* elf.c (_bfd_elf_rela_local_sym): New.
[binutils-gdb.git] / bfd / elf64-s390.c
1 /* IBM S/390-specific support for 64-bit ELF
2 Copyright 2000, 2001 Free Software Foundation, Inc.
3 Contributed Martin Schwidefsky (schwidefsky@de.ibm.com).
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27
28 static reloc_howto_type *elf_s390_reloc_type_lookup
29 PARAMS ((bfd *, bfd_reloc_code_real_type));
30 static void elf_s390_info_to_howto
31 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
32 static boolean elf_s390_is_local_label_name
33 PARAMS ((bfd *, const char *));
34 static struct bfd_hash_entry *link_hash_newfunc
35 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
36 static struct bfd_link_hash_table *elf_s390_link_hash_table_create
37 PARAMS ((bfd *));
38 static boolean create_got_section
39 PARAMS((bfd *, struct bfd_link_info *));
40 static boolean elf_s390_create_dynamic_sections
41 PARAMS((bfd *, struct bfd_link_info *));
42 static void elf_s390_copy_indirect_symbol
43 PARAMS ((struct elf_link_hash_entry *, struct elf_link_hash_entry *));
44 static boolean elf_s390_check_relocs
45 PARAMS ((bfd *, struct bfd_link_info *, asection *,
46 const Elf_Internal_Rela *));
47 static asection *elf_s390_gc_mark_hook
48 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
49 struct elf_link_hash_entry *, Elf_Internal_Sym *));
50 static boolean elf_s390_gc_sweep_hook
51 PARAMS ((bfd *, struct bfd_link_info *, asection *,
52 const Elf_Internal_Rela *));
53 static boolean elf_s390_adjust_dynamic_symbol
54 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
55 static boolean allocate_dynrelocs
56 PARAMS ((struct elf_link_hash_entry *, PTR));
57 static boolean readonly_dynrelocs
58 PARAMS ((struct elf_link_hash_entry *, PTR));
59 static boolean elf_s390_size_dynamic_sections
60 PARAMS ((bfd *, struct bfd_link_info *));
61 static boolean elf_s390_relocate_section
62 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
63 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
64 static boolean elf_s390_finish_dynamic_symbol
65 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
66 Elf_Internal_Sym *));
67 static enum elf_reloc_type_class elf_s390_reloc_type_class
68 PARAMS ((const Elf_Internal_Rela *));
69 static boolean elf_s390_finish_dynamic_sections
70 PARAMS ((bfd *, struct bfd_link_info *));
71 static boolean elf_s390_object_p PARAMS ((bfd *));
72
73 #define USE_RELA 1 /* We want RELA relocations, not REL. */
74
75 #include "elf/s390.h"
76
77 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
78 from smaller values. Start with zero, widen, *then* decrement. */
79 #define MINUS_ONE (((bfd_vma)0) - 1)
80
81 /* The relocation "howto" table. */
82 static reloc_howto_type elf_howto_table[] =
83 {
84 HOWTO (R_390_NONE, /* type */
85 0, /* rightshift */
86 0, /* size (0 = byte, 1 = short, 2 = long) */
87 0, /* bitsize */
88 false, /* pc_relative */
89 0, /* bitpos */
90 complain_overflow_dont, /* complain_on_overflow */
91 bfd_elf_generic_reloc, /* special_function */
92 "R_390_NONE", /* name */
93 false, /* partial_inplace */
94 0, /* src_mask */
95 0, /* dst_mask */
96 false), /* pcrel_offset */
97
98 HOWTO(R_390_8, 0, 0, 8, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_8", false, 0,0x000000ff, false),
99 HOWTO(R_390_12, 0, 1, 12, false, 0, complain_overflow_dont, bfd_elf_generic_reloc, "R_390_12", false, 0,0x00000fff, false),
100 HOWTO(R_390_16, 0, 1, 16, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_16", false, 0,0x0000ffff, false),
101 HOWTO(R_390_32, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_32", false, 0,0xffffffff, false),
102 HOWTO(R_390_PC32, 0, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PC32", false, 0,0xffffffff, true),
103 HOWTO(R_390_GOT12, 0, 1, 12, false, 0, complain_overflow_dont, bfd_elf_generic_reloc, "R_390_GOT12", false, 0,0x00000fff, false),
104 HOWTO(R_390_GOT32, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOT32", false, 0,0xffffffff, false),
105 HOWTO(R_390_PLT32, 0, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PLT32", false, 0,0xffffffff, true),
106 HOWTO(R_390_COPY, 0, 4, 64, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_COPY", false, 0,MINUS_ONE, false),
107 HOWTO(R_390_GLOB_DAT, 0, 4, 64, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GLOB_DAT",false, 0,MINUS_ONE, false),
108 HOWTO(R_390_JMP_SLOT, 0, 4, 64, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_JMP_SLOT",false, 0,MINUS_ONE, false),
109 HOWTO(R_390_RELATIVE, 0, 4, 64, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_RELATIVE",false, 0,MINUS_ONE, false),
110 HOWTO(R_390_GOTOFF, 0, 4, 64, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOTOFF", false, 0,MINUS_ONE, false),
111 HOWTO(R_390_GOTPC, 0, 4, 64, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOTPC", false, 0,MINUS_ONE, true),
112 HOWTO(R_390_GOT16, 0, 1, 16, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOT16", false, 0,0x0000ffff, false),
113 HOWTO(R_390_PC16, 0, 1, 16, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PC16", false, 0,0x0000ffff, true),
114 HOWTO(R_390_PC16DBL, 1, 1, 16, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PC16DBL", false, 0,0x0000ffff, true),
115 HOWTO(R_390_PLT16DBL, 1, 1, 16, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PLT16DBL", false, 0,0x0000ffff, true),
116 HOWTO(R_390_PC32DBL, 1, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PC32DBL", false, 0,0xffffffff, true),
117 HOWTO(R_390_PLT32DBL, 1, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PLT32DBL", false, 0,0xffffffff, true),
118 HOWTO(R_390_GOTPCDBL, 1, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOTPCDBL", false, 0,MINUS_ONE, true),
119 HOWTO(R_390_64, 0, 4, 64, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_64", false, 0,MINUS_ONE, false),
120 HOWTO(R_390_PC64, 0, 4, 64, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PC64", false, 0,MINUS_ONE, true),
121 HOWTO(R_390_GOT64, 0, 4, 64, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOT64", false, 0,MINUS_ONE, false),
122 HOWTO(R_390_PLT64, 0, 4, 64, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PLT64", false, 0,MINUS_ONE, true),
123 HOWTO(R_390_GOTENT, 1, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOTENT", false, 0,MINUS_ONE, true),
124 };
125
126 /* GNU extension to record C++ vtable hierarchy. */
127 static reloc_howto_type elf64_s390_vtinherit_howto =
128 HOWTO (R_390_GNU_VTINHERIT, 0,4,0,false,0,complain_overflow_dont, NULL, "R_390_GNU_VTINHERIT", false,0, 0, false);
129 static reloc_howto_type elf64_s390_vtentry_howto =
130 HOWTO (R_390_GNU_VTENTRY, 0,4,0,false,0,complain_overflow_dont, _bfd_elf_rel_vtable_reloc_fn,"R_390_GNU_VTENTRY", false,0,0, false);
131
132 static reloc_howto_type *
133 elf_s390_reloc_type_lookup (abfd, code)
134 bfd *abfd ATTRIBUTE_UNUSED;
135 bfd_reloc_code_real_type code;
136 {
137 switch (code)
138 {
139 case BFD_RELOC_NONE:
140 return &elf_howto_table[(int) R_390_NONE];
141 case BFD_RELOC_8:
142 return &elf_howto_table[(int) R_390_8];
143 case BFD_RELOC_390_12:
144 return &elf_howto_table[(int) R_390_12];
145 case BFD_RELOC_16:
146 return &elf_howto_table[(int) R_390_16];
147 case BFD_RELOC_32:
148 return &elf_howto_table[(int) R_390_32];
149 case BFD_RELOC_CTOR:
150 return &elf_howto_table[(int) R_390_32];
151 case BFD_RELOC_32_PCREL:
152 return &elf_howto_table[(int) R_390_PC32];
153 case BFD_RELOC_390_GOT12:
154 return &elf_howto_table[(int) R_390_GOT12];
155 case BFD_RELOC_32_GOT_PCREL:
156 return &elf_howto_table[(int) R_390_GOT32];
157 case BFD_RELOC_390_PLT32:
158 return &elf_howto_table[(int) R_390_PLT32];
159 case BFD_RELOC_390_COPY:
160 return &elf_howto_table[(int) R_390_COPY];
161 case BFD_RELOC_390_GLOB_DAT:
162 return &elf_howto_table[(int) R_390_GLOB_DAT];
163 case BFD_RELOC_390_JMP_SLOT:
164 return &elf_howto_table[(int) R_390_JMP_SLOT];
165 case BFD_RELOC_390_RELATIVE:
166 return &elf_howto_table[(int) R_390_RELATIVE];
167 case BFD_RELOC_32_GOTOFF:
168 return &elf_howto_table[(int) R_390_GOTOFF];
169 case BFD_RELOC_390_GOTPC:
170 return &elf_howto_table[(int) R_390_GOTPC];
171 case BFD_RELOC_390_GOT16:
172 return &elf_howto_table[(int) R_390_GOT16];
173 case BFD_RELOC_16_PCREL:
174 return &elf_howto_table[(int) R_390_PC16];
175 case BFD_RELOC_390_PC16DBL:
176 return &elf_howto_table[(int) R_390_PC16DBL];
177 case BFD_RELOC_390_PLT16DBL:
178 return &elf_howto_table[(int) R_390_PLT16DBL];
179 case BFD_RELOC_VTABLE_INHERIT:
180 return &elf64_s390_vtinherit_howto;
181 case BFD_RELOC_VTABLE_ENTRY:
182 return &elf64_s390_vtentry_howto;
183 case BFD_RELOC_390_PC32DBL:
184 return &elf_howto_table[(int) R_390_PC32DBL];
185 case BFD_RELOC_390_PLT32DBL:
186 return &elf_howto_table[(int) R_390_PLT32DBL];
187 case BFD_RELOC_390_GOTPCDBL:
188 return &elf_howto_table[(int) R_390_GOTPCDBL];
189 case BFD_RELOC_64:
190 return &elf_howto_table[(int) R_390_64];
191 case BFD_RELOC_64_PCREL:
192 return &elf_howto_table[(int) R_390_PC64];
193 case BFD_RELOC_390_GOT64:
194 return &elf_howto_table[(int) R_390_GOT64];
195 case BFD_RELOC_390_PLT64:
196 return &elf_howto_table[(int) R_390_PLT64];
197 case BFD_RELOC_390_GOTENT:
198 return &elf_howto_table[(int) R_390_GOTENT];
199 default:
200 break;
201 }
202 return 0;
203 }
204
205 /* We need to use ELF64_R_TYPE so we have our own copy of this function,
206 and elf64-s390.c has its own copy. */
207
208 static void
209 elf_s390_info_to_howto (abfd, cache_ptr, dst)
210 bfd *abfd ATTRIBUTE_UNUSED;
211 arelent *cache_ptr;
212 Elf_Internal_Rela *dst;
213 {
214 switch (ELF64_R_TYPE(dst->r_info))
215 {
216 case R_390_GNU_VTINHERIT:
217 cache_ptr->howto = &elf64_s390_vtinherit_howto;
218 break;
219
220 case R_390_GNU_VTENTRY:
221 cache_ptr->howto = &elf64_s390_vtentry_howto;
222 break;
223
224 default:
225 BFD_ASSERT (ELF64_R_TYPE(dst->r_info) < (unsigned int) R_390_max);
226 cache_ptr->howto = &elf_howto_table[ELF64_R_TYPE(dst->r_info)];
227 }
228 }
229
230 static boolean
231 elf_s390_is_local_label_name (abfd, name)
232 bfd *abfd;
233 const char *name;
234 {
235 if (name[0] == '.' && (name[1] == 'X' || name[1] == 'L'))
236 return true;
237
238 return _bfd_elf_is_local_label_name (abfd, name);
239 }
240
241 /* Functions for the 390 ELF linker. */
242
243 /* The name of the dynamic interpreter. This is put in the .interp
244 section. */
245
246 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
247
248 /* The size in bytes of the first entry in the procedure linkage table. */
249 #define PLT_FIRST_ENTRY_SIZE 32
250 /* The size in bytes of an entry in the procedure linkage table. */
251 #define PLT_ENTRY_SIZE 32
252
253 #define GOT_ENTRY_SIZE 8
254
255 /* The first three entries in a procedure linkage table are reserved,
256 and the initial contents are unimportant (we zero them out).
257 Subsequent entries look like this. See the SVR4 ABI 386
258 supplement to see how this works. */
259
260 /* For the s390, simple addr offset can only be 0 - 4096.
261 To use the full 16777216 TB address space, several instructions
262 are needed to load an address in a register and execute
263 a branch( or just saving the address)
264
265 Furthermore, only r 0 and 1 are free to use!!! */
266
267 /* The first 3 words in the GOT are then reserved.
268 Word 0 is the address of the dynamic table.
269 Word 1 is a pointer to a structure describing the object
270 Word 2 is used to point to the loader entry address.
271
272 The code for PLT entries looks like this:
273
274 The GOT holds the address in the PLT to be executed.
275 The loader then gets:
276 24(15) = Pointer to the structure describing the object.
277 28(15) = Offset in symbol table
278 The loader must then find the module where the function is
279 and insert the address in the GOT.
280
281 PLT1: LARL 1,<fn>@GOTENT # 6 bytes Load address of GOT entry in r1
282 LG 1,0(1) # 6 bytes Load address from GOT in r1
283 BCR 15,1 # 2 bytes Jump to address
284 RET1: BASR 1,0 # 2 bytes Return from GOT 1st time
285 LGF 1,12(1) # 6 bytes Load offset in symbl table in r1
286 BRCL 15,-x # 6 bytes Jump to start of PLT
287 .long ? # 4 bytes offset into symbol table
288
289 Total = 32 bytes per PLT entry
290 Fixup at offset 2: relative address to GOT entry
291 Fixup at offset 22: relative branch to PLT0
292 Fixup at offset 28: 32 bit offset into symbol table
293
294 A 32 bit offset into the symbol table is enough. It allows for symbol
295 tables up to a size of 2 gigabyte. A single dynamic object (the main
296 program, any shared library) is limited to 4GB in size and I want to see
297 the program that manages to have a symbol table of more than 2 GB with a
298 total size of at max 4 GB. */
299
300 #define PLT_ENTRY_WORD0 (bfd_vma) 0xc0100000
301 #define PLT_ENTRY_WORD1 (bfd_vma) 0x0000e310
302 #define PLT_ENTRY_WORD2 (bfd_vma) 0x10000004
303 #define PLT_ENTRY_WORD3 (bfd_vma) 0x07f10d10
304 #define PLT_ENTRY_WORD4 (bfd_vma) 0xe310100c
305 #define PLT_ENTRY_WORD5 (bfd_vma) 0x0014c0f4
306 #define PLT_ENTRY_WORD6 (bfd_vma) 0x00000000
307 #define PLT_ENTRY_WORD7 (bfd_vma) 0x00000000
308
309 /* The first PLT entry pushes the offset into the symbol table
310 from R1 onto the stack at 8(15) and the loader object info
311 at 12(15), loads the loader address in R1 and jumps to it. */
312
313 /* The first entry in the PLT:
314
315 PLT0:
316 STG 1,56(15) # r1 contains the offset into the symbol table
317 LARL 1,_GLOBAL_OFFSET_TABLE # load address of global offset table
318 MVC 48(8,15),8(1) # move loader ino (object struct address) to stack
319 LG 1,16(1) # get entry address of loader
320 BCR 15,1 # jump to loader
321
322 Fixup at offset 8: relative address to start of GOT. */
323
324 #define PLT_FIRST_ENTRY_WORD0 (bfd_vma) 0xe310f038
325 #define PLT_FIRST_ENTRY_WORD1 (bfd_vma) 0x0024c010
326 #define PLT_FIRST_ENTRY_WORD2 (bfd_vma) 0x00000000
327 #define PLT_FIRST_ENTRY_WORD3 (bfd_vma) 0xd207f030
328 #define PLT_FIRST_ENTRY_WORD4 (bfd_vma) 0x1008e310
329 #define PLT_FIRST_ENTRY_WORD5 (bfd_vma) 0x10100004
330 #define PLT_FIRST_ENTRY_WORD6 (bfd_vma) 0x07f10700
331 #define PLT_FIRST_ENTRY_WORD7 (bfd_vma) 0x07000700
332
333 /* The s390 linker needs to keep track of the number of relocs that it
334 decides to copy as dynamic relocs in check_relocs for each symbol.
335 This is so that it can later discard them if they are found to be
336 unnecessary. We store the information in a field extending the
337 regular ELF linker hash table. */
338
339 struct elf_s390_dyn_relocs
340 {
341 struct elf_s390_dyn_relocs *next;
342
343 /* The input section of the reloc. */
344 asection *sec;
345
346 /* Total number of relocs copied for the input section. */
347 bfd_size_type count;
348
349 /* Number of pc-relative relocs copied for the input section. */
350 bfd_size_type pc_count;
351 };
352
353 /* s390 ELF linker hash entry. */
354
355 struct elf_s390_link_hash_entry
356 {
357 struct elf_link_hash_entry elf;
358
359 /* Track dynamic relocs copied for this symbol. */
360 struct elf_s390_dyn_relocs *dyn_relocs;
361 };
362
363 /* s390 ELF linker hash table. */
364
365 struct elf_s390_link_hash_table
366 {
367 struct elf_link_hash_table elf;
368
369 /* Short-cuts to get to dynamic linker sections. */
370 asection *sgot;
371 asection *sgotplt;
372 asection *srelgot;
373 asection *splt;
374 asection *srelplt;
375 asection *sdynbss;
376 asection *srelbss;
377
378 /* Small local sym to section mapping cache. */
379 struct sym_sec_cache sym_sec;
380 };
381
382 /* Get the s390 ELF linker hash table from a link_info structure. */
383
384 #define elf_s390_hash_table(p) \
385 ((struct elf_s390_link_hash_table *) ((p)->hash))
386
387 /* Create an entry in an s390 ELF linker hash table. */
388
389 static struct bfd_hash_entry *
390 link_hash_newfunc (entry, table, string)
391 struct bfd_hash_entry *entry;
392 struct bfd_hash_table *table;
393 const char *string;
394 {
395 /* Allocate the structure if it has not already been allocated by a
396 subclass. */
397 if (entry == NULL)
398 {
399 entry = bfd_hash_allocate (table,
400 sizeof (struct elf_s390_link_hash_entry));
401 if (entry == NULL)
402 return entry;
403 }
404
405 /* Call the allocation method of the superclass. */
406 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
407 if (entry != NULL)
408 {
409 struct elf_s390_link_hash_entry *eh;
410
411 eh = (struct elf_s390_link_hash_entry *) entry;
412 eh->dyn_relocs = NULL;
413 }
414
415 return entry;
416 }
417
418 /* Create an s390 ELF linker hash table. */
419
420 static struct bfd_link_hash_table *
421 elf_s390_link_hash_table_create (abfd)
422 bfd *abfd;
423 {
424 struct elf_s390_link_hash_table *ret;
425 bfd_size_type amt = sizeof (struct elf_s390_link_hash_table);
426
427 ret = (struct elf_s390_link_hash_table *) bfd_alloc (abfd, amt);
428 if (ret == NULL)
429 return NULL;
430
431 if (! _bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc))
432 {
433 bfd_release (abfd, ret);
434 return NULL;
435 }
436
437 ret->sgot = NULL;
438 ret->sgotplt = NULL;
439 ret->srelgot = NULL;
440 ret->splt = NULL;
441 ret->srelplt = NULL;
442 ret->sdynbss = NULL;
443 ret->srelbss = NULL;
444 ret->sym_sec.abfd = NULL;
445
446 return &ret->elf.root;
447 }
448
449 /* Create .got, .gotplt, and .rela.got sections in DYNOBJ, and set up
450 shortcuts to them in our hash table. */
451
452 static boolean
453 create_got_section (dynobj, info)
454 bfd *dynobj;
455 struct bfd_link_info *info;
456 {
457 struct elf_s390_link_hash_table *htab;
458
459 if (! _bfd_elf_create_got_section (dynobj, info))
460 return false;
461
462 htab = elf_s390_hash_table (info);
463 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
464 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
465 if (!htab->sgot || !htab->sgotplt)
466 abort ();
467
468 htab->srelgot = bfd_make_section (dynobj, ".rela.got");
469 if (htab->srelgot == NULL
470 || ! bfd_set_section_flags (dynobj, htab->srelgot,
471 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
472 | SEC_IN_MEMORY | SEC_LINKER_CREATED
473 | SEC_READONLY))
474 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
475 return false;
476 return true;
477 }
478
479 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
480 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
481 hash table. */
482
483 static boolean
484 elf_s390_create_dynamic_sections (dynobj, info)
485 bfd *dynobj;
486 struct bfd_link_info *info;
487 {
488 struct elf_s390_link_hash_table *htab;
489
490 htab = elf_s390_hash_table (info);
491 if (!htab->sgot && !create_got_section (dynobj, info))
492 return false;
493
494 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
495 return false;
496
497 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
498 htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
499 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
500 if (!info->shared)
501 htab->srelbss = bfd_get_section_by_name (dynobj, ".rela.bss");
502
503 if (!htab->splt || !htab->srelplt || !htab->sdynbss
504 || (!info->shared && !htab->srelbss))
505 abort ();
506
507 return true;
508 }
509
510 /* Copy the extra info we tack onto an elf_link_hash_entry. */
511
512 static void
513 elf_s390_copy_indirect_symbol (dir, ind)
514 struct elf_link_hash_entry *dir, *ind;
515 {
516 struct elf_s390_link_hash_entry *edir, *eind;
517
518 edir = (struct elf_s390_link_hash_entry *) dir;
519 eind = (struct elf_s390_link_hash_entry *) ind;
520
521 if (eind->dyn_relocs != NULL)
522 {
523 if (edir->dyn_relocs != NULL)
524 {
525 struct elf_s390_dyn_relocs **pp;
526 struct elf_s390_dyn_relocs *p;
527
528 if (ind->root.type == bfd_link_hash_indirect)
529 abort ();
530
531 /* Add reloc counts against the weak sym to the strong sym
532 list. Merge any entries against the same section. */
533 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
534 {
535 struct elf_s390_dyn_relocs *q;
536
537 for (q = edir->dyn_relocs; q != NULL; q = q->next)
538 if (q->sec == p->sec)
539 {
540 q->pc_count += p->pc_count;
541 q->count += p->count;
542 *pp = p->next;
543 break;
544 }
545 if (q == NULL)
546 pp = &p->next;
547 }
548 *pp = edir->dyn_relocs;
549 }
550
551 edir->dyn_relocs = eind->dyn_relocs;
552 eind->dyn_relocs = NULL;
553 }
554
555 _bfd_elf_link_hash_copy_indirect (dir, ind);
556 }
557
558 /* Look through the relocs for a section during the first phase, and
559 allocate space in the global offset table or procedure linkage
560 table. */
561
562 static boolean
563 elf_s390_check_relocs (abfd, info, sec, relocs)
564 bfd *abfd;
565 struct bfd_link_info *info;
566 asection *sec;
567 const Elf_Internal_Rela *relocs;
568 {
569 struct elf_s390_link_hash_table *htab;
570 Elf_Internal_Shdr *symtab_hdr;
571 struct elf_link_hash_entry **sym_hashes;
572 const Elf_Internal_Rela *rel;
573 const Elf_Internal_Rela *rel_end;
574 asection *sreloc;
575
576 if (info->relocateable)
577 return true;
578
579 htab = elf_s390_hash_table (info);
580 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
581 sym_hashes = elf_sym_hashes (abfd);
582
583 sreloc = NULL;
584
585 rel_end = relocs + sec->reloc_count;
586 for (rel = relocs; rel < rel_end; rel++)
587 {
588 unsigned long r_symndx;
589 struct elf_link_hash_entry *h;
590
591 r_symndx = ELF64_R_SYM (rel->r_info);
592
593 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
594 {
595 (*_bfd_error_handler) (_("%s: bad symbol index: %d"),
596 bfd_archive_filename (abfd),
597 r_symndx);
598 return false;
599 }
600
601 if (r_symndx < symtab_hdr->sh_info)
602 h = NULL;
603 else
604 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
605
606 switch (ELF64_R_TYPE (rel->r_info))
607 {
608 case R_390_GOT12:
609 case R_390_GOT16:
610 case R_390_GOT32:
611 case R_390_GOT64:
612 case R_390_GOTENT:
613 /* This symbol requires a global offset table entry. */
614 if (h != NULL)
615 {
616 h->got.refcount += 1;
617 }
618 else
619 {
620 bfd_signed_vma *local_got_refcounts;
621
622 /* This is a global offset table entry for a local symbol. */
623 local_got_refcounts = elf_local_got_refcounts (abfd);
624 if (local_got_refcounts == NULL)
625 {
626 bfd_size_type size;
627
628 size = symtab_hdr->sh_info;
629 size *= sizeof (bfd_signed_vma);
630 local_got_refcounts = ((bfd_signed_vma *)
631 bfd_zalloc (abfd, size));
632 if (local_got_refcounts == NULL)
633 return false;
634 elf_local_got_refcounts (abfd) = local_got_refcounts;
635 }
636 local_got_refcounts[r_symndx] += 1;
637 }
638 /* Fall through */
639
640 case R_390_GOTOFF:
641 case R_390_GOTPC:
642 case R_390_GOTPCDBL:
643 if (htab->sgot == NULL)
644 {
645 if (htab->elf.dynobj == NULL)
646 htab->elf.dynobj = abfd;
647 if (!create_got_section (htab->elf.dynobj, info))
648 return false;
649 }
650 break;
651
652 case R_390_PLT16DBL:
653 case R_390_PLT32:
654 case R_390_PLT32DBL:
655 case R_390_PLT64:
656 /* This symbol requires a procedure linkage table entry. We
657 actually build the entry in adjust_dynamic_symbol,
658 because this might be a case of linking PIC code which is
659 never referenced by a dynamic object, in which case we
660 don't need to generate a procedure linkage table entry
661 after all. */
662
663 /* If this is a local symbol, we resolve it directly without
664 creating a procedure linkage table entry. */
665 if (h == NULL)
666 continue;
667
668 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
669 h->plt.refcount += 1;
670 break;
671
672 case R_390_8:
673 case R_390_16:
674 case R_390_32:
675 case R_390_64:
676 case R_390_PC16:
677 case R_390_PC16DBL:
678 case R_390_PC32:
679 case R_390_PC32DBL:
680 case R_390_PC64:
681 if (h != NULL && !info->shared)
682 {
683 /* If this reloc is in a read-only section, we might
684 need a copy reloc. We can't check reliably at this
685 stage whether the section is read-only, as input
686 sections have not yet been mapped to output sections.
687 Tentatively set the flag for now, and correct in
688 adjust_dynamic_symbol. */
689 h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
690
691 /* We may need a .plt entry if the function this reloc
692 refers to is in a shared lib. */
693 h->plt.refcount += 1;
694 }
695
696 /* If we are creating a shared library, and this is a reloc
697 against a global symbol, or a non PC relative reloc
698 against a local symbol, then we need to copy the reloc
699 into the shared library. However, if we are linking with
700 -Bsymbolic, we do not need to copy a reloc against a
701 global symbol which is defined in an object we are
702 including in the link (i.e., DEF_REGULAR is set). At
703 this point we have not seen all the input files, so it is
704 possible that DEF_REGULAR is not set now but will be set
705 later (it is never cleared). In case of a weak definition,
706 DEF_REGULAR may be cleared later by a strong definition in
707 a shared library. We account for that possibility below by
708 storing information in the relocs_copied field of the hash
709 table entry. A similar situation occurs when creating
710 shared libraries and symbol visibility changes render the
711 symbol local.
712
713 If on the other hand, we are creating an executable, we
714 may need to keep relocations for symbols satisfied by a
715 dynamic library if we manage to avoid copy relocs for the
716 symbol. */
717 if ((info->shared
718 && (sec->flags & SEC_ALLOC) != 0
719 && ((ELF64_R_TYPE (rel->r_info) != R_390_PC16
720 && ELF64_R_TYPE (rel->r_info) != R_390_PC16DBL
721 && ELF64_R_TYPE (rel->r_info) != R_390_PC32
722 && ELF64_R_TYPE (rel->r_info) != R_390_PC32DBL
723 && ELF64_R_TYPE (rel->r_info) != R_390_PC64)
724 || (h != NULL
725 && (! info->symbolic
726 || h->root.type == bfd_link_hash_defweak
727 || (h->elf_link_hash_flags
728 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
729 || (!info->shared
730 && (sec->flags & SEC_ALLOC) != 0
731 && h != NULL
732 && (h->root.type == bfd_link_hash_defweak
733 || (h->elf_link_hash_flags
734 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
735 {
736 struct elf_s390_dyn_relocs *p;
737 struct elf_s390_dyn_relocs **head;
738
739 /* We must copy these reloc types into the output file.
740 Create a reloc section in dynobj and make room for
741 this reloc. */
742 if (sreloc == NULL)
743 {
744 const char *name;
745 bfd *dynobj;
746
747 name = (bfd_elf_string_from_elf_section
748 (abfd,
749 elf_elfheader (abfd)->e_shstrndx,
750 elf_section_data (sec)->rel_hdr.sh_name));
751 if (name == NULL)
752 return false;
753
754 if (strncmp (name, ".rela", 5) != 0
755 || strcmp (bfd_get_section_name (abfd, sec),
756 name + 5) != 0)
757 {
758 (*_bfd_error_handler)
759 (_("%s: bad relocation section name `%s\'"),
760 bfd_archive_filename (abfd), name);
761 }
762
763 if (htab->elf.dynobj == NULL)
764 htab->elf.dynobj = abfd;
765
766 dynobj = htab->elf.dynobj;
767 sreloc = bfd_get_section_by_name (dynobj, name);
768 if (sreloc == NULL)
769 {
770 flagword flags;
771
772 sreloc = bfd_make_section (dynobj, name);
773 flags = (SEC_HAS_CONTENTS | SEC_READONLY
774 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
775 if ((sec->flags & SEC_ALLOC) != 0)
776 flags |= SEC_ALLOC | SEC_LOAD;
777 if (sreloc == NULL
778 || ! bfd_set_section_flags (dynobj, sreloc, flags)
779 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
780 return false;
781 }
782 elf_section_data (sec)->sreloc = sreloc;
783 }
784
785 /* If this is a global symbol, we count the number of
786 relocations we need for this symbol. */
787 if (h != NULL)
788 {
789 head = &((struct elf_s390_link_hash_entry *) h)->dyn_relocs;
790 }
791 else
792 {
793 /* Track dynamic relocs needed for local syms too.
794 We really need local syms available to do this
795 easily. Oh well. */
796
797 asection *s;
798 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
799 sec, r_symndx);
800 if (s == NULL)
801 return false;
802
803 head = ((struct elf_s390_dyn_relocs **)
804 &elf_section_data (s)->local_dynrel);
805 }
806
807 p = *head;
808 if (p == NULL || p->sec != sec)
809 {
810 bfd_size_type amt = sizeof *p;
811 p = ((struct elf_s390_dyn_relocs *)
812 bfd_alloc (htab->elf.dynobj, amt));
813 if (p == NULL)
814 return false;
815 p->next = *head;
816 *head = p;
817 p->sec = sec;
818 p->count = 0;
819 p->pc_count = 0;
820 }
821
822 p->count += 1;
823 if (ELF64_R_TYPE (rel->r_info) == R_390_PC16
824 || ELF64_R_TYPE (rel->r_info) == R_390_PC16DBL
825 || ELF64_R_TYPE (rel->r_info) == R_390_PC32
826 || ELF64_R_TYPE (rel->r_info) == R_390_PC32DBL
827 || ELF64_R_TYPE (rel->r_info) == R_390_PC64)
828 p->pc_count += 1;
829 }
830 break;
831
832 /* This relocation describes the C++ object vtable hierarchy.
833 Reconstruct it for later use during GC. */
834 case R_390_GNU_VTINHERIT:
835 if (!_bfd_elf64_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
836 return false;
837 break;
838
839 /* This relocation describes which C++ vtable entries are actually
840 used. Record for later use during GC. */
841 case R_390_GNU_VTENTRY:
842 if (!_bfd_elf64_gc_record_vtentry (abfd, sec, h, rel->r_offset))
843 return false;
844 break;
845
846 default:
847 break;
848 }
849 }
850
851 return true;
852 }
853
854 /* Return the section that should be marked against GC for a given
855 relocation. */
856
857 static asection *
858 elf_s390_gc_mark_hook (abfd, info, rel, h, sym)
859 bfd *abfd;
860 struct bfd_link_info *info ATTRIBUTE_UNUSED;
861 Elf_Internal_Rela *rel;
862 struct elf_link_hash_entry *h;
863 Elf_Internal_Sym *sym;
864 {
865 if (h != NULL)
866 {
867 switch (ELF64_R_TYPE (rel->r_info))
868 {
869 case R_390_GNU_VTINHERIT:
870 case R_390_GNU_VTENTRY:
871 break;
872
873 default:
874 switch (h->root.type)
875 {
876 case bfd_link_hash_defined:
877 case bfd_link_hash_defweak:
878 return h->root.u.def.section;
879
880 case bfd_link_hash_common:
881 return h->root.u.c.p->section;
882
883 default:
884 break;
885 }
886 }
887 }
888 else
889 {
890 if (!(elf_bad_symtab (abfd)
891 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
892 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
893 && sym->st_shndx != SHN_COMMON))
894 {
895 return bfd_section_from_elf_index (abfd, sym->st_shndx);
896 }
897 }
898
899 return NULL;
900 }
901
902 /* Update the got entry reference counts for the section being removed. */
903
904 static boolean
905 elf_s390_gc_sweep_hook (abfd, info, sec, relocs)
906 bfd *abfd;
907 struct bfd_link_info *info;
908 asection *sec;
909 const Elf_Internal_Rela *relocs;
910 {
911 Elf_Internal_Shdr *symtab_hdr;
912 struct elf_link_hash_entry **sym_hashes;
913 bfd_signed_vma *local_got_refcounts;
914 const Elf_Internal_Rela *rel, *relend;
915 unsigned long r_symndx;
916 struct elf_link_hash_entry *h;
917
918 elf_section_data (sec)->local_dynrel = NULL;
919
920 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
921 sym_hashes = elf_sym_hashes (abfd);
922 local_got_refcounts = elf_local_got_refcounts (abfd);
923
924 relend = relocs + sec->reloc_count;
925 for (rel = relocs; rel < relend; rel++)
926 switch (ELF64_R_TYPE (rel->r_info))
927 {
928 case R_390_GOT12:
929 case R_390_GOT16:
930 case R_390_GOT32:
931 case R_390_GOT64:
932 case R_390_GOTOFF:
933 case R_390_GOTPC:
934 case R_390_GOTPCDBL:
935 case R_390_GOTENT:
936 r_symndx = ELF64_R_SYM (rel->r_info);
937 if (r_symndx >= symtab_hdr->sh_info)
938 {
939 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
940 if (h->got.refcount > 0)
941 h->got.refcount -= 1;
942 }
943 else if (local_got_refcounts != NULL)
944 {
945 if (local_got_refcounts[r_symndx] > 0)
946 local_got_refcounts[r_symndx] -= 1;
947 }
948 break;
949
950 case R_390_8:
951 case R_390_12:
952 case R_390_16:
953 case R_390_32:
954 case R_390_64:
955 case R_390_PC16:
956 case R_390_PC16DBL:
957 case R_390_PC32:
958 case R_390_PC32DBL:
959 case R_390_PC64:
960 r_symndx = ELF64_R_SYM (rel->r_info);
961 if (r_symndx >= symtab_hdr->sh_info)
962 {
963 struct elf_s390_link_hash_entry *eh;
964 struct elf_s390_dyn_relocs **pp;
965 struct elf_s390_dyn_relocs *p;
966
967 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
968
969 if (!info->shared && h->plt.refcount > 0)
970 h->plt.refcount -= 1;
971
972 eh = (struct elf_s390_link_hash_entry *) h;
973
974 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
975 if (p->sec == sec)
976 {
977 if (ELF64_R_TYPE (rel->r_info) == R_390_PC16
978 || ELF64_R_TYPE (rel->r_info) == R_390_PC16DBL
979 || ELF64_R_TYPE (rel->r_info) == R_390_PC32)
980 p->pc_count -= 1;
981 p->count -= 1;
982 if (p->count == 0)
983 *pp = p->next;
984 break;
985 }
986 }
987 break;
988
989 case R_390_PLT16DBL:
990 case R_390_PLT32:
991 case R_390_PLT32DBL:
992 case R_390_PLT64:
993 r_symndx = ELF64_R_SYM (rel->r_info);
994 if (r_symndx >= symtab_hdr->sh_info)
995 {
996 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
997 if (h->plt.refcount > 0)
998 h->plt.refcount -= 1;
999 }
1000 break;
1001
1002 default:
1003 break;
1004 }
1005
1006 return true;
1007 }
1008
1009 /* Adjust a symbol defined by a dynamic object and referenced by a
1010 regular object. The current definition is in some section of the
1011 dynamic object, but we're not including those sections. We have to
1012 change the definition to something the rest of the link can
1013 understand. */
1014
1015 static boolean
1016 elf_s390_adjust_dynamic_symbol (info, h)
1017 struct bfd_link_info *info;
1018 struct elf_link_hash_entry *h;
1019 {
1020 struct elf_s390_link_hash_table *htab;
1021 struct elf_s390_link_hash_entry * eh;
1022 struct elf_s390_dyn_relocs *p;
1023 asection *s;
1024 unsigned int power_of_two;
1025
1026 /* If this is a function, put it in the procedure linkage table. We
1027 will fill in the contents of the procedure linkage table later
1028 (although we could actually do it here). */
1029 if (h->type == STT_FUNC
1030 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1031 {
1032 if (h->plt.refcount <= 0
1033 || (! info->shared
1034 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
1035 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0))
1036 {
1037 /* This case can occur if we saw a PLT32 reloc in an input
1038 file, but the symbol was never referred to by a dynamic
1039 object, or if all references were garbage collected. In
1040 such a case, we don't actually need to build a procedure
1041 linkage table, and we can just do a PC32 reloc instead. */
1042 h->plt.offset = (bfd_vma) -1;
1043 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1044 }
1045
1046 return true;
1047 }
1048 else
1049 /* It's possible that we incorrectly decided a .plt reloc was
1050 needed for an R_390_PC32 reloc to a non-function sym in
1051 check_relocs. We can't decide accurately between function and
1052 non-function syms in check-relocs; Objects loaded later in
1053 the link may change h->type. So fix it now. */
1054 h->plt.offset = (bfd_vma) -1;
1055
1056 /* If this is a weak symbol, and there is a real definition, the
1057 processor independent code will have arranged for us to see the
1058 real definition first, and we can just use the same value. */
1059 if (h->weakdef != NULL)
1060 {
1061 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1062 || h->weakdef->root.type == bfd_link_hash_defweak);
1063 h->root.u.def.section = h->weakdef->root.u.def.section;
1064 h->root.u.def.value = h->weakdef->root.u.def.value;
1065 return true;
1066 }
1067
1068 /* This is a reference to a symbol defined by a dynamic object which
1069 is not a function. */
1070
1071 /* If we are creating a shared library, we must presume that the
1072 only references to the symbol are via the global offset table.
1073 For such cases we need not do anything here; the relocations will
1074 be handled correctly by relocate_section. */
1075 if (info->shared)
1076 return true;
1077
1078 /* If there are no references to this symbol that do not use the
1079 GOT, we don't need to generate a copy reloc. */
1080 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1081 return true;
1082
1083 /* If -z nocopyreloc was given, we won't generate them either. */
1084 if (info->nocopyreloc)
1085 {
1086 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1087 return true;
1088 }
1089
1090 eh = (struct elf_s390_link_hash_entry *) h;
1091 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1092 {
1093 s = p->sec->output_section;
1094 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1095 break;
1096 }
1097
1098 /* If we didn't find any dynamic relocs in read-only sections, then
1099 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1100 if (p == NULL)
1101 {
1102 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1103 return true;
1104 }
1105
1106 /* We must allocate the symbol in our .dynbss section, which will
1107 become part of the .bss section of the executable. There will be
1108 an entry for this symbol in the .dynsym section. The dynamic
1109 object will contain position independent code, so all references
1110 from the dynamic object to this symbol will go through the global
1111 offset table. The dynamic linker will use the .dynsym entry to
1112 determine the address it must put in the global offset table, so
1113 both the dynamic object and the regular object will refer to the
1114 same memory location for the variable. */
1115
1116 htab = elf_s390_hash_table (info);
1117
1118 /* We must generate a R_390_COPY reloc to tell the dynamic linker to
1119 copy the initial value out of the dynamic object and into the
1120 runtime process image. */
1121 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1122 {
1123 htab->srelbss->_raw_size += sizeof (Elf64_External_Rela);
1124 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1125 }
1126
1127 /* We need to figure out the alignment required for this symbol. I
1128 have no idea how ELF linkers handle this. */
1129 power_of_two = bfd_log2 (h->size);
1130 if (power_of_two > 3)
1131 power_of_two = 3;
1132
1133 /* Apply the required alignment. */
1134 s = htab->sdynbss;
1135 s->_raw_size = BFD_ALIGN (s->_raw_size, (bfd_size_type) (1 << power_of_two));
1136 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1137 {
1138 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1139 return false;
1140 }
1141
1142 /* Define the symbol as being at this point in the section. */
1143 h->root.u.def.section = s;
1144 h->root.u.def.value = s->_raw_size;
1145
1146 /* Increment the section size to make room for the symbol. */
1147 s->_raw_size += h->size;
1148
1149 return true;
1150 }
1151
1152 /* This is the condition under which elf_s390_finish_dynamic_symbol
1153 will be called from elflink.h. If elflink.h doesn't call our
1154 finish_dynamic_symbol routine, we'll need to do something about
1155 initializing any .plt and .got entries in elf_s390_relocate_section. */
1156 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1157 ((DYN) \
1158 && ((INFO)->shared \
1159 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1160 && ((H)->dynindx != -1 \
1161 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1162
1163 /* Allocate space in .plt, .got and associated reloc sections for
1164 dynamic relocs. */
1165
1166 static boolean
1167 allocate_dynrelocs (h, inf)
1168 struct elf_link_hash_entry *h;
1169 PTR inf;
1170 {
1171 struct bfd_link_info *info;
1172 struct elf_s390_link_hash_table *htab;
1173 struct elf_s390_link_hash_entry *eh;
1174 struct elf_s390_dyn_relocs *p;
1175
1176 if (h->root.type == bfd_link_hash_indirect
1177 || h->root.type == bfd_link_hash_warning)
1178 return true;
1179
1180 info = (struct bfd_link_info *) inf;
1181 htab = elf_s390_hash_table (info);
1182
1183 if (htab->elf.dynamic_sections_created
1184 && h->plt.refcount > 0)
1185 {
1186 /* Make sure this symbol is output as a dynamic symbol.
1187 Undefined weak syms won't yet be marked as dynamic. */
1188 if (h->dynindx == -1
1189 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1190 {
1191 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1192 return false;
1193 }
1194
1195 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
1196 {
1197 asection *s = htab->splt;
1198
1199 /* If this is the first .plt entry, make room for the special
1200 first entry. */
1201 if (s->_raw_size == 0)
1202 s->_raw_size += PLT_FIRST_ENTRY_SIZE;
1203
1204 h->plt.offset = s->_raw_size;
1205
1206 /* If this symbol is not defined in a regular file, and we are
1207 not generating a shared library, then set the symbol to this
1208 location in the .plt. This is required to make function
1209 pointers compare as equal between the normal executable and
1210 the shared library. */
1211 if (! info->shared
1212 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1213 {
1214 h->root.u.def.section = s;
1215 h->root.u.def.value = h->plt.offset;
1216 }
1217
1218 /* Make room for this entry. */
1219 s->_raw_size += PLT_ENTRY_SIZE;
1220
1221 /* We also need to make an entry in the .got.plt section, which
1222 will be placed in the .got section by the linker script. */
1223 htab->sgotplt->_raw_size += GOT_ENTRY_SIZE;
1224
1225 /* We also need to make an entry in the .rela.plt section. */
1226 htab->srelplt->_raw_size += sizeof (Elf64_External_Rela);
1227 }
1228 else
1229 {
1230 h->plt.offset = (bfd_vma) -1;
1231 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1232 }
1233 }
1234 else
1235 {
1236 h->plt.offset = (bfd_vma) -1;
1237 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1238 }
1239
1240 if (h->got.refcount > 0)
1241 {
1242 asection *s;
1243 boolean dyn;
1244
1245 /* Make sure this symbol is output as a dynamic symbol.
1246 Undefined weak syms won't yet be marked as dynamic. */
1247 if (h->dynindx == -1
1248 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1249 {
1250 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1251 return false;
1252 }
1253
1254 s = htab->sgot;
1255 h->got.offset = s->_raw_size;
1256 s->_raw_size += GOT_ENTRY_SIZE;
1257 dyn = htab->elf.dynamic_sections_created;
1258 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h))
1259 htab->srelgot->_raw_size += sizeof (Elf64_External_Rela);
1260 }
1261 else
1262 h->got.offset = (bfd_vma) -1;
1263
1264 eh = (struct elf_s390_link_hash_entry *) h;
1265 if (eh->dyn_relocs == NULL)
1266 return true;
1267
1268 /* In the shared -Bsymbolic case, discard space allocated for
1269 dynamic pc-relative relocs against symbols which turn out to be
1270 defined in regular objects. For the normal shared case, discard
1271 space for pc-relative relocs that have become local due to symbol
1272 visibility changes. */
1273
1274 if (info->shared)
1275 {
1276 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1277 && ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
1278 || info->symbolic))
1279 {
1280 struct elf_s390_dyn_relocs **pp;
1281
1282 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1283 {
1284 p->count -= p->pc_count;
1285 p->pc_count = 0;
1286 if (p->count == 0)
1287 *pp = p->next;
1288 else
1289 pp = &p->next;
1290 }
1291 }
1292 }
1293 else
1294 {
1295 /* For the non-shared case, discard space for relocs against
1296 symbols which turn out to need copy relocs or are not
1297 dynamic. */
1298
1299 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1300 && (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1301 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1302 || (htab->elf.dynamic_sections_created
1303 && (h->root.type == bfd_link_hash_undefweak
1304 || h->root.type == bfd_link_hash_undefined))))
1305 {
1306 /* Make sure this symbol is output as a dynamic symbol.
1307 Undefined weak syms won't yet be marked as dynamic. */
1308 if (h->dynindx == -1
1309 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1310 {
1311 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1312 return false;
1313 }
1314
1315 /* If that succeeded, we know we'll be keeping all the
1316 relocs. */
1317 if (h->dynindx != -1)
1318 goto keep;
1319 }
1320
1321 eh->dyn_relocs = NULL;
1322
1323 keep: ;
1324 }
1325
1326 /* Finally, allocate space. */
1327 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1328 {
1329 asection *sreloc = elf_section_data (p->sec)->sreloc;
1330 sreloc->_raw_size += p->count * sizeof (Elf64_External_Rela);
1331 }
1332
1333 return true;
1334 }
1335
1336 /* Find any dynamic relocs that apply to read-only sections. */
1337
1338 static boolean
1339 readonly_dynrelocs (h, inf)
1340 struct elf_link_hash_entry *h;
1341 PTR inf;
1342 {
1343 struct elf_s390_link_hash_entry *eh;
1344 struct elf_s390_dyn_relocs *p;
1345
1346 eh = (struct elf_s390_link_hash_entry *) h;
1347 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1348 {
1349 asection *s = p->sec->output_section;
1350
1351 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1352 {
1353 struct bfd_link_info *info = (struct bfd_link_info *) inf;
1354
1355 info->flags |= DF_TEXTREL;
1356
1357 /* Not an error, just cut short the traversal. */
1358 return false;
1359 }
1360 }
1361 return true;
1362 }
1363
1364 /* Set the sizes of the dynamic sections. */
1365
1366 static boolean
1367 elf_s390_size_dynamic_sections (output_bfd, info)
1368 bfd *output_bfd ATTRIBUTE_UNUSED;
1369 struct bfd_link_info *info;
1370 {
1371 struct elf_s390_link_hash_table *htab;
1372 bfd *dynobj;
1373 asection *s;
1374 boolean relocs;
1375 bfd *ibfd;
1376
1377 htab = elf_s390_hash_table (info);
1378 dynobj = htab->elf.dynobj;
1379 if (dynobj == NULL)
1380 abort ();
1381
1382 if (htab->elf.dynamic_sections_created)
1383 {
1384 /* Set the contents of the .interp section to the interpreter. */
1385 if (! info->shared)
1386 {
1387 s = bfd_get_section_by_name (dynobj, ".interp");
1388 if (s == NULL)
1389 abort ();
1390 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1391 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1392 }
1393 }
1394
1395 /* Set up .got offsets for local syms, and space for local dynamic
1396 relocs. */
1397 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1398 {
1399 bfd_signed_vma *local_got;
1400 bfd_signed_vma *end_local_got;
1401 bfd_size_type locsymcount;
1402 Elf_Internal_Shdr *symtab_hdr;
1403 asection *srela;
1404
1405 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
1406 continue;
1407
1408 for (s = ibfd->sections; s != NULL; s = s->next)
1409 {
1410 struct elf_s390_dyn_relocs *p;
1411
1412 for (p = *((struct elf_s390_dyn_relocs **)
1413 &elf_section_data (s)->local_dynrel);
1414 p != NULL;
1415 p = p->next)
1416 {
1417 if (!bfd_is_abs_section (p->sec)
1418 && bfd_is_abs_section (p->sec->output_section))
1419 {
1420 /* Input section has been discarded, either because
1421 it is a copy of a linkonce section or due to
1422 linker script /DISCARD/, so we'll be discarding
1423 the relocs too. */
1424 }
1425 else
1426 {
1427 srela = elf_section_data (p->sec)->sreloc;
1428 srela->_raw_size += p->count * sizeof (Elf64_External_Rela);
1429 }
1430 }
1431 }
1432
1433 local_got = elf_local_got_refcounts (ibfd);
1434 if (!local_got)
1435 continue;
1436
1437 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1438 locsymcount = symtab_hdr->sh_info;
1439 end_local_got = local_got + locsymcount;
1440 s = htab->sgot;
1441 srela = htab->srelgot;
1442 for (; local_got < end_local_got; ++local_got)
1443 {
1444 if (*local_got > 0)
1445 {
1446 *local_got = s->_raw_size;
1447 s->_raw_size += GOT_ENTRY_SIZE;
1448 if (info->shared)
1449 srela->_raw_size += sizeof (Elf64_External_Rela);
1450 }
1451 else
1452 *local_got = (bfd_vma) -1;
1453 }
1454 }
1455
1456 /* Allocate global sym .plt and .got entries, and space for global
1457 sym dynamic relocs. */
1458 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
1459
1460 /* We now have determined the sizes of the various dynamic sections.
1461 Allocate memory for them. */
1462 relocs = false;
1463 for (s = dynobj->sections; s != NULL; s = s->next)
1464 {
1465 if ((s->flags & SEC_LINKER_CREATED) == 0)
1466 continue;
1467
1468 if (s == htab->splt
1469 || s == htab->sgot
1470 || s == htab->sgotplt)
1471 {
1472 /* Strip this section if we don't need it; see the
1473 comment below. */
1474 }
1475 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
1476 {
1477 if (s->_raw_size != 0 && s != htab->srelplt)
1478 relocs = true;
1479
1480 /* We use the reloc_count field as a counter if we need
1481 to copy relocs into the output file. */
1482 s->reloc_count = 0;
1483 }
1484 else
1485 {
1486 /* It's not one of our sections, so don't allocate space. */
1487 continue;
1488 }
1489
1490 if (s->_raw_size == 0)
1491 {
1492 /* If we don't need this section, strip it from the
1493 output file. This is to handle .rela.bss and
1494 .rela.plt. We must create it in
1495 create_dynamic_sections, because it must be created
1496 before the linker maps input sections to output
1497 sections. The linker does that before
1498 adjust_dynamic_symbol is called, and it is that
1499 function which decides whether anything needs to go
1500 into these sections. */
1501
1502 _bfd_strip_section_from_output (info, s);
1503 continue;
1504 }
1505
1506 /* Allocate memory for the section contents. We use bfd_zalloc
1507 here in case unused entries are not reclaimed before the
1508 section's contents are written out. This should not happen,
1509 but this way if it does, we get a R_390_NONE reloc instead
1510 of garbage. */
1511 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1512 if (s->contents == NULL)
1513 return false;
1514 }
1515
1516 if (htab->elf.dynamic_sections_created)
1517 {
1518 /* Add some entries to the .dynamic section. We fill in the
1519 values later, in elf_s390_finish_dynamic_sections, but we
1520 must add the entries now so that we get the correct size for
1521 the .dynamic section. The DT_DEBUG entry is filled in by the
1522 dynamic linker and used by the debugger. */
1523 #define add_dynamic_entry(TAG, VAL) \
1524 bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1525
1526 if (! info->shared)
1527 {
1528 if (!add_dynamic_entry (DT_DEBUG, 0))
1529 return false;
1530 }
1531
1532 if (htab->splt->_raw_size != 0)
1533 {
1534 if (!add_dynamic_entry (DT_PLTGOT, 0)
1535 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1536 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1537 || !add_dynamic_entry (DT_JMPREL, 0))
1538 return false;
1539 }
1540
1541 if (relocs)
1542 {
1543 if (!add_dynamic_entry (DT_RELA, 0)
1544 || !add_dynamic_entry (DT_RELASZ, 0)
1545 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1546 return false;
1547
1548 /* If any dynamic relocs apply to a read-only section,
1549 then we need a DT_TEXTREL entry. */
1550 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, (PTR) info);
1551
1552 if ((info->flags & DF_TEXTREL) != 0)
1553 {
1554 if (!add_dynamic_entry (DT_TEXTREL, 0))
1555 return false;
1556 }
1557 }
1558 }
1559 #undef add_dynamic_entry
1560
1561 return true;
1562 }
1563
1564 /* Relocate a 390 ELF section. */
1565
1566 static boolean
1567 elf_s390_relocate_section (output_bfd, info, input_bfd, input_section,
1568 contents, relocs, local_syms, local_sections)
1569 bfd *output_bfd;
1570 struct bfd_link_info *info;
1571 bfd *input_bfd;
1572 asection *input_section;
1573 bfd_byte *contents;
1574 Elf_Internal_Rela *relocs;
1575 Elf_Internal_Sym *local_syms;
1576 asection **local_sections;
1577 {
1578 struct elf_s390_link_hash_table *htab;
1579 Elf_Internal_Shdr *symtab_hdr;
1580 struct elf_link_hash_entry **sym_hashes;
1581 bfd_vma *local_got_offsets;
1582 Elf_Internal_Rela *rel;
1583 Elf_Internal_Rela *relend;
1584
1585 htab = elf_s390_hash_table (info);
1586 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1587 sym_hashes = elf_sym_hashes (input_bfd);
1588 local_got_offsets = elf_local_got_offsets (input_bfd);
1589
1590 rel = relocs;
1591 relend = relocs + input_section->reloc_count;
1592 for (; rel < relend; rel++)
1593 {
1594 int r_type;
1595 reloc_howto_type *howto;
1596 unsigned long r_symndx;
1597 struct elf_link_hash_entry *h;
1598 Elf_Internal_Sym *sym;
1599 asection *sec;
1600 bfd_vma off;
1601 bfd_vma relocation;
1602 boolean unresolved_reloc;
1603 bfd_reloc_status_type r;
1604
1605 r_type = ELF64_R_TYPE (rel->r_info);
1606 if (r_type == (int) R_390_GNU_VTINHERIT
1607 || r_type == (int) R_390_GNU_VTENTRY)
1608 continue;
1609 if (r_type < 0 || r_type >= (int) R_390_max)
1610 {
1611 bfd_set_error (bfd_error_bad_value);
1612 return false;
1613 }
1614 howto = elf_howto_table + r_type;
1615
1616 r_symndx = ELF64_R_SYM (rel->r_info);
1617
1618 if (info->relocateable)
1619 {
1620 /* This is a relocateable link. We don't have to change
1621 anything, unless the reloc is against a section symbol,
1622 in which case we have to adjust according to where the
1623 section symbol winds up in the output section. */
1624 if (r_symndx < symtab_hdr->sh_info)
1625 {
1626 sym = local_syms + r_symndx;
1627 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1628 {
1629 sec = local_sections[r_symndx];
1630 rel->r_addend += sec->output_offset + sym->st_value;
1631 }
1632 }
1633
1634 continue;
1635 }
1636
1637 /* This is a final link. */
1638 h = NULL;
1639 sym = NULL;
1640 sec = NULL;
1641 unresolved_reloc = false;
1642 if (r_symndx < symtab_hdr->sh_info)
1643 {
1644 sym = local_syms + r_symndx;
1645 sec = local_sections[r_symndx];
1646 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sec, rel);
1647 }
1648 else
1649 {
1650 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1651 while (h->root.type == bfd_link_hash_indirect
1652 || h->root.type == bfd_link_hash_warning)
1653 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1654
1655 if (h->root.type == bfd_link_hash_defined
1656 || h->root.type == bfd_link_hash_defweak)
1657 {
1658 sec = h->root.u.def.section;
1659 if (sec->output_section == NULL)
1660 {
1661 /* Set a flag that will be cleared later if we find a
1662 relocation value for this symbol. output_section
1663 is typically NULL for symbols satisfied by a shared
1664 library. */
1665 unresolved_reloc = true;
1666 relocation = 0;
1667 }
1668 else
1669 relocation = (h->root.u.def.value
1670 + sec->output_section->vma
1671 + sec->output_offset);
1672 }
1673 else if (h->root.type == bfd_link_hash_undefweak)
1674 relocation = 0;
1675 else if (info->shared
1676 && (!info->symbolic || info->allow_shlib_undefined)
1677 && !info->no_undefined
1678 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1679 relocation = 0;
1680 else
1681 {
1682 if (! ((*info->callbacks->undefined_symbol)
1683 (info, h->root.root.string, input_bfd,
1684 input_section, rel->r_offset,
1685 (!info->shared || info->no_undefined
1686 || ELF_ST_VISIBILITY (h->other)))))
1687 return false;
1688 relocation = 0;
1689 }
1690 }
1691
1692 switch (r_type)
1693 {
1694 case R_390_GOT12:
1695 case R_390_GOT16:
1696 case R_390_GOT32:
1697 case R_390_GOT64:
1698 case R_390_GOTENT:
1699 /* Relocation is to the entry for this symbol in the global
1700 offset table. */
1701 if (htab->sgot == NULL)
1702 abort ();
1703
1704 if (h != NULL)
1705 {
1706 boolean dyn;
1707
1708 off = h->got.offset;
1709 dyn = htab->elf.dynamic_sections_created;
1710 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h)
1711 || (info->shared
1712 && (info->symbolic
1713 || h->dynindx == -1
1714 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
1715 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1716 {
1717 /* This is actually a static link, or it is a
1718 -Bsymbolic link and the symbol is defined
1719 locally, or the symbol was forced to be local
1720 because of a version file. We must initialize
1721 this entry in the global offset table. Since the
1722 offset must always be a multiple of 2, we use the
1723 least significant bit to record whether we have
1724 initialized it already.
1725
1726 When doing a dynamic link, we create a .rel.got
1727 relocation entry to initialize the value. This
1728 is done in the finish_dynamic_symbol routine. */
1729 if ((off & 1) != 0)
1730 off &= ~1;
1731 else
1732 {
1733 bfd_put_64 (output_bfd, relocation,
1734 htab->sgot->contents + off);
1735 h->got.offset |= 1;
1736 }
1737 }
1738 else
1739 unresolved_reloc = false;
1740 }
1741 else
1742 {
1743 if (local_got_offsets == NULL)
1744 abort ();
1745
1746 off = local_got_offsets[r_symndx];
1747
1748 /* The offset must always be a multiple of 8. We use
1749 the least significant bit to record whether we have
1750 already generated the necessary reloc. */
1751 if ((off & 1) != 0)
1752 off &= ~1;
1753 else
1754 {
1755 bfd_put_64 (output_bfd, relocation,
1756 htab->sgot->contents + off);
1757
1758 if (info->shared)
1759 {
1760 asection *srelgot;
1761 Elf_Internal_Rela outrel;
1762 Elf64_External_Rela *loc;
1763
1764 srelgot = htab->srelgot;
1765 if (srelgot == NULL)
1766 abort ();
1767
1768 outrel.r_offset = (htab->sgot->output_section->vma
1769 + htab->sgot->output_offset
1770 + off);
1771 outrel.r_info = ELF64_R_INFO (0, R_390_RELATIVE);
1772 outrel.r_addend = relocation;
1773 loc = (Elf64_External_Rela *) srelgot->contents;
1774 loc += srelgot->reloc_count++;
1775 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
1776 }
1777
1778 local_got_offsets[r_symndx] |= 1;
1779 }
1780 }
1781
1782 if (off >= (bfd_vma) -2)
1783 abort ();
1784
1785 relocation = htab->sgot->output_offset + off;
1786
1787 /*
1788 * For @GOTENT the relocation is against the offset between
1789 * the instruction and the symbols entry in the GOT and not
1790 * between the start of the GOT and the symbols entry. We
1791 * add the vma of the GOT to get the correct value.
1792 */
1793 if (r_type == R_390_GOTENT)
1794 relocation += htab->sgot->output_section->vma;
1795
1796 break;
1797
1798 case R_390_GOTOFF:
1799 /* Relocation is relative to the start of the global offset
1800 table. */
1801
1802 /* Note that sgot->output_offset is not involved in this
1803 calculation. We always want the start of .got. If we
1804 defined _GLOBAL_OFFSET_TABLE in a different way, as is
1805 permitted by the ABI, we might have to change this
1806 calculation. */
1807 relocation -= htab->sgot->output_section->vma;
1808
1809 break;
1810
1811 case R_390_GOTPC:
1812 case R_390_GOTPCDBL:
1813 /* Use global offset table as symbol value. */
1814 relocation = htab->sgot->output_section->vma;
1815 unresolved_reloc = false;
1816 break;
1817
1818 case R_390_PLT16DBL:
1819 case R_390_PLT32:
1820 case R_390_PLT32DBL:
1821 case R_390_PLT64:
1822 /* Relocation is to the entry for this symbol in the
1823 procedure linkage table. */
1824
1825 /* Resolve a PLT32 reloc against a local symbol directly,
1826 without using the procedure linkage table. */
1827 if (h == NULL)
1828 break;
1829
1830 if (h->plt.offset == (bfd_vma) -1
1831 || htab->splt == NULL)
1832 {
1833 /* We didn't make a PLT entry for this symbol. This
1834 happens when statically linking PIC code, or when
1835 using -Bsymbolic. */
1836 break;
1837 }
1838
1839 relocation = (htab->splt->output_section->vma
1840 + htab->splt->output_offset
1841 + h->plt.offset);
1842 unresolved_reloc = false;
1843 break;
1844
1845 case R_390_8:
1846 case R_390_16:
1847 case R_390_32:
1848 case R_390_64:
1849 case R_390_PC16:
1850 case R_390_PC16DBL:
1851 case R_390_PC32:
1852 case R_390_PC32DBL:
1853 case R_390_PC64:
1854 /* r_symndx will be zero only for relocs against symbols
1855 from removed linkonce sections, or sections discarded by
1856 a linker script. */
1857 if (r_symndx == 0
1858 || (input_section->flags & SEC_ALLOC) == 0)
1859 break;
1860
1861 if ((info->shared
1862 && ((r_type != R_390_PC16
1863 && r_type != R_390_PC16DBL
1864 && r_type != R_390_PC32
1865 && r_type != R_390_PC32DBL
1866 && r_type != R_390_PC64)
1867 || (h != NULL
1868 && h->dynindx != -1
1869 && (! info->symbolic
1870 || (h->elf_link_hash_flags
1871 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1872 || (!info->shared
1873 && h != NULL
1874 && h->dynindx != -1
1875 && (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1876 && (((h->elf_link_hash_flags
1877 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1878 && (h->elf_link_hash_flags
1879 & ELF_LINK_HASH_DEF_REGULAR) == 0)
1880 || h->root.type == bfd_link_hash_undefweak
1881 || h->root.type == bfd_link_hash_undefined)))
1882 {
1883 Elf_Internal_Rela outrel;
1884 boolean skip, relocate;
1885 asection *sreloc;
1886 Elf64_External_Rela *loc;
1887
1888 /* When generating a shared object, these relocations
1889 are copied into the output file to be resolved at run
1890 time. */
1891
1892 skip = false;
1893
1894 if (elf_section_data (input_section)->stab_info == NULL)
1895 outrel.r_offset = rel->r_offset;
1896 else
1897 {
1898 off = (_bfd_stab_section_offset
1899 (output_bfd, htab->elf.stab_info, input_section,
1900 &elf_section_data (input_section)->stab_info,
1901 rel->r_offset));
1902 if (off == (bfd_vma) -1)
1903 skip = true;
1904 outrel.r_offset = off;
1905 }
1906
1907 outrel.r_offset += (input_section->output_section->vma
1908 + input_section->output_offset);
1909
1910 if (skip)
1911 {
1912 memset (&outrel, 0, sizeof outrel);
1913 relocate = false;
1914 }
1915 else if (h != NULL
1916 && h->dynindx != -1
1917 && (r_type == R_390_PC16
1918 || r_type == R_390_PC16DBL
1919 || r_type == R_390_PC32
1920 || r_type == R_390_PC32DBL
1921 || r_type == R_390_PC64
1922 || !info->shared
1923 || !info->symbolic
1924 || (h->elf_link_hash_flags
1925 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1926 {
1927 relocate = false;
1928 outrel.r_info = ELF64_R_INFO (h->dynindx, r_type);
1929 outrel.r_addend = rel->r_addend;
1930 }
1931 else
1932 {
1933 /* This symbol is local, or marked to become local. */
1934 relocate = true;
1935 outrel.r_info = ELF64_R_INFO (0, R_390_RELATIVE);
1936 outrel.r_addend = relocation + rel->r_addend;
1937 }
1938
1939 sreloc = elf_section_data (input_section)->sreloc;
1940 if (sreloc == NULL)
1941 abort ();
1942
1943 loc = (Elf64_External_Rela *) sreloc->contents;
1944 loc += sreloc->reloc_count++;
1945 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
1946
1947 /* If this reloc is against an external symbol, we do
1948 not want to fiddle with the addend. Otherwise, we
1949 need to include the symbol value so that it becomes
1950 an addend for the dynamic reloc. */
1951 if (! relocate)
1952 continue;
1953 }
1954
1955 break;
1956
1957 default:
1958 break;
1959 }
1960
1961 if (unresolved_reloc
1962 && !(info->shared
1963 && (input_section->flags & SEC_DEBUGGING) != 0
1964 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
1965 (*_bfd_error_handler)
1966 (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
1967 bfd_archive_filename (input_bfd),
1968 bfd_get_section_name (input_bfd, input_section),
1969 (long) rel->r_offset,
1970 h->root.root.string);
1971
1972 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1973 contents, rel->r_offset,
1974 relocation, rel->r_addend);
1975
1976 if (r != bfd_reloc_ok)
1977 {
1978 const char *name;
1979
1980 if (h != NULL)
1981 name = h->root.root.string;
1982 else
1983 {
1984 name = bfd_elf_string_from_elf_section (input_bfd,
1985 symtab_hdr->sh_link,
1986 sym->st_name);
1987 if (name == NULL)
1988 return false;
1989 if (*name == '\0')
1990 name = bfd_section_name (input_bfd, sec);
1991 }
1992
1993 if (r == bfd_reloc_overflow)
1994 {
1995
1996 if (! ((*info->callbacks->reloc_overflow)
1997 (info, name, howto->name, (bfd_vma) 0,
1998 input_bfd, input_section, rel->r_offset)))
1999 return false;
2000 }
2001 else
2002 {
2003 (*_bfd_error_handler)
2004 (_("%s(%s+0x%lx): reloc against `%s': error %d"),
2005 bfd_archive_filename (input_bfd),
2006 bfd_get_section_name (input_bfd, input_section),
2007 (long) rel->r_offset, name, (int) r);
2008 return false;
2009 }
2010 }
2011 }
2012
2013 return true;
2014 }
2015
2016 /* Finish up dynamic symbol handling. We set the contents of various
2017 dynamic sections here. */
2018
2019 static boolean
2020 elf_s390_finish_dynamic_symbol (output_bfd, info, h, sym)
2021 bfd *output_bfd;
2022 struct bfd_link_info *info;
2023 struct elf_link_hash_entry *h;
2024 Elf_Internal_Sym *sym;
2025 {
2026 struct elf_s390_link_hash_table *htab;
2027
2028 htab = elf_s390_hash_table (info);
2029
2030 if (h->plt.offset != (bfd_vma) -1)
2031 {
2032 bfd_vma plt_index;
2033 bfd_vma got_offset;
2034 Elf_Internal_Rela rela;
2035 Elf64_External_Rela *loc;
2036
2037 /* This symbol has an entry in the procedure linkage table. Set
2038 it up. */
2039
2040 if (h->dynindx == -1
2041 || htab->splt == NULL
2042 || htab->sgotplt == NULL
2043 || htab->srelplt == NULL)
2044 abort ();
2045
2046 /* Calc. index no.
2047 Current offset - size first entry / entry size. */
2048 plt_index = (h->plt.offset - PLT_FIRST_ENTRY_SIZE) / PLT_ENTRY_SIZE;
2049
2050 /* Offset in GOT is PLT index plus GOT headers(3) times 8,
2051 addr & GOT addr. */
2052 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
2053
2054 /* Fill in the blueprint of a PLT. */
2055 bfd_put_32 (output_bfd, (bfd_vma) PLT_ENTRY_WORD0,
2056 htab->splt->contents + h->plt.offset);
2057 bfd_put_32 (output_bfd, (bfd_vma) PLT_ENTRY_WORD1,
2058 htab->splt->contents + h->plt.offset + 4);
2059 bfd_put_32 (output_bfd, (bfd_vma) PLT_ENTRY_WORD2,
2060 htab->splt->contents + h->plt.offset + 8);
2061 bfd_put_32 (output_bfd, (bfd_vma) PLT_ENTRY_WORD3,
2062 htab->splt->contents + h->plt.offset + 12);
2063 bfd_put_32 (output_bfd, (bfd_vma) PLT_ENTRY_WORD4,
2064 htab->splt->contents + h->plt.offset + 16);
2065 bfd_put_32 (output_bfd, (bfd_vma) PLT_ENTRY_WORD5,
2066 htab->splt->contents + h->plt.offset + 20);
2067 bfd_put_32 (output_bfd, (bfd_vma) PLT_ENTRY_WORD6,
2068 htab->splt->contents + h->plt.offset + 24);
2069 bfd_put_32 (output_bfd, (bfd_vma) PLT_ENTRY_WORD7,
2070 htab->splt->contents + h->plt.offset + 28);
2071 /* Fixup the relative address to the GOT entry */
2072 bfd_put_32 (output_bfd,
2073 (htab->sgotplt->output_section->vma +
2074 htab->sgotplt->output_offset + got_offset
2075 - (htab->splt->output_section->vma + h->plt.offset))/2,
2076 htab->splt->contents + h->plt.offset + 2);
2077 /* Fixup the relative branch to PLT 0 */
2078 bfd_put_32 (output_bfd, - (PLT_FIRST_ENTRY_SIZE +
2079 (PLT_ENTRY_SIZE * plt_index) + 22)/2,
2080 htab->splt->contents + h->plt.offset + 24);
2081 /* Fixup offset into symbol table */
2082 bfd_put_32 (output_bfd, plt_index * sizeof (Elf64_External_Rela),
2083 htab->splt->contents + h->plt.offset + 28);
2084
2085 /* Fill in the entry in the global offset table.
2086 Points to instruction after GOT offset. */
2087 bfd_put_64 (output_bfd,
2088 (htab->splt->output_section->vma
2089 + htab->splt->output_offset
2090 + h->plt.offset
2091 + 14),
2092 htab->sgotplt->contents + got_offset);
2093
2094 /* Fill in the entry in the .rela.plt section. */
2095 rela.r_offset = (htab->sgotplt->output_section->vma
2096 + htab->sgotplt->output_offset
2097 + got_offset);
2098 rela.r_info = ELF64_R_INFO (h->dynindx, R_390_JMP_SLOT);
2099 rela.r_addend = 0;
2100 loc = (Elf64_External_Rela *) htab->srelplt->contents + plt_index;
2101 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2102
2103 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2104 {
2105 /* Mark the symbol as undefined, rather than as defined in
2106 the .plt section. Leave the value alone. This is a clue
2107 for the dynamic linker, to make function pointer
2108 comparisons work between an application and shared
2109 library. */
2110 sym->st_shndx = SHN_UNDEF;
2111 }
2112 }
2113
2114 if (h->got.offset != (bfd_vma) -1)
2115 {
2116 Elf_Internal_Rela rela;
2117 Elf64_External_Rela *loc;
2118
2119 /* This symbol has an entry in the global offset table. Set it
2120 up. */
2121
2122 if (htab->sgot == NULL || htab->srelgot == NULL)
2123 abort ();
2124
2125 rela.r_offset = (htab->sgot->output_section->vma
2126 + htab->sgot->output_offset
2127 + (h->got.offset &~ (bfd_vma) 1));
2128
2129 /* If this is a static link, or it is a -Bsymbolic link and the
2130 symbol is defined locally or was forced to be local because
2131 of a version file, we just want to emit a RELATIVE reloc.
2132 The entry in the global offset table will already have been
2133 initialized in the relocate_section function. */
2134 if (info->shared
2135 && (info->symbolic
2136 || h->dynindx == -1
2137 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
2138 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2139 {
2140 BFD_ASSERT((h->got.offset & 1) != 0);
2141 rela.r_info = ELF64_R_INFO (0, R_390_RELATIVE);
2142 rela.r_addend = (h->root.u.def.value
2143 + h->root.u.def.section->output_section->vma
2144 + h->root.u.def.section->output_offset);
2145 }
2146 else
2147 {
2148 BFD_ASSERT((h->got.offset & 1) == 0);
2149 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgot->contents + h->got.offset);
2150 rela.r_info = ELF64_R_INFO (h->dynindx, R_390_GLOB_DAT);
2151 rela.r_addend = 0;
2152 }
2153
2154 loc = (Elf64_External_Rela *) htab->srelgot->contents;
2155 loc += htab->srelgot->reloc_count++;
2156 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2157 }
2158
2159 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2160 {
2161 Elf_Internal_Rela rela;
2162 Elf64_External_Rela *loc;
2163
2164 /* This symbols needs a copy reloc. Set it up. */
2165
2166 if (h->dynindx == -1
2167 || (h->root.type != bfd_link_hash_defined
2168 && h->root.type != bfd_link_hash_defweak)
2169 || htab->srelbss == NULL)
2170 abort ();
2171
2172 rela.r_offset = (h->root.u.def.value
2173 + h->root.u.def.section->output_section->vma
2174 + h->root.u.def.section->output_offset);
2175 rela.r_info = ELF64_R_INFO (h->dynindx, R_390_COPY);
2176 rela.r_addend = 0;
2177 loc = (Elf64_External_Rela *) htab->srelbss->contents;
2178 loc += htab->srelbss->reloc_count++;
2179 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2180 }
2181
2182 /* Mark some specially defined symbols as absolute. */
2183 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2184 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
2185 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2186 sym->st_shndx = SHN_ABS;
2187
2188 return true;
2189 }
2190
2191 /* Used to decide how to sort relocs in an optimal manner for the
2192 dynamic linker, before writing them out. */
2193
2194 static enum elf_reloc_type_class
2195 elf_s390_reloc_type_class (rela)
2196 const Elf_Internal_Rela *rela;
2197 {
2198 switch ((int) ELF64_R_TYPE (rela->r_info))
2199 {
2200 case R_390_RELATIVE:
2201 return reloc_class_relative;
2202 case R_390_JMP_SLOT:
2203 return reloc_class_plt;
2204 case R_390_COPY:
2205 return reloc_class_copy;
2206 default:
2207 return reloc_class_normal;
2208 }
2209 }
2210
2211 /* Finish up the dynamic sections. */
2212
2213 static boolean
2214 elf_s390_finish_dynamic_sections (output_bfd, info)
2215 bfd *output_bfd;
2216 struct bfd_link_info *info;
2217 {
2218 struct elf_s390_link_hash_table *htab;
2219 bfd *dynobj;
2220 asection *sdyn;
2221
2222 htab = elf_s390_hash_table (info);
2223 dynobj = htab->elf.dynobj;
2224 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2225
2226 if (htab->elf.dynamic_sections_created)
2227 {
2228 Elf64_External_Dyn *dyncon, *dynconend;
2229
2230 if (sdyn == NULL || htab->sgot == NULL)
2231 abort ();
2232
2233 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2234 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2235 for (; dyncon < dynconend; dyncon++)
2236 {
2237 Elf_Internal_Dyn dyn;
2238 asection *s;
2239
2240 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2241
2242 switch (dyn.d_tag)
2243 {
2244 default:
2245 continue;
2246
2247 case DT_PLTGOT:
2248 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
2249 break;
2250
2251 case DT_JMPREL:
2252 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
2253 break;
2254
2255 case DT_PLTRELSZ:
2256 s = htab->srelplt->output_section;
2257 if (s->_cooked_size != 0)
2258 dyn.d_un.d_val = s->_cooked_size;
2259 else
2260 dyn.d_un.d_val = s->_raw_size;
2261 break;
2262
2263 case DT_RELASZ:
2264 /* The procedure linkage table relocs (DT_JMPREL) should
2265 not be included in the overall relocs (DT_RELA).
2266 Therefore, we override the DT_RELASZ entry here to
2267 make it not include the JMPREL relocs. Since the
2268 linker script arranges for .rela.plt to follow all
2269 other relocation sections, we don't have to worry
2270 about changing the DT_RELA entry. */
2271 s = htab->srelplt->output_section;
2272 if (s->_cooked_size != 0)
2273 dyn.d_un.d_val -= s->_cooked_size;
2274 else
2275 dyn.d_un.d_val -= s->_raw_size;
2276 break;
2277 }
2278
2279 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2280 }
2281
2282 /* Fill in the special first entry in the procedure linkage table. */
2283 if (htab->splt && htab->splt->_raw_size > 0)
2284 {
2285 /* fill in blueprint for plt 0 entry */
2286 bfd_put_32 (output_bfd, (bfd_vma) PLT_FIRST_ENTRY_WORD0,
2287 htab->splt->contents );
2288 bfd_put_32 (output_bfd, (bfd_vma) PLT_FIRST_ENTRY_WORD1,
2289 htab->splt->contents +4 );
2290 bfd_put_32 (output_bfd, (bfd_vma) PLT_FIRST_ENTRY_WORD3,
2291 htab->splt->contents +12 );
2292 bfd_put_32 (output_bfd, (bfd_vma) PLT_FIRST_ENTRY_WORD4,
2293 htab->splt->contents +16 );
2294 bfd_put_32 (output_bfd, (bfd_vma) PLT_FIRST_ENTRY_WORD5,
2295 htab->splt->contents +20 );
2296 bfd_put_32 (output_bfd, (bfd_vma) PLT_FIRST_ENTRY_WORD6,
2297 htab->splt->contents + 24);
2298 bfd_put_32 (output_bfd, (bfd_vma) PLT_FIRST_ENTRY_WORD7,
2299 htab->splt->contents + 28 );
2300 /* Fixup relative address to start of GOT */
2301 bfd_put_32 (output_bfd,
2302 (htab->sgotplt->output_section->vma +
2303 htab->sgotplt->output_offset
2304 - htab->splt->output_section->vma - 6)/2,
2305 htab->splt->contents + 8);
2306 }
2307 elf_section_data (htab->splt->output_section)
2308 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
2309 }
2310
2311 if (htab->sgotplt)
2312 {
2313 /* Fill in the first three entries in the global offset table. */
2314 if (htab->sgotplt->_raw_size > 0)
2315 {
2316 bfd_put_64 (output_bfd,
2317 (sdyn == NULL ? (bfd_vma) 0
2318 : sdyn->output_section->vma + sdyn->output_offset),
2319 htab->sgotplt->contents);
2320 /* One entry for shared object struct ptr. */
2321 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 8);
2322 /* One entry for _dl_runtime_resolve. */
2323 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 12);
2324 }
2325
2326 elf_section_data (htab->sgot->output_section)
2327 ->this_hdr.sh_entsize = 8;
2328 }
2329 return true;
2330 }
2331
2332 static boolean
2333 elf_s390_object_p (abfd)
2334 bfd *abfd;
2335 {
2336 return bfd_default_set_arch_mach (abfd, bfd_arch_s390, bfd_mach_s390_esame);
2337 }
2338
2339 /*
2340 * Why was the hash table entry size definition changed from
2341 * ARCH_SIZE/8 to 4? This breaks the 64 bit dynamic linker and
2342 * this is the only reason for the s390_elf64_size_info structure.
2343 */
2344
2345 const struct elf_size_info s390_elf64_size_info =
2346 {
2347 sizeof (Elf64_External_Ehdr),
2348 sizeof (Elf64_External_Phdr),
2349 sizeof (Elf64_External_Shdr),
2350 sizeof (Elf64_External_Rel),
2351 sizeof (Elf64_External_Rela),
2352 sizeof (Elf64_External_Sym),
2353 sizeof (Elf64_External_Dyn),
2354 sizeof (Elf_External_Note),
2355 8, /* hash-table entry size */
2356 1, /* internal relocations per external relocations */
2357 64, /* arch_size */
2358 8, /* file_align */
2359 ELFCLASS64, EV_CURRENT,
2360 bfd_elf64_write_out_phdrs,
2361 bfd_elf64_write_shdrs_and_ehdr,
2362 bfd_elf64_write_relocs,
2363 bfd_elf64_swap_symbol_out,
2364 bfd_elf64_slurp_reloc_table,
2365 bfd_elf64_slurp_symbol_table,
2366 bfd_elf64_swap_dyn_in,
2367 bfd_elf64_swap_dyn_out,
2368 NULL,
2369 NULL,
2370 NULL,
2371 NULL
2372 };
2373
2374 #define TARGET_BIG_SYM bfd_elf64_s390_vec
2375 #define TARGET_BIG_NAME "elf64-s390"
2376 #define ELF_ARCH bfd_arch_s390
2377 #define ELF_MACHINE_CODE EM_S390
2378 #define ELF_MACHINE_ALT1 EM_S390_OLD
2379 #define ELF_MAXPAGESIZE 0x1000
2380
2381 #define elf_backend_size_info s390_elf64_size_info
2382
2383 #define elf_backend_can_gc_sections 1
2384 #define elf_backend_can_refcount 1
2385 #define elf_backend_want_got_plt 1
2386 #define elf_backend_plt_readonly 1
2387 #define elf_backend_want_plt_sym 0
2388 #define elf_backend_got_header_size 24
2389 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
2390
2391 #define elf_info_to_howto elf_s390_info_to_howto
2392
2393 #define bfd_elf64_bfd_is_local_label_name elf_s390_is_local_label_name
2394 #define bfd_elf64_bfd_link_hash_table_create elf_s390_link_hash_table_create
2395 #define bfd_elf64_bfd_reloc_type_lookup elf_s390_reloc_type_lookup
2396
2397 #define elf_backend_adjust_dynamic_symbol elf_s390_adjust_dynamic_symbol
2398 #define elf_backend_check_relocs elf_s390_check_relocs
2399 #define elf_backend_copy_indirect_symbol elf_s390_copy_indirect_symbol
2400 #define elf_backend_create_dynamic_sections elf_s390_create_dynamic_sections
2401 #define elf_backend_finish_dynamic_sections elf_s390_finish_dynamic_sections
2402 #define elf_backend_finish_dynamic_symbol elf_s390_finish_dynamic_symbol
2403 #define elf_backend_gc_mark_hook elf_s390_gc_mark_hook
2404 #define elf_backend_gc_sweep_hook elf_s390_gc_sweep_hook
2405 #define elf_backend_reloc_type_class elf_s390_reloc_type_class
2406 #define elf_backend_relocate_section elf_s390_relocate_section
2407 #define elf_backend_size_dynamic_sections elf_s390_size_dynamic_sections
2408 #define elf_backend_reloc_type_class elf_s390_reloc_type_class
2409
2410 #define elf_backend_object_p elf_s390_object_p
2411
2412 #include "elf64-target.h"