2012-01-06 Sergio Durigan Junior <sergiodj@redhat.com>
[binutils-gdb.git] / bfd / elf64-x86-64.c
1 /* X86-64 specific support for ELF
2 Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011
4 Free Software Foundation, Inc.
5 Contributed by Jan Hubicka <jh@suse.cz>.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24 #include "sysdep.h"
25 #include "bfd.h"
26 #include "bfdlink.h"
27 #include "libbfd.h"
28 #include "elf-bfd.h"
29 #include "bfd_stdint.h"
30 #include "objalloc.h"
31 #include "hashtab.h"
32 #include "dwarf2.h"
33 #include "libiberty.h"
34
35 #include "elf/x86-64.h"
36
37 #ifdef CORE_HEADER
38 #include <stdarg.h>
39 #include CORE_HEADER
40 #endif
41
42 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
43 #define MINUS_ONE (~ (bfd_vma) 0)
44
45 /* Since both 32-bit and 64-bit x86-64 encode relocation type in the
46 identical manner, we use ELF32_R_TYPE instead of ELF64_R_TYPE to get
47 relocation type. We also use ELF_ST_TYPE instead of ELF64_ST_TYPE
48 since they are the same. */
49
50 #define ABI_64_P(abfd) \
51 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
52
53 /* The relocation "howto" table. Order of fields:
54 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
55 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
56 static reloc_howto_type x86_64_elf_howto_table[] =
57 {
58 HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
59 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
60 FALSE),
61 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
62 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
63 FALSE),
64 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
65 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
66 TRUE),
67 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
68 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
69 FALSE),
70 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
71 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
72 TRUE),
73 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
74 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
75 FALSE),
76 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
77 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
78 MINUS_ONE, FALSE),
79 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
80 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
81 MINUS_ONE, FALSE),
82 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
83 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
84 MINUS_ONE, FALSE),
85 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
86 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
87 0xffffffff, TRUE),
88 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
89 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
90 FALSE),
91 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
92 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
93 FALSE),
94 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
95 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
96 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
97 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
98 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
99 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
100 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
101 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
102 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
103 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
104 MINUS_ONE, FALSE),
105 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
106 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
107 MINUS_ONE, FALSE),
108 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
109 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
110 MINUS_ONE, FALSE),
111 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
112 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
113 0xffffffff, TRUE),
114 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
115 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
116 0xffffffff, TRUE),
117 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
118 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
119 0xffffffff, FALSE),
120 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
121 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
122 0xffffffff, TRUE),
123 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
124 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
125 0xffffffff, FALSE),
126 HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
127 bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
128 TRUE),
129 HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
130 bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
131 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
132 HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
133 bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
134 FALSE, 0xffffffff, 0xffffffff, TRUE),
135 HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
136 bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE,
137 FALSE),
138 HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
139 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE,
140 MINUS_ONE, TRUE),
141 HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
142 bfd_elf_generic_reloc, "R_X86_64_GOTPC64",
143 FALSE, MINUS_ONE, MINUS_ONE, TRUE),
144 HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
145 bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE,
146 MINUS_ONE, FALSE),
147 HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
148 bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE,
149 MINUS_ONE, FALSE),
150 EMPTY_HOWTO (32),
151 EMPTY_HOWTO (33),
152 HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0,
153 complain_overflow_bitfield, bfd_elf_generic_reloc,
154 "R_X86_64_GOTPC32_TLSDESC",
155 FALSE, 0xffffffff, 0xffffffff, TRUE),
156 HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0,
157 complain_overflow_dont, bfd_elf_generic_reloc,
158 "R_X86_64_TLSDESC_CALL",
159 FALSE, 0, 0, FALSE),
160 HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0,
161 complain_overflow_bitfield, bfd_elf_generic_reloc,
162 "R_X86_64_TLSDESC",
163 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
164 HOWTO(R_X86_64_IRELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
165 bfd_elf_generic_reloc, "R_X86_64_IRELATIVE", FALSE, MINUS_ONE,
166 MINUS_ONE, FALSE),
167 HOWTO(R_X86_64_RELATIVE64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
168 bfd_elf_generic_reloc, "R_X86_64_RELATIVE64", FALSE, MINUS_ONE,
169 MINUS_ONE, FALSE),
170
171 /* We have a gap in the reloc numbers here.
172 R_X86_64_standard counts the number up to this point, and
173 R_X86_64_vt_offset is the value to subtract from a reloc type of
174 R_X86_64_GNU_VT* to form an index into this table. */
175 #define R_X86_64_standard (R_X86_64_IRELATIVE + 1)
176 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
177
178 /* GNU extension to record C++ vtable hierarchy. */
179 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
180 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
181
182 /* GNU extension to record C++ vtable member usage. */
183 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
184 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
185 FALSE),
186
187 /* Use complain_overflow_bitfield on R_X86_64_32 for x32. */
188 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
189 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
190 FALSE)
191 };
192
193 #define IS_X86_64_PCREL_TYPE(TYPE) \
194 ( ((TYPE) == R_X86_64_PC8) \
195 || ((TYPE) == R_X86_64_PC16) \
196 || ((TYPE) == R_X86_64_PC32) \
197 || ((TYPE) == R_X86_64_PC64))
198
199 /* Map BFD relocs to the x86_64 elf relocs. */
200 struct elf_reloc_map
201 {
202 bfd_reloc_code_real_type bfd_reloc_val;
203 unsigned char elf_reloc_val;
204 };
205
206 static const struct elf_reloc_map x86_64_reloc_map[] =
207 {
208 { BFD_RELOC_NONE, R_X86_64_NONE, },
209 { BFD_RELOC_64, R_X86_64_64, },
210 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
211 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
212 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
213 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
214 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
215 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
216 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
217 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
218 { BFD_RELOC_32, R_X86_64_32, },
219 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
220 { BFD_RELOC_16, R_X86_64_16, },
221 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
222 { BFD_RELOC_8, R_X86_64_8, },
223 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
224 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
225 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
226 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
227 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
228 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
229 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
230 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
231 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
232 { BFD_RELOC_64_PCREL, R_X86_64_PC64, },
233 { BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, },
234 { BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, },
235 { BFD_RELOC_X86_64_GOT64, R_X86_64_GOT64, },
236 { BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, },
237 { BFD_RELOC_X86_64_GOTPC64, R_X86_64_GOTPC64, },
238 { BFD_RELOC_X86_64_GOTPLT64, R_X86_64_GOTPLT64, },
239 { BFD_RELOC_X86_64_PLTOFF64, R_X86_64_PLTOFF64, },
240 { BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, },
241 { BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, },
242 { BFD_RELOC_X86_64_TLSDESC, R_X86_64_TLSDESC, },
243 { BFD_RELOC_X86_64_IRELATIVE, R_X86_64_IRELATIVE, },
244 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
245 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
246 };
247
248 static reloc_howto_type *
249 elf_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type)
250 {
251 unsigned i;
252
253 if (r_type == (unsigned int) R_X86_64_32)
254 {
255 if (ABI_64_P (abfd))
256 i = r_type;
257 else
258 i = ARRAY_SIZE (x86_64_elf_howto_table) - 1;
259 }
260 else if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
261 || r_type >= (unsigned int) R_X86_64_max)
262 {
263 if (r_type >= (unsigned int) R_X86_64_standard)
264 {
265 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
266 abfd, (int) r_type);
267 r_type = R_X86_64_NONE;
268 }
269 i = r_type;
270 }
271 else
272 i = r_type - (unsigned int) R_X86_64_vt_offset;
273 BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type);
274 return &x86_64_elf_howto_table[i];
275 }
276
277 /* Given a BFD reloc type, return a HOWTO structure. */
278 static reloc_howto_type *
279 elf_x86_64_reloc_type_lookup (bfd *abfd,
280 bfd_reloc_code_real_type code)
281 {
282 unsigned int i;
283
284 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
285 i++)
286 {
287 if (x86_64_reloc_map[i].bfd_reloc_val == code)
288 return elf_x86_64_rtype_to_howto (abfd,
289 x86_64_reloc_map[i].elf_reloc_val);
290 }
291 return 0;
292 }
293
294 static reloc_howto_type *
295 elf_x86_64_reloc_name_lookup (bfd *abfd,
296 const char *r_name)
297 {
298 unsigned int i;
299
300 if (!ABI_64_P (abfd) && strcasecmp (r_name, "R_X86_64_32") == 0)
301 {
302 /* Get x32 R_X86_64_32. */
303 reloc_howto_type *reloc
304 = &x86_64_elf_howto_table[ARRAY_SIZE (x86_64_elf_howto_table) - 1];
305 BFD_ASSERT (reloc->type == (unsigned int) R_X86_64_32);
306 return reloc;
307 }
308
309 for (i = 0; i < ARRAY_SIZE (x86_64_elf_howto_table); i++)
310 if (x86_64_elf_howto_table[i].name != NULL
311 && strcasecmp (x86_64_elf_howto_table[i].name, r_name) == 0)
312 return &x86_64_elf_howto_table[i];
313
314 return NULL;
315 }
316
317 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
318
319 static void
320 elf_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
321 Elf_Internal_Rela *dst)
322 {
323 unsigned r_type;
324
325 r_type = ELF32_R_TYPE (dst->r_info);
326 cache_ptr->howto = elf_x86_64_rtype_to_howto (abfd, r_type);
327 BFD_ASSERT (r_type == cache_ptr->howto->type);
328 }
329 \f
330 /* Support for core dump NOTE sections. */
331 static bfd_boolean
332 elf_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
333 {
334 int offset;
335 size_t size;
336
337 switch (note->descsz)
338 {
339 default:
340 return FALSE;
341
342 case 296: /* sizeof(istruct elf_prstatus) on Linux/x32 */
343 /* pr_cursig */
344 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
345
346 /* pr_pid */
347 elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 24);
348
349 /* pr_reg */
350 offset = 72;
351 size = 216;
352
353 break;
354
355 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
356 /* pr_cursig */
357 elf_tdata (abfd)->core_signal
358 = bfd_get_16 (abfd, note->descdata + 12);
359
360 /* pr_pid */
361 elf_tdata (abfd)->core_lwpid
362 = bfd_get_32 (abfd, note->descdata + 32);
363
364 /* pr_reg */
365 offset = 112;
366 size = 216;
367
368 break;
369 }
370
371 /* Make a ".reg/999" section. */
372 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
373 size, note->descpos + offset);
374 }
375
376 static bfd_boolean
377 elf_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
378 {
379 switch (note->descsz)
380 {
381 default:
382 return FALSE;
383
384 case 124: /* sizeof(struct elf_prpsinfo) on Linux/x32 */
385 elf_tdata (abfd)->core_pid
386 = bfd_get_32 (abfd, note->descdata + 12);
387 elf_tdata (abfd)->core_program
388 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
389 elf_tdata (abfd)->core_command
390 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
391 break;
392
393 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
394 elf_tdata (abfd)->core_pid
395 = bfd_get_32 (abfd, note->descdata + 24);
396 elf_tdata (abfd)->core_program
397 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
398 elf_tdata (abfd)->core_command
399 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
400 }
401
402 /* Note that for some reason, a spurious space is tacked
403 onto the end of the args in some (at least one anyway)
404 implementations, so strip it off if it exists. */
405
406 {
407 char *command = elf_tdata (abfd)->core_command;
408 int n = strlen (command);
409
410 if (0 < n && command[n - 1] == ' ')
411 command[n - 1] = '\0';
412 }
413
414 return TRUE;
415 }
416
417 #ifdef CORE_HEADER
418 static char *
419 elf_x86_64_write_core_note (bfd *abfd, char *buf, int *bufsiz,
420 int note_type, ...)
421 {
422 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
423 va_list ap;
424 const char *fname, *psargs;
425 long pid;
426 int cursig;
427 const void *gregs;
428
429 switch (note_type)
430 {
431 default:
432 return NULL;
433
434 case NT_PRPSINFO:
435 va_start (ap, note_type);
436 fname = va_arg (ap, const char *);
437 psargs = va_arg (ap, const char *);
438 va_end (ap);
439
440 if (bed->s->elfclass == ELFCLASS32)
441 {
442 prpsinfo32_t data;
443 memset (&data, 0, sizeof (data));
444 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
445 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
446 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
447 &data, sizeof (data));
448 }
449 else
450 {
451 prpsinfo_t data;
452 memset (&data, 0, sizeof (data));
453 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
454 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
455 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
456 &data, sizeof (data));
457 }
458 /* NOTREACHED */
459
460 case NT_PRSTATUS:
461 va_start (ap, note_type);
462 pid = va_arg (ap, long);
463 cursig = va_arg (ap, int);
464 gregs = va_arg (ap, const void *);
465 va_end (ap);
466
467 if (bed->s->elfclass == ELFCLASS32)
468 {
469 if (bed->elf_machine_code == EM_X86_64)
470 {
471 prstatusx32_t prstat;
472 memset (&prstat, 0, sizeof (prstat));
473 prstat.pr_pid = pid;
474 prstat.pr_cursig = cursig;
475 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
476 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
477 &prstat, sizeof (prstat));
478 }
479 else
480 {
481 prstatus32_t prstat;
482 memset (&prstat, 0, sizeof (prstat));
483 prstat.pr_pid = pid;
484 prstat.pr_cursig = cursig;
485 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
486 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
487 &prstat, sizeof (prstat));
488 }
489 }
490 else
491 {
492 prstatus_t prstat;
493 memset (&prstat, 0, sizeof (prstat));
494 prstat.pr_pid = pid;
495 prstat.pr_cursig = cursig;
496 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
497 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
498 &prstat, sizeof (prstat));
499 }
500 }
501 /* NOTREACHED */
502 }
503 #endif
504 \f
505 /* Functions for the x86-64 ELF linker. */
506
507 /* The name of the dynamic interpreter. This is put in the .interp
508 section. */
509
510 #define ELF64_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
511 #define ELF32_DYNAMIC_INTERPRETER "/lib/ldx32.so.1"
512
513 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
514 copying dynamic variables from a shared lib into an app's dynbss
515 section, and instead use a dynamic relocation to point into the
516 shared lib. */
517 #define ELIMINATE_COPY_RELOCS 1
518
519 /* The size in bytes of an entry in the global offset table. */
520
521 #define GOT_ENTRY_SIZE 8
522
523 /* The size in bytes of an entry in the procedure linkage table. */
524
525 #define PLT_ENTRY_SIZE 16
526
527 /* The first entry in a procedure linkage table looks like this. See the
528 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
529
530 static const bfd_byte elf_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
531 {
532 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
533 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
534 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */
535 };
536
537 /* Subsequent entries in a procedure linkage table look like this. */
538
539 static const bfd_byte elf_x86_64_plt_entry[PLT_ENTRY_SIZE] =
540 {
541 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
542 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
543 0x68, /* pushq immediate */
544 0, 0, 0, 0, /* replaced with index into relocation table. */
545 0xe9, /* jmp relative */
546 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
547 };
548
549 /* .eh_frame covering the .plt section. */
550
551 static const bfd_byte elf_x86_64_eh_frame_plt[] =
552 {
553 #define PLT_CIE_LENGTH 20
554 #define PLT_FDE_LENGTH 36
555 #define PLT_FDE_START_OFFSET 4 + PLT_CIE_LENGTH + 8
556 #define PLT_FDE_LEN_OFFSET 4 + PLT_CIE_LENGTH + 12
557 PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */
558 0, 0, 0, 0, /* CIE ID */
559 1, /* CIE version */
560 'z', 'R', 0, /* Augmentation string */
561 1, /* Code alignment factor */
562 0x78, /* Data alignment factor */
563 16, /* Return address column */
564 1, /* Augmentation size */
565 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
566 DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
567 DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
568 DW_CFA_nop, DW_CFA_nop,
569
570 PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */
571 PLT_CIE_LENGTH + 8, 0, 0, 0, /* CIE pointer */
572 0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */
573 0, 0, 0, 0, /* .plt size goes here */
574 0, /* Augmentation size */
575 DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */
576 DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */
577 DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */
578 DW_CFA_advance_loc + 10, /* DW_CFA_advance_loc: 10 to __PLT__+16 */
579 DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */
580 11, /* Block length */
581 DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */
582 DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */
583 DW_OP_lit15, DW_OP_and, DW_OP_lit11, DW_OP_ge,
584 DW_OP_lit3, DW_OP_shl, DW_OP_plus,
585 DW_CFA_nop, DW_CFA_nop, DW_CFA_nop, DW_CFA_nop
586 };
587
588 /* x86-64 ELF linker hash entry. */
589
590 struct elf_x86_64_link_hash_entry
591 {
592 struct elf_link_hash_entry elf;
593
594 /* Track dynamic relocs copied for this symbol. */
595 struct elf_dyn_relocs *dyn_relocs;
596
597 #define GOT_UNKNOWN 0
598 #define GOT_NORMAL 1
599 #define GOT_TLS_GD 2
600 #define GOT_TLS_IE 3
601 #define GOT_TLS_GDESC 4
602 #define GOT_TLS_GD_BOTH_P(type) \
603 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
604 #define GOT_TLS_GD_P(type) \
605 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
606 #define GOT_TLS_GDESC_P(type) \
607 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
608 #define GOT_TLS_GD_ANY_P(type) \
609 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
610 unsigned char tls_type;
611
612 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
613 starting at the end of the jump table. */
614 bfd_vma tlsdesc_got;
615 };
616
617 #define elf_x86_64_hash_entry(ent) \
618 ((struct elf_x86_64_link_hash_entry *)(ent))
619
620 struct elf_x86_64_obj_tdata
621 {
622 struct elf_obj_tdata root;
623
624 /* tls_type for each local got entry. */
625 char *local_got_tls_type;
626
627 /* GOTPLT entries for TLS descriptors. */
628 bfd_vma *local_tlsdesc_gotent;
629 };
630
631 #define elf_x86_64_tdata(abfd) \
632 ((struct elf_x86_64_obj_tdata *) (abfd)->tdata.any)
633
634 #define elf_x86_64_local_got_tls_type(abfd) \
635 (elf_x86_64_tdata (abfd)->local_got_tls_type)
636
637 #define elf_x86_64_local_tlsdesc_gotent(abfd) \
638 (elf_x86_64_tdata (abfd)->local_tlsdesc_gotent)
639
640 #define is_x86_64_elf(bfd) \
641 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
642 && elf_tdata (bfd) != NULL \
643 && elf_object_id (bfd) == X86_64_ELF_DATA)
644
645 static bfd_boolean
646 elf_x86_64_mkobject (bfd *abfd)
647 {
648 return bfd_elf_allocate_object (abfd, sizeof (struct elf_x86_64_obj_tdata),
649 X86_64_ELF_DATA);
650 }
651
652 /* x86-64 ELF linker hash table. */
653
654 struct elf_x86_64_link_hash_table
655 {
656 struct elf_link_hash_table elf;
657
658 /* Short-cuts to get to dynamic linker sections. */
659 asection *sdynbss;
660 asection *srelbss;
661 asection *plt_eh_frame;
662
663 union
664 {
665 bfd_signed_vma refcount;
666 bfd_vma offset;
667 } tls_ld_got;
668
669 /* The amount of space used by the jump slots in the GOT. */
670 bfd_vma sgotplt_jump_table_size;
671
672 /* Small local sym cache. */
673 struct sym_cache sym_cache;
674
675 bfd_vma (*r_info) (bfd_vma, bfd_vma);
676 bfd_vma (*r_sym) (bfd_vma);
677 unsigned int pointer_r_type;
678 const char *dynamic_interpreter;
679 int dynamic_interpreter_size;
680
681 /* _TLS_MODULE_BASE_ symbol. */
682 struct bfd_link_hash_entry *tls_module_base;
683
684 /* Used by local STT_GNU_IFUNC symbols. */
685 htab_t loc_hash_table;
686 void * loc_hash_memory;
687
688 /* The offset into splt of the PLT entry for the TLS descriptor
689 resolver. Special values are 0, if not necessary (or not found
690 to be necessary yet), and -1 if needed but not determined
691 yet. */
692 bfd_vma tlsdesc_plt;
693 /* The offset into sgot of the GOT entry used by the PLT entry
694 above. */
695 bfd_vma tlsdesc_got;
696
697 /* The index of the next R_X86_64_JUMP_SLOT entry in .rela.plt. */
698 bfd_vma next_jump_slot_index;
699 /* The index of the next R_X86_64_IRELATIVE entry in .rela.plt. */
700 bfd_vma next_irelative_index;
701 };
702
703 /* Get the x86-64 ELF linker hash table from a link_info structure. */
704
705 #define elf_x86_64_hash_table(p) \
706 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
707 == X86_64_ELF_DATA ? ((struct elf_x86_64_link_hash_table *) ((p)->hash)) : NULL)
708
709 #define elf_x86_64_compute_jump_table_size(htab) \
710 ((htab)->elf.srelplt->reloc_count * GOT_ENTRY_SIZE)
711
712 /* Create an entry in an x86-64 ELF linker hash table. */
713
714 static struct bfd_hash_entry *
715 elf_x86_64_link_hash_newfunc (struct bfd_hash_entry *entry,
716 struct bfd_hash_table *table,
717 const char *string)
718 {
719 /* Allocate the structure if it has not already been allocated by a
720 subclass. */
721 if (entry == NULL)
722 {
723 entry = (struct bfd_hash_entry *)
724 bfd_hash_allocate (table,
725 sizeof (struct elf_x86_64_link_hash_entry));
726 if (entry == NULL)
727 return entry;
728 }
729
730 /* Call the allocation method of the superclass. */
731 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
732 if (entry != NULL)
733 {
734 struct elf_x86_64_link_hash_entry *eh;
735
736 eh = (struct elf_x86_64_link_hash_entry *) entry;
737 eh->dyn_relocs = NULL;
738 eh->tls_type = GOT_UNKNOWN;
739 eh->tlsdesc_got = (bfd_vma) -1;
740 }
741
742 return entry;
743 }
744
745 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
746 for local symbol so that we can handle local STT_GNU_IFUNC symbols
747 as global symbol. We reuse indx and dynstr_index for local symbol
748 hash since they aren't used by global symbols in this backend. */
749
750 static hashval_t
751 elf_x86_64_local_htab_hash (const void *ptr)
752 {
753 struct elf_link_hash_entry *h
754 = (struct elf_link_hash_entry *) ptr;
755 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
756 }
757
758 /* Compare local hash entries. */
759
760 static int
761 elf_x86_64_local_htab_eq (const void *ptr1, const void *ptr2)
762 {
763 struct elf_link_hash_entry *h1
764 = (struct elf_link_hash_entry *) ptr1;
765 struct elf_link_hash_entry *h2
766 = (struct elf_link_hash_entry *) ptr2;
767
768 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
769 }
770
771 /* Find and/or create a hash entry for local symbol. */
772
773 static struct elf_link_hash_entry *
774 elf_x86_64_get_local_sym_hash (struct elf_x86_64_link_hash_table *htab,
775 bfd *abfd, const Elf_Internal_Rela *rel,
776 bfd_boolean create)
777 {
778 struct elf_x86_64_link_hash_entry e, *ret;
779 asection *sec = abfd->sections;
780 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
781 htab->r_sym (rel->r_info));
782 void **slot;
783
784 e.elf.indx = sec->id;
785 e.elf.dynstr_index = htab->r_sym (rel->r_info);
786 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
787 create ? INSERT : NO_INSERT);
788
789 if (!slot)
790 return NULL;
791
792 if (*slot)
793 {
794 ret = (struct elf_x86_64_link_hash_entry *) *slot;
795 return &ret->elf;
796 }
797
798 ret = (struct elf_x86_64_link_hash_entry *)
799 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
800 sizeof (struct elf_x86_64_link_hash_entry));
801 if (ret)
802 {
803 memset (ret, 0, sizeof (*ret));
804 ret->elf.indx = sec->id;
805 ret->elf.dynstr_index = htab->r_sym (rel->r_info);
806 ret->elf.dynindx = -1;
807 *slot = ret;
808 }
809 return &ret->elf;
810 }
811
812 /* Create an X86-64 ELF linker hash table. */
813
814 static struct bfd_link_hash_table *
815 elf_x86_64_link_hash_table_create (bfd *abfd)
816 {
817 struct elf_x86_64_link_hash_table *ret;
818 bfd_size_type amt = sizeof (struct elf_x86_64_link_hash_table);
819
820 ret = (struct elf_x86_64_link_hash_table *) bfd_malloc (amt);
821 if (ret == NULL)
822 return NULL;
823
824 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
825 elf_x86_64_link_hash_newfunc,
826 sizeof (struct elf_x86_64_link_hash_entry),
827 X86_64_ELF_DATA))
828 {
829 free (ret);
830 return NULL;
831 }
832
833 ret->sdynbss = NULL;
834 ret->srelbss = NULL;
835 ret->plt_eh_frame = NULL;
836 ret->sym_cache.abfd = NULL;
837 ret->tlsdesc_plt = 0;
838 ret->tlsdesc_got = 0;
839 ret->tls_ld_got.refcount = 0;
840 ret->sgotplt_jump_table_size = 0;
841 ret->tls_module_base = NULL;
842 ret->next_jump_slot_index = 0;
843 ret->next_irelative_index = 0;
844
845 if (ABI_64_P (abfd))
846 {
847 ret->r_info = elf64_r_info;
848 ret->r_sym = elf64_r_sym;
849 ret->pointer_r_type = R_X86_64_64;
850 ret->dynamic_interpreter = ELF64_DYNAMIC_INTERPRETER;
851 ret->dynamic_interpreter_size = sizeof ELF64_DYNAMIC_INTERPRETER;
852 }
853 else
854 {
855 ret->r_info = elf32_r_info;
856 ret->r_sym = elf32_r_sym;
857 ret->pointer_r_type = R_X86_64_32;
858 ret->dynamic_interpreter = ELF32_DYNAMIC_INTERPRETER;
859 ret->dynamic_interpreter_size = sizeof ELF32_DYNAMIC_INTERPRETER;
860 }
861
862 ret->loc_hash_table = htab_try_create (1024,
863 elf_x86_64_local_htab_hash,
864 elf_x86_64_local_htab_eq,
865 NULL);
866 ret->loc_hash_memory = objalloc_create ();
867 if (!ret->loc_hash_table || !ret->loc_hash_memory)
868 {
869 free (ret);
870 return NULL;
871 }
872
873 return &ret->elf.root;
874 }
875
876 /* Destroy an X86-64 ELF linker hash table. */
877
878 static void
879 elf_x86_64_link_hash_table_free (struct bfd_link_hash_table *hash)
880 {
881 struct elf_x86_64_link_hash_table *htab
882 = (struct elf_x86_64_link_hash_table *) hash;
883
884 if (htab->loc_hash_table)
885 htab_delete (htab->loc_hash_table);
886 if (htab->loc_hash_memory)
887 objalloc_free ((struct objalloc *) htab->loc_hash_memory);
888 _bfd_generic_link_hash_table_free (hash);
889 }
890
891 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
892 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
893 hash table. */
894
895 static bfd_boolean
896 elf_x86_64_create_dynamic_sections (bfd *dynobj,
897 struct bfd_link_info *info)
898 {
899 struct elf_x86_64_link_hash_table *htab;
900
901 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
902 return FALSE;
903
904 htab = elf_x86_64_hash_table (info);
905 if (htab == NULL)
906 return FALSE;
907
908 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
909 if (!info->shared)
910 htab->srelbss = bfd_get_section_by_name (dynobj, ".rela.bss");
911
912 if (!htab->sdynbss
913 || (!info->shared && !htab->srelbss))
914 abort ();
915
916 if (!info->no_ld_generated_unwind_info
917 && bfd_get_section_by_name (dynobj, ".eh_frame") == NULL
918 && htab->elf.splt != NULL)
919 {
920 flagword flags = get_elf_backend_data (dynobj)->dynamic_sec_flags;
921 htab->plt_eh_frame
922 = bfd_make_section_with_flags (dynobj, ".eh_frame",
923 flags | SEC_READONLY);
924 if (htab->plt_eh_frame == NULL
925 || !bfd_set_section_alignment (dynobj, htab->plt_eh_frame, 3))
926 return FALSE;
927
928 htab->plt_eh_frame->size = sizeof (elf_x86_64_eh_frame_plt);
929 htab->plt_eh_frame->contents
930 = bfd_alloc (dynobj, htab->plt_eh_frame->size);
931 memcpy (htab->plt_eh_frame->contents, elf_x86_64_eh_frame_plt,
932 sizeof (elf_x86_64_eh_frame_plt));
933 }
934 return TRUE;
935 }
936
937 /* Copy the extra info we tack onto an elf_link_hash_entry. */
938
939 static void
940 elf_x86_64_copy_indirect_symbol (struct bfd_link_info *info,
941 struct elf_link_hash_entry *dir,
942 struct elf_link_hash_entry *ind)
943 {
944 struct elf_x86_64_link_hash_entry *edir, *eind;
945
946 edir = (struct elf_x86_64_link_hash_entry *) dir;
947 eind = (struct elf_x86_64_link_hash_entry *) ind;
948
949 if (eind->dyn_relocs != NULL)
950 {
951 if (edir->dyn_relocs != NULL)
952 {
953 struct elf_dyn_relocs **pp;
954 struct elf_dyn_relocs *p;
955
956 /* Add reloc counts against the indirect sym to the direct sym
957 list. Merge any entries against the same section. */
958 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
959 {
960 struct elf_dyn_relocs *q;
961
962 for (q = edir->dyn_relocs; q != NULL; q = q->next)
963 if (q->sec == p->sec)
964 {
965 q->pc_count += p->pc_count;
966 q->count += p->count;
967 *pp = p->next;
968 break;
969 }
970 if (q == NULL)
971 pp = &p->next;
972 }
973 *pp = edir->dyn_relocs;
974 }
975
976 edir->dyn_relocs = eind->dyn_relocs;
977 eind->dyn_relocs = NULL;
978 }
979
980 if (ind->root.type == bfd_link_hash_indirect
981 && dir->got.refcount <= 0)
982 {
983 edir->tls_type = eind->tls_type;
984 eind->tls_type = GOT_UNKNOWN;
985 }
986
987 if (ELIMINATE_COPY_RELOCS
988 && ind->root.type != bfd_link_hash_indirect
989 && dir->dynamic_adjusted)
990 {
991 /* If called to transfer flags for a weakdef during processing
992 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
993 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
994 dir->ref_dynamic |= ind->ref_dynamic;
995 dir->ref_regular |= ind->ref_regular;
996 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
997 dir->needs_plt |= ind->needs_plt;
998 dir->pointer_equality_needed |= ind->pointer_equality_needed;
999 }
1000 else
1001 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
1002 }
1003
1004 static bfd_boolean
1005 elf64_x86_64_elf_object_p (bfd *abfd)
1006 {
1007 /* Set the right machine number for an x86-64 elf64 file. */
1008 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
1009 return TRUE;
1010 }
1011
1012 /* Return TRUE if the TLS access code sequence support transition
1013 from R_TYPE. */
1014
1015 static bfd_boolean
1016 elf_x86_64_check_tls_transition (bfd *abfd,
1017 struct bfd_link_info *info,
1018 asection *sec,
1019 bfd_byte *contents,
1020 Elf_Internal_Shdr *symtab_hdr,
1021 struct elf_link_hash_entry **sym_hashes,
1022 unsigned int r_type,
1023 const Elf_Internal_Rela *rel,
1024 const Elf_Internal_Rela *relend)
1025 {
1026 unsigned int val;
1027 unsigned long r_symndx;
1028 struct elf_link_hash_entry *h;
1029 bfd_vma offset;
1030 struct elf_x86_64_link_hash_table *htab;
1031
1032 /* Get the section contents. */
1033 if (contents == NULL)
1034 {
1035 if (elf_section_data (sec)->this_hdr.contents != NULL)
1036 contents = elf_section_data (sec)->this_hdr.contents;
1037 else
1038 {
1039 /* FIXME: How to better handle error condition? */
1040 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
1041 return FALSE;
1042
1043 /* Cache the section contents for elf_link_input_bfd. */
1044 elf_section_data (sec)->this_hdr.contents = contents;
1045 }
1046 }
1047
1048 htab = elf_x86_64_hash_table (info);
1049 offset = rel->r_offset;
1050 switch (r_type)
1051 {
1052 case R_X86_64_TLSGD:
1053 case R_X86_64_TLSLD:
1054 if ((rel + 1) >= relend)
1055 return FALSE;
1056
1057 if (r_type == R_X86_64_TLSGD)
1058 {
1059 /* Check transition from GD access model. For 64bit, only
1060 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
1061 .word 0x6666; rex64; call __tls_get_addr
1062 can transit to different access model. For 32bit, only
1063 leaq foo@tlsgd(%rip), %rdi
1064 .word 0x6666; rex64; call __tls_get_addr
1065 can transit to different access model. */
1066
1067 static const unsigned char call[] = { 0x66, 0x66, 0x48, 0xe8 };
1068 static const unsigned char leaq[] = { 0x66, 0x48, 0x8d, 0x3d };
1069
1070 if ((offset + 12) > sec->size
1071 || memcmp (contents + offset + 4, call, 4) != 0)
1072 return FALSE;
1073
1074 if (ABI_64_P (abfd))
1075 {
1076 if (offset < 4
1077 || memcmp (contents + offset - 4, leaq, 4) != 0)
1078 return FALSE;
1079 }
1080 else
1081 {
1082 if (offset < 3
1083 || memcmp (contents + offset - 3, leaq + 1, 3) != 0)
1084 return FALSE;
1085 }
1086 }
1087 else
1088 {
1089 /* Check transition from LD access model. Only
1090 leaq foo@tlsld(%rip), %rdi;
1091 call __tls_get_addr
1092 can transit to different access model. */
1093
1094 static const unsigned char lea[] = { 0x48, 0x8d, 0x3d };
1095
1096 if (offset < 3 || (offset + 9) > sec->size)
1097 return FALSE;
1098
1099 if (memcmp (contents + offset - 3, lea, 3) != 0
1100 || 0xe8 != *(contents + offset + 4))
1101 return FALSE;
1102 }
1103
1104 r_symndx = htab->r_sym (rel[1].r_info);
1105 if (r_symndx < symtab_hdr->sh_info)
1106 return FALSE;
1107
1108 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1109 /* Use strncmp to check __tls_get_addr since __tls_get_addr
1110 may be versioned. */
1111 return (h != NULL
1112 && h->root.root.string != NULL
1113 && (ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PC32
1114 || ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PLT32)
1115 && (strncmp (h->root.root.string,
1116 "__tls_get_addr", 14) == 0));
1117
1118 case R_X86_64_GOTTPOFF:
1119 /* Check transition from IE access model:
1120 mov foo@gottpoff(%rip), %reg
1121 add foo@gottpoff(%rip), %reg
1122 */
1123
1124 /* Check REX prefix first. */
1125 if (offset >= 3 && (offset + 4) <= sec->size)
1126 {
1127 val = bfd_get_8 (abfd, contents + offset - 3);
1128 if (val != 0x48 && val != 0x4c)
1129 {
1130 /* X32 may have 0x44 REX prefix or no REX prefix. */
1131 if (ABI_64_P (abfd))
1132 return FALSE;
1133 }
1134 }
1135 else
1136 {
1137 /* X32 may not have any REX prefix. */
1138 if (ABI_64_P (abfd))
1139 return FALSE;
1140 if (offset < 2 || (offset + 3) > sec->size)
1141 return FALSE;
1142 }
1143
1144 val = bfd_get_8 (abfd, contents + offset - 2);
1145 if (val != 0x8b && val != 0x03)
1146 return FALSE;
1147
1148 val = bfd_get_8 (abfd, contents + offset - 1);
1149 return (val & 0xc7) == 5;
1150
1151 case R_X86_64_GOTPC32_TLSDESC:
1152 /* Check transition from GDesc access model:
1153 leaq x@tlsdesc(%rip), %rax
1154
1155 Make sure it's a leaq adding rip to a 32-bit offset
1156 into any register, although it's probably almost always
1157 going to be rax. */
1158
1159 if (offset < 3 || (offset + 4) > sec->size)
1160 return FALSE;
1161
1162 val = bfd_get_8 (abfd, contents + offset - 3);
1163 if ((val & 0xfb) != 0x48)
1164 return FALSE;
1165
1166 if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d)
1167 return FALSE;
1168
1169 val = bfd_get_8 (abfd, contents + offset - 1);
1170 return (val & 0xc7) == 0x05;
1171
1172 case R_X86_64_TLSDESC_CALL:
1173 /* Check transition from GDesc access model:
1174 call *x@tlsdesc(%rax)
1175 */
1176 if (offset + 2 <= sec->size)
1177 {
1178 /* Make sure that it's a call *x@tlsdesc(%rax). */
1179 static const unsigned char call[] = { 0xff, 0x10 };
1180 return memcmp (contents + offset, call, 2) == 0;
1181 }
1182
1183 return FALSE;
1184
1185 default:
1186 abort ();
1187 }
1188 }
1189
1190 /* Return TRUE if the TLS access transition is OK or no transition
1191 will be performed. Update R_TYPE if there is a transition. */
1192
1193 static bfd_boolean
1194 elf_x86_64_tls_transition (struct bfd_link_info *info, bfd *abfd,
1195 asection *sec, bfd_byte *contents,
1196 Elf_Internal_Shdr *symtab_hdr,
1197 struct elf_link_hash_entry **sym_hashes,
1198 unsigned int *r_type, int tls_type,
1199 const Elf_Internal_Rela *rel,
1200 const Elf_Internal_Rela *relend,
1201 struct elf_link_hash_entry *h,
1202 unsigned long r_symndx)
1203 {
1204 unsigned int from_type = *r_type;
1205 unsigned int to_type = from_type;
1206 bfd_boolean check = TRUE;
1207
1208 /* Skip TLS transition for functions. */
1209 if (h != NULL
1210 && (h->type == STT_FUNC
1211 || h->type == STT_GNU_IFUNC))
1212 return TRUE;
1213
1214 switch (from_type)
1215 {
1216 case R_X86_64_TLSGD:
1217 case R_X86_64_GOTPC32_TLSDESC:
1218 case R_X86_64_TLSDESC_CALL:
1219 case R_X86_64_GOTTPOFF:
1220 if (info->executable)
1221 {
1222 if (h == NULL)
1223 to_type = R_X86_64_TPOFF32;
1224 else
1225 to_type = R_X86_64_GOTTPOFF;
1226 }
1227
1228 /* When we are called from elf_x86_64_relocate_section,
1229 CONTENTS isn't NULL and there may be additional transitions
1230 based on TLS_TYPE. */
1231 if (contents != NULL)
1232 {
1233 unsigned int new_to_type = to_type;
1234
1235 if (info->executable
1236 && h != NULL
1237 && h->dynindx == -1
1238 && tls_type == GOT_TLS_IE)
1239 new_to_type = R_X86_64_TPOFF32;
1240
1241 if (to_type == R_X86_64_TLSGD
1242 || to_type == R_X86_64_GOTPC32_TLSDESC
1243 || to_type == R_X86_64_TLSDESC_CALL)
1244 {
1245 if (tls_type == GOT_TLS_IE)
1246 new_to_type = R_X86_64_GOTTPOFF;
1247 }
1248
1249 /* We checked the transition before when we were called from
1250 elf_x86_64_check_relocs. We only want to check the new
1251 transition which hasn't been checked before. */
1252 check = new_to_type != to_type && from_type == to_type;
1253 to_type = new_to_type;
1254 }
1255
1256 break;
1257
1258 case R_X86_64_TLSLD:
1259 if (info->executable)
1260 to_type = R_X86_64_TPOFF32;
1261 break;
1262
1263 default:
1264 return TRUE;
1265 }
1266
1267 /* Return TRUE if there is no transition. */
1268 if (from_type == to_type)
1269 return TRUE;
1270
1271 /* Check if the transition can be performed. */
1272 if (check
1273 && ! elf_x86_64_check_tls_transition (abfd, info, sec, contents,
1274 symtab_hdr, sym_hashes,
1275 from_type, rel, relend))
1276 {
1277 reloc_howto_type *from, *to;
1278 const char *name;
1279
1280 from = elf_x86_64_rtype_to_howto (abfd, from_type);
1281 to = elf_x86_64_rtype_to_howto (abfd, to_type);
1282
1283 if (h)
1284 name = h->root.root.string;
1285 else
1286 {
1287 struct elf_x86_64_link_hash_table *htab;
1288
1289 htab = elf_x86_64_hash_table (info);
1290 if (htab == NULL)
1291 name = "*unknown*";
1292 else
1293 {
1294 Elf_Internal_Sym *isym;
1295
1296 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1297 abfd, r_symndx);
1298 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1299 }
1300 }
1301
1302 (*_bfd_error_handler)
1303 (_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
1304 "in section `%A' failed"),
1305 abfd, sec, from->name, to->name, name,
1306 (unsigned long) rel->r_offset);
1307 bfd_set_error (bfd_error_bad_value);
1308 return FALSE;
1309 }
1310
1311 *r_type = to_type;
1312 return TRUE;
1313 }
1314
1315 /* Look through the relocs for a section during the first phase, and
1316 calculate needed space in the global offset table, procedure
1317 linkage table, and dynamic reloc sections. */
1318
1319 static bfd_boolean
1320 elf_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info,
1321 asection *sec,
1322 const Elf_Internal_Rela *relocs)
1323 {
1324 struct elf_x86_64_link_hash_table *htab;
1325 Elf_Internal_Shdr *symtab_hdr;
1326 struct elf_link_hash_entry **sym_hashes;
1327 const Elf_Internal_Rela *rel;
1328 const Elf_Internal_Rela *rel_end;
1329 asection *sreloc;
1330
1331 if (info->relocatable)
1332 return TRUE;
1333
1334 BFD_ASSERT (is_x86_64_elf (abfd));
1335
1336 htab = elf_x86_64_hash_table (info);
1337 if (htab == NULL)
1338 return FALSE;
1339
1340 symtab_hdr = &elf_symtab_hdr (abfd);
1341 sym_hashes = elf_sym_hashes (abfd);
1342
1343 sreloc = NULL;
1344
1345 rel_end = relocs + sec->reloc_count;
1346 for (rel = relocs; rel < rel_end; rel++)
1347 {
1348 unsigned int r_type;
1349 unsigned long r_symndx;
1350 struct elf_link_hash_entry *h;
1351 Elf_Internal_Sym *isym;
1352 const char *name;
1353
1354 r_symndx = htab->r_sym (rel->r_info);
1355 r_type = ELF32_R_TYPE (rel->r_info);
1356
1357 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1358 {
1359 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1360 abfd, r_symndx);
1361 return FALSE;
1362 }
1363
1364 if (r_symndx < symtab_hdr->sh_info)
1365 {
1366 /* A local symbol. */
1367 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1368 abfd, r_symndx);
1369 if (isym == NULL)
1370 return FALSE;
1371
1372 /* Check relocation against local STT_GNU_IFUNC symbol. */
1373 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1374 {
1375 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel,
1376 TRUE);
1377 if (h == NULL)
1378 return FALSE;
1379
1380 /* Fake a STT_GNU_IFUNC symbol. */
1381 h->type = STT_GNU_IFUNC;
1382 h->def_regular = 1;
1383 h->ref_regular = 1;
1384 h->forced_local = 1;
1385 h->root.type = bfd_link_hash_defined;
1386 }
1387 else
1388 h = NULL;
1389 }
1390 else
1391 {
1392 isym = NULL;
1393 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1394 while (h->root.type == bfd_link_hash_indirect
1395 || h->root.type == bfd_link_hash_warning)
1396 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1397 }
1398
1399 /* Check invalid x32 relocations. */
1400 if (!ABI_64_P (abfd))
1401 switch (r_type)
1402 {
1403 default:
1404 break;
1405
1406 case R_X86_64_DTPOFF64:
1407 case R_X86_64_TPOFF64:
1408 case R_X86_64_PC64:
1409 case R_X86_64_GOTOFF64:
1410 case R_X86_64_GOT64:
1411 case R_X86_64_GOTPCREL64:
1412 case R_X86_64_GOTPC64:
1413 case R_X86_64_GOTPLT64:
1414 case R_X86_64_PLTOFF64:
1415 {
1416 if (h)
1417 name = h->root.root.string;
1418 else
1419 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1420 NULL);
1421 (*_bfd_error_handler)
1422 (_("%B: relocation %s against symbol `%s' isn't "
1423 "supported in x32 mode"), abfd,
1424 x86_64_elf_howto_table[r_type].name, name);
1425 bfd_set_error (bfd_error_bad_value);
1426 return FALSE;
1427 }
1428 break;
1429 }
1430
1431 if (h != NULL)
1432 {
1433 /* Create the ifunc sections for static executables. If we
1434 never see an indirect function symbol nor we are building
1435 a static executable, those sections will be empty and
1436 won't appear in output. */
1437 switch (r_type)
1438 {
1439 default:
1440 break;
1441
1442 case R_X86_64_32S:
1443 case R_X86_64_32:
1444 case R_X86_64_64:
1445 case R_X86_64_PC32:
1446 case R_X86_64_PC64:
1447 case R_X86_64_PLT32:
1448 case R_X86_64_GOTPCREL:
1449 case R_X86_64_GOTPCREL64:
1450 if (htab->elf.dynobj == NULL)
1451 htab->elf.dynobj = abfd;
1452 if (!_bfd_elf_create_ifunc_sections (htab->elf.dynobj, info))
1453 return FALSE;
1454 break;
1455 }
1456
1457 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
1458 it here if it is defined in a non-shared object. */
1459 if (h->type == STT_GNU_IFUNC
1460 && h->def_regular)
1461 {
1462 /* It is referenced by a non-shared object. */
1463 h->ref_regular = 1;
1464 h->needs_plt = 1;
1465
1466 /* STT_GNU_IFUNC symbol must go through PLT. */
1467 h->plt.refcount += 1;
1468
1469 /* STT_GNU_IFUNC needs dynamic sections. */
1470 if (htab->elf.dynobj == NULL)
1471 htab->elf.dynobj = abfd;
1472
1473 switch (r_type)
1474 {
1475 default:
1476 if (h->root.root.string)
1477 name = h->root.root.string;
1478 else
1479 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1480 NULL);
1481 (*_bfd_error_handler)
1482 (_("%B: relocation %s against STT_GNU_IFUNC "
1483 "symbol `%s' isn't handled by %s"), abfd,
1484 x86_64_elf_howto_table[r_type].name,
1485 name, __FUNCTION__);
1486 bfd_set_error (bfd_error_bad_value);
1487 return FALSE;
1488
1489 case R_X86_64_32:
1490 if (ABI_64_P (abfd))
1491 goto not_pointer;
1492 case R_X86_64_64:
1493 h->non_got_ref = 1;
1494 h->pointer_equality_needed = 1;
1495 if (info->shared)
1496 {
1497 /* We must copy these reloc types into the output
1498 file. Create a reloc section in dynobj and
1499 make room for this reloc. */
1500 sreloc = _bfd_elf_create_ifunc_dyn_reloc
1501 (abfd, info, sec, sreloc,
1502 &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs);
1503 if (sreloc == NULL)
1504 return FALSE;
1505 }
1506 break;
1507
1508 case R_X86_64_32S:
1509 case R_X86_64_PC32:
1510 case R_X86_64_PC64:
1511 not_pointer:
1512 h->non_got_ref = 1;
1513 if (r_type != R_X86_64_PC32
1514 && r_type != R_X86_64_PC64)
1515 h->pointer_equality_needed = 1;
1516 break;
1517
1518 case R_X86_64_PLT32:
1519 break;
1520
1521 case R_X86_64_GOTPCREL:
1522 case R_X86_64_GOTPCREL64:
1523 h->got.refcount += 1;
1524 if (htab->elf.sgot == NULL
1525 && !_bfd_elf_create_got_section (htab->elf.dynobj,
1526 info))
1527 return FALSE;
1528 break;
1529 }
1530
1531 continue;
1532 }
1533 }
1534
1535 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
1536 symtab_hdr, sym_hashes,
1537 &r_type, GOT_UNKNOWN,
1538 rel, rel_end, h, r_symndx))
1539 return FALSE;
1540
1541 switch (r_type)
1542 {
1543 case R_X86_64_TLSLD:
1544 htab->tls_ld_got.refcount += 1;
1545 goto create_got;
1546
1547 case R_X86_64_TPOFF32:
1548 if (!info->executable && ABI_64_P (abfd))
1549 {
1550 if (h)
1551 name = h->root.root.string;
1552 else
1553 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1554 NULL);
1555 (*_bfd_error_handler)
1556 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1557 abfd,
1558 x86_64_elf_howto_table[r_type].name, name);
1559 bfd_set_error (bfd_error_bad_value);
1560 return FALSE;
1561 }
1562 break;
1563
1564 case R_X86_64_GOTTPOFF:
1565 if (!info->executable)
1566 info->flags |= DF_STATIC_TLS;
1567 /* Fall through */
1568
1569 case R_X86_64_GOT32:
1570 case R_X86_64_GOTPCREL:
1571 case R_X86_64_TLSGD:
1572 case R_X86_64_GOT64:
1573 case R_X86_64_GOTPCREL64:
1574 case R_X86_64_GOTPLT64:
1575 case R_X86_64_GOTPC32_TLSDESC:
1576 case R_X86_64_TLSDESC_CALL:
1577 /* This symbol requires a global offset table entry. */
1578 {
1579 int tls_type, old_tls_type;
1580
1581 switch (r_type)
1582 {
1583 default: tls_type = GOT_NORMAL; break;
1584 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
1585 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
1586 case R_X86_64_GOTPC32_TLSDESC:
1587 case R_X86_64_TLSDESC_CALL:
1588 tls_type = GOT_TLS_GDESC; break;
1589 }
1590
1591 if (h != NULL)
1592 {
1593 if (r_type == R_X86_64_GOTPLT64)
1594 {
1595 /* This relocation indicates that we also need
1596 a PLT entry, as this is a function. We don't need
1597 a PLT entry for local symbols. */
1598 h->needs_plt = 1;
1599 h->plt.refcount += 1;
1600 }
1601 h->got.refcount += 1;
1602 old_tls_type = elf_x86_64_hash_entry (h)->tls_type;
1603 }
1604 else
1605 {
1606 bfd_signed_vma *local_got_refcounts;
1607
1608 /* This is a global offset table entry for a local symbol. */
1609 local_got_refcounts = elf_local_got_refcounts (abfd);
1610 if (local_got_refcounts == NULL)
1611 {
1612 bfd_size_type size;
1613
1614 size = symtab_hdr->sh_info;
1615 size *= sizeof (bfd_signed_vma)
1616 + sizeof (bfd_vma) + sizeof (char);
1617 local_got_refcounts = ((bfd_signed_vma *)
1618 bfd_zalloc (abfd, size));
1619 if (local_got_refcounts == NULL)
1620 return FALSE;
1621 elf_local_got_refcounts (abfd) = local_got_refcounts;
1622 elf_x86_64_local_tlsdesc_gotent (abfd)
1623 = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info);
1624 elf_x86_64_local_got_tls_type (abfd)
1625 = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
1626 }
1627 local_got_refcounts[r_symndx] += 1;
1628 old_tls_type
1629 = elf_x86_64_local_got_tls_type (abfd) [r_symndx];
1630 }
1631
1632 /* If a TLS symbol is accessed using IE at least once,
1633 there is no point to use dynamic model for it. */
1634 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1635 && (! GOT_TLS_GD_ANY_P (old_tls_type)
1636 || tls_type != GOT_TLS_IE))
1637 {
1638 if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type))
1639 tls_type = old_tls_type;
1640 else if (GOT_TLS_GD_ANY_P (old_tls_type)
1641 && GOT_TLS_GD_ANY_P (tls_type))
1642 tls_type |= old_tls_type;
1643 else
1644 {
1645 if (h)
1646 name = h->root.root.string;
1647 else
1648 name = bfd_elf_sym_name (abfd, symtab_hdr,
1649 isym, NULL);
1650 (*_bfd_error_handler)
1651 (_("%B: '%s' accessed both as normal and thread local symbol"),
1652 abfd, name);
1653 return FALSE;
1654 }
1655 }
1656
1657 if (old_tls_type != tls_type)
1658 {
1659 if (h != NULL)
1660 elf_x86_64_hash_entry (h)->tls_type = tls_type;
1661 else
1662 elf_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
1663 }
1664 }
1665 /* Fall through */
1666
1667 case R_X86_64_GOTOFF64:
1668 case R_X86_64_GOTPC32:
1669 case R_X86_64_GOTPC64:
1670 create_got:
1671 if (htab->elf.sgot == NULL)
1672 {
1673 if (htab->elf.dynobj == NULL)
1674 htab->elf.dynobj = abfd;
1675 if (!_bfd_elf_create_got_section (htab->elf.dynobj,
1676 info))
1677 return FALSE;
1678 }
1679 break;
1680
1681 case R_X86_64_PLT32:
1682 /* This symbol requires a procedure linkage table entry. We
1683 actually build the entry in adjust_dynamic_symbol,
1684 because this might be a case of linking PIC code which is
1685 never referenced by a dynamic object, in which case we
1686 don't need to generate a procedure linkage table entry
1687 after all. */
1688
1689 /* If this is a local symbol, we resolve it directly without
1690 creating a procedure linkage table entry. */
1691 if (h == NULL)
1692 continue;
1693
1694 h->needs_plt = 1;
1695 h->plt.refcount += 1;
1696 break;
1697
1698 case R_X86_64_PLTOFF64:
1699 /* This tries to form the 'address' of a function relative
1700 to GOT. For global symbols we need a PLT entry. */
1701 if (h != NULL)
1702 {
1703 h->needs_plt = 1;
1704 h->plt.refcount += 1;
1705 }
1706 goto create_got;
1707
1708 case R_X86_64_32:
1709 if (!ABI_64_P (abfd))
1710 goto pointer;
1711 case R_X86_64_8:
1712 case R_X86_64_16:
1713 case R_X86_64_32S:
1714 /* Let's help debug shared library creation. These relocs
1715 cannot be used in shared libs. Don't error out for
1716 sections we don't care about, such as debug sections or
1717 non-constant sections. */
1718 if (info->shared
1719 && (sec->flags & SEC_ALLOC) != 0
1720 && (sec->flags & SEC_READONLY) != 0)
1721 {
1722 if (h)
1723 name = h->root.root.string;
1724 else
1725 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1726 (*_bfd_error_handler)
1727 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1728 abfd, x86_64_elf_howto_table[r_type].name, name);
1729 bfd_set_error (bfd_error_bad_value);
1730 return FALSE;
1731 }
1732 /* Fall through. */
1733
1734 case R_X86_64_PC8:
1735 case R_X86_64_PC16:
1736 case R_X86_64_PC32:
1737 case R_X86_64_PC64:
1738 case R_X86_64_64:
1739 pointer:
1740 if (h != NULL && info->executable)
1741 {
1742 /* If this reloc is in a read-only section, we might
1743 need a copy reloc. We can't check reliably at this
1744 stage whether the section is read-only, as input
1745 sections have not yet been mapped to output sections.
1746 Tentatively set the flag for now, and correct in
1747 adjust_dynamic_symbol. */
1748 h->non_got_ref = 1;
1749
1750 /* We may need a .plt entry if the function this reloc
1751 refers to is in a shared lib. */
1752 h->plt.refcount += 1;
1753 if (r_type != R_X86_64_PC32 && r_type != R_X86_64_PC64)
1754 h->pointer_equality_needed = 1;
1755 }
1756
1757 /* If we are creating a shared library, and this is a reloc
1758 against a global symbol, or a non PC relative reloc
1759 against a local symbol, then we need to copy the reloc
1760 into the shared library. However, if we are linking with
1761 -Bsymbolic, we do not need to copy a reloc against a
1762 global symbol which is defined in an object we are
1763 including in the link (i.e., DEF_REGULAR is set). At
1764 this point we have not seen all the input files, so it is
1765 possible that DEF_REGULAR is not set now but will be set
1766 later (it is never cleared). In case of a weak definition,
1767 DEF_REGULAR may be cleared later by a strong definition in
1768 a shared library. We account for that possibility below by
1769 storing information in the relocs_copied field of the hash
1770 table entry. A similar situation occurs when creating
1771 shared libraries and symbol visibility changes render the
1772 symbol local.
1773
1774 If on the other hand, we are creating an executable, we
1775 may need to keep relocations for symbols satisfied by a
1776 dynamic library if we manage to avoid copy relocs for the
1777 symbol. */
1778 if ((info->shared
1779 && (sec->flags & SEC_ALLOC) != 0
1780 && (! IS_X86_64_PCREL_TYPE (r_type)
1781 || (h != NULL
1782 && (! SYMBOLIC_BIND (info, h)
1783 || h->root.type == bfd_link_hash_defweak
1784 || !h->def_regular))))
1785 || (ELIMINATE_COPY_RELOCS
1786 && !info->shared
1787 && (sec->flags & SEC_ALLOC) != 0
1788 && h != NULL
1789 && (h->root.type == bfd_link_hash_defweak
1790 || !h->def_regular)))
1791 {
1792 struct elf_dyn_relocs *p;
1793 struct elf_dyn_relocs **head;
1794
1795 /* We must copy these reloc types into the output file.
1796 Create a reloc section in dynobj and make room for
1797 this reloc. */
1798 if (sreloc == NULL)
1799 {
1800 if (htab->elf.dynobj == NULL)
1801 htab->elf.dynobj = abfd;
1802
1803 sreloc = _bfd_elf_make_dynamic_reloc_section
1804 (sec, htab->elf.dynobj, ABI_64_P (abfd) ? 3 : 2,
1805 abfd, /*rela?*/ TRUE);
1806
1807 if (sreloc == NULL)
1808 return FALSE;
1809 }
1810
1811 /* If this is a global symbol, we count the number of
1812 relocations we need for this symbol. */
1813 if (h != NULL)
1814 {
1815 head = &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs;
1816 }
1817 else
1818 {
1819 /* Track dynamic relocs needed for local syms too.
1820 We really need local syms available to do this
1821 easily. Oh well. */
1822 asection *s;
1823 void **vpp;
1824
1825 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1826 abfd, r_symndx);
1827 if (isym == NULL)
1828 return FALSE;
1829
1830 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
1831 if (s == NULL)
1832 s = sec;
1833
1834 /* Beware of type punned pointers vs strict aliasing
1835 rules. */
1836 vpp = &(elf_section_data (s)->local_dynrel);
1837 head = (struct elf_dyn_relocs **)vpp;
1838 }
1839
1840 p = *head;
1841 if (p == NULL || p->sec != sec)
1842 {
1843 bfd_size_type amt = sizeof *p;
1844
1845 p = ((struct elf_dyn_relocs *)
1846 bfd_alloc (htab->elf.dynobj, amt));
1847 if (p == NULL)
1848 return FALSE;
1849 p->next = *head;
1850 *head = p;
1851 p->sec = sec;
1852 p->count = 0;
1853 p->pc_count = 0;
1854 }
1855
1856 p->count += 1;
1857 if (IS_X86_64_PCREL_TYPE (r_type))
1858 p->pc_count += 1;
1859 }
1860 break;
1861
1862 /* This relocation describes the C++ object vtable hierarchy.
1863 Reconstruct it for later use during GC. */
1864 case R_X86_64_GNU_VTINHERIT:
1865 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1866 return FALSE;
1867 break;
1868
1869 /* This relocation describes which C++ vtable entries are actually
1870 used. Record for later use during GC. */
1871 case R_X86_64_GNU_VTENTRY:
1872 BFD_ASSERT (h != NULL);
1873 if (h != NULL
1874 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1875 return FALSE;
1876 break;
1877
1878 default:
1879 break;
1880 }
1881 }
1882
1883 return TRUE;
1884 }
1885
1886 /* Return the section that should be marked against GC for a given
1887 relocation. */
1888
1889 static asection *
1890 elf_x86_64_gc_mark_hook (asection *sec,
1891 struct bfd_link_info *info,
1892 Elf_Internal_Rela *rel,
1893 struct elf_link_hash_entry *h,
1894 Elf_Internal_Sym *sym)
1895 {
1896 if (h != NULL)
1897 switch (ELF32_R_TYPE (rel->r_info))
1898 {
1899 case R_X86_64_GNU_VTINHERIT:
1900 case R_X86_64_GNU_VTENTRY:
1901 return NULL;
1902 }
1903
1904 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1905 }
1906
1907 /* Update the got entry reference counts for the section being removed. */
1908
1909 static bfd_boolean
1910 elf_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
1911 asection *sec,
1912 const Elf_Internal_Rela *relocs)
1913 {
1914 struct elf_x86_64_link_hash_table *htab;
1915 Elf_Internal_Shdr *symtab_hdr;
1916 struct elf_link_hash_entry **sym_hashes;
1917 bfd_signed_vma *local_got_refcounts;
1918 const Elf_Internal_Rela *rel, *relend;
1919
1920 if (info->relocatable)
1921 return TRUE;
1922
1923 htab = elf_x86_64_hash_table (info);
1924 if (htab == NULL)
1925 return FALSE;
1926
1927 elf_section_data (sec)->local_dynrel = NULL;
1928
1929 symtab_hdr = &elf_symtab_hdr (abfd);
1930 sym_hashes = elf_sym_hashes (abfd);
1931 local_got_refcounts = elf_local_got_refcounts (abfd);
1932
1933 htab = elf_x86_64_hash_table (info);
1934 relend = relocs + sec->reloc_count;
1935 for (rel = relocs; rel < relend; rel++)
1936 {
1937 unsigned long r_symndx;
1938 unsigned int r_type;
1939 struct elf_link_hash_entry *h = NULL;
1940
1941 r_symndx = htab->r_sym (rel->r_info);
1942 if (r_symndx >= symtab_hdr->sh_info)
1943 {
1944 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1945 while (h->root.type == bfd_link_hash_indirect
1946 || h->root.type == bfd_link_hash_warning)
1947 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1948 }
1949 else
1950 {
1951 /* A local symbol. */
1952 Elf_Internal_Sym *isym;
1953
1954 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1955 abfd, r_symndx);
1956
1957 /* Check relocation against local STT_GNU_IFUNC symbol. */
1958 if (isym != NULL
1959 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1960 {
1961 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel, FALSE);
1962 if (h == NULL)
1963 abort ();
1964 }
1965 }
1966
1967 if (h)
1968 {
1969 struct elf_x86_64_link_hash_entry *eh;
1970 struct elf_dyn_relocs **pp;
1971 struct elf_dyn_relocs *p;
1972
1973 eh = (struct elf_x86_64_link_hash_entry *) h;
1974
1975 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1976 if (p->sec == sec)
1977 {
1978 /* Everything must go for SEC. */
1979 *pp = p->next;
1980 break;
1981 }
1982 }
1983
1984 r_type = ELF32_R_TYPE (rel->r_info);
1985 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
1986 symtab_hdr, sym_hashes,
1987 &r_type, GOT_UNKNOWN,
1988 rel, relend, h, r_symndx))
1989 return FALSE;
1990
1991 switch (r_type)
1992 {
1993 case R_X86_64_TLSLD:
1994 if (htab->tls_ld_got.refcount > 0)
1995 htab->tls_ld_got.refcount -= 1;
1996 break;
1997
1998 case R_X86_64_TLSGD:
1999 case R_X86_64_GOTPC32_TLSDESC:
2000 case R_X86_64_TLSDESC_CALL:
2001 case R_X86_64_GOTTPOFF:
2002 case R_X86_64_GOT32:
2003 case R_X86_64_GOTPCREL:
2004 case R_X86_64_GOT64:
2005 case R_X86_64_GOTPCREL64:
2006 case R_X86_64_GOTPLT64:
2007 if (h != NULL)
2008 {
2009 if (r_type == R_X86_64_GOTPLT64 && h->plt.refcount > 0)
2010 h->plt.refcount -= 1;
2011 if (h->got.refcount > 0)
2012 h->got.refcount -= 1;
2013 if (h->type == STT_GNU_IFUNC)
2014 {
2015 if (h->plt.refcount > 0)
2016 h->plt.refcount -= 1;
2017 }
2018 }
2019 else if (local_got_refcounts != NULL)
2020 {
2021 if (local_got_refcounts[r_symndx] > 0)
2022 local_got_refcounts[r_symndx] -= 1;
2023 }
2024 break;
2025
2026 case R_X86_64_8:
2027 case R_X86_64_16:
2028 case R_X86_64_32:
2029 case R_X86_64_64:
2030 case R_X86_64_32S:
2031 case R_X86_64_PC8:
2032 case R_X86_64_PC16:
2033 case R_X86_64_PC32:
2034 case R_X86_64_PC64:
2035 if (info->shared
2036 && (h == NULL || h->type != STT_GNU_IFUNC))
2037 break;
2038 /* Fall thru */
2039
2040 case R_X86_64_PLT32:
2041 case R_X86_64_PLTOFF64:
2042 if (h != NULL)
2043 {
2044 if (h->plt.refcount > 0)
2045 h->plt.refcount -= 1;
2046 }
2047 break;
2048
2049 default:
2050 break;
2051 }
2052 }
2053
2054 return TRUE;
2055 }
2056
2057 /* Adjust a symbol defined by a dynamic object and referenced by a
2058 regular object. The current definition is in some section of the
2059 dynamic object, but we're not including those sections. We have to
2060 change the definition to something the rest of the link can
2061 understand. */
2062
2063 static bfd_boolean
2064 elf_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
2065 struct elf_link_hash_entry *h)
2066 {
2067 struct elf_x86_64_link_hash_table *htab;
2068 asection *s;
2069
2070 /* STT_GNU_IFUNC symbol must go through PLT. */
2071 if (h->type == STT_GNU_IFUNC)
2072 {
2073 if (h->plt.refcount <= 0)
2074 {
2075 h->plt.offset = (bfd_vma) -1;
2076 h->needs_plt = 0;
2077 }
2078 return TRUE;
2079 }
2080
2081 /* If this is a function, put it in the procedure linkage table. We
2082 will fill in the contents of the procedure linkage table later,
2083 when we know the address of the .got section. */
2084 if (h->type == STT_FUNC
2085 || h->needs_plt)
2086 {
2087 if (h->plt.refcount <= 0
2088 || SYMBOL_CALLS_LOCAL (info, h)
2089 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2090 && h->root.type == bfd_link_hash_undefweak))
2091 {
2092 /* This case can occur if we saw a PLT32 reloc in an input
2093 file, but the symbol was never referred to by a dynamic
2094 object, or if all references were garbage collected. In
2095 such a case, we don't actually need to build a procedure
2096 linkage table, and we can just do a PC32 reloc instead. */
2097 h->plt.offset = (bfd_vma) -1;
2098 h->needs_plt = 0;
2099 }
2100
2101 return TRUE;
2102 }
2103 else
2104 /* It's possible that we incorrectly decided a .plt reloc was
2105 needed for an R_X86_64_PC32 reloc to a non-function sym in
2106 check_relocs. We can't decide accurately between function and
2107 non-function syms in check-relocs; Objects loaded later in
2108 the link may change h->type. So fix it now. */
2109 h->plt.offset = (bfd_vma) -1;
2110
2111 /* If this is a weak symbol, and there is a real definition, the
2112 processor independent code will have arranged for us to see the
2113 real definition first, and we can just use the same value. */
2114 if (h->u.weakdef != NULL)
2115 {
2116 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
2117 || h->u.weakdef->root.type == bfd_link_hash_defweak);
2118 h->root.u.def.section = h->u.weakdef->root.u.def.section;
2119 h->root.u.def.value = h->u.weakdef->root.u.def.value;
2120 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
2121 h->non_got_ref = h->u.weakdef->non_got_ref;
2122 return TRUE;
2123 }
2124
2125 /* This is a reference to a symbol defined by a dynamic object which
2126 is not a function. */
2127
2128 /* If we are creating a shared library, we must presume that the
2129 only references to the symbol are via the global offset table.
2130 For such cases we need not do anything here; the relocations will
2131 be handled correctly by relocate_section. */
2132 if (info->shared)
2133 return TRUE;
2134
2135 /* If there are no references to this symbol that do not use the
2136 GOT, we don't need to generate a copy reloc. */
2137 if (!h->non_got_ref)
2138 return TRUE;
2139
2140 /* If -z nocopyreloc was given, we won't generate them either. */
2141 if (info->nocopyreloc)
2142 {
2143 h->non_got_ref = 0;
2144 return TRUE;
2145 }
2146
2147 if (ELIMINATE_COPY_RELOCS)
2148 {
2149 struct elf_x86_64_link_hash_entry * eh;
2150 struct elf_dyn_relocs *p;
2151
2152 eh = (struct elf_x86_64_link_hash_entry *) h;
2153 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2154 {
2155 s = p->sec->output_section;
2156 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2157 break;
2158 }
2159
2160 /* If we didn't find any dynamic relocs in read-only sections, then
2161 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
2162 if (p == NULL)
2163 {
2164 h->non_got_ref = 0;
2165 return TRUE;
2166 }
2167 }
2168
2169 if (h->size == 0)
2170 {
2171 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
2172 h->root.root.string);
2173 return TRUE;
2174 }
2175
2176 /* We must allocate the symbol in our .dynbss section, which will
2177 become part of the .bss section of the executable. There will be
2178 an entry for this symbol in the .dynsym section. The dynamic
2179 object will contain position independent code, so all references
2180 from the dynamic object to this symbol will go through the global
2181 offset table. The dynamic linker will use the .dynsym entry to
2182 determine the address it must put in the global offset table, so
2183 both the dynamic object and the regular object will refer to the
2184 same memory location for the variable. */
2185
2186 htab = elf_x86_64_hash_table (info);
2187 if (htab == NULL)
2188 return FALSE;
2189
2190 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
2191 to copy the initial value out of the dynamic object and into the
2192 runtime process image. */
2193 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
2194 {
2195 const struct elf_backend_data *bed;
2196 bed = get_elf_backend_data (info->output_bfd);
2197 htab->srelbss->size += bed->s->sizeof_rela;
2198 h->needs_copy = 1;
2199 }
2200
2201 s = htab->sdynbss;
2202
2203 return _bfd_elf_adjust_dynamic_copy (h, s);
2204 }
2205
2206 /* Allocate space in .plt, .got and associated reloc sections for
2207 dynamic relocs. */
2208
2209 static bfd_boolean
2210 elf_x86_64_allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
2211 {
2212 struct bfd_link_info *info;
2213 struct elf_x86_64_link_hash_table *htab;
2214 struct elf_x86_64_link_hash_entry *eh;
2215 struct elf_dyn_relocs *p;
2216 const struct elf_backend_data *bed;
2217
2218 if (h->root.type == bfd_link_hash_indirect)
2219 return TRUE;
2220
2221 eh = (struct elf_x86_64_link_hash_entry *) h;
2222
2223 info = (struct bfd_link_info *) inf;
2224 htab = elf_x86_64_hash_table (info);
2225 if (htab == NULL)
2226 return FALSE;
2227 bed = get_elf_backend_data (info->output_bfd);
2228
2229 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
2230 here if it is defined and referenced in a non-shared object. */
2231 if (h->type == STT_GNU_IFUNC
2232 && h->def_regular)
2233 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
2234 &eh->dyn_relocs,
2235 PLT_ENTRY_SIZE,
2236 GOT_ENTRY_SIZE);
2237 else if (htab->elf.dynamic_sections_created
2238 && h->plt.refcount > 0)
2239 {
2240 /* Make sure this symbol is output as a dynamic symbol.
2241 Undefined weak syms won't yet be marked as dynamic. */
2242 if (h->dynindx == -1
2243 && !h->forced_local)
2244 {
2245 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2246 return FALSE;
2247 }
2248
2249 if (info->shared
2250 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
2251 {
2252 asection *s = htab->elf.splt;
2253
2254 /* If this is the first .plt entry, make room for the special
2255 first entry. */
2256 if (s->size == 0)
2257 s->size += PLT_ENTRY_SIZE;
2258
2259 h->plt.offset = s->size;
2260
2261 /* If this symbol is not defined in a regular file, and we are
2262 not generating a shared library, then set the symbol to this
2263 location in the .plt. This is required to make function
2264 pointers compare as equal between the normal executable and
2265 the shared library. */
2266 if (! info->shared
2267 && !h->def_regular)
2268 {
2269 h->root.u.def.section = s;
2270 h->root.u.def.value = h->plt.offset;
2271 }
2272
2273 /* Make room for this entry. */
2274 s->size += PLT_ENTRY_SIZE;
2275
2276 /* We also need to make an entry in the .got.plt section, which
2277 will be placed in the .got section by the linker script. */
2278 htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
2279
2280 /* We also need to make an entry in the .rela.plt section. */
2281 htab->elf.srelplt->size += bed->s->sizeof_rela;
2282 htab->elf.srelplt->reloc_count++;
2283 }
2284 else
2285 {
2286 h->plt.offset = (bfd_vma) -1;
2287 h->needs_plt = 0;
2288 }
2289 }
2290 else
2291 {
2292 h->plt.offset = (bfd_vma) -1;
2293 h->needs_plt = 0;
2294 }
2295
2296 eh->tlsdesc_got = (bfd_vma) -1;
2297
2298 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
2299 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
2300 if (h->got.refcount > 0
2301 && info->executable
2302 && h->dynindx == -1
2303 && elf_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
2304 {
2305 h->got.offset = (bfd_vma) -1;
2306 }
2307 else if (h->got.refcount > 0)
2308 {
2309 asection *s;
2310 bfd_boolean dyn;
2311 int tls_type = elf_x86_64_hash_entry (h)->tls_type;
2312
2313 /* Make sure this symbol is output as a dynamic symbol.
2314 Undefined weak syms won't yet be marked as dynamic. */
2315 if (h->dynindx == -1
2316 && !h->forced_local)
2317 {
2318 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2319 return FALSE;
2320 }
2321
2322 if (GOT_TLS_GDESC_P (tls_type))
2323 {
2324 eh->tlsdesc_got = htab->elf.sgotplt->size
2325 - elf_x86_64_compute_jump_table_size (htab);
2326 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2327 h->got.offset = (bfd_vma) -2;
2328 }
2329 if (! GOT_TLS_GDESC_P (tls_type)
2330 || GOT_TLS_GD_P (tls_type))
2331 {
2332 s = htab->elf.sgot;
2333 h->got.offset = s->size;
2334 s->size += GOT_ENTRY_SIZE;
2335 if (GOT_TLS_GD_P (tls_type))
2336 s->size += GOT_ENTRY_SIZE;
2337 }
2338 dyn = htab->elf.dynamic_sections_created;
2339 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
2340 and two if global.
2341 R_X86_64_GOTTPOFF needs one dynamic relocation. */
2342 if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
2343 || tls_type == GOT_TLS_IE)
2344 htab->elf.srelgot->size += bed->s->sizeof_rela;
2345 else if (GOT_TLS_GD_P (tls_type))
2346 htab->elf.srelgot->size += 2 * bed->s->sizeof_rela;
2347 else if (! GOT_TLS_GDESC_P (tls_type)
2348 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2349 || h->root.type != bfd_link_hash_undefweak)
2350 && (info->shared
2351 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
2352 htab->elf.srelgot->size += bed->s->sizeof_rela;
2353 if (GOT_TLS_GDESC_P (tls_type))
2354 {
2355 htab->elf.srelplt->size += bed->s->sizeof_rela;
2356 htab->tlsdesc_plt = (bfd_vma) -1;
2357 }
2358 }
2359 else
2360 h->got.offset = (bfd_vma) -1;
2361
2362 if (eh->dyn_relocs == NULL)
2363 return TRUE;
2364
2365 /* In the shared -Bsymbolic case, discard space allocated for
2366 dynamic pc-relative relocs against symbols which turn out to be
2367 defined in regular objects. For the normal shared case, discard
2368 space for pc-relative relocs that have become local due to symbol
2369 visibility changes. */
2370
2371 if (info->shared)
2372 {
2373 /* Relocs that use pc_count are those that appear on a call
2374 insn, or certain REL relocs that can generated via assembly.
2375 We want calls to protected symbols to resolve directly to the
2376 function rather than going via the plt. If people want
2377 function pointer comparisons to work as expected then they
2378 should avoid writing weird assembly. */
2379 if (SYMBOL_CALLS_LOCAL (info, h))
2380 {
2381 struct elf_dyn_relocs **pp;
2382
2383 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2384 {
2385 p->count -= p->pc_count;
2386 p->pc_count = 0;
2387 if (p->count == 0)
2388 *pp = p->next;
2389 else
2390 pp = &p->next;
2391 }
2392 }
2393
2394 /* Also discard relocs on undefined weak syms with non-default
2395 visibility. */
2396 if (eh->dyn_relocs != NULL
2397 && h->root.type == bfd_link_hash_undefweak)
2398 {
2399 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2400 eh->dyn_relocs = NULL;
2401
2402 /* Make sure undefined weak symbols are output as a dynamic
2403 symbol in PIEs. */
2404 else if (h->dynindx == -1
2405 && ! h->forced_local
2406 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2407 return FALSE;
2408 }
2409
2410 }
2411 else if (ELIMINATE_COPY_RELOCS)
2412 {
2413 /* For the non-shared case, discard space for relocs against
2414 symbols which turn out to need copy relocs or are not
2415 dynamic. */
2416
2417 if (!h->non_got_ref
2418 && ((h->def_dynamic
2419 && !h->def_regular)
2420 || (htab->elf.dynamic_sections_created
2421 && (h->root.type == bfd_link_hash_undefweak
2422 || h->root.type == bfd_link_hash_undefined))))
2423 {
2424 /* Make sure this symbol is output as a dynamic symbol.
2425 Undefined weak syms won't yet be marked as dynamic. */
2426 if (h->dynindx == -1
2427 && ! h->forced_local
2428 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2429 return FALSE;
2430
2431 /* If that succeeded, we know we'll be keeping all the
2432 relocs. */
2433 if (h->dynindx != -1)
2434 goto keep;
2435 }
2436
2437 eh->dyn_relocs = NULL;
2438
2439 keep: ;
2440 }
2441
2442 /* Finally, allocate space. */
2443 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2444 {
2445 asection * sreloc;
2446
2447 sreloc = elf_section_data (p->sec)->sreloc;
2448
2449 BFD_ASSERT (sreloc != NULL);
2450
2451 sreloc->size += p->count * bed->s->sizeof_rela;
2452 }
2453
2454 return TRUE;
2455 }
2456
2457 /* Allocate space in .plt, .got and associated reloc sections for
2458 local dynamic relocs. */
2459
2460 static bfd_boolean
2461 elf_x86_64_allocate_local_dynrelocs (void **slot, void *inf)
2462 {
2463 struct elf_link_hash_entry *h
2464 = (struct elf_link_hash_entry *) *slot;
2465
2466 if (h->type != STT_GNU_IFUNC
2467 || !h->def_regular
2468 || !h->ref_regular
2469 || !h->forced_local
2470 || h->root.type != bfd_link_hash_defined)
2471 abort ();
2472
2473 return elf_x86_64_allocate_dynrelocs (h, inf);
2474 }
2475
2476 /* Find any dynamic relocs that apply to read-only sections. */
2477
2478 static bfd_boolean
2479 elf_x86_64_readonly_dynrelocs (struct elf_link_hash_entry *h,
2480 void * inf)
2481 {
2482 struct elf_x86_64_link_hash_entry *eh;
2483 struct elf_dyn_relocs *p;
2484
2485 /* Skip local IFUNC symbols. */
2486 if (h->forced_local && h->type == STT_GNU_IFUNC)
2487 return TRUE;
2488
2489 eh = (struct elf_x86_64_link_hash_entry *) h;
2490 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2491 {
2492 asection *s = p->sec->output_section;
2493
2494 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2495 {
2496 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2497
2498 info->flags |= DF_TEXTREL;
2499
2500 if (info->warn_shared_textrel && info->shared)
2501 info->callbacks->einfo (_("%P: %B: warning: relocation against `%s' in readonly section `%A'.\n"),
2502 p->sec->owner, h->root.root.string,
2503 p->sec);
2504
2505 /* Not an error, just cut short the traversal. */
2506 return FALSE;
2507 }
2508 }
2509 return TRUE;
2510 }
2511
2512 /* Set the sizes of the dynamic sections. */
2513
2514 static bfd_boolean
2515 elf_x86_64_size_dynamic_sections (bfd *output_bfd,
2516 struct bfd_link_info *info)
2517 {
2518 struct elf_x86_64_link_hash_table *htab;
2519 bfd *dynobj;
2520 asection *s;
2521 bfd_boolean relocs;
2522 bfd *ibfd;
2523 const struct elf_backend_data *bed;
2524
2525 htab = elf_x86_64_hash_table (info);
2526 if (htab == NULL)
2527 return FALSE;
2528 bed = get_elf_backend_data (output_bfd);
2529
2530 dynobj = htab->elf.dynobj;
2531 if (dynobj == NULL)
2532 abort ();
2533
2534 if (htab->elf.dynamic_sections_created)
2535 {
2536 /* Set the contents of the .interp section to the interpreter. */
2537 if (info->executable)
2538 {
2539 s = bfd_get_section_by_name (dynobj, ".interp");
2540 if (s == NULL)
2541 abort ();
2542 s->size = htab->dynamic_interpreter_size;
2543 s->contents = (unsigned char *) htab->dynamic_interpreter;
2544 }
2545 }
2546
2547 /* Set up .got offsets for local syms, and space for local dynamic
2548 relocs. */
2549 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2550 {
2551 bfd_signed_vma *local_got;
2552 bfd_signed_vma *end_local_got;
2553 char *local_tls_type;
2554 bfd_vma *local_tlsdesc_gotent;
2555 bfd_size_type locsymcount;
2556 Elf_Internal_Shdr *symtab_hdr;
2557 asection *srel;
2558
2559 if (! is_x86_64_elf (ibfd))
2560 continue;
2561
2562 for (s = ibfd->sections; s != NULL; s = s->next)
2563 {
2564 struct elf_dyn_relocs *p;
2565
2566 for (p = (struct elf_dyn_relocs *)
2567 (elf_section_data (s)->local_dynrel);
2568 p != NULL;
2569 p = p->next)
2570 {
2571 if (!bfd_is_abs_section (p->sec)
2572 && bfd_is_abs_section (p->sec->output_section))
2573 {
2574 /* Input section has been discarded, either because
2575 it is a copy of a linkonce section or due to
2576 linker script /DISCARD/, so we'll be discarding
2577 the relocs too. */
2578 }
2579 else if (p->count != 0)
2580 {
2581 srel = elf_section_data (p->sec)->sreloc;
2582 srel->size += p->count * bed->s->sizeof_rela;
2583 if ((p->sec->output_section->flags & SEC_READONLY) != 0
2584 && (info->flags & DF_TEXTREL) == 0)
2585 {
2586 info->flags |= DF_TEXTREL;
2587 if (info->warn_shared_textrel && info->shared)
2588 info->callbacks->einfo (_("%P: %B: warning: relocation in readonly section `%A'.\n"),
2589 p->sec->owner, p->sec);
2590 }
2591 }
2592 }
2593 }
2594
2595 local_got = elf_local_got_refcounts (ibfd);
2596 if (!local_got)
2597 continue;
2598
2599 symtab_hdr = &elf_symtab_hdr (ibfd);
2600 locsymcount = symtab_hdr->sh_info;
2601 end_local_got = local_got + locsymcount;
2602 local_tls_type = elf_x86_64_local_got_tls_type (ibfd);
2603 local_tlsdesc_gotent = elf_x86_64_local_tlsdesc_gotent (ibfd);
2604 s = htab->elf.sgot;
2605 srel = htab->elf.srelgot;
2606 for (; local_got < end_local_got;
2607 ++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
2608 {
2609 *local_tlsdesc_gotent = (bfd_vma) -1;
2610 if (*local_got > 0)
2611 {
2612 if (GOT_TLS_GDESC_P (*local_tls_type))
2613 {
2614 *local_tlsdesc_gotent = htab->elf.sgotplt->size
2615 - elf_x86_64_compute_jump_table_size (htab);
2616 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2617 *local_got = (bfd_vma) -2;
2618 }
2619 if (! GOT_TLS_GDESC_P (*local_tls_type)
2620 || GOT_TLS_GD_P (*local_tls_type))
2621 {
2622 *local_got = s->size;
2623 s->size += GOT_ENTRY_SIZE;
2624 if (GOT_TLS_GD_P (*local_tls_type))
2625 s->size += GOT_ENTRY_SIZE;
2626 }
2627 if (info->shared
2628 || GOT_TLS_GD_ANY_P (*local_tls_type)
2629 || *local_tls_type == GOT_TLS_IE)
2630 {
2631 if (GOT_TLS_GDESC_P (*local_tls_type))
2632 {
2633 htab->elf.srelplt->size
2634 += bed->s->sizeof_rela;
2635 htab->tlsdesc_plt = (bfd_vma) -1;
2636 }
2637 if (! GOT_TLS_GDESC_P (*local_tls_type)
2638 || GOT_TLS_GD_P (*local_tls_type))
2639 srel->size += bed->s->sizeof_rela;
2640 }
2641 }
2642 else
2643 *local_got = (bfd_vma) -1;
2644 }
2645 }
2646
2647 if (htab->tls_ld_got.refcount > 0)
2648 {
2649 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
2650 relocs. */
2651 htab->tls_ld_got.offset = htab->elf.sgot->size;
2652 htab->elf.sgot->size += 2 * GOT_ENTRY_SIZE;
2653 htab->elf.srelgot->size += bed->s->sizeof_rela;
2654 }
2655 else
2656 htab->tls_ld_got.offset = -1;
2657
2658 /* Allocate global sym .plt and .got entries, and space for global
2659 sym dynamic relocs. */
2660 elf_link_hash_traverse (&htab->elf, elf_x86_64_allocate_dynrelocs,
2661 info);
2662
2663 /* Allocate .plt and .got entries, and space for local symbols. */
2664 htab_traverse (htab->loc_hash_table,
2665 elf_x86_64_allocate_local_dynrelocs,
2666 info);
2667
2668 /* For every jump slot reserved in the sgotplt, reloc_count is
2669 incremented. However, when we reserve space for TLS descriptors,
2670 it's not incremented, so in order to compute the space reserved
2671 for them, it suffices to multiply the reloc count by the jump
2672 slot size.
2673
2674 PR ld/13302: We start next_irelative_index at the end of .rela.plt
2675 so that R_X86_64_IRELATIVE entries come last. */
2676 if (htab->elf.srelplt)
2677 {
2678 htab->sgotplt_jump_table_size
2679 = elf_x86_64_compute_jump_table_size (htab);
2680 htab->next_irelative_index = htab->elf.srelplt->reloc_count - 1;
2681 }
2682 else if (htab->elf.irelplt)
2683 htab->next_irelative_index = htab->elf.irelplt->reloc_count - 1;
2684
2685 if (htab->tlsdesc_plt)
2686 {
2687 /* If we're not using lazy TLS relocations, don't generate the
2688 PLT and GOT entries they require. */
2689 if ((info->flags & DF_BIND_NOW))
2690 htab->tlsdesc_plt = 0;
2691 else
2692 {
2693 htab->tlsdesc_got = htab->elf.sgot->size;
2694 htab->elf.sgot->size += GOT_ENTRY_SIZE;
2695 /* Reserve room for the initial entry.
2696 FIXME: we could probably do away with it in this case. */
2697 if (htab->elf.splt->size == 0)
2698 htab->elf.splt->size += PLT_ENTRY_SIZE;
2699 htab->tlsdesc_plt = htab->elf.splt->size;
2700 htab->elf.splt->size += PLT_ENTRY_SIZE;
2701 }
2702 }
2703
2704 if (htab->elf.sgotplt)
2705 {
2706 struct elf_link_hash_entry *got;
2707 got = elf_link_hash_lookup (elf_hash_table (info),
2708 "_GLOBAL_OFFSET_TABLE_",
2709 FALSE, FALSE, FALSE);
2710
2711 /* Don't allocate .got.plt section if there are no GOT nor PLT
2712 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
2713 if ((got == NULL
2714 || !got->ref_regular_nonweak)
2715 && (htab->elf.sgotplt->size
2716 == get_elf_backend_data (output_bfd)->got_header_size)
2717 && (htab->elf.splt == NULL
2718 || htab->elf.splt->size == 0)
2719 && (htab->elf.sgot == NULL
2720 || htab->elf.sgot->size == 0)
2721 && (htab->elf.iplt == NULL
2722 || htab->elf.iplt->size == 0)
2723 && (htab->elf.igotplt == NULL
2724 || htab->elf.igotplt->size == 0))
2725 htab->elf.sgotplt->size = 0;
2726 }
2727
2728 /* We now have determined the sizes of the various dynamic sections.
2729 Allocate memory for them. */
2730 relocs = FALSE;
2731 for (s = dynobj->sections; s != NULL; s = s->next)
2732 {
2733 if ((s->flags & SEC_LINKER_CREATED) == 0)
2734 continue;
2735
2736 if (s == htab->elf.splt
2737 || s == htab->elf.sgot
2738 || s == htab->elf.sgotplt
2739 || s == htab->elf.iplt
2740 || s == htab->elf.igotplt
2741 || s == htab->sdynbss)
2742 {
2743 /* Strip this section if we don't need it; see the
2744 comment below. */
2745 }
2746 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
2747 {
2748 if (s->size != 0 && s != htab->elf.srelplt)
2749 relocs = TRUE;
2750
2751 /* We use the reloc_count field as a counter if we need
2752 to copy relocs into the output file. */
2753 if (s != htab->elf.srelplt)
2754 s->reloc_count = 0;
2755 }
2756 else
2757 {
2758 /* It's not one of our sections, so don't allocate space. */
2759 continue;
2760 }
2761
2762 if (s->size == 0)
2763 {
2764 /* If we don't need this section, strip it from the
2765 output file. This is mostly to handle .rela.bss and
2766 .rela.plt. We must create both sections in
2767 create_dynamic_sections, because they must be created
2768 before the linker maps input sections to output
2769 sections. The linker does that before
2770 adjust_dynamic_symbol is called, and it is that
2771 function which decides whether anything needs to go
2772 into these sections. */
2773
2774 s->flags |= SEC_EXCLUDE;
2775 continue;
2776 }
2777
2778 if ((s->flags & SEC_HAS_CONTENTS) == 0)
2779 continue;
2780
2781 /* Allocate memory for the section contents. We use bfd_zalloc
2782 here in case unused entries are not reclaimed before the
2783 section's contents are written out. This should not happen,
2784 but this way if it does, we get a R_X86_64_NONE reloc instead
2785 of garbage. */
2786 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
2787 if (s->contents == NULL)
2788 return FALSE;
2789 }
2790
2791 if (htab->plt_eh_frame != NULL
2792 && htab->elf.splt != NULL
2793 && htab->elf.splt->size != 0
2794 && (htab->elf.splt->flags & SEC_EXCLUDE) == 0)
2795 bfd_put_32 (dynobj, htab->elf.splt->size,
2796 htab->plt_eh_frame->contents + PLT_FDE_LEN_OFFSET);
2797
2798 if (htab->elf.dynamic_sections_created)
2799 {
2800 /* Add some entries to the .dynamic section. We fill in the
2801 values later, in elf_x86_64_finish_dynamic_sections, but we
2802 must add the entries now so that we get the correct size for
2803 the .dynamic section. The DT_DEBUG entry is filled in by the
2804 dynamic linker and used by the debugger. */
2805 #define add_dynamic_entry(TAG, VAL) \
2806 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2807
2808 if (info->executable)
2809 {
2810 if (!add_dynamic_entry (DT_DEBUG, 0))
2811 return FALSE;
2812 }
2813
2814 if (htab->elf.splt->size != 0)
2815 {
2816 if (!add_dynamic_entry (DT_PLTGOT, 0)
2817 || !add_dynamic_entry (DT_PLTRELSZ, 0)
2818 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2819 || !add_dynamic_entry (DT_JMPREL, 0))
2820 return FALSE;
2821
2822 if (htab->tlsdesc_plt
2823 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
2824 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
2825 return FALSE;
2826 }
2827
2828 if (relocs)
2829 {
2830 if (!add_dynamic_entry (DT_RELA, 0)
2831 || !add_dynamic_entry (DT_RELASZ, 0)
2832 || !add_dynamic_entry (DT_RELAENT, bed->s->sizeof_rela))
2833 return FALSE;
2834
2835 /* If any dynamic relocs apply to a read-only section,
2836 then we need a DT_TEXTREL entry. */
2837 if ((info->flags & DF_TEXTREL) == 0)
2838 elf_link_hash_traverse (&htab->elf,
2839 elf_x86_64_readonly_dynrelocs,
2840 info);
2841
2842 if ((info->flags & DF_TEXTREL) != 0)
2843 {
2844 if (!add_dynamic_entry (DT_TEXTREL, 0))
2845 return FALSE;
2846 }
2847 }
2848 }
2849 #undef add_dynamic_entry
2850
2851 return TRUE;
2852 }
2853
2854 static bfd_boolean
2855 elf_x86_64_always_size_sections (bfd *output_bfd,
2856 struct bfd_link_info *info)
2857 {
2858 asection *tls_sec = elf_hash_table (info)->tls_sec;
2859
2860 if (tls_sec)
2861 {
2862 struct elf_link_hash_entry *tlsbase;
2863
2864 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
2865 "_TLS_MODULE_BASE_",
2866 FALSE, FALSE, FALSE);
2867
2868 if (tlsbase && tlsbase->type == STT_TLS)
2869 {
2870 struct elf_x86_64_link_hash_table *htab;
2871 struct bfd_link_hash_entry *bh = NULL;
2872 const struct elf_backend_data *bed
2873 = get_elf_backend_data (output_bfd);
2874
2875 htab = elf_x86_64_hash_table (info);
2876 if (htab == NULL)
2877 return FALSE;
2878
2879 if (!(_bfd_generic_link_add_one_symbol
2880 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
2881 tls_sec, 0, NULL, FALSE,
2882 bed->collect, &bh)))
2883 return FALSE;
2884
2885 htab->tls_module_base = bh;
2886
2887 tlsbase = (struct elf_link_hash_entry *)bh;
2888 tlsbase->def_regular = 1;
2889 tlsbase->other = STV_HIDDEN;
2890 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
2891 }
2892 }
2893
2894 return TRUE;
2895 }
2896
2897 /* _TLS_MODULE_BASE_ needs to be treated especially when linking
2898 executables. Rather than setting it to the beginning of the TLS
2899 section, we have to set it to the end. This function may be called
2900 multiple times, it is idempotent. */
2901
2902 static void
2903 elf_x86_64_set_tls_module_base (struct bfd_link_info *info)
2904 {
2905 struct elf_x86_64_link_hash_table *htab;
2906 struct bfd_link_hash_entry *base;
2907
2908 if (!info->executable)
2909 return;
2910
2911 htab = elf_x86_64_hash_table (info);
2912 if (htab == NULL)
2913 return;
2914
2915 base = htab->tls_module_base;
2916 if (base == NULL)
2917 return;
2918
2919 base->u.def.value = htab->elf.tls_size;
2920 }
2921
2922 /* Return the base VMA address which should be subtracted from real addresses
2923 when resolving @dtpoff relocation.
2924 This is PT_TLS segment p_vaddr. */
2925
2926 static bfd_vma
2927 elf_x86_64_dtpoff_base (struct bfd_link_info *info)
2928 {
2929 /* If tls_sec is NULL, we should have signalled an error already. */
2930 if (elf_hash_table (info)->tls_sec == NULL)
2931 return 0;
2932 return elf_hash_table (info)->tls_sec->vma;
2933 }
2934
2935 /* Return the relocation value for @tpoff relocation
2936 if STT_TLS virtual address is ADDRESS. */
2937
2938 static bfd_vma
2939 elf_x86_64_tpoff (struct bfd_link_info *info, bfd_vma address)
2940 {
2941 struct elf_link_hash_table *htab = elf_hash_table (info);
2942 const struct elf_backend_data *bed = get_elf_backend_data (info->output_bfd);
2943 bfd_vma static_tls_size;
2944
2945 /* If tls_segment is NULL, we should have signalled an error already. */
2946 if (htab->tls_sec == NULL)
2947 return 0;
2948
2949 /* Consider special static TLS alignment requirements. */
2950 static_tls_size = BFD_ALIGN (htab->tls_size, bed->static_tls_alignment);
2951 return address - static_tls_size - htab->tls_sec->vma;
2952 }
2953
2954 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
2955 branch? */
2956
2957 static bfd_boolean
2958 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
2959 {
2960 /* Opcode Instruction
2961 0xe8 call
2962 0xe9 jump
2963 0x0f 0x8x conditional jump */
2964 return ((offset > 0
2965 && (contents [offset - 1] == 0xe8
2966 || contents [offset - 1] == 0xe9))
2967 || (offset > 1
2968 && contents [offset - 2] == 0x0f
2969 && (contents [offset - 1] & 0xf0) == 0x80));
2970 }
2971
2972 /* Relocate an x86_64 ELF section. */
2973
2974 static bfd_boolean
2975 elf_x86_64_relocate_section (bfd *output_bfd,
2976 struct bfd_link_info *info,
2977 bfd *input_bfd,
2978 asection *input_section,
2979 bfd_byte *contents,
2980 Elf_Internal_Rela *relocs,
2981 Elf_Internal_Sym *local_syms,
2982 asection **local_sections)
2983 {
2984 struct elf_x86_64_link_hash_table *htab;
2985 Elf_Internal_Shdr *symtab_hdr;
2986 struct elf_link_hash_entry **sym_hashes;
2987 bfd_vma *local_got_offsets;
2988 bfd_vma *local_tlsdesc_gotents;
2989 Elf_Internal_Rela *rel;
2990 Elf_Internal_Rela *relend;
2991
2992 BFD_ASSERT (is_x86_64_elf (input_bfd));
2993
2994 htab = elf_x86_64_hash_table (info);
2995 if (htab == NULL)
2996 return FALSE;
2997 symtab_hdr = &elf_symtab_hdr (input_bfd);
2998 sym_hashes = elf_sym_hashes (input_bfd);
2999 local_got_offsets = elf_local_got_offsets (input_bfd);
3000 local_tlsdesc_gotents = elf_x86_64_local_tlsdesc_gotent (input_bfd);
3001
3002 elf_x86_64_set_tls_module_base (info);
3003
3004 rel = relocs;
3005 relend = relocs + input_section->reloc_count;
3006 for (; rel < relend; rel++)
3007 {
3008 unsigned int r_type;
3009 reloc_howto_type *howto;
3010 unsigned long r_symndx;
3011 struct elf_link_hash_entry *h;
3012 Elf_Internal_Sym *sym;
3013 asection *sec;
3014 bfd_vma off, offplt;
3015 bfd_vma relocation;
3016 bfd_boolean unresolved_reloc;
3017 bfd_reloc_status_type r;
3018 int tls_type;
3019 asection *base_got;
3020
3021 r_type = ELF32_R_TYPE (rel->r_info);
3022 if (r_type == (int) R_X86_64_GNU_VTINHERIT
3023 || r_type == (int) R_X86_64_GNU_VTENTRY)
3024 continue;
3025
3026 if (r_type >= R_X86_64_max)
3027 {
3028 bfd_set_error (bfd_error_bad_value);
3029 return FALSE;
3030 }
3031
3032 if (r_type != (int) R_X86_64_32
3033 || ABI_64_P (output_bfd))
3034 howto = x86_64_elf_howto_table + r_type;
3035 else
3036 howto = (x86_64_elf_howto_table
3037 + ARRAY_SIZE (x86_64_elf_howto_table) - 1);
3038 r_symndx = htab->r_sym (rel->r_info);
3039 h = NULL;
3040 sym = NULL;
3041 sec = NULL;
3042 unresolved_reloc = FALSE;
3043 if (r_symndx < symtab_hdr->sh_info)
3044 {
3045 sym = local_syms + r_symndx;
3046 sec = local_sections[r_symndx];
3047
3048 relocation = _bfd_elf_rela_local_sym (output_bfd, sym,
3049 &sec, rel);
3050
3051 /* Relocate against local STT_GNU_IFUNC symbol. */
3052 if (!info->relocatable
3053 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
3054 {
3055 h = elf_x86_64_get_local_sym_hash (htab, input_bfd,
3056 rel, FALSE);
3057 if (h == NULL)
3058 abort ();
3059
3060 /* Set STT_GNU_IFUNC symbol value. */
3061 h->root.u.def.value = sym->st_value;
3062 h->root.u.def.section = sec;
3063 }
3064 }
3065 else
3066 {
3067 bfd_boolean warned ATTRIBUTE_UNUSED;
3068
3069 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3070 r_symndx, symtab_hdr, sym_hashes,
3071 h, sec, relocation,
3072 unresolved_reloc, warned);
3073 }
3074
3075 if (sec != NULL && elf_discarded_section (sec))
3076 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3077 rel, relend, howto, contents);
3078
3079 if (info->relocatable)
3080 continue;
3081
3082 if (rel->r_addend == 0
3083 && r_type == R_X86_64_64
3084 && !ABI_64_P (output_bfd))
3085 {
3086 /* For x32, treat R_X86_64_64 like R_X86_64_32 and zero-extend
3087 it to 64bit if addend is zero. */
3088 r_type = R_X86_64_32;
3089 memset (contents + rel->r_offset + 4, 0, 4);
3090 }
3091
3092 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
3093 it here if it is defined in a non-shared object. */
3094 if (h != NULL
3095 && h->type == STT_GNU_IFUNC
3096 && h->def_regular)
3097 {
3098 asection *plt;
3099 bfd_vma plt_index;
3100 const char *name;
3101
3102 if ((input_section->flags & SEC_ALLOC) == 0
3103 || h->plt.offset == (bfd_vma) -1)
3104 abort ();
3105
3106 /* STT_GNU_IFUNC symbol must go through PLT. */
3107 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
3108 relocation = (plt->output_section->vma
3109 + plt->output_offset + h->plt.offset);
3110
3111 switch (r_type)
3112 {
3113 default:
3114 if (h->root.root.string)
3115 name = h->root.root.string;
3116 else
3117 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
3118 NULL);
3119 (*_bfd_error_handler)
3120 (_("%B: relocation %s against STT_GNU_IFUNC "
3121 "symbol `%s' isn't handled by %s"), input_bfd,
3122 x86_64_elf_howto_table[r_type].name,
3123 name, __FUNCTION__);
3124 bfd_set_error (bfd_error_bad_value);
3125 return FALSE;
3126
3127 case R_X86_64_32S:
3128 if (info->shared)
3129 abort ();
3130 goto do_relocation;
3131
3132 case R_X86_64_32:
3133 if (ABI_64_P (output_bfd))
3134 goto do_relocation;
3135 /* FALLTHROUGH */
3136 case R_X86_64_64:
3137 if (rel->r_addend != 0)
3138 {
3139 if (h->root.root.string)
3140 name = h->root.root.string;
3141 else
3142 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
3143 sym, NULL);
3144 (*_bfd_error_handler)
3145 (_("%B: relocation %s against STT_GNU_IFUNC "
3146 "symbol `%s' has non-zero addend: %d"),
3147 input_bfd, x86_64_elf_howto_table[r_type].name,
3148 name, rel->r_addend);
3149 bfd_set_error (bfd_error_bad_value);
3150 return FALSE;
3151 }
3152
3153 /* Generate dynamic relcoation only when there is a
3154 non-GOT reference in a shared object. */
3155 if (info->shared && h->non_got_ref)
3156 {
3157 Elf_Internal_Rela outrel;
3158 asection *sreloc;
3159 bfd_boolean relocate;
3160
3161 /* Need a dynamic relocation to get the real function
3162 address. */
3163 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
3164 info,
3165 input_section,
3166 rel->r_offset);
3167 if (outrel.r_offset == (bfd_vma) -1
3168 || outrel.r_offset == (bfd_vma) -2)
3169 abort ();
3170
3171 outrel.r_offset += (input_section->output_section->vma
3172 + input_section->output_offset);
3173
3174 if (h->dynindx == -1
3175 || h->forced_local
3176 || info->executable)
3177 {
3178 /* This symbol is resolved locally. */
3179 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
3180 outrel.r_addend = relocation;
3181 relocate = FALSE;
3182 }
3183 else
3184 {
3185 outrel.r_info = htab->r_info (h->dynindx, r_type);
3186 outrel.r_addend = 0;
3187 relocate = FALSE;
3188 }
3189
3190 sreloc = htab->elf.irelifunc;
3191 elf_append_rela (output_bfd, sreloc, &outrel);
3192
3193 /* If this reloc is against an external symbol, we
3194 do not want to fiddle with the addend. Otherwise,
3195 we need to include the symbol value so that it
3196 becomes an addend for the dynamic reloc. For an
3197 internal symbol, we have updated addend. */
3198 if (! relocate)
3199 continue;
3200 }
3201 /* FALLTHROUGH */
3202 case R_X86_64_PC32:
3203 case R_X86_64_PC64:
3204 case R_X86_64_PLT32:
3205 goto do_relocation;
3206
3207 case R_X86_64_GOTPCREL:
3208 case R_X86_64_GOTPCREL64:
3209 base_got = htab->elf.sgot;
3210 off = h->got.offset;
3211
3212 if (base_got == NULL)
3213 abort ();
3214
3215 if (off == (bfd_vma) -1)
3216 {
3217 /* We can't use h->got.offset here to save state, or
3218 even just remember the offset, as finish_dynamic_symbol
3219 would use that as offset into .got. */
3220
3221 if (htab->elf.splt != NULL)
3222 {
3223 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3224 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3225 base_got = htab->elf.sgotplt;
3226 }
3227 else
3228 {
3229 plt_index = h->plt.offset / PLT_ENTRY_SIZE;
3230 off = plt_index * GOT_ENTRY_SIZE;
3231 base_got = htab->elf.igotplt;
3232 }
3233
3234 if (h->dynindx == -1
3235 || h->forced_local
3236 || info->symbolic)
3237 {
3238 /* This references the local defitionion. We must
3239 initialize this entry in the global offset table.
3240 Since the offset must always be a multiple of 8,
3241 we use the least significant bit to record
3242 whether we have initialized it already.
3243
3244 When doing a dynamic link, we create a .rela.got
3245 relocation entry to initialize the value. This
3246 is done in the finish_dynamic_symbol routine. */
3247 if ((off & 1) != 0)
3248 off &= ~1;
3249 else
3250 {
3251 bfd_put_64 (output_bfd, relocation,
3252 base_got->contents + off);
3253 /* Note that this is harmless for the GOTPLT64
3254 case, as -1 | 1 still is -1. */
3255 h->got.offset |= 1;
3256 }
3257 }
3258 }
3259
3260 relocation = (base_got->output_section->vma
3261 + base_got->output_offset + off);
3262
3263 goto do_relocation;
3264 }
3265 }
3266
3267 /* When generating a shared object, the relocations handled here are
3268 copied into the output file to be resolved at run time. */
3269 switch (r_type)
3270 {
3271 case R_X86_64_GOT32:
3272 case R_X86_64_GOT64:
3273 /* Relocation is to the entry for this symbol in the global
3274 offset table. */
3275 case R_X86_64_GOTPCREL:
3276 case R_X86_64_GOTPCREL64:
3277 /* Use global offset table entry as symbol value. */
3278 case R_X86_64_GOTPLT64:
3279 /* This is the same as GOT64 for relocation purposes, but
3280 indicates the existence of a PLT entry. The difficulty is,
3281 that we must calculate the GOT slot offset from the PLT
3282 offset, if this symbol got a PLT entry (it was global).
3283 Additionally if it's computed from the PLT entry, then that
3284 GOT offset is relative to .got.plt, not to .got. */
3285 base_got = htab->elf.sgot;
3286
3287 if (htab->elf.sgot == NULL)
3288 abort ();
3289
3290 if (h != NULL)
3291 {
3292 bfd_boolean dyn;
3293
3294 off = h->got.offset;
3295 if (h->needs_plt
3296 && h->plt.offset != (bfd_vma)-1
3297 && off == (bfd_vma)-1)
3298 {
3299 /* We can't use h->got.offset here to save
3300 state, or even just remember the offset, as
3301 finish_dynamic_symbol would use that as offset into
3302 .got. */
3303 bfd_vma plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3304 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3305 base_got = htab->elf.sgotplt;
3306 }
3307
3308 dyn = htab->elf.dynamic_sections_created;
3309
3310 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3311 || (info->shared
3312 && SYMBOL_REFERENCES_LOCAL (info, h))
3313 || (ELF_ST_VISIBILITY (h->other)
3314 && h->root.type == bfd_link_hash_undefweak))
3315 {
3316 /* This is actually a static link, or it is a -Bsymbolic
3317 link and the symbol is defined locally, or the symbol
3318 was forced to be local because of a version file. We
3319 must initialize this entry in the global offset table.
3320 Since the offset must always be a multiple of 8, we
3321 use the least significant bit to record whether we
3322 have initialized it already.
3323
3324 When doing a dynamic link, we create a .rela.got
3325 relocation entry to initialize the value. This is
3326 done in the finish_dynamic_symbol routine. */
3327 if ((off & 1) != 0)
3328 off &= ~1;
3329 else
3330 {
3331 bfd_put_64 (output_bfd, relocation,
3332 base_got->contents + off);
3333 /* Note that this is harmless for the GOTPLT64 case,
3334 as -1 | 1 still is -1. */
3335 h->got.offset |= 1;
3336 }
3337 }
3338 else
3339 unresolved_reloc = FALSE;
3340 }
3341 else
3342 {
3343 if (local_got_offsets == NULL)
3344 abort ();
3345
3346 off = local_got_offsets[r_symndx];
3347
3348 /* The offset must always be a multiple of 8. We use
3349 the least significant bit to record whether we have
3350 already generated the necessary reloc. */
3351 if ((off & 1) != 0)
3352 off &= ~1;
3353 else
3354 {
3355 bfd_put_64 (output_bfd, relocation,
3356 base_got->contents + off);
3357
3358 if (info->shared)
3359 {
3360 asection *s;
3361 Elf_Internal_Rela outrel;
3362
3363 /* We need to generate a R_X86_64_RELATIVE reloc
3364 for the dynamic linker. */
3365 s = htab->elf.srelgot;
3366 if (s == NULL)
3367 abort ();
3368
3369 outrel.r_offset = (base_got->output_section->vma
3370 + base_got->output_offset
3371 + off);
3372 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
3373 outrel.r_addend = relocation;
3374 elf_append_rela (output_bfd, s, &outrel);
3375 }
3376
3377 local_got_offsets[r_symndx] |= 1;
3378 }
3379 }
3380
3381 if (off >= (bfd_vma) -2)
3382 abort ();
3383
3384 relocation = base_got->output_section->vma
3385 + base_got->output_offset + off;
3386 if (r_type != R_X86_64_GOTPCREL && r_type != R_X86_64_GOTPCREL64)
3387 relocation -= htab->elf.sgotplt->output_section->vma
3388 - htab->elf.sgotplt->output_offset;
3389
3390 break;
3391
3392 case R_X86_64_GOTOFF64:
3393 /* Relocation is relative to the start of the global offset
3394 table. */
3395
3396 /* Check to make sure it isn't a protected function symbol
3397 for shared library since it may not be local when used
3398 as function address. */
3399 if (info->shared
3400 && h
3401 && h->def_regular
3402 && h->type == STT_FUNC
3403 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
3404 {
3405 (*_bfd_error_handler)
3406 (_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
3407 input_bfd, h->root.root.string);
3408 bfd_set_error (bfd_error_bad_value);
3409 return FALSE;
3410 }
3411
3412 /* Note that sgot is not involved in this
3413 calculation. We always want the start of .got.plt. If we
3414 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
3415 permitted by the ABI, we might have to change this
3416 calculation. */
3417 relocation -= htab->elf.sgotplt->output_section->vma
3418 + htab->elf.sgotplt->output_offset;
3419 break;
3420
3421 case R_X86_64_GOTPC32:
3422 case R_X86_64_GOTPC64:
3423 /* Use global offset table as symbol value. */
3424 relocation = htab->elf.sgotplt->output_section->vma
3425 + htab->elf.sgotplt->output_offset;
3426 unresolved_reloc = FALSE;
3427 break;
3428
3429 case R_X86_64_PLTOFF64:
3430 /* Relocation is PLT entry relative to GOT. For local
3431 symbols it's the symbol itself relative to GOT. */
3432 if (h != NULL
3433 /* See PLT32 handling. */
3434 && h->plt.offset != (bfd_vma) -1
3435 && htab->elf.splt != NULL)
3436 {
3437 relocation = (htab->elf.splt->output_section->vma
3438 + htab->elf.splt->output_offset
3439 + h->plt.offset);
3440 unresolved_reloc = FALSE;
3441 }
3442
3443 relocation -= htab->elf.sgotplt->output_section->vma
3444 + htab->elf.sgotplt->output_offset;
3445 break;
3446
3447 case R_X86_64_PLT32:
3448 /* Relocation is to the entry for this symbol in the
3449 procedure linkage table. */
3450
3451 /* Resolve a PLT32 reloc against a local symbol directly,
3452 without using the procedure linkage table. */
3453 if (h == NULL)
3454 break;
3455
3456 if (h->plt.offset == (bfd_vma) -1
3457 || htab->elf.splt == NULL)
3458 {
3459 /* We didn't make a PLT entry for this symbol. This
3460 happens when statically linking PIC code, or when
3461 using -Bsymbolic. */
3462 break;
3463 }
3464
3465 relocation = (htab->elf.splt->output_section->vma
3466 + htab->elf.splt->output_offset
3467 + h->plt.offset);
3468 unresolved_reloc = FALSE;
3469 break;
3470
3471 case R_X86_64_PC8:
3472 case R_X86_64_PC16:
3473 case R_X86_64_PC32:
3474 if (info->shared
3475 && ABI_64_P (output_bfd)
3476 && (input_section->flags & SEC_ALLOC) != 0
3477 && (input_section->flags & SEC_READONLY) != 0
3478 && h != NULL)
3479 {
3480 bfd_boolean fail = FALSE;
3481 bfd_boolean branch
3482 = (r_type == R_X86_64_PC32
3483 && is_32bit_relative_branch (contents, rel->r_offset));
3484
3485 if (SYMBOL_REFERENCES_LOCAL (info, h))
3486 {
3487 /* Symbol is referenced locally. Make sure it is
3488 defined locally or for a branch. */
3489 fail = !h->def_regular && !branch;
3490 }
3491 else
3492 {
3493 /* Symbol isn't referenced locally. We only allow
3494 branch to symbol with non-default visibility. */
3495 fail = (!branch
3496 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT);
3497 }
3498
3499 if (fail)
3500 {
3501 const char *fmt;
3502 const char *v;
3503 const char *pic = "";
3504
3505 switch (ELF_ST_VISIBILITY (h->other))
3506 {
3507 case STV_HIDDEN:
3508 v = _("hidden symbol");
3509 break;
3510 case STV_INTERNAL:
3511 v = _("internal symbol");
3512 break;
3513 case STV_PROTECTED:
3514 v = _("protected symbol");
3515 break;
3516 default:
3517 v = _("symbol");
3518 pic = _("; recompile with -fPIC");
3519 break;
3520 }
3521
3522 if (h->def_regular)
3523 fmt = _("%B: relocation %s against %s `%s' can not be used when making a shared object%s");
3524 else
3525 fmt = _("%B: relocation %s against undefined %s `%s' can not be used when making a shared object%s");
3526
3527 (*_bfd_error_handler) (fmt, input_bfd,
3528 x86_64_elf_howto_table[r_type].name,
3529 v, h->root.root.string, pic);
3530 bfd_set_error (bfd_error_bad_value);
3531 return FALSE;
3532 }
3533 }
3534 /* Fall through. */
3535
3536 case R_X86_64_8:
3537 case R_X86_64_16:
3538 case R_X86_64_32:
3539 case R_X86_64_PC64:
3540 case R_X86_64_64:
3541 /* FIXME: The ABI says the linker should make sure the value is
3542 the same when it's zeroextended to 64 bit. */
3543
3544 if ((input_section->flags & SEC_ALLOC) == 0)
3545 break;
3546
3547 if ((info->shared
3548 && (h == NULL
3549 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3550 || h->root.type != bfd_link_hash_undefweak)
3551 && (! IS_X86_64_PCREL_TYPE (r_type)
3552 || ! SYMBOL_CALLS_LOCAL (info, h)))
3553 || (ELIMINATE_COPY_RELOCS
3554 && !info->shared
3555 && h != NULL
3556 && h->dynindx != -1
3557 && !h->non_got_ref
3558 && ((h->def_dynamic
3559 && !h->def_regular)
3560 || h->root.type == bfd_link_hash_undefweak
3561 || h->root.type == bfd_link_hash_undefined)))
3562 {
3563 Elf_Internal_Rela outrel;
3564 bfd_boolean skip, relocate;
3565 asection *sreloc;
3566
3567 /* When generating a shared object, these relocations
3568 are copied into the output file to be resolved at run
3569 time. */
3570 skip = FALSE;
3571 relocate = FALSE;
3572
3573 outrel.r_offset =
3574 _bfd_elf_section_offset (output_bfd, info, input_section,
3575 rel->r_offset);
3576 if (outrel.r_offset == (bfd_vma) -1)
3577 skip = TRUE;
3578 else if (outrel.r_offset == (bfd_vma) -2)
3579 skip = TRUE, relocate = TRUE;
3580
3581 outrel.r_offset += (input_section->output_section->vma
3582 + input_section->output_offset);
3583
3584 if (skip)
3585 memset (&outrel, 0, sizeof outrel);
3586
3587 /* h->dynindx may be -1 if this symbol was marked to
3588 become local. */
3589 else if (h != NULL
3590 && h->dynindx != -1
3591 && (IS_X86_64_PCREL_TYPE (r_type)
3592 || ! info->shared
3593 || ! SYMBOLIC_BIND (info, h)
3594 || ! h->def_regular))
3595 {
3596 outrel.r_info = htab->r_info (h->dynindx, r_type);
3597 outrel.r_addend = rel->r_addend;
3598 }
3599 else
3600 {
3601 /* This symbol is local, or marked to become local. */
3602 if (r_type == htab->pointer_r_type)
3603 {
3604 relocate = TRUE;
3605 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
3606 outrel.r_addend = relocation + rel->r_addend;
3607 }
3608 else if (r_type == R_X86_64_64
3609 && !ABI_64_P (output_bfd))
3610 {
3611 relocate = TRUE;
3612 outrel.r_info = htab->r_info (0,
3613 R_X86_64_RELATIVE64);
3614 outrel.r_addend = relocation + rel->r_addend;
3615 }
3616 else
3617 {
3618 long sindx;
3619
3620 if (bfd_is_abs_section (sec))
3621 sindx = 0;
3622 else if (sec == NULL || sec->owner == NULL)
3623 {
3624 bfd_set_error (bfd_error_bad_value);
3625 return FALSE;
3626 }
3627 else
3628 {
3629 asection *osec;
3630
3631 /* We are turning this relocation into one
3632 against a section symbol. It would be
3633 proper to subtract the symbol's value,
3634 osec->vma, from the emitted reloc addend,
3635 but ld.so expects buggy relocs. */
3636 osec = sec->output_section;
3637 sindx = elf_section_data (osec)->dynindx;
3638 if (sindx == 0)
3639 {
3640 asection *oi = htab->elf.text_index_section;
3641 sindx = elf_section_data (oi)->dynindx;
3642 }
3643 BFD_ASSERT (sindx != 0);
3644 }
3645
3646 outrel.r_info = htab->r_info (sindx, r_type);
3647 outrel.r_addend = relocation + rel->r_addend;
3648 }
3649 }
3650
3651 sreloc = elf_section_data (input_section)->sreloc;
3652
3653 if (sreloc == NULL || sreloc->contents == NULL)
3654 {
3655 r = bfd_reloc_notsupported;
3656 goto check_relocation_error;
3657 }
3658
3659 elf_append_rela (output_bfd, sreloc, &outrel);
3660
3661 /* If this reloc is against an external symbol, we do
3662 not want to fiddle with the addend. Otherwise, we
3663 need to include the symbol value so that it becomes
3664 an addend for the dynamic reloc. */
3665 if (! relocate)
3666 continue;
3667 }
3668
3669 break;
3670
3671 case R_X86_64_TLSGD:
3672 case R_X86_64_GOTPC32_TLSDESC:
3673 case R_X86_64_TLSDESC_CALL:
3674 case R_X86_64_GOTTPOFF:
3675 tls_type = GOT_UNKNOWN;
3676 if (h == NULL && local_got_offsets)
3677 tls_type = elf_x86_64_local_got_tls_type (input_bfd) [r_symndx];
3678 else if (h != NULL)
3679 tls_type = elf_x86_64_hash_entry (h)->tls_type;
3680
3681 if (! elf_x86_64_tls_transition (info, input_bfd,
3682 input_section, contents,
3683 symtab_hdr, sym_hashes,
3684 &r_type, tls_type, rel,
3685 relend, h, r_symndx))
3686 return FALSE;
3687
3688 if (r_type == R_X86_64_TPOFF32)
3689 {
3690 bfd_vma roff = rel->r_offset;
3691
3692 BFD_ASSERT (! unresolved_reloc);
3693
3694 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
3695 {
3696 /* GD->LE transition. For 64bit, change
3697 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3698 .word 0x6666; rex64; call __tls_get_addr
3699 into:
3700 movq %fs:0, %rax
3701 leaq foo@tpoff(%rax), %rax
3702 For 32bit, change
3703 leaq foo@tlsgd(%rip), %rdi
3704 .word 0x6666; rex64; call __tls_get_addr
3705 into:
3706 movl %fs:0, %eax
3707 leaq foo@tpoff(%rax), %rax */
3708 if (ABI_64_P (output_bfd))
3709 memcpy (contents + roff - 4,
3710 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
3711 16);
3712 else
3713 memcpy (contents + roff - 3,
3714 "\x64\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
3715 15);
3716 bfd_put_32 (output_bfd,
3717 elf_x86_64_tpoff (info, relocation),
3718 contents + roff + 8);
3719 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
3720 rel++;
3721 continue;
3722 }
3723 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
3724 {
3725 /* GDesc -> LE transition.
3726 It's originally something like:
3727 leaq x@tlsdesc(%rip), %rax
3728
3729 Change it to:
3730 movl $x@tpoff, %rax. */
3731
3732 unsigned int val, type;
3733
3734 type = bfd_get_8 (input_bfd, contents + roff - 3);
3735 val = bfd_get_8 (input_bfd, contents + roff - 1);
3736 bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1),
3737 contents + roff - 3);
3738 bfd_put_8 (output_bfd, 0xc7, contents + roff - 2);
3739 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
3740 contents + roff - 1);
3741 bfd_put_32 (output_bfd,
3742 elf_x86_64_tpoff (info, relocation),
3743 contents + roff);
3744 continue;
3745 }
3746 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
3747 {
3748 /* GDesc -> LE transition.
3749 It's originally:
3750 call *(%rax)
3751 Turn it into:
3752 xchg %ax,%ax. */
3753 bfd_put_8 (output_bfd, 0x66, contents + roff);
3754 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
3755 continue;
3756 }
3757 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTTPOFF)
3758 {
3759 /* IE->LE transition:
3760 Originally it can be one of:
3761 movq foo@gottpoff(%rip), %reg
3762 addq foo@gottpoff(%rip), %reg
3763 We change it into:
3764 movq $foo, %reg
3765 leaq foo(%reg), %reg
3766 addq $foo, %reg. */
3767
3768 unsigned int val, type, reg;
3769
3770 val = bfd_get_8 (input_bfd, contents + roff - 3);
3771 type = bfd_get_8 (input_bfd, contents + roff - 2);
3772 reg = bfd_get_8 (input_bfd, contents + roff - 1);
3773 reg >>= 3;
3774 if (type == 0x8b)
3775 {
3776 /* movq */
3777 if (val == 0x4c)
3778 bfd_put_8 (output_bfd, 0x49,
3779 contents + roff - 3);
3780 else if (!ABI_64_P (output_bfd) && val == 0x44)
3781 bfd_put_8 (output_bfd, 0x41,
3782 contents + roff - 3);
3783 bfd_put_8 (output_bfd, 0xc7,
3784 contents + roff - 2);
3785 bfd_put_8 (output_bfd, 0xc0 | reg,
3786 contents + roff - 1);
3787 }
3788 else if (reg == 4)
3789 {
3790 /* addq -> addq - addressing with %rsp/%r12 is
3791 special */
3792 if (val == 0x4c)
3793 bfd_put_8 (output_bfd, 0x49,
3794 contents + roff - 3);
3795 else if (!ABI_64_P (output_bfd) && val == 0x44)
3796 bfd_put_8 (output_bfd, 0x41,
3797 contents + roff - 3);
3798 bfd_put_8 (output_bfd, 0x81,
3799 contents + roff - 2);
3800 bfd_put_8 (output_bfd, 0xc0 | reg,
3801 contents + roff - 1);
3802 }
3803 else
3804 {
3805 /* addq -> leaq */
3806 if (val == 0x4c)
3807 bfd_put_8 (output_bfd, 0x4d,
3808 contents + roff - 3);
3809 else if (!ABI_64_P (output_bfd) && val == 0x44)
3810 bfd_put_8 (output_bfd, 0x45,
3811 contents + roff - 3);
3812 bfd_put_8 (output_bfd, 0x8d,
3813 contents + roff - 2);
3814 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
3815 contents + roff - 1);
3816 }
3817 bfd_put_32 (output_bfd,
3818 elf_x86_64_tpoff (info, relocation),
3819 contents + roff);
3820 continue;
3821 }
3822 else
3823 BFD_ASSERT (FALSE);
3824 }
3825
3826 if (htab->elf.sgot == NULL)
3827 abort ();
3828
3829 if (h != NULL)
3830 {
3831 off = h->got.offset;
3832 offplt = elf_x86_64_hash_entry (h)->tlsdesc_got;
3833 }
3834 else
3835 {
3836 if (local_got_offsets == NULL)
3837 abort ();
3838
3839 off = local_got_offsets[r_symndx];
3840 offplt = local_tlsdesc_gotents[r_symndx];
3841 }
3842
3843 if ((off & 1) != 0)
3844 off &= ~1;
3845 else
3846 {
3847 Elf_Internal_Rela outrel;
3848 int dr_type, indx;
3849 asection *sreloc;
3850
3851 if (htab->elf.srelgot == NULL)
3852 abort ();
3853
3854 indx = h && h->dynindx != -1 ? h->dynindx : 0;
3855
3856 if (GOT_TLS_GDESC_P (tls_type))
3857 {
3858 outrel.r_info = htab->r_info (indx, R_X86_64_TLSDESC);
3859 BFD_ASSERT (htab->sgotplt_jump_table_size + offplt
3860 + 2 * GOT_ENTRY_SIZE <= htab->elf.sgotplt->size);
3861 outrel.r_offset = (htab->elf.sgotplt->output_section->vma
3862 + htab->elf.sgotplt->output_offset
3863 + offplt
3864 + htab->sgotplt_jump_table_size);
3865 sreloc = htab->elf.srelplt;
3866 if (indx == 0)
3867 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
3868 else
3869 outrel.r_addend = 0;
3870 elf_append_rela (output_bfd, sreloc, &outrel);
3871 }
3872
3873 sreloc = htab->elf.srelgot;
3874
3875 outrel.r_offset = (htab->elf.sgot->output_section->vma
3876 + htab->elf.sgot->output_offset + off);
3877
3878 if (GOT_TLS_GD_P (tls_type))
3879 dr_type = R_X86_64_DTPMOD64;
3880 else if (GOT_TLS_GDESC_P (tls_type))
3881 goto dr_done;
3882 else
3883 dr_type = R_X86_64_TPOFF64;
3884
3885 bfd_put_64 (output_bfd, 0, htab->elf.sgot->contents + off);
3886 outrel.r_addend = 0;
3887 if ((dr_type == R_X86_64_TPOFF64
3888 || dr_type == R_X86_64_TLSDESC) && indx == 0)
3889 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
3890 outrel.r_info = htab->r_info (indx, dr_type);
3891
3892 elf_append_rela (output_bfd, sreloc, &outrel);
3893
3894 if (GOT_TLS_GD_P (tls_type))
3895 {
3896 if (indx == 0)
3897 {
3898 BFD_ASSERT (! unresolved_reloc);
3899 bfd_put_64 (output_bfd,
3900 relocation - elf_x86_64_dtpoff_base (info),
3901 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
3902 }
3903 else
3904 {
3905 bfd_put_64 (output_bfd, 0,
3906 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
3907 outrel.r_info = htab->r_info (indx,
3908 R_X86_64_DTPOFF64);
3909 outrel.r_offset += GOT_ENTRY_SIZE;
3910 elf_append_rela (output_bfd, sreloc,
3911 &outrel);
3912 }
3913 }
3914
3915 dr_done:
3916 if (h != NULL)
3917 h->got.offset |= 1;
3918 else
3919 local_got_offsets[r_symndx] |= 1;
3920 }
3921
3922 if (off >= (bfd_vma) -2
3923 && ! GOT_TLS_GDESC_P (tls_type))
3924 abort ();
3925 if (r_type == ELF32_R_TYPE (rel->r_info))
3926 {
3927 if (r_type == R_X86_64_GOTPC32_TLSDESC
3928 || r_type == R_X86_64_TLSDESC_CALL)
3929 relocation = htab->elf.sgotplt->output_section->vma
3930 + htab->elf.sgotplt->output_offset
3931 + offplt + htab->sgotplt_jump_table_size;
3932 else
3933 relocation = htab->elf.sgot->output_section->vma
3934 + htab->elf.sgot->output_offset + off;
3935 unresolved_reloc = FALSE;
3936 }
3937 else
3938 {
3939 bfd_vma roff = rel->r_offset;
3940
3941 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
3942 {
3943 /* GD->IE transition. For 64bit, change
3944 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3945 .word 0x6666; rex64; call __tls_get_addr@plt
3946 into:
3947 movq %fs:0, %rax
3948 addq foo@gottpoff(%rip), %rax
3949 For 32bit, change
3950 leaq foo@tlsgd(%rip), %rdi
3951 .word 0x6666; rex64; call __tls_get_addr@plt
3952 into:
3953 movl %fs:0, %eax
3954 addq foo@gottpoff(%rip), %rax */
3955 if (ABI_64_P (output_bfd))
3956 memcpy (contents + roff - 4,
3957 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
3958 16);
3959 else
3960 memcpy (contents + roff - 3,
3961 "\x64\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
3962 15);
3963
3964 relocation = (htab->elf.sgot->output_section->vma
3965 + htab->elf.sgot->output_offset + off
3966 - roff
3967 - input_section->output_section->vma
3968 - input_section->output_offset
3969 - 12);
3970 bfd_put_32 (output_bfd, relocation,
3971 contents + roff + 8);
3972 /* Skip R_X86_64_PLT32. */
3973 rel++;
3974 continue;
3975 }
3976 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
3977 {
3978 /* GDesc -> IE transition.
3979 It's originally something like:
3980 leaq x@tlsdesc(%rip), %rax
3981
3982 Change it to:
3983 movq x@gottpoff(%rip), %rax # before xchg %ax,%ax. */
3984
3985 /* Now modify the instruction as appropriate. To
3986 turn a leaq into a movq in the form we use it, it
3987 suffices to change the second byte from 0x8d to
3988 0x8b. */
3989 bfd_put_8 (output_bfd, 0x8b, contents + roff - 2);
3990
3991 bfd_put_32 (output_bfd,
3992 htab->elf.sgot->output_section->vma
3993 + htab->elf.sgot->output_offset + off
3994 - rel->r_offset
3995 - input_section->output_section->vma
3996 - input_section->output_offset
3997 - 4,
3998 contents + roff);
3999 continue;
4000 }
4001 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
4002 {
4003 /* GDesc -> IE transition.
4004 It's originally:
4005 call *(%rax)
4006
4007 Change it to:
4008 xchg %ax, %ax. */
4009
4010 bfd_put_8 (output_bfd, 0x66, contents + roff);
4011 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
4012 continue;
4013 }
4014 else
4015 BFD_ASSERT (FALSE);
4016 }
4017 break;
4018
4019 case R_X86_64_TLSLD:
4020 if (! elf_x86_64_tls_transition (info, input_bfd,
4021 input_section, contents,
4022 symtab_hdr, sym_hashes,
4023 &r_type, GOT_UNKNOWN,
4024 rel, relend, h, r_symndx))
4025 return FALSE;
4026
4027 if (r_type != R_X86_64_TLSLD)
4028 {
4029 /* LD->LE transition:
4030 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
4031 For 64bit, we change it into:
4032 .word 0x6666; .byte 0x66; movq %fs:0, %rax.
4033 For 32bit, we change it into:
4034 nopl 0x0(%rax); movl %fs:0, %eax. */
4035
4036 BFD_ASSERT (r_type == R_X86_64_TPOFF32);
4037 if (ABI_64_P (output_bfd))
4038 memcpy (contents + rel->r_offset - 3,
4039 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
4040 else
4041 memcpy (contents + rel->r_offset - 3,
4042 "\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0", 12);
4043 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
4044 rel++;
4045 continue;
4046 }
4047
4048 if (htab->elf.sgot == NULL)
4049 abort ();
4050
4051 off = htab->tls_ld_got.offset;
4052 if (off & 1)
4053 off &= ~1;
4054 else
4055 {
4056 Elf_Internal_Rela outrel;
4057
4058 if (htab->elf.srelgot == NULL)
4059 abort ();
4060
4061 outrel.r_offset = (htab->elf.sgot->output_section->vma
4062 + htab->elf.sgot->output_offset + off);
4063
4064 bfd_put_64 (output_bfd, 0,
4065 htab->elf.sgot->contents + off);
4066 bfd_put_64 (output_bfd, 0,
4067 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4068 outrel.r_info = htab->r_info (0, R_X86_64_DTPMOD64);
4069 outrel.r_addend = 0;
4070 elf_append_rela (output_bfd, htab->elf.srelgot,
4071 &outrel);
4072 htab->tls_ld_got.offset |= 1;
4073 }
4074 relocation = htab->elf.sgot->output_section->vma
4075 + htab->elf.sgot->output_offset + off;
4076 unresolved_reloc = FALSE;
4077 break;
4078
4079 case R_X86_64_DTPOFF32:
4080 if (!info->executable|| (input_section->flags & SEC_CODE) == 0)
4081 relocation -= elf_x86_64_dtpoff_base (info);
4082 else
4083 relocation = elf_x86_64_tpoff (info, relocation);
4084 break;
4085
4086 case R_X86_64_TPOFF32:
4087 case R_X86_64_TPOFF64:
4088 BFD_ASSERT (info->executable);
4089 relocation = elf_x86_64_tpoff (info, relocation);
4090 break;
4091
4092 default:
4093 break;
4094 }
4095
4096 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
4097 because such sections are not SEC_ALLOC and thus ld.so will
4098 not process them. */
4099 if (unresolved_reloc
4100 && !((input_section->flags & SEC_DEBUGGING) != 0
4101 && h->def_dynamic)
4102 && _bfd_elf_section_offset (output_bfd, info, input_section,
4103 rel->r_offset) != (bfd_vma) -1)
4104 (*_bfd_error_handler)
4105 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
4106 input_bfd,
4107 input_section,
4108 (long) rel->r_offset,
4109 howto->name,
4110 h->root.root.string);
4111
4112 do_relocation:
4113 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
4114 contents, rel->r_offset,
4115 relocation, rel->r_addend);
4116
4117 check_relocation_error:
4118 if (r != bfd_reloc_ok)
4119 {
4120 const char *name;
4121
4122 if (h != NULL)
4123 name = h->root.root.string;
4124 else
4125 {
4126 name = bfd_elf_string_from_elf_section (input_bfd,
4127 symtab_hdr->sh_link,
4128 sym->st_name);
4129 if (name == NULL)
4130 return FALSE;
4131 if (*name == '\0')
4132 name = bfd_section_name (input_bfd, sec);
4133 }
4134
4135 if (r == bfd_reloc_overflow)
4136 {
4137 if (! ((*info->callbacks->reloc_overflow)
4138 (info, (h ? &h->root : NULL), name, howto->name,
4139 (bfd_vma) 0, input_bfd, input_section,
4140 rel->r_offset)))
4141 return FALSE;
4142 }
4143 else
4144 {
4145 (*_bfd_error_handler)
4146 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
4147 input_bfd, input_section,
4148 (long) rel->r_offset, name, (int) r);
4149 return FALSE;
4150 }
4151 }
4152 }
4153
4154 return TRUE;
4155 }
4156
4157 /* Finish up dynamic symbol handling. We set the contents of various
4158 dynamic sections here. */
4159
4160 static bfd_boolean
4161 elf_x86_64_finish_dynamic_symbol (bfd *output_bfd,
4162 struct bfd_link_info *info,
4163 struct elf_link_hash_entry *h,
4164 Elf_Internal_Sym *sym)
4165 {
4166 struct elf_x86_64_link_hash_table *htab;
4167
4168 htab = elf_x86_64_hash_table (info);
4169 if (htab == NULL)
4170 return FALSE;
4171
4172 if (h->plt.offset != (bfd_vma) -1)
4173 {
4174 bfd_vma plt_index;
4175 bfd_vma got_offset;
4176 Elf_Internal_Rela rela;
4177 bfd_byte *loc;
4178 asection *plt, *gotplt, *relplt;
4179 const struct elf_backend_data *bed;
4180
4181 /* When building a static executable, use .iplt, .igot.plt and
4182 .rela.iplt sections for STT_GNU_IFUNC symbols. */
4183 if (htab->elf.splt != NULL)
4184 {
4185 plt = htab->elf.splt;
4186 gotplt = htab->elf.sgotplt;
4187 relplt = htab->elf.srelplt;
4188 }
4189 else
4190 {
4191 plt = htab->elf.iplt;
4192 gotplt = htab->elf.igotplt;
4193 relplt = htab->elf.irelplt;
4194 }
4195
4196 /* This symbol has an entry in the procedure linkage table. Set
4197 it up. */
4198 if ((h->dynindx == -1
4199 && !((h->forced_local || info->executable)
4200 && h->def_regular
4201 && h->type == STT_GNU_IFUNC))
4202 || plt == NULL
4203 || gotplt == NULL
4204 || relplt == NULL)
4205 return FALSE;
4206
4207 /* Get the index in the procedure linkage table which
4208 corresponds to this symbol. This is the index of this symbol
4209 in all the symbols for which we are making plt entries. The
4210 first entry in the procedure linkage table is reserved.
4211
4212 Get the offset into the .got table of the entry that
4213 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
4214 bytes. The first three are reserved for the dynamic linker.
4215
4216 For static executables, we don't reserve anything. */
4217
4218 if (plt == htab->elf.splt)
4219 {
4220 got_offset = h->plt.offset / PLT_ENTRY_SIZE - 1;
4221 got_offset = (got_offset + 3) * GOT_ENTRY_SIZE;
4222 }
4223 else
4224 {
4225 got_offset = h->plt.offset / PLT_ENTRY_SIZE;
4226 got_offset = got_offset * GOT_ENTRY_SIZE;
4227 }
4228
4229 /* Fill in the entry in the procedure linkage table. */
4230 memcpy (plt->contents + h->plt.offset, elf_x86_64_plt_entry,
4231 PLT_ENTRY_SIZE);
4232
4233 /* Insert the relocation positions of the plt section. The magic
4234 numbers at the end of the statements are the positions of the
4235 relocations in the plt section. */
4236 /* Put offset for jmp *name@GOTPCREL(%rip), since the
4237 instruction uses 6 bytes, subtract this value. */
4238 bfd_put_32 (output_bfd,
4239 (gotplt->output_section->vma
4240 + gotplt->output_offset
4241 + got_offset
4242 - plt->output_section->vma
4243 - plt->output_offset
4244 - h->plt.offset
4245 - 6),
4246 plt->contents + h->plt.offset + 2);
4247
4248 /* Fill in the entry in the global offset table, initially this
4249 points to the pushq instruction in the PLT which is at offset 6. */
4250 bfd_put_64 (output_bfd, (plt->output_section->vma
4251 + plt->output_offset
4252 + h->plt.offset + 6),
4253 gotplt->contents + got_offset);
4254
4255 /* Fill in the entry in the .rela.plt section. */
4256 rela.r_offset = (gotplt->output_section->vma
4257 + gotplt->output_offset
4258 + got_offset);
4259 if (h->dynindx == -1
4260 || ((info->executable
4261 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
4262 && h->def_regular
4263 && h->type == STT_GNU_IFUNC))
4264 {
4265 /* If an STT_GNU_IFUNC symbol is locally defined, generate
4266 R_X86_64_IRELATIVE instead of R_X86_64_JUMP_SLOT. */
4267 rela.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
4268 rela.r_addend = (h->root.u.def.value
4269 + h->root.u.def.section->output_section->vma
4270 + h->root.u.def.section->output_offset);
4271 /* R_X86_64_IRELATIVE comes last. */
4272 plt_index = htab->next_irelative_index--;
4273 }
4274 else
4275 {
4276 rela.r_info = htab->r_info (h->dynindx, R_X86_64_JUMP_SLOT);
4277 rela.r_addend = 0;
4278 plt_index = htab->next_jump_slot_index++;
4279 }
4280
4281 /* Don't fill PLT entry for static executables. */
4282 if (plt == htab->elf.splt)
4283 {
4284 /* Put relocation index. */
4285 bfd_put_32 (output_bfd, plt_index,
4286 plt->contents + h->plt.offset + 7);
4287 /* Put offset for jmp .PLT0. */
4288 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
4289 plt->contents + h->plt.offset + 12);
4290 }
4291
4292 bed = get_elf_backend_data (output_bfd);
4293 loc = relplt->contents + plt_index * bed->s->sizeof_rela;
4294 bed->s->swap_reloca_out (output_bfd, &rela, loc);
4295
4296 if (!h->def_regular)
4297 {
4298 /* Mark the symbol as undefined, rather than as defined in
4299 the .plt section. Leave the value if there were any
4300 relocations where pointer equality matters (this is a clue
4301 for the dynamic linker, to make function pointer
4302 comparisons work between an application and shared
4303 library), otherwise set it to zero. If a function is only
4304 called from a binary, there is no need to slow down
4305 shared libraries because of that. */
4306 sym->st_shndx = SHN_UNDEF;
4307 if (!h->pointer_equality_needed)
4308 sym->st_value = 0;
4309 }
4310 }
4311
4312 if (h->got.offset != (bfd_vma) -1
4313 && ! GOT_TLS_GD_ANY_P (elf_x86_64_hash_entry (h)->tls_type)
4314 && elf_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
4315 {
4316 Elf_Internal_Rela rela;
4317
4318 /* This symbol has an entry in the global offset table. Set it
4319 up. */
4320 if (htab->elf.sgot == NULL || htab->elf.srelgot == NULL)
4321 abort ();
4322
4323 rela.r_offset = (htab->elf.sgot->output_section->vma
4324 + htab->elf.sgot->output_offset
4325 + (h->got.offset &~ (bfd_vma) 1));
4326
4327 /* If this is a static link, or it is a -Bsymbolic link and the
4328 symbol is defined locally or was forced to be local because
4329 of a version file, we just want to emit a RELATIVE reloc.
4330 The entry in the global offset table will already have been
4331 initialized in the relocate_section function. */
4332 if (h->def_regular
4333 && h->type == STT_GNU_IFUNC)
4334 {
4335 if (info->shared)
4336 {
4337 /* Generate R_X86_64_GLOB_DAT. */
4338 goto do_glob_dat;
4339 }
4340 else
4341 {
4342 asection *plt;
4343
4344 if (!h->pointer_equality_needed)
4345 abort ();
4346
4347 /* For non-shared object, we can't use .got.plt, which
4348 contains the real function addres if we need pointer
4349 equality. We load the GOT entry with the PLT entry. */
4350 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
4351 bfd_put_64 (output_bfd, (plt->output_section->vma
4352 + plt->output_offset
4353 + h->plt.offset),
4354 htab->elf.sgot->contents + h->got.offset);
4355 return TRUE;
4356 }
4357 }
4358 else if (info->shared
4359 && SYMBOL_REFERENCES_LOCAL (info, h))
4360 {
4361 if (!h->def_regular)
4362 return FALSE;
4363 BFD_ASSERT((h->got.offset & 1) != 0);
4364 rela.r_info = htab->r_info (0, R_X86_64_RELATIVE);
4365 rela.r_addend = (h->root.u.def.value
4366 + h->root.u.def.section->output_section->vma
4367 + h->root.u.def.section->output_offset);
4368 }
4369 else
4370 {
4371 BFD_ASSERT((h->got.offset & 1) == 0);
4372 do_glob_dat:
4373 bfd_put_64 (output_bfd, (bfd_vma) 0,
4374 htab->elf.sgot->contents + h->got.offset);
4375 rela.r_info = htab->r_info (h->dynindx, R_X86_64_GLOB_DAT);
4376 rela.r_addend = 0;
4377 }
4378
4379 elf_append_rela (output_bfd, htab->elf.srelgot, &rela);
4380 }
4381
4382 if (h->needs_copy)
4383 {
4384 Elf_Internal_Rela rela;
4385
4386 /* This symbol needs a copy reloc. Set it up. */
4387
4388 if (h->dynindx == -1
4389 || (h->root.type != bfd_link_hash_defined
4390 && h->root.type != bfd_link_hash_defweak)
4391 || htab->srelbss == NULL)
4392 abort ();
4393
4394 rela.r_offset = (h->root.u.def.value
4395 + h->root.u.def.section->output_section->vma
4396 + h->root.u.def.section->output_offset);
4397 rela.r_info = htab->r_info (h->dynindx, R_X86_64_COPY);
4398 rela.r_addend = 0;
4399 elf_append_rela (output_bfd, htab->srelbss, &rela);
4400 }
4401
4402 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
4403 be NULL for local symbols. */
4404 if (sym != NULL
4405 && (strcmp (h->root.root.string, "_DYNAMIC") == 0
4406 || h == htab->elf.hgot))
4407 sym->st_shndx = SHN_ABS;
4408
4409 return TRUE;
4410 }
4411
4412 /* Finish up local dynamic symbol handling. We set the contents of
4413 various dynamic sections here. */
4414
4415 static bfd_boolean
4416 elf_x86_64_finish_local_dynamic_symbol (void **slot, void *inf)
4417 {
4418 struct elf_link_hash_entry *h
4419 = (struct elf_link_hash_entry *) *slot;
4420 struct bfd_link_info *info
4421 = (struct bfd_link_info *) inf;
4422
4423 return elf_x86_64_finish_dynamic_symbol (info->output_bfd,
4424 info, h, NULL);
4425 }
4426
4427 /* Used to decide how to sort relocs in an optimal manner for the
4428 dynamic linker, before writing them out. */
4429
4430 static enum elf_reloc_type_class
4431 elf_x86_64_reloc_type_class (const Elf_Internal_Rela *rela)
4432 {
4433 switch ((int) ELF32_R_TYPE (rela->r_info))
4434 {
4435 case R_X86_64_RELATIVE:
4436 return reloc_class_relative;
4437 case R_X86_64_JUMP_SLOT:
4438 return reloc_class_plt;
4439 case R_X86_64_COPY:
4440 return reloc_class_copy;
4441 default:
4442 return reloc_class_normal;
4443 }
4444 }
4445
4446 /* Finish up the dynamic sections. */
4447
4448 static bfd_boolean
4449 elf_x86_64_finish_dynamic_sections (bfd *output_bfd,
4450 struct bfd_link_info *info)
4451 {
4452 struct elf_x86_64_link_hash_table *htab;
4453 bfd *dynobj;
4454 asection *sdyn;
4455
4456 htab = elf_x86_64_hash_table (info);
4457 if (htab == NULL)
4458 return FALSE;
4459
4460 dynobj = htab->elf.dynobj;
4461 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4462
4463 if (htab->elf.dynamic_sections_created)
4464 {
4465 bfd_byte *dyncon, *dynconend;
4466 const struct elf_backend_data *bed;
4467 bfd_size_type sizeof_dyn;
4468
4469 if (sdyn == NULL || htab->elf.sgot == NULL)
4470 abort ();
4471
4472 bed = get_elf_backend_data (dynobj);
4473 sizeof_dyn = bed->s->sizeof_dyn;
4474 dyncon = sdyn->contents;
4475 dynconend = sdyn->contents + sdyn->size;
4476 for (; dyncon < dynconend; dyncon += sizeof_dyn)
4477 {
4478 Elf_Internal_Dyn dyn;
4479 asection *s;
4480
4481 (*bed->s->swap_dyn_in) (dynobj, dyncon, &dyn);
4482
4483 switch (dyn.d_tag)
4484 {
4485 default:
4486 continue;
4487
4488 case DT_PLTGOT:
4489 s = htab->elf.sgotplt;
4490 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4491 break;
4492
4493 case DT_JMPREL:
4494 dyn.d_un.d_ptr = htab->elf.srelplt->output_section->vma;
4495 break;
4496
4497 case DT_PLTRELSZ:
4498 s = htab->elf.srelplt->output_section;
4499 dyn.d_un.d_val = s->size;
4500 break;
4501
4502 case DT_RELASZ:
4503 /* The procedure linkage table relocs (DT_JMPREL) should
4504 not be included in the overall relocs (DT_RELA).
4505 Therefore, we override the DT_RELASZ entry here to
4506 make it not include the JMPREL relocs. Since the
4507 linker script arranges for .rela.plt to follow all
4508 other relocation sections, we don't have to worry
4509 about changing the DT_RELA entry. */
4510 if (htab->elf.srelplt != NULL)
4511 {
4512 s = htab->elf.srelplt->output_section;
4513 dyn.d_un.d_val -= s->size;
4514 }
4515 break;
4516
4517 case DT_TLSDESC_PLT:
4518 s = htab->elf.splt;
4519 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4520 + htab->tlsdesc_plt;
4521 break;
4522
4523 case DT_TLSDESC_GOT:
4524 s = htab->elf.sgot;
4525 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4526 + htab->tlsdesc_got;
4527 break;
4528 }
4529
4530 (*bed->s->swap_dyn_out) (output_bfd, &dyn, dyncon);
4531 }
4532
4533 /* Fill in the special first entry in the procedure linkage table. */
4534 if (htab->elf.splt && htab->elf.splt->size > 0)
4535 {
4536 /* Fill in the first entry in the procedure linkage table. */
4537 memcpy (htab->elf.splt->contents, elf_x86_64_plt0_entry,
4538 PLT_ENTRY_SIZE);
4539 /* Add offset for pushq GOT+8(%rip), since the instruction
4540 uses 6 bytes subtract this value. */
4541 bfd_put_32 (output_bfd,
4542 (htab->elf.sgotplt->output_section->vma
4543 + htab->elf.sgotplt->output_offset
4544 + 8
4545 - htab->elf.splt->output_section->vma
4546 - htab->elf.splt->output_offset
4547 - 6),
4548 htab->elf.splt->contents + 2);
4549 /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
4550 the end of the instruction. */
4551 bfd_put_32 (output_bfd,
4552 (htab->elf.sgotplt->output_section->vma
4553 + htab->elf.sgotplt->output_offset
4554 + 16
4555 - htab->elf.splt->output_section->vma
4556 - htab->elf.splt->output_offset
4557 - 12),
4558 htab->elf.splt->contents + 8);
4559
4560 elf_section_data (htab->elf.splt->output_section)->this_hdr.sh_entsize =
4561 PLT_ENTRY_SIZE;
4562
4563 if (htab->tlsdesc_plt)
4564 {
4565 bfd_put_64 (output_bfd, (bfd_vma) 0,
4566 htab->elf.sgot->contents + htab->tlsdesc_got);
4567
4568 memcpy (htab->elf.splt->contents + htab->tlsdesc_plt,
4569 elf_x86_64_plt0_entry,
4570 PLT_ENTRY_SIZE);
4571
4572 /* Add offset for pushq GOT+8(%rip), since the
4573 instruction uses 6 bytes subtract this value. */
4574 bfd_put_32 (output_bfd,
4575 (htab->elf.sgotplt->output_section->vma
4576 + htab->elf.sgotplt->output_offset
4577 + 8
4578 - htab->elf.splt->output_section->vma
4579 - htab->elf.splt->output_offset
4580 - htab->tlsdesc_plt
4581 - 6),
4582 htab->elf.splt->contents + htab->tlsdesc_plt + 2);
4583 /* Add offset for jmp *GOT+TDG(%rip), where TGD stands for
4584 htab->tlsdesc_got. The 12 is the offset to the end of
4585 the instruction. */
4586 bfd_put_32 (output_bfd,
4587 (htab->elf.sgot->output_section->vma
4588 + htab->elf.sgot->output_offset
4589 + htab->tlsdesc_got
4590 - htab->elf.splt->output_section->vma
4591 - htab->elf.splt->output_offset
4592 - htab->tlsdesc_plt
4593 - 12),
4594 htab->elf.splt->contents + htab->tlsdesc_plt + 8);
4595 }
4596 }
4597 }
4598
4599 if (htab->elf.sgotplt)
4600 {
4601 if (bfd_is_abs_section (htab->elf.sgotplt->output_section))
4602 {
4603 (*_bfd_error_handler)
4604 (_("discarded output section: `%A'"), htab->elf.sgotplt);
4605 return FALSE;
4606 }
4607
4608 /* Fill in the first three entries in the global offset table. */
4609 if (htab->elf.sgotplt->size > 0)
4610 {
4611 /* Set the first entry in the global offset table to the address of
4612 the dynamic section. */
4613 if (sdyn == NULL)
4614 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents);
4615 else
4616 bfd_put_64 (output_bfd,
4617 sdyn->output_section->vma + sdyn->output_offset,
4618 htab->elf.sgotplt->contents);
4619 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
4620 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
4621 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE*2);
4622 }
4623
4624 elf_section_data (htab->elf.sgotplt->output_section)->this_hdr.sh_entsize =
4625 GOT_ENTRY_SIZE;
4626 }
4627
4628 /* Adjust .eh_frame for .plt section. */
4629 if (htab->plt_eh_frame != NULL)
4630 {
4631 if (htab->elf.splt != NULL
4632 && htab->elf.splt->size != 0
4633 && (htab->elf.splt->flags & SEC_EXCLUDE) == 0
4634 && htab->elf.splt->output_section != NULL
4635 && htab->plt_eh_frame->output_section != NULL)
4636 {
4637 bfd_vma plt_start = htab->elf.splt->output_section->vma;
4638 bfd_vma eh_frame_start = htab->plt_eh_frame->output_section->vma
4639 + htab->plt_eh_frame->output_offset
4640 + PLT_FDE_START_OFFSET;
4641 bfd_put_signed_32 (dynobj, plt_start - eh_frame_start,
4642 htab->plt_eh_frame->contents
4643 + PLT_FDE_START_OFFSET);
4644 }
4645 if (htab->plt_eh_frame->sec_info_type
4646 == ELF_INFO_TYPE_EH_FRAME)
4647 {
4648 if (! _bfd_elf_write_section_eh_frame (output_bfd, info,
4649 htab->plt_eh_frame,
4650 htab->plt_eh_frame->contents))
4651 return FALSE;
4652 }
4653 }
4654
4655 if (htab->elf.sgot && htab->elf.sgot->size > 0)
4656 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize
4657 = GOT_ENTRY_SIZE;
4658
4659 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
4660 htab_traverse (htab->loc_hash_table,
4661 elf_x86_64_finish_local_dynamic_symbol,
4662 info);
4663
4664 return TRUE;
4665 }
4666
4667 /* Return address for Ith PLT stub in section PLT, for relocation REL
4668 or (bfd_vma) -1 if it should not be included. */
4669
4670 static bfd_vma
4671 elf_x86_64_plt_sym_val (bfd_vma i, const asection *plt,
4672 const arelent *rel ATTRIBUTE_UNUSED)
4673 {
4674 return plt->vma + (i + 1) * PLT_ENTRY_SIZE;
4675 }
4676
4677 /* Handle an x86-64 specific section when reading an object file. This
4678 is called when elfcode.h finds a section with an unknown type. */
4679
4680 static bfd_boolean
4681 elf_x86_64_section_from_shdr (bfd *abfd,
4682 Elf_Internal_Shdr *hdr,
4683 const char *name,
4684 int shindex)
4685 {
4686 if (hdr->sh_type != SHT_X86_64_UNWIND)
4687 return FALSE;
4688
4689 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
4690 return FALSE;
4691
4692 return TRUE;
4693 }
4694
4695 /* Hook called by the linker routine which adds symbols from an object
4696 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
4697 of .bss. */
4698
4699 static bfd_boolean
4700 elf_x86_64_add_symbol_hook (bfd *abfd,
4701 struct bfd_link_info *info,
4702 Elf_Internal_Sym *sym,
4703 const char **namep ATTRIBUTE_UNUSED,
4704 flagword *flagsp ATTRIBUTE_UNUSED,
4705 asection **secp,
4706 bfd_vma *valp)
4707 {
4708 asection *lcomm;
4709
4710 switch (sym->st_shndx)
4711 {
4712 case SHN_X86_64_LCOMMON:
4713 lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
4714 if (lcomm == NULL)
4715 {
4716 lcomm = bfd_make_section_with_flags (abfd,
4717 "LARGE_COMMON",
4718 (SEC_ALLOC
4719 | SEC_IS_COMMON
4720 | SEC_LINKER_CREATED));
4721 if (lcomm == NULL)
4722 return FALSE;
4723 elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
4724 }
4725 *secp = lcomm;
4726 *valp = sym->st_size;
4727 return TRUE;
4728 }
4729
4730 if ((abfd->flags & DYNAMIC) == 0
4731 && (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
4732 || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE))
4733 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4734
4735 return TRUE;
4736 }
4737
4738
4739 /* Given a BFD section, try to locate the corresponding ELF section
4740 index. */
4741
4742 static bfd_boolean
4743 elf_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
4744 asection *sec, int *index_return)
4745 {
4746 if (sec == &_bfd_elf_large_com_section)
4747 {
4748 *index_return = SHN_X86_64_LCOMMON;
4749 return TRUE;
4750 }
4751 return FALSE;
4752 }
4753
4754 /* Process a symbol. */
4755
4756 static void
4757 elf_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
4758 asymbol *asym)
4759 {
4760 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
4761
4762 switch (elfsym->internal_elf_sym.st_shndx)
4763 {
4764 case SHN_X86_64_LCOMMON:
4765 asym->section = &_bfd_elf_large_com_section;
4766 asym->value = elfsym->internal_elf_sym.st_size;
4767 /* Common symbol doesn't set BSF_GLOBAL. */
4768 asym->flags &= ~BSF_GLOBAL;
4769 break;
4770 }
4771 }
4772
4773 static bfd_boolean
4774 elf_x86_64_common_definition (Elf_Internal_Sym *sym)
4775 {
4776 return (sym->st_shndx == SHN_COMMON
4777 || sym->st_shndx == SHN_X86_64_LCOMMON);
4778 }
4779
4780 static unsigned int
4781 elf_x86_64_common_section_index (asection *sec)
4782 {
4783 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
4784 return SHN_COMMON;
4785 else
4786 return SHN_X86_64_LCOMMON;
4787 }
4788
4789 static asection *
4790 elf_x86_64_common_section (asection *sec)
4791 {
4792 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
4793 return bfd_com_section_ptr;
4794 else
4795 return &_bfd_elf_large_com_section;
4796 }
4797
4798 static bfd_boolean
4799 elf_x86_64_merge_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
4800 struct elf_link_hash_entry **sym_hash ATTRIBUTE_UNUSED,
4801 struct elf_link_hash_entry *h,
4802 Elf_Internal_Sym *sym,
4803 asection **psec,
4804 bfd_vma *pvalue ATTRIBUTE_UNUSED,
4805 unsigned int *pold_alignment ATTRIBUTE_UNUSED,
4806 bfd_boolean *skip ATTRIBUTE_UNUSED,
4807 bfd_boolean *override ATTRIBUTE_UNUSED,
4808 bfd_boolean *type_change_ok ATTRIBUTE_UNUSED,
4809 bfd_boolean *size_change_ok ATTRIBUTE_UNUSED,
4810 bfd_boolean *newdyn ATTRIBUTE_UNUSED,
4811 bfd_boolean *newdef,
4812 bfd_boolean *newdyncommon ATTRIBUTE_UNUSED,
4813 bfd_boolean *newweak ATTRIBUTE_UNUSED,
4814 bfd *abfd ATTRIBUTE_UNUSED,
4815 asection **sec,
4816 bfd_boolean *olddyn ATTRIBUTE_UNUSED,
4817 bfd_boolean *olddef,
4818 bfd_boolean *olddyncommon ATTRIBUTE_UNUSED,
4819 bfd_boolean *oldweak ATTRIBUTE_UNUSED,
4820 bfd *oldbfd,
4821 asection **oldsec)
4822 {
4823 /* A normal common symbol and a large common symbol result in a
4824 normal common symbol. We turn the large common symbol into a
4825 normal one. */
4826 if (!*olddef
4827 && h->root.type == bfd_link_hash_common
4828 && !*newdef
4829 && bfd_is_com_section (*sec)
4830 && *oldsec != *sec)
4831 {
4832 if (sym->st_shndx == SHN_COMMON
4833 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) != 0)
4834 {
4835 h->root.u.c.p->section
4836 = bfd_make_section_old_way (oldbfd, "COMMON");
4837 h->root.u.c.p->section->flags = SEC_ALLOC;
4838 }
4839 else if (sym->st_shndx == SHN_X86_64_LCOMMON
4840 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) == 0)
4841 *psec = *sec = bfd_com_section_ptr;
4842 }
4843
4844 return TRUE;
4845 }
4846
4847 static int
4848 elf_x86_64_additional_program_headers (bfd *abfd,
4849 struct bfd_link_info *info ATTRIBUTE_UNUSED)
4850 {
4851 asection *s;
4852 int count = 0;
4853
4854 /* Check to see if we need a large readonly segment. */
4855 s = bfd_get_section_by_name (abfd, ".lrodata");
4856 if (s && (s->flags & SEC_LOAD))
4857 count++;
4858
4859 /* Check to see if we need a large data segment. Since .lbss sections
4860 is placed right after the .bss section, there should be no need for
4861 a large data segment just because of .lbss. */
4862 s = bfd_get_section_by_name (abfd, ".ldata");
4863 if (s && (s->flags & SEC_LOAD))
4864 count++;
4865
4866 return count;
4867 }
4868
4869 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
4870
4871 static bfd_boolean
4872 elf_x86_64_hash_symbol (struct elf_link_hash_entry *h)
4873 {
4874 if (h->plt.offset != (bfd_vma) -1
4875 && !h->def_regular
4876 && !h->pointer_equality_needed)
4877 return FALSE;
4878
4879 return _bfd_elf_hash_symbol (h);
4880 }
4881
4882 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. */
4883
4884 static bfd_boolean
4885 elf_x86_64_relocs_compatible (const bfd_target *input,
4886 const bfd_target *output)
4887 {
4888 return ((xvec_get_elf_backend_data (input)->s->elfclass
4889 == xvec_get_elf_backend_data (output)->s->elfclass)
4890 && _bfd_elf_relocs_compatible (input, output));
4891 }
4892
4893 static const struct bfd_elf_special_section
4894 elf_x86_64_special_sections[]=
4895 {
4896 { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4897 { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
4898 { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
4899 { STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4900 { STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4901 { STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
4902 { NULL, 0, 0, 0, 0 }
4903 };
4904
4905 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
4906 #define TARGET_LITTLE_NAME "elf64-x86-64"
4907 #define ELF_ARCH bfd_arch_i386
4908 #define ELF_TARGET_ID X86_64_ELF_DATA
4909 #define ELF_MACHINE_CODE EM_X86_64
4910 #define ELF_MAXPAGESIZE 0x200000
4911 #define ELF_MINPAGESIZE 0x1000
4912 #define ELF_COMMONPAGESIZE 0x1000
4913
4914 #define elf_backend_can_gc_sections 1
4915 #define elf_backend_can_refcount 1
4916 #define elf_backend_want_got_plt 1
4917 #define elf_backend_plt_readonly 1
4918 #define elf_backend_want_plt_sym 0
4919 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
4920 #define elf_backend_rela_normal 1
4921 #define elf_backend_plt_alignment 4
4922
4923 #define elf_info_to_howto elf_x86_64_info_to_howto
4924
4925 #define bfd_elf64_bfd_link_hash_table_create \
4926 elf_x86_64_link_hash_table_create
4927 #define bfd_elf64_bfd_link_hash_table_free \
4928 elf_x86_64_link_hash_table_free
4929 #define bfd_elf64_bfd_reloc_type_lookup elf_x86_64_reloc_type_lookup
4930 #define bfd_elf64_bfd_reloc_name_lookup \
4931 elf_x86_64_reloc_name_lookup
4932
4933 #define elf_backend_adjust_dynamic_symbol elf_x86_64_adjust_dynamic_symbol
4934 #define elf_backend_relocs_compatible elf_x86_64_relocs_compatible
4935 #define elf_backend_check_relocs elf_x86_64_check_relocs
4936 #define elf_backend_copy_indirect_symbol elf_x86_64_copy_indirect_symbol
4937 #define elf_backend_create_dynamic_sections elf_x86_64_create_dynamic_sections
4938 #define elf_backend_finish_dynamic_sections elf_x86_64_finish_dynamic_sections
4939 #define elf_backend_finish_dynamic_symbol elf_x86_64_finish_dynamic_symbol
4940 #define elf_backend_gc_mark_hook elf_x86_64_gc_mark_hook
4941 #define elf_backend_gc_sweep_hook elf_x86_64_gc_sweep_hook
4942 #define elf_backend_grok_prstatus elf_x86_64_grok_prstatus
4943 #define elf_backend_grok_psinfo elf_x86_64_grok_psinfo
4944 #ifdef CORE_HEADER
4945 #define elf_backend_write_core_note elf_x86_64_write_core_note
4946 #endif
4947 #define elf_backend_reloc_type_class elf_x86_64_reloc_type_class
4948 #define elf_backend_relocate_section elf_x86_64_relocate_section
4949 #define elf_backend_size_dynamic_sections elf_x86_64_size_dynamic_sections
4950 #define elf_backend_always_size_sections elf_x86_64_always_size_sections
4951 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4952 #define elf_backend_plt_sym_val elf_x86_64_plt_sym_val
4953 #define elf_backend_object_p elf64_x86_64_elf_object_p
4954 #define bfd_elf64_mkobject elf_x86_64_mkobject
4955
4956 #define elf_backend_section_from_shdr \
4957 elf_x86_64_section_from_shdr
4958
4959 #define elf_backend_section_from_bfd_section \
4960 elf_x86_64_elf_section_from_bfd_section
4961 #define elf_backend_add_symbol_hook \
4962 elf_x86_64_add_symbol_hook
4963 #define elf_backend_symbol_processing \
4964 elf_x86_64_symbol_processing
4965 #define elf_backend_common_section_index \
4966 elf_x86_64_common_section_index
4967 #define elf_backend_common_section \
4968 elf_x86_64_common_section
4969 #define elf_backend_common_definition \
4970 elf_x86_64_common_definition
4971 #define elf_backend_merge_symbol \
4972 elf_x86_64_merge_symbol
4973 #define elf_backend_special_sections \
4974 elf_x86_64_special_sections
4975 #define elf_backend_additional_program_headers \
4976 elf_x86_64_additional_program_headers
4977 #define elf_backend_hash_symbol \
4978 elf_x86_64_hash_symbol
4979
4980 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4981
4982 #include "elf64-target.h"
4983
4984 /* FreeBSD support. */
4985
4986 #undef TARGET_LITTLE_SYM
4987 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_freebsd_vec
4988 #undef TARGET_LITTLE_NAME
4989 #define TARGET_LITTLE_NAME "elf64-x86-64-freebsd"
4990
4991 #undef ELF_OSABI
4992 #define ELF_OSABI ELFOSABI_FREEBSD
4993
4994 #undef elf64_bed
4995 #define elf64_bed elf64_x86_64_fbsd_bed
4996
4997 #include "elf64-target.h"
4998
4999 /* Solaris 2 support. */
5000
5001 #undef TARGET_LITTLE_SYM
5002 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_sol2_vec
5003 #undef TARGET_LITTLE_NAME
5004 #define TARGET_LITTLE_NAME "elf64-x86-64-sol2"
5005
5006 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
5007 objects won't be recognized. */
5008 #undef ELF_OSABI
5009
5010 #undef elf64_bed
5011 #define elf64_bed elf64_x86_64_sol2_bed
5012
5013 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte
5014 boundary. */
5015 #undef elf_backend_static_tls_alignment
5016 #define elf_backend_static_tls_alignment 16
5017
5018 /* The Solaris 2 ABI requires a plt symbol on all platforms.
5019
5020 Cf. Linker and Libraries Guide, Ch. 2, Link-Editor, Generating the Output
5021 File, p.63. */
5022 #undef elf_backend_want_plt_sym
5023 #define elf_backend_want_plt_sym 1
5024
5025 #include "elf64-target.h"
5026
5027 /* Intel L1OM support. */
5028
5029 static bfd_boolean
5030 elf64_l1om_elf_object_p (bfd *abfd)
5031 {
5032 /* Set the right machine number for an L1OM elf64 file. */
5033 bfd_default_set_arch_mach (abfd, bfd_arch_l1om, bfd_mach_l1om);
5034 return TRUE;
5035 }
5036
5037 #undef TARGET_LITTLE_SYM
5038 #define TARGET_LITTLE_SYM bfd_elf64_l1om_vec
5039 #undef TARGET_LITTLE_NAME
5040 #define TARGET_LITTLE_NAME "elf64-l1om"
5041 #undef ELF_ARCH
5042 #define ELF_ARCH bfd_arch_l1om
5043
5044 #undef ELF_MACHINE_CODE
5045 #define ELF_MACHINE_CODE EM_L1OM
5046
5047 #undef ELF_OSABI
5048
5049 #undef elf64_bed
5050 #define elf64_bed elf64_l1om_bed
5051
5052 #undef elf_backend_object_p
5053 #define elf_backend_object_p elf64_l1om_elf_object_p
5054
5055 #undef elf_backend_static_tls_alignment
5056
5057 #undef elf_backend_want_plt_sym
5058 #define elf_backend_want_plt_sym 0
5059
5060 #include "elf64-target.h"
5061
5062 /* FreeBSD L1OM support. */
5063
5064 #undef TARGET_LITTLE_SYM
5065 #define TARGET_LITTLE_SYM bfd_elf64_l1om_freebsd_vec
5066 #undef TARGET_LITTLE_NAME
5067 #define TARGET_LITTLE_NAME "elf64-l1om-freebsd"
5068
5069 #undef ELF_OSABI
5070 #define ELF_OSABI ELFOSABI_FREEBSD
5071
5072 #undef elf64_bed
5073 #define elf64_bed elf64_l1om_fbsd_bed
5074
5075 #include "elf64-target.h"
5076
5077 /* Intel K1OM support. */
5078
5079 static bfd_boolean
5080 elf64_k1om_elf_object_p (bfd *abfd)
5081 {
5082 /* Set the right machine number for an K1OM elf64 file. */
5083 bfd_default_set_arch_mach (abfd, bfd_arch_k1om, bfd_mach_k1om);
5084 return TRUE;
5085 }
5086
5087 #undef TARGET_LITTLE_SYM
5088 #define TARGET_LITTLE_SYM bfd_elf64_k1om_vec
5089 #undef TARGET_LITTLE_NAME
5090 #define TARGET_LITTLE_NAME "elf64-k1om"
5091 #undef ELF_ARCH
5092 #define ELF_ARCH bfd_arch_k1om
5093
5094 #undef ELF_MACHINE_CODE
5095 #define ELF_MACHINE_CODE EM_K1OM
5096
5097 #undef ELF_OSABI
5098
5099 #undef elf64_bed
5100 #define elf64_bed elf64_k1om_bed
5101
5102 #undef elf_backend_object_p
5103 #define elf_backend_object_p elf64_k1om_elf_object_p
5104
5105 #undef elf_backend_static_tls_alignment
5106
5107 #undef elf_backend_want_plt_sym
5108 #define elf_backend_want_plt_sym 0
5109
5110 #include "elf64-target.h"
5111
5112 /* FreeBSD K1OM support. */
5113
5114 #undef TARGET_LITTLE_SYM
5115 #define TARGET_LITTLE_SYM bfd_elf64_k1om_freebsd_vec
5116 #undef TARGET_LITTLE_NAME
5117 #define TARGET_LITTLE_NAME "elf64-k1om-freebsd"
5118
5119 #undef ELF_OSABI
5120 #define ELF_OSABI ELFOSABI_FREEBSD
5121
5122 #undef elf64_bed
5123 #define elf64_bed elf64_k1om_fbsd_bed
5124
5125 #include "elf64-target.h"
5126
5127 /* 32bit x86-64 support. */
5128
5129 static bfd_boolean
5130 elf32_x86_64_elf_object_p (bfd *abfd)
5131 {
5132 /* Set the right machine number for an x86-64 elf32 file. */
5133 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x64_32);
5134 return TRUE;
5135 }
5136
5137 #undef TARGET_LITTLE_SYM
5138 #define TARGET_LITTLE_SYM bfd_elf32_x86_64_vec
5139 #undef TARGET_LITTLE_NAME
5140 #define TARGET_LITTLE_NAME "elf32-x86-64"
5141
5142 #undef ELF_ARCH
5143 #define ELF_ARCH bfd_arch_i386
5144
5145 #undef ELF_MACHINE_CODE
5146 #define ELF_MACHINE_CODE EM_X86_64
5147
5148 #define bfd_elf32_bfd_link_hash_table_create \
5149 elf_x86_64_link_hash_table_create
5150 #define bfd_elf32_bfd_link_hash_table_free \
5151 elf_x86_64_link_hash_table_free
5152 #define bfd_elf32_bfd_reloc_type_lookup \
5153 elf_x86_64_reloc_type_lookup
5154 #define bfd_elf32_bfd_reloc_name_lookup \
5155 elf_x86_64_reloc_name_lookup
5156 #define bfd_elf32_mkobject \
5157 elf_x86_64_mkobject
5158
5159 #undef ELF_OSABI
5160
5161 #undef elf_backend_object_p
5162 #define elf_backend_object_p \
5163 elf32_x86_64_elf_object_p
5164
5165 #undef elf_backend_bfd_from_remote_memory
5166 #define elf_backend_bfd_from_remote_memory \
5167 _bfd_elf32_bfd_from_remote_memory
5168
5169 #undef elf_backend_size_info
5170 #define elf_backend_size_info \
5171 _bfd_elf32_size_info
5172
5173 #include "elf32-target.h"