More fixes for memory access violations exposed by fuzzed binaries.
[binutils-gdb.git] / bfd / elf64-x86-64.c
1 /* X86-64 specific support for ELF
2 Copyright (C) 2000-2014 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka <jh@suse.cz>.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "elf-nacl.h"
28 #include "bfd_stdint.h"
29 #include "objalloc.h"
30 #include "hashtab.h"
31 #include "dwarf2.h"
32 #include "libiberty.h"
33
34 #include "elf/x86-64.h"
35
36 #ifdef CORE_HEADER
37 #include <stdarg.h>
38 #include CORE_HEADER
39 #endif
40
41 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
42 #define MINUS_ONE (~ (bfd_vma) 0)
43
44 /* Since both 32-bit and 64-bit x86-64 encode relocation type in the
45 identical manner, we use ELF32_R_TYPE instead of ELF64_R_TYPE to get
46 relocation type. We also use ELF_ST_TYPE instead of ELF64_ST_TYPE
47 since they are the same. */
48
49 #define ABI_64_P(abfd) \
50 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
51
52 /* The relocation "howto" table. Order of fields:
53 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
54 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
55 static reloc_howto_type x86_64_elf_howto_table[] =
56 {
57 HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
58 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
59 FALSE),
60 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
61 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
62 FALSE),
63 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
64 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
65 TRUE),
66 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
67 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
68 FALSE),
69 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
70 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
71 TRUE),
72 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
73 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
74 FALSE),
75 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
76 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
77 MINUS_ONE, FALSE),
78 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
79 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
80 MINUS_ONE, FALSE),
81 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
82 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
83 MINUS_ONE, FALSE),
84 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
85 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
86 0xffffffff, TRUE),
87 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
88 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
89 FALSE),
90 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
91 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
92 FALSE),
93 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
94 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
95 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
96 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
97 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
98 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
99 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
100 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
101 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
102 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
103 MINUS_ONE, FALSE),
104 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
105 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
106 MINUS_ONE, FALSE),
107 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
108 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
109 MINUS_ONE, FALSE),
110 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
111 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
112 0xffffffff, TRUE),
113 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
114 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
115 0xffffffff, TRUE),
116 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
117 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
118 0xffffffff, FALSE),
119 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
120 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
121 0xffffffff, TRUE),
122 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
123 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
124 0xffffffff, FALSE),
125 HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
126 bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
127 TRUE),
128 HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
129 bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
130 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
131 HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
132 bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
133 FALSE, 0xffffffff, 0xffffffff, TRUE),
134 HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
135 bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE,
136 FALSE),
137 HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
138 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE,
139 MINUS_ONE, TRUE),
140 HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
141 bfd_elf_generic_reloc, "R_X86_64_GOTPC64",
142 FALSE, MINUS_ONE, MINUS_ONE, TRUE),
143 HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
144 bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE,
145 MINUS_ONE, FALSE),
146 HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
147 bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE,
148 MINUS_ONE, FALSE),
149 HOWTO(R_X86_64_SIZE32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
150 bfd_elf_generic_reloc, "R_X86_64_SIZE32", FALSE, 0xffffffff, 0xffffffff,
151 FALSE),
152 HOWTO(R_X86_64_SIZE64, 0, 4, 64, FALSE, 0, complain_overflow_unsigned,
153 bfd_elf_generic_reloc, "R_X86_64_SIZE64", FALSE, MINUS_ONE, MINUS_ONE,
154 FALSE),
155 HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0,
156 complain_overflow_bitfield, bfd_elf_generic_reloc,
157 "R_X86_64_GOTPC32_TLSDESC",
158 FALSE, 0xffffffff, 0xffffffff, TRUE),
159 HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0,
160 complain_overflow_dont, bfd_elf_generic_reloc,
161 "R_X86_64_TLSDESC_CALL",
162 FALSE, 0, 0, FALSE),
163 HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0,
164 complain_overflow_bitfield, bfd_elf_generic_reloc,
165 "R_X86_64_TLSDESC",
166 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
167 HOWTO(R_X86_64_IRELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
168 bfd_elf_generic_reloc, "R_X86_64_IRELATIVE", FALSE, MINUS_ONE,
169 MINUS_ONE, FALSE),
170 HOWTO(R_X86_64_RELATIVE64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
171 bfd_elf_generic_reloc, "R_X86_64_RELATIVE64", FALSE, MINUS_ONE,
172 MINUS_ONE, FALSE),
173 HOWTO(R_X86_64_PC32_BND, 0, 2, 32, TRUE, 0, complain_overflow_signed,
174 bfd_elf_generic_reloc, "R_X86_64_PC32_BND", FALSE, 0xffffffff, 0xffffffff,
175 TRUE),
176 HOWTO(R_X86_64_PLT32_BND, 0, 2, 32, TRUE, 0, complain_overflow_signed,
177 bfd_elf_generic_reloc, "R_X86_64_PLT32_BND", FALSE, 0xffffffff, 0xffffffff,
178 TRUE),
179
180 /* We have a gap in the reloc numbers here.
181 R_X86_64_standard counts the number up to this point, and
182 R_X86_64_vt_offset is the value to subtract from a reloc type of
183 R_X86_64_GNU_VT* to form an index into this table. */
184 #define R_X86_64_standard (R_X86_64_PLT32_BND + 1)
185 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
186
187 /* GNU extension to record C++ vtable hierarchy. */
188 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
189 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
190
191 /* GNU extension to record C++ vtable member usage. */
192 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
193 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
194 FALSE),
195
196 /* Use complain_overflow_bitfield on R_X86_64_32 for x32. */
197 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
198 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
199 FALSE)
200 };
201
202 #define IS_X86_64_PCREL_TYPE(TYPE) \
203 ( ((TYPE) == R_X86_64_PC8) \
204 || ((TYPE) == R_X86_64_PC16) \
205 || ((TYPE) == R_X86_64_PC32) \
206 || ((TYPE) == R_X86_64_PC32_BND) \
207 || ((TYPE) == R_X86_64_PC64))
208
209 /* Map BFD relocs to the x86_64 elf relocs. */
210 struct elf_reloc_map
211 {
212 bfd_reloc_code_real_type bfd_reloc_val;
213 unsigned char elf_reloc_val;
214 };
215
216 static const struct elf_reloc_map x86_64_reloc_map[] =
217 {
218 { BFD_RELOC_NONE, R_X86_64_NONE, },
219 { BFD_RELOC_64, R_X86_64_64, },
220 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
221 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
222 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
223 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
224 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
225 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
226 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
227 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
228 { BFD_RELOC_32, R_X86_64_32, },
229 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
230 { BFD_RELOC_16, R_X86_64_16, },
231 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
232 { BFD_RELOC_8, R_X86_64_8, },
233 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
234 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
235 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
236 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
237 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
238 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
239 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
240 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
241 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
242 { BFD_RELOC_64_PCREL, R_X86_64_PC64, },
243 { BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, },
244 { BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, },
245 { BFD_RELOC_X86_64_GOT64, R_X86_64_GOT64, },
246 { BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, },
247 { BFD_RELOC_X86_64_GOTPC64, R_X86_64_GOTPC64, },
248 { BFD_RELOC_X86_64_GOTPLT64, R_X86_64_GOTPLT64, },
249 { BFD_RELOC_X86_64_PLTOFF64, R_X86_64_PLTOFF64, },
250 { BFD_RELOC_SIZE32, R_X86_64_SIZE32, },
251 { BFD_RELOC_SIZE64, R_X86_64_SIZE64, },
252 { BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, },
253 { BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, },
254 { BFD_RELOC_X86_64_TLSDESC, R_X86_64_TLSDESC, },
255 { BFD_RELOC_X86_64_IRELATIVE, R_X86_64_IRELATIVE, },
256 { BFD_RELOC_X86_64_PC32_BND, R_X86_64_PC32_BND,},
257 { BFD_RELOC_X86_64_PLT32_BND, R_X86_64_PLT32_BND,},
258 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
259 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
260 };
261
262 static reloc_howto_type *
263 elf_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type)
264 {
265 unsigned i;
266
267 if (r_type == (unsigned int) R_X86_64_32)
268 {
269 if (ABI_64_P (abfd))
270 i = r_type;
271 else
272 i = ARRAY_SIZE (x86_64_elf_howto_table) - 1;
273 }
274 else if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
275 || r_type >= (unsigned int) R_X86_64_max)
276 {
277 if (r_type >= (unsigned int) R_X86_64_standard)
278 {
279 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
280 abfd, (int) r_type);
281 r_type = R_X86_64_NONE;
282 }
283 i = r_type;
284 }
285 else
286 i = r_type - (unsigned int) R_X86_64_vt_offset;
287 BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type);
288 return &x86_64_elf_howto_table[i];
289 }
290
291 /* Given a BFD reloc type, return a HOWTO structure. */
292 static reloc_howto_type *
293 elf_x86_64_reloc_type_lookup (bfd *abfd,
294 bfd_reloc_code_real_type code)
295 {
296 unsigned int i;
297
298 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
299 i++)
300 {
301 if (x86_64_reloc_map[i].bfd_reloc_val == code)
302 return elf_x86_64_rtype_to_howto (abfd,
303 x86_64_reloc_map[i].elf_reloc_val);
304 }
305 return 0;
306 }
307
308 static reloc_howto_type *
309 elf_x86_64_reloc_name_lookup (bfd *abfd,
310 const char *r_name)
311 {
312 unsigned int i;
313
314 if (!ABI_64_P (abfd) && strcasecmp (r_name, "R_X86_64_32") == 0)
315 {
316 /* Get x32 R_X86_64_32. */
317 reloc_howto_type *reloc
318 = &x86_64_elf_howto_table[ARRAY_SIZE (x86_64_elf_howto_table) - 1];
319 BFD_ASSERT (reloc->type == (unsigned int) R_X86_64_32);
320 return reloc;
321 }
322
323 for (i = 0; i < ARRAY_SIZE (x86_64_elf_howto_table); i++)
324 if (x86_64_elf_howto_table[i].name != NULL
325 && strcasecmp (x86_64_elf_howto_table[i].name, r_name) == 0)
326 return &x86_64_elf_howto_table[i];
327
328 return NULL;
329 }
330
331 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
332
333 static void
334 elf_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
335 Elf_Internal_Rela *dst)
336 {
337 unsigned r_type;
338
339 r_type = ELF32_R_TYPE (dst->r_info);
340 cache_ptr->howto = elf_x86_64_rtype_to_howto (abfd, r_type);
341 BFD_ASSERT (r_type == cache_ptr->howto->type);
342 }
343 \f
344 /* Support for core dump NOTE sections. */
345 static bfd_boolean
346 elf_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
347 {
348 int offset;
349 size_t size;
350
351 switch (note->descsz)
352 {
353 default:
354 return FALSE;
355
356 case 296: /* sizeof(istruct elf_prstatus) on Linux/x32 */
357 /* pr_cursig */
358 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
359
360 /* pr_pid */
361 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
362
363 /* pr_reg */
364 offset = 72;
365 size = 216;
366
367 break;
368
369 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
370 /* pr_cursig */
371 elf_tdata (abfd)->core->signal
372 = bfd_get_16 (abfd, note->descdata + 12);
373
374 /* pr_pid */
375 elf_tdata (abfd)->core->lwpid
376 = bfd_get_32 (abfd, note->descdata + 32);
377
378 /* pr_reg */
379 offset = 112;
380 size = 216;
381
382 break;
383 }
384
385 /* Make a ".reg/999" section. */
386 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
387 size, note->descpos + offset);
388 }
389
390 static bfd_boolean
391 elf_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
392 {
393 switch (note->descsz)
394 {
395 default:
396 return FALSE;
397
398 case 124: /* sizeof(struct elf_prpsinfo) on Linux/x32 */
399 elf_tdata (abfd)->core->pid
400 = bfd_get_32 (abfd, note->descdata + 12);
401 elf_tdata (abfd)->core->program
402 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
403 elf_tdata (abfd)->core->command
404 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
405 break;
406
407 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
408 elf_tdata (abfd)->core->pid
409 = bfd_get_32 (abfd, note->descdata + 24);
410 elf_tdata (abfd)->core->program
411 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
412 elf_tdata (abfd)->core->command
413 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
414 }
415
416 /* Note that for some reason, a spurious space is tacked
417 onto the end of the args in some (at least one anyway)
418 implementations, so strip it off if it exists. */
419
420 {
421 char *command = elf_tdata (abfd)->core->command;
422 int n = strlen (command);
423
424 if (0 < n && command[n - 1] == ' ')
425 command[n - 1] = '\0';
426 }
427
428 return TRUE;
429 }
430
431 #ifdef CORE_HEADER
432 static char *
433 elf_x86_64_write_core_note (bfd *abfd, char *buf, int *bufsiz,
434 int note_type, ...)
435 {
436 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
437 va_list ap;
438 const char *fname, *psargs;
439 long pid;
440 int cursig;
441 const void *gregs;
442
443 switch (note_type)
444 {
445 default:
446 return NULL;
447
448 case NT_PRPSINFO:
449 va_start (ap, note_type);
450 fname = va_arg (ap, const char *);
451 psargs = va_arg (ap, const char *);
452 va_end (ap);
453
454 if (bed->s->elfclass == ELFCLASS32)
455 {
456 prpsinfo32_t data;
457 memset (&data, 0, sizeof (data));
458 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
459 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
460 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
461 &data, sizeof (data));
462 }
463 else
464 {
465 prpsinfo64_t data;
466 memset (&data, 0, sizeof (data));
467 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
468 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
469 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
470 &data, sizeof (data));
471 }
472 /* NOTREACHED */
473
474 case NT_PRSTATUS:
475 va_start (ap, note_type);
476 pid = va_arg (ap, long);
477 cursig = va_arg (ap, int);
478 gregs = va_arg (ap, const void *);
479 va_end (ap);
480
481 if (bed->s->elfclass == ELFCLASS32)
482 {
483 if (bed->elf_machine_code == EM_X86_64)
484 {
485 prstatusx32_t prstat;
486 memset (&prstat, 0, sizeof (prstat));
487 prstat.pr_pid = pid;
488 prstat.pr_cursig = cursig;
489 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
490 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
491 &prstat, sizeof (prstat));
492 }
493 else
494 {
495 prstatus32_t prstat;
496 memset (&prstat, 0, sizeof (prstat));
497 prstat.pr_pid = pid;
498 prstat.pr_cursig = cursig;
499 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
500 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
501 &prstat, sizeof (prstat));
502 }
503 }
504 else
505 {
506 prstatus64_t prstat;
507 memset (&prstat, 0, sizeof (prstat));
508 prstat.pr_pid = pid;
509 prstat.pr_cursig = cursig;
510 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
511 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
512 &prstat, sizeof (prstat));
513 }
514 }
515 /* NOTREACHED */
516 }
517 #endif
518 \f
519 /* Functions for the x86-64 ELF linker. */
520
521 /* The name of the dynamic interpreter. This is put in the .interp
522 section. */
523
524 #define ELF64_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
525 #define ELF32_DYNAMIC_INTERPRETER "/lib/ldx32.so.1"
526
527 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
528 copying dynamic variables from a shared lib into an app's dynbss
529 section, and instead use a dynamic relocation to point into the
530 shared lib. */
531 #define ELIMINATE_COPY_RELOCS 1
532
533 /* The size in bytes of an entry in the global offset table. */
534
535 #define GOT_ENTRY_SIZE 8
536
537 /* The size in bytes of an entry in the procedure linkage table. */
538
539 #define PLT_ENTRY_SIZE 16
540
541 /* The first entry in a procedure linkage table looks like this. See the
542 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
543
544 static const bfd_byte elf_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
545 {
546 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
547 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
548 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */
549 };
550
551 /* Subsequent entries in a procedure linkage table look like this. */
552
553 static const bfd_byte elf_x86_64_plt_entry[PLT_ENTRY_SIZE] =
554 {
555 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
556 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
557 0x68, /* pushq immediate */
558 0, 0, 0, 0, /* replaced with index into relocation table. */
559 0xe9, /* jmp relative */
560 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
561 };
562
563 /* The first entry in a procedure linkage table with BND relocations
564 like this. */
565
566 static const bfd_byte elf_x86_64_bnd_plt0_entry[PLT_ENTRY_SIZE] =
567 {
568 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
569 0xf2, 0xff, 0x25, 16, 0, 0, 0, /* bnd jmpq *GOT+16(%rip) */
570 0x0f, 0x1f, 0 /* nopl (%rax) */
571 };
572
573 /* Subsequent entries for legacy branches in a procedure linkage table
574 with BND relocations look like this. */
575
576 static const bfd_byte elf_x86_64_legacy_plt_entry[PLT_ENTRY_SIZE] =
577 {
578 0x68, 0, 0, 0, 0, /* pushq immediate */
579 0xe9, 0, 0, 0, 0, /* jmpq relative */
580 0x66, 0x0f, 0x1f, 0x44, 0, 0 /* nopw (%rax,%rax,1) */
581 };
582
583 /* Subsequent entries for branches with BND prefx in a procedure linkage
584 table with BND relocations look like this. */
585
586 static const bfd_byte elf_x86_64_bnd_plt_entry[PLT_ENTRY_SIZE] =
587 {
588 0x68, 0, 0, 0, 0, /* pushq immediate */
589 0xf2, 0xe9, 0, 0, 0, 0, /* bnd jmpq relative */
590 0x0f, 0x1f, 0x44, 0, 0 /* nopl 0(%rax,%rax,1) */
591 };
592
593 /* Entries for legacy branches in the second procedure linkage table
594 look like this. */
595
596 static const bfd_byte elf_x86_64_legacy_plt2_entry[8] =
597 {
598 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
599 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
600 0x66, 0x90 /* xchg %ax,%ax */
601 };
602
603 /* Entries for branches with BND prefix in the second procedure linkage
604 table look like this. */
605
606 static const bfd_byte elf_x86_64_bnd_plt2_entry[8] =
607 {
608 0xf2, 0xff, 0x25, /* bnd jmpq *name@GOTPC(%rip) */
609 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
610 0x90 /* nop */
611 };
612
613 /* .eh_frame covering the .plt section. */
614
615 static const bfd_byte elf_x86_64_eh_frame_plt[] =
616 {
617 #define PLT_CIE_LENGTH 20
618 #define PLT_FDE_LENGTH 36
619 #define PLT_FDE_START_OFFSET 4 + PLT_CIE_LENGTH + 8
620 #define PLT_FDE_LEN_OFFSET 4 + PLT_CIE_LENGTH + 12
621 PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */
622 0, 0, 0, 0, /* CIE ID */
623 1, /* CIE version */
624 'z', 'R', 0, /* Augmentation string */
625 1, /* Code alignment factor */
626 0x78, /* Data alignment factor */
627 16, /* Return address column */
628 1, /* Augmentation size */
629 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
630 DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
631 DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
632 DW_CFA_nop, DW_CFA_nop,
633
634 PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */
635 PLT_CIE_LENGTH + 8, 0, 0, 0, /* CIE pointer */
636 0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */
637 0, 0, 0, 0, /* .plt size goes here */
638 0, /* Augmentation size */
639 DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */
640 DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */
641 DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */
642 DW_CFA_advance_loc + 10, /* DW_CFA_advance_loc: 10 to __PLT__+16 */
643 DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */
644 11, /* Block length */
645 DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */
646 DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */
647 DW_OP_lit15, DW_OP_and, DW_OP_lit11, DW_OP_ge,
648 DW_OP_lit3, DW_OP_shl, DW_OP_plus,
649 DW_CFA_nop, DW_CFA_nop, DW_CFA_nop, DW_CFA_nop
650 };
651
652 /* Architecture-specific backend data for x86-64. */
653
654 struct elf_x86_64_backend_data
655 {
656 /* Templates for the initial PLT entry and for subsequent entries. */
657 const bfd_byte *plt0_entry;
658 const bfd_byte *plt_entry;
659 unsigned int plt_entry_size; /* Size of each PLT entry. */
660
661 /* Offsets into plt0_entry that are to be replaced with GOT[1] and GOT[2]. */
662 unsigned int plt0_got1_offset;
663 unsigned int plt0_got2_offset;
664
665 /* Offset of the end of the PC-relative instruction containing
666 plt0_got2_offset. */
667 unsigned int plt0_got2_insn_end;
668
669 /* Offsets into plt_entry that are to be replaced with... */
670 unsigned int plt_got_offset; /* ... address of this symbol in .got. */
671 unsigned int plt_reloc_offset; /* ... offset into relocation table. */
672 unsigned int plt_plt_offset; /* ... offset to start of .plt. */
673
674 /* Length of the PC-relative instruction containing plt_got_offset. */
675 unsigned int plt_got_insn_size;
676
677 /* Offset of the end of the PC-relative jump to plt0_entry. */
678 unsigned int plt_plt_insn_end;
679
680 /* Offset into plt_entry where the initial value of the GOT entry points. */
681 unsigned int plt_lazy_offset;
682
683 /* .eh_frame covering the .plt section. */
684 const bfd_byte *eh_frame_plt;
685 unsigned int eh_frame_plt_size;
686 };
687
688 #define get_elf_x86_64_arch_data(bed) \
689 ((const struct elf_x86_64_backend_data *) (bed)->arch_data)
690
691 #define get_elf_x86_64_backend_data(abfd) \
692 get_elf_x86_64_arch_data (get_elf_backend_data (abfd))
693
694 #define GET_PLT_ENTRY_SIZE(abfd) \
695 get_elf_x86_64_backend_data (abfd)->plt_entry_size
696
697 /* These are the standard parameters. */
698 static const struct elf_x86_64_backend_data elf_x86_64_arch_bed =
699 {
700 elf_x86_64_plt0_entry, /* plt0_entry */
701 elf_x86_64_plt_entry, /* plt_entry */
702 sizeof (elf_x86_64_plt_entry), /* plt_entry_size */
703 2, /* plt0_got1_offset */
704 8, /* plt0_got2_offset */
705 12, /* plt0_got2_insn_end */
706 2, /* plt_got_offset */
707 7, /* plt_reloc_offset */
708 12, /* plt_plt_offset */
709 6, /* plt_got_insn_size */
710 PLT_ENTRY_SIZE, /* plt_plt_insn_end */
711 6, /* plt_lazy_offset */
712 elf_x86_64_eh_frame_plt, /* eh_frame_plt */
713 sizeof (elf_x86_64_eh_frame_plt), /* eh_frame_plt_size */
714 };
715
716 static const struct elf_x86_64_backend_data elf_x86_64_bnd_arch_bed =
717 {
718 elf_x86_64_bnd_plt0_entry, /* plt0_entry */
719 elf_x86_64_bnd_plt_entry, /* plt_entry */
720 sizeof (elf_x86_64_bnd_plt_entry), /* plt_entry_size */
721 2, /* plt0_got1_offset */
722 1+8, /* plt0_got2_offset */
723 1+12, /* plt0_got2_insn_end */
724 1+2, /* plt_got_offset */
725 1, /* plt_reloc_offset */
726 7, /* plt_plt_offset */
727 1+6, /* plt_got_insn_size */
728 11, /* plt_plt_insn_end */
729 0, /* plt_lazy_offset */
730 elf_x86_64_eh_frame_plt, /* eh_frame_plt */
731 sizeof (elf_x86_64_eh_frame_plt), /* eh_frame_plt_size */
732 };
733
734 #define elf_backend_arch_data &elf_x86_64_arch_bed
735
736 /* x86-64 ELF linker hash entry. */
737
738 struct elf_x86_64_link_hash_entry
739 {
740 struct elf_link_hash_entry elf;
741
742 /* Track dynamic relocs copied for this symbol. */
743 struct elf_dyn_relocs *dyn_relocs;
744
745 #define GOT_UNKNOWN 0
746 #define GOT_NORMAL 1
747 #define GOT_TLS_GD 2
748 #define GOT_TLS_IE 3
749 #define GOT_TLS_GDESC 4
750 #define GOT_TLS_GD_BOTH_P(type) \
751 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
752 #define GOT_TLS_GD_P(type) \
753 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
754 #define GOT_TLS_GDESC_P(type) \
755 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
756 #define GOT_TLS_GD_ANY_P(type) \
757 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
758 unsigned char tls_type;
759
760 /* TRUE if symbol has at least one BND relocation. */
761 bfd_boolean has_bnd_reloc;
762
763 /* Information about the GOT PLT entry. Filled when there are both
764 GOT and PLT relocations against the same function. */
765 union gotplt_union plt_got;
766
767 /* Information about the second PLT entry. Filled when has_bnd_reloc is
768 set. */
769 union gotplt_union plt_bnd;
770
771 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
772 starting at the end of the jump table. */
773 bfd_vma tlsdesc_got;
774 };
775
776 #define elf_x86_64_hash_entry(ent) \
777 ((struct elf_x86_64_link_hash_entry *)(ent))
778
779 struct elf_x86_64_obj_tdata
780 {
781 struct elf_obj_tdata root;
782
783 /* tls_type for each local got entry. */
784 char *local_got_tls_type;
785
786 /* GOTPLT entries for TLS descriptors. */
787 bfd_vma *local_tlsdesc_gotent;
788 };
789
790 #define elf_x86_64_tdata(abfd) \
791 ((struct elf_x86_64_obj_tdata *) (abfd)->tdata.any)
792
793 #define elf_x86_64_local_got_tls_type(abfd) \
794 (elf_x86_64_tdata (abfd)->local_got_tls_type)
795
796 #define elf_x86_64_local_tlsdesc_gotent(abfd) \
797 (elf_x86_64_tdata (abfd)->local_tlsdesc_gotent)
798
799 #define is_x86_64_elf(bfd) \
800 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
801 && elf_tdata (bfd) != NULL \
802 && elf_object_id (bfd) == X86_64_ELF_DATA)
803
804 static bfd_boolean
805 elf_x86_64_mkobject (bfd *abfd)
806 {
807 return bfd_elf_allocate_object (abfd, sizeof (struct elf_x86_64_obj_tdata),
808 X86_64_ELF_DATA);
809 }
810
811 /* x86-64 ELF linker hash table. */
812
813 struct elf_x86_64_link_hash_table
814 {
815 struct elf_link_hash_table elf;
816
817 /* Short-cuts to get to dynamic linker sections. */
818 asection *sdynbss;
819 asection *srelbss;
820 asection *plt_eh_frame;
821 asection *plt_bnd;
822 asection *plt_got;
823
824 union
825 {
826 bfd_signed_vma refcount;
827 bfd_vma offset;
828 } tls_ld_got;
829
830 /* The amount of space used by the jump slots in the GOT. */
831 bfd_vma sgotplt_jump_table_size;
832
833 /* Small local sym cache. */
834 struct sym_cache sym_cache;
835
836 bfd_vma (*r_info) (bfd_vma, bfd_vma);
837 bfd_vma (*r_sym) (bfd_vma);
838 unsigned int pointer_r_type;
839 const char *dynamic_interpreter;
840 int dynamic_interpreter_size;
841
842 /* _TLS_MODULE_BASE_ symbol. */
843 struct bfd_link_hash_entry *tls_module_base;
844
845 /* Used by local STT_GNU_IFUNC symbols. */
846 htab_t loc_hash_table;
847 void * loc_hash_memory;
848
849 /* The offset into splt of the PLT entry for the TLS descriptor
850 resolver. Special values are 0, if not necessary (or not found
851 to be necessary yet), and -1 if needed but not determined
852 yet. */
853 bfd_vma tlsdesc_plt;
854 /* The offset into sgot of the GOT entry used by the PLT entry
855 above. */
856 bfd_vma tlsdesc_got;
857
858 /* The index of the next R_X86_64_JUMP_SLOT entry in .rela.plt. */
859 bfd_vma next_jump_slot_index;
860 /* The index of the next R_X86_64_IRELATIVE entry in .rela.plt. */
861 bfd_vma next_irelative_index;
862 };
863
864 /* Get the x86-64 ELF linker hash table from a link_info structure. */
865
866 #define elf_x86_64_hash_table(p) \
867 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
868 == X86_64_ELF_DATA ? ((struct elf_x86_64_link_hash_table *) ((p)->hash)) : NULL)
869
870 #define elf_x86_64_compute_jump_table_size(htab) \
871 ((htab)->elf.srelplt->reloc_count * GOT_ENTRY_SIZE)
872
873 /* Create an entry in an x86-64 ELF linker hash table. */
874
875 static struct bfd_hash_entry *
876 elf_x86_64_link_hash_newfunc (struct bfd_hash_entry *entry,
877 struct bfd_hash_table *table,
878 const char *string)
879 {
880 /* Allocate the structure if it has not already been allocated by a
881 subclass. */
882 if (entry == NULL)
883 {
884 entry = (struct bfd_hash_entry *)
885 bfd_hash_allocate (table,
886 sizeof (struct elf_x86_64_link_hash_entry));
887 if (entry == NULL)
888 return entry;
889 }
890
891 /* Call the allocation method of the superclass. */
892 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
893 if (entry != NULL)
894 {
895 struct elf_x86_64_link_hash_entry *eh;
896
897 eh = (struct elf_x86_64_link_hash_entry *) entry;
898 eh->dyn_relocs = NULL;
899 eh->tls_type = GOT_UNKNOWN;
900 eh->has_bnd_reloc = FALSE;
901 eh->plt_bnd.offset = (bfd_vma) -1;
902 eh->plt_got.offset = (bfd_vma) -1;
903 eh->tlsdesc_got = (bfd_vma) -1;
904 }
905
906 return entry;
907 }
908
909 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
910 for local symbol so that we can handle local STT_GNU_IFUNC symbols
911 as global symbol. We reuse indx and dynstr_index for local symbol
912 hash since they aren't used by global symbols in this backend. */
913
914 static hashval_t
915 elf_x86_64_local_htab_hash (const void *ptr)
916 {
917 struct elf_link_hash_entry *h
918 = (struct elf_link_hash_entry *) ptr;
919 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
920 }
921
922 /* Compare local hash entries. */
923
924 static int
925 elf_x86_64_local_htab_eq (const void *ptr1, const void *ptr2)
926 {
927 struct elf_link_hash_entry *h1
928 = (struct elf_link_hash_entry *) ptr1;
929 struct elf_link_hash_entry *h2
930 = (struct elf_link_hash_entry *) ptr2;
931
932 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
933 }
934
935 /* Find and/or create a hash entry for local symbol. */
936
937 static struct elf_link_hash_entry *
938 elf_x86_64_get_local_sym_hash (struct elf_x86_64_link_hash_table *htab,
939 bfd *abfd, const Elf_Internal_Rela *rel,
940 bfd_boolean create)
941 {
942 struct elf_x86_64_link_hash_entry e, *ret;
943 asection *sec = abfd->sections;
944 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
945 htab->r_sym (rel->r_info));
946 void **slot;
947
948 e.elf.indx = sec->id;
949 e.elf.dynstr_index = htab->r_sym (rel->r_info);
950 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
951 create ? INSERT : NO_INSERT);
952
953 if (!slot)
954 return NULL;
955
956 if (*slot)
957 {
958 ret = (struct elf_x86_64_link_hash_entry *) *slot;
959 return &ret->elf;
960 }
961
962 ret = (struct elf_x86_64_link_hash_entry *)
963 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
964 sizeof (struct elf_x86_64_link_hash_entry));
965 if (ret)
966 {
967 memset (ret, 0, sizeof (*ret));
968 ret->elf.indx = sec->id;
969 ret->elf.dynstr_index = htab->r_sym (rel->r_info);
970 ret->elf.dynindx = -1;
971 ret->plt_got.offset = (bfd_vma) -1;
972 *slot = ret;
973 }
974 return &ret->elf;
975 }
976
977 /* Destroy an X86-64 ELF linker hash table. */
978
979 static void
980 elf_x86_64_link_hash_table_free (bfd *obfd)
981 {
982 struct elf_x86_64_link_hash_table *htab
983 = (struct elf_x86_64_link_hash_table *) obfd->link.hash;
984
985 if (htab->loc_hash_table)
986 htab_delete (htab->loc_hash_table);
987 if (htab->loc_hash_memory)
988 objalloc_free ((struct objalloc *) htab->loc_hash_memory);
989 _bfd_elf_link_hash_table_free (obfd);
990 }
991
992 /* Create an X86-64 ELF linker hash table. */
993
994 static struct bfd_link_hash_table *
995 elf_x86_64_link_hash_table_create (bfd *abfd)
996 {
997 struct elf_x86_64_link_hash_table *ret;
998 bfd_size_type amt = sizeof (struct elf_x86_64_link_hash_table);
999
1000 ret = (struct elf_x86_64_link_hash_table *) bfd_zmalloc (amt);
1001 if (ret == NULL)
1002 return NULL;
1003
1004 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
1005 elf_x86_64_link_hash_newfunc,
1006 sizeof (struct elf_x86_64_link_hash_entry),
1007 X86_64_ELF_DATA))
1008 {
1009 free (ret);
1010 return NULL;
1011 }
1012
1013 if (ABI_64_P (abfd))
1014 {
1015 ret->r_info = elf64_r_info;
1016 ret->r_sym = elf64_r_sym;
1017 ret->pointer_r_type = R_X86_64_64;
1018 ret->dynamic_interpreter = ELF64_DYNAMIC_INTERPRETER;
1019 ret->dynamic_interpreter_size = sizeof ELF64_DYNAMIC_INTERPRETER;
1020 }
1021 else
1022 {
1023 ret->r_info = elf32_r_info;
1024 ret->r_sym = elf32_r_sym;
1025 ret->pointer_r_type = R_X86_64_32;
1026 ret->dynamic_interpreter = ELF32_DYNAMIC_INTERPRETER;
1027 ret->dynamic_interpreter_size = sizeof ELF32_DYNAMIC_INTERPRETER;
1028 }
1029
1030 ret->loc_hash_table = htab_try_create (1024,
1031 elf_x86_64_local_htab_hash,
1032 elf_x86_64_local_htab_eq,
1033 NULL);
1034 ret->loc_hash_memory = objalloc_create ();
1035 if (!ret->loc_hash_table || !ret->loc_hash_memory)
1036 {
1037 elf_x86_64_link_hash_table_free (abfd);
1038 return NULL;
1039 }
1040 ret->elf.root.hash_table_free = elf_x86_64_link_hash_table_free;
1041
1042 return &ret->elf.root;
1043 }
1044
1045 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
1046 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
1047 hash table. */
1048
1049 static bfd_boolean
1050 elf_x86_64_create_dynamic_sections (bfd *dynobj,
1051 struct bfd_link_info *info)
1052 {
1053 struct elf_x86_64_link_hash_table *htab;
1054
1055 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
1056 return FALSE;
1057
1058 htab = elf_x86_64_hash_table (info);
1059 if (htab == NULL)
1060 return FALSE;
1061
1062 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
1063 if (!info->shared)
1064 htab->srelbss = bfd_get_linker_section (dynobj, ".rela.bss");
1065
1066 if (!htab->sdynbss
1067 || (!info->shared && !htab->srelbss))
1068 abort ();
1069
1070 if (!info->no_ld_generated_unwind_info
1071 && htab->plt_eh_frame == NULL
1072 && htab->elf.splt != NULL)
1073 {
1074 flagword flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
1075 | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1076 | SEC_LINKER_CREATED);
1077 htab->plt_eh_frame
1078 = bfd_make_section_anyway_with_flags (dynobj, ".eh_frame", flags);
1079 if (htab->plt_eh_frame == NULL
1080 || !bfd_set_section_alignment (dynobj, htab->plt_eh_frame, 3))
1081 return FALSE;
1082 }
1083 return TRUE;
1084 }
1085
1086 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1087
1088 static void
1089 elf_x86_64_copy_indirect_symbol (struct bfd_link_info *info,
1090 struct elf_link_hash_entry *dir,
1091 struct elf_link_hash_entry *ind)
1092 {
1093 struct elf_x86_64_link_hash_entry *edir, *eind;
1094
1095 edir = (struct elf_x86_64_link_hash_entry *) dir;
1096 eind = (struct elf_x86_64_link_hash_entry *) ind;
1097
1098 if (!edir->has_bnd_reloc)
1099 edir->has_bnd_reloc = eind->has_bnd_reloc;
1100
1101 if (eind->dyn_relocs != NULL)
1102 {
1103 if (edir->dyn_relocs != NULL)
1104 {
1105 struct elf_dyn_relocs **pp;
1106 struct elf_dyn_relocs *p;
1107
1108 /* Add reloc counts against the indirect sym to the direct sym
1109 list. Merge any entries against the same section. */
1110 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
1111 {
1112 struct elf_dyn_relocs *q;
1113
1114 for (q = edir->dyn_relocs; q != NULL; q = q->next)
1115 if (q->sec == p->sec)
1116 {
1117 q->pc_count += p->pc_count;
1118 q->count += p->count;
1119 *pp = p->next;
1120 break;
1121 }
1122 if (q == NULL)
1123 pp = &p->next;
1124 }
1125 *pp = edir->dyn_relocs;
1126 }
1127
1128 edir->dyn_relocs = eind->dyn_relocs;
1129 eind->dyn_relocs = NULL;
1130 }
1131
1132 if (ind->root.type == bfd_link_hash_indirect
1133 && dir->got.refcount <= 0)
1134 {
1135 edir->tls_type = eind->tls_type;
1136 eind->tls_type = GOT_UNKNOWN;
1137 }
1138
1139 if (ELIMINATE_COPY_RELOCS
1140 && ind->root.type != bfd_link_hash_indirect
1141 && dir->dynamic_adjusted)
1142 {
1143 /* If called to transfer flags for a weakdef during processing
1144 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1145 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1146 dir->ref_dynamic |= ind->ref_dynamic;
1147 dir->ref_regular |= ind->ref_regular;
1148 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1149 dir->needs_plt |= ind->needs_plt;
1150 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1151 }
1152 else
1153 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
1154 }
1155
1156 static bfd_boolean
1157 elf64_x86_64_elf_object_p (bfd *abfd)
1158 {
1159 /* Set the right machine number for an x86-64 elf64 file. */
1160 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
1161 return TRUE;
1162 }
1163
1164 static bfd_boolean
1165 elf32_x86_64_elf_object_p (bfd *abfd)
1166 {
1167 /* Set the right machine number for an x86-64 elf32 file. */
1168 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x64_32);
1169 return TRUE;
1170 }
1171
1172 /* Return TRUE if the TLS access code sequence support transition
1173 from R_TYPE. */
1174
1175 static bfd_boolean
1176 elf_x86_64_check_tls_transition (bfd *abfd,
1177 struct bfd_link_info *info,
1178 asection *sec,
1179 bfd_byte *contents,
1180 Elf_Internal_Shdr *symtab_hdr,
1181 struct elf_link_hash_entry **sym_hashes,
1182 unsigned int r_type,
1183 const Elf_Internal_Rela *rel,
1184 const Elf_Internal_Rela *relend)
1185 {
1186 unsigned int val;
1187 unsigned long r_symndx;
1188 bfd_boolean largepic = FALSE;
1189 struct elf_link_hash_entry *h;
1190 bfd_vma offset;
1191 struct elf_x86_64_link_hash_table *htab;
1192
1193 /* Get the section contents. */
1194 if (contents == NULL)
1195 {
1196 if (elf_section_data (sec)->this_hdr.contents != NULL)
1197 contents = elf_section_data (sec)->this_hdr.contents;
1198 else
1199 {
1200 /* FIXME: How to better handle error condition? */
1201 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
1202 return FALSE;
1203
1204 /* Cache the section contents for elf_link_input_bfd. */
1205 elf_section_data (sec)->this_hdr.contents = contents;
1206 }
1207 }
1208
1209 htab = elf_x86_64_hash_table (info);
1210 offset = rel->r_offset;
1211 switch (r_type)
1212 {
1213 case R_X86_64_TLSGD:
1214 case R_X86_64_TLSLD:
1215 if ((rel + 1) >= relend)
1216 return FALSE;
1217
1218 if (r_type == R_X86_64_TLSGD)
1219 {
1220 /* Check transition from GD access model. For 64bit, only
1221 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
1222 .word 0x6666; rex64; call __tls_get_addr
1223 can transit to different access model. For 32bit, only
1224 leaq foo@tlsgd(%rip), %rdi
1225 .word 0x6666; rex64; call __tls_get_addr
1226 can transit to different access model. For largepic
1227 we also support:
1228 leaq foo@tlsgd(%rip), %rdi
1229 movabsq $__tls_get_addr@pltoff, %rax
1230 addq $rbx, %rax
1231 call *%rax. */
1232
1233 static const unsigned char call[] = { 0x66, 0x66, 0x48, 0xe8 };
1234 static const unsigned char leaq[] = { 0x66, 0x48, 0x8d, 0x3d };
1235
1236 if ((offset + 12) > sec->size)
1237 return FALSE;
1238
1239 if (memcmp (contents + offset + 4, call, 4) != 0)
1240 {
1241 if (!ABI_64_P (abfd)
1242 || (offset + 19) > sec->size
1243 || offset < 3
1244 || memcmp (contents + offset - 3, leaq + 1, 3) != 0
1245 || memcmp (contents + offset + 4, "\x48\xb8", 2) != 0
1246 || memcmp (contents + offset + 14, "\x48\x01\xd8\xff\xd0", 5)
1247 != 0)
1248 return FALSE;
1249 largepic = TRUE;
1250 }
1251 else if (ABI_64_P (abfd))
1252 {
1253 if (offset < 4
1254 || memcmp (contents + offset - 4, leaq, 4) != 0)
1255 return FALSE;
1256 }
1257 else
1258 {
1259 if (offset < 3
1260 || memcmp (contents + offset - 3, leaq + 1, 3) != 0)
1261 return FALSE;
1262 }
1263 }
1264 else
1265 {
1266 /* Check transition from LD access model. Only
1267 leaq foo@tlsld(%rip), %rdi;
1268 call __tls_get_addr
1269 can transit to different access model. For largepic
1270 we also support:
1271 leaq foo@tlsld(%rip), %rdi
1272 movabsq $__tls_get_addr@pltoff, %rax
1273 addq $rbx, %rax
1274 call *%rax. */
1275
1276 static const unsigned char lea[] = { 0x48, 0x8d, 0x3d };
1277
1278 if (offset < 3 || (offset + 9) > sec->size)
1279 return FALSE;
1280
1281 if (memcmp (contents + offset - 3, lea, 3) != 0)
1282 return FALSE;
1283
1284 if (0xe8 != *(contents + offset + 4))
1285 {
1286 if (!ABI_64_P (abfd)
1287 || (offset + 19) > sec->size
1288 || memcmp (contents + offset + 4, "\x48\xb8", 2) != 0
1289 || memcmp (contents + offset + 14, "\x48\x01\xd8\xff\xd0", 5)
1290 != 0)
1291 return FALSE;
1292 largepic = TRUE;
1293 }
1294 }
1295
1296 r_symndx = htab->r_sym (rel[1].r_info);
1297 if (r_symndx < symtab_hdr->sh_info)
1298 return FALSE;
1299
1300 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1301 /* Use strncmp to check __tls_get_addr since __tls_get_addr
1302 may be versioned. */
1303 return (h != NULL
1304 && h->root.root.string != NULL
1305 && (largepic
1306 ? ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PLTOFF64
1307 : (ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PC32
1308 || ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PLT32))
1309 && (strncmp (h->root.root.string,
1310 "__tls_get_addr", 14) == 0));
1311
1312 case R_X86_64_GOTTPOFF:
1313 /* Check transition from IE access model:
1314 mov foo@gottpoff(%rip), %reg
1315 add foo@gottpoff(%rip), %reg
1316 */
1317
1318 /* Check REX prefix first. */
1319 if (offset >= 3 && (offset + 4) <= sec->size)
1320 {
1321 val = bfd_get_8 (abfd, contents + offset - 3);
1322 if (val != 0x48 && val != 0x4c)
1323 {
1324 /* X32 may have 0x44 REX prefix or no REX prefix. */
1325 if (ABI_64_P (abfd))
1326 return FALSE;
1327 }
1328 }
1329 else
1330 {
1331 /* X32 may not have any REX prefix. */
1332 if (ABI_64_P (abfd))
1333 return FALSE;
1334 if (offset < 2 || (offset + 3) > sec->size)
1335 return FALSE;
1336 }
1337
1338 val = bfd_get_8 (abfd, contents + offset - 2);
1339 if (val != 0x8b && val != 0x03)
1340 return FALSE;
1341
1342 val = bfd_get_8 (abfd, contents + offset - 1);
1343 return (val & 0xc7) == 5;
1344
1345 case R_X86_64_GOTPC32_TLSDESC:
1346 /* Check transition from GDesc access model:
1347 leaq x@tlsdesc(%rip), %rax
1348
1349 Make sure it's a leaq adding rip to a 32-bit offset
1350 into any register, although it's probably almost always
1351 going to be rax. */
1352
1353 if (offset < 3 || (offset + 4) > sec->size)
1354 return FALSE;
1355
1356 val = bfd_get_8 (abfd, contents + offset - 3);
1357 if ((val & 0xfb) != 0x48)
1358 return FALSE;
1359
1360 if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d)
1361 return FALSE;
1362
1363 val = bfd_get_8 (abfd, contents + offset - 1);
1364 return (val & 0xc7) == 0x05;
1365
1366 case R_X86_64_TLSDESC_CALL:
1367 /* Check transition from GDesc access model:
1368 call *x@tlsdesc(%rax)
1369 */
1370 if (offset + 2 <= sec->size)
1371 {
1372 /* Make sure that it's a call *x@tlsdesc(%rax). */
1373 static const unsigned char call[] = { 0xff, 0x10 };
1374 return memcmp (contents + offset, call, 2) == 0;
1375 }
1376
1377 return FALSE;
1378
1379 default:
1380 abort ();
1381 }
1382 }
1383
1384 /* Return TRUE if the TLS access transition is OK or no transition
1385 will be performed. Update R_TYPE if there is a transition. */
1386
1387 static bfd_boolean
1388 elf_x86_64_tls_transition (struct bfd_link_info *info, bfd *abfd,
1389 asection *sec, bfd_byte *contents,
1390 Elf_Internal_Shdr *symtab_hdr,
1391 struct elf_link_hash_entry **sym_hashes,
1392 unsigned int *r_type, int tls_type,
1393 const Elf_Internal_Rela *rel,
1394 const Elf_Internal_Rela *relend,
1395 struct elf_link_hash_entry *h,
1396 unsigned long r_symndx)
1397 {
1398 unsigned int from_type = *r_type;
1399 unsigned int to_type = from_type;
1400 bfd_boolean check = TRUE;
1401
1402 /* Skip TLS transition for functions. */
1403 if (h != NULL
1404 && (h->type == STT_FUNC
1405 || h->type == STT_GNU_IFUNC))
1406 return TRUE;
1407
1408 switch (from_type)
1409 {
1410 case R_X86_64_TLSGD:
1411 case R_X86_64_GOTPC32_TLSDESC:
1412 case R_X86_64_TLSDESC_CALL:
1413 case R_X86_64_GOTTPOFF:
1414 if (info->executable)
1415 {
1416 if (h == NULL)
1417 to_type = R_X86_64_TPOFF32;
1418 else
1419 to_type = R_X86_64_GOTTPOFF;
1420 }
1421
1422 /* When we are called from elf_x86_64_relocate_section,
1423 CONTENTS isn't NULL and there may be additional transitions
1424 based on TLS_TYPE. */
1425 if (contents != NULL)
1426 {
1427 unsigned int new_to_type = to_type;
1428
1429 if (info->executable
1430 && h != NULL
1431 && h->dynindx == -1
1432 && tls_type == GOT_TLS_IE)
1433 new_to_type = R_X86_64_TPOFF32;
1434
1435 if (to_type == R_X86_64_TLSGD
1436 || to_type == R_X86_64_GOTPC32_TLSDESC
1437 || to_type == R_X86_64_TLSDESC_CALL)
1438 {
1439 if (tls_type == GOT_TLS_IE)
1440 new_to_type = R_X86_64_GOTTPOFF;
1441 }
1442
1443 /* We checked the transition before when we were called from
1444 elf_x86_64_check_relocs. We only want to check the new
1445 transition which hasn't been checked before. */
1446 check = new_to_type != to_type && from_type == to_type;
1447 to_type = new_to_type;
1448 }
1449
1450 break;
1451
1452 case R_X86_64_TLSLD:
1453 if (info->executable)
1454 to_type = R_X86_64_TPOFF32;
1455 break;
1456
1457 default:
1458 return TRUE;
1459 }
1460
1461 /* Return TRUE if there is no transition. */
1462 if (from_type == to_type)
1463 return TRUE;
1464
1465 /* Check if the transition can be performed. */
1466 if (check
1467 && ! elf_x86_64_check_tls_transition (abfd, info, sec, contents,
1468 symtab_hdr, sym_hashes,
1469 from_type, rel, relend))
1470 {
1471 reloc_howto_type *from, *to;
1472 const char *name;
1473
1474 from = elf_x86_64_rtype_to_howto (abfd, from_type);
1475 to = elf_x86_64_rtype_to_howto (abfd, to_type);
1476
1477 if (h)
1478 name = h->root.root.string;
1479 else
1480 {
1481 struct elf_x86_64_link_hash_table *htab;
1482
1483 htab = elf_x86_64_hash_table (info);
1484 if (htab == NULL)
1485 name = "*unknown*";
1486 else
1487 {
1488 Elf_Internal_Sym *isym;
1489
1490 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1491 abfd, r_symndx);
1492 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1493 }
1494 }
1495
1496 (*_bfd_error_handler)
1497 (_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
1498 "in section `%A' failed"),
1499 abfd, sec, from->name, to->name, name,
1500 (unsigned long) rel->r_offset);
1501 bfd_set_error (bfd_error_bad_value);
1502 return FALSE;
1503 }
1504
1505 *r_type = to_type;
1506 return TRUE;
1507 }
1508
1509 /* Look through the relocs for a section during the first phase, and
1510 calculate needed space in the global offset table, procedure
1511 linkage table, and dynamic reloc sections. */
1512
1513 static bfd_boolean
1514 elf_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info,
1515 asection *sec,
1516 const Elf_Internal_Rela *relocs)
1517 {
1518 struct elf_x86_64_link_hash_table *htab;
1519 Elf_Internal_Shdr *symtab_hdr;
1520 struct elf_link_hash_entry **sym_hashes;
1521 const Elf_Internal_Rela *rel;
1522 const Elf_Internal_Rela *rel_end;
1523 asection *sreloc;
1524 bfd_boolean use_plt_got;
1525
1526 if (info->relocatable)
1527 return TRUE;
1528
1529 BFD_ASSERT (is_x86_64_elf (abfd));
1530
1531 htab = elf_x86_64_hash_table (info);
1532 if (htab == NULL)
1533 return FALSE;
1534
1535 use_plt_got = get_elf_x86_64_backend_data (abfd) == &elf_x86_64_arch_bed;
1536
1537 symtab_hdr = &elf_symtab_hdr (abfd);
1538 sym_hashes = elf_sym_hashes (abfd);
1539
1540 sreloc = NULL;
1541
1542 rel_end = relocs + sec->reloc_count;
1543 for (rel = relocs; rel < rel_end; rel++)
1544 {
1545 unsigned int r_type;
1546 unsigned long r_symndx;
1547 struct elf_link_hash_entry *h;
1548 Elf_Internal_Sym *isym;
1549 const char *name;
1550 bfd_boolean size_reloc;
1551
1552 r_symndx = htab->r_sym (rel->r_info);
1553 r_type = ELF32_R_TYPE (rel->r_info);
1554
1555 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1556 {
1557 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1558 abfd, r_symndx);
1559 return FALSE;
1560 }
1561
1562 if (r_symndx < symtab_hdr->sh_info)
1563 {
1564 /* A local symbol. */
1565 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1566 abfd, r_symndx);
1567 if (isym == NULL)
1568 return FALSE;
1569
1570 /* Check relocation against local STT_GNU_IFUNC symbol. */
1571 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1572 {
1573 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel,
1574 TRUE);
1575 if (h == NULL)
1576 return FALSE;
1577
1578 /* Fake a STT_GNU_IFUNC symbol. */
1579 h->type = STT_GNU_IFUNC;
1580 h->def_regular = 1;
1581 h->ref_regular = 1;
1582 h->forced_local = 1;
1583 h->root.type = bfd_link_hash_defined;
1584 }
1585 else
1586 h = NULL;
1587 }
1588 else
1589 {
1590 isym = NULL;
1591 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1592 while (h->root.type == bfd_link_hash_indirect
1593 || h->root.type == bfd_link_hash_warning)
1594 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1595 }
1596
1597 /* Check invalid x32 relocations. */
1598 if (!ABI_64_P (abfd))
1599 switch (r_type)
1600 {
1601 default:
1602 break;
1603
1604 case R_X86_64_DTPOFF64:
1605 case R_X86_64_TPOFF64:
1606 case R_X86_64_PC64:
1607 case R_X86_64_GOTOFF64:
1608 case R_X86_64_GOT64:
1609 case R_X86_64_GOTPCREL64:
1610 case R_X86_64_GOTPC64:
1611 case R_X86_64_GOTPLT64:
1612 case R_X86_64_PLTOFF64:
1613 {
1614 if (h)
1615 name = h->root.root.string;
1616 else
1617 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1618 NULL);
1619 (*_bfd_error_handler)
1620 (_("%B: relocation %s against symbol `%s' isn't "
1621 "supported in x32 mode"), abfd,
1622 x86_64_elf_howto_table[r_type].name, name);
1623 bfd_set_error (bfd_error_bad_value);
1624 return FALSE;
1625 }
1626 break;
1627 }
1628
1629 if (h != NULL)
1630 {
1631 /* Create the ifunc sections for static executables. If we
1632 never see an indirect function symbol nor we are building
1633 a static executable, those sections will be empty and
1634 won't appear in output. */
1635 switch (r_type)
1636 {
1637 default:
1638 break;
1639
1640 case R_X86_64_PC32_BND:
1641 case R_X86_64_PLT32_BND:
1642 case R_X86_64_PC32:
1643 case R_X86_64_PLT32:
1644 case R_X86_64_32:
1645 case R_X86_64_64:
1646 /* MPX PLT is supported only if elf_x86_64_arch_bed
1647 is used in 64-bit mode. */
1648 if (ABI_64_P (abfd)
1649 && info->bndplt
1650 && (get_elf_x86_64_backend_data (abfd)
1651 == &elf_x86_64_arch_bed))
1652 {
1653 elf_x86_64_hash_entry (h)->has_bnd_reloc = TRUE;
1654
1655 /* Create the second PLT for Intel MPX support. */
1656 if (htab->plt_bnd == NULL)
1657 {
1658 unsigned int plt_bnd_align;
1659 const struct elf_backend_data *bed;
1660
1661 bed = get_elf_backend_data (info->output_bfd);
1662 BFD_ASSERT (sizeof (elf_x86_64_bnd_plt2_entry) == 8
1663 && (sizeof (elf_x86_64_bnd_plt2_entry)
1664 == sizeof (elf_x86_64_legacy_plt2_entry)));
1665 plt_bnd_align = 3;
1666
1667 if (htab->elf.dynobj == NULL)
1668 htab->elf.dynobj = abfd;
1669 htab->plt_bnd
1670 = bfd_make_section_anyway_with_flags (htab->elf.dynobj,
1671 ".plt.bnd",
1672 (bed->dynamic_sec_flags
1673 | SEC_ALLOC
1674 | SEC_CODE
1675 | SEC_LOAD
1676 | SEC_READONLY));
1677 if (htab->plt_bnd == NULL
1678 || !bfd_set_section_alignment (htab->elf.dynobj,
1679 htab->plt_bnd,
1680 plt_bnd_align))
1681 return FALSE;
1682 }
1683 }
1684
1685 case R_X86_64_32S:
1686 case R_X86_64_PC64:
1687 case R_X86_64_GOTPCREL:
1688 case R_X86_64_GOTPCREL64:
1689 if (htab->elf.dynobj == NULL)
1690 htab->elf.dynobj = abfd;
1691 if (!_bfd_elf_create_ifunc_sections (htab->elf.dynobj, info))
1692 return FALSE;
1693 break;
1694 }
1695
1696 /* It is referenced by a non-shared object. */
1697 h->ref_regular = 1;
1698 h->root.non_ir_ref = 1;
1699 }
1700
1701 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
1702 symtab_hdr, sym_hashes,
1703 &r_type, GOT_UNKNOWN,
1704 rel, rel_end, h, r_symndx))
1705 return FALSE;
1706
1707 switch (r_type)
1708 {
1709 case R_X86_64_TLSLD:
1710 htab->tls_ld_got.refcount += 1;
1711 goto create_got;
1712
1713 case R_X86_64_TPOFF32:
1714 if (!info->executable && ABI_64_P (abfd))
1715 {
1716 if (h)
1717 name = h->root.root.string;
1718 else
1719 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1720 NULL);
1721 (*_bfd_error_handler)
1722 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1723 abfd,
1724 x86_64_elf_howto_table[r_type].name, name);
1725 bfd_set_error (bfd_error_bad_value);
1726 return FALSE;
1727 }
1728 break;
1729
1730 case R_X86_64_GOTTPOFF:
1731 if (!info->executable)
1732 info->flags |= DF_STATIC_TLS;
1733 /* Fall through */
1734
1735 case R_X86_64_GOT32:
1736 case R_X86_64_GOTPCREL:
1737 case R_X86_64_TLSGD:
1738 case R_X86_64_GOT64:
1739 case R_X86_64_GOTPCREL64:
1740 case R_X86_64_GOTPLT64:
1741 case R_X86_64_GOTPC32_TLSDESC:
1742 case R_X86_64_TLSDESC_CALL:
1743 /* This symbol requires a global offset table entry. */
1744 {
1745 int tls_type, old_tls_type;
1746
1747 switch (r_type)
1748 {
1749 default: tls_type = GOT_NORMAL; break;
1750 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
1751 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
1752 case R_X86_64_GOTPC32_TLSDESC:
1753 case R_X86_64_TLSDESC_CALL:
1754 tls_type = GOT_TLS_GDESC; break;
1755 }
1756
1757 if (h != NULL)
1758 {
1759 h->got.refcount += 1;
1760 old_tls_type = elf_x86_64_hash_entry (h)->tls_type;
1761 }
1762 else
1763 {
1764 bfd_signed_vma *local_got_refcounts;
1765
1766 /* This is a global offset table entry for a local symbol. */
1767 local_got_refcounts = elf_local_got_refcounts (abfd);
1768 if (local_got_refcounts == NULL)
1769 {
1770 bfd_size_type size;
1771
1772 size = symtab_hdr->sh_info;
1773 size *= sizeof (bfd_signed_vma)
1774 + sizeof (bfd_vma) + sizeof (char);
1775 local_got_refcounts = ((bfd_signed_vma *)
1776 bfd_zalloc (abfd, size));
1777 if (local_got_refcounts == NULL)
1778 return FALSE;
1779 elf_local_got_refcounts (abfd) = local_got_refcounts;
1780 elf_x86_64_local_tlsdesc_gotent (abfd)
1781 = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info);
1782 elf_x86_64_local_got_tls_type (abfd)
1783 = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
1784 }
1785 local_got_refcounts[r_symndx] += 1;
1786 old_tls_type
1787 = elf_x86_64_local_got_tls_type (abfd) [r_symndx];
1788 }
1789
1790 /* If a TLS symbol is accessed using IE at least once,
1791 there is no point to use dynamic model for it. */
1792 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1793 && (! GOT_TLS_GD_ANY_P (old_tls_type)
1794 || tls_type != GOT_TLS_IE))
1795 {
1796 if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type))
1797 tls_type = old_tls_type;
1798 else if (GOT_TLS_GD_ANY_P (old_tls_type)
1799 && GOT_TLS_GD_ANY_P (tls_type))
1800 tls_type |= old_tls_type;
1801 else
1802 {
1803 if (h)
1804 name = h->root.root.string;
1805 else
1806 name = bfd_elf_sym_name (abfd, symtab_hdr,
1807 isym, NULL);
1808 (*_bfd_error_handler)
1809 (_("%B: '%s' accessed both as normal and thread local symbol"),
1810 abfd, name);
1811 bfd_set_error (bfd_error_bad_value);
1812 return FALSE;
1813 }
1814 }
1815
1816 if (old_tls_type != tls_type)
1817 {
1818 if (h != NULL)
1819 elf_x86_64_hash_entry (h)->tls_type = tls_type;
1820 else
1821 elf_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
1822 }
1823 }
1824 /* Fall through */
1825
1826 case R_X86_64_GOTOFF64:
1827 case R_X86_64_GOTPC32:
1828 case R_X86_64_GOTPC64:
1829 create_got:
1830 if (htab->elf.sgot == NULL)
1831 {
1832 if (htab->elf.dynobj == NULL)
1833 htab->elf.dynobj = abfd;
1834 if (!_bfd_elf_create_got_section (htab->elf.dynobj,
1835 info))
1836 return FALSE;
1837 }
1838 break;
1839
1840 case R_X86_64_PLT32:
1841 case R_X86_64_PLT32_BND:
1842 /* This symbol requires a procedure linkage table entry. We
1843 actually build the entry in adjust_dynamic_symbol,
1844 because this might be a case of linking PIC code which is
1845 never referenced by a dynamic object, in which case we
1846 don't need to generate a procedure linkage table entry
1847 after all. */
1848
1849 /* If this is a local symbol, we resolve it directly without
1850 creating a procedure linkage table entry. */
1851 if (h == NULL)
1852 continue;
1853
1854 h->needs_plt = 1;
1855 h->plt.refcount += 1;
1856 break;
1857
1858 case R_X86_64_PLTOFF64:
1859 /* This tries to form the 'address' of a function relative
1860 to GOT. For global symbols we need a PLT entry. */
1861 if (h != NULL)
1862 {
1863 h->needs_plt = 1;
1864 h->plt.refcount += 1;
1865 }
1866 goto create_got;
1867
1868 case R_X86_64_SIZE32:
1869 case R_X86_64_SIZE64:
1870 size_reloc = TRUE;
1871 goto do_size;
1872
1873 case R_X86_64_32:
1874 if (!ABI_64_P (abfd))
1875 goto pointer;
1876 case R_X86_64_8:
1877 case R_X86_64_16:
1878 case R_X86_64_32S:
1879 /* Let's help debug shared library creation. These relocs
1880 cannot be used in shared libs. Don't error out for
1881 sections we don't care about, such as debug sections or
1882 non-constant sections. */
1883 if (info->shared
1884 && (sec->flags & SEC_ALLOC) != 0
1885 && (sec->flags & SEC_READONLY) != 0)
1886 {
1887 if (h)
1888 name = h->root.root.string;
1889 else
1890 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1891 (*_bfd_error_handler)
1892 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1893 abfd, x86_64_elf_howto_table[r_type].name, name);
1894 bfd_set_error (bfd_error_bad_value);
1895 return FALSE;
1896 }
1897 /* Fall through. */
1898
1899 case R_X86_64_PC8:
1900 case R_X86_64_PC16:
1901 case R_X86_64_PC32:
1902 case R_X86_64_PC32_BND:
1903 case R_X86_64_PC64:
1904 case R_X86_64_64:
1905 pointer:
1906 if (h != NULL && info->executable)
1907 {
1908 /* If this reloc is in a read-only section, we might
1909 need a copy reloc. We can't check reliably at this
1910 stage whether the section is read-only, as input
1911 sections have not yet been mapped to output sections.
1912 Tentatively set the flag for now, and correct in
1913 adjust_dynamic_symbol. */
1914 h->non_got_ref = 1;
1915
1916 /* We may need a .plt entry if the function this reloc
1917 refers to is in a shared lib. */
1918 h->plt.refcount += 1;
1919 if (r_type != R_X86_64_PC32
1920 && r_type != R_X86_64_PC32_BND
1921 && r_type != R_X86_64_PC64)
1922 h->pointer_equality_needed = 1;
1923 }
1924
1925 size_reloc = FALSE;
1926 do_size:
1927 /* If we are creating a shared library, and this is a reloc
1928 against a global symbol, or a non PC relative reloc
1929 against a local symbol, then we need to copy the reloc
1930 into the shared library. However, if we are linking with
1931 -Bsymbolic, we do not need to copy a reloc against a
1932 global symbol which is defined in an object we are
1933 including in the link (i.e., DEF_REGULAR is set). At
1934 this point we have not seen all the input files, so it is
1935 possible that DEF_REGULAR is not set now but will be set
1936 later (it is never cleared). In case of a weak definition,
1937 DEF_REGULAR may be cleared later by a strong definition in
1938 a shared library. We account for that possibility below by
1939 storing information in the relocs_copied field of the hash
1940 table entry. A similar situation occurs when creating
1941 shared libraries and symbol visibility changes render the
1942 symbol local.
1943
1944 If on the other hand, we are creating an executable, we
1945 may need to keep relocations for symbols satisfied by a
1946 dynamic library if we manage to avoid copy relocs for the
1947 symbol. */
1948 if ((info->shared
1949 && (sec->flags & SEC_ALLOC) != 0
1950 && (! IS_X86_64_PCREL_TYPE (r_type)
1951 || (h != NULL
1952 && (! SYMBOLIC_BIND (info, h)
1953 || h->root.type == bfd_link_hash_defweak
1954 || !h->def_regular))))
1955 || (ELIMINATE_COPY_RELOCS
1956 && !info->shared
1957 && (sec->flags & SEC_ALLOC) != 0
1958 && h != NULL
1959 && (h->root.type == bfd_link_hash_defweak
1960 || !h->def_regular)))
1961 {
1962 struct elf_dyn_relocs *p;
1963 struct elf_dyn_relocs **head;
1964
1965 /* We must copy these reloc types into the output file.
1966 Create a reloc section in dynobj and make room for
1967 this reloc. */
1968 if (sreloc == NULL)
1969 {
1970 if (htab->elf.dynobj == NULL)
1971 htab->elf.dynobj = abfd;
1972
1973 sreloc = _bfd_elf_make_dynamic_reloc_section
1974 (sec, htab->elf.dynobj, ABI_64_P (abfd) ? 3 : 2,
1975 abfd, /*rela?*/ TRUE);
1976
1977 if (sreloc == NULL)
1978 return FALSE;
1979 }
1980
1981 /* If this is a global symbol, we count the number of
1982 relocations we need for this symbol. */
1983 if (h != NULL)
1984 {
1985 head = &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs;
1986 }
1987 else
1988 {
1989 /* Track dynamic relocs needed for local syms too.
1990 We really need local syms available to do this
1991 easily. Oh well. */
1992 asection *s;
1993 void **vpp;
1994
1995 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1996 abfd, r_symndx);
1997 if (isym == NULL)
1998 return FALSE;
1999
2000 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
2001 if (s == NULL)
2002 s = sec;
2003
2004 /* Beware of type punned pointers vs strict aliasing
2005 rules. */
2006 vpp = &(elf_section_data (s)->local_dynrel);
2007 head = (struct elf_dyn_relocs **)vpp;
2008 }
2009
2010 p = *head;
2011 if (p == NULL || p->sec != sec)
2012 {
2013 bfd_size_type amt = sizeof *p;
2014
2015 p = ((struct elf_dyn_relocs *)
2016 bfd_alloc (htab->elf.dynobj, amt));
2017 if (p == NULL)
2018 return FALSE;
2019 p->next = *head;
2020 *head = p;
2021 p->sec = sec;
2022 p->count = 0;
2023 p->pc_count = 0;
2024 }
2025
2026 p->count += 1;
2027 /* Count size relocation as PC-relative relocation. */
2028 if (IS_X86_64_PCREL_TYPE (r_type) || size_reloc)
2029 p->pc_count += 1;
2030 }
2031 break;
2032
2033 /* This relocation describes the C++ object vtable hierarchy.
2034 Reconstruct it for later use during GC. */
2035 case R_X86_64_GNU_VTINHERIT:
2036 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2037 return FALSE;
2038 break;
2039
2040 /* This relocation describes which C++ vtable entries are actually
2041 used. Record for later use during GC. */
2042 case R_X86_64_GNU_VTENTRY:
2043 BFD_ASSERT (h != NULL);
2044 if (h != NULL
2045 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2046 return FALSE;
2047 break;
2048
2049 default:
2050 break;
2051 }
2052
2053 if (use_plt_got
2054 && h != NULL
2055 && h->plt.refcount > 0
2056 && h->got.refcount > 0
2057 && htab->plt_got == NULL)
2058 {
2059 /* Create the GOT procedure linkage table. */
2060 unsigned int plt_got_align;
2061 const struct elf_backend_data *bed;
2062
2063 bed = get_elf_backend_data (info->output_bfd);
2064 BFD_ASSERT (sizeof (elf_x86_64_legacy_plt2_entry) == 8
2065 && (sizeof (elf_x86_64_bnd_plt2_entry)
2066 == sizeof (elf_x86_64_legacy_plt2_entry)));
2067 plt_got_align = 3;
2068
2069 if (htab->elf.dynobj == NULL)
2070 htab->elf.dynobj = abfd;
2071 htab->plt_got
2072 = bfd_make_section_anyway_with_flags (htab->elf.dynobj,
2073 ".plt.got",
2074 (bed->dynamic_sec_flags
2075 | SEC_ALLOC
2076 | SEC_CODE
2077 | SEC_LOAD
2078 | SEC_READONLY));
2079 if (htab->plt_got == NULL
2080 || !bfd_set_section_alignment (htab->elf.dynobj,
2081 htab->plt_got,
2082 plt_got_align))
2083 return FALSE;
2084 }
2085 }
2086
2087 return TRUE;
2088 }
2089
2090 /* Return the section that should be marked against GC for a given
2091 relocation. */
2092
2093 static asection *
2094 elf_x86_64_gc_mark_hook (asection *sec,
2095 struct bfd_link_info *info,
2096 Elf_Internal_Rela *rel,
2097 struct elf_link_hash_entry *h,
2098 Elf_Internal_Sym *sym)
2099 {
2100 if (h != NULL)
2101 switch (ELF32_R_TYPE (rel->r_info))
2102 {
2103 case R_X86_64_GNU_VTINHERIT:
2104 case R_X86_64_GNU_VTENTRY:
2105 return NULL;
2106 }
2107
2108 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
2109 }
2110
2111 /* Update the got entry reference counts for the section being removed. */
2112
2113 static bfd_boolean
2114 elf_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
2115 asection *sec,
2116 const Elf_Internal_Rela *relocs)
2117 {
2118 struct elf_x86_64_link_hash_table *htab;
2119 Elf_Internal_Shdr *symtab_hdr;
2120 struct elf_link_hash_entry **sym_hashes;
2121 bfd_signed_vma *local_got_refcounts;
2122 const Elf_Internal_Rela *rel, *relend;
2123
2124 if (info->relocatable)
2125 return TRUE;
2126
2127 htab = elf_x86_64_hash_table (info);
2128 if (htab == NULL)
2129 return FALSE;
2130
2131 elf_section_data (sec)->local_dynrel = NULL;
2132
2133 symtab_hdr = &elf_symtab_hdr (abfd);
2134 sym_hashes = elf_sym_hashes (abfd);
2135 local_got_refcounts = elf_local_got_refcounts (abfd);
2136
2137 htab = elf_x86_64_hash_table (info);
2138 relend = relocs + sec->reloc_count;
2139 for (rel = relocs; rel < relend; rel++)
2140 {
2141 unsigned long r_symndx;
2142 unsigned int r_type;
2143 struct elf_link_hash_entry *h = NULL;
2144
2145 r_symndx = htab->r_sym (rel->r_info);
2146 if (r_symndx >= symtab_hdr->sh_info)
2147 {
2148 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2149 while (h->root.type == bfd_link_hash_indirect
2150 || h->root.type == bfd_link_hash_warning)
2151 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2152 }
2153 else
2154 {
2155 /* A local symbol. */
2156 Elf_Internal_Sym *isym;
2157
2158 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
2159 abfd, r_symndx);
2160
2161 /* Check relocation against local STT_GNU_IFUNC symbol. */
2162 if (isym != NULL
2163 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
2164 {
2165 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel, FALSE);
2166 if (h == NULL)
2167 abort ();
2168 }
2169 }
2170
2171 if (h)
2172 {
2173 struct elf_x86_64_link_hash_entry *eh;
2174 struct elf_dyn_relocs **pp;
2175 struct elf_dyn_relocs *p;
2176
2177 eh = (struct elf_x86_64_link_hash_entry *) h;
2178
2179 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
2180 if (p->sec == sec)
2181 {
2182 /* Everything must go for SEC. */
2183 *pp = p->next;
2184 break;
2185 }
2186 }
2187
2188 r_type = ELF32_R_TYPE (rel->r_info);
2189 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
2190 symtab_hdr, sym_hashes,
2191 &r_type, GOT_UNKNOWN,
2192 rel, relend, h, r_symndx))
2193 return FALSE;
2194
2195 switch (r_type)
2196 {
2197 case R_X86_64_TLSLD:
2198 if (htab->tls_ld_got.refcount > 0)
2199 htab->tls_ld_got.refcount -= 1;
2200 break;
2201
2202 case R_X86_64_TLSGD:
2203 case R_X86_64_GOTPC32_TLSDESC:
2204 case R_X86_64_TLSDESC_CALL:
2205 case R_X86_64_GOTTPOFF:
2206 case R_X86_64_GOT32:
2207 case R_X86_64_GOTPCREL:
2208 case R_X86_64_GOT64:
2209 case R_X86_64_GOTPCREL64:
2210 case R_X86_64_GOTPLT64:
2211 if (h != NULL)
2212 {
2213 if (h->got.refcount > 0)
2214 h->got.refcount -= 1;
2215 if (h->type == STT_GNU_IFUNC)
2216 {
2217 if (h->plt.refcount > 0)
2218 h->plt.refcount -= 1;
2219 }
2220 }
2221 else if (local_got_refcounts != NULL)
2222 {
2223 if (local_got_refcounts[r_symndx] > 0)
2224 local_got_refcounts[r_symndx] -= 1;
2225 }
2226 break;
2227
2228 case R_X86_64_8:
2229 case R_X86_64_16:
2230 case R_X86_64_32:
2231 case R_X86_64_64:
2232 case R_X86_64_32S:
2233 case R_X86_64_PC8:
2234 case R_X86_64_PC16:
2235 case R_X86_64_PC32:
2236 case R_X86_64_PC32_BND:
2237 case R_X86_64_PC64:
2238 case R_X86_64_SIZE32:
2239 case R_X86_64_SIZE64:
2240 if (info->shared
2241 && (h == NULL || h->type != STT_GNU_IFUNC))
2242 break;
2243 /* Fall thru */
2244
2245 case R_X86_64_PLT32:
2246 case R_X86_64_PLT32_BND:
2247 case R_X86_64_PLTOFF64:
2248 if (h != NULL)
2249 {
2250 if (h->plt.refcount > 0)
2251 h->plt.refcount -= 1;
2252 }
2253 break;
2254
2255 default:
2256 break;
2257 }
2258 }
2259
2260 return TRUE;
2261 }
2262
2263 /* Adjust a symbol defined by a dynamic object and referenced by a
2264 regular object. The current definition is in some section of the
2265 dynamic object, but we're not including those sections. We have to
2266 change the definition to something the rest of the link can
2267 understand. */
2268
2269 static bfd_boolean
2270 elf_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
2271 struct elf_link_hash_entry *h)
2272 {
2273 struct elf_x86_64_link_hash_table *htab;
2274 asection *s;
2275 struct elf_x86_64_link_hash_entry *eh;
2276 struct elf_dyn_relocs *p;
2277
2278 /* STT_GNU_IFUNC symbol must go through PLT. */
2279 if (h->type == STT_GNU_IFUNC)
2280 {
2281 /* All local STT_GNU_IFUNC references must be treate as local
2282 calls via local PLT. */
2283 if (h->ref_regular
2284 && SYMBOL_CALLS_LOCAL (info, h))
2285 {
2286 bfd_size_type pc_count = 0, count = 0;
2287 struct elf_dyn_relocs **pp;
2288
2289 eh = (struct elf_x86_64_link_hash_entry *) h;
2290 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2291 {
2292 pc_count += p->pc_count;
2293 p->count -= p->pc_count;
2294 p->pc_count = 0;
2295 count += p->count;
2296 if (p->count == 0)
2297 *pp = p->next;
2298 else
2299 pp = &p->next;
2300 }
2301
2302 if (pc_count || count)
2303 {
2304 h->needs_plt = 1;
2305 h->non_got_ref = 1;
2306 if (h->plt.refcount <= 0)
2307 h->plt.refcount = 1;
2308 else
2309 h->plt.refcount += 1;
2310 }
2311 }
2312
2313 if (h->plt.refcount <= 0)
2314 {
2315 h->plt.offset = (bfd_vma) -1;
2316 h->needs_plt = 0;
2317 }
2318 return TRUE;
2319 }
2320
2321 /* If this is a function, put it in the procedure linkage table. We
2322 will fill in the contents of the procedure linkage table later,
2323 when we know the address of the .got section. */
2324 if (h->type == STT_FUNC
2325 || h->needs_plt)
2326 {
2327 if (h->plt.refcount <= 0
2328 || SYMBOL_CALLS_LOCAL (info, h)
2329 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2330 && h->root.type == bfd_link_hash_undefweak))
2331 {
2332 /* This case can occur if we saw a PLT32 reloc in an input
2333 file, but the symbol was never referred to by a dynamic
2334 object, or if all references were garbage collected. In
2335 such a case, we don't actually need to build a procedure
2336 linkage table, and we can just do a PC32 reloc instead. */
2337 h->plt.offset = (bfd_vma) -1;
2338 h->needs_plt = 0;
2339 }
2340
2341 return TRUE;
2342 }
2343 else
2344 /* It's possible that we incorrectly decided a .plt reloc was
2345 needed for an R_X86_64_PC32 reloc to a non-function sym in
2346 check_relocs. We can't decide accurately between function and
2347 non-function syms in check-relocs; Objects loaded later in
2348 the link may change h->type. So fix it now. */
2349 h->plt.offset = (bfd_vma) -1;
2350
2351 /* If this is a weak symbol, and there is a real definition, the
2352 processor independent code will have arranged for us to see the
2353 real definition first, and we can just use the same value. */
2354 if (h->u.weakdef != NULL)
2355 {
2356 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
2357 || h->u.weakdef->root.type == bfd_link_hash_defweak);
2358 h->root.u.def.section = h->u.weakdef->root.u.def.section;
2359 h->root.u.def.value = h->u.weakdef->root.u.def.value;
2360 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
2361 h->non_got_ref = h->u.weakdef->non_got_ref;
2362 return TRUE;
2363 }
2364
2365 /* This is a reference to a symbol defined by a dynamic object which
2366 is not a function. */
2367
2368 /* If we are creating a shared library, we must presume that the
2369 only references to the symbol are via the global offset table.
2370 For such cases we need not do anything here; the relocations will
2371 be handled correctly by relocate_section. */
2372 if (info->shared)
2373 return TRUE;
2374
2375 /* If there are no references to this symbol that do not use the
2376 GOT, we don't need to generate a copy reloc. */
2377 if (!h->non_got_ref)
2378 return TRUE;
2379
2380 /* If -z nocopyreloc was given, we won't generate them either. */
2381 if (info->nocopyreloc)
2382 {
2383 h->non_got_ref = 0;
2384 return TRUE;
2385 }
2386
2387 if (ELIMINATE_COPY_RELOCS)
2388 {
2389 eh = (struct elf_x86_64_link_hash_entry *) h;
2390 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2391 {
2392 s = p->sec->output_section;
2393 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2394 break;
2395 }
2396
2397 /* If we didn't find any dynamic relocs in read-only sections, then
2398 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
2399 if (p == NULL)
2400 {
2401 h->non_got_ref = 0;
2402 return TRUE;
2403 }
2404 }
2405
2406 /* We must allocate the symbol in our .dynbss section, which will
2407 become part of the .bss section of the executable. There will be
2408 an entry for this symbol in the .dynsym section. The dynamic
2409 object will contain position independent code, so all references
2410 from the dynamic object to this symbol will go through the global
2411 offset table. The dynamic linker will use the .dynsym entry to
2412 determine the address it must put in the global offset table, so
2413 both the dynamic object and the regular object will refer to the
2414 same memory location for the variable. */
2415
2416 htab = elf_x86_64_hash_table (info);
2417 if (htab == NULL)
2418 return FALSE;
2419
2420 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
2421 to copy the initial value out of the dynamic object and into the
2422 runtime process image. */
2423 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
2424 {
2425 const struct elf_backend_data *bed;
2426 bed = get_elf_backend_data (info->output_bfd);
2427 htab->srelbss->size += bed->s->sizeof_rela;
2428 h->needs_copy = 1;
2429 }
2430
2431 s = htab->sdynbss;
2432
2433 return _bfd_elf_adjust_dynamic_copy (h, s);
2434 }
2435
2436 /* Allocate space in .plt, .got and associated reloc sections for
2437 dynamic relocs. */
2438
2439 static bfd_boolean
2440 elf_x86_64_allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
2441 {
2442 struct bfd_link_info *info;
2443 struct elf_x86_64_link_hash_table *htab;
2444 struct elf_x86_64_link_hash_entry *eh;
2445 struct elf_dyn_relocs *p;
2446 const struct elf_backend_data *bed;
2447 unsigned int plt_entry_size;
2448
2449 if (h->root.type == bfd_link_hash_indirect)
2450 return TRUE;
2451
2452 eh = (struct elf_x86_64_link_hash_entry *) h;
2453
2454 info = (struct bfd_link_info *) inf;
2455 htab = elf_x86_64_hash_table (info);
2456 if (htab == NULL)
2457 return FALSE;
2458 bed = get_elf_backend_data (info->output_bfd);
2459 plt_entry_size = GET_PLT_ENTRY_SIZE (info->output_bfd);
2460
2461 /* We can't use the GOT PLT if pointer equality is needed since
2462 finish_dynamic_symbol won't clear symbol value and the dynamic
2463 linker won't update the GOT slot. We will get into an infinite
2464 loop at run-time. */
2465 if (htab->plt_got != NULL
2466 && h->type != STT_GNU_IFUNC
2467 && !h->pointer_equality_needed
2468 && h->plt.refcount > 0
2469 && h->got.refcount > 0)
2470 {
2471 /* Don't use the regular PLT if there are both GOT and GOTPLT
2472 reloctions. */
2473 h->plt.offset = (bfd_vma) -1;
2474
2475 /* Use the GOT PLT. */
2476 eh->plt_got.refcount = 1;
2477 }
2478
2479 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
2480 here if it is defined and referenced in a non-shared object. */
2481 if (h->type == STT_GNU_IFUNC
2482 && h->def_regular)
2483 {
2484 if (_bfd_elf_allocate_ifunc_dyn_relocs (info, h,
2485 &eh->dyn_relocs,
2486 plt_entry_size,
2487 plt_entry_size,
2488 GOT_ENTRY_SIZE))
2489 {
2490 asection *s = htab->plt_bnd;
2491 if (h->plt.offset != (bfd_vma) -1 && s != NULL)
2492 {
2493 /* Use the .plt.bnd section if it is created. */
2494 eh->plt_bnd.offset = s->size;
2495
2496 /* Make room for this entry in the .plt.bnd section. */
2497 s->size += sizeof (elf_x86_64_legacy_plt2_entry);
2498 }
2499
2500 return TRUE;
2501 }
2502 else
2503 return FALSE;
2504 }
2505 else if (htab->elf.dynamic_sections_created
2506 && (h->plt.refcount > 0 || eh->plt_got.refcount > 0))
2507 {
2508 bfd_boolean use_plt_got = eh->plt_got.refcount > 0;
2509
2510 /* Make sure this symbol is output as a dynamic symbol.
2511 Undefined weak syms won't yet be marked as dynamic. */
2512 if (h->dynindx == -1
2513 && !h->forced_local)
2514 {
2515 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2516 return FALSE;
2517 }
2518
2519 if (info->shared
2520 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
2521 {
2522 asection *s = htab->elf.splt;
2523 asection *bnd_s = htab->plt_bnd;
2524 asection *got_s = htab->plt_got;
2525
2526 /* If this is the first .plt entry, make room for the special
2527 first entry. */
2528 if (s->size == 0)
2529 s->size = plt_entry_size;
2530
2531 if (use_plt_got)
2532 eh->plt_got.offset = got_s->size;
2533 else
2534 {
2535 h->plt.offset = s->size;
2536 if (bnd_s)
2537 eh->plt_bnd.offset = bnd_s->size;
2538 }
2539
2540 /* If this symbol is not defined in a regular file, and we are
2541 not generating a shared library, then set the symbol to this
2542 location in the .plt. This is required to make function
2543 pointers compare as equal between the normal executable and
2544 the shared library. */
2545 if (! info->shared
2546 && !h->def_regular)
2547 {
2548 if (use_plt_got)
2549 {
2550 /* We need to make a call to the entry of the GOT PLT
2551 instead of regular PLT entry. */
2552 h->root.u.def.section = got_s;
2553 h->root.u.def.value = eh->plt_got.offset;
2554 }
2555 else
2556 {
2557 if (bnd_s)
2558 {
2559 /* We need to make a call to the entry of the second
2560 PLT instead of regular PLT entry. */
2561 h->root.u.def.section = bnd_s;
2562 h->root.u.def.value = eh->plt_bnd.offset;
2563 }
2564 else
2565 {
2566 h->root.u.def.section = s;
2567 h->root.u.def.value = h->plt.offset;
2568 }
2569 }
2570 }
2571
2572 /* Make room for this entry. */
2573 if (use_plt_got)
2574 got_s->size += sizeof (elf_x86_64_legacy_plt2_entry);
2575 else
2576 {
2577 s->size += plt_entry_size;
2578 if (bnd_s)
2579 bnd_s->size += sizeof (elf_x86_64_legacy_plt2_entry);
2580
2581 /* We also need to make an entry in the .got.plt section,
2582 which will be placed in the .got section by the linker
2583 script. */
2584 htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
2585
2586 /* We also need to make an entry in the .rela.plt
2587 section. */
2588 htab->elf.srelplt->size += bed->s->sizeof_rela;
2589 htab->elf.srelplt->reloc_count++;
2590 }
2591 }
2592 else
2593 {
2594 h->plt.offset = (bfd_vma) -1;
2595 h->needs_plt = 0;
2596 }
2597 }
2598 else
2599 {
2600 h->plt.offset = (bfd_vma) -1;
2601 h->needs_plt = 0;
2602 }
2603
2604 eh->tlsdesc_got = (bfd_vma) -1;
2605
2606 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
2607 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
2608 if (h->got.refcount > 0
2609 && info->executable
2610 && h->dynindx == -1
2611 && elf_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
2612 {
2613 h->got.offset = (bfd_vma) -1;
2614 }
2615 else if (h->got.refcount > 0)
2616 {
2617 asection *s;
2618 bfd_boolean dyn;
2619 int tls_type = elf_x86_64_hash_entry (h)->tls_type;
2620
2621 /* Make sure this symbol is output as a dynamic symbol.
2622 Undefined weak syms won't yet be marked as dynamic. */
2623 if (h->dynindx == -1
2624 && !h->forced_local)
2625 {
2626 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2627 return FALSE;
2628 }
2629
2630 if (GOT_TLS_GDESC_P (tls_type))
2631 {
2632 eh->tlsdesc_got = htab->elf.sgotplt->size
2633 - elf_x86_64_compute_jump_table_size (htab);
2634 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2635 h->got.offset = (bfd_vma) -2;
2636 }
2637 if (! GOT_TLS_GDESC_P (tls_type)
2638 || GOT_TLS_GD_P (tls_type))
2639 {
2640 s = htab->elf.sgot;
2641 h->got.offset = s->size;
2642 s->size += GOT_ENTRY_SIZE;
2643 if (GOT_TLS_GD_P (tls_type))
2644 s->size += GOT_ENTRY_SIZE;
2645 }
2646 dyn = htab->elf.dynamic_sections_created;
2647 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
2648 and two if global.
2649 R_X86_64_GOTTPOFF needs one dynamic relocation. */
2650 if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
2651 || tls_type == GOT_TLS_IE)
2652 htab->elf.srelgot->size += bed->s->sizeof_rela;
2653 else if (GOT_TLS_GD_P (tls_type))
2654 htab->elf.srelgot->size += 2 * bed->s->sizeof_rela;
2655 else if (! GOT_TLS_GDESC_P (tls_type)
2656 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2657 || h->root.type != bfd_link_hash_undefweak)
2658 && (info->shared
2659 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
2660 htab->elf.srelgot->size += bed->s->sizeof_rela;
2661 if (GOT_TLS_GDESC_P (tls_type))
2662 {
2663 htab->elf.srelplt->size += bed->s->sizeof_rela;
2664 htab->tlsdesc_plt = (bfd_vma) -1;
2665 }
2666 }
2667 else
2668 h->got.offset = (bfd_vma) -1;
2669
2670 if (eh->dyn_relocs == NULL)
2671 return TRUE;
2672
2673 /* In the shared -Bsymbolic case, discard space allocated for
2674 dynamic pc-relative relocs against symbols which turn out to be
2675 defined in regular objects. For the normal shared case, discard
2676 space for pc-relative relocs that have become local due to symbol
2677 visibility changes. */
2678
2679 if (info->shared)
2680 {
2681 /* Relocs that use pc_count are those that appear on a call
2682 insn, or certain REL relocs that can generated via assembly.
2683 We want calls to protected symbols to resolve directly to the
2684 function rather than going via the plt. If people want
2685 function pointer comparisons to work as expected then they
2686 should avoid writing weird assembly. */
2687 if (SYMBOL_CALLS_LOCAL (info, h))
2688 {
2689 struct elf_dyn_relocs **pp;
2690
2691 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2692 {
2693 p->count -= p->pc_count;
2694 p->pc_count = 0;
2695 if (p->count == 0)
2696 *pp = p->next;
2697 else
2698 pp = &p->next;
2699 }
2700 }
2701
2702 /* Also discard relocs on undefined weak syms with non-default
2703 visibility. */
2704 if (eh->dyn_relocs != NULL
2705 && h->root.type == bfd_link_hash_undefweak)
2706 {
2707 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2708 eh->dyn_relocs = NULL;
2709
2710 /* Make sure undefined weak symbols are output as a dynamic
2711 symbol in PIEs. */
2712 else if (h->dynindx == -1
2713 && ! h->forced_local
2714 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2715 return FALSE;
2716 }
2717
2718 }
2719 else if (ELIMINATE_COPY_RELOCS)
2720 {
2721 /* For the non-shared case, discard space for relocs against
2722 symbols which turn out to need copy relocs or are not
2723 dynamic. */
2724
2725 if (!h->non_got_ref
2726 && ((h->def_dynamic
2727 && !h->def_regular)
2728 || (htab->elf.dynamic_sections_created
2729 && (h->root.type == bfd_link_hash_undefweak
2730 || h->root.type == bfd_link_hash_undefined))))
2731 {
2732 /* Make sure this symbol is output as a dynamic symbol.
2733 Undefined weak syms won't yet be marked as dynamic. */
2734 if (h->dynindx == -1
2735 && ! h->forced_local
2736 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2737 return FALSE;
2738
2739 /* If that succeeded, we know we'll be keeping all the
2740 relocs. */
2741 if (h->dynindx != -1)
2742 goto keep;
2743 }
2744
2745 eh->dyn_relocs = NULL;
2746
2747 keep: ;
2748 }
2749
2750 /* Finally, allocate space. */
2751 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2752 {
2753 asection * sreloc;
2754
2755 sreloc = elf_section_data (p->sec)->sreloc;
2756
2757 BFD_ASSERT (sreloc != NULL);
2758
2759 sreloc->size += p->count * bed->s->sizeof_rela;
2760 }
2761
2762 return TRUE;
2763 }
2764
2765 /* Allocate space in .plt, .got and associated reloc sections for
2766 local dynamic relocs. */
2767
2768 static bfd_boolean
2769 elf_x86_64_allocate_local_dynrelocs (void **slot, void *inf)
2770 {
2771 struct elf_link_hash_entry *h
2772 = (struct elf_link_hash_entry *) *slot;
2773
2774 if (h->type != STT_GNU_IFUNC
2775 || !h->def_regular
2776 || !h->ref_regular
2777 || !h->forced_local
2778 || h->root.type != bfd_link_hash_defined)
2779 abort ();
2780
2781 return elf_x86_64_allocate_dynrelocs (h, inf);
2782 }
2783
2784 /* Find any dynamic relocs that apply to read-only sections. */
2785
2786 static bfd_boolean
2787 elf_x86_64_readonly_dynrelocs (struct elf_link_hash_entry *h,
2788 void * inf)
2789 {
2790 struct elf_x86_64_link_hash_entry *eh;
2791 struct elf_dyn_relocs *p;
2792
2793 /* Skip local IFUNC symbols. */
2794 if (h->forced_local && h->type == STT_GNU_IFUNC)
2795 return TRUE;
2796
2797 eh = (struct elf_x86_64_link_hash_entry *) h;
2798 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2799 {
2800 asection *s = p->sec->output_section;
2801
2802 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2803 {
2804 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2805
2806 info->flags |= DF_TEXTREL;
2807
2808 if (info->warn_shared_textrel && info->shared)
2809 info->callbacks->einfo (_("%P: %B: warning: relocation against `%s' in readonly section `%A'.\n"),
2810 p->sec->owner, h->root.root.string,
2811 p->sec);
2812
2813 /* Not an error, just cut short the traversal. */
2814 return FALSE;
2815 }
2816 }
2817 return TRUE;
2818 }
2819
2820 /* Convert
2821 mov foo@GOTPCREL(%rip), %reg
2822 to
2823 lea foo(%rip), %reg
2824 with the local symbol, foo. */
2825
2826 static bfd_boolean
2827 elf_x86_64_convert_mov_to_lea (bfd *abfd, asection *sec,
2828 struct bfd_link_info *link_info)
2829 {
2830 Elf_Internal_Shdr *symtab_hdr;
2831 Elf_Internal_Rela *internal_relocs;
2832 Elf_Internal_Rela *irel, *irelend;
2833 bfd_byte *contents;
2834 struct elf_x86_64_link_hash_table *htab;
2835 bfd_boolean changed_contents;
2836 bfd_boolean changed_relocs;
2837 bfd_signed_vma *local_got_refcounts;
2838
2839 /* Don't even try to convert non-ELF outputs. */
2840 if (!is_elf_hash_table (link_info->hash))
2841 return FALSE;
2842
2843 /* Nothing to do if there are no codes, no relocations or no output. */
2844 if ((sec->flags & (SEC_CODE | SEC_RELOC)) != (SEC_CODE | SEC_RELOC)
2845 || sec->reloc_count == 0
2846 || bfd_is_abs_section (sec->output_section))
2847 return TRUE;
2848
2849 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2850
2851 /* Load the relocations for this section. */
2852 internal_relocs = (_bfd_elf_link_read_relocs
2853 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
2854 link_info->keep_memory));
2855 if (internal_relocs == NULL)
2856 return FALSE;
2857
2858 htab = elf_x86_64_hash_table (link_info);
2859 changed_contents = FALSE;
2860 changed_relocs = FALSE;
2861 local_got_refcounts = elf_local_got_refcounts (abfd);
2862
2863 /* Get the section contents. */
2864 if (elf_section_data (sec)->this_hdr.contents != NULL)
2865 contents = elf_section_data (sec)->this_hdr.contents;
2866 else
2867 {
2868 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
2869 goto error_return;
2870 }
2871
2872 irelend = internal_relocs + sec->reloc_count;
2873 for (irel = internal_relocs; irel < irelend; irel++)
2874 {
2875 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
2876 unsigned int r_symndx = htab->r_sym (irel->r_info);
2877 unsigned int indx;
2878 struct elf_link_hash_entry *h;
2879
2880 if (r_type != R_X86_64_GOTPCREL)
2881 continue;
2882
2883 /* Get the symbol referred to by the reloc. */
2884 if (r_symndx < symtab_hdr->sh_info)
2885 {
2886 Elf_Internal_Sym *isym;
2887
2888 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
2889 abfd, r_symndx);
2890
2891 /* STT_GNU_IFUNC must keep R_X86_64_GOTPCREL relocation. */
2892 if (ELF_ST_TYPE (isym->st_info) != STT_GNU_IFUNC
2893 && irel->r_offset >= 2
2894 && bfd_get_8 (input_bfd,
2895 contents + irel->r_offset - 2) == 0x8b)
2896 {
2897 bfd_put_8 (output_bfd, 0x8d,
2898 contents + irel->r_offset - 2);
2899 irel->r_info = htab->r_info (r_symndx, R_X86_64_PC32);
2900 if (local_got_refcounts != NULL
2901 && local_got_refcounts[r_symndx] > 0)
2902 local_got_refcounts[r_symndx] -= 1;
2903 changed_contents = TRUE;
2904 changed_relocs = TRUE;
2905 }
2906 continue;
2907 }
2908
2909 indx = r_symndx - symtab_hdr->sh_info;
2910 h = elf_sym_hashes (abfd)[indx];
2911 BFD_ASSERT (h != NULL);
2912
2913 while (h->root.type == bfd_link_hash_indirect
2914 || h->root.type == bfd_link_hash_warning)
2915 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2916
2917 /* STT_GNU_IFUNC must keep R_X86_64_GOTPCREL relocation. We also
2918 avoid optimizing _DYNAMIC since ld.so may use its link-time
2919 address. */
2920 if (h->def_regular
2921 && h->type != STT_GNU_IFUNC
2922 && h != htab->elf.hdynamic
2923 && SYMBOL_REFERENCES_LOCAL (link_info, h)
2924 && irel->r_offset >= 2
2925 && bfd_get_8 (input_bfd,
2926 contents + irel->r_offset - 2) == 0x8b)
2927 {
2928 bfd_put_8 (output_bfd, 0x8d,
2929 contents + irel->r_offset - 2);
2930 irel->r_info = htab->r_info (r_symndx, R_X86_64_PC32);
2931 if (h->got.refcount > 0)
2932 h->got.refcount -= 1;
2933 changed_contents = TRUE;
2934 changed_relocs = TRUE;
2935 }
2936 }
2937
2938 if (contents != NULL
2939 && elf_section_data (sec)->this_hdr.contents != contents)
2940 {
2941 if (!changed_contents && !link_info->keep_memory)
2942 free (contents);
2943 else
2944 {
2945 /* Cache the section contents for elf_link_input_bfd. */
2946 elf_section_data (sec)->this_hdr.contents = contents;
2947 }
2948 }
2949
2950 if (elf_section_data (sec)->relocs != internal_relocs)
2951 {
2952 if (!changed_relocs)
2953 free (internal_relocs);
2954 else
2955 elf_section_data (sec)->relocs = internal_relocs;
2956 }
2957
2958 return TRUE;
2959
2960 error_return:
2961 if (contents != NULL
2962 && elf_section_data (sec)->this_hdr.contents != contents)
2963 free (contents);
2964 if (internal_relocs != NULL
2965 && elf_section_data (sec)->relocs != internal_relocs)
2966 free (internal_relocs);
2967 return FALSE;
2968 }
2969
2970 /* Set the sizes of the dynamic sections. */
2971
2972 static bfd_boolean
2973 elf_x86_64_size_dynamic_sections (bfd *output_bfd,
2974 struct bfd_link_info *info)
2975 {
2976 struct elf_x86_64_link_hash_table *htab;
2977 bfd *dynobj;
2978 asection *s;
2979 bfd_boolean relocs;
2980 bfd *ibfd;
2981 const struct elf_backend_data *bed;
2982
2983 htab = elf_x86_64_hash_table (info);
2984 if (htab == NULL)
2985 return FALSE;
2986 bed = get_elf_backend_data (output_bfd);
2987
2988 dynobj = htab->elf.dynobj;
2989 if (dynobj == NULL)
2990 abort ();
2991
2992 if (htab->elf.dynamic_sections_created)
2993 {
2994 /* Set the contents of the .interp section to the interpreter. */
2995 if (info->executable)
2996 {
2997 s = bfd_get_linker_section (dynobj, ".interp");
2998 if (s == NULL)
2999 abort ();
3000 s->size = htab->dynamic_interpreter_size;
3001 s->contents = (unsigned char *) htab->dynamic_interpreter;
3002 }
3003 }
3004
3005 /* Set up .got offsets for local syms, and space for local dynamic
3006 relocs. */
3007 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
3008 {
3009 bfd_signed_vma *local_got;
3010 bfd_signed_vma *end_local_got;
3011 char *local_tls_type;
3012 bfd_vma *local_tlsdesc_gotent;
3013 bfd_size_type locsymcount;
3014 Elf_Internal_Shdr *symtab_hdr;
3015 asection *srel;
3016
3017 if (! is_x86_64_elf (ibfd))
3018 continue;
3019
3020 for (s = ibfd->sections; s != NULL; s = s->next)
3021 {
3022 struct elf_dyn_relocs *p;
3023
3024 if (!elf_x86_64_convert_mov_to_lea (ibfd, s, info))
3025 return FALSE;
3026
3027 for (p = (struct elf_dyn_relocs *)
3028 (elf_section_data (s)->local_dynrel);
3029 p != NULL;
3030 p = p->next)
3031 {
3032 if (!bfd_is_abs_section (p->sec)
3033 && bfd_is_abs_section (p->sec->output_section))
3034 {
3035 /* Input section has been discarded, either because
3036 it is a copy of a linkonce section or due to
3037 linker script /DISCARD/, so we'll be discarding
3038 the relocs too. */
3039 }
3040 else if (p->count != 0)
3041 {
3042 srel = elf_section_data (p->sec)->sreloc;
3043 srel->size += p->count * bed->s->sizeof_rela;
3044 if ((p->sec->output_section->flags & SEC_READONLY) != 0
3045 && (info->flags & DF_TEXTREL) == 0)
3046 {
3047 info->flags |= DF_TEXTREL;
3048 if (info->warn_shared_textrel && info->shared)
3049 info->callbacks->einfo (_("%P: %B: warning: relocation in readonly section `%A'.\n"),
3050 p->sec->owner, p->sec);
3051 }
3052 }
3053 }
3054 }
3055
3056 local_got = elf_local_got_refcounts (ibfd);
3057 if (!local_got)
3058 continue;
3059
3060 symtab_hdr = &elf_symtab_hdr (ibfd);
3061 locsymcount = symtab_hdr->sh_info;
3062 end_local_got = local_got + locsymcount;
3063 local_tls_type = elf_x86_64_local_got_tls_type (ibfd);
3064 local_tlsdesc_gotent = elf_x86_64_local_tlsdesc_gotent (ibfd);
3065 s = htab->elf.sgot;
3066 srel = htab->elf.srelgot;
3067 for (; local_got < end_local_got;
3068 ++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
3069 {
3070 *local_tlsdesc_gotent = (bfd_vma) -1;
3071 if (*local_got > 0)
3072 {
3073 if (GOT_TLS_GDESC_P (*local_tls_type))
3074 {
3075 *local_tlsdesc_gotent = htab->elf.sgotplt->size
3076 - elf_x86_64_compute_jump_table_size (htab);
3077 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
3078 *local_got = (bfd_vma) -2;
3079 }
3080 if (! GOT_TLS_GDESC_P (*local_tls_type)
3081 || GOT_TLS_GD_P (*local_tls_type))
3082 {
3083 *local_got = s->size;
3084 s->size += GOT_ENTRY_SIZE;
3085 if (GOT_TLS_GD_P (*local_tls_type))
3086 s->size += GOT_ENTRY_SIZE;
3087 }
3088 if (info->shared
3089 || GOT_TLS_GD_ANY_P (*local_tls_type)
3090 || *local_tls_type == GOT_TLS_IE)
3091 {
3092 if (GOT_TLS_GDESC_P (*local_tls_type))
3093 {
3094 htab->elf.srelplt->size
3095 += bed->s->sizeof_rela;
3096 htab->tlsdesc_plt = (bfd_vma) -1;
3097 }
3098 if (! GOT_TLS_GDESC_P (*local_tls_type)
3099 || GOT_TLS_GD_P (*local_tls_type))
3100 srel->size += bed->s->sizeof_rela;
3101 }
3102 }
3103 else
3104 *local_got = (bfd_vma) -1;
3105 }
3106 }
3107
3108 if (htab->tls_ld_got.refcount > 0)
3109 {
3110 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
3111 relocs. */
3112 htab->tls_ld_got.offset = htab->elf.sgot->size;
3113 htab->elf.sgot->size += 2 * GOT_ENTRY_SIZE;
3114 htab->elf.srelgot->size += bed->s->sizeof_rela;
3115 }
3116 else
3117 htab->tls_ld_got.offset = -1;
3118
3119 /* Allocate global sym .plt and .got entries, and space for global
3120 sym dynamic relocs. */
3121 elf_link_hash_traverse (&htab->elf, elf_x86_64_allocate_dynrelocs,
3122 info);
3123
3124 /* Allocate .plt and .got entries, and space for local symbols. */
3125 htab_traverse (htab->loc_hash_table,
3126 elf_x86_64_allocate_local_dynrelocs,
3127 info);
3128
3129 /* For every jump slot reserved in the sgotplt, reloc_count is
3130 incremented. However, when we reserve space for TLS descriptors,
3131 it's not incremented, so in order to compute the space reserved
3132 for them, it suffices to multiply the reloc count by the jump
3133 slot size.
3134
3135 PR ld/13302: We start next_irelative_index at the end of .rela.plt
3136 so that R_X86_64_IRELATIVE entries come last. */
3137 if (htab->elf.srelplt)
3138 {
3139 htab->sgotplt_jump_table_size
3140 = elf_x86_64_compute_jump_table_size (htab);
3141 htab->next_irelative_index = htab->elf.srelplt->reloc_count - 1;
3142 }
3143 else if (htab->elf.irelplt)
3144 htab->next_irelative_index = htab->elf.irelplt->reloc_count - 1;
3145
3146 if (htab->tlsdesc_plt)
3147 {
3148 /* If we're not using lazy TLS relocations, don't generate the
3149 PLT and GOT entries they require. */
3150 if ((info->flags & DF_BIND_NOW))
3151 htab->tlsdesc_plt = 0;
3152 else
3153 {
3154 htab->tlsdesc_got = htab->elf.sgot->size;
3155 htab->elf.sgot->size += GOT_ENTRY_SIZE;
3156 /* Reserve room for the initial entry.
3157 FIXME: we could probably do away with it in this case. */
3158 if (htab->elf.splt->size == 0)
3159 htab->elf.splt->size += GET_PLT_ENTRY_SIZE (output_bfd);
3160 htab->tlsdesc_plt = htab->elf.splt->size;
3161 htab->elf.splt->size += GET_PLT_ENTRY_SIZE (output_bfd);
3162 }
3163 }
3164
3165 if (htab->elf.sgotplt)
3166 {
3167 /* Don't allocate .got.plt section if there are no GOT nor PLT
3168 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
3169 if ((htab->elf.hgot == NULL
3170 || !htab->elf.hgot->ref_regular_nonweak)
3171 && (htab->elf.sgotplt->size
3172 == get_elf_backend_data (output_bfd)->got_header_size)
3173 && (htab->elf.splt == NULL
3174 || htab->elf.splt->size == 0)
3175 && (htab->elf.sgot == NULL
3176 || htab->elf.sgot->size == 0)
3177 && (htab->elf.iplt == NULL
3178 || htab->elf.iplt->size == 0)
3179 && (htab->elf.igotplt == NULL
3180 || htab->elf.igotplt->size == 0))
3181 htab->elf.sgotplt->size = 0;
3182 }
3183
3184 if (htab->plt_eh_frame != NULL
3185 && htab->elf.splt != NULL
3186 && htab->elf.splt->size != 0
3187 && !bfd_is_abs_section (htab->elf.splt->output_section)
3188 && _bfd_elf_eh_frame_present (info))
3189 {
3190 const struct elf_x86_64_backend_data *arch_data
3191 = get_elf_x86_64_arch_data (bed);
3192 htab->plt_eh_frame->size = arch_data->eh_frame_plt_size;
3193 }
3194
3195 /* We now have determined the sizes of the various dynamic sections.
3196 Allocate memory for them. */
3197 relocs = FALSE;
3198 for (s = dynobj->sections; s != NULL; s = s->next)
3199 {
3200 if ((s->flags & SEC_LINKER_CREATED) == 0)
3201 continue;
3202
3203 if (s == htab->elf.splt
3204 || s == htab->elf.sgot
3205 || s == htab->elf.sgotplt
3206 || s == htab->elf.iplt
3207 || s == htab->elf.igotplt
3208 || s == htab->plt_bnd
3209 || s == htab->plt_got
3210 || s == htab->plt_eh_frame
3211 || s == htab->sdynbss)
3212 {
3213 /* Strip this section if we don't need it; see the
3214 comment below. */
3215 }
3216 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
3217 {
3218 if (s->size != 0 && s != htab->elf.srelplt)
3219 relocs = TRUE;
3220
3221 /* We use the reloc_count field as a counter if we need
3222 to copy relocs into the output file. */
3223 if (s != htab->elf.srelplt)
3224 s->reloc_count = 0;
3225 }
3226 else
3227 {
3228 /* It's not one of our sections, so don't allocate space. */
3229 continue;
3230 }
3231
3232 if (s->size == 0)
3233 {
3234 /* If we don't need this section, strip it from the
3235 output file. This is mostly to handle .rela.bss and
3236 .rela.plt. We must create both sections in
3237 create_dynamic_sections, because they must be created
3238 before the linker maps input sections to output
3239 sections. The linker does that before
3240 adjust_dynamic_symbol is called, and it is that
3241 function which decides whether anything needs to go
3242 into these sections. */
3243
3244 s->flags |= SEC_EXCLUDE;
3245 continue;
3246 }
3247
3248 if ((s->flags & SEC_HAS_CONTENTS) == 0)
3249 continue;
3250
3251 /* Allocate memory for the section contents. We use bfd_zalloc
3252 here in case unused entries are not reclaimed before the
3253 section's contents are written out. This should not happen,
3254 but this way if it does, we get a R_X86_64_NONE reloc instead
3255 of garbage. */
3256 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
3257 if (s->contents == NULL)
3258 return FALSE;
3259 }
3260
3261 if (htab->plt_eh_frame != NULL
3262 && htab->plt_eh_frame->contents != NULL)
3263 {
3264 const struct elf_x86_64_backend_data *arch_data
3265 = get_elf_x86_64_arch_data (bed);
3266
3267 memcpy (htab->plt_eh_frame->contents,
3268 arch_data->eh_frame_plt, htab->plt_eh_frame->size);
3269 bfd_put_32 (dynobj, htab->elf.splt->size,
3270 htab->plt_eh_frame->contents + PLT_FDE_LEN_OFFSET);
3271 }
3272
3273 if (htab->elf.dynamic_sections_created)
3274 {
3275 /* Add some entries to the .dynamic section. We fill in the
3276 values later, in elf_x86_64_finish_dynamic_sections, but we
3277 must add the entries now so that we get the correct size for
3278 the .dynamic section. The DT_DEBUG entry is filled in by the
3279 dynamic linker and used by the debugger. */
3280 #define add_dynamic_entry(TAG, VAL) \
3281 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3282
3283 if (info->executable)
3284 {
3285 if (!add_dynamic_entry (DT_DEBUG, 0))
3286 return FALSE;
3287 }
3288
3289 if (htab->elf.splt->size != 0)
3290 {
3291 if (!add_dynamic_entry (DT_PLTGOT, 0)
3292 || !add_dynamic_entry (DT_PLTRELSZ, 0)
3293 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
3294 || !add_dynamic_entry (DT_JMPREL, 0))
3295 return FALSE;
3296
3297 if (htab->tlsdesc_plt
3298 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
3299 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
3300 return FALSE;
3301 }
3302
3303 if (relocs)
3304 {
3305 if (!add_dynamic_entry (DT_RELA, 0)
3306 || !add_dynamic_entry (DT_RELASZ, 0)
3307 || !add_dynamic_entry (DT_RELAENT, bed->s->sizeof_rela))
3308 return FALSE;
3309
3310 /* If any dynamic relocs apply to a read-only section,
3311 then we need a DT_TEXTREL entry. */
3312 if ((info->flags & DF_TEXTREL) == 0)
3313 elf_link_hash_traverse (&htab->elf,
3314 elf_x86_64_readonly_dynrelocs,
3315 info);
3316
3317 if ((info->flags & DF_TEXTREL) != 0)
3318 {
3319 if (!add_dynamic_entry (DT_TEXTREL, 0))
3320 return FALSE;
3321 }
3322 }
3323 }
3324 #undef add_dynamic_entry
3325
3326 return TRUE;
3327 }
3328
3329 static bfd_boolean
3330 elf_x86_64_always_size_sections (bfd *output_bfd,
3331 struct bfd_link_info *info)
3332 {
3333 asection *tls_sec = elf_hash_table (info)->tls_sec;
3334
3335 if (tls_sec)
3336 {
3337 struct elf_link_hash_entry *tlsbase;
3338
3339 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
3340 "_TLS_MODULE_BASE_",
3341 FALSE, FALSE, FALSE);
3342
3343 if (tlsbase && tlsbase->type == STT_TLS)
3344 {
3345 struct elf_x86_64_link_hash_table *htab;
3346 struct bfd_link_hash_entry *bh = NULL;
3347 const struct elf_backend_data *bed
3348 = get_elf_backend_data (output_bfd);
3349
3350 htab = elf_x86_64_hash_table (info);
3351 if (htab == NULL)
3352 return FALSE;
3353
3354 if (!(_bfd_generic_link_add_one_symbol
3355 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
3356 tls_sec, 0, NULL, FALSE,
3357 bed->collect, &bh)))
3358 return FALSE;
3359
3360 htab->tls_module_base = bh;
3361
3362 tlsbase = (struct elf_link_hash_entry *)bh;
3363 tlsbase->def_regular = 1;
3364 tlsbase->other = STV_HIDDEN;
3365 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
3366 }
3367 }
3368
3369 return TRUE;
3370 }
3371
3372 /* _TLS_MODULE_BASE_ needs to be treated especially when linking
3373 executables. Rather than setting it to the beginning of the TLS
3374 section, we have to set it to the end. This function may be called
3375 multiple times, it is idempotent. */
3376
3377 static void
3378 elf_x86_64_set_tls_module_base (struct bfd_link_info *info)
3379 {
3380 struct elf_x86_64_link_hash_table *htab;
3381 struct bfd_link_hash_entry *base;
3382
3383 if (!info->executable)
3384 return;
3385
3386 htab = elf_x86_64_hash_table (info);
3387 if (htab == NULL)
3388 return;
3389
3390 base = htab->tls_module_base;
3391 if (base == NULL)
3392 return;
3393
3394 base->u.def.value = htab->elf.tls_size;
3395 }
3396
3397 /* Return the base VMA address which should be subtracted from real addresses
3398 when resolving @dtpoff relocation.
3399 This is PT_TLS segment p_vaddr. */
3400
3401 static bfd_vma
3402 elf_x86_64_dtpoff_base (struct bfd_link_info *info)
3403 {
3404 /* If tls_sec is NULL, we should have signalled an error already. */
3405 if (elf_hash_table (info)->tls_sec == NULL)
3406 return 0;
3407 return elf_hash_table (info)->tls_sec->vma;
3408 }
3409
3410 /* Return the relocation value for @tpoff relocation
3411 if STT_TLS virtual address is ADDRESS. */
3412
3413 static bfd_vma
3414 elf_x86_64_tpoff (struct bfd_link_info *info, bfd_vma address)
3415 {
3416 struct elf_link_hash_table *htab = elf_hash_table (info);
3417 const struct elf_backend_data *bed = get_elf_backend_data (info->output_bfd);
3418 bfd_vma static_tls_size;
3419
3420 /* If tls_segment is NULL, we should have signalled an error already. */
3421 if (htab->tls_sec == NULL)
3422 return 0;
3423
3424 /* Consider special static TLS alignment requirements. */
3425 static_tls_size = BFD_ALIGN (htab->tls_size, bed->static_tls_alignment);
3426 return address - static_tls_size - htab->tls_sec->vma;
3427 }
3428
3429 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
3430 branch? */
3431
3432 static bfd_boolean
3433 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
3434 {
3435 /* Opcode Instruction
3436 0xe8 call
3437 0xe9 jump
3438 0x0f 0x8x conditional jump */
3439 return ((offset > 0
3440 && (contents [offset - 1] == 0xe8
3441 || contents [offset - 1] == 0xe9))
3442 || (offset > 1
3443 && contents [offset - 2] == 0x0f
3444 && (contents [offset - 1] & 0xf0) == 0x80));
3445 }
3446
3447 /* Relocate an x86_64 ELF section. */
3448
3449 static bfd_boolean
3450 elf_x86_64_relocate_section (bfd *output_bfd,
3451 struct bfd_link_info *info,
3452 bfd *input_bfd,
3453 asection *input_section,
3454 bfd_byte *contents,
3455 Elf_Internal_Rela *relocs,
3456 Elf_Internal_Sym *local_syms,
3457 asection **local_sections)
3458 {
3459 struct elf_x86_64_link_hash_table *htab;
3460 Elf_Internal_Shdr *symtab_hdr;
3461 struct elf_link_hash_entry **sym_hashes;
3462 bfd_vma *local_got_offsets;
3463 bfd_vma *local_tlsdesc_gotents;
3464 Elf_Internal_Rela *rel;
3465 Elf_Internal_Rela *relend;
3466 const unsigned int plt_entry_size = GET_PLT_ENTRY_SIZE (info->output_bfd);
3467
3468 BFD_ASSERT (is_x86_64_elf (input_bfd));
3469
3470 htab = elf_x86_64_hash_table (info);
3471 if (htab == NULL)
3472 return FALSE;
3473 symtab_hdr = &elf_symtab_hdr (input_bfd);
3474 sym_hashes = elf_sym_hashes (input_bfd);
3475 local_got_offsets = elf_local_got_offsets (input_bfd);
3476 local_tlsdesc_gotents = elf_x86_64_local_tlsdesc_gotent (input_bfd);
3477
3478 elf_x86_64_set_tls_module_base (info);
3479
3480 rel = relocs;
3481 relend = relocs + input_section->reloc_count;
3482 for (; rel < relend; rel++)
3483 {
3484 unsigned int r_type;
3485 reloc_howto_type *howto;
3486 unsigned long r_symndx;
3487 struct elf_link_hash_entry *h;
3488 struct elf_x86_64_link_hash_entry *eh;
3489 Elf_Internal_Sym *sym;
3490 asection *sec;
3491 bfd_vma off, offplt, plt_offset;
3492 bfd_vma relocation;
3493 bfd_boolean unresolved_reloc;
3494 bfd_reloc_status_type r;
3495 int tls_type;
3496 asection *base_got, *resolved_plt;
3497 bfd_vma st_size;
3498
3499 r_type = ELF32_R_TYPE (rel->r_info);
3500 if (r_type == (int) R_X86_64_GNU_VTINHERIT
3501 || r_type == (int) R_X86_64_GNU_VTENTRY)
3502 continue;
3503
3504 if (r_type >= (int) R_X86_64_standard)
3505 {
3506 (*_bfd_error_handler)
3507 (_("%B: unrecognized relocation (0x%x) in section `%A'"),
3508 input_bfd, input_section, r_type);
3509 bfd_set_error (bfd_error_bad_value);
3510 return FALSE;
3511 }
3512
3513 if (r_type != (int) R_X86_64_32
3514 || ABI_64_P (output_bfd))
3515 howto = x86_64_elf_howto_table + r_type;
3516 else
3517 howto = (x86_64_elf_howto_table
3518 + ARRAY_SIZE (x86_64_elf_howto_table) - 1);
3519 r_symndx = htab->r_sym (rel->r_info);
3520 h = NULL;
3521 sym = NULL;
3522 sec = NULL;
3523 unresolved_reloc = FALSE;
3524 if (r_symndx < symtab_hdr->sh_info)
3525 {
3526 sym = local_syms + r_symndx;
3527 sec = local_sections[r_symndx];
3528
3529 relocation = _bfd_elf_rela_local_sym (output_bfd, sym,
3530 &sec, rel);
3531 st_size = sym->st_size;
3532
3533 /* Relocate against local STT_GNU_IFUNC symbol. */
3534 if (!info->relocatable
3535 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
3536 {
3537 h = elf_x86_64_get_local_sym_hash (htab, input_bfd,
3538 rel, FALSE);
3539 if (h == NULL)
3540 abort ();
3541
3542 /* Set STT_GNU_IFUNC symbol value. */
3543 h->root.u.def.value = sym->st_value;
3544 h->root.u.def.section = sec;
3545 }
3546 }
3547 else
3548 {
3549 bfd_boolean warned ATTRIBUTE_UNUSED;
3550 bfd_boolean ignored ATTRIBUTE_UNUSED;
3551
3552 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3553 r_symndx, symtab_hdr, sym_hashes,
3554 h, sec, relocation,
3555 unresolved_reloc, warned, ignored);
3556 st_size = h->size;
3557 }
3558
3559 if (sec != NULL && discarded_section (sec))
3560 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3561 rel, 1, relend, howto, 0, contents);
3562
3563 if (info->relocatable)
3564 continue;
3565
3566 if (rel->r_addend == 0 && !ABI_64_P (output_bfd))
3567 {
3568 if (r_type == R_X86_64_64)
3569 {
3570 /* For x32, treat R_X86_64_64 like R_X86_64_32 and
3571 zero-extend it to 64bit if addend is zero. */
3572 r_type = R_X86_64_32;
3573 memset (contents + rel->r_offset + 4, 0, 4);
3574 }
3575 else if (r_type == R_X86_64_SIZE64)
3576 {
3577 /* For x32, treat R_X86_64_SIZE64 like R_X86_64_SIZE32 and
3578 zero-extend it to 64bit if addend is zero. */
3579 r_type = R_X86_64_SIZE32;
3580 memset (contents + rel->r_offset + 4, 0, 4);
3581 }
3582 }
3583
3584 eh = (struct elf_x86_64_link_hash_entry *) h;
3585
3586 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
3587 it here if it is defined in a non-shared object. */
3588 if (h != NULL
3589 && h->type == STT_GNU_IFUNC
3590 && h->def_regular)
3591 {
3592 bfd_vma plt_index;
3593 const char *name;
3594
3595 if ((input_section->flags & SEC_ALLOC) == 0
3596 || h->plt.offset == (bfd_vma) -1)
3597 abort ();
3598
3599 /* STT_GNU_IFUNC symbol must go through PLT. */
3600 if (htab->elf.splt != NULL)
3601 {
3602 if (htab->plt_bnd != NULL)
3603 {
3604 resolved_plt = htab->plt_bnd;
3605 plt_offset = eh->plt_bnd.offset;
3606 }
3607 else
3608 {
3609 resolved_plt = htab->elf.splt;
3610 plt_offset = h->plt.offset;
3611 }
3612 }
3613 else
3614 {
3615 resolved_plt = htab->elf.iplt;
3616 plt_offset = h->plt.offset;
3617 }
3618
3619 relocation = (resolved_plt->output_section->vma
3620 + resolved_plt->output_offset + plt_offset);
3621
3622 switch (r_type)
3623 {
3624 default:
3625 if (h->root.root.string)
3626 name = h->root.root.string;
3627 else
3628 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
3629 NULL);
3630 (*_bfd_error_handler)
3631 (_("%B: relocation %s against STT_GNU_IFUNC "
3632 "symbol `%s' isn't handled by %s"), input_bfd,
3633 x86_64_elf_howto_table[r_type].name,
3634 name, __FUNCTION__);
3635 bfd_set_error (bfd_error_bad_value);
3636 return FALSE;
3637
3638 case R_X86_64_32S:
3639 if (info->shared)
3640 abort ();
3641 goto do_relocation;
3642
3643 case R_X86_64_32:
3644 if (ABI_64_P (output_bfd))
3645 goto do_relocation;
3646 /* FALLTHROUGH */
3647 case R_X86_64_64:
3648 if (rel->r_addend != 0)
3649 {
3650 if (h->root.root.string)
3651 name = h->root.root.string;
3652 else
3653 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
3654 sym, NULL);
3655 (*_bfd_error_handler)
3656 (_("%B: relocation %s against STT_GNU_IFUNC "
3657 "symbol `%s' has non-zero addend: %d"),
3658 input_bfd, x86_64_elf_howto_table[r_type].name,
3659 name, rel->r_addend);
3660 bfd_set_error (bfd_error_bad_value);
3661 return FALSE;
3662 }
3663
3664 /* Generate dynamic relcoation only when there is a
3665 non-GOT reference in a shared object. */
3666 if (info->shared && h->non_got_ref)
3667 {
3668 Elf_Internal_Rela outrel;
3669 asection *sreloc;
3670
3671 /* Need a dynamic relocation to get the real function
3672 address. */
3673 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
3674 info,
3675 input_section,
3676 rel->r_offset);
3677 if (outrel.r_offset == (bfd_vma) -1
3678 || outrel.r_offset == (bfd_vma) -2)
3679 abort ();
3680
3681 outrel.r_offset += (input_section->output_section->vma
3682 + input_section->output_offset);
3683
3684 if (h->dynindx == -1
3685 || h->forced_local
3686 || info->executable)
3687 {
3688 /* This symbol is resolved locally. */
3689 outrel.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
3690 outrel.r_addend = (h->root.u.def.value
3691 + h->root.u.def.section->output_section->vma
3692 + h->root.u.def.section->output_offset);
3693 }
3694 else
3695 {
3696 outrel.r_info = htab->r_info (h->dynindx, r_type);
3697 outrel.r_addend = 0;
3698 }
3699
3700 sreloc = htab->elf.irelifunc;
3701 elf_append_rela (output_bfd, sreloc, &outrel);
3702
3703 /* If this reloc is against an external symbol, we
3704 do not want to fiddle with the addend. Otherwise,
3705 we need to include the symbol value so that it
3706 becomes an addend for the dynamic reloc. For an
3707 internal symbol, we have updated addend. */
3708 continue;
3709 }
3710 /* FALLTHROUGH */
3711 case R_X86_64_PC32:
3712 case R_X86_64_PC32_BND:
3713 case R_X86_64_PC64:
3714 case R_X86_64_PLT32:
3715 case R_X86_64_PLT32_BND:
3716 goto do_relocation;
3717
3718 case R_X86_64_GOTPCREL:
3719 case R_X86_64_GOTPCREL64:
3720 base_got = htab->elf.sgot;
3721 off = h->got.offset;
3722
3723 if (base_got == NULL)
3724 abort ();
3725
3726 if (off == (bfd_vma) -1)
3727 {
3728 /* We can't use h->got.offset here to save state, or
3729 even just remember the offset, as finish_dynamic_symbol
3730 would use that as offset into .got. */
3731
3732 if (htab->elf.splt != NULL)
3733 {
3734 plt_index = h->plt.offset / plt_entry_size - 1;
3735 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3736 base_got = htab->elf.sgotplt;
3737 }
3738 else
3739 {
3740 plt_index = h->plt.offset / plt_entry_size;
3741 off = plt_index * GOT_ENTRY_SIZE;
3742 base_got = htab->elf.igotplt;
3743 }
3744
3745 if (h->dynindx == -1
3746 || h->forced_local
3747 || info->symbolic)
3748 {
3749 /* This references the local defitionion. We must
3750 initialize this entry in the global offset table.
3751 Since the offset must always be a multiple of 8,
3752 we use the least significant bit to record
3753 whether we have initialized it already.
3754
3755 When doing a dynamic link, we create a .rela.got
3756 relocation entry to initialize the value. This
3757 is done in the finish_dynamic_symbol routine. */
3758 if ((off & 1) != 0)
3759 off &= ~1;
3760 else
3761 {
3762 bfd_put_64 (output_bfd, relocation,
3763 base_got->contents + off);
3764 /* Note that this is harmless for the GOTPLT64
3765 case, as -1 | 1 still is -1. */
3766 h->got.offset |= 1;
3767 }
3768 }
3769 }
3770
3771 relocation = (base_got->output_section->vma
3772 + base_got->output_offset + off);
3773
3774 goto do_relocation;
3775 }
3776 }
3777
3778 /* When generating a shared object, the relocations handled here are
3779 copied into the output file to be resolved at run time. */
3780 switch (r_type)
3781 {
3782 case R_X86_64_GOT32:
3783 case R_X86_64_GOT64:
3784 /* Relocation is to the entry for this symbol in the global
3785 offset table. */
3786 case R_X86_64_GOTPCREL:
3787 case R_X86_64_GOTPCREL64:
3788 /* Use global offset table entry as symbol value. */
3789 case R_X86_64_GOTPLT64:
3790 /* This is obsolete and treated the the same as GOT64. */
3791 base_got = htab->elf.sgot;
3792
3793 if (htab->elf.sgot == NULL)
3794 abort ();
3795
3796 if (h != NULL)
3797 {
3798 bfd_boolean dyn;
3799
3800 off = h->got.offset;
3801 if (h->needs_plt
3802 && h->plt.offset != (bfd_vma)-1
3803 && off == (bfd_vma)-1)
3804 {
3805 /* We can't use h->got.offset here to save
3806 state, or even just remember the offset, as
3807 finish_dynamic_symbol would use that as offset into
3808 .got. */
3809 bfd_vma plt_index = h->plt.offset / plt_entry_size - 1;
3810 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3811 base_got = htab->elf.sgotplt;
3812 }
3813
3814 dyn = htab->elf.dynamic_sections_created;
3815
3816 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3817 || (info->shared
3818 && SYMBOL_REFERENCES_LOCAL (info, h))
3819 || (ELF_ST_VISIBILITY (h->other)
3820 && h->root.type == bfd_link_hash_undefweak))
3821 {
3822 /* This is actually a static link, or it is a -Bsymbolic
3823 link and the symbol is defined locally, or the symbol
3824 was forced to be local because of a version file. We
3825 must initialize this entry in the global offset table.
3826 Since the offset must always be a multiple of 8, we
3827 use the least significant bit to record whether we
3828 have initialized it already.
3829
3830 When doing a dynamic link, we create a .rela.got
3831 relocation entry to initialize the value. This is
3832 done in the finish_dynamic_symbol routine. */
3833 if ((off & 1) != 0)
3834 off &= ~1;
3835 else
3836 {
3837 bfd_put_64 (output_bfd, relocation,
3838 base_got->contents + off);
3839 /* Note that this is harmless for the GOTPLT64 case,
3840 as -1 | 1 still is -1. */
3841 h->got.offset |= 1;
3842 }
3843 }
3844 else
3845 unresolved_reloc = FALSE;
3846 }
3847 else
3848 {
3849 if (local_got_offsets == NULL)
3850 abort ();
3851
3852 off = local_got_offsets[r_symndx];
3853
3854 /* The offset must always be a multiple of 8. We use
3855 the least significant bit to record whether we have
3856 already generated the necessary reloc. */
3857 if ((off & 1) != 0)
3858 off &= ~1;
3859 else
3860 {
3861 bfd_put_64 (output_bfd, relocation,
3862 base_got->contents + off);
3863
3864 if (info->shared)
3865 {
3866 asection *s;
3867 Elf_Internal_Rela outrel;
3868
3869 /* We need to generate a R_X86_64_RELATIVE reloc
3870 for the dynamic linker. */
3871 s = htab->elf.srelgot;
3872 if (s == NULL)
3873 abort ();
3874
3875 outrel.r_offset = (base_got->output_section->vma
3876 + base_got->output_offset
3877 + off);
3878 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
3879 outrel.r_addend = relocation;
3880 elf_append_rela (output_bfd, s, &outrel);
3881 }
3882
3883 local_got_offsets[r_symndx] |= 1;
3884 }
3885 }
3886
3887 if (off >= (bfd_vma) -2)
3888 abort ();
3889
3890 relocation = base_got->output_section->vma
3891 + base_got->output_offset + off;
3892 if (r_type != R_X86_64_GOTPCREL && r_type != R_X86_64_GOTPCREL64)
3893 relocation -= htab->elf.sgotplt->output_section->vma
3894 - htab->elf.sgotplt->output_offset;
3895
3896 break;
3897
3898 case R_X86_64_GOTOFF64:
3899 /* Relocation is relative to the start of the global offset
3900 table. */
3901
3902 /* Check to make sure it isn't a protected function symbol
3903 for shared library since it may not be local when used
3904 as function address. */
3905 if (!info->executable
3906 && h
3907 && !SYMBOLIC_BIND (info, h)
3908 && h->def_regular
3909 && h->type == STT_FUNC
3910 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
3911 {
3912 (*_bfd_error_handler)
3913 (_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
3914 input_bfd, h->root.root.string);
3915 bfd_set_error (bfd_error_bad_value);
3916 return FALSE;
3917 }
3918
3919 /* Note that sgot is not involved in this
3920 calculation. We always want the start of .got.plt. If we
3921 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
3922 permitted by the ABI, we might have to change this
3923 calculation. */
3924 relocation -= htab->elf.sgotplt->output_section->vma
3925 + htab->elf.sgotplt->output_offset;
3926 break;
3927
3928 case R_X86_64_GOTPC32:
3929 case R_X86_64_GOTPC64:
3930 /* Use global offset table as symbol value. */
3931 relocation = htab->elf.sgotplt->output_section->vma
3932 + htab->elf.sgotplt->output_offset;
3933 unresolved_reloc = FALSE;
3934 break;
3935
3936 case R_X86_64_PLTOFF64:
3937 /* Relocation is PLT entry relative to GOT. For local
3938 symbols it's the symbol itself relative to GOT. */
3939 if (h != NULL
3940 /* See PLT32 handling. */
3941 && h->plt.offset != (bfd_vma) -1
3942 && htab->elf.splt != NULL)
3943 {
3944 if (htab->plt_bnd != NULL)
3945 {
3946 resolved_plt = htab->plt_bnd;
3947 plt_offset = eh->plt_bnd.offset;
3948 }
3949 else
3950 {
3951 resolved_plt = htab->elf.splt;
3952 plt_offset = h->plt.offset;
3953 }
3954
3955 relocation = (resolved_plt->output_section->vma
3956 + resolved_plt->output_offset
3957 + plt_offset);
3958 unresolved_reloc = FALSE;
3959 }
3960
3961 relocation -= htab->elf.sgotplt->output_section->vma
3962 + htab->elf.sgotplt->output_offset;
3963 break;
3964
3965 case R_X86_64_PLT32:
3966 case R_X86_64_PLT32_BND:
3967 /* Relocation is to the entry for this symbol in the
3968 procedure linkage table. */
3969
3970 /* Resolve a PLT32 reloc against a local symbol directly,
3971 without using the procedure linkage table. */
3972 if (h == NULL)
3973 break;
3974
3975 if ((h->plt.offset == (bfd_vma) -1
3976 && eh->plt_got.offset == (bfd_vma) -1)
3977 || htab->elf.splt == NULL)
3978 {
3979 /* We didn't make a PLT entry for this symbol. This
3980 happens when statically linking PIC code, or when
3981 using -Bsymbolic. */
3982 break;
3983 }
3984
3985 if (h->plt.offset != (bfd_vma) -1)
3986 {
3987 if (htab->plt_bnd != NULL)
3988 {
3989 resolved_plt = htab->plt_bnd;
3990 plt_offset = eh->plt_bnd.offset;
3991 }
3992 else
3993 {
3994 resolved_plt = htab->elf.splt;
3995 plt_offset = h->plt.offset;
3996 }
3997 }
3998 else
3999 {
4000 /* Use the GOT PLT. */
4001 resolved_plt = htab->plt_got;
4002 plt_offset = eh->plt_got.offset;
4003 }
4004
4005 relocation = (resolved_plt->output_section->vma
4006 + resolved_plt->output_offset
4007 + plt_offset);
4008 unresolved_reloc = FALSE;
4009 break;
4010
4011 case R_X86_64_SIZE32:
4012 case R_X86_64_SIZE64:
4013 /* Set to symbol size. */
4014 relocation = st_size;
4015 goto direct;
4016
4017 case R_X86_64_PC8:
4018 case R_X86_64_PC16:
4019 case R_X86_64_PC32:
4020 case R_X86_64_PC32_BND:
4021 if (info->shared
4022 && (input_section->flags & SEC_ALLOC) != 0
4023 && (input_section->flags & SEC_READONLY) != 0
4024 && h != NULL)
4025 {
4026 bfd_boolean fail = FALSE;
4027 bfd_boolean branch
4028 = ((r_type == R_X86_64_PC32
4029 || r_type == R_X86_64_PC32_BND)
4030 && is_32bit_relative_branch (contents, rel->r_offset));
4031
4032 if (SYMBOL_REFERENCES_LOCAL (info, h))
4033 {
4034 /* Symbol is referenced locally. Make sure it is
4035 defined locally or for a branch. */
4036 fail = !h->def_regular && !branch;
4037 }
4038 else
4039 {
4040 /* Symbol isn't referenced locally. We only allow
4041 branch to symbol with non-default visibility. */
4042 fail = (!branch
4043 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT);
4044 }
4045
4046 if (fail)
4047 {
4048 const char *fmt;
4049 const char *v;
4050 const char *pic = "";
4051
4052 switch (ELF_ST_VISIBILITY (h->other))
4053 {
4054 case STV_HIDDEN:
4055 v = _("hidden symbol");
4056 break;
4057 case STV_INTERNAL:
4058 v = _("internal symbol");
4059 break;
4060 case STV_PROTECTED:
4061 v = _("protected symbol");
4062 break;
4063 default:
4064 v = _("symbol");
4065 pic = _("; recompile with -fPIC");
4066 break;
4067 }
4068
4069 if (h->def_regular)
4070 fmt = _("%B: relocation %s against %s `%s' can not be used when making a shared object%s");
4071 else
4072 fmt = _("%B: relocation %s against undefined %s `%s' can not be used when making a shared object%s");
4073
4074 (*_bfd_error_handler) (fmt, input_bfd,
4075 x86_64_elf_howto_table[r_type].name,
4076 v, h->root.root.string, pic);
4077 bfd_set_error (bfd_error_bad_value);
4078 return FALSE;
4079 }
4080 }
4081 /* Fall through. */
4082
4083 case R_X86_64_8:
4084 case R_X86_64_16:
4085 case R_X86_64_32:
4086 case R_X86_64_PC64:
4087 case R_X86_64_64:
4088 /* FIXME: The ABI says the linker should make sure the value is
4089 the same when it's zeroextended to 64 bit. */
4090
4091 direct:
4092 if ((input_section->flags & SEC_ALLOC) == 0)
4093 break;
4094
4095 if ((info->shared
4096 && (h == NULL
4097 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
4098 || h->root.type != bfd_link_hash_undefweak)
4099 && ((! IS_X86_64_PCREL_TYPE (r_type)
4100 && r_type != R_X86_64_SIZE32
4101 && r_type != R_X86_64_SIZE64)
4102 || ! SYMBOL_CALLS_LOCAL (info, h)))
4103 || (ELIMINATE_COPY_RELOCS
4104 && !info->shared
4105 && h != NULL
4106 && h->dynindx != -1
4107 && !h->non_got_ref
4108 && ((h->def_dynamic
4109 && !h->def_regular)
4110 || h->root.type == bfd_link_hash_undefweak
4111 || h->root.type == bfd_link_hash_undefined)))
4112 {
4113 Elf_Internal_Rela outrel;
4114 bfd_boolean skip, relocate;
4115 asection *sreloc;
4116
4117 /* When generating a shared object, these relocations
4118 are copied into the output file to be resolved at run
4119 time. */
4120 skip = FALSE;
4121 relocate = FALSE;
4122
4123 outrel.r_offset =
4124 _bfd_elf_section_offset (output_bfd, info, input_section,
4125 rel->r_offset);
4126 if (outrel.r_offset == (bfd_vma) -1)
4127 skip = TRUE;
4128 else if (outrel.r_offset == (bfd_vma) -2)
4129 skip = TRUE, relocate = TRUE;
4130
4131 outrel.r_offset += (input_section->output_section->vma
4132 + input_section->output_offset);
4133
4134 if (skip)
4135 memset (&outrel, 0, sizeof outrel);
4136
4137 /* h->dynindx may be -1 if this symbol was marked to
4138 become local. */
4139 else if (h != NULL
4140 && h->dynindx != -1
4141 && (IS_X86_64_PCREL_TYPE (r_type)
4142 || ! info->shared
4143 || ! SYMBOLIC_BIND (info, h)
4144 || ! h->def_regular))
4145 {
4146 outrel.r_info = htab->r_info (h->dynindx, r_type);
4147 outrel.r_addend = rel->r_addend;
4148 }
4149 else
4150 {
4151 /* This symbol is local, or marked to become local. */
4152 if (r_type == htab->pointer_r_type)
4153 {
4154 relocate = TRUE;
4155 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
4156 outrel.r_addend = relocation + rel->r_addend;
4157 }
4158 else if (r_type == R_X86_64_64
4159 && !ABI_64_P (output_bfd))
4160 {
4161 relocate = TRUE;
4162 outrel.r_info = htab->r_info (0,
4163 R_X86_64_RELATIVE64);
4164 outrel.r_addend = relocation + rel->r_addend;
4165 /* Check addend overflow. */
4166 if ((outrel.r_addend & 0x80000000)
4167 != (rel->r_addend & 0x80000000))
4168 {
4169 const char *name;
4170 int addend = rel->r_addend;
4171 if (h && h->root.root.string)
4172 name = h->root.root.string;
4173 else
4174 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
4175 sym, NULL);
4176 if (addend < 0)
4177 (*_bfd_error_handler)
4178 (_("%B: addend -0x%x in relocation %s against "
4179 "symbol `%s' at 0x%lx in section `%A' is "
4180 "out of range"),
4181 input_bfd, input_section, addend,
4182 x86_64_elf_howto_table[r_type].name,
4183 name, (unsigned long) rel->r_offset);
4184 else
4185 (*_bfd_error_handler)
4186 (_("%B: addend 0x%x in relocation %s against "
4187 "symbol `%s' at 0x%lx in section `%A' is "
4188 "out of range"),
4189 input_bfd, input_section, addend,
4190 x86_64_elf_howto_table[r_type].name,
4191 name, (unsigned long) rel->r_offset);
4192 bfd_set_error (bfd_error_bad_value);
4193 return FALSE;
4194 }
4195 }
4196 else
4197 {
4198 long sindx;
4199
4200 if (bfd_is_abs_section (sec))
4201 sindx = 0;
4202 else if (sec == NULL || sec->owner == NULL)
4203 {
4204 bfd_set_error (bfd_error_bad_value);
4205 return FALSE;
4206 }
4207 else
4208 {
4209 asection *osec;
4210
4211 /* We are turning this relocation into one
4212 against a section symbol. It would be
4213 proper to subtract the symbol's value,
4214 osec->vma, from the emitted reloc addend,
4215 but ld.so expects buggy relocs. */
4216 osec = sec->output_section;
4217 sindx = elf_section_data (osec)->dynindx;
4218 if (sindx == 0)
4219 {
4220 asection *oi = htab->elf.text_index_section;
4221 sindx = elf_section_data (oi)->dynindx;
4222 }
4223 BFD_ASSERT (sindx != 0);
4224 }
4225
4226 outrel.r_info = htab->r_info (sindx, r_type);
4227 outrel.r_addend = relocation + rel->r_addend;
4228 }
4229 }
4230
4231 sreloc = elf_section_data (input_section)->sreloc;
4232
4233 if (sreloc == NULL || sreloc->contents == NULL)
4234 {
4235 r = bfd_reloc_notsupported;
4236 goto check_relocation_error;
4237 }
4238
4239 elf_append_rela (output_bfd, sreloc, &outrel);
4240
4241 /* If this reloc is against an external symbol, we do
4242 not want to fiddle with the addend. Otherwise, we
4243 need to include the symbol value so that it becomes
4244 an addend for the dynamic reloc. */
4245 if (! relocate)
4246 continue;
4247 }
4248
4249 break;
4250
4251 case R_X86_64_TLSGD:
4252 case R_X86_64_GOTPC32_TLSDESC:
4253 case R_X86_64_TLSDESC_CALL:
4254 case R_X86_64_GOTTPOFF:
4255 tls_type = GOT_UNKNOWN;
4256 if (h == NULL && local_got_offsets)
4257 tls_type = elf_x86_64_local_got_tls_type (input_bfd) [r_symndx];
4258 else if (h != NULL)
4259 tls_type = elf_x86_64_hash_entry (h)->tls_type;
4260
4261 if (! elf_x86_64_tls_transition (info, input_bfd,
4262 input_section, contents,
4263 symtab_hdr, sym_hashes,
4264 &r_type, tls_type, rel,
4265 relend, h, r_symndx))
4266 return FALSE;
4267
4268 if (r_type == R_X86_64_TPOFF32)
4269 {
4270 bfd_vma roff = rel->r_offset;
4271
4272 BFD_ASSERT (! unresolved_reloc);
4273
4274 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
4275 {
4276 /* GD->LE transition. For 64bit, change
4277 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
4278 .word 0x6666; rex64; call __tls_get_addr
4279 into:
4280 movq %fs:0, %rax
4281 leaq foo@tpoff(%rax), %rax
4282 For 32bit, change
4283 leaq foo@tlsgd(%rip), %rdi
4284 .word 0x6666; rex64; call __tls_get_addr
4285 into:
4286 movl %fs:0, %eax
4287 leaq foo@tpoff(%rax), %rax
4288 For largepic, change:
4289 leaq foo@tlsgd(%rip), %rdi
4290 movabsq $__tls_get_addr@pltoff, %rax
4291 addq %rbx, %rax
4292 call *%rax
4293 into:
4294 movq %fs:0, %rax
4295 leaq foo@tpoff(%rax), %rax
4296 nopw 0x0(%rax,%rax,1) */
4297 int largepic = 0;
4298 if (ABI_64_P (output_bfd)
4299 && contents[roff + 5] == (bfd_byte) '\xb8')
4300 {
4301 memcpy (contents + roff - 3,
4302 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80"
4303 "\0\0\0\0\x66\x0f\x1f\x44\0", 22);
4304 largepic = 1;
4305 }
4306 else if (ABI_64_P (output_bfd))
4307 memcpy (contents + roff - 4,
4308 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
4309 16);
4310 else
4311 memcpy (contents + roff - 3,
4312 "\x64\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
4313 15);
4314 bfd_put_32 (output_bfd,
4315 elf_x86_64_tpoff (info, relocation),
4316 contents + roff + 8 + largepic);
4317 /* Skip R_X86_64_PC32/R_X86_64_PLT32/R_X86_64_PLTOFF64. */
4318 rel++;
4319 continue;
4320 }
4321 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
4322 {
4323 /* GDesc -> LE transition.
4324 It's originally something like:
4325 leaq x@tlsdesc(%rip), %rax
4326
4327 Change it to:
4328 movl $x@tpoff, %rax. */
4329
4330 unsigned int val, type;
4331
4332 type = bfd_get_8 (input_bfd, contents + roff - 3);
4333 val = bfd_get_8 (input_bfd, contents + roff - 1);
4334 bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1),
4335 contents + roff - 3);
4336 bfd_put_8 (output_bfd, 0xc7, contents + roff - 2);
4337 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
4338 contents + roff - 1);
4339 bfd_put_32 (output_bfd,
4340 elf_x86_64_tpoff (info, relocation),
4341 contents + roff);
4342 continue;
4343 }
4344 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
4345 {
4346 /* GDesc -> LE transition.
4347 It's originally:
4348 call *(%rax)
4349 Turn it into:
4350 xchg %ax,%ax. */
4351 bfd_put_8 (output_bfd, 0x66, contents + roff);
4352 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
4353 continue;
4354 }
4355 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTTPOFF)
4356 {
4357 /* IE->LE transition:
4358 For 64bit, originally it can be one of:
4359 movq foo@gottpoff(%rip), %reg
4360 addq foo@gottpoff(%rip), %reg
4361 We change it into:
4362 movq $foo, %reg
4363 leaq foo(%reg), %reg
4364 addq $foo, %reg.
4365 For 32bit, originally it can be one of:
4366 movq foo@gottpoff(%rip), %reg
4367 addl foo@gottpoff(%rip), %reg
4368 We change it into:
4369 movq $foo, %reg
4370 leal foo(%reg), %reg
4371 addl $foo, %reg. */
4372
4373 unsigned int val, type, reg;
4374
4375 if (roff >= 3)
4376 val = bfd_get_8 (input_bfd, contents + roff - 3);
4377 else
4378 val = 0;
4379 type = bfd_get_8 (input_bfd, contents + roff - 2);
4380 reg = bfd_get_8 (input_bfd, contents + roff - 1);
4381 reg >>= 3;
4382 if (type == 0x8b)
4383 {
4384 /* movq */
4385 if (val == 0x4c)
4386 bfd_put_8 (output_bfd, 0x49,
4387 contents + roff - 3);
4388 else if (!ABI_64_P (output_bfd) && val == 0x44)
4389 bfd_put_8 (output_bfd, 0x41,
4390 contents + roff - 3);
4391 bfd_put_8 (output_bfd, 0xc7,
4392 contents + roff - 2);
4393 bfd_put_8 (output_bfd, 0xc0 | reg,
4394 contents + roff - 1);
4395 }
4396 else if (reg == 4)
4397 {
4398 /* addq/addl -> addq/addl - addressing with %rsp/%r12
4399 is special */
4400 if (val == 0x4c)
4401 bfd_put_8 (output_bfd, 0x49,
4402 contents + roff - 3);
4403 else if (!ABI_64_P (output_bfd) && val == 0x44)
4404 bfd_put_8 (output_bfd, 0x41,
4405 contents + roff - 3);
4406 bfd_put_8 (output_bfd, 0x81,
4407 contents + roff - 2);
4408 bfd_put_8 (output_bfd, 0xc0 | reg,
4409 contents + roff - 1);
4410 }
4411 else
4412 {
4413 /* addq/addl -> leaq/leal */
4414 if (val == 0x4c)
4415 bfd_put_8 (output_bfd, 0x4d,
4416 contents + roff - 3);
4417 else if (!ABI_64_P (output_bfd) && val == 0x44)
4418 bfd_put_8 (output_bfd, 0x45,
4419 contents + roff - 3);
4420 bfd_put_8 (output_bfd, 0x8d,
4421 contents + roff - 2);
4422 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
4423 contents + roff - 1);
4424 }
4425 bfd_put_32 (output_bfd,
4426 elf_x86_64_tpoff (info, relocation),
4427 contents + roff);
4428 continue;
4429 }
4430 else
4431 BFD_ASSERT (FALSE);
4432 }
4433
4434 if (htab->elf.sgot == NULL)
4435 abort ();
4436
4437 if (h != NULL)
4438 {
4439 off = h->got.offset;
4440 offplt = elf_x86_64_hash_entry (h)->tlsdesc_got;
4441 }
4442 else
4443 {
4444 if (local_got_offsets == NULL)
4445 abort ();
4446
4447 off = local_got_offsets[r_symndx];
4448 offplt = local_tlsdesc_gotents[r_symndx];
4449 }
4450
4451 if ((off & 1) != 0)
4452 off &= ~1;
4453 else
4454 {
4455 Elf_Internal_Rela outrel;
4456 int dr_type, indx;
4457 asection *sreloc;
4458
4459 if (htab->elf.srelgot == NULL)
4460 abort ();
4461
4462 indx = h && h->dynindx != -1 ? h->dynindx : 0;
4463
4464 if (GOT_TLS_GDESC_P (tls_type))
4465 {
4466 outrel.r_info = htab->r_info (indx, R_X86_64_TLSDESC);
4467 BFD_ASSERT (htab->sgotplt_jump_table_size + offplt
4468 + 2 * GOT_ENTRY_SIZE <= htab->elf.sgotplt->size);
4469 outrel.r_offset = (htab->elf.sgotplt->output_section->vma
4470 + htab->elf.sgotplt->output_offset
4471 + offplt
4472 + htab->sgotplt_jump_table_size);
4473 sreloc = htab->elf.srelplt;
4474 if (indx == 0)
4475 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
4476 else
4477 outrel.r_addend = 0;
4478 elf_append_rela (output_bfd, sreloc, &outrel);
4479 }
4480
4481 sreloc = htab->elf.srelgot;
4482
4483 outrel.r_offset = (htab->elf.sgot->output_section->vma
4484 + htab->elf.sgot->output_offset + off);
4485
4486 if (GOT_TLS_GD_P (tls_type))
4487 dr_type = R_X86_64_DTPMOD64;
4488 else if (GOT_TLS_GDESC_P (tls_type))
4489 goto dr_done;
4490 else
4491 dr_type = R_X86_64_TPOFF64;
4492
4493 bfd_put_64 (output_bfd, 0, htab->elf.sgot->contents + off);
4494 outrel.r_addend = 0;
4495 if ((dr_type == R_X86_64_TPOFF64
4496 || dr_type == R_X86_64_TLSDESC) && indx == 0)
4497 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
4498 outrel.r_info = htab->r_info (indx, dr_type);
4499
4500 elf_append_rela (output_bfd, sreloc, &outrel);
4501
4502 if (GOT_TLS_GD_P (tls_type))
4503 {
4504 if (indx == 0)
4505 {
4506 BFD_ASSERT (! unresolved_reloc);
4507 bfd_put_64 (output_bfd,
4508 relocation - elf_x86_64_dtpoff_base (info),
4509 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4510 }
4511 else
4512 {
4513 bfd_put_64 (output_bfd, 0,
4514 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4515 outrel.r_info = htab->r_info (indx,
4516 R_X86_64_DTPOFF64);
4517 outrel.r_offset += GOT_ENTRY_SIZE;
4518 elf_append_rela (output_bfd, sreloc,
4519 &outrel);
4520 }
4521 }
4522
4523 dr_done:
4524 if (h != NULL)
4525 h->got.offset |= 1;
4526 else
4527 local_got_offsets[r_symndx] |= 1;
4528 }
4529
4530 if (off >= (bfd_vma) -2
4531 && ! GOT_TLS_GDESC_P (tls_type))
4532 abort ();
4533 if (r_type == ELF32_R_TYPE (rel->r_info))
4534 {
4535 if (r_type == R_X86_64_GOTPC32_TLSDESC
4536 || r_type == R_X86_64_TLSDESC_CALL)
4537 relocation = htab->elf.sgotplt->output_section->vma
4538 + htab->elf.sgotplt->output_offset
4539 + offplt + htab->sgotplt_jump_table_size;
4540 else
4541 relocation = htab->elf.sgot->output_section->vma
4542 + htab->elf.sgot->output_offset + off;
4543 unresolved_reloc = FALSE;
4544 }
4545 else
4546 {
4547 bfd_vma roff = rel->r_offset;
4548
4549 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
4550 {
4551 /* GD->IE transition. For 64bit, change
4552 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
4553 .word 0x6666; rex64; call __tls_get_addr@plt
4554 into:
4555 movq %fs:0, %rax
4556 addq foo@gottpoff(%rip), %rax
4557 For 32bit, change
4558 leaq foo@tlsgd(%rip), %rdi
4559 .word 0x6666; rex64; call __tls_get_addr@plt
4560 into:
4561 movl %fs:0, %eax
4562 addq foo@gottpoff(%rip), %rax
4563 For largepic, change:
4564 leaq foo@tlsgd(%rip), %rdi
4565 movabsq $__tls_get_addr@pltoff, %rax
4566 addq %rbx, %rax
4567 call *%rax
4568 into:
4569 movq %fs:0, %rax
4570 addq foo@gottpoff(%rax), %rax
4571 nopw 0x0(%rax,%rax,1) */
4572 int largepic = 0;
4573 if (ABI_64_P (output_bfd)
4574 && contents[roff + 5] == (bfd_byte) '\xb8')
4575 {
4576 memcpy (contents + roff - 3,
4577 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05"
4578 "\0\0\0\0\x66\x0f\x1f\x44\0", 22);
4579 largepic = 1;
4580 }
4581 else if (ABI_64_P (output_bfd))
4582 memcpy (contents + roff - 4,
4583 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
4584 16);
4585 else
4586 memcpy (contents + roff - 3,
4587 "\x64\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
4588 15);
4589
4590 relocation = (htab->elf.sgot->output_section->vma
4591 + htab->elf.sgot->output_offset + off
4592 - roff
4593 - largepic
4594 - input_section->output_section->vma
4595 - input_section->output_offset
4596 - 12);
4597 bfd_put_32 (output_bfd, relocation,
4598 contents + roff + 8 + largepic);
4599 /* Skip R_X86_64_PLT32/R_X86_64_PLTOFF64. */
4600 rel++;
4601 continue;
4602 }
4603 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
4604 {
4605 /* GDesc -> IE transition.
4606 It's originally something like:
4607 leaq x@tlsdesc(%rip), %rax
4608
4609 Change it to:
4610 movq x@gottpoff(%rip), %rax # before xchg %ax,%ax. */
4611
4612 /* Now modify the instruction as appropriate. To
4613 turn a leaq into a movq in the form we use it, it
4614 suffices to change the second byte from 0x8d to
4615 0x8b. */
4616 bfd_put_8 (output_bfd, 0x8b, contents + roff - 2);
4617
4618 bfd_put_32 (output_bfd,
4619 htab->elf.sgot->output_section->vma
4620 + htab->elf.sgot->output_offset + off
4621 - rel->r_offset
4622 - input_section->output_section->vma
4623 - input_section->output_offset
4624 - 4,
4625 contents + roff);
4626 continue;
4627 }
4628 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
4629 {
4630 /* GDesc -> IE transition.
4631 It's originally:
4632 call *(%rax)
4633
4634 Change it to:
4635 xchg %ax, %ax. */
4636
4637 bfd_put_8 (output_bfd, 0x66, contents + roff);
4638 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
4639 continue;
4640 }
4641 else
4642 BFD_ASSERT (FALSE);
4643 }
4644 break;
4645
4646 case R_X86_64_TLSLD:
4647 if (! elf_x86_64_tls_transition (info, input_bfd,
4648 input_section, contents,
4649 symtab_hdr, sym_hashes,
4650 &r_type, GOT_UNKNOWN,
4651 rel, relend, h, r_symndx))
4652 return FALSE;
4653
4654 if (r_type != R_X86_64_TLSLD)
4655 {
4656 /* LD->LE transition:
4657 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
4658 For 64bit, we change it into:
4659 .word 0x6666; .byte 0x66; movq %fs:0, %rax.
4660 For 32bit, we change it into:
4661 nopl 0x0(%rax); movl %fs:0, %eax.
4662 For largepic, change:
4663 leaq foo@tlsgd(%rip), %rdi
4664 movabsq $__tls_get_addr@pltoff, %rax
4665 addq %rbx, %rax
4666 call *%rax
4667 into:
4668 data32 data32 data32 nopw %cs:0x0(%rax,%rax,1)
4669 movq %fs:0, %eax */
4670
4671 BFD_ASSERT (r_type == R_X86_64_TPOFF32);
4672 if (ABI_64_P (output_bfd)
4673 && contents[rel->r_offset + 5] == (bfd_byte) '\xb8')
4674 memcpy (contents + rel->r_offset - 3,
4675 "\x66\x66\x66\x66\x2e\x0f\x1f\x84\0\0\0\0\0"
4676 "\x64\x48\x8b\x04\x25\0\0\0", 22);
4677 else if (ABI_64_P (output_bfd))
4678 memcpy (contents + rel->r_offset - 3,
4679 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
4680 else
4681 memcpy (contents + rel->r_offset - 3,
4682 "\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0", 12);
4683 /* Skip R_X86_64_PC32/R_X86_64_PLT32/R_X86_64_PLTOFF64. */
4684 rel++;
4685 continue;
4686 }
4687
4688 if (htab->elf.sgot == NULL)
4689 abort ();
4690
4691 off = htab->tls_ld_got.offset;
4692 if (off & 1)
4693 off &= ~1;
4694 else
4695 {
4696 Elf_Internal_Rela outrel;
4697
4698 if (htab->elf.srelgot == NULL)
4699 abort ();
4700
4701 outrel.r_offset = (htab->elf.sgot->output_section->vma
4702 + htab->elf.sgot->output_offset + off);
4703
4704 bfd_put_64 (output_bfd, 0,
4705 htab->elf.sgot->contents + off);
4706 bfd_put_64 (output_bfd, 0,
4707 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4708 outrel.r_info = htab->r_info (0, R_X86_64_DTPMOD64);
4709 outrel.r_addend = 0;
4710 elf_append_rela (output_bfd, htab->elf.srelgot,
4711 &outrel);
4712 htab->tls_ld_got.offset |= 1;
4713 }
4714 relocation = htab->elf.sgot->output_section->vma
4715 + htab->elf.sgot->output_offset + off;
4716 unresolved_reloc = FALSE;
4717 break;
4718
4719 case R_X86_64_DTPOFF32:
4720 if (!info->executable|| (input_section->flags & SEC_CODE) == 0)
4721 relocation -= elf_x86_64_dtpoff_base (info);
4722 else
4723 relocation = elf_x86_64_tpoff (info, relocation);
4724 break;
4725
4726 case R_X86_64_TPOFF32:
4727 case R_X86_64_TPOFF64:
4728 BFD_ASSERT (info->executable);
4729 relocation = elf_x86_64_tpoff (info, relocation);
4730 break;
4731
4732 case R_X86_64_DTPOFF64:
4733 BFD_ASSERT ((input_section->flags & SEC_CODE) == 0);
4734 relocation -= elf_x86_64_dtpoff_base (info);
4735 break;
4736
4737 default:
4738 break;
4739 }
4740
4741 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
4742 because such sections are not SEC_ALLOC and thus ld.so will
4743 not process them. */
4744 if (unresolved_reloc
4745 && !((input_section->flags & SEC_DEBUGGING) != 0
4746 && h->def_dynamic)
4747 && _bfd_elf_section_offset (output_bfd, info, input_section,
4748 rel->r_offset) != (bfd_vma) -1)
4749 {
4750 (*_bfd_error_handler)
4751 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
4752 input_bfd,
4753 input_section,
4754 (long) rel->r_offset,
4755 howto->name,
4756 h->root.root.string);
4757 return FALSE;
4758 }
4759
4760 do_relocation:
4761 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
4762 contents, rel->r_offset,
4763 relocation, rel->r_addend);
4764
4765 check_relocation_error:
4766 if (r != bfd_reloc_ok)
4767 {
4768 const char *name;
4769
4770 if (h != NULL)
4771 name = h->root.root.string;
4772 else
4773 {
4774 name = bfd_elf_string_from_elf_section (input_bfd,
4775 symtab_hdr->sh_link,
4776 sym->st_name);
4777 if (name == NULL)
4778 return FALSE;
4779 if (*name == '\0')
4780 name = bfd_section_name (input_bfd, sec);
4781 }
4782
4783 if (r == bfd_reloc_overflow)
4784 {
4785 if (! ((*info->callbacks->reloc_overflow)
4786 (info, (h ? &h->root : NULL), name, howto->name,
4787 (bfd_vma) 0, input_bfd, input_section,
4788 rel->r_offset)))
4789 return FALSE;
4790 }
4791 else
4792 {
4793 (*_bfd_error_handler)
4794 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
4795 input_bfd, input_section,
4796 (long) rel->r_offset, name, (int) r);
4797 return FALSE;
4798 }
4799 }
4800 }
4801
4802 return TRUE;
4803 }
4804
4805 /* Finish up dynamic symbol handling. We set the contents of various
4806 dynamic sections here. */
4807
4808 static bfd_boolean
4809 elf_x86_64_finish_dynamic_symbol (bfd *output_bfd,
4810 struct bfd_link_info *info,
4811 struct elf_link_hash_entry *h,
4812 Elf_Internal_Sym *sym ATTRIBUTE_UNUSED)
4813 {
4814 struct elf_x86_64_link_hash_table *htab;
4815 const struct elf_x86_64_backend_data *abed;
4816 bfd_boolean use_plt_bnd;
4817 struct elf_x86_64_link_hash_entry *eh;
4818
4819 htab = elf_x86_64_hash_table (info);
4820 if (htab == NULL)
4821 return FALSE;
4822
4823 /* Use MPX backend data in case of BND relocation. Use .plt_bnd
4824 section only if there is .plt section. */
4825 use_plt_bnd = htab->elf.splt != NULL && htab->plt_bnd != NULL;
4826 abed = (use_plt_bnd
4827 ? &elf_x86_64_bnd_arch_bed
4828 : get_elf_x86_64_backend_data (output_bfd));
4829
4830 eh = (struct elf_x86_64_link_hash_entry *) h;
4831
4832 if (h->plt.offset != (bfd_vma) -1)
4833 {
4834 bfd_vma plt_index;
4835 bfd_vma got_offset, plt_offset, plt_plt_offset, plt_got_offset;
4836 bfd_vma plt_plt_insn_end, plt_got_insn_size;
4837 Elf_Internal_Rela rela;
4838 bfd_byte *loc;
4839 asection *plt, *gotplt, *relplt, *resolved_plt;
4840 const struct elf_backend_data *bed;
4841 bfd_vma plt_got_pcrel_offset;
4842
4843 /* When building a static executable, use .iplt, .igot.plt and
4844 .rela.iplt sections for STT_GNU_IFUNC symbols. */
4845 if (htab->elf.splt != NULL)
4846 {
4847 plt = htab->elf.splt;
4848 gotplt = htab->elf.sgotplt;
4849 relplt = htab->elf.srelplt;
4850 }
4851 else
4852 {
4853 plt = htab->elf.iplt;
4854 gotplt = htab->elf.igotplt;
4855 relplt = htab->elf.irelplt;
4856 }
4857
4858 /* This symbol has an entry in the procedure linkage table. Set
4859 it up. */
4860 if ((h->dynindx == -1
4861 && !((h->forced_local || info->executable)
4862 && h->def_regular
4863 && h->type == STT_GNU_IFUNC))
4864 || plt == NULL
4865 || gotplt == NULL
4866 || relplt == NULL)
4867 abort ();
4868
4869 /* Get the index in the procedure linkage table which
4870 corresponds to this symbol. This is the index of this symbol
4871 in all the symbols for which we are making plt entries. The
4872 first entry in the procedure linkage table is reserved.
4873
4874 Get the offset into the .got table of the entry that
4875 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
4876 bytes. The first three are reserved for the dynamic linker.
4877
4878 For static executables, we don't reserve anything. */
4879
4880 if (plt == htab->elf.splt)
4881 {
4882 got_offset = h->plt.offset / abed->plt_entry_size - 1;
4883 got_offset = (got_offset + 3) * GOT_ENTRY_SIZE;
4884 }
4885 else
4886 {
4887 got_offset = h->plt.offset / abed->plt_entry_size;
4888 got_offset = got_offset * GOT_ENTRY_SIZE;
4889 }
4890
4891 plt_plt_insn_end = abed->plt_plt_insn_end;
4892 plt_plt_offset = abed->plt_plt_offset;
4893 plt_got_insn_size = abed->plt_got_insn_size;
4894 plt_got_offset = abed->plt_got_offset;
4895 if (use_plt_bnd)
4896 {
4897 /* Use the second PLT with BND relocations. */
4898 const bfd_byte *plt_entry, *plt2_entry;
4899
4900 if (eh->has_bnd_reloc)
4901 {
4902 plt_entry = elf_x86_64_bnd_plt_entry;
4903 plt2_entry = elf_x86_64_bnd_plt2_entry;
4904 }
4905 else
4906 {
4907 plt_entry = elf_x86_64_legacy_plt_entry;
4908 plt2_entry = elf_x86_64_legacy_plt2_entry;
4909
4910 /* Subtract 1 since there is no BND prefix. */
4911 plt_plt_insn_end -= 1;
4912 plt_plt_offset -= 1;
4913 plt_got_insn_size -= 1;
4914 plt_got_offset -= 1;
4915 }
4916
4917 BFD_ASSERT (sizeof (elf_x86_64_bnd_plt_entry)
4918 == sizeof (elf_x86_64_legacy_plt_entry));
4919
4920 /* Fill in the entry in the procedure linkage table. */
4921 memcpy (plt->contents + h->plt.offset,
4922 plt_entry, sizeof (elf_x86_64_legacy_plt_entry));
4923 /* Fill in the entry in the second PLT. */
4924 memcpy (htab->plt_bnd->contents + eh->plt_bnd.offset,
4925 plt2_entry, sizeof (elf_x86_64_legacy_plt2_entry));
4926
4927 resolved_plt = htab->plt_bnd;
4928 plt_offset = eh->plt_bnd.offset;
4929 }
4930 else
4931 {
4932 /* Fill in the entry in the procedure linkage table. */
4933 memcpy (plt->contents + h->plt.offset, abed->plt_entry,
4934 abed->plt_entry_size);
4935
4936 resolved_plt = plt;
4937 plt_offset = h->plt.offset;
4938 }
4939
4940 /* Insert the relocation positions of the plt section. */
4941
4942 /* Put offset the PC-relative instruction referring to the GOT entry,
4943 subtracting the size of that instruction. */
4944 plt_got_pcrel_offset = (gotplt->output_section->vma
4945 + gotplt->output_offset
4946 + got_offset
4947 - resolved_plt->output_section->vma
4948 - resolved_plt->output_offset
4949 - plt_offset
4950 - plt_got_insn_size);
4951
4952 /* Check PC-relative offset overflow in PLT entry. */
4953 if ((plt_got_pcrel_offset + 0x80000000) > 0xffffffff)
4954 info->callbacks->einfo (_("%F%B: PC-relative offset overflow in PLT entry for `%s'\n"),
4955 output_bfd, h->root.root.string);
4956
4957 bfd_put_32 (output_bfd, plt_got_pcrel_offset,
4958 resolved_plt->contents + plt_offset + plt_got_offset);
4959
4960 /* Fill in the entry in the global offset table, initially this
4961 points to the second part of the PLT entry. */
4962 bfd_put_64 (output_bfd, (plt->output_section->vma
4963 + plt->output_offset
4964 + h->plt.offset + abed->plt_lazy_offset),
4965 gotplt->contents + got_offset);
4966
4967 /* Fill in the entry in the .rela.plt section. */
4968 rela.r_offset = (gotplt->output_section->vma
4969 + gotplt->output_offset
4970 + got_offset);
4971 if (h->dynindx == -1
4972 || ((info->executable
4973 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
4974 && h->def_regular
4975 && h->type == STT_GNU_IFUNC))
4976 {
4977 /* If an STT_GNU_IFUNC symbol is locally defined, generate
4978 R_X86_64_IRELATIVE instead of R_X86_64_JUMP_SLOT. */
4979 rela.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
4980 rela.r_addend = (h->root.u.def.value
4981 + h->root.u.def.section->output_section->vma
4982 + h->root.u.def.section->output_offset);
4983 /* R_X86_64_IRELATIVE comes last. */
4984 plt_index = htab->next_irelative_index--;
4985 }
4986 else
4987 {
4988 rela.r_info = htab->r_info (h->dynindx, R_X86_64_JUMP_SLOT);
4989 rela.r_addend = 0;
4990 plt_index = htab->next_jump_slot_index++;
4991 }
4992
4993 /* Don't fill PLT entry for static executables. */
4994 if (plt == htab->elf.splt)
4995 {
4996 bfd_vma plt0_offset = h->plt.offset + plt_plt_insn_end;
4997
4998 /* Put relocation index. */
4999 bfd_put_32 (output_bfd, plt_index,
5000 plt->contents + h->plt.offset + abed->plt_reloc_offset);
5001
5002 /* Put offset for jmp .PLT0 and check for overflow. We don't
5003 check relocation index for overflow since branch displacement
5004 will overflow first. */
5005 if (plt0_offset > 0x80000000)
5006 info->callbacks->einfo (_("%F%B: branch displacement overflow in PLT entry for `%s'\n"),
5007 output_bfd, h->root.root.string);
5008 bfd_put_32 (output_bfd, - plt0_offset,
5009 plt->contents + h->plt.offset + plt_plt_offset);
5010 }
5011
5012 bed = get_elf_backend_data (output_bfd);
5013 loc = relplt->contents + plt_index * bed->s->sizeof_rela;
5014 bed->s->swap_reloca_out (output_bfd, &rela, loc);
5015 }
5016 else if (eh->plt_got.offset != (bfd_vma) -1)
5017 {
5018 bfd_vma got_offset, plt_offset, plt_got_offset, plt_got_insn_size;
5019 asection *plt, *got;
5020 bfd_boolean got_after_plt;
5021 int32_t got_pcrel_offset;
5022 const bfd_byte *got_plt_entry;
5023
5024 /* Set the entry in the GOT procedure linkage table. */
5025 plt = htab->plt_got;
5026 got = htab->elf.sgot;
5027 got_offset = h->got.offset;
5028
5029 if (got_offset == (bfd_vma) -1
5030 || h->type == STT_GNU_IFUNC
5031 || plt == NULL
5032 || got == NULL)
5033 abort ();
5034
5035 /* Use the second PLT entry template for the GOT PLT since they
5036 are the identical. */
5037 plt_got_insn_size = elf_x86_64_bnd_arch_bed.plt_got_insn_size;
5038 plt_got_offset = elf_x86_64_bnd_arch_bed.plt_got_offset;
5039 if (eh->has_bnd_reloc)
5040 got_plt_entry = elf_x86_64_bnd_plt2_entry;
5041 else
5042 {
5043 got_plt_entry = elf_x86_64_legacy_plt2_entry;
5044
5045 /* Subtract 1 since there is no BND prefix. */
5046 plt_got_insn_size -= 1;
5047 plt_got_offset -= 1;
5048 }
5049
5050 /* Fill in the entry in the GOT procedure linkage table. */
5051 plt_offset = eh->plt_got.offset;
5052 memcpy (plt->contents + plt_offset,
5053 got_plt_entry, sizeof (elf_x86_64_legacy_plt2_entry));
5054
5055 /* Put offset the PC-relative instruction referring to the GOT
5056 entry, subtracting the size of that instruction. */
5057 got_pcrel_offset = (got->output_section->vma
5058 + got->output_offset
5059 + got_offset
5060 - plt->output_section->vma
5061 - plt->output_offset
5062 - plt_offset
5063 - plt_got_insn_size);
5064
5065 /* Check PC-relative offset overflow in GOT PLT entry. */
5066 got_after_plt = got->output_section->vma > plt->output_section->vma;
5067 if ((got_after_plt && got_pcrel_offset < 0)
5068 || (!got_after_plt && got_pcrel_offset > 0))
5069 info->callbacks->einfo (_("%F%B: PC-relative offset overflow in GOT PLT entry for `%s'\n"),
5070 output_bfd, h->root.root.string);
5071
5072 bfd_put_32 (output_bfd, got_pcrel_offset,
5073 plt->contents + plt_offset + plt_got_offset);
5074 }
5075
5076 if (!h->def_regular
5077 && (h->plt.offset != (bfd_vma) -1
5078 || eh->plt_got.offset != (bfd_vma) -1))
5079 {
5080 /* Mark the symbol as undefined, rather than as defined in
5081 the .plt section. Leave the value if there were any
5082 relocations where pointer equality matters (this is a clue
5083 for the dynamic linker, to make function pointer
5084 comparisons work between an application and shared
5085 library), otherwise set it to zero. If a function is only
5086 called from a binary, there is no need to slow down
5087 shared libraries because of that. */
5088 sym->st_shndx = SHN_UNDEF;
5089 if (!h->pointer_equality_needed)
5090 sym->st_value = 0;
5091 }
5092
5093 if (h->got.offset != (bfd_vma) -1
5094 && ! GOT_TLS_GD_ANY_P (elf_x86_64_hash_entry (h)->tls_type)
5095 && elf_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
5096 {
5097 Elf_Internal_Rela rela;
5098
5099 /* This symbol has an entry in the global offset table. Set it
5100 up. */
5101 if (htab->elf.sgot == NULL || htab->elf.srelgot == NULL)
5102 abort ();
5103
5104 rela.r_offset = (htab->elf.sgot->output_section->vma
5105 + htab->elf.sgot->output_offset
5106 + (h->got.offset &~ (bfd_vma) 1));
5107
5108 /* If this is a static link, or it is a -Bsymbolic link and the
5109 symbol is defined locally or was forced to be local because
5110 of a version file, we just want to emit a RELATIVE reloc.
5111 The entry in the global offset table will already have been
5112 initialized in the relocate_section function. */
5113 if (h->def_regular
5114 && h->type == STT_GNU_IFUNC)
5115 {
5116 if (info->shared)
5117 {
5118 /* Generate R_X86_64_GLOB_DAT. */
5119 goto do_glob_dat;
5120 }
5121 else
5122 {
5123 asection *plt;
5124
5125 if (!h->pointer_equality_needed)
5126 abort ();
5127
5128 /* For non-shared object, we can't use .got.plt, which
5129 contains the real function addres if we need pointer
5130 equality. We load the GOT entry with the PLT entry. */
5131 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
5132 bfd_put_64 (output_bfd, (plt->output_section->vma
5133 + plt->output_offset
5134 + h->plt.offset),
5135 htab->elf.sgot->contents + h->got.offset);
5136 return TRUE;
5137 }
5138 }
5139 else if (info->shared
5140 && SYMBOL_REFERENCES_LOCAL (info, h))
5141 {
5142 if (!h->def_regular)
5143 return FALSE;
5144 BFD_ASSERT((h->got.offset & 1) != 0);
5145 rela.r_info = htab->r_info (0, R_X86_64_RELATIVE);
5146 rela.r_addend = (h->root.u.def.value
5147 + h->root.u.def.section->output_section->vma
5148 + h->root.u.def.section->output_offset);
5149 }
5150 else
5151 {
5152 BFD_ASSERT((h->got.offset & 1) == 0);
5153 do_glob_dat:
5154 bfd_put_64 (output_bfd, (bfd_vma) 0,
5155 htab->elf.sgot->contents + h->got.offset);
5156 rela.r_info = htab->r_info (h->dynindx, R_X86_64_GLOB_DAT);
5157 rela.r_addend = 0;
5158 }
5159
5160 elf_append_rela (output_bfd, htab->elf.srelgot, &rela);
5161 }
5162
5163 if (h->needs_copy)
5164 {
5165 Elf_Internal_Rela rela;
5166
5167 /* This symbol needs a copy reloc. Set it up. */
5168
5169 if (h->dynindx == -1
5170 || (h->root.type != bfd_link_hash_defined
5171 && h->root.type != bfd_link_hash_defweak)
5172 || htab->srelbss == NULL)
5173 abort ();
5174
5175 rela.r_offset = (h->root.u.def.value
5176 + h->root.u.def.section->output_section->vma
5177 + h->root.u.def.section->output_offset);
5178 rela.r_info = htab->r_info (h->dynindx, R_X86_64_COPY);
5179 rela.r_addend = 0;
5180 elf_append_rela (output_bfd, htab->srelbss, &rela);
5181 }
5182
5183 return TRUE;
5184 }
5185
5186 /* Finish up local dynamic symbol handling. We set the contents of
5187 various dynamic sections here. */
5188
5189 static bfd_boolean
5190 elf_x86_64_finish_local_dynamic_symbol (void **slot, void *inf)
5191 {
5192 struct elf_link_hash_entry *h
5193 = (struct elf_link_hash_entry *) *slot;
5194 struct bfd_link_info *info
5195 = (struct bfd_link_info *) inf;
5196
5197 return elf_x86_64_finish_dynamic_symbol (info->output_bfd,
5198 info, h, NULL);
5199 }
5200
5201 /* Used to decide how to sort relocs in an optimal manner for the
5202 dynamic linker, before writing them out. */
5203
5204 static enum elf_reloc_type_class
5205 elf_x86_64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
5206 const asection *rel_sec ATTRIBUTE_UNUSED,
5207 const Elf_Internal_Rela *rela)
5208 {
5209 switch ((int) ELF32_R_TYPE (rela->r_info))
5210 {
5211 case R_X86_64_RELATIVE:
5212 case R_X86_64_RELATIVE64:
5213 return reloc_class_relative;
5214 case R_X86_64_JUMP_SLOT:
5215 return reloc_class_plt;
5216 case R_X86_64_COPY:
5217 return reloc_class_copy;
5218 default:
5219 return reloc_class_normal;
5220 }
5221 }
5222
5223 /* Finish up the dynamic sections. */
5224
5225 static bfd_boolean
5226 elf_x86_64_finish_dynamic_sections (bfd *output_bfd,
5227 struct bfd_link_info *info)
5228 {
5229 struct elf_x86_64_link_hash_table *htab;
5230 bfd *dynobj;
5231 asection *sdyn;
5232 const struct elf_x86_64_backend_data *abed;
5233
5234 htab = elf_x86_64_hash_table (info);
5235 if (htab == NULL)
5236 return FALSE;
5237
5238 /* Use MPX backend data in case of BND relocation. Use .plt_bnd
5239 section only if there is .plt section. */
5240 abed = (htab->elf.splt != NULL && htab->plt_bnd != NULL
5241 ? &elf_x86_64_bnd_arch_bed
5242 : get_elf_x86_64_backend_data (output_bfd));
5243
5244 dynobj = htab->elf.dynobj;
5245 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
5246
5247 if (htab->elf.dynamic_sections_created)
5248 {
5249 bfd_byte *dyncon, *dynconend;
5250 const struct elf_backend_data *bed;
5251 bfd_size_type sizeof_dyn;
5252
5253 if (sdyn == NULL || htab->elf.sgot == NULL)
5254 abort ();
5255
5256 bed = get_elf_backend_data (dynobj);
5257 sizeof_dyn = bed->s->sizeof_dyn;
5258 dyncon = sdyn->contents;
5259 dynconend = sdyn->contents + sdyn->size;
5260 for (; dyncon < dynconend; dyncon += sizeof_dyn)
5261 {
5262 Elf_Internal_Dyn dyn;
5263 asection *s;
5264
5265 (*bed->s->swap_dyn_in) (dynobj, dyncon, &dyn);
5266
5267 switch (dyn.d_tag)
5268 {
5269 default:
5270 continue;
5271
5272 case DT_PLTGOT:
5273 s = htab->elf.sgotplt;
5274 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
5275 break;
5276
5277 case DT_JMPREL:
5278 dyn.d_un.d_ptr = htab->elf.srelplt->output_section->vma;
5279 break;
5280
5281 case DT_PLTRELSZ:
5282 s = htab->elf.srelplt->output_section;
5283 dyn.d_un.d_val = s->size;
5284 break;
5285
5286 case DT_RELASZ:
5287 /* The procedure linkage table relocs (DT_JMPREL) should
5288 not be included in the overall relocs (DT_RELA).
5289 Therefore, we override the DT_RELASZ entry here to
5290 make it not include the JMPREL relocs. Since the
5291 linker script arranges for .rela.plt to follow all
5292 other relocation sections, we don't have to worry
5293 about changing the DT_RELA entry. */
5294 if (htab->elf.srelplt != NULL)
5295 {
5296 s = htab->elf.srelplt->output_section;
5297 dyn.d_un.d_val -= s->size;
5298 }
5299 break;
5300
5301 case DT_TLSDESC_PLT:
5302 s = htab->elf.splt;
5303 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
5304 + htab->tlsdesc_plt;
5305 break;
5306
5307 case DT_TLSDESC_GOT:
5308 s = htab->elf.sgot;
5309 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
5310 + htab->tlsdesc_got;
5311 break;
5312 }
5313
5314 (*bed->s->swap_dyn_out) (output_bfd, &dyn, dyncon);
5315 }
5316
5317 /* Fill in the special first entry in the procedure linkage table. */
5318 if (htab->elf.splt && htab->elf.splt->size > 0)
5319 {
5320 /* Fill in the first entry in the procedure linkage table. */
5321 memcpy (htab->elf.splt->contents,
5322 abed->plt0_entry, abed->plt_entry_size);
5323 /* Add offset for pushq GOT+8(%rip), since the instruction
5324 uses 6 bytes subtract this value. */
5325 bfd_put_32 (output_bfd,
5326 (htab->elf.sgotplt->output_section->vma
5327 + htab->elf.sgotplt->output_offset
5328 + 8
5329 - htab->elf.splt->output_section->vma
5330 - htab->elf.splt->output_offset
5331 - 6),
5332 htab->elf.splt->contents + abed->plt0_got1_offset);
5333 /* Add offset for the PC-relative instruction accessing GOT+16,
5334 subtracting the offset to the end of that instruction. */
5335 bfd_put_32 (output_bfd,
5336 (htab->elf.sgotplt->output_section->vma
5337 + htab->elf.sgotplt->output_offset
5338 + 16
5339 - htab->elf.splt->output_section->vma
5340 - htab->elf.splt->output_offset
5341 - abed->plt0_got2_insn_end),
5342 htab->elf.splt->contents + abed->plt0_got2_offset);
5343
5344 elf_section_data (htab->elf.splt->output_section)
5345 ->this_hdr.sh_entsize = abed->plt_entry_size;
5346
5347 if (htab->tlsdesc_plt)
5348 {
5349 bfd_put_64 (output_bfd, (bfd_vma) 0,
5350 htab->elf.sgot->contents + htab->tlsdesc_got);
5351
5352 memcpy (htab->elf.splt->contents + htab->tlsdesc_plt,
5353 abed->plt0_entry, abed->plt_entry_size);
5354
5355 /* Add offset for pushq GOT+8(%rip), since the
5356 instruction uses 6 bytes subtract this value. */
5357 bfd_put_32 (output_bfd,
5358 (htab->elf.sgotplt->output_section->vma
5359 + htab->elf.sgotplt->output_offset
5360 + 8
5361 - htab->elf.splt->output_section->vma
5362 - htab->elf.splt->output_offset
5363 - htab->tlsdesc_plt
5364 - 6),
5365 htab->elf.splt->contents
5366 + htab->tlsdesc_plt + abed->plt0_got1_offset);
5367 /* Add offset for the PC-relative instruction accessing GOT+TDG,
5368 where TGD stands for htab->tlsdesc_got, subtracting the offset
5369 to the end of that instruction. */
5370 bfd_put_32 (output_bfd,
5371 (htab->elf.sgot->output_section->vma
5372 + htab->elf.sgot->output_offset
5373 + htab->tlsdesc_got
5374 - htab->elf.splt->output_section->vma
5375 - htab->elf.splt->output_offset
5376 - htab->tlsdesc_plt
5377 - abed->plt0_got2_insn_end),
5378 htab->elf.splt->contents
5379 + htab->tlsdesc_plt + abed->plt0_got2_offset);
5380 }
5381 }
5382 }
5383
5384 if (htab->plt_bnd != NULL)
5385 elf_section_data (htab->plt_bnd->output_section)
5386 ->this_hdr.sh_entsize = sizeof (elf_x86_64_bnd_plt2_entry);
5387
5388 if (htab->elf.sgotplt)
5389 {
5390 if (bfd_is_abs_section (htab->elf.sgotplt->output_section))
5391 {
5392 (*_bfd_error_handler)
5393 (_("discarded output section: `%A'"), htab->elf.sgotplt);
5394 return FALSE;
5395 }
5396
5397 /* Fill in the first three entries in the global offset table. */
5398 if (htab->elf.sgotplt->size > 0)
5399 {
5400 /* Set the first entry in the global offset table to the address of
5401 the dynamic section. */
5402 if (sdyn == NULL)
5403 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents);
5404 else
5405 bfd_put_64 (output_bfd,
5406 sdyn->output_section->vma + sdyn->output_offset,
5407 htab->elf.sgotplt->contents);
5408 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
5409 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
5410 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE*2);
5411 }
5412
5413 elf_section_data (htab->elf.sgotplt->output_section)->this_hdr.sh_entsize =
5414 GOT_ENTRY_SIZE;
5415 }
5416
5417 /* Adjust .eh_frame for .plt section. */
5418 if (htab->plt_eh_frame != NULL
5419 && htab->plt_eh_frame->contents != NULL)
5420 {
5421 if (htab->elf.splt != NULL
5422 && htab->elf.splt->size != 0
5423 && (htab->elf.splt->flags & SEC_EXCLUDE) == 0
5424 && htab->elf.splt->output_section != NULL
5425 && htab->plt_eh_frame->output_section != NULL)
5426 {
5427 bfd_vma plt_start = htab->elf.splt->output_section->vma;
5428 bfd_vma eh_frame_start = htab->plt_eh_frame->output_section->vma
5429 + htab->plt_eh_frame->output_offset
5430 + PLT_FDE_START_OFFSET;
5431 bfd_put_signed_32 (dynobj, plt_start - eh_frame_start,
5432 htab->plt_eh_frame->contents
5433 + PLT_FDE_START_OFFSET);
5434 }
5435 if (htab->plt_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME)
5436 {
5437 if (! _bfd_elf_write_section_eh_frame (output_bfd, info,
5438 htab->plt_eh_frame,
5439 htab->plt_eh_frame->contents))
5440 return FALSE;
5441 }
5442 }
5443
5444 if (htab->elf.sgot && htab->elf.sgot->size > 0)
5445 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize
5446 = GOT_ENTRY_SIZE;
5447
5448 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
5449 htab_traverse (htab->loc_hash_table,
5450 elf_x86_64_finish_local_dynamic_symbol,
5451 info);
5452
5453 return TRUE;
5454 }
5455
5456 /* Return address in section PLT for the Ith GOTPLT relocation, for
5457 relocation REL or (bfd_vma) -1 if it should not be included. */
5458
5459 static bfd_vma
5460 elf_x86_64_plt_sym_val (bfd_vma i, const asection *plt,
5461 const arelent *rel)
5462 {
5463 bfd *abfd;
5464 const struct elf_x86_64_backend_data *bed;
5465 bfd_vma plt_offset;
5466
5467 /* Only match R_X86_64_JUMP_SLOT and R_X86_64_IRELATIVE. */
5468 if (rel->howto->type != R_X86_64_JUMP_SLOT
5469 && rel->howto->type != R_X86_64_IRELATIVE)
5470 return (bfd_vma) -1;
5471
5472 abfd = plt->owner;
5473 bed = get_elf_x86_64_backend_data (abfd);
5474 plt_offset = bed->plt_entry_size;
5475
5476 if (elf_elfheader (abfd)->e_ident[EI_OSABI] != ELFOSABI_GNU)
5477 return plt->vma + (i + 1) * plt_offset;
5478
5479 while (plt_offset < plt->size)
5480 {
5481 bfd_vma reloc_index;
5482 bfd_byte reloc_index_raw[4];
5483
5484 if (!bfd_get_section_contents (abfd, (asection *) plt,
5485 reloc_index_raw,
5486 plt_offset + bed->plt_reloc_offset,
5487 sizeof (reloc_index_raw)))
5488 return (bfd_vma) -1;
5489
5490 reloc_index = H_GET_32 (abfd, reloc_index_raw);
5491 if (reloc_index == i)
5492 return plt->vma + plt_offset;
5493 plt_offset += bed->plt_entry_size;
5494 }
5495
5496 abort ();
5497 }
5498
5499 /* Return offset in .plt.bnd section for the Ith GOTPLT relocation with
5500 PLT section, or (bfd_vma) -1 if it should not be included. */
5501
5502 static bfd_vma
5503 elf_x86_64_plt_sym_val_offset_plt_bnd (bfd_vma i, const asection *plt)
5504 {
5505 const struct elf_x86_64_backend_data *bed = &elf_x86_64_bnd_arch_bed;
5506 bfd *abfd = plt->owner;
5507 bfd_vma plt_offset = bed->plt_entry_size;
5508
5509 if (elf_elfheader (abfd)->e_ident[EI_OSABI] != ELFOSABI_GNU)
5510 return i * sizeof (elf_x86_64_legacy_plt2_entry);
5511
5512 while (plt_offset < plt->size)
5513 {
5514 bfd_vma reloc_index;
5515 bfd_byte reloc_index_raw[4];
5516
5517 if (!bfd_get_section_contents (abfd, (asection *) plt,
5518 reloc_index_raw,
5519 plt_offset + bed->plt_reloc_offset,
5520 sizeof (reloc_index_raw)))
5521 return (bfd_vma) -1;
5522
5523 reloc_index = H_GET_32 (abfd, reloc_index_raw);
5524 if (reloc_index == i)
5525 {
5526 /* This is the index in .plt section. */
5527 long plt_index = plt_offset / bed->plt_entry_size;
5528 /* Return the offset in .plt.bnd section. */
5529 return (plt_index - 1) * sizeof (elf_x86_64_legacy_plt2_entry);
5530 }
5531 plt_offset += bed->plt_entry_size;
5532 }
5533
5534 abort ();
5535 }
5536
5537 /* Similar to _bfd_elf_get_synthetic_symtab, with .plt.bnd section
5538 support. */
5539
5540 static long
5541 elf_x86_64_get_synthetic_symtab (bfd *abfd,
5542 long symcount,
5543 asymbol **syms,
5544 long dynsymcount,
5545 asymbol **dynsyms,
5546 asymbol **ret)
5547 {
5548 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5549 asection *relplt;
5550 asymbol *s;
5551 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
5552 arelent *p;
5553 long count, i, n;
5554 size_t size;
5555 Elf_Internal_Shdr *hdr;
5556 char *names;
5557 asection *plt, *plt_push;
5558
5559 plt_push = bfd_get_section_by_name (abfd, ".plt");
5560 if (plt_push == NULL)
5561 return 0;
5562
5563 plt = bfd_get_section_by_name (abfd, ".plt.bnd");
5564 /* Use the generic ELF version if there is no .plt.bnd section. */
5565 if (plt == NULL)
5566 return _bfd_elf_get_synthetic_symtab (abfd, symcount, syms,
5567 dynsymcount, dynsyms, ret);
5568
5569 *ret = NULL;
5570
5571 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
5572 return 0;
5573
5574 if (dynsymcount <= 0)
5575 return 0;
5576
5577 relplt = bfd_get_section_by_name (abfd, ".rela.plt");
5578 if (relplt == NULL)
5579 return 0;
5580
5581 hdr = &elf_section_data (relplt)->this_hdr;
5582 if (hdr->sh_link != elf_dynsymtab (abfd)
5583 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
5584 return 0;
5585
5586 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
5587 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
5588 return -1;
5589
5590 count = relplt->size / hdr->sh_entsize;
5591 size = count * sizeof (asymbol);
5592 p = relplt->relocation;
5593 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
5594 {
5595 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
5596 if (p->addend != 0)
5597 size += sizeof ("+0x") - 1 + 8 + 8;
5598 }
5599
5600 s = *ret = (asymbol *) bfd_malloc (size);
5601 if (s == NULL)
5602 return -1;
5603
5604 names = (char *) (s + count);
5605 p = relplt->relocation;
5606 n = 0;
5607 for (i = 0; i < count; i++, p++)
5608 {
5609 bfd_vma offset;
5610 size_t len;
5611
5612 if (p->howto->type != R_X86_64_JUMP_SLOT
5613 && p->howto->type != R_X86_64_IRELATIVE)
5614 continue;
5615
5616 offset = elf_x86_64_plt_sym_val_offset_plt_bnd (i, plt_push);
5617
5618 *s = **p->sym_ptr_ptr;
5619 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
5620 we are defining a symbol, ensure one of them is set. */
5621 if ((s->flags & BSF_LOCAL) == 0)
5622 s->flags |= BSF_GLOBAL;
5623 s->flags |= BSF_SYNTHETIC;
5624 s->section = plt;
5625 s->value = offset;
5626 s->name = names;
5627 s->udata.p = NULL;
5628 len = strlen ((*p->sym_ptr_ptr)->name);
5629 memcpy (names, (*p->sym_ptr_ptr)->name, len);
5630 names += len;
5631 if (p->addend != 0)
5632 {
5633 char buf[30], *a;
5634
5635 memcpy (names, "+0x", sizeof ("+0x") - 1);
5636 names += sizeof ("+0x") - 1;
5637 bfd_sprintf_vma (abfd, buf, p->addend);
5638 for (a = buf; *a == '0'; ++a)
5639 ;
5640 len = strlen (a);
5641 memcpy (names, a, len);
5642 names += len;
5643 }
5644 memcpy (names, "@plt", sizeof ("@plt"));
5645 names += sizeof ("@plt");
5646 ++s, ++n;
5647 }
5648
5649 return n;
5650 }
5651
5652 /* Handle an x86-64 specific section when reading an object file. This
5653 is called when elfcode.h finds a section with an unknown type. */
5654
5655 static bfd_boolean
5656 elf_x86_64_section_from_shdr (bfd *abfd, Elf_Internal_Shdr *hdr,
5657 const char *name, int shindex)
5658 {
5659 if (hdr->sh_type != SHT_X86_64_UNWIND)
5660 return FALSE;
5661
5662 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5663 return FALSE;
5664
5665 return TRUE;
5666 }
5667
5668 /* Hook called by the linker routine which adds symbols from an object
5669 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
5670 of .bss. */
5671
5672 static bfd_boolean
5673 elf_x86_64_add_symbol_hook (bfd *abfd,
5674 struct bfd_link_info *info,
5675 Elf_Internal_Sym *sym,
5676 const char **namep ATTRIBUTE_UNUSED,
5677 flagword *flagsp ATTRIBUTE_UNUSED,
5678 asection **secp,
5679 bfd_vma *valp)
5680 {
5681 asection *lcomm;
5682
5683 switch (sym->st_shndx)
5684 {
5685 case SHN_X86_64_LCOMMON:
5686 lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
5687 if (lcomm == NULL)
5688 {
5689 lcomm = bfd_make_section_with_flags (abfd,
5690 "LARGE_COMMON",
5691 (SEC_ALLOC
5692 | SEC_IS_COMMON
5693 | SEC_LINKER_CREATED));
5694 if (lcomm == NULL)
5695 return FALSE;
5696 elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
5697 }
5698 *secp = lcomm;
5699 *valp = sym->st_size;
5700 return TRUE;
5701 }
5702
5703 if ((ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
5704 || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE)
5705 && (abfd->flags & DYNAMIC) == 0
5706 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
5707 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
5708
5709 return TRUE;
5710 }
5711
5712
5713 /* Given a BFD section, try to locate the corresponding ELF section
5714 index. */
5715
5716 static bfd_boolean
5717 elf_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5718 asection *sec, int *index_return)
5719 {
5720 if (sec == &_bfd_elf_large_com_section)
5721 {
5722 *index_return = SHN_X86_64_LCOMMON;
5723 return TRUE;
5724 }
5725 return FALSE;
5726 }
5727
5728 /* Process a symbol. */
5729
5730 static void
5731 elf_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
5732 asymbol *asym)
5733 {
5734 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
5735
5736 switch (elfsym->internal_elf_sym.st_shndx)
5737 {
5738 case SHN_X86_64_LCOMMON:
5739 asym->section = &_bfd_elf_large_com_section;
5740 asym->value = elfsym->internal_elf_sym.st_size;
5741 /* Common symbol doesn't set BSF_GLOBAL. */
5742 asym->flags &= ~BSF_GLOBAL;
5743 break;
5744 }
5745 }
5746
5747 static bfd_boolean
5748 elf_x86_64_common_definition (Elf_Internal_Sym *sym)
5749 {
5750 return (sym->st_shndx == SHN_COMMON
5751 || sym->st_shndx == SHN_X86_64_LCOMMON);
5752 }
5753
5754 static unsigned int
5755 elf_x86_64_common_section_index (asection *sec)
5756 {
5757 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
5758 return SHN_COMMON;
5759 else
5760 return SHN_X86_64_LCOMMON;
5761 }
5762
5763 static asection *
5764 elf_x86_64_common_section (asection *sec)
5765 {
5766 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
5767 return bfd_com_section_ptr;
5768 else
5769 return &_bfd_elf_large_com_section;
5770 }
5771
5772 static bfd_boolean
5773 elf_x86_64_merge_symbol (struct elf_link_hash_entry *h,
5774 const Elf_Internal_Sym *sym,
5775 asection **psec,
5776 bfd_boolean newdef,
5777 bfd_boolean olddef,
5778 bfd *oldbfd,
5779 const asection *oldsec)
5780 {
5781 /* A normal common symbol and a large common symbol result in a
5782 normal common symbol. We turn the large common symbol into a
5783 normal one. */
5784 if (!olddef
5785 && h->root.type == bfd_link_hash_common
5786 && !newdef
5787 && bfd_is_com_section (*psec)
5788 && oldsec != *psec)
5789 {
5790 if (sym->st_shndx == SHN_COMMON
5791 && (elf_section_flags (oldsec) & SHF_X86_64_LARGE) != 0)
5792 {
5793 h->root.u.c.p->section
5794 = bfd_make_section_old_way (oldbfd, "COMMON");
5795 h->root.u.c.p->section->flags = SEC_ALLOC;
5796 }
5797 else if (sym->st_shndx == SHN_X86_64_LCOMMON
5798 && (elf_section_flags (oldsec) & SHF_X86_64_LARGE) == 0)
5799 *psec = bfd_com_section_ptr;
5800 }
5801
5802 return TRUE;
5803 }
5804
5805 static int
5806 elf_x86_64_additional_program_headers (bfd *abfd,
5807 struct bfd_link_info *info ATTRIBUTE_UNUSED)
5808 {
5809 asection *s;
5810 int count = 0;
5811
5812 /* Check to see if we need a large readonly segment. */
5813 s = bfd_get_section_by_name (abfd, ".lrodata");
5814 if (s && (s->flags & SEC_LOAD))
5815 count++;
5816
5817 /* Check to see if we need a large data segment. Since .lbss sections
5818 is placed right after the .bss section, there should be no need for
5819 a large data segment just because of .lbss. */
5820 s = bfd_get_section_by_name (abfd, ".ldata");
5821 if (s && (s->flags & SEC_LOAD))
5822 count++;
5823
5824 return count;
5825 }
5826
5827 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5828
5829 static bfd_boolean
5830 elf_x86_64_hash_symbol (struct elf_link_hash_entry *h)
5831 {
5832 if (h->plt.offset != (bfd_vma) -1
5833 && !h->def_regular
5834 && !h->pointer_equality_needed)
5835 return FALSE;
5836
5837 return _bfd_elf_hash_symbol (h);
5838 }
5839
5840 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. */
5841
5842 static bfd_boolean
5843 elf_x86_64_relocs_compatible (const bfd_target *input,
5844 const bfd_target *output)
5845 {
5846 return ((xvec_get_elf_backend_data (input)->s->elfclass
5847 == xvec_get_elf_backend_data (output)->s->elfclass)
5848 && _bfd_elf_relocs_compatible (input, output));
5849 }
5850
5851 static const struct bfd_elf_special_section
5852 elf_x86_64_special_sections[]=
5853 {
5854 { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
5855 { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
5856 { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
5857 { STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
5858 { STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
5859 { STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
5860 { NULL, 0, 0, 0, 0 }
5861 };
5862
5863 #define TARGET_LITTLE_SYM x86_64_elf64_vec
5864 #define TARGET_LITTLE_NAME "elf64-x86-64"
5865 #define ELF_ARCH bfd_arch_i386
5866 #define ELF_TARGET_ID X86_64_ELF_DATA
5867 #define ELF_MACHINE_CODE EM_X86_64
5868 #define ELF_MAXPAGESIZE 0x200000
5869 #define ELF_MINPAGESIZE 0x1000
5870 #define ELF_COMMONPAGESIZE 0x1000
5871
5872 #define elf_backend_can_gc_sections 1
5873 #define elf_backend_can_refcount 1
5874 #define elf_backend_want_got_plt 1
5875 #define elf_backend_plt_readonly 1
5876 #define elf_backend_want_plt_sym 0
5877 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
5878 #define elf_backend_rela_normal 1
5879 #define elf_backend_plt_alignment 4
5880
5881 #define elf_info_to_howto elf_x86_64_info_to_howto
5882
5883 #define bfd_elf64_bfd_link_hash_table_create \
5884 elf_x86_64_link_hash_table_create
5885 #define bfd_elf64_bfd_reloc_type_lookup elf_x86_64_reloc_type_lookup
5886 #define bfd_elf64_bfd_reloc_name_lookup \
5887 elf_x86_64_reloc_name_lookup
5888
5889 #define elf_backend_adjust_dynamic_symbol elf_x86_64_adjust_dynamic_symbol
5890 #define elf_backend_relocs_compatible elf_x86_64_relocs_compatible
5891 #define elf_backend_check_relocs elf_x86_64_check_relocs
5892 #define elf_backend_copy_indirect_symbol elf_x86_64_copy_indirect_symbol
5893 #define elf_backend_create_dynamic_sections elf_x86_64_create_dynamic_sections
5894 #define elf_backend_finish_dynamic_sections elf_x86_64_finish_dynamic_sections
5895 #define elf_backend_finish_dynamic_symbol elf_x86_64_finish_dynamic_symbol
5896 #define elf_backend_gc_mark_hook elf_x86_64_gc_mark_hook
5897 #define elf_backend_gc_sweep_hook elf_x86_64_gc_sweep_hook
5898 #define elf_backend_grok_prstatus elf_x86_64_grok_prstatus
5899 #define elf_backend_grok_psinfo elf_x86_64_grok_psinfo
5900 #ifdef CORE_HEADER
5901 #define elf_backend_write_core_note elf_x86_64_write_core_note
5902 #endif
5903 #define elf_backend_reloc_type_class elf_x86_64_reloc_type_class
5904 #define elf_backend_relocate_section elf_x86_64_relocate_section
5905 #define elf_backend_size_dynamic_sections elf_x86_64_size_dynamic_sections
5906 #define elf_backend_always_size_sections elf_x86_64_always_size_sections
5907 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
5908 #define elf_backend_plt_sym_val elf_x86_64_plt_sym_val
5909 #define elf_backend_object_p elf64_x86_64_elf_object_p
5910 #define bfd_elf64_mkobject elf_x86_64_mkobject
5911 #define bfd_elf64_get_synthetic_symtab elf_x86_64_get_synthetic_symtab
5912
5913 #define elf_backend_section_from_shdr \
5914 elf_x86_64_section_from_shdr
5915
5916 #define elf_backend_section_from_bfd_section \
5917 elf_x86_64_elf_section_from_bfd_section
5918 #define elf_backend_add_symbol_hook \
5919 elf_x86_64_add_symbol_hook
5920 #define elf_backend_symbol_processing \
5921 elf_x86_64_symbol_processing
5922 #define elf_backend_common_section_index \
5923 elf_x86_64_common_section_index
5924 #define elf_backend_common_section \
5925 elf_x86_64_common_section
5926 #define elf_backend_common_definition \
5927 elf_x86_64_common_definition
5928 #define elf_backend_merge_symbol \
5929 elf_x86_64_merge_symbol
5930 #define elf_backend_special_sections \
5931 elf_x86_64_special_sections
5932 #define elf_backend_additional_program_headers \
5933 elf_x86_64_additional_program_headers
5934 #define elf_backend_hash_symbol \
5935 elf_x86_64_hash_symbol
5936
5937 #include "elf64-target.h"
5938
5939 /* FreeBSD support. */
5940
5941 #undef TARGET_LITTLE_SYM
5942 #define TARGET_LITTLE_SYM x86_64_elf64_fbsd_vec
5943 #undef TARGET_LITTLE_NAME
5944 #define TARGET_LITTLE_NAME "elf64-x86-64-freebsd"
5945
5946 #undef ELF_OSABI
5947 #define ELF_OSABI ELFOSABI_FREEBSD
5948
5949 #undef elf64_bed
5950 #define elf64_bed elf64_x86_64_fbsd_bed
5951
5952 #include "elf64-target.h"
5953
5954 /* Solaris 2 support. */
5955
5956 #undef TARGET_LITTLE_SYM
5957 #define TARGET_LITTLE_SYM x86_64_elf64_sol2_vec
5958 #undef TARGET_LITTLE_NAME
5959 #define TARGET_LITTLE_NAME "elf64-x86-64-sol2"
5960
5961 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
5962 objects won't be recognized. */
5963 #undef ELF_OSABI
5964
5965 #undef elf64_bed
5966 #define elf64_bed elf64_x86_64_sol2_bed
5967
5968 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte
5969 boundary. */
5970 #undef elf_backend_static_tls_alignment
5971 #define elf_backend_static_tls_alignment 16
5972
5973 /* The Solaris 2 ABI requires a plt symbol on all platforms.
5974
5975 Cf. Linker and Libraries Guide, Ch. 2, Link-Editor, Generating the Output
5976 File, p.63. */
5977 #undef elf_backend_want_plt_sym
5978 #define elf_backend_want_plt_sym 1
5979
5980 #include "elf64-target.h"
5981
5982 #undef bfd_elf64_get_synthetic_symtab
5983
5984 /* Native Client support. */
5985
5986 static bfd_boolean
5987 elf64_x86_64_nacl_elf_object_p (bfd *abfd)
5988 {
5989 /* Set the right machine number for a NaCl x86-64 ELF64 file. */
5990 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64_nacl);
5991 return TRUE;
5992 }
5993
5994 #undef TARGET_LITTLE_SYM
5995 #define TARGET_LITTLE_SYM x86_64_elf64_nacl_vec
5996 #undef TARGET_LITTLE_NAME
5997 #define TARGET_LITTLE_NAME "elf64-x86-64-nacl"
5998 #undef elf64_bed
5999 #define elf64_bed elf64_x86_64_nacl_bed
6000
6001 #undef ELF_MAXPAGESIZE
6002 #undef ELF_MINPAGESIZE
6003 #undef ELF_COMMONPAGESIZE
6004 #define ELF_MAXPAGESIZE 0x10000
6005 #define ELF_MINPAGESIZE 0x10000
6006 #define ELF_COMMONPAGESIZE 0x10000
6007
6008 /* Restore defaults. */
6009 #undef ELF_OSABI
6010 #undef elf_backend_static_tls_alignment
6011 #undef elf_backend_want_plt_sym
6012 #define elf_backend_want_plt_sym 0
6013
6014 /* NaCl uses substantially different PLT entries for the same effects. */
6015
6016 #undef elf_backend_plt_alignment
6017 #define elf_backend_plt_alignment 5
6018 #define NACL_PLT_ENTRY_SIZE 64
6019 #define NACLMASK 0xe0 /* 32-byte alignment mask. */
6020
6021 static const bfd_byte elf_x86_64_nacl_plt0_entry[NACL_PLT_ENTRY_SIZE] =
6022 {
6023 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
6024 0x4c, 0x8b, 0x1d, 16, 0, 0, 0, /* mov GOT+16(%rip), %r11 */
6025 0x41, 0x83, 0xe3, NACLMASK, /* and $-32, %r11d */
6026 0x4d, 0x01, 0xfb, /* add %r15, %r11 */
6027 0x41, 0xff, 0xe3, /* jmpq *%r11 */
6028
6029 /* 9-byte nop sequence to pad out to the next 32-byte boundary. */
6030 0x66, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw 0x0(%rax,%rax,1) */
6031
6032 /* 32 bytes of nop to pad out to the standard size. */
6033 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
6034 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
6035 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
6036 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
6037 0x66, /* excess data32 prefix */
6038 0x90 /* nop */
6039 };
6040
6041 static const bfd_byte elf_x86_64_nacl_plt_entry[NACL_PLT_ENTRY_SIZE] =
6042 {
6043 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, /* mov name@GOTPCREL(%rip),%r11 */
6044 0x41, 0x83, 0xe3, NACLMASK, /* and $-32, %r11d */
6045 0x4d, 0x01, 0xfb, /* add %r15, %r11 */
6046 0x41, 0xff, 0xe3, /* jmpq *%r11 */
6047
6048 /* 15-byte nop sequence to pad out to the next 32-byte boundary. */
6049 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
6050 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
6051
6052 /* Lazy GOT entries point here (32-byte aligned). */
6053 0x68, /* pushq immediate */
6054 0, 0, 0, 0, /* replaced with index into relocation table. */
6055 0xe9, /* jmp relative */
6056 0, 0, 0, 0, /* replaced with offset to start of .plt0. */
6057
6058 /* 22 bytes of nop to pad out to the standard size. */
6059 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
6060 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
6061 0x0f, 0x1f, 0x80, 0, 0, 0, 0, /* nopl 0x0(%rax) */
6062 };
6063
6064 /* .eh_frame covering the .plt section. */
6065
6066 static const bfd_byte elf_x86_64_nacl_eh_frame_plt[] =
6067 {
6068 #if (PLT_CIE_LENGTH != 20 \
6069 || PLT_FDE_LENGTH != 36 \
6070 || PLT_FDE_START_OFFSET != 4 + PLT_CIE_LENGTH + 8 \
6071 || PLT_FDE_LEN_OFFSET != 4 + PLT_CIE_LENGTH + 12)
6072 # error "Need elf_x86_64_backend_data parameters for eh_frame_plt offsets!"
6073 #endif
6074 PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */
6075 0, 0, 0, 0, /* CIE ID */
6076 1, /* CIE version */
6077 'z', 'R', 0, /* Augmentation string */
6078 1, /* Code alignment factor */
6079 0x78, /* Data alignment factor */
6080 16, /* Return address column */
6081 1, /* Augmentation size */
6082 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
6083 DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
6084 DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
6085 DW_CFA_nop, DW_CFA_nop,
6086
6087 PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */
6088 PLT_CIE_LENGTH + 8, 0, 0, 0,/* CIE pointer */
6089 0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */
6090 0, 0, 0, 0, /* .plt size goes here */
6091 0, /* Augmentation size */
6092 DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */
6093 DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */
6094 DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */
6095 DW_CFA_advance_loc + 58, /* DW_CFA_advance_loc: 58 to __PLT__+64 */
6096 DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */
6097 13, /* Block length */
6098 DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */
6099 DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */
6100 DW_OP_const1u, 63, DW_OP_and, DW_OP_const1u, 37, DW_OP_ge,
6101 DW_OP_lit3, DW_OP_shl, DW_OP_plus,
6102 DW_CFA_nop, DW_CFA_nop
6103 };
6104
6105 static const struct elf_x86_64_backend_data elf_x86_64_nacl_arch_bed =
6106 {
6107 elf_x86_64_nacl_plt0_entry, /* plt0_entry */
6108 elf_x86_64_nacl_plt_entry, /* plt_entry */
6109 NACL_PLT_ENTRY_SIZE, /* plt_entry_size */
6110 2, /* plt0_got1_offset */
6111 9, /* plt0_got2_offset */
6112 13, /* plt0_got2_insn_end */
6113 3, /* plt_got_offset */
6114 33, /* plt_reloc_offset */
6115 38, /* plt_plt_offset */
6116 7, /* plt_got_insn_size */
6117 42, /* plt_plt_insn_end */
6118 32, /* plt_lazy_offset */
6119 elf_x86_64_nacl_eh_frame_plt, /* eh_frame_plt */
6120 sizeof (elf_x86_64_nacl_eh_frame_plt), /* eh_frame_plt_size */
6121 };
6122
6123 #undef elf_backend_arch_data
6124 #define elf_backend_arch_data &elf_x86_64_nacl_arch_bed
6125
6126 #undef elf_backend_object_p
6127 #define elf_backend_object_p elf64_x86_64_nacl_elf_object_p
6128 #undef elf_backend_modify_segment_map
6129 #define elf_backend_modify_segment_map nacl_modify_segment_map
6130 #undef elf_backend_modify_program_headers
6131 #define elf_backend_modify_program_headers nacl_modify_program_headers
6132 #undef elf_backend_final_write_processing
6133 #define elf_backend_final_write_processing nacl_final_write_processing
6134
6135 #include "elf64-target.h"
6136
6137 /* Native Client x32 support. */
6138
6139 static bfd_boolean
6140 elf32_x86_64_nacl_elf_object_p (bfd *abfd)
6141 {
6142 /* Set the right machine number for a NaCl x86-64 ELF32 file. */
6143 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x64_32_nacl);
6144 return TRUE;
6145 }
6146
6147 #undef TARGET_LITTLE_SYM
6148 #define TARGET_LITTLE_SYM x86_64_elf32_nacl_vec
6149 #undef TARGET_LITTLE_NAME
6150 #define TARGET_LITTLE_NAME "elf32-x86-64-nacl"
6151 #undef elf32_bed
6152 #define elf32_bed elf32_x86_64_nacl_bed
6153
6154 #define bfd_elf32_bfd_link_hash_table_create \
6155 elf_x86_64_link_hash_table_create
6156 #define bfd_elf32_bfd_reloc_type_lookup \
6157 elf_x86_64_reloc_type_lookup
6158 #define bfd_elf32_bfd_reloc_name_lookup \
6159 elf_x86_64_reloc_name_lookup
6160 #define bfd_elf32_mkobject \
6161 elf_x86_64_mkobject
6162
6163 #undef elf_backend_object_p
6164 #define elf_backend_object_p \
6165 elf32_x86_64_nacl_elf_object_p
6166
6167 #undef elf_backend_bfd_from_remote_memory
6168 #define elf_backend_bfd_from_remote_memory \
6169 _bfd_elf32_bfd_from_remote_memory
6170
6171 #undef elf_backend_size_info
6172 #define elf_backend_size_info \
6173 _bfd_elf32_size_info
6174
6175 #include "elf32-target.h"
6176
6177 /* Restore defaults. */
6178 #undef elf_backend_object_p
6179 #define elf_backend_object_p elf64_x86_64_elf_object_p
6180 #undef elf_backend_bfd_from_remote_memory
6181 #undef elf_backend_size_info
6182 #undef elf_backend_modify_segment_map
6183 #undef elf_backend_modify_program_headers
6184 #undef elf_backend_final_write_processing
6185
6186 /* Intel L1OM support. */
6187
6188 static bfd_boolean
6189 elf64_l1om_elf_object_p (bfd *abfd)
6190 {
6191 /* Set the right machine number for an L1OM elf64 file. */
6192 bfd_default_set_arch_mach (abfd, bfd_arch_l1om, bfd_mach_l1om);
6193 return TRUE;
6194 }
6195
6196 #undef TARGET_LITTLE_SYM
6197 #define TARGET_LITTLE_SYM l1om_elf64_vec
6198 #undef TARGET_LITTLE_NAME
6199 #define TARGET_LITTLE_NAME "elf64-l1om"
6200 #undef ELF_ARCH
6201 #define ELF_ARCH bfd_arch_l1om
6202
6203 #undef ELF_MACHINE_CODE
6204 #define ELF_MACHINE_CODE EM_L1OM
6205
6206 #undef ELF_OSABI
6207
6208 #undef elf64_bed
6209 #define elf64_bed elf64_l1om_bed
6210
6211 #undef elf_backend_object_p
6212 #define elf_backend_object_p elf64_l1om_elf_object_p
6213
6214 /* Restore defaults. */
6215 #undef ELF_MAXPAGESIZE
6216 #undef ELF_MINPAGESIZE
6217 #undef ELF_COMMONPAGESIZE
6218 #define ELF_MAXPAGESIZE 0x200000
6219 #define ELF_MINPAGESIZE 0x1000
6220 #define ELF_COMMONPAGESIZE 0x1000
6221 #undef elf_backend_plt_alignment
6222 #define elf_backend_plt_alignment 4
6223 #undef elf_backend_arch_data
6224 #define elf_backend_arch_data &elf_x86_64_arch_bed
6225
6226 #include "elf64-target.h"
6227
6228 /* FreeBSD L1OM support. */
6229
6230 #undef TARGET_LITTLE_SYM
6231 #define TARGET_LITTLE_SYM l1om_elf64_fbsd_vec
6232 #undef TARGET_LITTLE_NAME
6233 #define TARGET_LITTLE_NAME "elf64-l1om-freebsd"
6234
6235 #undef ELF_OSABI
6236 #define ELF_OSABI ELFOSABI_FREEBSD
6237
6238 #undef elf64_bed
6239 #define elf64_bed elf64_l1om_fbsd_bed
6240
6241 #include "elf64-target.h"
6242
6243 /* Intel K1OM support. */
6244
6245 static bfd_boolean
6246 elf64_k1om_elf_object_p (bfd *abfd)
6247 {
6248 /* Set the right machine number for an K1OM elf64 file. */
6249 bfd_default_set_arch_mach (abfd, bfd_arch_k1om, bfd_mach_k1om);
6250 return TRUE;
6251 }
6252
6253 #undef TARGET_LITTLE_SYM
6254 #define TARGET_LITTLE_SYM k1om_elf64_vec
6255 #undef TARGET_LITTLE_NAME
6256 #define TARGET_LITTLE_NAME "elf64-k1om"
6257 #undef ELF_ARCH
6258 #define ELF_ARCH bfd_arch_k1om
6259
6260 #undef ELF_MACHINE_CODE
6261 #define ELF_MACHINE_CODE EM_K1OM
6262
6263 #undef ELF_OSABI
6264
6265 #undef elf64_bed
6266 #define elf64_bed elf64_k1om_bed
6267
6268 #undef elf_backend_object_p
6269 #define elf_backend_object_p elf64_k1om_elf_object_p
6270
6271 #undef elf_backend_static_tls_alignment
6272
6273 #undef elf_backend_want_plt_sym
6274 #define elf_backend_want_plt_sym 0
6275
6276 #include "elf64-target.h"
6277
6278 /* FreeBSD K1OM support. */
6279
6280 #undef TARGET_LITTLE_SYM
6281 #define TARGET_LITTLE_SYM k1om_elf64_fbsd_vec
6282 #undef TARGET_LITTLE_NAME
6283 #define TARGET_LITTLE_NAME "elf64-k1om-freebsd"
6284
6285 #undef ELF_OSABI
6286 #define ELF_OSABI ELFOSABI_FREEBSD
6287
6288 #undef elf64_bed
6289 #define elf64_bed elf64_k1om_fbsd_bed
6290
6291 #include "elf64-target.h"
6292
6293 /* 32bit x86-64 support. */
6294
6295 #undef TARGET_LITTLE_SYM
6296 #define TARGET_LITTLE_SYM x86_64_elf32_vec
6297 #undef TARGET_LITTLE_NAME
6298 #define TARGET_LITTLE_NAME "elf32-x86-64"
6299 #undef elf32_bed
6300
6301 #undef ELF_ARCH
6302 #define ELF_ARCH bfd_arch_i386
6303
6304 #undef ELF_MACHINE_CODE
6305 #define ELF_MACHINE_CODE EM_X86_64
6306
6307 #undef ELF_OSABI
6308
6309 #undef elf_backend_object_p
6310 #define elf_backend_object_p \
6311 elf32_x86_64_elf_object_p
6312
6313 #undef elf_backend_bfd_from_remote_memory
6314 #define elf_backend_bfd_from_remote_memory \
6315 _bfd_elf32_bfd_from_remote_memory
6316
6317 #undef elf_backend_size_info
6318 #define elf_backend_size_info \
6319 _bfd_elf32_size_info
6320
6321 #include "elf32-target.h"