0c37cd3d2543d4530acec840acddf9afe06d8d29
[binutils-gdb.git] / bfd / elf64-x86-64.c
1 /* X86-64 specific support for ELF
2 Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011, 2012
4 Free Software Foundation, Inc.
5 Contributed by Jan Hubicka <jh@suse.cz>.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24 #include "sysdep.h"
25 #include "bfd.h"
26 #include "bfdlink.h"
27 #include "libbfd.h"
28 #include "elf-bfd.h"
29 #include "elf-nacl.h"
30 #include "bfd_stdint.h"
31 #include "objalloc.h"
32 #include "hashtab.h"
33 #include "dwarf2.h"
34 #include "libiberty.h"
35
36 #include "elf/x86-64.h"
37
38 #ifdef CORE_HEADER
39 #include <stdarg.h>
40 #include CORE_HEADER
41 #endif
42
43 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
44 #define MINUS_ONE (~ (bfd_vma) 0)
45
46 /* Since both 32-bit and 64-bit x86-64 encode relocation type in the
47 identical manner, we use ELF32_R_TYPE instead of ELF64_R_TYPE to get
48 relocation type. We also use ELF_ST_TYPE instead of ELF64_ST_TYPE
49 since they are the same. */
50
51 #define ABI_64_P(abfd) \
52 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
53
54 /* The relocation "howto" table. Order of fields:
55 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
56 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
57 static reloc_howto_type x86_64_elf_howto_table[] =
58 {
59 HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
60 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
61 FALSE),
62 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
63 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
64 FALSE),
65 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
66 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
67 TRUE),
68 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
69 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
70 FALSE),
71 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
72 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
73 TRUE),
74 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
75 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
76 FALSE),
77 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
78 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
79 MINUS_ONE, FALSE),
80 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
81 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
82 MINUS_ONE, FALSE),
83 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
84 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
85 MINUS_ONE, FALSE),
86 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
87 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
88 0xffffffff, TRUE),
89 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
90 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
91 FALSE),
92 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
93 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
94 FALSE),
95 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
96 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
97 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
98 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
99 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
100 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
101 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
102 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
103 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
104 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
105 MINUS_ONE, FALSE),
106 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
107 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
108 MINUS_ONE, FALSE),
109 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
110 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
111 MINUS_ONE, FALSE),
112 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
113 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
114 0xffffffff, TRUE),
115 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
116 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
117 0xffffffff, TRUE),
118 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
119 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
120 0xffffffff, FALSE),
121 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
122 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
123 0xffffffff, TRUE),
124 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
125 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
126 0xffffffff, FALSE),
127 HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
128 bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
129 TRUE),
130 HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
131 bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
132 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
133 HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
134 bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
135 FALSE, 0xffffffff, 0xffffffff, TRUE),
136 HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
137 bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE,
138 FALSE),
139 HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
140 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE,
141 MINUS_ONE, TRUE),
142 HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
143 bfd_elf_generic_reloc, "R_X86_64_GOTPC64",
144 FALSE, MINUS_ONE, MINUS_ONE, TRUE),
145 HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
146 bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE,
147 MINUS_ONE, FALSE),
148 HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
149 bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE,
150 MINUS_ONE, FALSE),
151 EMPTY_HOWTO (32),
152 EMPTY_HOWTO (33),
153 HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0,
154 complain_overflow_bitfield, bfd_elf_generic_reloc,
155 "R_X86_64_GOTPC32_TLSDESC",
156 FALSE, 0xffffffff, 0xffffffff, TRUE),
157 HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0,
158 complain_overflow_dont, bfd_elf_generic_reloc,
159 "R_X86_64_TLSDESC_CALL",
160 FALSE, 0, 0, FALSE),
161 HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0,
162 complain_overflow_bitfield, bfd_elf_generic_reloc,
163 "R_X86_64_TLSDESC",
164 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
165 HOWTO(R_X86_64_IRELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
166 bfd_elf_generic_reloc, "R_X86_64_IRELATIVE", FALSE, MINUS_ONE,
167 MINUS_ONE, FALSE),
168 HOWTO(R_X86_64_RELATIVE64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
169 bfd_elf_generic_reloc, "R_X86_64_RELATIVE64", FALSE, MINUS_ONE,
170 MINUS_ONE, FALSE),
171
172 /* We have a gap in the reloc numbers here.
173 R_X86_64_standard counts the number up to this point, and
174 R_X86_64_vt_offset is the value to subtract from a reloc type of
175 R_X86_64_GNU_VT* to form an index into this table. */
176 #define R_X86_64_standard (R_X86_64_IRELATIVE + 1)
177 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
178
179 /* GNU extension to record C++ vtable hierarchy. */
180 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
181 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
182
183 /* GNU extension to record C++ vtable member usage. */
184 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
185 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
186 FALSE),
187
188 /* Use complain_overflow_bitfield on R_X86_64_32 for x32. */
189 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
190 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
191 FALSE)
192 };
193
194 #define IS_X86_64_PCREL_TYPE(TYPE) \
195 ( ((TYPE) == R_X86_64_PC8) \
196 || ((TYPE) == R_X86_64_PC16) \
197 || ((TYPE) == R_X86_64_PC32) \
198 || ((TYPE) == R_X86_64_PC64))
199
200 /* Map BFD relocs to the x86_64 elf relocs. */
201 struct elf_reloc_map
202 {
203 bfd_reloc_code_real_type bfd_reloc_val;
204 unsigned char elf_reloc_val;
205 };
206
207 static const struct elf_reloc_map x86_64_reloc_map[] =
208 {
209 { BFD_RELOC_NONE, R_X86_64_NONE, },
210 { BFD_RELOC_64, R_X86_64_64, },
211 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
212 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
213 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
214 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
215 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
216 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
217 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
218 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
219 { BFD_RELOC_32, R_X86_64_32, },
220 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
221 { BFD_RELOC_16, R_X86_64_16, },
222 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
223 { BFD_RELOC_8, R_X86_64_8, },
224 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
225 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
226 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
227 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
228 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
229 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
230 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
231 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
232 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
233 { BFD_RELOC_64_PCREL, R_X86_64_PC64, },
234 { BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, },
235 { BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, },
236 { BFD_RELOC_X86_64_GOT64, R_X86_64_GOT64, },
237 { BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, },
238 { BFD_RELOC_X86_64_GOTPC64, R_X86_64_GOTPC64, },
239 { BFD_RELOC_X86_64_GOTPLT64, R_X86_64_GOTPLT64, },
240 { BFD_RELOC_X86_64_PLTOFF64, R_X86_64_PLTOFF64, },
241 { BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, },
242 { BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, },
243 { BFD_RELOC_X86_64_TLSDESC, R_X86_64_TLSDESC, },
244 { BFD_RELOC_X86_64_IRELATIVE, R_X86_64_IRELATIVE, },
245 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
246 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
247 };
248
249 static reloc_howto_type *
250 elf_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type)
251 {
252 unsigned i;
253
254 if (r_type == (unsigned int) R_X86_64_32)
255 {
256 if (ABI_64_P (abfd))
257 i = r_type;
258 else
259 i = ARRAY_SIZE (x86_64_elf_howto_table) - 1;
260 }
261 else if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
262 || r_type >= (unsigned int) R_X86_64_max)
263 {
264 if (r_type >= (unsigned int) R_X86_64_standard)
265 {
266 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
267 abfd, (int) r_type);
268 r_type = R_X86_64_NONE;
269 }
270 i = r_type;
271 }
272 else
273 i = r_type - (unsigned int) R_X86_64_vt_offset;
274 BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type);
275 return &x86_64_elf_howto_table[i];
276 }
277
278 /* Given a BFD reloc type, return a HOWTO structure. */
279 static reloc_howto_type *
280 elf_x86_64_reloc_type_lookup (bfd *abfd,
281 bfd_reloc_code_real_type code)
282 {
283 unsigned int i;
284
285 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
286 i++)
287 {
288 if (x86_64_reloc_map[i].bfd_reloc_val == code)
289 return elf_x86_64_rtype_to_howto (abfd,
290 x86_64_reloc_map[i].elf_reloc_val);
291 }
292 return 0;
293 }
294
295 static reloc_howto_type *
296 elf_x86_64_reloc_name_lookup (bfd *abfd,
297 const char *r_name)
298 {
299 unsigned int i;
300
301 if (!ABI_64_P (abfd) && strcasecmp (r_name, "R_X86_64_32") == 0)
302 {
303 /* Get x32 R_X86_64_32. */
304 reloc_howto_type *reloc
305 = &x86_64_elf_howto_table[ARRAY_SIZE (x86_64_elf_howto_table) - 1];
306 BFD_ASSERT (reloc->type == (unsigned int) R_X86_64_32);
307 return reloc;
308 }
309
310 for (i = 0; i < ARRAY_SIZE (x86_64_elf_howto_table); i++)
311 if (x86_64_elf_howto_table[i].name != NULL
312 && strcasecmp (x86_64_elf_howto_table[i].name, r_name) == 0)
313 return &x86_64_elf_howto_table[i];
314
315 return NULL;
316 }
317
318 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
319
320 static void
321 elf_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
322 Elf_Internal_Rela *dst)
323 {
324 unsigned r_type;
325
326 r_type = ELF32_R_TYPE (dst->r_info);
327 cache_ptr->howto = elf_x86_64_rtype_to_howto (abfd, r_type);
328 BFD_ASSERT (r_type == cache_ptr->howto->type);
329 }
330 \f
331 /* Support for core dump NOTE sections. */
332 static bfd_boolean
333 elf_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
334 {
335 int offset;
336 size_t size;
337
338 switch (note->descsz)
339 {
340 default:
341 return FALSE;
342
343 case 296: /* sizeof(istruct elf_prstatus) on Linux/x32 */
344 /* pr_cursig */
345 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
346
347 /* pr_pid */
348 elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 24);
349
350 /* pr_reg */
351 offset = 72;
352 size = 216;
353
354 break;
355
356 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
357 /* pr_cursig */
358 elf_tdata (abfd)->core_signal
359 = bfd_get_16 (abfd, note->descdata + 12);
360
361 /* pr_pid */
362 elf_tdata (abfd)->core_lwpid
363 = bfd_get_32 (abfd, note->descdata + 32);
364
365 /* pr_reg */
366 offset = 112;
367 size = 216;
368
369 break;
370 }
371
372 /* Make a ".reg/999" section. */
373 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
374 size, note->descpos + offset);
375 }
376
377 static bfd_boolean
378 elf_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
379 {
380 switch (note->descsz)
381 {
382 default:
383 return FALSE;
384
385 case 124: /* sizeof(struct elf_prpsinfo) on Linux/x32 */
386 elf_tdata (abfd)->core_pid
387 = bfd_get_32 (abfd, note->descdata + 12);
388 elf_tdata (abfd)->core_program
389 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
390 elf_tdata (abfd)->core_command
391 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
392 break;
393
394 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
395 elf_tdata (abfd)->core_pid
396 = bfd_get_32 (abfd, note->descdata + 24);
397 elf_tdata (abfd)->core_program
398 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
399 elf_tdata (abfd)->core_command
400 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
401 }
402
403 /* Note that for some reason, a spurious space is tacked
404 onto the end of the args in some (at least one anyway)
405 implementations, so strip it off if it exists. */
406
407 {
408 char *command = elf_tdata (abfd)->core_command;
409 int n = strlen (command);
410
411 if (0 < n && command[n - 1] == ' ')
412 command[n - 1] = '\0';
413 }
414
415 return TRUE;
416 }
417
418 #ifdef CORE_HEADER
419 static char *
420 elf_x86_64_write_core_note (bfd *abfd, char *buf, int *bufsiz,
421 int note_type, ...)
422 {
423 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
424 va_list ap;
425 const char *fname, *psargs;
426 long pid;
427 int cursig;
428 const void *gregs;
429
430 switch (note_type)
431 {
432 default:
433 return NULL;
434
435 case NT_PRPSINFO:
436 va_start (ap, note_type);
437 fname = va_arg (ap, const char *);
438 psargs = va_arg (ap, const char *);
439 va_end (ap);
440
441 if (bed->s->elfclass == ELFCLASS32)
442 {
443 prpsinfo32_t data;
444 memset (&data, 0, sizeof (data));
445 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
446 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
447 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
448 &data, sizeof (data));
449 }
450 else
451 {
452 prpsinfo_t data;
453 memset (&data, 0, sizeof (data));
454 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
455 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
456 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
457 &data, sizeof (data));
458 }
459 /* NOTREACHED */
460
461 case NT_PRSTATUS:
462 va_start (ap, note_type);
463 pid = va_arg (ap, long);
464 cursig = va_arg (ap, int);
465 gregs = va_arg (ap, const void *);
466 va_end (ap);
467
468 if (bed->s->elfclass == ELFCLASS32)
469 {
470 if (bed->elf_machine_code == EM_X86_64)
471 {
472 prstatusx32_t prstat;
473 memset (&prstat, 0, sizeof (prstat));
474 prstat.pr_pid = pid;
475 prstat.pr_cursig = cursig;
476 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
477 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
478 &prstat, sizeof (prstat));
479 }
480 else
481 {
482 prstatus32_t prstat;
483 memset (&prstat, 0, sizeof (prstat));
484 prstat.pr_pid = pid;
485 prstat.pr_cursig = cursig;
486 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
487 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
488 &prstat, sizeof (prstat));
489 }
490 }
491 else
492 {
493 prstatus_t prstat;
494 memset (&prstat, 0, sizeof (prstat));
495 prstat.pr_pid = pid;
496 prstat.pr_cursig = cursig;
497 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
498 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
499 &prstat, sizeof (prstat));
500 }
501 }
502 /* NOTREACHED */
503 }
504 #endif
505 \f
506 /* Functions for the x86-64 ELF linker. */
507
508 /* The name of the dynamic interpreter. This is put in the .interp
509 section. */
510
511 #define ELF64_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
512 #define ELF32_DYNAMIC_INTERPRETER "/lib/ldx32.so.1"
513
514 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
515 copying dynamic variables from a shared lib into an app's dynbss
516 section, and instead use a dynamic relocation to point into the
517 shared lib. */
518 #define ELIMINATE_COPY_RELOCS 1
519
520 /* The size in bytes of an entry in the global offset table. */
521
522 #define GOT_ENTRY_SIZE 8
523
524 /* The size in bytes of an entry in the procedure linkage table. */
525
526 #define PLT_ENTRY_SIZE 16
527
528 /* The first entry in a procedure linkage table looks like this. See the
529 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
530
531 static const bfd_byte elf_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
532 {
533 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
534 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
535 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */
536 };
537
538 /* Subsequent entries in a procedure linkage table look like this. */
539
540 static const bfd_byte elf_x86_64_plt_entry[PLT_ENTRY_SIZE] =
541 {
542 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
543 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
544 0x68, /* pushq immediate */
545 0, 0, 0, 0, /* replaced with index into relocation table. */
546 0xe9, /* jmp relative */
547 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
548 };
549
550 /* .eh_frame covering the .plt section. */
551
552 static const bfd_byte elf_x86_64_eh_frame_plt[] =
553 {
554 #define PLT_CIE_LENGTH 20
555 #define PLT_FDE_LENGTH 36
556 #define PLT_FDE_START_OFFSET 4 + PLT_CIE_LENGTH + 8
557 #define PLT_FDE_LEN_OFFSET 4 + PLT_CIE_LENGTH + 12
558 PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */
559 0, 0, 0, 0, /* CIE ID */
560 1, /* CIE version */
561 'z', 'R', 0, /* Augmentation string */
562 1, /* Code alignment factor */
563 0x78, /* Data alignment factor */
564 16, /* Return address column */
565 1, /* Augmentation size */
566 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
567 DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
568 DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
569 DW_CFA_nop, DW_CFA_nop,
570
571 PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */
572 PLT_CIE_LENGTH + 8, 0, 0, 0, /* CIE pointer */
573 0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */
574 0, 0, 0, 0, /* .plt size goes here */
575 0, /* Augmentation size */
576 DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */
577 DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */
578 DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */
579 DW_CFA_advance_loc + 10, /* DW_CFA_advance_loc: 10 to __PLT__+16 */
580 DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */
581 11, /* Block length */
582 DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */
583 DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */
584 DW_OP_lit15, DW_OP_and, DW_OP_lit11, DW_OP_ge,
585 DW_OP_lit3, DW_OP_shl, DW_OP_plus,
586 DW_CFA_nop, DW_CFA_nop, DW_CFA_nop, DW_CFA_nop
587 };
588
589 /* Architecture-specific backend data for x86-64. */
590
591 struct elf_x86_64_backend_data
592 {
593 /* Templates for the initial PLT entry and for subsequent entries. */
594 const bfd_byte *plt0_entry;
595 const bfd_byte *plt_entry;
596 unsigned int plt_entry_size; /* Size of each PLT entry. */
597
598 /* Offsets into plt0_entry that are to be replaced with GOT[1] and GOT[2]. */
599 unsigned int plt0_got1_offset;
600 unsigned int plt0_got2_offset;
601
602 /* Offset of the end of the PC-relative instruction containing
603 plt0_got2_offset. */
604 unsigned int plt0_got2_insn_end;
605
606 /* Offsets into plt_entry that are to be replaced with... */
607 unsigned int plt_got_offset; /* ... address of this symbol in .got. */
608 unsigned int plt_reloc_offset; /* ... offset into relocation table. */
609 unsigned int plt_plt_offset; /* ... offset to start of .plt. */
610
611 /* Length of the PC-relative instruction containing plt_got_offset. */
612 unsigned int plt_got_insn_size;
613
614 /* Offset of the end of the PC-relative jump to plt0_entry. */
615 unsigned int plt_plt_insn_end;
616
617 /* Offset into plt_entry where the initial value of the GOT entry points. */
618 unsigned int plt_lazy_offset;
619
620 /* .eh_frame covering the .plt section. */
621 const bfd_byte *eh_frame_plt;
622 unsigned int eh_frame_plt_size;
623 };
624
625 #define get_elf_x86_64_backend_data(abfd) \
626 ((const struct elf_x86_64_backend_data *) \
627 get_elf_backend_data (abfd)->arch_data)
628
629 #define GET_PLT_ENTRY_SIZE(abfd) \
630 get_elf_x86_64_backend_data (abfd)->plt_entry_size
631
632 /* These are the standard parameters. */
633 static const struct elf_x86_64_backend_data elf_x86_64_arch_bed =
634 {
635 elf_x86_64_plt0_entry, /* plt0_entry */
636 elf_x86_64_plt_entry, /* plt_entry */
637 sizeof (elf_x86_64_plt_entry), /* plt_entry_size */
638 2, /* plt0_got1_offset */
639 8, /* plt0_got2_offset */
640 12, /* plt0_got2_insn_end */
641 2, /* plt_got_offset */
642 7, /* plt_reloc_offset */
643 12, /* plt_plt_offset */
644 6, /* plt_got_insn_size */
645 PLT_ENTRY_SIZE, /* plt_plt_insn_end */
646 6, /* plt_lazy_offset */
647 elf_x86_64_eh_frame_plt, /* eh_frame_plt */
648 sizeof (elf_x86_64_eh_frame_plt), /* eh_frame_plt_size */
649 };
650
651 #define elf_backend_arch_data &elf_x86_64_arch_bed
652
653 /* x86-64 ELF linker hash entry. */
654
655 struct elf_x86_64_link_hash_entry
656 {
657 struct elf_link_hash_entry elf;
658
659 /* Track dynamic relocs copied for this symbol. */
660 struct elf_dyn_relocs *dyn_relocs;
661
662 #define GOT_UNKNOWN 0
663 #define GOT_NORMAL 1
664 #define GOT_TLS_GD 2
665 #define GOT_TLS_IE 3
666 #define GOT_TLS_GDESC 4
667 #define GOT_TLS_GD_BOTH_P(type) \
668 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
669 #define GOT_TLS_GD_P(type) \
670 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
671 #define GOT_TLS_GDESC_P(type) \
672 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
673 #define GOT_TLS_GD_ANY_P(type) \
674 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
675 unsigned char tls_type;
676
677 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
678 starting at the end of the jump table. */
679 bfd_vma tlsdesc_got;
680 };
681
682 #define elf_x86_64_hash_entry(ent) \
683 ((struct elf_x86_64_link_hash_entry *)(ent))
684
685 struct elf_x86_64_obj_tdata
686 {
687 struct elf_obj_tdata root;
688
689 /* tls_type for each local got entry. */
690 char *local_got_tls_type;
691
692 /* GOTPLT entries for TLS descriptors. */
693 bfd_vma *local_tlsdesc_gotent;
694 };
695
696 #define elf_x86_64_tdata(abfd) \
697 ((struct elf_x86_64_obj_tdata *) (abfd)->tdata.any)
698
699 #define elf_x86_64_local_got_tls_type(abfd) \
700 (elf_x86_64_tdata (abfd)->local_got_tls_type)
701
702 #define elf_x86_64_local_tlsdesc_gotent(abfd) \
703 (elf_x86_64_tdata (abfd)->local_tlsdesc_gotent)
704
705 #define is_x86_64_elf(bfd) \
706 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
707 && elf_tdata (bfd) != NULL \
708 && elf_object_id (bfd) == X86_64_ELF_DATA)
709
710 static bfd_boolean
711 elf_x86_64_mkobject (bfd *abfd)
712 {
713 return bfd_elf_allocate_object (abfd, sizeof (struct elf_x86_64_obj_tdata),
714 X86_64_ELF_DATA);
715 }
716
717 /* x86-64 ELF linker hash table. */
718
719 struct elf_x86_64_link_hash_table
720 {
721 struct elf_link_hash_table elf;
722
723 /* Short-cuts to get to dynamic linker sections. */
724 asection *sdynbss;
725 asection *srelbss;
726 asection *plt_eh_frame;
727
728 union
729 {
730 bfd_signed_vma refcount;
731 bfd_vma offset;
732 } tls_ld_got;
733
734 /* The amount of space used by the jump slots in the GOT. */
735 bfd_vma sgotplt_jump_table_size;
736
737 /* Small local sym cache. */
738 struct sym_cache sym_cache;
739
740 bfd_vma (*r_info) (bfd_vma, bfd_vma);
741 bfd_vma (*r_sym) (bfd_vma);
742 unsigned int pointer_r_type;
743 const char *dynamic_interpreter;
744 int dynamic_interpreter_size;
745
746 /* _TLS_MODULE_BASE_ symbol. */
747 struct bfd_link_hash_entry *tls_module_base;
748
749 /* Used by local STT_GNU_IFUNC symbols. */
750 htab_t loc_hash_table;
751 void * loc_hash_memory;
752
753 /* The offset into splt of the PLT entry for the TLS descriptor
754 resolver. Special values are 0, if not necessary (or not found
755 to be necessary yet), and -1 if needed but not determined
756 yet. */
757 bfd_vma tlsdesc_plt;
758 /* The offset into sgot of the GOT entry used by the PLT entry
759 above. */
760 bfd_vma tlsdesc_got;
761
762 /* The index of the next R_X86_64_JUMP_SLOT entry in .rela.plt. */
763 bfd_vma next_jump_slot_index;
764 /* The index of the next R_X86_64_IRELATIVE entry in .rela.plt. */
765 bfd_vma next_irelative_index;
766 };
767
768 /* Get the x86-64 ELF linker hash table from a link_info structure. */
769
770 #define elf_x86_64_hash_table(p) \
771 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
772 == X86_64_ELF_DATA ? ((struct elf_x86_64_link_hash_table *) ((p)->hash)) : NULL)
773
774 #define elf_x86_64_compute_jump_table_size(htab) \
775 ((htab)->elf.srelplt->reloc_count * GOT_ENTRY_SIZE)
776
777 /* Create an entry in an x86-64 ELF linker hash table. */
778
779 static struct bfd_hash_entry *
780 elf_x86_64_link_hash_newfunc (struct bfd_hash_entry *entry,
781 struct bfd_hash_table *table,
782 const char *string)
783 {
784 /* Allocate the structure if it has not already been allocated by a
785 subclass. */
786 if (entry == NULL)
787 {
788 entry = (struct bfd_hash_entry *)
789 bfd_hash_allocate (table,
790 sizeof (struct elf_x86_64_link_hash_entry));
791 if (entry == NULL)
792 return entry;
793 }
794
795 /* Call the allocation method of the superclass. */
796 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
797 if (entry != NULL)
798 {
799 struct elf_x86_64_link_hash_entry *eh;
800
801 eh = (struct elf_x86_64_link_hash_entry *) entry;
802 eh->dyn_relocs = NULL;
803 eh->tls_type = GOT_UNKNOWN;
804 eh->tlsdesc_got = (bfd_vma) -1;
805 }
806
807 return entry;
808 }
809
810 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
811 for local symbol so that we can handle local STT_GNU_IFUNC symbols
812 as global symbol. We reuse indx and dynstr_index for local symbol
813 hash since they aren't used by global symbols in this backend. */
814
815 static hashval_t
816 elf_x86_64_local_htab_hash (const void *ptr)
817 {
818 struct elf_link_hash_entry *h
819 = (struct elf_link_hash_entry *) ptr;
820 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
821 }
822
823 /* Compare local hash entries. */
824
825 static int
826 elf_x86_64_local_htab_eq (const void *ptr1, const void *ptr2)
827 {
828 struct elf_link_hash_entry *h1
829 = (struct elf_link_hash_entry *) ptr1;
830 struct elf_link_hash_entry *h2
831 = (struct elf_link_hash_entry *) ptr2;
832
833 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
834 }
835
836 /* Find and/or create a hash entry for local symbol. */
837
838 static struct elf_link_hash_entry *
839 elf_x86_64_get_local_sym_hash (struct elf_x86_64_link_hash_table *htab,
840 bfd *abfd, const Elf_Internal_Rela *rel,
841 bfd_boolean create)
842 {
843 struct elf_x86_64_link_hash_entry e, *ret;
844 asection *sec = abfd->sections;
845 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
846 htab->r_sym (rel->r_info));
847 void **slot;
848
849 e.elf.indx = sec->id;
850 e.elf.dynstr_index = htab->r_sym (rel->r_info);
851 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
852 create ? INSERT : NO_INSERT);
853
854 if (!slot)
855 return NULL;
856
857 if (*slot)
858 {
859 ret = (struct elf_x86_64_link_hash_entry *) *slot;
860 return &ret->elf;
861 }
862
863 ret = (struct elf_x86_64_link_hash_entry *)
864 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
865 sizeof (struct elf_x86_64_link_hash_entry));
866 if (ret)
867 {
868 memset (ret, 0, sizeof (*ret));
869 ret->elf.indx = sec->id;
870 ret->elf.dynstr_index = htab->r_sym (rel->r_info);
871 ret->elf.dynindx = -1;
872 *slot = ret;
873 }
874 return &ret->elf;
875 }
876
877 /* Create an X86-64 ELF linker hash table. */
878
879 static struct bfd_link_hash_table *
880 elf_x86_64_link_hash_table_create (bfd *abfd)
881 {
882 struct elf_x86_64_link_hash_table *ret;
883 bfd_size_type amt = sizeof (struct elf_x86_64_link_hash_table);
884
885 ret = (struct elf_x86_64_link_hash_table *) bfd_malloc (amt);
886 if (ret == NULL)
887 return NULL;
888
889 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
890 elf_x86_64_link_hash_newfunc,
891 sizeof (struct elf_x86_64_link_hash_entry),
892 X86_64_ELF_DATA))
893 {
894 free (ret);
895 return NULL;
896 }
897
898 ret->sdynbss = NULL;
899 ret->srelbss = NULL;
900 ret->plt_eh_frame = NULL;
901 ret->sym_cache.abfd = NULL;
902 ret->tlsdesc_plt = 0;
903 ret->tlsdesc_got = 0;
904 ret->tls_ld_got.refcount = 0;
905 ret->sgotplt_jump_table_size = 0;
906 ret->tls_module_base = NULL;
907 ret->next_jump_slot_index = 0;
908 ret->next_irelative_index = 0;
909
910 if (ABI_64_P (abfd))
911 {
912 ret->r_info = elf64_r_info;
913 ret->r_sym = elf64_r_sym;
914 ret->pointer_r_type = R_X86_64_64;
915 ret->dynamic_interpreter = ELF64_DYNAMIC_INTERPRETER;
916 ret->dynamic_interpreter_size = sizeof ELF64_DYNAMIC_INTERPRETER;
917 }
918 else
919 {
920 ret->r_info = elf32_r_info;
921 ret->r_sym = elf32_r_sym;
922 ret->pointer_r_type = R_X86_64_32;
923 ret->dynamic_interpreter = ELF32_DYNAMIC_INTERPRETER;
924 ret->dynamic_interpreter_size = sizeof ELF32_DYNAMIC_INTERPRETER;
925 }
926
927 ret->loc_hash_table = htab_try_create (1024,
928 elf_x86_64_local_htab_hash,
929 elf_x86_64_local_htab_eq,
930 NULL);
931 ret->loc_hash_memory = objalloc_create ();
932 if (!ret->loc_hash_table || !ret->loc_hash_memory)
933 {
934 free (ret);
935 return NULL;
936 }
937
938 return &ret->elf.root;
939 }
940
941 /* Destroy an X86-64 ELF linker hash table. */
942
943 static void
944 elf_x86_64_link_hash_table_free (struct bfd_link_hash_table *hash)
945 {
946 struct elf_x86_64_link_hash_table *htab
947 = (struct elf_x86_64_link_hash_table *) hash;
948
949 if (htab->loc_hash_table)
950 htab_delete (htab->loc_hash_table);
951 if (htab->loc_hash_memory)
952 objalloc_free ((struct objalloc *) htab->loc_hash_memory);
953 _bfd_generic_link_hash_table_free (hash);
954 }
955
956 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
957 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
958 hash table. */
959
960 static bfd_boolean
961 elf_x86_64_create_dynamic_sections (bfd *dynobj,
962 struct bfd_link_info *info)
963 {
964 struct elf_x86_64_link_hash_table *htab;
965
966 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
967 return FALSE;
968
969 htab = elf_x86_64_hash_table (info);
970 if (htab == NULL)
971 return FALSE;
972
973 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
974 if (!info->shared)
975 htab->srelbss = bfd_get_linker_section (dynobj, ".rela.bss");
976
977 if (!htab->sdynbss
978 || (!info->shared && !htab->srelbss))
979 abort ();
980
981 if (!info->no_ld_generated_unwind_info
982 && htab->plt_eh_frame == NULL
983 && htab->elf.splt != NULL)
984 {
985 flagword flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
986 | SEC_HAS_CONTENTS | SEC_IN_MEMORY
987 | SEC_LINKER_CREATED);
988 htab->plt_eh_frame
989 = bfd_make_section_anyway_with_flags (dynobj, ".eh_frame", flags);
990 if (htab->plt_eh_frame == NULL
991 || !bfd_set_section_alignment (dynobj, htab->plt_eh_frame, 3))
992 return FALSE;
993 }
994 return TRUE;
995 }
996
997 /* Copy the extra info we tack onto an elf_link_hash_entry. */
998
999 static void
1000 elf_x86_64_copy_indirect_symbol (struct bfd_link_info *info,
1001 struct elf_link_hash_entry *dir,
1002 struct elf_link_hash_entry *ind)
1003 {
1004 struct elf_x86_64_link_hash_entry *edir, *eind;
1005
1006 edir = (struct elf_x86_64_link_hash_entry *) dir;
1007 eind = (struct elf_x86_64_link_hash_entry *) ind;
1008
1009 if (eind->dyn_relocs != NULL)
1010 {
1011 if (edir->dyn_relocs != NULL)
1012 {
1013 struct elf_dyn_relocs **pp;
1014 struct elf_dyn_relocs *p;
1015
1016 /* Add reloc counts against the indirect sym to the direct sym
1017 list. Merge any entries against the same section. */
1018 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
1019 {
1020 struct elf_dyn_relocs *q;
1021
1022 for (q = edir->dyn_relocs; q != NULL; q = q->next)
1023 if (q->sec == p->sec)
1024 {
1025 q->pc_count += p->pc_count;
1026 q->count += p->count;
1027 *pp = p->next;
1028 break;
1029 }
1030 if (q == NULL)
1031 pp = &p->next;
1032 }
1033 *pp = edir->dyn_relocs;
1034 }
1035
1036 edir->dyn_relocs = eind->dyn_relocs;
1037 eind->dyn_relocs = NULL;
1038 }
1039
1040 if (ind->root.type == bfd_link_hash_indirect
1041 && dir->got.refcount <= 0)
1042 {
1043 edir->tls_type = eind->tls_type;
1044 eind->tls_type = GOT_UNKNOWN;
1045 }
1046
1047 if (ELIMINATE_COPY_RELOCS
1048 && ind->root.type != bfd_link_hash_indirect
1049 && dir->dynamic_adjusted)
1050 {
1051 /* If called to transfer flags for a weakdef during processing
1052 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1053 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1054 dir->ref_dynamic |= ind->ref_dynamic;
1055 dir->ref_regular |= ind->ref_regular;
1056 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1057 dir->needs_plt |= ind->needs_plt;
1058 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1059 }
1060 else
1061 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
1062 }
1063
1064 static bfd_boolean
1065 elf64_x86_64_elf_object_p (bfd *abfd)
1066 {
1067 /* Set the right machine number for an x86-64 elf64 file. */
1068 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
1069 return TRUE;
1070 }
1071
1072 static bfd_boolean
1073 elf32_x86_64_elf_object_p (bfd *abfd)
1074 {
1075 /* Set the right machine number for an x86-64 elf32 file. */
1076 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x64_32);
1077 return TRUE;
1078 }
1079
1080 /* Return TRUE if the TLS access code sequence support transition
1081 from R_TYPE. */
1082
1083 static bfd_boolean
1084 elf_x86_64_check_tls_transition (bfd *abfd,
1085 struct bfd_link_info *info,
1086 asection *sec,
1087 bfd_byte *contents,
1088 Elf_Internal_Shdr *symtab_hdr,
1089 struct elf_link_hash_entry **sym_hashes,
1090 unsigned int r_type,
1091 const Elf_Internal_Rela *rel,
1092 const Elf_Internal_Rela *relend)
1093 {
1094 unsigned int val;
1095 unsigned long r_symndx;
1096 struct elf_link_hash_entry *h;
1097 bfd_vma offset;
1098 struct elf_x86_64_link_hash_table *htab;
1099
1100 /* Get the section contents. */
1101 if (contents == NULL)
1102 {
1103 if (elf_section_data (sec)->this_hdr.contents != NULL)
1104 contents = elf_section_data (sec)->this_hdr.contents;
1105 else
1106 {
1107 /* FIXME: How to better handle error condition? */
1108 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
1109 return FALSE;
1110
1111 /* Cache the section contents for elf_link_input_bfd. */
1112 elf_section_data (sec)->this_hdr.contents = contents;
1113 }
1114 }
1115
1116 htab = elf_x86_64_hash_table (info);
1117 offset = rel->r_offset;
1118 switch (r_type)
1119 {
1120 case R_X86_64_TLSGD:
1121 case R_X86_64_TLSLD:
1122 if ((rel + 1) >= relend)
1123 return FALSE;
1124
1125 if (r_type == R_X86_64_TLSGD)
1126 {
1127 /* Check transition from GD access model. For 64bit, only
1128 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
1129 .word 0x6666; rex64; call __tls_get_addr
1130 can transit to different access model. For 32bit, only
1131 leaq foo@tlsgd(%rip), %rdi
1132 .word 0x6666; rex64; call __tls_get_addr
1133 can transit to different access model. */
1134
1135 static const unsigned char call[] = { 0x66, 0x66, 0x48, 0xe8 };
1136 static const unsigned char leaq[] = { 0x66, 0x48, 0x8d, 0x3d };
1137
1138 if ((offset + 12) > sec->size
1139 || memcmp (contents + offset + 4, call, 4) != 0)
1140 return FALSE;
1141
1142 if (ABI_64_P (abfd))
1143 {
1144 if (offset < 4
1145 || memcmp (contents + offset - 4, leaq, 4) != 0)
1146 return FALSE;
1147 }
1148 else
1149 {
1150 if (offset < 3
1151 || memcmp (contents + offset - 3, leaq + 1, 3) != 0)
1152 return FALSE;
1153 }
1154 }
1155 else
1156 {
1157 /* Check transition from LD access model. Only
1158 leaq foo@tlsld(%rip), %rdi;
1159 call __tls_get_addr
1160 can transit to different access model. */
1161
1162 static const unsigned char lea[] = { 0x48, 0x8d, 0x3d };
1163
1164 if (offset < 3 || (offset + 9) > sec->size)
1165 return FALSE;
1166
1167 if (memcmp (contents + offset - 3, lea, 3) != 0
1168 || 0xe8 != *(contents + offset + 4))
1169 return FALSE;
1170 }
1171
1172 r_symndx = htab->r_sym (rel[1].r_info);
1173 if (r_symndx < symtab_hdr->sh_info)
1174 return FALSE;
1175
1176 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1177 /* Use strncmp to check __tls_get_addr since __tls_get_addr
1178 may be versioned. */
1179 return (h != NULL
1180 && h->root.root.string != NULL
1181 && (ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PC32
1182 || ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PLT32)
1183 && (strncmp (h->root.root.string,
1184 "__tls_get_addr", 14) == 0));
1185
1186 case R_X86_64_GOTTPOFF:
1187 /* Check transition from IE access model:
1188 mov foo@gottpoff(%rip), %reg
1189 add foo@gottpoff(%rip), %reg
1190 */
1191
1192 /* Check REX prefix first. */
1193 if (offset >= 3 && (offset + 4) <= sec->size)
1194 {
1195 val = bfd_get_8 (abfd, contents + offset - 3);
1196 if (val != 0x48 && val != 0x4c)
1197 {
1198 /* X32 may have 0x44 REX prefix or no REX prefix. */
1199 if (ABI_64_P (abfd))
1200 return FALSE;
1201 }
1202 }
1203 else
1204 {
1205 /* X32 may not have any REX prefix. */
1206 if (ABI_64_P (abfd))
1207 return FALSE;
1208 if (offset < 2 || (offset + 3) > sec->size)
1209 return FALSE;
1210 }
1211
1212 val = bfd_get_8 (abfd, contents + offset - 2);
1213 if (val != 0x8b && val != 0x03)
1214 return FALSE;
1215
1216 val = bfd_get_8 (abfd, contents + offset - 1);
1217 return (val & 0xc7) == 5;
1218
1219 case R_X86_64_GOTPC32_TLSDESC:
1220 /* Check transition from GDesc access model:
1221 leaq x@tlsdesc(%rip), %rax
1222
1223 Make sure it's a leaq adding rip to a 32-bit offset
1224 into any register, although it's probably almost always
1225 going to be rax. */
1226
1227 if (offset < 3 || (offset + 4) > sec->size)
1228 return FALSE;
1229
1230 val = bfd_get_8 (abfd, contents + offset - 3);
1231 if ((val & 0xfb) != 0x48)
1232 return FALSE;
1233
1234 if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d)
1235 return FALSE;
1236
1237 val = bfd_get_8 (abfd, contents + offset - 1);
1238 return (val & 0xc7) == 0x05;
1239
1240 case R_X86_64_TLSDESC_CALL:
1241 /* Check transition from GDesc access model:
1242 call *x@tlsdesc(%rax)
1243 */
1244 if (offset + 2 <= sec->size)
1245 {
1246 /* Make sure that it's a call *x@tlsdesc(%rax). */
1247 static const unsigned char call[] = { 0xff, 0x10 };
1248 return memcmp (contents + offset, call, 2) == 0;
1249 }
1250
1251 return FALSE;
1252
1253 default:
1254 abort ();
1255 }
1256 }
1257
1258 /* Return TRUE if the TLS access transition is OK or no transition
1259 will be performed. Update R_TYPE if there is a transition. */
1260
1261 static bfd_boolean
1262 elf_x86_64_tls_transition (struct bfd_link_info *info, bfd *abfd,
1263 asection *sec, bfd_byte *contents,
1264 Elf_Internal_Shdr *symtab_hdr,
1265 struct elf_link_hash_entry **sym_hashes,
1266 unsigned int *r_type, int tls_type,
1267 const Elf_Internal_Rela *rel,
1268 const Elf_Internal_Rela *relend,
1269 struct elf_link_hash_entry *h,
1270 unsigned long r_symndx)
1271 {
1272 unsigned int from_type = *r_type;
1273 unsigned int to_type = from_type;
1274 bfd_boolean check = TRUE;
1275
1276 /* Skip TLS transition for functions. */
1277 if (h != NULL
1278 && (h->type == STT_FUNC
1279 || h->type == STT_GNU_IFUNC))
1280 return TRUE;
1281
1282 switch (from_type)
1283 {
1284 case R_X86_64_TLSGD:
1285 case R_X86_64_GOTPC32_TLSDESC:
1286 case R_X86_64_TLSDESC_CALL:
1287 case R_X86_64_GOTTPOFF:
1288 if (info->executable)
1289 {
1290 if (h == NULL)
1291 to_type = R_X86_64_TPOFF32;
1292 else
1293 to_type = R_X86_64_GOTTPOFF;
1294 }
1295
1296 /* When we are called from elf_x86_64_relocate_section,
1297 CONTENTS isn't NULL and there may be additional transitions
1298 based on TLS_TYPE. */
1299 if (contents != NULL)
1300 {
1301 unsigned int new_to_type = to_type;
1302
1303 if (info->executable
1304 && h != NULL
1305 && h->dynindx == -1
1306 && tls_type == GOT_TLS_IE)
1307 new_to_type = R_X86_64_TPOFF32;
1308
1309 if (to_type == R_X86_64_TLSGD
1310 || to_type == R_X86_64_GOTPC32_TLSDESC
1311 || to_type == R_X86_64_TLSDESC_CALL)
1312 {
1313 if (tls_type == GOT_TLS_IE)
1314 new_to_type = R_X86_64_GOTTPOFF;
1315 }
1316
1317 /* We checked the transition before when we were called from
1318 elf_x86_64_check_relocs. We only want to check the new
1319 transition which hasn't been checked before. */
1320 check = new_to_type != to_type && from_type == to_type;
1321 to_type = new_to_type;
1322 }
1323
1324 break;
1325
1326 case R_X86_64_TLSLD:
1327 if (info->executable)
1328 to_type = R_X86_64_TPOFF32;
1329 break;
1330
1331 default:
1332 return TRUE;
1333 }
1334
1335 /* Return TRUE if there is no transition. */
1336 if (from_type == to_type)
1337 return TRUE;
1338
1339 /* Check if the transition can be performed. */
1340 if (check
1341 && ! elf_x86_64_check_tls_transition (abfd, info, sec, contents,
1342 symtab_hdr, sym_hashes,
1343 from_type, rel, relend))
1344 {
1345 reloc_howto_type *from, *to;
1346 const char *name;
1347
1348 from = elf_x86_64_rtype_to_howto (abfd, from_type);
1349 to = elf_x86_64_rtype_to_howto (abfd, to_type);
1350
1351 if (h)
1352 name = h->root.root.string;
1353 else
1354 {
1355 struct elf_x86_64_link_hash_table *htab;
1356
1357 htab = elf_x86_64_hash_table (info);
1358 if (htab == NULL)
1359 name = "*unknown*";
1360 else
1361 {
1362 Elf_Internal_Sym *isym;
1363
1364 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1365 abfd, r_symndx);
1366 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1367 }
1368 }
1369
1370 (*_bfd_error_handler)
1371 (_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
1372 "in section `%A' failed"),
1373 abfd, sec, from->name, to->name, name,
1374 (unsigned long) rel->r_offset);
1375 bfd_set_error (bfd_error_bad_value);
1376 return FALSE;
1377 }
1378
1379 *r_type = to_type;
1380 return TRUE;
1381 }
1382
1383 /* Look through the relocs for a section during the first phase, and
1384 calculate needed space in the global offset table, procedure
1385 linkage table, and dynamic reloc sections. */
1386
1387 static bfd_boolean
1388 elf_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info,
1389 asection *sec,
1390 const Elf_Internal_Rela *relocs)
1391 {
1392 struct elf_x86_64_link_hash_table *htab;
1393 Elf_Internal_Shdr *symtab_hdr;
1394 struct elf_link_hash_entry **sym_hashes;
1395 const Elf_Internal_Rela *rel;
1396 const Elf_Internal_Rela *rel_end;
1397 asection *sreloc;
1398
1399 if (info->relocatable)
1400 return TRUE;
1401
1402 BFD_ASSERT (is_x86_64_elf (abfd));
1403
1404 htab = elf_x86_64_hash_table (info);
1405 if (htab == NULL)
1406 return FALSE;
1407
1408 symtab_hdr = &elf_symtab_hdr (abfd);
1409 sym_hashes = elf_sym_hashes (abfd);
1410
1411 sreloc = NULL;
1412
1413 rel_end = relocs + sec->reloc_count;
1414 for (rel = relocs; rel < rel_end; rel++)
1415 {
1416 unsigned int r_type;
1417 unsigned long r_symndx;
1418 struct elf_link_hash_entry *h;
1419 Elf_Internal_Sym *isym;
1420 const char *name;
1421
1422 r_symndx = htab->r_sym (rel->r_info);
1423 r_type = ELF32_R_TYPE (rel->r_info);
1424
1425 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1426 {
1427 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1428 abfd, r_symndx);
1429 return FALSE;
1430 }
1431
1432 if (r_symndx < symtab_hdr->sh_info)
1433 {
1434 /* A local symbol. */
1435 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1436 abfd, r_symndx);
1437 if (isym == NULL)
1438 return FALSE;
1439
1440 /* Check relocation against local STT_GNU_IFUNC symbol. */
1441 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1442 {
1443 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel,
1444 TRUE);
1445 if (h == NULL)
1446 return FALSE;
1447
1448 /* Fake a STT_GNU_IFUNC symbol. */
1449 h->type = STT_GNU_IFUNC;
1450 h->def_regular = 1;
1451 h->ref_regular = 1;
1452 h->forced_local = 1;
1453 h->root.type = bfd_link_hash_defined;
1454 }
1455 else
1456 h = NULL;
1457 }
1458 else
1459 {
1460 isym = NULL;
1461 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1462 while (h->root.type == bfd_link_hash_indirect
1463 || h->root.type == bfd_link_hash_warning)
1464 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1465 }
1466
1467 /* Check invalid x32 relocations. */
1468 if (!ABI_64_P (abfd))
1469 switch (r_type)
1470 {
1471 default:
1472 break;
1473
1474 case R_X86_64_DTPOFF64:
1475 case R_X86_64_TPOFF64:
1476 case R_X86_64_PC64:
1477 case R_X86_64_GOTOFF64:
1478 case R_X86_64_GOT64:
1479 case R_X86_64_GOTPCREL64:
1480 case R_X86_64_GOTPC64:
1481 case R_X86_64_GOTPLT64:
1482 case R_X86_64_PLTOFF64:
1483 {
1484 if (h)
1485 name = h->root.root.string;
1486 else
1487 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1488 NULL);
1489 (*_bfd_error_handler)
1490 (_("%B: relocation %s against symbol `%s' isn't "
1491 "supported in x32 mode"), abfd,
1492 x86_64_elf_howto_table[r_type].name, name);
1493 bfd_set_error (bfd_error_bad_value);
1494 return FALSE;
1495 }
1496 break;
1497 }
1498
1499 if (h != NULL)
1500 {
1501 /* Create the ifunc sections for static executables. If we
1502 never see an indirect function symbol nor we are building
1503 a static executable, those sections will be empty and
1504 won't appear in output. */
1505 switch (r_type)
1506 {
1507 default:
1508 break;
1509
1510 case R_X86_64_32S:
1511 case R_X86_64_32:
1512 case R_X86_64_64:
1513 case R_X86_64_PC32:
1514 case R_X86_64_PC64:
1515 case R_X86_64_PLT32:
1516 case R_X86_64_GOTPCREL:
1517 case R_X86_64_GOTPCREL64:
1518 if (htab->elf.dynobj == NULL)
1519 htab->elf.dynobj = abfd;
1520 if (!_bfd_elf_create_ifunc_sections (htab->elf.dynobj, info))
1521 return FALSE;
1522 break;
1523 }
1524
1525 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
1526 it here if it is defined in a non-shared object. */
1527 if (h->type == STT_GNU_IFUNC
1528 && h->def_regular)
1529 {
1530 /* It is referenced by a non-shared object. */
1531 h->ref_regular = 1;
1532 h->needs_plt = 1;
1533
1534 /* STT_GNU_IFUNC symbol must go through PLT. */
1535 h->plt.refcount += 1;
1536
1537 /* STT_GNU_IFUNC needs dynamic sections. */
1538 if (htab->elf.dynobj == NULL)
1539 htab->elf.dynobj = abfd;
1540
1541 switch (r_type)
1542 {
1543 default:
1544 if (h->root.root.string)
1545 name = h->root.root.string;
1546 else
1547 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1548 NULL);
1549 (*_bfd_error_handler)
1550 (_("%B: relocation %s against STT_GNU_IFUNC "
1551 "symbol `%s' isn't handled by %s"), abfd,
1552 x86_64_elf_howto_table[r_type].name,
1553 name, __FUNCTION__);
1554 bfd_set_error (bfd_error_bad_value);
1555 return FALSE;
1556
1557 case R_X86_64_32:
1558 if (ABI_64_P (abfd))
1559 goto not_pointer;
1560 case R_X86_64_64:
1561 h->non_got_ref = 1;
1562 h->pointer_equality_needed = 1;
1563 if (info->shared)
1564 {
1565 /* We must copy these reloc types into the output
1566 file. Create a reloc section in dynobj and
1567 make room for this reloc. */
1568 sreloc = _bfd_elf_create_ifunc_dyn_reloc
1569 (abfd, info, sec, sreloc,
1570 &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs);
1571 if (sreloc == NULL)
1572 return FALSE;
1573 }
1574 break;
1575
1576 case R_X86_64_32S:
1577 case R_X86_64_PC32:
1578 case R_X86_64_PC64:
1579 not_pointer:
1580 h->non_got_ref = 1;
1581 if (r_type != R_X86_64_PC32
1582 && r_type != R_X86_64_PC64)
1583 h->pointer_equality_needed = 1;
1584 break;
1585
1586 case R_X86_64_PLT32:
1587 break;
1588
1589 case R_X86_64_GOTPCREL:
1590 case R_X86_64_GOTPCREL64:
1591 h->got.refcount += 1;
1592 if (htab->elf.sgot == NULL
1593 && !_bfd_elf_create_got_section (htab->elf.dynobj,
1594 info))
1595 return FALSE;
1596 break;
1597 }
1598
1599 continue;
1600 }
1601 }
1602
1603 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
1604 symtab_hdr, sym_hashes,
1605 &r_type, GOT_UNKNOWN,
1606 rel, rel_end, h, r_symndx))
1607 return FALSE;
1608
1609 switch (r_type)
1610 {
1611 case R_X86_64_TLSLD:
1612 htab->tls_ld_got.refcount += 1;
1613 goto create_got;
1614
1615 case R_X86_64_TPOFF32:
1616 if (!info->executable && ABI_64_P (abfd))
1617 {
1618 if (h)
1619 name = h->root.root.string;
1620 else
1621 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1622 NULL);
1623 (*_bfd_error_handler)
1624 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1625 abfd,
1626 x86_64_elf_howto_table[r_type].name, name);
1627 bfd_set_error (bfd_error_bad_value);
1628 return FALSE;
1629 }
1630 break;
1631
1632 case R_X86_64_GOTTPOFF:
1633 if (!info->executable)
1634 info->flags |= DF_STATIC_TLS;
1635 /* Fall through */
1636
1637 case R_X86_64_GOT32:
1638 case R_X86_64_GOTPCREL:
1639 case R_X86_64_TLSGD:
1640 case R_X86_64_GOT64:
1641 case R_X86_64_GOTPCREL64:
1642 case R_X86_64_GOTPLT64:
1643 case R_X86_64_GOTPC32_TLSDESC:
1644 case R_X86_64_TLSDESC_CALL:
1645 /* This symbol requires a global offset table entry. */
1646 {
1647 int tls_type, old_tls_type;
1648
1649 switch (r_type)
1650 {
1651 default: tls_type = GOT_NORMAL; break;
1652 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
1653 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
1654 case R_X86_64_GOTPC32_TLSDESC:
1655 case R_X86_64_TLSDESC_CALL:
1656 tls_type = GOT_TLS_GDESC; break;
1657 }
1658
1659 if (h != NULL)
1660 {
1661 if (r_type == R_X86_64_GOTPLT64)
1662 {
1663 /* This relocation indicates that we also need
1664 a PLT entry, as this is a function. We don't need
1665 a PLT entry for local symbols. */
1666 h->needs_plt = 1;
1667 h->plt.refcount += 1;
1668 }
1669 h->got.refcount += 1;
1670 old_tls_type = elf_x86_64_hash_entry (h)->tls_type;
1671 }
1672 else
1673 {
1674 bfd_signed_vma *local_got_refcounts;
1675
1676 /* This is a global offset table entry for a local symbol. */
1677 local_got_refcounts = elf_local_got_refcounts (abfd);
1678 if (local_got_refcounts == NULL)
1679 {
1680 bfd_size_type size;
1681
1682 size = symtab_hdr->sh_info;
1683 size *= sizeof (bfd_signed_vma)
1684 + sizeof (bfd_vma) + sizeof (char);
1685 local_got_refcounts = ((bfd_signed_vma *)
1686 bfd_zalloc (abfd, size));
1687 if (local_got_refcounts == NULL)
1688 return FALSE;
1689 elf_local_got_refcounts (abfd) = local_got_refcounts;
1690 elf_x86_64_local_tlsdesc_gotent (abfd)
1691 = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info);
1692 elf_x86_64_local_got_tls_type (abfd)
1693 = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
1694 }
1695 local_got_refcounts[r_symndx] += 1;
1696 old_tls_type
1697 = elf_x86_64_local_got_tls_type (abfd) [r_symndx];
1698 }
1699
1700 /* If a TLS symbol is accessed using IE at least once,
1701 there is no point to use dynamic model for it. */
1702 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1703 && (! GOT_TLS_GD_ANY_P (old_tls_type)
1704 || tls_type != GOT_TLS_IE))
1705 {
1706 if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type))
1707 tls_type = old_tls_type;
1708 else if (GOT_TLS_GD_ANY_P (old_tls_type)
1709 && GOT_TLS_GD_ANY_P (tls_type))
1710 tls_type |= old_tls_type;
1711 else
1712 {
1713 if (h)
1714 name = h->root.root.string;
1715 else
1716 name = bfd_elf_sym_name (abfd, symtab_hdr,
1717 isym, NULL);
1718 (*_bfd_error_handler)
1719 (_("%B: '%s' accessed both as normal and thread local symbol"),
1720 abfd, name);
1721 return FALSE;
1722 }
1723 }
1724
1725 if (old_tls_type != tls_type)
1726 {
1727 if (h != NULL)
1728 elf_x86_64_hash_entry (h)->tls_type = tls_type;
1729 else
1730 elf_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
1731 }
1732 }
1733 /* Fall through */
1734
1735 case R_X86_64_GOTOFF64:
1736 case R_X86_64_GOTPC32:
1737 case R_X86_64_GOTPC64:
1738 create_got:
1739 if (htab->elf.sgot == NULL)
1740 {
1741 if (htab->elf.dynobj == NULL)
1742 htab->elf.dynobj = abfd;
1743 if (!_bfd_elf_create_got_section (htab->elf.dynobj,
1744 info))
1745 return FALSE;
1746 }
1747 break;
1748
1749 case R_X86_64_PLT32:
1750 /* This symbol requires a procedure linkage table entry. We
1751 actually build the entry in adjust_dynamic_symbol,
1752 because this might be a case of linking PIC code which is
1753 never referenced by a dynamic object, in which case we
1754 don't need to generate a procedure linkage table entry
1755 after all. */
1756
1757 /* If this is a local symbol, we resolve it directly without
1758 creating a procedure linkage table entry. */
1759 if (h == NULL)
1760 continue;
1761
1762 h->needs_plt = 1;
1763 h->plt.refcount += 1;
1764 break;
1765
1766 case R_X86_64_PLTOFF64:
1767 /* This tries to form the 'address' of a function relative
1768 to GOT. For global symbols we need a PLT entry. */
1769 if (h != NULL)
1770 {
1771 h->needs_plt = 1;
1772 h->plt.refcount += 1;
1773 }
1774 goto create_got;
1775
1776 case R_X86_64_32:
1777 if (!ABI_64_P (abfd))
1778 goto pointer;
1779 case R_X86_64_8:
1780 case R_X86_64_16:
1781 case R_X86_64_32S:
1782 /* Let's help debug shared library creation. These relocs
1783 cannot be used in shared libs. Don't error out for
1784 sections we don't care about, such as debug sections or
1785 non-constant sections. */
1786 if (info->shared
1787 && (sec->flags & SEC_ALLOC) != 0
1788 && (sec->flags & SEC_READONLY) != 0)
1789 {
1790 if (h)
1791 name = h->root.root.string;
1792 else
1793 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1794 (*_bfd_error_handler)
1795 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1796 abfd, x86_64_elf_howto_table[r_type].name, name);
1797 bfd_set_error (bfd_error_bad_value);
1798 return FALSE;
1799 }
1800 /* Fall through. */
1801
1802 case R_X86_64_PC8:
1803 case R_X86_64_PC16:
1804 case R_X86_64_PC32:
1805 case R_X86_64_PC64:
1806 case R_X86_64_64:
1807 pointer:
1808 if (h != NULL && info->executable)
1809 {
1810 /* If this reloc is in a read-only section, we might
1811 need a copy reloc. We can't check reliably at this
1812 stage whether the section is read-only, as input
1813 sections have not yet been mapped to output sections.
1814 Tentatively set the flag for now, and correct in
1815 adjust_dynamic_symbol. */
1816 h->non_got_ref = 1;
1817
1818 /* We may need a .plt entry if the function this reloc
1819 refers to is in a shared lib. */
1820 h->plt.refcount += 1;
1821 if (r_type != R_X86_64_PC32 && r_type != R_X86_64_PC64)
1822 h->pointer_equality_needed = 1;
1823 }
1824
1825 /* If we are creating a shared library, and this is a reloc
1826 against a global symbol, or a non PC relative reloc
1827 against a local symbol, then we need to copy the reloc
1828 into the shared library. However, if we are linking with
1829 -Bsymbolic, we do not need to copy a reloc against a
1830 global symbol which is defined in an object we are
1831 including in the link (i.e., DEF_REGULAR is set). At
1832 this point we have not seen all the input files, so it is
1833 possible that DEF_REGULAR is not set now but will be set
1834 later (it is never cleared). In case of a weak definition,
1835 DEF_REGULAR may be cleared later by a strong definition in
1836 a shared library. We account for that possibility below by
1837 storing information in the relocs_copied field of the hash
1838 table entry. A similar situation occurs when creating
1839 shared libraries and symbol visibility changes render the
1840 symbol local.
1841
1842 If on the other hand, we are creating an executable, we
1843 may need to keep relocations for symbols satisfied by a
1844 dynamic library if we manage to avoid copy relocs for the
1845 symbol. */
1846 if ((info->shared
1847 && (sec->flags & SEC_ALLOC) != 0
1848 && (! IS_X86_64_PCREL_TYPE (r_type)
1849 || (h != NULL
1850 && (! SYMBOLIC_BIND (info, h)
1851 || h->root.type == bfd_link_hash_defweak
1852 || !h->def_regular))))
1853 || (ELIMINATE_COPY_RELOCS
1854 && !info->shared
1855 && (sec->flags & SEC_ALLOC) != 0
1856 && h != NULL
1857 && (h->root.type == bfd_link_hash_defweak
1858 || !h->def_regular)))
1859 {
1860 struct elf_dyn_relocs *p;
1861 struct elf_dyn_relocs **head;
1862
1863 /* We must copy these reloc types into the output file.
1864 Create a reloc section in dynobj and make room for
1865 this reloc. */
1866 if (sreloc == NULL)
1867 {
1868 if (htab->elf.dynobj == NULL)
1869 htab->elf.dynobj = abfd;
1870
1871 sreloc = _bfd_elf_make_dynamic_reloc_section
1872 (sec, htab->elf.dynobj, ABI_64_P (abfd) ? 3 : 2,
1873 abfd, /*rela?*/ TRUE);
1874
1875 if (sreloc == NULL)
1876 return FALSE;
1877 }
1878
1879 /* If this is a global symbol, we count the number of
1880 relocations we need for this symbol. */
1881 if (h != NULL)
1882 {
1883 head = &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs;
1884 }
1885 else
1886 {
1887 /* Track dynamic relocs needed for local syms too.
1888 We really need local syms available to do this
1889 easily. Oh well. */
1890 asection *s;
1891 void **vpp;
1892
1893 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1894 abfd, r_symndx);
1895 if (isym == NULL)
1896 return FALSE;
1897
1898 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
1899 if (s == NULL)
1900 s = sec;
1901
1902 /* Beware of type punned pointers vs strict aliasing
1903 rules. */
1904 vpp = &(elf_section_data (s)->local_dynrel);
1905 head = (struct elf_dyn_relocs **)vpp;
1906 }
1907
1908 p = *head;
1909 if (p == NULL || p->sec != sec)
1910 {
1911 bfd_size_type amt = sizeof *p;
1912
1913 p = ((struct elf_dyn_relocs *)
1914 bfd_alloc (htab->elf.dynobj, amt));
1915 if (p == NULL)
1916 return FALSE;
1917 p->next = *head;
1918 *head = p;
1919 p->sec = sec;
1920 p->count = 0;
1921 p->pc_count = 0;
1922 }
1923
1924 p->count += 1;
1925 if (IS_X86_64_PCREL_TYPE (r_type))
1926 p->pc_count += 1;
1927 }
1928 break;
1929
1930 /* This relocation describes the C++ object vtable hierarchy.
1931 Reconstruct it for later use during GC. */
1932 case R_X86_64_GNU_VTINHERIT:
1933 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1934 return FALSE;
1935 break;
1936
1937 /* This relocation describes which C++ vtable entries are actually
1938 used. Record for later use during GC. */
1939 case R_X86_64_GNU_VTENTRY:
1940 BFD_ASSERT (h != NULL);
1941 if (h != NULL
1942 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1943 return FALSE;
1944 break;
1945
1946 default:
1947 break;
1948 }
1949 }
1950
1951 return TRUE;
1952 }
1953
1954 /* Return the section that should be marked against GC for a given
1955 relocation. */
1956
1957 static asection *
1958 elf_x86_64_gc_mark_hook (asection *sec,
1959 struct bfd_link_info *info,
1960 Elf_Internal_Rela *rel,
1961 struct elf_link_hash_entry *h,
1962 Elf_Internal_Sym *sym)
1963 {
1964 if (h != NULL)
1965 switch (ELF32_R_TYPE (rel->r_info))
1966 {
1967 case R_X86_64_GNU_VTINHERIT:
1968 case R_X86_64_GNU_VTENTRY:
1969 return NULL;
1970 }
1971
1972 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1973 }
1974
1975 /* Update the got entry reference counts for the section being removed. */
1976
1977 static bfd_boolean
1978 elf_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
1979 asection *sec,
1980 const Elf_Internal_Rela *relocs)
1981 {
1982 struct elf_x86_64_link_hash_table *htab;
1983 Elf_Internal_Shdr *symtab_hdr;
1984 struct elf_link_hash_entry **sym_hashes;
1985 bfd_signed_vma *local_got_refcounts;
1986 const Elf_Internal_Rela *rel, *relend;
1987
1988 if (info->relocatable)
1989 return TRUE;
1990
1991 htab = elf_x86_64_hash_table (info);
1992 if (htab == NULL)
1993 return FALSE;
1994
1995 elf_section_data (sec)->local_dynrel = NULL;
1996
1997 symtab_hdr = &elf_symtab_hdr (abfd);
1998 sym_hashes = elf_sym_hashes (abfd);
1999 local_got_refcounts = elf_local_got_refcounts (abfd);
2000
2001 htab = elf_x86_64_hash_table (info);
2002 relend = relocs + sec->reloc_count;
2003 for (rel = relocs; rel < relend; rel++)
2004 {
2005 unsigned long r_symndx;
2006 unsigned int r_type;
2007 struct elf_link_hash_entry *h = NULL;
2008
2009 r_symndx = htab->r_sym (rel->r_info);
2010 if (r_symndx >= symtab_hdr->sh_info)
2011 {
2012 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2013 while (h->root.type == bfd_link_hash_indirect
2014 || h->root.type == bfd_link_hash_warning)
2015 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2016 }
2017 else
2018 {
2019 /* A local symbol. */
2020 Elf_Internal_Sym *isym;
2021
2022 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
2023 abfd, r_symndx);
2024
2025 /* Check relocation against local STT_GNU_IFUNC symbol. */
2026 if (isym != NULL
2027 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
2028 {
2029 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel, FALSE);
2030 if (h == NULL)
2031 abort ();
2032 }
2033 }
2034
2035 if (h)
2036 {
2037 struct elf_x86_64_link_hash_entry *eh;
2038 struct elf_dyn_relocs **pp;
2039 struct elf_dyn_relocs *p;
2040
2041 eh = (struct elf_x86_64_link_hash_entry *) h;
2042
2043 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
2044 if (p->sec == sec)
2045 {
2046 /* Everything must go for SEC. */
2047 *pp = p->next;
2048 break;
2049 }
2050 }
2051
2052 r_type = ELF32_R_TYPE (rel->r_info);
2053 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
2054 symtab_hdr, sym_hashes,
2055 &r_type, GOT_UNKNOWN,
2056 rel, relend, h, r_symndx))
2057 return FALSE;
2058
2059 switch (r_type)
2060 {
2061 case R_X86_64_TLSLD:
2062 if (htab->tls_ld_got.refcount > 0)
2063 htab->tls_ld_got.refcount -= 1;
2064 break;
2065
2066 case R_X86_64_TLSGD:
2067 case R_X86_64_GOTPC32_TLSDESC:
2068 case R_X86_64_TLSDESC_CALL:
2069 case R_X86_64_GOTTPOFF:
2070 case R_X86_64_GOT32:
2071 case R_X86_64_GOTPCREL:
2072 case R_X86_64_GOT64:
2073 case R_X86_64_GOTPCREL64:
2074 case R_X86_64_GOTPLT64:
2075 if (h != NULL)
2076 {
2077 if (r_type == R_X86_64_GOTPLT64 && h->plt.refcount > 0)
2078 h->plt.refcount -= 1;
2079 if (h->got.refcount > 0)
2080 h->got.refcount -= 1;
2081 if (h->type == STT_GNU_IFUNC)
2082 {
2083 if (h->plt.refcount > 0)
2084 h->plt.refcount -= 1;
2085 }
2086 }
2087 else if (local_got_refcounts != NULL)
2088 {
2089 if (local_got_refcounts[r_symndx] > 0)
2090 local_got_refcounts[r_symndx] -= 1;
2091 }
2092 break;
2093
2094 case R_X86_64_8:
2095 case R_X86_64_16:
2096 case R_X86_64_32:
2097 case R_X86_64_64:
2098 case R_X86_64_32S:
2099 case R_X86_64_PC8:
2100 case R_X86_64_PC16:
2101 case R_X86_64_PC32:
2102 case R_X86_64_PC64:
2103 if (info->shared
2104 && (h == NULL || h->type != STT_GNU_IFUNC))
2105 break;
2106 /* Fall thru */
2107
2108 case R_X86_64_PLT32:
2109 case R_X86_64_PLTOFF64:
2110 if (h != NULL)
2111 {
2112 if (h->plt.refcount > 0)
2113 h->plt.refcount -= 1;
2114 }
2115 break;
2116
2117 default:
2118 break;
2119 }
2120 }
2121
2122 return TRUE;
2123 }
2124
2125 /* Adjust a symbol defined by a dynamic object and referenced by a
2126 regular object. The current definition is in some section of the
2127 dynamic object, but we're not including those sections. We have to
2128 change the definition to something the rest of the link can
2129 understand. */
2130
2131 static bfd_boolean
2132 elf_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
2133 struct elf_link_hash_entry *h)
2134 {
2135 struct elf_x86_64_link_hash_table *htab;
2136 asection *s;
2137
2138 /* STT_GNU_IFUNC symbol must go through PLT. */
2139 if (h->type == STT_GNU_IFUNC)
2140 {
2141 if (h->plt.refcount <= 0)
2142 {
2143 h->plt.offset = (bfd_vma) -1;
2144 h->needs_plt = 0;
2145 }
2146 return TRUE;
2147 }
2148
2149 /* If this is a function, put it in the procedure linkage table. We
2150 will fill in the contents of the procedure linkage table later,
2151 when we know the address of the .got section. */
2152 if (h->type == STT_FUNC
2153 || h->needs_plt)
2154 {
2155 if (h->plt.refcount <= 0
2156 || SYMBOL_CALLS_LOCAL (info, h)
2157 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2158 && h->root.type == bfd_link_hash_undefweak))
2159 {
2160 /* This case can occur if we saw a PLT32 reloc in an input
2161 file, but the symbol was never referred to by a dynamic
2162 object, or if all references were garbage collected. In
2163 such a case, we don't actually need to build a procedure
2164 linkage table, and we can just do a PC32 reloc instead. */
2165 h->plt.offset = (bfd_vma) -1;
2166 h->needs_plt = 0;
2167 }
2168
2169 return TRUE;
2170 }
2171 else
2172 /* It's possible that we incorrectly decided a .plt reloc was
2173 needed for an R_X86_64_PC32 reloc to a non-function sym in
2174 check_relocs. We can't decide accurately between function and
2175 non-function syms in check-relocs; Objects loaded later in
2176 the link may change h->type. So fix it now. */
2177 h->plt.offset = (bfd_vma) -1;
2178
2179 /* If this is a weak symbol, and there is a real definition, the
2180 processor independent code will have arranged for us to see the
2181 real definition first, and we can just use the same value. */
2182 if (h->u.weakdef != NULL)
2183 {
2184 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
2185 || h->u.weakdef->root.type == bfd_link_hash_defweak);
2186 h->root.u.def.section = h->u.weakdef->root.u.def.section;
2187 h->root.u.def.value = h->u.weakdef->root.u.def.value;
2188 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
2189 h->non_got_ref = h->u.weakdef->non_got_ref;
2190 return TRUE;
2191 }
2192
2193 /* This is a reference to a symbol defined by a dynamic object which
2194 is not a function. */
2195
2196 /* If we are creating a shared library, we must presume that the
2197 only references to the symbol are via the global offset table.
2198 For such cases we need not do anything here; the relocations will
2199 be handled correctly by relocate_section. */
2200 if (info->shared)
2201 return TRUE;
2202
2203 /* If there are no references to this symbol that do not use the
2204 GOT, we don't need to generate a copy reloc. */
2205 if (!h->non_got_ref)
2206 return TRUE;
2207
2208 /* If -z nocopyreloc was given, we won't generate them either. */
2209 if (info->nocopyreloc)
2210 {
2211 h->non_got_ref = 0;
2212 return TRUE;
2213 }
2214
2215 if (ELIMINATE_COPY_RELOCS)
2216 {
2217 struct elf_x86_64_link_hash_entry * eh;
2218 struct elf_dyn_relocs *p;
2219
2220 eh = (struct elf_x86_64_link_hash_entry *) h;
2221 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2222 {
2223 s = p->sec->output_section;
2224 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2225 break;
2226 }
2227
2228 /* If we didn't find any dynamic relocs in read-only sections, then
2229 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
2230 if (p == NULL)
2231 {
2232 h->non_got_ref = 0;
2233 return TRUE;
2234 }
2235 }
2236
2237 /* We must allocate the symbol in our .dynbss section, which will
2238 become part of the .bss section of the executable. There will be
2239 an entry for this symbol in the .dynsym section. The dynamic
2240 object will contain position independent code, so all references
2241 from the dynamic object to this symbol will go through the global
2242 offset table. The dynamic linker will use the .dynsym entry to
2243 determine the address it must put in the global offset table, so
2244 both the dynamic object and the regular object will refer to the
2245 same memory location for the variable. */
2246
2247 htab = elf_x86_64_hash_table (info);
2248 if (htab == NULL)
2249 return FALSE;
2250
2251 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
2252 to copy the initial value out of the dynamic object and into the
2253 runtime process image. */
2254 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
2255 {
2256 const struct elf_backend_data *bed;
2257 bed = get_elf_backend_data (info->output_bfd);
2258 htab->srelbss->size += bed->s->sizeof_rela;
2259 h->needs_copy = 1;
2260 }
2261
2262 s = htab->sdynbss;
2263
2264 return _bfd_elf_adjust_dynamic_copy (h, s);
2265 }
2266
2267 /* Allocate space in .plt, .got and associated reloc sections for
2268 dynamic relocs. */
2269
2270 static bfd_boolean
2271 elf_x86_64_allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
2272 {
2273 struct bfd_link_info *info;
2274 struct elf_x86_64_link_hash_table *htab;
2275 struct elf_x86_64_link_hash_entry *eh;
2276 struct elf_dyn_relocs *p;
2277 const struct elf_backend_data *bed;
2278 unsigned int plt_entry_size;
2279
2280 if (h->root.type == bfd_link_hash_indirect)
2281 return TRUE;
2282
2283 eh = (struct elf_x86_64_link_hash_entry *) h;
2284
2285 info = (struct bfd_link_info *) inf;
2286 htab = elf_x86_64_hash_table (info);
2287 if (htab == NULL)
2288 return FALSE;
2289 bed = get_elf_backend_data (info->output_bfd);
2290 plt_entry_size = GET_PLT_ENTRY_SIZE (info->output_bfd);
2291
2292 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
2293 here if it is defined and referenced in a non-shared object. */
2294 if (h->type == STT_GNU_IFUNC
2295 && h->def_regular)
2296 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
2297 &eh->dyn_relocs,
2298 plt_entry_size,
2299 GOT_ENTRY_SIZE);
2300 else if (htab->elf.dynamic_sections_created
2301 && h->plt.refcount > 0)
2302 {
2303 /* Make sure this symbol is output as a dynamic symbol.
2304 Undefined weak syms won't yet be marked as dynamic. */
2305 if (h->dynindx == -1
2306 && !h->forced_local)
2307 {
2308 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2309 return FALSE;
2310 }
2311
2312 if (info->shared
2313 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
2314 {
2315 asection *s = htab->elf.splt;
2316
2317 /* If this is the first .plt entry, make room for the special
2318 first entry. */
2319 if (s->size == 0)
2320 s->size += plt_entry_size;
2321
2322 h->plt.offset = s->size;
2323
2324 /* If this symbol is not defined in a regular file, and we are
2325 not generating a shared library, then set the symbol to this
2326 location in the .plt. This is required to make function
2327 pointers compare as equal between the normal executable and
2328 the shared library. */
2329 if (! info->shared
2330 && !h->def_regular)
2331 {
2332 h->root.u.def.section = s;
2333 h->root.u.def.value = h->plt.offset;
2334 }
2335
2336 /* Make room for this entry. */
2337 s->size += plt_entry_size;
2338
2339 /* We also need to make an entry in the .got.plt section, which
2340 will be placed in the .got section by the linker script. */
2341 htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
2342
2343 /* We also need to make an entry in the .rela.plt section. */
2344 htab->elf.srelplt->size += bed->s->sizeof_rela;
2345 htab->elf.srelplt->reloc_count++;
2346 }
2347 else
2348 {
2349 h->plt.offset = (bfd_vma) -1;
2350 h->needs_plt = 0;
2351 }
2352 }
2353 else
2354 {
2355 h->plt.offset = (bfd_vma) -1;
2356 h->needs_plt = 0;
2357 }
2358
2359 eh->tlsdesc_got = (bfd_vma) -1;
2360
2361 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
2362 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
2363 if (h->got.refcount > 0
2364 && info->executable
2365 && h->dynindx == -1
2366 && elf_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
2367 {
2368 h->got.offset = (bfd_vma) -1;
2369 }
2370 else if (h->got.refcount > 0)
2371 {
2372 asection *s;
2373 bfd_boolean dyn;
2374 int tls_type = elf_x86_64_hash_entry (h)->tls_type;
2375
2376 /* Make sure this symbol is output as a dynamic symbol.
2377 Undefined weak syms won't yet be marked as dynamic. */
2378 if (h->dynindx == -1
2379 && !h->forced_local)
2380 {
2381 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2382 return FALSE;
2383 }
2384
2385 if (GOT_TLS_GDESC_P (tls_type))
2386 {
2387 eh->tlsdesc_got = htab->elf.sgotplt->size
2388 - elf_x86_64_compute_jump_table_size (htab);
2389 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2390 h->got.offset = (bfd_vma) -2;
2391 }
2392 if (! GOT_TLS_GDESC_P (tls_type)
2393 || GOT_TLS_GD_P (tls_type))
2394 {
2395 s = htab->elf.sgot;
2396 h->got.offset = s->size;
2397 s->size += GOT_ENTRY_SIZE;
2398 if (GOT_TLS_GD_P (tls_type))
2399 s->size += GOT_ENTRY_SIZE;
2400 }
2401 dyn = htab->elf.dynamic_sections_created;
2402 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
2403 and two if global.
2404 R_X86_64_GOTTPOFF needs one dynamic relocation. */
2405 if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
2406 || tls_type == GOT_TLS_IE)
2407 htab->elf.srelgot->size += bed->s->sizeof_rela;
2408 else if (GOT_TLS_GD_P (tls_type))
2409 htab->elf.srelgot->size += 2 * bed->s->sizeof_rela;
2410 else if (! GOT_TLS_GDESC_P (tls_type)
2411 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2412 || h->root.type != bfd_link_hash_undefweak)
2413 && (info->shared
2414 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
2415 htab->elf.srelgot->size += bed->s->sizeof_rela;
2416 if (GOT_TLS_GDESC_P (tls_type))
2417 {
2418 htab->elf.srelplt->size += bed->s->sizeof_rela;
2419 htab->tlsdesc_plt = (bfd_vma) -1;
2420 }
2421 }
2422 else
2423 h->got.offset = (bfd_vma) -1;
2424
2425 if (eh->dyn_relocs == NULL)
2426 return TRUE;
2427
2428 /* In the shared -Bsymbolic case, discard space allocated for
2429 dynamic pc-relative relocs against symbols which turn out to be
2430 defined in regular objects. For the normal shared case, discard
2431 space for pc-relative relocs that have become local due to symbol
2432 visibility changes. */
2433
2434 if (info->shared)
2435 {
2436 /* Relocs that use pc_count are those that appear on a call
2437 insn, or certain REL relocs that can generated via assembly.
2438 We want calls to protected symbols to resolve directly to the
2439 function rather than going via the plt. If people want
2440 function pointer comparisons to work as expected then they
2441 should avoid writing weird assembly. */
2442 if (SYMBOL_CALLS_LOCAL (info, h))
2443 {
2444 struct elf_dyn_relocs **pp;
2445
2446 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2447 {
2448 p->count -= p->pc_count;
2449 p->pc_count = 0;
2450 if (p->count == 0)
2451 *pp = p->next;
2452 else
2453 pp = &p->next;
2454 }
2455 }
2456
2457 /* Also discard relocs on undefined weak syms with non-default
2458 visibility. */
2459 if (eh->dyn_relocs != NULL
2460 && h->root.type == bfd_link_hash_undefweak)
2461 {
2462 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2463 eh->dyn_relocs = NULL;
2464
2465 /* Make sure undefined weak symbols are output as a dynamic
2466 symbol in PIEs. */
2467 else if (h->dynindx == -1
2468 && ! h->forced_local
2469 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2470 return FALSE;
2471 }
2472
2473 }
2474 else if (ELIMINATE_COPY_RELOCS)
2475 {
2476 /* For the non-shared case, discard space for relocs against
2477 symbols which turn out to need copy relocs or are not
2478 dynamic. */
2479
2480 if (!h->non_got_ref
2481 && ((h->def_dynamic
2482 && !h->def_regular)
2483 || (htab->elf.dynamic_sections_created
2484 && (h->root.type == bfd_link_hash_undefweak
2485 || h->root.type == bfd_link_hash_undefined))))
2486 {
2487 /* Make sure this symbol is output as a dynamic symbol.
2488 Undefined weak syms won't yet be marked as dynamic. */
2489 if (h->dynindx == -1
2490 && ! h->forced_local
2491 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2492 return FALSE;
2493
2494 /* If that succeeded, we know we'll be keeping all the
2495 relocs. */
2496 if (h->dynindx != -1)
2497 goto keep;
2498 }
2499
2500 eh->dyn_relocs = NULL;
2501
2502 keep: ;
2503 }
2504
2505 /* Finally, allocate space. */
2506 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2507 {
2508 asection * sreloc;
2509
2510 sreloc = elf_section_data (p->sec)->sreloc;
2511
2512 BFD_ASSERT (sreloc != NULL);
2513
2514 sreloc->size += p->count * bed->s->sizeof_rela;
2515 }
2516
2517 return TRUE;
2518 }
2519
2520 /* Allocate space in .plt, .got and associated reloc sections for
2521 local dynamic relocs. */
2522
2523 static bfd_boolean
2524 elf_x86_64_allocate_local_dynrelocs (void **slot, void *inf)
2525 {
2526 struct elf_link_hash_entry *h
2527 = (struct elf_link_hash_entry *) *slot;
2528
2529 if (h->type != STT_GNU_IFUNC
2530 || !h->def_regular
2531 || !h->ref_regular
2532 || !h->forced_local
2533 || h->root.type != bfd_link_hash_defined)
2534 abort ();
2535
2536 return elf_x86_64_allocate_dynrelocs (h, inf);
2537 }
2538
2539 /* Find any dynamic relocs that apply to read-only sections. */
2540
2541 static bfd_boolean
2542 elf_x86_64_readonly_dynrelocs (struct elf_link_hash_entry *h,
2543 void * inf)
2544 {
2545 struct elf_x86_64_link_hash_entry *eh;
2546 struct elf_dyn_relocs *p;
2547
2548 /* Skip local IFUNC symbols. */
2549 if (h->forced_local && h->type == STT_GNU_IFUNC)
2550 return TRUE;
2551
2552 eh = (struct elf_x86_64_link_hash_entry *) h;
2553 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2554 {
2555 asection *s = p->sec->output_section;
2556
2557 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2558 {
2559 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2560
2561 info->flags |= DF_TEXTREL;
2562
2563 if (info->warn_shared_textrel && info->shared)
2564 info->callbacks->einfo (_("%P: %B: warning: relocation against `%s' in readonly section `%A'.\n"),
2565 p->sec->owner, h->root.root.string,
2566 p->sec);
2567
2568 /* Not an error, just cut short the traversal. */
2569 return FALSE;
2570 }
2571 }
2572 return TRUE;
2573 }
2574
2575 /* Convert
2576 mov foo@GOTPCREL(%rip), %reg
2577 to
2578 lea foo(%rip), %reg
2579 with the local symbol, foo. */
2580
2581 static bfd_boolean
2582 elf_x86_64_convert_mov_to_lea (bfd *abfd, asection *sec,
2583 struct bfd_link_info *link_info)
2584 {
2585 Elf_Internal_Shdr *symtab_hdr;
2586 Elf_Internal_Rela *internal_relocs;
2587 Elf_Internal_Rela *irel, *irelend;
2588 bfd_byte *contents;
2589 struct elf_x86_64_link_hash_table *htab;
2590 bfd_boolean changed_contents;
2591 bfd_boolean changed_relocs;
2592 bfd_signed_vma *local_got_refcounts;
2593
2594 /* Don't even try to convert non-ELF outputs. */
2595 if (!is_elf_hash_table (link_info->hash))
2596 return FALSE;
2597
2598 /* Nothing to do if there are no codes or no relocations. */
2599 if ((sec->flags & (SEC_CODE | SEC_RELOC)) != (SEC_CODE | SEC_RELOC)
2600 || sec->reloc_count == 0)
2601 return TRUE;
2602
2603 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2604
2605 /* Load the relocations for this section. */
2606 internal_relocs = (_bfd_elf_link_read_relocs
2607 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
2608 link_info->keep_memory));
2609 if (internal_relocs == NULL)
2610 return FALSE;
2611
2612 htab = elf_x86_64_hash_table (link_info);
2613 changed_contents = FALSE;
2614 changed_relocs = FALSE;
2615 local_got_refcounts = elf_local_got_refcounts (abfd);
2616
2617 /* Get the section contents. */
2618 if (elf_section_data (sec)->this_hdr.contents != NULL)
2619 contents = elf_section_data (sec)->this_hdr.contents;
2620 else
2621 {
2622 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
2623 goto error_return;
2624 }
2625
2626 irelend = internal_relocs + sec->reloc_count;
2627 for (irel = internal_relocs; irel < irelend; irel++)
2628 {
2629 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
2630 unsigned int r_symndx = htab->r_sym (irel->r_info);
2631 unsigned int indx;
2632 struct elf_link_hash_entry *h;
2633
2634 if (r_type != R_X86_64_GOTPCREL)
2635 continue;
2636
2637 /* Get the symbol referred to by the reloc. */
2638 if (r_symndx < symtab_hdr->sh_info)
2639 {
2640 Elf_Internal_Sym *isym;
2641
2642 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
2643 abfd, r_symndx);
2644
2645 /* STT_GNU_IFUNC must keep R_X86_64_GOTPCREL relocation. */
2646 if (ELF_ST_TYPE (isym->st_info) != STT_GNU_IFUNC
2647 && bfd_get_8 (input_bfd,
2648 contents + irel->r_offset - 2) == 0x8b)
2649 {
2650 bfd_put_8 (output_bfd, 0x8d,
2651 contents + irel->r_offset - 2);
2652 irel->r_info = htab->r_info (r_symndx, R_X86_64_PC32);
2653 if (local_got_refcounts != NULL
2654 && local_got_refcounts[r_symndx] > 0)
2655 local_got_refcounts[r_symndx] -= 1;
2656 changed_contents = TRUE;
2657 changed_relocs = TRUE;
2658 }
2659 continue;
2660 }
2661
2662 indx = r_symndx - symtab_hdr->sh_info;
2663 h = elf_sym_hashes (abfd)[indx];
2664 BFD_ASSERT (h != NULL);
2665
2666 while (h->root.type == bfd_link_hash_indirect
2667 || h->root.type == bfd_link_hash_warning)
2668 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2669
2670 /* STT_GNU_IFUNC must keep R_X86_64_GOTPCREL relocation. */
2671 if (h->def_regular
2672 && h->type != STT_GNU_IFUNC
2673 && SYMBOL_REFERENCES_LOCAL (link_info, h)
2674 && bfd_get_8 (input_bfd,
2675 contents + irel->r_offset - 2) == 0x8b)
2676 {
2677 bfd_put_8 (output_bfd, 0x8d,
2678 contents + irel->r_offset - 2);
2679 irel->r_info = htab->r_info (r_symndx, R_X86_64_PC32);
2680 if (h->got.refcount > 0)
2681 h->got.refcount -= 1;
2682 changed_contents = TRUE;
2683 changed_relocs = TRUE;
2684 }
2685 }
2686
2687 if (contents != NULL
2688 && elf_section_data (sec)->this_hdr.contents != contents)
2689 {
2690 if (!changed_contents && !link_info->keep_memory)
2691 free (contents);
2692 else
2693 {
2694 /* Cache the section contents for elf_link_input_bfd. */
2695 elf_section_data (sec)->this_hdr.contents = contents;
2696 }
2697 }
2698
2699 if (elf_section_data (sec)->relocs != internal_relocs)
2700 {
2701 if (!changed_relocs)
2702 free (internal_relocs);
2703 else
2704 elf_section_data (sec)->relocs = internal_relocs;
2705 }
2706
2707 return TRUE;
2708
2709 error_return:
2710 if (contents != NULL
2711 && elf_section_data (sec)->this_hdr.contents != contents)
2712 free (contents);
2713 if (internal_relocs != NULL
2714 && elf_section_data (sec)->relocs != internal_relocs)
2715 free (internal_relocs);
2716 return FALSE;
2717 }
2718
2719 /* Set the sizes of the dynamic sections. */
2720
2721 static bfd_boolean
2722 elf_x86_64_size_dynamic_sections (bfd *output_bfd,
2723 struct bfd_link_info *info)
2724 {
2725 struct elf_x86_64_link_hash_table *htab;
2726 bfd *dynobj;
2727 asection *s;
2728 bfd_boolean relocs;
2729 bfd *ibfd;
2730 const struct elf_backend_data *bed;
2731
2732 htab = elf_x86_64_hash_table (info);
2733 if (htab == NULL)
2734 return FALSE;
2735 bed = get_elf_backend_data (output_bfd);
2736
2737 dynobj = htab->elf.dynobj;
2738 if (dynobj == NULL)
2739 abort ();
2740
2741 if (htab->elf.dynamic_sections_created)
2742 {
2743 /* Set the contents of the .interp section to the interpreter. */
2744 if (info->executable)
2745 {
2746 s = bfd_get_linker_section (dynobj, ".interp");
2747 if (s == NULL)
2748 abort ();
2749 s->size = htab->dynamic_interpreter_size;
2750 s->contents = (unsigned char *) htab->dynamic_interpreter;
2751 }
2752 }
2753
2754 /* Set up .got offsets for local syms, and space for local dynamic
2755 relocs. */
2756 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2757 {
2758 bfd_signed_vma *local_got;
2759 bfd_signed_vma *end_local_got;
2760 char *local_tls_type;
2761 bfd_vma *local_tlsdesc_gotent;
2762 bfd_size_type locsymcount;
2763 Elf_Internal_Shdr *symtab_hdr;
2764 asection *srel;
2765
2766 if (! is_x86_64_elf (ibfd))
2767 continue;
2768
2769 for (s = ibfd->sections; s != NULL; s = s->next)
2770 {
2771 struct elf_dyn_relocs *p;
2772
2773 if (!elf_x86_64_convert_mov_to_lea (ibfd, s, info))
2774 return FALSE;
2775
2776 for (p = (struct elf_dyn_relocs *)
2777 (elf_section_data (s)->local_dynrel);
2778 p != NULL;
2779 p = p->next)
2780 {
2781 if (!bfd_is_abs_section (p->sec)
2782 && bfd_is_abs_section (p->sec->output_section))
2783 {
2784 /* Input section has been discarded, either because
2785 it is a copy of a linkonce section or due to
2786 linker script /DISCARD/, so we'll be discarding
2787 the relocs too. */
2788 }
2789 else if (p->count != 0)
2790 {
2791 srel = elf_section_data (p->sec)->sreloc;
2792 srel->size += p->count * bed->s->sizeof_rela;
2793 if ((p->sec->output_section->flags & SEC_READONLY) != 0
2794 && (info->flags & DF_TEXTREL) == 0)
2795 {
2796 info->flags |= DF_TEXTREL;
2797 if (info->warn_shared_textrel && info->shared)
2798 info->callbacks->einfo (_("%P: %B: warning: relocation in readonly section `%A'.\n"),
2799 p->sec->owner, p->sec);
2800 }
2801 }
2802 }
2803 }
2804
2805 local_got = elf_local_got_refcounts (ibfd);
2806 if (!local_got)
2807 continue;
2808
2809 symtab_hdr = &elf_symtab_hdr (ibfd);
2810 locsymcount = symtab_hdr->sh_info;
2811 end_local_got = local_got + locsymcount;
2812 local_tls_type = elf_x86_64_local_got_tls_type (ibfd);
2813 local_tlsdesc_gotent = elf_x86_64_local_tlsdesc_gotent (ibfd);
2814 s = htab->elf.sgot;
2815 srel = htab->elf.srelgot;
2816 for (; local_got < end_local_got;
2817 ++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
2818 {
2819 *local_tlsdesc_gotent = (bfd_vma) -1;
2820 if (*local_got > 0)
2821 {
2822 if (GOT_TLS_GDESC_P (*local_tls_type))
2823 {
2824 *local_tlsdesc_gotent = htab->elf.sgotplt->size
2825 - elf_x86_64_compute_jump_table_size (htab);
2826 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2827 *local_got = (bfd_vma) -2;
2828 }
2829 if (! GOT_TLS_GDESC_P (*local_tls_type)
2830 || GOT_TLS_GD_P (*local_tls_type))
2831 {
2832 *local_got = s->size;
2833 s->size += GOT_ENTRY_SIZE;
2834 if (GOT_TLS_GD_P (*local_tls_type))
2835 s->size += GOT_ENTRY_SIZE;
2836 }
2837 if (info->shared
2838 || GOT_TLS_GD_ANY_P (*local_tls_type)
2839 || *local_tls_type == GOT_TLS_IE)
2840 {
2841 if (GOT_TLS_GDESC_P (*local_tls_type))
2842 {
2843 htab->elf.srelplt->size
2844 += bed->s->sizeof_rela;
2845 htab->tlsdesc_plt = (bfd_vma) -1;
2846 }
2847 if (! GOT_TLS_GDESC_P (*local_tls_type)
2848 || GOT_TLS_GD_P (*local_tls_type))
2849 srel->size += bed->s->sizeof_rela;
2850 }
2851 }
2852 else
2853 *local_got = (bfd_vma) -1;
2854 }
2855 }
2856
2857 if (htab->tls_ld_got.refcount > 0)
2858 {
2859 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
2860 relocs. */
2861 htab->tls_ld_got.offset = htab->elf.sgot->size;
2862 htab->elf.sgot->size += 2 * GOT_ENTRY_SIZE;
2863 htab->elf.srelgot->size += bed->s->sizeof_rela;
2864 }
2865 else
2866 htab->tls_ld_got.offset = -1;
2867
2868 /* Allocate global sym .plt and .got entries, and space for global
2869 sym dynamic relocs. */
2870 elf_link_hash_traverse (&htab->elf, elf_x86_64_allocate_dynrelocs,
2871 info);
2872
2873 /* Allocate .plt and .got entries, and space for local symbols. */
2874 htab_traverse (htab->loc_hash_table,
2875 elf_x86_64_allocate_local_dynrelocs,
2876 info);
2877
2878 /* For every jump slot reserved in the sgotplt, reloc_count is
2879 incremented. However, when we reserve space for TLS descriptors,
2880 it's not incremented, so in order to compute the space reserved
2881 for them, it suffices to multiply the reloc count by the jump
2882 slot size.
2883
2884 PR ld/13302: We start next_irelative_index at the end of .rela.plt
2885 so that R_X86_64_IRELATIVE entries come last. */
2886 if (htab->elf.srelplt)
2887 {
2888 htab->sgotplt_jump_table_size
2889 = elf_x86_64_compute_jump_table_size (htab);
2890 htab->next_irelative_index = htab->elf.srelplt->reloc_count - 1;
2891 }
2892 else if (htab->elf.irelplt)
2893 htab->next_irelative_index = htab->elf.irelplt->reloc_count - 1;
2894
2895 if (htab->tlsdesc_plt)
2896 {
2897 /* If we're not using lazy TLS relocations, don't generate the
2898 PLT and GOT entries they require. */
2899 if ((info->flags & DF_BIND_NOW))
2900 htab->tlsdesc_plt = 0;
2901 else
2902 {
2903 htab->tlsdesc_got = htab->elf.sgot->size;
2904 htab->elf.sgot->size += GOT_ENTRY_SIZE;
2905 /* Reserve room for the initial entry.
2906 FIXME: we could probably do away with it in this case. */
2907 if (htab->elf.splt->size == 0)
2908 htab->elf.splt->size += GET_PLT_ENTRY_SIZE (output_bfd);
2909 htab->tlsdesc_plt = htab->elf.splt->size;
2910 htab->elf.splt->size += GET_PLT_ENTRY_SIZE (output_bfd);
2911 }
2912 }
2913
2914 if (htab->elf.sgotplt)
2915 {
2916 struct elf_link_hash_entry *got;
2917 got = elf_link_hash_lookup (elf_hash_table (info),
2918 "_GLOBAL_OFFSET_TABLE_",
2919 FALSE, FALSE, FALSE);
2920
2921 /* Don't allocate .got.plt section if there are no GOT nor PLT
2922 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
2923 if ((got == NULL
2924 || !got->ref_regular_nonweak)
2925 && (htab->elf.sgotplt->size
2926 == get_elf_backend_data (output_bfd)->got_header_size)
2927 && (htab->elf.splt == NULL
2928 || htab->elf.splt->size == 0)
2929 && (htab->elf.sgot == NULL
2930 || htab->elf.sgot->size == 0)
2931 && (htab->elf.iplt == NULL
2932 || htab->elf.iplt->size == 0)
2933 && (htab->elf.igotplt == NULL
2934 || htab->elf.igotplt->size == 0))
2935 htab->elf.sgotplt->size = 0;
2936 }
2937
2938 if (htab->plt_eh_frame != NULL
2939 && htab->elf.splt != NULL
2940 && htab->elf.splt->size != 0
2941 && !bfd_is_abs_section (htab->elf.splt->output_section)
2942 && _bfd_elf_eh_frame_present (info))
2943 {
2944 const struct elf_x86_64_backend_data *arch_data
2945 = (const struct elf_x86_64_backend_data *) bed->arch_data;
2946 htab->plt_eh_frame->size = arch_data->eh_frame_plt_size;
2947 }
2948
2949 /* We now have determined the sizes of the various dynamic sections.
2950 Allocate memory for them. */
2951 relocs = FALSE;
2952 for (s = dynobj->sections; s != NULL; s = s->next)
2953 {
2954 if ((s->flags & SEC_LINKER_CREATED) == 0)
2955 continue;
2956
2957 if (s == htab->elf.splt
2958 || s == htab->elf.sgot
2959 || s == htab->elf.sgotplt
2960 || s == htab->elf.iplt
2961 || s == htab->elf.igotplt
2962 || s == htab->plt_eh_frame
2963 || s == htab->sdynbss)
2964 {
2965 /* Strip this section if we don't need it; see the
2966 comment below. */
2967 }
2968 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
2969 {
2970 if (s->size != 0 && s != htab->elf.srelplt)
2971 relocs = TRUE;
2972
2973 /* We use the reloc_count field as a counter if we need
2974 to copy relocs into the output file. */
2975 if (s != htab->elf.srelplt)
2976 s->reloc_count = 0;
2977 }
2978 else
2979 {
2980 /* It's not one of our sections, so don't allocate space. */
2981 continue;
2982 }
2983
2984 if (s->size == 0)
2985 {
2986 /* If we don't need this section, strip it from the
2987 output file. This is mostly to handle .rela.bss and
2988 .rela.plt. We must create both sections in
2989 create_dynamic_sections, because they must be created
2990 before the linker maps input sections to output
2991 sections. The linker does that before
2992 adjust_dynamic_symbol is called, and it is that
2993 function which decides whether anything needs to go
2994 into these sections. */
2995
2996 s->flags |= SEC_EXCLUDE;
2997 continue;
2998 }
2999
3000 if ((s->flags & SEC_HAS_CONTENTS) == 0)
3001 continue;
3002
3003 /* Allocate memory for the section contents. We use bfd_zalloc
3004 here in case unused entries are not reclaimed before the
3005 section's contents are written out. This should not happen,
3006 but this way if it does, we get a R_X86_64_NONE reloc instead
3007 of garbage. */
3008 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
3009 if (s->contents == NULL)
3010 return FALSE;
3011 }
3012
3013 if (htab->plt_eh_frame != NULL
3014 && htab->plt_eh_frame->contents != NULL)
3015 {
3016 const struct elf_x86_64_backend_data *arch_data
3017 = (const struct elf_x86_64_backend_data *) bed->arch_data;
3018
3019 memcpy (htab->plt_eh_frame->contents,
3020 arch_data->eh_frame_plt, htab->plt_eh_frame->size);
3021 bfd_put_32 (dynobj, htab->elf.splt->size,
3022 htab->plt_eh_frame->contents + PLT_FDE_LEN_OFFSET);
3023 }
3024
3025 if (htab->elf.dynamic_sections_created)
3026 {
3027 /* Add some entries to the .dynamic section. We fill in the
3028 values later, in elf_x86_64_finish_dynamic_sections, but we
3029 must add the entries now so that we get the correct size for
3030 the .dynamic section. The DT_DEBUG entry is filled in by the
3031 dynamic linker and used by the debugger. */
3032 #define add_dynamic_entry(TAG, VAL) \
3033 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3034
3035 if (info->executable)
3036 {
3037 if (!add_dynamic_entry (DT_DEBUG, 0))
3038 return FALSE;
3039 }
3040
3041 if (htab->elf.splt->size != 0)
3042 {
3043 if (!add_dynamic_entry (DT_PLTGOT, 0)
3044 || !add_dynamic_entry (DT_PLTRELSZ, 0)
3045 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
3046 || !add_dynamic_entry (DT_JMPREL, 0))
3047 return FALSE;
3048
3049 if (htab->tlsdesc_plt
3050 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
3051 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
3052 return FALSE;
3053 }
3054
3055 if (relocs)
3056 {
3057 if (!add_dynamic_entry (DT_RELA, 0)
3058 || !add_dynamic_entry (DT_RELASZ, 0)
3059 || !add_dynamic_entry (DT_RELAENT, bed->s->sizeof_rela))
3060 return FALSE;
3061
3062 /* If any dynamic relocs apply to a read-only section,
3063 then we need a DT_TEXTREL entry. */
3064 if ((info->flags & DF_TEXTREL) == 0)
3065 elf_link_hash_traverse (&htab->elf,
3066 elf_x86_64_readonly_dynrelocs,
3067 info);
3068
3069 if ((info->flags & DF_TEXTREL) != 0)
3070 {
3071 if (!add_dynamic_entry (DT_TEXTREL, 0))
3072 return FALSE;
3073 }
3074 }
3075 }
3076 #undef add_dynamic_entry
3077
3078 return TRUE;
3079 }
3080
3081 static bfd_boolean
3082 elf_x86_64_always_size_sections (bfd *output_bfd,
3083 struct bfd_link_info *info)
3084 {
3085 asection *tls_sec = elf_hash_table (info)->tls_sec;
3086
3087 if (tls_sec)
3088 {
3089 struct elf_link_hash_entry *tlsbase;
3090
3091 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
3092 "_TLS_MODULE_BASE_",
3093 FALSE, FALSE, FALSE);
3094
3095 if (tlsbase && tlsbase->type == STT_TLS)
3096 {
3097 struct elf_x86_64_link_hash_table *htab;
3098 struct bfd_link_hash_entry *bh = NULL;
3099 const struct elf_backend_data *bed
3100 = get_elf_backend_data (output_bfd);
3101
3102 htab = elf_x86_64_hash_table (info);
3103 if (htab == NULL)
3104 return FALSE;
3105
3106 if (!(_bfd_generic_link_add_one_symbol
3107 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
3108 tls_sec, 0, NULL, FALSE,
3109 bed->collect, &bh)))
3110 return FALSE;
3111
3112 htab->tls_module_base = bh;
3113
3114 tlsbase = (struct elf_link_hash_entry *)bh;
3115 tlsbase->def_regular = 1;
3116 tlsbase->other = STV_HIDDEN;
3117 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
3118 }
3119 }
3120
3121 return TRUE;
3122 }
3123
3124 /* _TLS_MODULE_BASE_ needs to be treated especially when linking
3125 executables. Rather than setting it to the beginning of the TLS
3126 section, we have to set it to the end. This function may be called
3127 multiple times, it is idempotent. */
3128
3129 static void
3130 elf_x86_64_set_tls_module_base (struct bfd_link_info *info)
3131 {
3132 struct elf_x86_64_link_hash_table *htab;
3133 struct bfd_link_hash_entry *base;
3134
3135 if (!info->executable)
3136 return;
3137
3138 htab = elf_x86_64_hash_table (info);
3139 if (htab == NULL)
3140 return;
3141
3142 base = htab->tls_module_base;
3143 if (base == NULL)
3144 return;
3145
3146 base->u.def.value = htab->elf.tls_size;
3147 }
3148
3149 /* Return the base VMA address which should be subtracted from real addresses
3150 when resolving @dtpoff relocation.
3151 This is PT_TLS segment p_vaddr. */
3152
3153 static bfd_vma
3154 elf_x86_64_dtpoff_base (struct bfd_link_info *info)
3155 {
3156 /* If tls_sec is NULL, we should have signalled an error already. */
3157 if (elf_hash_table (info)->tls_sec == NULL)
3158 return 0;
3159 return elf_hash_table (info)->tls_sec->vma;
3160 }
3161
3162 /* Return the relocation value for @tpoff relocation
3163 if STT_TLS virtual address is ADDRESS. */
3164
3165 static bfd_vma
3166 elf_x86_64_tpoff (struct bfd_link_info *info, bfd_vma address)
3167 {
3168 struct elf_link_hash_table *htab = elf_hash_table (info);
3169 const struct elf_backend_data *bed = get_elf_backend_data (info->output_bfd);
3170 bfd_vma static_tls_size;
3171
3172 /* If tls_segment is NULL, we should have signalled an error already. */
3173 if (htab->tls_sec == NULL)
3174 return 0;
3175
3176 /* Consider special static TLS alignment requirements. */
3177 static_tls_size = BFD_ALIGN (htab->tls_size, bed->static_tls_alignment);
3178 return address - static_tls_size - htab->tls_sec->vma;
3179 }
3180
3181 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
3182 branch? */
3183
3184 static bfd_boolean
3185 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
3186 {
3187 /* Opcode Instruction
3188 0xe8 call
3189 0xe9 jump
3190 0x0f 0x8x conditional jump */
3191 return ((offset > 0
3192 && (contents [offset - 1] == 0xe8
3193 || contents [offset - 1] == 0xe9))
3194 || (offset > 1
3195 && contents [offset - 2] == 0x0f
3196 && (contents [offset - 1] & 0xf0) == 0x80));
3197 }
3198
3199 /* Relocate an x86_64 ELF section. */
3200
3201 static bfd_boolean
3202 elf_x86_64_relocate_section (bfd *output_bfd,
3203 struct bfd_link_info *info,
3204 bfd *input_bfd,
3205 asection *input_section,
3206 bfd_byte *contents,
3207 Elf_Internal_Rela *relocs,
3208 Elf_Internal_Sym *local_syms,
3209 asection **local_sections)
3210 {
3211 struct elf_x86_64_link_hash_table *htab;
3212 Elf_Internal_Shdr *symtab_hdr;
3213 struct elf_link_hash_entry **sym_hashes;
3214 bfd_vma *local_got_offsets;
3215 bfd_vma *local_tlsdesc_gotents;
3216 Elf_Internal_Rela *rel;
3217 Elf_Internal_Rela *relend;
3218 const unsigned int plt_entry_size = GET_PLT_ENTRY_SIZE (info->output_bfd);
3219
3220 BFD_ASSERT (is_x86_64_elf (input_bfd));
3221
3222 htab = elf_x86_64_hash_table (info);
3223 if (htab == NULL)
3224 return FALSE;
3225 symtab_hdr = &elf_symtab_hdr (input_bfd);
3226 sym_hashes = elf_sym_hashes (input_bfd);
3227 local_got_offsets = elf_local_got_offsets (input_bfd);
3228 local_tlsdesc_gotents = elf_x86_64_local_tlsdesc_gotent (input_bfd);
3229
3230 elf_x86_64_set_tls_module_base (info);
3231
3232 rel = relocs;
3233 relend = relocs + input_section->reloc_count;
3234 for (; rel < relend; rel++)
3235 {
3236 unsigned int r_type;
3237 reloc_howto_type *howto;
3238 unsigned long r_symndx;
3239 struct elf_link_hash_entry *h;
3240 Elf_Internal_Sym *sym;
3241 asection *sec;
3242 bfd_vma off, offplt;
3243 bfd_vma relocation;
3244 bfd_boolean unresolved_reloc;
3245 bfd_reloc_status_type r;
3246 int tls_type;
3247 asection *base_got;
3248
3249 r_type = ELF32_R_TYPE (rel->r_info);
3250 if (r_type == (int) R_X86_64_GNU_VTINHERIT
3251 || r_type == (int) R_X86_64_GNU_VTENTRY)
3252 continue;
3253
3254 if (r_type >= R_X86_64_max)
3255 {
3256 bfd_set_error (bfd_error_bad_value);
3257 return FALSE;
3258 }
3259
3260 if (r_type != (int) R_X86_64_32
3261 || ABI_64_P (output_bfd))
3262 howto = x86_64_elf_howto_table + r_type;
3263 else
3264 howto = (x86_64_elf_howto_table
3265 + ARRAY_SIZE (x86_64_elf_howto_table) - 1);
3266 r_symndx = htab->r_sym (rel->r_info);
3267 h = NULL;
3268 sym = NULL;
3269 sec = NULL;
3270 unresolved_reloc = FALSE;
3271 if (r_symndx < symtab_hdr->sh_info)
3272 {
3273 sym = local_syms + r_symndx;
3274 sec = local_sections[r_symndx];
3275
3276 relocation = _bfd_elf_rela_local_sym (output_bfd, sym,
3277 &sec, rel);
3278
3279 /* Relocate against local STT_GNU_IFUNC symbol. */
3280 if (!info->relocatable
3281 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
3282 {
3283 h = elf_x86_64_get_local_sym_hash (htab, input_bfd,
3284 rel, FALSE);
3285 if (h == NULL)
3286 abort ();
3287
3288 /* Set STT_GNU_IFUNC symbol value. */
3289 h->root.u.def.value = sym->st_value;
3290 h->root.u.def.section = sec;
3291 }
3292 }
3293 else
3294 {
3295 bfd_boolean warned ATTRIBUTE_UNUSED;
3296
3297 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3298 r_symndx, symtab_hdr, sym_hashes,
3299 h, sec, relocation,
3300 unresolved_reloc, warned);
3301 }
3302
3303 if (sec != NULL && discarded_section (sec))
3304 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3305 rel, 1, relend, howto, 0, contents);
3306
3307 if (info->relocatable)
3308 continue;
3309
3310 if (rel->r_addend == 0
3311 && r_type == R_X86_64_64
3312 && !ABI_64_P (output_bfd))
3313 {
3314 /* For x32, treat R_X86_64_64 like R_X86_64_32 and zero-extend
3315 it to 64bit if addend is zero. */
3316 r_type = R_X86_64_32;
3317 memset (contents + rel->r_offset + 4, 0, 4);
3318 }
3319
3320 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
3321 it here if it is defined in a non-shared object. */
3322 if (h != NULL
3323 && h->type == STT_GNU_IFUNC
3324 && h->def_regular)
3325 {
3326 asection *plt;
3327 bfd_vma plt_index;
3328 const char *name;
3329
3330 if ((input_section->flags & SEC_ALLOC) == 0
3331 || h->plt.offset == (bfd_vma) -1)
3332 abort ();
3333
3334 /* STT_GNU_IFUNC symbol must go through PLT. */
3335 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
3336 relocation = (plt->output_section->vma
3337 + plt->output_offset + h->plt.offset);
3338
3339 switch (r_type)
3340 {
3341 default:
3342 if (h->root.root.string)
3343 name = h->root.root.string;
3344 else
3345 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
3346 NULL);
3347 (*_bfd_error_handler)
3348 (_("%B: relocation %s against STT_GNU_IFUNC "
3349 "symbol `%s' isn't handled by %s"), input_bfd,
3350 x86_64_elf_howto_table[r_type].name,
3351 name, __FUNCTION__);
3352 bfd_set_error (bfd_error_bad_value);
3353 return FALSE;
3354
3355 case R_X86_64_32S:
3356 if (info->shared)
3357 abort ();
3358 goto do_relocation;
3359
3360 case R_X86_64_32:
3361 if (ABI_64_P (output_bfd))
3362 goto do_relocation;
3363 /* FALLTHROUGH */
3364 case R_X86_64_64:
3365 if (rel->r_addend != 0)
3366 {
3367 if (h->root.root.string)
3368 name = h->root.root.string;
3369 else
3370 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
3371 sym, NULL);
3372 (*_bfd_error_handler)
3373 (_("%B: relocation %s against STT_GNU_IFUNC "
3374 "symbol `%s' has non-zero addend: %d"),
3375 input_bfd, x86_64_elf_howto_table[r_type].name,
3376 name, rel->r_addend);
3377 bfd_set_error (bfd_error_bad_value);
3378 return FALSE;
3379 }
3380
3381 /* Generate dynamic relcoation only when there is a
3382 non-GOT reference in a shared object. */
3383 if (info->shared && h->non_got_ref)
3384 {
3385 Elf_Internal_Rela outrel;
3386 asection *sreloc;
3387
3388 /* Need a dynamic relocation to get the real function
3389 address. */
3390 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
3391 info,
3392 input_section,
3393 rel->r_offset);
3394 if (outrel.r_offset == (bfd_vma) -1
3395 || outrel.r_offset == (bfd_vma) -2)
3396 abort ();
3397
3398 outrel.r_offset += (input_section->output_section->vma
3399 + input_section->output_offset);
3400
3401 if (h->dynindx == -1
3402 || h->forced_local
3403 || info->executable)
3404 {
3405 /* This symbol is resolved locally. */
3406 outrel.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
3407 outrel.r_addend = (h->root.u.def.value
3408 + h->root.u.def.section->output_section->vma
3409 + h->root.u.def.section->output_offset);
3410 }
3411 else
3412 {
3413 outrel.r_info = htab->r_info (h->dynindx, r_type);
3414 outrel.r_addend = 0;
3415 }
3416
3417 sreloc = htab->elf.irelifunc;
3418 elf_append_rela (output_bfd, sreloc, &outrel);
3419
3420 /* If this reloc is against an external symbol, we
3421 do not want to fiddle with the addend. Otherwise,
3422 we need to include the symbol value so that it
3423 becomes an addend for the dynamic reloc. For an
3424 internal symbol, we have updated addend. */
3425 continue;
3426 }
3427 /* FALLTHROUGH */
3428 case R_X86_64_PC32:
3429 case R_X86_64_PC64:
3430 case R_X86_64_PLT32:
3431 goto do_relocation;
3432
3433 case R_X86_64_GOTPCREL:
3434 case R_X86_64_GOTPCREL64:
3435 base_got = htab->elf.sgot;
3436 off = h->got.offset;
3437
3438 if (base_got == NULL)
3439 abort ();
3440
3441 if (off == (bfd_vma) -1)
3442 {
3443 /* We can't use h->got.offset here to save state, or
3444 even just remember the offset, as finish_dynamic_symbol
3445 would use that as offset into .got. */
3446
3447 if (htab->elf.splt != NULL)
3448 {
3449 plt_index = h->plt.offset / plt_entry_size - 1;
3450 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3451 base_got = htab->elf.sgotplt;
3452 }
3453 else
3454 {
3455 plt_index = h->plt.offset / plt_entry_size;
3456 off = plt_index * GOT_ENTRY_SIZE;
3457 base_got = htab->elf.igotplt;
3458 }
3459
3460 if (h->dynindx == -1
3461 || h->forced_local
3462 || info->symbolic)
3463 {
3464 /* This references the local defitionion. We must
3465 initialize this entry in the global offset table.
3466 Since the offset must always be a multiple of 8,
3467 we use the least significant bit to record
3468 whether we have initialized it already.
3469
3470 When doing a dynamic link, we create a .rela.got
3471 relocation entry to initialize the value. This
3472 is done in the finish_dynamic_symbol routine. */
3473 if ((off & 1) != 0)
3474 off &= ~1;
3475 else
3476 {
3477 bfd_put_64 (output_bfd, relocation,
3478 base_got->contents + off);
3479 /* Note that this is harmless for the GOTPLT64
3480 case, as -1 | 1 still is -1. */
3481 h->got.offset |= 1;
3482 }
3483 }
3484 }
3485
3486 relocation = (base_got->output_section->vma
3487 + base_got->output_offset + off);
3488
3489 goto do_relocation;
3490 }
3491 }
3492
3493 /* When generating a shared object, the relocations handled here are
3494 copied into the output file to be resolved at run time. */
3495 switch (r_type)
3496 {
3497 case R_X86_64_GOT32:
3498 case R_X86_64_GOT64:
3499 /* Relocation is to the entry for this symbol in the global
3500 offset table. */
3501 case R_X86_64_GOTPCREL:
3502 case R_X86_64_GOTPCREL64:
3503 /* Use global offset table entry as symbol value. */
3504 case R_X86_64_GOTPLT64:
3505 /* This is the same as GOT64 for relocation purposes, but
3506 indicates the existence of a PLT entry. The difficulty is,
3507 that we must calculate the GOT slot offset from the PLT
3508 offset, if this symbol got a PLT entry (it was global).
3509 Additionally if it's computed from the PLT entry, then that
3510 GOT offset is relative to .got.plt, not to .got. */
3511 base_got = htab->elf.sgot;
3512
3513 if (htab->elf.sgot == NULL)
3514 abort ();
3515
3516 if (h != NULL)
3517 {
3518 bfd_boolean dyn;
3519
3520 off = h->got.offset;
3521 if (h->needs_plt
3522 && h->plt.offset != (bfd_vma)-1
3523 && off == (bfd_vma)-1)
3524 {
3525 /* We can't use h->got.offset here to save
3526 state, or even just remember the offset, as
3527 finish_dynamic_symbol would use that as offset into
3528 .got. */
3529 bfd_vma plt_index = h->plt.offset / plt_entry_size - 1;
3530 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3531 base_got = htab->elf.sgotplt;
3532 }
3533
3534 dyn = htab->elf.dynamic_sections_created;
3535
3536 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3537 || (info->shared
3538 && SYMBOL_REFERENCES_LOCAL (info, h))
3539 || (ELF_ST_VISIBILITY (h->other)
3540 && h->root.type == bfd_link_hash_undefweak))
3541 {
3542 /* This is actually a static link, or it is a -Bsymbolic
3543 link and the symbol is defined locally, or the symbol
3544 was forced to be local because of a version file. We
3545 must initialize this entry in the global offset table.
3546 Since the offset must always be a multiple of 8, we
3547 use the least significant bit to record whether we
3548 have initialized it already.
3549
3550 When doing a dynamic link, we create a .rela.got
3551 relocation entry to initialize the value. This is
3552 done in the finish_dynamic_symbol routine. */
3553 if ((off & 1) != 0)
3554 off &= ~1;
3555 else
3556 {
3557 bfd_put_64 (output_bfd, relocation,
3558 base_got->contents + off);
3559 /* Note that this is harmless for the GOTPLT64 case,
3560 as -1 | 1 still is -1. */
3561 h->got.offset |= 1;
3562 }
3563 }
3564 else
3565 unresolved_reloc = FALSE;
3566 }
3567 else
3568 {
3569 if (local_got_offsets == NULL)
3570 abort ();
3571
3572 off = local_got_offsets[r_symndx];
3573
3574 /* The offset must always be a multiple of 8. We use
3575 the least significant bit to record whether we have
3576 already generated the necessary reloc. */
3577 if ((off & 1) != 0)
3578 off &= ~1;
3579 else
3580 {
3581 bfd_put_64 (output_bfd, relocation,
3582 base_got->contents + off);
3583
3584 if (info->shared)
3585 {
3586 asection *s;
3587 Elf_Internal_Rela outrel;
3588
3589 /* We need to generate a R_X86_64_RELATIVE reloc
3590 for the dynamic linker. */
3591 s = htab->elf.srelgot;
3592 if (s == NULL)
3593 abort ();
3594
3595 outrel.r_offset = (base_got->output_section->vma
3596 + base_got->output_offset
3597 + off);
3598 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
3599 outrel.r_addend = relocation;
3600 elf_append_rela (output_bfd, s, &outrel);
3601 }
3602
3603 local_got_offsets[r_symndx] |= 1;
3604 }
3605 }
3606
3607 if (off >= (bfd_vma) -2)
3608 abort ();
3609
3610 relocation = base_got->output_section->vma
3611 + base_got->output_offset + off;
3612 if (r_type != R_X86_64_GOTPCREL && r_type != R_X86_64_GOTPCREL64)
3613 relocation -= htab->elf.sgotplt->output_section->vma
3614 - htab->elf.sgotplt->output_offset;
3615
3616 break;
3617
3618 case R_X86_64_GOTOFF64:
3619 /* Relocation is relative to the start of the global offset
3620 table. */
3621
3622 /* Check to make sure it isn't a protected function symbol
3623 for shared library since it may not be local when used
3624 as function address. */
3625 if (!info->executable
3626 && h
3627 && !SYMBOLIC_BIND (info, h)
3628 && h->def_regular
3629 && h->type == STT_FUNC
3630 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
3631 {
3632 (*_bfd_error_handler)
3633 (_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
3634 input_bfd, h->root.root.string);
3635 bfd_set_error (bfd_error_bad_value);
3636 return FALSE;
3637 }
3638
3639 /* Note that sgot is not involved in this
3640 calculation. We always want the start of .got.plt. If we
3641 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
3642 permitted by the ABI, we might have to change this
3643 calculation. */
3644 relocation -= htab->elf.sgotplt->output_section->vma
3645 + htab->elf.sgotplt->output_offset;
3646 break;
3647
3648 case R_X86_64_GOTPC32:
3649 case R_X86_64_GOTPC64:
3650 /* Use global offset table as symbol value. */
3651 relocation = htab->elf.sgotplt->output_section->vma
3652 + htab->elf.sgotplt->output_offset;
3653 unresolved_reloc = FALSE;
3654 break;
3655
3656 case R_X86_64_PLTOFF64:
3657 /* Relocation is PLT entry relative to GOT. For local
3658 symbols it's the symbol itself relative to GOT. */
3659 if (h != NULL
3660 /* See PLT32 handling. */
3661 && h->plt.offset != (bfd_vma) -1
3662 && htab->elf.splt != NULL)
3663 {
3664 relocation = (htab->elf.splt->output_section->vma
3665 + htab->elf.splt->output_offset
3666 + h->plt.offset);
3667 unresolved_reloc = FALSE;
3668 }
3669
3670 relocation -= htab->elf.sgotplt->output_section->vma
3671 + htab->elf.sgotplt->output_offset;
3672 break;
3673
3674 case R_X86_64_PLT32:
3675 /* Relocation is to the entry for this symbol in the
3676 procedure linkage table. */
3677
3678 /* Resolve a PLT32 reloc against a local symbol directly,
3679 without using the procedure linkage table. */
3680 if (h == NULL)
3681 break;
3682
3683 if (h->plt.offset == (bfd_vma) -1
3684 || htab->elf.splt == NULL)
3685 {
3686 /* We didn't make a PLT entry for this symbol. This
3687 happens when statically linking PIC code, or when
3688 using -Bsymbolic. */
3689 break;
3690 }
3691
3692 relocation = (htab->elf.splt->output_section->vma
3693 + htab->elf.splt->output_offset
3694 + h->plt.offset);
3695 unresolved_reloc = FALSE;
3696 break;
3697
3698 case R_X86_64_PC8:
3699 case R_X86_64_PC16:
3700 case R_X86_64_PC32:
3701 if (info->shared
3702 && (input_section->flags & SEC_ALLOC) != 0
3703 && (input_section->flags & SEC_READONLY) != 0
3704 && h != NULL)
3705 {
3706 bfd_boolean fail = FALSE;
3707 bfd_boolean branch
3708 = (r_type == R_X86_64_PC32
3709 && is_32bit_relative_branch (contents, rel->r_offset));
3710
3711 if (SYMBOL_REFERENCES_LOCAL (info, h))
3712 {
3713 /* Symbol is referenced locally. Make sure it is
3714 defined locally or for a branch. */
3715 fail = !h->def_regular && !branch;
3716 }
3717 else
3718 {
3719 /* Symbol isn't referenced locally. We only allow
3720 branch to symbol with non-default visibility. */
3721 fail = (!branch
3722 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT);
3723 }
3724
3725 if (fail)
3726 {
3727 const char *fmt;
3728 const char *v;
3729 const char *pic = "";
3730
3731 switch (ELF_ST_VISIBILITY (h->other))
3732 {
3733 case STV_HIDDEN:
3734 v = _("hidden symbol");
3735 break;
3736 case STV_INTERNAL:
3737 v = _("internal symbol");
3738 break;
3739 case STV_PROTECTED:
3740 v = _("protected symbol");
3741 break;
3742 default:
3743 v = _("symbol");
3744 pic = _("; recompile with -fPIC");
3745 break;
3746 }
3747
3748 if (h->def_regular)
3749 fmt = _("%B: relocation %s against %s `%s' can not be used when making a shared object%s");
3750 else
3751 fmt = _("%B: relocation %s against undefined %s `%s' can not be used when making a shared object%s");
3752
3753 (*_bfd_error_handler) (fmt, input_bfd,
3754 x86_64_elf_howto_table[r_type].name,
3755 v, h->root.root.string, pic);
3756 bfd_set_error (bfd_error_bad_value);
3757 return FALSE;
3758 }
3759 }
3760 /* Fall through. */
3761
3762 case R_X86_64_8:
3763 case R_X86_64_16:
3764 case R_X86_64_32:
3765 case R_X86_64_PC64:
3766 case R_X86_64_64:
3767 /* FIXME: The ABI says the linker should make sure the value is
3768 the same when it's zeroextended to 64 bit. */
3769
3770 if ((input_section->flags & SEC_ALLOC) == 0)
3771 break;
3772
3773 if ((info->shared
3774 && (h == NULL
3775 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3776 || h->root.type != bfd_link_hash_undefweak)
3777 && (! IS_X86_64_PCREL_TYPE (r_type)
3778 || ! SYMBOL_CALLS_LOCAL (info, h)))
3779 || (ELIMINATE_COPY_RELOCS
3780 && !info->shared
3781 && h != NULL
3782 && h->dynindx != -1
3783 && !h->non_got_ref
3784 && ((h->def_dynamic
3785 && !h->def_regular)
3786 || h->root.type == bfd_link_hash_undefweak
3787 || h->root.type == bfd_link_hash_undefined)))
3788 {
3789 Elf_Internal_Rela outrel;
3790 bfd_boolean skip, relocate;
3791 asection *sreloc;
3792
3793 /* When generating a shared object, these relocations
3794 are copied into the output file to be resolved at run
3795 time. */
3796 skip = FALSE;
3797 relocate = FALSE;
3798
3799 outrel.r_offset =
3800 _bfd_elf_section_offset (output_bfd, info, input_section,
3801 rel->r_offset);
3802 if (outrel.r_offset == (bfd_vma) -1)
3803 skip = TRUE;
3804 else if (outrel.r_offset == (bfd_vma) -2)
3805 skip = TRUE, relocate = TRUE;
3806
3807 outrel.r_offset += (input_section->output_section->vma
3808 + input_section->output_offset);
3809
3810 if (skip)
3811 memset (&outrel, 0, sizeof outrel);
3812
3813 /* h->dynindx may be -1 if this symbol was marked to
3814 become local. */
3815 else if (h != NULL
3816 && h->dynindx != -1
3817 && (IS_X86_64_PCREL_TYPE (r_type)
3818 || ! info->shared
3819 || ! SYMBOLIC_BIND (info, h)
3820 || ! h->def_regular))
3821 {
3822 outrel.r_info = htab->r_info (h->dynindx, r_type);
3823 outrel.r_addend = rel->r_addend;
3824 }
3825 else
3826 {
3827 /* This symbol is local, or marked to become local. */
3828 if (r_type == htab->pointer_r_type)
3829 {
3830 relocate = TRUE;
3831 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
3832 outrel.r_addend = relocation + rel->r_addend;
3833 }
3834 else if (r_type == R_X86_64_64
3835 && !ABI_64_P (output_bfd))
3836 {
3837 relocate = TRUE;
3838 outrel.r_info = htab->r_info (0,
3839 R_X86_64_RELATIVE64);
3840 outrel.r_addend = relocation + rel->r_addend;
3841 /* Check addend overflow. */
3842 if ((outrel.r_addend & 0x80000000)
3843 != (rel->r_addend & 0x80000000))
3844 {
3845 const char *name;
3846 int addend = rel->r_addend;
3847 if (h && h->root.root.string)
3848 name = h->root.root.string;
3849 else
3850 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
3851 sym, NULL);
3852 if (addend < 0)
3853 (*_bfd_error_handler)
3854 (_("%B: addend -0x%x in relocation %s against "
3855 "symbol `%s' at 0x%lx in section `%A' is "
3856 "out of range"),
3857 input_bfd, input_section, addend,
3858 x86_64_elf_howto_table[r_type].name,
3859 name, (unsigned long) rel->r_offset);
3860 else
3861 (*_bfd_error_handler)
3862 (_("%B: addend 0x%x in relocation %s against "
3863 "symbol `%s' at 0x%lx in section `%A' is "
3864 "out of range"),
3865 input_bfd, input_section, addend,
3866 x86_64_elf_howto_table[r_type].name,
3867 name, (unsigned long) rel->r_offset);
3868 bfd_set_error (bfd_error_bad_value);
3869 return FALSE;
3870 }
3871 }
3872 else
3873 {
3874 long sindx;
3875
3876 if (bfd_is_abs_section (sec))
3877 sindx = 0;
3878 else if (sec == NULL || sec->owner == NULL)
3879 {
3880 bfd_set_error (bfd_error_bad_value);
3881 return FALSE;
3882 }
3883 else
3884 {
3885 asection *osec;
3886
3887 /* We are turning this relocation into one
3888 against a section symbol. It would be
3889 proper to subtract the symbol's value,
3890 osec->vma, from the emitted reloc addend,
3891 but ld.so expects buggy relocs. */
3892 osec = sec->output_section;
3893 sindx = elf_section_data (osec)->dynindx;
3894 if (sindx == 0)
3895 {
3896 asection *oi = htab->elf.text_index_section;
3897 sindx = elf_section_data (oi)->dynindx;
3898 }
3899 BFD_ASSERT (sindx != 0);
3900 }
3901
3902 outrel.r_info = htab->r_info (sindx, r_type);
3903 outrel.r_addend = relocation + rel->r_addend;
3904 }
3905 }
3906
3907 sreloc = elf_section_data (input_section)->sreloc;
3908
3909 if (sreloc == NULL || sreloc->contents == NULL)
3910 {
3911 r = bfd_reloc_notsupported;
3912 goto check_relocation_error;
3913 }
3914
3915 elf_append_rela (output_bfd, sreloc, &outrel);
3916
3917 /* If this reloc is against an external symbol, we do
3918 not want to fiddle with the addend. Otherwise, we
3919 need to include the symbol value so that it becomes
3920 an addend for the dynamic reloc. */
3921 if (! relocate)
3922 continue;
3923 }
3924
3925 break;
3926
3927 case R_X86_64_TLSGD:
3928 case R_X86_64_GOTPC32_TLSDESC:
3929 case R_X86_64_TLSDESC_CALL:
3930 case R_X86_64_GOTTPOFF:
3931 tls_type = GOT_UNKNOWN;
3932 if (h == NULL && local_got_offsets)
3933 tls_type = elf_x86_64_local_got_tls_type (input_bfd) [r_symndx];
3934 else if (h != NULL)
3935 tls_type = elf_x86_64_hash_entry (h)->tls_type;
3936
3937 if (! elf_x86_64_tls_transition (info, input_bfd,
3938 input_section, contents,
3939 symtab_hdr, sym_hashes,
3940 &r_type, tls_type, rel,
3941 relend, h, r_symndx))
3942 return FALSE;
3943
3944 if (r_type == R_X86_64_TPOFF32)
3945 {
3946 bfd_vma roff = rel->r_offset;
3947
3948 BFD_ASSERT (! unresolved_reloc);
3949
3950 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
3951 {
3952 /* GD->LE transition. For 64bit, change
3953 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3954 .word 0x6666; rex64; call __tls_get_addr
3955 into:
3956 movq %fs:0, %rax
3957 leaq foo@tpoff(%rax), %rax
3958 For 32bit, change
3959 leaq foo@tlsgd(%rip), %rdi
3960 .word 0x6666; rex64; call __tls_get_addr
3961 into:
3962 movl %fs:0, %eax
3963 leaq foo@tpoff(%rax), %rax */
3964 if (ABI_64_P (output_bfd))
3965 memcpy (contents + roff - 4,
3966 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
3967 16);
3968 else
3969 memcpy (contents + roff - 3,
3970 "\x64\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
3971 15);
3972 bfd_put_32 (output_bfd,
3973 elf_x86_64_tpoff (info, relocation),
3974 contents + roff + 8);
3975 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
3976 rel++;
3977 continue;
3978 }
3979 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
3980 {
3981 /* GDesc -> LE transition.
3982 It's originally something like:
3983 leaq x@tlsdesc(%rip), %rax
3984
3985 Change it to:
3986 movl $x@tpoff, %rax. */
3987
3988 unsigned int val, type;
3989
3990 type = bfd_get_8 (input_bfd, contents + roff - 3);
3991 val = bfd_get_8 (input_bfd, contents + roff - 1);
3992 bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1),
3993 contents + roff - 3);
3994 bfd_put_8 (output_bfd, 0xc7, contents + roff - 2);
3995 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
3996 contents + roff - 1);
3997 bfd_put_32 (output_bfd,
3998 elf_x86_64_tpoff (info, relocation),
3999 contents + roff);
4000 continue;
4001 }
4002 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
4003 {
4004 /* GDesc -> LE transition.
4005 It's originally:
4006 call *(%rax)
4007 Turn it into:
4008 xchg %ax,%ax. */
4009 bfd_put_8 (output_bfd, 0x66, contents + roff);
4010 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
4011 continue;
4012 }
4013 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTTPOFF)
4014 {
4015 /* IE->LE transition:
4016 Originally it can be one of:
4017 movq foo@gottpoff(%rip), %reg
4018 addq foo@gottpoff(%rip), %reg
4019 We change it into:
4020 movq $foo, %reg
4021 leaq foo(%reg), %reg
4022 addq $foo, %reg. */
4023
4024 unsigned int val, type, reg;
4025
4026 val = bfd_get_8 (input_bfd, contents + roff - 3);
4027 type = bfd_get_8 (input_bfd, contents + roff - 2);
4028 reg = bfd_get_8 (input_bfd, contents + roff - 1);
4029 reg >>= 3;
4030 if (type == 0x8b)
4031 {
4032 /* movq */
4033 if (val == 0x4c)
4034 bfd_put_8 (output_bfd, 0x49,
4035 contents + roff - 3);
4036 else if (!ABI_64_P (output_bfd) && val == 0x44)
4037 bfd_put_8 (output_bfd, 0x41,
4038 contents + roff - 3);
4039 bfd_put_8 (output_bfd, 0xc7,
4040 contents + roff - 2);
4041 bfd_put_8 (output_bfd, 0xc0 | reg,
4042 contents + roff - 1);
4043 }
4044 else if (reg == 4)
4045 {
4046 /* addq -> addq - addressing with %rsp/%r12 is
4047 special */
4048 if (val == 0x4c)
4049 bfd_put_8 (output_bfd, 0x49,
4050 contents + roff - 3);
4051 else if (!ABI_64_P (output_bfd) && val == 0x44)
4052 bfd_put_8 (output_bfd, 0x41,
4053 contents + roff - 3);
4054 bfd_put_8 (output_bfd, 0x81,
4055 contents + roff - 2);
4056 bfd_put_8 (output_bfd, 0xc0 | reg,
4057 contents + roff - 1);
4058 }
4059 else
4060 {
4061 /* addq -> leaq */
4062 if (val == 0x4c)
4063 bfd_put_8 (output_bfd, 0x4d,
4064 contents + roff - 3);
4065 else if (!ABI_64_P (output_bfd) && val == 0x44)
4066 bfd_put_8 (output_bfd, 0x45,
4067 contents + roff - 3);
4068 bfd_put_8 (output_bfd, 0x8d,
4069 contents + roff - 2);
4070 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
4071 contents + roff - 1);
4072 }
4073 bfd_put_32 (output_bfd,
4074 elf_x86_64_tpoff (info, relocation),
4075 contents + roff);
4076 continue;
4077 }
4078 else
4079 BFD_ASSERT (FALSE);
4080 }
4081
4082 if (htab->elf.sgot == NULL)
4083 abort ();
4084
4085 if (h != NULL)
4086 {
4087 off = h->got.offset;
4088 offplt = elf_x86_64_hash_entry (h)->tlsdesc_got;
4089 }
4090 else
4091 {
4092 if (local_got_offsets == NULL)
4093 abort ();
4094
4095 off = local_got_offsets[r_symndx];
4096 offplt = local_tlsdesc_gotents[r_symndx];
4097 }
4098
4099 if ((off & 1) != 0)
4100 off &= ~1;
4101 else
4102 {
4103 Elf_Internal_Rela outrel;
4104 int dr_type, indx;
4105 asection *sreloc;
4106
4107 if (htab->elf.srelgot == NULL)
4108 abort ();
4109
4110 indx = h && h->dynindx != -1 ? h->dynindx : 0;
4111
4112 if (GOT_TLS_GDESC_P (tls_type))
4113 {
4114 outrel.r_info = htab->r_info (indx, R_X86_64_TLSDESC);
4115 BFD_ASSERT (htab->sgotplt_jump_table_size + offplt
4116 + 2 * GOT_ENTRY_SIZE <= htab->elf.sgotplt->size);
4117 outrel.r_offset = (htab->elf.sgotplt->output_section->vma
4118 + htab->elf.sgotplt->output_offset
4119 + offplt
4120 + htab->sgotplt_jump_table_size);
4121 sreloc = htab->elf.srelplt;
4122 if (indx == 0)
4123 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
4124 else
4125 outrel.r_addend = 0;
4126 elf_append_rela (output_bfd, sreloc, &outrel);
4127 }
4128
4129 sreloc = htab->elf.srelgot;
4130
4131 outrel.r_offset = (htab->elf.sgot->output_section->vma
4132 + htab->elf.sgot->output_offset + off);
4133
4134 if (GOT_TLS_GD_P (tls_type))
4135 dr_type = R_X86_64_DTPMOD64;
4136 else if (GOT_TLS_GDESC_P (tls_type))
4137 goto dr_done;
4138 else
4139 dr_type = R_X86_64_TPOFF64;
4140
4141 bfd_put_64 (output_bfd, 0, htab->elf.sgot->contents + off);
4142 outrel.r_addend = 0;
4143 if ((dr_type == R_X86_64_TPOFF64
4144 || dr_type == R_X86_64_TLSDESC) && indx == 0)
4145 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
4146 outrel.r_info = htab->r_info (indx, dr_type);
4147
4148 elf_append_rela (output_bfd, sreloc, &outrel);
4149
4150 if (GOT_TLS_GD_P (tls_type))
4151 {
4152 if (indx == 0)
4153 {
4154 BFD_ASSERT (! unresolved_reloc);
4155 bfd_put_64 (output_bfd,
4156 relocation - elf_x86_64_dtpoff_base (info),
4157 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4158 }
4159 else
4160 {
4161 bfd_put_64 (output_bfd, 0,
4162 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4163 outrel.r_info = htab->r_info (indx,
4164 R_X86_64_DTPOFF64);
4165 outrel.r_offset += GOT_ENTRY_SIZE;
4166 elf_append_rela (output_bfd, sreloc,
4167 &outrel);
4168 }
4169 }
4170
4171 dr_done:
4172 if (h != NULL)
4173 h->got.offset |= 1;
4174 else
4175 local_got_offsets[r_symndx] |= 1;
4176 }
4177
4178 if (off >= (bfd_vma) -2
4179 && ! GOT_TLS_GDESC_P (tls_type))
4180 abort ();
4181 if (r_type == ELF32_R_TYPE (rel->r_info))
4182 {
4183 if (r_type == R_X86_64_GOTPC32_TLSDESC
4184 || r_type == R_X86_64_TLSDESC_CALL)
4185 relocation = htab->elf.sgotplt->output_section->vma
4186 + htab->elf.sgotplt->output_offset
4187 + offplt + htab->sgotplt_jump_table_size;
4188 else
4189 relocation = htab->elf.sgot->output_section->vma
4190 + htab->elf.sgot->output_offset + off;
4191 unresolved_reloc = FALSE;
4192 }
4193 else
4194 {
4195 bfd_vma roff = rel->r_offset;
4196
4197 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
4198 {
4199 /* GD->IE transition. For 64bit, change
4200 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
4201 .word 0x6666; rex64; call __tls_get_addr@plt
4202 into:
4203 movq %fs:0, %rax
4204 addq foo@gottpoff(%rip), %rax
4205 For 32bit, change
4206 leaq foo@tlsgd(%rip), %rdi
4207 .word 0x6666; rex64; call __tls_get_addr@plt
4208 into:
4209 movl %fs:0, %eax
4210 addq foo@gottpoff(%rip), %rax */
4211 if (ABI_64_P (output_bfd))
4212 memcpy (contents + roff - 4,
4213 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
4214 16);
4215 else
4216 memcpy (contents + roff - 3,
4217 "\x64\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
4218 15);
4219
4220 relocation = (htab->elf.sgot->output_section->vma
4221 + htab->elf.sgot->output_offset + off
4222 - roff
4223 - input_section->output_section->vma
4224 - input_section->output_offset
4225 - 12);
4226 bfd_put_32 (output_bfd, relocation,
4227 contents + roff + 8);
4228 /* Skip R_X86_64_PLT32. */
4229 rel++;
4230 continue;
4231 }
4232 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
4233 {
4234 /* GDesc -> IE transition.
4235 It's originally something like:
4236 leaq x@tlsdesc(%rip), %rax
4237
4238 Change it to:
4239 movq x@gottpoff(%rip), %rax # before xchg %ax,%ax. */
4240
4241 /* Now modify the instruction as appropriate. To
4242 turn a leaq into a movq in the form we use it, it
4243 suffices to change the second byte from 0x8d to
4244 0x8b. */
4245 bfd_put_8 (output_bfd, 0x8b, contents + roff - 2);
4246
4247 bfd_put_32 (output_bfd,
4248 htab->elf.sgot->output_section->vma
4249 + htab->elf.sgot->output_offset + off
4250 - rel->r_offset
4251 - input_section->output_section->vma
4252 - input_section->output_offset
4253 - 4,
4254 contents + roff);
4255 continue;
4256 }
4257 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
4258 {
4259 /* GDesc -> IE transition.
4260 It's originally:
4261 call *(%rax)
4262
4263 Change it to:
4264 xchg %ax, %ax. */
4265
4266 bfd_put_8 (output_bfd, 0x66, contents + roff);
4267 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
4268 continue;
4269 }
4270 else
4271 BFD_ASSERT (FALSE);
4272 }
4273 break;
4274
4275 case R_X86_64_TLSLD:
4276 if (! elf_x86_64_tls_transition (info, input_bfd,
4277 input_section, contents,
4278 symtab_hdr, sym_hashes,
4279 &r_type, GOT_UNKNOWN,
4280 rel, relend, h, r_symndx))
4281 return FALSE;
4282
4283 if (r_type != R_X86_64_TLSLD)
4284 {
4285 /* LD->LE transition:
4286 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
4287 For 64bit, we change it into:
4288 .word 0x6666; .byte 0x66; movq %fs:0, %rax.
4289 For 32bit, we change it into:
4290 nopl 0x0(%rax); movl %fs:0, %eax. */
4291
4292 BFD_ASSERT (r_type == R_X86_64_TPOFF32);
4293 if (ABI_64_P (output_bfd))
4294 memcpy (contents + rel->r_offset - 3,
4295 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
4296 else
4297 memcpy (contents + rel->r_offset - 3,
4298 "\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0", 12);
4299 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
4300 rel++;
4301 continue;
4302 }
4303
4304 if (htab->elf.sgot == NULL)
4305 abort ();
4306
4307 off = htab->tls_ld_got.offset;
4308 if (off & 1)
4309 off &= ~1;
4310 else
4311 {
4312 Elf_Internal_Rela outrel;
4313
4314 if (htab->elf.srelgot == NULL)
4315 abort ();
4316
4317 outrel.r_offset = (htab->elf.sgot->output_section->vma
4318 + htab->elf.sgot->output_offset + off);
4319
4320 bfd_put_64 (output_bfd, 0,
4321 htab->elf.sgot->contents + off);
4322 bfd_put_64 (output_bfd, 0,
4323 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4324 outrel.r_info = htab->r_info (0, R_X86_64_DTPMOD64);
4325 outrel.r_addend = 0;
4326 elf_append_rela (output_bfd, htab->elf.srelgot,
4327 &outrel);
4328 htab->tls_ld_got.offset |= 1;
4329 }
4330 relocation = htab->elf.sgot->output_section->vma
4331 + htab->elf.sgot->output_offset + off;
4332 unresolved_reloc = FALSE;
4333 break;
4334
4335 case R_X86_64_DTPOFF32:
4336 if (!info->executable|| (input_section->flags & SEC_CODE) == 0)
4337 relocation -= elf_x86_64_dtpoff_base (info);
4338 else
4339 relocation = elf_x86_64_tpoff (info, relocation);
4340 break;
4341
4342 case R_X86_64_TPOFF32:
4343 case R_X86_64_TPOFF64:
4344 BFD_ASSERT (info->executable);
4345 relocation = elf_x86_64_tpoff (info, relocation);
4346 break;
4347
4348 default:
4349 break;
4350 }
4351
4352 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
4353 because such sections are not SEC_ALLOC and thus ld.so will
4354 not process them. */
4355 if (unresolved_reloc
4356 && !((input_section->flags & SEC_DEBUGGING) != 0
4357 && h->def_dynamic)
4358 && _bfd_elf_section_offset (output_bfd, info, input_section,
4359 rel->r_offset) != (bfd_vma) -1)
4360 {
4361 (*_bfd_error_handler)
4362 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
4363 input_bfd,
4364 input_section,
4365 (long) rel->r_offset,
4366 howto->name,
4367 h->root.root.string);
4368 return FALSE;
4369 }
4370
4371 do_relocation:
4372 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
4373 contents, rel->r_offset,
4374 relocation, rel->r_addend);
4375
4376 check_relocation_error:
4377 if (r != bfd_reloc_ok)
4378 {
4379 const char *name;
4380
4381 if (h != NULL)
4382 name = h->root.root.string;
4383 else
4384 {
4385 name = bfd_elf_string_from_elf_section (input_bfd,
4386 symtab_hdr->sh_link,
4387 sym->st_name);
4388 if (name == NULL)
4389 return FALSE;
4390 if (*name == '\0')
4391 name = bfd_section_name (input_bfd, sec);
4392 }
4393
4394 if (r == bfd_reloc_overflow)
4395 {
4396 if (! ((*info->callbacks->reloc_overflow)
4397 (info, (h ? &h->root : NULL), name, howto->name,
4398 (bfd_vma) 0, input_bfd, input_section,
4399 rel->r_offset)))
4400 return FALSE;
4401 }
4402 else
4403 {
4404 (*_bfd_error_handler)
4405 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
4406 input_bfd, input_section,
4407 (long) rel->r_offset, name, (int) r);
4408 return FALSE;
4409 }
4410 }
4411 }
4412
4413 return TRUE;
4414 }
4415
4416 /* Finish up dynamic symbol handling. We set the contents of various
4417 dynamic sections here. */
4418
4419 static bfd_boolean
4420 elf_x86_64_finish_dynamic_symbol (bfd *output_bfd,
4421 struct bfd_link_info *info,
4422 struct elf_link_hash_entry *h,
4423 Elf_Internal_Sym *sym ATTRIBUTE_UNUSED)
4424 {
4425 struct elf_x86_64_link_hash_table *htab;
4426 const struct elf_x86_64_backend_data *const abed
4427 = get_elf_x86_64_backend_data (output_bfd);
4428
4429 htab = elf_x86_64_hash_table (info);
4430 if (htab == NULL)
4431 return FALSE;
4432
4433 if (h->plt.offset != (bfd_vma) -1)
4434 {
4435 bfd_vma plt_index;
4436 bfd_vma got_offset;
4437 Elf_Internal_Rela rela;
4438 bfd_byte *loc;
4439 asection *plt, *gotplt, *relplt;
4440 const struct elf_backend_data *bed;
4441
4442 /* When building a static executable, use .iplt, .igot.plt and
4443 .rela.iplt sections for STT_GNU_IFUNC symbols. */
4444 if (htab->elf.splt != NULL)
4445 {
4446 plt = htab->elf.splt;
4447 gotplt = htab->elf.sgotplt;
4448 relplt = htab->elf.srelplt;
4449 }
4450 else
4451 {
4452 plt = htab->elf.iplt;
4453 gotplt = htab->elf.igotplt;
4454 relplt = htab->elf.irelplt;
4455 }
4456
4457 /* This symbol has an entry in the procedure linkage table. Set
4458 it up. */
4459 if ((h->dynindx == -1
4460 && !((h->forced_local || info->executable)
4461 && h->def_regular
4462 && h->type == STT_GNU_IFUNC))
4463 || plt == NULL
4464 || gotplt == NULL
4465 || relplt == NULL)
4466 return FALSE;
4467
4468 /* Get the index in the procedure linkage table which
4469 corresponds to this symbol. This is the index of this symbol
4470 in all the symbols for which we are making plt entries. The
4471 first entry in the procedure linkage table is reserved.
4472
4473 Get the offset into the .got table of the entry that
4474 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
4475 bytes. The first three are reserved for the dynamic linker.
4476
4477 For static executables, we don't reserve anything. */
4478
4479 if (plt == htab->elf.splt)
4480 {
4481 got_offset = h->plt.offset / abed->plt_entry_size - 1;
4482 got_offset = (got_offset + 3) * GOT_ENTRY_SIZE;
4483 }
4484 else
4485 {
4486 got_offset = h->plt.offset / abed->plt_entry_size;
4487 got_offset = got_offset * GOT_ENTRY_SIZE;
4488 }
4489
4490 /* Fill in the entry in the procedure linkage table. */
4491 memcpy (plt->contents + h->plt.offset, abed->plt_entry,
4492 abed->plt_entry_size);
4493
4494 /* Insert the relocation positions of the plt section. */
4495
4496 /* Put offset the PC-relative instruction referring to the GOT entry,
4497 subtracting the size of that instruction. */
4498 bfd_put_32 (output_bfd,
4499 (gotplt->output_section->vma
4500 + gotplt->output_offset
4501 + got_offset
4502 - plt->output_section->vma
4503 - plt->output_offset
4504 - h->plt.offset
4505 - abed->plt_got_insn_size),
4506 plt->contents + h->plt.offset + abed->plt_got_offset);
4507
4508 /* Fill in the entry in the global offset table, initially this
4509 points to the second part of the PLT entry. */
4510 bfd_put_64 (output_bfd, (plt->output_section->vma
4511 + plt->output_offset
4512 + h->plt.offset + abed->plt_lazy_offset),
4513 gotplt->contents + got_offset);
4514
4515 /* Fill in the entry in the .rela.plt section. */
4516 rela.r_offset = (gotplt->output_section->vma
4517 + gotplt->output_offset
4518 + got_offset);
4519 if (h->dynindx == -1
4520 || ((info->executable
4521 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
4522 && h->def_regular
4523 && h->type == STT_GNU_IFUNC))
4524 {
4525 /* If an STT_GNU_IFUNC symbol is locally defined, generate
4526 R_X86_64_IRELATIVE instead of R_X86_64_JUMP_SLOT. */
4527 rela.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
4528 rela.r_addend = (h->root.u.def.value
4529 + h->root.u.def.section->output_section->vma
4530 + h->root.u.def.section->output_offset);
4531 /* R_X86_64_IRELATIVE comes last. */
4532 plt_index = htab->next_irelative_index--;
4533 }
4534 else
4535 {
4536 rela.r_info = htab->r_info (h->dynindx, R_X86_64_JUMP_SLOT);
4537 rela.r_addend = 0;
4538 plt_index = htab->next_jump_slot_index++;
4539 }
4540
4541 /* Don't fill PLT entry for static executables. */
4542 if (plt == htab->elf.splt)
4543 {
4544 /* Put relocation index. */
4545 bfd_put_32 (output_bfd, plt_index,
4546 plt->contents + h->plt.offset + abed->plt_reloc_offset);
4547 /* Put offset for jmp .PLT0. */
4548 bfd_put_32 (output_bfd, - (h->plt.offset + abed->plt_plt_insn_end),
4549 plt->contents + h->plt.offset + abed->plt_plt_offset);
4550 }
4551
4552 bed = get_elf_backend_data (output_bfd);
4553 loc = relplt->contents + plt_index * bed->s->sizeof_rela;
4554 bed->s->swap_reloca_out (output_bfd, &rela, loc);
4555
4556 if (!h->def_regular)
4557 {
4558 /* Mark the symbol as undefined, rather than as defined in
4559 the .plt section. Leave the value if there were any
4560 relocations where pointer equality matters (this is a clue
4561 for the dynamic linker, to make function pointer
4562 comparisons work between an application and shared
4563 library), otherwise set it to zero. If a function is only
4564 called from a binary, there is no need to slow down
4565 shared libraries because of that. */
4566 sym->st_shndx = SHN_UNDEF;
4567 if (!h->pointer_equality_needed)
4568 sym->st_value = 0;
4569 }
4570 }
4571
4572 if (h->got.offset != (bfd_vma) -1
4573 && ! GOT_TLS_GD_ANY_P (elf_x86_64_hash_entry (h)->tls_type)
4574 && elf_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
4575 {
4576 Elf_Internal_Rela rela;
4577
4578 /* This symbol has an entry in the global offset table. Set it
4579 up. */
4580 if (htab->elf.sgot == NULL || htab->elf.srelgot == NULL)
4581 abort ();
4582
4583 rela.r_offset = (htab->elf.sgot->output_section->vma
4584 + htab->elf.sgot->output_offset
4585 + (h->got.offset &~ (bfd_vma) 1));
4586
4587 /* If this is a static link, or it is a -Bsymbolic link and the
4588 symbol is defined locally or was forced to be local because
4589 of a version file, we just want to emit a RELATIVE reloc.
4590 The entry in the global offset table will already have been
4591 initialized in the relocate_section function. */
4592 if (h->def_regular
4593 && h->type == STT_GNU_IFUNC)
4594 {
4595 if (info->shared)
4596 {
4597 /* Generate R_X86_64_GLOB_DAT. */
4598 goto do_glob_dat;
4599 }
4600 else
4601 {
4602 asection *plt;
4603
4604 if (!h->pointer_equality_needed)
4605 abort ();
4606
4607 /* For non-shared object, we can't use .got.plt, which
4608 contains the real function addres if we need pointer
4609 equality. We load the GOT entry with the PLT entry. */
4610 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
4611 bfd_put_64 (output_bfd, (plt->output_section->vma
4612 + plt->output_offset
4613 + h->plt.offset),
4614 htab->elf.sgot->contents + h->got.offset);
4615 return TRUE;
4616 }
4617 }
4618 else if (info->shared
4619 && SYMBOL_REFERENCES_LOCAL (info, h))
4620 {
4621 if (!h->def_regular)
4622 return FALSE;
4623 BFD_ASSERT((h->got.offset & 1) != 0);
4624 rela.r_info = htab->r_info (0, R_X86_64_RELATIVE);
4625 rela.r_addend = (h->root.u.def.value
4626 + h->root.u.def.section->output_section->vma
4627 + h->root.u.def.section->output_offset);
4628 }
4629 else
4630 {
4631 BFD_ASSERT((h->got.offset & 1) == 0);
4632 do_glob_dat:
4633 bfd_put_64 (output_bfd, (bfd_vma) 0,
4634 htab->elf.sgot->contents + h->got.offset);
4635 rela.r_info = htab->r_info (h->dynindx, R_X86_64_GLOB_DAT);
4636 rela.r_addend = 0;
4637 }
4638
4639 elf_append_rela (output_bfd, htab->elf.srelgot, &rela);
4640 }
4641
4642 if (h->needs_copy)
4643 {
4644 Elf_Internal_Rela rela;
4645
4646 /* This symbol needs a copy reloc. Set it up. */
4647
4648 if (h->dynindx == -1
4649 || (h->root.type != bfd_link_hash_defined
4650 && h->root.type != bfd_link_hash_defweak)
4651 || htab->srelbss == NULL)
4652 abort ();
4653
4654 rela.r_offset = (h->root.u.def.value
4655 + h->root.u.def.section->output_section->vma
4656 + h->root.u.def.section->output_offset);
4657 rela.r_info = htab->r_info (h->dynindx, R_X86_64_COPY);
4658 rela.r_addend = 0;
4659 elf_append_rela (output_bfd, htab->srelbss, &rela);
4660 }
4661
4662 return TRUE;
4663 }
4664
4665 /* Finish up local dynamic symbol handling. We set the contents of
4666 various dynamic sections here. */
4667
4668 static bfd_boolean
4669 elf_x86_64_finish_local_dynamic_symbol (void **slot, void *inf)
4670 {
4671 struct elf_link_hash_entry *h
4672 = (struct elf_link_hash_entry *) *slot;
4673 struct bfd_link_info *info
4674 = (struct bfd_link_info *) inf;
4675
4676 return elf_x86_64_finish_dynamic_symbol (info->output_bfd,
4677 info, h, NULL);
4678 }
4679
4680 /* Used to decide how to sort relocs in an optimal manner for the
4681 dynamic linker, before writing them out. */
4682
4683 static enum elf_reloc_type_class
4684 elf_x86_64_reloc_type_class (const Elf_Internal_Rela *rela)
4685 {
4686 switch ((int) ELF32_R_TYPE (rela->r_info))
4687 {
4688 case R_X86_64_RELATIVE:
4689 case R_X86_64_RELATIVE64:
4690 return reloc_class_relative;
4691 case R_X86_64_JUMP_SLOT:
4692 return reloc_class_plt;
4693 case R_X86_64_COPY:
4694 return reloc_class_copy;
4695 default:
4696 return reloc_class_normal;
4697 }
4698 }
4699
4700 /* Finish up the dynamic sections. */
4701
4702 static bfd_boolean
4703 elf_x86_64_finish_dynamic_sections (bfd *output_bfd,
4704 struct bfd_link_info *info)
4705 {
4706 struct elf_x86_64_link_hash_table *htab;
4707 bfd *dynobj;
4708 asection *sdyn;
4709 const struct elf_x86_64_backend_data *const abed
4710 = get_elf_x86_64_backend_data (output_bfd);
4711
4712 htab = elf_x86_64_hash_table (info);
4713 if (htab == NULL)
4714 return FALSE;
4715
4716 dynobj = htab->elf.dynobj;
4717 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4718
4719 if (htab->elf.dynamic_sections_created)
4720 {
4721 bfd_byte *dyncon, *dynconend;
4722 const struct elf_backend_data *bed;
4723 bfd_size_type sizeof_dyn;
4724
4725 if (sdyn == NULL || htab->elf.sgot == NULL)
4726 abort ();
4727
4728 bed = get_elf_backend_data (dynobj);
4729 sizeof_dyn = bed->s->sizeof_dyn;
4730 dyncon = sdyn->contents;
4731 dynconend = sdyn->contents + sdyn->size;
4732 for (; dyncon < dynconend; dyncon += sizeof_dyn)
4733 {
4734 Elf_Internal_Dyn dyn;
4735 asection *s;
4736
4737 (*bed->s->swap_dyn_in) (dynobj, dyncon, &dyn);
4738
4739 switch (dyn.d_tag)
4740 {
4741 default:
4742 continue;
4743
4744 case DT_PLTGOT:
4745 s = htab->elf.sgotplt;
4746 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4747 break;
4748
4749 case DT_JMPREL:
4750 dyn.d_un.d_ptr = htab->elf.srelplt->output_section->vma;
4751 break;
4752
4753 case DT_PLTRELSZ:
4754 s = htab->elf.srelplt->output_section;
4755 dyn.d_un.d_val = s->size;
4756 break;
4757
4758 case DT_RELASZ:
4759 /* The procedure linkage table relocs (DT_JMPREL) should
4760 not be included in the overall relocs (DT_RELA).
4761 Therefore, we override the DT_RELASZ entry here to
4762 make it not include the JMPREL relocs. Since the
4763 linker script arranges for .rela.plt to follow all
4764 other relocation sections, we don't have to worry
4765 about changing the DT_RELA entry. */
4766 if (htab->elf.srelplt != NULL)
4767 {
4768 s = htab->elf.srelplt->output_section;
4769 dyn.d_un.d_val -= s->size;
4770 }
4771 break;
4772
4773 case DT_TLSDESC_PLT:
4774 s = htab->elf.splt;
4775 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4776 + htab->tlsdesc_plt;
4777 break;
4778
4779 case DT_TLSDESC_GOT:
4780 s = htab->elf.sgot;
4781 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4782 + htab->tlsdesc_got;
4783 break;
4784 }
4785
4786 (*bed->s->swap_dyn_out) (output_bfd, &dyn, dyncon);
4787 }
4788
4789 /* Fill in the special first entry in the procedure linkage table. */
4790 if (htab->elf.splt && htab->elf.splt->size > 0)
4791 {
4792 /* Fill in the first entry in the procedure linkage table. */
4793 memcpy (htab->elf.splt->contents,
4794 abed->plt0_entry, abed->plt_entry_size);
4795 /* Add offset for pushq GOT+8(%rip), since the instruction
4796 uses 6 bytes subtract this value. */
4797 bfd_put_32 (output_bfd,
4798 (htab->elf.sgotplt->output_section->vma
4799 + htab->elf.sgotplt->output_offset
4800 + 8
4801 - htab->elf.splt->output_section->vma
4802 - htab->elf.splt->output_offset
4803 - 6),
4804 htab->elf.splt->contents + abed->plt0_got1_offset);
4805 /* Add offset for the PC-relative instruction accessing GOT+16,
4806 subtracting the offset to the end of that instruction. */
4807 bfd_put_32 (output_bfd,
4808 (htab->elf.sgotplt->output_section->vma
4809 + htab->elf.sgotplt->output_offset
4810 + 16
4811 - htab->elf.splt->output_section->vma
4812 - htab->elf.splt->output_offset
4813 - abed->plt0_got2_insn_end),
4814 htab->elf.splt->contents + abed->plt0_got2_offset);
4815
4816 elf_section_data (htab->elf.splt->output_section)
4817 ->this_hdr.sh_entsize = abed->plt_entry_size;
4818
4819 if (htab->tlsdesc_plt)
4820 {
4821 bfd_put_64 (output_bfd, (bfd_vma) 0,
4822 htab->elf.sgot->contents + htab->tlsdesc_got);
4823
4824 memcpy (htab->elf.splt->contents + htab->tlsdesc_plt,
4825 abed->plt0_entry, abed->plt_entry_size);
4826
4827 /* Add offset for pushq GOT+8(%rip), since the
4828 instruction uses 6 bytes subtract this value. */
4829 bfd_put_32 (output_bfd,
4830 (htab->elf.sgotplt->output_section->vma
4831 + htab->elf.sgotplt->output_offset
4832 + 8
4833 - htab->elf.splt->output_section->vma
4834 - htab->elf.splt->output_offset
4835 - htab->tlsdesc_plt
4836 - 6),
4837 htab->elf.splt->contents
4838 + htab->tlsdesc_plt + abed->plt0_got1_offset);
4839 /* Add offset for the PC-relative instruction accessing GOT+TDG,
4840 where TGD stands for htab->tlsdesc_got, subtracting the offset
4841 to the end of that instruction. */
4842 bfd_put_32 (output_bfd,
4843 (htab->elf.sgot->output_section->vma
4844 + htab->elf.sgot->output_offset
4845 + htab->tlsdesc_got
4846 - htab->elf.splt->output_section->vma
4847 - htab->elf.splt->output_offset
4848 - htab->tlsdesc_plt
4849 - abed->plt0_got2_insn_end),
4850 htab->elf.splt->contents
4851 + htab->tlsdesc_plt + abed->plt0_got2_offset);
4852 }
4853 }
4854 }
4855
4856 if (htab->elf.sgotplt)
4857 {
4858 if (bfd_is_abs_section (htab->elf.sgotplt->output_section))
4859 {
4860 (*_bfd_error_handler)
4861 (_("discarded output section: `%A'"), htab->elf.sgotplt);
4862 return FALSE;
4863 }
4864
4865 /* Fill in the first three entries in the global offset table. */
4866 if (htab->elf.sgotplt->size > 0)
4867 {
4868 /* Set the first entry in the global offset table to the address of
4869 the dynamic section. */
4870 if (sdyn == NULL)
4871 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents);
4872 else
4873 bfd_put_64 (output_bfd,
4874 sdyn->output_section->vma + sdyn->output_offset,
4875 htab->elf.sgotplt->contents);
4876 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
4877 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
4878 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE*2);
4879 }
4880
4881 elf_section_data (htab->elf.sgotplt->output_section)->this_hdr.sh_entsize =
4882 GOT_ENTRY_SIZE;
4883 }
4884
4885 /* Adjust .eh_frame for .plt section. */
4886 if (htab->plt_eh_frame != NULL
4887 && htab->plt_eh_frame->contents != NULL)
4888 {
4889 if (htab->elf.splt != NULL
4890 && htab->elf.splt->size != 0
4891 && (htab->elf.splt->flags & SEC_EXCLUDE) == 0
4892 && htab->elf.splt->output_section != NULL
4893 && htab->plt_eh_frame->output_section != NULL)
4894 {
4895 bfd_vma plt_start = htab->elf.splt->output_section->vma;
4896 bfd_vma eh_frame_start = htab->plt_eh_frame->output_section->vma
4897 + htab->plt_eh_frame->output_offset
4898 + PLT_FDE_START_OFFSET;
4899 bfd_put_signed_32 (dynobj, plt_start - eh_frame_start,
4900 htab->plt_eh_frame->contents
4901 + PLT_FDE_START_OFFSET);
4902 }
4903 if (htab->plt_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME)
4904 {
4905 if (! _bfd_elf_write_section_eh_frame (output_bfd, info,
4906 htab->plt_eh_frame,
4907 htab->plt_eh_frame->contents))
4908 return FALSE;
4909 }
4910 }
4911
4912 if (htab->elf.sgot && htab->elf.sgot->size > 0)
4913 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize
4914 = GOT_ENTRY_SIZE;
4915
4916 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
4917 htab_traverse (htab->loc_hash_table,
4918 elf_x86_64_finish_local_dynamic_symbol,
4919 info);
4920
4921 return TRUE;
4922 }
4923
4924 /* Return address for Ith PLT stub in section PLT, for relocation REL
4925 or (bfd_vma) -1 if it should not be included. */
4926
4927 static bfd_vma
4928 elf_x86_64_plt_sym_val (bfd_vma i, const asection *plt,
4929 const arelent *rel ATTRIBUTE_UNUSED)
4930 {
4931 return plt->vma + (i + 1) * GET_PLT_ENTRY_SIZE (plt->owner);
4932 }
4933
4934 /* Handle an x86-64 specific section when reading an object file. This
4935 is called when elfcode.h finds a section with an unknown type. */
4936
4937 static bfd_boolean
4938 elf_x86_64_section_from_shdr (bfd *abfd,
4939 Elf_Internal_Shdr *hdr,
4940 const char *name,
4941 int shindex)
4942 {
4943 if (hdr->sh_type != SHT_X86_64_UNWIND)
4944 return FALSE;
4945
4946 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
4947 return FALSE;
4948
4949 return TRUE;
4950 }
4951
4952 /* Hook called by the linker routine which adds symbols from an object
4953 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
4954 of .bss. */
4955
4956 static bfd_boolean
4957 elf_x86_64_add_symbol_hook (bfd *abfd,
4958 struct bfd_link_info *info,
4959 Elf_Internal_Sym *sym,
4960 const char **namep ATTRIBUTE_UNUSED,
4961 flagword *flagsp ATTRIBUTE_UNUSED,
4962 asection **secp,
4963 bfd_vma *valp)
4964 {
4965 asection *lcomm;
4966
4967 switch (sym->st_shndx)
4968 {
4969 case SHN_X86_64_LCOMMON:
4970 lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
4971 if (lcomm == NULL)
4972 {
4973 lcomm = bfd_make_section_with_flags (abfd,
4974 "LARGE_COMMON",
4975 (SEC_ALLOC
4976 | SEC_IS_COMMON
4977 | SEC_LINKER_CREATED));
4978 if (lcomm == NULL)
4979 return FALSE;
4980 elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
4981 }
4982 *secp = lcomm;
4983 *valp = sym->st_size;
4984 return TRUE;
4985 }
4986
4987 if ((abfd->flags & DYNAMIC) == 0
4988 && (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
4989 || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE))
4990 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4991
4992 return TRUE;
4993 }
4994
4995
4996 /* Given a BFD section, try to locate the corresponding ELF section
4997 index. */
4998
4999 static bfd_boolean
5000 elf_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5001 asection *sec, int *index_return)
5002 {
5003 if (sec == &_bfd_elf_large_com_section)
5004 {
5005 *index_return = SHN_X86_64_LCOMMON;
5006 return TRUE;
5007 }
5008 return FALSE;
5009 }
5010
5011 /* Process a symbol. */
5012
5013 static void
5014 elf_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
5015 asymbol *asym)
5016 {
5017 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
5018
5019 switch (elfsym->internal_elf_sym.st_shndx)
5020 {
5021 case SHN_X86_64_LCOMMON:
5022 asym->section = &_bfd_elf_large_com_section;
5023 asym->value = elfsym->internal_elf_sym.st_size;
5024 /* Common symbol doesn't set BSF_GLOBAL. */
5025 asym->flags &= ~BSF_GLOBAL;
5026 break;
5027 }
5028 }
5029
5030 static bfd_boolean
5031 elf_x86_64_common_definition (Elf_Internal_Sym *sym)
5032 {
5033 return (sym->st_shndx == SHN_COMMON
5034 || sym->st_shndx == SHN_X86_64_LCOMMON);
5035 }
5036
5037 static unsigned int
5038 elf_x86_64_common_section_index (asection *sec)
5039 {
5040 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
5041 return SHN_COMMON;
5042 else
5043 return SHN_X86_64_LCOMMON;
5044 }
5045
5046 static asection *
5047 elf_x86_64_common_section (asection *sec)
5048 {
5049 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
5050 return bfd_com_section_ptr;
5051 else
5052 return &_bfd_elf_large_com_section;
5053 }
5054
5055 static bfd_boolean
5056 elf_x86_64_merge_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5057 struct elf_link_hash_entry **sym_hash ATTRIBUTE_UNUSED,
5058 struct elf_link_hash_entry *h,
5059 Elf_Internal_Sym *sym,
5060 asection **psec,
5061 bfd_vma *pvalue ATTRIBUTE_UNUSED,
5062 unsigned int *pold_alignment ATTRIBUTE_UNUSED,
5063 bfd_boolean *skip ATTRIBUTE_UNUSED,
5064 bfd_boolean *override ATTRIBUTE_UNUSED,
5065 bfd_boolean *type_change_ok ATTRIBUTE_UNUSED,
5066 bfd_boolean *size_change_ok ATTRIBUTE_UNUSED,
5067 bfd_boolean *newdyn ATTRIBUTE_UNUSED,
5068 bfd_boolean *newdef,
5069 bfd_boolean *newdyncommon ATTRIBUTE_UNUSED,
5070 bfd_boolean *newweak ATTRIBUTE_UNUSED,
5071 bfd *abfd ATTRIBUTE_UNUSED,
5072 asection **sec,
5073 bfd_boolean *olddyn ATTRIBUTE_UNUSED,
5074 bfd_boolean *olddef,
5075 bfd_boolean *olddyncommon ATTRIBUTE_UNUSED,
5076 bfd_boolean *oldweak ATTRIBUTE_UNUSED,
5077 bfd *oldbfd,
5078 asection **oldsec)
5079 {
5080 /* A normal common symbol and a large common symbol result in a
5081 normal common symbol. We turn the large common symbol into a
5082 normal one. */
5083 if (!*olddef
5084 && h->root.type == bfd_link_hash_common
5085 && !*newdef
5086 && bfd_is_com_section (*sec)
5087 && *oldsec != *sec)
5088 {
5089 if (sym->st_shndx == SHN_COMMON
5090 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) != 0)
5091 {
5092 h->root.u.c.p->section
5093 = bfd_make_section_old_way (oldbfd, "COMMON");
5094 h->root.u.c.p->section->flags = SEC_ALLOC;
5095 }
5096 else if (sym->st_shndx == SHN_X86_64_LCOMMON
5097 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) == 0)
5098 *psec = *sec = bfd_com_section_ptr;
5099 }
5100
5101 return TRUE;
5102 }
5103
5104 static int
5105 elf_x86_64_additional_program_headers (bfd *abfd,
5106 struct bfd_link_info *info ATTRIBUTE_UNUSED)
5107 {
5108 asection *s;
5109 int count = 0;
5110
5111 /* Check to see if we need a large readonly segment. */
5112 s = bfd_get_section_by_name (abfd, ".lrodata");
5113 if (s && (s->flags & SEC_LOAD))
5114 count++;
5115
5116 /* Check to see if we need a large data segment. Since .lbss sections
5117 is placed right after the .bss section, there should be no need for
5118 a large data segment just because of .lbss. */
5119 s = bfd_get_section_by_name (abfd, ".ldata");
5120 if (s && (s->flags & SEC_LOAD))
5121 count++;
5122
5123 return count;
5124 }
5125
5126 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5127
5128 static bfd_boolean
5129 elf_x86_64_hash_symbol (struct elf_link_hash_entry *h)
5130 {
5131 if (h->plt.offset != (bfd_vma) -1
5132 && !h->def_regular
5133 && !h->pointer_equality_needed)
5134 return FALSE;
5135
5136 return _bfd_elf_hash_symbol (h);
5137 }
5138
5139 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. */
5140
5141 static bfd_boolean
5142 elf_x86_64_relocs_compatible (const bfd_target *input,
5143 const bfd_target *output)
5144 {
5145 return ((xvec_get_elf_backend_data (input)->s->elfclass
5146 == xvec_get_elf_backend_data (output)->s->elfclass)
5147 && _bfd_elf_relocs_compatible (input, output));
5148 }
5149
5150 static const struct bfd_elf_special_section
5151 elf_x86_64_special_sections[]=
5152 {
5153 { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
5154 { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
5155 { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
5156 { STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
5157 { STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
5158 { STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
5159 { NULL, 0, 0, 0, 0 }
5160 };
5161
5162 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
5163 #define TARGET_LITTLE_NAME "elf64-x86-64"
5164 #define ELF_ARCH bfd_arch_i386
5165 #define ELF_TARGET_ID X86_64_ELF_DATA
5166 #define ELF_MACHINE_CODE EM_X86_64
5167 #define ELF_MAXPAGESIZE 0x200000
5168 #define ELF_MINPAGESIZE 0x1000
5169 #define ELF_COMMONPAGESIZE 0x1000
5170
5171 #define elf_backend_can_gc_sections 1
5172 #define elf_backend_can_refcount 1
5173 #define elf_backend_want_got_plt 1
5174 #define elf_backend_plt_readonly 1
5175 #define elf_backend_want_plt_sym 0
5176 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
5177 #define elf_backend_rela_normal 1
5178 #define elf_backend_plt_alignment 4
5179
5180 #define elf_info_to_howto elf_x86_64_info_to_howto
5181
5182 #define bfd_elf64_bfd_link_hash_table_create \
5183 elf_x86_64_link_hash_table_create
5184 #define bfd_elf64_bfd_link_hash_table_free \
5185 elf_x86_64_link_hash_table_free
5186 #define bfd_elf64_bfd_reloc_type_lookup elf_x86_64_reloc_type_lookup
5187 #define bfd_elf64_bfd_reloc_name_lookup \
5188 elf_x86_64_reloc_name_lookup
5189
5190 #define elf_backend_adjust_dynamic_symbol elf_x86_64_adjust_dynamic_symbol
5191 #define elf_backend_relocs_compatible elf_x86_64_relocs_compatible
5192 #define elf_backend_check_relocs elf_x86_64_check_relocs
5193 #define elf_backend_copy_indirect_symbol elf_x86_64_copy_indirect_symbol
5194 #define elf_backend_create_dynamic_sections elf_x86_64_create_dynamic_sections
5195 #define elf_backend_finish_dynamic_sections elf_x86_64_finish_dynamic_sections
5196 #define elf_backend_finish_dynamic_symbol elf_x86_64_finish_dynamic_symbol
5197 #define elf_backend_gc_mark_hook elf_x86_64_gc_mark_hook
5198 #define elf_backend_gc_sweep_hook elf_x86_64_gc_sweep_hook
5199 #define elf_backend_grok_prstatus elf_x86_64_grok_prstatus
5200 #define elf_backend_grok_psinfo elf_x86_64_grok_psinfo
5201 #ifdef CORE_HEADER
5202 #define elf_backend_write_core_note elf_x86_64_write_core_note
5203 #endif
5204 #define elf_backend_reloc_type_class elf_x86_64_reloc_type_class
5205 #define elf_backend_relocate_section elf_x86_64_relocate_section
5206 #define elf_backend_size_dynamic_sections elf_x86_64_size_dynamic_sections
5207 #define elf_backend_always_size_sections elf_x86_64_always_size_sections
5208 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
5209 #define elf_backend_plt_sym_val elf_x86_64_plt_sym_val
5210 #define elf_backend_object_p elf64_x86_64_elf_object_p
5211 #define bfd_elf64_mkobject elf_x86_64_mkobject
5212
5213 #define elf_backend_section_from_shdr \
5214 elf_x86_64_section_from_shdr
5215
5216 #define elf_backend_section_from_bfd_section \
5217 elf_x86_64_elf_section_from_bfd_section
5218 #define elf_backend_add_symbol_hook \
5219 elf_x86_64_add_symbol_hook
5220 #define elf_backend_symbol_processing \
5221 elf_x86_64_symbol_processing
5222 #define elf_backend_common_section_index \
5223 elf_x86_64_common_section_index
5224 #define elf_backend_common_section \
5225 elf_x86_64_common_section
5226 #define elf_backend_common_definition \
5227 elf_x86_64_common_definition
5228 #define elf_backend_merge_symbol \
5229 elf_x86_64_merge_symbol
5230 #define elf_backend_special_sections \
5231 elf_x86_64_special_sections
5232 #define elf_backend_additional_program_headers \
5233 elf_x86_64_additional_program_headers
5234 #define elf_backend_hash_symbol \
5235 elf_x86_64_hash_symbol
5236
5237 #define elf_backend_post_process_headers _bfd_elf_set_osabi
5238
5239 #include "elf64-target.h"
5240
5241 /* FreeBSD support. */
5242
5243 #undef TARGET_LITTLE_SYM
5244 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_freebsd_vec
5245 #undef TARGET_LITTLE_NAME
5246 #define TARGET_LITTLE_NAME "elf64-x86-64-freebsd"
5247
5248 #undef ELF_OSABI
5249 #define ELF_OSABI ELFOSABI_FREEBSD
5250
5251 #undef elf64_bed
5252 #define elf64_bed elf64_x86_64_fbsd_bed
5253
5254 #include "elf64-target.h"
5255
5256 /* Solaris 2 support. */
5257
5258 #undef TARGET_LITTLE_SYM
5259 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_sol2_vec
5260 #undef TARGET_LITTLE_NAME
5261 #define TARGET_LITTLE_NAME "elf64-x86-64-sol2"
5262
5263 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
5264 objects won't be recognized. */
5265 #undef ELF_OSABI
5266
5267 #undef elf64_bed
5268 #define elf64_bed elf64_x86_64_sol2_bed
5269
5270 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte
5271 boundary. */
5272 #undef elf_backend_static_tls_alignment
5273 #define elf_backend_static_tls_alignment 16
5274
5275 /* The Solaris 2 ABI requires a plt symbol on all platforms.
5276
5277 Cf. Linker and Libraries Guide, Ch. 2, Link-Editor, Generating the Output
5278 File, p.63. */
5279 #undef elf_backend_want_plt_sym
5280 #define elf_backend_want_plt_sym 1
5281
5282 #include "elf64-target.h"
5283
5284 /* Native Client support. */
5285
5286 #undef TARGET_LITTLE_SYM
5287 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_nacl_vec
5288 #undef TARGET_LITTLE_NAME
5289 #define TARGET_LITTLE_NAME "elf64-x86-64-nacl"
5290 #undef elf64_bed
5291 #define elf64_bed elf64_x86_64_nacl_bed
5292
5293 #undef ELF_MAXPAGESIZE
5294 #undef ELF_MINPAGESIZE
5295 #undef ELF_COMMONPAGESIZE
5296 #define ELF_MAXPAGESIZE 0x10000
5297 #define ELF_MINPAGESIZE 0x10000
5298 #define ELF_COMMONPAGESIZE 0x10000
5299
5300 /* Restore defaults. */
5301 #undef ELF_OSABI
5302 #undef elf_backend_static_tls_alignment
5303 #undef elf_backend_want_plt_sym
5304 #define elf_backend_want_plt_sym 0
5305
5306 /* NaCl uses substantially different PLT entries for the same effects. */
5307
5308 #undef elf_backend_plt_alignment
5309 #define elf_backend_plt_alignment 5
5310 #define NACL_PLT_ENTRY_SIZE 64
5311 #define NACLMASK 0xe0 /* 32-byte alignment mask. */
5312
5313 static const bfd_byte elf_x86_64_nacl_plt0_entry[NACL_PLT_ENTRY_SIZE] =
5314 {
5315 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
5316 0x4c, 0x8b, 0x1d, 16, 0, 0, 0, /* mov GOT+16(%rip), %r11 */
5317 0x41, 0x83, 0xe3, NACLMASK, /* and $-32, %r11d */
5318 0x4d, 0x01, 0xfb, /* add %r15, %r11 */
5319 0x41, 0xff, 0xe3, /* jmpq *%r11 */
5320
5321 /* 9-byte nop sequence to pad out to the next 32-byte boundary. */
5322 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopl %cs:0x0(%rax,%rax,1) */
5323
5324 /* 32 bytes of nop to pad out to the standard size. */
5325 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
5326 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
5327 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
5328 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
5329 0x66, /* excess data32 prefix */
5330 0x90 /* nop */
5331 };
5332
5333 static const bfd_byte elf_x86_64_nacl_plt_entry[NACL_PLT_ENTRY_SIZE] =
5334 {
5335 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, /* mov name@GOTPCREL(%rip),%r11 */
5336 0x41, 0x83, 0xe3, NACLMASK, /* and $-32, %r11d */
5337 0x4d, 0x01, 0xfb, /* add %r15, %r11 */
5338 0x41, 0xff, 0xe3, /* jmpq *%r11 */
5339
5340 /* 15-byte nop sequence to pad out to the next 32-byte boundary. */
5341 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
5342 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
5343
5344 /* Lazy GOT entries point here (32-byte aligned). */
5345 0x68, /* pushq immediate */
5346 0, 0, 0, 0, /* replaced with index into relocation table. */
5347 0xe9, /* jmp relative */
5348 0, 0, 0, 0, /* replaced with offset to start of .plt0. */
5349
5350 /* 22 bytes of nop to pad out to the standard size. */
5351 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
5352 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
5353 0x0f, 0x1f, 0x80, 0, 0, 0, 0, /* nopl 0x0(%rax) */
5354 };
5355
5356 /* .eh_frame covering the .plt section. */
5357
5358 static const bfd_byte elf_x86_64_nacl_eh_frame_plt[] =
5359 {
5360 #if (PLT_CIE_LENGTH != 20 \
5361 || PLT_FDE_LENGTH != 36 \
5362 || PLT_FDE_START_OFFSET != 4 + PLT_CIE_LENGTH + 8 \
5363 || PLT_FDE_LEN_OFFSET != 4 + PLT_CIE_LENGTH + 12)
5364 # error "Need elf_x86_64_backend_data parameters for eh_frame_plt offsets!"
5365 #endif
5366 PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */
5367 0, 0, 0, 0, /* CIE ID */
5368 1, /* CIE version */
5369 'z', 'R', 0, /* Augmentation string */
5370 1, /* Code alignment factor */
5371 0x78, /* Data alignment factor */
5372 16, /* Return address column */
5373 1, /* Augmentation size */
5374 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
5375 DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
5376 DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
5377 DW_CFA_nop, DW_CFA_nop,
5378
5379 PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */
5380 PLT_CIE_LENGTH + 8, 0, 0, 0,/* CIE pointer */
5381 0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */
5382 0, 0, 0, 0, /* .plt size goes here */
5383 0, /* Augmentation size */
5384 DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */
5385 DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */
5386 DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */
5387 DW_CFA_advance_loc + 58, /* DW_CFA_advance_loc: 58 to __PLT__+64 */
5388 DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */
5389 13, /* Block length */
5390 DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */
5391 DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */
5392 DW_OP_const1u, 63, DW_OP_and, DW_OP_const1u, 37, DW_OP_ge,
5393 DW_OP_lit3, DW_OP_shl, DW_OP_plus,
5394 DW_CFA_nop, DW_CFA_nop
5395 };
5396
5397 static const struct elf_x86_64_backend_data elf_x86_64_nacl_arch_bed =
5398 {
5399 elf_x86_64_nacl_plt0_entry, /* plt0_entry */
5400 elf_x86_64_nacl_plt_entry, /* plt_entry */
5401 NACL_PLT_ENTRY_SIZE, /* plt_entry_size */
5402 2, /* plt0_got1_offset */
5403 9, /* plt0_got2_offset */
5404 13, /* plt0_got2_insn_end */
5405 3, /* plt_got_offset */
5406 33, /* plt_reloc_offset */
5407 38, /* plt_plt_offset */
5408 7, /* plt_got_insn_size */
5409 42, /* plt_plt_insn_end */
5410 32, /* plt_lazy_offset */
5411 elf_x86_64_nacl_eh_frame_plt, /* eh_frame_plt */
5412 sizeof (elf_x86_64_nacl_eh_frame_plt), /* eh_frame_plt_size */
5413 };
5414
5415 #undef elf_backend_arch_data
5416 #define elf_backend_arch_data &elf_x86_64_nacl_arch_bed
5417
5418 #undef elf_backend_modify_segment_map
5419 #define elf_backend_modify_segment_map nacl_modify_segment_map
5420 #undef elf_backend_modify_program_headers
5421 #define elf_backend_modify_program_headers nacl_modify_program_headers
5422
5423 #include "elf64-target.h"
5424
5425 /* Native Client x32 support. */
5426
5427 #undef TARGET_LITTLE_SYM
5428 #define TARGET_LITTLE_SYM bfd_elf32_x86_64_nacl_vec
5429 #undef TARGET_LITTLE_NAME
5430 #define TARGET_LITTLE_NAME "elf32-x86-64-nacl"
5431 #undef elf32_bed
5432 #define elf32_bed elf32_x86_64_nacl_bed
5433
5434 #define bfd_elf32_bfd_link_hash_table_create \
5435 elf_x86_64_link_hash_table_create
5436 #define bfd_elf32_bfd_link_hash_table_free \
5437 elf_x86_64_link_hash_table_free
5438 #define bfd_elf32_bfd_reloc_type_lookup \
5439 elf_x86_64_reloc_type_lookup
5440 #define bfd_elf32_bfd_reloc_name_lookup \
5441 elf_x86_64_reloc_name_lookup
5442 #define bfd_elf32_mkobject \
5443 elf_x86_64_mkobject
5444
5445 #undef elf_backend_object_p
5446 #define elf_backend_object_p \
5447 elf32_x86_64_elf_object_p
5448
5449 #undef elf_backend_bfd_from_remote_memory
5450 #define elf_backend_bfd_from_remote_memory \
5451 _bfd_elf32_bfd_from_remote_memory
5452
5453 #undef elf_backend_size_info
5454 #define elf_backend_size_info \
5455 _bfd_elf32_size_info
5456
5457 #include "elf32-target.h"
5458
5459 /* Restore defaults. */
5460 #undef elf_backend_object_p
5461 #define elf_backend_object_p elf64_x86_64_elf_object_p
5462 #undef elf_backend_bfd_from_remote_memory
5463 #undef elf_backend_size_info
5464 #undef elf_backend_modify_segment_map
5465 #undef elf_backend_modify_program_headers
5466
5467 /* Intel L1OM support. */
5468
5469 static bfd_boolean
5470 elf64_l1om_elf_object_p (bfd *abfd)
5471 {
5472 /* Set the right machine number for an L1OM elf64 file. */
5473 bfd_default_set_arch_mach (abfd, bfd_arch_l1om, bfd_mach_l1om);
5474 return TRUE;
5475 }
5476
5477 #undef TARGET_LITTLE_SYM
5478 #define TARGET_LITTLE_SYM bfd_elf64_l1om_vec
5479 #undef TARGET_LITTLE_NAME
5480 #define TARGET_LITTLE_NAME "elf64-l1om"
5481 #undef ELF_ARCH
5482 #define ELF_ARCH bfd_arch_l1om
5483
5484 #undef ELF_MACHINE_CODE
5485 #define ELF_MACHINE_CODE EM_L1OM
5486
5487 #undef ELF_OSABI
5488
5489 #undef elf64_bed
5490 #define elf64_bed elf64_l1om_bed
5491
5492 #undef elf_backend_object_p
5493 #define elf_backend_object_p elf64_l1om_elf_object_p
5494
5495 /* Restore defaults. */
5496 #undef ELF_MAXPAGESIZE
5497 #undef ELF_MINPAGESIZE
5498 #undef ELF_COMMONPAGESIZE
5499 #define ELF_MAXPAGESIZE 0x200000
5500 #define ELF_MINPAGESIZE 0x1000
5501 #define ELF_COMMONPAGESIZE 0x1000
5502 #undef elf_backend_plt_alignment
5503 #define elf_backend_plt_alignment 4
5504 #undef elf_backend_arch_data
5505 #define elf_backend_arch_data &elf_x86_64_arch_bed
5506
5507 #include "elf64-target.h"
5508
5509 /* FreeBSD L1OM support. */
5510
5511 #undef TARGET_LITTLE_SYM
5512 #define TARGET_LITTLE_SYM bfd_elf64_l1om_freebsd_vec
5513 #undef TARGET_LITTLE_NAME
5514 #define TARGET_LITTLE_NAME "elf64-l1om-freebsd"
5515
5516 #undef ELF_OSABI
5517 #define ELF_OSABI ELFOSABI_FREEBSD
5518
5519 #undef elf64_bed
5520 #define elf64_bed elf64_l1om_fbsd_bed
5521
5522 #include "elf64-target.h"
5523
5524 /* Intel K1OM support. */
5525
5526 static bfd_boolean
5527 elf64_k1om_elf_object_p (bfd *abfd)
5528 {
5529 /* Set the right machine number for an K1OM elf64 file. */
5530 bfd_default_set_arch_mach (abfd, bfd_arch_k1om, bfd_mach_k1om);
5531 return TRUE;
5532 }
5533
5534 #undef TARGET_LITTLE_SYM
5535 #define TARGET_LITTLE_SYM bfd_elf64_k1om_vec
5536 #undef TARGET_LITTLE_NAME
5537 #define TARGET_LITTLE_NAME "elf64-k1om"
5538 #undef ELF_ARCH
5539 #define ELF_ARCH bfd_arch_k1om
5540
5541 #undef ELF_MACHINE_CODE
5542 #define ELF_MACHINE_CODE EM_K1OM
5543
5544 #undef ELF_OSABI
5545
5546 #undef elf64_bed
5547 #define elf64_bed elf64_k1om_bed
5548
5549 #undef elf_backend_object_p
5550 #define elf_backend_object_p elf64_k1om_elf_object_p
5551
5552 #undef elf_backend_static_tls_alignment
5553
5554 #undef elf_backend_want_plt_sym
5555 #define elf_backend_want_plt_sym 0
5556
5557 #include "elf64-target.h"
5558
5559 /* FreeBSD K1OM support. */
5560
5561 #undef TARGET_LITTLE_SYM
5562 #define TARGET_LITTLE_SYM bfd_elf64_k1om_freebsd_vec
5563 #undef TARGET_LITTLE_NAME
5564 #define TARGET_LITTLE_NAME "elf64-k1om-freebsd"
5565
5566 #undef ELF_OSABI
5567 #define ELF_OSABI ELFOSABI_FREEBSD
5568
5569 #undef elf64_bed
5570 #define elf64_bed elf64_k1om_fbsd_bed
5571
5572 #include "elf64-target.h"
5573
5574 /* 32bit x86-64 support. */
5575
5576 #undef TARGET_LITTLE_SYM
5577 #define TARGET_LITTLE_SYM bfd_elf32_x86_64_vec
5578 #undef TARGET_LITTLE_NAME
5579 #define TARGET_LITTLE_NAME "elf32-x86-64"
5580 #undef elf32_bed
5581
5582 #undef ELF_ARCH
5583 #define ELF_ARCH bfd_arch_i386
5584
5585 #undef ELF_MACHINE_CODE
5586 #define ELF_MACHINE_CODE EM_X86_64
5587
5588 #undef ELF_OSABI
5589
5590 #undef elf_backend_object_p
5591 #define elf_backend_object_p \
5592 elf32_x86_64_elf_object_p
5593
5594 #undef elf_backend_bfd_from_remote_memory
5595 #define elf_backend_bfd_from_remote_memory \
5596 _bfd_elf32_bfd_from_remote_memory
5597
5598 #undef elf_backend_size_info
5599 #define elf_backend_size_info \
5600 _bfd_elf32_size_info
5601
5602 #include "elf32-target.h"