Add R_X86_64_[REX_]GOTPCRELX support to gas and ld
[binutils-gdb.git] / bfd / elf64-x86-64.c
1 /* X86-64 specific support for ELF
2 Copyright (C) 2000-2015 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka <jh@suse.cz>.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "elf-nacl.h"
28 #include "bfd_stdint.h"
29 #include "objalloc.h"
30 #include "hashtab.h"
31 #include "dwarf2.h"
32 #include "libiberty.h"
33
34 #include "opcode/i386.h"
35 #include "elf/x86-64.h"
36
37 #ifdef CORE_HEADER
38 #include <stdarg.h>
39 #include CORE_HEADER
40 #endif
41
42 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
43 #define MINUS_ONE (~ (bfd_vma) 0)
44
45 /* Since both 32-bit and 64-bit x86-64 encode relocation type in the
46 identical manner, we use ELF32_R_TYPE instead of ELF64_R_TYPE to get
47 relocation type. We also use ELF_ST_TYPE instead of ELF64_ST_TYPE
48 since they are the same. */
49
50 #define ABI_64_P(abfd) \
51 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
52
53 /* The relocation "howto" table. Order of fields:
54 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
55 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
56 static reloc_howto_type x86_64_elf_howto_table[] =
57 {
58 HOWTO(R_X86_64_NONE, 0, 3, 0, FALSE, 0, complain_overflow_dont,
59 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
60 FALSE),
61 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
62 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
63 FALSE),
64 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
65 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
66 TRUE),
67 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
68 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
69 FALSE),
70 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
71 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
72 TRUE),
73 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
74 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
75 FALSE),
76 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
77 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
78 MINUS_ONE, FALSE),
79 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
80 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
81 MINUS_ONE, FALSE),
82 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
83 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
84 MINUS_ONE, FALSE),
85 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
86 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
87 0xffffffff, TRUE),
88 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
89 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
90 FALSE),
91 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
92 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
93 FALSE),
94 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
95 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
96 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
97 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
98 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
99 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
100 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
101 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
102 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
103 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
104 MINUS_ONE, FALSE),
105 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
106 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
107 MINUS_ONE, FALSE),
108 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
109 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
110 MINUS_ONE, FALSE),
111 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
112 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
113 0xffffffff, TRUE),
114 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
115 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
116 0xffffffff, TRUE),
117 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
118 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
119 0xffffffff, FALSE),
120 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
121 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
122 0xffffffff, TRUE),
123 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
124 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
125 0xffffffff, FALSE),
126 HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
127 bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
128 TRUE),
129 HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
130 bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
131 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
132 HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
133 bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
134 FALSE, 0xffffffff, 0xffffffff, TRUE),
135 HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
136 bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE,
137 FALSE),
138 HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
139 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE,
140 MINUS_ONE, TRUE),
141 HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
142 bfd_elf_generic_reloc, "R_X86_64_GOTPC64",
143 FALSE, MINUS_ONE, MINUS_ONE, TRUE),
144 HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
145 bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE,
146 MINUS_ONE, FALSE),
147 HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
148 bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE,
149 MINUS_ONE, FALSE),
150 HOWTO(R_X86_64_SIZE32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
151 bfd_elf_generic_reloc, "R_X86_64_SIZE32", FALSE, 0xffffffff, 0xffffffff,
152 FALSE),
153 HOWTO(R_X86_64_SIZE64, 0, 4, 64, FALSE, 0, complain_overflow_unsigned,
154 bfd_elf_generic_reloc, "R_X86_64_SIZE64", FALSE, MINUS_ONE, MINUS_ONE,
155 FALSE),
156 HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0,
157 complain_overflow_bitfield, bfd_elf_generic_reloc,
158 "R_X86_64_GOTPC32_TLSDESC",
159 FALSE, 0xffffffff, 0xffffffff, TRUE),
160 HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0,
161 complain_overflow_dont, bfd_elf_generic_reloc,
162 "R_X86_64_TLSDESC_CALL",
163 FALSE, 0, 0, FALSE),
164 HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0,
165 complain_overflow_bitfield, bfd_elf_generic_reloc,
166 "R_X86_64_TLSDESC",
167 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
168 HOWTO(R_X86_64_IRELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
169 bfd_elf_generic_reloc, "R_X86_64_IRELATIVE", FALSE, MINUS_ONE,
170 MINUS_ONE, FALSE),
171 HOWTO(R_X86_64_RELATIVE64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
172 bfd_elf_generic_reloc, "R_X86_64_RELATIVE64", FALSE, MINUS_ONE,
173 MINUS_ONE, FALSE),
174 HOWTO(R_X86_64_PC32_BND, 0, 2, 32, TRUE, 0, complain_overflow_signed,
175 bfd_elf_generic_reloc, "R_X86_64_PC32_BND", FALSE, 0xffffffff, 0xffffffff,
176 TRUE),
177 HOWTO(R_X86_64_PLT32_BND, 0, 2, 32, TRUE, 0, complain_overflow_signed,
178 bfd_elf_generic_reloc, "R_X86_64_PLT32_BND", FALSE, 0xffffffff, 0xffffffff,
179 TRUE),
180 HOWTO(R_X86_64_GOTPCRELX, 0, 2, 32, TRUE, 0, complain_overflow_signed,
181 bfd_elf_generic_reloc, "R_X86_64_GOTPCRELX", FALSE, 0xffffffff,
182 0xffffffff, TRUE),
183 HOWTO(R_X86_64_REX_GOTPCRELX, 0, 2, 32, TRUE, 0, complain_overflow_signed,
184 bfd_elf_generic_reloc, "R_X86_64_REX_GOTPCRELX", FALSE, 0xffffffff,
185 0xffffffff, TRUE),
186
187 /* We have a gap in the reloc numbers here.
188 R_X86_64_standard counts the number up to this point, and
189 R_X86_64_vt_offset is the value to subtract from a reloc type of
190 R_X86_64_GNU_VT* to form an index into this table. */
191 #define R_X86_64_standard (R_X86_64_REX_GOTPCRELX + 1)
192 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
193
194 /* GNU extension to record C++ vtable hierarchy. */
195 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
196 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
197
198 /* GNU extension to record C++ vtable member usage. */
199 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
200 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
201 FALSE),
202
203 /* Use complain_overflow_bitfield on R_X86_64_32 for x32. */
204 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
205 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
206 FALSE)
207 };
208
209 #define IS_X86_64_PCREL_TYPE(TYPE) \
210 ( ((TYPE) == R_X86_64_PC8) \
211 || ((TYPE) == R_X86_64_PC16) \
212 || ((TYPE) == R_X86_64_PC32) \
213 || ((TYPE) == R_X86_64_PC32_BND) \
214 || ((TYPE) == R_X86_64_PC64))
215
216 /* Map BFD relocs to the x86_64 elf relocs. */
217 struct elf_reloc_map
218 {
219 bfd_reloc_code_real_type bfd_reloc_val;
220 unsigned char elf_reloc_val;
221 };
222
223 static const struct elf_reloc_map x86_64_reloc_map[] =
224 {
225 { BFD_RELOC_NONE, R_X86_64_NONE, },
226 { BFD_RELOC_64, R_X86_64_64, },
227 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
228 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
229 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
230 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
231 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
232 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
233 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
234 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
235 { BFD_RELOC_32, R_X86_64_32, },
236 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
237 { BFD_RELOC_16, R_X86_64_16, },
238 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
239 { BFD_RELOC_8, R_X86_64_8, },
240 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
241 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
242 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
243 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
244 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
245 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
246 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
247 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
248 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
249 { BFD_RELOC_64_PCREL, R_X86_64_PC64, },
250 { BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, },
251 { BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, },
252 { BFD_RELOC_X86_64_GOT64, R_X86_64_GOT64, },
253 { BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, },
254 { BFD_RELOC_X86_64_GOTPC64, R_X86_64_GOTPC64, },
255 { BFD_RELOC_X86_64_GOTPLT64, R_X86_64_GOTPLT64, },
256 { BFD_RELOC_X86_64_PLTOFF64, R_X86_64_PLTOFF64, },
257 { BFD_RELOC_SIZE32, R_X86_64_SIZE32, },
258 { BFD_RELOC_SIZE64, R_X86_64_SIZE64, },
259 { BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, },
260 { BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, },
261 { BFD_RELOC_X86_64_TLSDESC, R_X86_64_TLSDESC, },
262 { BFD_RELOC_X86_64_IRELATIVE, R_X86_64_IRELATIVE, },
263 { BFD_RELOC_X86_64_PC32_BND, R_X86_64_PC32_BND, },
264 { BFD_RELOC_X86_64_PLT32_BND, R_X86_64_PLT32_BND, },
265 { BFD_RELOC_X86_64_GOTPCRELX, R_X86_64_GOTPCRELX, },
266 { BFD_RELOC_X86_64_REX_GOTPCRELX, R_X86_64_REX_GOTPCRELX, },
267 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
268 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
269 };
270
271 static reloc_howto_type *
272 elf_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type)
273 {
274 unsigned i;
275
276 if (r_type == (unsigned int) R_X86_64_32)
277 {
278 if (ABI_64_P (abfd))
279 i = r_type;
280 else
281 i = ARRAY_SIZE (x86_64_elf_howto_table) - 1;
282 }
283 else if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
284 || r_type >= (unsigned int) R_X86_64_max)
285 {
286 if (r_type >= (unsigned int) R_X86_64_standard)
287 {
288 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
289 abfd, (int) r_type);
290 r_type = R_X86_64_NONE;
291 }
292 i = r_type;
293 }
294 else
295 i = r_type - (unsigned int) R_X86_64_vt_offset;
296 BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type);
297 return &x86_64_elf_howto_table[i];
298 }
299
300 /* Given a BFD reloc type, return a HOWTO structure. */
301 static reloc_howto_type *
302 elf_x86_64_reloc_type_lookup (bfd *abfd,
303 bfd_reloc_code_real_type code)
304 {
305 unsigned int i;
306
307 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
308 i++)
309 {
310 if (x86_64_reloc_map[i].bfd_reloc_val == code)
311 return elf_x86_64_rtype_to_howto (abfd,
312 x86_64_reloc_map[i].elf_reloc_val);
313 }
314 return NULL;
315 }
316
317 static reloc_howto_type *
318 elf_x86_64_reloc_name_lookup (bfd *abfd,
319 const char *r_name)
320 {
321 unsigned int i;
322
323 if (!ABI_64_P (abfd) && strcasecmp (r_name, "R_X86_64_32") == 0)
324 {
325 /* Get x32 R_X86_64_32. */
326 reloc_howto_type *reloc
327 = &x86_64_elf_howto_table[ARRAY_SIZE (x86_64_elf_howto_table) - 1];
328 BFD_ASSERT (reloc->type == (unsigned int) R_X86_64_32);
329 return reloc;
330 }
331
332 for (i = 0; i < ARRAY_SIZE (x86_64_elf_howto_table); i++)
333 if (x86_64_elf_howto_table[i].name != NULL
334 && strcasecmp (x86_64_elf_howto_table[i].name, r_name) == 0)
335 return &x86_64_elf_howto_table[i];
336
337 return NULL;
338 }
339
340 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
341
342 static void
343 elf_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
344 Elf_Internal_Rela *dst)
345 {
346 unsigned r_type;
347
348 r_type = ELF32_R_TYPE (dst->r_info);
349 cache_ptr->howto = elf_x86_64_rtype_to_howto (abfd, r_type);
350 BFD_ASSERT (r_type == cache_ptr->howto->type);
351 }
352 \f
353 /* Support for core dump NOTE sections. */
354 static bfd_boolean
355 elf_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
356 {
357 int offset;
358 size_t size;
359
360 switch (note->descsz)
361 {
362 default:
363 return FALSE;
364
365 case 296: /* sizeof(istruct elf_prstatus) on Linux/x32 */
366 /* pr_cursig */
367 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
368
369 /* pr_pid */
370 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
371
372 /* pr_reg */
373 offset = 72;
374 size = 216;
375
376 break;
377
378 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
379 /* pr_cursig */
380 elf_tdata (abfd)->core->signal
381 = bfd_get_16 (abfd, note->descdata + 12);
382
383 /* pr_pid */
384 elf_tdata (abfd)->core->lwpid
385 = bfd_get_32 (abfd, note->descdata + 32);
386
387 /* pr_reg */
388 offset = 112;
389 size = 216;
390
391 break;
392 }
393
394 /* Make a ".reg/999" section. */
395 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
396 size, note->descpos + offset);
397 }
398
399 static bfd_boolean
400 elf_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
401 {
402 switch (note->descsz)
403 {
404 default:
405 return FALSE;
406
407 case 124: /* sizeof(struct elf_prpsinfo) on Linux/x32 */
408 elf_tdata (abfd)->core->pid
409 = bfd_get_32 (abfd, note->descdata + 12);
410 elf_tdata (abfd)->core->program
411 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
412 elf_tdata (abfd)->core->command
413 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
414 break;
415
416 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
417 elf_tdata (abfd)->core->pid
418 = bfd_get_32 (abfd, note->descdata + 24);
419 elf_tdata (abfd)->core->program
420 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
421 elf_tdata (abfd)->core->command
422 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
423 }
424
425 /* Note that for some reason, a spurious space is tacked
426 onto the end of the args in some (at least one anyway)
427 implementations, so strip it off if it exists. */
428
429 {
430 char *command = elf_tdata (abfd)->core->command;
431 int n = strlen (command);
432
433 if (0 < n && command[n - 1] == ' ')
434 command[n - 1] = '\0';
435 }
436
437 return TRUE;
438 }
439
440 #ifdef CORE_HEADER
441 static char *
442 elf_x86_64_write_core_note (bfd *abfd, char *buf, int *bufsiz,
443 int note_type, ...)
444 {
445 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
446 va_list ap;
447 const char *fname, *psargs;
448 long pid;
449 int cursig;
450 const void *gregs;
451
452 switch (note_type)
453 {
454 default:
455 return NULL;
456
457 case NT_PRPSINFO:
458 va_start (ap, note_type);
459 fname = va_arg (ap, const char *);
460 psargs = va_arg (ap, const char *);
461 va_end (ap);
462
463 if (bed->s->elfclass == ELFCLASS32)
464 {
465 prpsinfo32_t data;
466 memset (&data, 0, sizeof (data));
467 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
468 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
469 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
470 &data, sizeof (data));
471 }
472 else
473 {
474 prpsinfo64_t data;
475 memset (&data, 0, sizeof (data));
476 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
477 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
478 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
479 &data, sizeof (data));
480 }
481 /* NOTREACHED */
482
483 case NT_PRSTATUS:
484 va_start (ap, note_type);
485 pid = va_arg (ap, long);
486 cursig = va_arg (ap, int);
487 gregs = va_arg (ap, const void *);
488 va_end (ap);
489
490 if (bed->s->elfclass == ELFCLASS32)
491 {
492 if (bed->elf_machine_code == EM_X86_64)
493 {
494 prstatusx32_t prstat;
495 memset (&prstat, 0, sizeof (prstat));
496 prstat.pr_pid = pid;
497 prstat.pr_cursig = cursig;
498 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
499 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
500 &prstat, sizeof (prstat));
501 }
502 else
503 {
504 prstatus32_t prstat;
505 memset (&prstat, 0, sizeof (prstat));
506 prstat.pr_pid = pid;
507 prstat.pr_cursig = cursig;
508 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
509 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
510 &prstat, sizeof (prstat));
511 }
512 }
513 else
514 {
515 prstatus64_t prstat;
516 memset (&prstat, 0, sizeof (prstat));
517 prstat.pr_pid = pid;
518 prstat.pr_cursig = cursig;
519 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
520 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
521 &prstat, sizeof (prstat));
522 }
523 }
524 /* NOTREACHED */
525 }
526 #endif
527 \f
528 /* Functions for the x86-64 ELF linker. */
529
530 /* The name of the dynamic interpreter. This is put in the .interp
531 section. */
532
533 #define ELF64_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
534 #define ELF32_DYNAMIC_INTERPRETER "/lib/ldx32.so.1"
535
536 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
537 copying dynamic variables from a shared lib into an app's dynbss
538 section, and instead use a dynamic relocation to point into the
539 shared lib. */
540 #define ELIMINATE_COPY_RELOCS 1
541
542 /* The size in bytes of an entry in the global offset table. */
543
544 #define GOT_ENTRY_SIZE 8
545
546 /* The size in bytes of an entry in the procedure linkage table. */
547
548 #define PLT_ENTRY_SIZE 16
549
550 /* The first entry in a procedure linkage table looks like this. See the
551 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
552
553 static const bfd_byte elf_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
554 {
555 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
556 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
557 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */
558 };
559
560 /* Subsequent entries in a procedure linkage table look like this. */
561
562 static const bfd_byte elf_x86_64_plt_entry[PLT_ENTRY_SIZE] =
563 {
564 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
565 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
566 0x68, /* pushq immediate */
567 0, 0, 0, 0, /* replaced with index into relocation table. */
568 0xe9, /* jmp relative */
569 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
570 };
571
572 /* The first entry in a procedure linkage table with BND relocations
573 like this. */
574
575 static const bfd_byte elf_x86_64_bnd_plt0_entry[PLT_ENTRY_SIZE] =
576 {
577 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
578 0xf2, 0xff, 0x25, 16, 0, 0, 0, /* bnd jmpq *GOT+16(%rip) */
579 0x0f, 0x1f, 0 /* nopl (%rax) */
580 };
581
582 /* Subsequent entries for legacy branches in a procedure linkage table
583 with BND relocations look like this. */
584
585 static const bfd_byte elf_x86_64_legacy_plt_entry[PLT_ENTRY_SIZE] =
586 {
587 0x68, 0, 0, 0, 0, /* pushq immediate */
588 0xe9, 0, 0, 0, 0, /* jmpq relative */
589 0x66, 0x0f, 0x1f, 0x44, 0, 0 /* nopw (%rax,%rax,1) */
590 };
591
592 /* Subsequent entries for branches with BND prefx in a procedure linkage
593 table with BND relocations look like this. */
594
595 static const bfd_byte elf_x86_64_bnd_plt_entry[PLT_ENTRY_SIZE] =
596 {
597 0x68, 0, 0, 0, 0, /* pushq immediate */
598 0xf2, 0xe9, 0, 0, 0, 0, /* bnd jmpq relative */
599 0x0f, 0x1f, 0x44, 0, 0 /* nopl 0(%rax,%rax,1) */
600 };
601
602 /* Entries for legacy branches in the second procedure linkage table
603 look like this. */
604
605 static const bfd_byte elf_x86_64_legacy_plt2_entry[8] =
606 {
607 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
608 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
609 0x66, 0x90 /* xchg %ax,%ax */
610 };
611
612 /* Entries for branches with BND prefix in the second procedure linkage
613 table look like this. */
614
615 static const bfd_byte elf_x86_64_bnd_plt2_entry[8] =
616 {
617 0xf2, 0xff, 0x25, /* bnd jmpq *name@GOTPC(%rip) */
618 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
619 0x90 /* nop */
620 };
621
622 /* .eh_frame covering the .plt section. */
623
624 static const bfd_byte elf_x86_64_eh_frame_plt[] =
625 {
626 #define PLT_CIE_LENGTH 20
627 #define PLT_FDE_LENGTH 36
628 #define PLT_FDE_START_OFFSET 4 + PLT_CIE_LENGTH + 8
629 #define PLT_FDE_LEN_OFFSET 4 + PLT_CIE_LENGTH + 12
630 PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */
631 0, 0, 0, 0, /* CIE ID */
632 1, /* CIE version */
633 'z', 'R', 0, /* Augmentation string */
634 1, /* Code alignment factor */
635 0x78, /* Data alignment factor */
636 16, /* Return address column */
637 1, /* Augmentation size */
638 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
639 DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
640 DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
641 DW_CFA_nop, DW_CFA_nop,
642
643 PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */
644 PLT_CIE_LENGTH + 8, 0, 0, 0, /* CIE pointer */
645 0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */
646 0, 0, 0, 0, /* .plt size goes here */
647 0, /* Augmentation size */
648 DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */
649 DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */
650 DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */
651 DW_CFA_advance_loc + 10, /* DW_CFA_advance_loc: 10 to __PLT__+16 */
652 DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */
653 11, /* Block length */
654 DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */
655 DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */
656 DW_OP_lit15, DW_OP_and, DW_OP_lit11, DW_OP_ge,
657 DW_OP_lit3, DW_OP_shl, DW_OP_plus,
658 DW_CFA_nop, DW_CFA_nop, DW_CFA_nop, DW_CFA_nop
659 };
660
661 /* Architecture-specific backend data for x86-64. */
662
663 struct elf_x86_64_backend_data
664 {
665 /* Templates for the initial PLT entry and for subsequent entries. */
666 const bfd_byte *plt0_entry;
667 const bfd_byte *plt_entry;
668 unsigned int plt_entry_size; /* Size of each PLT entry. */
669
670 /* Offsets into plt0_entry that are to be replaced with GOT[1] and GOT[2]. */
671 unsigned int plt0_got1_offset;
672 unsigned int plt0_got2_offset;
673
674 /* Offset of the end of the PC-relative instruction containing
675 plt0_got2_offset. */
676 unsigned int plt0_got2_insn_end;
677
678 /* Offsets into plt_entry that are to be replaced with... */
679 unsigned int plt_got_offset; /* ... address of this symbol in .got. */
680 unsigned int plt_reloc_offset; /* ... offset into relocation table. */
681 unsigned int plt_plt_offset; /* ... offset to start of .plt. */
682
683 /* Length of the PC-relative instruction containing plt_got_offset. */
684 unsigned int plt_got_insn_size;
685
686 /* Offset of the end of the PC-relative jump to plt0_entry. */
687 unsigned int plt_plt_insn_end;
688
689 /* Offset into plt_entry where the initial value of the GOT entry points. */
690 unsigned int plt_lazy_offset;
691
692 /* .eh_frame covering the .plt section. */
693 const bfd_byte *eh_frame_plt;
694 unsigned int eh_frame_plt_size;
695 };
696
697 #define get_elf_x86_64_arch_data(bed) \
698 ((const struct elf_x86_64_backend_data *) (bed)->arch_data)
699
700 #define get_elf_x86_64_backend_data(abfd) \
701 get_elf_x86_64_arch_data (get_elf_backend_data (abfd))
702
703 #define GET_PLT_ENTRY_SIZE(abfd) \
704 get_elf_x86_64_backend_data (abfd)->plt_entry_size
705
706 /* These are the standard parameters. */
707 static const struct elf_x86_64_backend_data elf_x86_64_arch_bed =
708 {
709 elf_x86_64_plt0_entry, /* plt0_entry */
710 elf_x86_64_plt_entry, /* plt_entry */
711 sizeof (elf_x86_64_plt_entry), /* plt_entry_size */
712 2, /* plt0_got1_offset */
713 8, /* plt0_got2_offset */
714 12, /* plt0_got2_insn_end */
715 2, /* plt_got_offset */
716 7, /* plt_reloc_offset */
717 12, /* plt_plt_offset */
718 6, /* plt_got_insn_size */
719 PLT_ENTRY_SIZE, /* plt_plt_insn_end */
720 6, /* plt_lazy_offset */
721 elf_x86_64_eh_frame_plt, /* eh_frame_plt */
722 sizeof (elf_x86_64_eh_frame_plt), /* eh_frame_plt_size */
723 };
724
725 static const struct elf_x86_64_backend_data elf_x86_64_bnd_arch_bed =
726 {
727 elf_x86_64_bnd_plt0_entry, /* plt0_entry */
728 elf_x86_64_bnd_plt_entry, /* plt_entry */
729 sizeof (elf_x86_64_bnd_plt_entry), /* plt_entry_size */
730 2, /* plt0_got1_offset */
731 1+8, /* plt0_got2_offset */
732 1+12, /* plt0_got2_insn_end */
733 1+2, /* plt_got_offset */
734 1, /* plt_reloc_offset */
735 7, /* plt_plt_offset */
736 1+6, /* plt_got_insn_size */
737 11, /* plt_plt_insn_end */
738 0, /* plt_lazy_offset */
739 elf_x86_64_eh_frame_plt, /* eh_frame_plt */
740 sizeof (elf_x86_64_eh_frame_plt), /* eh_frame_plt_size */
741 };
742
743 #define elf_backend_arch_data &elf_x86_64_arch_bed
744
745 /* x86-64 ELF linker hash entry. */
746
747 struct elf_x86_64_link_hash_entry
748 {
749 struct elf_link_hash_entry elf;
750
751 /* Track dynamic relocs copied for this symbol. */
752 struct elf_dyn_relocs *dyn_relocs;
753
754 #define GOT_UNKNOWN 0
755 #define GOT_NORMAL 1
756 #define GOT_TLS_GD 2
757 #define GOT_TLS_IE 3
758 #define GOT_TLS_GDESC 4
759 #define GOT_TLS_GD_BOTH_P(type) \
760 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
761 #define GOT_TLS_GD_P(type) \
762 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
763 #define GOT_TLS_GDESC_P(type) \
764 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
765 #define GOT_TLS_GD_ANY_P(type) \
766 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
767 unsigned char tls_type;
768
769 /* TRUE if a weak symbol with a real definition needs a copy reloc.
770 When there is a weak symbol with a real definition, the processor
771 independent code will have arranged for us to see the real
772 definition first. We need to copy the needs_copy bit from the
773 real definition and check it when allowing copy reloc in PIE. */
774 unsigned int needs_copy : 1;
775
776 /* TRUE if symbol has at least one BND relocation. */
777 unsigned int has_bnd_reloc : 1;
778
779 /* Reference count of C/C++ function pointer relocations in read-write
780 section which can be resolved at run-time. */
781 bfd_signed_vma func_pointer_refcount;
782
783 /* Information about the GOT PLT entry. Filled when there are both
784 GOT and PLT relocations against the same function. */
785 union gotplt_union plt_got;
786
787 /* Information about the second PLT entry. Filled when has_bnd_reloc is
788 set. */
789 union gotplt_union plt_bnd;
790
791 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
792 starting at the end of the jump table. */
793 bfd_vma tlsdesc_got;
794 };
795
796 #define elf_x86_64_hash_entry(ent) \
797 ((struct elf_x86_64_link_hash_entry *)(ent))
798
799 struct elf_x86_64_obj_tdata
800 {
801 struct elf_obj_tdata root;
802
803 /* tls_type for each local got entry. */
804 char *local_got_tls_type;
805
806 /* GOTPLT entries for TLS descriptors. */
807 bfd_vma *local_tlsdesc_gotent;
808 };
809
810 #define elf_x86_64_tdata(abfd) \
811 ((struct elf_x86_64_obj_tdata *) (abfd)->tdata.any)
812
813 #define elf_x86_64_local_got_tls_type(abfd) \
814 (elf_x86_64_tdata (abfd)->local_got_tls_type)
815
816 #define elf_x86_64_local_tlsdesc_gotent(abfd) \
817 (elf_x86_64_tdata (abfd)->local_tlsdesc_gotent)
818
819 #define is_x86_64_elf(bfd) \
820 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
821 && elf_tdata (bfd) != NULL \
822 && elf_object_id (bfd) == X86_64_ELF_DATA)
823
824 static bfd_boolean
825 elf_x86_64_mkobject (bfd *abfd)
826 {
827 return bfd_elf_allocate_object (abfd, sizeof (struct elf_x86_64_obj_tdata),
828 X86_64_ELF_DATA);
829 }
830
831 /* x86-64 ELF linker hash table. */
832
833 struct elf_x86_64_link_hash_table
834 {
835 struct elf_link_hash_table elf;
836
837 /* Short-cuts to get to dynamic linker sections. */
838 asection *sdynbss;
839 asection *srelbss;
840 asection *plt_eh_frame;
841 asection *plt_bnd;
842 asection *plt_got;
843
844 union
845 {
846 bfd_signed_vma refcount;
847 bfd_vma offset;
848 } tls_ld_got;
849
850 /* The amount of space used by the jump slots in the GOT. */
851 bfd_vma sgotplt_jump_table_size;
852
853 /* Small local sym cache. */
854 struct sym_cache sym_cache;
855
856 bfd_vma (*r_info) (bfd_vma, bfd_vma);
857 bfd_vma (*r_sym) (bfd_vma);
858 unsigned int pointer_r_type;
859 const char *dynamic_interpreter;
860 int dynamic_interpreter_size;
861
862 /* _TLS_MODULE_BASE_ symbol. */
863 struct bfd_link_hash_entry *tls_module_base;
864
865 /* Used by local STT_GNU_IFUNC symbols. */
866 htab_t loc_hash_table;
867 void * loc_hash_memory;
868
869 /* The offset into splt of the PLT entry for the TLS descriptor
870 resolver. Special values are 0, if not necessary (or not found
871 to be necessary yet), and -1 if needed but not determined
872 yet. */
873 bfd_vma tlsdesc_plt;
874 /* The offset into sgot of the GOT entry used by the PLT entry
875 above. */
876 bfd_vma tlsdesc_got;
877
878 /* The index of the next R_X86_64_JUMP_SLOT entry in .rela.plt. */
879 bfd_vma next_jump_slot_index;
880 /* The index of the next R_X86_64_IRELATIVE entry in .rela.plt. */
881 bfd_vma next_irelative_index;
882 };
883
884 /* Get the x86-64 ELF linker hash table from a link_info structure. */
885
886 #define elf_x86_64_hash_table(p) \
887 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
888 == X86_64_ELF_DATA ? ((struct elf_x86_64_link_hash_table *) ((p)->hash)) : NULL)
889
890 #define elf_x86_64_compute_jump_table_size(htab) \
891 ((htab)->elf.srelplt->reloc_count * GOT_ENTRY_SIZE)
892
893 /* Create an entry in an x86-64 ELF linker hash table. */
894
895 static struct bfd_hash_entry *
896 elf_x86_64_link_hash_newfunc (struct bfd_hash_entry *entry,
897 struct bfd_hash_table *table,
898 const char *string)
899 {
900 /* Allocate the structure if it has not already been allocated by a
901 subclass. */
902 if (entry == NULL)
903 {
904 entry = (struct bfd_hash_entry *)
905 bfd_hash_allocate (table,
906 sizeof (struct elf_x86_64_link_hash_entry));
907 if (entry == NULL)
908 return entry;
909 }
910
911 /* Call the allocation method of the superclass. */
912 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
913 if (entry != NULL)
914 {
915 struct elf_x86_64_link_hash_entry *eh;
916
917 eh = (struct elf_x86_64_link_hash_entry *) entry;
918 eh->dyn_relocs = NULL;
919 eh->tls_type = GOT_UNKNOWN;
920 eh->needs_copy = 0;
921 eh->has_bnd_reloc = 0;
922 eh->func_pointer_refcount = 0;
923 eh->plt_bnd.offset = (bfd_vma) -1;
924 eh->plt_got.offset = (bfd_vma) -1;
925 eh->tlsdesc_got = (bfd_vma) -1;
926 }
927
928 return entry;
929 }
930
931 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
932 for local symbol so that we can handle local STT_GNU_IFUNC symbols
933 as global symbol. We reuse indx and dynstr_index for local symbol
934 hash since they aren't used by global symbols in this backend. */
935
936 static hashval_t
937 elf_x86_64_local_htab_hash (const void *ptr)
938 {
939 struct elf_link_hash_entry *h
940 = (struct elf_link_hash_entry *) ptr;
941 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
942 }
943
944 /* Compare local hash entries. */
945
946 static int
947 elf_x86_64_local_htab_eq (const void *ptr1, const void *ptr2)
948 {
949 struct elf_link_hash_entry *h1
950 = (struct elf_link_hash_entry *) ptr1;
951 struct elf_link_hash_entry *h2
952 = (struct elf_link_hash_entry *) ptr2;
953
954 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
955 }
956
957 /* Find and/or create a hash entry for local symbol. */
958
959 static struct elf_link_hash_entry *
960 elf_x86_64_get_local_sym_hash (struct elf_x86_64_link_hash_table *htab,
961 bfd *abfd, const Elf_Internal_Rela *rel,
962 bfd_boolean create)
963 {
964 struct elf_x86_64_link_hash_entry e, *ret;
965 asection *sec = abfd->sections;
966 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
967 htab->r_sym (rel->r_info));
968 void **slot;
969
970 e.elf.indx = sec->id;
971 e.elf.dynstr_index = htab->r_sym (rel->r_info);
972 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
973 create ? INSERT : NO_INSERT);
974
975 if (!slot)
976 return NULL;
977
978 if (*slot)
979 {
980 ret = (struct elf_x86_64_link_hash_entry *) *slot;
981 return &ret->elf;
982 }
983
984 ret = (struct elf_x86_64_link_hash_entry *)
985 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
986 sizeof (struct elf_x86_64_link_hash_entry));
987 if (ret)
988 {
989 memset (ret, 0, sizeof (*ret));
990 ret->elf.indx = sec->id;
991 ret->elf.dynstr_index = htab->r_sym (rel->r_info);
992 ret->elf.dynindx = -1;
993 ret->func_pointer_refcount = 0;
994 ret->plt_got.offset = (bfd_vma) -1;
995 *slot = ret;
996 }
997 return &ret->elf;
998 }
999
1000 /* Destroy an X86-64 ELF linker hash table. */
1001
1002 static void
1003 elf_x86_64_link_hash_table_free (bfd *obfd)
1004 {
1005 struct elf_x86_64_link_hash_table *htab
1006 = (struct elf_x86_64_link_hash_table *) obfd->link.hash;
1007
1008 if (htab->loc_hash_table)
1009 htab_delete (htab->loc_hash_table);
1010 if (htab->loc_hash_memory)
1011 objalloc_free ((struct objalloc *) htab->loc_hash_memory);
1012 _bfd_elf_link_hash_table_free (obfd);
1013 }
1014
1015 /* Create an X86-64 ELF linker hash table. */
1016
1017 static struct bfd_link_hash_table *
1018 elf_x86_64_link_hash_table_create (bfd *abfd)
1019 {
1020 struct elf_x86_64_link_hash_table *ret;
1021 bfd_size_type amt = sizeof (struct elf_x86_64_link_hash_table);
1022
1023 ret = (struct elf_x86_64_link_hash_table *) bfd_zmalloc (amt);
1024 if (ret == NULL)
1025 return NULL;
1026
1027 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
1028 elf_x86_64_link_hash_newfunc,
1029 sizeof (struct elf_x86_64_link_hash_entry),
1030 X86_64_ELF_DATA))
1031 {
1032 free (ret);
1033 return NULL;
1034 }
1035
1036 if (ABI_64_P (abfd))
1037 {
1038 ret->r_info = elf64_r_info;
1039 ret->r_sym = elf64_r_sym;
1040 ret->pointer_r_type = R_X86_64_64;
1041 ret->dynamic_interpreter = ELF64_DYNAMIC_INTERPRETER;
1042 ret->dynamic_interpreter_size = sizeof ELF64_DYNAMIC_INTERPRETER;
1043 }
1044 else
1045 {
1046 ret->r_info = elf32_r_info;
1047 ret->r_sym = elf32_r_sym;
1048 ret->pointer_r_type = R_X86_64_32;
1049 ret->dynamic_interpreter = ELF32_DYNAMIC_INTERPRETER;
1050 ret->dynamic_interpreter_size = sizeof ELF32_DYNAMIC_INTERPRETER;
1051 }
1052
1053 ret->loc_hash_table = htab_try_create (1024,
1054 elf_x86_64_local_htab_hash,
1055 elf_x86_64_local_htab_eq,
1056 NULL);
1057 ret->loc_hash_memory = objalloc_create ();
1058 if (!ret->loc_hash_table || !ret->loc_hash_memory)
1059 {
1060 elf_x86_64_link_hash_table_free (abfd);
1061 return NULL;
1062 }
1063 ret->elf.root.hash_table_free = elf_x86_64_link_hash_table_free;
1064
1065 return &ret->elf.root;
1066 }
1067
1068 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
1069 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
1070 hash table. */
1071
1072 static bfd_boolean
1073 elf_x86_64_create_dynamic_sections (bfd *dynobj,
1074 struct bfd_link_info *info)
1075 {
1076 struct elf_x86_64_link_hash_table *htab;
1077
1078 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
1079 return FALSE;
1080
1081 htab = elf_x86_64_hash_table (info);
1082 if (htab == NULL)
1083 return FALSE;
1084
1085 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
1086 if (!htab->sdynbss)
1087 abort ();
1088
1089 if (bfd_link_executable (info))
1090 {
1091 /* Always allow copy relocs for building executables. */
1092 asection *s = bfd_get_linker_section (dynobj, ".rela.bss");
1093 if (s == NULL)
1094 {
1095 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
1096 s = bfd_make_section_anyway_with_flags (dynobj,
1097 ".rela.bss",
1098 (bed->dynamic_sec_flags
1099 | SEC_READONLY));
1100 if (s == NULL
1101 || ! bfd_set_section_alignment (dynobj, s,
1102 bed->s->log_file_align))
1103 return FALSE;
1104 }
1105 htab->srelbss = s;
1106 }
1107
1108 if (!info->no_ld_generated_unwind_info
1109 && htab->plt_eh_frame == NULL
1110 && htab->elf.splt != NULL)
1111 {
1112 flagword flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
1113 | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1114 | SEC_LINKER_CREATED);
1115 htab->plt_eh_frame
1116 = bfd_make_section_anyway_with_flags (dynobj, ".eh_frame", flags);
1117 if (htab->plt_eh_frame == NULL
1118 || !bfd_set_section_alignment (dynobj, htab->plt_eh_frame, 3))
1119 return FALSE;
1120 }
1121 return TRUE;
1122 }
1123
1124 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1125
1126 static void
1127 elf_x86_64_copy_indirect_symbol (struct bfd_link_info *info,
1128 struct elf_link_hash_entry *dir,
1129 struct elf_link_hash_entry *ind)
1130 {
1131 struct elf_x86_64_link_hash_entry *edir, *eind;
1132
1133 edir = (struct elf_x86_64_link_hash_entry *) dir;
1134 eind = (struct elf_x86_64_link_hash_entry *) ind;
1135
1136 if (!edir->has_bnd_reloc)
1137 edir->has_bnd_reloc = eind->has_bnd_reloc;
1138
1139 if (eind->dyn_relocs != NULL)
1140 {
1141 if (edir->dyn_relocs != NULL)
1142 {
1143 struct elf_dyn_relocs **pp;
1144 struct elf_dyn_relocs *p;
1145
1146 /* Add reloc counts against the indirect sym to the direct sym
1147 list. Merge any entries against the same section. */
1148 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
1149 {
1150 struct elf_dyn_relocs *q;
1151
1152 for (q = edir->dyn_relocs; q != NULL; q = q->next)
1153 if (q->sec == p->sec)
1154 {
1155 q->pc_count += p->pc_count;
1156 q->count += p->count;
1157 *pp = p->next;
1158 break;
1159 }
1160 if (q == NULL)
1161 pp = &p->next;
1162 }
1163 *pp = edir->dyn_relocs;
1164 }
1165
1166 edir->dyn_relocs = eind->dyn_relocs;
1167 eind->dyn_relocs = NULL;
1168 }
1169
1170 if (ind->root.type == bfd_link_hash_indirect
1171 && dir->got.refcount <= 0)
1172 {
1173 edir->tls_type = eind->tls_type;
1174 eind->tls_type = GOT_UNKNOWN;
1175 }
1176
1177 if (ELIMINATE_COPY_RELOCS
1178 && ind->root.type != bfd_link_hash_indirect
1179 && dir->dynamic_adjusted)
1180 {
1181 /* If called to transfer flags for a weakdef during processing
1182 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1183 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1184 dir->ref_dynamic |= ind->ref_dynamic;
1185 dir->ref_regular |= ind->ref_regular;
1186 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1187 dir->needs_plt |= ind->needs_plt;
1188 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1189 }
1190 else
1191 {
1192 if (eind->func_pointer_refcount > 0)
1193 {
1194 edir->func_pointer_refcount += eind->func_pointer_refcount;
1195 eind->func_pointer_refcount = 0;
1196 }
1197
1198 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
1199 }
1200 }
1201
1202 static bfd_boolean
1203 elf64_x86_64_elf_object_p (bfd *abfd)
1204 {
1205 /* Set the right machine number for an x86-64 elf64 file. */
1206 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
1207 return TRUE;
1208 }
1209
1210 static bfd_boolean
1211 elf32_x86_64_elf_object_p (bfd *abfd)
1212 {
1213 /* Set the right machine number for an x86-64 elf32 file. */
1214 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x64_32);
1215 return TRUE;
1216 }
1217
1218 /* Return TRUE if the TLS access code sequence support transition
1219 from R_TYPE. */
1220
1221 static bfd_boolean
1222 elf_x86_64_check_tls_transition (bfd *abfd,
1223 struct bfd_link_info *info,
1224 asection *sec,
1225 bfd_byte *contents,
1226 Elf_Internal_Shdr *symtab_hdr,
1227 struct elf_link_hash_entry **sym_hashes,
1228 unsigned int r_type,
1229 const Elf_Internal_Rela *rel,
1230 const Elf_Internal_Rela *relend)
1231 {
1232 unsigned int val;
1233 unsigned long r_symndx;
1234 bfd_boolean largepic = FALSE;
1235 struct elf_link_hash_entry *h;
1236 bfd_vma offset;
1237 struct elf_x86_64_link_hash_table *htab;
1238
1239 /* Get the section contents. */
1240 if (contents == NULL)
1241 {
1242 if (elf_section_data (sec)->this_hdr.contents != NULL)
1243 contents = elf_section_data (sec)->this_hdr.contents;
1244 else
1245 {
1246 /* FIXME: How to better handle error condition? */
1247 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
1248 return FALSE;
1249
1250 /* Cache the section contents for elf_link_input_bfd. */
1251 elf_section_data (sec)->this_hdr.contents = contents;
1252 }
1253 }
1254
1255 htab = elf_x86_64_hash_table (info);
1256 offset = rel->r_offset;
1257 switch (r_type)
1258 {
1259 case R_X86_64_TLSGD:
1260 case R_X86_64_TLSLD:
1261 if ((rel + 1) >= relend)
1262 return FALSE;
1263
1264 if (r_type == R_X86_64_TLSGD)
1265 {
1266 /* Check transition from GD access model. For 64bit, only
1267 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
1268 .word 0x6666; rex64; call __tls_get_addr
1269 can transit to different access model. For 32bit, only
1270 leaq foo@tlsgd(%rip), %rdi
1271 .word 0x6666; rex64; call __tls_get_addr
1272 can transit to different access model. For largepic
1273 we also support:
1274 leaq foo@tlsgd(%rip), %rdi
1275 movabsq $__tls_get_addr@pltoff, %rax
1276 addq $rbx, %rax
1277 call *%rax. */
1278
1279 static const unsigned char call[] = { 0x66, 0x66, 0x48, 0xe8 };
1280 static const unsigned char leaq[] = { 0x66, 0x48, 0x8d, 0x3d };
1281
1282 if ((offset + 12) > sec->size)
1283 return FALSE;
1284
1285 if (memcmp (contents + offset + 4, call, 4) != 0)
1286 {
1287 if (!ABI_64_P (abfd)
1288 || (offset + 19) > sec->size
1289 || offset < 3
1290 || memcmp (contents + offset - 3, leaq + 1, 3) != 0
1291 || memcmp (contents + offset + 4, "\x48\xb8", 2) != 0
1292 || memcmp (contents + offset + 14, "\x48\x01\xd8\xff\xd0", 5)
1293 != 0)
1294 return FALSE;
1295 largepic = TRUE;
1296 }
1297 else if (ABI_64_P (abfd))
1298 {
1299 if (offset < 4
1300 || memcmp (contents + offset - 4, leaq, 4) != 0)
1301 return FALSE;
1302 }
1303 else
1304 {
1305 if (offset < 3
1306 || memcmp (contents + offset - 3, leaq + 1, 3) != 0)
1307 return FALSE;
1308 }
1309 }
1310 else
1311 {
1312 /* Check transition from LD access model. Only
1313 leaq foo@tlsld(%rip), %rdi;
1314 call __tls_get_addr
1315 can transit to different access model. For largepic
1316 we also support:
1317 leaq foo@tlsld(%rip), %rdi
1318 movabsq $__tls_get_addr@pltoff, %rax
1319 addq $rbx, %rax
1320 call *%rax. */
1321
1322 static const unsigned char lea[] = { 0x48, 0x8d, 0x3d };
1323
1324 if (offset < 3 || (offset + 9) > sec->size)
1325 return FALSE;
1326
1327 if (memcmp (contents + offset - 3, lea, 3) != 0)
1328 return FALSE;
1329
1330 if (0xe8 != *(contents + offset + 4))
1331 {
1332 if (!ABI_64_P (abfd)
1333 || (offset + 19) > sec->size
1334 || memcmp (contents + offset + 4, "\x48\xb8", 2) != 0
1335 || memcmp (contents + offset + 14, "\x48\x01\xd8\xff\xd0", 5)
1336 != 0)
1337 return FALSE;
1338 largepic = TRUE;
1339 }
1340 }
1341
1342 r_symndx = htab->r_sym (rel[1].r_info);
1343 if (r_symndx < symtab_hdr->sh_info)
1344 return FALSE;
1345
1346 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1347 /* Use strncmp to check __tls_get_addr since __tls_get_addr
1348 may be versioned. */
1349 return (h != NULL
1350 && h->root.root.string != NULL
1351 && (largepic
1352 ? ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PLTOFF64
1353 : (ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PC32
1354 || ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PLT32))
1355 && (strncmp (h->root.root.string,
1356 "__tls_get_addr", 14) == 0));
1357
1358 case R_X86_64_GOTTPOFF:
1359 /* Check transition from IE access model:
1360 mov foo@gottpoff(%rip), %reg
1361 add foo@gottpoff(%rip), %reg
1362 */
1363
1364 /* Check REX prefix first. */
1365 if (offset >= 3 && (offset + 4) <= sec->size)
1366 {
1367 val = bfd_get_8 (abfd, contents + offset - 3);
1368 if (val != 0x48 && val != 0x4c)
1369 {
1370 /* X32 may have 0x44 REX prefix or no REX prefix. */
1371 if (ABI_64_P (abfd))
1372 return FALSE;
1373 }
1374 }
1375 else
1376 {
1377 /* X32 may not have any REX prefix. */
1378 if (ABI_64_P (abfd))
1379 return FALSE;
1380 if (offset < 2 || (offset + 3) > sec->size)
1381 return FALSE;
1382 }
1383
1384 val = bfd_get_8 (abfd, contents + offset - 2);
1385 if (val != 0x8b && val != 0x03)
1386 return FALSE;
1387
1388 val = bfd_get_8 (abfd, contents + offset - 1);
1389 return (val & 0xc7) == 5;
1390
1391 case R_X86_64_GOTPC32_TLSDESC:
1392 /* Check transition from GDesc access model:
1393 leaq x@tlsdesc(%rip), %rax
1394
1395 Make sure it's a leaq adding rip to a 32-bit offset
1396 into any register, although it's probably almost always
1397 going to be rax. */
1398
1399 if (offset < 3 || (offset + 4) > sec->size)
1400 return FALSE;
1401
1402 val = bfd_get_8 (abfd, contents + offset - 3);
1403 if ((val & 0xfb) != 0x48)
1404 return FALSE;
1405
1406 if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d)
1407 return FALSE;
1408
1409 val = bfd_get_8 (abfd, contents + offset - 1);
1410 return (val & 0xc7) == 0x05;
1411
1412 case R_X86_64_TLSDESC_CALL:
1413 /* Check transition from GDesc access model:
1414 call *x@tlsdesc(%rax)
1415 */
1416 if (offset + 2 <= sec->size)
1417 {
1418 /* Make sure that it's a call *x@tlsdesc(%rax). */
1419 static const unsigned char call[] = { 0xff, 0x10 };
1420 return memcmp (contents + offset, call, 2) == 0;
1421 }
1422
1423 return FALSE;
1424
1425 default:
1426 abort ();
1427 }
1428 }
1429
1430 /* Return TRUE if the TLS access transition is OK or no transition
1431 will be performed. Update R_TYPE if there is a transition. */
1432
1433 static bfd_boolean
1434 elf_x86_64_tls_transition (struct bfd_link_info *info, bfd *abfd,
1435 asection *sec, bfd_byte *contents,
1436 Elf_Internal_Shdr *symtab_hdr,
1437 struct elf_link_hash_entry **sym_hashes,
1438 unsigned int *r_type, int tls_type,
1439 const Elf_Internal_Rela *rel,
1440 const Elf_Internal_Rela *relend,
1441 struct elf_link_hash_entry *h,
1442 unsigned long r_symndx)
1443 {
1444 unsigned int from_type = *r_type;
1445 unsigned int to_type = from_type;
1446 bfd_boolean check = TRUE;
1447
1448 /* Skip TLS transition for functions. */
1449 if (h != NULL
1450 && (h->type == STT_FUNC
1451 || h->type == STT_GNU_IFUNC))
1452 return TRUE;
1453
1454 switch (from_type)
1455 {
1456 case R_X86_64_TLSGD:
1457 case R_X86_64_GOTPC32_TLSDESC:
1458 case R_X86_64_TLSDESC_CALL:
1459 case R_X86_64_GOTTPOFF:
1460 if (bfd_link_executable (info))
1461 {
1462 if (h == NULL)
1463 to_type = R_X86_64_TPOFF32;
1464 else
1465 to_type = R_X86_64_GOTTPOFF;
1466 }
1467
1468 /* When we are called from elf_x86_64_relocate_section,
1469 CONTENTS isn't NULL and there may be additional transitions
1470 based on TLS_TYPE. */
1471 if (contents != NULL)
1472 {
1473 unsigned int new_to_type = to_type;
1474
1475 if (bfd_link_executable (info)
1476 && h != NULL
1477 && h->dynindx == -1
1478 && tls_type == GOT_TLS_IE)
1479 new_to_type = R_X86_64_TPOFF32;
1480
1481 if (to_type == R_X86_64_TLSGD
1482 || to_type == R_X86_64_GOTPC32_TLSDESC
1483 || to_type == R_X86_64_TLSDESC_CALL)
1484 {
1485 if (tls_type == GOT_TLS_IE)
1486 new_to_type = R_X86_64_GOTTPOFF;
1487 }
1488
1489 /* We checked the transition before when we were called from
1490 elf_x86_64_check_relocs. We only want to check the new
1491 transition which hasn't been checked before. */
1492 check = new_to_type != to_type && from_type == to_type;
1493 to_type = new_to_type;
1494 }
1495
1496 break;
1497
1498 case R_X86_64_TLSLD:
1499 if (bfd_link_executable (info))
1500 to_type = R_X86_64_TPOFF32;
1501 break;
1502
1503 default:
1504 return TRUE;
1505 }
1506
1507 /* Return TRUE if there is no transition. */
1508 if (from_type == to_type)
1509 return TRUE;
1510
1511 /* Check if the transition can be performed. */
1512 if (check
1513 && ! elf_x86_64_check_tls_transition (abfd, info, sec, contents,
1514 symtab_hdr, sym_hashes,
1515 from_type, rel, relend))
1516 {
1517 reloc_howto_type *from, *to;
1518 const char *name;
1519
1520 from = elf_x86_64_rtype_to_howto (abfd, from_type);
1521 to = elf_x86_64_rtype_to_howto (abfd, to_type);
1522
1523 if (h)
1524 name = h->root.root.string;
1525 else
1526 {
1527 struct elf_x86_64_link_hash_table *htab;
1528
1529 htab = elf_x86_64_hash_table (info);
1530 if (htab == NULL)
1531 name = "*unknown*";
1532 else
1533 {
1534 Elf_Internal_Sym *isym;
1535
1536 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1537 abfd, r_symndx);
1538 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1539 }
1540 }
1541
1542 (*_bfd_error_handler)
1543 (_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
1544 "in section `%A' failed"),
1545 abfd, sec, from->name, to->name, name,
1546 (unsigned long) rel->r_offset);
1547 bfd_set_error (bfd_error_bad_value);
1548 return FALSE;
1549 }
1550
1551 *r_type = to_type;
1552 return TRUE;
1553 }
1554
1555 /* Rename some of the generic section flags to better document how they
1556 are used here. */
1557 #define need_convert_load sec_flg0
1558
1559 /* Look through the relocs for a section during the first phase, and
1560 calculate needed space in the global offset table, procedure
1561 linkage table, and dynamic reloc sections. */
1562
1563 static bfd_boolean
1564 elf_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info,
1565 asection *sec,
1566 const Elf_Internal_Rela *relocs)
1567 {
1568 struct elf_x86_64_link_hash_table *htab;
1569 Elf_Internal_Shdr *symtab_hdr;
1570 struct elf_link_hash_entry **sym_hashes;
1571 const Elf_Internal_Rela *rel;
1572 const Elf_Internal_Rela *rel_end;
1573 asection *sreloc;
1574 bfd_boolean use_plt_got;
1575
1576 if (bfd_link_relocatable (info))
1577 return TRUE;
1578
1579 BFD_ASSERT (is_x86_64_elf (abfd));
1580
1581 htab = elf_x86_64_hash_table (info);
1582 if (htab == NULL)
1583 return FALSE;
1584
1585 use_plt_got = get_elf_x86_64_backend_data (abfd) == &elf_x86_64_arch_bed;
1586
1587 symtab_hdr = &elf_symtab_hdr (abfd);
1588 sym_hashes = elf_sym_hashes (abfd);
1589
1590 sreloc = NULL;
1591
1592 rel_end = relocs + sec->reloc_count;
1593 for (rel = relocs; rel < rel_end; rel++)
1594 {
1595 unsigned int r_type;
1596 unsigned long r_symndx;
1597 struct elf_link_hash_entry *h;
1598 Elf_Internal_Sym *isym;
1599 const char *name;
1600 bfd_boolean size_reloc;
1601
1602 r_symndx = htab->r_sym (rel->r_info);
1603 r_type = ELF32_R_TYPE (rel->r_info);
1604
1605 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1606 {
1607 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1608 abfd, r_symndx);
1609 return FALSE;
1610 }
1611
1612 if (r_symndx < symtab_hdr->sh_info)
1613 {
1614 /* A local symbol. */
1615 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1616 abfd, r_symndx);
1617 if (isym == NULL)
1618 return FALSE;
1619
1620 /* Check relocation against local STT_GNU_IFUNC symbol. */
1621 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1622 {
1623 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel,
1624 TRUE);
1625 if (h == NULL)
1626 return FALSE;
1627
1628 /* Fake a STT_GNU_IFUNC symbol. */
1629 h->type = STT_GNU_IFUNC;
1630 h->def_regular = 1;
1631 h->ref_regular = 1;
1632 h->forced_local = 1;
1633 h->root.type = bfd_link_hash_defined;
1634 }
1635 else
1636 h = NULL;
1637 }
1638 else
1639 {
1640 isym = NULL;
1641 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1642 while (h->root.type == bfd_link_hash_indirect
1643 || h->root.type == bfd_link_hash_warning)
1644 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1645 }
1646
1647 /* Check invalid x32 relocations. */
1648 if (!ABI_64_P (abfd))
1649 switch (r_type)
1650 {
1651 default:
1652 break;
1653
1654 case R_X86_64_DTPOFF64:
1655 case R_X86_64_TPOFF64:
1656 case R_X86_64_PC64:
1657 case R_X86_64_GOTOFF64:
1658 case R_X86_64_GOT64:
1659 case R_X86_64_GOTPCREL64:
1660 case R_X86_64_GOTPC64:
1661 case R_X86_64_GOTPLT64:
1662 case R_X86_64_PLTOFF64:
1663 {
1664 if (h)
1665 name = h->root.root.string;
1666 else
1667 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1668 NULL);
1669 (*_bfd_error_handler)
1670 (_("%B: relocation %s against symbol `%s' isn't "
1671 "supported in x32 mode"), abfd,
1672 x86_64_elf_howto_table[r_type].name, name);
1673 bfd_set_error (bfd_error_bad_value);
1674 return FALSE;
1675 }
1676 break;
1677 }
1678
1679 if (h != NULL)
1680 {
1681 /* Create the ifunc sections for static executables. If we
1682 never see an indirect function symbol nor we are building
1683 a static executable, those sections will be empty and
1684 won't appear in output. */
1685 switch (r_type)
1686 {
1687 default:
1688 break;
1689
1690 case R_X86_64_PC32_BND:
1691 case R_X86_64_PLT32_BND:
1692 case R_X86_64_PC32:
1693 case R_X86_64_PLT32:
1694 case R_X86_64_32:
1695 case R_X86_64_64:
1696 /* MPX PLT is supported only if elf_x86_64_arch_bed
1697 is used in 64-bit mode. */
1698 if (ABI_64_P (abfd)
1699 && info->bndplt
1700 && (get_elf_x86_64_backend_data (abfd)
1701 == &elf_x86_64_arch_bed))
1702 {
1703 elf_x86_64_hash_entry (h)->has_bnd_reloc = 1;
1704
1705 /* Create the second PLT for Intel MPX support. */
1706 if (htab->plt_bnd == NULL)
1707 {
1708 unsigned int plt_bnd_align;
1709 const struct elf_backend_data *bed;
1710
1711 bed = get_elf_backend_data (info->output_bfd);
1712 BFD_ASSERT (sizeof (elf_x86_64_bnd_plt2_entry) == 8
1713 && (sizeof (elf_x86_64_bnd_plt2_entry)
1714 == sizeof (elf_x86_64_legacy_plt2_entry)));
1715 plt_bnd_align = 3;
1716
1717 if (htab->elf.dynobj == NULL)
1718 htab->elf.dynobj = abfd;
1719 htab->plt_bnd
1720 = bfd_make_section_anyway_with_flags (htab->elf.dynobj,
1721 ".plt.bnd",
1722 (bed->dynamic_sec_flags
1723 | SEC_ALLOC
1724 | SEC_CODE
1725 | SEC_LOAD
1726 | SEC_READONLY));
1727 if (htab->plt_bnd == NULL
1728 || !bfd_set_section_alignment (htab->elf.dynobj,
1729 htab->plt_bnd,
1730 plt_bnd_align))
1731 return FALSE;
1732 }
1733 }
1734
1735 case R_X86_64_32S:
1736 case R_X86_64_PC64:
1737 case R_X86_64_GOTPCREL:
1738 case R_X86_64_GOTPCRELX:
1739 case R_X86_64_REX_GOTPCRELX:
1740 case R_X86_64_GOTPCREL64:
1741 if (htab->elf.dynobj == NULL)
1742 htab->elf.dynobj = abfd;
1743 if (!_bfd_elf_create_ifunc_sections (htab->elf.dynobj, info))
1744 return FALSE;
1745 break;
1746 }
1747
1748 /* It is referenced by a non-shared object. */
1749 h->ref_regular = 1;
1750 h->root.non_ir_ref = 1;
1751
1752 if (h->type == STT_GNU_IFUNC)
1753 elf_tdata (info->output_bfd)->has_gnu_symbols
1754 |= elf_gnu_symbol_ifunc;
1755 }
1756
1757 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
1758 symtab_hdr, sym_hashes,
1759 &r_type, GOT_UNKNOWN,
1760 rel, rel_end, h, r_symndx))
1761 return FALSE;
1762
1763 switch (r_type)
1764 {
1765 case R_X86_64_TLSLD:
1766 htab->tls_ld_got.refcount += 1;
1767 goto create_got;
1768
1769 case R_X86_64_TPOFF32:
1770 if (!bfd_link_executable (info) && ABI_64_P (abfd))
1771 {
1772 if (h)
1773 name = h->root.root.string;
1774 else
1775 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1776 NULL);
1777 (*_bfd_error_handler)
1778 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1779 abfd,
1780 x86_64_elf_howto_table[r_type].name, name);
1781 bfd_set_error (bfd_error_bad_value);
1782 return FALSE;
1783 }
1784 break;
1785
1786 case R_X86_64_GOTTPOFF:
1787 if (!bfd_link_executable (info))
1788 info->flags |= DF_STATIC_TLS;
1789 /* Fall through */
1790
1791 case R_X86_64_GOT32:
1792 case R_X86_64_GOTPCREL:
1793 case R_X86_64_GOTPCRELX:
1794 case R_X86_64_REX_GOTPCRELX:
1795 case R_X86_64_TLSGD:
1796 case R_X86_64_GOT64:
1797 case R_X86_64_GOTPCREL64:
1798 case R_X86_64_GOTPLT64:
1799 case R_X86_64_GOTPC32_TLSDESC:
1800 case R_X86_64_TLSDESC_CALL:
1801 /* This symbol requires a global offset table entry. */
1802 {
1803 int tls_type, old_tls_type;
1804
1805 switch (r_type)
1806 {
1807 default: tls_type = GOT_NORMAL; break;
1808 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
1809 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
1810 case R_X86_64_GOTPC32_TLSDESC:
1811 case R_X86_64_TLSDESC_CALL:
1812 tls_type = GOT_TLS_GDESC; break;
1813 }
1814
1815 if (h != NULL)
1816 {
1817 h->got.refcount += 1;
1818 old_tls_type = elf_x86_64_hash_entry (h)->tls_type;
1819 }
1820 else
1821 {
1822 bfd_signed_vma *local_got_refcounts;
1823
1824 /* This is a global offset table entry for a local symbol. */
1825 local_got_refcounts = elf_local_got_refcounts (abfd);
1826 if (local_got_refcounts == NULL)
1827 {
1828 bfd_size_type size;
1829
1830 size = symtab_hdr->sh_info;
1831 size *= sizeof (bfd_signed_vma)
1832 + sizeof (bfd_vma) + sizeof (char);
1833 local_got_refcounts = ((bfd_signed_vma *)
1834 bfd_zalloc (abfd, size));
1835 if (local_got_refcounts == NULL)
1836 return FALSE;
1837 elf_local_got_refcounts (abfd) = local_got_refcounts;
1838 elf_x86_64_local_tlsdesc_gotent (abfd)
1839 = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info);
1840 elf_x86_64_local_got_tls_type (abfd)
1841 = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
1842 }
1843 local_got_refcounts[r_symndx] += 1;
1844 old_tls_type
1845 = elf_x86_64_local_got_tls_type (abfd) [r_symndx];
1846 }
1847
1848 /* If a TLS symbol is accessed using IE at least once,
1849 there is no point to use dynamic model for it. */
1850 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1851 && (! GOT_TLS_GD_ANY_P (old_tls_type)
1852 || tls_type != GOT_TLS_IE))
1853 {
1854 if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type))
1855 tls_type = old_tls_type;
1856 else if (GOT_TLS_GD_ANY_P (old_tls_type)
1857 && GOT_TLS_GD_ANY_P (tls_type))
1858 tls_type |= old_tls_type;
1859 else
1860 {
1861 if (h)
1862 name = h->root.root.string;
1863 else
1864 name = bfd_elf_sym_name (abfd, symtab_hdr,
1865 isym, NULL);
1866 (*_bfd_error_handler)
1867 (_("%B: '%s' accessed both as normal and thread local symbol"),
1868 abfd, name);
1869 bfd_set_error (bfd_error_bad_value);
1870 return FALSE;
1871 }
1872 }
1873
1874 if (old_tls_type != tls_type)
1875 {
1876 if (h != NULL)
1877 elf_x86_64_hash_entry (h)->tls_type = tls_type;
1878 else
1879 elf_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
1880 }
1881 }
1882 /* Fall through */
1883
1884 case R_X86_64_GOTOFF64:
1885 case R_X86_64_GOTPC32:
1886 case R_X86_64_GOTPC64:
1887 create_got:
1888 if (htab->elf.sgot == NULL)
1889 {
1890 if (htab->elf.dynobj == NULL)
1891 htab->elf.dynobj = abfd;
1892 if (!_bfd_elf_create_got_section (htab->elf.dynobj,
1893 info))
1894 return FALSE;
1895 }
1896 break;
1897
1898 case R_X86_64_PLT32:
1899 case R_X86_64_PLT32_BND:
1900 /* This symbol requires a procedure linkage table entry. We
1901 actually build the entry in adjust_dynamic_symbol,
1902 because this might be a case of linking PIC code which is
1903 never referenced by a dynamic object, in which case we
1904 don't need to generate a procedure linkage table entry
1905 after all. */
1906
1907 /* If this is a local symbol, we resolve it directly without
1908 creating a procedure linkage table entry. */
1909 if (h == NULL)
1910 continue;
1911
1912 h->needs_plt = 1;
1913 h->plt.refcount += 1;
1914 break;
1915
1916 case R_X86_64_PLTOFF64:
1917 /* This tries to form the 'address' of a function relative
1918 to GOT. For global symbols we need a PLT entry. */
1919 if (h != NULL)
1920 {
1921 h->needs_plt = 1;
1922 h->plt.refcount += 1;
1923 }
1924 goto create_got;
1925
1926 case R_X86_64_SIZE32:
1927 case R_X86_64_SIZE64:
1928 size_reloc = TRUE;
1929 goto do_size;
1930
1931 case R_X86_64_32:
1932 if (!ABI_64_P (abfd))
1933 goto pointer;
1934 case R_X86_64_8:
1935 case R_X86_64_16:
1936 case R_X86_64_32S:
1937 /* Let's help debug shared library creation. These relocs
1938 cannot be used in shared libs. Don't error out for
1939 sections we don't care about, such as debug sections or
1940 non-constant sections. */
1941 if (bfd_link_pic (info)
1942 && (sec->flags & SEC_ALLOC) != 0
1943 && (sec->flags & SEC_READONLY) != 0)
1944 {
1945 if (h)
1946 name = h->root.root.string;
1947 else
1948 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1949 (*_bfd_error_handler)
1950 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1951 abfd, x86_64_elf_howto_table[r_type].name, name);
1952 bfd_set_error (bfd_error_bad_value);
1953 return FALSE;
1954 }
1955 /* Fall through. */
1956
1957 case R_X86_64_PC8:
1958 case R_X86_64_PC16:
1959 case R_X86_64_PC32:
1960 case R_X86_64_PC32_BND:
1961 case R_X86_64_PC64:
1962 case R_X86_64_64:
1963 pointer:
1964 if (h != NULL && bfd_link_executable (info))
1965 {
1966 /* If this reloc is in a read-only section, we might
1967 need a copy reloc. We can't check reliably at this
1968 stage whether the section is read-only, as input
1969 sections have not yet been mapped to output sections.
1970 Tentatively set the flag for now, and correct in
1971 adjust_dynamic_symbol. */
1972 h->non_got_ref = 1;
1973
1974 /* We may need a .plt entry if the function this reloc
1975 refers to is in a shared lib. */
1976 h->plt.refcount += 1;
1977 if (r_type == R_X86_64_PC32)
1978 {
1979 /* Since something like ".long foo - ." may be used
1980 as pointer, make sure that PLT is used if foo is
1981 a function defined in a shared library. */
1982 if ((sec->flags & SEC_CODE) == 0)
1983 h->pointer_equality_needed = 1;
1984 }
1985 else if (r_type != R_X86_64_PC32_BND
1986 && r_type != R_X86_64_PC64)
1987 {
1988 h->pointer_equality_needed = 1;
1989 /* At run-time, R_X86_64_64 can be resolved for both
1990 x86-64 and x32. But R_X86_64_32 and R_X86_64_32S
1991 can only be resolved for x32. */
1992 if ((sec->flags & SEC_READONLY) == 0
1993 && (r_type == R_X86_64_64
1994 || (!ABI_64_P (abfd)
1995 && (r_type == R_X86_64_32
1996 || r_type == R_X86_64_32S))))
1997 {
1998 struct elf_x86_64_link_hash_entry *eh
1999 = (struct elf_x86_64_link_hash_entry *) h;
2000 eh->func_pointer_refcount += 1;
2001 }
2002 }
2003 }
2004
2005 size_reloc = FALSE;
2006 do_size:
2007 /* If we are creating a shared library, and this is a reloc
2008 against a global symbol, or a non PC relative reloc
2009 against a local symbol, then we need to copy the reloc
2010 into the shared library. However, if we are linking with
2011 -Bsymbolic, we do not need to copy a reloc against a
2012 global symbol which is defined in an object we are
2013 including in the link (i.e., DEF_REGULAR is set). At
2014 this point we have not seen all the input files, so it is
2015 possible that DEF_REGULAR is not set now but will be set
2016 later (it is never cleared). In case of a weak definition,
2017 DEF_REGULAR may be cleared later by a strong definition in
2018 a shared library. We account for that possibility below by
2019 storing information in the relocs_copied field of the hash
2020 table entry. A similar situation occurs when creating
2021 shared libraries and symbol visibility changes render the
2022 symbol local.
2023
2024 If on the other hand, we are creating an executable, we
2025 may need to keep relocations for symbols satisfied by a
2026 dynamic library if we manage to avoid copy relocs for the
2027 symbol. */
2028 if ((bfd_link_pic (info)
2029 && (sec->flags & SEC_ALLOC) != 0
2030 && (! IS_X86_64_PCREL_TYPE (r_type)
2031 || (h != NULL
2032 && (! SYMBOLIC_BIND (info, h)
2033 || h->root.type == bfd_link_hash_defweak
2034 || !h->def_regular))))
2035 || (ELIMINATE_COPY_RELOCS
2036 && !bfd_link_pic (info)
2037 && (sec->flags & SEC_ALLOC) != 0
2038 && h != NULL
2039 && (h->root.type == bfd_link_hash_defweak
2040 || !h->def_regular)))
2041 {
2042 struct elf_dyn_relocs *p;
2043 struct elf_dyn_relocs **head;
2044
2045 /* We must copy these reloc types into the output file.
2046 Create a reloc section in dynobj and make room for
2047 this reloc. */
2048 if (sreloc == NULL)
2049 {
2050 if (htab->elf.dynobj == NULL)
2051 htab->elf.dynobj = abfd;
2052
2053 sreloc = _bfd_elf_make_dynamic_reloc_section
2054 (sec, htab->elf.dynobj, ABI_64_P (abfd) ? 3 : 2,
2055 abfd, /*rela?*/ TRUE);
2056
2057 if (sreloc == NULL)
2058 return FALSE;
2059 }
2060
2061 /* If this is a global symbol, we count the number of
2062 relocations we need for this symbol. */
2063 if (h != NULL)
2064 {
2065 head = &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs;
2066 }
2067 else
2068 {
2069 /* Track dynamic relocs needed for local syms too.
2070 We really need local syms available to do this
2071 easily. Oh well. */
2072 asection *s;
2073 void **vpp;
2074
2075 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
2076 abfd, r_symndx);
2077 if (isym == NULL)
2078 return FALSE;
2079
2080 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
2081 if (s == NULL)
2082 s = sec;
2083
2084 /* Beware of type punned pointers vs strict aliasing
2085 rules. */
2086 vpp = &(elf_section_data (s)->local_dynrel);
2087 head = (struct elf_dyn_relocs **)vpp;
2088 }
2089
2090 p = *head;
2091 if (p == NULL || p->sec != sec)
2092 {
2093 bfd_size_type amt = sizeof *p;
2094
2095 p = ((struct elf_dyn_relocs *)
2096 bfd_alloc (htab->elf.dynobj, amt));
2097 if (p == NULL)
2098 return FALSE;
2099 p->next = *head;
2100 *head = p;
2101 p->sec = sec;
2102 p->count = 0;
2103 p->pc_count = 0;
2104 }
2105
2106 p->count += 1;
2107 /* Count size relocation as PC-relative relocation. */
2108 if (IS_X86_64_PCREL_TYPE (r_type) || size_reloc)
2109 p->pc_count += 1;
2110 }
2111 break;
2112
2113 /* This relocation describes the C++ object vtable hierarchy.
2114 Reconstruct it for later use during GC. */
2115 case R_X86_64_GNU_VTINHERIT:
2116 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2117 return FALSE;
2118 break;
2119
2120 /* This relocation describes which C++ vtable entries are actually
2121 used. Record for later use during GC. */
2122 case R_X86_64_GNU_VTENTRY:
2123 BFD_ASSERT (h != NULL);
2124 if (h != NULL
2125 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2126 return FALSE;
2127 break;
2128
2129 default:
2130 break;
2131 }
2132
2133 if (use_plt_got
2134 && h != NULL
2135 && h->plt.refcount > 0
2136 && (((info->flags & DF_BIND_NOW) && !h->pointer_equality_needed)
2137 || h->got.refcount > 0)
2138 && htab->plt_got == NULL)
2139 {
2140 /* Create the GOT procedure linkage table. */
2141 unsigned int plt_got_align;
2142 const struct elf_backend_data *bed;
2143
2144 bed = get_elf_backend_data (info->output_bfd);
2145 BFD_ASSERT (sizeof (elf_x86_64_legacy_plt2_entry) == 8
2146 && (sizeof (elf_x86_64_bnd_plt2_entry)
2147 == sizeof (elf_x86_64_legacy_plt2_entry)));
2148 plt_got_align = 3;
2149
2150 if (htab->elf.dynobj == NULL)
2151 htab->elf.dynobj = abfd;
2152 htab->plt_got
2153 = bfd_make_section_anyway_with_flags (htab->elf.dynobj,
2154 ".plt.got",
2155 (bed->dynamic_sec_flags
2156 | SEC_ALLOC
2157 | SEC_CODE
2158 | SEC_LOAD
2159 | SEC_READONLY));
2160 if (htab->plt_got == NULL
2161 || !bfd_set_section_alignment (htab->elf.dynobj,
2162 htab->plt_got,
2163 plt_got_align))
2164 return FALSE;
2165 }
2166
2167 if ((r_type == R_X86_64_GOTPCREL
2168 || r_type == R_X86_64_GOTPCRELX
2169 || r_type == R_X86_64_REX_GOTPCRELX)
2170 && (h == NULL || h->type != STT_GNU_IFUNC))
2171 sec->need_convert_load = 1;
2172 }
2173
2174 return TRUE;
2175 }
2176
2177 /* Return the section that should be marked against GC for a given
2178 relocation. */
2179
2180 static asection *
2181 elf_x86_64_gc_mark_hook (asection *sec,
2182 struct bfd_link_info *info,
2183 Elf_Internal_Rela *rel,
2184 struct elf_link_hash_entry *h,
2185 Elf_Internal_Sym *sym)
2186 {
2187 if (h != NULL)
2188 switch (ELF32_R_TYPE (rel->r_info))
2189 {
2190 case R_X86_64_GNU_VTINHERIT:
2191 case R_X86_64_GNU_VTENTRY:
2192 return NULL;
2193 }
2194
2195 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
2196 }
2197
2198 /* Update the got entry reference counts for the section being removed. */
2199
2200 static bfd_boolean
2201 elf_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
2202 asection *sec,
2203 const Elf_Internal_Rela *relocs)
2204 {
2205 struct elf_x86_64_link_hash_table *htab;
2206 Elf_Internal_Shdr *symtab_hdr;
2207 struct elf_link_hash_entry **sym_hashes;
2208 bfd_signed_vma *local_got_refcounts;
2209 const Elf_Internal_Rela *rel, *relend;
2210
2211 if (bfd_link_relocatable (info))
2212 return TRUE;
2213
2214 htab = elf_x86_64_hash_table (info);
2215 if (htab == NULL)
2216 return FALSE;
2217
2218 elf_section_data (sec)->local_dynrel = NULL;
2219
2220 symtab_hdr = &elf_symtab_hdr (abfd);
2221 sym_hashes = elf_sym_hashes (abfd);
2222 local_got_refcounts = elf_local_got_refcounts (abfd);
2223
2224 htab = elf_x86_64_hash_table (info);
2225 relend = relocs + sec->reloc_count;
2226 for (rel = relocs; rel < relend; rel++)
2227 {
2228 unsigned long r_symndx;
2229 unsigned int r_type;
2230 struct elf_link_hash_entry *h = NULL;
2231 bfd_boolean pointer_reloc;
2232
2233 r_symndx = htab->r_sym (rel->r_info);
2234 if (r_symndx >= symtab_hdr->sh_info)
2235 {
2236 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2237 while (h->root.type == bfd_link_hash_indirect
2238 || h->root.type == bfd_link_hash_warning)
2239 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2240 }
2241 else
2242 {
2243 /* A local symbol. */
2244 Elf_Internal_Sym *isym;
2245
2246 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
2247 abfd, r_symndx);
2248
2249 /* Check relocation against local STT_GNU_IFUNC symbol. */
2250 if (isym != NULL
2251 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
2252 {
2253 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel, FALSE);
2254 if (h == NULL)
2255 abort ();
2256 }
2257 }
2258
2259 if (h)
2260 {
2261 struct elf_x86_64_link_hash_entry *eh;
2262 struct elf_dyn_relocs **pp;
2263 struct elf_dyn_relocs *p;
2264
2265 eh = (struct elf_x86_64_link_hash_entry *) h;
2266
2267 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
2268 if (p->sec == sec)
2269 {
2270 /* Everything must go for SEC. */
2271 *pp = p->next;
2272 break;
2273 }
2274 }
2275
2276 r_type = ELF32_R_TYPE (rel->r_info);
2277 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
2278 symtab_hdr, sym_hashes,
2279 &r_type, GOT_UNKNOWN,
2280 rel, relend, h, r_symndx))
2281 return FALSE;
2282
2283 pointer_reloc = FALSE;
2284 switch (r_type)
2285 {
2286 case R_X86_64_TLSLD:
2287 if (htab->tls_ld_got.refcount > 0)
2288 htab->tls_ld_got.refcount -= 1;
2289 break;
2290
2291 case R_X86_64_TLSGD:
2292 case R_X86_64_GOTPC32_TLSDESC:
2293 case R_X86_64_TLSDESC_CALL:
2294 case R_X86_64_GOTTPOFF:
2295 case R_X86_64_GOT32:
2296 case R_X86_64_GOTPCREL:
2297 case R_X86_64_GOTPCRELX:
2298 case R_X86_64_REX_GOTPCRELX:
2299 case R_X86_64_GOT64:
2300 case R_X86_64_GOTPCREL64:
2301 case R_X86_64_GOTPLT64:
2302 if (h != NULL)
2303 {
2304 if (h->got.refcount > 0)
2305 h->got.refcount -= 1;
2306 if (h->type == STT_GNU_IFUNC)
2307 {
2308 if (h->plt.refcount > 0)
2309 h->plt.refcount -= 1;
2310 }
2311 }
2312 else if (local_got_refcounts != NULL)
2313 {
2314 if (local_got_refcounts[r_symndx] > 0)
2315 local_got_refcounts[r_symndx] -= 1;
2316 }
2317 break;
2318
2319 case R_X86_64_32:
2320 case R_X86_64_32S:
2321 pointer_reloc = !ABI_64_P (abfd);
2322 goto pointer;
2323
2324 case R_X86_64_64:
2325 pointer_reloc = TRUE;
2326 case R_X86_64_8:
2327 case R_X86_64_16:
2328 case R_X86_64_PC8:
2329 case R_X86_64_PC16:
2330 case R_X86_64_PC32:
2331 case R_X86_64_PC32_BND:
2332 case R_X86_64_PC64:
2333 case R_X86_64_SIZE32:
2334 case R_X86_64_SIZE64:
2335 pointer:
2336 if (bfd_link_pic (info)
2337 && (h == NULL || h->type != STT_GNU_IFUNC))
2338 break;
2339 /* Fall thru */
2340
2341 case R_X86_64_PLT32:
2342 case R_X86_64_PLT32_BND:
2343 case R_X86_64_PLTOFF64:
2344 if (h != NULL)
2345 {
2346 if (h->plt.refcount > 0)
2347 h->plt.refcount -= 1;
2348 if (pointer_reloc && (sec->flags & SEC_READONLY) == 0)
2349 {
2350 struct elf_x86_64_link_hash_entry *eh
2351 = (struct elf_x86_64_link_hash_entry *) h;
2352 if (eh->func_pointer_refcount > 0)
2353 eh->func_pointer_refcount -= 1;
2354 }
2355 }
2356 break;
2357
2358 default:
2359 break;
2360 }
2361 }
2362
2363 return TRUE;
2364 }
2365
2366 /* Adjust a symbol defined by a dynamic object and referenced by a
2367 regular object. The current definition is in some section of the
2368 dynamic object, but we're not including those sections. We have to
2369 change the definition to something the rest of the link can
2370 understand. */
2371
2372 static bfd_boolean
2373 elf_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
2374 struct elf_link_hash_entry *h)
2375 {
2376 struct elf_x86_64_link_hash_table *htab;
2377 asection *s;
2378 struct elf_x86_64_link_hash_entry *eh;
2379 struct elf_dyn_relocs *p;
2380
2381 /* STT_GNU_IFUNC symbol must go through PLT. */
2382 if (h->type == STT_GNU_IFUNC)
2383 {
2384 /* All local STT_GNU_IFUNC references must be treate as local
2385 calls via local PLT. */
2386 if (h->ref_regular
2387 && SYMBOL_CALLS_LOCAL (info, h))
2388 {
2389 bfd_size_type pc_count = 0, count = 0;
2390 struct elf_dyn_relocs **pp;
2391
2392 eh = (struct elf_x86_64_link_hash_entry *) h;
2393 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2394 {
2395 pc_count += p->pc_count;
2396 p->count -= p->pc_count;
2397 p->pc_count = 0;
2398 count += p->count;
2399 if (p->count == 0)
2400 *pp = p->next;
2401 else
2402 pp = &p->next;
2403 }
2404
2405 if (pc_count || count)
2406 {
2407 h->needs_plt = 1;
2408 h->non_got_ref = 1;
2409 if (h->plt.refcount <= 0)
2410 h->plt.refcount = 1;
2411 else
2412 h->plt.refcount += 1;
2413 }
2414 }
2415
2416 if (h->plt.refcount <= 0)
2417 {
2418 h->plt.offset = (bfd_vma) -1;
2419 h->needs_plt = 0;
2420 }
2421 return TRUE;
2422 }
2423
2424 /* If this is a function, put it in the procedure linkage table. We
2425 will fill in the contents of the procedure linkage table later,
2426 when we know the address of the .got section. */
2427 if (h->type == STT_FUNC
2428 || h->needs_plt)
2429 {
2430 if (h->plt.refcount <= 0
2431 || SYMBOL_CALLS_LOCAL (info, h)
2432 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2433 && h->root.type == bfd_link_hash_undefweak))
2434 {
2435 /* This case can occur if we saw a PLT32 reloc in an input
2436 file, but the symbol was never referred to by a dynamic
2437 object, or if all references were garbage collected. In
2438 such a case, we don't actually need to build a procedure
2439 linkage table, and we can just do a PC32 reloc instead. */
2440 h->plt.offset = (bfd_vma) -1;
2441 h->needs_plt = 0;
2442 }
2443
2444 return TRUE;
2445 }
2446 else
2447 /* It's possible that we incorrectly decided a .plt reloc was
2448 needed for an R_X86_64_PC32 reloc to a non-function sym in
2449 check_relocs. We can't decide accurately between function and
2450 non-function syms in check-relocs; Objects loaded later in
2451 the link may change h->type. So fix it now. */
2452 h->plt.offset = (bfd_vma) -1;
2453
2454 /* If this is a weak symbol, and there is a real definition, the
2455 processor independent code will have arranged for us to see the
2456 real definition first, and we can just use the same value. */
2457 if (h->u.weakdef != NULL)
2458 {
2459 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
2460 || h->u.weakdef->root.type == bfd_link_hash_defweak);
2461 h->root.u.def.section = h->u.weakdef->root.u.def.section;
2462 h->root.u.def.value = h->u.weakdef->root.u.def.value;
2463 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
2464 {
2465 eh = (struct elf_x86_64_link_hash_entry *) h;
2466 h->non_got_ref = h->u.weakdef->non_got_ref;
2467 eh->needs_copy = h->u.weakdef->needs_copy;
2468 }
2469 return TRUE;
2470 }
2471
2472 /* This is a reference to a symbol defined by a dynamic object which
2473 is not a function. */
2474
2475 /* If we are creating a shared library, we must presume that the
2476 only references to the symbol are via the global offset table.
2477 For such cases we need not do anything here; the relocations will
2478 be handled correctly by relocate_section. */
2479 if (!bfd_link_executable (info))
2480 return TRUE;
2481
2482 /* If there are no references to this symbol that do not use the
2483 GOT, we don't need to generate a copy reloc. */
2484 if (!h->non_got_ref)
2485 return TRUE;
2486
2487 /* If -z nocopyreloc was given, we won't generate them either. */
2488 if (info->nocopyreloc)
2489 {
2490 h->non_got_ref = 0;
2491 return TRUE;
2492 }
2493
2494 if (ELIMINATE_COPY_RELOCS)
2495 {
2496 eh = (struct elf_x86_64_link_hash_entry *) h;
2497 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2498 {
2499 s = p->sec->output_section;
2500 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2501 break;
2502 }
2503
2504 /* If we didn't find any dynamic relocs in read-only sections, then
2505 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
2506 if (p == NULL)
2507 {
2508 h->non_got_ref = 0;
2509 return TRUE;
2510 }
2511 }
2512
2513 /* We must allocate the symbol in our .dynbss section, which will
2514 become part of the .bss section of the executable. There will be
2515 an entry for this symbol in the .dynsym section. The dynamic
2516 object will contain position independent code, so all references
2517 from the dynamic object to this symbol will go through the global
2518 offset table. The dynamic linker will use the .dynsym entry to
2519 determine the address it must put in the global offset table, so
2520 both the dynamic object and the regular object will refer to the
2521 same memory location for the variable. */
2522
2523 htab = elf_x86_64_hash_table (info);
2524 if (htab == NULL)
2525 return FALSE;
2526
2527 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
2528 to copy the initial value out of the dynamic object and into the
2529 runtime process image. */
2530 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
2531 {
2532 const struct elf_backend_data *bed;
2533 bed = get_elf_backend_data (info->output_bfd);
2534 htab->srelbss->size += bed->s->sizeof_rela;
2535 h->needs_copy = 1;
2536 }
2537
2538 s = htab->sdynbss;
2539
2540 return _bfd_elf_adjust_dynamic_copy (info, h, s);
2541 }
2542
2543 /* Allocate space in .plt, .got and associated reloc sections for
2544 dynamic relocs. */
2545
2546 static bfd_boolean
2547 elf_x86_64_allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
2548 {
2549 struct bfd_link_info *info;
2550 struct elf_x86_64_link_hash_table *htab;
2551 struct elf_x86_64_link_hash_entry *eh;
2552 struct elf_dyn_relocs *p;
2553 const struct elf_backend_data *bed;
2554 unsigned int plt_entry_size;
2555
2556 if (h->root.type == bfd_link_hash_indirect)
2557 return TRUE;
2558
2559 eh = (struct elf_x86_64_link_hash_entry *) h;
2560
2561 info = (struct bfd_link_info *) inf;
2562 htab = elf_x86_64_hash_table (info);
2563 if (htab == NULL)
2564 return FALSE;
2565 bed = get_elf_backend_data (info->output_bfd);
2566 plt_entry_size = GET_PLT_ENTRY_SIZE (info->output_bfd);
2567
2568 /* We can't use the GOT PLT if pointer equality is needed since
2569 finish_dynamic_symbol won't clear symbol value and the dynamic
2570 linker won't update the GOT slot. We will get into an infinite
2571 loop at run-time. */
2572 if (htab->plt_got != NULL
2573 && h->type != STT_GNU_IFUNC
2574 && !h->pointer_equality_needed
2575 && h->plt.refcount > 0
2576 && h->got.refcount > 0)
2577 {
2578 /* Don't use the regular PLT if there are both GOT and GOTPLT
2579 reloctions. */
2580 h->plt.offset = (bfd_vma) -1;
2581
2582 /* Use the GOT PLT. */
2583 eh->plt_got.refcount = 1;
2584 }
2585
2586 /* Clear the reference count of function pointer relocations if
2587 symbol isn't a normal function. */
2588 if (h->type != STT_FUNC)
2589 eh->func_pointer_refcount = 0;
2590
2591 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
2592 here if it is defined and referenced in a non-shared object. */
2593 if (h->type == STT_GNU_IFUNC
2594 && h->def_regular)
2595 {
2596 if (_bfd_elf_allocate_ifunc_dyn_relocs (info, h,
2597 &eh->dyn_relocs,
2598 plt_entry_size,
2599 plt_entry_size,
2600 GOT_ENTRY_SIZE))
2601 {
2602 asection *s = htab->plt_bnd;
2603 if (h->plt.offset != (bfd_vma) -1 && s != NULL)
2604 {
2605 /* Use the .plt.bnd section if it is created. */
2606 eh->plt_bnd.offset = s->size;
2607
2608 /* Make room for this entry in the .plt.bnd section. */
2609 s->size += sizeof (elf_x86_64_legacy_plt2_entry);
2610 }
2611
2612 return TRUE;
2613 }
2614 else
2615 return FALSE;
2616 }
2617 /* Don't create the PLT entry if there are only function pointer
2618 relocations which can be resolved at run-time. */
2619 else if (htab->elf.dynamic_sections_created
2620 && (h->plt.refcount > eh->func_pointer_refcount
2621 || eh->plt_got.refcount > 0))
2622 {
2623 bfd_boolean use_plt_got;
2624
2625 /* Clear the reference count of function pointer relocations
2626 if PLT is used. */
2627 eh->func_pointer_refcount = 0;
2628
2629 if ((info->flags & DF_BIND_NOW) && !h->pointer_equality_needed)
2630 {
2631 /* Don't use the regular PLT for DF_BIND_NOW. */
2632 h->plt.offset = (bfd_vma) -1;
2633
2634 /* Use the GOT PLT. */
2635 h->got.refcount = 1;
2636 eh->plt_got.refcount = 1;
2637 }
2638
2639 use_plt_got = eh->plt_got.refcount > 0;
2640
2641 /* Make sure this symbol is output as a dynamic symbol.
2642 Undefined weak syms won't yet be marked as dynamic. */
2643 if (h->dynindx == -1
2644 && !h->forced_local)
2645 {
2646 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2647 return FALSE;
2648 }
2649
2650 if (bfd_link_pic (info)
2651 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
2652 {
2653 asection *s = htab->elf.splt;
2654 asection *bnd_s = htab->plt_bnd;
2655 asection *got_s = htab->plt_got;
2656
2657 /* If this is the first .plt entry, make room for the special
2658 first entry. The .plt section is used by prelink to undo
2659 prelinking for dynamic relocations. */
2660 if (s->size == 0)
2661 s->size = plt_entry_size;
2662
2663 if (use_plt_got)
2664 eh->plt_got.offset = got_s->size;
2665 else
2666 {
2667 h->plt.offset = s->size;
2668 if (bnd_s)
2669 eh->plt_bnd.offset = bnd_s->size;
2670 }
2671
2672 /* If this symbol is not defined in a regular file, and we are
2673 not generating a shared library, then set the symbol to this
2674 location in the .plt. This is required to make function
2675 pointers compare as equal between the normal executable and
2676 the shared library. */
2677 if (! bfd_link_pic (info)
2678 && !h->def_regular)
2679 {
2680 if (use_plt_got)
2681 {
2682 /* We need to make a call to the entry of the GOT PLT
2683 instead of regular PLT entry. */
2684 h->root.u.def.section = got_s;
2685 h->root.u.def.value = eh->plt_got.offset;
2686 }
2687 else
2688 {
2689 if (bnd_s)
2690 {
2691 /* We need to make a call to the entry of the second
2692 PLT instead of regular PLT entry. */
2693 h->root.u.def.section = bnd_s;
2694 h->root.u.def.value = eh->plt_bnd.offset;
2695 }
2696 else
2697 {
2698 h->root.u.def.section = s;
2699 h->root.u.def.value = h->plt.offset;
2700 }
2701 }
2702 }
2703
2704 /* Make room for this entry. */
2705 if (use_plt_got)
2706 got_s->size += sizeof (elf_x86_64_legacy_plt2_entry);
2707 else
2708 {
2709 s->size += plt_entry_size;
2710 if (bnd_s)
2711 bnd_s->size += sizeof (elf_x86_64_legacy_plt2_entry);
2712
2713 /* We also need to make an entry in the .got.plt section,
2714 which will be placed in the .got section by the linker
2715 script. */
2716 htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
2717
2718 /* We also need to make an entry in the .rela.plt
2719 section. */
2720 htab->elf.srelplt->size += bed->s->sizeof_rela;
2721 htab->elf.srelplt->reloc_count++;
2722 }
2723 }
2724 else
2725 {
2726 h->plt.offset = (bfd_vma) -1;
2727 h->needs_plt = 0;
2728 }
2729 }
2730 else
2731 {
2732 h->plt.offset = (bfd_vma) -1;
2733 h->needs_plt = 0;
2734 }
2735
2736 eh->tlsdesc_got = (bfd_vma) -1;
2737
2738 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
2739 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
2740 if (h->got.refcount > 0
2741 && bfd_link_executable (info)
2742 && h->dynindx == -1
2743 && elf_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
2744 {
2745 h->got.offset = (bfd_vma) -1;
2746 }
2747 else if (h->got.refcount > 0)
2748 {
2749 asection *s;
2750 bfd_boolean dyn;
2751 int tls_type = elf_x86_64_hash_entry (h)->tls_type;
2752
2753 /* Make sure this symbol is output as a dynamic symbol.
2754 Undefined weak syms won't yet be marked as dynamic. */
2755 if (h->dynindx == -1
2756 && !h->forced_local)
2757 {
2758 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2759 return FALSE;
2760 }
2761
2762 if (GOT_TLS_GDESC_P (tls_type))
2763 {
2764 eh->tlsdesc_got = htab->elf.sgotplt->size
2765 - elf_x86_64_compute_jump_table_size (htab);
2766 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2767 h->got.offset = (bfd_vma) -2;
2768 }
2769 if (! GOT_TLS_GDESC_P (tls_type)
2770 || GOT_TLS_GD_P (tls_type))
2771 {
2772 s = htab->elf.sgot;
2773 h->got.offset = s->size;
2774 s->size += GOT_ENTRY_SIZE;
2775 if (GOT_TLS_GD_P (tls_type))
2776 s->size += GOT_ENTRY_SIZE;
2777 }
2778 dyn = htab->elf.dynamic_sections_created;
2779 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
2780 and two if global.
2781 R_X86_64_GOTTPOFF needs one dynamic relocation. */
2782 if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
2783 || tls_type == GOT_TLS_IE)
2784 htab->elf.srelgot->size += bed->s->sizeof_rela;
2785 else if (GOT_TLS_GD_P (tls_type))
2786 htab->elf.srelgot->size += 2 * bed->s->sizeof_rela;
2787 else if (! GOT_TLS_GDESC_P (tls_type)
2788 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2789 || h->root.type != bfd_link_hash_undefweak)
2790 && (bfd_link_pic (info)
2791 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
2792 htab->elf.srelgot->size += bed->s->sizeof_rela;
2793 if (GOT_TLS_GDESC_P (tls_type))
2794 {
2795 htab->elf.srelplt->size += bed->s->sizeof_rela;
2796 htab->tlsdesc_plt = (bfd_vma) -1;
2797 }
2798 }
2799 else
2800 h->got.offset = (bfd_vma) -1;
2801
2802 if (eh->dyn_relocs == NULL)
2803 return TRUE;
2804
2805 /* In the shared -Bsymbolic case, discard space allocated for
2806 dynamic pc-relative relocs against symbols which turn out to be
2807 defined in regular objects. For the normal shared case, discard
2808 space for pc-relative relocs that have become local due to symbol
2809 visibility changes. */
2810
2811 if (bfd_link_pic (info))
2812 {
2813 /* Relocs that use pc_count are those that appear on a call
2814 insn, or certain REL relocs that can generated via assembly.
2815 We want calls to protected symbols to resolve directly to the
2816 function rather than going via the plt. If people want
2817 function pointer comparisons to work as expected then they
2818 should avoid writing weird assembly. */
2819 if (SYMBOL_CALLS_LOCAL (info, h))
2820 {
2821 struct elf_dyn_relocs **pp;
2822
2823 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2824 {
2825 p->count -= p->pc_count;
2826 p->pc_count = 0;
2827 if (p->count == 0)
2828 *pp = p->next;
2829 else
2830 pp = &p->next;
2831 }
2832 }
2833
2834 /* Also discard relocs on undefined weak syms with non-default
2835 visibility. */
2836 if (eh->dyn_relocs != NULL)
2837 {
2838 if (h->root.type == bfd_link_hash_undefweak)
2839 {
2840 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2841 eh->dyn_relocs = NULL;
2842
2843 /* Make sure undefined weak symbols are output as a dynamic
2844 symbol in PIEs. */
2845 else if (h->dynindx == -1
2846 && ! h->forced_local
2847 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2848 return FALSE;
2849 }
2850 /* For PIE, discard space for pc-relative relocs against
2851 symbols which turn out to need copy relocs. */
2852 else if (bfd_link_executable (info)
2853 && (h->needs_copy || eh->needs_copy)
2854 && h->def_dynamic
2855 && !h->def_regular)
2856 {
2857 struct elf_dyn_relocs **pp;
2858
2859 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2860 {
2861 if (p->pc_count != 0)
2862 *pp = p->next;
2863 else
2864 pp = &p->next;
2865 }
2866 }
2867 }
2868 }
2869 else if (ELIMINATE_COPY_RELOCS)
2870 {
2871 /* For the non-shared case, discard space for relocs against
2872 symbols which turn out to need copy relocs or are not
2873 dynamic. Keep dynamic relocations for run-time function
2874 pointer initialization. */
2875
2876 if ((!h->non_got_ref || eh->func_pointer_refcount > 0)
2877 && ((h->def_dynamic
2878 && !h->def_regular)
2879 || (htab->elf.dynamic_sections_created
2880 && (h->root.type == bfd_link_hash_undefweak
2881 || h->root.type == bfd_link_hash_undefined))))
2882 {
2883 /* Make sure this symbol is output as a dynamic symbol.
2884 Undefined weak syms won't yet be marked as dynamic. */
2885 if (h->dynindx == -1
2886 && ! h->forced_local
2887 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2888 return FALSE;
2889
2890 /* If that succeeded, we know we'll be keeping all the
2891 relocs. */
2892 if (h->dynindx != -1)
2893 goto keep;
2894 }
2895
2896 eh->dyn_relocs = NULL;
2897 eh->func_pointer_refcount = 0;
2898
2899 keep: ;
2900 }
2901
2902 /* Finally, allocate space. */
2903 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2904 {
2905 asection * sreloc;
2906
2907 sreloc = elf_section_data (p->sec)->sreloc;
2908
2909 BFD_ASSERT (sreloc != NULL);
2910
2911 sreloc->size += p->count * bed->s->sizeof_rela;
2912 }
2913
2914 return TRUE;
2915 }
2916
2917 /* Allocate space in .plt, .got and associated reloc sections for
2918 local dynamic relocs. */
2919
2920 static bfd_boolean
2921 elf_x86_64_allocate_local_dynrelocs (void **slot, void *inf)
2922 {
2923 struct elf_link_hash_entry *h
2924 = (struct elf_link_hash_entry *) *slot;
2925
2926 if (h->type != STT_GNU_IFUNC
2927 || !h->def_regular
2928 || !h->ref_regular
2929 || !h->forced_local
2930 || h->root.type != bfd_link_hash_defined)
2931 abort ();
2932
2933 return elf_x86_64_allocate_dynrelocs (h, inf);
2934 }
2935
2936 /* Find any dynamic relocs that apply to read-only sections. */
2937
2938 static bfd_boolean
2939 elf_x86_64_readonly_dynrelocs (struct elf_link_hash_entry *h,
2940 void * inf)
2941 {
2942 struct elf_x86_64_link_hash_entry *eh;
2943 struct elf_dyn_relocs *p;
2944
2945 /* Skip local IFUNC symbols. */
2946 if (h->forced_local && h->type == STT_GNU_IFUNC)
2947 return TRUE;
2948
2949 eh = (struct elf_x86_64_link_hash_entry *) h;
2950 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2951 {
2952 asection *s = p->sec->output_section;
2953
2954 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2955 {
2956 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2957
2958 info->flags |= DF_TEXTREL;
2959
2960 if ((info->warn_shared_textrel && bfd_link_pic (info))
2961 || info->error_textrel)
2962 info->callbacks->einfo (_("%P: %B: warning: relocation against `%s' in readonly section `%A'\n"),
2963 p->sec->owner, h->root.root.string,
2964 p->sec);
2965
2966 /* Not an error, just cut short the traversal. */
2967 return FALSE;
2968 }
2969 }
2970 return TRUE;
2971 }
2972
2973 /* With the local symbol, foo, we convert
2974 mov foo@GOTPCREL(%rip), %reg
2975 to
2976 lea foo(%rip), %reg
2977 and convert
2978 call/jmp *foo@GOTPCREL(%rip)
2979 to
2980 nop call foo/jmp foo nop
2981 When PIC is false, convert
2982 test %reg, foo@GOTPCREL(%rip)
2983 to
2984 test $foo, %reg
2985 and convert
2986 binop foo@GOTPCREL(%rip), %reg
2987 to
2988 binop $foo, %reg
2989 where binop is one of adc, add, and, cmp, or, sbb, sub, xor
2990 instructions. */
2991
2992 static bfd_boolean
2993 elf_x86_64_convert_load (bfd *abfd, asection *sec,
2994 struct bfd_link_info *link_info)
2995 {
2996 Elf_Internal_Shdr *symtab_hdr;
2997 Elf_Internal_Rela *internal_relocs;
2998 Elf_Internal_Rela *irel, *irelend;
2999 bfd_byte *contents;
3000 struct elf_x86_64_link_hash_table *htab;
3001 bfd_boolean changed_contents;
3002 bfd_boolean changed_relocs;
3003 bfd_signed_vma *local_got_refcounts;
3004 bfd_vma maxpagesize;
3005
3006 /* Don't even try to convert non-ELF outputs. */
3007 if (!is_elf_hash_table (link_info->hash))
3008 return FALSE;
3009
3010 /* Nothing to do if there is no need or no output. */
3011 if ((sec->flags & (SEC_CODE | SEC_RELOC)) != (SEC_CODE | SEC_RELOC)
3012 || sec->need_convert_load == 0
3013 || bfd_is_abs_section (sec->output_section))
3014 return TRUE;
3015
3016 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
3017
3018 /* Load the relocations for this section. */
3019 internal_relocs = (_bfd_elf_link_read_relocs
3020 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
3021 link_info->keep_memory));
3022 if (internal_relocs == NULL)
3023 return FALSE;
3024
3025 htab = elf_x86_64_hash_table (link_info);
3026 changed_contents = FALSE;
3027 changed_relocs = FALSE;
3028 local_got_refcounts = elf_local_got_refcounts (abfd);
3029 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3030
3031 /* Get the section contents. */
3032 if (elf_section_data (sec)->this_hdr.contents != NULL)
3033 contents = elf_section_data (sec)->this_hdr.contents;
3034 else
3035 {
3036 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
3037 goto error_return;
3038 }
3039
3040 irelend = internal_relocs + sec->reloc_count;
3041 for (irel = internal_relocs; irel < irelend; irel++)
3042 {
3043 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
3044 unsigned int r_symndx = htab->r_sym (irel->r_info);
3045 unsigned int indx;
3046 struct elf_link_hash_entry *h;
3047 asection *tsec;
3048 char symtype;
3049 bfd_vma toff, roff;
3050 bfd_signed_vma raddend;
3051 unsigned int opcode;
3052 unsigned int modrm;
3053
3054 if (r_type != R_X86_64_GOTPCREL
3055 && r_type != R_X86_64_GOTPCRELX
3056 && r_type != R_X86_64_REX_GOTPCRELX)
3057 continue;
3058
3059 roff = irel->r_offset;
3060 if (roff < (r_type == R_X86_64_REX_GOTPCRELX ? 3 : 2))
3061 continue;
3062
3063 raddend = irel->r_addend;
3064 /* Addend for 32-bit PC-relative relocation must be -4. */
3065 if (raddend != -4)
3066 continue;
3067
3068 opcode = bfd_get_8 (abfd, contents + roff - 2);
3069
3070 /* It is OK to convert mov to lea. */
3071 if (opcode != 0x8b)
3072 {
3073 /* Only convert R_X86_64_GOTPCRELX and R_X86_64_REX_GOTPCRELX
3074 for mov call, jmp or one of adc, add, and, cmp, or, sbb,
3075 sub, test, xor instructions. */
3076 if (r_type != R_X86_64_GOTPCRELX
3077 && r_type != R_X86_64_REX_GOTPCRELX)
3078 continue;
3079
3080 /* It is OK to convert indirect branch to direct branch. */
3081 if (opcode != 0xff)
3082 {
3083 /* It is OK to convert adc, add, and, cmp, or, sbb, sub,
3084 test, xor only when PIC is false. */
3085 if (bfd_link_pic (link_info))
3086 continue;
3087 }
3088 }
3089
3090 /* Get the symbol referred to by the reloc. */
3091 if (r_symndx < symtab_hdr->sh_info)
3092 {
3093 Elf_Internal_Sym *isym;
3094
3095 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
3096 abfd, r_symndx);
3097
3098 symtype = ELF_ST_TYPE (isym->st_info);
3099
3100 /* STT_GNU_IFUNC must keep GOTPCREL relocations and skip
3101 relocation against undefined symbols. */
3102 if (symtype == STT_GNU_IFUNC || isym->st_shndx == SHN_UNDEF)
3103 continue;
3104
3105 if (isym->st_shndx == SHN_ABS)
3106 tsec = bfd_abs_section_ptr;
3107 else if (isym->st_shndx == SHN_COMMON)
3108 tsec = bfd_com_section_ptr;
3109 else if (isym->st_shndx == SHN_X86_64_LCOMMON)
3110 tsec = &_bfd_elf_large_com_section;
3111 else
3112 tsec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3113
3114 h = NULL;
3115 toff = isym->st_value;
3116 }
3117 else
3118 {
3119 indx = r_symndx - symtab_hdr->sh_info;
3120 h = elf_sym_hashes (abfd)[indx];
3121 BFD_ASSERT (h != NULL);
3122
3123 while (h->root.type == bfd_link_hash_indirect
3124 || h->root.type == bfd_link_hash_warning)
3125 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3126
3127 /* STT_GNU_IFUNC must keep GOTPCREL relocations. We also
3128 avoid optimizing GOTPCREL relocations againt _DYNAMIC
3129 since ld.so may use its link-time address. */
3130 if ((h->root.type == bfd_link_hash_defined
3131 || h->root.type == bfd_link_hash_defweak)
3132 && h->type != STT_GNU_IFUNC
3133 && h != htab->elf.hdynamic
3134 && SYMBOL_REFERENCES_LOCAL (link_info, h))
3135 {
3136 tsec = h->root.u.def.section;
3137 toff = h->root.u.def.value;
3138 symtype = h->type;
3139 }
3140 else
3141 continue;
3142 }
3143
3144 if (tsec->sec_info_type == SEC_INFO_TYPE_MERGE)
3145 {
3146 /* At this stage in linking, no SEC_MERGE symbol has been
3147 adjusted, so all references to such symbols need to be
3148 passed through _bfd_merged_section_offset. (Later, in
3149 relocate_section, all SEC_MERGE symbols *except* for
3150 section symbols have been adjusted.)
3151
3152 gas may reduce relocations against symbols in SEC_MERGE
3153 sections to a relocation against the section symbol when
3154 the original addend was zero. When the reloc is against
3155 a section symbol we should include the addend in the
3156 offset passed to _bfd_merged_section_offset, since the
3157 location of interest is the original symbol. On the
3158 other hand, an access to "sym+addend" where "sym" is not
3159 a section symbol should not include the addend; Such an
3160 access is presumed to be an offset from "sym"; The
3161 location of interest is just "sym". */
3162 if (symtype == STT_SECTION)
3163 toff += raddend;
3164
3165 toff = _bfd_merged_section_offset (abfd, &tsec,
3166 elf_section_data (tsec)->sec_info,
3167 toff);
3168
3169 if (symtype != STT_SECTION)
3170 toff += raddend;
3171 }
3172 else
3173 toff += raddend;
3174
3175 /* Don't convert if R_X86_64_PC32 relocation overflows. */
3176 if (tsec->output_section == sec->output_section)
3177 {
3178 if ((toff - roff + 0x80000000) > 0xffffffff)
3179 continue;
3180 }
3181 else
3182 {
3183 asection *asect;
3184 bfd_size_type size;
3185
3186 /* At this point, we don't know the load addresses of TSEC
3187 section nor SEC section. We estimate the distrance between
3188 SEC and TSEC. */
3189 size = 0;
3190 for (asect = sec->output_section;
3191 asect != NULL && asect != tsec->output_section;
3192 asect = asect->next)
3193 {
3194 asection *i;
3195 for (i = asect->output_section->map_head.s;
3196 i != NULL;
3197 i = i->map_head.s)
3198 {
3199 size = align_power (size, i->alignment_power);
3200 size += i->size;
3201 }
3202 }
3203
3204 /* Don't convert GOTPCREL relocations if TSEC isn't placed
3205 after SEC. */
3206 if (asect == NULL)
3207 continue;
3208
3209 /* Take PT_GNU_RELRO segment into account by adding
3210 maxpagesize. */
3211 if ((toff + size + maxpagesize - roff + 0x80000000)
3212 > 0xffffffff)
3213 continue;
3214 }
3215
3216 if (opcode == 0xff)
3217 {
3218 /* We have "call/jmp *foo@GOTPCREL(%rip)". */
3219 unsigned int nop;
3220 bfd_vma nop_offset;
3221
3222 /* Convert R_X86_64_GOTPCRELX and R_X86_64_REX_GOTPCRELX to
3223 R_X86_64_PC32. */
3224 modrm = bfd_get_8 (abfd, contents + roff - 1);
3225 if (modrm == 0x25)
3226 {
3227 unsigned int disp;
3228 /* Convert to "jmp foo nop". */
3229 modrm = 0xe9;
3230 nop = NOP_OPCODE;
3231 nop_offset = irel->r_offset + 3;
3232 disp = bfd_get_32 (abfd, contents + irel->r_offset);
3233 irel->r_offset -= 1;
3234 bfd_put_32 (abfd, disp, contents + irel->r_offset);
3235 }
3236 else
3237 {
3238 /* Convert to "nop call foo". ADDR_PREFIX_OPCODE
3239 is a nop prefix. */
3240 modrm = 0xe8;
3241 nop = ADDR_PREFIX_OPCODE;
3242 nop_offset = irel->r_offset - 2;
3243 }
3244 bfd_put_8 (abfd, nop, contents + nop_offset);
3245 bfd_put_8 (abfd, modrm, contents + irel->r_offset - 1);
3246 r_type = R_X86_64_PC32;
3247 }
3248 else
3249 {
3250 if (opcode == 0x8b)
3251 {
3252 /* Convert "mov foo@GOTPCREL(%rip), %reg" to
3253 "lea foo(%rip), %reg". */
3254 opcode = 0x8d;
3255 r_type = R_X86_64_PC32;
3256 }
3257 else
3258 {
3259 modrm = bfd_get_8 (abfd, contents + roff - 1);
3260 if (opcode == 0x85)
3261 {
3262 /* Convert "test %reg, foo@GOTPCREL(%rip)" to
3263 "test $foo, %reg". */
3264 modrm = 0xc0 | (modrm & 0x38) >> 3;
3265 opcode = 0xf7;
3266 }
3267 else
3268 {
3269 /* Convert "binop foo@GOTPCREL(%rip), %reg" to
3270 "binop $foo, %reg". */
3271 modrm = 0xc0 | (modrm & 0x38) >> 3 | (opcode & 0x3c);
3272 opcode = 0x81;
3273 }
3274 bfd_put_8 (abfd, modrm, contents + roff - 1);
3275
3276 if (r_type == R_X86_64_REX_GOTPCRELX)
3277 {
3278 /* Move the R bit to the B bit in REX byte. */
3279 unsigned int rex = bfd_get_8 (abfd, contents + roff - 3);
3280 rex = (rex & ~REX_R) | (rex & REX_R) >> 2;
3281 bfd_put_8 (abfd, rex, contents + roff - 3);
3282 }
3283 /* No addend for R_X86_64_32S relocation. */
3284 irel->r_addend = 0;
3285 r_type = R_X86_64_32S;
3286 }
3287
3288 bfd_put_8 (abfd, opcode, contents + roff - 2);
3289 }
3290
3291 irel->r_info = htab->r_info (r_symndx, r_type);
3292 changed_contents = TRUE;
3293 changed_relocs = TRUE;
3294
3295 if (h)
3296 {
3297 if (h->got.refcount > 0)
3298 h->got.refcount -= 1;
3299 }
3300 else
3301 {
3302 if (local_got_refcounts != NULL
3303 && local_got_refcounts[r_symndx] > 0)
3304 local_got_refcounts[r_symndx] -= 1;
3305 }
3306 }
3307
3308 if (contents != NULL
3309 && elf_section_data (sec)->this_hdr.contents != contents)
3310 {
3311 if (!changed_contents && !link_info->keep_memory)
3312 free (contents);
3313 else
3314 {
3315 /* Cache the section contents for elf_link_input_bfd. */
3316 elf_section_data (sec)->this_hdr.contents = contents;
3317 }
3318 }
3319
3320 if (elf_section_data (sec)->relocs != internal_relocs)
3321 {
3322 if (!changed_relocs)
3323 free (internal_relocs);
3324 else
3325 elf_section_data (sec)->relocs = internal_relocs;
3326 }
3327
3328 return TRUE;
3329
3330 error_return:
3331 if (contents != NULL
3332 && elf_section_data (sec)->this_hdr.contents != contents)
3333 free (contents);
3334 if (internal_relocs != NULL
3335 && elf_section_data (sec)->relocs != internal_relocs)
3336 free (internal_relocs);
3337 return FALSE;
3338 }
3339
3340 /* Set the sizes of the dynamic sections. */
3341
3342 static bfd_boolean
3343 elf_x86_64_size_dynamic_sections (bfd *output_bfd,
3344 struct bfd_link_info *info)
3345 {
3346 struct elf_x86_64_link_hash_table *htab;
3347 bfd *dynobj;
3348 asection *s;
3349 bfd_boolean relocs;
3350 bfd *ibfd;
3351 const struct elf_backend_data *bed;
3352
3353 htab = elf_x86_64_hash_table (info);
3354 if (htab == NULL)
3355 return FALSE;
3356 bed = get_elf_backend_data (output_bfd);
3357
3358 dynobj = htab->elf.dynobj;
3359 if (dynobj == NULL)
3360 abort ();
3361
3362 if (htab->elf.dynamic_sections_created)
3363 {
3364 /* Set the contents of the .interp section to the interpreter. */
3365 if (bfd_link_executable (info) && !info->nointerp)
3366 {
3367 s = bfd_get_linker_section (dynobj, ".interp");
3368 if (s == NULL)
3369 abort ();
3370 s->size = htab->dynamic_interpreter_size;
3371 s->contents = (unsigned char *) htab->dynamic_interpreter;
3372 }
3373 }
3374
3375 /* Set up .got offsets for local syms, and space for local dynamic
3376 relocs. */
3377 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
3378 {
3379 bfd_signed_vma *local_got;
3380 bfd_signed_vma *end_local_got;
3381 char *local_tls_type;
3382 bfd_vma *local_tlsdesc_gotent;
3383 bfd_size_type locsymcount;
3384 Elf_Internal_Shdr *symtab_hdr;
3385 asection *srel;
3386
3387 if (! is_x86_64_elf (ibfd))
3388 continue;
3389
3390 for (s = ibfd->sections; s != NULL; s = s->next)
3391 {
3392 struct elf_dyn_relocs *p;
3393
3394 if (!elf_x86_64_convert_load (ibfd, s, info))
3395 return FALSE;
3396
3397 for (p = (struct elf_dyn_relocs *)
3398 (elf_section_data (s)->local_dynrel);
3399 p != NULL;
3400 p = p->next)
3401 {
3402 if (!bfd_is_abs_section (p->sec)
3403 && bfd_is_abs_section (p->sec->output_section))
3404 {
3405 /* Input section has been discarded, either because
3406 it is a copy of a linkonce section or due to
3407 linker script /DISCARD/, so we'll be discarding
3408 the relocs too. */
3409 }
3410 else if (p->count != 0)
3411 {
3412 srel = elf_section_data (p->sec)->sreloc;
3413 srel->size += p->count * bed->s->sizeof_rela;
3414 if ((p->sec->output_section->flags & SEC_READONLY) != 0
3415 && (info->flags & DF_TEXTREL) == 0)
3416 {
3417 info->flags |= DF_TEXTREL;
3418 if ((info->warn_shared_textrel && bfd_link_pic (info))
3419 || info->error_textrel)
3420 info->callbacks->einfo (_("%P: %B: warning: relocation in readonly section `%A'\n"),
3421 p->sec->owner, p->sec);
3422 }
3423 }
3424 }
3425 }
3426
3427 local_got = elf_local_got_refcounts (ibfd);
3428 if (!local_got)
3429 continue;
3430
3431 symtab_hdr = &elf_symtab_hdr (ibfd);
3432 locsymcount = symtab_hdr->sh_info;
3433 end_local_got = local_got + locsymcount;
3434 local_tls_type = elf_x86_64_local_got_tls_type (ibfd);
3435 local_tlsdesc_gotent = elf_x86_64_local_tlsdesc_gotent (ibfd);
3436 s = htab->elf.sgot;
3437 srel = htab->elf.srelgot;
3438 for (; local_got < end_local_got;
3439 ++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
3440 {
3441 *local_tlsdesc_gotent = (bfd_vma) -1;
3442 if (*local_got > 0)
3443 {
3444 if (GOT_TLS_GDESC_P (*local_tls_type))
3445 {
3446 *local_tlsdesc_gotent = htab->elf.sgotplt->size
3447 - elf_x86_64_compute_jump_table_size (htab);
3448 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
3449 *local_got = (bfd_vma) -2;
3450 }
3451 if (! GOT_TLS_GDESC_P (*local_tls_type)
3452 || GOT_TLS_GD_P (*local_tls_type))
3453 {
3454 *local_got = s->size;
3455 s->size += GOT_ENTRY_SIZE;
3456 if (GOT_TLS_GD_P (*local_tls_type))
3457 s->size += GOT_ENTRY_SIZE;
3458 }
3459 if (bfd_link_pic (info)
3460 || GOT_TLS_GD_ANY_P (*local_tls_type)
3461 || *local_tls_type == GOT_TLS_IE)
3462 {
3463 if (GOT_TLS_GDESC_P (*local_tls_type))
3464 {
3465 htab->elf.srelplt->size
3466 += bed->s->sizeof_rela;
3467 htab->tlsdesc_plt = (bfd_vma) -1;
3468 }
3469 if (! GOT_TLS_GDESC_P (*local_tls_type)
3470 || GOT_TLS_GD_P (*local_tls_type))
3471 srel->size += bed->s->sizeof_rela;
3472 }
3473 }
3474 else
3475 *local_got = (bfd_vma) -1;
3476 }
3477 }
3478
3479 if (htab->tls_ld_got.refcount > 0)
3480 {
3481 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
3482 relocs. */
3483 htab->tls_ld_got.offset = htab->elf.sgot->size;
3484 htab->elf.sgot->size += 2 * GOT_ENTRY_SIZE;
3485 htab->elf.srelgot->size += bed->s->sizeof_rela;
3486 }
3487 else
3488 htab->tls_ld_got.offset = -1;
3489
3490 /* Allocate global sym .plt and .got entries, and space for global
3491 sym dynamic relocs. */
3492 elf_link_hash_traverse (&htab->elf, elf_x86_64_allocate_dynrelocs,
3493 info);
3494
3495 /* Allocate .plt and .got entries, and space for local symbols. */
3496 htab_traverse (htab->loc_hash_table,
3497 elf_x86_64_allocate_local_dynrelocs,
3498 info);
3499
3500 /* For every jump slot reserved in the sgotplt, reloc_count is
3501 incremented. However, when we reserve space for TLS descriptors,
3502 it's not incremented, so in order to compute the space reserved
3503 for them, it suffices to multiply the reloc count by the jump
3504 slot size.
3505
3506 PR ld/13302: We start next_irelative_index at the end of .rela.plt
3507 so that R_X86_64_IRELATIVE entries come last. */
3508 if (htab->elf.srelplt)
3509 {
3510 htab->sgotplt_jump_table_size
3511 = elf_x86_64_compute_jump_table_size (htab);
3512 htab->next_irelative_index = htab->elf.srelplt->reloc_count - 1;
3513 }
3514 else if (htab->elf.irelplt)
3515 htab->next_irelative_index = htab->elf.irelplt->reloc_count - 1;
3516
3517 if (htab->tlsdesc_plt)
3518 {
3519 /* If we're not using lazy TLS relocations, don't generate the
3520 PLT and GOT entries they require. */
3521 if ((info->flags & DF_BIND_NOW))
3522 htab->tlsdesc_plt = 0;
3523 else
3524 {
3525 htab->tlsdesc_got = htab->elf.sgot->size;
3526 htab->elf.sgot->size += GOT_ENTRY_SIZE;
3527 /* Reserve room for the initial entry.
3528 FIXME: we could probably do away with it in this case. */
3529 if (htab->elf.splt->size == 0)
3530 htab->elf.splt->size += GET_PLT_ENTRY_SIZE (output_bfd);
3531 htab->tlsdesc_plt = htab->elf.splt->size;
3532 htab->elf.splt->size += GET_PLT_ENTRY_SIZE (output_bfd);
3533 }
3534 }
3535
3536 if (htab->elf.sgotplt)
3537 {
3538 /* Don't allocate .got.plt section if there are no GOT nor PLT
3539 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
3540 if ((htab->elf.hgot == NULL
3541 || !htab->elf.hgot->ref_regular_nonweak)
3542 && (htab->elf.sgotplt->size
3543 == get_elf_backend_data (output_bfd)->got_header_size)
3544 && (htab->elf.splt == NULL
3545 || htab->elf.splt->size == 0)
3546 && (htab->elf.sgot == NULL
3547 || htab->elf.sgot->size == 0)
3548 && (htab->elf.iplt == NULL
3549 || htab->elf.iplt->size == 0)
3550 && (htab->elf.igotplt == NULL
3551 || htab->elf.igotplt->size == 0))
3552 htab->elf.sgotplt->size = 0;
3553 }
3554
3555 if (htab->plt_eh_frame != NULL
3556 && htab->elf.splt != NULL
3557 && htab->elf.splt->size != 0
3558 && !bfd_is_abs_section (htab->elf.splt->output_section)
3559 && _bfd_elf_eh_frame_present (info))
3560 {
3561 const struct elf_x86_64_backend_data *arch_data
3562 = get_elf_x86_64_arch_data (bed);
3563 htab->plt_eh_frame->size = arch_data->eh_frame_plt_size;
3564 }
3565
3566 /* We now have determined the sizes of the various dynamic sections.
3567 Allocate memory for them. */
3568 relocs = FALSE;
3569 for (s = dynobj->sections; s != NULL; s = s->next)
3570 {
3571 if ((s->flags & SEC_LINKER_CREATED) == 0)
3572 continue;
3573
3574 if (s == htab->elf.splt
3575 || s == htab->elf.sgot
3576 || s == htab->elf.sgotplt
3577 || s == htab->elf.iplt
3578 || s == htab->elf.igotplt
3579 || s == htab->plt_bnd
3580 || s == htab->plt_got
3581 || s == htab->plt_eh_frame
3582 || s == htab->sdynbss)
3583 {
3584 /* Strip this section if we don't need it; see the
3585 comment below. */
3586 }
3587 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
3588 {
3589 if (s->size != 0 && s != htab->elf.srelplt)
3590 relocs = TRUE;
3591
3592 /* We use the reloc_count field as a counter if we need
3593 to copy relocs into the output file. */
3594 if (s != htab->elf.srelplt)
3595 s->reloc_count = 0;
3596 }
3597 else
3598 {
3599 /* It's not one of our sections, so don't allocate space. */
3600 continue;
3601 }
3602
3603 if (s->size == 0)
3604 {
3605 /* If we don't need this section, strip it from the
3606 output file. This is mostly to handle .rela.bss and
3607 .rela.plt. We must create both sections in
3608 create_dynamic_sections, because they must be created
3609 before the linker maps input sections to output
3610 sections. The linker does that before
3611 adjust_dynamic_symbol is called, and it is that
3612 function which decides whether anything needs to go
3613 into these sections. */
3614
3615 s->flags |= SEC_EXCLUDE;
3616 continue;
3617 }
3618
3619 if ((s->flags & SEC_HAS_CONTENTS) == 0)
3620 continue;
3621
3622 /* Allocate memory for the section contents. We use bfd_zalloc
3623 here in case unused entries are not reclaimed before the
3624 section's contents are written out. This should not happen,
3625 but this way if it does, we get a R_X86_64_NONE reloc instead
3626 of garbage. */
3627 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
3628 if (s->contents == NULL)
3629 return FALSE;
3630 }
3631
3632 if (htab->plt_eh_frame != NULL
3633 && htab->plt_eh_frame->contents != NULL)
3634 {
3635 const struct elf_x86_64_backend_data *arch_data
3636 = get_elf_x86_64_arch_data (bed);
3637
3638 memcpy (htab->plt_eh_frame->contents,
3639 arch_data->eh_frame_plt, htab->plt_eh_frame->size);
3640 bfd_put_32 (dynobj, htab->elf.splt->size,
3641 htab->plt_eh_frame->contents + PLT_FDE_LEN_OFFSET);
3642 }
3643
3644 if (htab->elf.dynamic_sections_created)
3645 {
3646 /* Add some entries to the .dynamic section. We fill in the
3647 values later, in elf_x86_64_finish_dynamic_sections, but we
3648 must add the entries now so that we get the correct size for
3649 the .dynamic section. The DT_DEBUG entry is filled in by the
3650 dynamic linker and used by the debugger. */
3651 #define add_dynamic_entry(TAG, VAL) \
3652 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3653
3654 if (bfd_link_executable (info))
3655 {
3656 if (!add_dynamic_entry (DT_DEBUG, 0))
3657 return FALSE;
3658 }
3659
3660 if (htab->elf.splt->size != 0)
3661 {
3662 /* DT_PLTGOT is used by prelink even if there is no PLT
3663 relocation. */
3664 if (!add_dynamic_entry (DT_PLTGOT, 0))
3665 return FALSE;
3666
3667 if (htab->elf.srelplt->size != 0)
3668 {
3669 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
3670 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
3671 || !add_dynamic_entry (DT_JMPREL, 0))
3672 return FALSE;
3673 }
3674
3675 if (htab->tlsdesc_plt
3676 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
3677 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
3678 return FALSE;
3679 }
3680
3681 if (relocs)
3682 {
3683 if (!add_dynamic_entry (DT_RELA, 0)
3684 || !add_dynamic_entry (DT_RELASZ, 0)
3685 || !add_dynamic_entry (DT_RELAENT, bed->s->sizeof_rela))
3686 return FALSE;
3687
3688 /* If any dynamic relocs apply to a read-only section,
3689 then we need a DT_TEXTREL entry. */
3690 if ((info->flags & DF_TEXTREL) == 0)
3691 elf_link_hash_traverse (&htab->elf,
3692 elf_x86_64_readonly_dynrelocs,
3693 info);
3694
3695 if ((info->flags & DF_TEXTREL) != 0)
3696 {
3697 if ((elf_tdata (output_bfd)->has_gnu_symbols
3698 & elf_gnu_symbol_ifunc) == elf_gnu_symbol_ifunc)
3699 {
3700 info->callbacks->einfo
3701 (_("%P%X: read-only segment has dynamic IFUNC relocations; recompile with -fPIC\n"));
3702 bfd_set_error (bfd_error_bad_value);
3703 return FALSE;
3704 }
3705
3706 if (!add_dynamic_entry (DT_TEXTREL, 0))
3707 return FALSE;
3708 }
3709 }
3710 }
3711 #undef add_dynamic_entry
3712
3713 return TRUE;
3714 }
3715
3716 static bfd_boolean
3717 elf_x86_64_always_size_sections (bfd *output_bfd,
3718 struct bfd_link_info *info)
3719 {
3720 asection *tls_sec = elf_hash_table (info)->tls_sec;
3721
3722 if (tls_sec)
3723 {
3724 struct elf_link_hash_entry *tlsbase;
3725
3726 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
3727 "_TLS_MODULE_BASE_",
3728 FALSE, FALSE, FALSE);
3729
3730 if (tlsbase && tlsbase->type == STT_TLS)
3731 {
3732 struct elf_x86_64_link_hash_table *htab;
3733 struct bfd_link_hash_entry *bh = NULL;
3734 const struct elf_backend_data *bed
3735 = get_elf_backend_data (output_bfd);
3736
3737 htab = elf_x86_64_hash_table (info);
3738 if (htab == NULL)
3739 return FALSE;
3740
3741 if (!(_bfd_generic_link_add_one_symbol
3742 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
3743 tls_sec, 0, NULL, FALSE,
3744 bed->collect, &bh)))
3745 return FALSE;
3746
3747 htab->tls_module_base = bh;
3748
3749 tlsbase = (struct elf_link_hash_entry *)bh;
3750 tlsbase->def_regular = 1;
3751 tlsbase->other = STV_HIDDEN;
3752 tlsbase->root.linker_def = 1;
3753 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
3754 }
3755 }
3756
3757 return TRUE;
3758 }
3759
3760 /* _TLS_MODULE_BASE_ needs to be treated especially when linking
3761 executables. Rather than setting it to the beginning of the TLS
3762 section, we have to set it to the end. This function may be called
3763 multiple times, it is idempotent. */
3764
3765 static void
3766 elf_x86_64_set_tls_module_base (struct bfd_link_info *info)
3767 {
3768 struct elf_x86_64_link_hash_table *htab;
3769 struct bfd_link_hash_entry *base;
3770
3771 if (!bfd_link_executable (info))
3772 return;
3773
3774 htab = elf_x86_64_hash_table (info);
3775 if (htab == NULL)
3776 return;
3777
3778 base = htab->tls_module_base;
3779 if (base == NULL)
3780 return;
3781
3782 base->u.def.value = htab->elf.tls_size;
3783 }
3784
3785 /* Return the base VMA address which should be subtracted from real addresses
3786 when resolving @dtpoff relocation.
3787 This is PT_TLS segment p_vaddr. */
3788
3789 static bfd_vma
3790 elf_x86_64_dtpoff_base (struct bfd_link_info *info)
3791 {
3792 /* If tls_sec is NULL, we should have signalled an error already. */
3793 if (elf_hash_table (info)->tls_sec == NULL)
3794 return 0;
3795 return elf_hash_table (info)->tls_sec->vma;
3796 }
3797
3798 /* Return the relocation value for @tpoff relocation
3799 if STT_TLS virtual address is ADDRESS. */
3800
3801 static bfd_vma
3802 elf_x86_64_tpoff (struct bfd_link_info *info, bfd_vma address)
3803 {
3804 struct elf_link_hash_table *htab = elf_hash_table (info);
3805 const struct elf_backend_data *bed = get_elf_backend_data (info->output_bfd);
3806 bfd_vma static_tls_size;
3807
3808 /* If tls_segment is NULL, we should have signalled an error already. */
3809 if (htab->tls_sec == NULL)
3810 return 0;
3811
3812 /* Consider special static TLS alignment requirements. */
3813 static_tls_size = BFD_ALIGN (htab->tls_size, bed->static_tls_alignment);
3814 return address - static_tls_size - htab->tls_sec->vma;
3815 }
3816
3817 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
3818 branch? */
3819
3820 static bfd_boolean
3821 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
3822 {
3823 /* Opcode Instruction
3824 0xe8 call
3825 0xe9 jump
3826 0x0f 0x8x conditional jump */
3827 return ((offset > 0
3828 && (contents [offset - 1] == 0xe8
3829 || contents [offset - 1] == 0xe9))
3830 || (offset > 1
3831 && contents [offset - 2] == 0x0f
3832 && (contents [offset - 1] & 0xf0) == 0x80));
3833 }
3834
3835 /* Relocate an x86_64 ELF section. */
3836
3837 static bfd_boolean
3838 elf_x86_64_relocate_section (bfd *output_bfd,
3839 struct bfd_link_info *info,
3840 bfd *input_bfd,
3841 asection *input_section,
3842 bfd_byte *contents,
3843 Elf_Internal_Rela *relocs,
3844 Elf_Internal_Sym *local_syms,
3845 asection **local_sections)
3846 {
3847 struct elf_x86_64_link_hash_table *htab;
3848 Elf_Internal_Shdr *symtab_hdr;
3849 struct elf_link_hash_entry **sym_hashes;
3850 bfd_vma *local_got_offsets;
3851 bfd_vma *local_tlsdesc_gotents;
3852 Elf_Internal_Rela *rel;
3853 Elf_Internal_Rela *relend;
3854 const unsigned int plt_entry_size = GET_PLT_ENTRY_SIZE (info->output_bfd);
3855
3856 BFD_ASSERT (is_x86_64_elf (input_bfd));
3857
3858 htab = elf_x86_64_hash_table (info);
3859 if (htab == NULL)
3860 return FALSE;
3861 symtab_hdr = &elf_symtab_hdr (input_bfd);
3862 sym_hashes = elf_sym_hashes (input_bfd);
3863 local_got_offsets = elf_local_got_offsets (input_bfd);
3864 local_tlsdesc_gotents = elf_x86_64_local_tlsdesc_gotent (input_bfd);
3865
3866 elf_x86_64_set_tls_module_base (info);
3867
3868 rel = relocs;
3869 relend = relocs + input_section->reloc_count;
3870 for (; rel < relend; rel++)
3871 {
3872 unsigned int r_type;
3873 reloc_howto_type *howto;
3874 unsigned long r_symndx;
3875 struct elf_link_hash_entry *h;
3876 struct elf_x86_64_link_hash_entry *eh;
3877 Elf_Internal_Sym *sym;
3878 asection *sec;
3879 bfd_vma off, offplt, plt_offset;
3880 bfd_vma relocation;
3881 bfd_boolean unresolved_reloc;
3882 bfd_reloc_status_type r;
3883 int tls_type;
3884 asection *base_got, *resolved_plt;
3885 bfd_vma st_size;
3886
3887 r_type = ELF32_R_TYPE (rel->r_info);
3888 if (r_type == (int) R_X86_64_GNU_VTINHERIT
3889 || r_type == (int) R_X86_64_GNU_VTENTRY)
3890 continue;
3891
3892 if (r_type >= (int) R_X86_64_standard)
3893 {
3894 (*_bfd_error_handler)
3895 (_("%B: unrecognized relocation (0x%x) in section `%A'"),
3896 input_bfd, input_section, r_type);
3897 bfd_set_error (bfd_error_bad_value);
3898 return FALSE;
3899 }
3900
3901 if (r_type != (int) R_X86_64_32
3902 || ABI_64_P (output_bfd))
3903 howto = x86_64_elf_howto_table + r_type;
3904 else
3905 howto = (x86_64_elf_howto_table
3906 + ARRAY_SIZE (x86_64_elf_howto_table) - 1);
3907 r_symndx = htab->r_sym (rel->r_info);
3908 h = NULL;
3909 sym = NULL;
3910 sec = NULL;
3911 unresolved_reloc = FALSE;
3912 if (r_symndx < symtab_hdr->sh_info)
3913 {
3914 sym = local_syms + r_symndx;
3915 sec = local_sections[r_symndx];
3916
3917 relocation = _bfd_elf_rela_local_sym (output_bfd, sym,
3918 &sec, rel);
3919 st_size = sym->st_size;
3920
3921 /* Relocate against local STT_GNU_IFUNC symbol. */
3922 if (!bfd_link_relocatable (info)
3923 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
3924 {
3925 h = elf_x86_64_get_local_sym_hash (htab, input_bfd,
3926 rel, FALSE);
3927 if (h == NULL)
3928 abort ();
3929
3930 /* Set STT_GNU_IFUNC symbol value. */
3931 h->root.u.def.value = sym->st_value;
3932 h->root.u.def.section = sec;
3933 }
3934 }
3935 else
3936 {
3937 bfd_boolean warned ATTRIBUTE_UNUSED;
3938 bfd_boolean ignored ATTRIBUTE_UNUSED;
3939
3940 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3941 r_symndx, symtab_hdr, sym_hashes,
3942 h, sec, relocation,
3943 unresolved_reloc, warned, ignored);
3944 st_size = h->size;
3945 }
3946
3947 if (sec != NULL && discarded_section (sec))
3948 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3949 rel, 1, relend, howto, 0, contents);
3950
3951 if (bfd_link_relocatable (info))
3952 continue;
3953
3954 if (rel->r_addend == 0 && !ABI_64_P (output_bfd))
3955 {
3956 if (r_type == R_X86_64_64)
3957 {
3958 /* For x32, treat R_X86_64_64 like R_X86_64_32 and
3959 zero-extend it to 64bit if addend is zero. */
3960 r_type = R_X86_64_32;
3961 memset (contents + rel->r_offset + 4, 0, 4);
3962 }
3963 else if (r_type == R_X86_64_SIZE64)
3964 {
3965 /* For x32, treat R_X86_64_SIZE64 like R_X86_64_SIZE32 and
3966 zero-extend it to 64bit if addend is zero. */
3967 r_type = R_X86_64_SIZE32;
3968 memset (contents + rel->r_offset + 4, 0, 4);
3969 }
3970 }
3971
3972 eh = (struct elf_x86_64_link_hash_entry *) h;
3973
3974 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
3975 it here if it is defined in a non-shared object. */
3976 if (h != NULL
3977 && h->type == STT_GNU_IFUNC
3978 && h->def_regular)
3979 {
3980 bfd_vma plt_index;
3981 const char *name;
3982
3983 if ((input_section->flags & SEC_ALLOC) == 0)
3984 {
3985 /* Dynamic relocs are not propagated for SEC_DEBUGGING
3986 sections because such sections are not SEC_ALLOC and
3987 thus ld.so will not process them. */
3988 if ((input_section->flags & SEC_DEBUGGING) != 0)
3989 continue;
3990 abort ();
3991 }
3992 else if (h->plt.offset == (bfd_vma) -1)
3993 abort ();
3994
3995 /* STT_GNU_IFUNC symbol must go through PLT. */
3996 if (htab->elf.splt != NULL)
3997 {
3998 if (htab->plt_bnd != NULL)
3999 {
4000 resolved_plt = htab->plt_bnd;
4001 plt_offset = eh->plt_bnd.offset;
4002 }
4003 else
4004 {
4005 resolved_plt = htab->elf.splt;
4006 plt_offset = h->plt.offset;
4007 }
4008 }
4009 else
4010 {
4011 resolved_plt = htab->elf.iplt;
4012 plt_offset = h->plt.offset;
4013 }
4014
4015 relocation = (resolved_plt->output_section->vma
4016 + resolved_plt->output_offset + plt_offset);
4017
4018 switch (r_type)
4019 {
4020 default:
4021 if (h->root.root.string)
4022 name = h->root.root.string;
4023 else
4024 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
4025 NULL);
4026 (*_bfd_error_handler)
4027 (_("%B: relocation %s against STT_GNU_IFUNC "
4028 "symbol `%s' isn't handled by %s"), input_bfd,
4029 x86_64_elf_howto_table[r_type].name,
4030 name, __FUNCTION__);
4031 bfd_set_error (bfd_error_bad_value);
4032 return FALSE;
4033
4034 case R_X86_64_32S:
4035 if (bfd_link_pic (info))
4036 abort ();
4037 goto do_relocation;
4038
4039 case R_X86_64_32:
4040 if (ABI_64_P (output_bfd))
4041 goto do_relocation;
4042 /* FALLTHROUGH */
4043 case R_X86_64_64:
4044 if (rel->r_addend != 0)
4045 {
4046 if (h->root.root.string)
4047 name = h->root.root.string;
4048 else
4049 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
4050 sym, NULL);
4051 (*_bfd_error_handler)
4052 (_("%B: relocation %s against STT_GNU_IFUNC "
4053 "symbol `%s' has non-zero addend: %d"),
4054 input_bfd, x86_64_elf_howto_table[r_type].name,
4055 name, rel->r_addend);
4056 bfd_set_error (bfd_error_bad_value);
4057 return FALSE;
4058 }
4059
4060 /* Generate dynamic relcoation only when there is a
4061 non-GOT reference in a shared object. */
4062 if (bfd_link_pic (info) && h->non_got_ref)
4063 {
4064 Elf_Internal_Rela outrel;
4065 asection *sreloc;
4066
4067 /* Need a dynamic relocation to get the real function
4068 address. */
4069 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
4070 info,
4071 input_section,
4072 rel->r_offset);
4073 if (outrel.r_offset == (bfd_vma) -1
4074 || outrel.r_offset == (bfd_vma) -2)
4075 abort ();
4076
4077 outrel.r_offset += (input_section->output_section->vma
4078 + input_section->output_offset);
4079
4080 if (h->dynindx == -1
4081 || h->forced_local
4082 || bfd_link_executable (info))
4083 {
4084 /* This symbol is resolved locally. */
4085 outrel.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
4086 outrel.r_addend = (h->root.u.def.value
4087 + h->root.u.def.section->output_section->vma
4088 + h->root.u.def.section->output_offset);
4089 }
4090 else
4091 {
4092 outrel.r_info = htab->r_info (h->dynindx, r_type);
4093 outrel.r_addend = 0;
4094 }
4095
4096 sreloc = htab->elf.irelifunc;
4097 elf_append_rela (output_bfd, sreloc, &outrel);
4098
4099 /* If this reloc is against an external symbol, we
4100 do not want to fiddle with the addend. Otherwise,
4101 we need to include the symbol value so that it
4102 becomes an addend for the dynamic reloc. For an
4103 internal symbol, we have updated addend. */
4104 continue;
4105 }
4106 /* FALLTHROUGH */
4107 case R_X86_64_PC32:
4108 case R_X86_64_PC32_BND:
4109 case R_X86_64_PC64:
4110 case R_X86_64_PLT32:
4111 case R_X86_64_PLT32_BND:
4112 goto do_relocation;
4113
4114 case R_X86_64_GOTPCREL:
4115 case R_X86_64_GOTPCRELX:
4116 case R_X86_64_REX_GOTPCRELX:
4117 case R_X86_64_GOTPCREL64:
4118 base_got = htab->elf.sgot;
4119 off = h->got.offset;
4120
4121 if (base_got == NULL)
4122 abort ();
4123
4124 if (off == (bfd_vma) -1)
4125 {
4126 /* We can't use h->got.offset here to save state, or
4127 even just remember the offset, as finish_dynamic_symbol
4128 would use that as offset into .got. */
4129
4130 if (htab->elf.splt != NULL)
4131 {
4132 plt_index = h->plt.offset / plt_entry_size - 1;
4133 off = (plt_index + 3) * GOT_ENTRY_SIZE;
4134 base_got = htab->elf.sgotplt;
4135 }
4136 else
4137 {
4138 plt_index = h->plt.offset / plt_entry_size;
4139 off = plt_index * GOT_ENTRY_SIZE;
4140 base_got = htab->elf.igotplt;
4141 }
4142
4143 if (h->dynindx == -1
4144 || h->forced_local
4145 || info->symbolic)
4146 {
4147 /* This references the local defitionion. We must
4148 initialize this entry in the global offset table.
4149 Since the offset must always be a multiple of 8,
4150 we use the least significant bit to record
4151 whether we have initialized it already.
4152
4153 When doing a dynamic link, we create a .rela.got
4154 relocation entry to initialize the value. This
4155 is done in the finish_dynamic_symbol routine. */
4156 if ((off & 1) != 0)
4157 off &= ~1;
4158 else
4159 {
4160 bfd_put_64 (output_bfd, relocation,
4161 base_got->contents + off);
4162 /* Note that this is harmless for the GOTPLT64
4163 case, as -1 | 1 still is -1. */
4164 h->got.offset |= 1;
4165 }
4166 }
4167 }
4168
4169 relocation = (base_got->output_section->vma
4170 + base_got->output_offset + off);
4171
4172 goto do_relocation;
4173 }
4174 }
4175
4176 /* When generating a shared object, the relocations handled here are
4177 copied into the output file to be resolved at run time. */
4178 switch (r_type)
4179 {
4180 case R_X86_64_GOT32:
4181 case R_X86_64_GOT64:
4182 /* Relocation is to the entry for this symbol in the global
4183 offset table. */
4184 case R_X86_64_GOTPCREL:
4185 case R_X86_64_GOTPCRELX:
4186 case R_X86_64_REX_GOTPCRELX:
4187 case R_X86_64_GOTPCREL64:
4188 /* Use global offset table entry as symbol value. */
4189 case R_X86_64_GOTPLT64:
4190 /* This is obsolete and treated the the same as GOT64. */
4191 base_got = htab->elf.sgot;
4192
4193 if (htab->elf.sgot == NULL)
4194 abort ();
4195
4196 if (h != NULL)
4197 {
4198 bfd_boolean dyn;
4199
4200 off = h->got.offset;
4201 if (h->needs_plt
4202 && h->plt.offset != (bfd_vma)-1
4203 && off == (bfd_vma)-1)
4204 {
4205 /* We can't use h->got.offset here to save
4206 state, or even just remember the offset, as
4207 finish_dynamic_symbol would use that as offset into
4208 .got. */
4209 bfd_vma plt_index = h->plt.offset / plt_entry_size - 1;
4210 off = (plt_index + 3) * GOT_ENTRY_SIZE;
4211 base_got = htab->elf.sgotplt;
4212 }
4213
4214 dyn = htab->elf.dynamic_sections_created;
4215
4216 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
4217 || (bfd_link_pic (info)
4218 && SYMBOL_REFERENCES_LOCAL (info, h))
4219 || (ELF_ST_VISIBILITY (h->other)
4220 && h->root.type == bfd_link_hash_undefweak))
4221 {
4222 /* This is actually a static link, or it is a -Bsymbolic
4223 link and the symbol is defined locally, or the symbol
4224 was forced to be local because of a version file. We
4225 must initialize this entry in the global offset table.
4226 Since the offset must always be a multiple of 8, we
4227 use the least significant bit to record whether we
4228 have initialized it already.
4229
4230 When doing a dynamic link, we create a .rela.got
4231 relocation entry to initialize the value. This is
4232 done in the finish_dynamic_symbol routine. */
4233 if ((off & 1) != 0)
4234 off &= ~1;
4235 else
4236 {
4237 bfd_put_64 (output_bfd, relocation,
4238 base_got->contents + off);
4239 /* Note that this is harmless for the GOTPLT64 case,
4240 as -1 | 1 still is -1. */
4241 h->got.offset |= 1;
4242 }
4243 }
4244 else
4245 unresolved_reloc = FALSE;
4246 }
4247 else
4248 {
4249 if (local_got_offsets == NULL)
4250 abort ();
4251
4252 off = local_got_offsets[r_symndx];
4253
4254 /* The offset must always be a multiple of 8. We use
4255 the least significant bit to record whether we have
4256 already generated the necessary reloc. */
4257 if ((off & 1) != 0)
4258 off &= ~1;
4259 else
4260 {
4261 bfd_put_64 (output_bfd, relocation,
4262 base_got->contents + off);
4263
4264 if (bfd_link_pic (info))
4265 {
4266 asection *s;
4267 Elf_Internal_Rela outrel;
4268
4269 /* We need to generate a R_X86_64_RELATIVE reloc
4270 for the dynamic linker. */
4271 s = htab->elf.srelgot;
4272 if (s == NULL)
4273 abort ();
4274
4275 outrel.r_offset = (base_got->output_section->vma
4276 + base_got->output_offset
4277 + off);
4278 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
4279 outrel.r_addend = relocation;
4280 elf_append_rela (output_bfd, s, &outrel);
4281 }
4282
4283 local_got_offsets[r_symndx] |= 1;
4284 }
4285 }
4286
4287 if (off >= (bfd_vma) -2)
4288 abort ();
4289
4290 relocation = base_got->output_section->vma
4291 + base_got->output_offset + off;
4292 if (r_type != R_X86_64_GOTPCREL
4293 && r_type != R_X86_64_GOTPCRELX
4294 && r_type != R_X86_64_REX_GOTPCRELX
4295 && r_type != R_X86_64_GOTPCREL64)
4296 relocation -= htab->elf.sgotplt->output_section->vma
4297 - htab->elf.sgotplt->output_offset;
4298
4299 break;
4300
4301 case R_X86_64_GOTOFF64:
4302 /* Relocation is relative to the start of the global offset
4303 table. */
4304
4305 /* Check to make sure it isn't a protected function or data
4306 symbol for shared library since it may not be local when
4307 used as function address or with copy relocation. We also
4308 need to make sure that a symbol is referenced locally. */
4309 if (bfd_link_pic (info) && h)
4310 {
4311 if (!h->def_regular)
4312 {
4313 const char *v;
4314
4315 switch (ELF_ST_VISIBILITY (h->other))
4316 {
4317 case STV_HIDDEN:
4318 v = _("hidden symbol");
4319 break;
4320 case STV_INTERNAL:
4321 v = _("internal symbol");
4322 break;
4323 case STV_PROTECTED:
4324 v = _("protected symbol");
4325 break;
4326 default:
4327 v = _("symbol");
4328 break;
4329 }
4330
4331 (*_bfd_error_handler)
4332 (_("%B: relocation R_X86_64_GOTOFF64 against undefined %s `%s' can not be used when making a shared object"),
4333 input_bfd, v, h->root.root.string);
4334 bfd_set_error (bfd_error_bad_value);
4335 return FALSE;
4336 }
4337 else if (!bfd_link_executable (info)
4338 && !SYMBOL_REFERENCES_LOCAL (info, h)
4339 && (h->type == STT_FUNC
4340 || h->type == STT_OBJECT)
4341 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
4342 {
4343 (*_bfd_error_handler)
4344 (_("%B: relocation R_X86_64_GOTOFF64 against protected %s `%s' can not be used when making a shared object"),
4345 input_bfd,
4346 h->type == STT_FUNC ? "function" : "data",
4347 h->root.root.string);
4348 bfd_set_error (bfd_error_bad_value);
4349 return FALSE;
4350 }
4351 }
4352
4353 /* Note that sgot is not involved in this
4354 calculation. We always want the start of .got.plt. If we
4355 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
4356 permitted by the ABI, we might have to change this
4357 calculation. */
4358 relocation -= htab->elf.sgotplt->output_section->vma
4359 + htab->elf.sgotplt->output_offset;
4360 break;
4361
4362 case R_X86_64_GOTPC32:
4363 case R_X86_64_GOTPC64:
4364 /* Use global offset table as symbol value. */
4365 relocation = htab->elf.sgotplt->output_section->vma
4366 + htab->elf.sgotplt->output_offset;
4367 unresolved_reloc = FALSE;
4368 break;
4369
4370 case R_X86_64_PLTOFF64:
4371 /* Relocation is PLT entry relative to GOT. For local
4372 symbols it's the symbol itself relative to GOT. */
4373 if (h != NULL
4374 /* See PLT32 handling. */
4375 && h->plt.offset != (bfd_vma) -1
4376 && htab->elf.splt != NULL)
4377 {
4378 if (htab->plt_bnd != NULL)
4379 {
4380 resolved_plt = htab->plt_bnd;
4381 plt_offset = eh->plt_bnd.offset;
4382 }
4383 else
4384 {
4385 resolved_plt = htab->elf.splt;
4386 plt_offset = h->plt.offset;
4387 }
4388
4389 relocation = (resolved_plt->output_section->vma
4390 + resolved_plt->output_offset
4391 + plt_offset);
4392 unresolved_reloc = FALSE;
4393 }
4394
4395 relocation -= htab->elf.sgotplt->output_section->vma
4396 + htab->elf.sgotplt->output_offset;
4397 break;
4398
4399 case R_X86_64_PLT32:
4400 case R_X86_64_PLT32_BND:
4401 /* Relocation is to the entry for this symbol in the
4402 procedure linkage table. */
4403
4404 /* Resolve a PLT32 reloc against a local symbol directly,
4405 without using the procedure linkage table. */
4406 if (h == NULL)
4407 break;
4408
4409 if ((h->plt.offset == (bfd_vma) -1
4410 && eh->plt_got.offset == (bfd_vma) -1)
4411 || htab->elf.splt == NULL)
4412 {
4413 /* We didn't make a PLT entry for this symbol. This
4414 happens when statically linking PIC code, or when
4415 using -Bsymbolic. */
4416 break;
4417 }
4418
4419 if (h->plt.offset != (bfd_vma) -1)
4420 {
4421 if (htab->plt_bnd != NULL)
4422 {
4423 resolved_plt = htab->plt_bnd;
4424 plt_offset = eh->plt_bnd.offset;
4425 }
4426 else
4427 {
4428 resolved_plt = htab->elf.splt;
4429 plt_offset = h->plt.offset;
4430 }
4431 }
4432 else
4433 {
4434 /* Use the GOT PLT. */
4435 resolved_plt = htab->plt_got;
4436 plt_offset = eh->plt_got.offset;
4437 }
4438
4439 relocation = (resolved_plt->output_section->vma
4440 + resolved_plt->output_offset
4441 + plt_offset);
4442 unresolved_reloc = FALSE;
4443 break;
4444
4445 case R_X86_64_SIZE32:
4446 case R_X86_64_SIZE64:
4447 /* Set to symbol size. */
4448 relocation = st_size;
4449 goto direct;
4450
4451 case R_X86_64_PC8:
4452 case R_X86_64_PC16:
4453 case R_X86_64_PC32:
4454 case R_X86_64_PC32_BND:
4455 /* Don't complain about -fPIC if the symbol is undefined when
4456 building executable. */
4457 if (bfd_link_pic (info)
4458 && (input_section->flags & SEC_ALLOC) != 0
4459 && (input_section->flags & SEC_READONLY) != 0
4460 && h != NULL
4461 && !(bfd_link_executable (info)
4462 && h->root.type == bfd_link_hash_undefined))
4463 {
4464 bfd_boolean fail = FALSE;
4465 bfd_boolean branch
4466 = ((r_type == R_X86_64_PC32
4467 || r_type == R_X86_64_PC32_BND)
4468 && is_32bit_relative_branch (contents, rel->r_offset));
4469
4470 if (SYMBOL_REFERENCES_LOCAL (info, h))
4471 {
4472 /* Symbol is referenced locally. Make sure it is
4473 defined locally or for a branch. */
4474 fail = !h->def_regular && !branch;
4475 }
4476 else if (!(bfd_link_executable (info)
4477 && (h->needs_copy || eh->needs_copy)))
4478 {
4479 /* Symbol doesn't need copy reloc and isn't referenced
4480 locally. We only allow branch to symbol with
4481 non-default visibility. */
4482 fail = (!branch
4483 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT);
4484 }
4485
4486 if (fail)
4487 {
4488 const char *fmt;
4489 const char *v;
4490 const char *pic = "";
4491
4492 switch (ELF_ST_VISIBILITY (h->other))
4493 {
4494 case STV_HIDDEN:
4495 v = _("hidden symbol");
4496 break;
4497 case STV_INTERNAL:
4498 v = _("internal symbol");
4499 break;
4500 case STV_PROTECTED:
4501 v = _("protected symbol");
4502 break;
4503 default:
4504 v = _("symbol");
4505 pic = _("; recompile with -fPIC");
4506 break;
4507 }
4508
4509 if (h->def_regular)
4510 fmt = _("%B: relocation %s against %s `%s' can not be used when making a shared object%s");
4511 else
4512 fmt = _("%B: relocation %s against undefined %s `%s' can not be used when making a shared object%s");
4513
4514 (*_bfd_error_handler) (fmt, input_bfd,
4515 x86_64_elf_howto_table[r_type].name,
4516 v, h->root.root.string, pic);
4517 bfd_set_error (bfd_error_bad_value);
4518 return FALSE;
4519 }
4520 }
4521 /* Fall through. */
4522
4523 case R_X86_64_8:
4524 case R_X86_64_16:
4525 case R_X86_64_32:
4526 case R_X86_64_PC64:
4527 case R_X86_64_64:
4528 /* FIXME: The ABI says the linker should make sure the value is
4529 the same when it's zeroextended to 64 bit. */
4530
4531 direct:
4532 if ((input_section->flags & SEC_ALLOC) == 0)
4533 break;
4534
4535 /* Don't copy a pc-relative relocation into the output file
4536 if the symbol needs copy reloc or the symbol is undefined
4537 when building executable. Copy dynamic function pointer
4538 relocations. */
4539 if ((bfd_link_pic (info)
4540 && !(bfd_link_executable (info)
4541 && h != NULL
4542 && (h->needs_copy
4543 || eh->needs_copy
4544 || h->root.type == bfd_link_hash_undefined)
4545 && IS_X86_64_PCREL_TYPE (r_type))
4546 && (h == NULL
4547 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
4548 || h->root.type != bfd_link_hash_undefweak)
4549 && ((! IS_X86_64_PCREL_TYPE (r_type)
4550 && r_type != R_X86_64_SIZE32
4551 && r_type != R_X86_64_SIZE64)
4552 || ! SYMBOL_CALLS_LOCAL (info, h)))
4553 || (ELIMINATE_COPY_RELOCS
4554 && !bfd_link_pic (info)
4555 && h != NULL
4556 && h->dynindx != -1
4557 && (!h->non_got_ref || eh->func_pointer_refcount > 0)
4558 && ((h->def_dynamic
4559 && !h->def_regular)
4560 || h->root.type == bfd_link_hash_undefweak
4561 || h->root.type == bfd_link_hash_undefined)))
4562 {
4563 Elf_Internal_Rela outrel;
4564 bfd_boolean skip, relocate;
4565 asection *sreloc;
4566
4567 /* When generating a shared object, these relocations
4568 are copied into the output file to be resolved at run
4569 time. */
4570 skip = FALSE;
4571 relocate = FALSE;
4572
4573 outrel.r_offset =
4574 _bfd_elf_section_offset (output_bfd, info, input_section,
4575 rel->r_offset);
4576 if (outrel.r_offset == (bfd_vma) -1)
4577 skip = TRUE;
4578 else if (outrel.r_offset == (bfd_vma) -2)
4579 skip = TRUE, relocate = TRUE;
4580
4581 outrel.r_offset += (input_section->output_section->vma
4582 + input_section->output_offset);
4583
4584 if (skip)
4585 memset (&outrel, 0, sizeof outrel);
4586
4587 /* h->dynindx may be -1 if this symbol was marked to
4588 become local. */
4589 else if (h != NULL
4590 && h->dynindx != -1
4591 && (IS_X86_64_PCREL_TYPE (r_type)
4592 || ! bfd_link_pic (info)
4593 || ! SYMBOLIC_BIND (info, h)
4594 || ! h->def_regular))
4595 {
4596 outrel.r_info = htab->r_info (h->dynindx, r_type);
4597 outrel.r_addend = rel->r_addend;
4598 }
4599 else
4600 {
4601 /* This symbol is local, or marked to become local. */
4602 if (r_type == htab->pointer_r_type)
4603 {
4604 relocate = TRUE;
4605 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
4606 outrel.r_addend = relocation + rel->r_addend;
4607 }
4608 else if (r_type == R_X86_64_64
4609 && !ABI_64_P (output_bfd))
4610 {
4611 relocate = TRUE;
4612 outrel.r_info = htab->r_info (0,
4613 R_X86_64_RELATIVE64);
4614 outrel.r_addend = relocation + rel->r_addend;
4615 /* Check addend overflow. */
4616 if ((outrel.r_addend & 0x80000000)
4617 != (rel->r_addend & 0x80000000))
4618 {
4619 const char *name;
4620 int addend = rel->r_addend;
4621 if (h && h->root.root.string)
4622 name = h->root.root.string;
4623 else
4624 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
4625 sym, NULL);
4626 if (addend < 0)
4627 (*_bfd_error_handler)
4628 (_("%B: addend -0x%x in relocation %s against "
4629 "symbol `%s' at 0x%lx in section `%A' is "
4630 "out of range"),
4631 input_bfd, input_section, addend,
4632 x86_64_elf_howto_table[r_type].name,
4633 name, (unsigned long) rel->r_offset);
4634 else
4635 (*_bfd_error_handler)
4636 (_("%B: addend 0x%x in relocation %s against "
4637 "symbol `%s' at 0x%lx in section `%A' is "
4638 "out of range"),
4639 input_bfd, input_section, addend,
4640 x86_64_elf_howto_table[r_type].name,
4641 name, (unsigned long) rel->r_offset);
4642 bfd_set_error (bfd_error_bad_value);
4643 return FALSE;
4644 }
4645 }
4646 else
4647 {
4648 long sindx;
4649
4650 if (bfd_is_abs_section (sec))
4651 sindx = 0;
4652 else if (sec == NULL || sec->owner == NULL)
4653 {
4654 bfd_set_error (bfd_error_bad_value);
4655 return FALSE;
4656 }
4657 else
4658 {
4659 asection *osec;
4660
4661 /* We are turning this relocation into one
4662 against a section symbol. It would be
4663 proper to subtract the symbol's value,
4664 osec->vma, from the emitted reloc addend,
4665 but ld.so expects buggy relocs. */
4666 osec = sec->output_section;
4667 sindx = elf_section_data (osec)->dynindx;
4668 if (sindx == 0)
4669 {
4670 asection *oi = htab->elf.text_index_section;
4671 sindx = elf_section_data (oi)->dynindx;
4672 }
4673 BFD_ASSERT (sindx != 0);
4674 }
4675
4676 outrel.r_info = htab->r_info (sindx, r_type);
4677 outrel.r_addend = relocation + rel->r_addend;
4678 }
4679 }
4680
4681 sreloc = elf_section_data (input_section)->sreloc;
4682
4683 if (sreloc == NULL || sreloc->contents == NULL)
4684 {
4685 r = bfd_reloc_notsupported;
4686 goto check_relocation_error;
4687 }
4688
4689 elf_append_rela (output_bfd, sreloc, &outrel);
4690
4691 /* If this reloc is against an external symbol, we do
4692 not want to fiddle with the addend. Otherwise, we
4693 need to include the symbol value so that it becomes
4694 an addend for the dynamic reloc. */
4695 if (! relocate)
4696 continue;
4697 }
4698
4699 break;
4700
4701 case R_X86_64_TLSGD:
4702 case R_X86_64_GOTPC32_TLSDESC:
4703 case R_X86_64_TLSDESC_CALL:
4704 case R_X86_64_GOTTPOFF:
4705 tls_type = GOT_UNKNOWN;
4706 if (h == NULL && local_got_offsets)
4707 tls_type = elf_x86_64_local_got_tls_type (input_bfd) [r_symndx];
4708 else if (h != NULL)
4709 tls_type = elf_x86_64_hash_entry (h)->tls_type;
4710
4711 if (! elf_x86_64_tls_transition (info, input_bfd,
4712 input_section, contents,
4713 symtab_hdr, sym_hashes,
4714 &r_type, tls_type, rel,
4715 relend, h, r_symndx))
4716 return FALSE;
4717
4718 if (r_type == R_X86_64_TPOFF32)
4719 {
4720 bfd_vma roff = rel->r_offset;
4721
4722 BFD_ASSERT (! unresolved_reloc);
4723
4724 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
4725 {
4726 /* GD->LE transition. For 64bit, change
4727 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
4728 .word 0x6666; rex64; call __tls_get_addr
4729 into:
4730 movq %fs:0, %rax
4731 leaq foo@tpoff(%rax), %rax
4732 For 32bit, change
4733 leaq foo@tlsgd(%rip), %rdi
4734 .word 0x6666; rex64; call __tls_get_addr
4735 into:
4736 movl %fs:0, %eax
4737 leaq foo@tpoff(%rax), %rax
4738 For largepic, change:
4739 leaq foo@tlsgd(%rip), %rdi
4740 movabsq $__tls_get_addr@pltoff, %rax
4741 addq %rbx, %rax
4742 call *%rax
4743 into:
4744 movq %fs:0, %rax
4745 leaq foo@tpoff(%rax), %rax
4746 nopw 0x0(%rax,%rax,1) */
4747 int largepic = 0;
4748 if (ABI_64_P (output_bfd)
4749 && contents[roff + 5] == (bfd_byte) '\xb8')
4750 {
4751 memcpy (contents + roff - 3,
4752 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80"
4753 "\0\0\0\0\x66\x0f\x1f\x44\0", 22);
4754 largepic = 1;
4755 }
4756 else if (ABI_64_P (output_bfd))
4757 memcpy (contents + roff - 4,
4758 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
4759 16);
4760 else
4761 memcpy (contents + roff - 3,
4762 "\x64\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
4763 15);
4764 bfd_put_32 (output_bfd,
4765 elf_x86_64_tpoff (info, relocation),
4766 contents + roff + 8 + largepic);
4767 /* Skip R_X86_64_PC32/R_X86_64_PLT32/R_X86_64_PLTOFF64. */
4768 rel++;
4769 continue;
4770 }
4771 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
4772 {
4773 /* GDesc -> LE transition.
4774 It's originally something like:
4775 leaq x@tlsdesc(%rip), %rax
4776
4777 Change it to:
4778 movl $x@tpoff, %rax. */
4779
4780 unsigned int val, type;
4781
4782 type = bfd_get_8 (input_bfd, contents + roff - 3);
4783 val = bfd_get_8 (input_bfd, contents + roff - 1);
4784 bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1),
4785 contents + roff - 3);
4786 bfd_put_8 (output_bfd, 0xc7, contents + roff - 2);
4787 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
4788 contents + roff - 1);
4789 bfd_put_32 (output_bfd,
4790 elf_x86_64_tpoff (info, relocation),
4791 contents + roff);
4792 continue;
4793 }
4794 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
4795 {
4796 /* GDesc -> LE transition.
4797 It's originally:
4798 call *(%rax)
4799 Turn it into:
4800 xchg %ax,%ax. */
4801 bfd_put_8 (output_bfd, 0x66, contents + roff);
4802 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
4803 continue;
4804 }
4805 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTTPOFF)
4806 {
4807 /* IE->LE transition:
4808 For 64bit, originally it can be one of:
4809 movq foo@gottpoff(%rip), %reg
4810 addq foo@gottpoff(%rip), %reg
4811 We change it into:
4812 movq $foo, %reg
4813 leaq foo(%reg), %reg
4814 addq $foo, %reg.
4815 For 32bit, originally it can be one of:
4816 movq foo@gottpoff(%rip), %reg
4817 addl foo@gottpoff(%rip), %reg
4818 We change it into:
4819 movq $foo, %reg
4820 leal foo(%reg), %reg
4821 addl $foo, %reg. */
4822
4823 unsigned int val, type, reg;
4824
4825 if (roff >= 3)
4826 val = bfd_get_8 (input_bfd, contents + roff - 3);
4827 else
4828 val = 0;
4829 type = bfd_get_8 (input_bfd, contents + roff - 2);
4830 reg = bfd_get_8 (input_bfd, contents + roff - 1);
4831 reg >>= 3;
4832 if (type == 0x8b)
4833 {
4834 /* movq */
4835 if (val == 0x4c)
4836 bfd_put_8 (output_bfd, 0x49,
4837 contents + roff - 3);
4838 else if (!ABI_64_P (output_bfd) && val == 0x44)
4839 bfd_put_8 (output_bfd, 0x41,
4840 contents + roff - 3);
4841 bfd_put_8 (output_bfd, 0xc7,
4842 contents + roff - 2);
4843 bfd_put_8 (output_bfd, 0xc0 | reg,
4844 contents + roff - 1);
4845 }
4846 else if (reg == 4)
4847 {
4848 /* addq/addl -> addq/addl - addressing with %rsp/%r12
4849 is special */
4850 if (val == 0x4c)
4851 bfd_put_8 (output_bfd, 0x49,
4852 contents + roff - 3);
4853 else if (!ABI_64_P (output_bfd) && val == 0x44)
4854 bfd_put_8 (output_bfd, 0x41,
4855 contents + roff - 3);
4856 bfd_put_8 (output_bfd, 0x81,
4857 contents + roff - 2);
4858 bfd_put_8 (output_bfd, 0xc0 | reg,
4859 contents + roff - 1);
4860 }
4861 else
4862 {
4863 /* addq/addl -> leaq/leal */
4864 if (val == 0x4c)
4865 bfd_put_8 (output_bfd, 0x4d,
4866 contents + roff - 3);
4867 else if (!ABI_64_P (output_bfd) && val == 0x44)
4868 bfd_put_8 (output_bfd, 0x45,
4869 contents + roff - 3);
4870 bfd_put_8 (output_bfd, 0x8d,
4871 contents + roff - 2);
4872 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
4873 contents + roff - 1);
4874 }
4875 bfd_put_32 (output_bfd,
4876 elf_x86_64_tpoff (info, relocation),
4877 contents + roff);
4878 continue;
4879 }
4880 else
4881 BFD_ASSERT (FALSE);
4882 }
4883
4884 if (htab->elf.sgot == NULL)
4885 abort ();
4886
4887 if (h != NULL)
4888 {
4889 off = h->got.offset;
4890 offplt = elf_x86_64_hash_entry (h)->tlsdesc_got;
4891 }
4892 else
4893 {
4894 if (local_got_offsets == NULL)
4895 abort ();
4896
4897 off = local_got_offsets[r_symndx];
4898 offplt = local_tlsdesc_gotents[r_symndx];
4899 }
4900
4901 if ((off & 1) != 0)
4902 off &= ~1;
4903 else
4904 {
4905 Elf_Internal_Rela outrel;
4906 int dr_type, indx;
4907 asection *sreloc;
4908
4909 if (htab->elf.srelgot == NULL)
4910 abort ();
4911
4912 indx = h && h->dynindx != -1 ? h->dynindx : 0;
4913
4914 if (GOT_TLS_GDESC_P (tls_type))
4915 {
4916 outrel.r_info = htab->r_info (indx, R_X86_64_TLSDESC);
4917 BFD_ASSERT (htab->sgotplt_jump_table_size + offplt
4918 + 2 * GOT_ENTRY_SIZE <= htab->elf.sgotplt->size);
4919 outrel.r_offset = (htab->elf.sgotplt->output_section->vma
4920 + htab->elf.sgotplt->output_offset
4921 + offplt
4922 + htab->sgotplt_jump_table_size);
4923 sreloc = htab->elf.srelplt;
4924 if (indx == 0)
4925 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
4926 else
4927 outrel.r_addend = 0;
4928 elf_append_rela (output_bfd, sreloc, &outrel);
4929 }
4930
4931 sreloc = htab->elf.srelgot;
4932
4933 outrel.r_offset = (htab->elf.sgot->output_section->vma
4934 + htab->elf.sgot->output_offset + off);
4935
4936 if (GOT_TLS_GD_P (tls_type))
4937 dr_type = R_X86_64_DTPMOD64;
4938 else if (GOT_TLS_GDESC_P (tls_type))
4939 goto dr_done;
4940 else
4941 dr_type = R_X86_64_TPOFF64;
4942
4943 bfd_put_64 (output_bfd, 0, htab->elf.sgot->contents + off);
4944 outrel.r_addend = 0;
4945 if ((dr_type == R_X86_64_TPOFF64
4946 || dr_type == R_X86_64_TLSDESC) && indx == 0)
4947 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
4948 outrel.r_info = htab->r_info (indx, dr_type);
4949
4950 elf_append_rela (output_bfd, sreloc, &outrel);
4951
4952 if (GOT_TLS_GD_P (tls_type))
4953 {
4954 if (indx == 0)
4955 {
4956 BFD_ASSERT (! unresolved_reloc);
4957 bfd_put_64 (output_bfd,
4958 relocation - elf_x86_64_dtpoff_base (info),
4959 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4960 }
4961 else
4962 {
4963 bfd_put_64 (output_bfd, 0,
4964 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4965 outrel.r_info = htab->r_info (indx,
4966 R_X86_64_DTPOFF64);
4967 outrel.r_offset += GOT_ENTRY_SIZE;
4968 elf_append_rela (output_bfd, sreloc,
4969 &outrel);
4970 }
4971 }
4972
4973 dr_done:
4974 if (h != NULL)
4975 h->got.offset |= 1;
4976 else
4977 local_got_offsets[r_symndx] |= 1;
4978 }
4979
4980 if (off >= (bfd_vma) -2
4981 && ! GOT_TLS_GDESC_P (tls_type))
4982 abort ();
4983 if (r_type == ELF32_R_TYPE (rel->r_info))
4984 {
4985 if (r_type == R_X86_64_GOTPC32_TLSDESC
4986 || r_type == R_X86_64_TLSDESC_CALL)
4987 relocation = htab->elf.sgotplt->output_section->vma
4988 + htab->elf.sgotplt->output_offset
4989 + offplt + htab->sgotplt_jump_table_size;
4990 else
4991 relocation = htab->elf.sgot->output_section->vma
4992 + htab->elf.sgot->output_offset + off;
4993 unresolved_reloc = FALSE;
4994 }
4995 else
4996 {
4997 bfd_vma roff = rel->r_offset;
4998
4999 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
5000 {
5001 /* GD->IE transition. For 64bit, change
5002 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
5003 .word 0x6666; rex64; call __tls_get_addr@plt
5004 into:
5005 movq %fs:0, %rax
5006 addq foo@gottpoff(%rip), %rax
5007 For 32bit, change
5008 leaq foo@tlsgd(%rip), %rdi
5009 .word 0x6666; rex64; call __tls_get_addr@plt
5010 into:
5011 movl %fs:0, %eax
5012 addq foo@gottpoff(%rip), %rax
5013 For largepic, change:
5014 leaq foo@tlsgd(%rip), %rdi
5015 movabsq $__tls_get_addr@pltoff, %rax
5016 addq %rbx, %rax
5017 call *%rax
5018 into:
5019 movq %fs:0, %rax
5020 addq foo@gottpoff(%rax), %rax
5021 nopw 0x0(%rax,%rax,1) */
5022 int largepic = 0;
5023 if (ABI_64_P (output_bfd)
5024 && contents[roff + 5] == (bfd_byte) '\xb8')
5025 {
5026 memcpy (contents + roff - 3,
5027 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05"
5028 "\0\0\0\0\x66\x0f\x1f\x44\0", 22);
5029 largepic = 1;
5030 }
5031 else if (ABI_64_P (output_bfd))
5032 memcpy (contents + roff - 4,
5033 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
5034 16);
5035 else
5036 memcpy (contents + roff - 3,
5037 "\x64\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
5038 15);
5039
5040 relocation = (htab->elf.sgot->output_section->vma
5041 + htab->elf.sgot->output_offset + off
5042 - roff
5043 - largepic
5044 - input_section->output_section->vma
5045 - input_section->output_offset
5046 - 12);
5047 bfd_put_32 (output_bfd, relocation,
5048 contents + roff + 8 + largepic);
5049 /* Skip R_X86_64_PLT32/R_X86_64_PLTOFF64. */
5050 rel++;
5051 continue;
5052 }
5053 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
5054 {
5055 /* GDesc -> IE transition.
5056 It's originally something like:
5057 leaq x@tlsdesc(%rip), %rax
5058
5059 Change it to:
5060 movq x@gottpoff(%rip), %rax # before xchg %ax,%ax. */
5061
5062 /* Now modify the instruction as appropriate. To
5063 turn a leaq into a movq in the form we use it, it
5064 suffices to change the second byte from 0x8d to
5065 0x8b. */
5066 bfd_put_8 (output_bfd, 0x8b, contents + roff - 2);
5067
5068 bfd_put_32 (output_bfd,
5069 htab->elf.sgot->output_section->vma
5070 + htab->elf.sgot->output_offset + off
5071 - rel->r_offset
5072 - input_section->output_section->vma
5073 - input_section->output_offset
5074 - 4,
5075 contents + roff);
5076 continue;
5077 }
5078 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
5079 {
5080 /* GDesc -> IE transition.
5081 It's originally:
5082 call *(%rax)
5083
5084 Change it to:
5085 xchg %ax, %ax. */
5086
5087 bfd_put_8 (output_bfd, 0x66, contents + roff);
5088 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
5089 continue;
5090 }
5091 else
5092 BFD_ASSERT (FALSE);
5093 }
5094 break;
5095
5096 case R_X86_64_TLSLD:
5097 if (! elf_x86_64_tls_transition (info, input_bfd,
5098 input_section, contents,
5099 symtab_hdr, sym_hashes,
5100 &r_type, GOT_UNKNOWN,
5101 rel, relend, h, r_symndx))
5102 return FALSE;
5103
5104 if (r_type != R_X86_64_TLSLD)
5105 {
5106 /* LD->LE transition:
5107 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
5108 For 64bit, we change it into:
5109 .word 0x6666; .byte 0x66; movq %fs:0, %rax.
5110 For 32bit, we change it into:
5111 nopl 0x0(%rax); movl %fs:0, %eax.
5112 For largepic, change:
5113 leaq foo@tlsgd(%rip), %rdi
5114 movabsq $__tls_get_addr@pltoff, %rax
5115 addq %rbx, %rax
5116 call *%rax
5117 into:
5118 data32 data32 data32 nopw %cs:0x0(%rax,%rax,1)
5119 movq %fs:0, %eax */
5120
5121 BFD_ASSERT (r_type == R_X86_64_TPOFF32);
5122 if (ABI_64_P (output_bfd)
5123 && contents[rel->r_offset + 5] == (bfd_byte) '\xb8')
5124 memcpy (contents + rel->r_offset - 3,
5125 "\x66\x66\x66\x66\x2e\x0f\x1f\x84\0\0\0\0\0"
5126 "\x64\x48\x8b\x04\x25\0\0\0", 22);
5127 else if (ABI_64_P (output_bfd))
5128 memcpy (contents + rel->r_offset - 3,
5129 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
5130 else
5131 memcpy (contents + rel->r_offset - 3,
5132 "\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0", 12);
5133 /* Skip R_X86_64_PC32/R_X86_64_PLT32/R_X86_64_PLTOFF64. */
5134 rel++;
5135 continue;
5136 }
5137
5138 if (htab->elf.sgot == NULL)
5139 abort ();
5140
5141 off = htab->tls_ld_got.offset;
5142 if (off & 1)
5143 off &= ~1;
5144 else
5145 {
5146 Elf_Internal_Rela outrel;
5147
5148 if (htab->elf.srelgot == NULL)
5149 abort ();
5150
5151 outrel.r_offset = (htab->elf.sgot->output_section->vma
5152 + htab->elf.sgot->output_offset + off);
5153
5154 bfd_put_64 (output_bfd, 0,
5155 htab->elf.sgot->contents + off);
5156 bfd_put_64 (output_bfd, 0,
5157 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
5158 outrel.r_info = htab->r_info (0, R_X86_64_DTPMOD64);
5159 outrel.r_addend = 0;
5160 elf_append_rela (output_bfd, htab->elf.srelgot,
5161 &outrel);
5162 htab->tls_ld_got.offset |= 1;
5163 }
5164 relocation = htab->elf.sgot->output_section->vma
5165 + htab->elf.sgot->output_offset + off;
5166 unresolved_reloc = FALSE;
5167 break;
5168
5169 case R_X86_64_DTPOFF32:
5170 if (!bfd_link_executable (info)
5171 || (input_section->flags & SEC_CODE) == 0)
5172 relocation -= elf_x86_64_dtpoff_base (info);
5173 else
5174 relocation = elf_x86_64_tpoff (info, relocation);
5175 break;
5176
5177 case R_X86_64_TPOFF32:
5178 case R_X86_64_TPOFF64:
5179 BFD_ASSERT (bfd_link_executable (info));
5180 relocation = elf_x86_64_tpoff (info, relocation);
5181 break;
5182
5183 case R_X86_64_DTPOFF64:
5184 BFD_ASSERT ((input_section->flags & SEC_CODE) == 0);
5185 relocation -= elf_x86_64_dtpoff_base (info);
5186 break;
5187
5188 default:
5189 break;
5190 }
5191
5192 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
5193 because such sections are not SEC_ALLOC and thus ld.so will
5194 not process them. */
5195 if (unresolved_reloc
5196 && !((input_section->flags & SEC_DEBUGGING) != 0
5197 && h->def_dynamic)
5198 && _bfd_elf_section_offset (output_bfd, info, input_section,
5199 rel->r_offset) != (bfd_vma) -1)
5200 {
5201 (*_bfd_error_handler)
5202 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
5203 input_bfd,
5204 input_section,
5205 (long) rel->r_offset,
5206 howto->name,
5207 h->root.root.string);
5208 return FALSE;
5209 }
5210
5211 do_relocation:
5212 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
5213 contents, rel->r_offset,
5214 relocation, rel->r_addend);
5215
5216 check_relocation_error:
5217 if (r != bfd_reloc_ok)
5218 {
5219 const char *name;
5220
5221 if (h != NULL)
5222 name = h->root.root.string;
5223 else
5224 {
5225 name = bfd_elf_string_from_elf_section (input_bfd,
5226 symtab_hdr->sh_link,
5227 sym->st_name);
5228 if (name == NULL)
5229 return FALSE;
5230 if (*name == '\0')
5231 name = bfd_section_name (input_bfd, sec);
5232 }
5233
5234 if (r == bfd_reloc_overflow)
5235 {
5236 if (! ((*info->callbacks->reloc_overflow)
5237 (info, (h ? &h->root : NULL), name, howto->name,
5238 (bfd_vma) 0, input_bfd, input_section,
5239 rel->r_offset)))
5240 return FALSE;
5241 }
5242 else
5243 {
5244 (*_bfd_error_handler)
5245 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
5246 input_bfd, input_section,
5247 (long) rel->r_offset, name, (int) r);
5248 return FALSE;
5249 }
5250 }
5251 }
5252
5253 return TRUE;
5254 }
5255
5256 /* Finish up dynamic symbol handling. We set the contents of various
5257 dynamic sections here. */
5258
5259 static bfd_boolean
5260 elf_x86_64_finish_dynamic_symbol (bfd *output_bfd,
5261 struct bfd_link_info *info,
5262 struct elf_link_hash_entry *h,
5263 Elf_Internal_Sym *sym ATTRIBUTE_UNUSED)
5264 {
5265 struct elf_x86_64_link_hash_table *htab;
5266 const struct elf_x86_64_backend_data *abed;
5267 bfd_boolean use_plt_bnd;
5268 struct elf_x86_64_link_hash_entry *eh;
5269
5270 htab = elf_x86_64_hash_table (info);
5271 if (htab == NULL)
5272 return FALSE;
5273
5274 /* Use MPX backend data in case of BND relocation. Use .plt_bnd
5275 section only if there is .plt section. */
5276 use_plt_bnd = htab->elf.splt != NULL && htab->plt_bnd != NULL;
5277 abed = (use_plt_bnd
5278 ? &elf_x86_64_bnd_arch_bed
5279 : get_elf_x86_64_backend_data (output_bfd));
5280
5281 eh = (struct elf_x86_64_link_hash_entry *) h;
5282
5283 if (h->plt.offset != (bfd_vma) -1)
5284 {
5285 bfd_vma plt_index;
5286 bfd_vma got_offset, plt_offset, plt_plt_offset, plt_got_offset;
5287 bfd_vma plt_plt_insn_end, plt_got_insn_size;
5288 Elf_Internal_Rela rela;
5289 bfd_byte *loc;
5290 asection *plt, *gotplt, *relplt, *resolved_plt;
5291 const struct elf_backend_data *bed;
5292 bfd_vma plt_got_pcrel_offset;
5293
5294 /* When building a static executable, use .iplt, .igot.plt and
5295 .rela.iplt sections for STT_GNU_IFUNC symbols. */
5296 if (htab->elf.splt != NULL)
5297 {
5298 plt = htab->elf.splt;
5299 gotplt = htab->elf.sgotplt;
5300 relplt = htab->elf.srelplt;
5301 }
5302 else
5303 {
5304 plt = htab->elf.iplt;
5305 gotplt = htab->elf.igotplt;
5306 relplt = htab->elf.irelplt;
5307 }
5308
5309 /* This symbol has an entry in the procedure linkage table. Set
5310 it up. */
5311 if ((h->dynindx == -1
5312 && !((h->forced_local || bfd_link_executable (info))
5313 && h->def_regular
5314 && h->type == STT_GNU_IFUNC))
5315 || plt == NULL
5316 || gotplt == NULL
5317 || relplt == NULL)
5318 abort ();
5319
5320 /* Get the index in the procedure linkage table which
5321 corresponds to this symbol. This is the index of this symbol
5322 in all the symbols for which we are making plt entries. The
5323 first entry in the procedure linkage table is reserved.
5324
5325 Get the offset into the .got table of the entry that
5326 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
5327 bytes. The first three are reserved for the dynamic linker.
5328
5329 For static executables, we don't reserve anything. */
5330
5331 if (plt == htab->elf.splt)
5332 {
5333 got_offset = h->plt.offset / abed->plt_entry_size - 1;
5334 got_offset = (got_offset + 3) * GOT_ENTRY_SIZE;
5335 }
5336 else
5337 {
5338 got_offset = h->plt.offset / abed->plt_entry_size;
5339 got_offset = got_offset * GOT_ENTRY_SIZE;
5340 }
5341
5342 plt_plt_insn_end = abed->plt_plt_insn_end;
5343 plt_plt_offset = abed->plt_plt_offset;
5344 plt_got_insn_size = abed->plt_got_insn_size;
5345 plt_got_offset = abed->plt_got_offset;
5346 if (use_plt_bnd)
5347 {
5348 /* Use the second PLT with BND relocations. */
5349 const bfd_byte *plt_entry, *plt2_entry;
5350
5351 if (eh->has_bnd_reloc)
5352 {
5353 plt_entry = elf_x86_64_bnd_plt_entry;
5354 plt2_entry = elf_x86_64_bnd_plt2_entry;
5355 }
5356 else
5357 {
5358 plt_entry = elf_x86_64_legacy_plt_entry;
5359 plt2_entry = elf_x86_64_legacy_plt2_entry;
5360
5361 /* Subtract 1 since there is no BND prefix. */
5362 plt_plt_insn_end -= 1;
5363 plt_plt_offset -= 1;
5364 plt_got_insn_size -= 1;
5365 plt_got_offset -= 1;
5366 }
5367
5368 BFD_ASSERT (sizeof (elf_x86_64_bnd_plt_entry)
5369 == sizeof (elf_x86_64_legacy_plt_entry));
5370
5371 /* Fill in the entry in the procedure linkage table. */
5372 memcpy (plt->contents + h->plt.offset,
5373 plt_entry, sizeof (elf_x86_64_legacy_plt_entry));
5374 /* Fill in the entry in the second PLT. */
5375 memcpy (htab->plt_bnd->contents + eh->plt_bnd.offset,
5376 plt2_entry, sizeof (elf_x86_64_legacy_plt2_entry));
5377
5378 resolved_plt = htab->plt_bnd;
5379 plt_offset = eh->plt_bnd.offset;
5380 }
5381 else
5382 {
5383 /* Fill in the entry in the procedure linkage table. */
5384 memcpy (plt->contents + h->plt.offset, abed->plt_entry,
5385 abed->plt_entry_size);
5386
5387 resolved_plt = plt;
5388 plt_offset = h->plt.offset;
5389 }
5390
5391 /* Insert the relocation positions of the plt section. */
5392
5393 /* Put offset the PC-relative instruction referring to the GOT entry,
5394 subtracting the size of that instruction. */
5395 plt_got_pcrel_offset = (gotplt->output_section->vma
5396 + gotplt->output_offset
5397 + got_offset
5398 - resolved_plt->output_section->vma
5399 - resolved_plt->output_offset
5400 - plt_offset
5401 - plt_got_insn_size);
5402
5403 /* Check PC-relative offset overflow in PLT entry. */
5404 if ((plt_got_pcrel_offset + 0x80000000) > 0xffffffff)
5405 info->callbacks->einfo (_("%F%B: PC-relative offset overflow in PLT entry for `%s'\n"),
5406 output_bfd, h->root.root.string);
5407
5408 bfd_put_32 (output_bfd, plt_got_pcrel_offset,
5409 resolved_plt->contents + plt_offset + plt_got_offset);
5410
5411 /* Fill in the entry in the global offset table, initially this
5412 points to the second part of the PLT entry. */
5413 bfd_put_64 (output_bfd, (plt->output_section->vma
5414 + plt->output_offset
5415 + h->plt.offset + abed->plt_lazy_offset),
5416 gotplt->contents + got_offset);
5417
5418 /* Fill in the entry in the .rela.plt section. */
5419 rela.r_offset = (gotplt->output_section->vma
5420 + gotplt->output_offset
5421 + got_offset);
5422 if (h->dynindx == -1
5423 || ((bfd_link_executable (info)
5424 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
5425 && h->def_regular
5426 && h->type == STT_GNU_IFUNC))
5427 {
5428 /* If an STT_GNU_IFUNC symbol is locally defined, generate
5429 R_X86_64_IRELATIVE instead of R_X86_64_JUMP_SLOT. */
5430 rela.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
5431 rela.r_addend = (h->root.u.def.value
5432 + h->root.u.def.section->output_section->vma
5433 + h->root.u.def.section->output_offset);
5434 /* R_X86_64_IRELATIVE comes last. */
5435 plt_index = htab->next_irelative_index--;
5436 }
5437 else
5438 {
5439 rela.r_info = htab->r_info (h->dynindx, R_X86_64_JUMP_SLOT);
5440 rela.r_addend = 0;
5441 plt_index = htab->next_jump_slot_index++;
5442 }
5443
5444 /* Don't fill PLT entry for static executables. */
5445 if (plt == htab->elf.splt)
5446 {
5447 bfd_vma plt0_offset = h->plt.offset + plt_plt_insn_end;
5448
5449 /* Put relocation index. */
5450 bfd_put_32 (output_bfd, plt_index,
5451 plt->contents + h->plt.offset + abed->plt_reloc_offset);
5452
5453 /* Put offset for jmp .PLT0 and check for overflow. We don't
5454 check relocation index for overflow since branch displacement
5455 will overflow first. */
5456 if (plt0_offset > 0x80000000)
5457 info->callbacks->einfo (_("%F%B: branch displacement overflow in PLT entry for `%s'\n"),
5458 output_bfd, h->root.root.string);
5459 bfd_put_32 (output_bfd, - plt0_offset,
5460 plt->contents + h->plt.offset + plt_plt_offset);
5461 }
5462
5463 bed = get_elf_backend_data (output_bfd);
5464 loc = relplt->contents + plt_index * bed->s->sizeof_rela;
5465 bed->s->swap_reloca_out (output_bfd, &rela, loc);
5466 }
5467 else if (eh->plt_got.offset != (bfd_vma) -1)
5468 {
5469 bfd_vma got_offset, plt_offset, plt_got_offset, plt_got_insn_size;
5470 asection *plt, *got;
5471 bfd_boolean got_after_plt;
5472 int32_t got_pcrel_offset;
5473 const bfd_byte *got_plt_entry;
5474
5475 /* Set the entry in the GOT procedure linkage table. */
5476 plt = htab->plt_got;
5477 got = htab->elf.sgot;
5478 got_offset = h->got.offset;
5479
5480 if (got_offset == (bfd_vma) -1
5481 || h->type == STT_GNU_IFUNC
5482 || plt == NULL
5483 || got == NULL)
5484 abort ();
5485
5486 /* Use the second PLT entry template for the GOT PLT since they
5487 are the identical. */
5488 plt_got_insn_size = elf_x86_64_bnd_arch_bed.plt_got_insn_size;
5489 plt_got_offset = elf_x86_64_bnd_arch_bed.plt_got_offset;
5490 if (eh->has_bnd_reloc)
5491 got_plt_entry = elf_x86_64_bnd_plt2_entry;
5492 else
5493 {
5494 got_plt_entry = elf_x86_64_legacy_plt2_entry;
5495
5496 /* Subtract 1 since there is no BND prefix. */
5497 plt_got_insn_size -= 1;
5498 plt_got_offset -= 1;
5499 }
5500
5501 /* Fill in the entry in the GOT procedure linkage table. */
5502 plt_offset = eh->plt_got.offset;
5503 memcpy (plt->contents + plt_offset,
5504 got_plt_entry, sizeof (elf_x86_64_legacy_plt2_entry));
5505
5506 /* Put offset the PC-relative instruction referring to the GOT
5507 entry, subtracting the size of that instruction. */
5508 got_pcrel_offset = (got->output_section->vma
5509 + got->output_offset
5510 + got_offset
5511 - plt->output_section->vma
5512 - plt->output_offset
5513 - plt_offset
5514 - plt_got_insn_size);
5515
5516 /* Check PC-relative offset overflow in GOT PLT entry. */
5517 got_after_plt = got->output_section->vma > plt->output_section->vma;
5518 if ((got_after_plt && got_pcrel_offset < 0)
5519 || (!got_after_plt && got_pcrel_offset > 0))
5520 info->callbacks->einfo (_("%F%B: PC-relative offset overflow in GOT PLT entry for `%s'\n"),
5521 output_bfd, h->root.root.string);
5522
5523 bfd_put_32 (output_bfd, got_pcrel_offset,
5524 plt->contents + plt_offset + plt_got_offset);
5525 }
5526
5527 if (!h->def_regular
5528 && (h->plt.offset != (bfd_vma) -1
5529 || eh->plt_got.offset != (bfd_vma) -1))
5530 {
5531 /* Mark the symbol as undefined, rather than as defined in
5532 the .plt section. Leave the value if there were any
5533 relocations where pointer equality matters (this is a clue
5534 for the dynamic linker, to make function pointer
5535 comparisons work between an application and shared
5536 library), otherwise set it to zero. If a function is only
5537 called from a binary, there is no need to slow down
5538 shared libraries because of that. */
5539 sym->st_shndx = SHN_UNDEF;
5540 if (!h->pointer_equality_needed)
5541 sym->st_value = 0;
5542 }
5543
5544 if (h->got.offset != (bfd_vma) -1
5545 && ! GOT_TLS_GD_ANY_P (elf_x86_64_hash_entry (h)->tls_type)
5546 && elf_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
5547 {
5548 Elf_Internal_Rela rela;
5549
5550 /* This symbol has an entry in the global offset table. Set it
5551 up. */
5552 if (htab->elf.sgot == NULL || htab->elf.srelgot == NULL)
5553 abort ();
5554
5555 rela.r_offset = (htab->elf.sgot->output_section->vma
5556 + htab->elf.sgot->output_offset
5557 + (h->got.offset &~ (bfd_vma) 1));
5558
5559 /* If this is a static link, or it is a -Bsymbolic link and the
5560 symbol is defined locally or was forced to be local because
5561 of a version file, we just want to emit a RELATIVE reloc.
5562 The entry in the global offset table will already have been
5563 initialized in the relocate_section function. */
5564 if (h->def_regular
5565 && h->type == STT_GNU_IFUNC)
5566 {
5567 if (bfd_link_pic (info))
5568 {
5569 /* Generate R_X86_64_GLOB_DAT. */
5570 goto do_glob_dat;
5571 }
5572 else
5573 {
5574 asection *plt;
5575
5576 if (!h->pointer_equality_needed)
5577 abort ();
5578
5579 /* For non-shared object, we can't use .got.plt, which
5580 contains the real function addres if we need pointer
5581 equality. We load the GOT entry with the PLT entry. */
5582 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
5583 bfd_put_64 (output_bfd, (plt->output_section->vma
5584 + plt->output_offset
5585 + h->plt.offset),
5586 htab->elf.sgot->contents + h->got.offset);
5587 return TRUE;
5588 }
5589 }
5590 else if (bfd_link_pic (info)
5591 && SYMBOL_REFERENCES_LOCAL (info, h))
5592 {
5593 if (!h->def_regular)
5594 return FALSE;
5595 BFD_ASSERT((h->got.offset & 1) != 0);
5596 rela.r_info = htab->r_info (0, R_X86_64_RELATIVE);
5597 rela.r_addend = (h->root.u.def.value
5598 + h->root.u.def.section->output_section->vma
5599 + h->root.u.def.section->output_offset);
5600 }
5601 else
5602 {
5603 BFD_ASSERT((h->got.offset & 1) == 0);
5604 do_glob_dat:
5605 bfd_put_64 (output_bfd, (bfd_vma) 0,
5606 htab->elf.sgot->contents + h->got.offset);
5607 rela.r_info = htab->r_info (h->dynindx, R_X86_64_GLOB_DAT);
5608 rela.r_addend = 0;
5609 }
5610
5611 elf_append_rela (output_bfd, htab->elf.srelgot, &rela);
5612 }
5613
5614 if (h->needs_copy)
5615 {
5616 Elf_Internal_Rela rela;
5617
5618 /* This symbol needs a copy reloc. Set it up. */
5619
5620 if (h->dynindx == -1
5621 || (h->root.type != bfd_link_hash_defined
5622 && h->root.type != bfd_link_hash_defweak)
5623 || htab->srelbss == NULL)
5624 abort ();
5625
5626 rela.r_offset = (h->root.u.def.value
5627 + h->root.u.def.section->output_section->vma
5628 + h->root.u.def.section->output_offset);
5629 rela.r_info = htab->r_info (h->dynindx, R_X86_64_COPY);
5630 rela.r_addend = 0;
5631 elf_append_rela (output_bfd, htab->srelbss, &rela);
5632 }
5633
5634 return TRUE;
5635 }
5636
5637 /* Finish up local dynamic symbol handling. We set the contents of
5638 various dynamic sections here. */
5639
5640 static bfd_boolean
5641 elf_x86_64_finish_local_dynamic_symbol (void **slot, void *inf)
5642 {
5643 struct elf_link_hash_entry *h
5644 = (struct elf_link_hash_entry *) *slot;
5645 struct bfd_link_info *info
5646 = (struct bfd_link_info *) inf;
5647
5648 return elf_x86_64_finish_dynamic_symbol (info->output_bfd,
5649 info, h, NULL);
5650 }
5651
5652 /* Used to decide how to sort relocs in an optimal manner for the
5653 dynamic linker, before writing them out. */
5654
5655 static enum elf_reloc_type_class
5656 elf_x86_64_reloc_type_class (const struct bfd_link_info *info,
5657 const asection *rel_sec ATTRIBUTE_UNUSED,
5658 const Elf_Internal_Rela *rela)
5659 {
5660 bfd *abfd = info->output_bfd;
5661 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5662 struct elf_x86_64_link_hash_table *htab = elf_x86_64_hash_table (info);
5663 unsigned long r_symndx = htab->r_sym (rela->r_info);
5664 Elf_Internal_Sym sym;
5665
5666 if (htab->elf.dynsym == NULL
5667 || !bed->s->swap_symbol_in (abfd,
5668 (htab->elf.dynsym->contents
5669 + r_symndx * bed->s->sizeof_sym),
5670 0, &sym))
5671 abort ();
5672
5673 /* Check relocation against STT_GNU_IFUNC symbol. */
5674 if (ELF_ST_TYPE (sym.st_info) == STT_GNU_IFUNC)
5675 return reloc_class_ifunc;
5676
5677 switch ((int) ELF32_R_TYPE (rela->r_info))
5678 {
5679 case R_X86_64_RELATIVE:
5680 case R_X86_64_RELATIVE64:
5681 return reloc_class_relative;
5682 case R_X86_64_JUMP_SLOT:
5683 return reloc_class_plt;
5684 case R_X86_64_COPY:
5685 return reloc_class_copy;
5686 default:
5687 return reloc_class_normal;
5688 }
5689 }
5690
5691 /* Finish up the dynamic sections. */
5692
5693 static bfd_boolean
5694 elf_x86_64_finish_dynamic_sections (bfd *output_bfd,
5695 struct bfd_link_info *info)
5696 {
5697 struct elf_x86_64_link_hash_table *htab;
5698 bfd *dynobj;
5699 asection *sdyn;
5700 const struct elf_x86_64_backend_data *abed;
5701
5702 htab = elf_x86_64_hash_table (info);
5703 if (htab == NULL)
5704 return FALSE;
5705
5706 /* Use MPX backend data in case of BND relocation. Use .plt_bnd
5707 section only if there is .plt section. */
5708 abed = (htab->elf.splt != NULL && htab->plt_bnd != NULL
5709 ? &elf_x86_64_bnd_arch_bed
5710 : get_elf_x86_64_backend_data (output_bfd));
5711
5712 dynobj = htab->elf.dynobj;
5713 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
5714
5715 if (htab->elf.dynamic_sections_created)
5716 {
5717 bfd_byte *dyncon, *dynconend;
5718 const struct elf_backend_data *bed;
5719 bfd_size_type sizeof_dyn;
5720
5721 if (sdyn == NULL || htab->elf.sgot == NULL)
5722 abort ();
5723
5724 bed = get_elf_backend_data (dynobj);
5725 sizeof_dyn = bed->s->sizeof_dyn;
5726 dyncon = sdyn->contents;
5727 dynconend = sdyn->contents + sdyn->size;
5728 for (; dyncon < dynconend; dyncon += sizeof_dyn)
5729 {
5730 Elf_Internal_Dyn dyn;
5731 asection *s;
5732
5733 (*bed->s->swap_dyn_in) (dynobj, dyncon, &dyn);
5734
5735 switch (dyn.d_tag)
5736 {
5737 default:
5738 continue;
5739
5740 case DT_PLTGOT:
5741 s = htab->elf.sgotplt;
5742 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
5743 break;
5744
5745 case DT_JMPREL:
5746 dyn.d_un.d_ptr = htab->elf.srelplt->output_section->vma;
5747 break;
5748
5749 case DT_PLTRELSZ:
5750 s = htab->elf.srelplt->output_section;
5751 dyn.d_un.d_val = s->size;
5752 break;
5753
5754 case DT_RELASZ:
5755 /* The procedure linkage table relocs (DT_JMPREL) should
5756 not be included in the overall relocs (DT_RELA).
5757 Therefore, we override the DT_RELASZ entry here to
5758 make it not include the JMPREL relocs. Since the
5759 linker script arranges for .rela.plt to follow all
5760 other relocation sections, we don't have to worry
5761 about changing the DT_RELA entry. */
5762 if (htab->elf.srelplt != NULL)
5763 {
5764 s = htab->elf.srelplt->output_section;
5765 dyn.d_un.d_val -= s->size;
5766 }
5767 break;
5768
5769 case DT_TLSDESC_PLT:
5770 s = htab->elf.splt;
5771 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
5772 + htab->tlsdesc_plt;
5773 break;
5774
5775 case DT_TLSDESC_GOT:
5776 s = htab->elf.sgot;
5777 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
5778 + htab->tlsdesc_got;
5779 break;
5780 }
5781
5782 (*bed->s->swap_dyn_out) (output_bfd, &dyn, dyncon);
5783 }
5784
5785 /* Fill in the special first entry in the procedure linkage table. */
5786 if (htab->elf.splt && htab->elf.splt->size > 0)
5787 {
5788 /* Fill in the first entry in the procedure linkage table. */
5789 memcpy (htab->elf.splt->contents,
5790 abed->plt0_entry, abed->plt_entry_size);
5791 /* Add offset for pushq GOT+8(%rip), since the instruction
5792 uses 6 bytes subtract this value. */
5793 bfd_put_32 (output_bfd,
5794 (htab->elf.sgotplt->output_section->vma
5795 + htab->elf.sgotplt->output_offset
5796 + 8
5797 - htab->elf.splt->output_section->vma
5798 - htab->elf.splt->output_offset
5799 - 6),
5800 htab->elf.splt->contents + abed->plt0_got1_offset);
5801 /* Add offset for the PC-relative instruction accessing GOT+16,
5802 subtracting the offset to the end of that instruction. */
5803 bfd_put_32 (output_bfd,
5804 (htab->elf.sgotplt->output_section->vma
5805 + htab->elf.sgotplt->output_offset
5806 + 16
5807 - htab->elf.splt->output_section->vma
5808 - htab->elf.splt->output_offset
5809 - abed->plt0_got2_insn_end),
5810 htab->elf.splt->contents + abed->plt0_got2_offset);
5811
5812 elf_section_data (htab->elf.splt->output_section)
5813 ->this_hdr.sh_entsize = abed->plt_entry_size;
5814
5815 if (htab->tlsdesc_plt)
5816 {
5817 bfd_put_64 (output_bfd, (bfd_vma) 0,
5818 htab->elf.sgot->contents + htab->tlsdesc_got);
5819
5820 memcpy (htab->elf.splt->contents + htab->tlsdesc_plt,
5821 abed->plt0_entry, abed->plt_entry_size);
5822
5823 /* Add offset for pushq GOT+8(%rip), since the
5824 instruction uses 6 bytes subtract this value. */
5825 bfd_put_32 (output_bfd,
5826 (htab->elf.sgotplt->output_section->vma
5827 + htab->elf.sgotplt->output_offset
5828 + 8
5829 - htab->elf.splt->output_section->vma
5830 - htab->elf.splt->output_offset
5831 - htab->tlsdesc_plt
5832 - 6),
5833 htab->elf.splt->contents
5834 + htab->tlsdesc_plt + abed->plt0_got1_offset);
5835 /* Add offset for the PC-relative instruction accessing GOT+TDG,
5836 where TGD stands for htab->tlsdesc_got, subtracting the offset
5837 to the end of that instruction. */
5838 bfd_put_32 (output_bfd,
5839 (htab->elf.sgot->output_section->vma
5840 + htab->elf.sgot->output_offset
5841 + htab->tlsdesc_got
5842 - htab->elf.splt->output_section->vma
5843 - htab->elf.splt->output_offset
5844 - htab->tlsdesc_plt
5845 - abed->plt0_got2_insn_end),
5846 htab->elf.splt->contents
5847 + htab->tlsdesc_plt + abed->plt0_got2_offset);
5848 }
5849 }
5850 }
5851
5852 if (htab->plt_bnd != NULL)
5853 elf_section_data (htab->plt_bnd->output_section)
5854 ->this_hdr.sh_entsize = sizeof (elf_x86_64_bnd_plt2_entry);
5855
5856 if (htab->elf.sgotplt)
5857 {
5858 if (bfd_is_abs_section (htab->elf.sgotplt->output_section))
5859 {
5860 (*_bfd_error_handler)
5861 (_("discarded output section: `%A'"), htab->elf.sgotplt);
5862 return FALSE;
5863 }
5864
5865 /* Fill in the first three entries in the global offset table. */
5866 if (htab->elf.sgotplt->size > 0)
5867 {
5868 /* Set the first entry in the global offset table to the address of
5869 the dynamic section. */
5870 if (sdyn == NULL)
5871 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents);
5872 else
5873 bfd_put_64 (output_bfd,
5874 sdyn->output_section->vma + sdyn->output_offset,
5875 htab->elf.sgotplt->contents);
5876 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
5877 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
5878 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE*2);
5879 }
5880
5881 elf_section_data (htab->elf.sgotplt->output_section)->this_hdr.sh_entsize =
5882 GOT_ENTRY_SIZE;
5883 }
5884
5885 /* Adjust .eh_frame for .plt section. */
5886 if (htab->plt_eh_frame != NULL
5887 && htab->plt_eh_frame->contents != NULL)
5888 {
5889 if (htab->elf.splt != NULL
5890 && htab->elf.splt->size != 0
5891 && (htab->elf.splt->flags & SEC_EXCLUDE) == 0
5892 && htab->elf.splt->output_section != NULL
5893 && htab->plt_eh_frame->output_section != NULL)
5894 {
5895 bfd_vma plt_start = htab->elf.splt->output_section->vma;
5896 bfd_vma eh_frame_start = htab->plt_eh_frame->output_section->vma
5897 + htab->plt_eh_frame->output_offset
5898 + PLT_FDE_START_OFFSET;
5899 bfd_put_signed_32 (dynobj, plt_start - eh_frame_start,
5900 htab->plt_eh_frame->contents
5901 + PLT_FDE_START_OFFSET);
5902 }
5903 if (htab->plt_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME)
5904 {
5905 if (! _bfd_elf_write_section_eh_frame (output_bfd, info,
5906 htab->plt_eh_frame,
5907 htab->plt_eh_frame->contents))
5908 return FALSE;
5909 }
5910 }
5911
5912 if (htab->elf.sgot && htab->elf.sgot->size > 0)
5913 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize
5914 = GOT_ENTRY_SIZE;
5915
5916 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
5917 htab_traverse (htab->loc_hash_table,
5918 elf_x86_64_finish_local_dynamic_symbol,
5919 info);
5920
5921 return TRUE;
5922 }
5923
5924 /* Return an array of PLT entry symbol values. */
5925
5926 static bfd_vma *
5927 elf_x86_64_get_plt_sym_val (bfd *abfd, asymbol **dynsyms, asection *plt,
5928 asection *relplt)
5929 {
5930 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
5931 arelent *p;
5932 long count, i;
5933 bfd_vma *plt_sym_val;
5934 bfd_vma plt_offset;
5935 bfd_byte *plt_contents;
5936 const struct elf_x86_64_backend_data *bed;
5937 Elf_Internal_Shdr *hdr;
5938 asection *plt_bnd;
5939
5940 /* Get the .plt section contents. PLT passed down may point to the
5941 .plt.bnd section. Make sure that PLT always points to the .plt
5942 section. */
5943 plt_bnd = bfd_get_section_by_name (abfd, ".plt.bnd");
5944 if (plt_bnd)
5945 {
5946 if (plt != plt_bnd)
5947 abort ();
5948 plt = bfd_get_section_by_name (abfd, ".plt");
5949 if (plt == NULL)
5950 abort ();
5951 bed = &elf_x86_64_bnd_arch_bed;
5952 }
5953 else
5954 bed = get_elf_x86_64_backend_data (abfd);
5955
5956 plt_contents = (bfd_byte *) bfd_malloc (plt->size);
5957 if (plt_contents == NULL)
5958 return NULL;
5959 if (!bfd_get_section_contents (abfd, (asection *) plt,
5960 plt_contents, 0, plt->size))
5961 {
5962 bad_return:
5963 free (plt_contents);
5964 return NULL;
5965 }
5966
5967 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
5968 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
5969 goto bad_return;
5970
5971 hdr = &elf_section_data (relplt)->this_hdr;
5972 count = relplt->size / hdr->sh_entsize;
5973
5974 plt_sym_val = (bfd_vma *) bfd_malloc (sizeof (bfd_vma) * count);
5975 if (plt_sym_val == NULL)
5976 goto bad_return;
5977
5978 for (i = 0; i < count; i++)
5979 plt_sym_val[i] = -1;
5980
5981 plt_offset = bed->plt_entry_size;
5982 p = relplt->relocation;
5983 for (i = 0; i < count; i++, p++)
5984 {
5985 long reloc_index;
5986
5987 /* Skip unknown relocation. */
5988 if (p->howto == NULL)
5989 continue;
5990
5991 if (p->howto->type != R_X86_64_JUMP_SLOT
5992 && p->howto->type != R_X86_64_IRELATIVE)
5993 continue;
5994
5995 reloc_index = H_GET_32 (abfd, (plt_contents + plt_offset
5996 + bed->plt_reloc_offset));
5997 if (reloc_index >= count)
5998 abort ();
5999 if (plt_bnd)
6000 {
6001 /* This is the index in .plt section. */
6002 long plt_index = plt_offset / bed->plt_entry_size;
6003 /* Store VMA + the offset in .plt.bnd section. */
6004 plt_sym_val[reloc_index] =
6005 (plt_bnd->vma
6006 + (plt_index - 1) * sizeof (elf_x86_64_legacy_plt2_entry));
6007 }
6008 else
6009 plt_sym_val[reloc_index] = plt->vma + plt_offset;
6010 plt_offset += bed->plt_entry_size;
6011
6012 /* PR binutils/18437: Skip extra relocations in the .rela.plt
6013 section. */
6014 if (plt_offset >= plt->size)
6015 break;
6016 }
6017
6018 free (plt_contents);
6019
6020 return plt_sym_val;
6021 }
6022
6023 /* Similar to _bfd_elf_get_synthetic_symtab, with .plt.bnd section
6024 support. */
6025
6026 static long
6027 elf_x86_64_get_synthetic_symtab (bfd *abfd,
6028 long symcount,
6029 asymbol **syms,
6030 long dynsymcount,
6031 asymbol **dynsyms,
6032 asymbol **ret)
6033 {
6034 /* Pass the .plt.bnd section to _bfd_elf_ifunc_get_synthetic_symtab
6035 as PLT if it exists. */
6036 asection *plt = bfd_get_section_by_name (abfd, ".plt.bnd");
6037 if (plt == NULL)
6038 plt = bfd_get_section_by_name (abfd, ".plt");
6039 return _bfd_elf_ifunc_get_synthetic_symtab (abfd, symcount, syms,
6040 dynsymcount, dynsyms, ret,
6041 plt,
6042 elf_x86_64_get_plt_sym_val);
6043 }
6044
6045 /* Handle an x86-64 specific section when reading an object file. This
6046 is called when elfcode.h finds a section with an unknown type. */
6047
6048 static bfd_boolean
6049 elf_x86_64_section_from_shdr (bfd *abfd, Elf_Internal_Shdr *hdr,
6050 const char *name, int shindex)
6051 {
6052 if (hdr->sh_type != SHT_X86_64_UNWIND)
6053 return FALSE;
6054
6055 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
6056 return FALSE;
6057
6058 return TRUE;
6059 }
6060
6061 /* Hook called by the linker routine which adds symbols from an object
6062 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
6063 of .bss. */
6064
6065 static bfd_boolean
6066 elf_x86_64_add_symbol_hook (bfd *abfd,
6067 struct bfd_link_info *info,
6068 Elf_Internal_Sym *sym,
6069 const char **namep ATTRIBUTE_UNUSED,
6070 flagword *flagsp ATTRIBUTE_UNUSED,
6071 asection **secp,
6072 bfd_vma *valp)
6073 {
6074 asection *lcomm;
6075
6076 switch (sym->st_shndx)
6077 {
6078 case SHN_X86_64_LCOMMON:
6079 lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
6080 if (lcomm == NULL)
6081 {
6082 lcomm = bfd_make_section_with_flags (abfd,
6083 "LARGE_COMMON",
6084 (SEC_ALLOC
6085 | SEC_IS_COMMON
6086 | SEC_LINKER_CREATED));
6087 if (lcomm == NULL)
6088 return FALSE;
6089 elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
6090 }
6091 *secp = lcomm;
6092 *valp = sym->st_size;
6093 return TRUE;
6094 }
6095
6096 if (ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE
6097 && (abfd->flags & DYNAMIC) == 0
6098 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
6099 elf_tdata (info->output_bfd)->has_gnu_symbols
6100 |= elf_gnu_symbol_unique;
6101
6102 return TRUE;
6103 }
6104
6105
6106 /* Given a BFD section, try to locate the corresponding ELF section
6107 index. */
6108
6109 static bfd_boolean
6110 elf_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
6111 asection *sec, int *index_return)
6112 {
6113 if (sec == &_bfd_elf_large_com_section)
6114 {
6115 *index_return = SHN_X86_64_LCOMMON;
6116 return TRUE;
6117 }
6118 return FALSE;
6119 }
6120
6121 /* Process a symbol. */
6122
6123 static void
6124 elf_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
6125 asymbol *asym)
6126 {
6127 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
6128
6129 switch (elfsym->internal_elf_sym.st_shndx)
6130 {
6131 case SHN_X86_64_LCOMMON:
6132 asym->section = &_bfd_elf_large_com_section;
6133 asym->value = elfsym->internal_elf_sym.st_size;
6134 /* Common symbol doesn't set BSF_GLOBAL. */
6135 asym->flags &= ~BSF_GLOBAL;
6136 break;
6137 }
6138 }
6139
6140 static bfd_boolean
6141 elf_x86_64_common_definition (Elf_Internal_Sym *sym)
6142 {
6143 return (sym->st_shndx == SHN_COMMON
6144 || sym->st_shndx == SHN_X86_64_LCOMMON);
6145 }
6146
6147 static unsigned int
6148 elf_x86_64_common_section_index (asection *sec)
6149 {
6150 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
6151 return SHN_COMMON;
6152 else
6153 return SHN_X86_64_LCOMMON;
6154 }
6155
6156 static asection *
6157 elf_x86_64_common_section (asection *sec)
6158 {
6159 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
6160 return bfd_com_section_ptr;
6161 else
6162 return &_bfd_elf_large_com_section;
6163 }
6164
6165 static bfd_boolean
6166 elf_x86_64_merge_symbol (struct elf_link_hash_entry *h,
6167 const Elf_Internal_Sym *sym,
6168 asection **psec,
6169 bfd_boolean newdef,
6170 bfd_boolean olddef,
6171 bfd *oldbfd,
6172 const asection *oldsec)
6173 {
6174 /* A normal common symbol and a large common symbol result in a
6175 normal common symbol. We turn the large common symbol into a
6176 normal one. */
6177 if (!olddef
6178 && h->root.type == bfd_link_hash_common
6179 && !newdef
6180 && bfd_is_com_section (*psec)
6181 && oldsec != *psec)
6182 {
6183 if (sym->st_shndx == SHN_COMMON
6184 && (elf_section_flags (oldsec) & SHF_X86_64_LARGE) != 0)
6185 {
6186 h->root.u.c.p->section
6187 = bfd_make_section_old_way (oldbfd, "COMMON");
6188 h->root.u.c.p->section->flags = SEC_ALLOC;
6189 }
6190 else if (sym->st_shndx == SHN_X86_64_LCOMMON
6191 && (elf_section_flags (oldsec) & SHF_X86_64_LARGE) == 0)
6192 *psec = bfd_com_section_ptr;
6193 }
6194
6195 return TRUE;
6196 }
6197
6198 static int
6199 elf_x86_64_additional_program_headers (bfd *abfd,
6200 struct bfd_link_info *info ATTRIBUTE_UNUSED)
6201 {
6202 asection *s;
6203 int count = 0;
6204
6205 /* Check to see if we need a large readonly segment. */
6206 s = bfd_get_section_by_name (abfd, ".lrodata");
6207 if (s && (s->flags & SEC_LOAD))
6208 count++;
6209
6210 /* Check to see if we need a large data segment. Since .lbss sections
6211 is placed right after the .bss section, there should be no need for
6212 a large data segment just because of .lbss. */
6213 s = bfd_get_section_by_name (abfd, ".ldata");
6214 if (s && (s->flags & SEC_LOAD))
6215 count++;
6216
6217 return count;
6218 }
6219
6220 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
6221
6222 static bfd_boolean
6223 elf_x86_64_hash_symbol (struct elf_link_hash_entry *h)
6224 {
6225 if (h->plt.offset != (bfd_vma) -1
6226 && !h->def_regular
6227 && !h->pointer_equality_needed)
6228 return FALSE;
6229
6230 return _bfd_elf_hash_symbol (h);
6231 }
6232
6233 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. */
6234
6235 static bfd_boolean
6236 elf_x86_64_relocs_compatible (const bfd_target *input,
6237 const bfd_target *output)
6238 {
6239 return ((xvec_get_elf_backend_data (input)->s->elfclass
6240 == xvec_get_elf_backend_data (output)->s->elfclass)
6241 && _bfd_elf_relocs_compatible (input, output));
6242 }
6243
6244 static const struct bfd_elf_special_section
6245 elf_x86_64_special_sections[]=
6246 {
6247 { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
6248 { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
6249 { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
6250 { STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
6251 { STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
6252 { STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
6253 { NULL, 0, 0, 0, 0 }
6254 };
6255
6256 #define TARGET_LITTLE_SYM x86_64_elf64_vec
6257 #define TARGET_LITTLE_NAME "elf64-x86-64"
6258 #define ELF_ARCH bfd_arch_i386
6259 #define ELF_TARGET_ID X86_64_ELF_DATA
6260 #define ELF_MACHINE_CODE EM_X86_64
6261 #define ELF_MAXPAGESIZE 0x200000
6262 #define ELF_MINPAGESIZE 0x1000
6263 #define ELF_COMMONPAGESIZE 0x1000
6264
6265 #define elf_backend_can_gc_sections 1
6266 #define elf_backend_can_refcount 1
6267 #define elf_backend_want_got_plt 1
6268 #define elf_backend_plt_readonly 1
6269 #define elf_backend_want_plt_sym 0
6270 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
6271 #define elf_backend_rela_normal 1
6272 #define elf_backend_plt_alignment 4
6273 #define elf_backend_extern_protected_data 1
6274
6275 #define elf_info_to_howto elf_x86_64_info_to_howto
6276
6277 #define bfd_elf64_bfd_link_hash_table_create \
6278 elf_x86_64_link_hash_table_create
6279 #define bfd_elf64_bfd_reloc_type_lookup elf_x86_64_reloc_type_lookup
6280 #define bfd_elf64_bfd_reloc_name_lookup \
6281 elf_x86_64_reloc_name_lookup
6282
6283 #define elf_backend_adjust_dynamic_symbol elf_x86_64_adjust_dynamic_symbol
6284 #define elf_backend_relocs_compatible elf_x86_64_relocs_compatible
6285 #define elf_backend_check_relocs elf_x86_64_check_relocs
6286 #define elf_backend_copy_indirect_symbol elf_x86_64_copy_indirect_symbol
6287 #define elf_backend_create_dynamic_sections elf_x86_64_create_dynamic_sections
6288 #define elf_backend_finish_dynamic_sections elf_x86_64_finish_dynamic_sections
6289 #define elf_backend_finish_dynamic_symbol elf_x86_64_finish_dynamic_symbol
6290 #define elf_backend_gc_mark_hook elf_x86_64_gc_mark_hook
6291 #define elf_backend_gc_sweep_hook elf_x86_64_gc_sweep_hook
6292 #define elf_backend_grok_prstatus elf_x86_64_grok_prstatus
6293 #define elf_backend_grok_psinfo elf_x86_64_grok_psinfo
6294 #ifdef CORE_HEADER
6295 #define elf_backend_write_core_note elf_x86_64_write_core_note
6296 #endif
6297 #define elf_backend_reloc_type_class elf_x86_64_reloc_type_class
6298 #define elf_backend_relocate_section elf_x86_64_relocate_section
6299 #define elf_backend_size_dynamic_sections elf_x86_64_size_dynamic_sections
6300 #define elf_backend_always_size_sections elf_x86_64_always_size_sections
6301 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
6302 #define elf_backend_object_p elf64_x86_64_elf_object_p
6303 #define bfd_elf64_mkobject elf_x86_64_mkobject
6304 #define bfd_elf64_get_synthetic_symtab elf_x86_64_get_synthetic_symtab
6305
6306 #define elf_backend_section_from_shdr \
6307 elf_x86_64_section_from_shdr
6308
6309 #define elf_backend_section_from_bfd_section \
6310 elf_x86_64_elf_section_from_bfd_section
6311 #define elf_backend_add_symbol_hook \
6312 elf_x86_64_add_symbol_hook
6313 #define elf_backend_symbol_processing \
6314 elf_x86_64_symbol_processing
6315 #define elf_backend_common_section_index \
6316 elf_x86_64_common_section_index
6317 #define elf_backend_common_section \
6318 elf_x86_64_common_section
6319 #define elf_backend_common_definition \
6320 elf_x86_64_common_definition
6321 #define elf_backend_merge_symbol \
6322 elf_x86_64_merge_symbol
6323 #define elf_backend_special_sections \
6324 elf_x86_64_special_sections
6325 #define elf_backend_additional_program_headers \
6326 elf_x86_64_additional_program_headers
6327 #define elf_backend_hash_symbol \
6328 elf_x86_64_hash_symbol
6329
6330 #include "elf64-target.h"
6331
6332 /* CloudABI support. */
6333
6334 #undef TARGET_LITTLE_SYM
6335 #define TARGET_LITTLE_SYM x86_64_elf64_cloudabi_vec
6336 #undef TARGET_LITTLE_NAME
6337 #define TARGET_LITTLE_NAME "elf64-x86-64-cloudabi"
6338
6339 #undef ELF_OSABI
6340 #define ELF_OSABI ELFOSABI_CLOUDABI
6341
6342 #undef elf64_bed
6343 #define elf64_bed elf64_x86_64_cloudabi_bed
6344
6345 #include "elf64-target.h"
6346
6347 /* FreeBSD support. */
6348
6349 #undef TARGET_LITTLE_SYM
6350 #define TARGET_LITTLE_SYM x86_64_elf64_fbsd_vec
6351 #undef TARGET_LITTLE_NAME
6352 #define TARGET_LITTLE_NAME "elf64-x86-64-freebsd"
6353
6354 #undef ELF_OSABI
6355 #define ELF_OSABI ELFOSABI_FREEBSD
6356
6357 #undef elf64_bed
6358 #define elf64_bed elf64_x86_64_fbsd_bed
6359
6360 #include "elf64-target.h"
6361
6362 /* Solaris 2 support. */
6363
6364 #undef TARGET_LITTLE_SYM
6365 #define TARGET_LITTLE_SYM x86_64_elf64_sol2_vec
6366 #undef TARGET_LITTLE_NAME
6367 #define TARGET_LITTLE_NAME "elf64-x86-64-sol2"
6368
6369 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
6370 objects won't be recognized. */
6371 #undef ELF_OSABI
6372
6373 #undef elf64_bed
6374 #define elf64_bed elf64_x86_64_sol2_bed
6375
6376 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte
6377 boundary. */
6378 #undef elf_backend_static_tls_alignment
6379 #define elf_backend_static_tls_alignment 16
6380
6381 /* The Solaris 2 ABI requires a plt symbol on all platforms.
6382
6383 Cf. Linker and Libraries Guide, Ch. 2, Link-Editor, Generating the Output
6384 File, p.63. */
6385 #undef elf_backend_want_plt_sym
6386 #define elf_backend_want_plt_sym 1
6387
6388 #include "elf64-target.h"
6389
6390 /* Native Client support. */
6391
6392 static bfd_boolean
6393 elf64_x86_64_nacl_elf_object_p (bfd *abfd)
6394 {
6395 /* Set the right machine number for a NaCl x86-64 ELF64 file. */
6396 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64_nacl);
6397 return TRUE;
6398 }
6399
6400 #undef TARGET_LITTLE_SYM
6401 #define TARGET_LITTLE_SYM x86_64_elf64_nacl_vec
6402 #undef TARGET_LITTLE_NAME
6403 #define TARGET_LITTLE_NAME "elf64-x86-64-nacl"
6404 #undef elf64_bed
6405 #define elf64_bed elf64_x86_64_nacl_bed
6406
6407 #undef ELF_MAXPAGESIZE
6408 #undef ELF_MINPAGESIZE
6409 #undef ELF_COMMONPAGESIZE
6410 #define ELF_MAXPAGESIZE 0x10000
6411 #define ELF_MINPAGESIZE 0x10000
6412 #define ELF_COMMONPAGESIZE 0x10000
6413
6414 /* Restore defaults. */
6415 #undef ELF_OSABI
6416 #undef elf_backend_static_tls_alignment
6417 #undef elf_backend_want_plt_sym
6418 #define elf_backend_want_plt_sym 0
6419
6420 /* NaCl uses substantially different PLT entries for the same effects. */
6421
6422 #undef elf_backend_plt_alignment
6423 #define elf_backend_plt_alignment 5
6424 #define NACL_PLT_ENTRY_SIZE 64
6425 #define NACLMASK 0xe0 /* 32-byte alignment mask. */
6426
6427 static const bfd_byte elf_x86_64_nacl_plt0_entry[NACL_PLT_ENTRY_SIZE] =
6428 {
6429 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
6430 0x4c, 0x8b, 0x1d, 16, 0, 0, 0, /* mov GOT+16(%rip), %r11 */
6431 0x41, 0x83, 0xe3, NACLMASK, /* and $-32, %r11d */
6432 0x4d, 0x01, 0xfb, /* add %r15, %r11 */
6433 0x41, 0xff, 0xe3, /* jmpq *%r11 */
6434
6435 /* 9-byte nop sequence to pad out to the next 32-byte boundary. */
6436 0x66, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw 0x0(%rax,%rax,1) */
6437
6438 /* 32 bytes of nop to pad out to the standard size. */
6439 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
6440 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
6441 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
6442 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
6443 0x66, /* excess data32 prefix */
6444 0x90 /* nop */
6445 };
6446
6447 static const bfd_byte elf_x86_64_nacl_plt_entry[NACL_PLT_ENTRY_SIZE] =
6448 {
6449 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, /* mov name@GOTPCREL(%rip),%r11 */
6450 0x41, 0x83, 0xe3, NACLMASK, /* and $-32, %r11d */
6451 0x4d, 0x01, 0xfb, /* add %r15, %r11 */
6452 0x41, 0xff, 0xe3, /* jmpq *%r11 */
6453
6454 /* 15-byte nop sequence to pad out to the next 32-byte boundary. */
6455 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
6456 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
6457
6458 /* Lazy GOT entries point here (32-byte aligned). */
6459 0x68, /* pushq immediate */
6460 0, 0, 0, 0, /* replaced with index into relocation table. */
6461 0xe9, /* jmp relative */
6462 0, 0, 0, 0, /* replaced with offset to start of .plt0. */
6463
6464 /* 22 bytes of nop to pad out to the standard size. */
6465 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
6466 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
6467 0x0f, 0x1f, 0x80, 0, 0, 0, 0, /* nopl 0x0(%rax) */
6468 };
6469
6470 /* .eh_frame covering the .plt section. */
6471
6472 static const bfd_byte elf_x86_64_nacl_eh_frame_plt[] =
6473 {
6474 #if (PLT_CIE_LENGTH != 20 \
6475 || PLT_FDE_LENGTH != 36 \
6476 || PLT_FDE_START_OFFSET != 4 + PLT_CIE_LENGTH + 8 \
6477 || PLT_FDE_LEN_OFFSET != 4 + PLT_CIE_LENGTH + 12)
6478 # error "Need elf_x86_64_backend_data parameters for eh_frame_plt offsets!"
6479 #endif
6480 PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */
6481 0, 0, 0, 0, /* CIE ID */
6482 1, /* CIE version */
6483 'z', 'R', 0, /* Augmentation string */
6484 1, /* Code alignment factor */
6485 0x78, /* Data alignment factor */
6486 16, /* Return address column */
6487 1, /* Augmentation size */
6488 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
6489 DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
6490 DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
6491 DW_CFA_nop, DW_CFA_nop,
6492
6493 PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */
6494 PLT_CIE_LENGTH + 8, 0, 0, 0,/* CIE pointer */
6495 0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */
6496 0, 0, 0, 0, /* .plt size goes here */
6497 0, /* Augmentation size */
6498 DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */
6499 DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */
6500 DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */
6501 DW_CFA_advance_loc + 58, /* DW_CFA_advance_loc: 58 to __PLT__+64 */
6502 DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */
6503 13, /* Block length */
6504 DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */
6505 DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */
6506 DW_OP_const1u, 63, DW_OP_and, DW_OP_const1u, 37, DW_OP_ge,
6507 DW_OP_lit3, DW_OP_shl, DW_OP_plus,
6508 DW_CFA_nop, DW_CFA_nop
6509 };
6510
6511 static const struct elf_x86_64_backend_data elf_x86_64_nacl_arch_bed =
6512 {
6513 elf_x86_64_nacl_plt0_entry, /* plt0_entry */
6514 elf_x86_64_nacl_plt_entry, /* plt_entry */
6515 NACL_PLT_ENTRY_SIZE, /* plt_entry_size */
6516 2, /* plt0_got1_offset */
6517 9, /* plt0_got2_offset */
6518 13, /* plt0_got2_insn_end */
6519 3, /* plt_got_offset */
6520 33, /* plt_reloc_offset */
6521 38, /* plt_plt_offset */
6522 7, /* plt_got_insn_size */
6523 42, /* plt_plt_insn_end */
6524 32, /* plt_lazy_offset */
6525 elf_x86_64_nacl_eh_frame_plt, /* eh_frame_plt */
6526 sizeof (elf_x86_64_nacl_eh_frame_plt), /* eh_frame_plt_size */
6527 };
6528
6529 #undef elf_backend_arch_data
6530 #define elf_backend_arch_data &elf_x86_64_nacl_arch_bed
6531
6532 #undef elf_backend_object_p
6533 #define elf_backend_object_p elf64_x86_64_nacl_elf_object_p
6534 #undef elf_backend_modify_segment_map
6535 #define elf_backend_modify_segment_map nacl_modify_segment_map
6536 #undef elf_backend_modify_program_headers
6537 #define elf_backend_modify_program_headers nacl_modify_program_headers
6538 #undef elf_backend_final_write_processing
6539 #define elf_backend_final_write_processing nacl_final_write_processing
6540
6541 #include "elf64-target.h"
6542
6543 /* Native Client x32 support. */
6544
6545 static bfd_boolean
6546 elf32_x86_64_nacl_elf_object_p (bfd *abfd)
6547 {
6548 /* Set the right machine number for a NaCl x86-64 ELF32 file. */
6549 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x64_32_nacl);
6550 return TRUE;
6551 }
6552
6553 #undef TARGET_LITTLE_SYM
6554 #define TARGET_LITTLE_SYM x86_64_elf32_nacl_vec
6555 #undef TARGET_LITTLE_NAME
6556 #define TARGET_LITTLE_NAME "elf32-x86-64-nacl"
6557 #undef elf32_bed
6558 #define elf32_bed elf32_x86_64_nacl_bed
6559
6560 #define bfd_elf32_bfd_link_hash_table_create \
6561 elf_x86_64_link_hash_table_create
6562 #define bfd_elf32_bfd_reloc_type_lookup \
6563 elf_x86_64_reloc_type_lookup
6564 #define bfd_elf32_bfd_reloc_name_lookup \
6565 elf_x86_64_reloc_name_lookup
6566 #define bfd_elf32_mkobject \
6567 elf_x86_64_mkobject
6568 #define bfd_elf32_get_synthetic_symtab \
6569 elf_x86_64_get_synthetic_symtab
6570
6571 #undef elf_backend_object_p
6572 #define elf_backend_object_p \
6573 elf32_x86_64_nacl_elf_object_p
6574
6575 #undef elf_backend_bfd_from_remote_memory
6576 #define elf_backend_bfd_from_remote_memory \
6577 _bfd_elf32_bfd_from_remote_memory
6578
6579 #undef elf_backend_size_info
6580 #define elf_backend_size_info \
6581 _bfd_elf32_size_info
6582
6583 #include "elf32-target.h"
6584
6585 /* Restore defaults. */
6586 #undef elf_backend_object_p
6587 #define elf_backend_object_p elf64_x86_64_elf_object_p
6588 #undef elf_backend_bfd_from_remote_memory
6589 #undef elf_backend_size_info
6590 #undef elf_backend_modify_segment_map
6591 #undef elf_backend_modify_program_headers
6592 #undef elf_backend_final_write_processing
6593
6594 /* Intel L1OM support. */
6595
6596 static bfd_boolean
6597 elf64_l1om_elf_object_p (bfd *abfd)
6598 {
6599 /* Set the right machine number for an L1OM elf64 file. */
6600 bfd_default_set_arch_mach (abfd, bfd_arch_l1om, bfd_mach_l1om);
6601 return TRUE;
6602 }
6603
6604 #undef TARGET_LITTLE_SYM
6605 #define TARGET_LITTLE_SYM l1om_elf64_vec
6606 #undef TARGET_LITTLE_NAME
6607 #define TARGET_LITTLE_NAME "elf64-l1om"
6608 #undef ELF_ARCH
6609 #define ELF_ARCH bfd_arch_l1om
6610
6611 #undef ELF_MACHINE_CODE
6612 #define ELF_MACHINE_CODE EM_L1OM
6613
6614 #undef ELF_OSABI
6615
6616 #undef elf64_bed
6617 #define elf64_bed elf64_l1om_bed
6618
6619 #undef elf_backend_object_p
6620 #define elf_backend_object_p elf64_l1om_elf_object_p
6621
6622 /* Restore defaults. */
6623 #undef ELF_MAXPAGESIZE
6624 #undef ELF_MINPAGESIZE
6625 #undef ELF_COMMONPAGESIZE
6626 #define ELF_MAXPAGESIZE 0x200000
6627 #define ELF_MINPAGESIZE 0x1000
6628 #define ELF_COMMONPAGESIZE 0x1000
6629 #undef elf_backend_plt_alignment
6630 #define elf_backend_plt_alignment 4
6631 #undef elf_backend_arch_data
6632 #define elf_backend_arch_data &elf_x86_64_arch_bed
6633
6634 #include "elf64-target.h"
6635
6636 /* FreeBSD L1OM support. */
6637
6638 #undef TARGET_LITTLE_SYM
6639 #define TARGET_LITTLE_SYM l1om_elf64_fbsd_vec
6640 #undef TARGET_LITTLE_NAME
6641 #define TARGET_LITTLE_NAME "elf64-l1om-freebsd"
6642
6643 #undef ELF_OSABI
6644 #define ELF_OSABI ELFOSABI_FREEBSD
6645
6646 #undef elf64_bed
6647 #define elf64_bed elf64_l1om_fbsd_bed
6648
6649 #include "elf64-target.h"
6650
6651 /* Intel K1OM support. */
6652
6653 static bfd_boolean
6654 elf64_k1om_elf_object_p (bfd *abfd)
6655 {
6656 /* Set the right machine number for an K1OM elf64 file. */
6657 bfd_default_set_arch_mach (abfd, bfd_arch_k1om, bfd_mach_k1om);
6658 return TRUE;
6659 }
6660
6661 #undef TARGET_LITTLE_SYM
6662 #define TARGET_LITTLE_SYM k1om_elf64_vec
6663 #undef TARGET_LITTLE_NAME
6664 #define TARGET_LITTLE_NAME "elf64-k1om"
6665 #undef ELF_ARCH
6666 #define ELF_ARCH bfd_arch_k1om
6667
6668 #undef ELF_MACHINE_CODE
6669 #define ELF_MACHINE_CODE EM_K1OM
6670
6671 #undef ELF_OSABI
6672
6673 #undef elf64_bed
6674 #define elf64_bed elf64_k1om_bed
6675
6676 #undef elf_backend_object_p
6677 #define elf_backend_object_p elf64_k1om_elf_object_p
6678
6679 #undef elf_backend_static_tls_alignment
6680
6681 #undef elf_backend_want_plt_sym
6682 #define elf_backend_want_plt_sym 0
6683
6684 #include "elf64-target.h"
6685
6686 /* FreeBSD K1OM support. */
6687
6688 #undef TARGET_LITTLE_SYM
6689 #define TARGET_LITTLE_SYM k1om_elf64_fbsd_vec
6690 #undef TARGET_LITTLE_NAME
6691 #define TARGET_LITTLE_NAME "elf64-k1om-freebsd"
6692
6693 #undef ELF_OSABI
6694 #define ELF_OSABI ELFOSABI_FREEBSD
6695
6696 #undef elf64_bed
6697 #define elf64_bed elf64_k1om_fbsd_bed
6698
6699 #include "elf64-target.h"
6700
6701 /* 32bit x86-64 support. */
6702
6703 #undef TARGET_LITTLE_SYM
6704 #define TARGET_LITTLE_SYM x86_64_elf32_vec
6705 #undef TARGET_LITTLE_NAME
6706 #define TARGET_LITTLE_NAME "elf32-x86-64"
6707 #undef elf32_bed
6708
6709 #undef ELF_ARCH
6710 #define ELF_ARCH bfd_arch_i386
6711
6712 #undef ELF_MACHINE_CODE
6713 #define ELF_MACHINE_CODE EM_X86_64
6714
6715 #undef ELF_OSABI
6716
6717 #undef elf_backend_object_p
6718 #define elf_backend_object_p \
6719 elf32_x86_64_elf_object_p
6720
6721 #undef elf_backend_bfd_from_remote_memory
6722 #define elf_backend_bfd_from_remote_memory \
6723 _bfd_elf32_bfd_from_remote_memory
6724
6725 #undef elf_backend_size_info
6726 #define elf_backend_size_info \
6727 _bfd_elf32_size_info
6728
6729 #include "elf32-target.h"