* elf-bfd.h (struct sym_sec_cache): Delete.
[binutils-gdb.git] / bfd / elf64-x86-64.c
1 /* X86-64 specific support for 64-bit ELF
2 Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
3 Free Software Foundation, Inc.
4 Contributed by Jan Hubicka <jh@suse.cz>.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #include "elf-bfd.h"
28 #include "bfd_stdint.h"
29 #include "objalloc.h"
30 #include "hashtab.h"
31
32 #include "elf/x86-64.h"
33
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35 #define MINUS_ONE (~ (bfd_vma) 0)
36
37 /* The relocation "howto" table. Order of fields:
38 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
39 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
40 static reloc_howto_type x86_64_elf_howto_table[] =
41 {
42 HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
43 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
44 FALSE),
45 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
46 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
47 FALSE),
48 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
49 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
50 TRUE),
51 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
52 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
53 FALSE),
54 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
55 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
56 TRUE),
57 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
58 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
59 FALSE),
60 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
61 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
62 MINUS_ONE, FALSE),
63 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
64 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
65 MINUS_ONE, FALSE),
66 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
67 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
68 MINUS_ONE, FALSE),
69 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
70 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
71 0xffffffff, TRUE),
72 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
73 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
74 FALSE),
75 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
76 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
77 FALSE),
78 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
79 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
80 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
81 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
82 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
83 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
84 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
85 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
86 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
87 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
88 MINUS_ONE, FALSE),
89 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
90 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
91 MINUS_ONE, FALSE),
92 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
93 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
94 MINUS_ONE, FALSE),
95 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
96 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
97 0xffffffff, TRUE),
98 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
99 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
100 0xffffffff, TRUE),
101 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
102 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
103 0xffffffff, FALSE),
104 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
105 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
106 0xffffffff, TRUE),
107 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
108 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
109 0xffffffff, FALSE),
110 HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
111 bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
112 TRUE),
113 HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
114 bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
115 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
116 HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
117 bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
118 FALSE, 0xffffffff, 0xffffffff, TRUE),
119 HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
120 bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE,
121 FALSE),
122 HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
123 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE,
124 MINUS_ONE, TRUE),
125 HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
126 bfd_elf_generic_reloc, "R_X86_64_GOTPC64",
127 FALSE, MINUS_ONE, MINUS_ONE, TRUE),
128 HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
129 bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE,
130 MINUS_ONE, FALSE),
131 HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
132 bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE,
133 MINUS_ONE, FALSE),
134 EMPTY_HOWTO (32),
135 EMPTY_HOWTO (33),
136 HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0,
137 complain_overflow_bitfield, bfd_elf_generic_reloc,
138 "R_X86_64_GOTPC32_TLSDESC",
139 FALSE, 0xffffffff, 0xffffffff, TRUE),
140 HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0,
141 complain_overflow_dont, bfd_elf_generic_reloc,
142 "R_X86_64_TLSDESC_CALL",
143 FALSE, 0, 0, FALSE),
144 HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0,
145 complain_overflow_bitfield, bfd_elf_generic_reloc,
146 "R_X86_64_TLSDESC",
147 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
148 HOWTO(R_X86_64_IRELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
149 bfd_elf_generic_reloc, "R_X86_64_IRELATIVE", FALSE, MINUS_ONE,
150 MINUS_ONE, FALSE),
151
152 /* We have a gap in the reloc numbers here.
153 R_X86_64_standard counts the number up to this point, and
154 R_X86_64_vt_offset is the value to subtract from a reloc type of
155 R_X86_64_GNU_VT* to form an index into this table. */
156 #define R_X86_64_standard (R_X86_64_IRELATIVE + 1)
157 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
158
159 /* GNU extension to record C++ vtable hierarchy. */
160 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
161 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
162
163 /* GNU extension to record C++ vtable member usage. */
164 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
165 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
166 FALSE)
167 };
168
169 #define IS_X86_64_PCREL_TYPE(TYPE) \
170 ( ((TYPE) == R_X86_64_PC8) \
171 || ((TYPE) == R_X86_64_PC16) \
172 || ((TYPE) == R_X86_64_PC32) \
173 || ((TYPE) == R_X86_64_PC64))
174
175 /* Map BFD relocs to the x86_64 elf relocs. */
176 struct elf_reloc_map
177 {
178 bfd_reloc_code_real_type bfd_reloc_val;
179 unsigned char elf_reloc_val;
180 };
181
182 static const struct elf_reloc_map x86_64_reloc_map[] =
183 {
184 { BFD_RELOC_NONE, R_X86_64_NONE, },
185 { BFD_RELOC_64, R_X86_64_64, },
186 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
187 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
188 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
189 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
190 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
191 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
192 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
193 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
194 { BFD_RELOC_32, R_X86_64_32, },
195 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
196 { BFD_RELOC_16, R_X86_64_16, },
197 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
198 { BFD_RELOC_8, R_X86_64_8, },
199 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
200 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
201 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
202 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
203 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
204 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
205 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
206 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
207 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
208 { BFD_RELOC_64_PCREL, R_X86_64_PC64, },
209 { BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, },
210 { BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, },
211 { BFD_RELOC_X86_64_GOT64, R_X86_64_GOT64, },
212 { BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, },
213 { BFD_RELOC_X86_64_GOTPC64, R_X86_64_GOTPC64, },
214 { BFD_RELOC_X86_64_GOTPLT64, R_X86_64_GOTPLT64, },
215 { BFD_RELOC_X86_64_PLTOFF64, R_X86_64_PLTOFF64, },
216 { BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, },
217 { BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, },
218 { BFD_RELOC_X86_64_TLSDESC, R_X86_64_TLSDESC, },
219 { BFD_RELOC_X86_64_IRELATIVE, R_X86_64_IRELATIVE, },
220 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
221 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
222 };
223
224 static reloc_howto_type *
225 elf64_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type)
226 {
227 unsigned i;
228
229 if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
230 || r_type >= (unsigned int) R_X86_64_max)
231 {
232 if (r_type >= (unsigned int) R_X86_64_standard)
233 {
234 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
235 abfd, (int) r_type);
236 r_type = R_X86_64_NONE;
237 }
238 i = r_type;
239 }
240 else
241 i = r_type - (unsigned int) R_X86_64_vt_offset;
242 BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type);
243 return &x86_64_elf_howto_table[i];
244 }
245
246 /* Given a BFD reloc type, return a HOWTO structure. */
247 static reloc_howto_type *
248 elf64_x86_64_reloc_type_lookup (bfd *abfd,
249 bfd_reloc_code_real_type code)
250 {
251 unsigned int i;
252
253 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
254 i++)
255 {
256 if (x86_64_reloc_map[i].bfd_reloc_val == code)
257 return elf64_x86_64_rtype_to_howto (abfd,
258 x86_64_reloc_map[i].elf_reloc_val);
259 }
260 return 0;
261 }
262
263 static reloc_howto_type *
264 elf64_x86_64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
265 const char *r_name)
266 {
267 unsigned int i;
268
269 for (i = 0;
270 i < (sizeof (x86_64_elf_howto_table)
271 / sizeof (x86_64_elf_howto_table[0]));
272 i++)
273 if (x86_64_elf_howto_table[i].name != NULL
274 && strcasecmp (x86_64_elf_howto_table[i].name, r_name) == 0)
275 return &x86_64_elf_howto_table[i];
276
277 return NULL;
278 }
279
280 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
281
282 static void
283 elf64_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
284 Elf_Internal_Rela *dst)
285 {
286 unsigned r_type;
287
288 r_type = ELF64_R_TYPE (dst->r_info);
289 cache_ptr->howto = elf64_x86_64_rtype_to_howto (abfd, r_type);
290 BFD_ASSERT (r_type == cache_ptr->howto->type);
291 }
292 \f
293 /* Support for core dump NOTE sections. */
294 static bfd_boolean
295 elf64_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
296 {
297 int offset;
298 size_t size;
299
300 switch (note->descsz)
301 {
302 default:
303 return FALSE;
304
305 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
306 /* pr_cursig */
307 elf_tdata (abfd)->core_signal
308 = bfd_get_16 (abfd, note->descdata + 12);
309
310 /* pr_pid */
311 elf_tdata (abfd)->core_pid
312 = bfd_get_32 (abfd, note->descdata + 32);
313
314 /* pr_reg */
315 offset = 112;
316 size = 216;
317
318 break;
319 }
320
321 /* Make a ".reg/999" section. */
322 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
323 size, note->descpos + offset);
324 }
325
326 static bfd_boolean
327 elf64_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
328 {
329 switch (note->descsz)
330 {
331 default:
332 return FALSE;
333
334 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
335 elf_tdata (abfd)->core_program
336 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
337 elf_tdata (abfd)->core_command
338 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
339 }
340
341 /* Note that for some reason, a spurious space is tacked
342 onto the end of the args in some (at least one anyway)
343 implementations, so strip it off if it exists. */
344
345 {
346 char *command = elf_tdata (abfd)->core_command;
347 int n = strlen (command);
348
349 if (0 < n && command[n - 1] == ' ')
350 command[n - 1] = '\0';
351 }
352
353 return TRUE;
354 }
355 \f
356 /* Functions for the x86-64 ELF linker. */
357
358 /* The name of the dynamic interpreter. This is put in the .interp
359 section. */
360
361 #define ELF_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
362
363 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
364 copying dynamic variables from a shared lib into an app's dynbss
365 section, and instead use a dynamic relocation to point into the
366 shared lib. */
367 #define ELIMINATE_COPY_RELOCS 1
368
369 /* The size in bytes of an entry in the global offset table. */
370
371 #define GOT_ENTRY_SIZE 8
372
373 /* The size in bytes of an entry in the procedure linkage table. */
374
375 #define PLT_ENTRY_SIZE 16
376
377 /* The first entry in a procedure linkage table looks like this. See the
378 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
379
380 static const bfd_byte elf64_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
381 {
382 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
383 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
384 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */
385 };
386
387 /* Subsequent entries in a procedure linkage table look like this. */
388
389 static const bfd_byte elf64_x86_64_plt_entry[PLT_ENTRY_SIZE] =
390 {
391 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
392 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
393 0x68, /* pushq immediate */
394 0, 0, 0, 0, /* replaced with index into relocation table. */
395 0xe9, /* jmp relative */
396 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
397 };
398
399 /* x86-64 ELF linker hash entry. */
400
401 struct elf64_x86_64_link_hash_entry
402 {
403 struct elf_link_hash_entry elf;
404
405 /* Track dynamic relocs copied for this symbol. */
406 struct elf_dyn_relocs *dyn_relocs;
407
408 #define GOT_UNKNOWN 0
409 #define GOT_NORMAL 1
410 #define GOT_TLS_GD 2
411 #define GOT_TLS_IE 3
412 #define GOT_TLS_GDESC 4
413 #define GOT_TLS_GD_BOTH_P(type) \
414 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
415 #define GOT_TLS_GD_P(type) \
416 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
417 #define GOT_TLS_GDESC_P(type) \
418 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
419 #define GOT_TLS_GD_ANY_P(type) \
420 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
421 unsigned char tls_type;
422
423 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
424 starting at the end of the jump table. */
425 bfd_vma tlsdesc_got;
426 };
427
428 #define elf64_x86_64_hash_entry(ent) \
429 ((struct elf64_x86_64_link_hash_entry *)(ent))
430
431 struct elf64_x86_64_obj_tdata
432 {
433 struct elf_obj_tdata root;
434
435 /* tls_type for each local got entry. */
436 char *local_got_tls_type;
437
438 /* GOTPLT entries for TLS descriptors. */
439 bfd_vma *local_tlsdesc_gotent;
440 };
441
442 #define elf64_x86_64_tdata(abfd) \
443 ((struct elf64_x86_64_obj_tdata *) (abfd)->tdata.any)
444
445 #define elf64_x86_64_local_got_tls_type(abfd) \
446 (elf64_x86_64_tdata (abfd)->local_got_tls_type)
447
448 #define elf64_x86_64_local_tlsdesc_gotent(abfd) \
449 (elf64_x86_64_tdata (abfd)->local_tlsdesc_gotent)
450
451 #define is_x86_64_elf(bfd) \
452 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
453 && elf_tdata (bfd) != NULL \
454 && elf_object_id (bfd) == X86_64_ELF_TDATA)
455
456 static bfd_boolean
457 elf64_x86_64_mkobject (bfd *abfd)
458 {
459 return bfd_elf_allocate_object (abfd, sizeof (struct elf64_x86_64_obj_tdata),
460 X86_64_ELF_TDATA);
461 }
462
463 /* x86-64 ELF linker hash table. */
464
465 struct elf64_x86_64_link_hash_table
466 {
467 struct elf_link_hash_table elf;
468
469 /* Short-cuts to get to dynamic linker sections. */
470 asection *sdynbss;
471 asection *srelbss;
472
473 /* The offset into splt of the PLT entry for the TLS descriptor
474 resolver. Special values are 0, if not necessary (or not found
475 to be necessary yet), and -1 if needed but not determined
476 yet. */
477 bfd_vma tlsdesc_plt;
478 /* The offset into sgot of the GOT entry used by the PLT entry
479 above. */
480 bfd_vma tlsdesc_got;
481
482 union {
483 bfd_signed_vma refcount;
484 bfd_vma offset;
485 } tls_ld_got;
486
487 /* The amount of space used by the jump slots in the GOT. */
488 bfd_vma sgotplt_jump_table_size;
489
490 /* Small local sym cache. */
491 struct sym_cache sym_cache;
492
493 /* _TLS_MODULE_BASE_ symbol. */
494 struct bfd_link_hash_entry *tls_module_base;
495
496 /* Used by local STT_GNU_IFUNC symbols. */
497 htab_t loc_hash_table;
498 void *loc_hash_memory;
499 };
500
501 /* Get the x86-64 ELF linker hash table from a link_info structure. */
502
503 #define elf64_x86_64_hash_table(p) \
504 ((struct elf64_x86_64_link_hash_table *) ((p)->hash))
505
506 #define elf64_x86_64_compute_jump_table_size(htab) \
507 ((htab)->elf.srelplt->reloc_count * GOT_ENTRY_SIZE)
508
509 /* Create an entry in an x86-64 ELF linker hash table. */
510
511 static struct bfd_hash_entry *
512 elf64_x86_64_link_hash_newfunc (struct bfd_hash_entry *entry,
513 struct bfd_hash_table *table,
514 const char *string)
515 {
516 /* Allocate the structure if it has not already been allocated by a
517 subclass. */
518 if (entry == NULL)
519 {
520 entry = bfd_hash_allocate (table,
521 sizeof (struct elf64_x86_64_link_hash_entry));
522 if (entry == NULL)
523 return entry;
524 }
525
526 /* Call the allocation method of the superclass. */
527 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
528 if (entry != NULL)
529 {
530 struct elf64_x86_64_link_hash_entry *eh;
531
532 eh = (struct elf64_x86_64_link_hash_entry *) entry;
533 eh->dyn_relocs = NULL;
534 eh->tls_type = GOT_UNKNOWN;
535 eh->tlsdesc_got = (bfd_vma) -1;
536 }
537
538 return entry;
539 }
540
541 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
542 for local symbol so that we can handle local STT_GNU_IFUNC symbols
543 as global symbol. We reuse indx and dynstr_index for local symbol
544 hash since they aren't used by global symbols in this backend. */
545
546 static hashval_t
547 elf64_x86_64_local_htab_hash (const void *ptr)
548 {
549 struct elf_link_hash_entry *h
550 = (struct elf_link_hash_entry *) ptr;
551 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
552 }
553
554 /* Compare local hash entries. */
555
556 static int
557 elf64_x86_64_local_htab_eq (const void *ptr1, const void *ptr2)
558 {
559 struct elf_link_hash_entry *h1
560 = (struct elf_link_hash_entry *) ptr1;
561 struct elf_link_hash_entry *h2
562 = (struct elf_link_hash_entry *) ptr2;
563
564 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
565 }
566
567 /* Find and/or create a hash entry for local symbol. */
568
569 static struct elf_link_hash_entry *
570 elf64_x86_64_get_local_sym_hash (struct elf64_x86_64_link_hash_table *htab,
571 bfd *abfd, const Elf_Internal_Rela *rel,
572 bfd_boolean create)
573 {
574 struct elf64_x86_64_link_hash_entry e, *ret;
575 asection *sec = abfd->sections;
576 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
577 ELF64_R_SYM (rel->r_info));
578 void **slot;
579
580 e.elf.indx = sec->id;
581 e.elf.dynstr_index = ELF64_R_SYM (rel->r_info);
582 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
583 create ? INSERT : NO_INSERT);
584
585 if (!slot)
586 return NULL;
587
588 if (*slot)
589 {
590 ret = (struct elf64_x86_64_link_hash_entry *) *slot;
591 return &ret->elf;
592 }
593
594 ret = (struct elf64_x86_64_link_hash_entry *)
595 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
596 sizeof (struct elf64_x86_64_link_hash_entry));
597 if (ret)
598 {
599 memset (ret, 0, sizeof (*ret));
600 ret->elf.indx = sec->id;
601 ret->elf.dynstr_index = ELF64_R_SYM (rel->r_info);
602 ret->elf.dynindx = -1;
603 ret->elf.plt.offset = (bfd_vma) -1;
604 ret->elf.got.offset = (bfd_vma) -1;
605 *slot = ret;
606 }
607 return &ret->elf;
608 }
609
610 /* Create an X86-64 ELF linker hash table. */
611
612 static struct bfd_link_hash_table *
613 elf64_x86_64_link_hash_table_create (bfd *abfd)
614 {
615 struct elf64_x86_64_link_hash_table *ret;
616 bfd_size_type amt = sizeof (struct elf64_x86_64_link_hash_table);
617
618 ret = (struct elf64_x86_64_link_hash_table *) bfd_malloc (amt);
619 if (ret == NULL)
620 return NULL;
621
622 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
623 elf64_x86_64_link_hash_newfunc,
624 sizeof (struct elf64_x86_64_link_hash_entry)))
625 {
626 free (ret);
627 return NULL;
628 }
629
630 ret->sdynbss = NULL;
631 ret->srelbss = NULL;
632 ret->sym_cache.abfd = NULL;
633 ret->tlsdesc_plt = 0;
634 ret->tlsdesc_got = 0;
635 ret->tls_ld_got.refcount = 0;
636 ret->sgotplt_jump_table_size = 0;
637 ret->tls_module_base = NULL;
638
639 ret->loc_hash_table = htab_try_create (1024,
640 elf64_x86_64_local_htab_hash,
641 elf64_x86_64_local_htab_eq,
642 NULL);
643 ret->loc_hash_memory = objalloc_create ();
644 if (!ret->loc_hash_table || !ret->loc_hash_memory)
645 {
646 free (ret);
647 return NULL;
648 }
649
650 return &ret->elf.root;
651 }
652
653 /* Destroy an X86-64 ELF linker hash table. */
654
655 static void
656 elf64_x86_64_link_hash_table_free (struct bfd_link_hash_table *hash)
657 {
658 struct elf64_x86_64_link_hash_table *htab
659 = (struct elf64_x86_64_link_hash_table *) hash;
660
661 if (htab->loc_hash_table)
662 htab_delete (htab->loc_hash_table);
663 if (htab->loc_hash_memory)
664 objalloc_free ((struct objalloc *) htab->loc_hash_memory);
665 _bfd_generic_link_hash_table_free (hash);
666 }
667
668 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
669 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
670 hash table. */
671
672 static bfd_boolean
673 elf64_x86_64_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
674 {
675 struct elf64_x86_64_link_hash_table *htab;
676
677 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
678 return FALSE;
679
680 htab = elf64_x86_64_hash_table (info);
681 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
682 if (!info->shared)
683 htab->srelbss = bfd_get_section_by_name (dynobj, ".rela.bss");
684
685 if (!htab->sdynbss
686 || (!info->shared && !htab->srelbss))
687 abort ();
688
689 return TRUE;
690 }
691
692 /* Copy the extra info we tack onto an elf_link_hash_entry. */
693
694 static void
695 elf64_x86_64_copy_indirect_symbol (struct bfd_link_info *info,
696 struct elf_link_hash_entry *dir,
697 struct elf_link_hash_entry *ind)
698 {
699 struct elf64_x86_64_link_hash_entry *edir, *eind;
700
701 edir = (struct elf64_x86_64_link_hash_entry *) dir;
702 eind = (struct elf64_x86_64_link_hash_entry *) ind;
703
704 if (eind->dyn_relocs != NULL)
705 {
706 if (edir->dyn_relocs != NULL)
707 {
708 struct elf_dyn_relocs **pp;
709 struct elf_dyn_relocs *p;
710
711 /* Add reloc counts against the indirect sym to the direct sym
712 list. Merge any entries against the same section. */
713 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
714 {
715 struct elf_dyn_relocs *q;
716
717 for (q = edir->dyn_relocs; q != NULL; q = q->next)
718 if (q->sec == p->sec)
719 {
720 q->pc_count += p->pc_count;
721 q->count += p->count;
722 *pp = p->next;
723 break;
724 }
725 if (q == NULL)
726 pp = &p->next;
727 }
728 *pp = edir->dyn_relocs;
729 }
730
731 edir->dyn_relocs = eind->dyn_relocs;
732 eind->dyn_relocs = NULL;
733 }
734
735 if (ind->root.type == bfd_link_hash_indirect
736 && dir->got.refcount <= 0)
737 {
738 edir->tls_type = eind->tls_type;
739 eind->tls_type = GOT_UNKNOWN;
740 }
741
742 if (ELIMINATE_COPY_RELOCS
743 && ind->root.type != bfd_link_hash_indirect
744 && dir->dynamic_adjusted)
745 {
746 /* If called to transfer flags for a weakdef during processing
747 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
748 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
749 dir->ref_dynamic |= ind->ref_dynamic;
750 dir->ref_regular |= ind->ref_regular;
751 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
752 dir->needs_plt |= ind->needs_plt;
753 dir->pointer_equality_needed |= ind->pointer_equality_needed;
754 }
755 else
756 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
757 }
758
759 static bfd_boolean
760 elf64_x86_64_elf_object_p (bfd *abfd)
761 {
762 /* Set the right machine number for an x86-64 elf64 file. */
763 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
764 return TRUE;
765 }
766
767 typedef union
768 {
769 unsigned char c[2];
770 uint16_t i;
771 }
772 x86_64_opcode16;
773
774 typedef union
775 {
776 unsigned char c[4];
777 uint32_t i;
778 }
779 x86_64_opcode32;
780
781 /* Return TRUE if the TLS access code sequence support transition
782 from R_TYPE. */
783
784 static bfd_boolean
785 elf64_x86_64_check_tls_transition (bfd *abfd, asection *sec,
786 bfd_byte *contents,
787 Elf_Internal_Shdr *symtab_hdr,
788 struct elf_link_hash_entry **sym_hashes,
789 unsigned int r_type,
790 const Elf_Internal_Rela *rel,
791 const Elf_Internal_Rela *relend)
792 {
793 unsigned int val;
794 unsigned long r_symndx;
795 struct elf_link_hash_entry *h;
796 bfd_vma offset;
797
798 /* Get the section contents. */
799 if (contents == NULL)
800 {
801 if (elf_section_data (sec)->this_hdr.contents != NULL)
802 contents = elf_section_data (sec)->this_hdr.contents;
803 else
804 {
805 /* FIXME: How to better handle error condition? */
806 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
807 return FALSE;
808
809 /* Cache the section contents for elf_link_input_bfd. */
810 elf_section_data (sec)->this_hdr.contents = contents;
811 }
812 }
813
814 offset = rel->r_offset;
815 switch (r_type)
816 {
817 case R_X86_64_TLSGD:
818 case R_X86_64_TLSLD:
819 if ((rel + 1) >= relend)
820 return FALSE;
821
822 if (r_type == R_X86_64_TLSGD)
823 {
824 /* Check transition from GD access model. Only
825 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
826 .word 0x6666; rex64; call __tls_get_addr
827 can transit to different access model. */
828
829 static x86_64_opcode32 leaq = { { 0x66, 0x48, 0x8d, 0x3d } },
830 call = { { 0x66, 0x66, 0x48, 0xe8 } };
831 if (offset < 4
832 || (offset + 12) > sec->size
833 || bfd_get_32 (abfd, contents + offset - 4) != leaq.i
834 || bfd_get_32 (abfd, contents + offset + 4) != call.i)
835 return FALSE;
836 }
837 else
838 {
839 /* Check transition from LD access model. Only
840 leaq foo@tlsld(%rip), %rdi;
841 call __tls_get_addr
842 can transit to different access model. */
843
844 static x86_64_opcode32 ld = { { 0x48, 0x8d, 0x3d, 0xe8 } };
845 x86_64_opcode32 op;
846
847 if (offset < 3 || (offset + 9) > sec->size)
848 return FALSE;
849
850 op.i = bfd_get_32 (abfd, contents + offset - 3);
851 op.c[3] = bfd_get_8 (abfd, contents + offset + 4);
852 if (op.i != ld.i)
853 return FALSE;
854 }
855
856 r_symndx = ELF64_R_SYM (rel[1].r_info);
857 if (r_symndx < symtab_hdr->sh_info)
858 return FALSE;
859
860 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
861 /* Use strncmp to check __tls_get_addr since __tls_get_addr
862 may be versioned. */
863 return (h != NULL
864 && h->root.root.string != NULL
865 && (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PC32
866 || ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32)
867 && (strncmp (h->root.root.string,
868 "__tls_get_addr", 14) == 0));
869
870 case R_X86_64_GOTTPOFF:
871 /* Check transition from IE access model:
872 movq foo@gottpoff(%rip), %reg
873 addq foo@gottpoff(%rip), %reg
874 */
875
876 if (offset < 3 || (offset + 4) > sec->size)
877 return FALSE;
878
879 val = bfd_get_8 (abfd, contents + offset - 3);
880 if (val != 0x48 && val != 0x4c)
881 return FALSE;
882
883 val = bfd_get_8 (abfd, contents + offset - 2);
884 if (val != 0x8b && val != 0x03)
885 return FALSE;
886
887 val = bfd_get_8 (abfd, contents + offset - 1);
888 return (val & 0xc7) == 5;
889
890 case R_X86_64_GOTPC32_TLSDESC:
891 /* Check transition from GDesc access model:
892 leaq x@tlsdesc(%rip), %rax
893
894 Make sure it's a leaq adding rip to a 32-bit offset
895 into any register, although it's probably almost always
896 going to be rax. */
897
898 if (offset < 3 || (offset + 4) > sec->size)
899 return FALSE;
900
901 val = bfd_get_8 (abfd, contents + offset - 3);
902 if ((val & 0xfb) != 0x48)
903 return FALSE;
904
905 if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d)
906 return FALSE;
907
908 val = bfd_get_8 (abfd, contents + offset - 1);
909 return (val & 0xc7) == 0x05;
910
911 case R_X86_64_TLSDESC_CALL:
912 /* Check transition from GDesc access model:
913 call *x@tlsdesc(%rax)
914 */
915 if (offset + 2 <= sec->size)
916 {
917 /* Make sure that it's a call *x@tlsdesc(%rax). */
918 static x86_64_opcode16 call = { { 0xff, 0x10 } };
919 return bfd_get_16 (abfd, contents + offset) == call.i;
920 }
921
922 return FALSE;
923
924 default:
925 abort ();
926 }
927 }
928
929 /* Return TRUE if the TLS access transition is OK or no transition
930 will be performed. Update R_TYPE if there is a transition. */
931
932 static bfd_boolean
933 elf64_x86_64_tls_transition (struct bfd_link_info *info, bfd *abfd,
934 asection *sec, bfd_byte *contents,
935 Elf_Internal_Shdr *symtab_hdr,
936 struct elf_link_hash_entry **sym_hashes,
937 unsigned int *r_type, int tls_type,
938 const Elf_Internal_Rela *rel,
939 const Elf_Internal_Rela *relend,
940 struct elf_link_hash_entry *h)
941 {
942 unsigned int from_type = *r_type;
943 unsigned int to_type = from_type;
944 bfd_boolean check = TRUE;
945
946 switch (from_type)
947 {
948 case R_X86_64_TLSGD:
949 case R_X86_64_GOTPC32_TLSDESC:
950 case R_X86_64_TLSDESC_CALL:
951 case R_X86_64_GOTTPOFF:
952 if (!info->shared)
953 {
954 if (h == NULL)
955 to_type = R_X86_64_TPOFF32;
956 else
957 to_type = R_X86_64_GOTTPOFF;
958 }
959
960 /* When we are called from elf64_x86_64_relocate_section,
961 CONTENTS isn't NULL and there may be additional transitions
962 based on TLS_TYPE. */
963 if (contents != NULL)
964 {
965 unsigned int new_to_type = to_type;
966
967 if (!info->shared
968 && h != NULL
969 && h->dynindx == -1
970 && tls_type == GOT_TLS_IE)
971 new_to_type = R_X86_64_TPOFF32;
972
973 if (to_type == R_X86_64_TLSGD
974 || to_type == R_X86_64_GOTPC32_TLSDESC
975 || to_type == R_X86_64_TLSDESC_CALL)
976 {
977 if (tls_type == GOT_TLS_IE)
978 new_to_type = R_X86_64_GOTTPOFF;
979 }
980
981 /* We checked the transition before when we were called from
982 elf64_x86_64_check_relocs. We only want to check the new
983 transition which hasn't been checked before. */
984 check = new_to_type != to_type && from_type == to_type;
985 to_type = new_to_type;
986 }
987
988 break;
989
990 case R_X86_64_TLSLD:
991 if (!info->shared)
992 to_type = R_X86_64_TPOFF32;
993 break;
994
995 default:
996 return TRUE;
997 }
998
999 /* Return TRUE if there is no transition. */
1000 if (from_type == to_type)
1001 return TRUE;
1002
1003 /* Check if the transition can be performed. */
1004 if (check
1005 && ! elf64_x86_64_check_tls_transition (abfd, sec, contents,
1006 symtab_hdr, sym_hashes,
1007 from_type, rel, relend))
1008 {
1009 reloc_howto_type *from, *to;
1010
1011 from = elf64_x86_64_rtype_to_howto (abfd, from_type);
1012 to = elf64_x86_64_rtype_to_howto (abfd, to_type);
1013
1014 (*_bfd_error_handler)
1015 (_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
1016 "in section `%A' failed"),
1017 abfd, sec, from->name, to->name,
1018 h ? h->root.root.string : "a local symbol",
1019 (unsigned long) rel->r_offset);
1020 bfd_set_error (bfd_error_bad_value);
1021 return FALSE;
1022 }
1023
1024 *r_type = to_type;
1025 return TRUE;
1026 }
1027
1028 /* Look through the relocs for a section during the first phase, and
1029 calculate needed space in the global offset table, procedure
1030 linkage table, and dynamic reloc sections. */
1031
1032 static bfd_boolean
1033 elf64_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info,
1034 asection *sec,
1035 const Elf_Internal_Rela *relocs)
1036 {
1037 struct elf64_x86_64_link_hash_table *htab;
1038 Elf_Internal_Shdr *symtab_hdr;
1039 struct elf_link_hash_entry **sym_hashes;
1040 const Elf_Internal_Rela *rel;
1041 const Elf_Internal_Rela *rel_end;
1042 asection *sreloc;
1043 Elf_Internal_Sym *isymbuf;
1044
1045 if (info->relocatable)
1046 return TRUE;
1047
1048 BFD_ASSERT (is_x86_64_elf (abfd));
1049
1050 htab = elf64_x86_64_hash_table (info);
1051 symtab_hdr = &elf_symtab_hdr (abfd);
1052 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
1053 sym_hashes = elf_sym_hashes (abfd);
1054
1055 sreloc = NULL;
1056
1057 rel_end = relocs + sec->reloc_count;
1058 for (rel = relocs; rel < rel_end; rel++)
1059 {
1060 unsigned int r_type;
1061 unsigned long r_symndx;
1062 struct elf_link_hash_entry *h;
1063
1064 r_symndx = ELF64_R_SYM (rel->r_info);
1065 r_type = ELF64_R_TYPE (rel->r_info);
1066
1067 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1068 {
1069 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1070 abfd, r_symndx);
1071 return FALSE;
1072 }
1073
1074 if (r_symndx < symtab_hdr->sh_info)
1075 {
1076 /* A local symbol. */
1077 Elf_Internal_Sym *isym;
1078
1079 /* Read this BFD's local symbols. */
1080 if (isymbuf == NULL)
1081 {
1082 if (isymbuf == NULL)
1083 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
1084 symtab_hdr->sh_info, 0,
1085 NULL, NULL, NULL);
1086 if (isymbuf == NULL)
1087 return FALSE;
1088 }
1089
1090 /* Check relocation against local STT_GNU_IFUNC symbol. */
1091 isym = isymbuf + r_symndx;
1092 if (ELF64_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1093 {
1094 h = elf64_x86_64_get_local_sym_hash (htab, abfd, rel,
1095 TRUE);
1096 if (h == NULL)
1097 goto error_return;
1098
1099 /* Fake a STT_GNU_IFUNC symbol. */
1100 h->type = STT_GNU_IFUNC;
1101 h->def_regular = 1;
1102 h->ref_regular = 1;
1103 h->forced_local = 1;
1104 h->root.type = bfd_link_hash_defined;
1105 }
1106 else
1107 h = NULL;
1108 }
1109 else
1110 {
1111 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1112 while (h->root.type == bfd_link_hash_indirect
1113 || h->root.type == bfd_link_hash_warning)
1114 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1115 }
1116
1117 if (h != NULL)
1118 {
1119 /* Create the ifunc sections for static executables. If we
1120 never see an indirect function symbol nor we are building
1121 a static executable, those sections will be empty and
1122 won't appear in output. */
1123 switch (r_type)
1124 {
1125 default:
1126 break;
1127
1128 case R_X86_64_32S:
1129 case R_X86_64_32:
1130 case R_X86_64_64:
1131 case R_X86_64_PC32:
1132 case R_X86_64_PC64:
1133 case R_X86_64_PLT32:
1134 case R_X86_64_GOTPCREL:
1135 case R_X86_64_GOTPCREL64:
1136 if (!_bfd_elf_create_ifunc_sections (abfd, info))
1137 goto error_return;
1138 break;
1139 }
1140
1141 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
1142 it here if it is defined in a non-shared object. */
1143 if (h->type == STT_GNU_IFUNC
1144 && h->def_regular)
1145 {
1146 /* It is referenced by a non-shared object. */
1147 h->ref_regular = 1;
1148
1149 /* STT_GNU_IFUNC symbol must go through PLT. */
1150 h->plt.refcount += 1;
1151
1152 /* STT_GNU_IFUNC needs dynamic sections. */
1153 if (htab->elf.dynobj == NULL)
1154 htab->elf.dynobj = abfd;
1155
1156 switch (r_type)
1157 {
1158 default:
1159 (*_bfd_error_handler)
1160 (_("%B: relocation %s against STT_GNU_IFUNC "
1161 "symbol `%s' isn't handled by %s"), abfd,
1162 x86_64_elf_howto_table[r_type].name,
1163 (h->root.root.string
1164 ? h->root.root.string : "a local symbol"),
1165 __FUNCTION__);
1166 bfd_set_error (bfd_error_bad_value);
1167 goto error_return;
1168
1169 case R_X86_64_64:
1170 h->non_got_ref = 1;
1171 h->pointer_equality_needed = 1;
1172 if (info->shared)
1173 {
1174 /* We must copy these reloc types into the output
1175 file. Create a reloc section in dynobj and
1176 make room for this reloc. */
1177 sreloc = _bfd_elf_create_ifunc_dyn_reloc
1178 (abfd, info, sec, sreloc,
1179 &((struct elf64_x86_64_link_hash_entry *) h)->dyn_relocs);
1180 if (sreloc == NULL)
1181 goto error_return;
1182 }
1183 break;
1184
1185 case R_X86_64_32S:
1186 case R_X86_64_32:
1187 case R_X86_64_PC32:
1188 case R_X86_64_PC64:
1189 h->non_got_ref = 1;
1190 if (r_type != R_X86_64_PC32
1191 && r_type != R_X86_64_PC64)
1192 h->pointer_equality_needed = 1;
1193 break;
1194
1195 case R_X86_64_PLT32:
1196 break;
1197
1198 case R_X86_64_GOTPCREL:
1199 case R_X86_64_GOTPCREL64:
1200 h->got.refcount += 1;
1201 if (htab->elf.sgot == NULL
1202 && !_bfd_elf_create_got_section (htab->elf.dynobj,
1203 info))
1204 goto error_return;
1205 break;
1206 }
1207
1208 continue;
1209 }
1210 }
1211
1212 if (! elf64_x86_64_tls_transition (info, abfd, sec, NULL,
1213 symtab_hdr, sym_hashes,
1214 &r_type, GOT_UNKNOWN,
1215 rel, rel_end, h))
1216 goto error_return;
1217
1218 switch (r_type)
1219 {
1220 case R_X86_64_TLSLD:
1221 htab->tls_ld_got.refcount += 1;
1222 goto create_got;
1223
1224 case R_X86_64_TPOFF32:
1225 if (info->shared)
1226 {
1227 (*_bfd_error_handler)
1228 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1229 abfd,
1230 x86_64_elf_howto_table[r_type].name,
1231 (h) ? h->root.root.string : "a local symbol");
1232 bfd_set_error (bfd_error_bad_value);
1233 goto error_return;
1234 }
1235 break;
1236
1237 case R_X86_64_GOTTPOFF:
1238 if (info->shared)
1239 info->flags |= DF_STATIC_TLS;
1240 /* Fall through */
1241
1242 case R_X86_64_GOT32:
1243 case R_X86_64_GOTPCREL:
1244 case R_X86_64_TLSGD:
1245 case R_X86_64_GOT64:
1246 case R_X86_64_GOTPCREL64:
1247 case R_X86_64_GOTPLT64:
1248 case R_X86_64_GOTPC32_TLSDESC:
1249 case R_X86_64_TLSDESC_CALL:
1250 /* This symbol requires a global offset table entry. */
1251 {
1252 int tls_type, old_tls_type;
1253
1254 switch (r_type)
1255 {
1256 default: tls_type = GOT_NORMAL; break;
1257 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
1258 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
1259 case R_X86_64_GOTPC32_TLSDESC:
1260 case R_X86_64_TLSDESC_CALL:
1261 tls_type = GOT_TLS_GDESC; break;
1262 }
1263
1264 if (h != NULL)
1265 {
1266 if (r_type == R_X86_64_GOTPLT64)
1267 {
1268 /* This relocation indicates that we also need
1269 a PLT entry, as this is a function. We don't need
1270 a PLT entry for local symbols. */
1271 h->needs_plt = 1;
1272 h->plt.refcount += 1;
1273 }
1274 h->got.refcount += 1;
1275 old_tls_type = elf64_x86_64_hash_entry (h)->tls_type;
1276 }
1277 else
1278 {
1279 bfd_signed_vma *local_got_refcounts;
1280
1281 /* This is a global offset table entry for a local symbol. */
1282 local_got_refcounts = elf_local_got_refcounts (abfd);
1283 if (local_got_refcounts == NULL)
1284 {
1285 bfd_size_type size;
1286
1287 size = symtab_hdr->sh_info;
1288 size *= sizeof (bfd_signed_vma)
1289 + sizeof (bfd_vma) + sizeof (char);
1290 local_got_refcounts = ((bfd_signed_vma *)
1291 bfd_zalloc (abfd, size));
1292 if (local_got_refcounts == NULL)
1293 goto error_return;
1294 elf_local_got_refcounts (abfd) = local_got_refcounts;
1295 elf64_x86_64_local_tlsdesc_gotent (abfd)
1296 = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info);
1297 elf64_x86_64_local_got_tls_type (abfd)
1298 = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
1299 }
1300 local_got_refcounts[r_symndx] += 1;
1301 old_tls_type
1302 = elf64_x86_64_local_got_tls_type (abfd) [r_symndx];
1303 }
1304
1305 /* If a TLS symbol is accessed using IE at least once,
1306 there is no point to use dynamic model for it. */
1307 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1308 && (! GOT_TLS_GD_ANY_P (old_tls_type)
1309 || tls_type != GOT_TLS_IE))
1310 {
1311 if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type))
1312 tls_type = old_tls_type;
1313 else if (GOT_TLS_GD_ANY_P (old_tls_type)
1314 && GOT_TLS_GD_ANY_P (tls_type))
1315 tls_type |= old_tls_type;
1316 else
1317 {
1318 (*_bfd_error_handler)
1319 (_("%B: '%s' accessed both as normal and thread local symbol"),
1320 abfd, h ? h->root.root.string : "<local>");
1321 goto error_return;
1322 }
1323 }
1324
1325 if (old_tls_type != tls_type)
1326 {
1327 if (h != NULL)
1328 elf64_x86_64_hash_entry (h)->tls_type = tls_type;
1329 else
1330 elf64_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
1331 }
1332 }
1333 /* Fall through */
1334
1335 case R_X86_64_GOTOFF64:
1336 case R_X86_64_GOTPC32:
1337 case R_X86_64_GOTPC64:
1338 create_got:
1339 if (htab->elf.sgot == NULL)
1340 {
1341 if (htab->elf.dynobj == NULL)
1342 htab->elf.dynobj = abfd;
1343 if (!_bfd_elf_create_got_section (htab->elf.dynobj,
1344 info))
1345 goto error_return;
1346 }
1347 break;
1348
1349 case R_X86_64_PLT32:
1350 /* This symbol requires a procedure linkage table entry. We
1351 actually build the entry in adjust_dynamic_symbol,
1352 because this might be a case of linking PIC code which is
1353 never referenced by a dynamic object, in which case we
1354 don't need to generate a procedure linkage table entry
1355 after all. */
1356
1357 /* If this is a local symbol, we resolve it directly without
1358 creating a procedure linkage table entry. */
1359 if (h == NULL)
1360 continue;
1361
1362 h->needs_plt = 1;
1363 h->plt.refcount += 1;
1364 break;
1365
1366 case R_X86_64_PLTOFF64:
1367 /* This tries to form the 'address' of a function relative
1368 to GOT. For global symbols we need a PLT entry. */
1369 if (h != NULL)
1370 {
1371 h->needs_plt = 1;
1372 h->plt.refcount += 1;
1373 }
1374 goto create_got;
1375
1376 case R_X86_64_8:
1377 case R_X86_64_16:
1378 case R_X86_64_32:
1379 case R_X86_64_32S:
1380 /* Let's help debug shared library creation. These relocs
1381 cannot be used in shared libs. Don't error out for
1382 sections we don't care about, such as debug sections or
1383 non-constant sections. */
1384 if (info->shared
1385 && (sec->flags & SEC_ALLOC) != 0
1386 && (sec->flags & SEC_READONLY) != 0)
1387 {
1388 (*_bfd_error_handler)
1389 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1390 abfd,
1391 x86_64_elf_howto_table[r_type].name,
1392 (h) ? h->root.root.string : "a local symbol");
1393 bfd_set_error (bfd_error_bad_value);
1394 goto error_return;
1395 }
1396 /* Fall through. */
1397
1398 case R_X86_64_PC8:
1399 case R_X86_64_PC16:
1400 case R_X86_64_PC32:
1401 case R_X86_64_PC64:
1402 case R_X86_64_64:
1403 if (h != NULL && info->executable)
1404 {
1405 /* If this reloc is in a read-only section, we might
1406 need a copy reloc. We can't check reliably at this
1407 stage whether the section is read-only, as input
1408 sections have not yet been mapped to output sections.
1409 Tentatively set the flag for now, and correct in
1410 adjust_dynamic_symbol. */
1411 h->non_got_ref = 1;
1412
1413 /* We may need a .plt entry if the function this reloc
1414 refers to is in a shared lib. */
1415 h->plt.refcount += 1;
1416 if (r_type != R_X86_64_PC32 && r_type != R_X86_64_PC64)
1417 h->pointer_equality_needed = 1;
1418 }
1419
1420 /* If we are creating a shared library, and this is a reloc
1421 against a global symbol, or a non PC relative reloc
1422 against a local symbol, then we need to copy the reloc
1423 into the shared library. However, if we are linking with
1424 -Bsymbolic, we do not need to copy a reloc against a
1425 global symbol which is defined in an object we are
1426 including in the link (i.e., DEF_REGULAR is set). At
1427 this point we have not seen all the input files, so it is
1428 possible that DEF_REGULAR is not set now but will be set
1429 later (it is never cleared). In case of a weak definition,
1430 DEF_REGULAR may be cleared later by a strong definition in
1431 a shared library. We account for that possibility below by
1432 storing information in the relocs_copied field of the hash
1433 table entry. A similar situation occurs when creating
1434 shared libraries and symbol visibility changes render the
1435 symbol local.
1436
1437 If on the other hand, we are creating an executable, we
1438 may need to keep relocations for symbols satisfied by a
1439 dynamic library if we manage to avoid copy relocs for the
1440 symbol. */
1441 if ((info->shared
1442 && (sec->flags & SEC_ALLOC) != 0
1443 && (! IS_X86_64_PCREL_TYPE (r_type)
1444 || (h != NULL
1445 && (! SYMBOLIC_BIND (info, h)
1446 || h->root.type == bfd_link_hash_defweak
1447 || !h->def_regular))))
1448 || (ELIMINATE_COPY_RELOCS
1449 && !info->shared
1450 && (sec->flags & SEC_ALLOC) != 0
1451 && h != NULL
1452 && (h->root.type == bfd_link_hash_defweak
1453 || !h->def_regular)))
1454 {
1455 struct elf_dyn_relocs *p;
1456 struct elf_dyn_relocs **head;
1457
1458 /* We must copy these reloc types into the output file.
1459 Create a reloc section in dynobj and make room for
1460 this reloc. */
1461 if (sreloc == NULL)
1462 {
1463 if (htab->elf.dynobj == NULL)
1464 htab->elf.dynobj = abfd;
1465
1466 sreloc = _bfd_elf_make_dynamic_reloc_section
1467 (sec, htab->elf.dynobj, 3, abfd, /*rela?*/ TRUE);
1468
1469 if (sreloc == NULL)
1470 goto error_return;
1471 }
1472
1473 /* If this is a global symbol, we count the number of
1474 relocations we need for this symbol. */
1475 if (h != NULL)
1476 {
1477 head = &((struct elf64_x86_64_link_hash_entry *) h)->dyn_relocs;
1478 }
1479 else
1480 {
1481 /* Track dynamic relocs needed for local syms too.
1482 We really need local syms available to do this
1483 easily. Oh well. */
1484 asection *s;
1485 void **vpp;
1486 Elf_Internal_Sym *isym;
1487
1488 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1489 abfd, r_symndx);
1490 if (isym == NULL)
1491 return FALSE;
1492
1493 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
1494 if (s == NULL)
1495 s = sec;
1496
1497 /* Beware of type punned pointers vs strict aliasing
1498 rules. */
1499 vpp = &(elf_section_data (s)->local_dynrel);
1500 head = (struct elf_dyn_relocs **)vpp;
1501 }
1502
1503 p = *head;
1504 if (p == NULL || p->sec != sec)
1505 {
1506 bfd_size_type amt = sizeof *p;
1507
1508 p = ((struct elf_dyn_relocs *)
1509 bfd_alloc (htab->elf.dynobj, amt));
1510 if (p == NULL)
1511 goto error_return;
1512 p->next = *head;
1513 *head = p;
1514 p->sec = sec;
1515 p->count = 0;
1516 p->pc_count = 0;
1517 }
1518
1519 p->count += 1;
1520 if (IS_X86_64_PCREL_TYPE (r_type))
1521 p->pc_count += 1;
1522 }
1523 break;
1524
1525 /* This relocation describes the C++ object vtable hierarchy.
1526 Reconstruct it for later use during GC. */
1527 case R_X86_64_GNU_VTINHERIT:
1528 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1529 goto error_return;
1530 break;
1531
1532 /* This relocation describes which C++ vtable entries are actually
1533 used. Record for later use during GC. */
1534 case R_X86_64_GNU_VTENTRY:
1535 BFD_ASSERT (h != NULL);
1536 if (h != NULL
1537 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1538 goto error_return;
1539 break;
1540
1541 default:
1542 break;
1543 }
1544 }
1545
1546 if (isymbuf != NULL
1547 && (unsigned char *) isymbuf != symtab_hdr->contents)
1548 {
1549 if (!info->keep_memory)
1550 free (isymbuf);
1551 else
1552 {
1553 /* Cache the symbols for elf_link_input_bfd. */
1554 symtab_hdr->contents = (unsigned char *) isymbuf;
1555 }
1556 }
1557
1558 return TRUE;
1559
1560 error_return:
1561 if (isymbuf != NULL
1562 && (unsigned char *) isymbuf != symtab_hdr->contents)
1563 free (isymbuf);
1564 return FALSE;
1565 }
1566
1567 /* Return the section that should be marked against GC for a given
1568 relocation. */
1569
1570 static asection *
1571 elf64_x86_64_gc_mark_hook (asection *sec,
1572 struct bfd_link_info *info,
1573 Elf_Internal_Rela *rel,
1574 struct elf_link_hash_entry *h,
1575 Elf_Internal_Sym *sym)
1576 {
1577 if (h != NULL)
1578 switch (ELF64_R_TYPE (rel->r_info))
1579 {
1580 case R_X86_64_GNU_VTINHERIT:
1581 case R_X86_64_GNU_VTENTRY:
1582 return NULL;
1583 }
1584
1585 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1586 }
1587
1588 /* Update the got entry reference counts for the section being removed. */
1589
1590 static bfd_boolean
1591 elf64_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
1592 asection *sec,
1593 const Elf_Internal_Rela *relocs)
1594 {
1595 Elf_Internal_Shdr *symtab_hdr;
1596 struct elf_link_hash_entry **sym_hashes;
1597 bfd_signed_vma *local_got_refcounts;
1598 const Elf_Internal_Rela *rel, *relend;
1599
1600 if (info->relocatable)
1601 return TRUE;
1602
1603 elf_section_data (sec)->local_dynrel = NULL;
1604
1605 symtab_hdr = &elf_symtab_hdr (abfd);
1606 sym_hashes = elf_sym_hashes (abfd);
1607 local_got_refcounts = elf_local_got_refcounts (abfd);
1608
1609 relend = relocs + sec->reloc_count;
1610 for (rel = relocs; rel < relend; rel++)
1611 {
1612 unsigned long r_symndx;
1613 unsigned int r_type;
1614 struct elf_link_hash_entry *h = NULL;
1615
1616 r_symndx = ELF64_R_SYM (rel->r_info);
1617 if (r_symndx >= symtab_hdr->sh_info)
1618 {
1619 struct elf64_x86_64_link_hash_entry *eh;
1620 struct elf_dyn_relocs **pp;
1621 struct elf_dyn_relocs *p;
1622
1623 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1624 while (h->root.type == bfd_link_hash_indirect
1625 || h->root.type == bfd_link_hash_warning)
1626 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1627 eh = (struct elf64_x86_64_link_hash_entry *) h;
1628
1629 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1630 if (p->sec == sec)
1631 {
1632 /* Everything must go for SEC. */
1633 *pp = p->next;
1634 break;
1635 }
1636 }
1637
1638 r_type = ELF64_R_TYPE (rel->r_info);
1639 if (! elf64_x86_64_tls_transition (info, abfd, sec, NULL,
1640 symtab_hdr, sym_hashes,
1641 &r_type, GOT_UNKNOWN,
1642 rel, relend, h))
1643 return FALSE;
1644
1645 switch (r_type)
1646 {
1647 case R_X86_64_TLSLD:
1648 if (elf64_x86_64_hash_table (info)->tls_ld_got.refcount > 0)
1649 elf64_x86_64_hash_table (info)->tls_ld_got.refcount -= 1;
1650 break;
1651
1652 case R_X86_64_TLSGD:
1653 case R_X86_64_GOTPC32_TLSDESC:
1654 case R_X86_64_TLSDESC_CALL:
1655 case R_X86_64_GOTTPOFF:
1656 case R_X86_64_GOT32:
1657 case R_X86_64_GOTPCREL:
1658 case R_X86_64_GOT64:
1659 case R_X86_64_GOTPCREL64:
1660 case R_X86_64_GOTPLT64:
1661 if (h != NULL)
1662 {
1663 if (r_type == R_X86_64_GOTPLT64 && h->plt.refcount > 0)
1664 h->plt.refcount -= 1;
1665 if (h->got.refcount > 0)
1666 h->got.refcount -= 1;
1667 }
1668 else if (local_got_refcounts != NULL)
1669 {
1670 if (local_got_refcounts[r_symndx] > 0)
1671 local_got_refcounts[r_symndx] -= 1;
1672 }
1673 break;
1674
1675 case R_X86_64_8:
1676 case R_X86_64_16:
1677 case R_X86_64_32:
1678 case R_X86_64_64:
1679 case R_X86_64_32S:
1680 case R_X86_64_PC8:
1681 case R_X86_64_PC16:
1682 case R_X86_64_PC32:
1683 case R_X86_64_PC64:
1684 if (info->shared)
1685 break;
1686 /* Fall thru */
1687
1688 case R_X86_64_PLT32:
1689 case R_X86_64_PLTOFF64:
1690 if (h != NULL)
1691 {
1692 if (h->plt.refcount > 0)
1693 h->plt.refcount -= 1;
1694 }
1695 break;
1696
1697 default:
1698 break;
1699 }
1700 }
1701
1702 return TRUE;
1703 }
1704
1705 /* Adjust a symbol defined by a dynamic object and referenced by a
1706 regular object. The current definition is in some section of the
1707 dynamic object, but we're not including those sections. We have to
1708 change the definition to something the rest of the link can
1709 understand. */
1710
1711 static bfd_boolean
1712 elf64_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
1713 struct elf_link_hash_entry *h)
1714 {
1715 struct elf64_x86_64_link_hash_table *htab;
1716 asection *s;
1717
1718 /* STT_GNU_IFUNC symbol must go through PLT. */
1719 if (h->type == STT_GNU_IFUNC)
1720 {
1721 if (h->plt.refcount <= 0)
1722 {
1723 h->plt.offset = (bfd_vma) -1;
1724 h->needs_plt = 0;
1725 }
1726 return TRUE;
1727 }
1728
1729 /* If this is a function, put it in the procedure linkage table. We
1730 will fill in the contents of the procedure linkage table later,
1731 when we know the address of the .got section. */
1732 if (h->type == STT_FUNC
1733 || h->needs_plt)
1734 {
1735 if (h->plt.refcount <= 0
1736 || SYMBOL_CALLS_LOCAL (info, h)
1737 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1738 && h->root.type == bfd_link_hash_undefweak))
1739 {
1740 /* This case can occur if we saw a PLT32 reloc in an input
1741 file, but the symbol was never referred to by a dynamic
1742 object, or if all references were garbage collected. In
1743 such a case, we don't actually need to build a procedure
1744 linkage table, and we can just do a PC32 reloc instead. */
1745 h->plt.offset = (bfd_vma) -1;
1746 h->needs_plt = 0;
1747 }
1748
1749 return TRUE;
1750 }
1751 else
1752 /* It's possible that we incorrectly decided a .plt reloc was
1753 needed for an R_X86_64_PC32 reloc to a non-function sym in
1754 check_relocs. We can't decide accurately between function and
1755 non-function syms in check-relocs; Objects loaded later in
1756 the link may change h->type. So fix it now. */
1757 h->plt.offset = (bfd_vma) -1;
1758
1759 /* If this is a weak symbol, and there is a real definition, the
1760 processor independent code will have arranged for us to see the
1761 real definition first, and we can just use the same value. */
1762 if (h->u.weakdef != NULL)
1763 {
1764 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1765 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1766 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1767 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1768 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
1769 h->non_got_ref = h->u.weakdef->non_got_ref;
1770 return TRUE;
1771 }
1772
1773 /* This is a reference to a symbol defined by a dynamic object which
1774 is not a function. */
1775
1776 /* If we are creating a shared library, we must presume that the
1777 only references to the symbol are via the global offset table.
1778 For such cases we need not do anything here; the relocations will
1779 be handled correctly by relocate_section. */
1780 if (info->shared)
1781 return TRUE;
1782
1783 /* If there are no references to this symbol that do not use the
1784 GOT, we don't need to generate a copy reloc. */
1785 if (!h->non_got_ref)
1786 return TRUE;
1787
1788 /* If -z nocopyreloc was given, we won't generate them either. */
1789 if (info->nocopyreloc)
1790 {
1791 h->non_got_ref = 0;
1792 return TRUE;
1793 }
1794
1795 if (ELIMINATE_COPY_RELOCS)
1796 {
1797 struct elf64_x86_64_link_hash_entry * eh;
1798 struct elf_dyn_relocs *p;
1799
1800 eh = (struct elf64_x86_64_link_hash_entry *) h;
1801 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1802 {
1803 s = p->sec->output_section;
1804 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1805 break;
1806 }
1807
1808 /* If we didn't find any dynamic relocs in read-only sections, then
1809 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1810 if (p == NULL)
1811 {
1812 h->non_got_ref = 0;
1813 return TRUE;
1814 }
1815 }
1816
1817 if (h->size == 0)
1818 {
1819 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
1820 h->root.root.string);
1821 return TRUE;
1822 }
1823
1824 /* We must allocate the symbol in our .dynbss section, which will
1825 become part of the .bss section of the executable. There will be
1826 an entry for this symbol in the .dynsym section. The dynamic
1827 object will contain position independent code, so all references
1828 from the dynamic object to this symbol will go through the global
1829 offset table. The dynamic linker will use the .dynsym entry to
1830 determine the address it must put in the global offset table, so
1831 both the dynamic object and the regular object will refer to the
1832 same memory location for the variable. */
1833
1834 htab = elf64_x86_64_hash_table (info);
1835
1836 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
1837 to copy the initial value out of the dynamic object and into the
1838 runtime process image. */
1839 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1840 {
1841 htab->srelbss->size += sizeof (Elf64_External_Rela);
1842 h->needs_copy = 1;
1843 }
1844
1845 s = htab->sdynbss;
1846
1847 return _bfd_elf_adjust_dynamic_copy (h, s);
1848 }
1849
1850 /* Allocate space in .plt, .got and associated reloc sections for
1851 dynamic relocs. */
1852
1853 static bfd_boolean
1854 elf64_x86_64_allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
1855 {
1856 struct bfd_link_info *info;
1857 struct elf64_x86_64_link_hash_table *htab;
1858 struct elf64_x86_64_link_hash_entry *eh;
1859 struct elf_dyn_relocs *p;
1860
1861 if (h->root.type == bfd_link_hash_indirect)
1862 return TRUE;
1863
1864 if (h->root.type == bfd_link_hash_warning)
1865 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1866 eh = (struct elf64_x86_64_link_hash_entry *) h;
1867
1868 info = (struct bfd_link_info *) inf;
1869 htab = elf64_x86_64_hash_table (info);
1870
1871 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
1872 here if it is defined and referenced in a non-shared object. */
1873 if (h->type == STT_GNU_IFUNC
1874 && h->def_regular)
1875 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
1876 &eh->dyn_relocs,
1877 PLT_ENTRY_SIZE,
1878 GOT_ENTRY_SIZE);
1879 else if (htab->elf.dynamic_sections_created
1880 && h->plt.refcount > 0)
1881 {
1882 /* Make sure this symbol is output as a dynamic symbol.
1883 Undefined weak syms won't yet be marked as dynamic. */
1884 if (h->dynindx == -1
1885 && !h->forced_local)
1886 {
1887 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1888 return FALSE;
1889 }
1890
1891 if (info->shared
1892 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
1893 {
1894 asection *s = htab->elf.splt;
1895
1896 /* If this is the first .plt entry, make room for the special
1897 first entry. */
1898 if (s->size == 0)
1899 s->size += PLT_ENTRY_SIZE;
1900
1901 h->plt.offset = s->size;
1902
1903 /* If this symbol is not defined in a regular file, and we are
1904 not generating a shared library, then set the symbol to this
1905 location in the .plt. This is required to make function
1906 pointers compare as equal between the normal executable and
1907 the shared library. */
1908 if (! info->shared
1909 && !h->def_regular)
1910 {
1911 h->root.u.def.section = s;
1912 h->root.u.def.value = h->plt.offset;
1913 }
1914
1915 /* Make room for this entry. */
1916 s->size += PLT_ENTRY_SIZE;
1917
1918 /* We also need to make an entry in the .got.plt section, which
1919 will be placed in the .got section by the linker script. */
1920 htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
1921
1922 /* We also need to make an entry in the .rela.plt section. */
1923 htab->elf.srelplt->size += sizeof (Elf64_External_Rela);
1924 htab->elf.srelplt->reloc_count++;
1925 }
1926 else
1927 {
1928 h->plt.offset = (bfd_vma) -1;
1929 h->needs_plt = 0;
1930 }
1931 }
1932 else
1933 {
1934 h->plt.offset = (bfd_vma) -1;
1935 h->needs_plt = 0;
1936 }
1937
1938 eh->tlsdesc_got = (bfd_vma) -1;
1939
1940 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
1941 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
1942 if (h->got.refcount > 0
1943 && !info->shared
1944 && h->dynindx == -1
1945 && elf64_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
1946 {
1947 h->got.offset = (bfd_vma) -1;
1948 }
1949 else if (h->got.refcount > 0)
1950 {
1951 asection *s;
1952 bfd_boolean dyn;
1953 int tls_type = elf64_x86_64_hash_entry (h)->tls_type;
1954
1955 /* Make sure this symbol is output as a dynamic symbol.
1956 Undefined weak syms won't yet be marked as dynamic. */
1957 if (h->dynindx == -1
1958 && !h->forced_local)
1959 {
1960 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1961 return FALSE;
1962 }
1963
1964 if (GOT_TLS_GDESC_P (tls_type))
1965 {
1966 eh->tlsdesc_got = htab->elf.sgotplt->size
1967 - elf64_x86_64_compute_jump_table_size (htab);
1968 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
1969 h->got.offset = (bfd_vma) -2;
1970 }
1971 if (! GOT_TLS_GDESC_P (tls_type)
1972 || GOT_TLS_GD_P (tls_type))
1973 {
1974 s = htab->elf.sgot;
1975 h->got.offset = s->size;
1976 s->size += GOT_ENTRY_SIZE;
1977 if (GOT_TLS_GD_P (tls_type))
1978 s->size += GOT_ENTRY_SIZE;
1979 }
1980 dyn = htab->elf.dynamic_sections_created;
1981 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
1982 and two if global.
1983 R_X86_64_GOTTPOFF needs one dynamic relocation. */
1984 if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
1985 || tls_type == GOT_TLS_IE)
1986 htab->elf.srelgot->size += sizeof (Elf64_External_Rela);
1987 else if (GOT_TLS_GD_P (tls_type))
1988 htab->elf.srelgot->size += 2 * sizeof (Elf64_External_Rela);
1989 else if (! GOT_TLS_GDESC_P (tls_type)
1990 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
1991 || h->root.type != bfd_link_hash_undefweak)
1992 && (info->shared
1993 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
1994 htab->elf.srelgot->size += sizeof (Elf64_External_Rela);
1995 if (GOT_TLS_GDESC_P (tls_type))
1996 {
1997 htab->elf.srelplt->size += sizeof (Elf64_External_Rela);
1998 htab->tlsdesc_plt = (bfd_vma) -1;
1999 }
2000 }
2001 else
2002 h->got.offset = (bfd_vma) -1;
2003
2004 if (eh->dyn_relocs == NULL)
2005 return TRUE;
2006
2007 /* In the shared -Bsymbolic case, discard space allocated for
2008 dynamic pc-relative relocs against symbols which turn out to be
2009 defined in regular objects. For the normal shared case, discard
2010 space for pc-relative relocs that have become local due to symbol
2011 visibility changes. */
2012
2013 if (info->shared)
2014 {
2015 /* Relocs that use pc_count are those that appear on a call
2016 insn, or certain REL relocs that can generated via assembly.
2017 We want calls to protected symbols to resolve directly to the
2018 function rather than going via the plt. If people want
2019 function pointer comparisons to work as expected then they
2020 should avoid writing weird assembly. */
2021 if (SYMBOL_CALLS_LOCAL (info, h))
2022 {
2023 struct elf_dyn_relocs **pp;
2024
2025 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2026 {
2027 p->count -= p->pc_count;
2028 p->pc_count = 0;
2029 if (p->count == 0)
2030 *pp = p->next;
2031 else
2032 pp = &p->next;
2033 }
2034 }
2035
2036 /* Also discard relocs on undefined weak syms with non-default
2037 visibility. */
2038 if (eh->dyn_relocs != NULL
2039 && h->root.type == bfd_link_hash_undefweak)
2040 {
2041 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2042 eh->dyn_relocs = NULL;
2043
2044 /* Make sure undefined weak symbols are output as a dynamic
2045 symbol in PIEs. */
2046 else if (h->dynindx == -1
2047 && ! h->forced_local
2048 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2049 return FALSE;
2050 }
2051
2052 }
2053 else if (ELIMINATE_COPY_RELOCS)
2054 {
2055 /* For the non-shared case, discard space for relocs against
2056 symbols which turn out to need copy relocs or are not
2057 dynamic. */
2058
2059 if (!h->non_got_ref
2060 && ((h->def_dynamic
2061 && !h->def_regular)
2062 || (htab->elf.dynamic_sections_created
2063 && (h->root.type == bfd_link_hash_undefweak
2064 || h->root.type == bfd_link_hash_undefined))))
2065 {
2066 /* Make sure this symbol is output as a dynamic symbol.
2067 Undefined weak syms won't yet be marked as dynamic. */
2068 if (h->dynindx == -1
2069 && ! h->forced_local
2070 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2071 return FALSE;
2072
2073 /* If that succeeded, we know we'll be keeping all the
2074 relocs. */
2075 if (h->dynindx != -1)
2076 goto keep;
2077 }
2078
2079 eh->dyn_relocs = NULL;
2080
2081 keep: ;
2082 }
2083
2084 /* Finally, allocate space. */
2085 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2086 {
2087 asection * sreloc;
2088
2089 sreloc = elf_section_data (p->sec)->sreloc;
2090
2091 BFD_ASSERT (sreloc != NULL);
2092
2093 sreloc->size += p->count * sizeof (Elf64_External_Rela);
2094 }
2095
2096 return TRUE;
2097 }
2098
2099 /* Allocate space in .plt, .got and associated reloc sections for
2100 local dynamic relocs. */
2101
2102 static bfd_boolean
2103 elf64_x86_64_allocate_local_dynrelocs (void **slot, void *inf)
2104 {
2105 struct elf_link_hash_entry *h
2106 = (struct elf_link_hash_entry *) *slot;
2107
2108 if (h->type != STT_GNU_IFUNC
2109 || !h->def_regular
2110 || !h->ref_regular
2111 || !h->forced_local
2112 || h->root.type != bfd_link_hash_defined)
2113 abort ();
2114
2115 return elf64_x86_64_allocate_dynrelocs (h, inf);
2116 }
2117
2118 /* Find any dynamic relocs that apply to read-only sections. */
2119
2120 static bfd_boolean
2121 elf64_x86_64_readonly_dynrelocs (struct elf_link_hash_entry *h, void * inf)
2122 {
2123 struct elf64_x86_64_link_hash_entry *eh;
2124 struct elf_dyn_relocs *p;
2125
2126 if (h->root.type == bfd_link_hash_warning)
2127 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2128
2129 eh = (struct elf64_x86_64_link_hash_entry *) h;
2130 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2131 {
2132 asection *s = p->sec->output_section;
2133
2134 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2135 {
2136 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2137
2138 info->flags |= DF_TEXTREL;
2139
2140 /* Not an error, just cut short the traversal. */
2141 return FALSE;
2142 }
2143 }
2144 return TRUE;
2145 }
2146
2147 /* Set the sizes of the dynamic sections. */
2148
2149 static bfd_boolean
2150 elf64_x86_64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2151 struct bfd_link_info *info)
2152 {
2153 struct elf64_x86_64_link_hash_table *htab;
2154 bfd *dynobj;
2155 asection *s;
2156 bfd_boolean relocs;
2157 bfd *ibfd;
2158
2159 htab = elf64_x86_64_hash_table (info);
2160 dynobj = htab->elf.dynobj;
2161 if (dynobj == NULL)
2162 abort ();
2163
2164 if (htab->elf.dynamic_sections_created)
2165 {
2166 /* Set the contents of the .interp section to the interpreter. */
2167 if (info->executable)
2168 {
2169 s = bfd_get_section_by_name (dynobj, ".interp");
2170 if (s == NULL)
2171 abort ();
2172 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
2173 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2174 }
2175 }
2176
2177 /* Set up .got offsets for local syms, and space for local dynamic
2178 relocs. */
2179 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2180 {
2181 bfd_signed_vma *local_got;
2182 bfd_signed_vma *end_local_got;
2183 char *local_tls_type;
2184 bfd_vma *local_tlsdesc_gotent;
2185 bfd_size_type locsymcount;
2186 Elf_Internal_Shdr *symtab_hdr;
2187 asection *srel;
2188
2189 if (! is_x86_64_elf (ibfd))
2190 continue;
2191
2192 for (s = ibfd->sections; s != NULL; s = s->next)
2193 {
2194 struct elf_dyn_relocs *p;
2195
2196 for (p = (struct elf_dyn_relocs *)
2197 (elf_section_data (s)->local_dynrel);
2198 p != NULL;
2199 p = p->next)
2200 {
2201 if (!bfd_is_abs_section (p->sec)
2202 && bfd_is_abs_section (p->sec->output_section))
2203 {
2204 /* Input section has been discarded, either because
2205 it is a copy of a linkonce section or due to
2206 linker script /DISCARD/, so we'll be discarding
2207 the relocs too. */
2208 }
2209 else if (p->count != 0)
2210 {
2211 srel = elf_section_data (p->sec)->sreloc;
2212 srel->size += p->count * sizeof (Elf64_External_Rela);
2213 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
2214 info->flags |= DF_TEXTREL;
2215 }
2216 }
2217 }
2218
2219 local_got = elf_local_got_refcounts (ibfd);
2220 if (!local_got)
2221 continue;
2222
2223 symtab_hdr = &elf_symtab_hdr (ibfd);
2224 locsymcount = symtab_hdr->sh_info;
2225 end_local_got = local_got + locsymcount;
2226 local_tls_type = elf64_x86_64_local_got_tls_type (ibfd);
2227 local_tlsdesc_gotent = elf64_x86_64_local_tlsdesc_gotent (ibfd);
2228 s = htab->elf.sgot;
2229 srel = htab->elf.srelgot;
2230 for (; local_got < end_local_got;
2231 ++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
2232 {
2233 *local_tlsdesc_gotent = (bfd_vma) -1;
2234 if (*local_got > 0)
2235 {
2236 if (GOT_TLS_GDESC_P (*local_tls_type))
2237 {
2238 *local_tlsdesc_gotent = htab->elf.sgotplt->size
2239 - elf64_x86_64_compute_jump_table_size (htab);
2240 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2241 *local_got = (bfd_vma) -2;
2242 }
2243 if (! GOT_TLS_GDESC_P (*local_tls_type)
2244 || GOT_TLS_GD_P (*local_tls_type))
2245 {
2246 *local_got = s->size;
2247 s->size += GOT_ENTRY_SIZE;
2248 if (GOT_TLS_GD_P (*local_tls_type))
2249 s->size += GOT_ENTRY_SIZE;
2250 }
2251 if (info->shared
2252 || GOT_TLS_GD_ANY_P (*local_tls_type)
2253 || *local_tls_type == GOT_TLS_IE)
2254 {
2255 if (GOT_TLS_GDESC_P (*local_tls_type))
2256 {
2257 htab->elf.srelplt->size
2258 += sizeof (Elf64_External_Rela);
2259 htab->tlsdesc_plt = (bfd_vma) -1;
2260 }
2261 if (! GOT_TLS_GDESC_P (*local_tls_type)
2262 || GOT_TLS_GD_P (*local_tls_type))
2263 srel->size += sizeof (Elf64_External_Rela);
2264 }
2265 }
2266 else
2267 *local_got = (bfd_vma) -1;
2268 }
2269 }
2270
2271 if (htab->tls_ld_got.refcount > 0)
2272 {
2273 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
2274 relocs. */
2275 htab->tls_ld_got.offset = htab->elf.sgot->size;
2276 htab->elf.sgot->size += 2 * GOT_ENTRY_SIZE;
2277 htab->elf.srelgot->size += sizeof (Elf64_External_Rela);
2278 }
2279 else
2280 htab->tls_ld_got.offset = -1;
2281
2282 /* Allocate global sym .plt and .got entries, and space for global
2283 sym dynamic relocs. */
2284 elf_link_hash_traverse (&htab->elf, elf64_x86_64_allocate_dynrelocs,
2285 info);
2286
2287 /* Allocate .plt and .got entries, and space for local symbols. */
2288 htab_traverse (htab->loc_hash_table,
2289 elf64_x86_64_allocate_local_dynrelocs,
2290 info);
2291
2292 /* For every jump slot reserved in the sgotplt, reloc_count is
2293 incremented. However, when we reserve space for TLS descriptors,
2294 it's not incremented, so in order to compute the space reserved
2295 for them, it suffices to multiply the reloc count by the jump
2296 slot size. */
2297 if (htab->elf.srelplt)
2298 htab->sgotplt_jump_table_size
2299 = elf64_x86_64_compute_jump_table_size (htab);
2300
2301 if (htab->tlsdesc_plt)
2302 {
2303 /* If we're not using lazy TLS relocations, don't generate the
2304 PLT and GOT entries they require. */
2305 if ((info->flags & DF_BIND_NOW))
2306 htab->tlsdesc_plt = 0;
2307 else
2308 {
2309 htab->tlsdesc_got = htab->elf.sgot->size;
2310 htab->elf.sgot->size += GOT_ENTRY_SIZE;
2311 /* Reserve room for the initial entry.
2312 FIXME: we could probably do away with it in this case. */
2313 if (htab->elf.splt->size == 0)
2314 htab->elf.splt->size += PLT_ENTRY_SIZE;
2315 htab->tlsdesc_plt = htab->elf.splt->size;
2316 htab->elf.splt->size += PLT_ENTRY_SIZE;
2317 }
2318 }
2319
2320 /* We now have determined the sizes of the various dynamic sections.
2321 Allocate memory for them. */
2322 relocs = FALSE;
2323 for (s = dynobj->sections; s != NULL; s = s->next)
2324 {
2325 if ((s->flags & SEC_LINKER_CREATED) == 0)
2326 continue;
2327
2328 if (s == htab->elf.splt
2329 || s == htab->elf.sgot
2330 || s == htab->elf.sgotplt
2331 || s == htab->elf.iplt
2332 || s == htab->elf.igotplt
2333 || s == htab->sdynbss)
2334 {
2335 /* Strip this section if we don't need it; see the
2336 comment below. */
2337 }
2338 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
2339 {
2340 if (s->size != 0 && s != htab->elf.srelplt)
2341 relocs = TRUE;
2342
2343 /* We use the reloc_count field as a counter if we need
2344 to copy relocs into the output file. */
2345 if (s != htab->elf.srelplt)
2346 s->reloc_count = 0;
2347 }
2348 else
2349 {
2350 /* It's not one of our sections, so don't allocate space. */
2351 continue;
2352 }
2353
2354 if (s->size == 0)
2355 {
2356 /* If we don't need this section, strip it from the
2357 output file. This is mostly to handle .rela.bss and
2358 .rela.plt. We must create both sections in
2359 create_dynamic_sections, because they must be created
2360 before the linker maps input sections to output
2361 sections. The linker does that before
2362 adjust_dynamic_symbol is called, and it is that
2363 function which decides whether anything needs to go
2364 into these sections. */
2365
2366 s->flags |= SEC_EXCLUDE;
2367 continue;
2368 }
2369
2370 if ((s->flags & SEC_HAS_CONTENTS) == 0)
2371 continue;
2372
2373 /* Allocate memory for the section contents. We use bfd_zalloc
2374 here in case unused entries are not reclaimed before the
2375 section's contents are written out. This should not happen,
2376 but this way if it does, we get a R_X86_64_NONE reloc instead
2377 of garbage. */
2378 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
2379 if (s->contents == NULL)
2380 return FALSE;
2381 }
2382
2383 if (htab->elf.dynamic_sections_created)
2384 {
2385 /* Add some entries to the .dynamic section. We fill in the
2386 values later, in elf64_x86_64_finish_dynamic_sections, but we
2387 must add the entries now so that we get the correct size for
2388 the .dynamic section. The DT_DEBUG entry is filled in by the
2389 dynamic linker and used by the debugger. */
2390 #define add_dynamic_entry(TAG, VAL) \
2391 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2392
2393 if (info->executable)
2394 {
2395 if (!add_dynamic_entry (DT_DEBUG, 0))
2396 return FALSE;
2397 }
2398
2399 if (htab->elf.splt->size != 0)
2400 {
2401 if (!add_dynamic_entry (DT_PLTGOT, 0)
2402 || !add_dynamic_entry (DT_PLTRELSZ, 0)
2403 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2404 || !add_dynamic_entry (DT_JMPREL, 0))
2405 return FALSE;
2406
2407 if (htab->tlsdesc_plt
2408 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
2409 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
2410 return FALSE;
2411 }
2412
2413 if (relocs)
2414 {
2415 if (!add_dynamic_entry (DT_RELA, 0)
2416 || !add_dynamic_entry (DT_RELASZ, 0)
2417 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
2418 return FALSE;
2419
2420 /* If any dynamic relocs apply to a read-only section,
2421 then we need a DT_TEXTREL entry. */
2422 if ((info->flags & DF_TEXTREL) == 0)
2423 elf_link_hash_traverse (&htab->elf,
2424 elf64_x86_64_readonly_dynrelocs,
2425 info);
2426
2427 if ((info->flags & DF_TEXTREL) != 0)
2428 {
2429 if (!add_dynamic_entry (DT_TEXTREL, 0))
2430 return FALSE;
2431 }
2432 }
2433 }
2434 #undef add_dynamic_entry
2435
2436 return TRUE;
2437 }
2438
2439 static bfd_boolean
2440 elf64_x86_64_always_size_sections (bfd *output_bfd,
2441 struct bfd_link_info *info)
2442 {
2443 asection *tls_sec = elf_hash_table (info)->tls_sec;
2444
2445 if (tls_sec)
2446 {
2447 struct elf_link_hash_entry *tlsbase;
2448
2449 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
2450 "_TLS_MODULE_BASE_",
2451 FALSE, FALSE, FALSE);
2452
2453 if (tlsbase && tlsbase->type == STT_TLS)
2454 {
2455 struct bfd_link_hash_entry *bh = NULL;
2456 const struct elf_backend_data *bed
2457 = get_elf_backend_data (output_bfd);
2458
2459 if (!(_bfd_generic_link_add_one_symbol
2460 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
2461 tls_sec, 0, NULL, FALSE,
2462 bed->collect, &bh)))
2463 return FALSE;
2464
2465 elf64_x86_64_hash_table (info)->tls_module_base = bh;
2466
2467 tlsbase = (struct elf_link_hash_entry *)bh;
2468 tlsbase->def_regular = 1;
2469 tlsbase->other = STV_HIDDEN;
2470 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
2471 }
2472 }
2473
2474 return TRUE;
2475 }
2476
2477 /* _TLS_MODULE_BASE_ needs to be treated especially when linking
2478 executables. Rather than setting it to the beginning of the TLS
2479 section, we have to set it to the end. This function may be called
2480 multiple times, it is idempotent. */
2481
2482 static void
2483 elf64_x86_64_set_tls_module_base (struct bfd_link_info *info)
2484 {
2485 struct bfd_link_hash_entry *base;
2486
2487 if (!info->executable)
2488 return;
2489
2490 base = elf64_x86_64_hash_table (info)->tls_module_base;
2491
2492 if (!base)
2493 return;
2494
2495 base->u.def.value = elf_hash_table (info)->tls_size;
2496 }
2497
2498 /* Return the base VMA address which should be subtracted from real addresses
2499 when resolving @dtpoff relocation.
2500 This is PT_TLS segment p_vaddr. */
2501
2502 static bfd_vma
2503 elf64_x86_64_dtpoff_base (struct bfd_link_info *info)
2504 {
2505 /* If tls_sec is NULL, we should have signalled an error already. */
2506 if (elf_hash_table (info)->tls_sec == NULL)
2507 return 0;
2508 return elf_hash_table (info)->tls_sec->vma;
2509 }
2510
2511 /* Return the relocation value for @tpoff relocation
2512 if STT_TLS virtual address is ADDRESS. */
2513
2514 static bfd_vma
2515 elf64_x86_64_tpoff (struct bfd_link_info *info, bfd_vma address)
2516 {
2517 struct elf_link_hash_table *htab = elf_hash_table (info);
2518
2519 /* If tls_segment is NULL, we should have signalled an error already. */
2520 if (htab->tls_sec == NULL)
2521 return 0;
2522 return address - htab->tls_size - htab->tls_sec->vma;
2523 }
2524
2525 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
2526 branch? */
2527
2528 static bfd_boolean
2529 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
2530 {
2531 /* Opcode Instruction
2532 0xe8 call
2533 0xe9 jump
2534 0x0f 0x8x conditional jump */
2535 return ((offset > 0
2536 && (contents [offset - 1] == 0xe8
2537 || contents [offset - 1] == 0xe9))
2538 || (offset > 1
2539 && contents [offset - 2] == 0x0f
2540 && (contents [offset - 1] & 0xf0) == 0x80));
2541 }
2542
2543 /* Relocate an x86_64 ELF section. */
2544
2545 static bfd_boolean
2546 elf64_x86_64_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
2547 bfd *input_bfd, asection *input_section,
2548 bfd_byte *contents, Elf_Internal_Rela *relocs,
2549 Elf_Internal_Sym *local_syms,
2550 asection **local_sections)
2551 {
2552 struct elf64_x86_64_link_hash_table *htab;
2553 Elf_Internal_Shdr *symtab_hdr;
2554 struct elf_link_hash_entry **sym_hashes;
2555 bfd_vma *local_got_offsets;
2556 bfd_vma *local_tlsdesc_gotents;
2557 Elf_Internal_Rela *rel;
2558 Elf_Internal_Rela *relend;
2559
2560 BFD_ASSERT (is_x86_64_elf (input_bfd));
2561
2562 htab = elf64_x86_64_hash_table (info);
2563 symtab_hdr = &elf_symtab_hdr (input_bfd);
2564 sym_hashes = elf_sym_hashes (input_bfd);
2565 local_got_offsets = elf_local_got_offsets (input_bfd);
2566 local_tlsdesc_gotents = elf64_x86_64_local_tlsdesc_gotent (input_bfd);
2567
2568 elf64_x86_64_set_tls_module_base (info);
2569
2570 rel = relocs;
2571 relend = relocs + input_section->reloc_count;
2572 for (; rel < relend; rel++)
2573 {
2574 unsigned int r_type;
2575 reloc_howto_type *howto;
2576 unsigned long r_symndx;
2577 struct elf_link_hash_entry *h;
2578 Elf_Internal_Sym *sym;
2579 asection *sec;
2580 bfd_vma off, offplt;
2581 bfd_vma relocation;
2582 bfd_boolean unresolved_reloc;
2583 bfd_reloc_status_type r;
2584 int tls_type;
2585 asection *base_got;
2586
2587 r_type = ELF64_R_TYPE (rel->r_info);
2588 if (r_type == (int) R_X86_64_GNU_VTINHERIT
2589 || r_type == (int) R_X86_64_GNU_VTENTRY)
2590 continue;
2591
2592 if (r_type >= R_X86_64_max)
2593 {
2594 bfd_set_error (bfd_error_bad_value);
2595 return FALSE;
2596 }
2597
2598 howto = x86_64_elf_howto_table + r_type;
2599 r_symndx = ELF64_R_SYM (rel->r_info);
2600 h = NULL;
2601 sym = NULL;
2602 sec = NULL;
2603 unresolved_reloc = FALSE;
2604 if (r_symndx < symtab_hdr->sh_info)
2605 {
2606 sym = local_syms + r_symndx;
2607 sec = local_sections[r_symndx];
2608
2609 relocation = _bfd_elf_rela_local_sym (output_bfd, sym,
2610 &sec, rel);
2611
2612 /* Relocate against local STT_GNU_IFUNC symbol. */
2613 if (ELF64_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
2614 {
2615 h = elf64_x86_64_get_local_sym_hash (htab, input_bfd,
2616 rel, FALSE);
2617 if (h == NULL)
2618 abort ();
2619
2620 /* Set STT_GNU_IFUNC symbol value. */
2621 h->root.u.def.value = sym->st_value;
2622 h->root.u.def.section = sec;
2623 }
2624 }
2625 else
2626 {
2627 bfd_boolean warned;
2628
2629 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2630 r_symndx, symtab_hdr, sym_hashes,
2631 h, sec, relocation,
2632 unresolved_reloc, warned);
2633 }
2634
2635 if (sec != NULL && elf_discarded_section (sec))
2636 {
2637 /* For relocs against symbols from removed linkonce sections,
2638 or sections discarded by a linker script, we just want the
2639 section contents zeroed. Avoid any special processing. */
2640 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
2641 rel->r_info = 0;
2642 rel->r_addend = 0;
2643 continue;
2644 }
2645
2646 if (info->relocatable)
2647 continue;
2648
2649 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
2650 it here if it is defined in a non-shared object. */
2651 if (h != NULL
2652 && h->type == STT_GNU_IFUNC
2653 && h->def_regular)
2654 {
2655 asection *plt;
2656 bfd_vma plt_index;
2657
2658 if ((input_section->flags & SEC_ALLOC) == 0
2659 || h->plt.offset == (bfd_vma) -1)
2660 abort ();
2661
2662 /* STT_GNU_IFUNC symbol must go through PLT. */
2663 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
2664 relocation = (plt->output_section->vma
2665 + plt->output_offset + h->plt.offset);
2666
2667 switch (r_type)
2668 {
2669 default:
2670 (*_bfd_error_handler)
2671 (_("%B: relocation %s against STT_GNU_IFUNC "
2672 "symbol `%s' isn't handled by %s"), input_bfd,
2673 x86_64_elf_howto_table[r_type].name,
2674 (h->root.root.string
2675 ? h->root.root.string : "a local symbol"),
2676 __FUNCTION__);
2677 bfd_set_error (bfd_error_bad_value);
2678 return FALSE;
2679
2680 case R_X86_64_32S:
2681 if (info->shared)
2682 abort ();
2683 goto do_relocation;
2684
2685 case R_X86_64_64:
2686 if (rel->r_addend != 0)
2687 {
2688 (*_bfd_error_handler)
2689 (_("%B: relocation %s against STT_GNU_IFUNC "
2690 "symbol `%s' has non-zero addend: %d"),
2691 input_bfd, x86_64_elf_howto_table[r_type].name,
2692 (h->root.root.string
2693 ? h->root.root.string : "a local symbol"),
2694 rel->r_addend);
2695 bfd_set_error (bfd_error_bad_value);
2696 return FALSE;
2697 }
2698
2699 /* Generate dynamic relcoation only when there is a
2700 non-GOF reference in a shared object. */
2701 if (info->shared && h->non_got_ref)
2702 {
2703 Elf_Internal_Rela outrel;
2704 bfd_byte *loc;
2705 asection *sreloc;
2706
2707 /* Need a dynamic relocation to get the real function
2708 address. */
2709 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
2710 info,
2711 input_section,
2712 rel->r_offset);
2713 if (outrel.r_offset == (bfd_vma) -1
2714 || outrel.r_offset == (bfd_vma) -2)
2715 abort ();
2716
2717 outrel.r_offset += (input_section->output_section->vma
2718 + input_section->output_offset);
2719
2720 if (h->dynindx == -1
2721 || h->forced_local
2722 || info->executable)
2723 {
2724 /* This symbol is resolved locally. */
2725 outrel.r_info = ELF64_R_INFO (0, R_X86_64_IRELATIVE);
2726 outrel.r_addend = (h->root.u.def.value
2727 + h->root.u.def.section->output_section->vma
2728 + h->root.u.def.section->output_offset);
2729 }
2730 else
2731 {
2732 outrel.r_info = ELF64_R_INFO (h->dynindx, r_type);
2733 outrel.r_addend = 0;
2734 }
2735
2736 sreloc = htab->elf.irelifunc;
2737 loc = sreloc->contents;
2738 loc += (sreloc->reloc_count++
2739 * sizeof (Elf64_External_Rela));
2740 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2741
2742 /* If this reloc is against an external symbol, we
2743 do not want to fiddle with the addend. Otherwise,
2744 we need to include the symbol value so that it
2745 becomes an addend for the dynamic reloc. For an
2746 internal symbol, we have updated addend. */
2747 continue;
2748 }
2749
2750 case R_X86_64_32:
2751 case R_X86_64_PC32:
2752 case R_X86_64_PC64:
2753 case R_X86_64_PLT32:
2754 goto do_relocation;
2755
2756 case R_X86_64_GOTPCREL:
2757 case R_X86_64_GOTPCREL64:
2758 base_got = htab->elf.sgot;
2759 off = h->got.offset;
2760
2761 if (base_got == NULL)
2762 abort ();
2763
2764 if (off == (bfd_vma) -1)
2765 {
2766 /* We can't use h->got.offset here to save state, or
2767 even just remember the offset, as finish_dynamic_symbol
2768 would use that as offset into .got. */
2769
2770 if (htab->elf.splt != NULL)
2771 {
2772 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
2773 off = (plt_index + 3) * GOT_ENTRY_SIZE;
2774 base_got = htab->elf.sgotplt;
2775 }
2776 else
2777 {
2778 plt_index = h->plt.offset / PLT_ENTRY_SIZE;
2779 off = plt_index * GOT_ENTRY_SIZE;
2780 base_got = htab->elf.igotplt;
2781 }
2782
2783 if (h->dynindx == -1
2784 || h->forced_local
2785 || info->symbolic)
2786 {
2787 /* This references the local defitionion. We must
2788 initialize this entry in the global offset table.
2789 Since the offset must always be a multiple of 8,
2790 we use the least significant bit to record
2791 whether we have initialized it already.
2792
2793 When doing a dynamic link, we create a .rela.got
2794 relocation entry to initialize the value. This
2795 is done in the finish_dynamic_symbol routine. */
2796 if ((off & 1) != 0)
2797 off &= ~1;
2798 else
2799 {
2800 bfd_put_64 (output_bfd, relocation,
2801 base_got->contents + off);
2802 /* Note that this is harmless for the GOTPLT64
2803 case, as -1 | 1 still is -1. */
2804 h->got.offset |= 1;
2805 }
2806 }
2807 }
2808
2809 relocation = (base_got->output_section->vma
2810 + base_got->output_offset + off);
2811
2812 if (r_type != R_X86_64_GOTPCREL
2813 && r_type != R_X86_64_GOTPCREL64)
2814 {
2815 asection *gotplt;
2816 if (htab->elf.splt != NULL)
2817 gotplt = htab->elf.sgotplt;
2818 else
2819 gotplt = htab->elf.igotplt;
2820 relocation -= (gotplt->output_section->vma
2821 - gotplt->output_offset);
2822 }
2823
2824 goto do_relocation;
2825 }
2826 }
2827
2828 /* When generating a shared object, the relocations handled here are
2829 copied into the output file to be resolved at run time. */
2830 switch (r_type)
2831 {
2832 case R_X86_64_GOT32:
2833 case R_X86_64_GOT64:
2834 /* Relocation is to the entry for this symbol in the global
2835 offset table. */
2836 case R_X86_64_GOTPCREL:
2837 case R_X86_64_GOTPCREL64:
2838 /* Use global offset table entry as symbol value. */
2839 case R_X86_64_GOTPLT64:
2840 /* This is the same as GOT64 for relocation purposes, but
2841 indicates the existence of a PLT entry. The difficulty is,
2842 that we must calculate the GOT slot offset from the PLT
2843 offset, if this symbol got a PLT entry (it was global).
2844 Additionally if it's computed from the PLT entry, then that
2845 GOT offset is relative to .got.plt, not to .got. */
2846 base_got = htab->elf.sgot;
2847
2848 if (htab->elf.sgot == NULL)
2849 abort ();
2850
2851 if (h != NULL)
2852 {
2853 bfd_boolean dyn;
2854
2855 off = h->got.offset;
2856 if (h->needs_plt
2857 && h->plt.offset != (bfd_vma)-1
2858 && off == (bfd_vma)-1)
2859 {
2860 /* We can't use h->got.offset here to save
2861 state, or even just remember the offset, as
2862 finish_dynamic_symbol would use that as offset into
2863 .got. */
2864 bfd_vma plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
2865 off = (plt_index + 3) * GOT_ENTRY_SIZE;
2866 base_got = htab->elf.sgotplt;
2867 }
2868
2869 dyn = htab->elf.dynamic_sections_created;
2870
2871 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2872 || (info->shared
2873 && SYMBOL_REFERENCES_LOCAL (info, h))
2874 || (ELF_ST_VISIBILITY (h->other)
2875 && h->root.type == bfd_link_hash_undefweak))
2876 {
2877 /* This is actually a static link, or it is a -Bsymbolic
2878 link and the symbol is defined locally, or the symbol
2879 was forced to be local because of a version file. We
2880 must initialize this entry in the global offset table.
2881 Since the offset must always be a multiple of 8, we
2882 use the least significant bit to record whether we
2883 have initialized it already.
2884
2885 When doing a dynamic link, we create a .rela.got
2886 relocation entry to initialize the value. This is
2887 done in the finish_dynamic_symbol routine. */
2888 if ((off & 1) != 0)
2889 off &= ~1;
2890 else
2891 {
2892 bfd_put_64 (output_bfd, relocation,
2893 base_got->contents + off);
2894 /* Note that this is harmless for the GOTPLT64 case,
2895 as -1 | 1 still is -1. */
2896 h->got.offset |= 1;
2897 }
2898 }
2899 else
2900 unresolved_reloc = FALSE;
2901 }
2902 else
2903 {
2904 if (local_got_offsets == NULL)
2905 abort ();
2906
2907 off = local_got_offsets[r_symndx];
2908
2909 /* The offset must always be a multiple of 8. We use
2910 the least significant bit to record whether we have
2911 already generated the necessary reloc. */
2912 if ((off & 1) != 0)
2913 off &= ~1;
2914 else
2915 {
2916 bfd_put_64 (output_bfd, relocation,
2917 base_got->contents + off);
2918
2919 if (info->shared)
2920 {
2921 asection *s;
2922 Elf_Internal_Rela outrel;
2923 bfd_byte *loc;
2924
2925 /* We need to generate a R_X86_64_RELATIVE reloc
2926 for the dynamic linker. */
2927 s = htab->elf.srelgot;
2928 if (s == NULL)
2929 abort ();
2930
2931 outrel.r_offset = (base_got->output_section->vma
2932 + base_got->output_offset
2933 + off);
2934 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
2935 outrel.r_addend = relocation;
2936 loc = s->contents;
2937 loc += s->reloc_count++ * sizeof (Elf64_External_Rela);
2938 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2939 }
2940
2941 local_got_offsets[r_symndx] |= 1;
2942 }
2943 }
2944
2945 if (off >= (bfd_vma) -2)
2946 abort ();
2947
2948 relocation = base_got->output_section->vma
2949 + base_got->output_offset + off;
2950 if (r_type != R_X86_64_GOTPCREL && r_type != R_X86_64_GOTPCREL64)
2951 relocation -= htab->elf.sgotplt->output_section->vma
2952 - htab->elf.sgotplt->output_offset;
2953
2954 break;
2955
2956 case R_X86_64_GOTOFF64:
2957 /* Relocation is relative to the start of the global offset
2958 table. */
2959
2960 /* Check to make sure it isn't a protected function symbol
2961 for shared library since it may not be local when used
2962 as function address. */
2963 if (info->shared
2964 && h
2965 && h->def_regular
2966 && h->type == STT_FUNC
2967 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
2968 {
2969 (*_bfd_error_handler)
2970 (_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
2971 input_bfd, h->root.root.string);
2972 bfd_set_error (bfd_error_bad_value);
2973 return FALSE;
2974 }
2975
2976 /* Note that sgot is not involved in this
2977 calculation. We always want the start of .got.plt. If we
2978 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
2979 permitted by the ABI, we might have to change this
2980 calculation. */
2981 relocation -= htab->elf.sgotplt->output_section->vma
2982 + htab->elf.sgotplt->output_offset;
2983 break;
2984
2985 case R_X86_64_GOTPC32:
2986 case R_X86_64_GOTPC64:
2987 /* Use global offset table as symbol value. */
2988 relocation = htab->elf.sgotplt->output_section->vma
2989 + htab->elf.sgotplt->output_offset;
2990 unresolved_reloc = FALSE;
2991 break;
2992
2993 case R_X86_64_PLTOFF64:
2994 /* Relocation is PLT entry relative to GOT. For local
2995 symbols it's the symbol itself relative to GOT. */
2996 if (h != NULL
2997 /* See PLT32 handling. */
2998 && h->plt.offset != (bfd_vma) -1
2999 && htab->elf.splt != NULL)
3000 {
3001 relocation = (htab->elf.splt->output_section->vma
3002 + htab->elf.splt->output_offset
3003 + h->plt.offset);
3004 unresolved_reloc = FALSE;
3005 }
3006
3007 relocation -= htab->elf.sgotplt->output_section->vma
3008 + htab->elf.sgotplt->output_offset;
3009 break;
3010
3011 case R_X86_64_PLT32:
3012 /* Relocation is to the entry for this symbol in the
3013 procedure linkage table. */
3014
3015 /* Resolve a PLT32 reloc against a local symbol directly,
3016 without using the procedure linkage table. */
3017 if (h == NULL)
3018 break;
3019
3020 if (h->plt.offset == (bfd_vma) -1
3021 || htab->elf.splt == NULL)
3022 {
3023 /* We didn't make a PLT entry for this symbol. This
3024 happens when statically linking PIC code, or when
3025 using -Bsymbolic. */
3026 break;
3027 }
3028
3029 relocation = (htab->elf.splt->output_section->vma
3030 + htab->elf.splt->output_offset
3031 + h->plt.offset);
3032 unresolved_reloc = FALSE;
3033 break;
3034
3035 case R_X86_64_PC8:
3036 case R_X86_64_PC16:
3037 case R_X86_64_PC32:
3038 if (info->shared
3039 && (input_section->flags & SEC_ALLOC) != 0
3040 && (input_section->flags & SEC_READONLY) != 0
3041 && h != NULL)
3042 {
3043 bfd_boolean fail = FALSE;
3044 bfd_boolean branch
3045 = (r_type == R_X86_64_PC32
3046 && is_32bit_relative_branch (contents, rel->r_offset));
3047
3048 if (SYMBOL_REFERENCES_LOCAL (info, h))
3049 {
3050 /* Symbol is referenced locally. Make sure it is
3051 defined locally or for a branch. */
3052 fail = !h->def_regular && !branch;
3053 }
3054 else
3055 {
3056 /* Symbol isn't referenced locally. We only allow
3057 branch to symbol with non-default visibility. */
3058 fail = (!branch
3059 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT);
3060 }
3061
3062 if (fail)
3063 {
3064 const char *fmt;
3065 const char *v;
3066 const char *pic = "";
3067
3068 switch (ELF_ST_VISIBILITY (h->other))
3069 {
3070 case STV_HIDDEN:
3071 v = _("hidden symbol");
3072 break;
3073 case STV_INTERNAL:
3074 v = _("internal symbol");
3075 break;
3076 case STV_PROTECTED:
3077 v = _("protected symbol");
3078 break;
3079 default:
3080 v = _("symbol");
3081 pic = _("; recompile with -fPIC");
3082 break;
3083 }
3084
3085 if (h->def_regular)
3086 fmt = _("%B: relocation %s against %s `%s' can not be used when making a shared object%s");
3087 else
3088 fmt = _("%B: relocation %s against undefined %s `%s' can not be used when making a shared object%s");
3089
3090 (*_bfd_error_handler) (fmt, input_bfd,
3091 x86_64_elf_howto_table[r_type].name,
3092 v, h->root.root.string, pic);
3093 bfd_set_error (bfd_error_bad_value);
3094 return FALSE;
3095 }
3096 }
3097 /* Fall through. */
3098
3099 case R_X86_64_8:
3100 case R_X86_64_16:
3101 case R_X86_64_32:
3102 case R_X86_64_PC64:
3103 case R_X86_64_64:
3104 /* FIXME: The ABI says the linker should make sure the value is
3105 the same when it's zeroextended to 64 bit. */
3106
3107 if ((input_section->flags & SEC_ALLOC) == 0)
3108 break;
3109
3110 if ((info->shared
3111 && (h == NULL
3112 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3113 || h->root.type != bfd_link_hash_undefweak)
3114 && (! IS_X86_64_PCREL_TYPE (r_type)
3115 || ! SYMBOL_CALLS_LOCAL (info, h)))
3116 || (ELIMINATE_COPY_RELOCS
3117 && !info->shared
3118 && h != NULL
3119 && h->dynindx != -1
3120 && !h->non_got_ref
3121 && ((h->def_dynamic
3122 && !h->def_regular)
3123 || h->root.type == bfd_link_hash_undefweak
3124 || h->root.type == bfd_link_hash_undefined)))
3125 {
3126 Elf_Internal_Rela outrel;
3127 bfd_byte *loc;
3128 bfd_boolean skip, relocate;
3129 asection *sreloc;
3130
3131 /* When generating a shared object, these relocations
3132 are copied into the output file to be resolved at run
3133 time. */
3134 skip = FALSE;
3135 relocate = FALSE;
3136
3137 outrel.r_offset =
3138 _bfd_elf_section_offset (output_bfd, info, input_section,
3139 rel->r_offset);
3140 if (outrel.r_offset == (bfd_vma) -1)
3141 skip = TRUE;
3142 else if (outrel.r_offset == (bfd_vma) -2)
3143 skip = TRUE, relocate = TRUE;
3144
3145 outrel.r_offset += (input_section->output_section->vma
3146 + input_section->output_offset);
3147
3148 if (skip)
3149 memset (&outrel, 0, sizeof outrel);
3150
3151 /* h->dynindx may be -1 if this symbol was marked to
3152 become local. */
3153 else if (h != NULL
3154 && h->dynindx != -1
3155 && (IS_X86_64_PCREL_TYPE (r_type)
3156 || ! info->shared
3157 || ! SYMBOLIC_BIND (info, h)
3158 || ! h->def_regular))
3159 {
3160 outrel.r_info = ELF64_R_INFO (h->dynindx, r_type);
3161 outrel.r_addend = rel->r_addend;
3162 }
3163 else
3164 {
3165 /* This symbol is local, or marked to become local. */
3166 if (r_type == R_X86_64_64)
3167 {
3168 relocate = TRUE;
3169 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
3170 outrel.r_addend = relocation + rel->r_addend;
3171 }
3172 else
3173 {
3174 long sindx;
3175
3176 if (bfd_is_abs_section (sec))
3177 sindx = 0;
3178 else if (sec == NULL || sec->owner == NULL)
3179 {
3180 bfd_set_error (bfd_error_bad_value);
3181 return FALSE;
3182 }
3183 else
3184 {
3185 asection *osec;
3186
3187 /* We are turning this relocation into one
3188 against a section symbol. It would be
3189 proper to subtract the symbol's value,
3190 osec->vma, from the emitted reloc addend,
3191 but ld.so expects buggy relocs. */
3192 osec = sec->output_section;
3193 sindx = elf_section_data (osec)->dynindx;
3194 if (sindx == 0)
3195 {
3196 asection *oi = htab->elf.text_index_section;
3197 sindx = elf_section_data (oi)->dynindx;
3198 }
3199 BFD_ASSERT (sindx != 0);
3200 }
3201
3202 outrel.r_info = ELF64_R_INFO (sindx, r_type);
3203 outrel.r_addend = relocation + rel->r_addend;
3204 }
3205 }
3206
3207 sreloc = elf_section_data (input_section)->sreloc;
3208
3209 BFD_ASSERT (sreloc != NULL && sreloc->contents != NULL);
3210
3211 loc = sreloc->contents;
3212 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
3213 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
3214
3215 /* If this reloc is against an external symbol, we do
3216 not want to fiddle with the addend. Otherwise, we
3217 need to include the symbol value so that it becomes
3218 an addend for the dynamic reloc. */
3219 if (! relocate)
3220 continue;
3221 }
3222
3223 break;
3224
3225 case R_X86_64_TLSGD:
3226 case R_X86_64_GOTPC32_TLSDESC:
3227 case R_X86_64_TLSDESC_CALL:
3228 case R_X86_64_GOTTPOFF:
3229 tls_type = GOT_UNKNOWN;
3230 if (h == NULL && local_got_offsets)
3231 tls_type = elf64_x86_64_local_got_tls_type (input_bfd) [r_symndx];
3232 else if (h != NULL)
3233 tls_type = elf64_x86_64_hash_entry (h)->tls_type;
3234
3235 if (! elf64_x86_64_tls_transition (info, input_bfd,
3236 input_section, contents,
3237 symtab_hdr, sym_hashes,
3238 &r_type, tls_type, rel,
3239 relend, h))
3240 return FALSE;
3241
3242 if (r_type == R_X86_64_TPOFF32)
3243 {
3244 bfd_vma roff = rel->r_offset;
3245
3246 BFD_ASSERT (! unresolved_reloc);
3247
3248 if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
3249 {
3250 /* GD->LE transition.
3251 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3252 .word 0x6666; rex64; call __tls_get_addr
3253 Change it into:
3254 movq %fs:0, %rax
3255 leaq foo@tpoff(%rax), %rax */
3256 memcpy (contents + roff - 4,
3257 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
3258 16);
3259 bfd_put_32 (output_bfd,
3260 elf64_x86_64_tpoff (info, relocation),
3261 contents + roff + 8);
3262 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
3263 rel++;
3264 continue;
3265 }
3266 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
3267 {
3268 /* GDesc -> LE transition.
3269 It's originally something like:
3270 leaq x@tlsdesc(%rip), %rax
3271
3272 Change it to:
3273 movl $x@tpoff, %rax
3274 */
3275
3276 unsigned int val, type, type2;
3277
3278 type = bfd_get_8 (input_bfd, contents + roff - 3);
3279 type2 = bfd_get_8 (input_bfd, contents + roff - 2);
3280 val = bfd_get_8 (input_bfd, contents + roff - 1);
3281 bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1),
3282 contents + roff - 3);
3283 bfd_put_8 (output_bfd, 0xc7, contents + roff - 2);
3284 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
3285 contents + roff - 1);
3286 bfd_put_32 (output_bfd,
3287 elf64_x86_64_tpoff (info, relocation),
3288 contents + roff);
3289 continue;
3290 }
3291 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
3292 {
3293 /* GDesc -> LE transition.
3294 It's originally:
3295 call *(%rax)
3296 Turn it into:
3297 xchg %ax,%ax. */
3298 bfd_put_8 (output_bfd, 0x66, contents + roff);
3299 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
3300 continue;
3301 }
3302 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_GOTTPOFF)
3303 {
3304 /* IE->LE transition:
3305 Originally it can be one of:
3306 movq foo@gottpoff(%rip), %reg
3307 addq foo@gottpoff(%rip), %reg
3308 We change it into:
3309 movq $foo, %reg
3310 leaq foo(%reg), %reg
3311 addq $foo, %reg. */
3312
3313 unsigned int val, type, reg;
3314
3315 val = bfd_get_8 (input_bfd, contents + roff - 3);
3316 type = bfd_get_8 (input_bfd, contents + roff - 2);
3317 reg = bfd_get_8 (input_bfd, contents + roff - 1);
3318 reg >>= 3;
3319 if (type == 0x8b)
3320 {
3321 /* movq */
3322 if (val == 0x4c)
3323 bfd_put_8 (output_bfd, 0x49,
3324 contents + roff - 3);
3325 bfd_put_8 (output_bfd, 0xc7,
3326 contents + roff - 2);
3327 bfd_put_8 (output_bfd, 0xc0 | reg,
3328 contents + roff - 1);
3329 }
3330 else if (reg == 4)
3331 {
3332 /* addq -> addq - addressing with %rsp/%r12 is
3333 special */
3334 if (val == 0x4c)
3335 bfd_put_8 (output_bfd, 0x49,
3336 contents + roff - 3);
3337 bfd_put_8 (output_bfd, 0x81,
3338 contents + roff - 2);
3339 bfd_put_8 (output_bfd, 0xc0 | reg,
3340 contents + roff - 1);
3341 }
3342 else
3343 {
3344 /* addq -> leaq */
3345 if (val == 0x4c)
3346 bfd_put_8 (output_bfd, 0x4d,
3347 contents + roff - 3);
3348 bfd_put_8 (output_bfd, 0x8d,
3349 contents + roff - 2);
3350 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
3351 contents + roff - 1);
3352 }
3353 bfd_put_32 (output_bfd,
3354 elf64_x86_64_tpoff (info, relocation),
3355 contents + roff);
3356 continue;
3357 }
3358 else
3359 BFD_ASSERT (FALSE);
3360 }
3361
3362 if (htab->elf.sgot == NULL)
3363 abort ();
3364
3365 if (h != NULL)
3366 {
3367 off = h->got.offset;
3368 offplt = elf64_x86_64_hash_entry (h)->tlsdesc_got;
3369 }
3370 else
3371 {
3372 if (local_got_offsets == NULL)
3373 abort ();
3374
3375 off = local_got_offsets[r_symndx];
3376 offplt = local_tlsdesc_gotents[r_symndx];
3377 }
3378
3379 if ((off & 1) != 0)
3380 off &= ~1;
3381 else
3382 {
3383 Elf_Internal_Rela outrel;
3384 bfd_byte *loc;
3385 int dr_type, indx;
3386 asection *sreloc;
3387
3388 if (htab->elf.srelgot == NULL)
3389 abort ();
3390
3391 indx = h && h->dynindx != -1 ? h->dynindx : 0;
3392
3393 if (GOT_TLS_GDESC_P (tls_type))
3394 {
3395 outrel.r_info = ELF64_R_INFO (indx, R_X86_64_TLSDESC);
3396 BFD_ASSERT (htab->sgotplt_jump_table_size + offplt
3397 + 2 * GOT_ENTRY_SIZE <= htab->elf.sgotplt->size);
3398 outrel.r_offset = (htab->elf.sgotplt->output_section->vma
3399 + htab->elf.sgotplt->output_offset
3400 + offplt
3401 + htab->sgotplt_jump_table_size);
3402 sreloc = htab->elf.srelplt;
3403 loc = sreloc->contents;
3404 loc += sreloc->reloc_count++
3405 * sizeof (Elf64_External_Rela);
3406 BFD_ASSERT (loc + sizeof (Elf64_External_Rela)
3407 <= sreloc->contents + sreloc->size);
3408 if (indx == 0)
3409 outrel.r_addend = relocation - elf64_x86_64_dtpoff_base (info);
3410 else
3411 outrel.r_addend = 0;
3412 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
3413 }
3414
3415 sreloc = htab->elf.srelgot;
3416
3417 outrel.r_offset = (htab->elf.sgot->output_section->vma
3418 + htab->elf.sgot->output_offset + off);
3419
3420 if (GOT_TLS_GD_P (tls_type))
3421 dr_type = R_X86_64_DTPMOD64;
3422 else if (GOT_TLS_GDESC_P (tls_type))
3423 goto dr_done;
3424 else
3425 dr_type = R_X86_64_TPOFF64;
3426
3427 bfd_put_64 (output_bfd, 0, htab->elf.sgot->contents + off);
3428 outrel.r_addend = 0;
3429 if ((dr_type == R_X86_64_TPOFF64
3430 || dr_type == R_X86_64_TLSDESC) && indx == 0)
3431 outrel.r_addend = relocation - elf64_x86_64_dtpoff_base (info);
3432 outrel.r_info = ELF64_R_INFO (indx, dr_type);
3433
3434 loc = sreloc->contents;
3435 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
3436 BFD_ASSERT (loc + sizeof (Elf64_External_Rela)
3437 <= sreloc->contents + sreloc->size);
3438 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
3439
3440 if (GOT_TLS_GD_P (tls_type))
3441 {
3442 if (indx == 0)
3443 {
3444 BFD_ASSERT (! unresolved_reloc);
3445 bfd_put_64 (output_bfd,
3446 relocation - elf64_x86_64_dtpoff_base (info),
3447 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
3448 }
3449 else
3450 {
3451 bfd_put_64 (output_bfd, 0,
3452 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
3453 outrel.r_info = ELF64_R_INFO (indx,
3454 R_X86_64_DTPOFF64);
3455 outrel.r_offset += GOT_ENTRY_SIZE;
3456 sreloc->reloc_count++;
3457 loc += sizeof (Elf64_External_Rela);
3458 BFD_ASSERT (loc + sizeof (Elf64_External_Rela)
3459 <= sreloc->contents + sreloc->size);
3460 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
3461 }
3462 }
3463
3464 dr_done:
3465 if (h != NULL)
3466 h->got.offset |= 1;
3467 else
3468 local_got_offsets[r_symndx] |= 1;
3469 }
3470
3471 if (off >= (bfd_vma) -2
3472 && ! GOT_TLS_GDESC_P (tls_type))
3473 abort ();
3474 if (r_type == ELF64_R_TYPE (rel->r_info))
3475 {
3476 if (r_type == R_X86_64_GOTPC32_TLSDESC
3477 || r_type == R_X86_64_TLSDESC_CALL)
3478 relocation = htab->elf.sgotplt->output_section->vma
3479 + htab->elf.sgotplt->output_offset
3480 + offplt + htab->sgotplt_jump_table_size;
3481 else
3482 relocation = htab->elf.sgot->output_section->vma
3483 + htab->elf.sgot->output_offset + off;
3484 unresolved_reloc = FALSE;
3485 }
3486 else
3487 {
3488 bfd_vma roff = rel->r_offset;
3489
3490 if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
3491 {
3492 /* GD->IE transition.
3493 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3494 .word 0x6666; rex64; call __tls_get_addr@plt
3495 Change it into:
3496 movq %fs:0, %rax
3497 addq foo@gottpoff(%rip), %rax */
3498 memcpy (contents + roff - 4,
3499 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
3500 16);
3501
3502 relocation = (htab->elf.sgot->output_section->vma
3503 + htab->elf.sgot->output_offset + off
3504 - roff
3505 - input_section->output_section->vma
3506 - input_section->output_offset
3507 - 12);
3508 bfd_put_32 (output_bfd, relocation,
3509 contents + roff + 8);
3510 /* Skip R_X86_64_PLT32. */
3511 rel++;
3512 continue;
3513 }
3514 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
3515 {
3516 /* GDesc -> IE transition.
3517 It's originally something like:
3518 leaq x@tlsdesc(%rip), %rax
3519
3520 Change it to:
3521 movq x@gottpoff(%rip), %rax # before xchg %ax,%ax
3522 */
3523
3524 unsigned int val, type, type2;
3525
3526 type = bfd_get_8 (input_bfd, contents + roff - 3);
3527 type2 = bfd_get_8 (input_bfd, contents + roff - 2);
3528 val = bfd_get_8 (input_bfd, contents + roff - 1);
3529
3530 /* Now modify the instruction as appropriate. To
3531 turn a leaq into a movq in the form we use it, it
3532 suffices to change the second byte from 0x8d to
3533 0x8b. */
3534 bfd_put_8 (output_bfd, 0x8b, contents + roff - 2);
3535
3536 bfd_put_32 (output_bfd,
3537 htab->elf.sgot->output_section->vma
3538 + htab->elf.sgot->output_offset + off
3539 - rel->r_offset
3540 - input_section->output_section->vma
3541 - input_section->output_offset
3542 - 4,
3543 contents + roff);
3544 continue;
3545 }
3546 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
3547 {
3548 /* GDesc -> IE transition.
3549 It's originally:
3550 call *(%rax)
3551
3552 Change it to:
3553 xchg %ax,%ax. */
3554
3555 unsigned int val, type;
3556
3557 type = bfd_get_8 (input_bfd, contents + roff);
3558 val = bfd_get_8 (input_bfd, contents + roff + 1);
3559 bfd_put_8 (output_bfd, 0x66, contents + roff);
3560 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
3561 continue;
3562 }
3563 else
3564 BFD_ASSERT (FALSE);
3565 }
3566 break;
3567
3568 case R_X86_64_TLSLD:
3569 if (! elf64_x86_64_tls_transition (info, input_bfd,
3570 input_section, contents,
3571 symtab_hdr, sym_hashes,
3572 &r_type, GOT_UNKNOWN,
3573 rel, relend, h))
3574 return FALSE;
3575
3576 if (r_type != R_X86_64_TLSLD)
3577 {
3578 /* LD->LE transition:
3579 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
3580 We change it into:
3581 .word 0x6666; .byte 0x66; movl %fs:0, %rax. */
3582
3583 BFD_ASSERT (r_type == R_X86_64_TPOFF32);
3584 memcpy (contents + rel->r_offset - 3,
3585 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
3586 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
3587 rel++;
3588 continue;
3589 }
3590
3591 if (htab->elf.sgot == NULL)
3592 abort ();
3593
3594 off = htab->tls_ld_got.offset;
3595 if (off & 1)
3596 off &= ~1;
3597 else
3598 {
3599 Elf_Internal_Rela outrel;
3600 bfd_byte *loc;
3601
3602 if (htab->elf.srelgot == NULL)
3603 abort ();
3604
3605 outrel.r_offset = (htab->elf.sgot->output_section->vma
3606 + htab->elf.sgot->output_offset + off);
3607
3608 bfd_put_64 (output_bfd, 0,
3609 htab->elf.sgot->contents + off);
3610 bfd_put_64 (output_bfd, 0,
3611 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
3612 outrel.r_info = ELF64_R_INFO (0, R_X86_64_DTPMOD64);
3613 outrel.r_addend = 0;
3614 loc = htab->elf.srelgot->contents;
3615 loc += htab->elf.srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
3616 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
3617 htab->tls_ld_got.offset |= 1;
3618 }
3619 relocation = htab->elf.sgot->output_section->vma
3620 + htab->elf.sgot->output_offset + off;
3621 unresolved_reloc = FALSE;
3622 break;
3623
3624 case R_X86_64_DTPOFF32:
3625 if (info->shared || (input_section->flags & SEC_CODE) == 0)
3626 relocation -= elf64_x86_64_dtpoff_base (info);
3627 else
3628 relocation = elf64_x86_64_tpoff (info, relocation);
3629 break;
3630
3631 case R_X86_64_TPOFF32:
3632 BFD_ASSERT (! info->shared);
3633 relocation = elf64_x86_64_tpoff (info, relocation);
3634 break;
3635
3636 default:
3637 break;
3638 }
3639
3640 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3641 because such sections are not SEC_ALLOC and thus ld.so will
3642 not process them. */
3643 if (unresolved_reloc
3644 && !((input_section->flags & SEC_DEBUGGING) != 0
3645 && h->def_dynamic))
3646 (*_bfd_error_handler)
3647 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3648 input_bfd,
3649 input_section,
3650 (long) rel->r_offset,
3651 howto->name,
3652 h->root.root.string);
3653
3654 do_relocation:
3655 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
3656 contents, rel->r_offset,
3657 relocation, rel->r_addend);
3658
3659 if (r != bfd_reloc_ok)
3660 {
3661 const char *name;
3662
3663 if (h != NULL)
3664 name = h->root.root.string;
3665 else
3666 {
3667 name = bfd_elf_string_from_elf_section (input_bfd,
3668 symtab_hdr->sh_link,
3669 sym->st_name);
3670 if (name == NULL)
3671 return FALSE;
3672 if (*name == '\0')
3673 name = bfd_section_name (input_bfd, sec);
3674 }
3675
3676 if (r == bfd_reloc_overflow)
3677 {
3678 if (! ((*info->callbacks->reloc_overflow)
3679 (info, (h ? &h->root : NULL), name, howto->name,
3680 (bfd_vma) 0, input_bfd, input_section,
3681 rel->r_offset)))
3682 return FALSE;
3683 }
3684 else
3685 {
3686 (*_bfd_error_handler)
3687 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
3688 input_bfd, input_section,
3689 (long) rel->r_offset, name, (int) r);
3690 return FALSE;
3691 }
3692 }
3693 }
3694
3695 return TRUE;
3696 }
3697
3698 /* Finish up dynamic symbol handling. We set the contents of various
3699 dynamic sections here. */
3700
3701 static bfd_boolean
3702 elf64_x86_64_finish_dynamic_symbol (bfd *output_bfd,
3703 struct bfd_link_info *info,
3704 struct elf_link_hash_entry *h,
3705 Elf_Internal_Sym *sym)
3706 {
3707 struct elf64_x86_64_link_hash_table *htab;
3708
3709 htab = elf64_x86_64_hash_table (info);
3710
3711 if (h->plt.offset != (bfd_vma) -1)
3712 {
3713 bfd_vma plt_index;
3714 bfd_vma got_offset;
3715 Elf_Internal_Rela rela;
3716 bfd_byte *loc;
3717 asection *plt, *gotplt, *relplt;
3718
3719 /* When building a static executable, use .iplt, .igot.plt and
3720 .rela.iplt sections for STT_GNU_IFUNC symbols. */
3721 if (htab->elf.splt != NULL)
3722 {
3723 plt = htab->elf.splt;
3724 gotplt = htab->elf.sgotplt;
3725 relplt = htab->elf.srelplt;
3726 }
3727 else
3728 {
3729 plt = htab->elf.iplt;
3730 gotplt = htab->elf.igotplt;
3731 relplt = htab->elf.irelplt;
3732 }
3733
3734 /* This symbol has an entry in the procedure linkage table. Set
3735 it up. */
3736 if ((h->dynindx == -1
3737 && !((h->forced_local || info->executable)
3738 && h->def_regular
3739 && h->type == STT_GNU_IFUNC))
3740 || plt == NULL
3741 || gotplt == NULL
3742 || relplt == NULL)
3743 abort ();
3744
3745 /* Get the index in the procedure linkage table which
3746 corresponds to this symbol. This is the index of this symbol
3747 in all the symbols for which we are making plt entries. The
3748 first entry in the procedure linkage table is reserved.
3749
3750 Get the offset into the .got table of the entry that
3751 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
3752 bytes. The first three are reserved for the dynamic linker.
3753
3754 For static executables, we don't reserve anything. */
3755
3756 if (plt == htab->elf.splt)
3757 {
3758 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3759 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
3760 }
3761 else
3762 {
3763 plt_index = h->plt.offset / PLT_ENTRY_SIZE;
3764 got_offset = plt_index * GOT_ENTRY_SIZE;
3765 }
3766
3767 /* Fill in the entry in the procedure linkage table. */
3768 memcpy (plt->contents + h->plt.offset, elf64_x86_64_plt_entry,
3769 PLT_ENTRY_SIZE);
3770
3771 /* Insert the relocation positions of the plt section. The magic
3772 numbers at the end of the statements are the positions of the
3773 relocations in the plt section. */
3774 /* Put offset for jmp *name@GOTPCREL(%rip), since the
3775 instruction uses 6 bytes, subtract this value. */
3776 bfd_put_32 (output_bfd,
3777 (gotplt->output_section->vma
3778 + gotplt->output_offset
3779 + got_offset
3780 - plt->output_section->vma
3781 - plt->output_offset
3782 - h->plt.offset
3783 - 6),
3784 plt->contents + h->plt.offset + 2);
3785
3786 /* Don't fill PLT entry for static executables. */
3787 if (plt == htab->elf.splt)
3788 {
3789 /* Put relocation index. */
3790 bfd_put_32 (output_bfd, plt_index,
3791 plt->contents + h->plt.offset + 7);
3792 /* Put offset for jmp .PLT0. */
3793 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
3794 plt->contents + h->plt.offset + 12);
3795 }
3796
3797 /* Fill in the entry in the global offset table, initially this
3798 points to the pushq instruction in the PLT which is at offset 6. */
3799 bfd_put_64 (output_bfd, (plt->output_section->vma
3800 + plt->output_offset
3801 + h->plt.offset + 6),
3802 gotplt->contents + got_offset);
3803
3804 /* Fill in the entry in the .rela.plt section. */
3805 rela.r_offset = (gotplt->output_section->vma
3806 + gotplt->output_offset
3807 + got_offset);
3808 if (h->dynindx == -1
3809 || ((info->executable
3810 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
3811 && h->def_regular
3812 && h->type == STT_GNU_IFUNC))
3813 {
3814 /* If an STT_GNU_IFUNC symbol is locally defined, generate
3815 R_X86_64_IRELATIVE instead of R_X86_64_JUMP_SLOT. */
3816 rela.r_info = ELF64_R_INFO (0, R_X86_64_IRELATIVE);
3817 rela.r_addend = (h->root.u.def.value
3818 + h->root.u.def.section->output_section->vma
3819 + h->root.u.def.section->output_offset);
3820 }
3821 else
3822 {
3823 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_JUMP_SLOT);
3824 rela.r_addend = 0;
3825 }
3826 loc = relplt->contents + plt_index * sizeof (Elf64_External_Rela);
3827 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
3828
3829 if (!h->def_regular)
3830 {
3831 /* Mark the symbol as undefined, rather than as defined in
3832 the .plt section. Leave the value if there were any
3833 relocations where pointer equality matters (this is a clue
3834 for the dynamic linker, to make function pointer
3835 comparisons work between an application and shared
3836 library), otherwise set it to zero. If a function is only
3837 called from a binary, there is no need to slow down
3838 shared libraries because of that. */
3839 sym->st_shndx = SHN_UNDEF;
3840 if (!h->pointer_equality_needed)
3841 sym->st_value = 0;
3842 }
3843 }
3844
3845 if (h->got.offset != (bfd_vma) -1
3846 && ! GOT_TLS_GD_ANY_P (elf64_x86_64_hash_entry (h)->tls_type)
3847 && elf64_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
3848 {
3849 Elf_Internal_Rela rela;
3850 bfd_byte *loc;
3851
3852 /* This symbol has an entry in the global offset table. Set it
3853 up. */
3854 if (htab->elf.sgot == NULL || htab->elf.srelgot == NULL)
3855 abort ();
3856
3857 rela.r_offset = (htab->elf.sgot->output_section->vma
3858 + htab->elf.sgot->output_offset
3859 + (h->got.offset &~ (bfd_vma) 1));
3860
3861 /* If this is a static link, or it is a -Bsymbolic link and the
3862 symbol is defined locally or was forced to be local because
3863 of a version file, we just want to emit a RELATIVE reloc.
3864 The entry in the global offset table will already have been
3865 initialized in the relocate_section function. */
3866 if (h->def_regular
3867 && h->type == STT_GNU_IFUNC)
3868 {
3869 if (info->shared)
3870 {
3871 /* Generate R_X86_64_GLOB_DAT. */
3872 goto do_glob_dat;
3873 }
3874 else
3875 {
3876 if (!h->pointer_equality_needed)
3877 abort ();
3878
3879 /* For non-shared object, we can't use .got.plt, which
3880 contains the real function addres if we need pointer
3881 equality. We load the GOT entry with the PLT entry. */
3882 asection *plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
3883 bfd_put_64 (output_bfd, (plt->output_section->vma
3884 + plt->output_offset
3885 + h->plt.offset),
3886 htab->elf.sgot->contents + h->got.offset);
3887 return TRUE;
3888 }
3889 }
3890 else if (info->shared
3891 && SYMBOL_REFERENCES_LOCAL (info, h))
3892 {
3893 if (!h->def_regular)
3894 return FALSE;
3895 BFD_ASSERT((h->got.offset & 1) != 0);
3896 rela.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
3897 rela.r_addend = (h->root.u.def.value
3898 + h->root.u.def.section->output_section->vma
3899 + h->root.u.def.section->output_offset);
3900 }
3901 else
3902 {
3903 BFD_ASSERT((h->got.offset & 1) == 0);
3904 do_glob_dat:
3905 bfd_put_64 (output_bfd, (bfd_vma) 0,
3906 htab->elf.sgot->contents + h->got.offset);
3907 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_GLOB_DAT);
3908 rela.r_addend = 0;
3909 }
3910
3911 loc = htab->elf.srelgot->contents;
3912 loc += htab->elf.srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
3913 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
3914 }
3915
3916 if (h->needs_copy)
3917 {
3918 Elf_Internal_Rela rela;
3919 bfd_byte *loc;
3920
3921 /* This symbol needs a copy reloc. Set it up. */
3922
3923 if (h->dynindx == -1
3924 || (h->root.type != bfd_link_hash_defined
3925 && h->root.type != bfd_link_hash_defweak)
3926 || htab->srelbss == NULL)
3927 abort ();
3928
3929 rela.r_offset = (h->root.u.def.value
3930 + h->root.u.def.section->output_section->vma
3931 + h->root.u.def.section->output_offset);
3932 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_COPY);
3933 rela.r_addend = 0;
3934 loc = htab->srelbss->contents;
3935 loc += htab->srelbss->reloc_count++ * sizeof (Elf64_External_Rela);
3936 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
3937 }
3938
3939 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
3940 be NULL for local symbols. */
3941 if (sym != NULL
3942 && (strcmp (h->root.root.string, "_DYNAMIC") == 0
3943 || h == htab->elf.hgot))
3944 sym->st_shndx = SHN_ABS;
3945
3946 return TRUE;
3947 }
3948
3949 /* Finish up local dynamic symbol handling. We set the contents of
3950 various dynamic sections here. */
3951
3952 static bfd_boolean
3953 elf64_x86_64_finish_local_dynamic_symbol (void **slot, void *inf)
3954 {
3955 struct elf_link_hash_entry *h
3956 = (struct elf_link_hash_entry *) *slot;
3957 struct bfd_link_info *info
3958 = (struct bfd_link_info *) inf;
3959
3960 return elf64_x86_64_finish_dynamic_symbol (info->output_bfd,
3961 info, h, NULL);
3962 }
3963
3964 /* Used to decide how to sort relocs in an optimal manner for the
3965 dynamic linker, before writing them out. */
3966
3967 static enum elf_reloc_type_class
3968 elf64_x86_64_reloc_type_class (const Elf_Internal_Rela *rela)
3969 {
3970 switch ((int) ELF64_R_TYPE (rela->r_info))
3971 {
3972 case R_X86_64_RELATIVE:
3973 return reloc_class_relative;
3974 case R_X86_64_JUMP_SLOT:
3975 return reloc_class_plt;
3976 case R_X86_64_COPY:
3977 return reloc_class_copy;
3978 default:
3979 return reloc_class_normal;
3980 }
3981 }
3982
3983 /* Finish up the dynamic sections. */
3984
3985 static bfd_boolean
3986 elf64_x86_64_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
3987 {
3988 struct elf64_x86_64_link_hash_table *htab;
3989 bfd *dynobj;
3990 asection *sdyn;
3991
3992 htab = elf64_x86_64_hash_table (info);
3993 dynobj = htab->elf.dynobj;
3994 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3995
3996 if (htab->elf.dynamic_sections_created)
3997 {
3998 Elf64_External_Dyn *dyncon, *dynconend;
3999
4000 if (sdyn == NULL || htab->elf.sgot == NULL)
4001 abort ();
4002
4003 dyncon = (Elf64_External_Dyn *) sdyn->contents;
4004 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
4005 for (; dyncon < dynconend; dyncon++)
4006 {
4007 Elf_Internal_Dyn dyn;
4008 asection *s;
4009
4010 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
4011
4012 switch (dyn.d_tag)
4013 {
4014 default:
4015 continue;
4016
4017 case DT_PLTGOT:
4018 s = htab->elf.sgotplt;
4019 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4020 break;
4021
4022 case DT_JMPREL:
4023 dyn.d_un.d_ptr = htab->elf.srelplt->output_section->vma;
4024 break;
4025
4026 case DT_PLTRELSZ:
4027 s = htab->elf.srelplt->output_section;
4028 dyn.d_un.d_val = s->size;
4029 break;
4030
4031 case DT_RELASZ:
4032 /* The procedure linkage table relocs (DT_JMPREL) should
4033 not be included in the overall relocs (DT_RELA).
4034 Therefore, we override the DT_RELASZ entry here to
4035 make it not include the JMPREL relocs. Since the
4036 linker script arranges for .rela.plt to follow all
4037 other relocation sections, we don't have to worry
4038 about changing the DT_RELA entry. */
4039 if (htab->elf.srelplt != NULL)
4040 {
4041 s = htab->elf.srelplt->output_section;
4042 dyn.d_un.d_val -= s->size;
4043 }
4044 break;
4045
4046 case DT_TLSDESC_PLT:
4047 s = htab->elf.splt;
4048 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4049 + htab->tlsdesc_plt;
4050 break;
4051
4052 case DT_TLSDESC_GOT:
4053 s = htab->elf.sgot;
4054 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4055 + htab->tlsdesc_got;
4056 break;
4057 }
4058
4059 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
4060 }
4061
4062 /* Fill in the special first entry in the procedure linkage table. */
4063 if (htab->elf.splt && htab->elf.splt->size > 0)
4064 {
4065 /* Fill in the first entry in the procedure linkage table. */
4066 memcpy (htab->elf.splt->contents, elf64_x86_64_plt0_entry,
4067 PLT_ENTRY_SIZE);
4068 /* Add offset for pushq GOT+8(%rip), since the instruction
4069 uses 6 bytes subtract this value. */
4070 bfd_put_32 (output_bfd,
4071 (htab->elf.sgotplt->output_section->vma
4072 + htab->elf.sgotplt->output_offset
4073 + 8
4074 - htab->elf.splt->output_section->vma
4075 - htab->elf.splt->output_offset
4076 - 6),
4077 htab->elf.splt->contents + 2);
4078 /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
4079 the end of the instruction. */
4080 bfd_put_32 (output_bfd,
4081 (htab->elf.sgotplt->output_section->vma
4082 + htab->elf.sgotplt->output_offset
4083 + 16
4084 - htab->elf.splt->output_section->vma
4085 - htab->elf.splt->output_offset
4086 - 12),
4087 htab->elf.splt->contents + 8);
4088
4089 elf_section_data (htab->elf.splt->output_section)->this_hdr.sh_entsize =
4090 PLT_ENTRY_SIZE;
4091
4092 if (htab->tlsdesc_plt)
4093 {
4094 bfd_put_64 (output_bfd, (bfd_vma) 0,
4095 htab->elf.sgot->contents + htab->tlsdesc_got);
4096
4097 memcpy (htab->elf.splt->contents + htab->tlsdesc_plt,
4098 elf64_x86_64_plt0_entry,
4099 PLT_ENTRY_SIZE);
4100
4101 /* Add offset for pushq GOT+8(%rip), since the
4102 instruction uses 6 bytes subtract this value. */
4103 bfd_put_32 (output_bfd,
4104 (htab->elf.sgotplt->output_section->vma
4105 + htab->elf.sgotplt->output_offset
4106 + 8
4107 - htab->elf.splt->output_section->vma
4108 - htab->elf.splt->output_offset
4109 - htab->tlsdesc_plt
4110 - 6),
4111 htab->elf.splt->contents + htab->tlsdesc_plt + 2);
4112 /* Add offset for jmp *GOT+TDG(%rip), where TGD stands for
4113 htab->tlsdesc_got. The 12 is the offset to the end of
4114 the instruction. */
4115 bfd_put_32 (output_bfd,
4116 (htab->elf.sgot->output_section->vma
4117 + htab->elf.sgot->output_offset
4118 + htab->tlsdesc_got
4119 - htab->elf.splt->output_section->vma
4120 - htab->elf.splt->output_offset
4121 - htab->tlsdesc_plt
4122 - 12),
4123 htab->elf.splt->contents + htab->tlsdesc_plt + 8);
4124 }
4125 }
4126 }
4127
4128 if (htab->elf.sgotplt)
4129 {
4130 /* Fill in the first three entries in the global offset table. */
4131 if (htab->elf.sgotplt->size > 0)
4132 {
4133 /* Set the first entry in the global offset table to the address of
4134 the dynamic section. */
4135 if (sdyn == NULL)
4136 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents);
4137 else
4138 bfd_put_64 (output_bfd,
4139 sdyn->output_section->vma + sdyn->output_offset,
4140 htab->elf.sgotplt->contents);
4141 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
4142 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
4143 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE*2);
4144 }
4145
4146 elf_section_data (htab->elf.sgotplt->output_section)->this_hdr.sh_entsize =
4147 GOT_ENTRY_SIZE;
4148 }
4149
4150 if (htab->elf.sgot && htab->elf.sgot->size > 0)
4151 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize
4152 = GOT_ENTRY_SIZE;
4153
4154 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
4155 htab_traverse (htab->loc_hash_table,
4156 elf64_x86_64_finish_local_dynamic_symbol,
4157 info);
4158
4159 return TRUE;
4160 }
4161
4162 /* Return address for Ith PLT stub in section PLT, for relocation REL
4163 or (bfd_vma) -1 if it should not be included. */
4164
4165 static bfd_vma
4166 elf64_x86_64_plt_sym_val (bfd_vma i, const asection *plt,
4167 const arelent *rel ATTRIBUTE_UNUSED)
4168 {
4169 return plt->vma + (i + 1) * PLT_ENTRY_SIZE;
4170 }
4171
4172 /* Handle an x86-64 specific section when reading an object file. This
4173 is called when elfcode.h finds a section with an unknown type. */
4174
4175 static bfd_boolean
4176 elf64_x86_64_section_from_shdr (bfd *abfd,
4177 Elf_Internal_Shdr *hdr,
4178 const char *name,
4179 int shindex)
4180 {
4181 if (hdr->sh_type != SHT_X86_64_UNWIND)
4182 return FALSE;
4183
4184 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
4185 return FALSE;
4186
4187 return TRUE;
4188 }
4189
4190 /* Hook called by the linker routine which adds symbols from an object
4191 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
4192 of .bss. */
4193
4194 static bfd_boolean
4195 elf64_x86_64_add_symbol_hook (bfd *abfd,
4196 struct bfd_link_info *info,
4197 Elf_Internal_Sym *sym,
4198 const char **namep ATTRIBUTE_UNUSED,
4199 flagword *flagsp ATTRIBUTE_UNUSED,
4200 asection **secp,
4201 bfd_vma *valp)
4202 {
4203 asection *lcomm;
4204
4205 switch (sym->st_shndx)
4206 {
4207 case SHN_X86_64_LCOMMON:
4208 lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
4209 if (lcomm == NULL)
4210 {
4211 lcomm = bfd_make_section_with_flags (abfd,
4212 "LARGE_COMMON",
4213 (SEC_ALLOC
4214 | SEC_IS_COMMON
4215 | SEC_LINKER_CREATED));
4216 if (lcomm == NULL)
4217 return FALSE;
4218 elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
4219 }
4220 *secp = lcomm;
4221 *valp = sym->st_size;
4222 break;
4223 }
4224
4225 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
4226 elf_tdata (info->output_bfd)->has_ifunc_symbols = TRUE;
4227
4228 return TRUE;
4229 }
4230
4231
4232 /* Given a BFD section, try to locate the corresponding ELF section
4233 index. */
4234
4235 static bfd_boolean
4236 elf64_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
4237 asection *sec, int *index)
4238 {
4239 if (sec == &_bfd_elf_large_com_section)
4240 {
4241 *index = SHN_X86_64_LCOMMON;
4242 return TRUE;
4243 }
4244 return FALSE;
4245 }
4246
4247 /* Process a symbol. */
4248
4249 static void
4250 elf64_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
4251 asymbol *asym)
4252 {
4253 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
4254
4255 switch (elfsym->internal_elf_sym.st_shndx)
4256 {
4257 case SHN_X86_64_LCOMMON:
4258 asym->section = &_bfd_elf_large_com_section;
4259 asym->value = elfsym->internal_elf_sym.st_size;
4260 /* Common symbol doesn't set BSF_GLOBAL. */
4261 asym->flags &= ~BSF_GLOBAL;
4262 break;
4263 }
4264 }
4265
4266 static bfd_boolean
4267 elf64_x86_64_common_definition (Elf_Internal_Sym *sym)
4268 {
4269 return (sym->st_shndx == SHN_COMMON
4270 || sym->st_shndx == SHN_X86_64_LCOMMON);
4271 }
4272
4273 static unsigned int
4274 elf64_x86_64_common_section_index (asection *sec)
4275 {
4276 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
4277 return SHN_COMMON;
4278 else
4279 return SHN_X86_64_LCOMMON;
4280 }
4281
4282 static asection *
4283 elf64_x86_64_common_section (asection *sec)
4284 {
4285 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
4286 return bfd_com_section_ptr;
4287 else
4288 return &_bfd_elf_large_com_section;
4289 }
4290
4291 static bfd_boolean
4292 elf64_x86_64_merge_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
4293 struct elf_link_hash_entry **sym_hash ATTRIBUTE_UNUSED,
4294 struct elf_link_hash_entry *h,
4295 Elf_Internal_Sym *sym,
4296 asection **psec,
4297 bfd_vma *pvalue ATTRIBUTE_UNUSED,
4298 unsigned int *pold_alignment ATTRIBUTE_UNUSED,
4299 bfd_boolean *skip ATTRIBUTE_UNUSED,
4300 bfd_boolean *override ATTRIBUTE_UNUSED,
4301 bfd_boolean *type_change_ok ATTRIBUTE_UNUSED,
4302 bfd_boolean *size_change_ok ATTRIBUTE_UNUSED,
4303 bfd_boolean *newdef ATTRIBUTE_UNUSED,
4304 bfd_boolean *newdyn,
4305 bfd_boolean *newdyncommon ATTRIBUTE_UNUSED,
4306 bfd_boolean *newweak ATTRIBUTE_UNUSED,
4307 bfd *abfd ATTRIBUTE_UNUSED,
4308 asection **sec,
4309 bfd_boolean *olddef ATTRIBUTE_UNUSED,
4310 bfd_boolean *olddyn,
4311 bfd_boolean *olddyncommon ATTRIBUTE_UNUSED,
4312 bfd_boolean *oldweak ATTRIBUTE_UNUSED,
4313 bfd *oldbfd,
4314 asection **oldsec)
4315 {
4316 /* A normal common symbol and a large common symbol result in a
4317 normal common symbol. We turn the large common symbol into a
4318 normal one. */
4319 if (!*olddyn
4320 && h->root.type == bfd_link_hash_common
4321 && !*newdyn
4322 && bfd_is_com_section (*sec)
4323 && *oldsec != *sec)
4324 {
4325 if (sym->st_shndx == SHN_COMMON
4326 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) != 0)
4327 {
4328 h->root.u.c.p->section
4329 = bfd_make_section_old_way (oldbfd, "COMMON");
4330 h->root.u.c.p->section->flags = SEC_ALLOC;
4331 }
4332 else if (sym->st_shndx == SHN_X86_64_LCOMMON
4333 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) == 0)
4334 *psec = *sec = bfd_com_section_ptr;
4335 }
4336
4337 return TRUE;
4338 }
4339
4340 static int
4341 elf64_x86_64_additional_program_headers (bfd *abfd,
4342 struct bfd_link_info *info ATTRIBUTE_UNUSED)
4343 {
4344 asection *s;
4345 int count = 0;
4346
4347 /* Check to see if we need a large readonly segment. */
4348 s = bfd_get_section_by_name (abfd, ".lrodata");
4349 if (s && (s->flags & SEC_LOAD))
4350 count++;
4351
4352 /* Check to see if we need a large data segment. Since .lbss sections
4353 is placed right after the .bss section, there should be no need for
4354 a large data segment just because of .lbss. */
4355 s = bfd_get_section_by_name (abfd, ".ldata");
4356 if (s && (s->flags & SEC_LOAD))
4357 count++;
4358
4359 return count;
4360 }
4361
4362 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
4363
4364 static bfd_boolean
4365 elf64_x86_64_hash_symbol (struct elf_link_hash_entry *h)
4366 {
4367 if (h->plt.offset != (bfd_vma) -1
4368 && !h->def_regular
4369 && !h->pointer_equality_needed)
4370 return FALSE;
4371
4372 return _bfd_elf_hash_symbol (h);
4373 }
4374
4375 static const struct bfd_elf_special_section
4376 elf64_x86_64_special_sections[]=
4377 {
4378 { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4379 { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
4380 { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
4381 { STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4382 { STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4383 { STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
4384 { NULL, 0, 0, 0, 0 }
4385 };
4386
4387 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
4388 #define TARGET_LITTLE_NAME "elf64-x86-64"
4389 #define ELF_ARCH bfd_arch_i386
4390 #define ELF_MACHINE_CODE EM_X86_64
4391 #define ELF_MAXPAGESIZE 0x200000
4392 #define ELF_MINPAGESIZE 0x1000
4393 #define ELF_COMMONPAGESIZE 0x1000
4394
4395 #define elf_backend_can_gc_sections 1
4396 #define elf_backend_can_refcount 1
4397 #define elf_backend_want_got_plt 1
4398 #define elf_backend_plt_readonly 1
4399 #define elf_backend_want_plt_sym 0
4400 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
4401 #define elf_backend_rela_normal 1
4402
4403 #define elf_info_to_howto elf64_x86_64_info_to_howto
4404
4405 #define bfd_elf64_bfd_link_hash_table_create \
4406 elf64_x86_64_link_hash_table_create
4407 #define bfd_elf64_bfd_link_hash_table_free \
4408 elf64_x86_64_link_hash_table_free
4409 #define bfd_elf64_bfd_reloc_type_lookup elf64_x86_64_reloc_type_lookup
4410 #define bfd_elf64_bfd_reloc_name_lookup \
4411 elf64_x86_64_reloc_name_lookup
4412
4413 #define elf_backend_adjust_dynamic_symbol elf64_x86_64_adjust_dynamic_symbol
4414 #define elf_backend_relocs_compatible _bfd_elf_relocs_compatible
4415 #define elf_backend_check_relocs elf64_x86_64_check_relocs
4416 #define elf_backend_copy_indirect_symbol elf64_x86_64_copy_indirect_symbol
4417 #define elf_backend_create_dynamic_sections elf64_x86_64_create_dynamic_sections
4418 #define elf_backend_finish_dynamic_sections elf64_x86_64_finish_dynamic_sections
4419 #define elf_backend_finish_dynamic_symbol elf64_x86_64_finish_dynamic_symbol
4420 #define elf_backend_gc_mark_hook elf64_x86_64_gc_mark_hook
4421 #define elf_backend_gc_sweep_hook elf64_x86_64_gc_sweep_hook
4422 #define elf_backend_grok_prstatus elf64_x86_64_grok_prstatus
4423 #define elf_backend_grok_psinfo elf64_x86_64_grok_psinfo
4424 #define elf_backend_reloc_type_class elf64_x86_64_reloc_type_class
4425 #define elf_backend_relocate_section elf64_x86_64_relocate_section
4426 #define elf_backend_size_dynamic_sections elf64_x86_64_size_dynamic_sections
4427 #define elf_backend_always_size_sections elf64_x86_64_always_size_sections
4428 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4429 #define elf_backend_plt_sym_val elf64_x86_64_plt_sym_val
4430 #define elf_backend_object_p elf64_x86_64_elf_object_p
4431 #define bfd_elf64_mkobject elf64_x86_64_mkobject
4432
4433 #define elf_backend_section_from_shdr \
4434 elf64_x86_64_section_from_shdr
4435
4436 #define elf_backend_section_from_bfd_section \
4437 elf64_x86_64_elf_section_from_bfd_section
4438 #define elf_backend_add_symbol_hook \
4439 elf64_x86_64_add_symbol_hook
4440 #define elf_backend_symbol_processing \
4441 elf64_x86_64_symbol_processing
4442 #define elf_backend_common_section_index \
4443 elf64_x86_64_common_section_index
4444 #define elf_backend_common_section \
4445 elf64_x86_64_common_section
4446 #define elf_backend_common_definition \
4447 elf64_x86_64_common_definition
4448 #define elf_backend_merge_symbol \
4449 elf64_x86_64_merge_symbol
4450 #define elf_backend_special_sections \
4451 elf64_x86_64_special_sections
4452 #define elf_backend_additional_program_headers \
4453 elf64_x86_64_additional_program_headers
4454 #define elf_backend_hash_symbol \
4455 elf64_x86_64_hash_symbol
4456
4457 #undef elf_backend_post_process_headers
4458 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4459
4460 #include "elf64-target.h"
4461
4462 /* FreeBSD support. */
4463
4464 #undef TARGET_LITTLE_SYM
4465 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_freebsd_vec
4466 #undef TARGET_LITTLE_NAME
4467 #define TARGET_LITTLE_NAME "elf64-x86-64-freebsd"
4468
4469 #undef ELF_OSABI
4470 #define ELF_OSABI ELFOSABI_FREEBSD
4471
4472 #undef elf64_bed
4473 #define elf64_bed elf64_x86_64_fbsd_bed
4474
4475 #include "elf64-target.h"