* elf64-ppc.c (dec_dynrel_count): New function split out from
[binutils-gdb.git] / bfd / elf64-ppc.c
1 /* PowerPC64-specific support for 64-bit ELF.
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4 Written by Linus Nordberg, Swox AB <info@swox.com>,
5 based on elf32-ppc.c by Ian Lance Taylor.
6 Largely rewritten by Alan Modra <amodra@bigpond.net.au>
7
8 This file is part of BFD, the Binary File Descriptor library.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License along
21 with this program; if not, write to the Free Software Foundation, Inc.,
22 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23
24 /* The 64-bit PowerPC ELF ABI may be found at
25 http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi.txt, and
26 http://www.linuxbase.org/spec/ELF/ppc64/spec/book1.html */
27
28 #include "bfd.h"
29 #include "sysdep.h"
30 #include "bfdlink.h"
31 #include "libbfd.h"
32 #include "elf-bfd.h"
33 #include "elf/ppc64.h"
34 #include "elf64-ppc.h"
35
36 static bfd_reloc_status_type ppc64_elf_ha_reloc
37 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
38 static bfd_reloc_status_type ppc64_elf_branch_reloc
39 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
40 static bfd_reloc_status_type ppc64_elf_brtaken_reloc
41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
42 static bfd_reloc_status_type ppc64_elf_sectoff_reloc
43 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
44 static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc
45 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
46 static bfd_reloc_status_type ppc64_elf_toc_reloc
47 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
48 static bfd_reloc_status_type ppc64_elf_toc_ha_reloc
49 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
50 static bfd_reloc_status_type ppc64_elf_toc64_reloc
51 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
52 static bfd_reloc_status_type ppc64_elf_unhandled_reloc
53 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
54 static bfd_vma opd_entry_value
55 (asection *, bfd_vma, asection **, bfd_vma *);
56
57 #define TARGET_LITTLE_SYM bfd_elf64_powerpcle_vec
58 #define TARGET_LITTLE_NAME "elf64-powerpcle"
59 #define TARGET_BIG_SYM bfd_elf64_powerpc_vec
60 #define TARGET_BIG_NAME "elf64-powerpc"
61 #define ELF_ARCH bfd_arch_powerpc
62 #define ELF_MACHINE_CODE EM_PPC64
63 #define ELF_MAXPAGESIZE 0x10000
64 #define elf_info_to_howto ppc64_elf_info_to_howto
65
66 #define elf_backend_want_got_sym 0
67 #define elf_backend_want_plt_sym 0
68 #define elf_backend_plt_alignment 3
69 #define elf_backend_plt_not_loaded 1
70 #define elf_backend_got_symbol_offset 0
71 #define elf_backend_got_header_size 8
72 #define elf_backend_can_gc_sections 1
73 #define elf_backend_can_refcount 1
74 #define elf_backend_rela_normal 1
75
76 #define bfd_elf64_mkobject ppc64_elf_mkobject
77 #define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup
78 #define bfd_elf64_bfd_merge_private_bfd_data ppc64_elf_merge_private_bfd_data
79 #define bfd_elf64_new_section_hook ppc64_elf_new_section_hook
80 #define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create
81 #define bfd_elf64_bfd_link_hash_table_free ppc64_elf_link_hash_table_free
82 #define bfd_elf64_get_synthetic_symtab ppc64_elf_get_synthetic_symtab
83
84 #define elf_backend_object_p ppc64_elf_object_p
85 #define elf_backend_grok_prstatus ppc64_elf_grok_prstatus
86 #define elf_backend_grok_psinfo ppc64_elf_grok_psinfo
87 #define elf_backend_create_dynamic_sections ppc64_elf_create_dynamic_sections
88 #define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol
89 #define elf_backend_add_symbol_hook ppc64_elf_add_symbol_hook
90 #define elf_backend_check_directives ppc64_elf_check_directives
91 #define elf_backend_archive_symbol_lookup ppc64_elf_archive_symbol_lookup
92 #define elf_backend_check_relocs ppc64_elf_check_relocs
93 #define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook
94 #define elf_backend_gc_sweep_hook ppc64_elf_gc_sweep_hook
95 #define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol
96 #define elf_backend_hide_symbol ppc64_elf_hide_symbol
97 #define elf_backend_always_size_sections ppc64_elf_func_desc_adjust
98 #define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections
99 #define elf_backend_relocate_section ppc64_elf_relocate_section
100 #define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol
101 #define elf_backend_reloc_type_class ppc64_elf_reloc_type_class
102 #define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections
103 #define elf_backend_link_output_symbol_hook ppc64_elf_output_symbol_hook
104 #define elf_backend_special_sections ppc64_elf_special_sections
105
106 /* The name of the dynamic interpreter. This is put in the .interp
107 section. */
108 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
109
110 /* The size in bytes of an entry in the procedure linkage table. */
111 #define PLT_ENTRY_SIZE 24
112
113 /* The initial size of the plt reserved for the dynamic linker. */
114 #define PLT_INITIAL_ENTRY_SIZE PLT_ENTRY_SIZE
115
116 /* TOC base pointers offset from start of TOC. */
117 #define TOC_BASE_OFF 0x8000
118
119 /* Offset of tp and dtp pointers from start of TLS block. */
120 #define TP_OFFSET 0x7000
121 #define DTP_OFFSET 0x8000
122
123 /* .plt call stub instructions. The normal stub is like this, but
124 sometimes the .plt entry crosses a 64k boundary and we need to
125 insert an addis to adjust r12. */
126 #define PLT_CALL_STUB_SIZE (7*4)
127 #define ADDIS_R12_R2 0x3d820000 /* addis %r12,%r2,xxx@ha */
128 #define STD_R2_40R1 0xf8410028 /* std %r2,40(%r1) */
129 #define LD_R11_0R12 0xe96c0000 /* ld %r11,xxx+0@l(%r12) */
130 #define LD_R2_0R12 0xe84c0000 /* ld %r2,xxx+8@l(%r12) */
131 #define MTCTR_R11 0x7d6903a6 /* mtctr %r11 */
132 /* ld %r11,xxx+16@l(%r12) */
133 #define BCTR 0x4e800420 /* bctr */
134
135
136 #define ADDIS_R2_R2 0x3c420000 /* addis %r2,%r2,off@ha */
137 #define ADDI_R2_R2 0x38420000 /* addi %r2,%r2,off@l */
138
139 #define LD_R2_40R1 0xe8410028 /* ld %r2,40(%r1) */
140
141 /* glink call stub instructions. We enter with the index in R0, and the
142 address of glink entry in CTR. From that, we can calculate PLT0. */
143 #define GLINK_CALL_STUB_SIZE (16*4)
144 #define MFCTR_R12 0x7d8902a6 /* mfctr %r12 */
145 #define SLDI_R11_R0_3 0x780b1f24 /* sldi %r11,%r0,3 */
146 #define ADDIC_R2_R0_32K 0x34408000 /* addic. %r2,%r0,-32768 */
147 #define SUB_R12_R12_R11 0x7d8b6050 /* sub %r12,%r12,%r11 */
148 #define SRADI_R2_R2_63 0x7c42fe76 /* sradi %r2,%r2,63 */
149 #define SLDI_R11_R0_2 0x780b1764 /* sldi %r11,%r0,2 */
150 #define AND_R2_R2_R11 0x7c425838 /* and %r2,%r2,%r11 */
151 /* sub %r12,%r12,%r11 */
152 #define ADD_R12_R12_R2 0x7d8c1214 /* add %r12,%r12,%r2 */
153 #define ADDIS_R12_R12 0x3d8c0000 /* addis %r12,%r12,xxx@ha */
154 /* ld %r11,xxx@l(%r12) */
155 #define ADDI_R12_R12 0x398c0000 /* addi %r12,%r12,xxx@l */
156 /* ld %r2,8(%r12) */
157 /* mtctr %r11 */
158 /* ld %r11,16(%r12) */
159 /* bctr */
160
161 /* Pad with this. */
162 #define NOP 0x60000000
163
164 /* Some other nops. */
165 #define CROR_151515 0x4def7b82
166 #define CROR_313131 0x4ffffb82
167
168 /* .glink entries for the first 32k functions are two instructions. */
169 #define LI_R0_0 0x38000000 /* li %r0,0 */
170 #define B_DOT 0x48000000 /* b . */
171
172 /* After that, we need two instructions to load the index, followed by
173 a branch. */
174 #define LIS_R0_0 0x3c000000 /* lis %r0,0 */
175 #define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */
176
177 /* Instructions used by the save and restore reg functions. */
178 #define STD_R0_0R1 0xf8010000 /* std %r0,0(%r1) */
179 #define STD_R0_0R12 0xf80c0000 /* std %r0,0(%r12) */
180 #define LD_R0_0R1 0xe8010000 /* ld %r0,0(%r1) */
181 #define LD_R0_0R12 0xe80c0000 /* ld %r0,0(%r12) */
182 #define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */
183 #define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */
184 #define LI_R12_0 0x39800000 /* li %r12,0 */
185 #define STVX_VR0_R12_R0 0x7c0c01ce /* stvx %v0,%r12,%r0 */
186 #define LVX_VR0_R12_R0 0x7c0c00ce /* lvx %v0,%r12,%r0 */
187 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
188 #define BLR 0x4e800020 /* blr */
189
190 /* Since .opd is an array of descriptors and each entry will end up
191 with identical R_PPC64_RELATIVE relocs, there is really no need to
192 propagate .opd relocs; The dynamic linker should be taught to
193 relocate .opd without reloc entries. */
194 #ifndef NO_OPD_RELOCS
195 #define NO_OPD_RELOCS 0
196 #endif
197 \f
198 #define ONES(n) (((bfd_vma) 1 << ((n) - 1) << 1) - 1)
199
200 /* Relocation HOWTO's. */
201 static reloc_howto_type *ppc64_elf_howto_table[(int) R_PPC64_max];
202
203 static reloc_howto_type ppc64_elf_howto_raw[] = {
204 /* This reloc does nothing. */
205 HOWTO (R_PPC64_NONE, /* type */
206 0, /* rightshift */
207 2, /* size (0 = byte, 1 = short, 2 = long) */
208 32, /* bitsize */
209 FALSE, /* pc_relative */
210 0, /* bitpos */
211 complain_overflow_dont, /* complain_on_overflow */
212 bfd_elf_generic_reloc, /* special_function */
213 "R_PPC64_NONE", /* name */
214 FALSE, /* partial_inplace */
215 0, /* src_mask */
216 0, /* dst_mask */
217 FALSE), /* pcrel_offset */
218
219 /* A standard 32 bit relocation. */
220 HOWTO (R_PPC64_ADDR32, /* type */
221 0, /* rightshift */
222 2, /* size (0 = byte, 1 = short, 2 = long) */
223 32, /* bitsize */
224 FALSE, /* pc_relative */
225 0, /* bitpos */
226 complain_overflow_bitfield, /* complain_on_overflow */
227 bfd_elf_generic_reloc, /* special_function */
228 "R_PPC64_ADDR32", /* name */
229 FALSE, /* partial_inplace */
230 0, /* src_mask */
231 0xffffffff, /* dst_mask */
232 FALSE), /* pcrel_offset */
233
234 /* An absolute 26 bit branch; the lower two bits must be zero.
235 FIXME: we don't check that, we just clear them. */
236 HOWTO (R_PPC64_ADDR24, /* type */
237 0, /* rightshift */
238 2, /* size (0 = byte, 1 = short, 2 = long) */
239 26, /* bitsize */
240 FALSE, /* pc_relative */
241 0, /* bitpos */
242 complain_overflow_bitfield, /* complain_on_overflow */
243 bfd_elf_generic_reloc, /* special_function */
244 "R_PPC64_ADDR24", /* name */
245 FALSE, /* partial_inplace */
246 0, /* src_mask */
247 0x03fffffc, /* dst_mask */
248 FALSE), /* pcrel_offset */
249
250 /* A standard 16 bit relocation. */
251 HOWTO (R_PPC64_ADDR16, /* type */
252 0, /* rightshift */
253 1, /* size (0 = byte, 1 = short, 2 = long) */
254 16, /* bitsize */
255 FALSE, /* pc_relative */
256 0, /* bitpos */
257 complain_overflow_bitfield, /* complain_on_overflow */
258 bfd_elf_generic_reloc, /* special_function */
259 "R_PPC64_ADDR16", /* name */
260 FALSE, /* partial_inplace */
261 0, /* src_mask */
262 0xffff, /* dst_mask */
263 FALSE), /* pcrel_offset */
264
265 /* A 16 bit relocation without overflow. */
266 HOWTO (R_PPC64_ADDR16_LO, /* type */
267 0, /* rightshift */
268 1, /* size (0 = byte, 1 = short, 2 = long) */
269 16, /* bitsize */
270 FALSE, /* pc_relative */
271 0, /* bitpos */
272 complain_overflow_dont,/* complain_on_overflow */
273 bfd_elf_generic_reloc, /* special_function */
274 "R_PPC64_ADDR16_LO", /* name */
275 FALSE, /* partial_inplace */
276 0, /* src_mask */
277 0xffff, /* dst_mask */
278 FALSE), /* pcrel_offset */
279
280 /* Bits 16-31 of an address. */
281 HOWTO (R_PPC64_ADDR16_HI, /* type */
282 16, /* rightshift */
283 1, /* size (0 = byte, 1 = short, 2 = long) */
284 16, /* bitsize */
285 FALSE, /* pc_relative */
286 0, /* bitpos */
287 complain_overflow_dont, /* complain_on_overflow */
288 bfd_elf_generic_reloc, /* special_function */
289 "R_PPC64_ADDR16_HI", /* name */
290 FALSE, /* partial_inplace */
291 0, /* src_mask */
292 0xffff, /* dst_mask */
293 FALSE), /* pcrel_offset */
294
295 /* Bits 16-31 of an address, plus 1 if the contents of the low 16
296 bits, treated as a signed number, is negative. */
297 HOWTO (R_PPC64_ADDR16_HA, /* type */
298 16, /* rightshift */
299 1, /* size (0 = byte, 1 = short, 2 = long) */
300 16, /* bitsize */
301 FALSE, /* pc_relative */
302 0, /* bitpos */
303 complain_overflow_dont, /* complain_on_overflow */
304 ppc64_elf_ha_reloc, /* special_function */
305 "R_PPC64_ADDR16_HA", /* name */
306 FALSE, /* partial_inplace */
307 0, /* src_mask */
308 0xffff, /* dst_mask */
309 FALSE), /* pcrel_offset */
310
311 /* An absolute 16 bit branch; the lower two bits must be zero.
312 FIXME: we don't check that, we just clear them. */
313 HOWTO (R_PPC64_ADDR14, /* type */
314 0, /* rightshift */
315 2, /* size (0 = byte, 1 = short, 2 = long) */
316 16, /* bitsize */
317 FALSE, /* pc_relative */
318 0, /* bitpos */
319 complain_overflow_bitfield, /* complain_on_overflow */
320 ppc64_elf_branch_reloc, /* special_function */
321 "R_PPC64_ADDR14", /* name */
322 FALSE, /* partial_inplace */
323 0, /* src_mask */
324 0x0000fffc, /* dst_mask */
325 FALSE), /* pcrel_offset */
326
327 /* An absolute 16 bit branch, for which bit 10 should be set to
328 indicate that the branch is expected to be taken. The lower two
329 bits must be zero. */
330 HOWTO (R_PPC64_ADDR14_BRTAKEN, /* type */
331 0, /* rightshift */
332 2, /* size (0 = byte, 1 = short, 2 = long) */
333 16, /* bitsize */
334 FALSE, /* pc_relative */
335 0, /* bitpos */
336 complain_overflow_bitfield, /* complain_on_overflow */
337 ppc64_elf_brtaken_reloc, /* special_function */
338 "R_PPC64_ADDR14_BRTAKEN",/* name */
339 FALSE, /* partial_inplace */
340 0, /* src_mask */
341 0x0000fffc, /* dst_mask */
342 FALSE), /* pcrel_offset */
343
344 /* An absolute 16 bit branch, for which bit 10 should be set to
345 indicate that the branch is not expected to be taken. The lower
346 two bits must be zero. */
347 HOWTO (R_PPC64_ADDR14_BRNTAKEN, /* type */
348 0, /* rightshift */
349 2, /* size (0 = byte, 1 = short, 2 = long) */
350 16, /* bitsize */
351 FALSE, /* pc_relative */
352 0, /* bitpos */
353 complain_overflow_bitfield, /* complain_on_overflow */
354 ppc64_elf_brtaken_reloc, /* special_function */
355 "R_PPC64_ADDR14_BRNTAKEN",/* name */
356 FALSE, /* partial_inplace */
357 0, /* src_mask */
358 0x0000fffc, /* dst_mask */
359 FALSE), /* pcrel_offset */
360
361 /* A relative 26 bit branch; the lower two bits must be zero. */
362 HOWTO (R_PPC64_REL24, /* type */
363 0, /* rightshift */
364 2, /* size (0 = byte, 1 = short, 2 = long) */
365 26, /* bitsize */
366 TRUE, /* pc_relative */
367 0, /* bitpos */
368 complain_overflow_signed, /* complain_on_overflow */
369 ppc64_elf_branch_reloc, /* special_function */
370 "R_PPC64_REL24", /* name */
371 FALSE, /* partial_inplace */
372 0, /* src_mask */
373 0x03fffffc, /* dst_mask */
374 TRUE), /* pcrel_offset */
375
376 /* A relative 16 bit branch; the lower two bits must be zero. */
377 HOWTO (R_PPC64_REL14, /* type */
378 0, /* rightshift */
379 2, /* size (0 = byte, 1 = short, 2 = long) */
380 16, /* bitsize */
381 TRUE, /* pc_relative */
382 0, /* bitpos */
383 complain_overflow_signed, /* complain_on_overflow */
384 ppc64_elf_branch_reloc, /* special_function */
385 "R_PPC64_REL14", /* name */
386 FALSE, /* partial_inplace */
387 0, /* src_mask */
388 0x0000fffc, /* dst_mask */
389 TRUE), /* pcrel_offset */
390
391 /* A relative 16 bit branch. Bit 10 should be set to indicate that
392 the branch is expected to be taken. The lower two bits must be
393 zero. */
394 HOWTO (R_PPC64_REL14_BRTAKEN, /* type */
395 0, /* rightshift */
396 2, /* size (0 = byte, 1 = short, 2 = long) */
397 16, /* bitsize */
398 TRUE, /* pc_relative */
399 0, /* bitpos */
400 complain_overflow_signed, /* complain_on_overflow */
401 ppc64_elf_brtaken_reloc, /* special_function */
402 "R_PPC64_REL14_BRTAKEN", /* name */
403 FALSE, /* partial_inplace */
404 0, /* src_mask */
405 0x0000fffc, /* dst_mask */
406 TRUE), /* pcrel_offset */
407
408 /* A relative 16 bit branch. Bit 10 should be set to indicate that
409 the branch is not expected to be taken. The lower two bits must
410 be zero. */
411 HOWTO (R_PPC64_REL14_BRNTAKEN, /* type */
412 0, /* rightshift */
413 2, /* size (0 = byte, 1 = short, 2 = long) */
414 16, /* bitsize */
415 TRUE, /* pc_relative */
416 0, /* bitpos */
417 complain_overflow_signed, /* complain_on_overflow */
418 ppc64_elf_brtaken_reloc, /* special_function */
419 "R_PPC64_REL14_BRNTAKEN",/* name */
420 FALSE, /* partial_inplace */
421 0, /* src_mask */
422 0x0000fffc, /* dst_mask */
423 TRUE), /* pcrel_offset */
424
425 /* Like R_PPC64_ADDR16, but referring to the GOT table entry for the
426 symbol. */
427 HOWTO (R_PPC64_GOT16, /* type */
428 0, /* rightshift */
429 1, /* size (0 = byte, 1 = short, 2 = long) */
430 16, /* bitsize */
431 FALSE, /* pc_relative */
432 0, /* bitpos */
433 complain_overflow_signed, /* complain_on_overflow */
434 ppc64_elf_unhandled_reloc, /* special_function */
435 "R_PPC64_GOT16", /* name */
436 FALSE, /* partial_inplace */
437 0, /* src_mask */
438 0xffff, /* dst_mask */
439 FALSE), /* pcrel_offset */
440
441 /* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for
442 the symbol. */
443 HOWTO (R_PPC64_GOT16_LO, /* type */
444 0, /* rightshift */
445 1, /* size (0 = byte, 1 = short, 2 = long) */
446 16, /* bitsize */
447 FALSE, /* pc_relative */
448 0, /* bitpos */
449 complain_overflow_dont, /* complain_on_overflow */
450 ppc64_elf_unhandled_reloc, /* special_function */
451 "R_PPC64_GOT16_LO", /* name */
452 FALSE, /* partial_inplace */
453 0, /* src_mask */
454 0xffff, /* dst_mask */
455 FALSE), /* pcrel_offset */
456
457 /* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for
458 the symbol. */
459 HOWTO (R_PPC64_GOT16_HI, /* type */
460 16, /* rightshift */
461 1, /* size (0 = byte, 1 = short, 2 = long) */
462 16, /* bitsize */
463 FALSE, /* pc_relative */
464 0, /* bitpos */
465 complain_overflow_dont,/* complain_on_overflow */
466 ppc64_elf_unhandled_reloc, /* special_function */
467 "R_PPC64_GOT16_HI", /* name */
468 FALSE, /* partial_inplace */
469 0, /* src_mask */
470 0xffff, /* dst_mask */
471 FALSE), /* pcrel_offset */
472
473 /* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for
474 the symbol. */
475 HOWTO (R_PPC64_GOT16_HA, /* type */
476 16, /* rightshift */
477 1, /* size (0 = byte, 1 = short, 2 = long) */
478 16, /* bitsize */
479 FALSE, /* pc_relative */
480 0, /* bitpos */
481 complain_overflow_dont,/* complain_on_overflow */
482 ppc64_elf_unhandled_reloc, /* special_function */
483 "R_PPC64_GOT16_HA", /* name */
484 FALSE, /* partial_inplace */
485 0, /* src_mask */
486 0xffff, /* dst_mask */
487 FALSE), /* pcrel_offset */
488
489 /* This is used only by the dynamic linker. The symbol should exist
490 both in the object being run and in some shared library. The
491 dynamic linker copies the data addressed by the symbol from the
492 shared library into the object, because the object being
493 run has to have the data at some particular address. */
494 HOWTO (R_PPC64_COPY, /* type */
495 0, /* rightshift */
496 0, /* this one is variable size */
497 0, /* bitsize */
498 FALSE, /* pc_relative */
499 0, /* bitpos */
500 complain_overflow_dont, /* complain_on_overflow */
501 ppc64_elf_unhandled_reloc, /* special_function */
502 "R_PPC64_COPY", /* name */
503 FALSE, /* partial_inplace */
504 0, /* src_mask */
505 0, /* dst_mask */
506 FALSE), /* pcrel_offset */
507
508 /* Like R_PPC64_ADDR64, but used when setting global offset table
509 entries. */
510 HOWTO (R_PPC64_GLOB_DAT, /* type */
511 0, /* rightshift */
512 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
513 64, /* bitsize */
514 FALSE, /* pc_relative */
515 0, /* bitpos */
516 complain_overflow_dont, /* complain_on_overflow */
517 ppc64_elf_unhandled_reloc, /* special_function */
518 "R_PPC64_GLOB_DAT", /* name */
519 FALSE, /* partial_inplace */
520 0, /* src_mask */
521 ONES (64), /* dst_mask */
522 FALSE), /* pcrel_offset */
523
524 /* Created by the link editor. Marks a procedure linkage table
525 entry for a symbol. */
526 HOWTO (R_PPC64_JMP_SLOT, /* type */
527 0, /* rightshift */
528 0, /* size (0 = byte, 1 = short, 2 = long) */
529 0, /* bitsize */
530 FALSE, /* pc_relative */
531 0, /* bitpos */
532 complain_overflow_dont, /* complain_on_overflow */
533 ppc64_elf_unhandled_reloc, /* special_function */
534 "R_PPC64_JMP_SLOT", /* name */
535 FALSE, /* partial_inplace */
536 0, /* src_mask */
537 0, /* dst_mask */
538 FALSE), /* pcrel_offset */
539
540 /* Used only by the dynamic linker. When the object is run, this
541 doubleword64 is set to the load address of the object, plus the
542 addend. */
543 HOWTO (R_PPC64_RELATIVE, /* type */
544 0, /* rightshift */
545 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
546 64, /* bitsize */
547 FALSE, /* pc_relative */
548 0, /* bitpos */
549 complain_overflow_dont, /* complain_on_overflow */
550 bfd_elf_generic_reloc, /* special_function */
551 "R_PPC64_RELATIVE", /* name */
552 FALSE, /* partial_inplace */
553 0, /* src_mask */
554 ONES (64), /* dst_mask */
555 FALSE), /* pcrel_offset */
556
557 /* Like R_PPC64_ADDR32, but may be unaligned. */
558 HOWTO (R_PPC64_UADDR32, /* type */
559 0, /* rightshift */
560 2, /* size (0 = byte, 1 = short, 2 = long) */
561 32, /* bitsize */
562 FALSE, /* pc_relative */
563 0, /* bitpos */
564 complain_overflow_bitfield, /* complain_on_overflow */
565 bfd_elf_generic_reloc, /* special_function */
566 "R_PPC64_UADDR32", /* name */
567 FALSE, /* partial_inplace */
568 0, /* src_mask */
569 0xffffffff, /* dst_mask */
570 FALSE), /* pcrel_offset */
571
572 /* Like R_PPC64_ADDR16, but may be unaligned. */
573 HOWTO (R_PPC64_UADDR16, /* type */
574 0, /* rightshift */
575 1, /* size (0 = byte, 1 = short, 2 = long) */
576 16, /* bitsize */
577 FALSE, /* pc_relative */
578 0, /* bitpos */
579 complain_overflow_bitfield, /* complain_on_overflow */
580 bfd_elf_generic_reloc, /* special_function */
581 "R_PPC64_UADDR16", /* name */
582 FALSE, /* partial_inplace */
583 0, /* src_mask */
584 0xffff, /* dst_mask */
585 FALSE), /* pcrel_offset */
586
587 /* 32-bit PC relative. */
588 HOWTO (R_PPC64_REL32, /* type */
589 0, /* rightshift */
590 2, /* size (0 = byte, 1 = short, 2 = long) */
591 32, /* bitsize */
592 TRUE, /* pc_relative */
593 0, /* bitpos */
594 /* FIXME: Verify. Was complain_overflow_bitfield. */
595 complain_overflow_signed, /* complain_on_overflow */
596 bfd_elf_generic_reloc, /* special_function */
597 "R_PPC64_REL32", /* name */
598 FALSE, /* partial_inplace */
599 0, /* src_mask */
600 0xffffffff, /* dst_mask */
601 TRUE), /* pcrel_offset */
602
603 /* 32-bit relocation to the symbol's procedure linkage table. */
604 HOWTO (R_PPC64_PLT32, /* type */
605 0, /* rightshift */
606 2, /* size (0 = byte, 1 = short, 2 = long) */
607 32, /* bitsize */
608 FALSE, /* pc_relative */
609 0, /* bitpos */
610 complain_overflow_bitfield, /* complain_on_overflow */
611 ppc64_elf_unhandled_reloc, /* special_function */
612 "R_PPC64_PLT32", /* name */
613 FALSE, /* partial_inplace */
614 0, /* src_mask */
615 0xffffffff, /* dst_mask */
616 FALSE), /* pcrel_offset */
617
618 /* 32-bit PC relative relocation to the symbol's procedure linkage table.
619 FIXME: R_PPC64_PLTREL32 not supported. */
620 HOWTO (R_PPC64_PLTREL32, /* type */
621 0, /* rightshift */
622 2, /* size (0 = byte, 1 = short, 2 = long) */
623 32, /* bitsize */
624 TRUE, /* pc_relative */
625 0, /* bitpos */
626 complain_overflow_signed, /* complain_on_overflow */
627 bfd_elf_generic_reloc, /* special_function */
628 "R_PPC64_PLTREL32", /* name */
629 FALSE, /* partial_inplace */
630 0, /* src_mask */
631 0xffffffff, /* dst_mask */
632 TRUE), /* pcrel_offset */
633
634 /* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for
635 the symbol. */
636 HOWTO (R_PPC64_PLT16_LO, /* type */
637 0, /* rightshift */
638 1, /* size (0 = byte, 1 = short, 2 = long) */
639 16, /* bitsize */
640 FALSE, /* pc_relative */
641 0, /* bitpos */
642 complain_overflow_dont, /* complain_on_overflow */
643 ppc64_elf_unhandled_reloc, /* special_function */
644 "R_PPC64_PLT16_LO", /* name */
645 FALSE, /* partial_inplace */
646 0, /* src_mask */
647 0xffff, /* dst_mask */
648 FALSE), /* pcrel_offset */
649
650 /* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for
651 the symbol. */
652 HOWTO (R_PPC64_PLT16_HI, /* type */
653 16, /* rightshift */
654 1, /* size (0 = byte, 1 = short, 2 = long) */
655 16, /* bitsize */
656 FALSE, /* pc_relative */
657 0, /* bitpos */
658 complain_overflow_dont, /* complain_on_overflow */
659 ppc64_elf_unhandled_reloc, /* special_function */
660 "R_PPC64_PLT16_HI", /* name */
661 FALSE, /* partial_inplace */
662 0, /* src_mask */
663 0xffff, /* dst_mask */
664 FALSE), /* pcrel_offset */
665
666 /* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for
667 the symbol. */
668 HOWTO (R_PPC64_PLT16_HA, /* type */
669 16, /* rightshift */
670 1, /* size (0 = byte, 1 = short, 2 = long) */
671 16, /* bitsize */
672 FALSE, /* pc_relative */
673 0, /* bitpos */
674 complain_overflow_dont, /* complain_on_overflow */
675 ppc64_elf_unhandled_reloc, /* special_function */
676 "R_PPC64_PLT16_HA", /* name */
677 FALSE, /* partial_inplace */
678 0, /* src_mask */
679 0xffff, /* dst_mask */
680 FALSE), /* pcrel_offset */
681
682 /* 16-bit section relative relocation. */
683 HOWTO (R_PPC64_SECTOFF, /* type */
684 0, /* rightshift */
685 1, /* size (0 = byte, 1 = short, 2 = long) */
686 16, /* bitsize */
687 FALSE, /* pc_relative */
688 0, /* bitpos */
689 complain_overflow_bitfield, /* complain_on_overflow */
690 ppc64_elf_sectoff_reloc, /* special_function */
691 "R_PPC64_SECTOFF", /* name */
692 FALSE, /* partial_inplace */
693 0, /* src_mask */
694 0xffff, /* dst_mask */
695 FALSE), /* pcrel_offset */
696
697 /* Like R_PPC64_SECTOFF, but no overflow warning. */
698 HOWTO (R_PPC64_SECTOFF_LO, /* type */
699 0, /* rightshift */
700 1, /* size (0 = byte, 1 = short, 2 = long) */
701 16, /* bitsize */
702 FALSE, /* pc_relative */
703 0, /* bitpos */
704 complain_overflow_dont, /* complain_on_overflow */
705 ppc64_elf_sectoff_reloc, /* special_function */
706 "R_PPC64_SECTOFF_LO", /* name */
707 FALSE, /* partial_inplace */
708 0, /* src_mask */
709 0xffff, /* dst_mask */
710 FALSE), /* pcrel_offset */
711
712 /* 16-bit upper half section relative relocation. */
713 HOWTO (R_PPC64_SECTOFF_HI, /* type */
714 16, /* rightshift */
715 1, /* size (0 = byte, 1 = short, 2 = long) */
716 16, /* bitsize */
717 FALSE, /* pc_relative */
718 0, /* bitpos */
719 complain_overflow_dont, /* complain_on_overflow */
720 ppc64_elf_sectoff_reloc, /* special_function */
721 "R_PPC64_SECTOFF_HI", /* name */
722 FALSE, /* partial_inplace */
723 0, /* src_mask */
724 0xffff, /* dst_mask */
725 FALSE), /* pcrel_offset */
726
727 /* 16-bit upper half adjusted section relative relocation. */
728 HOWTO (R_PPC64_SECTOFF_HA, /* type */
729 16, /* rightshift */
730 1, /* size (0 = byte, 1 = short, 2 = long) */
731 16, /* bitsize */
732 FALSE, /* pc_relative */
733 0, /* bitpos */
734 complain_overflow_dont, /* complain_on_overflow */
735 ppc64_elf_sectoff_ha_reloc, /* special_function */
736 "R_PPC64_SECTOFF_HA", /* name */
737 FALSE, /* partial_inplace */
738 0, /* src_mask */
739 0xffff, /* dst_mask */
740 FALSE), /* pcrel_offset */
741
742 /* Like R_PPC64_REL24 without touching the two least significant bits. */
743 HOWTO (R_PPC64_REL30, /* type */
744 2, /* rightshift */
745 2, /* size (0 = byte, 1 = short, 2 = long) */
746 30, /* bitsize */
747 TRUE, /* pc_relative */
748 0, /* bitpos */
749 complain_overflow_dont, /* complain_on_overflow */
750 bfd_elf_generic_reloc, /* special_function */
751 "R_PPC64_REL30", /* name */
752 FALSE, /* partial_inplace */
753 0, /* src_mask */
754 0xfffffffc, /* dst_mask */
755 TRUE), /* pcrel_offset */
756
757 /* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */
758
759 /* A standard 64-bit relocation. */
760 HOWTO (R_PPC64_ADDR64, /* type */
761 0, /* rightshift */
762 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
763 64, /* bitsize */
764 FALSE, /* pc_relative */
765 0, /* bitpos */
766 complain_overflow_dont, /* complain_on_overflow */
767 bfd_elf_generic_reloc, /* special_function */
768 "R_PPC64_ADDR64", /* name */
769 FALSE, /* partial_inplace */
770 0, /* src_mask */
771 ONES (64), /* dst_mask */
772 FALSE), /* pcrel_offset */
773
774 /* The bits 32-47 of an address. */
775 HOWTO (R_PPC64_ADDR16_HIGHER, /* type */
776 32, /* rightshift */
777 1, /* size (0 = byte, 1 = short, 2 = long) */
778 16, /* bitsize */
779 FALSE, /* pc_relative */
780 0, /* bitpos */
781 complain_overflow_dont, /* complain_on_overflow */
782 bfd_elf_generic_reloc, /* special_function */
783 "R_PPC64_ADDR16_HIGHER", /* name */
784 FALSE, /* partial_inplace */
785 0, /* src_mask */
786 0xffff, /* dst_mask */
787 FALSE), /* pcrel_offset */
788
789 /* The bits 32-47 of an address, plus 1 if the contents of the low
790 16 bits, treated as a signed number, is negative. */
791 HOWTO (R_PPC64_ADDR16_HIGHERA, /* type */
792 32, /* rightshift */
793 1, /* size (0 = byte, 1 = short, 2 = long) */
794 16, /* bitsize */
795 FALSE, /* pc_relative */
796 0, /* bitpos */
797 complain_overflow_dont, /* complain_on_overflow */
798 ppc64_elf_ha_reloc, /* special_function */
799 "R_PPC64_ADDR16_HIGHERA", /* name */
800 FALSE, /* partial_inplace */
801 0, /* src_mask */
802 0xffff, /* dst_mask */
803 FALSE), /* pcrel_offset */
804
805 /* The bits 48-63 of an address. */
806 HOWTO (R_PPC64_ADDR16_HIGHEST,/* type */
807 48, /* rightshift */
808 1, /* size (0 = byte, 1 = short, 2 = long) */
809 16, /* bitsize */
810 FALSE, /* pc_relative */
811 0, /* bitpos */
812 complain_overflow_dont, /* complain_on_overflow */
813 bfd_elf_generic_reloc, /* special_function */
814 "R_PPC64_ADDR16_HIGHEST", /* name */
815 FALSE, /* partial_inplace */
816 0, /* src_mask */
817 0xffff, /* dst_mask */
818 FALSE), /* pcrel_offset */
819
820 /* The bits 48-63 of an address, plus 1 if the contents of the low
821 16 bits, treated as a signed number, is negative. */
822 HOWTO (R_PPC64_ADDR16_HIGHESTA,/* type */
823 48, /* rightshift */
824 1, /* size (0 = byte, 1 = short, 2 = long) */
825 16, /* bitsize */
826 FALSE, /* pc_relative */
827 0, /* bitpos */
828 complain_overflow_dont, /* complain_on_overflow */
829 ppc64_elf_ha_reloc, /* special_function */
830 "R_PPC64_ADDR16_HIGHESTA", /* name */
831 FALSE, /* partial_inplace */
832 0, /* src_mask */
833 0xffff, /* dst_mask */
834 FALSE), /* pcrel_offset */
835
836 /* Like ADDR64, but may be unaligned. */
837 HOWTO (R_PPC64_UADDR64, /* type */
838 0, /* rightshift */
839 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
840 64, /* bitsize */
841 FALSE, /* pc_relative */
842 0, /* bitpos */
843 complain_overflow_dont, /* complain_on_overflow */
844 bfd_elf_generic_reloc, /* special_function */
845 "R_PPC64_UADDR64", /* name */
846 FALSE, /* partial_inplace */
847 0, /* src_mask */
848 ONES (64), /* dst_mask */
849 FALSE), /* pcrel_offset */
850
851 /* 64-bit relative relocation. */
852 HOWTO (R_PPC64_REL64, /* type */
853 0, /* rightshift */
854 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
855 64, /* bitsize */
856 TRUE, /* pc_relative */
857 0, /* bitpos */
858 complain_overflow_dont, /* complain_on_overflow */
859 bfd_elf_generic_reloc, /* special_function */
860 "R_PPC64_REL64", /* name */
861 FALSE, /* partial_inplace */
862 0, /* src_mask */
863 ONES (64), /* dst_mask */
864 TRUE), /* pcrel_offset */
865
866 /* 64-bit relocation to the symbol's procedure linkage table. */
867 HOWTO (R_PPC64_PLT64, /* type */
868 0, /* rightshift */
869 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
870 64, /* bitsize */
871 FALSE, /* pc_relative */
872 0, /* bitpos */
873 complain_overflow_dont, /* complain_on_overflow */
874 ppc64_elf_unhandled_reloc, /* special_function */
875 "R_PPC64_PLT64", /* name */
876 FALSE, /* partial_inplace */
877 0, /* src_mask */
878 ONES (64), /* dst_mask */
879 FALSE), /* pcrel_offset */
880
881 /* 64-bit PC relative relocation to the symbol's procedure linkage
882 table. */
883 /* FIXME: R_PPC64_PLTREL64 not supported. */
884 HOWTO (R_PPC64_PLTREL64, /* type */
885 0, /* rightshift */
886 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
887 64, /* bitsize */
888 TRUE, /* pc_relative */
889 0, /* bitpos */
890 complain_overflow_dont, /* complain_on_overflow */
891 ppc64_elf_unhandled_reloc, /* special_function */
892 "R_PPC64_PLTREL64", /* name */
893 FALSE, /* partial_inplace */
894 0, /* src_mask */
895 ONES (64), /* dst_mask */
896 TRUE), /* pcrel_offset */
897
898 /* 16 bit TOC-relative relocation. */
899
900 /* R_PPC64_TOC16 47 half16* S + A - .TOC. */
901 HOWTO (R_PPC64_TOC16, /* type */
902 0, /* rightshift */
903 1, /* size (0 = byte, 1 = short, 2 = long) */
904 16, /* bitsize */
905 FALSE, /* pc_relative */
906 0, /* bitpos */
907 complain_overflow_signed, /* complain_on_overflow */
908 ppc64_elf_toc_reloc, /* special_function */
909 "R_PPC64_TOC16", /* name */
910 FALSE, /* partial_inplace */
911 0, /* src_mask */
912 0xffff, /* dst_mask */
913 FALSE), /* pcrel_offset */
914
915 /* 16 bit TOC-relative relocation without overflow. */
916
917 /* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */
918 HOWTO (R_PPC64_TOC16_LO, /* type */
919 0, /* rightshift */
920 1, /* size (0 = byte, 1 = short, 2 = long) */
921 16, /* bitsize */
922 FALSE, /* pc_relative */
923 0, /* bitpos */
924 complain_overflow_dont, /* complain_on_overflow */
925 ppc64_elf_toc_reloc, /* special_function */
926 "R_PPC64_TOC16_LO", /* name */
927 FALSE, /* partial_inplace */
928 0, /* src_mask */
929 0xffff, /* dst_mask */
930 FALSE), /* pcrel_offset */
931
932 /* 16 bit TOC-relative relocation, high 16 bits. */
933
934 /* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */
935 HOWTO (R_PPC64_TOC16_HI, /* type */
936 16, /* rightshift */
937 1, /* size (0 = byte, 1 = short, 2 = long) */
938 16, /* bitsize */
939 FALSE, /* pc_relative */
940 0, /* bitpos */
941 complain_overflow_dont, /* complain_on_overflow */
942 ppc64_elf_toc_reloc, /* special_function */
943 "R_PPC64_TOC16_HI", /* name */
944 FALSE, /* partial_inplace */
945 0, /* src_mask */
946 0xffff, /* dst_mask */
947 FALSE), /* pcrel_offset */
948
949 /* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the
950 contents of the low 16 bits, treated as a signed number, is
951 negative. */
952
953 /* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */
954 HOWTO (R_PPC64_TOC16_HA, /* type */
955 16, /* rightshift */
956 1, /* size (0 = byte, 1 = short, 2 = long) */
957 16, /* bitsize */
958 FALSE, /* pc_relative */
959 0, /* bitpos */
960 complain_overflow_dont, /* complain_on_overflow */
961 ppc64_elf_toc_ha_reloc, /* special_function */
962 "R_PPC64_TOC16_HA", /* name */
963 FALSE, /* partial_inplace */
964 0, /* src_mask */
965 0xffff, /* dst_mask */
966 FALSE), /* pcrel_offset */
967
968 /* 64-bit relocation; insert value of TOC base (.TOC.). */
969
970 /* R_PPC64_TOC 51 doubleword64 .TOC. */
971 HOWTO (R_PPC64_TOC, /* type */
972 0, /* rightshift */
973 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
974 64, /* bitsize */
975 FALSE, /* pc_relative */
976 0, /* bitpos */
977 complain_overflow_bitfield, /* complain_on_overflow */
978 ppc64_elf_toc64_reloc, /* special_function */
979 "R_PPC64_TOC", /* name */
980 FALSE, /* partial_inplace */
981 0, /* src_mask */
982 ONES (64), /* dst_mask */
983 FALSE), /* pcrel_offset */
984
985 /* Like R_PPC64_GOT16, but also informs the link editor that the
986 value to relocate may (!) refer to a PLT entry which the link
987 editor (a) may replace with the symbol value. If the link editor
988 is unable to fully resolve the symbol, it may (b) create a PLT
989 entry and store the address to the new PLT entry in the GOT.
990 This permits lazy resolution of function symbols at run time.
991 The link editor may also skip all of this and just (c) emit a
992 R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */
993 /* FIXME: R_PPC64_PLTGOT16 not implemented. */
994 HOWTO (R_PPC64_PLTGOT16, /* type */
995 0, /* rightshift */
996 1, /* size (0 = byte, 1 = short, 2 = long) */
997 16, /* bitsize */
998 FALSE, /* pc_relative */
999 0, /* bitpos */
1000 complain_overflow_signed, /* complain_on_overflow */
1001 ppc64_elf_unhandled_reloc, /* special_function */
1002 "R_PPC64_PLTGOT16", /* name */
1003 FALSE, /* partial_inplace */
1004 0, /* src_mask */
1005 0xffff, /* dst_mask */
1006 FALSE), /* pcrel_offset */
1007
1008 /* Like R_PPC64_PLTGOT16, but without overflow. */
1009 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1010 HOWTO (R_PPC64_PLTGOT16_LO, /* type */
1011 0, /* rightshift */
1012 1, /* size (0 = byte, 1 = short, 2 = long) */
1013 16, /* bitsize */
1014 FALSE, /* pc_relative */
1015 0, /* bitpos */
1016 complain_overflow_dont, /* complain_on_overflow */
1017 ppc64_elf_unhandled_reloc, /* special_function */
1018 "R_PPC64_PLTGOT16_LO", /* name */
1019 FALSE, /* partial_inplace */
1020 0, /* src_mask */
1021 0xffff, /* dst_mask */
1022 FALSE), /* pcrel_offset */
1023
1024 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */
1025 /* FIXME: R_PPC64_PLTGOT16_HI not implemented. */
1026 HOWTO (R_PPC64_PLTGOT16_HI, /* type */
1027 16, /* rightshift */
1028 1, /* size (0 = byte, 1 = short, 2 = long) */
1029 16, /* bitsize */
1030 FALSE, /* pc_relative */
1031 0, /* bitpos */
1032 complain_overflow_dont, /* complain_on_overflow */
1033 ppc64_elf_unhandled_reloc, /* special_function */
1034 "R_PPC64_PLTGOT16_HI", /* name */
1035 FALSE, /* partial_inplace */
1036 0, /* src_mask */
1037 0xffff, /* dst_mask */
1038 FALSE), /* pcrel_offset */
1039
1040 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus
1041 1 if the contents of the low 16 bits, treated as a signed number,
1042 is negative. */
1043 /* FIXME: R_PPC64_PLTGOT16_HA not implemented. */
1044 HOWTO (R_PPC64_PLTGOT16_HA, /* type */
1045 16, /* rightshift */
1046 1, /* size (0 = byte, 1 = short, 2 = long) */
1047 16, /* bitsize */
1048 FALSE, /* pc_relative */
1049 0, /* bitpos */
1050 complain_overflow_dont,/* complain_on_overflow */
1051 ppc64_elf_unhandled_reloc, /* special_function */
1052 "R_PPC64_PLTGOT16_HA", /* name */
1053 FALSE, /* partial_inplace */
1054 0, /* src_mask */
1055 0xffff, /* dst_mask */
1056 FALSE), /* pcrel_offset */
1057
1058 /* Like R_PPC64_ADDR16, but for instructions with a DS field. */
1059 HOWTO (R_PPC64_ADDR16_DS, /* type */
1060 0, /* rightshift */
1061 1, /* size (0 = byte, 1 = short, 2 = long) */
1062 16, /* bitsize */
1063 FALSE, /* pc_relative */
1064 0, /* bitpos */
1065 complain_overflow_bitfield, /* complain_on_overflow */
1066 bfd_elf_generic_reloc, /* special_function */
1067 "R_PPC64_ADDR16_DS", /* name */
1068 FALSE, /* partial_inplace */
1069 0, /* src_mask */
1070 0xfffc, /* dst_mask */
1071 FALSE), /* pcrel_offset */
1072
1073 /* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */
1074 HOWTO (R_PPC64_ADDR16_LO_DS, /* type */
1075 0, /* rightshift */
1076 1, /* size (0 = byte, 1 = short, 2 = long) */
1077 16, /* bitsize */
1078 FALSE, /* pc_relative */
1079 0, /* bitpos */
1080 complain_overflow_dont,/* complain_on_overflow */
1081 bfd_elf_generic_reloc, /* special_function */
1082 "R_PPC64_ADDR16_LO_DS",/* name */
1083 FALSE, /* partial_inplace */
1084 0, /* src_mask */
1085 0xfffc, /* dst_mask */
1086 FALSE), /* pcrel_offset */
1087
1088 /* Like R_PPC64_GOT16, but for instructions with a DS field. */
1089 HOWTO (R_PPC64_GOT16_DS, /* type */
1090 0, /* rightshift */
1091 1, /* size (0 = byte, 1 = short, 2 = long) */
1092 16, /* bitsize */
1093 FALSE, /* pc_relative */
1094 0, /* bitpos */
1095 complain_overflow_signed, /* complain_on_overflow */
1096 ppc64_elf_unhandled_reloc, /* special_function */
1097 "R_PPC64_GOT16_DS", /* name */
1098 FALSE, /* partial_inplace */
1099 0, /* src_mask */
1100 0xfffc, /* dst_mask */
1101 FALSE), /* pcrel_offset */
1102
1103 /* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */
1104 HOWTO (R_PPC64_GOT16_LO_DS, /* type */
1105 0, /* rightshift */
1106 1, /* size (0 = byte, 1 = short, 2 = long) */
1107 16, /* bitsize */
1108 FALSE, /* pc_relative */
1109 0, /* bitpos */
1110 complain_overflow_dont, /* complain_on_overflow */
1111 ppc64_elf_unhandled_reloc, /* special_function */
1112 "R_PPC64_GOT16_LO_DS", /* name */
1113 FALSE, /* partial_inplace */
1114 0, /* src_mask */
1115 0xfffc, /* dst_mask */
1116 FALSE), /* pcrel_offset */
1117
1118 /* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */
1119 HOWTO (R_PPC64_PLT16_LO_DS, /* type */
1120 0, /* rightshift */
1121 1, /* size (0 = byte, 1 = short, 2 = long) */
1122 16, /* bitsize */
1123 FALSE, /* pc_relative */
1124 0, /* bitpos */
1125 complain_overflow_dont, /* complain_on_overflow */
1126 ppc64_elf_unhandled_reloc, /* special_function */
1127 "R_PPC64_PLT16_LO_DS", /* name */
1128 FALSE, /* partial_inplace */
1129 0, /* src_mask */
1130 0xfffc, /* dst_mask */
1131 FALSE), /* pcrel_offset */
1132
1133 /* Like R_PPC64_SECTOFF, but for instructions with a DS field. */
1134 HOWTO (R_PPC64_SECTOFF_DS, /* type */
1135 0, /* rightshift */
1136 1, /* size (0 = byte, 1 = short, 2 = long) */
1137 16, /* bitsize */
1138 FALSE, /* pc_relative */
1139 0, /* bitpos */
1140 complain_overflow_bitfield, /* complain_on_overflow */
1141 ppc64_elf_sectoff_reloc, /* special_function */
1142 "R_PPC64_SECTOFF_DS", /* name */
1143 FALSE, /* partial_inplace */
1144 0, /* src_mask */
1145 0xfffc, /* dst_mask */
1146 FALSE), /* pcrel_offset */
1147
1148 /* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */
1149 HOWTO (R_PPC64_SECTOFF_LO_DS, /* type */
1150 0, /* rightshift */
1151 1, /* size (0 = byte, 1 = short, 2 = long) */
1152 16, /* bitsize */
1153 FALSE, /* pc_relative */
1154 0, /* bitpos */
1155 complain_overflow_dont, /* complain_on_overflow */
1156 ppc64_elf_sectoff_reloc, /* special_function */
1157 "R_PPC64_SECTOFF_LO_DS",/* name */
1158 FALSE, /* partial_inplace */
1159 0, /* src_mask */
1160 0xfffc, /* dst_mask */
1161 FALSE), /* pcrel_offset */
1162
1163 /* Like R_PPC64_TOC16, but for instructions with a DS field. */
1164 HOWTO (R_PPC64_TOC16_DS, /* type */
1165 0, /* rightshift */
1166 1, /* size (0 = byte, 1 = short, 2 = long) */
1167 16, /* bitsize */
1168 FALSE, /* pc_relative */
1169 0, /* bitpos */
1170 complain_overflow_signed, /* complain_on_overflow */
1171 ppc64_elf_toc_reloc, /* special_function */
1172 "R_PPC64_TOC16_DS", /* name */
1173 FALSE, /* partial_inplace */
1174 0, /* src_mask */
1175 0xfffc, /* dst_mask */
1176 FALSE), /* pcrel_offset */
1177
1178 /* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */
1179 HOWTO (R_PPC64_TOC16_LO_DS, /* type */
1180 0, /* rightshift */
1181 1, /* size (0 = byte, 1 = short, 2 = long) */
1182 16, /* bitsize */
1183 FALSE, /* pc_relative */
1184 0, /* bitpos */
1185 complain_overflow_dont, /* complain_on_overflow */
1186 ppc64_elf_toc_reloc, /* special_function */
1187 "R_PPC64_TOC16_LO_DS", /* name */
1188 FALSE, /* partial_inplace */
1189 0, /* src_mask */
1190 0xfffc, /* dst_mask */
1191 FALSE), /* pcrel_offset */
1192
1193 /* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */
1194 /* FIXME: R_PPC64_PLTGOT16_DS not implemented. */
1195 HOWTO (R_PPC64_PLTGOT16_DS, /* type */
1196 0, /* rightshift */
1197 1, /* size (0 = byte, 1 = short, 2 = long) */
1198 16, /* bitsize */
1199 FALSE, /* pc_relative */
1200 0, /* bitpos */
1201 complain_overflow_signed, /* complain_on_overflow */
1202 ppc64_elf_unhandled_reloc, /* special_function */
1203 "R_PPC64_PLTGOT16_DS", /* name */
1204 FALSE, /* partial_inplace */
1205 0, /* src_mask */
1206 0xfffc, /* dst_mask */
1207 FALSE), /* pcrel_offset */
1208
1209 /* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */
1210 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1211 HOWTO (R_PPC64_PLTGOT16_LO_DS,/* type */
1212 0, /* rightshift */
1213 1, /* size (0 = byte, 1 = short, 2 = long) */
1214 16, /* bitsize */
1215 FALSE, /* pc_relative */
1216 0, /* bitpos */
1217 complain_overflow_dont, /* complain_on_overflow */
1218 ppc64_elf_unhandled_reloc, /* special_function */
1219 "R_PPC64_PLTGOT16_LO_DS",/* name */
1220 FALSE, /* partial_inplace */
1221 0, /* src_mask */
1222 0xfffc, /* dst_mask */
1223 FALSE), /* pcrel_offset */
1224
1225 /* Marker reloc for TLS. */
1226 HOWTO (R_PPC64_TLS,
1227 0, /* rightshift */
1228 2, /* size (0 = byte, 1 = short, 2 = long) */
1229 32, /* bitsize */
1230 FALSE, /* pc_relative */
1231 0, /* bitpos */
1232 complain_overflow_dont, /* complain_on_overflow */
1233 bfd_elf_generic_reloc, /* special_function */
1234 "R_PPC64_TLS", /* name */
1235 FALSE, /* partial_inplace */
1236 0, /* src_mask */
1237 0, /* dst_mask */
1238 FALSE), /* pcrel_offset */
1239
1240 /* Computes the load module index of the load module that contains the
1241 definition of its TLS sym. */
1242 HOWTO (R_PPC64_DTPMOD64,
1243 0, /* rightshift */
1244 4, /* size (0 = byte, 1 = short, 2 = long) */
1245 64, /* bitsize */
1246 FALSE, /* pc_relative */
1247 0, /* bitpos */
1248 complain_overflow_dont, /* complain_on_overflow */
1249 ppc64_elf_unhandled_reloc, /* special_function */
1250 "R_PPC64_DTPMOD64", /* name */
1251 FALSE, /* partial_inplace */
1252 0, /* src_mask */
1253 ONES (64), /* dst_mask */
1254 FALSE), /* pcrel_offset */
1255
1256 /* Computes a dtv-relative displacement, the difference between the value
1257 of sym+add and the base address of the thread-local storage block that
1258 contains the definition of sym, minus 0x8000. */
1259 HOWTO (R_PPC64_DTPREL64,
1260 0, /* rightshift */
1261 4, /* size (0 = byte, 1 = short, 2 = long) */
1262 64, /* bitsize */
1263 FALSE, /* pc_relative */
1264 0, /* bitpos */
1265 complain_overflow_dont, /* complain_on_overflow */
1266 ppc64_elf_unhandled_reloc, /* special_function */
1267 "R_PPC64_DTPREL64", /* name */
1268 FALSE, /* partial_inplace */
1269 0, /* src_mask */
1270 ONES (64), /* dst_mask */
1271 FALSE), /* pcrel_offset */
1272
1273 /* A 16 bit dtprel reloc. */
1274 HOWTO (R_PPC64_DTPREL16,
1275 0, /* rightshift */
1276 1, /* size (0 = byte, 1 = short, 2 = long) */
1277 16, /* bitsize */
1278 FALSE, /* pc_relative */
1279 0, /* bitpos */
1280 complain_overflow_signed, /* complain_on_overflow */
1281 ppc64_elf_unhandled_reloc, /* special_function */
1282 "R_PPC64_DTPREL16", /* name */
1283 FALSE, /* partial_inplace */
1284 0, /* src_mask */
1285 0xffff, /* dst_mask */
1286 FALSE), /* pcrel_offset */
1287
1288 /* Like DTPREL16, but no overflow. */
1289 HOWTO (R_PPC64_DTPREL16_LO,
1290 0, /* rightshift */
1291 1, /* size (0 = byte, 1 = short, 2 = long) */
1292 16, /* bitsize */
1293 FALSE, /* pc_relative */
1294 0, /* bitpos */
1295 complain_overflow_dont, /* complain_on_overflow */
1296 ppc64_elf_unhandled_reloc, /* special_function */
1297 "R_PPC64_DTPREL16_LO", /* name */
1298 FALSE, /* partial_inplace */
1299 0, /* src_mask */
1300 0xffff, /* dst_mask */
1301 FALSE), /* pcrel_offset */
1302
1303 /* Like DTPREL16_LO, but next higher group of 16 bits. */
1304 HOWTO (R_PPC64_DTPREL16_HI,
1305 16, /* rightshift */
1306 1, /* size (0 = byte, 1 = short, 2 = long) */
1307 16, /* bitsize */
1308 FALSE, /* pc_relative */
1309 0, /* bitpos */
1310 complain_overflow_dont, /* complain_on_overflow */
1311 ppc64_elf_unhandled_reloc, /* special_function */
1312 "R_PPC64_DTPREL16_HI", /* name */
1313 FALSE, /* partial_inplace */
1314 0, /* src_mask */
1315 0xffff, /* dst_mask */
1316 FALSE), /* pcrel_offset */
1317
1318 /* Like DTPREL16_HI, but adjust for low 16 bits. */
1319 HOWTO (R_PPC64_DTPREL16_HA,
1320 16, /* rightshift */
1321 1, /* size (0 = byte, 1 = short, 2 = long) */
1322 16, /* bitsize */
1323 FALSE, /* pc_relative */
1324 0, /* bitpos */
1325 complain_overflow_dont, /* complain_on_overflow */
1326 ppc64_elf_unhandled_reloc, /* special_function */
1327 "R_PPC64_DTPREL16_HA", /* name */
1328 FALSE, /* partial_inplace */
1329 0, /* src_mask */
1330 0xffff, /* dst_mask */
1331 FALSE), /* pcrel_offset */
1332
1333 /* Like DTPREL16_HI, but next higher group of 16 bits. */
1334 HOWTO (R_PPC64_DTPREL16_HIGHER,
1335 32, /* rightshift */
1336 1, /* size (0 = byte, 1 = short, 2 = long) */
1337 16, /* bitsize */
1338 FALSE, /* pc_relative */
1339 0, /* bitpos */
1340 complain_overflow_dont, /* complain_on_overflow */
1341 ppc64_elf_unhandled_reloc, /* special_function */
1342 "R_PPC64_DTPREL16_HIGHER", /* name */
1343 FALSE, /* partial_inplace */
1344 0, /* src_mask */
1345 0xffff, /* dst_mask */
1346 FALSE), /* pcrel_offset */
1347
1348 /* Like DTPREL16_HIGHER, but adjust for low 16 bits. */
1349 HOWTO (R_PPC64_DTPREL16_HIGHERA,
1350 32, /* rightshift */
1351 1, /* size (0 = byte, 1 = short, 2 = long) */
1352 16, /* bitsize */
1353 FALSE, /* pc_relative */
1354 0, /* bitpos */
1355 complain_overflow_dont, /* complain_on_overflow */
1356 ppc64_elf_unhandled_reloc, /* special_function */
1357 "R_PPC64_DTPREL16_HIGHERA", /* name */
1358 FALSE, /* partial_inplace */
1359 0, /* src_mask */
1360 0xffff, /* dst_mask */
1361 FALSE), /* pcrel_offset */
1362
1363 /* Like DTPREL16_HIGHER, but next higher group of 16 bits. */
1364 HOWTO (R_PPC64_DTPREL16_HIGHEST,
1365 48, /* rightshift */
1366 1, /* size (0 = byte, 1 = short, 2 = long) */
1367 16, /* bitsize */
1368 FALSE, /* pc_relative */
1369 0, /* bitpos */
1370 complain_overflow_dont, /* complain_on_overflow */
1371 ppc64_elf_unhandled_reloc, /* special_function */
1372 "R_PPC64_DTPREL16_HIGHEST", /* name */
1373 FALSE, /* partial_inplace */
1374 0, /* src_mask */
1375 0xffff, /* dst_mask */
1376 FALSE), /* pcrel_offset */
1377
1378 /* Like DTPREL16_HIGHEST, but adjust for low 16 bits. */
1379 HOWTO (R_PPC64_DTPREL16_HIGHESTA,
1380 48, /* rightshift */
1381 1, /* size (0 = byte, 1 = short, 2 = long) */
1382 16, /* bitsize */
1383 FALSE, /* pc_relative */
1384 0, /* bitpos */
1385 complain_overflow_dont, /* complain_on_overflow */
1386 ppc64_elf_unhandled_reloc, /* special_function */
1387 "R_PPC64_DTPREL16_HIGHESTA", /* name */
1388 FALSE, /* partial_inplace */
1389 0, /* src_mask */
1390 0xffff, /* dst_mask */
1391 FALSE), /* pcrel_offset */
1392
1393 /* Like DTPREL16, but for insns with a DS field. */
1394 HOWTO (R_PPC64_DTPREL16_DS,
1395 0, /* rightshift */
1396 1, /* size (0 = byte, 1 = short, 2 = long) */
1397 16, /* bitsize */
1398 FALSE, /* pc_relative */
1399 0, /* bitpos */
1400 complain_overflow_signed, /* complain_on_overflow */
1401 ppc64_elf_unhandled_reloc, /* special_function */
1402 "R_PPC64_DTPREL16_DS", /* name */
1403 FALSE, /* partial_inplace */
1404 0, /* src_mask */
1405 0xfffc, /* dst_mask */
1406 FALSE), /* pcrel_offset */
1407
1408 /* Like DTPREL16_DS, but no overflow. */
1409 HOWTO (R_PPC64_DTPREL16_LO_DS,
1410 0, /* rightshift */
1411 1, /* size (0 = byte, 1 = short, 2 = long) */
1412 16, /* bitsize */
1413 FALSE, /* pc_relative */
1414 0, /* bitpos */
1415 complain_overflow_dont, /* complain_on_overflow */
1416 ppc64_elf_unhandled_reloc, /* special_function */
1417 "R_PPC64_DTPREL16_LO_DS", /* name */
1418 FALSE, /* partial_inplace */
1419 0, /* src_mask */
1420 0xfffc, /* dst_mask */
1421 FALSE), /* pcrel_offset */
1422
1423 /* Computes a tp-relative displacement, the difference between the value of
1424 sym+add and the value of the thread pointer (r13). */
1425 HOWTO (R_PPC64_TPREL64,
1426 0, /* rightshift */
1427 4, /* size (0 = byte, 1 = short, 2 = long) */
1428 64, /* bitsize */
1429 FALSE, /* pc_relative */
1430 0, /* bitpos */
1431 complain_overflow_dont, /* complain_on_overflow */
1432 ppc64_elf_unhandled_reloc, /* special_function */
1433 "R_PPC64_TPREL64", /* name */
1434 FALSE, /* partial_inplace */
1435 0, /* src_mask */
1436 ONES (64), /* dst_mask */
1437 FALSE), /* pcrel_offset */
1438
1439 /* A 16 bit tprel reloc. */
1440 HOWTO (R_PPC64_TPREL16,
1441 0, /* rightshift */
1442 1, /* size (0 = byte, 1 = short, 2 = long) */
1443 16, /* bitsize */
1444 FALSE, /* pc_relative */
1445 0, /* bitpos */
1446 complain_overflow_signed, /* complain_on_overflow */
1447 ppc64_elf_unhandled_reloc, /* special_function */
1448 "R_PPC64_TPREL16", /* name */
1449 FALSE, /* partial_inplace */
1450 0, /* src_mask */
1451 0xffff, /* dst_mask */
1452 FALSE), /* pcrel_offset */
1453
1454 /* Like TPREL16, but no overflow. */
1455 HOWTO (R_PPC64_TPREL16_LO,
1456 0, /* rightshift */
1457 1, /* size (0 = byte, 1 = short, 2 = long) */
1458 16, /* bitsize */
1459 FALSE, /* pc_relative */
1460 0, /* bitpos */
1461 complain_overflow_dont, /* complain_on_overflow */
1462 ppc64_elf_unhandled_reloc, /* special_function */
1463 "R_PPC64_TPREL16_LO", /* name */
1464 FALSE, /* partial_inplace */
1465 0, /* src_mask */
1466 0xffff, /* dst_mask */
1467 FALSE), /* pcrel_offset */
1468
1469 /* Like TPREL16_LO, but next higher group of 16 bits. */
1470 HOWTO (R_PPC64_TPREL16_HI,
1471 16, /* rightshift */
1472 1, /* size (0 = byte, 1 = short, 2 = long) */
1473 16, /* bitsize */
1474 FALSE, /* pc_relative */
1475 0, /* bitpos */
1476 complain_overflow_dont, /* complain_on_overflow */
1477 ppc64_elf_unhandled_reloc, /* special_function */
1478 "R_PPC64_TPREL16_HI", /* name */
1479 FALSE, /* partial_inplace */
1480 0, /* src_mask */
1481 0xffff, /* dst_mask */
1482 FALSE), /* pcrel_offset */
1483
1484 /* Like TPREL16_HI, but adjust for low 16 bits. */
1485 HOWTO (R_PPC64_TPREL16_HA,
1486 16, /* rightshift */
1487 1, /* size (0 = byte, 1 = short, 2 = long) */
1488 16, /* bitsize */
1489 FALSE, /* pc_relative */
1490 0, /* bitpos */
1491 complain_overflow_dont, /* complain_on_overflow */
1492 ppc64_elf_unhandled_reloc, /* special_function */
1493 "R_PPC64_TPREL16_HA", /* name */
1494 FALSE, /* partial_inplace */
1495 0, /* src_mask */
1496 0xffff, /* dst_mask */
1497 FALSE), /* pcrel_offset */
1498
1499 /* Like TPREL16_HI, but next higher group of 16 bits. */
1500 HOWTO (R_PPC64_TPREL16_HIGHER,
1501 32, /* rightshift */
1502 1, /* size (0 = byte, 1 = short, 2 = long) */
1503 16, /* bitsize */
1504 FALSE, /* pc_relative */
1505 0, /* bitpos */
1506 complain_overflow_dont, /* complain_on_overflow */
1507 ppc64_elf_unhandled_reloc, /* special_function */
1508 "R_PPC64_TPREL16_HIGHER", /* name */
1509 FALSE, /* partial_inplace */
1510 0, /* src_mask */
1511 0xffff, /* dst_mask */
1512 FALSE), /* pcrel_offset */
1513
1514 /* Like TPREL16_HIGHER, but adjust for low 16 bits. */
1515 HOWTO (R_PPC64_TPREL16_HIGHERA,
1516 32, /* rightshift */
1517 1, /* size (0 = byte, 1 = short, 2 = long) */
1518 16, /* bitsize */
1519 FALSE, /* pc_relative */
1520 0, /* bitpos */
1521 complain_overflow_dont, /* complain_on_overflow */
1522 ppc64_elf_unhandled_reloc, /* special_function */
1523 "R_PPC64_TPREL16_HIGHERA", /* name */
1524 FALSE, /* partial_inplace */
1525 0, /* src_mask */
1526 0xffff, /* dst_mask */
1527 FALSE), /* pcrel_offset */
1528
1529 /* Like TPREL16_HIGHER, but next higher group of 16 bits. */
1530 HOWTO (R_PPC64_TPREL16_HIGHEST,
1531 48, /* rightshift */
1532 1, /* size (0 = byte, 1 = short, 2 = long) */
1533 16, /* bitsize */
1534 FALSE, /* pc_relative */
1535 0, /* bitpos */
1536 complain_overflow_dont, /* complain_on_overflow */
1537 ppc64_elf_unhandled_reloc, /* special_function */
1538 "R_PPC64_TPREL16_HIGHEST", /* name */
1539 FALSE, /* partial_inplace */
1540 0, /* src_mask */
1541 0xffff, /* dst_mask */
1542 FALSE), /* pcrel_offset */
1543
1544 /* Like TPREL16_HIGHEST, but adjust for low 16 bits. */
1545 HOWTO (R_PPC64_TPREL16_HIGHESTA,
1546 48, /* rightshift */
1547 1, /* size (0 = byte, 1 = short, 2 = long) */
1548 16, /* bitsize */
1549 FALSE, /* pc_relative */
1550 0, /* bitpos */
1551 complain_overflow_dont, /* complain_on_overflow */
1552 ppc64_elf_unhandled_reloc, /* special_function */
1553 "R_PPC64_TPREL16_HIGHESTA", /* name */
1554 FALSE, /* partial_inplace */
1555 0, /* src_mask */
1556 0xffff, /* dst_mask */
1557 FALSE), /* pcrel_offset */
1558
1559 /* Like TPREL16, but for insns with a DS field. */
1560 HOWTO (R_PPC64_TPREL16_DS,
1561 0, /* rightshift */
1562 1, /* size (0 = byte, 1 = short, 2 = long) */
1563 16, /* bitsize */
1564 FALSE, /* pc_relative */
1565 0, /* bitpos */
1566 complain_overflow_signed, /* complain_on_overflow */
1567 ppc64_elf_unhandled_reloc, /* special_function */
1568 "R_PPC64_TPREL16_DS", /* name */
1569 FALSE, /* partial_inplace */
1570 0, /* src_mask */
1571 0xfffc, /* dst_mask */
1572 FALSE), /* pcrel_offset */
1573
1574 /* Like TPREL16_DS, but no overflow. */
1575 HOWTO (R_PPC64_TPREL16_LO_DS,
1576 0, /* rightshift */
1577 1, /* size (0 = byte, 1 = short, 2 = long) */
1578 16, /* bitsize */
1579 FALSE, /* pc_relative */
1580 0, /* bitpos */
1581 complain_overflow_dont, /* complain_on_overflow */
1582 ppc64_elf_unhandled_reloc, /* special_function */
1583 "R_PPC64_TPREL16_LO_DS", /* name */
1584 FALSE, /* partial_inplace */
1585 0, /* src_mask */
1586 0xfffc, /* dst_mask */
1587 FALSE), /* pcrel_offset */
1588
1589 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1590 with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset
1591 to the first entry relative to the TOC base (r2). */
1592 HOWTO (R_PPC64_GOT_TLSGD16,
1593 0, /* rightshift */
1594 1, /* size (0 = byte, 1 = short, 2 = long) */
1595 16, /* bitsize */
1596 FALSE, /* pc_relative */
1597 0, /* bitpos */
1598 complain_overflow_signed, /* complain_on_overflow */
1599 ppc64_elf_unhandled_reloc, /* special_function */
1600 "R_PPC64_GOT_TLSGD16", /* name */
1601 FALSE, /* partial_inplace */
1602 0, /* src_mask */
1603 0xffff, /* dst_mask */
1604 FALSE), /* pcrel_offset */
1605
1606 /* Like GOT_TLSGD16, but no overflow. */
1607 HOWTO (R_PPC64_GOT_TLSGD16_LO,
1608 0, /* rightshift */
1609 1, /* size (0 = byte, 1 = short, 2 = long) */
1610 16, /* bitsize */
1611 FALSE, /* pc_relative */
1612 0, /* bitpos */
1613 complain_overflow_dont, /* complain_on_overflow */
1614 ppc64_elf_unhandled_reloc, /* special_function */
1615 "R_PPC64_GOT_TLSGD16_LO", /* name */
1616 FALSE, /* partial_inplace */
1617 0, /* src_mask */
1618 0xffff, /* dst_mask */
1619 FALSE), /* pcrel_offset */
1620
1621 /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */
1622 HOWTO (R_PPC64_GOT_TLSGD16_HI,
1623 16, /* rightshift */
1624 1, /* size (0 = byte, 1 = short, 2 = long) */
1625 16, /* bitsize */
1626 FALSE, /* pc_relative */
1627 0, /* bitpos */
1628 complain_overflow_dont, /* complain_on_overflow */
1629 ppc64_elf_unhandled_reloc, /* special_function */
1630 "R_PPC64_GOT_TLSGD16_HI", /* name */
1631 FALSE, /* partial_inplace */
1632 0, /* src_mask */
1633 0xffff, /* dst_mask */
1634 FALSE), /* pcrel_offset */
1635
1636 /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */
1637 HOWTO (R_PPC64_GOT_TLSGD16_HA,
1638 16, /* rightshift */
1639 1, /* size (0 = byte, 1 = short, 2 = long) */
1640 16, /* bitsize */
1641 FALSE, /* pc_relative */
1642 0, /* bitpos */
1643 complain_overflow_dont, /* complain_on_overflow */
1644 ppc64_elf_unhandled_reloc, /* special_function */
1645 "R_PPC64_GOT_TLSGD16_HA", /* name */
1646 FALSE, /* partial_inplace */
1647 0, /* src_mask */
1648 0xffff, /* dst_mask */
1649 FALSE), /* pcrel_offset */
1650
1651 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1652 with values (sym+add)@dtpmod and zero, and computes the offset to the
1653 first entry relative to the TOC base (r2). */
1654 HOWTO (R_PPC64_GOT_TLSLD16,
1655 0, /* rightshift */
1656 1, /* size (0 = byte, 1 = short, 2 = long) */
1657 16, /* bitsize */
1658 FALSE, /* pc_relative */
1659 0, /* bitpos */
1660 complain_overflow_signed, /* complain_on_overflow */
1661 ppc64_elf_unhandled_reloc, /* special_function */
1662 "R_PPC64_GOT_TLSLD16", /* name */
1663 FALSE, /* partial_inplace */
1664 0, /* src_mask */
1665 0xffff, /* dst_mask */
1666 FALSE), /* pcrel_offset */
1667
1668 /* Like GOT_TLSLD16, but no overflow. */
1669 HOWTO (R_PPC64_GOT_TLSLD16_LO,
1670 0, /* rightshift */
1671 1, /* size (0 = byte, 1 = short, 2 = long) */
1672 16, /* bitsize */
1673 FALSE, /* pc_relative */
1674 0, /* bitpos */
1675 complain_overflow_dont, /* complain_on_overflow */
1676 ppc64_elf_unhandled_reloc, /* special_function */
1677 "R_PPC64_GOT_TLSLD16_LO", /* name */
1678 FALSE, /* partial_inplace */
1679 0, /* src_mask */
1680 0xffff, /* dst_mask */
1681 FALSE), /* pcrel_offset */
1682
1683 /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */
1684 HOWTO (R_PPC64_GOT_TLSLD16_HI,
1685 16, /* rightshift */
1686 1, /* size (0 = byte, 1 = short, 2 = long) */
1687 16, /* bitsize */
1688 FALSE, /* pc_relative */
1689 0, /* bitpos */
1690 complain_overflow_dont, /* complain_on_overflow */
1691 ppc64_elf_unhandled_reloc, /* special_function */
1692 "R_PPC64_GOT_TLSLD16_HI", /* name */
1693 FALSE, /* partial_inplace */
1694 0, /* src_mask */
1695 0xffff, /* dst_mask */
1696 FALSE), /* pcrel_offset */
1697
1698 /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */
1699 HOWTO (R_PPC64_GOT_TLSLD16_HA,
1700 16, /* rightshift */
1701 1, /* size (0 = byte, 1 = short, 2 = long) */
1702 16, /* bitsize */
1703 FALSE, /* pc_relative */
1704 0, /* bitpos */
1705 complain_overflow_dont, /* complain_on_overflow */
1706 ppc64_elf_unhandled_reloc, /* special_function */
1707 "R_PPC64_GOT_TLSLD16_HA", /* name */
1708 FALSE, /* partial_inplace */
1709 0, /* src_mask */
1710 0xffff, /* dst_mask */
1711 FALSE), /* pcrel_offset */
1712
1713 /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes
1714 the offset to the entry relative to the TOC base (r2). */
1715 HOWTO (R_PPC64_GOT_DTPREL16_DS,
1716 0, /* rightshift */
1717 1, /* size (0 = byte, 1 = short, 2 = long) */
1718 16, /* bitsize */
1719 FALSE, /* pc_relative */
1720 0, /* bitpos */
1721 complain_overflow_signed, /* complain_on_overflow */
1722 ppc64_elf_unhandled_reloc, /* special_function */
1723 "R_PPC64_GOT_DTPREL16_DS", /* name */
1724 FALSE, /* partial_inplace */
1725 0, /* src_mask */
1726 0xfffc, /* dst_mask */
1727 FALSE), /* pcrel_offset */
1728
1729 /* Like GOT_DTPREL16_DS, but no overflow. */
1730 HOWTO (R_PPC64_GOT_DTPREL16_LO_DS,
1731 0, /* rightshift */
1732 1, /* size (0 = byte, 1 = short, 2 = long) */
1733 16, /* bitsize */
1734 FALSE, /* pc_relative */
1735 0, /* bitpos */
1736 complain_overflow_dont, /* complain_on_overflow */
1737 ppc64_elf_unhandled_reloc, /* special_function */
1738 "R_PPC64_GOT_DTPREL16_LO_DS", /* name */
1739 FALSE, /* partial_inplace */
1740 0, /* src_mask */
1741 0xfffc, /* dst_mask */
1742 FALSE), /* pcrel_offset */
1743
1744 /* Like GOT_DTPREL16_LO_DS, but next higher group of 16 bits. */
1745 HOWTO (R_PPC64_GOT_DTPREL16_HI,
1746 16, /* rightshift */
1747 1, /* size (0 = byte, 1 = short, 2 = long) */
1748 16, /* bitsize */
1749 FALSE, /* pc_relative */
1750 0, /* bitpos */
1751 complain_overflow_dont, /* complain_on_overflow */
1752 ppc64_elf_unhandled_reloc, /* special_function */
1753 "R_PPC64_GOT_DTPREL16_HI", /* name */
1754 FALSE, /* partial_inplace */
1755 0, /* src_mask */
1756 0xffff, /* dst_mask */
1757 FALSE), /* pcrel_offset */
1758
1759 /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */
1760 HOWTO (R_PPC64_GOT_DTPREL16_HA,
1761 16, /* rightshift */
1762 1, /* size (0 = byte, 1 = short, 2 = long) */
1763 16, /* bitsize */
1764 FALSE, /* pc_relative */
1765 0, /* bitpos */
1766 complain_overflow_dont, /* complain_on_overflow */
1767 ppc64_elf_unhandled_reloc, /* special_function */
1768 "R_PPC64_GOT_DTPREL16_HA", /* name */
1769 FALSE, /* partial_inplace */
1770 0, /* src_mask */
1771 0xffff, /* dst_mask */
1772 FALSE), /* pcrel_offset */
1773
1774 /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the
1775 offset to the entry relative to the TOC base (r2). */
1776 HOWTO (R_PPC64_GOT_TPREL16_DS,
1777 0, /* rightshift */
1778 1, /* size (0 = byte, 1 = short, 2 = long) */
1779 16, /* bitsize */
1780 FALSE, /* pc_relative */
1781 0, /* bitpos */
1782 complain_overflow_signed, /* complain_on_overflow */
1783 ppc64_elf_unhandled_reloc, /* special_function */
1784 "R_PPC64_GOT_TPREL16_DS", /* name */
1785 FALSE, /* partial_inplace */
1786 0, /* src_mask */
1787 0xfffc, /* dst_mask */
1788 FALSE), /* pcrel_offset */
1789
1790 /* Like GOT_TPREL16_DS, but no overflow. */
1791 HOWTO (R_PPC64_GOT_TPREL16_LO_DS,
1792 0, /* rightshift */
1793 1, /* size (0 = byte, 1 = short, 2 = long) */
1794 16, /* bitsize */
1795 FALSE, /* pc_relative */
1796 0, /* bitpos */
1797 complain_overflow_dont, /* complain_on_overflow */
1798 ppc64_elf_unhandled_reloc, /* special_function */
1799 "R_PPC64_GOT_TPREL16_LO_DS", /* name */
1800 FALSE, /* partial_inplace */
1801 0, /* src_mask */
1802 0xfffc, /* dst_mask */
1803 FALSE), /* pcrel_offset */
1804
1805 /* Like GOT_TPREL16_LO_DS, but next higher group of 16 bits. */
1806 HOWTO (R_PPC64_GOT_TPREL16_HI,
1807 16, /* rightshift */
1808 1, /* size (0 = byte, 1 = short, 2 = long) */
1809 16, /* bitsize */
1810 FALSE, /* pc_relative */
1811 0, /* bitpos */
1812 complain_overflow_dont, /* complain_on_overflow */
1813 ppc64_elf_unhandled_reloc, /* special_function */
1814 "R_PPC64_GOT_TPREL16_HI", /* name */
1815 FALSE, /* partial_inplace */
1816 0, /* src_mask */
1817 0xffff, /* dst_mask */
1818 FALSE), /* pcrel_offset */
1819
1820 /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */
1821 HOWTO (R_PPC64_GOT_TPREL16_HA,
1822 16, /* rightshift */
1823 1, /* size (0 = byte, 1 = short, 2 = long) */
1824 16, /* bitsize */
1825 FALSE, /* pc_relative */
1826 0, /* bitpos */
1827 complain_overflow_dont, /* complain_on_overflow */
1828 ppc64_elf_unhandled_reloc, /* special_function */
1829 "R_PPC64_GOT_TPREL16_HA", /* name */
1830 FALSE, /* partial_inplace */
1831 0, /* src_mask */
1832 0xffff, /* dst_mask */
1833 FALSE), /* pcrel_offset */
1834
1835 /* GNU extension to record C++ vtable hierarchy. */
1836 HOWTO (R_PPC64_GNU_VTINHERIT, /* type */
1837 0, /* rightshift */
1838 0, /* size (0 = byte, 1 = short, 2 = long) */
1839 0, /* bitsize */
1840 FALSE, /* pc_relative */
1841 0, /* bitpos */
1842 complain_overflow_dont, /* complain_on_overflow */
1843 NULL, /* special_function */
1844 "R_PPC64_GNU_VTINHERIT", /* name */
1845 FALSE, /* partial_inplace */
1846 0, /* src_mask */
1847 0, /* dst_mask */
1848 FALSE), /* pcrel_offset */
1849
1850 /* GNU extension to record C++ vtable member usage. */
1851 HOWTO (R_PPC64_GNU_VTENTRY, /* type */
1852 0, /* rightshift */
1853 0, /* size (0 = byte, 1 = short, 2 = long) */
1854 0, /* bitsize */
1855 FALSE, /* pc_relative */
1856 0, /* bitpos */
1857 complain_overflow_dont, /* complain_on_overflow */
1858 NULL, /* special_function */
1859 "R_PPC64_GNU_VTENTRY", /* name */
1860 FALSE, /* partial_inplace */
1861 0, /* src_mask */
1862 0, /* dst_mask */
1863 FALSE), /* pcrel_offset */
1864 };
1865
1866 \f
1867 /* Initialize the ppc64_elf_howto_table, so that linear accesses can
1868 be done. */
1869
1870 static void
1871 ppc_howto_init (void)
1872 {
1873 unsigned int i, type;
1874
1875 for (i = 0;
1876 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
1877 i++)
1878 {
1879 type = ppc64_elf_howto_raw[i].type;
1880 BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table)
1881 / sizeof (ppc64_elf_howto_table[0])));
1882 ppc64_elf_howto_table[type] = &ppc64_elf_howto_raw[i];
1883 }
1884 }
1885
1886 static reloc_howto_type *
1887 ppc64_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1888 bfd_reloc_code_real_type code)
1889 {
1890 enum elf_ppc64_reloc_type r = R_PPC64_NONE;
1891
1892 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
1893 /* Initialize howto table if needed. */
1894 ppc_howto_init ();
1895
1896 switch (code)
1897 {
1898 default:
1899 return NULL;
1900
1901 case BFD_RELOC_NONE: r = R_PPC64_NONE;
1902 break;
1903 case BFD_RELOC_32: r = R_PPC64_ADDR32;
1904 break;
1905 case BFD_RELOC_PPC_BA26: r = R_PPC64_ADDR24;
1906 break;
1907 case BFD_RELOC_16: r = R_PPC64_ADDR16;
1908 break;
1909 case BFD_RELOC_LO16: r = R_PPC64_ADDR16_LO;
1910 break;
1911 case BFD_RELOC_HI16: r = R_PPC64_ADDR16_HI;
1912 break;
1913 case BFD_RELOC_HI16_S: r = R_PPC64_ADDR16_HA;
1914 break;
1915 case BFD_RELOC_PPC_BA16: r = R_PPC64_ADDR14;
1916 break;
1917 case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC64_ADDR14_BRTAKEN;
1918 break;
1919 case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC64_ADDR14_BRNTAKEN;
1920 break;
1921 case BFD_RELOC_PPC_B26: r = R_PPC64_REL24;
1922 break;
1923 case BFD_RELOC_PPC_B16: r = R_PPC64_REL14;
1924 break;
1925 case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC64_REL14_BRTAKEN;
1926 break;
1927 case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC64_REL14_BRNTAKEN;
1928 break;
1929 case BFD_RELOC_16_GOTOFF: r = R_PPC64_GOT16;
1930 break;
1931 case BFD_RELOC_LO16_GOTOFF: r = R_PPC64_GOT16_LO;
1932 break;
1933 case BFD_RELOC_HI16_GOTOFF: r = R_PPC64_GOT16_HI;
1934 break;
1935 case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC64_GOT16_HA;
1936 break;
1937 case BFD_RELOC_PPC_COPY: r = R_PPC64_COPY;
1938 break;
1939 case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC64_GLOB_DAT;
1940 break;
1941 case BFD_RELOC_32_PCREL: r = R_PPC64_REL32;
1942 break;
1943 case BFD_RELOC_32_PLTOFF: r = R_PPC64_PLT32;
1944 break;
1945 case BFD_RELOC_32_PLT_PCREL: r = R_PPC64_PLTREL32;
1946 break;
1947 case BFD_RELOC_LO16_PLTOFF: r = R_PPC64_PLT16_LO;
1948 break;
1949 case BFD_RELOC_HI16_PLTOFF: r = R_PPC64_PLT16_HI;
1950 break;
1951 case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC64_PLT16_HA;
1952 break;
1953 case BFD_RELOC_16_BASEREL: r = R_PPC64_SECTOFF;
1954 break;
1955 case BFD_RELOC_LO16_BASEREL: r = R_PPC64_SECTOFF_LO;
1956 break;
1957 case BFD_RELOC_HI16_BASEREL: r = R_PPC64_SECTOFF_HI;
1958 break;
1959 case BFD_RELOC_HI16_S_BASEREL: r = R_PPC64_SECTOFF_HA;
1960 break;
1961 case BFD_RELOC_CTOR: r = R_PPC64_ADDR64;
1962 break;
1963 case BFD_RELOC_64: r = R_PPC64_ADDR64;
1964 break;
1965 case BFD_RELOC_PPC64_HIGHER: r = R_PPC64_ADDR16_HIGHER;
1966 break;
1967 case BFD_RELOC_PPC64_HIGHER_S: r = R_PPC64_ADDR16_HIGHERA;
1968 break;
1969 case BFD_RELOC_PPC64_HIGHEST: r = R_PPC64_ADDR16_HIGHEST;
1970 break;
1971 case BFD_RELOC_PPC64_HIGHEST_S: r = R_PPC64_ADDR16_HIGHESTA;
1972 break;
1973 case BFD_RELOC_64_PCREL: r = R_PPC64_REL64;
1974 break;
1975 case BFD_RELOC_64_PLTOFF: r = R_PPC64_PLT64;
1976 break;
1977 case BFD_RELOC_64_PLT_PCREL: r = R_PPC64_PLTREL64;
1978 break;
1979 case BFD_RELOC_PPC_TOC16: r = R_PPC64_TOC16;
1980 break;
1981 case BFD_RELOC_PPC64_TOC16_LO: r = R_PPC64_TOC16_LO;
1982 break;
1983 case BFD_RELOC_PPC64_TOC16_HI: r = R_PPC64_TOC16_HI;
1984 break;
1985 case BFD_RELOC_PPC64_TOC16_HA: r = R_PPC64_TOC16_HA;
1986 break;
1987 case BFD_RELOC_PPC64_TOC: r = R_PPC64_TOC;
1988 break;
1989 case BFD_RELOC_PPC64_PLTGOT16: r = R_PPC64_PLTGOT16;
1990 break;
1991 case BFD_RELOC_PPC64_PLTGOT16_LO: r = R_PPC64_PLTGOT16_LO;
1992 break;
1993 case BFD_RELOC_PPC64_PLTGOT16_HI: r = R_PPC64_PLTGOT16_HI;
1994 break;
1995 case BFD_RELOC_PPC64_PLTGOT16_HA: r = R_PPC64_PLTGOT16_HA;
1996 break;
1997 case BFD_RELOC_PPC64_ADDR16_DS: r = R_PPC64_ADDR16_DS;
1998 break;
1999 case BFD_RELOC_PPC64_ADDR16_LO_DS: r = R_PPC64_ADDR16_LO_DS;
2000 break;
2001 case BFD_RELOC_PPC64_GOT16_DS: r = R_PPC64_GOT16_DS;
2002 break;
2003 case BFD_RELOC_PPC64_GOT16_LO_DS: r = R_PPC64_GOT16_LO_DS;
2004 break;
2005 case BFD_RELOC_PPC64_PLT16_LO_DS: r = R_PPC64_PLT16_LO_DS;
2006 break;
2007 case BFD_RELOC_PPC64_SECTOFF_DS: r = R_PPC64_SECTOFF_DS;
2008 break;
2009 case BFD_RELOC_PPC64_SECTOFF_LO_DS: r = R_PPC64_SECTOFF_LO_DS;
2010 break;
2011 case BFD_RELOC_PPC64_TOC16_DS: r = R_PPC64_TOC16_DS;
2012 break;
2013 case BFD_RELOC_PPC64_TOC16_LO_DS: r = R_PPC64_TOC16_LO_DS;
2014 break;
2015 case BFD_RELOC_PPC64_PLTGOT16_DS: r = R_PPC64_PLTGOT16_DS;
2016 break;
2017 case BFD_RELOC_PPC64_PLTGOT16_LO_DS: r = R_PPC64_PLTGOT16_LO_DS;
2018 break;
2019 case BFD_RELOC_PPC_TLS: r = R_PPC64_TLS;
2020 break;
2021 case BFD_RELOC_PPC_DTPMOD: r = R_PPC64_DTPMOD64;
2022 break;
2023 case BFD_RELOC_PPC_TPREL16: r = R_PPC64_TPREL16;
2024 break;
2025 case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC64_TPREL16_LO;
2026 break;
2027 case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC64_TPREL16_HI;
2028 break;
2029 case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC64_TPREL16_HA;
2030 break;
2031 case BFD_RELOC_PPC_TPREL: r = R_PPC64_TPREL64;
2032 break;
2033 case BFD_RELOC_PPC_DTPREL16: r = R_PPC64_DTPREL16;
2034 break;
2035 case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC64_DTPREL16_LO;
2036 break;
2037 case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC64_DTPREL16_HI;
2038 break;
2039 case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC64_DTPREL16_HA;
2040 break;
2041 case BFD_RELOC_PPC_DTPREL: r = R_PPC64_DTPREL64;
2042 break;
2043 case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC64_GOT_TLSGD16;
2044 break;
2045 case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC64_GOT_TLSGD16_LO;
2046 break;
2047 case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC64_GOT_TLSGD16_HI;
2048 break;
2049 case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC64_GOT_TLSGD16_HA;
2050 break;
2051 case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC64_GOT_TLSLD16;
2052 break;
2053 case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC64_GOT_TLSLD16_LO;
2054 break;
2055 case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC64_GOT_TLSLD16_HI;
2056 break;
2057 case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC64_GOT_TLSLD16_HA;
2058 break;
2059 case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC64_GOT_TPREL16_DS;
2060 break;
2061 case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC64_GOT_TPREL16_LO_DS;
2062 break;
2063 case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC64_GOT_TPREL16_HI;
2064 break;
2065 case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC64_GOT_TPREL16_HA;
2066 break;
2067 case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC64_GOT_DTPREL16_DS;
2068 break;
2069 case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC64_GOT_DTPREL16_LO_DS;
2070 break;
2071 case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC64_GOT_DTPREL16_HI;
2072 break;
2073 case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC64_GOT_DTPREL16_HA;
2074 break;
2075 case BFD_RELOC_PPC64_TPREL16_DS: r = R_PPC64_TPREL16_DS;
2076 break;
2077 case BFD_RELOC_PPC64_TPREL16_LO_DS: r = R_PPC64_TPREL16_LO_DS;
2078 break;
2079 case BFD_RELOC_PPC64_TPREL16_HIGHER: r = R_PPC64_TPREL16_HIGHER;
2080 break;
2081 case BFD_RELOC_PPC64_TPREL16_HIGHERA: r = R_PPC64_TPREL16_HIGHERA;
2082 break;
2083 case BFD_RELOC_PPC64_TPREL16_HIGHEST: r = R_PPC64_TPREL16_HIGHEST;
2084 break;
2085 case BFD_RELOC_PPC64_TPREL16_HIGHESTA: r = R_PPC64_TPREL16_HIGHESTA;
2086 break;
2087 case BFD_RELOC_PPC64_DTPREL16_DS: r = R_PPC64_DTPREL16_DS;
2088 break;
2089 case BFD_RELOC_PPC64_DTPREL16_LO_DS: r = R_PPC64_DTPREL16_LO_DS;
2090 break;
2091 case BFD_RELOC_PPC64_DTPREL16_HIGHER: r = R_PPC64_DTPREL16_HIGHER;
2092 break;
2093 case BFD_RELOC_PPC64_DTPREL16_HIGHERA: r = R_PPC64_DTPREL16_HIGHERA;
2094 break;
2095 case BFD_RELOC_PPC64_DTPREL16_HIGHEST: r = R_PPC64_DTPREL16_HIGHEST;
2096 break;
2097 case BFD_RELOC_PPC64_DTPREL16_HIGHESTA: r = R_PPC64_DTPREL16_HIGHESTA;
2098 break;
2099 case BFD_RELOC_VTABLE_INHERIT: r = R_PPC64_GNU_VTINHERIT;
2100 break;
2101 case BFD_RELOC_VTABLE_ENTRY: r = R_PPC64_GNU_VTENTRY;
2102 break;
2103 }
2104
2105 return ppc64_elf_howto_table[r];
2106 };
2107
2108 /* Set the howto pointer for a PowerPC ELF reloc. */
2109
2110 static void
2111 ppc64_elf_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
2112 Elf_Internal_Rela *dst)
2113 {
2114 unsigned int type;
2115
2116 /* Initialize howto table if needed. */
2117 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2118 ppc_howto_init ();
2119
2120 type = ELF64_R_TYPE (dst->r_info);
2121 BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table)
2122 / sizeof (ppc64_elf_howto_table[0])));
2123 cache_ptr->howto = ppc64_elf_howto_table[type];
2124 }
2125
2126 /* Handle the R_PPC64_ADDR16_HA and similar relocs. */
2127
2128 static bfd_reloc_status_type
2129 ppc64_elf_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2130 void *data, asection *input_section,
2131 bfd *output_bfd, char **error_message)
2132 {
2133 /* If this is a relocatable link (output_bfd test tells us), just
2134 call the generic function. Any adjustment will be done at final
2135 link time. */
2136 if (output_bfd != NULL)
2137 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2138 input_section, output_bfd, error_message);
2139
2140 /* Adjust the addend for sign extension of the low 16 bits.
2141 We won't actually be using the low 16 bits, so trashing them
2142 doesn't matter. */
2143 reloc_entry->addend += 0x8000;
2144 return bfd_reloc_continue;
2145 }
2146
2147 static bfd_reloc_status_type
2148 ppc64_elf_branch_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2149 void *data, asection *input_section,
2150 bfd *output_bfd, char **error_message)
2151 {
2152 if (output_bfd != NULL)
2153 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2154 input_section, output_bfd, error_message);
2155
2156 if (strcmp (symbol->section->name, ".opd") == 0
2157 && (symbol->section->owner->flags & DYNAMIC) == 0)
2158 {
2159 bfd_vma dest = opd_entry_value (symbol->section,
2160 symbol->value + reloc_entry->addend,
2161 NULL, NULL);
2162 if (dest != (bfd_vma) -1)
2163 reloc_entry->addend = dest - (symbol->value
2164 + symbol->section->output_section->vma
2165 + symbol->section->output_offset);
2166 }
2167 return bfd_reloc_continue;
2168 }
2169
2170 static bfd_reloc_status_type
2171 ppc64_elf_brtaken_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2172 void *data, asection *input_section,
2173 bfd *output_bfd, char **error_message)
2174 {
2175 long insn;
2176 enum elf_ppc64_reloc_type r_type;
2177 bfd_size_type octets;
2178 /* Disabled until we sort out how ld should choose 'y' vs 'at'. */
2179 bfd_boolean is_power4 = FALSE;
2180
2181 /* If this is a relocatable link (output_bfd test tells us), just
2182 call the generic function. Any adjustment will be done at final
2183 link time. */
2184 if (output_bfd != NULL)
2185 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2186 input_section, output_bfd, error_message);
2187
2188 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2189 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
2190 insn &= ~(0x01 << 21);
2191 r_type = reloc_entry->howto->type;
2192 if (r_type == R_PPC64_ADDR14_BRTAKEN
2193 || r_type == R_PPC64_REL14_BRTAKEN)
2194 insn |= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
2195
2196 if (is_power4)
2197 {
2198 /* Set 'a' bit. This is 0b00010 in BO field for branch
2199 on CR(BI) insns (BO == 001at or 011at), and 0b01000
2200 for branch on CTR insns (BO == 1a00t or 1a01t). */
2201 if ((insn & (0x14 << 21)) == (0x04 << 21))
2202 insn |= 0x02 << 21;
2203 else if ((insn & (0x14 << 21)) == (0x10 << 21))
2204 insn |= 0x08 << 21;
2205 else
2206 goto out;
2207 }
2208 else
2209 {
2210 bfd_vma target = 0;
2211 bfd_vma from;
2212
2213 if (!bfd_is_com_section (symbol->section))
2214 target = symbol->value;
2215 target += symbol->section->output_section->vma;
2216 target += symbol->section->output_offset;
2217 target += reloc_entry->addend;
2218
2219 from = (reloc_entry->address
2220 + input_section->output_offset
2221 + input_section->output_section->vma);
2222
2223 /* Invert 'y' bit if not the default. */
2224 if ((bfd_signed_vma) (target - from) < 0)
2225 insn ^= 0x01 << 21;
2226 }
2227 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
2228 out:
2229 return ppc64_elf_branch_reloc (abfd, reloc_entry, symbol, data,
2230 input_section, output_bfd, error_message);
2231 }
2232
2233 static bfd_reloc_status_type
2234 ppc64_elf_sectoff_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2235 void *data, asection *input_section,
2236 bfd *output_bfd, char **error_message)
2237 {
2238 /* If this is a relocatable link (output_bfd test tells us), just
2239 call the generic function. Any adjustment will be done at final
2240 link time. */
2241 if (output_bfd != NULL)
2242 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2243 input_section, output_bfd, error_message);
2244
2245 /* Subtract the symbol section base address. */
2246 reloc_entry->addend -= symbol->section->output_section->vma;
2247 return bfd_reloc_continue;
2248 }
2249
2250 static bfd_reloc_status_type
2251 ppc64_elf_sectoff_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2252 void *data, asection *input_section,
2253 bfd *output_bfd, char **error_message)
2254 {
2255 /* If this is a relocatable link (output_bfd test tells us), just
2256 call the generic function. Any adjustment will be done at final
2257 link time. */
2258 if (output_bfd != NULL)
2259 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2260 input_section, output_bfd, error_message);
2261
2262 /* Subtract the symbol section base address. */
2263 reloc_entry->addend -= symbol->section->output_section->vma;
2264
2265 /* Adjust the addend for sign extension of the low 16 bits. */
2266 reloc_entry->addend += 0x8000;
2267 return bfd_reloc_continue;
2268 }
2269
2270 static bfd_reloc_status_type
2271 ppc64_elf_toc_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2272 void *data, asection *input_section,
2273 bfd *output_bfd, char **error_message)
2274 {
2275 bfd_vma TOCstart;
2276
2277 /* If this is a relocatable link (output_bfd test tells us), just
2278 call the generic function. Any adjustment will be done at final
2279 link time. */
2280 if (output_bfd != NULL)
2281 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2282 input_section, output_bfd, error_message);
2283
2284 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2285 if (TOCstart == 0)
2286 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2287
2288 /* Subtract the TOC base address. */
2289 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2290 return bfd_reloc_continue;
2291 }
2292
2293 static bfd_reloc_status_type
2294 ppc64_elf_toc_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2295 void *data, asection *input_section,
2296 bfd *output_bfd, char **error_message)
2297 {
2298 bfd_vma TOCstart;
2299
2300 /* If this is a relocatable link (output_bfd test tells us), just
2301 call the generic function. Any adjustment will be done at final
2302 link time. */
2303 if (output_bfd != NULL)
2304 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2305 input_section, output_bfd, error_message);
2306
2307 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2308 if (TOCstart == 0)
2309 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2310
2311 /* Subtract the TOC base address. */
2312 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2313
2314 /* Adjust the addend for sign extension of the low 16 bits. */
2315 reloc_entry->addend += 0x8000;
2316 return bfd_reloc_continue;
2317 }
2318
2319 static bfd_reloc_status_type
2320 ppc64_elf_toc64_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2321 void *data, asection *input_section,
2322 bfd *output_bfd, char **error_message)
2323 {
2324 bfd_vma TOCstart;
2325 bfd_size_type octets;
2326
2327 /* If this is a relocatable link (output_bfd test tells us), just
2328 call the generic function. Any adjustment will be done at final
2329 link time. */
2330 if (output_bfd != NULL)
2331 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2332 input_section, output_bfd, error_message);
2333
2334 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2335 if (TOCstart == 0)
2336 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2337
2338 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2339 bfd_put_64 (abfd, TOCstart + TOC_BASE_OFF, (bfd_byte *) data + octets);
2340 return bfd_reloc_ok;
2341 }
2342
2343 static bfd_reloc_status_type
2344 ppc64_elf_unhandled_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2345 void *data, asection *input_section,
2346 bfd *output_bfd, char **error_message)
2347 {
2348 /* If this is a relocatable link (output_bfd test tells us), just
2349 call the generic function. Any adjustment will be done at final
2350 link time. */
2351 if (output_bfd != NULL)
2352 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2353 input_section, output_bfd, error_message);
2354
2355 if (error_message != NULL)
2356 {
2357 static char buf[60];
2358 sprintf (buf, "generic linker can't handle %s",
2359 reloc_entry->howto->name);
2360 *error_message = buf;
2361 }
2362 return bfd_reloc_dangerous;
2363 }
2364
2365 struct ppc64_elf_obj_tdata
2366 {
2367 struct elf_obj_tdata elf;
2368
2369 /* Shortcuts to dynamic linker sections. */
2370 asection *got;
2371 asection *relgot;
2372
2373 /* Used during garbage collection. We attach global symbols defined
2374 on removed .opd entries to this section so that the sym is removed. */
2375 asection *deleted_section;
2376
2377 /* TLS local dynamic got entry handling. Suppose for multiple GOT
2378 sections means we potentially need one of these for each input bfd. */
2379 union {
2380 bfd_signed_vma refcount;
2381 bfd_vma offset;
2382 } tlsld_got;
2383
2384 /* A copy of relocs before they are modified for --emit-relocs. */
2385 Elf_Internal_Rela *opd_relocs;
2386 };
2387
2388 #define ppc64_elf_tdata(bfd) \
2389 ((struct ppc64_elf_obj_tdata *) (bfd)->tdata.any)
2390
2391 #define ppc64_tlsld_got(bfd) \
2392 (&ppc64_elf_tdata (bfd)->tlsld_got)
2393
2394 /* Override the generic function because we store some extras. */
2395
2396 static bfd_boolean
2397 ppc64_elf_mkobject (bfd *abfd)
2398 {
2399 bfd_size_type amt = sizeof (struct ppc64_elf_obj_tdata);
2400 abfd->tdata.any = bfd_zalloc (abfd, amt);
2401 if (abfd->tdata.any == NULL)
2402 return FALSE;
2403 return TRUE;
2404 }
2405
2406 /* Return 1 if target is one of ours. */
2407
2408 static bfd_boolean
2409 is_ppc64_elf_target (const struct bfd_target *targ)
2410 {
2411 extern const bfd_target bfd_elf64_powerpc_vec;
2412 extern const bfd_target bfd_elf64_powerpcle_vec;
2413
2414 return targ == &bfd_elf64_powerpc_vec || targ == &bfd_elf64_powerpcle_vec;
2415 }
2416
2417 /* Fix bad default arch selected for a 64 bit input bfd when the
2418 default is 32 bit. */
2419
2420 static bfd_boolean
2421 ppc64_elf_object_p (bfd *abfd)
2422 {
2423 if (abfd->arch_info->the_default && abfd->arch_info->bits_per_word == 32)
2424 {
2425 Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd);
2426
2427 if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS64)
2428 {
2429 /* Relies on arch after 32 bit default being 64 bit default. */
2430 abfd->arch_info = abfd->arch_info->next;
2431 BFD_ASSERT (abfd->arch_info->bits_per_word == 64);
2432 }
2433 }
2434 return TRUE;
2435 }
2436
2437 /* Support for core dump NOTE sections. */
2438
2439 static bfd_boolean
2440 ppc64_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2441 {
2442 size_t offset, size;
2443
2444 if (note->descsz != 504)
2445 return FALSE;
2446
2447 /* pr_cursig */
2448 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
2449
2450 /* pr_pid */
2451 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 32);
2452
2453 /* pr_reg */
2454 offset = 112;
2455 size = 384;
2456
2457 /* Make a ".reg/999" section. */
2458 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2459 size, note->descpos + offset);
2460 }
2461
2462 static bfd_boolean
2463 ppc64_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2464 {
2465 if (note->descsz != 136)
2466 return FALSE;
2467
2468 elf_tdata (abfd)->core_program
2469 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2470 elf_tdata (abfd)->core_command
2471 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2472
2473 return TRUE;
2474 }
2475
2476 /* Merge backend specific data from an object file to the output
2477 object file when linking. */
2478
2479 static bfd_boolean
2480 ppc64_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
2481 {
2482 /* Check if we have the same endianess. */
2483 if (ibfd->xvec->byteorder != obfd->xvec->byteorder
2484 && ibfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN
2485 && obfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN)
2486 {
2487 const char *msg;
2488
2489 if (bfd_big_endian (ibfd))
2490 msg = _("%B: compiled for a big endian system "
2491 "and target is little endian");
2492 else
2493 msg = _("%B: compiled for a little endian system "
2494 "and target is big endian");
2495
2496 (*_bfd_error_handler) (msg, ibfd);
2497
2498 bfd_set_error (bfd_error_wrong_format);
2499 return FALSE;
2500 }
2501
2502 return TRUE;
2503 }
2504
2505 /* Add extra PPC sections. */
2506
2507 static struct bfd_elf_special_section const ppc64_elf_special_sections[]=
2508 {
2509 { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2510 { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2511 { ".plt", 4, 0, SHT_NOBITS, 0 },
2512 { ".toc", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2513 { ".toc1", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2514 { ".tocbss", 7, 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2515 { NULL, 0, 0, 0, 0 }
2516 };
2517
2518 struct _ppc64_elf_section_data
2519 {
2520 struct bfd_elf_section_data elf;
2521
2522 /* An array with one entry for each opd function descriptor. */
2523 union
2524 {
2525 /* Points to the function code section for local opd entries. */
2526 asection **func_sec;
2527 /* After editing .opd, adjust references to opd local syms. */
2528 long *adjust;
2529 } opd;
2530
2531 /* An array for toc sections, indexed by offset/8.
2532 Specifies the relocation symbol index used at a given toc offset. */
2533 unsigned *t_symndx;
2534 };
2535
2536 #define ppc64_elf_section_data(sec) \
2537 ((struct _ppc64_elf_section_data *) elf_section_data (sec))
2538
2539 static bfd_boolean
2540 ppc64_elf_new_section_hook (bfd *abfd, asection *sec)
2541 {
2542 struct _ppc64_elf_section_data *sdata;
2543 bfd_size_type amt = sizeof (*sdata);
2544
2545 sdata = bfd_zalloc (abfd, amt);
2546 if (sdata == NULL)
2547 return FALSE;
2548 sec->used_by_bfd = sdata;
2549
2550 return _bfd_elf_new_section_hook (abfd, sec);
2551 }
2552
2553 static void *
2554 get_opd_info (asection * sec)
2555 {
2556 if (sec != NULL
2557 && ppc64_elf_section_data (sec) != NULL
2558 && ppc64_elf_section_data (sec)->opd.adjust != NULL)
2559 return ppc64_elf_section_data (sec)->opd.adjust;
2560 return NULL;
2561 }
2562 \f
2563 /* Parameters for the qsort hook. */
2564 static asection *synthetic_opd;
2565 static bfd_boolean synthetic_relocatable;
2566
2567 /* qsort comparison function for ppc64_elf_get_synthetic_symtab. */
2568
2569 static int
2570 compare_symbols (const void *ap, const void *bp)
2571 {
2572 const asymbol *a = * (const asymbol **) ap;
2573 const asymbol *b = * (const asymbol **) bp;
2574
2575 /* Section symbols first. */
2576 if ((a->flags & BSF_SECTION_SYM) && !(b->flags & BSF_SECTION_SYM))
2577 return -1;
2578 if (!(a->flags & BSF_SECTION_SYM) && (b->flags & BSF_SECTION_SYM))
2579 return 1;
2580
2581 /* then .opd symbols. */
2582 if (a->section == synthetic_opd && b->section != synthetic_opd)
2583 return -1;
2584 if (a->section != synthetic_opd && b->section == synthetic_opd)
2585 return 1;
2586
2587 /* then other code symbols. */
2588 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2589 == (SEC_CODE | SEC_ALLOC)
2590 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2591 != (SEC_CODE | SEC_ALLOC))
2592 return -1;
2593
2594 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2595 != (SEC_CODE | SEC_ALLOC)
2596 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2597 == (SEC_CODE | SEC_ALLOC))
2598 return 1;
2599
2600 if (synthetic_relocatable)
2601 {
2602 if (a->section->id < b->section->id)
2603 return -1;
2604
2605 if (a->section->id > b->section->id)
2606 return 1;
2607 }
2608
2609 if (a->value + a->section->vma < b->value + b->section->vma)
2610 return -1;
2611
2612 if (a->value + a->section->vma > b->value + b->section->vma)
2613 return 1;
2614
2615 return 0;
2616 }
2617
2618 /* Search SYMS for a symbol of the given VALUE. */
2619
2620 static asymbol *
2621 sym_exists_at (asymbol **syms, long lo, long hi, int id, bfd_vma value)
2622 {
2623 long mid;
2624
2625 if (id == -1)
2626 {
2627 while (lo < hi)
2628 {
2629 mid = (lo + hi) >> 1;
2630 if (syms[mid]->value + syms[mid]->section->vma < value)
2631 lo = mid + 1;
2632 else if (syms[mid]->value + syms[mid]->section->vma > value)
2633 hi = mid;
2634 else
2635 return syms[mid];
2636 }
2637 }
2638 else
2639 {
2640 while (lo < hi)
2641 {
2642 mid = (lo + hi) >> 1;
2643 if (syms[mid]->section->id < id)
2644 lo = mid + 1;
2645 else if (syms[mid]->section->id > id)
2646 hi = mid;
2647 else if (syms[mid]->value < value)
2648 lo = mid + 1;
2649 else if (syms[mid]->value > value)
2650 hi = mid;
2651 else
2652 return syms[mid];
2653 }
2654 }
2655 return NULL;
2656 }
2657
2658 /* Create synthetic symbols, effectively restoring "dot-symbol" function
2659 entry syms. */
2660
2661 static long
2662 ppc64_elf_get_synthetic_symtab (bfd *abfd,
2663 long static_count, asymbol **static_syms,
2664 long dyn_count, asymbol **dyn_syms,
2665 asymbol **ret)
2666 {
2667 asymbol *s;
2668 long i;
2669 long count;
2670 char *names;
2671 long symcount, codesecsym, codesecsymend, secsymend, opdsymend;
2672 asection *opd;
2673 bfd_boolean relocatable = (abfd->flags & (EXEC_P | DYNAMIC)) == 0;
2674 asymbol **syms;
2675
2676 *ret = NULL;
2677
2678 opd = bfd_get_section_by_name (abfd, ".opd");
2679 if (opd == NULL)
2680 return 0;
2681
2682 symcount = static_count;
2683 if (!relocatable)
2684 symcount += dyn_count;
2685 if (symcount == 0)
2686 return 0;
2687
2688 syms = bfd_malloc ((symcount + 1) * sizeof (*syms));
2689 if (syms == NULL)
2690 return -1;
2691
2692 if (!relocatable && static_count != 0 && dyn_count != 0)
2693 {
2694 /* Use both symbol tables. */
2695 memcpy (syms, static_syms, static_count * sizeof (*syms));
2696 memcpy (syms + static_count, dyn_syms, (dyn_count + 1) * sizeof (*syms));
2697 }
2698 else if (!relocatable && static_count == 0)
2699 memcpy (syms, dyn_syms, (symcount + 1) * sizeof (*syms));
2700 else
2701 memcpy (syms, static_syms, (symcount + 1) * sizeof (*syms));
2702
2703 synthetic_opd = opd;
2704 synthetic_relocatable = relocatable;
2705 qsort (syms, symcount, sizeof (*syms), compare_symbols);
2706
2707 if (!relocatable && symcount > 1)
2708 {
2709 long j;
2710 /* Trim duplicate syms, since we may have merged the normal and
2711 dynamic symbols. Actually, we only care about syms that have
2712 different values, so trim any with the same value. */
2713 for (i = 1, j = 1; i < symcount; ++i)
2714 if (syms[i - 1]->value + syms[i - 1]->section->vma
2715 != syms[i]->value + syms[i]->section->vma)
2716 syms[j++] = syms[i];
2717 symcount = j;
2718 }
2719
2720 i = 0;
2721 if (syms[i]->section == opd)
2722 ++i;
2723 codesecsym = i;
2724
2725 for (; i < symcount; ++i)
2726 if (((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2727 != (SEC_CODE | SEC_ALLOC))
2728 || (syms[i]->flags & BSF_SECTION_SYM) == 0)
2729 break;
2730 codesecsymend = i;
2731
2732 for (; i < symcount; ++i)
2733 if ((syms[i]->flags & BSF_SECTION_SYM) == 0)
2734 break;
2735 secsymend = i;
2736
2737 for (; i < symcount; ++i)
2738 if (syms[i]->section != opd)
2739 break;
2740 opdsymend = i;
2741
2742 for (; i < symcount; ++i)
2743 if ((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2744 != (SEC_CODE | SEC_ALLOC))
2745 break;
2746 symcount = i;
2747
2748 count = 0;
2749 if (opdsymend == secsymend)
2750 goto done;
2751
2752 if (relocatable)
2753 {
2754 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
2755 arelent *r;
2756 size_t size;
2757 long relcount;
2758
2759 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
2760 relcount = (opd->flags & SEC_RELOC) ? opd->reloc_count : 0;
2761 if (relcount == 0)
2762 goto done;
2763
2764 if (!(*slurp_relocs) (abfd, opd, static_syms, FALSE))
2765 {
2766 count = -1;
2767 goto done;
2768 }
2769
2770 size = 0;
2771 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
2772 {
2773 asymbol *sym;
2774
2775 while (r < opd->relocation + relcount
2776 && r->address < syms[i]->value + opd->vma)
2777 ++r;
2778
2779 if (r == opd->relocation + relcount)
2780 break;
2781
2782 if (r->address != syms[i]->value + opd->vma)
2783 continue;
2784
2785 if (r->howto->type != R_PPC64_ADDR64)
2786 continue;
2787
2788 sym = *r->sym_ptr_ptr;
2789 if (!sym_exists_at (syms, opdsymend, symcount,
2790 sym->section->id, sym->value + r->addend))
2791 {
2792 ++count;
2793 size += sizeof (asymbol);
2794 size += strlen (syms[i]->name) + 2;
2795 }
2796 }
2797
2798 s = *ret = bfd_malloc (size);
2799 if (s == NULL)
2800 {
2801 count = -1;
2802 goto done;
2803 }
2804
2805 names = (char *) (s + count);
2806
2807 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
2808 {
2809 asymbol *sym;
2810
2811 while (r < opd->relocation + relcount
2812 && r->address < syms[i]->value + opd->vma)
2813 ++r;
2814
2815 if (r == opd->relocation + relcount)
2816 break;
2817
2818 if (r->address != syms[i]->value + opd->vma)
2819 continue;
2820
2821 if (r->howto->type != R_PPC64_ADDR64)
2822 continue;
2823
2824 sym = *r->sym_ptr_ptr;
2825 if (!sym_exists_at (syms, opdsymend, symcount,
2826 sym->section->id, sym->value + r->addend))
2827 {
2828 size_t len;
2829
2830 *s = *syms[i];
2831 s->section = sym->section;
2832 s->value = sym->value + r->addend;
2833 s->name = names;
2834 *names++ = '.';
2835 len = strlen (syms[i]->name);
2836 memcpy (names, syms[i]->name, len + 1);
2837 names += len + 1;
2838 s++;
2839 }
2840 }
2841 }
2842 else
2843 {
2844 bfd_byte *contents;
2845 size_t size;
2846
2847 if (!bfd_malloc_and_get_section (abfd, opd, &contents))
2848 {
2849 if (contents)
2850 {
2851 free_contents_and_exit:
2852 free (contents);
2853 }
2854 count = -1;
2855 goto done;
2856 }
2857
2858 size = 0;
2859 for (i = secsymend; i < opdsymend; ++i)
2860 {
2861 bfd_vma ent;
2862
2863 ent = bfd_get_64 (abfd, contents + syms[i]->value);
2864 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
2865 {
2866 ++count;
2867 size += sizeof (asymbol);
2868 size += strlen (syms[i]->name) + 2;
2869 }
2870 }
2871
2872 s = *ret = bfd_malloc (size);
2873 if (s == NULL)
2874 goto free_contents_and_exit;
2875
2876 names = (char *) (s + count);
2877
2878 for (i = secsymend; i < opdsymend; ++i)
2879 {
2880 bfd_vma ent;
2881
2882 ent = bfd_get_64 (abfd, contents + syms[i]->value);
2883 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
2884 {
2885 long lo, hi;
2886 size_t len;
2887 asection *sec = abfd->sections;
2888
2889 *s = *syms[i];
2890 lo = codesecsym;
2891 hi = codesecsymend;
2892 while (lo < hi)
2893 {
2894 long mid = (lo + hi) >> 1;
2895 if (syms[mid]->section->vma < ent)
2896 lo = mid + 1;
2897 else if (syms[mid]->section->vma > ent)
2898 hi = mid;
2899 else
2900 {
2901 sec = syms[mid]->section;
2902 break;
2903 }
2904 }
2905
2906 if (lo >= hi && lo > codesecsym)
2907 sec = syms[lo - 1]->section;
2908
2909 for (; sec != NULL; sec = sec->next)
2910 {
2911 if (sec->vma > ent)
2912 break;
2913 if ((sec->flags & SEC_ALLOC) == 0
2914 || (sec->flags & SEC_LOAD) == 0)
2915 break;
2916 if ((sec->flags & SEC_CODE) != 0)
2917 s->section = sec;
2918 }
2919 s->value = ent - s->section->vma;
2920 s->name = names;
2921 *names++ = '.';
2922 len = strlen (syms[i]->name);
2923 memcpy (names, syms[i]->name, len + 1);
2924 names += len + 1;
2925 s++;
2926 }
2927 }
2928 free (contents);
2929 }
2930
2931 done:
2932 free (syms);
2933 return count;
2934 }
2935 \f
2936 /* The following functions are specific to the ELF linker, while
2937 functions above are used generally. Those named ppc64_elf_* are
2938 called by the main ELF linker code. They appear in this file more
2939 or less in the order in which they are called. eg.
2940 ppc64_elf_check_relocs is called early in the link process,
2941 ppc64_elf_finish_dynamic_sections is one of the last functions
2942 called.
2943
2944 PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that
2945 functions have both a function code symbol and a function descriptor
2946 symbol. A call to foo in a relocatable object file looks like:
2947
2948 . .text
2949 . x:
2950 . bl .foo
2951 . nop
2952
2953 The function definition in another object file might be:
2954
2955 . .section .opd
2956 . foo: .quad .foo
2957 . .quad .TOC.@tocbase
2958 . .quad 0
2959 .
2960 . .text
2961 . .foo: blr
2962
2963 When the linker resolves the call during a static link, the branch
2964 unsurprisingly just goes to .foo and the .opd information is unused.
2965 If the function definition is in a shared library, things are a little
2966 different: The call goes via a plt call stub, the opd information gets
2967 copied to the plt, and the linker patches the nop.
2968
2969 . x:
2970 . bl .foo_stub
2971 . ld 2,40(1)
2972 .
2973 .
2974 . .foo_stub:
2975 . addis 12,2,Lfoo@toc@ha # in practice, the call stub
2976 . addi 12,12,Lfoo@toc@l # is slightly optimized, but
2977 . std 2,40(1) # this is the general idea
2978 . ld 11,0(12)
2979 . ld 2,8(12)
2980 . mtctr 11
2981 . ld 11,16(12)
2982 . bctr
2983 .
2984 . .section .plt
2985 . Lfoo: reloc (R_PPC64_JMP_SLOT, foo)
2986
2987 The "reloc ()" notation is supposed to indicate that the linker emits
2988 an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd
2989 copying.
2990
2991 What are the difficulties here? Well, firstly, the relocations
2992 examined by the linker in check_relocs are against the function code
2993 sym .foo, while the dynamic relocation in the plt is emitted against
2994 the function descriptor symbol, foo. Somewhere along the line, we need
2995 to carefully copy dynamic link information from one symbol to the other.
2996 Secondly, the generic part of the elf linker will make .foo a dynamic
2997 symbol as is normal for most other backends. We need foo dynamic
2998 instead, at least for an application final link. However, when
2999 creating a shared library containing foo, we need to have both symbols
3000 dynamic so that references to .foo are satisfied during the early
3001 stages of linking. Otherwise the linker might decide to pull in a
3002 definition from some other object, eg. a static library.
3003
3004 Update: As of August 2004, we support a new convention. Function
3005 calls may use the function descriptor symbol, ie. "bl foo". This
3006 behaves exactly as "bl .foo". */
3007
3008 /* The linker needs to keep track of the number of relocs that it
3009 decides to copy as dynamic relocs in check_relocs for each symbol.
3010 This is so that it can later discard them if they are found to be
3011 unnecessary. We store the information in a field extending the
3012 regular ELF linker hash table. */
3013
3014 struct ppc_dyn_relocs
3015 {
3016 struct ppc_dyn_relocs *next;
3017
3018 /* The input section of the reloc. */
3019 asection *sec;
3020
3021 /* Total number of relocs copied for the input section. */
3022 bfd_size_type count;
3023
3024 /* Number of pc-relative relocs copied for the input section. */
3025 bfd_size_type pc_count;
3026 };
3027
3028 /* Track GOT entries needed for a given symbol. We might need more
3029 than one got entry per symbol. */
3030 struct got_entry
3031 {
3032 struct got_entry *next;
3033
3034 /* The symbol addend that we'll be placing in the GOT. */
3035 bfd_vma addend;
3036
3037 /* Unlike other ELF targets, we use separate GOT entries for the same
3038 symbol referenced from different input files. This is to support
3039 automatic multiple TOC/GOT sections, where the TOC base can vary
3040 from one input file to another.
3041
3042 Point to the BFD owning this GOT entry. */
3043 bfd *owner;
3044
3045 /* Zero for non-tls entries, or TLS_TLS and one of TLS_GD, TLS_LD,
3046 TLS_TPREL or TLS_DTPREL for tls entries. */
3047 char tls_type;
3048
3049 /* Reference count until size_dynamic_sections, GOT offset thereafter. */
3050 union
3051 {
3052 bfd_signed_vma refcount;
3053 bfd_vma offset;
3054 } got;
3055 };
3056
3057 /* The same for PLT. */
3058 struct plt_entry
3059 {
3060 struct plt_entry *next;
3061
3062 bfd_vma addend;
3063
3064 union
3065 {
3066 bfd_signed_vma refcount;
3067 bfd_vma offset;
3068 } plt;
3069 };
3070
3071 /* Of those relocs that might be copied as dynamic relocs, this macro
3072 selects those that must be copied when linking a shared library,
3073 even when the symbol is local. */
3074
3075 #define MUST_BE_DYN_RELOC(RTYPE) \
3076 ((RTYPE) != R_PPC64_REL32 \
3077 && (RTYPE) != R_PPC64_REL64 \
3078 && (RTYPE) != R_PPC64_REL30)
3079
3080 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
3081 copying dynamic variables from a shared lib into an app's dynbss
3082 section, and instead use a dynamic relocation to point into the
3083 shared lib. With code that gcc generates, it's vital that this be
3084 enabled; In the PowerPC64 ABI, the address of a function is actually
3085 the address of a function descriptor, which resides in the .opd
3086 section. gcc uses the descriptor directly rather than going via the
3087 GOT as some other ABI's do, which means that initialized function
3088 pointers must reference the descriptor. Thus, a function pointer
3089 initialized to the address of a function in a shared library will
3090 either require a copy reloc, or a dynamic reloc. Using a copy reloc
3091 redefines the function descriptor symbol to point to the copy. This
3092 presents a problem as a plt entry for that function is also
3093 initialized from the function descriptor symbol and the copy reloc
3094 may not be initialized first. */
3095 #define ELIMINATE_COPY_RELOCS 1
3096
3097 /* Section name for stubs is the associated section name plus this
3098 string. */
3099 #define STUB_SUFFIX ".stub"
3100
3101 /* Linker stubs.
3102 ppc_stub_long_branch:
3103 Used when a 14 bit branch (or even a 24 bit branch) can't reach its
3104 destination, but a 24 bit branch in a stub section will reach.
3105 . b dest
3106
3107 ppc_stub_plt_branch:
3108 Similar to the above, but a 24 bit branch in the stub section won't
3109 reach its destination.
3110 . addis %r12,%r2,xxx@toc@ha
3111 . ld %r11,xxx@toc@l(%r12)
3112 . mtctr %r11
3113 . bctr
3114
3115 ppc_stub_plt_call:
3116 Used to call a function in a shared library. If it so happens that
3117 the plt entry referenced crosses a 64k boundary, then an extra
3118 "addis %r12,%r12,1" will be inserted before the load at xxx+8 or
3119 xxx+16 as appropriate.
3120 . addis %r12,%r2,xxx@toc@ha
3121 . std %r2,40(%r1)
3122 . ld %r11,xxx+0@toc@l(%r12)
3123 . ld %r2,xxx+8@toc@l(%r12)
3124 . mtctr %r11
3125 . ld %r11,xxx+16@toc@l(%r12)
3126 . bctr
3127
3128 ppc_stub_long_branch and ppc_stub_plt_branch may also have additional
3129 code to adjust the value and save r2 to support multiple toc sections.
3130 A ppc_stub_long_branch with an r2 offset looks like:
3131 . std %r2,40(%r1)
3132 . addis %r2,%r2,off@ha
3133 . addi %r2,%r2,off@l
3134 . b dest
3135
3136 A ppc_stub_plt_branch with an r2 offset looks like:
3137 . std %r2,40(%r1)
3138 . addis %r12,%r2,xxx@toc@ha
3139 . ld %r11,xxx@toc@l(%r12)
3140 . addis %r2,%r2,off@ha
3141 . addi %r2,%r2,off@l
3142 . mtctr %r11
3143 . bctr
3144 */
3145
3146 enum ppc_stub_type {
3147 ppc_stub_none,
3148 ppc_stub_long_branch,
3149 ppc_stub_long_branch_r2off,
3150 ppc_stub_plt_branch,
3151 ppc_stub_plt_branch_r2off,
3152 ppc_stub_plt_call
3153 };
3154
3155 struct ppc_stub_hash_entry {
3156
3157 /* Base hash table entry structure. */
3158 struct bfd_hash_entry root;
3159
3160 enum ppc_stub_type stub_type;
3161
3162 /* The stub section. */
3163 asection *stub_sec;
3164
3165 /* Offset within stub_sec of the beginning of this stub. */
3166 bfd_vma stub_offset;
3167
3168 /* Given the symbol's value and its section we can determine its final
3169 value when building the stubs (so the stub knows where to jump. */
3170 bfd_vma target_value;
3171 asection *target_section;
3172
3173 /* The symbol table entry, if any, that this was derived from. */
3174 struct ppc_link_hash_entry *h;
3175
3176 /* And the reloc addend that this was derived from. */
3177 bfd_vma addend;
3178
3179 /* Where this stub is being called from, or, in the case of combined
3180 stub sections, the first input section in the group. */
3181 asection *id_sec;
3182 };
3183
3184 struct ppc_branch_hash_entry {
3185
3186 /* Base hash table entry structure. */
3187 struct bfd_hash_entry root;
3188
3189 /* Offset within .branch_lt. */
3190 unsigned int offset;
3191
3192 /* Generation marker. */
3193 unsigned int iter;
3194 };
3195
3196 struct ppc_link_hash_entry
3197 {
3198 struct elf_link_hash_entry elf;
3199
3200 /* A pointer to the most recently used stub hash entry against this
3201 symbol. */
3202 struct ppc_stub_hash_entry *stub_cache;
3203
3204 /* Track dynamic relocs copied for this symbol. */
3205 struct ppc_dyn_relocs *dyn_relocs;
3206
3207 /* Link between function code and descriptor symbols. */
3208 struct ppc_link_hash_entry *oh;
3209
3210 /* Flag function code and descriptor symbols. */
3211 unsigned int is_func:1;
3212 unsigned int is_func_descriptor:1;
3213 unsigned int fake:1;
3214
3215 /* Whether global opd/toc sym has been adjusted or not.
3216 After ppc64_elf_edit_opd/ppc64_elf_edit_toc has run, this flag
3217 should be set for all globals defined in any opd/toc section. */
3218 unsigned int adjust_done:1;
3219
3220 /* Set if we twiddled this symbol to weak at some stage. */
3221 unsigned int was_undefined:1;
3222
3223 /* Contexts in which symbol is used in the GOT (or TOC).
3224 TLS_GD .. TLS_EXPLICIT bits are or'd into the mask as the
3225 corresponding relocs are encountered during check_relocs.
3226 tls_optimize clears TLS_GD .. TLS_TPREL when optimizing to
3227 indicate the corresponding GOT entry type is not needed.
3228 tls_optimize may also set TLS_TPRELGD when a GD reloc turns into
3229 a TPREL one. We use a separate flag rather than setting TPREL
3230 just for convenience in distinguishing the two cases. */
3231 #define TLS_GD 1 /* GD reloc. */
3232 #define TLS_LD 2 /* LD reloc. */
3233 #define TLS_TPREL 4 /* TPREL reloc, => IE. */
3234 #define TLS_DTPREL 8 /* DTPREL reloc, => LD. */
3235 #define TLS_TLS 16 /* Any TLS reloc. */
3236 #define TLS_EXPLICIT 32 /* Marks TOC section TLS relocs. */
3237 #define TLS_TPRELGD 64 /* TPREL reloc resulting from GD->IE. */
3238 char tls_mask;
3239 };
3240
3241 /* ppc64 ELF linker hash table. */
3242
3243 struct ppc_link_hash_table
3244 {
3245 struct elf_link_hash_table elf;
3246
3247 /* The stub hash table. */
3248 struct bfd_hash_table stub_hash_table;
3249
3250 /* Another hash table for plt_branch stubs. */
3251 struct bfd_hash_table branch_hash_table;
3252
3253 /* Linker stub bfd. */
3254 bfd *stub_bfd;
3255
3256 /* Linker call-backs. */
3257 asection * (*add_stub_section) (const char *, asection *);
3258 void (*layout_sections_again) (void);
3259
3260 /* Array to keep track of which stub sections have been created, and
3261 information on stub grouping. */
3262 struct map_stub {
3263 /* This is the section to which stubs in the group will be attached. */
3264 asection *link_sec;
3265 /* The stub section. */
3266 asection *stub_sec;
3267 /* Along with elf_gp, specifies the TOC pointer used in this group. */
3268 bfd_vma toc_off;
3269 } *stub_group;
3270
3271 /* Temp used when calculating TOC pointers. */
3272 bfd_vma toc_curr;
3273
3274 /* Highest input section id. */
3275 int top_id;
3276
3277 /* Highest output section index. */
3278 int top_index;
3279
3280 /* List of input sections for each output section. */
3281 asection **input_list;
3282
3283 /* Short-cuts to get to dynamic linker sections. */
3284 asection *got;
3285 asection *plt;
3286 asection *relplt;
3287 asection *dynbss;
3288 asection *relbss;
3289 asection *glink;
3290 asection *sfpr;
3291 asection *brlt;
3292 asection *relbrlt;
3293
3294 /* Shortcut to .__tls_get_addr and __tls_get_addr. */
3295 struct ppc_link_hash_entry *tls_get_addr;
3296 struct ppc_link_hash_entry *tls_get_addr_fd;
3297
3298 /* Statistics. */
3299 unsigned long stub_count[ppc_stub_plt_call];
3300
3301 /* Number of stubs against global syms. */
3302 unsigned long stub_globals;
3303
3304 /* Set if we should emit symbols for stubs. */
3305 unsigned int emit_stub_syms:1;
3306
3307 /* Support for multiple toc sections. */
3308 unsigned int no_multi_toc:1;
3309 unsigned int multi_toc_needed:1;
3310
3311 /* Set on error. */
3312 unsigned int stub_error:1;
3313
3314 /* Flag set when small branches are detected. Used to
3315 select suitable defaults for the stub group size. */
3316 unsigned int has_14bit_branch:1;
3317
3318 /* Temp used by ppc64_elf_check_directives. */
3319 unsigned int twiddled_syms:1;
3320
3321 /* Incremented every time we size stubs. */
3322 unsigned int stub_iteration;
3323
3324 /* Small local sym to section mapping cache. */
3325 struct sym_sec_cache sym_sec;
3326 };
3327
3328 /* Rename some of the generic section flags to better document how they
3329 are used here. */
3330 #define has_toc_reloc has_gp_reloc
3331 #define makes_toc_func_call need_finalize_relax
3332 #define call_check_in_progress reloc_done
3333
3334 /* Get the ppc64 ELF linker hash table from a link_info structure. */
3335
3336 #define ppc_hash_table(p) \
3337 ((struct ppc_link_hash_table *) ((p)->hash))
3338
3339 #define ppc_stub_hash_lookup(table, string, create, copy) \
3340 ((struct ppc_stub_hash_entry *) \
3341 bfd_hash_lookup ((table), (string), (create), (copy)))
3342
3343 #define ppc_branch_hash_lookup(table, string, create, copy) \
3344 ((struct ppc_branch_hash_entry *) \
3345 bfd_hash_lookup ((table), (string), (create), (copy)))
3346
3347 /* Create an entry in the stub hash table. */
3348
3349 static struct bfd_hash_entry *
3350 stub_hash_newfunc (struct bfd_hash_entry *entry,
3351 struct bfd_hash_table *table,
3352 const char *string)
3353 {
3354 /* Allocate the structure if it has not already been allocated by a
3355 subclass. */
3356 if (entry == NULL)
3357 {
3358 entry = bfd_hash_allocate (table, sizeof (struct ppc_stub_hash_entry));
3359 if (entry == NULL)
3360 return entry;
3361 }
3362
3363 /* Call the allocation method of the superclass. */
3364 entry = bfd_hash_newfunc (entry, table, string);
3365 if (entry != NULL)
3366 {
3367 struct ppc_stub_hash_entry *eh;
3368
3369 /* Initialize the local fields. */
3370 eh = (struct ppc_stub_hash_entry *) entry;
3371 eh->stub_type = ppc_stub_none;
3372 eh->stub_sec = NULL;
3373 eh->stub_offset = 0;
3374 eh->target_value = 0;
3375 eh->target_section = NULL;
3376 eh->h = NULL;
3377 eh->id_sec = NULL;
3378 }
3379
3380 return entry;
3381 }
3382
3383 /* Create an entry in the branch hash table. */
3384
3385 static struct bfd_hash_entry *
3386 branch_hash_newfunc (struct bfd_hash_entry *entry,
3387 struct bfd_hash_table *table,
3388 const char *string)
3389 {
3390 /* Allocate the structure if it has not already been allocated by a
3391 subclass. */
3392 if (entry == NULL)
3393 {
3394 entry = bfd_hash_allocate (table, sizeof (struct ppc_branch_hash_entry));
3395 if (entry == NULL)
3396 return entry;
3397 }
3398
3399 /* Call the allocation method of the superclass. */
3400 entry = bfd_hash_newfunc (entry, table, string);
3401 if (entry != NULL)
3402 {
3403 struct ppc_branch_hash_entry *eh;
3404
3405 /* Initialize the local fields. */
3406 eh = (struct ppc_branch_hash_entry *) entry;
3407 eh->offset = 0;
3408 eh->iter = 0;
3409 }
3410
3411 return entry;
3412 }
3413
3414 /* Create an entry in a ppc64 ELF linker hash table. */
3415
3416 static struct bfd_hash_entry *
3417 link_hash_newfunc (struct bfd_hash_entry *entry,
3418 struct bfd_hash_table *table,
3419 const char *string)
3420 {
3421 /* Allocate the structure if it has not already been allocated by a
3422 subclass. */
3423 if (entry == NULL)
3424 {
3425 entry = bfd_hash_allocate (table, sizeof (struct ppc_link_hash_entry));
3426 if (entry == NULL)
3427 return entry;
3428 }
3429
3430 /* Call the allocation method of the superclass. */
3431 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
3432 if (entry != NULL)
3433 {
3434 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) entry;
3435
3436 memset (&eh->stub_cache, 0,
3437 (sizeof (struct ppc_link_hash_entry)
3438 - offsetof (struct ppc_link_hash_entry, stub_cache)));
3439 }
3440
3441 return entry;
3442 }
3443
3444 /* Create a ppc64 ELF linker hash table. */
3445
3446 static struct bfd_link_hash_table *
3447 ppc64_elf_link_hash_table_create (bfd *abfd)
3448 {
3449 struct ppc_link_hash_table *htab;
3450 bfd_size_type amt = sizeof (struct ppc_link_hash_table);
3451
3452 htab = bfd_zmalloc (amt);
3453 if (htab == NULL)
3454 return NULL;
3455
3456 if (! _bfd_elf_link_hash_table_init (&htab->elf, abfd, link_hash_newfunc))
3457 {
3458 free (htab);
3459 return NULL;
3460 }
3461
3462 /* Init the stub hash table too. */
3463 if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc))
3464 return NULL;
3465
3466 /* And the branch hash table. */
3467 if (!bfd_hash_table_init (&htab->branch_hash_table, branch_hash_newfunc))
3468 return NULL;
3469
3470 /* Initializing two fields of the union is just cosmetic. We really
3471 only care about glist, but when compiled on a 32-bit host the
3472 bfd_vma fields are larger. Setting the bfd_vma to zero makes
3473 debugger inspection of these fields look nicer. */
3474 htab->elf.init_refcount.refcount = 0;
3475 htab->elf.init_refcount.glist = NULL;
3476 htab->elf.init_offset.offset = 0;
3477 htab->elf.init_offset.glist = NULL;
3478
3479 return &htab->elf.root;
3480 }
3481
3482 /* Free the derived linker hash table. */
3483
3484 static void
3485 ppc64_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
3486 {
3487 struct ppc_link_hash_table *ret = (struct ppc_link_hash_table *) hash;
3488
3489 bfd_hash_table_free (&ret->stub_hash_table);
3490 bfd_hash_table_free (&ret->branch_hash_table);
3491 _bfd_generic_link_hash_table_free (hash);
3492 }
3493
3494 /* Satisfy the ELF linker by filling in some fields in our fake bfd. */
3495
3496 void
3497 ppc64_elf_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
3498 {
3499 struct ppc_link_hash_table *htab;
3500
3501 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS64;
3502
3503 /* Always hook our dynamic sections into the first bfd, which is the
3504 linker created stub bfd. This ensures that the GOT header is at
3505 the start of the output TOC section. */
3506 htab = ppc_hash_table (info);
3507 htab->stub_bfd = abfd;
3508 htab->elf.dynobj = abfd;
3509 }
3510
3511 /* Build a name for an entry in the stub hash table. */
3512
3513 static char *
3514 ppc_stub_name (const asection *input_section,
3515 const asection *sym_sec,
3516 const struct ppc_link_hash_entry *h,
3517 const Elf_Internal_Rela *rel)
3518 {
3519 char *stub_name;
3520 bfd_size_type len;
3521
3522 /* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31
3523 offsets from a sym as a branch target? In fact, we could
3524 probably assume the addend is always zero. */
3525 BFD_ASSERT (((int) rel->r_addend & 0xffffffff) == rel->r_addend);
3526
3527 if (h)
3528 {
3529 len = 8 + 1 + strlen (h->elf.root.root.string) + 1 + 8 + 1;
3530 stub_name = bfd_malloc (len);
3531 if (stub_name != NULL)
3532 {
3533 sprintf (stub_name, "%08x.%s+%x",
3534 input_section->id & 0xffffffff,
3535 h->elf.root.root.string,
3536 (int) rel->r_addend & 0xffffffff);
3537 }
3538 }
3539 else
3540 {
3541 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
3542 stub_name = bfd_malloc (len);
3543 if (stub_name != NULL)
3544 {
3545 sprintf (stub_name, "%08x.%x:%x+%x",
3546 input_section->id & 0xffffffff,
3547 sym_sec->id & 0xffffffff,
3548 (int) ELF64_R_SYM (rel->r_info) & 0xffffffff,
3549 (int) rel->r_addend & 0xffffffff);
3550 }
3551 }
3552 if (stub_name[len - 2] == '+' && stub_name[len - 1] == '0')
3553 stub_name[len - 2] = 0;
3554 return stub_name;
3555 }
3556
3557 /* Look up an entry in the stub hash. Stub entries are cached because
3558 creating the stub name takes a bit of time. */
3559
3560 static struct ppc_stub_hash_entry *
3561 ppc_get_stub_entry (const asection *input_section,
3562 const asection *sym_sec,
3563 struct ppc_link_hash_entry *h,
3564 const Elf_Internal_Rela *rel,
3565 struct ppc_link_hash_table *htab)
3566 {
3567 struct ppc_stub_hash_entry *stub_entry;
3568 const asection *id_sec;
3569
3570 /* If this input section is part of a group of sections sharing one
3571 stub section, then use the id of the first section in the group.
3572 Stub names need to include a section id, as there may well be
3573 more than one stub used to reach say, printf, and we need to
3574 distinguish between them. */
3575 id_sec = htab->stub_group[input_section->id].link_sec;
3576
3577 if (h != NULL && h->stub_cache != NULL
3578 && h->stub_cache->h == h
3579 && h->stub_cache->id_sec == id_sec)
3580 {
3581 stub_entry = h->stub_cache;
3582 }
3583 else
3584 {
3585 char *stub_name;
3586
3587 stub_name = ppc_stub_name (id_sec, sym_sec, h, rel);
3588 if (stub_name == NULL)
3589 return NULL;
3590
3591 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
3592 stub_name, FALSE, FALSE);
3593 if (h != NULL)
3594 h->stub_cache = stub_entry;
3595
3596 free (stub_name);
3597 }
3598
3599 return stub_entry;
3600 }
3601
3602 /* Add a new stub entry to the stub hash. Not all fields of the new
3603 stub entry are initialised. */
3604
3605 static struct ppc_stub_hash_entry *
3606 ppc_add_stub (const char *stub_name,
3607 asection *section,
3608 struct ppc_link_hash_table *htab)
3609 {
3610 asection *link_sec;
3611 asection *stub_sec;
3612 struct ppc_stub_hash_entry *stub_entry;
3613
3614 link_sec = htab->stub_group[section->id].link_sec;
3615 stub_sec = htab->stub_group[section->id].stub_sec;
3616 if (stub_sec == NULL)
3617 {
3618 stub_sec = htab->stub_group[link_sec->id].stub_sec;
3619 if (stub_sec == NULL)
3620 {
3621 size_t namelen;
3622 bfd_size_type len;
3623 char *s_name;
3624
3625 namelen = strlen (link_sec->name);
3626 len = namelen + sizeof (STUB_SUFFIX);
3627 s_name = bfd_alloc (htab->stub_bfd, len);
3628 if (s_name == NULL)
3629 return NULL;
3630
3631 memcpy (s_name, link_sec->name, namelen);
3632 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3633 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
3634 if (stub_sec == NULL)
3635 return NULL;
3636 htab->stub_group[link_sec->id].stub_sec = stub_sec;
3637 }
3638 htab->stub_group[section->id].stub_sec = stub_sec;
3639 }
3640
3641 /* Enter this entry into the linker stub hash table. */
3642 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3643 TRUE, FALSE);
3644 if (stub_entry == NULL)
3645 {
3646 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
3647 section->owner, stub_name);
3648 return NULL;
3649 }
3650
3651 stub_entry->stub_sec = stub_sec;
3652 stub_entry->stub_offset = 0;
3653 stub_entry->id_sec = link_sec;
3654 return stub_entry;
3655 }
3656
3657 /* Create sections for linker generated code. */
3658
3659 static bfd_boolean
3660 create_linkage_sections (bfd *dynobj, struct bfd_link_info *info)
3661 {
3662 struct ppc_link_hash_table *htab;
3663 flagword flags;
3664
3665 htab = ppc_hash_table (info);
3666
3667 /* Create .sfpr for code to save and restore fp regs. */
3668 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
3669 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3670 htab->sfpr = bfd_make_section_anyway (dynobj, ".sfpr");
3671 if (htab->sfpr == NULL
3672 || ! bfd_set_section_flags (dynobj, htab->sfpr, flags)
3673 || ! bfd_set_section_alignment (dynobj, htab->sfpr, 2))
3674 return FALSE;
3675
3676 /* Create .glink for lazy dynamic linking support. */
3677 htab->glink = bfd_make_section_anyway (dynobj, ".glink");
3678 if (htab->glink == NULL
3679 || ! bfd_set_section_flags (dynobj, htab->glink, flags)
3680 || ! bfd_set_section_alignment (dynobj, htab->glink, 2))
3681 return FALSE;
3682
3683 /* Create .branch_lt for plt_branch stubs. */
3684 flags = (SEC_ALLOC | SEC_LOAD
3685 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3686 htab->brlt = bfd_make_section_anyway (dynobj, ".branch_lt");
3687 if (htab->brlt == NULL
3688 || ! bfd_set_section_flags (dynobj, htab->brlt, flags)
3689 || ! bfd_set_section_alignment (dynobj, htab->brlt, 3))
3690 return FALSE;
3691
3692 if (info->shared || info->emitrelocations)
3693 {
3694 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
3695 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3696 htab->relbrlt = bfd_make_section_anyway (dynobj, ".rela.branch_lt");
3697 if (!htab->relbrlt
3698 || ! bfd_set_section_flags (dynobj, htab->relbrlt, flags)
3699 || ! bfd_set_section_alignment (dynobj, htab->relbrlt, 3))
3700 return FALSE;
3701 }
3702 return TRUE;
3703 }
3704
3705 /* Create .got and .rela.got sections in ABFD, and .got in dynobj if
3706 not already done. */
3707
3708 static bfd_boolean
3709 create_got_section (bfd *abfd, struct bfd_link_info *info)
3710 {
3711 asection *got, *relgot;
3712 flagword flags;
3713 struct ppc_link_hash_table *htab = ppc_hash_table (info);
3714
3715 if (!htab->got)
3716 {
3717 if (! _bfd_elf_create_got_section (htab->elf.dynobj, info))
3718 return FALSE;
3719
3720 htab->got = bfd_get_section_by_name (htab->elf.dynobj, ".got");
3721 if (!htab->got)
3722 abort ();
3723 }
3724
3725 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3726 | SEC_LINKER_CREATED);
3727
3728 got = bfd_make_section (abfd, ".got");
3729 if (!got
3730 || !bfd_set_section_flags (abfd, got, flags)
3731 || !bfd_set_section_alignment (abfd, got, 3))
3732 return FALSE;
3733
3734 relgot = bfd_make_section (abfd, ".rela.got");
3735 if (!relgot
3736 || ! bfd_set_section_flags (abfd, relgot, flags | SEC_READONLY)
3737 || ! bfd_set_section_alignment (abfd, relgot, 3))
3738 return FALSE;
3739
3740 ppc64_elf_tdata (abfd)->got = got;
3741 ppc64_elf_tdata (abfd)->relgot = relgot;
3742 return TRUE;
3743 }
3744
3745 /* Create the dynamic sections, and set up shortcuts. */
3746
3747 static bfd_boolean
3748 ppc64_elf_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3749 {
3750 struct ppc_link_hash_table *htab;
3751
3752 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3753 return FALSE;
3754
3755 htab = ppc_hash_table (info);
3756 if (!htab->got)
3757 htab->got = bfd_get_section_by_name (dynobj, ".got");
3758 htab->plt = bfd_get_section_by_name (dynobj, ".plt");
3759 htab->relplt = bfd_get_section_by_name (dynobj, ".rela.plt");
3760 htab->dynbss = bfd_get_section_by_name (dynobj, ".dynbss");
3761 if (!info->shared)
3762 htab->relbss = bfd_get_section_by_name (dynobj, ".rela.bss");
3763
3764 if (!htab->got || !htab->plt || !htab->relplt || !htab->dynbss
3765 || (!info->shared && !htab->relbss))
3766 abort ();
3767
3768 return TRUE;
3769 }
3770
3771 /* Merge PLT info on FROM with that on TO. */
3772
3773 static void
3774 move_plt_plist (struct ppc_link_hash_entry *from,
3775 struct ppc_link_hash_entry *to)
3776 {
3777 if (from->elf.plt.plist != NULL)
3778 {
3779 if (to->elf.plt.plist != NULL)
3780 {
3781 struct plt_entry **entp;
3782 struct plt_entry *ent;
3783
3784 for (entp = &from->elf.plt.plist; (ent = *entp) != NULL; )
3785 {
3786 struct plt_entry *dent;
3787
3788 for (dent = to->elf.plt.plist; dent != NULL; dent = dent->next)
3789 if (dent->addend == ent->addend)
3790 {
3791 dent->plt.refcount += ent->plt.refcount;
3792 *entp = ent->next;
3793 break;
3794 }
3795 if (dent == NULL)
3796 entp = &ent->next;
3797 }
3798 *entp = to->elf.plt.plist;
3799 }
3800
3801 to->elf.plt.plist = from->elf.plt.plist;
3802 from->elf.plt.plist = NULL;
3803 }
3804 }
3805
3806 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3807
3808 static void
3809 ppc64_elf_copy_indirect_symbol
3810 (const struct elf_backend_data *bed ATTRIBUTE_UNUSED,
3811 struct elf_link_hash_entry *dir,
3812 struct elf_link_hash_entry *ind)
3813 {
3814 struct ppc_link_hash_entry *edir, *eind;
3815
3816 edir = (struct ppc_link_hash_entry *) dir;
3817 eind = (struct ppc_link_hash_entry *) ind;
3818
3819 /* Copy over any dynamic relocs we may have on the indirect sym. */
3820 if (eind->dyn_relocs != NULL)
3821 {
3822 if (edir->dyn_relocs != NULL)
3823 {
3824 struct ppc_dyn_relocs **pp;
3825 struct ppc_dyn_relocs *p;
3826
3827 if (eind->elf.root.type == bfd_link_hash_indirect)
3828 abort ();
3829
3830 /* Add reloc counts against the weak sym to the strong sym
3831 list. Merge any entries against the same section. */
3832 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
3833 {
3834 struct ppc_dyn_relocs *q;
3835
3836 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3837 if (q->sec == p->sec)
3838 {
3839 q->pc_count += p->pc_count;
3840 q->count += p->count;
3841 *pp = p->next;
3842 break;
3843 }
3844 if (q == NULL)
3845 pp = &p->next;
3846 }
3847 *pp = edir->dyn_relocs;
3848 }
3849
3850 edir->dyn_relocs = eind->dyn_relocs;
3851 eind->dyn_relocs = NULL;
3852 }
3853
3854 edir->is_func |= eind->is_func;
3855 edir->is_func_descriptor |= eind->is_func_descriptor;
3856 edir->tls_mask |= eind->tls_mask;
3857
3858 /* If called to transfer flags for a weakdef during processing
3859 of elf_adjust_dynamic_symbol, don't copy NON_GOT_REF.
3860 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
3861 if (!(ELIMINATE_COPY_RELOCS
3862 && eind->elf.root.type != bfd_link_hash_indirect
3863 && edir->elf.dynamic_adjusted))
3864 edir->elf.non_got_ref |= eind->elf.non_got_ref;
3865
3866 edir->elf.ref_dynamic |= eind->elf.ref_dynamic;
3867 edir->elf.ref_regular |= eind->elf.ref_regular;
3868 edir->elf.ref_regular_nonweak |= eind->elf.ref_regular_nonweak;
3869 edir->elf.needs_plt |= eind->elf.needs_plt;
3870
3871 /* If we were called to copy over info for a weak sym, that's all. */
3872 if (eind->elf.root.type != bfd_link_hash_indirect)
3873 return;
3874
3875 /* Copy over got entries that we may have already seen to the
3876 symbol which just became indirect. */
3877 if (eind->elf.got.glist != NULL)
3878 {
3879 if (edir->elf.got.glist != NULL)
3880 {
3881 struct got_entry **entp;
3882 struct got_entry *ent;
3883
3884 for (entp = &eind->elf.got.glist; (ent = *entp) != NULL; )
3885 {
3886 struct got_entry *dent;
3887
3888 for (dent = edir->elf.got.glist; dent != NULL; dent = dent->next)
3889 if (dent->addend == ent->addend
3890 && dent->owner == ent->owner
3891 && dent->tls_type == ent->tls_type)
3892 {
3893 dent->got.refcount += ent->got.refcount;
3894 *entp = ent->next;
3895 break;
3896 }
3897 if (dent == NULL)
3898 entp = &ent->next;
3899 }
3900 *entp = edir->elf.got.glist;
3901 }
3902
3903 edir->elf.got.glist = eind->elf.got.glist;
3904 eind->elf.got.glist = NULL;
3905 }
3906
3907 /* And plt entries. */
3908 move_plt_plist (eind, edir);
3909
3910 if (edir->elf.dynindx == -1)
3911 {
3912 edir->elf.dynindx = eind->elf.dynindx;
3913 edir->elf.dynstr_index = eind->elf.dynstr_index;
3914 eind->elf.dynindx = -1;
3915 eind->elf.dynstr_index = 0;
3916 }
3917 else
3918 BFD_ASSERT (eind->elf.dynindx == -1);
3919 }
3920
3921 /* Find the function descriptor hash entry from the given function code
3922 hash entry FH. Link the entries via their OH fields. */
3923
3924 static struct ppc_link_hash_entry *
3925 get_fdh (struct ppc_link_hash_entry *fh, struct ppc_link_hash_table *htab)
3926 {
3927 struct ppc_link_hash_entry *fdh = fh->oh;
3928
3929 if (fdh == NULL)
3930 {
3931 const char *fd_name = fh->elf.root.root.string + 1;
3932
3933 fdh = (struct ppc_link_hash_entry *)
3934 elf_link_hash_lookup (&htab->elf, fd_name, FALSE, FALSE, FALSE);
3935 if (fdh != NULL)
3936 {
3937 fdh->is_func_descriptor = 1;
3938 fdh->oh = fh;
3939 fh->is_func = 1;
3940 fh->oh = fdh;
3941 }
3942 }
3943
3944 return fdh;
3945 }
3946
3947 /* Make a fake function descriptor sym for the code sym FH. */
3948
3949 static struct ppc_link_hash_entry *
3950 make_fdh (struct bfd_link_info *info,
3951 struct ppc_link_hash_entry *fh)
3952 {
3953 bfd *abfd;
3954 asymbol *newsym;
3955 struct bfd_link_hash_entry *bh;
3956 struct ppc_link_hash_entry *fdh;
3957
3958 abfd = fh->elf.root.u.undef.abfd;
3959 newsym = bfd_make_empty_symbol (abfd);
3960 newsym->name = fh->elf.root.root.string + 1;
3961 newsym->section = bfd_und_section_ptr;
3962 newsym->value = 0;
3963 newsym->flags = BSF_WEAK;
3964
3965 bh = NULL;
3966 if (!_bfd_generic_link_add_one_symbol (info, abfd, newsym->name,
3967 newsym->flags, newsym->section,
3968 newsym->value, NULL, FALSE, FALSE,
3969 &bh))
3970 return NULL;
3971
3972 fdh = (struct ppc_link_hash_entry *) bh;
3973 fdh->elf.non_elf = 0;
3974 fdh->fake = 1;
3975 fdh->is_func_descriptor = 1;
3976 fdh->oh = fh;
3977 fh->is_func = 1;
3978 fh->oh = fdh;
3979 return fdh;
3980 }
3981
3982 /* Hacks to support old ABI code.
3983 When making function calls, old ABI code references function entry
3984 points (dot symbols), while new ABI code references the function
3985 descriptor symbol. We need to make any combination of reference and
3986 definition work together, without breaking archive linking.
3987
3988 For a defined function "foo" and an undefined call to "bar":
3989 An old object defines "foo" and ".foo", references ".bar" (possibly
3990 "bar" too).
3991 A new object defines "foo" and references "bar".
3992
3993 A new object thus has no problem with its undefined symbols being
3994 satisfied by definitions in an old object. On the other hand, the
3995 old object won't have ".bar" satisfied by a new object. */
3996
3997 /* Fix function descriptor symbols defined in .opd sections to be
3998 function type. */
3999
4000 static bfd_boolean
4001 ppc64_elf_add_symbol_hook (bfd *ibfd ATTRIBUTE_UNUSED,
4002 struct bfd_link_info *info ATTRIBUTE_UNUSED,
4003 Elf_Internal_Sym *isym,
4004 const char **name ATTRIBUTE_UNUSED,
4005 flagword *flags ATTRIBUTE_UNUSED,
4006 asection **sec,
4007 bfd_vma *value ATTRIBUTE_UNUSED)
4008 {
4009 if (*sec != NULL
4010 && strcmp (bfd_get_section_name (ibfd, *sec), ".opd") == 0)
4011 isym->st_info = ELF_ST_INFO (ELF_ST_BIND (isym->st_info), STT_FUNC);
4012 return TRUE;
4013 }
4014
4015 /* This function makes an old ABI object reference to ".bar" cause the
4016 inclusion of a new ABI object archive that defines "bar".
4017 NAME is a symbol defined in an archive. Return a symbol in the hash
4018 table that might be satisfied by the archive symbols. */
4019
4020 static struct elf_link_hash_entry *
4021 ppc64_elf_archive_symbol_lookup (bfd *abfd,
4022 struct bfd_link_info *info,
4023 const char *name)
4024 {
4025 struct elf_link_hash_entry *h;
4026 char *dot_name;
4027 size_t len;
4028
4029 h = _bfd_elf_archive_symbol_lookup (abfd, info, name);
4030 if (h != NULL
4031 /* Don't return this sym if it is a fake function descriptor
4032 created by add_symbol_adjust. */
4033 && !(h->root.type == bfd_link_hash_undefweak
4034 && ((struct ppc_link_hash_entry *) h)->fake))
4035 return h;
4036
4037 if (name[0] == '.')
4038 return h;
4039
4040 len = strlen (name);
4041 dot_name = bfd_alloc (abfd, len + 2);
4042 if (dot_name == NULL)
4043 return (struct elf_link_hash_entry *) 0 - 1;
4044 dot_name[0] = '.';
4045 memcpy (dot_name + 1, name, len + 1);
4046 h = _bfd_elf_archive_symbol_lookup (abfd, info, dot_name);
4047 bfd_release (abfd, dot_name);
4048 return h;
4049 }
4050
4051 /* This function satisfies all old ABI object references to ".bar" if a
4052 new ABI object defines "bar". Well, at least, undefined dot symbols
4053 are made weak. This stops later archive searches from including an
4054 object if we already have a function descriptor definition. It also
4055 prevents the linker complaining about undefined symbols.
4056 We also check and correct mismatched symbol visibility here. The
4057 most restrictive visibility of the function descriptor and the
4058 function entry symbol is used. */
4059
4060 struct add_symbol_adjust_data
4061 {
4062 struct bfd_link_info *info;
4063 bfd_boolean ok;
4064 };
4065
4066 static bfd_boolean
4067 add_symbol_adjust (struct elf_link_hash_entry *h, void *inf)
4068 {
4069 struct add_symbol_adjust_data *data;
4070 struct ppc_link_hash_table *htab;
4071 struct ppc_link_hash_entry *eh;
4072 struct ppc_link_hash_entry *fdh;
4073
4074 if (h->root.type == bfd_link_hash_indirect)
4075 return TRUE;
4076
4077 if (h->root.type == bfd_link_hash_warning)
4078 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4079
4080 if (h->root.root.string[0] != '.')
4081 return TRUE;
4082
4083 data = inf;
4084 htab = ppc_hash_table (data->info);
4085 eh = (struct ppc_link_hash_entry *) h;
4086 fdh = get_fdh (eh, htab);
4087 if (fdh == NULL
4088 && !data->info->relocatable
4089 && (eh->elf.root.type == bfd_link_hash_undefined
4090 || eh->elf.root.type == bfd_link_hash_undefweak)
4091 && eh->elf.ref_regular)
4092 {
4093 /* Make an undefweak function descriptor sym, which is enough to
4094 pull in an --as-needed shared lib, but won't cause link
4095 errors. Archives are handled elsewhere. */
4096 fdh = make_fdh (data->info, eh);
4097 if (fdh == NULL)
4098 data->ok = FALSE;
4099 else
4100 fdh->elf.ref_regular = 1;
4101 }
4102 else if (fdh != NULL
4103 && (fdh->elf.root.type == bfd_link_hash_defined
4104 || fdh->elf.root.type == bfd_link_hash_defweak))
4105 {
4106 unsigned entry_vis = ELF_ST_VISIBILITY (eh->elf.other) - 1;
4107 unsigned descr_vis = ELF_ST_VISIBILITY (fdh->elf.other) - 1;
4108 if (entry_vis < descr_vis)
4109 fdh->elf.other += entry_vis - descr_vis;
4110 else if (entry_vis > descr_vis)
4111 eh->elf.other += descr_vis - entry_vis;
4112
4113 if (eh->elf.root.type == bfd_link_hash_undefined)
4114 {
4115 eh->elf.root.type = bfd_link_hash_undefweak;
4116 eh->was_undefined = 1;
4117 htab->twiddled_syms = 1;
4118 }
4119 }
4120
4121 return TRUE;
4122 }
4123
4124 static bfd_boolean
4125 ppc64_elf_check_directives (bfd *abfd ATTRIBUTE_UNUSED,
4126 struct bfd_link_info *info)
4127 {
4128 struct ppc_link_hash_table *htab;
4129 struct add_symbol_adjust_data data;
4130
4131 htab = ppc_hash_table (info);
4132 if (!is_ppc64_elf_target (htab->elf.root.creator))
4133 return TRUE;
4134
4135 data.info = info;
4136 data.ok = TRUE;
4137 elf_link_hash_traverse (&htab->elf, add_symbol_adjust, &data);
4138
4139 /* We need to fix the undefs list for any syms we have twiddled to
4140 undef_weak. */
4141 if (htab->twiddled_syms)
4142 {
4143 bfd_link_repair_undef_list (&htab->elf.root);
4144 htab->twiddled_syms = 0;
4145 }
4146 return data.ok;
4147 }
4148
4149 static bfd_boolean
4150 update_local_sym_info (bfd *abfd, Elf_Internal_Shdr *symtab_hdr,
4151 unsigned long r_symndx, bfd_vma r_addend, int tls_type)
4152 {
4153 struct got_entry **local_got_ents = elf_local_got_ents (abfd);
4154 char *local_got_tls_masks;
4155
4156 if (local_got_ents == NULL)
4157 {
4158 bfd_size_type size = symtab_hdr->sh_info;
4159
4160 size *= sizeof (*local_got_ents) + sizeof (*local_got_tls_masks);
4161 local_got_ents = bfd_zalloc (abfd, size);
4162 if (local_got_ents == NULL)
4163 return FALSE;
4164 elf_local_got_ents (abfd) = local_got_ents;
4165 }
4166
4167 if ((tls_type & TLS_EXPLICIT) == 0)
4168 {
4169 struct got_entry *ent;
4170
4171 for (ent = local_got_ents[r_symndx]; ent != NULL; ent = ent->next)
4172 if (ent->addend == r_addend
4173 && ent->owner == abfd
4174 && ent->tls_type == tls_type)
4175 break;
4176 if (ent == NULL)
4177 {
4178 bfd_size_type amt = sizeof (*ent);
4179 ent = bfd_alloc (abfd, amt);
4180 if (ent == NULL)
4181 return FALSE;
4182 ent->next = local_got_ents[r_symndx];
4183 ent->addend = r_addend;
4184 ent->owner = abfd;
4185 ent->tls_type = tls_type;
4186 ent->got.refcount = 0;
4187 local_got_ents[r_symndx] = ent;
4188 }
4189 ent->got.refcount += 1;
4190 }
4191
4192 local_got_tls_masks = (char *) (local_got_ents + symtab_hdr->sh_info);
4193 local_got_tls_masks[r_symndx] |= tls_type;
4194 return TRUE;
4195 }
4196
4197 static bfd_boolean
4198 update_plt_info (bfd *abfd, struct ppc_link_hash_entry *eh, bfd_vma addend)
4199 {
4200 struct plt_entry *ent;
4201
4202 for (ent = eh->elf.plt.plist; ent != NULL; ent = ent->next)
4203 if (ent->addend == addend)
4204 break;
4205 if (ent == NULL)
4206 {
4207 bfd_size_type amt = sizeof (*ent);
4208 ent = bfd_alloc (abfd, amt);
4209 if (ent == NULL)
4210 return FALSE;
4211 ent->next = eh->elf.plt.plist;
4212 ent->addend = addend;
4213 ent->plt.refcount = 0;
4214 eh->elf.plt.plist = ent;
4215 }
4216 ent->plt.refcount += 1;
4217 eh->elf.needs_plt = 1;
4218 if (eh->elf.root.root.string[0] == '.'
4219 && eh->elf.root.root.string[1] != '\0')
4220 eh->is_func = 1;
4221 return TRUE;
4222 }
4223
4224 /* Look through the relocs for a section during the first phase, and
4225 calculate needed space in the global offset table, procedure
4226 linkage table, and dynamic reloc sections. */
4227
4228 static bfd_boolean
4229 ppc64_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
4230 asection *sec, const Elf_Internal_Rela *relocs)
4231 {
4232 struct ppc_link_hash_table *htab;
4233 Elf_Internal_Shdr *symtab_hdr;
4234 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
4235 const Elf_Internal_Rela *rel;
4236 const Elf_Internal_Rela *rel_end;
4237 asection *sreloc;
4238 asection **opd_sym_map;
4239
4240 if (info->relocatable)
4241 return TRUE;
4242
4243 /* Don't do anything special with non-loaded, non-alloced sections.
4244 In particular, any relocs in such sections should not affect GOT
4245 and PLT reference counting (ie. we don't allow them to create GOT
4246 or PLT entries), there's no possibility or desire to optimize TLS
4247 relocs, and there's not much point in propagating relocs to shared
4248 libs that the dynamic linker won't relocate. */
4249 if ((sec->flags & SEC_ALLOC) == 0)
4250 return TRUE;
4251
4252 htab = ppc_hash_table (info);
4253 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4254
4255 sym_hashes = elf_sym_hashes (abfd);
4256 sym_hashes_end = (sym_hashes
4257 + symtab_hdr->sh_size / sizeof (Elf64_External_Sym)
4258 - symtab_hdr->sh_info);
4259
4260 sreloc = NULL;
4261 opd_sym_map = NULL;
4262 if (strcmp (bfd_get_section_name (abfd, sec), ".opd") == 0)
4263 {
4264 /* Garbage collection needs some extra help with .opd sections.
4265 We don't want to necessarily keep everything referenced by
4266 relocs in .opd, as that would keep all functions. Instead,
4267 if we reference an .opd symbol (a function descriptor), we
4268 want to keep the function code symbol's section. This is
4269 easy for global symbols, but for local syms we need to keep
4270 information about the associated function section. Later, if
4271 edit_opd deletes entries, we'll use this array to adjust
4272 local syms in .opd. */
4273 union opd_info {
4274 asection *func_section;
4275 long entry_adjust;
4276 };
4277 bfd_size_type amt;
4278
4279 amt = sec->size * sizeof (union opd_info) / 8;
4280 opd_sym_map = bfd_zalloc (abfd, amt);
4281 if (opd_sym_map == NULL)
4282 return FALSE;
4283 ppc64_elf_section_data (sec)->opd.func_sec = opd_sym_map;
4284 }
4285
4286 if (htab->sfpr == NULL
4287 && !create_linkage_sections (htab->elf.dynobj, info))
4288 return FALSE;
4289
4290 rel_end = relocs + sec->reloc_count;
4291 for (rel = relocs; rel < rel_end; rel++)
4292 {
4293 unsigned long r_symndx;
4294 struct elf_link_hash_entry *h;
4295 enum elf_ppc64_reloc_type r_type;
4296 int tls_type = 0;
4297
4298 r_symndx = ELF64_R_SYM (rel->r_info);
4299 if (r_symndx < symtab_hdr->sh_info)
4300 h = NULL;
4301 else
4302 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4303
4304 r_type = ELF64_R_TYPE (rel->r_info);
4305 switch (r_type)
4306 {
4307 case R_PPC64_GOT_TLSLD16:
4308 case R_PPC64_GOT_TLSLD16_LO:
4309 case R_PPC64_GOT_TLSLD16_HI:
4310 case R_PPC64_GOT_TLSLD16_HA:
4311 ppc64_tlsld_got (abfd)->refcount += 1;
4312 tls_type = TLS_TLS | TLS_LD;
4313 goto dogottls;
4314
4315 case R_PPC64_GOT_TLSGD16:
4316 case R_PPC64_GOT_TLSGD16_LO:
4317 case R_PPC64_GOT_TLSGD16_HI:
4318 case R_PPC64_GOT_TLSGD16_HA:
4319 tls_type = TLS_TLS | TLS_GD;
4320 goto dogottls;
4321
4322 case R_PPC64_GOT_TPREL16_DS:
4323 case R_PPC64_GOT_TPREL16_LO_DS:
4324 case R_PPC64_GOT_TPREL16_HI:
4325 case R_PPC64_GOT_TPREL16_HA:
4326 if (info->shared)
4327 info->flags |= DF_STATIC_TLS;
4328 tls_type = TLS_TLS | TLS_TPREL;
4329 goto dogottls;
4330
4331 case R_PPC64_GOT_DTPREL16_DS:
4332 case R_PPC64_GOT_DTPREL16_LO_DS:
4333 case R_PPC64_GOT_DTPREL16_HI:
4334 case R_PPC64_GOT_DTPREL16_HA:
4335 tls_type = TLS_TLS | TLS_DTPREL;
4336 dogottls:
4337 sec->has_tls_reloc = 1;
4338 /* Fall thru */
4339
4340 case R_PPC64_GOT16:
4341 case R_PPC64_GOT16_DS:
4342 case R_PPC64_GOT16_HA:
4343 case R_PPC64_GOT16_HI:
4344 case R_PPC64_GOT16_LO:
4345 case R_PPC64_GOT16_LO_DS:
4346 /* This symbol requires a global offset table entry. */
4347 sec->has_toc_reloc = 1;
4348 if (ppc64_elf_tdata (abfd)->got == NULL
4349 && !create_got_section (abfd, info))
4350 return FALSE;
4351
4352 if (h != NULL)
4353 {
4354 struct ppc_link_hash_entry *eh;
4355 struct got_entry *ent;
4356
4357 eh = (struct ppc_link_hash_entry *) h;
4358 for (ent = eh->elf.got.glist; ent != NULL; ent = ent->next)
4359 if (ent->addend == rel->r_addend
4360 && ent->owner == abfd
4361 && ent->tls_type == tls_type)
4362 break;
4363 if (ent == NULL)
4364 {
4365 bfd_size_type amt = sizeof (*ent);
4366 ent = bfd_alloc (abfd, amt);
4367 if (ent == NULL)
4368 return FALSE;
4369 ent->next = eh->elf.got.glist;
4370 ent->addend = rel->r_addend;
4371 ent->owner = abfd;
4372 ent->tls_type = tls_type;
4373 ent->got.refcount = 0;
4374 eh->elf.got.glist = ent;
4375 }
4376 ent->got.refcount += 1;
4377 eh->tls_mask |= tls_type;
4378 }
4379 else
4380 /* This is a global offset table entry for a local symbol. */
4381 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4382 rel->r_addend, tls_type))
4383 return FALSE;
4384 break;
4385
4386 case R_PPC64_PLT16_HA:
4387 case R_PPC64_PLT16_HI:
4388 case R_PPC64_PLT16_LO:
4389 case R_PPC64_PLT32:
4390 case R_PPC64_PLT64:
4391 /* This symbol requires a procedure linkage table entry. We
4392 actually build the entry in adjust_dynamic_symbol,
4393 because this might be a case of linking PIC code without
4394 linking in any dynamic objects, in which case we don't
4395 need to generate a procedure linkage table after all. */
4396 if (h == NULL)
4397 {
4398 /* It does not make sense to have a procedure linkage
4399 table entry for a local symbol. */
4400 bfd_set_error (bfd_error_bad_value);
4401 return FALSE;
4402 }
4403 else
4404 if (!update_plt_info (abfd, (struct ppc_link_hash_entry *) h,
4405 rel->r_addend))
4406 return FALSE;
4407 break;
4408
4409 /* The following relocations don't need to propagate the
4410 relocation if linking a shared object since they are
4411 section relative. */
4412 case R_PPC64_SECTOFF:
4413 case R_PPC64_SECTOFF_LO:
4414 case R_PPC64_SECTOFF_HI:
4415 case R_PPC64_SECTOFF_HA:
4416 case R_PPC64_SECTOFF_DS:
4417 case R_PPC64_SECTOFF_LO_DS:
4418 case R_PPC64_DTPREL16:
4419 case R_PPC64_DTPREL16_LO:
4420 case R_PPC64_DTPREL16_HI:
4421 case R_PPC64_DTPREL16_HA:
4422 case R_PPC64_DTPREL16_DS:
4423 case R_PPC64_DTPREL16_LO_DS:
4424 case R_PPC64_DTPREL16_HIGHER:
4425 case R_PPC64_DTPREL16_HIGHERA:
4426 case R_PPC64_DTPREL16_HIGHEST:
4427 case R_PPC64_DTPREL16_HIGHESTA:
4428 break;
4429
4430 /* Nor do these. */
4431 case R_PPC64_TOC16:
4432 case R_PPC64_TOC16_LO:
4433 case R_PPC64_TOC16_HI:
4434 case R_PPC64_TOC16_HA:
4435 case R_PPC64_TOC16_DS:
4436 case R_PPC64_TOC16_LO_DS:
4437 sec->has_toc_reloc = 1;
4438 break;
4439
4440 /* This relocation describes the C++ object vtable hierarchy.
4441 Reconstruct it for later use during GC. */
4442 case R_PPC64_GNU_VTINHERIT:
4443 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
4444 return FALSE;
4445 break;
4446
4447 /* This relocation describes which C++ vtable entries are actually
4448 used. Record for later use during GC. */
4449 case R_PPC64_GNU_VTENTRY:
4450 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
4451 return FALSE;
4452 break;
4453
4454 case R_PPC64_REL14:
4455 case R_PPC64_REL14_BRTAKEN:
4456 case R_PPC64_REL14_BRNTAKEN:
4457 htab->has_14bit_branch = 1;
4458 /* Fall through. */
4459
4460 case R_PPC64_REL24:
4461 if (h != NULL)
4462 {
4463 /* We may need a .plt entry if the function this reloc
4464 refers to is in a shared lib. */
4465 if (!update_plt_info (abfd, (struct ppc_link_hash_entry *) h,
4466 rel->r_addend))
4467 return FALSE;
4468 if (h == &htab->tls_get_addr->elf
4469 || h == &htab->tls_get_addr_fd->elf)
4470 sec->has_tls_reloc = 1;
4471 else if (htab->tls_get_addr == NULL
4472 && !strncmp (h->root.root.string, ".__tls_get_addr", 15)
4473 && (h->root.root.string[15] == 0
4474 || h->root.root.string[15] == '@'))
4475 {
4476 htab->tls_get_addr = (struct ppc_link_hash_entry *) h;
4477 sec->has_tls_reloc = 1;
4478 }
4479 else if (htab->tls_get_addr_fd == NULL
4480 && !strncmp (h->root.root.string, "__tls_get_addr", 14)
4481 && (h->root.root.string[14] == 0
4482 || h->root.root.string[14] == '@'))
4483 {
4484 htab->tls_get_addr_fd = (struct ppc_link_hash_entry *) h;
4485 sec->has_tls_reloc = 1;
4486 }
4487 }
4488 break;
4489
4490 case R_PPC64_TPREL64:
4491 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_TPREL;
4492 if (info->shared)
4493 info->flags |= DF_STATIC_TLS;
4494 goto dotlstoc;
4495
4496 case R_PPC64_DTPMOD64:
4497 if (rel + 1 < rel_end
4498 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
4499 && rel[1].r_offset == rel->r_offset + 8)
4500 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_GD;
4501 else
4502 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_LD;
4503 goto dotlstoc;
4504
4505 case R_PPC64_DTPREL64:
4506 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_DTPREL;
4507 if (rel != relocs
4508 && rel[-1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPMOD64)
4509 && rel[-1].r_offset == rel->r_offset - 8)
4510 /* This is the second reloc of a dtpmod, dtprel pair.
4511 Don't mark with TLS_DTPREL. */
4512 goto dodyn;
4513
4514 dotlstoc:
4515 sec->has_tls_reloc = 1;
4516 if (h != NULL)
4517 {
4518 struct ppc_link_hash_entry *eh;
4519 eh = (struct ppc_link_hash_entry *) h;
4520 eh->tls_mask |= tls_type;
4521 }
4522 else
4523 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4524 rel->r_addend, tls_type))
4525 return FALSE;
4526
4527 if (ppc64_elf_section_data (sec)->t_symndx == NULL)
4528 {
4529 /* One extra to simplify get_tls_mask. */
4530 bfd_size_type amt = sec->size * sizeof (unsigned) / 8 + 1;
4531 ppc64_elf_section_data (sec)->t_symndx = bfd_zalloc (abfd, amt);
4532 if (ppc64_elf_section_data (sec)->t_symndx == NULL)
4533 return FALSE;
4534 }
4535 BFD_ASSERT (rel->r_offset % 8 == 0);
4536 ppc64_elf_section_data (sec)->t_symndx[rel->r_offset / 8] = r_symndx;
4537
4538 /* Mark the second slot of a GD or LD entry.
4539 -1 to indicate GD and -2 to indicate LD. */
4540 if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_GD))
4541 ppc64_elf_section_data (sec)->t_symndx[rel->r_offset / 8 + 1] = -1;
4542 else if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_LD))
4543 ppc64_elf_section_data (sec)->t_symndx[rel->r_offset / 8 + 1] = -2;
4544 goto dodyn;
4545
4546 case R_PPC64_TPREL16:
4547 case R_PPC64_TPREL16_LO:
4548 case R_PPC64_TPREL16_HI:
4549 case R_PPC64_TPREL16_HA:
4550 case R_PPC64_TPREL16_DS:
4551 case R_PPC64_TPREL16_LO_DS:
4552 case R_PPC64_TPREL16_HIGHER:
4553 case R_PPC64_TPREL16_HIGHERA:
4554 case R_PPC64_TPREL16_HIGHEST:
4555 case R_PPC64_TPREL16_HIGHESTA:
4556 if (info->shared)
4557 {
4558 info->flags |= DF_STATIC_TLS;
4559 goto dodyn;
4560 }
4561 break;
4562
4563 case R_PPC64_ADDR64:
4564 if (opd_sym_map != NULL
4565 && rel + 1 < rel_end
4566 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC)
4567 {
4568 if (h != NULL)
4569 {
4570 if (h->root.root.string[0] == '.'
4571 && h->root.root.string[1] != 0
4572 && get_fdh ((struct ppc_link_hash_entry *) h, htab))
4573 ;
4574 else
4575 ((struct ppc_link_hash_entry *) h)->is_func = 1;
4576 }
4577 else
4578 {
4579 asection *s;
4580
4581 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec, sec,
4582 r_symndx);
4583 if (s == NULL)
4584 return FALSE;
4585 else if (s != sec)
4586 opd_sym_map[rel->r_offset / 8] = s;
4587 }
4588 }
4589 /* Fall through. */
4590
4591 case R_PPC64_REL30:
4592 case R_PPC64_REL32:
4593 case R_PPC64_REL64:
4594 case R_PPC64_ADDR14:
4595 case R_PPC64_ADDR14_BRNTAKEN:
4596 case R_PPC64_ADDR14_BRTAKEN:
4597 case R_PPC64_ADDR16:
4598 case R_PPC64_ADDR16_DS:
4599 case R_PPC64_ADDR16_HA:
4600 case R_PPC64_ADDR16_HI:
4601 case R_PPC64_ADDR16_HIGHER:
4602 case R_PPC64_ADDR16_HIGHERA:
4603 case R_PPC64_ADDR16_HIGHEST:
4604 case R_PPC64_ADDR16_HIGHESTA:
4605 case R_PPC64_ADDR16_LO:
4606 case R_PPC64_ADDR16_LO_DS:
4607 case R_PPC64_ADDR24:
4608 case R_PPC64_ADDR32:
4609 case R_PPC64_UADDR16:
4610 case R_PPC64_UADDR32:
4611 case R_PPC64_UADDR64:
4612 case R_PPC64_TOC:
4613 if (h != NULL && !info->shared)
4614 /* We may need a copy reloc. */
4615 h->non_got_ref = 1;
4616
4617 /* Don't propagate .opd relocs. */
4618 if (NO_OPD_RELOCS && opd_sym_map != NULL)
4619 break;
4620
4621 /* If we are creating a shared library, and this is a reloc
4622 against a global symbol, or a non PC relative reloc
4623 against a local symbol, then we need to copy the reloc
4624 into the shared library. However, if we are linking with
4625 -Bsymbolic, we do not need to copy a reloc against a
4626 global symbol which is defined in an object we are
4627 including in the link (i.e., DEF_REGULAR is set). At
4628 this point we have not seen all the input files, so it is
4629 possible that DEF_REGULAR is not set now but will be set
4630 later (it is never cleared). In case of a weak definition,
4631 DEF_REGULAR may be cleared later by a strong definition in
4632 a shared library. We account for that possibility below by
4633 storing information in the dyn_relocs field of the hash
4634 table entry. A similar situation occurs when creating
4635 shared libraries and symbol visibility changes render the
4636 symbol local.
4637
4638 If on the other hand, we are creating an executable, we
4639 may need to keep relocations for symbols satisfied by a
4640 dynamic library if we manage to avoid copy relocs for the
4641 symbol. */
4642 dodyn:
4643 if ((info->shared
4644 && (MUST_BE_DYN_RELOC (r_type)
4645 || (h != NULL
4646 && (! info->symbolic
4647 || h->root.type == bfd_link_hash_defweak
4648 || !h->def_regular))))
4649 || (ELIMINATE_COPY_RELOCS
4650 && !info->shared
4651 && h != NULL
4652 && (h->root.type == bfd_link_hash_defweak
4653 || !h->def_regular)))
4654 {
4655 struct ppc_dyn_relocs *p;
4656 struct ppc_dyn_relocs **head;
4657
4658 /* We must copy these reloc types into the output file.
4659 Create a reloc section in dynobj and make room for
4660 this reloc. */
4661 if (sreloc == NULL)
4662 {
4663 const char *name;
4664 bfd *dynobj;
4665
4666 name = (bfd_elf_string_from_elf_section
4667 (abfd,
4668 elf_elfheader (abfd)->e_shstrndx,
4669 elf_section_data (sec)->rel_hdr.sh_name));
4670 if (name == NULL)
4671 return FALSE;
4672
4673 if (strncmp (name, ".rela", 5) != 0
4674 || strcmp (bfd_get_section_name (abfd, sec),
4675 name + 5) != 0)
4676 {
4677 (*_bfd_error_handler)
4678 (_("%B: bad relocation section name `%s\'"),
4679 abfd, name);
4680 bfd_set_error (bfd_error_bad_value);
4681 }
4682
4683 dynobj = htab->elf.dynobj;
4684 sreloc = bfd_get_section_by_name (dynobj, name);
4685 if (sreloc == NULL)
4686 {
4687 flagword flags;
4688
4689 sreloc = bfd_make_section (dynobj, name);
4690 flags = (SEC_HAS_CONTENTS | SEC_READONLY
4691 | SEC_IN_MEMORY | SEC_LINKER_CREATED
4692 | SEC_ALLOC | SEC_LOAD);
4693 if (sreloc == NULL
4694 || ! bfd_set_section_flags (dynobj, sreloc, flags)
4695 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
4696 return FALSE;
4697 }
4698 elf_section_data (sec)->sreloc = sreloc;
4699 }
4700
4701 /* If this is a global symbol, we count the number of
4702 relocations we need for this symbol. */
4703 if (h != NULL)
4704 {
4705 head = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
4706 }
4707 else
4708 {
4709 /* Track dynamic relocs needed for local syms too.
4710 We really need local syms available to do this
4711 easily. Oh well. */
4712
4713 asection *s;
4714 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
4715 sec, r_symndx);
4716 if (s == NULL)
4717 return FALSE;
4718
4719 head = ((struct ppc_dyn_relocs **)
4720 &elf_section_data (s)->local_dynrel);
4721 }
4722
4723 p = *head;
4724 if (p == NULL || p->sec != sec)
4725 {
4726 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
4727 if (p == NULL)
4728 return FALSE;
4729 p->next = *head;
4730 *head = p;
4731 p->sec = sec;
4732 p->count = 0;
4733 p->pc_count = 0;
4734 }
4735
4736 p->count += 1;
4737 if (!MUST_BE_DYN_RELOC (r_type))
4738 p->pc_count += 1;
4739 }
4740 break;
4741
4742 default:
4743 break;
4744 }
4745 }
4746
4747 return TRUE;
4748 }
4749
4750 /* OFFSET in OPD_SEC specifies a function descriptor. Return the address
4751 of the code entry point, and its section. */
4752
4753 static bfd_vma
4754 opd_entry_value (asection *opd_sec,
4755 bfd_vma offset,
4756 asection **code_sec,
4757 bfd_vma *code_off)
4758 {
4759 bfd *opd_bfd = opd_sec->owner;
4760 Elf_Internal_Rela *relocs;
4761 Elf_Internal_Rela *lo, *hi, *look;
4762 bfd_vma val;
4763
4764 /* No relocs implies we are linking a --just-symbols object. */
4765 if (opd_sec->reloc_count == 0)
4766 {
4767 bfd_vma val;
4768
4769 if (!bfd_get_section_contents (opd_bfd, opd_sec, &val, offset, 8))
4770 return (bfd_vma) -1;
4771
4772 if (code_sec != NULL)
4773 {
4774 asection *sec, *likely = NULL;
4775 for (sec = opd_bfd->sections; sec != NULL; sec = sec->next)
4776 if (sec->vma <= val
4777 && (sec->flags & SEC_LOAD) != 0
4778 && (sec->flags & SEC_ALLOC) != 0)
4779 likely = sec;
4780 if (likely != NULL)
4781 {
4782 *code_sec = likely;
4783 if (code_off != NULL)
4784 *code_off = val - likely->vma;
4785 }
4786 }
4787 return val;
4788 }
4789
4790 relocs = ppc64_elf_tdata (opd_bfd)->opd_relocs;
4791 if (relocs == NULL)
4792 relocs = _bfd_elf_link_read_relocs (opd_bfd, opd_sec, NULL, NULL, TRUE);
4793
4794 /* Go find the opd reloc at the sym address. */
4795 lo = relocs;
4796 BFD_ASSERT (lo != NULL);
4797 hi = lo + opd_sec->reloc_count - 1; /* ignore last reloc */
4798 val = (bfd_vma) -1;
4799 while (lo < hi)
4800 {
4801 look = lo + (hi - lo) / 2;
4802 if (look->r_offset < offset)
4803 lo = look + 1;
4804 else if (look->r_offset > offset)
4805 hi = look;
4806 else
4807 {
4808 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (opd_bfd)->symtab_hdr;
4809 if (ELF64_R_TYPE (look->r_info) == R_PPC64_ADDR64
4810 && ELF64_R_TYPE ((look + 1)->r_info) == R_PPC64_TOC)
4811 {
4812 unsigned long symndx = ELF64_R_SYM (look->r_info);
4813 asection *sec;
4814
4815 if (symndx < symtab_hdr->sh_info)
4816 {
4817 Elf_Internal_Sym *sym;
4818
4819 sym = (Elf_Internal_Sym *) symtab_hdr->contents;
4820 if (sym == NULL)
4821 {
4822 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
4823 symtab_hdr->sh_info,
4824 0, NULL, NULL, NULL);
4825 if (sym == NULL)
4826 break;
4827 symtab_hdr->contents = (bfd_byte *) sym;
4828 }
4829
4830 sym += symndx;
4831 val = sym->st_value;
4832 sec = NULL;
4833 if ((sym->st_shndx != SHN_UNDEF
4834 && sym->st_shndx < SHN_LORESERVE)
4835 || sym->st_shndx > SHN_HIRESERVE)
4836 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
4837 BFD_ASSERT ((sec->flags & SEC_MERGE) == 0);
4838 }
4839 else
4840 {
4841 struct elf_link_hash_entry **sym_hashes;
4842 struct elf_link_hash_entry *rh;
4843
4844 sym_hashes = elf_sym_hashes (opd_bfd);
4845 rh = sym_hashes[symndx - symtab_hdr->sh_info];
4846 while (rh->root.type == bfd_link_hash_indirect
4847 || rh->root.type == bfd_link_hash_warning)
4848 rh = ((struct elf_link_hash_entry *) rh->root.u.i.link);
4849 BFD_ASSERT (rh->root.type == bfd_link_hash_defined
4850 || rh->root.type == bfd_link_hash_defweak);
4851 val = rh->root.u.def.value;
4852 sec = rh->root.u.def.section;
4853 }
4854 val += look->r_addend;
4855 if (code_off != NULL)
4856 *code_off = val;
4857 if (code_sec != NULL)
4858 *code_sec = sec;
4859 if (sec != NULL && sec->output_section != NULL)
4860 val += sec->output_section->vma + sec->output_offset;
4861 }
4862 break;
4863 }
4864 }
4865
4866 return val;
4867 }
4868
4869 /* Return the section that should be marked against GC for a given
4870 relocation. */
4871
4872 static asection *
4873 ppc64_elf_gc_mark_hook (asection *sec,
4874 struct bfd_link_info *info,
4875 Elf_Internal_Rela *rel,
4876 struct elf_link_hash_entry *h,
4877 Elf_Internal_Sym *sym)
4878 {
4879 asection *rsec;
4880
4881 /* First mark all our entry sym sections. */
4882 if (info->gc_sym_list != NULL)
4883 {
4884 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4885 struct bfd_sym_chain *sym = info->gc_sym_list;
4886
4887 info->gc_sym_list = NULL;
4888 do
4889 {
4890 struct ppc_link_hash_entry *eh;
4891
4892 eh = (struct ppc_link_hash_entry *)
4893 elf_link_hash_lookup (&htab->elf, sym->name, FALSE, FALSE, FALSE);
4894 if (eh == NULL)
4895 continue;
4896 if (eh->elf.root.type != bfd_link_hash_defined
4897 && eh->elf.root.type != bfd_link_hash_defweak)
4898 continue;
4899
4900 if (eh->is_func_descriptor
4901 && (eh->oh->elf.root.type == bfd_link_hash_defined
4902 || eh->oh->elf.root.type == bfd_link_hash_defweak))
4903 rsec = eh->oh->elf.root.u.def.section;
4904 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
4905 && opd_entry_value (eh->elf.root.u.def.section,
4906 eh->elf.root.u.def.value,
4907 &rsec, NULL) != (bfd_vma) -1)
4908 ;
4909 else
4910 continue;
4911
4912 if (!rsec->gc_mark)
4913 _bfd_elf_gc_mark (info, rsec, ppc64_elf_gc_mark_hook);
4914
4915 rsec = eh->elf.root.u.def.section;
4916 if (!rsec->gc_mark)
4917 _bfd_elf_gc_mark (info, rsec, ppc64_elf_gc_mark_hook);
4918
4919 sym = sym->next;
4920 }
4921 while (sym != NULL);
4922 }
4923
4924 /* Syms return NULL if we're marking .opd, so we avoid marking all
4925 function sections, as all functions are referenced in .opd. */
4926 rsec = NULL;
4927 if (get_opd_info (sec) != NULL)
4928 return rsec;
4929
4930 if (h != NULL)
4931 {
4932 enum elf_ppc64_reloc_type r_type;
4933 struct ppc_link_hash_entry *eh;
4934
4935 r_type = ELF64_R_TYPE (rel->r_info);
4936 switch (r_type)
4937 {
4938 case R_PPC64_GNU_VTINHERIT:
4939 case R_PPC64_GNU_VTENTRY:
4940 break;
4941
4942 default:
4943 switch (h->root.type)
4944 {
4945 case bfd_link_hash_defined:
4946 case bfd_link_hash_defweak:
4947 eh = (struct ppc_link_hash_entry *) h;
4948 if (eh->oh != NULL
4949 && eh->oh->is_func_descriptor
4950 && (eh->oh->elf.root.type == bfd_link_hash_defined
4951 || eh->oh->elf.root.type == bfd_link_hash_defweak))
4952 eh = eh->oh;
4953
4954 /* Function descriptor syms cause the associated
4955 function code sym section to be marked. */
4956 if (eh->is_func_descriptor
4957 && (eh->oh->elf.root.type == bfd_link_hash_defined
4958 || eh->oh->elf.root.type == bfd_link_hash_defweak))
4959 {
4960 /* They also mark their opd section. */
4961 if (!eh->elf.root.u.def.section->gc_mark)
4962 _bfd_elf_gc_mark (info, eh->elf.root.u.def.section,
4963 ppc64_elf_gc_mark_hook);
4964
4965 rsec = eh->oh->elf.root.u.def.section;
4966 }
4967 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
4968 && opd_entry_value (eh->elf.root.u.def.section,
4969 eh->elf.root.u.def.value,
4970 &rsec, NULL) != (bfd_vma) -1)
4971 {
4972 if (!eh->elf.root.u.def.section->gc_mark)
4973 _bfd_elf_gc_mark (info, eh->elf.root.u.def.section,
4974 ppc64_elf_gc_mark_hook);
4975 }
4976 else
4977 rsec = h->root.u.def.section;
4978 break;
4979
4980 case bfd_link_hash_common:
4981 rsec = h->root.u.c.p->section;
4982 break;
4983
4984 default:
4985 break;
4986 }
4987 }
4988 }
4989 else
4990 {
4991 asection **opd_sym_section;
4992
4993 rsec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
4994 opd_sym_section = get_opd_info (rsec);
4995 if (opd_sym_section != NULL)
4996 {
4997 if (!rsec->gc_mark)
4998 _bfd_elf_gc_mark (info, rsec, ppc64_elf_gc_mark_hook);
4999
5000 rsec = opd_sym_section[sym->st_value / 8];
5001 }
5002 }
5003
5004 return rsec;
5005 }
5006
5007 /* Update the .got, .plt. and dynamic reloc reference counts for the
5008 section being removed. */
5009
5010 static bfd_boolean
5011 ppc64_elf_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
5012 asection *sec, const Elf_Internal_Rela *relocs)
5013 {
5014 struct ppc_link_hash_table *htab;
5015 Elf_Internal_Shdr *symtab_hdr;
5016 struct elf_link_hash_entry **sym_hashes;
5017 struct got_entry **local_got_ents;
5018 const Elf_Internal_Rela *rel, *relend;
5019
5020 if ((sec->flags & SEC_ALLOC) == 0)
5021 return TRUE;
5022
5023 elf_section_data (sec)->local_dynrel = NULL;
5024
5025 htab = ppc_hash_table (info);
5026 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5027 sym_hashes = elf_sym_hashes (abfd);
5028 local_got_ents = elf_local_got_ents (abfd);
5029
5030 relend = relocs + sec->reloc_count;
5031 for (rel = relocs; rel < relend; rel++)
5032 {
5033 unsigned long r_symndx;
5034 enum elf_ppc64_reloc_type r_type;
5035 struct elf_link_hash_entry *h = NULL;
5036 char tls_type = 0;
5037
5038 r_symndx = ELF64_R_SYM (rel->r_info);
5039 r_type = ELF64_R_TYPE (rel->r_info);
5040 if (r_symndx >= symtab_hdr->sh_info)
5041 {
5042 struct ppc_link_hash_entry *eh;
5043 struct ppc_dyn_relocs **pp;
5044 struct ppc_dyn_relocs *p;
5045
5046 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5047 while (h->root.type == bfd_link_hash_indirect
5048 || h->root.type == bfd_link_hash_warning)
5049 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5050 eh = (struct ppc_link_hash_entry *) h;
5051
5052 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
5053 if (p->sec == sec)
5054 {
5055 /* Everything must go for SEC. */
5056 *pp = p->next;
5057 break;
5058 }
5059 }
5060
5061 switch (r_type)
5062 {
5063 case R_PPC64_GOT_TLSLD16:
5064 case R_PPC64_GOT_TLSLD16_LO:
5065 case R_PPC64_GOT_TLSLD16_HI:
5066 case R_PPC64_GOT_TLSLD16_HA:
5067 ppc64_tlsld_got (abfd)->refcount -= 1;
5068 tls_type = TLS_TLS | TLS_LD;
5069 goto dogot;
5070
5071 case R_PPC64_GOT_TLSGD16:
5072 case R_PPC64_GOT_TLSGD16_LO:
5073 case R_PPC64_GOT_TLSGD16_HI:
5074 case R_PPC64_GOT_TLSGD16_HA:
5075 tls_type = TLS_TLS | TLS_GD;
5076 goto dogot;
5077
5078 case R_PPC64_GOT_TPREL16_DS:
5079 case R_PPC64_GOT_TPREL16_LO_DS:
5080 case R_PPC64_GOT_TPREL16_HI:
5081 case R_PPC64_GOT_TPREL16_HA:
5082 tls_type = TLS_TLS | TLS_TPREL;
5083 goto dogot;
5084
5085 case R_PPC64_GOT_DTPREL16_DS:
5086 case R_PPC64_GOT_DTPREL16_LO_DS:
5087 case R_PPC64_GOT_DTPREL16_HI:
5088 case R_PPC64_GOT_DTPREL16_HA:
5089 tls_type = TLS_TLS | TLS_DTPREL;
5090 goto dogot;
5091
5092 case R_PPC64_GOT16:
5093 case R_PPC64_GOT16_DS:
5094 case R_PPC64_GOT16_HA:
5095 case R_PPC64_GOT16_HI:
5096 case R_PPC64_GOT16_LO:
5097 case R_PPC64_GOT16_LO_DS:
5098 dogot:
5099 {
5100 struct got_entry *ent;
5101
5102 if (h != NULL)
5103 ent = h->got.glist;
5104 else
5105 ent = local_got_ents[r_symndx];
5106
5107 for (; ent != NULL; ent = ent->next)
5108 if (ent->addend == rel->r_addend
5109 && ent->owner == abfd
5110 && ent->tls_type == tls_type)
5111 break;
5112 if (ent == NULL)
5113 abort ();
5114 if (ent->got.refcount > 0)
5115 ent->got.refcount -= 1;
5116 }
5117 break;
5118
5119 case R_PPC64_PLT16_HA:
5120 case R_PPC64_PLT16_HI:
5121 case R_PPC64_PLT16_LO:
5122 case R_PPC64_PLT32:
5123 case R_PPC64_PLT64:
5124 case R_PPC64_REL14:
5125 case R_PPC64_REL14_BRNTAKEN:
5126 case R_PPC64_REL14_BRTAKEN:
5127 case R_PPC64_REL24:
5128 if (h != NULL)
5129 {
5130 struct plt_entry *ent;
5131
5132 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
5133 if (ent->addend == rel->r_addend)
5134 break;
5135 if (ent == NULL)
5136 abort ();
5137 if (ent->plt.refcount > 0)
5138 ent->plt.refcount -= 1;
5139 }
5140 break;
5141
5142 default:
5143 break;
5144 }
5145 }
5146 return TRUE;
5147 }
5148
5149 /* The maximum size of .sfpr. */
5150 #define SFPR_MAX (218*4)
5151
5152 struct sfpr_def_parms
5153 {
5154 const char name[12];
5155 unsigned char lo, hi;
5156 bfd_byte * (*write_ent) (bfd *, bfd_byte *, int);
5157 bfd_byte * (*write_tail) (bfd *, bfd_byte *, int);
5158 };
5159
5160 /* Auto-generate _save*, _rest* functions in .sfpr. */
5161
5162 static unsigned int
5163 sfpr_define (struct bfd_link_info *info, const struct sfpr_def_parms *parm)
5164 {
5165 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5166 unsigned int i;
5167 size_t len = strlen (parm->name);
5168 bfd_boolean writing = FALSE;
5169 char sym[16];
5170
5171 memcpy (sym, parm->name, len);
5172 sym[len + 2] = 0;
5173
5174 for (i = parm->lo; i <= parm->hi; i++)
5175 {
5176 struct elf_link_hash_entry *h;
5177
5178 sym[len + 0] = i / 10 + '0';
5179 sym[len + 1] = i % 10 + '0';
5180 h = elf_link_hash_lookup (&htab->elf, sym, FALSE, FALSE, TRUE);
5181 if (h != NULL
5182 && !h->def_regular)
5183 {
5184 h->root.type = bfd_link_hash_defined;
5185 h->root.u.def.section = htab->sfpr;
5186 h->root.u.def.value = htab->sfpr->size;
5187 h->type = STT_FUNC;
5188 h->def_regular = 1;
5189 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
5190 writing = TRUE;
5191 if (htab->sfpr->contents == NULL)
5192 {
5193 htab->sfpr->contents = bfd_alloc (htab->elf.dynobj, SFPR_MAX);
5194 if (htab->sfpr->contents == NULL)
5195 return FALSE;
5196 }
5197 }
5198 if (writing)
5199 {
5200 bfd_byte *p = htab->sfpr->contents + htab->sfpr->size;
5201 if (i != parm->hi)
5202 p = (*parm->write_ent) (htab->elf.dynobj, p, i);
5203 else
5204 p = (*parm->write_tail) (htab->elf.dynobj, p, i);
5205 htab->sfpr->size = p - htab->sfpr->contents;
5206 }
5207 }
5208
5209 return TRUE;
5210 }
5211
5212 static bfd_byte *
5213 savegpr0 (bfd *abfd, bfd_byte *p, int r)
5214 {
5215 bfd_put_32 (abfd, STD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5216 return p + 4;
5217 }
5218
5219 static bfd_byte *
5220 savegpr0_tail (bfd *abfd, bfd_byte *p, int r)
5221 {
5222 p = savegpr0 (abfd, p, r);
5223 bfd_put_32 (abfd, STD_R0_0R1 + 16, p);
5224 p = p + 4;
5225 bfd_put_32 (abfd, BLR, p);
5226 return p + 4;
5227 }
5228
5229 static bfd_byte *
5230 restgpr0 (bfd *abfd, bfd_byte *p, int r)
5231 {
5232 bfd_put_32 (abfd, LD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5233 return p + 4;
5234 }
5235
5236 static bfd_byte *
5237 restgpr0_tail (bfd *abfd, bfd_byte *p, int r)
5238 {
5239 bfd_put_32 (abfd, LD_R0_0R1 + 16, p);
5240 p = p + 4;
5241 p = restgpr0 (abfd, p, r);
5242 bfd_put_32 (abfd, MTLR_R0, p);
5243 p = p + 4;
5244 if (r == 29)
5245 {
5246 p = restgpr0 (abfd, p, 30);
5247 p = restgpr0 (abfd, p, 31);
5248 }
5249 bfd_put_32 (abfd, BLR, p);
5250 return p + 4;
5251 }
5252
5253 static bfd_byte *
5254 savegpr1 (bfd *abfd, bfd_byte *p, int r)
5255 {
5256 bfd_put_32 (abfd, STD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5257 return p + 4;
5258 }
5259
5260 static bfd_byte *
5261 savegpr1_tail (bfd *abfd, bfd_byte *p, int r)
5262 {
5263 p = savegpr1 (abfd, p, r);
5264 bfd_put_32 (abfd, BLR, p);
5265 return p + 4;
5266 }
5267
5268 static bfd_byte *
5269 restgpr1 (bfd *abfd, bfd_byte *p, int r)
5270 {
5271 bfd_put_32 (abfd, LD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5272 return p + 4;
5273 }
5274
5275 static bfd_byte *
5276 restgpr1_tail (bfd *abfd, bfd_byte *p, int r)
5277 {
5278 p = restgpr1 (abfd, p, r);
5279 bfd_put_32 (abfd, BLR, p);
5280 return p + 4;
5281 }
5282
5283 static bfd_byte *
5284 savefpr (bfd *abfd, bfd_byte *p, int r)
5285 {
5286 bfd_put_32 (abfd, STFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5287 return p + 4;
5288 }
5289
5290 static bfd_byte *
5291 savefpr0_tail (bfd *abfd, bfd_byte *p, int r)
5292 {
5293 p = savefpr (abfd, p, r);
5294 bfd_put_32 (abfd, STD_R0_0R1 + 16, p);
5295 p = p + 4;
5296 bfd_put_32 (abfd, BLR, p);
5297 return p + 4;
5298 }
5299
5300 static bfd_byte *
5301 restfpr (bfd *abfd, bfd_byte *p, int r)
5302 {
5303 bfd_put_32 (abfd, LFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5304 return p + 4;
5305 }
5306
5307 static bfd_byte *
5308 restfpr0_tail (bfd *abfd, bfd_byte *p, int r)
5309 {
5310 bfd_put_32 (abfd, LD_R0_0R1 + 16, p);
5311 p = p + 4;
5312 p = restfpr (abfd, p, r);
5313 bfd_put_32 (abfd, MTLR_R0, p);
5314 p = p + 4;
5315 if (r == 29)
5316 {
5317 p = restfpr (abfd, p, 30);
5318 p = restfpr (abfd, p, 31);
5319 }
5320 bfd_put_32 (abfd, BLR, p);
5321 return p + 4;
5322 }
5323
5324 static bfd_byte *
5325 savefpr1_tail (bfd *abfd, bfd_byte *p, int r)
5326 {
5327 p = savefpr (abfd, p, r);
5328 bfd_put_32 (abfd, BLR, p);
5329 return p + 4;
5330 }
5331
5332 static bfd_byte *
5333 restfpr1_tail (bfd *abfd, bfd_byte *p, int r)
5334 {
5335 p = restfpr (abfd, p, r);
5336 bfd_put_32 (abfd, BLR, p);
5337 return p + 4;
5338 }
5339
5340 static bfd_byte *
5341 savevr (bfd *abfd, bfd_byte *p, int r)
5342 {
5343 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
5344 p = p + 4;
5345 bfd_put_32 (abfd, STVX_VR0_R12_R0 + (r << 21), p);
5346 return p + 4;
5347 }
5348
5349 static bfd_byte *
5350 savevr_tail (bfd *abfd, bfd_byte *p, int r)
5351 {
5352 p = savevr (abfd, p, r);
5353 bfd_put_32 (abfd, BLR, p);
5354 return p + 4;
5355 }
5356
5357 static bfd_byte *
5358 restvr (bfd *abfd, bfd_byte *p, int r)
5359 {
5360 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
5361 p = p + 4;
5362 bfd_put_32 (abfd, LVX_VR0_R12_R0 + (r << 21), p);
5363 return p + 4;
5364 }
5365
5366 static bfd_byte *
5367 restvr_tail (bfd *abfd, bfd_byte *p, int r)
5368 {
5369 p = restvr (abfd, p, r);
5370 bfd_put_32 (abfd, BLR, p);
5371 return p + 4;
5372 }
5373
5374 /* Called via elf_link_hash_traverse to transfer dynamic linking
5375 information on function code symbol entries to their corresponding
5376 function descriptor symbol entries. */
5377
5378 static bfd_boolean
5379 func_desc_adjust (struct elf_link_hash_entry *h, void *inf)
5380 {
5381 struct bfd_link_info *info;
5382 struct ppc_link_hash_table *htab;
5383 struct plt_entry *ent;
5384 struct ppc_link_hash_entry *fh;
5385 struct ppc_link_hash_entry *fdh;
5386 bfd_boolean force_local;
5387
5388 fh = (struct ppc_link_hash_entry *) h;
5389 if (fh->elf.root.type == bfd_link_hash_indirect)
5390 return TRUE;
5391
5392 if (fh->elf.root.type == bfd_link_hash_warning)
5393 fh = (struct ppc_link_hash_entry *) fh->elf.root.u.i.link;
5394
5395 info = inf;
5396 htab = ppc_hash_table (info);
5397
5398 /* Resolve undefined references to dot-symbols as the value
5399 in the function descriptor, if we have one in a regular object.
5400 This is to satisfy cases like ".quad .foo". Calls to functions
5401 in dynamic objects are handled elsewhere. */
5402 if (fh->elf.root.type == bfd_link_hash_undefweak
5403 && fh->was_undefined
5404 && (fh->oh->elf.root.type == bfd_link_hash_defined
5405 || fh->oh->elf.root.type == bfd_link_hash_defweak)
5406 && get_opd_info (fh->oh->elf.root.u.def.section) != NULL
5407 && opd_entry_value (fh->oh->elf.root.u.def.section,
5408 fh->oh->elf.root.u.def.value,
5409 &fh->elf.root.u.def.section,
5410 &fh->elf.root.u.def.value) != (bfd_vma) -1)
5411 {
5412 fh->elf.root.type = fh->oh->elf.root.type;
5413 fh->elf.forced_local = 1;
5414 }
5415
5416 /* If this is a function code symbol, transfer dynamic linking
5417 information to the function descriptor symbol. */
5418 if (!fh->is_func)
5419 return TRUE;
5420
5421 for (ent = fh->elf.plt.plist; ent != NULL; ent = ent->next)
5422 if (ent->plt.refcount > 0)
5423 break;
5424 if (ent == NULL
5425 || fh->elf.root.root.string[0] != '.'
5426 || fh->elf.root.root.string[1] == '\0')
5427 return TRUE;
5428
5429 /* Find the corresponding function descriptor symbol. Create it
5430 as undefined if necessary. */
5431
5432 fdh = get_fdh (fh, htab);
5433 if (fdh != NULL)
5434 while (fdh->elf.root.type == bfd_link_hash_indirect
5435 || fdh->elf.root.type == bfd_link_hash_warning)
5436 fdh = (struct ppc_link_hash_entry *) fdh->elf.root.u.i.link;
5437
5438 if (fdh == NULL
5439 && info->shared
5440 && (fh->elf.root.type == bfd_link_hash_undefined
5441 || fh->elf.root.type == bfd_link_hash_undefweak))
5442 {
5443 fdh = make_fdh (info, fh);
5444 if (fdh == NULL)
5445 return FALSE;
5446 }
5447
5448 /* Fake function descriptors are made undefweak. If the function
5449 code symbol is strong undefined, make the fake sym the same. */
5450
5451 if (fdh != NULL
5452 && fdh->fake
5453 && fdh->elf.root.type == bfd_link_hash_undefweak
5454 && fh->elf.root.type == bfd_link_hash_undefined)
5455 {
5456 fdh->elf.root.type = bfd_link_hash_undefined;
5457 bfd_link_add_undef (&htab->elf.root, &fdh->elf.root);
5458 }
5459
5460 if (fdh != NULL
5461 && !fdh->elf.forced_local
5462 && (info->shared
5463 || fdh->elf.def_dynamic
5464 || fdh->elf.ref_dynamic
5465 || (fdh->elf.root.type == bfd_link_hash_undefweak
5466 && ELF_ST_VISIBILITY (fdh->elf.other) == STV_DEFAULT)))
5467 {
5468 if (fdh->elf.dynindx == -1)
5469 if (! bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
5470 return FALSE;
5471 fdh->elf.ref_regular |= fh->elf.ref_regular;
5472 fdh->elf.ref_dynamic |= fh->elf.ref_dynamic;
5473 fdh->elf.ref_regular_nonweak |= fh->elf.ref_regular_nonweak;
5474 fdh->elf.non_got_ref |= fh->elf.non_got_ref;
5475 if (ELF_ST_VISIBILITY (fh->elf.other) == STV_DEFAULT)
5476 {
5477 move_plt_plist (fh, fdh);
5478 fdh->elf.needs_plt = 1;
5479 }
5480 fdh->is_func_descriptor = 1;
5481 fdh->oh = fh;
5482 fh->oh = fdh;
5483 }
5484
5485 /* Now that the info is on the function descriptor, clear the
5486 function code sym info. Any function code syms for which we
5487 don't have a definition in a regular file, we force local.
5488 This prevents a shared library from exporting syms that have
5489 been imported from another library. Function code syms that
5490 are really in the library we must leave global to prevent the
5491 linker dragging in a definition from a static library. */
5492 force_local = (!fh->elf.def_regular
5493 || fdh == NULL
5494 || !fdh->elf.def_regular
5495 || fdh->elf.forced_local);
5496 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
5497
5498 return TRUE;
5499 }
5500
5501 /* Called near the start of bfd_elf_size_dynamic_sections. We use
5502 this hook to a) provide some gcc support functions, and b) transfer
5503 dynamic linking information gathered so far on function code symbol
5504 entries, to their corresponding function descriptor symbol entries. */
5505
5506 static bfd_boolean
5507 ppc64_elf_func_desc_adjust (bfd *obfd ATTRIBUTE_UNUSED,
5508 struct bfd_link_info *info)
5509 {
5510 struct ppc_link_hash_table *htab;
5511 unsigned int i;
5512 const struct sfpr_def_parms funcs[] =
5513 {
5514 { "_savegpr0_", 14, 31, savegpr0, savegpr0_tail },
5515 { "_restgpr0_", 14, 29, restgpr0, restgpr0_tail },
5516 { "_restgpr0_", 30, 31, restgpr0, restgpr0_tail },
5517 { "_savegpr1_", 14, 31, savegpr1, savegpr1_tail },
5518 { "_restgpr1_", 14, 31, restgpr1, restgpr1_tail },
5519 { "_savefpr_", 14, 31, savefpr, savefpr0_tail },
5520 { "_restfpr_", 14, 29, restfpr, restfpr0_tail },
5521 { "_restfpr_", 30, 31, restfpr, restfpr0_tail },
5522 { "._savef", 14, 31, savefpr, savefpr1_tail },
5523 { "._restf", 14, 31, restfpr, restfpr1_tail },
5524 { "_savevr_", 20, 31, savevr, savevr_tail },
5525 { "_restvr_", 20, 31, restvr, restvr_tail }
5526 };
5527
5528 htab = ppc_hash_table (info);
5529 if (htab->sfpr == NULL)
5530 /* We don't have any relocs. */
5531 return TRUE;
5532
5533 /* Provide any missing _save* and _rest* functions. */
5534 htab->sfpr->size = 0;
5535 for (i = 0; i < sizeof (funcs) / sizeof (funcs[0]); i++)
5536 if (!sfpr_define (info, &funcs[i]))
5537 return FALSE;
5538
5539 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
5540
5541 if (htab->sfpr->size == 0)
5542 _bfd_strip_section_from_output (info, htab->sfpr);
5543
5544 return TRUE;
5545 }
5546
5547 /* Adjust a symbol defined by a dynamic object and referenced by a
5548 regular object. The current definition is in some section of the
5549 dynamic object, but we're not including those sections. We have to
5550 change the definition to something the rest of the link can
5551 understand. */
5552
5553 static bfd_boolean
5554 ppc64_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
5555 struct elf_link_hash_entry *h)
5556 {
5557 struct ppc_link_hash_table *htab;
5558 asection *s;
5559 unsigned int power_of_two;
5560
5561 htab = ppc_hash_table (info);
5562
5563 /* Deal with function syms. */
5564 if (h->type == STT_FUNC
5565 || h->needs_plt)
5566 {
5567 /* Clear procedure linkage table information for any symbol that
5568 won't need a .plt entry. */
5569 struct plt_entry *ent;
5570 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
5571 if (ent->plt.refcount > 0)
5572 break;
5573 if (ent == NULL
5574 || SYMBOL_CALLS_LOCAL (info, h)
5575 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
5576 && h->root.type == bfd_link_hash_undefweak))
5577 {
5578 h->plt.plist = NULL;
5579 h->needs_plt = 0;
5580 }
5581 }
5582 else
5583 h->plt.plist = NULL;
5584
5585 /* If this is a weak symbol, and there is a real definition, the
5586 processor independent code will have arranged for us to see the
5587 real definition first, and we can just use the same value. */
5588 if (h->u.weakdef != NULL)
5589 {
5590 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
5591 || h->u.weakdef->root.type == bfd_link_hash_defweak);
5592 h->root.u.def.section = h->u.weakdef->root.u.def.section;
5593 h->root.u.def.value = h->u.weakdef->root.u.def.value;
5594 if (ELIMINATE_COPY_RELOCS)
5595 h->non_got_ref = h->u.weakdef->non_got_ref;
5596 return TRUE;
5597 }
5598
5599 /* If we are creating a shared library, we must presume that the
5600 only references to the symbol are via the global offset table.
5601 For such cases we need not do anything here; the relocations will
5602 be handled correctly by relocate_section. */
5603 if (info->shared)
5604 return TRUE;
5605
5606 /* If there are no references to this symbol that do not use the
5607 GOT, we don't need to generate a copy reloc. */
5608 if (!h->non_got_ref)
5609 return TRUE;
5610
5611 if (ELIMINATE_COPY_RELOCS)
5612 {
5613 struct ppc_link_hash_entry * eh;
5614 struct ppc_dyn_relocs *p;
5615
5616 eh = (struct ppc_link_hash_entry *) h;
5617 for (p = eh->dyn_relocs; p != NULL; p = p->next)
5618 {
5619 s = p->sec->output_section;
5620 if (s != NULL && (s->flags & SEC_READONLY) != 0)
5621 break;
5622 }
5623
5624 /* If we didn't find any dynamic relocs in read-only sections, then
5625 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
5626 if (p == NULL)
5627 {
5628 h->non_got_ref = 0;
5629 return TRUE;
5630 }
5631 }
5632
5633 if (h->plt.plist != NULL)
5634 {
5635 /* We should never get here, but unfortunately there are versions
5636 of gcc out there that improperly (for this ABI) put initialized
5637 function pointers, vtable refs and suchlike in read-only
5638 sections. Allow them to proceed, but warn that this might
5639 break at runtime. */
5640 (*_bfd_error_handler)
5641 (_("copy reloc against `%s' requires lazy plt linking; "
5642 "avoid setting LD_BIND_NOW=1 or upgrade gcc"),
5643 h->root.root.string);
5644 }
5645
5646 /* This is a reference to a symbol defined by a dynamic object which
5647 is not a function. */
5648
5649 /* We must allocate the symbol in our .dynbss section, which will
5650 become part of the .bss section of the executable. There will be
5651 an entry for this symbol in the .dynsym section. The dynamic
5652 object will contain position independent code, so all references
5653 from the dynamic object to this symbol will go through the global
5654 offset table. The dynamic linker will use the .dynsym entry to
5655 determine the address it must put in the global offset table, so
5656 both the dynamic object and the regular object will refer to the
5657 same memory location for the variable. */
5658
5659 /* We must generate a R_PPC64_COPY reloc to tell the dynamic linker
5660 to copy the initial value out of the dynamic object and into the
5661 runtime process image. We need to remember the offset into the
5662 .rela.bss section we are going to use. */
5663 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
5664 {
5665 htab->relbss->size += sizeof (Elf64_External_Rela);
5666 h->needs_copy = 1;
5667 }
5668
5669 /* We need to figure out the alignment required for this symbol. I
5670 have no idea how ELF linkers handle this. */
5671 power_of_two = bfd_log2 (h->size);
5672 if (power_of_two > 4)
5673 power_of_two = 4;
5674
5675 /* Apply the required alignment. */
5676 s = htab->dynbss;
5677 s->size = BFD_ALIGN (s->size, (bfd_size_type) (1 << power_of_two));
5678 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
5679 {
5680 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
5681 return FALSE;
5682 }
5683
5684 /* Define the symbol as being at this point in the section. */
5685 h->root.u.def.section = s;
5686 h->root.u.def.value = s->size;
5687
5688 /* Increment the section size to make room for the symbol. */
5689 s->size += h->size;
5690
5691 return TRUE;
5692 }
5693
5694 /* If given a function descriptor symbol, hide both the function code
5695 sym and the descriptor. */
5696 static void
5697 ppc64_elf_hide_symbol (struct bfd_link_info *info,
5698 struct elf_link_hash_entry *h,
5699 bfd_boolean force_local)
5700 {
5701 struct ppc_link_hash_entry *eh;
5702 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
5703
5704 eh = (struct ppc_link_hash_entry *) h;
5705 if (eh->is_func_descriptor)
5706 {
5707 struct ppc_link_hash_entry *fh = eh->oh;
5708
5709 if (fh == NULL)
5710 {
5711 const char *p, *q;
5712 struct ppc_link_hash_table *htab;
5713 char save;
5714
5715 /* We aren't supposed to use alloca in BFD because on
5716 systems which do not have alloca the version in libiberty
5717 calls xmalloc, which might cause the program to crash
5718 when it runs out of memory. This function doesn't have a
5719 return status, so there's no way to gracefully return an
5720 error. So cheat. We know that string[-1] can be safely
5721 accessed; It's either a string in an ELF string table,
5722 or allocated in an objalloc structure. */
5723
5724 p = eh->elf.root.root.string - 1;
5725 save = *p;
5726 *(char *) p = '.';
5727 htab = ppc_hash_table (info);
5728 fh = (struct ppc_link_hash_entry *)
5729 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
5730 *(char *) p = save;
5731
5732 /* Unfortunately, if it so happens that the string we were
5733 looking for was allocated immediately before this string,
5734 then we overwrote the string terminator. That's the only
5735 reason the lookup should fail. */
5736 if (fh == NULL)
5737 {
5738 q = eh->elf.root.root.string + strlen (eh->elf.root.root.string);
5739 while (q >= eh->elf.root.root.string && *q == *p)
5740 --q, --p;
5741 if (q < eh->elf.root.root.string && *p == '.')
5742 fh = (struct ppc_link_hash_entry *)
5743 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
5744 }
5745 if (fh != NULL)
5746 {
5747 eh->oh = fh;
5748 fh->oh = eh;
5749 }
5750 }
5751 if (fh != NULL)
5752 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
5753 }
5754 }
5755
5756 static bfd_boolean
5757 get_sym_h (struct elf_link_hash_entry **hp,
5758 Elf_Internal_Sym **symp,
5759 asection **symsecp,
5760 char **tls_maskp,
5761 Elf_Internal_Sym **locsymsp,
5762 unsigned long r_symndx,
5763 bfd *ibfd)
5764 {
5765 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
5766
5767 if (r_symndx >= symtab_hdr->sh_info)
5768 {
5769 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
5770 struct elf_link_hash_entry *h;
5771
5772 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5773 while (h->root.type == bfd_link_hash_indirect
5774 || h->root.type == bfd_link_hash_warning)
5775 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5776
5777 if (hp != NULL)
5778 *hp = h;
5779
5780 if (symp != NULL)
5781 *symp = NULL;
5782
5783 if (symsecp != NULL)
5784 {
5785 asection *symsec = NULL;
5786 if (h->root.type == bfd_link_hash_defined
5787 || h->root.type == bfd_link_hash_defweak)
5788 symsec = h->root.u.def.section;
5789 *symsecp = symsec;
5790 }
5791
5792 if (tls_maskp != NULL)
5793 {
5794 struct ppc_link_hash_entry *eh;
5795
5796 eh = (struct ppc_link_hash_entry *) h;
5797 *tls_maskp = &eh->tls_mask;
5798 }
5799 }
5800 else
5801 {
5802 Elf_Internal_Sym *sym;
5803 Elf_Internal_Sym *locsyms = *locsymsp;
5804
5805 if (locsyms == NULL)
5806 {
5807 locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
5808 if (locsyms == NULL)
5809 locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
5810 symtab_hdr->sh_info,
5811 0, NULL, NULL, NULL);
5812 if (locsyms == NULL)
5813 return FALSE;
5814 *locsymsp = locsyms;
5815 }
5816 sym = locsyms + r_symndx;
5817
5818 if (hp != NULL)
5819 *hp = NULL;
5820
5821 if (symp != NULL)
5822 *symp = sym;
5823
5824 if (symsecp != NULL)
5825 {
5826 asection *symsec = NULL;
5827 if ((sym->st_shndx != SHN_UNDEF
5828 && sym->st_shndx < SHN_LORESERVE)
5829 || sym->st_shndx > SHN_HIRESERVE)
5830 symsec = bfd_section_from_elf_index (ibfd, sym->st_shndx);
5831 *symsecp = symsec;
5832 }
5833
5834 if (tls_maskp != NULL)
5835 {
5836 struct got_entry **lgot_ents;
5837 char *tls_mask;
5838
5839 tls_mask = NULL;
5840 lgot_ents = elf_local_got_ents (ibfd);
5841 if (lgot_ents != NULL)
5842 {
5843 char *lgot_masks = (char *) (lgot_ents + symtab_hdr->sh_info);
5844 tls_mask = &lgot_masks[r_symndx];
5845 }
5846 *tls_maskp = tls_mask;
5847 }
5848 }
5849 return TRUE;
5850 }
5851
5852 /* Returns TLS_MASKP for the given REL symbol. Function return is 0 on
5853 error, 2 on a toc GD type suitable for optimization, 3 on a toc LD
5854 type suitable for optimization, and 1 otherwise. */
5855
5856 static int
5857 get_tls_mask (char **tls_maskp, unsigned long *toc_symndx,
5858 Elf_Internal_Sym **locsymsp,
5859 const Elf_Internal_Rela *rel, bfd *ibfd)
5860 {
5861 unsigned long r_symndx;
5862 int next_r;
5863 struct elf_link_hash_entry *h;
5864 Elf_Internal_Sym *sym;
5865 asection *sec;
5866 bfd_vma off;
5867
5868 r_symndx = ELF64_R_SYM (rel->r_info);
5869 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
5870 return 0;
5871
5872 if ((*tls_maskp != NULL && **tls_maskp != 0)
5873 || sec == NULL
5874 || ppc64_elf_section_data (sec)->t_symndx == NULL)
5875 return 1;
5876
5877 /* Look inside a TOC section too. */
5878 if (h != NULL)
5879 {
5880 BFD_ASSERT (h->root.type == bfd_link_hash_defined);
5881 off = h->root.u.def.value;
5882 }
5883 else
5884 off = sym->st_value;
5885 off += rel->r_addend;
5886 BFD_ASSERT (off % 8 == 0);
5887 r_symndx = ppc64_elf_section_data (sec)->t_symndx[off / 8];
5888 next_r = ppc64_elf_section_data (sec)->t_symndx[off / 8 + 1];
5889 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
5890 return 0;
5891 if (toc_symndx != NULL)
5892 *toc_symndx = r_symndx;
5893 if ((h == NULL
5894 || ((h->root.type == bfd_link_hash_defined
5895 || h->root.type == bfd_link_hash_defweak)
5896 && !h->def_dynamic))
5897 && (next_r == -1 || next_r == -2))
5898 return 1 - next_r;
5899 return 1;
5900 }
5901
5902 /* Adjust all global syms defined in opd sections. In gcc generated
5903 code for the old ABI, these will already have been done. */
5904
5905 static bfd_boolean
5906 adjust_opd_syms (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
5907 {
5908 struct ppc_link_hash_entry *eh;
5909 asection *sym_sec;
5910 long *opd_adjust;
5911
5912 if (h->root.type == bfd_link_hash_indirect)
5913 return TRUE;
5914
5915 if (h->root.type == bfd_link_hash_warning)
5916 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5917
5918 if (h->root.type != bfd_link_hash_defined
5919 && h->root.type != bfd_link_hash_defweak)
5920 return TRUE;
5921
5922 eh = (struct ppc_link_hash_entry *) h;
5923 if (eh->adjust_done)
5924 return TRUE;
5925
5926 sym_sec = eh->elf.root.u.def.section;
5927 opd_adjust = get_opd_info (sym_sec);
5928 if (opd_adjust != NULL)
5929 {
5930 long adjust = opd_adjust[eh->elf.root.u.def.value / 8];
5931 if (adjust == -1)
5932 {
5933 /* This entry has been deleted. */
5934 asection *dsec = ppc64_elf_tdata (sym_sec->owner)->deleted_section;
5935 if (dsec == NULL)
5936 {
5937 for (dsec = sym_sec->owner->sections; dsec; dsec = dsec->next)
5938 if (elf_discarded_section (dsec))
5939 {
5940 ppc64_elf_tdata (sym_sec->owner)->deleted_section = dsec;
5941 break;
5942 }
5943 }
5944 eh->elf.root.u.def.value = 0;
5945 eh->elf.root.u.def.section = dsec;
5946 }
5947 else
5948 eh->elf.root.u.def.value += adjust;
5949 eh->adjust_done = 1;
5950 }
5951 return TRUE;
5952 }
5953
5954 /* Handles decrementing dynamic reloc counts for the reloc specified by
5955 R_INFO in section SEC. If LOCAL_SYMS is NULL, then H and SYM_SEC
5956 have already been determined. */
5957
5958 static bfd_boolean
5959 dec_dynrel_count (bfd_vma r_info,
5960 asection *sec,
5961 struct bfd_link_info *info,
5962 Elf_Internal_Sym **local_syms,
5963 struct elf_link_hash_entry *h,
5964 asection *sym_sec)
5965 {
5966 enum elf_ppc64_reloc_type r_type;
5967 struct ppc_dyn_relocs *p;
5968 struct ppc_dyn_relocs **pp;
5969
5970 /* Can this reloc be dynamic? This switch, and later tests here
5971 should be kept in sync with the code in check_relocs. */
5972 r_type = ELF64_R_TYPE (r_info);
5973 switch (r_type)
5974 {
5975 default:
5976 return TRUE;
5977
5978 case R_PPC64_TPREL16:
5979 case R_PPC64_TPREL16_LO:
5980 case R_PPC64_TPREL16_HI:
5981 case R_PPC64_TPREL16_HA:
5982 case R_PPC64_TPREL16_DS:
5983 case R_PPC64_TPREL16_LO_DS:
5984 case R_PPC64_TPREL16_HIGHER:
5985 case R_PPC64_TPREL16_HIGHERA:
5986 case R_PPC64_TPREL16_HIGHEST:
5987 case R_PPC64_TPREL16_HIGHESTA:
5988 if (!info->shared)
5989 return TRUE;
5990
5991 case R_PPC64_TPREL64:
5992 case R_PPC64_DTPMOD64:
5993 case R_PPC64_DTPREL64:
5994 case R_PPC64_ADDR64:
5995 case R_PPC64_REL30:
5996 case R_PPC64_REL32:
5997 case R_PPC64_REL64:
5998 case R_PPC64_ADDR14:
5999 case R_PPC64_ADDR14_BRNTAKEN:
6000 case R_PPC64_ADDR14_BRTAKEN:
6001 case R_PPC64_ADDR16:
6002 case R_PPC64_ADDR16_DS:
6003 case R_PPC64_ADDR16_HA:
6004 case R_PPC64_ADDR16_HI:
6005 case R_PPC64_ADDR16_HIGHER:
6006 case R_PPC64_ADDR16_HIGHERA:
6007 case R_PPC64_ADDR16_HIGHEST:
6008 case R_PPC64_ADDR16_HIGHESTA:
6009 case R_PPC64_ADDR16_LO:
6010 case R_PPC64_ADDR16_LO_DS:
6011 case R_PPC64_ADDR24:
6012 case R_PPC64_ADDR32:
6013 case R_PPC64_UADDR16:
6014 case R_PPC64_UADDR32:
6015 case R_PPC64_UADDR64:
6016 case R_PPC64_TOC:
6017 break;
6018 }
6019
6020 if (local_syms != NULL)
6021 {
6022 unsigned long r_symndx;
6023 Elf_Internal_Sym *sym;
6024 bfd *ibfd = sec->owner;
6025
6026 r_symndx = ELF64_R_SYM (r_info);
6027 if (!get_sym_h (&h, &sym, &sym_sec, NULL, local_syms, r_symndx, ibfd))
6028 return FALSE;
6029 }
6030
6031 if ((info->shared
6032 && (MUST_BE_DYN_RELOC (r_type)
6033 || (h != NULL
6034 && (!info->symbolic
6035 || h->root.type == bfd_link_hash_defweak
6036 || !h->def_regular))))
6037 || (ELIMINATE_COPY_RELOCS
6038 && !info->shared
6039 && h != NULL
6040 && (h->root.type == bfd_link_hash_defweak
6041 || !h->def_regular)))
6042 ;
6043 else
6044 return TRUE;
6045
6046 if (h != NULL)
6047 pp = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
6048 else if (sym_sec != NULL)
6049 pp = (struct ppc_dyn_relocs **) &elf_section_data (sym_sec)->local_dynrel;
6050 else
6051 pp = (struct ppc_dyn_relocs **) &elf_section_data (sec)->local_dynrel;
6052
6053 while ((p = *pp) != NULL)
6054 {
6055 if (p->sec == sec)
6056 {
6057 if (!MUST_BE_DYN_RELOC (r_type))
6058 p->pc_count -= 1;
6059 p->count -= 1;
6060 if (p->count == 0)
6061 *pp = p->next;
6062 return TRUE;
6063 }
6064 pp = &p->next;
6065 }
6066
6067 (*_bfd_error_handler) (_("dynreloc miscount for %B, section %A"),
6068 sec->owner, sec);
6069 bfd_set_error (bfd_error_bad_value);
6070 return FALSE;
6071 }
6072
6073 /* Remove unused Official Procedure Descriptor entries. Currently we
6074 only remove those associated with functions in discarded link-once
6075 sections, or weakly defined functions that have been overridden. It
6076 would be possible to remove many more entries for statically linked
6077 applications. */
6078
6079 bfd_boolean
6080 ppc64_elf_edit_opd (bfd *obfd, struct bfd_link_info *info,
6081 bfd_boolean non_overlapping)
6082 {
6083 bfd *ibfd;
6084 bfd_boolean some_edited = FALSE;
6085 asection *need_pad = NULL;
6086
6087 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6088 {
6089 asection *sec;
6090 Elf_Internal_Rela *relstart, *rel, *relend;
6091 Elf_Internal_Shdr *symtab_hdr;
6092 Elf_Internal_Sym *local_syms;
6093 struct elf_link_hash_entry **sym_hashes;
6094 bfd_vma offset;
6095 bfd_size_type amt;
6096 long *opd_adjust;
6097 bfd_boolean need_edit, add_aux_fields;
6098 bfd_size_type cnt_16b = 0;
6099
6100 sec = bfd_get_section_by_name (ibfd, ".opd");
6101 if (sec == NULL)
6102 continue;
6103
6104 amt = sec->size * sizeof (long) / 8;
6105 opd_adjust = get_opd_info (sec);
6106 if (opd_adjust == NULL)
6107 {
6108 /* check_relocs hasn't been called. Must be a ld -r link
6109 or --just-symbols object. */
6110 opd_adjust = bfd_zalloc (obfd, amt);
6111 ppc64_elf_section_data (sec)->opd.adjust = opd_adjust;
6112 }
6113 memset (opd_adjust, 0, amt);
6114
6115 if (sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
6116 continue;
6117
6118 if (sec->output_section == bfd_abs_section_ptr)
6119 continue;
6120
6121 /* Look through the section relocs. */
6122 if ((sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0)
6123 continue;
6124
6125 local_syms = NULL;
6126 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
6127 sym_hashes = elf_sym_hashes (ibfd);
6128
6129 /* Read the relocations. */
6130 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
6131 info->keep_memory);
6132 if (relstart == NULL)
6133 return FALSE;
6134
6135 /* First run through the relocs to check they are sane, and to
6136 determine whether we need to edit this opd section. */
6137 need_edit = FALSE;
6138 need_pad = sec;
6139 offset = 0;
6140 relend = relstart + sec->reloc_count;
6141 for (rel = relstart; rel < relend; )
6142 {
6143 enum elf_ppc64_reloc_type r_type;
6144 unsigned long r_symndx;
6145 asection *sym_sec;
6146 struct elf_link_hash_entry *h;
6147 Elf_Internal_Sym *sym;
6148
6149 /* .opd contains a regular array of 16 or 24 byte entries. We're
6150 only interested in the reloc pointing to a function entry
6151 point. */
6152 if (rel->r_offset != offset
6153 || rel + 1 >= relend
6154 || (rel + 1)->r_offset != offset + 8)
6155 {
6156 /* If someone messes with .opd alignment then after a
6157 "ld -r" we might have padding in the middle of .opd.
6158 Also, there's nothing to prevent someone putting
6159 something silly in .opd with the assembler. No .opd
6160 optimization for them! */
6161 broken_opd:
6162 (*_bfd_error_handler)
6163 (_("%B: .opd is not a regular array of opd entries"), ibfd);
6164 need_edit = FALSE;
6165 break;
6166 }
6167
6168 if ((r_type = ELF64_R_TYPE (rel->r_info)) != R_PPC64_ADDR64
6169 || (r_type = ELF64_R_TYPE ((rel + 1)->r_info)) != R_PPC64_TOC)
6170 {
6171 (*_bfd_error_handler)
6172 (_("%B: unexpected reloc type %u in .opd section"),
6173 ibfd, r_type);
6174 need_edit = FALSE;
6175 break;
6176 }
6177
6178 r_symndx = ELF64_R_SYM (rel->r_info);
6179 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
6180 r_symndx, ibfd))
6181 goto error_ret;
6182
6183 if (sym_sec == NULL || sym_sec->owner == NULL)
6184 {
6185 const char *sym_name;
6186 if (h != NULL)
6187 sym_name = h->root.root.string;
6188 else
6189 sym_name = bfd_elf_sym_name (ibfd, symtab_hdr, sym);
6190
6191 (*_bfd_error_handler)
6192 (_("%B: undefined sym `%s' in .opd section"),
6193 ibfd, sym_name);
6194 need_edit = FALSE;
6195 break;
6196 }
6197
6198 /* opd entries are always for functions defined in the
6199 current input bfd. If the symbol isn't defined in the
6200 input bfd, then we won't be using the function in this
6201 bfd; It must be defined in a linkonce section in another
6202 bfd, or is weak. It's also possible that we are
6203 discarding the function due to a linker script /DISCARD/,
6204 which we test for via the output_section. */
6205 if (sym_sec->owner != ibfd
6206 || sym_sec->output_section == bfd_abs_section_ptr)
6207 need_edit = TRUE;
6208
6209 rel += 2;
6210 if (rel == relend
6211 || (rel + 1 == relend && rel->r_offset == offset + 16))
6212 {
6213 if (sec->size == offset + 24)
6214 {
6215 need_pad = NULL;
6216 break;
6217 }
6218 if (rel == relend && sec->size == offset + 16)
6219 {
6220 cnt_16b++;
6221 break;
6222 }
6223 goto broken_opd;
6224 }
6225
6226 if (rel->r_offset == offset + 24)
6227 offset += 24;
6228 else if (rel->r_offset != offset + 16)
6229 goto broken_opd;
6230 else if (rel + 1 < relend
6231 && ELF64_R_TYPE (rel[0].r_info) == R_PPC64_ADDR64
6232 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOC)
6233 {
6234 offset += 16;
6235 cnt_16b++;
6236 }
6237 else if (rel + 2 < relend
6238 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_ADDR64
6239 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_TOC)
6240 {
6241 offset += 24;
6242 rel += 1;
6243 }
6244 else
6245 goto broken_opd;
6246 }
6247
6248 add_aux_fields = non_overlapping && cnt_16b > 0;
6249
6250 if (need_edit || add_aux_fields)
6251 {
6252 Elf_Internal_Rela *write_rel;
6253 bfd_byte *rptr, *wptr;
6254 bfd_byte *new_contents = NULL;
6255 bfd_boolean skip;
6256 long opd_ent_size;
6257
6258 /* This seems a waste of time as input .opd sections are all
6259 zeros as generated by gcc, but I suppose there's no reason
6260 this will always be so. We might start putting something in
6261 the third word of .opd entries. */
6262 if ((sec->flags & SEC_IN_MEMORY) == 0)
6263 {
6264 bfd_byte *loc;
6265 if (!bfd_malloc_and_get_section (ibfd, sec, &loc))
6266 {
6267 if (loc != NULL)
6268 free (loc);
6269 error_ret:
6270 if (local_syms != NULL
6271 && symtab_hdr->contents != (unsigned char *) local_syms)
6272 free (local_syms);
6273 if (elf_section_data (sec)->relocs != relstart)
6274 free (relstart);
6275 return FALSE;
6276 }
6277 sec->contents = loc;
6278 sec->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
6279 }
6280
6281 elf_section_data (sec)->relocs = relstart;
6282
6283 wptr = sec->contents;
6284 rptr = sec->contents;
6285 new_contents = sec->contents;
6286
6287 if (add_aux_fields)
6288 {
6289 new_contents = bfd_malloc (sec->size + cnt_16b * 8);
6290 if (new_contents == NULL)
6291 return FALSE;
6292 need_pad = FALSE;
6293 wptr = new_contents;
6294 }
6295
6296 write_rel = relstart;
6297 skip = FALSE;
6298 offset = 0;
6299 opd_ent_size = 0;
6300 for (rel = relstart; rel < relend; rel++)
6301 {
6302 unsigned long r_symndx;
6303 asection *sym_sec;
6304 struct elf_link_hash_entry *h;
6305 Elf_Internal_Sym *sym;
6306
6307 r_symndx = ELF64_R_SYM (rel->r_info);
6308 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
6309 r_symndx, ibfd))
6310 goto error_ret;
6311
6312 if (rel->r_offset == offset)
6313 {
6314 struct ppc_link_hash_entry *fdh = NULL;
6315
6316 /* See if the .opd entry is full 24 byte or
6317 16 byte (with fd_aux entry overlapped with next
6318 fd_func). */
6319 opd_ent_size = 24;
6320 if ((rel + 2 == relend && sec->size == offset + 16)
6321 || (rel + 3 < relend
6322 && rel[2].r_offset == offset + 16
6323 && rel[3].r_offset == offset + 24
6324 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_ADDR64
6325 && ELF64_R_TYPE (rel[3].r_info) == R_PPC64_TOC))
6326 opd_ent_size = 16;
6327
6328 if (h != NULL
6329 && h->root.root.string[0] == '.')
6330 {
6331 fdh = get_fdh ((struct ppc_link_hash_entry *) h,
6332 ppc_hash_table (info));
6333 if (fdh != NULL
6334 && fdh->elf.root.type != bfd_link_hash_defined
6335 && fdh->elf.root.type != bfd_link_hash_defweak)
6336 fdh = NULL;
6337 }
6338
6339 skip = (sym_sec->owner != ibfd
6340 || sym_sec->output_section == bfd_abs_section_ptr);
6341 if (skip)
6342 {
6343 if (fdh != NULL && sym_sec->owner == ibfd)
6344 {
6345 /* Arrange for the function descriptor sym
6346 to be dropped. */
6347 fdh->elf.root.u.def.value = 0;
6348 fdh->elf.root.u.def.section = sym_sec;
6349 }
6350 opd_adjust[rel->r_offset / 8] = -1;
6351 }
6352 else
6353 {
6354 /* We'll be keeping this opd entry. */
6355
6356 if (fdh != NULL)
6357 {
6358 /* Redefine the function descriptor symbol to
6359 this location in the opd section. It is
6360 necessary to update the value here rather
6361 than using an array of adjustments as we do
6362 for local symbols, because various places
6363 in the generic ELF code use the value
6364 stored in u.def.value. */
6365 fdh->elf.root.u.def.value = wptr - new_contents;
6366 fdh->adjust_done = 1;
6367 }
6368
6369 /* Local syms are a bit tricky. We could
6370 tweak them as they can be cached, but
6371 we'd need to look through the local syms
6372 for the function descriptor sym which we
6373 don't have at the moment. So keep an
6374 array of adjustments. */
6375 opd_adjust[rel->r_offset / 8]
6376 = (wptr - new_contents) - (rptr - sec->contents);
6377
6378 if (wptr != rptr)
6379 memcpy (wptr, rptr, opd_ent_size);
6380 wptr += opd_ent_size;
6381 if (add_aux_fields && opd_ent_size == 16)
6382 {
6383 memset (wptr, '\0', 8);
6384 wptr += 8;
6385 }
6386 }
6387 rptr += opd_ent_size;
6388 offset += opd_ent_size;
6389 }
6390
6391 if (skip)
6392 {
6393 if (!dec_dynrel_count (rel->r_info, sec, info,
6394 NULL, h, sym_sec))
6395 goto error_ret;
6396 }
6397 else
6398 {
6399 /* We need to adjust any reloc offsets to point to the
6400 new opd entries. While we're at it, we may as well
6401 remove redundant relocs. */
6402 rel->r_offset += opd_adjust[(offset - opd_ent_size) / 8];
6403 if (write_rel != rel)
6404 memcpy (write_rel, rel, sizeof (*rel));
6405 ++write_rel;
6406 }
6407 }
6408
6409 sec->size = wptr - new_contents;
6410 sec->reloc_count = write_rel - relstart;
6411 if (add_aux_fields)
6412 {
6413 free (sec->contents);
6414 sec->contents = new_contents;
6415 }
6416
6417 /* Fudge the size too, as this is used later in
6418 elf_bfd_final_link if we are emitting relocs. */
6419 elf_section_data (sec)->rel_hdr.sh_size
6420 = sec->reloc_count * elf_section_data (sec)->rel_hdr.sh_entsize;
6421 BFD_ASSERT (elf_section_data (sec)->rel_hdr2 == NULL);
6422 some_edited = TRUE;
6423 }
6424 else if (elf_section_data (sec)->relocs != relstart)
6425 free (relstart);
6426
6427 if (local_syms != NULL
6428 && symtab_hdr->contents != (unsigned char *) local_syms)
6429 {
6430 if (!info->keep_memory)
6431 free (local_syms);
6432 else
6433 symtab_hdr->contents = (unsigned char *) local_syms;
6434 }
6435 }
6436
6437 if (some_edited)
6438 elf_link_hash_traverse (elf_hash_table (info), adjust_opd_syms, NULL);
6439
6440 /* If we are doing a final link and the last .opd entry is just 16 byte
6441 long, add a 8 byte padding after it. */
6442 if (need_pad != NULL && !info->relocatable)
6443 {
6444 bfd_byte *p;
6445
6446 if ((need_pad->flags & SEC_IN_MEMORY) == 0)
6447 {
6448 BFD_ASSERT (need_pad->size > 0);
6449
6450 p = bfd_malloc (need_pad->size + 8);
6451 if (p == NULL)
6452 return FALSE;
6453
6454 if (! bfd_get_section_contents (need_pad->owner, need_pad,
6455 p, 0, need_pad->size))
6456 return FALSE;
6457
6458 need_pad->contents = p;
6459 need_pad->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
6460 }
6461 else
6462 {
6463 p = bfd_realloc (need_pad->contents, need_pad->size + 8);
6464 if (p == NULL)
6465 return FALSE;
6466
6467 need_pad->contents = p;
6468 }
6469
6470 memset (need_pad->contents + need_pad->size, 0, 8);
6471 need_pad->size += 8;
6472 }
6473
6474 return TRUE;
6475 }
6476
6477 /* Set htab->tls_get_addr and call the generic ELF tls_setup function. */
6478
6479 asection *
6480 ppc64_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
6481 {
6482 struct ppc_link_hash_table *htab;
6483
6484 htab = ppc_hash_table (info);
6485 if (htab->tls_get_addr != NULL)
6486 {
6487 struct ppc_link_hash_entry *h = htab->tls_get_addr;
6488
6489 while (h->elf.root.type == bfd_link_hash_indirect
6490 || h->elf.root.type == bfd_link_hash_warning)
6491 h = (struct ppc_link_hash_entry *) h->elf.root.u.i.link;
6492
6493 htab->tls_get_addr = h;
6494
6495 if (htab->tls_get_addr_fd == NULL
6496 && h->oh != NULL
6497 && h->oh->is_func_descriptor
6498 && (h->oh->elf.root.type == bfd_link_hash_defined
6499 || h->oh->elf.root.type == bfd_link_hash_defweak))
6500 htab->tls_get_addr_fd = h->oh;
6501 }
6502
6503 if (htab->tls_get_addr_fd != NULL)
6504 {
6505 struct ppc_link_hash_entry *h = htab->tls_get_addr_fd;
6506
6507 while (h->elf.root.type == bfd_link_hash_indirect
6508 || h->elf.root.type == bfd_link_hash_warning)
6509 h = (struct ppc_link_hash_entry *) h->elf.root.u.i.link;
6510
6511 htab->tls_get_addr_fd = h;
6512 }
6513
6514 return _bfd_elf_tls_setup (obfd, info);
6515 }
6516
6517 /* Run through all the TLS relocs looking for optimization
6518 opportunities. The linker has been hacked (see ppc64elf.em) to do
6519 a preliminary section layout so that we know the TLS segment
6520 offsets. We can't optimize earlier because some optimizations need
6521 to know the tp offset, and we need to optimize before allocating
6522 dynamic relocations. */
6523
6524 bfd_boolean
6525 ppc64_elf_tls_optimize (bfd *obfd ATTRIBUTE_UNUSED, struct bfd_link_info *info)
6526 {
6527 bfd *ibfd;
6528 asection *sec;
6529 struct ppc_link_hash_table *htab;
6530
6531 if (info->relocatable || info->shared)
6532 return TRUE;
6533
6534 htab = ppc_hash_table (info);
6535 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6536 {
6537 Elf_Internal_Sym *locsyms = NULL;
6538
6539 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6540 if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section))
6541 {
6542 Elf_Internal_Rela *relstart, *rel, *relend;
6543 int expecting_tls_get_addr;
6544
6545 /* Read the relocations. */
6546 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
6547 info->keep_memory);
6548 if (relstart == NULL)
6549 return FALSE;
6550
6551 expecting_tls_get_addr = 0;
6552 relend = relstart + sec->reloc_count;
6553 for (rel = relstart; rel < relend; rel++)
6554 {
6555 enum elf_ppc64_reloc_type r_type;
6556 unsigned long r_symndx;
6557 struct elf_link_hash_entry *h;
6558 Elf_Internal_Sym *sym;
6559 asection *sym_sec;
6560 char *tls_mask;
6561 char tls_set, tls_clear, tls_type = 0;
6562 bfd_vma value;
6563 bfd_boolean ok_tprel, is_local;
6564
6565 r_symndx = ELF64_R_SYM (rel->r_info);
6566 if (!get_sym_h (&h, &sym, &sym_sec, &tls_mask, &locsyms,
6567 r_symndx, ibfd))
6568 {
6569 err_free_rel:
6570 if (elf_section_data (sec)->relocs != relstart)
6571 free (relstart);
6572 if (locsyms != NULL
6573 && (elf_tdata (ibfd)->symtab_hdr.contents
6574 != (unsigned char *) locsyms))
6575 free (locsyms);
6576 return FALSE;
6577 }
6578
6579 if (h != NULL)
6580 {
6581 if (h->root.type != bfd_link_hash_defined
6582 && h->root.type != bfd_link_hash_defweak)
6583 continue;
6584 value = h->root.u.def.value;
6585 }
6586 else
6587 /* Symbols referenced by TLS relocs must be of type
6588 STT_TLS. So no need for .opd local sym adjust. */
6589 value = sym->st_value;
6590
6591 ok_tprel = FALSE;
6592 is_local = FALSE;
6593 if (h == NULL
6594 || !h->def_dynamic)
6595 {
6596 is_local = TRUE;
6597 value += sym_sec->output_offset;
6598 value += sym_sec->output_section->vma;
6599 value -= htab->elf.tls_sec->vma;
6600 ok_tprel = (value + TP_OFFSET + ((bfd_vma) 1 << 31)
6601 < (bfd_vma) 1 << 32);
6602 }
6603
6604 r_type = ELF64_R_TYPE (rel->r_info);
6605 switch (r_type)
6606 {
6607 case R_PPC64_GOT_TLSLD16:
6608 case R_PPC64_GOT_TLSLD16_LO:
6609 case R_PPC64_GOT_TLSLD16_HI:
6610 case R_PPC64_GOT_TLSLD16_HA:
6611 /* These relocs should never be against a symbol
6612 defined in a shared lib. Leave them alone if
6613 that turns out to be the case. */
6614 ppc64_tlsld_got (ibfd)->refcount -= 1;
6615 if (!is_local)
6616 continue;
6617
6618 /* LD -> LE */
6619 tls_set = 0;
6620 tls_clear = TLS_LD;
6621 tls_type = TLS_TLS | TLS_LD;
6622 expecting_tls_get_addr = 1;
6623 break;
6624
6625 case R_PPC64_GOT_TLSGD16:
6626 case R_PPC64_GOT_TLSGD16_LO:
6627 case R_PPC64_GOT_TLSGD16_HI:
6628 case R_PPC64_GOT_TLSGD16_HA:
6629 if (ok_tprel)
6630 /* GD -> LE */
6631 tls_set = 0;
6632 else
6633 /* GD -> IE */
6634 tls_set = TLS_TLS | TLS_TPRELGD;
6635 tls_clear = TLS_GD;
6636 tls_type = TLS_TLS | TLS_GD;
6637 expecting_tls_get_addr = 1;
6638 break;
6639
6640 case R_PPC64_GOT_TPREL16_DS:
6641 case R_PPC64_GOT_TPREL16_LO_DS:
6642 case R_PPC64_GOT_TPREL16_HI:
6643 case R_PPC64_GOT_TPREL16_HA:
6644 expecting_tls_get_addr = 0;
6645 if (ok_tprel)
6646 {
6647 /* IE -> LE */
6648 tls_set = 0;
6649 tls_clear = TLS_TPREL;
6650 tls_type = TLS_TLS | TLS_TPREL;
6651 break;
6652 }
6653 else
6654 continue;
6655
6656 case R_PPC64_REL14:
6657 case R_PPC64_REL14_BRTAKEN:
6658 case R_PPC64_REL14_BRNTAKEN:
6659 case R_PPC64_REL24:
6660 if (h != NULL
6661 && (h == &htab->tls_get_addr->elf
6662 || h == &htab->tls_get_addr_fd->elf))
6663 {
6664 if (!expecting_tls_get_addr
6665 && rel != relstart
6666 && ((ELF64_R_TYPE (rel[-1].r_info)
6667 == R_PPC64_TOC16)
6668 || (ELF64_R_TYPE (rel[-1].r_info)
6669 == R_PPC64_TOC16_LO)))
6670 {
6671 /* Check for toc tls entries. */
6672 char *toc_tls;
6673 int retval;
6674
6675 retval = get_tls_mask (&toc_tls, NULL, &locsyms,
6676 rel - 1, ibfd);
6677 if (retval == 0)
6678 goto err_free_rel;
6679 if (toc_tls != NULL)
6680 expecting_tls_get_addr = retval > 1;
6681 }
6682
6683 if (expecting_tls_get_addr)
6684 {
6685 struct plt_entry *ent;
6686 for (ent = h->plt.plist; ent; ent = ent->next)
6687 if (ent->addend == 0)
6688 {
6689 if (ent->plt.refcount > 0)
6690 ent->plt.refcount -= 1;
6691 break;
6692 }
6693 }
6694 }
6695 expecting_tls_get_addr = 0;
6696 continue;
6697
6698 case R_PPC64_TPREL64:
6699 expecting_tls_get_addr = 0;
6700 if (ok_tprel)
6701 {
6702 /* IE -> LE */
6703 tls_set = TLS_EXPLICIT;
6704 tls_clear = TLS_TPREL;
6705 break;
6706 }
6707 else
6708 continue;
6709
6710 case R_PPC64_DTPMOD64:
6711 expecting_tls_get_addr = 0;
6712 if (rel + 1 < relend
6713 && (rel[1].r_info
6714 == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64))
6715 && rel[1].r_offset == rel->r_offset + 8)
6716 {
6717 if (ok_tprel)
6718 /* GD -> LE */
6719 tls_set = TLS_EXPLICIT | TLS_GD;
6720 else
6721 /* GD -> IE */
6722 tls_set = TLS_EXPLICIT | TLS_GD | TLS_TPRELGD;
6723 tls_clear = TLS_GD;
6724 }
6725 else
6726 {
6727 if (!is_local)
6728 continue;
6729
6730 /* LD -> LE */
6731 tls_set = TLS_EXPLICIT;
6732 tls_clear = TLS_LD;
6733 }
6734 break;
6735
6736 default:
6737 expecting_tls_get_addr = 0;
6738 continue;
6739 }
6740
6741 if ((tls_set & TLS_EXPLICIT) == 0)
6742 {
6743 struct got_entry *ent;
6744
6745 /* Adjust got entry for this reloc. */
6746 if (h != NULL)
6747 ent = h->got.glist;
6748 else
6749 ent = elf_local_got_ents (ibfd)[r_symndx];
6750
6751 for (; ent != NULL; ent = ent->next)
6752 if (ent->addend == rel->r_addend
6753 && ent->owner == ibfd
6754 && ent->tls_type == tls_type)
6755 break;
6756 if (ent == NULL)
6757 abort ();
6758
6759 if (tls_set == 0)
6760 {
6761 /* We managed to get rid of a got entry. */
6762 if (ent->got.refcount > 0)
6763 ent->got.refcount -= 1;
6764 }
6765 }
6766 else
6767 {
6768 /* If we got rid of a DTPMOD/DTPREL reloc pair then
6769 we'll lose one or two dyn relocs. */
6770 if (!dec_dynrel_count (rel->r_info, sec, info,
6771 NULL, h, sym_sec))
6772 return FALSE;
6773
6774 if (tls_set == (TLS_EXPLICIT | TLS_GD))
6775 {
6776 if (!dec_dynrel_count ((rel + 1)->r_info, sec, info,
6777 NULL, h, sym_sec))
6778 return FALSE;
6779 }
6780 }
6781
6782 *tls_mask |= tls_set;
6783 *tls_mask &= ~tls_clear;
6784 }
6785
6786 if (elf_section_data (sec)->relocs != relstart)
6787 free (relstart);
6788 }
6789
6790 if (locsyms != NULL
6791 && (elf_tdata (ibfd)->symtab_hdr.contents
6792 != (unsigned char *) locsyms))
6793 {
6794 if (!info->keep_memory)
6795 free (locsyms);
6796 else
6797 elf_tdata (ibfd)->symtab_hdr.contents = (unsigned char *) locsyms;
6798 }
6799 }
6800 return TRUE;
6801 }
6802
6803 /* Called via elf_link_hash_traverse from ppc64_elf_edit_toc to adjust
6804 the values of any global symbols in a toc section that has been
6805 edited. Globals in toc sections should be a rarity, so this function
6806 sets a flag if any are found in toc sections other than the one just
6807 edited, so that futher hash table traversals can be avoided. */
6808
6809 struct adjust_toc_info
6810 {
6811 asection *toc;
6812 unsigned long *skip;
6813 bfd_boolean global_toc_syms;
6814 };
6815
6816 static bfd_boolean
6817 adjust_toc_syms (struct elf_link_hash_entry *h, void *inf)
6818 {
6819 struct ppc_link_hash_entry *eh;
6820 struct adjust_toc_info *toc_inf = (struct adjust_toc_info *) inf;
6821
6822 if (h->root.type == bfd_link_hash_indirect)
6823 return TRUE;
6824
6825 if (h->root.type == bfd_link_hash_warning)
6826 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6827
6828 if (h->root.type != bfd_link_hash_defined
6829 && h->root.type != bfd_link_hash_defweak)
6830 return TRUE;
6831
6832 eh = (struct ppc_link_hash_entry *) h;
6833 if (eh->adjust_done)
6834 return TRUE;
6835
6836 if (eh->elf.root.u.def.section == toc_inf->toc)
6837 {
6838 unsigned long skip = toc_inf->skip[eh->elf.root.u.def.value >> 3];
6839 if (skip != (unsigned long) -1)
6840 eh->elf.root.u.def.value -= skip;
6841 else
6842 {
6843 (*_bfd_error_handler)
6844 (_("%s defined in removed toc entry"), eh->elf.root.root.string);
6845 eh->elf.root.u.def.section = &bfd_abs_section;
6846 eh->elf.root.u.def.value = 0;
6847 }
6848 eh->adjust_done = 1;
6849 }
6850 else if (strcmp (eh->elf.root.u.def.section->name, ".toc") == 0)
6851 toc_inf->global_toc_syms = TRUE;
6852
6853 return TRUE;
6854 }
6855
6856 /* Examine all relocs referencing .toc sections in order to remove
6857 unused .toc entries. */
6858
6859 bfd_boolean
6860 ppc64_elf_edit_toc (bfd *obfd ATTRIBUTE_UNUSED, struct bfd_link_info *info)
6861 {
6862 bfd *ibfd;
6863 struct adjust_toc_info toc_inf;
6864
6865 toc_inf.global_toc_syms = TRUE;
6866 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6867 {
6868 asection *toc, *sec;
6869 Elf_Internal_Shdr *symtab_hdr;
6870 Elf_Internal_Sym *local_syms;
6871 struct elf_link_hash_entry **sym_hashes;
6872 Elf_Internal_Rela *relstart, *rel;
6873 unsigned long *skip, *drop;
6874 unsigned char *used;
6875 unsigned char *keep, last, some_unused;
6876
6877 toc = bfd_get_section_by_name (ibfd, ".toc");
6878 if (toc == NULL
6879 || toc->size == 0
6880 || toc->sec_info_type == ELF_INFO_TYPE_JUST_SYMS
6881 || elf_discarded_section (toc))
6882 continue;
6883
6884 local_syms = NULL;
6885 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
6886 sym_hashes = elf_sym_hashes (ibfd);
6887
6888 /* Look at sections dropped from the final link. */
6889 skip = NULL;
6890 relstart = NULL;
6891 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6892 {
6893 if (sec->reloc_count == 0
6894 || !elf_discarded_section (sec)
6895 || get_opd_info (sec)
6896 || (sec->flags & SEC_ALLOC) == 0
6897 || (sec->flags & SEC_DEBUGGING) != 0)
6898 continue;
6899
6900 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, FALSE);
6901 if (relstart == NULL)
6902 goto error_ret;
6903
6904 /* Run through the relocs to see which toc entries might be
6905 unused. */
6906 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
6907 {
6908 enum elf_ppc64_reloc_type r_type;
6909 unsigned long r_symndx;
6910 asection *sym_sec;
6911 struct elf_link_hash_entry *h;
6912 Elf_Internal_Sym *sym;
6913 bfd_vma val;
6914
6915 r_type = ELF64_R_TYPE (rel->r_info);
6916 switch (r_type)
6917 {
6918 default:
6919 continue;
6920
6921 case R_PPC64_TOC16:
6922 case R_PPC64_TOC16_LO:
6923 case R_PPC64_TOC16_HI:
6924 case R_PPC64_TOC16_HA:
6925 case R_PPC64_TOC16_DS:
6926 case R_PPC64_TOC16_LO_DS:
6927 break;
6928 }
6929
6930 r_symndx = ELF64_R_SYM (rel->r_info);
6931 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
6932 r_symndx, ibfd))
6933 goto error_ret;
6934
6935 if (sym_sec != toc)
6936 continue;
6937
6938 if (h != NULL)
6939 val = h->root.u.def.value;
6940 else
6941 val = sym->st_value;
6942 val += rel->r_addend;
6943
6944 if (val >= toc->size)
6945 continue;
6946
6947 /* Anything in the toc ought to be aligned to 8 bytes.
6948 If not, don't mark as unused. */
6949 if (val & 7)
6950 continue;
6951
6952 if (skip == NULL)
6953 {
6954 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 7) / 8);
6955 if (skip == NULL)
6956 goto error_ret;
6957 }
6958
6959 skip[val >> 3] = 1;
6960 }
6961
6962 if (elf_section_data (sec)->relocs != relstart)
6963 free (relstart);
6964 }
6965
6966 if (skip == NULL)
6967 continue;
6968
6969 used = bfd_zmalloc (sizeof (*used) * (toc->size + 7) / 8);
6970 if (used == NULL)
6971 {
6972 error_ret:
6973 if (local_syms != NULL
6974 && symtab_hdr->contents != (unsigned char *) local_syms)
6975 free (local_syms);
6976 if (sec != NULL
6977 && relstart != NULL
6978 && elf_section_data (sec)->relocs != relstart)
6979 free (relstart);
6980 if (skip != NULL)
6981 free (skip);
6982 return FALSE;
6983 }
6984
6985 /* Now check all kept sections that might reference the toc. */
6986 for (sec = ibfd->sections;
6987 sec != NULL;
6988 /* Check the toc itself last. */
6989 sec = (sec == toc ? NULL
6990 : sec->next == toc && sec->next->next ? sec->next->next
6991 : sec->next == NULL ? toc
6992 : sec->next))
6993 {
6994 int repeat;
6995
6996 if (sec->reloc_count == 0
6997 || elf_discarded_section (sec)
6998 || get_opd_info (sec)
6999 || (sec->flags & SEC_ALLOC) == 0
7000 || (sec->flags & SEC_DEBUGGING) != 0)
7001 continue;
7002
7003 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, TRUE);
7004 if (relstart == NULL)
7005 goto error_ret;
7006
7007 /* Mark toc entries referenced as used. */
7008 repeat = 0;
7009 do
7010 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
7011 {
7012 enum elf_ppc64_reloc_type r_type;
7013 unsigned long r_symndx;
7014 asection *sym_sec;
7015 struct elf_link_hash_entry *h;
7016 Elf_Internal_Sym *sym;
7017 bfd_vma val;
7018
7019 r_type = ELF64_R_TYPE (rel->r_info);
7020 switch (r_type)
7021 {
7022 case R_PPC64_TOC16:
7023 case R_PPC64_TOC16_LO:
7024 case R_PPC64_TOC16_HI:
7025 case R_PPC64_TOC16_HA:
7026 case R_PPC64_TOC16_DS:
7027 case R_PPC64_TOC16_LO_DS:
7028 /* In case we're taking addresses of toc entries. */
7029 case R_PPC64_ADDR64:
7030 break;
7031
7032 default:
7033 continue;
7034 }
7035
7036 r_symndx = ELF64_R_SYM (rel->r_info);
7037 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7038 r_symndx, ibfd))
7039 {
7040 free (used);
7041 goto error_ret;
7042 }
7043
7044 if (sym_sec != toc)
7045 continue;
7046
7047 if (h != NULL)
7048 val = h->root.u.def.value;
7049 else
7050 val = sym->st_value;
7051 val += rel->r_addend;
7052
7053 if (val >= toc->size)
7054 continue;
7055
7056 /* For the toc section, we only mark as used if
7057 this entry itself isn't unused. */
7058 if (sec == toc
7059 && !used[val >> 3]
7060 && (used[rel->r_offset >> 3]
7061 || !skip[rel->r_offset >> 3]))
7062 /* Do all the relocs again, to catch reference
7063 chains. */
7064 repeat = 1;
7065
7066 used[val >> 3] = 1;
7067 }
7068 while (repeat);
7069 }
7070
7071 /* Merge the used and skip arrays. Assume that TOC
7072 doublewords not appearing as either used or unused belong
7073 to to an entry more than one doubleword in size. */
7074 for (drop = skip, keep = used, last = 0, some_unused = 0;
7075 drop < skip + (toc->size + 7) / 8;
7076 ++drop, ++keep)
7077 {
7078 if (*keep)
7079 {
7080 *drop = 0;
7081 last = 0;
7082 }
7083 else if (*drop)
7084 {
7085 some_unused = 1;
7086 last = 1;
7087 }
7088 else
7089 *drop = last;
7090 }
7091
7092 free (used);
7093
7094 if (some_unused)
7095 {
7096 bfd_byte *contents, *src;
7097 unsigned long off;
7098
7099 /* Shuffle the toc contents, and at the same time convert the
7100 skip array from booleans into offsets. */
7101 if (!bfd_malloc_and_get_section (ibfd, toc, &contents))
7102 goto error_ret;
7103
7104 elf_section_data (toc)->this_hdr.contents = contents;
7105
7106 for (src = contents, off = 0, drop = skip;
7107 src < contents + toc->size;
7108 src += 8, ++drop)
7109 {
7110 if (*drop)
7111 {
7112 *drop = (unsigned long) -1;
7113 off += 8;
7114 }
7115 else if (off != 0)
7116 {
7117 *drop = off;
7118 memcpy (src - off, src, 8);
7119 }
7120 }
7121 toc->rawsize = toc->size;
7122 toc->size = src - contents - off;
7123
7124 if (toc->reloc_count != 0)
7125 {
7126 Elf_Internal_Rela *wrel;
7127 bfd_size_type sz;
7128
7129 /* Read toc relocs. */
7130 relstart = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
7131 TRUE);
7132 if (relstart == NULL)
7133 goto error_ret;
7134
7135 /* Remove unused toc relocs, and adjust those we keep. */
7136 wrel = relstart;
7137 for (rel = relstart; rel < relstart + toc->reloc_count; ++rel)
7138 if (skip[rel->r_offset >> 3] != (unsigned long) -1)
7139 {
7140 wrel->r_offset = rel->r_offset - skip[rel->r_offset >> 3];
7141 wrel->r_info = rel->r_info;
7142 wrel->r_addend = rel->r_addend;
7143 ++wrel;
7144 }
7145 else if (!dec_dynrel_count (rel->r_info, toc, info,
7146 &local_syms, NULL, NULL))
7147 goto error_ret;
7148
7149 toc->reloc_count = wrel - relstart;
7150 sz = elf_section_data (toc)->rel_hdr.sh_entsize;
7151 elf_section_data (toc)->rel_hdr.sh_size = toc->reloc_count * sz;
7152 BFD_ASSERT (elf_section_data (toc)->rel_hdr2 == NULL);
7153 }
7154
7155 /* Adjust addends for relocs against the toc section sym. */
7156 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7157 {
7158 if (sec->reloc_count == 0
7159 || elf_discarded_section (sec))
7160 continue;
7161
7162 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7163 TRUE);
7164 if (relstart == NULL)
7165 goto error_ret;
7166
7167 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
7168 {
7169 enum elf_ppc64_reloc_type r_type;
7170 unsigned long r_symndx;
7171 asection *sym_sec;
7172 struct elf_link_hash_entry *h;
7173 Elf_Internal_Sym *sym;
7174
7175 r_type = ELF64_R_TYPE (rel->r_info);
7176 switch (r_type)
7177 {
7178 default:
7179 continue;
7180
7181 case R_PPC64_TOC16:
7182 case R_PPC64_TOC16_LO:
7183 case R_PPC64_TOC16_HI:
7184 case R_PPC64_TOC16_HA:
7185 case R_PPC64_TOC16_DS:
7186 case R_PPC64_TOC16_LO_DS:
7187 case R_PPC64_ADDR64:
7188 break;
7189 }
7190
7191 r_symndx = ELF64_R_SYM (rel->r_info);
7192 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7193 r_symndx, ibfd))
7194 goto error_ret;
7195
7196 if (sym_sec != toc || h != NULL || sym->st_value != 0)
7197 continue;
7198
7199 rel->r_addend -= skip[rel->r_addend >> 3];
7200 }
7201 }
7202
7203 /* We shouldn't have local or global symbols defined in the TOC,
7204 but handle them anyway. */
7205 if (local_syms != NULL)
7206 {
7207 Elf_Internal_Sym *sym;
7208
7209 for (sym = local_syms;
7210 sym < local_syms + symtab_hdr->sh_info;
7211 ++sym)
7212 if (sym->st_shndx != SHN_UNDEF
7213 && (sym->st_shndx < SHN_LORESERVE
7214 || sym->st_shndx > SHN_HIRESERVE)
7215 && sym->st_value != 0
7216 && bfd_section_from_elf_index (ibfd, sym->st_shndx) == toc)
7217 {
7218 if (skip[sym->st_value >> 3] != (unsigned long) -1)
7219 sym->st_value -= skip[sym->st_value >> 3];
7220 else
7221 {
7222 (*_bfd_error_handler)
7223 (_("%s defined in removed toc entry"),
7224 bfd_elf_sym_name (ibfd, symtab_hdr, sym));
7225 sym->st_value = 0;
7226 sym->st_shndx = SHN_ABS;
7227 }
7228 symtab_hdr->contents = (unsigned char *) local_syms;
7229 }
7230 }
7231
7232 /* Finally, adjust any global syms defined in the toc. */
7233 if (toc_inf.global_toc_syms)
7234 {
7235 toc_inf.toc = toc;
7236 toc_inf.skip = skip;
7237 toc_inf.global_toc_syms = FALSE;
7238 elf_link_hash_traverse (elf_hash_table (info), adjust_toc_syms,
7239 &toc_inf);
7240 }
7241 }
7242
7243 if (local_syms != NULL
7244 && symtab_hdr->contents != (unsigned char *) local_syms)
7245 {
7246 if (!info->keep_memory)
7247 free (local_syms);
7248 else
7249 symtab_hdr->contents = (unsigned char *) local_syms;
7250 }
7251 free (skip);
7252 }
7253
7254 return TRUE;
7255 }
7256
7257 /* Allocate space in .plt, .got and associated reloc sections for
7258 dynamic relocs. */
7259
7260 static bfd_boolean
7261 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
7262 {
7263 struct bfd_link_info *info;
7264 struct ppc_link_hash_table *htab;
7265 asection *s;
7266 struct ppc_link_hash_entry *eh;
7267 struct ppc_dyn_relocs *p;
7268 struct got_entry *gent;
7269
7270 if (h->root.type == bfd_link_hash_indirect)
7271 return TRUE;
7272
7273 if (h->root.type == bfd_link_hash_warning)
7274 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7275
7276 info = (struct bfd_link_info *) inf;
7277 htab = ppc_hash_table (info);
7278
7279 if (htab->elf.dynamic_sections_created
7280 && h->dynindx != -1
7281 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, h))
7282 {
7283 struct plt_entry *pent;
7284 bfd_boolean doneone = FALSE;
7285 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
7286 if (pent->plt.refcount > 0)
7287 {
7288 /* If this is the first .plt entry, make room for the special
7289 first entry. */
7290 s = htab->plt;
7291 if (s->size == 0)
7292 s->size += PLT_INITIAL_ENTRY_SIZE;
7293
7294 pent->plt.offset = s->size;
7295
7296 /* Make room for this entry. */
7297 s->size += PLT_ENTRY_SIZE;
7298
7299 /* Make room for the .glink code. */
7300 s = htab->glink;
7301 if (s->size == 0)
7302 s->size += GLINK_CALL_STUB_SIZE;
7303 /* We need bigger stubs past index 32767. */
7304 if (s->size >= GLINK_CALL_STUB_SIZE + 32768*2*4)
7305 s->size += 4;
7306 s->size += 2*4;
7307
7308 /* We also need to make an entry in the .rela.plt section. */
7309 s = htab->relplt;
7310 s->size += sizeof (Elf64_External_Rela);
7311 doneone = TRUE;
7312 }
7313 else
7314 pent->plt.offset = (bfd_vma) -1;
7315 if (!doneone)
7316 {
7317 h->plt.plist = NULL;
7318 h->needs_plt = 0;
7319 }
7320 }
7321 else
7322 {
7323 h->plt.plist = NULL;
7324 h->needs_plt = 0;
7325 }
7326
7327 eh = (struct ppc_link_hash_entry *) h;
7328 /* Run through the TLS GD got entries first if we're changing them
7329 to TPREL. */
7330 if ((eh->tls_mask & TLS_TPRELGD) != 0)
7331 for (gent = h->got.glist; gent != NULL; gent = gent->next)
7332 if (gent->got.refcount > 0
7333 && (gent->tls_type & TLS_GD) != 0)
7334 {
7335 /* This was a GD entry that has been converted to TPREL. If
7336 there happens to be a TPREL entry we can use that one. */
7337 struct got_entry *ent;
7338 for (ent = h->got.glist; ent != NULL; ent = ent->next)
7339 if (ent->got.refcount > 0
7340 && (ent->tls_type & TLS_TPREL) != 0
7341 && ent->addend == gent->addend
7342 && ent->owner == gent->owner)
7343 {
7344 gent->got.refcount = 0;
7345 break;
7346 }
7347
7348 /* If not, then we'll be using our own TPREL entry. */
7349 if (gent->got.refcount != 0)
7350 gent->tls_type = TLS_TLS | TLS_TPREL;
7351 }
7352
7353 for (gent = h->got.glist; gent != NULL; gent = gent->next)
7354 if (gent->got.refcount > 0)
7355 {
7356 bfd_boolean dyn;
7357
7358 /* Make sure this symbol is output as a dynamic symbol.
7359 Undefined weak syms won't yet be marked as dynamic,
7360 nor will all TLS symbols. */
7361 if (h->dynindx == -1
7362 && !h->forced_local)
7363 {
7364 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7365 return FALSE;
7366 }
7367
7368 if ((gent->tls_type & TLS_LD) != 0
7369 && !h->def_dynamic)
7370 {
7371 gent->got.offset = ppc64_tlsld_got (gent->owner)->offset;
7372 continue;
7373 }
7374
7375 s = ppc64_elf_tdata (gent->owner)->got;
7376 gent->got.offset = s->size;
7377 s->size
7378 += (gent->tls_type & eh->tls_mask & (TLS_GD | TLS_LD)) ? 16 : 8;
7379 dyn = htab->elf.dynamic_sections_created;
7380 if ((info->shared
7381 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
7382 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7383 || h->root.type != bfd_link_hash_undefweak))
7384 ppc64_elf_tdata (gent->owner)->relgot->size
7385 += (gent->tls_type & eh->tls_mask & TLS_GD
7386 ? 2 * sizeof (Elf64_External_Rela)
7387 : sizeof (Elf64_External_Rela));
7388 }
7389 else
7390 gent->got.offset = (bfd_vma) -1;
7391
7392 if (eh->dyn_relocs == NULL)
7393 return TRUE;
7394
7395 /* In the shared -Bsymbolic case, discard space allocated for
7396 dynamic pc-relative relocs against symbols which turn out to be
7397 defined in regular objects. For the normal shared case, discard
7398 space for relocs that have become local due to symbol visibility
7399 changes. */
7400
7401 if (info->shared)
7402 {
7403 /* Relocs that use pc_count are those that appear on a call insn,
7404 or certain REL relocs (see MUST_BE_DYN_RELOC) that can be
7405 generated via assembly. We want calls to protected symbols to
7406 resolve directly to the function rather than going via the plt.
7407 If people want function pointer comparisons to work as expected
7408 then they should avoid writing weird assembly. */
7409 if (SYMBOL_CALLS_LOCAL (info, h))
7410 {
7411 struct ppc_dyn_relocs **pp;
7412
7413 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
7414 {
7415 p->count -= p->pc_count;
7416 p->pc_count = 0;
7417 if (p->count == 0)
7418 *pp = p->next;
7419 else
7420 pp = &p->next;
7421 }
7422 }
7423
7424 /* Also discard relocs on undefined weak syms with non-default
7425 visibility. */
7426 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7427 && h->root.type == bfd_link_hash_undefweak)
7428 eh->dyn_relocs = NULL;
7429 }
7430 else if (ELIMINATE_COPY_RELOCS)
7431 {
7432 /* For the non-shared case, discard space for relocs against
7433 symbols which turn out to need copy relocs or are not
7434 dynamic. */
7435
7436 if (!h->non_got_ref
7437 && h->def_dynamic
7438 && !h->def_regular)
7439 {
7440 /* Make sure this symbol is output as a dynamic symbol.
7441 Undefined weak syms won't yet be marked as dynamic. */
7442 if (h->dynindx == -1
7443 && !h->forced_local)
7444 {
7445 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7446 return FALSE;
7447 }
7448
7449 /* If that succeeded, we know we'll be keeping all the
7450 relocs. */
7451 if (h->dynindx != -1)
7452 goto keep;
7453 }
7454
7455 eh->dyn_relocs = NULL;
7456
7457 keep: ;
7458 }
7459
7460 /* Finally, allocate space. */
7461 for (p = eh->dyn_relocs; p != NULL; p = p->next)
7462 {
7463 asection *sreloc = elf_section_data (p->sec)->sreloc;
7464 sreloc->size += p->count * sizeof (Elf64_External_Rela);
7465 }
7466
7467 return TRUE;
7468 }
7469
7470 /* Find any dynamic relocs that apply to read-only sections. */
7471
7472 static bfd_boolean
7473 readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf)
7474 {
7475 struct ppc_link_hash_entry *eh;
7476 struct ppc_dyn_relocs *p;
7477
7478 if (h->root.type == bfd_link_hash_warning)
7479 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7480
7481 eh = (struct ppc_link_hash_entry *) h;
7482 for (p = eh->dyn_relocs; p != NULL; p = p->next)
7483 {
7484 asection *s = p->sec->output_section;
7485
7486 if (s != NULL && (s->flags & SEC_READONLY) != 0)
7487 {
7488 struct bfd_link_info *info = inf;
7489
7490 info->flags |= DF_TEXTREL;
7491
7492 /* Not an error, just cut short the traversal. */
7493 return FALSE;
7494 }
7495 }
7496 return TRUE;
7497 }
7498
7499 /* Set the sizes of the dynamic sections. */
7500
7501 static bfd_boolean
7502 ppc64_elf_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
7503 struct bfd_link_info *info)
7504 {
7505 struct ppc_link_hash_table *htab;
7506 bfd *dynobj;
7507 asection *s;
7508 bfd_boolean relocs;
7509 bfd *ibfd;
7510
7511 htab = ppc_hash_table (info);
7512 dynobj = htab->elf.dynobj;
7513 if (dynobj == NULL)
7514 abort ();
7515
7516 if (htab->elf.dynamic_sections_created)
7517 {
7518 /* Set the contents of the .interp section to the interpreter. */
7519 if (info->executable)
7520 {
7521 s = bfd_get_section_by_name (dynobj, ".interp");
7522 if (s == NULL)
7523 abort ();
7524 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
7525 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
7526 }
7527 }
7528
7529 /* Set up .got offsets for local syms, and space for local dynamic
7530 relocs. */
7531 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
7532 {
7533 struct got_entry **lgot_ents;
7534 struct got_entry **end_lgot_ents;
7535 char *lgot_masks;
7536 bfd_size_type locsymcount;
7537 Elf_Internal_Shdr *symtab_hdr;
7538 asection *srel;
7539
7540 if (!is_ppc64_elf_target (ibfd->xvec))
7541 continue;
7542
7543 if (ppc64_tlsld_got (ibfd)->refcount > 0)
7544 {
7545 s = ppc64_elf_tdata (ibfd)->got;
7546 ppc64_tlsld_got (ibfd)->offset = s->size;
7547 s->size += 16;
7548 if (info->shared)
7549 {
7550 srel = ppc64_elf_tdata (ibfd)->relgot;
7551 srel->size += sizeof (Elf64_External_Rela);
7552 }
7553 }
7554 else
7555 ppc64_tlsld_got (ibfd)->offset = (bfd_vma) -1;
7556
7557 for (s = ibfd->sections; s != NULL; s = s->next)
7558 {
7559 struct ppc_dyn_relocs *p;
7560
7561 for (p = *((struct ppc_dyn_relocs **)
7562 &elf_section_data (s)->local_dynrel);
7563 p != NULL;
7564 p = p->next)
7565 {
7566 if (!bfd_is_abs_section (p->sec)
7567 && bfd_is_abs_section (p->sec->output_section))
7568 {
7569 /* Input section has been discarded, either because
7570 it is a copy of a linkonce section or due to
7571 linker script /DISCARD/, so we'll be discarding
7572 the relocs too. */
7573 }
7574 else if (p->count != 0)
7575 {
7576 srel = elf_section_data (p->sec)->sreloc;
7577 srel->size += p->count * sizeof (Elf64_External_Rela);
7578 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
7579 info->flags |= DF_TEXTREL;
7580 }
7581 }
7582 }
7583
7584 lgot_ents = elf_local_got_ents (ibfd);
7585 if (!lgot_ents)
7586 continue;
7587
7588 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
7589 locsymcount = symtab_hdr->sh_info;
7590 end_lgot_ents = lgot_ents + locsymcount;
7591 lgot_masks = (char *) end_lgot_ents;
7592 s = ppc64_elf_tdata (ibfd)->got;
7593 srel = ppc64_elf_tdata (ibfd)->relgot;
7594 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
7595 {
7596 struct got_entry *ent;
7597
7598 for (ent = *lgot_ents; ent != NULL; ent = ent->next)
7599 if (ent->got.refcount > 0)
7600 {
7601 if ((ent->tls_type & *lgot_masks & TLS_LD) != 0)
7602 {
7603 if (ppc64_tlsld_got (ibfd)->offset == (bfd_vma) -1)
7604 {
7605 ppc64_tlsld_got (ibfd)->offset = s->size;
7606 s->size += 16;
7607 if (info->shared)
7608 srel->size += sizeof (Elf64_External_Rela);
7609 }
7610 ent->got.offset = ppc64_tlsld_got (ibfd)->offset;
7611 }
7612 else
7613 {
7614 ent->got.offset = s->size;
7615 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
7616 {
7617 s->size += 16;
7618 if (info->shared)
7619 srel->size += 2 * sizeof (Elf64_External_Rela);
7620 }
7621 else
7622 {
7623 s->size += 8;
7624 if (info->shared)
7625 srel->size += sizeof (Elf64_External_Rela);
7626 }
7627 }
7628 }
7629 else
7630 ent->got.offset = (bfd_vma) -1;
7631 }
7632 }
7633
7634 /* Allocate global sym .plt and .got entries, and space for global
7635 sym dynamic relocs. */
7636 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
7637
7638 /* We now have determined the sizes of the various dynamic sections.
7639 Allocate memory for them. */
7640 relocs = FALSE;
7641 for (s = dynobj->sections; s != NULL; s = s->next)
7642 {
7643 if ((s->flags & SEC_LINKER_CREATED) == 0)
7644 continue;
7645
7646 if (s == htab->brlt || s == htab->relbrlt)
7647 /* These haven't been allocated yet; don't strip. */
7648 continue;
7649 else if (s == htab->got
7650 || s == htab->plt
7651 || s == htab->glink)
7652 {
7653 /* Strip this section if we don't need it; see the
7654 comment below. */
7655 }
7656 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
7657 {
7658 if (s->size == 0)
7659 {
7660 /* If we don't need this section, strip it from the
7661 output file. This is mostly to handle .rela.bss and
7662 .rela.plt. We must create both sections in
7663 create_dynamic_sections, because they must be created
7664 before the linker maps input sections to output
7665 sections. The linker does that before
7666 adjust_dynamic_symbol is called, and it is that
7667 function which decides whether anything needs to go
7668 into these sections. */
7669 }
7670 else
7671 {
7672 if (s != htab->relplt)
7673 relocs = TRUE;
7674
7675 /* We use the reloc_count field as a counter if we need
7676 to copy relocs into the output file. */
7677 s->reloc_count = 0;
7678 }
7679 }
7680 else
7681 {
7682 /* It's not one of our sections, so don't allocate space. */
7683 continue;
7684 }
7685
7686 if (s->size == 0)
7687 {
7688 _bfd_strip_section_from_output (info, s);
7689 continue;
7690 }
7691
7692 /* .plt is in the bss section. We don't initialise it. */
7693 if (s == htab->plt)
7694 continue;
7695
7696 /* Allocate memory for the section contents. We use bfd_zalloc
7697 here in case unused entries are not reclaimed before the
7698 section's contents are written out. This should not happen,
7699 but this way if it does we get a R_PPC64_NONE reloc in .rela
7700 sections instead of garbage.
7701 We also rely on the section contents being zero when writing
7702 the GOT. */
7703 s->contents = bfd_zalloc (dynobj, s->size);
7704 if (s->contents == NULL)
7705 return FALSE;
7706 }
7707
7708 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
7709 {
7710 if (!is_ppc64_elf_target (ibfd->xvec))
7711 continue;
7712
7713 s = ppc64_elf_tdata (ibfd)->got;
7714 if (s != NULL && s != htab->got)
7715 {
7716 if (s->size == 0)
7717 _bfd_strip_section_from_output (info, s);
7718 else
7719 {
7720 s->contents = bfd_zalloc (ibfd, s->size);
7721 if (s->contents == NULL)
7722 return FALSE;
7723 }
7724 }
7725 s = ppc64_elf_tdata (ibfd)->relgot;
7726 if (s != NULL)
7727 {
7728 if (s->size == 0)
7729 _bfd_strip_section_from_output (info, s);
7730 else
7731 {
7732 s->contents = bfd_zalloc (ibfd, s->size);
7733 if (s->contents == NULL)
7734 return FALSE;
7735 relocs = TRUE;
7736 s->reloc_count = 0;
7737 }
7738 }
7739 }
7740
7741 if (htab->elf.dynamic_sections_created)
7742 {
7743 /* Add some entries to the .dynamic section. We fill in the
7744 values later, in ppc64_elf_finish_dynamic_sections, but we
7745 must add the entries now so that we get the correct size for
7746 the .dynamic section. The DT_DEBUG entry is filled in by the
7747 dynamic linker and used by the debugger. */
7748 #define add_dynamic_entry(TAG, VAL) \
7749 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
7750
7751 if (info->executable)
7752 {
7753 if (!add_dynamic_entry (DT_DEBUG, 0))
7754 return FALSE;
7755 }
7756
7757 if (htab->plt != NULL && htab->plt->size != 0)
7758 {
7759 if (!add_dynamic_entry (DT_PLTGOT, 0)
7760 || !add_dynamic_entry (DT_PLTRELSZ, 0)
7761 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
7762 || !add_dynamic_entry (DT_JMPREL, 0)
7763 || !add_dynamic_entry (DT_PPC64_GLINK, 0))
7764 return FALSE;
7765 }
7766
7767 if (NO_OPD_RELOCS)
7768 {
7769 if (!add_dynamic_entry (DT_PPC64_OPD, 0)
7770 || !add_dynamic_entry (DT_PPC64_OPDSZ, 0))
7771 return FALSE;
7772 }
7773
7774 if (relocs)
7775 {
7776 if (!add_dynamic_entry (DT_RELA, 0)
7777 || !add_dynamic_entry (DT_RELASZ, 0)
7778 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
7779 return FALSE;
7780
7781 /* If any dynamic relocs apply to a read-only section,
7782 then we need a DT_TEXTREL entry. */
7783 if ((info->flags & DF_TEXTREL) == 0)
7784 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, info);
7785
7786 if ((info->flags & DF_TEXTREL) != 0)
7787 {
7788 if (!add_dynamic_entry (DT_TEXTREL, 0))
7789 return FALSE;
7790 }
7791 }
7792 }
7793 #undef add_dynamic_entry
7794
7795 return TRUE;
7796 }
7797
7798 /* Determine the type of stub needed, if any, for a call. */
7799
7800 static inline enum ppc_stub_type
7801 ppc_type_of_stub (asection *input_sec,
7802 const Elf_Internal_Rela *rel,
7803 struct ppc_link_hash_entry **hash,
7804 bfd_vma destination)
7805 {
7806 struct ppc_link_hash_entry *h = *hash;
7807 bfd_vma location;
7808 bfd_vma branch_offset;
7809 bfd_vma max_branch_offset;
7810 enum elf_ppc64_reloc_type r_type;
7811
7812 if (h != NULL)
7813 {
7814 if (h->oh != NULL
7815 && h->oh->is_func_descriptor)
7816 h = h->oh;
7817
7818 if (h->elf.dynindx != -1)
7819 {
7820 struct plt_entry *ent;
7821
7822 for (ent = h->elf.plt.plist; ent != NULL; ent = ent->next)
7823 if (ent->addend == rel->r_addend
7824 && ent->plt.offset != (bfd_vma) -1)
7825 {
7826 *hash = h;
7827 return ppc_stub_plt_call;
7828 }
7829 }
7830
7831 if (!(h->elf.root.type == bfd_link_hash_defined
7832 || h->elf.root.type == bfd_link_hash_defweak)
7833 || h->elf.root.u.def.section->output_section == NULL)
7834 return ppc_stub_none;
7835 }
7836
7837 /* Determine where the call point is. */
7838 location = (input_sec->output_offset
7839 + input_sec->output_section->vma
7840 + rel->r_offset);
7841
7842 branch_offset = destination - location;
7843 r_type = ELF64_R_TYPE (rel->r_info);
7844
7845 /* Determine if a long branch stub is needed. */
7846 max_branch_offset = 1 << 25;
7847 if (r_type != R_PPC64_REL24)
7848 max_branch_offset = 1 << 15;
7849
7850 if (branch_offset + max_branch_offset >= 2 * max_branch_offset)
7851 /* We need a stub. Figure out whether a long_branch or plt_branch
7852 is needed later. */
7853 return ppc_stub_long_branch;
7854
7855 return ppc_stub_none;
7856 }
7857
7858 /* Build a .plt call stub. */
7859
7860 static inline bfd_byte *
7861 build_plt_stub (bfd *obfd, bfd_byte *p, int offset)
7862 {
7863 #define PPC_LO(v) ((v) & 0xffff)
7864 #define PPC_HI(v) (((v) >> 16) & 0xffff)
7865 #define PPC_HA(v) PPC_HI ((v) + 0x8000)
7866
7867 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (offset), p), p += 4;
7868 bfd_put_32 (obfd, STD_R2_40R1, p), p += 4;
7869 bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset), p), p += 4;
7870 if (PPC_HA (offset + 8) != PPC_HA (offset))
7871 bfd_put_32 (obfd, ADDIS_R12_R12 | 1, p), p += 4;
7872 offset += 8;
7873 bfd_put_32 (obfd, LD_R2_0R12 | PPC_LO (offset), p), p += 4;
7874 if (PPC_HA (offset + 8) != PPC_HA (offset))
7875 bfd_put_32 (obfd, ADDIS_R12_R12 | 1, p), p += 4;
7876 offset += 8;
7877 bfd_put_32 (obfd, MTCTR_R11, p), p += 4;
7878 bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset), p), p += 4;
7879 bfd_put_32 (obfd, BCTR, p), p += 4;
7880 return p;
7881 }
7882
7883 static bfd_boolean
7884 ppc_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
7885 {
7886 struct ppc_stub_hash_entry *stub_entry;
7887 struct ppc_branch_hash_entry *br_entry;
7888 struct bfd_link_info *info;
7889 struct ppc_link_hash_table *htab;
7890 bfd_byte *loc;
7891 bfd_byte *p;
7892 unsigned int indx;
7893 struct plt_entry *ent;
7894 bfd_vma dest, off;
7895 int size;
7896
7897 /* Massage our args to the form they really have. */
7898 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
7899 info = in_arg;
7900
7901 htab = ppc_hash_table (info);
7902
7903 /* Make a note of the offset within the stubs for this entry. */
7904 stub_entry->stub_offset = stub_entry->stub_sec->size;
7905 loc = stub_entry->stub_sec->contents + stub_entry->stub_offset;
7906
7907 htab->stub_count[stub_entry->stub_type - 1] += 1;
7908 switch (stub_entry->stub_type)
7909 {
7910 case ppc_stub_long_branch:
7911 case ppc_stub_long_branch_r2off:
7912 /* Branches are relative. This is where we are going to. */
7913 off = dest = (stub_entry->target_value
7914 + stub_entry->target_section->output_offset
7915 + stub_entry->target_section->output_section->vma);
7916
7917 /* And this is where we are coming from. */
7918 off -= (stub_entry->stub_offset
7919 + stub_entry->stub_sec->output_offset
7920 + stub_entry->stub_sec->output_section->vma);
7921
7922 if (stub_entry->stub_type != ppc_stub_long_branch_r2off)
7923 size = 4;
7924 else
7925 {
7926 bfd_vma r2off;
7927
7928 r2off = (htab->stub_group[stub_entry->target_section->id].toc_off
7929 - htab->stub_group[stub_entry->id_sec->id].toc_off);
7930 bfd_put_32 (htab->stub_bfd, STD_R2_40R1, loc);
7931 loc += 4;
7932 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
7933 loc += 4;
7934 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
7935 loc += 4;
7936 off -= 12;
7937 size = 16;
7938 }
7939 bfd_put_32 (htab->stub_bfd, B_DOT | (off & 0x3fffffc), loc);
7940
7941 BFD_ASSERT (off + (1 << 25) < (bfd_vma) (1 << 26));
7942
7943 if (info->emitrelocations)
7944 {
7945 Elf_Internal_Rela *relocs, *r;
7946 struct bfd_elf_section_data *elfsec_data;
7947
7948 elfsec_data = elf_section_data (stub_entry->stub_sec);
7949 relocs = elfsec_data->relocs;
7950 if (relocs == NULL)
7951 {
7952 bfd_size_type relsize;
7953 relsize = stub_entry->stub_sec->reloc_count * sizeof (*relocs);
7954 relocs = bfd_alloc (htab->stub_bfd, relsize);
7955 if (relocs == NULL)
7956 return FALSE;
7957 elfsec_data->relocs = relocs;
7958 elfsec_data->rel_hdr.sh_size = relsize;
7959 elfsec_data->rel_hdr.sh_entsize = 24;
7960 stub_entry->stub_sec->reloc_count = 0;
7961 }
7962 r = relocs + stub_entry->stub_sec->reloc_count;
7963 stub_entry->stub_sec->reloc_count += 1;
7964 r->r_offset = loc - stub_entry->stub_sec->contents;
7965 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
7966 r->r_addend = dest;
7967 if (stub_entry->h != NULL)
7968 {
7969 struct elf_link_hash_entry **hashes;
7970 unsigned long symndx;
7971 struct ppc_link_hash_entry *h;
7972
7973 hashes = elf_sym_hashes (htab->stub_bfd);
7974 if (hashes == NULL)
7975 {
7976 bfd_size_type hsize;
7977
7978 hsize = (htab->stub_globals + 1) * sizeof (*hashes);
7979 hashes = bfd_zalloc (htab->stub_bfd, hsize);
7980 if (hashes == NULL)
7981 return FALSE;
7982 elf_sym_hashes (htab->stub_bfd) = hashes;
7983 htab->stub_globals = 1;
7984 }
7985 symndx = htab->stub_globals++;
7986 h = stub_entry->h;
7987 hashes[symndx] = &h->elf;
7988 r->r_info = ELF64_R_INFO (symndx, R_PPC64_REL24);
7989 if (h->oh != NULL && h->oh->is_func)
7990 h = h->oh;
7991 if (h->elf.root.u.def.section != stub_entry->target_section)
7992 /* H is an opd symbol. The addend must be zero. */
7993 r->r_addend = 0;
7994 else
7995 {
7996 off = (h->elf.root.u.def.value
7997 + h->elf.root.u.def.section->output_offset
7998 + h->elf.root.u.def.section->output_section->vma);
7999 r->r_addend -= off;
8000 }
8001 }
8002 }
8003 break;
8004
8005 case ppc_stub_plt_branch:
8006 case ppc_stub_plt_branch_r2off:
8007 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
8008 stub_entry->root.string + 9,
8009 FALSE, FALSE);
8010 if (br_entry == NULL)
8011 {
8012 (*_bfd_error_handler) (_("can't find branch stub `%s'"),
8013 stub_entry->root.string + 9);
8014 htab->stub_error = TRUE;
8015 return FALSE;
8016 }
8017
8018 off = (stub_entry->target_value
8019 + stub_entry->target_section->output_offset
8020 + stub_entry->target_section->output_section->vma);
8021
8022 bfd_put_64 (htab->brlt->owner, off,
8023 htab->brlt->contents + br_entry->offset);
8024
8025 if (htab->relbrlt != NULL)
8026 {
8027 /* Create a reloc for the branch lookup table entry. */
8028 Elf_Internal_Rela rela;
8029 bfd_byte *rl;
8030
8031 rela.r_offset = (br_entry->offset
8032 + htab->brlt->output_offset
8033 + htab->brlt->output_section->vma);
8034 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
8035 rela.r_addend = off;
8036
8037 rl = htab->relbrlt->contents;
8038 rl += htab->relbrlt->reloc_count++ * sizeof (Elf64_External_Rela);
8039 bfd_elf64_swap_reloca_out (htab->relbrlt->owner, &rela, rl);
8040 }
8041
8042 off = (br_entry->offset
8043 + htab->brlt->output_offset
8044 + htab->brlt->output_section->vma
8045 - elf_gp (htab->brlt->output_section->owner)
8046 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8047
8048 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
8049 {
8050 (*_bfd_error_handler)
8051 (_("linkage table error against `%s'"),
8052 stub_entry->root.string);
8053 bfd_set_error (bfd_error_bad_value);
8054 htab->stub_error = TRUE;
8055 return FALSE;
8056 }
8057
8058 indx = off;
8059 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
8060 {
8061 bfd_put_32 (htab->stub_bfd, ADDIS_R12_R2 | PPC_HA (indx), loc);
8062 loc += 4;
8063 bfd_put_32 (htab->stub_bfd, LD_R11_0R12 | PPC_LO (indx), loc);
8064 size = 16;
8065 }
8066 else
8067 {
8068 bfd_vma r2off;
8069
8070 r2off = (htab->stub_group[stub_entry->target_section->id].toc_off
8071 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8072 bfd_put_32 (htab->stub_bfd, STD_R2_40R1, loc);
8073 loc += 4;
8074 bfd_put_32 (htab->stub_bfd, ADDIS_R12_R2 | PPC_HA (indx), loc);
8075 loc += 4;
8076 bfd_put_32 (htab->stub_bfd, LD_R11_0R12 | PPC_LO (indx), loc);
8077 loc += 4;
8078 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
8079 loc += 4;
8080 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
8081 size = 28;
8082 }
8083 loc += 4;
8084 bfd_put_32 (htab->stub_bfd, MTCTR_R11, loc);
8085 loc += 4;
8086 bfd_put_32 (htab->stub_bfd, BCTR, loc);
8087 break;
8088
8089 case ppc_stub_plt_call:
8090 /* Do the best we can for shared libraries built without
8091 exporting ".foo" for each "foo". This can happen when symbol
8092 versioning scripts strip all bar a subset of symbols. */
8093 if (stub_entry->h->oh != NULL
8094 && stub_entry->h->oh->elf.root.type != bfd_link_hash_defined
8095 && stub_entry->h->oh->elf.root.type != bfd_link_hash_defweak)
8096 {
8097 /* Point the symbol at the stub. There may be multiple stubs,
8098 we don't really care; The main thing is to make this sym
8099 defined somewhere. Maybe defining the symbol in the stub
8100 section is a silly idea. If we didn't do this, htab->top_id
8101 could disappear. */
8102 stub_entry->h->oh->elf.root.type = bfd_link_hash_defined;
8103 stub_entry->h->oh->elf.root.u.def.section = stub_entry->stub_sec;
8104 stub_entry->h->oh->elf.root.u.def.value = stub_entry->stub_offset;
8105 }
8106
8107 /* Now build the stub. */
8108 off = (bfd_vma) -1;
8109 for (ent = stub_entry->h->elf.plt.plist; ent != NULL; ent = ent->next)
8110 if (ent->addend == stub_entry->addend)
8111 {
8112 off = ent->plt.offset;
8113 break;
8114 }
8115 if (off >= (bfd_vma) -2)
8116 abort ();
8117
8118 off &= ~ (bfd_vma) 1;
8119 off += (htab->plt->output_offset
8120 + htab->plt->output_section->vma
8121 - elf_gp (htab->plt->output_section->owner)
8122 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8123
8124 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
8125 {
8126 (*_bfd_error_handler)
8127 (_("linkage table error against `%s'"),
8128 stub_entry->h->elf.root.root.string);
8129 bfd_set_error (bfd_error_bad_value);
8130 htab->stub_error = TRUE;
8131 return FALSE;
8132 }
8133
8134 p = build_plt_stub (htab->stub_bfd, loc, off);
8135 size = p - loc;
8136 break;
8137
8138 default:
8139 BFD_FAIL ();
8140 return FALSE;
8141 }
8142
8143 stub_entry->stub_sec->size += size;
8144
8145 if (htab->emit_stub_syms)
8146 {
8147 struct elf_link_hash_entry *h;
8148 size_t len1, len2;
8149 char *name;
8150 const char *const stub_str[] = { "long_branch",
8151 "long_branch_r2off",
8152 "plt_branch",
8153 "plt_branch_r2off",
8154 "plt_call" };
8155
8156 len1 = strlen (stub_str[stub_entry->stub_type - 1]);
8157 len2 = strlen (stub_entry->root.string);
8158 name = bfd_malloc (len1 + len2 + 2);
8159 if (name == NULL)
8160 return FALSE;
8161 memcpy (name, stub_entry->root.string, 9);
8162 memcpy (name + 9, stub_str[stub_entry->stub_type - 1], len1);
8163 memcpy (name + len1 + 9, stub_entry->root.string + 8, len2 - 8 + 1);
8164 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
8165 if (h == NULL)
8166 return FALSE;
8167 if (h->root.type == bfd_link_hash_new)
8168 {
8169 h->root.type = bfd_link_hash_defined;
8170 h->root.u.def.section = stub_entry->stub_sec;
8171 h->root.u.def.value = stub_entry->stub_offset;
8172 h->ref_regular = 1;
8173 h->def_regular = 1;
8174 h->ref_regular_nonweak = 1;
8175 h->forced_local = 1;
8176 h->non_elf = 0;
8177 }
8178 }
8179
8180 return TRUE;
8181 }
8182
8183 /* As above, but don't actually build the stub. Just bump offset so
8184 we know stub section sizes, and select plt_branch stubs where
8185 long_branch stubs won't do. */
8186
8187 static bfd_boolean
8188 ppc_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
8189 {
8190 struct ppc_stub_hash_entry *stub_entry;
8191 struct bfd_link_info *info;
8192 struct ppc_link_hash_table *htab;
8193 bfd_vma off;
8194 int size;
8195
8196 /* Massage our args to the form they really have. */
8197 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
8198 info = in_arg;
8199
8200 htab = ppc_hash_table (info);
8201
8202 if (stub_entry->stub_type == ppc_stub_plt_call)
8203 {
8204 struct plt_entry *ent;
8205 off = (bfd_vma) -1;
8206 for (ent = stub_entry->h->elf.plt.plist; ent != NULL; ent = ent->next)
8207 if (ent->addend == stub_entry->addend)
8208 {
8209 off = ent->plt.offset & ~(bfd_vma) 1;
8210 break;
8211 }
8212 if (off >= (bfd_vma) -2)
8213 abort ();
8214 off += (htab->plt->output_offset
8215 + htab->plt->output_section->vma
8216 - elf_gp (htab->plt->output_section->owner)
8217 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8218
8219 size = PLT_CALL_STUB_SIZE;
8220 if (PPC_HA (off + 16) != PPC_HA (off))
8221 size += 4;
8222 }
8223 else
8224 {
8225 /* ppc_stub_long_branch or ppc_stub_plt_branch, or their r2off
8226 variants. */
8227 off = (stub_entry->target_value
8228 + stub_entry->target_section->output_offset
8229 + stub_entry->target_section->output_section->vma);
8230 off -= (stub_entry->stub_sec->size
8231 + stub_entry->stub_sec->output_offset
8232 + stub_entry->stub_sec->output_section->vma);
8233
8234 /* Reset the stub type from the plt variant in case we now
8235 can reach with a shorter stub. */
8236 if (stub_entry->stub_type >= ppc_stub_plt_branch)
8237 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
8238
8239 size = 4;
8240 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
8241 {
8242 off -= 12;
8243 size = 16;
8244 }
8245
8246 /* If the branch offset if too big, use a ppc_stub_plt_branch. */
8247 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
8248 {
8249 struct ppc_branch_hash_entry *br_entry;
8250
8251 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
8252 stub_entry->root.string + 9,
8253 TRUE, FALSE);
8254 if (br_entry == NULL)
8255 {
8256 (*_bfd_error_handler) (_("can't build branch stub `%s'"),
8257 stub_entry->root.string + 9);
8258 htab->stub_error = TRUE;
8259 return FALSE;
8260 }
8261
8262 if (br_entry->iter != htab->stub_iteration)
8263 {
8264 br_entry->iter = htab->stub_iteration;
8265 br_entry->offset = htab->brlt->size;
8266 htab->brlt->size += 8;
8267
8268 if (htab->relbrlt != NULL)
8269 htab->relbrlt->size += sizeof (Elf64_External_Rela);
8270 }
8271
8272 stub_entry->stub_type += ppc_stub_plt_branch - ppc_stub_long_branch;
8273 size = 16;
8274 if (stub_entry->stub_type != ppc_stub_plt_branch)
8275 size = 28;
8276 }
8277
8278 if (info->emitrelocations
8279 && (stub_entry->stub_type == ppc_stub_long_branch
8280 || stub_entry->stub_type == ppc_stub_long_branch_r2off))
8281 stub_entry->stub_sec->reloc_count += 1;
8282 }
8283
8284 stub_entry->stub_sec->size += size;
8285 return TRUE;
8286 }
8287
8288 /* Set up various things so that we can make a list of input sections
8289 for each output section included in the link. Returns -1 on error,
8290 0 when no stubs will be needed, and 1 on success. */
8291
8292 int
8293 ppc64_elf_setup_section_lists (bfd *output_bfd,
8294 struct bfd_link_info *info,
8295 int no_multi_toc)
8296 {
8297 bfd *input_bfd;
8298 int top_id, top_index, id;
8299 asection *section;
8300 asection **input_list;
8301 bfd_size_type amt;
8302 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8303
8304 htab->no_multi_toc = no_multi_toc;
8305
8306 if (htab->brlt == NULL)
8307 return 0;
8308
8309 /* Find the top input section id. */
8310 for (input_bfd = info->input_bfds, top_id = 3;
8311 input_bfd != NULL;
8312 input_bfd = input_bfd->link_next)
8313 {
8314 for (section = input_bfd->sections;
8315 section != NULL;
8316 section = section->next)
8317 {
8318 if (top_id < section->id)
8319 top_id = section->id;
8320 }
8321 }
8322
8323 htab->top_id = top_id;
8324 amt = sizeof (struct map_stub) * (top_id + 1);
8325 htab->stub_group = bfd_zmalloc (amt);
8326 if (htab->stub_group == NULL)
8327 return -1;
8328
8329 /* Set toc_off for com, und, abs and ind sections. */
8330 for (id = 0; id < 3; id++)
8331 htab->stub_group[id].toc_off = TOC_BASE_OFF;
8332
8333 elf_gp (output_bfd) = htab->toc_curr = ppc64_elf_toc (output_bfd);
8334
8335 /* We can't use output_bfd->section_count here to find the top output
8336 section index as some sections may have been removed, and
8337 _bfd_strip_section_from_output doesn't renumber the indices. */
8338 for (section = output_bfd->sections, top_index = 0;
8339 section != NULL;
8340 section = section->next)
8341 {
8342 if (top_index < section->index)
8343 top_index = section->index;
8344 }
8345
8346 htab->top_index = top_index;
8347 amt = sizeof (asection *) * (top_index + 1);
8348 input_list = bfd_zmalloc (amt);
8349 htab->input_list = input_list;
8350 if (input_list == NULL)
8351 return -1;
8352
8353 return 1;
8354 }
8355
8356 /* The linker repeatedly calls this function for each TOC input section
8357 and linker generated GOT section. Group input bfds such that the toc
8358 within a group is less than 64k in size. Will break with cute linker
8359 scripts that play games with dot in the output toc section. */
8360
8361 void
8362 ppc64_elf_next_toc_section (struct bfd_link_info *info, asection *isec)
8363 {
8364 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8365
8366 if (!htab->no_multi_toc)
8367 {
8368 bfd_vma addr = isec->output_offset + isec->output_section->vma;
8369 bfd_vma off = addr - htab->toc_curr;
8370
8371 if (off + isec->size > 0x10000)
8372 htab->toc_curr = addr;
8373
8374 elf_gp (isec->owner) = (htab->toc_curr
8375 - elf_gp (isec->output_section->owner)
8376 + TOC_BASE_OFF);
8377 }
8378 }
8379
8380 /* Called after the last call to the above function. */
8381
8382 void
8383 ppc64_elf_reinit_toc (bfd *output_bfd, struct bfd_link_info *info)
8384 {
8385 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8386
8387 htab->multi_toc_needed = htab->toc_curr != elf_gp (output_bfd);
8388
8389 /* toc_curr tracks the TOC offset used for code sections below in
8390 ppc64_elf_next_input_section. Start off at 0x8000. */
8391 htab->toc_curr = TOC_BASE_OFF;
8392 }
8393
8394 /* No toc references were found in ISEC. If the code in ISEC makes no
8395 calls, then there's no need to use toc adjusting stubs when branching
8396 into ISEC. Actually, indirect calls from ISEC are OK as they will
8397 load r2. Returns -1 on error, 0 for no stub needed, 1 for stub
8398 needed, and 2 if a cyclical call-graph was found but no other reason
8399 for a stub was detected. If called from the top level, a return of
8400 2 means the same as a return of 0. */
8401
8402 static int
8403 toc_adjusting_stub_needed (struct bfd_link_info *info, asection *isec)
8404 {
8405 Elf_Internal_Rela *relstart, *rel;
8406 Elf_Internal_Sym *local_syms;
8407 int ret;
8408 struct ppc_link_hash_table *htab;
8409
8410 /* We know none of our code bearing sections will need toc stubs. */
8411 if ((isec->flags & SEC_LINKER_CREATED) != 0)
8412 return 0;
8413
8414 if (isec->size == 0)
8415 return 0;
8416
8417 if (isec->output_section == NULL)
8418 return 0;
8419
8420 /* Hack for linux kernel. .fixup contains branches, but only back to
8421 the function that hit an exception. */
8422 if (strcmp (isec->name, ".fixup") == 0)
8423 return 0;
8424
8425 if (isec->reloc_count == 0)
8426 return 0;
8427
8428 relstart = _bfd_elf_link_read_relocs (isec->owner, isec, NULL, NULL,
8429 info->keep_memory);
8430 if (relstart == NULL)
8431 return -1;
8432
8433 /* Look for branches to outside of this section. */
8434 local_syms = NULL;
8435 ret = 0;
8436 htab = ppc_hash_table (info);
8437 for (rel = relstart; rel < relstart + isec->reloc_count; ++rel)
8438 {
8439 enum elf_ppc64_reloc_type r_type;
8440 unsigned long r_symndx;
8441 struct elf_link_hash_entry *h;
8442 Elf_Internal_Sym *sym;
8443 asection *sym_sec;
8444 long *opd_adjust;
8445 bfd_vma sym_value;
8446 bfd_vma dest;
8447
8448 r_type = ELF64_R_TYPE (rel->r_info);
8449 if (r_type != R_PPC64_REL24
8450 && r_type != R_PPC64_REL14
8451 && r_type != R_PPC64_REL14_BRTAKEN
8452 && r_type != R_PPC64_REL14_BRNTAKEN)
8453 continue;
8454
8455 r_symndx = ELF64_R_SYM (rel->r_info);
8456 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, r_symndx,
8457 isec->owner))
8458 {
8459 ret = -1;
8460 break;
8461 }
8462
8463 /* Calls to dynamic lib functions go through a plt call stub
8464 that uses r2. Branches to undefined symbols might be a call
8465 using old-style dot symbols that can be satisfied by a plt
8466 call into a new-style dynamic library. */
8467 if (sym_sec == NULL)
8468 {
8469 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
8470 if (eh != NULL
8471 && eh->oh != NULL
8472 && eh->oh->elf.plt.plist != NULL)
8473 {
8474 ret = 1;
8475 break;
8476 }
8477
8478 /* Ignore other undefined symbols. */
8479 continue;
8480 }
8481
8482 /* Assume branches to other sections not included in the link need
8483 stubs too, to cover -R and absolute syms. */
8484 if (sym_sec->output_section == NULL)
8485 {
8486 ret = 1;
8487 break;
8488 }
8489
8490 if (h == NULL)
8491 sym_value = sym->st_value;
8492 else
8493 {
8494 if (h->root.type != bfd_link_hash_defined
8495 && h->root.type != bfd_link_hash_defweak)
8496 abort ();
8497 sym_value = h->root.u.def.value;
8498 }
8499 sym_value += rel->r_addend;
8500
8501 /* If this branch reloc uses an opd sym, find the code section. */
8502 opd_adjust = get_opd_info (sym_sec);
8503 if (opd_adjust != NULL)
8504 {
8505 if (h == NULL)
8506 {
8507 long adjust;
8508
8509 adjust = opd_adjust[sym->st_value / 8];
8510 if (adjust == -1)
8511 /* Assume deleted functions won't ever be called. */
8512 continue;
8513 sym_value += adjust;
8514 }
8515
8516 dest = opd_entry_value (sym_sec, sym_value, &sym_sec, NULL);
8517 if (dest == (bfd_vma) -1)
8518 continue;
8519 }
8520 else
8521 dest = (sym_value
8522 + sym_sec->output_offset
8523 + sym_sec->output_section->vma);
8524
8525 /* Ignore branch to self. */
8526 if (sym_sec == isec)
8527 continue;
8528
8529 /* If the called function uses the toc, we need a stub. */
8530 if (sym_sec->has_toc_reloc
8531 || sym_sec->makes_toc_func_call)
8532 {
8533 ret = 1;
8534 break;
8535 }
8536
8537 /* Assume any branch that needs a long branch stub might in fact
8538 need a plt_branch stub. A plt_branch stub uses r2. */
8539 else if (dest - (isec->output_offset
8540 + isec->output_section->vma
8541 + rel->r_offset) + (1 << 25) >= (2 << 25))
8542 {
8543 ret = 1;
8544 break;
8545 }
8546
8547 /* If calling back to a section in the process of being tested, we
8548 can't say for sure that no toc adjusting stubs are needed, so
8549 don't return zero. */
8550 else if (sym_sec->call_check_in_progress)
8551 ret = 2;
8552
8553 /* Branches to another section that itself doesn't have any TOC
8554 references are OK. Recursively call ourselves to check. */
8555 else if (sym_sec->id <= htab->top_id
8556 && htab->stub_group[sym_sec->id].toc_off == 0)
8557 {
8558 int recur;
8559
8560 /* Mark current section as indeterminate, so that other
8561 sections that call back to current won't be marked as
8562 known. */
8563 isec->call_check_in_progress = 1;
8564 recur = toc_adjusting_stub_needed (info, sym_sec);
8565 isec->call_check_in_progress = 0;
8566
8567 if (recur < 0)
8568 {
8569 /* An error. Exit. */
8570 ret = -1;
8571 break;
8572 }
8573 else if (recur <= 1)
8574 {
8575 /* Known result. Mark as checked and set section flag. */
8576 htab->stub_group[sym_sec->id].toc_off = 1;
8577 if (recur != 0)
8578 {
8579 sym_sec->makes_toc_func_call = 1;
8580 ret = 1;
8581 break;
8582 }
8583 }
8584 else
8585 {
8586 /* Unknown result. Continue checking. */
8587 ret = 2;
8588 }
8589 }
8590 }
8591
8592 if (local_syms != NULL
8593 && (elf_tdata (isec->owner)->symtab_hdr.contents
8594 != (unsigned char *) local_syms))
8595 free (local_syms);
8596 if (elf_section_data (isec)->relocs != relstart)
8597 free (relstart);
8598
8599 return ret;
8600 }
8601
8602 /* The linker repeatedly calls this function for each input section,
8603 in the order that input sections are linked into output sections.
8604 Build lists of input sections to determine groupings between which
8605 we may insert linker stubs. */
8606
8607 bfd_boolean
8608 ppc64_elf_next_input_section (struct bfd_link_info *info, asection *isec)
8609 {
8610 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8611
8612 if ((isec->output_section->flags & SEC_CODE) != 0
8613 && isec->output_section->index <= htab->top_index)
8614 {
8615 asection **list = htab->input_list + isec->output_section->index;
8616 /* Steal the link_sec pointer for our list. */
8617 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
8618 /* This happens to make the list in reverse order,
8619 which is what we want. */
8620 PREV_SEC (isec) = *list;
8621 *list = isec;
8622 }
8623
8624 if (htab->multi_toc_needed)
8625 {
8626 /* If a code section has a function that uses the TOC then we need
8627 to use the right TOC (obviously). Also, make sure that .opd gets
8628 the correct TOC value for R_PPC64_TOC relocs that don't have or
8629 can't find their function symbol (shouldn't ever happen now). */
8630 if (isec->has_toc_reloc || (isec->flags & SEC_CODE) == 0)
8631 {
8632 if (elf_gp (isec->owner) != 0)
8633 htab->toc_curr = elf_gp (isec->owner);
8634 }
8635 else if (htab->stub_group[isec->id].toc_off == 0)
8636 {
8637 int ret = toc_adjusting_stub_needed (info, isec);
8638 if (ret < 0)
8639 return FALSE;
8640 else
8641 isec->makes_toc_func_call = ret & 1;
8642 }
8643 }
8644
8645 /* Functions that don't use the TOC can belong in any TOC group.
8646 Use the last TOC base. This happens to make _init and _fini
8647 pasting work. */
8648 htab->stub_group[isec->id].toc_off = htab->toc_curr;
8649 return TRUE;
8650 }
8651
8652 /* See whether we can group stub sections together. Grouping stub
8653 sections may result in fewer stubs. More importantly, we need to
8654 put all .init* and .fini* stubs at the beginning of the .init or
8655 .fini output sections respectively, because glibc splits the
8656 _init and _fini functions into multiple parts. Putting a stub in
8657 the middle of a function is not a good idea. */
8658
8659 static void
8660 group_sections (struct ppc_link_hash_table *htab,
8661 bfd_size_type stub_group_size,
8662 bfd_boolean stubs_always_before_branch)
8663 {
8664 asection **list = htab->input_list + htab->top_index;
8665 do
8666 {
8667 asection *tail = *list;
8668 while (tail != NULL)
8669 {
8670 asection *curr;
8671 asection *prev;
8672 bfd_size_type total;
8673 bfd_boolean big_sec;
8674 bfd_vma curr_toc;
8675
8676 curr = tail;
8677 total = tail->size;
8678 big_sec = total >= stub_group_size;
8679 curr_toc = htab->stub_group[tail->id].toc_off;
8680
8681 while ((prev = PREV_SEC (curr)) != NULL
8682 && ((total += curr->output_offset - prev->output_offset)
8683 < stub_group_size)
8684 && htab->stub_group[prev->id].toc_off == curr_toc)
8685 curr = prev;
8686
8687 /* OK, the size from the start of CURR to the end is less
8688 than stub_group_size and thus can be handled by one stub
8689 section. (or the tail section is itself larger than
8690 stub_group_size, in which case we may be toast.) We
8691 should really be keeping track of the total size of stubs
8692 added here, as stubs contribute to the final output
8693 section size. That's a little tricky, and this way will
8694 only break if stubs added make the total size more than
8695 2^25, ie. for the default stub_group_size, if stubs total
8696 more than 2097152 bytes, or nearly 75000 plt call stubs. */
8697 do
8698 {
8699 prev = PREV_SEC (tail);
8700 /* Set up this stub group. */
8701 htab->stub_group[tail->id].link_sec = curr;
8702 }
8703 while (tail != curr && (tail = prev) != NULL);
8704
8705 /* But wait, there's more! Input sections up to stub_group_size
8706 bytes before the stub section can be handled by it too.
8707 Don't do this if we have a really large section after the
8708 stubs, as adding more stubs increases the chance that
8709 branches may not reach into the stub section. */
8710 if (!stubs_always_before_branch && !big_sec)
8711 {
8712 total = 0;
8713 while (prev != NULL
8714 && ((total += tail->output_offset - prev->output_offset)
8715 < stub_group_size)
8716 && htab->stub_group[prev->id].toc_off == curr_toc)
8717 {
8718 tail = prev;
8719 prev = PREV_SEC (tail);
8720 htab->stub_group[tail->id].link_sec = curr;
8721 }
8722 }
8723 tail = prev;
8724 }
8725 }
8726 while (list-- != htab->input_list);
8727 free (htab->input_list);
8728 #undef PREV_SEC
8729 }
8730
8731 /* Determine and set the size of the stub section for a final link.
8732
8733 The basic idea here is to examine all the relocations looking for
8734 PC-relative calls to a target that is unreachable with a "bl"
8735 instruction. */
8736
8737 bfd_boolean
8738 ppc64_elf_size_stubs (bfd *output_bfd,
8739 struct bfd_link_info *info,
8740 bfd_signed_vma group_size,
8741 asection *(*add_stub_section) (const char *, asection *),
8742 void (*layout_sections_again) (void))
8743 {
8744 bfd_size_type stub_group_size;
8745 bfd_boolean stubs_always_before_branch;
8746 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8747
8748 /* Stash our params away. */
8749 htab->add_stub_section = add_stub_section;
8750 htab->layout_sections_again = layout_sections_again;
8751 stubs_always_before_branch = group_size < 0;
8752 if (group_size < 0)
8753 stub_group_size = -group_size;
8754 else
8755 stub_group_size = group_size;
8756 if (stub_group_size == 1)
8757 {
8758 /* Default values. */
8759 if (stubs_always_before_branch)
8760 {
8761 stub_group_size = 0x1e00000;
8762 if (htab->has_14bit_branch)
8763 stub_group_size = 0x7800;
8764 }
8765 else
8766 {
8767 stub_group_size = 0x1c00000;
8768 if (htab->has_14bit_branch)
8769 stub_group_size = 0x7000;
8770 }
8771 }
8772
8773 group_sections (htab, stub_group_size, stubs_always_before_branch);
8774
8775 while (1)
8776 {
8777 bfd *input_bfd;
8778 unsigned int bfd_indx;
8779 asection *stub_sec;
8780 bfd_boolean stub_changed;
8781
8782 htab->stub_iteration += 1;
8783 stub_changed = FALSE;
8784
8785 for (input_bfd = info->input_bfds, bfd_indx = 0;
8786 input_bfd != NULL;
8787 input_bfd = input_bfd->link_next, bfd_indx++)
8788 {
8789 Elf_Internal_Shdr *symtab_hdr;
8790 asection *section;
8791 Elf_Internal_Sym *local_syms = NULL;
8792
8793 /* We'll need the symbol table in a second. */
8794 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8795 if (symtab_hdr->sh_info == 0)
8796 continue;
8797
8798 /* Walk over each section attached to the input bfd. */
8799 for (section = input_bfd->sections;
8800 section != NULL;
8801 section = section->next)
8802 {
8803 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
8804
8805 /* If there aren't any relocs, then there's nothing more
8806 to do. */
8807 if ((section->flags & SEC_RELOC) == 0
8808 || section->reloc_count == 0)
8809 continue;
8810
8811 /* If this section is a link-once section that will be
8812 discarded, then don't create any stubs. */
8813 if (section->output_section == NULL
8814 || section->output_section->owner != output_bfd)
8815 continue;
8816
8817 /* Get the relocs. */
8818 internal_relocs
8819 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
8820 info->keep_memory);
8821 if (internal_relocs == NULL)
8822 goto error_ret_free_local;
8823
8824 /* Now examine each relocation. */
8825 irela = internal_relocs;
8826 irelaend = irela + section->reloc_count;
8827 for (; irela < irelaend; irela++)
8828 {
8829 enum elf_ppc64_reloc_type r_type;
8830 unsigned int r_indx;
8831 enum ppc_stub_type stub_type;
8832 struct ppc_stub_hash_entry *stub_entry;
8833 asection *sym_sec, *code_sec;
8834 bfd_vma sym_value;
8835 bfd_vma destination;
8836 bfd_boolean ok_dest;
8837 struct ppc_link_hash_entry *hash;
8838 struct ppc_link_hash_entry *fdh;
8839 struct elf_link_hash_entry *h;
8840 Elf_Internal_Sym *sym;
8841 char *stub_name;
8842 const asection *id_sec;
8843 long *opd_adjust;
8844
8845 r_type = ELF64_R_TYPE (irela->r_info);
8846 r_indx = ELF64_R_SYM (irela->r_info);
8847
8848 if (r_type >= R_PPC64_max)
8849 {
8850 bfd_set_error (bfd_error_bad_value);
8851 goto error_ret_free_internal;
8852 }
8853
8854 /* Only look for stubs on branch instructions. */
8855 if (r_type != R_PPC64_REL24
8856 && r_type != R_PPC64_REL14
8857 && r_type != R_PPC64_REL14_BRTAKEN
8858 && r_type != R_PPC64_REL14_BRNTAKEN)
8859 continue;
8860
8861 /* Now determine the call target, its name, value,
8862 section. */
8863 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8864 r_indx, input_bfd))
8865 goto error_ret_free_internal;
8866 hash = (struct ppc_link_hash_entry *) h;
8867
8868 ok_dest = FALSE;
8869 fdh = NULL;
8870 if (hash == NULL)
8871 {
8872 sym_value = sym->st_value;
8873 ok_dest = TRUE;
8874 }
8875 else
8876 {
8877 sym_value = 0;
8878 /* Recognise an old ABI func code entry sym, and
8879 use the func descriptor sym instead. */
8880 if (hash->elf.root.root.string[0] == '.'
8881 && (fdh = get_fdh (hash, htab)) != NULL)
8882 {
8883 if (fdh->elf.root.type == bfd_link_hash_defined
8884 || fdh->elf.root.type == bfd_link_hash_defweak)
8885 {
8886 sym_sec = fdh->elf.root.u.def.section;
8887 sym_value = fdh->elf.root.u.def.value;
8888 if (sym_sec->output_section != NULL)
8889 ok_dest = TRUE;
8890 }
8891 else
8892 fdh = NULL;
8893 }
8894 else if (hash->elf.root.type == bfd_link_hash_defined
8895 || hash->elf.root.type == bfd_link_hash_defweak)
8896 {
8897 sym_value = hash->elf.root.u.def.value;
8898 if (sym_sec->output_section != NULL)
8899 ok_dest = TRUE;
8900 }
8901 else if (hash->elf.root.type == bfd_link_hash_undefweak)
8902 ;
8903 else if (hash->elf.root.type == bfd_link_hash_undefined)
8904 ;
8905 else
8906 {
8907 bfd_set_error (bfd_error_bad_value);
8908 goto error_ret_free_internal;
8909 }
8910 }
8911
8912 destination = 0;
8913 if (ok_dest)
8914 {
8915 sym_value += irela->r_addend;
8916 destination = (sym_value
8917 + sym_sec->output_offset
8918 + sym_sec->output_section->vma);
8919 }
8920
8921 code_sec = sym_sec;
8922 opd_adjust = get_opd_info (sym_sec);
8923 if (opd_adjust != NULL)
8924 {
8925 bfd_vma dest;
8926
8927 if (hash == NULL)
8928 {
8929 long adjust = opd_adjust[sym_value / 8];
8930 if (adjust == -1)
8931 continue;
8932 sym_value += adjust;
8933 }
8934 dest = opd_entry_value (sym_sec, sym_value,
8935 &code_sec, &sym_value);
8936 if (dest != (bfd_vma) -1)
8937 {
8938 destination = dest;
8939 if (fdh != NULL)
8940 {
8941 /* Fixup old ABI sym to point at code
8942 entry. */
8943 hash->elf.root.type = bfd_link_hash_defweak;
8944 hash->elf.root.u.def.section = code_sec;
8945 hash->elf.root.u.def.value = sym_value;
8946 }
8947 }
8948 }
8949
8950 /* Determine what (if any) linker stub is needed. */
8951 stub_type = ppc_type_of_stub (section, irela, &hash,
8952 destination);
8953
8954 if (stub_type != ppc_stub_plt_call)
8955 {
8956 /* Check whether we need a TOC adjusting stub.
8957 Since the linker pastes together pieces from
8958 different object files when creating the
8959 _init and _fini functions, it may be that a
8960 call to what looks like a local sym is in
8961 fact a call needing a TOC adjustment. */
8962 if (code_sec != NULL
8963 && code_sec->output_section != NULL
8964 && (htab->stub_group[code_sec->id].toc_off
8965 != htab->stub_group[section->id].toc_off)
8966 && (code_sec->has_toc_reloc
8967 || code_sec->makes_toc_func_call))
8968 stub_type = ppc_stub_long_branch_r2off;
8969 }
8970
8971 if (stub_type == ppc_stub_none)
8972 continue;
8973
8974 /* __tls_get_addr calls might be eliminated. */
8975 if (stub_type != ppc_stub_plt_call
8976 && hash != NULL
8977 && (hash == htab->tls_get_addr
8978 || hash == htab->tls_get_addr_fd)
8979 && section->has_tls_reloc
8980 && irela != internal_relocs)
8981 {
8982 /* Get tls info. */
8983 char *tls_mask;
8984
8985 if (!get_tls_mask (&tls_mask, NULL, &local_syms,
8986 irela - 1, input_bfd))
8987 goto error_ret_free_internal;
8988 if (*tls_mask != 0)
8989 continue;
8990 }
8991
8992 /* Support for grouping stub sections. */
8993 id_sec = htab->stub_group[section->id].link_sec;
8994
8995 /* Get the name of this stub. */
8996 stub_name = ppc_stub_name (id_sec, sym_sec, hash, irela);
8997 if (!stub_name)
8998 goto error_ret_free_internal;
8999
9000 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
9001 stub_name, FALSE, FALSE);
9002 if (stub_entry != NULL)
9003 {
9004 /* The proper stub has already been created. */
9005 free (stub_name);
9006 continue;
9007 }
9008
9009 stub_entry = ppc_add_stub (stub_name, section, htab);
9010 if (stub_entry == NULL)
9011 {
9012 free (stub_name);
9013 error_ret_free_internal:
9014 if (elf_section_data (section)->relocs == NULL)
9015 free (internal_relocs);
9016 error_ret_free_local:
9017 if (local_syms != NULL
9018 && (symtab_hdr->contents
9019 != (unsigned char *) local_syms))
9020 free (local_syms);
9021 return FALSE;
9022 }
9023
9024 stub_entry->stub_type = stub_type;
9025 stub_entry->target_value = sym_value;
9026 stub_entry->target_section = code_sec;
9027 stub_entry->h = hash;
9028 stub_entry->addend = irela->r_addend;
9029
9030 if (stub_entry->h != NULL)
9031 htab->stub_globals += 1;
9032
9033 stub_changed = TRUE;
9034 }
9035
9036 /* We're done with the internal relocs, free them. */
9037 if (elf_section_data (section)->relocs != internal_relocs)
9038 free (internal_relocs);
9039 }
9040
9041 if (local_syms != NULL
9042 && symtab_hdr->contents != (unsigned char *) local_syms)
9043 {
9044 if (!info->keep_memory)
9045 free (local_syms);
9046 else
9047 symtab_hdr->contents = (unsigned char *) local_syms;
9048 }
9049 }
9050
9051 if (!stub_changed)
9052 break;
9053
9054 /* OK, we've added some stubs. Find out the new size of the
9055 stub sections. */
9056 for (stub_sec = htab->stub_bfd->sections;
9057 stub_sec != NULL;
9058 stub_sec = stub_sec->next)
9059 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
9060 {
9061 stub_sec->size = 0;
9062 stub_sec->reloc_count = 0;
9063 }
9064
9065 htab->brlt->size = 0;
9066 if (htab->relbrlt != NULL)
9067 htab->relbrlt->size = 0;
9068
9069 bfd_hash_traverse (&htab->stub_hash_table, ppc_size_one_stub, info);
9070
9071 /* Ask the linker to do its stuff. */
9072 (*htab->layout_sections_again) ();
9073 }
9074
9075 /* It would be nice to strip .branch_lt from the output if the
9076 section is empty, but it's too late. If we strip sections here,
9077 the dynamic symbol table is corrupted since the section symbol
9078 for the stripped section isn't written. */
9079
9080 return TRUE;
9081 }
9082
9083 /* Called after we have determined section placement. If sections
9084 move, we'll be called again. Provide a value for TOCstart. */
9085
9086 bfd_vma
9087 ppc64_elf_toc (bfd *obfd)
9088 {
9089 asection *s;
9090 bfd_vma TOCstart;
9091
9092 /* The TOC consists of sections .got, .toc, .tocbss, .plt in that
9093 order. The TOC starts where the first of these sections starts. */
9094 s = bfd_get_section_by_name (obfd, ".got");
9095 if (s == NULL)
9096 s = bfd_get_section_by_name (obfd, ".toc");
9097 if (s == NULL)
9098 s = bfd_get_section_by_name (obfd, ".tocbss");
9099 if (s == NULL)
9100 s = bfd_get_section_by_name (obfd, ".plt");
9101 if (s == NULL)
9102 {
9103 /* This may happen for
9104 o references to TOC base (SYM@toc / TOC[tc0]) without a
9105 .toc directive
9106 o bad linker script
9107 o --gc-sections and empty TOC sections
9108
9109 FIXME: Warn user? */
9110
9111 /* Look for a likely section. We probably won't even be
9112 using TOCstart. */
9113 for (s = obfd->sections; s != NULL; s = s->next)
9114 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_READONLY))
9115 == (SEC_ALLOC | SEC_SMALL_DATA))
9116 break;
9117 if (s == NULL)
9118 for (s = obfd->sections; s != NULL; s = s->next)
9119 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA))
9120 == (SEC_ALLOC | SEC_SMALL_DATA))
9121 break;
9122 if (s == NULL)
9123 for (s = obfd->sections; s != NULL; s = s->next)
9124 if ((s->flags & (SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
9125 break;
9126 if (s == NULL)
9127 for (s = obfd->sections; s != NULL; s = s->next)
9128 if ((s->flags & SEC_ALLOC) == SEC_ALLOC)
9129 break;
9130 }
9131
9132 TOCstart = 0;
9133 if (s != NULL)
9134 TOCstart = s->output_section->vma + s->output_offset;
9135
9136 return TOCstart;
9137 }
9138
9139 /* Build all the stubs associated with the current output file.
9140 The stubs are kept in a hash table attached to the main linker
9141 hash table. This function is called via gldelf64ppc_finish. */
9142
9143 bfd_boolean
9144 ppc64_elf_build_stubs (bfd_boolean emit_stub_syms,
9145 struct bfd_link_info *info,
9146 char **stats)
9147 {
9148 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9149 asection *stub_sec;
9150 bfd_byte *p;
9151 int stub_sec_count = 0;
9152
9153 htab->emit_stub_syms = emit_stub_syms;
9154
9155 /* Allocate memory to hold the linker stubs. */
9156 for (stub_sec = htab->stub_bfd->sections;
9157 stub_sec != NULL;
9158 stub_sec = stub_sec->next)
9159 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
9160 && stub_sec->size != 0)
9161 {
9162 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
9163 if (stub_sec->contents == NULL)
9164 return FALSE;
9165 /* We want to check that built size is the same as calculated
9166 size. rawsize is a convenient location to use. */
9167 stub_sec->rawsize = stub_sec->size;
9168 stub_sec->size = 0;
9169 }
9170
9171 if (htab->plt != NULL)
9172 {
9173 unsigned int indx;
9174 bfd_vma plt0;
9175
9176 /* Build the .glink plt call stub. */
9177 plt0 = (htab->plt->output_section->vma
9178 + htab->plt->output_offset
9179 - (htab->glink->output_section->vma
9180 + htab->glink->output_offset
9181 + GLINK_CALL_STUB_SIZE));
9182 if (plt0 + 0x80008000 > 0xffffffff)
9183 {
9184 (*_bfd_error_handler) (_(".glink and .plt too far apart"));
9185 bfd_set_error (bfd_error_bad_value);
9186 return FALSE;
9187 }
9188
9189 if (htab->emit_stub_syms)
9190 {
9191 struct elf_link_hash_entry *h;
9192 h = elf_link_hash_lookup (&htab->elf, "__glink", TRUE, FALSE, FALSE);
9193 if (h == NULL)
9194 return FALSE;
9195 if (h->root.type == bfd_link_hash_new)
9196 {
9197 h->root.type = bfd_link_hash_defined;
9198 h->root.u.def.section = htab->glink;
9199 h->root.u.def.value = 0;
9200 h->ref_regular = 1;
9201 h->def_regular = 1;
9202 h->ref_regular_nonweak = 1;
9203 h->forced_local = 1;
9204 h->non_elf = 0;
9205 }
9206 }
9207 p = htab->glink->contents;
9208 bfd_put_32 (htab->glink->owner, MFCTR_R12, p);
9209 p += 4;
9210 bfd_put_32 (htab->glink->owner, SLDI_R11_R0_3, p);
9211 p += 4;
9212 bfd_put_32 (htab->glink->owner, ADDIC_R2_R0_32K, p);
9213 p += 4;
9214 bfd_put_32 (htab->glink->owner, SUB_R12_R12_R11, p);
9215 p += 4;
9216 bfd_put_32 (htab->glink->owner, SRADI_R2_R2_63, p);
9217 p += 4;
9218 bfd_put_32 (htab->glink->owner, SLDI_R11_R0_2, p);
9219 p += 4;
9220 bfd_put_32 (htab->glink->owner, AND_R2_R2_R11, p);
9221 p += 4;
9222 bfd_put_32 (htab->glink->owner, SUB_R12_R12_R11, p);
9223 p += 4;
9224 bfd_put_32 (htab->glink->owner, ADD_R12_R12_R2, p);
9225 p += 4;
9226 bfd_put_32 (htab->glink->owner, ADDIS_R12_R12 | PPC_HA (plt0), p);
9227 p += 4;
9228 bfd_put_32 (htab->glink->owner, LD_R11_0R12 | PPC_LO (plt0), p);
9229 p += 4;
9230 bfd_put_32 (htab->glink->owner, ADDI_R12_R12 | PPC_LO (plt0), p);
9231 p += 4;
9232 bfd_put_32 (htab->glink->owner, LD_R2_0R12 | 8, p);
9233 p += 4;
9234 bfd_put_32 (htab->glink->owner, MTCTR_R11, p);
9235 p += 4;
9236 bfd_put_32 (htab->glink->owner, LD_R11_0R12 | 16, p);
9237 p += 4;
9238 bfd_put_32 (htab->glink->owner, BCTR, p);
9239 p += 4;
9240
9241 /* Build the .glink lazy link call stubs. */
9242 indx = 0;
9243 while (p < htab->glink->contents + htab->glink->size)
9244 {
9245 if (indx < 0x8000)
9246 {
9247 bfd_put_32 (htab->glink->owner, LI_R0_0 | indx, p);
9248 p += 4;
9249 }
9250 else
9251 {
9252 bfd_put_32 (htab->glink->owner, LIS_R0_0 | PPC_HI (indx), p);
9253 p += 4;
9254 bfd_put_32 (htab->glink->owner, ORI_R0_R0_0 | PPC_LO (indx), p);
9255 p += 4;
9256 }
9257 bfd_put_32 (htab->glink->owner,
9258 B_DOT | ((htab->glink->contents - p) & 0x3fffffc), p);
9259 indx++;
9260 p += 4;
9261 }
9262 htab->glink->rawsize = p - htab->glink->contents;
9263 }
9264
9265 if (htab->brlt->size != 0)
9266 {
9267 htab->brlt->contents = bfd_zalloc (htab->brlt->owner,
9268 htab->brlt->size);
9269 if (htab->brlt->contents == NULL)
9270 return FALSE;
9271 }
9272 if (htab->relbrlt != NULL && htab->relbrlt->size != 0)
9273 {
9274 htab->relbrlt->contents = bfd_zalloc (htab->relbrlt->owner,
9275 htab->relbrlt->size);
9276 if (htab->relbrlt->contents == NULL)
9277 return FALSE;
9278 }
9279
9280 /* Build the stubs as directed by the stub hash table. */
9281 bfd_hash_traverse (&htab->stub_hash_table, ppc_build_one_stub, info);
9282
9283 for (stub_sec = htab->stub_bfd->sections;
9284 stub_sec != NULL;
9285 stub_sec = stub_sec->next)
9286 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
9287 {
9288 stub_sec_count += 1;
9289 if (stub_sec->rawsize != stub_sec->size)
9290 break;
9291 }
9292
9293 if (stub_sec != NULL
9294 || htab->glink->rawsize != htab->glink->size)
9295 {
9296 htab->stub_error = TRUE;
9297 (*_bfd_error_handler) (_("stubs don't match calculated size"));
9298 }
9299
9300 if (htab->stub_error)
9301 return FALSE;
9302
9303 if (stats != NULL)
9304 {
9305 *stats = bfd_malloc (500);
9306 if (*stats == NULL)
9307 return FALSE;
9308
9309 sprintf (*stats, _("linker stubs in %u group%s\n"
9310 " branch %lu\n"
9311 " toc adjust %lu\n"
9312 " long branch %lu\n"
9313 " long toc adj %lu\n"
9314 " plt call %lu"),
9315 stub_sec_count,
9316 stub_sec_count == 1 ? "" : "s",
9317 htab->stub_count[ppc_stub_long_branch - 1],
9318 htab->stub_count[ppc_stub_long_branch_r2off - 1],
9319 htab->stub_count[ppc_stub_plt_branch - 1],
9320 htab->stub_count[ppc_stub_plt_branch_r2off - 1],
9321 htab->stub_count[ppc_stub_plt_call - 1]);
9322 }
9323 return TRUE;
9324 }
9325
9326 /* This function undoes the changes made by add_symbol_adjust. */
9327
9328 static bfd_boolean
9329 undo_symbol_twiddle (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
9330 {
9331 struct ppc_link_hash_entry *eh;
9332
9333 if (h->root.type == bfd_link_hash_indirect)
9334 return TRUE;
9335
9336 if (h->root.type == bfd_link_hash_warning)
9337 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9338
9339 eh = (struct ppc_link_hash_entry *) h;
9340 if (eh->elf.root.type != bfd_link_hash_undefweak || !eh->was_undefined)
9341 return TRUE;
9342
9343 eh->elf.root.type = bfd_link_hash_undefined;
9344 return TRUE;
9345 }
9346
9347 void
9348 ppc64_elf_restore_symbols (struct bfd_link_info *info)
9349 {
9350 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9351 elf_link_hash_traverse (&htab->elf, undo_symbol_twiddle, info);
9352 }
9353
9354 /* The RELOCATE_SECTION function is called by the ELF backend linker
9355 to handle the relocations for a section.
9356
9357 The relocs are always passed as Rela structures; if the section
9358 actually uses Rel structures, the r_addend field will always be
9359 zero.
9360
9361 This function is responsible for adjust the section contents as
9362 necessary, and (if using Rela relocs and generating a
9363 relocatable output file) adjusting the reloc addend as
9364 necessary.
9365
9366 This function does not have to worry about setting the reloc
9367 address or the reloc symbol index.
9368
9369 LOCAL_SYMS is a pointer to the swapped in local symbols.
9370
9371 LOCAL_SECTIONS is an array giving the section in the input file
9372 corresponding to the st_shndx field of each local symbol.
9373
9374 The global hash table entry for the global symbols can be found
9375 via elf_sym_hashes (input_bfd).
9376
9377 When generating relocatable output, this function must handle
9378 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
9379 going to be the section symbol corresponding to the output
9380 section, which means that the addend must be adjusted
9381 accordingly. */
9382
9383 static bfd_boolean
9384 ppc64_elf_relocate_section (bfd *output_bfd,
9385 struct bfd_link_info *info,
9386 bfd *input_bfd,
9387 asection *input_section,
9388 bfd_byte *contents,
9389 Elf_Internal_Rela *relocs,
9390 Elf_Internal_Sym *local_syms,
9391 asection **local_sections)
9392 {
9393 struct ppc_link_hash_table *htab;
9394 Elf_Internal_Shdr *symtab_hdr;
9395 struct elf_link_hash_entry **sym_hashes;
9396 Elf_Internal_Rela *rel;
9397 Elf_Internal_Rela *relend;
9398 Elf_Internal_Rela outrel;
9399 bfd_byte *loc;
9400 struct got_entry **local_got_ents;
9401 bfd_vma TOCstart;
9402 bfd_boolean ret = TRUE;
9403 bfd_boolean is_opd;
9404 /* Disabled until we sort out how ld should choose 'y' vs 'at'. */
9405 bfd_boolean is_power4 = FALSE;
9406
9407 if (info->relocatable)
9408 return TRUE;
9409
9410 /* Initialize howto table if needed. */
9411 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
9412 ppc_howto_init ();
9413
9414 htab = ppc_hash_table (info);
9415
9416 /* Don't relocate stub sections. */
9417 if (input_section->owner == htab->stub_bfd)
9418 return TRUE;
9419
9420 local_got_ents = elf_local_got_ents (input_bfd);
9421 TOCstart = elf_gp (output_bfd);
9422 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9423 sym_hashes = elf_sym_hashes (input_bfd);
9424 is_opd = ppc64_elf_section_data (input_section)->opd.adjust != NULL;
9425
9426 rel = relocs;
9427 relend = relocs + input_section->reloc_count;
9428 for (; rel < relend; rel++)
9429 {
9430 enum elf_ppc64_reloc_type r_type;
9431 bfd_vma addend;
9432 bfd_reloc_status_type r;
9433 Elf_Internal_Sym *sym;
9434 asection *sec;
9435 struct elf_link_hash_entry *h_elf;
9436 struct ppc_link_hash_entry *h;
9437 struct ppc_link_hash_entry *fdh;
9438 const char *sym_name;
9439 unsigned long r_symndx, toc_symndx;
9440 char tls_mask, tls_gd, tls_type;
9441 char sym_type;
9442 bfd_vma relocation;
9443 bfd_boolean unresolved_reloc;
9444 bfd_boolean warned;
9445 unsigned long insn, mask;
9446 struct ppc_stub_hash_entry *stub_entry;
9447 bfd_vma max_br_offset;
9448 bfd_vma from;
9449
9450 r_type = ELF64_R_TYPE (rel->r_info);
9451 r_symndx = ELF64_R_SYM (rel->r_info);
9452
9453 /* For old style R_PPC64_TOC relocs with a zero symbol, use the
9454 symbol of the previous ADDR64 reloc. The symbol gives us the
9455 proper TOC base to use. */
9456 if (rel->r_info == ELF64_R_INFO (0, R_PPC64_TOC)
9457 && rel != relocs
9458 && ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_ADDR64
9459 && is_opd)
9460 r_symndx = ELF64_R_SYM (rel[-1].r_info);
9461
9462 sym = NULL;
9463 sec = NULL;
9464 h_elf = NULL;
9465 sym_name = NULL;
9466 unresolved_reloc = FALSE;
9467 warned = FALSE;
9468
9469 if (r_symndx < symtab_hdr->sh_info)
9470 {
9471 /* It's a local symbol. */
9472 long *opd_adjust;
9473
9474 sym = local_syms + r_symndx;
9475 sec = local_sections[r_symndx];
9476 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym);
9477 sym_type = ELF64_ST_TYPE (sym->st_info);
9478 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9479 opd_adjust = get_opd_info (sec);
9480 if (opd_adjust != NULL)
9481 {
9482 long adjust = opd_adjust[(sym->st_value + rel->r_addend) / 8];
9483 if (adjust == -1)
9484 relocation = 0;
9485 else
9486 relocation += adjust;
9487 }
9488 }
9489 else
9490 {
9491 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
9492 r_symndx, symtab_hdr, sym_hashes,
9493 h_elf, sec, relocation,
9494 unresolved_reloc, warned);
9495 sym_name = h_elf->root.root.string;
9496 sym_type = h_elf->type;
9497 }
9498 h = (struct ppc_link_hash_entry *) h_elf;
9499
9500 /* TLS optimizations. Replace instruction sequences and relocs
9501 based on information we collected in tls_optimize. We edit
9502 RELOCS so that --emit-relocs will output something sensible
9503 for the final instruction stream. */
9504 tls_mask = 0;
9505 tls_gd = 0;
9506 toc_symndx = 0;
9507 if (IS_PPC64_TLS_RELOC (r_type))
9508 {
9509 if (h != NULL)
9510 tls_mask = h->tls_mask;
9511 else if (local_got_ents != NULL)
9512 {
9513 char *lgot_masks;
9514 lgot_masks = (char *) (local_got_ents + symtab_hdr->sh_info);
9515 tls_mask = lgot_masks[r_symndx];
9516 }
9517 if (tls_mask == 0 && r_type == R_PPC64_TLS)
9518 {
9519 /* Check for toc tls entries. */
9520 char *toc_tls;
9521
9522 if (!get_tls_mask (&toc_tls, &toc_symndx, &local_syms,
9523 rel, input_bfd))
9524 return FALSE;
9525
9526 if (toc_tls)
9527 tls_mask = *toc_tls;
9528 }
9529 }
9530
9531 /* Check that tls relocs are used with tls syms, and non-tls
9532 relocs are used with non-tls syms. */
9533 if (r_symndx != 0
9534 && r_type != R_PPC64_NONE
9535 && (h == NULL
9536 || h->elf.root.type == bfd_link_hash_defined
9537 || h->elf.root.type == bfd_link_hash_defweak)
9538 && IS_PPC64_TLS_RELOC (r_type) != (sym_type == STT_TLS))
9539 {
9540 if (r_type == R_PPC64_TLS && tls_mask != 0)
9541 /* R_PPC64_TLS is OK against a symbol in the TOC. */
9542 ;
9543 else
9544 (*_bfd_error_handler)
9545 (sym_type == STT_TLS
9546 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
9547 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s"),
9548 input_bfd,
9549 input_section,
9550 (long) rel->r_offset,
9551 ppc64_elf_howto_table[r_type]->name,
9552 sym_name);
9553 }
9554
9555 /* Ensure reloc mapping code below stays sane. */
9556 if (R_PPC64_TOC16_LO_DS != R_PPC64_TOC16_DS + 1
9557 || R_PPC64_TOC16_LO != R_PPC64_TOC16 + 1
9558 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TLSGD16 & 3)
9559 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TLSGD16_LO & 3)
9560 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TLSGD16_HI & 3)
9561 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TLSGD16_HA & 3)
9562 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TPREL16_DS & 3)
9563 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TPREL16_LO_DS & 3)
9564 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TPREL16_HI & 3)
9565 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TPREL16_HA & 3))
9566 abort ();
9567
9568 switch (r_type)
9569 {
9570 default:
9571 break;
9572
9573 case R_PPC64_TOC16:
9574 case R_PPC64_TOC16_LO:
9575 case R_PPC64_TOC16_DS:
9576 case R_PPC64_TOC16_LO_DS:
9577 {
9578 /* Check for toc tls entries. */
9579 char *toc_tls;
9580 int retval;
9581
9582 retval = get_tls_mask (&toc_tls, &toc_symndx, &local_syms,
9583 rel, input_bfd);
9584 if (retval == 0)
9585 return FALSE;
9586
9587 if (toc_tls)
9588 {
9589 tls_mask = *toc_tls;
9590 if (r_type == R_PPC64_TOC16_DS
9591 || r_type == R_PPC64_TOC16_LO_DS)
9592 {
9593 if (tls_mask != 0
9594 && (tls_mask & (TLS_DTPREL | TLS_TPREL)) == 0)
9595 goto toctprel;
9596 }
9597 else
9598 {
9599 /* If we found a GD reloc pair, then we might be
9600 doing a GD->IE transition. */
9601 if (retval == 2)
9602 {
9603 tls_gd = TLS_TPRELGD;
9604 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
9605 goto tls_get_addr_check;
9606 }
9607 else if (retval == 3)
9608 {
9609 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
9610 goto tls_get_addr_check;
9611 }
9612 }
9613 }
9614 }
9615 break;
9616
9617 case R_PPC64_GOT_TPREL16_DS:
9618 case R_PPC64_GOT_TPREL16_LO_DS:
9619 if (tls_mask != 0
9620 && (tls_mask & TLS_TPREL) == 0)
9621 {
9622 toctprel:
9623 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - 2);
9624 insn &= 31 << 21;
9625 insn |= 0x3c0d0000; /* addis 0,13,0 */
9626 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - 2);
9627 r_type = R_PPC64_TPREL16_HA;
9628 if (toc_symndx != 0)
9629 {
9630 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
9631 /* We changed the symbol. Start over in order to
9632 get h, sym, sec etc. right. */
9633 rel--;
9634 continue;
9635 }
9636 else
9637 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9638 }
9639 break;
9640
9641 case R_PPC64_TLS:
9642 if (tls_mask != 0
9643 && (tls_mask & TLS_TPREL) == 0)
9644 {
9645 bfd_vma rtra;
9646 insn = bfd_get_32 (output_bfd, contents + rel->r_offset);
9647 if ((insn & ((0x3f << 26) | (31 << 11)))
9648 == ((31 << 26) | (13 << 11)))
9649 rtra = insn & ((1 << 26) - (1 << 16));
9650 else if ((insn & ((0x3f << 26) | (31 << 16)))
9651 == ((31 << 26) | (13 << 16)))
9652 rtra = (insn & (31 << 21)) | ((insn & (31 << 11)) << 5);
9653 else
9654 abort ();
9655 if ((insn & ((1 << 11) - (1 << 1))) == 266 << 1)
9656 /* add -> addi. */
9657 insn = 14 << 26;
9658 else if ((insn & (31 << 1)) == 23 << 1
9659 && ((insn & (31 << 6)) < 14 << 6
9660 || ((insn & (31 << 6)) >= 16 << 6
9661 && (insn & (31 << 6)) < 24 << 6)))
9662 /* load and store indexed -> dform. */
9663 insn = (32 | ((insn >> 6) & 31)) << 26;
9664 else if ((insn & (31 << 1)) == 21 << 1
9665 && (insn & (0x1a << 6)) == 0)
9666 /* ldx, ldux, stdx, stdux -> ld, ldu, std, stdu. */
9667 insn = (((58 | ((insn >> 6) & 4)) << 26)
9668 | ((insn >> 6) & 1));
9669 else if ((insn & (31 << 1)) == 21 << 1
9670 && (insn & ((1 << 11) - (1 << 1))) == 341 << 1)
9671 /* lwax -> lwa. */
9672 insn = (58 << 26) | 2;
9673 else
9674 abort ();
9675 insn |= rtra;
9676 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
9677 /* Was PPC64_TLS which sits on insn boundary, now
9678 PPC64_TPREL16_LO which is at insn+2. */
9679 rel->r_offset += 2;
9680 r_type = R_PPC64_TPREL16_LO;
9681 if (toc_symndx != 0)
9682 {
9683 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
9684 /* We changed the symbol. Start over in order to
9685 get h, sym, sec etc. right. */
9686 rel--;
9687 continue;
9688 }
9689 else
9690 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9691 }
9692 break;
9693
9694 case R_PPC64_GOT_TLSGD16_HI:
9695 case R_PPC64_GOT_TLSGD16_HA:
9696 tls_gd = TLS_TPRELGD;
9697 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
9698 goto tls_gdld_hi;
9699 break;
9700
9701 case R_PPC64_GOT_TLSLD16_HI:
9702 case R_PPC64_GOT_TLSLD16_HA:
9703 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
9704 {
9705 tls_gdld_hi:
9706 if ((tls_mask & tls_gd) != 0)
9707 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
9708 + R_PPC64_GOT_TPREL16_DS);
9709 else
9710 {
9711 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
9712 rel->r_offset -= 2;
9713 r_type = R_PPC64_NONE;
9714 }
9715 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9716 }
9717 break;
9718
9719 case R_PPC64_GOT_TLSGD16:
9720 case R_PPC64_GOT_TLSGD16_LO:
9721 tls_gd = TLS_TPRELGD;
9722 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
9723 goto tls_get_addr_check;
9724 break;
9725
9726 case R_PPC64_GOT_TLSLD16:
9727 case R_PPC64_GOT_TLSLD16_LO:
9728 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
9729 {
9730 tls_get_addr_check:
9731 if (rel + 1 < relend)
9732 {
9733 enum elf_ppc64_reloc_type r_type2;
9734 unsigned long r_symndx2;
9735 struct elf_link_hash_entry *h2;
9736 bfd_vma insn1, insn2, insn3;
9737 bfd_vma offset;
9738
9739 /* The next instruction should be a call to
9740 __tls_get_addr. Peek at the reloc to be sure. */
9741 r_type2 = ELF64_R_TYPE (rel[1].r_info);
9742 r_symndx2 = ELF64_R_SYM (rel[1].r_info);
9743 if (r_symndx2 < symtab_hdr->sh_info
9744 || (r_type2 != R_PPC64_REL14
9745 && r_type2 != R_PPC64_REL14_BRTAKEN
9746 && r_type2 != R_PPC64_REL14_BRNTAKEN
9747 && r_type2 != R_PPC64_REL24))
9748 break;
9749
9750 h2 = sym_hashes[r_symndx2 - symtab_hdr->sh_info];
9751 while (h2->root.type == bfd_link_hash_indirect
9752 || h2->root.type == bfd_link_hash_warning)
9753 h2 = (struct elf_link_hash_entry *) h2->root.u.i.link;
9754 if (h2 == NULL || (h2 != &htab->tls_get_addr->elf
9755 && h2 != &htab->tls_get_addr_fd->elf))
9756 break;
9757
9758 /* OK, it checks out. Replace the call. */
9759 offset = rel[1].r_offset;
9760 insn1 = bfd_get_32 (output_bfd,
9761 contents + rel->r_offset - 2);
9762 insn3 = bfd_get_32 (output_bfd,
9763 contents + offset + 4);
9764 if ((tls_mask & tls_gd) != 0)
9765 {
9766 /* IE */
9767 insn1 &= (1 << 26) - (1 << 2);
9768 insn1 |= 58 << 26; /* ld */
9769 insn2 = 0x7c636a14; /* add 3,3,13 */
9770 rel[1].r_info = ELF64_R_INFO (r_symndx2, R_PPC64_NONE);
9771 if ((tls_mask & TLS_EXPLICIT) == 0)
9772 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
9773 + R_PPC64_GOT_TPREL16_DS);
9774 else
9775 r_type += R_PPC64_TOC16_DS - R_PPC64_TOC16;
9776 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9777 }
9778 else
9779 {
9780 /* LE */
9781 insn1 = 0x3c6d0000; /* addis 3,13,0 */
9782 insn2 = 0x38630000; /* addi 3,3,0 */
9783 if (tls_gd == 0)
9784 {
9785 /* Was an LD reloc. */
9786 r_symndx = 0;
9787 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
9788 rel[1].r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
9789 }
9790 else if (toc_symndx != 0)
9791 r_symndx = toc_symndx;
9792 r_type = R_PPC64_TPREL16_HA;
9793 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9794 rel[1].r_info = ELF64_R_INFO (r_symndx,
9795 R_PPC64_TPREL16_LO);
9796 rel[1].r_offset += 2;
9797 }
9798 if (insn3 == NOP
9799 || insn3 == CROR_151515 || insn3 == CROR_313131)
9800 {
9801 insn3 = insn2;
9802 insn2 = NOP;
9803 rel[1].r_offset += 4;
9804 }
9805 bfd_put_32 (output_bfd, insn1, contents + rel->r_offset - 2);
9806 bfd_put_32 (output_bfd, insn2, contents + offset);
9807 bfd_put_32 (output_bfd, insn3, contents + offset + 4);
9808 if (tls_gd == 0 || toc_symndx != 0)
9809 {
9810 /* We changed the symbol. Start over in order
9811 to get h, sym, sec etc. right. */
9812 rel--;
9813 continue;
9814 }
9815 }
9816 }
9817 break;
9818
9819 case R_PPC64_DTPMOD64:
9820 if (rel + 1 < relend
9821 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
9822 && rel[1].r_offset == rel->r_offset + 8)
9823 {
9824 if ((tls_mask & TLS_GD) == 0)
9825 {
9826 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_NONE);
9827 if ((tls_mask & TLS_TPRELGD) != 0)
9828 r_type = R_PPC64_TPREL64;
9829 else
9830 {
9831 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
9832 r_type = R_PPC64_NONE;
9833 }
9834 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9835 }
9836 }
9837 else
9838 {
9839 if ((tls_mask & TLS_LD) == 0)
9840 {
9841 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
9842 r_type = R_PPC64_NONE;
9843 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9844 }
9845 }
9846 break;
9847
9848 case R_PPC64_TPREL64:
9849 if ((tls_mask & TLS_TPREL) == 0)
9850 {
9851 r_type = R_PPC64_NONE;
9852 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9853 }
9854 break;
9855 }
9856
9857 /* Handle other relocations that tweak non-addend part of insn. */
9858 insn = 0;
9859 max_br_offset = 1 << 25;
9860 addend = rel->r_addend;
9861 switch (r_type)
9862 {
9863 default:
9864 break;
9865
9866 /* Branch taken prediction relocations. */
9867 case R_PPC64_ADDR14_BRTAKEN:
9868 case R_PPC64_REL14_BRTAKEN:
9869 insn = 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
9870 /* Fall thru. */
9871
9872 /* Branch not taken prediction relocations. */
9873 case R_PPC64_ADDR14_BRNTAKEN:
9874 case R_PPC64_REL14_BRNTAKEN:
9875 insn |= bfd_get_32 (output_bfd,
9876 contents + rel->r_offset) & ~(0x01 << 21);
9877 /* Fall thru. */
9878
9879 case R_PPC64_REL14:
9880 max_br_offset = 1 << 15;
9881 /* Fall thru. */
9882
9883 case R_PPC64_REL24:
9884 /* Calls to functions with a different TOC, such as calls to
9885 shared objects, need to alter the TOC pointer. This is
9886 done using a linkage stub. A REL24 branching to these
9887 linkage stubs needs to be followed by a nop, as the nop
9888 will be replaced with an instruction to restore the TOC
9889 base pointer. */
9890 stub_entry = NULL;
9891 fdh = h;
9892 if (((h != NULL
9893 && (((fdh = h->oh) != NULL
9894 && fdh->elf.plt.plist != NULL)
9895 || (fdh = h)->elf.plt.plist != NULL))
9896 || (sec != NULL
9897 && sec->output_section != NULL
9898 && sec->id <= htab->top_id
9899 && (htab->stub_group[sec->id].toc_off
9900 != htab->stub_group[input_section->id].toc_off)))
9901 && (stub_entry = ppc_get_stub_entry (input_section, sec, fdh,
9902 rel, htab)) != NULL
9903 && (stub_entry->stub_type == ppc_stub_plt_call
9904 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
9905 || stub_entry->stub_type == ppc_stub_long_branch_r2off))
9906 {
9907 bfd_boolean can_plt_call = FALSE;
9908
9909 if (rel->r_offset + 8 <= input_section->size)
9910 {
9911 unsigned long nop;
9912 nop = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
9913 if (nop == NOP
9914 || nop == CROR_151515 || nop == CROR_313131)
9915 {
9916 bfd_put_32 (input_bfd, LD_R2_40R1,
9917 contents + rel->r_offset + 4);
9918 can_plt_call = TRUE;
9919 }
9920 }
9921
9922 if (!can_plt_call)
9923 {
9924 if (stub_entry->stub_type == ppc_stub_plt_call)
9925 {
9926 /* If this is a plain branch rather than a branch
9927 and link, don't require a nop. */
9928 unsigned long br;
9929 br = bfd_get_32 (input_bfd, contents + rel->r_offset);
9930 if ((br & 1) == 0)
9931 can_plt_call = TRUE;
9932 }
9933 else if (h != NULL
9934 && strcmp (h->elf.root.root.string,
9935 ".__libc_start_main") == 0)
9936 {
9937 /* Allow crt1 branch to go via a toc adjusting stub. */
9938 can_plt_call = TRUE;
9939 }
9940 else
9941 {
9942 if (strcmp (input_section->output_section->name,
9943 ".init") == 0
9944 || strcmp (input_section->output_section->name,
9945 ".fini") == 0)
9946 (*_bfd_error_handler)
9947 (_("%B(%A+0x%lx): automatic multiple TOCs "
9948 "not supported using your crt files; "
9949 "recompile with -mminimal-toc or upgrade gcc"),
9950 input_bfd,
9951 input_section,
9952 (long) rel->r_offset);
9953 else
9954 (*_bfd_error_handler)
9955 (_("%B(%A+0x%lx): sibling call optimization to `%s' "
9956 "does not allow automatic multiple TOCs; "
9957 "recompile with -mminimal-toc or "
9958 "-fno-optimize-sibling-calls, "
9959 "or make `%s' extern"),
9960 input_bfd,
9961 input_section,
9962 (long) rel->r_offset,
9963 sym_name,
9964 sym_name);
9965 bfd_set_error (bfd_error_bad_value);
9966 ret = FALSE;
9967 }
9968 }
9969
9970 if (can_plt_call
9971 && stub_entry->stub_type == ppc_stub_plt_call)
9972 unresolved_reloc = FALSE;
9973 }
9974
9975 if (stub_entry == NULL
9976 && get_opd_info (sec) != NULL)
9977 {
9978 /* The branch destination is the value of the opd entry. */
9979 bfd_vma off = (relocation - sec->output_section->vma
9980 - sec->output_offset + rel->r_addend);
9981 bfd_vma dest = opd_entry_value (sec, off, NULL, NULL);
9982 if (dest != (bfd_vma) -1)
9983 {
9984 relocation = dest;
9985 addend = 0;
9986 }
9987 }
9988
9989 /* If the branch is out of reach we ought to have a long
9990 branch stub. */
9991 from = (rel->r_offset
9992 + input_section->output_offset
9993 + input_section->output_section->vma);
9994
9995 if (stub_entry == NULL
9996 && (relocation + rel->r_addend - from + max_br_offset
9997 >= 2 * max_br_offset)
9998 && r_type != R_PPC64_ADDR14_BRTAKEN
9999 && r_type != R_PPC64_ADDR14_BRNTAKEN)
10000 stub_entry = ppc_get_stub_entry (input_section, sec, h, rel,
10001 htab);
10002
10003 if (stub_entry != NULL)
10004 {
10005 /* Munge up the value and addend so that we call the stub
10006 rather than the procedure directly. */
10007 relocation = (stub_entry->stub_offset
10008 + stub_entry->stub_sec->output_offset
10009 + stub_entry->stub_sec->output_section->vma);
10010 addend = 0;
10011 }
10012
10013 if (insn != 0)
10014 {
10015 if (is_power4)
10016 {
10017 /* Set 'a' bit. This is 0b00010 in BO field for branch
10018 on CR(BI) insns (BO == 001at or 011at), and 0b01000
10019 for branch on CTR insns (BO == 1a00t or 1a01t). */
10020 if ((insn & (0x14 << 21)) == (0x04 << 21))
10021 insn |= 0x02 << 21;
10022 else if ((insn & (0x14 << 21)) == (0x10 << 21))
10023 insn |= 0x08 << 21;
10024 else
10025 break;
10026 }
10027 else
10028 {
10029 /* Invert 'y' bit if not the default. */
10030 if ((bfd_signed_vma) (relocation + rel->r_addend - from) < 0)
10031 insn ^= 0x01 << 21;
10032 }
10033
10034 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
10035 }
10036
10037 /* NOP out calls to undefined weak functions.
10038 We can thus call a weak function without first
10039 checking whether the function is defined. */
10040 else if (h != NULL
10041 && h->elf.root.type == bfd_link_hash_undefweak
10042 && r_type == R_PPC64_REL24
10043 && relocation == 0
10044 && rel->r_addend == 0)
10045 {
10046 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
10047 continue;
10048 }
10049 break;
10050 }
10051
10052 /* Set `addend'. */
10053 tls_type = 0;
10054 switch (r_type)
10055 {
10056 default:
10057 (*_bfd_error_handler)
10058 (_("%B: unknown relocation type %d for symbol %s"),
10059 input_bfd, (int) r_type, sym_name);
10060
10061 bfd_set_error (bfd_error_bad_value);
10062 ret = FALSE;
10063 continue;
10064
10065 case R_PPC64_NONE:
10066 case R_PPC64_TLS:
10067 case R_PPC64_GNU_VTINHERIT:
10068 case R_PPC64_GNU_VTENTRY:
10069 continue;
10070
10071 /* GOT16 relocations. Like an ADDR16 using the symbol's
10072 address in the GOT as relocation value instead of the
10073 symbol's value itself. Also, create a GOT entry for the
10074 symbol and put the symbol value there. */
10075 case R_PPC64_GOT_TLSGD16:
10076 case R_PPC64_GOT_TLSGD16_LO:
10077 case R_PPC64_GOT_TLSGD16_HI:
10078 case R_PPC64_GOT_TLSGD16_HA:
10079 tls_type = TLS_TLS | TLS_GD;
10080 goto dogot;
10081
10082 case R_PPC64_GOT_TLSLD16:
10083 case R_PPC64_GOT_TLSLD16_LO:
10084 case R_PPC64_GOT_TLSLD16_HI:
10085 case R_PPC64_GOT_TLSLD16_HA:
10086 tls_type = TLS_TLS | TLS_LD;
10087 goto dogot;
10088
10089 case R_PPC64_GOT_TPREL16_DS:
10090 case R_PPC64_GOT_TPREL16_LO_DS:
10091 case R_PPC64_GOT_TPREL16_HI:
10092 case R_PPC64_GOT_TPREL16_HA:
10093 tls_type = TLS_TLS | TLS_TPREL;
10094 goto dogot;
10095
10096 case R_PPC64_GOT_DTPREL16_DS:
10097 case R_PPC64_GOT_DTPREL16_LO_DS:
10098 case R_PPC64_GOT_DTPREL16_HI:
10099 case R_PPC64_GOT_DTPREL16_HA:
10100 tls_type = TLS_TLS | TLS_DTPREL;
10101 goto dogot;
10102
10103 case R_PPC64_GOT16:
10104 case R_PPC64_GOT16_LO:
10105 case R_PPC64_GOT16_HI:
10106 case R_PPC64_GOT16_HA:
10107 case R_PPC64_GOT16_DS:
10108 case R_PPC64_GOT16_LO_DS:
10109 dogot:
10110 {
10111 /* Relocation is to the entry for this symbol in the global
10112 offset table. */
10113 asection *got;
10114 bfd_vma *offp;
10115 bfd_vma off;
10116 unsigned long indx = 0;
10117
10118 if (tls_type == (TLS_TLS | TLS_LD)
10119 && (h == NULL
10120 || !h->elf.def_dynamic))
10121 offp = &ppc64_tlsld_got (input_bfd)->offset;
10122 else
10123 {
10124 struct got_entry *ent;
10125
10126 if (h != NULL)
10127 {
10128 bfd_boolean dyn = htab->elf.dynamic_sections_created;
10129 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
10130 &h->elf)
10131 || (info->shared
10132 && SYMBOL_REFERENCES_LOCAL (info, &h->elf)))
10133 /* This is actually a static link, or it is a
10134 -Bsymbolic link and the symbol is defined
10135 locally, or the symbol was forced to be local
10136 because of a version file. */
10137 ;
10138 else
10139 {
10140 indx = h->elf.dynindx;
10141 unresolved_reloc = FALSE;
10142 }
10143 ent = h->elf.got.glist;
10144 }
10145 else
10146 {
10147 if (local_got_ents == NULL)
10148 abort ();
10149 ent = local_got_ents[r_symndx];
10150 }
10151
10152 for (; ent != NULL; ent = ent->next)
10153 if (ent->addend == rel->r_addend
10154 && ent->owner == input_bfd
10155 && ent->tls_type == tls_type)
10156 break;
10157 if (ent == NULL)
10158 abort ();
10159 offp = &ent->got.offset;
10160 }
10161
10162 got = ppc64_elf_tdata (input_bfd)->got;
10163 if (got == NULL)
10164 abort ();
10165
10166 /* The offset must always be a multiple of 8. We use the
10167 least significant bit to record whether we have already
10168 processed this entry. */
10169 off = *offp;
10170 if ((off & 1) != 0)
10171 off &= ~1;
10172 else
10173 {
10174 /* Generate relocs for the dynamic linker, except in
10175 the case of TLSLD where we'll use one entry per
10176 module. */
10177 asection *relgot = ppc64_elf_tdata (input_bfd)->relgot;
10178
10179 *offp = off | 1;
10180 if ((info->shared || indx != 0)
10181 && (h == NULL
10182 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
10183 || h->elf.root.type != bfd_link_hash_undefweak))
10184 {
10185 outrel.r_offset = (got->output_section->vma
10186 + got->output_offset
10187 + off);
10188 outrel.r_addend = rel->r_addend;
10189 if (tls_type & (TLS_LD | TLS_GD))
10190 {
10191 outrel.r_addend = 0;
10192 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPMOD64);
10193 if (tls_type == (TLS_TLS | TLS_GD))
10194 {
10195 loc = relgot->contents;
10196 loc += (relgot->reloc_count++
10197 * sizeof (Elf64_External_Rela));
10198 bfd_elf64_swap_reloca_out (output_bfd,
10199 &outrel, loc);
10200 outrel.r_offset += 8;
10201 outrel.r_addend = rel->r_addend;
10202 outrel.r_info
10203 = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
10204 }
10205 }
10206 else if (tls_type == (TLS_TLS | TLS_DTPREL))
10207 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
10208 else if (tls_type == (TLS_TLS | TLS_TPREL))
10209 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_TPREL64);
10210 else if (indx == 0)
10211 {
10212 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_RELATIVE);
10213
10214 /* Write the .got section contents for the sake
10215 of prelink. */
10216 loc = got->contents + off;
10217 bfd_put_64 (output_bfd, outrel.r_addend + relocation,
10218 loc);
10219 }
10220 else
10221 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_GLOB_DAT);
10222
10223 if (indx == 0 && tls_type != (TLS_TLS | TLS_LD))
10224 {
10225 outrel.r_addend += relocation;
10226 if (tls_type & (TLS_GD | TLS_DTPREL | TLS_TPREL))
10227 outrel.r_addend -= htab->elf.tls_sec->vma;
10228 }
10229 loc = relgot->contents;
10230 loc += (relgot->reloc_count++
10231 * sizeof (Elf64_External_Rela));
10232 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
10233 }
10234
10235 /* Init the .got section contents here if we're not
10236 emitting a reloc. */
10237 else
10238 {
10239 relocation += rel->r_addend;
10240 if (tls_type == (TLS_TLS | TLS_LD))
10241 relocation = 1;
10242 else if (tls_type != 0)
10243 {
10244 relocation -= htab->elf.tls_sec->vma + DTP_OFFSET;
10245 if (tls_type == (TLS_TLS | TLS_TPREL))
10246 relocation += DTP_OFFSET - TP_OFFSET;
10247
10248 if (tls_type == (TLS_TLS | TLS_GD))
10249 {
10250 bfd_put_64 (output_bfd, relocation,
10251 got->contents + off + 8);
10252 relocation = 1;
10253 }
10254 }
10255
10256 bfd_put_64 (output_bfd, relocation,
10257 got->contents + off);
10258 }
10259 }
10260
10261 if (off >= (bfd_vma) -2)
10262 abort ();
10263
10264 relocation = got->output_offset + off;
10265
10266 /* TOC base (r2) is TOC start plus 0x8000. */
10267 addend = -TOC_BASE_OFF;
10268 }
10269 break;
10270
10271 case R_PPC64_PLT16_HA:
10272 case R_PPC64_PLT16_HI:
10273 case R_PPC64_PLT16_LO:
10274 case R_PPC64_PLT32:
10275 case R_PPC64_PLT64:
10276 /* Relocation is to the entry for this symbol in the
10277 procedure linkage table. */
10278
10279 /* Resolve a PLT reloc against a local symbol directly,
10280 without using the procedure linkage table. */
10281 if (h == NULL)
10282 break;
10283
10284 /* It's possible that we didn't make a PLT entry for this
10285 symbol. This happens when statically linking PIC code,
10286 or when using -Bsymbolic. Go find a match if there is a
10287 PLT entry. */
10288 if (htab->plt != NULL)
10289 {
10290 struct plt_entry *ent;
10291 for (ent = h->elf.plt.plist; ent != NULL; ent = ent->next)
10292 if (ent->addend == rel->r_addend
10293 && ent->plt.offset != (bfd_vma) -1)
10294 {
10295 relocation = (htab->plt->output_section->vma
10296 + htab->plt->output_offset
10297 + ent->plt.offset);
10298 unresolved_reloc = FALSE;
10299 }
10300 }
10301 break;
10302
10303 case R_PPC64_TOC:
10304 /* Relocation value is TOC base. */
10305 relocation = TOCstart;
10306 if (r_symndx == 0)
10307 relocation += htab->stub_group[input_section->id].toc_off;
10308 else if (unresolved_reloc)
10309 ;
10310 else if (sec != NULL && sec->id <= htab->top_id)
10311 relocation += htab->stub_group[sec->id].toc_off;
10312 else
10313 unresolved_reloc = TRUE;
10314 goto dodyn2;
10315
10316 /* TOC16 relocs. We want the offset relative to the TOC base,
10317 which is the address of the start of the TOC plus 0x8000.
10318 The TOC consists of sections .got, .toc, .tocbss, and .plt,
10319 in this order. */
10320 case R_PPC64_TOC16:
10321 case R_PPC64_TOC16_LO:
10322 case R_PPC64_TOC16_HI:
10323 case R_PPC64_TOC16_DS:
10324 case R_PPC64_TOC16_LO_DS:
10325 case R_PPC64_TOC16_HA:
10326 addend -= TOCstart + htab->stub_group[input_section->id].toc_off;
10327 break;
10328
10329 /* Relocate against the beginning of the section. */
10330 case R_PPC64_SECTOFF:
10331 case R_PPC64_SECTOFF_LO:
10332 case R_PPC64_SECTOFF_HI:
10333 case R_PPC64_SECTOFF_DS:
10334 case R_PPC64_SECTOFF_LO_DS:
10335 case R_PPC64_SECTOFF_HA:
10336 if (sec != NULL)
10337 addend -= sec->output_section->vma;
10338 break;
10339
10340 case R_PPC64_REL14:
10341 case R_PPC64_REL14_BRNTAKEN:
10342 case R_PPC64_REL14_BRTAKEN:
10343 case R_PPC64_REL24:
10344 break;
10345
10346 case R_PPC64_TPREL16:
10347 case R_PPC64_TPREL16_LO:
10348 case R_PPC64_TPREL16_HI:
10349 case R_PPC64_TPREL16_HA:
10350 case R_PPC64_TPREL16_DS:
10351 case R_PPC64_TPREL16_LO_DS:
10352 case R_PPC64_TPREL16_HIGHER:
10353 case R_PPC64_TPREL16_HIGHERA:
10354 case R_PPC64_TPREL16_HIGHEST:
10355 case R_PPC64_TPREL16_HIGHESTA:
10356 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
10357 if (info->shared)
10358 /* The TPREL16 relocs shouldn't really be used in shared
10359 libs as they will result in DT_TEXTREL being set, but
10360 support them anyway. */
10361 goto dodyn;
10362 break;
10363
10364 case R_PPC64_DTPREL16:
10365 case R_PPC64_DTPREL16_LO:
10366 case R_PPC64_DTPREL16_HI:
10367 case R_PPC64_DTPREL16_HA:
10368 case R_PPC64_DTPREL16_DS:
10369 case R_PPC64_DTPREL16_LO_DS:
10370 case R_PPC64_DTPREL16_HIGHER:
10371 case R_PPC64_DTPREL16_HIGHERA:
10372 case R_PPC64_DTPREL16_HIGHEST:
10373 case R_PPC64_DTPREL16_HIGHESTA:
10374 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
10375 break;
10376
10377 case R_PPC64_DTPMOD64:
10378 relocation = 1;
10379 addend = 0;
10380 goto dodyn;
10381
10382 case R_PPC64_TPREL64:
10383 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
10384 goto dodyn;
10385
10386 case R_PPC64_DTPREL64:
10387 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
10388 /* Fall thru */
10389
10390 /* Relocations that may need to be propagated if this is a
10391 dynamic object. */
10392 case R_PPC64_REL30:
10393 case R_PPC64_REL32:
10394 case R_PPC64_REL64:
10395 case R_PPC64_ADDR14:
10396 case R_PPC64_ADDR14_BRNTAKEN:
10397 case R_PPC64_ADDR14_BRTAKEN:
10398 case R_PPC64_ADDR16:
10399 case R_PPC64_ADDR16_DS:
10400 case R_PPC64_ADDR16_HA:
10401 case R_PPC64_ADDR16_HI:
10402 case R_PPC64_ADDR16_HIGHER:
10403 case R_PPC64_ADDR16_HIGHERA:
10404 case R_PPC64_ADDR16_HIGHEST:
10405 case R_PPC64_ADDR16_HIGHESTA:
10406 case R_PPC64_ADDR16_LO:
10407 case R_PPC64_ADDR16_LO_DS:
10408 case R_PPC64_ADDR24:
10409 case R_PPC64_ADDR32:
10410 case R_PPC64_ADDR64:
10411 case R_PPC64_UADDR16:
10412 case R_PPC64_UADDR32:
10413 case R_PPC64_UADDR64:
10414 /* r_symndx will be zero only for relocs against symbols
10415 from removed linkonce sections, or sections discarded by
10416 a linker script. */
10417 dodyn:
10418 if (r_symndx == 0)
10419 break;
10420 /* Fall thru. */
10421
10422 dodyn2:
10423 if ((input_section->flags & SEC_ALLOC) == 0)
10424 break;
10425
10426 if (NO_OPD_RELOCS && is_opd)
10427 break;
10428
10429 if ((info->shared
10430 && (h == NULL
10431 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
10432 || h->elf.root.type != bfd_link_hash_undefweak)
10433 && (MUST_BE_DYN_RELOC (r_type)
10434 || !SYMBOL_CALLS_LOCAL (info, &h->elf)))
10435 || (ELIMINATE_COPY_RELOCS
10436 && !info->shared
10437 && h != NULL
10438 && h->elf.dynindx != -1
10439 && !h->elf.non_got_ref
10440 && h->elf.def_dynamic
10441 && !h->elf.def_regular))
10442 {
10443 Elf_Internal_Rela outrel;
10444 bfd_boolean skip, relocate;
10445 asection *sreloc;
10446 bfd_byte *loc;
10447 bfd_vma out_off;
10448
10449 /* When generating a dynamic object, these relocations
10450 are copied into the output file to be resolved at run
10451 time. */
10452
10453 skip = FALSE;
10454 relocate = FALSE;
10455
10456 out_off = _bfd_elf_section_offset (output_bfd, info,
10457 input_section, rel->r_offset);
10458 if (out_off == (bfd_vma) -1)
10459 skip = TRUE;
10460 else if (out_off == (bfd_vma) -2)
10461 skip = TRUE, relocate = TRUE;
10462 out_off += (input_section->output_section->vma
10463 + input_section->output_offset);
10464 outrel.r_offset = out_off;
10465 outrel.r_addend = rel->r_addend;
10466
10467 /* Optimize unaligned reloc use. */
10468 if ((r_type == R_PPC64_ADDR64 && (out_off & 7) != 0)
10469 || (r_type == R_PPC64_UADDR64 && (out_off & 7) == 0))
10470 r_type ^= R_PPC64_ADDR64 ^ R_PPC64_UADDR64;
10471 else if ((r_type == R_PPC64_ADDR32 && (out_off & 3) != 0)
10472 || (r_type == R_PPC64_UADDR32 && (out_off & 3) == 0))
10473 r_type ^= R_PPC64_ADDR32 ^ R_PPC64_UADDR32;
10474 else if ((r_type == R_PPC64_ADDR16 && (out_off & 1) != 0)
10475 || (r_type == R_PPC64_UADDR16 && (out_off & 1) == 0))
10476 r_type ^= R_PPC64_ADDR16 ^ R_PPC64_UADDR16;
10477
10478 if (skip)
10479 memset (&outrel, 0, sizeof outrel);
10480 else if (!SYMBOL_REFERENCES_LOCAL (info, &h->elf)
10481 && !is_opd
10482 && r_type != R_PPC64_TOC)
10483 outrel.r_info = ELF64_R_INFO (h->elf.dynindx, r_type);
10484 else
10485 {
10486 /* This symbol is local, or marked to become local,
10487 or this is an opd section reloc which must point
10488 at a local function. */
10489 outrel.r_addend += relocation;
10490 if (r_type == R_PPC64_ADDR64 || r_type == R_PPC64_TOC)
10491 {
10492 if (is_opd && h != NULL)
10493 {
10494 /* Lie about opd entries. This case occurs
10495 when building shared libraries and we
10496 reference a function in another shared
10497 lib. The same thing happens for a weak
10498 definition in an application that's
10499 overridden by a strong definition in a
10500 shared lib. (I believe this is a generic
10501 bug in binutils handling of weak syms.)
10502 In these cases we won't use the opd
10503 entry in this lib. */
10504 unresolved_reloc = FALSE;
10505 }
10506 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10507
10508 /* We need to relocate .opd contents for ld.so.
10509 Prelink also wants simple and consistent rules
10510 for relocs. This make all RELATIVE relocs have
10511 *r_offset equal to r_addend. */
10512 relocate = TRUE;
10513 }
10514 else
10515 {
10516 long indx = 0;
10517
10518 if (bfd_is_abs_section (sec))
10519 ;
10520 else if (sec == NULL || sec->owner == NULL)
10521 {
10522 bfd_set_error (bfd_error_bad_value);
10523 return FALSE;
10524 }
10525 else
10526 {
10527 asection *osec;
10528
10529 osec = sec->output_section;
10530 indx = elf_section_data (osec)->dynindx;
10531
10532 /* We are turning this relocation into one
10533 against a section symbol, so subtract out
10534 the output section's address but not the
10535 offset of the input section in the output
10536 section. */
10537 outrel.r_addend -= osec->vma;
10538 }
10539
10540 outrel.r_info = ELF64_R_INFO (indx, r_type);
10541 }
10542 }
10543
10544 sreloc = elf_section_data (input_section)->sreloc;
10545 if (sreloc == NULL)
10546 abort ();
10547
10548 loc = sreloc->contents;
10549 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
10550 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
10551
10552 /* If this reloc is against an external symbol, it will
10553 be computed at runtime, so there's no need to do
10554 anything now. However, for the sake of prelink ensure
10555 that the section contents are a known value. */
10556 if (! relocate)
10557 {
10558 unresolved_reloc = FALSE;
10559 /* The value chosen here is quite arbitrary as ld.so
10560 ignores section contents except for the special
10561 case of .opd where the contents might be accessed
10562 before relocation. Choose zero, as that won't
10563 cause reloc overflow. */
10564 relocation = 0;
10565 addend = 0;
10566 /* Use *r_offset == r_addend for R_PPC64_ADDR64 relocs
10567 to improve backward compatibility with older
10568 versions of ld. */
10569 if (r_type == R_PPC64_ADDR64)
10570 addend = outrel.r_addend;
10571 /* Adjust pc_relative relocs to have zero in *r_offset. */
10572 else if (ppc64_elf_howto_table[r_type]->pc_relative)
10573 addend = (input_section->output_section->vma
10574 + input_section->output_offset
10575 + rel->r_offset);
10576 }
10577 }
10578 break;
10579
10580 case R_PPC64_COPY:
10581 case R_PPC64_GLOB_DAT:
10582 case R_PPC64_JMP_SLOT:
10583 case R_PPC64_RELATIVE:
10584 /* We shouldn't ever see these dynamic relocs in relocatable
10585 files. */
10586 /* Fall through. */
10587
10588 case R_PPC64_PLTGOT16:
10589 case R_PPC64_PLTGOT16_DS:
10590 case R_PPC64_PLTGOT16_HA:
10591 case R_PPC64_PLTGOT16_HI:
10592 case R_PPC64_PLTGOT16_LO:
10593 case R_PPC64_PLTGOT16_LO_DS:
10594 case R_PPC64_PLTREL32:
10595 case R_PPC64_PLTREL64:
10596 /* These ones haven't been implemented yet. */
10597
10598 (*_bfd_error_handler)
10599 (_("%B: relocation %s is not supported for symbol %s."),
10600 input_bfd,
10601 ppc64_elf_howto_table[r_type]->name, sym_name);
10602
10603 bfd_set_error (bfd_error_invalid_operation);
10604 ret = FALSE;
10605 continue;
10606 }
10607
10608 /* Do any further special processing. */
10609 switch (r_type)
10610 {
10611 default:
10612 break;
10613
10614 case R_PPC64_ADDR16_HA:
10615 case R_PPC64_ADDR16_HIGHERA:
10616 case R_PPC64_ADDR16_HIGHESTA:
10617 case R_PPC64_GOT16_HA:
10618 case R_PPC64_PLTGOT16_HA:
10619 case R_PPC64_PLT16_HA:
10620 case R_PPC64_TOC16_HA:
10621 case R_PPC64_SECTOFF_HA:
10622 case R_PPC64_TPREL16_HA:
10623 case R_PPC64_DTPREL16_HA:
10624 case R_PPC64_GOT_TLSGD16_HA:
10625 case R_PPC64_GOT_TLSLD16_HA:
10626 case R_PPC64_GOT_TPREL16_HA:
10627 case R_PPC64_GOT_DTPREL16_HA:
10628 case R_PPC64_TPREL16_HIGHER:
10629 case R_PPC64_TPREL16_HIGHERA:
10630 case R_PPC64_TPREL16_HIGHEST:
10631 case R_PPC64_TPREL16_HIGHESTA:
10632 case R_PPC64_DTPREL16_HIGHER:
10633 case R_PPC64_DTPREL16_HIGHERA:
10634 case R_PPC64_DTPREL16_HIGHEST:
10635 case R_PPC64_DTPREL16_HIGHESTA:
10636 /* It's just possible that this symbol is a weak symbol
10637 that's not actually defined anywhere. In that case,
10638 'sec' would be NULL, and we should leave the symbol
10639 alone (it will be set to zero elsewhere in the link). */
10640 if (sec != NULL)
10641 /* Add 0x10000 if sign bit in 0:15 is set.
10642 Bits 0:15 are not used. */
10643 addend += 0x8000;
10644 break;
10645
10646 case R_PPC64_ADDR16_DS:
10647 case R_PPC64_ADDR16_LO_DS:
10648 case R_PPC64_GOT16_DS:
10649 case R_PPC64_GOT16_LO_DS:
10650 case R_PPC64_PLT16_LO_DS:
10651 case R_PPC64_SECTOFF_DS:
10652 case R_PPC64_SECTOFF_LO_DS:
10653 case R_PPC64_TOC16_DS:
10654 case R_PPC64_TOC16_LO_DS:
10655 case R_PPC64_PLTGOT16_DS:
10656 case R_PPC64_PLTGOT16_LO_DS:
10657 case R_PPC64_GOT_TPREL16_DS:
10658 case R_PPC64_GOT_TPREL16_LO_DS:
10659 case R_PPC64_GOT_DTPREL16_DS:
10660 case R_PPC64_GOT_DTPREL16_LO_DS:
10661 case R_PPC64_TPREL16_DS:
10662 case R_PPC64_TPREL16_LO_DS:
10663 case R_PPC64_DTPREL16_DS:
10664 case R_PPC64_DTPREL16_LO_DS:
10665 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
10666 mask = 3;
10667 /* If this reloc is against an lq insn, then the value must be
10668 a multiple of 16. This is somewhat of a hack, but the
10669 "correct" way to do this by defining _DQ forms of all the
10670 _DS relocs bloats all reloc switches in this file. It
10671 doesn't seem to make much sense to use any of these relocs
10672 in data, so testing the insn should be safe. */
10673 if ((insn & (0x3f << 26)) == (56u << 26))
10674 mask = 15;
10675 if (((relocation + addend) & mask) != 0)
10676 {
10677 (*_bfd_error_handler)
10678 (_("%B: error: relocation %s not a multiple of %d"),
10679 input_bfd,
10680 ppc64_elf_howto_table[r_type]->name,
10681 mask + 1);
10682 bfd_set_error (bfd_error_bad_value);
10683 ret = FALSE;
10684 continue;
10685 }
10686 break;
10687 }
10688
10689 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
10690 because such sections are not SEC_ALLOC and thus ld.so will
10691 not process them. */
10692 if (unresolved_reloc
10693 && !((input_section->flags & SEC_DEBUGGING) != 0
10694 && h->elf.def_dynamic))
10695 {
10696 (*_bfd_error_handler)
10697 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
10698 input_bfd,
10699 input_section,
10700 (long) rel->r_offset,
10701 ppc64_elf_howto_table[(int) r_type]->name,
10702 h->elf.root.root.string);
10703 ret = FALSE;
10704 }
10705
10706 r = _bfd_final_link_relocate (ppc64_elf_howto_table[(int) r_type],
10707 input_bfd,
10708 input_section,
10709 contents,
10710 rel->r_offset,
10711 relocation,
10712 addend);
10713
10714 if (r != bfd_reloc_ok)
10715 {
10716 if (sym_name == NULL)
10717 sym_name = "(null)";
10718 if (r == bfd_reloc_overflow)
10719 {
10720 if (warned)
10721 continue;
10722 if (h != NULL
10723 && h->elf.root.type == bfd_link_hash_undefweak
10724 && ppc64_elf_howto_table[r_type]->pc_relative)
10725 {
10726 /* Assume this is a call protected by other code that
10727 detects the symbol is undefined. If this is the case,
10728 we can safely ignore the overflow. If not, the
10729 program is hosed anyway, and a little warning isn't
10730 going to help. */
10731
10732 continue;
10733 }
10734
10735 if (!((*info->callbacks->reloc_overflow)
10736 (info, (h ? &h->elf.root : NULL), sym_name,
10737 ppc64_elf_howto_table[r_type]->name,
10738 rel->r_addend, input_bfd, input_section, rel->r_offset)))
10739 return FALSE;
10740 }
10741 else
10742 {
10743 (*_bfd_error_handler)
10744 (_("%B(%A+0x%lx): %s reloc against `%s': error %d"),
10745 input_bfd,
10746 input_section,
10747 (long) rel->r_offset,
10748 ppc64_elf_howto_table[r_type]->name,
10749 sym_name,
10750 (int) r);
10751 ret = FALSE;
10752 }
10753 }
10754 }
10755
10756 /* If we're emitting relocations, then shortly after this function
10757 returns, reloc offsets and addends for this section will be
10758 adjusted. Worse, reloc symbol indices will be for the output
10759 file rather than the input. Save a copy of the relocs for
10760 opd_entry_value. */
10761 if (is_opd && info->emitrelocations)
10762 {
10763 bfd_size_type amt;
10764 amt = input_section->reloc_count * sizeof (Elf_Internal_Rela);
10765 rel = bfd_alloc (input_bfd, amt);
10766 BFD_ASSERT (ppc64_elf_tdata (input_bfd)->opd_relocs == NULL);
10767 ppc64_elf_tdata (input_bfd)->opd_relocs = rel;
10768 if (rel == NULL)
10769 return FALSE;
10770 memcpy (rel, relocs, amt);
10771 }
10772 return ret;
10773 }
10774
10775 /* Adjust the value of any local symbols in opd sections. */
10776
10777 static bfd_boolean
10778 ppc64_elf_output_symbol_hook (struct bfd_link_info *info,
10779 const char *name ATTRIBUTE_UNUSED,
10780 Elf_Internal_Sym *elfsym,
10781 asection *input_sec,
10782 struct elf_link_hash_entry *h)
10783 {
10784 long *opd_adjust, adjust;
10785 bfd_vma value;
10786
10787 if (h != NULL)
10788 return TRUE;
10789
10790 opd_adjust = get_opd_info (input_sec);
10791 if (opd_adjust == NULL)
10792 return TRUE;
10793
10794 value = elfsym->st_value - input_sec->output_offset;
10795 if (!info->relocatable)
10796 value -= input_sec->output_section->vma;
10797
10798 adjust = opd_adjust[value / 8];
10799 if (adjust == -1)
10800 elfsym->st_value = 0;
10801 else
10802 elfsym->st_value += adjust;
10803 return TRUE;
10804 }
10805
10806 /* Finish up dynamic symbol handling. We set the contents of various
10807 dynamic sections here. */
10808
10809 static bfd_boolean
10810 ppc64_elf_finish_dynamic_symbol (bfd *output_bfd,
10811 struct bfd_link_info *info,
10812 struct elf_link_hash_entry *h,
10813 Elf_Internal_Sym *sym)
10814 {
10815 struct ppc_link_hash_table *htab;
10816 bfd *dynobj;
10817 struct plt_entry *ent;
10818 Elf_Internal_Rela rela;
10819 bfd_byte *loc;
10820
10821 htab = ppc_hash_table (info);
10822 dynobj = htab->elf.dynobj;
10823
10824 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
10825 if (ent->plt.offset != (bfd_vma) -1)
10826 {
10827 /* This symbol has an entry in the procedure linkage
10828 table. Set it up. */
10829
10830 if (htab->plt == NULL
10831 || htab->relplt == NULL
10832 || htab->glink == NULL)
10833 abort ();
10834
10835 /* Create a JMP_SLOT reloc to inform the dynamic linker to
10836 fill in the PLT entry. */
10837 rela.r_offset = (htab->plt->output_section->vma
10838 + htab->plt->output_offset
10839 + ent->plt.offset);
10840 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_JMP_SLOT);
10841 rela.r_addend = ent->addend;
10842
10843 loc = htab->relplt->contents;
10844 loc += ((ent->plt.offset - PLT_INITIAL_ENTRY_SIZE) / PLT_ENTRY_SIZE
10845 * sizeof (Elf64_External_Rela));
10846 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
10847 }
10848
10849 if (h->needs_copy)
10850 {
10851 Elf_Internal_Rela rela;
10852 bfd_byte *loc;
10853
10854 /* This symbol needs a copy reloc. Set it up. */
10855
10856 if (h->dynindx == -1
10857 || (h->root.type != bfd_link_hash_defined
10858 && h->root.type != bfd_link_hash_defweak)
10859 || htab->relbss == NULL)
10860 abort ();
10861
10862 rela.r_offset = (h->root.u.def.value
10863 + h->root.u.def.section->output_section->vma
10864 + h->root.u.def.section->output_offset);
10865 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_COPY);
10866 rela.r_addend = 0;
10867 loc = htab->relbss->contents;
10868 loc += htab->relbss->reloc_count++ * sizeof (Elf64_External_Rela);
10869 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
10870 }
10871
10872 /* Mark some specially defined symbols as absolute. */
10873 if (strcmp (h->root.root.string, "_DYNAMIC") == 0)
10874 sym->st_shndx = SHN_ABS;
10875
10876 return TRUE;
10877 }
10878
10879 /* Used to decide how to sort relocs in an optimal manner for the
10880 dynamic linker, before writing them out. */
10881
10882 static enum elf_reloc_type_class
10883 ppc64_elf_reloc_type_class (const Elf_Internal_Rela *rela)
10884 {
10885 enum elf_ppc64_reloc_type r_type;
10886
10887 r_type = ELF64_R_TYPE (rela->r_info);
10888 switch (r_type)
10889 {
10890 case R_PPC64_RELATIVE:
10891 return reloc_class_relative;
10892 case R_PPC64_JMP_SLOT:
10893 return reloc_class_plt;
10894 case R_PPC64_COPY:
10895 return reloc_class_copy;
10896 default:
10897 return reloc_class_normal;
10898 }
10899 }
10900
10901 /* Finish up the dynamic sections. */
10902
10903 static bfd_boolean
10904 ppc64_elf_finish_dynamic_sections (bfd *output_bfd,
10905 struct bfd_link_info *info)
10906 {
10907 struct ppc_link_hash_table *htab;
10908 bfd *dynobj;
10909 asection *sdyn;
10910
10911 htab = ppc_hash_table (info);
10912 dynobj = htab->elf.dynobj;
10913 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
10914
10915 if (htab->elf.dynamic_sections_created)
10916 {
10917 Elf64_External_Dyn *dyncon, *dynconend;
10918
10919 if (sdyn == NULL || htab->got == NULL)
10920 abort ();
10921
10922 dyncon = (Elf64_External_Dyn *) sdyn->contents;
10923 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
10924 for (; dyncon < dynconend; dyncon++)
10925 {
10926 Elf_Internal_Dyn dyn;
10927 asection *s;
10928
10929 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
10930
10931 switch (dyn.d_tag)
10932 {
10933 default:
10934 continue;
10935
10936 case DT_PPC64_GLINK:
10937 s = htab->glink;
10938 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10939 /* We stupidly defined DT_PPC64_GLINK to be the start
10940 of glink rather than the first entry point, which is
10941 what ld.so needs, and now have a bigger stub to
10942 support automatic multiple TOCs. */
10943 dyn.d_un.d_ptr += GLINK_CALL_STUB_SIZE - 32;
10944 break;
10945
10946 case DT_PPC64_OPD:
10947 s = bfd_get_section_by_name (output_bfd, ".opd");
10948 if (s == NULL)
10949 continue;
10950 dyn.d_un.d_ptr = s->vma;
10951 break;
10952
10953 case DT_PPC64_OPDSZ:
10954 s = bfd_get_section_by_name (output_bfd, ".opd");
10955 if (s == NULL)
10956 continue;
10957 dyn.d_un.d_val = s->size;
10958 break;
10959
10960 case DT_PLTGOT:
10961 s = htab->plt;
10962 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10963 break;
10964
10965 case DT_JMPREL:
10966 s = htab->relplt;
10967 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10968 break;
10969
10970 case DT_PLTRELSZ:
10971 dyn.d_un.d_val = htab->relplt->size;
10972 break;
10973
10974 case DT_RELASZ:
10975 /* Don't count procedure linkage table relocs in the
10976 overall reloc count. */
10977 s = htab->relplt;
10978 if (s == NULL)
10979 continue;
10980 dyn.d_un.d_val -= s->size;
10981 break;
10982
10983 case DT_RELA:
10984 /* We may not be using the standard ELF linker script.
10985 If .rela.plt is the first .rela section, we adjust
10986 DT_RELA to not include it. */
10987 s = htab->relplt;
10988 if (s == NULL)
10989 continue;
10990 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
10991 continue;
10992 dyn.d_un.d_ptr += s->size;
10993 break;
10994 }
10995
10996 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
10997 }
10998 }
10999
11000 if (htab->got != NULL && htab->got->size != 0)
11001 {
11002 /* Fill in the first entry in the global offset table.
11003 We use it to hold the link-time TOCbase. */
11004 bfd_put_64 (output_bfd,
11005 elf_gp (output_bfd) + TOC_BASE_OFF,
11006 htab->got->contents);
11007
11008 /* Set .got entry size. */
11009 elf_section_data (htab->got->output_section)->this_hdr.sh_entsize = 8;
11010 }
11011
11012 if (htab->plt != NULL && htab->plt->size != 0)
11013 {
11014 /* Set .plt entry size. */
11015 elf_section_data (htab->plt->output_section)->this_hdr.sh_entsize
11016 = PLT_ENTRY_SIZE;
11017 }
11018
11019 /* We need to handle writing out multiple GOT sections ourselves,
11020 since we didn't add them to DYNOBJ. We know dynobj is the first
11021 bfd. */
11022 while ((dynobj = dynobj->link_next) != NULL)
11023 {
11024 asection *s;
11025
11026 if (!is_ppc64_elf_target (dynobj->xvec))
11027 continue;
11028
11029 s = ppc64_elf_tdata (dynobj)->got;
11030 if (s != NULL
11031 && s->size != 0
11032 && s->output_section != bfd_abs_section_ptr
11033 && !bfd_set_section_contents (output_bfd, s->output_section,
11034 s->contents, s->output_offset,
11035 s->size))
11036 return FALSE;
11037 s = ppc64_elf_tdata (dynobj)->relgot;
11038 if (s != NULL
11039 && s->size != 0
11040 && s->output_section != bfd_abs_section_ptr
11041 && !bfd_set_section_contents (output_bfd, s->output_section,
11042 s->contents, s->output_offset,
11043 s->size))
11044 return FALSE;
11045 }
11046
11047 return TRUE;
11048 }
11049
11050 #include "elf64-target.h"