bfd/
[binutils-gdb.git] / bfd / elf64-sparc.c
1 /* SPARC-specific support for 64-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "elf/sparc.h"
27 #include "opcode/sparc.h"
28 #include "elfxx-sparc.h"
29
30 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
31 #define MINUS_ONE (~ (bfd_vma) 0)
32
33 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
34 section can represent up to two relocs, we must tell the user to allocate
35 more space. */
36
37 static long
38 elf64_sparc_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED, asection *sec)
39 {
40 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
41 }
42
43 static long
44 elf64_sparc_get_dynamic_reloc_upper_bound (bfd *abfd)
45 {
46 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
47 }
48
49 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
50 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
51 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
52 for the same location, R_SPARC_LO10 and R_SPARC_13. */
53
54 static bfd_boolean
55 elf64_sparc_slurp_one_reloc_table (bfd *abfd, asection *asect,
56 Elf_Internal_Shdr *rel_hdr,
57 asymbol **symbols, bfd_boolean dynamic)
58 {
59 PTR allocated = NULL;
60 bfd_byte *native_relocs;
61 arelent *relent;
62 unsigned int i;
63 int entsize;
64 bfd_size_type count;
65 arelent *relents;
66
67 allocated = (PTR) bfd_malloc (rel_hdr->sh_size);
68 if (allocated == NULL)
69 goto error_return;
70
71 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
72 || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
73 goto error_return;
74
75 native_relocs = (bfd_byte *) allocated;
76
77 relents = asect->relocation + canon_reloc_count (asect);
78
79 entsize = rel_hdr->sh_entsize;
80 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
81
82 count = rel_hdr->sh_size / entsize;
83
84 for (i = 0, relent = relents; i < count;
85 i++, relent++, native_relocs += entsize)
86 {
87 Elf_Internal_Rela rela;
88 unsigned int r_type;
89
90 bfd_elf64_swap_reloca_in (abfd, native_relocs, &rela);
91
92 /* The address of an ELF reloc is section relative for an object
93 file, and absolute for an executable file or shared library.
94 The address of a normal BFD reloc is always section relative,
95 and the address of a dynamic reloc is absolute.. */
96 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
97 relent->address = rela.r_offset;
98 else
99 relent->address = rela.r_offset - asect->vma;
100
101 if (ELF64_R_SYM (rela.r_info) == 0)
102 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
103 else
104 {
105 asymbol **ps, *s;
106
107 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
108 s = *ps;
109
110 /* Canonicalize ELF section symbols. FIXME: Why? */
111 if ((s->flags & BSF_SECTION_SYM) == 0)
112 relent->sym_ptr_ptr = ps;
113 else
114 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
115 }
116
117 relent->addend = rela.r_addend;
118
119 r_type = ELF64_R_TYPE_ID (rela.r_info);
120 if (r_type == R_SPARC_OLO10)
121 {
122 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (R_SPARC_LO10);
123 relent[1].address = relent->address;
124 relent++;
125 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
126 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
127 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (R_SPARC_13);
128 }
129 else
130 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (r_type);
131 }
132
133 canon_reloc_count (asect) += relent - relents;
134
135 if (allocated != NULL)
136 free (allocated);
137
138 return TRUE;
139
140 error_return:
141 if (allocated != NULL)
142 free (allocated);
143 return FALSE;
144 }
145
146 /* Read in and swap the external relocs. */
147
148 static bfd_boolean
149 elf64_sparc_slurp_reloc_table (bfd *abfd, asection *asect,
150 asymbol **symbols, bfd_boolean dynamic)
151 {
152 struct bfd_elf_section_data * const d = elf_section_data (asect);
153 Elf_Internal_Shdr *rel_hdr;
154 Elf_Internal_Shdr *rel_hdr2;
155 bfd_size_type amt;
156
157 if (asect->relocation != NULL)
158 return TRUE;
159
160 if (! dynamic)
161 {
162 if ((asect->flags & SEC_RELOC) == 0
163 || asect->reloc_count == 0)
164 return TRUE;
165
166 rel_hdr = &d->rel_hdr;
167 rel_hdr2 = d->rel_hdr2;
168
169 BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
170 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
171 }
172 else
173 {
174 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
175 case because relocations against this section may use the
176 dynamic symbol table, and in that case bfd_section_from_shdr
177 in elf.c does not update the RELOC_COUNT. */
178 if (asect->size == 0)
179 return TRUE;
180
181 rel_hdr = &d->this_hdr;
182 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
183 rel_hdr2 = NULL;
184 }
185
186 amt = asect->reloc_count;
187 amt *= 2 * sizeof (arelent);
188 asect->relocation = (arelent *) bfd_alloc (abfd, amt);
189 if (asect->relocation == NULL)
190 return FALSE;
191
192 /* The elf64_sparc_slurp_one_reloc_table routine increments
193 canon_reloc_count. */
194 canon_reloc_count (asect) = 0;
195
196 if (!elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
197 dynamic))
198 return FALSE;
199
200 if (rel_hdr2
201 && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
202 dynamic))
203 return FALSE;
204
205 return TRUE;
206 }
207
208 /* Canonicalize the relocs. */
209
210 static long
211 elf64_sparc_canonicalize_reloc (bfd *abfd, sec_ptr section,
212 arelent **relptr, asymbol **symbols)
213 {
214 arelent *tblptr;
215 unsigned int i;
216 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
217
218 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
219 return -1;
220
221 tblptr = section->relocation;
222 for (i = 0; i < canon_reloc_count (section); i++)
223 *relptr++ = tblptr++;
224
225 *relptr = NULL;
226
227 return canon_reloc_count (section);
228 }
229
230
231 /* Canonicalize the dynamic relocation entries. Note that we return
232 the dynamic relocations as a single block, although they are
233 actually associated with particular sections; the interface, which
234 was designed for SunOS style shared libraries, expects that there
235 is only one set of dynamic relocs. Any section that was actually
236 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
237 the dynamic symbol table, is considered to be a dynamic reloc
238 section. */
239
240 static long
241 elf64_sparc_canonicalize_dynamic_reloc (bfd *abfd, arelent **storage,
242 asymbol **syms)
243 {
244 asection *s;
245 long ret;
246
247 if (elf_dynsymtab (abfd) == 0)
248 {
249 bfd_set_error (bfd_error_invalid_operation);
250 return -1;
251 }
252
253 ret = 0;
254 for (s = abfd->sections; s != NULL; s = s->next)
255 {
256 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
257 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
258 {
259 arelent *p;
260 long count, i;
261
262 if (! elf64_sparc_slurp_reloc_table (abfd, s, syms, TRUE))
263 return -1;
264 count = canon_reloc_count (s);
265 p = s->relocation;
266 for (i = 0; i < count; i++)
267 *storage++ = p++;
268 ret += count;
269 }
270 }
271
272 *storage = NULL;
273
274 return ret;
275 }
276
277 /* Write out the relocs. */
278
279 static void
280 elf64_sparc_write_relocs (bfd *abfd, asection *sec, PTR data)
281 {
282 bfd_boolean *failedp = (bfd_boolean *) data;
283 Elf_Internal_Shdr *rela_hdr;
284 bfd_vma addr_offset;
285 Elf64_External_Rela *outbound_relocas, *src_rela;
286 unsigned int idx, count;
287 asymbol *last_sym = 0;
288 int last_sym_idx = 0;
289
290 /* If we have already failed, don't do anything. */
291 if (*failedp)
292 return;
293
294 if ((sec->flags & SEC_RELOC) == 0)
295 return;
296
297 /* The linker backend writes the relocs out itself, and sets the
298 reloc_count field to zero to inhibit writing them here. Also,
299 sometimes the SEC_RELOC flag gets set even when there aren't any
300 relocs. */
301 if (sec->reloc_count == 0)
302 return;
303
304 /* We can combine two relocs that refer to the same address
305 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
306 latter is R_SPARC_13 with no associated symbol. */
307 count = 0;
308 for (idx = 0; idx < sec->reloc_count; idx++)
309 {
310 bfd_vma addr;
311
312 ++count;
313
314 addr = sec->orelocation[idx]->address;
315 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
316 && idx < sec->reloc_count - 1)
317 {
318 arelent *r = sec->orelocation[idx + 1];
319
320 if (r->howto->type == R_SPARC_13
321 && r->address == addr
322 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
323 && (*r->sym_ptr_ptr)->value == 0)
324 ++idx;
325 }
326 }
327
328 rela_hdr = &elf_section_data (sec)->rel_hdr;
329
330 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
331 rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
332 if (rela_hdr->contents == NULL)
333 {
334 *failedp = TRUE;
335 return;
336 }
337
338 /* Figure out whether the relocations are RELA or REL relocations. */
339 if (rela_hdr->sh_type != SHT_RELA)
340 abort ();
341
342 /* The address of an ELF reloc is section relative for an object
343 file, and absolute for an executable file or shared library.
344 The address of a BFD reloc is always section relative. */
345 addr_offset = 0;
346 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
347 addr_offset = sec->vma;
348
349 /* orelocation has the data, reloc_count has the count... */
350 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
351 src_rela = outbound_relocas;
352
353 for (idx = 0; idx < sec->reloc_count; idx++)
354 {
355 Elf_Internal_Rela dst_rela;
356 arelent *ptr;
357 asymbol *sym;
358 int n;
359
360 ptr = sec->orelocation[idx];
361 sym = *ptr->sym_ptr_ptr;
362 if (sym == last_sym)
363 n = last_sym_idx;
364 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
365 n = STN_UNDEF;
366 else
367 {
368 last_sym = sym;
369 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
370 if (n < 0)
371 {
372 *failedp = TRUE;
373 return;
374 }
375 last_sym_idx = n;
376 }
377
378 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
379 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
380 && ! _bfd_elf_validate_reloc (abfd, ptr))
381 {
382 *failedp = TRUE;
383 return;
384 }
385
386 if (ptr->howto->type == R_SPARC_LO10
387 && idx < sec->reloc_count - 1)
388 {
389 arelent *r = sec->orelocation[idx + 1];
390
391 if (r->howto->type == R_SPARC_13
392 && r->address == ptr->address
393 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
394 && (*r->sym_ptr_ptr)->value == 0)
395 {
396 idx++;
397 dst_rela.r_info
398 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
399 R_SPARC_OLO10));
400 }
401 else
402 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
403 }
404 else
405 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
406
407 dst_rela.r_offset = ptr->address + addr_offset;
408 dst_rela.r_addend = ptr->addend;
409
410 bfd_elf64_swap_reloca_out (abfd, &dst_rela, (bfd_byte *) src_rela);
411 ++src_rela;
412 }
413 }
414 \f
415 /* Hook called by the linker routine which adds symbols from an object
416 file. We use it for STT_REGISTER symbols. */
417
418 static bfd_boolean
419 elf64_sparc_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
420 Elf_Internal_Sym *sym, const char **namep,
421 flagword *flagsp ATTRIBUTE_UNUSED,
422 asection **secp ATTRIBUTE_UNUSED,
423 bfd_vma *valp ATTRIBUTE_UNUSED)
424 {
425 static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
426
427 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
428 elf_tdata (info->output_bfd)->has_ifunc_symbols = TRUE;
429
430 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
431 {
432 int reg;
433 struct _bfd_sparc_elf_app_reg *p;
434
435 reg = (int)sym->st_value;
436 switch (reg & ~1)
437 {
438 case 2: reg -= 2; break;
439 case 6: reg -= 4; break;
440 default:
441 (*_bfd_error_handler)
442 (_("%B: Only registers %%g[2367] can be declared using STT_REGISTER"),
443 abfd);
444 return FALSE;
445 }
446
447 if (info->output_bfd->xvec != abfd->xvec
448 || (abfd->flags & DYNAMIC) != 0)
449 {
450 /* STT_REGISTER only works when linking an elf64_sparc object.
451 If STT_REGISTER comes from a dynamic object, don't put it into
452 the output bfd. The dynamic linker will recheck it. */
453 *namep = NULL;
454 return TRUE;
455 }
456
457 p = _bfd_sparc_elf_hash_table(info)->app_regs + reg;
458
459 if (p->name != NULL && strcmp (p->name, *namep))
460 {
461 (*_bfd_error_handler)
462 (_("Register %%g%d used incompatibly: %s in %B, previously %s in %B"),
463 abfd, p->abfd, (int) sym->st_value,
464 **namep ? *namep : "#scratch",
465 *p->name ? p->name : "#scratch");
466 return FALSE;
467 }
468
469 if (p->name == NULL)
470 {
471 if (**namep)
472 {
473 struct elf_link_hash_entry *h;
474
475 h = (struct elf_link_hash_entry *)
476 bfd_link_hash_lookup (info->hash, *namep, FALSE, FALSE, FALSE);
477
478 if (h != NULL)
479 {
480 unsigned char type = h->type;
481
482 if (type > STT_FUNC)
483 type = 0;
484 (*_bfd_error_handler)
485 (_("Symbol `%s' has differing types: REGISTER in %B, previously %s in %B"),
486 abfd, p->abfd, *namep, stt_types[type]);
487 return FALSE;
488 }
489
490 p->name = bfd_hash_allocate (&info->hash->table,
491 strlen (*namep) + 1);
492 if (!p->name)
493 return FALSE;
494
495 strcpy (p->name, *namep);
496 }
497 else
498 p->name = "";
499 p->bind = ELF_ST_BIND (sym->st_info);
500 p->abfd = abfd;
501 p->shndx = sym->st_shndx;
502 }
503 else
504 {
505 if (p->bind == STB_WEAK
506 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
507 {
508 p->bind = STB_GLOBAL;
509 p->abfd = abfd;
510 }
511 }
512 *namep = NULL;
513 return TRUE;
514 }
515 else if (*namep && **namep
516 && info->output_bfd->xvec == abfd->xvec)
517 {
518 int i;
519 struct _bfd_sparc_elf_app_reg *p;
520
521 p = _bfd_sparc_elf_hash_table(info)->app_regs;
522 for (i = 0; i < 4; i++, p++)
523 if (p->name != NULL && ! strcmp (p->name, *namep))
524 {
525 unsigned char type = ELF_ST_TYPE (sym->st_info);
526
527 if (type > STT_FUNC)
528 type = 0;
529 (*_bfd_error_handler)
530 (_("Symbol `%s' has differing types: %s in %B, previously REGISTER in %B"),
531 abfd, p->abfd, *namep, stt_types[type]);
532 return FALSE;
533 }
534 }
535 return TRUE;
536 }
537
538 /* This function takes care of emitting STT_REGISTER symbols
539 which we cannot easily keep in the symbol hash table. */
540
541 static bfd_boolean
542 elf64_sparc_output_arch_syms (bfd *output_bfd ATTRIBUTE_UNUSED,
543 struct bfd_link_info *info,
544 PTR finfo,
545 int (*func) (PTR, const char *,
546 Elf_Internal_Sym *,
547 asection *,
548 struct elf_link_hash_entry *))
549 {
550 int reg;
551 struct _bfd_sparc_elf_app_reg *app_regs =
552 _bfd_sparc_elf_hash_table(info)->app_regs;
553 Elf_Internal_Sym sym;
554
555 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
556 at the end of the dynlocal list, so they came at the end of the local
557 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
558 to back up symtab->sh_info. */
559 if (elf_hash_table (info)->dynlocal)
560 {
561 bfd * dynobj = elf_hash_table (info)->dynobj;
562 asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
563 struct elf_link_local_dynamic_entry *e;
564
565 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
566 if (e->input_indx == -1)
567 break;
568 if (e)
569 {
570 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
571 = e->dynindx;
572 }
573 }
574
575 if (info->strip == strip_all)
576 return TRUE;
577
578 for (reg = 0; reg < 4; reg++)
579 if (app_regs [reg].name != NULL)
580 {
581 if (info->strip == strip_some
582 && bfd_hash_lookup (info->keep_hash,
583 app_regs [reg].name,
584 FALSE, FALSE) == NULL)
585 continue;
586
587 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
588 sym.st_size = 0;
589 sym.st_other = 0;
590 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
591 sym.st_shndx = app_regs [reg].shndx;
592 if ((*func) (finfo, app_regs [reg].name, &sym,
593 sym.st_shndx == SHN_ABS
594 ? bfd_abs_section_ptr : bfd_und_section_ptr,
595 NULL) != 1)
596 return FALSE;
597 }
598
599 return TRUE;
600 }
601
602 static int
603 elf64_sparc_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
604 {
605 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
606 return STT_REGISTER;
607 else
608 return type;
609 }
610
611 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
612 even in SHN_UNDEF section. */
613
614 static void
615 elf64_sparc_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *asym)
616 {
617 elf_symbol_type *elfsym;
618
619 elfsym = (elf_symbol_type *) asym;
620 if (elfsym->internal_elf_sym.st_info
621 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
622 {
623 asym->flags |= BSF_GLOBAL;
624 }
625 }
626
627 \f
628 /* Functions for dealing with the e_flags field. */
629
630 /* Merge backend specific data from an object file to the output
631 object file when linking. */
632
633 static bfd_boolean
634 elf64_sparc_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
635 {
636 bfd_boolean error;
637 flagword new_flags, old_flags;
638 int new_mm, old_mm;
639
640 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
641 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
642 return TRUE;
643
644 new_flags = elf_elfheader (ibfd)->e_flags;
645 old_flags = elf_elfheader (obfd)->e_flags;
646
647 if (!elf_flags_init (obfd)) /* First call, no flags set */
648 {
649 elf_flags_init (obfd) = TRUE;
650 elf_elfheader (obfd)->e_flags = new_flags;
651 }
652
653 else if (new_flags == old_flags) /* Compatible flags are ok */
654 ;
655
656 else /* Incompatible flags */
657 {
658 error = FALSE;
659
660 #define EF_SPARC_ISA_EXTENSIONS \
661 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
662
663 if ((ibfd->flags & DYNAMIC) != 0)
664 {
665 /* We don't want dynamic objects memory ordering and
666 architecture to have any role. That's what dynamic linker
667 should do. */
668 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
669 new_flags |= (old_flags
670 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
671 }
672 else
673 {
674 /* Choose the highest architecture requirements. */
675 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
676 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
677 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
678 && (old_flags & EF_SPARC_HAL_R1))
679 {
680 error = TRUE;
681 (*_bfd_error_handler)
682 (_("%B: linking UltraSPARC specific with HAL specific code"),
683 ibfd);
684 }
685 /* Choose the most restrictive memory ordering. */
686 old_mm = (old_flags & EF_SPARCV9_MM);
687 new_mm = (new_flags & EF_SPARCV9_MM);
688 old_flags &= ~EF_SPARCV9_MM;
689 new_flags &= ~EF_SPARCV9_MM;
690 if (new_mm < old_mm)
691 old_mm = new_mm;
692 old_flags |= old_mm;
693 new_flags |= old_mm;
694 }
695
696 /* Warn about any other mismatches */
697 if (new_flags != old_flags)
698 {
699 error = TRUE;
700 (*_bfd_error_handler)
701 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
702 ibfd, (long) new_flags, (long) old_flags);
703 }
704
705 elf_elfheader (obfd)->e_flags = old_flags;
706
707 if (error)
708 {
709 bfd_set_error (bfd_error_bad_value);
710 return FALSE;
711 }
712 }
713 return TRUE;
714 }
715
716 /* MARCO: Set the correct entry size for the .stab section. */
717
718 static bfd_boolean
719 elf64_sparc_fake_sections (bfd *abfd ATTRIBUTE_UNUSED,
720 Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED,
721 asection *sec)
722 {
723 const char *name;
724
725 name = bfd_get_section_name (abfd, sec);
726
727 if (strcmp (name, ".stab") == 0)
728 {
729 /* Even in the 64bit case the stab entries are only 12 bytes long. */
730 elf_section_data (sec)->this_hdr.sh_entsize = 12;
731 }
732
733 return TRUE;
734 }
735 \f
736 /* Print a STT_REGISTER symbol to file FILE. */
737
738 static const char *
739 elf64_sparc_print_symbol_all (bfd *abfd ATTRIBUTE_UNUSED, PTR filep,
740 asymbol *symbol)
741 {
742 FILE *file = (FILE *) filep;
743 int reg, type;
744
745 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
746 != STT_REGISTER)
747 return NULL;
748
749 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
750 type = symbol->flags;
751 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
752 ((type & BSF_LOCAL)
753 ? (type & BSF_GLOBAL) ? '!' : 'l'
754 : (type & BSF_GLOBAL) ? 'g' : ' '),
755 (type & BSF_WEAK) ? 'w' : ' ');
756 if (symbol->name == NULL || symbol->name [0] == '\0')
757 return "#scratch";
758 else
759 return symbol->name;
760 }
761 \f
762 static enum elf_reloc_type_class
763 elf64_sparc_reloc_type_class (const Elf_Internal_Rela *rela)
764 {
765 switch ((int) ELF64_R_TYPE (rela->r_info))
766 {
767 case R_SPARC_RELATIVE:
768 return reloc_class_relative;
769 case R_SPARC_JMP_SLOT:
770 return reloc_class_plt;
771 case R_SPARC_COPY:
772 return reloc_class_copy;
773 default:
774 return reloc_class_normal;
775 }
776 }
777
778 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
779 standard ELF, because R_SPARC_OLO10 has secondary addend in
780 ELF64_R_TYPE_DATA field. This structure is used to redirect the
781 relocation handling routines. */
782
783 const struct elf_size_info elf64_sparc_size_info =
784 {
785 sizeof (Elf64_External_Ehdr),
786 sizeof (Elf64_External_Phdr),
787 sizeof (Elf64_External_Shdr),
788 sizeof (Elf64_External_Rel),
789 sizeof (Elf64_External_Rela),
790 sizeof (Elf64_External_Sym),
791 sizeof (Elf64_External_Dyn),
792 sizeof (Elf_External_Note),
793 4, /* hash-table entry size. */
794 /* Internal relocations per external relocations.
795 For link purposes we use just 1 internal per
796 1 external, for assembly and slurp symbol table
797 we use 2. */
798 1,
799 64, /* arch_size. */
800 3, /* log_file_align. */
801 ELFCLASS64,
802 EV_CURRENT,
803 bfd_elf64_write_out_phdrs,
804 bfd_elf64_write_shdrs_and_ehdr,
805 bfd_elf64_checksum_contents,
806 elf64_sparc_write_relocs,
807 bfd_elf64_swap_symbol_in,
808 bfd_elf64_swap_symbol_out,
809 elf64_sparc_slurp_reloc_table,
810 bfd_elf64_slurp_symbol_table,
811 bfd_elf64_swap_dyn_in,
812 bfd_elf64_swap_dyn_out,
813 bfd_elf64_swap_reloc_in,
814 bfd_elf64_swap_reloc_out,
815 bfd_elf64_swap_reloca_in,
816 bfd_elf64_swap_reloca_out
817 };
818
819 #define TARGET_BIG_SYM bfd_elf64_sparc_vec
820 #define TARGET_BIG_NAME "elf64-sparc"
821 #define ELF_ARCH bfd_arch_sparc
822 #define ELF_MAXPAGESIZE 0x100000
823 #define ELF_COMMONPAGESIZE 0x2000
824
825 /* This is the official ABI value. */
826 #define ELF_MACHINE_CODE EM_SPARCV9
827
828 /* This is the value that we used before the ABI was released. */
829 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
830
831 #define elf_backend_reloc_type_class \
832 elf64_sparc_reloc_type_class
833 #define bfd_elf64_get_reloc_upper_bound \
834 elf64_sparc_get_reloc_upper_bound
835 #define bfd_elf64_get_dynamic_reloc_upper_bound \
836 elf64_sparc_get_dynamic_reloc_upper_bound
837 #define bfd_elf64_canonicalize_reloc \
838 elf64_sparc_canonicalize_reloc
839 #define bfd_elf64_canonicalize_dynamic_reloc \
840 elf64_sparc_canonicalize_dynamic_reloc
841 #define elf_backend_add_symbol_hook \
842 elf64_sparc_add_symbol_hook
843 #define elf_backend_get_symbol_type \
844 elf64_sparc_get_symbol_type
845 #define elf_backend_symbol_processing \
846 elf64_sparc_symbol_processing
847 #define elf_backend_print_symbol_all \
848 elf64_sparc_print_symbol_all
849 #define elf_backend_output_arch_syms \
850 elf64_sparc_output_arch_syms
851 #define bfd_elf64_bfd_merge_private_bfd_data \
852 elf64_sparc_merge_private_bfd_data
853 #define elf_backend_fake_sections \
854 elf64_sparc_fake_sections
855 #define elf_backend_size_info \
856 elf64_sparc_size_info
857
858 #define elf_backend_plt_sym_val \
859 _bfd_sparc_elf_plt_sym_val
860 #define bfd_elf64_bfd_link_hash_table_create \
861 _bfd_sparc_elf_link_hash_table_create
862 #define bfd_elf64_bfd_link_hash_table_free \
863 _bfd_sparc_elf_link_hash_table_free
864 #define elf_info_to_howto \
865 _bfd_sparc_elf_info_to_howto
866 #define elf_backend_copy_indirect_symbol \
867 _bfd_sparc_elf_copy_indirect_symbol
868 #define bfd_elf64_bfd_reloc_type_lookup \
869 _bfd_sparc_elf_reloc_type_lookup
870 #define bfd_elf64_bfd_reloc_name_lookup \
871 _bfd_sparc_elf_reloc_name_lookup
872 #define bfd_elf64_bfd_relax_section \
873 _bfd_sparc_elf_relax_section
874 #define bfd_elf64_new_section_hook \
875 _bfd_sparc_elf_new_section_hook
876
877 #define elf_backend_create_dynamic_sections \
878 _bfd_sparc_elf_create_dynamic_sections
879 #define elf_backend_relocs_compatible \
880 _bfd_elf_relocs_compatible
881 #define elf_backend_check_relocs \
882 _bfd_sparc_elf_check_relocs
883 #define elf_backend_adjust_dynamic_symbol \
884 _bfd_sparc_elf_adjust_dynamic_symbol
885 #define elf_backend_omit_section_dynsym \
886 _bfd_sparc_elf_omit_section_dynsym
887 #define elf_backend_size_dynamic_sections \
888 _bfd_sparc_elf_size_dynamic_sections
889 #define elf_backend_relocate_section \
890 _bfd_sparc_elf_relocate_section
891 #define elf_backend_finish_dynamic_symbol \
892 _bfd_sparc_elf_finish_dynamic_symbol
893 #define elf_backend_finish_dynamic_sections \
894 _bfd_sparc_elf_finish_dynamic_sections
895
896 #define bfd_elf64_mkobject \
897 _bfd_sparc_elf_mkobject
898 #define elf_backend_object_p \
899 _bfd_sparc_elf_object_p
900 #define elf_backend_gc_mark_hook \
901 _bfd_sparc_elf_gc_mark_hook
902 #define elf_backend_gc_sweep_hook \
903 _bfd_sparc_elf_gc_sweep_hook
904 #define elf_backend_init_index_section \
905 _bfd_elf_init_1_index_section
906
907 #define elf_backend_can_gc_sections 1
908 #define elf_backend_can_refcount 1
909 #define elf_backend_want_got_plt 0
910 #define elf_backend_plt_readonly 0
911 #define elf_backend_want_plt_sym 1
912 #define elf_backend_got_header_size 8
913 #define elf_backend_rela_normal 1
914
915 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
916 #define elf_backend_plt_alignment 8
917
918 #define elf_backend_post_process_headers _bfd_elf_set_osabi
919
920 #include "elf64-target.h"
921
922 /* FreeBSD support */
923 #undef TARGET_BIG_SYM
924 #define TARGET_BIG_SYM bfd_elf64_sparc_freebsd_vec
925 #undef TARGET_BIG_NAME
926 #define TARGET_BIG_NAME "elf64-sparc-freebsd"
927 #undef ELF_OSABI
928 #define ELF_OSABI ELFOSABI_FREEBSD
929
930 #undef elf64_bed
931 #define elf64_bed elf64_sparc_fbsd_bed
932
933 #include "elf64-target.h"
934