PR ld/12570
[binutils-gdb.git] / bfd / elf64-x86-64.c
1 /* X86-64 specific support for ELF
2 Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011
4 Free Software Foundation, Inc.
5 Contributed by Jan Hubicka <jh@suse.cz>.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24 #include "sysdep.h"
25 #include "bfd.h"
26 #include "bfdlink.h"
27 #include "libbfd.h"
28 #include "elf-bfd.h"
29 #include "bfd_stdint.h"
30 #include "objalloc.h"
31 #include "hashtab.h"
32 #include "dwarf2.h"
33
34 #include "elf/x86-64.h"
35
36 #ifdef CORE_HEADER
37 #include <stdarg.h>
38 #include CORE_HEADER
39 #endif
40
41 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
42 #define MINUS_ONE (~ (bfd_vma) 0)
43
44 /* Since both 32-bit and 64-bit x86-64 encode relocation type in the
45 identical manner, we use ELF32_R_TYPE instead of ELF64_R_TYPE to get
46 relocation type. We also use ELF_ST_TYPE instead of ELF64_ST_TYPE
47 since they are the same. */
48
49 #define ABI_64_P(abfd) \
50 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
51
52 /* The relocation "howto" table. Order of fields:
53 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
54 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
55 static reloc_howto_type x86_64_elf_howto_table[] =
56 {
57 HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
58 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
59 FALSE),
60 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
61 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
62 FALSE),
63 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
64 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
65 TRUE),
66 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
67 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
68 FALSE),
69 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
70 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
71 TRUE),
72 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
73 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
74 FALSE),
75 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
76 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
77 MINUS_ONE, FALSE),
78 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
79 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
80 MINUS_ONE, FALSE),
81 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
82 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
83 MINUS_ONE, FALSE),
84 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
85 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
86 0xffffffff, TRUE),
87 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
88 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
89 FALSE),
90 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
91 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
92 FALSE),
93 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
94 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
95 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
96 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
97 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
98 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
99 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
100 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
101 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
102 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
103 MINUS_ONE, FALSE),
104 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
105 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
106 MINUS_ONE, FALSE),
107 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
108 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
109 MINUS_ONE, FALSE),
110 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
111 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
112 0xffffffff, TRUE),
113 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
114 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
115 0xffffffff, TRUE),
116 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
117 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
118 0xffffffff, FALSE),
119 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
120 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
121 0xffffffff, TRUE),
122 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
123 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
124 0xffffffff, FALSE),
125 HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
126 bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
127 TRUE),
128 HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
129 bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
130 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
131 HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
132 bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
133 FALSE, 0xffffffff, 0xffffffff, TRUE),
134 HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
135 bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE,
136 FALSE),
137 HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
138 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE,
139 MINUS_ONE, TRUE),
140 HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
141 bfd_elf_generic_reloc, "R_X86_64_GOTPC64",
142 FALSE, MINUS_ONE, MINUS_ONE, TRUE),
143 HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
144 bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE,
145 MINUS_ONE, FALSE),
146 HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
147 bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE,
148 MINUS_ONE, FALSE),
149 EMPTY_HOWTO (32),
150 EMPTY_HOWTO (33),
151 HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0,
152 complain_overflow_bitfield, bfd_elf_generic_reloc,
153 "R_X86_64_GOTPC32_TLSDESC",
154 FALSE, 0xffffffff, 0xffffffff, TRUE),
155 HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0,
156 complain_overflow_dont, bfd_elf_generic_reloc,
157 "R_X86_64_TLSDESC_CALL",
158 FALSE, 0, 0, FALSE),
159 HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0,
160 complain_overflow_bitfield, bfd_elf_generic_reloc,
161 "R_X86_64_TLSDESC",
162 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
163 HOWTO(R_X86_64_IRELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
164 bfd_elf_generic_reloc, "R_X86_64_IRELATIVE", FALSE, MINUS_ONE,
165 MINUS_ONE, FALSE),
166
167 /* We have a gap in the reloc numbers here.
168 R_X86_64_standard counts the number up to this point, and
169 R_X86_64_vt_offset is the value to subtract from a reloc type of
170 R_X86_64_GNU_VT* to form an index into this table. */
171 #define R_X86_64_standard (R_X86_64_IRELATIVE + 1)
172 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
173
174 /* GNU extension to record C++ vtable hierarchy. */
175 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
176 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
177
178 /* GNU extension to record C++ vtable member usage. */
179 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
180 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
181 FALSE)
182 };
183
184 #define IS_X86_64_PCREL_TYPE(TYPE) \
185 ( ((TYPE) == R_X86_64_PC8) \
186 || ((TYPE) == R_X86_64_PC16) \
187 || ((TYPE) == R_X86_64_PC32) \
188 || ((TYPE) == R_X86_64_PC64))
189
190 /* Map BFD relocs to the x86_64 elf relocs. */
191 struct elf_reloc_map
192 {
193 bfd_reloc_code_real_type bfd_reloc_val;
194 unsigned char elf_reloc_val;
195 };
196
197 static const struct elf_reloc_map x86_64_reloc_map[] =
198 {
199 { BFD_RELOC_NONE, R_X86_64_NONE, },
200 { BFD_RELOC_64, R_X86_64_64, },
201 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
202 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
203 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
204 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
205 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
206 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
207 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
208 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
209 { BFD_RELOC_32, R_X86_64_32, },
210 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
211 { BFD_RELOC_16, R_X86_64_16, },
212 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
213 { BFD_RELOC_8, R_X86_64_8, },
214 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
215 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
216 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
217 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
218 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
219 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
220 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
221 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
222 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
223 { BFD_RELOC_64_PCREL, R_X86_64_PC64, },
224 { BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, },
225 { BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, },
226 { BFD_RELOC_X86_64_GOT64, R_X86_64_GOT64, },
227 { BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, },
228 { BFD_RELOC_X86_64_GOTPC64, R_X86_64_GOTPC64, },
229 { BFD_RELOC_X86_64_GOTPLT64, R_X86_64_GOTPLT64, },
230 { BFD_RELOC_X86_64_PLTOFF64, R_X86_64_PLTOFF64, },
231 { BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, },
232 { BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, },
233 { BFD_RELOC_X86_64_TLSDESC, R_X86_64_TLSDESC, },
234 { BFD_RELOC_X86_64_IRELATIVE, R_X86_64_IRELATIVE, },
235 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
236 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
237 };
238
239 static reloc_howto_type *
240 elf_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type)
241 {
242 unsigned i;
243
244 if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
245 || r_type >= (unsigned int) R_X86_64_max)
246 {
247 if (r_type >= (unsigned int) R_X86_64_standard)
248 {
249 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
250 abfd, (int) r_type);
251 r_type = R_X86_64_NONE;
252 }
253 i = r_type;
254 }
255 else
256 i = r_type - (unsigned int) R_X86_64_vt_offset;
257 BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type);
258 return &x86_64_elf_howto_table[i];
259 }
260
261 /* Given a BFD reloc type, return a HOWTO structure. */
262 static reloc_howto_type *
263 elf_x86_64_reloc_type_lookup (bfd *abfd,
264 bfd_reloc_code_real_type code)
265 {
266 unsigned int i;
267
268 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
269 i++)
270 {
271 if (x86_64_reloc_map[i].bfd_reloc_val == code)
272 return elf_x86_64_rtype_to_howto (abfd,
273 x86_64_reloc_map[i].elf_reloc_val);
274 }
275 return 0;
276 }
277
278 static reloc_howto_type *
279 elf_x86_64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
280 const char *r_name)
281 {
282 unsigned int i;
283
284 for (i = 0;
285 i < (sizeof (x86_64_elf_howto_table)
286 / sizeof (x86_64_elf_howto_table[0]));
287 i++)
288 if (x86_64_elf_howto_table[i].name != NULL
289 && strcasecmp (x86_64_elf_howto_table[i].name, r_name) == 0)
290 return &x86_64_elf_howto_table[i];
291
292 return NULL;
293 }
294
295 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
296
297 static void
298 elf_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
299 Elf_Internal_Rela *dst)
300 {
301 unsigned r_type;
302
303 r_type = ELF32_R_TYPE (dst->r_info);
304 cache_ptr->howto = elf_x86_64_rtype_to_howto (abfd, r_type);
305 BFD_ASSERT (r_type == cache_ptr->howto->type);
306 }
307 \f
308 /* Support for core dump NOTE sections. */
309 static bfd_boolean
310 elf_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
311 {
312 int offset;
313 size_t size;
314
315 switch (note->descsz)
316 {
317 default:
318 return FALSE;
319
320 case 296: /* sizeof(istruct elf_prstatus) on Linux/x32 */
321 /* pr_cursig */
322 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
323
324 /* pr_pid */
325 elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 24);
326
327 /* pr_reg */
328 offset = 72;
329 size = 216;
330
331 break;
332
333 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
334 /* pr_cursig */
335 elf_tdata (abfd)->core_signal
336 = bfd_get_16 (abfd, note->descdata + 12);
337
338 /* pr_pid */
339 elf_tdata (abfd)->core_lwpid
340 = bfd_get_32 (abfd, note->descdata + 32);
341
342 /* pr_reg */
343 offset = 112;
344 size = 216;
345
346 break;
347 }
348
349 /* Make a ".reg/999" section. */
350 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
351 size, note->descpos + offset);
352 }
353
354 static bfd_boolean
355 elf_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
356 {
357 switch (note->descsz)
358 {
359 default:
360 return FALSE;
361
362 case 124: /* sizeof(struct elf_prpsinfo) on Linux/x32 */
363 elf_tdata (abfd)->core_pid
364 = bfd_get_32 (abfd, note->descdata + 12);
365 elf_tdata (abfd)->core_program
366 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
367 elf_tdata (abfd)->core_command
368 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
369 break;
370
371 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
372 elf_tdata (abfd)->core_pid
373 = bfd_get_32 (abfd, note->descdata + 24);
374 elf_tdata (abfd)->core_program
375 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
376 elf_tdata (abfd)->core_command
377 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
378 }
379
380 /* Note that for some reason, a spurious space is tacked
381 onto the end of the args in some (at least one anyway)
382 implementations, so strip it off if it exists. */
383
384 {
385 char *command = elf_tdata (abfd)->core_command;
386 int n = strlen (command);
387
388 if (0 < n && command[n - 1] == ' ')
389 command[n - 1] = '\0';
390 }
391
392 return TRUE;
393 }
394
395 #ifdef CORE_HEADER
396 static char *
397 elf_x86_64_write_core_note (bfd *abfd, char *buf, int *bufsiz,
398 int note_type, ...)
399 {
400 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
401 const void *p;
402 int size;
403 va_list ap;
404 const char *fname, *psargs;
405 long pid;
406 int cursig;
407 const void *gregs;
408
409 switch (note_type)
410 {
411 default:
412 return NULL;
413
414 case NT_PRPSINFO:
415 va_start (ap, note_type);
416 fname = va_arg (ap, const char *);
417 psargs = va_arg (ap, const char *);
418 va_end (ap);
419
420 if (bed->s->elfclass == ELFCLASS32)
421 {
422 prpsinfo32_t data;
423 memset (&data, 0, sizeof (data));
424 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
425 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
426 p = (const void *) &data;
427 size = sizeof (data);
428 }
429 else
430 {
431 prpsinfo_t data;
432 memset (&data, 0, sizeof (data));
433 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
434 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
435 p = (const void *) &data;
436 size = sizeof (data);
437 }
438 break;
439
440 case NT_PRSTATUS:
441 va_start (ap, note_type);
442 pid = va_arg (ap, long);
443 cursig = va_arg (ap, int);
444 gregs = va_arg (ap, const void *);
445 va_end (ap);
446
447 if (bed->s->elfclass == ELFCLASS32)
448 {
449 if (bed->elf_machine_code == EM_X86_64)
450 {
451 prstatusx32_t prstat;
452 memset (&prstat, 0, sizeof (prstat));
453 prstat.pr_pid = pid;
454 prstat.pr_cursig = cursig;
455 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
456 p = (const void *) &prstat;
457 size = sizeof (prstat);
458 }
459 else
460 {
461 prstatus32_t prstat;
462 memset (&prstat, 0, sizeof (prstat));
463 prstat.pr_pid = pid;
464 prstat.pr_cursig = cursig;
465 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
466 p = (const void *) &prstat;
467 size = sizeof (prstat);
468 }
469 }
470 else
471 {
472 prstatus_t prstat;
473 memset (&prstat, 0, sizeof (prstat));
474 prstat.pr_pid = pid;
475 prstat.pr_cursig = cursig;
476 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
477 p = (const void *) &prstat;
478 size = sizeof (prstat);
479 }
480 break;
481 }
482
483 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type, p,
484 size);
485 }
486 #endif
487 \f
488 /* Functions for the x86-64 ELF linker. */
489
490 /* The name of the dynamic interpreter. This is put in the .interp
491 section. */
492
493 #define ELF64_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
494 #define ELF32_DYNAMIC_INTERPRETER "/lib/ld32.so.1"
495
496 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
497 copying dynamic variables from a shared lib into an app's dynbss
498 section, and instead use a dynamic relocation to point into the
499 shared lib. */
500 #define ELIMINATE_COPY_RELOCS 1
501
502 /* The size in bytes of an entry in the global offset table. */
503
504 #define GOT_ENTRY_SIZE 8
505
506 /* The size in bytes of an entry in the procedure linkage table. */
507
508 #define PLT_ENTRY_SIZE 16
509
510 /* The first entry in a procedure linkage table looks like this. See the
511 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
512
513 static const bfd_byte elf_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
514 {
515 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
516 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
517 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */
518 };
519
520 /* Subsequent entries in a procedure linkage table look like this. */
521
522 static const bfd_byte elf_x86_64_plt_entry[PLT_ENTRY_SIZE] =
523 {
524 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
525 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
526 0x68, /* pushq immediate */
527 0, 0, 0, 0, /* replaced with index into relocation table. */
528 0xe9, /* jmp relative */
529 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
530 };
531
532 /* .eh_frame covering the .plt section. */
533
534 static const bfd_byte elf_x86_64_eh_frame_plt[] =
535 {
536 #define PLT_CIE_LENGTH 20
537 #define PLT_FDE_LENGTH 36
538 #define PLT_FDE_START_OFFSET 4 + PLT_CIE_LENGTH + 8
539 #define PLT_FDE_LEN_OFFSET 4 + PLT_CIE_LENGTH + 12
540 PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */
541 0, 0, 0, 0, /* CIE ID */
542 1, /* CIE version */
543 'z', 'R', 0, /* Augmentation string */
544 1, /* Code alignment factor */
545 0x78, /* Data alignment factor */
546 16, /* Return address column */
547 1, /* Augmentation size */
548 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
549 DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
550 DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
551 DW_CFA_nop, DW_CFA_nop,
552
553 PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */
554 PLT_CIE_LENGTH + 8, 0, 0, 0, /* CIE pointer */
555 0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */
556 0, 0, 0, 0, /* .plt size goes here */
557 0, /* Augmentation size */
558 DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */
559 DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */
560 DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */
561 DW_CFA_advance_loc + 10, /* DW_CFA_advance_loc: 10 to __PLT__+16 */
562 DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */
563 11, /* Block length */
564 DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */
565 DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */
566 DW_OP_lit15, DW_OP_and, DW_OP_lit11, DW_OP_ge,
567 DW_OP_lit3, DW_OP_shl, DW_OP_plus,
568 DW_CFA_nop, DW_CFA_nop, DW_CFA_nop, DW_CFA_nop
569 };
570
571 /* x86-64 ELF linker hash entry. */
572
573 struct elf_x86_64_link_hash_entry
574 {
575 struct elf_link_hash_entry elf;
576
577 /* Track dynamic relocs copied for this symbol. */
578 struct elf_dyn_relocs *dyn_relocs;
579
580 #define GOT_UNKNOWN 0
581 #define GOT_NORMAL 1
582 #define GOT_TLS_GD 2
583 #define GOT_TLS_IE 3
584 #define GOT_TLS_GDESC 4
585 #define GOT_TLS_GD_BOTH_P(type) \
586 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
587 #define GOT_TLS_GD_P(type) \
588 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
589 #define GOT_TLS_GDESC_P(type) \
590 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
591 #define GOT_TLS_GD_ANY_P(type) \
592 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
593 unsigned char tls_type;
594
595 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
596 starting at the end of the jump table. */
597 bfd_vma tlsdesc_got;
598 };
599
600 #define elf_x86_64_hash_entry(ent) \
601 ((struct elf_x86_64_link_hash_entry *)(ent))
602
603 struct elf_x86_64_obj_tdata
604 {
605 struct elf_obj_tdata root;
606
607 /* tls_type for each local got entry. */
608 char *local_got_tls_type;
609
610 /* GOTPLT entries for TLS descriptors. */
611 bfd_vma *local_tlsdesc_gotent;
612 };
613
614 #define elf_x86_64_tdata(abfd) \
615 ((struct elf_x86_64_obj_tdata *) (abfd)->tdata.any)
616
617 #define elf_x86_64_local_got_tls_type(abfd) \
618 (elf_x86_64_tdata (abfd)->local_got_tls_type)
619
620 #define elf_x86_64_local_tlsdesc_gotent(abfd) \
621 (elf_x86_64_tdata (abfd)->local_tlsdesc_gotent)
622
623 #define is_x86_64_elf(bfd) \
624 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
625 && elf_tdata (bfd) != NULL \
626 && elf_object_id (bfd) == X86_64_ELF_DATA)
627
628 static bfd_boolean
629 elf_x86_64_mkobject (bfd *abfd)
630 {
631 return bfd_elf_allocate_object (abfd, sizeof (struct elf_x86_64_obj_tdata),
632 X86_64_ELF_DATA);
633 }
634
635 /* x86-64 ELF linker hash table. */
636
637 struct elf_x86_64_link_hash_table
638 {
639 struct elf_link_hash_table elf;
640
641 /* Short-cuts to get to dynamic linker sections. */
642 asection *sdynbss;
643 asection *srelbss;
644 asection *plt_eh_frame;
645
646 union
647 {
648 bfd_signed_vma refcount;
649 bfd_vma offset;
650 } tls_ld_got;
651
652 /* The amount of space used by the jump slots in the GOT. */
653 bfd_vma sgotplt_jump_table_size;
654
655 /* Small local sym cache. */
656 struct sym_cache sym_cache;
657
658 bfd_vma (*r_info) (bfd_vma, bfd_vma);
659 bfd_vma (*r_sym) (bfd_vma);
660 unsigned int pointer_r_type;
661 const char *dynamic_interpreter;
662 int dynamic_interpreter_size;
663
664 /* _TLS_MODULE_BASE_ symbol. */
665 struct bfd_link_hash_entry *tls_module_base;
666
667 /* Used by local STT_GNU_IFUNC symbols. */
668 htab_t loc_hash_table;
669 void * loc_hash_memory;
670
671 /* The offset into splt of the PLT entry for the TLS descriptor
672 resolver. Special values are 0, if not necessary (or not found
673 to be necessary yet), and -1 if needed but not determined
674 yet. */
675 bfd_vma tlsdesc_plt;
676 /* The offset into sgot of the GOT entry used by the PLT entry
677 above. */
678 bfd_vma tlsdesc_got;
679 };
680
681 /* Get the x86-64 ELF linker hash table from a link_info structure. */
682
683 #define elf_x86_64_hash_table(p) \
684 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
685 == X86_64_ELF_DATA ? ((struct elf_x86_64_link_hash_table *) ((p)->hash)) : NULL)
686
687 #define elf_x86_64_compute_jump_table_size(htab) \
688 ((htab)->elf.srelplt->reloc_count * GOT_ENTRY_SIZE)
689
690 /* Create an entry in an x86-64 ELF linker hash table. */
691
692 static struct bfd_hash_entry *
693 elf_x86_64_link_hash_newfunc (struct bfd_hash_entry *entry,
694 struct bfd_hash_table *table,
695 const char *string)
696 {
697 /* Allocate the structure if it has not already been allocated by a
698 subclass. */
699 if (entry == NULL)
700 {
701 entry = (struct bfd_hash_entry *)
702 bfd_hash_allocate (table,
703 sizeof (struct elf_x86_64_link_hash_entry));
704 if (entry == NULL)
705 return entry;
706 }
707
708 /* Call the allocation method of the superclass. */
709 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
710 if (entry != NULL)
711 {
712 struct elf_x86_64_link_hash_entry *eh;
713
714 eh = (struct elf_x86_64_link_hash_entry *) entry;
715 eh->dyn_relocs = NULL;
716 eh->tls_type = GOT_UNKNOWN;
717 eh->tlsdesc_got = (bfd_vma) -1;
718 }
719
720 return entry;
721 }
722
723 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
724 for local symbol so that we can handle local STT_GNU_IFUNC symbols
725 as global symbol. We reuse indx and dynstr_index for local symbol
726 hash since they aren't used by global symbols in this backend. */
727
728 static hashval_t
729 elf_x86_64_local_htab_hash (const void *ptr)
730 {
731 struct elf_link_hash_entry *h
732 = (struct elf_link_hash_entry *) ptr;
733 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
734 }
735
736 /* Compare local hash entries. */
737
738 static int
739 elf_x86_64_local_htab_eq (const void *ptr1, const void *ptr2)
740 {
741 struct elf_link_hash_entry *h1
742 = (struct elf_link_hash_entry *) ptr1;
743 struct elf_link_hash_entry *h2
744 = (struct elf_link_hash_entry *) ptr2;
745
746 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
747 }
748
749 /* Find and/or create a hash entry for local symbol. */
750
751 static struct elf_link_hash_entry *
752 elf_x86_64_get_local_sym_hash (struct elf_x86_64_link_hash_table *htab,
753 bfd *abfd, const Elf_Internal_Rela *rel,
754 bfd_boolean create)
755 {
756 struct elf_x86_64_link_hash_entry e, *ret;
757 asection *sec = abfd->sections;
758 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
759 htab->r_sym (rel->r_info));
760 void **slot;
761
762 e.elf.indx = sec->id;
763 e.elf.dynstr_index = htab->r_sym (rel->r_info);
764 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
765 create ? INSERT : NO_INSERT);
766
767 if (!slot)
768 return NULL;
769
770 if (*slot)
771 {
772 ret = (struct elf_x86_64_link_hash_entry *) *slot;
773 return &ret->elf;
774 }
775
776 ret = (struct elf_x86_64_link_hash_entry *)
777 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
778 sizeof (struct elf_x86_64_link_hash_entry));
779 if (ret)
780 {
781 memset (ret, 0, sizeof (*ret));
782 ret->elf.indx = sec->id;
783 ret->elf.dynstr_index = htab->r_sym (rel->r_info);
784 ret->elf.dynindx = -1;
785 *slot = ret;
786 }
787 return &ret->elf;
788 }
789
790 /* Create an X86-64 ELF linker hash table. */
791
792 static struct bfd_link_hash_table *
793 elf_x86_64_link_hash_table_create (bfd *abfd)
794 {
795 struct elf_x86_64_link_hash_table *ret;
796 bfd_size_type amt = sizeof (struct elf_x86_64_link_hash_table);
797
798 ret = (struct elf_x86_64_link_hash_table *) bfd_malloc (amt);
799 if (ret == NULL)
800 return NULL;
801
802 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
803 elf_x86_64_link_hash_newfunc,
804 sizeof (struct elf_x86_64_link_hash_entry),
805 X86_64_ELF_DATA))
806 {
807 free (ret);
808 return NULL;
809 }
810
811 ret->sdynbss = NULL;
812 ret->srelbss = NULL;
813 ret->sym_cache.abfd = NULL;
814 ret->tlsdesc_plt = 0;
815 ret->tlsdesc_got = 0;
816 ret->tls_ld_got.refcount = 0;
817 ret->sgotplt_jump_table_size = 0;
818 ret->tls_module_base = NULL;
819
820 if (ABI_64_P (abfd))
821 {
822 ret->r_info = elf64_r_info;
823 ret->r_sym = elf64_r_sym;
824 ret->pointer_r_type = R_X86_64_64;
825 ret->dynamic_interpreter = ELF64_DYNAMIC_INTERPRETER;
826 ret->dynamic_interpreter_size = sizeof ELF64_DYNAMIC_INTERPRETER;
827 }
828 else
829 {
830 ret->r_info = elf32_r_info;
831 ret->r_sym = elf32_r_sym;
832 ret->pointer_r_type = R_X86_64_32;
833 ret->dynamic_interpreter = ELF32_DYNAMIC_INTERPRETER;
834 ret->dynamic_interpreter_size = sizeof ELF32_DYNAMIC_INTERPRETER;
835 }
836
837 ret->loc_hash_table = htab_try_create (1024,
838 elf_x86_64_local_htab_hash,
839 elf_x86_64_local_htab_eq,
840 NULL);
841 ret->loc_hash_memory = objalloc_create ();
842 if (!ret->loc_hash_table || !ret->loc_hash_memory)
843 {
844 free (ret);
845 return NULL;
846 }
847
848 return &ret->elf.root;
849 }
850
851 /* Destroy an X86-64 ELF linker hash table. */
852
853 static void
854 elf_x86_64_link_hash_table_free (struct bfd_link_hash_table *hash)
855 {
856 struct elf_x86_64_link_hash_table *htab
857 = (struct elf_x86_64_link_hash_table *) hash;
858
859 if (htab->loc_hash_table)
860 htab_delete (htab->loc_hash_table);
861 if (htab->loc_hash_memory)
862 objalloc_free ((struct objalloc *) htab->loc_hash_memory);
863 _bfd_generic_link_hash_table_free (hash);
864 }
865
866 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
867 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
868 hash table. */
869
870 static bfd_boolean
871 elf_x86_64_create_dynamic_sections (bfd *dynobj,
872 struct bfd_link_info *info)
873 {
874 struct elf_x86_64_link_hash_table *htab;
875
876 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
877 return FALSE;
878
879 htab = elf_x86_64_hash_table (info);
880 if (htab == NULL)
881 return FALSE;
882
883 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
884 if (!info->shared)
885 htab->srelbss = bfd_get_section_by_name (dynobj, ".rela.bss");
886
887 if (!htab->sdynbss
888 || (!info->shared && !htab->srelbss))
889 abort ();
890
891 if (!info->no_ld_generated_unwind_info
892 && bfd_get_section_by_name (dynobj, ".eh_frame") == NULL
893 && htab->elf.splt != NULL)
894 {
895 flagword flags = get_elf_backend_data (dynobj)->dynamic_sec_flags;
896 htab->plt_eh_frame
897 = bfd_make_section_with_flags (dynobj, ".eh_frame",
898 flags | SEC_READONLY);
899 if (htab->plt_eh_frame == NULL
900 || !bfd_set_section_alignment (dynobj, htab->plt_eh_frame, 3))
901 return FALSE;
902
903 htab->plt_eh_frame->size = sizeof (elf_x86_64_eh_frame_plt);
904 htab->plt_eh_frame->contents
905 = bfd_alloc (dynobj, htab->plt_eh_frame->size);
906 memcpy (htab->plt_eh_frame->contents, elf_x86_64_eh_frame_plt,
907 sizeof (elf_x86_64_eh_frame_plt));
908 }
909 return TRUE;
910 }
911
912 /* Copy the extra info we tack onto an elf_link_hash_entry. */
913
914 static void
915 elf_x86_64_copy_indirect_symbol (struct bfd_link_info *info,
916 struct elf_link_hash_entry *dir,
917 struct elf_link_hash_entry *ind)
918 {
919 struct elf_x86_64_link_hash_entry *edir, *eind;
920
921 edir = (struct elf_x86_64_link_hash_entry *) dir;
922 eind = (struct elf_x86_64_link_hash_entry *) ind;
923
924 if (eind->dyn_relocs != NULL)
925 {
926 if (edir->dyn_relocs != NULL)
927 {
928 struct elf_dyn_relocs **pp;
929 struct elf_dyn_relocs *p;
930
931 /* Add reloc counts against the indirect sym to the direct sym
932 list. Merge any entries against the same section. */
933 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
934 {
935 struct elf_dyn_relocs *q;
936
937 for (q = edir->dyn_relocs; q != NULL; q = q->next)
938 if (q->sec == p->sec)
939 {
940 q->pc_count += p->pc_count;
941 q->count += p->count;
942 *pp = p->next;
943 break;
944 }
945 if (q == NULL)
946 pp = &p->next;
947 }
948 *pp = edir->dyn_relocs;
949 }
950
951 edir->dyn_relocs = eind->dyn_relocs;
952 eind->dyn_relocs = NULL;
953 }
954
955 if (ind->root.type == bfd_link_hash_indirect
956 && dir->got.refcount <= 0)
957 {
958 edir->tls_type = eind->tls_type;
959 eind->tls_type = GOT_UNKNOWN;
960 }
961
962 if (ELIMINATE_COPY_RELOCS
963 && ind->root.type != bfd_link_hash_indirect
964 && dir->dynamic_adjusted)
965 {
966 /* If called to transfer flags for a weakdef during processing
967 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
968 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
969 dir->ref_dynamic |= ind->ref_dynamic;
970 dir->ref_regular |= ind->ref_regular;
971 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
972 dir->needs_plt |= ind->needs_plt;
973 dir->pointer_equality_needed |= ind->pointer_equality_needed;
974 }
975 else
976 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
977 }
978
979 static bfd_boolean
980 elf64_x86_64_elf_object_p (bfd *abfd)
981 {
982 /* Set the right machine number for an x86-64 elf64 file. */
983 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
984 return TRUE;
985 }
986
987 typedef union
988 {
989 unsigned char c[2];
990 uint16_t i;
991 }
992 x86_64_opcode16;
993
994 typedef union
995 {
996 unsigned char c[4];
997 uint32_t i;
998 }
999 x86_64_opcode32;
1000
1001 /* Return TRUE if the TLS access code sequence support transition
1002 from R_TYPE. */
1003
1004 static bfd_boolean
1005 elf_x86_64_check_tls_transition (bfd *abfd,
1006 struct bfd_link_info *info,
1007 asection *sec,
1008 bfd_byte *contents,
1009 Elf_Internal_Shdr *symtab_hdr,
1010 struct elf_link_hash_entry **sym_hashes,
1011 unsigned int r_type,
1012 const Elf_Internal_Rela *rel,
1013 const Elf_Internal_Rela *relend)
1014 {
1015 unsigned int val;
1016 unsigned long r_symndx;
1017 struct elf_link_hash_entry *h;
1018 bfd_vma offset;
1019 struct elf_x86_64_link_hash_table *htab;
1020
1021 /* Get the section contents. */
1022 if (contents == NULL)
1023 {
1024 if (elf_section_data (sec)->this_hdr.contents != NULL)
1025 contents = elf_section_data (sec)->this_hdr.contents;
1026 else
1027 {
1028 /* FIXME: How to better handle error condition? */
1029 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
1030 return FALSE;
1031
1032 /* Cache the section contents for elf_link_input_bfd. */
1033 elf_section_data (sec)->this_hdr.contents = contents;
1034 }
1035 }
1036
1037 htab = elf_x86_64_hash_table (info);
1038 offset = rel->r_offset;
1039 switch (r_type)
1040 {
1041 case R_X86_64_TLSGD:
1042 case R_X86_64_TLSLD:
1043 if ((rel + 1) >= relend)
1044 return FALSE;
1045
1046 if (r_type == R_X86_64_TLSGD)
1047 {
1048 /* Check transition from GD access model. For 64bit, only
1049 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
1050 .word 0x6666; rex64; call __tls_get_addr
1051 can transit to different access model. For 32bit, only
1052 leaq foo@tlsgd(%rip), %rdi
1053 .word 0x6666; rex64; call __tls_get_addr
1054 can transit to different access model. */
1055
1056 static x86_64_opcode32 call = { { 0x66, 0x66, 0x48, 0xe8 } };
1057 if ((offset + 12) > sec->size
1058 || bfd_get_32 (abfd, contents + offset + 4) != call.i)
1059 return FALSE;
1060
1061 if (ABI_64_P (abfd))
1062 {
1063 static x86_64_opcode32 leaq = { { 0x66, 0x48, 0x8d, 0x3d } };
1064 if (offset < 4
1065 || bfd_get_32 (abfd, contents + offset - 4) != leaq.i)
1066 return FALSE;
1067 }
1068 else
1069 {
1070 static x86_64_opcode16 lea = { { 0x8d, 0x3d } };
1071 if (offset < 3
1072 || bfd_get_8 (abfd, contents + offset - 3) != 0x48
1073 || bfd_get_16 (abfd, contents + offset - 2) != lea.i)
1074 return FALSE;
1075 }
1076 }
1077 else
1078 {
1079 /* Check transition from LD access model. Only
1080 leaq foo@tlsld(%rip), %rdi;
1081 call __tls_get_addr
1082 can transit to different access model. */
1083
1084 static x86_64_opcode32 ld = { { 0x48, 0x8d, 0x3d, 0xe8 } };
1085 x86_64_opcode32 op;
1086
1087 if (offset < 3 || (offset + 9) > sec->size)
1088 return FALSE;
1089
1090 op.i = bfd_get_32 (abfd, contents + offset - 3);
1091 op.c[3] = bfd_get_8 (abfd, contents + offset + 4);
1092 if (op.i != ld.i)
1093 return FALSE;
1094 }
1095
1096 r_symndx = htab->r_sym (rel[1].r_info);
1097 if (r_symndx < symtab_hdr->sh_info)
1098 return FALSE;
1099
1100 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1101 /* Use strncmp to check __tls_get_addr since __tls_get_addr
1102 may be versioned. */
1103 return (h != NULL
1104 && h->root.root.string != NULL
1105 && (ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PC32
1106 || ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PLT32)
1107 && (strncmp (h->root.root.string,
1108 "__tls_get_addr", 14) == 0));
1109
1110 case R_X86_64_GOTTPOFF:
1111 /* Check transition from IE access model:
1112 mov foo@gottpoff(%rip), %reg
1113 add foo@gottpoff(%rip), %reg
1114 */
1115
1116 /* Check REX prefix first. */
1117 if (offset >= 3 && (offset + 4) <= sec->size)
1118 {
1119 val = bfd_get_8 (abfd, contents + offset - 3);
1120 if (val != 0x48 && val != 0x4c)
1121 {
1122 /* X32 may have 0x44 REX prefix or no REX prefix. */
1123 if (ABI_64_P (abfd))
1124 return FALSE;
1125 }
1126 }
1127 else
1128 {
1129 /* X32 may not have any REX prefix. */
1130 if (ABI_64_P (abfd))
1131 return FALSE;
1132 if (offset < 2 || (offset + 3) > sec->size)
1133 return FALSE;
1134 }
1135
1136 val = bfd_get_8 (abfd, contents + offset - 2);
1137 if (val != 0x8b && val != 0x03)
1138 return FALSE;
1139
1140 val = bfd_get_8 (abfd, contents + offset - 1);
1141 return (val & 0xc7) == 5;
1142
1143 case R_X86_64_GOTPC32_TLSDESC:
1144 /* Check transition from GDesc access model:
1145 leaq x@tlsdesc(%rip), %rax
1146
1147 Make sure it's a leaq adding rip to a 32-bit offset
1148 into any register, although it's probably almost always
1149 going to be rax. */
1150
1151 if (offset < 3 || (offset + 4) > sec->size)
1152 return FALSE;
1153
1154 val = bfd_get_8 (abfd, contents + offset - 3);
1155 if ((val & 0xfb) != 0x48)
1156 return FALSE;
1157
1158 if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d)
1159 return FALSE;
1160
1161 val = bfd_get_8 (abfd, contents + offset - 1);
1162 return (val & 0xc7) == 0x05;
1163
1164 case R_X86_64_TLSDESC_CALL:
1165 /* Check transition from GDesc access model:
1166 call *x@tlsdesc(%rax)
1167 */
1168 if (offset + 2 <= sec->size)
1169 {
1170 /* Make sure that it's a call *x@tlsdesc(%rax). */
1171 static x86_64_opcode16 call = { { 0xff, 0x10 } };
1172 return bfd_get_16 (abfd, contents + offset) == call.i;
1173 }
1174
1175 return FALSE;
1176
1177 default:
1178 abort ();
1179 }
1180 }
1181
1182 /* Return TRUE if the TLS access transition is OK or no transition
1183 will be performed. Update R_TYPE if there is a transition. */
1184
1185 static bfd_boolean
1186 elf_x86_64_tls_transition (struct bfd_link_info *info, bfd *abfd,
1187 asection *sec, bfd_byte *contents,
1188 Elf_Internal_Shdr *symtab_hdr,
1189 struct elf_link_hash_entry **sym_hashes,
1190 unsigned int *r_type, int tls_type,
1191 const Elf_Internal_Rela *rel,
1192 const Elf_Internal_Rela *relend,
1193 struct elf_link_hash_entry *h,
1194 unsigned long r_symndx)
1195 {
1196 unsigned int from_type = *r_type;
1197 unsigned int to_type = from_type;
1198 bfd_boolean check = TRUE;
1199
1200 /* Skip TLS transition for functions. */
1201 if (h != NULL
1202 && (h->type == STT_FUNC
1203 || h->type == STT_GNU_IFUNC))
1204 return TRUE;
1205
1206 switch (from_type)
1207 {
1208 case R_X86_64_TLSGD:
1209 case R_X86_64_GOTPC32_TLSDESC:
1210 case R_X86_64_TLSDESC_CALL:
1211 case R_X86_64_GOTTPOFF:
1212 if (info->executable)
1213 {
1214 if (h == NULL)
1215 to_type = R_X86_64_TPOFF32;
1216 else
1217 to_type = R_X86_64_GOTTPOFF;
1218 }
1219
1220 /* When we are called from elf_x86_64_relocate_section,
1221 CONTENTS isn't NULL and there may be additional transitions
1222 based on TLS_TYPE. */
1223 if (contents != NULL)
1224 {
1225 unsigned int new_to_type = to_type;
1226
1227 if (info->executable
1228 && h != NULL
1229 && h->dynindx == -1
1230 && tls_type == GOT_TLS_IE)
1231 new_to_type = R_X86_64_TPOFF32;
1232
1233 if (to_type == R_X86_64_TLSGD
1234 || to_type == R_X86_64_GOTPC32_TLSDESC
1235 || to_type == R_X86_64_TLSDESC_CALL)
1236 {
1237 if (tls_type == GOT_TLS_IE)
1238 new_to_type = R_X86_64_GOTTPOFF;
1239 }
1240
1241 /* We checked the transition before when we were called from
1242 elf_x86_64_check_relocs. We only want to check the new
1243 transition which hasn't been checked before. */
1244 check = new_to_type != to_type && from_type == to_type;
1245 to_type = new_to_type;
1246 }
1247
1248 break;
1249
1250 case R_X86_64_TLSLD:
1251 if (info->executable)
1252 to_type = R_X86_64_TPOFF32;
1253 break;
1254
1255 default:
1256 return TRUE;
1257 }
1258
1259 /* Return TRUE if there is no transition. */
1260 if (from_type == to_type)
1261 return TRUE;
1262
1263 /* Check if the transition can be performed. */
1264 if (check
1265 && ! elf_x86_64_check_tls_transition (abfd, info, sec, contents,
1266 symtab_hdr, sym_hashes,
1267 from_type, rel, relend))
1268 {
1269 reloc_howto_type *from, *to;
1270 const char *name;
1271
1272 from = elf_x86_64_rtype_to_howto (abfd, from_type);
1273 to = elf_x86_64_rtype_to_howto (abfd, to_type);
1274
1275 if (h)
1276 name = h->root.root.string;
1277 else
1278 {
1279 struct elf_x86_64_link_hash_table *htab;
1280
1281 htab = elf_x86_64_hash_table (info);
1282 if (htab == NULL)
1283 name = "*unknown*";
1284 else
1285 {
1286 Elf_Internal_Sym *isym;
1287
1288 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1289 abfd, r_symndx);
1290 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1291 }
1292 }
1293
1294 (*_bfd_error_handler)
1295 (_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
1296 "in section `%A' failed"),
1297 abfd, sec, from->name, to->name, name,
1298 (unsigned long) rel->r_offset);
1299 bfd_set_error (bfd_error_bad_value);
1300 return FALSE;
1301 }
1302
1303 *r_type = to_type;
1304 return TRUE;
1305 }
1306
1307 /* Look through the relocs for a section during the first phase, and
1308 calculate needed space in the global offset table, procedure
1309 linkage table, and dynamic reloc sections. */
1310
1311 static bfd_boolean
1312 elf_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info,
1313 asection *sec,
1314 const Elf_Internal_Rela *relocs)
1315 {
1316 struct elf_x86_64_link_hash_table *htab;
1317 Elf_Internal_Shdr *symtab_hdr;
1318 struct elf_link_hash_entry **sym_hashes;
1319 const Elf_Internal_Rela *rel;
1320 const Elf_Internal_Rela *rel_end;
1321 asection *sreloc;
1322
1323 if (info->relocatable)
1324 return TRUE;
1325
1326 BFD_ASSERT (is_x86_64_elf (abfd));
1327
1328 htab = elf_x86_64_hash_table (info);
1329 if (htab == NULL)
1330 return FALSE;
1331
1332 symtab_hdr = &elf_symtab_hdr (abfd);
1333 sym_hashes = elf_sym_hashes (abfd);
1334
1335 sreloc = NULL;
1336
1337 rel_end = relocs + sec->reloc_count;
1338 for (rel = relocs; rel < rel_end; rel++)
1339 {
1340 unsigned int r_type;
1341 unsigned long r_symndx;
1342 struct elf_link_hash_entry *h;
1343 Elf_Internal_Sym *isym;
1344 const char *name;
1345
1346 r_symndx = htab->r_sym (rel->r_info);
1347 r_type = ELF32_R_TYPE (rel->r_info);
1348
1349 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1350 {
1351 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1352 abfd, r_symndx);
1353 return FALSE;
1354 }
1355
1356 if (r_symndx < symtab_hdr->sh_info)
1357 {
1358 /* A local symbol. */
1359 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1360 abfd, r_symndx);
1361 if (isym == NULL)
1362 return FALSE;
1363
1364 /* Check relocation against local STT_GNU_IFUNC symbol. */
1365 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1366 {
1367 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel,
1368 TRUE);
1369 if (h == NULL)
1370 return FALSE;
1371
1372 /* Fake a STT_GNU_IFUNC symbol. */
1373 h->type = STT_GNU_IFUNC;
1374 h->def_regular = 1;
1375 h->ref_regular = 1;
1376 h->forced_local = 1;
1377 h->root.type = bfd_link_hash_defined;
1378 }
1379 else
1380 h = NULL;
1381 }
1382 else
1383 {
1384 isym = NULL;
1385 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1386 while (h->root.type == bfd_link_hash_indirect
1387 || h->root.type == bfd_link_hash_warning)
1388 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1389 }
1390
1391 /* Check invalid x32 relocations. */
1392 if (!ABI_64_P (abfd))
1393 switch (r_type)
1394 {
1395 default:
1396 break;
1397
1398 case R_X86_64_64:
1399 /* Allow R_X86_64_64 relocations in SEC_DEBUGGING sections
1400 when building shared libraries. */
1401 if (info->shared
1402 && !info->executable
1403 && (sec->flags & SEC_DEBUGGING) != 0)
1404 break;
1405
1406 case R_X86_64_DTPOFF64:
1407 case R_X86_64_TPOFF64:
1408 case R_X86_64_PC64:
1409 case R_X86_64_GOTOFF64:
1410 case R_X86_64_GOT64:
1411 case R_X86_64_GOTPCREL64:
1412 case R_X86_64_GOTPC64:
1413 case R_X86_64_GOTPLT64:
1414 case R_X86_64_PLTOFF64:
1415 {
1416 if (h)
1417 name = h->root.root.string;
1418 else
1419 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1420 NULL);
1421 (*_bfd_error_handler)
1422 (_("%B: relocation %s against symbol `%s' isn't "
1423 "supported in x32 mode"), abfd,
1424 x86_64_elf_howto_table[r_type].name, name);
1425 bfd_set_error (bfd_error_bad_value);
1426 return FALSE;
1427 }
1428 break;
1429 }
1430
1431 if (h != NULL)
1432 {
1433 /* Create the ifunc sections for static executables. If we
1434 never see an indirect function symbol nor we are building
1435 a static executable, those sections will be empty and
1436 won't appear in output. */
1437 switch (r_type)
1438 {
1439 default:
1440 break;
1441
1442 case R_X86_64_32S:
1443 case R_X86_64_32:
1444 case R_X86_64_64:
1445 case R_X86_64_PC32:
1446 case R_X86_64_PC64:
1447 case R_X86_64_PLT32:
1448 case R_X86_64_GOTPCREL:
1449 case R_X86_64_GOTPCREL64:
1450 if (htab->elf.dynobj == NULL)
1451 htab->elf.dynobj = abfd;
1452 if (!_bfd_elf_create_ifunc_sections (htab->elf.dynobj, info))
1453 return FALSE;
1454 break;
1455 }
1456
1457 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
1458 it here if it is defined in a non-shared object. */
1459 if (h->type == STT_GNU_IFUNC
1460 && h->def_regular)
1461 {
1462 /* It is referenced by a non-shared object. */
1463 h->ref_regular = 1;
1464 h->needs_plt = 1;
1465
1466 /* STT_GNU_IFUNC symbol must go through PLT. */
1467 h->plt.refcount += 1;
1468
1469 /* STT_GNU_IFUNC needs dynamic sections. */
1470 if (htab->elf.dynobj == NULL)
1471 htab->elf.dynobj = abfd;
1472
1473 switch (r_type)
1474 {
1475 default:
1476 if (h->root.root.string)
1477 name = h->root.root.string;
1478 else
1479 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1480 NULL);
1481 (*_bfd_error_handler)
1482 (_("%B: relocation %s against STT_GNU_IFUNC "
1483 "symbol `%s' isn't handled by %s"), abfd,
1484 x86_64_elf_howto_table[r_type].name,
1485 name, __FUNCTION__);
1486 bfd_set_error (bfd_error_bad_value);
1487 return FALSE;
1488
1489 case R_X86_64_32:
1490 if (ABI_64_P (abfd))
1491 goto not_pointer;
1492 case R_X86_64_64:
1493 h->non_got_ref = 1;
1494 h->pointer_equality_needed = 1;
1495 if (info->shared)
1496 {
1497 /* We must copy these reloc types into the output
1498 file. Create a reloc section in dynobj and
1499 make room for this reloc. */
1500 sreloc = _bfd_elf_create_ifunc_dyn_reloc
1501 (abfd, info, sec, sreloc,
1502 &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs);
1503 if (sreloc == NULL)
1504 return FALSE;
1505 }
1506 break;
1507
1508 case R_X86_64_32S:
1509 case R_X86_64_PC32:
1510 case R_X86_64_PC64:
1511 not_pointer:
1512 h->non_got_ref = 1;
1513 if (r_type != R_X86_64_PC32
1514 && r_type != R_X86_64_PC64)
1515 h->pointer_equality_needed = 1;
1516 break;
1517
1518 case R_X86_64_PLT32:
1519 break;
1520
1521 case R_X86_64_GOTPCREL:
1522 case R_X86_64_GOTPCREL64:
1523 h->got.refcount += 1;
1524 if (htab->elf.sgot == NULL
1525 && !_bfd_elf_create_got_section (htab->elf.dynobj,
1526 info))
1527 return FALSE;
1528 break;
1529 }
1530
1531 continue;
1532 }
1533 }
1534
1535 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
1536 symtab_hdr, sym_hashes,
1537 &r_type, GOT_UNKNOWN,
1538 rel, rel_end, h, r_symndx))
1539 return FALSE;
1540
1541 switch (r_type)
1542 {
1543 case R_X86_64_TLSLD:
1544 htab->tls_ld_got.refcount += 1;
1545 goto create_got;
1546
1547 case R_X86_64_TPOFF32:
1548 if (!info->executable && ABI_64_P (abfd))
1549 {
1550 if (h)
1551 name = h->root.root.string;
1552 else
1553 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1554 NULL);
1555 (*_bfd_error_handler)
1556 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1557 abfd,
1558 x86_64_elf_howto_table[r_type].name, name);
1559 bfd_set_error (bfd_error_bad_value);
1560 return FALSE;
1561 }
1562 break;
1563
1564 case R_X86_64_GOTTPOFF:
1565 if (!info->executable)
1566 info->flags |= DF_STATIC_TLS;
1567 /* Fall through */
1568
1569 case R_X86_64_GOT32:
1570 case R_X86_64_GOTPCREL:
1571 case R_X86_64_TLSGD:
1572 case R_X86_64_GOT64:
1573 case R_X86_64_GOTPCREL64:
1574 case R_X86_64_GOTPLT64:
1575 case R_X86_64_GOTPC32_TLSDESC:
1576 case R_X86_64_TLSDESC_CALL:
1577 /* This symbol requires a global offset table entry. */
1578 {
1579 int tls_type, old_tls_type;
1580
1581 switch (r_type)
1582 {
1583 default: tls_type = GOT_NORMAL; break;
1584 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
1585 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
1586 case R_X86_64_GOTPC32_TLSDESC:
1587 case R_X86_64_TLSDESC_CALL:
1588 tls_type = GOT_TLS_GDESC; break;
1589 }
1590
1591 if (h != NULL)
1592 {
1593 if (r_type == R_X86_64_GOTPLT64)
1594 {
1595 /* This relocation indicates that we also need
1596 a PLT entry, as this is a function. We don't need
1597 a PLT entry for local symbols. */
1598 h->needs_plt = 1;
1599 h->plt.refcount += 1;
1600 }
1601 h->got.refcount += 1;
1602 old_tls_type = elf_x86_64_hash_entry (h)->tls_type;
1603 }
1604 else
1605 {
1606 bfd_signed_vma *local_got_refcounts;
1607
1608 /* This is a global offset table entry for a local symbol. */
1609 local_got_refcounts = elf_local_got_refcounts (abfd);
1610 if (local_got_refcounts == NULL)
1611 {
1612 bfd_size_type size;
1613
1614 size = symtab_hdr->sh_info;
1615 size *= sizeof (bfd_signed_vma)
1616 + sizeof (bfd_vma) + sizeof (char);
1617 local_got_refcounts = ((bfd_signed_vma *)
1618 bfd_zalloc (abfd, size));
1619 if (local_got_refcounts == NULL)
1620 return FALSE;
1621 elf_local_got_refcounts (abfd) = local_got_refcounts;
1622 elf_x86_64_local_tlsdesc_gotent (abfd)
1623 = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info);
1624 elf_x86_64_local_got_tls_type (abfd)
1625 = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
1626 }
1627 local_got_refcounts[r_symndx] += 1;
1628 old_tls_type
1629 = elf_x86_64_local_got_tls_type (abfd) [r_symndx];
1630 }
1631
1632 /* If a TLS symbol is accessed using IE at least once,
1633 there is no point to use dynamic model for it. */
1634 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1635 && (! GOT_TLS_GD_ANY_P (old_tls_type)
1636 || tls_type != GOT_TLS_IE))
1637 {
1638 if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type))
1639 tls_type = old_tls_type;
1640 else if (GOT_TLS_GD_ANY_P (old_tls_type)
1641 && GOT_TLS_GD_ANY_P (tls_type))
1642 tls_type |= old_tls_type;
1643 else
1644 {
1645 if (h)
1646 name = h->root.root.string;
1647 else
1648 name = bfd_elf_sym_name (abfd, symtab_hdr,
1649 isym, NULL);
1650 (*_bfd_error_handler)
1651 (_("%B: '%s' accessed both as normal and thread local symbol"),
1652 abfd, name);
1653 return FALSE;
1654 }
1655 }
1656
1657 if (old_tls_type != tls_type)
1658 {
1659 if (h != NULL)
1660 elf_x86_64_hash_entry (h)->tls_type = tls_type;
1661 else
1662 elf_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
1663 }
1664 }
1665 /* Fall through */
1666
1667 case R_X86_64_GOTOFF64:
1668 case R_X86_64_GOTPC32:
1669 case R_X86_64_GOTPC64:
1670 create_got:
1671 if (htab->elf.sgot == NULL)
1672 {
1673 if (htab->elf.dynobj == NULL)
1674 htab->elf.dynobj = abfd;
1675 if (!_bfd_elf_create_got_section (htab->elf.dynobj,
1676 info))
1677 return FALSE;
1678 }
1679 break;
1680
1681 case R_X86_64_PLT32:
1682 /* This symbol requires a procedure linkage table entry. We
1683 actually build the entry in adjust_dynamic_symbol,
1684 because this might be a case of linking PIC code which is
1685 never referenced by a dynamic object, in which case we
1686 don't need to generate a procedure linkage table entry
1687 after all. */
1688
1689 /* If this is a local symbol, we resolve it directly without
1690 creating a procedure linkage table entry. */
1691 if (h == NULL)
1692 continue;
1693
1694 h->needs_plt = 1;
1695 h->plt.refcount += 1;
1696 break;
1697
1698 case R_X86_64_PLTOFF64:
1699 /* This tries to form the 'address' of a function relative
1700 to GOT. For global symbols we need a PLT entry. */
1701 if (h != NULL)
1702 {
1703 h->needs_plt = 1;
1704 h->plt.refcount += 1;
1705 }
1706 goto create_got;
1707
1708 case R_X86_64_32:
1709 if (!ABI_64_P (abfd))
1710 goto pointer;
1711 case R_X86_64_8:
1712 case R_X86_64_16:
1713 case R_X86_64_32S:
1714 /* Let's help debug shared library creation. These relocs
1715 cannot be used in shared libs. Don't error out for
1716 sections we don't care about, such as debug sections or
1717 non-constant sections. */
1718 if (info->shared
1719 && (sec->flags & SEC_ALLOC) != 0
1720 && (sec->flags & SEC_READONLY) != 0)
1721 {
1722 if (h)
1723 name = h->root.root.string;
1724 else
1725 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1726 (*_bfd_error_handler)
1727 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1728 abfd, x86_64_elf_howto_table[r_type].name, name);
1729 bfd_set_error (bfd_error_bad_value);
1730 return FALSE;
1731 }
1732 /* Fall through. */
1733
1734 case R_X86_64_PC8:
1735 case R_X86_64_PC16:
1736 case R_X86_64_PC32:
1737 case R_X86_64_PC64:
1738 case R_X86_64_64:
1739 pointer:
1740 if (h != NULL && info->executable)
1741 {
1742 /* If this reloc is in a read-only section, we might
1743 need a copy reloc. We can't check reliably at this
1744 stage whether the section is read-only, as input
1745 sections have not yet been mapped to output sections.
1746 Tentatively set the flag for now, and correct in
1747 adjust_dynamic_symbol. */
1748 h->non_got_ref = 1;
1749
1750 /* We may need a .plt entry if the function this reloc
1751 refers to is in a shared lib. */
1752 h->plt.refcount += 1;
1753 if (r_type != R_X86_64_PC32 && r_type != R_X86_64_PC64)
1754 h->pointer_equality_needed = 1;
1755 }
1756
1757 /* If we are creating a shared library, and this is a reloc
1758 against a global symbol, or a non PC relative reloc
1759 against a local symbol, then we need to copy the reloc
1760 into the shared library. However, if we are linking with
1761 -Bsymbolic, we do not need to copy a reloc against a
1762 global symbol which is defined in an object we are
1763 including in the link (i.e., DEF_REGULAR is set). At
1764 this point we have not seen all the input files, so it is
1765 possible that DEF_REGULAR is not set now but will be set
1766 later (it is never cleared). In case of a weak definition,
1767 DEF_REGULAR may be cleared later by a strong definition in
1768 a shared library. We account for that possibility below by
1769 storing information in the relocs_copied field of the hash
1770 table entry. A similar situation occurs when creating
1771 shared libraries and symbol visibility changes render the
1772 symbol local.
1773
1774 If on the other hand, we are creating an executable, we
1775 may need to keep relocations for symbols satisfied by a
1776 dynamic library if we manage to avoid copy relocs for the
1777 symbol. */
1778 if ((info->shared
1779 && (sec->flags & SEC_ALLOC) != 0
1780 && (! IS_X86_64_PCREL_TYPE (r_type)
1781 || (h != NULL
1782 && (! SYMBOLIC_BIND (info, h)
1783 || h->root.type == bfd_link_hash_defweak
1784 || !h->def_regular))))
1785 || (ELIMINATE_COPY_RELOCS
1786 && !info->shared
1787 && (sec->flags & SEC_ALLOC) != 0
1788 && h != NULL
1789 && (h->root.type == bfd_link_hash_defweak
1790 || !h->def_regular)))
1791 {
1792 struct elf_dyn_relocs *p;
1793 struct elf_dyn_relocs **head;
1794
1795 /* We must copy these reloc types into the output file.
1796 Create a reloc section in dynobj and make room for
1797 this reloc. */
1798 if (sreloc == NULL)
1799 {
1800 if (htab->elf.dynobj == NULL)
1801 htab->elf.dynobj = abfd;
1802
1803 sreloc = _bfd_elf_make_dynamic_reloc_section
1804 (sec, htab->elf.dynobj, ABI_64_P (abfd) ? 3 : 2,
1805 abfd, /*rela?*/ TRUE);
1806
1807 if (sreloc == NULL)
1808 return FALSE;
1809 }
1810
1811 /* If this is a global symbol, we count the number of
1812 relocations we need for this symbol. */
1813 if (h != NULL)
1814 {
1815 head = &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs;
1816 }
1817 else
1818 {
1819 /* Track dynamic relocs needed for local syms too.
1820 We really need local syms available to do this
1821 easily. Oh well. */
1822 asection *s;
1823 void **vpp;
1824
1825 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1826 abfd, r_symndx);
1827 if (isym == NULL)
1828 return FALSE;
1829
1830 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
1831 if (s == NULL)
1832 s = sec;
1833
1834 /* Beware of type punned pointers vs strict aliasing
1835 rules. */
1836 vpp = &(elf_section_data (s)->local_dynrel);
1837 head = (struct elf_dyn_relocs **)vpp;
1838 }
1839
1840 p = *head;
1841 if (p == NULL || p->sec != sec)
1842 {
1843 bfd_size_type amt = sizeof *p;
1844
1845 p = ((struct elf_dyn_relocs *)
1846 bfd_alloc (htab->elf.dynobj, amt));
1847 if (p == NULL)
1848 return FALSE;
1849 p->next = *head;
1850 *head = p;
1851 p->sec = sec;
1852 p->count = 0;
1853 p->pc_count = 0;
1854 }
1855
1856 p->count += 1;
1857 if (IS_X86_64_PCREL_TYPE (r_type))
1858 p->pc_count += 1;
1859 }
1860 break;
1861
1862 /* This relocation describes the C++ object vtable hierarchy.
1863 Reconstruct it for later use during GC. */
1864 case R_X86_64_GNU_VTINHERIT:
1865 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1866 return FALSE;
1867 break;
1868
1869 /* This relocation describes which C++ vtable entries are actually
1870 used. Record for later use during GC. */
1871 case R_X86_64_GNU_VTENTRY:
1872 BFD_ASSERT (h != NULL);
1873 if (h != NULL
1874 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1875 return FALSE;
1876 break;
1877
1878 default:
1879 break;
1880 }
1881 }
1882
1883 return TRUE;
1884 }
1885
1886 /* Return the section that should be marked against GC for a given
1887 relocation. */
1888
1889 static asection *
1890 elf_x86_64_gc_mark_hook (asection *sec,
1891 struct bfd_link_info *info,
1892 Elf_Internal_Rela *rel,
1893 struct elf_link_hash_entry *h,
1894 Elf_Internal_Sym *sym)
1895 {
1896 if (h != NULL)
1897 switch (ELF32_R_TYPE (rel->r_info))
1898 {
1899 case R_X86_64_GNU_VTINHERIT:
1900 case R_X86_64_GNU_VTENTRY:
1901 return NULL;
1902 }
1903
1904 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1905 }
1906
1907 /* Update the got entry reference counts for the section being removed. */
1908
1909 static bfd_boolean
1910 elf_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
1911 asection *sec,
1912 const Elf_Internal_Rela *relocs)
1913 {
1914 struct elf_x86_64_link_hash_table *htab;
1915 Elf_Internal_Shdr *symtab_hdr;
1916 struct elf_link_hash_entry **sym_hashes;
1917 bfd_signed_vma *local_got_refcounts;
1918 const Elf_Internal_Rela *rel, *relend;
1919
1920 if (info->relocatable)
1921 return TRUE;
1922
1923 htab = elf_x86_64_hash_table (info);
1924 if (htab == NULL)
1925 return FALSE;
1926
1927 elf_section_data (sec)->local_dynrel = NULL;
1928
1929 symtab_hdr = &elf_symtab_hdr (abfd);
1930 sym_hashes = elf_sym_hashes (abfd);
1931 local_got_refcounts = elf_local_got_refcounts (abfd);
1932
1933 htab = elf_x86_64_hash_table (info);
1934 relend = relocs + sec->reloc_count;
1935 for (rel = relocs; rel < relend; rel++)
1936 {
1937 unsigned long r_symndx;
1938 unsigned int r_type;
1939 struct elf_link_hash_entry *h = NULL;
1940
1941 r_symndx = htab->r_sym (rel->r_info);
1942 if (r_symndx >= symtab_hdr->sh_info)
1943 {
1944 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1945 while (h->root.type == bfd_link_hash_indirect
1946 || h->root.type == bfd_link_hash_warning)
1947 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1948 }
1949 else
1950 {
1951 /* A local symbol. */
1952 Elf_Internal_Sym *isym;
1953
1954 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1955 abfd, r_symndx);
1956
1957 /* Check relocation against local STT_GNU_IFUNC symbol. */
1958 if (isym != NULL
1959 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1960 {
1961 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel, FALSE);
1962 if (h == NULL)
1963 abort ();
1964 }
1965 }
1966
1967 if (h)
1968 {
1969 struct elf_x86_64_link_hash_entry *eh;
1970 struct elf_dyn_relocs **pp;
1971 struct elf_dyn_relocs *p;
1972
1973 eh = (struct elf_x86_64_link_hash_entry *) h;
1974
1975 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1976 if (p->sec == sec)
1977 {
1978 /* Everything must go for SEC. */
1979 *pp = p->next;
1980 break;
1981 }
1982 }
1983
1984 r_type = ELF32_R_TYPE (rel->r_info);
1985 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
1986 symtab_hdr, sym_hashes,
1987 &r_type, GOT_UNKNOWN,
1988 rel, relend, h, r_symndx))
1989 return FALSE;
1990
1991 switch (r_type)
1992 {
1993 case R_X86_64_TLSLD:
1994 if (htab->tls_ld_got.refcount > 0)
1995 htab->tls_ld_got.refcount -= 1;
1996 break;
1997
1998 case R_X86_64_TLSGD:
1999 case R_X86_64_GOTPC32_TLSDESC:
2000 case R_X86_64_TLSDESC_CALL:
2001 case R_X86_64_GOTTPOFF:
2002 case R_X86_64_GOT32:
2003 case R_X86_64_GOTPCREL:
2004 case R_X86_64_GOT64:
2005 case R_X86_64_GOTPCREL64:
2006 case R_X86_64_GOTPLT64:
2007 if (h != NULL)
2008 {
2009 if (r_type == R_X86_64_GOTPLT64 && h->plt.refcount > 0)
2010 h->plt.refcount -= 1;
2011 if (h->got.refcount > 0)
2012 h->got.refcount -= 1;
2013 if (h->type == STT_GNU_IFUNC)
2014 {
2015 if (h->plt.refcount > 0)
2016 h->plt.refcount -= 1;
2017 }
2018 }
2019 else if (local_got_refcounts != NULL)
2020 {
2021 if (local_got_refcounts[r_symndx] > 0)
2022 local_got_refcounts[r_symndx] -= 1;
2023 }
2024 break;
2025
2026 case R_X86_64_8:
2027 case R_X86_64_16:
2028 case R_X86_64_32:
2029 case R_X86_64_64:
2030 case R_X86_64_32S:
2031 case R_X86_64_PC8:
2032 case R_X86_64_PC16:
2033 case R_X86_64_PC32:
2034 case R_X86_64_PC64:
2035 if (info->shared
2036 && (h == NULL || h->type != STT_GNU_IFUNC))
2037 break;
2038 /* Fall thru */
2039
2040 case R_X86_64_PLT32:
2041 case R_X86_64_PLTOFF64:
2042 if (h != NULL)
2043 {
2044 if (h->plt.refcount > 0)
2045 h->plt.refcount -= 1;
2046 }
2047 break;
2048
2049 default:
2050 break;
2051 }
2052 }
2053
2054 return TRUE;
2055 }
2056
2057 /* Adjust a symbol defined by a dynamic object and referenced by a
2058 regular object. The current definition is in some section of the
2059 dynamic object, but we're not including those sections. We have to
2060 change the definition to something the rest of the link can
2061 understand. */
2062
2063 static bfd_boolean
2064 elf_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
2065 struct elf_link_hash_entry *h)
2066 {
2067 struct elf_x86_64_link_hash_table *htab;
2068 asection *s;
2069
2070 /* STT_GNU_IFUNC symbol must go through PLT. */
2071 if (h->type == STT_GNU_IFUNC)
2072 {
2073 if (h->plt.refcount <= 0)
2074 {
2075 h->plt.offset = (bfd_vma) -1;
2076 h->needs_plt = 0;
2077 }
2078 return TRUE;
2079 }
2080
2081 /* If this is a function, put it in the procedure linkage table. We
2082 will fill in the contents of the procedure linkage table later,
2083 when we know the address of the .got section. */
2084 if (h->type == STT_FUNC
2085 || h->needs_plt)
2086 {
2087 if (h->plt.refcount <= 0
2088 || SYMBOL_CALLS_LOCAL (info, h)
2089 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2090 && h->root.type == bfd_link_hash_undefweak))
2091 {
2092 /* This case can occur if we saw a PLT32 reloc in an input
2093 file, but the symbol was never referred to by a dynamic
2094 object, or if all references were garbage collected. In
2095 such a case, we don't actually need to build a procedure
2096 linkage table, and we can just do a PC32 reloc instead. */
2097 h->plt.offset = (bfd_vma) -1;
2098 h->needs_plt = 0;
2099 }
2100
2101 return TRUE;
2102 }
2103 else
2104 /* It's possible that we incorrectly decided a .plt reloc was
2105 needed for an R_X86_64_PC32 reloc to a non-function sym in
2106 check_relocs. We can't decide accurately between function and
2107 non-function syms in check-relocs; Objects loaded later in
2108 the link may change h->type. So fix it now. */
2109 h->plt.offset = (bfd_vma) -1;
2110
2111 /* If this is a weak symbol, and there is a real definition, the
2112 processor independent code will have arranged for us to see the
2113 real definition first, and we can just use the same value. */
2114 if (h->u.weakdef != NULL)
2115 {
2116 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
2117 || h->u.weakdef->root.type == bfd_link_hash_defweak);
2118 h->root.u.def.section = h->u.weakdef->root.u.def.section;
2119 h->root.u.def.value = h->u.weakdef->root.u.def.value;
2120 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
2121 h->non_got_ref = h->u.weakdef->non_got_ref;
2122 return TRUE;
2123 }
2124
2125 /* This is a reference to a symbol defined by a dynamic object which
2126 is not a function. */
2127
2128 /* If we are creating a shared library, we must presume that the
2129 only references to the symbol are via the global offset table.
2130 For such cases we need not do anything here; the relocations will
2131 be handled correctly by relocate_section. */
2132 if (info->shared)
2133 return TRUE;
2134
2135 /* If there are no references to this symbol that do not use the
2136 GOT, we don't need to generate a copy reloc. */
2137 if (!h->non_got_ref)
2138 return TRUE;
2139
2140 /* If -z nocopyreloc was given, we won't generate them either. */
2141 if (info->nocopyreloc)
2142 {
2143 h->non_got_ref = 0;
2144 return TRUE;
2145 }
2146
2147 if (ELIMINATE_COPY_RELOCS)
2148 {
2149 struct elf_x86_64_link_hash_entry * eh;
2150 struct elf_dyn_relocs *p;
2151
2152 eh = (struct elf_x86_64_link_hash_entry *) h;
2153 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2154 {
2155 s = p->sec->output_section;
2156 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2157 break;
2158 }
2159
2160 /* If we didn't find any dynamic relocs in read-only sections, then
2161 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
2162 if (p == NULL)
2163 {
2164 h->non_got_ref = 0;
2165 return TRUE;
2166 }
2167 }
2168
2169 if (h->size == 0)
2170 {
2171 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
2172 h->root.root.string);
2173 return TRUE;
2174 }
2175
2176 /* We must allocate the symbol in our .dynbss section, which will
2177 become part of the .bss section of the executable. There will be
2178 an entry for this symbol in the .dynsym section. The dynamic
2179 object will contain position independent code, so all references
2180 from the dynamic object to this symbol will go through the global
2181 offset table. The dynamic linker will use the .dynsym entry to
2182 determine the address it must put in the global offset table, so
2183 both the dynamic object and the regular object will refer to the
2184 same memory location for the variable. */
2185
2186 htab = elf_x86_64_hash_table (info);
2187 if (htab == NULL)
2188 return FALSE;
2189
2190 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
2191 to copy the initial value out of the dynamic object and into the
2192 runtime process image. */
2193 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
2194 {
2195 const struct elf_backend_data *bed;
2196 bed = get_elf_backend_data (info->output_bfd);
2197 htab->srelbss->size += bed->s->sizeof_rela;
2198 h->needs_copy = 1;
2199 }
2200
2201 s = htab->sdynbss;
2202
2203 return _bfd_elf_adjust_dynamic_copy (h, s);
2204 }
2205
2206 /* Allocate space in .plt, .got and associated reloc sections for
2207 dynamic relocs. */
2208
2209 static bfd_boolean
2210 elf_x86_64_allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
2211 {
2212 struct bfd_link_info *info;
2213 struct elf_x86_64_link_hash_table *htab;
2214 struct elf_x86_64_link_hash_entry *eh;
2215 struct elf_dyn_relocs *p;
2216 const struct elf_backend_data *bed;
2217
2218 if (h->root.type == bfd_link_hash_indirect)
2219 return TRUE;
2220
2221 eh = (struct elf_x86_64_link_hash_entry *) h;
2222
2223 info = (struct bfd_link_info *) inf;
2224 htab = elf_x86_64_hash_table (info);
2225 if (htab == NULL)
2226 return FALSE;
2227 bed = get_elf_backend_data (info->output_bfd);
2228
2229 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
2230 here if it is defined and referenced in a non-shared object. */
2231 if (h->type == STT_GNU_IFUNC
2232 && h->def_regular)
2233 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
2234 &eh->dyn_relocs,
2235 PLT_ENTRY_SIZE,
2236 GOT_ENTRY_SIZE);
2237 else if (htab->elf.dynamic_sections_created
2238 && h->plt.refcount > 0)
2239 {
2240 /* Make sure this symbol is output as a dynamic symbol.
2241 Undefined weak syms won't yet be marked as dynamic. */
2242 if (h->dynindx == -1
2243 && !h->forced_local)
2244 {
2245 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2246 return FALSE;
2247 }
2248
2249 if (info->shared
2250 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
2251 {
2252 asection *s = htab->elf.splt;
2253
2254 /* If this is the first .plt entry, make room for the special
2255 first entry. */
2256 if (s->size == 0)
2257 s->size += PLT_ENTRY_SIZE;
2258
2259 h->plt.offset = s->size;
2260
2261 /* If this symbol is not defined in a regular file, and we are
2262 not generating a shared library, then set the symbol to this
2263 location in the .plt. This is required to make function
2264 pointers compare as equal between the normal executable and
2265 the shared library. */
2266 if (! info->shared
2267 && !h->def_regular)
2268 {
2269 h->root.u.def.section = s;
2270 h->root.u.def.value = h->plt.offset;
2271 }
2272
2273 /* Make room for this entry. */
2274 s->size += PLT_ENTRY_SIZE;
2275
2276 /* We also need to make an entry in the .got.plt section, which
2277 will be placed in the .got section by the linker script. */
2278 htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
2279
2280 /* We also need to make an entry in the .rela.plt section. */
2281 htab->elf.srelplt->size += bed->s->sizeof_rela;
2282 htab->elf.srelplt->reloc_count++;
2283 }
2284 else
2285 {
2286 h->plt.offset = (bfd_vma) -1;
2287 h->needs_plt = 0;
2288 }
2289 }
2290 else
2291 {
2292 h->plt.offset = (bfd_vma) -1;
2293 h->needs_plt = 0;
2294 }
2295
2296 eh->tlsdesc_got = (bfd_vma) -1;
2297
2298 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
2299 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
2300 if (h->got.refcount > 0
2301 && info->executable
2302 && h->dynindx == -1
2303 && elf_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
2304 {
2305 h->got.offset = (bfd_vma) -1;
2306 }
2307 else if (h->got.refcount > 0)
2308 {
2309 asection *s;
2310 bfd_boolean dyn;
2311 int tls_type = elf_x86_64_hash_entry (h)->tls_type;
2312
2313 /* Make sure this symbol is output as a dynamic symbol.
2314 Undefined weak syms won't yet be marked as dynamic. */
2315 if (h->dynindx == -1
2316 && !h->forced_local)
2317 {
2318 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2319 return FALSE;
2320 }
2321
2322 if (GOT_TLS_GDESC_P (tls_type))
2323 {
2324 eh->tlsdesc_got = htab->elf.sgotplt->size
2325 - elf_x86_64_compute_jump_table_size (htab);
2326 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2327 h->got.offset = (bfd_vma) -2;
2328 }
2329 if (! GOT_TLS_GDESC_P (tls_type)
2330 || GOT_TLS_GD_P (tls_type))
2331 {
2332 s = htab->elf.sgot;
2333 h->got.offset = s->size;
2334 s->size += GOT_ENTRY_SIZE;
2335 if (GOT_TLS_GD_P (tls_type))
2336 s->size += GOT_ENTRY_SIZE;
2337 }
2338 dyn = htab->elf.dynamic_sections_created;
2339 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
2340 and two if global.
2341 R_X86_64_GOTTPOFF needs one dynamic relocation. */
2342 if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
2343 || tls_type == GOT_TLS_IE)
2344 htab->elf.srelgot->size += bed->s->sizeof_rela;
2345 else if (GOT_TLS_GD_P (tls_type))
2346 htab->elf.srelgot->size += 2 * bed->s->sizeof_rela;
2347 else if (! GOT_TLS_GDESC_P (tls_type)
2348 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2349 || h->root.type != bfd_link_hash_undefweak)
2350 && (info->shared
2351 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
2352 htab->elf.srelgot->size += bed->s->sizeof_rela;
2353 if (GOT_TLS_GDESC_P (tls_type))
2354 {
2355 htab->elf.srelplt->size += bed->s->sizeof_rela;
2356 htab->tlsdesc_plt = (bfd_vma) -1;
2357 }
2358 }
2359 else
2360 h->got.offset = (bfd_vma) -1;
2361
2362 if (eh->dyn_relocs == NULL)
2363 return TRUE;
2364
2365 /* In the shared -Bsymbolic case, discard space allocated for
2366 dynamic pc-relative relocs against symbols which turn out to be
2367 defined in regular objects. For the normal shared case, discard
2368 space for pc-relative relocs that have become local due to symbol
2369 visibility changes. */
2370
2371 if (info->shared)
2372 {
2373 /* Relocs that use pc_count are those that appear on a call
2374 insn, or certain REL relocs that can generated via assembly.
2375 We want calls to protected symbols to resolve directly to the
2376 function rather than going via the plt. If people want
2377 function pointer comparisons to work as expected then they
2378 should avoid writing weird assembly. */
2379 if (SYMBOL_CALLS_LOCAL (info, h))
2380 {
2381 struct elf_dyn_relocs **pp;
2382
2383 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2384 {
2385 p->count -= p->pc_count;
2386 p->pc_count = 0;
2387 if (p->count == 0)
2388 *pp = p->next;
2389 else
2390 pp = &p->next;
2391 }
2392 }
2393
2394 /* Also discard relocs on undefined weak syms with non-default
2395 visibility. */
2396 if (eh->dyn_relocs != NULL
2397 && h->root.type == bfd_link_hash_undefweak)
2398 {
2399 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2400 eh->dyn_relocs = NULL;
2401
2402 /* Make sure undefined weak symbols are output as a dynamic
2403 symbol in PIEs. */
2404 else if (h->dynindx == -1
2405 && ! h->forced_local
2406 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2407 return FALSE;
2408 }
2409
2410 }
2411 else if (ELIMINATE_COPY_RELOCS)
2412 {
2413 /* For the non-shared case, discard space for relocs against
2414 symbols which turn out to need copy relocs or are not
2415 dynamic. */
2416
2417 if (!h->non_got_ref
2418 && ((h->def_dynamic
2419 && !h->def_regular)
2420 || (htab->elf.dynamic_sections_created
2421 && (h->root.type == bfd_link_hash_undefweak
2422 || h->root.type == bfd_link_hash_undefined))))
2423 {
2424 /* Make sure this symbol is output as a dynamic symbol.
2425 Undefined weak syms won't yet be marked as dynamic. */
2426 if (h->dynindx == -1
2427 && ! h->forced_local
2428 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2429 return FALSE;
2430
2431 /* If that succeeded, we know we'll be keeping all the
2432 relocs. */
2433 if (h->dynindx != -1)
2434 goto keep;
2435 }
2436
2437 eh->dyn_relocs = NULL;
2438
2439 keep: ;
2440 }
2441
2442 /* Finally, allocate space. */
2443 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2444 {
2445 asection * sreloc;
2446
2447 sreloc = elf_section_data (p->sec)->sreloc;
2448
2449 BFD_ASSERT (sreloc != NULL);
2450
2451 sreloc->size += p->count * bed->s->sizeof_rela;
2452 }
2453
2454 return TRUE;
2455 }
2456
2457 /* Allocate space in .plt, .got and associated reloc sections for
2458 local dynamic relocs. */
2459
2460 static bfd_boolean
2461 elf_x86_64_allocate_local_dynrelocs (void **slot, void *inf)
2462 {
2463 struct elf_link_hash_entry *h
2464 = (struct elf_link_hash_entry *) *slot;
2465
2466 if (h->type != STT_GNU_IFUNC
2467 || !h->def_regular
2468 || !h->ref_regular
2469 || !h->forced_local
2470 || h->root.type != bfd_link_hash_defined)
2471 abort ();
2472
2473 return elf_x86_64_allocate_dynrelocs (h, inf);
2474 }
2475
2476 /* Find any dynamic relocs that apply to read-only sections. */
2477
2478 static bfd_boolean
2479 elf_x86_64_readonly_dynrelocs (struct elf_link_hash_entry *h,
2480 void * inf)
2481 {
2482 struct elf_x86_64_link_hash_entry *eh;
2483 struct elf_dyn_relocs *p;
2484
2485 /* Skip local IFUNC symbols. */
2486 if (h->forced_local && h->type == STT_GNU_IFUNC)
2487 return TRUE;
2488
2489 eh = (struct elf_x86_64_link_hash_entry *) h;
2490 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2491 {
2492 asection *s = p->sec->output_section;
2493
2494 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2495 {
2496 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2497
2498 info->flags |= DF_TEXTREL;
2499
2500 if (info->warn_shared_textrel && info->shared)
2501 info->callbacks->einfo (_("%P: %B: warning: relocation against `%s' in readonly section `%A'.\n"),
2502 p->sec->owner, h->root.root.string,
2503 p->sec);
2504
2505 /* Not an error, just cut short the traversal. */
2506 return FALSE;
2507 }
2508 }
2509 return TRUE;
2510 }
2511
2512 /* Set the sizes of the dynamic sections. */
2513
2514 static bfd_boolean
2515 elf_x86_64_size_dynamic_sections (bfd *output_bfd,
2516 struct bfd_link_info *info)
2517 {
2518 struct elf_x86_64_link_hash_table *htab;
2519 bfd *dynobj;
2520 asection *s;
2521 bfd_boolean relocs;
2522 bfd *ibfd;
2523 const struct elf_backend_data *bed;
2524
2525 htab = elf_x86_64_hash_table (info);
2526 if (htab == NULL)
2527 return FALSE;
2528 bed = get_elf_backend_data (output_bfd);
2529
2530 dynobj = htab->elf.dynobj;
2531 if (dynobj == NULL)
2532 abort ();
2533
2534 if (htab->elf.dynamic_sections_created)
2535 {
2536 /* Set the contents of the .interp section to the interpreter. */
2537 if (info->executable)
2538 {
2539 s = bfd_get_section_by_name (dynobj, ".interp");
2540 if (s == NULL)
2541 abort ();
2542 s->size = htab->dynamic_interpreter_size;
2543 s->contents = (unsigned char *) htab->dynamic_interpreter;
2544 }
2545 }
2546
2547 /* Set up .got offsets for local syms, and space for local dynamic
2548 relocs. */
2549 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2550 {
2551 bfd_signed_vma *local_got;
2552 bfd_signed_vma *end_local_got;
2553 char *local_tls_type;
2554 bfd_vma *local_tlsdesc_gotent;
2555 bfd_size_type locsymcount;
2556 Elf_Internal_Shdr *symtab_hdr;
2557 asection *srel;
2558
2559 if (! is_x86_64_elf (ibfd))
2560 continue;
2561
2562 for (s = ibfd->sections; s != NULL; s = s->next)
2563 {
2564 struct elf_dyn_relocs *p;
2565
2566 for (p = (struct elf_dyn_relocs *)
2567 (elf_section_data (s)->local_dynrel);
2568 p != NULL;
2569 p = p->next)
2570 {
2571 if (!bfd_is_abs_section (p->sec)
2572 && bfd_is_abs_section (p->sec->output_section))
2573 {
2574 /* Input section has been discarded, either because
2575 it is a copy of a linkonce section or due to
2576 linker script /DISCARD/, so we'll be discarding
2577 the relocs too. */
2578 }
2579 else if (p->count != 0)
2580 {
2581 srel = elf_section_data (p->sec)->sreloc;
2582 srel->size += p->count * bed->s->sizeof_rela;
2583 if ((p->sec->output_section->flags & SEC_READONLY) != 0
2584 && (info->flags & DF_TEXTREL) == 0)
2585 {
2586 info->flags |= DF_TEXTREL;
2587 if (info->warn_shared_textrel && info->shared)
2588 info->callbacks->einfo (_("%P: %B: warning: relocation in readonly section `%A'.\n"),
2589 p->sec->owner, p->sec);
2590 }
2591 }
2592 }
2593 }
2594
2595 local_got = elf_local_got_refcounts (ibfd);
2596 if (!local_got)
2597 continue;
2598
2599 symtab_hdr = &elf_symtab_hdr (ibfd);
2600 locsymcount = symtab_hdr->sh_info;
2601 end_local_got = local_got + locsymcount;
2602 local_tls_type = elf_x86_64_local_got_tls_type (ibfd);
2603 local_tlsdesc_gotent = elf_x86_64_local_tlsdesc_gotent (ibfd);
2604 s = htab->elf.sgot;
2605 srel = htab->elf.srelgot;
2606 for (; local_got < end_local_got;
2607 ++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
2608 {
2609 *local_tlsdesc_gotent = (bfd_vma) -1;
2610 if (*local_got > 0)
2611 {
2612 if (GOT_TLS_GDESC_P (*local_tls_type))
2613 {
2614 *local_tlsdesc_gotent = htab->elf.sgotplt->size
2615 - elf_x86_64_compute_jump_table_size (htab);
2616 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2617 *local_got = (bfd_vma) -2;
2618 }
2619 if (! GOT_TLS_GDESC_P (*local_tls_type)
2620 || GOT_TLS_GD_P (*local_tls_type))
2621 {
2622 *local_got = s->size;
2623 s->size += GOT_ENTRY_SIZE;
2624 if (GOT_TLS_GD_P (*local_tls_type))
2625 s->size += GOT_ENTRY_SIZE;
2626 }
2627 if (info->shared
2628 || GOT_TLS_GD_ANY_P (*local_tls_type)
2629 || *local_tls_type == GOT_TLS_IE)
2630 {
2631 if (GOT_TLS_GDESC_P (*local_tls_type))
2632 {
2633 htab->elf.srelplt->size
2634 += bed->s->sizeof_rela;
2635 htab->tlsdesc_plt = (bfd_vma) -1;
2636 }
2637 if (! GOT_TLS_GDESC_P (*local_tls_type)
2638 || GOT_TLS_GD_P (*local_tls_type))
2639 srel->size += bed->s->sizeof_rela;
2640 }
2641 }
2642 else
2643 *local_got = (bfd_vma) -1;
2644 }
2645 }
2646
2647 if (htab->tls_ld_got.refcount > 0)
2648 {
2649 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
2650 relocs. */
2651 htab->tls_ld_got.offset = htab->elf.sgot->size;
2652 htab->elf.sgot->size += 2 * GOT_ENTRY_SIZE;
2653 htab->elf.srelgot->size += bed->s->sizeof_rela;
2654 }
2655 else
2656 htab->tls_ld_got.offset = -1;
2657
2658 /* Allocate global sym .plt and .got entries, and space for global
2659 sym dynamic relocs. */
2660 elf_link_hash_traverse (&htab->elf, elf_x86_64_allocate_dynrelocs,
2661 info);
2662
2663 /* Allocate .plt and .got entries, and space for local symbols. */
2664 htab_traverse (htab->loc_hash_table,
2665 elf_x86_64_allocate_local_dynrelocs,
2666 info);
2667
2668 /* For every jump slot reserved in the sgotplt, reloc_count is
2669 incremented. However, when we reserve space for TLS descriptors,
2670 it's not incremented, so in order to compute the space reserved
2671 for them, it suffices to multiply the reloc count by the jump
2672 slot size. */
2673 if (htab->elf.srelplt)
2674 htab->sgotplt_jump_table_size
2675 = elf_x86_64_compute_jump_table_size (htab);
2676
2677 if (htab->tlsdesc_plt)
2678 {
2679 /* If we're not using lazy TLS relocations, don't generate the
2680 PLT and GOT entries they require. */
2681 if ((info->flags & DF_BIND_NOW))
2682 htab->tlsdesc_plt = 0;
2683 else
2684 {
2685 htab->tlsdesc_got = htab->elf.sgot->size;
2686 htab->elf.sgot->size += GOT_ENTRY_SIZE;
2687 /* Reserve room for the initial entry.
2688 FIXME: we could probably do away with it in this case. */
2689 if (htab->elf.splt->size == 0)
2690 htab->elf.splt->size += PLT_ENTRY_SIZE;
2691 htab->tlsdesc_plt = htab->elf.splt->size;
2692 htab->elf.splt->size += PLT_ENTRY_SIZE;
2693 }
2694 }
2695
2696 if (htab->elf.sgotplt)
2697 {
2698 struct elf_link_hash_entry *got;
2699 got = elf_link_hash_lookup (elf_hash_table (info),
2700 "_GLOBAL_OFFSET_TABLE_",
2701 FALSE, FALSE, FALSE);
2702
2703 /* Don't allocate .got.plt section if there are no GOT nor PLT
2704 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
2705 if ((got == NULL
2706 || !got->ref_regular_nonweak)
2707 && (htab->elf.sgotplt->size
2708 == get_elf_backend_data (output_bfd)->got_header_size)
2709 && (htab->elf.splt == NULL
2710 || htab->elf.splt->size == 0)
2711 && (htab->elf.sgot == NULL
2712 || htab->elf.sgot->size == 0)
2713 && (htab->elf.iplt == NULL
2714 || htab->elf.iplt->size == 0)
2715 && (htab->elf.igotplt == NULL
2716 || htab->elf.igotplt->size == 0))
2717 htab->elf.sgotplt->size = 0;
2718 }
2719
2720 /* We now have determined the sizes of the various dynamic sections.
2721 Allocate memory for them. */
2722 relocs = FALSE;
2723 for (s = dynobj->sections; s != NULL; s = s->next)
2724 {
2725 if ((s->flags & SEC_LINKER_CREATED) == 0)
2726 continue;
2727
2728 if (s == htab->elf.splt
2729 || s == htab->elf.sgot
2730 || s == htab->elf.sgotplt
2731 || s == htab->elf.iplt
2732 || s == htab->elf.igotplt
2733 || s == htab->sdynbss)
2734 {
2735 /* Strip this section if we don't need it; see the
2736 comment below. */
2737 }
2738 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
2739 {
2740 if (s->size != 0 && s != htab->elf.srelplt)
2741 relocs = TRUE;
2742
2743 /* We use the reloc_count field as a counter if we need
2744 to copy relocs into the output file. */
2745 if (s != htab->elf.srelplt)
2746 s->reloc_count = 0;
2747 }
2748 else
2749 {
2750 /* It's not one of our sections, so don't allocate space. */
2751 continue;
2752 }
2753
2754 if (s->size == 0)
2755 {
2756 /* If we don't need this section, strip it from the
2757 output file. This is mostly to handle .rela.bss and
2758 .rela.plt. We must create both sections in
2759 create_dynamic_sections, because they must be created
2760 before the linker maps input sections to output
2761 sections. The linker does that before
2762 adjust_dynamic_symbol is called, and it is that
2763 function which decides whether anything needs to go
2764 into these sections. */
2765
2766 s->flags |= SEC_EXCLUDE;
2767 continue;
2768 }
2769
2770 if ((s->flags & SEC_HAS_CONTENTS) == 0)
2771 continue;
2772
2773 /* Allocate memory for the section contents. We use bfd_zalloc
2774 here in case unused entries are not reclaimed before the
2775 section's contents are written out. This should not happen,
2776 but this way if it does, we get a R_X86_64_NONE reloc instead
2777 of garbage. */
2778 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
2779 if (s->contents == NULL)
2780 return FALSE;
2781 }
2782
2783 if (htab->plt_eh_frame != NULL
2784 && htab->elf.splt != NULL
2785 && htab->elf.splt->size != 0
2786 && (htab->elf.splt->flags & SEC_EXCLUDE) == 0)
2787 bfd_put_32 (dynobj, htab->elf.splt->size,
2788 htab->plt_eh_frame->contents + PLT_FDE_LEN_OFFSET);
2789
2790 if (htab->elf.dynamic_sections_created)
2791 {
2792 /* Add some entries to the .dynamic section. We fill in the
2793 values later, in elf_x86_64_finish_dynamic_sections, but we
2794 must add the entries now so that we get the correct size for
2795 the .dynamic section. The DT_DEBUG entry is filled in by the
2796 dynamic linker and used by the debugger. */
2797 #define add_dynamic_entry(TAG, VAL) \
2798 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2799
2800 if (info->executable)
2801 {
2802 if (!add_dynamic_entry (DT_DEBUG, 0))
2803 return FALSE;
2804 }
2805
2806 if (htab->elf.splt->size != 0)
2807 {
2808 if (!add_dynamic_entry (DT_PLTGOT, 0)
2809 || !add_dynamic_entry (DT_PLTRELSZ, 0)
2810 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2811 || !add_dynamic_entry (DT_JMPREL, 0))
2812 return FALSE;
2813
2814 if (htab->tlsdesc_plt
2815 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
2816 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
2817 return FALSE;
2818 }
2819
2820 if (relocs)
2821 {
2822 if (!add_dynamic_entry (DT_RELA, 0)
2823 || !add_dynamic_entry (DT_RELASZ, 0)
2824 || !add_dynamic_entry (DT_RELAENT, bed->s->sizeof_rela))
2825 return FALSE;
2826
2827 /* If any dynamic relocs apply to a read-only section,
2828 then we need a DT_TEXTREL entry. */
2829 if ((info->flags & DF_TEXTREL) == 0)
2830 elf_link_hash_traverse (&htab->elf,
2831 elf_x86_64_readonly_dynrelocs,
2832 info);
2833
2834 if ((info->flags & DF_TEXTREL) != 0)
2835 {
2836 if (!add_dynamic_entry (DT_TEXTREL, 0))
2837 return FALSE;
2838 }
2839 }
2840 }
2841 #undef add_dynamic_entry
2842
2843 return TRUE;
2844 }
2845
2846 static bfd_boolean
2847 elf_x86_64_always_size_sections (bfd *output_bfd,
2848 struct bfd_link_info *info)
2849 {
2850 asection *tls_sec = elf_hash_table (info)->tls_sec;
2851
2852 if (tls_sec)
2853 {
2854 struct elf_link_hash_entry *tlsbase;
2855
2856 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
2857 "_TLS_MODULE_BASE_",
2858 FALSE, FALSE, FALSE);
2859
2860 if (tlsbase && tlsbase->type == STT_TLS)
2861 {
2862 struct elf_x86_64_link_hash_table *htab;
2863 struct bfd_link_hash_entry *bh = NULL;
2864 const struct elf_backend_data *bed
2865 = get_elf_backend_data (output_bfd);
2866
2867 htab = elf_x86_64_hash_table (info);
2868 if (htab == NULL)
2869 return FALSE;
2870
2871 if (!(_bfd_generic_link_add_one_symbol
2872 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
2873 tls_sec, 0, NULL, FALSE,
2874 bed->collect, &bh)))
2875 return FALSE;
2876
2877 htab->tls_module_base = bh;
2878
2879 tlsbase = (struct elf_link_hash_entry *)bh;
2880 tlsbase->def_regular = 1;
2881 tlsbase->other = STV_HIDDEN;
2882 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
2883 }
2884 }
2885
2886 return TRUE;
2887 }
2888
2889 /* _TLS_MODULE_BASE_ needs to be treated especially when linking
2890 executables. Rather than setting it to the beginning of the TLS
2891 section, we have to set it to the end. This function may be called
2892 multiple times, it is idempotent. */
2893
2894 static void
2895 elf_x86_64_set_tls_module_base (struct bfd_link_info *info)
2896 {
2897 struct elf_x86_64_link_hash_table *htab;
2898 struct bfd_link_hash_entry *base;
2899
2900 if (!info->executable)
2901 return;
2902
2903 htab = elf_x86_64_hash_table (info);
2904 if (htab == NULL)
2905 return;
2906
2907 base = htab->tls_module_base;
2908 if (base == NULL)
2909 return;
2910
2911 base->u.def.value = htab->elf.tls_size;
2912 }
2913
2914 /* Return the base VMA address which should be subtracted from real addresses
2915 when resolving @dtpoff relocation.
2916 This is PT_TLS segment p_vaddr. */
2917
2918 static bfd_vma
2919 elf_x86_64_dtpoff_base (struct bfd_link_info *info)
2920 {
2921 /* If tls_sec is NULL, we should have signalled an error already. */
2922 if (elf_hash_table (info)->tls_sec == NULL)
2923 return 0;
2924 return elf_hash_table (info)->tls_sec->vma;
2925 }
2926
2927 /* Return the relocation value for @tpoff relocation
2928 if STT_TLS virtual address is ADDRESS. */
2929
2930 static bfd_vma
2931 elf_x86_64_tpoff (struct bfd_link_info *info, bfd_vma address)
2932 {
2933 struct elf_link_hash_table *htab = elf_hash_table (info);
2934 const struct elf_backend_data *bed = get_elf_backend_data (info->output_bfd);
2935 bfd_vma static_tls_size;
2936
2937 /* If tls_segment is NULL, we should have signalled an error already. */
2938 if (htab->tls_sec == NULL)
2939 return 0;
2940
2941 /* Consider special static TLS alignment requirements. */
2942 static_tls_size = BFD_ALIGN (htab->tls_size, bed->static_tls_alignment);
2943 return address - static_tls_size - htab->tls_sec->vma;
2944 }
2945
2946 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
2947 branch? */
2948
2949 static bfd_boolean
2950 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
2951 {
2952 /* Opcode Instruction
2953 0xe8 call
2954 0xe9 jump
2955 0x0f 0x8x conditional jump */
2956 return ((offset > 0
2957 && (contents [offset - 1] == 0xe8
2958 || contents [offset - 1] == 0xe9))
2959 || (offset > 1
2960 && contents [offset - 2] == 0x0f
2961 && (contents [offset - 1] & 0xf0) == 0x80));
2962 }
2963
2964 /* Relocate an x86_64 ELF section. */
2965
2966 static bfd_boolean
2967 elf_x86_64_relocate_section (bfd *output_bfd,
2968 struct bfd_link_info *info,
2969 bfd *input_bfd,
2970 asection *input_section,
2971 bfd_byte *contents,
2972 Elf_Internal_Rela *relocs,
2973 Elf_Internal_Sym *local_syms,
2974 asection **local_sections)
2975 {
2976 struct elf_x86_64_link_hash_table *htab;
2977 Elf_Internal_Shdr *symtab_hdr;
2978 struct elf_link_hash_entry **sym_hashes;
2979 bfd_vma *local_got_offsets;
2980 bfd_vma *local_tlsdesc_gotents;
2981 Elf_Internal_Rela *rel;
2982 Elf_Internal_Rela *relend;
2983
2984 BFD_ASSERT (is_x86_64_elf (input_bfd));
2985
2986 htab = elf_x86_64_hash_table (info);
2987 if (htab == NULL)
2988 return FALSE;
2989 symtab_hdr = &elf_symtab_hdr (input_bfd);
2990 sym_hashes = elf_sym_hashes (input_bfd);
2991 local_got_offsets = elf_local_got_offsets (input_bfd);
2992 local_tlsdesc_gotents = elf_x86_64_local_tlsdesc_gotent (input_bfd);
2993
2994 elf_x86_64_set_tls_module_base (info);
2995
2996 rel = relocs;
2997 relend = relocs + input_section->reloc_count;
2998 for (; rel < relend; rel++)
2999 {
3000 unsigned int r_type;
3001 reloc_howto_type *howto;
3002 unsigned long r_symndx;
3003 struct elf_link_hash_entry *h;
3004 Elf_Internal_Sym *sym;
3005 asection *sec;
3006 bfd_vma off, offplt;
3007 bfd_vma relocation;
3008 bfd_boolean unresolved_reloc;
3009 bfd_reloc_status_type r;
3010 int tls_type;
3011 asection *base_got;
3012
3013 r_type = ELF32_R_TYPE (rel->r_info);
3014 if (r_type == (int) R_X86_64_GNU_VTINHERIT
3015 || r_type == (int) R_X86_64_GNU_VTENTRY)
3016 continue;
3017
3018 if (r_type >= R_X86_64_max)
3019 {
3020 bfd_set_error (bfd_error_bad_value);
3021 return FALSE;
3022 }
3023
3024 howto = x86_64_elf_howto_table + r_type;
3025 r_symndx = htab->r_sym (rel->r_info);
3026 h = NULL;
3027 sym = NULL;
3028 sec = NULL;
3029 unresolved_reloc = FALSE;
3030 if (r_symndx < symtab_hdr->sh_info)
3031 {
3032 sym = local_syms + r_symndx;
3033 sec = local_sections[r_symndx];
3034
3035 relocation = _bfd_elf_rela_local_sym (output_bfd, sym,
3036 &sec, rel);
3037
3038 /* Relocate against local STT_GNU_IFUNC symbol. */
3039 if (!info->relocatable
3040 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
3041 {
3042 h = elf_x86_64_get_local_sym_hash (htab, input_bfd,
3043 rel, FALSE);
3044 if (h == NULL)
3045 abort ();
3046
3047 /* Set STT_GNU_IFUNC symbol value. */
3048 h->root.u.def.value = sym->st_value;
3049 h->root.u.def.section = sec;
3050 }
3051 }
3052 else
3053 {
3054 bfd_boolean warned ATTRIBUTE_UNUSED;
3055
3056 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3057 r_symndx, symtab_hdr, sym_hashes,
3058 h, sec, relocation,
3059 unresolved_reloc, warned);
3060 }
3061
3062 if (sec != NULL && elf_discarded_section (sec))
3063 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3064 rel, relend, howto, contents);
3065
3066 if (info->relocatable)
3067 continue;
3068
3069 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
3070 it here if it is defined in a non-shared object. */
3071 if (h != NULL
3072 && h->type == STT_GNU_IFUNC
3073 && h->def_regular)
3074 {
3075 asection *plt;
3076 bfd_vma plt_index;
3077 const char *name;
3078
3079 if ((input_section->flags & SEC_ALLOC) == 0
3080 || h->plt.offset == (bfd_vma) -1)
3081 abort ();
3082
3083 /* STT_GNU_IFUNC symbol must go through PLT. */
3084 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
3085 relocation = (plt->output_section->vma
3086 + plt->output_offset + h->plt.offset);
3087
3088 switch (r_type)
3089 {
3090 default:
3091 if (h->root.root.string)
3092 name = h->root.root.string;
3093 else
3094 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
3095 NULL);
3096 (*_bfd_error_handler)
3097 (_("%B: relocation %s against STT_GNU_IFUNC "
3098 "symbol `%s' isn't handled by %s"), input_bfd,
3099 x86_64_elf_howto_table[r_type].name,
3100 name, __FUNCTION__);
3101 bfd_set_error (bfd_error_bad_value);
3102 return FALSE;
3103
3104 case R_X86_64_32S:
3105 if (info->shared)
3106 abort ();
3107 goto do_relocation;
3108
3109 case R_X86_64_32:
3110 if (ABI_64_P (output_bfd))
3111 goto do_relocation;
3112 /* FALLTHROUGH */
3113 case R_X86_64_64:
3114 if (rel->r_addend != 0)
3115 {
3116 if (h->root.root.string)
3117 name = h->root.root.string;
3118 else
3119 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
3120 sym, NULL);
3121 (*_bfd_error_handler)
3122 (_("%B: relocation %s against STT_GNU_IFUNC "
3123 "symbol `%s' has non-zero addend: %d"),
3124 input_bfd, x86_64_elf_howto_table[r_type].name,
3125 name, rel->r_addend);
3126 bfd_set_error (bfd_error_bad_value);
3127 return FALSE;
3128 }
3129
3130 /* Generate dynamic relcoation only when there is a
3131 non-GOF reference in a shared object. */
3132 if (info->shared && h->non_got_ref)
3133 {
3134 Elf_Internal_Rela outrel;
3135 asection *sreloc;
3136
3137 /* Need a dynamic relocation to get the real function
3138 address. */
3139 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
3140 info,
3141 input_section,
3142 rel->r_offset);
3143 if (outrel.r_offset == (bfd_vma) -1
3144 || outrel.r_offset == (bfd_vma) -2)
3145 abort ();
3146
3147 outrel.r_offset += (input_section->output_section->vma
3148 + input_section->output_offset);
3149
3150 if (h->dynindx == -1
3151 || h->forced_local
3152 || info->executable)
3153 {
3154 /* This symbol is resolved locally. */
3155 outrel.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
3156 outrel.r_addend = (h->root.u.def.value
3157 + h->root.u.def.section->output_section->vma
3158 + h->root.u.def.section->output_offset);
3159 }
3160 else
3161 {
3162 outrel.r_info = htab->r_info (h->dynindx, r_type);
3163 outrel.r_addend = 0;
3164 }
3165
3166 sreloc = htab->elf.irelifunc;
3167 elf_append_rela (output_bfd, sreloc, &outrel);
3168
3169 /* If this reloc is against an external symbol, we
3170 do not want to fiddle with the addend. Otherwise,
3171 we need to include the symbol value so that it
3172 becomes an addend for the dynamic reloc. For an
3173 internal symbol, we have updated addend. */
3174 continue;
3175 }
3176 /* FALLTHROUGH */
3177 case R_X86_64_PC32:
3178 case R_X86_64_PC64:
3179 case R_X86_64_PLT32:
3180 goto do_relocation;
3181
3182 case R_X86_64_GOTPCREL:
3183 case R_X86_64_GOTPCREL64:
3184 base_got = htab->elf.sgot;
3185 off = h->got.offset;
3186
3187 if (base_got == NULL)
3188 abort ();
3189
3190 if (off == (bfd_vma) -1)
3191 {
3192 /* We can't use h->got.offset here to save state, or
3193 even just remember the offset, as finish_dynamic_symbol
3194 would use that as offset into .got. */
3195
3196 if (htab->elf.splt != NULL)
3197 {
3198 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3199 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3200 base_got = htab->elf.sgotplt;
3201 }
3202 else
3203 {
3204 plt_index = h->plt.offset / PLT_ENTRY_SIZE;
3205 off = plt_index * GOT_ENTRY_SIZE;
3206 base_got = htab->elf.igotplt;
3207 }
3208
3209 if (h->dynindx == -1
3210 || h->forced_local
3211 || info->symbolic)
3212 {
3213 /* This references the local defitionion. We must
3214 initialize this entry in the global offset table.
3215 Since the offset must always be a multiple of 8,
3216 we use the least significant bit to record
3217 whether we have initialized it already.
3218
3219 When doing a dynamic link, we create a .rela.got
3220 relocation entry to initialize the value. This
3221 is done in the finish_dynamic_symbol routine. */
3222 if ((off & 1) != 0)
3223 off &= ~1;
3224 else
3225 {
3226 bfd_put_64 (output_bfd, relocation,
3227 base_got->contents + off);
3228 /* Note that this is harmless for the GOTPLT64
3229 case, as -1 | 1 still is -1. */
3230 h->got.offset |= 1;
3231 }
3232 }
3233 }
3234
3235 relocation = (base_got->output_section->vma
3236 + base_got->output_offset + off);
3237
3238 goto do_relocation;
3239 }
3240 }
3241
3242 /* When generating a shared object, the relocations handled here are
3243 copied into the output file to be resolved at run time. */
3244 switch (r_type)
3245 {
3246 case R_X86_64_GOT32:
3247 case R_X86_64_GOT64:
3248 /* Relocation is to the entry for this symbol in the global
3249 offset table. */
3250 case R_X86_64_GOTPCREL:
3251 case R_X86_64_GOTPCREL64:
3252 /* Use global offset table entry as symbol value. */
3253 case R_X86_64_GOTPLT64:
3254 /* This is the same as GOT64 for relocation purposes, but
3255 indicates the existence of a PLT entry. The difficulty is,
3256 that we must calculate the GOT slot offset from the PLT
3257 offset, if this symbol got a PLT entry (it was global).
3258 Additionally if it's computed from the PLT entry, then that
3259 GOT offset is relative to .got.plt, not to .got. */
3260 base_got = htab->elf.sgot;
3261
3262 if (htab->elf.sgot == NULL)
3263 abort ();
3264
3265 if (h != NULL)
3266 {
3267 bfd_boolean dyn;
3268
3269 off = h->got.offset;
3270 if (h->needs_plt
3271 && h->plt.offset != (bfd_vma)-1
3272 && off == (bfd_vma)-1)
3273 {
3274 /* We can't use h->got.offset here to save
3275 state, or even just remember the offset, as
3276 finish_dynamic_symbol would use that as offset into
3277 .got. */
3278 bfd_vma plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3279 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3280 base_got = htab->elf.sgotplt;
3281 }
3282
3283 dyn = htab->elf.dynamic_sections_created;
3284
3285 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3286 || (info->shared
3287 && SYMBOL_REFERENCES_LOCAL (info, h))
3288 || (ELF_ST_VISIBILITY (h->other)
3289 && h->root.type == bfd_link_hash_undefweak))
3290 {
3291 /* This is actually a static link, or it is a -Bsymbolic
3292 link and the symbol is defined locally, or the symbol
3293 was forced to be local because of a version file. We
3294 must initialize this entry in the global offset table.
3295 Since the offset must always be a multiple of 8, we
3296 use the least significant bit to record whether we
3297 have initialized it already.
3298
3299 When doing a dynamic link, we create a .rela.got
3300 relocation entry to initialize the value. This is
3301 done in the finish_dynamic_symbol routine. */
3302 if ((off & 1) != 0)
3303 off &= ~1;
3304 else
3305 {
3306 bfd_put_64 (output_bfd, relocation,
3307 base_got->contents + off);
3308 /* Note that this is harmless for the GOTPLT64 case,
3309 as -1 | 1 still is -1. */
3310 h->got.offset |= 1;
3311 }
3312 }
3313 else
3314 unresolved_reloc = FALSE;
3315 }
3316 else
3317 {
3318 if (local_got_offsets == NULL)
3319 abort ();
3320
3321 off = local_got_offsets[r_symndx];
3322
3323 /* The offset must always be a multiple of 8. We use
3324 the least significant bit to record whether we have
3325 already generated the necessary reloc. */
3326 if ((off & 1) != 0)
3327 off &= ~1;
3328 else
3329 {
3330 bfd_put_64 (output_bfd, relocation,
3331 base_got->contents + off);
3332
3333 if (info->shared)
3334 {
3335 asection *s;
3336 Elf_Internal_Rela outrel;
3337
3338 /* We need to generate a R_X86_64_RELATIVE reloc
3339 for the dynamic linker. */
3340 s = htab->elf.srelgot;
3341 if (s == NULL)
3342 abort ();
3343
3344 outrel.r_offset = (base_got->output_section->vma
3345 + base_got->output_offset
3346 + off);
3347 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
3348 outrel.r_addend = relocation;
3349 elf_append_rela (output_bfd, s, &outrel);
3350 }
3351
3352 local_got_offsets[r_symndx] |= 1;
3353 }
3354 }
3355
3356 if (off >= (bfd_vma) -2)
3357 abort ();
3358
3359 relocation = base_got->output_section->vma
3360 + base_got->output_offset + off;
3361 if (r_type != R_X86_64_GOTPCREL && r_type != R_X86_64_GOTPCREL64)
3362 relocation -= htab->elf.sgotplt->output_section->vma
3363 - htab->elf.sgotplt->output_offset;
3364
3365 break;
3366
3367 case R_X86_64_GOTOFF64:
3368 /* Relocation is relative to the start of the global offset
3369 table. */
3370
3371 /* Check to make sure it isn't a protected function symbol
3372 for shared library since it may not be local when used
3373 as function address. */
3374 if (info->shared
3375 && h
3376 && h->def_regular
3377 && h->type == STT_FUNC
3378 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
3379 {
3380 (*_bfd_error_handler)
3381 (_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
3382 input_bfd, h->root.root.string);
3383 bfd_set_error (bfd_error_bad_value);
3384 return FALSE;
3385 }
3386
3387 /* Note that sgot is not involved in this
3388 calculation. We always want the start of .got.plt. If we
3389 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
3390 permitted by the ABI, we might have to change this
3391 calculation. */
3392 relocation -= htab->elf.sgotplt->output_section->vma
3393 + htab->elf.sgotplt->output_offset;
3394 break;
3395
3396 case R_X86_64_GOTPC32:
3397 case R_X86_64_GOTPC64:
3398 /* Use global offset table as symbol value. */
3399 relocation = htab->elf.sgotplt->output_section->vma
3400 + htab->elf.sgotplt->output_offset;
3401 unresolved_reloc = FALSE;
3402 break;
3403
3404 case R_X86_64_PLTOFF64:
3405 /* Relocation is PLT entry relative to GOT. For local
3406 symbols it's the symbol itself relative to GOT. */
3407 if (h != NULL
3408 /* See PLT32 handling. */
3409 && h->plt.offset != (bfd_vma) -1
3410 && htab->elf.splt != NULL)
3411 {
3412 relocation = (htab->elf.splt->output_section->vma
3413 + htab->elf.splt->output_offset
3414 + h->plt.offset);
3415 unresolved_reloc = FALSE;
3416 }
3417
3418 relocation -= htab->elf.sgotplt->output_section->vma
3419 + htab->elf.sgotplt->output_offset;
3420 break;
3421
3422 case R_X86_64_PLT32:
3423 /* Relocation is to the entry for this symbol in the
3424 procedure linkage table. */
3425
3426 /* Resolve a PLT32 reloc against a local symbol directly,
3427 without using the procedure linkage table. */
3428 if (h == NULL)
3429 break;
3430
3431 if (h->plt.offset == (bfd_vma) -1
3432 || htab->elf.splt == NULL)
3433 {
3434 /* We didn't make a PLT entry for this symbol. This
3435 happens when statically linking PIC code, or when
3436 using -Bsymbolic. */
3437 break;
3438 }
3439
3440 relocation = (htab->elf.splt->output_section->vma
3441 + htab->elf.splt->output_offset
3442 + h->plt.offset);
3443 unresolved_reloc = FALSE;
3444 break;
3445
3446 case R_X86_64_PC8:
3447 case R_X86_64_PC16:
3448 case R_X86_64_PC32:
3449 if (info->shared
3450 && ABI_64_P (output_bfd)
3451 && (input_section->flags & SEC_ALLOC) != 0
3452 && (input_section->flags & SEC_READONLY) != 0
3453 && h != NULL)
3454 {
3455 bfd_boolean fail = FALSE;
3456 bfd_boolean branch
3457 = (r_type == R_X86_64_PC32
3458 && is_32bit_relative_branch (contents, rel->r_offset));
3459
3460 if (SYMBOL_REFERENCES_LOCAL (info, h))
3461 {
3462 /* Symbol is referenced locally. Make sure it is
3463 defined locally or for a branch. */
3464 fail = !h->def_regular && !branch;
3465 }
3466 else
3467 {
3468 /* Symbol isn't referenced locally. We only allow
3469 branch to symbol with non-default visibility. */
3470 fail = (!branch
3471 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT);
3472 }
3473
3474 if (fail)
3475 {
3476 const char *fmt;
3477 const char *v;
3478 const char *pic = "";
3479
3480 switch (ELF_ST_VISIBILITY (h->other))
3481 {
3482 case STV_HIDDEN:
3483 v = _("hidden symbol");
3484 break;
3485 case STV_INTERNAL:
3486 v = _("internal symbol");
3487 break;
3488 case STV_PROTECTED:
3489 v = _("protected symbol");
3490 break;
3491 default:
3492 v = _("symbol");
3493 pic = _("; recompile with -fPIC");
3494 break;
3495 }
3496
3497 if (h->def_regular)
3498 fmt = _("%B: relocation %s against %s `%s' can not be used when making a shared object%s");
3499 else
3500 fmt = _("%B: relocation %s against undefined %s `%s' can not be used when making a shared object%s");
3501
3502 (*_bfd_error_handler) (fmt, input_bfd,
3503 x86_64_elf_howto_table[r_type].name,
3504 v, h->root.root.string, pic);
3505 bfd_set_error (bfd_error_bad_value);
3506 return FALSE;
3507 }
3508 }
3509 /* Fall through. */
3510
3511 case R_X86_64_8:
3512 case R_X86_64_16:
3513 case R_X86_64_32:
3514 case R_X86_64_PC64:
3515 case R_X86_64_64:
3516 /* FIXME: The ABI says the linker should make sure the value is
3517 the same when it's zeroextended to 64 bit. */
3518
3519 if ((input_section->flags & SEC_ALLOC) == 0)
3520 break;
3521
3522 if ((info->shared
3523 && (h == NULL
3524 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3525 || h->root.type != bfd_link_hash_undefweak)
3526 && (! IS_X86_64_PCREL_TYPE (r_type)
3527 || ! SYMBOL_CALLS_LOCAL (info, h)))
3528 || (ELIMINATE_COPY_RELOCS
3529 && !info->shared
3530 && h != NULL
3531 && h->dynindx != -1
3532 && !h->non_got_ref
3533 && ((h->def_dynamic
3534 && !h->def_regular)
3535 || h->root.type == bfd_link_hash_undefweak
3536 || h->root.type == bfd_link_hash_undefined)))
3537 {
3538 Elf_Internal_Rela outrel;
3539 bfd_boolean skip, relocate;
3540 asection *sreloc;
3541
3542 /* When generating a shared object, these relocations
3543 are copied into the output file to be resolved at run
3544 time. */
3545 skip = FALSE;
3546 relocate = FALSE;
3547
3548 outrel.r_offset =
3549 _bfd_elf_section_offset (output_bfd, info, input_section,
3550 rel->r_offset);
3551 if (outrel.r_offset == (bfd_vma) -1)
3552 skip = TRUE;
3553 else if (outrel.r_offset == (bfd_vma) -2)
3554 skip = TRUE, relocate = TRUE;
3555
3556 outrel.r_offset += (input_section->output_section->vma
3557 + input_section->output_offset);
3558
3559 if (skip)
3560 memset (&outrel, 0, sizeof outrel);
3561
3562 /* h->dynindx may be -1 if this symbol was marked to
3563 become local. */
3564 else if (h != NULL
3565 && h->dynindx != -1
3566 && (IS_X86_64_PCREL_TYPE (r_type)
3567 || ! info->shared
3568 || ! SYMBOLIC_BIND (info, h)
3569 || ! h->def_regular))
3570 {
3571 outrel.r_info = htab->r_info (h->dynindx, r_type);
3572 outrel.r_addend = rel->r_addend;
3573 }
3574 else
3575 {
3576 /* This symbol is local, or marked to become local. */
3577 if (r_type == htab->pointer_r_type)
3578 {
3579 relocate = TRUE;
3580 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
3581 outrel.r_addend = relocation + rel->r_addend;
3582 }
3583 else
3584 {
3585 long sindx;
3586
3587 if (bfd_is_abs_section (sec))
3588 sindx = 0;
3589 else if (sec == NULL || sec->owner == NULL)
3590 {
3591 bfd_set_error (bfd_error_bad_value);
3592 return FALSE;
3593 }
3594 else
3595 {
3596 asection *osec;
3597
3598 /* We are turning this relocation into one
3599 against a section symbol. It would be
3600 proper to subtract the symbol's value,
3601 osec->vma, from the emitted reloc addend,
3602 but ld.so expects buggy relocs. */
3603 osec = sec->output_section;
3604 sindx = elf_section_data (osec)->dynindx;
3605 if (sindx == 0)
3606 {
3607 asection *oi = htab->elf.text_index_section;
3608 sindx = elf_section_data (oi)->dynindx;
3609 }
3610 BFD_ASSERT (sindx != 0);
3611 }
3612
3613 outrel.r_info = htab->r_info (sindx, r_type);
3614 outrel.r_addend = relocation + rel->r_addend;
3615 }
3616 }
3617
3618 sreloc = elf_section_data (input_section)->sreloc;
3619
3620 if (sreloc == NULL || sreloc->contents == NULL)
3621 {
3622 r = bfd_reloc_notsupported;
3623 goto check_relocation_error;
3624 }
3625
3626 elf_append_rela (output_bfd, sreloc, &outrel);
3627
3628 /* If this reloc is against an external symbol, we do
3629 not want to fiddle with the addend. Otherwise, we
3630 need to include the symbol value so that it becomes
3631 an addend for the dynamic reloc. */
3632 if (! relocate)
3633 continue;
3634 }
3635
3636 break;
3637
3638 case R_X86_64_TLSGD:
3639 case R_X86_64_GOTPC32_TLSDESC:
3640 case R_X86_64_TLSDESC_CALL:
3641 case R_X86_64_GOTTPOFF:
3642 tls_type = GOT_UNKNOWN;
3643 if (h == NULL && local_got_offsets)
3644 tls_type = elf_x86_64_local_got_tls_type (input_bfd) [r_symndx];
3645 else if (h != NULL)
3646 tls_type = elf_x86_64_hash_entry (h)->tls_type;
3647
3648 if (! elf_x86_64_tls_transition (info, input_bfd,
3649 input_section, contents,
3650 symtab_hdr, sym_hashes,
3651 &r_type, tls_type, rel,
3652 relend, h, r_symndx))
3653 return FALSE;
3654
3655 if (r_type == R_X86_64_TPOFF32)
3656 {
3657 bfd_vma roff = rel->r_offset;
3658
3659 BFD_ASSERT (! unresolved_reloc);
3660
3661 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
3662 {
3663 /* GD->LE transition. For 64bit, change
3664 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3665 .word 0x6666; rex64; call __tls_get_addr
3666 into:
3667 movq %fs:0, %rax
3668 leaq foo@tpoff(%rax), %rax
3669 For 32bit, change
3670 leaq foo@tlsgd(%rip), %rdi
3671 .word 0x6666; rex64; call __tls_get_addr
3672 into:
3673 movl %fs:0, %eax
3674 leaq foo@tpoff(%rax), %rax */
3675 if (ABI_64_P (output_bfd))
3676 memcpy (contents + roff - 4,
3677 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
3678 16);
3679 else
3680 memcpy (contents + roff - 3,
3681 "\x64\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
3682 15);
3683 bfd_put_32 (output_bfd,
3684 elf_x86_64_tpoff (info, relocation),
3685 contents + roff + 8);
3686 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
3687 rel++;
3688 continue;
3689 }
3690 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
3691 {
3692 /* GDesc -> LE transition.
3693 It's originally something like:
3694 leaq x@tlsdesc(%rip), %rax
3695
3696 Change it to:
3697 movl $x@tpoff, %rax. */
3698
3699 unsigned int val, type;
3700
3701 type = bfd_get_8 (input_bfd, contents + roff - 3);
3702 val = bfd_get_8 (input_bfd, contents + roff - 1);
3703 bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1),
3704 contents + roff - 3);
3705 bfd_put_8 (output_bfd, 0xc7, contents + roff - 2);
3706 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
3707 contents + roff - 1);
3708 bfd_put_32 (output_bfd,
3709 elf_x86_64_tpoff (info, relocation),
3710 contents + roff);
3711 continue;
3712 }
3713 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
3714 {
3715 /* GDesc -> LE transition.
3716 It's originally:
3717 call *(%rax)
3718 Turn it into:
3719 xchg %ax,%ax. */
3720 bfd_put_8 (output_bfd, 0x66, contents + roff);
3721 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
3722 continue;
3723 }
3724 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTTPOFF)
3725 {
3726 /* IE->LE transition:
3727 Originally it can be one of:
3728 movq foo@gottpoff(%rip), %reg
3729 addq foo@gottpoff(%rip), %reg
3730 We change it into:
3731 movq $foo, %reg
3732 leaq foo(%reg), %reg
3733 addq $foo, %reg. */
3734
3735 unsigned int val, type, reg;
3736
3737 val = bfd_get_8 (input_bfd, contents + roff - 3);
3738 type = bfd_get_8 (input_bfd, contents + roff - 2);
3739 reg = bfd_get_8 (input_bfd, contents + roff - 1);
3740 reg >>= 3;
3741 if (type == 0x8b)
3742 {
3743 /* movq */
3744 if (val == 0x4c)
3745 bfd_put_8 (output_bfd, 0x49,
3746 contents + roff - 3);
3747 else if (!ABI_64_P (output_bfd) && val == 0x44)
3748 bfd_put_8 (output_bfd, 0x41,
3749 contents + roff - 3);
3750 bfd_put_8 (output_bfd, 0xc7,
3751 contents + roff - 2);
3752 bfd_put_8 (output_bfd, 0xc0 | reg,
3753 contents + roff - 1);
3754 }
3755 else if (reg == 4)
3756 {
3757 /* addq -> addq - addressing with %rsp/%r12 is
3758 special */
3759 if (val == 0x4c)
3760 bfd_put_8 (output_bfd, 0x49,
3761 contents + roff - 3);
3762 else if (!ABI_64_P (output_bfd) && val == 0x44)
3763 bfd_put_8 (output_bfd, 0x41,
3764 contents + roff - 3);
3765 bfd_put_8 (output_bfd, 0x81,
3766 contents + roff - 2);
3767 bfd_put_8 (output_bfd, 0xc0 | reg,
3768 contents + roff - 1);
3769 }
3770 else
3771 {
3772 /* addq -> leaq */
3773 if (val == 0x4c)
3774 bfd_put_8 (output_bfd, 0x4d,
3775 contents + roff - 3);
3776 else if (!ABI_64_P (output_bfd) && val == 0x44)
3777 bfd_put_8 (output_bfd, 0x45,
3778 contents + roff - 3);
3779 bfd_put_8 (output_bfd, 0x8d,
3780 contents + roff - 2);
3781 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
3782 contents + roff - 1);
3783 }
3784 bfd_put_32 (output_bfd,
3785 elf_x86_64_tpoff (info, relocation),
3786 contents + roff);
3787 continue;
3788 }
3789 else
3790 BFD_ASSERT (FALSE);
3791 }
3792
3793 if (htab->elf.sgot == NULL)
3794 abort ();
3795
3796 if (h != NULL)
3797 {
3798 off = h->got.offset;
3799 offplt = elf_x86_64_hash_entry (h)->tlsdesc_got;
3800 }
3801 else
3802 {
3803 if (local_got_offsets == NULL)
3804 abort ();
3805
3806 off = local_got_offsets[r_symndx];
3807 offplt = local_tlsdesc_gotents[r_symndx];
3808 }
3809
3810 if ((off & 1) != 0)
3811 off &= ~1;
3812 else
3813 {
3814 Elf_Internal_Rela outrel;
3815 int dr_type, indx;
3816 asection *sreloc;
3817
3818 if (htab->elf.srelgot == NULL)
3819 abort ();
3820
3821 indx = h && h->dynindx != -1 ? h->dynindx : 0;
3822
3823 if (GOT_TLS_GDESC_P (tls_type))
3824 {
3825 outrel.r_info = htab->r_info (indx, R_X86_64_TLSDESC);
3826 BFD_ASSERT (htab->sgotplt_jump_table_size + offplt
3827 + 2 * GOT_ENTRY_SIZE <= htab->elf.sgotplt->size);
3828 outrel.r_offset = (htab->elf.sgotplt->output_section->vma
3829 + htab->elf.sgotplt->output_offset
3830 + offplt
3831 + htab->sgotplt_jump_table_size);
3832 sreloc = htab->elf.srelplt;
3833 if (indx == 0)
3834 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
3835 else
3836 outrel.r_addend = 0;
3837 elf_append_rela (output_bfd, sreloc, &outrel);
3838 }
3839
3840 sreloc = htab->elf.srelgot;
3841
3842 outrel.r_offset = (htab->elf.sgot->output_section->vma
3843 + htab->elf.sgot->output_offset + off);
3844
3845 if (GOT_TLS_GD_P (tls_type))
3846 dr_type = R_X86_64_DTPMOD64;
3847 else if (GOT_TLS_GDESC_P (tls_type))
3848 goto dr_done;
3849 else
3850 dr_type = R_X86_64_TPOFF64;
3851
3852 bfd_put_64 (output_bfd, 0, htab->elf.sgot->contents + off);
3853 outrel.r_addend = 0;
3854 if ((dr_type == R_X86_64_TPOFF64
3855 || dr_type == R_X86_64_TLSDESC) && indx == 0)
3856 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
3857 outrel.r_info = htab->r_info (indx, dr_type);
3858
3859 elf_append_rela (output_bfd, sreloc, &outrel);
3860
3861 if (GOT_TLS_GD_P (tls_type))
3862 {
3863 if (indx == 0)
3864 {
3865 BFD_ASSERT (! unresolved_reloc);
3866 bfd_put_64 (output_bfd,
3867 relocation - elf_x86_64_dtpoff_base (info),
3868 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
3869 }
3870 else
3871 {
3872 bfd_put_64 (output_bfd, 0,
3873 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
3874 outrel.r_info = htab->r_info (indx,
3875 R_X86_64_DTPOFF64);
3876 outrel.r_offset += GOT_ENTRY_SIZE;
3877 elf_append_rela (output_bfd, sreloc,
3878 &outrel);
3879 }
3880 }
3881
3882 dr_done:
3883 if (h != NULL)
3884 h->got.offset |= 1;
3885 else
3886 local_got_offsets[r_symndx] |= 1;
3887 }
3888
3889 if (off >= (bfd_vma) -2
3890 && ! GOT_TLS_GDESC_P (tls_type))
3891 abort ();
3892 if (r_type == ELF32_R_TYPE (rel->r_info))
3893 {
3894 if (r_type == R_X86_64_GOTPC32_TLSDESC
3895 || r_type == R_X86_64_TLSDESC_CALL)
3896 relocation = htab->elf.sgotplt->output_section->vma
3897 + htab->elf.sgotplt->output_offset
3898 + offplt + htab->sgotplt_jump_table_size;
3899 else
3900 relocation = htab->elf.sgot->output_section->vma
3901 + htab->elf.sgot->output_offset + off;
3902 unresolved_reloc = FALSE;
3903 }
3904 else
3905 {
3906 bfd_vma roff = rel->r_offset;
3907
3908 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
3909 {
3910 /* GD->IE transition. For 64bit, change
3911 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3912 .word 0x6666; rex64; call __tls_get_addr@plt
3913 into:
3914 movq %fs:0, %rax
3915 addq foo@gottpoff(%rip), %rax
3916 For 32bit, change
3917 leaq foo@tlsgd(%rip), %rdi
3918 .word 0x6666; rex64; call __tls_get_addr@plt
3919 into:
3920 movl %fs:0, %eax
3921 addq foo@gottpoff(%rip), %rax */
3922 if (ABI_64_P (output_bfd))
3923 memcpy (contents + roff - 4,
3924 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
3925 16);
3926 else
3927 memcpy (contents + roff - 3,
3928 "\x64\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
3929 15);
3930
3931 relocation = (htab->elf.sgot->output_section->vma
3932 + htab->elf.sgot->output_offset + off
3933 - roff
3934 - input_section->output_section->vma
3935 - input_section->output_offset
3936 - 12);
3937 bfd_put_32 (output_bfd, relocation,
3938 contents + roff + 8);
3939 /* Skip R_X86_64_PLT32. */
3940 rel++;
3941 continue;
3942 }
3943 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
3944 {
3945 /* GDesc -> IE transition.
3946 It's originally something like:
3947 leaq x@tlsdesc(%rip), %rax
3948
3949 Change it to:
3950 movq x@gottpoff(%rip), %rax # before xchg %ax,%ax. */
3951
3952 /* Now modify the instruction as appropriate. To
3953 turn a leaq into a movq in the form we use it, it
3954 suffices to change the second byte from 0x8d to
3955 0x8b. */
3956 bfd_put_8 (output_bfd, 0x8b, contents + roff - 2);
3957
3958 bfd_put_32 (output_bfd,
3959 htab->elf.sgot->output_section->vma
3960 + htab->elf.sgot->output_offset + off
3961 - rel->r_offset
3962 - input_section->output_section->vma
3963 - input_section->output_offset
3964 - 4,
3965 contents + roff);
3966 continue;
3967 }
3968 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
3969 {
3970 /* GDesc -> IE transition.
3971 It's originally:
3972 call *(%rax)
3973
3974 Change it to:
3975 xchg %ax, %ax. */
3976
3977 bfd_put_8 (output_bfd, 0x66, contents + roff);
3978 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
3979 continue;
3980 }
3981 else
3982 BFD_ASSERT (FALSE);
3983 }
3984 break;
3985
3986 case R_X86_64_TLSLD:
3987 if (! elf_x86_64_tls_transition (info, input_bfd,
3988 input_section, contents,
3989 symtab_hdr, sym_hashes,
3990 &r_type, GOT_UNKNOWN,
3991 rel, relend, h, r_symndx))
3992 return FALSE;
3993
3994 if (r_type != R_X86_64_TLSLD)
3995 {
3996 /* LD->LE transition:
3997 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
3998 For 64bit, we change it into:
3999 .word 0x6666; .byte 0x66; movq %fs:0, %rax.
4000 For 32bit, we change it into:
4001 nopl 0x0(%rax); movl %fs:0, %eax. */
4002
4003 BFD_ASSERT (r_type == R_X86_64_TPOFF32);
4004 if (ABI_64_P (output_bfd))
4005 memcpy (contents + rel->r_offset - 3,
4006 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
4007 else
4008 memcpy (contents + rel->r_offset - 3,
4009 "\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0", 12);
4010 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
4011 rel++;
4012 continue;
4013 }
4014
4015 if (htab->elf.sgot == NULL)
4016 abort ();
4017
4018 off = htab->tls_ld_got.offset;
4019 if (off & 1)
4020 off &= ~1;
4021 else
4022 {
4023 Elf_Internal_Rela outrel;
4024
4025 if (htab->elf.srelgot == NULL)
4026 abort ();
4027
4028 outrel.r_offset = (htab->elf.sgot->output_section->vma
4029 + htab->elf.sgot->output_offset + off);
4030
4031 bfd_put_64 (output_bfd, 0,
4032 htab->elf.sgot->contents + off);
4033 bfd_put_64 (output_bfd, 0,
4034 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4035 outrel.r_info = htab->r_info (0, R_X86_64_DTPMOD64);
4036 outrel.r_addend = 0;
4037 elf_append_rela (output_bfd, htab->elf.srelgot,
4038 &outrel);
4039 htab->tls_ld_got.offset |= 1;
4040 }
4041 relocation = htab->elf.sgot->output_section->vma
4042 + htab->elf.sgot->output_offset + off;
4043 unresolved_reloc = FALSE;
4044 break;
4045
4046 case R_X86_64_DTPOFF32:
4047 if (!info->executable|| (input_section->flags & SEC_CODE) == 0)
4048 relocation -= elf_x86_64_dtpoff_base (info);
4049 else
4050 relocation = elf_x86_64_tpoff (info, relocation);
4051 break;
4052
4053 case R_X86_64_TPOFF32:
4054 case R_X86_64_TPOFF64:
4055 BFD_ASSERT (info->executable);
4056 relocation = elf_x86_64_tpoff (info, relocation);
4057 break;
4058
4059 default:
4060 break;
4061 }
4062
4063 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
4064 because such sections are not SEC_ALLOC and thus ld.so will
4065 not process them. */
4066 if (unresolved_reloc
4067 && !((input_section->flags & SEC_DEBUGGING) != 0
4068 && h->def_dynamic))
4069 (*_bfd_error_handler)
4070 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
4071 input_bfd,
4072 input_section,
4073 (long) rel->r_offset,
4074 howto->name,
4075 h->root.root.string);
4076
4077 do_relocation:
4078 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
4079 contents, rel->r_offset,
4080 relocation, rel->r_addend);
4081
4082 check_relocation_error:
4083 if (r != bfd_reloc_ok)
4084 {
4085 const char *name;
4086
4087 if (h != NULL)
4088 name = h->root.root.string;
4089 else
4090 {
4091 name = bfd_elf_string_from_elf_section (input_bfd,
4092 symtab_hdr->sh_link,
4093 sym->st_name);
4094 if (name == NULL)
4095 return FALSE;
4096 if (*name == '\0')
4097 name = bfd_section_name (input_bfd, sec);
4098 }
4099
4100 if (r == bfd_reloc_overflow)
4101 {
4102 if (! ((*info->callbacks->reloc_overflow)
4103 (info, (h ? &h->root : NULL), name, howto->name,
4104 (bfd_vma) 0, input_bfd, input_section,
4105 rel->r_offset)))
4106 return FALSE;
4107 }
4108 else
4109 {
4110 (*_bfd_error_handler)
4111 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
4112 input_bfd, input_section,
4113 (long) rel->r_offset, name, (int) r);
4114 return FALSE;
4115 }
4116 }
4117 }
4118
4119 return TRUE;
4120 }
4121
4122 /* Finish up dynamic symbol handling. We set the contents of various
4123 dynamic sections here. */
4124
4125 static bfd_boolean
4126 elf_x86_64_finish_dynamic_symbol (bfd *output_bfd,
4127 struct bfd_link_info *info,
4128 struct elf_link_hash_entry *h,
4129 Elf_Internal_Sym *sym)
4130 {
4131 struct elf_x86_64_link_hash_table *htab;
4132
4133 htab = elf_x86_64_hash_table (info);
4134 if (htab == NULL)
4135 return FALSE;
4136
4137 if (h->plt.offset != (bfd_vma) -1)
4138 {
4139 bfd_vma plt_index;
4140 bfd_vma got_offset;
4141 Elf_Internal_Rela rela;
4142 bfd_byte *loc;
4143 asection *plt, *gotplt, *relplt;
4144 const struct elf_backend_data *bed;
4145
4146 /* When building a static executable, use .iplt, .igot.plt and
4147 .rela.iplt sections for STT_GNU_IFUNC symbols. */
4148 if (htab->elf.splt != NULL)
4149 {
4150 plt = htab->elf.splt;
4151 gotplt = htab->elf.sgotplt;
4152 relplt = htab->elf.srelplt;
4153 }
4154 else
4155 {
4156 plt = htab->elf.iplt;
4157 gotplt = htab->elf.igotplt;
4158 relplt = htab->elf.irelplt;
4159 }
4160
4161 /* This symbol has an entry in the procedure linkage table. Set
4162 it up. */
4163 if ((h->dynindx == -1
4164 && !((h->forced_local || info->executable)
4165 && h->def_regular
4166 && h->type == STT_GNU_IFUNC))
4167 || plt == NULL
4168 || gotplt == NULL
4169 || relplt == NULL)
4170 return FALSE;
4171
4172 /* Get the index in the procedure linkage table which
4173 corresponds to this symbol. This is the index of this symbol
4174 in all the symbols for which we are making plt entries. The
4175 first entry in the procedure linkage table is reserved.
4176
4177 Get the offset into the .got table of the entry that
4178 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
4179 bytes. The first three are reserved for the dynamic linker.
4180
4181 For static executables, we don't reserve anything. */
4182
4183 if (plt == htab->elf.splt)
4184 {
4185 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
4186 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
4187 }
4188 else
4189 {
4190 plt_index = h->plt.offset / PLT_ENTRY_SIZE;
4191 got_offset = plt_index * GOT_ENTRY_SIZE;
4192 }
4193
4194 /* Fill in the entry in the procedure linkage table. */
4195 memcpy (plt->contents + h->plt.offset, elf_x86_64_plt_entry,
4196 PLT_ENTRY_SIZE);
4197
4198 /* Insert the relocation positions of the plt section. The magic
4199 numbers at the end of the statements are the positions of the
4200 relocations in the plt section. */
4201 /* Put offset for jmp *name@GOTPCREL(%rip), since the
4202 instruction uses 6 bytes, subtract this value. */
4203 bfd_put_32 (output_bfd,
4204 (gotplt->output_section->vma
4205 + gotplt->output_offset
4206 + got_offset
4207 - plt->output_section->vma
4208 - plt->output_offset
4209 - h->plt.offset
4210 - 6),
4211 plt->contents + h->plt.offset + 2);
4212
4213 /* Don't fill PLT entry for static executables. */
4214 if (plt == htab->elf.splt)
4215 {
4216 /* Put relocation index. */
4217 bfd_put_32 (output_bfd, plt_index,
4218 plt->contents + h->plt.offset + 7);
4219 /* Put offset for jmp .PLT0. */
4220 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
4221 plt->contents + h->plt.offset + 12);
4222 }
4223
4224 /* Fill in the entry in the global offset table, initially this
4225 points to the pushq instruction in the PLT which is at offset 6. */
4226 bfd_put_64 (output_bfd, (plt->output_section->vma
4227 + plt->output_offset
4228 + h->plt.offset + 6),
4229 gotplt->contents + got_offset);
4230
4231 /* Fill in the entry in the .rela.plt section. */
4232 rela.r_offset = (gotplt->output_section->vma
4233 + gotplt->output_offset
4234 + got_offset);
4235 if (h->dynindx == -1
4236 || ((info->executable
4237 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
4238 && h->def_regular
4239 && h->type == STT_GNU_IFUNC))
4240 {
4241 /* If an STT_GNU_IFUNC symbol is locally defined, generate
4242 R_X86_64_IRELATIVE instead of R_X86_64_JUMP_SLOT. */
4243 rela.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
4244 rela.r_addend = (h->root.u.def.value
4245 + h->root.u.def.section->output_section->vma
4246 + h->root.u.def.section->output_offset);
4247 }
4248 else
4249 {
4250 rela.r_info = htab->r_info (h->dynindx, R_X86_64_JUMP_SLOT);
4251 rela.r_addend = 0;
4252 }
4253
4254 bed = get_elf_backend_data (output_bfd);
4255 loc = relplt->contents + plt_index * bed->s->sizeof_rela;
4256 bed->s->swap_reloca_out (output_bfd, &rela, loc);
4257
4258 if (!h->def_regular)
4259 {
4260 /* Mark the symbol as undefined, rather than as defined in
4261 the .plt section. Leave the value if there were any
4262 relocations where pointer equality matters (this is a clue
4263 for the dynamic linker, to make function pointer
4264 comparisons work between an application and shared
4265 library), otherwise set it to zero. If a function is only
4266 called from a binary, there is no need to slow down
4267 shared libraries because of that. */
4268 sym->st_shndx = SHN_UNDEF;
4269 if (!h->pointer_equality_needed)
4270 sym->st_value = 0;
4271 }
4272 }
4273
4274 if (h->got.offset != (bfd_vma) -1
4275 && ! GOT_TLS_GD_ANY_P (elf_x86_64_hash_entry (h)->tls_type)
4276 && elf_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
4277 {
4278 Elf_Internal_Rela rela;
4279
4280 /* This symbol has an entry in the global offset table. Set it
4281 up. */
4282 if (htab->elf.sgot == NULL || htab->elf.srelgot == NULL)
4283 abort ();
4284
4285 rela.r_offset = (htab->elf.sgot->output_section->vma
4286 + htab->elf.sgot->output_offset
4287 + (h->got.offset &~ (bfd_vma) 1));
4288
4289 /* If this is a static link, or it is a -Bsymbolic link and the
4290 symbol is defined locally or was forced to be local because
4291 of a version file, we just want to emit a RELATIVE reloc.
4292 The entry in the global offset table will already have been
4293 initialized in the relocate_section function. */
4294 if (h->def_regular
4295 && h->type == STT_GNU_IFUNC)
4296 {
4297 if (info->shared)
4298 {
4299 /* Generate R_X86_64_GLOB_DAT. */
4300 goto do_glob_dat;
4301 }
4302 else
4303 {
4304 asection *plt;
4305
4306 if (!h->pointer_equality_needed)
4307 abort ();
4308
4309 /* For non-shared object, we can't use .got.plt, which
4310 contains the real function addres if we need pointer
4311 equality. We load the GOT entry with the PLT entry. */
4312 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
4313 bfd_put_64 (output_bfd, (plt->output_section->vma
4314 + plt->output_offset
4315 + h->plt.offset),
4316 htab->elf.sgot->contents + h->got.offset);
4317 return TRUE;
4318 }
4319 }
4320 else if (info->shared
4321 && SYMBOL_REFERENCES_LOCAL (info, h))
4322 {
4323 if (!h->def_regular)
4324 return FALSE;
4325 BFD_ASSERT((h->got.offset & 1) != 0);
4326 rela.r_info = htab->r_info (0, R_X86_64_RELATIVE);
4327 rela.r_addend = (h->root.u.def.value
4328 + h->root.u.def.section->output_section->vma
4329 + h->root.u.def.section->output_offset);
4330 }
4331 else
4332 {
4333 BFD_ASSERT((h->got.offset & 1) == 0);
4334 do_glob_dat:
4335 bfd_put_64 (output_bfd, (bfd_vma) 0,
4336 htab->elf.sgot->contents + h->got.offset);
4337 rela.r_info = htab->r_info (h->dynindx, R_X86_64_GLOB_DAT);
4338 rela.r_addend = 0;
4339 }
4340
4341 elf_append_rela (output_bfd, htab->elf.srelgot, &rela);
4342 }
4343
4344 if (h->needs_copy)
4345 {
4346 Elf_Internal_Rela rela;
4347
4348 /* This symbol needs a copy reloc. Set it up. */
4349
4350 if (h->dynindx == -1
4351 || (h->root.type != bfd_link_hash_defined
4352 && h->root.type != bfd_link_hash_defweak)
4353 || htab->srelbss == NULL)
4354 abort ();
4355
4356 rela.r_offset = (h->root.u.def.value
4357 + h->root.u.def.section->output_section->vma
4358 + h->root.u.def.section->output_offset);
4359 rela.r_info = htab->r_info (h->dynindx, R_X86_64_COPY);
4360 rela.r_addend = 0;
4361 elf_append_rela (output_bfd, htab->srelbss, &rela);
4362 }
4363
4364 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
4365 be NULL for local symbols. */
4366 if (sym != NULL
4367 && (strcmp (h->root.root.string, "_DYNAMIC") == 0
4368 || h == htab->elf.hgot))
4369 sym->st_shndx = SHN_ABS;
4370
4371 return TRUE;
4372 }
4373
4374 /* Finish up local dynamic symbol handling. We set the contents of
4375 various dynamic sections here. */
4376
4377 static bfd_boolean
4378 elf_x86_64_finish_local_dynamic_symbol (void **slot, void *inf)
4379 {
4380 struct elf_link_hash_entry *h
4381 = (struct elf_link_hash_entry *) *slot;
4382 struct bfd_link_info *info
4383 = (struct bfd_link_info *) inf;
4384
4385 return elf_x86_64_finish_dynamic_symbol (info->output_bfd,
4386 info, h, NULL);
4387 }
4388
4389 /* Used to decide how to sort relocs in an optimal manner for the
4390 dynamic linker, before writing them out. */
4391
4392 static enum elf_reloc_type_class
4393 elf_x86_64_reloc_type_class (const Elf_Internal_Rela *rela)
4394 {
4395 switch ((int) ELF32_R_TYPE (rela->r_info))
4396 {
4397 case R_X86_64_RELATIVE:
4398 return reloc_class_relative;
4399 case R_X86_64_JUMP_SLOT:
4400 return reloc_class_plt;
4401 case R_X86_64_COPY:
4402 return reloc_class_copy;
4403 default:
4404 return reloc_class_normal;
4405 }
4406 }
4407
4408 /* Finish up the dynamic sections. */
4409
4410 static bfd_boolean
4411 elf_x86_64_finish_dynamic_sections (bfd *output_bfd,
4412 struct bfd_link_info *info)
4413 {
4414 struct elf_x86_64_link_hash_table *htab;
4415 bfd *dynobj;
4416 asection *sdyn;
4417
4418 htab = elf_x86_64_hash_table (info);
4419 if (htab == NULL)
4420 return FALSE;
4421
4422 dynobj = htab->elf.dynobj;
4423 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4424
4425 if (htab->elf.dynamic_sections_created)
4426 {
4427 bfd_byte *dyncon, *dynconend;
4428 const struct elf_backend_data *bed;
4429 bfd_size_type sizeof_dyn;
4430
4431 if (sdyn == NULL || htab->elf.sgot == NULL)
4432 abort ();
4433
4434 bed = get_elf_backend_data (dynobj);
4435 sizeof_dyn = bed->s->sizeof_dyn;
4436 dyncon = sdyn->contents;
4437 dynconend = sdyn->contents + sdyn->size;
4438 for (; dyncon < dynconend; dyncon += sizeof_dyn)
4439 {
4440 Elf_Internal_Dyn dyn;
4441 asection *s;
4442
4443 (*bed->s->swap_dyn_in) (dynobj, dyncon, &dyn);
4444
4445 switch (dyn.d_tag)
4446 {
4447 default:
4448 continue;
4449
4450 case DT_PLTGOT:
4451 s = htab->elf.sgotplt;
4452 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4453 break;
4454
4455 case DT_JMPREL:
4456 dyn.d_un.d_ptr = htab->elf.srelplt->output_section->vma;
4457 break;
4458
4459 case DT_PLTRELSZ:
4460 s = htab->elf.srelplt->output_section;
4461 dyn.d_un.d_val = s->size;
4462 break;
4463
4464 case DT_RELASZ:
4465 /* The procedure linkage table relocs (DT_JMPREL) should
4466 not be included in the overall relocs (DT_RELA).
4467 Therefore, we override the DT_RELASZ entry here to
4468 make it not include the JMPREL relocs. Since the
4469 linker script arranges for .rela.plt to follow all
4470 other relocation sections, we don't have to worry
4471 about changing the DT_RELA entry. */
4472 if (htab->elf.srelplt != NULL)
4473 {
4474 s = htab->elf.srelplt->output_section;
4475 dyn.d_un.d_val -= s->size;
4476 }
4477 break;
4478
4479 case DT_TLSDESC_PLT:
4480 s = htab->elf.splt;
4481 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4482 + htab->tlsdesc_plt;
4483 break;
4484
4485 case DT_TLSDESC_GOT:
4486 s = htab->elf.sgot;
4487 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4488 + htab->tlsdesc_got;
4489 break;
4490 }
4491
4492 (*bed->s->swap_dyn_out) (output_bfd, &dyn, dyncon);
4493 }
4494
4495 /* Fill in the special first entry in the procedure linkage table. */
4496 if (htab->elf.splt && htab->elf.splt->size > 0)
4497 {
4498 /* Fill in the first entry in the procedure linkage table. */
4499 memcpy (htab->elf.splt->contents, elf_x86_64_plt0_entry,
4500 PLT_ENTRY_SIZE);
4501 /* Add offset for pushq GOT+8(%rip), since the instruction
4502 uses 6 bytes subtract this value. */
4503 bfd_put_32 (output_bfd,
4504 (htab->elf.sgotplt->output_section->vma
4505 + htab->elf.sgotplt->output_offset
4506 + 8
4507 - htab->elf.splt->output_section->vma
4508 - htab->elf.splt->output_offset
4509 - 6),
4510 htab->elf.splt->contents + 2);
4511 /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
4512 the end of the instruction. */
4513 bfd_put_32 (output_bfd,
4514 (htab->elf.sgotplt->output_section->vma
4515 + htab->elf.sgotplt->output_offset
4516 + 16
4517 - htab->elf.splt->output_section->vma
4518 - htab->elf.splt->output_offset
4519 - 12),
4520 htab->elf.splt->contents + 8);
4521
4522 elf_section_data (htab->elf.splt->output_section)->this_hdr.sh_entsize =
4523 PLT_ENTRY_SIZE;
4524
4525 if (htab->tlsdesc_plt)
4526 {
4527 bfd_put_64 (output_bfd, (bfd_vma) 0,
4528 htab->elf.sgot->contents + htab->tlsdesc_got);
4529
4530 memcpy (htab->elf.splt->contents + htab->tlsdesc_plt,
4531 elf_x86_64_plt0_entry,
4532 PLT_ENTRY_SIZE);
4533
4534 /* Add offset for pushq GOT+8(%rip), since the
4535 instruction uses 6 bytes subtract this value. */
4536 bfd_put_32 (output_bfd,
4537 (htab->elf.sgotplt->output_section->vma
4538 + htab->elf.sgotplt->output_offset
4539 + 8
4540 - htab->elf.splt->output_section->vma
4541 - htab->elf.splt->output_offset
4542 - htab->tlsdesc_plt
4543 - 6),
4544 htab->elf.splt->contents + htab->tlsdesc_plt + 2);
4545 /* Add offset for jmp *GOT+TDG(%rip), where TGD stands for
4546 htab->tlsdesc_got. The 12 is the offset to the end of
4547 the instruction. */
4548 bfd_put_32 (output_bfd,
4549 (htab->elf.sgot->output_section->vma
4550 + htab->elf.sgot->output_offset
4551 + htab->tlsdesc_got
4552 - htab->elf.splt->output_section->vma
4553 - htab->elf.splt->output_offset
4554 - htab->tlsdesc_plt
4555 - 12),
4556 htab->elf.splt->contents + htab->tlsdesc_plt + 8);
4557 }
4558 }
4559 }
4560
4561 if (htab->elf.sgotplt)
4562 {
4563 if (bfd_is_abs_section (htab->elf.sgotplt->output_section))
4564 {
4565 (*_bfd_error_handler)
4566 (_("discarded output section: `%A'"), htab->elf.sgotplt);
4567 return FALSE;
4568 }
4569
4570 /* Fill in the first three entries in the global offset table. */
4571 if (htab->elf.sgotplt->size > 0)
4572 {
4573 /* Set the first entry in the global offset table to the address of
4574 the dynamic section. */
4575 if (sdyn == NULL)
4576 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents);
4577 else
4578 bfd_put_64 (output_bfd,
4579 sdyn->output_section->vma + sdyn->output_offset,
4580 htab->elf.sgotplt->contents);
4581 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
4582 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
4583 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE*2);
4584 }
4585
4586 elf_section_data (htab->elf.sgotplt->output_section)->this_hdr.sh_entsize =
4587 GOT_ENTRY_SIZE;
4588 }
4589
4590 /* Adjust .eh_frame for .plt section. */
4591 if (htab->plt_eh_frame != NULL)
4592 {
4593 if (htab->elf.splt != NULL
4594 && htab->elf.splt->size != 0
4595 && (htab->elf.splt->flags & SEC_EXCLUDE) == 0
4596 && htab->elf.splt->output_section != NULL
4597 && htab->plt_eh_frame->output_section != NULL)
4598 {
4599 bfd_vma plt_start = htab->elf.splt->output_section->vma;
4600 bfd_vma eh_frame_start = htab->plt_eh_frame->output_section->vma
4601 + htab->plt_eh_frame->output_offset
4602 + PLT_FDE_START_OFFSET;
4603 bfd_put_signed_32 (dynobj, plt_start - eh_frame_start,
4604 htab->plt_eh_frame->contents
4605 + PLT_FDE_START_OFFSET);
4606 }
4607 if (htab->plt_eh_frame->sec_info_type
4608 == ELF_INFO_TYPE_EH_FRAME)
4609 {
4610 if (! _bfd_elf_write_section_eh_frame (output_bfd, info,
4611 htab->plt_eh_frame,
4612 htab->plt_eh_frame->contents))
4613 return FALSE;
4614 }
4615 }
4616
4617 if (htab->elf.sgot && htab->elf.sgot->size > 0)
4618 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize
4619 = GOT_ENTRY_SIZE;
4620
4621 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
4622 htab_traverse (htab->loc_hash_table,
4623 elf_x86_64_finish_local_dynamic_symbol,
4624 info);
4625
4626 return TRUE;
4627 }
4628
4629 /* Return address for Ith PLT stub in section PLT, for relocation REL
4630 or (bfd_vma) -1 if it should not be included. */
4631
4632 static bfd_vma
4633 elf_x86_64_plt_sym_val (bfd_vma i, const asection *plt,
4634 const arelent *rel ATTRIBUTE_UNUSED)
4635 {
4636 return plt->vma + (i + 1) * PLT_ENTRY_SIZE;
4637 }
4638
4639 /* Handle an x86-64 specific section when reading an object file. This
4640 is called when elfcode.h finds a section with an unknown type. */
4641
4642 static bfd_boolean
4643 elf_x86_64_section_from_shdr (bfd *abfd,
4644 Elf_Internal_Shdr *hdr,
4645 const char *name,
4646 int shindex)
4647 {
4648 if (hdr->sh_type != SHT_X86_64_UNWIND)
4649 return FALSE;
4650
4651 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
4652 return FALSE;
4653
4654 return TRUE;
4655 }
4656
4657 /* Hook called by the linker routine which adds symbols from an object
4658 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
4659 of .bss. */
4660
4661 static bfd_boolean
4662 elf_x86_64_add_symbol_hook (bfd *abfd,
4663 struct bfd_link_info *info,
4664 Elf_Internal_Sym *sym,
4665 const char **namep ATTRIBUTE_UNUSED,
4666 flagword *flagsp ATTRIBUTE_UNUSED,
4667 asection **secp,
4668 bfd_vma *valp)
4669 {
4670 asection *lcomm;
4671
4672 switch (sym->st_shndx)
4673 {
4674 case SHN_X86_64_LCOMMON:
4675 lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
4676 if (lcomm == NULL)
4677 {
4678 lcomm = bfd_make_section_with_flags (abfd,
4679 "LARGE_COMMON",
4680 (SEC_ALLOC
4681 | SEC_IS_COMMON
4682 | SEC_LINKER_CREATED));
4683 if (lcomm == NULL)
4684 return FALSE;
4685 elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
4686 }
4687 *secp = lcomm;
4688 *valp = sym->st_size;
4689 return TRUE;
4690 }
4691
4692 if ((abfd->flags & DYNAMIC) == 0
4693 && (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
4694 || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE))
4695 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4696
4697 return TRUE;
4698 }
4699
4700
4701 /* Given a BFD section, try to locate the corresponding ELF section
4702 index. */
4703
4704 static bfd_boolean
4705 elf_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
4706 asection *sec, int *index_return)
4707 {
4708 if (sec == &_bfd_elf_large_com_section)
4709 {
4710 *index_return = SHN_X86_64_LCOMMON;
4711 return TRUE;
4712 }
4713 return FALSE;
4714 }
4715
4716 /* Process a symbol. */
4717
4718 static void
4719 elf_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
4720 asymbol *asym)
4721 {
4722 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
4723
4724 switch (elfsym->internal_elf_sym.st_shndx)
4725 {
4726 case SHN_X86_64_LCOMMON:
4727 asym->section = &_bfd_elf_large_com_section;
4728 asym->value = elfsym->internal_elf_sym.st_size;
4729 /* Common symbol doesn't set BSF_GLOBAL. */
4730 asym->flags &= ~BSF_GLOBAL;
4731 break;
4732 }
4733 }
4734
4735 static bfd_boolean
4736 elf_x86_64_common_definition (Elf_Internal_Sym *sym)
4737 {
4738 return (sym->st_shndx == SHN_COMMON
4739 || sym->st_shndx == SHN_X86_64_LCOMMON);
4740 }
4741
4742 static unsigned int
4743 elf_x86_64_common_section_index (asection *sec)
4744 {
4745 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
4746 return SHN_COMMON;
4747 else
4748 return SHN_X86_64_LCOMMON;
4749 }
4750
4751 static asection *
4752 elf_x86_64_common_section (asection *sec)
4753 {
4754 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
4755 return bfd_com_section_ptr;
4756 else
4757 return &_bfd_elf_large_com_section;
4758 }
4759
4760 static bfd_boolean
4761 elf_x86_64_merge_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
4762 struct elf_link_hash_entry **sym_hash ATTRIBUTE_UNUSED,
4763 struct elf_link_hash_entry *h,
4764 Elf_Internal_Sym *sym,
4765 asection **psec,
4766 bfd_vma *pvalue ATTRIBUTE_UNUSED,
4767 unsigned int *pold_alignment ATTRIBUTE_UNUSED,
4768 bfd_boolean *skip ATTRIBUTE_UNUSED,
4769 bfd_boolean *override ATTRIBUTE_UNUSED,
4770 bfd_boolean *type_change_ok ATTRIBUTE_UNUSED,
4771 bfd_boolean *size_change_ok ATTRIBUTE_UNUSED,
4772 bfd_boolean *newdyn ATTRIBUTE_UNUSED,
4773 bfd_boolean *newdef,
4774 bfd_boolean *newdyncommon ATTRIBUTE_UNUSED,
4775 bfd_boolean *newweak ATTRIBUTE_UNUSED,
4776 bfd *abfd ATTRIBUTE_UNUSED,
4777 asection **sec,
4778 bfd_boolean *olddyn ATTRIBUTE_UNUSED,
4779 bfd_boolean *olddef,
4780 bfd_boolean *olddyncommon ATTRIBUTE_UNUSED,
4781 bfd_boolean *oldweak ATTRIBUTE_UNUSED,
4782 bfd *oldbfd,
4783 asection **oldsec)
4784 {
4785 /* A normal common symbol and a large common symbol result in a
4786 normal common symbol. We turn the large common symbol into a
4787 normal one. */
4788 if (!*olddef
4789 && h->root.type == bfd_link_hash_common
4790 && !*newdef
4791 && bfd_is_com_section (*sec)
4792 && *oldsec != *sec)
4793 {
4794 if (sym->st_shndx == SHN_COMMON
4795 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) != 0)
4796 {
4797 h->root.u.c.p->section
4798 = bfd_make_section_old_way (oldbfd, "COMMON");
4799 h->root.u.c.p->section->flags = SEC_ALLOC;
4800 }
4801 else if (sym->st_shndx == SHN_X86_64_LCOMMON
4802 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) == 0)
4803 *psec = *sec = bfd_com_section_ptr;
4804 }
4805
4806 return TRUE;
4807 }
4808
4809 static int
4810 elf_x86_64_additional_program_headers (bfd *abfd,
4811 struct bfd_link_info *info ATTRIBUTE_UNUSED)
4812 {
4813 asection *s;
4814 int count = 0;
4815
4816 /* Check to see if we need a large readonly segment. */
4817 s = bfd_get_section_by_name (abfd, ".lrodata");
4818 if (s && (s->flags & SEC_LOAD))
4819 count++;
4820
4821 /* Check to see if we need a large data segment. Since .lbss sections
4822 is placed right after the .bss section, there should be no need for
4823 a large data segment just because of .lbss. */
4824 s = bfd_get_section_by_name (abfd, ".ldata");
4825 if (s && (s->flags & SEC_LOAD))
4826 count++;
4827
4828 return count;
4829 }
4830
4831 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
4832
4833 static bfd_boolean
4834 elf_x86_64_hash_symbol (struct elf_link_hash_entry *h)
4835 {
4836 if (h->plt.offset != (bfd_vma) -1
4837 && !h->def_regular
4838 && !h->pointer_equality_needed)
4839 return FALSE;
4840
4841 return _bfd_elf_hash_symbol (h);
4842 }
4843
4844 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. */
4845
4846 static bfd_boolean
4847 elf_x86_64_relocs_compatible (const bfd_target *input,
4848 const bfd_target *output)
4849 {
4850 return ((xvec_get_elf_backend_data (input)->s->elfclass
4851 == xvec_get_elf_backend_data (output)->s->elfclass)
4852 && _bfd_elf_relocs_compatible (input, output));
4853 }
4854
4855 static const struct bfd_elf_special_section
4856 elf_x86_64_special_sections[]=
4857 {
4858 { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4859 { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
4860 { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
4861 { STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4862 { STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4863 { STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
4864 { NULL, 0, 0, 0, 0 }
4865 };
4866
4867 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
4868 #define TARGET_LITTLE_NAME "elf64-x86-64"
4869 #define ELF_ARCH bfd_arch_i386
4870 #define ELF_TARGET_ID X86_64_ELF_DATA
4871 #define ELF_MACHINE_CODE EM_X86_64
4872 #define ELF_MAXPAGESIZE 0x200000
4873 #define ELF_MINPAGESIZE 0x1000
4874 #define ELF_COMMONPAGESIZE 0x1000
4875
4876 #define elf_backend_can_gc_sections 1
4877 #define elf_backend_can_refcount 1
4878 #define elf_backend_want_got_plt 1
4879 #define elf_backend_plt_readonly 1
4880 #define elf_backend_want_plt_sym 0
4881 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
4882 #define elf_backend_rela_normal 1
4883 #define elf_backend_plt_alignment 4
4884
4885 #define elf_info_to_howto elf_x86_64_info_to_howto
4886
4887 #define bfd_elf64_bfd_link_hash_table_create \
4888 elf_x86_64_link_hash_table_create
4889 #define bfd_elf64_bfd_link_hash_table_free \
4890 elf_x86_64_link_hash_table_free
4891 #define bfd_elf64_bfd_reloc_type_lookup elf_x86_64_reloc_type_lookup
4892 #define bfd_elf64_bfd_reloc_name_lookup \
4893 elf_x86_64_reloc_name_lookup
4894
4895 #define elf_backend_adjust_dynamic_symbol elf_x86_64_adjust_dynamic_symbol
4896 #define elf_backend_relocs_compatible elf_x86_64_relocs_compatible
4897 #define elf_backend_check_relocs elf_x86_64_check_relocs
4898 #define elf_backend_copy_indirect_symbol elf_x86_64_copy_indirect_symbol
4899 #define elf_backend_create_dynamic_sections elf_x86_64_create_dynamic_sections
4900 #define elf_backend_finish_dynamic_sections elf_x86_64_finish_dynamic_sections
4901 #define elf_backend_finish_dynamic_symbol elf_x86_64_finish_dynamic_symbol
4902 #define elf_backend_gc_mark_hook elf_x86_64_gc_mark_hook
4903 #define elf_backend_gc_sweep_hook elf_x86_64_gc_sweep_hook
4904 #define elf_backend_grok_prstatus elf_x86_64_grok_prstatus
4905 #define elf_backend_grok_psinfo elf_x86_64_grok_psinfo
4906 #ifdef CORE_HEADER
4907 #define elf_backend_write_core_note elf_x86_64_write_core_note
4908 #endif
4909 #define elf_backend_reloc_type_class elf_x86_64_reloc_type_class
4910 #define elf_backend_relocate_section elf_x86_64_relocate_section
4911 #define elf_backend_size_dynamic_sections elf_x86_64_size_dynamic_sections
4912 #define elf_backend_always_size_sections elf_x86_64_always_size_sections
4913 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4914 #define elf_backend_plt_sym_val elf_x86_64_plt_sym_val
4915 #define elf_backend_object_p elf64_x86_64_elf_object_p
4916 #define bfd_elf64_mkobject elf_x86_64_mkobject
4917
4918 #define elf_backend_section_from_shdr \
4919 elf_x86_64_section_from_shdr
4920
4921 #define elf_backend_section_from_bfd_section \
4922 elf_x86_64_elf_section_from_bfd_section
4923 #define elf_backend_add_symbol_hook \
4924 elf_x86_64_add_symbol_hook
4925 #define elf_backend_symbol_processing \
4926 elf_x86_64_symbol_processing
4927 #define elf_backend_common_section_index \
4928 elf_x86_64_common_section_index
4929 #define elf_backend_common_section \
4930 elf_x86_64_common_section
4931 #define elf_backend_common_definition \
4932 elf_x86_64_common_definition
4933 #define elf_backend_merge_symbol \
4934 elf_x86_64_merge_symbol
4935 #define elf_backend_special_sections \
4936 elf_x86_64_special_sections
4937 #define elf_backend_additional_program_headers \
4938 elf_x86_64_additional_program_headers
4939 #define elf_backend_hash_symbol \
4940 elf_x86_64_hash_symbol
4941
4942 #undef elf_backend_post_process_headers
4943 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4944
4945 #include "elf64-target.h"
4946
4947 /* FreeBSD support. */
4948
4949 #undef TARGET_LITTLE_SYM
4950 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_freebsd_vec
4951 #undef TARGET_LITTLE_NAME
4952 #define TARGET_LITTLE_NAME "elf64-x86-64-freebsd"
4953
4954 #undef ELF_OSABI
4955 #define ELF_OSABI ELFOSABI_FREEBSD
4956
4957 #undef elf64_bed
4958 #define elf64_bed elf64_x86_64_fbsd_bed
4959
4960 #include "elf64-target.h"
4961
4962 /* Solaris 2 support. */
4963
4964 #undef TARGET_LITTLE_SYM
4965 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_sol2_vec
4966 #undef TARGET_LITTLE_NAME
4967 #define TARGET_LITTLE_NAME "elf64-x86-64-sol2"
4968
4969 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
4970 objects won't be recognized. */
4971 #undef ELF_OSABI
4972
4973 #undef elf64_bed
4974 #define elf64_bed elf64_x86_64_sol2_bed
4975
4976 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte
4977 boundary. */
4978 #undef elf_backend_static_tls_alignment
4979 #define elf_backend_static_tls_alignment 16
4980
4981 /* The Solaris 2 ABI requires a plt symbol on all platforms.
4982
4983 Cf. Linker and Libraries Guide, Ch. 2, Link-Editor, Generating the Output
4984 File, p.63. */
4985 #undef elf_backend_want_plt_sym
4986 #define elf_backend_want_plt_sym 1
4987
4988 #include "elf64-target.h"
4989
4990 /* Intel L1OM support. */
4991
4992 static bfd_boolean
4993 elf64_l1om_elf_object_p (bfd *abfd)
4994 {
4995 /* Set the right machine number for an L1OM elf64 file. */
4996 bfd_default_set_arch_mach (abfd, bfd_arch_l1om, bfd_mach_l1om);
4997 return TRUE;
4998 }
4999
5000 #undef TARGET_LITTLE_SYM
5001 #define TARGET_LITTLE_SYM bfd_elf64_l1om_vec
5002 #undef TARGET_LITTLE_NAME
5003 #define TARGET_LITTLE_NAME "elf64-l1om"
5004 #undef ELF_ARCH
5005 #define ELF_ARCH bfd_arch_l1om
5006
5007 #undef ELF_MACHINE_CODE
5008 #define ELF_MACHINE_CODE EM_L1OM
5009
5010 #undef ELF_OSABI
5011
5012 #undef elf64_bed
5013 #define elf64_bed elf64_l1om_bed
5014
5015 #undef elf_backend_object_p
5016 #define elf_backend_object_p elf64_l1om_elf_object_p
5017
5018 #undef elf_backend_post_process_headers
5019 #undef elf_backend_static_tls_alignment
5020
5021 #undef elf_backend_want_plt_sym
5022 #define elf_backend_want_plt_sym 0
5023
5024 #include "elf64-target.h"
5025
5026 /* FreeBSD L1OM support. */
5027
5028 #undef TARGET_LITTLE_SYM
5029 #define TARGET_LITTLE_SYM bfd_elf64_l1om_freebsd_vec
5030 #undef TARGET_LITTLE_NAME
5031 #define TARGET_LITTLE_NAME "elf64-l1om-freebsd"
5032
5033 #undef ELF_OSABI
5034 #define ELF_OSABI ELFOSABI_FREEBSD
5035
5036 #undef elf64_bed
5037 #define elf64_bed elf64_l1om_fbsd_bed
5038
5039 #undef elf_backend_post_process_headers
5040 #define elf_backend_post_process_headers _bfd_elf_set_osabi
5041
5042 #include "elf64-target.h"
5043
5044 /* 32bit x86-64 support. */
5045
5046 static bfd_boolean
5047 elf32_x86_64_elf_object_p (bfd *abfd)
5048 {
5049 /* Set the right machine number for an x86-64 elf32 file. */
5050 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x64_32);
5051 return TRUE;
5052 }
5053
5054 #undef TARGET_LITTLE_SYM
5055 #define TARGET_LITTLE_SYM bfd_elf32_x86_64_vec
5056 #undef TARGET_LITTLE_NAME
5057 #define TARGET_LITTLE_NAME "elf32-x86-64"
5058
5059 #undef ELF_ARCH
5060 #define ELF_ARCH bfd_arch_i386
5061
5062 #undef ELF_MACHINE_CODE
5063 #define ELF_MACHINE_CODE EM_X86_64
5064
5065 #define bfd_elf32_bfd_link_hash_table_create \
5066 elf_x86_64_link_hash_table_create
5067 #define bfd_elf32_bfd_link_hash_table_free \
5068 elf_x86_64_link_hash_table_free
5069 #define bfd_elf32_bfd_reloc_type_lookup \
5070 elf_x86_64_reloc_type_lookup
5071 #define bfd_elf32_bfd_reloc_name_lookup \
5072 elf_x86_64_reloc_name_lookup
5073 #define bfd_elf32_mkobject \
5074 elf_x86_64_mkobject
5075
5076 #undef ELF_OSABI
5077
5078 #undef elf_backend_post_process_headers
5079
5080 #undef elf_backend_object_p
5081 #define elf_backend_object_p \
5082 elf32_x86_64_elf_object_p
5083
5084 #undef elf_backend_bfd_from_remote_memory
5085 #define elf_backend_bfd_from_remote_memory \
5086 _bfd_elf32_bfd_from_remote_memory
5087
5088 #undef elf_backend_size_info
5089 #define elf_backend_size_info \
5090 _bfd_elf32_size_info
5091
5092 #undef elf_backend_post_process_headers
5093 #define elf_backend_post_process_headers _bfd_elf_set_osabi
5094
5095 #include "elf32-target.h"