Taking an undefined function's address in an executable
[binutils-gdb.git] / bfd / elf64-ppc.c
1 /* PowerPC64-specific support for 64-bit ELF.
2 Copyright (C) 1999-2014 Free Software Foundation, Inc.
3 Written by Linus Nordberg, Swox AB <info@swox.com>,
4 based on elf32-ppc.c by Ian Lance Taylor.
5 Largely rewritten by Alan Modra.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License along
20 with this program; if not, write to the Free Software Foundation, Inc.,
21 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
22
23
24 /* The 64-bit PowerPC ELF ABI may be found at
25 http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi.txt, and
26 http://www.linuxbase.org/spec/ELF/ppc64/spec/book1.html */
27
28 #include "sysdep.h"
29 #include <stdarg.h>
30 #include "bfd.h"
31 #include "bfdlink.h"
32 #include "libbfd.h"
33 #include "elf-bfd.h"
34 #include "elf/ppc64.h"
35 #include "elf64-ppc.h"
36 #include "dwarf2.h"
37
38 static bfd_reloc_status_type ppc64_elf_ha_reloc
39 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
40 static bfd_reloc_status_type ppc64_elf_branch_reloc
41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
42 static bfd_reloc_status_type ppc64_elf_brtaken_reloc
43 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
44 static bfd_reloc_status_type ppc64_elf_sectoff_reloc
45 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
46 static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc
47 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
48 static bfd_reloc_status_type ppc64_elf_toc_reloc
49 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
50 static bfd_reloc_status_type ppc64_elf_toc_ha_reloc
51 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
52 static bfd_reloc_status_type ppc64_elf_toc64_reloc
53 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
54 static bfd_reloc_status_type ppc64_elf_unhandled_reloc
55 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
56 static bfd_vma opd_entry_value
57 (asection *, bfd_vma, asection **, bfd_vma *, bfd_boolean);
58
59 #define TARGET_LITTLE_SYM powerpc_elf64_le_vec
60 #define TARGET_LITTLE_NAME "elf64-powerpcle"
61 #define TARGET_BIG_SYM powerpc_elf64_vec
62 #define TARGET_BIG_NAME "elf64-powerpc"
63 #define ELF_ARCH bfd_arch_powerpc
64 #define ELF_TARGET_ID PPC64_ELF_DATA
65 #define ELF_MACHINE_CODE EM_PPC64
66 #define ELF_MAXPAGESIZE 0x10000
67 #define ELF_COMMONPAGESIZE 0x1000
68 #define elf_info_to_howto ppc64_elf_info_to_howto
69
70 #define elf_backend_want_got_sym 0
71 #define elf_backend_want_plt_sym 0
72 #define elf_backend_plt_alignment 3
73 #define elf_backend_plt_not_loaded 1
74 #define elf_backend_got_header_size 8
75 #define elf_backend_can_gc_sections 1
76 #define elf_backend_can_refcount 1
77 #define elf_backend_rela_normal 1
78 #define elf_backend_default_execstack 0
79
80 #define bfd_elf64_mkobject ppc64_elf_mkobject
81 #define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup
82 #define bfd_elf64_bfd_reloc_name_lookup ppc64_elf_reloc_name_lookup
83 #define bfd_elf64_bfd_merge_private_bfd_data ppc64_elf_merge_private_bfd_data
84 #define bfd_elf64_bfd_print_private_bfd_data ppc64_elf_print_private_bfd_data
85 #define bfd_elf64_new_section_hook ppc64_elf_new_section_hook
86 #define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create
87 #define bfd_elf64_get_synthetic_symtab ppc64_elf_get_synthetic_symtab
88 #define bfd_elf64_bfd_link_just_syms ppc64_elf_link_just_syms
89
90 #define elf_backend_object_p ppc64_elf_object_p
91 #define elf_backend_grok_prstatus ppc64_elf_grok_prstatus
92 #define elf_backend_grok_psinfo ppc64_elf_grok_psinfo
93 #define elf_backend_write_core_note ppc64_elf_write_core_note
94 #define elf_backend_create_dynamic_sections ppc64_elf_create_dynamic_sections
95 #define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol
96 #define elf_backend_add_symbol_hook ppc64_elf_add_symbol_hook
97 #define elf_backend_check_directives ppc64_elf_before_check_relocs
98 #define elf_backend_notice_as_needed ppc64_elf_notice_as_needed
99 #define elf_backend_archive_symbol_lookup ppc64_elf_archive_symbol_lookup
100 #define elf_backend_check_relocs ppc64_elf_check_relocs
101 #define elf_backend_gc_keep ppc64_elf_gc_keep
102 #define elf_backend_gc_mark_dynamic_ref ppc64_elf_gc_mark_dynamic_ref
103 #define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook
104 #define elf_backend_gc_sweep_hook ppc64_elf_gc_sweep_hook
105 #define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol
106 #define elf_backend_hide_symbol ppc64_elf_hide_symbol
107 #define elf_backend_maybe_function_sym ppc64_elf_maybe_function_sym
108 #define elf_backend_always_size_sections ppc64_elf_func_desc_adjust
109 #define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections
110 #define elf_backend_hash_symbol ppc64_elf_hash_symbol
111 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
112 #define elf_backend_action_discarded ppc64_elf_action_discarded
113 #define elf_backend_relocate_section ppc64_elf_relocate_section
114 #define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol
115 #define elf_backend_reloc_type_class ppc64_elf_reloc_type_class
116 #define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections
117 #define elf_backend_link_output_symbol_hook ppc64_elf_output_symbol_hook
118 #define elf_backend_special_sections ppc64_elf_special_sections
119 #define elf_backend_merge_symbol_attribute ppc64_elf_merge_symbol_attribute
120
121 /* The name of the dynamic interpreter. This is put in the .interp
122 section. */
123 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
124
125 /* The size in bytes of an entry in the procedure linkage table. */
126 #define PLT_ENTRY_SIZE(htab) (htab->opd_abi ? 24 : 8)
127
128 /* The initial size of the plt reserved for the dynamic linker. */
129 #define PLT_INITIAL_ENTRY_SIZE(htab) (htab->opd_abi ? 24 : 16)
130
131 /* Offsets to some stack save slots. */
132 #define STK_LR 16
133 #define STK_TOC(htab) (htab->opd_abi ? 40 : 24)
134 /* This one is dodgy. ELFv2 does not have a linker word, so use the
135 CR save slot. Used only by optimised __tls_get_addr call stub,
136 relying on __tls_get_addr_opt not saving CR.. */
137 #define STK_LINKER(htab) (htab->opd_abi ? 32 : 8)
138
139 /* TOC base pointers offset from start of TOC. */
140 #define TOC_BASE_OFF 0x8000
141
142 /* Offset of tp and dtp pointers from start of TLS block. */
143 #define TP_OFFSET 0x7000
144 #define DTP_OFFSET 0x8000
145
146 /* .plt call stub instructions. The normal stub is like this, but
147 sometimes the .plt entry crosses a 64k boundary and we need to
148 insert an addi to adjust r11. */
149 #define STD_R2_0R1 0xf8410000 /* std %r2,0+40(%r1) */
150 #define ADDIS_R11_R2 0x3d620000 /* addis %r11,%r2,xxx@ha */
151 #define LD_R12_0R11 0xe98b0000 /* ld %r12,xxx+0@l(%r11) */
152 #define MTCTR_R12 0x7d8903a6 /* mtctr %r12 */
153 #define LD_R2_0R11 0xe84b0000 /* ld %r2,xxx+8@l(%r11) */
154 #define LD_R11_0R11 0xe96b0000 /* ld %r11,xxx+16@l(%r11) */
155 #define BCTR 0x4e800420 /* bctr */
156
157 #define ADDI_R11_R11 0x396b0000 /* addi %r11,%r11,off@l */
158 #define ADDIS_R2_R2 0x3c420000 /* addis %r2,%r2,off@ha */
159 #define ADDI_R2_R2 0x38420000 /* addi %r2,%r2,off@l */
160
161 #define XOR_R2_R12_R12 0x7d826278 /* xor %r2,%r12,%r12 */
162 #define ADD_R11_R11_R2 0x7d6b1214 /* add %r11,%r11,%r2 */
163 #define XOR_R11_R12_R12 0x7d8b6278 /* xor %r11,%r12,%r12 */
164 #define ADD_R2_R2_R11 0x7c425a14 /* add %r2,%r2,%r11 */
165 #define CMPLDI_R2_0 0x28220000 /* cmpldi %r2,0 */
166 #define BNECTR 0x4ca20420 /* bnectr+ */
167 #define BNECTR_P4 0x4ce20420 /* bnectr+ */
168
169 #define LD_R12_0R2 0xe9820000 /* ld %r12,xxx+0(%r2) */
170 #define LD_R11_0R2 0xe9620000 /* ld %r11,xxx+0(%r2) */
171 #define LD_R2_0R2 0xe8420000 /* ld %r2,xxx+0(%r2) */
172
173 #define LD_R2_0R1 0xe8410000 /* ld %r2,0(%r1) */
174
175 #define ADDIS_R12_R2 0x3d820000 /* addis %r12,%r2,xxx@ha */
176 #define ADDIS_R12_R12 0x3d8c0000 /* addis %r12,%r12,xxx@ha */
177 #define LD_R12_0R12 0xe98c0000 /* ld %r12,xxx@l(%r12) */
178
179 /* glink call stub instructions. We enter with the index in R0. */
180 #define GLINK_CALL_STUB_SIZE (16*4)
181 /* 0: */
182 /* .quad plt0-1f */
183 /* __glink: */
184 #define MFLR_R12 0x7d8802a6 /* mflr %12 */
185 #define BCL_20_31 0x429f0005 /* bcl 20,31,1f */
186 /* 1: */
187 #define MFLR_R11 0x7d6802a6 /* mflr %11 */
188 /* ld %2,(0b-1b)(%11) */
189 #define MTLR_R12 0x7d8803a6 /* mtlr %12 */
190 #define ADD_R11_R2_R11 0x7d625a14 /* add %11,%2,%11 */
191 /* ld %12,0(%11) */
192 /* ld %2,8(%11) */
193 /* mtctr %12 */
194 /* ld %11,16(%11) */
195 /* bctr */
196 #define MFLR_R0 0x7c0802a6 /* mflr %r0 */
197 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
198 #define SUB_R12_R12_R11 0x7d8b6050 /* subf %r12,%r11,%r12 */
199 #define ADDI_R0_R12 0x380c0000 /* addi %r0,%r12,0 */
200 #define SRDI_R0_R0_2 0x7800f082 /* rldicl %r0,%r0,62,2 */
201
202 /* Pad with this. */
203 #define NOP 0x60000000
204
205 /* Some other nops. */
206 #define CROR_151515 0x4def7b82
207 #define CROR_313131 0x4ffffb82
208
209 /* .glink entries for the first 32k functions are two instructions. */
210 #define LI_R0_0 0x38000000 /* li %r0,0 */
211 #define B_DOT 0x48000000 /* b . */
212
213 /* After that, we need two instructions to load the index, followed by
214 a branch. */
215 #define LIS_R0_0 0x3c000000 /* lis %r0,0 */
216 #define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */
217
218 /* Instructions used by the save and restore reg functions. */
219 #define STD_R0_0R1 0xf8010000 /* std %r0,0(%r1) */
220 #define STD_R0_0R12 0xf80c0000 /* std %r0,0(%r12) */
221 #define LD_R0_0R1 0xe8010000 /* ld %r0,0(%r1) */
222 #define LD_R0_0R12 0xe80c0000 /* ld %r0,0(%r12) */
223 #define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */
224 #define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */
225 #define LI_R12_0 0x39800000 /* li %r12,0 */
226 #define STVX_VR0_R12_R0 0x7c0c01ce /* stvx %v0,%r12,%r0 */
227 #define LVX_VR0_R12_R0 0x7c0c00ce /* lvx %v0,%r12,%r0 */
228 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
229 #define BLR 0x4e800020 /* blr */
230
231 /* Since .opd is an array of descriptors and each entry will end up
232 with identical R_PPC64_RELATIVE relocs, there is really no need to
233 propagate .opd relocs; The dynamic linker should be taught to
234 relocate .opd without reloc entries. */
235 #ifndef NO_OPD_RELOCS
236 #define NO_OPD_RELOCS 0
237 #endif
238
239 static inline int
240 abiversion (bfd *abfd)
241 {
242 return elf_elfheader (abfd)->e_flags & EF_PPC64_ABI;
243 }
244
245 static inline void
246 set_abiversion (bfd *abfd, int ver)
247 {
248 elf_elfheader (abfd)->e_flags &= ~EF_PPC64_ABI;
249 elf_elfheader (abfd)->e_flags |= ver & EF_PPC64_ABI;
250 }
251 \f
252 #define ONES(n) (((bfd_vma) 1 << ((n) - 1) << 1) - 1)
253
254 /* Relocation HOWTO's. */
255 static reloc_howto_type *ppc64_elf_howto_table[(int) R_PPC64_max];
256
257 static reloc_howto_type ppc64_elf_howto_raw[] = {
258 /* This reloc does nothing. */
259 HOWTO (R_PPC64_NONE, /* type */
260 0, /* rightshift */
261 2, /* size (0 = byte, 1 = short, 2 = long) */
262 32, /* bitsize */
263 FALSE, /* pc_relative */
264 0, /* bitpos */
265 complain_overflow_dont, /* complain_on_overflow */
266 bfd_elf_generic_reloc, /* special_function */
267 "R_PPC64_NONE", /* name */
268 FALSE, /* partial_inplace */
269 0, /* src_mask */
270 0, /* dst_mask */
271 FALSE), /* pcrel_offset */
272
273 /* A standard 32 bit relocation. */
274 HOWTO (R_PPC64_ADDR32, /* type */
275 0, /* rightshift */
276 2, /* size (0 = byte, 1 = short, 2 = long) */
277 32, /* bitsize */
278 FALSE, /* pc_relative */
279 0, /* bitpos */
280 complain_overflow_bitfield, /* complain_on_overflow */
281 bfd_elf_generic_reloc, /* special_function */
282 "R_PPC64_ADDR32", /* name */
283 FALSE, /* partial_inplace */
284 0, /* src_mask */
285 0xffffffff, /* dst_mask */
286 FALSE), /* pcrel_offset */
287
288 /* An absolute 26 bit branch; the lower two bits must be zero.
289 FIXME: we don't check that, we just clear them. */
290 HOWTO (R_PPC64_ADDR24, /* type */
291 0, /* rightshift */
292 2, /* size (0 = byte, 1 = short, 2 = long) */
293 26, /* bitsize */
294 FALSE, /* pc_relative */
295 0, /* bitpos */
296 complain_overflow_bitfield, /* complain_on_overflow */
297 bfd_elf_generic_reloc, /* special_function */
298 "R_PPC64_ADDR24", /* name */
299 FALSE, /* partial_inplace */
300 0, /* src_mask */
301 0x03fffffc, /* dst_mask */
302 FALSE), /* pcrel_offset */
303
304 /* A standard 16 bit relocation. */
305 HOWTO (R_PPC64_ADDR16, /* type */
306 0, /* rightshift */
307 1, /* size (0 = byte, 1 = short, 2 = long) */
308 16, /* bitsize */
309 FALSE, /* pc_relative */
310 0, /* bitpos */
311 complain_overflow_bitfield, /* complain_on_overflow */
312 bfd_elf_generic_reloc, /* special_function */
313 "R_PPC64_ADDR16", /* name */
314 FALSE, /* partial_inplace */
315 0, /* src_mask */
316 0xffff, /* dst_mask */
317 FALSE), /* pcrel_offset */
318
319 /* A 16 bit relocation without overflow. */
320 HOWTO (R_PPC64_ADDR16_LO, /* type */
321 0, /* rightshift */
322 1, /* size (0 = byte, 1 = short, 2 = long) */
323 16, /* bitsize */
324 FALSE, /* pc_relative */
325 0, /* bitpos */
326 complain_overflow_dont,/* complain_on_overflow */
327 bfd_elf_generic_reloc, /* special_function */
328 "R_PPC64_ADDR16_LO", /* name */
329 FALSE, /* partial_inplace */
330 0, /* src_mask */
331 0xffff, /* dst_mask */
332 FALSE), /* pcrel_offset */
333
334 /* Bits 16-31 of an address. */
335 HOWTO (R_PPC64_ADDR16_HI, /* type */
336 16, /* rightshift */
337 1, /* size (0 = byte, 1 = short, 2 = long) */
338 16, /* bitsize */
339 FALSE, /* pc_relative */
340 0, /* bitpos */
341 complain_overflow_signed, /* complain_on_overflow */
342 bfd_elf_generic_reloc, /* special_function */
343 "R_PPC64_ADDR16_HI", /* name */
344 FALSE, /* partial_inplace */
345 0, /* src_mask */
346 0xffff, /* dst_mask */
347 FALSE), /* pcrel_offset */
348
349 /* Bits 16-31 of an address, plus 1 if the contents of the low 16
350 bits, treated as a signed number, is negative. */
351 HOWTO (R_PPC64_ADDR16_HA, /* type */
352 16, /* rightshift */
353 1, /* size (0 = byte, 1 = short, 2 = long) */
354 16, /* bitsize */
355 FALSE, /* pc_relative */
356 0, /* bitpos */
357 complain_overflow_signed, /* complain_on_overflow */
358 ppc64_elf_ha_reloc, /* special_function */
359 "R_PPC64_ADDR16_HA", /* name */
360 FALSE, /* partial_inplace */
361 0, /* src_mask */
362 0xffff, /* dst_mask */
363 FALSE), /* pcrel_offset */
364
365 /* An absolute 16 bit branch; the lower two bits must be zero.
366 FIXME: we don't check that, we just clear them. */
367 HOWTO (R_PPC64_ADDR14, /* type */
368 0, /* rightshift */
369 2, /* size (0 = byte, 1 = short, 2 = long) */
370 16, /* bitsize */
371 FALSE, /* pc_relative */
372 0, /* bitpos */
373 complain_overflow_signed, /* complain_on_overflow */
374 ppc64_elf_branch_reloc, /* special_function */
375 "R_PPC64_ADDR14", /* name */
376 FALSE, /* partial_inplace */
377 0, /* src_mask */
378 0x0000fffc, /* dst_mask */
379 FALSE), /* pcrel_offset */
380
381 /* An absolute 16 bit branch, for which bit 10 should be set to
382 indicate that the branch is expected to be taken. The lower two
383 bits must be zero. */
384 HOWTO (R_PPC64_ADDR14_BRTAKEN, /* type */
385 0, /* rightshift */
386 2, /* size (0 = byte, 1 = short, 2 = long) */
387 16, /* bitsize */
388 FALSE, /* pc_relative */
389 0, /* bitpos */
390 complain_overflow_signed, /* complain_on_overflow */
391 ppc64_elf_brtaken_reloc, /* special_function */
392 "R_PPC64_ADDR14_BRTAKEN",/* name */
393 FALSE, /* partial_inplace */
394 0, /* src_mask */
395 0x0000fffc, /* dst_mask */
396 FALSE), /* pcrel_offset */
397
398 /* An absolute 16 bit branch, for which bit 10 should be set to
399 indicate that the branch is not expected to be taken. The lower
400 two bits must be zero. */
401 HOWTO (R_PPC64_ADDR14_BRNTAKEN, /* type */
402 0, /* rightshift */
403 2, /* size (0 = byte, 1 = short, 2 = long) */
404 16, /* bitsize */
405 FALSE, /* pc_relative */
406 0, /* bitpos */
407 complain_overflow_signed, /* complain_on_overflow */
408 ppc64_elf_brtaken_reloc, /* special_function */
409 "R_PPC64_ADDR14_BRNTAKEN",/* name */
410 FALSE, /* partial_inplace */
411 0, /* src_mask */
412 0x0000fffc, /* dst_mask */
413 FALSE), /* pcrel_offset */
414
415 /* A relative 26 bit branch; the lower two bits must be zero. */
416 HOWTO (R_PPC64_REL24, /* type */
417 0, /* rightshift */
418 2, /* size (0 = byte, 1 = short, 2 = long) */
419 26, /* bitsize */
420 TRUE, /* pc_relative */
421 0, /* bitpos */
422 complain_overflow_signed, /* complain_on_overflow */
423 ppc64_elf_branch_reloc, /* special_function */
424 "R_PPC64_REL24", /* name */
425 FALSE, /* partial_inplace */
426 0, /* src_mask */
427 0x03fffffc, /* dst_mask */
428 TRUE), /* pcrel_offset */
429
430 /* A relative 16 bit branch; the lower two bits must be zero. */
431 HOWTO (R_PPC64_REL14, /* type */
432 0, /* rightshift */
433 2, /* size (0 = byte, 1 = short, 2 = long) */
434 16, /* bitsize */
435 TRUE, /* pc_relative */
436 0, /* bitpos */
437 complain_overflow_signed, /* complain_on_overflow */
438 ppc64_elf_branch_reloc, /* special_function */
439 "R_PPC64_REL14", /* name */
440 FALSE, /* partial_inplace */
441 0, /* src_mask */
442 0x0000fffc, /* dst_mask */
443 TRUE), /* pcrel_offset */
444
445 /* A relative 16 bit branch. Bit 10 should be set to indicate that
446 the branch is expected to be taken. The lower two bits must be
447 zero. */
448 HOWTO (R_PPC64_REL14_BRTAKEN, /* type */
449 0, /* rightshift */
450 2, /* size (0 = byte, 1 = short, 2 = long) */
451 16, /* bitsize */
452 TRUE, /* pc_relative */
453 0, /* bitpos */
454 complain_overflow_signed, /* complain_on_overflow */
455 ppc64_elf_brtaken_reloc, /* special_function */
456 "R_PPC64_REL14_BRTAKEN", /* name */
457 FALSE, /* partial_inplace */
458 0, /* src_mask */
459 0x0000fffc, /* dst_mask */
460 TRUE), /* pcrel_offset */
461
462 /* A relative 16 bit branch. Bit 10 should be set to indicate that
463 the branch is not expected to be taken. The lower two bits must
464 be zero. */
465 HOWTO (R_PPC64_REL14_BRNTAKEN, /* type */
466 0, /* rightshift */
467 2, /* size (0 = byte, 1 = short, 2 = long) */
468 16, /* bitsize */
469 TRUE, /* pc_relative */
470 0, /* bitpos */
471 complain_overflow_signed, /* complain_on_overflow */
472 ppc64_elf_brtaken_reloc, /* special_function */
473 "R_PPC64_REL14_BRNTAKEN",/* name */
474 FALSE, /* partial_inplace */
475 0, /* src_mask */
476 0x0000fffc, /* dst_mask */
477 TRUE), /* pcrel_offset */
478
479 /* Like R_PPC64_ADDR16, but referring to the GOT table entry for the
480 symbol. */
481 HOWTO (R_PPC64_GOT16, /* type */
482 0, /* rightshift */
483 1, /* size (0 = byte, 1 = short, 2 = long) */
484 16, /* bitsize */
485 FALSE, /* pc_relative */
486 0, /* bitpos */
487 complain_overflow_signed, /* complain_on_overflow */
488 ppc64_elf_unhandled_reloc, /* special_function */
489 "R_PPC64_GOT16", /* name */
490 FALSE, /* partial_inplace */
491 0, /* src_mask */
492 0xffff, /* dst_mask */
493 FALSE), /* pcrel_offset */
494
495 /* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for
496 the symbol. */
497 HOWTO (R_PPC64_GOT16_LO, /* type */
498 0, /* rightshift */
499 1, /* size (0 = byte, 1 = short, 2 = long) */
500 16, /* bitsize */
501 FALSE, /* pc_relative */
502 0, /* bitpos */
503 complain_overflow_dont, /* complain_on_overflow */
504 ppc64_elf_unhandled_reloc, /* special_function */
505 "R_PPC64_GOT16_LO", /* name */
506 FALSE, /* partial_inplace */
507 0, /* src_mask */
508 0xffff, /* dst_mask */
509 FALSE), /* pcrel_offset */
510
511 /* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for
512 the symbol. */
513 HOWTO (R_PPC64_GOT16_HI, /* type */
514 16, /* rightshift */
515 1, /* size (0 = byte, 1 = short, 2 = long) */
516 16, /* bitsize */
517 FALSE, /* pc_relative */
518 0, /* bitpos */
519 complain_overflow_signed,/* complain_on_overflow */
520 ppc64_elf_unhandled_reloc, /* special_function */
521 "R_PPC64_GOT16_HI", /* name */
522 FALSE, /* partial_inplace */
523 0, /* src_mask */
524 0xffff, /* dst_mask */
525 FALSE), /* pcrel_offset */
526
527 /* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for
528 the symbol. */
529 HOWTO (R_PPC64_GOT16_HA, /* type */
530 16, /* rightshift */
531 1, /* size (0 = byte, 1 = short, 2 = long) */
532 16, /* bitsize */
533 FALSE, /* pc_relative */
534 0, /* bitpos */
535 complain_overflow_signed,/* complain_on_overflow */
536 ppc64_elf_unhandled_reloc, /* special_function */
537 "R_PPC64_GOT16_HA", /* name */
538 FALSE, /* partial_inplace */
539 0, /* src_mask */
540 0xffff, /* dst_mask */
541 FALSE), /* pcrel_offset */
542
543 /* This is used only by the dynamic linker. The symbol should exist
544 both in the object being run and in some shared library. The
545 dynamic linker copies the data addressed by the symbol from the
546 shared library into the object, because the object being
547 run has to have the data at some particular address. */
548 HOWTO (R_PPC64_COPY, /* type */
549 0, /* rightshift */
550 0, /* this one is variable size */
551 0, /* bitsize */
552 FALSE, /* pc_relative */
553 0, /* bitpos */
554 complain_overflow_dont, /* complain_on_overflow */
555 ppc64_elf_unhandled_reloc, /* special_function */
556 "R_PPC64_COPY", /* name */
557 FALSE, /* partial_inplace */
558 0, /* src_mask */
559 0, /* dst_mask */
560 FALSE), /* pcrel_offset */
561
562 /* Like R_PPC64_ADDR64, but used when setting global offset table
563 entries. */
564 HOWTO (R_PPC64_GLOB_DAT, /* type */
565 0, /* rightshift */
566 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
567 64, /* bitsize */
568 FALSE, /* pc_relative */
569 0, /* bitpos */
570 complain_overflow_dont, /* complain_on_overflow */
571 ppc64_elf_unhandled_reloc, /* special_function */
572 "R_PPC64_GLOB_DAT", /* name */
573 FALSE, /* partial_inplace */
574 0, /* src_mask */
575 ONES (64), /* dst_mask */
576 FALSE), /* pcrel_offset */
577
578 /* Created by the link editor. Marks a procedure linkage table
579 entry for a symbol. */
580 HOWTO (R_PPC64_JMP_SLOT, /* type */
581 0, /* rightshift */
582 0, /* size (0 = byte, 1 = short, 2 = long) */
583 0, /* bitsize */
584 FALSE, /* pc_relative */
585 0, /* bitpos */
586 complain_overflow_dont, /* complain_on_overflow */
587 ppc64_elf_unhandled_reloc, /* special_function */
588 "R_PPC64_JMP_SLOT", /* name */
589 FALSE, /* partial_inplace */
590 0, /* src_mask */
591 0, /* dst_mask */
592 FALSE), /* pcrel_offset */
593
594 /* Used only by the dynamic linker. When the object is run, this
595 doubleword64 is set to the load address of the object, plus the
596 addend. */
597 HOWTO (R_PPC64_RELATIVE, /* type */
598 0, /* rightshift */
599 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
600 64, /* bitsize */
601 FALSE, /* pc_relative */
602 0, /* bitpos */
603 complain_overflow_dont, /* complain_on_overflow */
604 bfd_elf_generic_reloc, /* special_function */
605 "R_PPC64_RELATIVE", /* name */
606 FALSE, /* partial_inplace */
607 0, /* src_mask */
608 ONES (64), /* dst_mask */
609 FALSE), /* pcrel_offset */
610
611 /* Like R_PPC64_ADDR32, but may be unaligned. */
612 HOWTO (R_PPC64_UADDR32, /* type */
613 0, /* rightshift */
614 2, /* size (0 = byte, 1 = short, 2 = long) */
615 32, /* bitsize */
616 FALSE, /* pc_relative */
617 0, /* bitpos */
618 complain_overflow_bitfield, /* complain_on_overflow */
619 bfd_elf_generic_reloc, /* special_function */
620 "R_PPC64_UADDR32", /* name */
621 FALSE, /* partial_inplace */
622 0, /* src_mask */
623 0xffffffff, /* dst_mask */
624 FALSE), /* pcrel_offset */
625
626 /* Like R_PPC64_ADDR16, but may be unaligned. */
627 HOWTO (R_PPC64_UADDR16, /* type */
628 0, /* rightshift */
629 1, /* size (0 = byte, 1 = short, 2 = long) */
630 16, /* bitsize */
631 FALSE, /* pc_relative */
632 0, /* bitpos */
633 complain_overflow_bitfield, /* complain_on_overflow */
634 bfd_elf_generic_reloc, /* special_function */
635 "R_PPC64_UADDR16", /* name */
636 FALSE, /* partial_inplace */
637 0, /* src_mask */
638 0xffff, /* dst_mask */
639 FALSE), /* pcrel_offset */
640
641 /* 32-bit PC relative. */
642 HOWTO (R_PPC64_REL32, /* type */
643 0, /* rightshift */
644 2, /* size (0 = byte, 1 = short, 2 = long) */
645 32, /* bitsize */
646 TRUE, /* pc_relative */
647 0, /* bitpos */
648 complain_overflow_signed, /* complain_on_overflow */
649 bfd_elf_generic_reloc, /* special_function */
650 "R_PPC64_REL32", /* name */
651 FALSE, /* partial_inplace */
652 0, /* src_mask */
653 0xffffffff, /* dst_mask */
654 TRUE), /* pcrel_offset */
655
656 /* 32-bit relocation to the symbol's procedure linkage table. */
657 HOWTO (R_PPC64_PLT32, /* type */
658 0, /* rightshift */
659 2, /* size (0 = byte, 1 = short, 2 = long) */
660 32, /* bitsize */
661 FALSE, /* pc_relative */
662 0, /* bitpos */
663 complain_overflow_bitfield, /* complain_on_overflow */
664 ppc64_elf_unhandled_reloc, /* special_function */
665 "R_PPC64_PLT32", /* name */
666 FALSE, /* partial_inplace */
667 0, /* src_mask */
668 0xffffffff, /* dst_mask */
669 FALSE), /* pcrel_offset */
670
671 /* 32-bit PC relative relocation to the symbol's procedure linkage table.
672 FIXME: R_PPC64_PLTREL32 not supported. */
673 HOWTO (R_PPC64_PLTREL32, /* type */
674 0, /* rightshift */
675 2, /* size (0 = byte, 1 = short, 2 = long) */
676 32, /* bitsize */
677 TRUE, /* pc_relative */
678 0, /* bitpos */
679 complain_overflow_signed, /* complain_on_overflow */
680 bfd_elf_generic_reloc, /* special_function */
681 "R_PPC64_PLTREL32", /* name */
682 FALSE, /* partial_inplace */
683 0, /* src_mask */
684 0xffffffff, /* dst_mask */
685 TRUE), /* pcrel_offset */
686
687 /* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for
688 the symbol. */
689 HOWTO (R_PPC64_PLT16_LO, /* type */
690 0, /* rightshift */
691 1, /* size (0 = byte, 1 = short, 2 = long) */
692 16, /* bitsize */
693 FALSE, /* pc_relative */
694 0, /* bitpos */
695 complain_overflow_dont, /* complain_on_overflow */
696 ppc64_elf_unhandled_reloc, /* special_function */
697 "R_PPC64_PLT16_LO", /* name */
698 FALSE, /* partial_inplace */
699 0, /* src_mask */
700 0xffff, /* dst_mask */
701 FALSE), /* pcrel_offset */
702
703 /* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for
704 the symbol. */
705 HOWTO (R_PPC64_PLT16_HI, /* type */
706 16, /* rightshift */
707 1, /* size (0 = byte, 1 = short, 2 = long) */
708 16, /* bitsize */
709 FALSE, /* pc_relative */
710 0, /* bitpos */
711 complain_overflow_signed, /* complain_on_overflow */
712 ppc64_elf_unhandled_reloc, /* special_function */
713 "R_PPC64_PLT16_HI", /* name */
714 FALSE, /* partial_inplace */
715 0, /* src_mask */
716 0xffff, /* dst_mask */
717 FALSE), /* pcrel_offset */
718
719 /* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for
720 the symbol. */
721 HOWTO (R_PPC64_PLT16_HA, /* type */
722 16, /* rightshift */
723 1, /* size (0 = byte, 1 = short, 2 = long) */
724 16, /* bitsize */
725 FALSE, /* pc_relative */
726 0, /* bitpos */
727 complain_overflow_signed, /* complain_on_overflow */
728 ppc64_elf_unhandled_reloc, /* special_function */
729 "R_PPC64_PLT16_HA", /* name */
730 FALSE, /* partial_inplace */
731 0, /* src_mask */
732 0xffff, /* dst_mask */
733 FALSE), /* pcrel_offset */
734
735 /* 16-bit section relative relocation. */
736 HOWTO (R_PPC64_SECTOFF, /* type */
737 0, /* rightshift */
738 1, /* size (0 = byte, 1 = short, 2 = long) */
739 16, /* bitsize */
740 FALSE, /* pc_relative */
741 0, /* bitpos */
742 complain_overflow_signed, /* complain_on_overflow */
743 ppc64_elf_sectoff_reloc, /* special_function */
744 "R_PPC64_SECTOFF", /* name */
745 FALSE, /* partial_inplace */
746 0, /* src_mask */
747 0xffff, /* dst_mask */
748 FALSE), /* pcrel_offset */
749
750 /* Like R_PPC64_SECTOFF, but no overflow warning. */
751 HOWTO (R_PPC64_SECTOFF_LO, /* type */
752 0, /* rightshift */
753 1, /* size (0 = byte, 1 = short, 2 = long) */
754 16, /* bitsize */
755 FALSE, /* pc_relative */
756 0, /* bitpos */
757 complain_overflow_dont, /* complain_on_overflow */
758 ppc64_elf_sectoff_reloc, /* special_function */
759 "R_PPC64_SECTOFF_LO", /* name */
760 FALSE, /* partial_inplace */
761 0, /* src_mask */
762 0xffff, /* dst_mask */
763 FALSE), /* pcrel_offset */
764
765 /* 16-bit upper half section relative relocation. */
766 HOWTO (R_PPC64_SECTOFF_HI, /* type */
767 16, /* rightshift */
768 1, /* size (0 = byte, 1 = short, 2 = long) */
769 16, /* bitsize */
770 FALSE, /* pc_relative */
771 0, /* bitpos */
772 complain_overflow_signed, /* complain_on_overflow */
773 ppc64_elf_sectoff_reloc, /* special_function */
774 "R_PPC64_SECTOFF_HI", /* name */
775 FALSE, /* partial_inplace */
776 0, /* src_mask */
777 0xffff, /* dst_mask */
778 FALSE), /* pcrel_offset */
779
780 /* 16-bit upper half adjusted section relative relocation. */
781 HOWTO (R_PPC64_SECTOFF_HA, /* type */
782 16, /* rightshift */
783 1, /* size (0 = byte, 1 = short, 2 = long) */
784 16, /* bitsize */
785 FALSE, /* pc_relative */
786 0, /* bitpos */
787 complain_overflow_signed, /* complain_on_overflow */
788 ppc64_elf_sectoff_ha_reloc, /* special_function */
789 "R_PPC64_SECTOFF_HA", /* name */
790 FALSE, /* partial_inplace */
791 0, /* src_mask */
792 0xffff, /* dst_mask */
793 FALSE), /* pcrel_offset */
794
795 /* Like R_PPC64_REL24 without touching the two least significant bits. */
796 HOWTO (R_PPC64_REL30, /* type */
797 2, /* rightshift */
798 2, /* size (0 = byte, 1 = short, 2 = long) */
799 30, /* bitsize */
800 TRUE, /* pc_relative */
801 0, /* bitpos */
802 complain_overflow_dont, /* complain_on_overflow */
803 bfd_elf_generic_reloc, /* special_function */
804 "R_PPC64_REL30", /* name */
805 FALSE, /* partial_inplace */
806 0, /* src_mask */
807 0xfffffffc, /* dst_mask */
808 TRUE), /* pcrel_offset */
809
810 /* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */
811
812 /* A standard 64-bit relocation. */
813 HOWTO (R_PPC64_ADDR64, /* type */
814 0, /* rightshift */
815 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
816 64, /* bitsize */
817 FALSE, /* pc_relative */
818 0, /* bitpos */
819 complain_overflow_dont, /* complain_on_overflow */
820 bfd_elf_generic_reloc, /* special_function */
821 "R_PPC64_ADDR64", /* name */
822 FALSE, /* partial_inplace */
823 0, /* src_mask */
824 ONES (64), /* dst_mask */
825 FALSE), /* pcrel_offset */
826
827 /* The bits 32-47 of an address. */
828 HOWTO (R_PPC64_ADDR16_HIGHER, /* type */
829 32, /* rightshift */
830 1, /* size (0 = byte, 1 = short, 2 = long) */
831 16, /* bitsize */
832 FALSE, /* pc_relative */
833 0, /* bitpos */
834 complain_overflow_dont, /* complain_on_overflow */
835 bfd_elf_generic_reloc, /* special_function */
836 "R_PPC64_ADDR16_HIGHER", /* name */
837 FALSE, /* partial_inplace */
838 0, /* src_mask */
839 0xffff, /* dst_mask */
840 FALSE), /* pcrel_offset */
841
842 /* The bits 32-47 of an address, plus 1 if the contents of the low
843 16 bits, treated as a signed number, is negative. */
844 HOWTO (R_PPC64_ADDR16_HIGHERA, /* type */
845 32, /* rightshift */
846 1, /* size (0 = byte, 1 = short, 2 = long) */
847 16, /* bitsize */
848 FALSE, /* pc_relative */
849 0, /* bitpos */
850 complain_overflow_dont, /* complain_on_overflow */
851 ppc64_elf_ha_reloc, /* special_function */
852 "R_PPC64_ADDR16_HIGHERA", /* name */
853 FALSE, /* partial_inplace */
854 0, /* src_mask */
855 0xffff, /* dst_mask */
856 FALSE), /* pcrel_offset */
857
858 /* The bits 48-63 of an address. */
859 HOWTO (R_PPC64_ADDR16_HIGHEST,/* type */
860 48, /* rightshift */
861 1, /* size (0 = byte, 1 = short, 2 = long) */
862 16, /* bitsize */
863 FALSE, /* pc_relative */
864 0, /* bitpos */
865 complain_overflow_dont, /* complain_on_overflow */
866 bfd_elf_generic_reloc, /* special_function */
867 "R_PPC64_ADDR16_HIGHEST", /* name */
868 FALSE, /* partial_inplace */
869 0, /* src_mask */
870 0xffff, /* dst_mask */
871 FALSE), /* pcrel_offset */
872
873 /* The bits 48-63 of an address, plus 1 if the contents of the low
874 16 bits, treated as a signed number, is negative. */
875 HOWTO (R_PPC64_ADDR16_HIGHESTA,/* type */
876 48, /* rightshift */
877 1, /* size (0 = byte, 1 = short, 2 = long) */
878 16, /* bitsize */
879 FALSE, /* pc_relative */
880 0, /* bitpos */
881 complain_overflow_dont, /* complain_on_overflow */
882 ppc64_elf_ha_reloc, /* special_function */
883 "R_PPC64_ADDR16_HIGHESTA", /* name */
884 FALSE, /* partial_inplace */
885 0, /* src_mask */
886 0xffff, /* dst_mask */
887 FALSE), /* pcrel_offset */
888
889 /* Like ADDR64, but may be unaligned. */
890 HOWTO (R_PPC64_UADDR64, /* type */
891 0, /* rightshift */
892 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
893 64, /* bitsize */
894 FALSE, /* pc_relative */
895 0, /* bitpos */
896 complain_overflow_dont, /* complain_on_overflow */
897 bfd_elf_generic_reloc, /* special_function */
898 "R_PPC64_UADDR64", /* name */
899 FALSE, /* partial_inplace */
900 0, /* src_mask */
901 ONES (64), /* dst_mask */
902 FALSE), /* pcrel_offset */
903
904 /* 64-bit relative relocation. */
905 HOWTO (R_PPC64_REL64, /* type */
906 0, /* rightshift */
907 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
908 64, /* bitsize */
909 TRUE, /* pc_relative */
910 0, /* bitpos */
911 complain_overflow_dont, /* complain_on_overflow */
912 bfd_elf_generic_reloc, /* special_function */
913 "R_PPC64_REL64", /* name */
914 FALSE, /* partial_inplace */
915 0, /* src_mask */
916 ONES (64), /* dst_mask */
917 TRUE), /* pcrel_offset */
918
919 /* 64-bit relocation to the symbol's procedure linkage table. */
920 HOWTO (R_PPC64_PLT64, /* type */
921 0, /* rightshift */
922 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
923 64, /* bitsize */
924 FALSE, /* pc_relative */
925 0, /* bitpos */
926 complain_overflow_dont, /* complain_on_overflow */
927 ppc64_elf_unhandled_reloc, /* special_function */
928 "R_PPC64_PLT64", /* name */
929 FALSE, /* partial_inplace */
930 0, /* src_mask */
931 ONES (64), /* dst_mask */
932 FALSE), /* pcrel_offset */
933
934 /* 64-bit PC relative relocation to the symbol's procedure linkage
935 table. */
936 /* FIXME: R_PPC64_PLTREL64 not supported. */
937 HOWTO (R_PPC64_PLTREL64, /* type */
938 0, /* rightshift */
939 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
940 64, /* bitsize */
941 TRUE, /* pc_relative */
942 0, /* bitpos */
943 complain_overflow_dont, /* complain_on_overflow */
944 ppc64_elf_unhandled_reloc, /* special_function */
945 "R_PPC64_PLTREL64", /* name */
946 FALSE, /* partial_inplace */
947 0, /* src_mask */
948 ONES (64), /* dst_mask */
949 TRUE), /* pcrel_offset */
950
951 /* 16 bit TOC-relative relocation. */
952
953 /* R_PPC64_TOC16 47 half16* S + A - .TOC. */
954 HOWTO (R_PPC64_TOC16, /* type */
955 0, /* rightshift */
956 1, /* size (0 = byte, 1 = short, 2 = long) */
957 16, /* bitsize */
958 FALSE, /* pc_relative */
959 0, /* bitpos */
960 complain_overflow_signed, /* complain_on_overflow */
961 ppc64_elf_toc_reloc, /* special_function */
962 "R_PPC64_TOC16", /* name */
963 FALSE, /* partial_inplace */
964 0, /* src_mask */
965 0xffff, /* dst_mask */
966 FALSE), /* pcrel_offset */
967
968 /* 16 bit TOC-relative relocation without overflow. */
969
970 /* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */
971 HOWTO (R_PPC64_TOC16_LO, /* type */
972 0, /* rightshift */
973 1, /* size (0 = byte, 1 = short, 2 = long) */
974 16, /* bitsize */
975 FALSE, /* pc_relative */
976 0, /* bitpos */
977 complain_overflow_dont, /* complain_on_overflow */
978 ppc64_elf_toc_reloc, /* special_function */
979 "R_PPC64_TOC16_LO", /* name */
980 FALSE, /* partial_inplace */
981 0, /* src_mask */
982 0xffff, /* dst_mask */
983 FALSE), /* pcrel_offset */
984
985 /* 16 bit TOC-relative relocation, high 16 bits. */
986
987 /* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */
988 HOWTO (R_PPC64_TOC16_HI, /* type */
989 16, /* rightshift */
990 1, /* size (0 = byte, 1 = short, 2 = long) */
991 16, /* bitsize */
992 FALSE, /* pc_relative */
993 0, /* bitpos */
994 complain_overflow_signed, /* complain_on_overflow */
995 ppc64_elf_toc_reloc, /* special_function */
996 "R_PPC64_TOC16_HI", /* name */
997 FALSE, /* partial_inplace */
998 0, /* src_mask */
999 0xffff, /* dst_mask */
1000 FALSE), /* pcrel_offset */
1001
1002 /* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the
1003 contents of the low 16 bits, treated as a signed number, is
1004 negative. */
1005
1006 /* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */
1007 HOWTO (R_PPC64_TOC16_HA, /* type */
1008 16, /* rightshift */
1009 1, /* size (0 = byte, 1 = short, 2 = long) */
1010 16, /* bitsize */
1011 FALSE, /* pc_relative */
1012 0, /* bitpos */
1013 complain_overflow_signed, /* complain_on_overflow */
1014 ppc64_elf_toc_ha_reloc, /* special_function */
1015 "R_PPC64_TOC16_HA", /* name */
1016 FALSE, /* partial_inplace */
1017 0, /* src_mask */
1018 0xffff, /* dst_mask */
1019 FALSE), /* pcrel_offset */
1020
1021 /* 64-bit relocation; insert value of TOC base (.TOC.). */
1022
1023 /* R_PPC64_TOC 51 doubleword64 .TOC. */
1024 HOWTO (R_PPC64_TOC, /* type */
1025 0, /* rightshift */
1026 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1027 64, /* bitsize */
1028 FALSE, /* pc_relative */
1029 0, /* bitpos */
1030 complain_overflow_dont, /* complain_on_overflow */
1031 ppc64_elf_toc64_reloc, /* special_function */
1032 "R_PPC64_TOC", /* name */
1033 FALSE, /* partial_inplace */
1034 0, /* src_mask */
1035 ONES (64), /* dst_mask */
1036 FALSE), /* pcrel_offset */
1037
1038 /* Like R_PPC64_GOT16, but also informs the link editor that the
1039 value to relocate may (!) refer to a PLT entry which the link
1040 editor (a) may replace with the symbol value. If the link editor
1041 is unable to fully resolve the symbol, it may (b) create a PLT
1042 entry and store the address to the new PLT entry in the GOT.
1043 This permits lazy resolution of function symbols at run time.
1044 The link editor may also skip all of this and just (c) emit a
1045 R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */
1046 /* FIXME: R_PPC64_PLTGOT16 not implemented. */
1047 HOWTO (R_PPC64_PLTGOT16, /* type */
1048 0, /* rightshift */
1049 1, /* size (0 = byte, 1 = short, 2 = long) */
1050 16, /* bitsize */
1051 FALSE, /* pc_relative */
1052 0, /* bitpos */
1053 complain_overflow_signed, /* complain_on_overflow */
1054 ppc64_elf_unhandled_reloc, /* special_function */
1055 "R_PPC64_PLTGOT16", /* name */
1056 FALSE, /* partial_inplace */
1057 0, /* src_mask */
1058 0xffff, /* dst_mask */
1059 FALSE), /* pcrel_offset */
1060
1061 /* Like R_PPC64_PLTGOT16, but without overflow. */
1062 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1063 HOWTO (R_PPC64_PLTGOT16_LO, /* type */
1064 0, /* rightshift */
1065 1, /* size (0 = byte, 1 = short, 2 = long) */
1066 16, /* bitsize */
1067 FALSE, /* pc_relative */
1068 0, /* bitpos */
1069 complain_overflow_dont, /* complain_on_overflow */
1070 ppc64_elf_unhandled_reloc, /* special_function */
1071 "R_PPC64_PLTGOT16_LO", /* name */
1072 FALSE, /* partial_inplace */
1073 0, /* src_mask */
1074 0xffff, /* dst_mask */
1075 FALSE), /* pcrel_offset */
1076
1077 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */
1078 /* FIXME: R_PPC64_PLTGOT16_HI not implemented. */
1079 HOWTO (R_PPC64_PLTGOT16_HI, /* type */
1080 16, /* rightshift */
1081 1, /* size (0 = byte, 1 = short, 2 = long) */
1082 16, /* bitsize */
1083 FALSE, /* pc_relative */
1084 0, /* bitpos */
1085 complain_overflow_signed, /* complain_on_overflow */
1086 ppc64_elf_unhandled_reloc, /* special_function */
1087 "R_PPC64_PLTGOT16_HI", /* name */
1088 FALSE, /* partial_inplace */
1089 0, /* src_mask */
1090 0xffff, /* dst_mask */
1091 FALSE), /* pcrel_offset */
1092
1093 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus
1094 1 if the contents of the low 16 bits, treated as a signed number,
1095 is negative. */
1096 /* FIXME: R_PPC64_PLTGOT16_HA not implemented. */
1097 HOWTO (R_PPC64_PLTGOT16_HA, /* type */
1098 16, /* rightshift */
1099 1, /* size (0 = byte, 1 = short, 2 = long) */
1100 16, /* bitsize */
1101 FALSE, /* pc_relative */
1102 0, /* bitpos */
1103 complain_overflow_signed, /* complain_on_overflow */
1104 ppc64_elf_unhandled_reloc, /* special_function */
1105 "R_PPC64_PLTGOT16_HA", /* name */
1106 FALSE, /* partial_inplace */
1107 0, /* src_mask */
1108 0xffff, /* dst_mask */
1109 FALSE), /* pcrel_offset */
1110
1111 /* Like R_PPC64_ADDR16, but for instructions with a DS field. */
1112 HOWTO (R_PPC64_ADDR16_DS, /* type */
1113 0, /* rightshift */
1114 1, /* size (0 = byte, 1 = short, 2 = long) */
1115 16, /* bitsize */
1116 FALSE, /* pc_relative */
1117 0, /* bitpos */
1118 complain_overflow_signed, /* complain_on_overflow */
1119 bfd_elf_generic_reloc, /* special_function */
1120 "R_PPC64_ADDR16_DS", /* name */
1121 FALSE, /* partial_inplace */
1122 0, /* src_mask */
1123 0xfffc, /* dst_mask */
1124 FALSE), /* pcrel_offset */
1125
1126 /* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */
1127 HOWTO (R_PPC64_ADDR16_LO_DS, /* type */
1128 0, /* rightshift */
1129 1, /* size (0 = byte, 1 = short, 2 = long) */
1130 16, /* bitsize */
1131 FALSE, /* pc_relative */
1132 0, /* bitpos */
1133 complain_overflow_dont,/* complain_on_overflow */
1134 bfd_elf_generic_reloc, /* special_function */
1135 "R_PPC64_ADDR16_LO_DS",/* name */
1136 FALSE, /* partial_inplace */
1137 0, /* src_mask */
1138 0xfffc, /* dst_mask */
1139 FALSE), /* pcrel_offset */
1140
1141 /* Like R_PPC64_GOT16, but for instructions with a DS field. */
1142 HOWTO (R_PPC64_GOT16_DS, /* type */
1143 0, /* rightshift */
1144 1, /* size (0 = byte, 1 = short, 2 = long) */
1145 16, /* bitsize */
1146 FALSE, /* pc_relative */
1147 0, /* bitpos */
1148 complain_overflow_signed, /* complain_on_overflow */
1149 ppc64_elf_unhandled_reloc, /* special_function */
1150 "R_PPC64_GOT16_DS", /* name */
1151 FALSE, /* partial_inplace */
1152 0, /* src_mask */
1153 0xfffc, /* dst_mask */
1154 FALSE), /* pcrel_offset */
1155
1156 /* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */
1157 HOWTO (R_PPC64_GOT16_LO_DS, /* type */
1158 0, /* rightshift */
1159 1, /* size (0 = byte, 1 = short, 2 = long) */
1160 16, /* bitsize */
1161 FALSE, /* pc_relative */
1162 0, /* bitpos */
1163 complain_overflow_dont, /* complain_on_overflow */
1164 ppc64_elf_unhandled_reloc, /* special_function */
1165 "R_PPC64_GOT16_LO_DS", /* name */
1166 FALSE, /* partial_inplace */
1167 0, /* src_mask */
1168 0xfffc, /* dst_mask */
1169 FALSE), /* pcrel_offset */
1170
1171 /* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */
1172 HOWTO (R_PPC64_PLT16_LO_DS, /* type */
1173 0, /* rightshift */
1174 1, /* size (0 = byte, 1 = short, 2 = long) */
1175 16, /* bitsize */
1176 FALSE, /* pc_relative */
1177 0, /* bitpos */
1178 complain_overflow_dont, /* complain_on_overflow */
1179 ppc64_elf_unhandled_reloc, /* special_function */
1180 "R_PPC64_PLT16_LO_DS", /* name */
1181 FALSE, /* partial_inplace */
1182 0, /* src_mask */
1183 0xfffc, /* dst_mask */
1184 FALSE), /* pcrel_offset */
1185
1186 /* Like R_PPC64_SECTOFF, but for instructions with a DS field. */
1187 HOWTO (R_PPC64_SECTOFF_DS, /* type */
1188 0, /* rightshift */
1189 1, /* size (0 = byte, 1 = short, 2 = long) */
1190 16, /* bitsize */
1191 FALSE, /* pc_relative */
1192 0, /* bitpos */
1193 complain_overflow_signed, /* complain_on_overflow */
1194 ppc64_elf_sectoff_reloc, /* special_function */
1195 "R_PPC64_SECTOFF_DS", /* name */
1196 FALSE, /* partial_inplace */
1197 0, /* src_mask */
1198 0xfffc, /* dst_mask */
1199 FALSE), /* pcrel_offset */
1200
1201 /* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */
1202 HOWTO (R_PPC64_SECTOFF_LO_DS, /* type */
1203 0, /* rightshift */
1204 1, /* size (0 = byte, 1 = short, 2 = long) */
1205 16, /* bitsize */
1206 FALSE, /* pc_relative */
1207 0, /* bitpos */
1208 complain_overflow_dont, /* complain_on_overflow */
1209 ppc64_elf_sectoff_reloc, /* special_function */
1210 "R_PPC64_SECTOFF_LO_DS",/* name */
1211 FALSE, /* partial_inplace */
1212 0, /* src_mask */
1213 0xfffc, /* dst_mask */
1214 FALSE), /* pcrel_offset */
1215
1216 /* Like R_PPC64_TOC16, but for instructions with a DS field. */
1217 HOWTO (R_PPC64_TOC16_DS, /* type */
1218 0, /* rightshift */
1219 1, /* size (0 = byte, 1 = short, 2 = long) */
1220 16, /* bitsize */
1221 FALSE, /* pc_relative */
1222 0, /* bitpos */
1223 complain_overflow_signed, /* complain_on_overflow */
1224 ppc64_elf_toc_reloc, /* special_function */
1225 "R_PPC64_TOC16_DS", /* name */
1226 FALSE, /* partial_inplace */
1227 0, /* src_mask */
1228 0xfffc, /* dst_mask */
1229 FALSE), /* pcrel_offset */
1230
1231 /* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */
1232 HOWTO (R_PPC64_TOC16_LO_DS, /* type */
1233 0, /* rightshift */
1234 1, /* size (0 = byte, 1 = short, 2 = long) */
1235 16, /* bitsize */
1236 FALSE, /* pc_relative */
1237 0, /* bitpos */
1238 complain_overflow_dont, /* complain_on_overflow */
1239 ppc64_elf_toc_reloc, /* special_function */
1240 "R_PPC64_TOC16_LO_DS", /* name */
1241 FALSE, /* partial_inplace */
1242 0, /* src_mask */
1243 0xfffc, /* dst_mask */
1244 FALSE), /* pcrel_offset */
1245
1246 /* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */
1247 /* FIXME: R_PPC64_PLTGOT16_DS not implemented. */
1248 HOWTO (R_PPC64_PLTGOT16_DS, /* type */
1249 0, /* rightshift */
1250 1, /* size (0 = byte, 1 = short, 2 = long) */
1251 16, /* bitsize */
1252 FALSE, /* pc_relative */
1253 0, /* bitpos */
1254 complain_overflow_signed, /* complain_on_overflow */
1255 ppc64_elf_unhandled_reloc, /* special_function */
1256 "R_PPC64_PLTGOT16_DS", /* name */
1257 FALSE, /* partial_inplace */
1258 0, /* src_mask */
1259 0xfffc, /* dst_mask */
1260 FALSE), /* pcrel_offset */
1261
1262 /* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */
1263 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1264 HOWTO (R_PPC64_PLTGOT16_LO_DS,/* type */
1265 0, /* rightshift */
1266 1, /* size (0 = byte, 1 = short, 2 = long) */
1267 16, /* bitsize */
1268 FALSE, /* pc_relative */
1269 0, /* bitpos */
1270 complain_overflow_dont, /* complain_on_overflow */
1271 ppc64_elf_unhandled_reloc, /* special_function */
1272 "R_PPC64_PLTGOT16_LO_DS",/* name */
1273 FALSE, /* partial_inplace */
1274 0, /* src_mask */
1275 0xfffc, /* dst_mask */
1276 FALSE), /* pcrel_offset */
1277
1278 /* Marker relocs for TLS. */
1279 HOWTO (R_PPC64_TLS,
1280 0, /* rightshift */
1281 2, /* size (0 = byte, 1 = short, 2 = long) */
1282 32, /* bitsize */
1283 FALSE, /* pc_relative */
1284 0, /* bitpos */
1285 complain_overflow_dont, /* complain_on_overflow */
1286 bfd_elf_generic_reloc, /* special_function */
1287 "R_PPC64_TLS", /* name */
1288 FALSE, /* partial_inplace */
1289 0, /* src_mask */
1290 0, /* dst_mask */
1291 FALSE), /* pcrel_offset */
1292
1293 HOWTO (R_PPC64_TLSGD,
1294 0, /* rightshift */
1295 2, /* size (0 = byte, 1 = short, 2 = long) */
1296 32, /* bitsize */
1297 FALSE, /* pc_relative */
1298 0, /* bitpos */
1299 complain_overflow_dont, /* complain_on_overflow */
1300 bfd_elf_generic_reloc, /* special_function */
1301 "R_PPC64_TLSGD", /* name */
1302 FALSE, /* partial_inplace */
1303 0, /* src_mask */
1304 0, /* dst_mask */
1305 FALSE), /* pcrel_offset */
1306
1307 HOWTO (R_PPC64_TLSLD,
1308 0, /* rightshift */
1309 2, /* size (0 = byte, 1 = short, 2 = long) */
1310 32, /* bitsize */
1311 FALSE, /* pc_relative */
1312 0, /* bitpos */
1313 complain_overflow_dont, /* complain_on_overflow */
1314 bfd_elf_generic_reloc, /* special_function */
1315 "R_PPC64_TLSLD", /* name */
1316 FALSE, /* partial_inplace */
1317 0, /* src_mask */
1318 0, /* dst_mask */
1319 FALSE), /* pcrel_offset */
1320
1321 HOWTO (R_PPC64_TOCSAVE,
1322 0, /* rightshift */
1323 2, /* size (0 = byte, 1 = short, 2 = long) */
1324 32, /* bitsize */
1325 FALSE, /* pc_relative */
1326 0, /* bitpos */
1327 complain_overflow_dont, /* complain_on_overflow */
1328 bfd_elf_generic_reloc, /* special_function */
1329 "R_PPC64_TOCSAVE", /* name */
1330 FALSE, /* partial_inplace */
1331 0, /* src_mask */
1332 0, /* dst_mask */
1333 FALSE), /* pcrel_offset */
1334
1335 /* Computes the load module index of the load module that contains the
1336 definition of its TLS sym. */
1337 HOWTO (R_PPC64_DTPMOD64,
1338 0, /* rightshift */
1339 4, /* size (0 = byte, 1 = short, 2 = long) */
1340 64, /* bitsize */
1341 FALSE, /* pc_relative */
1342 0, /* bitpos */
1343 complain_overflow_dont, /* complain_on_overflow */
1344 ppc64_elf_unhandled_reloc, /* special_function */
1345 "R_PPC64_DTPMOD64", /* name */
1346 FALSE, /* partial_inplace */
1347 0, /* src_mask */
1348 ONES (64), /* dst_mask */
1349 FALSE), /* pcrel_offset */
1350
1351 /* Computes a dtv-relative displacement, the difference between the value
1352 of sym+add and the base address of the thread-local storage block that
1353 contains the definition of sym, minus 0x8000. */
1354 HOWTO (R_PPC64_DTPREL64,
1355 0, /* rightshift */
1356 4, /* size (0 = byte, 1 = short, 2 = long) */
1357 64, /* bitsize */
1358 FALSE, /* pc_relative */
1359 0, /* bitpos */
1360 complain_overflow_dont, /* complain_on_overflow */
1361 ppc64_elf_unhandled_reloc, /* special_function */
1362 "R_PPC64_DTPREL64", /* name */
1363 FALSE, /* partial_inplace */
1364 0, /* src_mask */
1365 ONES (64), /* dst_mask */
1366 FALSE), /* pcrel_offset */
1367
1368 /* A 16 bit dtprel reloc. */
1369 HOWTO (R_PPC64_DTPREL16,
1370 0, /* rightshift */
1371 1, /* size (0 = byte, 1 = short, 2 = long) */
1372 16, /* bitsize */
1373 FALSE, /* pc_relative */
1374 0, /* bitpos */
1375 complain_overflow_signed, /* complain_on_overflow */
1376 ppc64_elf_unhandled_reloc, /* special_function */
1377 "R_PPC64_DTPREL16", /* name */
1378 FALSE, /* partial_inplace */
1379 0, /* src_mask */
1380 0xffff, /* dst_mask */
1381 FALSE), /* pcrel_offset */
1382
1383 /* Like DTPREL16, but no overflow. */
1384 HOWTO (R_PPC64_DTPREL16_LO,
1385 0, /* rightshift */
1386 1, /* size (0 = byte, 1 = short, 2 = long) */
1387 16, /* bitsize */
1388 FALSE, /* pc_relative */
1389 0, /* bitpos */
1390 complain_overflow_dont, /* complain_on_overflow */
1391 ppc64_elf_unhandled_reloc, /* special_function */
1392 "R_PPC64_DTPREL16_LO", /* name */
1393 FALSE, /* partial_inplace */
1394 0, /* src_mask */
1395 0xffff, /* dst_mask */
1396 FALSE), /* pcrel_offset */
1397
1398 /* Like DTPREL16_LO, but next higher group of 16 bits. */
1399 HOWTO (R_PPC64_DTPREL16_HI,
1400 16, /* rightshift */
1401 1, /* size (0 = byte, 1 = short, 2 = long) */
1402 16, /* bitsize */
1403 FALSE, /* pc_relative */
1404 0, /* bitpos */
1405 complain_overflow_signed, /* complain_on_overflow */
1406 ppc64_elf_unhandled_reloc, /* special_function */
1407 "R_PPC64_DTPREL16_HI", /* name */
1408 FALSE, /* partial_inplace */
1409 0, /* src_mask */
1410 0xffff, /* dst_mask */
1411 FALSE), /* pcrel_offset */
1412
1413 /* Like DTPREL16_HI, but adjust for low 16 bits. */
1414 HOWTO (R_PPC64_DTPREL16_HA,
1415 16, /* rightshift */
1416 1, /* size (0 = byte, 1 = short, 2 = long) */
1417 16, /* bitsize */
1418 FALSE, /* pc_relative */
1419 0, /* bitpos */
1420 complain_overflow_signed, /* complain_on_overflow */
1421 ppc64_elf_unhandled_reloc, /* special_function */
1422 "R_PPC64_DTPREL16_HA", /* name */
1423 FALSE, /* partial_inplace */
1424 0, /* src_mask */
1425 0xffff, /* dst_mask */
1426 FALSE), /* pcrel_offset */
1427
1428 /* Like DTPREL16_HI, but next higher group of 16 bits. */
1429 HOWTO (R_PPC64_DTPREL16_HIGHER,
1430 32, /* rightshift */
1431 1, /* size (0 = byte, 1 = short, 2 = long) */
1432 16, /* bitsize */
1433 FALSE, /* pc_relative */
1434 0, /* bitpos */
1435 complain_overflow_dont, /* complain_on_overflow */
1436 ppc64_elf_unhandled_reloc, /* special_function */
1437 "R_PPC64_DTPREL16_HIGHER", /* name */
1438 FALSE, /* partial_inplace */
1439 0, /* src_mask */
1440 0xffff, /* dst_mask */
1441 FALSE), /* pcrel_offset */
1442
1443 /* Like DTPREL16_HIGHER, but adjust for low 16 bits. */
1444 HOWTO (R_PPC64_DTPREL16_HIGHERA,
1445 32, /* rightshift */
1446 1, /* size (0 = byte, 1 = short, 2 = long) */
1447 16, /* bitsize */
1448 FALSE, /* pc_relative */
1449 0, /* bitpos */
1450 complain_overflow_dont, /* complain_on_overflow */
1451 ppc64_elf_unhandled_reloc, /* special_function */
1452 "R_PPC64_DTPREL16_HIGHERA", /* name */
1453 FALSE, /* partial_inplace */
1454 0, /* src_mask */
1455 0xffff, /* dst_mask */
1456 FALSE), /* pcrel_offset */
1457
1458 /* Like DTPREL16_HIGHER, but next higher group of 16 bits. */
1459 HOWTO (R_PPC64_DTPREL16_HIGHEST,
1460 48, /* rightshift */
1461 1, /* size (0 = byte, 1 = short, 2 = long) */
1462 16, /* bitsize */
1463 FALSE, /* pc_relative */
1464 0, /* bitpos */
1465 complain_overflow_dont, /* complain_on_overflow */
1466 ppc64_elf_unhandled_reloc, /* special_function */
1467 "R_PPC64_DTPREL16_HIGHEST", /* name */
1468 FALSE, /* partial_inplace */
1469 0, /* src_mask */
1470 0xffff, /* dst_mask */
1471 FALSE), /* pcrel_offset */
1472
1473 /* Like DTPREL16_HIGHEST, but adjust for low 16 bits. */
1474 HOWTO (R_PPC64_DTPREL16_HIGHESTA,
1475 48, /* rightshift */
1476 1, /* size (0 = byte, 1 = short, 2 = long) */
1477 16, /* bitsize */
1478 FALSE, /* pc_relative */
1479 0, /* bitpos */
1480 complain_overflow_dont, /* complain_on_overflow */
1481 ppc64_elf_unhandled_reloc, /* special_function */
1482 "R_PPC64_DTPREL16_HIGHESTA", /* name */
1483 FALSE, /* partial_inplace */
1484 0, /* src_mask */
1485 0xffff, /* dst_mask */
1486 FALSE), /* pcrel_offset */
1487
1488 /* Like DTPREL16, but for insns with a DS field. */
1489 HOWTO (R_PPC64_DTPREL16_DS,
1490 0, /* rightshift */
1491 1, /* size (0 = byte, 1 = short, 2 = long) */
1492 16, /* bitsize */
1493 FALSE, /* pc_relative */
1494 0, /* bitpos */
1495 complain_overflow_signed, /* complain_on_overflow */
1496 ppc64_elf_unhandled_reloc, /* special_function */
1497 "R_PPC64_DTPREL16_DS", /* name */
1498 FALSE, /* partial_inplace */
1499 0, /* src_mask */
1500 0xfffc, /* dst_mask */
1501 FALSE), /* pcrel_offset */
1502
1503 /* Like DTPREL16_DS, but no overflow. */
1504 HOWTO (R_PPC64_DTPREL16_LO_DS,
1505 0, /* rightshift */
1506 1, /* size (0 = byte, 1 = short, 2 = long) */
1507 16, /* bitsize */
1508 FALSE, /* pc_relative */
1509 0, /* bitpos */
1510 complain_overflow_dont, /* complain_on_overflow */
1511 ppc64_elf_unhandled_reloc, /* special_function */
1512 "R_PPC64_DTPREL16_LO_DS", /* name */
1513 FALSE, /* partial_inplace */
1514 0, /* src_mask */
1515 0xfffc, /* dst_mask */
1516 FALSE), /* pcrel_offset */
1517
1518 /* Computes a tp-relative displacement, the difference between the value of
1519 sym+add and the value of the thread pointer (r13). */
1520 HOWTO (R_PPC64_TPREL64,
1521 0, /* rightshift */
1522 4, /* size (0 = byte, 1 = short, 2 = long) */
1523 64, /* bitsize */
1524 FALSE, /* pc_relative */
1525 0, /* bitpos */
1526 complain_overflow_dont, /* complain_on_overflow */
1527 ppc64_elf_unhandled_reloc, /* special_function */
1528 "R_PPC64_TPREL64", /* name */
1529 FALSE, /* partial_inplace */
1530 0, /* src_mask */
1531 ONES (64), /* dst_mask */
1532 FALSE), /* pcrel_offset */
1533
1534 /* A 16 bit tprel reloc. */
1535 HOWTO (R_PPC64_TPREL16,
1536 0, /* rightshift */
1537 1, /* size (0 = byte, 1 = short, 2 = long) */
1538 16, /* bitsize */
1539 FALSE, /* pc_relative */
1540 0, /* bitpos */
1541 complain_overflow_signed, /* complain_on_overflow */
1542 ppc64_elf_unhandled_reloc, /* special_function */
1543 "R_PPC64_TPREL16", /* name */
1544 FALSE, /* partial_inplace */
1545 0, /* src_mask */
1546 0xffff, /* dst_mask */
1547 FALSE), /* pcrel_offset */
1548
1549 /* Like TPREL16, but no overflow. */
1550 HOWTO (R_PPC64_TPREL16_LO,
1551 0, /* rightshift */
1552 1, /* size (0 = byte, 1 = short, 2 = long) */
1553 16, /* bitsize */
1554 FALSE, /* pc_relative */
1555 0, /* bitpos */
1556 complain_overflow_dont, /* complain_on_overflow */
1557 ppc64_elf_unhandled_reloc, /* special_function */
1558 "R_PPC64_TPREL16_LO", /* name */
1559 FALSE, /* partial_inplace */
1560 0, /* src_mask */
1561 0xffff, /* dst_mask */
1562 FALSE), /* pcrel_offset */
1563
1564 /* Like TPREL16_LO, but next higher group of 16 bits. */
1565 HOWTO (R_PPC64_TPREL16_HI,
1566 16, /* rightshift */
1567 1, /* size (0 = byte, 1 = short, 2 = long) */
1568 16, /* bitsize */
1569 FALSE, /* pc_relative */
1570 0, /* bitpos */
1571 complain_overflow_signed, /* complain_on_overflow */
1572 ppc64_elf_unhandled_reloc, /* special_function */
1573 "R_PPC64_TPREL16_HI", /* name */
1574 FALSE, /* partial_inplace */
1575 0, /* src_mask */
1576 0xffff, /* dst_mask */
1577 FALSE), /* pcrel_offset */
1578
1579 /* Like TPREL16_HI, but adjust for low 16 bits. */
1580 HOWTO (R_PPC64_TPREL16_HA,
1581 16, /* rightshift */
1582 1, /* size (0 = byte, 1 = short, 2 = long) */
1583 16, /* bitsize */
1584 FALSE, /* pc_relative */
1585 0, /* bitpos */
1586 complain_overflow_signed, /* complain_on_overflow */
1587 ppc64_elf_unhandled_reloc, /* special_function */
1588 "R_PPC64_TPREL16_HA", /* name */
1589 FALSE, /* partial_inplace */
1590 0, /* src_mask */
1591 0xffff, /* dst_mask */
1592 FALSE), /* pcrel_offset */
1593
1594 /* Like TPREL16_HI, but next higher group of 16 bits. */
1595 HOWTO (R_PPC64_TPREL16_HIGHER,
1596 32, /* rightshift */
1597 1, /* size (0 = byte, 1 = short, 2 = long) */
1598 16, /* bitsize */
1599 FALSE, /* pc_relative */
1600 0, /* bitpos */
1601 complain_overflow_dont, /* complain_on_overflow */
1602 ppc64_elf_unhandled_reloc, /* special_function */
1603 "R_PPC64_TPREL16_HIGHER", /* name */
1604 FALSE, /* partial_inplace */
1605 0, /* src_mask */
1606 0xffff, /* dst_mask */
1607 FALSE), /* pcrel_offset */
1608
1609 /* Like TPREL16_HIGHER, but adjust for low 16 bits. */
1610 HOWTO (R_PPC64_TPREL16_HIGHERA,
1611 32, /* rightshift */
1612 1, /* size (0 = byte, 1 = short, 2 = long) */
1613 16, /* bitsize */
1614 FALSE, /* pc_relative */
1615 0, /* bitpos */
1616 complain_overflow_dont, /* complain_on_overflow */
1617 ppc64_elf_unhandled_reloc, /* special_function */
1618 "R_PPC64_TPREL16_HIGHERA", /* name */
1619 FALSE, /* partial_inplace */
1620 0, /* src_mask */
1621 0xffff, /* dst_mask */
1622 FALSE), /* pcrel_offset */
1623
1624 /* Like TPREL16_HIGHER, but next higher group of 16 bits. */
1625 HOWTO (R_PPC64_TPREL16_HIGHEST,
1626 48, /* rightshift */
1627 1, /* size (0 = byte, 1 = short, 2 = long) */
1628 16, /* bitsize */
1629 FALSE, /* pc_relative */
1630 0, /* bitpos */
1631 complain_overflow_dont, /* complain_on_overflow */
1632 ppc64_elf_unhandled_reloc, /* special_function */
1633 "R_PPC64_TPREL16_HIGHEST", /* name */
1634 FALSE, /* partial_inplace */
1635 0, /* src_mask */
1636 0xffff, /* dst_mask */
1637 FALSE), /* pcrel_offset */
1638
1639 /* Like TPREL16_HIGHEST, but adjust for low 16 bits. */
1640 HOWTO (R_PPC64_TPREL16_HIGHESTA,
1641 48, /* rightshift */
1642 1, /* size (0 = byte, 1 = short, 2 = long) */
1643 16, /* bitsize */
1644 FALSE, /* pc_relative */
1645 0, /* bitpos */
1646 complain_overflow_dont, /* complain_on_overflow */
1647 ppc64_elf_unhandled_reloc, /* special_function */
1648 "R_PPC64_TPREL16_HIGHESTA", /* name */
1649 FALSE, /* partial_inplace */
1650 0, /* src_mask */
1651 0xffff, /* dst_mask */
1652 FALSE), /* pcrel_offset */
1653
1654 /* Like TPREL16, but for insns with a DS field. */
1655 HOWTO (R_PPC64_TPREL16_DS,
1656 0, /* rightshift */
1657 1, /* size (0 = byte, 1 = short, 2 = long) */
1658 16, /* bitsize */
1659 FALSE, /* pc_relative */
1660 0, /* bitpos */
1661 complain_overflow_signed, /* complain_on_overflow */
1662 ppc64_elf_unhandled_reloc, /* special_function */
1663 "R_PPC64_TPREL16_DS", /* name */
1664 FALSE, /* partial_inplace */
1665 0, /* src_mask */
1666 0xfffc, /* dst_mask */
1667 FALSE), /* pcrel_offset */
1668
1669 /* Like TPREL16_DS, but no overflow. */
1670 HOWTO (R_PPC64_TPREL16_LO_DS,
1671 0, /* rightshift */
1672 1, /* size (0 = byte, 1 = short, 2 = long) */
1673 16, /* bitsize */
1674 FALSE, /* pc_relative */
1675 0, /* bitpos */
1676 complain_overflow_dont, /* complain_on_overflow */
1677 ppc64_elf_unhandled_reloc, /* special_function */
1678 "R_PPC64_TPREL16_LO_DS", /* name */
1679 FALSE, /* partial_inplace */
1680 0, /* src_mask */
1681 0xfffc, /* dst_mask */
1682 FALSE), /* pcrel_offset */
1683
1684 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1685 with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset
1686 to the first entry relative to the TOC base (r2). */
1687 HOWTO (R_PPC64_GOT_TLSGD16,
1688 0, /* rightshift */
1689 1, /* size (0 = byte, 1 = short, 2 = long) */
1690 16, /* bitsize */
1691 FALSE, /* pc_relative */
1692 0, /* bitpos */
1693 complain_overflow_signed, /* complain_on_overflow */
1694 ppc64_elf_unhandled_reloc, /* special_function */
1695 "R_PPC64_GOT_TLSGD16", /* name */
1696 FALSE, /* partial_inplace */
1697 0, /* src_mask */
1698 0xffff, /* dst_mask */
1699 FALSE), /* pcrel_offset */
1700
1701 /* Like GOT_TLSGD16, but no overflow. */
1702 HOWTO (R_PPC64_GOT_TLSGD16_LO,
1703 0, /* rightshift */
1704 1, /* size (0 = byte, 1 = short, 2 = long) */
1705 16, /* bitsize */
1706 FALSE, /* pc_relative */
1707 0, /* bitpos */
1708 complain_overflow_dont, /* complain_on_overflow */
1709 ppc64_elf_unhandled_reloc, /* special_function */
1710 "R_PPC64_GOT_TLSGD16_LO", /* name */
1711 FALSE, /* partial_inplace */
1712 0, /* src_mask */
1713 0xffff, /* dst_mask */
1714 FALSE), /* pcrel_offset */
1715
1716 /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */
1717 HOWTO (R_PPC64_GOT_TLSGD16_HI,
1718 16, /* rightshift */
1719 1, /* size (0 = byte, 1 = short, 2 = long) */
1720 16, /* bitsize */
1721 FALSE, /* pc_relative */
1722 0, /* bitpos */
1723 complain_overflow_signed, /* complain_on_overflow */
1724 ppc64_elf_unhandled_reloc, /* special_function */
1725 "R_PPC64_GOT_TLSGD16_HI", /* name */
1726 FALSE, /* partial_inplace */
1727 0, /* src_mask */
1728 0xffff, /* dst_mask */
1729 FALSE), /* pcrel_offset */
1730
1731 /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */
1732 HOWTO (R_PPC64_GOT_TLSGD16_HA,
1733 16, /* rightshift */
1734 1, /* size (0 = byte, 1 = short, 2 = long) */
1735 16, /* bitsize */
1736 FALSE, /* pc_relative */
1737 0, /* bitpos */
1738 complain_overflow_signed, /* complain_on_overflow */
1739 ppc64_elf_unhandled_reloc, /* special_function */
1740 "R_PPC64_GOT_TLSGD16_HA", /* name */
1741 FALSE, /* partial_inplace */
1742 0, /* src_mask */
1743 0xffff, /* dst_mask */
1744 FALSE), /* pcrel_offset */
1745
1746 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1747 with values (sym+add)@dtpmod and zero, and computes the offset to the
1748 first entry relative to the TOC base (r2). */
1749 HOWTO (R_PPC64_GOT_TLSLD16,
1750 0, /* rightshift */
1751 1, /* size (0 = byte, 1 = short, 2 = long) */
1752 16, /* bitsize */
1753 FALSE, /* pc_relative */
1754 0, /* bitpos */
1755 complain_overflow_signed, /* complain_on_overflow */
1756 ppc64_elf_unhandled_reloc, /* special_function */
1757 "R_PPC64_GOT_TLSLD16", /* name */
1758 FALSE, /* partial_inplace */
1759 0, /* src_mask */
1760 0xffff, /* dst_mask */
1761 FALSE), /* pcrel_offset */
1762
1763 /* Like GOT_TLSLD16, but no overflow. */
1764 HOWTO (R_PPC64_GOT_TLSLD16_LO,
1765 0, /* rightshift */
1766 1, /* size (0 = byte, 1 = short, 2 = long) */
1767 16, /* bitsize */
1768 FALSE, /* pc_relative */
1769 0, /* bitpos */
1770 complain_overflow_dont, /* complain_on_overflow */
1771 ppc64_elf_unhandled_reloc, /* special_function */
1772 "R_PPC64_GOT_TLSLD16_LO", /* name */
1773 FALSE, /* partial_inplace */
1774 0, /* src_mask */
1775 0xffff, /* dst_mask */
1776 FALSE), /* pcrel_offset */
1777
1778 /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */
1779 HOWTO (R_PPC64_GOT_TLSLD16_HI,
1780 16, /* rightshift */
1781 1, /* size (0 = byte, 1 = short, 2 = long) */
1782 16, /* bitsize */
1783 FALSE, /* pc_relative */
1784 0, /* bitpos */
1785 complain_overflow_signed, /* complain_on_overflow */
1786 ppc64_elf_unhandled_reloc, /* special_function */
1787 "R_PPC64_GOT_TLSLD16_HI", /* name */
1788 FALSE, /* partial_inplace */
1789 0, /* src_mask */
1790 0xffff, /* dst_mask */
1791 FALSE), /* pcrel_offset */
1792
1793 /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */
1794 HOWTO (R_PPC64_GOT_TLSLD16_HA,
1795 16, /* rightshift */
1796 1, /* size (0 = byte, 1 = short, 2 = long) */
1797 16, /* bitsize */
1798 FALSE, /* pc_relative */
1799 0, /* bitpos */
1800 complain_overflow_signed, /* complain_on_overflow */
1801 ppc64_elf_unhandled_reloc, /* special_function */
1802 "R_PPC64_GOT_TLSLD16_HA", /* name */
1803 FALSE, /* partial_inplace */
1804 0, /* src_mask */
1805 0xffff, /* dst_mask */
1806 FALSE), /* pcrel_offset */
1807
1808 /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes
1809 the offset to the entry relative to the TOC base (r2). */
1810 HOWTO (R_PPC64_GOT_DTPREL16_DS,
1811 0, /* rightshift */
1812 1, /* size (0 = byte, 1 = short, 2 = long) */
1813 16, /* bitsize */
1814 FALSE, /* pc_relative */
1815 0, /* bitpos */
1816 complain_overflow_signed, /* complain_on_overflow */
1817 ppc64_elf_unhandled_reloc, /* special_function */
1818 "R_PPC64_GOT_DTPREL16_DS", /* name */
1819 FALSE, /* partial_inplace */
1820 0, /* src_mask */
1821 0xfffc, /* dst_mask */
1822 FALSE), /* pcrel_offset */
1823
1824 /* Like GOT_DTPREL16_DS, but no overflow. */
1825 HOWTO (R_PPC64_GOT_DTPREL16_LO_DS,
1826 0, /* rightshift */
1827 1, /* size (0 = byte, 1 = short, 2 = long) */
1828 16, /* bitsize */
1829 FALSE, /* pc_relative */
1830 0, /* bitpos */
1831 complain_overflow_dont, /* complain_on_overflow */
1832 ppc64_elf_unhandled_reloc, /* special_function */
1833 "R_PPC64_GOT_DTPREL16_LO_DS", /* name */
1834 FALSE, /* partial_inplace */
1835 0, /* src_mask */
1836 0xfffc, /* dst_mask */
1837 FALSE), /* pcrel_offset */
1838
1839 /* Like GOT_DTPREL16_LO_DS, but next higher group of 16 bits. */
1840 HOWTO (R_PPC64_GOT_DTPREL16_HI,
1841 16, /* rightshift */
1842 1, /* size (0 = byte, 1 = short, 2 = long) */
1843 16, /* bitsize */
1844 FALSE, /* pc_relative */
1845 0, /* bitpos */
1846 complain_overflow_signed, /* complain_on_overflow */
1847 ppc64_elf_unhandled_reloc, /* special_function */
1848 "R_PPC64_GOT_DTPREL16_HI", /* name */
1849 FALSE, /* partial_inplace */
1850 0, /* src_mask */
1851 0xffff, /* dst_mask */
1852 FALSE), /* pcrel_offset */
1853
1854 /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */
1855 HOWTO (R_PPC64_GOT_DTPREL16_HA,
1856 16, /* rightshift */
1857 1, /* size (0 = byte, 1 = short, 2 = long) */
1858 16, /* bitsize */
1859 FALSE, /* pc_relative */
1860 0, /* bitpos */
1861 complain_overflow_signed, /* complain_on_overflow */
1862 ppc64_elf_unhandled_reloc, /* special_function */
1863 "R_PPC64_GOT_DTPREL16_HA", /* name */
1864 FALSE, /* partial_inplace */
1865 0, /* src_mask */
1866 0xffff, /* dst_mask */
1867 FALSE), /* pcrel_offset */
1868
1869 /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the
1870 offset to the entry relative to the TOC base (r2). */
1871 HOWTO (R_PPC64_GOT_TPREL16_DS,
1872 0, /* rightshift */
1873 1, /* size (0 = byte, 1 = short, 2 = long) */
1874 16, /* bitsize */
1875 FALSE, /* pc_relative */
1876 0, /* bitpos */
1877 complain_overflow_signed, /* complain_on_overflow */
1878 ppc64_elf_unhandled_reloc, /* special_function */
1879 "R_PPC64_GOT_TPREL16_DS", /* name */
1880 FALSE, /* partial_inplace */
1881 0, /* src_mask */
1882 0xfffc, /* dst_mask */
1883 FALSE), /* pcrel_offset */
1884
1885 /* Like GOT_TPREL16_DS, but no overflow. */
1886 HOWTO (R_PPC64_GOT_TPREL16_LO_DS,
1887 0, /* rightshift */
1888 1, /* size (0 = byte, 1 = short, 2 = long) */
1889 16, /* bitsize */
1890 FALSE, /* pc_relative */
1891 0, /* bitpos */
1892 complain_overflow_dont, /* complain_on_overflow */
1893 ppc64_elf_unhandled_reloc, /* special_function */
1894 "R_PPC64_GOT_TPREL16_LO_DS", /* name */
1895 FALSE, /* partial_inplace */
1896 0, /* src_mask */
1897 0xfffc, /* dst_mask */
1898 FALSE), /* pcrel_offset */
1899
1900 /* Like GOT_TPREL16_LO_DS, but next higher group of 16 bits. */
1901 HOWTO (R_PPC64_GOT_TPREL16_HI,
1902 16, /* rightshift */
1903 1, /* size (0 = byte, 1 = short, 2 = long) */
1904 16, /* bitsize */
1905 FALSE, /* pc_relative */
1906 0, /* bitpos */
1907 complain_overflow_signed, /* complain_on_overflow */
1908 ppc64_elf_unhandled_reloc, /* special_function */
1909 "R_PPC64_GOT_TPREL16_HI", /* name */
1910 FALSE, /* partial_inplace */
1911 0, /* src_mask */
1912 0xffff, /* dst_mask */
1913 FALSE), /* pcrel_offset */
1914
1915 /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */
1916 HOWTO (R_PPC64_GOT_TPREL16_HA,
1917 16, /* rightshift */
1918 1, /* size (0 = byte, 1 = short, 2 = long) */
1919 16, /* bitsize */
1920 FALSE, /* pc_relative */
1921 0, /* bitpos */
1922 complain_overflow_signed, /* complain_on_overflow */
1923 ppc64_elf_unhandled_reloc, /* special_function */
1924 "R_PPC64_GOT_TPREL16_HA", /* name */
1925 FALSE, /* partial_inplace */
1926 0, /* src_mask */
1927 0xffff, /* dst_mask */
1928 FALSE), /* pcrel_offset */
1929
1930 HOWTO (R_PPC64_JMP_IREL, /* type */
1931 0, /* rightshift */
1932 0, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1933 0, /* bitsize */
1934 FALSE, /* pc_relative */
1935 0, /* bitpos */
1936 complain_overflow_dont, /* complain_on_overflow */
1937 ppc64_elf_unhandled_reloc, /* special_function */
1938 "R_PPC64_JMP_IREL", /* name */
1939 FALSE, /* partial_inplace */
1940 0, /* src_mask */
1941 0, /* dst_mask */
1942 FALSE), /* pcrel_offset */
1943
1944 HOWTO (R_PPC64_IRELATIVE, /* type */
1945 0, /* rightshift */
1946 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1947 64, /* bitsize */
1948 FALSE, /* pc_relative */
1949 0, /* bitpos */
1950 complain_overflow_dont, /* complain_on_overflow */
1951 bfd_elf_generic_reloc, /* special_function */
1952 "R_PPC64_IRELATIVE", /* name */
1953 FALSE, /* partial_inplace */
1954 0, /* src_mask */
1955 ONES (64), /* dst_mask */
1956 FALSE), /* pcrel_offset */
1957
1958 /* A 16 bit relative relocation. */
1959 HOWTO (R_PPC64_REL16, /* type */
1960 0, /* rightshift */
1961 1, /* size (0 = byte, 1 = short, 2 = long) */
1962 16, /* bitsize */
1963 TRUE, /* pc_relative */
1964 0, /* bitpos */
1965 complain_overflow_signed, /* complain_on_overflow */
1966 bfd_elf_generic_reloc, /* special_function */
1967 "R_PPC64_REL16", /* name */
1968 FALSE, /* partial_inplace */
1969 0, /* src_mask */
1970 0xffff, /* dst_mask */
1971 TRUE), /* pcrel_offset */
1972
1973 /* A 16 bit relative relocation without overflow. */
1974 HOWTO (R_PPC64_REL16_LO, /* type */
1975 0, /* rightshift */
1976 1, /* size (0 = byte, 1 = short, 2 = long) */
1977 16, /* bitsize */
1978 TRUE, /* pc_relative */
1979 0, /* bitpos */
1980 complain_overflow_dont,/* complain_on_overflow */
1981 bfd_elf_generic_reloc, /* special_function */
1982 "R_PPC64_REL16_LO", /* name */
1983 FALSE, /* partial_inplace */
1984 0, /* src_mask */
1985 0xffff, /* dst_mask */
1986 TRUE), /* pcrel_offset */
1987
1988 /* The high order 16 bits of a relative address. */
1989 HOWTO (R_PPC64_REL16_HI, /* type */
1990 16, /* rightshift */
1991 1, /* size (0 = byte, 1 = short, 2 = long) */
1992 16, /* bitsize */
1993 TRUE, /* pc_relative */
1994 0, /* bitpos */
1995 complain_overflow_signed, /* complain_on_overflow */
1996 bfd_elf_generic_reloc, /* special_function */
1997 "R_PPC64_REL16_HI", /* name */
1998 FALSE, /* partial_inplace */
1999 0, /* src_mask */
2000 0xffff, /* dst_mask */
2001 TRUE), /* pcrel_offset */
2002
2003 /* The high order 16 bits of a relative address, plus 1 if the contents of
2004 the low 16 bits, treated as a signed number, is negative. */
2005 HOWTO (R_PPC64_REL16_HA, /* type */
2006 16, /* rightshift */
2007 1, /* size (0 = byte, 1 = short, 2 = long) */
2008 16, /* bitsize */
2009 TRUE, /* pc_relative */
2010 0, /* bitpos */
2011 complain_overflow_signed, /* complain_on_overflow */
2012 ppc64_elf_ha_reloc, /* special_function */
2013 "R_PPC64_REL16_HA", /* name */
2014 FALSE, /* partial_inplace */
2015 0, /* src_mask */
2016 0xffff, /* dst_mask */
2017 TRUE), /* pcrel_offset */
2018
2019 /* Like R_PPC64_ADDR16_HI, but no overflow. */
2020 HOWTO (R_PPC64_ADDR16_HIGH, /* type */
2021 16, /* rightshift */
2022 1, /* size (0 = byte, 1 = short, 2 = long) */
2023 16, /* bitsize */
2024 FALSE, /* pc_relative */
2025 0, /* bitpos */
2026 complain_overflow_dont, /* complain_on_overflow */
2027 bfd_elf_generic_reloc, /* special_function */
2028 "R_PPC64_ADDR16_HIGH", /* name */
2029 FALSE, /* partial_inplace */
2030 0, /* src_mask */
2031 0xffff, /* dst_mask */
2032 FALSE), /* pcrel_offset */
2033
2034 /* Like R_PPC64_ADDR16_HA, but no overflow. */
2035 HOWTO (R_PPC64_ADDR16_HIGHA, /* type */
2036 16, /* rightshift */
2037 1, /* size (0 = byte, 1 = short, 2 = long) */
2038 16, /* bitsize */
2039 FALSE, /* pc_relative */
2040 0, /* bitpos */
2041 complain_overflow_dont, /* complain_on_overflow */
2042 ppc64_elf_ha_reloc, /* special_function */
2043 "R_PPC64_ADDR16_HIGHA", /* name */
2044 FALSE, /* partial_inplace */
2045 0, /* src_mask */
2046 0xffff, /* dst_mask */
2047 FALSE), /* pcrel_offset */
2048
2049 /* Like R_PPC64_DTPREL16_HI, but no overflow. */
2050 HOWTO (R_PPC64_DTPREL16_HIGH,
2051 16, /* rightshift */
2052 1, /* size (0 = byte, 1 = short, 2 = long) */
2053 16, /* bitsize */
2054 FALSE, /* pc_relative */
2055 0, /* bitpos */
2056 complain_overflow_dont, /* complain_on_overflow */
2057 ppc64_elf_unhandled_reloc, /* special_function */
2058 "R_PPC64_DTPREL16_HIGH", /* name */
2059 FALSE, /* partial_inplace */
2060 0, /* src_mask */
2061 0xffff, /* dst_mask */
2062 FALSE), /* pcrel_offset */
2063
2064 /* Like R_PPC64_DTPREL16_HA, but no overflow. */
2065 HOWTO (R_PPC64_DTPREL16_HIGHA,
2066 16, /* rightshift */
2067 1, /* size (0 = byte, 1 = short, 2 = long) */
2068 16, /* bitsize */
2069 FALSE, /* pc_relative */
2070 0, /* bitpos */
2071 complain_overflow_dont, /* complain_on_overflow */
2072 ppc64_elf_unhandled_reloc, /* special_function */
2073 "R_PPC64_DTPREL16_HIGHA", /* name */
2074 FALSE, /* partial_inplace */
2075 0, /* src_mask */
2076 0xffff, /* dst_mask */
2077 FALSE), /* pcrel_offset */
2078
2079 /* Like R_PPC64_TPREL16_HI, but no overflow. */
2080 HOWTO (R_PPC64_TPREL16_HIGH,
2081 16, /* rightshift */
2082 1, /* size (0 = byte, 1 = short, 2 = long) */
2083 16, /* bitsize */
2084 FALSE, /* pc_relative */
2085 0, /* bitpos */
2086 complain_overflow_dont, /* complain_on_overflow */
2087 ppc64_elf_unhandled_reloc, /* special_function */
2088 "R_PPC64_TPREL16_HIGH", /* name */
2089 FALSE, /* partial_inplace */
2090 0, /* src_mask */
2091 0xffff, /* dst_mask */
2092 FALSE), /* pcrel_offset */
2093
2094 /* Like R_PPC64_TPREL16_HA, but no overflow. */
2095 HOWTO (R_PPC64_TPREL16_HIGHA,
2096 16, /* rightshift */
2097 1, /* size (0 = byte, 1 = short, 2 = long) */
2098 16, /* bitsize */
2099 FALSE, /* pc_relative */
2100 0, /* bitpos */
2101 complain_overflow_dont, /* complain_on_overflow */
2102 ppc64_elf_unhandled_reloc, /* special_function */
2103 "R_PPC64_TPREL16_HIGHA", /* name */
2104 FALSE, /* partial_inplace */
2105 0, /* src_mask */
2106 0xffff, /* dst_mask */
2107 FALSE), /* pcrel_offset */
2108
2109 /* Like ADDR64, but use local entry point of function. */
2110 HOWTO (R_PPC64_ADDR64_LOCAL, /* type */
2111 0, /* rightshift */
2112 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
2113 64, /* bitsize */
2114 FALSE, /* pc_relative */
2115 0, /* bitpos */
2116 complain_overflow_dont, /* complain_on_overflow */
2117 bfd_elf_generic_reloc, /* special_function */
2118 "R_PPC64_ADDR64_LOCAL", /* name */
2119 FALSE, /* partial_inplace */
2120 0, /* src_mask */
2121 ONES (64), /* dst_mask */
2122 FALSE), /* pcrel_offset */
2123
2124 /* GNU extension to record C++ vtable hierarchy. */
2125 HOWTO (R_PPC64_GNU_VTINHERIT, /* type */
2126 0, /* rightshift */
2127 0, /* size (0 = byte, 1 = short, 2 = long) */
2128 0, /* bitsize */
2129 FALSE, /* pc_relative */
2130 0, /* bitpos */
2131 complain_overflow_dont, /* complain_on_overflow */
2132 NULL, /* special_function */
2133 "R_PPC64_GNU_VTINHERIT", /* name */
2134 FALSE, /* partial_inplace */
2135 0, /* src_mask */
2136 0, /* dst_mask */
2137 FALSE), /* pcrel_offset */
2138
2139 /* GNU extension to record C++ vtable member usage. */
2140 HOWTO (R_PPC64_GNU_VTENTRY, /* type */
2141 0, /* rightshift */
2142 0, /* size (0 = byte, 1 = short, 2 = long) */
2143 0, /* bitsize */
2144 FALSE, /* pc_relative */
2145 0, /* bitpos */
2146 complain_overflow_dont, /* complain_on_overflow */
2147 NULL, /* special_function */
2148 "R_PPC64_GNU_VTENTRY", /* name */
2149 FALSE, /* partial_inplace */
2150 0, /* src_mask */
2151 0, /* dst_mask */
2152 FALSE), /* pcrel_offset */
2153 };
2154
2155 \f
2156 /* Initialize the ppc64_elf_howto_table, so that linear accesses can
2157 be done. */
2158
2159 static void
2160 ppc_howto_init (void)
2161 {
2162 unsigned int i, type;
2163
2164 for (i = 0;
2165 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
2166 i++)
2167 {
2168 type = ppc64_elf_howto_raw[i].type;
2169 BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table)
2170 / sizeof (ppc64_elf_howto_table[0])));
2171 ppc64_elf_howto_table[type] = &ppc64_elf_howto_raw[i];
2172 }
2173 }
2174
2175 static reloc_howto_type *
2176 ppc64_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2177 bfd_reloc_code_real_type code)
2178 {
2179 enum elf_ppc64_reloc_type r = R_PPC64_NONE;
2180
2181 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2182 /* Initialize howto table if needed. */
2183 ppc_howto_init ();
2184
2185 switch (code)
2186 {
2187 default:
2188 return NULL;
2189
2190 case BFD_RELOC_NONE: r = R_PPC64_NONE;
2191 break;
2192 case BFD_RELOC_32: r = R_PPC64_ADDR32;
2193 break;
2194 case BFD_RELOC_PPC_BA26: r = R_PPC64_ADDR24;
2195 break;
2196 case BFD_RELOC_16: r = R_PPC64_ADDR16;
2197 break;
2198 case BFD_RELOC_LO16: r = R_PPC64_ADDR16_LO;
2199 break;
2200 case BFD_RELOC_HI16: r = R_PPC64_ADDR16_HI;
2201 break;
2202 case BFD_RELOC_PPC64_ADDR16_HIGH: r = R_PPC64_ADDR16_HIGH;
2203 break;
2204 case BFD_RELOC_HI16_S: r = R_PPC64_ADDR16_HA;
2205 break;
2206 case BFD_RELOC_PPC64_ADDR16_HIGHA: r = R_PPC64_ADDR16_HIGHA;
2207 break;
2208 case BFD_RELOC_PPC_BA16: r = R_PPC64_ADDR14;
2209 break;
2210 case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC64_ADDR14_BRTAKEN;
2211 break;
2212 case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC64_ADDR14_BRNTAKEN;
2213 break;
2214 case BFD_RELOC_PPC_B26: r = R_PPC64_REL24;
2215 break;
2216 case BFD_RELOC_PPC_B16: r = R_PPC64_REL14;
2217 break;
2218 case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC64_REL14_BRTAKEN;
2219 break;
2220 case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC64_REL14_BRNTAKEN;
2221 break;
2222 case BFD_RELOC_16_GOTOFF: r = R_PPC64_GOT16;
2223 break;
2224 case BFD_RELOC_LO16_GOTOFF: r = R_PPC64_GOT16_LO;
2225 break;
2226 case BFD_RELOC_HI16_GOTOFF: r = R_PPC64_GOT16_HI;
2227 break;
2228 case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC64_GOT16_HA;
2229 break;
2230 case BFD_RELOC_PPC_COPY: r = R_PPC64_COPY;
2231 break;
2232 case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC64_GLOB_DAT;
2233 break;
2234 case BFD_RELOC_32_PCREL: r = R_PPC64_REL32;
2235 break;
2236 case BFD_RELOC_32_PLTOFF: r = R_PPC64_PLT32;
2237 break;
2238 case BFD_RELOC_32_PLT_PCREL: r = R_PPC64_PLTREL32;
2239 break;
2240 case BFD_RELOC_LO16_PLTOFF: r = R_PPC64_PLT16_LO;
2241 break;
2242 case BFD_RELOC_HI16_PLTOFF: r = R_PPC64_PLT16_HI;
2243 break;
2244 case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC64_PLT16_HA;
2245 break;
2246 case BFD_RELOC_16_BASEREL: r = R_PPC64_SECTOFF;
2247 break;
2248 case BFD_RELOC_LO16_BASEREL: r = R_PPC64_SECTOFF_LO;
2249 break;
2250 case BFD_RELOC_HI16_BASEREL: r = R_PPC64_SECTOFF_HI;
2251 break;
2252 case BFD_RELOC_HI16_S_BASEREL: r = R_PPC64_SECTOFF_HA;
2253 break;
2254 case BFD_RELOC_CTOR: r = R_PPC64_ADDR64;
2255 break;
2256 case BFD_RELOC_64: r = R_PPC64_ADDR64;
2257 break;
2258 case BFD_RELOC_PPC64_HIGHER: r = R_PPC64_ADDR16_HIGHER;
2259 break;
2260 case BFD_RELOC_PPC64_HIGHER_S: r = R_PPC64_ADDR16_HIGHERA;
2261 break;
2262 case BFD_RELOC_PPC64_HIGHEST: r = R_PPC64_ADDR16_HIGHEST;
2263 break;
2264 case BFD_RELOC_PPC64_HIGHEST_S: r = R_PPC64_ADDR16_HIGHESTA;
2265 break;
2266 case BFD_RELOC_64_PCREL: r = R_PPC64_REL64;
2267 break;
2268 case BFD_RELOC_64_PLTOFF: r = R_PPC64_PLT64;
2269 break;
2270 case BFD_RELOC_64_PLT_PCREL: r = R_PPC64_PLTREL64;
2271 break;
2272 case BFD_RELOC_PPC_TOC16: r = R_PPC64_TOC16;
2273 break;
2274 case BFD_RELOC_PPC64_TOC16_LO: r = R_PPC64_TOC16_LO;
2275 break;
2276 case BFD_RELOC_PPC64_TOC16_HI: r = R_PPC64_TOC16_HI;
2277 break;
2278 case BFD_RELOC_PPC64_TOC16_HA: r = R_PPC64_TOC16_HA;
2279 break;
2280 case BFD_RELOC_PPC64_TOC: r = R_PPC64_TOC;
2281 break;
2282 case BFD_RELOC_PPC64_PLTGOT16: r = R_PPC64_PLTGOT16;
2283 break;
2284 case BFD_RELOC_PPC64_PLTGOT16_LO: r = R_PPC64_PLTGOT16_LO;
2285 break;
2286 case BFD_RELOC_PPC64_PLTGOT16_HI: r = R_PPC64_PLTGOT16_HI;
2287 break;
2288 case BFD_RELOC_PPC64_PLTGOT16_HA: r = R_PPC64_PLTGOT16_HA;
2289 break;
2290 case BFD_RELOC_PPC64_ADDR16_DS: r = R_PPC64_ADDR16_DS;
2291 break;
2292 case BFD_RELOC_PPC64_ADDR16_LO_DS: r = R_PPC64_ADDR16_LO_DS;
2293 break;
2294 case BFD_RELOC_PPC64_GOT16_DS: r = R_PPC64_GOT16_DS;
2295 break;
2296 case BFD_RELOC_PPC64_GOT16_LO_DS: r = R_PPC64_GOT16_LO_DS;
2297 break;
2298 case BFD_RELOC_PPC64_PLT16_LO_DS: r = R_PPC64_PLT16_LO_DS;
2299 break;
2300 case BFD_RELOC_PPC64_SECTOFF_DS: r = R_PPC64_SECTOFF_DS;
2301 break;
2302 case BFD_RELOC_PPC64_SECTOFF_LO_DS: r = R_PPC64_SECTOFF_LO_DS;
2303 break;
2304 case BFD_RELOC_PPC64_TOC16_DS: r = R_PPC64_TOC16_DS;
2305 break;
2306 case BFD_RELOC_PPC64_TOC16_LO_DS: r = R_PPC64_TOC16_LO_DS;
2307 break;
2308 case BFD_RELOC_PPC64_PLTGOT16_DS: r = R_PPC64_PLTGOT16_DS;
2309 break;
2310 case BFD_RELOC_PPC64_PLTGOT16_LO_DS: r = R_PPC64_PLTGOT16_LO_DS;
2311 break;
2312 case BFD_RELOC_PPC_TLS: r = R_PPC64_TLS;
2313 break;
2314 case BFD_RELOC_PPC_TLSGD: r = R_PPC64_TLSGD;
2315 break;
2316 case BFD_RELOC_PPC_TLSLD: r = R_PPC64_TLSLD;
2317 break;
2318 case BFD_RELOC_PPC_DTPMOD: r = R_PPC64_DTPMOD64;
2319 break;
2320 case BFD_RELOC_PPC_TPREL16: r = R_PPC64_TPREL16;
2321 break;
2322 case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC64_TPREL16_LO;
2323 break;
2324 case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC64_TPREL16_HI;
2325 break;
2326 case BFD_RELOC_PPC64_TPREL16_HIGH: r = R_PPC64_TPREL16_HIGH;
2327 break;
2328 case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC64_TPREL16_HA;
2329 break;
2330 case BFD_RELOC_PPC64_TPREL16_HIGHA: r = R_PPC64_TPREL16_HIGHA;
2331 break;
2332 case BFD_RELOC_PPC_TPREL: r = R_PPC64_TPREL64;
2333 break;
2334 case BFD_RELOC_PPC_DTPREL16: r = R_PPC64_DTPREL16;
2335 break;
2336 case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC64_DTPREL16_LO;
2337 break;
2338 case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC64_DTPREL16_HI;
2339 break;
2340 case BFD_RELOC_PPC64_DTPREL16_HIGH: r = R_PPC64_DTPREL16_HIGH;
2341 break;
2342 case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC64_DTPREL16_HA;
2343 break;
2344 case BFD_RELOC_PPC64_DTPREL16_HIGHA: r = R_PPC64_DTPREL16_HIGHA;
2345 break;
2346 case BFD_RELOC_PPC_DTPREL: r = R_PPC64_DTPREL64;
2347 break;
2348 case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC64_GOT_TLSGD16;
2349 break;
2350 case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC64_GOT_TLSGD16_LO;
2351 break;
2352 case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC64_GOT_TLSGD16_HI;
2353 break;
2354 case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC64_GOT_TLSGD16_HA;
2355 break;
2356 case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC64_GOT_TLSLD16;
2357 break;
2358 case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC64_GOT_TLSLD16_LO;
2359 break;
2360 case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC64_GOT_TLSLD16_HI;
2361 break;
2362 case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC64_GOT_TLSLD16_HA;
2363 break;
2364 case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC64_GOT_TPREL16_DS;
2365 break;
2366 case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC64_GOT_TPREL16_LO_DS;
2367 break;
2368 case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC64_GOT_TPREL16_HI;
2369 break;
2370 case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC64_GOT_TPREL16_HA;
2371 break;
2372 case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC64_GOT_DTPREL16_DS;
2373 break;
2374 case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC64_GOT_DTPREL16_LO_DS;
2375 break;
2376 case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC64_GOT_DTPREL16_HI;
2377 break;
2378 case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC64_GOT_DTPREL16_HA;
2379 break;
2380 case BFD_RELOC_PPC64_TPREL16_DS: r = R_PPC64_TPREL16_DS;
2381 break;
2382 case BFD_RELOC_PPC64_TPREL16_LO_DS: r = R_PPC64_TPREL16_LO_DS;
2383 break;
2384 case BFD_RELOC_PPC64_TPREL16_HIGHER: r = R_PPC64_TPREL16_HIGHER;
2385 break;
2386 case BFD_RELOC_PPC64_TPREL16_HIGHERA: r = R_PPC64_TPREL16_HIGHERA;
2387 break;
2388 case BFD_RELOC_PPC64_TPREL16_HIGHEST: r = R_PPC64_TPREL16_HIGHEST;
2389 break;
2390 case BFD_RELOC_PPC64_TPREL16_HIGHESTA: r = R_PPC64_TPREL16_HIGHESTA;
2391 break;
2392 case BFD_RELOC_PPC64_DTPREL16_DS: r = R_PPC64_DTPREL16_DS;
2393 break;
2394 case BFD_RELOC_PPC64_DTPREL16_LO_DS: r = R_PPC64_DTPREL16_LO_DS;
2395 break;
2396 case BFD_RELOC_PPC64_DTPREL16_HIGHER: r = R_PPC64_DTPREL16_HIGHER;
2397 break;
2398 case BFD_RELOC_PPC64_DTPREL16_HIGHERA: r = R_PPC64_DTPREL16_HIGHERA;
2399 break;
2400 case BFD_RELOC_PPC64_DTPREL16_HIGHEST: r = R_PPC64_DTPREL16_HIGHEST;
2401 break;
2402 case BFD_RELOC_PPC64_DTPREL16_HIGHESTA: r = R_PPC64_DTPREL16_HIGHESTA;
2403 break;
2404 case BFD_RELOC_16_PCREL: r = R_PPC64_REL16;
2405 break;
2406 case BFD_RELOC_LO16_PCREL: r = R_PPC64_REL16_LO;
2407 break;
2408 case BFD_RELOC_HI16_PCREL: r = R_PPC64_REL16_HI;
2409 break;
2410 case BFD_RELOC_HI16_S_PCREL: r = R_PPC64_REL16_HA;
2411 break;
2412 case BFD_RELOC_PPC64_ADDR64_LOCAL: r = R_PPC64_ADDR64_LOCAL;
2413 break;
2414 case BFD_RELOC_VTABLE_INHERIT: r = R_PPC64_GNU_VTINHERIT;
2415 break;
2416 case BFD_RELOC_VTABLE_ENTRY: r = R_PPC64_GNU_VTENTRY;
2417 break;
2418 }
2419
2420 return ppc64_elf_howto_table[r];
2421 };
2422
2423 static reloc_howto_type *
2424 ppc64_elf_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2425 const char *r_name)
2426 {
2427 unsigned int i;
2428
2429 for (i = 0;
2430 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
2431 i++)
2432 if (ppc64_elf_howto_raw[i].name != NULL
2433 && strcasecmp (ppc64_elf_howto_raw[i].name, r_name) == 0)
2434 return &ppc64_elf_howto_raw[i];
2435
2436 return NULL;
2437 }
2438
2439 /* Set the howto pointer for a PowerPC ELF reloc. */
2440
2441 static void
2442 ppc64_elf_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
2443 Elf_Internal_Rela *dst)
2444 {
2445 unsigned int type;
2446
2447 /* Initialize howto table if needed. */
2448 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2449 ppc_howto_init ();
2450
2451 type = ELF64_R_TYPE (dst->r_info);
2452 if (type >= (sizeof (ppc64_elf_howto_table)
2453 / sizeof (ppc64_elf_howto_table[0])))
2454 {
2455 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
2456 abfd, (int) type);
2457 type = R_PPC64_NONE;
2458 }
2459 cache_ptr->howto = ppc64_elf_howto_table[type];
2460 }
2461
2462 /* Handle the R_PPC64_ADDR16_HA and similar relocs. */
2463
2464 static bfd_reloc_status_type
2465 ppc64_elf_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2466 void *data, asection *input_section,
2467 bfd *output_bfd, char **error_message)
2468 {
2469 /* If this is a relocatable link (output_bfd test tells us), just
2470 call the generic function. Any adjustment will be done at final
2471 link time. */
2472 if (output_bfd != NULL)
2473 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2474 input_section, output_bfd, error_message);
2475
2476 /* Adjust the addend for sign extension of the low 16 bits.
2477 We won't actually be using the low 16 bits, so trashing them
2478 doesn't matter. */
2479 reloc_entry->addend += 0x8000;
2480 return bfd_reloc_continue;
2481 }
2482
2483 static bfd_reloc_status_type
2484 ppc64_elf_branch_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2485 void *data, asection *input_section,
2486 bfd *output_bfd, char **error_message)
2487 {
2488 if (output_bfd != NULL)
2489 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2490 input_section, output_bfd, error_message);
2491
2492 if (strcmp (symbol->section->name, ".opd") == 0
2493 && (symbol->section->owner->flags & DYNAMIC) == 0)
2494 {
2495 bfd_vma dest = opd_entry_value (symbol->section,
2496 symbol->value + reloc_entry->addend,
2497 NULL, NULL, FALSE);
2498 if (dest != (bfd_vma) -1)
2499 reloc_entry->addend = dest - (symbol->value
2500 + symbol->section->output_section->vma
2501 + symbol->section->output_offset);
2502 }
2503 else
2504 {
2505 elf_symbol_type *elfsym = (elf_symbol_type *) symbol;
2506
2507 if (symbol->section->owner != abfd
2508 && abiversion (symbol->section->owner) >= 2)
2509 {
2510 unsigned int i;
2511
2512 for (i = 0; i < symbol->section->owner->symcount; ++i)
2513 {
2514 asymbol *symdef = symbol->section->owner->outsymbols[i];
2515
2516 if (strcmp (symdef->name, symbol->name) == 0)
2517 {
2518 elfsym = (elf_symbol_type *) symdef;
2519 break;
2520 }
2521 }
2522 }
2523 reloc_entry->addend
2524 += PPC64_LOCAL_ENTRY_OFFSET (elfsym->internal_elf_sym.st_other);
2525 }
2526 return bfd_reloc_continue;
2527 }
2528
2529 static bfd_reloc_status_type
2530 ppc64_elf_brtaken_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2531 void *data, asection *input_section,
2532 bfd *output_bfd, char **error_message)
2533 {
2534 long insn;
2535 enum elf_ppc64_reloc_type r_type;
2536 bfd_size_type octets;
2537 /* Assume 'at' branch hints. */
2538 bfd_boolean is_isa_v2 = TRUE;
2539
2540 /* If this is a relocatable link (output_bfd test tells us), just
2541 call the generic function. Any adjustment will be done at final
2542 link time. */
2543 if (output_bfd != NULL)
2544 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2545 input_section, output_bfd, error_message);
2546
2547 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2548 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
2549 insn &= ~(0x01 << 21);
2550 r_type = reloc_entry->howto->type;
2551 if (r_type == R_PPC64_ADDR14_BRTAKEN
2552 || r_type == R_PPC64_REL14_BRTAKEN)
2553 insn |= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
2554
2555 if (is_isa_v2)
2556 {
2557 /* Set 'a' bit. This is 0b00010 in BO field for branch
2558 on CR(BI) insns (BO == 001at or 011at), and 0b01000
2559 for branch on CTR insns (BO == 1a00t or 1a01t). */
2560 if ((insn & (0x14 << 21)) == (0x04 << 21))
2561 insn |= 0x02 << 21;
2562 else if ((insn & (0x14 << 21)) == (0x10 << 21))
2563 insn |= 0x08 << 21;
2564 else
2565 goto out;
2566 }
2567 else
2568 {
2569 bfd_vma target = 0;
2570 bfd_vma from;
2571
2572 if (!bfd_is_com_section (symbol->section))
2573 target = symbol->value;
2574 target += symbol->section->output_section->vma;
2575 target += symbol->section->output_offset;
2576 target += reloc_entry->addend;
2577
2578 from = (reloc_entry->address
2579 + input_section->output_offset
2580 + input_section->output_section->vma);
2581
2582 /* Invert 'y' bit if not the default. */
2583 if ((bfd_signed_vma) (target - from) < 0)
2584 insn ^= 0x01 << 21;
2585 }
2586 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
2587 out:
2588 return ppc64_elf_branch_reloc (abfd, reloc_entry, symbol, data,
2589 input_section, output_bfd, error_message);
2590 }
2591
2592 static bfd_reloc_status_type
2593 ppc64_elf_sectoff_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2594 void *data, asection *input_section,
2595 bfd *output_bfd, char **error_message)
2596 {
2597 /* If this is a relocatable link (output_bfd test tells us), just
2598 call the generic function. Any adjustment will be done at final
2599 link time. */
2600 if (output_bfd != NULL)
2601 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2602 input_section, output_bfd, error_message);
2603
2604 /* Subtract the symbol section base address. */
2605 reloc_entry->addend -= symbol->section->output_section->vma;
2606 return bfd_reloc_continue;
2607 }
2608
2609 static bfd_reloc_status_type
2610 ppc64_elf_sectoff_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2611 void *data, asection *input_section,
2612 bfd *output_bfd, char **error_message)
2613 {
2614 /* If this is a relocatable link (output_bfd test tells us), just
2615 call the generic function. Any adjustment will be done at final
2616 link time. */
2617 if (output_bfd != NULL)
2618 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2619 input_section, output_bfd, error_message);
2620
2621 /* Subtract the symbol section base address. */
2622 reloc_entry->addend -= symbol->section->output_section->vma;
2623
2624 /* Adjust the addend for sign extension of the low 16 bits. */
2625 reloc_entry->addend += 0x8000;
2626 return bfd_reloc_continue;
2627 }
2628
2629 static bfd_reloc_status_type
2630 ppc64_elf_toc_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2631 void *data, asection *input_section,
2632 bfd *output_bfd, char **error_message)
2633 {
2634 bfd_vma TOCstart;
2635
2636 /* If this is a relocatable link (output_bfd test tells us), just
2637 call the generic function. Any adjustment will be done at final
2638 link time. */
2639 if (output_bfd != NULL)
2640 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2641 input_section, output_bfd, error_message);
2642
2643 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2644 if (TOCstart == 0)
2645 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
2646
2647 /* Subtract the TOC base address. */
2648 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2649 return bfd_reloc_continue;
2650 }
2651
2652 static bfd_reloc_status_type
2653 ppc64_elf_toc_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2654 void *data, asection *input_section,
2655 bfd *output_bfd, char **error_message)
2656 {
2657 bfd_vma TOCstart;
2658
2659 /* If this is a relocatable link (output_bfd test tells us), just
2660 call the generic function. Any adjustment will be done at final
2661 link time. */
2662 if (output_bfd != NULL)
2663 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2664 input_section, output_bfd, error_message);
2665
2666 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2667 if (TOCstart == 0)
2668 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
2669
2670 /* Subtract the TOC base address. */
2671 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2672
2673 /* Adjust the addend for sign extension of the low 16 bits. */
2674 reloc_entry->addend += 0x8000;
2675 return bfd_reloc_continue;
2676 }
2677
2678 static bfd_reloc_status_type
2679 ppc64_elf_toc64_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2680 void *data, asection *input_section,
2681 bfd *output_bfd, char **error_message)
2682 {
2683 bfd_vma TOCstart;
2684 bfd_size_type octets;
2685
2686 /* If this is a relocatable link (output_bfd test tells us), just
2687 call the generic function. Any adjustment will be done at final
2688 link time. */
2689 if (output_bfd != NULL)
2690 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2691 input_section, output_bfd, error_message);
2692
2693 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2694 if (TOCstart == 0)
2695 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
2696
2697 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2698 bfd_put_64 (abfd, TOCstart + TOC_BASE_OFF, (bfd_byte *) data + octets);
2699 return bfd_reloc_ok;
2700 }
2701
2702 static bfd_reloc_status_type
2703 ppc64_elf_unhandled_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2704 void *data, asection *input_section,
2705 bfd *output_bfd, char **error_message)
2706 {
2707 /* If this is a relocatable link (output_bfd test tells us), just
2708 call the generic function. Any adjustment will be done at final
2709 link time. */
2710 if (output_bfd != NULL)
2711 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2712 input_section, output_bfd, error_message);
2713
2714 if (error_message != NULL)
2715 {
2716 static char buf[60];
2717 sprintf (buf, "generic linker can't handle %s",
2718 reloc_entry->howto->name);
2719 *error_message = buf;
2720 }
2721 return bfd_reloc_dangerous;
2722 }
2723
2724 /* Track GOT entries needed for a given symbol. We might need more
2725 than one got entry per symbol. */
2726 struct got_entry
2727 {
2728 struct got_entry *next;
2729
2730 /* The symbol addend that we'll be placing in the GOT. */
2731 bfd_vma addend;
2732
2733 /* Unlike other ELF targets, we use separate GOT entries for the same
2734 symbol referenced from different input files. This is to support
2735 automatic multiple TOC/GOT sections, where the TOC base can vary
2736 from one input file to another. After partitioning into TOC groups
2737 we merge entries within the group.
2738
2739 Point to the BFD owning this GOT entry. */
2740 bfd *owner;
2741
2742 /* Zero for non-tls entries, or TLS_TLS and one of TLS_GD, TLS_LD,
2743 TLS_TPREL or TLS_DTPREL for tls entries. */
2744 unsigned char tls_type;
2745
2746 /* Non-zero if got.ent points to real entry. */
2747 unsigned char is_indirect;
2748
2749 /* Reference count until size_dynamic_sections, GOT offset thereafter. */
2750 union
2751 {
2752 bfd_signed_vma refcount;
2753 bfd_vma offset;
2754 struct got_entry *ent;
2755 } got;
2756 };
2757
2758 /* The same for PLT. */
2759 struct plt_entry
2760 {
2761 struct plt_entry *next;
2762
2763 bfd_vma addend;
2764
2765 union
2766 {
2767 bfd_signed_vma refcount;
2768 bfd_vma offset;
2769 } plt;
2770 };
2771
2772 struct ppc64_elf_obj_tdata
2773 {
2774 struct elf_obj_tdata elf;
2775
2776 /* Shortcuts to dynamic linker sections. */
2777 asection *got;
2778 asection *relgot;
2779
2780 /* Used during garbage collection. We attach global symbols defined
2781 on removed .opd entries to this section so that the sym is removed. */
2782 asection *deleted_section;
2783
2784 /* TLS local dynamic got entry handling. Support for multiple GOT
2785 sections means we potentially need one of these for each input bfd. */
2786 struct got_entry tlsld_got;
2787
2788 union {
2789 /* A copy of relocs before they are modified for --emit-relocs. */
2790 Elf_Internal_Rela *relocs;
2791
2792 /* Section contents. */
2793 bfd_byte *contents;
2794 } opd;
2795
2796 /* Nonzero if this bfd has small toc/got relocs, ie. that expect
2797 the reloc to be in the range -32768 to 32767. */
2798 unsigned int has_small_toc_reloc : 1;
2799
2800 /* Set if toc/got ha relocs detected not using r2, or lo reloc
2801 instruction not one we handle. */
2802 unsigned int unexpected_toc_insn : 1;
2803 };
2804
2805 #define ppc64_elf_tdata(bfd) \
2806 ((struct ppc64_elf_obj_tdata *) (bfd)->tdata.any)
2807
2808 #define ppc64_tlsld_got(bfd) \
2809 (&ppc64_elf_tdata (bfd)->tlsld_got)
2810
2811 #define is_ppc64_elf(bfd) \
2812 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2813 && elf_object_id (bfd) == PPC64_ELF_DATA)
2814
2815 /* Override the generic function because we store some extras. */
2816
2817 static bfd_boolean
2818 ppc64_elf_mkobject (bfd *abfd)
2819 {
2820 return bfd_elf_allocate_object (abfd, sizeof (struct ppc64_elf_obj_tdata),
2821 PPC64_ELF_DATA);
2822 }
2823
2824 /* Fix bad default arch selected for a 64 bit input bfd when the
2825 default is 32 bit. */
2826
2827 static bfd_boolean
2828 ppc64_elf_object_p (bfd *abfd)
2829 {
2830 if (abfd->arch_info->the_default && abfd->arch_info->bits_per_word == 32)
2831 {
2832 Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd);
2833
2834 if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS64)
2835 {
2836 /* Relies on arch after 32 bit default being 64 bit default. */
2837 abfd->arch_info = abfd->arch_info->next;
2838 BFD_ASSERT (abfd->arch_info->bits_per_word == 64);
2839 }
2840 }
2841 return TRUE;
2842 }
2843
2844 /* Support for core dump NOTE sections. */
2845
2846 static bfd_boolean
2847 ppc64_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2848 {
2849 size_t offset, size;
2850
2851 if (note->descsz != 504)
2852 return FALSE;
2853
2854 /* pr_cursig */
2855 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2856
2857 /* pr_pid */
2858 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 32);
2859
2860 /* pr_reg */
2861 offset = 112;
2862 size = 384;
2863
2864 /* Make a ".reg/999" section. */
2865 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2866 size, note->descpos + offset);
2867 }
2868
2869 static bfd_boolean
2870 ppc64_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2871 {
2872 if (note->descsz != 136)
2873 return FALSE;
2874
2875 elf_tdata (abfd)->core->pid
2876 = bfd_get_32 (abfd, note->descdata + 24);
2877 elf_tdata (abfd)->core->program
2878 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2879 elf_tdata (abfd)->core->command
2880 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2881
2882 return TRUE;
2883 }
2884
2885 static char *
2886 ppc64_elf_write_core_note (bfd *abfd, char *buf, int *bufsiz, int note_type,
2887 ...)
2888 {
2889 switch (note_type)
2890 {
2891 default:
2892 return NULL;
2893
2894 case NT_PRPSINFO:
2895 {
2896 char data[136];
2897 va_list ap;
2898
2899 va_start (ap, note_type);
2900 memset (data, 0, sizeof (data));
2901 strncpy (data + 40, va_arg (ap, const char *), 16);
2902 strncpy (data + 56, va_arg (ap, const char *), 80);
2903 va_end (ap);
2904 return elfcore_write_note (abfd, buf, bufsiz,
2905 "CORE", note_type, data, sizeof (data));
2906 }
2907
2908 case NT_PRSTATUS:
2909 {
2910 char data[504];
2911 va_list ap;
2912 long pid;
2913 int cursig;
2914 const void *greg;
2915
2916 va_start (ap, note_type);
2917 memset (data, 0, 112);
2918 pid = va_arg (ap, long);
2919 bfd_put_32 (abfd, pid, data + 32);
2920 cursig = va_arg (ap, int);
2921 bfd_put_16 (abfd, cursig, data + 12);
2922 greg = va_arg (ap, const void *);
2923 memcpy (data + 112, greg, 384);
2924 memset (data + 496, 0, 8);
2925 va_end (ap);
2926 return elfcore_write_note (abfd, buf, bufsiz,
2927 "CORE", note_type, data, sizeof (data));
2928 }
2929 }
2930 }
2931
2932 /* Add extra PPC sections. */
2933
2934 static const struct bfd_elf_special_section ppc64_elf_special_sections[]=
2935 {
2936 { STRING_COMMA_LEN (".plt"), 0, SHT_NOBITS, 0 },
2937 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2938 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2939 { STRING_COMMA_LEN (".toc"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2940 { STRING_COMMA_LEN (".toc1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2941 { STRING_COMMA_LEN (".tocbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2942 { NULL, 0, 0, 0, 0 }
2943 };
2944
2945 enum _ppc64_sec_type {
2946 sec_normal = 0,
2947 sec_opd = 1,
2948 sec_toc = 2
2949 };
2950
2951 struct _ppc64_elf_section_data
2952 {
2953 struct bfd_elf_section_data elf;
2954
2955 union
2956 {
2957 /* An array with one entry for each opd function descriptor. */
2958 struct _opd_sec_data
2959 {
2960 /* Points to the function code section for local opd entries. */
2961 asection **func_sec;
2962
2963 /* After editing .opd, adjust references to opd local syms. */
2964 long *adjust;
2965 } opd;
2966
2967 /* An array for toc sections, indexed by offset/8. */
2968 struct _toc_sec_data
2969 {
2970 /* Specifies the relocation symbol index used at a given toc offset. */
2971 unsigned *symndx;
2972
2973 /* And the relocation addend. */
2974 bfd_vma *add;
2975 } toc;
2976 } u;
2977
2978 enum _ppc64_sec_type sec_type:2;
2979
2980 /* Flag set when small branches are detected. Used to
2981 select suitable defaults for the stub group size. */
2982 unsigned int has_14bit_branch:1;
2983 };
2984
2985 #define ppc64_elf_section_data(sec) \
2986 ((struct _ppc64_elf_section_data *) elf_section_data (sec))
2987
2988 static bfd_boolean
2989 ppc64_elf_new_section_hook (bfd *abfd, asection *sec)
2990 {
2991 if (!sec->used_by_bfd)
2992 {
2993 struct _ppc64_elf_section_data *sdata;
2994 bfd_size_type amt = sizeof (*sdata);
2995
2996 sdata = bfd_zalloc (abfd, amt);
2997 if (sdata == NULL)
2998 return FALSE;
2999 sec->used_by_bfd = sdata;
3000 }
3001
3002 return _bfd_elf_new_section_hook (abfd, sec);
3003 }
3004
3005 static struct _opd_sec_data *
3006 get_opd_info (asection * sec)
3007 {
3008 if (sec != NULL
3009 && ppc64_elf_section_data (sec) != NULL
3010 && ppc64_elf_section_data (sec)->sec_type == sec_opd)
3011 return &ppc64_elf_section_data (sec)->u.opd;
3012 return NULL;
3013 }
3014 \f
3015 /* Parameters for the qsort hook. */
3016 static bfd_boolean synthetic_relocatable;
3017
3018 /* qsort comparison function for ppc64_elf_get_synthetic_symtab. */
3019
3020 static int
3021 compare_symbols (const void *ap, const void *bp)
3022 {
3023 const asymbol *a = * (const asymbol **) ap;
3024 const asymbol *b = * (const asymbol **) bp;
3025
3026 /* Section symbols first. */
3027 if ((a->flags & BSF_SECTION_SYM) && !(b->flags & BSF_SECTION_SYM))
3028 return -1;
3029 if (!(a->flags & BSF_SECTION_SYM) && (b->flags & BSF_SECTION_SYM))
3030 return 1;
3031
3032 /* then .opd symbols. */
3033 if (strcmp (a->section->name, ".opd") == 0
3034 && strcmp (b->section->name, ".opd") != 0)
3035 return -1;
3036 if (strcmp (a->section->name, ".opd") != 0
3037 && strcmp (b->section->name, ".opd") == 0)
3038 return 1;
3039
3040 /* then other code symbols. */
3041 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3042 == (SEC_CODE | SEC_ALLOC)
3043 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3044 != (SEC_CODE | SEC_ALLOC))
3045 return -1;
3046
3047 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3048 != (SEC_CODE | SEC_ALLOC)
3049 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3050 == (SEC_CODE | SEC_ALLOC))
3051 return 1;
3052
3053 if (synthetic_relocatable)
3054 {
3055 if (a->section->id < b->section->id)
3056 return -1;
3057
3058 if (a->section->id > b->section->id)
3059 return 1;
3060 }
3061
3062 if (a->value + a->section->vma < b->value + b->section->vma)
3063 return -1;
3064
3065 if (a->value + a->section->vma > b->value + b->section->vma)
3066 return 1;
3067
3068 /* For syms with the same value, prefer strong dynamic global function
3069 syms over other syms. */
3070 if ((a->flags & BSF_GLOBAL) != 0 && (b->flags & BSF_GLOBAL) == 0)
3071 return -1;
3072
3073 if ((a->flags & BSF_GLOBAL) == 0 && (b->flags & BSF_GLOBAL) != 0)
3074 return 1;
3075
3076 if ((a->flags & BSF_FUNCTION) != 0 && (b->flags & BSF_FUNCTION) == 0)
3077 return -1;
3078
3079 if ((a->flags & BSF_FUNCTION) == 0 && (b->flags & BSF_FUNCTION) != 0)
3080 return 1;
3081
3082 if ((a->flags & BSF_WEAK) == 0 && (b->flags & BSF_WEAK) != 0)
3083 return -1;
3084
3085 if ((a->flags & BSF_WEAK) != 0 && (b->flags & BSF_WEAK) == 0)
3086 return 1;
3087
3088 if ((a->flags & BSF_DYNAMIC) != 0 && (b->flags & BSF_DYNAMIC) == 0)
3089 return -1;
3090
3091 if ((a->flags & BSF_DYNAMIC) == 0 && (b->flags & BSF_DYNAMIC) != 0)
3092 return 1;
3093
3094 return 0;
3095 }
3096
3097 /* Search SYMS for a symbol of the given VALUE. */
3098
3099 static asymbol *
3100 sym_exists_at (asymbol **syms, long lo, long hi, int id, bfd_vma value)
3101 {
3102 long mid;
3103
3104 if (id == -1)
3105 {
3106 while (lo < hi)
3107 {
3108 mid = (lo + hi) >> 1;
3109 if (syms[mid]->value + syms[mid]->section->vma < value)
3110 lo = mid + 1;
3111 else if (syms[mid]->value + syms[mid]->section->vma > value)
3112 hi = mid;
3113 else
3114 return syms[mid];
3115 }
3116 }
3117 else
3118 {
3119 while (lo < hi)
3120 {
3121 mid = (lo + hi) >> 1;
3122 if (syms[mid]->section->id < id)
3123 lo = mid + 1;
3124 else if (syms[mid]->section->id > id)
3125 hi = mid;
3126 else if (syms[mid]->value < value)
3127 lo = mid + 1;
3128 else if (syms[mid]->value > value)
3129 hi = mid;
3130 else
3131 return syms[mid];
3132 }
3133 }
3134 return NULL;
3135 }
3136
3137 static bfd_boolean
3138 section_covers_vma (bfd *abfd ATTRIBUTE_UNUSED, asection *section, void *ptr)
3139 {
3140 bfd_vma vma = *(bfd_vma *) ptr;
3141 return ((section->flags & SEC_ALLOC) != 0
3142 && section->vma <= vma
3143 && vma < section->vma + section->size);
3144 }
3145
3146 /* Create synthetic symbols, effectively restoring "dot-symbol" function
3147 entry syms. Also generate @plt symbols for the glink branch table. */
3148
3149 static long
3150 ppc64_elf_get_synthetic_symtab (bfd *abfd,
3151 long static_count, asymbol **static_syms,
3152 long dyn_count, asymbol **dyn_syms,
3153 asymbol **ret)
3154 {
3155 asymbol *s;
3156 long i;
3157 long count;
3158 char *names;
3159 long symcount, codesecsym, codesecsymend, secsymend, opdsymend;
3160 asection *opd = NULL;
3161 bfd_boolean relocatable = (abfd->flags & (EXEC_P | DYNAMIC)) == 0;
3162 asymbol **syms;
3163 int abi = abiversion (abfd);
3164
3165 *ret = NULL;
3166
3167 if (abi < 2)
3168 {
3169 opd = bfd_get_section_by_name (abfd, ".opd");
3170 if (opd == NULL && abi == 1)
3171 return 0;
3172 }
3173
3174 symcount = static_count;
3175 if (!relocatable)
3176 symcount += dyn_count;
3177 if (symcount == 0)
3178 return 0;
3179
3180 syms = bfd_malloc ((symcount + 1) * sizeof (*syms));
3181 if (syms == NULL)
3182 return -1;
3183
3184 if (!relocatable && static_count != 0 && dyn_count != 0)
3185 {
3186 /* Use both symbol tables. */
3187 memcpy (syms, static_syms, static_count * sizeof (*syms));
3188 memcpy (syms + static_count, dyn_syms, (dyn_count + 1) * sizeof (*syms));
3189 }
3190 else if (!relocatable && static_count == 0)
3191 memcpy (syms, dyn_syms, (symcount + 1) * sizeof (*syms));
3192 else
3193 memcpy (syms, static_syms, (symcount + 1) * sizeof (*syms));
3194
3195 synthetic_relocatable = relocatable;
3196 qsort (syms, symcount, sizeof (*syms), compare_symbols);
3197
3198 if (!relocatable && symcount > 1)
3199 {
3200 long j;
3201 /* Trim duplicate syms, since we may have merged the normal and
3202 dynamic symbols. Actually, we only care about syms that have
3203 different values, so trim any with the same value. */
3204 for (i = 1, j = 1; i < symcount; ++i)
3205 if (syms[i - 1]->value + syms[i - 1]->section->vma
3206 != syms[i]->value + syms[i]->section->vma)
3207 syms[j++] = syms[i];
3208 symcount = j;
3209 }
3210
3211 i = 0;
3212 if (strcmp (syms[i]->section->name, ".opd") == 0)
3213 ++i;
3214 codesecsym = i;
3215
3216 for (; i < symcount; ++i)
3217 if (((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3218 != (SEC_CODE | SEC_ALLOC))
3219 || (syms[i]->flags & BSF_SECTION_SYM) == 0)
3220 break;
3221 codesecsymend = i;
3222
3223 for (; i < symcount; ++i)
3224 if ((syms[i]->flags & BSF_SECTION_SYM) == 0)
3225 break;
3226 secsymend = i;
3227
3228 for (; i < symcount; ++i)
3229 if (strcmp (syms[i]->section->name, ".opd") != 0)
3230 break;
3231 opdsymend = i;
3232
3233 for (; i < symcount; ++i)
3234 if ((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3235 != (SEC_CODE | SEC_ALLOC))
3236 break;
3237 symcount = i;
3238
3239 count = 0;
3240
3241 if (relocatable)
3242 {
3243 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
3244 arelent *r;
3245 size_t size;
3246 long relcount;
3247
3248 if (opdsymend == secsymend)
3249 goto done;
3250
3251 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
3252 relcount = (opd->flags & SEC_RELOC) ? opd->reloc_count : 0;
3253 if (relcount == 0)
3254 goto done;
3255
3256 if (!(*slurp_relocs) (abfd, opd, static_syms, FALSE))
3257 {
3258 count = -1;
3259 goto done;
3260 }
3261
3262 size = 0;
3263 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
3264 {
3265 asymbol *sym;
3266
3267 while (r < opd->relocation + relcount
3268 && r->address < syms[i]->value + opd->vma)
3269 ++r;
3270
3271 if (r == opd->relocation + relcount)
3272 break;
3273
3274 if (r->address != syms[i]->value + opd->vma)
3275 continue;
3276
3277 if (r->howto->type != R_PPC64_ADDR64)
3278 continue;
3279
3280 sym = *r->sym_ptr_ptr;
3281 if (!sym_exists_at (syms, opdsymend, symcount,
3282 sym->section->id, sym->value + r->addend))
3283 {
3284 ++count;
3285 size += sizeof (asymbol);
3286 size += strlen (syms[i]->name) + 2;
3287 }
3288 }
3289
3290 s = *ret = bfd_malloc (size);
3291 if (s == NULL)
3292 {
3293 count = -1;
3294 goto done;
3295 }
3296
3297 names = (char *) (s + count);
3298
3299 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
3300 {
3301 asymbol *sym;
3302
3303 while (r < opd->relocation + relcount
3304 && r->address < syms[i]->value + opd->vma)
3305 ++r;
3306
3307 if (r == opd->relocation + relcount)
3308 break;
3309
3310 if (r->address != syms[i]->value + opd->vma)
3311 continue;
3312
3313 if (r->howto->type != R_PPC64_ADDR64)
3314 continue;
3315
3316 sym = *r->sym_ptr_ptr;
3317 if (!sym_exists_at (syms, opdsymend, symcount,
3318 sym->section->id, sym->value + r->addend))
3319 {
3320 size_t len;
3321
3322 *s = *syms[i];
3323 s->flags |= BSF_SYNTHETIC;
3324 s->section = sym->section;
3325 s->value = sym->value + r->addend;
3326 s->name = names;
3327 *names++ = '.';
3328 len = strlen (syms[i]->name);
3329 memcpy (names, syms[i]->name, len + 1);
3330 names += len + 1;
3331 /* Have udata.p point back to the original symbol this
3332 synthetic symbol was derived from. */
3333 s->udata.p = syms[i];
3334 s++;
3335 }
3336 }
3337 }
3338 else
3339 {
3340 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
3341 bfd_byte *contents = NULL;
3342 size_t size;
3343 long plt_count = 0;
3344 bfd_vma glink_vma = 0, resolv_vma = 0;
3345 asection *dynamic, *glink = NULL, *relplt = NULL;
3346 arelent *p;
3347
3348 if (opd != NULL && !bfd_malloc_and_get_section (abfd, opd, &contents))
3349 {
3350 free_contents_and_exit:
3351 if (contents)
3352 free (contents);
3353 count = -1;
3354 goto done;
3355 }
3356
3357 size = 0;
3358 for (i = secsymend; i < opdsymend; ++i)
3359 {
3360 bfd_vma ent;
3361
3362 /* Ignore bogus symbols. */
3363 if (syms[i]->value > opd->size - 8)
3364 continue;
3365
3366 ent = bfd_get_64 (abfd, contents + syms[i]->value);
3367 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
3368 {
3369 ++count;
3370 size += sizeof (asymbol);
3371 size += strlen (syms[i]->name) + 2;
3372 }
3373 }
3374
3375 /* Get start of .glink stubs from DT_PPC64_GLINK. */
3376 if (dyn_count != 0
3377 && (dynamic = bfd_get_section_by_name (abfd, ".dynamic")) != NULL)
3378 {
3379 bfd_byte *dynbuf, *extdyn, *extdynend;
3380 size_t extdynsize;
3381 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
3382
3383 if (!bfd_malloc_and_get_section (abfd, dynamic, &dynbuf))
3384 goto free_contents_and_exit;
3385
3386 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
3387 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
3388
3389 extdyn = dynbuf;
3390 extdynend = extdyn + dynamic->size;
3391 for (; extdyn < extdynend; extdyn += extdynsize)
3392 {
3393 Elf_Internal_Dyn dyn;
3394 (*swap_dyn_in) (abfd, extdyn, &dyn);
3395
3396 if (dyn.d_tag == DT_NULL)
3397 break;
3398
3399 if (dyn.d_tag == DT_PPC64_GLINK)
3400 {
3401 /* The first glink stub starts at offset 32; see
3402 comment in ppc64_elf_finish_dynamic_sections. */
3403 glink_vma = dyn.d_un.d_val + GLINK_CALL_STUB_SIZE - 8 * 4;
3404 /* The .glink section usually does not survive the final
3405 link; search for the section (usually .text) where the
3406 glink stubs now reside. */
3407 glink = bfd_sections_find_if (abfd, section_covers_vma,
3408 &glink_vma);
3409 break;
3410 }
3411 }
3412
3413 free (dynbuf);
3414 }
3415
3416 if (glink != NULL)
3417 {
3418 /* Determine __glink trampoline by reading the relative branch
3419 from the first glink stub. */
3420 bfd_byte buf[4];
3421 unsigned int off = 0;
3422
3423 while (bfd_get_section_contents (abfd, glink, buf,
3424 glink_vma + off - glink->vma, 4))
3425 {
3426 unsigned int insn = bfd_get_32 (abfd, buf);
3427 insn ^= B_DOT;
3428 if ((insn & ~0x3fffffc) == 0)
3429 {
3430 resolv_vma = glink_vma + off + (insn ^ 0x2000000) - 0x2000000;
3431 break;
3432 }
3433 off += 4;
3434 if (off > 4)
3435 break;
3436 }
3437
3438 if (resolv_vma)
3439 size += sizeof (asymbol) + sizeof ("__glink_PLTresolve");
3440
3441 relplt = bfd_get_section_by_name (abfd, ".rela.plt");
3442 if (relplt != NULL)
3443 {
3444 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
3445 if (! (*slurp_relocs) (abfd, relplt, dyn_syms, TRUE))
3446 goto free_contents_and_exit;
3447
3448 plt_count = relplt->size / sizeof (Elf64_External_Rela);
3449 size += plt_count * sizeof (asymbol);
3450
3451 p = relplt->relocation;
3452 for (i = 0; i < plt_count; i++, p++)
3453 {
3454 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
3455 if (p->addend != 0)
3456 size += sizeof ("+0x") - 1 + 16;
3457 }
3458 }
3459 }
3460
3461 s = *ret = bfd_malloc (size);
3462 if (s == NULL)
3463 goto free_contents_and_exit;
3464
3465 names = (char *) (s + count + plt_count + (resolv_vma != 0));
3466
3467 for (i = secsymend; i < opdsymend; ++i)
3468 {
3469 bfd_vma ent;
3470
3471 if (syms[i]->value > opd->size - 8)
3472 continue;
3473
3474 ent = bfd_get_64 (abfd, contents + syms[i]->value);
3475 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
3476 {
3477 long lo, hi;
3478 size_t len;
3479 asection *sec = abfd->sections;
3480
3481 *s = *syms[i];
3482 lo = codesecsym;
3483 hi = codesecsymend;
3484 while (lo < hi)
3485 {
3486 long mid = (lo + hi) >> 1;
3487 if (syms[mid]->section->vma < ent)
3488 lo = mid + 1;
3489 else if (syms[mid]->section->vma > ent)
3490 hi = mid;
3491 else
3492 {
3493 sec = syms[mid]->section;
3494 break;
3495 }
3496 }
3497
3498 if (lo >= hi && lo > codesecsym)
3499 sec = syms[lo - 1]->section;
3500
3501 for (; sec != NULL; sec = sec->next)
3502 {
3503 if (sec->vma > ent)
3504 break;
3505 /* SEC_LOAD may not be set if SEC is from a separate debug
3506 info file. */
3507 if ((sec->flags & SEC_ALLOC) == 0)
3508 break;
3509 if ((sec->flags & SEC_CODE) != 0)
3510 s->section = sec;
3511 }
3512 s->flags |= BSF_SYNTHETIC;
3513 s->value = ent - s->section->vma;
3514 s->name = names;
3515 *names++ = '.';
3516 len = strlen (syms[i]->name);
3517 memcpy (names, syms[i]->name, len + 1);
3518 names += len + 1;
3519 /* Have udata.p point back to the original symbol this
3520 synthetic symbol was derived from. */
3521 s->udata.p = syms[i];
3522 s++;
3523 }
3524 }
3525 free (contents);
3526
3527 if (glink != NULL && relplt != NULL)
3528 {
3529 if (resolv_vma)
3530 {
3531 /* Add a symbol for the main glink trampoline. */
3532 memset (s, 0, sizeof *s);
3533 s->the_bfd = abfd;
3534 s->flags = BSF_GLOBAL | BSF_SYNTHETIC;
3535 s->section = glink;
3536 s->value = resolv_vma - glink->vma;
3537 s->name = names;
3538 memcpy (names, "__glink_PLTresolve", sizeof ("__glink_PLTresolve"));
3539 names += sizeof ("__glink_PLTresolve");
3540 s++;
3541 count++;
3542 }
3543
3544 /* FIXME: It would be very much nicer to put sym@plt on the
3545 stub rather than on the glink branch table entry. The
3546 objdump disassembler would then use a sensible symbol
3547 name on plt calls. The difficulty in doing so is
3548 a) finding the stubs, and,
3549 b) matching stubs against plt entries, and,
3550 c) there can be multiple stubs for a given plt entry.
3551
3552 Solving (a) could be done by code scanning, but older
3553 ppc64 binaries used different stubs to current code.
3554 (b) is the tricky one since you need to known the toc
3555 pointer for at least one function that uses a pic stub to
3556 be able to calculate the plt address referenced.
3557 (c) means gdb would need to set multiple breakpoints (or
3558 find the glink branch itself) when setting breakpoints
3559 for pending shared library loads. */
3560 p = relplt->relocation;
3561 for (i = 0; i < plt_count; i++, p++)
3562 {
3563 size_t len;
3564
3565 *s = **p->sym_ptr_ptr;
3566 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
3567 we are defining a symbol, ensure one of them is set. */
3568 if ((s->flags & BSF_LOCAL) == 0)
3569 s->flags |= BSF_GLOBAL;
3570 s->flags |= BSF_SYNTHETIC;
3571 s->section = glink;
3572 s->value = glink_vma - glink->vma;
3573 s->name = names;
3574 s->udata.p = NULL;
3575 len = strlen ((*p->sym_ptr_ptr)->name);
3576 memcpy (names, (*p->sym_ptr_ptr)->name, len);
3577 names += len;
3578 if (p->addend != 0)
3579 {
3580 memcpy (names, "+0x", sizeof ("+0x") - 1);
3581 names += sizeof ("+0x") - 1;
3582 bfd_sprintf_vma (abfd, names, p->addend);
3583 names += strlen (names);
3584 }
3585 memcpy (names, "@plt", sizeof ("@plt"));
3586 names += sizeof ("@plt");
3587 s++;
3588 if (abi < 2)
3589 {
3590 glink_vma += 8;
3591 if (i >= 0x8000)
3592 glink_vma += 4;
3593 }
3594 else
3595 glink_vma += 4;
3596 }
3597 count += plt_count;
3598 }
3599 }
3600
3601 done:
3602 free (syms);
3603 return count;
3604 }
3605 \f
3606 /* The following functions are specific to the ELF linker, while
3607 functions above are used generally. Those named ppc64_elf_* are
3608 called by the main ELF linker code. They appear in this file more
3609 or less in the order in which they are called. eg.
3610 ppc64_elf_check_relocs is called early in the link process,
3611 ppc64_elf_finish_dynamic_sections is one of the last functions
3612 called.
3613
3614 PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that
3615 functions have both a function code symbol and a function descriptor
3616 symbol. A call to foo in a relocatable object file looks like:
3617
3618 . .text
3619 . x:
3620 . bl .foo
3621 . nop
3622
3623 The function definition in another object file might be:
3624
3625 . .section .opd
3626 . foo: .quad .foo
3627 . .quad .TOC.@tocbase
3628 . .quad 0
3629 .
3630 . .text
3631 . .foo: blr
3632
3633 When the linker resolves the call during a static link, the branch
3634 unsurprisingly just goes to .foo and the .opd information is unused.
3635 If the function definition is in a shared library, things are a little
3636 different: The call goes via a plt call stub, the opd information gets
3637 copied to the plt, and the linker patches the nop.
3638
3639 . x:
3640 . bl .foo_stub
3641 . ld 2,40(1)
3642 .
3643 .
3644 . .foo_stub:
3645 . std 2,40(1) # in practice, the call stub
3646 . addis 11,2,Lfoo@toc@ha # is slightly optimized, but
3647 . addi 11,11,Lfoo@toc@l # this is the general idea
3648 . ld 12,0(11)
3649 . ld 2,8(11)
3650 . mtctr 12
3651 . ld 11,16(11)
3652 . bctr
3653 .
3654 . .section .plt
3655 . Lfoo: reloc (R_PPC64_JMP_SLOT, foo)
3656
3657 The "reloc ()" notation is supposed to indicate that the linker emits
3658 an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd
3659 copying.
3660
3661 What are the difficulties here? Well, firstly, the relocations
3662 examined by the linker in check_relocs are against the function code
3663 sym .foo, while the dynamic relocation in the plt is emitted against
3664 the function descriptor symbol, foo. Somewhere along the line, we need
3665 to carefully copy dynamic link information from one symbol to the other.
3666 Secondly, the generic part of the elf linker will make .foo a dynamic
3667 symbol as is normal for most other backends. We need foo dynamic
3668 instead, at least for an application final link. However, when
3669 creating a shared library containing foo, we need to have both symbols
3670 dynamic so that references to .foo are satisfied during the early
3671 stages of linking. Otherwise the linker might decide to pull in a
3672 definition from some other object, eg. a static library.
3673
3674 Update: As of August 2004, we support a new convention. Function
3675 calls may use the function descriptor symbol, ie. "bl foo". This
3676 behaves exactly as "bl .foo". */
3677
3678 /* Of those relocs that might be copied as dynamic relocs, this function
3679 selects those that must be copied when linking a shared library,
3680 even when the symbol is local. */
3681
3682 static int
3683 must_be_dyn_reloc (struct bfd_link_info *info,
3684 enum elf_ppc64_reloc_type r_type)
3685 {
3686 switch (r_type)
3687 {
3688 default:
3689 return 1;
3690
3691 case R_PPC64_REL32:
3692 case R_PPC64_REL64:
3693 case R_PPC64_REL30:
3694 return 0;
3695
3696 case R_PPC64_TPREL16:
3697 case R_PPC64_TPREL16_LO:
3698 case R_PPC64_TPREL16_HI:
3699 case R_PPC64_TPREL16_HA:
3700 case R_PPC64_TPREL16_DS:
3701 case R_PPC64_TPREL16_LO_DS:
3702 case R_PPC64_TPREL16_HIGH:
3703 case R_PPC64_TPREL16_HIGHA:
3704 case R_PPC64_TPREL16_HIGHER:
3705 case R_PPC64_TPREL16_HIGHERA:
3706 case R_PPC64_TPREL16_HIGHEST:
3707 case R_PPC64_TPREL16_HIGHESTA:
3708 case R_PPC64_TPREL64:
3709 return !info->executable;
3710 }
3711 }
3712
3713 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
3714 copying dynamic variables from a shared lib into an app's dynbss
3715 section, and instead use a dynamic relocation to point into the
3716 shared lib. With code that gcc generates, it's vital that this be
3717 enabled; In the PowerPC64 ABI, the address of a function is actually
3718 the address of a function descriptor, which resides in the .opd
3719 section. gcc uses the descriptor directly rather than going via the
3720 GOT as some other ABI's do, which means that initialized function
3721 pointers must reference the descriptor. Thus, a function pointer
3722 initialized to the address of a function in a shared library will
3723 either require a copy reloc, or a dynamic reloc. Using a copy reloc
3724 redefines the function descriptor symbol to point to the copy. This
3725 presents a problem as a plt entry for that function is also
3726 initialized from the function descriptor symbol and the copy reloc
3727 may not be initialized first. */
3728 #define ELIMINATE_COPY_RELOCS 1
3729
3730 /* Section name for stubs is the associated section name plus this
3731 string. */
3732 #define STUB_SUFFIX ".stub"
3733
3734 /* Linker stubs.
3735 ppc_stub_long_branch:
3736 Used when a 14 bit branch (or even a 24 bit branch) can't reach its
3737 destination, but a 24 bit branch in a stub section will reach.
3738 . b dest
3739
3740 ppc_stub_plt_branch:
3741 Similar to the above, but a 24 bit branch in the stub section won't
3742 reach its destination.
3743 . addis %r11,%r2,xxx@toc@ha
3744 . ld %r12,xxx@toc@l(%r11)
3745 . mtctr %r12
3746 . bctr
3747
3748 ppc_stub_plt_call:
3749 Used to call a function in a shared library. If it so happens that
3750 the plt entry referenced crosses a 64k boundary, then an extra
3751 "addi %r11,%r11,xxx@toc@l" will be inserted before the "mtctr".
3752 . std %r2,40(%r1)
3753 . addis %r11,%r2,xxx@toc@ha
3754 . ld %r12,xxx+0@toc@l(%r11)
3755 . mtctr %r12
3756 . ld %r2,xxx+8@toc@l(%r11)
3757 . ld %r11,xxx+16@toc@l(%r11)
3758 . bctr
3759
3760 ppc_stub_long_branch and ppc_stub_plt_branch may also have additional
3761 code to adjust the value and save r2 to support multiple toc sections.
3762 A ppc_stub_long_branch with an r2 offset looks like:
3763 . std %r2,40(%r1)
3764 . addis %r2,%r2,off@ha
3765 . addi %r2,%r2,off@l
3766 . b dest
3767
3768 A ppc_stub_plt_branch with an r2 offset looks like:
3769 . std %r2,40(%r1)
3770 . addis %r11,%r2,xxx@toc@ha
3771 . ld %r12,xxx@toc@l(%r11)
3772 . addis %r2,%r2,off@ha
3773 . addi %r2,%r2,off@l
3774 . mtctr %r12
3775 . bctr
3776
3777 In cases where the "addis" instruction would add zero, the "addis" is
3778 omitted and following instructions modified slightly in some cases.
3779 */
3780
3781 enum ppc_stub_type {
3782 ppc_stub_none,
3783 ppc_stub_long_branch,
3784 ppc_stub_long_branch_r2off,
3785 ppc_stub_plt_branch,
3786 ppc_stub_plt_branch_r2off,
3787 ppc_stub_plt_call,
3788 ppc_stub_plt_call_r2save,
3789 ppc_stub_global_entry
3790 };
3791
3792 struct ppc_stub_hash_entry {
3793
3794 /* Base hash table entry structure. */
3795 struct bfd_hash_entry root;
3796
3797 enum ppc_stub_type stub_type;
3798
3799 /* The stub section. */
3800 asection *stub_sec;
3801
3802 /* Offset within stub_sec of the beginning of this stub. */
3803 bfd_vma stub_offset;
3804
3805 /* Given the symbol's value and its section we can determine its final
3806 value when building the stubs (so the stub knows where to jump. */
3807 bfd_vma target_value;
3808 asection *target_section;
3809
3810 /* The symbol table entry, if any, that this was derived from. */
3811 struct ppc_link_hash_entry *h;
3812 struct plt_entry *plt_ent;
3813
3814 /* Where this stub is being called from, or, in the case of combined
3815 stub sections, the first input section in the group. */
3816 asection *id_sec;
3817
3818 /* Symbol st_other. */
3819 unsigned char other;
3820 };
3821
3822 struct ppc_branch_hash_entry {
3823
3824 /* Base hash table entry structure. */
3825 struct bfd_hash_entry root;
3826
3827 /* Offset within branch lookup table. */
3828 unsigned int offset;
3829
3830 /* Generation marker. */
3831 unsigned int iter;
3832 };
3833
3834 /* Used to track dynamic relocations for local symbols. */
3835 struct ppc_dyn_relocs
3836 {
3837 struct ppc_dyn_relocs *next;
3838
3839 /* The input section of the reloc. */
3840 asection *sec;
3841
3842 /* Total number of relocs copied for the input section. */
3843 unsigned int count : 31;
3844
3845 /* Whether this entry is for STT_GNU_IFUNC symbols. */
3846 unsigned int ifunc : 1;
3847 };
3848
3849 struct ppc_link_hash_entry
3850 {
3851 struct elf_link_hash_entry elf;
3852
3853 union {
3854 /* A pointer to the most recently used stub hash entry against this
3855 symbol. */
3856 struct ppc_stub_hash_entry *stub_cache;
3857
3858 /* A pointer to the next symbol starting with a '.' */
3859 struct ppc_link_hash_entry *next_dot_sym;
3860 } u;
3861
3862 /* Track dynamic relocs copied for this symbol. */
3863 struct elf_dyn_relocs *dyn_relocs;
3864
3865 /* Link between function code and descriptor symbols. */
3866 struct ppc_link_hash_entry *oh;
3867
3868 /* Flag function code and descriptor symbols. */
3869 unsigned int is_func:1;
3870 unsigned int is_func_descriptor:1;
3871 unsigned int fake:1;
3872
3873 /* Whether global opd/toc sym has been adjusted or not.
3874 After ppc64_elf_edit_opd/ppc64_elf_edit_toc has run, this flag
3875 should be set for all globals defined in any opd/toc section. */
3876 unsigned int adjust_done:1;
3877
3878 /* Set if we twiddled this symbol to weak at some stage. */
3879 unsigned int was_undefined:1;
3880
3881 /* Contexts in which symbol is used in the GOT (or TOC).
3882 TLS_GD .. TLS_EXPLICIT bits are or'd into the mask as the
3883 corresponding relocs are encountered during check_relocs.
3884 tls_optimize clears TLS_GD .. TLS_TPREL when optimizing to
3885 indicate the corresponding GOT entry type is not needed.
3886 tls_optimize may also set TLS_TPRELGD when a GD reloc turns into
3887 a TPREL one. We use a separate flag rather than setting TPREL
3888 just for convenience in distinguishing the two cases. */
3889 #define TLS_GD 1 /* GD reloc. */
3890 #define TLS_LD 2 /* LD reloc. */
3891 #define TLS_TPREL 4 /* TPREL reloc, => IE. */
3892 #define TLS_DTPREL 8 /* DTPREL reloc, => LD. */
3893 #define TLS_TLS 16 /* Any TLS reloc. */
3894 #define TLS_EXPLICIT 32 /* Marks TOC section TLS relocs. */
3895 #define TLS_TPRELGD 64 /* TPREL reloc resulting from GD->IE. */
3896 #define PLT_IFUNC 128 /* STT_GNU_IFUNC. */
3897 unsigned char tls_mask;
3898 };
3899
3900 /* ppc64 ELF linker hash table. */
3901
3902 struct ppc_link_hash_table
3903 {
3904 struct elf_link_hash_table elf;
3905
3906 /* The stub hash table. */
3907 struct bfd_hash_table stub_hash_table;
3908
3909 /* Another hash table for plt_branch stubs. */
3910 struct bfd_hash_table branch_hash_table;
3911
3912 /* Hash table for function prologue tocsave. */
3913 htab_t tocsave_htab;
3914
3915 /* Various options and other info passed from the linker. */
3916 struct ppc64_elf_params *params;
3917
3918 /* Array to keep track of which stub sections have been created, and
3919 information on stub grouping. */
3920 struct map_stub {
3921 /* This is the section to which stubs in the group will be attached. */
3922 asection *link_sec;
3923 /* The stub section. */
3924 asection *stub_sec;
3925 /* Along with elf_gp, specifies the TOC pointer used in this group. */
3926 bfd_vma toc_off;
3927 } *stub_group;
3928
3929 /* Temp used when calculating TOC pointers. */
3930 bfd_vma toc_curr;
3931 bfd *toc_bfd;
3932 asection *toc_first_sec;
3933
3934 /* Highest input section id. */
3935 int top_id;
3936
3937 /* Highest output section index. */
3938 int top_index;
3939
3940 /* Used when adding symbols. */
3941 struct ppc_link_hash_entry *dot_syms;
3942
3943 /* List of input sections for each output section. */
3944 asection **input_list;
3945
3946 /* Shortcuts to get to dynamic linker sections. */
3947 asection *dynbss;
3948 asection *relbss;
3949 asection *glink;
3950 asection *sfpr;
3951 asection *brlt;
3952 asection *relbrlt;
3953 asection *glink_eh_frame;
3954
3955 /* Shortcut to .__tls_get_addr and __tls_get_addr. */
3956 struct ppc_link_hash_entry *tls_get_addr;
3957 struct ppc_link_hash_entry *tls_get_addr_fd;
3958
3959 /* The size of reliplt used by got entry relocs. */
3960 bfd_size_type got_reli_size;
3961
3962 /* Statistics. */
3963 unsigned long stub_count[ppc_stub_global_entry];
3964
3965 /* Number of stubs against global syms. */
3966 unsigned long stub_globals;
3967
3968 /* Set if we're linking code with function descriptors. */
3969 unsigned int opd_abi:1;
3970
3971 /* Support for multiple toc sections. */
3972 unsigned int do_multi_toc:1;
3973 unsigned int multi_toc_needed:1;
3974 unsigned int second_toc_pass:1;
3975 unsigned int do_toc_opt:1;
3976
3977 /* Set on error. */
3978 unsigned int stub_error:1;
3979
3980 /* Temp used by ppc64_elf_before_check_relocs. */
3981 unsigned int twiddled_syms:1;
3982
3983 /* Incremented every time we size stubs. */
3984 unsigned int stub_iteration;
3985
3986 /* Small local sym cache. */
3987 struct sym_cache sym_cache;
3988 };
3989
3990 /* Rename some of the generic section flags to better document how they
3991 are used here. */
3992
3993 /* Nonzero if this section has TLS related relocations. */
3994 #define has_tls_reloc sec_flg0
3995
3996 /* Nonzero if this section has a call to __tls_get_addr. */
3997 #define has_tls_get_addr_call sec_flg1
3998
3999 /* Nonzero if this section has any toc or got relocs. */
4000 #define has_toc_reloc sec_flg2
4001
4002 /* Nonzero if this section has a call to another section that uses
4003 the toc or got. */
4004 #define makes_toc_func_call sec_flg3
4005
4006 /* Recursion protection when determining above flag. */
4007 #define call_check_in_progress sec_flg4
4008 #define call_check_done sec_flg5
4009
4010 /* Get the ppc64 ELF linker hash table from a link_info structure. */
4011
4012 #define ppc_hash_table(p) \
4013 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
4014 == PPC64_ELF_DATA ? ((struct ppc_link_hash_table *) ((p)->hash)) : NULL)
4015
4016 #define ppc_stub_hash_lookup(table, string, create, copy) \
4017 ((struct ppc_stub_hash_entry *) \
4018 bfd_hash_lookup ((table), (string), (create), (copy)))
4019
4020 #define ppc_branch_hash_lookup(table, string, create, copy) \
4021 ((struct ppc_branch_hash_entry *) \
4022 bfd_hash_lookup ((table), (string), (create), (copy)))
4023
4024 /* Create an entry in the stub hash table. */
4025
4026 static struct bfd_hash_entry *
4027 stub_hash_newfunc (struct bfd_hash_entry *entry,
4028 struct bfd_hash_table *table,
4029 const char *string)
4030 {
4031 /* Allocate the structure if it has not already been allocated by a
4032 subclass. */
4033 if (entry == NULL)
4034 {
4035 entry = bfd_hash_allocate (table, sizeof (struct ppc_stub_hash_entry));
4036 if (entry == NULL)
4037 return entry;
4038 }
4039
4040 /* Call the allocation method of the superclass. */
4041 entry = bfd_hash_newfunc (entry, table, string);
4042 if (entry != NULL)
4043 {
4044 struct ppc_stub_hash_entry *eh;
4045
4046 /* Initialize the local fields. */
4047 eh = (struct ppc_stub_hash_entry *) entry;
4048 eh->stub_type = ppc_stub_none;
4049 eh->stub_sec = NULL;
4050 eh->stub_offset = 0;
4051 eh->target_value = 0;
4052 eh->target_section = NULL;
4053 eh->h = NULL;
4054 eh->plt_ent = NULL;
4055 eh->id_sec = NULL;
4056 eh->other = 0;
4057 }
4058
4059 return entry;
4060 }
4061
4062 /* Create an entry in the branch hash table. */
4063
4064 static struct bfd_hash_entry *
4065 branch_hash_newfunc (struct bfd_hash_entry *entry,
4066 struct bfd_hash_table *table,
4067 const char *string)
4068 {
4069 /* Allocate the structure if it has not already been allocated by a
4070 subclass. */
4071 if (entry == NULL)
4072 {
4073 entry = bfd_hash_allocate (table, sizeof (struct ppc_branch_hash_entry));
4074 if (entry == NULL)
4075 return entry;
4076 }
4077
4078 /* Call the allocation method of the superclass. */
4079 entry = bfd_hash_newfunc (entry, table, string);
4080 if (entry != NULL)
4081 {
4082 struct ppc_branch_hash_entry *eh;
4083
4084 /* Initialize the local fields. */
4085 eh = (struct ppc_branch_hash_entry *) entry;
4086 eh->offset = 0;
4087 eh->iter = 0;
4088 }
4089
4090 return entry;
4091 }
4092
4093 /* Create an entry in a ppc64 ELF linker hash table. */
4094
4095 static struct bfd_hash_entry *
4096 link_hash_newfunc (struct bfd_hash_entry *entry,
4097 struct bfd_hash_table *table,
4098 const char *string)
4099 {
4100 /* Allocate the structure if it has not already been allocated by a
4101 subclass. */
4102 if (entry == NULL)
4103 {
4104 entry = bfd_hash_allocate (table, sizeof (struct ppc_link_hash_entry));
4105 if (entry == NULL)
4106 return entry;
4107 }
4108
4109 /* Call the allocation method of the superclass. */
4110 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
4111 if (entry != NULL)
4112 {
4113 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) entry;
4114
4115 memset (&eh->u.stub_cache, 0,
4116 (sizeof (struct ppc_link_hash_entry)
4117 - offsetof (struct ppc_link_hash_entry, u.stub_cache)));
4118
4119 /* When making function calls, old ABI code references function entry
4120 points (dot symbols), while new ABI code references the function
4121 descriptor symbol. We need to make any combination of reference and
4122 definition work together, without breaking archive linking.
4123
4124 For a defined function "foo" and an undefined call to "bar":
4125 An old object defines "foo" and ".foo", references ".bar" (possibly
4126 "bar" too).
4127 A new object defines "foo" and references "bar".
4128
4129 A new object thus has no problem with its undefined symbols being
4130 satisfied by definitions in an old object. On the other hand, the
4131 old object won't have ".bar" satisfied by a new object.
4132
4133 Keep a list of newly added dot-symbols. */
4134
4135 if (string[0] == '.')
4136 {
4137 struct ppc_link_hash_table *htab;
4138
4139 htab = (struct ppc_link_hash_table *) table;
4140 eh->u.next_dot_sym = htab->dot_syms;
4141 htab->dot_syms = eh;
4142 }
4143 }
4144
4145 return entry;
4146 }
4147
4148 struct tocsave_entry {
4149 asection *sec;
4150 bfd_vma offset;
4151 };
4152
4153 static hashval_t
4154 tocsave_htab_hash (const void *p)
4155 {
4156 const struct tocsave_entry *e = (const struct tocsave_entry *) p;
4157 return ((bfd_vma)(intptr_t) e->sec ^ e->offset) >> 3;
4158 }
4159
4160 static int
4161 tocsave_htab_eq (const void *p1, const void *p2)
4162 {
4163 const struct tocsave_entry *e1 = (const struct tocsave_entry *) p1;
4164 const struct tocsave_entry *e2 = (const struct tocsave_entry *) p2;
4165 return e1->sec == e2->sec && e1->offset == e2->offset;
4166 }
4167
4168 /* Destroy a ppc64 ELF linker hash table. */
4169
4170 static void
4171 ppc64_elf_link_hash_table_free (bfd *obfd)
4172 {
4173 struct ppc_link_hash_table *htab;
4174
4175 htab = (struct ppc_link_hash_table *) obfd->link.hash;
4176 if (htab->tocsave_htab)
4177 htab_delete (htab->tocsave_htab);
4178 bfd_hash_table_free (&htab->branch_hash_table);
4179 bfd_hash_table_free (&htab->stub_hash_table);
4180 _bfd_elf_link_hash_table_free (obfd);
4181 }
4182
4183 /* Create a ppc64 ELF linker hash table. */
4184
4185 static struct bfd_link_hash_table *
4186 ppc64_elf_link_hash_table_create (bfd *abfd)
4187 {
4188 struct ppc_link_hash_table *htab;
4189 bfd_size_type amt = sizeof (struct ppc_link_hash_table);
4190
4191 htab = bfd_zmalloc (amt);
4192 if (htab == NULL)
4193 return NULL;
4194
4195 if (!_bfd_elf_link_hash_table_init (&htab->elf, abfd, link_hash_newfunc,
4196 sizeof (struct ppc_link_hash_entry),
4197 PPC64_ELF_DATA))
4198 {
4199 free (htab);
4200 return NULL;
4201 }
4202
4203 /* Init the stub hash table too. */
4204 if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc,
4205 sizeof (struct ppc_stub_hash_entry)))
4206 {
4207 _bfd_elf_link_hash_table_free (abfd);
4208 return NULL;
4209 }
4210
4211 /* And the branch hash table. */
4212 if (!bfd_hash_table_init (&htab->branch_hash_table, branch_hash_newfunc,
4213 sizeof (struct ppc_branch_hash_entry)))
4214 {
4215 bfd_hash_table_free (&htab->stub_hash_table);
4216 _bfd_elf_link_hash_table_free (abfd);
4217 return NULL;
4218 }
4219
4220 htab->tocsave_htab = htab_try_create (1024,
4221 tocsave_htab_hash,
4222 tocsave_htab_eq,
4223 NULL);
4224 if (htab->tocsave_htab == NULL)
4225 {
4226 ppc64_elf_link_hash_table_free (abfd);
4227 return NULL;
4228 }
4229 htab->elf.root.hash_table_free = ppc64_elf_link_hash_table_free;
4230
4231 /* Initializing two fields of the union is just cosmetic. We really
4232 only care about glist, but when compiled on a 32-bit host the
4233 bfd_vma fields are larger. Setting the bfd_vma to zero makes
4234 debugger inspection of these fields look nicer. */
4235 htab->elf.init_got_refcount.refcount = 0;
4236 htab->elf.init_got_refcount.glist = NULL;
4237 htab->elf.init_plt_refcount.refcount = 0;
4238 htab->elf.init_plt_refcount.glist = NULL;
4239 htab->elf.init_got_offset.offset = 0;
4240 htab->elf.init_got_offset.glist = NULL;
4241 htab->elf.init_plt_offset.offset = 0;
4242 htab->elf.init_plt_offset.glist = NULL;
4243
4244 return &htab->elf.root;
4245 }
4246
4247 /* Create sections for linker generated code. */
4248
4249 static bfd_boolean
4250 create_linkage_sections (bfd *dynobj, struct bfd_link_info *info)
4251 {
4252 struct ppc_link_hash_table *htab;
4253 flagword flags;
4254
4255 htab = ppc_hash_table (info);
4256
4257 /* Create .sfpr for code to save and restore fp regs. */
4258 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
4259 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4260 htab->sfpr = bfd_make_section_anyway_with_flags (dynobj, ".sfpr",
4261 flags);
4262 if (htab->sfpr == NULL
4263 || ! bfd_set_section_alignment (dynobj, htab->sfpr, 2))
4264 return FALSE;
4265
4266 /* Create .glink for lazy dynamic linking support. */
4267 htab->glink = bfd_make_section_anyway_with_flags (dynobj, ".glink",
4268 flags);
4269 if (htab->glink == NULL
4270 || ! bfd_set_section_alignment (dynobj, htab->glink, 3))
4271 return FALSE;
4272
4273 if (!info->no_ld_generated_unwind_info)
4274 {
4275 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_HAS_CONTENTS
4276 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4277 htab->glink_eh_frame = bfd_make_section_anyway_with_flags (dynobj,
4278 ".eh_frame",
4279 flags);
4280 if (htab->glink_eh_frame == NULL
4281 || !bfd_set_section_alignment (dynobj, htab->glink_eh_frame, 2))
4282 return FALSE;
4283 }
4284
4285 flags = SEC_ALLOC | SEC_LINKER_CREATED;
4286 htab->elf.iplt = bfd_make_section_anyway_with_flags (dynobj, ".iplt", flags);
4287 if (htab->elf.iplt == NULL
4288 || ! bfd_set_section_alignment (dynobj, htab->elf.iplt, 3))
4289 return FALSE;
4290
4291 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
4292 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4293 htab->elf.irelplt
4294 = bfd_make_section_anyway_with_flags (dynobj, ".rela.iplt", flags);
4295 if (htab->elf.irelplt == NULL
4296 || ! bfd_set_section_alignment (dynobj, htab->elf.irelplt, 3))
4297 return FALSE;
4298
4299 /* Create branch lookup table for plt_branch stubs. */
4300 flags = (SEC_ALLOC | SEC_LOAD
4301 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4302 htab->brlt = bfd_make_section_anyway_with_flags (dynobj, ".branch_lt",
4303 flags);
4304 if (htab->brlt == NULL
4305 || ! bfd_set_section_alignment (dynobj, htab->brlt, 3))
4306 return FALSE;
4307
4308 if (!info->shared)
4309 return TRUE;
4310
4311 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
4312 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4313 htab->relbrlt = bfd_make_section_anyway_with_flags (dynobj,
4314 ".rela.branch_lt",
4315 flags);
4316 if (htab->relbrlt == NULL
4317 || ! bfd_set_section_alignment (dynobj, htab->relbrlt, 3))
4318 return FALSE;
4319
4320 return TRUE;
4321 }
4322
4323 /* Satisfy the ELF linker by filling in some fields in our fake bfd. */
4324
4325 bfd_boolean
4326 ppc64_elf_init_stub_bfd (struct bfd_link_info *info,
4327 struct ppc64_elf_params *params)
4328 {
4329 struct ppc_link_hash_table *htab;
4330
4331 elf_elfheader (params->stub_bfd)->e_ident[EI_CLASS] = ELFCLASS64;
4332
4333 /* Always hook our dynamic sections into the first bfd, which is the
4334 linker created stub bfd. This ensures that the GOT header is at
4335 the start of the output TOC section. */
4336 htab = ppc_hash_table (info);
4337 if (htab == NULL)
4338 return FALSE;
4339 htab->elf.dynobj = params->stub_bfd;
4340 htab->params = params;
4341
4342 if (info->relocatable)
4343 return TRUE;
4344
4345 return create_linkage_sections (htab->elf.dynobj, info);
4346 }
4347
4348 /* Build a name for an entry in the stub hash table. */
4349
4350 static char *
4351 ppc_stub_name (const asection *input_section,
4352 const asection *sym_sec,
4353 const struct ppc_link_hash_entry *h,
4354 const Elf_Internal_Rela *rel)
4355 {
4356 char *stub_name;
4357 ssize_t len;
4358
4359 /* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31
4360 offsets from a sym as a branch target? In fact, we could
4361 probably assume the addend is always zero. */
4362 BFD_ASSERT (((int) rel->r_addend & 0xffffffff) == rel->r_addend);
4363
4364 if (h)
4365 {
4366 len = 8 + 1 + strlen (h->elf.root.root.string) + 1 + 8 + 1;
4367 stub_name = bfd_malloc (len);
4368 if (stub_name == NULL)
4369 return stub_name;
4370
4371 len = sprintf (stub_name, "%08x.%s+%x",
4372 input_section->id & 0xffffffff,
4373 h->elf.root.root.string,
4374 (int) rel->r_addend & 0xffffffff);
4375 }
4376 else
4377 {
4378 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
4379 stub_name = bfd_malloc (len);
4380 if (stub_name == NULL)
4381 return stub_name;
4382
4383 len = sprintf (stub_name, "%08x.%x:%x+%x",
4384 input_section->id & 0xffffffff,
4385 sym_sec->id & 0xffffffff,
4386 (int) ELF64_R_SYM (rel->r_info) & 0xffffffff,
4387 (int) rel->r_addend & 0xffffffff);
4388 }
4389 if (len > 2 && stub_name[len - 2] == '+' && stub_name[len - 1] == '0')
4390 stub_name[len - 2] = 0;
4391 return stub_name;
4392 }
4393
4394 /* Look up an entry in the stub hash. Stub entries are cached because
4395 creating the stub name takes a bit of time. */
4396
4397 static struct ppc_stub_hash_entry *
4398 ppc_get_stub_entry (const asection *input_section,
4399 const asection *sym_sec,
4400 struct ppc_link_hash_entry *h,
4401 const Elf_Internal_Rela *rel,
4402 struct ppc_link_hash_table *htab)
4403 {
4404 struct ppc_stub_hash_entry *stub_entry;
4405 const asection *id_sec;
4406
4407 /* If this input section is part of a group of sections sharing one
4408 stub section, then use the id of the first section in the group.
4409 Stub names need to include a section id, as there may well be
4410 more than one stub used to reach say, printf, and we need to
4411 distinguish between them. */
4412 id_sec = htab->stub_group[input_section->id].link_sec;
4413
4414 if (h != NULL && h->u.stub_cache != NULL
4415 && h->u.stub_cache->h == h
4416 && h->u.stub_cache->id_sec == id_sec)
4417 {
4418 stub_entry = h->u.stub_cache;
4419 }
4420 else
4421 {
4422 char *stub_name;
4423
4424 stub_name = ppc_stub_name (id_sec, sym_sec, h, rel);
4425 if (stub_name == NULL)
4426 return NULL;
4427
4428 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
4429 stub_name, FALSE, FALSE);
4430 if (h != NULL)
4431 h->u.stub_cache = stub_entry;
4432
4433 free (stub_name);
4434 }
4435
4436 return stub_entry;
4437 }
4438
4439 /* Add a new stub entry to the stub hash. Not all fields of the new
4440 stub entry are initialised. */
4441
4442 static struct ppc_stub_hash_entry *
4443 ppc_add_stub (const char *stub_name,
4444 asection *section,
4445 struct bfd_link_info *info)
4446 {
4447 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4448 asection *link_sec;
4449 asection *stub_sec;
4450 struct ppc_stub_hash_entry *stub_entry;
4451
4452 link_sec = htab->stub_group[section->id].link_sec;
4453 stub_sec = htab->stub_group[section->id].stub_sec;
4454 if (stub_sec == NULL)
4455 {
4456 stub_sec = htab->stub_group[link_sec->id].stub_sec;
4457 if (stub_sec == NULL)
4458 {
4459 size_t namelen;
4460 bfd_size_type len;
4461 char *s_name;
4462
4463 namelen = strlen (link_sec->name);
4464 len = namelen + sizeof (STUB_SUFFIX);
4465 s_name = bfd_alloc (htab->params->stub_bfd, len);
4466 if (s_name == NULL)
4467 return NULL;
4468
4469 memcpy (s_name, link_sec->name, namelen);
4470 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4471 stub_sec = (*htab->params->add_stub_section) (s_name, link_sec);
4472 if (stub_sec == NULL)
4473 return NULL;
4474 htab->stub_group[link_sec->id].stub_sec = stub_sec;
4475 }
4476 htab->stub_group[section->id].stub_sec = stub_sec;
4477 }
4478
4479 /* Enter this entry into the linker stub hash table. */
4480 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4481 TRUE, FALSE);
4482 if (stub_entry == NULL)
4483 {
4484 info->callbacks->einfo (_("%P: %B: cannot create stub entry %s\n"),
4485 section->owner, stub_name);
4486 return NULL;
4487 }
4488
4489 stub_entry->stub_sec = stub_sec;
4490 stub_entry->stub_offset = 0;
4491 stub_entry->id_sec = link_sec;
4492 return stub_entry;
4493 }
4494
4495 /* Create .got and .rela.got sections in ABFD, and .got in dynobj if
4496 not already done. */
4497
4498 static bfd_boolean
4499 create_got_section (bfd *abfd, struct bfd_link_info *info)
4500 {
4501 asection *got, *relgot;
4502 flagword flags;
4503 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4504
4505 if (!is_ppc64_elf (abfd))
4506 return FALSE;
4507 if (htab == NULL)
4508 return FALSE;
4509
4510 if (!htab->elf.sgot
4511 && !_bfd_elf_create_got_section (htab->elf.dynobj, info))
4512 return FALSE;
4513
4514 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4515 | SEC_LINKER_CREATED);
4516
4517 got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
4518 if (!got
4519 || !bfd_set_section_alignment (abfd, got, 3))
4520 return FALSE;
4521
4522 relgot = bfd_make_section_anyway_with_flags (abfd, ".rela.got",
4523 flags | SEC_READONLY);
4524 if (!relgot
4525 || ! bfd_set_section_alignment (abfd, relgot, 3))
4526 return FALSE;
4527
4528 ppc64_elf_tdata (abfd)->got = got;
4529 ppc64_elf_tdata (abfd)->relgot = relgot;
4530 return TRUE;
4531 }
4532
4533 /* Create the dynamic sections, and set up shortcuts. */
4534
4535 static bfd_boolean
4536 ppc64_elf_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
4537 {
4538 struct ppc_link_hash_table *htab;
4539
4540 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
4541 return FALSE;
4542
4543 htab = ppc_hash_table (info);
4544 if (htab == NULL)
4545 return FALSE;
4546
4547 htab->dynbss = bfd_get_linker_section (dynobj, ".dynbss");
4548 if (!info->shared)
4549 htab->relbss = bfd_get_linker_section (dynobj, ".rela.bss");
4550
4551 if (!htab->elf.sgot || !htab->elf.splt || !htab->elf.srelplt || !htab->dynbss
4552 || (!info->shared && !htab->relbss))
4553 abort ();
4554
4555 return TRUE;
4556 }
4557
4558 /* Follow indirect and warning symbol links. */
4559
4560 static inline struct bfd_link_hash_entry *
4561 follow_link (struct bfd_link_hash_entry *h)
4562 {
4563 while (h->type == bfd_link_hash_indirect
4564 || h->type == bfd_link_hash_warning)
4565 h = h->u.i.link;
4566 return h;
4567 }
4568
4569 static inline struct elf_link_hash_entry *
4570 elf_follow_link (struct elf_link_hash_entry *h)
4571 {
4572 return (struct elf_link_hash_entry *) follow_link (&h->root);
4573 }
4574
4575 static inline struct ppc_link_hash_entry *
4576 ppc_follow_link (struct ppc_link_hash_entry *h)
4577 {
4578 return (struct ppc_link_hash_entry *) follow_link (&h->elf.root);
4579 }
4580
4581 /* Merge PLT info on FROM with that on TO. */
4582
4583 static void
4584 move_plt_plist (struct ppc_link_hash_entry *from,
4585 struct ppc_link_hash_entry *to)
4586 {
4587 if (from->elf.plt.plist != NULL)
4588 {
4589 if (to->elf.plt.plist != NULL)
4590 {
4591 struct plt_entry **entp;
4592 struct plt_entry *ent;
4593
4594 for (entp = &from->elf.plt.plist; (ent = *entp) != NULL; )
4595 {
4596 struct plt_entry *dent;
4597
4598 for (dent = to->elf.plt.plist; dent != NULL; dent = dent->next)
4599 if (dent->addend == ent->addend)
4600 {
4601 dent->plt.refcount += ent->plt.refcount;
4602 *entp = ent->next;
4603 break;
4604 }
4605 if (dent == NULL)
4606 entp = &ent->next;
4607 }
4608 *entp = to->elf.plt.plist;
4609 }
4610
4611 to->elf.plt.plist = from->elf.plt.plist;
4612 from->elf.plt.plist = NULL;
4613 }
4614 }
4615
4616 /* Copy the extra info we tack onto an elf_link_hash_entry. */
4617
4618 static void
4619 ppc64_elf_copy_indirect_symbol (struct bfd_link_info *info,
4620 struct elf_link_hash_entry *dir,
4621 struct elf_link_hash_entry *ind)
4622 {
4623 struct ppc_link_hash_entry *edir, *eind;
4624
4625 edir = (struct ppc_link_hash_entry *) dir;
4626 eind = (struct ppc_link_hash_entry *) ind;
4627
4628 edir->is_func |= eind->is_func;
4629 edir->is_func_descriptor |= eind->is_func_descriptor;
4630 edir->tls_mask |= eind->tls_mask;
4631 if (eind->oh != NULL)
4632 edir->oh = ppc_follow_link (eind->oh);
4633
4634 /* If called to transfer flags for a weakdef during processing
4635 of elf_adjust_dynamic_symbol, don't copy NON_GOT_REF.
4636 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
4637 if (!(ELIMINATE_COPY_RELOCS
4638 && eind->elf.root.type != bfd_link_hash_indirect
4639 && edir->elf.dynamic_adjusted))
4640 edir->elf.non_got_ref |= eind->elf.non_got_ref;
4641
4642 edir->elf.ref_dynamic |= eind->elf.ref_dynamic;
4643 edir->elf.ref_regular |= eind->elf.ref_regular;
4644 edir->elf.ref_regular_nonweak |= eind->elf.ref_regular_nonweak;
4645 edir->elf.needs_plt |= eind->elf.needs_plt;
4646 edir->elf.pointer_equality_needed |= eind->elf.pointer_equality_needed;
4647
4648 /* Copy over any dynamic relocs we may have on the indirect sym. */
4649 if (eind->dyn_relocs != NULL)
4650 {
4651 if (edir->dyn_relocs != NULL)
4652 {
4653 struct elf_dyn_relocs **pp;
4654 struct elf_dyn_relocs *p;
4655
4656 /* Add reloc counts against the indirect sym to the direct sym
4657 list. Merge any entries against the same section. */
4658 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
4659 {
4660 struct elf_dyn_relocs *q;
4661
4662 for (q = edir->dyn_relocs; q != NULL; q = q->next)
4663 if (q->sec == p->sec)
4664 {
4665 q->pc_count += p->pc_count;
4666 q->count += p->count;
4667 *pp = p->next;
4668 break;
4669 }
4670 if (q == NULL)
4671 pp = &p->next;
4672 }
4673 *pp = edir->dyn_relocs;
4674 }
4675
4676 edir->dyn_relocs = eind->dyn_relocs;
4677 eind->dyn_relocs = NULL;
4678 }
4679
4680 /* If we were called to copy over info for a weak sym, that's all.
4681 You might think dyn_relocs need not be copied over; After all,
4682 both syms will be dynamic or both non-dynamic so we're just
4683 moving reloc accounting around. However, ELIMINATE_COPY_RELOCS
4684 code in ppc64_elf_adjust_dynamic_symbol needs to check for
4685 dyn_relocs in read-only sections, and it does so on what is the
4686 DIR sym here. */
4687 if (eind->elf.root.type != bfd_link_hash_indirect)
4688 return;
4689
4690 /* Copy over got entries that we may have already seen to the
4691 symbol which just became indirect. */
4692 if (eind->elf.got.glist != NULL)
4693 {
4694 if (edir->elf.got.glist != NULL)
4695 {
4696 struct got_entry **entp;
4697 struct got_entry *ent;
4698
4699 for (entp = &eind->elf.got.glist; (ent = *entp) != NULL; )
4700 {
4701 struct got_entry *dent;
4702
4703 for (dent = edir->elf.got.glist; dent != NULL; dent = dent->next)
4704 if (dent->addend == ent->addend
4705 && dent->owner == ent->owner
4706 && dent->tls_type == ent->tls_type)
4707 {
4708 dent->got.refcount += ent->got.refcount;
4709 *entp = ent->next;
4710 break;
4711 }
4712 if (dent == NULL)
4713 entp = &ent->next;
4714 }
4715 *entp = edir->elf.got.glist;
4716 }
4717
4718 edir->elf.got.glist = eind->elf.got.glist;
4719 eind->elf.got.glist = NULL;
4720 }
4721
4722 /* And plt entries. */
4723 move_plt_plist (eind, edir);
4724
4725 if (eind->elf.dynindx != -1)
4726 {
4727 if (edir->elf.dynindx != -1)
4728 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
4729 edir->elf.dynstr_index);
4730 edir->elf.dynindx = eind->elf.dynindx;
4731 edir->elf.dynstr_index = eind->elf.dynstr_index;
4732 eind->elf.dynindx = -1;
4733 eind->elf.dynstr_index = 0;
4734 }
4735 }
4736
4737 /* Find the function descriptor hash entry from the given function code
4738 hash entry FH. Link the entries via their OH fields. */
4739
4740 static struct ppc_link_hash_entry *
4741 lookup_fdh (struct ppc_link_hash_entry *fh, struct ppc_link_hash_table *htab)
4742 {
4743 struct ppc_link_hash_entry *fdh = fh->oh;
4744
4745 if (fdh == NULL)
4746 {
4747 const char *fd_name = fh->elf.root.root.string + 1;
4748
4749 fdh = (struct ppc_link_hash_entry *)
4750 elf_link_hash_lookup (&htab->elf, fd_name, FALSE, FALSE, FALSE);
4751 if (fdh == NULL)
4752 return fdh;
4753
4754 fdh->is_func_descriptor = 1;
4755 fdh->oh = fh;
4756 fh->is_func = 1;
4757 fh->oh = fdh;
4758 }
4759
4760 return ppc_follow_link (fdh);
4761 }
4762
4763 /* Make a fake function descriptor sym for the code sym FH. */
4764
4765 static struct ppc_link_hash_entry *
4766 make_fdh (struct bfd_link_info *info,
4767 struct ppc_link_hash_entry *fh)
4768 {
4769 bfd *abfd;
4770 asymbol *newsym;
4771 struct bfd_link_hash_entry *bh;
4772 struct ppc_link_hash_entry *fdh;
4773
4774 abfd = fh->elf.root.u.undef.abfd;
4775 newsym = bfd_make_empty_symbol (abfd);
4776 newsym->name = fh->elf.root.root.string + 1;
4777 newsym->section = bfd_und_section_ptr;
4778 newsym->value = 0;
4779 newsym->flags = BSF_WEAK;
4780
4781 bh = NULL;
4782 if (!_bfd_generic_link_add_one_symbol (info, abfd, newsym->name,
4783 newsym->flags, newsym->section,
4784 newsym->value, NULL, FALSE, FALSE,
4785 &bh))
4786 return NULL;
4787
4788 fdh = (struct ppc_link_hash_entry *) bh;
4789 fdh->elf.non_elf = 0;
4790 fdh->fake = 1;
4791 fdh->is_func_descriptor = 1;
4792 fdh->oh = fh;
4793 fh->is_func = 1;
4794 fh->oh = fdh;
4795 return fdh;
4796 }
4797
4798 /* Fix function descriptor symbols defined in .opd sections to be
4799 function type. */
4800
4801 static bfd_boolean
4802 ppc64_elf_add_symbol_hook (bfd *ibfd,
4803 struct bfd_link_info *info,
4804 Elf_Internal_Sym *isym,
4805 const char **name,
4806 flagword *flags ATTRIBUTE_UNUSED,
4807 asection **sec,
4808 bfd_vma *value ATTRIBUTE_UNUSED)
4809 {
4810 if ((ibfd->flags & DYNAMIC) == 0
4811 && ELF_ST_BIND (isym->st_info) == STB_GNU_UNIQUE)
4812 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4813
4814 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
4815 {
4816 if ((ibfd->flags & DYNAMIC) == 0)
4817 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4818 }
4819 else if (ELF_ST_TYPE (isym->st_info) == STT_FUNC)
4820 ;
4821 else if (*sec != NULL
4822 && strcmp ((*sec)->name, ".opd") == 0)
4823 isym->st_info = ELF_ST_INFO (ELF_ST_BIND (isym->st_info), STT_FUNC);
4824
4825 if ((STO_PPC64_LOCAL_MASK & isym->st_other) != 0)
4826 {
4827 if (abiversion (ibfd) == 0)
4828 set_abiversion (ibfd, 2);
4829 else if (abiversion (ibfd) == 1)
4830 {
4831 info->callbacks->einfo (_("%P: symbol '%s' has invalid st_other"
4832 " for ABI version 1\n"), name);
4833 bfd_set_error (bfd_error_bad_value);
4834 return FALSE;
4835 }
4836 }
4837
4838 return TRUE;
4839 }
4840
4841 /* Merge non-visibility st_other attributes: local entry point. */
4842
4843 static void
4844 ppc64_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
4845 const Elf_Internal_Sym *isym,
4846 bfd_boolean definition,
4847 bfd_boolean dynamic)
4848 {
4849 if (definition && !dynamic)
4850 h->other = ((isym->st_other & ~ELF_ST_VISIBILITY (-1))
4851 | ELF_ST_VISIBILITY (h->other));
4852 }
4853
4854 /* This function makes an old ABI object reference to ".bar" cause the
4855 inclusion of a new ABI object archive that defines "bar".
4856 NAME is a symbol defined in an archive. Return a symbol in the hash
4857 table that might be satisfied by the archive symbols. */
4858
4859 static struct elf_link_hash_entry *
4860 ppc64_elf_archive_symbol_lookup (bfd *abfd,
4861 struct bfd_link_info *info,
4862 const char *name)
4863 {
4864 struct elf_link_hash_entry *h;
4865 char *dot_name;
4866 size_t len;
4867
4868 h = _bfd_elf_archive_symbol_lookup (abfd, info, name);
4869 if (h != NULL
4870 /* Don't return this sym if it is a fake function descriptor
4871 created by add_symbol_adjust. */
4872 && !(h->root.type == bfd_link_hash_undefweak
4873 && ((struct ppc_link_hash_entry *) h)->fake))
4874 return h;
4875
4876 if (name[0] == '.')
4877 return h;
4878
4879 len = strlen (name);
4880 dot_name = bfd_alloc (abfd, len + 2);
4881 if (dot_name == NULL)
4882 return (struct elf_link_hash_entry *) 0 - 1;
4883 dot_name[0] = '.';
4884 memcpy (dot_name + 1, name, len + 1);
4885 h = _bfd_elf_archive_symbol_lookup (abfd, info, dot_name);
4886 bfd_release (abfd, dot_name);
4887 return h;
4888 }
4889
4890 /* This function satisfies all old ABI object references to ".bar" if a
4891 new ABI object defines "bar". Well, at least, undefined dot symbols
4892 are made weak. This stops later archive searches from including an
4893 object if we already have a function descriptor definition. It also
4894 prevents the linker complaining about undefined symbols.
4895 We also check and correct mismatched symbol visibility here. The
4896 most restrictive visibility of the function descriptor and the
4897 function entry symbol is used. */
4898
4899 static bfd_boolean
4900 add_symbol_adjust (struct ppc_link_hash_entry *eh, struct bfd_link_info *info)
4901 {
4902 struct ppc_link_hash_table *htab;
4903 struct ppc_link_hash_entry *fdh;
4904
4905 if (eh->elf.root.type == bfd_link_hash_indirect)
4906 return TRUE;
4907
4908 if (eh->elf.root.type == bfd_link_hash_warning)
4909 eh = (struct ppc_link_hash_entry *) eh->elf.root.u.i.link;
4910
4911 if (eh->elf.root.root.string[0] != '.')
4912 abort ();
4913
4914 htab = ppc_hash_table (info);
4915 if (htab == NULL)
4916 return FALSE;
4917
4918 fdh = lookup_fdh (eh, htab);
4919 if (fdh == NULL)
4920 {
4921 if (!info->relocatable
4922 && (eh->elf.root.type == bfd_link_hash_undefined
4923 || eh->elf.root.type == bfd_link_hash_undefweak)
4924 && eh->elf.ref_regular)
4925 {
4926 /* Make an undefweak function descriptor sym, which is enough to
4927 pull in an --as-needed shared lib, but won't cause link
4928 errors. Archives are handled elsewhere. */
4929 fdh = make_fdh (info, eh);
4930 if (fdh == NULL)
4931 return FALSE;
4932 fdh->elf.ref_regular = 1;
4933 }
4934 }
4935 else
4936 {
4937 unsigned entry_vis = ELF_ST_VISIBILITY (eh->elf.other) - 1;
4938 unsigned descr_vis = ELF_ST_VISIBILITY (fdh->elf.other) - 1;
4939 if (entry_vis < descr_vis)
4940 fdh->elf.other += entry_vis - descr_vis;
4941 else if (entry_vis > descr_vis)
4942 eh->elf.other += descr_vis - entry_vis;
4943
4944 if ((fdh->elf.root.type == bfd_link_hash_defined
4945 || fdh->elf.root.type == bfd_link_hash_defweak)
4946 && eh->elf.root.type == bfd_link_hash_undefined)
4947 {
4948 eh->elf.root.type = bfd_link_hash_undefweak;
4949 eh->was_undefined = 1;
4950 htab->twiddled_syms = 1;
4951 }
4952 }
4953
4954 return TRUE;
4955 }
4956
4957 /* Set up opd section info and abiversion for IBFD, and process list
4958 of dot-symbols we made in link_hash_newfunc. */
4959
4960 static bfd_boolean
4961 ppc64_elf_before_check_relocs (bfd *ibfd, struct bfd_link_info *info)
4962 {
4963 struct ppc_link_hash_table *htab;
4964 struct ppc_link_hash_entry **p, *eh;
4965
4966 if (!is_ppc64_elf (info->output_bfd))
4967 return TRUE;
4968 htab = ppc_hash_table (info);
4969 if (htab == NULL)
4970 return FALSE;
4971
4972 if (is_ppc64_elf (ibfd))
4973 {
4974 asection *opd = bfd_get_section_by_name (ibfd, ".opd");
4975
4976 if (opd != NULL && opd->size != 0)
4977 {
4978 if (abiversion (ibfd) == 0)
4979 set_abiversion (ibfd, 1);
4980 else if (abiversion (ibfd) == 2)
4981 {
4982 info->callbacks->einfo (_("%P: %B .opd not allowed in ABI"
4983 " version %d\n"),
4984 ibfd, abiversion (ibfd));
4985 bfd_set_error (bfd_error_bad_value);
4986 return FALSE;
4987 }
4988
4989 if ((ibfd->flags & DYNAMIC) == 0
4990 && (opd->flags & SEC_RELOC) != 0
4991 && opd->reloc_count != 0
4992 && !bfd_is_abs_section (opd->output_section))
4993 {
4994 /* Garbage collection needs some extra help with .opd sections.
4995 We don't want to necessarily keep everything referenced by
4996 relocs in .opd, as that would keep all functions. Instead,
4997 if we reference an .opd symbol (a function descriptor), we
4998 want to keep the function code symbol's section. This is
4999 easy for global symbols, but for local syms we need to keep
5000 information about the associated function section. */
5001 bfd_size_type amt;
5002 asection **opd_sym_map;
5003
5004 amt = opd->size * sizeof (*opd_sym_map) / 8;
5005 opd_sym_map = bfd_zalloc (ibfd, amt);
5006 if (opd_sym_map == NULL)
5007 return FALSE;
5008 ppc64_elf_section_data (opd)->u.opd.func_sec = opd_sym_map;
5009 BFD_ASSERT (ppc64_elf_section_data (opd)->sec_type == sec_normal);
5010 ppc64_elf_section_data (opd)->sec_type = sec_opd;
5011 }
5012 }
5013
5014 /* For input files without an explicit abiversion in e_flags
5015 we should have flagged any with symbol st_other bits set
5016 as ELFv1 and above flagged those with .opd as ELFv2.
5017 Set the output abiversion if not yet set, and for any input
5018 still ambiguous, take its abiversion from the output.
5019 Differences in ABI are reported later. */
5020 if (abiversion (info->output_bfd) == 0)
5021 set_abiversion (info->output_bfd, abiversion (ibfd));
5022 else if (abiversion (ibfd) == 0)
5023 set_abiversion (ibfd, abiversion (info->output_bfd));
5024
5025 p = &htab->dot_syms;
5026 while ((eh = *p) != NULL)
5027 {
5028 *p = NULL;
5029 if (&eh->elf == htab->elf.hgot)
5030 ;
5031 else if (htab->elf.hgot == NULL
5032 && strcmp (eh->elf.root.root.string, ".TOC.") == 0)
5033 htab->elf.hgot = &eh->elf;
5034 else if (!add_symbol_adjust (eh, info))
5035 return FALSE;
5036 p = &eh->u.next_dot_sym;
5037 }
5038 }
5039
5040 /* Clear the list for non-ppc64 input files. */
5041 p = &htab->dot_syms;
5042 while ((eh = *p) != NULL)
5043 {
5044 *p = NULL;
5045 p = &eh->u.next_dot_sym;
5046 }
5047
5048 /* We need to fix the undefs list for any syms we have twiddled to
5049 undef_weak. */
5050 if (htab->twiddled_syms)
5051 {
5052 bfd_link_repair_undef_list (&htab->elf.root);
5053 htab->twiddled_syms = 0;
5054 }
5055 return TRUE;
5056 }
5057
5058 /* Undo hash table changes when an --as-needed input file is determined
5059 not to be needed. */
5060
5061 static bfd_boolean
5062 ppc64_elf_notice_as_needed (bfd *ibfd,
5063 struct bfd_link_info *info,
5064 enum notice_asneeded_action act)
5065 {
5066 if (act == notice_not_needed)
5067 {
5068 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5069
5070 if (htab == NULL)
5071 return FALSE;
5072
5073 htab->dot_syms = NULL;
5074 }
5075 return _bfd_elf_notice_as_needed (ibfd, info, act);
5076 }
5077
5078 /* If --just-symbols against a final linked binary, then assume we need
5079 toc adjusting stubs when calling functions defined there. */
5080
5081 static void
5082 ppc64_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
5083 {
5084 if ((sec->flags & SEC_CODE) != 0
5085 && (sec->owner->flags & (EXEC_P | DYNAMIC)) != 0
5086 && is_ppc64_elf (sec->owner))
5087 {
5088 if (abiversion (sec->owner) >= 2
5089 || bfd_get_section_by_name (sec->owner, ".opd") != NULL)
5090 sec->has_toc_reloc = 1;
5091 }
5092 _bfd_elf_link_just_syms (sec, info);
5093 }
5094
5095 static struct plt_entry **
5096 update_local_sym_info (bfd *abfd, Elf_Internal_Shdr *symtab_hdr,
5097 unsigned long r_symndx, bfd_vma r_addend, int tls_type)
5098 {
5099 struct got_entry **local_got_ents = elf_local_got_ents (abfd);
5100 struct plt_entry **local_plt;
5101 unsigned char *local_got_tls_masks;
5102
5103 if (local_got_ents == NULL)
5104 {
5105 bfd_size_type size = symtab_hdr->sh_info;
5106
5107 size *= (sizeof (*local_got_ents)
5108 + sizeof (*local_plt)
5109 + sizeof (*local_got_tls_masks));
5110 local_got_ents = bfd_zalloc (abfd, size);
5111 if (local_got_ents == NULL)
5112 return NULL;
5113 elf_local_got_ents (abfd) = local_got_ents;
5114 }
5115
5116 if ((tls_type & (PLT_IFUNC | TLS_EXPLICIT)) == 0)
5117 {
5118 struct got_entry *ent;
5119
5120 for (ent = local_got_ents[r_symndx]; ent != NULL; ent = ent->next)
5121 if (ent->addend == r_addend
5122 && ent->owner == abfd
5123 && ent->tls_type == tls_type)
5124 break;
5125 if (ent == NULL)
5126 {
5127 bfd_size_type amt = sizeof (*ent);
5128 ent = bfd_alloc (abfd, amt);
5129 if (ent == NULL)
5130 return FALSE;
5131 ent->next = local_got_ents[r_symndx];
5132 ent->addend = r_addend;
5133 ent->owner = abfd;
5134 ent->tls_type = tls_type;
5135 ent->is_indirect = FALSE;
5136 ent->got.refcount = 0;
5137 local_got_ents[r_symndx] = ent;
5138 }
5139 ent->got.refcount += 1;
5140 }
5141
5142 local_plt = (struct plt_entry **) (local_got_ents + symtab_hdr->sh_info);
5143 local_got_tls_masks = (unsigned char *) (local_plt + symtab_hdr->sh_info);
5144 local_got_tls_masks[r_symndx] |= tls_type;
5145
5146 return local_plt + r_symndx;
5147 }
5148
5149 static bfd_boolean
5150 update_plt_info (bfd *abfd, struct plt_entry **plist, bfd_vma addend)
5151 {
5152 struct plt_entry *ent;
5153
5154 for (ent = *plist; ent != NULL; ent = ent->next)
5155 if (ent->addend == addend)
5156 break;
5157 if (ent == NULL)
5158 {
5159 bfd_size_type amt = sizeof (*ent);
5160 ent = bfd_alloc (abfd, amt);
5161 if (ent == NULL)
5162 return FALSE;
5163 ent->next = *plist;
5164 ent->addend = addend;
5165 ent->plt.refcount = 0;
5166 *plist = ent;
5167 }
5168 ent->plt.refcount += 1;
5169 return TRUE;
5170 }
5171
5172 static bfd_boolean
5173 is_branch_reloc (enum elf_ppc64_reloc_type r_type)
5174 {
5175 return (r_type == R_PPC64_REL24
5176 || r_type == R_PPC64_REL14
5177 || r_type == R_PPC64_REL14_BRTAKEN
5178 || r_type == R_PPC64_REL14_BRNTAKEN
5179 || r_type == R_PPC64_ADDR24
5180 || r_type == R_PPC64_ADDR14
5181 || r_type == R_PPC64_ADDR14_BRTAKEN
5182 || r_type == R_PPC64_ADDR14_BRNTAKEN);
5183 }
5184
5185 /* Look through the relocs for a section during the first phase, and
5186 calculate needed space in the global offset table, procedure
5187 linkage table, and dynamic reloc sections. */
5188
5189 static bfd_boolean
5190 ppc64_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
5191 asection *sec, const Elf_Internal_Rela *relocs)
5192 {
5193 struct ppc_link_hash_table *htab;
5194 Elf_Internal_Shdr *symtab_hdr;
5195 struct elf_link_hash_entry **sym_hashes;
5196 const Elf_Internal_Rela *rel;
5197 const Elf_Internal_Rela *rel_end;
5198 asection *sreloc;
5199 asection **opd_sym_map;
5200 struct elf_link_hash_entry *tga, *dottga;
5201
5202 if (info->relocatable)
5203 return TRUE;
5204
5205 /* Don't do anything special with non-loaded, non-alloced sections.
5206 In particular, any relocs in such sections should not affect GOT
5207 and PLT reference counting (ie. we don't allow them to create GOT
5208 or PLT entries), there's no possibility or desire to optimize TLS
5209 relocs, and there's not much point in propagating relocs to shared
5210 libs that the dynamic linker won't relocate. */
5211 if ((sec->flags & SEC_ALLOC) == 0)
5212 return TRUE;
5213
5214 BFD_ASSERT (is_ppc64_elf (abfd));
5215
5216 htab = ppc_hash_table (info);
5217 if (htab == NULL)
5218 return FALSE;
5219
5220 tga = elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
5221 FALSE, FALSE, TRUE);
5222 dottga = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
5223 FALSE, FALSE, TRUE);
5224 symtab_hdr = &elf_symtab_hdr (abfd);
5225 sym_hashes = elf_sym_hashes (abfd);
5226 sreloc = NULL;
5227 opd_sym_map = NULL;
5228 if (ppc64_elf_section_data (sec) != NULL
5229 && ppc64_elf_section_data (sec)->sec_type == sec_opd)
5230 opd_sym_map = ppc64_elf_section_data (sec)->u.opd.func_sec;
5231
5232 rel_end = relocs + sec->reloc_count;
5233 for (rel = relocs; rel < rel_end; rel++)
5234 {
5235 unsigned long r_symndx;
5236 struct elf_link_hash_entry *h;
5237 enum elf_ppc64_reloc_type r_type;
5238 int tls_type;
5239 struct _ppc64_elf_section_data *ppc64_sec;
5240 struct plt_entry **ifunc;
5241
5242 r_symndx = ELF64_R_SYM (rel->r_info);
5243 if (r_symndx < symtab_hdr->sh_info)
5244 h = NULL;
5245 else
5246 {
5247 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5248 h = elf_follow_link (h);
5249
5250 /* PR15323, ref flags aren't set for references in the same
5251 object. */
5252 h->root.non_ir_ref = 1;
5253
5254 if (h == htab->elf.hgot)
5255 sec->has_toc_reloc = 1;
5256 }
5257
5258 tls_type = 0;
5259 ifunc = NULL;
5260 if (h != NULL)
5261 {
5262 if (h->type == STT_GNU_IFUNC)
5263 {
5264 h->needs_plt = 1;
5265 ifunc = &h->plt.plist;
5266 }
5267 }
5268 else
5269 {
5270 Elf_Internal_Sym *isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5271 abfd, r_symndx);
5272 if (isym == NULL)
5273 return FALSE;
5274
5275 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
5276 {
5277 ifunc = update_local_sym_info (abfd, symtab_hdr, r_symndx,
5278 rel->r_addend, PLT_IFUNC);
5279 if (ifunc == NULL)
5280 return FALSE;
5281 }
5282 }
5283 r_type = ELF64_R_TYPE (rel->r_info);
5284 if (is_branch_reloc (r_type))
5285 {
5286 if (h != NULL && (h == tga || h == dottga))
5287 {
5288 if (rel != relocs
5289 && (ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSGD
5290 || ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSLD))
5291 /* We have a new-style __tls_get_addr call with a marker
5292 reloc. */
5293 ;
5294 else
5295 /* Mark this section as having an old-style call. */
5296 sec->has_tls_get_addr_call = 1;
5297 }
5298
5299 /* STT_GNU_IFUNC symbols must have a PLT entry. */
5300 if (ifunc != NULL
5301 && !update_plt_info (abfd, ifunc, rel->r_addend))
5302 return FALSE;
5303 }
5304
5305 switch (r_type)
5306 {
5307 case R_PPC64_TLSGD:
5308 case R_PPC64_TLSLD:
5309 /* These special tls relocs tie a call to __tls_get_addr with
5310 its parameter symbol. */
5311 break;
5312
5313 case R_PPC64_GOT_TLSLD16:
5314 case R_PPC64_GOT_TLSLD16_LO:
5315 case R_PPC64_GOT_TLSLD16_HI:
5316 case R_PPC64_GOT_TLSLD16_HA:
5317 tls_type = TLS_TLS | TLS_LD;
5318 goto dogottls;
5319
5320 case R_PPC64_GOT_TLSGD16:
5321 case R_PPC64_GOT_TLSGD16_LO:
5322 case R_PPC64_GOT_TLSGD16_HI:
5323 case R_PPC64_GOT_TLSGD16_HA:
5324 tls_type = TLS_TLS | TLS_GD;
5325 goto dogottls;
5326
5327 case R_PPC64_GOT_TPREL16_DS:
5328 case R_PPC64_GOT_TPREL16_LO_DS:
5329 case R_PPC64_GOT_TPREL16_HI:
5330 case R_PPC64_GOT_TPREL16_HA:
5331 if (info->shared)
5332 info->flags |= DF_STATIC_TLS;
5333 tls_type = TLS_TLS | TLS_TPREL;
5334 goto dogottls;
5335
5336 case R_PPC64_GOT_DTPREL16_DS:
5337 case R_PPC64_GOT_DTPREL16_LO_DS:
5338 case R_PPC64_GOT_DTPREL16_HI:
5339 case R_PPC64_GOT_DTPREL16_HA:
5340 tls_type = TLS_TLS | TLS_DTPREL;
5341 dogottls:
5342 sec->has_tls_reloc = 1;
5343 /* Fall thru */
5344
5345 case R_PPC64_GOT16:
5346 case R_PPC64_GOT16_DS:
5347 case R_PPC64_GOT16_HA:
5348 case R_PPC64_GOT16_HI:
5349 case R_PPC64_GOT16_LO:
5350 case R_PPC64_GOT16_LO_DS:
5351 /* This symbol requires a global offset table entry. */
5352 sec->has_toc_reloc = 1;
5353 if (r_type == R_PPC64_GOT_TLSLD16
5354 || r_type == R_PPC64_GOT_TLSGD16
5355 || r_type == R_PPC64_GOT_TPREL16_DS
5356 || r_type == R_PPC64_GOT_DTPREL16_DS
5357 || r_type == R_PPC64_GOT16
5358 || r_type == R_PPC64_GOT16_DS)
5359 {
5360 htab->do_multi_toc = 1;
5361 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
5362 }
5363
5364 if (ppc64_elf_tdata (abfd)->got == NULL
5365 && !create_got_section (abfd, info))
5366 return FALSE;
5367
5368 if (h != NULL)
5369 {
5370 struct ppc_link_hash_entry *eh;
5371 struct got_entry *ent;
5372
5373 eh = (struct ppc_link_hash_entry *) h;
5374 for (ent = eh->elf.got.glist; ent != NULL; ent = ent->next)
5375 if (ent->addend == rel->r_addend
5376 && ent->owner == abfd
5377 && ent->tls_type == tls_type)
5378 break;
5379 if (ent == NULL)
5380 {
5381 bfd_size_type amt = sizeof (*ent);
5382 ent = bfd_alloc (abfd, amt);
5383 if (ent == NULL)
5384 return FALSE;
5385 ent->next = eh->elf.got.glist;
5386 ent->addend = rel->r_addend;
5387 ent->owner = abfd;
5388 ent->tls_type = tls_type;
5389 ent->is_indirect = FALSE;
5390 ent->got.refcount = 0;
5391 eh->elf.got.glist = ent;
5392 }
5393 ent->got.refcount += 1;
5394 eh->tls_mask |= tls_type;
5395 }
5396 else
5397 /* This is a global offset table entry for a local symbol. */
5398 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
5399 rel->r_addend, tls_type))
5400 return FALSE;
5401
5402 /* We may also need a plt entry if the symbol turns out to be
5403 an ifunc. */
5404 if (h != NULL && !info->shared && abiversion (abfd) != 1)
5405 {
5406 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5407 return FALSE;
5408 }
5409 break;
5410
5411 case R_PPC64_PLT16_HA:
5412 case R_PPC64_PLT16_HI:
5413 case R_PPC64_PLT16_LO:
5414 case R_PPC64_PLT32:
5415 case R_PPC64_PLT64:
5416 /* This symbol requires a procedure linkage table entry. We
5417 actually build the entry in adjust_dynamic_symbol,
5418 because this might be a case of linking PIC code without
5419 linking in any dynamic objects, in which case we don't
5420 need to generate a procedure linkage table after all. */
5421 if (h == NULL)
5422 {
5423 /* It does not make sense to have a procedure linkage
5424 table entry for a local symbol. */
5425 bfd_set_error (bfd_error_bad_value);
5426 return FALSE;
5427 }
5428 else
5429 {
5430 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5431 return FALSE;
5432 h->needs_plt = 1;
5433 if (h->root.root.string[0] == '.'
5434 && h->root.root.string[1] != '\0')
5435 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5436 }
5437 break;
5438
5439 /* The following relocations don't need to propagate the
5440 relocation if linking a shared object since they are
5441 section relative. */
5442 case R_PPC64_SECTOFF:
5443 case R_PPC64_SECTOFF_LO:
5444 case R_PPC64_SECTOFF_HI:
5445 case R_PPC64_SECTOFF_HA:
5446 case R_PPC64_SECTOFF_DS:
5447 case R_PPC64_SECTOFF_LO_DS:
5448 case R_PPC64_DTPREL16:
5449 case R_PPC64_DTPREL16_LO:
5450 case R_PPC64_DTPREL16_HI:
5451 case R_PPC64_DTPREL16_HA:
5452 case R_PPC64_DTPREL16_DS:
5453 case R_PPC64_DTPREL16_LO_DS:
5454 case R_PPC64_DTPREL16_HIGH:
5455 case R_PPC64_DTPREL16_HIGHA:
5456 case R_PPC64_DTPREL16_HIGHER:
5457 case R_PPC64_DTPREL16_HIGHERA:
5458 case R_PPC64_DTPREL16_HIGHEST:
5459 case R_PPC64_DTPREL16_HIGHESTA:
5460 break;
5461
5462 /* Nor do these. */
5463 case R_PPC64_REL16:
5464 case R_PPC64_REL16_LO:
5465 case R_PPC64_REL16_HI:
5466 case R_PPC64_REL16_HA:
5467 break;
5468
5469 /* Not supported as a dynamic relocation. */
5470 case R_PPC64_ADDR64_LOCAL:
5471 if (info->shared)
5472 {
5473 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
5474 ppc_howto_init ();
5475 info->callbacks->einfo (_("%P: %H: %s reloc unsupported "
5476 "in shared libraries and PIEs.\n"),
5477 abfd, sec, rel->r_offset,
5478 ppc64_elf_howto_table[r_type]->name);
5479 bfd_set_error (bfd_error_bad_value);
5480 return FALSE;
5481 }
5482 break;
5483
5484 case R_PPC64_TOC16:
5485 case R_PPC64_TOC16_DS:
5486 htab->do_multi_toc = 1;
5487 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
5488 case R_PPC64_TOC16_LO:
5489 case R_PPC64_TOC16_HI:
5490 case R_PPC64_TOC16_HA:
5491 case R_PPC64_TOC16_LO_DS:
5492 sec->has_toc_reloc = 1;
5493 break;
5494
5495 /* This relocation describes the C++ object vtable hierarchy.
5496 Reconstruct it for later use during GC. */
5497 case R_PPC64_GNU_VTINHERIT:
5498 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
5499 return FALSE;
5500 break;
5501
5502 /* This relocation describes which C++ vtable entries are actually
5503 used. Record for later use during GC. */
5504 case R_PPC64_GNU_VTENTRY:
5505 BFD_ASSERT (h != NULL);
5506 if (h != NULL
5507 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
5508 return FALSE;
5509 break;
5510
5511 case R_PPC64_REL14:
5512 case R_PPC64_REL14_BRTAKEN:
5513 case R_PPC64_REL14_BRNTAKEN:
5514 {
5515 asection *dest = NULL;
5516
5517 /* Heuristic: If jumping outside our section, chances are
5518 we are going to need a stub. */
5519 if (h != NULL)
5520 {
5521 /* If the sym is weak it may be overridden later, so
5522 don't assume we know where a weak sym lives. */
5523 if (h->root.type == bfd_link_hash_defined)
5524 dest = h->root.u.def.section;
5525 }
5526 else
5527 {
5528 Elf_Internal_Sym *isym;
5529
5530 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5531 abfd, r_symndx);
5532 if (isym == NULL)
5533 return FALSE;
5534
5535 dest = bfd_section_from_elf_index (abfd, isym->st_shndx);
5536 }
5537
5538 if (dest != sec)
5539 ppc64_elf_section_data (sec)->has_14bit_branch = 1;
5540 }
5541 /* Fall through. */
5542
5543 case R_PPC64_REL24:
5544 if (h != NULL && ifunc == NULL)
5545 {
5546 /* We may need a .plt entry if the function this reloc
5547 refers to is in a shared lib. */
5548 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5549 return FALSE;
5550 h->needs_plt = 1;
5551 if (h->root.root.string[0] == '.'
5552 && h->root.root.string[1] != '\0')
5553 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5554 if (h == tga || h == dottga)
5555 sec->has_tls_reloc = 1;
5556 }
5557 break;
5558
5559 case R_PPC64_TPREL64:
5560 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_TPREL;
5561 if (info->shared)
5562 info->flags |= DF_STATIC_TLS;
5563 goto dotlstoc;
5564
5565 case R_PPC64_DTPMOD64:
5566 if (rel + 1 < rel_end
5567 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
5568 && rel[1].r_offset == rel->r_offset + 8)
5569 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_GD;
5570 else
5571 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_LD;
5572 goto dotlstoc;
5573
5574 case R_PPC64_DTPREL64:
5575 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_DTPREL;
5576 if (rel != relocs
5577 && rel[-1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPMOD64)
5578 && rel[-1].r_offset == rel->r_offset - 8)
5579 /* This is the second reloc of a dtpmod, dtprel pair.
5580 Don't mark with TLS_DTPREL. */
5581 goto dodyn;
5582
5583 dotlstoc:
5584 sec->has_tls_reloc = 1;
5585 if (h != NULL)
5586 {
5587 struct ppc_link_hash_entry *eh;
5588 eh = (struct ppc_link_hash_entry *) h;
5589 eh->tls_mask |= tls_type;
5590 }
5591 else
5592 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
5593 rel->r_addend, tls_type))
5594 return FALSE;
5595
5596 ppc64_sec = ppc64_elf_section_data (sec);
5597 if (ppc64_sec->sec_type != sec_toc)
5598 {
5599 bfd_size_type amt;
5600
5601 /* One extra to simplify get_tls_mask. */
5602 amt = sec->size * sizeof (unsigned) / 8 + sizeof (unsigned);
5603 ppc64_sec->u.toc.symndx = bfd_zalloc (abfd, amt);
5604 if (ppc64_sec->u.toc.symndx == NULL)
5605 return FALSE;
5606 amt = sec->size * sizeof (bfd_vma) / 8;
5607 ppc64_sec->u.toc.add = bfd_zalloc (abfd, amt);
5608 if (ppc64_sec->u.toc.add == NULL)
5609 return FALSE;
5610 BFD_ASSERT (ppc64_sec->sec_type == sec_normal);
5611 ppc64_sec->sec_type = sec_toc;
5612 }
5613 BFD_ASSERT (rel->r_offset % 8 == 0);
5614 ppc64_sec->u.toc.symndx[rel->r_offset / 8] = r_symndx;
5615 ppc64_sec->u.toc.add[rel->r_offset / 8] = rel->r_addend;
5616
5617 /* Mark the second slot of a GD or LD entry.
5618 -1 to indicate GD and -2 to indicate LD. */
5619 if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_GD))
5620 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -1;
5621 else if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_LD))
5622 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -2;
5623 goto dodyn;
5624
5625 case R_PPC64_TPREL16:
5626 case R_PPC64_TPREL16_LO:
5627 case R_PPC64_TPREL16_HI:
5628 case R_PPC64_TPREL16_HA:
5629 case R_PPC64_TPREL16_DS:
5630 case R_PPC64_TPREL16_LO_DS:
5631 case R_PPC64_TPREL16_HIGH:
5632 case R_PPC64_TPREL16_HIGHA:
5633 case R_PPC64_TPREL16_HIGHER:
5634 case R_PPC64_TPREL16_HIGHERA:
5635 case R_PPC64_TPREL16_HIGHEST:
5636 case R_PPC64_TPREL16_HIGHESTA:
5637 if (info->shared)
5638 {
5639 info->flags |= DF_STATIC_TLS;
5640 goto dodyn;
5641 }
5642 break;
5643
5644 case R_PPC64_ADDR64:
5645 if (opd_sym_map != NULL
5646 && rel + 1 < rel_end
5647 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC)
5648 {
5649 if (h != NULL)
5650 {
5651 if (h->root.root.string[0] == '.'
5652 && h->root.root.string[1] != 0
5653 && lookup_fdh ((struct ppc_link_hash_entry *) h, htab))
5654 ;
5655 else
5656 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5657 }
5658 else
5659 {
5660 asection *s;
5661 Elf_Internal_Sym *isym;
5662
5663 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5664 abfd, r_symndx);
5665 if (isym == NULL)
5666 return FALSE;
5667
5668 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5669 if (s != NULL && s != sec)
5670 opd_sym_map[rel->r_offset / 8] = s;
5671 }
5672 }
5673 /* Fall through. */
5674
5675 case R_PPC64_ADDR16:
5676 case R_PPC64_ADDR16_DS:
5677 case R_PPC64_ADDR16_HA:
5678 case R_PPC64_ADDR16_HI:
5679 case R_PPC64_ADDR16_HIGH:
5680 case R_PPC64_ADDR16_HIGHA:
5681 case R_PPC64_ADDR16_HIGHER:
5682 case R_PPC64_ADDR16_HIGHERA:
5683 case R_PPC64_ADDR16_HIGHEST:
5684 case R_PPC64_ADDR16_HIGHESTA:
5685 case R_PPC64_ADDR16_LO:
5686 case R_PPC64_ADDR16_LO_DS:
5687 if (h != NULL && !info->shared && abiversion (abfd) != 1
5688 && rel->r_addend == 0)
5689 {
5690 /* We may need a .plt entry if this reloc refers to a
5691 function in a shared lib. */
5692 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5693 return FALSE;
5694 h->pointer_equality_needed = 1;
5695 }
5696 /* Fall through. */
5697
5698 case R_PPC64_REL30:
5699 case R_PPC64_REL32:
5700 case R_PPC64_REL64:
5701 case R_PPC64_ADDR14:
5702 case R_PPC64_ADDR14_BRNTAKEN:
5703 case R_PPC64_ADDR14_BRTAKEN:
5704 case R_PPC64_ADDR24:
5705 case R_PPC64_ADDR32:
5706 case R_PPC64_UADDR16:
5707 case R_PPC64_UADDR32:
5708 case R_PPC64_UADDR64:
5709 case R_PPC64_TOC:
5710 if (h != NULL && !info->shared)
5711 /* We may need a copy reloc. */
5712 h->non_got_ref = 1;
5713
5714 /* Don't propagate .opd relocs. */
5715 if (NO_OPD_RELOCS && opd_sym_map != NULL)
5716 break;
5717
5718 /* If we are creating a shared library, and this is a reloc
5719 against a global symbol, or a non PC relative reloc
5720 against a local symbol, then we need to copy the reloc
5721 into the shared library. However, if we are linking with
5722 -Bsymbolic, we do not need to copy a reloc against a
5723 global symbol which is defined in an object we are
5724 including in the link (i.e., DEF_REGULAR is set). At
5725 this point we have not seen all the input files, so it is
5726 possible that DEF_REGULAR is not set now but will be set
5727 later (it is never cleared). In case of a weak definition,
5728 DEF_REGULAR may be cleared later by a strong definition in
5729 a shared library. We account for that possibility below by
5730 storing information in the dyn_relocs field of the hash
5731 table entry. A similar situation occurs when creating
5732 shared libraries and symbol visibility changes render the
5733 symbol local.
5734
5735 If on the other hand, we are creating an executable, we
5736 may need to keep relocations for symbols satisfied by a
5737 dynamic library if we manage to avoid copy relocs for the
5738 symbol. */
5739 dodyn:
5740 if ((info->shared
5741 && (must_be_dyn_reloc (info, r_type)
5742 || (h != NULL
5743 && (!SYMBOLIC_BIND (info, h)
5744 || h->root.type == bfd_link_hash_defweak
5745 || !h->def_regular))))
5746 || (ELIMINATE_COPY_RELOCS
5747 && !info->shared
5748 && h != NULL
5749 && (h->root.type == bfd_link_hash_defweak
5750 || !h->def_regular))
5751 || (!info->shared
5752 && ifunc != NULL))
5753 {
5754 /* We must copy these reloc types into the output file.
5755 Create a reloc section in dynobj and make room for
5756 this reloc. */
5757 if (sreloc == NULL)
5758 {
5759 sreloc = _bfd_elf_make_dynamic_reloc_section
5760 (sec, htab->elf.dynobj, 3, abfd, /*rela?*/ TRUE);
5761
5762 if (sreloc == NULL)
5763 return FALSE;
5764 }
5765
5766 /* If this is a global symbol, we count the number of
5767 relocations we need for this symbol. */
5768 if (h != NULL)
5769 {
5770 struct elf_dyn_relocs *p;
5771 struct elf_dyn_relocs **head;
5772
5773 head = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
5774 p = *head;
5775 if (p == NULL || p->sec != sec)
5776 {
5777 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5778 if (p == NULL)
5779 return FALSE;
5780 p->next = *head;
5781 *head = p;
5782 p->sec = sec;
5783 p->count = 0;
5784 p->pc_count = 0;
5785 }
5786 p->count += 1;
5787 if (!must_be_dyn_reloc (info, r_type))
5788 p->pc_count += 1;
5789 }
5790 else
5791 {
5792 /* Track dynamic relocs needed for local syms too.
5793 We really need local syms available to do this
5794 easily. Oh well. */
5795 struct ppc_dyn_relocs *p;
5796 struct ppc_dyn_relocs **head;
5797 bfd_boolean is_ifunc;
5798 asection *s;
5799 void *vpp;
5800 Elf_Internal_Sym *isym;
5801
5802 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5803 abfd, r_symndx);
5804 if (isym == NULL)
5805 return FALSE;
5806
5807 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5808 if (s == NULL)
5809 s = sec;
5810
5811 vpp = &elf_section_data (s)->local_dynrel;
5812 head = (struct ppc_dyn_relocs **) vpp;
5813 is_ifunc = ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC;
5814 p = *head;
5815 if (p != NULL && p->sec == sec && p->ifunc != is_ifunc)
5816 p = p->next;
5817 if (p == NULL || p->sec != sec || p->ifunc != is_ifunc)
5818 {
5819 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5820 if (p == NULL)
5821 return FALSE;
5822 p->next = *head;
5823 *head = p;
5824 p->sec = sec;
5825 p->ifunc = is_ifunc;
5826 p->count = 0;
5827 }
5828 p->count += 1;
5829 }
5830 }
5831 break;
5832
5833 default:
5834 break;
5835 }
5836 }
5837
5838 return TRUE;
5839 }
5840
5841 /* Merge backend specific data from an object file to the output
5842 object file when linking. */
5843
5844 static bfd_boolean
5845 ppc64_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
5846 {
5847 unsigned long iflags, oflags;
5848
5849 if ((ibfd->flags & BFD_LINKER_CREATED) != 0)
5850 return TRUE;
5851
5852 if (!is_ppc64_elf (ibfd) || !is_ppc64_elf (obfd))
5853 return TRUE;
5854
5855 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
5856 return FALSE;
5857
5858 iflags = elf_elfheader (ibfd)->e_flags;
5859 oflags = elf_elfheader (obfd)->e_flags;
5860
5861 if (iflags & ~EF_PPC64_ABI)
5862 {
5863 (*_bfd_error_handler)
5864 (_("%B uses unknown e_flags 0x%lx"), ibfd, iflags);
5865 bfd_set_error (bfd_error_bad_value);
5866 return FALSE;
5867 }
5868 else if (iflags != oflags && iflags != 0)
5869 {
5870 (*_bfd_error_handler)
5871 (_("%B: ABI version %ld is not compatible with ABI version %ld output"),
5872 ibfd, iflags, oflags);
5873 bfd_set_error (bfd_error_bad_value);
5874 return FALSE;
5875 }
5876
5877 /* Merge Tag_compatibility attributes and any common GNU ones. */
5878 _bfd_elf_merge_object_attributes (ibfd, obfd);
5879
5880 return TRUE;
5881 }
5882
5883 static bfd_boolean
5884 ppc64_elf_print_private_bfd_data (bfd *abfd, void *ptr)
5885 {
5886 /* Print normal ELF private data. */
5887 _bfd_elf_print_private_bfd_data (abfd, ptr);
5888
5889 if (elf_elfheader (abfd)->e_flags != 0)
5890 {
5891 FILE *file = ptr;
5892
5893 /* xgettext:c-format */
5894 fprintf (file, _("private flags = 0x%lx:"),
5895 elf_elfheader (abfd)->e_flags);
5896
5897 if ((elf_elfheader (abfd)->e_flags & EF_PPC64_ABI) != 0)
5898 fprintf (file, _(" [abiv%ld]"),
5899 elf_elfheader (abfd)->e_flags & EF_PPC64_ABI);
5900 fputc ('\n', file);
5901 }
5902
5903 return TRUE;
5904 }
5905
5906 /* OFFSET in OPD_SEC specifies a function descriptor. Return the address
5907 of the code entry point, and its section. */
5908
5909 static bfd_vma
5910 opd_entry_value (asection *opd_sec,
5911 bfd_vma offset,
5912 asection **code_sec,
5913 bfd_vma *code_off,
5914 bfd_boolean in_code_sec)
5915 {
5916 bfd *opd_bfd = opd_sec->owner;
5917 Elf_Internal_Rela *relocs;
5918 Elf_Internal_Rela *lo, *hi, *look;
5919 bfd_vma val;
5920
5921 /* No relocs implies we are linking a --just-symbols object, or looking
5922 at a final linked executable with addr2line or somesuch. */
5923 if (opd_sec->reloc_count == 0)
5924 {
5925 bfd_byte *contents = ppc64_elf_tdata (opd_bfd)->opd.contents;
5926
5927 if (contents == NULL)
5928 {
5929 if (!bfd_malloc_and_get_section (opd_bfd, opd_sec, &contents))
5930 return (bfd_vma) -1;
5931 ppc64_elf_tdata (opd_bfd)->opd.contents = contents;
5932 }
5933
5934 val = bfd_get_64 (opd_bfd, contents + offset);
5935 if (code_sec != NULL)
5936 {
5937 asection *sec, *likely = NULL;
5938
5939 if (in_code_sec)
5940 {
5941 sec = *code_sec;
5942 if (sec->vma <= val
5943 && val < sec->vma + sec->size)
5944 likely = sec;
5945 else
5946 val = -1;
5947 }
5948 else
5949 for (sec = opd_bfd->sections; sec != NULL; sec = sec->next)
5950 if (sec->vma <= val
5951 && (sec->flags & SEC_LOAD) != 0
5952 && (sec->flags & SEC_ALLOC) != 0)
5953 likely = sec;
5954 if (likely != NULL)
5955 {
5956 *code_sec = likely;
5957 if (code_off != NULL)
5958 *code_off = val - likely->vma;
5959 }
5960 }
5961 return val;
5962 }
5963
5964 BFD_ASSERT (is_ppc64_elf (opd_bfd));
5965
5966 relocs = ppc64_elf_tdata (opd_bfd)->opd.relocs;
5967 if (relocs == NULL)
5968 relocs = _bfd_elf_link_read_relocs (opd_bfd, opd_sec, NULL, NULL, TRUE);
5969
5970 /* Go find the opd reloc at the sym address. */
5971 lo = relocs;
5972 BFD_ASSERT (lo != NULL);
5973 hi = lo + opd_sec->reloc_count - 1; /* ignore last reloc */
5974 val = (bfd_vma) -1;
5975 while (lo < hi)
5976 {
5977 look = lo + (hi - lo) / 2;
5978 if (look->r_offset < offset)
5979 lo = look + 1;
5980 else if (look->r_offset > offset)
5981 hi = look;
5982 else
5983 {
5984 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (opd_bfd);
5985
5986 if (ELF64_R_TYPE (look->r_info) == R_PPC64_ADDR64
5987 && ELF64_R_TYPE ((look + 1)->r_info) == R_PPC64_TOC)
5988 {
5989 unsigned long symndx = ELF64_R_SYM (look->r_info);
5990 asection *sec;
5991
5992 if (symndx < symtab_hdr->sh_info
5993 || elf_sym_hashes (opd_bfd) == NULL)
5994 {
5995 Elf_Internal_Sym *sym;
5996
5997 sym = (Elf_Internal_Sym *) symtab_hdr->contents;
5998 if (sym == NULL)
5999 {
6000 size_t symcnt = symtab_hdr->sh_info;
6001 if (elf_sym_hashes (opd_bfd) == NULL)
6002 symcnt = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
6003 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr, symcnt,
6004 0, NULL, NULL, NULL);
6005 if (sym == NULL)
6006 break;
6007 symtab_hdr->contents = (bfd_byte *) sym;
6008 }
6009
6010 sym += symndx;
6011 val = sym->st_value;
6012 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
6013 BFD_ASSERT ((sec->flags & SEC_MERGE) == 0);
6014 }
6015 else
6016 {
6017 struct elf_link_hash_entry **sym_hashes;
6018 struct elf_link_hash_entry *rh;
6019
6020 sym_hashes = elf_sym_hashes (opd_bfd);
6021 rh = sym_hashes[symndx - symtab_hdr->sh_info];
6022 if (rh != NULL)
6023 {
6024 rh = elf_follow_link (rh);
6025 BFD_ASSERT (rh->root.type == bfd_link_hash_defined
6026 || rh->root.type == bfd_link_hash_defweak);
6027 val = rh->root.u.def.value;
6028 sec = rh->root.u.def.section;
6029 }
6030 else
6031 {
6032 /* Handle the odd case where we can be called
6033 during bfd_elf_link_add_symbols before the
6034 symbol hashes have been fully populated. */
6035 Elf_Internal_Sym *sym;
6036
6037 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr, 1,
6038 symndx, NULL, NULL, NULL);
6039 if (sym == NULL)
6040 break;
6041
6042 val = sym->st_value;
6043 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
6044 free (sym);
6045 }
6046 }
6047 val += look->r_addend;
6048 if (code_off != NULL)
6049 *code_off = val;
6050 if (code_sec != NULL)
6051 {
6052 if (in_code_sec && *code_sec != sec)
6053 return -1;
6054 else
6055 *code_sec = sec;
6056 }
6057 if (sec != NULL && sec->output_section != NULL)
6058 val += sec->output_section->vma + sec->output_offset;
6059 }
6060 break;
6061 }
6062 }
6063
6064 return val;
6065 }
6066
6067 /* If the ELF symbol SYM might be a function in SEC, return the
6068 function size and set *CODE_OFF to the function's entry point,
6069 otherwise return zero. */
6070
6071 static bfd_size_type
6072 ppc64_elf_maybe_function_sym (const asymbol *sym, asection *sec,
6073 bfd_vma *code_off)
6074 {
6075 bfd_size_type size;
6076
6077 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
6078 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0)
6079 return 0;
6080
6081 size = 0;
6082 if (!(sym->flags & BSF_SYNTHETIC))
6083 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
6084
6085 if (strcmp (sym->section->name, ".opd") == 0)
6086 {
6087 if (opd_entry_value (sym->section, sym->value,
6088 &sec, code_off, TRUE) == (bfd_vma) -1)
6089 return 0;
6090 /* An old ABI binary with dot-syms has a size of 24 on the .opd
6091 symbol. This size has nothing to do with the code size of the
6092 function, which is what we're supposed to return, but the
6093 code size isn't available without looking up the dot-sym.
6094 However, doing that would be a waste of time particularly
6095 since elf_find_function will look at the dot-sym anyway.
6096 Now, elf_find_function will keep the largest size of any
6097 function sym found at the code address of interest, so return
6098 1 here to avoid it incorrectly caching a larger function size
6099 for a small function. This does mean we return the wrong
6100 size for a new-ABI function of size 24, but all that does is
6101 disable caching for such functions. */
6102 if (size == 24)
6103 size = 1;
6104 }
6105 else
6106 {
6107 if (sym->section != sec)
6108 return 0;
6109 *code_off = sym->value;
6110 }
6111 if (size == 0)
6112 size = 1;
6113 return size;
6114 }
6115
6116 /* Return true if symbol is defined in a regular object file. */
6117
6118 static bfd_boolean
6119 is_static_defined (struct elf_link_hash_entry *h)
6120 {
6121 return ((h->root.type == bfd_link_hash_defined
6122 || h->root.type == bfd_link_hash_defweak)
6123 && h->root.u.def.section != NULL
6124 && h->root.u.def.section->output_section != NULL);
6125 }
6126
6127 /* If FDH is a function descriptor symbol, return the associated code
6128 entry symbol if it is defined. Return NULL otherwise. */
6129
6130 static struct ppc_link_hash_entry *
6131 defined_code_entry (struct ppc_link_hash_entry *fdh)
6132 {
6133 if (fdh->is_func_descriptor)
6134 {
6135 struct ppc_link_hash_entry *fh = ppc_follow_link (fdh->oh);
6136 if (fh->elf.root.type == bfd_link_hash_defined
6137 || fh->elf.root.type == bfd_link_hash_defweak)
6138 return fh;
6139 }
6140 return NULL;
6141 }
6142
6143 /* If FH is a function code entry symbol, return the associated
6144 function descriptor symbol if it is defined. Return NULL otherwise. */
6145
6146 static struct ppc_link_hash_entry *
6147 defined_func_desc (struct ppc_link_hash_entry *fh)
6148 {
6149 if (fh->oh != NULL
6150 && fh->oh->is_func_descriptor)
6151 {
6152 struct ppc_link_hash_entry *fdh = ppc_follow_link (fh->oh);
6153 if (fdh->elf.root.type == bfd_link_hash_defined
6154 || fdh->elf.root.type == bfd_link_hash_defweak)
6155 return fdh;
6156 }
6157 return NULL;
6158 }
6159
6160 /* Mark all our entry sym sections, both opd and code section. */
6161
6162 static void
6163 ppc64_elf_gc_keep (struct bfd_link_info *info)
6164 {
6165 struct ppc_link_hash_table *htab = ppc_hash_table (info);
6166 struct bfd_sym_chain *sym;
6167
6168 if (htab == NULL)
6169 return;
6170
6171 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
6172 {
6173 struct ppc_link_hash_entry *eh, *fh;
6174 asection *sec;
6175
6176 eh = (struct ppc_link_hash_entry *)
6177 elf_link_hash_lookup (&htab->elf, sym->name, FALSE, FALSE, TRUE);
6178 if (eh == NULL)
6179 continue;
6180 if (eh->elf.root.type != bfd_link_hash_defined
6181 && eh->elf.root.type != bfd_link_hash_defweak)
6182 continue;
6183
6184 fh = defined_code_entry (eh);
6185 if (fh != NULL)
6186 {
6187 sec = fh->elf.root.u.def.section;
6188 sec->flags |= SEC_KEEP;
6189 }
6190 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
6191 && opd_entry_value (eh->elf.root.u.def.section,
6192 eh->elf.root.u.def.value,
6193 &sec, NULL, FALSE) != (bfd_vma) -1)
6194 sec->flags |= SEC_KEEP;
6195
6196 sec = eh->elf.root.u.def.section;
6197 sec->flags |= SEC_KEEP;
6198 }
6199 }
6200
6201 /* Mark sections containing dynamically referenced symbols. When
6202 building shared libraries, we must assume that any visible symbol is
6203 referenced. */
6204
6205 static bfd_boolean
6206 ppc64_elf_gc_mark_dynamic_ref (struct elf_link_hash_entry *h, void *inf)
6207 {
6208 struct bfd_link_info *info = (struct bfd_link_info *) inf;
6209 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
6210 struct ppc_link_hash_entry *fdh;
6211 struct bfd_elf_dynamic_list *d = info->dynamic_list;
6212
6213 /* Dynamic linking info is on the func descriptor sym. */
6214 fdh = defined_func_desc (eh);
6215 if (fdh != NULL)
6216 eh = fdh;
6217
6218 if ((eh->elf.root.type == bfd_link_hash_defined
6219 || eh->elf.root.type == bfd_link_hash_defweak)
6220 && (eh->elf.ref_dynamic
6221 || (eh->elf.def_regular
6222 && ELF_ST_VISIBILITY (eh->elf.other) != STV_INTERNAL
6223 && ELF_ST_VISIBILITY (eh->elf.other) != STV_HIDDEN
6224 && (!info->executable
6225 || info->export_dynamic
6226 || (eh->elf.dynamic
6227 && d != NULL
6228 && (*d->match) (&d->head, NULL, eh->elf.root.root.string)))
6229 && (strchr (eh->elf.root.root.string, ELF_VER_CHR) != NULL
6230 || !bfd_hide_sym_by_version (info->version_info,
6231 eh->elf.root.root.string)))))
6232 {
6233 asection *code_sec;
6234 struct ppc_link_hash_entry *fh;
6235
6236 eh->elf.root.u.def.section->flags |= SEC_KEEP;
6237
6238 /* Function descriptor syms cause the associated
6239 function code sym section to be marked. */
6240 fh = defined_code_entry (eh);
6241 if (fh != NULL)
6242 {
6243 code_sec = fh->elf.root.u.def.section;
6244 code_sec->flags |= SEC_KEEP;
6245 }
6246 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
6247 && opd_entry_value (eh->elf.root.u.def.section,
6248 eh->elf.root.u.def.value,
6249 &code_sec, NULL, FALSE) != (bfd_vma) -1)
6250 code_sec->flags |= SEC_KEEP;
6251 }
6252
6253 return TRUE;
6254 }
6255
6256 /* Return the section that should be marked against GC for a given
6257 relocation. */
6258
6259 static asection *
6260 ppc64_elf_gc_mark_hook (asection *sec,
6261 struct bfd_link_info *info,
6262 Elf_Internal_Rela *rel,
6263 struct elf_link_hash_entry *h,
6264 Elf_Internal_Sym *sym)
6265 {
6266 asection *rsec;
6267
6268 /* Syms return NULL if we're marking .opd, so we avoid marking all
6269 function sections, as all functions are referenced in .opd. */
6270 rsec = NULL;
6271 if (get_opd_info (sec) != NULL)
6272 return rsec;
6273
6274 if (h != NULL)
6275 {
6276 enum elf_ppc64_reloc_type r_type;
6277 struct ppc_link_hash_entry *eh, *fh, *fdh;
6278
6279 r_type = ELF64_R_TYPE (rel->r_info);
6280 switch (r_type)
6281 {
6282 case R_PPC64_GNU_VTINHERIT:
6283 case R_PPC64_GNU_VTENTRY:
6284 break;
6285
6286 default:
6287 switch (h->root.type)
6288 {
6289 case bfd_link_hash_defined:
6290 case bfd_link_hash_defweak:
6291 eh = (struct ppc_link_hash_entry *) h;
6292 fdh = defined_func_desc (eh);
6293 if (fdh != NULL)
6294 eh = fdh;
6295
6296 /* Function descriptor syms cause the associated
6297 function code sym section to be marked. */
6298 fh = defined_code_entry (eh);
6299 if (fh != NULL)
6300 {
6301 /* They also mark their opd section. */
6302 eh->elf.root.u.def.section->gc_mark = 1;
6303
6304 rsec = fh->elf.root.u.def.section;
6305 }
6306 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
6307 && opd_entry_value (eh->elf.root.u.def.section,
6308 eh->elf.root.u.def.value,
6309 &rsec, NULL, FALSE) != (bfd_vma) -1)
6310 eh->elf.root.u.def.section->gc_mark = 1;
6311 else
6312 rsec = h->root.u.def.section;
6313 break;
6314
6315 case bfd_link_hash_common:
6316 rsec = h->root.u.c.p->section;
6317 break;
6318
6319 default:
6320 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
6321 }
6322 }
6323 }
6324 else
6325 {
6326 struct _opd_sec_data *opd;
6327
6328 rsec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
6329 opd = get_opd_info (rsec);
6330 if (opd != NULL && opd->func_sec != NULL)
6331 {
6332 rsec->gc_mark = 1;
6333
6334 rsec = opd->func_sec[(sym->st_value + rel->r_addend) / 8];
6335 }
6336 }
6337
6338 return rsec;
6339 }
6340
6341 /* Update the .got, .plt. and dynamic reloc reference counts for the
6342 section being removed. */
6343
6344 static bfd_boolean
6345 ppc64_elf_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
6346 asection *sec, const Elf_Internal_Rela *relocs)
6347 {
6348 struct ppc_link_hash_table *htab;
6349 Elf_Internal_Shdr *symtab_hdr;
6350 struct elf_link_hash_entry **sym_hashes;
6351 struct got_entry **local_got_ents;
6352 const Elf_Internal_Rela *rel, *relend;
6353
6354 if (info->relocatable)
6355 return TRUE;
6356
6357 if ((sec->flags & SEC_ALLOC) == 0)
6358 return TRUE;
6359
6360 elf_section_data (sec)->local_dynrel = NULL;
6361
6362 htab = ppc_hash_table (info);
6363 if (htab == NULL)
6364 return FALSE;
6365
6366 symtab_hdr = &elf_symtab_hdr (abfd);
6367 sym_hashes = elf_sym_hashes (abfd);
6368 local_got_ents = elf_local_got_ents (abfd);
6369
6370 relend = relocs + sec->reloc_count;
6371 for (rel = relocs; rel < relend; rel++)
6372 {
6373 unsigned long r_symndx;
6374 enum elf_ppc64_reloc_type r_type;
6375 struct elf_link_hash_entry *h = NULL;
6376 unsigned char tls_type = 0;
6377
6378 r_symndx = ELF64_R_SYM (rel->r_info);
6379 r_type = ELF64_R_TYPE (rel->r_info);
6380 if (r_symndx >= symtab_hdr->sh_info)
6381 {
6382 struct ppc_link_hash_entry *eh;
6383 struct elf_dyn_relocs **pp;
6384 struct elf_dyn_relocs *p;
6385
6386 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6387 h = elf_follow_link (h);
6388 eh = (struct ppc_link_hash_entry *) h;
6389
6390 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
6391 if (p->sec == sec)
6392 {
6393 /* Everything must go for SEC. */
6394 *pp = p->next;
6395 break;
6396 }
6397 }
6398
6399 if (is_branch_reloc (r_type))
6400 {
6401 struct plt_entry **ifunc = NULL;
6402 if (h != NULL)
6403 {
6404 if (h->type == STT_GNU_IFUNC)
6405 ifunc = &h->plt.plist;
6406 }
6407 else if (local_got_ents != NULL)
6408 {
6409 struct plt_entry **local_plt = (struct plt_entry **)
6410 (local_got_ents + symtab_hdr->sh_info);
6411 unsigned char *local_got_tls_masks = (unsigned char *)
6412 (local_plt + symtab_hdr->sh_info);
6413 if ((local_got_tls_masks[r_symndx] & PLT_IFUNC) != 0)
6414 ifunc = local_plt + r_symndx;
6415 }
6416 if (ifunc != NULL)
6417 {
6418 struct plt_entry *ent;
6419
6420 for (ent = *ifunc; ent != NULL; ent = ent->next)
6421 if (ent->addend == rel->r_addend)
6422 break;
6423 if (ent == NULL)
6424 abort ();
6425 if (ent->plt.refcount > 0)
6426 ent->plt.refcount -= 1;
6427 continue;
6428 }
6429 }
6430
6431 switch (r_type)
6432 {
6433 case R_PPC64_GOT_TLSLD16:
6434 case R_PPC64_GOT_TLSLD16_LO:
6435 case R_PPC64_GOT_TLSLD16_HI:
6436 case R_PPC64_GOT_TLSLD16_HA:
6437 tls_type = TLS_TLS | TLS_LD;
6438 goto dogot;
6439
6440 case R_PPC64_GOT_TLSGD16:
6441 case R_PPC64_GOT_TLSGD16_LO:
6442 case R_PPC64_GOT_TLSGD16_HI:
6443 case R_PPC64_GOT_TLSGD16_HA:
6444 tls_type = TLS_TLS | TLS_GD;
6445 goto dogot;
6446
6447 case R_PPC64_GOT_TPREL16_DS:
6448 case R_PPC64_GOT_TPREL16_LO_DS:
6449 case R_PPC64_GOT_TPREL16_HI:
6450 case R_PPC64_GOT_TPREL16_HA:
6451 tls_type = TLS_TLS | TLS_TPREL;
6452 goto dogot;
6453
6454 case R_PPC64_GOT_DTPREL16_DS:
6455 case R_PPC64_GOT_DTPREL16_LO_DS:
6456 case R_PPC64_GOT_DTPREL16_HI:
6457 case R_PPC64_GOT_DTPREL16_HA:
6458 tls_type = TLS_TLS | TLS_DTPREL;
6459 goto dogot;
6460
6461 case R_PPC64_GOT16:
6462 case R_PPC64_GOT16_DS:
6463 case R_PPC64_GOT16_HA:
6464 case R_PPC64_GOT16_HI:
6465 case R_PPC64_GOT16_LO:
6466 case R_PPC64_GOT16_LO_DS:
6467 dogot:
6468 {
6469 struct got_entry *ent;
6470
6471 if (h != NULL)
6472 ent = h->got.glist;
6473 else
6474 ent = local_got_ents[r_symndx];
6475
6476 for (; ent != NULL; ent = ent->next)
6477 if (ent->addend == rel->r_addend
6478 && ent->owner == abfd
6479 && ent->tls_type == tls_type)
6480 break;
6481 if (ent == NULL)
6482 abort ();
6483 if (ent->got.refcount > 0)
6484 ent->got.refcount -= 1;
6485 }
6486 break;
6487
6488 case R_PPC64_PLT16_HA:
6489 case R_PPC64_PLT16_HI:
6490 case R_PPC64_PLT16_LO:
6491 case R_PPC64_PLT32:
6492 case R_PPC64_PLT64:
6493 case R_PPC64_REL14:
6494 case R_PPC64_REL14_BRNTAKEN:
6495 case R_PPC64_REL14_BRTAKEN:
6496 case R_PPC64_REL24:
6497 if (h != NULL)
6498 {
6499 struct plt_entry *ent;
6500
6501 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
6502 if (ent->addend == rel->r_addend)
6503 break;
6504 if (ent != NULL && ent->plt.refcount > 0)
6505 ent->plt.refcount -= 1;
6506 }
6507 break;
6508
6509 default:
6510 break;
6511 }
6512 }
6513 return TRUE;
6514 }
6515
6516 /* The maximum size of .sfpr. */
6517 #define SFPR_MAX (218*4)
6518
6519 struct sfpr_def_parms
6520 {
6521 const char name[12];
6522 unsigned char lo, hi;
6523 bfd_byte * (*write_ent) (bfd *, bfd_byte *, int);
6524 bfd_byte * (*write_tail) (bfd *, bfd_byte *, int);
6525 };
6526
6527 /* Auto-generate _save*, _rest* functions in .sfpr. */
6528
6529 static bfd_boolean
6530 sfpr_define (struct bfd_link_info *info, const struct sfpr_def_parms *parm)
6531 {
6532 struct ppc_link_hash_table *htab = ppc_hash_table (info);
6533 unsigned int i;
6534 size_t len = strlen (parm->name);
6535 bfd_boolean writing = FALSE;
6536 char sym[16];
6537
6538 if (htab == NULL)
6539 return FALSE;
6540
6541 memcpy (sym, parm->name, len);
6542 sym[len + 2] = 0;
6543
6544 for (i = parm->lo; i <= parm->hi; i++)
6545 {
6546 struct elf_link_hash_entry *h;
6547
6548 sym[len + 0] = i / 10 + '0';
6549 sym[len + 1] = i % 10 + '0';
6550 h = elf_link_hash_lookup (&htab->elf, sym, FALSE, FALSE, TRUE);
6551 if (h != NULL
6552 && !h->def_regular)
6553 {
6554 h->root.type = bfd_link_hash_defined;
6555 h->root.u.def.section = htab->sfpr;
6556 h->root.u.def.value = htab->sfpr->size;
6557 h->type = STT_FUNC;
6558 h->def_regular = 1;
6559 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
6560 writing = TRUE;
6561 if (htab->sfpr->contents == NULL)
6562 {
6563 htab->sfpr->contents = bfd_alloc (htab->elf.dynobj, SFPR_MAX);
6564 if (htab->sfpr->contents == NULL)
6565 return FALSE;
6566 }
6567 }
6568 if (writing)
6569 {
6570 bfd_byte *p = htab->sfpr->contents + htab->sfpr->size;
6571 if (i != parm->hi)
6572 p = (*parm->write_ent) (htab->elf.dynobj, p, i);
6573 else
6574 p = (*parm->write_tail) (htab->elf.dynobj, p, i);
6575 htab->sfpr->size = p - htab->sfpr->contents;
6576 }
6577 }
6578
6579 return TRUE;
6580 }
6581
6582 static bfd_byte *
6583 savegpr0 (bfd *abfd, bfd_byte *p, int r)
6584 {
6585 bfd_put_32 (abfd, STD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6586 return p + 4;
6587 }
6588
6589 static bfd_byte *
6590 savegpr0_tail (bfd *abfd, bfd_byte *p, int r)
6591 {
6592 p = savegpr0 (abfd, p, r);
6593 bfd_put_32 (abfd, STD_R0_0R1 + STK_LR, p);
6594 p = p + 4;
6595 bfd_put_32 (abfd, BLR, p);
6596 return p + 4;
6597 }
6598
6599 static bfd_byte *
6600 restgpr0 (bfd *abfd, bfd_byte *p, int r)
6601 {
6602 bfd_put_32 (abfd, LD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6603 return p + 4;
6604 }
6605
6606 static bfd_byte *
6607 restgpr0_tail (bfd *abfd, bfd_byte *p, int r)
6608 {
6609 bfd_put_32 (abfd, LD_R0_0R1 + STK_LR, p);
6610 p = p + 4;
6611 p = restgpr0 (abfd, p, r);
6612 bfd_put_32 (abfd, MTLR_R0, p);
6613 p = p + 4;
6614 if (r == 29)
6615 {
6616 p = restgpr0 (abfd, p, 30);
6617 p = restgpr0 (abfd, p, 31);
6618 }
6619 bfd_put_32 (abfd, BLR, p);
6620 return p + 4;
6621 }
6622
6623 static bfd_byte *
6624 savegpr1 (bfd *abfd, bfd_byte *p, int r)
6625 {
6626 bfd_put_32 (abfd, STD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6627 return p + 4;
6628 }
6629
6630 static bfd_byte *
6631 savegpr1_tail (bfd *abfd, bfd_byte *p, int r)
6632 {
6633 p = savegpr1 (abfd, p, r);
6634 bfd_put_32 (abfd, BLR, p);
6635 return p + 4;
6636 }
6637
6638 static bfd_byte *
6639 restgpr1 (bfd *abfd, bfd_byte *p, int r)
6640 {
6641 bfd_put_32 (abfd, LD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6642 return p + 4;
6643 }
6644
6645 static bfd_byte *
6646 restgpr1_tail (bfd *abfd, bfd_byte *p, int r)
6647 {
6648 p = restgpr1 (abfd, p, r);
6649 bfd_put_32 (abfd, BLR, p);
6650 return p + 4;
6651 }
6652
6653 static bfd_byte *
6654 savefpr (bfd *abfd, bfd_byte *p, int r)
6655 {
6656 bfd_put_32 (abfd, STFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6657 return p + 4;
6658 }
6659
6660 static bfd_byte *
6661 savefpr0_tail (bfd *abfd, bfd_byte *p, int r)
6662 {
6663 p = savefpr (abfd, p, r);
6664 bfd_put_32 (abfd, STD_R0_0R1 + STK_LR, p);
6665 p = p + 4;
6666 bfd_put_32 (abfd, BLR, p);
6667 return p + 4;
6668 }
6669
6670 static bfd_byte *
6671 restfpr (bfd *abfd, bfd_byte *p, int r)
6672 {
6673 bfd_put_32 (abfd, LFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6674 return p + 4;
6675 }
6676
6677 static bfd_byte *
6678 restfpr0_tail (bfd *abfd, bfd_byte *p, int r)
6679 {
6680 bfd_put_32 (abfd, LD_R0_0R1 + STK_LR, p);
6681 p = p + 4;
6682 p = restfpr (abfd, p, r);
6683 bfd_put_32 (abfd, MTLR_R0, p);
6684 p = p + 4;
6685 if (r == 29)
6686 {
6687 p = restfpr (abfd, p, 30);
6688 p = restfpr (abfd, p, 31);
6689 }
6690 bfd_put_32 (abfd, BLR, p);
6691 return p + 4;
6692 }
6693
6694 static bfd_byte *
6695 savefpr1_tail (bfd *abfd, bfd_byte *p, int r)
6696 {
6697 p = savefpr (abfd, p, r);
6698 bfd_put_32 (abfd, BLR, p);
6699 return p + 4;
6700 }
6701
6702 static bfd_byte *
6703 restfpr1_tail (bfd *abfd, bfd_byte *p, int r)
6704 {
6705 p = restfpr (abfd, p, r);
6706 bfd_put_32 (abfd, BLR, p);
6707 return p + 4;
6708 }
6709
6710 static bfd_byte *
6711 savevr (bfd *abfd, bfd_byte *p, int r)
6712 {
6713 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6714 p = p + 4;
6715 bfd_put_32 (abfd, STVX_VR0_R12_R0 + (r << 21), p);
6716 return p + 4;
6717 }
6718
6719 static bfd_byte *
6720 savevr_tail (bfd *abfd, bfd_byte *p, int r)
6721 {
6722 p = savevr (abfd, p, r);
6723 bfd_put_32 (abfd, BLR, p);
6724 return p + 4;
6725 }
6726
6727 static bfd_byte *
6728 restvr (bfd *abfd, bfd_byte *p, int r)
6729 {
6730 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6731 p = p + 4;
6732 bfd_put_32 (abfd, LVX_VR0_R12_R0 + (r << 21), p);
6733 return p + 4;
6734 }
6735
6736 static bfd_byte *
6737 restvr_tail (bfd *abfd, bfd_byte *p, int r)
6738 {
6739 p = restvr (abfd, p, r);
6740 bfd_put_32 (abfd, BLR, p);
6741 return p + 4;
6742 }
6743
6744 /* Called via elf_link_hash_traverse to transfer dynamic linking
6745 information on function code symbol entries to their corresponding
6746 function descriptor symbol entries. */
6747
6748 static bfd_boolean
6749 func_desc_adjust (struct elf_link_hash_entry *h, void *inf)
6750 {
6751 struct bfd_link_info *info;
6752 struct ppc_link_hash_table *htab;
6753 struct plt_entry *ent;
6754 struct ppc_link_hash_entry *fh;
6755 struct ppc_link_hash_entry *fdh;
6756 bfd_boolean force_local;
6757
6758 fh = (struct ppc_link_hash_entry *) h;
6759 if (fh->elf.root.type == bfd_link_hash_indirect)
6760 return TRUE;
6761
6762 info = inf;
6763 htab = ppc_hash_table (info);
6764 if (htab == NULL)
6765 return FALSE;
6766
6767 /* Resolve undefined references to dot-symbols as the value
6768 in the function descriptor, if we have one in a regular object.
6769 This is to satisfy cases like ".quad .foo". Calls to functions
6770 in dynamic objects are handled elsewhere. */
6771 if (fh->elf.root.type == bfd_link_hash_undefweak
6772 && fh->was_undefined
6773 && (fdh = defined_func_desc (fh)) != NULL
6774 && get_opd_info (fdh->elf.root.u.def.section) != NULL
6775 && opd_entry_value (fdh->elf.root.u.def.section,
6776 fdh->elf.root.u.def.value,
6777 &fh->elf.root.u.def.section,
6778 &fh->elf.root.u.def.value, FALSE) != (bfd_vma) -1)
6779 {
6780 fh->elf.root.type = fdh->elf.root.type;
6781 fh->elf.forced_local = 1;
6782 fh->elf.def_regular = fdh->elf.def_regular;
6783 fh->elf.def_dynamic = fdh->elf.def_dynamic;
6784 }
6785
6786 /* If this is a function code symbol, transfer dynamic linking
6787 information to the function descriptor symbol. */
6788 if (!fh->is_func)
6789 return TRUE;
6790
6791 for (ent = fh->elf.plt.plist; ent != NULL; ent = ent->next)
6792 if (ent->plt.refcount > 0)
6793 break;
6794 if (ent == NULL
6795 || fh->elf.root.root.string[0] != '.'
6796 || fh->elf.root.root.string[1] == '\0')
6797 return TRUE;
6798
6799 /* Find the corresponding function descriptor symbol. Create it
6800 as undefined if necessary. */
6801
6802 fdh = lookup_fdh (fh, htab);
6803 if (fdh == NULL
6804 && !info->executable
6805 && (fh->elf.root.type == bfd_link_hash_undefined
6806 || fh->elf.root.type == bfd_link_hash_undefweak))
6807 {
6808 fdh = make_fdh (info, fh);
6809 if (fdh == NULL)
6810 return FALSE;
6811 }
6812
6813 /* Fake function descriptors are made undefweak. If the function
6814 code symbol is strong undefined, make the fake sym the same.
6815 If the function code symbol is defined, then force the fake
6816 descriptor local; We can't support overriding of symbols in a
6817 shared library on a fake descriptor. */
6818
6819 if (fdh != NULL
6820 && fdh->fake
6821 && fdh->elf.root.type == bfd_link_hash_undefweak)
6822 {
6823 if (fh->elf.root.type == bfd_link_hash_undefined)
6824 {
6825 fdh->elf.root.type = bfd_link_hash_undefined;
6826 bfd_link_add_undef (&htab->elf.root, &fdh->elf.root);
6827 }
6828 else if (fh->elf.root.type == bfd_link_hash_defined
6829 || fh->elf.root.type == bfd_link_hash_defweak)
6830 {
6831 _bfd_elf_link_hash_hide_symbol (info, &fdh->elf, TRUE);
6832 }
6833 }
6834
6835 if (fdh != NULL
6836 && !fdh->elf.forced_local
6837 && (!info->executable
6838 || fdh->elf.def_dynamic
6839 || fdh->elf.ref_dynamic
6840 || (fdh->elf.root.type == bfd_link_hash_undefweak
6841 && ELF_ST_VISIBILITY (fdh->elf.other) == STV_DEFAULT)))
6842 {
6843 if (fdh->elf.dynindx == -1)
6844 if (! bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
6845 return FALSE;
6846 fdh->elf.ref_regular |= fh->elf.ref_regular;
6847 fdh->elf.ref_dynamic |= fh->elf.ref_dynamic;
6848 fdh->elf.ref_regular_nonweak |= fh->elf.ref_regular_nonweak;
6849 fdh->elf.non_got_ref |= fh->elf.non_got_ref;
6850 if (ELF_ST_VISIBILITY (fh->elf.other) == STV_DEFAULT)
6851 {
6852 move_plt_plist (fh, fdh);
6853 fdh->elf.needs_plt = 1;
6854 }
6855 fdh->is_func_descriptor = 1;
6856 fdh->oh = fh;
6857 fh->oh = fdh;
6858 }
6859
6860 /* Now that the info is on the function descriptor, clear the
6861 function code sym info. Any function code syms for which we
6862 don't have a definition in a regular file, we force local.
6863 This prevents a shared library from exporting syms that have
6864 been imported from another library. Function code syms that
6865 are really in the library we must leave global to prevent the
6866 linker dragging in a definition from a static library. */
6867 force_local = (!fh->elf.def_regular
6868 || fdh == NULL
6869 || !fdh->elf.def_regular
6870 || fdh->elf.forced_local);
6871 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6872
6873 return TRUE;
6874 }
6875
6876 /* Called near the start of bfd_elf_size_dynamic_sections. We use
6877 this hook to a) provide some gcc support functions, and b) transfer
6878 dynamic linking information gathered so far on function code symbol
6879 entries, to their corresponding function descriptor symbol entries. */
6880
6881 static bfd_boolean
6882 ppc64_elf_func_desc_adjust (bfd *obfd ATTRIBUTE_UNUSED,
6883 struct bfd_link_info *info)
6884 {
6885 struct ppc_link_hash_table *htab;
6886 unsigned int i;
6887 static const struct sfpr_def_parms funcs[] =
6888 {
6889 { "_savegpr0_", 14, 31, savegpr0, savegpr0_tail },
6890 { "_restgpr0_", 14, 29, restgpr0, restgpr0_tail },
6891 { "_restgpr0_", 30, 31, restgpr0, restgpr0_tail },
6892 { "_savegpr1_", 14, 31, savegpr1, savegpr1_tail },
6893 { "_restgpr1_", 14, 31, restgpr1, restgpr1_tail },
6894 { "_savefpr_", 14, 31, savefpr, savefpr0_tail },
6895 { "_restfpr_", 14, 29, restfpr, restfpr0_tail },
6896 { "_restfpr_", 30, 31, restfpr, restfpr0_tail },
6897 { "._savef", 14, 31, savefpr, savefpr1_tail },
6898 { "._restf", 14, 31, restfpr, restfpr1_tail },
6899 { "_savevr_", 20, 31, savevr, savevr_tail },
6900 { "_restvr_", 20, 31, restvr, restvr_tail }
6901 };
6902
6903 htab = ppc_hash_table (info);
6904 if (htab == NULL)
6905 return FALSE;
6906
6907 if (!info->relocatable
6908 && htab->elf.hgot != NULL)
6909 {
6910 _bfd_elf_link_hash_hide_symbol (info, htab->elf.hgot, TRUE);
6911 /* Make .TOC. defined so as to prevent it being made dynamic.
6912 The wrong value here is fixed later in ppc64_elf_set_toc. */
6913 htab->elf.hgot->type = STT_OBJECT;
6914 htab->elf.hgot->root.type = bfd_link_hash_defined;
6915 htab->elf.hgot->root.u.def.value = 0;
6916 htab->elf.hgot->root.u.def.section = bfd_abs_section_ptr;
6917 htab->elf.hgot->def_regular = 1;
6918 htab->elf.hgot->other = ((htab->elf.hgot->other & ~ELF_ST_VISIBILITY (-1))
6919 | STV_HIDDEN);
6920 }
6921
6922 if (htab->sfpr == NULL)
6923 /* We don't have any relocs. */
6924 return TRUE;
6925
6926 /* Provide any missing _save* and _rest* functions. */
6927 htab->sfpr->size = 0;
6928 if (htab->params->save_restore_funcs)
6929 for (i = 0; i < sizeof (funcs) / sizeof (funcs[0]); i++)
6930 if (!sfpr_define (info, &funcs[i]))
6931 return FALSE;
6932
6933 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
6934
6935 if (htab->sfpr->size == 0)
6936 htab->sfpr->flags |= SEC_EXCLUDE;
6937
6938 return TRUE;
6939 }
6940
6941 /* Return true if we have dynamic relocs that apply to read-only sections. */
6942
6943 static bfd_boolean
6944 readonly_dynrelocs (struct elf_link_hash_entry *h)
6945 {
6946 struct ppc_link_hash_entry *eh;
6947 struct elf_dyn_relocs *p;
6948
6949 eh = (struct ppc_link_hash_entry *) h;
6950 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6951 {
6952 asection *s = p->sec->output_section;
6953
6954 if (s != NULL && (s->flags & SEC_READONLY) != 0)
6955 return TRUE;
6956 }
6957 return FALSE;
6958 }
6959
6960 /* Adjust a symbol defined by a dynamic object and referenced by a
6961 regular object. The current definition is in some section of the
6962 dynamic object, but we're not including those sections. We have to
6963 change the definition to something the rest of the link can
6964 understand. */
6965
6966 static bfd_boolean
6967 ppc64_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6968 struct elf_link_hash_entry *h)
6969 {
6970 struct ppc_link_hash_table *htab;
6971 asection *s;
6972
6973 htab = ppc_hash_table (info);
6974 if (htab == NULL)
6975 return FALSE;
6976
6977 /* Deal with function syms. */
6978 if (h->type == STT_FUNC
6979 || h->type == STT_GNU_IFUNC
6980 || h->needs_plt)
6981 {
6982 /* Clear procedure linkage table information for any symbol that
6983 won't need a .plt entry. */
6984 struct plt_entry *ent;
6985 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
6986 if (ent->plt.refcount > 0)
6987 break;
6988 if (ent == NULL
6989 || (h->type != STT_GNU_IFUNC
6990 && (SYMBOL_CALLS_LOCAL (info, h)
6991 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
6992 && h->root.type == bfd_link_hash_undefweak))))
6993 {
6994 h->plt.plist = NULL;
6995 h->needs_plt = 0;
6996 h->pointer_equality_needed = 0;
6997 }
6998 else if (abiversion (info->output_bfd) == 2)
6999 {
7000 /* Taking a function's address in a read/write section
7001 doesn't require us to define the function symbol in the
7002 executable on a global entry stub. A dynamic reloc can
7003 be used instead. */
7004 if (h->pointer_equality_needed
7005 && !readonly_dynrelocs (h))
7006 {
7007 h->pointer_equality_needed = 0;
7008 h->non_got_ref = 0;
7009 }
7010
7011 /* After adjust_dynamic_symbol, non_got_ref set in the
7012 non-shared case means that we have allocated space in
7013 .dynbss for the symbol and thus dyn_relocs for this
7014 symbol should be discarded.
7015 If we get here we know we are making a PLT entry for this
7016 symbol, and in an executable we'd normally resolve
7017 relocations against this symbol to the PLT entry. Allow
7018 dynamic relocs if the reference is weak, and the dynamic
7019 relocs will not cause text relocation. */
7020 else if (!h->ref_regular_nonweak
7021 && h->non_got_ref
7022 && h->type != STT_GNU_IFUNC
7023 && !readonly_dynrelocs (h))
7024 h->non_got_ref = 0;
7025
7026 /* If making a plt entry, then we don't need copy relocs. */
7027 return TRUE;
7028 }
7029 }
7030 else
7031 h->plt.plist = NULL;
7032
7033 /* If this is a weak symbol, and there is a real definition, the
7034 processor independent code will have arranged for us to see the
7035 real definition first, and we can just use the same value. */
7036 if (h->u.weakdef != NULL)
7037 {
7038 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7039 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7040 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7041 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7042 if (ELIMINATE_COPY_RELOCS)
7043 h->non_got_ref = h->u.weakdef->non_got_ref;
7044 return TRUE;
7045 }
7046
7047 /* If we are creating a shared library, we must presume that the
7048 only references to the symbol are via the global offset table.
7049 For such cases we need not do anything here; the relocations will
7050 be handled correctly by relocate_section. */
7051 if (info->shared)
7052 return TRUE;
7053
7054 /* If there are no references to this symbol that do not use the
7055 GOT, we don't need to generate a copy reloc. */
7056 if (!h->non_got_ref)
7057 return TRUE;
7058
7059 /* Don't generate a copy reloc for symbols defined in the executable. */
7060 if (!h->def_dynamic || !h->ref_regular || h->def_regular)
7061 return TRUE;
7062
7063 /* If we didn't find any dynamic relocs in read-only sections, then
7064 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
7065 if (ELIMINATE_COPY_RELOCS && !readonly_dynrelocs (h))
7066 {
7067 h->non_got_ref = 0;
7068 return TRUE;
7069 }
7070
7071 if (h->plt.plist != NULL)
7072 {
7073 /* We should never get here, but unfortunately there are versions
7074 of gcc out there that improperly (for this ABI) put initialized
7075 function pointers, vtable refs and suchlike in read-only
7076 sections. Allow them to proceed, but warn that this might
7077 break at runtime. */
7078 info->callbacks->einfo
7079 (_("%P: copy reloc against `%T' requires lazy plt linking; "
7080 "avoid setting LD_BIND_NOW=1 or upgrade gcc\n"),
7081 h->root.root.string);
7082 }
7083
7084 /* This is a reference to a symbol defined by a dynamic object which
7085 is not a function. */
7086
7087 /* We must allocate the symbol in our .dynbss section, which will
7088 become part of the .bss section of the executable. There will be
7089 an entry for this symbol in the .dynsym section. The dynamic
7090 object will contain position independent code, so all references
7091 from the dynamic object to this symbol will go through the global
7092 offset table. The dynamic linker will use the .dynsym entry to
7093 determine the address it must put in the global offset table, so
7094 both the dynamic object and the regular object will refer to the
7095 same memory location for the variable. */
7096
7097 /* We must generate a R_PPC64_COPY reloc to tell the dynamic linker
7098 to copy the initial value out of the dynamic object and into the
7099 runtime process image. We need to remember the offset into the
7100 .rela.bss section we are going to use. */
7101 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
7102 {
7103 htab->relbss->size += sizeof (Elf64_External_Rela);
7104 h->needs_copy = 1;
7105 }
7106
7107 s = htab->dynbss;
7108
7109 return _bfd_elf_adjust_dynamic_copy (h, s);
7110 }
7111
7112 /* If given a function descriptor symbol, hide both the function code
7113 sym and the descriptor. */
7114 static void
7115 ppc64_elf_hide_symbol (struct bfd_link_info *info,
7116 struct elf_link_hash_entry *h,
7117 bfd_boolean force_local)
7118 {
7119 struct ppc_link_hash_entry *eh;
7120 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
7121
7122 eh = (struct ppc_link_hash_entry *) h;
7123 if (eh->is_func_descriptor)
7124 {
7125 struct ppc_link_hash_entry *fh = eh->oh;
7126
7127 if (fh == NULL)
7128 {
7129 const char *p, *q;
7130 struct ppc_link_hash_table *htab;
7131 char save;
7132
7133 /* We aren't supposed to use alloca in BFD because on
7134 systems which do not have alloca the version in libiberty
7135 calls xmalloc, which might cause the program to crash
7136 when it runs out of memory. This function doesn't have a
7137 return status, so there's no way to gracefully return an
7138 error. So cheat. We know that string[-1] can be safely
7139 accessed; It's either a string in an ELF string table,
7140 or allocated in an objalloc structure. */
7141
7142 p = eh->elf.root.root.string - 1;
7143 save = *p;
7144 *(char *) p = '.';
7145 htab = ppc_hash_table (info);
7146 if (htab == NULL)
7147 return;
7148
7149 fh = (struct ppc_link_hash_entry *)
7150 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
7151 *(char *) p = save;
7152
7153 /* Unfortunately, if it so happens that the string we were
7154 looking for was allocated immediately before this string,
7155 then we overwrote the string terminator. That's the only
7156 reason the lookup should fail. */
7157 if (fh == NULL)
7158 {
7159 q = eh->elf.root.root.string + strlen (eh->elf.root.root.string);
7160 while (q >= eh->elf.root.root.string && *q == *p)
7161 --q, --p;
7162 if (q < eh->elf.root.root.string && *p == '.')
7163 fh = (struct ppc_link_hash_entry *)
7164 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
7165 }
7166 if (fh != NULL)
7167 {
7168 eh->oh = fh;
7169 fh->oh = eh;
7170 }
7171 }
7172 if (fh != NULL)
7173 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
7174 }
7175 }
7176
7177 static bfd_boolean
7178 get_sym_h (struct elf_link_hash_entry **hp,
7179 Elf_Internal_Sym **symp,
7180 asection **symsecp,
7181 unsigned char **tls_maskp,
7182 Elf_Internal_Sym **locsymsp,
7183 unsigned long r_symndx,
7184 bfd *ibfd)
7185 {
7186 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
7187
7188 if (r_symndx >= symtab_hdr->sh_info)
7189 {
7190 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
7191 struct elf_link_hash_entry *h;
7192
7193 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7194 h = elf_follow_link (h);
7195
7196 if (hp != NULL)
7197 *hp = h;
7198
7199 if (symp != NULL)
7200 *symp = NULL;
7201
7202 if (symsecp != NULL)
7203 {
7204 asection *symsec = NULL;
7205 if (h->root.type == bfd_link_hash_defined
7206 || h->root.type == bfd_link_hash_defweak)
7207 symsec = h->root.u.def.section;
7208 *symsecp = symsec;
7209 }
7210
7211 if (tls_maskp != NULL)
7212 {
7213 struct ppc_link_hash_entry *eh;
7214
7215 eh = (struct ppc_link_hash_entry *) h;
7216 *tls_maskp = &eh->tls_mask;
7217 }
7218 }
7219 else
7220 {
7221 Elf_Internal_Sym *sym;
7222 Elf_Internal_Sym *locsyms = *locsymsp;
7223
7224 if (locsyms == NULL)
7225 {
7226 locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
7227 if (locsyms == NULL)
7228 locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
7229 symtab_hdr->sh_info,
7230 0, NULL, NULL, NULL);
7231 if (locsyms == NULL)
7232 return FALSE;
7233 *locsymsp = locsyms;
7234 }
7235 sym = locsyms + r_symndx;
7236
7237 if (hp != NULL)
7238 *hp = NULL;
7239
7240 if (symp != NULL)
7241 *symp = sym;
7242
7243 if (symsecp != NULL)
7244 *symsecp = bfd_section_from_elf_index (ibfd, sym->st_shndx);
7245
7246 if (tls_maskp != NULL)
7247 {
7248 struct got_entry **lgot_ents;
7249 unsigned char *tls_mask;
7250
7251 tls_mask = NULL;
7252 lgot_ents = elf_local_got_ents (ibfd);
7253 if (lgot_ents != NULL)
7254 {
7255 struct plt_entry **local_plt = (struct plt_entry **)
7256 (lgot_ents + symtab_hdr->sh_info);
7257 unsigned char *lgot_masks = (unsigned char *)
7258 (local_plt + symtab_hdr->sh_info);
7259 tls_mask = &lgot_masks[r_symndx];
7260 }
7261 *tls_maskp = tls_mask;
7262 }
7263 }
7264 return TRUE;
7265 }
7266
7267 /* Returns TLS_MASKP for the given REL symbol. Function return is 0 on
7268 error, 2 on a toc GD type suitable for optimization, 3 on a toc LD
7269 type suitable for optimization, and 1 otherwise. */
7270
7271 static int
7272 get_tls_mask (unsigned char **tls_maskp,
7273 unsigned long *toc_symndx,
7274 bfd_vma *toc_addend,
7275 Elf_Internal_Sym **locsymsp,
7276 const Elf_Internal_Rela *rel,
7277 bfd *ibfd)
7278 {
7279 unsigned long r_symndx;
7280 int next_r;
7281 struct elf_link_hash_entry *h;
7282 Elf_Internal_Sym *sym;
7283 asection *sec;
7284 bfd_vma off;
7285
7286 r_symndx = ELF64_R_SYM (rel->r_info);
7287 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
7288 return 0;
7289
7290 if ((*tls_maskp != NULL && **tls_maskp != 0)
7291 || sec == NULL
7292 || ppc64_elf_section_data (sec) == NULL
7293 || ppc64_elf_section_data (sec)->sec_type != sec_toc)
7294 return 1;
7295
7296 /* Look inside a TOC section too. */
7297 if (h != NULL)
7298 {
7299 BFD_ASSERT (h->root.type == bfd_link_hash_defined);
7300 off = h->root.u.def.value;
7301 }
7302 else
7303 off = sym->st_value;
7304 off += rel->r_addend;
7305 BFD_ASSERT (off % 8 == 0);
7306 r_symndx = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8];
7307 next_r = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8 + 1];
7308 if (toc_symndx != NULL)
7309 *toc_symndx = r_symndx;
7310 if (toc_addend != NULL)
7311 *toc_addend = ppc64_elf_section_data (sec)->u.toc.add[off / 8];
7312 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
7313 return 0;
7314 if ((h == NULL || is_static_defined (h))
7315 && (next_r == -1 || next_r == -2))
7316 return 1 - next_r;
7317 return 1;
7318 }
7319
7320 /* Find (or create) an entry in the tocsave hash table. */
7321
7322 static struct tocsave_entry *
7323 tocsave_find (struct ppc_link_hash_table *htab,
7324 enum insert_option insert,
7325 Elf_Internal_Sym **local_syms,
7326 const Elf_Internal_Rela *irela,
7327 bfd *ibfd)
7328 {
7329 unsigned long r_indx;
7330 struct elf_link_hash_entry *h;
7331 Elf_Internal_Sym *sym;
7332 struct tocsave_entry ent, *p;
7333 hashval_t hash;
7334 struct tocsave_entry **slot;
7335
7336 r_indx = ELF64_R_SYM (irela->r_info);
7337 if (!get_sym_h (&h, &sym, &ent.sec, NULL, local_syms, r_indx, ibfd))
7338 return NULL;
7339 if (ent.sec == NULL || ent.sec->output_section == NULL)
7340 {
7341 (*_bfd_error_handler)
7342 (_("%B: undefined symbol on R_PPC64_TOCSAVE relocation"));
7343 return NULL;
7344 }
7345
7346 if (h != NULL)
7347 ent.offset = h->root.u.def.value;
7348 else
7349 ent.offset = sym->st_value;
7350 ent.offset += irela->r_addend;
7351
7352 hash = tocsave_htab_hash (&ent);
7353 slot = ((struct tocsave_entry **)
7354 htab_find_slot_with_hash (htab->tocsave_htab, &ent, hash, insert));
7355 if (slot == NULL)
7356 return NULL;
7357
7358 if (*slot == NULL)
7359 {
7360 p = (struct tocsave_entry *) bfd_alloc (ibfd, sizeof (*p));
7361 if (p == NULL)
7362 return NULL;
7363 *p = ent;
7364 *slot = p;
7365 }
7366 return *slot;
7367 }
7368
7369 /* Adjust all global syms defined in opd sections. In gcc generated
7370 code for the old ABI, these will already have been done. */
7371
7372 static bfd_boolean
7373 adjust_opd_syms (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
7374 {
7375 struct ppc_link_hash_entry *eh;
7376 asection *sym_sec;
7377 struct _opd_sec_data *opd;
7378
7379 if (h->root.type == bfd_link_hash_indirect)
7380 return TRUE;
7381
7382 if (h->root.type != bfd_link_hash_defined
7383 && h->root.type != bfd_link_hash_defweak)
7384 return TRUE;
7385
7386 eh = (struct ppc_link_hash_entry *) h;
7387 if (eh->adjust_done)
7388 return TRUE;
7389
7390 sym_sec = eh->elf.root.u.def.section;
7391 opd = get_opd_info (sym_sec);
7392 if (opd != NULL && opd->adjust != NULL)
7393 {
7394 long adjust = opd->adjust[eh->elf.root.u.def.value / 8];
7395 if (adjust == -1)
7396 {
7397 /* This entry has been deleted. */
7398 asection *dsec = ppc64_elf_tdata (sym_sec->owner)->deleted_section;
7399 if (dsec == NULL)
7400 {
7401 for (dsec = sym_sec->owner->sections; dsec; dsec = dsec->next)
7402 if (discarded_section (dsec))
7403 {
7404 ppc64_elf_tdata (sym_sec->owner)->deleted_section = dsec;
7405 break;
7406 }
7407 }
7408 eh->elf.root.u.def.value = 0;
7409 eh->elf.root.u.def.section = dsec;
7410 }
7411 else
7412 eh->elf.root.u.def.value += adjust;
7413 eh->adjust_done = 1;
7414 }
7415 return TRUE;
7416 }
7417
7418 /* Handles decrementing dynamic reloc counts for the reloc specified by
7419 R_INFO in section SEC. If LOCAL_SYMS is NULL, then H and SYM
7420 have already been determined. */
7421
7422 static bfd_boolean
7423 dec_dynrel_count (bfd_vma r_info,
7424 asection *sec,
7425 struct bfd_link_info *info,
7426 Elf_Internal_Sym **local_syms,
7427 struct elf_link_hash_entry *h,
7428 Elf_Internal_Sym *sym)
7429 {
7430 enum elf_ppc64_reloc_type r_type;
7431 asection *sym_sec = NULL;
7432
7433 /* Can this reloc be dynamic? This switch, and later tests here
7434 should be kept in sync with the code in check_relocs. */
7435 r_type = ELF64_R_TYPE (r_info);
7436 switch (r_type)
7437 {
7438 default:
7439 return TRUE;
7440
7441 case R_PPC64_TPREL16:
7442 case R_PPC64_TPREL16_LO:
7443 case R_PPC64_TPREL16_HI:
7444 case R_PPC64_TPREL16_HA:
7445 case R_PPC64_TPREL16_DS:
7446 case R_PPC64_TPREL16_LO_DS:
7447 case R_PPC64_TPREL16_HIGH:
7448 case R_PPC64_TPREL16_HIGHA:
7449 case R_PPC64_TPREL16_HIGHER:
7450 case R_PPC64_TPREL16_HIGHERA:
7451 case R_PPC64_TPREL16_HIGHEST:
7452 case R_PPC64_TPREL16_HIGHESTA:
7453 if (!info->shared)
7454 return TRUE;
7455
7456 case R_PPC64_TPREL64:
7457 case R_PPC64_DTPMOD64:
7458 case R_PPC64_DTPREL64:
7459 case R_PPC64_ADDR64:
7460 case R_PPC64_REL30:
7461 case R_PPC64_REL32:
7462 case R_PPC64_REL64:
7463 case R_PPC64_ADDR14:
7464 case R_PPC64_ADDR14_BRNTAKEN:
7465 case R_PPC64_ADDR14_BRTAKEN:
7466 case R_PPC64_ADDR16:
7467 case R_PPC64_ADDR16_DS:
7468 case R_PPC64_ADDR16_HA:
7469 case R_PPC64_ADDR16_HI:
7470 case R_PPC64_ADDR16_HIGH:
7471 case R_PPC64_ADDR16_HIGHA:
7472 case R_PPC64_ADDR16_HIGHER:
7473 case R_PPC64_ADDR16_HIGHERA:
7474 case R_PPC64_ADDR16_HIGHEST:
7475 case R_PPC64_ADDR16_HIGHESTA:
7476 case R_PPC64_ADDR16_LO:
7477 case R_PPC64_ADDR16_LO_DS:
7478 case R_PPC64_ADDR24:
7479 case R_PPC64_ADDR32:
7480 case R_PPC64_UADDR16:
7481 case R_PPC64_UADDR32:
7482 case R_PPC64_UADDR64:
7483 case R_PPC64_TOC:
7484 break;
7485 }
7486
7487 if (local_syms != NULL)
7488 {
7489 unsigned long r_symndx;
7490 bfd *ibfd = sec->owner;
7491
7492 r_symndx = ELF64_R_SYM (r_info);
7493 if (!get_sym_h (&h, &sym, &sym_sec, NULL, local_syms, r_symndx, ibfd))
7494 return FALSE;
7495 }
7496
7497 if ((info->shared
7498 && (must_be_dyn_reloc (info, r_type)
7499 || (h != NULL
7500 && (!SYMBOLIC_BIND (info, h)
7501 || h->root.type == bfd_link_hash_defweak
7502 || !h->def_regular))))
7503 || (ELIMINATE_COPY_RELOCS
7504 && !info->shared
7505 && h != NULL
7506 && (h->root.type == bfd_link_hash_defweak
7507 || !h->def_regular)))
7508 ;
7509 else
7510 return TRUE;
7511
7512 if (h != NULL)
7513 {
7514 struct elf_dyn_relocs *p;
7515 struct elf_dyn_relocs **pp;
7516 pp = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
7517
7518 /* elf_gc_sweep may have already removed all dyn relocs associated
7519 with local syms for a given section. Also, symbol flags are
7520 changed by elf_gc_sweep_symbol, confusing the test above. Don't
7521 report a dynreloc miscount. */
7522 if (*pp == NULL && info->gc_sections)
7523 return TRUE;
7524
7525 while ((p = *pp) != NULL)
7526 {
7527 if (p->sec == sec)
7528 {
7529 if (!must_be_dyn_reloc (info, r_type))
7530 p->pc_count -= 1;
7531 p->count -= 1;
7532 if (p->count == 0)
7533 *pp = p->next;
7534 return TRUE;
7535 }
7536 pp = &p->next;
7537 }
7538 }
7539 else
7540 {
7541 struct ppc_dyn_relocs *p;
7542 struct ppc_dyn_relocs **pp;
7543 void *vpp;
7544 bfd_boolean is_ifunc;
7545
7546 if (local_syms == NULL)
7547 sym_sec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
7548 if (sym_sec == NULL)
7549 sym_sec = sec;
7550
7551 vpp = &elf_section_data (sym_sec)->local_dynrel;
7552 pp = (struct ppc_dyn_relocs **) vpp;
7553
7554 if (*pp == NULL && info->gc_sections)
7555 return TRUE;
7556
7557 is_ifunc = ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC;
7558 while ((p = *pp) != NULL)
7559 {
7560 if (p->sec == sec && p->ifunc == is_ifunc)
7561 {
7562 p->count -= 1;
7563 if (p->count == 0)
7564 *pp = p->next;
7565 return TRUE;
7566 }
7567 pp = &p->next;
7568 }
7569 }
7570
7571 info->callbacks->einfo (_("%P: dynreloc miscount for %B, section %A\n"),
7572 sec->owner, sec);
7573 bfd_set_error (bfd_error_bad_value);
7574 return FALSE;
7575 }
7576
7577 /* Remove unused Official Procedure Descriptor entries. Currently we
7578 only remove those associated with functions in discarded link-once
7579 sections, or weakly defined functions that have been overridden. It
7580 would be possible to remove many more entries for statically linked
7581 applications. */
7582
7583 bfd_boolean
7584 ppc64_elf_edit_opd (struct bfd_link_info *info)
7585 {
7586 bfd *ibfd;
7587 bfd_boolean some_edited = FALSE;
7588 asection *need_pad = NULL;
7589 struct ppc_link_hash_table *htab;
7590
7591 htab = ppc_hash_table (info);
7592 if (htab == NULL)
7593 return FALSE;
7594
7595 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7596 {
7597 asection *sec;
7598 Elf_Internal_Rela *relstart, *rel, *relend;
7599 Elf_Internal_Shdr *symtab_hdr;
7600 Elf_Internal_Sym *local_syms;
7601 bfd_vma offset;
7602 struct _opd_sec_data *opd;
7603 bfd_boolean need_edit, add_aux_fields;
7604 bfd_size_type cnt_16b = 0;
7605
7606 if (!is_ppc64_elf (ibfd))
7607 continue;
7608
7609 sec = bfd_get_section_by_name (ibfd, ".opd");
7610 if (sec == NULL || sec->size == 0)
7611 continue;
7612
7613 if (sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
7614 continue;
7615
7616 if (sec->output_section == bfd_abs_section_ptr)
7617 continue;
7618
7619 /* Look through the section relocs. */
7620 if ((sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0)
7621 continue;
7622
7623 local_syms = NULL;
7624 symtab_hdr = &elf_symtab_hdr (ibfd);
7625
7626 /* Read the relocations. */
7627 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7628 info->keep_memory);
7629 if (relstart == NULL)
7630 return FALSE;
7631
7632 /* First run through the relocs to check they are sane, and to
7633 determine whether we need to edit this opd section. */
7634 need_edit = FALSE;
7635 need_pad = sec;
7636 offset = 0;
7637 relend = relstart + sec->reloc_count;
7638 for (rel = relstart; rel < relend; )
7639 {
7640 enum elf_ppc64_reloc_type r_type;
7641 unsigned long r_symndx;
7642 asection *sym_sec;
7643 struct elf_link_hash_entry *h;
7644 Elf_Internal_Sym *sym;
7645
7646 /* .opd contains a regular array of 16 or 24 byte entries. We're
7647 only interested in the reloc pointing to a function entry
7648 point. */
7649 if (rel->r_offset != offset
7650 || rel + 1 >= relend
7651 || (rel + 1)->r_offset != offset + 8)
7652 {
7653 /* If someone messes with .opd alignment then after a
7654 "ld -r" we might have padding in the middle of .opd.
7655 Also, there's nothing to prevent someone putting
7656 something silly in .opd with the assembler. No .opd
7657 optimization for them! */
7658 broken_opd:
7659 (*_bfd_error_handler)
7660 (_("%B: .opd is not a regular array of opd entries"), ibfd);
7661 need_edit = FALSE;
7662 break;
7663 }
7664
7665 if ((r_type = ELF64_R_TYPE (rel->r_info)) != R_PPC64_ADDR64
7666 || (r_type = ELF64_R_TYPE ((rel + 1)->r_info)) != R_PPC64_TOC)
7667 {
7668 (*_bfd_error_handler)
7669 (_("%B: unexpected reloc type %u in .opd section"),
7670 ibfd, r_type);
7671 need_edit = FALSE;
7672 break;
7673 }
7674
7675 r_symndx = ELF64_R_SYM (rel->r_info);
7676 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7677 r_symndx, ibfd))
7678 goto error_ret;
7679
7680 if (sym_sec == NULL || sym_sec->owner == NULL)
7681 {
7682 const char *sym_name;
7683 if (h != NULL)
7684 sym_name = h->root.root.string;
7685 else
7686 sym_name = bfd_elf_sym_name (ibfd, symtab_hdr, sym,
7687 sym_sec);
7688
7689 (*_bfd_error_handler)
7690 (_("%B: undefined sym `%s' in .opd section"),
7691 ibfd, sym_name);
7692 need_edit = FALSE;
7693 break;
7694 }
7695
7696 /* opd entries are always for functions defined in the
7697 current input bfd. If the symbol isn't defined in the
7698 input bfd, then we won't be using the function in this
7699 bfd; It must be defined in a linkonce section in another
7700 bfd, or is weak. It's also possible that we are
7701 discarding the function due to a linker script /DISCARD/,
7702 which we test for via the output_section. */
7703 if (sym_sec->owner != ibfd
7704 || sym_sec->output_section == bfd_abs_section_ptr)
7705 need_edit = TRUE;
7706
7707 rel += 2;
7708 if (rel == relend
7709 || (rel + 1 == relend && rel->r_offset == offset + 16))
7710 {
7711 if (sec->size == offset + 24)
7712 {
7713 need_pad = NULL;
7714 break;
7715 }
7716 if (rel == relend && sec->size == offset + 16)
7717 {
7718 cnt_16b++;
7719 break;
7720 }
7721 goto broken_opd;
7722 }
7723
7724 if (rel->r_offset == offset + 24)
7725 offset += 24;
7726 else if (rel->r_offset != offset + 16)
7727 goto broken_opd;
7728 else if (rel + 1 < relend
7729 && ELF64_R_TYPE (rel[0].r_info) == R_PPC64_ADDR64
7730 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOC)
7731 {
7732 offset += 16;
7733 cnt_16b++;
7734 }
7735 else if (rel + 2 < relend
7736 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_ADDR64
7737 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_TOC)
7738 {
7739 offset += 24;
7740 rel += 1;
7741 }
7742 else
7743 goto broken_opd;
7744 }
7745
7746 add_aux_fields = htab->params->non_overlapping_opd && cnt_16b > 0;
7747
7748 if (need_edit || add_aux_fields)
7749 {
7750 Elf_Internal_Rela *write_rel;
7751 Elf_Internal_Shdr *rel_hdr;
7752 bfd_byte *rptr, *wptr;
7753 bfd_byte *new_contents;
7754 bfd_boolean skip;
7755 long opd_ent_size;
7756 bfd_size_type amt;
7757
7758 new_contents = NULL;
7759 amt = sec->size * sizeof (long) / 8;
7760 opd = &ppc64_elf_section_data (sec)->u.opd;
7761 opd->adjust = bfd_zalloc (sec->owner, amt);
7762 if (opd->adjust == NULL)
7763 return FALSE;
7764 ppc64_elf_section_data (sec)->sec_type = sec_opd;
7765
7766 /* This seems a waste of time as input .opd sections are all
7767 zeros as generated by gcc, but I suppose there's no reason
7768 this will always be so. We might start putting something in
7769 the third word of .opd entries. */
7770 if ((sec->flags & SEC_IN_MEMORY) == 0)
7771 {
7772 bfd_byte *loc;
7773 if (!bfd_malloc_and_get_section (ibfd, sec, &loc))
7774 {
7775 if (loc != NULL)
7776 free (loc);
7777 error_ret:
7778 if (local_syms != NULL
7779 && symtab_hdr->contents != (unsigned char *) local_syms)
7780 free (local_syms);
7781 if (elf_section_data (sec)->relocs != relstart)
7782 free (relstart);
7783 return FALSE;
7784 }
7785 sec->contents = loc;
7786 sec->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7787 }
7788
7789 elf_section_data (sec)->relocs = relstart;
7790
7791 new_contents = sec->contents;
7792 if (add_aux_fields)
7793 {
7794 new_contents = bfd_malloc (sec->size + cnt_16b * 8);
7795 if (new_contents == NULL)
7796 return FALSE;
7797 need_pad = FALSE;
7798 }
7799 wptr = new_contents;
7800 rptr = sec->contents;
7801
7802 write_rel = relstart;
7803 skip = FALSE;
7804 offset = 0;
7805 opd_ent_size = 0;
7806 for (rel = relstart; rel < relend; rel++)
7807 {
7808 unsigned long r_symndx;
7809 asection *sym_sec;
7810 struct elf_link_hash_entry *h;
7811 Elf_Internal_Sym *sym;
7812
7813 r_symndx = ELF64_R_SYM (rel->r_info);
7814 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7815 r_symndx, ibfd))
7816 goto error_ret;
7817
7818 if (rel->r_offset == offset)
7819 {
7820 struct ppc_link_hash_entry *fdh = NULL;
7821
7822 /* See if the .opd entry is full 24 byte or
7823 16 byte (with fd_aux entry overlapped with next
7824 fd_func). */
7825 opd_ent_size = 24;
7826 if ((rel + 2 == relend && sec->size == offset + 16)
7827 || (rel + 3 < relend
7828 && rel[2].r_offset == offset + 16
7829 && rel[3].r_offset == offset + 24
7830 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_ADDR64
7831 && ELF64_R_TYPE (rel[3].r_info) == R_PPC64_TOC))
7832 opd_ent_size = 16;
7833
7834 if (h != NULL
7835 && h->root.root.string[0] == '.')
7836 {
7837 fdh = lookup_fdh ((struct ppc_link_hash_entry *) h, htab);
7838 if (fdh != NULL
7839 && fdh->elf.root.type != bfd_link_hash_defined
7840 && fdh->elf.root.type != bfd_link_hash_defweak)
7841 fdh = NULL;
7842 }
7843
7844 skip = (sym_sec->owner != ibfd
7845 || sym_sec->output_section == bfd_abs_section_ptr);
7846 if (skip)
7847 {
7848 if (fdh != NULL && sym_sec->owner == ibfd)
7849 {
7850 /* Arrange for the function descriptor sym
7851 to be dropped. */
7852 fdh->elf.root.u.def.value = 0;
7853 fdh->elf.root.u.def.section = sym_sec;
7854 }
7855 opd->adjust[rel->r_offset / 8] = -1;
7856 }
7857 else
7858 {
7859 /* We'll be keeping this opd entry. */
7860
7861 if (fdh != NULL)
7862 {
7863 /* Redefine the function descriptor symbol to
7864 this location in the opd section. It is
7865 necessary to update the value here rather
7866 than using an array of adjustments as we do
7867 for local symbols, because various places
7868 in the generic ELF code use the value
7869 stored in u.def.value. */
7870 fdh->elf.root.u.def.value = wptr - new_contents;
7871 fdh->adjust_done = 1;
7872 }
7873
7874 /* Local syms are a bit tricky. We could
7875 tweak them as they can be cached, but
7876 we'd need to look through the local syms
7877 for the function descriptor sym which we
7878 don't have at the moment. So keep an
7879 array of adjustments. */
7880 opd->adjust[rel->r_offset / 8]
7881 = (wptr - new_contents) - (rptr - sec->contents);
7882
7883 if (wptr != rptr)
7884 memcpy (wptr, rptr, opd_ent_size);
7885 wptr += opd_ent_size;
7886 if (add_aux_fields && opd_ent_size == 16)
7887 {
7888 memset (wptr, '\0', 8);
7889 wptr += 8;
7890 }
7891 }
7892 rptr += opd_ent_size;
7893 offset += opd_ent_size;
7894 }
7895
7896 if (skip)
7897 {
7898 if (!NO_OPD_RELOCS
7899 && !info->relocatable
7900 && !dec_dynrel_count (rel->r_info, sec, info,
7901 NULL, h, sym))
7902 goto error_ret;
7903 }
7904 else
7905 {
7906 /* We need to adjust any reloc offsets to point to the
7907 new opd entries. While we're at it, we may as well
7908 remove redundant relocs. */
7909 rel->r_offset += opd->adjust[(offset - opd_ent_size) / 8];
7910 if (write_rel != rel)
7911 memcpy (write_rel, rel, sizeof (*rel));
7912 ++write_rel;
7913 }
7914 }
7915
7916 sec->size = wptr - new_contents;
7917 sec->reloc_count = write_rel - relstart;
7918 if (add_aux_fields)
7919 {
7920 free (sec->contents);
7921 sec->contents = new_contents;
7922 }
7923
7924 /* Fudge the header size too, as this is used later in
7925 elf_bfd_final_link if we are emitting relocs. */
7926 rel_hdr = _bfd_elf_single_rel_hdr (sec);
7927 rel_hdr->sh_size = sec->reloc_count * rel_hdr->sh_entsize;
7928 some_edited = TRUE;
7929 }
7930 else if (elf_section_data (sec)->relocs != relstart)
7931 free (relstart);
7932
7933 if (local_syms != NULL
7934 && symtab_hdr->contents != (unsigned char *) local_syms)
7935 {
7936 if (!info->keep_memory)
7937 free (local_syms);
7938 else
7939 symtab_hdr->contents = (unsigned char *) local_syms;
7940 }
7941 }
7942
7943 if (some_edited)
7944 elf_link_hash_traverse (elf_hash_table (info), adjust_opd_syms, NULL);
7945
7946 /* If we are doing a final link and the last .opd entry is just 16 byte
7947 long, add a 8 byte padding after it. */
7948 if (need_pad != NULL && !info->relocatable)
7949 {
7950 bfd_byte *p;
7951
7952 if ((need_pad->flags & SEC_IN_MEMORY) == 0)
7953 {
7954 BFD_ASSERT (need_pad->size > 0);
7955
7956 p = bfd_malloc (need_pad->size + 8);
7957 if (p == NULL)
7958 return FALSE;
7959
7960 if (! bfd_get_section_contents (need_pad->owner, need_pad,
7961 p, 0, need_pad->size))
7962 return FALSE;
7963
7964 need_pad->contents = p;
7965 need_pad->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7966 }
7967 else
7968 {
7969 p = bfd_realloc (need_pad->contents, need_pad->size + 8);
7970 if (p == NULL)
7971 return FALSE;
7972
7973 need_pad->contents = p;
7974 }
7975
7976 memset (need_pad->contents + need_pad->size, 0, 8);
7977 need_pad->size += 8;
7978 }
7979
7980 return TRUE;
7981 }
7982
7983 /* Set htab->tls_get_addr and call the generic ELF tls_setup function. */
7984
7985 asection *
7986 ppc64_elf_tls_setup (struct bfd_link_info *info)
7987 {
7988 struct ppc_link_hash_table *htab;
7989
7990 htab = ppc_hash_table (info);
7991 if (htab == NULL)
7992 return NULL;
7993
7994 if (abiversion (info->output_bfd) == 1)
7995 htab->opd_abi = 1;
7996
7997 if (htab->params->no_multi_toc)
7998 htab->do_multi_toc = 0;
7999 else if (!htab->do_multi_toc)
8000 htab->params->no_multi_toc = 1;
8001
8002 htab->tls_get_addr = ((struct ppc_link_hash_entry *)
8003 elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
8004 FALSE, FALSE, TRUE));
8005 /* Move dynamic linking info to the function descriptor sym. */
8006 if (htab->tls_get_addr != NULL)
8007 func_desc_adjust (&htab->tls_get_addr->elf, info);
8008 htab->tls_get_addr_fd = ((struct ppc_link_hash_entry *)
8009 elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
8010 FALSE, FALSE, TRUE));
8011 if (!htab->params->no_tls_get_addr_opt)
8012 {
8013 struct elf_link_hash_entry *opt, *opt_fd, *tga, *tga_fd;
8014
8015 opt = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr_opt",
8016 FALSE, FALSE, TRUE);
8017 if (opt != NULL)
8018 func_desc_adjust (opt, info);
8019 opt_fd = elf_link_hash_lookup (&htab->elf, "__tls_get_addr_opt",
8020 FALSE, FALSE, TRUE);
8021 if (opt_fd != NULL
8022 && (opt_fd->root.type == bfd_link_hash_defined
8023 || opt_fd->root.type == bfd_link_hash_defweak))
8024 {
8025 /* If glibc supports an optimized __tls_get_addr call stub,
8026 signalled by the presence of __tls_get_addr_opt, and we'll
8027 be calling __tls_get_addr via a plt call stub, then
8028 make __tls_get_addr point to __tls_get_addr_opt. */
8029 tga_fd = &htab->tls_get_addr_fd->elf;
8030 if (htab->elf.dynamic_sections_created
8031 && tga_fd != NULL
8032 && (tga_fd->type == STT_FUNC
8033 || tga_fd->needs_plt)
8034 && !(SYMBOL_CALLS_LOCAL (info, tga_fd)
8035 || (ELF_ST_VISIBILITY (tga_fd->other) != STV_DEFAULT
8036 && tga_fd->root.type == bfd_link_hash_undefweak)))
8037 {
8038 struct plt_entry *ent;
8039
8040 for (ent = tga_fd->plt.plist; ent != NULL; ent = ent->next)
8041 if (ent->plt.refcount > 0)
8042 break;
8043 if (ent != NULL)
8044 {
8045 tga_fd->root.type = bfd_link_hash_indirect;
8046 tga_fd->root.u.i.link = &opt_fd->root;
8047 ppc64_elf_copy_indirect_symbol (info, opt_fd, tga_fd);
8048 if (opt_fd->dynindx != -1)
8049 {
8050 /* Use __tls_get_addr_opt in dynamic relocations. */
8051 opt_fd->dynindx = -1;
8052 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
8053 opt_fd->dynstr_index);
8054 if (!bfd_elf_link_record_dynamic_symbol (info, opt_fd))
8055 return NULL;
8056 }
8057 htab->tls_get_addr_fd = (struct ppc_link_hash_entry *) opt_fd;
8058 tga = &htab->tls_get_addr->elf;
8059 if (opt != NULL && tga != NULL)
8060 {
8061 tga->root.type = bfd_link_hash_indirect;
8062 tga->root.u.i.link = &opt->root;
8063 ppc64_elf_copy_indirect_symbol (info, opt, tga);
8064 _bfd_elf_link_hash_hide_symbol (info, opt,
8065 tga->forced_local);
8066 htab->tls_get_addr = (struct ppc_link_hash_entry *) opt;
8067 }
8068 htab->tls_get_addr_fd->oh = htab->tls_get_addr;
8069 htab->tls_get_addr_fd->is_func_descriptor = 1;
8070 if (htab->tls_get_addr != NULL)
8071 {
8072 htab->tls_get_addr->oh = htab->tls_get_addr_fd;
8073 htab->tls_get_addr->is_func = 1;
8074 }
8075 }
8076 }
8077 }
8078 else
8079 htab->params->no_tls_get_addr_opt = TRUE;
8080 }
8081 return _bfd_elf_tls_setup (info->output_bfd, info);
8082 }
8083
8084 /* Return TRUE iff REL is a branch reloc with a global symbol matching
8085 HASH1 or HASH2. */
8086
8087 static bfd_boolean
8088 branch_reloc_hash_match (const bfd *ibfd,
8089 const Elf_Internal_Rela *rel,
8090 const struct ppc_link_hash_entry *hash1,
8091 const struct ppc_link_hash_entry *hash2)
8092 {
8093 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
8094 enum elf_ppc64_reloc_type r_type = ELF64_R_TYPE (rel->r_info);
8095 unsigned int r_symndx = ELF64_R_SYM (rel->r_info);
8096
8097 if (r_symndx >= symtab_hdr->sh_info && is_branch_reloc (r_type))
8098 {
8099 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
8100 struct elf_link_hash_entry *h;
8101
8102 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8103 h = elf_follow_link (h);
8104 if (h == &hash1->elf || h == &hash2->elf)
8105 return TRUE;
8106 }
8107 return FALSE;
8108 }
8109
8110 /* Run through all the TLS relocs looking for optimization
8111 opportunities. The linker has been hacked (see ppc64elf.em) to do
8112 a preliminary section layout so that we know the TLS segment
8113 offsets. We can't optimize earlier because some optimizations need
8114 to know the tp offset, and we need to optimize before allocating
8115 dynamic relocations. */
8116
8117 bfd_boolean
8118 ppc64_elf_tls_optimize (struct bfd_link_info *info)
8119 {
8120 bfd *ibfd;
8121 asection *sec;
8122 struct ppc_link_hash_table *htab;
8123 unsigned char *toc_ref;
8124 int pass;
8125
8126 if (info->relocatable || !info->executable)
8127 return TRUE;
8128
8129 htab = ppc_hash_table (info);
8130 if (htab == NULL)
8131 return FALSE;
8132
8133 /* Make two passes over the relocs. On the first pass, mark toc
8134 entries involved with tls relocs, and check that tls relocs
8135 involved in setting up a tls_get_addr call are indeed followed by
8136 such a call. If they are not, we can't do any tls optimization.
8137 On the second pass twiddle tls_mask flags to notify
8138 relocate_section that optimization can be done, and adjust got
8139 and plt refcounts. */
8140 toc_ref = NULL;
8141 for (pass = 0; pass < 2; ++pass)
8142 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8143 {
8144 Elf_Internal_Sym *locsyms = NULL;
8145 asection *toc = bfd_get_section_by_name (ibfd, ".toc");
8146
8147 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8148 if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section))
8149 {
8150 Elf_Internal_Rela *relstart, *rel, *relend;
8151 bfd_boolean found_tls_get_addr_arg = 0;
8152
8153 /* Read the relocations. */
8154 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8155 info->keep_memory);
8156 if (relstart == NULL)
8157 {
8158 free (toc_ref);
8159 return FALSE;
8160 }
8161
8162 relend = relstart + sec->reloc_count;
8163 for (rel = relstart; rel < relend; rel++)
8164 {
8165 enum elf_ppc64_reloc_type r_type;
8166 unsigned long r_symndx;
8167 struct elf_link_hash_entry *h;
8168 Elf_Internal_Sym *sym;
8169 asection *sym_sec;
8170 unsigned char *tls_mask;
8171 unsigned char tls_set, tls_clear, tls_type = 0;
8172 bfd_vma value;
8173 bfd_boolean ok_tprel, is_local;
8174 long toc_ref_index = 0;
8175 int expecting_tls_get_addr = 0;
8176 bfd_boolean ret = FALSE;
8177
8178 r_symndx = ELF64_R_SYM (rel->r_info);
8179 if (!get_sym_h (&h, &sym, &sym_sec, &tls_mask, &locsyms,
8180 r_symndx, ibfd))
8181 {
8182 err_free_rel:
8183 if (elf_section_data (sec)->relocs != relstart)
8184 free (relstart);
8185 if (toc_ref != NULL)
8186 free (toc_ref);
8187 if (locsyms != NULL
8188 && (elf_symtab_hdr (ibfd).contents
8189 != (unsigned char *) locsyms))
8190 free (locsyms);
8191 return ret;
8192 }
8193
8194 if (h != NULL)
8195 {
8196 if (h->root.type == bfd_link_hash_defined
8197 || h->root.type == bfd_link_hash_defweak)
8198 value = h->root.u.def.value;
8199 else if (h->root.type == bfd_link_hash_undefweak)
8200 value = 0;
8201 else
8202 {
8203 found_tls_get_addr_arg = 0;
8204 continue;
8205 }
8206 }
8207 else
8208 /* Symbols referenced by TLS relocs must be of type
8209 STT_TLS. So no need for .opd local sym adjust. */
8210 value = sym->st_value;
8211
8212 ok_tprel = FALSE;
8213 is_local = FALSE;
8214 if (h == NULL
8215 || !h->def_dynamic)
8216 {
8217 is_local = TRUE;
8218 if (h != NULL
8219 && h->root.type == bfd_link_hash_undefweak)
8220 ok_tprel = TRUE;
8221 else
8222 {
8223 value += sym_sec->output_offset;
8224 value += sym_sec->output_section->vma;
8225 value -= htab->elf.tls_sec->vma;
8226 ok_tprel = (value + TP_OFFSET + ((bfd_vma) 1 << 31)
8227 < (bfd_vma) 1 << 32);
8228 }
8229 }
8230
8231 r_type = ELF64_R_TYPE (rel->r_info);
8232 /* If this section has old-style __tls_get_addr calls
8233 without marker relocs, then check that each
8234 __tls_get_addr call reloc is preceded by a reloc
8235 that conceivably belongs to the __tls_get_addr arg
8236 setup insn. If we don't find matching arg setup
8237 relocs, don't do any tls optimization. */
8238 if (pass == 0
8239 && sec->has_tls_get_addr_call
8240 && h != NULL
8241 && (h == &htab->tls_get_addr->elf
8242 || h == &htab->tls_get_addr_fd->elf)
8243 && !found_tls_get_addr_arg
8244 && is_branch_reloc (r_type))
8245 {
8246 info->callbacks->minfo (_("%H __tls_get_addr lost arg, "
8247 "TLS optimization disabled\n"),
8248 ibfd, sec, rel->r_offset);
8249 ret = TRUE;
8250 goto err_free_rel;
8251 }
8252
8253 found_tls_get_addr_arg = 0;
8254 switch (r_type)
8255 {
8256 case R_PPC64_GOT_TLSLD16:
8257 case R_PPC64_GOT_TLSLD16_LO:
8258 expecting_tls_get_addr = 1;
8259 found_tls_get_addr_arg = 1;
8260 /* Fall thru */
8261
8262 case R_PPC64_GOT_TLSLD16_HI:
8263 case R_PPC64_GOT_TLSLD16_HA:
8264 /* These relocs should never be against a symbol
8265 defined in a shared lib. Leave them alone if
8266 that turns out to be the case. */
8267 if (!is_local)
8268 continue;
8269
8270 /* LD -> LE */
8271 tls_set = 0;
8272 tls_clear = TLS_LD;
8273 tls_type = TLS_TLS | TLS_LD;
8274 break;
8275
8276 case R_PPC64_GOT_TLSGD16:
8277 case R_PPC64_GOT_TLSGD16_LO:
8278 expecting_tls_get_addr = 1;
8279 found_tls_get_addr_arg = 1;
8280 /* Fall thru */
8281
8282 case R_PPC64_GOT_TLSGD16_HI:
8283 case R_PPC64_GOT_TLSGD16_HA:
8284 if (ok_tprel)
8285 /* GD -> LE */
8286 tls_set = 0;
8287 else
8288 /* GD -> IE */
8289 tls_set = TLS_TLS | TLS_TPRELGD;
8290 tls_clear = TLS_GD;
8291 tls_type = TLS_TLS | TLS_GD;
8292 break;
8293
8294 case R_PPC64_GOT_TPREL16_DS:
8295 case R_PPC64_GOT_TPREL16_LO_DS:
8296 case R_PPC64_GOT_TPREL16_HI:
8297 case R_PPC64_GOT_TPREL16_HA:
8298 if (ok_tprel)
8299 {
8300 /* IE -> LE */
8301 tls_set = 0;
8302 tls_clear = TLS_TPREL;
8303 tls_type = TLS_TLS | TLS_TPREL;
8304 break;
8305 }
8306 continue;
8307
8308 case R_PPC64_TLSGD:
8309 case R_PPC64_TLSLD:
8310 found_tls_get_addr_arg = 1;
8311 /* Fall thru */
8312
8313 case R_PPC64_TLS:
8314 case R_PPC64_TOC16:
8315 case R_PPC64_TOC16_LO:
8316 if (sym_sec == NULL || sym_sec != toc)
8317 continue;
8318
8319 /* Mark this toc entry as referenced by a TLS
8320 code sequence. We can do that now in the
8321 case of R_PPC64_TLS, and after checking for
8322 tls_get_addr for the TOC16 relocs. */
8323 if (toc_ref == NULL)
8324 toc_ref = bfd_zmalloc (toc->output_section->rawsize / 8);
8325 if (toc_ref == NULL)
8326 goto err_free_rel;
8327
8328 if (h != NULL)
8329 value = h->root.u.def.value;
8330 else
8331 value = sym->st_value;
8332 value += rel->r_addend;
8333 BFD_ASSERT (value < toc->size && value % 8 == 0);
8334 toc_ref_index = (value + toc->output_offset) / 8;
8335 if (r_type == R_PPC64_TLS
8336 || r_type == R_PPC64_TLSGD
8337 || r_type == R_PPC64_TLSLD)
8338 {
8339 toc_ref[toc_ref_index] = 1;
8340 continue;
8341 }
8342
8343 if (pass != 0 && toc_ref[toc_ref_index] == 0)
8344 continue;
8345
8346 tls_set = 0;
8347 tls_clear = 0;
8348 expecting_tls_get_addr = 2;
8349 break;
8350
8351 case R_PPC64_TPREL64:
8352 if (pass == 0
8353 || sec != toc
8354 || toc_ref == NULL
8355 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
8356 continue;
8357 if (ok_tprel)
8358 {
8359 /* IE -> LE */
8360 tls_set = TLS_EXPLICIT;
8361 tls_clear = TLS_TPREL;
8362 break;
8363 }
8364 continue;
8365
8366 case R_PPC64_DTPMOD64:
8367 if (pass == 0
8368 || sec != toc
8369 || toc_ref == NULL
8370 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
8371 continue;
8372 if (rel + 1 < relend
8373 && (rel[1].r_info
8374 == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64))
8375 && rel[1].r_offset == rel->r_offset + 8)
8376 {
8377 if (ok_tprel)
8378 /* GD -> LE */
8379 tls_set = TLS_EXPLICIT | TLS_GD;
8380 else
8381 /* GD -> IE */
8382 tls_set = TLS_EXPLICIT | TLS_GD | TLS_TPRELGD;
8383 tls_clear = TLS_GD;
8384 }
8385 else
8386 {
8387 if (!is_local)
8388 continue;
8389
8390 /* LD -> LE */
8391 tls_set = TLS_EXPLICIT;
8392 tls_clear = TLS_LD;
8393 }
8394 break;
8395
8396 default:
8397 continue;
8398 }
8399
8400 if (pass == 0)
8401 {
8402 if (!expecting_tls_get_addr
8403 || !sec->has_tls_get_addr_call)
8404 continue;
8405
8406 if (rel + 1 < relend
8407 && branch_reloc_hash_match (ibfd, rel + 1,
8408 htab->tls_get_addr,
8409 htab->tls_get_addr_fd))
8410 {
8411 if (expecting_tls_get_addr == 2)
8412 {
8413 /* Check for toc tls entries. */
8414 unsigned char *toc_tls;
8415 int retval;
8416
8417 retval = get_tls_mask (&toc_tls, NULL, NULL,
8418 &locsyms,
8419 rel, ibfd);
8420 if (retval == 0)
8421 goto err_free_rel;
8422 if (toc_tls != NULL)
8423 {
8424 if ((*toc_tls & (TLS_GD | TLS_LD)) != 0)
8425 found_tls_get_addr_arg = 1;
8426 if (retval > 1)
8427 toc_ref[toc_ref_index] = 1;
8428 }
8429 }
8430 continue;
8431 }
8432
8433 if (expecting_tls_get_addr != 1)
8434 continue;
8435
8436 /* Uh oh, we didn't find the expected call. We
8437 could just mark this symbol to exclude it
8438 from tls optimization but it's safer to skip
8439 the entire optimization. */
8440 info->callbacks->minfo (_("%H arg lost __tls_get_addr, "
8441 "TLS optimization disabled\n"),
8442 ibfd, sec, rel->r_offset);
8443 ret = TRUE;
8444 goto err_free_rel;
8445 }
8446
8447 if (expecting_tls_get_addr && htab->tls_get_addr != NULL)
8448 {
8449 struct plt_entry *ent;
8450 for (ent = htab->tls_get_addr->elf.plt.plist;
8451 ent != NULL;
8452 ent = ent->next)
8453 if (ent->addend == 0)
8454 {
8455 if (ent->plt.refcount > 0)
8456 {
8457 ent->plt.refcount -= 1;
8458 expecting_tls_get_addr = 0;
8459 }
8460 break;
8461 }
8462 }
8463
8464 if (expecting_tls_get_addr && htab->tls_get_addr_fd != NULL)
8465 {
8466 struct plt_entry *ent;
8467 for (ent = htab->tls_get_addr_fd->elf.plt.plist;
8468 ent != NULL;
8469 ent = ent->next)
8470 if (ent->addend == 0)
8471 {
8472 if (ent->plt.refcount > 0)
8473 ent->plt.refcount -= 1;
8474 break;
8475 }
8476 }
8477
8478 if (tls_clear == 0)
8479 continue;
8480
8481 if ((tls_set & TLS_EXPLICIT) == 0)
8482 {
8483 struct got_entry *ent;
8484
8485 /* Adjust got entry for this reloc. */
8486 if (h != NULL)
8487 ent = h->got.glist;
8488 else
8489 ent = elf_local_got_ents (ibfd)[r_symndx];
8490
8491 for (; ent != NULL; ent = ent->next)
8492 if (ent->addend == rel->r_addend
8493 && ent->owner == ibfd
8494 && ent->tls_type == tls_type)
8495 break;
8496 if (ent == NULL)
8497 abort ();
8498
8499 if (tls_set == 0)
8500 {
8501 /* We managed to get rid of a got entry. */
8502 if (ent->got.refcount > 0)
8503 ent->got.refcount -= 1;
8504 }
8505 }
8506 else
8507 {
8508 /* If we got rid of a DTPMOD/DTPREL reloc pair then
8509 we'll lose one or two dyn relocs. */
8510 if (!dec_dynrel_count (rel->r_info, sec, info,
8511 NULL, h, sym))
8512 return FALSE;
8513
8514 if (tls_set == (TLS_EXPLICIT | TLS_GD))
8515 {
8516 if (!dec_dynrel_count ((rel + 1)->r_info, sec, info,
8517 NULL, h, sym))
8518 return FALSE;
8519 }
8520 }
8521
8522 *tls_mask |= tls_set;
8523 *tls_mask &= ~tls_clear;
8524 }
8525
8526 if (elf_section_data (sec)->relocs != relstart)
8527 free (relstart);
8528 }
8529
8530 if (locsyms != NULL
8531 && (elf_symtab_hdr (ibfd).contents != (unsigned char *) locsyms))
8532 {
8533 if (!info->keep_memory)
8534 free (locsyms);
8535 else
8536 elf_symtab_hdr (ibfd).contents = (unsigned char *) locsyms;
8537 }
8538 }
8539
8540 if (toc_ref != NULL)
8541 free (toc_ref);
8542 return TRUE;
8543 }
8544
8545 /* Called via elf_link_hash_traverse from ppc64_elf_edit_toc to adjust
8546 the values of any global symbols in a toc section that has been
8547 edited. Globals in toc sections should be a rarity, so this function
8548 sets a flag if any are found in toc sections other than the one just
8549 edited, so that futher hash table traversals can be avoided. */
8550
8551 struct adjust_toc_info
8552 {
8553 asection *toc;
8554 unsigned long *skip;
8555 bfd_boolean global_toc_syms;
8556 };
8557
8558 enum toc_skip_enum { ref_from_discarded = 1, can_optimize = 2 };
8559
8560 static bfd_boolean
8561 adjust_toc_syms (struct elf_link_hash_entry *h, void *inf)
8562 {
8563 struct ppc_link_hash_entry *eh;
8564 struct adjust_toc_info *toc_inf = (struct adjust_toc_info *) inf;
8565 unsigned long i;
8566
8567 if (h->root.type != bfd_link_hash_defined
8568 && h->root.type != bfd_link_hash_defweak)
8569 return TRUE;
8570
8571 eh = (struct ppc_link_hash_entry *) h;
8572 if (eh->adjust_done)
8573 return TRUE;
8574
8575 if (eh->elf.root.u.def.section == toc_inf->toc)
8576 {
8577 if (eh->elf.root.u.def.value > toc_inf->toc->rawsize)
8578 i = toc_inf->toc->rawsize >> 3;
8579 else
8580 i = eh->elf.root.u.def.value >> 3;
8581
8582 if ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0)
8583 {
8584 (*_bfd_error_handler)
8585 (_("%s defined on removed toc entry"), eh->elf.root.root.string);
8586 do
8587 ++i;
8588 while ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0);
8589 eh->elf.root.u.def.value = (bfd_vma) i << 3;
8590 }
8591
8592 eh->elf.root.u.def.value -= toc_inf->skip[i];
8593 eh->adjust_done = 1;
8594 }
8595 else if (strcmp (eh->elf.root.u.def.section->name, ".toc") == 0)
8596 toc_inf->global_toc_syms = TRUE;
8597
8598 return TRUE;
8599 }
8600
8601 /* Return TRUE iff INSN is one we expect on a _LO variety toc/got reloc. */
8602
8603 static bfd_boolean
8604 ok_lo_toc_insn (unsigned int insn)
8605 {
8606 return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
8607 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
8608 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
8609 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
8610 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
8611 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
8612 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
8613 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
8614 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
8615 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
8616 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
8617 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
8618 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
8619 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
8620 || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
8621 && (insn & 3) != 1)
8622 || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
8623 && ((insn & 3) == 0 || (insn & 3) == 3))
8624 || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
8625 }
8626
8627 /* Examine all relocs referencing .toc sections in order to remove
8628 unused .toc entries. */
8629
8630 bfd_boolean
8631 ppc64_elf_edit_toc (struct bfd_link_info *info)
8632 {
8633 bfd *ibfd;
8634 struct adjust_toc_info toc_inf;
8635 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8636
8637 htab->do_toc_opt = 1;
8638 toc_inf.global_toc_syms = TRUE;
8639 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8640 {
8641 asection *toc, *sec;
8642 Elf_Internal_Shdr *symtab_hdr;
8643 Elf_Internal_Sym *local_syms;
8644 Elf_Internal_Rela *relstart, *rel, *toc_relocs;
8645 unsigned long *skip, *drop;
8646 unsigned char *used;
8647 unsigned char *keep, last, some_unused;
8648
8649 if (!is_ppc64_elf (ibfd))
8650 continue;
8651
8652 toc = bfd_get_section_by_name (ibfd, ".toc");
8653 if (toc == NULL
8654 || toc->size == 0
8655 || toc->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8656 || discarded_section (toc))
8657 continue;
8658
8659 toc_relocs = NULL;
8660 local_syms = NULL;
8661 symtab_hdr = &elf_symtab_hdr (ibfd);
8662
8663 /* Look at sections dropped from the final link. */
8664 skip = NULL;
8665 relstart = NULL;
8666 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8667 {
8668 if (sec->reloc_count == 0
8669 || !discarded_section (sec)
8670 || get_opd_info (sec)
8671 || (sec->flags & SEC_ALLOC) == 0
8672 || (sec->flags & SEC_DEBUGGING) != 0)
8673 continue;
8674
8675 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, FALSE);
8676 if (relstart == NULL)
8677 goto error_ret;
8678
8679 /* Run through the relocs to see which toc entries might be
8680 unused. */
8681 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8682 {
8683 enum elf_ppc64_reloc_type r_type;
8684 unsigned long r_symndx;
8685 asection *sym_sec;
8686 struct elf_link_hash_entry *h;
8687 Elf_Internal_Sym *sym;
8688 bfd_vma val;
8689
8690 r_type = ELF64_R_TYPE (rel->r_info);
8691 switch (r_type)
8692 {
8693 default:
8694 continue;
8695
8696 case R_PPC64_TOC16:
8697 case R_PPC64_TOC16_LO:
8698 case R_PPC64_TOC16_HI:
8699 case R_PPC64_TOC16_HA:
8700 case R_PPC64_TOC16_DS:
8701 case R_PPC64_TOC16_LO_DS:
8702 break;
8703 }
8704
8705 r_symndx = ELF64_R_SYM (rel->r_info);
8706 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8707 r_symndx, ibfd))
8708 goto error_ret;
8709
8710 if (sym_sec != toc)
8711 continue;
8712
8713 if (h != NULL)
8714 val = h->root.u.def.value;
8715 else
8716 val = sym->st_value;
8717 val += rel->r_addend;
8718
8719 if (val >= toc->size)
8720 continue;
8721
8722 /* Anything in the toc ought to be aligned to 8 bytes.
8723 If not, don't mark as unused. */
8724 if (val & 7)
8725 continue;
8726
8727 if (skip == NULL)
8728 {
8729 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8730 if (skip == NULL)
8731 goto error_ret;
8732 }
8733
8734 skip[val >> 3] = ref_from_discarded;
8735 }
8736
8737 if (elf_section_data (sec)->relocs != relstart)
8738 free (relstart);
8739 }
8740
8741 /* For largetoc loads of address constants, we can convert
8742 . addis rx,2,addr@got@ha
8743 . ld ry,addr@got@l(rx)
8744 to
8745 . addis rx,2,addr@toc@ha
8746 . addi ry,rx,addr@toc@l
8747 when addr is within 2G of the toc pointer. This then means
8748 that the word storing "addr" in the toc is no longer needed. */
8749
8750 if (!ppc64_elf_tdata (ibfd)->has_small_toc_reloc
8751 && toc->output_section->rawsize < (bfd_vma) 1 << 31
8752 && toc->reloc_count != 0)
8753 {
8754 /* Read toc relocs. */
8755 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
8756 info->keep_memory);
8757 if (toc_relocs == NULL)
8758 goto error_ret;
8759
8760 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
8761 {
8762 enum elf_ppc64_reloc_type r_type;
8763 unsigned long r_symndx;
8764 asection *sym_sec;
8765 struct elf_link_hash_entry *h;
8766 Elf_Internal_Sym *sym;
8767 bfd_vma val, addr;
8768
8769 r_type = ELF64_R_TYPE (rel->r_info);
8770 if (r_type != R_PPC64_ADDR64)
8771 continue;
8772
8773 r_symndx = ELF64_R_SYM (rel->r_info);
8774 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8775 r_symndx, ibfd))
8776 goto error_ret;
8777
8778 if (sym_sec == NULL
8779 || discarded_section (sym_sec))
8780 continue;
8781
8782 if (!SYMBOL_REFERENCES_LOCAL (info, h))
8783 continue;
8784
8785 if (h != NULL)
8786 {
8787 if (h->type == STT_GNU_IFUNC)
8788 continue;
8789 val = h->root.u.def.value;
8790 }
8791 else
8792 {
8793 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
8794 continue;
8795 val = sym->st_value;
8796 }
8797 val += rel->r_addend;
8798 val += sym_sec->output_section->vma + sym_sec->output_offset;
8799
8800 /* We don't yet know the exact toc pointer value, but we
8801 know it will be somewhere in the toc section. Don't
8802 optimize if the difference from any possible toc
8803 pointer is outside [ff..f80008000, 7fff7fff]. */
8804 addr = toc->output_section->vma + TOC_BASE_OFF;
8805 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8806 continue;
8807
8808 addr = toc->output_section->vma + toc->output_section->rawsize;
8809 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8810 continue;
8811
8812 if (skip == NULL)
8813 {
8814 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8815 if (skip == NULL)
8816 goto error_ret;
8817 }
8818
8819 skip[rel->r_offset >> 3]
8820 |= can_optimize | ((rel - toc_relocs) << 2);
8821 }
8822 }
8823
8824 if (skip == NULL)
8825 continue;
8826
8827 used = bfd_zmalloc (sizeof (*used) * (toc->size + 7) / 8);
8828 if (used == NULL)
8829 {
8830 error_ret:
8831 if (local_syms != NULL
8832 && symtab_hdr->contents != (unsigned char *) local_syms)
8833 free (local_syms);
8834 if (sec != NULL
8835 && relstart != NULL
8836 && elf_section_data (sec)->relocs != relstart)
8837 free (relstart);
8838 if (toc_relocs != NULL
8839 && elf_section_data (toc)->relocs != toc_relocs)
8840 free (toc_relocs);
8841 if (skip != NULL)
8842 free (skip);
8843 return FALSE;
8844 }
8845
8846 /* Now check all kept sections that might reference the toc.
8847 Check the toc itself last. */
8848 for (sec = (ibfd->sections == toc && toc->next ? toc->next
8849 : ibfd->sections);
8850 sec != NULL;
8851 sec = (sec == toc ? NULL
8852 : sec->next == NULL ? toc
8853 : sec->next == toc && toc->next ? toc->next
8854 : sec->next))
8855 {
8856 int repeat;
8857
8858 if (sec->reloc_count == 0
8859 || discarded_section (sec)
8860 || get_opd_info (sec)
8861 || (sec->flags & SEC_ALLOC) == 0
8862 || (sec->flags & SEC_DEBUGGING) != 0)
8863 continue;
8864
8865 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8866 info->keep_memory);
8867 if (relstart == NULL)
8868 {
8869 free (used);
8870 goto error_ret;
8871 }
8872
8873 /* Mark toc entries referenced as used. */
8874 do
8875 {
8876 repeat = 0;
8877 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8878 {
8879 enum elf_ppc64_reloc_type r_type;
8880 unsigned long r_symndx;
8881 asection *sym_sec;
8882 struct elf_link_hash_entry *h;
8883 Elf_Internal_Sym *sym;
8884 bfd_vma val;
8885 enum {no_check, check_lo, check_ha} insn_check;
8886
8887 r_type = ELF64_R_TYPE (rel->r_info);
8888 switch (r_type)
8889 {
8890 default:
8891 insn_check = no_check;
8892 break;
8893
8894 case R_PPC64_GOT_TLSLD16_HA:
8895 case R_PPC64_GOT_TLSGD16_HA:
8896 case R_PPC64_GOT_TPREL16_HA:
8897 case R_PPC64_GOT_DTPREL16_HA:
8898 case R_PPC64_GOT16_HA:
8899 case R_PPC64_TOC16_HA:
8900 insn_check = check_ha;
8901 break;
8902
8903 case R_PPC64_GOT_TLSLD16_LO:
8904 case R_PPC64_GOT_TLSGD16_LO:
8905 case R_PPC64_GOT_TPREL16_LO_DS:
8906 case R_PPC64_GOT_DTPREL16_LO_DS:
8907 case R_PPC64_GOT16_LO:
8908 case R_PPC64_GOT16_LO_DS:
8909 case R_PPC64_TOC16_LO:
8910 case R_PPC64_TOC16_LO_DS:
8911 insn_check = check_lo;
8912 break;
8913 }
8914
8915 if (insn_check != no_check)
8916 {
8917 bfd_vma off = rel->r_offset & ~3;
8918 unsigned char buf[4];
8919 unsigned int insn;
8920
8921 if (!bfd_get_section_contents (ibfd, sec, buf, off, 4))
8922 {
8923 free (used);
8924 goto error_ret;
8925 }
8926 insn = bfd_get_32 (ibfd, buf);
8927 if (insn_check == check_lo
8928 ? !ok_lo_toc_insn (insn)
8929 : ((insn & ((0x3f << 26) | 0x1f << 16))
8930 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
8931 {
8932 char str[12];
8933
8934 ppc64_elf_tdata (ibfd)->unexpected_toc_insn = 1;
8935 sprintf (str, "%#08x", insn);
8936 info->callbacks->einfo
8937 (_("%P: %H: toc optimization is not supported for"
8938 " %s instruction.\n"),
8939 ibfd, sec, rel->r_offset & ~3, str);
8940 }
8941 }
8942
8943 switch (r_type)
8944 {
8945 case R_PPC64_TOC16:
8946 case R_PPC64_TOC16_LO:
8947 case R_PPC64_TOC16_HI:
8948 case R_PPC64_TOC16_HA:
8949 case R_PPC64_TOC16_DS:
8950 case R_PPC64_TOC16_LO_DS:
8951 /* In case we're taking addresses of toc entries. */
8952 case R_PPC64_ADDR64:
8953 break;
8954
8955 default:
8956 continue;
8957 }
8958
8959 r_symndx = ELF64_R_SYM (rel->r_info);
8960 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8961 r_symndx, ibfd))
8962 {
8963 free (used);
8964 goto error_ret;
8965 }
8966
8967 if (sym_sec != toc)
8968 continue;
8969
8970 if (h != NULL)
8971 val = h->root.u.def.value;
8972 else
8973 val = sym->st_value;
8974 val += rel->r_addend;
8975
8976 if (val >= toc->size)
8977 continue;
8978
8979 if ((skip[val >> 3] & can_optimize) != 0)
8980 {
8981 bfd_vma off;
8982 unsigned char opc;
8983
8984 switch (r_type)
8985 {
8986 case R_PPC64_TOC16_HA:
8987 break;
8988
8989 case R_PPC64_TOC16_LO_DS:
8990 off = rel->r_offset;
8991 off += (bfd_big_endian (ibfd) ? -2 : 3);
8992 if (!bfd_get_section_contents (ibfd, sec, &opc,
8993 off, 1))
8994 {
8995 free (used);
8996 goto error_ret;
8997 }
8998 if ((opc & (0x3f << 2)) == (58u << 2))
8999 break;
9000 /* Fall thru */
9001
9002 default:
9003 /* Wrong sort of reloc, or not a ld. We may
9004 as well clear ref_from_discarded too. */
9005 skip[val >> 3] = 0;
9006 }
9007 }
9008
9009 if (sec != toc)
9010 used[val >> 3] = 1;
9011 /* For the toc section, we only mark as used if this
9012 entry itself isn't unused. */
9013 else if ((used[rel->r_offset >> 3]
9014 || !(skip[rel->r_offset >> 3] & ref_from_discarded))
9015 && !used[val >> 3])
9016 {
9017 /* Do all the relocs again, to catch reference
9018 chains. */
9019 repeat = 1;
9020 used[val >> 3] = 1;
9021 }
9022 }
9023 }
9024 while (repeat);
9025
9026 if (elf_section_data (sec)->relocs != relstart)
9027 free (relstart);
9028 }
9029
9030 /* Merge the used and skip arrays. Assume that TOC
9031 doublewords not appearing as either used or unused belong
9032 to to an entry more than one doubleword in size. */
9033 for (drop = skip, keep = used, last = 0, some_unused = 0;
9034 drop < skip + (toc->size + 7) / 8;
9035 ++drop, ++keep)
9036 {
9037 if (*keep)
9038 {
9039 *drop &= ~ref_from_discarded;
9040 if ((*drop & can_optimize) != 0)
9041 some_unused = 1;
9042 last = 0;
9043 }
9044 else if ((*drop & ref_from_discarded) != 0)
9045 {
9046 some_unused = 1;
9047 last = ref_from_discarded;
9048 }
9049 else
9050 *drop = last;
9051 }
9052
9053 free (used);
9054
9055 if (some_unused)
9056 {
9057 bfd_byte *contents, *src;
9058 unsigned long off;
9059 Elf_Internal_Sym *sym;
9060 bfd_boolean local_toc_syms = FALSE;
9061
9062 /* Shuffle the toc contents, and at the same time convert the
9063 skip array from booleans into offsets. */
9064 if (!bfd_malloc_and_get_section (ibfd, toc, &contents))
9065 goto error_ret;
9066
9067 elf_section_data (toc)->this_hdr.contents = contents;
9068
9069 for (src = contents, off = 0, drop = skip;
9070 src < contents + toc->size;
9071 src += 8, ++drop)
9072 {
9073 if ((*drop & (can_optimize | ref_from_discarded)) != 0)
9074 off += 8;
9075 else if (off != 0)
9076 {
9077 *drop = off;
9078 memcpy (src - off, src, 8);
9079 }
9080 }
9081 *drop = off;
9082 toc->rawsize = toc->size;
9083 toc->size = src - contents - off;
9084
9085 /* Adjust addends for relocs against the toc section sym,
9086 and optimize any accesses we can. */
9087 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9088 {
9089 if (sec->reloc_count == 0
9090 || discarded_section (sec))
9091 continue;
9092
9093 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
9094 info->keep_memory);
9095 if (relstart == NULL)
9096 goto error_ret;
9097
9098 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
9099 {
9100 enum elf_ppc64_reloc_type r_type;
9101 unsigned long r_symndx;
9102 asection *sym_sec;
9103 struct elf_link_hash_entry *h;
9104 bfd_vma val;
9105
9106 r_type = ELF64_R_TYPE (rel->r_info);
9107 switch (r_type)
9108 {
9109 default:
9110 continue;
9111
9112 case R_PPC64_TOC16:
9113 case R_PPC64_TOC16_LO:
9114 case R_PPC64_TOC16_HI:
9115 case R_PPC64_TOC16_HA:
9116 case R_PPC64_TOC16_DS:
9117 case R_PPC64_TOC16_LO_DS:
9118 case R_PPC64_ADDR64:
9119 break;
9120 }
9121
9122 r_symndx = ELF64_R_SYM (rel->r_info);
9123 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
9124 r_symndx, ibfd))
9125 goto error_ret;
9126
9127 if (sym_sec != toc)
9128 continue;
9129
9130 if (h != NULL)
9131 val = h->root.u.def.value;
9132 else
9133 {
9134 val = sym->st_value;
9135 if (val != 0)
9136 local_toc_syms = TRUE;
9137 }
9138
9139 val += rel->r_addend;
9140
9141 if (val > toc->rawsize)
9142 val = toc->rawsize;
9143 else if ((skip[val >> 3] & ref_from_discarded) != 0)
9144 continue;
9145 else if ((skip[val >> 3] & can_optimize) != 0)
9146 {
9147 Elf_Internal_Rela *tocrel
9148 = toc_relocs + (skip[val >> 3] >> 2);
9149 unsigned long tsym = ELF64_R_SYM (tocrel->r_info);
9150
9151 switch (r_type)
9152 {
9153 case R_PPC64_TOC16_HA:
9154 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_TOC16_HA);
9155 break;
9156
9157 case R_PPC64_TOC16_LO_DS:
9158 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_LO_DS_OPT);
9159 break;
9160
9161 default:
9162 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
9163 ppc_howto_init ();
9164 info->callbacks->einfo
9165 (_("%P: %H: %s references "
9166 "optimized away TOC entry\n"),
9167 ibfd, sec, rel->r_offset,
9168 ppc64_elf_howto_table[r_type]->name);
9169 bfd_set_error (bfd_error_bad_value);
9170 goto error_ret;
9171 }
9172 rel->r_addend = tocrel->r_addend;
9173 elf_section_data (sec)->relocs = relstart;
9174 continue;
9175 }
9176
9177 if (h != NULL || sym->st_value != 0)
9178 continue;
9179
9180 rel->r_addend -= skip[val >> 3];
9181 elf_section_data (sec)->relocs = relstart;
9182 }
9183
9184 if (elf_section_data (sec)->relocs != relstart)
9185 free (relstart);
9186 }
9187
9188 /* We shouldn't have local or global symbols defined in the TOC,
9189 but handle them anyway. */
9190 if (local_syms != NULL)
9191 for (sym = local_syms;
9192 sym < local_syms + symtab_hdr->sh_info;
9193 ++sym)
9194 if (sym->st_value != 0
9195 && bfd_section_from_elf_index (ibfd, sym->st_shndx) == toc)
9196 {
9197 unsigned long i;
9198
9199 if (sym->st_value > toc->rawsize)
9200 i = toc->rawsize >> 3;
9201 else
9202 i = sym->st_value >> 3;
9203
9204 if ((skip[i] & (ref_from_discarded | can_optimize)) != 0)
9205 {
9206 if (local_toc_syms)
9207 (*_bfd_error_handler)
9208 (_("%s defined on removed toc entry"),
9209 bfd_elf_sym_name (ibfd, symtab_hdr, sym, NULL));
9210 do
9211 ++i;
9212 while ((skip[i] & (ref_from_discarded | can_optimize)));
9213 sym->st_value = (bfd_vma) i << 3;
9214 }
9215
9216 sym->st_value -= skip[i];
9217 symtab_hdr->contents = (unsigned char *) local_syms;
9218 }
9219
9220 /* Adjust any global syms defined in this toc input section. */
9221 if (toc_inf.global_toc_syms)
9222 {
9223 toc_inf.toc = toc;
9224 toc_inf.skip = skip;
9225 toc_inf.global_toc_syms = FALSE;
9226 elf_link_hash_traverse (elf_hash_table (info), adjust_toc_syms,
9227 &toc_inf);
9228 }
9229
9230 if (toc->reloc_count != 0)
9231 {
9232 Elf_Internal_Shdr *rel_hdr;
9233 Elf_Internal_Rela *wrel;
9234 bfd_size_type sz;
9235
9236 /* Remove unused toc relocs, and adjust those we keep. */
9237 if (toc_relocs == NULL)
9238 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
9239 info->keep_memory);
9240 if (toc_relocs == NULL)
9241 goto error_ret;
9242
9243 wrel = toc_relocs;
9244 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
9245 if ((skip[rel->r_offset >> 3]
9246 & (ref_from_discarded | can_optimize)) == 0)
9247 {
9248 wrel->r_offset = rel->r_offset - skip[rel->r_offset >> 3];
9249 wrel->r_info = rel->r_info;
9250 wrel->r_addend = rel->r_addend;
9251 ++wrel;
9252 }
9253 else if (!dec_dynrel_count (rel->r_info, toc, info,
9254 &local_syms, NULL, NULL))
9255 goto error_ret;
9256
9257 elf_section_data (toc)->relocs = toc_relocs;
9258 toc->reloc_count = wrel - toc_relocs;
9259 rel_hdr = _bfd_elf_single_rel_hdr (toc);
9260 sz = rel_hdr->sh_entsize;
9261 rel_hdr->sh_size = toc->reloc_count * sz;
9262 }
9263 }
9264 else if (toc_relocs != NULL
9265 && elf_section_data (toc)->relocs != toc_relocs)
9266 free (toc_relocs);
9267
9268 if (local_syms != NULL
9269 && symtab_hdr->contents != (unsigned char *) local_syms)
9270 {
9271 if (!info->keep_memory)
9272 free (local_syms);
9273 else
9274 symtab_hdr->contents = (unsigned char *) local_syms;
9275 }
9276 free (skip);
9277 }
9278
9279 return TRUE;
9280 }
9281
9282 /* Return true iff input section I references the TOC using
9283 instructions limited to +/-32k offsets. */
9284
9285 bfd_boolean
9286 ppc64_elf_has_small_toc_reloc (asection *i)
9287 {
9288 return (is_ppc64_elf (i->owner)
9289 && ppc64_elf_tdata (i->owner)->has_small_toc_reloc);
9290 }
9291
9292 /* Allocate space for one GOT entry. */
9293
9294 static void
9295 allocate_got (struct elf_link_hash_entry *h,
9296 struct bfd_link_info *info,
9297 struct got_entry *gent)
9298 {
9299 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9300 bfd_boolean dyn;
9301 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
9302 int entsize = (gent->tls_type & eh->tls_mask & (TLS_GD | TLS_LD)
9303 ? 16 : 8);
9304 int rentsize = (gent->tls_type & eh->tls_mask & TLS_GD
9305 ? 2 : 1) * sizeof (Elf64_External_Rela);
9306 asection *got = ppc64_elf_tdata (gent->owner)->got;
9307
9308 gent->got.offset = got->size;
9309 got->size += entsize;
9310
9311 dyn = htab->elf.dynamic_sections_created;
9312 if (h->type == STT_GNU_IFUNC)
9313 {
9314 htab->elf.irelplt->size += rentsize;
9315 htab->got_reli_size += rentsize;
9316 }
9317 else if ((info->shared
9318 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
9319 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9320 || h->root.type != bfd_link_hash_undefweak))
9321 {
9322 asection *relgot = ppc64_elf_tdata (gent->owner)->relgot;
9323 relgot->size += rentsize;
9324 }
9325 }
9326
9327 /* This function merges got entries in the same toc group. */
9328
9329 static void
9330 merge_got_entries (struct got_entry **pent)
9331 {
9332 struct got_entry *ent, *ent2;
9333
9334 for (ent = *pent; ent != NULL; ent = ent->next)
9335 if (!ent->is_indirect)
9336 for (ent2 = ent->next; ent2 != NULL; ent2 = ent2->next)
9337 if (!ent2->is_indirect
9338 && ent2->addend == ent->addend
9339 && ent2->tls_type == ent->tls_type
9340 && elf_gp (ent2->owner) == elf_gp (ent->owner))
9341 {
9342 ent2->is_indirect = TRUE;
9343 ent2->got.ent = ent;
9344 }
9345 }
9346
9347 /* Allocate space in .plt, .got and associated reloc sections for
9348 dynamic relocs. */
9349
9350 static bfd_boolean
9351 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9352 {
9353 struct bfd_link_info *info;
9354 struct ppc_link_hash_table *htab;
9355 asection *s;
9356 struct ppc_link_hash_entry *eh;
9357 struct elf_dyn_relocs *p;
9358 struct got_entry **pgent, *gent;
9359
9360 if (h->root.type == bfd_link_hash_indirect)
9361 return TRUE;
9362
9363 info = (struct bfd_link_info *) inf;
9364 htab = ppc_hash_table (info);
9365 if (htab == NULL)
9366 return FALSE;
9367
9368 if ((htab->elf.dynamic_sections_created
9369 && h->dynindx != -1
9370 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, h))
9371 || h->type == STT_GNU_IFUNC)
9372 {
9373 struct plt_entry *pent;
9374 bfd_boolean doneone = FALSE;
9375 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
9376 if (pent->plt.refcount > 0)
9377 {
9378 if (!htab->elf.dynamic_sections_created
9379 || h->dynindx == -1)
9380 {
9381 s = htab->elf.iplt;
9382 pent->plt.offset = s->size;
9383 s->size += PLT_ENTRY_SIZE (htab);
9384 s = htab->elf.irelplt;
9385 }
9386 else
9387 {
9388 /* If this is the first .plt entry, make room for the special
9389 first entry. */
9390 s = htab->elf.splt;
9391 if (s->size == 0)
9392 s->size += PLT_INITIAL_ENTRY_SIZE (htab);
9393
9394 pent->plt.offset = s->size;
9395
9396 /* Make room for this entry. */
9397 s->size += PLT_ENTRY_SIZE (htab);
9398
9399 /* Make room for the .glink code. */
9400 s = htab->glink;
9401 if (s->size == 0)
9402 s->size += GLINK_CALL_STUB_SIZE;
9403 if (htab->opd_abi)
9404 {
9405 /* We need bigger stubs past index 32767. */
9406 if (s->size >= GLINK_CALL_STUB_SIZE + 32768*2*4)
9407 s->size += 4;
9408 s->size += 2*4;
9409 }
9410 else
9411 s->size += 4;
9412
9413 /* We also need to make an entry in the .rela.plt section. */
9414 s = htab->elf.srelplt;
9415 }
9416 s->size += sizeof (Elf64_External_Rela);
9417 doneone = TRUE;
9418 }
9419 else
9420 pent->plt.offset = (bfd_vma) -1;
9421 if (!doneone)
9422 {
9423 h->plt.plist = NULL;
9424 h->needs_plt = 0;
9425 }
9426 }
9427 else
9428 {
9429 h->plt.plist = NULL;
9430 h->needs_plt = 0;
9431 }
9432
9433 eh = (struct ppc_link_hash_entry *) h;
9434 /* Run through the TLS GD got entries first if we're changing them
9435 to TPREL. */
9436 if ((eh->tls_mask & TLS_TPRELGD) != 0)
9437 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9438 if (gent->got.refcount > 0
9439 && (gent->tls_type & TLS_GD) != 0)
9440 {
9441 /* This was a GD entry that has been converted to TPREL. If
9442 there happens to be a TPREL entry we can use that one. */
9443 struct got_entry *ent;
9444 for (ent = h->got.glist; ent != NULL; ent = ent->next)
9445 if (ent->got.refcount > 0
9446 && (ent->tls_type & TLS_TPREL) != 0
9447 && ent->addend == gent->addend
9448 && ent->owner == gent->owner)
9449 {
9450 gent->got.refcount = 0;
9451 break;
9452 }
9453
9454 /* If not, then we'll be using our own TPREL entry. */
9455 if (gent->got.refcount != 0)
9456 gent->tls_type = TLS_TLS | TLS_TPREL;
9457 }
9458
9459 /* Remove any list entry that won't generate a word in the GOT before
9460 we call merge_got_entries. Otherwise we risk merging to empty
9461 entries. */
9462 pgent = &h->got.glist;
9463 while ((gent = *pgent) != NULL)
9464 if (gent->got.refcount > 0)
9465 {
9466 if ((gent->tls_type & TLS_LD) != 0
9467 && !h->def_dynamic)
9468 {
9469 ppc64_tlsld_got (gent->owner)->got.refcount += 1;
9470 *pgent = gent->next;
9471 }
9472 else
9473 pgent = &gent->next;
9474 }
9475 else
9476 *pgent = gent->next;
9477
9478 if (!htab->do_multi_toc)
9479 merge_got_entries (&h->got.glist);
9480
9481 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9482 if (!gent->is_indirect)
9483 {
9484 /* Make sure this symbol is output as a dynamic symbol.
9485 Undefined weak syms won't yet be marked as dynamic,
9486 nor will all TLS symbols. */
9487 if (h->dynindx == -1
9488 && !h->forced_local
9489 && h->type != STT_GNU_IFUNC
9490 && htab->elf.dynamic_sections_created)
9491 {
9492 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9493 return FALSE;
9494 }
9495
9496 if (!is_ppc64_elf (gent->owner))
9497 abort ();
9498
9499 allocate_got (h, info, gent);
9500 }
9501
9502 if (eh->dyn_relocs == NULL
9503 || (!htab->elf.dynamic_sections_created
9504 && h->type != STT_GNU_IFUNC))
9505 return TRUE;
9506
9507 /* In the shared -Bsymbolic case, discard space allocated for
9508 dynamic pc-relative relocs against symbols which turn out to be
9509 defined in regular objects. For the normal shared case, discard
9510 space for relocs that have become local due to symbol visibility
9511 changes. */
9512
9513 if (info->shared)
9514 {
9515 /* Relocs that use pc_count are those that appear on a call insn,
9516 or certain REL relocs (see must_be_dyn_reloc) that can be
9517 generated via assembly. We want calls to protected symbols to
9518 resolve directly to the function rather than going via the plt.
9519 If people want function pointer comparisons to work as expected
9520 then they should avoid writing weird assembly. */
9521 if (SYMBOL_CALLS_LOCAL (info, h))
9522 {
9523 struct elf_dyn_relocs **pp;
9524
9525 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
9526 {
9527 p->count -= p->pc_count;
9528 p->pc_count = 0;
9529 if (p->count == 0)
9530 *pp = p->next;
9531 else
9532 pp = &p->next;
9533 }
9534 }
9535
9536 /* Also discard relocs on undefined weak syms with non-default
9537 visibility. */
9538 if (eh->dyn_relocs != NULL
9539 && h->root.type == bfd_link_hash_undefweak)
9540 {
9541 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9542 eh->dyn_relocs = NULL;
9543
9544 /* Make sure this symbol is output as a dynamic symbol.
9545 Undefined weak syms won't yet be marked as dynamic. */
9546 else if (h->dynindx == -1
9547 && !h->forced_local)
9548 {
9549 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9550 return FALSE;
9551 }
9552 }
9553 }
9554 else if (h->type == STT_GNU_IFUNC)
9555 {
9556 if (!h->non_got_ref)
9557 eh->dyn_relocs = NULL;
9558 }
9559 else if (ELIMINATE_COPY_RELOCS)
9560 {
9561 /* For the non-shared case, discard space for relocs against
9562 symbols which turn out to need copy relocs or are not
9563 dynamic. */
9564
9565 if (!h->non_got_ref
9566 && !h->def_regular)
9567 {
9568 /* Make sure this symbol is output as a dynamic symbol.
9569 Undefined weak syms won't yet be marked as dynamic. */
9570 if (h->dynindx == -1
9571 && !h->forced_local)
9572 {
9573 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9574 return FALSE;
9575 }
9576
9577 /* If that succeeded, we know we'll be keeping all the
9578 relocs. */
9579 if (h->dynindx != -1)
9580 goto keep;
9581 }
9582
9583 eh->dyn_relocs = NULL;
9584
9585 keep: ;
9586 }
9587
9588 /* Finally, allocate space. */
9589 for (p = eh->dyn_relocs; p != NULL; p = p->next)
9590 {
9591 asection *sreloc = elf_section_data (p->sec)->sreloc;
9592 if (eh->elf.type == STT_GNU_IFUNC)
9593 sreloc = htab->elf.irelplt;
9594 sreloc->size += p->count * sizeof (Elf64_External_Rela);
9595 }
9596
9597 return TRUE;
9598 }
9599
9600 /* Called via elf_link_hash_traverse from ppc64_elf_size_dynamic_sections
9601 to set up space for global entry stubs. These are put in glink,
9602 after the branch table. */
9603
9604 static bfd_boolean
9605 size_global_entry_stubs (struct elf_link_hash_entry *h, void *inf)
9606 {
9607 struct bfd_link_info *info;
9608 struct ppc_link_hash_table *htab;
9609 struct plt_entry *pent;
9610 asection *s;
9611
9612 if (h->root.type == bfd_link_hash_indirect)
9613 return TRUE;
9614
9615 if (!h->pointer_equality_needed)
9616 return TRUE;
9617
9618 if (h->def_regular)
9619 return TRUE;
9620
9621 info = inf;
9622 htab = ppc_hash_table (info);
9623 if (htab == NULL)
9624 return FALSE;
9625
9626 s = htab->glink;
9627 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
9628 if (pent->plt.offset != (bfd_vma) -1
9629 && pent->addend == 0)
9630 {
9631 /* For ELFv2, if this symbol is not defined in a regular file
9632 and we are not generating a shared library or pie, then we
9633 need to define the symbol in the executable on a call stub.
9634 This is to avoid text relocations. */
9635 s->size = (s->size + 15) & -16;
9636 h->root.u.def.section = s;
9637 h->root.u.def.value = s->size;
9638 s->size += 16;
9639 break;
9640 }
9641 return TRUE;
9642 }
9643
9644 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
9645 read-only sections. */
9646
9647 static bfd_boolean
9648 maybe_set_textrel (struct elf_link_hash_entry *h, void *info)
9649 {
9650 if (h->root.type == bfd_link_hash_indirect)
9651 return TRUE;
9652
9653 if (readonly_dynrelocs (h))
9654 {
9655 ((struct bfd_link_info *) info)->flags |= DF_TEXTREL;
9656
9657 /* Not an error, just cut short the traversal. */
9658 return FALSE;
9659 }
9660 return TRUE;
9661 }
9662
9663 /* Set the sizes of the dynamic sections. */
9664
9665 static bfd_boolean
9666 ppc64_elf_size_dynamic_sections (bfd *output_bfd,
9667 struct bfd_link_info *info)
9668 {
9669 struct ppc_link_hash_table *htab;
9670 bfd *dynobj;
9671 asection *s;
9672 bfd_boolean relocs;
9673 bfd *ibfd;
9674 struct got_entry *first_tlsld;
9675
9676 htab = ppc_hash_table (info);
9677 if (htab == NULL)
9678 return FALSE;
9679
9680 dynobj = htab->elf.dynobj;
9681 if (dynobj == NULL)
9682 abort ();
9683
9684 if (htab->elf.dynamic_sections_created)
9685 {
9686 /* Set the contents of the .interp section to the interpreter. */
9687 if (info->executable)
9688 {
9689 s = bfd_get_linker_section (dynobj, ".interp");
9690 if (s == NULL)
9691 abort ();
9692 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
9693 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
9694 }
9695 }
9696
9697 /* Set up .got offsets for local syms, and space for local dynamic
9698 relocs. */
9699 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9700 {
9701 struct got_entry **lgot_ents;
9702 struct got_entry **end_lgot_ents;
9703 struct plt_entry **local_plt;
9704 struct plt_entry **end_local_plt;
9705 unsigned char *lgot_masks;
9706 bfd_size_type locsymcount;
9707 Elf_Internal_Shdr *symtab_hdr;
9708
9709 if (!is_ppc64_elf (ibfd))
9710 continue;
9711
9712 for (s = ibfd->sections; s != NULL; s = s->next)
9713 {
9714 struct ppc_dyn_relocs *p;
9715
9716 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
9717 {
9718 if (!bfd_is_abs_section (p->sec)
9719 && bfd_is_abs_section (p->sec->output_section))
9720 {
9721 /* Input section has been discarded, either because
9722 it is a copy of a linkonce section or due to
9723 linker script /DISCARD/, so we'll be discarding
9724 the relocs too. */
9725 }
9726 else if (p->count != 0)
9727 {
9728 asection *srel = elf_section_data (p->sec)->sreloc;
9729 if (p->ifunc)
9730 srel = htab->elf.irelplt;
9731 srel->size += p->count * sizeof (Elf64_External_Rela);
9732 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
9733 info->flags |= DF_TEXTREL;
9734 }
9735 }
9736 }
9737
9738 lgot_ents = elf_local_got_ents (ibfd);
9739 if (!lgot_ents)
9740 continue;
9741
9742 symtab_hdr = &elf_symtab_hdr (ibfd);
9743 locsymcount = symtab_hdr->sh_info;
9744 end_lgot_ents = lgot_ents + locsymcount;
9745 local_plt = (struct plt_entry **) end_lgot_ents;
9746 end_local_plt = local_plt + locsymcount;
9747 lgot_masks = (unsigned char *) end_local_plt;
9748 s = ppc64_elf_tdata (ibfd)->got;
9749 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
9750 {
9751 struct got_entry **pent, *ent;
9752
9753 pent = lgot_ents;
9754 while ((ent = *pent) != NULL)
9755 if (ent->got.refcount > 0)
9756 {
9757 if ((ent->tls_type & *lgot_masks & TLS_LD) != 0)
9758 {
9759 ppc64_tlsld_got (ibfd)->got.refcount += 1;
9760 *pent = ent->next;
9761 }
9762 else
9763 {
9764 unsigned int ent_size = 8;
9765 unsigned int rel_size = sizeof (Elf64_External_Rela);
9766
9767 ent->got.offset = s->size;
9768 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
9769 {
9770 ent_size *= 2;
9771 rel_size *= 2;
9772 }
9773 s->size += ent_size;
9774 if ((*lgot_masks & PLT_IFUNC) != 0)
9775 {
9776 htab->elf.irelplt->size += rel_size;
9777 htab->got_reli_size += rel_size;
9778 }
9779 else if (info->shared)
9780 {
9781 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
9782 srel->size += rel_size;
9783 }
9784 pent = &ent->next;
9785 }
9786 }
9787 else
9788 *pent = ent->next;
9789 }
9790
9791 /* Allocate space for calls to local STT_GNU_IFUNC syms in .iplt. */
9792 for (; local_plt < end_local_plt; ++local_plt)
9793 {
9794 struct plt_entry *ent;
9795
9796 for (ent = *local_plt; ent != NULL; ent = ent->next)
9797 if (ent->plt.refcount > 0)
9798 {
9799 s = htab->elf.iplt;
9800 ent->plt.offset = s->size;
9801 s->size += PLT_ENTRY_SIZE (htab);
9802
9803 htab->elf.irelplt->size += sizeof (Elf64_External_Rela);
9804 }
9805 else
9806 ent->plt.offset = (bfd_vma) -1;
9807 }
9808 }
9809
9810 /* Allocate global sym .plt and .got entries, and space for global
9811 sym dynamic relocs. */
9812 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
9813 /* Stash the end of glink branch table. */
9814 if (htab->glink != NULL)
9815 htab->glink->rawsize = htab->glink->size;
9816
9817 if (!htab->opd_abi && !info->shared)
9818 elf_link_hash_traverse (&htab->elf, size_global_entry_stubs, info);
9819
9820 first_tlsld = NULL;
9821 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9822 {
9823 struct got_entry *ent;
9824
9825 if (!is_ppc64_elf (ibfd))
9826 continue;
9827
9828 ent = ppc64_tlsld_got (ibfd);
9829 if (ent->got.refcount > 0)
9830 {
9831 if (!htab->do_multi_toc && first_tlsld != NULL)
9832 {
9833 ent->is_indirect = TRUE;
9834 ent->got.ent = first_tlsld;
9835 }
9836 else
9837 {
9838 if (first_tlsld == NULL)
9839 first_tlsld = ent;
9840 s = ppc64_elf_tdata (ibfd)->got;
9841 ent->got.offset = s->size;
9842 ent->owner = ibfd;
9843 s->size += 16;
9844 if (info->shared)
9845 {
9846 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
9847 srel->size += sizeof (Elf64_External_Rela);
9848 }
9849 }
9850 }
9851 else
9852 ent->got.offset = (bfd_vma) -1;
9853 }
9854
9855 /* We now have determined the sizes of the various dynamic sections.
9856 Allocate memory for them. */
9857 relocs = FALSE;
9858 for (s = dynobj->sections; s != NULL; s = s->next)
9859 {
9860 if ((s->flags & SEC_LINKER_CREATED) == 0)
9861 continue;
9862
9863 if (s == htab->brlt || s == htab->relbrlt)
9864 /* These haven't been allocated yet; don't strip. */
9865 continue;
9866 else if (s == htab->elf.sgot
9867 || s == htab->elf.splt
9868 || s == htab->elf.iplt
9869 || s == htab->glink
9870 || s == htab->dynbss)
9871 {
9872 /* Strip this section if we don't need it; see the
9873 comment below. */
9874 }
9875 else if (s == htab->glink_eh_frame)
9876 {
9877 if (!bfd_is_abs_section (s->output_section))
9878 /* Not sized yet. */
9879 continue;
9880 }
9881 else if (CONST_STRNEQ (s->name, ".rela"))
9882 {
9883 if (s->size != 0)
9884 {
9885 if (s != htab->elf.srelplt)
9886 relocs = TRUE;
9887
9888 /* We use the reloc_count field as a counter if we need
9889 to copy relocs into the output file. */
9890 s->reloc_count = 0;
9891 }
9892 }
9893 else
9894 {
9895 /* It's not one of our sections, so don't allocate space. */
9896 continue;
9897 }
9898
9899 if (s->size == 0)
9900 {
9901 /* If we don't need this section, strip it from the
9902 output file. This is mostly to handle .rela.bss and
9903 .rela.plt. We must create both sections in
9904 create_dynamic_sections, because they must be created
9905 before the linker maps input sections to output
9906 sections. The linker does that before
9907 adjust_dynamic_symbol is called, and it is that
9908 function which decides whether anything needs to go
9909 into these sections. */
9910 s->flags |= SEC_EXCLUDE;
9911 continue;
9912 }
9913
9914 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9915 continue;
9916
9917 /* Allocate memory for the section contents. We use bfd_zalloc
9918 here in case unused entries are not reclaimed before the
9919 section's contents are written out. This should not happen,
9920 but this way if it does we get a R_PPC64_NONE reloc in .rela
9921 sections instead of garbage.
9922 We also rely on the section contents being zero when writing
9923 the GOT. */
9924 s->contents = bfd_zalloc (dynobj, s->size);
9925 if (s->contents == NULL)
9926 return FALSE;
9927 }
9928
9929 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9930 {
9931 if (!is_ppc64_elf (ibfd))
9932 continue;
9933
9934 s = ppc64_elf_tdata (ibfd)->got;
9935 if (s != NULL && s != htab->elf.sgot)
9936 {
9937 if (s->size == 0)
9938 s->flags |= SEC_EXCLUDE;
9939 else
9940 {
9941 s->contents = bfd_zalloc (ibfd, s->size);
9942 if (s->contents == NULL)
9943 return FALSE;
9944 }
9945 }
9946 s = ppc64_elf_tdata (ibfd)->relgot;
9947 if (s != NULL)
9948 {
9949 if (s->size == 0)
9950 s->flags |= SEC_EXCLUDE;
9951 else
9952 {
9953 s->contents = bfd_zalloc (ibfd, s->size);
9954 if (s->contents == NULL)
9955 return FALSE;
9956 relocs = TRUE;
9957 s->reloc_count = 0;
9958 }
9959 }
9960 }
9961
9962 if (htab->elf.dynamic_sections_created)
9963 {
9964 bfd_boolean tls_opt;
9965
9966 /* Add some entries to the .dynamic section. We fill in the
9967 values later, in ppc64_elf_finish_dynamic_sections, but we
9968 must add the entries now so that we get the correct size for
9969 the .dynamic section. The DT_DEBUG entry is filled in by the
9970 dynamic linker and used by the debugger. */
9971 #define add_dynamic_entry(TAG, VAL) \
9972 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
9973
9974 if (info->executable)
9975 {
9976 if (!add_dynamic_entry (DT_DEBUG, 0))
9977 return FALSE;
9978 }
9979
9980 if (htab->elf.splt != NULL && htab->elf.splt->size != 0)
9981 {
9982 if (!add_dynamic_entry (DT_PLTGOT, 0)
9983 || !add_dynamic_entry (DT_PLTRELSZ, 0)
9984 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
9985 || !add_dynamic_entry (DT_JMPREL, 0)
9986 || !add_dynamic_entry (DT_PPC64_GLINK, 0))
9987 return FALSE;
9988 }
9989
9990 if (NO_OPD_RELOCS && abiversion (output_bfd) <= 1)
9991 {
9992 if (!add_dynamic_entry (DT_PPC64_OPD, 0)
9993 || !add_dynamic_entry (DT_PPC64_OPDSZ, 0))
9994 return FALSE;
9995 }
9996
9997 tls_opt = (!htab->params->no_tls_get_addr_opt
9998 && htab->tls_get_addr_fd != NULL
9999 && htab->tls_get_addr_fd->elf.plt.plist != NULL);
10000 if (tls_opt || !htab->opd_abi)
10001 {
10002 if (!add_dynamic_entry (DT_PPC64_OPT, tls_opt ? PPC64_OPT_TLS : 0))
10003 return FALSE;
10004 }
10005
10006 if (relocs)
10007 {
10008 if (!add_dynamic_entry (DT_RELA, 0)
10009 || !add_dynamic_entry (DT_RELASZ, 0)
10010 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
10011 return FALSE;
10012
10013 /* If any dynamic relocs apply to a read-only section,
10014 then we need a DT_TEXTREL entry. */
10015 if ((info->flags & DF_TEXTREL) == 0)
10016 elf_link_hash_traverse (&htab->elf, maybe_set_textrel, info);
10017
10018 if ((info->flags & DF_TEXTREL) != 0)
10019 {
10020 if (!add_dynamic_entry (DT_TEXTREL, 0))
10021 return FALSE;
10022 }
10023 }
10024 }
10025 #undef add_dynamic_entry
10026
10027 return TRUE;
10028 }
10029
10030 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
10031
10032 static bfd_boolean
10033 ppc64_elf_hash_symbol (struct elf_link_hash_entry *h)
10034 {
10035 if (h->plt.plist != NULL
10036 && !h->def_regular
10037 && !h->pointer_equality_needed)
10038 return FALSE;
10039
10040 return _bfd_elf_hash_symbol (h);
10041 }
10042
10043 /* Determine the type of stub needed, if any, for a call. */
10044
10045 static inline enum ppc_stub_type
10046 ppc_type_of_stub (asection *input_sec,
10047 const Elf_Internal_Rela *rel,
10048 struct ppc_link_hash_entry **hash,
10049 struct plt_entry **plt_ent,
10050 bfd_vma destination,
10051 unsigned long local_off)
10052 {
10053 struct ppc_link_hash_entry *h = *hash;
10054 bfd_vma location;
10055 bfd_vma branch_offset;
10056 bfd_vma max_branch_offset;
10057 enum elf_ppc64_reloc_type r_type;
10058
10059 if (h != NULL)
10060 {
10061 struct plt_entry *ent;
10062 struct ppc_link_hash_entry *fdh = h;
10063 if (h->oh != NULL
10064 && h->oh->is_func_descriptor)
10065 {
10066 fdh = ppc_follow_link (h->oh);
10067 *hash = fdh;
10068 }
10069
10070 for (ent = fdh->elf.plt.plist; ent != NULL; ent = ent->next)
10071 if (ent->addend == rel->r_addend
10072 && ent->plt.offset != (bfd_vma) -1)
10073 {
10074 *plt_ent = ent;
10075 return ppc_stub_plt_call;
10076 }
10077
10078 /* Here, we know we don't have a plt entry. If we don't have a
10079 either a defined function descriptor or a defined entry symbol
10080 in a regular object file, then it is pointless trying to make
10081 any other type of stub. */
10082 if (!is_static_defined (&fdh->elf)
10083 && !is_static_defined (&h->elf))
10084 return ppc_stub_none;
10085 }
10086 else if (elf_local_got_ents (input_sec->owner) != NULL)
10087 {
10088 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_sec->owner);
10089 struct plt_entry **local_plt = (struct plt_entry **)
10090 elf_local_got_ents (input_sec->owner) + symtab_hdr->sh_info;
10091 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
10092
10093 if (local_plt[r_symndx] != NULL)
10094 {
10095 struct plt_entry *ent;
10096
10097 for (ent = local_plt[r_symndx]; ent != NULL; ent = ent->next)
10098 if (ent->addend == rel->r_addend
10099 && ent->plt.offset != (bfd_vma) -1)
10100 {
10101 *plt_ent = ent;
10102 return ppc_stub_plt_call;
10103 }
10104 }
10105 }
10106
10107 /* Determine where the call point is. */
10108 location = (input_sec->output_offset
10109 + input_sec->output_section->vma
10110 + rel->r_offset);
10111
10112 branch_offset = destination - location;
10113 r_type = ELF64_R_TYPE (rel->r_info);
10114
10115 /* Determine if a long branch stub is needed. */
10116 max_branch_offset = 1 << 25;
10117 if (r_type != R_PPC64_REL24)
10118 max_branch_offset = 1 << 15;
10119
10120 if (branch_offset + max_branch_offset >= 2 * max_branch_offset - local_off)
10121 /* We need a stub. Figure out whether a long_branch or plt_branch
10122 is needed later. */
10123 return ppc_stub_long_branch;
10124
10125 return ppc_stub_none;
10126 }
10127
10128 /* With power7 weakly ordered memory model, it is possible for ld.so
10129 to update a plt entry in one thread and have another thread see a
10130 stale zero toc entry. To avoid this we need some sort of acquire
10131 barrier in the call stub. One solution is to make the load of the
10132 toc word seem to appear to depend on the load of the function entry
10133 word. Another solution is to test for r2 being zero, and branch to
10134 the appropriate glink entry if so.
10135
10136 . fake dep barrier compare
10137 . ld 12,xxx(2) ld 12,xxx(2)
10138 . mtctr 12 mtctr 12
10139 . xor 11,12,12 ld 2,xxx+8(2)
10140 . add 2,2,11 cmpldi 2,0
10141 . ld 2,xxx+8(2) bnectr+
10142 . bctr b <glink_entry>
10143
10144 The solution involving the compare turns out to be faster, so
10145 that's what we use unless the branch won't reach. */
10146
10147 #define ALWAYS_USE_FAKE_DEP 0
10148 #define ALWAYS_EMIT_R2SAVE 0
10149
10150 #define PPC_LO(v) ((v) & 0xffff)
10151 #define PPC_HI(v) (((v) >> 16) & 0xffff)
10152 #define PPC_HA(v) PPC_HI ((v) + 0x8000)
10153
10154 static inline unsigned int
10155 plt_stub_size (struct ppc_link_hash_table *htab,
10156 struct ppc_stub_hash_entry *stub_entry,
10157 bfd_vma off)
10158 {
10159 unsigned size = 12;
10160
10161 if (ALWAYS_EMIT_R2SAVE
10162 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10163 size += 4;
10164 if (PPC_HA (off) != 0)
10165 size += 4;
10166 if (htab->opd_abi)
10167 {
10168 size += 4;
10169 if (htab->params->plt_static_chain)
10170 size += 4;
10171 if (htab->params->plt_thread_safe)
10172 size += 8;
10173 if (PPC_HA (off + 8 + 8 * htab->params->plt_static_chain) != PPC_HA (off))
10174 size += 4;
10175 }
10176 if (stub_entry->h != NULL
10177 && (stub_entry->h == htab->tls_get_addr_fd
10178 || stub_entry->h == htab->tls_get_addr)
10179 && !htab->params->no_tls_get_addr_opt)
10180 size += 13 * 4;
10181 return size;
10182 }
10183
10184 /* If this stub would cross fewer 2**plt_stub_align boundaries if we align,
10185 then return the padding needed to do so. */
10186 static inline unsigned int
10187 plt_stub_pad (struct ppc_link_hash_table *htab,
10188 struct ppc_stub_hash_entry *stub_entry,
10189 bfd_vma plt_off)
10190 {
10191 int stub_align = 1 << htab->params->plt_stub_align;
10192 unsigned stub_size = plt_stub_size (htab, stub_entry, plt_off);
10193 bfd_vma stub_off = stub_entry->stub_sec->size;
10194
10195 if (((stub_off + stub_size - 1) & -stub_align) - (stub_off & -stub_align)
10196 > (stub_size & -stub_align))
10197 return stub_align - (stub_off & (stub_align - 1));
10198 return 0;
10199 }
10200
10201 /* Build a .plt call stub. */
10202
10203 static inline bfd_byte *
10204 build_plt_stub (struct ppc_link_hash_table *htab,
10205 struct ppc_stub_hash_entry *stub_entry,
10206 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
10207 {
10208 bfd *obfd = htab->params->stub_bfd;
10209 bfd_boolean plt_load_toc = htab->opd_abi;
10210 bfd_boolean plt_static_chain = htab->params->plt_static_chain;
10211 bfd_boolean plt_thread_safe = htab->params->plt_thread_safe;
10212 bfd_boolean use_fake_dep = plt_thread_safe;
10213 bfd_vma cmp_branch_off = 0;
10214
10215 if (!ALWAYS_USE_FAKE_DEP
10216 && plt_load_toc
10217 && plt_thread_safe
10218 && !(stub_entry->h != NULL
10219 && (stub_entry->h == htab->tls_get_addr_fd
10220 || stub_entry->h == htab->tls_get_addr)
10221 && !htab->params->no_tls_get_addr_opt))
10222 {
10223 bfd_vma pltoff = stub_entry->plt_ent->plt.offset & ~1;
10224 bfd_vma pltindex = ((pltoff - PLT_INITIAL_ENTRY_SIZE (htab))
10225 / PLT_ENTRY_SIZE (htab));
10226 bfd_vma glinkoff = GLINK_CALL_STUB_SIZE + pltindex * 8;
10227 bfd_vma to, from;
10228
10229 if (pltindex > 32768)
10230 glinkoff += (pltindex - 32768) * 4;
10231 to = (glinkoff
10232 + htab->glink->output_offset
10233 + htab->glink->output_section->vma);
10234 from = (p - stub_entry->stub_sec->contents
10235 + 4 * (ALWAYS_EMIT_R2SAVE
10236 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10237 + 4 * (PPC_HA (offset) != 0)
10238 + 4 * (PPC_HA (offset + 8 + 8 * plt_static_chain)
10239 != PPC_HA (offset))
10240 + 4 * (plt_static_chain != 0)
10241 + 20
10242 + stub_entry->stub_sec->output_offset
10243 + stub_entry->stub_sec->output_section->vma);
10244 cmp_branch_off = to - from;
10245 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
10246 }
10247
10248 if (PPC_HA (offset) != 0)
10249 {
10250 if (r != NULL)
10251 {
10252 if (ALWAYS_EMIT_R2SAVE
10253 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10254 r[0].r_offset += 4;
10255 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
10256 r[1].r_offset = r[0].r_offset + 4;
10257 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10258 r[1].r_addend = r[0].r_addend;
10259 if (plt_load_toc)
10260 {
10261 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10262 {
10263 r[2].r_offset = r[1].r_offset + 4;
10264 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO);
10265 r[2].r_addend = r[0].r_addend;
10266 }
10267 else
10268 {
10269 r[2].r_offset = r[1].r_offset + 8 + 8 * use_fake_dep;
10270 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10271 r[2].r_addend = r[0].r_addend + 8;
10272 if (plt_static_chain)
10273 {
10274 r[3].r_offset = r[2].r_offset + 4;
10275 r[3].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10276 r[3].r_addend = r[0].r_addend + 16;
10277 }
10278 }
10279 }
10280 }
10281 if (ALWAYS_EMIT_R2SAVE
10282 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10283 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p), p += 4;
10284 if (plt_load_toc)
10285 {
10286 bfd_put_32 (obfd, ADDIS_R11_R2 | PPC_HA (offset), p), p += 4;
10287 bfd_put_32 (obfd, LD_R12_0R11 | PPC_LO (offset), p), p += 4;
10288 }
10289 else
10290 {
10291 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (offset), p), p += 4;
10292 bfd_put_32 (obfd, LD_R12_0R12 | PPC_LO (offset), p), p += 4;
10293 }
10294 if (plt_load_toc
10295 && PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10296 {
10297 bfd_put_32 (obfd, ADDI_R11_R11 | PPC_LO (offset), p), p += 4;
10298 offset = 0;
10299 }
10300 bfd_put_32 (obfd, MTCTR_R12, p), p += 4;
10301 if (plt_load_toc)
10302 {
10303 if (use_fake_dep)
10304 {
10305 bfd_put_32 (obfd, XOR_R2_R12_R12, p), p += 4;
10306 bfd_put_32 (obfd, ADD_R11_R11_R2, p), p += 4;
10307 }
10308 bfd_put_32 (obfd, LD_R2_0R11 | PPC_LO (offset + 8), p), p += 4;
10309 if (plt_static_chain)
10310 bfd_put_32 (obfd, LD_R11_0R11 | PPC_LO (offset + 16), p), p += 4;
10311 }
10312 }
10313 else
10314 {
10315 if (r != NULL)
10316 {
10317 if (ALWAYS_EMIT_R2SAVE
10318 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10319 r[0].r_offset += 4;
10320 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10321 if (plt_load_toc)
10322 {
10323 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10324 {
10325 r[1].r_offset = r[0].r_offset + 4;
10326 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16);
10327 r[1].r_addend = r[0].r_addend;
10328 }
10329 else
10330 {
10331 r[1].r_offset = r[0].r_offset + 8 + 8 * use_fake_dep;
10332 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10333 r[1].r_addend = r[0].r_addend + 8 + 8 * plt_static_chain;
10334 if (plt_static_chain)
10335 {
10336 r[2].r_offset = r[1].r_offset + 4;
10337 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10338 r[2].r_addend = r[0].r_addend + 8;
10339 }
10340 }
10341 }
10342 }
10343 if (ALWAYS_EMIT_R2SAVE
10344 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10345 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p), p += 4;
10346 bfd_put_32 (obfd, LD_R12_0R2 | PPC_LO (offset), p), p += 4;
10347 if (plt_load_toc
10348 && PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10349 {
10350 bfd_put_32 (obfd, ADDI_R2_R2 | PPC_LO (offset), p), p += 4;
10351 offset = 0;
10352 }
10353 bfd_put_32 (obfd, MTCTR_R12, p), p += 4;
10354 if (plt_load_toc)
10355 {
10356 if (use_fake_dep)
10357 {
10358 bfd_put_32 (obfd, XOR_R11_R12_R12, p), p += 4;
10359 bfd_put_32 (obfd, ADD_R2_R2_R11, p), p += 4;
10360 }
10361 if (plt_static_chain)
10362 bfd_put_32 (obfd, LD_R11_0R2 | PPC_LO (offset + 16), p), p += 4;
10363 bfd_put_32 (obfd, LD_R2_0R2 | PPC_LO (offset + 8), p), p += 4;
10364 }
10365 }
10366 if (plt_load_toc && plt_thread_safe && !use_fake_dep)
10367 {
10368 bfd_put_32 (obfd, CMPLDI_R2_0, p), p += 4;
10369 bfd_put_32 (obfd, BNECTR_P4, p), p += 4;
10370 bfd_put_32 (obfd, B_DOT | (cmp_branch_off & 0x3fffffc), p), p += 4;
10371 }
10372 else
10373 bfd_put_32 (obfd, BCTR, p), p += 4;
10374 return p;
10375 }
10376
10377 /* Build a special .plt call stub for __tls_get_addr. */
10378
10379 #define LD_R11_0R3 0xe9630000
10380 #define LD_R12_0R3 0xe9830000
10381 #define MR_R0_R3 0x7c601b78
10382 #define CMPDI_R11_0 0x2c2b0000
10383 #define ADD_R3_R12_R13 0x7c6c6a14
10384 #define BEQLR 0x4d820020
10385 #define MR_R3_R0 0x7c030378
10386 #define STD_R11_0R1 0xf9610000
10387 #define BCTRL 0x4e800421
10388 #define LD_R11_0R1 0xe9610000
10389 #define MTLR_R11 0x7d6803a6
10390
10391 static inline bfd_byte *
10392 build_tls_get_addr_stub (struct ppc_link_hash_table *htab,
10393 struct ppc_stub_hash_entry *stub_entry,
10394 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
10395 {
10396 bfd *obfd = htab->params->stub_bfd;
10397
10398 bfd_put_32 (obfd, LD_R11_0R3 + 0, p), p += 4;
10399 bfd_put_32 (obfd, LD_R12_0R3 + 8, p), p += 4;
10400 bfd_put_32 (obfd, MR_R0_R3, p), p += 4;
10401 bfd_put_32 (obfd, CMPDI_R11_0, p), p += 4;
10402 bfd_put_32 (obfd, ADD_R3_R12_R13, p), p += 4;
10403 bfd_put_32 (obfd, BEQLR, p), p += 4;
10404 bfd_put_32 (obfd, MR_R3_R0, p), p += 4;
10405 bfd_put_32 (obfd, MFLR_R11, p), p += 4;
10406 bfd_put_32 (obfd, STD_R11_0R1 + STK_LINKER (htab), p), p += 4;
10407
10408 if (r != NULL)
10409 r[0].r_offset += 9 * 4;
10410 p = build_plt_stub (htab, stub_entry, p, offset, r);
10411 bfd_put_32 (obfd, BCTRL, p - 4);
10412
10413 bfd_put_32 (obfd, LD_R11_0R1 + STK_LINKER (htab), p), p += 4;
10414 bfd_put_32 (obfd, LD_R2_0R1 + STK_TOC (htab), p), p += 4;
10415 bfd_put_32 (obfd, MTLR_R11, p), p += 4;
10416 bfd_put_32 (obfd, BLR, p), p += 4;
10417
10418 return p;
10419 }
10420
10421 static Elf_Internal_Rela *
10422 get_relocs (asection *sec, int count)
10423 {
10424 Elf_Internal_Rela *relocs;
10425 struct bfd_elf_section_data *elfsec_data;
10426
10427 elfsec_data = elf_section_data (sec);
10428 relocs = elfsec_data->relocs;
10429 if (relocs == NULL)
10430 {
10431 bfd_size_type relsize;
10432 relsize = sec->reloc_count * sizeof (*relocs);
10433 relocs = bfd_alloc (sec->owner, relsize);
10434 if (relocs == NULL)
10435 return NULL;
10436 elfsec_data->relocs = relocs;
10437 elfsec_data->rela.hdr = bfd_zalloc (sec->owner,
10438 sizeof (Elf_Internal_Shdr));
10439 if (elfsec_data->rela.hdr == NULL)
10440 return NULL;
10441 elfsec_data->rela.hdr->sh_size = (sec->reloc_count
10442 * sizeof (Elf64_External_Rela));
10443 elfsec_data->rela.hdr->sh_entsize = sizeof (Elf64_External_Rela);
10444 sec->reloc_count = 0;
10445 }
10446 relocs += sec->reloc_count;
10447 sec->reloc_count += count;
10448 return relocs;
10449 }
10450
10451 static bfd_vma
10452 get_r2off (struct bfd_link_info *info,
10453 struct ppc_stub_hash_entry *stub_entry)
10454 {
10455 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10456 bfd_vma r2off = htab->stub_group[stub_entry->target_section->id].toc_off;
10457
10458 if (r2off == 0)
10459 {
10460 /* Support linking -R objects. Get the toc pointer from the
10461 opd entry. */
10462 char buf[8];
10463 if (!htab->opd_abi)
10464 return r2off;
10465 asection *opd = stub_entry->h->elf.root.u.def.section;
10466 bfd_vma opd_off = stub_entry->h->elf.root.u.def.value;
10467
10468 if (strcmp (opd->name, ".opd") != 0
10469 || opd->reloc_count != 0)
10470 {
10471 info->callbacks->einfo (_("%P: cannot find opd entry toc for `%T'\n"),
10472 stub_entry->h->elf.root.root.string);
10473 bfd_set_error (bfd_error_bad_value);
10474 return 0;
10475 }
10476 if (!bfd_get_section_contents (opd->owner, opd, buf, opd_off + 8, 8))
10477 return 0;
10478 r2off = bfd_get_64 (opd->owner, buf);
10479 r2off -= elf_gp (info->output_bfd);
10480 }
10481 r2off -= htab->stub_group[stub_entry->id_sec->id].toc_off;
10482 return r2off;
10483 }
10484
10485 static bfd_boolean
10486 ppc_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
10487 {
10488 struct ppc_stub_hash_entry *stub_entry;
10489 struct ppc_branch_hash_entry *br_entry;
10490 struct bfd_link_info *info;
10491 struct ppc_link_hash_table *htab;
10492 bfd_byte *loc;
10493 bfd_byte *p;
10494 bfd_vma dest, off;
10495 int size;
10496 Elf_Internal_Rela *r;
10497 asection *plt;
10498
10499 /* Massage our args to the form they really have. */
10500 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
10501 info = in_arg;
10502
10503 htab = ppc_hash_table (info);
10504 if (htab == NULL)
10505 return FALSE;
10506
10507 /* Make a note of the offset within the stubs for this entry. */
10508 stub_entry->stub_offset = stub_entry->stub_sec->size;
10509 loc = stub_entry->stub_sec->contents + stub_entry->stub_offset;
10510
10511 htab->stub_count[stub_entry->stub_type - 1] += 1;
10512 switch (stub_entry->stub_type)
10513 {
10514 case ppc_stub_long_branch:
10515 case ppc_stub_long_branch_r2off:
10516 /* Branches are relative. This is where we are going to. */
10517 dest = (stub_entry->target_value
10518 + stub_entry->target_section->output_offset
10519 + stub_entry->target_section->output_section->vma);
10520 dest += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
10521 off = dest;
10522
10523 /* And this is where we are coming from. */
10524 off -= (stub_entry->stub_offset
10525 + stub_entry->stub_sec->output_offset
10526 + stub_entry->stub_sec->output_section->vma);
10527
10528 size = 4;
10529 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
10530 {
10531 bfd_vma r2off = get_r2off (info, stub_entry);
10532
10533 if (r2off == 0)
10534 {
10535 htab->stub_error = TRUE;
10536 return FALSE;
10537 }
10538 bfd_put_32 (htab->params->stub_bfd, STD_R2_0R1 + STK_TOC (htab), loc);
10539 loc += 4;
10540 size = 12;
10541 if (PPC_HA (r2off) != 0)
10542 {
10543 size = 16;
10544 bfd_put_32 (htab->params->stub_bfd,
10545 ADDIS_R2_R2 | PPC_HA (r2off), loc);
10546 loc += 4;
10547 }
10548 bfd_put_32 (htab->params->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
10549 loc += 4;
10550 off -= size - 4;
10551 }
10552 bfd_put_32 (htab->params->stub_bfd, B_DOT | (off & 0x3fffffc), loc);
10553
10554 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
10555 {
10556 info->callbacks->einfo
10557 (_("%P: long branch stub `%s' offset overflow\n"),
10558 stub_entry->root.string);
10559 htab->stub_error = TRUE;
10560 return FALSE;
10561 }
10562
10563 if (info->emitrelocations)
10564 {
10565 r = get_relocs (stub_entry->stub_sec, 1);
10566 if (r == NULL)
10567 return FALSE;
10568 r->r_offset = loc - stub_entry->stub_sec->contents;
10569 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
10570 r->r_addend = dest;
10571 if (stub_entry->h != NULL)
10572 {
10573 struct elf_link_hash_entry **hashes;
10574 unsigned long symndx;
10575 struct ppc_link_hash_entry *h;
10576
10577 hashes = elf_sym_hashes (htab->params->stub_bfd);
10578 if (hashes == NULL)
10579 {
10580 bfd_size_type hsize;
10581
10582 hsize = (htab->stub_globals + 1) * sizeof (*hashes);
10583 hashes = bfd_zalloc (htab->params->stub_bfd, hsize);
10584 if (hashes == NULL)
10585 return FALSE;
10586 elf_sym_hashes (htab->params->stub_bfd) = hashes;
10587 htab->stub_globals = 1;
10588 }
10589 symndx = htab->stub_globals++;
10590 h = stub_entry->h;
10591 hashes[symndx] = &h->elf;
10592 r->r_info = ELF64_R_INFO (symndx, R_PPC64_REL24);
10593 if (h->oh != NULL && h->oh->is_func)
10594 h = ppc_follow_link (h->oh);
10595 if (h->elf.root.u.def.section != stub_entry->target_section)
10596 /* H is an opd symbol. The addend must be zero. */
10597 r->r_addend = 0;
10598 else
10599 {
10600 off = (h->elf.root.u.def.value
10601 + h->elf.root.u.def.section->output_offset
10602 + h->elf.root.u.def.section->output_section->vma);
10603 r->r_addend -= off;
10604 }
10605 }
10606 }
10607 break;
10608
10609 case ppc_stub_plt_branch:
10610 case ppc_stub_plt_branch_r2off:
10611 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
10612 stub_entry->root.string + 9,
10613 FALSE, FALSE);
10614 if (br_entry == NULL)
10615 {
10616 info->callbacks->einfo (_("%P: can't find branch stub `%s'\n"),
10617 stub_entry->root.string);
10618 htab->stub_error = TRUE;
10619 return FALSE;
10620 }
10621
10622 dest = (stub_entry->target_value
10623 + stub_entry->target_section->output_offset
10624 + stub_entry->target_section->output_section->vma);
10625 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
10626 dest += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
10627
10628 bfd_put_64 (htab->brlt->owner, dest,
10629 htab->brlt->contents + br_entry->offset);
10630
10631 if (br_entry->iter == htab->stub_iteration)
10632 {
10633 br_entry->iter = 0;
10634
10635 if (htab->relbrlt != NULL)
10636 {
10637 /* Create a reloc for the branch lookup table entry. */
10638 Elf_Internal_Rela rela;
10639 bfd_byte *rl;
10640
10641 rela.r_offset = (br_entry->offset
10642 + htab->brlt->output_offset
10643 + htab->brlt->output_section->vma);
10644 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10645 rela.r_addend = dest;
10646
10647 rl = htab->relbrlt->contents;
10648 rl += (htab->relbrlt->reloc_count++
10649 * sizeof (Elf64_External_Rela));
10650 bfd_elf64_swap_reloca_out (htab->relbrlt->owner, &rela, rl);
10651 }
10652 else if (info->emitrelocations)
10653 {
10654 r = get_relocs (htab->brlt, 1);
10655 if (r == NULL)
10656 return FALSE;
10657 /* brlt, being SEC_LINKER_CREATED does not go through the
10658 normal reloc processing. Symbols and offsets are not
10659 translated from input file to output file form, so
10660 set up the offset per the output file. */
10661 r->r_offset = (br_entry->offset
10662 + htab->brlt->output_offset
10663 + htab->brlt->output_section->vma);
10664 r->r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10665 r->r_addend = dest;
10666 }
10667 }
10668
10669 dest = (br_entry->offset
10670 + htab->brlt->output_offset
10671 + htab->brlt->output_section->vma);
10672
10673 off = (dest
10674 - elf_gp (htab->brlt->output_section->owner)
10675 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10676
10677 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
10678 {
10679 info->callbacks->einfo
10680 (_("%P: linkage table error against `%T'\n"),
10681 stub_entry->root.string);
10682 bfd_set_error (bfd_error_bad_value);
10683 htab->stub_error = TRUE;
10684 return FALSE;
10685 }
10686
10687 if (info->emitrelocations)
10688 {
10689 r = get_relocs (stub_entry->stub_sec, 1 + (PPC_HA (off) != 0));
10690 if (r == NULL)
10691 return FALSE;
10692 r[0].r_offset = loc - stub_entry->stub_sec->contents;
10693 if (bfd_big_endian (info->output_bfd))
10694 r[0].r_offset += 2;
10695 if (stub_entry->stub_type == ppc_stub_plt_branch_r2off)
10696 r[0].r_offset += 4;
10697 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10698 r[0].r_addend = dest;
10699 if (PPC_HA (off) != 0)
10700 {
10701 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
10702 r[1].r_offset = r[0].r_offset + 4;
10703 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10704 r[1].r_addend = r[0].r_addend;
10705 }
10706 }
10707
10708 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
10709 {
10710 if (PPC_HA (off) != 0)
10711 {
10712 size = 16;
10713 bfd_put_32 (htab->params->stub_bfd,
10714 ADDIS_R12_R2 | PPC_HA (off), loc);
10715 loc += 4;
10716 bfd_put_32 (htab->params->stub_bfd,
10717 LD_R12_0R12 | PPC_LO (off), loc);
10718 }
10719 else
10720 {
10721 size = 12;
10722 bfd_put_32 (htab->params->stub_bfd,
10723 LD_R12_0R2 | PPC_LO (off), loc);
10724 }
10725 }
10726 else
10727 {
10728 bfd_vma r2off = get_r2off (info, stub_entry);
10729
10730 if (r2off == 0 && htab->opd_abi)
10731 {
10732 htab->stub_error = TRUE;
10733 return FALSE;
10734 }
10735
10736 bfd_put_32 (htab->params->stub_bfd, STD_R2_0R1 + STK_TOC (htab), loc);
10737 loc += 4;
10738 size = 16;
10739 if (PPC_HA (off) != 0)
10740 {
10741 size += 4;
10742 bfd_put_32 (htab->params->stub_bfd,
10743 ADDIS_R12_R2 | PPC_HA (off), loc);
10744 loc += 4;
10745 bfd_put_32 (htab->params->stub_bfd,
10746 LD_R12_0R12 | PPC_LO (off), loc);
10747 }
10748 else
10749 bfd_put_32 (htab->params->stub_bfd, LD_R12_0R2 | PPC_LO (off), loc);
10750
10751 if (PPC_HA (r2off) != 0)
10752 {
10753 size += 4;
10754 loc += 4;
10755 bfd_put_32 (htab->params->stub_bfd,
10756 ADDIS_R2_R2 | PPC_HA (r2off), loc);
10757 }
10758 if (PPC_LO (r2off) != 0)
10759 {
10760 size += 4;
10761 loc += 4;
10762 bfd_put_32 (htab->params->stub_bfd,
10763 ADDI_R2_R2 | PPC_LO (r2off), loc);
10764 }
10765 }
10766 loc += 4;
10767 bfd_put_32 (htab->params->stub_bfd, MTCTR_R12, loc);
10768 loc += 4;
10769 bfd_put_32 (htab->params->stub_bfd, BCTR, loc);
10770 break;
10771
10772 case ppc_stub_plt_call:
10773 case ppc_stub_plt_call_r2save:
10774 if (stub_entry->h != NULL
10775 && stub_entry->h->is_func_descriptor
10776 && stub_entry->h->oh != NULL)
10777 {
10778 struct ppc_link_hash_entry *fh = ppc_follow_link (stub_entry->h->oh);
10779
10780 /* If the old-ABI "dot-symbol" is undefined make it weak so
10781 we don't get a link error from RELOC_FOR_GLOBAL_SYMBOL.
10782 FIXME: We used to define the symbol on one of the call
10783 stubs instead, which is why we test symbol section id
10784 against htab->top_id in various places. Likely all
10785 these checks could now disappear. */
10786 if (fh->elf.root.type == bfd_link_hash_undefined)
10787 fh->elf.root.type = bfd_link_hash_undefweak;
10788 /* Stop undo_symbol_twiddle changing it back to undefined. */
10789 fh->was_undefined = 0;
10790 }
10791
10792 /* Now build the stub. */
10793 dest = stub_entry->plt_ent->plt.offset & ~1;
10794 if (dest >= (bfd_vma) -2)
10795 abort ();
10796
10797 plt = htab->elf.splt;
10798 if (!htab->elf.dynamic_sections_created
10799 || stub_entry->h == NULL
10800 || stub_entry->h->elf.dynindx == -1)
10801 plt = htab->elf.iplt;
10802
10803 dest += plt->output_offset + plt->output_section->vma;
10804
10805 if (stub_entry->h == NULL
10806 && (stub_entry->plt_ent->plt.offset & 1) == 0)
10807 {
10808 Elf_Internal_Rela rela;
10809 bfd_byte *rl;
10810
10811 rela.r_offset = dest;
10812 if (htab->opd_abi)
10813 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
10814 else
10815 rela.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
10816 rela.r_addend = (stub_entry->target_value
10817 + stub_entry->target_section->output_offset
10818 + stub_entry->target_section->output_section->vma);
10819
10820 rl = (htab->elf.irelplt->contents
10821 + (htab->elf.irelplt->reloc_count++
10822 * sizeof (Elf64_External_Rela)));
10823 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, rl);
10824 stub_entry->plt_ent->plt.offset |= 1;
10825 }
10826
10827 off = (dest
10828 - elf_gp (plt->output_section->owner)
10829 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10830
10831 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
10832 {
10833 info->callbacks->einfo
10834 (_("%P: linkage table error against `%T'\n"),
10835 stub_entry->h != NULL
10836 ? stub_entry->h->elf.root.root.string
10837 : "<local sym>");
10838 bfd_set_error (bfd_error_bad_value);
10839 htab->stub_error = TRUE;
10840 return FALSE;
10841 }
10842
10843 if (htab->params->plt_stub_align != 0)
10844 {
10845 unsigned pad = plt_stub_pad (htab, stub_entry, off);
10846
10847 stub_entry->stub_sec->size += pad;
10848 stub_entry->stub_offset = stub_entry->stub_sec->size;
10849 loc += pad;
10850 }
10851
10852 r = NULL;
10853 if (info->emitrelocations)
10854 {
10855 r = get_relocs (stub_entry->stub_sec,
10856 ((PPC_HA (off) != 0)
10857 + (htab->opd_abi
10858 ? 2 + (htab->params->plt_static_chain
10859 && PPC_HA (off + 16) == PPC_HA (off))
10860 : 1)));
10861 if (r == NULL)
10862 return FALSE;
10863 r[0].r_offset = loc - stub_entry->stub_sec->contents;
10864 if (bfd_big_endian (info->output_bfd))
10865 r[0].r_offset += 2;
10866 r[0].r_addend = dest;
10867 }
10868 if (stub_entry->h != NULL
10869 && (stub_entry->h == htab->tls_get_addr_fd
10870 || stub_entry->h == htab->tls_get_addr)
10871 && !htab->params->no_tls_get_addr_opt)
10872 p = build_tls_get_addr_stub (htab, stub_entry, loc, off, r);
10873 else
10874 p = build_plt_stub (htab, stub_entry, loc, off, r);
10875 size = p - loc;
10876 break;
10877
10878 default:
10879 BFD_FAIL ();
10880 return FALSE;
10881 }
10882
10883 stub_entry->stub_sec->size += size;
10884
10885 if (htab->params->emit_stub_syms)
10886 {
10887 struct elf_link_hash_entry *h;
10888 size_t len1, len2;
10889 char *name;
10890 const char *const stub_str[] = { "long_branch",
10891 "long_branch_r2off",
10892 "plt_branch",
10893 "plt_branch_r2off",
10894 "plt_call",
10895 "plt_call" };
10896
10897 len1 = strlen (stub_str[stub_entry->stub_type - 1]);
10898 len2 = strlen (stub_entry->root.string);
10899 name = bfd_malloc (len1 + len2 + 2);
10900 if (name == NULL)
10901 return FALSE;
10902 memcpy (name, stub_entry->root.string, 9);
10903 memcpy (name + 9, stub_str[stub_entry->stub_type - 1], len1);
10904 memcpy (name + len1 + 9, stub_entry->root.string + 8, len2 - 8 + 1);
10905 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
10906 if (h == NULL)
10907 return FALSE;
10908 if (h->root.type == bfd_link_hash_new)
10909 {
10910 h->root.type = bfd_link_hash_defined;
10911 h->root.u.def.section = stub_entry->stub_sec;
10912 h->root.u.def.value = stub_entry->stub_offset;
10913 h->ref_regular = 1;
10914 h->def_regular = 1;
10915 h->ref_regular_nonweak = 1;
10916 h->forced_local = 1;
10917 h->non_elf = 0;
10918 }
10919 }
10920
10921 return TRUE;
10922 }
10923
10924 /* As above, but don't actually build the stub. Just bump offset so
10925 we know stub section sizes, and select plt_branch stubs where
10926 long_branch stubs won't do. */
10927
10928 static bfd_boolean
10929 ppc_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
10930 {
10931 struct ppc_stub_hash_entry *stub_entry;
10932 struct bfd_link_info *info;
10933 struct ppc_link_hash_table *htab;
10934 bfd_vma off;
10935 int size;
10936
10937 /* Massage our args to the form they really have. */
10938 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
10939 info = in_arg;
10940
10941 htab = ppc_hash_table (info);
10942 if (htab == NULL)
10943 return FALSE;
10944
10945 if (stub_entry->stub_type == ppc_stub_plt_call
10946 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10947 {
10948 asection *plt;
10949 off = stub_entry->plt_ent->plt.offset & ~(bfd_vma) 1;
10950 if (off >= (bfd_vma) -2)
10951 abort ();
10952 plt = htab->elf.splt;
10953 if (!htab->elf.dynamic_sections_created
10954 || stub_entry->h == NULL
10955 || stub_entry->h->elf.dynindx == -1)
10956 plt = htab->elf.iplt;
10957 off += (plt->output_offset
10958 + plt->output_section->vma
10959 - elf_gp (plt->output_section->owner)
10960 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10961
10962 size = plt_stub_size (htab, stub_entry, off);
10963 if (htab->params->plt_stub_align)
10964 size += plt_stub_pad (htab, stub_entry, off);
10965 if (info->emitrelocations)
10966 {
10967 stub_entry->stub_sec->reloc_count
10968 += ((PPC_HA (off) != 0)
10969 + (htab->opd_abi
10970 ? 2 + (htab->params->plt_static_chain
10971 && PPC_HA (off + 16) == PPC_HA (off))
10972 : 1));
10973 stub_entry->stub_sec->flags |= SEC_RELOC;
10974 }
10975 }
10976 else
10977 {
10978 /* ppc_stub_long_branch or ppc_stub_plt_branch, or their r2off
10979 variants. */
10980 bfd_vma r2off = 0;
10981 bfd_vma local_off = 0;
10982
10983 off = (stub_entry->target_value
10984 + stub_entry->target_section->output_offset
10985 + stub_entry->target_section->output_section->vma);
10986 off -= (stub_entry->stub_sec->size
10987 + stub_entry->stub_sec->output_offset
10988 + stub_entry->stub_sec->output_section->vma);
10989
10990 /* Reset the stub type from the plt variant in case we now
10991 can reach with a shorter stub. */
10992 if (stub_entry->stub_type >= ppc_stub_plt_branch)
10993 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
10994
10995 size = 4;
10996 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
10997 {
10998 r2off = get_r2off (info, stub_entry);
10999 if (r2off == 0 && htab->opd_abi)
11000 {
11001 htab->stub_error = TRUE;
11002 return FALSE;
11003 }
11004 size = 12;
11005 if (PPC_HA (r2off) != 0)
11006 size = 16;
11007 off -= size - 4;
11008 }
11009
11010 local_off = PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
11011
11012 /* If the branch offset if too big, use a ppc_stub_plt_branch.
11013 Do the same for -R objects without function descriptors. */
11014 if (off + (1 << 25) >= (bfd_vma) (1 << 26) - local_off
11015 || (stub_entry->stub_type == ppc_stub_long_branch_r2off
11016 && r2off == 0))
11017 {
11018 struct ppc_branch_hash_entry *br_entry;
11019
11020 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
11021 stub_entry->root.string + 9,
11022 TRUE, FALSE);
11023 if (br_entry == NULL)
11024 {
11025 info->callbacks->einfo (_("%P: can't build branch stub `%s'\n"),
11026 stub_entry->root.string);
11027 htab->stub_error = TRUE;
11028 return FALSE;
11029 }
11030
11031 if (br_entry->iter != htab->stub_iteration)
11032 {
11033 br_entry->iter = htab->stub_iteration;
11034 br_entry->offset = htab->brlt->size;
11035 htab->brlt->size += 8;
11036
11037 if (htab->relbrlt != NULL)
11038 htab->relbrlt->size += sizeof (Elf64_External_Rela);
11039 else if (info->emitrelocations)
11040 {
11041 htab->brlt->reloc_count += 1;
11042 htab->brlt->flags |= SEC_RELOC;
11043 }
11044 }
11045
11046 stub_entry->stub_type += ppc_stub_plt_branch - ppc_stub_long_branch;
11047 off = (br_entry->offset
11048 + htab->brlt->output_offset
11049 + htab->brlt->output_section->vma
11050 - elf_gp (htab->brlt->output_section->owner)
11051 - htab->stub_group[stub_entry->id_sec->id].toc_off);
11052
11053 if (info->emitrelocations)
11054 {
11055 stub_entry->stub_sec->reloc_count += 1 + (PPC_HA (off) != 0);
11056 stub_entry->stub_sec->flags |= SEC_RELOC;
11057 }
11058
11059 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
11060 {
11061 size = 12;
11062 if (PPC_HA (off) != 0)
11063 size = 16;
11064 }
11065 else
11066 {
11067 size = 16;
11068 if (PPC_HA (off) != 0)
11069 size += 4;
11070
11071 if (PPC_HA (r2off) != 0)
11072 size += 4;
11073 if (PPC_LO (r2off) != 0)
11074 size += 4;
11075 }
11076 }
11077 else if (info->emitrelocations)
11078 {
11079 stub_entry->stub_sec->reloc_count += 1;
11080 stub_entry->stub_sec->flags |= SEC_RELOC;
11081 }
11082 }
11083
11084 stub_entry->stub_sec->size += size;
11085 return TRUE;
11086 }
11087
11088 /* Set up various things so that we can make a list of input sections
11089 for each output section included in the link. Returns -1 on error,
11090 0 when no stubs will be needed, and 1 on success. */
11091
11092 int
11093 ppc64_elf_setup_section_lists (struct bfd_link_info *info)
11094 {
11095 bfd *input_bfd;
11096 int top_id, top_index, id;
11097 asection *section;
11098 asection **input_list;
11099 bfd_size_type amt;
11100 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11101
11102 if (htab == NULL)
11103 return -1;
11104
11105 /* Find the top input section id. */
11106 for (input_bfd = info->input_bfds, top_id = 3;
11107 input_bfd != NULL;
11108 input_bfd = input_bfd->link.next)
11109 {
11110 for (section = input_bfd->sections;
11111 section != NULL;
11112 section = section->next)
11113 {
11114 if (top_id < section->id)
11115 top_id = section->id;
11116 }
11117 }
11118
11119 htab->top_id = top_id;
11120 amt = sizeof (struct map_stub) * (top_id + 1);
11121 htab->stub_group = bfd_zmalloc (amt);
11122 if (htab->stub_group == NULL)
11123 return -1;
11124
11125 /* Set toc_off for com, und, abs and ind sections. */
11126 for (id = 0; id < 3; id++)
11127 htab->stub_group[id].toc_off = TOC_BASE_OFF;
11128
11129 /* We can't use output_bfd->section_count here to find the top output
11130 section index as some sections may have been removed, and
11131 strip_excluded_output_sections doesn't renumber the indices. */
11132 for (section = info->output_bfd->sections, top_index = 0;
11133 section != NULL;
11134 section = section->next)
11135 {
11136 if (top_index < section->index)
11137 top_index = section->index;
11138 }
11139
11140 htab->top_index = top_index;
11141 amt = sizeof (asection *) * (top_index + 1);
11142 input_list = bfd_zmalloc (amt);
11143 htab->input_list = input_list;
11144 if (input_list == NULL)
11145 return -1;
11146
11147 return 1;
11148 }
11149
11150 /* Set up for first pass at multitoc partitioning. */
11151
11152 void
11153 ppc64_elf_start_multitoc_partition (struct bfd_link_info *info)
11154 {
11155 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11156
11157 htab->toc_curr = ppc64_elf_set_toc (info, info->output_bfd);
11158 htab->toc_bfd = NULL;
11159 htab->toc_first_sec = NULL;
11160 }
11161
11162 /* The linker repeatedly calls this function for each TOC input section
11163 and linker generated GOT section. Group input bfds such that the toc
11164 within a group is less than 64k in size. */
11165
11166 bfd_boolean
11167 ppc64_elf_next_toc_section (struct bfd_link_info *info, asection *isec)
11168 {
11169 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11170 bfd_vma addr, off, limit;
11171
11172 if (htab == NULL)
11173 return FALSE;
11174
11175 if (!htab->second_toc_pass)
11176 {
11177 /* Keep track of the first .toc or .got section for this input bfd. */
11178 bfd_boolean new_bfd = htab->toc_bfd != isec->owner;
11179
11180 if (new_bfd)
11181 {
11182 htab->toc_bfd = isec->owner;
11183 htab->toc_first_sec = isec;
11184 }
11185
11186 addr = isec->output_offset + isec->output_section->vma;
11187 off = addr - htab->toc_curr;
11188 limit = 0x80008000;
11189 if (ppc64_elf_tdata (isec->owner)->has_small_toc_reloc)
11190 limit = 0x10000;
11191 if (off + isec->size > limit)
11192 {
11193 addr = (htab->toc_first_sec->output_offset
11194 + htab->toc_first_sec->output_section->vma);
11195 htab->toc_curr = addr;
11196 }
11197
11198 /* toc_curr is the base address of this toc group. Set elf_gp
11199 for the input section to be the offset relative to the
11200 output toc base plus 0x8000. Making the input elf_gp an
11201 offset allows us to move the toc as a whole without
11202 recalculating input elf_gp. */
11203 off = htab->toc_curr - elf_gp (isec->output_section->owner);
11204 off += TOC_BASE_OFF;
11205
11206 /* Die if someone uses a linker script that doesn't keep input
11207 file .toc and .got together. */
11208 if (new_bfd
11209 && elf_gp (isec->owner) != 0
11210 && elf_gp (isec->owner) != off)
11211 return FALSE;
11212
11213 elf_gp (isec->owner) = off;
11214 return TRUE;
11215 }
11216
11217 /* During the second pass toc_first_sec points to the start of
11218 a toc group, and toc_curr is used to track the old elf_gp.
11219 We use toc_bfd to ensure we only look at each bfd once. */
11220 if (htab->toc_bfd == isec->owner)
11221 return TRUE;
11222 htab->toc_bfd = isec->owner;
11223
11224 if (htab->toc_first_sec == NULL
11225 || htab->toc_curr != elf_gp (isec->owner))
11226 {
11227 htab->toc_curr = elf_gp (isec->owner);
11228 htab->toc_first_sec = isec;
11229 }
11230 addr = (htab->toc_first_sec->output_offset
11231 + htab->toc_first_sec->output_section->vma);
11232 off = addr - elf_gp (isec->output_section->owner) + TOC_BASE_OFF;
11233 elf_gp (isec->owner) = off;
11234
11235 return TRUE;
11236 }
11237
11238 /* Called via elf_link_hash_traverse to merge GOT entries for global
11239 symbol H. */
11240
11241 static bfd_boolean
11242 merge_global_got (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
11243 {
11244 if (h->root.type == bfd_link_hash_indirect)
11245 return TRUE;
11246
11247 merge_got_entries (&h->got.glist);
11248
11249 return TRUE;
11250 }
11251
11252 /* Called via elf_link_hash_traverse to allocate GOT entries for global
11253 symbol H. */
11254
11255 static bfd_boolean
11256 reallocate_got (struct elf_link_hash_entry *h, void *inf)
11257 {
11258 struct got_entry *gent;
11259
11260 if (h->root.type == bfd_link_hash_indirect)
11261 return TRUE;
11262
11263 for (gent = h->got.glist; gent != NULL; gent = gent->next)
11264 if (!gent->is_indirect)
11265 allocate_got (h, (struct bfd_link_info *) inf, gent);
11266 return TRUE;
11267 }
11268
11269 /* Called on the first multitoc pass after the last call to
11270 ppc64_elf_next_toc_section. This function removes duplicate GOT
11271 entries. */
11272
11273 bfd_boolean
11274 ppc64_elf_layout_multitoc (struct bfd_link_info *info)
11275 {
11276 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11277 struct bfd *ibfd, *ibfd2;
11278 bfd_boolean done_something;
11279
11280 htab->multi_toc_needed = htab->toc_curr != elf_gp (info->output_bfd);
11281
11282 if (!htab->do_multi_toc)
11283 return FALSE;
11284
11285 /* Merge global sym got entries within a toc group. */
11286 elf_link_hash_traverse (&htab->elf, merge_global_got, info);
11287
11288 /* And tlsld_got. */
11289 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11290 {
11291 struct got_entry *ent, *ent2;
11292
11293 if (!is_ppc64_elf (ibfd))
11294 continue;
11295
11296 ent = ppc64_tlsld_got (ibfd);
11297 if (!ent->is_indirect
11298 && ent->got.offset != (bfd_vma) -1)
11299 {
11300 for (ibfd2 = ibfd->link.next; ibfd2 != NULL; ibfd2 = ibfd2->link.next)
11301 {
11302 if (!is_ppc64_elf (ibfd2))
11303 continue;
11304
11305 ent2 = ppc64_tlsld_got (ibfd2);
11306 if (!ent2->is_indirect
11307 && ent2->got.offset != (bfd_vma) -1
11308 && elf_gp (ibfd2) == elf_gp (ibfd))
11309 {
11310 ent2->is_indirect = TRUE;
11311 ent2->got.ent = ent;
11312 }
11313 }
11314 }
11315 }
11316
11317 /* Zap sizes of got sections. */
11318 htab->elf.irelplt->rawsize = htab->elf.irelplt->size;
11319 htab->elf.irelplt->size -= htab->got_reli_size;
11320 htab->got_reli_size = 0;
11321
11322 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11323 {
11324 asection *got, *relgot;
11325
11326 if (!is_ppc64_elf (ibfd))
11327 continue;
11328
11329 got = ppc64_elf_tdata (ibfd)->got;
11330 if (got != NULL)
11331 {
11332 got->rawsize = got->size;
11333 got->size = 0;
11334 relgot = ppc64_elf_tdata (ibfd)->relgot;
11335 relgot->rawsize = relgot->size;
11336 relgot->size = 0;
11337 }
11338 }
11339
11340 /* Now reallocate the got, local syms first. We don't need to
11341 allocate section contents again since we never increase size. */
11342 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11343 {
11344 struct got_entry **lgot_ents;
11345 struct got_entry **end_lgot_ents;
11346 struct plt_entry **local_plt;
11347 struct plt_entry **end_local_plt;
11348 unsigned char *lgot_masks;
11349 bfd_size_type locsymcount;
11350 Elf_Internal_Shdr *symtab_hdr;
11351 asection *s;
11352
11353 if (!is_ppc64_elf (ibfd))
11354 continue;
11355
11356 lgot_ents = elf_local_got_ents (ibfd);
11357 if (!lgot_ents)
11358 continue;
11359
11360 symtab_hdr = &elf_symtab_hdr (ibfd);
11361 locsymcount = symtab_hdr->sh_info;
11362 end_lgot_ents = lgot_ents + locsymcount;
11363 local_plt = (struct plt_entry **) end_lgot_ents;
11364 end_local_plt = local_plt + locsymcount;
11365 lgot_masks = (unsigned char *) end_local_plt;
11366 s = ppc64_elf_tdata (ibfd)->got;
11367 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
11368 {
11369 struct got_entry *ent;
11370
11371 for (ent = *lgot_ents; ent != NULL; ent = ent->next)
11372 {
11373 unsigned int ent_size = 8;
11374 unsigned int rel_size = sizeof (Elf64_External_Rela);
11375
11376 ent->got.offset = s->size;
11377 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
11378 {
11379 ent_size *= 2;
11380 rel_size *= 2;
11381 }
11382 s->size += ent_size;
11383 if ((*lgot_masks & PLT_IFUNC) != 0)
11384 {
11385 htab->elf.irelplt->size += rel_size;
11386 htab->got_reli_size += rel_size;
11387 }
11388 else if (info->shared)
11389 {
11390 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
11391 srel->size += rel_size;
11392 }
11393 }
11394 }
11395 }
11396
11397 elf_link_hash_traverse (&htab->elf, reallocate_got, info);
11398
11399 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11400 {
11401 struct got_entry *ent;
11402
11403 if (!is_ppc64_elf (ibfd))
11404 continue;
11405
11406 ent = ppc64_tlsld_got (ibfd);
11407 if (!ent->is_indirect
11408 && ent->got.offset != (bfd_vma) -1)
11409 {
11410 asection *s = ppc64_elf_tdata (ibfd)->got;
11411 ent->got.offset = s->size;
11412 s->size += 16;
11413 if (info->shared)
11414 {
11415 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
11416 srel->size += sizeof (Elf64_External_Rela);
11417 }
11418 }
11419 }
11420
11421 done_something = htab->elf.irelplt->rawsize != htab->elf.irelplt->size;
11422 if (!done_something)
11423 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11424 {
11425 asection *got;
11426
11427 if (!is_ppc64_elf (ibfd))
11428 continue;
11429
11430 got = ppc64_elf_tdata (ibfd)->got;
11431 if (got != NULL)
11432 {
11433 done_something = got->rawsize != got->size;
11434 if (done_something)
11435 break;
11436 }
11437 }
11438
11439 if (done_something)
11440 (*htab->params->layout_sections_again) ();
11441
11442 /* Set up for second pass over toc sections to recalculate elf_gp
11443 on input sections. */
11444 htab->toc_bfd = NULL;
11445 htab->toc_first_sec = NULL;
11446 htab->second_toc_pass = TRUE;
11447 return done_something;
11448 }
11449
11450 /* Called after second pass of multitoc partitioning. */
11451
11452 void
11453 ppc64_elf_finish_multitoc_partition (struct bfd_link_info *info)
11454 {
11455 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11456
11457 /* After the second pass, toc_curr tracks the TOC offset used
11458 for code sections below in ppc64_elf_next_input_section. */
11459 htab->toc_curr = TOC_BASE_OFF;
11460 }
11461
11462 /* No toc references were found in ISEC. If the code in ISEC makes no
11463 calls, then there's no need to use toc adjusting stubs when branching
11464 into ISEC. Actually, indirect calls from ISEC are OK as they will
11465 load r2. Returns -1 on error, 0 for no stub needed, 1 for stub
11466 needed, and 2 if a cyclical call-graph was found but no other reason
11467 for a stub was detected. If called from the top level, a return of
11468 2 means the same as a return of 0. */
11469
11470 static int
11471 toc_adjusting_stub_needed (struct bfd_link_info *info, asection *isec)
11472 {
11473 int ret;
11474
11475 /* Mark this section as checked. */
11476 isec->call_check_done = 1;
11477
11478 /* We know none of our code bearing sections will need toc stubs. */
11479 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11480 return 0;
11481
11482 if (isec->size == 0)
11483 return 0;
11484
11485 if (isec->output_section == NULL)
11486 return 0;
11487
11488 ret = 0;
11489 if (isec->reloc_count != 0)
11490 {
11491 Elf_Internal_Rela *relstart, *rel;
11492 Elf_Internal_Sym *local_syms;
11493 struct ppc_link_hash_table *htab;
11494
11495 relstart = _bfd_elf_link_read_relocs (isec->owner, isec, NULL, NULL,
11496 info->keep_memory);
11497 if (relstart == NULL)
11498 return -1;
11499
11500 /* Look for branches to outside of this section. */
11501 local_syms = NULL;
11502 htab = ppc_hash_table (info);
11503 if (htab == NULL)
11504 return -1;
11505
11506 for (rel = relstart; rel < relstart + isec->reloc_count; ++rel)
11507 {
11508 enum elf_ppc64_reloc_type r_type;
11509 unsigned long r_symndx;
11510 struct elf_link_hash_entry *h;
11511 struct ppc_link_hash_entry *eh;
11512 Elf_Internal_Sym *sym;
11513 asection *sym_sec;
11514 struct _opd_sec_data *opd;
11515 bfd_vma sym_value;
11516 bfd_vma dest;
11517
11518 r_type = ELF64_R_TYPE (rel->r_info);
11519 if (r_type != R_PPC64_REL24
11520 && r_type != R_PPC64_REL14
11521 && r_type != R_PPC64_REL14_BRTAKEN
11522 && r_type != R_PPC64_REL14_BRNTAKEN)
11523 continue;
11524
11525 r_symndx = ELF64_R_SYM (rel->r_info);
11526 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, r_symndx,
11527 isec->owner))
11528 {
11529 ret = -1;
11530 break;
11531 }
11532
11533 /* Calls to dynamic lib functions go through a plt call stub
11534 that uses r2. */
11535 eh = (struct ppc_link_hash_entry *) h;
11536 if (eh != NULL
11537 && (eh->elf.plt.plist != NULL
11538 || (eh->oh != NULL
11539 && ppc_follow_link (eh->oh)->elf.plt.plist != NULL)))
11540 {
11541 ret = 1;
11542 break;
11543 }
11544
11545 if (sym_sec == NULL)
11546 /* Ignore other undefined symbols. */
11547 continue;
11548
11549 /* Assume branches to other sections not included in the
11550 link need stubs too, to cover -R and absolute syms. */
11551 if (sym_sec->output_section == NULL)
11552 {
11553 ret = 1;
11554 break;
11555 }
11556
11557 if (h == NULL)
11558 sym_value = sym->st_value;
11559 else
11560 {
11561 if (h->root.type != bfd_link_hash_defined
11562 && h->root.type != bfd_link_hash_defweak)
11563 abort ();
11564 sym_value = h->root.u.def.value;
11565 }
11566 sym_value += rel->r_addend;
11567
11568 /* If this branch reloc uses an opd sym, find the code section. */
11569 opd = get_opd_info (sym_sec);
11570 if (opd != NULL)
11571 {
11572 if (h == NULL && opd->adjust != NULL)
11573 {
11574 long adjust;
11575
11576 adjust = opd->adjust[sym->st_value / 8];
11577 if (adjust == -1)
11578 /* Assume deleted functions won't ever be called. */
11579 continue;
11580 sym_value += adjust;
11581 }
11582
11583 dest = opd_entry_value (sym_sec, sym_value,
11584 &sym_sec, NULL, FALSE);
11585 if (dest == (bfd_vma) -1)
11586 continue;
11587 }
11588 else
11589 dest = (sym_value
11590 + sym_sec->output_offset
11591 + sym_sec->output_section->vma);
11592
11593 /* Ignore branch to self. */
11594 if (sym_sec == isec)
11595 continue;
11596
11597 /* If the called function uses the toc, we need a stub. */
11598 if (sym_sec->has_toc_reloc
11599 || sym_sec->makes_toc_func_call)
11600 {
11601 ret = 1;
11602 break;
11603 }
11604
11605 /* Assume any branch that needs a long branch stub might in fact
11606 need a plt_branch stub. A plt_branch stub uses r2. */
11607 else if (dest - (isec->output_offset
11608 + isec->output_section->vma
11609 + rel->r_offset) + (1 << 25)
11610 >= (2u << 25) - PPC64_LOCAL_ENTRY_OFFSET (h
11611 ? h->other
11612 : sym->st_other))
11613 {
11614 ret = 1;
11615 break;
11616 }
11617
11618 /* If calling back to a section in the process of being
11619 tested, we can't say for sure that no toc adjusting stubs
11620 are needed, so don't return zero. */
11621 else if (sym_sec->call_check_in_progress)
11622 ret = 2;
11623
11624 /* Branches to another section that itself doesn't have any TOC
11625 references are OK. Recursively call ourselves to check. */
11626 else if (!sym_sec->call_check_done)
11627 {
11628 int recur;
11629
11630 /* Mark current section as indeterminate, so that other
11631 sections that call back to current won't be marked as
11632 known. */
11633 isec->call_check_in_progress = 1;
11634 recur = toc_adjusting_stub_needed (info, sym_sec);
11635 isec->call_check_in_progress = 0;
11636
11637 if (recur != 0)
11638 {
11639 ret = recur;
11640 if (recur != 2)
11641 break;
11642 }
11643 }
11644 }
11645
11646 if (local_syms != NULL
11647 && (elf_symtab_hdr (isec->owner).contents
11648 != (unsigned char *) local_syms))
11649 free (local_syms);
11650 if (elf_section_data (isec)->relocs != relstart)
11651 free (relstart);
11652 }
11653
11654 if ((ret & 1) == 0
11655 && isec->map_head.s != NULL
11656 && (strcmp (isec->output_section->name, ".init") == 0
11657 || strcmp (isec->output_section->name, ".fini") == 0))
11658 {
11659 if (isec->map_head.s->has_toc_reloc
11660 || isec->map_head.s->makes_toc_func_call)
11661 ret = 1;
11662 else if (!isec->map_head.s->call_check_done)
11663 {
11664 int recur;
11665 isec->call_check_in_progress = 1;
11666 recur = toc_adjusting_stub_needed (info, isec->map_head.s);
11667 isec->call_check_in_progress = 0;
11668 if (recur != 0)
11669 ret = recur;
11670 }
11671 }
11672
11673 if (ret == 1)
11674 isec->makes_toc_func_call = 1;
11675
11676 return ret;
11677 }
11678
11679 /* The linker repeatedly calls this function for each input section,
11680 in the order that input sections are linked into output sections.
11681 Build lists of input sections to determine groupings between which
11682 we may insert linker stubs. */
11683
11684 bfd_boolean
11685 ppc64_elf_next_input_section (struct bfd_link_info *info, asection *isec)
11686 {
11687 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11688
11689 if (htab == NULL)
11690 return FALSE;
11691
11692 if ((isec->output_section->flags & SEC_CODE) != 0
11693 && isec->output_section->index <= htab->top_index)
11694 {
11695 asection **list = htab->input_list + isec->output_section->index;
11696 /* Steal the link_sec pointer for our list. */
11697 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
11698 /* This happens to make the list in reverse order,
11699 which is what we want. */
11700 PREV_SEC (isec) = *list;
11701 *list = isec;
11702 }
11703
11704 if (htab->multi_toc_needed)
11705 {
11706 /* Analyse sections that aren't already flagged as needing a
11707 valid toc pointer. Exclude .fixup for the linux kernel.
11708 .fixup contains branches, but only back to the function that
11709 hit an exception. */
11710 if (!(isec->has_toc_reloc
11711 || (isec->flags & SEC_CODE) == 0
11712 || strcmp (isec->name, ".fixup") == 0
11713 || isec->call_check_done))
11714 {
11715 if (toc_adjusting_stub_needed (info, isec) < 0)
11716 return FALSE;
11717 }
11718 /* Make all sections use the TOC assigned for this object file.
11719 This will be wrong for pasted sections; We fix that in
11720 check_pasted_section(). */
11721 if (elf_gp (isec->owner) != 0)
11722 htab->toc_curr = elf_gp (isec->owner);
11723 }
11724
11725 htab->stub_group[isec->id].toc_off = htab->toc_curr;
11726 return TRUE;
11727 }
11728
11729 /* Check that all .init and .fini sections use the same toc, if they
11730 have toc relocs. */
11731
11732 static bfd_boolean
11733 check_pasted_section (struct bfd_link_info *info, const char *name)
11734 {
11735 asection *o = bfd_get_section_by_name (info->output_bfd, name);
11736
11737 if (o != NULL)
11738 {
11739 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11740 bfd_vma toc_off = 0;
11741 asection *i;
11742
11743 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11744 if (i->has_toc_reloc)
11745 {
11746 if (toc_off == 0)
11747 toc_off = htab->stub_group[i->id].toc_off;
11748 else if (toc_off != htab->stub_group[i->id].toc_off)
11749 return FALSE;
11750 }
11751
11752 if (toc_off == 0)
11753 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11754 if (i->makes_toc_func_call)
11755 {
11756 toc_off = htab->stub_group[i->id].toc_off;
11757 break;
11758 }
11759
11760 /* Make sure the whole pasted function uses the same toc offset. */
11761 if (toc_off != 0)
11762 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11763 htab->stub_group[i->id].toc_off = toc_off;
11764 }
11765 return TRUE;
11766 }
11767
11768 bfd_boolean
11769 ppc64_elf_check_init_fini (struct bfd_link_info *info)
11770 {
11771 return (check_pasted_section (info, ".init")
11772 & check_pasted_section (info, ".fini"));
11773 }
11774
11775 /* See whether we can group stub sections together. Grouping stub
11776 sections may result in fewer stubs. More importantly, we need to
11777 put all .init* and .fini* stubs at the beginning of the .init or
11778 .fini output sections respectively, because glibc splits the
11779 _init and _fini functions into multiple parts. Putting a stub in
11780 the middle of a function is not a good idea. */
11781
11782 static void
11783 group_sections (struct ppc_link_hash_table *htab,
11784 bfd_size_type stub_group_size,
11785 bfd_boolean stubs_always_before_branch)
11786 {
11787 asection **list;
11788 bfd_size_type stub14_group_size;
11789 bfd_boolean suppress_size_errors;
11790
11791 suppress_size_errors = FALSE;
11792 stub14_group_size = stub_group_size;
11793 if (stub_group_size == 1)
11794 {
11795 /* Default values. */
11796 if (stubs_always_before_branch)
11797 {
11798 stub_group_size = 0x1e00000;
11799 stub14_group_size = 0x7800;
11800 }
11801 else
11802 {
11803 stub_group_size = 0x1c00000;
11804 stub14_group_size = 0x7000;
11805 }
11806 suppress_size_errors = TRUE;
11807 }
11808
11809 list = htab->input_list + htab->top_index;
11810 do
11811 {
11812 asection *tail = *list;
11813 while (tail != NULL)
11814 {
11815 asection *curr;
11816 asection *prev;
11817 bfd_size_type total;
11818 bfd_boolean big_sec;
11819 bfd_vma curr_toc;
11820
11821 curr = tail;
11822 total = tail->size;
11823 big_sec = total > (ppc64_elf_section_data (tail) != NULL
11824 && ppc64_elf_section_data (tail)->has_14bit_branch
11825 ? stub14_group_size : stub_group_size);
11826 if (big_sec && !suppress_size_errors)
11827 (*_bfd_error_handler) (_("%B section %A exceeds stub group size"),
11828 tail->owner, tail);
11829 curr_toc = htab->stub_group[tail->id].toc_off;
11830
11831 while ((prev = PREV_SEC (curr)) != NULL
11832 && ((total += curr->output_offset - prev->output_offset)
11833 < (ppc64_elf_section_data (prev) != NULL
11834 && ppc64_elf_section_data (prev)->has_14bit_branch
11835 ? stub14_group_size : stub_group_size))
11836 && htab->stub_group[prev->id].toc_off == curr_toc)
11837 curr = prev;
11838
11839 /* OK, the size from the start of CURR to the end is less
11840 than stub_group_size and thus can be handled by one stub
11841 section. (or the tail section is itself larger than
11842 stub_group_size, in which case we may be toast.) We
11843 should really be keeping track of the total size of stubs
11844 added here, as stubs contribute to the final output
11845 section size. That's a little tricky, and this way will
11846 only break if stubs added make the total size more than
11847 2^25, ie. for the default stub_group_size, if stubs total
11848 more than 2097152 bytes, or nearly 75000 plt call stubs. */
11849 do
11850 {
11851 prev = PREV_SEC (tail);
11852 /* Set up this stub group. */
11853 htab->stub_group[tail->id].link_sec = curr;
11854 }
11855 while (tail != curr && (tail = prev) != NULL);
11856
11857 /* But wait, there's more! Input sections up to stub_group_size
11858 bytes before the stub section can be handled by it too.
11859 Don't do this if we have a really large section after the
11860 stubs, as adding more stubs increases the chance that
11861 branches may not reach into the stub section. */
11862 if (!stubs_always_before_branch && !big_sec)
11863 {
11864 total = 0;
11865 while (prev != NULL
11866 && ((total += tail->output_offset - prev->output_offset)
11867 < (ppc64_elf_section_data (prev) != NULL
11868 && ppc64_elf_section_data (prev)->has_14bit_branch
11869 ? stub14_group_size : stub_group_size))
11870 && htab->stub_group[prev->id].toc_off == curr_toc)
11871 {
11872 tail = prev;
11873 prev = PREV_SEC (tail);
11874 htab->stub_group[tail->id].link_sec = curr;
11875 }
11876 }
11877 tail = prev;
11878 }
11879 }
11880 while (list-- != htab->input_list);
11881 free (htab->input_list);
11882 #undef PREV_SEC
11883 }
11884
11885 static const unsigned char glink_eh_frame_cie[] =
11886 {
11887 0, 0, 0, 16, /* length. */
11888 0, 0, 0, 0, /* id. */
11889 1, /* CIE version. */
11890 'z', 'R', 0, /* Augmentation string. */
11891 4, /* Code alignment. */
11892 0x78, /* Data alignment. */
11893 65, /* RA reg. */
11894 1, /* Augmentation size. */
11895 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding. */
11896 DW_CFA_def_cfa, 1, 0 /* def_cfa: r1 offset 0. */
11897 };
11898
11899 /* Stripping output sections is normally done before dynamic section
11900 symbols have been allocated. This function is called later, and
11901 handles cases like htab->brlt which is mapped to its own output
11902 section. */
11903
11904 static void
11905 maybe_strip_output (struct bfd_link_info *info, asection *isec)
11906 {
11907 if (isec->size == 0
11908 && isec->output_section->size == 0
11909 && !(isec->output_section->flags & SEC_KEEP)
11910 && !bfd_section_removed_from_list (info->output_bfd,
11911 isec->output_section)
11912 && elf_section_data (isec->output_section)->dynindx == 0)
11913 {
11914 isec->output_section->flags |= SEC_EXCLUDE;
11915 bfd_section_list_remove (info->output_bfd, isec->output_section);
11916 info->output_bfd->section_count--;
11917 }
11918 }
11919
11920 /* Determine and set the size of the stub section for a final link.
11921
11922 The basic idea here is to examine all the relocations looking for
11923 PC-relative calls to a target that is unreachable with a "bl"
11924 instruction. */
11925
11926 bfd_boolean
11927 ppc64_elf_size_stubs (struct bfd_link_info *info)
11928 {
11929 bfd_size_type stub_group_size;
11930 bfd_boolean stubs_always_before_branch;
11931 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11932
11933 if (htab == NULL)
11934 return FALSE;
11935
11936 if (htab->params->plt_thread_safe == -1 && !info->executable)
11937 htab->params->plt_thread_safe = 1;
11938 if (!htab->opd_abi)
11939 htab->params->plt_thread_safe = 0;
11940 else if (htab->params->plt_thread_safe == -1)
11941 {
11942 static const char *const thread_starter[] =
11943 {
11944 "pthread_create",
11945 /* libstdc++ */
11946 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
11947 /* librt */
11948 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
11949 "mq_notify", "create_timer",
11950 /* libanl */
11951 "getaddrinfo_a",
11952 /* libgomp */
11953 "GOMP_parallel_start",
11954 "GOMP_parallel_loop_static_start",
11955 "GOMP_parallel_loop_dynamic_start",
11956 "GOMP_parallel_loop_guided_start",
11957 "GOMP_parallel_loop_runtime_start",
11958 "GOMP_parallel_sections_start",
11959 };
11960 unsigned i;
11961
11962 for (i = 0; i < sizeof (thread_starter)/ sizeof (thread_starter[0]); i++)
11963 {
11964 struct elf_link_hash_entry *h;
11965 h = elf_link_hash_lookup (&htab->elf, thread_starter[i],
11966 FALSE, FALSE, TRUE);
11967 htab->params->plt_thread_safe = h != NULL && h->ref_regular;
11968 if (htab->params->plt_thread_safe)
11969 break;
11970 }
11971 }
11972 stubs_always_before_branch = htab->params->group_size < 0;
11973 if (htab->params->group_size < 0)
11974 stub_group_size = -htab->params->group_size;
11975 else
11976 stub_group_size = htab->params->group_size;
11977
11978 group_sections (htab, stub_group_size, stubs_always_before_branch);
11979
11980 while (1)
11981 {
11982 bfd *input_bfd;
11983 unsigned int bfd_indx;
11984 asection *stub_sec;
11985
11986 htab->stub_iteration += 1;
11987
11988 for (input_bfd = info->input_bfds, bfd_indx = 0;
11989 input_bfd != NULL;
11990 input_bfd = input_bfd->link.next, bfd_indx++)
11991 {
11992 Elf_Internal_Shdr *symtab_hdr;
11993 asection *section;
11994 Elf_Internal_Sym *local_syms = NULL;
11995
11996 if (!is_ppc64_elf (input_bfd))
11997 continue;
11998
11999 /* We'll need the symbol table in a second. */
12000 symtab_hdr = &elf_symtab_hdr (input_bfd);
12001 if (symtab_hdr->sh_info == 0)
12002 continue;
12003
12004 /* Walk over each section attached to the input bfd. */
12005 for (section = input_bfd->sections;
12006 section != NULL;
12007 section = section->next)
12008 {
12009 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
12010
12011 /* If there aren't any relocs, then there's nothing more
12012 to do. */
12013 if ((section->flags & SEC_RELOC) == 0
12014 || (section->flags & SEC_ALLOC) == 0
12015 || (section->flags & SEC_LOAD) == 0
12016 || (section->flags & SEC_CODE) == 0
12017 || section->reloc_count == 0)
12018 continue;
12019
12020 /* If this section is a link-once section that will be
12021 discarded, then don't create any stubs. */
12022 if (section->output_section == NULL
12023 || section->output_section->owner != info->output_bfd)
12024 continue;
12025
12026 /* Get the relocs. */
12027 internal_relocs
12028 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
12029 info->keep_memory);
12030 if (internal_relocs == NULL)
12031 goto error_ret_free_local;
12032
12033 /* Now examine each relocation. */
12034 irela = internal_relocs;
12035 irelaend = irela + section->reloc_count;
12036 for (; irela < irelaend; irela++)
12037 {
12038 enum elf_ppc64_reloc_type r_type;
12039 unsigned int r_indx;
12040 enum ppc_stub_type stub_type;
12041 struct ppc_stub_hash_entry *stub_entry;
12042 asection *sym_sec, *code_sec;
12043 bfd_vma sym_value, code_value;
12044 bfd_vma destination;
12045 unsigned long local_off;
12046 bfd_boolean ok_dest;
12047 struct ppc_link_hash_entry *hash;
12048 struct ppc_link_hash_entry *fdh;
12049 struct elf_link_hash_entry *h;
12050 Elf_Internal_Sym *sym;
12051 char *stub_name;
12052 const asection *id_sec;
12053 struct _opd_sec_data *opd;
12054 struct plt_entry *plt_ent;
12055
12056 r_type = ELF64_R_TYPE (irela->r_info);
12057 r_indx = ELF64_R_SYM (irela->r_info);
12058
12059 if (r_type >= R_PPC64_max)
12060 {
12061 bfd_set_error (bfd_error_bad_value);
12062 goto error_ret_free_internal;
12063 }
12064
12065 /* Only look for stubs on branch instructions. */
12066 if (r_type != R_PPC64_REL24
12067 && r_type != R_PPC64_REL14
12068 && r_type != R_PPC64_REL14_BRTAKEN
12069 && r_type != R_PPC64_REL14_BRNTAKEN)
12070 continue;
12071
12072 /* Now determine the call target, its name, value,
12073 section. */
12074 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
12075 r_indx, input_bfd))
12076 goto error_ret_free_internal;
12077 hash = (struct ppc_link_hash_entry *) h;
12078
12079 ok_dest = FALSE;
12080 fdh = NULL;
12081 sym_value = 0;
12082 if (hash == NULL)
12083 {
12084 sym_value = sym->st_value;
12085 ok_dest = TRUE;
12086 }
12087 else if (hash->elf.root.type == bfd_link_hash_defined
12088 || hash->elf.root.type == bfd_link_hash_defweak)
12089 {
12090 sym_value = hash->elf.root.u.def.value;
12091 if (sym_sec->output_section != NULL)
12092 ok_dest = TRUE;
12093 }
12094 else if (hash->elf.root.type == bfd_link_hash_undefweak
12095 || hash->elf.root.type == bfd_link_hash_undefined)
12096 {
12097 /* Recognise an old ABI func code entry sym, and
12098 use the func descriptor sym instead if it is
12099 defined. */
12100 if (hash->elf.root.root.string[0] == '.'
12101 && (fdh = lookup_fdh (hash, htab)) != NULL)
12102 {
12103 if (fdh->elf.root.type == bfd_link_hash_defined
12104 || fdh->elf.root.type == bfd_link_hash_defweak)
12105 {
12106 sym_sec = fdh->elf.root.u.def.section;
12107 sym_value = fdh->elf.root.u.def.value;
12108 if (sym_sec->output_section != NULL)
12109 ok_dest = TRUE;
12110 }
12111 else
12112 fdh = NULL;
12113 }
12114 }
12115 else
12116 {
12117 bfd_set_error (bfd_error_bad_value);
12118 goto error_ret_free_internal;
12119 }
12120
12121 destination = 0;
12122 local_off = 0;
12123 if (ok_dest)
12124 {
12125 sym_value += irela->r_addend;
12126 destination = (sym_value
12127 + sym_sec->output_offset
12128 + sym_sec->output_section->vma);
12129 local_off = PPC64_LOCAL_ENTRY_OFFSET (hash
12130 ? hash->elf.other
12131 : sym->st_other);
12132 }
12133
12134 code_sec = sym_sec;
12135 code_value = sym_value;
12136 opd = get_opd_info (sym_sec);
12137 if (opd != NULL)
12138 {
12139 bfd_vma dest;
12140
12141 if (hash == NULL && opd->adjust != NULL)
12142 {
12143 long adjust = opd->adjust[sym_value / 8];
12144 if (adjust == -1)
12145 continue;
12146 code_value += adjust;
12147 sym_value += adjust;
12148 }
12149 dest = opd_entry_value (sym_sec, sym_value,
12150 &code_sec, &code_value, FALSE);
12151 if (dest != (bfd_vma) -1)
12152 {
12153 destination = dest;
12154 if (fdh != NULL)
12155 {
12156 /* Fixup old ABI sym to point at code
12157 entry. */
12158 hash->elf.root.type = bfd_link_hash_defweak;
12159 hash->elf.root.u.def.section = code_sec;
12160 hash->elf.root.u.def.value = code_value;
12161 }
12162 }
12163 }
12164
12165 /* Determine what (if any) linker stub is needed. */
12166 plt_ent = NULL;
12167 stub_type = ppc_type_of_stub (section, irela, &hash,
12168 &plt_ent, destination,
12169 local_off);
12170
12171 if (stub_type != ppc_stub_plt_call)
12172 {
12173 /* Check whether we need a TOC adjusting stub.
12174 Since the linker pastes together pieces from
12175 different object files when creating the
12176 _init and _fini functions, it may be that a
12177 call to what looks like a local sym is in
12178 fact a call needing a TOC adjustment. */
12179 if (code_sec != NULL
12180 && code_sec->output_section != NULL
12181 && (htab->stub_group[code_sec->id].toc_off
12182 != htab->stub_group[section->id].toc_off)
12183 && (code_sec->has_toc_reloc
12184 || code_sec->makes_toc_func_call))
12185 stub_type = ppc_stub_long_branch_r2off;
12186 }
12187
12188 if (stub_type == ppc_stub_none)
12189 continue;
12190
12191 /* __tls_get_addr calls might be eliminated. */
12192 if (stub_type != ppc_stub_plt_call
12193 && hash != NULL
12194 && (hash == htab->tls_get_addr
12195 || hash == htab->tls_get_addr_fd)
12196 && section->has_tls_reloc
12197 && irela != internal_relocs)
12198 {
12199 /* Get tls info. */
12200 unsigned char *tls_mask;
12201
12202 if (!get_tls_mask (&tls_mask, NULL, NULL, &local_syms,
12203 irela - 1, input_bfd))
12204 goto error_ret_free_internal;
12205 if (*tls_mask != 0)
12206 continue;
12207 }
12208
12209 if (stub_type == ppc_stub_plt_call
12210 && irela + 1 < irelaend
12211 && irela[1].r_offset == irela->r_offset + 4
12212 && ELF64_R_TYPE (irela[1].r_info) == R_PPC64_TOCSAVE)
12213 {
12214 if (!tocsave_find (htab, INSERT,
12215 &local_syms, irela + 1, input_bfd))
12216 goto error_ret_free_internal;
12217 }
12218 else if (stub_type == ppc_stub_plt_call)
12219 stub_type = ppc_stub_plt_call_r2save;
12220
12221 /* Support for grouping stub sections. */
12222 id_sec = htab->stub_group[section->id].link_sec;
12223
12224 /* Get the name of this stub. */
12225 stub_name = ppc_stub_name (id_sec, sym_sec, hash, irela);
12226 if (!stub_name)
12227 goto error_ret_free_internal;
12228
12229 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
12230 stub_name, FALSE, FALSE);
12231 if (stub_entry != NULL)
12232 {
12233 /* The proper stub has already been created. */
12234 free (stub_name);
12235 if (stub_type == ppc_stub_plt_call_r2save)
12236 stub_entry->stub_type = stub_type;
12237 continue;
12238 }
12239
12240 stub_entry = ppc_add_stub (stub_name, section, info);
12241 if (stub_entry == NULL)
12242 {
12243 free (stub_name);
12244 error_ret_free_internal:
12245 if (elf_section_data (section)->relocs == NULL)
12246 free (internal_relocs);
12247 error_ret_free_local:
12248 if (local_syms != NULL
12249 && (symtab_hdr->contents
12250 != (unsigned char *) local_syms))
12251 free (local_syms);
12252 return FALSE;
12253 }
12254
12255 stub_entry->stub_type = stub_type;
12256 if (stub_type != ppc_stub_plt_call
12257 && stub_type != ppc_stub_plt_call_r2save)
12258 {
12259 stub_entry->target_value = code_value;
12260 stub_entry->target_section = code_sec;
12261 }
12262 else
12263 {
12264 stub_entry->target_value = sym_value;
12265 stub_entry->target_section = sym_sec;
12266 }
12267 stub_entry->h = hash;
12268 stub_entry->plt_ent = plt_ent;
12269 stub_entry->other = hash ? hash->elf.other : sym->st_other;
12270
12271 if (stub_entry->h != NULL)
12272 htab->stub_globals += 1;
12273 }
12274
12275 /* We're done with the internal relocs, free them. */
12276 if (elf_section_data (section)->relocs != internal_relocs)
12277 free (internal_relocs);
12278 }
12279
12280 if (local_syms != NULL
12281 && symtab_hdr->contents != (unsigned char *) local_syms)
12282 {
12283 if (!info->keep_memory)
12284 free (local_syms);
12285 else
12286 symtab_hdr->contents = (unsigned char *) local_syms;
12287 }
12288 }
12289
12290 /* We may have added some stubs. Find out the new size of the
12291 stub sections. */
12292 for (stub_sec = htab->params->stub_bfd->sections;
12293 stub_sec != NULL;
12294 stub_sec = stub_sec->next)
12295 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12296 {
12297 stub_sec->rawsize = stub_sec->size;
12298 stub_sec->size = 0;
12299 stub_sec->reloc_count = 0;
12300 stub_sec->flags &= ~SEC_RELOC;
12301 }
12302
12303 htab->brlt->size = 0;
12304 htab->brlt->reloc_count = 0;
12305 htab->brlt->flags &= ~SEC_RELOC;
12306 if (htab->relbrlt != NULL)
12307 htab->relbrlt->size = 0;
12308
12309 bfd_hash_traverse (&htab->stub_hash_table, ppc_size_one_stub, info);
12310
12311 if (info->emitrelocations
12312 && htab->glink != NULL && htab->glink->size != 0)
12313 {
12314 htab->glink->reloc_count = 1;
12315 htab->glink->flags |= SEC_RELOC;
12316 }
12317
12318 if (htab->glink_eh_frame != NULL
12319 && !bfd_is_abs_section (htab->glink_eh_frame->output_section)
12320 && htab->glink_eh_frame->output_section->size != 0)
12321 {
12322 size_t size = 0, align;
12323
12324 for (stub_sec = htab->params->stub_bfd->sections;
12325 stub_sec != NULL;
12326 stub_sec = stub_sec->next)
12327 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12328 size += 20;
12329 if (htab->glink != NULL && htab->glink->size != 0)
12330 size += 24;
12331 if (size != 0)
12332 size += sizeof (glink_eh_frame_cie);
12333 align = 1;
12334 align <<= htab->glink_eh_frame->output_section->alignment_power;
12335 align -= 1;
12336 size = (size + align) & ~align;
12337 htab->glink_eh_frame->rawsize = htab->glink_eh_frame->size;
12338 htab->glink_eh_frame->size = size;
12339 }
12340
12341 if (htab->params->plt_stub_align != 0)
12342 for (stub_sec = htab->params->stub_bfd->sections;
12343 stub_sec != NULL;
12344 stub_sec = stub_sec->next)
12345 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12346 stub_sec->size = ((stub_sec->size
12347 + (1 << htab->params->plt_stub_align) - 1)
12348 & (-1 << htab->params->plt_stub_align));
12349
12350 for (stub_sec = htab->params->stub_bfd->sections;
12351 stub_sec != NULL;
12352 stub_sec = stub_sec->next)
12353 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
12354 && stub_sec->rawsize != stub_sec->size)
12355 break;
12356
12357 /* Exit from this loop when no stubs have been added, and no stubs
12358 have changed size. */
12359 if (stub_sec == NULL
12360 && (htab->glink_eh_frame == NULL
12361 || htab->glink_eh_frame->rawsize == htab->glink_eh_frame->size))
12362 break;
12363
12364 /* Ask the linker to do its stuff. */
12365 (*htab->params->layout_sections_again) ();
12366 }
12367
12368 maybe_strip_output (info, htab->brlt);
12369 if (htab->glink_eh_frame != NULL)
12370 maybe_strip_output (info, htab->glink_eh_frame);
12371
12372 return TRUE;
12373 }
12374
12375 /* Called after we have determined section placement. If sections
12376 move, we'll be called again. Provide a value for TOCstart. */
12377
12378 bfd_vma
12379 ppc64_elf_set_toc (struct bfd_link_info *info, bfd *obfd)
12380 {
12381 asection *s;
12382 bfd_vma TOCstart;
12383
12384 /* The TOC consists of sections .got, .toc, .tocbss, .plt in that
12385 order. The TOC starts where the first of these sections starts. */
12386 s = bfd_get_section_by_name (obfd, ".got");
12387 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12388 s = bfd_get_section_by_name (obfd, ".toc");
12389 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12390 s = bfd_get_section_by_name (obfd, ".tocbss");
12391 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12392 s = bfd_get_section_by_name (obfd, ".plt");
12393 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12394 {
12395 /* This may happen for
12396 o references to TOC base (SYM@toc / TOC[tc0]) without a
12397 .toc directive
12398 o bad linker script
12399 o --gc-sections and empty TOC sections
12400
12401 FIXME: Warn user? */
12402
12403 /* Look for a likely section. We probably won't even be
12404 using TOCstart. */
12405 for (s = obfd->sections; s != NULL; s = s->next)
12406 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_READONLY
12407 | SEC_EXCLUDE))
12408 == (SEC_ALLOC | SEC_SMALL_DATA))
12409 break;
12410 if (s == NULL)
12411 for (s = obfd->sections; s != NULL; s = s->next)
12412 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_EXCLUDE))
12413 == (SEC_ALLOC | SEC_SMALL_DATA))
12414 break;
12415 if (s == NULL)
12416 for (s = obfd->sections; s != NULL; s = s->next)
12417 if ((s->flags & (SEC_ALLOC | SEC_READONLY | SEC_EXCLUDE))
12418 == SEC_ALLOC)
12419 break;
12420 if (s == NULL)
12421 for (s = obfd->sections; s != NULL; s = s->next)
12422 if ((s->flags & (SEC_ALLOC | SEC_EXCLUDE)) == SEC_ALLOC)
12423 break;
12424 }
12425
12426 TOCstart = 0;
12427 if (s != NULL)
12428 TOCstart = s->output_section->vma + s->output_offset;
12429
12430 _bfd_set_gp_value (obfd, TOCstart);
12431
12432 if (info != NULL && s != NULL)
12433 {
12434 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12435
12436 if (htab != NULL)
12437 {
12438 if (htab->elf.hgot != NULL)
12439 {
12440 htab->elf.hgot->root.u.def.value = TOC_BASE_OFF;
12441 htab->elf.hgot->root.u.def.section = s;
12442 }
12443 }
12444 else
12445 {
12446 struct bfd_link_hash_entry *bh = NULL;
12447 _bfd_generic_link_add_one_symbol (info, obfd, ".TOC.", BSF_GLOBAL,
12448 s, TOC_BASE_OFF, NULL, FALSE,
12449 FALSE, &bh);
12450 }
12451 }
12452 return TOCstart;
12453 }
12454
12455 /* Called via elf_link_hash_traverse from ppc64_elf_build_stubs to
12456 write out any global entry stubs. */
12457
12458 static bfd_boolean
12459 build_global_entry_stubs (struct elf_link_hash_entry *h, void *inf)
12460 {
12461 struct bfd_link_info *info;
12462 struct ppc_link_hash_table *htab;
12463 struct plt_entry *pent;
12464 asection *s;
12465
12466 if (h->root.type == bfd_link_hash_indirect)
12467 return TRUE;
12468
12469 if (!h->pointer_equality_needed)
12470 return TRUE;
12471
12472 if (h->def_regular)
12473 return TRUE;
12474
12475 info = inf;
12476 htab = ppc_hash_table (info);
12477 if (htab == NULL)
12478 return FALSE;
12479
12480 s = htab->glink;
12481 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
12482 if (pent->plt.offset != (bfd_vma) -1
12483 && pent->addend == 0)
12484 {
12485 bfd_byte *p;
12486 asection *plt;
12487 bfd_vma off;
12488
12489 p = s->contents + h->root.u.def.value;
12490 plt = htab->elf.splt;
12491 if (!htab->elf.dynamic_sections_created
12492 || h->dynindx == -1)
12493 plt = htab->elf.iplt;
12494 off = pent->plt.offset + plt->output_offset + plt->output_section->vma;
12495 off -= h->root.u.def.value + s->output_offset + s->output_section->vma;
12496
12497 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
12498 {
12499 info->callbacks->einfo
12500 (_("%P: linkage table error against `%T'\n"),
12501 h->root.root.string);
12502 bfd_set_error (bfd_error_bad_value);
12503 htab->stub_error = TRUE;
12504 }
12505
12506 htab->stub_count[ppc_stub_global_entry - 1] += 1;
12507 if (htab->params->emit_stub_syms)
12508 {
12509 size_t len = strlen (h->root.root.string);
12510 char *name = bfd_malloc (sizeof "12345678.global_entry." + len);
12511
12512 if (name == NULL)
12513 return FALSE;
12514
12515 sprintf (name, "%08x.global_entry.%s", s->id, h->root.root.string);
12516 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
12517 if (h == NULL)
12518 return FALSE;
12519 if (h->root.type == bfd_link_hash_new)
12520 {
12521 h->root.type = bfd_link_hash_defined;
12522 h->root.u.def.section = s;
12523 h->root.u.def.value = p - s->contents;
12524 h->ref_regular = 1;
12525 h->def_regular = 1;
12526 h->ref_regular_nonweak = 1;
12527 h->forced_local = 1;
12528 h->non_elf = 0;
12529 }
12530 }
12531
12532 if (PPC_HA (off) != 0)
12533 {
12534 bfd_put_32 (s->owner, ADDIS_R12_R12 | PPC_HA (off), p);
12535 p += 4;
12536 }
12537 bfd_put_32 (s->owner, LD_R12_0R12 | PPC_LO (off), p);
12538 p += 4;
12539 bfd_put_32 (s->owner, MTCTR_R12, p);
12540 p += 4;
12541 bfd_put_32 (s->owner, BCTR, p);
12542 break;
12543 }
12544 return TRUE;
12545 }
12546
12547 /* Build all the stubs associated with the current output file.
12548 The stubs are kept in a hash table attached to the main linker
12549 hash table. This function is called via gldelf64ppc_finish. */
12550
12551 bfd_boolean
12552 ppc64_elf_build_stubs (struct bfd_link_info *info,
12553 char **stats)
12554 {
12555 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12556 asection *stub_sec;
12557 bfd_byte *p;
12558 int stub_sec_count = 0;
12559
12560 if (htab == NULL)
12561 return FALSE;
12562
12563 /* Allocate memory to hold the linker stubs. */
12564 for (stub_sec = htab->params->stub_bfd->sections;
12565 stub_sec != NULL;
12566 stub_sec = stub_sec->next)
12567 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
12568 && stub_sec->size != 0)
12569 {
12570 stub_sec->contents = bfd_zalloc (htab->params->stub_bfd, stub_sec->size);
12571 if (stub_sec->contents == NULL)
12572 return FALSE;
12573 /* We want to check that built size is the same as calculated
12574 size. rawsize is a convenient location to use. */
12575 stub_sec->rawsize = stub_sec->size;
12576 stub_sec->size = 0;
12577 }
12578
12579 if (htab->glink != NULL && htab->glink->size != 0)
12580 {
12581 unsigned int indx;
12582 bfd_vma plt0;
12583
12584 /* Build the .glink plt call stub. */
12585 if (htab->params->emit_stub_syms)
12586 {
12587 struct elf_link_hash_entry *h;
12588 h = elf_link_hash_lookup (&htab->elf, "__glink_PLTresolve",
12589 TRUE, FALSE, FALSE);
12590 if (h == NULL)
12591 return FALSE;
12592 if (h->root.type == bfd_link_hash_new)
12593 {
12594 h->root.type = bfd_link_hash_defined;
12595 h->root.u.def.section = htab->glink;
12596 h->root.u.def.value = 8;
12597 h->ref_regular = 1;
12598 h->def_regular = 1;
12599 h->ref_regular_nonweak = 1;
12600 h->forced_local = 1;
12601 h->non_elf = 0;
12602 }
12603 }
12604 plt0 = (htab->elf.splt->output_section->vma
12605 + htab->elf.splt->output_offset
12606 - 16);
12607 if (info->emitrelocations)
12608 {
12609 Elf_Internal_Rela *r = get_relocs (htab->glink, 1);
12610 if (r == NULL)
12611 return FALSE;
12612 r->r_offset = (htab->glink->output_offset
12613 + htab->glink->output_section->vma);
12614 r->r_info = ELF64_R_INFO (0, R_PPC64_REL64);
12615 r->r_addend = plt0;
12616 }
12617 p = htab->glink->contents;
12618 plt0 -= htab->glink->output_section->vma + htab->glink->output_offset;
12619 bfd_put_64 (htab->glink->owner, plt0, p);
12620 p += 8;
12621 if (htab->opd_abi)
12622 {
12623 bfd_put_32 (htab->glink->owner, MFLR_R12, p);
12624 p += 4;
12625 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
12626 p += 4;
12627 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
12628 p += 4;
12629 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | (-16 & 0xfffc), p);
12630 p += 4;
12631 bfd_put_32 (htab->glink->owner, MTLR_R12, p);
12632 p += 4;
12633 bfd_put_32 (htab->glink->owner, ADD_R11_R2_R11, p);
12634 p += 4;
12635 bfd_put_32 (htab->glink->owner, LD_R12_0R11, p);
12636 p += 4;
12637 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | 8, p);
12638 p += 4;
12639 bfd_put_32 (htab->glink->owner, MTCTR_R12, p);
12640 p += 4;
12641 bfd_put_32 (htab->glink->owner, LD_R11_0R11 | 16, p);
12642 p += 4;
12643 }
12644 else
12645 {
12646 bfd_put_32 (htab->glink->owner, MFLR_R0, p);
12647 p += 4;
12648 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
12649 p += 4;
12650 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
12651 p += 4;
12652 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | (-16 & 0xfffc), p);
12653 p += 4;
12654 bfd_put_32 (htab->glink->owner, MTLR_R0, p);
12655 p += 4;
12656 bfd_put_32 (htab->glink->owner, SUB_R12_R12_R11, p);
12657 p += 4;
12658 bfd_put_32 (htab->glink->owner, ADD_R11_R2_R11, p);
12659 p += 4;
12660 bfd_put_32 (htab->glink->owner, ADDI_R0_R12 | (-48 & 0xffff), p);
12661 p += 4;
12662 bfd_put_32 (htab->glink->owner, LD_R12_0R11, p);
12663 p += 4;
12664 bfd_put_32 (htab->glink->owner, SRDI_R0_R0_2, p);
12665 p += 4;
12666 bfd_put_32 (htab->glink->owner, MTCTR_R12, p);
12667 p += 4;
12668 bfd_put_32 (htab->glink->owner, LD_R11_0R11 | 8, p);
12669 p += 4;
12670 }
12671 bfd_put_32 (htab->glink->owner, BCTR, p);
12672 p += 4;
12673 while (p - htab->glink->contents < GLINK_CALL_STUB_SIZE)
12674 {
12675 bfd_put_32 (htab->glink->owner, NOP, p);
12676 p += 4;
12677 }
12678
12679 /* Build the .glink lazy link call stubs. */
12680 indx = 0;
12681 while (p < htab->glink->contents + htab->glink->rawsize)
12682 {
12683 if (htab->opd_abi)
12684 {
12685 if (indx < 0x8000)
12686 {
12687 bfd_put_32 (htab->glink->owner, LI_R0_0 | indx, p);
12688 p += 4;
12689 }
12690 else
12691 {
12692 bfd_put_32 (htab->glink->owner, LIS_R0_0 | PPC_HI (indx), p);
12693 p += 4;
12694 bfd_put_32 (htab->glink->owner, ORI_R0_R0_0 | PPC_LO (indx),
12695 p);
12696 p += 4;
12697 }
12698 }
12699 bfd_put_32 (htab->glink->owner,
12700 B_DOT | ((htab->glink->contents - p + 8) & 0x3fffffc), p);
12701 indx++;
12702 p += 4;
12703 }
12704
12705 /* Build .glink global entry stubs. */
12706 if (htab->glink->size > htab->glink->rawsize)
12707 elf_link_hash_traverse (&htab->elf, build_global_entry_stubs, info);
12708 }
12709
12710 if (htab->brlt != NULL && htab->brlt->size != 0)
12711 {
12712 htab->brlt->contents = bfd_zalloc (htab->brlt->owner,
12713 htab->brlt->size);
12714 if (htab->brlt->contents == NULL)
12715 return FALSE;
12716 }
12717 if (htab->relbrlt != NULL && htab->relbrlt->size != 0)
12718 {
12719 htab->relbrlt->contents = bfd_zalloc (htab->relbrlt->owner,
12720 htab->relbrlt->size);
12721 if (htab->relbrlt->contents == NULL)
12722 return FALSE;
12723 }
12724
12725 if (htab->glink_eh_frame != NULL
12726 && htab->glink_eh_frame->size != 0)
12727 {
12728 bfd_vma val;
12729 bfd_byte *last_fde;
12730 size_t last_fde_len, size, align, pad;
12731
12732 p = bfd_zalloc (htab->glink_eh_frame->owner, htab->glink_eh_frame->size);
12733 if (p == NULL)
12734 return FALSE;
12735 htab->glink_eh_frame->contents = p;
12736 last_fde = p;
12737
12738 htab->glink_eh_frame->rawsize = htab->glink_eh_frame->size;
12739
12740 memcpy (p, glink_eh_frame_cie, sizeof (glink_eh_frame_cie));
12741 /* CIE length (rewrite in case little-endian). */
12742 last_fde_len = sizeof (glink_eh_frame_cie) - 4;
12743 bfd_put_32 (htab->elf.dynobj, last_fde_len, p);
12744 p += sizeof (glink_eh_frame_cie);
12745
12746 for (stub_sec = htab->params->stub_bfd->sections;
12747 stub_sec != NULL;
12748 stub_sec = stub_sec->next)
12749 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12750 {
12751 last_fde = p;
12752 last_fde_len = 16;
12753 /* FDE length. */
12754 bfd_put_32 (htab->elf.dynobj, 16, p);
12755 p += 4;
12756 /* CIE pointer. */
12757 val = p - htab->glink_eh_frame->contents;
12758 bfd_put_32 (htab->elf.dynobj, val, p);
12759 p += 4;
12760 /* Offset to stub section. */
12761 val = (stub_sec->output_section->vma
12762 + stub_sec->output_offset);
12763 val -= (htab->glink_eh_frame->output_section->vma
12764 + htab->glink_eh_frame->output_offset);
12765 val -= p - htab->glink_eh_frame->contents;
12766 if (val + 0x80000000 > 0xffffffff)
12767 {
12768 info->callbacks->einfo
12769 (_("%P: %s offset too large for .eh_frame sdata4 encoding"),
12770 stub_sec->name);
12771 return FALSE;
12772 }
12773 bfd_put_32 (htab->elf.dynobj, val, p);
12774 p += 4;
12775 /* stub section size. */
12776 bfd_put_32 (htab->elf.dynobj, stub_sec->rawsize, p);
12777 p += 4;
12778 /* Augmentation. */
12779 p += 1;
12780 /* Pad. */
12781 p += 3;
12782 }
12783 if (htab->glink != NULL && htab->glink->size != 0)
12784 {
12785 last_fde = p;
12786 last_fde_len = 20;
12787 /* FDE length. */
12788 bfd_put_32 (htab->elf.dynobj, 20, p);
12789 p += 4;
12790 /* CIE pointer. */
12791 val = p - htab->glink_eh_frame->contents;
12792 bfd_put_32 (htab->elf.dynobj, val, p);
12793 p += 4;
12794 /* Offset to .glink. */
12795 val = (htab->glink->output_section->vma
12796 + htab->glink->output_offset
12797 + 8);
12798 val -= (htab->glink_eh_frame->output_section->vma
12799 + htab->glink_eh_frame->output_offset);
12800 val -= p - htab->glink_eh_frame->contents;
12801 if (val + 0x80000000 > 0xffffffff)
12802 {
12803 info->callbacks->einfo
12804 (_("%P: %s offset too large for .eh_frame sdata4 encoding"),
12805 htab->glink->name);
12806 return FALSE;
12807 }
12808 bfd_put_32 (htab->elf.dynobj, val, p);
12809 p += 4;
12810 /* .glink size. */
12811 bfd_put_32 (htab->elf.dynobj, htab->glink->size - 8, p);
12812 p += 4;
12813 /* Augmentation. */
12814 p += 1;
12815
12816 *p++ = DW_CFA_advance_loc + 1;
12817 *p++ = DW_CFA_register;
12818 *p++ = 65;
12819 *p++ = 12;
12820 *p++ = DW_CFA_advance_loc + 4;
12821 *p++ = DW_CFA_restore_extended;
12822 *p++ = 65;
12823 }
12824 /* Subsume any padding into the last FDE if user .eh_frame
12825 sections are aligned more than glink_eh_frame. Otherwise any
12826 zero padding will be seen as a terminator. */
12827 size = p - htab->glink_eh_frame->contents;
12828 align = 1;
12829 align <<= htab->glink_eh_frame->output_section->alignment_power;
12830 align -= 1;
12831 pad = ((size + align) & ~align) - size;
12832 htab->glink_eh_frame->size = size + pad;
12833 bfd_put_32 (htab->elf.dynobj, last_fde_len + pad, last_fde);
12834 }
12835
12836 /* Build the stubs as directed by the stub hash table. */
12837 bfd_hash_traverse (&htab->stub_hash_table, ppc_build_one_stub, info);
12838
12839 if (htab->relbrlt != NULL)
12840 htab->relbrlt->reloc_count = 0;
12841
12842 if (htab->params->plt_stub_align != 0)
12843 for (stub_sec = htab->params->stub_bfd->sections;
12844 stub_sec != NULL;
12845 stub_sec = stub_sec->next)
12846 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12847 stub_sec->size = ((stub_sec->size
12848 + (1 << htab->params->plt_stub_align) - 1)
12849 & (-1 << htab->params->plt_stub_align));
12850
12851 for (stub_sec = htab->params->stub_bfd->sections;
12852 stub_sec != NULL;
12853 stub_sec = stub_sec->next)
12854 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12855 {
12856 stub_sec_count += 1;
12857 if (stub_sec->rawsize != stub_sec->size)
12858 break;
12859 }
12860
12861 if (stub_sec != NULL
12862 || (htab->glink_eh_frame != NULL
12863 && htab->glink_eh_frame->rawsize != htab->glink_eh_frame->size))
12864 {
12865 htab->stub_error = TRUE;
12866 info->callbacks->einfo (_("%P: stubs don't match calculated size\n"));
12867 }
12868
12869 if (htab->stub_error)
12870 return FALSE;
12871
12872 if (stats != NULL)
12873 {
12874 *stats = bfd_malloc (500);
12875 if (*stats == NULL)
12876 return FALSE;
12877
12878 sprintf (*stats, _("linker stubs in %u group%s\n"
12879 " branch %lu\n"
12880 " toc adjust %lu\n"
12881 " long branch %lu\n"
12882 " long toc adj %lu\n"
12883 " plt call %lu\n"
12884 " plt call toc %lu\n"
12885 " global entry %lu"),
12886 stub_sec_count,
12887 stub_sec_count == 1 ? "" : "s",
12888 htab->stub_count[ppc_stub_long_branch - 1],
12889 htab->stub_count[ppc_stub_long_branch_r2off - 1],
12890 htab->stub_count[ppc_stub_plt_branch - 1],
12891 htab->stub_count[ppc_stub_plt_branch_r2off - 1],
12892 htab->stub_count[ppc_stub_plt_call - 1],
12893 htab->stub_count[ppc_stub_plt_call_r2save - 1],
12894 htab->stub_count[ppc_stub_global_entry - 1]);
12895 }
12896 return TRUE;
12897 }
12898
12899 /* This function undoes the changes made by add_symbol_adjust. */
12900
12901 static bfd_boolean
12902 undo_symbol_twiddle (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
12903 {
12904 struct ppc_link_hash_entry *eh;
12905
12906 if (h->root.type == bfd_link_hash_indirect)
12907 return TRUE;
12908
12909 eh = (struct ppc_link_hash_entry *) h;
12910 if (eh->elf.root.type != bfd_link_hash_undefweak || !eh->was_undefined)
12911 return TRUE;
12912
12913 eh->elf.root.type = bfd_link_hash_undefined;
12914 return TRUE;
12915 }
12916
12917 void
12918 ppc64_elf_restore_symbols (struct bfd_link_info *info)
12919 {
12920 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12921
12922 if (htab != NULL)
12923 elf_link_hash_traverse (&htab->elf, undo_symbol_twiddle, info);
12924 }
12925
12926 /* What to do when ld finds relocations against symbols defined in
12927 discarded sections. */
12928
12929 static unsigned int
12930 ppc64_elf_action_discarded (asection *sec)
12931 {
12932 if (strcmp (".opd", sec->name) == 0)
12933 return 0;
12934
12935 if (strcmp (".toc", sec->name) == 0)
12936 return 0;
12937
12938 if (strcmp (".toc1", sec->name) == 0)
12939 return 0;
12940
12941 return _bfd_elf_default_action_discarded (sec);
12942 }
12943
12944 /* The RELOCATE_SECTION function is called by the ELF backend linker
12945 to handle the relocations for a section.
12946
12947 The relocs are always passed as Rela structures; if the section
12948 actually uses Rel structures, the r_addend field will always be
12949 zero.
12950
12951 This function is responsible for adjust the section contents as
12952 necessary, and (if using Rela relocs and generating a
12953 relocatable output file) adjusting the reloc addend as
12954 necessary.
12955
12956 This function does not have to worry about setting the reloc
12957 address or the reloc symbol index.
12958
12959 LOCAL_SYMS is a pointer to the swapped in local symbols.
12960
12961 LOCAL_SECTIONS is an array giving the section in the input file
12962 corresponding to the st_shndx field of each local symbol.
12963
12964 The global hash table entry for the global symbols can be found
12965 via elf_sym_hashes (input_bfd).
12966
12967 When generating relocatable output, this function must handle
12968 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
12969 going to be the section symbol corresponding to the output
12970 section, which means that the addend must be adjusted
12971 accordingly. */
12972
12973 static bfd_boolean
12974 ppc64_elf_relocate_section (bfd *output_bfd,
12975 struct bfd_link_info *info,
12976 bfd *input_bfd,
12977 asection *input_section,
12978 bfd_byte *contents,
12979 Elf_Internal_Rela *relocs,
12980 Elf_Internal_Sym *local_syms,
12981 asection **local_sections)
12982 {
12983 struct ppc_link_hash_table *htab;
12984 Elf_Internal_Shdr *symtab_hdr;
12985 struct elf_link_hash_entry **sym_hashes;
12986 Elf_Internal_Rela *rel;
12987 Elf_Internal_Rela *relend;
12988 Elf_Internal_Rela outrel;
12989 bfd_byte *loc;
12990 struct got_entry **local_got_ents;
12991 bfd_vma TOCstart;
12992 bfd_boolean ret = TRUE;
12993 bfd_boolean is_opd;
12994 /* Assume 'at' branch hints. */
12995 bfd_boolean is_isa_v2 = TRUE;
12996 bfd_vma d_offset = (bfd_big_endian (output_bfd) ? 2 : 0);
12997
12998 /* Initialize howto table if needed. */
12999 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
13000 ppc_howto_init ();
13001
13002 htab = ppc_hash_table (info);
13003 if (htab == NULL)
13004 return FALSE;
13005
13006 /* Don't relocate stub sections. */
13007 if (input_section->owner == htab->params->stub_bfd)
13008 return TRUE;
13009
13010 BFD_ASSERT (is_ppc64_elf (input_bfd));
13011
13012 local_got_ents = elf_local_got_ents (input_bfd);
13013 TOCstart = elf_gp (output_bfd);
13014 symtab_hdr = &elf_symtab_hdr (input_bfd);
13015 sym_hashes = elf_sym_hashes (input_bfd);
13016 is_opd = ppc64_elf_section_data (input_section)->sec_type == sec_opd;
13017
13018 rel = relocs;
13019 relend = relocs + input_section->reloc_count;
13020 for (; rel < relend; rel++)
13021 {
13022 enum elf_ppc64_reloc_type r_type;
13023 bfd_vma addend;
13024 bfd_reloc_status_type r;
13025 Elf_Internal_Sym *sym;
13026 asection *sec;
13027 struct elf_link_hash_entry *h_elf;
13028 struct ppc_link_hash_entry *h;
13029 struct ppc_link_hash_entry *fdh;
13030 const char *sym_name;
13031 unsigned long r_symndx, toc_symndx;
13032 bfd_vma toc_addend;
13033 unsigned char tls_mask, tls_gd, tls_type;
13034 unsigned char sym_type;
13035 bfd_vma relocation;
13036 bfd_boolean unresolved_reloc;
13037 bfd_boolean warned;
13038 enum { DEST_NORMAL, DEST_OPD, DEST_STUB } reloc_dest;
13039 unsigned int insn;
13040 unsigned int mask;
13041 struct ppc_stub_hash_entry *stub_entry;
13042 bfd_vma max_br_offset;
13043 bfd_vma from;
13044 const Elf_Internal_Rela orig_rel = *rel;
13045 reloc_howto_type *howto;
13046 struct reloc_howto_struct alt_howto;
13047
13048 r_type = ELF64_R_TYPE (rel->r_info);
13049 r_symndx = ELF64_R_SYM (rel->r_info);
13050
13051 /* For old style R_PPC64_TOC relocs with a zero symbol, use the
13052 symbol of the previous ADDR64 reloc. The symbol gives us the
13053 proper TOC base to use. */
13054 if (rel->r_info == ELF64_R_INFO (0, R_PPC64_TOC)
13055 && rel != relocs
13056 && ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_ADDR64
13057 && is_opd)
13058 r_symndx = ELF64_R_SYM (rel[-1].r_info);
13059
13060 sym = NULL;
13061 sec = NULL;
13062 h_elf = NULL;
13063 sym_name = NULL;
13064 unresolved_reloc = FALSE;
13065 warned = FALSE;
13066
13067 if (r_symndx < symtab_hdr->sh_info)
13068 {
13069 /* It's a local symbol. */
13070 struct _opd_sec_data *opd;
13071
13072 sym = local_syms + r_symndx;
13073 sec = local_sections[r_symndx];
13074 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, sec);
13075 sym_type = ELF64_ST_TYPE (sym->st_info);
13076 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
13077 opd = get_opd_info (sec);
13078 if (opd != NULL && opd->adjust != NULL)
13079 {
13080 long adjust = opd->adjust[(sym->st_value + rel->r_addend) / 8];
13081 if (adjust == -1)
13082 relocation = 0;
13083 else
13084 {
13085 /* If this is a relocation against the opd section sym
13086 and we have edited .opd, adjust the reloc addend so
13087 that ld -r and ld --emit-relocs output is correct.
13088 If it is a reloc against some other .opd symbol,
13089 then the symbol value will be adjusted later. */
13090 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
13091 rel->r_addend += adjust;
13092 else
13093 relocation += adjust;
13094 }
13095 }
13096 }
13097 else
13098 {
13099 bfd_boolean ignored;
13100
13101 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
13102 r_symndx, symtab_hdr, sym_hashes,
13103 h_elf, sec, relocation,
13104 unresolved_reloc, warned, ignored);
13105 sym_name = h_elf->root.root.string;
13106 sym_type = h_elf->type;
13107 if (sec != NULL
13108 && sec->owner == output_bfd
13109 && strcmp (sec->name, ".opd") == 0)
13110 {
13111 /* This is a symbol defined in a linker script. All
13112 such are defined in output sections, even those
13113 defined by simple assignment from a symbol defined in
13114 an input section. Transfer the symbol to an
13115 appropriate input .opd section, so that a branch to
13116 this symbol will be mapped to the location specified
13117 by the opd entry. */
13118 struct bfd_link_order *lo;
13119 for (lo = sec->map_head.link_order; lo != NULL; lo = lo->next)
13120 if (lo->type == bfd_indirect_link_order)
13121 {
13122 asection *isec = lo->u.indirect.section;
13123 if (h_elf->root.u.def.value >= isec->output_offset
13124 && h_elf->root.u.def.value < (isec->output_offset
13125 + isec->size))
13126 {
13127 h_elf->root.u.def.value -= isec->output_offset;
13128 h_elf->root.u.def.section = isec;
13129 sec = isec;
13130 break;
13131 }
13132 }
13133 }
13134 }
13135 h = (struct ppc_link_hash_entry *) h_elf;
13136
13137 if (sec != NULL && discarded_section (sec))
13138 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
13139 rel, 1, relend,
13140 ppc64_elf_howto_table[r_type], 0,
13141 contents);
13142
13143 if (info->relocatable)
13144 continue;
13145
13146 if (h != NULL && &h->elf == htab->elf.hgot)
13147 {
13148 relocation = (TOCstart
13149 + htab->stub_group[input_section->id].toc_off);
13150 sec = bfd_abs_section_ptr;
13151 unresolved_reloc = FALSE;
13152 }
13153
13154 /* TLS optimizations. Replace instruction sequences and relocs
13155 based on information we collected in tls_optimize. We edit
13156 RELOCS so that --emit-relocs will output something sensible
13157 for the final instruction stream. */
13158 tls_mask = 0;
13159 tls_gd = 0;
13160 toc_symndx = 0;
13161 if (h != NULL)
13162 tls_mask = h->tls_mask;
13163 else if (local_got_ents != NULL)
13164 {
13165 struct plt_entry **local_plt = (struct plt_entry **)
13166 (local_got_ents + symtab_hdr->sh_info);
13167 unsigned char *lgot_masks = (unsigned char *)
13168 (local_plt + symtab_hdr->sh_info);
13169 tls_mask = lgot_masks[r_symndx];
13170 }
13171 if (tls_mask == 0
13172 && (r_type == R_PPC64_TLS
13173 || r_type == R_PPC64_TLSGD
13174 || r_type == R_PPC64_TLSLD))
13175 {
13176 /* Check for toc tls entries. */
13177 unsigned char *toc_tls;
13178
13179 if (!get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
13180 &local_syms, rel, input_bfd))
13181 return FALSE;
13182
13183 if (toc_tls)
13184 tls_mask = *toc_tls;
13185 }
13186
13187 /* Check that tls relocs are used with tls syms, and non-tls
13188 relocs are used with non-tls syms. */
13189 if (r_symndx != STN_UNDEF
13190 && r_type != R_PPC64_NONE
13191 && (h == NULL
13192 || h->elf.root.type == bfd_link_hash_defined
13193 || h->elf.root.type == bfd_link_hash_defweak)
13194 && (IS_PPC64_TLS_RELOC (r_type)
13195 != (sym_type == STT_TLS
13196 || (sym_type == STT_SECTION
13197 && (sec->flags & SEC_THREAD_LOCAL) != 0))))
13198 {
13199 if (tls_mask != 0
13200 && (r_type == R_PPC64_TLS
13201 || r_type == R_PPC64_TLSGD
13202 || r_type == R_PPC64_TLSLD))
13203 /* R_PPC64_TLS is OK against a symbol in the TOC. */
13204 ;
13205 else
13206 info->callbacks->einfo
13207 (!IS_PPC64_TLS_RELOC (r_type)
13208 ? _("%P: %H: %s used with TLS symbol `%T'\n")
13209 : _("%P: %H: %s used with non-TLS symbol `%T'\n"),
13210 input_bfd, input_section, rel->r_offset,
13211 ppc64_elf_howto_table[r_type]->name,
13212 sym_name);
13213 }
13214
13215 /* Ensure reloc mapping code below stays sane. */
13216 if (R_PPC64_TOC16_LO_DS != R_PPC64_TOC16_DS + 1
13217 || R_PPC64_TOC16_LO != R_PPC64_TOC16 + 1
13218 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TLSGD16 & 3)
13219 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TLSGD16_LO & 3)
13220 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TLSGD16_HI & 3)
13221 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TLSGD16_HA & 3)
13222 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TPREL16_DS & 3)
13223 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TPREL16_LO_DS & 3)
13224 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TPREL16_HI & 3)
13225 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TPREL16_HA & 3))
13226 abort ();
13227
13228 switch (r_type)
13229 {
13230 default:
13231 break;
13232
13233 case R_PPC64_LO_DS_OPT:
13234 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - d_offset);
13235 if ((insn & (0x3f << 26)) != 58u << 26)
13236 abort ();
13237 insn += (14u << 26) - (58u << 26);
13238 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - d_offset);
13239 r_type = R_PPC64_TOC16_LO;
13240 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13241 break;
13242
13243 case R_PPC64_TOC16:
13244 case R_PPC64_TOC16_LO:
13245 case R_PPC64_TOC16_DS:
13246 case R_PPC64_TOC16_LO_DS:
13247 {
13248 /* Check for toc tls entries. */
13249 unsigned char *toc_tls;
13250 int retval;
13251
13252 retval = get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
13253 &local_syms, rel, input_bfd);
13254 if (retval == 0)
13255 return FALSE;
13256
13257 if (toc_tls)
13258 {
13259 tls_mask = *toc_tls;
13260 if (r_type == R_PPC64_TOC16_DS
13261 || r_type == R_PPC64_TOC16_LO_DS)
13262 {
13263 if (tls_mask != 0
13264 && (tls_mask & (TLS_DTPREL | TLS_TPREL)) == 0)
13265 goto toctprel;
13266 }
13267 else
13268 {
13269 /* If we found a GD reloc pair, then we might be
13270 doing a GD->IE transition. */
13271 if (retval == 2)
13272 {
13273 tls_gd = TLS_TPRELGD;
13274 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13275 goto tls_ldgd_opt;
13276 }
13277 else if (retval == 3)
13278 {
13279 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13280 goto tls_ldgd_opt;
13281 }
13282 }
13283 }
13284 }
13285 break;
13286
13287 case R_PPC64_GOT_TPREL16_HI:
13288 case R_PPC64_GOT_TPREL16_HA:
13289 if (tls_mask != 0
13290 && (tls_mask & TLS_TPREL) == 0)
13291 {
13292 rel->r_offset -= d_offset;
13293 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
13294 r_type = R_PPC64_NONE;
13295 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13296 }
13297 break;
13298
13299 case R_PPC64_GOT_TPREL16_DS:
13300 case R_PPC64_GOT_TPREL16_LO_DS:
13301 if (tls_mask != 0
13302 && (tls_mask & TLS_TPREL) == 0)
13303 {
13304 toctprel:
13305 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - d_offset);
13306 insn &= 31 << 21;
13307 insn |= 0x3c0d0000; /* addis 0,13,0 */
13308 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - d_offset);
13309 r_type = R_PPC64_TPREL16_HA;
13310 if (toc_symndx != 0)
13311 {
13312 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
13313 rel->r_addend = toc_addend;
13314 /* We changed the symbol. Start over in order to
13315 get h, sym, sec etc. right. */
13316 rel--;
13317 continue;
13318 }
13319 else
13320 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13321 }
13322 break;
13323
13324 case R_PPC64_TLS:
13325 if (tls_mask != 0
13326 && (tls_mask & TLS_TPREL) == 0)
13327 {
13328 insn = bfd_get_32 (output_bfd, contents + rel->r_offset);
13329 insn = _bfd_elf_ppc_at_tls_transform (insn, 13);
13330 if (insn == 0)
13331 abort ();
13332 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
13333 /* Was PPC64_TLS which sits on insn boundary, now
13334 PPC64_TPREL16_LO which is at low-order half-word. */
13335 rel->r_offset += d_offset;
13336 r_type = R_PPC64_TPREL16_LO;
13337 if (toc_symndx != 0)
13338 {
13339 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
13340 rel->r_addend = toc_addend;
13341 /* We changed the symbol. Start over in order to
13342 get h, sym, sec etc. right. */
13343 rel--;
13344 continue;
13345 }
13346 else
13347 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13348 }
13349 break;
13350
13351 case R_PPC64_GOT_TLSGD16_HI:
13352 case R_PPC64_GOT_TLSGD16_HA:
13353 tls_gd = TLS_TPRELGD;
13354 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13355 goto tls_gdld_hi;
13356 break;
13357
13358 case R_PPC64_GOT_TLSLD16_HI:
13359 case R_PPC64_GOT_TLSLD16_HA:
13360 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13361 {
13362 tls_gdld_hi:
13363 if ((tls_mask & tls_gd) != 0)
13364 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
13365 + R_PPC64_GOT_TPREL16_DS);
13366 else
13367 {
13368 rel->r_offset -= d_offset;
13369 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
13370 r_type = R_PPC64_NONE;
13371 }
13372 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13373 }
13374 break;
13375
13376 case R_PPC64_GOT_TLSGD16:
13377 case R_PPC64_GOT_TLSGD16_LO:
13378 tls_gd = TLS_TPRELGD;
13379 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13380 goto tls_ldgd_opt;
13381 break;
13382
13383 case R_PPC64_GOT_TLSLD16:
13384 case R_PPC64_GOT_TLSLD16_LO:
13385 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13386 {
13387 unsigned int insn1, insn2, insn3;
13388 bfd_vma offset;
13389
13390 tls_ldgd_opt:
13391 offset = (bfd_vma) -1;
13392 /* If not using the newer R_PPC64_TLSGD/LD to mark
13393 __tls_get_addr calls, we must trust that the call
13394 stays with its arg setup insns, ie. that the next
13395 reloc is the __tls_get_addr call associated with
13396 the current reloc. Edit both insns. */
13397 if (input_section->has_tls_get_addr_call
13398 && rel + 1 < relend
13399 && branch_reloc_hash_match (input_bfd, rel + 1,
13400 htab->tls_get_addr,
13401 htab->tls_get_addr_fd))
13402 offset = rel[1].r_offset;
13403 if ((tls_mask & tls_gd) != 0)
13404 {
13405 /* IE */
13406 insn1 = bfd_get_32 (output_bfd,
13407 contents + rel->r_offset - d_offset);
13408 insn1 &= (1 << 26) - (1 << 2);
13409 insn1 |= 58 << 26; /* ld */
13410 insn2 = 0x7c636a14; /* add 3,3,13 */
13411 if (offset != (bfd_vma) -1)
13412 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
13413 if ((tls_mask & TLS_EXPLICIT) == 0)
13414 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
13415 + R_PPC64_GOT_TPREL16_DS);
13416 else
13417 r_type += R_PPC64_TOC16_DS - R_PPC64_TOC16;
13418 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13419 }
13420 else
13421 {
13422 /* LE */
13423 insn1 = 0x3c6d0000; /* addis 3,13,0 */
13424 insn2 = 0x38630000; /* addi 3,3,0 */
13425 if (tls_gd == 0)
13426 {
13427 /* Was an LD reloc. */
13428 if (toc_symndx)
13429 sec = local_sections[toc_symndx];
13430 for (r_symndx = 0;
13431 r_symndx < symtab_hdr->sh_info;
13432 r_symndx++)
13433 if (local_sections[r_symndx] == sec)
13434 break;
13435 if (r_symndx >= symtab_hdr->sh_info)
13436 r_symndx = STN_UNDEF;
13437 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
13438 if (r_symndx != STN_UNDEF)
13439 rel->r_addend -= (local_syms[r_symndx].st_value
13440 + sec->output_offset
13441 + sec->output_section->vma);
13442 }
13443 else if (toc_symndx != 0)
13444 {
13445 r_symndx = toc_symndx;
13446 rel->r_addend = toc_addend;
13447 }
13448 r_type = R_PPC64_TPREL16_HA;
13449 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13450 if (offset != (bfd_vma) -1)
13451 {
13452 rel[1].r_info = ELF64_R_INFO (r_symndx,
13453 R_PPC64_TPREL16_LO);
13454 rel[1].r_offset = offset + d_offset;
13455 rel[1].r_addend = rel->r_addend;
13456 }
13457 }
13458 bfd_put_32 (output_bfd, insn1,
13459 contents + rel->r_offset - d_offset);
13460 if (offset != (bfd_vma) -1)
13461 {
13462 insn3 = bfd_get_32 (output_bfd,
13463 contents + offset + 4);
13464 if (insn3 == NOP
13465 || insn3 == CROR_151515 || insn3 == CROR_313131)
13466 {
13467 rel[1].r_offset += 4;
13468 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
13469 insn2 = NOP;
13470 }
13471 bfd_put_32 (output_bfd, insn2, contents + offset);
13472 }
13473 if ((tls_mask & tls_gd) == 0
13474 && (tls_gd == 0 || toc_symndx != 0))
13475 {
13476 /* We changed the symbol. Start over in order
13477 to get h, sym, sec etc. right. */
13478 rel--;
13479 continue;
13480 }
13481 }
13482 break;
13483
13484 case R_PPC64_TLSGD:
13485 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13486 {
13487 unsigned int insn2, insn3;
13488 bfd_vma offset = rel->r_offset;
13489
13490 if ((tls_mask & TLS_TPRELGD) != 0)
13491 {
13492 /* IE */
13493 r_type = R_PPC64_NONE;
13494 insn2 = 0x7c636a14; /* add 3,3,13 */
13495 }
13496 else
13497 {
13498 /* LE */
13499 if (toc_symndx != 0)
13500 {
13501 r_symndx = toc_symndx;
13502 rel->r_addend = toc_addend;
13503 }
13504 r_type = R_PPC64_TPREL16_LO;
13505 rel->r_offset = offset + d_offset;
13506 insn2 = 0x38630000; /* addi 3,3,0 */
13507 }
13508 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13509 /* Zap the reloc on the _tls_get_addr call too. */
13510 BFD_ASSERT (offset == rel[1].r_offset);
13511 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
13512 insn3 = bfd_get_32 (output_bfd,
13513 contents + offset + 4);
13514 if (insn3 == NOP
13515 || insn3 == CROR_151515 || insn3 == CROR_313131)
13516 {
13517 rel->r_offset += 4;
13518 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
13519 insn2 = NOP;
13520 }
13521 bfd_put_32 (output_bfd, insn2, contents + offset);
13522 if ((tls_mask & TLS_TPRELGD) == 0 && toc_symndx != 0)
13523 {
13524 rel--;
13525 continue;
13526 }
13527 }
13528 break;
13529
13530 case R_PPC64_TLSLD:
13531 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13532 {
13533 unsigned int insn2, insn3;
13534 bfd_vma offset = rel->r_offset;
13535
13536 if (toc_symndx)
13537 sec = local_sections[toc_symndx];
13538 for (r_symndx = 0;
13539 r_symndx < symtab_hdr->sh_info;
13540 r_symndx++)
13541 if (local_sections[r_symndx] == sec)
13542 break;
13543 if (r_symndx >= symtab_hdr->sh_info)
13544 r_symndx = STN_UNDEF;
13545 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
13546 if (r_symndx != STN_UNDEF)
13547 rel->r_addend -= (local_syms[r_symndx].st_value
13548 + sec->output_offset
13549 + sec->output_section->vma);
13550
13551 r_type = R_PPC64_TPREL16_LO;
13552 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13553 rel->r_offset = offset + d_offset;
13554 /* Zap the reloc on the _tls_get_addr call too. */
13555 BFD_ASSERT (offset == rel[1].r_offset);
13556 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
13557 insn2 = 0x38630000; /* addi 3,3,0 */
13558 insn3 = bfd_get_32 (output_bfd,
13559 contents + offset + 4);
13560 if (insn3 == NOP
13561 || insn3 == CROR_151515 || insn3 == CROR_313131)
13562 {
13563 rel->r_offset += 4;
13564 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
13565 insn2 = NOP;
13566 }
13567 bfd_put_32 (output_bfd, insn2, contents + offset);
13568 rel--;
13569 continue;
13570 }
13571 break;
13572
13573 case R_PPC64_DTPMOD64:
13574 if (rel + 1 < relend
13575 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
13576 && rel[1].r_offset == rel->r_offset + 8)
13577 {
13578 if ((tls_mask & TLS_GD) == 0)
13579 {
13580 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_NONE);
13581 if ((tls_mask & TLS_TPRELGD) != 0)
13582 r_type = R_PPC64_TPREL64;
13583 else
13584 {
13585 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
13586 r_type = R_PPC64_NONE;
13587 }
13588 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13589 }
13590 }
13591 else
13592 {
13593 if ((tls_mask & TLS_LD) == 0)
13594 {
13595 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
13596 r_type = R_PPC64_NONE;
13597 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13598 }
13599 }
13600 break;
13601
13602 case R_PPC64_TPREL64:
13603 if ((tls_mask & TLS_TPREL) == 0)
13604 {
13605 r_type = R_PPC64_NONE;
13606 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13607 }
13608 break;
13609
13610 case R_PPC64_REL16_HA:
13611 /* If we are generating a non-PIC executable, edit
13612 . 0: addis 2,12,.TOC.-0b@ha
13613 . addi 2,2,.TOC.-0b@l
13614 used by ELFv2 global entry points to set up r2, to
13615 . lis 2,.TOC.@ha
13616 . addi 2,2,.TOC.@l
13617 if .TOC. is in range. */
13618 if (!info->shared
13619 && !info->traditional_format
13620 && h != NULL && &h->elf == htab->elf.hgot
13621 && rel + 1 < relend
13622 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_REL16_LO)
13623 && rel[1].r_offset == rel->r_offset + 4
13624 && rel[1].r_addend == rel->r_addend + 4
13625 && relocation + 0x80008000 <= 0xffffffff)
13626 {
13627 unsigned int insn1, insn2;
13628 bfd_vma offset = rel->r_offset - d_offset;
13629 insn1 = bfd_get_32 (output_bfd, contents + offset);
13630 insn2 = bfd_get_32 (output_bfd, contents + offset + 4);
13631 if ((insn1 & 0xffff0000) == 0x3c4c0000 /* addis 2,12 */
13632 && (insn2 & 0xffff0000) == 0x38420000 /* addi 2,2 */)
13633 {
13634 r_type = R_PPC64_ADDR16_HA;
13635 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13636 rel->r_addend -= d_offset;
13637 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_ADDR16_LO);
13638 rel[1].r_addend -= d_offset + 4;
13639 bfd_put_32 (output_bfd, 0x3c400000, contents + offset);
13640 }
13641 }
13642 break;
13643 }
13644
13645 /* Handle other relocations that tweak non-addend part of insn. */
13646 insn = 0;
13647 max_br_offset = 1 << 25;
13648 addend = rel->r_addend;
13649 reloc_dest = DEST_NORMAL;
13650 switch (r_type)
13651 {
13652 default:
13653 break;
13654
13655 case R_PPC64_TOCSAVE:
13656 if (relocation + addend == (rel->r_offset
13657 + input_section->output_offset
13658 + input_section->output_section->vma)
13659 && tocsave_find (htab, NO_INSERT,
13660 &local_syms, rel, input_bfd))
13661 {
13662 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
13663 if (insn == NOP
13664 || insn == CROR_151515 || insn == CROR_313131)
13665 bfd_put_32 (input_bfd,
13666 STD_R2_0R1 + STK_TOC (htab),
13667 contents + rel->r_offset);
13668 }
13669 break;
13670
13671 /* Branch taken prediction relocations. */
13672 case R_PPC64_ADDR14_BRTAKEN:
13673 case R_PPC64_REL14_BRTAKEN:
13674 insn = 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
13675 /* Fall thru. */
13676
13677 /* Branch not taken prediction relocations. */
13678 case R_PPC64_ADDR14_BRNTAKEN:
13679 case R_PPC64_REL14_BRNTAKEN:
13680 insn |= bfd_get_32 (output_bfd,
13681 contents + rel->r_offset) & ~(0x01 << 21);
13682 /* Fall thru. */
13683
13684 case R_PPC64_REL14:
13685 max_br_offset = 1 << 15;
13686 /* Fall thru. */
13687
13688 case R_PPC64_REL24:
13689 /* Calls to functions with a different TOC, such as calls to
13690 shared objects, need to alter the TOC pointer. This is
13691 done using a linkage stub. A REL24 branching to these
13692 linkage stubs needs to be followed by a nop, as the nop
13693 will be replaced with an instruction to restore the TOC
13694 base pointer. */
13695 fdh = h;
13696 if (h != NULL
13697 && h->oh != NULL
13698 && h->oh->is_func_descriptor)
13699 fdh = ppc_follow_link (h->oh);
13700 stub_entry = ppc_get_stub_entry (input_section, sec, fdh, &orig_rel,
13701 htab);
13702 if (stub_entry != NULL
13703 && (stub_entry->stub_type == ppc_stub_plt_call
13704 || stub_entry->stub_type == ppc_stub_plt_call_r2save
13705 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
13706 || stub_entry->stub_type == ppc_stub_long_branch_r2off))
13707 {
13708 bfd_boolean can_plt_call = FALSE;
13709
13710 /* All of these stubs will modify r2, so there must be a
13711 branch and link followed by a nop. The nop is
13712 replaced by an insn to restore r2. */
13713 if (rel->r_offset + 8 <= input_section->size)
13714 {
13715 unsigned long br;
13716
13717 br = bfd_get_32 (input_bfd,
13718 contents + rel->r_offset);
13719 if ((br & 1) != 0)
13720 {
13721 unsigned long nop;
13722
13723 nop = bfd_get_32 (input_bfd,
13724 contents + rel->r_offset + 4);
13725 if (nop == NOP
13726 || nop == CROR_151515 || nop == CROR_313131)
13727 {
13728 if (h != NULL
13729 && (h == htab->tls_get_addr_fd
13730 || h == htab->tls_get_addr)
13731 && !htab->params->no_tls_get_addr_opt)
13732 {
13733 /* Special stub used, leave nop alone. */
13734 }
13735 else
13736 bfd_put_32 (input_bfd,
13737 LD_R2_0R1 + STK_TOC (htab),
13738 contents + rel->r_offset + 4);
13739 can_plt_call = TRUE;
13740 }
13741 }
13742 }
13743
13744 if (!can_plt_call && h != NULL)
13745 {
13746 const char *name = h->elf.root.root.string;
13747
13748 if (*name == '.')
13749 ++name;
13750
13751 if (strncmp (name, "__libc_start_main", 17) == 0
13752 && (name[17] == 0 || name[17] == '@'))
13753 {
13754 /* Allow crt1 branch to go via a toc adjusting
13755 stub. Other calls that never return could do
13756 the same, if we could detect such. */
13757 can_plt_call = TRUE;
13758 }
13759 }
13760
13761 if (!can_plt_call)
13762 {
13763 /* g++ as of 20130507 emits self-calls without a
13764 following nop. This is arguably wrong since we
13765 have conflicting information. On the one hand a
13766 global symbol and on the other a local call
13767 sequence, but don't error for this special case.
13768 It isn't possible to cheaply verify we have
13769 exactly such a call. Allow all calls to the same
13770 section. */
13771 asection *code_sec = sec;
13772
13773 if (get_opd_info (sec) != NULL)
13774 {
13775 bfd_vma off = (relocation + addend
13776 - sec->output_section->vma
13777 - sec->output_offset);
13778
13779 opd_entry_value (sec, off, &code_sec, NULL, FALSE);
13780 }
13781 if (code_sec == input_section)
13782 can_plt_call = TRUE;
13783 }
13784
13785 if (!can_plt_call)
13786 {
13787 info->callbacks->einfo
13788 (_("%P: %H: call to `%T' lacks nop, can't restore toc; "
13789 "recompile with -fPIC\n"),
13790 input_bfd, input_section, rel->r_offset, sym_name);
13791
13792 bfd_set_error (bfd_error_bad_value);
13793 ret = FALSE;
13794 }
13795
13796 if (can_plt_call
13797 && (stub_entry->stub_type == ppc_stub_plt_call
13798 || stub_entry->stub_type == ppc_stub_plt_call_r2save))
13799 unresolved_reloc = FALSE;
13800 }
13801
13802 if ((stub_entry == NULL
13803 || stub_entry->stub_type == ppc_stub_long_branch
13804 || stub_entry->stub_type == ppc_stub_plt_branch)
13805 && get_opd_info (sec) != NULL)
13806 {
13807 /* The branch destination is the value of the opd entry. */
13808 bfd_vma off = (relocation + addend
13809 - sec->output_section->vma
13810 - sec->output_offset);
13811 bfd_vma dest = opd_entry_value (sec, off, NULL, NULL, FALSE);
13812 if (dest != (bfd_vma) -1)
13813 {
13814 relocation = dest;
13815 addend = 0;
13816 reloc_dest = DEST_OPD;
13817 }
13818 }
13819
13820 /* If the branch is out of reach we ought to have a long
13821 branch stub. */
13822 from = (rel->r_offset
13823 + input_section->output_offset
13824 + input_section->output_section->vma);
13825
13826 relocation += PPC64_LOCAL_ENTRY_OFFSET (fdh
13827 ? fdh->elf.other
13828 : sym->st_other);
13829
13830 if (stub_entry != NULL
13831 && (stub_entry->stub_type == ppc_stub_long_branch
13832 || stub_entry->stub_type == ppc_stub_plt_branch)
13833 && (r_type == R_PPC64_ADDR14_BRTAKEN
13834 || r_type == R_PPC64_ADDR14_BRNTAKEN
13835 || (relocation + addend - from + max_br_offset
13836 < 2 * max_br_offset)))
13837 /* Don't use the stub if this branch is in range. */
13838 stub_entry = NULL;
13839
13840 if (stub_entry != NULL)
13841 {
13842 /* Munge up the value and addend so that we call the stub
13843 rather than the procedure directly. */
13844 relocation = (stub_entry->stub_offset
13845 + stub_entry->stub_sec->output_offset
13846 + stub_entry->stub_sec->output_section->vma);
13847 addend = 0;
13848 reloc_dest = DEST_STUB;
13849
13850 if ((stub_entry->stub_type == ppc_stub_plt_call
13851 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13852 && (ALWAYS_EMIT_R2SAVE
13853 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13854 && rel + 1 < relend
13855 && rel[1].r_offset == rel->r_offset + 4
13856 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOCSAVE)
13857 relocation += 4;
13858 }
13859
13860 if (insn != 0)
13861 {
13862 if (is_isa_v2)
13863 {
13864 /* Set 'a' bit. This is 0b00010 in BO field for branch
13865 on CR(BI) insns (BO == 001at or 011at), and 0b01000
13866 for branch on CTR insns (BO == 1a00t or 1a01t). */
13867 if ((insn & (0x14 << 21)) == (0x04 << 21))
13868 insn |= 0x02 << 21;
13869 else if ((insn & (0x14 << 21)) == (0x10 << 21))
13870 insn |= 0x08 << 21;
13871 else
13872 break;
13873 }
13874 else
13875 {
13876 /* Invert 'y' bit if not the default. */
13877 if ((bfd_signed_vma) (relocation + addend - from) < 0)
13878 insn ^= 0x01 << 21;
13879 }
13880
13881 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
13882 }
13883
13884 /* NOP out calls to undefined weak functions.
13885 We can thus call a weak function without first
13886 checking whether the function is defined. */
13887 else if (h != NULL
13888 && h->elf.root.type == bfd_link_hash_undefweak
13889 && h->elf.dynindx == -1
13890 && r_type == R_PPC64_REL24
13891 && relocation == 0
13892 && addend == 0)
13893 {
13894 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
13895 continue;
13896 }
13897 break;
13898 }
13899
13900 /* Set `addend'. */
13901 tls_type = 0;
13902 switch (r_type)
13903 {
13904 default:
13905 info->callbacks->einfo
13906 (_("%P: %B: unknown relocation type %d for `%T'\n"),
13907 input_bfd, (int) r_type, sym_name);
13908
13909 bfd_set_error (bfd_error_bad_value);
13910 ret = FALSE;
13911 continue;
13912
13913 case R_PPC64_NONE:
13914 case R_PPC64_TLS:
13915 case R_PPC64_TLSGD:
13916 case R_PPC64_TLSLD:
13917 case R_PPC64_TOCSAVE:
13918 case R_PPC64_GNU_VTINHERIT:
13919 case R_PPC64_GNU_VTENTRY:
13920 continue;
13921
13922 /* GOT16 relocations. Like an ADDR16 using the symbol's
13923 address in the GOT as relocation value instead of the
13924 symbol's value itself. Also, create a GOT entry for the
13925 symbol and put the symbol value there. */
13926 case R_PPC64_GOT_TLSGD16:
13927 case R_PPC64_GOT_TLSGD16_LO:
13928 case R_PPC64_GOT_TLSGD16_HI:
13929 case R_PPC64_GOT_TLSGD16_HA:
13930 tls_type = TLS_TLS | TLS_GD;
13931 goto dogot;
13932
13933 case R_PPC64_GOT_TLSLD16:
13934 case R_PPC64_GOT_TLSLD16_LO:
13935 case R_PPC64_GOT_TLSLD16_HI:
13936 case R_PPC64_GOT_TLSLD16_HA:
13937 tls_type = TLS_TLS | TLS_LD;
13938 goto dogot;
13939
13940 case R_PPC64_GOT_TPREL16_DS:
13941 case R_PPC64_GOT_TPREL16_LO_DS:
13942 case R_PPC64_GOT_TPREL16_HI:
13943 case R_PPC64_GOT_TPREL16_HA:
13944 tls_type = TLS_TLS | TLS_TPREL;
13945 goto dogot;
13946
13947 case R_PPC64_GOT_DTPREL16_DS:
13948 case R_PPC64_GOT_DTPREL16_LO_DS:
13949 case R_PPC64_GOT_DTPREL16_HI:
13950 case R_PPC64_GOT_DTPREL16_HA:
13951 tls_type = TLS_TLS | TLS_DTPREL;
13952 goto dogot;
13953
13954 case R_PPC64_GOT16:
13955 case R_PPC64_GOT16_LO:
13956 case R_PPC64_GOT16_HI:
13957 case R_PPC64_GOT16_HA:
13958 case R_PPC64_GOT16_DS:
13959 case R_PPC64_GOT16_LO_DS:
13960 dogot:
13961 {
13962 /* Relocation is to the entry for this symbol in the global
13963 offset table. */
13964 asection *got;
13965 bfd_vma *offp;
13966 bfd_vma off;
13967 unsigned long indx = 0;
13968 struct got_entry *ent;
13969
13970 if (tls_type == (TLS_TLS | TLS_LD)
13971 && (h == NULL
13972 || !h->elf.def_dynamic))
13973 ent = ppc64_tlsld_got (input_bfd);
13974 else
13975 {
13976
13977 if (h != NULL)
13978 {
13979 bfd_boolean dyn = htab->elf.dynamic_sections_created;
13980 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
13981 &h->elf)
13982 || (info->shared
13983 && SYMBOL_REFERENCES_LOCAL (info, &h->elf)))
13984 /* This is actually a static link, or it is a
13985 -Bsymbolic link and the symbol is defined
13986 locally, or the symbol was forced to be local
13987 because of a version file. */
13988 ;
13989 else
13990 {
13991 BFD_ASSERT (h->elf.dynindx != -1);
13992 indx = h->elf.dynindx;
13993 unresolved_reloc = FALSE;
13994 }
13995 ent = h->elf.got.glist;
13996 }
13997 else
13998 {
13999 if (local_got_ents == NULL)
14000 abort ();
14001 ent = local_got_ents[r_symndx];
14002 }
14003
14004 for (; ent != NULL; ent = ent->next)
14005 if (ent->addend == orig_rel.r_addend
14006 && ent->owner == input_bfd
14007 && ent->tls_type == tls_type)
14008 break;
14009 }
14010
14011 if (ent == NULL)
14012 abort ();
14013 if (ent->is_indirect)
14014 ent = ent->got.ent;
14015 offp = &ent->got.offset;
14016 got = ppc64_elf_tdata (ent->owner)->got;
14017 if (got == NULL)
14018 abort ();
14019
14020 /* The offset must always be a multiple of 8. We use the
14021 least significant bit to record whether we have already
14022 processed this entry. */
14023 off = *offp;
14024 if ((off & 1) != 0)
14025 off &= ~1;
14026 else
14027 {
14028 /* Generate relocs for the dynamic linker, except in
14029 the case of TLSLD where we'll use one entry per
14030 module. */
14031 asection *relgot;
14032 bfd_boolean ifunc;
14033
14034 *offp = off | 1;
14035 relgot = NULL;
14036 ifunc = (h != NULL
14037 ? h->elf.type == STT_GNU_IFUNC
14038 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC);
14039 if (ifunc)
14040 relgot = htab->elf.irelplt;
14041 else if ((info->shared || indx != 0)
14042 && (h == NULL
14043 || (tls_type == (TLS_TLS | TLS_LD)
14044 && !h->elf.def_dynamic)
14045 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
14046 || h->elf.root.type != bfd_link_hash_undefweak))
14047 relgot = ppc64_elf_tdata (ent->owner)->relgot;
14048 if (relgot != NULL)
14049 {
14050 outrel.r_offset = (got->output_section->vma
14051 + got->output_offset
14052 + off);
14053 outrel.r_addend = addend;
14054 if (tls_type & (TLS_LD | TLS_GD))
14055 {
14056 outrel.r_addend = 0;
14057 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPMOD64);
14058 if (tls_type == (TLS_TLS | TLS_GD))
14059 {
14060 loc = relgot->contents;
14061 loc += (relgot->reloc_count++
14062 * sizeof (Elf64_External_Rela));
14063 bfd_elf64_swap_reloca_out (output_bfd,
14064 &outrel, loc);
14065 outrel.r_offset += 8;
14066 outrel.r_addend = addend;
14067 outrel.r_info
14068 = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
14069 }
14070 }
14071 else if (tls_type == (TLS_TLS | TLS_DTPREL))
14072 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
14073 else if (tls_type == (TLS_TLS | TLS_TPREL))
14074 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_TPREL64);
14075 else if (indx != 0)
14076 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_GLOB_DAT);
14077 else
14078 {
14079 if (ifunc)
14080 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
14081 else
14082 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
14083
14084 /* Write the .got section contents for the sake
14085 of prelink. */
14086 loc = got->contents + off;
14087 bfd_put_64 (output_bfd, outrel.r_addend + relocation,
14088 loc);
14089 }
14090
14091 if (indx == 0 && tls_type != (TLS_TLS | TLS_LD))
14092 {
14093 outrel.r_addend += relocation;
14094 if (tls_type & (TLS_GD | TLS_DTPREL | TLS_TPREL))
14095 outrel.r_addend -= htab->elf.tls_sec->vma;
14096 }
14097 loc = relgot->contents;
14098 loc += (relgot->reloc_count++
14099 * sizeof (Elf64_External_Rela));
14100 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
14101 }
14102
14103 /* Init the .got section contents here if we're not
14104 emitting a reloc. */
14105 else
14106 {
14107 relocation += addend;
14108 if (tls_type == (TLS_TLS | TLS_LD))
14109 relocation = 1;
14110 else if (tls_type != 0)
14111 {
14112 relocation -= htab->elf.tls_sec->vma + DTP_OFFSET;
14113 if (tls_type == (TLS_TLS | TLS_TPREL))
14114 relocation += DTP_OFFSET - TP_OFFSET;
14115
14116 if (tls_type == (TLS_TLS | TLS_GD))
14117 {
14118 bfd_put_64 (output_bfd, relocation,
14119 got->contents + off + 8);
14120 relocation = 1;
14121 }
14122 }
14123
14124 bfd_put_64 (output_bfd, relocation,
14125 got->contents + off);
14126 }
14127 }
14128
14129 if (off >= (bfd_vma) -2)
14130 abort ();
14131
14132 relocation = got->output_section->vma + got->output_offset + off;
14133 addend = -(TOCstart + htab->stub_group[input_section->id].toc_off);
14134 }
14135 break;
14136
14137 case R_PPC64_PLT16_HA:
14138 case R_PPC64_PLT16_HI:
14139 case R_PPC64_PLT16_LO:
14140 case R_PPC64_PLT32:
14141 case R_PPC64_PLT64:
14142 /* Relocation is to the entry for this symbol in the
14143 procedure linkage table. */
14144
14145 /* Resolve a PLT reloc against a local symbol directly,
14146 without using the procedure linkage table. */
14147 if (h == NULL)
14148 break;
14149
14150 /* It's possible that we didn't make a PLT entry for this
14151 symbol. This happens when statically linking PIC code,
14152 or when using -Bsymbolic. Go find a match if there is a
14153 PLT entry. */
14154 if (htab->elf.splt != NULL)
14155 {
14156 struct plt_entry *ent;
14157 for (ent = h->elf.plt.plist; ent != NULL; ent = ent->next)
14158 if (ent->plt.offset != (bfd_vma) -1
14159 && ent->addend == orig_rel.r_addend)
14160 {
14161 relocation = (htab->elf.splt->output_section->vma
14162 + htab->elf.splt->output_offset
14163 + ent->plt.offset);
14164 unresolved_reloc = FALSE;
14165 break;
14166 }
14167 }
14168 break;
14169
14170 case R_PPC64_TOC:
14171 /* Relocation value is TOC base. */
14172 relocation = TOCstart;
14173 if (r_symndx == STN_UNDEF)
14174 relocation += htab->stub_group[input_section->id].toc_off;
14175 else if (unresolved_reloc)
14176 ;
14177 else if (sec != NULL && sec->id <= htab->top_id)
14178 relocation += htab->stub_group[sec->id].toc_off;
14179 else
14180 unresolved_reloc = TRUE;
14181 goto dodyn;
14182
14183 /* TOC16 relocs. We want the offset relative to the TOC base,
14184 which is the address of the start of the TOC plus 0x8000.
14185 The TOC consists of sections .got, .toc, .tocbss, and .plt,
14186 in this order. */
14187 case R_PPC64_TOC16:
14188 case R_PPC64_TOC16_LO:
14189 case R_PPC64_TOC16_HI:
14190 case R_PPC64_TOC16_DS:
14191 case R_PPC64_TOC16_LO_DS:
14192 case R_PPC64_TOC16_HA:
14193 addend -= TOCstart + htab->stub_group[input_section->id].toc_off;
14194 break;
14195
14196 /* Relocate against the beginning of the section. */
14197 case R_PPC64_SECTOFF:
14198 case R_PPC64_SECTOFF_LO:
14199 case R_PPC64_SECTOFF_HI:
14200 case R_PPC64_SECTOFF_DS:
14201 case R_PPC64_SECTOFF_LO_DS:
14202 case R_PPC64_SECTOFF_HA:
14203 if (sec != NULL)
14204 addend -= sec->output_section->vma;
14205 break;
14206
14207 case R_PPC64_REL16:
14208 case R_PPC64_REL16_LO:
14209 case R_PPC64_REL16_HI:
14210 case R_PPC64_REL16_HA:
14211 break;
14212
14213 case R_PPC64_REL14:
14214 case R_PPC64_REL14_BRNTAKEN:
14215 case R_PPC64_REL14_BRTAKEN:
14216 case R_PPC64_REL24:
14217 break;
14218
14219 case R_PPC64_TPREL16:
14220 case R_PPC64_TPREL16_LO:
14221 case R_PPC64_TPREL16_HI:
14222 case R_PPC64_TPREL16_HA:
14223 case R_PPC64_TPREL16_DS:
14224 case R_PPC64_TPREL16_LO_DS:
14225 case R_PPC64_TPREL16_HIGH:
14226 case R_PPC64_TPREL16_HIGHA:
14227 case R_PPC64_TPREL16_HIGHER:
14228 case R_PPC64_TPREL16_HIGHERA:
14229 case R_PPC64_TPREL16_HIGHEST:
14230 case R_PPC64_TPREL16_HIGHESTA:
14231 if (h != NULL
14232 && h->elf.root.type == bfd_link_hash_undefweak
14233 && h->elf.dynindx == -1)
14234 {
14235 /* Make this relocation against an undefined weak symbol
14236 resolve to zero. This is really just a tweak, since
14237 code using weak externs ought to check that they are
14238 defined before using them. */
14239 bfd_byte *p = contents + rel->r_offset - d_offset;
14240
14241 insn = bfd_get_32 (output_bfd, p);
14242 insn = _bfd_elf_ppc_at_tprel_transform (insn, 13);
14243 if (insn != 0)
14244 bfd_put_32 (output_bfd, insn, p);
14245 break;
14246 }
14247 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
14248 if (info->shared)
14249 /* The TPREL16 relocs shouldn't really be used in shared
14250 libs as they will result in DT_TEXTREL being set, but
14251 support them anyway. */
14252 goto dodyn;
14253 break;
14254
14255 case R_PPC64_DTPREL16:
14256 case R_PPC64_DTPREL16_LO:
14257 case R_PPC64_DTPREL16_HI:
14258 case R_PPC64_DTPREL16_HA:
14259 case R_PPC64_DTPREL16_DS:
14260 case R_PPC64_DTPREL16_LO_DS:
14261 case R_PPC64_DTPREL16_HIGH:
14262 case R_PPC64_DTPREL16_HIGHA:
14263 case R_PPC64_DTPREL16_HIGHER:
14264 case R_PPC64_DTPREL16_HIGHERA:
14265 case R_PPC64_DTPREL16_HIGHEST:
14266 case R_PPC64_DTPREL16_HIGHESTA:
14267 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
14268 break;
14269
14270 case R_PPC64_ADDR64_LOCAL:
14271 addend += PPC64_LOCAL_ENTRY_OFFSET (h != NULL
14272 ? h->elf.other
14273 : sym->st_other);
14274 break;
14275
14276 case R_PPC64_DTPMOD64:
14277 relocation = 1;
14278 addend = 0;
14279 goto dodyn;
14280
14281 case R_PPC64_TPREL64:
14282 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
14283 goto dodyn;
14284
14285 case R_PPC64_DTPREL64:
14286 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
14287 /* Fall thru */
14288
14289 /* Relocations that may need to be propagated if this is a
14290 dynamic object. */
14291 case R_PPC64_REL30:
14292 case R_PPC64_REL32:
14293 case R_PPC64_REL64:
14294 case R_PPC64_ADDR14:
14295 case R_PPC64_ADDR14_BRNTAKEN:
14296 case R_PPC64_ADDR14_BRTAKEN:
14297 case R_PPC64_ADDR16:
14298 case R_PPC64_ADDR16_DS:
14299 case R_PPC64_ADDR16_HA:
14300 case R_PPC64_ADDR16_HI:
14301 case R_PPC64_ADDR16_HIGH:
14302 case R_PPC64_ADDR16_HIGHA:
14303 case R_PPC64_ADDR16_HIGHER:
14304 case R_PPC64_ADDR16_HIGHERA:
14305 case R_PPC64_ADDR16_HIGHEST:
14306 case R_PPC64_ADDR16_HIGHESTA:
14307 case R_PPC64_ADDR16_LO:
14308 case R_PPC64_ADDR16_LO_DS:
14309 case R_PPC64_ADDR24:
14310 case R_PPC64_ADDR32:
14311 case R_PPC64_ADDR64:
14312 case R_PPC64_UADDR16:
14313 case R_PPC64_UADDR32:
14314 case R_PPC64_UADDR64:
14315 dodyn:
14316 if ((input_section->flags & SEC_ALLOC) == 0)
14317 break;
14318
14319 if (NO_OPD_RELOCS && is_opd)
14320 break;
14321
14322 if ((info->shared
14323 && (h == NULL
14324 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
14325 || h->elf.root.type != bfd_link_hash_undefweak)
14326 && (must_be_dyn_reloc (info, r_type)
14327 || !SYMBOL_CALLS_LOCAL (info, &h->elf)))
14328 || (ELIMINATE_COPY_RELOCS
14329 && !info->shared
14330 && h != NULL
14331 && h->elf.dynindx != -1
14332 && !h->elf.non_got_ref
14333 && !h->elf.def_regular)
14334 || (!info->shared
14335 && (h != NULL
14336 ? h->elf.type == STT_GNU_IFUNC
14337 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))
14338 {
14339 bfd_boolean skip, relocate;
14340 asection *sreloc;
14341 bfd_vma out_off;
14342
14343 /* When generating a dynamic object, these relocations
14344 are copied into the output file to be resolved at run
14345 time. */
14346
14347 skip = FALSE;
14348 relocate = FALSE;
14349
14350 out_off = _bfd_elf_section_offset (output_bfd, info,
14351 input_section, rel->r_offset);
14352 if (out_off == (bfd_vma) -1)
14353 skip = TRUE;
14354 else if (out_off == (bfd_vma) -2)
14355 skip = TRUE, relocate = TRUE;
14356 out_off += (input_section->output_section->vma
14357 + input_section->output_offset);
14358 outrel.r_offset = out_off;
14359 outrel.r_addend = rel->r_addend;
14360
14361 /* Optimize unaligned reloc use. */
14362 if ((r_type == R_PPC64_ADDR64 && (out_off & 7) != 0)
14363 || (r_type == R_PPC64_UADDR64 && (out_off & 7) == 0))
14364 r_type ^= R_PPC64_ADDR64 ^ R_PPC64_UADDR64;
14365 else if ((r_type == R_PPC64_ADDR32 && (out_off & 3) != 0)
14366 || (r_type == R_PPC64_UADDR32 && (out_off & 3) == 0))
14367 r_type ^= R_PPC64_ADDR32 ^ R_PPC64_UADDR32;
14368 else if ((r_type == R_PPC64_ADDR16 && (out_off & 1) != 0)
14369 || (r_type == R_PPC64_UADDR16 && (out_off & 1) == 0))
14370 r_type ^= R_PPC64_ADDR16 ^ R_PPC64_UADDR16;
14371
14372 if (skip)
14373 memset (&outrel, 0, sizeof outrel);
14374 else if (!SYMBOL_REFERENCES_LOCAL (info, &h->elf)
14375 && !is_opd
14376 && r_type != R_PPC64_TOC)
14377 {
14378 BFD_ASSERT (h->elf.dynindx != -1);
14379 outrel.r_info = ELF64_R_INFO (h->elf.dynindx, r_type);
14380 }
14381 else
14382 {
14383 /* This symbol is local, or marked to become local,
14384 or this is an opd section reloc which must point
14385 at a local function. */
14386 outrel.r_addend += relocation;
14387 if (r_type == R_PPC64_ADDR64 || r_type == R_PPC64_TOC)
14388 {
14389 if (is_opd && h != NULL)
14390 {
14391 /* Lie about opd entries. This case occurs
14392 when building shared libraries and we
14393 reference a function in another shared
14394 lib. The same thing happens for a weak
14395 definition in an application that's
14396 overridden by a strong definition in a
14397 shared lib. (I believe this is a generic
14398 bug in binutils handling of weak syms.)
14399 In these cases we won't use the opd
14400 entry in this lib. */
14401 unresolved_reloc = FALSE;
14402 }
14403 if (!is_opd
14404 && r_type == R_PPC64_ADDR64
14405 && (h != NULL
14406 ? h->elf.type == STT_GNU_IFUNC
14407 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC))
14408 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
14409 else
14410 {
14411 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
14412
14413 /* We need to relocate .opd contents for ld.so.
14414 Prelink also wants simple and consistent rules
14415 for relocs. This make all RELATIVE relocs have
14416 *r_offset equal to r_addend. */
14417 relocate = TRUE;
14418 }
14419 }
14420 else
14421 {
14422 long indx = 0;
14423
14424 if (h != NULL
14425 ? h->elf.type == STT_GNU_IFUNC
14426 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
14427 {
14428 info->callbacks->einfo
14429 (_("%P: %H: %s for indirect "
14430 "function `%T' unsupported\n"),
14431 input_bfd, input_section, rel->r_offset,
14432 ppc64_elf_howto_table[r_type]->name,
14433 sym_name);
14434 ret = FALSE;
14435 }
14436 else if (r_symndx == STN_UNDEF || bfd_is_abs_section (sec))
14437 ;
14438 else if (sec == NULL || sec->owner == NULL)
14439 {
14440 bfd_set_error (bfd_error_bad_value);
14441 return FALSE;
14442 }
14443 else
14444 {
14445 asection *osec;
14446
14447 osec = sec->output_section;
14448 indx = elf_section_data (osec)->dynindx;
14449
14450 if (indx == 0)
14451 {
14452 if ((osec->flags & SEC_READONLY) == 0
14453 && htab->elf.data_index_section != NULL)
14454 osec = htab->elf.data_index_section;
14455 else
14456 osec = htab->elf.text_index_section;
14457 indx = elf_section_data (osec)->dynindx;
14458 }
14459 BFD_ASSERT (indx != 0);
14460
14461 /* We are turning this relocation into one
14462 against a section symbol, so subtract out
14463 the output section's address but not the
14464 offset of the input section in the output
14465 section. */
14466 outrel.r_addend -= osec->vma;
14467 }
14468
14469 outrel.r_info = ELF64_R_INFO (indx, r_type);
14470 }
14471 }
14472
14473 sreloc = elf_section_data (input_section)->sreloc;
14474 if (h != NULL
14475 ? h->elf.type == STT_GNU_IFUNC
14476 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
14477 sreloc = htab->elf.irelplt;
14478 if (sreloc == NULL)
14479 abort ();
14480
14481 if (sreloc->reloc_count * sizeof (Elf64_External_Rela)
14482 >= sreloc->size)
14483 abort ();
14484 loc = sreloc->contents;
14485 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
14486 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
14487
14488 /* If this reloc is against an external symbol, it will
14489 be computed at runtime, so there's no need to do
14490 anything now. However, for the sake of prelink ensure
14491 that the section contents are a known value. */
14492 if (! relocate)
14493 {
14494 unresolved_reloc = FALSE;
14495 /* The value chosen here is quite arbitrary as ld.so
14496 ignores section contents except for the special
14497 case of .opd where the contents might be accessed
14498 before relocation. Choose zero, as that won't
14499 cause reloc overflow. */
14500 relocation = 0;
14501 addend = 0;
14502 /* Use *r_offset == r_addend for R_PPC64_ADDR64 relocs
14503 to improve backward compatibility with older
14504 versions of ld. */
14505 if (r_type == R_PPC64_ADDR64)
14506 addend = outrel.r_addend;
14507 /* Adjust pc_relative relocs to have zero in *r_offset. */
14508 else if (ppc64_elf_howto_table[r_type]->pc_relative)
14509 addend = (input_section->output_section->vma
14510 + input_section->output_offset
14511 + rel->r_offset);
14512 }
14513 }
14514 break;
14515
14516 case R_PPC64_COPY:
14517 case R_PPC64_GLOB_DAT:
14518 case R_PPC64_JMP_SLOT:
14519 case R_PPC64_JMP_IREL:
14520 case R_PPC64_RELATIVE:
14521 /* We shouldn't ever see these dynamic relocs in relocatable
14522 files. */
14523 /* Fall through. */
14524
14525 case R_PPC64_PLTGOT16:
14526 case R_PPC64_PLTGOT16_DS:
14527 case R_PPC64_PLTGOT16_HA:
14528 case R_PPC64_PLTGOT16_HI:
14529 case R_PPC64_PLTGOT16_LO:
14530 case R_PPC64_PLTGOT16_LO_DS:
14531 case R_PPC64_PLTREL32:
14532 case R_PPC64_PLTREL64:
14533 /* These ones haven't been implemented yet. */
14534
14535 info->callbacks->einfo
14536 (_("%P: %B: %s is not supported for `%T'\n"),
14537 input_bfd,
14538 ppc64_elf_howto_table[r_type]->name, sym_name);
14539
14540 bfd_set_error (bfd_error_invalid_operation);
14541 ret = FALSE;
14542 continue;
14543 }
14544
14545 /* Multi-instruction sequences that access the TOC can be
14546 optimized, eg. addis ra,r2,0; addi rb,ra,x;
14547 to nop; addi rb,r2,x; */
14548 switch (r_type)
14549 {
14550 default:
14551 break;
14552
14553 case R_PPC64_GOT_TLSLD16_HI:
14554 case R_PPC64_GOT_TLSGD16_HI:
14555 case R_PPC64_GOT_TPREL16_HI:
14556 case R_PPC64_GOT_DTPREL16_HI:
14557 case R_PPC64_GOT16_HI:
14558 case R_PPC64_TOC16_HI:
14559 /* These relocs would only be useful if building up an
14560 offset to later add to r2, perhaps in an indexed
14561 addressing mode instruction. Don't try to optimize.
14562 Unfortunately, the possibility of someone building up an
14563 offset like this or even with the HA relocs, means that
14564 we need to check the high insn when optimizing the low
14565 insn. */
14566 break;
14567
14568 case R_PPC64_GOT_TLSLD16_HA:
14569 case R_PPC64_GOT_TLSGD16_HA:
14570 case R_PPC64_GOT_TPREL16_HA:
14571 case R_PPC64_GOT_DTPREL16_HA:
14572 case R_PPC64_GOT16_HA:
14573 case R_PPC64_TOC16_HA:
14574 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
14575 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
14576 {
14577 bfd_byte *p = contents + (rel->r_offset & ~3);
14578 bfd_put_32 (input_bfd, NOP, p);
14579 }
14580 break;
14581
14582 case R_PPC64_GOT_TLSLD16_LO:
14583 case R_PPC64_GOT_TLSGD16_LO:
14584 case R_PPC64_GOT_TPREL16_LO_DS:
14585 case R_PPC64_GOT_DTPREL16_LO_DS:
14586 case R_PPC64_GOT16_LO:
14587 case R_PPC64_GOT16_LO_DS:
14588 case R_PPC64_TOC16_LO:
14589 case R_PPC64_TOC16_LO_DS:
14590 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
14591 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
14592 {
14593 bfd_byte *p = contents + (rel->r_offset & ~3);
14594 insn = bfd_get_32 (input_bfd, p);
14595 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
14596 {
14597 /* Transform addic to addi when we change reg. */
14598 insn &= ~((0x3f << 26) | (0x1f << 16));
14599 insn |= (14u << 26) | (2 << 16);
14600 }
14601 else
14602 {
14603 insn &= ~(0x1f << 16);
14604 insn |= 2 << 16;
14605 }
14606 bfd_put_32 (input_bfd, insn, p);
14607 }
14608 break;
14609 }
14610
14611 /* Do any further special processing. */
14612 howto = ppc64_elf_howto_table[(int) r_type];
14613 switch (r_type)
14614 {
14615 default:
14616 break;
14617
14618 case R_PPC64_REL16_HA:
14619 case R_PPC64_ADDR16_HA:
14620 case R_PPC64_ADDR16_HIGHA:
14621 case R_PPC64_ADDR16_HIGHERA:
14622 case R_PPC64_ADDR16_HIGHESTA:
14623 case R_PPC64_TOC16_HA:
14624 case R_PPC64_SECTOFF_HA:
14625 case R_PPC64_TPREL16_HA:
14626 case R_PPC64_TPREL16_HIGHA:
14627 case R_PPC64_TPREL16_HIGHERA:
14628 case R_PPC64_TPREL16_HIGHESTA:
14629 case R_PPC64_DTPREL16_HA:
14630 case R_PPC64_DTPREL16_HIGHA:
14631 case R_PPC64_DTPREL16_HIGHERA:
14632 case R_PPC64_DTPREL16_HIGHESTA:
14633 /* It's just possible that this symbol is a weak symbol
14634 that's not actually defined anywhere. In that case,
14635 'sec' would be NULL, and we should leave the symbol
14636 alone (it will be set to zero elsewhere in the link). */
14637 if (sec == NULL)
14638 break;
14639 /* Fall thru */
14640
14641 case R_PPC64_GOT16_HA:
14642 case R_PPC64_PLTGOT16_HA:
14643 case R_PPC64_PLT16_HA:
14644 case R_PPC64_GOT_TLSGD16_HA:
14645 case R_PPC64_GOT_TLSLD16_HA:
14646 case R_PPC64_GOT_TPREL16_HA:
14647 case R_PPC64_GOT_DTPREL16_HA:
14648 /* Add 0x10000 if sign bit in 0:15 is set.
14649 Bits 0:15 are not used. */
14650 addend += 0x8000;
14651 break;
14652
14653 case R_PPC64_ADDR16_DS:
14654 case R_PPC64_ADDR16_LO_DS:
14655 case R_PPC64_GOT16_DS:
14656 case R_PPC64_GOT16_LO_DS:
14657 case R_PPC64_PLT16_LO_DS:
14658 case R_PPC64_SECTOFF_DS:
14659 case R_PPC64_SECTOFF_LO_DS:
14660 case R_PPC64_TOC16_DS:
14661 case R_PPC64_TOC16_LO_DS:
14662 case R_PPC64_PLTGOT16_DS:
14663 case R_PPC64_PLTGOT16_LO_DS:
14664 case R_PPC64_GOT_TPREL16_DS:
14665 case R_PPC64_GOT_TPREL16_LO_DS:
14666 case R_PPC64_GOT_DTPREL16_DS:
14667 case R_PPC64_GOT_DTPREL16_LO_DS:
14668 case R_PPC64_TPREL16_DS:
14669 case R_PPC64_TPREL16_LO_DS:
14670 case R_PPC64_DTPREL16_DS:
14671 case R_PPC64_DTPREL16_LO_DS:
14672 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
14673 mask = 3;
14674 /* If this reloc is against an lq insn, then the value must be
14675 a multiple of 16. This is somewhat of a hack, but the
14676 "correct" way to do this by defining _DQ forms of all the
14677 _DS relocs bloats all reloc switches in this file. It
14678 doesn't seem to make much sense to use any of these relocs
14679 in data, so testing the insn should be safe. */
14680 if ((insn & (0x3f << 26)) == (56u << 26))
14681 mask = 15;
14682 if (((relocation + addend) & mask) != 0)
14683 {
14684 info->callbacks->einfo
14685 (_("%P: %H: error: %s not a multiple of %u\n"),
14686 input_bfd, input_section, rel->r_offset,
14687 howto->name,
14688 mask + 1);
14689 bfd_set_error (bfd_error_bad_value);
14690 ret = FALSE;
14691 continue;
14692 }
14693 break;
14694 }
14695
14696 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
14697 because such sections are not SEC_ALLOC and thus ld.so will
14698 not process them. */
14699 if (unresolved_reloc
14700 && !((input_section->flags & SEC_DEBUGGING) != 0
14701 && h->elf.def_dynamic)
14702 && _bfd_elf_section_offset (output_bfd, info, input_section,
14703 rel->r_offset) != (bfd_vma) -1)
14704 {
14705 info->callbacks->einfo
14706 (_("%P: %H: unresolvable %s against `%T'\n"),
14707 input_bfd, input_section, rel->r_offset,
14708 howto->name,
14709 h->elf.root.root.string);
14710 ret = FALSE;
14711 }
14712
14713 /* 16-bit fields in insns mostly have signed values, but a
14714 few insns have 16-bit unsigned values. Really, we should
14715 have different reloc types. */
14716 if (howto->complain_on_overflow != complain_overflow_dont
14717 && howto->dst_mask == 0xffff
14718 && (input_section->flags & SEC_CODE) != 0)
14719 {
14720 enum complain_overflow complain = complain_overflow_signed;
14721
14722 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
14723 if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
14724 complain = complain_overflow_bitfield;
14725 else if (howto->rightshift == 0
14726 ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
14727 || (insn & (0x3f << 26)) == 24u << 26 /* ori */
14728 || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
14729 : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
14730 || (insn & (0x3f << 26)) == 25u << 26 /* oris */
14731 || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
14732 complain = complain_overflow_unsigned;
14733 if (howto->complain_on_overflow != complain)
14734 {
14735 alt_howto = *howto;
14736 alt_howto.complain_on_overflow = complain;
14737 howto = &alt_howto;
14738 }
14739 }
14740
14741 r = _bfd_final_link_relocate (howto, input_bfd, input_section, contents,
14742 rel->r_offset, relocation, addend);
14743
14744 if (r != bfd_reloc_ok)
14745 {
14746 char *more_info = NULL;
14747 const char *reloc_name = howto->name;
14748
14749 if (reloc_dest != DEST_NORMAL)
14750 {
14751 more_info = bfd_malloc (strlen (reloc_name) + 8);
14752 if (more_info != NULL)
14753 {
14754 strcpy (more_info, reloc_name);
14755 strcat (more_info, (reloc_dest == DEST_OPD
14756 ? " (OPD)" : " (stub)"));
14757 reloc_name = more_info;
14758 }
14759 }
14760
14761 if (r == bfd_reloc_overflow)
14762 {
14763 if (warned)
14764 continue;
14765 if (h != NULL
14766 && h->elf.root.type == bfd_link_hash_undefweak
14767 && howto->pc_relative)
14768 {
14769 /* Assume this is a call protected by other code that
14770 detects the symbol is undefined. If this is the case,
14771 we can safely ignore the overflow. If not, the
14772 program is hosed anyway, and a little warning isn't
14773 going to help. */
14774
14775 continue;
14776 }
14777
14778 if (!((*info->callbacks->reloc_overflow)
14779 (info, &h->elf.root, sym_name,
14780 reloc_name, orig_rel.r_addend,
14781 input_bfd, input_section, rel->r_offset)))
14782 return FALSE;
14783 }
14784 else
14785 {
14786 info->callbacks->einfo
14787 (_("%P: %H: %s against `%T': error %d\n"),
14788 input_bfd, input_section, rel->r_offset,
14789 reloc_name, sym_name, (int) r);
14790 ret = FALSE;
14791 }
14792 if (more_info != NULL)
14793 free (more_info);
14794 }
14795 }
14796
14797 /* If we're emitting relocations, then shortly after this function
14798 returns, reloc offsets and addends for this section will be
14799 adjusted. Worse, reloc symbol indices will be for the output
14800 file rather than the input. Save a copy of the relocs for
14801 opd_entry_value. */
14802 if (is_opd && (info->emitrelocations || info->relocatable))
14803 {
14804 bfd_size_type amt;
14805 amt = input_section->reloc_count * sizeof (Elf_Internal_Rela);
14806 rel = bfd_alloc (input_bfd, amt);
14807 BFD_ASSERT (ppc64_elf_tdata (input_bfd)->opd.relocs == NULL);
14808 ppc64_elf_tdata (input_bfd)->opd.relocs = rel;
14809 if (rel == NULL)
14810 return FALSE;
14811 memcpy (rel, relocs, amt);
14812 }
14813 return ret;
14814 }
14815
14816 /* Adjust the value of any local symbols in opd sections. */
14817
14818 static int
14819 ppc64_elf_output_symbol_hook (struct bfd_link_info *info,
14820 const char *name ATTRIBUTE_UNUSED,
14821 Elf_Internal_Sym *elfsym,
14822 asection *input_sec,
14823 struct elf_link_hash_entry *h)
14824 {
14825 struct _opd_sec_data *opd;
14826 long adjust;
14827 bfd_vma value;
14828
14829 if (h != NULL)
14830 return 1;
14831
14832 opd = get_opd_info (input_sec);
14833 if (opd == NULL || opd->adjust == NULL)
14834 return 1;
14835
14836 value = elfsym->st_value - input_sec->output_offset;
14837 if (!info->relocatable)
14838 value -= input_sec->output_section->vma;
14839
14840 adjust = opd->adjust[value / 8];
14841 if (adjust == -1)
14842 return 2;
14843
14844 elfsym->st_value += adjust;
14845 return 1;
14846 }
14847
14848 /* Finish up dynamic symbol handling. We set the contents of various
14849 dynamic sections here. */
14850
14851 static bfd_boolean
14852 ppc64_elf_finish_dynamic_symbol (bfd *output_bfd,
14853 struct bfd_link_info *info,
14854 struct elf_link_hash_entry *h,
14855 Elf_Internal_Sym *sym ATTRIBUTE_UNUSED)
14856 {
14857 struct ppc_link_hash_table *htab;
14858 struct plt_entry *ent;
14859 Elf_Internal_Rela rela;
14860 bfd_byte *loc;
14861
14862 htab = ppc_hash_table (info);
14863 if (htab == NULL)
14864 return FALSE;
14865
14866 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
14867 if (ent->plt.offset != (bfd_vma) -1)
14868 {
14869 /* This symbol has an entry in the procedure linkage
14870 table. Set it up. */
14871 if (!htab->elf.dynamic_sections_created
14872 || h->dynindx == -1)
14873 {
14874 BFD_ASSERT (h->type == STT_GNU_IFUNC
14875 && h->def_regular
14876 && (h->root.type == bfd_link_hash_defined
14877 || h->root.type == bfd_link_hash_defweak));
14878 rela.r_offset = (htab->elf.iplt->output_section->vma
14879 + htab->elf.iplt->output_offset
14880 + ent->plt.offset);
14881 if (htab->opd_abi)
14882 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
14883 else
14884 rela.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
14885 rela.r_addend = (h->root.u.def.value
14886 + h->root.u.def.section->output_offset
14887 + h->root.u.def.section->output_section->vma
14888 + ent->addend);
14889 loc = (htab->elf.irelplt->contents
14890 + (htab->elf.irelplt->reloc_count++
14891 * sizeof (Elf64_External_Rela)));
14892 }
14893 else
14894 {
14895 rela.r_offset = (htab->elf.splt->output_section->vma
14896 + htab->elf.splt->output_offset
14897 + ent->plt.offset);
14898 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_JMP_SLOT);
14899 rela.r_addend = ent->addend;
14900 loc = (htab->elf.srelplt->contents
14901 + ((ent->plt.offset - PLT_INITIAL_ENTRY_SIZE (htab))
14902 / PLT_ENTRY_SIZE (htab) * sizeof (Elf64_External_Rela)));
14903 }
14904 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
14905
14906 if (!htab->opd_abi)
14907 {
14908 if (!h->def_regular)
14909 {
14910 /* Mark the symbol as undefined, rather than as
14911 defined in glink. Leave the value if there were
14912 any relocations where pointer equality matters
14913 (this is a clue for the dynamic linker, to make
14914 function pointer comparisons work between an
14915 application and shared library), otherwise set it
14916 to zero. */
14917 sym->st_shndx = SHN_UNDEF;
14918 if (!h->pointer_equality_needed)
14919 sym->st_value = 0;
14920 else if (!h->ref_regular_nonweak)
14921 {
14922 /* This breaks function pointer comparisons, but
14923 that is better than breaking tests for a NULL
14924 function pointer. */
14925 sym->st_value = 0;
14926 }
14927 }
14928 }
14929 }
14930
14931 if (h->needs_copy)
14932 {
14933 /* This symbol needs a copy reloc. Set it up. */
14934
14935 if (h->dynindx == -1
14936 || (h->root.type != bfd_link_hash_defined
14937 && h->root.type != bfd_link_hash_defweak)
14938 || htab->relbss == NULL)
14939 abort ();
14940
14941 rela.r_offset = (h->root.u.def.value
14942 + h->root.u.def.section->output_section->vma
14943 + h->root.u.def.section->output_offset);
14944 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_COPY);
14945 rela.r_addend = 0;
14946 loc = htab->relbss->contents;
14947 loc += htab->relbss->reloc_count++ * sizeof (Elf64_External_Rela);
14948 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
14949 }
14950
14951 return TRUE;
14952 }
14953
14954 /* Used to decide how to sort relocs in an optimal manner for the
14955 dynamic linker, before writing them out. */
14956
14957 static enum elf_reloc_type_class
14958 ppc64_elf_reloc_type_class (const struct bfd_link_info *info,
14959 const asection *rel_sec,
14960 const Elf_Internal_Rela *rela)
14961 {
14962 enum elf_ppc64_reloc_type r_type;
14963 struct ppc_link_hash_table *htab = ppc_hash_table (info);
14964
14965 if (rel_sec == htab->elf.irelplt)
14966 return reloc_class_ifunc;
14967
14968 r_type = ELF64_R_TYPE (rela->r_info);
14969 switch (r_type)
14970 {
14971 case R_PPC64_RELATIVE:
14972 return reloc_class_relative;
14973 case R_PPC64_JMP_SLOT:
14974 return reloc_class_plt;
14975 case R_PPC64_COPY:
14976 return reloc_class_copy;
14977 default:
14978 return reloc_class_normal;
14979 }
14980 }
14981
14982 /* Finish up the dynamic sections. */
14983
14984 static bfd_boolean
14985 ppc64_elf_finish_dynamic_sections (bfd *output_bfd,
14986 struct bfd_link_info *info)
14987 {
14988 struct ppc_link_hash_table *htab;
14989 bfd *dynobj;
14990 asection *sdyn;
14991
14992 htab = ppc_hash_table (info);
14993 if (htab == NULL)
14994 return FALSE;
14995
14996 dynobj = htab->elf.dynobj;
14997 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
14998
14999 if (htab->elf.dynamic_sections_created)
15000 {
15001 Elf64_External_Dyn *dyncon, *dynconend;
15002
15003 if (sdyn == NULL || htab->elf.sgot == NULL)
15004 abort ();
15005
15006 dyncon = (Elf64_External_Dyn *) sdyn->contents;
15007 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
15008 for (; dyncon < dynconend; dyncon++)
15009 {
15010 Elf_Internal_Dyn dyn;
15011 asection *s;
15012
15013 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
15014
15015 switch (dyn.d_tag)
15016 {
15017 default:
15018 continue;
15019
15020 case DT_PPC64_GLINK:
15021 s = htab->glink;
15022 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
15023 /* We stupidly defined DT_PPC64_GLINK to be the start
15024 of glink rather than the first entry point, which is
15025 what ld.so needs, and now have a bigger stub to
15026 support automatic multiple TOCs. */
15027 dyn.d_un.d_ptr += GLINK_CALL_STUB_SIZE - 8 * 4;
15028 break;
15029
15030 case DT_PPC64_OPD:
15031 s = bfd_get_section_by_name (output_bfd, ".opd");
15032 if (s == NULL)
15033 continue;
15034 dyn.d_un.d_ptr = s->vma;
15035 break;
15036
15037 case DT_PPC64_OPT:
15038 if (htab->do_multi_toc && htab->multi_toc_needed)
15039 dyn.d_un.d_val |= PPC64_OPT_MULTI_TOC;
15040 break;
15041
15042 case DT_PPC64_OPDSZ:
15043 s = bfd_get_section_by_name (output_bfd, ".opd");
15044 if (s == NULL)
15045 continue;
15046 dyn.d_un.d_val = s->size;
15047 break;
15048
15049 case DT_PLTGOT:
15050 s = htab->elf.splt;
15051 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
15052 break;
15053
15054 case DT_JMPREL:
15055 s = htab->elf.srelplt;
15056 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
15057 break;
15058
15059 case DT_PLTRELSZ:
15060 dyn.d_un.d_val = htab->elf.srelplt->size;
15061 break;
15062
15063 case DT_RELASZ:
15064 /* Don't count procedure linkage table relocs in the
15065 overall reloc count. */
15066 s = htab->elf.srelplt;
15067 if (s == NULL)
15068 continue;
15069 dyn.d_un.d_val -= s->size;
15070 break;
15071
15072 case DT_RELA:
15073 /* We may not be using the standard ELF linker script.
15074 If .rela.plt is the first .rela section, we adjust
15075 DT_RELA to not include it. */
15076 s = htab->elf.srelplt;
15077 if (s == NULL)
15078 continue;
15079 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
15080 continue;
15081 dyn.d_un.d_ptr += s->size;
15082 break;
15083 }
15084
15085 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
15086 }
15087 }
15088
15089 if (htab->elf.sgot != NULL && htab->elf.sgot->size != 0)
15090 {
15091 /* Fill in the first entry in the global offset table.
15092 We use it to hold the link-time TOCbase. */
15093 bfd_put_64 (output_bfd,
15094 elf_gp (output_bfd) + TOC_BASE_OFF,
15095 htab->elf.sgot->contents);
15096
15097 /* Set .got entry size. */
15098 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize = 8;
15099 }
15100
15101 if (htab->elf.splt != NULL && htab->elf.splt->size != 0)
15102 {
15103 /* Set .plt entry size. */
15104 elf_section_data (htab->elf.splt->output_section)->this_hdr.sh_entsize
15105 = PLT_ENTRY_SIZE (htab);
15106 }
15107
15108 /* brlt is SEC_LINKER_CREATED, so we need to write out relocs for
15109 brlt ourselves if emitrelocations. */
15110 if (htab->brlt != NULL
15111 && htab->brlt->reloc_count != 0
15112 && !_bfd_elf_link_output_relocs (output_bfd,
15113 htab->brlt,
15114 elf_section_data (htab->brlt)->rela.hdr,
15115 elf_section_data (htab->brlt)->relocs,
15116 NULL))
15117 return FALSE;
15118
15119 if (htab->glink != NULL
15120 && htab->glink->reloc_count != 0
15121 && !_bfd_elf_link_output_relocs (output_bfd,
15122 htab->glink,
15123 elf_section_data (htab->glink)->rela.hdr,
15124 elf_section_data (htab->glink)->relocs,
15125 NULL))
15126 return FALSE;
15127
15128
15129 if (htab->glink_eh_frame != NULL
15130 && htab->glink_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME
15131 && !_bfd_elf_write_section_eh_frame (output_bfd, info,
15132 htab->glink_eh_frame,
15133 htab->glink_eh_frame->contents))
15134 return FALSE;
15135
15136 /* We need to handle writing out multiple GOT sections ourselves,
15137 since we didn't add them to DYNOBJ. We know dynobj is the first
15138 bfd. */
15139 while ((dynobj = dynobj->link.next) != NULL)
15140 {
15141 asection *s;
15142
15143 if (!is_ppc64_elf (dynobj))
15144 continue;
15145
15146 s = ppc64_elf_tdata (dynobj)->got;
15147 if (s != NULL
15148 && s->size != 0
15149 && s->output_section != bfd_abs_section_ptr
15150 && !bfd_set_section_contents (output_bfd, s->output_section,
15151 s->contents, s->output_offset,
15152 s->size))
15153 return FALSE;
15154 s = ppc64_elf_tdata (dynobj)->relgot;
15155 if (s != NULL
15156 && s->size != 0
15157 && s->output_section != bfd_abs_section_ptr
15158 && !bfd_set_section_contents (output_bfd, s->output_section,
15159 s->contents, s->output_offset,
15160 s->size))
15161 return FALSE;
15162 }
15163
15164 return TRUE;
15165 }
15166
15167 #include "elf64-target.h"
15168
15169 /* FreeBSD support */
15170
15171 #undef TARGET_LITTLE_SYM
15172 #undef TARGET_LITTLE_NAME
15173
15174 #undef TARGET_BIG_SYM
15175 #define TARGET_BIG_SYM powerpc_elf64_fbsd_vec
15176 #undef TARGET_BIG_NAME
15177 #define TARGET_BIG_NAME "elf64-powerpc-freebsd"
15178
15179 #undef ELF_OSABI
15180 #define ELF_OSABI ELFOSABI_FREEBSD
15181
15182 #undef elf64_bed
15183 #define elf64_bed elf64_powerpc_fbsd_bed
15184
15185 #include "elf64-target.h"
15186