bfd, sparc: issue an error when reading relocations with invalid symbol references.
[binutils-gdb.git] / bfd / elf64-sparc.c
1 /* SPARC-specific support for 64-bit ELF
2 Copyright (C) 1993-2018 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "elf/sparc.h"
26 #include "opcode/sparc.h"
27 #include "elfxx-sparc.h"
28
29 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
30 #define MINUS_ONE (~ (bfd_vma) 0)
31
32 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
33 section can represent up to two relocs, we must tell the user to allocate
34 more space. */
35
36 static long
37 elf64_sparc_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED, asection *sec)
38 {
39 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
40 }
41
42 static long
43 elf64_sparc_get_dynamic_reloc_upper_bound (bfd *abfd)
44 {
45 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
46 }
47
48 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
49 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
50 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
51 for the same location, R_SPARC_LO10 and R_SPARC_13. */
52
53 static bfd_boolean
54 elf64_sparc_slurp_one_reloc_table (bfd *abfd, asection *asect,
55 Elf_Internal_Shdr *rel_hdr,
56 asymbol **symbols, bfd_boolean dynamic)
57 {
58 void * allocated = NULL;
59 bfd_byte *native_relocs;
60 arelent *relent;
61 unsigned int i;
62 int entsize;
63 bfd_size_type count;
64 arelent *relents;
65
66 allocated = bfd_malloc (rel_hdr->sh_size);
67 if (allocated == NULL)
68 goto error_return;
69
70 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
71 || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
72 goto error_return;
73
74 native_relocs = (bfd_byte *) allocated;
75
76 relents = asect->relocation + canon_reloc_count (asect);
77
78 entsize = rel_hdr->sh_entsize;
79 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
80
81 count = rel_hdr->sh_size / entsize;
82
83 for (i = 0, relent = relents; i < count;
84 i++, relent++, native_relocs += entsize)
85 {
86 Elf_Internal_Rela rela;
87 unsigned int r_type;
88
89 bfd_elf64_swap_reloca_in (abfd, native_relocs, &rela);
90
91 /* The address of an ELF reloc is section relative for an object
92 file, and absolute for an executable file or shared library.
93 The address of a normal BFD reloc is always section relative,
94 and the address of a dynamic reloc is absolute.. */
95 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
96 relent->address = rela.r_offset;
97 else
98 relent->address = rela.r_offset - asect->vma;
99
100 if (ELF64_R_SYM (rela.r_info) == STN_UNDEF)
101 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
102 else if (/* PR 17512: file: 996185f8. */
103 (!dynamic && ELF64_R_SYM(rela.r_info) > bfd_get_symcount(abfd))
104 || (dynamic
105 && ELF64_R_SYM(rela.r_info) > bfd_get_dynamic_symcount(abfd)))
106 {
107 _bfd_error_handler
108 /* xgettext:c-format */
109 (_("%pB(%pA): relocation %d has invalid symbol index %ld"),
110 abfd, asect, i, (long) ELF64_R_SYM (rela.r_info));
111 bfd_set_error (bfd_error_bad_value);
112 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
113 }
114 else
115 {
116 asymbol **ps, *s;
117
118 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
119 s = *ps;
120
121 /* Canonicalize ELF section symbols. FIXME: Why? */
122 if ((s->flags & BSF_SECTION_SYM) == 0)
123 relent->sym_ptr_ptr = ps;
124 else
125 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
126 }
127
128 relent->addend = rela.r_addend;
129
130 r_type = ELF64_R_TYPE_ID (rela.r_info);
131 if (r_type == R_SPARC_OLO10)
132 {
133 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (abfd, R_SPARC_LO10);
134 relent[1].address = relent->address;
135 relent++;
136 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
137 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
138 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (abfd, R_SPARC_13);
139 }
140 else
141 {
142 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (abfd, r_type);
143 if (relent->howto == NULL)
144 goto error_return;
145 }
146 }
147
148 canon_reloc_count (asect) += relent - relents;
149
150 if (allocated != NULL)
151 free (allocated);
152
153 return TRUE;
154
155 error_return:
156 if (allocated != NULL)
157 free (allocated);
158 return FALSE;
159 }
160
161 /* Read in and swap the external relocs. */
162
163 static bfd_boolean
164 elf64_sparc_slurp_reloc_table (bfd *abfd, asection *asect,
165 asymbol **symbols, bfd_boolean dynamic)
166 {
167 struct bfd_elf_section_data * const d = elf_section_data (asect);
168 Elf_Internal_Shdr *rel_hdr;
169 Elf_Internal_Shdr *rel_hdr2;
170 bfd_size_type amt;
171
172 if (asect->relocation != NULL)
173 return TRUE;
174
175 if (! dynamic)
176 {
177 if ((asect->flags & SEC_RELOC) == 0
178 || asect->reloc_count == 0)
179 return TRUE;
180
181 rel_hdr = d->rel.hdr;
182 rel_hdr2 = d->rela.hdr;
183
184 BFD_ASSERT ((rel_hdr && asect->rel_filepos == rel_hdr->sh_offset)
185 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
186 }
187 else
188 {
189 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
190 case because relocations against this section may use the
191 dynamic symbol table, and in that case bfd_section_from_shdr
192 in elf.c does not update the RELOC_COUNT. */
193 if (asect->size == 0)
194 return TRUE;
195
196 rel_hdr = &d->this_hdr;
197 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
198 rel_hdr2 = NULL;
199 }
200
201 amt = asect->reloc_count;
202 amt *= 2 * sizeof (arelent);
203 asect->relocation = (arelent *) bfd_alloc (abfd, amt);
204 if (asect->relocation == NULL)
205 return FALSE;
206
207 /* The elf64_sparc_slurp_one_reloc_table routine increments
208 canon_reloc_count. */
209 canon_reloc_count (asect) = 0;
210
211 if (rel_hdr
212 && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
213 dynamic))
214 return FALSE;
215
216 if (rel_hdr2
217 && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
218 dynamic))
219 return FALSE;
220
221 return TRUE;
222 }
223
224 /* Canonicalize the relocs. */
225
226 static long
227 elf64_sparc_canonicalize_reloc (bfd *abfd, sec_ptr section,
228 arelent **relptr, asymbol **symbols)
229 {
230 arelent *tblptr;
231 unsigned int i;
232 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
233
234 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
235 return -1;
236
237 tblptr = section->relocation;
238 for (i = 0; i < canon_reloc_count (section); i++)
239 *relptr++ = tblptr++;
240
241 *relptr = NULL;
242
243 return canon_reloc_count (section);
244 }
245
246
247 /* Canonicalize the dynamic relocation entries. Note that we return
248 the dynamic relocations as a single block, although they are
249 actually associated with particular sections; the interface, which
250 was designed for SunOS style shared libraries, expects that there
251 is only one set of dynamic relocs. Any section that was actually
252 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
253 the dynamic symbol table, is considered to be a dynamic reloc
254 section. */
255
256 static long
257 elf64_sparc_canonicalize_dynamic_reloc (bfd *abfd, arelent **storage,
258 asymbol **syms)
259 {
260 asection *s;
261 long ret;
262
263 if (elf_dynsymtab (abfd) == 0)
264 {
265 bfd_set_error (bfd_error_invalid_operation);
266 return -1;
267 }
268
269 ret = 0;
270 for (s = abfd->sections; s != NULL; s = s->next)
271 {
272 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
273 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
274 {
275 arelent *p;
276 long count, i;
277
278 if (! elf64_sparc_slurp_reloc_table (abfd, s, syms, TRUE))
279 return -1;
280 count = canon_reloc_count (s);
281 p = s->relocation;
282 for (i = 0; i < count; i++)
283 *storage++ = p++;
284 ret += count;
285 }
286 }
287
288 *storage = NULL;
289
290 return ret;
291 }
292
293 /* Install a new set of internal relocs. */
294
295 static void
296 elf64_sparc_set_reloc (bfd *abfd ATTRIBUTE_UNUSED,
297 asection *asect,
298 arelent **location,
299 unsigned int count)
300 {
301 asect->orelocation = location;
302 canon_reloc_count (asect) = count;
303 }
304
305 /* Write out the relocs. */
306
307 static void
308 elf64_sparc_write_relocs (bfd *abfd, asection *sec, void * data)
309 {
310 bfd_boolean *failedp = (bfd_boolean *) data;
311 Elf_Internal_Shdr *rela_hdr;
312 bfd_vma addr_offset;
313 Elf64_External_Rela *outbound_relocas, *src_rela;
314 unsigned int idx, count;
315 asymbol *last_sym = 0;
316 int last_sym_idx = 0;
317
318 /* If we have already failed, don't do anything. */
319 if (*failedp)
320 return;
321
322 if ((sec->flags & SEC_RELOC) == 0)
323 return;
324
325 /* The linker backend writes the relocs out itself, and sets the
326 reloc_count field to zero to inhibit writing them here. Also,
327 sometimes the SEC_RELOC flag gets set even when there aren't any
328 relocs. */
329 if (canon_reloc_count (sec) == 0)
330 return;
331
332 /* We can combine two relocs that refer to the same address
333 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
334 latter is R_SPARC_13 with no associated symbol. */
335 count = 0;
336 for (idx = 0; idx < canon_reloc_count (sec); idx++)
337 {
338 bfd_vma addr;
339
340 ++count;
341
342 addr = sec->orelocation[idx]->address;
343 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
344 && idx < canon_reloc_count (sec) - 1)
345 {
346 arelent *r = sec->orelocation[idx + 1];
347
348 if (r->howto->type == R_SPARC_13
349 && r->address == addr
350 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
351 && (*r->sym_ptr_ptr)->value == 0)
352 ++idx;
353 }
354 }
355
356 rela_hdr = elf_section_data (sec)->rela.hdr;
357
358 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
359 rela_hdr->contents = bfd_alloc (abfd, rela_hdr->sh_size);
360 if (rela_hdr->contents == NULL)
361 {
362 *failedp = TRUE;
363 return;
364 }
365
366 /* Figure out whether the relocations are RELA or REL relocations. */
367 if (rela_hdr->sh_type != SHT_RELA)
368 abort ();
369
370 /* The address of an ELF reloc is section relative for an object
371 file, and absolute for an executable file or shared library.
372 The address of a BFD reloc is always section relative. */
373 addr_offset = 0;
374 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
375 addr_offset = sec->vma;
376
377 /* orelocation has the data, reloc_count has the count... */
378 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
379 src_rela = outbound_relocas;
380
381 for (idx = 0; idx < canon_reloc_count (sec); idx++)
382 {
383 Elf_Internal_Rela dst_rela;
384 arelent *ptr;
385 asymbol *sym;
386 int n;
387
388 ptr = sec->orelocation[idx];
389 sym = *ptr->sym_ptr_ptr;
390 if (sym == last_sym)
391 n = last_sym_idx;
392 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
393 n = STN_UNDEF;
394 else
395 {
396 last_sym = sym;
397 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
398 if (n < 0)
399 {
400 *failedp = TRUE;
401 return;
402 }
403 last_sym_idx = n;
404 }
405
406 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
407 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
408 && ! _bfd_elf_validate_reloc (abfd, ptr))
409 {
410 *failedp = TRUE;
411 return;
412 }
413
414 if (ptr->howto->type == R_SPARC_LO10
415 && idx < canon_reloc_count (sec) - 1)
416 {
417 arelent *r = sec->orelocation[idx + 1];
418
419 if (r->howto->type == R_SPARC_13
420 && r->address == ptr->address
421 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
422 && (*r->sym_ptr_ptr)->value == 0)
423 {
424 idx++;
425 dst_rela.r_info
426 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
427 R_SPARC_OLO10));
428 }
429 else
430 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
431 }
432 else
433 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
434
435 dst_rela.r_offset = ptr->address + addr_offset;
436 dst_rela.r_addend = ptr->addend;
437
438 bfd_elf64_swap_reloca_out (abfd, &dst_rela, (bfd_byte *) src_rela);
439 ++src_rela;
440 }
441 }
442 \f
443 /* Hook called by the linker routine which adds symbols from an object
444 file. We use it for STT_REGISTER symbols. */
445
446 static bfd_boolean
447 elf64_sparc_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
448 Elf_Internal_Sym *sym, const char **namep,
449 flagword *flagsp ATTRIBUTE_UNUSED,
450 asection **secp ATTRIBUTE_UNUSED,
451 bfd_vma *valp ATTRIBUTE_UNUSED)
452 {
453 static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
454
455 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
456 {
457 int reg;
458 struct _bfd_sparc_elf_app_reg *p;
459
460 reg = (int)sym->st_value;
461 switch (reg & ~1)
462 {
463 case 2: reg -= 2; break;
464 case 6: reg -= 4; break;
465 default:
466 _bfd_error_handler
467 (_("%pB: only registers %%g[2367] can be declared using STT_REGISTER"),
468 abfd);
469 return FALSE;
470 }
471
472 if (info->output_bfd->xvec != abfd->xvec
473 || (abfd->flags & DYNAMIC) != 0)
474 {
475 /* STT_REGISTER only works when linking an elf64_sparc object.
476 If STT_REGISTER comes from a dynamic object, don't put it into
477 the output bfd. The dynamic linker will recheck it. */
478 *namep = NULL;
479 return TRUE;
480 }
481
482 p = _bfd_sparc_elf_hash_table(info)->app_regs + reg;
483
484 if (p->name != NULL && strcmp (p->name, *namep))
485 {
486 _bfd_error_handler
487 /* xgettext:c-format */
488 (_("register %%g%d used incompatibly: %s in %pB,"
489 " previously %s in %pB"),
490 (int) sym->st_value, **namep ? *namep : "#scratch", abfd,
491 *p->name ? p->name : "#scratch", p->abfd);
492 return FALSE;
493 }
494
495 if (p->name == NULL)
496 {
497 if (**namep)
498 {
499 struct elf_link_hash_entry *h;
500
501 h = (struct elf_link_hash_entry *)
502 bfd_link_hash_lookup (info->hash, *namep, FALSE, FALSE, FALSE);
503
504 if (h != NULL)
505 {
506 unsigned char type = h->type;
507
508 if (type > STT_FUNC)
509 type = 0;
510 _bfd_error_handler
511 /* xgettext:c-format */
512 (_("symbol `%s' has differing types: REGISTER in %pB,"
513 " previously %s in %pB"),
514 *namep, abfd, stt_types[type], p->abfd);
515 return FALSE;
516 }
517
518 p->name = bfd_hash_allocate (&info->hash->table,
519 strlen (*namep) + 1);
520 if (!p->name)
521 return FALSE;
522
523 strcpy (p->name, *namep);
524 }
525 else
526 p->name = "";
527 p->bind = ELF_ST_BIND (sym->st_info);
528 p->abfd = abfd;
529 p->shndx = sym->st_shndx;
530 }
531 else
532 {
533 if (p->bind == STB_WEAK
534 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
535 {
536 p->bind = STB_GLOBAL;
537 p->abfd = abfd;
538 }
539 }
540 *namep = NULL;
541 return TRUE;
542 }
543 else if (*namep && **namep
544 && info->output_bfd->xvec == abfd->xvec)
545 {
546 int i;
547 struct _bfd_sparc_elf_app_reg *p;
548
549 p = _bfd_sparc_elf_hash_table(info)->app_regs;
550 for (i = 0; i < 4; i++, p++)
551 if (p->name != NULL && ! strcmp (p->name, *namep))
552 {
553 unsigned char type = ELF_ST_TYPE (sym->st_info);
554
555 if (type > STT_FUNC)
556 type = 0;
557 _bfd_error_handler
558 /* xgettext:c-format */
559 (_("Symbol `%s' has differing types: %s in %pB,"
560 " previously REGISTER in %pB"),
561 *namep, stt_types[type], abfd, p->abfd);
562 return FALSE;
563 }
564 }
565 return TRUE;
566 }
567
568 /* This function takes care of emitting STT_REGISTER symbols
569 which we cannot easily keep in the symbol hash table. */
570
571 static bfd_boolean
572 elf64_sparc_output_arch_syms (bfd *output_bfd ATTRIBUTE_UNUSED,
573 struct bfd_link_info *info,
574 void * flaginfo,
575 int (*func) (void *, const char *,
576 Elf_Internal_Sym *,
577 asection *,
578 struct elf_link_hash_entry *))
579 {
580 int reg;
581 struct _bfd_sparc_elf_app_reg *app_regs =
582 _bfd_sparc_elf_hash_table(info)->app_regs;
583 Elf_Internal_Sym sym;
584
585 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
586 at the end of the dynlocal list, so they came at the end of the local
587 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
588 to back up symtab->sh_info. */
589 if (elf_hash_table (info)->dynlocal)
590 {
591 bfd * dynobj = elf_hash_table (info)->dynobj;
592 asection *dynsymsec = bfd_get_linker_section (dynobj, ".dynsym");
593 struct elf_link_local_dynamic_entry *e;
594
595 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
596 if (e->input_indx == -1)
597 break;
598 if (e)
599 {
600 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
601 = e->dynindx;
602 }
603 }
604
605 if (info->strip == strip_all)
606 return TRUE;
607
608 for (reg = 0; reg < 4; reg++)
609 if (app_regs [reg].name != NULL)
610 {
611 if (info->strip == strip_some
612 && bfd_hash_lookup (info->keep_hash,
613 app_regs [reg].name,
614 FALSE, FALSE) == NULL)
615 continue;
616
617 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
618 sym.st_size = 0;
619 sym.st_other = 0;
620 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
621 sym.st_shndx = app_regs [reg].shndx;
622 sym.st_target_internal = 0;
623 if ((*func) (flaginfo, app_regs [reg].name, &sym,
624 sym.st_shndx == SHN_ABS
625 ? bfd_abs_section_ptr : bfd_und_section_ptr,
626 NULL) != 1)
627 return FALSE;
628 }
629
630 return TRUE;
631 }
632
633 static int
634 elf64_sparc_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
635 {
636 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
637 return STT_REGISTER;
638 else
639 return type;
640 }
641
642 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
643 even in SHN_UNDEF section. */
644
645 static void
646 elf64_sparc_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *asym)
647 {
648 elf_symbol_type *elfsym;
649
650 elfsym = (elf_symbol_type *) asym;
651 if (elfsym->internal_elf_sym.st_info
652 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
653 {
654 asym->flags |= BSF_GLOBAL;
655 }
656 }
657
658 \f
659 /* Functions for dealing with the e_flags field. */
660
661 /* Merge backend specific data from an object file to the output
662 object file when linking. */
663
664 static bfd_boolean
665 elf64_sparc_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
666 {
667 bfd *obfd = info->output_bfd;
668 bfd_boolean error;
669 flagword new_flags, old_flags;
670 int new_mm, old_mm;
671
672 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
673 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
674 return TRUE;
675
676 new_flags = elf_elfheader (ibfd)->e_flags;
677 old_flags = elf_elfheader (obfd)->e_flags;
678
679 if (!elf_flags_init (obfd)) /* First call, no flags set */
680 {
681 elf_flags_init (obfd) = TRUE;
682 elf_elfheader (obfd)->e_flags = new_flags;
683 }
684
685 else if (new_flags == old_flags) /* Compatible flags are ok */
686 ;
687
688 else /* Incompatible flags */
689 {
690 error = FALSE;
691
692 #define EF_SPARC_ISA_EXTENSIONS \
693 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
694
695 if ((ibfd->flags & DYNAMIC) != 0)
696 {
697 /* We don't want dynamic objects memory ordering and
698 architecture to have any role. That's what dynamic linker
699 should do. */
700 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
701 new_flags |= (old_flags
702 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
703 }
704 else
705 {
706 /* Choose the highest architecture requirements. */
707 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
708 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
709 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
710 && (old_flags & EF_SPARC_HAL_R1))
711 {
712 error = TRUE;
713 _bfd_error_handler
714 (_("%pB: linking UltraSPARC specific with HAL specific code"),
715 ibfd);
716 }
717 /* Choose the most restrictive memory ordering. */
718 old_mm = (old_flags & EF_SPARCV9_MM);
719 new_mm = (new_flags & EF_SPARCV9_MM);
720 old_flags &= ~EF_SPARCV9_MM;
721 new_flags &= ~EF_SPARCV9_MM;
722 if (new_mm < old_mm)
723 old_mm = new_mm;
724 old_flags |= old_mm;
725 new_flags |= old_mm;
726 }
727
728 /* Warn about any other mismatches */
729 if (new_flags != old_flags)
730 {
731 error = TRUE;
732 _bfd_error_handler
733 /* xgettext:c-format */
734 (_("%pB: uses different e_flags (%#x) fields than previous modules (%#x)"),
735 ibfd, new_flags, old_flags);
736 }
737
738 elf_elfheader (obfd)->e_flags = old_flags;
739
740 if (error)
741 {
742 bfd_set_error (bfd_error_bad_value);
743 return FALSE;
744 }
745 }
746 return _bfd_sparc_elf_merge_private_bfd_data (ibfd, info);
747 }
748
749 /* MARCO: Set the correct entry size for the .stab section. */
750
751 static bfd_boolean
752 elf64_sparc_fake_sections (bfd *abfd ATTRIBUTE_UNUSED,
753 Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED,
754 asection *sec)
755 {
756 const char *name;
757
758 name = bfd_get_section_name (abfd, sec);
759
760 if (strcmp (name, ".stab") == 0)
761 {
762 /* Even in the 64bit case the stab entries are only 12 bytes long. */
763 elf_section_data (sec)->this_hdr.sh_entsize = 12;
764 }
765
766 return TRUE;
767 }
768 \f
769 /* Print a STT_REGISTER symbol to file FILE. */
770
771 static const char *
772 elf64_sparc_print_symbol_all (bfd *abfd ATTRIBUTE_UNUSED, void * filep,
773 asymbol *symbol)
774 {
775 FILE *file = (FILE *) filep;
776 int reg, type;
777
778 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
779 != STT_REGISTER)
780 return NULL;
781
782 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
783 type = symbol->flags;
784 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
785 ((type & BSF_LOCAL)
786 ? (type & BSF_GLOBAL) ? '!' : 'l'
787 : (type & BSF_GLOBAL) ? 'g' : ' '),
788 (type & BSF_WEAK) ? 'w' : ' ');
789 if (symbol->name == NULL || symbol->name [0] == '\0')
790 return "#scratch";
791 else
792 return symbol->name;
793 }
794 \f
795 static enum elf_reloc_type_class
796 elf64_sparc_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
797 const asection *rel_sec ATTRIBUTE_UNUSED,
798 const Elf_Internal_Rela *rela)
799 {
800 switch ((int) ELF64_R_TYPE (rela->r_info))
801 {
802 case R_SPARC_RELATIVE:
803 return reloc_class_relative;
804 case R_SPARC_JMP_SLOT:
805 return reloc_class_plt;
806 case R_SPARC_COPY:
807 return reloc_class_copy;
808 default:
809 return reloc_class_normal;
810 }
811 }
812
813 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
814 standard ELF, because R_SPARC_OLO10 has secondary addend in
815 ELF64_R_TYPE_DATA field. This structure is used to redirect the
816 relocation handling routines. */
817
818 const struct elf_size_info elf64_sparc_size_info =
819 {
820 sizeof (Elf64_External_Ehdr),
821 sizeof (Elf64_External_Phdr),
822 sizeof (Elf64_External_Shdr),
823 sizeof (Elf64_External_Rel),
824 sizeof (Elf64_External_Rela),
825 sizeof (Elf64_External_Sym),
826 sizeof (Elf64_External_Dyn),
827 sizeof (Elf_External_Note),
828 4, /* hash-table entry size. */
829 /* Internal relocations per external relocations.
830 For link purposes we use just 1 internal per
831 1 external, for assembly and slurp symbol table
832 we use 2. */
833 1,
834 64, /* arch_size. */
835 3, /* log_file_align. */
836 ELFCLASS64,
837 EV_CURRENT,
838 bfd_elf64_write_out_phdrs,
839 bfd_elf64_write_shdrs_and_ehdr,
840 bfd_elf64_checksum_contents,
841 elf64_sparc_write_relocs,
842 bfd_elf64_swap_symbol_in,
843 bfd_elf64_swap_symbol_out,
844 elf64_sparc_slurp_reloc_table,
845 bfd_elf64_slurp_symbol_table,
846 bfd_elf64_swap_dyn_in,
847 bfd_elf64_swap_dyn_out,
848 bfd_elf64_swap_reloc_in,
849 bfd_elf64_swap_reloc_out,
850 bfd_elf64_swap_reloca_in,
851 bfd_elf64_swap_reloca_out
852 };
853
854 #define TARGET_BIG_SYM sparc_elf64_vec
855 #define TARGET_BIG_NAME "elf64-sparc"
856 #define ELF_ARCH bfd_arch_sparc
857 #define ELF_MAXPAGESIZE 0x100000
858 #define ELF_COMMONPAGESIZE 0x2000
859
860 /* This is the official ABI value. */
861 #define ELF_MACHINE_CODE EM_SPARCV9
862
863 /* This is the value that we used before the ABI was released. */
864 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
865
866 #define elf_backend_reloc_type_class \
867 elf64_sparc_reloc_type_class
868 #define bfd_elf64_get_reloc_upper_bound \
869 elf64_sparc_get_reloc_upper_bound
870 #define bfd_elf64_get_dynamic_reloc_upper_bound \
871 elf64_sparc_get_dynamic_reloc_upper_bound
872 #define bfd_elf64_canonicalize_reloc \
873 elf64_sparc_canonicalize_reloc
874 #define bfd_elf64_canonicalize_dynamic_reloc \
875 elf64_sparc_canonicalize_dynamic_reloc
876 #define bfd_elf64_set_reloc \
877 elf64_sparc_set_reloc
878 #define elf_backend_add_symbol_hook \
879 elf64_sparc_add_symbol_hook
880 #define elf_backend_get_symbol_type \
881 elf64_sparc_get_symbol_type
882 #define elf_backend_symbol_processing \
883 elf64_sparc_symbol_processing
884 #define elf_backend_print_symbol_all \
885 elf64_sparc_print_symbol_all
886 #define elf_backend_output_arch_syms \
887 elf64_sparc_output_arch_syms
888 #define bfd_elf64_bfd_merge_private_bfd_data \
889 elf64_sparc_merge_private_bfd_data
890 #define elf_backend_fake_sections \
891 elf64_sparc_fake_sections
892 #define elf_backend_size_info \
893 elf64_sparc_size_info
894
895 #define elf_backend_plt_sym_val \
896 _bfd_sparc_elf_plt_sym_val
897 #define bfd_elf64_bfd_link_hash_table_create \
898 _bfd_sparc_elf_link_hash_table_create
899 #define elf_info_to_howto \
900 _bfd_sparc_elf_info_to_howto
901 #define elf_backend_copy_indirect_symbol \
902 _bfd_sparc_elf_copy_indirect_symbol
903 #define bfd_elf64_bfd_reloc_type_lookup \
904 _bfd_sparc_elf_reloc_type_lookup
905 #define bfd_elf64_bfd_reloc_name_lookup \
906 _bfd_sparc_elf_reloc_name_lookup
907 #define bfd_elf64_bfd_relax_section \
908 _bfd_sparc_elf_relax_section
909 #define bfd_elf64_new_section_hook \
910 _bfd_sparc_elf_new_section_hook
911
912 #define elf_backend_create_dynamic_sections \
913 _bfd_sparc_elf_create_dynamic_sections
914 #define elf_backend_relocs_compatible \
915 _bfd_elf_relocs_compatible
916 #define elf_backend_check_relocs \
917 _bfd_sparc_elf_check_relocs
918 #define elf_backend_adjust_dynamic_symbol \
919 _bfd_sparc_elf_adjust_dynamic_symbol
920 #define elf_backend_omit_section_dynsym \
921 _bfd_sparc_elf_omit_section_dynsym
922 #define elf_backend_size_dynamic_sections \
923 _bfd_sparc_elf_size_dynamic_sections
924 #define elf_backend_relocate_section \
925 _bfd_sparc_elf_relocate_section
926 #define elf_backend_finish_dynamic_symbol \
927 _bfd_sparc_elf_finish_dynamic_symbol
928 #define elf_backend_finish_dynamic_sections \
929 _bfd_sparc_elf_finish_dynamic_sections
930 #define elf_backend_fixup_symbol \
931 _bfd_sparc_elf_fixup_symbol
932
933 #define bfd_elf64_mkobject \
934 _bfd_sparc_elf_mkobject
935 #define elf_backend_object_p \
936 _bfd_sparc_elf_object_p
937 #define elf_backend_gc_mark_hook \
938 _bfd_sparc_elf_gc_mark_hook
939 #define elf_backend_init_index_section \
940 _bfd_elf_init_1_index_section
941
942 #define elf_backend_can_gc_sections 1
943 #define elf_backend_can_refcount 1
944 #define elf_backend_want_got_plt 0
945 #define elf_backend_plt_readonly 0
946 #define elf_backend_want_plt_sym 1
947 #define elf_backend_got_header_size 8
948 #define elf_backend_want_dynrelro 1
949 #define elf_backend_rela_normal 1
950
951 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
952 #define elf_backend_plt_alignment 8
953
954 #include "elf64-target.h"
955
956 /* FreeBSD support */
957 #undef TARGET_BIG_SYM
958 #define TARGET_BIG_SYM sparc_elf64_fbsd_vec
959 #undef TARGET_BIG_NAME
960 #define TARGET_BIG_NAME "elf64-sparc-freebsd"
961 #undef ELF_OSABI
962 #define ELF_OSABI ELFOSABI_FREEBSD
963
964 #undef elf64_bed
965 #define elf64_bed elf64_sparc_fbsd_bed
966
967 #include "elf64-target.h"
968
969 /* Solaris 2. */
970
971 #undef TARGET_BIG_SYM
972 #define TARGET_BIG_SYM sparc_elf64_sol2_vec
973 #undef TARGET_BIG_NAME
974 #define TARGET_BIG_NAME "elf64-sparc-sol2"
975
976 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
977 objects won't be recognized. */
978 #undef ELF_OSABI
979
980 #undef elf64_bed
981 #define elf64_bed elf64_sparc_sol2_bed
982
983 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte
984 boundary. */
985 #undef elf_backend_static_tls_alignment
986 #define elf_backend_static_tls_alignment 16
987
988 #include "elf64-target.h"