951 " %s instruction.\n"),
8952 ibfd, sec, rel->r_offset & ~3, str);
8953 }
8954 }
8955
8956 switch (r_type)
8957 {
8958 case R_PPC64_TOC16:
8959 case R_PPC64_TOC16_LO:
8960 case R_PPC64_TOC16_HI:
8961 case R_PPC64_TOC16_HA:
8962 case R_PPC64_TOC16_DS:
8963 case R_PPC64_TOC16_LO_DS:
8964 /* In case we're taking addresses of toc entries. */
8965 case R_PPC64_ADDR64:
8966 break;
8967
8968 default:
8969 continue;
8970 }
8971
8972 r_symndx = ELF64_R_SYM (rel->r_info);
8973 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8974 r_symndx, ibfd))
8975 {
8976 free (used);
8977 goto error_ret;
8978 }
8979
8980 if (sym_sec != toc)
8981 continue;
8982
8983 if (h != NULL)
8984 val = h->root.u.def.value;
8985 else
8986 val = sym->st_value;
8987 val += rel->r_addend;
8988
8989 if (val >= toc->size)
8990 continue;
8991
8992 if ((skip[val >> 3] & can_optimize) != 0)
8993 {
8994 bfd_vma off;
8995 unsigned char opc;
8996
8997 switch (r_type)
8998 {
8999 case R_PPC64_TOC16_HA:
9000 break;
9001
9002 case R_PPC64_TOC16_LO_DS:
9003 off = rel->r_offset;
9004 off += (bfd_big_endian (ibfd) ? -2 : 3);
9005 if (!bfd_get_section_contents (ibfd, sec, &opc,
9006 off, 1))
9007 {
9008 free (used);
9009 goto error_ret;
9010 }
9011 if ((opc & (0x3f << 2)) == (58u << 2))
9012 break;
9013 /* Fall thru */
9014
9015 default:
9016 /* Wrong sort of reloc, or not a ld. We may
9017 as well clear ref_from_discarded too. */
9018 skip[val >> 3] = 0;
9019 }
9020 }
9021
9022 if (sec != toc)
9023 used[val >> 3] = 1;
9024 /* For the toc section, we only mark as used if this
9025 entry itself isn't unused. */
9026 else if ((used[rel->r_offset >> 3]
9027 || !(skip[rel->r_offset >> 3] & ref_from_discarded))
9028 && !used[val >> 3])
9029 {
9030 /* Do all the relocs again, to catch reference
9031 chains. */
9032 repeat = 1;
9033 used[val >> 3] = 1;
9034 }
9035 }
9036 }
9037 while (repeat);
9038
9039 if (elf_section_data (sec)->relocs != relstart)
9040 free (relstart);
9041 }
9042
9043 /* Merge the used and skip arrays. Assume that TOC
9044 doublewords not appearing as either used or unused belong
9045 to to an entry more than one doubleword in size. */
9046 for (drop = skip, keep = used, last = 0, some_unused = 0;
9047 drop < skip + (toc->size + 7) / 8;
9048 ++drop, ++keep)
9049 {
9050 if (*keep)
9051 {
9052 *drop &= ~ref_from_discarded;
9053 if ((*drop & can_optimize) != 0)
9054 some_unused = 1;
9055 last = 0;
9056 }
9057 else if ((*drop & ref_from_discarded) != 0)
9058 {
9059 some_unused = 1;
9060 last = ref_from_discarded;
9061 }
9062 else
9063 *drop = last;
9064 }
9065
9066 free (used);
9067
9068 if (some_unused)
9069 {
9070 bfd_byte *contents, *src;
9071 unsigned long off;
9072 Elf_Internal_Sym *sym;
9073 bfd_boolean local_toc_syms = FALSE;
9074
9075 /* Shuffle the toc contents, and at the same time convert the
9076 skip array from booleans into offsets. */
9077 if (!bfd_malloc_and_get_section (ibfd, toc, &contents))
9078 goto error_ret;
9079
9080 elf_section_data (toc)->this_hdr.contents = contents;
9081
9082 for (src = contents, off = 0, drop = skip;
9083 src < contents + toc->size;
9084 src += 8, ++drop)
9085 {
9086 if ((*drop & (can_optimize | ref_from_discarded)) != 0)
9087 off += 8;
9088 else if (off != 0)
9089 {
9090 *drop = off;
9091 memcpy (src - off, src, 8);
9092 }
9093 }
9094 *drop = off;
9095 toc->rawsize = toc->size;
9096 toc->size = src - contents - off;
9097
9098 /* Adjust addends for relocs against the toc section sym,
9099 and optimize any accesses we can. */
9100 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9101 {
9102 if (sec->reloc_count == 0
9103 || discarded_section (sec))
9104 continue;
9105
9106 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
9107 info->keep_memory);
9108 if (relstart == NULL)
9109 goto error_ret;
9110
9111 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
9112 {
9113 enum elf_ppc64_reloc_type r_type;
9114 unsigned long r_symndx;
9115 asection *sym_sec;
9116 struct elf_link_hash_entry *h;
9117 bfd_vma val;
9118
9119 r_type = ELF64_R_TYPE (rel->r_info);
9120 switch (r_type)
9121 {
9122 default:
9123 continue;
9124
9125 case R_PPC64_TOC16:
9126 case R_PPC64_TOC16_LO:
9127 case R_PPC64_TOC16_HI:
9128 case R_PPC64_TOC16_HA:
9129 case R_PPC64_TOC16_DS:
9130 case R_PPC64_TOC16_LO_DS:
9131 case R_PPC64_ADDR64:
9132 break;
9133 }
9134
9135 r_symndx = ELF64_R_SYM (rel->r_info);
9136 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
9137 r_symndx, ibfd))
9138 goto error_ret;
9139
9140 if (sym_sec != toc)
9141 continue;
9142
9143 if (h != NULL)
9144 val = h->root.u.def.value;
9145 else
9146 {
9147 val = sym->st_value;
9148 if (val != 0)
9149 local_toc_syms = TRUE;
9150 }
9151
9152 val += rel->r_addend;
9153
9154 if (val > toc->rawsize)
9155 val = toc->rawsize;
9156 else if ((skip[val >> 3] & ref_from_discarded) != 0)
9157 continue;
9158 else if ((skip[val >> 3] & can_optimize) != 0)
9159 {
9160 Elf_Internal_Rela *tocrel
9161 = toc_relocs + (skip[val >> 3] >> 2);
9162 unsigned long tsym = ELF64_R_SYM (tocrel->r_info);
9163
9164 switch (r_type)
9165 {
9166 case R_PPC64_TOC16_HA:
9167 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_TOC16_HA);
9168 break;
9169
9170 case R_PPC64_TOC16_LO_DS:
9171 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_LO_DS_OPT);
9172 break;
9173
9174 default:
9175 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
9176 ppc_howto_init ();
9177 info->callbacks->einfo
9178 (_("%P: %H: %s references "
9179 "optimized away TOC entry\n"),
9180 ibfd, sec, rel->r_offset,
9181 ppc64_elf_howto_table[r_type]->name);
9182 bfd_set_error (bfd_error_bad_value);
9183 goto error_ret;
9184 }
9185 rel->r_addend = tocrel->r_addend;
9186 elf_section_data (sec)->relocs = relstart;
9187 continue;
9188 }
9189
9190 if (h != NULL || sym->st_value != 0)
9191 continue;
9192
9193 rel->r_addend -= skip[val >> 3];
9194 elf_section_data (sec)->relocs = relstart;
9195 }
9196
9197 if (elf_section_data (sec)->relocs != relstart)
9198 free (relstart);
9199 }
9200
9201 /* We shouldn't have local or global symbols defined in the TOC,
9202 but handle them anyway. */
9203 if (local_syms != NULL)
9204 for (sym = local_syms;
9205 sym < local_syms + symtab_hdr->sh_info;
9206 ++sym)
9207 if (sym->st_value != 0
9208 && bfd_section_from_elf_index (ibfd, sym->st_shndx) == toc)
9209 {
9210 unsigned long i;
9211
9212 if (sym->st_value > toc->rawsize)
9213 i = toc->rawsize >> 3;
9214 else
9215 i = sym->st_value >> 3;
9216
9217 if ((skip[i] & (ref_from_discarded | can_optimize)) != 0)
9218 {
9219 if (local_toc_syms)
9220 (*_bfd_error_handler)
9221 (_("%s defined on removed toc entry"),
9222 bfd_elf_sym_name (ibfd, symtab_hdr, sym, NULL));
9223 do
9224 ++i;
9225 while ((skip[i] & (ref_from_discarded | can_optimize)));
9226 sym->st_value = (bfd_vma) i << 3;
9227 }
9228
9229 sym->st_value -= skip[i];
9230 symtab_hdr->contents = (unsigned char *) local_syms;
9231 }
9232
9233 /* Adjust any global syms defined in this toc input section. */
9234 if (toc_inf.global_toc_syms)
9235 {
9236 toc_inf.toc = toc;
9237 toc_inf.skip = skip;
9238 toc_inf.global_toc_syms = FALSE;
9239 elf_link_hash_traverse (elf_hash_table (info), adjust_toc_syms,
9240 &toc_inf);
9241 }
9242
9243 if (toc->reloc_count != 0)
9244 {
9245 Elf_Internal_Shdr *rel_hdr;
9246 Elf_Internal_Rela *wrel;
9247 bfd_size_type sz;
9248
9249 /* Remove unused toc relocs, and adjust those we keep. */
9250 if (toc_relocs == NULL)
9251 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
9252 info->keep_memory);
9253 if (toc_relocs == NULL)
9254 goto error_ret;
9255
9256 wrel = toc_relocs;
9257 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
9258 if ((skip[rel->r_offset >> 3]
9259 & (ref_from_discarded | can_optimize)) == 0)
9260 {
9261 wrel->r_offset = rel->r_offset - skip[rel->r_offset >> 3];
9262 wrel->r_info = rel->r_info;
9263 wrel->r_addend = rel->r_addend;
9264 ++wrel;
9265 }
9266 else if (!dec_dynrel_count (rel->r_info, toc, info,
9267 &local_syms, NULL, NULL))
9268 goto error_ret;
9269
9270 elf_section_data (toc)->relocs = toc_relocs;
9271 toc->reloc_count = wrel - toc_relocs;
9272 rel_hdr = _bfd_elf_single_rel_hdr (toc);
9273 sz = rel_hdr->sh_entsize;
9274 rel_hdr->sh_size = toc->reloc_count * sz;
9275 }
9276 }
9277 else if (toc_relocs != NULL
9278 && elf_section_data (toc)->relocs != toc_relocs)
9279 free (toc_relocs);
9280
9281 if (local_syms != NULL
9282 && symtab_hdr->contents != (unsigned char *) local_syms)
9283 {
9284 if (!info->keep_memory)
9285 free (local_syms);
9286 else
9287 symtab_hdr->contents = (unsigned char *) local_syms;
9288 }
9289 free (skip);
9290 }
9291
9292 return TRUE;
9293 }
9294
9295 /* Return true iff input section I references the TOC using
9296 instructions limited to +/-32k offsets. */
9297
9298 bfd_boolean
9299 ppc64_elf_has_small_toc_reloc (asection *i)
9300 {
9301 return (is_ppc64_elf (i->owner)
9302 && ppc64_elf_tdata (i->owner)->has_small_toc_reloc);
9303 }
9304
9305 /* Allocate space for one GOT entry. */
9306
9307 static void
9308 allocate_got (struct elf_link_hash_entry *h,
9309 struct bfd_link_info *info,
9310 struct got_entry *gent)
9311 {
9312 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9313 bfd_boolean dyn;
9314 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
9315 int entsize = (gent->tls_type & eh->tls_mask & (TLS_GD | TLS_LD)
9316 ? 16 : 8);
9317 int rentsize = (gent->tls_type & eh->tls_mask & TLS_GD
9318 ? 2 : 1) * sizeof (Elf64_External_Rela);
9319 asection *got = ppc64_elf_tdata (gent->owner)->got;
9320
9321 gent->got.offset = got->size;
9322 got->size += entsize;
9323
9324 dyn = htab->elf.dynamic_sections_created;
9325 if (h->type == STT_GNU_IFUNC)
9326 {
9327 htab->elf.irelplt->size += rentsize;
9328 htab->got_reli_size += rentsize;
9329 }
9330 else if ((info->shared
9331 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
9332 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9333 || h->root.type != bfd_link_hash_undefweak))
9334 {
9335 asection *relgot = ppc64_elf_tdata (gent->owner)->relgot;
9336 relgot->size += rentsize;
9337 }
9338 }
9339
9340 /* This function merges got entries in the same toc group. */
9341
9342 static void
9343 merge_got_entries (struct got_entry **pent)
9344 {
9345 struct got_entry *ent, *ent2;
9346
9347 for (ent = *pent; ent != NULL; ent = ent->next)
9348 if (!ent->is_indirect)
9349 for (ent2 = ent->next; ent2 != NULL; ent2 = ent2->next)
9350 if (!ent2->is_indirect
9351 && ent2->addend == ent->addend
9352 && ent2->tls_type == ent->tls_type
9353 && elf_gp (ent2->owner) == elf_gp (ent->owner))
9354 {
9355 ent2->is_indirect = TRUE;
9356 ent2->got.ent = ent;
9357 }
9358 }
9359
9360 /* Allocate space in .plt, .got and associated reloc sections for
9361 dynamic relocs. */
9362
9363 static bfd_boolean
9364 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9365 {
9366 struct bfd_link_info *info;
9367 struct ppc_link_hash_table *htab;
9368 asection *s;
9369 struct ppc_link_hash_entry *eh;
9370 struct elf_dyn_relocs *p;
9371 struct got_entry **pgent, *gent;
9372
9373 if (h->root.type == bfd_link_hash_indirect)
9374 return TRUE;
9375
9376 info = (struct bfd_link_info *) inf;
9377 htab = ppc_hash_table (info);
9378 if (htab == NULL)
9379 return FALSE;
9380
9381 if ((htab->elf.dynamic_sections_created
9382 && h->dynindx != -1
9383 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, h))
9384 || h->type == STT_GNU_IFUNC)
9385 {
9386 struct plt_entry *pent;
9387 bfd_boolean doneone = FALSE;
9388 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
9389 if (pent->plt.refcount > 0)
9390 {
9391 if (!htab->elf.dynamic_sections_created
9392 || h->dynindx == -1)
9393 {
9394 s = htab->elf.iplt;
9395 pent->plt.offset = s->size;
9396 s->size += PLT_ENTRY_SIZE (htab);
9397 s = htab->elf.irelplt;
9398 }
9399 else
9400 {
9401 /* If this is the first .plt entry, make room for the special
9402 first entry. */
9403 s = htab->elf.splt;
9404 if (s->size == 0)
9405 s->size += PLT_INITIAL_ENTRY_SIZE (htab);
9406
9407 pent->plt.offset = s->size;
9408
9409 /* Make room for this entry. */
9410 s->size += PLT_ENTRY_SIZE (htab);
9411
9412 /* Make room for the .glink code. */
9413 s = htab->glink;
9414 if (s->size == 0)
9415 s->size += GLINK_CALL_STUB_SIZE;
9416 if (htab->opd_abi)
9417 {
9418 /* We need bigger stubs past index 32767. */
9419 if (s->size >= GLINK_CALL_STUB_SIZE + 32768*2*4)
9420 s->size += 4;
9421 s->size += 2*4;
9422 }
9423 else
9424 s->size += 4;
9425
9426 /* We also need to make an entry in the .rela.plt section. */
9427 s = htab->elf.srelplt;
9428 }
9429 s->size += sizeof (Elf64_External_Rela);
9430 doneone = TRUE;
9431 }
9432 else
9433 pent->plt.offset = (bfd_vma) -1;
9434 if (!doneone)
9435 {
9436 h->plt.plist = NULL;
9437 h->needs_plt = 0;
9438 }
9439 }
9440 else
9441 {
9442 h->plt.plist = NULL;
9443 h->needs_plt = 0;
9444 }
9445
9446 eh = (struct ppc_link_hash_entry *) h;
9447 /* Run through the TLS GD got entries first if we're changing them
9448 to TPREL. */
9449 if ((eh->tls_mask & TLS_TPRELGD) != 0)
9450 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9451 if (gent->got.refcount > 0
9452 && (gent->tls_type & TLS_GD) != 0)
9453 {
9454 /* This was a GD entry that has been converted to TPREL. If
9455 there happens to be a TPREL entry we can use that one. */
9456 struct got_entry *ent;
9457 for (ent = h->got.glist; ent != NULL; ent = ent->next)
9458 if (ent->got.refcount > 0
9459 && (ent->tls_type & TLS_TPREL) != 0
9460 && ent->addend == gent->addend
9461 && ent->owner == gent->owner)
9462 {
9463 gent->got.refcount = 0;
9464 break;
9465 }
9466
9467 /* If not, then we'll be using our own TPREL entry. */
9468 if (gent->got.refcount != 0)
9469 gent->tls_type = TLS_TLS | TLS_TPREL;
9470 }
9471
9472 /* Remove any list entry that won't generate a word in the GOT before
9473 we call merge_got_entries. Otherwise we risk merging to empty
9474 entries. */
9475 pgent = &h->got.glist;
9476 while ((gent = *pgent) != NULL)
9477 if (gent->got.refcount > 0)
9478 {
9479 if ((gent->tls_type & TLS_LD) != 0
9480 && !h->def_dynamic)
9481 {
9482 ppc64_tlsld_got (gent->owner)->got.refcount += 1;
9483 *pgent = gent->next;
9484 }
9485 else
9486 pgent = &gent->next;
9487 }
9488 else
9489 *pgent = gent->next;
9490
9491 if (!htab->do_multi_toc)
9492 merge_got_entries (&h->got.glist);
9493
9494 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9495 if (!gent->is_indirect)
9496 {
9497 /* Make sure this symbol is output as a dynamic symbol.
9498 Undefined weak syms won't yet be marked as dynamic,
9499 nor will all TLS symbols. */
9500 if (h->dynindx == -1
9501 && !h->forced_local
9502 && h->type != STT_GNU_IFUNC
9503 && htab->elf.dynamic_sections_created)
9504 {
9505 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9506 return FALSE;
9507 }
9508
9509 if (!is_ppc64_elf (gent->owner))
9510 abort ();
9511
9512 allocate_got (h, info, gent);
9513 }
9514
9515 if (eh->dyn_relocs == NULL
9516 || (!htab->elf.dynamic_sections_created
9517 && h->type != STT_GNU_IFUNC))
9518 return TRUE;
9519
9520 /* In the shared -Bsymbolic case, discard space allocated for
9521 dynamic pc-relative relocs against symbols which turn out to be
9522 defined in regular objects. For the normal shared case, discard
9523 space for relocs that have become local due to symbol visibility
9524 changes. */
9525
9526 if (info->shared)
9527 {
9528 /* Relocs that use pc_count are those that appear on a call insn,
9529 or certain REL relocs (see must_be_dyn_reloc) that can be
9530 generated via assembly. We want calls to protected symbols to
9531 resolve directly to the function rather than going via the plt.
9532 If people want function pointer comparisons to work as expected
9533 then they should avoid writing weird assembly. */
9534 if (SYMBOL_CALLS_LOCAL (info, h))
9535 {
9536 struct elf_dyn_relocs **pp;
9537
9538 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
9539 {
9540 p->count -= p->pc_count;
9541 p->pc_count = 0;
9542 if (p->count == 0)
9543 *pp = p->next;
9544 else
9545 pp = &p->next;
9546 }
9547 }
9548
9549 /* Also discard relocs on undefined weak syms with non-default
9550 visibility. */
9551 if (eh->dyn_relocs != NULL
9552 && h->root.type == bfd_link_hash_undefweak)
9553 {
9554 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9555 eh->dyn_relocs = NULL;
9556
9557 /* Make sure this symbol is output as a dynamic symbol.
9558 Undefined weak syms won't yet be marked as dynamic. */
9559 else if (h->dynindx == -1
9560 && !h->forced_local)
9561 {
9562 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9563 return FALSE;
9564 }
9565 }
9566 }
9567 else if (h->type == STT_GNU_IFUNC)
9568 {
9569 if (!h->non_got_ref)
9570 eh->dyn_relocs = NULL;
9571 }
9572 else if (ELIMINATE_COPY_RELOCS)
9573 {
9574 /* For the non-shared case, discard space for relocs against
9575 symbols which turn out to need copy relocs or are not
9576 dynamic. */
9577
9578 if (!h->non_got_ref
9579 && !h->def_regular)
9580 {
9581 /* Make sure this symbol is output as a dynamic symbol.
9582 Undefined weak syms won't yet be marked as dynamic. */
9583 if (h->dynindx == -1
9584 && !h->forced_local)
9585 {
9586 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9587 return FALSE;
9588 }
9589
9590 /* If that succeeded, we know we'll be keeping all the
9591 relocs. */
9592 if (h->dynindx != -1)
9593 goto keep;
9594 }
9595
9596 eh->dyn_relocs = NULL;
9597
9598 keep: ;
9599 }
9600
9601 /* Finally, allocate space. */
9602 for (p = eh->dyn_relocs; p != NULL; p = p->next)
9603 {
9604 asection *sreloc = elf_section_data (p->sec)->sreloc;
9605 if (eh->elf.type == STT_GNU_IFUNC)
9606 sreloc = htab->elf.irelplt;
9607 sreloc->size += p->count * sizeof (Elf64_External_Rela);
9608 }
9609
9610 return TRUE;
9611 }
9612
9613 /* Called via elf_link_hash_traverse from ppc64_elf_size_dynamic_sections
9614 to set up space for global entry stubs. These are put in glink,
9615 after the branch table. */
9616
9617 static bfd_boolean
9618 size_global_entry_stubs (struct elf_link_hash_entry *h, void *inf)
9619 {
9620 struct bfd_link_info *info;
9621 struct ppc_link_hash_table *htab;
9622 struct plt_entry *pent;
9623 asection *s;
9624
9625 if (h->root.type == bfd_link_hash_indirect)
9626 return TRUE;
9627
9628 if (!h->pointer_equality_needed)
9629 return TRUE;
9630
9631 if (h->def_regular)
9632 return TRUE;
9633
9634 info = inf;
9635 htab = ppc_hash_table (info);
9636 if (htab == NULL)
9637 return FALSE;
9638
9639 s = htab->glink;
9640 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
9641 if (pent->plt.offset != (bfd_vma) -1
9642 && pent->addend == 0)
9643 {
9644 /* For ELFv2, if this symbol is not defined in a regular file
9645 and we are not generating a shared library or pie, then we
9646 need to define the symbol in the executable on a call stub.
9647 This is to avoid text relocations. */
9648 s->size = (s->size + 15) & -16;
9649 h->root.u.def.section = s;
9650 h->root.u.def.value = s->size;
9651 s->size += 16;
9652 break;
9653 }
9654 return TRUE;
9655 }
9656
9657 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
9658 read-only sections. */
9659
9660 static bfd_boolean
9661 maybe_set_textrel (struct elf_link_hash_entry *h, void *info)
9662 {
9663 if (h->root.type == bfd_link_hash_indirect)
9664 return TRUE;
9665
9666 if (readonly_dynrelocs (h))
9667 {
9668 ((struct bfd_link_info *) info)->flags |= DF_TEXTREL;
9669
9670 /* Not an error, just cut short the traversal. */
9671 return FALSE;
9672 }
9673 return TRUE;
9674 }
9675
9676 /* Set the sizes of the dynamic sections. */
9677
9678 static bfd_boolean
9679 ppc64_elf_size_dynamic_sections (bfd *output_bfd,
9680 struct bfd_link_info *info)
9681 {
9682 struct ppc_link_hash_table *htab;
9683 bfd *dynobj;
9684 asection *s;
9685 bfd_boolean relocs;
9686 bfd *ibfd;
9687 struct got_entry *first_tlsld;
9688
9689 htab = ppc_hash_table (info);
9690 if (htab == NULL)
9691 return FALSE;
9692
9693 dynobj = htab->elf.dynobj;
9694 if (dynobj == NULL)
9695 abort ();
9696
9697 if (htab->elf.dynamic_sections_created)
9698 {
9699 /* Set the contents of the .interp section to the interpreter. */
9700 if (info->executable)
9701 {
9702 s = bfd_get_linker_section (dynobj, ".interp");
9703 if (s == NULL)
9704 abort ();
9705 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
9706 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
9707 }
9708 }
9709
9710 /* Set up .got offsets for local syms, and space for local dynamic
9711 relocs. */
9712 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9713 {
9714 struct got_entry **lgot_ents;
9715 struct got_entry **end_lgot_ents;
9716 struct plt_entry **local_plt;
9717 struct plt_entry **end_local_plt;
9718 unsigned char *lgot_masks;
9719 bfd_size_type locsymcount;
9720 Elf_Internal_Shdr *symtab_hdr;
9721
9722 if (!is_ppc64_elf (ibfd))
9723 continue;
9724
9725 for (s = ibfd->sections; s != NULL; s = s->next)
9726 {
9727 struct ppc_dyn_relocs *p;
9728
9729 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
9730 {
9731 if (!bfd_is_abs_section (p->sec)
9732 && bfd_is_abs_section (p->sec->output_section))
9733 {
9734 /* Input section has been discarded, either because
9735 it is a copy of a linkonce section or due to
9736 linker script /DISCARD/, so we'll be discarding
9737 the relocs too. */
9738 }
9739 else if (p->count != 0)
9740 {
9741 asection *srel = elf_section_data (p->sec)->sreloc;
9742 if (p->ifunc)
9743 srel = htab->elf.irelplt;
9744 srel->size += p->count * sizeof (Elf64_External_Rela);
9745 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
9746 info->flags |= DF_TEXTREL;
9747 }
9748 }
9749 }
9750
9751 lgot_ents = elf_local_got_ents (ibfd);
9752 if (!lgot_ents)
9753 continue;
9754
9755 symtab_hdr = &elf_symtab_hdr (ibfd);
9756 locsymcount = symtab_hdr->sh_info;
9757 end_lgot_ents = lgot_ents + locsymcount;
9758 local_plt = (struct plt_entry **) end_lgot_ents;
9759 end_local_plt = local_plt + locsymcount;
9760 lgot_masks = (unsigned char *) end_local_plt;
9761 s = ppc64_elf_tdata (ibfd)->got;
9762 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
9763 {
9764 struct got_entry **pent, *ent;
9765
9766 pent = lgot_ents;
9767 while ((ent = *pent) != NULL)
9768 if (ent->got.refcount > 0)
9769 {
9770 if ((ent->tls_type & *lgot_masks & TLS_LD) != 0)
9771 {
9772 ppc64_tlsld_got (ibfd)->got.refcount += 1;
9773 *pent = ent->next;
9774 }
9775 else
9776 {
9777 unsigned int ent_size = 8;
9778 unsigned int rel_size = sizeof (Elf64_External_Rela);
9779
9780 ent->got.offset = s->size;
9781 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
9782 {
9783 ent_size *= 2;
9784 rel_size *= 2;
9785 }
9786 s->size += ent_size;
9787 if ((*lgot_masks & PLT_IFUNC) != 0)
9788 {
9789 htab->elf.irelplt->size += rel_size;
9790 htab->got_reli_size += rel_size;
9791 }
9792 else if (info->shared)
9793 {
9794 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
9795 srel->size += rel_size;
9796 }
9797 pent = &ent->next;
9798 }
9799 }
9800 else
9801 *pent = ent->next;
9802 }
9803
9804 /* Allocate space for calls to local STT_GNU_IFUNC syms in .iplt. */
9805 for (; local_plt < end_local_plt; ++local_plt)
9806 {
9807 struct plt_entry *ent;
9808
9809 for (ent = *local_plt; ent != NULL; ent = ent->next)
9810 if (ent->plt.refcount > 0)
9811 {
9812 s = htab->elf.iplt;
9813 ent->plt.offset = s->size;
9814 s->size += PLT_ENTRY_SIZE (htab);
9815
9816 htab->elf.irelplt->size += sizeof (Elf64_External_Rela);
9817 }
9818 else
9819 ent->plt.offset = (bfd_vma) -1;
9820 }
9821 }
9822
9823 /* Allocate global sym .plt and .got entries, and space for global
9824 sym dynamic relocs. */
9825 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
9826 /* Stash the end of glink branch table. */
9827 if (htab->glink != NULL)
9828 htab->glink->rawsize = htab->glink->size;
9829
9830 if (!htab->opd_abi && !info->shared)
9831 elf_link_hash_traverse (&htab->elf, size_global_entry_stubs, info);
9832
9833 first_tlsld = NULL;
9834 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9835 {
9836 struct got_entry *ent;
9837
9838 if (!is_ppc64_elf (ibfd))
9839 continue;
9840
9841 ent = ppc64_tlsld_got (ibfd);
9842 if (ent->got.refcount > 0)
9843 {
9844 if (!htab->do_multi_toc && first_tlsld != NULL)
9845 {
9846 ent->is_indirect = TRUE;
9847 ent->got.ent = first_tlsld;
9848 }
9849 else
9850 {
9851 if (first_tlsld == NULL)
9852 first_tlsld = ent;
9853 s = ppc64_elf_tdata (ibfd)->got;
9854 ent->got.offset = s->size;
9855 ent->owner = ibfd;
9856 s->size += 16;
9857 if (info->shared)
9858 {
9859 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
9860 srel->size += sizeof (Elf64_External_Rela);
9861 }
9862 }
9863 }
9864 else
9865 ent->got.offset = (bfd_vma) -1;
9866 }
9867
9868 /* We now have determined the sizes of the various dynamic sections.
9869 Allocate memory for them. */
9870 relocs = FALSE;
9871 for (s = dynobj->sections; s != NULL; s = s->next)
9872 {
9873 if ((s->flags & SEC_LINKER_CREATED) == 0)
9874 continue;
9875
9876 if (s == htab->brlt || s == htab->relbrlt)
9877 /* These haven't been allocated yet; don't strip. */
9878 continue;
9879 else if (s == htab->elf.sgot
9880 || s == htab->elf.splt
9881 || s == htab->elf.iplt
9882 || s == htab->glink
9883 || s == htab->dynbss)
9884 {
9885 /* Strip this section if we don't need it; see the
9886 comment below. */
9887 }
9888 else if (s == htab->glink_eh_frame)
9889 {
9890 if (!bfd_is_abs_section (s->output_section))
9891 /* Not sized yet. */
9892 continue;
9893 }
9894 else if (CONST_STRNEQ (s->name, ".rela"))
9895 {
9896 if (s->size != 0)
9897 {
9898 if (s != htab->elf.srelplt)
9899 relocs = TRUE;
9900
9901 /* We use the reloc_count field as a counter if we need
9902 to copy relocs into the output file. */
9903 s->reloc_count = 0;
9904 }
9905 }
9906 else
9907 {
9908 /* It's not one of our sections, so don't allocate space. */
9909 continue;
9910 }
9911
9912 if (s->size == 0)
9913 {
9914 /* If we don't need this section, strip it from the
9915 output file. This is mostly to handle .rela.bss and
9916 .rela.plt. We must create both sections in
9917 create_dynamic_sections, because they must be created
9918 before the linker maps input sections to output
9919 sections. The linker does that before
9920 adjust_dynamic_symbol is called, and it is that
9921 function which decides whether anything needs to go
9922 into these sections. */
9923 s->flags |= SEC_EXCLUDE;
9924 continue;
9925 }
9926
9927 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9928 continue;
9929
9930 /* Allocate memory for the section contents. We use bfd_zalloc
9931 here in case unused entries are not reclaimed before the
9932 section's contents are written out. This should not happen,
9933 but this way if it does we get a R_PPC64_NONE reloc in .rela
9934 sections instead of garbage.
9935 We also rely on the section contents being zero when writing
9936 the GOT. */
9937 s->contents = bfd_zalloc (dynobj, s->size);
9938 if (s->contents == NULL)
9939 return FALSE;
9940 }
9941
9942 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9943 {
9944 if (!is_ppc64_elf (ibfd))
9945 continue;
9946
9947 s = ppc64_elf_tdata (ibfd)->got;
9948 if (s != NULL && s != htab->elf.sgot)
9949 {
9950 if (s->size == 0)
9951 s->flags |= SEC_EXCLUDE;
9952 else
9953 {
9954 s->contents = bfd_zalloc (ibfd, s->size);
9955 if (s->contents == NULL)
9956 return FALSE;
9957 }
9958 }
9959 s = ppc64_elf_tdata (ibfd)->relgot;
9960 if (s != NULL)
9961 {
9962 if (s->size == 0)
9963 s->flags |= SEC_EXCLUDE;
9964 else
9965 {
9966 s->contents = bfd_zalloc (ibfd, s->size);
9967 if (s->contents == NULL)
9968 return FALSE;
9969 relocs = TRUE;
9970 s->reloc_count = 0;
9971 }
9972 }
9973 }
9974
9975 if (htab->elf.dynamic_sections_created)
9976 {
9977 bfd_boolean tls_opt;
9978
9979 /* Add some entries to the .dynamic section. We fill in the
9980 values later, in ppc64_elf_finish_dynamic_sections, but we
9981 must add the entries now so that we get the correct size for
9982 the .dynamic section. The DT_DEBUG entry is filled in by the
9983 dynamic linker and used by the debugger. */
9984 #define add_dynamic_entry(TAG, VAL) \
9985 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
9986
9987 if (info->executable)
9988 {
9989 if (!add_dynamic_entry (DT_DEBUG, 0))
9990 return FALSE;
9991 }
9992
9993 if (htab->elf.splt != NULL && htab->elf.splt->size != 0)
9994 {
9995 if (!add_dynamic_entry (DT_PLTGOT, 0)
9996 || !add_dynamic_entry (DT_PLTRELSZ, 0)
9997 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
9998 || !add_dynamic_entry (DT_JMPREL, 0)
9999 || !add_dynamic_entry (DT_PPC64_GLINK, 0))
10000 return FALSE;
10001 }
10002
10003 if (NO_OPD_RELOCS && abiversion (output_bfd) <= 1)
10004 {
10005 if (!add_dynamic_entry (DT_PPC64_OPD, 0)
10006 || !add_dynamic_entry (DT_PPC64_OPDSZ, 0))
10007 return FALSE;
10008 }
10009
10010 tls_opt = (!htab->params->no_tls_get_addr_opt
10011 && htab->tls_get_addr_fd != NULL
10012 && htab->tls_get_addr_fd->elf.plt.plist != NULL);
10013 if (tls_opt || !htab->opd_abi)
10014 {
10015 if (!add_dynamic_entry (DT_PPC64_OPT, tls_opt ? PPC64_OPT_TLS : 0))
10016 return FALSE;
10017 }
10018
10019 if (relocs)
10020 {
10021 if (!add_dynamic_entry (DT_RELA, 0)
10022 || !add_dynamic_entry (DT_RELASZ, 0)
10023 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
10024 return FALSE;
10025
10026 /* If any dynamic relocs apply to a read-only section,
10027 then we need a DT_TEXTREL entry. */
10028 if ((info->flags & DF_TEXTREL) == 0)
10029 elf_link_hash_traverse (&htab->elf, maybe_set_textrel, info);
10030
10031 if ((info->flags & DF_TEXTREL) != 0)
10032 {
10033 if (!add_dynamic_entry (DT_TEXTREL, 0))
10034 return FALSE;
10035 }
10036 }
10037 }
10038 #undef add_dynamic_entry
10039
10040 return TRUE;
10041 }
10042
10043 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
10044
10045 static bfd_boolean
10046 ppc64_elf_hash_symbol (struct elf_link_hash_entry *h)
10047 {
10048 if (h->plt.plist != NULL
10049 && !h->def_regular
10050 && !h->pointer_equality_needed)
10051 return FALSE;
10052
10053 return _bfd_elf_hash_symbol (h);
10054 }
10055
10056 /* Determine the type of stub needed, if any, for a call. */
10057
10058 static inline enum ppc_stub_type
10059 ppc_type_of_stub (asection *input_sec,
10060 const Elf_Internal_Rela *rel,
10061 struct ppc_link_hash_entry **hash,
10062 struct plt_entry **plt_ent,
10063 bfd_vma destination,
10064 unsigned long local_off)
10065 {
10066 struct ppc_link_hash_entry *h = *hash;
10067 bfd_vma location;
10068 bfd_vma branch_offset;
10069 bfd_vma max_branch_offset;
10070 enum elf_ppc64_reloc_type r_type;
10071
10072 if (h != NULL)
10073 {
10074 struct plt_entry *ent;
10075 struct ppc_link_hash_entry *fdh = h;
10076 if (h->oh != NULL
10077 && h->oh->is_func_descriptor)
10078 {
10079 fdh = ppc_follow_link (h->oh);
10080 *hash = fdh;
10081 }
10082
10083 for (ent = fdh->elf.plt.plist; ent != NULL; ent = ent->next)
10084 if (ent->addend == rel->r_addend
10085 && ent->plt.offset != (bfd_vma) -1)
10086 {
10087 *plt_ent = ent;
10088 return ppc_stub_plt_call;
10089 }
10090
10091 /* Here, we know we don't have a plt entry. If we don't have a
10092 either a defined function descriptor or a defined entry symbol
10093 in a regular object file, then it is pointless trying to make
10094 any other type of stub. */
10095 if (!is_static_defined (&fdh->elf)
10096 && !is_static_defined (&h->elf))
10097 return ppc_stub_none;
10098 }
10099 else if (elf_local_got_ents (input_sec->owner) != NULL)
10100 {
10101 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_sec->owner);
10102 struct plt_entry **local_plt = (struct plt_entry **)
10103 elf_local_got_ents (input_sec->owner) + symtab_hdr->sh_info;
10104 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
10105
10106 if (local_plt[r_symndx] != NULL)
10107 {
10108 struct plt_entry *ent;
10109
10110 for (ent = local_plt[r_symndx]; ent != NULL; ent = ent->next)
10111 if (ent->addend == rel->r_addend
10112 && ent->plt.offset != (bfd_vma) -1)
10113 {
10114 *plt_ent = ent;
10115 return ppc_stub_plt_call;
10116 }
10117 }
10118 }
10119
10120 /* Determine where the call point is. */
10121 location = (input_sec->output_offset
10122 + input_sec->output_section->vma
10123 + rel->r_offset);
10124
10125 branch_offset = destination - location;
10126 r_type = ELF64_R_TYPE (rel->r_info);
10127
10128 /* Determine if a long branch stub is needed. */
10129 max_branch_offset = 1 << 25;
10130 if (r_type != R_PPC64_REL24)
10131 max_branch_offset = 1 << 15;
10132
10133 if (branch_offset + max_branch_offset >= 2 * max_branch_offset - local_off)
10134 /* We need a stub. Figure out whether a long_branch or plt_branch
10135 is needed later. */
10136 return ppc_stub_long_branch;
10137
10138 return ppc_stub_none;
10139 }
10140
10141 /* With power7 weakly ordered memory model, it is possible for ld.so
10142 to update a plt entry in one thread and have another thread see a
10143 stale zero toc entry. To avoid this we need some sort of acquire
10144 barrier in the call stub. One solution is to make the load of the
10145 toc word seem to appear to depend on the load of the function entry
10146 word. Another solution is to test for r2 being zero, and branch to
10147 the appropriate glink entry if so.
10148
10149 . fake dep barrier compare
10150 . ld 12,xxx(2) ld 12,xxx(2)
10151 . mtctr 12 mtctr 12
10152 . xor 11,12,12 ld 2,xxx+8(2)
10153 . add 2,2,11 cmpldi 2,0
10154 . ld 2,xxx+8(2) bnectr+
10155 . bctr b <glink_entry>
10156
10157 The solution involving the compare turns out to be faster, so
10158 that's what we use unless the branch won't reach. */
10159
10160 #define ALWAYS_USE_FAKE_DEP 0
10161 #define ALWAYS_EMIT_R2SAVE 0
10162
10163 #define PPC_LO(v) ((v) & 0xffff)
10164 #define PPC_HI(v) (((v) >> 16) & 0xffff)
10165 #define PPC_HA(v) PPC_HI ((v) + 0x8000)
10166
10167 static inline unsigned int
10168 plt_stub_size (struct ppc_link_hash_table *htab,
10169 struct ppc_stub_hash_entry *stub_entry,
10170 bfd_vma off)
10171 {
10172 unsigned size = 12;
10173
10174 if (ALWAYS_EMIT_R2SAVE
10175 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10176 size += 4;
10177 if (PPC_HA (off) != 0)
10178 size += 4;
10179 if (htab->opd_abi)
10180 {
10181 size += 4;
10182 if (htab->params->plt_static_chain)
10183 size += 4;
10184 if (htab->params->plt_thread_safe)
10185 size += 8;
10186 if (PPC_HA (off + 8 + 8 * htab->params->plt_static_chain) != PPC_HA (off))
10187 size += 4;
10188 }
10189 if (stub_entry->h != NULL
10190 && (stub_entry->h == htab->tls_get_addr_fd
10191 || stub_entry->h == htab->tls_get_addr)
10192 && !htab->params->no_tls_get_addr_opt)
10193 size += 13 * 4;
10194 return size;
10195 }
10196
10197 /* If this stub would cross fewer 2**plt_stub_align boundaries if we align,
10198 then return the padding needed to do so. */
10199 static inline unsigned int
10200 plt_stub_pad (struct ppc_link_hash_table *htab,
10201 struct ppc_stub_hash_entry *stub_entry,
10202 bfd_vma plt_off)
10203 {
10204 int stub_align = 1 << htab->params->plt_stub_align;
10205 unsigned stub_size = plt_stub_size (htab, stub_entry, plt_off);
10206 bfd_vma stub_off = stub_entry->stub_sec->size;
10207
10208 if (((stub_off + stub_size - 1) & -stub_align) - (stub_off & -stub_align)
10209 > (stub_size & -stub_align))
10210 return stub_align - (stub_off & (stub_align - 1));
10211 return 0;
10212 }
10213
10214 /* Build a .plt call stub. */
10215
10216 static inline bfd_byte *
10217 build_plt_stub (struct ppc_link_hash_table *htab,
10218 struct ppc_stub_hash_entry *stub_entry,
10219 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
10220 {
10221 bfd *obfd = htab->params->stub_bfd;
10222 bfd_boolean plt_load_toc = htab->opd_abi;
10223 bfd_boolean plt_static_chain = htab->params->plt_static_chain;
10224 bfd_boolean plt_thread_safe = htab->params->plt_thread_safe;
10225 bfd_boolean use_fake_dep = plt_thread_safe;
10226 bfd_vma cmp_branch_off = 0;
10227
10228 if (!ALWAYS_USE_FAKE_DEP
10229 && plt_load_toc
10230 && plt_thread_safe
10231 && !(stub_entry->h != NULL
10232 && (stub_entry->h == htab->tls_get_addr_fd
10233 || stub_entry->h == htab->tls_get_addr)
10234 && !htab->params->no_tls_get_addr_opt))
10235 {
10236 bfd_vma pltoff = stub_entry->plt_ent->plt.offset & ~1;
10237 bfd_vma pltindex = ((pltoff - PLT_INITIAL_ENTRY_SIZE (htab))
10238 / PLT_ENTRY_SIZE (htab));
10239 bfd_vma glinkoff = GLINK_CALL_STUB_SIZE + pltindex * 8;
10240 bfd_vma to, from;
10241
10242 if (pltindex > 32768)
10243 glinkoff += (pltindex - 32768) * 4;
10244 to = (glinkoff
10245 + htab->glink->output_offset
10246 + htab->glink->output_section->vma);
10247 from = (p - stub_entry->stub_sec->contents
10248 + 4 * (ALWAYS_EMIT_R2SAVE
10249 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10250 + 4 * (PPC_HA (offset) != 0)
10251 + 4 * (PPC_HA (offset + 8 + 8 * plt_static_chain)
10252 != PPC_HA (offset))
10253 + 4 * (plt_static_chain != 0)
10254 + 20
10255 + stub_entry->stub_sec->output_offset
10256 + stub_entry->stub_sec->output_section->vma);
10257 cmp_branch_off = to - from;
10258 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
10259 }
10260
10261 if (PPC_HA (offset) != 0)
10262 {
10263 if (r != NULL)
10264 {
10265 if (ALWAYS_EMIT_R2SAVE
10266 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10267 r[0].r_offset += 4;
10268 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
10269 r[1].r_offset = r[0].r_offset + 4;
10270 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10271 r[1].r_addend = r[0].r_addend;
10272 if (plt_load_toc)
10273 {
10274 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10275 {
10276 r[2].r_offset = r[1].r_offset + 4;
10277 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO);
10278 r[2].r_addend = r[0].r_addend;
10279 }
10280 else
10281 {
10282 r[2].r_offset = r[1].r_offset + 8 + 8 * use_fake_dep;
10283 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10284 r[2].r_addend = r[0].r_addend + 8;
10285 if (plt_static_chain)
10286 {
10287 r[3].r_offset = r[2].r_offset + 4;
10288 r[3].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10289 r[3].r_addend = r[0].r_addend + 16;
10290 }
10291 }
10292 }
10293 }
10294 if (ALWAYS_EMIT_R2SAVE
10295 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10296 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p), p += 4;
10297 if (plt_load_toc)
10298 {
10299 bfd_put_32 (obfd, ADDIS_R11_R2 | PPC_HA (offset), p), p += 4;
10300 bfd_put_32 (obfd, LD_R12_0R11 | PPC_LO (offset), p), p += 4;
10301 }
10302 else
10303 {
10304 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (offset), p), p += 4;
10305 bfd_put_32 (obfd, LD_R12_0R12 | PPC_LO (offset), p), p += 4;
10306 }
10307 if (plt_load_toc
10308 && PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10309 {
10310 bfd_put_32 (obfd, ADDI_R11_R11 | PPC_LO (offset), p), p += 4;
10311 offset = 0;
10312 }
10313 bfd_put_32 (obfd, MTCTR_R12, p), p += 4;
10314 if (plt_load_toc)
10315 {
10316 if (use_fake_dep)
10317 {
10318 bfd_put_32 (obfd, XOR_R2_R12_R12, p), p += 4;
10319 bfd_put_32 (obfd, ADD_R11_R11_R2, p), p += 4;
10320 }
10321 bfd_put_32 (obfd, LD_R2_0R11 | PPC_LO (offset + 8), p), p += 4;
10322 if (plt_static_chain)
10323 bfd_put_32 (obfd, LD_R11_0R11 | PPC_LO (offset + 16), p), p += 4;
10324 }
10325 }
10326 else
10327 {
10328 if (r != NULL)
10329 {
10330 if (ALWAYS_EMIT_R2SAVE
10331 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10332 r[0].r_offset += 4;
10333 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10334 if (plt_load_toc)
10335 {
10336 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10337 {
10338 r[1].r_offset = r[0].r_offset + 4;
10339 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16);
10340 r[1].r_addend = r[0].r_addend;
10341 }
10342 else
10343 {
10344 r[1].r_offset = r[0].r_offset + 8 + 8 * use_fake_dep;
10345 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10346 r[1].r_addend = r[0].r_addend + 8 + 8 * plt_static_chain;
10347 if (plt_static_chain)
10348 {
10349 r[2].r_offset = r[1].r_offset + 4;
10350 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10351 r[2].r_addend = r[0].r_addend + 8;
10352 }
10353 }
10354 }
10355 }
10356 if (ALWAYS_EMIT_R2SAVE
10357 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10358 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p), p += 4;
10359 bfd_put_32 (obfd, LD_R12_0R2 | PPC_LO (offset), p), p += 4;
10360 if (plt_load_toc
10361 && PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10362 {
10363 bfd_put_32 (obfd, ADDI_R2_R2 | PPC_LO (offset), p), p += 4;
10364 offset = 0;
10365 }
10366 bfd_put_32 (obfd, MTCTR_R12, p), p += 4;
10367 if (plt_load_toc)
10368 {
10369 if (use_fake_dep)
10370 {
10371 bfd_put_32 (obfd, XOR_R11_R12_R12, p), p += 4;
10372 bfd_put_32 (obfd, ADD_R2_R2_R11, p), p += 4;
10373 }
10374 if (plt_static_chain)
10375 bfd_put_32 (obfd, LD_R11_0R2 | PPC_LO (offset + 16), p), p += 4;
10376 bfd_put_32 (obfd, LD_R2_0R2 | PPC_LO (offset + 8), p), p += 4;
10377 }
10378 }
10379 if (plt_load_toc && plt_thread_safe && !use_fake_dep)
10380 {
10381 bfd_put_32 (obfd, CMPLDI_R2_0, p), p += 4;
10382 bfd_put_32 (obfd, BNECTR_P4, p), p += 4;
10383 bfd_put_32 (obfd, B_DOT | (cmp_branch_off & 0x3fffffc), p), p += 4;
10384 }
10385 else
10386 bfd_put_32 (obfd, BCTR, p), p += 4;
10387 return p;
10388 }
10389
10390 /* Build a special .plt call stub for __tls_get_addr. */
10391
10392 #define LD_R11_0R3 0xe9630000
10393 #define LD_R12_0R3 0xe9830000
10394 #define MR_R0_R3 0x7c601b78
10395 #define CMPDI_R11_0 0x2c2b0000
10396 #define ADD_R3_R12_R13 0x7c6c6a14
10397 #define BEQLR 0x4d820020
10398 #define MR_R3_R0 0x7c030378
10399 #define STD_R11_0R1 0xf9610000
10400 #define BCTRL 0x4e800421
10401 #define LD_R11_0R1 0xe9610000
10402 #define MTLR_R11 0x7d6803a6
10403
10404 static inline bfd_byte *
10405 build_tls_get_addr_stub (struct ppc_link_hash_table *htab,
10406 struct ppc_stub_hash_entry *stub_entry,
10407 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
10408 {
10409 bfd *obfd = htab->params->stub_bfd;
10410
10411 bfd_put_32 (obfd, LD_R11_0R3 + 0, p), p += 4;
10412 bfd_put_32 (obfd, LD_R12_0R3 + 8, p), p += 4;
10413 bfd_put_32 (obfd, MR_R0_R3, p), p += 4;
10414 bfd_put_32 (obfd, CMPDI_R11_0, p), p += 4;
10415 bfd_put_32 (obfd, ADD_R3_R12_R13, p), p += 4;
10416 bfd_put_32 (obfd, BEQLR, p), p += 4;
10417 bfd_put_32 (obfd, MR_R3_R0, p), p += 4;
10418 bfd_put_32 (obfd, MFLR_R11, p), p += 4;
10419 bfd_put_32 (obfd, STD_R11_0R1 + STK_LINKER (htab), p), p += 4;
10420
10421 if (r != NULL)
10422 r[0].r_offset += 9 * 4;
10423 p = build_plt_stub (htab, stub_entry, p, offset, r);
10424 bfd_put_32 (obfd, BCTRL, p - 4);
10425
10426 bfd_put_32 (obfd, LD_R11_0R1 + STK_LINKER (htab), p), p += 4;
10427 bfd_put_32 (obfd, LD_R2_0R1 + STK_TOC (htab), p), p += 4;
10428 bfd_put_32 (obfd, MTLR_R11, p), p += 4;
10429 bfd_put_32 (obfd, BLR, p), p += 4;
10430
10431 return p;
10432 }
10433
10434 static Elf_Internal_Rela *
10435 get_relocs (asection *sec, int count)
10436 {
10437 Elf_Internal_Rela *relocs;
10438 struct bfd_elf_section_data *elfsec_data;
10439
10440 elfsec_data = elf_section_data (sec);
10441 relocs = elfsec_data->relocs;
10442 if (relocs == NULL)
10443 {
10444 bfd_size_type relsize;
10445 relsize = sec->reloc_count * sizeof (*relocs);
10446 relocs = bfd_alloc (sec->owner, relsize);
10447 if (relocs == NULL)
10448 return NULL;
10449 elfsec_data->relocs = relocs;
10450 elfsec_data->rela.hdr = bfd_zalloc (sec->owner,
10451 sizeof (Elf_Internal_Shdr));
10452 if (elfsec_data->rela.hdr == NULL)
10453 return NULL;
10454 elfsec_data->rela.hdr->sh_size = (sec->reloc_count
10455 * sizeof (Elf64_External_Rela));
10456 elfsec_data->rela.hdr->sh_entsize = sizeof (Elf64_External_Rela);
10457 sec->reloc_count = 0;
10458 }
10459 relocs += sec->reloc_count;
10460 sec->reloc_count += count;
10461 return relocs;
10462 }
10463
10464 static bfd_vma
10465 get_r2off (struct bfd_link_info *info,
10466 struct ppc_stub_hash_entry *stub_entry)
10467 {
10468 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10469 bfd_vma r2off = htab->stub_group[stub_entry->target_section->id].toc_off;
10470
10471 if (r2off == 0)
10472 {
10473 /* Support linking -R objects. Get the toc pointer from the
10474 opd entry. */
10475 char buf[8];
10476 if (!htab->opd_abi)
10477 return r2off;
10478 asection *opd = stub_entry->h->elf.root.u.def.section;
10479 bfd_vma opd_off = stub_entry->h->elf.root.u.def.value;
10480
10481 if (strcmp (opd->name, ".opd") != 0
10482 || opd->reloc_count != 0)
10483 {
10484 info->callbacks->einfo (_("%P: cannot find opd entry toc for `%T'\n"),
10485 stub_entry->h->elf.root.root.string);
10486 bfd_set_error (bfd_error_bad_value);
10487 return 0;
10488 }
10489 if (!bfd_get_section_contents (opd->owner, opd, buf, opd_off + 8, 8))
10490 return 0;
10491 r2off = bfd_get_64 (opd->owner, buf);
10492 r2off -= elf_gp (info->output_bfd);
10493 }
10494 r2off -= htab->stub_group[stub_entry->id_sec->id].toc_off;
10495 return r2off;
10496 }
10497
10498 static bfd_boolean
10499 ppc_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
10500 {
10501 struct ppc_stub_hash_entry *stub_entry;
10502 struct ppc_branch_hash_entry *br_entry;
10503 struct bfd_link_info *info;
10504 struct ppc_link_hash_table *htab;
10505 bfd_byte *loc;
10506 bfd_byte *p;
10507 bfd_vma dest, off;
10508 int size;
10509 Elf_Internal_Rela *r;
10510 asection *plt;
10511
10512 /* Massage our args to the form they really have. */
10513 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
10514 info = in_arg;
10515
10516 htab = ppc_hash_table (info);
10517 if (htab == NULL)
10518 return FALSE;
10519
10520 /* Make a note of the offset within the stubs for this entry. */
10521 stub_entry->stub_offset = stub_entry->stub_sec->size;
10522 loc = stub_entry->stub_sec->contents + stub_entry->stub_offset;
10523
10524 htab->stub_count[stub_entry->stub_type - 1] += 1;
10525 switch (stub_entry->stub_type)
10526 {
10527 case ppc_stub_long_branch:
10528 case ppc_stub_long_branch_r2off:
10529 /* Branches are relative. This is where we are going to. */
10530 dest = (stub_entry->target_value
10531 + stub_entry->target_section->output_offset
10532 + stub_entry->target_section->output_section->vma);
10533 dest += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
10534 off = dest;
10535
10536 /* And this is where we are coming from. */
10537 off -= (stub_entry->stub_offset
10538 + stub_entry->stub_sec->output_offset
10539 + stub_entry->stub_sec->output_section->vma);
10540
10541 size = 4;
10542 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
10543 {
10544 bfd_vma r2off = get_r2off (info, stub_entry);
10545
10546 if (r2off == 0)
10547 {
10548 htab->stub_error = TRUE;
10549 return FALSE;
10550 }
10551 bfd_put_32 (htab->params->stub_bfd, STD_R2_0R1 + STK_TOC (htab), loc);
10552 loc += 4;
10553 size = 12;
10554 if (PPC_HA (r2off) != 0)
10555 {
10556 size = 16;
10557 bfd_put_32 (htab->params->stub_bfd,
10558 ADDIS_R2_R2 | PPC_HA (r2off), loc);
10559 loc += 4;
10560 }
10561 bfd_put_32 (htab->params->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
10562 loc += 4;
10563 off -= size - 4;
10564 }
10565 bfd_put_32 (htab->params->stub_bfd, B_DOT | (off & 0x3fffffc), loc);
10566
10567 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
10568 {
10569 info->callbacks->einfo
10570 (_("%P: long branch stub `%s' offset overflow\n"),
10571 stub_entry->root.string);
10572 htab->stub_error = TRUE;
10573 return FALSE;
10574 }
10575
10576 if (info->emitrelocations)
10577 {
10578 r = get_relocs (stub_entry->stub_sec, 1);
10579 if (r == NULL)
10580 return FALSE;
10581 r->r_offset = loc - stub_entry->stub_sec->contents;
10582 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
10583 r->r_addend = dest;
10584 if (stub_entry->h != NULL)
10585 {
10586 struct elf_link_hash_entry **hashes;
10587 unsigned long symndx;
10588 struct ppc_link_hash_entry *h;
10589
10590 hashes = elf_sym_hashes (htab->params->stub_bfd);
10591 if (hashes == NULL)
10592 {
10593 bfd_size_type hsize;
10594
10595 hsize = (htab->stub_globals + 1) * sizeof (*hashes);
10596 hashes = bfd_zalloc (htab->params->stub_bfd, hsize);
10597 if (hashes == NULL)
10598 return FALSE;
10599 elf_sym_hashes (htab->params->stub_bfd) = hashes;
10600 htab->stub_globals = 1;
10601 }
10602 symndx = htab->stub_globals++;
10603 h = stub_entry->h;
10604 hashes[symndx] = &h->elf;
10605 r->r_info = ELF64_R_INFO (symndx, R_PPC64_REL24);
10606 if (h->oh != NULL && h->oh->is_func)
10607 h = ppc_follow_link (h->oh);
10608 if (h->elf.root.u.def.section != stub_entry->target_section)
10609 /* H is an opd symbol. The addend must be zero. */
10610 r->r_addend = 0;
10611 else
10612 {
10613 off = (h->elf.root.u.def.value
10614 + h->elf.root.u.def.section->output_offset
10615 + h->elf.root.u.def.section->output_section->vma);
10616 r->r_addend -= off;
10617 }
10618 }
10619 }
10620 break;
10621
10622 case ppc_stub_plt_branch:
10623 case ppc_stub_plt_branch_r2off:
10624 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
10625 stub_entry->root.string + 9,
10626 FALSE, FALSE);
10627 if (br_entry == NULL)
10628 {
10629 info->callbacks->einfo (_("%P: can't find branch stub `%s'\n"),
10630 stub_entry->root.string);
10631 htab->stub_error = TRUE;
10632 return FALSE;
10633 }
10634
10635 dest = (stub_entry->target_value
10636 + stub_entry->target_section->output_offset
10637 + stub_entry->target_section->output_section->vma);
10638 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
10639 dest += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
10640
10641 bfd_put_64 (htab->brlt->owner, dest,
10642 htab->brlt->contents + br_entry->offset);
10643
10644 if (br_entry->iter == htab->stub_iteration)
10645 {
10646 br_entry->iter = 0;
10647
10648 if (htab->relbrlt != NULL)
10649 {
10650 /* Create a reloc for the branch lookup table entry. */
10651 Elf_Internal_Rela rela;
10652 bfd_byte *rl;
10653
10654 rela.r_offset = (br_entry->offset
10655 + htab->brlt->output_offset
10656 + htab->brlt->output_section->vma);
10657 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10658 rela.r_addend = dest;
10659
10660 rl = htab->relbrlt->contents;
10661 rl += (htab->relbrlt->reloc_count++
10662 * sizeof (Elf64_External_Rela));
10663 bfd_elf64_swap_reloca_out (htab->relbrlt->owner, &rela, rl);
10664 }
10665 else if (info->emitrelocations)
10666 {
10667 r = get_relocs (htab->brlt, 1);
10668 if (r == NULL)
10669 return FALSE;
10670 /* brlt, being SEC_LINKER_CREATED does not go through the
10671 normal reloc processing. Symbols and offsets are not
10672 translated from input file to output file form, so
10673 set up the offset per the output file. */
10674 r->r_offset = (br_entry->offset
10675 + htab->brlt->output_offset
10676 + htab->brlt->output_section->vma);
10677 r->r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10678 r->r_addend = dest;
10679 }
10680 }
10681
10682 dest = (br_entry->offset
10683 + htab->brlt->output_offset
10684 + htab->brlt->output_section->vma);
10685
10686 off = (dest
10687 - elf_gp (htab->brlt->output_section->owner)
10688 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10689
10690 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
10691 {
10692 info->callbacks->einfo
10693 (_("%P: linkage table error against `%T'\n"),
10694 stub_entry->root.string);
10695 bfd_set_error (bfd_error_bad_value);
10696 htab->stub_error = TRUE;
10697 return FALSE;
10698 }
10699
10700 if (info->emitrelocations)
10701 {
10702 r = get_relocs (stub_entry->stub_sec, 1 + (PPC_HA (off) != 0));
10703 if (r == NULL)
10704 return FALSE;
10705 r[0].r_offset = loc - stub_entry->stub_sec->contents;
10706 if (bfd_big_endian (info->output_bfd))
10707 r[0].r_offset += 2;
10708 if (stub_entry->stub_type == ppc_stub_plt_branch_r2off)
10709 r[0].r_offset += 4;
10710 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10711 r[0].r_addend = dest;
10712 if (PPC_HA (off) != 0)
10713 {
10714 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
10715 r[1].r_offset = r[0].r_offset + 4;
10716 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10717 r[1].r_addend = r[0].r_addend;
10718 }
10719 }
10720
10721 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
10722 {
10723 if (PPC_HA (off) != 0)
10724 {
10725 size = 16;
10726 bfd_put_32 (htab->params->stub_bfd,
10727 ADDIS_R12_R2 | PPC_HA (off), loc);
10728 loc += 4;
10729 bfd_put_32 (htab->params->stub_bfd,
10730 LD_R12_0R12 | PPC_LO (off), loc);
10731 }
10732 else
10733 {
10734 size = 12;
10735 bfd_put_32 (htab->params->stub_bfd,
10736 LD_R12_0R2 | PPC_LO (off), loc);
10737 }
10738 }
10739 else
10740 {
10741 bfd_vma r2off = get_r2off (info, stub_entry);
10742
10743 if (r2off == 0 && htab->opd_abi)
10744 {
10745 htab->stub_error = TRUE;
10746 return FALSE;
10747 }
10748
10749 bfd_put_32 (htab->params->stub_bfd, STD_R2_0R1 + STK_TOC (htab), loc);
10750 loc += 4;
10751 size = 16;
10752 if (PPC_HA (off) != 0)
10753 {
10754 size += 4;
10755 bfd_put_32 (htab->params->stub_bfd,
10756 ADDIS_R12_R2 | PPC_HA (off), loc);
10757 loc += 4;
10758 bfd_put_32 (htab->params->stub_bfd,
10759 LD_R12_0R12 | PPC_LO (off), loc);
10760 }
10761 else
10762 bfd_put_32 (htab->params->stub_bfd, LD_R12_0R2 | PPC_LO (off), loc);
10763
10764 if (PPC_HA (r2off) != 0)
10765 {
10766 size += 4;
10767 loc += 4;
10768 bfd_put_32 (htab->params->stub_bfd,
10769 ADDIS_R2_R2 | PPC_HA (r2off), loc);
10770 }
10771 if (PPC_LO (r2off) != 0)
10772 {
10773 size += 4;
10774 loc += 4;
10775 bfd_put_32 (htab->params->stub_bfd,
10776 ADDI_R2_R2 | PPC_LO (r2off), loc);
10777 }
10778 }
10779 loc += 4;
10780 bfd_put_32 (htab->params->stub_bfd, MTCTR_R12, loc);
10781 loc += 4;
10782 bfd_put_32 (htab->params->stub_bfd, BCTR, loc);
10783 break;
10784
10785 case ppc_stub_plt_call:
10786 case ppc_stub_plt_call_r2save:
10787 if (stub_entry->h != NULL
10788 && stub_entry->h->is_func_descriptor
10789 && stub_entry->h->oh != NULL)
10790 {
10791 struct ppc_link_hash_entry *fh = ppc_follow_link (stub_entry->h->oh);
10792
10793 /* If the old-ABI "dot-symbol" is undefined make it weak so
10794 we don't get a link error from RELOC_FOR_GLOBAL_SYMBOL.
10795 FIXME: We used to define the symbol on one of the call
10796 stubs instead, which is why we test symbol section id
10797 against htab->top_id in various places. Likely all
10798 these checks could now disappear. */
10799 if (fh->elf.root.type == bfd_link_hash_undefined)
10800 fh->elf.root.type = bfd_link_hash_undefweak;
10801 /* Stop undo_symbol_twiddle changing it back to undefined. */
10802 fh->was_undefined = 0;
10803 }
10804
10805 /* Now build the stub. */
10806 dest = stub_entry->plt_ent->plt.offset & ~1;
10807 if (dest >= (bfd_vma) -2)
10808 abort ();
10809
10810 plt = htab->elf.splt;
10811 if (!htab->elf.dynamic_sections_created
10812 || stub_entry->h == NULL
10813 || stub_entry->h->elf.dynindx == -1)
10814 plt = htab->elf.iplt;
10815
10816 dest += plt->output_offset + plt->output_section->vma;
10817
10818 if (stub_entry->h == NULL
10819 && (stub_entry->plt_ent->plt.offset & 1) == 0)
10820 {
10821 Elf_Internal_Rela rela;
10822 bfd_byte *rl;
10823
10824 rela.r_offset = dest;
10825 if (htab->opd_abi)
10826 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
10827 else
10828 rela.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
10829 rela.r_addend = (stub_entry->target_value
10830 + stub_entry->target_section->output_offset
10831 + stub_entry->target_section->output_section->vma);
10832
10833 rl = (htab->elf.irelplt->contents
10834 + (htab->elf.irelplt->reloc_count++
10835 * sizeof (Elf64_External_Rela)));
10836 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, rl);
10837 stub_entry->plt_ent->plt.offset |= 1;
10838 }
10839
10840 off = (dest
10841 - elf_gp (plt->output_section->owner)
10842 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10843
10844 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
10845 {
10846 info->callbacks->einfo
10847 (_("%P: linkage table error against `%T'\n"),
10848 stub_entry->h != NULL
10849 ? stub_entry->h->elf.root.root.string
10850 : "<local sym>");
10851 bfd_set_error (bfd_error_bad_value);
10852 htab->stub_error = TRUE;
10853 return FALSE;
10854 }
10855
10856 if (htab->params->plt_stub_align != 0)
10857 {
10858 unsigned pad = plt_stub_pad (htab, stub_entry, off);
10859
10860 stub_entry->stub_sec->size += pad;
10861 stub_entry->stub_offset = stub_entry->stub_sec->size;
10862 loc += pad;
10863 }
10864
10865 r = NULL;
10866 if (info->emitrelocations)
10867 {
10868 r = get_relocs (stub_entry->stub_sec,
10869 ((PPC_HA (off) != 0)
10870 + (htab->opd_abi
10871 ? 2 + (htab->params->plt_static_chain
10872 && PPC_HA (off + 16) == PPC_HA (off))
10873 : 1)));
10874 if (r == NULL)
10875 return FALSE;
10876 r[0].r_offset = loc - stub_entry->stub_sec->contents;
10877 if (bfd_big_endian (info->output_bfd))
10878 r[0].r_offset += 2;
10879 r[0].r_addend = dest;
10880 }
10881 if (stub_entry->h != NULL
10882 && (stub_entry->h == htab->tls_get_addr_fd
10883 || stub_entry->h == htab->tls_get_addr)
10884 && !htab->params->no_tls_get_addr_opt)
10885 p = build_tls_get_addr_stub (htab, stub_entry, loc, off, r);
10886 else
10887 p = build_plt_stub (htab, stub_entry, loc, off, r);
10888 size = p - loc;
10889 break;
10890
10891 default:
10892 BFD_FAIL ();
10893 return FALSE;
10894 }
10895
10896 stub_entry->stub_sec->size += size;
10897
10898 if (htab->params->emit_stub_syms)
10899 {
10900 struct elf_link_hash_entry *h;
10901 size_t len1, len2;
10902 char *name;
10903 const char *const stub_str[] = { "long_branch",
10904 "long_branch_r2off",
10905 "plt_branch",
10906 "plt_branch_r2off",
10907 "plt_call",
10908 "plt_call" };
10909
10910 len1 = strlen (stub_str[stub_entry->stub_type - 1]);
10911 len2 = strlen (stub_entry->root.string);
10912 name = bfd_malloc (len1 + len2 + 2);
10913 if (name == NULL)
10914 return FALSE;
10915 memcpy (name, stub_entry->root.string, 9);
10916 memcpy (name + 9, stub_str[stub_entry->stub_type - 1], len1);
10917 memcpy (name + len1 + 9, stub_entry->root.string + 8, len2 - 8 + 1);
10918 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
10919 if (h == NULL)
10920 return FALSE;
10921 if (h->root.type == bfd_link_hash_new)
10922 {
10923 h->root.type = bfd_link_hash_defined;
10924 h->root.u.def.section = stub_entry->stub_sec;
10925 h->root.u.def.value = stub_entry->stub_offset;
10926 h->ref_regular = 1;
10927 h->def_regular = 1;
10928 h->ref_regular_nonweak = 1;
10929 h->forced_local = 1;
10930 h->non_elf = 0;
10931 }
10932 }
10933
10934 return TRUE;
10935 }
10936
10937 /* As above, but don't actually build the stub. Just bump offset so
10938 we know stub section sizes, and select plt_branch stubs where
10939 long_branch stubs won't do. */
10940
10941 static bfd_boolean
10942 ppc_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
10943 {
10944 struct ppc_stub_hash_entry *stub_entry;
10945 struct bfd_link_info *info;
10946 struct ppc_link_hash_table *htab;
10947 bfd_vma off;
10948 int size;
10949
10950 /* Massage our args to the form they really have. */
10951 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
10952 info = in_arg;
10953
10954 htab = ppc_hash_table (info);
10955 if (htab == NULL)
10956 return FALSE;
10957
10958 if (stub_entry->stub_type == ppc_stub_plt_call
10959 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10960 {
10961 asection *plt;
10962 off = stub_entry->plt_ent->plt.offset & ~(bfd_vma) 1;
10963 if (off >= (bfd_vma) -2)
10964 abort ();
10965 plt = htab->elf.splt;
10966 if (!htab->elf.dynamic_sections_created
10967 || stub_entry->h == NULL
10968 || stub_entry->h->elf.dynindx == -1)
10969 plt = htab->elf.iplt;
10970 off += (plt->output_offset
10971 + plt->output_section->vma
10972 - elf_gp (plt->output_section->owner)
10973 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10974
10975 size = plt_stub_size (htab, stub_entry, off);
10976 if (htab->params->plt_stub_align)
10977 size += plt_stub_pad (htab, stub_entry, off);
10978 if (info->emitrelocations)
10979 {
10980 stub_entry->stub_sec->reloc_count
10981 += ((PPC_HA (off) != 0)
10982 + (htab->opd_abi
10983 ? 2 + (htab->params->plt_static_chain
10984 && PPC_HA (off + 16) == PPC_HA (off))
10985 : 1));
10986 stub_entry->stub_sec->flags |= SEC_RELOC;
10987 }
10988 }
10989 else
10990 {
10991 /* ppc_stub_long_branch or ppc_stub_plt_branch, or their r2off
10992 variants. */
10993 bfd_vma r2off = 0;
10994 bfd_vma local_off = 0;
10995
10996 off = (stub_entry->target_value
10997 + stub_entry->target_section->output_offset
10998 + stub_entry->target_section->output_section->vma);
10999 off -= (stub_entry->stub_sec->size
11000 + stub_entry->stub_sec->output_offset
11001 + stub_entry->stub_sec->output_section->vma);
11002
11003 /* Reset the stub type from the plt variant in case we now
11004 can reach with a shorter stub. */
11005 if (stub_entry->stub_type >= ppc_stub_plt_branch)
11006 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
11007
11008 size = 4;
11009 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
11010 {
11011 r2off = get_r2off (info, stub_entry);
11012 if (r2off == 0 && htab->opd_abi)
11013 {
11014 htab->stub_error = TRUE;
11015 return FALSE;
11016 }
11017 size = 12;
11018 if (PPC_HA (r2off) != 0)
11019 size = 16;
11020 off -= size - 4;
11021 }
11022
11023 local_off = PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
11024
11025 /* If the branch offset if too big, use a ppc_stub_plt_branch.
11026 Do the same for -R objects without function descriptors. */
11027 if (off + (1 << 25) >= (bfd_vma) (1 << 26) - local_off
11028 || (stub_entry->stub_type == ppc_stub_long_branch_r2off
11029 && r2off == 0))
11030 {
11031 struct ppc_branch_hash_entry *br_entry;
11032
11033 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
11034 stub_entry->root.string + 9,
11035 TRUE, FALSE);
11036 if (br_entry == NULL)
11037 {
11038 info->callbacks->einfo (_("%P: can't build branch stub `%s'\n"),
11039 stub_entry->root.string);
11040 htab->stub_error = TRUE;
11041 return FALSE;
11042 }
11043
11044 if (br_entry->iter != htab->stub_iteration)
11045 {
11046 br_entry->iter = htab->stub_iteration;
11047 br_entry->offset = htab->brlt->size;
11048 htab->brlt->size += 8;
11049
11050 if (htab->relbrlt != NULL)
11051 htab->relbrlt->size += sizeof (Elf64_External_Rela);
11052 else if (info->emitrelocations)
11053 {
11054 htab->brlt->reloc_count += 1;
11055 htab->brlt->flags |= SEC_RELOC;
11056 }
11057 }
11058
11059 stub_entry->stub_type += ppc_stub_plt_branch - ppc_stub_long_branch;
11060 off = (br_entry->offset
11061 + htab->brlt->output_offset
11062 + htab->brlt->output_section->vma
11063 - elf_gp (htab->brlt->output_section->owner)
11064 - htab->stub_group[stub_entry->id_sec->id].toc_off);
11065
11066 if (info->emitrelocations)
11067 {
11068 stub_entry->stub_sec->reloc_count += 1 + (PPC_HA (off) != 0);
11069 stub_entry->stub_sec->flags |= SEC_RELOC;
11070 }
11071
11072 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
11073 {
11074 size = 12;
11075 if (PPC_HA (off) != 0)
11076 size = 16;
11077 }
11078 else
11079 {
11080 size = 16;
11081 if (PPC_HA (off) != 0)
11082 size += 4;
11083
11084 if (PPC_HA (r2off) != 0)
11085 size += 4;
11086 if (PPC_LO (r2off) != 0)
11087 size += 4;
11088 }
11089 }
11090 else if (info->emitrelocations)
11091 {
11092 stub_entry->stub_sec->reloc_count += 1;
11093 stub_entry->stub_sec->flags |= SEC_RELOC;
11094 }
11095 }
11096
11097 stub_entry->stub_sec->size += size;
11098 return TRUE;
11099 }
11100
11101 /* Set up various things so that we can make a list of input sections
11102 for each output section included in the link. Returns -1 on error,
11103 0 when no stubs will be needed, and 1 on success. */
11104
11105 int
11106 ppc64_elf_setup_section_lists (struct bfd_link_info *info)
11107 {
11108 bfd *input_bfd;
11109 int top_id, top_index, id;
11110 asection *section;
11111 asection **input_list;
11112 bfd_size_type amt;
11113 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11114
11115 if (htab == NULL)
11116 return -1;
11117
11118 /* Find the top input section id. */
11119 for (input_bfd = info->input_bfds, top_id = 3;
11120 input_bfd != NULL;
11121 input_bfd = input_bfd->link.next)
11122 {
11123 for (section = input_bfd->sections;
11124 section != NULL;
11125 section = section->next)
11126 {
11127 if (top_id < section->id)
11128 top_id = section->id;
11129 }
11130 }
11131
11132 htab->top_id = top_id;
11133 amt = sizeof (struct map_stub) * (top_id + 1);
11134 htab->stub_group = bfd_zmalloc (amt);
11135 if (htab->stub_group == NULL)
11136 return -1;
11137
11138 /* Set toc_off for com, und, abs and ind sections. */
11139 for (id = 0; id < 3; id++)
11140 htab->stub_group[id].toc_off = TOC_BASE_OFF;
11141
11142 /* We can't use output_bfd->section_count here to find the top output
11143 section index as some sections may have been removed, and
11144 strip_excluded_output_sections doesn't renumber the indices. */
11145 for (section = info->output_bfd->sections, top_index = 0;
11146 section != NULL;
11147 section = section->next)
11148 {
11149 if (top_index < section->index)
11150 top_index = section->index;
11151 }
11152
11153 htab->top_index = top_index;
11154 amt = sizeof (asection *) * (top_index + 1);
11155 input_list = bfd_zmalloc (amt);
11156 htab->input_list = input_list;
11157 if (input_list == NULL)
11158 return -1;
11159
11160 return 1;
11161 }
11162
11163 /* Set up for first pass at multitoc partitioning. */
11164
11165 void
11166 ppc64_elf_start_multitoc_partition (struct bfd_link_info *info)
11167 {
11168 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11169
11170 htab->toc_curr = ppc64_elf_set_toc (info, info->output_bfd);
11171 htab->toc_bfd = NULL;
11172 htab->toc_first_sec = NULL;
11173 }
11174
11175 /* The linker repeatedly calls this function for each TOC input section
11176 and linker generated GOT section. Group input bfds such that the toc
11177 within a group is less than 64k in size. */
11178
11179 bfd_boolean
11180 ppc64_elf_next_toc_section (struct bfd_link_info *info, asection *isec)
11181 {
11182 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11183 bfd_vma addr, off, limit;
11184
11185 if (htab == NULL)
11186 return FALSE;
11187
11188 if (!htab->second_toc_pass)
11189 {
11190 /* Keep track of the first .toc or .got section for this input bfd. */
11191 bfd_boolean new_bfd = htab->toc_bfd != isec->owner;
11192
11193 if (new_bfd)
11194 {
11195 htab->toc_bfd = isec->owner;
11196 htab->toc_first_sec = isec;
11197 }
11198
11199 addr = isec->output_offset + isec->output_section->vma;
11200 off = addr - htab->toc_curr;
11201 limit = 0x80008000;
11202 if (ppc64_elf_tdata (isec->owner)->has_small_toc_reloc)
11203 limit = 0x10000;
11204 if (off + isec->size > limit)
11205 {
11206 addr = (htab->toc_first_sec->output_offset
11207 + htab->toc_first_sec->output_section->vma);
11208 htab->toc_curr = addr;
11209 }
11210
11211 /* toc_curr is the base address of this toc group. Set elf_gp
11212 for the input section to be the offset relative to the
11213 output toc base plus 0x8000. Making the input elf_gp an
11214 offset allows us to move the toc as a whole without
11215 recalculating input elf_gp. */
11216 off = htab->toc_curr - elf_gp (isec->output_section->owner);
11217 off += TOC_BASE_OFF;
11218
11219 /* Die if someone uses a linker script that doesn't keep input
11220 file .toc and .got together. */
11221 if (new_bfd
11222 && elf_gp (isec->owner) != 0
11223 && elf_gp (isec->owner) != off)
11224 return FALSE;
11225
11226 elf_gp (isec->owner) = off;
11227 return TRUE;
11228 }
11229
11230 /* During the second pass toc_first_sec points to the start of
11231 a toc group, and toc_curr is used to track the old elf_gp.
11232 We use toc_bfd to ensure we only look at each bfd once. */
11233 if (htab->toc_bfd == isec->owner)
11234 return TRUE;
11235 htab->toc_bfd = isec->owner;
11236
11237 if (htab->toc_first_sec == NULL
11238 || htab->toc_curr != elf_gp (isec->owner))
11239 {
11240 htab->toc_curr = elf_gp (isec->owner);
11241 htab->toc_first_sec = isec;
11242 }
11243 addr = (htab->toc_first_sec->output_offset
11244 + htab->toc_first_sec->output_section->vma);
11245 off = addr - elf_gp (isec->output_section->owner) + TOC_BASE_OFF;
11246 elf_gp (isec->owner) = off;
11247
11248 return TRUE;
11249 }
11250
11251 /* Called via elf_link_hash_traverse to merge GOT entries for global
11252 symbol H. */
11253
11254 static bfd_boolean
11255 merge_global_got (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
11256 {
11257 if (h->root.type == bfd_link_hash_indirect)
11258 return TRUE;
11259
11260 merge_got_entries (&h->got.glist);
11261
11262 return TRUE;
11263 }
11264
11265 /* Called via elf_link_hash_traverse to allocate GOT entries for global
11266 symbol H. */
11267
11268 static bfd_boolean
11269 reallocate_got (struct elf_link_hash_entry *h, void *inf)
11270 {
11271 struct got_entry *gent;
11272
11273 if (h->root.type == bfd_link_hash_indirect)
11274 return TRUE;
11275
11276 for (gent = h->got.glist; gent != NULL; gent = gent->next)
11277 if (!gent->is_indirect)
11278 allocate_got (h, (struct bfd_link_info *) inf, gent);
11279 return TRUE;
11280 }
11281
11282 /* Called on the first multitoc pass after the last call to
11283 ppc64_elf_next_toc_section. This function removes duplicate GOT
11284 entries. */
11285
11286 bfd_boolean
11287 ppc64_elf_layout_multitoc (struct bfd_link_info *info)
11288 {
11289 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11290 struct bfd *ibfd, *ibfd2;
11291 bfd_boolean done_something;
11292
11293 htab->multi_toc_needed = htab->toc_curr != elf_gp (info->output_bfd);
11294
11295 if (!htab->do_multi_toc)
11296 return FALSE;
11297
11298 /* Merge global sym got entries within a toc group. */
11299 elf_link_hash_traverse (&htab->elf, merge_global_got, info);
11300
11301 /* And tlsld_got. */
11302 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11303 {
11304 struct got_entry *ent, *ent2;
11305
11306 if (!is_ppc64_elf (ibfd))
11307 continue;
11308
11309 ent = ppc64_tlsld_got (ibfd);
11310 if (!ent->is_indirect
11311 && ent->got.offset != (bfd_vma) -1)
11312 {
11313 for (ibfd2 = ibfd->link.next; ibfd2 != NULL; ibfd2 = ibfd2->link.next)
11314 {
11315 if (!is_ppc64_elf (ibfd2))
11316 continue;
11317
11318 ent2 = ppc64_tlsld_got (ibfd2);
11319 if (!ent2->is_indirect
11320 && ent2->got.offset != (bfd_vma) -1
11321 && elf_gp (ibfd2) == elf_gp (ibfd))
11322 {
11323 ent2->is_indirect = TRUE;
11324 ent2->got.ent = ent;
11325 }
11326 }
11327 }
11328 }
11329
11330 /* Zap sizes of got sections. */
11331 htab->elf.irelplt->rawsize = htab->elf.irelplt->size;
11332 htab->elf.irelplt->size -= htab->got_reli_size;
11333 htab->got_reli_size = 0;
11334
11335 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11336 {
11337 asection *got, *relgot;
11338
11339 if (!is_ppc64_elf (ibfd))
11340 continue;
11341
11342 got = ppc64_elf_tdata (ibfd)->got;
11343 if (got != NULL)
11344 {
11345 got->rawsize = got->size;
11346 got->size = 0;
11347 relgot = ppc64_elf_tdata (ibfd)->relgot;
11348 relgot->rawsize = relgot->size;
11349 relgot->size = 0;
11350 }
11351 }
11352
11353 /* Now reallocate the got, local syms first. We don't need to
11354 allocate section contents again since we never increase size. */
11355 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11356 {
11357 struct got_entry **lgot_ents;
11358 struct got_entry **end_lgot_ents;
11359 struct plt_entry **local_plt;
11360 struct plt_entry **end_local_plt;
11361 unsigned char *lgot_masks;
11362 bfd_size_type locsymcount;
11363 Elf_Internal_Shdr *symtab_hdr;
11364 asection *s;
11365
11366 if (!is_ppc64_elf (ibfd))
11367 continue;
11368
11369 lgot_ents = elf_local_got_ents (ibfd);
11370 if (!lgot_ents)
11371 continue;
11372
11373 symtab_hdr = &elf_symtab_hdr (ibfd);
11374 locsymcount = symtab_hdr->sh_info;
11375 end_lgot_ents = lgot_ents + locsymcount;
11376 local_plt = (struct plt_entry **) end_lgot_ents;
11377 end_local_plt = local_plt + locsymcount;
11378 lgot_masks = (unsigned char *) end_local_plt;
11379 s = ppc64_elf_tdata (ibfd)->got;
11380 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
11381 {
11382 struct got_entry *ent;
11383
11384 for (ent = *lgot_ents; ent != NULL; ent = ent->next)
11385 {
11386 unsigned int ent_size = 8;
11387 unsigned int rel_size = sizeof (Elf64_External_Rela);
11388
11389 ent->got.offset = s->size;
11390 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
11391 {
11392 ent_size *= 2;
11393 rel_size *= 2;
11394 }
11395 s->size += ent_size;
11396 if ((*lgot_masks & PLT_IFUNC) != 0)
11397 {
11398 htab->elf.irelplt->size += rel_size;
11399 htab->got_reli_size += rel_size;
11400 }
11401 else if (info->shared)
11402 {
11403 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
11404 srel->size += rel_size;
11405 }
11406 }
11407 }
11408 }
11409
11410 elf_link_hash_traverse (&htab->elf, reallocate_got, info);
11411
11412 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11413 {
11414 struct got_entry *ent;
11415
11416 if (!is_ppc64_elf (ibfd))
11417 continue;
11418
11419 ent = ppc64_tlsld_got (ibfd);
11420 if (!ent->is_indirect
11421 && ent->got.offset != (bfd_vma) -1)
11422 {
11423 asection *s = ppc64_elf_tdata (ibfd)->got;
11424 ent->got.offset = s->size;
11425 s->size += 16;
11426 if (info->shared)
11427 {
11428 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
11429 srel->size += sizeof (Elf64_External_Rela);
11430 }
11431 }
11432 }
11433
11434 done_something = htab->elf.irelplt->rawsize != htab->elf.irelplt->size;
11435 if (!done_something)
11436 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11437 {
11438 asection *got;
11439
11440 if (!is_ppc64_elf (ibfd))
11441 continue;
11442
11443 got = ppc64_elf_tdata (ibfd)->got;
11444 if (got != NULL)
11445 {
11446 done_something = got->rawsize != got->size;
11447 if (done_something)
11448 break;
11449 }
11450 }
11451
11452 if (done_something)
11453 (*htab->params->layout_sections_again) ();
11454
11455 /* Set up for second pass over toc sections to recalculate elf_gp
11456 on input sections. */
11457 htab->toc_bfd = NULL;
11458 htab->toc_first_sec = NULL;
11459 htab->second_toc_pass = TRUE;
11460 return done_something;
11461 }
11462
11463 /* Called after second pass of multitoc partitioning. */
11464
11465 void
11466 ppc64_elf_finish_multitoc_partition (struct bfd_link_info *info)
11467 {
11468 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11469
11470 /* After the second pass, toc_curr tracks the TOC offset used
11471 for code sections below in ppc64_elf_next_input_section. */
11472 htab->toc_curr = TOC_BASE_OFF;
11473 }
11474
11475 /* No toc references were found in ISEC. If the code in ISEC makes no
11476 calls, then there's no need to use toc adjusting stubs when branching
11477 into ISEC. Actually, indirect calls from ISEC are OK as they will
11478 load r2. Returns -1 on error, 0 for no stub needed, 1 for stub
11479 needed, and 2 if a cyclical call-graph was found but no other reason
11480 for a stub was detected. If called from the top level, a return of
11481 2 means the same as a return of 0. */
11482
11483 static int
11484 toc_adjusting_stub_needed (struct bfd_link_info *info, asection *isec)
11485 {
11486 int ret;
11487
11488 /* Mark this section as checked. */
11489 isec->call_check_done = 1;
11490
11491 /* We know none of our code bearing sections will need toc stubs. */
11492 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11493 return 0;
11494
11495 if (isec->size == 0)
11496 return 0;
11497
11498 if (isec->output_section == NULL)
11499 return 0;
11500
11501 ret = 0;
11502 if (isec->reloc_count != 0)
11503 {
11504 Elf_Internal_Rela *relstart, *rel;
11505 Elf_Internal_Sym *local_syms;
11506 struct ppc_link_hash_table *htab;
11507
11508 relstart = _bfd_elf_link_read_relocs (isec->owner, isec, NULL, NULL,
11509 info->keep_memory);
11510 if (relstart == NULL)
11511 return -1;
11512
11513 /* Look for branches to outside of this section. */
11514 local_syms = NULL;
11515 htab = ppc_hash_table (info);
11516 if (htab == NULL)
11517 return -1;
11518
11519 for (rel = relstart; rel < relstart + isec->reloc_count; ++rel)
11520 {
11521 enum elf_ppc64_reloc_type r_type;
11522 unsigned long r_symndx;
11523 struct elf_link_hash_entry *h;
11524 struct ppc_link_hash_entry *eh;
11525 Elf_Internal_Sym *sym;
11526 asection *sym_sec;
11527 struct _opd_sec_data *opd;
11528 bfd_vma sym_value;
11529 bfd_vma dest;
11530
11531 r_type = ELF64_R_TYPE (rel->r_info);
11532 if (r_type != R_PPC64_REL24
11533 && r_type != R_PPC64_REL14
11534 && r_type != R_PPC64_REL14_BRTAKEN
11535 && r_type != R_PPC64_REL14_BRNTAKEN)
11536 continue;
11537
11538 r_symndx = ELF64_R_SYM (rel->r_info);
11539 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, r_symndx,
11540 isec->owner))
11541 {
11542 ret = -1;
11543 break;
11544 }
11545
11546 /* Calls to dynamic lib functions go through a plt call stub
11547 that uses r2. */
11548 eh = (struct ppc_link_hash_entry *) h;
11549 if (eh != NULL
11550 && (eh->elf.plt.plist != NULL
11551 || (eh->oh != NULL
11552 && ppc_follow_link (eh->oh)->elf.plt.plist != NULL)))
11553 {
11554 ret = 1;
11555 break;
11556 }
11557
11558 if (sym_sec == NULL)
11559 /* Ignore other undefined symbols. */
11560 continue;
11561
11562 /* Assume branches to other sections not included in the
11563 link need stubs too, to cover -R and absolute syms. */
11564 if (sym_sec->output_section == NULL)
11565 {
11566 ret = 1;
11567 break;
11568 }
11569
11570 if (h == NULL)
11571 sym_value = sym->st_value;
11572 else
11573 {
11574 if (h->root.type != bfd_link_hash_defined
11575 && h->root.type != bfd_link_hash_defweak)
11576 abort ();
11577 sym_value = h->root.u.def.value;
11578 }
11579 sym_value += rel->r_addend;
11580
11581 /* If this branch reloc uses an opd sym, find the code section. */
11582 opd = get_opd_info (sym_sec);
11583 if (opd != NULL)
11584 {
11585 if (h == NULL && opd->adjust != NULL)
11586 {
11587 long adjust;
11588
11589 adjust = opd->adjust[sym->st_value / 8];
11590 if (adjust == -1)
11591 /* Assume deleted functions won't ever be called. */
11592 continue;
11593 sym_value += adjust;
11594 }
11595
11596 dest = opd_entry_value (sym_sec, sym_value,
11597 &sym_sec, NULL, FALSE);
11598 if (dest == (bfd_vma) -1)
11599 continue;
11600 }
11601 else
11602 dest = (sym_value
11603 + sym_sec->output_offset
11604 + sym_sec->output_section->vma);
11605
11606 /* Ignore branch to self. */
11607 if (sym_sec == isec)
11608 continue;
11609
11610 /* If the called function uses the toc, we need a stub. */
11611 if (sym_sec->has_toc_reloc
11612 || sym_sec->makes_toc_func_call)
11613 {
11614 ret = 1;
11615 break;
11616 }
11617
11618 /* Assume any branch that needs a long branch stub might in fact
11619 need a plt_branch stub. A plt_branch stub uses r2. */
11620 else if (dest - (isec->output_offset
11621 + isec->output_section->vma
11622 + rel->r_offset) + (1 << 25)
11623 >= (2u << 25) - PPC64_LOCAL_ENTRY_OFFSET (h
11624 ? h->other
11625 : sym->st_other))
11626 {
11627 ret = 1;
11628 break;
11629 }
11630
11631 /* If calling back to a section in the process of being
11632 tested, we can't say for sure that no toc adjusting stubs
11633 are needed, so don't return zero. */
11634 else if (sym_sec->call_check_in_progress)
11635 ret = 2;
11636
11637 /* Branches to another section that itself doesn't have any TOC
11638 references are OK. Recursively call ourselves to check. */
11639 else if (!sym_sec->call_check_done)
11640 {
11641 int recur;
11642
11643 /* Mark current section as indeterminate, so that other
11644 sections that call back to current won't be marked as
11645 known. */
11646 isec->call_check_in_progress = 1;
11647 recur = toc_adjusting_stub_needed (info, sym_sec);
11648 isec->call_check_in_progress = 0;
11649
11650 if (recur != 0)
11651 {
11652 ret = recur;
11653 if (recur != 2)
11654 break;
11655 }
11656 }
11657 }
11658
11659 if (local_syms != NULL
11660 && (elf_symtab_hdr (isec->owner).contents
11661 != (unsigned char *) local_syms))
11662 free (local_syms);
11663 if (elf_section_data (isec)->relocs != relstart)
11664 free (relstart);
11665 }
11666
11667 if ((ret & 1) == 0
11668 && isec->map_head.s != NULL
11669 && (strcmp (isec->output_section->name, ".init") == 0
11670 || strcmp (isec->output_section->name, ".fini") == 0))
11671 {
11672 if (isec->map_head.s->has_toc_reloc
11673 || isec->map_head.s->makes_toc_func_call)
11674 ret = 1;
11675 else if (!isec->map_head.s->call_check_done)
11676 {
11677 int recur;
11678 isec->call_check_in_progress = 1;
11679 recur = toc_adjusting_stub_needed (info, isec->map_head.s);
11680 isec->call_check_in_progress = 0;
11681 if (recur != 0)
11682 ret = recur;
11683 }
11684 }
11685
11686 if (ret == 1)
11687 isec->makes_toc_func_call = 1;
11688
11689 return ret;
11690 }
11691
11692 /* The linker repeatedly calls this function for each input section,
11693 in the order that input sections are linked into output sections.
11694 Build lists of input sections to determine groupings between which
11695 we may insert linker stubs. */
11696
11697 bfd_boolean
11698 ppc64_elf_next_input_section (struct bfd_link_info *info, asection *isec)
11699 {
11700 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11701
11702 if (htab == NULL)
11703 return FALSE;
11704
11705 if ((isec->output_section->flags & SEC_CODE) != 0
11706 && isec->output_section->index <= htab->top_index)
11707 {
11708 asection **list = htab->input_list + isec->output_section->index;
11709 /* Steal the link_sec pointer for our list. */
11710 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
11711 /* This happens to make the list in reverse order,
11712 which is what we want. */
11713 PREV_SEC (isec) = *list;
11714 *list = isec;
11715 }
11716
11717 if (htab->multi_toc_needed)
11718 {
11719 /* Analyse sections that aren't already flagged as needing a
11720 valid toc pointer. Exclude .fixup for the linux kernel.
11721 .fixup contains branches, but only back to the function that
11722 hit an exception. */
11723 if (!(isec->has_toc_reloc
11724 || (isec->flags & SEC_CODE) == 0
11725 || strcmp (isec->name, ".fixup") == 0
11726 || isec->call_check_done))
11727 {
11728 if (toc_adjusting_stub_needed (info, isec) < 0)
11729 return FALSE;
11730 }
11731 /* Make all sections use the TOC assigned for this object file.
11732 This will be wrong for pasted sections; We fix that in
11733 check_pasted_section(). */
11734 if (elf_gp (isec->owner) != 0)
11735 htab->toc_curr = elf_gp (isec->owner);
11736 }
11737
11738 htab->stub_group[isec->id].toc_off = htab->toc_curr;
11739 return TRUE;
11740 }
11741
11742 /* Check that all .init and .fini sections use the same toc, if they
11743 have toc relocs. */
11744
11745 static bfd_boolean
11746 check_pasted_section (struct bfd_link_info *info, const char *name)
11747 {
11748 asection *o = bfd_get_section_by_name (info->output_bfd, name);
11749
11750 if (o != NULL)
11751 {
11752 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11753 bfd_vma toc_off = 0;
11754 asection *i;
11755
11756 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11757 if (i->has_toc_reloc)
11758 {
11759 if (toc_off == 0)
11760 toc_off = htab->stub_group[i->id].toc_off;
11761 else if (toc_off != htab->stub_group[i->id].toc_off)
11762 return FALSE;
11763 }
11764
11765 if (toc_off == 0)
11766 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11767 if (i->makes_toc_func_call)
11768 {
11769 toc_off = htab->stub_group[i->id].toc_off;
11770 break;
11771 }
11772
11773 /* Make sure the whole pasted function uses the same toc offset. */
11774 if (toc_off != 0)
11775 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11776 htab->stub_group[i->id].toc_off = toc_off;
11777 }
11778 return TRUE;
11779 }
11780
11781 bfd_boolean
11782 ppc64_elf_check_init_fini (struct bfd_link_info *info)
11783 {
11784 return (check_pasted_section (info, ".init")
11785 & check_pasted_section (info, ".fini"));
11786 }
11787
11788 /* See whether we can group stub sections together. Grouping stub
11789 sections may result in fewer stubs. More importantly, we need to
11790 put all .init* and .fini* stubs at the beginning of the .init or
11791 .fini output sections respectively, because glibc splits the
11792 _init and _fini functions into multiple parts. Putting a stub in
11793 the middle of a function is not a good idea. */
11794
11795 static void
11796 group_sections (struct ppc_link_hash_table *htab,
11797 bfd_size_type stub_group_size,
11798 bfd_boolean stubs_always_before_branch)
11799 {
11800 asection **list;
11801 bfd_size_type stub14_group_size;
11802 bfd_boolean suppress_size_errors;
11803
11804 suppress_size_errors = FALSE;
11805 stub14_group_size = stub_group_size;
11806 if (stub_group_size == 1)
11807 {
11808 /* Default values. */
11809 if (stubs_always_before_branch)
11810 {
11811 stub_group_size = 0x1e00000;
11812 stub14_group_size = 0x7800;
11813 }
11814 else
11815 {
11816 stub_group_size = 0x1c00000;
11817 stub14_group_size = 0x7000;
11818 }
11819 suppress_size_errors = TRUE;
11820 }
11821
11822 list = htab->input_list + htab->top_index;
11823 do
11824 {
11825 asection *tail = *list;
11826 while (tail != NULL)
11827 {
11828 asection *curr;
11829 asection *prev;
11830 bfd_size_type total;
11831 bfd_boolean big_sec;
11832 bfd_vma curr_toc;
11833
11834 curr = tail;
11835 total = tail->size;
11836 big_sec = total > (ppc64_elf_section_data (tail) != NULL
11837 && ppc64_elf_section_data (tail)->has_14bit_branch
11838 ? stub14_group_size : stub_group_size);
11839 if (big_sec && !suppress_size_errors)
11840 (*_bfd_error_handler) (_("%B section %A exceeds stub group size"),
11841 tail->owner, tail);
11842 curr_toc = htab->stub_group[tail->id].toc_off;
11843
11844 while ((prev = PREV_SEC (curr)) != NULL
11845 && ((total += curr->output_offset - prev->output_offset)
11846 < (ppc64_elf_section_data (prev) != NULL
11847 && ppc64_elf_section_data (prev)->has_14bit_branch
11848 ? stub14_group_size : stub_group_size))
11849 && htab->stub_group[prev->id].toc_off == curr_toc)
11850 curr = prev;
11851
11852 /* OK, the size from the start of CURR to the end is less
11853 than stub_group_size and thus can be handled by one stub
11854 section. (or the tail section is itself larger than
11855 stub_group_size, in which case we may be toast.) We
11856 should really be keeping track of the total size of stubs
11857 added here, as stubs contribute to the final output
11858 section size. That's a little tricky, and this way will
11859 only break if stubs added make the total size more than
11860 2^25, ie. for the default stub_group_size, if stubs total
11861 more than 2097152 bytes, or nearly 75000 plt call stubs. */
11862 do
11863 {
11864 prev = PREV_SEC (tail);
11865 /* Set up this stub group. */
11866 htab->stub_group[tail->id].link_sec = curr;
11867 }
11868 while (tail != curr && (tail = prev) != NULL);
11869
11870 /* But wait, there's more! Input sections up to stub_group_size
11871 bytes before the stub section can be handled by it too.
11872 Don't do this if we have a really large section after the
11873 stubs, as adding more stubs increases the chance that
11874 branches may not reach into the stub section. */
11875 if (!stubs_always_before_branch && !big_sec)
11876 {
11877 total = 0;
11878 while (prev != NULL
11879 && ((total += tail->output_offset - prev->output_offset)
11880 < (ppc64_elf_section_data (prev) != NULL
11881 && ppc64_elf_section_data (prev)->has_14bit_branch
11882 ? stub14_group_size : stub_group_size))
11883 && htab->stub_group[prev->id].toc_off == curr_toc)
11884 {
11885 tail = prev;
11886 prev = PREV_SEC (tail);
11887 htab->stub_group[tail->id].link_sec = curr;
11888 }
11889 }
11890 tail = prev;
11891 }
11892 }
11893 while (list-- != htab->input_list);
11894 free (htab->input_list);
11895 #undef PREV_SEC
11896 }
11897
11898 static const unsigned char glink_eh_frame_cie[] =
11899 {
11900 0, 0, 0, 16, /* length. */
11901 0, 0, 0, 0, /* id. */
11902 1, /* CIE version. */
11903 'z', 'R', 0, /* Augmentation string. */
11904 4, /* Code alignment. */
11905 0x78, /* Data alignment. */
11906 65, /* RA reg. */
11907 1, /* Augmentation size. */
11908 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding. */
11909 DW_CFA_def_cfa, 1, 0, /* def_cfa: r1 offset 0. */
11910 0, 0, 0, 0
11911 };
11912
11913 /* Stripping output sections is normally done before dynamic section
11914 symbols have been allocated. This function is called later, and
11915 handles cases like htab->brlt which is mapped to its own output
11916 section. */
11917
11918 static void
11919 maybe_strip_output (struct bfd_link_info *info, asection *isec)
11920 {
11921 if (isec->size == 0
11922 && isec->output_section->size == 0
11923 && !(isec->output_section->flags & SEC_KEEP)
11924 && !bfd_section_removed_from_list (info->output_bfd,
11925 isec->output_section)
11926 && elf_section_data (isec->output_section)->dynindx == 0)
11927 {
11928 isec->output_section->flags |= SEC_EXCLUDE;
11929 bfd_section_list_remove (info->output_bfd, isec->output_section);
11930 info->output_bfd->section_count--;
11931 }
11932 }
11933
11934 /* Determine and set the size of the stub section for a final link.
11935
11936 The basic idea here is to examine all the relocations looking for
11937 PC-relative calls to a target that is unreachable with a "bl"
11938 instruction. */
11939
11940 bfd_boolean
11941 ppc64_elf_size_stubs (struct bfd_link_info *info)
11942 {
11943 bfd_size_type stub_group_size;
11944 bfd_boolean stubs_always_before_branch;
11945 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11946
11947 if (htab == NULL)
11948 return FALSE;
11949
11950 if (htab->params->plt_thread_safe == -1 && !info->executable)
11951 htab->params->plt_thread_safe = 1;
11952 if (!htab->opd_abi)
11953 htab->params->plt_thread_safe = 0;
11954 else if (htab->params->plt_thread_safe == -1)
11955 {
11956 static const char *const thread_starter[] =
11957 {
11958 "pthread_create",
11959 /* libstdc++ */
11960 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
11961 /* librt */
11962 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
11963 "mq_notify", "create_timer",
11964 /* libanl */
11965 "getaddrinfo_a",
11966 /* libgomp */
11967 "GOMP_parallel",
11968 "GOMP_parallel_start",
11969 "GOMP_parallel_loop_static",
11970 "GOMP_parallel_loop_static_start",
11971 "GOMP_parallel_loop_dynamic",
11972 "GOMP_parallel_loop_dynamic_start",
11973 "GOMP_parallel_loop_guided",
11974 "GOMP_parallel_loop_guided_start",
11975 "GOMP_parallel_loop_runtime",
11976 "GOMP_parallel_loop_runtime_start",
11977 "GOMP_parallel_sections",
11978 "GOMP_parallel_sections_start",
11979 };
11980 unsigned i;
11981
11982 for (i = 0; i < sizeof (thread_starter)/ sizeof (thread_starter[0]); i++)
11983 {
11984 struct elf_link_hash_entry *h;
11985 h = elf_link_hash_lookup (&htab->elf, thread_starter[i],
11986 FALSE, FALSE, TRUE);
11987 htab->params->plt_thread_safe = h != NULL && h->ref_regular;
11988 if (htab->params->plt_thread_safe)
11989 break;
11990 }
11991 }
11992 stubs_always_before_branch = htab->params->group_size < 0;
11993 if (htab->params->group_size < 0)
11994 stub_group_size = -htab->params->group_size;
11995 else
11996 stub_group_size = htab->params->group_size;
11997
11998 group_sections (htab, stub_group_size, stubs_always_before_branch);
11999
12000 while (1)
12001 {
12002 bfd *input_bfd;
12003 unsigned int bfd_indx;
12004 asection *stub_sec;
12005
12006 htab->stub_iteration += 1;
12007
12008 for (input_bfd = info->input_bfds, bfd_indx = 0;
12009 input_bfd != NULL;
12010 input_bfd = input_bfd->link.next, bfd_indx++)
12011 {
12012 Elf_Internal_Shdr *symtab_hdr;
12013 asection *section;
12014 Elf_Internal_Sym *local_syms = NULL;
12015
12016 if (!is_ppc64_elf (input_bfd))
12017 continue;
12018
12019 /* We'll need the symbol table in a second. */
12020 symtab_hdr = &elf_symtab_hdr (input_bfd);
12021 if (symtab_hdr->sh_info == 0)
12022 continue;
12023
12024 /* Walk over each section attached to the input bfd. */
12025 for (section = input_bfd->sections;
12026 section != NULL;
12027 section = section->next)
12028 {
12029 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
12030
12031 /* If there aren't any relocs, then there's nothing more
12032 to do. */
12033 if ((section->flags & SEC_RELOC) == 0
12034 || (section->flags & SEC_ALLOC) == 0
12035 || (section->flags & SEC_LOAD) == 0
12036 || (section->flags & SEC_CODE) == 0
12037 || section->reloc_count == 0)
12038 continue;
12039
12040 /* If this section is a link-once section that will be
12041 discarded, then don't create any stubs. */
12042 if (section->output_section == NULL
12043 || section->output_section->owner != info->output_bfd)
12044 continue;
12045
12046 /* Get the relocs. */
12047 internal_relocs
12048 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
12049 info->keep_memory);
12050 if (internal_relocs == NULL)
12051 goto error_ret_free_local;
12052
12053 /* Now examine each relocation. */
12054 irela = internal_relocs;
12055 irelaend = irela + section->reloc_count;
12056 for (; irela < irelaend; irela++)
12057 {
12058 enum elf_ppc64_reloc_type r_type;
12059 unsigned int r_indx;
12060 enum ppc_stub_type stub_type;
12061 struct ppc_stub_hash_entry *stub_entry;
12062 asection *sym_sec, *code_sec;
12063 bfd_vma sym_value, code_value;
12064 bfd_vma destination;
12065 unsigned long local_off;
12066 bfd_boolean ok_dest;
12067 struct ppc_link_hash_entry *hash;
12068 struct ppc_link_hash_entry *fdh;
12069 struct elf_link_hash_entry *h;
12070 Elf_Internal_Sym *sym;
12071 char *stub_name;
12072 const asection *id_sec;
12073 struct _opd_sec_data *opd;
12074 struct plt_entry *plt_ent;
12075
12076 r_type = ELF64_R_TYPE (irela->r_info);
12077 r_indx = ELF64_R_SYM (irela->r_info);
12078
12079 if (r_type >= R_PPC64_max)
12080 {
12081 bfd_set_error (bfd_error_bad_value);
12082 goto error_ret_free_internal;
12083 }
12084
12085 /* Only look for stubs on branch instructions. */
12086 if (r_type != R_PPC64_REL24
12087 && r_type != R_PPC64_REL14
12088 && r_type != R_PPC64_REL14_BRTAKEN
12089 && r_type != R_PPC64_REL14_BRNTAKEN)
12090 continue;
12091
12092 /* Now determine the call target, its name, value,
12093 section. */
12094 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
12095 r_indx, input_bfd))
12096 goto error_ret_free_internal;
12097 hash = (struct ppc_link_hash_entry *) h;
12098
12099 ok_dest = FALSE;
12100 fdh = NULL;
12101 sym_value = 0;
12102 if (hash == NULL)
12103 {
12104 sym_value = sym->st_value;
12105 ok_dest = TRUE;
12106 }
12107 else if (hash->elf.root.type == bfd_link_hash_defined
12108 || hash->elf.root.type == bfd_link_hash_defweak)
12109 {
12110 sym_value = hash->elf.root.u.def.value;
12111 if (sym_sec->output_section != NULL)
12112 ok_dest = TRUE;
12113 }
12114 else if (hash->elf.root.type == bfd_link_hash_undefweak
12115 || hash->elf.root.type == bfd_link_hash_undefined)
12116 {
12117 /* Recognise an old ABI func code entry sym, and
12118 use the func descriptor sym instead if it is
12119 defined. */
12120 if (hash->elf.root.root.string[0] == '.'
12121 && (fdh = lookup_fdh (hash, htab)) != NULL)
12122 {
12123 if (fdh->elf.root.type == bfd_link_hash_defined
12124 || fdh->elf.root.type == bfd_link_hash_defweak)
12125 {
12126 sym_sec = fdh->elf.root.u.def.section;
12127 sym_value = fdh->elf.root.u.def.value;
12128 if (sym_sec->output_section != NULL)
12129 ok_dest = TRUE;
12130 }
12131 else
12132 fdh = NULL;
12133 }
12134 }
12135 else
12136 {
12137 bfd_set_error (bfd_error_bad_value);
12138 goto error_ret_free_internal;
12139 }
12140
12141 destination = 0;
12142 local_off = 0;
12143 if (ok_dest)
12144 {
12145 sym_value += irela->r_addend;
12146 destination = (sym_value
12147 + sym_sec->output_offset
12148 + sym_sec->output_section->vma);
12149 local_off = PPC64_LOCAL_ENTRY_OFFSET (hash
12150 ? hash->elf.other
12151 : sym->st_other);
12152 }
12153
12154 code_sec = sym_sec;
12155 code_value = sym_value;
12156 opd = get_opd_info (sym_sec);
12157 if (opd != NULL)
12158 {
12159 bfd_vma dest;
12160
12161 if (hash == NULL && opd->adjust != NULL)
12162 {
12163 long adjust = opd->adjust[sym_value / 8];
12164 if (adjust == -1)
12165 continue;
12166 code_value += adjust;
12167 sym_value += adjust;
12168 }
12169 dest = opd_entry_value (sym_sec, sym_value,
12170 &code_sec, &code_value, FALSE);
12171 if (dest != (bfd_vma) -1)
12172 {
12173 destination = dest;
12174 if (fdh != NULL)
12175 {
12176 /* Fixup old ABI sym to point at code
12177 entry. */
12178 hash->elf.root.type = bfd_link_hash_defweak;
12179 hash->elf.root.u.def.section = code_sec;
12180 hash->elf.root.u.def.value = code_value;
12181 }
12182 }
12183 }
12184
12185 /* Determine what (if any) linker stub is needed. */
12186 plt_ent = NULL;
12187 stub_type = ppc_type_of_stub (section, irela, &hash,
12188 &plt_ent, destination,
12189 local_off);
12190
12191 if (stub_type != ppc_stub_plt_call)
12192 {
12193 /* Check whether we need a TOC adjusting stub.
12194 Since the linker pastes together pieces from
12195 different object files when creating the
12196 _init and _fini functions, it may be that a
12197 call to what looks like a local sym is in
12198 fact a call needing a TOC adjustment. */
12199 if (code_sec != NULL
12200 && code_sec->output_section != NULL
12201 && (htab->stub_group[code_sec->id].toc_off
12202 != htab->stub_group[section->id].toc_off)
12203 && (code_sec->has_toc_reloc
12204 || code_sec->makes_toc_func_call))
12205 stub_type = ppc_stub_long_branch_r2off;
12206 }
12207
12208 if (stub_type == ppc_stub_none)
12209 continue;
12210
12211 /* __tls_get_addr calls might be eliminated. */
12212 if (stub_type != ppc_stub_plt_call
12213 && hash != NULL
12214 && (hash == htab->tls_get_addr
12215 || hash == htab->tls_get_addr_fd)
12216 && section->has_tls_reloc
12217 && irela != internal_relocs)
12218 {
12219 /* Get tls info. */
12220 unsigned char *tls_mask;
12221
12222 if (!get_tls_mask (&tls_mask, NULL, NULL, &local_syms,
12223 irela - 1, input_bfd))
12224 goto error_ret_free_internal;
12225 if (*tls_mask != 0)
12226 continue;
12227 }
12228
12229 if (stub_type == ppc_stub_plt_call
12230 && irela + 1 < irelaend
12231 && irela[1].r_offset == irela->r_offset + 4
12232 && ELF64_R_TYPE (irela[1].r_info) == R_PPC64_TOCSAVE)
12233 {
12234 if (!tocsave_find (htab, INSERT,
12235 &local_syms, irela + 1, input_bfd))
12236 goto error_ret_free_internal;
12237 }
12238 else if (stub_type == ppc_stub_plt_call)
12239 stub_type = ppc_stub_plt_call_r2save;
12240
12241 /* Support for grouping stub sections. */
12242 id_sec = htab->stub_group[section->id].link_sec;
12243
12244 /* Get the name of this stub. */
12245 stub_name = ppc_stub_name (id_sec, sym_sec, hash, irela);
12246 if (!stub_name)
12247 goto error_ret_free_internal;
12248
12249 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
12250 stub_name, FALSE, FALSE);
12251 if (stub_entry != NULL)
12252 {
12253 /* The proper stub has already been created. */
12254 free (stub_name);
12255 if (stub_type == ppc_stub_plt_call_r2save)
12256 stub_entry->stub_type = stub_type;
12257 continue;
12258 }
12259
12260 stub_entry = ppc_add_stub (stub_name, section, info);
12261 if (stub_entry == NULL)
12262 {
12263 free (stub_name);
12264 error_ret_free_internal:
12265 if (elf_section_data (section)->relocs == NULL)
12266 free (internal_relocs);
12267 error_ret_free_local:
12268 if (local_syms != NULL
12269 && (symtab_hdr->contents
12270 != (unsigned char *) local_syms))
12271 free (local_syms);
12272 return FALSE;
12273 }
12274
12275 stub_entry->stub_type = stub_type;
12276 if (stub_type != ppc_stub_plt_call
12277 && stub_type != ppc_stub_plt_call_r2save)
12278 {
12279 stub_entry->target_value = code_value;
12280 stub_entry->target_section = code_sec;
12281 }
12282 else
12283 {
12284 stub_entry->target_value = sym_value;
12285 stub_entry->target_section = sym_sec;
12286 }
12287 stub_entry->h = hash;
12288 stub_entry->plt_ent = plt_ent;
12289 stub_entry->other = hash ? hash->elf.other : sym->st_other;
12290
12291 if (stub_entry->h != NULL)
12292 htab->stub_globals += 1;
12293 }
12294
12295 /* We're done with the internal relocs, free them. */
12296 if (elf_section_data (section)->relocs != internal_relocs)
12297 free (internal_relocs);
12298 }
12299
12300 if (local_syms != NULL
12301 && symtab_hdr->contents != (unsigned char *) local_syms)
12302 {
12303 if (!info->keep_memory)
12304 free (local_syms);
12305 else
12306 symtab_hdr->contents = (unsigned char *) local_syms;
12307 }
12308 }
12309
12310 /* We may have added some stubs. Find out the new size of the
12311 stub sections. */
12312 for (stub_sec = htab->params->stub_bfd->sections;
12313 stub_sec != NULL;
12314 stub_sec = stub_sec->next)
12315 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12316 {
12317 stub_sec->rawsize = stub_sec->size;
12318 stub_sec->size = 0;
12319 stub_sec->reloc_count = 0;
12320 stub_sec->flags &= ~SEC_RELOC;
12321 }
12322
12323 htab->brlt->size = 0;
12324 htab->brlt->reloc_count = 0;
12325 htab->brlt->flags &= ~SEC_RELOC;
12326 if (htab->relbrlt != NULL)
12327 htab->relbrlt->size = 0;
12328
12329 bfd_hash_traverse (&htab->stub_hash_table, ppc_size_one_stub, info);
12330
12331 if (info->emitrelocations
12332 && htab->glink != NULL && htab->glink->size != 0)
12333 {
12334 htab->glink->reloc_count = 1;
12335 htab->glink->flags |= SEC_RELOC;
12336 }
12337
12338 if (htab->glink_eh_frame != NULL
12339 && !bfd_is_abs_section (htab->glink_eh_frame->output_section)
12340 && htab->glink_eh_frame->output_section->size != 0)
12341 {
12342 size_t size = 0, align;
12343
12344 for (stub_sec = htab->params->stub_bfd->sections;
12345 stub_sec != NULL;
12346 stub_sec = stub_sec->next)
12347 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12348 size += 24;
12349 if (htab->glink != NULL && htab->glink->size != 0)
12350 size += 24;
12351 if (size != 0)
12352 size += sizeof (glink_eh_frame_cie);
12353 align = 1;
12354 align <<= htab->glink_eh_frame->output_section->alignment_power;
12355 align -= 1;
12356 size = (size + align) & ~align;
12357 htab->glink_eh_frame->rawsize = htab->glink_eh_frame->size;
12358 htab->glink_eh_frame->size = size;
12359 }
12360
12361 if (htab->params->plt_stub_align != 0)
12362 for (stub_sec = htab->params->stub_bfd->sections;
12363 stub_sec != NULL;
12364 stub_sec = stub_sec->next)
12365 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12366 stub_sec->size = ((stub_sec->size
12367 + (1 << htab->params->plt_stub_align) - 1)
12368 & (-1 << htab->params->plt_stub_align));
12369
12370 for (stub_sec = htab->params->stub_bfd->sections;
12371 stub_sec != NULL;
12372 stub_sec = stub_sec->next)
12373 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
12374 && stub_sec->rawsize != stub_sec->size)
12375 break;
12376
12377 /* Exit from this loop when no stubs have been added, and no stubs
12378 have changed size. */
12379 if (stub_sec == NULL
12380 && (htab->glink_eh_frame == NULL
12381 || htab->glink_eh_frame->rawsize == htab->glink_eh_frame->size))
12382 break;
12383
12384 /* Ask the linker to do its stuff. */
12385 (*htab->params->layout_sections_again) ();
12386 }
12387
12388 if (htab->glink_eh_frame != NULL
12389 && htab->glink_eh_frame->size != 0)
12390 {
12391 bfd_vma val;
12392 bfd_byte *p, *last_fde;
12393 size_t last_fde_len, size, align, pad;
12394 asection *stub_sec;
12395
12396 p = bfd_zalloc (htab->glink_eh_frame->owner, htab->glink_eh_frame->size);
12397 if (p == NULL)
12398 return FALSE;
12399 htab->glink_eh_frame->contents = p;
12400 last_fde = p;
12401
12402 memcpy (p, glink_eh_frame_cie, sizeof (glink_eh_frame_cie));
12403 /* CIE length (rewrite in case little-endian). */
12404 last_fde_len = sizeof (glink_eh_frame_cie) - 4;
12405 bfd_put_32 (htab->elf.dynobj, last_fde_len, p);
12406 p += sizeof (glink_eh_frame_cie);
12407
12408 for (stub_sec = htab->params->stub_bfd->sections;
12409 stub_sec != NULL;
12410 stub_sec = stub_sec->next)
12411 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12412 {
12413 last_fde = p;
12414 last_fde_len = 20;
12415 /* FDE length. */
12416 bfd_put_32 (htab->elf.dynobj, 20, p);
12417 p += 4;
12418 /* CIE pointer. */
12419 val = p - htab->glink_eh_frame->contents;
12420 bfd_put_32 (htab->elf.dynobj, val, p);
12421 p += 4;
12422 /* Offset to stub section, written later. */
12423 p += 4;
12424 /* stub section size. */
12425 bfd_put_32 (htab->elf.dynobj, stub_sec->size, p);
12426 p += 4;
12427 /* Augmentation. */
12428 p += 1;
12429 /* Pad. */
12430 p += 7;
12431 }
12432 if (htab->glink != NULL && htab->glink->size != 0)
12433 {
12434 last_fde = p;
12435 last_fde_len = 20;
12436 /* FDE length. */
12437 bfd_put_32 (htab->elf.dynobj, 20, p);
12438 p += 4;
12439 /* CIE pointer. */
12440 val = p - htab->glink_eh_frame->contents;
12441 bfd_put_32 (htab->elf.dynobj, val, p);
12442 p += 4;
12443 /* Offset to .glink, written later. */
12444 p += 4;
12445 /* .glink size. */
12446 bfd_put_32 (htab->elf.dynobj, htab->glink->size - 8, p);
12447 p += 4;
12448 /* Augmentation. */
12449 p += 1;
12450
12451 *p++ = DW_CFA_advance_loc + 1;
12452 *p++ = DW_CFA_register;
12453 *p++ = 65;
12454 *p++ = 12;
12455 *p++ = DW_CFA_advance_loc + 4;
12456 *p++ = DW_CFA_restore_extended;
12457 *p++ = 65;
12458 }
12459 /* Subsume any padding into the last FDE if user .eh_frame
12460 sections are aligned more than glink_eh_frame. Otherwise any
12461 zero padding will be seen as a terminator. */
12462 size = p - htab->glink_eh_frame->contents;
12463 align = 1;
12464 align <<= htab->glink_eh_frame->output_section->alignment_power;
12465 align -= 1;
12466 pad = ((size + align) & ~align) - size;
12467 htab->glink_eh_frame->size = size + pad;
12468 bfd_put_32 (htab->elf.dynobj, last_fde_len + pad, last_fde);
12469 }
12470
12471 maybe_strip_output (info, htab->brlt);
12472 if (htab->glink_eh_frame != NULL)
12473 maybe_strip_output (info, htab->glink_eh_frame);
12474
12475 return TRUE;
12476 }
12477
12478 /* Called after we have determined section placement. If sections
12479 move, we'll be called again. Provide a value for TOCstart. */
12480
12481 bfd_vma
12482 ppc64_elf_set_toc (struct bfd_link_info *info, bfd *obfd)
12483 {
12484 asection *s;
12485 bfd_vma TOCstart;
12486
12487 /* The TOC consists of sections .got, .toc, .tocbss, .plt in that
12488 order. The TOC starts where the first of these sections starts. */
12489 s = bfd_get_section_by_name (obfd, ".got");
12490 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12491 s = bfd_get_section_by_name (obfd, ".toc");
12492 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12493 s = bfd_get_section_by_name (obfd, ".tocbss");
12494 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12495 s = bfd_get_section_by_name (obfd, ".plt");
12496 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12497 {
12498 /* This may happen for
12499 o references to TOC base (SYM@toc / TOC[tc0]) without a
12500 .toc directive
12501 o bad linker script
12502 o --gc-sections and empty TOC sections
12503
12504 FIXME: Warn user? */
12505
12506 /* Look for a likely section. We probably won't even be
12507 using TOCstart. */
12508 for (s = obfd->sections; s != NULL; s = s->next)
12509 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_READONLY
12510 | SEC_EXCLUDE))
12511 == (SEC_ALLOC | SEC_SMALL_DATA))
12512 break;
12513 if (s == NULL)
12514 for (s = obfd->sections; s != NULL; s = s->next)
12515 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_EXCLUDE))
12516 == (SEC_ALLOC | SEC_SMALL_DATA))
12517 break;
12518 if (s == NULL)
12519 for (s = obfd->sections; s != NULL; s = s->next)
12520 if ((s->flags & (SEC_ALLOC | SEC_READONLY | SEC_EXCLUDE))
12521 == SEC_ALLOC)
12522 break;
12523 if (s == NULL)
12524 for (s = obfd->sections; s != NULL; s = s->next)
12525 if ((s->flags & (SEC_ALLOC | SEC_EXCLUDE)) == SEC_ALLOC)
12526 break;
12527 }
12528
12529 TOCstart = 0;
12530 if (s != NULL)
12531 TOCstart = s->output_section->vma + s->output_offset;
12532
12533 _bfd_set_gp_value (obfd, TOCstart);
12534
12535 if (info != NULL && s != NULL)
12536 {
12537 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12538
12539 if (htab != NULL)
12540 {
12541 if (htab->elf.hgot != NULL)
12542 {
12543 htab->elf.hgot->root.u.def.value = TOC_BASE_OFF;
12544 htab->elf.hgot->root.u.def.section = s;
12545 }
12546 }
12547 else
12548 {
12549 struct bfd_link_hash_entry *bh = NULL;
12550 _bfd_generic_link_add_one_symbol (info, obfd, ".TOC.", BSF_GLOBAL,
12551 s, TOC_BASE_OFF, NULL, FALSE,
12552 FALSE, &bh);
12553 }
12554 }
12555 return TOCstart;
12556 }
12557
12558 /* Called via elf_link_hash_traverse from ppc64_elf_build_stubs to
12559 write out any global entry stubs. */
12560
12561 static bfd_boolean
12562 build_global_entry_stubs (struct elf_link_hash_entry *h, void *inf)
12563 {
12564 struct bfd_link_info *info;
12565 struct ppc_link_hash_table *htab;
12566 struct plt_entry *pent;
12567 asection *s;
12568
12569 if (h->root.type == bfd_link_hash_indirect)
12570 return TRUE;
12571
12572 if (!h->pointer_equality_needed)
12573 return TRUE;
12574
12575 if (h->def_regular)
12576 return TRUE;
12577
12578 info = inf;
12579 htab = ppc_hash_table (info);
12580 if (htab == NULL)
12581 return FALSE;
12582
12583 s = htab->glink;
12584 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
12585 if (pent->plt.offset != (bfd_vma) -1
12586 && pent->addend == 0)
12587 {
12588 bfd_byte *p;
12589 asection *plt;
12590 bfd_vma off;
12591
12592 p = s->contents + h->root.u.def.value;
12593 plt = htab->elf.splt;
12594 if (!htab->elf.dynamic_sections_created
12595 || h->dynindx == -1)
12596 plt = htab->elf.iplt;
12597 off = pent->plt.offset + plt->output_offset + plt->output_section->vma;
12598 off -= h->root.u.def.value + s->output_offset + s->output_section->vma;
12599
12600 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
12601 {
12602 info->callbacks->einfo
12603 (_("%P: linkage table error against `%T'\n"),
12604 h->root.root.string);
12605 bfd_set_error (bfd_error_bad_value);
12606 htab->stub_error = TRUE;
12607 }
12608
12609 htab->stub_count[ppc_stub_global_entry - 1] += 1;
12610 if (htab->params->emit_stub_syms)
12611 {
12612 size_t len = strlen (h->root.root.string);
12613 char *name = bfd_malloc (sizeof "12345678.global_entry." + len);
12614
12615 if (name == NULL)
12616 return FALSE;
12617
12618 sprintf (name, "%08x.global_entry.%s", s->id, h->root.root.string);
12619 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
12620 if (h == NULL)
12621 return FALSE;
12622 if (h->root.type == bfd_link_hash_new)
12623 {
12624 h->root.type = bfd_link_hash_defined;
12625 h->root.u.def.section = s;
12626 h->root.u.def.value = p - s->contents;
12627 h->ref_regular = 1;
12628 h->def_regular = 1;
12629 h->ref_regular_nonweak = 1;
12630 h->forced_local = 1;
12631 h->non_elf = 0;
12632 }
12633 }
12634
12635 if (PPC_HA (off) != 0)
12636 {
12637 bfd_put_32 (s->owner, ADDIS_R12_R12 | PPC_HA (off), p);
12638 p += 4;
12639 }
12640 bfd_put_32 (s->owner, LD_R12_0R12 | PPC_LO (off), p);
12641 p += 4;
12642 bfd_put_32 (s->owner, MTCTR_R12, p);
12643 p += 4;
12644 bfd_put_32 (s->owner, BCTR, p);
12645 break;
12646 }
12647 return TRUE;
12648 }
12649
12650 /* Build all the stubs associated with the current output file.
12651 The stubs are kept in a hash table attached to the main linker
12652 hash table. This function is called via gldelf64ppc_finish. */
12653
12654 bfd_boolean
12655 ppc64_elf_build_stubs (struct bfd_link_info *info,
12656 char **stats)
12657 {
12658 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12659 asection *stub_sec;
12660 bfd_byte *p;
12661 int stub_sec_count = 0;
12662
12663 if (htab == NULL)
12664 return FALSE;
12665
12666 /* Allocate memory to hold the linker stubs. */
12667 for (stub_sec = htab->params->stub_bfd->sections;
12668 stub_sec != NULL;
12669 stub_sec = stub_sec->next)
12670 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
12671 && stub_sec->size != 0)
12672 {
12673 stub_sec->contents = bfd_zalloc (htab->params->stub_bfd, stub_sec->size);
12674 if (stub_sec->contents == NULL)
12675 return FALSE;
12676 /* We want to check that built size is the same as calculated
12677 size. rawsize is a convenient location to use. */
12678 stub_sec->rawsize = stub_sec->size;
12679 stub_sec->size = 0;
12680 }
12681
12682 if (htab->glink != NULL && htab->glink->size != 0)
12683 {
12684 unsigned int indx;
12685 bfd_vma plt0;
12686
12687 /* Build the .glink plt call stub. */
12688 if (htab->params->emit_stub_syms)
12689 {
12690 struct elf_link_hash_entry *h;
12691 h = elf_link_hash_lookup (&htab->elf, "__glink_PLTresolve",
12692 TRUE, FALSE, FALSE);
12693 if (h == NULL)
12694 return FALSE;
12695 if (h->root.type == bfd_link_hash_new)
12696 {
12697 h->root.type = bfd_link_hash_defined;
12698 h->root.u.def.section = htab->glink;
12699 h->root.u.def.value = 8;
12700 h->ref_regular = 1;
12701 h->def_regular = 1;
12702 h->ref_regular_nonweak = 1;
12703 h->forced_local = 1;
12704 h->non_elf = 0;
12705 }
12706 }
12707 plt0 = (htab->elf.splt->output_section->vma
12708 + htab->elf.splt->output_offset
12709 - 16);
12710 if (info->emitrelocations)
12711 {
12712 Elf_Internal_Rela *r = get_relocs (htab->glink, 1);
12713 if (r == NULL)
12714 return FALSE;
12715 r->r_offset = (htab->glink->output_offset
12716 + htab->glink->output_section->vma);
12717 r->r_info = ELF64_R_INFO (0, R_PPC64_REL64);
12718 r->r_addend = plt0;
12719 }
12720 p = htab->glink->contents;
12721 plt0 -= htab->glink->output_section->vma + htab->glink->output_offset;
12722 bfd_put_64 (htab->glink->owner, plt0, p);
12723 p += 8;
12724 if (htab->opd_abi)
12725 {
12726 bfd_put_32 (htab->glink->owner, MFLR_R12, p);
12727 p += 4;
12728 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
12729 p += 4;
12730 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
12731 p += 4;
12732 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | (-16 & 0xfffc), p);
12733 p += 4;
12734 bfd_put_32 (htab->glink->owner, MTLR_R12, p);
12735 p += 4;
12736 bfd_put_32 (htab->glink->owner, ADD_R11_R2_R11, p);
12737 p += 4;
12738 bfd_put_32 (htab->glink->owner, LD_R12_0R11, p);
12739 p += 4;
12740 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | 8, p);
12741 p += 4;
12742 bfd_put_32 (htab->glink->owner, MTCTR_R12, p);
12743 p += 4;
12744 bfd_put_32 (htab->glink->owner, LD_R11_0R11 | 16, p);
12745 p += 4;
12746 }
12747 else
12748 {
12749 bfd_put_32 (htab->glink->owner, MFLR_R0, p);
12750 p += 4;
12751 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
12752 p += 4;
12753 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
12754 p += 4;
12755 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | (-16 & 0xfffc), p);
12756 p += 4;
12757 bfd_put_32 (htab->glink->owner, MTLR_R0, p);
12758 p += 4;
12759 bfd_put_32 (htab->glink->owner, SUB_R12_R12_R11, p);
12760 p += 4;
12761 bfd_put_32 (htab->glink->owner, ADD_R11_R2_R11, p);
12762 p += 4;
12763 bfd_put_32 (htab->glink->owner, ADDI_R0_R12 | (-48 & 0xffff), p);
12764 p += 4;
12765 bfd_put_32 (htab->glink->owner, LD_R12_0R11, p);
12766 p += 4;
12767 bfd_put_32 (htab->glink->owner, SRDI_R0_R0_2, p);
12768 p += 4;
12769 bfd_put_32 (htab->glink->owner, MTCTR_R12, p);
12770 p += 4;
12771 bfd_put_32 (htab->glink->owner, LD_R11_0R11 | 8, p);
12772 p += 4;
12773 }
12774 bfd_put_32 (htab->glink->owner, BCTR, p);
12775 p += 4;
12776 while (p - htab->glink->contents < GLINK_CALL_STUB_SIZE)
12777 {
12778 bfd_put_32 (htab->glink->owner, NOP, p);
12779 p += 4;
12780 }
12781
12782 /* Build the .glink lazy link call stubs. */
12783 indx = 0;
12784 while (p < htab->glink->contents + htab->glink->rawsize)
12785 {
12786 if (htab->opd_abi)
12787 {
12788 if (indx < 0x8000)
12789 {
12790 bfd_put_32 (htab->glink->owner, LI_R0_0 | indx, p);
12791 p += 4;
12792 }
12793 else
12794 {
12795 bfd_put_32 (htab->glink->owner, LIS_R0_0 | PPC_HI (indx), p);
12796 p += 4;
12797 bfd_put_32 (htab->glink->owner, ORI_R0_R0_0 | PPC_LO (indx),
12798 p);
12799 p += 4;
12800 }
12801 }
12802 bfd_put_32 (htab->glink->owner,
12803 B_DOT | ((htab->glink->contents - p + 8) & 0x3fffffc), p);
12804 indx++;
12805 p += 4;
12806 }
12807
12808 /* Build .glink global entry stubs. */
12809 if (htab->glink->size > htab->glink->rawsize)
12810 elf_link_hash_traverse (&htab->elf, build_global_entry_stubs, info);
12811 }
12812
12813 if (htab->brlt != NULL && htab->brlt->size != 0)
12814 {
12815 htab->brlt->contents = bfd_zalloc (htab->brlt->owner,
12816 htab->brlt->size);
12817 if (htab->brlt->contents == NULL)
12818 return FALSE;
12819 }
12820 if (htab->relbrlt != NULL && htab->relbrlt->size != 0)
12821 {
12822 htab->relbrlt->contents = bfd_zalloc (htab->relbrlt->owner,
12823 htab->relbrlt->size);
12824 if (htab->relbrlt->contents == NULL)
12825 return FALSE;
12826 }
12827
12828 /* Build the stubs as directed by the stub hash table. */
12829 bfd_hash_traverse (&htab->stub_hash_table, ppc_build_one_stub, info);
12830
12831 if (htab->relbrlt != NULL)
12832 htab->relbrlt->reloc_count = 0;
12833
12834 if (htab->params->plt_stub_align != 0)
12835 for (stub_sec = htab->params->stub_bfd->sections;
12836 stub_sec != NULL;
12837 stub_sec = stub_sec->next)
12838 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12839 stub_sec->size = ((stub_sec->size
12840 + (1 << htab->params->plt_stub_align) - 1)
12841 & (-1 << htab->params->plt_stub_align));
12842
12843 for (stub_sec = htab->params->stub_bfd->sections;
12844 stub_sec != NULL;
12845 stub_sec = stub_sec->next)
12846 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12847 {
12848 stub_sec_count += 1;
12849 if (stub_sec->rawsize != stub_sec->size)
12850 break;
12851 }
12852
12853 /* Note that the glink_eh_frame check here is not only testing that
12854 the generated size matched the calculated size but also that
12855 bfd_elf_discard_info didn't make any changes to the section. */
12856 if (stub_sec != NULL
12857 || (htab->glink_eh_frame != NULL
12858 && htab->glink_eh_frame->rawsize != htab->glink_eh_frame->size))
12859 {
12860 htab->stub_error = TRUE;
12861 info->callbacks->einfo (_("%P: stubs don't match calculated size\n"));
12862 }
12863
12864 if (htab->stub_error)
12865 return FALSE;
12866
12867 if (stats != NULL)
12868 {
12869 *stats = bfd_malloc (500);
12870 if (*stats == NULL)
12871 return FALSE;
12872
12873 sprintf (*stats, _("linker stubs in %u group%s\n"
12874 " branch %lu\n"
12875 " toc adjust %lu\n"
12876 " long branch %lu\n"
12877 " long toc adj %lu\n"
12878 " plt call %lu\n"
12879 " plt call toc %lu\n"
12880 " global entry %lu"),
12881 stub_sec_count,
12882 stub_sec_count == 1 ? "" : "s",
12883 htab->stub_count[ppc_stub_long_branch - 1],
12884 htab->stub_count[ppc_stub_long_branch_r2off - 1],
12885 htab->stub_count[ppc_stub_plt_branch - 1],
12886 htab->stub_count[ppc_stub_plt_branch_r2off - 1],
12887 htab->stub_count[ppc_stub_plt_call - 1],
12888 htab->stub_count[ppc_stub_plt_call_r2save - 1],
12889 htab->stub_count[ppc_stub_global_entry - 1]);
12890 }
12891 return TRUE;
12892 }
12893
12894 /* This function undoes the changes made by add_symbol_adjust. */
12895
12896 static bfd_boolean
12897 undo_symbol_twiddle (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
12898 {
12899 struct ppc_link_hash_entry *eh;
12900
12901 if (h->root.type == bfd_link_hash_indirect)
12902 return TRUE;
12903
12904 eh = (struct ppc_link_hash_entry *) h;
12905 if (eh->elf.root.type != bfd_link_hash_undefweak || !eh->was_undefined)
12906 return TRUE;
12907
12908 eh->elf.root.type = bfd_link_hash_undefined;
12909 return TRUE;
12910 }
12911
12912 void
12913 ppc64_elf_restore_symbols (struct bfd_link_info *info)
12914 {
12915 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12916
12917 if (htab != NULL)
12918 elf_link_hash_traverse (&htab->elf, undo_symbol_twiddle, info);
12919 }
12920
12921 /* What to do when ld finds relocations against symbols defined in
12922 discarded sections. */
12923
12924 static unsigned int
12925 ppc64_elf_action_discarded (asection *sec)
12926 {
12927 if (strcmp (".opd", sec->name) == 0)
12928 return 0;
12929
12930 if (strcmp (".toc", sec->name) == 0)
12931 return 0;
12932
12933 if (strcmp (".toc1", sec->name) == 0)
12934 return 0;
12935
12936 return _bfd_elf_default_action_discarded (sec);
12937 }
12938
12939 /* The RELOCATE_SECTION function is called by the ELF backend linker
12940 to handle the relocations for a section.
12941
12942 The relocs are always passed as Rela structures; if the section
12943 actually uses Rel structures, the r_addend field will always be
12944 zero.
12945
12946 This function is responsible for adjust the section contents as
12947 necessary, and (if using Rela relocs and generating a
12948 relocatable output file) adjusting the reloc addend as
12949 necessary.
12950
12951 This function does not have to worry about setting the reloc
12952 address or the reloc symbol index.
12953
12954 LOCAL_SYMS is a pointer to the swapped in local symbols.
12955
12956 LOCAL_SECTIONS is an array giving the section in the input file
12957 corresponding to the st_shndx field of each local symbol.
12958
12959 The global hash table entry for the global symbols can be found
12960 via elf_sym_hashes (input_bfd).
12961
12962 When generating relocatable output, this function must handle
12963 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
12964 going to be the section symbol corresponding to the output
12965 section, which means that the addend must be adjusted
12966 accordingly. */
12967
12968 static bfd_boolean
12969 ppc64_elf_relocate_section (bfd *output_bfd,
12970 struct bfd_link_info *info,
12971 bfd *input_bfd,
12972 asection *input_section,
12973 bfd_byte *contents,
12974 Elf_Internal_Rela *relocs,
12975 Elf_Internal_Sym *local_syms,
12976 asection **local_sections)
12977 {
12978 struct ppc_link_hash_table *htab;
12979 Elf_Internal_Shdr *symtab_hdr;
12980 struct elf_link_hash_entry **sym_hashes;
12981 Elf_Internal_Rela *rel;
12982 Elf_Internal_Rela *relend;
12983 Elf_Internal_Rela outrel;
12984 bfd_byte *loc;
12985 struct got_entry **local_got_ents;
12986 bfd_vma TOCstart;
12987 bfd_boolean ret = TRUE;
12988 bfd_boolean is_opd;
12989 /* Assume 'at' branch hints. */
12990 bfd_boolean is_isa_v2 = TRUE;
12991 bfd_vma d_offset = (bfd_big_endian (output_bfd) ? 2 : 0);
12992
12993 /* Initialize howto table if needed. */
12994 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
12995 ppc_howto_init ();
12996
12997 htab = ppc_hash_table (info);
12998 if (htab == NULL)
12999 return FALSE;
13000
13001 /* Don't relocate stub sections. */
13002 if (input_section->owner == htab->params->stub_bfd)
13003 return TRUE;
13004
13005 BFD_ASSERT (is_ppc64_elf (input_bfd));
13006
13007 local_got_ents = elf_local_got_ents (input_bfd);
13008 TOCstart = elf_gp (output_bfd);
13009 symtab_hdr = &elf_symtab_hdr (input_bfd);
13010 sym_hashes = elf_sym_hashes (input_bfd);
13011 is_opd = ppc64_elf_section_data (input_section)->sec_type == sec_opd;
13012
13013 rel = relocs;
13014 relend = relocs + input_section->reloc_count;
13015 for (; rel < relend; rel++)
13016 {
13017 enum elf_ppc64_reloc_type r_type;
13018 bfd_vma addend;
13019 bfd_reloc_status_type r;
13020 Elf_Internal_Sym *sym;
13021 asection *sec;
13022 struct elf_link_hash_entry *h_elf;
13023 struct ppc_link_hash_entry *h;
13024 struct ppc_link_hash_entry *fdh;
13025 const char *sym_name;
13026 unsigned long r_symndx, toc_symndx;
13027 bfd_vma toc_addend;
13028 unsigned char tls_mask, tls_gd, tls_type;
13029 unsigned char sym_type;
13030 bfd_vma relocation;
13031 bfd_boolean unresolved_reloc;
13032 bfd_boolean warned;
13033 enum { DEST_NORMAL, DEST_OPD, DEST_STUB } reloc_dest;
13034 unsigned int insn;
13035 unsigned int mask;
13036 struct ppc_stub_hash_entry *stub_entry;
13037 bfd_vma max_br_offset;
13038 bfd_vma from;
13039 const Elf_Internal_Rela orig_rel = *rel;
13040 reloc_howto_type *howto;
13041 struct reloc_howto_struct alt_howto;
13042
13043 r_type = ELF64_R_TYPE (rel->r_info);
13044 r_symndx = ELF64_R_SYM (rel->r_info);
13045
13046 /* For old style R_PPC64_TOC relocs with a zero symbol, use the
13047 symbol of the previous ADDR64 reloc. The symbol gives us the
13048 proper TOC base to use. */
13049 if (rel->r_info == ELF64_R_INFO (0, R_PPC64_TOC)
13050 && rel != relocs
13051 && ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_ADDR64
13052 && is_opd)
13053 r_symndx = ELF64_R_SYM (rel[-1].r_info);
13054
13055 sym = NULL;
13056 sec = NULL;
13057 h_elf = NULL;
13058 sym_name = NULL;
13059 unresolved_reloc = FALSE;
13060 warned = FALSE;
13061
13062 if (r_symndx < symtab_hdr->sh_info)
13063 {
13064 /* It's a local symbol. */
13065 struct _opd_sec_data *opd;
13066
13067 sym = local_syms + r_symndx;
13068 sec = local_sections[r_symndx];
13069 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, sec);
13070 sym_type = ELF64_ST_TYPE (sym->st_info);
13071 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
13072 opd = get_opd_info (sec);
13073 if (opd != NULL && opd->adjust != NULL)
13074 {
13075 long adjust = opd->adjust[(sym->st_value + rel->r_addend) / 8];
13076 if (adjust == -1)
13077 relocation = 0;
13078 else
13079 {
13080 /* If this is a relocation against the opd section sym
13081 and we have edited .opd, adjust the reloc addend so
13082 that ld -r and ld --emit-relocs output is correct.
13083 If it is a reloc against some other .opd symbol,
13084 then the symbol value will be adjusted later. */
13085 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
13086 rel->r_addend += adjust;
13087 else
13088 relocation += adjust;
13089 }
13090 }
13091 }
13092 else
13093 {
13094 bfd_boolean ignored;
13095
13096 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
13097 r_symndx, symtab_hdr, sym_hashes,
13098 h_elf, sec, relocation,
13099 unresolved_reloc, warned, ignored);
13100 sym_name = h_elf->root.root.string;
13101 sym_type = h_elf->type;
13102 if (sec != NULL
13103 && sec->owner == output_bfd
13104 && strcmp (sec->name, ".opd") == 0)
13105 {
13106 /* This is a symbol defined in a linker script. All
13107 such are defined in output sections, even those
13108 defined by simple assignment from a symbol defined in
13109 an input section. Transfer the symbol to an
13110 appropriate input .opd section, so that a branch to
13111 this symbol will be mapped to the location specified
13112 by the opd entry. */
13113 struct bfd_link_order *lo;
13114 for (lo = sec->map_head.link_order; lo != NULL; lo = lo->next)
13115 if (lo->type == bfd_indirect_link_order)
13116 {
13117 asection *isec = lo->u.indirect.section;
13118 if (h_elf->root.u.def.value >= isec->output_offset
13119 && h_elf->root.u.def.value < (isec->output_offset
13120 + isec->size))
13121 {
13122 h_elf->root.u.def.value -= isec->output_offset;
13123 h_elf->root.u.def.section = isec;
13124 sec = isec;
13125 break;
13126 }
13127 }
13128 }
13129 }
13130 h = (struct ppc_link_hash_entry *) h_elf;
13131
13132 if (sec != NULL && discarded_section (sec))
13133 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
13134 rel, 1, relend,
13135 ppc64_elf_howto_table[r_type], 0,
13136 contents);
13137
13138 if (info->relocatable)
13139 continue;
13140
13141 if (h != NULL && &h->elf == htab->elf.hgot)
13142 {
13143 relocation = (TOCstart
13144 + htab->stub_group[input_section->id].toc_off);
13145 sec = bfd_abs_section_ptr;
13146 unresolved_reloc = FALSE;
13147 }
13148
13149 /* TLS optimizations. Replace instruction sequences and relocs
13150 based on information we collected in tls_optimize. We edit
13151 RELOCS so that --emit-relocs will output something sensible
13152 for the final instruction stream. */
13153 tls_mask = 0;
13154 tls_gd = 0;
13155 toc_symndx = 0;
13156 if (h != NULL)
13157 tls_mask = h->tls_mask;
13158 else if (local_got_ents != NULL)
13159 {
13160 struct plt_entry **local_plt = (struct plt_entry **)
13161 (local_got_ents + symtab_hdr->sh_info);
13162 unsigned char *lgot_masks = (unsigned char *)
13163 (local_plt + symtab_hdr->sh_info);
13164 tls_mask = lgot_masks[r_symndx];
13165 }
13166 if (tls_mask == 0
13167 && (r_type == R_PPC64_TLS
13168 || r_type == R_PPC64_TLSGD
13169 || r_type == R_PPC64_TLSLD))
13170 {
13171 /* Check for toc tls entries. */
13172 unsigned char *toc_tls;
13173
13174 if (!get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
13175 &local_syms, rel, input_bfd))
13176 return FALSE;
13177
13178 if (toc_tls)
13179 tls_mask = *toc_tls;
13180 }
13181
13182 /* Check that tls relocs are used with tls syms, and non-tls
13183 relocs are used with non-tls syms. */
13184 if (r_symndx != STN_UNDEF
13185 && r_type != R_PPC64_NONE
13186 && (h == NULL
13187 || h->elf.root.type == bfd_link_hash_defined
13188 || h->elf.root.type == bfd_link_hash_defweak)
13189 && (IS_PPC64_TLS_RELOC (r_type)
13190 != (sym_type == STT_TLS
13191 || (sym_type == STT_SECTION
13192 && (sec->flags & SEC_THREAD_LOCAL) != 0))))
13193 {
13194 if (tls_mask != 0
13195 && (r_type == R_PPC64_TLS
13196 || r_type == R_PPC64_TLSGD
13197 || r_type == R_PPC64_TLSLD))
13198 /* R_PPC64_TLS is OK against a symbol in the TOC. */
13199 ;
13200 else
13201 info->callbacks->einfo
13202 (!IS_PPC64_TLS_RELOC (r_type)
13203 ? _("%P: %H: %s used with TLS symbol `%T'\n")
13204 : _("%P: %H: %s used with non-TLS symbol `%T'\n"),
13205 input_bfd, input_section, rel->r_offset,
13206 ppc64_elf_howto_table[r_type]->name,
13207 sym_name);
13208 }
13209
13210 /* Ensure reloc mapping code below stays sane. */
13211 if (R_PPC64_TOC16_LO_DS != R_PPC64_TOC16_DS + 1
13212 || R_PPC64_TOC16_LO != R_PPC64_TOC16 + 1
13213 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TLSGD16 & 3)
13214 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TLSGD16_LO & 3)
13215 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TLSGD16_HI & 3)
13216 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TLSGD16_HA & 3)
13217 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TPREL16_DS & 3)
13218 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TPREL16_LO_DS & 3)
13219 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TPREL16_HI & 3)
13220 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TPREL16_HA & 3))
13221 abort ();
13222
13223 switch (r_type)
13224 {
13225 default:
13226 break;
13227
13228 case R_PPC64_LO_DS_OPT:
13229 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - d_offset);
13230 if ((insn & (0x3f << 26)) != 58u << 26)
13231 abort ();
13232 insn += (14u << 26) - (58u << 26);
13233 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - d_offset);
13234 r_type = R_PPC64_TOC16_LO;
13235 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13236 break;
13237
13238 case R_PPC64_TOC16:
13239 case R_PPC64_TOC16_LO:
13240 case R_PPC64_TOC16_DS:
13241 case R_PPC64_TOC16_LO_DS:
13242 {
13243 /* Check for toc tls entries. */
13244 unsigned char *toc_tls;
13245 int retval;
13246
13247 retval = get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
13248 &local_syms, rel, input_bfd);
13249 if (retval == 0)
13250 return FALSE;
13251
13252 if (toc_tls)
13253 {
13254 tls_mask = *toc_tls;
13255 if (r_type == R_PPC64_TOC16_DS
13256 || r_type == R_PPC64_TOC16_LO_DS)
13257 {
13258 if (tls_mask != 0
13259 && (tls_mask & (TLS_DTPREL | TLS_TPREL)) == 0)
13260 goto toctprel;
13261 }
13262 else
13263 {
13264 /* If we found a GD reloc pair, then we might be
13265 doing a GD->IE transition. */
13266 if (retval == 2)
13267 {
13268 tls_gd = TLS_TPRELGD;
13269 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13270 goto tls_ldgd_opt;
13271 }
13272 else if (retval == 3)
13273 {
13274 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13275 goto tls_ldgd_opt;
13276 }
13277 }
13278 }
13279 }
13280 break;
13281
13282 case R_PPC64_GOT_TPREL16_HI:
13283 case R_PPC64_GOT_TPREL16_HA:
13284 if (tls_mask != 0
13285 && (tls_mask & TLS_TPREL) == 0)
13286 {
13287 rel->r_offset -= d_offset;
13288 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
13289 r_type = R_PPC64_NONE;
13290 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13291 }
13292 break;
13293
13294 case R_PPC64_GOT_TPREL16_DS:
13295 case R_PPC64_GOT_TPREL16_LO_DS:
13296 if (tls_mask != 0
13297 && (tls_mask & TLS_TPREL) == 0)
13298 {
13299 toctprel:
13300 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - d_offset);
13301 insn &= 31 << 21;
13302 insn |= 0x3c0d0000; /* addis 0,13,0 */
13303 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - d_offset);
13304 r_type = R_PPC64_TPREL16_HA;
13305 if (toc_symndx != 0)
13306 {
13307 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
13308 rel->r_addend = toc_addend;
13309 /* We changed the symbol. Start over in order to
13310 get h, sym, sec etc. right. */
13311 rel--;
13312 continue;
13313 }
13314 else
13315 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13316 }
13317 break;
13318
13319 case R_PPC64_TLS:
13320 if (tls_mask != 0
13321 && (tls_mask & TLS_TPREL) == 0)
13322 {
13323 insn = bfd_get_32 (output_bfd, contents + rel->r_offset);
13324 insn = _bfd_elf_ppc_at_tls_transform (insn, 13);
13325 if (insn == 0)
13326 abort ();
13327 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
13328 /* Was PPC64_TLS which sits on insn boundary, now
13329 PPC64_TPREL16_LO which is at low-order half-word. */
13330 rel->r_offset += d_offset;
13331 r_type = R_PPC64_TPREL16_LO;
13332 if (toc_symndx != 0)
13333 {
13334 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
13335 rel->r_addend = toc_addend;
13336 /* We changed the symbol. Start over in order to
13337 get h, sym, sec etc. right. */
13338 rel--;
13339 continue;
13340 }
13341 else
13342 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13343 }
13344 break;
13345
13346 case R_PPC64_GOT_TLSGD16_HI:
13347 case R_PPC64_GOT_TLSGD16_HA:
13348 tls_gd = TLS_TPRELGD;
13349 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13350 goto tls_gdld_hi;
13351 break;
13352
13353 case R_PPC64_GOT_TLSLD16_HI:
13354 case R_PPC64_GOT_TLSLD16_HA:
13355 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13356 {
13357 tls_gdld_hi:
13358 if ((tls_mask & tls_gd) != 0)
13359 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
13360 + R_PPC64_GOT_TPREL16_DS);
13361 else
13362 {
13363 rel->r_offset -= d_offset;
13364 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
13365 r_type = R_PPC64_NONE;
13366 }
13367 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13368 }
13369 break;
13370
13371 case R_PPC64_GOT_TLSGD16:
13372 case R_PPC64_GOT_TLSGD16_LO:
13373 tls_gd = TLS_TPRELGD;
13374 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13375 goto tls_ldgd_opt;
13376 break;
13377
13378 case R_PPC64_GOT_TLSLD16:
13379 case R_PPC64_GOT_TLSLD16_LO:
13380 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13381 {
13382 unsigned int insn1, insn2, insn3;
13383 bfd_vma offset;
13384
13385 tls_ldgd_opt:
13386 offset = (bfd_vma) -1;
13387 /* If not using the newer R_PPC64_TLSGD/LD to mark
13388 __tls_get_addr calls, we must trust that the call
13389 stays with its arg setup insns, ie. that the next
13390 reloc is the __tls_get_addr call associated with
13391 the current reloc. Edit both insns. */
13392 if (input_section->has_tls_get_addr_call
13393 && rel + 1 < relend
13394 && branch_reloc_hash_match (input_bfd, rel + 1,
13395 htab->tls_get_addr,
13396 htab->tls_get_addr_fd))
13397 offset = rel[1].r_offset;
13398 if ((tls_mask & tls_gd) != 0)
13399 {
13400 /* IE */
13401 insn1 = bfd_get_32 (output_bfd,
13402 contents + rel->r_offset - d_offset);
13403 insn1 &= (1 << 26) - (1 << 2);
13404 insn1 |= 58 << 26; /* ld */
13405 insn2 = 0x7c636a14; /* add 3,3,13 */
13406 if (offset != (bfd_vma) -1)
13407 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
13408 if ((tls_mask & TLS_EXPLICIT) == 0)
13409 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
13410 + R_PPC64_GOT_TPREL16_DS);
13411 else
13412 r_type += R_PPC64_TOC16_DS - R_PPC64_TOC16;
13413 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13414 }
13415 else
13416 {
13417 /* LE */
13418 insn1 = 0x3c6d0000; /* addis 3,13,0 */
13419 insn2 = 0x38630000; /* addi 3,3,0 */
13420 if (tls_gd == 0)
13421 {
13422 /* Was an LD reloc. */
13423 if (toc_symndx)
13424 sec = local_sections[toc_symndx];
13425 for (r_symndx = 0;
13426 r_symndx < symtab_hdr->sh_info;
13427 r_symndx++)
13428 if (local_sections[r_symndx] == sec)
13429 break;
13430 if (r_symndx >= symtab_hdr->sh_info)
13431 r_symndx = STN_UNDEF;
13432 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
13433 if (r_symndx != STN_UNDEF)
13434 rel->r_addend -= (local_syms[r_symndx].st_value
13435 + sec->output_offset
13436 + sec->output_section->vma);
13437 }
13438 else if (toc_symndx != 0)
13439 {
13440 r_symndx = toc_symndx;
13441 rel->r_addend = toc_addend;
13442 }
13443 r_type = R_PPC64_TPREL16_HA;
13444 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13445 if (offset != (bfd_vma) -1)
13446 {
13447 rel[1].r_info = ELF64_R_INFO (r_symndx,
13448 R_PPC64_TPREL16_LO);
13449 rel[1].r_offset = offset + d_offset;
13450 rel[1].r_addend = rel->r_addend;
13451 }
13452 }
13453 bfd_put_32 (output_bfd, insn1,
13454 contents + rel->r_offset - d_offset);
13455 if (offset != (bfd_vma) -1)
13456 {
13457 insn3 = bfd_get_32 (output_bfd,
13458 contents + offset + 4);
13459 if (insn3 == NOP
13460 || insn3 == CROR_151515 || insn3 == CROR_313131)
13461 {
13462 rel[1].r_offset += 4;
13463 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
13464 insn2 = NOP;
13465 }
13466 bfd_put_32 (output_bfd, insn2, contents + offset);
13467 }
13468 if ((tls_mask & tls_gd) == 0
13469 && (tls_gd == 0 || toc_symndx != 0))
13470 {
13471 /* We changed the symbol. Start over in order
13472 to get h, sym, sec etc. right. */
13473 rel--;
13474 continue;
13475 }
13476 }
13477 break;
13478
13479 case R_PPC64_TLSGD:
13480 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13481 {
13482 unsigned int insn2, insn3;
13483 bfd_vma offset = rel->r_offset;
13484
13485 if ((tls_mask & TLS_TPRELGD) != 0)
13486 {
13487 /* IE */
13488 r_type = R_PPC64_NONE;
13489 insn2 = 0x7c636a14; /* add 3,3,13 */
13490 }
13491 else
13492 {
13493 /* LE */
13494 if (toc_symndx != 0)
13495 {
13496 r_symndx = toc_symndx;
13497 rel->r_addend = toc_addend;
13498 }
13499 r_type = R_PPC64_TPREL16_LO;
13500 rel->r_offset = offset + d_offset;
13501 insn2 = 0x38630000; /* addi 3,3,0 */
13502 }
13503 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13504 /* Zap the reloc on the _tls_get_addr call too. */
13505 BFD_ASSERT (offset == rel[1].r_offset);
13506 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
13507 insn3 = bfd_get_32 (output_bfd,
13508 contents + offset + 4);
13509 if (insn3 == NOP
13510 || insn3 == CROR_151515 || insn3 == CROR_313131)
13511 {
13512 rel->r_offset += 4;
13513 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
13514 insn2 = NOP;
13515 }
13516 bfd_put_32 (output_bfd, insn2, contents + offset);
13517 if ((tls_mask & TLS_TPRELGD) == 0 && toc_symndx != 0)
13518 {
13519 rel--;
13520 continue;
13521 }
13522 }
13523 break;
13524
13525 case R_PPC64_TLSLD:
13526 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13527 {
13528 unsigned int insn2, insn3;
13529 bfd_vma offset = rel->r_offset;
13530
13531 if (toc_symndx)
13532 sec = local_sections[toc_symndx];
13533 for (r_symndx = 0;
13534 r_symndx < symtab_hdr->sh_info;
13535 r_symndx++)
13536 if (local_sections[r_symndx] == sec)
13537 break;
13538 if (r_symndx >= symtab_hdr->sh_info)
13539 r_symndx = STN_UNDEF;
13540 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
13541 if (r_symndx != STN_UNDEF)
13542 rel->r_addend -= (local_syms[r_symndx].st_value
13543 + sec->output_offset
13544 + sec->output_section->vma);
13545
13546 r_type = R_PPC64_TPREL16_LO;
13547 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13548 rel->r_offset = offset + d_offset;
13549 /* Zap the reloc on the _tls_get_addr call too. */
13550 BFD_ASSERT (offset == rel[1].r_offset);
13551 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
13552 insn2 = 0x38630000; /* addi 3,3,0 */
13553 insn3 = bfd_get_32 (output_bfd,
13554 contents + offset + 4);
13555 if (insn3 == NOP
13556 || insn3 == CROR_151515 || insn3 == CROR_313131)
13557 {
13558 rel->r_offset += 4;
13559 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
13560 insn2 = NOP;
13561 }
13562 bfd_put_32 (output_bfd, insn2, contents + offset);
13563 rel--;
13564 continue;
13565 }
13566 break;
13567
13568 case R_PPC64_DTPMOD64:
13569 if (rel + 1 < relend
13570 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
13571 && rel[1].r_offset == rel->r_offset + 8)
13572 {
13573 if ((tls_mask & TLS_GD) == 0)
13574 {
13575 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_NONE);
13576 if ((tls_mask & TLS_TPRELGD) != 0)
13577 r_type = R_PPC64_TPREL64;
13578 else
13579 {
13580 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
13581 r_type = R_PPC64_NONE;
13582 }
13583 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13584 }
13585 }
13586 else
13587 {
13588 if ((tls_mask & TLS_LD) == 0)
13589 {
13590 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
13591 r_type = R_PPC64_NONE;
13592 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13593 }
13594 }
13595 break;
13596
13597 case R_PPC64_TPREL64:
13598 if ((tls_mask & TLS_TPREL) == 0)
13599 {
13600 r_type = R_PPC64_NONE;
13601 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13602 }
13603 break;
13604
13605 case R_PPC64_REL16_HA:
13606 /* If we are generating a non-PIC executable, edit
13607 . 0: addis 2,12,.TOC.-0b@ha
13608 . addi 2,2,.TOC.-0b@l
13609 used by ELFv2 global entry points to set up r2, to
13610 . lis 2,.TOC.@ha
13611 . addi 2,2,.TOC.@l
13612 if .TOC. is in range. */
13613 if (!info->shared
13614 && !info->traditional_format
13615 && h != NULL && &h->elf == htab->elf.hgot
13616 && rel + 1 < relend
13617 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_REL16_LO)
13618 && rel[1].r_offset == rel->r_offset + 4
13619 && rel[1].r_addend == rel->r_addend + 4
13620 && relocation + 0x80008000 <= 0xffffffff)
13621 {
13622 unsigned int insn1, insn2;
13623 bfd_vma offset = rel->r_offset - d_offset;
13624 insn1 = bfd_get_32 (output_bfd, contents + offset);
13625 insn2 = bfd_get_32 (output_bfd, contents + offset + 4);
13626 if ((insn1 & 0xffff0000) == 0x3c4c0000 /* addis 2,12 */
13627 && (insn2 & 0xffff0000) == 0x38420000 /* addi 2,2 */)
13628 {
13629 r_type = R_PPC64_ADDR16_HA;
13630 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13631 rel->r_addend -= d_offset;
13632 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_ADDR16_LO);
13633 rel[1].r_addend -= d_offset + 4;
13634 bfd_put_32 (output_bfd, 0x3c400000, contents + offset);
13635 }
13636 }
13637 break;
13638 }
13639
13640 /* Handle other relocations that tweak non-addend part of insn. */
13641 insn = 0;
13642 max_br_offset = 1 << 25;
13643 addend = rel->r_addend;
13644 reloc_dest = DEST_NORMAL;
13645 switch (r_type)
13646 {
13647 default:
13648 break;
13649
13650 case R_PPC64_TOCSAVE:
13651 if (relocation + addend == (rel->r_offset
13652 + input_section->output_offset
13653 + input_section->output_section->vma)
13654 && tocsave_find (htab, NO_INSERT,
13655 &local_syms, rel, input_bfd))
13656 {
13657 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
13658 if (insn == NOP
13659 || insn == CROR_151515 || insn == CROR_313131)
13660 bfd_put_32 (input_bfd,
13661 STD_R2_0R1 + STK_TOC (htab),
13662 contents + rel->r_offset);
13663 }
13664 break;
13665
13666 /* Branch taken prediction relocations. */
13667 case R_PPC64_ADDR14_BRTAKEN:
13668 case R_PPC64_REL14_BRTAKEN:
13669 insn = 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
13670 /* Fall thru. */
13671
13672 /* Branch not taken prediction relocations. */
13673 case R_PPC64_ADDR14_BRNTAKEN:
13674 case R_PPC64_REL14_BRNTAKEN:
13675 insn |= bfd_get_32 (output_bfd,
13676 contents + rel->r_offset) & ~(0x01 << 21);
13677 /* Fall thru. */
13678
13679 case R_PPC64_REL14:
13680 max_br_offset = 1 << 15;
13681 /* Fall thru. */
13682
13683 case R_PPC64_REL24:
13684 /* Calls to functions with a different TOC, such as calls to
13685 shared objects, need to alter the TOC pointer. This is
13686 done using a linkage stub. A REL24 branching to these
13687 linkage stubs needs to be followed by a nop, as the nop
13688 will be replaced with an instruction to restore the TOC
13689 base pointer. */
13690 fdh = h;
13691 if (h != NULL
13692 && h->oh != NULL
13693 && h->oh->is_func_descriptor)
13694 fdh = ppc_follow_link (h->oh);
13695 stub_entry = ppc_get_stub_entry (input_section, sec, fdh, &orig_rel,
13696 htab);
13697 if (stub_entry != NULL
13698 && (stub_entry->stub_type == ppc_stub_plt_call
13699 || stub_entry->stub_type == ppc_stub_plt_call_r2save
13700 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
13701 || stub_entry->stub_type == ppc_stub_long_branch_r2off))
13702 {
13703 bfd_boolean can_plt_call = FALSE;
13704
13705 /* All of these stubs will modify r2, so there must be a
13706 branch and link followed by a nop. The nop is
13707 replaced by an insn to restore r2. */
13708 if (rel->r_offset + 8 <= input_section->size)
13709 {
13710 unsigned long br;
13711
13712 br = bfd_get_32 (input_bfd,
13713 contents + rel->r_offset);
13714 if ((br & 1) != 0)
13715 {
13716 unsigned long nop;
13717
13718 nop = bfd_get_32 (input_bfd,
13719 contents + rel->r_offset + 4);
13720 if (nop == NOP
13721 || nop == CROR_151515 || nop == CROR_313131)
13722 {
13723 if (h != NULL
13724 && (h == htab->tls_get_addr_fd
13725 || h == htab->tls_get_addr)
13726 && !htab->params->no_tls_get_addr_opt)
13727 {
13728 /* Special stub used, leave nop alone. */
13729 }
13730 else
13731 bfd_put_32 (input_bfd,
13732 LD_R2_0R1 + STK_TOC (htab),
13733 contents + rel->r_offset + 4);
13734 can_plt_call = TRUE;
13735 }
13736 }
13737 }
13738
13739 if (!can_plt_call && h != NULL)
13740 {
13741 const char *name = h->elf.root.root.string;
13742
13743 if (*name == '.')
13744 ++name;
13745
13746 if (strncmp (name, "__libc_start_main", 17) == 0
13747 && (name[17] == 0 || name[17] == '@'))
13748 {
13749 /* Allow crt1 branch to go via a toc adjusting
13750 stub. Other calls that never return could do
13751 the same, if we could detect such. */
13752 can_plt_call = TRUE;
13753 }
13754 }
13755
13756 if (!can_plt_call)
13757 {
13758 /* g++ as of 20130507 emits self-calls without a
13759 following nop. This is arguably wrong since we
13760 have conflicting information. On the one hand a
13761 global symbol and on the other a local call
13762 sequence, but don't error for this special case.
13763 It isn't possible to cheaply verify we have
13764 exactly such a call. Allow all calls to the same
13765 section. */
13766 asection *code_sec = sec;
13767
13768 if (get_opd_info (sec) != NULL)
13769 {
13770 bfd_vma off = (relocation + addend
13771 - sec->output_section->vma
13772 - sec->output_offset);
13773
13774 opd_entry_value (sec, off, &code_sec, NULL, FALSE);
13775 }
13776 if (code_sec == input_section)
13777 can_plt_call = TRUE;
13778 }
13779
13780 if (!can_plt_call)
13781 {
13782 if (stub_entry->stub_type == ppc_stub_plt_call
13783 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13784 info->callbacks->einfo
13785 (_("%P: %H: call to `%T' lacks nop, can't restore toc; "
13786 "recompile with -fPIC\n"),
13787 input_bfd, input_section, rel->r_offset, sym_name);
13788 else
13789 info->callbacks->einfo
13790 (_("%P: %H: call to `%T' lacks nop, can't restore toc; "
13791 "(-mcmodel=small toc adjust stub)\n"),
13792 input_bfd, input_section, rel->r_offset, sym_name);
13793
13794 bfd_set_error (bfd_error_bad_value);
13795 ret = FALSE;
13796 }
13797
13798 if (can_plt_call
13799 && (stub_entry->stub_type == ppc_stub_plt_call
13800 || stub_entry->stub_type == ppc_stub_plt_call_r2save))
13801 unresolved_reloc = FALSE;
13802 }
13803
13804 if ((stub_entry == NULL
13805 || stub_entry->stub_type == ppc_stub_long_branch
13806 || stub_entry->stub_type == ppc_stub_plt_branch)
13807 && get_opd_info (sec) != NULL)
13808 {
13809 /* The branch destination is the value of the opd entry. */
13810 bfd_vma off = (relocation + addend
13811 - sec->output_section->vma
13812 - sec->output_offset);
13813 bfd_vma dest = opd_entry_value (sec, off, NULL, NULL, FALSE);
13814 if (dest != (bfd_vma) -1)
13815 {
13816 relocation = dest;
13817 addend = 0;
13818 reloc_dest = DEST_OPD;
13819 }
13820 }
13821
13822 /* If the branch is out of reach we ought to have a long
13823 branch stub. */
13824 from = (rel->r_offset
13825 + input_section->output_offset
13826 + input_section->output_section->vma);
13827
13828 relocation += PPC64_LOCAL_ENTRY_OFFSET (fdh
13829 ? fdh->elf.other
13830 : sym->st_other);
13831
13832 if (stub_entry != NULL
13833 && (stub_entry->stub_type == ppc_stub_long_branch
13834 || stub_entry->stub_type == ppc_stub_plt_branch)
13835 && (r_type == R_PPC64_ADDR14_BRTAKEN
13836 || r_type == R_PPC64_ADDR14_BRNTAKEN
13837 || (relocation + addend - from + max_br_offset
13838 < 2 * max_br_offset)))
13839 /* Don't use the stub if this branch is in range. */
13840 stub_entry = NULL;
13841
13842 if (stub_entry != NULL)
13843 {
13844 /* Munge up the value and addend so that we call the stub
13845 rather than the procedure directly. */
13846 relocation = (stub_entry->stub_offset
13847 + stub_entry->stub_sec->output_offset
13848 + stub_entry->stub_sec->output_section->vma);
13849 addend = 0;
13850 reloc_dest = DEST_STUB;
13851
13852 if ((stub_entry->stub_type == ppc_stub_plt_call
13853 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13854 && (ALWAYS_EMIT_R2SAVE
13855 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13856 && rel + 1 < relend
13857 && rel[1].r_offset == rel->r_offset + 4
13858 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOCSAVE)
13859 relocation += 4;
13860 }
13861
13862 if (insn != 0)
13863 {
13864 if (is_isa_v2)
13865 {
13866 /* Set 'a' bit. This is 0b00010 in BO field for branch
13867 on CR(BI) insns (BO == 001at or 011at), and 0b01000
13868 for branch on CTR insns (BO == 1a00t or 1a01t). */
13869 if ((insn & (0x14 << 21)) == (0x04 << 21))
13870 insn |= 0x02 << 21;
13871 else if ((insn & (0x14 << 21)) == (0x10 << 21))
13872 insn |= 0x08 << 21;
13873 else
13874 break;
13875 }
13876 else
13877 {
13878 /* Invert 'y' bit if not the default. */
13879 if ((bfd_signed_vma) (relocation + addend - from) < 0)
13880 insn ^= 0x01 << 21;
13881 }
13882
13883 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
13884 }
13885
13886 /* NOP out calls to undefined weak functions.
13887 We can thus call a weak function without first
13888 checking whether the function is defined. */
13889 else if (h != NULL
13890 && h->elf.root.type == bfd_link_hash_undefweak
13891 && h->elf.dynindx == -1
13892 && r_type == R_PPC64_REL24
13893 && relocation == 0
13894 && addend == 0)
13895 {
13896 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
13897 continue;
13898 }
13899 break;
13900 }
13901
13902 /* Set `addend'. */
13903 tls_type = 0;
13904 switch (r_type)
13905 {
13906 default:
13907 info->callbacks->einfo
13908 (_("%P: %B: unknown relocation type %d for `%T'\n"),
13909 input_bfd, (int) r_type, sym_name);
13910
13911 bfd_set_error (bfd_error_bad_value);
13912 ret = FALSE;
13913 continue;
13914
13915 case R_PPC64_NONE:
13916 case R_PPC64_TLS:
13917 case R_PPC64_TLSGD:
13918 case R_PPC64_TLSLD:
13919 case R_PPC64_TOCSAVE:
13920 case R_PPC64_GNU_VTINHERIT:
13921 case R_PPC64_GNU_VTENTRY:
13922 continue;
13923
13924 /* GOT16 relocations. Like an ADDR16 using the symbol's
13925 address in the GOT as relocation value instead of the
13926 symbol's value itself. Also, create a GOT entry for the
13927 symbol and put the symbol value there. */
13928 case R_PPC64_GOT_TLSGD16:
13929 case R_PPC64_GOT_TLSGD16_LO:
13930 case R_PPC64_GOT_TLSGD16_HI:
13931 case R_PPC64_GOT_TLSGD16_HA:
13932 tls_type = TLS_TLS | TLS_GD;
13933 goto dogot;
13934
13935 case R_PPC64_GOT_TLSLD16:
13936 case R_PPC64_GOT_TLSLD16_LO:
13937 case R_PPC64_GOT_TLSLD16_HI:
13938 case R_PPC64_GOT_TLSLD16_HA:
13939 tls_type = TLS_TLS | TLS_LD;
13940 goto dogot;
13941
13942 case R_PPC64_GOT_TPREL16_DS:
13943 case R_PPC64_GOT_TPREL16_LO_DS:
13944 case R_PPC64_GOT_TPREL16_HI:
13945 case R_PPC64_GOT_TPREL16_HA:
13946 tls_type = TLS_TLS | TLS_TPREL;
13947 goto dogot;
13948
13949 case R_PPC64_GOT_DTPREL16_DS:
13950 case R_PPC64_GOT_DTPREL16_LO_DS:
13951 case R_PPC64_GOT_DTPREL16_HI:
13952 case R_PPC64_GOT_DTPREL16_HA:
13953 tls_type = TLS_TLS | TLS_DTPREL;
13954 goto dogot;
13955
13956 case R_PPC64_GOT16:
13957 case R_PPC64_GOT16_LO:
13958 case R_PPC64_GOT16_HI:
13959 case R_PPC64_GOT16_HA:
13960 case R_PPC64_GOT16_DS:
13961 case R_PPC64_GOT16_LO_DS:
13962 dogot:
13963 {
13964 /* Relocation is to the entry for this symbol in the global
13965 offset table. */
13966 asection *got;
13967 bfd_vma *offp;
13968 bfd_vma off;
13969 unsigned long indx = 0;
13970 struct got_entry *ent;
13971
13972 if (tls_type == (TLS_TLS | TLS_LD)
13973 && (h == NULL
13974 || !h->elf.def_dynamic))
13975 ent = ppc64_tlsld_got (input_bfd);
13976 else
13977 {
13978
13979 if (h != NULL)
13980 {
13981 bfd_boolean dyn = htab->elf.dynamic_sections_created;
13982 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
13983 &h->elf)
13984 || (info->shared
13985 && SYMBOL_REFERENCES_LOCAL (info, &h->elf)))
13986 /* This is actually a static link, or it is a
13987 -Bsymbolic link and the symbol is defined
13988 locally, or the symbol was forced to be local
13989 because of a version file. */
13990 ;
13991 else
13992 {
13993 BFD_ASSERT (h->elf.dynindx != -1);
13994 indx = h->elf.dynindx;
13995 unresolved_reloc = FALSE;
13996 }
13997 ent = h->elf.got.glist;
13998 }
13999 else
14000 {
14001 if (local_got_ents == NULL)
14002 abort ();
14003 ent = local_got_ents[r_symndx];
14004 }
14005
14006 for (; ent != NULL; ent = ent->next)
14007 if (ent->addend == orig_rel.r_addend
14008 && ent->owner == input_bfd
14009 && ent->tls_type == tls_type)
14010 break;
14011 }
14012
14013 if (ent == NULL)
14014 abort ();
14015 if (ent->is_indirect)
14016 ent = ent->got.ent;
14017 offp = &ent->got.offset;
14018 got = ppc64_elf_tdata (ent->owner)->got;
14019 if (got == NULL)
14020 abort ();
14021
14022 /* The offset must always be a multiple of 8. We use the
14023 least significant bit to record whether we have already
14024 processed this entry. */
14025 off = *offp;
14026 if ((off & 1) != 0)
14027 off &= ~1;
14028 else
14029 {
14030 /* Generate relocs for the dynamic linker, except in
14031 the case of TLSLD where we'll use one entry per
14032 module. */
14033 asection *relgot;
14034 bfd_boolean ifunc;
14035
14036 *offp = off | 1;
14037 relgot = NULL;
14038 ifunc = (h != NULL
14039 ? h->elf.type == STT_GNU_IFUNC
14040 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC);
14041 if (ifunc)
14042 relgot = htab->elf.irelplt;
14043 else if ((info->shared || indx != 0)
14044 && (h == NULL
14045 || (tls_type == (TLS_TLS | TLS_LD)
14046 && !h->elf.def_dynamic)
14047 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
14048 || h->elf.root.type != bfd_link_hash_undefweak))
14049 relgot = ppc64_elf_tdata (ent->owner)->relgot;
14050 if (relgot != NULL)
14051 {
14052 outrel.r_offset = (got->output_section->vma
14053 + got->output_offset
14054 + off);
14055 outrel.r_addend = addend;
14056 if (tls_type & (TLS_LD | TLS_GD))
14057 {
14058 outrel.r_addend = 0;
14059 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPMOD64);
14060 if (tls_type == (TLS_TLS | TLS_GD))
14061 {
14062 loc = relgot->contents;
14063 loc += (relgot->reloc_count++
14064 * sizeof (Elf64_External_Rela));
14065 bfd_elf64_swap_reloca_out (output_bfd,
14066 &outrel, loc);
14067 outrel.r_offset += 8;
14068 outrel.r_addend = addend;
14069 outrel.r_info
14070 = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
14071 }
14072 }
14073 else if (tls_type == (TLS_TLS | TLS_DTPREL))
14074 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
14075 else if (tls_type == (TLS_TLS | TLS_TPREL))
14076 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_TPREL64);
14077 else if (indx != 0)
14078 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_GLOB_DAT);
14079 else
14080 {
14081 if (ifunc)
14082 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
14083 else
14084 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
14085
14086 /* Write the .got section contents for the sake
14087 of prelink. */
14088 loc = got->contents + off;
14089 bfd_put_64 (output_bfd, outrel.r_addend + relocation,
14090 loc);
14091 }
14092
14093 if (indx == 0 && tls_type != (TLS_TLS | TLS_LD))
14094 {
14095 outrel.r_addend += relocation;
14096 if (tls_type & (TLS_GD | TLS_DTPREL | TLS_TPREL))
14097 outrel.r_addend -= htab->elf.tls_sec->vma;
14098 }
14099 loc = relgot->contents;
14100 loc += (relgot->reloc_count++
14101 * sizeof (Elf64_External_Rela));
14102 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
14103 }
14104
14105 /* Init the .got section contents here if we're not
14106 emitting a reloc. */
14107 else
14108 {
14109 relocation += addend;
14110 if (tls_type == (TLS_TLS | TLS_LD))
14111 relocation = 1;
14112 else if (tls_type != 0)
14113 {
14114 relocation -= htab->elf.tls_sec->vma + DTP_OFFSET;
14115 if (tls_type == (TLS_TLS | TLS_TPREL))
14116 relocation += DTP_OFFSET - TP_OFFSET;
14117
14118 if (tls_type == (TLS_TLS | TLS_GD))
14119 {
14120 bfd_put_64 (output_bfd, relocation,
14121 got->contents + off + 8);
14122 relocation = 1;
14123 }
14124 }
14125
14126 bfd_put_64 (output_bfd, relocation,
14127 got->contents + off);
14128 }
14129 }
14130
14131 if (off >= (bfd_vma) -2)
14132 abort ();
14133
14134 relocation = got->output_section->vma + got->output_offset + off;
14135 addend = -(TOCstart + htab->stub_group[input_section->id].toc_off);
14136 }
14137 break;
14138
14139 case R_PPC64_PLT16_HA:
14140 case R_PPC64_PLT16_HI:
14141 case R_PPC64_PLT16_LO:
14142 case R_PPC64_PLT32:
14143 case R_PPC64_PLT64:
14144 /* Relocation is to the entry for this symbol in the
14145 procedure linkage table. */
14146
14147 /* Resolve a PLT reloc against a local symbol directly,
14148 without using the procedure linkage table. */
14149 if (h == NULL)
14150 break;
14151
14152 /* It's possible that we didn't make a PLT entry for this
14153 symbol. This happens when statically linking PIC code,
14154 or when using -Bsymbolic. Go find a match if there is a
14155 PLT entry. */
14156 if (htab->elf.splt != NULL)
14157 {
14158 struct plt_entry *ent;
14159 for (ent = h->elf.plt.plist; ent != NULL; ent = ent->next)
14160 if (ent->plt.offset != (bfd_vma) -1
14161 && ent->addend == orig_rel.r_addend)
14162 {
14163 relocation = (htab->elf.splt->output_section->vma
14164 + htab->elf.splt->output_offset
14165 + ent->plt.offset);
14166 unresolved_reloc = FALSE;
14167 break;
14168 }
14169 }
14170 break;
14171
14172 case R_PPC64_TOC:
14173 /* Relocation value is TOC base. */
14174 relocation = TOCstart;
14175 if (r_symndx == STN_UNDEF)
14176 relocation += htab->stub_group[input_section->id].toc_off;
14177 else if (unresolved_reloc)
14178 ;
14179 else if (sec != NULL && sec->id <= htab->top_id)
14180 relocation += htab->stub_group[sec->id].toc_off;
14181 else
14182 unresolved_reloc = TRUE;
14183 goto dodyn;
14184
14185 /* TOC16 relocs. We want the offset relative to the TOC base,
14186 which is the address of the start of the TOC plus 0x8000.
14187 The TOC consists of sections .got, .toc, .tocbss, and .plt,
14188 in this order. */
14189 case R_PPC64_TOC16:
14190 case R_PPC64_TOC16_LO:
14191 case R_PPC64_TOC16_HI:
14192 case R_PPC64_TOC16_DS:
14193 case R_PPC64_TOC16_LO_DS:
14194 case R_PPC64_TOC16_HA:
14195 addend -= TOCstart + htab->stub_group[input_section->id].toc_off;
14196 break;
14197
14198 /* Relocate against the beginning of the section. */
14199 case R_PPC64_SECTOFF:
14200 case R_PPC64_SECTOFF_LO:
14201 case R_PPC64_SECTOFF_HI:
14202 case R_PPC64_SECTOFF_DS:
14203 case R_PPC64_SECTOFF_LO_DS:
14204 case R_PPC64_SECTOFF_HA:
14205 if (sec != NULL)
14206 addend -= sec->output_section->vma;
14207 break;
14208
14209 case R_PPC64_REL16:
14210 case R_PPC64_REL16_LO:
14211 case R_PPC64_REL16_HI:
14212 case R_PPC64_REL16_HA:
14213 break;
14214
14215 case R_PPC64_REL14:
14216 case R_PPC64_REL14_BRNTAKEN:
14217 case R_PPC64_REL14_BRTAKEN:
14218 case R_PPC64_REL24:
14219 break;
14220
14221 case R_PPC64_TPREL16:
14222 case R_PPC64_TPREL16_LO:
14223 case R_PPC64_TPREL16_HI:
14224 case R_PPC64_TPREL16_HA:
14225 case R_PPC64_TPREL16_DS:
14226 case R_PPC64_TPREL16_LO_DS:
14227 case R_PPC64_TPREL16_HIGH:
14228 case R_PPC64_TPREL16_HIGHA:
14229 case R_PPC64_TPREL16_HIGHER:
14230 case R_PPC64_TPREL16_HIGHERA:
14231 case R_PPC64_TPREL16_HIGHEST:
14232 case R_PPC64_TPREL16_HIGHESTA:
14233 if (h != NULL
14234 && h->elf.root.type == bfd_link_hash_undefweak
14235 && h->elf.dynindx == -1)
14236 {
14237 /* Make this relocation against an undefined weak symbol
14238 resolve to zero. This is really just a tweak, since
14239 code using weak externs ought to check that they are
14240 defined before using them. */
14241 bfd_byte *p = contents + rel->r_offset - d_offset;
14242
14243 insn = bfd_get_32 (output_bfd, p);
14244 insn = _bfd_elf_ppc_at_tprel_transform (insn, 13);
14245 if (insn != 0)
14246 bfd_put_32 (output_bfd, insn, p);
14247 break;
14248 }
14249 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
14250 if (info->shared)
14251 /* The TPREL16 relocs shouldn't really be used in shared
14252 libs as they will result in DT_TEXTREL being set, but
14253 support them anyway. */
14254 goto dodyn;
14255 break;
14256
14257 case R_PPC64_DTPREL16:
14258 case R_PPC64_DTPREL16_LO:
14259 case R_PPC64_DTPREL16_HI:
14260 case R_PPC64_DTPREL16_HA:
14261 case R_PPC64_DTPREL16_DS:
14262 case R_PPC64_DTPREL16_LO_DS:
14263 case R_PPC64_DTPREL16_HIGH:
14264 case R_PPC64_DTPREL16_HIGHA:
14265 case R_PPC64_DTPREL16_HIGHER:
14266 case R_PPC64_DTPREL16_HIGHERA:
14267 case R_PPC64_DTPREL16_HIGHEST:
14268 case R_PPC64_DTPREL16_HIGHESTA:
14269 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
14270 break;
14271
14272 case R_PPC64_ADDR64_LOCAL:
14273 addend += PPC64_LOCAL_ENTRY_OFFSET (h != NULL
14274 ? h->elf.other
14275 : sym->st_other);
14276 break;
14277
14278 case R_PPC64_DTPMOD64:
14279 relocation = 1;
14280 addend = 0;
14281 goto dodyn;
14282
14283 case R_PPC64_TPREL64:
14284 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
14285 goto dodyn;
14286
14287 case R_PPC64_DTPREL64:
14288 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
14289 /* Fall thru */
14290
14291 /* Relocations that may need to be propagated if this is a
14292 dynamic object. */
14293 case R_PPC64_REL30:
14294 case R_PPC64_REL32:
14295 case R_PPC64_REL64:
14296 case R_PPC64_ADDR14:
14297 case R_PPC64_ADDR14_BRNTAKEN:
14298 case R_PPC64_ADDR14_BRTAKEN:
14299 case R_PPC64_ADDR16:
14300 case R_PPC64_ADDR16_DS:
14301 case R_PPC64_ADDR16_HA:
14302 case R_PPC64_ADDR16_HI:
14303 case R_PPC64_ADDR16_HIGH:
14304 case R_PPC64_ADDR16_HIGHA:
14305 case R_PPC64_ADDR16_HIGHER:
14306 case R_PPC64_ADDR16_HIGHERA:
14307 case R_PPC64_ADDR16_HIGHEST:
14308 case R_PPC64_ADDR16_HIGHESTA:
14309 case R_PPC64_ADDR16_LO:
14310 case R_PPC64_ADDR16_LO_DS:
14311 case R_PPC64_ADDR24:
14312 case R_PPC64_ADDR32:
14313 case R_PPC64_ADDR64:
14314 case R_PPC64_UADDR16:
14315 case R_PPC64_UADDR32:
14316 case R_PPC64_UADDR64:
14317 dodyn:
14318 if ((input_section->flags & SEC_ALLOC) == 0)
14319 break;
14320
14321 if (NO_OPD_RELOCS && is_opd)
14322 break;
14323
14324 if ((info->shared
14325 && (h == NULL
14326 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
14327 || h->elf.root.type != bfd_link_hash_undefweak)
14328 && (must_be_dyn_reloc (info, r_type)
14329 || !SYMBOL_CALLS_LOCAL (info, &h->elf)))
14330 || (ELIMINATE_COPY_RELOCS
14331 && !info->shared
14332 && h != NULL
14333 && h->elf.dynindx != -1
14334 && !h->elf.non_got_ref
14335 && !h->elf.def_regular)
14336 || (!info->shared
14337 && (h != NULL
14338 ? h->elf.type == STT_GNU_IFUNC
14339 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))
14340 {
14341 bfd_boolean skip, relocate;
14342 asection *sreloc;
14343 bfd_vma out_off;
14344
14345 /* When generating a dynamic object, these relocations
14346 are copied into the output file to be resolved at run
14347 time. */
14348
14349 skip = FALSE;
14350 relocate = FALSE;
14351
14352 out_off = _bfd_elf_section_offset (output_bfd, info,
14353 input_section, rel->r_offset);
14354 if (out_off == (bfd_vma) -1)
14355 skip = TRUE;
14356 else if (out_off == (bfd_vma) -2)
14357 skip = TRUE, relocate = TRUE;
14358 out_off += (input_section->output_section->vma
14359 + input_section->output_offset);
14360 outrel.r_offset = out_off;
14361 outrel.r_addend = rel->r_addend;
14362
14363 /* Optimize unaligned reloc use. */
14364 if ((r_type == R_PPC64_ADDR64 && (out_off & 7) != 0)
14365 || (r_type == R_PPC64_UADDR64 && (out_off & 7) == 0))
14366 r_type ^= R_PPC64_ADDR64 ^ R_PPC64_UADDR64;
14367 else if ((r_type == R_PPC64_ADDR32 && (out_off & 3) != 0)
14368 || (r_type == R_PPC64_UADDR32 && (out_off & 3) == 0))
14369 r_type ^= R_PPC64_ADDR32 ^ R_PPC64_UADDR32;
14370 else if ((r_type == R_PPC64_ADDR16 && (out_off & 1) != 0)
14371 || (r_type == R_PPC64_UADDR16 && (out_off & 1) == 0))
14372 r_type ^= R_PPC64_ADDR16 ^ R_PPC64_UADDR16;
14373
14374 if (skip)
14375 memset (&outrel, 0, sizeof outrel);
14376 else if (!SYMBOL_REFERENCES_LOCAL (info, &h->elf)
14377 && !is_opd
14378 && r_type != R_PPC64_TOC)
14379 {
14380 BFD_ASSERT (h->elf.dynindx != -1);
14381 outrel.r_info = ELF64_R_INFO (h->elf.dynindx, r_type);
14382 }
14383 else
14384 {
14385 /* This symbol is local, or marked to become local,
14386 or this is an opd section reloc which must point
14387 at a local function. */
14388 outrel.r_addend += relocation;
14389 if (r_type == R_PPC64_ADDR64 || r_type == R_PPC64_TOC)
14390 {
14391 if (is_opd && h != NULL)
14392 {
14393 /* Lie about opd entries. This case occurs
14394 when building shared libraries and we
14395 reference a function in another shared
14396 lib. The same thing happens for a weak
14397 definition in an application that's
14398 overridden by a strong definition in a
14399 shared lib. (I believe this is a generic
14400 bug in binutils handling of weak syms.)
14401 In these cases we won't use the opd
14402 entry in this lib. */
14403 unresolved_reloc = FALSE;
14404 }
14405 if (!is_opd
14406 && r_type == R_PPC64_ADDR64
14407 && (h != NULL
14408 ? h->elf.type == STT_GNU_IFUNC
14409 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC))
14410 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
14411 else
14412 {
14413 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
14414
14415 /* We need to relocate .opd contents for ld.so.
14416 Prelink also wants simple and consistent rules
14417 for relocs. This make all RELATIVE relocs have
14418 *r_offset equal to r_addend. */
14419 relocate = TRUE;
14420 }
14421 }
14422 else
14423 {
14424 long indx = 0;
14425
14426 if (h != NULL
14427 ? h->elf.type == STT_GNU_IFUNC
14428 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
14429 {
14430 info->callbacks->einfo
14431 (_("%P: %H: %s for indirect "
14432 "function `%T' unsupported\n"),
14433 input_bfd, input_section, rel->r_offset,
14434 ppc64_elf_howto_table[r_type]->name,
14435 sym_name);
14436 ret = FALSE;
14437 }
14438 else if (r_symndx == STN_UNDEF || bfd_is_abs_section (sec))
14439 ;
14440 else if (sec == NULL || sec->owner == NULL)
14441 {
14442 bfd_set_error (bfd_error_bad_value);
14443 return FALSE;
14444 }
14445 else
14446 {
14447 asection *osec;
14448
14449 osec = sec->output_section;
14450 indx = elf_section_data (osec)->dynindx;
14451
14452 if (indx == 0)
14453 {
14454 if ((osec->flags & SEC_READONLY) == 0
14455 && htab->elf.data_index_section != NULL)
14456 osec = htab->elf.data_index_section;
14457 else
14458 osec = htab->elf.text_index_section;
14459 indx = elf_section_data (osec)->dynindx;
14460 }
14461 BFD_ASSERT (indx != 0);
14462
14463 /* We are turning this relocation into one
14464 against a section symbol, so subtract out
14465 the output section's address but not the
14466 offset of the input section in the output
14467 section. */
14468 outrel.r_addend -= osec->vma;
14469 }
14470
14471 outrel.r_info = ELF64_R_INFO (indx, r_type);
14472 }
14473 }
14474
14475 sreloc = elf_section_data (input_section)->sreloc;
14476 if (h != NULL
14477 ? h->elf.type == STT_GNU_IFUNC
14478 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
14479 sreloc = htab->elf.irelplt;
14480 if (sreloc == NULL)
14481 abort ();
14482
14483 if (sreloc->reloc_count * sizeof (Elf64_External_Rela)
14484 >= sreloc->size)
14485 abort ();
14486 loc = sreloc->contents;
14487 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
14488 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
14489
14490 /* If this reloc is against an external symbol, it will
14491 be computed at runtime, so there's no need to do
14492 anything now. However, for the sake of prelink ensure
14493 that the section contents are a known value. */
14494 if (! relocate)
14495 {
14496 unresolved_reloc = FALSE;
14497 /* The value chosen here is quite arbitrary as ld.so
14498 ignores section contents except for the special
14499 case of .opd where the contents might be accessed
14500 before relocation. Choose zero, as that won't
14501 cause reloc overflow. */
14502 relocation = 0;
14503 addend = 0;
14504 /* Use *r_offset == r_addend for R_PPC64_ADDR64 relocs
14505 to improve backward compatibility with older
14506 versions of ld. */
14507 if (r_type == R_PPC64_ADDR64)
14508 addend = outrel.r_addend;
14509 /* Adjust pc_relative relocs to have zero in *r_offset. */
14510 else if (ppc64_elf_howto_table[r_type]->pc_relative)
14511 addend = (input_section->output_section->vma
14512 + input_section->output_offset
14513 + rel->r_offset);
14514 }
14515 }
14516 break;
14517
14518 case R_PPC64_COPY:
14519 case R_PPC64_GLOB_DAT:
14520 case R_PPC64_JMP_SLOT:
14521 case R_PPC64_JMP_IREL:
14522 case R_PPC64_RELATIVE:
14523 /* We shouldn't ever see these dynamic relocs in relocatable
14524 files. */
14525 /* Fall through. */
14526
14527 case R_PPC64_PLTGOT16:
14528 case R_PPC64_PLTGOT16_DS:
14529 case R_PPC64_PLTGOT16_HA:
14530 case R_PPC64_PLTGOT16_HI:
14531 case R_PPC64_PLTGOT16_LO:
14532 case R_PPC64_PLTGOT16_LO_DS:
14533 case R_PPC64_PLTREL32:
14534 case R_PPC64_PLTREL64:
14535 /* These ones haven't been implemented yet. */
14536
14537 info->callbacks->einfo
14538 (_("%P: %B: %s is not supported for `%T'\n"),
14539 input_bfd,
14540 ppc64_elf_howto_table[r_type]->name, sym_name);
14541
14542 bfd_set_error (bfd_error_invalid_operation);
14543 ret = FALSE;
14544 continue;
14545 }
14546
14547 /* Multi-instruction sequences that access the TOC can be
14548 optimized, eg. addis ra,r2,0; addi rb,ra,x;
14549 to nop; addi rb,r2,x; */
14550 switch (r_type)
14551 {
14552 default:
14553 break;
14554
14555 case R_PPC64_GOT_TLSLD16_HI:
14556 case R_PPC64_GOT_TLSGD16_HI:
14557 case R_PPC64_GOT_TPREL16_HI:
14558 case R_PPC64_GOT_DTPREL16_HI:
14559 case R_PPC64_GOT16_HI:
14560 case R_PPC64_TOC16_HI:
14561 /* These relocs would only be useful if building up an
14562 offset to later add to r2, perhaps in an indexed
14563 addressing mode instruction. Don't try to optimize.
14564 Unfortunately, the possibility of someone building up an
14565 offset like this or even with the HA relocs, means that
14566 we need to check the high insn when optimizing the low
14567 insn. */
14568 break;
14569
14570 case R_PPC64_GOT_TLSLD16_HA:
14571 case R_PPC64_GOT_TLSGD16_HA:
14572 case R_PPC64_GOT_TPREL16_HA:
14573 case R_PPC64_GOT_DTPREL16_HA:
14574 case R_PPC64_GOT16_HA:
14575 case R_PPC64_TOC16_HA:
14576 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
14577 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
14578 {
14579 bfd_byte *p = contents + (rel->r_offset & ~3);
14580 bfd_put_32 (input_bfd, NOP, p);
14581 }
14582 break;
14583
14584 case R_PPC64_GOT_TLSLD16_LO:
14585 case R_PPC64_GOT_TLSGD16_LO:
14586 case R_PPC64_GOT_TPREL16_LO_DS:
14587 case R_PPC64_GOT_DTPREL16_LO_DS:
14588 case R_PPC64_GOT16_LO:
14589 case R_PPC64_GOT16_LO_DS:
14590 case R_PPC64_TOC16_LO:
14591 case R_PPC64_TOC16_LO_DS:
14592 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
14593 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
14594 {
14595 bfd_byte *p = contents + (rel->r_offset & ~3);
14596 insn = bfd_get_32 (input_bfd, p);
14597 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
14598 {
14599 /* Transform addic to addi when we change reg. */
14600 insn &= ~((0x3f << 26) | (0x1f << 16));
14601 insn |= (14u << 26) | (2 << 16);
14602 }
14603 else
14604 {
14605 insn &= ~(0x1f << 16);
14606 insn |= 2 << 16;
14607 }
14608 bfd_put_32 (input_bfd, insn, p);
14609 }
14610 break;
14611 }
14612
14613 /* Do any further special processing. */
14614 howto = ppc64_elf_howto_table[(int) r_type];
14615 switch (r_type)
14616 {
14617 default:
14618 break;
14619
14620 case R_PPC64_REL16_HA:
14621 case R_PPC64_ADDR16_HA:
14622 case R_PPC64_ADDR16_HIGHA:
14623 case R_PPC64_ADDR16_HIGHERA:
14624 case R_PPC64_ADDR16_HIGHESTA:
14625 case R_PPC64_TOC16_HA:
14626 case R_PPC64_SECTOFF_HA:
14627 case R_PPC64_TPREL16_HA:
14628 case R_PPC64_TPREL16_HIGHA:
14629 case R_PPC64_TPREL16_HIGHERA:
14630 case R_PPC64_TPREL16_HIGHESTA:
14631 case R_PPC64_DTPREL16_HA:
14632 case R_PPC64_DTPREL16_HIGHA:
14633 case R_PPC64_DTPREL16_HIGHERA:
14634 case R_PPC64_DTPREL16_HIGHESTA:
14635 /* It's just possible that this symbol is a weak symbol
14636 that's not actually defined anywhere. In that case,
14637 'sec' would be NULL, and we should leave the symbol
14638 alone (it will be set to zero elsewhere in the link). */
14639 if (sec == NULL)
14640 break;
14641 /* Fall thru */
14642
14643 case R_PPC64_GOT16_HA:
14644 case R_PPC64_PLTGOT16_HA:
14645 case R_PPC64_PLT16_HA:
14646 case R_PPC64_GOT_TLSGD16_HA:
14647 case R_PPC64_GOT_TLSLD16_HA:
14648 case R_PPC64_GOT_TPREL16_HA:
14649 case R_PPC64_GOT_DTPREL16_HA:
14650 /* Add 0x10000 if sign bit in 0:15 is set.
14651 Bits 0:15 are not used. */
14652 addend += 0x8000;
14653 break;
14654
14655 case R_PPC64_ADDR16_DS:
14656 case R_PPC64_ADDR16_LO_DS:
14657 case R_PPC64_GOT16_DS:
14658 case R_PPC64_GOT16_LO_DS:
14659 case R_PPC64_PLT16_LO_DS:
14660 case R_PPC64_SECTOFF_DS:
14661 case R_PPC64_SECTOFF_LO_DS:
14662 case R_PPC64_TOC16_DS:
14663 case R_PPC64_TOC16_LO_DS:
14664 case R_PPC64_PLTGOT16_DS:
14665 case R_PPC64_PLTGOT16_LO_DS:
14666 case R_PPC64_GOT_TPREL16_DS:
14667 case R_PPC64_GOT_TPREL16_LO_DS:
14668 case R_PPC64_GOT_DTPREL16_DS:
14669 case R_PPC64_GOT_DTPREL16_LO_DS:
14670 case R_PPC64_TPREL16_DS:
14671 case R_PPC64_TPREL16_LO_DS:
14672 case R_PPC64_DTPREL16_DS:
14673 case R_PPC64_DTPREL16_LO_DS:
14674 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
14675 mask = 3;
14676 /* If this reloc is against an lq insn, then the value must be
14677 a multiple of 16. This is somewhat of a hack, but the
14678 "correct" way to do this by defining _DQ forms of all the
14679 _DS relocs bloats all reloc switches in this file. It
14680 doesn't seem to make much sense to use any of these relocs
14681 in data, so testing the insn should be safe. */
14682 if ((insn & (0x3f << 26)) == (56u << 26))
14683 mask = 15;
14684 if (((relocation + addend) & mask) != 0)
14685 {
14686 info->callbacks->einfo
14687 (_("%P: %H: error: %s not a multiple of %u\n"),
14688 input_bfd, input_section, rel->r_offset,
14689 howto->name,
14690 mask + 1);
14691 bfd_set_error (bfd_error_bad_value);
14692 ret = FALSE;
14693 continue;
14694 }
14695 break;
14696 }
14697
14698 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
14699 because such sections are not SEC_ALLOC and thus ld.so will
14700 not process them. */
14701 if (unresolved_reloc
14702 && !((input_section->flags & SEC_DEBUGGING) != 0
14703 && h->elf.def_dynamic)
14704 && _bfd_elf_section_offset (output_bfd, info, input_section,
14705 rel->r_offset) != (bfd_vma) -1)
14706 {
14707 info->callbacks->einfo
14708 (_("%P: %H: unresolvable %s against `%T'\n"),
14709 input_bfd, input_section, rel->r_offset,
14710 howto->name,
14711 h->elf.root.root.string);
14712 ret = FALSE;
14713 }
14714
14715 /* 16-bit fields in insns mostly have signed values, but a
14716 few insns have 16-bit unsigned values. Really, we should
14717 have different reloc types. */
14718 if (howto->complain_on_overflow != complain_overflow_dont
14719 && howto->dst_mask == 0xffff
14720 && (input_section->flags & SEC_CODE) != 0)
14721 {
14722 enum complain_overflow complain = complain_overflow_signed;
14723
14724 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
14725 if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
14726 complain = complain_overflow_bitfield;
14727 else if (howto->rightshift == 0
14728 ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
14729 || (insn & (0x3f << 26)) == 24u << 26 /* ori */
14730 || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
14731 : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
14732 || (insn & (0x3f << 26)) == 25u << 26 /* oris */
14733 || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
14734 complain = complain_overflow_unsigned;
14735 if (howto->complain_on_overflow != complain)
14736 {
14737 alt_howto = *howto;
14738 alt_howto.complain_on_overflow = complain;
14739 howto = &alt_howto;
14740 }
14741 }
14742
14743 r = _bfd_final_link_relocate (howto, input_bfd, input_section, contents,
14744 rel->r_offset, relocation, addend);
14745
14746 if (r != bfd_reloc_ok)
14747 {
14748 char *more_info = NULL;
14749 const char *reloc_name = howto->name;
14750
14751 if (reloc_dest != DEST_NORMAL)
14752 {
14753 more_info = bfd_malloc (strlen (reloc_name) + 8);
14754 if (more_info != NULL)
14755 {
14756 strcpy (more_info, reloc_name);
14757 strcat (more_info, (reloc_dest == DEST_OPD
14758 ? " (OPD)" : " (stub)"));
14759 reloc_name = more_info;
14760 }
14761 }
14762
14763 if (r == bfd_reloc_overflow)
14764 {
14765 if (warned)
14766 continue;
14767 if (h != NULL
14768 && h->elf.root.type == bfd_link_hash_undefweak
14769 && howto->pc_relative)
14770 {
14771 /* Assume this is a call protected by other code that
14772 detects the symbol is undefined. If this is the case,
14773 we can safely ignore the overflow. If not, the
14774 program is hosed anyway, and a little warning isn't
14775 going to help. */
14776
14777 continue;
14778 }
14779
14780 if (!((*info->callbacks->reloc_overflow)
14781 (info, &h->elf.root, sym_name,
14782 reloc_name, orig_rel.r_addend,
14783 input_bfd, input_section, rel->r_offset)))
14784 return FALSE;
14785 }
14786 else
14787 {
14788 info->callbacks->einfo
14789 (_("%P: %H: %s against `%T': error %d\n"),
14790 input_bfd, input_section, rel->r_offset,
14791 reloc_name, sym_name, (int) r);
14792 ret = FALSE;
14793 }
14794 if (more_info != NULL)
14795 free (more_info);
14796 }
14797 }
14798
14799 /* If we're emitting relocations, then shortly after this function
14800 returns, reloc offsets and addends for this section will be
14801 adjusted. Worse, reloc symbol indices will be for the output
14802 file rather than the input. Save a copy of the relocs for
14803 opd_entry_value. */
14804 if (is_opd && (info->emitrelocations || info->relocatable))
14805 {
14806 bfd_size_type amt;
14807 amt = input_section->reloc_count * sizeof (Elf_Internal_Rela);
14808 rel = bfd_alloc (input_bfd, amt);
14809 BFD_ASSERT (ppc64_elf_tdata (input_bfd)->opd.relocs == NULL);
14810 ppc64_elf_tdata (input_bfd)->opd.relocs = rel;
14811 if (rel == NULL)
14812 return FALSE;
14813 memcpy (rel, relocs, amt);
14814 }
14815 return ret;
14816 }
14817
14818 /* Adjust the value of any local symbols in opd sections. */
14819
14820 static int
14821 ppc64_elf_output_symbol_hook (struct bfd_link_info *info,
14822 const char *name ATTRIBUTE_UNUSED,
14823 Elf_Internal_Sym *elfsym,
14824 asection *input_sec,
14825 struct elf_link_hash_entry *h)
14826 {
14827 struct _opd_sec_data *opd;
14828 long adjust;
14829 bfd_vma value;
14830
14831 if (h != NULL)
14832 return 1;
14833
14834 opd = get_opd_info (input_sec);
14835 if (opd == NULL || opd->adjust == NULL)
14836 return 1;
14837
14838 value = elfsym->st_value - input_sec->output_offset;
14839 if (!info->relocatable)
14840 value -= input_sec->output_section->vma;
14841
14842 adjust = opd->adjust[value / 8];
14843 if (adjust == -1)
14844 return 2;
14845
14846 elfsym->st_value += adjust;
14847 return 1;
14848 }
14849
14850 /* Finish up dynamic symbol handling. We set the contents of various
14851 dynamic sections here. */
14852
14853 static bfd_boolean
14854 ppc64_elf_finish_dynamic_symbol (bfd *output_bfd,
14855 struct bfd_link_info *info,
14856 struct elf_link_hash_entry *h,
14857 Elf_Internal_Sym *sym ATTRIBUTE_UNUSED)
14858 {
14859 struct ppc_link_hash_table *htab;
14860 struct plt_entry *ent;
14861 Elf_Internal_Rela rela;
14862 bfd_byte *loc;
14863
14864 htab = ppc_hash_table (info);
14865 if (htab == NULL)
14866 return FALSE;
14867
14868 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
14869 if (ent->plt.offset != (bfd_vma) -1)
14870 {
14871 /* This symbol has an entry in the procedure linkage
14872 table. Set it up. */
14873 if (!htab->elf.dynamic_sections_created
14874 || h->dynindx == -1)
14875 {
14876 BFD_ASSERT (h->type == STT_GNU_IFUNC
14877 && h->def_regular
14878 && (h->root.type == bfd_link_hash_defined
14879 || h->root.type == bfd_link_hash_defweak));
14880 rela.r_offset = (htab->elf.iplt->output_section->vma
14881 + htab->elf.iplt->output_offset
14882 + ent->plt.offset);
14883 if (htab->opd_abi)
14884 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
14885 else
14886 rela.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
14887 rela.r_addend = (h->root.u.def.value
14888 + h->root.u.def.section->output_offset
14889 + h->root.u.def.section->output_section->vma
14890 + ent->addend);
14891 loc = (htab->elf.irelplt->contents
14892 + (htab->elf.irelplt->reloc_count++
14893 * sizeof (Elf64_External_Rela)));
14894 }
14895 else
14896 {
14897 rela.r_offset = (htab->elf.splt->output_section->vma
14898 + htab->elf.splt->output_offset
14899 + ent->plt.offset);
14900 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_JMP_SLOT);
14901 rela.r_addend = ent->addend;
14902 loc = (htab->elf.srelplt->contents
14903 + ((ent->plt.offset - PLT_INITIAL_ENTRY_SIZE (htab))
14904 / PLT_ENTRY_SIZE (htab) * sizeof (Elf64_External_Rela)));
14905 }
14906 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
14907
14908 if (!htab->opd_abi)
14909 {
14910 if (!h->def_regular)
14911 {
14912 /* Mark the symbol as undefined, rather than as
14913 defined in glink. Leave the value if there were
14914 any relocations where pointer equality matters
14915 (this is a clue for the dynamic linker, to make
14916 function pointer comparisons work between an
14917 application and shared library), otherwise set it
14918 to zero. */
14919 sym->st_shndx = SHN_UNDEF;
14920 if (!h->pointer_equality_needed)
14921 sym->st_value = 0;
14922 else if (!h->ref_regular_nonweak)
14923 {
14924 /* This breaks function pointer comparisons, but
14925 that is better than breaking tests for a NULL
14926 function pointer. */
14927 sym->st_value = 0;
14928 }
14929 }
14930 }
14931 }
14932
14933 if (h->needs_copy)
14934 {
14935 /* This symbol needs a copy reloc. Set it up. */
14936
14937 if (h->dynindx == -1
14938 || (h->root.type != bfd_link_hash_defined
14939 && h->root.type != bfd_link_hash_defweak)
14940 || htab->relbss == NULL)
14941 abort ();
14942
14943 rela.r_offset = (h->root.u.def.value
14944 + h->root.u.def.section->output_section->vma
14945 + h->root.u.def.section->output_offset);
14946 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_COPY);
14947 rela.r_addend = 0;
14948 loc = htab->relbss->contents;
14949 loc += htab->relbss->reloc_count++ * sizeof (Elf64_External_Rela);
14950 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
14951 }
14952
14953 return TRUE;
14954 }
14955
14956 /* Used to decide how to sort relocs in an optimal manner for the
14957 dynamic linker, before writing them out. */
14958
14959 static enum elf_reloc_type_class
14960 ppc64_elf_reloc_type_class (const struct bfd_link_info *info,
14961 const asection *rel_sec,
14962 const Elf_Internal_Rela *rela)
14963 {
14964 enum elf_ppc64_reloc_type r_type;
14965 struct ppc_link_hash_table *htab = ppc_hash_table (info);
14966
14967 if (rel_sec == htab->elf.irelplt)
14968 return reloc_class_ifunc;
14969
14970 r_type = ELF64_R_TYPE (rela->r_info);
14971 switch (r_type)
14972 {
14973 case R_PPC64_RELATIVE:
14974 return reloc_class_relative;
14975 case R_PPC64_JMP_SLOT:
14976 return reloc_class_plt;
14977 case R_PPC64_COPY:
14978 return reloc_class_copy;
14979 default:
14980 return reloc_class_normal;
14981 }
14982 }
14983
14984 /* Finish up the dynamic sections. */
14985
14986 static bfd_boolean
14987 ppc64_elf_finish_dynamic_sections (bfd *output_bfd,
14988 struct bfd_link_info *info)
14989 {
14990 struct ppc_link_hash_table *htab;
14991 bfd *dynobj;
14992 asection *sdyn;
14993
14994 htab = ppc_hash_table (info);
14995 if (htab == NULL)
14996 return FALSE;
14997
14998 dynobj = htab->elf.dynobj;
14999 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
15000
15001 if (htab->elf.dynamic_sections_created)
15002 {
15003 Elf64_External_Dyn *dyncon, *dynconend;
15004
15005 if (sdyn == NULL || htab->elf.sgot == NULL)
15006 abort ();
15007
15008 dyncon = (Elf64_External_Dyn *) sdyn->contents;
15009 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
15010 for (; dyncon < dynconend; dyncon++)
15011 {
15012 Elf_Internal_Dyn dyn;
15013 asection *s;
15014
15015 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
15016
15017 switch (dyn.d_tag)
15018 {
15019 default:
15020 continue;
15021
15022 case DT_PPC64_GLINK:
15023 s = htab->glink;
15024 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
15025 /* We stupidly defined DT_PPC64_GLINK to be the start
15026 of glink rather than the first entry point, which is
15027 what ld.so needs, and now have a bigger stub to
15028 support automatic multiple TOCs. */
15029 dyn.d_un.d_ptr += GLINK_CALL_STUB_SIZE - 8 * 4;
15030 break;
15031
15032 case DT_PPC64_OPD:
15033 s = bfd_get_section_by_name (output_bfd, ".opd");
15034 if (s == NULL)
15035 continue;
15036 dyn.d_un.d_ptr = s->vma;
15037 break;
15038
15039 case DT_PPC64_OPT:
15040 if (htab->do_multi_toc && htab->multi_toc_needed)
15041 dyn.d_un.d_val |= PPC64_OPT_MULTI_TOC;
15042 break;
15043
15044 case DT_PPC64_OPDSZ:
15045 s = bfd_get_section_by_name (output_bfd, ".opd");
15046 if (s == NULL)
15047 continue;
15048 dyn.d_un.d_val = s->size;
15049 break;
15050
15051 case DT_PLTGOT:
15052 s = htab->elf.splt;
15053 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
15054 break;
15055
15056 case DT_JMPREL:
15057 s = htab->elf.srelplt;
15058 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
15059 break;
15060
15061 case DT_PLTRELSZ:
15062 dyn.d_un.d_val = htab->elf.srelplt->size;
15063 break;
15064
15065 case DT_RELASZ:
15066 /* Don't count procedure linkage table relocs in the
15067 overall reloc count. */
15068 s = htab->elf.srelplt;
15069 if (s == NULL)
15070 continue;
15071 dyn.d_un.d_val -= s->size;
15072 break;
15073
15074 case DT_RELA:
15075 /* We may not be using the standard ELF linker script.
15076 If .rela.plt is the first .rela section, we adjust
15077 DT_RELA to not include it. */
15078 s = htab->elf.srelplt;
15079 if (s == NULL)
15080 continue;
15081 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
15082 continue;
15083 dyn.d_un.d_ptr += s->size;
15084 break;
15085 }
15086
15087 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
15088 }
15089 }
15090
15091 if (htab->elf.sgot != NULL && htab->elf.sgot->size != 0)
15092 {
15093 /* Fill in the first entry in the global offset table.
15094 We use it to hold the link-time TOCbase. */
15095 bfd_put_64 (output_bfd,
15096 elf_gp (output_bfd) + TOC_BASE_OFF,
15097 htab->elf.sgot->contents);
15098
15099 /* Set .got entry size. */
15100 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize = 8;
15101 }
15102
15103 if (htab->elf.splt != NULL && htab->elf.splt->size != 0)
15104 {
15105 /* Set .plt entry size. */
15106 elf_section_data (htab->elf.splt->output_section)->this_hdr.sh_entsize
15107 = PLT_ENTRY_SIZE (htab);
15108 }
15109
15110 /* brlt is SEC_LINKER_CREATED, so we need to write out relocs for
15111 brlt ourselves if emitrelocations. */
15112 if (htab->brlt != NULL
15113 && htab->brlt->reloc_count != 0
15114 && !_bfd_elf_link_output_relocs (output_bfd,
15115 htab->brlt,
15116 elf_section_data (htab->brlt)->rela.hdr,
15117 elf_section_data (htab->brlt)->relocs,
15118 NULL))
15119 return FALSE;
15120
15121 if (htab->glink != NULL
15122 && htab->glink->reloc_count != 0
15123 && !_bfd_elf_link_output_relocs (output_bfd,
15124 htab->glink,
15125 elf_section_data (htab->glink)->rela.hdr,
15126 elf_section_data (htab->glink)->relocs,
15127 NULL))
15128 return FALSE;
15129
15130 if (htab->glink_eh_frame != NULL
15131 && htab->glink_eh_frame->size != 0)
15132 {
15133 bfd_vma val;
15134 bfd_byte *p;
15135 asection *stub_sec;
15136
15137 p = htab->glink_eh_frame->contents + sizeof (glink_eh_frame_cie);
15138 for (stub_sec = htab->params->stub_bfd->sections;
15139 stub_sec != NULL;
15140 stub_sec = stub_sec->next)
15141 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
15142 {
15143 /* FDE length. */
15144 p += 4;
15145 /* CIE pointer. */
15146 p += 4;
15147 /* Offset to stub section. */
15148 val = (stub_sec->output_section->vma
15149 + stub_sec->output_offset);
15150 val -= (htab->glink_eh_frame->output_section->vma
15151 + htab->glink_eh_frame->output_offset
15152 + (p - htab->glink_eh_frame->contents));
15153 if (val + 0x80000000 > 0xffffffff)
15154 {
15155 info->callbacks->einfo
15156 (_("%P: %s offset too large for .eh_frame sdata4 encoding"),
15157 stub_sec->name);
15158 return FALSE;
15159 }
15160 bfd_put_32 (dynobj, val, p);
15161 p += 4;
15162 /* stub section size. */
15163 p += 4;
15164 /* Augmentation. */
15165 p += 1;
15166 /* Pad. */
15167 p += 7;
15168 }
15169 if (htab->glink != NULL && htab->glink->size != 0)
15170 {
15171 /* FDE length. */
15172 p += 4;
15173 /* CIE pointer. */
15174 p += 4;
15175 /* Offset to .glink. */
15176 val = (htab->glink->output_section->vma
15177 + htab->glink->output_offset
15178 + 8);
15179 val -= (htab->glink_eh_frame->output_section->vma
15180 + htab->glink_eh_frame->output_offset
15181 + (p - htab->glink_eh_frame->contents));
15182 if (val + 0x80000000 > 0xffffffff)
15183 {
15184 info->callbacks->einfo
15185 (_("%P: %s offset too large for .eh_frame sdata4 encoding"),
15186 htab->glink->name);
15187 return FALSE;
15188 }
15189 bfd_put_32 (dynobj, val, p);
15190 p += 4;
15191 /* .glink size. */
15192 p += 4;
15193 /* Augmentation. */
15194 p += 1;
15195 /* Ops. */
15196 p += 7;
15197 }
15198
15199 if (htab->glink_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME
15200 && !_bfd_elf_write_section_eh_frame (output_bfd, info,
15201 htab->glink_eh_frame,
15202 htab->glink_eh_frame->contents))
15203 return FALSE;
15204 }
15205
15206 /* We need to handle writing out multiple GOT sections ourselves,
15207 since we didn't add them to DYNOBJ. We know dynobj is the first
15208 bfd. */
15209 while ((dynobj = dynobj->link.next) != NULL)
15210 {
15211 asection *s;
15212
15213 if (!is_ppc64_elf (dynobj))
15214 continue;
15215
15216 s = ppc64_elf_tdata (dynobj)->got;
15217 if (s != NULL
15218 && s->size != 0
15219 && s->output_section != bfd_abs_section_ptr
15220 && !bfd_set_section_contents (output_bfd, s->output_section,
15221 s->contents, s->output_offset,
15222 s->size))
15223 return FALSE;
15224 s = ppc64_elf_tdata (dynobj)->relgot;
15225 if (s != NULL
15226 && s->size != 0
15227 && s->output_section != bfd_abs_section_ptr
15228 && !bfd_set_section_contents (output_bfd, s->output_section,
15229 s->contents, s->output_offset,
15230 s->size))
15231 return FALSE;
15232 }
15233
15234 return TRUE;
15235 }
15236
15237 #include "elf64-target.h"
15238
15239 /* FreeBSD support */
15240
15241 #undef TARGET_LITTLE_SYM
15242 #undef TARGET_LITTLE_NAME
15243
15244 #undef TARGET_BIG_SYM
15245 #define TARGET_BIG_SYM powerpc_elf64_fbsd_vec
15246 #undef TARGET_BIG_NAME
15247 #define TARGET_BIG_NAME "elf64-powerpc-freebsd"
15248
15249 #undef ELF_OSABI
15250 #define ELF_OSABI ELFOSABI_FREEBSD
15251
15252 #undef elf64_bed
15253 #define elf64_bed elf64_powerpc_fbsd_bed
15254
15255 #include "elf64-target.h"
15256