* elf-bfd.h (struct elf_link_hash_entry): Clarify ref_regular
[binutils-gdb.git] / bfd / elf64-x86-64.c
1 /* X86-64 specific support for 64-bit ELF
2 Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
3 Free Software Foundation, Inc.
4 Contributed by Jan Hubicka <jh@suse.cz>.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #include "elf-bfd.h"
28 #include "bfd_stdint.h"
29 #include "objalloc.h"
30 #include "hashtab.h"
31
32 #include "elf/x86-64.h"
33
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35 #define MINUS_ONE (~ (bfd_vma) 0)
36
37 /* The relocation "howto" table. Order of fields:
38 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
39 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
40 static reloc_howto_type x86_64_elf_howto_table[] =
41 {
42 HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
43 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
44 FALSE),
45 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
46 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
47 FALSE),
48 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
49 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
50 TRUE),
51 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
52 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
53 FALSE),
54 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
55 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
56 TRUE),
57 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
58 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
59 FALSE),
60 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
61 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
62 MINUS_ONE, FALSE),
63 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
64 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
65 MINUS_ONE, FALSE),
66 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
67 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
68 MINUS_ONE, FALSE),
69 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
70 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
71 0xffffffff, TRUE),
72 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
73 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
74 FALSE),
75 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
76 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
77 FALSE),
78 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
79 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
80 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
81 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
82 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
83 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
84 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
85 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
86 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
87 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
88 MINUS_ONE, FALSE),
89 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
90 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
91 MINUS_ONE, FALSE),
92 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
93 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
94 MINUS_ONE, FALSE),
95 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
96 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
97 0xffffffff, TRUE),
98 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
99 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
100 0xffffffff, TRUE),
101 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
102 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
103 0xffffffff, FALSE),
104 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
105 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
106 0xffffffff, TRUE),
107 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
108 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
109 0xffffffff, FALSE),
110 HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
111 bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
112 TRUE),
113 HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
114 bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
115 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
116 HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
117 bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
118 FALSE, 0xffffffff, 0xffffffff, TRUE),
119 HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
120 bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE,
121 FALSE),
122 HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
123 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE,
124 MINUS_ONE, TRUE),
125 HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
126 bfd_elf_generic_reloc, "R_X86_64_GOTPC64",
127 FALSE, MINUS_ONE, MINUS_ONE, TRUE),
128 HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
129 bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE,
130 MINUS_ONE, FALSE),
131 HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
132 bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE,
133 MINUS_ONE, FALSE),
134 EMPTY_HOWTO (32),
135 EMPTY_HOWTO (33),
136 HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0,
137 complain_overflow_bitfield, bfd_elf_generic_reloc,
138 "R_X86_64_GOTPC32_TLSDESC",
139 FALSE, 0xffffffff, 0xffffffff, TRUE),
140 HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0,
141 complain_overflow_dont, bfd_elf_generic_reloc,
142 "R_X86_64_TLSDESC_CALL",
143 FALSE, 0, 0, FALSE),
144 HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0,
145 complain_overflow_bitfield, bfd_elf_generic_reloc,
146 "R_X86_64_TLSDESC",
147 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
148 HOWTO(R_X86_64_IRELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
149 bfd_elf_generic_reloc, "R_X86_64_IRELATIVE", FALSE, MINUS_ONE,
150 MINUS_ONE, FALSE),
151
152 /* We have a gap in the reloc numbers here.
153 R_X86_64_standard counts the number up to this point, and
154 R_X86_64_vt_offset is the value to subtract from a reloc type of
155 R_X86_64_GNU_VT* to form an index into this table. */
156 #define R_X86_64_standard (R_X86_64_IRELATIVE + 1)
157 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
158
159 /* GNU extension to record C++ vtable hierarchy. */
160 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
161 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
162
163 /* GNU extension to record C++ vtable member usage. */
164 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
165 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
166 FALSE)
167 };
168
169 #define IS_X86_64_PCREL_TYPE(TYPE) \
170 ( ((TYPE) == R_X86_64_PC8) \
171 || ((TYPE) == R_X86_64_PC16) \
172 || ((TYPE) == R_X86_64_PC32) \
173 || ((TYPE) == R_X86_64_PC64))
174
175 /* Map BFD relocs to the x86_64 elf relocs. */
176 struct elf_reloc_map
177 {
178 bfd_reloc_code_real_type bfd_reloc_val;
179 unsigned char elf_reloc_val;
180 };
181
182 static const struct elf_reloc_map x86_64_reloc_map[] =
183 {
184 { BFD_RELOC_NONE, R_X86_64_NONE, },
185 { BFD_RELOC_64, R_X86_64_64, },
186 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
187 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
188 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
189 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
190 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
191 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
192 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
193 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
194 { BFD_RELOC_32, R_X86_64_32, },
195 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
196 { BFD_RELOC_16, R_X86_64_16, },
197 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
198 { BFD_RELOC_8, R_X86_64_8, },
199 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
200 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
201 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
202 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
203 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
204 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
205 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
206 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
207 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
208 { BFD_RELOC_64_PCREL, R_X86_64_PC64, },
209 { BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, },
210 { BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, },
211 { BFD_RELOC_X86_64_GOT64, R_X86_64_GOT64, },
212 { BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, },
213 { BFD_RELOC_X86_64_GOTPC64, R_X86_64_GOTPC64, },
214 { BFD_RELOC_X86_64_GOTPLT64, R_X86_64_GOTPLT64, },
215 { BFD_RELOC_X86_64_PLTOFF64, R_X86_64_PLTOFF64, },
216 { BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, },
217 { BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, },
218 { BFD_RELOC_X86_64_TLSDESC, R_X86_64_TLSDESC, },
219 { BFD_RELOC_X86_64_IRELATIVE, R_X86_64_IRELATIVE, },
220 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
221 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
222 };
223
224 static reloc_howto_type *
225 elf64_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type)
226 {
227 unsigned i;
228
229 if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
230 || r_type >= (unsigned int) R_X86_64_max)
231 {
232 if (r_type >= (unsigned int) R_X86_64_standard)
233 {
234 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
235 abfd, (int) r_type);
236 r_type = R_X86_64_NONE;
237 }
238 i = r_type;
239 }
240 else
241 i = r_type - (unsigned int) R_X86_64_vt_offset;
242 BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type);
243 return &x86_64_elf_howto_table[i];
244 }
245
246 /* Given a BFD reloc type, return a HOWTO structure. */
247 static reloc_howto_type *
248 elf64_x86_64_reloc_type_lookup (bfd *abfd,
249 bfd_reloc_code_real_type code)
250 {
251 unsigned int i;
252
253 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
254 i++)
255 {
256 if (x86_64_reloc_map[i].bfd_reloc_val == code)
257 return elf64_x86_64_rtype_to_howto (abfd,
258 x86_64_reloc_map[i].elf_reloc_val);
259 }
260 return 0;
261 }
262
263 static reloc_howto_type *
264 elf64_x86_64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
265 const char *r_name)
266 {
267 unsigned int i;
268
269 for (i = 0;
270 i < (sizeof (x86_64_elf_howto_table)
271 / sizeof (x86_64_elf_howto_table[0]));
272 i++)
273 if (x86_64_elf_howto_table[i].name != NULL
274 && strcasecmp (x86_64_elf_howto_table[i].name, r_name) == 0)
275 return &x86_64_elf_howto_table[i];
276
277 return NULL;
278 }
279
280 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
281
282 static void
283 elf64_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
284 Elf_Internal_Rela *dst)
285 {
286 unsigned r_type;
287
288 r_type = ELF64_R_TYPE (dst->r_info);
289 cache_ptr->howto = elf64_x86_64_rtype_to_howto (abfd, r_type);
290 BFD_ASSERT (r_type == cache_ptr->howto->type);
291 }
292 \f
293 /* Support for core dump NOTE sections. */
294 static bfd_boolean
295 elf64_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
296 {
297 int offset;
298 size_t size;
299
300 switch (note->descsz)
301 {
302 default:
303 return FALSE;
304
305 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
306 /* pr_cursig */
307 elf_tdata (abfd)->core_signal
308 = bfd_get_16 (abfd, note->descdata + 12);
309
310 /* pr_pid */
311 elf_tdata (abfd)->core_pid
312 = bfd_get_32 (abfd, note->descdata + 32);
313
314 /* pr_reg */
315 offset = 112;
316 size = 216;
317
318 break;
319 }
320
321 /* Make a ".reg/999" section. */
322 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
323 size, note->descpos + offset);
324 }
325
326 static bfd_boolean
327 elf64_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
328 {
329 switch (note->descsz)
330 {
331 default:
332 return FALSE;
333
334 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
335 elf_tdata (abfd)->core_program
336 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
337 elf_tdata (abfd)->core_command
338 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
339 }
340
341 /* Note that for some reason, a spurious space is tacked
342 onto the end of the args in some (at least one anyway)
343 implementations, so strip it off if it exists. */
344
345 {
346 char *command = elf_tdata (abfd)->core_command;
347 int n = strlen (command);
348
349 if (0 < n && command[n - 1] == ' ')
350 command[n - 1] = '\0';
351 }
352
353 return TRUE;
354 }
355 \f
356 /* Functions for the x86-64 ELF linker. */
357
358 /* The name of the dynamic interpreter. This is put in the .interp
359 section. */
360
361 #define ELF_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
362
363 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
364 copying dynamic variables from a shared lib into an app's dynbss
365 section, and instead use a dynamic relocation to point into the
366 shared lib. */
367 #define ELIMINATE_COPY_RELOCS 1
368
369 /* The size in bytes of an entry in the global offset table. */
370
371 #define GOT_ENTRY_SIZE 8
372
373 /* The size in bytes of an entry in the procedure linkage table. */
374
375 #define PLT_ENTRY_SIZE 16
376
377 /* The first entry in a procedure linkage table looks like this. See the
378 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
379
380 static const bfd_byte elf64_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
381 {
382 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
383 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
384 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */
385 };
386
387 /* Subsequent entries in a procedure linkage table look like this. */
388
389 static const bfd_byte elf64_x86_64_plt_entry[PLT_ENTRY_SIZE] =
390 {
391 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
392 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
393 0x68, /* pushq immediate */
394 0, 0, 0, 0, /* replaced with index into relocation table. */
395 0xe9, /* jmp relative */
396 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
397 };
398
399 /* x86-64 ELF linker hash entry. */
400
401 struct elf64_x86_64_link_hash_entry
402 {
403 struct elf_link_hash_entry elf;
404
405 /* Track dynamic relocs copied for this symbol. */
406 struct elf_dyn_relocs *dyn_relocs;
407
408 #define GOT_UNKNOWN 0
409 #define GOT_NORMAL 1
410 #define GOT_TLS_GD 2
411 #define GOT_TLS_IE 3
412 #define GOT_TLS_GDESC 4
413 #define GOT_TLS_GD_BOTH_P(type) \
414 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
415 #define GOT_TLS_GD_P(type) \
416 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
417 #define GOT_TLS_GDESC_P(type) \
418 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
419 #define GOT_TLS_GD_ANY_P(type) \
420 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
421 unsigned char tls_type;
422
423 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
424 starting at the end of the jump table. */
425 bfd_vma tlsdesc_got;
426 };
427
428 #define elf64_x86_64_hash_entry(ent) \
429 ((struct elf64_x86_64_link_hash_entry *)(ent))
430
431 struct elf64_x86_64_obj_tdata
432 {
433 struct elf_obj_tdata root;
434
435 /* tls_type for each local got entry. */
436 char *local_got_tls_type;
437
438 /* GOTPLT entries for TLS descriptors. */
439 bfd_vma *local_tlsdesc_gotent;
440 };
441
442 #define elf64_x86_64_tdata(abfd) \
443 ((struct elf64_x86_64_obj_tdata *) (abfd)->tdata.any)
444
445 #define elf64_x86_64_local_got_tls_type(abfd) \
446 (elf64_x86_64_tdata (abfd)->local_got_tls_type)
447
448 #define elf64_x86_64_local_tlsdesc_gotent(abfd) \
449 (elf64_x86_64_tdata (abfd)->local_tlsdesc_gotent)
450
451 #define is_x86_64_elf(bfd) \
452 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
453 && elf_tdata (bfd) != NULL \
454 && elf_object_id (bfd) == X86_64_ELF_TDATA)
455
456 static bfd_boolean
457 elf64_x86_64_mkobject (bfd *abfd)
458 {
459 return bfd_elf_allocate_object (abfd, sizeof (struct elf64_x86_64_obj_tdata),
460 X86_64_ELF_TDATA);
461 }
462
463 /* x86-64 ELF linker hash table. */
464
465 struct elf64_x86_64_link_hash_table
466 {
467 struct elf_link_hash_table elf;
468
469 /* Short-cuts to get to dynamic linker sections. */
470 asection *sdynbss;
471 asection *srelbss;
472
473 /* The offset into splt of the PLT entry for the TLS descriptor
474 resolver. Special values are 0, if not necessary (or not found
475 to be necessary yet), and -1 if needed but not determined
476 yet. */
477 bfd_vma tlsdesc_plt;
478 /* The offset into sgot of the GOT entry used by the PLT entry
479 above. */
480 bfd_vma tlsdesc_got;
481
482 union {
483 bfd_signed_vma refcount;
484 bfd_vma offset;
485 } tls_ld_got;
486
487 /* The amount of space used by the jump slots in the GOT. */
488 bfd_vma sgotplt_jump_table_size;
489
490 /* Small local sym cache. */
491 struct sym_cache sym_cache;
492
493 /* _TLS_MODULE_BASE_ symbol. */
494 struct bfd_link_hash_entry *tls_module_base;
495
496 /* Used by local STT_GNU_IFUNC symbols. */
497 htab_t loc_hash_table;
498 void *loc_hash_memory;
499 };
500
501 /* Get the x86-64 ELF linker hash table from a link_info structure. */
502
503 #define elf64_x86_64_hash_table(p) \
504 ((struct elf64_x86_64_link_hash_table *) ((p)->hash))
505
506 #define elf64_x86_64_compute_jump_table_size(htab) \
507 ((htab)->elf.srelplt->reloc_count * GOT_ENTRY_SIZE)
508
509 /* Create an entry in an x86-64 ELF linker hash table. */
510
511 static struct bfd_hash_entry *
512 elf64_x86_64_link_hash_newfunc (struct bfd_hash_entry *entry,
513 struct bfd_hash_table *table,
514 const char *string)
515 {
516 /* Allocate the structure if it has not already been allocated by a
517 subclass. */
518 if (entry == NULL)
519 {
520 entry = bfd_hash_allocate (table,
521 sizeof (struct elf64_x86_64_link_hash_entry));
522 if (entry == NULL)
523 return entry;
524 }
525
526 /* Call the allocation method of the superclass. */
527 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
528 if (entry != NULL)
529 {
530 struct elf64_x86_64_link_hash_entry *eh;
531
532 eh = (struct elf64_x86_64_link_hash_entry *) entry;
533 eh->dyn_relocs = NULL;
534 eh->tls_type = GOT_UNKNOWN;
535 eh->tlsdesc_got = (bfd_vma) -1;
536 }
537
538 return entry;
539 }
540
541 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
542 for local symbol so that we can handle local STT_GNU_IFUNC symbols
543 as global symbol. We reuse indx and dynstr_index for local symbol
544 hash since they aren't used by global symbols in this backend. */
545
546 static hashval_t
547 elf64_x86_64_local_htab_hash (const void *ptr)
548 {
549 struct elf_link_hash_entry *h
550 = (struct elf_link_hash_entry *) ptr;
551 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
552 }
553
554 /* Compare local hash entries. */
555
556 static int
557 elf64_x86_64_local_htab_eq (const void *ptr1, const void *ptr2)
558 {
559 struct elf_link_hash_entry *h1
560 = (struct elf_link_hash_entry *) ptr1;
561 struct elf_link_hash_entry *h2
562 = (struct elf_link_hash_entry *) ptr2;
563
564 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
565 }
566
567 /* Find and/or create a hash entry for local symbol. */
568
569 static struct elf_link_hash_entry *
570 elf64_x86_64_get_local_sym_hash (struct elf64_x86_64_link_hash_table *htab,
571 bfd *abfd, const Elf_Internal_Rela *rel,
572 bfd_boolean create)
573 {
574 struct elf64_x86_64_link_hash_entry e, *ret;
575 asection *sec = abfd->sections;
576 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
577 ELF64_R_SYM (rel->r_info));
578 void **slot;
579
580 e.elf.indx = sec->id;
581 e.elf.dynstr_index = ELF64_R_SYM (rel->r_info);
582 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
583 create ? INSERT : NO_INSERT);
584
585 if (!slot)
586 return NULL;
587
588 if (*slot)
589 {
590 ret = (struct elf64_x86_64_link_hash_entry *) *slot;
591 return &ret->elf;
592 }
593
594 ret = (struct elf64_x86_64_link_hash_entry *)
595 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
596 sizeof (struct elf64_x86_64_link_hash_entry));
597 if (ret)
598 {
599 memset (ret, 0, sizeof (*ret));
600 ret->elf.indx = sec->id;
601 ret->elf.dynstr_index = ELF64_R_SYM (rel->r_info);
602 ret->elf.dynindx = -1;
603 ret->elf.plt.offset = (bfd_vma) -1;
604 ret->elf.got.offset = (bfd_vma) -1;
605 *slot = ret;
606 }
607 return &ret->elf;
608 }
609
610 /* Create an X86-64 ELF linker hash table. */
611
612 static struct bfd_link_hash_table *
613 elf64_x86_64_link_hash_table_create (bfd *abfd)
614 {
615 struct elf64_x86_64_link_hash_table *ret;
616 bfd_size_type amt = sizeof (struct elf64_x86_64_link_hash_table);
617
618 ret = (struct elf64_x86_64_link_hash_table *) bfd_malloc (amt);
619 if (ret == NULL)
620 return NULL;
621
622 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
623 elf64_x86_64_link_hash_newfunc,
624 sizeof (struct elf64_x86_64_link_hash_entry)))
625 {
626 free (ret);
627 return NULL;
628 }
629
630 ret->sdynbss = NULL;
631 ret->srelbss = NULL;
632 ret->sym_cache.abfd = NULL;
633 ret->tlsdesc_plt = 0;
634 ret->tlsdesc_got = 0;
635 ret->tls_ld_got.refcount = 0;
636 ret->sgotplt_jump_table_size = 0;
637 ret->tls_module_base = NULL;
638
639 ret->loc_hash_table = htab_try_create (1024,
640 elf64_x86_64_local_htab_hash,
641 elf64_x86_64_local_htab_eq,
642 NULL);
643 ret->loc_hash_memory = objalloc_create ();
644 if (!ret->loc_hash_table || !ret->loc_hash_memory)
645 {
646 free (ret);
647 return NULL;
648 }
649
650 return &ret->elf.root;
651 }
652
653 /* Destroy an X86-64 ELF linker hash table. */
654
655 static void
656 elf64_x86_64_link_hash_table_free (struct bfd_link_hash_table *hash)
657 {
658 struct elf64_x86_64_link_hash_table *htab
659 = (struct elf64_x86_64_link_hash_table *) hash;
660
661 if (htab->loc_hash_table)
662 htab_delete (htab->loc_hash_table);
663 if (htab->loc_hash_memory)
664 objalloc_free ((struct objalloc *) htab->loc_hash_memory);
665 _bfd_generic_link_hash_table_free (hash);
666 }
667
668 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
669 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
670 hash table. */
671
672 static bfd_boolean
673 elf64_x86_64_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
674 {
675 struct elf64_x86_64_link_hash_table *htab;
676
677 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
678 return FALSE;
679
680 htab = elf64_x86_64_hash_table (info);
681 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
682 if (!info->shared)
683 htab->srelbss = bfd_get_section_by_name (dynobj, ".rela.bss");
684
685 if (!htab->sdynbss
686 || (!info->shared && !htab->srelbss))
687 abort ();
688
689 return TRUE;
690 }
691
692 /* Copy the extra info we tack onto an elf_link_hash_entry. */
693
694 static void
695 elf64_x86_64_copy_indirect_symbol (struct bfd_link_info *info,
696 struct elf_link_hash_entry *dir,
697 struct elf_link_hash_entry *ind)
698 {
699 struct elf64_x86_64_link_hash_entry *edir, *eind;
700
701 edir = (struct elf64_x86_64_link_hash_entry *) dir;
702 eind = (struct elf64_x86_64_link_hash_entry *) ind;
703
704 if (eind->dyn_relocs != NULL)
705 {
706 if (edir->dyn_relocs != NULL)
707 {
708 struct elf_dyn_relocs **pp;
709 struct elf_dyn_relocs *p;
710
711 /* Add reloc counts against the indirect sym to the direct sym
712 list. Merge any entries against the same section. */
713 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
714 {
715 struct elf_dyn_relocs *q;
716
717 for (q = edir->dyn_relocs; q != NULL; q = q->next)
718 if (q->sec == p->sec)
719 {
720 q->pc_count += p->pc_count;
721 q->count += p->count;
722 *pp = p->next;
723 break;
724 }
725 if (q == NULL)
726 pp = &p->next;
727 }
728 *pp = edir->dyn_relocs;
729 }
730
731 edir->dyn_relocs = eind->dyn_relocs;
732 eind->dyn_relocs = NULL;
733 }
734
735 if (ind->root.type == bfd_link_hash_indirect
736 && dir->got.refcount <= 0)
737 {
738 edir->tls_type = eind->tls_type;
739 eind->tls_type = GOT_UNKNOWN;
740 }
741
742 if (ELIMINATE_COPY_RELOCS
743 && ind->root.type != bfd_link_hash_indirect
744 && dir->dynamic_adjusted)
745 {
746 /* If called to transfer flags for a weakdef during processing
747 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
748 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
749 dir->ref_dynamic |= ind->ref_dynamic;
750 dir->ref_regular |= ind->ref_regular;
751 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
752 dir->needs_plt |= ind->needs_plt;
753 dir->pointer_equality_needed |= ind->pointer_equality_needed;
754 }
755 else
756 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
757 }
758
759 static bfd_boolean
760 elf64_x86_64_elf_object_p (bfd *abfd)
761 {
762 /* Set the right machine number for an x86-64 elf64 file. */
763 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
764 return TRUE;
765 }
766
767 typedef union
768 {
769 unsigned char c[2];
770 uint16_t i;
771 }
772 x86_64_opcode16;
773
774 typedef union
775 {
776 unsigned char c[4];
777 uint32_t i;
778 }
779 x86_64_opcode32;
780
781 /* Return TRUE if the TLS access code sequence support transition
782 from R_TYPE. */
783
784 static bfd_boolean
785 elf64_x86_64_check_tls_transition (bfd *abfd, asection *sec,
786 bfd_byte *contents,
787 Elf_Internal_Shdr *symtab_hdr,
788 struct elf_link_hash_entry **sym_hashes,
789 unsigned int r_type,
790 const Elf_Internal_Rela *rel,
791 const Elf_Internal_Rela *relend)
792 {
793 unsigned int val;
794 unsigned long r_symndx;
795 struct elf_link_hash_entry *h;
796 bfd_vma offset;
797
798 /* Get the section contents. */
799 if (contents == NULL)
800 {
801 if (elf_section_data (sec)->this_hdr.contents != NULL)
802 contents = elf_section_data (sec)->this_hdr.contents;
803 else
804 {
805 /* FIXME: How to better handle error condition? */
806 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
807 return FALSE;
808
809 /* Cache the section contents for elf_link_input_bfd. */
810 elf_section_data (sec)->this_hdr.contents = contents;
811 }
812 }
813
814 offset = rel->r_offset;
815 switch (r_type)
816 {
817 case R_X86_64_TLSGD:
818 case R_X86_64_TLSLD:
819 if ((rel + 1) >= relend)
820 return FALSE;
821
822 if (r_type == R_X86_64_TLSGD)
823 {
824 /* Check transition from GD access model. Only
825 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
826 .word 0x6666; rex64; call __tls_get_addr
827 can transit to different access model. */
828
829 static x86_64_opcode32 leaq = { { 0x66, 0x48, 0x8d, 0x3d } },
830 call = { { 0x66, 0x66, 0x48, 0xe8 } };
831 if (offset < 4
832 || (offset + 12) > sec->size
833 || bfd_get_32 (abfd, contents + offset - 4) != leaq.i
834 || bfd_get_32 (abfd, contents + offset + 4) != call.i)
835 return FALSE;
836 }
837 else
838 {
839 /* Check transition from LD access model. Only
840 leaq foo@tlsld(%rip), %rdi;
841 call __tls_get_addr
842 can transit to different access model. */
843
844 static x86_64_opcode32 ld = { { 0x48, 0x8d, 0x3d, 0xe8 } };
845 x86_64_opcode32 op;
846
847 if (offset < 3 || (offset + 9) > sec->size)
848 return FALSE;
849
850 op.i = bfd_get_32 (abfd, contents + offset - 3);
851 op.c[3] = bfd_get_8 (abfd, contents + offset + 4);
852 if (op.i != ld.i)
853 return FALSE;
854 }
855
856 r_symndx = ELF64_R_SYM (rel[1].r_info);
857 if (r_symndx < symtab_hdr->sh_info)
858 return FALSE;
859
860 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
861 /* Use strncmp to check __tls_get_addr since __tls_get_addr
862 may be versioned. */
863 return (h != NULL
864 && h->root.root.string != NULL
865 && (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PC32
866 || ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32)
867 && (strncmp (h->root.root.string,
868 "__tls_get_addr", 14) == 0));
869
870 case R_X86_64_GOTTPOFF:
871 /* Check transition from IE access model:
872 movq foo@gottpoff(%rip), %reg
873 addq foo@gottpoff(%rip), %reg
874 */
875
876 if (offset < 3 || (offset + 4) > sec->size)
877 return FALSE;
878
879 val = bfd_get_8 (abfd, contents + offset - 3);
880 if (val != 0x48 && val != 0x4c)
881 return FALSE;
882
883 val = bfd_get_8 (abfd, contents + offset - 2);
884 if (val != 0x8b && val != 0x03)
885 return FALSE;
886
887 val = bfd_get_8 (abfd, contents + offset - 1);
888 return (val & 0xc7) == 5;
889
890 case R_X86_64_GOTPC32_TLSDESC:
891 /* Check transition from GDesc access model:
892 leaq x@tlsdesc(%rip), %rax
893
894 Make sure it's a leaq adding rip to a 32-bit offset
895 into any register, although it's probably almost always
896 going to be rax. */
897
898 if (offset < 3 || (offset + 4) > sec->size)
899 return FALSE;
900
901 val = bfd_get_8 (abfd, contents + offset - 3);
902 if ((val & 0xfb) != 0x48)
903 return FALSE;
904
905 if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d)
906 return FALSE;
907
908 val = bfd_get_8 (abfd, contents + offset - 1);
909 return (val & 0xc7) == 0x05;
910
911 case R_X86_64_TLSDESC_CALL:
912 /* Check transition from GDesc access model:
913 call *x@tlsdesc(%rax)
914 */
915 if (offset + 2 <= sec->size)
916 {
917 /* Make sure that it's a call *x@tlsdesc(%rax). */
918 static x86_64_opcode16 call = { { 0xff, 0x10 } };
919 return bfd_get_16 (abfd, contents + offset) == call.i;
920 }
921
922 return FALSE;
923
924 default:
925 abort ();
926 }
927 }
928
929 /* Return TRUE if the TLS access transition is OK or no transition
930 will be performed. Update R_TYPE if there is a transition. */
931
932 static bfd_boolean
933 elf64_x86_64_tls_transition (struct bfd_link_info *info, bfd *abfd,
934 asection *sec, bfd_byte *contents,
935 Elf_Internal_Shdr *symtab_hdr,
936 struct elf_link_hash_entry **sym_hashes,
937 unsigned int *r_type, int tls_type,
938 const Elf_Internal_Rela *rel,
939 const Elf_Internal_Rela *relend,
940 struct elf_link_hash_entry *h,
941 unsigned long r_symndx)
942 {
943 unsigned int from_type = *r_type;
944 unsigned int to_type = from_type;
945 bfd_boolean check = TRUE;
946
947 switch (from_type)
948 {
949 case R_X86_64_TLSGD:
950 case R_X86_64_GOTPC32_TLSDESC:
951 case R_X86_64_TLSDESC_CALL:
952 case R_X86_64_GOTTPOFF:
953 if (!info->shared)
954 {
955 if (h == NULL)
956 to_type = R_X86_64_TPOFF32;
957 else
958 to_type = R_X86_64_GOTTPOFF;
959 }
960
961 /* When we are called from elf64_x86_64_relocate_section,
962 CONTENTS isn't NULL and there may be additional transitions
963 based on TLS_TYPE. */
964 if (contents != NULL)
965 {
966 unsigned int new_to_type = to_type;
967
968 if (!info->shared
969 && h != NULL
970 && h->dynindx == -1
971 && tls_type == GOT_TLS_IE)
972 new_to_type = R_X86_64_TPOFF32;
973
974 if (to_type == R_X86_64_TLSGD
975 || to_type == R_X86_64_GOTPC32_TLSDESC
976 || to_type == R_X86_64_TLSDESC_CALL)
977 {
978 if (tls_type == GOT_TLS_IE)
979 new_to_type = R_X86_64_GOTTPOFF;
980 }
981
982 /* We checked the transition before when we were called from
983 elf64_x86_64_check_relocs. We only want to check the new
984 transition which hasn't been checked before. */
985 check = new_to_type != to_type && from_type == to_type;
986 to_type = new_to_type;
987 }
988
989 break;
990
991 case R_X86_64_TLSLD:
992 if (!info->shared)
993 to_type = R_X86_64_TPOFF32;
994 break;
995
996 default:
997 return TRUE;
998 }
999
1000 /* Return TRUE if there is no transition. */
1001 if (from_type == to_type)
1002 return TRUE;
1003
1004 /* Check if the transition can be performed. */
1005 if (check
1006 && ! elf64_x86_64_check_tls_transition (abfd, sec, contents,
1007 symtab_hdr, sym_hashes,
1008 from_type, rel, relend))
1009 {
1010 reloc_howto_type *from, *to;
1011 const char *name;
1012
1013 from = elf64_x86_64_rtype_to_howto (abfd, from_type);
1014 to = elf64_x86_64_rtype_to_howto (abfd, to_type);
1015
1016 if (h)
1017 name = h->root.root.string;
1018 else
1019 {
1020 Elf_Internal_Sym *isym;
1021 struct elf64_x86_64_link_hash_table *htab;
1022 htab = elf64_x86_64_hash_table (info);
1023 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1024 abfd, r_symndx);
1025 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1026 }
1027
1028 (*_bfd_error_handler)
1029 (_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
1030 "in section `%A' failed"),
1031 abfd, sec, from->name, to->name, name,
1032 (unsigned long) rel->r_offset);
1033 bfd_set_error (bfd_error_bad_value);
1034 return FALSE;
1035 }
1036
1037 *r_type = to_type;
1038 return TRUE;
1039 }
1040
1041 /* Look through the relocs for a section during the first phase, and
1042 calculate needed space in the global offset table, procedure
1043 linkage table, and dynamic reloc sections. */
1044
1045 static bfd_boolean
1046 elf64_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info,
1047 asection *sec,
1048 const Elf_Internal_Rela *relocs)
1049 {
1050 struct elf64_x86_64_link_hash_table *htab;
1051 Elf_Internal_Shdr *symtab_hdr;
1052 struct elf_link_hash_entry **sym_hashes;
1053 const Elf_Internal_Rela *rel;
1054 const Elf_Internal_Rela *rel_end;
1055 asection *sreloc;
1056
1057 if (info->relocatable)
1058 return TRUE;
1059
1060 BFD_ASSERT (is_x86_64_elf (abfd));
1061
1062 htab = elf64_x86_64_hash_table (info);
1063 symtab_hdr = &elf_symtab_hdr (abfd);
1064 sym_hashes = elf_sym_hashes (abfd);
1065
1066 sreloc = NULL;
1067
1068 rel_end = relocs + sec->reloc_count;
1069 for (rel = relocs; rel < rel_end; rel++)
1070 {
1071 unsigned int r_type;
1072 unsigned long r_symndx;
1073 struct elf_link_hash_entry *h;
1074 Elf_Internal_Sym *isym;
1075 const char *name;
1076
1077 r_symndx = ELF64_R_SYM (rel->r_info);
1078 r_type = ELF64_R_TYPE (rel->r_info);
1079
1080 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1081 {
1082 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1083 abfd, r_symndx);
1084 return FALSE;
1085 }
1086
1087 if (r_symndx < symtab_hdr->sh_info)
1088 {
1089 /* A local symbol. */
1090 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1091 abfd, r_symndx);
1092 if (isym == NULL)
1093 return FALSE;
1094
1095 /* Check relocation against local STT_GNU_IFUNC symbol. */
1096 if (ELF64_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1097 {
1098 h = elf64_x86_64_get_local_sym_hash (htab, abfd, rel,
1099 TRUE);
1100 if (h == NULL)
1101 return FALSE;
1102
1103 /* Fake a STT_GNU_IFUNC symbol. */
1104 h->type = STT_GNU_IFUNC;
1105 h->def_regular = 1;
1106 h->ref_regular = 1;
1107 h->forced_local = 1;
1108 h->root.type = bfd_link_hash_defined;
1109 }
1110 else
1111 h = NULL;
1112 }
1113 else
1114 {
1115 isym = NULL;
1116 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1117 while (h->root.type == bfd_link_hash_indirect
1118 || h->root.type == bfd_link_hash_warning)
1119 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1120 }
1121
1122 if (h != NULL)
1123 {
1124 /* Create the ifunc sections for static executables. If we
1125 never see an indirect function symbol nor we are building
1126 a static executable, those sections will be empty and
1127 won't appear in output. */
1128 switch (r_type)
1129 {
1130 default:
1131 break;
1132
1133 case R_X86_64_32S:
1134 case R_X86_64_32:
1135 case R_X86_64_64:
1136 case R_X86_64_PC32:
1137 case R_X86_64_PC64:
1138 case R_X86_64_PLT32:
1139 case R_X86_64_GOTPCREL:
1140 case R_X86_64_GOTPCREL64:
1141 if (!_bfd_elf_create_ifunc_sections (abfd, info))
1142 return FALSE;
1143 break;
1144 }
1145
1146 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
1147 it here if it is defined in a non-shared object. */
1148 if (h->type == STT_GNU_IFUNC
1149 && h->def_regular)
1150 {
1151 /* It is referenced by a non-shared object. */
1152 h->ref_regular = 1;
1153 h->needs_plt = 1;
1154
1155 /* STT_GNU_IFUNC symbol must go through PLT. */
1156 h->plt.refcount += 1;
1157
1158 /* STT_GNU_IFUNC needs dynamic sections. */
1159 if (htab->elf.dynobj == NULL)
1160 htab->elf.dynobj = abfd;
1161
1162 switch (r_type)
1163 {
1164 default:
1165 if (h->root.root.string)
1166 name = h->root.root.string;
1167 else
1168 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1169 NULL);
1170 (*_bfd_error_handler)
1171 (_("%B: relocation %s against STT_GNU_IFUNC "
1172 "symbol `%s' isn't handled by %s"), abfd,
1173 x86_64_elf_howto_table[r_type].name,
1174 name, __FUNCTION__);
1175 bfd_set_error (bfd_error_bad_value);
1176 return FALSE;
1177
1178 case R_X86_64_64:
1179 h->non_got_ref = 1;
1180 h->pointer_equality_needed = 1;
1181 if (info->shared)
1182 {
1183 /* We must copy these reloc types into the output
1184 file. Create a reloc section in dynobj and
1185 make room for this reloc. */
1186 sreloc = _bfd_elf_create_ifunc_dyn_reloc
1187 (abfd, info, sec, sreloc,
1188 &((struct elf64_x86_64_link_hash_entry *) h)->dyn_relocs);
1189 if (sreloc == NULL)
1190 return FALSE;
1191 }
1192 break;
1193
1194 case R_X86_64_32S:
1195 case R_X86_64_32:
1196 case R_X86_64_PC32:
1197 case R_X86_64_PC64:
1198 h->non_got_ref = 1;
1199 if (r_type != R_X86_64_PC32
1200 && r_type != R_X86_64_PC64)
1201 h->pointer_equality_needed = 1;
1202 break;
1203
1204 case R_X86_64_PLT32:
1205 break;
1206
1207 case R_X86_64_GOTPCREL:
1208 case R_X86_64_GOTPCREL64:
1209 h->got.refcount += 1;
1210 if (htab->elf.sgot == NULL
1211 && !_bfd_elf_create_got_section (htab->elf.dynobj,
1212 info))
1213 return FALSE;
1214 break;
1215 }
1216
1217 continue;
1218 }
1219 }
1220
1221 if (! elf64_x86_64_tls_transition (info, abfd, sec, NULL,
1222 symtab_hdr, sym_hashes,
1223 &r_type, GOT_UNKNOWN,
1224 rel, rel_end, h, r_symndx))
1225 return FALSE;
1226
1227 switch (r_type)
1228 {
1229 case R_X86_64_TLSLD:
1230 htab->tls_ld_got.refcount += 1;
1231 goto create_got;
1232
1233 case R_X86_64_TPOFF32:
1234 if (info->shared)
1235 {
1236 if (h)
1237 name = h->root.root.string;
1238 else
1239 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1240 NULL);
1241 (*_bfd_error_handler)
1242 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1243 abfd,
1244 x86_64_elf_howto_table[r_type].name, name);
1245 bfd_set_error (bfd_error_bad_value);
1246 return FALSE;
1247 }
1248 break;
1249
1250 case R_X86_64_GOTTPOFF:
1251 if (info->shared)
1252 info->flags |= DF_STATIC_TLS;
1253 /* Fall through */
1254
1255 case R_X86_64_GOT32:
1256 case R_X86_64_GOTPCREL:
1257 case R_X86_64_TLSGD:
1258 case R_X86_64_GOT64:
1259 case R_X86_64_GOTPCREL64:
1260 case R_X86_64_GOTPLT64:
1261 case R_X86_64_GOTPC32_TLSDESC:
1262 case R_X86_64_TLSDESC_CALL:
1263 /* This symbol requires a global offset table entry. */
1264 {
1265 int tls_type, old_tls_type;
1266
1267 switch (r_type)
1268 {
1269 default: tls_type = GOT_NORMAL; break;
1270 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
1271 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
1272 case R_X86_64_GOTPC32_TLSDESC:
1273 case R_X86_64_TLSDESC_CALL:
1274 tls_type = GOT_TLS_GDESC; break;
1275 }
1276
1277 if (h != NULL)
1278 {
1279 if (r_type == R_X86_64_GOTPLT64)
1280 {
1281 /* This relocation indicates that we also need
1282 a PLT entry, as this is a function. We don't need
1283 a PLT entry for local symbols. */
1284 h->needs_plt = 1;
1285 h->plt.refcount += 1;
1286 }
1287 h->got.refcount += 1;
1288 old_tls_type = elf64_x86_64_hash_entry (h)->tls_type;
1289 }
1290 else
1291 {
1292 bfd_signed_vma *local_got_refcounts;
1293
1294 /* This is a global offset table entry for a local symbol. */
1295 local_got_refcounts = elf_local_got_refcounts (abfd);
1296 if (local_got_refcounts == NULL)
1297 {
1298 bfd_size_type size;
1299
1300 size = symtab_hdr->sh_info;
1301 size *= sizeof (bfd_signed_vma)
1302 + sizeof (bfd_vma) + sizeof (char);
1303 local_got_refcounts = ((bfd_signed_vma *)
1304 bfd_zalloc (abfd, size));
1305 if (local_got_refcounts == NULL)
1306 return FALSE;
1307 elf_local_got_refcounts (abfd) = local_got_refcounts;
1308 elf64_x86_64_local_tlsdesc_gotent (abfd)
1309 = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info);
1310 elf64_x86_64_local_got_tls_type (abfd)
1311 = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
1312 }
1313 local_got_refcounts[r_symndx] += 1;
1314 old_tls_type
1315 = elf64_x86_64_local_got_tls_type (abfd) [r_symndx];
1316 }
1317
1318 /* If a TLS symbol is accessed using IE at least once,
1319 there is no point to use dynamic model for it. */
1320 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1321 && (! GOT_TLS_GD_ANY_P (old_tls_type)
1322 || tls_type != GOT_TLS_IE))
1323 {
1324 if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type))
1325 tls_type = old_tls_type;
1326 else if (GOT_TLS_GD_ANY_P (old_tls_type)
1327 && GOT_TLS_GD_ANY_P (tls_type))
1328 tls_type |= old_tls_type;
1329 else
1330 {
1331 if (h)
1332 name = h->root.root.string;
1333 else
1334 name = bfd_elf_sym_name (abfd, symtab_hdr,
1335 isym, NULL);
1336 (*_bfd_error_handler)
1337 (_("%B: '%s' accessed both as normal and thread local symbol"),
1338 abfd, name);
1339 return FALSE;
1340 }
1341 }
1342
1343 if (old_tls_type != tls_type)
1344 {
1345 if (h != NULL)
1346 elf64_x86_64_hash_entry (h)->tls_type = tls_type;
1347 else
1348 elf64_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
1349 }
1350 }
1351 /* Fall through */
1352
1353 case R_X86_64_GOTOFF64:
1354 case R_X86_64_GOTPC32:
1355 case R_X86_64_GOTPC64:
1356 create_got:
1357 if (htab->elf.sgot == NULL)
1358 {
1359 if (htab->elf.dynobj == NULL)
1360 htab->elf.dynobj = abfd;
1361 if (!_bfd_elf_create_got_section (htab->elf.dynobj,
1362 info))
1363 return FALSE;
1364 }
1365 break;
1366
1367 case R_X86_64_PLT32:
1368 /* This symbol requires a procedure linkage table entry. We
1369 actually build the entry in adjust_dynamic_symbol,
1370 because this might be a case of linking PIC code which is
1371 never referenced by a dynamic object, in which case we
1372 don't need to generate a procedure linkage table entry
1373 after all. */
1374
1375 /* If this is a local symbol, we resolve it directly without
1376 creating a procedure linkage table entry. */
1377 if (h == NULL)
1378 continue;
1379
1380 h->needs_plt = 1;
1381 h->plt.refcount += 1;
1382 break;
1383
1384 case R_X86_64_PLTOFF64:
1385 /* This tries to form the 'address' of a function relative
1386 to GOT. For global symbols we need a PLT entry. */
1387 if (h != NULL)
1388 {
1389 h->needs_plt = 1;
1390 h->plt.refcount += 1;
1391 }
1392 goto create_got;
1393
1394 case R_X86_64_8:
1395 case R_X86_64_16:
1396 case R_X86_64_32:
1397 case R_X86_64_32S:
1398 /* Let's help debug shared library creation. These relocs
1399 cannot be used in shared libs. Don't error out for
1400 sections we don't care about, such as debug sections or
1401 non-constant sections. */
1402 if (info->shared
1403 && (sec->flags & SEC_ALLOC) != 0
1404 && (sec->flags & SEC_READONLY) != 0)
1405 {
1406 if (h)
1407 name = h->root.root.string;
1408 else
1409 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1410 (*_bfd_error_handler)
1411 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1412 abfd, x86_64_elf_howto_table[r_type].name, name);
1413 bfd_set_error (bfd_error_bad_value);
1414 return FALSE;
1415 }
1416 /* Fall through. */
1417
1418 case R_X86_64_PC8:
1419 case R_X86_64_PC16:
1420 case R_X86_64_PC32:
1421 case R_X86_64_PC64:
1422 case R_X86_64_64:
1423 if (h != NULL && info->executable)
1424 {
1425 /* If this reloc is in a read-only section, we might
1426 need a copy reloc. We can't check reliably at this
1427 stage whether the section is read-only, as input
1428 sections have not yet been mapped to output sections.
1429 Tentatively set the flag for now, and correct in
1430 adjust_dynamic_symbol. */
1431 h->non_got_ref = 1;
1432
1433 /* We may need a .plt entry if the function this reloc
1434 refers to is in a shared lib. */
1435 h->plt.refcount += 1;
1436 if (r_type != R_X86_64_PC32 && r_type != R_X86_64_PC64)
1437 h->pointer_equality_needed = 1;
1438 }
1439
1440 /* If we are creating a shared library, and this is a reloc
1441 against a global symbol, or a non PC relative reloc
1442 against a local symbol, then we need to copy the reloc
1443 into the shared library. However, if we are linking with
1444 -Bsymbolic, we do not need to copy a reloc against a
1445 global symbol which is defined in an object we are
1446 including in the link (i.e., DEF_REGULAR is set). At
1447 this point we have not seen all the input files, so it is
1448 possible that DEF_REGULAR is not set now but will be set
1449 later (it is never cleared). In case of a weak definition,
1450 DEF_REGULAR may be cleared later by a strong definition in
1451 a shared library. We account for that possibility below by
1452 storing information in the relocs_copied field of the hash
1453 table entry. A similar situation occurs when creating
1454 shared libraries and symbol visibility changes render the
1455 symbol local.
1456
1457 If on the other hand, we are creating an executable, we
1458 may need to keep relocations for symbols satisfied by a
1459 dynamic library if we manage to avoid copy relocs for the
1460 symbol. */
1461 if ((info->shared
1462 && (sec->flags & SEC_ALLOC) != 0
1463 && (! IS_X86_64_PCREL_TYPE (r_type)
1464 || (h != NULL
1465 && (! SYMBOLIC_BIND (info, h)
1466 || h->root.type == bfd_link_hash_defweak
1467 || !h->def_regular))))
1468 || (ELIMINATE_COPY_RELOCS
1469 && !info->shared
1470 && (sec->flags & SEC_ALLOC) != 0
1471 && h != NULL
1472 && (h->root.type == bfd_link_hash_defweak
1473 || !h->def_regular)))
1474 {
1475 struct elf_dyn_relocs *p;
1476 struct elf_dyn_relocs **head;
1477
1478 /* We must copy these reloc types into the output file.
1479 Create a reloc section in dynobj and make room for
1480 this reloc. */
1481 if (sreloc == NULL)
1482 {
1483 if (htab->elf.dynobj == NULL)
1484 htab->elf.dynobj = abfd;
1485
1486 sreloc = _bfd_elf_make_dynamic_reloc_section
1487 (sec, htab->elf.dynobj, 3, abfd, /*rela?*/ TRUE);
1488
1489 if (sreloc == NULL)
1490 return FALSE;
1491 }
1492
1493 /* If this is a global symbol, we count the number of
1494 relocations we need for this symbol. */
1495 if (h != NULL)
1496 {
1497 head = &((struct elf64_x86_64_link_hash_entry *) h)->dyn_relocs;
1498 }
1499 else
1500 {
1501 /* Track dynamic relocs needed for local syms too.
1502 We really need local syms available to do this
1503 easily. Oh well. */
1504 asection *s;
1505 void **vpp;
1506 Elf_Internal_Sym *isym;
1507
1508 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1509 abfd, r_symndx);
1510 if (isym == NULL)
1511 return FALSE;
1512
1513 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
1514 if (s == NULL)
1515 s = sec;
1516
1517 /* Beware of type punned pointers vs strict aliasing
1518 rules. */
1519 vpp = &(elf_section_data (s)->local_dynrel);
1520 head = (struct elf_dyn_relocs **)vpp;
1521 }
1522
1523 p = *head;
1524 if (p == NULL || p->sec != sec)
1525 {
1526 bfd_size_type amt = sizeof *p;
1527
1528 p = ((struct elf_dyn_relocs *)
1529 bfd_alloc (htab->elf.dynobj, amt));
1530 if (p == NULL)
1531 return FALSE;
1532 p->next = *head;
1533 *head = p;
1534 p->sec = sec;
1535 p->count = 0;
1536 p->pc_count = 0;
1537 }
1538
1539 p->count += 1;
1540 if (IS_X86_64_PCREL_TYPE (r_type))
1541 p->pc_count += 1;
1542 }
1543 break;
1544
1545 /* This relocation describes the C++ object vtable hierarchy.
1546 Reconstruct it for later use during GC. */
1547 case R_X86_64_GNU_VTINHERIT:
1548 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1549 return FALSE;
1550 break;
1551
1552 /* This relocation describes which C++ vtable entries are actually
1553 used. Record for later use during GC. */
1554 case R_X86_64_GNU_VTENTRY:
1555 BFD_ASSERT (h != NULL);
1556 if (h != NULL
1557 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1558 return FALSE;
1559 break;
1560
1561 default:
1562 break;
1563 }
1564 }
1565
1566 return TRUE;
1567 }
1568
1569 /* Return the section that should be marked against GC for a given
1570 relocation. */
1571
1572 static asection *
1573 elf64_x86_64_gc_mark_hook (asection *sec,
1574 struct bfd_link_info *info,
1575 Elf_Internal_Rela *rel,
1576 struct elf_link_hash_entry *h,
1577 Elf_Internal_Sym *sym)
1578 {
1579 if (h != NULL)
1580 switch (ELF64_R_TYPE (rel->r_info))
1581 {
1582 case R_X86_64_GNU_VTINHERIT:
1583 case R_X86_64_GNU_VTENTRY:
1584 return NULL;
1585 }
1586
1587 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1588 }
1589
1590 /* Update the got entry reference counts for the section being removed. */
1591
1592 static bfd_boolean
1593 elf64_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
1594 asection *sec,
1595 const Elf_Internal_Rela *relocs)
1596 {
1597 Elf_Internal_Shdr *symtab_hdr;
1598 struct elf_link_hash_entry **sym_hashes;
1599 bfd_signed_vma *local_got_refcounts;
1600 const Elf_Internal_Rela *rel, *relend;
1601
1602 if (info->relocatable)
1603 return TRUE;
1604
1605 elf_section_data (sec)->local_dynrel = NULL;
1606
1607 symtab_hdr = &elf_symtab_hdr (abfd);
1608 sym_hashes = elf_sym_hashes (abfd);
1609 local_got_refcounts = elf_local_got_refcounts (abfd);
1610
1611 relend = relocs + sec->reloc_count;
1612 for (rel = relocs; rel < relend; rel++)
1613 {
1614 unsigned long r_symndx;
1615 unsigned int r_type;
1616 struct elf_link_hash_entry *h = NULL;
1617
1618 r_symndx = ELF64_R_SYM (rel->r_info);
1619 if (r_symndx >= symtab_hdr->sh_info)
1620 {
1621 struct elf64_x86_64_link_hash_entry *eh;
1622 struct elf_dyn_relocs **pp;
1623 struct elf_dyn_relocs *p;
1624
1625 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1626 while (h->root.type == bfd_link_hash_indirect
1627 || h->root.type == bfd_link_hash_warning)
1628 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1629 eh = (struct elf64_x86_64_link_hash_entry *) h;
1630
1631 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1632 if (p->sec == sec)
1633 {
1634 /* Everything must go for SEC. */
1635 *pp = p->next;
1636 break;
1637 }
1638 }
1639
1640 r_type = ELF64_R_TYPE (rel->r_info);
1641 if (! elf64_x86_64_tls_transition (info, abfd, sec, NULL,
1642 symtab_hdr, sym_hashes,
1643 &r_type, GOT_UNKNOWN,
1644 rel, relend, h, r_symndx))
1645 return FALSE;
1646
1647 switch (r_type)
1648 {
1649 case R_X86_64_TLSLD:
1650 if (elf64_x86_64_hash_table (info)->tls_ld_got.refcount > 0)
1651 elf64_x86_64_hash_table (info)->tls_ld_got.refcount -= 1;
1652 break;
1653
1654 case R_X86_64_TLSGD:
1655 case R_X86_64_GOTPC32_TLSDESC:
1656 case R_X86_64_TLSDESC_CALL:
1657 case R_X86_64_GOTTPOFF:
1658 case R_X86_64_GOT32:
1659 case R_X86_64_GOTPCREL:
1660 case R_X86_64_GOT64:
1661 case R_X86_64_GOTPCREL64:
1662 case R_X86_64_GOTPLT64:
1663 if (h != NULL)
1664 {
1665 if (r_type == R_X86_64_GOTPLT64 && h->plt.refcount > 0)
1666 h->plt.refcount -= 1;
1667 if (h->got.refcount > 0)
1668 h->got.refcount -= 1;
1669 }
1670 else if (local_got_refcounts != NULL)
1671 {
1672 if (local_got_refcounts[r_symndx] > 0)
1673 local_got_refcounts[r_symndx] -= 1;
1674 }
1675 break;
1676
1677 case R_X86_64_8:
1678 case R_X86_64_16:
1679 case R_X86_64_32:
1680 case R_X86_64_64:
1681 case R_X86_64_32S:
1682 case R_X86_64_PC8:
1683 case R_X86_64_PC16:
1684 case R_X86_64_PC32:
1685 case R_X86_64_PC64:
1686 if (info->shared)
1687 break;
1688 /* Fall thru */
1689
1690 case R_X86_64_PLT32:
1691 case R_X86_64_PLTOFF64:
1692 if (h != NULL)
1693 {
1694 if (h->plt.refcount > 0)
1695 h->plt.refcount -= 1;
1696 }
1697 break;
1698
1699 default:
1700 break;
1701 }
1702 }
1703
1704 return TRUE;
1705 }
1706
1707 /* Adjust a symbol defined by a dynamic object and referenced by a
1708 regular object. The current definition is in some section of the
1709 dynamic object, but we're not including those sections. We have to
1710 change the definition to something the rest of the link can
1711 understand. */
1712
1713 static bfd_boolean
1714 elf64_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
1715 struct elf_link_hash_entry *h)
1716 {
1717 struct elf64_x86_64_link_hash_table *htab;
1718 asection *s;
1719
1720 /* STT_GNU_IFUNC symbol must go through PLT. */
1721 if (h->type == STT_GNU_IFUNC)
1722 {
1723 if (h->plt.refcount <= 0)
1724 {
1725 h->plt.offset = (bfd_vma) -1;
1726 h->needs_plt = 0;
1727 }
1728 return TRUE;
1729 }
1730
1731 /* If this is a function, put it in the procedure linkage table. We
1732 will fill in the contents of the procedure linkage table later,
1733 when we know the address of the .got section. */
1734 if (h->type == STT_FUNC
1735 || h->needs_plt)
1736 {
1737 if (h->plt.refcount <= 0
1738 || SYMBOL_CALLS_LOCAL (info, h)
1739 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1740 && h->root.type == bfd_link_hash_undefweak))
1741 {
1742 /* This case can occur if we saw a PLT32 reloc in an input
1743 file, but the symbol was never referred to by a dynamic
1744 object, or if all references were garbage collected. In
1745 such a case, we don't actually need to build a procedure
1746 linkage table, and we can just do a PC32 reloc instead. */
1747 h->plt.offset = (bfd_vma) -1;
1748 h->needs_plt = 0;
1749 }
1750
1751 return TRUE;
1752 }
1753 else
1754 /* It's possible that we incorrectly decided a .plt reloc was
1755 needed for an R_X86_64_PC32 reloc to a non-function sym in
1756 check_relocs. We can't decide accurately between function and
1757 non-function syms in check-relocs; Objects loaded later in
1758 the link may change h->type. So fix it now. */
1759 h->plt.offset = (bfd_vma) -1;
1760
1761 /* If this is a weak symbol, and there is a real definition, the
1762 processor independent code will have arranged for us to see the
1763 real definition first, and we can just use the same value. */
1764 if (h->u.weakdef != NULL)
1765 {
1766 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1767 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1768 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1769 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1770 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
1771 h->non_got_ref = h->u.weakdef->non_got_ref;
1772 return TRUE;
1773 }
1774
1775 /* This is a reference to a symbol defined by a dynamic object which
1776 is not a function. */
1777
1778 /* If we are creating a shared library, we must presume that the
1779 only references to the symbol are via the global offset table.
1780 For such cases we need not do anything here; the relocations will
1781 be handled correctly by relocate_section. */
1782 if (info->shared)
1783 return TRUE;
1784
1785 /* If there are no references to this symbol that do not use the
1786 GOT, we don't need to generate a copy reloc. */
1787 if (!h->non_got_ref)
1788 return TRUE;
1789
1790 /* If -z nocopyreloc was given, we won't generate them either. */
1791 if (info->nocopyreloc)
1792 {
1793 h->non_got_ref = 0;
1794 return TRUE;
1795 }
1796
1797 if (ELIMINATE_COPY_RELOCS)
1798 {
1799 struct elf64_x86_64_link_hash_entry * eh;
1800 struct elf_dyn_relocs *p;
1801
1802 eh = (struct elf64_x86_64_link_hash_entry *) h;
1803 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1804 {
1805 s = p->sec->output_section;
1806 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1807 break;
1808 }
1809
1810 /* If we didn't find any dynamic relocs in read-only sections, then
1811 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1812 if (p == NULL)
1813 {
1814 h->non_got_ref = 0;
1815 return TRUE;
1816 }
1817 }
1818
1819 if (h->size == 0)
1820 {
1821 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
1822 h->root.root.string);
1823 return TRUE;
1824 }
1825
1826 /* We must allocate the symbol in our .dynbss section, which will
1827 become part of the .bss section of the executable. There will be
1828 an entry for this symbol in the .dynsym section. The dynamic
1829 object will contain position independent code, so all references
1830 from the dynamic object to this symbol will go through the global
1831 offset table. The dynamic linker will use the .dynsym entry to
1832 determine the address it must put in the global offset table, so
1833 both the dynamic object and the regular object will refer to the
1834 same memory location for the variable. */
1835
1836 htab = elf64_x86_64_hash_table (info);
1837
1838 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
1839 to copy the initial value out of the dynamic object and into the
1840 runtime process image. */
1841 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1842 {
1843 htab->srelbss->size += sizeof (Elf64_External_Rela);
1844 h->needs_copy = 1;
1845 }
1846
1847 s = htab->sdynbss;
1848
1849 return _bfd_elf_adjust_dynamic_copy (h, s);
1850 }
1851
1852 /* Allocate space in .plt, .got and associated reloc sections for
1853 dynamic relocs. */
1854
1855 static bfd_boolean
1856 elf64_x86_64_allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
1857 {
1858 struct bfd_link_info *info;
1859 struct elf64_x86_64_link_hash_table *htab;
1860 struct elf64_x86_64_link_hash_entry *eh;
1861 struct elf_dyn_relocs *p;
1862
1863 if (h->root.type == bfd_link_hash_indirect)
1864 return TRUE;
1865
1866 if (h->root.type == bfd_link_hash_warning)
1867 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1868 eh = (struct elf64_x86_64_link_hash_entry *) h;
1869
1870 info = (struct bfd_link_info *) inf;
1871 htab = elf64_x86_64_hash_table (info);
1872
1873 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
1874 here if it is defined and referenced in a non-shared object. */
1875 if (h->type == STT_GNU_IFUNC
1876 && h->def_regular)
1877 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
1878 &eh->dyn_relocs,
1879 PLT_ENTRY_SIZE,
1880 GOT_ENTRY_SIZE);
1881 else if (htab->elf.dynamic_sections_created
1882 && h->plt.refcount > 0)
1883 {
1884 /* Make sure this symbol is output as a dynamic symbol.
1885 Undefined weak syms won't yet be marked as dynamic. */
1886 if (h->dynindx == -1
1887 && !h->forced_local)
1888 {
1889 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1890 return FALSE;
1891 }
1892
1893 if (info->shared
1894 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
1895 {
1896 asection *s = htab->elf.splt;
1897
1898 /* If this is the first .plt entry, make room for the special
1899 first entry. */
1900 if (s->size == 0)
1901 s->size += PLT_ENTRY_SIZE;
1902
1903 h->plt.offset = s->size;
1904
1905 /* If this symbol is not defined in a regular file, and we are
1906 not generating a shared library, then set the symbol to this
1907 location in the .plt. This is required to make function
1908 pointers compare as equal between the normal executable and
1909 the shared library. */
1910 if (! info->shared
1911 && !h->def_regular)
1912 {
1913 h->root.u.def.section = s;
1914 h->root.u.def.value = h->plt.offset;
1915 }
1916
1917 /* Make room for this entry. */
1918 s->size += PLT_ENTRY_SIZE;
1919
1920 /* We also need to make an entry in the .got.plt section, which
1921 will be placed in the .got section by the linker script. */
1922 htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
1923
1924 /* We also need to make an entry in the .rela.plt section. */
1925 htab->elf.srelplt->size += sizeof (Elf64_External_Rela);
1926 htab->elf.srelplt->reloc_count++;
1927 }
1928 else
1929 {
1930 h->plt.offset = (bfd_vma) -1;
1931 h->needs_plt = 0;
1932 }
1933 }
1934 else
1935 {
1936 h->plt.offset = (bfd_vma) -1;
1937 h->needs_plt = 0;
1938 }
1939
1940 eh->tlsdesc_got = (bfd_vma) -1;
1941
1942 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
1943 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
1944 if (h->got.refcount > 0
1945 && !info->shared
1946 && h->dynindx == -1
1947 && elf64_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
1948 {
1949 h->got.offset = (bfd_vma) -1;
1950 }
1951 else if (h->got.refcount > 0)
1952 {
1953 asection *s;
1954 bfd_boolean dyn;
1955 int tls_type = elf64_x86_64_hash_entry (h)->tls_type;
1956
1957 /* Make sure this symbol is output as a dynamic symbol.
1958 Undefined weak syms won't yet be marked as dynamic. */
1959 if (h->dynindx == -1
1960 && !h->forced_local)
1961 {
1962 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1963 return FALSE;
1964 }
1965
1966 if (GOT_TLS_GDESC_P (tls_type))
1967 {
1968 eh->tlsdesc_got = htab->elf.sgotplt->size
1969 - elf64_x86_64_compute_jump_table_size (htab);
1970 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
1971 h->got.offset = (bfd_vma) -2;
1972 }
1973 if (! GOT_TLS_GDESC_P (tls_type)
1974 || GOT_TLS_GD_P (tls_type))
1975 {
1976 s = htab->elf.sgot;
1977 h->got.offset = s->size;
1978 s->size += GOT_ENTRY_SIZE;
1979 if (GOT_TLS_GD_P (tls_type))
1980 s->size += GOT_ENTRY_SIZE;
1981 }
1982 dyn = htab->elf.dynamic_sections_created;
1983 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
1984 and two if global.
1985 R_X86_64_GOTTPOFF needs one dynamic relocation. */
1986 if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
1987 || tls_type == GOT_TLS_IE)
1988 htab->elf.srelgot->size += sizeof (Elf64_External_Rela);
1989 else if (GOT_TLS_GD_P (tls_type))
1990 htab->elf.srelgot->size += 2 * sizeof (Elf64_External_Rela);
1991 else if (! GOT_TLS_GDESC_P (tls_type)
1992 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
1993 || h->root.type != bfd_link_hash_undefweak)
1994 && (info->shared
1995 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
1996 htab->elf.srelgot->size += sizeof (Elf64_External_Rela);
1997 if (GOT_TLS_GDESC_P (tls_type))
1998 {
1999 htab->elf.srelplt->size += sizeof (Elf64_External_Rela);
2000 htab->tlsdesc_plt = (bfd_vma) -1;
2001 }
2002 }
2003 else
2004 h->got.offset = (bfd_vma) -1;
2005
2006 if (eh->dyn_relocs == NULL)
2007 return TRUE;
2008
2009 /* In the shared -Bsymbolic case, discard space allocated for
2010 dynamic pc-relative relocs against symbols which turn out to be
2011 defined in regular objects. For the normal shared case, discard
2012 space for pc-relative relocs that have become local due to symbol
2013 visibility changes. */
2014
2015 if (info->shared)
2016 {
2017 /* Relocs that use pc_count are those that appear on a call
2018 insn, or certain REL relocs that can generated via assembly.
2019 We want calls to protected symbols to resolve directly to the
2020 function rather than going via the plt. If people want
2021 function pointer comparisons to work as expected then they
2022 should avoid writing weird assembly. */
2023 if (SYMBOL_CALLS_LOCAL (info, h))
2024 {
2025 struct elf_dyn_relocs **pp;
2026
2027 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2028 {
2029 p->count -= p->pc_count;
2030 p->pc_count = 0;
2031 if (p->count == 0)
2032 *pp = p->next;
2033 else
2034 pp = &p->next;
2035 }
2036 }
2037
2038 /* Also discard relocs on undefined weak syms with non-default
2039 visibility. */
2040 if (eh->dyn_relocs != NULL
2041 && h->root.type == bfd_link_hash_undefweak)
2042 {
2043 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2044 eh->dyn_relocs = NULL;
2045
2046 /* Make sure undefined weak symbols are output as a dynamic
2047 symbol in PIEs. */
2048 else if (h->dynindx == -1
2049 && ! h->forced_local
2050 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2051 return FALSE;
2052 }
2053
2054 }
2055 else if (ELIMINATE_COPY_RELOCS)
2056 {
2057 /* For the non-shared case, discard space for relocs against
2058 symbols which turn out to need copy relocs or are not
2059 dynamic. */
2060
2061 if (!h->non_got_ref
2062 && ((h->def_dynamic
2063 && !h->def_regular)
2064 || (htab->elf.dynamic_sections_created
2065 && (h->root.type == bfd_link_hash_undefweak
2066 || h->root.type == bfd_link_hash_undefined))))
2067 {
2068 /* Make sure this symbol is output as a dynamic symbol.
2069 Undefined weak syms won't yet be marked as dynamic. */
2070 if (h->dynindx == -1
2071 && ! h->forced_local
2072 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2073 return FALSE;
2074
2075 /* If that succeeded, we know we'll be keeping all the
2076 relocs. */
2077 if (h->dynindx != -1)
2078 goto keep;
2079 }
2080
2081 eh->dyn_relocs = NULL;
2082
2083 keep: ;
2084 }
2085
2086 /* Finally, allocate space. */
2087 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2088 {
2089 asection * sreloc;
2090
2091 sreloc = elf_section_data (p->sec)->sreloc;
2092
2093 BFD_ASSERT (sreloc != NULL);
2094
2095 sreloc->size += p->count * sizeof (Elf64_External_Rela);
2096 }
2097
2098 return TRUE;
2099 }
2100
2101 /* Allocate space in .plt, .got and associated reloc sections for
2102 local dynamic relocs. */
2103
2104 static bfd_boolean
2105 elf64_x86_64_allocate_local_dynrelocs (void **slot, void *inf)
2106 {
2107 struct elf_link_hash_entry *h
2108 = (struct elf_link_hash_entry *) *slot;
2109
2110 if (h->type != STT_GNU_IFUNC
2111 || !h->def_regular
2112 || !h->ref_regular
2113 || !h->forced_local
2114 || h->root.type != bfd_link_hash_defined)
2115 abort ();
2116
2117 return elf64_x86_64_allocate_dynrelocs (h, inf);
2118 }
2119
2120 /* Find any dynamic relocs that apply to read-only sections. */
2121
2122 static bfd_boolean
2123 elf64_x86_64_readonly_dynrelocs (struct elf_link_hash_entry *h, void * inf)
2124 {
2125 struct elf64_x86_64_link_hash_entry *eh;
2126 struct elf_dyn_relocs *p;
2127
2128 if (h->root.type == bfd_link_hash_warning)
2129 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2130
2131 eh = (struct elf64_x86_64_link_hash_entry *) h;
2132 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2133 {
2134 asection *s = p->sec->output_section;
2135
2136 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2137 {
2138 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2139
2140 info->flags |= DF_TEXTREL;
2141
2142 /* Not an error, just cut short the traversal. */
2143 return FALSE;
2144 }
2145 }
2146 return TRUE;
2147 }
2148
2149 /* Set the sizes of the dynamic sections. */
2150
2151 static bfd_boolean
2152 elf64_x86_64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2153 struct bfd_link_info *info)
2154 {
2155 struct elf64_x86_64_link_hash_table *htab;
2156 bfd *dynobj;
2157 asection *s;
2158 bfd_boolean relocs;
2159 bfd *ibfd;
2160
2161 htab = elf64_x86_64_hash_table (info);
2162 dynobj = htab->elf.dynobj;
2163 if (dynobj == NULL)
2164 abort ();
2165
2166 if (htab->elf.dynamic_sections_created)
2167 {
2168 /* Set the contents of the .interp section to the interpreter. */
2169 if (info->executable)
2170 {
2171 s = bfd_get_section_by_name (dynobj, ".interp");
2172 if (s == NULL)
2173 abort ();
2174 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
2175 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2176 }
2177 }
2178
2179 /* Set up .got offsets for local syms, and space for local dynamic
2180 relocs. */
2181 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2182 {
2183 bfd_signed_vma *local_got;
2184 bfd_signed_vma *end_local_got;
2185 char *local_tls_type;
2186 bfd_vma *local_tlsdesc_gotent;
2187 bfd_size_type locsymcount;
2188 Elf_Internal_Shdr *symtab_hdr;
2189 asection *srel;
2190
2191 if (! is_x86_64_elf (ibfd))
2192 continue;
2193
2194 for (s = ibfd->sections; s != NULL; s = s->next)
2195 {
2196 struct elf_dyn_relocs *p;
2197
2198 for (p = (struct elf_dyn_relocs *)
2199 (elf_section_data (s)->local_dynrel);
2200 p != NULL;
2201 p = p->next)
2202 {
2203 if (!bfd_is_abs_section (p->sec)
2204 && bfd_is_abs_section (p->sec->output_section))
2205 {
2206 /* Input section has been discarded, either because
2207 it is a copy of a linkonce section or due to
2208 linker script /DISCARD/, so we'll be discarding
2209 the relocs too. */
2210 }
2211 else if (p->count != 0)
2212 {
2213 srel = elf_section_data (p->sec)->sreloc;
2214 srel->size += p->count * sizeof (Elf64_External_Rela);
2215 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
2216 info->flags |= DF_TEXTREL;
2217 }
2218 }
2219 }
2220
2221 local_got = elf_local_got_refcounts (ibfd);
2222 if (!local_got)
2223 continue;
2224
2225 symtab_hdr = &elf_symtab_hdr (ibfd);
2226 locsymcount = symtab_hdr->sh_info;
2227 end_local_got = local_got + locsymcount;
2228 local_tls_type = elf64_x86_64_local_got_tls_type (ibfd);
2229 local_tlsdesc_gotent = elf64_x86_64_local_tlsdesc_gotent (ibfd);
2230 s = htab->elf.sgot;
2231 srel = htab->elf.srelgot;
2232 for (; local_got < end_local_got;
2233 ++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
2234 {
2235 *local_tlsdesc_gotent = (bfd_vma) -1;
2236 if (*local_got > 0)
2237 {
2238 if (GOT_TLS_GDESC_P (*local_tls_type))
2239 {
2240 *local_tlsdesc_gotent = htab->elf.sgotplt->size
2241 - elf64_x86_64_compute_jump_table_size (htab);
2242 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2243 *local_got = (bfd_vma) -2;
2244 }
2245 if (! GOT_TLS_GDESC_P (*local_tls_type)
2246 || GOT_TLS_GD_P (*local_tls_type))
2247 {
2248 *local_got = s->size;
2249 s->size += GOT_ENTRY_SIZE;
2250 if (GOT_TLS_GD_P (*local_tls_type))
2251 s->size += GOT_ENTRY_SIZE;
2252 }
2253 if (info->shared
2254 || GOT_TLS_GD_ANY_P (*local_tls_type)
2255 || *local_tls_type == GOT_TLS_IE)
2256 {
2257 if (GOT_TLS_GDESC_P (*local_tls_type))
2258 {
2259 htab->elf.srelplt->size
2260 += sizeof (Elf64_External_Rela);
2261 htab->tlsdesc_plt = (bfd_vma) -1;
2262 }
2263 if (! GOT_TLS_GDESC_P (*local_tls_type)
2264 || GOT_TLS_GD_P (*local_tls_type))
2265 srel->size += sizeof (Elf64_External_Rela);
2266 }
2267 }
2268 else
2269 *local_got = (bfd_vma) -1;
2270 }
2271 }
2272
2273 if (htab->tls_ld_got.refcount > 0)
2274 {
2275 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
2276 relocs. */
2277 htab->tls_ld_got.offset = htab->elf.sgot->size;
2278 htab->elf.sgot->size += 2 * GOT_ENTRY_SIZE;
2279 htab->elf.srelgot->size += sizeof (Elf64_External_Rela);
2280 }
2281 else
2282 htab->tls_ld_got.offset = -1;
2283
2284 /* Allocate global sym .plt and .got entries, and space for global
2285 sym dynamic relocs. */
2286 elf_link_hash_traverse (&htab->elf, elf64_x86_64_allocate_dynrelocs,
2287 info);
2288
2289 /* Allocate .plt and .got entries, and space for local symbols. */
2290 htab_traverse (htab->loc_hash_table,
2291 elf64_x86_64_allocate_local_dynrelocs,
2292 info);
2293
2294 /* For every jump slot reserved in the sgotplt, reloc_count is
2295 incremented. However, when we reserve space for TLS descriptors,
2296 it's not incremented, so in order to compute the space reserved
2297 for them, it suffices to multiply the reloc count by the jump
2298 slot size. */
2299 if (htab->elf.srelplt)
2300 htab->sgotplt_jump_table_size
2301 = elf64_x86_64_compute_jump_table_size (htab);
2302
2303 if (htab->tlsdesc_plt)
2304 {
2305 /* If we're not using lazy TLS relocations, don't generate the
2306 PLT and GOT entries they require. */
2307 if ((info->flags & DF_BIND_NOW))
2308 htab->tlsdesc_plt = 0;
2309 else
2310 {
2311 htab->tlsdesc_got = htab->elf.sgot->size;
2312 htab->elf.sgot->size += GOT_ENTRY_SIZE;
2313 /* Reserve room for the initial entry.
2314 FIXME: we could probably do away with it in this case. */
2315 if (htab->elf.splt->size == 0)
2316 htab->elf.splt->size += PLT_ENTRY_SIZE;
2317 htab->tlsdesc_plt = htab->elf.splt->size;
2318 htab->elf.splt->size += PLT_ENTRY_SIZE;
2319 }
2320 }
2321
2322 /* We now have determined the sizes of the various dynamic sections.
2323 Allocate memory for them. */
2324 relocs = FALSE;
2325 for (s = dynobj->sections; s != NULL; s = s->next)
2326 {
2327 if ((s->flags & SEC_LINKER_CREATED) == 0)
2328 continue;
2329
2330 if (s == htab->elf.splt
2331 || s == htab->elf.sgot
2332 || s == htab->elf.sgotplt
2333 || s == htab->elf.iplt
2334 || s == htab->elf.igotplt
2335 || s == htab->sdynbss)
2336 {
2337 /* Strip this section if we don't need it; see the
2338 comment below. */
2339 }
2340 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
2341 {
2342 if (s->size != 0 && s != htab->elf.srelplt)
2343 relocs = TRUE;
2344
2345 /* We use the reloc_count field as a counter if we need
2346 to copy relocs into the output file. */
2347 if (s != htab->elf.srelplt)
2348 s->reloc_count = 0;
2349 }
2350 else
2351 {
2352 /* It's not one of our sections, so don't allocate space. */
2353 continue;
2354 }
2355
2356 if (s->size == 0)
2357 {
2358 /* If we don't need this section, strip it from the
2359 output file. This is mostly to handle .rela.bss and
2360 .rela.plt. We must create both sections in
2361 create_dynamic_sections, because they must be created
2362 before the linker maps input sections to output
2363 sections. The linker does that before
2364 adjust_dynamic_symbol is called, and it is that
2365 function which decides whether anything needs to go
2366 into these sections. */
2367
2368 s->flags |= SEC_EXCLUDE;
2369 continue;
2370 }
2371
2372 if ((s->flags & SEC_HAS_CONTENTS) == 0)
2373 continue;
2374
2375 /* Allocate memory for the section contents. We use bfd_zalloc
2376 here in case unused entries are not reclaimed before the
2377 section's contents are written out. This should not happen,
2378 but this way if it does, we get a R_X86_64_NONE reloc instead
2379 of garbage. */
2380 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
2381 if (s->contents == NULL)
2382 return FALSE;
2383 }
2384
2385 if (htab->elf.dynamic_sections_created)
2386 {
2387 /* Add some entries to the .dynamic section. We fill in the
2388 values later, in elf64_x86_64_finish_dynamic_sections, but we
2389 must add the entries now so that we get the correct size for
2390 the .dynamic section. The DT_DEBUG entry is filled in by the
2391 dynamic linker and used by the debugger. */
2392 #define add_dynamic_entry(TAG, VAL) \
2393 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2394
2395 if (info->executable)
2396 {
2397 if (!add_dynamic_entry (DT_DEBUG, 0))
2398 return FALSE;
2399 }
2400
2401 if (htab->elf.splt->size != 0)
2402 {
2403 if (!add_dynamic_entry (DT_PLTGOT, 0)
2404 || !add_dynamic_entry (DT_PLTRELSZ, 0)
2405 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2406 || !add_dynamic_entry (DT_JMPREL, 0))
2407 return FALSE;
2408
2409 if (htab->tlsdesc_plt
2410 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
2411 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
2412 return FALSE;
2413 }
2414
2415 if (relocs)
2416 {
2417 if (!add_dynamic_entry (DT_RELA, 0)
2418 || !add_dynamic_entry (DT_RELASZ, 0)
2419 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
2420 return FALSE;
2421
2422 /* If any dynamic relocs apply to a read-only section,
2423 then we need a DT_TEXTREL entry. */
2424 if ((info->flags & DF_TEXTREL) == 0)
2425 elf_link_hash_traverse (&htab->elf,
2426 elf64_x86_64_readonly_dynrelocs,
2427 info);
2428
2429 if ((info->flags & DF_TEXTREL) != 0)
2430 {
2431 if (!add_dynamic_entry (DT_TEXTREL, 0))
2432 return FALSE;
2433 }
2434 }
2435 }
2436 #undef add_dynamic_entry
2437
2438 return TRUE;
2439 }
2440
2441 static bfd_boolean
2442 elf64_x86_64_always_size_sections (bfd *output_bfd,
2443 struct bfd_link_info *info)
2444 {
2445 asection *tls_sec = elf_hash_table (info)->tls_sec;
2446
2447 if (tls_sec)
2448 {
2449 struct elf_link_hash_entry *tlsbase;
2450
2451 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
2452 "_TLS_MODULE_BASE_",
2453 FALSE, FALSE, FALSE);
2454
2455 if (tlsbase && tlsbase->type == STT_TLS)
2456 {
2457 struct bfd_link_hash_entry *bh = NULL;
2458 const struct elf_backend_data *bed
2459 = get_elf_backend_data (output_bfd);
2460
2461 if (!(_bfd_generic_link_add_one_symbol
2462 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
2463 tls_sec, 0, NULL, FALSE,
2464 bed->collect, &bh)))
2465 return FALSE;
2466
2467 elf64_x86_64_hash_table (info)->tls_module_base = bh;
2468
2469 tlsbase = (struct elf_link_hash_entry *)bh;
2470 tlsbase->def_regular = 1;
2471 tlsbase->other = STV_HIDDEN;
2472 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
2473 }
2474 }
2475
2476 return TRUE;
2477 }
2478
2479 /* _TLS_MODULE_BASE_ needs to be treated especially when linking
2480 executables. Rather than setting it to the beginning of the TLS
2481 section, we have to set it to the end. This function may be called
2482 multiple times, it is idempotent. */
2483
2484 static void
2485 elf64_x86_64_set_tls_module_base (struct bfd_link_info *info)
2486 {
2487 struct bfd_link_hash_entry *base;
2488
2489 if (!info->executable)
2490 return;
2491
2492 base = elf64_x86_64_hash_table (info)->tls_module_base;
2493
2494 if (!base)
2495 return;
2496
2497 base->u.def.value = elf_hash_table (info)->tls_size;
2498 }
2499
2500 /* Return the base VMA address which should be subtracted from real addresses
2501 when resolving @dtpoff relocation.
2502 This is PT_TLS segment p_vaddr. */
2503
2504 static bfd_vma
2505 elf64_x86_64_dtpoff_base (struct bfd_link_info *info)
2506 {
2507 /* If tls_sec is NULL, we should have signalled an error already. */
2508 if (elf_hash_table (info)->tls_sec == NULL)
2509 return 0;
2510 return elf_hash_table (info)->tls_sec->vma;
2511 }
2512
2513 /* Return the relocation value for @tpoff relocation
2514 if STT_TLS virtual address is ADDRESS. */
2515
2516 static bfd_vma
2517 elf64_x86_64_tpoff (struct bfd_link_info *info, bfd_vma address)
2518 {
2519 struct elf_link_hash_table *htab = elf_hash_table (info);
2520
2521 /* If tls_segment is NULL, we should have signalled an error already. */
2522 if (htab->tls_sec == NULL)
2523 return 0;
2524 return address - htab->tls_size - htab->tls_sec->vma;
2525 }
2526
2527 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
2528 branch? */
2529
2530 static bfd_boolean
2531 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
2532 {
2533 /* Opcode Instruction
2534 0xe8 call
2535 0xe9 jump
2536 0x0f 0x8x conditional jump */
2537 return ((offset > 0
2538 && (contents [offset - 1] == 0xe8
2539 || contents [offset - 1] == 0xe9))
2540 || (offset > 1
2541 && contents [offset - 2] == 0x0f
2542 && (contents [offset - 1] & 0xf0) == 0x80));
2543 }
2544
2545 /* Relocate an x86_64 ELF section. */
2546
2547 static bfd_boolean
2548 elf64_x86_64_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
2549 bfd *input_bfd, asection *input_section,
2550 bfd_byte *contents, Elf_Internal_Rela *relocs,
2551 Elf_Internal_Sym *local_syms,
2552 asection **local_sections)
2553 {
2554 struct elf64_x86_64_link_hash_table *htab;
2555 Elf_Internal_Shdr *symtab_hdr;
2556 struct elf_link_hash_entry **sym_hashes;
2557 bfd_vma *local_got_offsets;
2558 bfd_vma *local_tlsdesc_gotents;
2559 Elf_Internal_Rela *rel;
2560 Elf_Internal_Rela *relend;
2561
2562 BFD_ASSERT (is_x86_64_elf (input_bfd));
2563
2564 htab = elf64_x86_64_hash_table (info);
2565 symtab_hdr = &elf_symtab_hdr (input_bfd);
2566 sym_hashes = elf_sym_hashes (input_bfd);
2567 local_got_offsets = elf_local_got_offsets (input_bfd);
2568 local_tlsdesc_gotents = elf64_x86_64_local_tlsdesc_gotent (input_bfd);
2569
2570 elf64_x86_64_set_tls_module_base (info);
2571
2572 rel = relocs;
2573 relend = relocs + input_section->reloc_count;
2574 for (; rel < relend; rel++)
2575 {
2576 unsigned int r_type;
2577 reloc_howto_type *howto;
2578 unsigned long r_symndx;
2579 struct elf_link_hash_entry *h;
2580 Elf_Internal_Sym *sym;
2581 asection *sec;
2582 bfd_vma off, offplt;
2583 bfd_vma relocation;
2584 bfd_boolean unresolved_reloc;
2585 bfd_reloc_status_type r;
2586 int tls_type;
2587 asection *base_got;
2588
2589 r_type = ELF64_R_TYPE (rel->r_info);
2590 if (r_type == (int) R_X86_64_GNU_VTINHERIT
2591 || r_type == (int) R_X86_64_GNU_VTENTRY)
2592 continue;
2593
2594 if (r_type >= R_X86_64_max)
2595 {
2596 bfd_set_error (bfd_error_bad_value);
2597 return FALSE;
2598 }
2599
2600 howto = x86_64_elf_howto_table + r_type;
2601 r_symndx = ELF64_R_SYM (rel->r_info);
2602 h = NULL;
2603 sym = NULL;
2604 sec = NULL;
2605 unresolved_reloc = FALSE;
2606 if (r_symndx < symtab_hdr->sh_info)
2607 {
2608 sym = local_syms + r_symndx;
2609 sec = local_sections[r_symndx];
2610
2611 relocation = _bfd_elf_rela_local_sym (output_bfd, sym,
2612 &sec, rel);
2613
2614 /* Relocate against local STT_GNU_IFUNC symbol. */
2615 if (ELF64_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
2616 {
2617 h = elf64_x86_64_get_local_sym_hash (htab, input_bfd,
2618 rel, FALSE);
2619 if (h == NULL)
2620 abort ();
2621
2622 /* Set STT_GNU_IFUNC symbol value. */
2623 h->root.u.def.value = sym->st_value;
2624 h->root.u.def.section = sec;
2625 }
2626 }
2627 else
2628 {
2629 bfd_boolean warned;
2630
2631 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2632 r_symndx, symtab_hdr, sym_hashes,
2633 h, sec, relocation,
2634 unresolved_reloc, warned);
2635 }
2636
2637 if (sec != NULL && elf_discarded_section (sec))
2638 {
2639 /* For relocs against symbols from removed linkonce sections,
2640 or sections discarded by a linker script, we just want the
2641 section contents zeroed. Avoid any special processing. */
2642 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
2643 rel->r_info = 0;
2644 rel->r_addend = 0;
2645 continue;
2646 }
2647
2648 if (info->relocatable)
2649 continue;
2650
2651 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
2652 it here if it is defined in a non-shared object. */
2653 if (h != NULL
2654 && h->type == STT_GNU_IFUNC
2655 && h->def_regular)
2656 {
2657 asection *plt;
2658 bfd_vma plt_index;
2659 const char *name;
2660
2661 if ((input_section->flags & SEC_ALLOC) == 0
2662 || h->plt.offset == (bfd_vma) -1)
2663 abort ();
2664
2665 /* STT_GNU_IFUNC symbol must go through PLT. */
2666 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
2667 relocation = (plt->output_section->vma
2668 + plt->output_offset + h->plt.offset);
2669
2670 switch (r_type)
2671 {
2672 default:
2673 if (h->root.root.string)
2674 name = h->root.root.string;
2675 else
2676 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
2677 NULL);
2678 (*_bfd_error_handler)
2679 (_("%B: relocation %s against STT_GNU_IFUNC "
2680 "symbol `%s' isn't handled by %s"), input_bfd,
2681 x86_64_elf_howto_table[r_type].name,
2682 name, __FUNCTION__);
2683 bfd_set_error (bfd_error_bad_value);
2684 return FALSE;
2685
2686 case R_X86_64_32S:
2687 if (info->shared)
2688 abort ();
2689 goto do_relocation;
2690
2691 case R_X86_64_64:
2692 if (rel->r_addend != 0)
2693 {
2694 if (h->root.root.string)
2695 name = h->root.root.string;
2696 else
2697 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
2698 sym, NULL);
2699 (*_bfd_error_handler)
2700 (_("%B: relocation %s against STT_GNU_IFUNC "
2701 "symbol `%s' has non-zero addend: %d"),
2702 input_bfd, x86_64_elf_howto_table[r_type].name,
2703 name, rel->r_addend);
2704 bfd_set_error (bfd_error_bad_value);
2705 return FALSE;
2706 }
2707
2708 /* Generate dynamic relcoation only when there is a
2709 non-GOF reference in a shared object. */
2710 if (info->shared && h->non_got_ref)
2711 {
2712 Elf_Internal_Rela outrel;
2713 bfd_byte *loc;
2714 asection *sreloc;
2715
2716 /* Need a dynamic relocation to get the real function
2717 address. */
2718 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
2719 info,
2720 input_section,
2721 rel->r_offset);
2722 if (outrel.r_offset == (bfd_vma) -1
2723 || outrel.r_offset == (bfd_vma) -2)
2724 abort ();
2725
2726 outrel.r_offset += (input_section->output_section->vma
2727 + input_section->output_offset);
2728
2729 if (h->dynindx == -1
2730 || h->forced_local
2731 || info->executable)
2732 {
2733 /* This symbol is resolved locally. */
2734 outrel.r_info = ELF64_R_INFO (0, R_X86_64_IRELATIVE);
2735 outrel.r_addend = (h->root.u.def.value
2736 + h->root.u.def.section->output_section->vma
2737 + h->root.u.def.section->output_offset);
2738 }
2739 else
2740 {
2741 outrel.r_info = ELF64_R_INFO (h->dynindx, r_type);
2742 outrel.r_addend = 0;
2743 }
2744
2745 sreloc = htab->elf.irelifunc;
2746 loc = sreloc->contents;
2747 loc += (sreloc->reloc_count++
2748 * sizeof (Elf64_External_Rela));
2749 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2750
2751 /* If this reloc is against an external symbol, we
2752 do not want to fiddle with the addend. Otherwise,
2753 we need to include the symbol value so that it
2754 becomes an addend for the dynamic reloc. For an
2755 internal symbol, we have updated addend. */
2756 continue;
2757 }
2758
2759 case R_X86_64_32:
2760 case R_X86_64_PC32:
2761 case R_X86_64_PC64:
2762 case R_X86_64_PLT32:
2763 goto do_relocation;
2764
2765 case R_X86_64_GOTPCREL:
2766 case R_X86_64_GOTPCREL64:
2767 base_got = htab->elf.sgot;
2768 off = h->got.offset;
2769
2770 if (base_got == NULL)
2771 abort ();
2772
2773 if (off == (bfd_vma) -1)
2774 {
2775 /* We can't use h->got.offset here to save state, or
2776 even just remember the offset, as finish_dynamic_symbol
2777 would use that as offset into .got. */
2778
2779 if (htab->elf.splt != NULL)
2780 {
2781 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
2782 off = (plt_index + 3) * GOT_ENTRY_SIZE;
2783 base_got = htab->elf.sgotplt;
2784 }
2785 else
2786 {
2787 plt_index = h->plt.offset / PLT_ENTRY_SIZE;
2788 off = plt_index * GOT_ENTRY_SIZE;
2789 base_got = htab->elf.igotplt;
2790 }
2791
2792 if (h->dynindx == -1
2793 || h->forced_local
2794 || info->symbolic)
2795 {
2796 /* This references the local defitionion. We must
2797 initialize this entry in the global offset table.
2798 Since the offset must always be a multiple of 8,
2799 we use the least significant bit to record
2800 whether we have initialized it already.
2801
2802 When doing a dynamic link, we create a .rela.got
2803 relocation entry to initialize the value. This
2804 is done in the finish_dynamic_symbol routine. */
2805 if ((off & 1) != 0)
2806 off &= ~1;
2807 else
2808 {
2809 bfd_put_64 (output_bfd, relocation,
2810 base_got->contents + off);
2811 /* Note that this is harmless for the GOTPLT64
2812 case, as -1 | 1 still is -1. */
2813 h->got.offset |= 1;
2814 }
2815 }
2816 }
2817
2818 relocation = (base_got->output_section->vma
2819 + base_got->output_offset + off);
2820
2821 if (r_type != R_X86_64_GOTPCREL
2822 && r_type != R_X86_64_GOTPCREL64)
2823 {
2824 asection *gotplt;
2825 if (htab->elf.splt != NULL)
2826 gotplt = htab->elf.sgotplt;
2827 else
2828 gotplt = htab->elf.igotplt;
2829 relocation -= (gotplt->output_section->vma
2830 - gotplt->output_offset);
2831 }
2832
2833 goto do_relocation;
2834 }
2835 }
2836
2837 /* When generating a shared object, the relocations handled here are
2838 copied into the output file to be resolved at run time. */
2839 switch (r_type)
2840 {
2841 case R_X86_64_GOT32:
2842 case R_X86_64_GOT64:
2843 /* Relocation is to the entry for this symbol in the global
2844 offset table. */
2845 case R_X86_64_GOTPCREL:
2846 case R_X86_64_GOTPCREL64:
2847 /* Use global offset table entry as symbol value. */
2848 case R_X86_64_GOTPLT64:
2849 /* This is the same as GOT64 for relocation purposes, but
2850 indicates the existence of a PLT entry. The difficulty is,
2851 that we must calculate the GOT slot offset from the PLT
2852 offset, if this symbol got a PLT entry (it was global).
2853 Additionally if it's computed from the PLT entry, then that
2854 GOT offset is relative to .got.plt, not to .got. */
2855 base_got = htab->elf.sgot;
2856
2857 if (htab->elf.sgot == NULL)
2858 abort ();
2859
2860 if (h != NULL)
2861 {
2862 bfd_boolean dyn;
2863
2864 off = h->got.offset;
2865 if (h->needs_plt
2866 && h->plt.offset != (bfd_vma)-1
2867 && off == (bfd_vma)-1)
2868 {
2869 /* We can't use h->got.offset here to save
2870 state, or even just remember the offset, as
2871 finish_dynamic_symbol would use that as offset into
2872 .got. */
2873 bfd_vma plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
2874 off = (plt_index + 3) * GOT_ENTRY_SIZE;
2875 base_got = htab->elf.sgotplt;
2876 }
2877
2878 dyn = htab->elf.dynamic_sections_created;
2879
2880 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2881 || (info->shared
2882 && SYMBOL_REFERENCES_LOCAL (info, h))
2883 || (ELF_ST_VISIBILITY (h->other)
2884 && h->root.type == bfd_link_hash_undefweak))
2885 {
2886 /* This is actually a static link, or it is a -Bsymbolic
2887 link and the symbol is defined locally, or the symbol
2888 was forced to be local because of a version file. We
2889 must initialize this entry in the global offset table.
2890 Since the offset must always be a multiple of 8, we
2891 use the least significant bit to record whether we
2892 have initialized it already.
2893
2894 When doing a dynamic link, we create a .rela.got
2895 relocation entry to initialize the value. This is
2896 done in the finish_dynamic_symbol routine. */
2897 if ((off & 1) != 0)
2898 off &= ~1;
2899 else
2900 {
2901 bfd_put_64 (output_bfd, relocation,
2902 base_got->contents + off);
2903 /* Note that this is harmless for the GOTPLT64 case,
2904 as -1 | 1 still is -1. */
2905 h->got.offset |= 1;
2906 }
2907 }
2908 else
2909 unresolved_reloc = FALSE;
2910 }
2911 else
2912 {
2913 if (local_got_offsets == NULL)
2914 abort ();
2915
2916 off = local_got_offsets[r_symndx];
2917
2918 /* The offset must always be a multiple of 8. We use
2919 the least significant bit to record whether we have
2920 already generated the necessary reloc. */
2921 if ((off & 1) != 0)
2922 off &= ~1;
2923 else
2924 {
2925 bfd_put_64 (output_bfd, relocation,
2926 base_got->contents + off);
2927
2928 if (info->shared)
2929 {
2930 asection *s;
2931 Elf_Internal_Rela outrel;
2932 bfd_byte *loc;
2933
2934 /* We need to generate a R_X86_64_RELATIVE reloc
2935 for the dynamic linker. */
2936 s = htab->elf.srelgot;
2937 if (s == NULL)
2938 abort ();
2939
2940 outrel.r_offset = (base_got->output_section->vma
2941 + base_got->output_offset
2942 + off);
2943 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
2944 outrel.r_addend = relocation;
2945 loc = s->contents;
2946 loc += s->reloc_count++ * sizeof (Elf64_External_Rela);
2947 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2948 }
2949
2950 local_got_offsets[r_symndx] |= 1;
2951 }
2952 }
2953
2954 if (off >= (bfd_vma) -2)
2955 abort ();
2956
2957 relocation = base_got->output_section->vma
2958 + base_got->output_offset + off;
2959 if (r_type != R_X86_64_GOTPCREL && r_type != R_X86_64_GOTPCREL64)
2960 relocation -= htab->elf.sgotplt->output_section->vma
2961 - htab->elf.sgotplt->output_offset;
2962
2963 break;
2964
2965 case R_X86_64_GOTOFF64:
2966 /* Relocation is relative to the start of the global offset
2967 table. */
2968
2969 /* Check to make sure it isn't a protected function symbol
2970 for shared library since it may not be local when used
2971 as function address. */
2972 if (info->shared
2973 && h
2974 && h->def_regular
2975 && h->type == STT_FUNC
2976 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
2977 {
2978 (*_bfd_error_handler)
2979 (_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
2980 input_bfd, h->root.root.string);
2981 bfd_set_error (bfd_error_bad_value);
2982 return FALSE;
2983 }
2984
2985 /* Note that sgot is not involved in this
2986 calculation. We always want the start of .got.plt. If we
2987 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
2988 permitted by the ABI, we might have to change this
2989 calculation. */
2990 relocation -= htab->elf.sgotplt->output_section->vma
2991 + htab->elf.sgotplt->output_offset;
2992 break;
2993
2994 case R_X86_64_GOTPC32:
2995 case R_X86_64_GOTPC64:
2996 /* Use global offset table as symbol value. */
2997 relocation = htab->elf.sgotplt->output_section->vma
2998 + htab->elf.sgotplt->output_offset;
2999 unresolved_reloc = FALSE;
3000 break;
3001
3002 case R_X86_64_PLTOFF64:
3003 /* Relocation is PLT entry relative to GOT. For local
3004 symbols it's the symbol itself relative to GOT. */
3005 if (h != NULL
3006 /* See PLT32 handling. */
3007 && h->plt.offset != (bfd_vma) -1
3008 && htab->elf.splt != NULL)
3009 {
3010 relocation = (htab->elf.splt->output_section->vma
3011 + htab->elf.splt->output_offset
3012 + h->plt.offset);
3013 unresolved_reloc = FALSE;
3014 }
3015
3016 relocation -= htab->elf.sgotplt->output_section->vma
3017 + htab->elf.sgotplt->output_offset;
3018 break;
3019
3020 case R_X86_64_PLT32:
3021 /* Relocation is to the entry for this symbol in the
3022 procedure linkage table. */
3023
3024 /* Resolve a PLT32 reloc against a local symbol directly,
3025 without using the procedure linkage table. */
3026 if (h == NULL)
3027 break;
3028
3029 if (h->plt.offset == (bfd_vma) -1
3030 || htab->elf.splt == NULL)
3031 {
3032 /* We didn't make a PLT entry for this symbol. This
3033 happens when statically linking PIC code, or when
3034 using -Bsymbolic. */
3035 break;
3036 }
3037
3038 relocation = (htab->elf.splt->output_section->vma
3039 + htab->elf.splt->output_offset
3040 + h->plt.offset);
3041 unresolved_reloc = FALSE;
3042 break;
3043
3044 case R_X86_64_PC8:
3045 case R_X86_64_PC16:
3046 case R_X86_64_PC32:
3047 if (info->shared
3048 && (input_section->flags & SEC_ALLOC) != 0
3049 && (input_section->flags & SEC_READONLY) != 0
3050 && h != NULL)
3051 {
3052 bfd_boolean fail = FALSE;
3053 bfd_boolean branch
3054 = (r_type == R_X86_64_PC32
3055 && is_32bit_relative_branch (contents, rel->r_offset));
3056
3057 if (SYMBOL_REFERENCES_LOCAL (info, h))
3058 {
3059 /* Symbol is referenced locally. Make sure it is
3060 defined locally or for a branch. */
3061 fail = !h->def_regular && !branch;
3062 }
3063 else
3064 {
3065 /* Symbol isn't referenced locally. We only allow
3066 branch to symbol with non-default visibility. */
3067 fail = (!branch
3068 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT);
3069 }
3070
3071 if (fail)
3072 {
3073 const char *fmt;
3074 const char *v;
3075 const char *pic = "";
3076
3077 switch (ELF_ST_VISIBILITY (h->other))
3078 {
3079 case STV_HIDDEN:
3080 v = _("hidden symbol");
3081 break;
3082 case STV_INTERNAL:
3083 v = _("internal symbol");
3084 break;
3085 case STV_PROTECTED:
3086 v = _("protected symbol");
3087 break;
3088 default:
3089 v = _("symbol");
3090 pic = _("; recompile with -fPIC");
3091 break;
3092 }
3093
3094 if (h->def_regular)
3095 fmt = _("%B: relocation %s against %s `%s' can not be used when making a shared object%s");
3096 else
3097 fmt = _("%B: relocation %s against undefined %s `%s' can not be used when making a shared object%s");
3098
3099 (*_bfd_error_handler) (fmt, input_bfd,
3100 x86_64_elf_howto_table[r_type].name,
3101 v, h->root.root.string, pic);
3102 bfd_set_error (bfd_error_bad_value);
3103 return FALSE;
3104 }
3105 }
3106 /* Fall through. */
3107
3108 case R_X86_64_8:
3109 case R_X86_64_16:
3110 case R_X86_64_32:
3111 case R_X86_64_PC64:
3112 case R_X86_64_64:
3113 /* FIXME: The ABI says the linker should make sure the value is
3114 the same when it's zeroextended to 64 bit. */
3115
3116 if ((input_section->flags & SEC_ALLOC) == 0)
3117 break;
3118
3119 if ((info->shared
3120 && (h == NULL
3121 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3122 || h->root.type != bfd_link_hash_undefweak)
3123 && (! IS_X86_64_PCREL_TYPE (r_type)
3124 || ! SYMBOL_CALLS_LOCAL (info, h)))
3125 || (ELIMINATE_COPY_RELOCS
3126 && !info->shared
3127 && h != NULL
3128 && h->dynindx != -1
3129 && !h->non_got_ref
3130 && ((h->def_dynamic
3131 && !h->def_regular)
3132 || h->root.type == bfd_link_hash_undefweak
3133 || h->root.type == bfd_link_hash_undefined)))
3134 {
3135 Elf_Internal_Rela outrel;
3136 bfd_byte *loc;
3137 bfd_boolean skip, relocate;
3138 asection *sreloc;
3139
3140 /* When generating a shared object, these relocations
3141 are copied into the output file to be resolved at run
3142 time. */
3143 skip = FALSE;
3144 relocate = FALSE;
3145
3146 outrel.r_offset =
3147 _bfd_elf_section_offset (output_bfd, info, input_section,
3148 rel->r_offset);
3149 if (outrel.r_offset == (bfd_vma) -1)
3150 skip = TRUE;
3151 else if (outrel.r_offset == (bfd_vma) -2)
3152 skip = TRUE, relocate = TRUE;
3153
3154 outrel.r_offset += (input_section->output_section->vma
3155 + input_section->output_offset);
3156
3157 if (skip)
3158 memset (&outrel, 0, sizeof outrel);
3159
3160 /* h->dynindx may be -1 if this symbol was marked to
3161 become local. */
3162 else if (h != NULL
3163 && h->dynindx != -1
3164 && (IS_X86_64_PCREL_TYPE (r_type)
3165 || ! info->shared
3166 || ! SYMBOLIC_BIND (info, h)
3167 || ! h->def_regular))
3168 {
3169 outrel.r_info = ELF64_R_INFO (h->dynindx, r_type);
3170 outrel.r_addend = rel->r_addend;
3171 }
3172 else
3173 {
3174 /* This symbol is local, or marked to become local. */
3175 if (r_type == R_X86_64_64)
3176 {
3177 relocate = TRUE;
3178 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
3179 outrel.r_addend = relocation + rel->r_addend;
3180 }
3181 else
3182 {
3183 long sindx;
3184
3185 if (bfd_is_abs_section (sec))
3186 sindx = 0;
3187 else if (sec == NULL || sec->owner == NULL)
3188 {
3189 bfd_set_error (bfd_error_bad_value);
3190 return FALSE;
3191 }
3192 else
3193 {
3194 asection *osec;
3195
3196 /* We are turning this relocation into one
3197 against a section symbol. It would be
3198 proper to subtract the symbol's value,
3199 osec->vma, from the emitted reloc addend,
3200 but ld.so expects buggy relocs. */
3201 osec = sec->output_section;
3202 sindx = elf_section_data (osec)->dynindx;
3203 if (sindx == 0)
3204 {
3205 asection *oi = htab->elf.text_index_section;
3206 sindx = elf_section_data (oi)->dynindx;
3207 }
3208 BFD_ASSERT (sindx != 0);
3209 }
3210
3211 outrel.r_info = ELF64_R_INFO (sindx, r_type);
3212 outrel.r_addend = relocation + rel->r_addend;
3213 }
3214 }
3215
3216 sreloc = elf_section_data (input_section)->sreloc;
3217
3218 BFD_ASSERT (sreloc != NULL && sreloc->contents != NULL);
3219
3220 loc = sreloc->contents;
3221 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
3222 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
3223
3224 /* If this reloc is against an external symbol, we do
3225 not want to fiddle with the addend. Otherwise, we
3226 need to include the symbol value so that it becomes
3227 an addend for the dynamic reloc. */
3228 if (! relocate)
3229 continue;
3230 }
3231
3232 break;
3233
3234 case R_X86_64_TLSGD:
3235 case R_X86_64_GOTPC32_TLSDESC:
3236 case R_X86_64_TLSDESC_CALL:
3237 case R_X86_64_GOTTPOFF:
3238 tls_type = GOT_UNKNOWN;
3239 if (h == NULL && local_got_offsets)
3240 tls_type = elf64_x86_64_local_got_tls_type (input_bfd) [r_symndx];
3241 else if (h != NULL)
3242 tls_type = elf64_x86_64_hash_entry (h)->tls_type;
3243
3244 if (! elf64_x86_64_tls_transition (info, input_bfd,
3245 input_section, contents,
3246 symtab_hdr, sym_hashes,
3247 &r_type, tls_type, rel,
3248 relend, h, r_symndx))
3249 return FALSE;
3250
3251 if (r_type == R_X86_64_TPOFF32)
3252 {
3253 bfd_vma roff = rel->r_offset;
3254
3255 BFD_ASSERT (! unresolved_reloc);
3256
3257 if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
3258 {
3259 /* GD->LE transition.
3260 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3261 .word 0x6666; rex64; call __tls_get_addr
3262 Change it into:
3263 movq %fs:0, %rax
3264 leaq foo@tpoff(%rax), %rax */
3265 memcpy (contents + roff - 4,
3266 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
3267 16);
3268 bfd_put_32 (output_bfd,
3269 elf64_x86_64_tpoff (info, relocation),
3270 contents + roff + 8);
3271 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
3272 rel++;
3273 continue;
3274 }
3275 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
3276 {
3277 /* GDesc -> LE transition.
3278 It's originally something like:
3279 leaq x@tlsdesc(%rip), %rax
3280
3281 Change it to:
3282 movl $x@tpoff, %rax
3283 */
3284
3285 unsigned int val, type, type2;
3286
3287 type = bfd_get_8 (input_bfd, contents + roff - 3);
3288 type2 = bfd_get_8 (input_bfd, contents + roff - 2);
3289 val = bfd_get_8 (input_bfd, contents + roff - 1);
3290 bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1),
3291 contents + roff - 3);
3292 bfd_put_8 (output_bfd, 0xc7, contents + roff - 2);
3293 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
3294 contents + roff - 1);
3295 bfd_put_32 (output_bfd,
3296 elf64_x86_64_tpoff (info, relocation),
3297 contents + roff);
3298 continue;
3299 }
3300 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
3301 {
3302 /* GDesc -> LE transition.
3303 It's originally:
3304 call *(%rax)
3305 Turn it into:
3306 xchg %ax,%ax. */
3307 bfd_put_8 (output_bfd, 0x66, contents + roff);
3308 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
3309 continue;
3310 }
3311 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_GOTTPOFF)
3312 {
3313 /* IE->LE transition:
3314 Originally it can be one of:
3315 movq foo@gottpoff(%rip), %reg
3316 addq foo@gottpoff(%rip), %reg
3317 We change it into:
3318 movq $foo, %reg
3319 leaq foo(%reg), %reg
3320 addq $foo, %reg. */
3321
3322 unsigned int val, type, reg;
3323
3324 val = bfd_get_8 (input_bfd, contents + roff - 3);
3325 type = bfd_get_8 (input_bfd, contents + roff - 2);
3326 reg = bfd_get_8 (input_bfd, contents + roff - 1);
3327 reg >>= 3;
3328 if (type == 0x8b)
3329 {
3330 /* movq */
3331 if (val == 0x4c)
3332 bfd_put_8 (output_bfd, 0x49,
3333 contents + roff - 3);
3334 bfd_put_8 (output_bfd, 0xc7,
3335 contents + roff - 2);
3336 bfd_put_8 (output_bfd, 0xc0 | reg,
3337 contents + roff - 1);
3338 }
3339 else if (reg == 4)
3340 {
3341 /* addq -> addq - addressing with %rsp/%r12 is
3342 special */
3343 if (val == 0x4c)
3344 bfd_put_8 (output_bfd, 0x49,
3345 contents + roff - 3);
3346 bfd_put_8 (output_bfd, 0x81,
3347 contents + roff - 2);
3348 bfd_put_8 (output_bfd, 0xc0 | reg,
3349 contents + roff - 1);
3350 }
3351 else
3352 {
3353 /* addq -> leaq */
3354 if (val == 0x4c)
3355 bfd_put_8 (output_bfd, 0x4d,
3356 contents + roff - 3);
3357 bfd_put_8 (output_bfd, 0x8d,
3358 contents + roff - 2);
3359 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
3360 contents + roff - 1);
3361 }
3362 bfd_put_32 (output_bfd,
3363 elf64_x86_64_tpoff (info, relocation),
3364 contents + roff);
3365 continue;
3366 }
3367 else
3368 BFD_ASSERT (FALSE);
3369 }
3370
3371 if (htab->elf.sgot == NULL)
3372 abort ();
3373
3374 if (h != NULL)
3375 {
3376 off = h->got.offset;
3377 offplt = elf64_x86_64_hash_entry (h)->tlsdesc_got;
3378 }
3379 else
3380 {
3381 if (local_got_offsets == NULL)
3382 abort ();
3383
3384 off = local_got_offsets[r_symndx];
3385 offplt = local_tlsdesc_gotents[r_symndx];
3386 }
3387
3388 if ((off & 1) != 0)
3389 off &= ~1;
3390 else
3391 {
3392 Elf_Internal_Rela outrel;
3393 bfd_byte *loc;
3394 int dr_type, indx;
3395 asection *sreloc;
3396
3397 if (htab->elf.srelgot == NULL)
3398 abort ();
3399
3400 indx = h && h->dynindx != -1 ? h->dynindx : 0;
3401
3402 if (GOT_TLS_GDESC_P (tls_type))
3403 {
3404 outrel.r_info = ELF64_R_INFO (indx, R_X86_64_TLSDESC);
3405 BFD_ASSERT (htab->sgotplt_jump_table_size + offplt
3406 + 2 * GOT_ENTRY_SIZE <= htab->elf.sgotplt->size);
3407 outrel.r_offset = (htab->elf.sgotplt->output_section->vma
3408 + htab->elf.sgotplt->output_offset
3409 + offplt
3410 + htab->sgotplt_jump_table_size);
3411 sreloc = htab->elf.srelplt;
3412 loc = sreloc->contents;
3413 loc += sreloc->reloc_count++
3414 * sizeof (Elf64_External_Rela);
3415 BFD_ASSERT (loc + sizeof (Elf64_External_Rela)
3416 <= sreloc->contents + sreloc->size);
3417 if (indx == 0)
3418 outrel.r_addend = relocation - elf64_x86_64_dtpoff_base (info);
3419 else
3420 outrel.r_addend = 0;
3421 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
3422 }
3423
3424 sreloc = htab->elf.srelgot;
3425
3426 outrel.r_offset = (htab->elf.sgot->output_section->vma
3427 + htab->elf.sgot->output_offset + off);
3428
3429 if (GOT_TLS_GD_P (tls_type))
3430 dr_type = R_X86_64_DTPMOD64;
3431 else if (GOT_TLS_GDESC_P (tls_type))
3432 goto dr_done;
3433 else
3434 dr_type = R_X86_64_TPOFF64;
3435
3436 bfd_put_64 (output_bfd, 0, htab->elf.sgot->contents + off);
3437 outrel.r_addend = 0;
3438 if ((dr_type == R_X86_64_TPOFF64
3439 || dr_type == R_X86_64_TLSDESC) && indx == 0)
3440 outrel.r_addend = relocation - elf64_x86_64_dtpoff_base (info);
3441 outrel.r_info = ELF64_R_INFO (indx, dr_type);
3442
3443 loc = sreloc->contents;
3444 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
3445 BFD_ASSERT (loc + sizeof (Elf64_External_Rela)
3446 <= sreloc->contents + sreloc->size);
3447 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
3448
3449 if (GOT_TLS_GD_P (tls_type))
3450 {
3451 if (indx == 0)
3452 {
3453 BFD_ASSERT (! unresolved_reloc);
3454 bfd_put_64 (output_bfd,
3455 relocation - elf64_x86_64_dtpoff_base (info),
3456 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
3457 }
3458 else
3459 {
3460 bfd_put_64 (output_bfd, 0,
3461 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
3462 outrel.r_info = ELF64_R_INFO (indx,
3463 R_X86_64_DTPOFF64);
3464 outrel.r_offset += GOT_ENTRY_SIZE;
3465 sreloc->reloc_count++;
3466 loc += sizeof (Elf64_External_Rela);
3467 BFD_ASSERT (loc + sizeof (Elf64_External_Rela)
3468 <= sreloc->contents + sreloc->size);
3469 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
3470 }
3471 }
3472
3473 dr_done:
3474 if (h != NULL)
3475 h->got.offset |= 1;
3476 else
3477 local_got_offsets[r_symndx] |= 1;
3478 }
3479
3480 if (off >= (bfd_vma) -2
3481 && ! GOT_TLS_GDESC_P (tls_type))
3482 abort ();
3483 if (r_type == ELF64_R_TYPE (rel->r_info))
3484 {
3485 if (r_type == R_X86_64_GOTPC32_TLSDESC
3486 || r_type == R_X86_64_TLSDESC_CALL)
3487 relocation = htab->elf.sgotplt->output_section->vma
3488 + htab->elf.sgotplt->output_offset
3489 + offplt + htab->sgotplt_jump_table_size;
3490 else
3491 relocation = htab->elf.sgot->output_section->vma
3492 + htab->elf.sgot->output_offset + off;
3493 unresolved_reloc = FALSE;
3494 }
3495 else
3496 {
3497 bfd_vma roff = rel->r_offset;
3498
3499 if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
3500 {
3501 /* GD->IE transition.
3502 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3503 .word 0x6666; rex64; call __tls_get_addr@plt
3504 Change it into:
3505 movq %fs:0, %rax
3506 addq foo@gottpoff(%rip), %rax */
3507 memcpy (contents + roff - 4,
3508 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
3509 16);
3510
3511 relocation = (htab->elf.sgot->output_section->vma
3512 + htab->elf.sgot->output_offset + off
3513 - roff
3514 - input_section->output_section->vma
3515 - input_section->output_offset
3516 - 12);
3517 bfd_put_32 (output_bfd, relocation,
3518 contents + roff + 8);
3519 /* Skip R_X86_64_PLT32. */
3520 rel++;
3521 continue;
3522 }
3523 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
3524 {
3525 /* GDesc -> IE transition.
3526 It's originally something like:
3527 leaq x@tlsdesc(%rip), %rax
3528
3529 Change it to:
3530 movq x@gottpoff(%rip), %rax # before xchg %ax,%ax
3531 */
3532
3533 unsigned int val, type, type2;
3534
3535 type = bfd_get_8 (input_bfd, contents + roff - 3);
3536 type2 = bfd_get_8 (input_bfd, contents + roff - 2);
3537 val = bfd_get_8 (input_bfd, contents + roff - 1);
3538
3539 /* Now modify the instruction as appropriate. To
3540 turn a leaq into a movq in the form we use it, it
3541 suffices to change the second byte from 0x8d to
3542 0x8b. */
3543 bfd_put_8 (output_bfd, 0x8b, contents + roff - 2);
3544
3545 bfd_put_32 (output_bfd,
3546 htab->elf.sgot->output_section->vma
3547 + htab->elf.sgot->output_offset + off
3548 - rel->r_offset
3549 - input_section->output_section->vma
3550 - input_section->output_offset
3551 - 4,
3552 contents + roff);
3553 continue;
3554 }
3555 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
3556 {
3557 /* GDesc -> IE transition.
3558 It's originally:
3559 call *(%rax)
3560
3561 Change it to:
3562 xchg %ax,%ax. */
3563
3564 unsigned int val, type;
3565
3566 type = bfd_get_8 (input_bfd, contents + roff);
3567 val = bfd_get_8 (input_bfd, contents + roff + 1);
3568 bfd_put_8 (output_bfd, 0x66, contents + roff);
3569 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
3570 continue;
3571 }
3572 else
3573 BFD_ASSERT (FALSE);
3574 }
3575 break;
3576
3577 case R_X86_64_TLSLD:
3578 if (! elf64_x86_64_tls_transition (info, input_bfd,
3579 input_section, contents,
3580 symtab_hdr, sym_hashes,
3581 &r_type, GOT_UNKNOWN,
3582 rel, relend, h, r_symndx))
3583 return FALSE;
3584
3585 if (r_type != R_X86_64_TLSLD)
3586 {
3587 /* LD->LE transition:
3588 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
3589 We change it into:
3590 .word 0x6666; .byte 0x66; movl %fs:0, %rax. */
3591
3592 BFD_ASSERT (r_type == R_X86_64_TPOFF32);
3593 memcpy (contents + rel->r_offset - 3,
3594 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
3595 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
3596 rel++;
3597 continue;
3598 }
3599
3600 if (htab->elf.sgot == NULL)
3601 abort ();
3602
3603 off = htab->tls_ld_got.offset;
3604 if (off & 1)
3605 off &= ~1;
3606 else
3607 {
3608 Elf_Internal_Rela outrel;
3609 bfd_byte *loc;
3610
3611 if (htab->elf.srelgot == NULL)
3612 abort ();
3613
3614 outrel.r_offset = (htab->elf.sgot->output_section->vma
3615 + htab->elf.sgot->output_offset + off);
3616
3617 bfd_put_64 (output_bfd, 0,
3618 htab->elf.sgot->contents + off);
3619 bfd_put_64 (output_bfd, 0,
3620 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
3621 outrel.r_info = ELF64_R_INFO (0, R_X86_64_DTPMOD64);
3622 outrel.r_addend = 0;
3623 loc = htab->elf.srelgot->contents;
3624 loc += htab->elf.srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
3625 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
3626 htab->tls_ld_got.offset |= 1;
3627 }
3628 relocation = htab->elf.sgot->output_section->vma
3629 + htab->elf.sgot->output_offset + off;
3630 unresolved_reloc = FALSE;
3631 break;
3632
3633 case R_X86_64_DTPOFF32:
3634 if (info->shared || (input_section->flags & SEC_CODE) == 0)
3635 relocation -= elf64_x86_64_dtpoff_base (info);
3636 else
3637 relocation = elf64_x86_64_tpoff (info, relocation);
3638 break;
3639
3640 case R_X86_64_TPOFF32:
3641 BFD_ASSERT (! info->shared);
3642 relocation = elf64_x86_64_tpoff (info, relocation);
3643 break;
3644
3645 default:
3646 break;
3647 }
3648
3649 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3650 because such sections are not SEC_ALLOC and thus ld.so will
3651 not process them. */
3652 if (unresolved_reloc
3653 && !((input_section->flags & SEC_DEBUGGING) != 0
3654 && h->def_dynamic))
3655 (*_bfd_error_handler)
3656 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3657 input_bfd,
3658 input_section,
3659 (long) rel->r_offset,
3660 howto->name,
3661 h->root.root.string);
3662
3663 do_relocation:
3664 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
3665 contents, rel->r_offset,
3666 relocation, rel->r_addend);
3667
3668 if (r != bfd_reloc_ok)
3669 {
3670 const char *name;
3671
3672 if (h != NULL)
3673 name = h->root.root.string;
3674 else
3675 {
3676 name = bfd_elf_string_from_elf_section (input_bfd,
3677 symtab_hdr->sh_link,
3678 sym->st_name);
3679 if (name == NULL)
3680 return FALSE;
3681 if (*name == '\0')
3682 name = bfd_section_name (input_bfd, sec);
3683 }
3684
3685 if (r == bfd_reloc_overflow)
3686 {
3687 if (! ((*info->callbacks->reloc_overflow)
3688 (info, (h ? &h->root : NULL), name, howto->name,
3689 (bfd_vma) 0, input_bfd, input_section,
3690 rel->r_offset)))
3691 return FALSE;
3692 }
3693 else
3694 {
3695 (*_bfd_error_handler)
3696 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
3697 input_bfd, input_section,
3698 (long) rel->r_offset, name, (int) r);
3699 return FALSE;
3700 }
3701 }
3702 }
3703
3704 return TRUE;
3705 }
3706
3707 /* Finish up dynamic symbol handling. We set the contents of various
3708 dynamic sections here. */
3709
3710 static bfd_boolean
3711 elf64_x86_64_finish_dynamic_symbol (bfd *output_bfd,
3712 struct bfd_link_info *info,
3713 struct elf_link_hash_entry *h,
3714 Elf_Internal_Sym *sym)
3715 {
3716 struct elf64_x86_64_link_hash_table *htab;
3717
3718 htab = elf64_x86_64_hash_table (info);
3719
3720 if (h->plt.offset != (bfd_vma) -1)
3721 {
3722 bfd_vma plt_index;
3723 bfd_vma got_offset;
3724 Elf_Internal_Rela rela;
3725 bfd_byte *loc;
3726 asection *plt, *gotplt, *relplt;
3727
3728 /* When building a static executable, use .iplt, .igot.plt and
3729 .rela.iplt sections for STT_GNU_IFUNC symbols. */
3730 if (htab->elf.splt != NULL)
3731 {
3732 plt = htab->elf.splt;
3733 gotplt = htab->elf.sgotplt;
3734 relplt = htab->elf.srelplt;
3735 }
3736 else
3737 {
3738 plt = htab->elf.iplt;
3739 gotplt = htab->elf.igotplt;
3740 relplt = htab->elf.irelplt;
3741 }
3742
3743 /* This symbol has an entry in the procedure linkage table. Set
3744 it up. */
3745 if ((h->dynindx == -1
3746 && !((h->forced_local || info->executable)
3747 && h->def_regular
3748 && h->type == STT_GNU_IFUNC))
3749 || plt == NULL
3750 || gotplt == NULL
3751 || relplt == NULL)
3752 abort ();
3753
3754 /* Get the index in the procedure linkage table which
3755 corresponds to this symbol. This is the index of this symbol
3756 in all the symbols for which we are making plt entries. The
3757 first entry in the procedure linkage table is reserved.
3758
3759 Get the offset into the .got table of the entry that
3760 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
3761 bytes. The first three are reserved for the dynamic linker.
3762
3763 For static executables, we don't reserve anything. */
3764
3765 if (plt == htab->elf.splt)
3766 {
3767 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3768 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
3769 }
3770 else
3771 {
3772 plt_index = h->plt.offset / PLT_ENTRY_SIZE;
3773 got_offset = plt_index * GOT_ENTRY_SIZE;
3774 }
3775
3776 /* Fill in the entry in the procedure linkage table. */
3777 memcpy (plt->contents + h->plt.offset, elf64_x86_64_plt_entry,
3778 PLT_ENTRY_SIZE);
3779
3780 /* Insert the relocation positions of the plt section. The magic
3781 numbers at the end of the statements are the positions of the
3782 relocations in the plt section. */
3783 /* Put offset for jmp *name@GOTPCREL(%rip), since the
3784 instruction uses 6 bytes, subtract this value. */
3785 bfd_put_32 (output_bfd,
3786 (gotplt->output_section->vma
3787 + gotplt->output_offset
3788 + got_offset
3789 - plt->output_section->vma
3790 - plt->output_offset
3791 - h->plt.offset
3792 - 6),
3793 plt->contents + h->plt.offset + 2);
3794
3795 /* Don't fill PLT entry for static executables. */
3796 if (plt == htab->elf.splt)
3797 {
3798 /* Put relocation index. */
3799 bfd_put_32 (output_bfd, plt_index,
3800 plt->contents + h->plt.offset + 7);
3801 /* Put offset for jmp .PLT0. */
3802 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
3803 plt->contents + h->plt.offset + 12);
3804 }
3805
3806 /* Fill in the entry in the global offset table, initially this
3807 points to the pushq instruction in the PLT which is at offset 6. */
3808 bfd_put_64 (output_bfd, (plt->output_section->vma
3809 + plt->output_offset
3810 + h->plt.offset + 6),
3811 gotplt->contents + got_offset);
3812
3813 /* Fill in the entry in the .rela.plt section. */
3814 rela.r_offset = (gotplt->output_section->vma
3815 + gotplt->output_offset
3816 + got_offset);
3817 if (h->dynindx == -1
3818 || ((info->executable
3819 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
3820 && h->def_regular
3821 && h->type == STT_GNU_IFUNC))
3822 {
3823 /* If an STT_GNU_IFUNC symbol is locally defined, generate
3824 R_X86_64_IRELATIVE instead of R_X86_64_JUMP_SLOT. */
3825 rela.r_info = ELF64_R_INFO (0, R_X86_64_IRELATIVE);
3826 rela.r_addend = (h->root.u.def.value
3827 + h->root.u.def.section->output_section->vma
3828 + h->root.u.def.section->output_offset);
3829 }
3830 else
3831 {
3832 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_JUMP_SLOT);
3833 rela.r_addend = 0;
3834 }
3835 loc = relplt->contents + plt_index * sizeof (Elf64_External_Rela);
3836 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
3837
3838 if (!h->def_regular)
3839 {
3840 /* Mark the symbol as undefined, rather than as defined in
3841 the .plt section. Leave the value if there were any
3842 relocations where pointer equality matters (this is a clue
3843 for the dynamic linker, to make function pointer
3844 comparisons work between an application and shared
3845 library), otherwise set it to zero. If a function is only
3846 called from a binary, there is no need to slow down
3847 shared libraries because of that. */
3848 sym->st_shndx = SHN_UNDEF;
3849 if (!h->pointer_equality_needed)
3850 sym->st_value = 0;
3851 }
3852 }
3853
3854 if (h->got.offset != (bfd_vma) -1
3855 && ! GOT_TLS_GD_ANY_P (elf64_x86_64_hash_entry (h)->tls_type)
3856 && elf64_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
3857 {
3858 Elf_Internal_Rela rela;
3859 bfd_byte *loc;
3860
3861 /* This symbol has an entry in the global offset table. Set it
3862 up. */
3863 if (htab->elf.sgot == NULL || htab->elf.srelgot == NULL)
3864 abort ();
3865
3866 rela.r_offset = (htab->elf.sgot->output_section->vma
3867 + htab->elf.sgot->output_offset
3868 + (h->got.offset &~ (bfd_vma) 1));
3869
3870 /* If this is a static link, or it is a -Bsymbolic link and the
3871 symbol is defined locally or was forced to be local because
3872 of a version file, we just want to emit a RELATIVE reloc.
3873 The entry in the global offset table will already have been
3874 initialized in the relocate_section function. */
3875 if (h->def_regular
3876 && h->type == STT_GNU_IFUNC)
3877 {
3878 if (info->shared)
3879 {
3880 /* Generate R_X86_64_GLOB_DAT. */
3881 goto do_glob_dat;
3882 }
3883 else
3884 {
3885 if (!h->pointer_equality_needed)
3886 abort ();
3887
3888 /* For non-shared object, we can't use .got.plt, which
3889 contains the real function addres if we need pointer
3890 equality. We load the GOT entry with the PLT entry. */
3891 asection *plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
3892 bfd_put_64 (output_bfd, (plt->output_section->vma
3893 + plt->output_offset
3894 + h->plt.offset),
3895 htab->elf.sgot->contents + h->got.offset);
3896 return TRUE;
3897 }
3898 }
3899 else if (info->shared
3900 && SYMBOL_REFERENCES_LOCAL (info, h))
3901 {
3902 if (!h->def_regular)
3903 return FALSE;
3904 BFD_ASSERT((h->got.offset & 1) != 0);
3905 rela.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
3906 rela.r_addend = (h->root.u.def.value
3907 + h->root.u.def.section->output_section->vma
3908 + h->root.u.def.section->output_offset);
3909 }
3910 else
3911 {
3912 BFD_ASSERT((h->got.offset & 1) == 0);
3913 do_glob_dat:
3914 bfd_put_64 (output_bfd, (bfd_vma) 0,
3915 htab->elf.sgot->contents + h->got.offset);
3916 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_GLOB_DAT);
3917 rela.r_addend = 0;
3918 }
3919
3920 loc = htab->elf.srelgot->contents;
3921 loc += htab->elf.srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
3922 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
3923 }
3924
3925 if (h->needs_copy)
3926 {
3927 Elf_Internal_Rela rela;
3928 bfd_byte *loc;
3929
3930 /* This symbol needs a copy reloc. Set it up. */
3931
3932 if (h->dynindx == -1
3933 || (h->root.type != bfd_link_hash_defined
3934 && h->root.type != bfd_link_hash_defweak)
3935 || htab->srelbss == NULL)
3936 abort ();
3937
3938 rela.r_offset = (h->root.u.def.value
3939 + h->root.u.def.section->output_section->vma
3940 + h->root.u.def.section->output_offset);
3941 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_COPY);
3942 rela.r_addend = 0;
3943 loc = htab->srelbss->contents;
3944 loc += htab->srelbss->reloc_count++ * sizeof (Elf64_External_Rela);
3945 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
3946 }
3947
3948 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
3949 be NULL for local symbols. */
3950 if (sym != NULL
3951 && (strcmp (h->root.root.string, "_DYNAMIC") == 0
3952 || h == htab->elf.hgot))
3953 sym->st_shndx = SHN_ABS;
3954
3955 return TRUE;
3956 }
3957
3958 /* Finish up local dynamic symbol handling. We set the contents of
3959 various dynamic sections here. */
3960
3961 static bfd_boolean
3962 elf64_x86_64_finish_local_dynamic_symbol (void **slot, void *inf)
3963 {
3964 struct elf_link_hash_entry *h
3965 = (struct elf_link_hash_entry *) *slot;
3966 struct bfd_link_info *info
3967 = (struct bfd_link_info *) inf;
3968
3969 return elf64_x86_64_finish_dynamic_symbol (info->output_bfd,
3970 info, h, NULL);
3971 }
3972
3973 /* Used to decide how to sort relocs in an optimal manner for the
3974 dynamic linker, before writing them out. */
3975
3976 static enum elf_reloc_type_class
3977 elf64_x86_64_reloc_type_class (const Elf_Internal_Rela *rela)
3978 {
3979 switch ((int) ELF64_R_TYPE (rela->r_info))
3980 {
3981 case R_X86_64_RELATIVE:
3982 return reloc_class_relative;
3983 case R_X86_64_JUMP_SLOT:
3984 return reloc_class_plt;
3985 case R_X86_64_COPY:
3986 return reloc_class_copy;
3987 default:
3988 return reloc_class_normal;
3989 }
3990 }
3991
3992 /* Finish up the dynamic sections. */
3993
3994 static bfd_boolean
3995 elf64_x86_64_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
3996 {
3997 struct elf64_x86_64_link_hash_table *htab;
3998 bfd *dynobj;
3999 asection *sdyn;
4000
4001 htab = elf64_x86_64_hash_table (info);
4002 dynobj = htab->elf.dynobj;
4003 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4004
4005 if (htab->elf.dynamic_sections_created)
4006 {
4007 Elf64_External_Dyn *dyncon, *dynconend;
4008
4009 if (sdyn == NULL || htab->elf.sgot == NULL)
4010 abort ();
4011
4012 dyncon = (Elf64_External_Dyn *) sdyn->contents;
4013 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
4014 for (; dyncon < dynconend; dyncon++)
4015 {
4016 Elf_Internal_Dyn dyn;
4017 asection *s;
4018
4019 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
4020
4021 switch (dyn.d_tag)
4022 {
4023 default:
4024 continue;
4025
4026 case DT_PLTGOT:
4027 s = htab->elf.sgotplt;
4028 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4029 break;
4030
4031 case DT_JMPREL:
4032 dyn.d_un.d_ptr = htab->elf.srelplt->output_section->vma;
4033 break;
4034
4035 case DT_PLTRELSZ:
4036 s = htab->elf.srelplt->output_section;
4037 dyn.d_un.d_val = s->size;
4038 break;
4039
4040 case DT_RELASZ:
4041 /* The procedure linkage table relocs (DT_JMPREL) should
4042 not be included in the overall relocs (DT_RELA).
4043 Therefore, we override the DT_RELASZ entry here to
4044 make it not include the JMPREL relocs. Since the
4045 linker script arranges for .rela.plt to follow all
4046 other relocation sections, we don't have to worry
4047 about changing the DT_RELA entry. */
4048 if (htab->elf.srelplt != NULL)
4049 {
4050 s = htab->elf.srelplt->output_section;
4051 dyn.d_un.d_val -= s->size;
4052 }
4053 break;
4054
4055 case DT_TLSDESC_PLT:
4056 s = htab->elf.splt;
4057 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4058 + htab->tlsdesc_plt;
4059 break;
4060
4061 case DT_TLSDESC_GOT:
4062 s = htab->elf.sgot;
4063 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4064 + htab->tlsdesc_got;
4065 break;
4066 }
4067
4068 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
4069 }
4070
4071 /* Fill in the special first entry in the procedure linkage table. */
4072 if (htab->elf.splt && htab->elf.splt->size > 0)
4073 {
4074 /* Fill in the first entry in the procedure linkage table. */
4075 memcpy (htab->elf.splt->contents, elf64_x86_64_plt0_entry,
4076 PLT_ENTRY_SIZE);
4077 /* Add offset for pushq GOT+8(%rip), since the instruction
4078 uses 6 bytes subtract this value. */
4079 bfd_put_32 (output_bfd,
4080 (htab->elf.sgotplt->output_section->vma
4081 + htab->elf.sgotplt->output_offset
4082 + 8
4083 - htab->elf.splt->output_section->vma
4084 - htab->elf.splt->output_offset
4085 - 6),
4086 htab->elf.splt->contents + 2);
4087 /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
4088 the end of the instruction. */
4089 bfd_put_32 (output_bfd,
4090 (htab->elf.sgotplt->output_section->vma
4091 + htab->elf.sgotplt->output_offset
4092 + 16
4093 - htab->elf.splt->output_section->vma
4094 - htab->elf.splt->output_offset
4095 - 12),
4096 htab->elf.splt->contents + 8);
4097
4098 elf_section_data (htab->elf.splt->output_section)->this_hdr.sh_entsize =
4099 PLT_ENTRY_SIZE;
4100
4101 if (htab->tlsdesc_plt)
4102 {
4103 bfd_put_64 (output_bfd, (bfd_vma) 0,
4104 htab->elf.sgot->contents + htab->tlsdesc_got);
4105
4106 memcpy (htab->elf.splt->contents + htab->tlsdesc_plt,
4107 elf64_x86_64_plt0_entry,
4108 PLT_ENTRY_SIZE);
4109
4110 /* Add offset for pushq GOT+8(%rip), since the
4111 instruction uses 6 bytes subtract this value. */
4112 bfd_put_32 (output_bfd,
4113 (htab->elf.sgotplt->output_section->vma
4114 + htab->elf.sgotplt->output_offset
4115 + 8
4116 - htab->elf.splt->output_section->vma
4117 - htab->elf.splt->output_offset
4118 - htab->tlsdesc_plt
4119 - 6),
4120 htab->elf.splt->contents + htab->tlsdesc_plt + 2);
4121 /* Add offset for jmp *GOT+TDG(%rip), where TGD stands for
4122 htab->tlsdesc_got. The 12 is the offset to the end of
4123 the instruction. */
4124 bfd_put_32 (output_bfd,
4125 (htab->elf.sgot->output_section->vma
4126 + htab->elf.sgot->output_offset
4127 + htab->tlsdesc_got
4128 - htab->elf.splt->output_section->vma
4129 - htab->elf.splt->output_offset
4130 - htab->tlsdesc_plt
4131 - 12),
4132 htab->elf.splt->contents + htab->tlsdesc_plt + 8);
4133 }
4134 }
4135 }
4136
4137 if (htab->elf.sgotplt)
4138 {
4139 /* Fill in the first three entries in the global offset table. */
4140 if (htab->elf.sgotplt->size > 0)
4141 {
4142 /* Set the first entry in the global offset table to the address of
4143 the dynamic section. */
4144 if (sdyn == NULL)
4145 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents);
4146 else
4147 bfd_put_64 (output_bfd,
4148 sdyn->output_section->vma + sdyn->output_offset,
4149 htab->elf.sgotplt->contents);
4150 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
4151 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
4152 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE*2);
4153 }
4154
4155 elf_section_data (htab->elf.sgotplt->output_section)->this_hdr.sh_entsize =
4156 GOT_ENTRY_SIZE;
4157 }
4158
4159 if (htab->elf.sgot && htab->elf.sgot->size > 0)
4160 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize
4161 = GOT_ENTRY_SIZE;
4162
4163 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
4164 htab_traverse (htab->loc_hash_table,
4165 elf64_x86_64_finish_local_dynamic_symbol,
4166 info);
4167
4168 return TRUE;
4169 }
4170
4171 /* Return address for Ith PLT stub in section PLT, for relocation REL
4172 or (bfd_vma) -1 if it should not be included. */
4173
4174 static bfd_vma
4175 elf64_x86_64_plt_sym_val (bfd_vma i, const asection *plt,
4176 const arelent *rel ATTRIBUTE_UNUSED)
4177 {
4178 return plt->vma + (i + 1) * PLT_ENTRY_SIZE;
4179 }
4180
4181 /* Handle an x86-64 specific section when reading an object file. This
4182 is called when elfcode.h finds a section with an unknown type. */
4183
4184 static bfd_boolean
4185 elf64_x86_64_section_from_shdr (bfd *abfd,
4186 Elf_Internal_Shdr *hdr,
4187 const char *name,
4188 int shindex)
4189 {
4190 if (hdr->sh_type != SHT_X86_64_UNWIND)
4191 return FALSE;
4192
4193 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
4194 return FALSE;
4195
4196 return TRUE;
4197 }
4198
4199 /* Hook called by the linker routine which adds symbols from an object
4200 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
4201 of .bss. */
4202
4203 static bfd_boolean
4204 elf64_x86_64_add_symbol_hook (bfd *abfd,
4205 struct bfd_link_info *info,
4206 Elf_Internal_Sym *sym,
4207 const char **namep ATTRIBUTE_UNUSED,
4208 flagword *flagsp ATTRIBUTE_UNUSED,
4209 asection **secp,
4210 bfd_vma *valp)
4211 {
4212 asection *lcomm;
4213
4214 switch (sym->st_shndx)
4215 {
4216 case SHN_X86_64_LCOMMON:
4217 lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
4218 if (lcomm == NULL)
4219 {
4220 lcomm = bfd_make_section_with_flags (abfd,
4221 "LARGE_COMMON",
4222 (SEC_ALLOC
4223 | SEC_IS_COMMON
4224 | SEC_LINKER_CREATED));
4225 if (lcomm == NULL)
4226 return FALSE;
4227 elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
4228 }
4229 *secp = lcomm;
4230 *valp = sym->st_size;
4231 break;
4232 }
4233
4234 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
4235 elf_tdata (info->output_bfd)->has_ifunc_symbols = TRUE;
4236
4237 return TRUE;
4238 }
4239
4240
4241 /* Given a BFD section, try to locate the corresponding ELF section
4242 index. */
4243
4244 static bfd_boolean
4245 elf64_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
4246 asection *sec, int *index)
4247 {
4248 if (sec == &_bfd_elf_large_com_section)
4249 {
4250 *index = SHN_X86_64_LCOMMON;
4251 return TRUE;
4252 }
4253 return FALSE;
4254 }
4255
4256 /* Process a symbol. */
4257
4258 static void
4259 elf64_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
4260 asymbol *asym)
4261 {
4262 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
4263
4264 switch (elfsym->internal_elf_sym.st_shndx)
4265 {
4266 case SHN_X86_64_LCOMMON:
4267 asym->section = &_bfd_elf_large_com_section;
4268 asym->value = elfsym->internal_elf_sym.st_size;
4269 /* Common symbol doesn't set BSF_GLOBAL. */
4270 asym->flags &= ~BSF_GLOBAL;
4271 break;
4272 }
4273 }
4274
4275 static bfd_boolean
4276 elf64_x86_64_common_definition (Elf_Internal_Sym *sym)
4277 {
4278 return (sym->st_shndx == SHN_COMMON
4279 || sym->st_shndx == SHN_X86_64_LCOMMON);
4280 }
4281
4282 static unsigned int
4283 elf64_x86_64_common_section_index (asection *sec)
4284 {
4285 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
4286 return SHN_COMMON;
4287 else
4288 return SHN_X86_64_LCOMMON;
4289 }
4290
4291 static asection *
4292 elf64_x86_64_common_section (asection *sec)
4293 {
4294 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
4295 return bfd_com_section_ptr;
4296 else
4297 return &_bfd_elf_large_com_section;
4298 }
4299
4300 static bfd_boolean
4301 elf64_x86_64_merge_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
4302 struct elf_link_hash_entry **sym_hash ATTRIBUTE_UNUSED,
4303 struct elf_link_hash_entry *h,
4304 Elf_Internal_Sym *sym,
4305 asection **psec,
4306 bfd_vma *pvalue ATTRIBUTE_UNUSED,
4307 unsigned int *pold_alignment ATTRIBUTE_UNUSED,
4308 bfd_boolean *skip ATTRIBUTE_UNUSED,
4309 bfd_boolean *override ATTRIBUTE_UNUSED,
4310 bfd_boolean *type_change_ok ATTRIBUTE_UNUSED,
4311 bfd_boolean *size_change_ok ATTRIBUTE_UNUSED,
4312 bfd_boolean *newdef ATTRIBUTE_UNUSED,
4313 bfd_boolean *newdyn,
4314 bfd_boolean *newdyncommon ATTRIBUTE_UNUSED,
4315 bfd_boolean *newweak ATTRIBUTE_UNUSED,
4316 bfd *abfd ATTRIBUTE_UNUSED,
4317 asection **sec,
4318 bfd_boolean *olddef ATTRIBUTE_UNUSED,
4319 bfd_boolean *olddyn,
4320 bfd_boolean *olddyncommon ATTRIBUTE_UNUSED,
4321 bfd_boolean *oldweak ATTRIBUTE_UNUSED,
4322 bfd *oldbfd,
4323 asection **oldsec)
4324 {
4325 /* A normal common symbol and a large common symbol result in a
4326 normal common symbol. We turn the large common symbol into a
4327 normal one. */
4328 if (!*olddyn
4329 && h->root.type == bfd_link_hash_common
4330 && !*newdyn
4331 && bfd_is_com_section (*sec)
4332 && *oldsec != *sec)
4333 {
4334 if (sym->st_shndx == SHN_COMMON
4335 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) != 0)
4336 {
4337 h->root.u.c.p->section
4338 = bfd_make_section_old_way (oldbfd, "COMMON");
4339 h->root.u.c.p->section->flags = SEC_ALLOC;
4340 }
4341 else if (sym->st_shndx == SHN_X86_64_LCOMMON
4342 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) == 0)
4343 *psec = *sec = bfd_com_section_ptr;
4344 }
4345
4346 return TRUE;
4347 }
4348
4349 static int
4350 elf64_x86_64_additional_program_headers (bfd *abfd,
4351 struct bfd_link_info *info ATTRIBUTE_UNUSED)
4352 {
4353 asection *s;
4354 int count = 0;
4355
4356 /* Check to see if we need a large readonly segment. */
4357 s = bfd_get_section_by_name (abfd, ".lrodata");
4358 if (s && (s->flags & SEC_LOAD))
4359 count++;
4360
4361 /* Check to see if we need a large data segment. Since .lbss sections
4362 is placed right after the .bss section, there should be no need for
4363 a large data segment just because of .lbss. */
4364 s = bfd_get_section_by_name (abfd, ".ldata");
4365 if (s && (s->flags & SEC_LOAD))
4366 count++;
4367
4368 return count;
4369 }
4370
4371 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
4372
4373 static bfd_boolean
4374 elf64_x86_64_hash_symbol (struct elf_link_hash_entry *h)
4375 {
4376 if (h->plt.offset != (bfd_vma) -1
4377 && !h->def_regular
4378 && !h->pointer_equality_needed)
4379 return FALSE;
4380
4381 return _bfd_elf_hash_symbol (h);
4382 }
4383
4384 static const struct bfd_elf_special_section
4385 elf64_x86_64_special_sections[]=
4386 {
4387 { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4388 { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
4389 { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
4390 { STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4391 { STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4392 { STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
4393 { NULL, 0, 0, 0, 0 }
4394 };
4395
4396 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
4397 #define TARGET_LITTLE_NAME "elf64-x86-64"
4398 #define ELF_ARCH bfd_arch_i386
4399 #define ELF_MACHINE_CODE EM_X86_64
4400 #define ELF_MAXPAGESIZE 0x200000
4401 #define ELF_MINPAGESIZE 0x1000
4402 #define ELF_COMMONPAGESIZE 0x1000
4403
4404 #define elf_backend_can_gc_sections 1
4405 #define elf_backend_can_refcount 1
4406 #define elf_backend_want_got_plt 1
4407 #define elf_backend_plt_readonly 1
4408 #define elf_backend_want_plt_sym 0
4409 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
4410 #define elf_backend_rela_normal 1
4411
4412 #define elf_info_to_howto elf64_x86_64_info_to_howto
4413
4414 #define bfd_elf64_bfd_link_hash_table_create \
4415 elf64_x86_64_link_hash_table_create
4416 #define bfd_elf64_bfd_link_hash_table_free \
4417 elf64_x86_64_link_hash_table_free
4418 #define bfd_elf64_bfd_reloc_type_lookup elf64_x86_64_reloc_type_lookup
4419 #define bfd_elf64_bfd_reloc_name_lookup \
4420 elf64_x86_64_reloc_name_lookup
4421
4422 #define elf_backend_adjust_dynamic_symbol elf64_x86_64_adjust_dynamic_symbol
4423 #define elf_backend_relocs_compatible _bfd_elf_relocs_compatible
4424 #define elf_backend_check_relocs elf64_x86_64_check_relocs
4425 #define elf_backend_copy_indirect_symbol elf64_x86_64_copy_indirect_symbol
4426 #define elf_backend_create_dynamic_sections elf64_x86_64_create_dynamic_sections
4427 #define elf_backend_finish_dynamic_sections elf64_x86_64_finish_dynamic_sections
4428 #define elf_backend_finish_dynamic_symbol elf64_x86_64_finish_dynamic_symbol
4429 #define elf_backend_gc_mark_hook elf64_x86_64_gc_mark_hook
4430 #define elf_backend_gc_sweep_hook elf64_x86_64_gc_sweep_hook
4431 #define elf_backend_grok_prstatus elf64_x86_64_grok_prstatus
4432 #define elf_backend_grok_psinfo elf64_x86_64_grok_psinfo
4433 #define elf_backend_reloc_type_class elf64_x86_64_reloc_type_class
4434 #define elf_backend_relocate_section elf64_x86_64_relocate_section
4435 #define elf_backend_size_dynamic_sections elf64_x86_64_size_dynamic_sections
4436 #define elf_backend_always_size_sections elf64_x86_64_always_size_sections
4437 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4438 #define elf_backend_plt_sym_val elf64_x86_64_plt_sym_val
4439 #define elf_backend_object_p elf64_x86_64_elf_object_p
4440 #define bfd_elf64_mkobject elf64_x86_64_mkobject
4441
4442 #define elf_backend_section_from_shdr \
4443 elf64_x86_64_section_from_shdr
4444
4445 #define elf_backend_section_from_bfd_section \
4446 elf64_x86_64_elf_section_from_bfd_section
4447 #define elf_backend_add_symbol_hook \
4448 elf64_x86_64_add_symbol_hook
4449 #define elf_backend_symbol_processing \
4450 elf64_x86_64_symbol_processing
4451 #define elf_backend_common_section_index \
4452 elf64_x86_64_common_section_index
4453 #define elf_backend_common_section \
4454 elf64_x86_64_common_section
4455 #define elf_backend_common_definition \
4456 elf64_x86_64_common_definition
4457 #define elf_backend_merge_symbol \
4458 elf64_x86_64_merge_symbol
4459 #define elf_backend_special_sections \
4460 elf64_x86_64_special_sections
4461 #define elf_backend_additional_program_headers \
4462 elf64_x86_64_additional_program_headers
4463 #define elf_backend_hash_symbol \
4464 elf64_x86_64_hash_symbol
4465
4466 #undef elf_backend_post_process_headers
4467 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4468
4469 #include "elf64-target.h"
4470
4471 /* FreeBSD support. */
4472
4473 #undef TARGET_LITTLE_SYM
4474 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_freebsd_vec
4475 #undef TARGET_LITTLE_NAME
4476 #define TARGET_LITTLE_NAME "elf64-x86-64-freebsd"
4477
4478 #undef ELF_OSABI
4479 #define ELF_OSABI ELFOSABI_FREEBSD
4480
4481 #undef elf64_bed
4482 #define elf64_bed elf64_x86_64_fbsd_bed
4483
4484 #include "elf64-target.h"