Check PC-relative offset overflow in PLT entry
[binutils-gdb.git] / bfd / elf64-x86-64.c
1 /* X86-64 specific support for ELF
2 Copyright (C) 2000-2014 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka <jh@suse.cz>.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "elf-nacl.h"
28 #include "bfd_stdint.h"
29 #include "objalloc.h"
30 #include "hashtab.h"
31 #include "dwarf2.h"
32 #include "libiberty.h"
33
34 #include "elf/x86-64.h"
35
36 #ifdef CORE_HEADER
37 #include <stdarg.h>
38 #include CORE_HEADER
39 #endif
40
41 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
42 #define MINUS_ONE (~ (bfd_vma) 0)
43
44 /* Since both 32-bit and 64-bit x86-64 encode relocation type in the
45 identical manner, we use ELF32_R_TYPE instead of ELF64_R_TYPE to get
46 relocation type. We also use ELF_ST_TYPE instead of ELF64_ST_TYPE
47 since they are the same. */
48
49 #define ABI_64_P(abfd) \
50 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
51
52 /* The relocation "howto" table. Order of fields:
53 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
54 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
55 static reloc_howto_type x86_64_elf_howto_table[] =
56 {
57 HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
58 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
59 FALSE),
60 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
61 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
62 FALSE),
63 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
64 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
65 TRUE),
66 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
67 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
68 FALSE),
69 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
70 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
71 TRUE),
72 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
73 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
74 FALSE),
75 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
76 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
77 MINUS_ONE, FALSE),
78 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
79 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
80 MINUS_ONE, FALSE),
81 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
82 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
83 MINUS_ONE, FALSE),
84 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
85 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
86 0xffffffff, TRUE),
87 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
88 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
89 FALSE),
90 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
91 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
92 FALSE),
93 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
94 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
95 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
96 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
97 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
98 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
99 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
100 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
101 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
102 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
103 MINUS_ONE, FALSE),
104 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
105 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
106 MINUS_ONE, FALSE),
107 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
108 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
109 MINUS_ONE, FALSE),
110 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
111 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
112 0xffffffff, TRUE),
113 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
114 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
115 0xffffffff, TRUE),
116 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
117 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
118 0xffffffff, FALSE),
119 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
120 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
121 0xffffffff, TRUE),
122 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
123 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
124 0xffffffff, FALSE),
125 HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
126 bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
127 TRUE),
128 HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
129 bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
130 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
131 HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
132 bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
133 FALSE, 0xffffffff, 0xffffffff, TRUE),
134 HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
135 bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE,
136 FALSE),
137 HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
138 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE,
139 MINUS_ONE, TRUE),
140 HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
141 bfd_elf_generic_reloc, "R_X86_64_GOTPC64",
142 FALSE, MINUS_ONE, MINUS_ONE, TRUE),
143 HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
144 bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE,
145 MINUS_ONE, FALSE),
146 HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
147 bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE,
148 MINUS_ONE, FALSE),
149 HOWTO(R_X86_64_SIZE32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
150 bfd_elf_generic_reloc, "R_X86_64_SIZE32", FALSE, 0xffffffff, 0xffffffff,
151 FALSE),
152 HOWTO(R_X86_64_SIZE64, 0, 4, 64, FALSE, 0, complain_overflow_unsigned,
153 bfd_elf_generic_reloc, "R_X86_64_SIZE64", FALSE, MINUS_ONE, MINUS_ONE,
154 FALSE),
155 HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0,
156 complain_overflow_bitfield, bfd_elf_generic_reloc,
157 "R_X86_64_GOTPC32_TLSDESC",
158 FALSE, 0xffffffff, 0xffffffff, TRUE),
159 HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0,
160 complain_overflow_dont, bfd_elf_generic_reloc,
161 "R_X86_64_TLSDESC_CALL",
162 FALSE, 0, 0, FALSE),
163 HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0,
164 complain_overflow_bitfield, bfd_elf_generic_reloc,
165 "R_X86_64_TLSDESC",
166 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
167 HOWTO(R_X86_64_IRELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
168 bfd_elf_generic_reloc, "R_X86_64_IRELATIVE", FALSE, MINUS_ONE,
169 MINUS_ONE, FALSE),
170 HOWTO(R_X86_64_RELATIVE64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
171 bfd_elf_generic_reloc, "R_X86_64_RELATIVE64", FALSE, MINUS_ONE,
172 MINUS_ONE, FALSE),
173 HOWTO(R_X86_64_PC32_BND, 0, 2, 32, TRUE, 0, complain_overflow_signed,
174 bfd_elf_generic_reloc, "R_X86_64_PC32_BND", FALSE, 0xffffffff, 0xffffffff,
175 TRUE),
176 HOWTO(R_X86_64_PLT32_BND, 0, 2, 32, TRUE, 0, complain_overflow_signed,
177 bfd_elf_generic_reloc, "R_X86_64_PLT32_BND", FALSE, 0xffffffff, 0xffffffff,
178 TRUE),
179
180 /* We have a gap in the reloc numbers here.
181 R_X86_64_standard counts the number up to this point, and
182 R_X86_64_vt_offset is the value to subtract from a reloc type of
183 R_X86_64_GNU_VT* to form an index into this table. */
184 #define R_X86_64_standard (R_X86_64_PLT32_BND + 1)
185 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
186
187 /* GNU extension to record C++ vtable hierarchy. */
188 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
189 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
190
191 /* GNU extension to record C++ vtable member usage. */
192 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
193 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
194 FALSE),
195
196 /* Use complain_overflow_bitfield on R_X86_64_32 for x32. */
197 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
198 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
199 FALSE)
200 };
201
202 #define IS_X86_64_PCREL_TYPE(TYPE) \
203 ( ((TYPE) == R_X86_64_PC8) \
204 || ((TYPE) == R_X86_64_PC16) \
205 || ((TYPE) == R_X86_64_PC32) \
206 || ((TYPE) == R_X86_64_PC32_BND) \
207 || ((TYPE) == R_X86_64_PC64))
208
209 /* Map BFD relocs to the x86_64 elf relocs. */
210 struct elf_reloc_map
211 {
212 bfd_reloc_code_real_type bfd_reloc_val;
213 unsigned char elf_reloc_val;
214 };
215
216 static const struct elf_reloc_map x86_64_reloc_map[] =
217 {
218 { BFD_RELOC_NONE, R_X86_64_NONE, },
219 { BFD_RELOC_64, R_X86_64_64, },
220 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
221 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
222 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
223 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
224 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
225 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
226 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
227 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
228 { BFD_RELOC_32, R_X86_64_32, },
229 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
230 { BFD_RELOC_16, R_X86_64_16, },
231 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
232 { BFD_RELOC_8, R_X86_64_8, },
233 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
234 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
235 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
236 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
237 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
238 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
239 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
240 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
241 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
242 { BFD_RELOC_64_PCREL, R_X86_64_PC64, },
243 { BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, },
244 { BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, },
245 { BFD_RELOC_X86_64_GOT64, R_X86_64_GOT64, },
246 { BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, },
247 { BFD_RELOC_X86_64_GOTPC64, R_X86_64_GOTPC64, },
248 { BFD_RELOC_X86_64_GOTPLT64, R_X86_64_GOTPLT64, },
249 { BFD_RELOC_X86_64_PLTOFF64, R_X86_64_PLTOFF64, },
250 { BFD_RELOC_SIZE32, R_X86_64_SIZE32, },
251 { BFD_RELOC_SIZE64, R_X86_64_SIZE64, },
252 { BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, },
253 { BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, },
254 { BFD_RELOC_X86_64_TLSDESC, R_X86_64_TLSDESC, },
255 { BFD_RELOC_X86_64_IRELATIVE, R_X86_64_IRELATIVE, },
256 { BFD_RELOC_X86_64_PC32_BND, R_X86_64_PC32_BND,},
257 { BFD_RELOC_X86_64_PLT32_BND, R_X86_64_PLT32_BND,},
258 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
259 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
260 };
261
262 static reloc_howto_type *
263 elf_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type)
264 {
265 unsigned i;
266
267 if (r_type == (unsigned int) R_X86_64_32)
268 {
269 if (ABI_64_P (abfd))
270 i = r_type;
271 else
272 i = ARRAY_SIZE (x86_64_elf_howto_table) - 1;
273 }
274 else if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
275 || r_type >= (unsigned int) R_X86_64_max)
276 {
277 if (r_type >= (unsigned int) R_X86_64_standard)
278 {
279 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
280 abfd, (int) r_type);
281 r_type = R_X86_64_NONE;
282 }
283 i = r_type;
284 }
285 else
286 i = r_type - (unsigned int) R_X86_64_vt_offset;
287 BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type);
288 return &x86_64_elf_howto_table[i];
289 }
290
291 /* Given a BFD reloc type, return a HOWTO structure. */
292 static reloc_howto_type *
293 elf_x86_64_reloc_type_lookup (bfd *abfd,
294 bfd_reloc_code_real_type code)
295 {
296 unsigned int i;
297
298 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
299 i++)
300 {
301 if (x86_64_reloc_map[i].bfd_reloc_val == code)
302 return elf_x86_64_rtype_to_howto (abfd,
303 x86_64_reloc_map[i].elf_reloc_val);
304 }
305 return 0;
306 }
307
308 static reloc_howto_type *
309 elf_x86_64_reloc_name_lookup (bfd *abfd,
310 const char *r_name)
311 {
312 unsigned int i;
313
314 if (!ABI_64_P (abfd) && strcasecmp (r_name, "R_X86_64_32") == 0)
315 {
316 /* Get x32 R_X86_64_32. */
317 reloc_howto_type *reloc
318 = &x86_64_elf_howto_table[ARRAY_SIZE (x86_64_elf_howto_table) - 1];
319 BFD_ASSERT (reloc->type == (unsigned int) R_X86_64_32);
320 return reloc;
321 }
322
323 for (i = 0; i < ARRAY_SIZE (x86_64_elf_howto_table); i++)
324 if (x86_64_elf_howto_table[i].name != NULL
325 && strcasecmp (x86_64_elf_howto_table[i].name, r_name) == 0)
326 return &x86_64_elf_howto_table[i];
327
328 return NULL;
329 }
330
331 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
332
333 static void
334 elf_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
335 Elf_Internal_Rela *dst)
336 {
337 unsigned r_type;
338
339 r_type = ELF32_R_TYPE (dst->r_info);
340 cache_ptr->howto = elf_x86_64_rtype_to_howto (abfd, r_type);
341 BFD_ASSERT (r_type == cache_ptr->howto->type);
342 }
343 \f
344 /* Support for core dump NOTE sections. */
345 static bfd_boolean
346 elf_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
347 {
348 int offset;
349 size_t size;
350
351 switch (note->descsz)
352 {
353 default:
354 return FALSE;
355
356 case 296: /* sizeof(istruct elf_prstatus) on Linux/x32 */
357 /* pr_cursig */
358 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
359
360 /* pr_pid */
361 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
362
363 /* pr_reg */
364 offset = 72;
365 size = 216;
366
367 break;
368
369 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
370 /* pr_cursig */
371 elf_tdata (abfd)->core->signal
372 = bfd_get_16 (abfd, note->descdata + 12);
373
374 /* pr_pid */
375 elf_tdata (abfd)->core->lwpid
376 = bfd_get_32 (abfd, note->descdata + 32);
377
378 /* pr_reg */
379 offset = 112;
380 size = 216;
381
382 break;
383 }
384
385 /* Make a ".reg/999" section. */
386 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
387 size, note->descpos + offset);
388 }
389
390 static bfd_boolean
391 elf_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
392 {
393 switch (note->descsz)
394 {
395 default:
396 return FALSE;
397
398 case 124: /* sizeof(struct elf_prpsinfo) on Linux/x32 */
399 elf_tdata (abfd)->core->pid
400 = bfd_get_32 (abfd, note->descdata + 12);
401 elf_tdata (abfd)->core->program
402 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
403 elf_tdata (abfd)->core->command
404 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
405 break;
406
407 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
408 elf_tdata (abfd)->core->pid
409 = bfd_get_32 (abfd, note->descdata + 24);
410 elf_tdata (abfd)->core->program
411 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
412 elf_tdata (abfd)->core->command
413 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
414 }
415
416 /* Note that for some reason, a spurious space is tacked
417 onto the end of the args in some (at least one anyway)
418 implementations, so strip it off if it exists. */
419
420 {
421 char *command = elf_tdata (abfd)->core->command;
422 int n = strlen (command);
423
424 if (0 < n && command[n - 1] == ' ')
425 command[n - 1] = '\0';
426 }
427
428 return TRUE;
429 }
430
431 #ifdef CORE_HEADER
432 static char *
433 elf_x86_64_write_core_note (bfd *abfd, char *buf, int *bufsiz,
434 int note_type, ...)
435 {
436 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
437 va_list ap;
438 const char *fname, *psargs;
439 long pid;
440 int cursig;
441 const void *gregs;
442
443 switch (note_type)
444 {
445 default:
446 return NULL;
447
448 case NT_PRPSINFO:
449 va_start (ap, note_type);
450 fname = va_arg (ap, const char *);
451 psargs = va_arg (ap, const char *);
452 va_end (ap);
453
454 if (bed->s->elfclass == ELFCLASS32)
455 {
456 prpsinfo32_t data;
457 memset (&data, 0, sizeof (data));
458 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
459 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
460 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
461 &data, sizeof (data));
462 }
463 else
464 {
465 prpsinfo64_t data;
466 memset (&data, 0, sizeof (data));
467 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
468 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
469 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
470 &data, sizeof (data));
471 }
472 /* NOTREACHED */
473
474 case NT_PRSTATUS:
475 va_start (ap, note_type);
476 pid = va_arg (ap, long);
477 cursig = va_arg (ap, int);
478 gregs = va_arg (ap, const void *);
479 va_end (ap);
480
481 if (bed->s->elfclass == ELFCLASS32)
482 {
483 if (bed->elf_machine_code == EM_X86_64)
484 {
485 prstatusx32_t prstat;
486 memset (&prstat, 0, sizeof (prstat));
487 prstat.pr_pid = pid;
488 prstat.pr_cursig = cursig;
489 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
490 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
491 &prstat, sizeof (prstat));
492 }
493 else
494 {
495 prstatus32_t prstat;
496 memset (&prstat, 0, sizeof (prstat));
497 prstat.pr_pid = pid;
498 prstat.pr_cursig = cursig;
499 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
500 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
501 &prstat, sizeof (prstat));
502 }
503 }
504 else
505 {
506 prstatus64_t prstat;
507 memset (&prstat, 0, sizeof (prstat));
508 prstat.pr_pid = pid;
509 prstat.pr_cursig = cursig;
510 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
511 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
512 &prstat, sizeof (prstat));
513 }
514 }
515 /* NOTREACHED */
516 }
517 #endif
518 \f
519 /* Functions for the x86-64 ELF linker. */
520
521 /* The name of the dynamic interpreter. This is put in the .interp
522 section. */
523
524 #define ELF64_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
525 #define ELF32_DYNAMIC_INTERPRETER "/lib/ldx32.so.1"
526
527 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
528 copying dynamic variables from a shared lib into an app's dynbss
529 section, and instead use a dynamic relocation to point into the
530 shared lib. */
531 #define ELIMINATE_COPY_RELOCS 1
532
533 /* The size in bytes of an entry in the global offset table. */
534
535 #define GOT_ENTRY_SIZE 8
536
537 /* The size in bytes of an entry in the procedure linkage table. */
538
539 #define PLT_ENTRY_SIZE 16
540
541 /* The first entry in a procedure linkage table looks like this. See the
542 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
543
544 static const bfd_byte elf_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
545 {
546 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
547 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
548 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */
549 };
550
551 /* Subsequent entries in a procedure linkage table look like this. */
552
553 static const bfd_byte elf_x86_64_plt_entry[PLT_ENTRY_SIZE] =
554 {
555 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
556 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
557 0x68, /* pushq immediate */
558 0, 0, 0, 0, /* replaced with index into relocation table. */
559 0xe9, /* jmp relative */
560 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
561 };
562
563 /* The first entry in a procedure linkage table with BND relocations
564 like this. */
565
566 static const bfd_byte elf_x86_64_bnd_plt0_entry[PLT_ENTRY_SIZE] =
567 {
568 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
569 0xf2, 0xff, 0x25, 16, 0, 0, 0, /* bnd jmpq *GOT+16(%rip) */
570 0x0f, 0x1f, 0 /* nopl (%rax) */
571 };
572
573 /* Subsequent entries for legacy branches in a procedure linkage table
574 with BND relocations look like this. */
575
576 static const bfd_byte elf_x86_64_legacy_plt_entry[PLT_ENTRY_SIZE] =
577 {
578 0x68, 0, 0, 0, 0, /* pushq immediate */
579 0xe9, 0, 0, 0, 0, /* jmpq relative */
580 0x66, 0x0f, 0x1f, 0x44, 0, 0 /* nopw (%rax,%rax,1) */
581 };
582
583 /* Subsequent entries for branches with BND prefx in a procedure linkage
584 table with BND relocations look like this. */
585
586 static const bfd_byte elf_x86_64_bnd_plt_entry[PLT_ENTRY_SIZE] =
587 {
588 0x68, 0, 0, 0, 0, /* pushq immediate */
589 0xf2, 0xe9, 0, 0, 0, 0, /* bnd jmpq relative */
590 0x0f, 0x1f, 0x44, 0, 0 /* nopl 0(%rax,%rax,1) */
591 };
592
593 /* Entries for legacy branches in the second procedure linkage table
594 look like this. */
595
596 static const bfd_byte elf_x86_64_legacy_plt2_entry[8] =
597 {
598 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
599 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
600 0x66, 0x90 /* xchg %ax,%ax */
601 };
602
603 /* Entries for branches with BND prefix in the second procedure linkage
604 table look like this. */
605
606 static const bfd_byte elf_x86_64_bnd_plt2_entry[8] =
607 {
608 0xf2, 0xff, 0x25, /* bnd jmpq *name@GOTPC(%rip) */
609 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
610 0x90 /* nop */
611 };
612
613 /* .eh_frame covering the .plt section. */
614
615 static const bfd_byte elf_x86_64_eh_frame_plt[] =
616 {
617 #define PLT_CIE_LENGTH 20
618 #define PLT_FDE_LENGTH 36
619 #define PLT_FDE_START_OFFSET 4 + PLT_CIE_LENGTH + 8
620 #define PLT_FDE_LEN_OFFSET 4 + PLT_CIE_LENGTH + 12
621 PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */
622 0, 0, 0, 0, /* CIE ID */
623 1, /* CIE version */
624 'z', 'R', 0, /* Augmentation string */
625 1, /* Code alignment factor */
626 0x78, /* Data alignment factor */
627 16, /* Return address column */
628 1, /* Augmentation size */
629 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
630 DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
631 DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
632 DW_CFA_nop, DW_CFA_nop,
633
634 PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */
635 PLT_CIE_LENGTH + 8, 0, 0, 0, /* CIE pointer */
636 0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */
637 0, 0, 0, 0, /* .plt size goes here */
638 0, /* Augmentation size */
639 DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */
640 DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */
641 DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */
642 DW_CFA_advance_loc + 10, /* DW_CFA_advance_loc: 10 to __PLT__+16 */
643 DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */
644 11, /* Block length */
645 DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */
646 DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */
647 DW_OP_lit15, DW_OP_and, DW_OP_lit11, DW_OP_ge,
648 DW_OP_lit3, DW_OP_shl, DW_OP_plus,
649 DW_CFA_nop, DW_CFA_nop, DW_CFA_nop, DW_CFA_nop
650 };
651
652 /* Architecture-specific backend data for x86-64. */
653
654 struct elf_x86_64_backend_data
655 {
656 /* Templates for the initial PLT entry and for subsequent entries. */
657 const bfd_byte *plt0_entry;
658 const bfd_byte *plt_entry;
659 unsigned int plt_entry_size; /* Size of each PLT entry. */
660
661 /* Offsets into plt0_entry that are to be replaced with GOT[1] and GOT[2]. */
662 unsigned int plt0_got1_offset;
663 unsigned int plt0_got2_offset;
664
665 /* Offset of the end of the PC-relative instruction containing
666 plt0_got2_offset. */
667 unsigned int plt0_got2_insn_end;
668
669 /* Offsets into plt_entry that are to be replaced with... */
670 unsigned int plt_got_offset; /* ... address of this symbol in .got. */
671 unsigned int plt_reloc_offset; /* ... offset into relocation table. */
672 unsigned int plt_plt_offset; /* ... offset to start of .plt. */
673
674 /* Length of the PC-relative instruction containing plt_got_offset. */
675 unsigned int plt_got_insn_size;
676
677 /* Offset of the end of the PC-relative jump to plt0_entry. */
678 unsigned int plt_plt_insn_end;
679
680 /* Offset into plt_entry where the initial value of the GOT entry points. */
681 unsigned int plt_lazy_offset;
682
683 /* .eh_frame covering the .plt section. */
684 const bfd_byte *eh_frame_plt;
685 unsigned int eh_frame_plt_size;
686 };
687
688 #define get_elf_x86_64_arch_data(bed) \
689 ((const struct elf_x86_64_backend_data *) (bed)->arch_data)
690
691 #define get_elf_x86_64_backend_data(abfd) \
692 get_elf_x86_64_arch_data (get_elf_backend_data (abfd))
693
694 #define GET_PLT_ENTRY_SIZE(abfd) \
695 get_elf_x86_64_backend_data (abfd)->plt_entry_size
696
697 /* These are the standard parameters. */
698 static const struct elf_x86_64_backend_data elf_x86_64_arch_bed =
699 {
700 elf_x86_64_plt0_entry, /* plt0_entry */
701 elf_x86_64_plt_entry, /* plt_entry */
702 sizeof (elf_x86_64_plt_entry), /* plt_entry_size */
703 2, /* plt0_got1_offset */
704 8, /* plt0_got2_offset */
705 12, /* plt0_got2_insn_end */
706 2, /* plt_got_offset */
707 7, /* plt_reloc_offset */
708 12, /* plt_plt_offset */
709 6, /* plt_got_insn_size */
710 PLT_ENTRY_SIZE, /* plt_plt_insn_end */
711 6, /* plt_lazy_offset */
712 elf_x86_64_eh_frame_plt, /* eh_frame_plt */
713 sizeof (elf_x86_64_eh_frame_plt), /* eh_frame_plt_size */
714 };
715
716 static const struct elf_x86_64_backend_data elf_x86_64_bnd_arch_bed =
717 {
718 elf_x86_64_bnd_plt0_entry, /* plt0_entry */
719 elf_x86_64_bnd_plt_entry, /* plt_entry */
720 sizeof (elf_x86_64_bnd_plt_entry), /* plt_entry_size */
721 2, /* plt0_got1_offset */
722 1+8, /* plt0_got2_offset */
723 1+12, /* plt0_got2_insn_end */
724 1+2, /* plt_got_offset */
725 1, /* plt_reloc_offset */
726 7, /* plt_plt_offset */
727 1+6, /* plt_got_insn_size */
728 11, /* plt_plt_insn_end */
729 0, /* plt_lazy_offset */
730 elf_x86_64_eh_frame_plt, /* eh_frame_plt */
731 sizeof (elf_x86_64_eh_frame_plt), /* eh_frame_plt_size */
732 };
733
734 #define elf_backend_arch_data &elf_x86_64_arch_bed
735
736 /* x86-64 ELF linker hash entry. */
737
738 struct elf_x86_64_link_hash_entry
739 {
740 struct elf_link_hash_entry elf;
741
742 /* Track dynamic relocs copied for this symbol. */
743 struct elf_dyn_relocs *dyn_relocs;
744
745 #define GOT_UNKNOWN 0
746 #define GOT_NORMAL 1
747 #define GOT_TLS_GD 2
748 #define GOT_TLS_IE 3
749 #define GOT_TLS_GDESC 4
750 #define GOT_TLS_GD_BOTH_P(type) \
751 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
752 #define GOT_TLS_GD_P(type) \
753 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
754 #define GOT_TLS_GDESC_P(type) \
755 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
756 #define GOT_TLS_GD_ANY_P(type) \
757 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
758 unsigned char tls_type;
759
760 /* TRUE if symbol has at least one BND relocation. */
761 bfd_boolean has_bnd_reloc;
762
763 /* Information about the second PLT entry. Filled when has_bnd_reloc is
764 set. */
765 union gotplt_union plt_bnd;
766
767 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
768 starting at the end of the jump table. */
769 bfd_vma tlsdesc_got;
770 };
771
772 #define elf_x86_64_hash_entry(ent) \
773 ((struct elf_x86_64_link_hash_entry *)(ent))
774
775 struct elf_x86_64_obj_tdata
776 {
777 struct elf_obj_tdata root;
778
779 /* tls_type for each local got entry. */
780 char *local_got_tls_type;
781
782 /* GOTPLT entries for TLS descriptors. */
783 bfd_vma *local_tlsdesc_gotent;
784 };
785
786 #define elf_x86_64_tdata(abfd) \
787 ((struct elf_x86_64_obj_tdata *) (abfd)->tdata.any)
788
789 #define elf_x86_64_local_got_tls_type(abfd) \
790 (elf_x86_64_tdata (abfd)->local_got_tls_type)
791
792 #define elf_x86_64_local_tlsdesc_gotent(abfd) \
793 (elf_x86_64_tdata (abfd)->local_tlsdesc_gotent)
794
795 #define is_x86_64_elf(bfd) \
796 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
797 && elf_tdata (bfd) != NULL \
798 && elf_object_id (bfd) == X86_64_ELF_DATA)
799
800 static bfd_boolean
801 elf_x86_64_mkobject (bfd *abfd)
802 {
803 return bfd_elf_allocate_object (abfd, sizeof (struct elf_x86_64_obj_tdata),
804 X86_64_ELF_DATA);
805 }
806
807 /* x86-64 ELF linker hash table. */
808
809 struct elf_x86_64_link_hash_table
810 {
811 struct elf_link_hash_table elf;
812
813 /* Short-cuts to get to dynamic linker sections. */
814 asection *sdynbss;
815 asection *srelbss;
816 asection *plt_eh_frame;
817 asection *plt_bnd;
818
819 union
820 {
821 bfd_signed_vma refcount;
822 bfd_vma offset;
823 } tls_ld_got;
824
825 /* The amount of space used by the jump slots in the GOT. */
826 bfd_vma sgotplt_jump_table_size;
827
828 /* Small local sym cache. */
829 struct sym_cache sym_cache;
830
831 bfd_vma (*r_info) (bfd_vma, bfd_vma);
832 bfd_vma (*r_sym) (bfd_vma);
833 unsigned int pointer_r_type;
834 const char *dynamic_interpreter;
835 int dynamic_interpreter_size;
836
837 /* _TLS_MODULE_BASE_ symbol. */
838 struct bfd_link_hash_entry *tls_module_base;
839
840 /* Used by local STT_GNU_IFUNC symbols. */
841 htab_t loc_hash_table;
842 void * loc_hash_memory;
843
844 /* The offset into splt of the PLT entry for the TLS descriptor
845 resolver. Special values are 0, if not necessary (or not found
846 to be necessary yet), and -1 if needed but not determined
847 yet. */
848 bfd_vma tlsdesc_plt;
849 /* The offset into sgot of the GOT entry used by the PLT entry
850 above. */
851 bfd_vma tlsdesc_got;
852
853 /* The index of the next R_X86_64_JUMP_SLOT entry in .rela.plt. */
854 bfd_vma next_jump_slot_index;
855 /* The index of the next R_X86_64_IRELATIVE entry in .rela.plt. */
856 bfd_vma next_irelative_index;
857 };
858
859 /* Get the x86-64 ELF linker hash table from a link_info structure. */
860
861 #define elf_x86_64_hash_table(p) \
862 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
863 == X86_64_ELF_DATA ? ((struct elf_x86_64_link_hash_table *) ((p)->hash)) : NULL)
864
865 #define elf_x86_64_compute_jump_table_size(htab) \
866 ((htab)->elf.srelplt->reloc_count * GOT_ENTRY_SIZE)
867
868 /* Create an entry in an x86-64 ELF linker hash table. */
869
870 static struct bfd_hash_entry *
871 elf_x86_64_link_hash_newfunc (struct bfd_hash_entry *entry,
872 struct bfd_hash_table *table,
873 const char *string)
874 {
875 /* Allocate the structure if it has not already been allocated by a
876 subclass. */
877 if (entry == NULL)
878 {
879 entry = (struct bfd_hash_entry *)
880 bfd_hash_allocate (table,
881 sizeof (struct elf_x86_64_link_hash_entry));
882 if (entry == NULL)
883 return entry;
884 }
885
886 /* Call the allocation method of the superclass. */
887 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
888 if (entry != NULL)
889 {
890 struct elf_x86_64_link_hash_entry *eh;
891
892 eh = (struct elf_x86_64_link_hash_entry *) entry;
893 eh->dyn_relocs = NULL;
894 eh->tls_type = GOT_UNKNOWN;
895 eh->has_bnd_reloc = FALSE;
896 eh->plt_bnd.offset = (bfd_vma) -1;
897 eh->tlsdesc_got = (bfd_vma) -1;
898 }
899
900 return entry;
901 }
902
903 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
904 for local symbol so that we can handle local STT_GNU_IFUNC symbols
905 as global symbol. We reuse indx and dynstr_index for local symbol
906 hash since they aren't used by global symbols in this backend. */
907
908 static hashval_t
909 elf_x86_64_local_htab_hash (const void *ptr)
910 {
911 struct elf_link_hash_entry *h
912 = (struct elf_link_hash_entry *) ptr;
913 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
914 }
915
916 /* Compare local hash entries. */
917
918 static int
919 elf_x86_64_local_htab_eq (const void *ptr1, const void *ptr2)
920 {
921 struct elf_link_hash_entry *h1
922 = (struct elf_link_hash_entry *) ptr1;
923 struct elf_link_hash_entry *h2
924 = (struct elf_link_hash_entry *) ptr2;
925
926 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
927 }
928
929 /* Find and/or create a hash entry for local symbol. */
930
931 static struct elf_link_hash_entry *
932 elf_x86_64_get_local_sym_hash (struct elf_x86_64_link_hash_table *htab,
933 bfd *abfd, const Elf_Internal_Rela *rel,
934 bfd_boolean create)
935 {
936 struct elf_x86_64_link_hash_entry e, *ret;
937 asection *sec = abfd->sections;
938 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
939 htab->r_sym (rel->r_info));
940 void **slot;
941
942 e.elf.indx = sec->id;
943 e.elf.dynstr_index = htab->r_sym (rel->r_info);
944 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
945 create ? INSERT : NO_INSERT);
946
947 if (!slot)
948 return NULL;
949
950 if (*slot)
951 {
952 ret = (struct elf_x86_64_link_hash_entry *) *slot;
953 return &ret->elf;
954 }
955
956 ret = (struct elf_x86_64_link_hash_entry *)
957 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
958 sizeof (struct elf_x86_64_link_hash_entry));
959 if (ret)
960 {
961 memset (ret, 0, sizeof (*ret));
962 ret->elf.indx = sec->id;
963 ret->elf.dynstr_index = htab->r_sym (rel->r_info);
964 ret->elf.dynindx = -1;
965 *slot = ret;
966 }
967 return &ret->elf;
968 }
969
970 /* Destroy an X86-64 ELF linker hash table. */
971
972 static void
973 elf_x86_64_link_hash_table_free (bfd *obfd)
974 {
975 struct elf_x86_64_link_hash_table *htab
976 = (struct elf_x86_64_link_hash_table *) obfd->link.hash;
977
978 if (htab->loc_hash_table)
979 htab_delete (htab->loc_hash_table);
980 if (htab->loc_hash_memory)
981 objalloc_free ((struct objalloc *) htab->loc_hash_memory);
982 _bfd_elf_link_hash_table_free (obfd);
983 }
984
985 /* Create an X86-64 ELF linker hash table. */
986
987 static struct bfd_link_hash_table *
988 elf_x86_64_link_hash_table_create (bfd *abfd)
989 {
990 struct elf_x86_64_link_hash_table *ret;
991 bfd_size_type amt = sizeof (struct elf_x86_64_link_hash_table);
992
993 ret = (struct elf_x86_64_link_hash_table *) bfd_zmalloc (amt);
994 if (ret == NULL)
995 return NULL;
996
997 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
998 elf_x86_64_link_hash_newfunc,
999 sizeof (struct elf_x86_64_link_hash_entry),
1000 X86_64_ELF_DATA))
1001 {
1002 free (ret);
1003 return NULL;
1004 }
1005
1006 if (ABI_64_P (abfd))
1007 {
1008 ret->r_info = elf64_r_info;
1009 ret->r_sym = elf64_r_sym;
1010 ret->pointer_r_type = R_X86_64_64;
1011 ret->dynamic_interpreter = ELF64_DYNAMIC_INTERPRETER;
1012 ret->dynamic_interpreter_size = sizeof ELF64_DYNAMIC_INTERPRETER;
1013 }
1014 else
1015 {
1016 ret->r_info = elf32_r_info;
1017 ret->r_sym = elf32_r_sym;
1018 ret->pointer_r_type = R_X86_64_32;
1019 ret->dynamic_interpreter = ELF32_DYNAMIC_INTERPRETER;
1020 ret->dynamic_interpreter_size = sizeof ELF32_DYNAMIC_INTERPRETER;
1021 }
1022
1023 ret->loc_hash_table = htab_try_create (1024,
1024 elf_x86_64_local_htab_hash,
1025 elf_x86_64_local_htab_eq,
1026 NULL);
1027 ret->loc_hash_memory = objalloc_create ();
1028 if (!ret->loc_hash_table || !ret->loc_hash_memory)
1029 {
1030 elf_x86_64_link_hash_table_free (abfd);
1031 return NULL;
1032 }
1033 ret->elf.root.hash_table_free = elf_x86_64_link_hash_table_free;
1034
1035 return &ret->elf.root;
1036 }
1037
1038 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
1039 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
1040 hash table. */
1041
1042 static bfd_boolean
1043 elf_x86_64_create_dynamic_sections (bfd *dynobj,
1044 struct bfd_link_info *info)
1045 {
1046 struct elf_x86_64_link_hash_table *htab;
1047
1048 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
1049 return FALSE;
1050
1051 htab = elf_x86_64_hash_table (info);
1052 if (htab == NULL)
1053 return FALSE;
1054
1055 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
1056 if (!info->shared)
1057 htab->srelbss = bfd_get_linker_section (dynobj, ".rela.bss");
1058
1059 if (!htab->sdynbss
1060 || (!info->shared && !htab->srelbss))
1061 abort ();
1062
1063 if (!info->no_ld_generated_unwind_info
1064 && htab->plt_eh_frame == NULL
1065 && htab->elf.splt != NULL)
1066 {
1067 flagword flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
1068 | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1069 | SEC_LINKER_CREATED);
1070 htab->plt_eh_frame
1071 = bfd_make_section_anyway_with_flags (dynobj, ".eh_frame", flags);
1072 if (htab->plt_eh_frame == NULL
1073 || !bfd_set_section_alignment (dynobj, htab->plt_eh_frame, 3))
1074 return FALSE;
1075 }
1076 return TRUE;
1077 }
1078
1079 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1080
1081 static void
1082 elf_x86_64_copy_indirect_symbol (struct bfd_link_info *info,
1083 struct elf_link_hash_entry *dir,
1084 struct elf_link_hash_entry *ind)
1085 {
1086 struct elf_x86_64_link_hash_entry *edir, *eind;
1087
1088 edir = (struct elf_x86_64_link_hash_entry *) dir;
1089 eind = (struct elf_x86_64_link_hash_entry *) ind;
1090
1091 if (!edir->has_bnd_reloc)
1092 edir->has_bnd_reloc = eind->has_bnd_reloc;
1093
1094 if (eind->dyn_relocs != NULL)
1095 {
1096 if (edir->dyn_relocs != NULL)
1097 {
1098 struct elf_dyn_relocs **pp;
1099 struct elf_dyn_relocs *p;
1100
1101 /* Add reloc counts against the indirect sym to the direct sym
1102 list. Merge any entries against the same section. */
1103 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
1104 {
1105 struct elf_dyn_relocs *q;
1106
1107 for (q = edir->dyn_relocs; q != NULL; q = q->next)
1108 if (q->sec == p->sec)
1109 {
1110 q->pc_count += p->pc_count;
1111 q->count += p->count;
1112 *pp = p->next;
1113 break;
1114 }
1115 if (q == NULL)
1116 pp = &p->next;
1117 }
1118 *pp = edir->dyn_relocs;
1119 }
1120
1121 edir->dyn_relocs = eind->dyn_relocs;
1122 eind->dyn_relocs = NULL;
1123 }
1124
1125 if (ind->root.type == bfd_link_hash_indirect
1126 && dir->got.refcount <= 0)
1127 {
1128 edir->tls_type = eind->tls_type;
1129 eind->tls_type = GOT_UNKNOWN;
1130 }
1131
1132 if (ELIMINATE_COPY_RELOCS
1133 && ind->root.type != bfd_link_hash_indirect
1134 && dir->dynamic_adjusted)
1135 {
1136 /* If called to transfer flags for a weakdef during processing
1137 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1138 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1139 dir->ref_dynamic |= ind->ref_dynamic;
1140 dir->ref_regular |= ind->ref_regular;
1141 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1142 dir->needs_plt |= ind->needs_plt;
1143 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1144 }
1145 else
1146 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
1147 }
1148
1149 static bfd_boolean
1150 elf64_x86_64_elf_object_p (bfd *abfd)
1151 {
1152 /* Set the right machine number for an x86-64 elf64 file. */
1153 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
1154 return TRUE;
1155 }
1156
1157 static bfd_boolean
1158 elf32_x86_64_elf_object_p (bfd *abfd)
1159 {
1160 /* Set the right machine number for an x86-64 elf32 file. */
1161 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x64_32);
1162 return TRUE;
1163 }
1164
1165 /* Return TRUE if the TLS access code sequence support transition
1166 from R_TYPE. */
1167
1168 static bfd_boolean
1169 elf_x86_64_check_tls_transition (bfd *abfd,
1170 struct bfd_link_info *info,
1171 asection *sec,
1172 bfd_byte *contents,
1173 Elf_Internal_Shdr *symtab_hdr,
1174 struct elf_link_hash_entry **sym_hashes,
1175 unsigned int r_type,
1176 const Elf_Internal_Rela *rel,
1177 const Elf_Internal_Rela *relend)
1178 {
1179 unsigned int val;
1180 unsigned long r_symndx;
1181 bfd_boolean largepic = FALSE;
1182 struct elf_link_hash_entry *h;
1183 bfd_vma offset;
1184 struct elf_x86_64_link_hash_table *htab;
1185
1186 /* Get the section contents. */
1187 if (contents == NULL)
1188 {
1189 if (elf_section_data (sec)->this_hdr.contents != NULL)
1190 contents = elf_section_data (sec)->this_hdr.contents;
1191 else
1192 {
1193 /* FIXME: How to better handle error condition? */
1194 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
1195 return FALSE;
1196
1197 /* Cache the section contents for elf_link_input_bfd. */
1198 elf_section_data (sec)->this_hdr.contents = contents;
1199 }
1200 }
1201
1202 htab = elf_x86_64_hash_table (info);
1203 offset = rel->r_offset;
1204 switch (r_type)
1205 {
1206 case R_X86_64_TLSGD:
1207 case R_X86_64_TLSLD:
1208 if ((rel + 1) >= relend)
1209 return FALSE;
1210
1211 if (r_type == R_X86_64_TLSGD)
1212 {
1213 /* Check transition from GD access model. For 64bit, only
1214 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
1215 .word 0x6666; rex64; call __tls_get_addr
1216 can transit to different access model. For 32bit, only
1217 leaq foo@tlsgd(%rip), %rdi
1218 .word 0x6666; rex64; call __tls_get_addr
1219 can transit to different access model. For largepic
1220 we also support:
1221 leaq foo@tlsgd(%rip), %rdi
1222 movabsq $__tls_get_addr@pltoff, %rax
1223 addq $rbx, %rax
1224 call *%rax. */
1225
1226 static const unsigned char call[] = { 0x66, 0x66, 0x48, 0xe8 };
1227 static const unsigned char leaq[] = { 0x66, 0x48, 0x8d, 0x3d };
1228
1229 if ((offset + 12) > sec->size)
1230 return FALSE;
1231
1232 if (memcmp (contents + offset + 4, call, 4) != 0)
1233 {
1234 if (!ABI_64_P (abfd)
1235 || (offset + 19) > sec->size
1236 || offset < 3
1237 || memcmp (contents + offset - 3, leaq + 1, 3) != 0
1238 || memcmp (contents + offset + 4, "\x48\xb8", 2) != 0
1239 || memcmp (contents + offset + 14, "\x48\x01\xd8\xff\xd0", 5)
1240 != 0)
1241 return FALSE;
1242 largepic = TRUE;
1243 }
1244 else if (ABI_64_P (abfd))
1245 {
1246 if (offset < 4
1247 || memcmp (contents + offset - 4, leaq, 4) != 0)
1248 return FALSE;
1249 }
1250 else
1251 {
1252 if (offset < 3
1253 || memcmp (contents + offset - 3, leaq + 1, 3) != 0)
1254 return FALSE;
1255 }
1256 }
1257 else
1258 {
1259 /* Check transition from LD access model. Only
1260 leaq foo@tlsld(%rip), %rdi;
1261 call __tls_get_addr
1262 can transit to different access model. For largepic
1263 we also support:
1264 leaq foo@tlsld(%rip), %rdi
1265 movabsq $__tls_get_addr@pltoff, %rax
1266 addq $rbx, %rax
1267 call *%rax. */
1268
1269 static const unsigned char lea[] = { 0x48, 0x8d, 0x3d };
1270
1271 if (offset < 3 || (offset + 9) > sec->size)
1272 return FALSE;
1273
1274 if (memcmp (contents + offset - 3, lea, 3) != 0)
1275 return FALSE;
1276
1277 if (0xe8 != *(contents + offset + 4))
1278 {
1279 if (!ABI_64_P (abfd)
1280 || (offset + 19) > sec->size
1281 || memcmp (contents + offset + 4, "\x48\xb8", 2) != 0
1282 || memcmp (contents + offset + 14, "\x48\x01\xd8\xff\xd0", 5)
1283 != 0)
1284 return FALSE;
1285 largepic = TRUE;
1286 }
1287 }
1288
1289 r_symndx = htab->r_sym (rel[1].r_info);
1290 if (r_symndx < symtab_hdr->sh_info)
1291 return FALSE;
1292
1293 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1294 /* Use strncmp to check __tls_get_addr since __tls_get_addr
1295 may be versioned. */
1296 return (h != NULL
1297 && h->root.root.string != NULL
1298 && (largepic
1299 ? ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PLTOFF64
1300 : (ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PC32
1301 || ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PLT32))
1302 && (strncmp (h->root.root.string,
1303 "__tls_get_addr", 14) == 0));
1304
1305 case R_X86_64_GOTTPOFF:
1306 /* Check transition from IE access model:
1307 mov foo@gottpoff(%rip), %reg
1308 add foo@gottpoff(%rip), %reg
1309 */
1310
1311 /* Check REX prefix first. */
1312 if (offset >= 3 && (offset + 4) <= sec->size)
1313 {
1314 val = bfd_get_8 (abfd, contents + offset - 3);
1315 if (val != 0x48 && val != 0x4c)
1316 {
1317 /* X32 may have 0x44 REX prefix or no REX prefix. */
1318 if (ABI_64_P (abfd))
1319 return FALSE;
1320 }
1321 }
1322 else
1323 {
1324 /* X32 may not have any REX prefix. */
1325 if (ABI_64_P (abfd))
1326 return FALSE;
1327 if (offset < 2 || (offset + 3) > sec->size)
1328 return FALSE;
1329 }
1330
1331 val = bfd_get_8 (abfd, contents + offset - 2);
1332 if (val != 0x8b && val != 0x03)
1333 return FALSE;
1334
1335 val = bfd_get_8 (abfd, contents + offset - 1);
1336 return (val & 0xc7) == 5;
1337
1338 case R_X86_64_GOTPC32_TLSDESC:
1339 /* Check transition from GDesc access model:
1340 leaq x@tlsdesc(%rip), %rax
1341
1342 Make sure it's a leaq adding rip to a 32-bit offset
1343 into any register, although it's probably almost always
1344 going to be rax. */
1345
1346 if (offset < 3 || (offset + 4) > sec->size)
1347 return FALSE;
1348
1349 val = bfd_get_8 (abfd, contents + offset - 3);
1350 if ((val & 0xfb) != 0x48)
1351 return FALSE;
1352
1353 if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d)
1354 return FALSE;
1355
1356 val = bfd_get_8 (abfd, contents + offset - 1);
1357 return (val & 0xc7) == 0x05;
1358
1359 case R_X86_64_TLSDESC_CALL:
1360 /* Check transition from GDesc access model:
1361 call *x@tlsdesc(%rax)
1362 */
1363 if (offset + 2 <= sec->size)
1364 {
1365 /* Make sure that it's a call *x@tlsdesc(%rax). */
1366 static const unsigned char call[] = { 0xff, 0x10 };
1367 return memcmp (contents + offset, call, 2) == 0;
1368 }
1369
1370 return FALSE;
1371
1372 default:
1373 abort ();
1374 }
1375 }
1376
1377 /* Return TRUE if the TLS access transition is OK or no transition
1378 will be performed. Update R_TYPE if there is a transition. */
1379
1380 static bfd_boolean
1381 elf_x86_64_tls_transition (struct bfd_link_info *info, bfd *abfd,
1382 asection *sec, bfd_byte *contents,
1383 Elf_Internal_Shdr *symtab_hdr,
1384 struct elf_link_hash_entry **sym_hashes,
1385 unsigned int *r_type, int tls_type,
1386 const Elf_Internal_Rela *rel,
1387 const Elf_Internal_Rela *relend,
1388 struct elf_link_hash_entry *h,
1389 unsigned long r_symndx)
1390 {
1391 unsigned int from_type = *r_type;
1392 unsigned int to_type = from_type;
1393 bfd_boolean check = TRUE;
1394
1395 /* Skip TLS transition for functions. */
1396 if (h != NULL
1397 && (h->type == STT_FUNC
1398 || h->type == STT_GNU_IFUNC))
1399 return TRUE;
1400
1401 switch (from_type)
1402 {
1403 case R_X86_64_TLSGD:
1404 case R_X86_64_GOTPC32_TLSDESC:
1405 case R_X86_64_TLSDESC_CALL:
1406 case R_X86_64_GOTTPOFF:
1407 if (info->executable)
1408 {
1409 if (h == NULL)
1410 to_type = R_X86_64_TPOFF32;
1411 else
1412 to_type = R_X86_64_GOTTPOFF;
1413 }
1414
1415 /* When we are called from elf_x86_64_relocate_section,
1416 CONTENTS isn't NULL and there may be additional transitions
1417 based on TLS_TYPE. */
1418 if (contents != NULL)
1419 {
1420 unsigned int new_to_type = to_type;
1421
1422 if (info->executable
1423 && h != NULL
1424 && h->dynindx == -1
1425 && tls_type == GOT_TLS_IE)
1426 new_to_type = R_X86_64_TPOFF32;
1427
1428 if (to_type == R_X86_64_TLSGD
1429 || to_type == R_X86_64_GOTPC32_TLSDESC
1430 || to_type == R_X86_64_TLSDESC_CALL)
1431 {
1432 if (tls_type == GOT_TLS_IE)
1433 new_to_type = R_X86_64_GOTTPOFF;
1434 }
1435
1436 /* We checked the transition before when we were called from
1437 elf_x86_64_check_relocs. We only want to check the new
1438 transition which hasn't been checked before. */
1439 check = new_to_type != to_type && from_type == to_type;
1440 to_type = new_to_type;
1441 }
1442
1443 break;
1444
1445 case R_X86_64_TLSLD:
1446 if (info->executable)
1447 to_type = R_X86_64_TPOFF32;
1448 break;
1449
1450 default:
1451 return TRUE;
1452 }
1453
1454 /* Return TRUE if there is no transition. */
1455 if (from_type == to_type)
1456 return TRUE;
1457
1458 /* Check if the transition can be performed. */
1459 if (check
1460 && ! elf_x86_64_check_tls_transition (abfd, info, sec, contents,
1461 symtab_hdr, sym_hashes,
1462 from_type, rel, relend))
1463 {
1464 reloc_howto_type *from, *to;
1465 const char *name;
1466
1467 from = elf_x86_64_rtype_to_howto (abfd, from_type);
1468 to = elf_x86_64_rtype_to_howto (abfd, to_type);
1469
1470 if (h)
1471 name = h->root.root.string;
1472 else
1473 {
1474 struct elf_x86_64_link_hash_table *htab;
1475
1476 htab = elf_x86_64_hash_table (info);
1477 if (htab == NULL)
1478 name = "*unknown*";
1479 else
1480 {
1481 Elf_Internal_Sym *isym;
1482
1483 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1484 abfd, r_symndx);
1485 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1486 }
1487 }
1488
1489 (*_bfd_error_handler)
1490 (_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
1491 "in section `%A' failed"),
1492 abfd, sec, from->name, to->name, name,
1493 (unsigned long) rel->r_offset);
1494 bfd_set_error (bfd_error_bad_value);
1495 return FALSE;
1496 }
1497
1498 *r_type = to_type;
1499 return TRUE;
1500 }
1501
1502 /* Look through the relocs for a section during the first phase, and
1503 calculate needed space in the global offset table, procedure
1504 linkage table, and dynamic reloc sections. */
1505
1506 static bfd_boolean
1507 elf_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info,
1508 asection *sec,
1509 const Elf_Internal_Rela *relocs)
1510 {
1511 struct elf_x86_64_link_hash_table *htab;
1512 Elf_Internal_Shdr *symtab_hdr;
1513 struct elf_link_hash_entry **sym_hashes;
1514 const Elf_Internal_Rela *rel;
1515 const Elf_Internal_Rela *rel_end;
1516 asection *sreloc;
1517
1518 if (info->relocatable)
1519 return TRUE;
1520
1521 BFD_ASSERT (is_x86_64_elf (abfd));
1522
1523 htab = elf_x86_64_hash_table (info);
1524 if (htab == NULL)
1525 return FALSE;
1526
1527 symtab_hdr = &elf_symtab_hdr (abfd);
1528 sym_hashes = elf_sym_hashes (abfd);
1529
1530 sreloc = NULL;
1531
1532 rel_end = relocs + sec->reloc_count;
1533 for (rel = relocs; rel < rel_end; rel++)
1534 {
1535 unsigned int r_type;
1536 unsigned long r_symndx;
1537 struct elf_link_hash_entry *h;
1538 Elf_Internal_Sym *isym;
1539 const char *name;
1540 bfd_boolean size_reloc;
1541
1542 r_symndx = htab->r_sym (rel->r_info);
1543 r_type = ELF32_R_TYPE (rel->r_info);
1544
1545 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1546 {
1547 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1548 abfd, r_symndx);
1549 return FALSE;
1550 }
1551
1552 if (r_symndx < symtab_hdr->sh_info)
1553 {
1554 /* A local symbol. */
1555 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1556 abfd, r_symndx);
1557 if (isym == NULL)
1558 return FALSE;
1559
1560 /* Check relocation against local STT_GNU_IFUNC symbol. */
1561 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1562 {
1563 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel,
1564 TRUE);
1565 if (h == NULL)
1566 return FALSE;
1567
1568 /* Fake a STT_GNU_IFUNC symbol. */
1569 h->type = STT_GNU_IFUNC;
1570 h->def_regular = 1;
1571 h->ref_regular = 1;
1572 h->forced_local = 1;
1573 h->root.type = bfd_link_hash_defined;
1574 }
1575 else
1576 h = NULL;
1577 }
1578 else
1579 {
1580 isym = NULL;
1581 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1582 while (h->root.type == bfd_link_hash_indirect
1583 || h->root.type == bfd_link_hash_warning)
1584 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1585 }
1586
1587 /* Check invalid x32 relocations. */
1588 if (!ABI_64_P (abfd))
1589 switch (r_type)
1590 {
1591 default:
1592 break;
1593
1594 case R_X86_64_DTPOFF64:
1595 case R_X86_64_TPOFF64:
1596 case R_X86_64_PC64:
1597 case R_X86_64_GOTOFF64:
1598 case R_X86_64_GOT64:
1599 case R_X86_64_GOTPCREL64:
1600 case R_X86_64_GOTPC64:
1601 case R_X86_64_GOTPLT64:
1602 case R_X86_64_PLTOFF64:
1603 {
1604 if (h)
1605 name = h->root.root.string;
1606 else
1607 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1608 NULL);
1609 (*_bfd_error_handler)
1610 (_("%B: relocation %s against symbol `%s' isn't "
1611 "supported in x32 mode"), abfd,
1612 x86_64_elf_howto_table[r_type].name, name);
1613 bfd_set_error (bfd_error_bad_value);
1614 return FALSE;
1615 }
1616 break;
1617 }
1618
1619 if (h != NULL)
1620 {
1621 /* Create the ifunc sections for static executables. If we
1622 never see an indirect function symbol nor we are building
1623 a static executable, those sections will be empty and
1624 won't appear in output. */
1625 switch (r_type)
1626 {
1627 default:
1628 break;
1629
1630 case R_X86_64_PC32_BND:
1631 case R_X86_64_PLT32_BND:
1632 case R_X86_64_PC32:
1633 case R_X86_64_PLT32:
1634 case R_X86_64_32:
1635 case R_X86_64_64:
1636 /* MPX PLT is supported only if elf_x86_64_arch_bed
1637 is used in 64-bit mode. */
1638 if (ABI_64_P (abfd)
1639 && info->bndplt
1640 && (get_elf_x86_64_backend_data (abfd)
1641 == &elf_x86_64_arch_bed))
1642 {
1643 elf_x86_64_hash_entry (h)->has_bnd_reloc = TRUE;
1644
1645 /* Create the second PLT for Intel MPX support. */
1646 if (htab->plt_bnd == NULL)
1647 {
1648 unsigned int plt_bnd_align;
1649 const struct elf_backend_data *bed;
1650
1651 bed = get_elf_backend_data (info->output_bfd);
1652 switch (sizeof (elf_x86_64_bnd_plt2_entry))
1653 {
1654 case 8:
1655 plt_bnd_align = 3;
1656 break;
1657 case 16:
1658 plt_bnd_align = 4;
1659 break;
1660 default:
1661 abort ();
1662 }
1663
1664 if (htab->elf.dynobj == NULL)
1665 htab->elf.dynobj = abfd;
1666 htab->plt_bnd
1667 = bfd_make_section_anyway_with_flags (htab->elf.dynobj,
1668 ".plt.bnd",
1669 (bed->dynamic_sec_flags
1670 | SEC_ALLOC
1671 | SEC_CODE
1672 | SEC_LOAD
1673 | SEC_READONLY));
1674 if (htab->plt_bnd == NULL
1675 || !bfd_set_section_alignment (htab->elf.dynobj,
1676 htab->plt_bnd,
1677 plt_bnd_align))
1678 return FALSE;
1679 }
1680 }
1681
1682 case R_X86_64_32S:
1683 case R_X86_64_PC64:
1684 case R_X86_64_GOTPCREL:
1685 case R_X86_64_GOTPCREL64:
1686 if (htab->elf.dynobj == NULL)
1687 htab->elf.dynobj = abfd;
1688 if (!_bfd_elf_create_ifunc_sections (htab->elf.dynobj, info))
1689 return FALSE;
1690 break;
1691 }
1692
1693 /* It is referenced by a non-shared object. */
1694 h->ref_regular = 1;
1695 h->root.non_ir_ref = 1;
1696 }
1697
1698 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
1699 symtab_hdr, sym_hashes,
1700 &r_type, GOT_UNKNOWN,
1701 rel, rel_end, h, r_symndx))
1702 return FALSE;
1703
1704 switch (r_type)
1705 {
1706 case R_X86_64_TLSLD:
1707 htab->tls_ld_got.refcount += 1;
1708 goto create_got;
1709
1710 case R_X86_64_TPOFF32:
1711 if (!info->executable && ABI_64_P (abfd))
1712 {
1713 if (h)
1714 name = h->root.root.string;
1715 else
1716 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1717 NULL);
1718 (*_bfd_error_handler)
1719 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1720 abfd,
1721 x86_64_elf_howto_table[r_type].name, name);
1722 bfd_set_error (bfd_error_bad_value);
1723 return FALSE;
1724 }
1725 break;
1726
1727 case R_X86_64_GOTTPOFF:
1728 if (!info->executable)
1729 info->flags |= DF_STATIC_TLS;
1730 /* Fall through */
1731
1732 case R_X86_64_GOT32:
1733 case R_X86_64_GOTPCREL:
1734 case R_X86_64_TLSGD:
1735 case R_X86_64_GOT64:
1736 case R_X86_64_GOTPCREL64:
1737 case R_X86_64_GOTPLT64:
1738 case R_X86_64_GOTPC32_TLSDESC:
1739 case R_X86_64_TLSDESC_CALL:
1740 /* This symbol requires a global offset table entry. */
1741 {
1742 int tls_type, old_tls_type;
1743
1744 switch (r_type)
1745 {
1746 default: tls_type = GOT_NORMAL; break;
1747 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
1748 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
1749 case R_X86_64_GOTPC32_TLSDESC:
1750 case R_X86_64_TLSDESC_CALL:
1751 tls_type = GOT_TLS_GDESC; break;
1752 }
1753
1754 if (h != NULL)
1755 {
1756 h->got.refcount += 1;
1757 old_tls_type = elf_x86_64_hash_entry (h)->tls_type;
1758 }
1759 else
1760 {
1761 bfd_signed_vma *local_got_refcounts;
1762
1763 /* This is a global offset table entry for a local symbol. */
1764 local_got_refcounts = elf_local_got_refcounts (abfd);
1765 if (local_got_refcounts == NULL)
1766 {
1767 bfd_size_type size;
1768
1769 size = symtab_hdr->sh_info;
1770 size *= sizeof (bfd_signed_vma)
1771 + sizeof (bfd_vma) + sizeof (char);
1772 local_got_refcounts = ((bfd_signed_vma *)
1773 bfd_zalloc (abfd, size));
1774 if (local_got_refcounts == NULL)
1775 return FALSE;
1776 elf_local_got_refcounts (abfd) = local_got_refcounts;
1777 elf_x86_64_local_tlsdesc_gotent (abfd)
1778 = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info);
1779 elf_x86_64_local_got_tls_type (abfd)
1780 = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
1781 }
1782 local_got_refcounts[r_symndx] += 1;
1783 old_tls_type
1784 = elf_x86_64_local_got_tls_type (abfd) [r_symndx];
1785 }
1786
1787 /* If a TLS symbol is accessed using IE at least once,
1788 there is no point to use dynamic model for it. */
1789 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1790 && (! GOT_TLS_GD_ANY_P (old_tls_type)
1791 || tls_type != GOT_TLS_IE))
1792 {
1793 if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type))
1794 tls_type = old_tls_type;
1795 else if (GOT_TLS_GD_ANY_P (old_tls_type)
1796 && GOT_TLS_GD_ANY_P (tls_type))
1797 tls_type |= old_tls_type;
1798 else
1799 {
1800 if (h)
1801 name = h->root.root.string;
1802 else
1803 name = bfd_elf_sym_name (abfd, symtab_hdr,
1804 isym, NULL);
1805 (*_bfd_error_handler)
1806 (_("%B: '%s' accessed both as normal and thread local symbol"),
1807 abfd, name);
1808 bfd_set_error (bfd_error_bad_value);
1809 return FALSE;
1810 }
1811 }
1812
1813 if (old_tls_type != tls_type)
1814 {
1815 if (h != NULL)
1816 elf_x86_64_hash_entry (h)->tls_type = tls_type;
1817 else
1818 elf_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
1819 }
1820 }
1821 /* Fall through */
1822
1823 case R_X86_64_GOTOFF64:
1824 case R_X86_64_GOTPC32:
1825 case R_X86_64_GOTPC64:
1826 create_got:
1827 if (htab->elf.sgot == NULL)
1828 {
1829 if (htab->elf.dynobj == NULL)
1830 htab->elf.dynobj = abfd;
1831 if (!_bfd_elf_create_got_section (htab->elf.dynobj,
1832 info))
1833 return FALSE;
1834 }
1835 break;
1836
1837 case R_X86_64_PLT32:
1838 case R_X86_64_PLT32_BND:
1839 /* This symbol requires a procedure linkage table entry. We
1840 actually build the entry in adjust_dynamic_symbol,
1841 because this might be a case of linking PIC code which is
1842 never referenced by a dynamic object, in which case we
1843 don't need to generate a procedure linkage table entry
1844 after all. */
1845
1846 /* If this is a local symbol, we resolve it directly without
1847 creating a procedure linkage table entry. */
1848 if (h == NULL)
1849 continue;
1850
1851 h->needs_plt = 1;
1852 h->plt.refcount += 1;
1853 break;
1854
1855 case R_X86_64_PLTOFF64:
1856 /* This tries to form the 'address' of a function relative
1857 to GOT. For global symbols we need a PLT entry. */
1858 if (h != NULL)
1859 {
1860 h->needs_plt = 1;
1861 h->plt.refcount += 1;
1862 }
1863 goto create_got;
1864
1865 case R_X86_64_SIZE32:
1866 case R_X86_64_SIZE64:
1867 size_reloc = TRUE;
1868 goto do_size;
1869
1870 case R_X86_64_32:
1871 if (!ABI_64_P (abfd))
1872 goto pointer;
1873 case R_X86_64_8:
1874 case R_X86_64_16:
1875 case R_X86_64_32S:
1876 /* Let's help debug shared library creation. These relocs
1877 cannot be used in shared libs. Don't error out for
1878 sections we don't care about, such as debug sections or
1879 non-constant sections. */
1880 if (info->shared
1881 && (sec->flags & SEC_ALLOC) != 0
1882 && (sec->flags & SEC_READONLY) != 0)
1883 {
1884 if (h)
1885 name = h->root.root.string;
1886 else
1887 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1888 (*_bfd_error_handler)
1889 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1890 abfd, x86_64_elf_howto_table[r_type].name, name);
1891 bfd_set_error (bfd_error_bad_value);
1892 return FALSE;
1893 }
1894 /* Fall through. */
1895
1896 case R_X86_64_PC8:
1897 case R_X86_64_PC16:
1898 case R_X86_64_PC32:
1899 case R_X86_64_PC32_BND:
1900 case R_X86_64_PC64:
1901 case R_X86_64_64:
1902 pointer:
1903 if (h != NULL && info->executable)
1904 {
1905 /* If this reloc is in a read-only section, we might
1906 need a copy reloc. We can't check reliably at this
1907 stage whether the section is read-only, as input
1908 sections have not yet been mapped to output sections.
1909 Tentatively set the flag for now, and correct in
1910 adjust_dynamic_symbol. */
1911 h->non_got_ref = 1;
1912
1913 /* We may need a .plt entry if the function this reloc
1914 refers to is in a shared lib. */
1915 h->plt.refcount += 1;
1916 if (r_type != R_X86_64_PC32
1917 && r_type != R_X86_64_PC32_BND
1918 && r_type != R_X86_64_PC64)
1919 h->pointer_equality_needed = 1;
1920 }
1921
1922 size_reloc = FALSE;
1923 do_size:
1924 /* If we are creating a shared library, and this is a reloc
1925 against a global symbol, or a non PC relative reloc
1926 against a local symbol, then we need to copy the reloc
1927 into the shared library. However, if we are linking with
1928 -Bsymbolic, we do not need to copy a reloc against a
1929 global symbol which is defined in an object we are
1930 including in the link (i.e., DEF_REGULAR is set). At
1931 this point we have not seen all the input files, so it is
1932 possible that DEF_REGULAR is not set now but will be set
1933 later (it is never cleared). In case of a weak definition,
1934 DEF_REGULAR may be cleared later by a strong definition in
1935 a shared library. We account for that possibility below by
1936 storing information in the relocs_copied field of the hash
1937 table entry. A similar situation occurs when creating
1938 shared libraries and symbol visibility changes render the
1939 symbol local.
1940
1941 If on the other hand, we are creating an executable, we
1942 may need to keep relocations for symbols satisfied by a
1943 dynamic library if we manage to avoid copy relocs for the
1944 symbol. */
1945 if ((info->shared
1946 && (sec->flags & SEC_ALLOC) != 0
1947 && (! IS_X86_64_PCREL_TYPE (r_type)
1948 || (h != NULL
1949 && (! SYMBOLIC_BIND (info, h)
1950 || h->root.type == bfd_link_hash_defweak
1951 || !h->def_regular))))
1952 || (ELIMINATE_COPY_RELOCS
1953 && !info->shared
1954 && (sec->flags & SEC_ALLOC) != 0
1955 && h != NULL
1956 && (h->root.type == bfd_link_hash_defweak
1957 || !h->def_regular)))
1958 {
1959 struct elf_dyn_relocs *p;
1960 struct elf_dyn_relocs **head;
1961
1962 /* We must copy these reloc types into the output file.
1963 Create a reloc section in dynobj and make room for
1964 this reloc. */
1965 if (sreloc == NULL)
1966 {
1967 if (htab->elf.dynobj == NULL)
1968 htab->elf.dynobj = abfd;
1969
1970 sreloc = _bfd_elf_make_dynamic_reloc_section
1971 (sec, htab->elf.dynobj, ABI_64_P (abfd) ? 3 : 2,
1972 abfd, /*rela?*/ TRUE);
1973
1974 if (sreloc == NULL)
1975 return FALSE;
1976 }
1977
1978 /* If this is a global symbol, we count the number of
1979 relocations we need for this symbol. */
1980 if (h != NULL)
1981 {
1982 head = &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs;
1983 }
1984 else
1985 {
1986 /* Track dynamic relocs needed for local syms too.
1987 We really need local syms available to do this
1988 easily. Oh well. */
1989 asection *s;
1990 void **vpp;
1991
1992 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1993 abfd, r_symndx);
1994 if (isym == NULL)
1995 return FALSE;
1996
1997 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
1998 if (s == NULL)
1999 s = sec;
2000
2001 /* Beware of type punned pointers vs strict aliasing
2002 rules. */
2003 vpp = &(elf_section_data (s)->local_dynrel);
2004 head = (struct elf_dyn_relocs **)vpp;
2005 }
2006
2007 p = *head;
2008 if (p == NULL || p->sec != sec)
2009 {
2010 bfd_size_type amt = sizeof *p;
2011
2012 p = ((struct elf_dyn_relocs *)
2013 bfd_alloc (htab->elf.dynobj, amt));
2014 if (p == NULL)
2015 return FALSE;
2016 p->next = *head;
2017 *head = p;
2018 p->sec = sec;
2019 p->count = 0;
2020 p->pc_count = 0;
2021 }
2022
2023 p->count += 1;
2024 /* Count size relocation as PC-relative relocation. */
2025 if (IS_X86_64_PCREL_TYPE (r_type) || size_reloc)
2026 p->pc_count += 1;
2027 }
2028 break;
2029
2030 /* This relocation describes the C++ object vtable hierarchy.
2031 Reconstruct it for later use during GC. */
2032 case R_X86_64_GNU_VTINHERIT:
2033 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2034 return FALSE;
2035 break;
2036
2037 /* This relocation describes which C++ vtable entries are actually
2038 used. Record for later use during GC. */
2039 case R_X86_64_GNU_VTENTRY:
2040 BFD_ASSERT (h != NULL);
2041 if (h != NULL
2042 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2043 return FALSE;
2044 break;
2045
2046 default:
2047 break;
2048 }
2049 }
2050
2051 return TRUE;
2052 }
2053
2054 /* Return the section that should be marked against GC for a given
2055 relocation. */
2056
2057 static asection *
2058 elf_x86_64_gc_mark_hook (asection *sec,
2059 struct bfd_link_info *info,
2060 Elf_Internal_Rela *rel,
2061 struct elf_link_hash_entry *h,
2062 Elf_Internal_Sym *sym)
2063 {
2064 if (h != NULL)
2065 switch (ELF32_R_TYPE (rel->r_info))
2066 {
2067 case R_X86_64_GNU_VTINHERIT:
2068 case R_X86_64_GNU_VTENTRY:
2069 return NULL;
2070 }
2071
2072 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
2073 }
2074
2075 /* Update the got entry reference counts for the section being removed. */
2076
2077 static bfd_boolean
2078 elf_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
2079 asection *sec,
2080 const Elf_Internal_Rela *relocs)
2081 {
2082 struct elf_x86_64_link_hash_table *htab;
2083 Elf_Internal_Shdr *symtab_hdr;
2084 struct elf_link_hash_entry **sym_hashes;
2085 bfd_signed_vma *local_got_refcounts;
2086 const Elf_Internal_Rela *rel, *relend;
2087
2088 if (info->relocatable)
2089 return TRUE;
2090
2091 htab = elf_x86_64_hash_table (info);
2092 if (htab == NULL)
2093 return FALSE;
2094
2095 elf_section_data (sec)->local_dynrel = NULL;
2096
2097 symtab_hdr = &elf_symtab_hdr (abfd);
2098 sym_hashes = elf_sym_hashes (abfd);
2099 local_got_refcounts = elf_local_got_refcounts (abfd);
2100
2101 htab = elf_x86_64_hash_table (info);
2102 relend = relocs + sec->reloc_count;
2103 for (rel = relocs; rel < relend; rel++)
2104 {
2105 unsigned long r_symndx;
2106 unsigned int r_type;
2107 struct elf_link_hash_entry *h = NULL;
2108
2109 r_symndx = htab->r_sym (rel->r_info);
2110 if (r_symndx >= symtab_hdr->sh_info)
2111 {
2112 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2113 while (h->root.type == bfd_link_hash_indirect
2114 || h->root.type == bfd_link_hash_warning)
2115 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2116 }
2117 else
2118 {
2119 /* A local symbol. */
2120 Elf_Internal_Sym *isym;
2121
2122 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
2123 abfd, r_symndx);
2124
2125 /* Check relocation against local STT_GNU_IFUNC symbol. */
2126 if (isym != NULL
2127 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
2128 {
2129 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel, FALSE);
2130 if (h == NULL)
2131 abort ();
2132 }
2133 }
2134
2135 if (h)
2136 {
2137 struct elf_x86_64_link_hash_entry *eh;
2138 struct elf_dyn_relocs **pp;
2139 struct elf_dyn_relocs *p;
2140
2141 eh = (struct elf_x86_64_link_hash_entry *) h;
2142
2143 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
2144 if (p->sec == sec)
2145 {
2146 /* Everything must go for SEC. */
2147 *pp = p->next;
2148 break;
2149 }
2150 }
2151
2152 r_type = ELF32_R_TYPE (rel->r_info);
2153 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
2154 symtab_hdr, sym_hashes,
2155 &r_type, GOT_UNKNOWN,
2156 rel, relend, h, r_symndx))
2157 return FALSE;
2158
2159 switch (r_type)
2160 {
2161 case R_X86_64_TLSLD:
2162 if (htab->tls_ld_got.refcount > 0)
2163 htab->tls_ld_got.refcount -= 1;
2164 break;
2165
2166 case R_X86_64_TLSGD:
2167 case R_X86_64_GOTPC32_TLSDESC:
2168 case R_X86_64_TLSDESC_CALL:
2169 case R_X86_64_GOTTPOFF:
2170 case R_X86_64_GOT32:
2171 case R_X86_64_GOTPCREL:
2172 case R_X86_64_GOT64:
2173 case R_X86_64_GOTPCREL64:
2174 case R_X86_64_GOTPLT64:
2175 if (h != NULL)
2176 {
2177 if (h->got.refcount > 0)
2178 h->got.refcount -= 1;
2179 if (h->type == STT_GNU_IFUNC)
2180 {
2181 if (h->plt.refcount > 0)
2182 h->plt.refcount -= 1;
2183 }
2184 }
2185 else if (local_got_refcounts != NULL)
2186 {
2187 if (local_got_refcounts[r_symndx] > 0)
2188 local_got_refcounts[r_symndx] -= 1;
2189 }
2190 break;
2191
2192 case R_X86_64_8:
2193 case R_X86_64_16:
2194 case R_X86_64_32:
2195 case R_X86_64_64:
2196 case R_X86_64_32S:
2197 case R_X86_64_PC8:
2198 case R_X86_64_PC16:
2199 case R_X86_64_PC32:
2200 case R_X86_64_PC32_BND:
2201 case R_X86_64_PC64:
2202 case R_X86_64_SIZE32:
2203 case R_X86_64_SIZE64:
2204 if (info->shared
2205 && (h == NULL || h->type != STT_GNU_IFUNC))
2206 break;
2207 /* Fall thru */
2208
2209 case R_X86_64_PLT32:
2210 case R_X86_64_PLT32_BND:
2211 case R_X86_64_PLTOFF64:
2212 if (h != NULL)
2213 {
2214 if (h->plt.refcount > 0)
2215 h->plt.refcount -= 1;
2216 }
2217 break;
2218
2219 default:
2220 break;
2221 }
2222 }
2223
2224 return TRUE;
2225 }
2226
2227 /* Adjust a symbol defined by a dynamic object and referenced by a
2228 regular object. The current definition is in some section of the
2229 dynamic object, but we're not including those sections. We have to
2230 change the definition to something the rest of the link can
2231 understand. */
2232
2233 static bfd_boolean
2234 elf_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
2235 struct elf_link_hash_entry *h)
2236 {
2237 struct elf_x86_64_link_hash_table *htab;
2238 asection *s;
2239 struct elf_x86_64_link_hash_entry *eh;
2240 struct elf_dyn_relocs *p;
2241
2242 /* STT_GNU_IFUNC symbol must go through PLT. */
2243 if (h->type == STT_GNU_IFUNC)
2244 {
2245 /* All local STT_GNU_IFUNC references must be treate as local
2246 calls via local PLT. */
2247 if (h->ref_regular
2248 && SYMBOL_CALLS_LOCAL (info, h))
2249 {
2250 bfd_size_type pc_count = 0, count = 0;
2251 struct elf_dyn_relocs **pp;
2252
2253 eh = (struct elf_x86_64_link_hash_entry *) h;
2254 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2255 {
2256 pc_count += p->pc_count;
2257 p->count -= p->pc_count;
2258 p->pc_count = 0;
2259 count += p->count;
2260 if (p->count == 0)
2261 *pp = p->next;
2262 else
2263 pp = &p->next;
2264 }
2265
2266 if (pc_count || count)
2267 {
2268 h->needs_plt = 1;
2269 h->non_got_ref = 1;
2270 if (h->plt.refcount <= 0)
2271 h->plt.refcount = 1;
2272 else
2273 h->plt.refcount += 1;
2274 }
2275 }
2276
2277 if (h->plt.refcount <= 0)
2278 {
2279 h->plt.offset = (bfd_vma) -1;
2280 h->needs_plt = 0;
2281 }
2282 return TRUE;
2283 }
2284
2285 /* If this is a function, put it in the procedure linkage table. We
2286 will fill in the contents of the procedure linkage table later,
2287 when we know the address of the .got section. */
2288 if (h->type == STT_FUNC
2289 || h->needs_plt)
2290 {
2291 if (h->plt.refcount <= 0
2292 || SYMBOL_CALLS_LOCAL (info, h)
2293 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2294 && h->root.type == bfd_link_hash_undefweak))
2295 {
2296 /* This case can occur if we saw a PLT32 reloc in an input
2297 file, but the symbol was never referred to by a dynamic
2298 object, or if all references were garbage collected. In
2299 such a case, we don't actually need to build a procedure
2300 linkage table, and we can just do a PC32 reloc instead. */
2301 h->plt.offset = (bfd_vma) -1;
2302 h->needs_plt = 0;
2303 }
2304
2305 return TRUE;
2306 }
2307 else
2308 /* It's possible that we incorrectly decided a .plt reloc was
2309 needed for an R_X86_64_PC32 reloc to a non-function sym in
2310 check_relocs. We can't decide accurately between function and
2311 non-function syms in check-relocs; Objects loaded later in
2312 the link may change h->type. So fix it now. */
2313 h->plt.offset = (bfd_vma) -1;
2314
2315 /* If this is a weak symbol, and there is a real definition, the
2316 processor independent code will have arranged for us to see the
2317 real definition first, and we can just use the same value. */
2318 if (h->u.weakdef != NULL)
2319 {
2320 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
2321 || h->u.weakdef->root.type == bfd_link_hash_defweak);
2322 h->root.u.def.section = h->u.weakdef->root.u.def.section;
2323 h->root.u.def.value = h->u.weakdef->root.u.def.value;
2324 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
2325 h->non_got_ref = h->u.weakdef->non_got_ref;
2326 return TRUE;
2327 }
2328
2329 /* This is a reference to a symbol defined by a dynamic object which
2330 is not a function. */
2331
2332 /* If we are creating a shared library, we must presume that the
2333 only references to the symbol are via the global offset table.
2334 For such cases we need not do anything here; the relocations will
2335 be handled correctly by relocate_section. */
2336 if (info->shared)
2337 return TRUE;
2338
2339 /* If there are no references to this symbol that do not use the
2340 GOT, we don't need to generate a copy reloc. */
2341 if (!h->non_got_ref)
2342 return TRUE;
2343
2344 /* If -z nocopyreloc was given, we won't generate them either. */
2345 if (info->nocopyreloc)
2346 {
2347 h->non_got_ref = 0;
2348 return TRUE;
2349 }
2350
2351 if (ELIMINATE_COPY_RELOCS)
2352 {
2353 eh = (struct elf_x86_64_link_hash_entry *) h;
2354 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2355 {
2356 s = p->sec->output_section;
2357 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2358 break;
2359 }
2360
2361 /* If we didn't find any dynamic relocs in read-only sections, then
2362 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
2363 if (p == NULL)
2364 {
2365 h->non_got_ref = 0;
2366 return TRUE;
2367 }
2368 }
2369
2370 /* We must allocate the symbol in our .dynbss section, which will
2371 become part of the .bss section of the executable. There will be
2372 an entry for this symbol in the .dynsym section. The dynamic
2373 object will contain position independent code, so all references
2374 from the dynamic object to this symbol will go through the global
2375 offset table. The dynamic linker will use the .dynsym entry to
2376 determine the address it must put in the global offset table, so
2377 both the dynamic object and the regular object will refer to the
2378 same memory location for the variable. */
2379
2380 htab = elf_x86_64_hash_table (info);
2381 if (htab == NULL)
2382 return FALSE;
2383
2384 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
2385 to copy the initial value out of the dynamic object and into the
2386 runtime process image. */
2387 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
2388 {
2389 const struct elf_backend_data *bed;
2390 bed = get_elf_backend_data (info->output_bfd);
2391 htab->srelbss->size += bed->s->sizeof_rela;
2392 h->needs_copy = 1;
2393 }
2394
2395 s = htab->sdynbss;
2396
2397 return _bfd_elf_adjust_dynamic_copy (h, s);
2398 }
2399
2400 /* Allocate space in .plt, .got and associated reloc sections for
2401 dynamic relocs. */
2402
2403 static bfd_boolean
2404 elf_x86_64_allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
2405 {
2406 struct bfd_link_info *info;
2407 struct elf_x86_64_link_hash_table *htab;
2408 struct elf_x86_64_link_hash_entry *eh;
2409 struct elf_dyn_relocs *p;
2410 const struct elf_backend_data *bed;
2411 unsigned int plt_entry_size;
2412
2413 if (h->root.type == bfd_link_hash_indirect)
2414 return TRUE;
2415
2416 eh = (struct elf_x86_64_link_hash_entry *) h;
2417
2418 info = (struct bfd_link_info *) inf;
2419 htab = elf_x86_64_hash_table (info);
2420 if (htab == NULL)
2421 return FALSE;
2422 bed = get_elf_backend_data (info->output_bfd);
2423 plt_entry_size = GET_PLT_ENTRY_SIZE (info->output_bfd);
2424
2425 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
2426 here if it is defined and referenced in a non-shared object. */
2427 if (h->type == STT_GNU_IFUNC
2428 && h->def_regular)
2429 {
2430 if (_bfd_elf_allocate_ifunc_dyn_relocs (info, h,
2431 &eh->dyn_relocs,
2432 plt_entry_size,
2433 plt_entry_size,
2434 GOT_ENTRY_SIZE))
2435 {
2436 asection *s = htab->plt_bnd;
2437 if (h->plt.offset != (bfd_vma) -1 && s != NULL)
2438 {
2439 /* Use the .plt.bnd section if it is created. */
2440 eh->plt_bnd.offset = s->size;
2441
2442 /* Make room for this entry in the .plt.bnd section. */
2443 s->size += sizeof (elf_x86_64_legacy_plt2_entry);
2444 }
2445
2446 return TRUE;
2447 }
2448 else
2449 return FALSE;
2450 }
2451 else if (htab->elf.dynamic_sections_created
2452 && h->plt.refcount > 0)
2453 {
2454 /* Make sure this symbol is output as a dynamic symbol.
2455 Undefined weak syms won't yet be marked as dynamic. */
2456 if (h->dynindx == -1
2457 && !h->forced_local)
2458 {
2459 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2460 return FALSE;
2461 }
2462
2463 if (info->shared
2464 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
2465 {
2466 asection *s = htab->elf.splt;
2467 asection *bnd_s = htab->plt_bnd;
2468
2469 /* If this is the first .plt entry, make room for the special
2470 first entry. */
2471 if (s->size == 0)
2472 s->size = plt_entry_size;
2473
2474 h->plt.offset = s->size;
2475 if (bnd_s)
2476 eh->plt_bnd.offset = bnd_s->size;
2477
2478 /* If this symbol is not defined in a regular file, and we are
2479 not generating a shared library, then set the symbol to this
2480 location in the .plt. This is required to make function
2481 pointers compare as equal between the normal executable and
2482 the shared library. */
2483 if (! info->shared
2484 && !h->def_regular)
2485 {
2486 if (bnd_s)
2487 {
2488 /* We need to make a call to the entry of the second
2489 PLT instead of regular PLT entry. */
2490 h->root.u.def.section = bnd_s;
2491 h->root.u.def.value = eh->plt_bnd.offset;
2492 }
2493 else
2494 {
2495 h->root.u.def.section = s;
2496 h->root.u.def.value = h->plt.offset;
2497 }
2498 }
2499
2500 /* Make room for this entry. */
2501 s->size += plt_entry_size;
2502 if (bnd_s)
2503 {
2504 BFD_ASSERT (sizeof (elf_x86_64_bnd_plt2_entry)
2505 == sizeof (elf_x86_64_legacy_plt2_entry));
2506 bnd_s->size += sizeof (elf_x86_64_legacy_plt2_entry);
2507 }
2508
2509 /* We also need to make an entry in the .got.plt section, which
2510 will be placed in the .got section by the linker script. */
2511 htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
2512
2513 /* We also need to make an entry in the .rela.plt section. */
2514 htab->elf.srelplt->size += bed->s->sizeof_rela;
2515 htab->elf.srelplt->reloc_count++;
2516 }
2517 else
2518 {
2519 h->plt.offset = (bfd_vma) -1;
2520 h->needs_plt = 0;
2521 }
2522 }
2523 else
2524 {
2525 h->plt.offset = (bfd_vma) -1;
2526 h->needs_plt = 0;
2527 }
2528
2529 eh->tlsdesc_got = (bfd_vma) -1;
2530
2531 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
2532 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
2533 if (h->got.refcount > 0
2534 && info->executable
2535 && h->dynindx == -1
2536 && elf_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
2537 {
2538 h->got.offset = (bfd_vma) -1;
2539 }
2540 else if (h->got.refcount > 0)
2541 {
2542 asection *s;
2543 bfd_boolean dyn;
2544 int tls_type = elf_x86_64_hash_entry (h)->tls_type;
2545
2546 /* Make sure this symbol is output as a dynamic symbol.
2547 Undefined weak syms won't yet be marked as dynamic. */
2548 if (h->dynindx == -1
2549 && !h->forced_local)
2550 {
2551 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2552 return FALSE;
2553 }
2554
2555 if (GOT_TLS_GDESC_P (tls_type))
2556 {
2557 eh->tlsdesc_got = htab->elf.sgotplt->size
2558 - elf_x86_64_compute_jump_table_size (htab);
2559 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2560 h->got.offset = (bfd_vma) -2;
2561 }
2562 if (! GOT_TLS_GDESC_P (tls_type)
2563 || GOT_TLS_GD_P (tls_type))
2564 {
2565 s = htab->elf.sgot;
2566 h->got.offset = s->size;
2567 s->size += GOT_ENTRY_SIZE;
2568 if (GOT_TLS_GD_P (tls_type))
2569 s->size += GOT_ENTRY_SIZE;
2570 }
2571 dyn = htab->elf.dynamic_sections_created;
2572 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
2573 and two if global.
2574 R_X86_64_GOTTPOFF needs one dynamic relocation. */
2575 if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
2576 || tls_type == GOT_TLS_IE)
2577 htab->elf.srelgot->size += bed->s->sizeof_rela;
2578 else if (GOT_TLS_GD_P (tls_type))
2579 htab->elf.srelgot->size += 2 * bed->s->sizeof_rela;
2580 else if (! GOT_TLS_GDESC_P (tls_type)
2581 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2582 || h->root.type != bfd_link_hash_undefweak)
2583 && (info->shared
2584 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
2585 htab->elf.srelgot->size += bed->s->sizeof_rela;
2586 if (GOT_TLS_GDESC_P (tls_type))
2587 {
2588 htab->elf.srelplt->size += bed->s->sizeof_rela;
2589 htab->tlsdesc_plt = (bfd_vma) -1;
2590 }
2591 }
2592 else
2593 h->got.offset = (bfd_vma) -1;
2594
2595 if (eh->dyn_relocs == NULL)
2596 return TRUE;
2597
2598 /* In the shared -Bsymbolic case, discard space allocated for
2599 dynamic pc-relative relocs against symbols which turn out to be
2600 defined in regular objects. For the normal shared case, discard
2601 space for pc-relative relocs that have become local due to symbol
2602 visibility changes. */
2603
2604 if (info->shared)
2605 {
2606 /* Relocs that use pc_count are those that appear on a call
2607 insn, or certain REL relocs that can generated via assembly.
2608 We want calls to protected symbols to resolve directly to the
2609 function rather than going via the plt. If people want
2610 function pointer comparisons to work as expected then they
2611 should avoid writing weird assembly. */
2612 if (SYMBOL_CALLS_LOCAL (info, h))
2613 {
2614 struct elf_dyn_relocs **pp;
2615
2616 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2617 {
2618 p->count -= p->pc_count;
2619 p->pc_count = 0;
2620 if (p->count == 0)
2621 *pp = p->next;
2622 else
2623 pp = &p->next;
2624 }
2625 }
2626
2627 /* Also discard relocs on undefined weak syms with non-default
2628 visibility. */
2629 if (eh->dyn_relocs != NULL
2630 && h->root.type == bfd_link_hash_undefweak)
2631 {
2632 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2633 eh->dyn_relocs = NULL;
2634
2635 /* Make sure undefined weak symbols are output as a dynamic
2636 symbol in PIEs. */
2637 else if (h->dynindx == -1
2638 && ! h->forced_local
2639 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2640 return FALSE;
2641 }
2642
2643 }
2644 else if (ELIMINATE_COPY_RELOCS)
2645 {
2646 /* For the non-shared case, discard space for relocs against
2647 symbols which turn out to need copy relocs or are not
2648 dynamic. */
2649
2650 if (!h->non_got_ref
2651 && ((h->def_dynamic
2652 && !h->def_regular)
2653 || (htab->elf.dynamic_sections_created
2654 && (h->root.type == bfd_link_hash_undefweak
2655 || h->root.type == bfd_link_hash_undefined))))
2656 {
2657 /* Make sure this symbol is output as a dynamic symbol.
2658 Undefined weak syms won't yet be marked as dynamic. */
2659 if (h->dynindx == -1
2660 && ! h->forced_local
2661 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2662 return FALSE;
2663
2664 /* If that succeeded, we know we'll be keeping all the
2665 relocs. */
2666 if (h->dynindx != -1)
2667 goto keep;
2668 }
2669
2670 eh->dyn_relocs = NULL;
2671
2672 keep: ;
2673 }
2674
2675 /* Finally, allocate space. */
2676 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2677 {
2678 asection * sreloc;
2679
2680 sreloc = elf_section_data (p->sec)->sreloc;
2681
2682 BFD_ASSERT (sreloc != NULL);
2683
2684 sreloc->size += p->count * bed->s->sizeof_rela;
2685 }
2686
2687 return TRUE;
2688 }
2689
2690 /* Allocate space in .plt, .got and associated reloc sections for
2691 local dynamic relocs. */
2692
2693 static bfd_boolean
2694 elf_x86_64_allocate_local_dynrelocs (void **slot, void *inf)
2695 {
2696 struct elf_link_hash_entry *h
2697 = (struct elf_link_hash_entry *) *slot;
2698
2699 if (h->type != STT_GNU_IFUNC
2700 || !h->def_regular
2701 || !h->ref_regular
2702 || !h->forced_local
2703 || h->root.type != bfd_link_hash_defined)
2704 abort ();
2705
2706 return elf_x86_64_allocate_dynrelocs (h, inf);
2707 }
2708
2709 /* Find any dynamic relocs that apply to read-only sections. */
2710
2711 static bfd_boolean
2712 elf_x86_64_readonly_dynrelocs (struct elf_link_hash_entry *h,
2713 void * inf)
2714 {
2715 struct elf_x86_64_link_hash_entry *eh;
2716 struct elf_dyn_relocs *p;
2717
2718 /* Skip local IFUNC symbols. */
2719 if (h->forced_local && h->type == STT_GNU_IFUNC)
2720 return TRUE;
2721
2722 eh = (struct elf_x86_64_link_hash_entry *) h;
2723 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2724 {
2725 asection *s = p->sec->output_section;
2726
2727 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2728 {
2729 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2730
2731 info->flags |= DF_TEXTREL;
2732
2733 if (info->warn_shared_textrel && info->shared)
2734 info->callbacks->einfo (_("%P: %B: warning: relocation against `%s' in readonly section `%A'.\n"),
2735 p->sec->owner, h->root.root.string,
2736 p->sec);
2737
2738 /* Not an error, just cut short the traversal. */
2739 return FALSE;
2740 }
2741 }
2742 return TRUE;
2743 }
2744
2745 /* Convert
2746 mov foo@GOTPCREL(%rip), %reg
2747 to
2748 lea foo(%rip), %reg
2749 with the local symbol, foo. */
2750
2751 static bfd_boolean
2752 elf_x86_64_convert_mov_to_lea (bfd *abfd, asection *sec,
2753 struct bfd_link_info *link_info)
2754 {
2755 Elf_Internal_Shdr *symtab_hdr;
2756 Elf_Internal_Rela *internal_relocs;
2757 Elf_Internal_Rela *irel, *irelend;
2758 bfd_byte *contents;
2759 struct elf_x86_64_link_hash_table *htab;
2760 bfd_boolean changed_contents;
2761 bfd_boolean changed_relocs;
2762 bfd_signed_vma *local_got_refcounts;
2763
2764 /* Don't even try to convert non-ELF outputs. */
2765 if (!is_elf_hash_table (link_info->hash))
2766 return FALSE;
2767
2768 /* Nothing to do if there are no codes, no relocations or no output. */
2769 if ((sec->flags & (SEC_CODE | SEC_RELOC)) != (SEC_CODE | SEC_RELOC)
2770 || sec->reloc_count == 0
2771 || bfd_is_abs_section (sec->output_section))
2772 return TRUE;
2773
2774 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2775
2776 /* Load the relocations for this section. */
2777 internal_relocs = (_bfd_elf_link_read_relocs
2778 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
2779 link_info->keep_memory));
2780 if (internal_relocs == NULL)
2781 return FALSE;
2782
2783 htab = elf_x86_64_hash_table (link_info);
2784 changed_contents = FALSE;
2785 changed_relocs = FALSE;
2786 local_got_refcounts = elf_local_got_refcounts (abfd);
2787
2788 /* Get the section contents. */
2789 if (elf_section_data (sec)->this_hdr.contents != NULL)
2790 contents = elf_section_data (sec)->this_hdr.contents;
2791 else
2792 {
2793 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
2794 goto error_return;
2795 }
2796
2797 irelend = internal_relocs + sec->reloc_count;
2798 for (irel = internal_relocs; irel < irelend; irel++)
2799 {
2800 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
2801 unsigned int r_symndx = htab->r_sym (irel->r_info);
2802 unsigned int indx;
2803 struct elf_link_hash_entry *h;
2804
2805 if (r_type != R_X86_64_GOTPCREL)
2806 continue;
2807
2808 /* Get the symbol referred to by the reloc. */
2809 if (r_symndx < symtab_hdr->sh_info)
2810 {
2811 Elf_Internal_Sym *isym;
2812
2813 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
2814 abfd, r_symndx);
2815
2816 /* STT_GNU_IFUNC must keep R_X86_64_GOTPCREL relocation. */
2817 if (ELF_ST_TYPE (isym->st_info) != STT_GNU_IFUNC
2818 && irel->r_offset >= 2
2819 && bfd_get_8 (input_bfd,
2820 contents + irel->r_offset - 2) == 0x8b)
2821 {
2822 bfd_put_8 (output_bfd, 0x8d,
2823 contents + irel->r_offset - 2);
2824 irel->r_info = htab->r_info (r_symndx, R_X86_64_PC32);
2825 if (local_got_refcounts != NULL
2826 && local_got_refcounts[r_symndx] > 0)
2827 local_got_refcounts[r_symndx] -= 1;
2828 changed_contents = TRUE;
2829 changed_relocs = TRUE;
2830 }
2831 continue;
2832 }
2833
2834 indx = r_symndx - symtab_hdr->sh_info;
2835 h = elf_sym_hashes (abfd)[indx];
2836 BFD_ASSERT (h != NULL);
2837
2838 while (h->root.type == bfd_link_hash_indirect
2839 || h->root.type == bfd_link_hash_warning)
2840 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2841
2842 /* STT_GNU_IFUNC must keep R_X86_64_GOTPCREL relocation. We also
2843 avoid optimizing _DYNAMIC since ld.so may use its link-time
2844 address. */
2845 if (h->def_regular
2846 && h->type != STT_GNU_IFUNC
2847 && h != htab->elf.hdynamic
2848 && SYMBOL_REFERENCES_LOCAL (link_info, h)
2849 && irel->r_offset >= 2
2850 && bfd_get_8 (input_bfd,
2851 contents + irel->r_offset - 2) == 0x8b)
2852 {
2853 bfd_put_8 (output_bfd, 0x8d,
2854 contents + irel->r_offset - 2);
2855 irel->r_info = htab->r_info (r_symndx, R_X86_64_PC32);
2856 if (h->got.refcount > 0)
2857 h->got.refcount -= 1;
2858 changed_contents = TRUE;
2859 changed_relocs = TRUE;
2860 }
2861 }
2862
2863 if (contents != NULL
2864 && elf_section_data (sec)->this_hdr.contents != contents)
2865 {
2866 if (!changed_contents && !link_info->keep_memory)
2867 free (contents);
2868 else
2869 {
2870 /* Cache the section contents for elf_link_input_bfd. */
2871 elf_section_data (sec)->this_hdr.contents = contents;
2872 }
2873 }
2874
2875 if (elf_section_data (sec)->relocs != internal_relocs)
2876 {
2877 if (!changed_relocs)
2878 free (internal_relocs);
2879 else
2880 elf_section_data (sec)->relocs = internal_relocs;
2881 }
2882
2883 return TRUE;
2884
2885 error_return:
2886 if (contents != NULL
2887 && elf_section_data (sec)->this_hdr.contents != contents)
2888 free (contents);
2889 if (internal_relocs != NULL
2890 && elf_section_data (sec)->relocs != internal_relocs)
2891 free (internal_relocs);
2892 return FALSE;
2893 }
2894
2895 /* Set the sizes of the dynamic sections. */
2896
2897 static bfd_boolean
2898 elf_x86_64_size_dynamic_sections (bfd *output_bfd,
2899 struct bfd_link_info *info)
2900 {
2901 struct elf_x86_64_link_hash_table *htab;
2902 bfd *dynobj;
2903 asection *s;
2904 bfd_boolean relocs;
2905 bfd *ibfd;
2906 const struct elf_backend_data *bed;
2907
2908 htab = elf_x86_64_hash_table (info);
2909 if (htab == NULL)
2910 return FALSE;
2911 bed = get_elf_backend_data (output_bfd);
2912
2913 dynobj = htab->elf.dynobj;
2914 if (dynobj == NULL)
2915 abort ();
2916
2917 if (htab->elf.dynamic_sections_created)
2918 {
2919 /* Set the contents of the .interp section to the interpreter. */
2920 if (info->executable)
2921 {
2922 s = bfd_get_linker_section (dynobj, ".interp");
2923 if (s == NULL)
2924 abort ();
2925 s->size = htab->dynamic_interpreter_size;
2926 s->contents = (unsigned char *) htab->dynamic_interpreter;
2927 }
2928 }
2929
2930 /* Set up .got offsets for local syms, and space for local dynamic
2931 relocs. */
2932 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
2933 {
2934 bfd_signed_vma *local_got;
2935 bfd_signed_vma *end_local_got;
2936 char *local_tls_type;
2937 bfd_vma *local_tlsdesc_gotent;
2938 bfd_size_type locsymcount;
2939 Elf_Internal_Shdr *symtab_hdr;
2940 asection *srel;
2941
2942 if (! is_x86_64_elf (ibfd))
2943 continue;
2944
2945 for (s = ibfd->sections; s != NULL; s = s->next)
2946 {
2947 struct elf_dyn_relocs *p;
2948
2949 if (!elf_x86_64_convert_mov_to_lea (ibfd, s, info))
2950 return FALSE;
2951
2952 for (p = (struct elf_dyn_relocs *)
2953 (elf_section_data (s)->local_dynrel);
2954 p != NULL;
2955 p = p->next)
2956 {
2957 if (!bfd_is_abs_section (p->sec)
2958 && bfd_is_abs_section (p->sec->output_section))
2959 {
2960 /* Input section has been discarded, either because
2961 it is a copy of a linkonce section or due to
2962 linker script /DISCARD/, so we'll be discarding
2963 the relocs too. */
2964 }
2965 else if (p->count != 0)
2966 {
2967 srel = elf_section_data (p->sec)->sreloc;
2968 srel->size += p->count * bed->s->sizeof_rela;
2969 if ((p->sec->output_section->flags & SEC_READONLY) != 0
2970 && (info->flags & DF_TEXTREL) == 0)
2971 {
2972 info->flags |= DF_TEXTREL;
2973 if (info->warn_shared_textrel && info->shared)
2974 info->callbacks->einfo (_("%P: %B: warning: relocation in readonly section `%A'.\n"),
2975 p->sec->owner, p->sec);
2976 }
2977 }
2978 }
2979 }
2980
2981 local_got = elf_local_got_refcounts (ibfd);
2982 if (!local_got)
2983 continue;
2984
2985 symtab_hdr = &elf_symtab_hdr (ibfd);
2986 locsymcount = symtab_hdr->sh_info;
2987 end_local_got = local_got + locsymcount;
2988 local_tls_type = elf_x86_64_local_got_tls_type (ibfd);
2989 local_tlsdesc_gotent = elf_x86_64_local_tlsdesc_gotent (ibfd);
2990 s = htab->elf.sgot;
2991 srel = htab->elf.srelgot;
2992 for (; local_got < end_local_got;
2993 ++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
2994 {
2995 *local_tlsdesc_gotent = (bfd_vma) -1;
2996 if (*local_got > 0)
2997 {
2998 if (GOT_TLS_GDESC_P (*local_tls_type))
2999 {
3000 *local_tlsdesc_gotent = htab->elf.sgotplt->size
3001 - elf_x86_64_compute_jump_table_size (htab);
3002 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
3003 *local_got = (bfd_vma) -2;
3004 }
3005 if (! GOT_TLS_GDESC_P (*local_tls_type)
3006 || GOT_TLS_GD_P (*local_tls_type))
3007 {
3008 *local_got = s->size;
3009 s->size += GOT_ENTRY_SIZE;
3010 if (GOT_TLS_GD_P (*local_tls_type))
3011 s->size += GOT_ENTRY_SIZE;
3012 }
3013 if (info->shared
3014 || GOT_TLS_GD_ANY_P (*local_tls_type)
3015 || *local_tls_type == GOT_TLS_IE)
3016 {
3017 if (GOT_TLS_GDESC_P (*local_tls_type))
3018 {
3019 htab->elf.srelplt->size
3020 += bed->s->sizeof_rela;
3021 htab->tlsdesc_plt = (bfd_vma) -1;
3022 }
3023 if (! GOT_TLS_GDESC_P (*local_tls_type)
3024 || GOT_TLS_GD_P (*local_tls_type))
3025 srel->size += bed->s->sizeof_rela;
3026 }
3027 }
3028 else
3029 *local_got = (bfd_vma) -1;
3030 }
3031 }
3032
3033 if (htab->tls_ld_got.refcount > 0)
3034 {
3035 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
3036 relocs. */
3037 htab->tls_ld_got.offset = htab->elf.sgot->size;
3038 htab->elf.sgot->size += 2 * GOT_ENTRY_SIZE;
3039 htab->elf.srelgot->size += bed->s->sizeof_rela;
3040 }
3041 else
3042 htab->tls_ld_got.offset = -1;
3043
3044 /* Allocate global sym .plt and .got entries, and space for global
3045 sym dynamic relocs. */
3046 elf_link_hash_traverse (&htab->elf, elf_x86_64_allocate_dynrelocs,
3047 info);
3048
3049 /* Allocate .plt and .got entries, and space for local symbols. */
3050 htab_traverse (htab->loc_hash_table,
3051 elf_x86_64_allocate_local_dynrelocs,
3052 info);
3053
3054 /* For every jump slot reserved in the sgotplt, reloc_count is
3055 incremented. However, when we reserve space for TLS descriptors,
3056 it's not incremented, so in order to compute the space reserved
3057 for them, it suffices to multiply the reloc count by the jump
3058 slot size.
3059
3060 PR ld/13302: We start next_irelative_index at the end of .rela.plt
3061 so that R_X86_64_IRELATIVE entries come last. */
3062 if (htab->elf.srelplt)
3063 {
3064 htab->sgotplt_jump_table_size
3065 = elf_x86_64_compute_jump_table_size (htab);
3066 htab->next_irelative_index = htab->elf.srelplt->reloc_count - 1;
3067 }
3068 else if (htab->elf.irelplt)
3069 htab->next_irelative_index = htab->elf.irelplt->reloc_count - 1;
3070
3071 if (htab->tlsdesc_plt)
3072 {
3073 /* If we're not using lazy TLS relocations, don't generate the
3074 PLT and GOT entries they require. */
3075 if ((info->flags & DF_BIND_NOW))
3076 htab->tlsdesc_plt = 0;
3077 else
3078 {
3079 htab->tlsdesc_got = htab->elf.sgot->size;
3080 htab->elf.sgot->size += GOT_ENTRY_SIZE;
3081 /* Reserve room for the initial entry.
3082 FIXME: we could probably do away with it in this case. */
3083 if (htab->elf.splt->size == 0)
3084 htab->elf.splt->size += GET_PLT_ENTRY_SIZE (output_bfd);
3085 htab->tlsdesc_plt = htab->elf.splt->size;
3086 htab->elf.splt->size += GET_PLT_ENTRY_SIZE (output_bfd);
3087 }
3088 }
3089
3090 if (htab->elf.sgotplt)
3091 {
3092 /* Don't allocate .got.plt section if there are no GOT nor PLT
3093 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
3094 if ((htab->elf.hgot == NULL
3095 || !htab->elf.hgot->ref_regular_nonweak)
3096 && (htab->elf.sgotplt->size
3097 == get_elf_backend_data (output_bfd)->got_header_size)
3098 && (htab->elf.splt == NULL
3099 || htab->elf.splt->size == 0)
3100 && (htab->elf.sgot == NULL
3101 || htab->elf.sgot->size == 0)
3102 && (htab->elf.iplt == NULL
3103 || htab->elf.iplt->size == 0)
3104 && (htab->elf.igotplt == NULL
3105 || htab->elf.igotplt->size == 0))
3106 htab->elf.sgotplt->size = 0;
3107 }
3108
3109 if (htab->plt_eh_frame != NULL
3110 && htab->elf.splt != NULL
3111 && htab->elf.splt->size != 0
3112 && !bfd_is_abs_section (htab->elf.splt->output_section)
3113 && _bfd_elf_eh_frame_present (info))
3114 {
3115 const struct elf_x86_64_backend_data *arch_data
3116 = get_elf_x86_64_arch_data (bed);
3117 htab->plt_eh_frame->size = arch_data->eh_frame_plt_size;
3118 }
3119
3120 /* We now have determined the sizes of the various dynamic sections.
3121 Allocate memory for them. */
3122 relocs = FALSE;
3123 for (s = dynobj->sections; s != NULL; s = s->next)
3124 {
3125 if ((s->flags & SEC_LINKER_CREATED) == 0)
3126 continue;
3127
3128 if (s == htab->elf.splt
3129 || s == htab->elf.sgot
3130 || s == htab->elf.sgotplt
3131 || s == htab->elf.iplt
3132 || s == htab->elf.igotplt
3133 || s == htab->plt_bnd
3134 || s == htab->plt_eh_frame
3135 || s == htab->sdynbss)
3136 {
3137 /* Strip this section if we don't need it; see the
3138 comment below. */
3139 }
3140 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
3141 {
3142 if (s->size != 0 && s != htab->elf.srelplt)
3143 relocs = TRUE;
3144
3145 /* We use the reloc_count field as a counter if we need
3146 to copy relocs into the output file. */
3147 if (s != htab->elf.srelplt)
3148 s->reloc_count = 0;
3149 }
3150 else
3151 {
3152 /* It's not one of our sections, so don't allocate space. */
3153 continue;
3154 }
3155
3156 if (s->size == 0)
3157 {
3158 /* If we don't need this section, strip it from the
3159 output file. This is mostly to handle .rela.bss and
3160 .rela.plt. We must create both sections in
3161 create_dynamic_sections, because they must be created
3162 before the linker maps input sections to output
3163 sections. The linker does that before
3164 adjust_dynamic_symbol is called, and it is that
3165 function which decides whether anything needs to go
3166 into these sections. */
3167
3168 s->flags |= SEC_EXCLUDE;
3169 continue;
3170 }
3171
3172 if ((s->flags & SEC_HAS_CONTENTS) == 0)
3173 continue;
3174
3175 /* Allocate memory for the section contents. We use bfd_zalloc
3176 here in case unused entries are not reclaimed before the
3177 section's contents are written out. This should not happen,
3178 but this way if it does, we get a R_X86_64_NONE reloc instead
3179 of garbage. */
3180 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
3181 if (s->contents == NULL)
3182 return FALSE;
3183 }
3184
3185 if (htab->plt_eh_frame != NULL
3186 && htab->plt_eh_frame->contents != NULL)
3187 {
3188 const struct elf_x86_64_backend_data *arch_data
3189 = get_elf_x86_64_arch_data (bed);
3190
3191 memcpy (htab->plt_eh_frame->contents,
3192 arch_data->eh_frame_plt, htab->plt_eh_frame->size);
3193 bfd_put_32 (dynobj, htab->elf.splt->size,
3194 htab->plt_eh_frame->contents + PLT_FDE_LEN_OFFSET);
3195 }
3196
3197 if (htab->elf.dynamic_sections_created)
3198 {
3199 /* Add some entries to the .dynamic section. We fill in the
3200 values later, in elf_x86_64_finish_dynamic_sections, but we
3201 must add the entries now so that we get the correct size for
3202 the .dynamic section. The DT_DEBUG entry is filled in by the
3203 dynamic linker and used by the debugger. */
3204 #define add_dynamic_entry(TAG, VAL) \
3205 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3206
3207 if (info->executable)
3208 {
3209 if (!add_dynamic_entry (DT_DEBUG, 0))
3210 return FALSE;
3211 }
3212
3213 if (htab->elf.splt->size != 0)
3214 {
3215 if (!add_dynamic_entry (DT_PLTGOT, 0)
3216 || !add_dynamic_entry (DT_PLTRELSZ, 0)
3217 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
3218 || !add_dynamic_entry (DT_JMPREL, 0))
3219 return FALSE;
3220
3221 if (htab->tlsdesc_plt
3222 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
3223 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
3224 return FALSE;
3225 }
3226
3227 if (relocs)
3228 {
3229 if (!add_dynamic_entry (DT_RELA, 0)
3230 || !add_dynamic_entry (DT_RELASZ, 0)
3231 || !add_dynamic_entry (DT_RELAENT, bed->s->sizeof_rela))
3232 return FALSE;
3233
3234 /* If any dynamic relocs apply to a read-only section,
3235 then we need a DT_TEXTREL entry. */
3236 if ((info->flags & DF_TEXTREL) == 0)
3237 elf_link_hash_traverse (&htab->elf,
3238 elf_x86_64_readonly_dynrelocs,
3239 info);
3240
3241 if ((info->flags & DF_TEXTREL) != 0)
3242 {
3243 if (!add_dynamic_entry (DT_TEXTREL, 0))
3244 return FALSE;
3245 }
3246 }
3247 }
3248 #undef add_dynamic_entry
3249
3250 return TRUE;
3251 }
3252
3253 static bfd_boolean
3254 elf_x86_64_always_size_sections (bfd *output_bfd,
3255 struct bfd_link_info *info)
3256 {
3257 asection *tls_sec = elf_hash_table (info)->tls_sec;
3258
3259 if (tls_sec)
3260 {
3261 struct elf_link_hash_entry *tlsbase;
3262
3263 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
3264 "_TLS_MODULE_BASE_",
3265 FALSE, FALSE, FALSE);
3266
3267 if (tlsbase && tlsbase->type == STT_TLS)
3268 {
3269 struct elf_x86_64_link_hash_table *htab;
3270 struct bfd_link_hash_entry *bh = NULL;
3271 const struct elf_backend_data *bed
3272 = get_elf_backend_data (output_bfd);
3273
3274 htab = elf_x86_64_hash_table (info);
3275 if (htab == NULL)
3276 return FALSE;
3277
3278 if (!(_bfd_generic_link_add_one_symbol
3279 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
3280 tls_sec, 0, NULL, FALSE,
3281 bed->collect, &bh)))
3282 return FALSE;
3283
3284 htab->tls_module_base = bh;
3285
3286 tlsbase = (struct elf_link_hash_entry *)bh;
3287 tlsbase->def_regular = 1;
3288 tlsbase->other = STV_HIDDEN;
3289 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
3290 }
3291 }
3292
3293 return TRUE;
3294 }
3295
3296 /* _TLS_MODULE_BASE_ needs to be treated especially when linking
3297 executables. Rather than setting it to the beginning of the TLS
3298 section, we have to set it to the end. This function may be called
3299 multiple times, it is idempotent. */
3300
3301 static void
3302 elf_x86_64_set_tls_module_base (struct bfd_link_info *info)
3303 {
3304 struct elf_x86_64_link_hash_table *htab;
3305 struct bfd_link_hash_entry *base;
3306
3307 if (!info->executable)
3308 return;
3309
3310 htab = elf_x86_64_hash_table (info);
3311 if (htab == NULL)
3312 return;
3313
3314 base = htab->tls_module_base;
3315 if (base == NULL)
3316 return;
3317
3318 base->u.def.value = htab->elf.tls_size;
3319 }
3320
3321 /* Return the base VMA address which should be subtracted from real addresses
3322 when resolving @dtpoff relocation.
3323 This is PT_TLS segment p_vaddr. */
3324
3325 static bfd_vma
3326 elf_x86_64_dtpoff_base (struct bfd_link_info *info)
3327 {
3328 /* If tls_sec is NULL, we should have signalled an error already. */
3329 if (elf_hash_table (info)->tls_sec == NULL)
3330 return 0;
3331 return elf_hash_table (info)->tls_sec->vma;
3332 }
3333
3334 /* Return the relocation value for @tpoff relocation
3335 if STT_TLS virtual address is ADDRESS. */
3336
3337 static bfd_vma
3338 elf_x86_64_tpoff (struct bfd_link_info *info, bfd_vma address)
3339 {
3340 struct elf_link_hash_table *htab = elf_hash_table (info);
3341 const struct elf_backend_data *bed = get_elf_backend_data (info->output_bfd);
3342 bfd_vma static_tls_size;
3343
3344 /* If tls_segment is NULL, we should have signalled an error already. */
3345 if (htab->tls_sec == NULL)
3346 return 0;
3347
3348 /* Consider special static TLS alignment requirements. */
3349 static_tls_size = BFD_ALIGN (htab->tls_size, bed->static_tls_alignment);
3350 return address - static_tls_size - htab->tls_sec->vma;
3351 }
3352
3353 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
3354 branch? */
3355
3356 static bfd_boolean
3357 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
3358 {
3359 /* Opcode Instruction
3360 0xe8 call
3361 0xe9 jump
3362 0x0f 0x8x conditional jump */
3363 return ((offset > 0
3364 && (contents [offset - 1] == 0xe8
3365 || contents [offset - 1] == 0xe9))
3366 || (offset > 1
3367 && contents [offset - 2] == 0x0f
3368 && (contents [offset - 1] & 0xf0) == 0x80));
3369 }
3370
3371 /* Relocate an x86_64 ELF section. */
3372
3373 static bfd_boolean
3374 elf_x86_64_relocate_section (bfd *output_bfd,
3375 struct bfd_link_info *info,
3376 bfd *input_bfd,
3377 asection *input_section,
3378 bfd_byte *contents,
3379 Elf_Internal_Rela *relocs,
3380 Elf_Internal_Sym *local_syms,
3381 asection **local_sections)
3382 {
3383 struct elf_x86_64_link_hash_table *htab;
3384 Elf_Internal_Shdr *symtab_hdr;
3385 struct elf_link_hash_entry **sym_hashes;
3386 bfd_vma *local_got_offsets;
3387 bfd_vma *local_tlsdesc_gotents;
3388 Elf_Internal_Rela *rel;
3389 Elf_Internal_Rela *relend;
3390 const unsigned int plt_entry_size = GET_PLT_ENTRY_SIZE (info->output_bfd);
3391
3392 BFD_ASSERT (is_x86_64_elf (input_bfd));
3393
3394 htab = elf_x86_64_hash_table (info);
3395 if (htab == NULL)
3396 return FALSE;
3397 symtab_hdr = &elf_symtab_hdr (input_bfd);
3398 sym_hashes = elf_sym_hashes (input_bfd);
3399 local_got_offsets = elf_local_got_offsets (input_bfd);
3400 local_tlsdesc_gotents = elf_x86_64_local_tlsdesc_gotent (input_bfd);
3401
3402 elf_x86_64_set_tls_module_base (info);
3403
3404 rel = relocs;
3405 relend = relocs + input_section->reloc_count;
3406 for (; rel < relend; rel++)
3407 {
3408 unsigned int r_type;
3409 reloc_howto_type *howto;
3410 unsigned long r_symndx;
3411 struct elf_link_hash_entry *h;
3412 struct elf_x86_64_link_hash_entry *eh;
3413 Elf_Internal_Sym *sym;
3414 asection *sec;
3415 bfd_vma off, offplt, plt_offset;
3416 bfd_vma relocation;
3417 bfd_boolean unresolved_reloc;
3418 bfd_reloc_status_type r;
3419 int tls_type;
3420 asection *base_got, *resolved_plt;
3421 bfd_vma st_size;
3422
3423 r_type = ELF32_R_TYPE (rel->r_info);
3424 if (r_type == (int) R_X86_64_GNU_VTINHERIT
3425 || r_type == (int) R_X86_64_GNU_VTENTRY)
3426 continue;
3427
3428 if (r_type >= (int) R_X86_64_standard)
3429 {
3430 (*_bfd_error_handler)
3431 (_("%B: unrecognized relocation (0x%x) in section `%A'"),
3432 input_bfd, input_section, r_type);
3433 bfd_set_error (bfd_error_bad_value);
3434 return FALSE;
3435 }
3436
3437 if (r_type != (int) R_X86_64_32
3438 || ABI_64_P (output_bfd))
3439 howto = x86_64_elf_howto_table + r_type;
3440 else
3441 howto = (x86_64_elf_howto_table
3442 + ARRAY_SIZE (x86_64_elf_howto_table) - 1);
3443 r_symndx = htab->r_sym (rel->r_info);
3444 h = NULL;
3445 sym = NULL;
3446 sec = NULL;
3447 unresolved_reloc = FALSE;
3448 if (r_symndx < symtab_hdr->sh_info)
3449 {
3450 sym = local_syms + r_symndx;
3451 sec = local_sections[r_symndx];
3452
3453 relocation = _bfd_elf_rela_local_sym (output_bfd, sym,
3454 &sec, rel);
3455 st_size = sym->st_size;
3456
3457 /* Relocate against local STT_GNU_IFUNC symbol. */
3458 if (!info->relocatable
3459 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
3460 {
3461 h = elf_x86_64_get_local_sym_hash (htab, input_bfd,
3462 rel, FALSE);
3463 if (h == NULL)
3464 abort ();
3465
3466 /* Set STT_GNU_IFUNC symbol value. */
3467 h->root.u.def.value = sym->st_value;
3468 h->root.u.def.section = sec;
3469 }
3470 }
3471 else
3472 {
3473 bfd_boolean warned ATTRIBUTE_UNUSED;
3474 bfd_boolean ignored ATTRIBUTE_UNUSED;
3475
3476 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3477 r_symndx, symtab_hdr, sym_hashes,
3478 h, sec, relocation,
3479 unresolved_reloc, warned, ignored);
3480 st_size = h->size;
3481 }
3482
3483 if (sec != NULL && discarded_section (sec))
3484 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3485 rel, 1, relend, howto, 0, contents);
3486
3487 if (info->relocatable)
3488 continue;
3489
3490 if (rel->r_addend == 0 && !ABI_64_P (output_bfd))
3491 {
3492 if (r_type == R_X86_64_64)
3493 {
3494 /* For x32, treat R_X86_64_64 like R_X86_64_32 and
3495 zero-extend it to 64bit if addend is zero. */
3496 r_type = R_X86_64_32;
3497 memset (contents + rel->r_offset + 4, 0, 4);
3498 }
3499 else if (r_type == R_X86_64_SIZE64)
3500 {
3501 /* For x32, treat R_X86_64_SIZE64 like R_X86_64_SIZE32 and
3502 zero-extend it to 64bit if addend is zero. */
3503 r_type = R_X86_64_SIZE32;
3504 memset (contents + rel->r_offset + 4, 0, 4);
3505 }
3506 }
3507
3508 eh = (struct elf_x86_64_link_hash_entry *) h;
3509
3510 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
3511 it here if it is defined in a non-shared object. */
3512 if (h != NULL
3513 && h->type == STT_GNU_IFUNC
3514 && h->def_regular)
3515 {
3516 bfd_vma plt_index;
3517 const char *name;
3518
3519 if ((input_section->flags & SEC_ALLOC) == 0
3520 || h->plt.offset == (bfd_vma) -1)
3521 abort ();
3522
3523 /* STT_GNU_IFUNC symbol must go through PLT. */
3524 if (htab->elf.splt != NULL)
3525 {
3526 if (htab->plt_bnd != NULL)
3527 {
3528 resolved_plt = htab->plt_bnd;
3529 plt_offset = eh->plt_bnd.offset;
3530 }
3531 else
3532 {
3533 resolved_plt = htab->elf.splt;
3534 plt_offset = h->plt.offset;
3535 }
3536 }
3537 else
3538 {
3539 resolved_plt = htab->elf.iplt;
3540 plt_offset = h->plt.offset;
3541 }
3542
3543 relocation = (resolved_plt->output_section->vma
3544 + resolved_plt->output_offset + plt_offset);
3545
3546 switch (r_type)
3547 {
3548 default:
3549 if (h->root.root.string)
3550 name = h->root.root.string;
3551 else
3552 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
3553 NULL);
3554 (*_bfd_error_handler)
3555 (_("%B: relocation %s against STT_GNU_IFUNC "
3556 "symbol `%s' isn't handled by %s"), input_bfd,
3557 x86_64_elf_howto_table[r_type].name,
3558 name, __FUNCTION__);
3559 bfd_set_error (bfd_error_bad_value);
3560 return FALSE;
3561
3562 case R_X86_64_32S:
3563 if (info->shared)
3564 abort ();
3565 goto do_relocation;
3566
3567 case R_X86_64_32:
3568 if (ABI_64_P (output_bfd))
3569 goto do_relocation;
3570 /* FALLTHROUGH */
3571 case R_X86_64_64:
3572 if (rel->r_addend != 0)
3573 {
3574 if (h->root.root.string)
3575 name = h->root.root.string;
3576 else
3577 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
3578 sym, NULL);
3579 (*_bfd_error_handler)
3580 (_("%B: relocation %s against STT_GNU_IFUNC "
3581 "symbol `%s' has non-zero addend: %d"),
3582 input_bfd, x86_64_elf_howto_table[r_type].name,
3583 name, rel->r_addend);
3584 bfd_set_error (bfd_error_bad_value);
3585 return FALSE;
3586 }
3587
3588 /* Generate dynamic relcoation only when there is a
3589 non-GOT reference in a shared object. */
3590 if (info->shared && h->non_got_ref)
3591 {
3592 Elf_Internal_Rela outrel;
3593 asection *sreloc;
3594
3595 /* Need a dynamic relocation to get the real function
3596 address. */
3597 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
3598 info,
3599 input_section,
3600 rel->r_offset);
3601 if (outrel.r_offset == (bfd_vma) -1
3602 || outrel.r_offset == (bfd_vma) -2)
3603 abort ();
3604
3605 outrel.r_offset += (input_section->output_section->vma
3606 + input_section->output_offset);
3607
3608 if (h->dynindx == -1
3609 || h->forced_local
3610 || info->executable)
3611 {
3612 /* This symbol is resolved locally. */
3613 outrel.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
3614 outrel.r_addend = (h->root.u.def.value
3615 + h->root.u.def.section->output_section->vma
3616 + h->root.u.def.section->output_offset);
3617 }
3618 else
3619 {
3620 outrel.r_info = htab->r_info (h->dynindx, r_type);
3621 outrel.r_addend = 0;
3622 }
3623
3624 sreloc = htab->elf.irelifunc;
3625 elf_append_rela (output_bfd, sreloc, &outrel);
3626
3627 /* If this reloc is against an external symbol, we
3628 do not want to fiddle with the addend. Otherwise,
3629 we need to include the symbol value so that it
3630 becomes an addend for the dynamic reloc. For an
3631 internal symbol, we have updated addend. */
3632 continue;
3633 }
3634 /* FALLTHROUGH */
3635 case R_X86_64_PC32:
3636 case R_X86_64_PC32_BND:
3637 case R_X86_64_PC64:
3638 case R_X86_64_PLT32:
3639 case R_X86_64_PLT32_BND:
3640 goto do_relocation;
3641
3642 case R_X86_64_GOTPCREL:
3643 case R_X86_64_GOTPCREL64:
3644 base_got = htab->elf.sgot;
3645 off = h->got.offset;
3646
3647 if (base_got == NULL)
3648 abort ();
3649
3650 if (off == (bfd_vma) -1)
3651 {
3652 /* We can't use h->got.offset here to save state, or
3653 even just remember the offset, as finish_dynamic_symbol
3654 would use that as offset into .got. */
3655
3656 if (htab->elf.splt != NULL)
3657 {
3658 plt_index = h->plt.offset / plt_entry_size - 1;
3659 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3660 base_got = htab->elf.sgotplt;
3661 }
3662 else
3663 {
3664 plt_index = h->plt.offset / plt_entry_size;
3665 off = plt_index * GOT_ENTRY_SIZE;
3666 base_got = htab->elf.igotplt;
3667 }
3668
3669 if (h->dynindx == -1
3670 || h->forced_local
3671 || info->symbolic)
3672 {
3673 /* This references the local defitionion. We must
3674 initialize this entry in the global offset table.
3675 Since the offset must always be a multiple of 8,
3676 we use the least significant bit to record
3677 whether we have initialized it already.
3678
3679 When doing a dynamic link, we create a .rela.got
3680 relocation entry to initialize the value. This
3681 is done in the finish_dynamic_symbol routine. */
3682 if ((off & 1) != 0)
3683 off &= ~1;
3684 else
3685 {
3686 bfd_put_64 (output_bfd, relocation,
3687 base_got->contents + off);
3688 /* Note that this is harmless for the GOTPLT64
3689 case, as -1 | 1 still is -1. */
3690 h->got.offset |= 1;
3691 }
3692 }
3693 }
3694
3695 relocation = (base_got->output_section->vma
3696 + base_got->output_offset + off);
3697
3698 goto do_relocation;
3699 }
3700 }
3701
3702 /* When generating a shared object, the relocations handled here are
3703 copied into the output file to be resolved at run time. */
3704 switch (r_type)
3705 {
3706 case R_X86_64_GOT32:
3707 case R_X86_64_GOT64:
3708 /* Relocation is to the entry for this symbol in the global
3709 offset table. */
3710 case R_X86_64_GOTPCREL:
3711 case R_X86_64_GOTPCREL64:
3712 /* Use global offset table entry as symbol value. */
3713 case R_X86_64_GOTPLT64:
3714 /* This is obsolete and treated the the same as GOT64. */
3715 base_got = htab->elf.sgot;
3716
3717 if (htab->elf.sgot == NULL)
3718 abort ();
3719
3720 if (h != NULL)
3721 {
3722 bfd_boolean dyn;
3723
3724 off = h->got.offset;
3725 if (h->needs_plt
3726 && h->plt.offset != (bfd_vma)-1
3727 && off == (bfd_vma)-1)
3728 {
3729 /* We can't use h->got.offset here to save
3730 state, or even just remember the offset, as
3731 finish_dynamic_symbol would use that as offset into
3732 .got. */
3733 bfd_vma plt_index = h->plt.offset / plt_entry_size - 1;
3734 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3735 base_got = htab->elf.sgotplt;
3736 }
3737
3738 dyn = htab->elf.dynamic_sections_created;
3739
3740 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3741 || (info->shared
3742 && SYMBOL_REFERENCES_LOCAL (info, h))
3743 || (ELF_ST_VISIBILITY (h->other)
3744 && h->root.type == bfd_link_hash_undefweak))
3745 {
3746 /* This is actually a static link, or it is a -Bsymbolic
3747 link and the symbol is defined locally, or the symbol
3748 was forced to be local because of a version file. We
3749 must initialize this entry in the global offset table.
3750 Since the offset must always be a multiple of 8, we
3751 use the least significant bit to record whether we
3752 have initialized it already.
3753
3754 When doing a dynamic link, we create a .rela.got
3755 relocation entry to initialize the value. This is
3756 done in the finish_dynamic_symbol routine. */
3757 if ((off & 1) != 0)
3758 off &= ~1;
3759 else
3760 {
3761 bfd_put_64 (output_bfd, relocation,
3762 base_got->contents + off);
3763 /* Note that this is harmless for the GOTPLT64 case,
3764 as -1 | 1 still is -1. */
3765 h->got.offset |= 1;
3766 }
3767 }
3768 else
3769 unresolved_reloc = FALSE;
3770 }
3771 else
3772 {
3773 if (local_got_offsets == NULL)
3774 abort ();
3775
3776 off = local_got_offsets[r_symndx];
3777
3778 /* The offset must always be a multiple of 8. We use
3779 the least significant bit to record whether we have
3780 already generated the necessary reloc. */
3781 if ((off & 1) != 0)
3782 off &= ~1;
3783 else
3784 {
3785 bfd_put_64 (output_bfd, relocation,
3786 base_got->contents + off);
3787
3788 if (info->shared)
3789 {
3790 asection *s;
3791 Elf_Internal_Rela outrel;
3792
3793 /* We need to generate a R_X86_64_RELATIVE reloc
3794 for the dynamic linker. */
3795 s = htab->elf.srelgot;
3796 if (s == NULL)
3797 abort ();
3798
3799 outrel.r_offset = (base_got->output_section->vma
3800 + base_got->output_offset
3801 + off);
3802 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
3803 outrel.r_addend = relocation;
3804 elf_append_rela (output_bfd, s, &outrel);
3805 }
3806
3807 local_got_offsets[r_symndx] |= 1;
3808 }
3809 }
3810
3811 if (off >= (bfd_vma) -2)
3812 abort ();
3813
3814 relocation = base_got->output_section->vma
3815 + base_got->output_offset + off;
3816 if (r_type != R_X86_64_GOTPCREL && r_type != R_X86_64_GOTPCREL64)
3817 relocation -= htab->elf.sgotplt->output_section->vma
3818 - htab->elf.sgotplt->output_offset;
3819
3820 break;
3821
3822 case R_X86_64_GOTOFF64:
3823 /* Relocation is relative to the start of the global offset
3824 table. */
3825
3826 /* Check to make sure it isn't a protected function symbol
3827 for shared library since it may not be local when used
3828 as function address. */
3829 if (!info->executable
3830 && h
3831 && !SYMBOLIC_BIND (info, h)
3832 && h->def_regular
3833 && h->type == STT_FUNC
3834 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
3835 {
3836 (*_bfd_error_handler)
3837 (_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
3838 input_bfd, h->root.root.string);
3839 bfd_set_error (bfd_error_bad_value);
3840 return FALSE;
3841 }
3842
3843 /* Note that sgot is not involved in this
3844 calculation. We always want the start of .got.plt. If we
3845 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
3846 permitted by the ABI, we might have to change this
3847 calculation. */
3848 relocation -= htab->elf.sgotplt->output_section->vma
3849 + htab->elf.sgotplt->output_offset;
3850 break;
3851
3852 case R_X86_64_GOTPC32:
3853 case R_X86_64_GOTPC64:
3854 /* Use global offset table as symbol value. */
3855 relocation = htab->elf.sgotplt->output_section->vma
3856 + htab->elf.sgotplt->output_offset;
3857 unresolved_reloc = FALSE;
3858 break;
3859
3860 case R_X86_64_PLTOFF64:
3861 /* Relocation is PLT entry relative to GOT. For local
3862 symbols it's the symbol itself relative to GOT. */
3863 if (h != NULL
3864 /* See PLT32 handling. */
3865 && h->plt.offset != (bfd_vma) -1
3866 && htab->elf.splt != NULL)
3867 {
3868 if (htab->plt_bnd != NULL)
3869 {
3870 resolved_plt = htab->plt_bnd;
3871 plt_offset = eh->plt_bnd.offset;
3872 }
3873 else
3874 {
3875 resolved_plt = htab->elf.splt;
3876 plt_offset = h->plt.offset;
3877 }
3878
3879 relocation = (resolved_plt->output_section->vma
3880 + resolved_plt->output_offset
3881 + plt_offset);
3882 unresolved_reloc = FALSE;
3883 }
3884
3885 relocation -= htab->elf.sgotplt->output_section->vma
3886 + htab->elf.sgotplt->output_offset;
3887 break;
3888
3889 case R_X86_64_PLT32:
3890 case R_X86_64_PLT32_BND:
3891 /* Relocation is to the entry for this symbol in the
3892 procedure linkage table. */
3893
3894 /* Resolve a PLT32 reloc against a local symbol directly,
3895 without using the procedure linkage table. */
3896 if (h == NULL)
3897 break;
3898
3899 if (h->plt.offset == (bfd_vma) -1
3900 || htab->elf.splt == NULL)
3901 {
3902 /* We didn't make a PLT entry for this symbol. This
3903 happens when statically linking PIC code, or when
3904 using -Bsymbolic. */
3905 break;
3906 }
3907
3908 if (htab->plt_bnd != NULL)
3909 {
3910 resolved_plt = htab->plt_bnd;
3911 plt_offset = eh->plt_bnd.offset;
3912 }
3913 else
3914 {
3915 resolved_plt = htab->elf.splt;
3916 plt_offset = h->plt.offset;
3917 }
3918
3919 relocation = (resolved_plt->output_section->vma
3920 + resolved_plt->output_offset
3921 + plt_offset);
3922 unresolved_reloc = FALSE;
3923 break;
3924
3925 case R_X86_64_SIZE32:
3926 case R_X86_64_SIZE64:
3927 /* Set to symbol size. */
3928 relocation = st_size;
3929 goto direct;
3930
3931 case R_X86_64_PC8:
3932 case R_X86_64_PC16:
3933 case R_X86_64_PC32:
3934 case R_X86_64_PC32_BND:
3935 if (info->shared
3936 && (input_section->flags & SEC_ALLOC) != 0
3937 && (input_section->flags & SEC_READONLY) != 0
3938 && h != NULL)
3939 {
3940 bfd_boolean fail = FALSE;
3941 bfd_boolean branch
3942 = ((r_type == R_X86_64_PC32
3943 || r_type == R_X86_64_PC32_BND)
3944 && is_32bit_relative_branch (contents, rel->r_offset));
3945
3946 if (SYMBOL_REFERENCES_LOCAL (info, h))
3947 {
3948 /* Symbol is referenced locally. Make sure it is
3949 defined locally or for a branch. */
3950 fail = !h->def_regular && !branch;
3951 }
3952 else
3953 {
3954 /* Symbol isn't referenced locally. We only allow
3955 branch to symbol with non-default visibility. */
3956 fail = (!branch
3957 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT);
3958 }
3959
3960 if (fail)
3961 {
3962 const char *fmt;
3963 const char *v;
3964 const char *pic = "";
3965
3966 switch (ELF_ST_VISIBILITY (h->other))
3967 {
3968 case STV_HIDDEN:
3969 v = _("hidden symbol");
3970 break;
3971 case STV_INTERNAL:
3972 v = _("internal symbol");
3973 break;
3974 case STV_PROTECTED:
3975 v = _("protected symbol");
3976 break;
3977 default:
3978 v = _("symbol");
3979 pic = _("; recompile with -fPIC");
3980 break;
3981 }
3982
3983 if (h->def_regular)
3984 fmt = _("%B: relocation %s against %s `%s' can not be used when making a shared object%s");
3985 else
3986 fmt = _("%B: relocation %s against undefined %s `%s' can not be used when making a shared object%s");
3987
3988 (*_bfd_error_handler) (fmt, input_bfd,
3989 x86_64_elf_howto_table[r_type].name,
3990 v, h->root.root.string, pic);
3991 bfd_set_error (bfd_error_bad_value);
3992 return FALSE;
3993 }
3994 }
3995 /* Fall through. */
3996
3997 case R_X86_64_8:
3998 case R_X86_64_16:
3999 case R_X86_64_32:
4000 case R_X86_64_PC64:
4001 case R_X86_64_64:
4002 /* FIXME: The ABI says the linker should make sure the value is
4003 the same when it's zeroextended to 64 bit. */
4004
4005 direct:
4006 if ((input_section->flags & SEC_ALLOC) == 0)
4007 break;
4008
4009 if ((info->shared
4010 && (h == NULL
4011 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
4012 || h->root.type != bfd_link_hash_undefweak)
4013 && ((! IS_X86_64_PCREL_TYPE (r_type)
4014 && r_type != R_X86_64_SIZE32
4015 && r_type != R_X86_64_SIZE64)
4016 || ! SYMBOL_CALLS_LOCAL (info, h)))
4017 || (ELIMINATE_COPY_RELOCS
4018 && !info->shared
4019 && h != NULL
4020 && h->dynindx != -1
4021 && !h->non_got_ref
4022 && ((h->def_dynamic
4023 && !h->def_regular)
4024 || h->root.type == bfd_link_hash_undefweak
4025 || h->root.type == bfd_link_hash_undefined)))
4026 {
4027 Elf_Internal_Rela outrel;
4028 bfd_boolean skip, relocate;
4029 asection *sreloc;
4030
4031 /* When generating a shared object, these relocations
4032 are copied into the output file to be resolved at run
4033 time. */
4034 skip = FALSE;
4035 relocate = FALSE;
4036
4037 outrel.r_offset =
4038 _bfd_elf_section_offset (output_bfd, info, input_section,
4039 rel->r_offset);
4040 if (outrel.r_offset == (bfd_vma) -1)
4041 skip = TRUE;
4042 else if (outrel.r_offset == (bfd_vma) -2)
4043 skip = TRUE, relocate = TRUE;
4044
4045 outrel.r_offset += (input_section->output_section->vma
4046 + input_section->output_offset);
4047
4048 if (skip)
4049 memset (&outrel, 0, sizeof outrel);
4050
4051 /* h->dynindx may be -1 if this symbol was marked to
4052 become local. */
4053 else if (h != NULL
4054 && h->dynindx != -1
4055 && (IS_X86_64_PCREL_TYPE (r_type)
4056 || ! info->shared
4057 || ! SYMBOLIC_BIND (info, h)
4058 || ! h->def_regular))
4059 {
4060 outrel.r_info = htab->r_info (h->dynindx, r_type);
4061 outrel.r_addend = rel->r_addend;
4062 }
4063 else
4064 {
4065 /* This symbol is local, or marked to become local. */
4066 if (r_type == htab->pointer_r_type)
4067 {
4068 relocate = TRUE;
4069 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
4070 outrel.r_addend = relocation + rel->r_addend;
4071 }
4072 else if (r_type == R_X86_64_64
4073 && !ABI_64_P (output_bfd))
4074 {
4075 relocate = TRUE;
4076 outrel.r_info = htab->r_info (0,
4077 R_X86_64_RELATIVE64);
4078 outrel.r_addend = relocation + rel->r_addend;
4079 /* Check addend overflow. */
4080 if ((outrel.r_addend & 0x80000000)
4081 != (rel->r_addend & 0x80000000))
4082 {
4083 const char *name;
4084 int addend = rel->r_addend;
4085 if (h && h->root.root.string)
4086 name = h->root.root.string;
4087 else
4088 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
4089 sym, NULL);
4090 if (addend < 0)
4091 (*_bfd_error_handler)
4092 (_("%B: addend -0x%x in relocation %s against "
4093 "symbol `%s' at 0x%lx in section `%A' is "
4094 "out of range"),
4095 input_bfd, input_section, addend,
4096 x86_64_elf_howto_table[r_type].name,
4097 name, (unsigned long) rel->r_offset);
4098 else
4099 (*_bfd_error_handler)
4100 (_("%B: addend 0x%x in relocation %s against "
4101 "symbol `%s' at 0x%lx in section `%A' is "
4102 "out of range"),
4103 input_bfd, input_section, addend,
4104 x86_64_elf_howto_table[r_type].name,
4105 name, (unsigned long) rel->r_offset);
4106 bfd_set_error (bfd_error_bad_value);
4107 return FALSE;
4108 }
4109 }
4110 else
4111 {
4112 long sindx;
4113
4114 if (bfd_is_abs_section (sec))
4115 sindx = 0;
4116 else if (sec == NULL || sec->owner == NULL)
4117 {
4118 bfd_set_error (bfd_error_bad_value);
4119 return FALSE;
4120 }
4121 else
4122 {
4123 asection *osec;
4124
4125 /* We are turning this relocation into one
4126 against a section symbol. It would be
4127 proper to subtract the symbol's value,
4128 osec->vma, from the emitted reloc addend,
4129 but ld.so expects buggy relocs. */
4130 osec = sec->output_section;
4131 sindx = elf_section_data (osec)->dynindx;
4132 if (sindx == 0)
4133 {
4134 asection *oi = htab->elf.text_index_section;
4135 sindx = elf_section_data (oi)->dynindx;
4136 }
4137 BFD_ASSERT (sindx != 0);
4138 }
4139
4140 outrel.r_info = htab->r_info (sindx, r_type);
4141 outrel.r_addend = relocation + rel->r_addend;
4142 }
4143 }
4144
4145 sreloc = elf_section_data (input_section)->sreloc;
4146
4147 if (sreloc == NULL || sreloc->contents == NULL)
4148 {
4149 r = bfd_reloc_notsupported;
4150 goto check_relocation_error;
4151 }
4152
4153 elf_append_rela (output_bfd, sreloc, &outrel);
4154
4155 /* If this reloc is against an external symbol, we do
4156 not want to fiddle with the addend. Otherwise, we
4157 need to include the symbol value so that it becomes
4158 an addend for the dynamic reloc. */
4159 if (! relocate)
4160 continue;
4161 }
4162
4163 break;
4164
4165 case R_X86_64_TLSGD:
4166 case R_X86_64_GOTPC32_TLSDESC:
4167 case R_X86_64_TLSDESC_CALL:
4168 case R_X86_64_GOTTPOFF:
4169 tls_type = GOT_UNKNOWN;
4170 if (h == NULL && local_got_offsets)
4171 tls_type = elf_x86_64_local_got_tls_type (input_bfd) [r_symndx];
4172 else if (h != NULL)
4173 tls_type = elf_x86_64_hash_entry (h)->tls_type;
4174
4175 if (! elf_x86_64_tls_transition (info, input_bfd,
4176 input_section, contents,
4177 symtab_hdr, sym_hashes,
4178 &r_type, tls_type, rel,
4179 relend, h, r_symndx))
4180 return FALSE;
4181
4182 if (r_type == R_X86_64_TPOFF32)
4183 {
4184 bfd_vma roff = rel->r_offset;
4185
4186 BFD_ASSERT (! unresolved_reloc);
4187
4188 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
4189 {
4190 /* GD->LE transition. For 64bit, change
4191 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
4192 .word 0x6666; rex64; call __tls_get_addr
4193 into:
4194 movq %fs:0, %rax
4195 leaq foo@tpoff(%rax), %rax
4196 For 32bit, change
4197 leaq foo@tlsgd(%rip), %rdi
4198 .word 0x6666; rex64; call __tls_get_addr
4199 into:
4200 movl %fs:0, %eax
4201 leaq foo@tpoff(%rax), %rax
4202 For largepic, change:
4203 leaq foo@tlsgd(%rip), %rdi
4204 movabsq $__tls_get_addr@pltoff, %rax
4205 addq %rbx, %rax
4206 call *%rax
4207 into:
4208 movq %fs:0, %rax
4209 leaq foo@tpoff(%rax), %rax
4210 nopw 0x0(%rax,%rax,1) */
4211 int largepic = 0;
4212 if (ABI_64_P (output_bfd)
4213 && contents[roff + 5] == (bfd_byte) '\xb8')
4214 {
4215 memcpy (contents + roff - 3,
4216 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80"
4217 "\0\0\0\0\x66\x0f\x1f\x44\0", 22);
4218 largepic = 1;
4219 }
4220 else if (ABI_64_P (output_bfd))
4221 memcpy (contents + roff - 4,
4222 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
4223 16);
4224 else
4225 memcpy (contents + roff - 3,
4226 "\x64\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
4227 15);
4228 bfd_put_32 (output_bfd,
4229 elf_x86_64_tpoff (info, relocation),
4230 contents + roff + 8 + largepic);
4231 /* Skip R_X86_64_PC32/R_X86_64_PLT32/R_X86_64_PLTOFF64. */
4232 rel++;
4233 continue;
4234 }
4235 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
4236 {
4237 /* GDesc -> LE transition.
4238 It's originally something like:
4239 leaq x@tlsdesc(%rip), %rax
4240
4241 Change it to:
4242 movl $x@tpoff, %rax. */
4243
4244 unsigned int val, type;
4245
4246 type = bfd_get_8 (input_bfd, contents + roff - 3);
4247 val = bfd_get_8 (input_bfd, contents + roff - 1);
4248 bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1),
4249 contents + roff - 3);
4250 bfd_put_8 (output_bfd, 0xc7, contents + roff - 2);
4251 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
4252 contents + roff - 1);
4253 bfd_put_32 (output_bfd,
4254 elf_x86_64_tpoff (info, relocation),
4255 contents + roff);
4256 continue;
4257 }
4258 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
4259 {
4260 /* GDesc -> LE transition.
4261 It's originally:
4262 call *(%rax)
4263 Turn it into:
4264 xchg %ax,%ax. */
4265 bfd_put_8 (output_bfd, 0x66, contents + roff);
4266 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
4267 continue;
4268 }
4269 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTTPOFF)
4270 {
4271 /* IE->LE transition:
4272 For 64bit, originally it can be one of:
4273 movq foo@gottpoff(%rip), %reg
4274 addq foo@gottpoff(%rip), %reg
4275 We change it into:
4276 movq $foo, %reg
4277 leaq foo(%reg), %reg
4278 addq $foo, %reg.
4279 For 32bit, originally it can be one of:
4280 movq foo@gottpoff(%rip), %reg
4281 addl foo@gottpoff(%rip), %reg
4282 We change it into:
4283 movq $foo, %reg
4284 leal foo(%reg), %reg
4285 addl $foo, %reg. */
4286
4287 unsigned int val, type, reg;
4288
4289 if (roff >= 3)
4290 val = bfd_get_8 (input_bfd, contents + roff - 3);
4291 else
4292 val = 0;
4293 type = bfd_get_8 (input_bfd, contents + roff - 2);
4294 reg = bfd_get_8 (input_bfd, contents + roff - 1);
4295 reg >>= 3;
4296 if (type == 0x8b)
4297 {
4298 /* movq */
4299 if (val == 0x4c)
4300 bfd_put_8 (output_bfd, 0x49,
4301 contents + roff - 3);
4302 else if (!ABI_64_P (output_bfd) && val == 0x44)
4303 bfd_put_8 (output_bfd, 0x41,
4304 contents + roff - 3);
4305 bfd_put_8 (output_bfd, 0xc7,
4306 contents + roff - 2);
4307 bfd_put_8 (output_bfd, 0xc0 | reg,
4308 contents + roff - 1);
4309 }
4310 else if (reg == 4)
4311 {
4312 /* addq/addl -> addq/addl - addressing with %rsp/%r12
4313 is special */
4314 if (val == 0x4c)
4315 bfd_put_8 (output_bfd, 0x49,
4316 contents + roff - 3);
4317 else if (!ABI_64_P (output_bfd) && val == 0x44)
4318 bfd_put_8 (output_bfd, 0x41,
4319 contents + roff - 3);
4320 bfd_put_8 (output_bfd, 0x81,
4321 contents + roff - 2);
4322 bfd_put_8 (output_bfd, 0xc0 | reg,
4323 contents + roff - 1);
4324 }
4325 else
4326 {
4327 /* addq/addl -> leaq/leal */
4328 if (val == 0x4c)
4329 bfd_put_8 (output_bfd, 0x4d,
4330 contents + roff - 3);
4331 else if (!ABI_64_P (output_bfd) && val == 0x44)
4332 bfd_put_8 (output_bfd, 0x45,
4333 contents + roff - 3);
4334 bfd_put_8 (output_bfd, 0x8d,
4335 contents + roff - 2);
4336 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
4337 contents + roff - 1);
4338 }
4339 bfd_put_32 (output_bfd,
4340 elf_x86_64_tpoff (info, relocation),
4341 contents + roff);
4342 continue;
4343 }
4344 else
4345 BFD_ASSERT (FALSE);
4346 }
4347
4348 if (htab->elf.sgot == NULL)
4349 abort ();
4350
4351 if (h != NULL)
4352 {
4353 off = h->got.offset;
4354 offplt = elf_x86_64_hash_entry (h)->tlsdesc_got;
4355 }
4356 else
4357 {
4358 if (local_got_offsets == NULL)
4359 abort ();
4360
4361 off = local_got_offsets[r_symndx];
4362 offplt = local_tlsdesc_gotents[r_symndx];
4363 }
4364
4365 if ((off & 1) != 0)
4366 off &= ~1;
4367 else
4368 {
4369 Elf_Internal_Rela outrel;
4370 int dr_type, indx;
4371 asection *sreloc;
4372
4373 if (htab->elf.srelgot == NULL)
4374 abort ();
4375
4376 indx = h && h->dynindx != -1 ? h->dynindx : 0;
4377
4378 if (GOT_TLS_GDESC_P (tls_type))
4379 {
4380 outrel.r_info = htab->r_info (indx, R_X86_64_TLSDESC);
4381 BFD_ASSERT (htab->sgotplt_jump_table_size + offplt
4382 + 2 * GOT_ENTRY_SIZE <= htab->elf.sgotplt->size);
4383 outrel.r_offset = (htab->elf.sgotplt->output_section->vma
4384 + htab->elf.sgotplt->output_offset
4385 + offplt
4386 + htab->sgotplt_jump_table_size);
4387 sreloc = htab->elf.srelplt;
4388 if (indx == 0)
4389 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
4390 else
4391 outrel.r_addend = 0;
4392 elf_append_rela (output_bfd, sreloc, &outrel);
4393 }
4394
4395 sreloc = htab->elf.srelgot;
4396
4397 outrel.r_offset = (htab->elf.sgot->output_section->vma
4398 + htab->elf.sgot->output_offset + off);
4399
4400 if (GOT_TLS_GD_P (tls_type))
4401 dr_type = R_X86_64_DTPMOD64;
4402 else if (GOT_TLS_GDESC_P (tls_type))
4403 goto dr_done;
4404 else
4405 dr_type = R_X86_64_TPOFF64;
4406
4407 bfd_put_64 (output_bfd, 0, htab->elf.sgot->contents + off);
4408 outrel.r_addend = 0;
4409 if ((dr_type == R_X86_64_TPOFF64
4410 || dr_type == R_X86_64_TLSDESC) && indx == 0)
4411 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
4412 outrel.r_info = htab->r_info (indx, dr_type);
4413
4414 elf_append_rela (output_bfd, sreloc, &outrel);
4415
4416 if (GOT_TLS_GD_P (tls_type))
4417 {
4418 if (indx == 0)
4419 {
4420 BFD_ASSERT (! unresolved_reloc);
4421 bfd_put_64 (output_bfd,
4422 relocation - elf_x86_64_dtpoff_base (info),
4423 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4424 }
4425 else
4426 {
4427 bfd_put_64 (output_bfd, 0,
4428 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4429 outrel.r_info = htab->r_info (indx,
4430 R_X86_64_DTPOFF64);
4431 outrel.r_offset += GOT_ENTRY_SIZE;
4432 elf_append_rela (output_bfd, sreloc,
4433 &outrel);
4434 }
4435 }
4436
4437 dr_done:
4438 if (h != NULL)
4439 h->got.offset |= 1;
4440 else
4441 local_got_offsets[r_symndx] |= 1;
4442 }
4443
4444 if (off >= (bfd_vma) -2
4445 && ! GOT_TLS_GDESC_P (tls_type))
4446 abort ();
4447 if (r_type == ELF32_R_TYPE (rel->r_info))
4448 {
4449 if (r_type == R_X86_64_GOTPC32_TLSDESC
4450 || r_type == R_X86_64_TLSDESC_CALL)
4451 relocation = htab->elf.sgotplt->output_section->vma
4452 + htab->elf.sgotplt->output_offset
4453 + offplt + htab->sgotplt_jump_table_size;
4454 else
4455 relocation = htab->elf.sgot->output_section->vma
4456 + htab->elf.sgot->output_offset + off;
4457 unresolved_reloc = FALSE;
4458 }
4459 else
4460 {
4461 bfd_vma roff = rel->r_offset;
4462
4463 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
4464 {
4465 /* GD->IE transition. For 64bit, change
4466 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
4467 .word 0x6666; rex64; call __tls_get_addr@plt
4468 into:
4469 movq %fs:0, %rax
4470 addq foo@gottpoff(%rip), %rax
4471 For 32bit, change
4472 leaq foo@tlsgd(%rip), %rdi
4473 .word 0x6666; rex64; call __tls_get_addr@plt
4474 into:
4475 movl %fs:0, %eax
4476 addq foo@gottpoff(%rip), %rax
4477 For largepic, change:
4478 leaq foo@tlsgd(%rip), %rdi
4479 movabsq $__tls_get_addr@pltoff, %rax
4480 addq %rbx, %rax
4481 call *%rax
4482 into:
4483 movq %fs:0, %rax
4484 addq foo@gottpoff(%rax), %rax
4485 nopw 0x0(%rax,%rax,1) */
4486 int largepic = 0;
4487 if (ABI_64_P (output_bfd)
4488 && contents[roff + 5] == (bfd_byte) '\xb8')
4489 {
4490 memcpy (contents + roff - 3,
4491 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05"
4492 "\0\0\0\0\x66\x0f\x1f\x44\0", 22);
4493 largepic = 1;
4494 }
4495 else if (ABI_64_P (output_bfd))
4496 memcpy (contents + roff - 4,
4497 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
4498 16);
4499 else
4500 memcpy (contents + roff - 3,
4501 "\x64\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
4502 15);
4503
4504 relocation = (htab->elf.sgot->output_section->vma
4505 + htab->elf.sgot->output_offset + off
4506 - roff
4507 - largepic
4508 - input_section->output_section->vma
4509 - input_section->output_offset
4510 - 12);
4511 bfd_put_32 (output_bfd, relocation,
4512 contents + roff + 8 + largepic);
4513 /* Skip R_X86_64_PLT32/R_X86_64_PLTOFF64. */
4514 rel++;
4515 continue;
4516 }
4517 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
4518 {
4519 /* GDesc -> IE transition.
4520 It's originally something like:
4521 leaq x@tlsdesc(%rip), %rax
4522
4523 Change it to:
4524 movq x@gottpoff(%rip), %rax # before xchg %ax,%ax. */
4525
4526 /* Now modify the instruction as appropriate. To
4527 turn a leaq into a movq in the form we use it, it
4528 suffices to change the second byte from 0x8d to
4529 0x8b. */
4530 bfd_put_8 (output_bfd, 0x8b, contents + roff - 2);
4531
4532 bfd_put_32 (output_bfd,
4533 htab->elf.sgot->output_section->vma
4534 + htab->elf.sgot->output_offset + off
4535 - rel->r_offset
4536 - input_section->output_section->vma
4537 - input_section->output_offset
4538 - 4,
4539 contents + roff);
4540 continue;
4541 }
4542 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
4543 {
4544 /* GDesc -> IE transition.
4545 It's originally:
4546 call *(%rax)
4547
4548 Change it to:
4549 xchg %ax, %ax. */
4550
4551 bfd_put_8 (output_bfd, 0x66, contents + roff);
4552 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
4553 continue;
4554 }
4555 else
4556 BFD_ASSERT (FALSE);
4557 }
4558 break;
4559
4560 case R_X86_64_TLSLD:
4561 if (! elf_x86_64_tls_transition (info, input_bfd,
4562 input_section, contents,
4563 symtab_hdr, sym_hashes,
4564 &r_type, GOT_UNKNOWN,
4565 rel, relend, h, r_symndx))
4566 return FALSE;
4567
4568 if (r_type != R_X86_64_TLSLD)
4569 {
4570 /* LD->LE transition:
4571 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
4572 For 64bit, we change it into:
4573 .word 0x6666; .byte 0x66; movq %fs:0, %rax.
4574 For 32bit, we change it into:
4575 nopl 0x0(%rax); movl %fs:0, %eax.
4576 For largepic, change:
4577 leaq foo@tlsgd(%rip), %rdi
4578 movabsq $__tls_get_addr@pltoff, %rax
4579 addq %rbx, %rax
4580 call *%rax
4581 into:
4582 data32 data32 data32 nopw %cs:0x0(%rax,%rax,1)
4583 movq %fs:0, %eax */
4584
4585 BFD_ASSERT (r_type == R_X86_64_TPOFF32);
4586 if (ABI_64_P (output_bfd)
4587 && contents[rel->r_offset + 5] == (bfd_byte) '\xb8')
4588 memcpy (contents + rel->r_offset - 3,
4589 "\x66\x66\x66\x66\x2e\x0f\x1f\x84\0\0\0\0\0"
4590 "\x64\x48\x8b\x04\x25\0\0\0", 22);
4591 else if (ABI_64_P (output_bfd))
4592 memcpy (contents + rel->r_offset - 3,
4593 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
4594 else
4595 memcpy (contents + rel->r_offset - 3,
4596 "\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0", 12);
4597 /* Skip R_X86_64_PC32/R_X86_64_PLT32/R_X86_64_PLTOFF64. */
4598 rel++;
4599 continue;
4600 }
4601
4602 if (htab->elf.sgot == NULL)
4603 abort ();
4604
4605 off = htab->tls_ld_got.offset;
4606 if (off & 1)
4607 off &= ~1;
4608 else
4609 {
4610 Elf_Internal_Rela outrel;
4611
4612 if (htab->elf.srelgot == NULL)
4613 abort ();
4614
4615 outrel.r_offset = (htab->elf.sgot->output_section->vma
4616 + htab->elf.sgot->output_offset + off);
4617
4618 bfd_put_64 (output_bfd, 0,
4619 htab->elf.sgot->contents + off);
4620 bfd_put_64 (output_bfd, 0,
4621 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4622 outrel.r_info = htab->r_info (0, R_X86_64_DTPMOD64);
4623 outrel.r_addend = 0;
4624 elf_append_rela (output_bfd, htab->elf.srelgot,
4625 &outrel);
4626 htab->tls_ld_got.offset |= 1;
4627 }
4628 relocation = htab->elf.sgot->output_section->vma
4629 + htab->elf.sgot->output_offset + off;
4630 unresolved_reloc = FALSE;
4631 break;
4632
4633 case R_X86_64_DTPOFF32:
4634 if (!info->executable|| (input_section->flags & SEC_CODE) == 0)
4635 relocation -= elf_x86_64_dtpoff_base (info);
4636 else
4637 relocation = elf_x86_64_tpoff (info, relocation);
4638 break;
4639
4640 case R_X86_64_TPOFF32:
4641 case R_X86_64_TPOFF64:
4642 BFD_ASSERT (info->executable);
4643 relocation = elf_x86_64_tpoff (info, relocation);
4644 break;
4645
4646 case R_X86_64_DTPOFF64:
4647 BFD_ASSERT ((input_section->flags & SEC_CODE) == 0);
4648 relocation -= elf_x86_64_dtpoff_base (info);
4649 break;
4650
4651 default:
4652 break;
4653 }
4654
4655 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
4656 because such sections are not SEC_ALLOC and thus ld.so will
4657 not process them. */
4658 if (unresolved_reloc
4659 && !((input_section->flags & SEC_DEBUGGING) != 0
4660 && h->def_dynamic)
4661 && _bfd_elf_section_offset (output_bfd, info, input_section,
4662 rel->r_offset) != (bfd_vma) -1)
4663 {
4664 (*_bfd_error_handler)
4665 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
4666 input_bfd,
4667 input_section,
4668 (long) rel->r_offset,
4669 howto->name,
4670 h->root.root.string);
4671 return FALSE;
4672 }
4673
4674 do_relocation:
4675 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
4676 contents, rel->r_offset,
4677 relocation, rel->r_addend);
4678
4679 check_relocation_error:
4680 if (r != bfd_reloc_ok)
4681 {
4682 const char *name;
4683
4684 if (h != NULL)
4685 name = h->root.root.string;
4686 else
4687 {
4688 name = bfd_elf_string_from_elf_section (input_bfd,
4689 symtab_hdr->sh_link,
4690 sym->st_name);
4691 if (name == NULL)
4692 return FALSE;
4693 if (*name == '\0')
4694 name = bfd_section_name (input_bfd, sec);
4695 }
4696
4697 if (r == bfd_reloc_overflow)
4698 {
4699 if (! ((*info->callbacks->reloc_overflow)
4700 (info, (h ? &h->root : NULL), name, howto->name,
4701 (bfd_vma) 0, input_bfd, input_section,
4702 rel->r_offset)))
4703 return FALSE;
4704 }
4705 else
4706 {
4707 (*_bfd_error_handler)
4708 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
4709 input_bfd, input_section,
4710 (long) rel->r_offset, name, (int) r);
4711 return FALSE;
4712 }
4713 }
4714 }
4715
4716 return TRUE;
4717 }
4718
4719 /* Finish up dynamic symbol handling. We set the contents of various
4720 dynamic sections here. */
4721
4722 static bfd_boolean
4723 elf_x86_64_finish_dynamic_symbol (bfd *output_bfd,
4724 struct bfd_link_info *info,
4725 struct elf_link_hash_entry *h,
4726 Elf_Internal_Sym *sym ATTRIBUTE_UNUSED)
4727 {
4728 struct elf_x86_64_link_hash_table *htab;
4729 const struct elf_x86_64_backend_data *abed;
4730 bfd_boolean use_plt_bnd;
4731
4732 htab = elf_x86_64_hash_table (info);
4733 if (htab == NULL)
4734 return FALSE;
4735
4736 /* Use MPX backend data in case of BND relocation. Use .plt_bnd
4737 section only if there is .plt section. */
4738 use_plt_bnd = htab->elf.splt != NULL && htab->plt_bnd != NULL;
4739 abed = (use_plt_bnd
4740 ? &elf_x86_64_bnd_arch_bed
4741 : get_elf_x86_64_backend_data (output_bfd));
4742
4743 if (h->plt.offset != (bfd_vma) -1)
4744 {
4745 bfd_vma plt_index;
4746 bfd_vma got_offset, plt_offset, plt_plt_offset, plt_got_offset;
4747 bfd_vma plt_plt_insn_end, plt_got_insn_size;
4748 Elf_Internal_Rela rela;
4749 bfd_byte *loc;
4750 asection *plt, *gotplt, *relplt, *resolved_plt;
4751 const struct elf_backend_data *bed;
4752 bfd_boolean gotplt_after_plt;
4753 int32_t plt_got_pcrel_offset;
4754
4755 /* When building a static executable, use .iplt, .igot.plt and
4756 .rela.iplt sections for STT_GNU_IFUNC symbols. */
4757 if (htab->elf.splt != NULL)
4758 {
4759 plt = htab->elf.splt;
4760 gotplt = htab->elf.sgotplt;
4761 relplt = htab->elf.srelplt;
4762 }
4763 else
4764 {
4765 plt = htab->elf.iplt;
4766 gotplt = htab->elf.igotplt;
4767 relplt = htab->elf.irelplt;
4768 }
4769
4770 /* This symbol has an entry in the procedure linkage table. Set
4771 it up. */
4772 if ((h->dynindx == -1
4773 && !((h->forced_local || info->executable)
4774 && h->def_regular
4775 && h->type == STT_GNU_IFUNC))
4776 || plt == NULL
4777 || gotplt == NULL
4778 || relplt == NULL)
4779 abort ();
4780
4781 /* Get the index in the procedure linkage table which
4782 corresponds to this symbol. This is the index of this symbol
4783 in all the symbols for which we are making plt entries. The
4784 first entry in the procedure linkage table is reserved.
4785
4786 Get the offset into the .got table of the entry that
4787 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
4788 bytes. The first three are reserved for the dynamic linker.
4789
4790 For static executables, we don't reserve anything. */
4791
4792 if (plt == htab->elf.splt)
4793 {
4794 got_offset = h->plt.offset / abed->plt_entry_size - 1;
4795 got_offset = (got_offset + 3) * GOT_ENTRY_SIZE;
4796 }
4797 else
4798 {
4799 got_offset = h->plt.offset / abed->plt_entry_size;
4800 got_offset = got_offset * GOT_ENTRY_SIZE;
4801 }
4802
4803 plt_plt_insn_end = abed->plt_plt_insn_end;
4804 plt_plt_offset = abed->plt_plt_offset;
4805 plt_got_insn_size = abed->plt_got_insn_size;
4806 plt_got_offset = abed->plt_got_offset;
4807 if (use_plt_bnd)
4808 {
4809 /* Use the second PLT with BND relocations. */
4810 const bfd_byte *plt_entry, *plt2_entry;
4811 struct elf_x86_64_link_hash_entry *eh
4812 = (struct elf_x86_64_link_hash_entry *) h;
4813
4814 if (eh->has_bnd_reloc)
4815 {
4816 plt_entry = elf_x86_64_bnd_plt_entry;
4817 plt2_entry = elf_x86_64_bnd_plt2_entry;
4818 }
4819 else
4820 {
4821 plt_entry = elf_x86_64_legacy_plt_entry;
4822 plt2_entry = elf_x86_64_legacy_plt2_entry;
4823
4824 /* Subtract 1 since there is no BND prefix. */
4825 plt_plt_insn_end -= 1;
4826 plt_plt_offset -= 1;
4827 plt_got_insn_size -= 1;
4828 plt_got_offset -= 1;
4829 }
4830
4831 BFD_ASSERT (sizeof (elf_x86_64_bnd_plt_entry)
4832 == sizeof (elf_x86_64_legacy_plt_entry));
4833
4834 /* Fill in the entry in the procedure linkage table. */
4835 memcpy (plt->contents + h->plt.offset,
4836 plt_entry, sizeof (elf_x86_64_legacy_plt_entry));
4837 /* Fill in the entry in the second PLT. */
4838 memcpy (htab->plt_bnd->contents + eh->plt_bnd.offset,
4839 plt2_entry, sizeof (elf_x86_64_legacy_plt2_entry));
4840
4841 resolved_plt = htab->plt_bnd;
4842 plt_offset = eh->plt_bnd.offset;
4843 }
4844 else
4845 {
4846 /* Fill in the entry in the procedure linkage table. */
4847 memcpy (plt->contents + h->plt.offset, abed->plt_entry,
4848 abed->plt_entry_size);
4849
4850 resolved_plt = plt;
4851 plt_offset = h->plt.offset;
4852 }
4853
4854 /* Insert the relocation positions of the plt section. */
4855
4856 /* Put offset the PC-relative instruction referring to the GOT entry,
4857 subtracting the size of that instruction. */
4858 plt_got_pcrel_offset = (gotplt->output_section->vma
4859 + gotplt->output_offset
4860 + got_offset
4861 - resolved_plt->output_section->vma
4862 - resolved_plt->output_offset
4863 - plt_offset
4864 - plt_got_insn_size);
4865
4866 /* Check PC-relative offset overflow in PLT entry. */
4867 gotplt_after_plt = (gotplt->output_section->vma
4868 > resolved_plt->output_section->vma);
4869 if ((gotplt_after_plt && plt_got_pcrel_offset < 0)
4870 || (!gotplt_after_plt && plt_got_pcrel_offset > 0))
4871 info->callbacks->einfo (_("%F%B: PC-relative offset overflow in PLT entry for `%s'\n"),
4872 output_bfd, h->root.root.string);
4873
4874 bfd_put_32 (output_bfd, plt_got_pcrel_offset,
4875 resolved_plt->contents + plt_offset + plt_got_offset);
4876
4877 /* Fill in the entry in the global offset table, initially this
4878 points to the second part of the PLT entry. */
4879 bfd_put_64 (output_bfd, (plt->output_section->vma
4880 + plt->output_offset
4881 + h->plt.offset + abed->plt_lazy_offset),
4882 gotplt->contents + got_offset);
4883
4884 /* Fill in the entry in the .rela.plt section. */
4885 rela.r_offset = (gotplt->output_section->vma
4886 + gotplt->output_offset
4887 + got_offset);
4888 if (h->dynindx == -1
4889 || ((info->executable
4890 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
4891 && h->def_regular
4892 && h->type == STT_GNU_IFUNC))
4893 {
4894 /* If an STT_GNU_IFUNC symbol is locally defined, generate
4895 R_X86_64_IRELATIVE instead of R_X86_64_JUMP_SLOT. */
4896 rela.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
4897 rela.r_addend = (h->root.u.def.value
4898 + h->root.u.def.section->output_section->vma
4899 + h->root.u.def.section->output_offset);
4900 /* R_X86_64_IRELATIVE comes last. */
4901 plt_index = htab->next_irelative_index--;
4902 }
4903 else
4904 {
4905 rela.r_info = htab->r_info (h->dynindx, R_X86_64_JUMP_SLOT);
4906 rela.r_addend = 0;
4907 plt_index = htab->next_jump_slot_index++;
4908 }
4909
4910 /* Don't fill PLT entry for static executables. */
4911 if (plt == htab->elf.splt)
4912 {
4913 /* Put relocation index. */
4914 bfd_put_32 (output_bfd, plt_index,
4915 plt->contents + h->plt.offset + abed->plt_reloc_offset);
4916 /* Put offset for jmp .PLT0. */
4917 bfd_put_32 (output_bfd, - (h->plt.offset + plt_plt_insn_end),
4918 plt->contents + h->plt.offset + plt_plt_offset);
4919 }
4920
4921 bed = get_elf_backend_data (output_bfd);
4922 loc = relplt->contents + plt_index * bed->s->sizeof_rela;
4923 bed->s->swap_reloca_out (output_bfd, &rela, loc);
4924
4925 if (!h->def_regular)
4926 {
4927 /* Mark the symbol as undefined, rather than as defined in
4928 the .plt section. Leave the value if there were any
4929 relocations where pointer equality matters (this is a clue
4930 for the dynamic linker, to make function pointer
4931 comparisons work between an application and shared
4932 library), otherwise set it to zero. If a function is only
4933 called from a binary, there is no need to slow down
4934 shared libraries because of that. */
4935 sym->st_shndx = SHN_UNDEF;
4936 if (!h->pointer_equality_needed)
4937 sym->st_value = 0;
4938 }
4939 }
4940
4941 if (h->got.offset != (bfd_vma) -1
4942 && ! GOT_TLS_GD_ANY_P (elf_x86_64_hash_entry (h)->tls_type)
4943 && elf_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
4944 {
4945 Elf_Internal_Rela rela;
4946
4947 /* This symbol has an entry in the global offset table. Set it
4948 up. */
4949 if (htab->elf.sgot == NULL || htab->elf.srelgot == NULL)
4950 abort ();
4951
4952 rela.r_offset = (htab->elf.sgot->output_section->vma
4953 + htab->elf.sgot->output_offset
4954 + (h->got.offset &~ (bfd_vma) 1));
4955
4956 /* If this is a static link, or it is a -Bsymbolic link and the
4957 symbol is defined locally or was forced to be local because
4958 of a version file, we just want to emit a RELATIVE reloc.
4959 The entry in the global offset table will already have been
4960 initialized in the relocate_section function. */
4961 if (h->def_regular
4962 && h->type == STT_GNU_IFUNC)
4963 {
4964 if (info->shared)
4965 {
4966 /* Generate R_X86_64_GLOB_DAT. */
4967 goto do_glob_dat;
4968 }
4969 else
4970 {
4971 asection *plt;
4972
4973 if (!h->pointer_equality_needed)
4974 abort ();
4975
4976 /* For non-shared object, we can't use .got.plt, which
4977 contains the real function addres if we need pointer
4978 equality. We load the GOT entry with the PLT entry. */
4979 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
4980 bfd_put_64 (output_bfd, (plt->output_section->vma
4981 + plt->output_offset
4982 + h->plt.offset),
4983 htab->elf.sgot->contents + h->got.offset);
4984 return TRUE;
4985 }
4986 }
4987 else if (info->shared
4988 && SYMBOL_REFERENCES_LOCAL (info, h))
4989 {
4990 if (!h->def_regular)
4991 return FALSE;
4992 BFD_ASSERT((h->got.offset & 1) != 0);
4993 rela.r_info = htab->r_info (0, R_X86_64_RELATIVE);
4994 rela.r_addend = (h->root.u.def.value
4995 + h->root.u.def.section->output_section->vma
4996 + h->root.u.def.section->output_offset);
4997 }
4998 else
4999 {
5000 BFD_ASSERT((h->got.offset & 1) == 0);
5001 do_glob_dat:
5002 bfd_put_64 (output_bfd, (bfd_vma) 0,
5003 htab->elf.sgot->contents + h->got.offset);
5004 rela.r_info = htab->r_info (h->dynindx, R_X86_64_GLOB_DAT);
5005 rela.r_addend = 0;
5006 }
5007
5008 elf_append_rela (output_bfd, htab->elf.srelgot, &rela);
5009 }
5010
5011 if (h->needs_copy)
5012 {
5013 Elf_Internal_Rela rela;
5014
5015 /* This symbol needs a copy reloc. Set it up. */
5016
5017 if (h->dynindx == -1
5018 || (h->root.type != bfd_link_hash_defined
5019 && h->root.type != bfd_link_hash_defweak)
5020 || htab->srelbss == NULL)
5021 abort ();
5022
5023 rela.r_offset = (h->root.u.def.value
5024 + h->root.u.def.section->output_section->vma
5025 + h->root.u.def.section->output_offset);
5026 rela.r_info = htab->r_info (h->dynindx, R_X86_64_COPY);
5027 rela.r_addend = 0;
5028 elf_append_rela (output_bfd, htab->srelbss, &rela);
5029 }
5030
5031 return TRUE;
5032 }
5033
5034 /* Finish up local dynamic symbol handling. We set the contents of
5035 various dynamic sections here. */
5036
5037 static bfd_boolean
5038 elf_x86_64_finish_local_dynamic_symbol (void **slot, void *inf)
5039 {
5040 struct elf_link_hash_entry *h
5041 = (struct elf_link_hash_entry *) *slot;
5042 struct bfd_link_info *info
5043 = (struct bfd_link_info *) inf;
5044
5045 return elf_x86_64_finish_dynamic_symbol (info->output_bfd,
5046 info, h, NULL);
5047 }
5048
5049 /* Used to decide how to sort relocs in an optimal manner for the
5050 dynamic linker, before writing them out. */
5051
5052 static enum elf_reloc_type_class
5053 elf_x86_64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
5054 const asection *rel_sec ATTRIBUTE_UNUSED,
5055 const Elf_Internal_Rela *rela)
5056 {
5057 switch ((int) ELF32_R_TYPE (rela->r_info))
5058 {
5059 case R_X86_64_RELATIVE:
5060 case R_X86_64_RELATIVE64:
5061 return reloc_class_relative;
5062 case R_X86_64_JUMP_SLOT:
5063 return reloc_class_plt;
5064 case R_X86_64_COPY:
5065 return reloc_class_copy;
5066 default:
5067 return reloc_class_normal;
5068 }
5069 }
5070
5071 /* Finish up the dynamic sections. */
5072
5073 static bfd_boolean
5074 elf_x86_64_finish_dynamic_sections (bfd *output_bfd,
5075 struct bfd_link_info *info)
5076 {
5077 struct elf_x86_64_link_hash_table *htab;
5078 bfd *dynobj;
5079 asection *sdyn;
5080 const struct elf_x86_64_backend_data *abed;
5081
5082 htab = elf_x86_64_hash_table (info);
5083 if (htab == NULL)
5084 return FALSE;
5085
5086 /* Use MPX backend data in case of BND relocation. Use .plt_bnd
5087 section only if there is .plt section. */
5088 abed = (htab->elf.splt != NULL && htab->plt_bnd != NULL
5089 ? &elf_x86_64_bnd_arch_bed
5090 : get_elf_x86_64_backend_data (output_bfd));
5091
5092 dynobj = htab->elf.dynobj;
5093 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
5094
5095 if (htab->elf.dynamic_sections_created)
5096 {
5097 bfd_byte *dyncon, *dynconend;
5098 const struct elf_backend_data *bed;
5099 bfd_size_type sizeof_dyn;
5100
5101 if (sdyn == NULL || htab->elf.sgot == NULL)
5102 abort ();
5103
5104 bed = get_elf_backend_data (dynobj);
5105 sizeof_dyn = bed->s->sizeof_dyn;
5106 dyncon = sdyn->contents;
5107 dynconend = sdyn->contents + sdyn->size;
5108 for (; dyncon < dynconend; dyncon += sizeof_dyn)
5109 {
5110 Elf_Internal_Dyn dyn;
5111 asection *s;
5112
5113 (*bed->s->swap_dyn_in) (dynobj, dyncon, &dyn);
5114
5115 switch (dyn.d_tag)
5116 {
5117 default:
5118 continue;
5119
5120 case DT_PLTGOT:
5121 s = htab->elf.sgotplt;
5122 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
5123 break;
5124
5125 case DT_JMPREL:
5126 dyn.d_un.d_ptr = htab->elf.srelplt->output_section->vma;
5127 break;
5128
5129 case DT_PLTRELSZ:
5130 s = htab->elf.srelplt->output_section;
5131 dyn.d_un.d_val = s->size;
5132 break;
5133
5134 case DT_RELASZ:
5135 /* The procedure linkage table relocs (DT_JMPREL) should
5136 not be included in the overall relocs (DT_RELA).
5137 Therefore, we override the DT_RELASZ entry here to
5138 make it not include the JMPREL relocs. Since the
5139 linker script arranges for .rela.plt to follow all
5140 other relocation sections, we don't have to worry
5141 about changing the DT_RELA entry. */
5142 if (htab->elf.srelplt != NULL)
5143 {
5144 s = htab->elf.srelplt->output_section;
5145 dyn.d_un.d_val -= s->size;
5146 }
5147 break;
5148
5149 case DT_TLSDESC_PLT:
5150 s = htab->elf.splt;
5151 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
5152 + htab->tlsdesc_plt;
5153 break;
5154
5155 case DT_TLSDESC_GOT:
5156 s = htab->elf.sgot;
5157 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
5158 + htab->tlsdesc_got;
5159 break;
5160 }
5161
5162 (*bed->s->swap_dyn_out) (output_bfd, &dyn, dyncon);
5163 }
5164
5165 /* Fill in the special first entry in the procedure linkage table. */
5166 if (htab->elf.splt && htab->elf.splt->size > 0)
5167 {
5168 /* Fill in the first entry in the procedure linkage table. */
5169 memcpy (htab->elf.splt->contents,
5170 abed->plt0_entry, abed->plt_entry_size);
5171 /* Add offset for pushq GOT+8(%rip), since the instruction
5172 uses 6 bytes subtract this value. */
5173 bfd_put_32 (output_bfd,
5174 (htab->elf.sgotplt->output_section->vma
5175 + htab->elf.sgotplt->output_offset
5176 + 8
5177 - htab->elf.splt->output_section->vma
5178 - htab->elf.splt->output_offset
5179 - 6),
5180 htab->elf.splt->contents + abed->plt0_got1_offset);
5181 /* Add offset for the PC-relative instruction accessing GOT+16,
5182 subtracting the offset to the end of that instruction. */
5183 bfd_put_32 (output_bfd,
5184 (htab->elf.sgotplt->output_section->vma
5185 + htab->elf.sgotplt->output_offset
5186 + 16
5187 - htab->elf.splt->output_section->vma
5188 - htab->elf.splt->output_offset
5189 - abed->plt0_got2_insn_end),
5190 htab->elf.splt->contents + abed->plt0_got2_offset);
5191
5192 elf_section_data (htab->elf.splt->output_section)
5193 ->this_hdr.sh_entsize = abed->plt_entry_size;
5194
5195 if (htab->tlsdesc_plt)
5196 {
5197 bfd_put_64 (output_bfd, (bfd_vma) 0,
5198 htab->elf.sgot->contents + htab->tlsdesc_got);
5199
5200 memcpy (htab->elf.splt->contents + htab->tlsdesc_plt,
5201 abed->plt0_entry, abed->plt_entry_size);
5202
5203 /* Add offset for pushq GOT+8(%rip), since the
5204 instruction uses 6 bytes subtract this value. */
5205 bfd_put_32 (output_bfd,
5206 (htab->elf.sgotplt->output_section->vma
5207 + htab->elf.sgotplt->output_offset
5208 + 8
5209 - htab->elf.splt->output_section->vma
5210 - htab->elf.splt->output_offset
5211 - htab->tlsdesc_plt
5212 - 6),
5213 htab->elf.splt->contents
5214 + htab->tlsdesc_plt + abed->plt0_got1_offset);
5215 /* Add offset for the PC-relative instruction accessing GOT+TDG,
5216 where TGD stands for htab->tlsdesc_got, subtracting the offset
5217 to the end of that instruction. */
5218 bfd_put_32 (output_bfd,
5219 (htab->elf.sgot->output_section->vma
5220 + htab->elf.sgot->output_offset
5221 + htab->tlsdesc_got
5222 - htab->elf.splt->output_section->vma
5223 - htab->elf.splt->output_offset
5224 - htab->tlsdesc_plt
5225 - abed->plt0_got2_insn_end),
5226 htab->elf.splt->contents
5227 + htab->tlsdesc_plt + abed->plt0_got2_offset);
5228 }
5229 }
5230 }
5231
5232 if (htab->plt_bnd != NULL)
5233 elf_section_data (htab->plt_bnd->output_section)
5234 ->this_hdr.sh_entsize = sizeof (elf_x86_64_bnd_plt2_entry);
5235
5236 if (htab->elf.sgotplt)
5237 {
5238 if (bfd_is_abs_section (htab->elf.sgotplt->output_section))
5239 {
5240 (*_bfd_error_handler)
5241 (_("discarded output section: `%A'"), htab->elf.sgotplt);
5242 return FALSE;
5243 }
5244
5245 /* Fill in the first three entries in the global offset table. */
5246 if (htab->elf.sgotplt->size > 0)
5247 {
5248 /* Set the first entry in the global offset table to the address of
5249 the dynamic section. */
5250 if (sdyn == NULL)
5251 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents);
5252 else
5253 bfd_put_64 (output_bfd,
5254 sdyn->output_section->vma + sdyn->output_offset,
5255 htab->elf.sgotplt->contents);
5256 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
5257 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
5258 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE*2);
5259 }
5260
5261 elf_section_data (htab->elf.sgotplt->output_section)->this_hdr.sh_entsize =
5262 GOT_ENTRY_SIZE;
5263 }
5264
5265 /* Adjust .eh_frame for .plt section. */
5266 if (htab->plt_eh_frame != NULL
5267 && htab->plt_eh_frame->contents != NULL)
5268 {
5269 if (htab->elf.splt != NULL
5270 && htab->elf.splt->size != 0
5271 && (htab->elf.splt->flags & SEC_EXCLUDE) == 0
5272 && htab->elf.splt->output_section != NULL
5273 && htab->plt_eh_frame->output_section != NULL)
5274 {
5275 bfd_vma plt_start = htab->elf.splt->output_section->vma;
5276 bfd_vma eh_frame_start = htab->plt_eh_frame->output_section->vma
5277 + htab->plt_eh_frame->output_offset
5278 + PLT_FDE_START_OFFSET;
5279 bfd_put_signed_32 (dynobj, plt_start - eh_frame_start,
5280 htab->plt_eh_frame->contents
5281 + PLT_FDE_START_OFFSET);
5282 }
5283 if (htab->plt_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME)
5284 {
5285 if (! _bfd_elf_write_section_eh_frame (output_bfd, info,
5286 htab->plt_eh_frame,
5287 htab->plt_eh_frame->contents))
5288 return FALSE;
5289 }
5290 }
5291
5292 if (htab->elf.sgot && htab->elf.sgot->size > 0)
5293 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize
5294 = GOT_ENTRY_SIZE;
5295
5296 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
5297 htab_traverse (htab->loc_hash_table,
5298 elf_x86_64_finish_local_dynamic_symbol,
5299 info);
5300
5301 return TRUE;
5302 }
5303
5304 /* Return address in section PLT for the Ith GOTPLT relocation, for
5305 relocation REL or (bfd_vma) -1 if it should not be included. */
5306
5307 static bfd_vma
5308 elf_x86_64_plt_sym_val (bfd_vma i, const asection *plt,
5309 const arelent *rel)
5310 {
5311 bfd *abfd;
5312 const struct elf_x86_64_backend_data *bed;
5313 bfd_vma plt_offset;
5314
5315 /* Only match R_X86_64_JUMP_SLOT and R_X86_64_IRELATIVE. */
5316 if (rel->howto->type != R_X86_64_JUMP_SLOT
5317 && rel->howto->type != R_X86_64_IRELATIVE)
5318 return (bfd_vma) -1;
5319
5320 abfd = plt->owner;
5321 bed = get_elf_x86_64_backend_data (abfd);
5322 plt_offset = bed->plt_entry_size;
5323
5324 if (elf_elfheader (abfd)->e_ident[EI_OSABI] != ELFOSABI_GNU)
5325 return plt->vma + (i + 1) * plt_offset;
5326
5327 while (plt_offset < plt->size)
5328 {
5329 bfd_vma reloc_index;
5330 bfd_byte reloc_index_raw[4];
5331
5332 if (!bfd_get_section_contents (abfd, (asection *) plt,
5333 reloc_index_raw,
5334 plt_offset + bed->plt_reloc_offset,
5335 sizeof (reloc_index_raw)))
5336 return (bfd_vma) -1;
5337
5338 reloc_index = H_GET_32 (abfd, reloc_index_raw);
5339 if (reloc_index == i)
5340 return plt->vma + plt_offset;
5341 plt_offset += bed->plt_entry_size;
5342 }
5343
5344 abort ();
5345 }
5346
5347 /* Return offset in .plt.bnd section for the Ith GOTPLT relocation with
5348 PLT section, or (bfd_vma) -1 if it should not be included. */
5349
5350 static bfd_vma
5351 elf_x86_64_plt_sym_val_offset_plt_bnd (bfd_vma i, const asection *plt)
5352 {
5353 const struct elf_x86_64_backend_data *bed = &elf_x86_64_bnd_arch_bed;
5354 bfd *abfd = plt->owner;
5355 bfd_vma plt_offset = bed->plt_entry_size;
5356
5357 if (elf_elfheader (abfd)->e_ident[EI_OSABI] != ELFOSABI_GNU)
5358 return i * sizeof (elf_x86_64_legacy_plt2_entry);
5359
5360 while (plt_offset < plt->size)
5361 {
5362 bfd_vma reloc_index;
5363 bfd_byte reloc_index_raw[4];
5364
5365 if (!bfd_get_section_contents (abfd, (asection *) plt,
5366 reloc_index_raw,
5367 plt_offset + bed->plt_reloc_offset,
5368 sizeof (reloc_index_raw)))
5369 return (bfd_vma) -1;
5370
5371 reloc_index = H_GET_32 (abfd, reloc_index_raw);
5372 if (reloc_index == i)
5373 {
5374 /* This is the index in .plt section. */
5375 long plt_index = plt_offset / bed->plt_entry_size;
5376 /* Return the offset in .plt.bnd section. */
5377 return (plt_index - 1) * sizeof (elf_x86_64_legacy_plt2_entry);
5378 }
5379 plt_offset += bed->plt_entry_size;
5380 }
5381
5382 abort ();
5383 }
5384
5385 /* Similar to _bfd_elf_get_synthetic_symtab, with .plt.bnd section
5386 support. */
5387
5388 static long
5389 elf_x86_64_get_synthetic_symtab (bfd *abfd,
5390 long symcount,
5391 asymbol **syms,
5392 long dynsymcount,
5393 asymbol **dynsyms,
5394 asymbol **ret)
5395 {
5396 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5397 asection *relplt;
5398 asymbol *s;
5399 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
5400 arelent *p;
5401 long count, i, n;
5402 size_t size;
5403 Elf_Internal_Shdr *hdr;
5404 char *names;
5405 asection *plt, *plt_push;
5406
5407 plt_push = bfd_get_section_by_name (abfd, ".plt");
5408 if (plt_push == NULL)
5409 return 0;
5410
5411 plt = bfd_get_section_by_name (abfd, ".plt.bnd");
5412 /* Use the generic ELF version if there is no .plt.bnd section. */
5413 if (plt == NULL)
5414 return _bfd_elf_get_synthetic_symtab (abfd, symcount, syms,
5415 dynsymcount, dynsyms, ret);
5416
5417 *ret = NULL;
5418
5419 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
5420 return 0;
5421
5422 if (dynsymcount <= 0)
5423 return 0;
5424
5425 relplt = bfd_get_section_by_name (abfd, ".rela.plt");
5426 if (relplt == NULL)
5427 return 0;
5428
5429 hdr = &elf_section_data (relplt)->this_hdr;
5430 if (hdr->sh_link != elf_dynsymtab (abfd)
5431 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
5432 return 0;
5433
5434 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
5435 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
5436 return -1;
5437
5438 count = relplt->size / hdr->sh_entsize;
5439 size = count * sizeof (asymbol);
5440 p = relplt->relocation;
5441 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
5442 {
5443 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
5444 if (p->addend != 0)
5445 size += sizeof ("+0x") - 1 + 8 + 8;
5446 }
5447
5448 s = *ret = (asymbol *) bfd_malloc (size);
5449 if (s == NULL)
5450 return -1;
5451
5452 names = (char *) (s + count);
5453 p = relplt->relocation;
5454 n = 0;
5455 for (i = 0; i < count; i++, p++)
5456 {
5457 bfd_vma offset;
5458 size_t len;
5459
5460 if (p->howto->type != R_X86_64_JUMP_SLOT
5461 && p->howto->type != R_X86_64_IRELATIVE)
5462 continue;
5463
5464 offset = elf_x86_64_plt_sym_val_offset_plt_bnd (i, plt_push);
5465
5466 *s = **p->sym_ptr_ptr;
5467 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
5468 we are defining a symbol, ensure one of them is set. */
5469 if ((s->flags & BSF_LOCAL) == 0)
5470 s->flags |= BSF_GLOBAL;
5471 s->flags |= BSF_SYNTHETIC;
5472 s->section = plt;
5473 s->value = offset;
5474 s->name = names;
5475 s->udata.p = NULL;
5476 len = strlen ((*p->sym_ptr_ptr)->name);
5477 memcpy (names, (*p->sym_ptr_ptr)->name, len);
5478 names += len;
5479 if (p->addend != 0)
5480 {
5481 char buf[30], *a;
5482
5483 memcpy (names, "+0x", sizeof ("+0x") - 1);
5484 names += sizeof ("+0x") - 1;
5485 bfd_sprintf_vma (abfd, buf, p->addend);
5486 for (a = buf; *a == '0'; ++a)
5487 ;
5488 len = strlen (a);
5489 memcpy (names, a, len);
5490 names += len;
5491 }
5492 memcpy (names, "@plt", sizeof ("@plt"));
5493 names += sizeof ("@plt");
5494 ++s, ++n;
5495 }
5496
5497 return n;
5498 }
5499
5500 /* Handle an x86-64 specific section when reading an object file. This
5501 is called when elfcode.h finds a section with an unknown type. */
5502
5503 static bfd_boolean
5504 elf_x86_64_section_from_shdr (bfd *abfd, Elf_Internal_Shdr *hdr,
5505 const char *name, int shindex)
5506 {
5507 if (hdr->sh_type != SHT_X86_64_UNWIND)
5508 return FALSE;
5509
5510 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5511 return FALSE;
5512
5513 return TRUE;
5514 }
5515
5516 /* Hook called by the linker routine which adds symbols from an object
5517 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
5518 of .bss. */
5519
5520 static bfd_boolean
5521 elf_x86_64_add_symbol_hook (bfd *abfd,
5522 struct bfd_link_info *info,
5523 Elf_Internal_Sym *sym,
5524 const char **namep ATTRIBUTE_UNUSED,
5525 flagword *flagsp ATTRIBUTE_UNUSED,
5526 asection **secp,
5527 bfd_vma *valp)
5528 {
5529 asection *lcomm;
5530
5531 switch (sym->st_shndx)
5532 {
5533 case SHN_X86_64_LCOMMON:
5534 lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
5535 if (lcomm == NULL)
5536 {
5537 lcomm = bfd_make_section_with_flags (abfd,
5538 "LARGE_COMMON",
5539 (SEC_ALLOC
5540 | SEC_IS_COMMON
5541 | SEC_LINKER_CREATED));
5542 if (lcomm == NULL)
5543 return FALSE;
5544 elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
5545 }
5546 *secp = lcomm;
5547 *valp = sym->st_size;
5548 return TRUE;
5549 }
5550
5551 if ((ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
5552 || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE)
5553 && (abfd->flags & DYNAMIC) == 0
5554 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
5555 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
5556
5557 return TRUE;
5558 }
5559
5560
5561 /* Given a BFD section, try to locate the corresponding ELF section
5562 index. */
5563
5564 static bfd_boolean
5565 elf_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5566 asection *sec, int *index_return)
5567 {
5568 if (sec == &_bfd_elf_large_com_section)
5569 {
5570 *index_return = SHN_X86_64_LCOMMON;
5571 return TRUE;
5572 }
5573 return FALSE;
5574 }
5575
5576 /* Process a symbol. */
5577
5578 static void
5579 elf_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
5580 asymbol *asym)
5581 {
5582 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
5583
5584 switch (elfsym->internal_elf_sym.st_shndx)
5585 {
5586 case SHN_X86_64_LCOMMON:
5587 asym->section = &_bfd_elf_large_com_section;
5588 asym->value = elfsym->internal_elf_sym.st_size;
5589 /* Common symbol doesn't set BSF_GLOBAL. */
5590 asym->flags &= ~BSF_GLOBAL;
5591 break;
5592 }
5593 }
5594
5595 static bfd_boolean
5596 elf_x86_64_common_definition (Elf_Internal_Sym *sym)
5597 {
5598 return (sym->st_shndx == SHN_COMMON
5599 || sym->st_shndx == SHN_X86_64_LCOMMON);
5600 }
5601
5602 static unsigned int
5603 elf_x86_64_common_section_index (asection *sec)
5604 {
5605 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
5606 return SHN_COMMON;
5607 else
5608 return SHN_X86_64_LCOMMON;
5609 }
5610
5611 static asection *
5612 elf_x86_64_common_section (asection *sec)
5613 {
5614 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
5615 return bfd_com_section_ptr;
5616 else
5617 return &_bfd_elf_large_com_section;
5618 }
5619
5620 static bfd_boolean
5621 elf_x86_64_merge_symbol (struct elf_link_hash_entry *h,
5622 const Elf_Internal_Sym *sym,
5623 asection **psec,
5624 bfd_boolean newdef,
5625 bfd_boolean olddef,
5626 bfd *oldbfd,
5627 const asection *oldsec)
5628 {
5629 /* A normal common symbol and a large common symbol result in a
5630 normal common symbol. We turn the large common symbol into a
5631 normal one. */
5632 if (!olddef
5633 && h->root.type == bfd_link_hash_common
5634 && !newdef
5635 && bfd_is_com_section (*psec)
5636 && oldsec != *psec)
5637 {
5638 if (sym->st_shndx == SHN_COMMON
5639 && (elf_section_flags (oldsec) & SHF_X86_64_LARGE) != 0)
5640 {
5641 h->root.u.c.p->section
5642 = bfd_make_section_old_way (oldbfd, "COMMON");
5643 h->root.u.c.p->section->flags = SEC_ALLOC;
5644 }
5645 else if (sym->st_shndx == SHN_X86_64_LCOMMON
5646 && (elf_section_flags (oldsec) & SHF_X86_64_LARGE) == 0)
5647 *psec = bfd_com_section_ptr;
5648 }
5649
5650 return TRUE;
5651 }
5652
5653 static int
5654 elf_x86_64_additional_program_headers (bfd *abfd,
5655 struct bfd_link_info *info ATTRIBUTE_UNUSED)
5656 {
5657 asection *s;
5658 int count = 0;
5659
5660 /* Check to see if we need a large readonly segment. */
5661 s = bfd_get_section_by_name (abfd, ".lrodata");
5662 if (s && (s->flags & SEC_LOAD))
5663 count++;
5664
5665 /* Check to see if we need a large data segment. Since .lbss sections
5666 is placed right after the .bss section, there should be no need for
5667 a large data segment just because of .lbss. */
5668 s = bfd_get_section_by_name (abfd, ".ldata");
5669 if (s && (s->flags & SEC_LOAD))
5670 count++;
5671
5672 return count;
5673 }
5674
5675 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5676
5677 static bfd_boolean
5678 elf_x86_64_hash_symbol (struct elf_link_hash_entry *h)
5679 {
5680 if (h->plt.offset != (bfd_vma) -1
5681 && !h->def_regular
5682 && !h->pointer_equality_needed)
5683 return FALSE;
5684
5685 return _bfd_elf_hash_symbol (h);
5686 }
5687
5688 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. */
5689
5690 static bfd_boolean
5691 elf_x86_64_relocs_compatible (const bfd_target *input,
5692 const bfd_target *output)
5693 {
5694 return ((xvec_get_elf_backend_data (input)->s->elfclass
5695 == xvec_get_elf_backend_data (output)->s->elfclass)
5696 && _bfd_elf_relocs_compatible (input, output));
5697 }
5698
5699 static const struct bfd_elf_special_section
5700 elf_x86_64_special_sections[]=
5701 {
5702 { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
5703 { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
5704 { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
5705 { STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
5706 { STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
5707 { STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
5708 { NULL, 0, 0, 0, 0 }
5709 };
5710
5711 #define TARGET_LITTLE_SYM x86_64_elf64_vec
5712 #define TARGET_LITTLE_NAME "elf64-x86-64"
5713 #define ELF_ARCH bfd_arch_i386
5714 #define ELF_TARGET_ID X86_64_ELF_DATA
5715 #define ELF_MACHINE_CODE EM_X86_64
5716 #define ELF_MAXPAGESIZE 0x200000
5717 #define ELF_MINPAGESIZE 0x1000
5718 #define ELF_COMMONPAGESIZE 0x1000
5719
5720 #define elf_backend_can_gc_sections 1
5721 #define elf_backend_can_refcount 1
5722 #define elf_backend_want_got_plt 1
5723 #define elf_backend_plt_readonly 1
5724 #define elf_backend_want_plt_sym 0
5725 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
5726 #define elf_backend_rela_normal 1
5727 #define elf_backend_plt_alignment 4
5728
5729 #define elf_info_to_howto elf_x86_64_info_to_howto
5730
5731 #define bfd_elf64_bfd_link_hash_table_create \
5732 elf_x86_64_link_hash_table_create
5733 #define bfd_elf64_bfd_reloc_type_lookup elf_x86_64_reloc_type_lookup
5734 #define bfd_elf64_bfd_reloc_name_lookup \
5735 elf_x86_64_reloc_name_lookup
5736
5737 #define elf_backend_adjust_dynamic_symbol elf_x86_64_adjust_dynamic_symbol
5738 #define elf_backend_relocs_compatible elf_x86_64_relocs_compatible
5739 #define elf_backend_check_relocs elf_x86_64_check_relocs
5740 #define elf_backend_copy_indirect_symbol elf_x86_64_copy_indirect_symbol
5741 #define elf_backend_create_dynamic_sections elf_x86_64_create_dynamic_sections
5742 #define elf_backend_finish_dynamic_sections elf_x86_64_finish_dynamic_sections
5743 #define elf_backend_finish_dynamic_symbol elf_x86_64_finish_dynamic_symbol
5744 #define elf_backend_gc_mark_hook elf_x86_64_gc_mark_hook
5745 #define elf_backend_gc_sweep_hook elf_x86_64_gc_sweep_hook
5746 #define elf_backend_grok_prstatus elf_x86_64_grok_prstatus
5747 #define elf_backend_grok_psinfo elf_x86_64_grok_psinfo
5748 #ifdef CORE_HEADER
5749 #define elf_backend_write_core_note elf_x86_64_write_core_note
5750 #endif
5751 #define elf_backend_reloc_type_class elf_x86_64_reloc_type_class
5752 #define elf_backend_relocate_section elf_x86_64_relocate_section
5753 #define elf_backend_size_dynamic_sections elf_x86_64_size_dynamic_sections
5754 #define elf_backend_always_size_sections elf_x86_64_always_size_sections
5755 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
5756 #define elf_backend_plt_sym_val elf_x86_64_plt_sym_val
5757 #define elf_backend_object_p elf64_x86_64_elf_object_p
5758 #define bfd_elf64_mkobject elf_x86_64_mkobject
5759 #define bfd_elf64_get_synthetic_symtab elf_x86_64_get_synthetic_symtab
5760
5761 #define elf_backend_section_from_shdr \
5762 elf_x86_64_section_from_shdr
5763
5764 #define elf_backend_section_from_bfd_section \
5765 elf_x86_64_elf_section_from_bfd_section
5766 #define elf_backend_add_symbol_hook \
5767 elf_x86_64_add_symbol_hook
5768 #define elf_backend_symbol_processing \
5769 elf_x86_64_symbol_processing
5770 #define elf_backend_common_section_index \
5771 elf_x86_64_common_section_index
5772 #define elf_backend_common_section \
5773 elf_x86_64_common_section
5774 #define elf_backend_common_definition \
5775 elf_x86_64_common_definition
5776 #define elf_backend_merge_symbol \
5777 elf_x86_64_merge_symbol
5778 #define elf_backend_special_sections \
5779 elf_x86_64_special_sections
5780 #define elf_backend_additional_program_headers \
5781 elf_x86_64_additional_program_headers
5782 #define elf_backend_hash_symbol \
5783 elf_x86_64_hash_symbol
5784
5785 #include "elf64-target.h"
5786
5787 /* FreeBSD support. */
5788
5789 #undef TARGET_LITTLE_SYM
5790 #define TARGET_LITTLE_SYM x86_64_elf64_fbsd_vec
5791 #undef TARGET_LITTLE_NAME
5792 #define TARGET_LITTLE_NAME "elf64-x86-64-freebsd"
5793
5794 #undef ELF_OSABI
5795 #define ELF_OSABI ELFOSABI_FREEBSD
5796
5797 #undef elf64_bed
5798 #define elf64_bed elf64_x86_64_fbsd_bed
5799
5800 #include "elf64-target.h"
5801
5802 /* Solaris 2 support. */
5803
5804 #undef TARGET_LITTLE_SYM
5805 #define TARGET_LITTLE_SYM x86_64_elf64_sol2_vec
5806 #undef TARGET_LITTLE_NAME
5807 #define TARGET_LITTLE_NAME "elf64-x86-64-sol2"
5808
5809 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
5810 objects won't be recognized. */
5811 #undef ELF_OSABI
5812
5813 #undef elf64_bed
5814 #define elf64_bed elf64_x86_64_sol2_bed
5815
5816 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte
5817 boundary. */
5818 #undef elf_backend_static_tls_alignment
5819 #define elf_backend_static_tls_alignment 16
5820
5821 /* The Solaris 2 ABI requires a plt symbol on all platforms.
5822
5823 Cf. Linker and Libraries Guide, Ch. 2, Link-Editor, Generating the Output
5824 File, p.63. */
5825 #undef elf_backend_want_plt_sym
5826 #define elf_backend_want_plt_sym 1
5827
5828 #include "elf64-target.h"
5829
5830 #undef bfd_elf64_get_synthetic_symtab
5831
5832 /* Native Client support. */
5833
5834 static bfd_boolean
5835 elf64_x86_64_nacl_elf_object_p (bfd *abfd)
5836 {
5837 /* Set the right machine number for a NaCl x86-64 ELF64 file. */
5838 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64_nacl);
5839 return TRUE;
5840 }
5841
5842 #undef TARGET_LITTLE_SYM
5843 #define TARGET_LITTLE_SYM x86_64_elf64_nacl_vec
5844 #undef TARGET_LITTLE_NAME
5845 #define TARGET_LITTLE_NAME "elf64-x86-64-nacl"
5846 #undef elf64_bed
5847 #define elf64_bed elf64_x86_64_nacl_bed
5848
5849 #undef ELF_MAXPAGESIZE
5850 #undef ELF_MINPAGESIZE
5851 #undef ELF_COMMONPAGESIZE
5852 #define ELF_MAXPAGESIZE 0x10000
5853 #define ELF_MINPAGESIZE 0x10000
5854 #define ELF_COMMONPAGESIZE 0x10000
5855
5856 /* Restore defaults. */
5857 #undef ELF_OSABI
5858 #undef elf_backend_static_tls_alignment
5859 #undef elf_backend_want_plt_sym
5860 #define elf_backend_want_plt_sym 0
5861
5862 /* NaCl uses substantially different PLT entries for the same effects. */
5863
5864 #undef elf_backend_plt_alignment
5865 #define elf_backend_plt_alignment 5
5866 #define NACL_PLT_ENTRY_SIZE 64
5867 #define NACLMASK 0xe0 /* 32-byte alignment mask. */
5868
5869 static const bfd_byte elf_x86_64_nacl_plt0_entry[NACL_PLT_ENTRY_SIZE] =
5870 {
5871 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
5872 0x4c, 0x8b, 0x1d, 16, 0, 0, 0, /* mov GOT+16(%rip), %r11 */
5873 0x41, 0x83, 0xe3, NACLMASK, /* and $-32, %r11d */
5874 0x4d, 0x01, 0xfb, /* add %r15, %r11 */
5875 0x41, 0xff, 0xe3, /* jmpq *%r11 */
5876
5877 /* 9-byte nop sequence to pad out to the next 32-byte boundary. */
5878 0x66, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw 0x0(%rax,%rax,1) */
5879
5880 /* 32 bytes of nop to pad out to the standard size. */
5881 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
5882 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
5883 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
5884 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
5885 0x66, /* excess data32 prefix */
5886 0x90 /* nop */
5887 };
5888
5889 static const bfd_byte elf_x86_64_nacl_plt_entry[NACL_PLT_ENTRY_SIZE] =
5890 {
5891 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, /* mov name@GOTPCREL(%rip),%r11 */
5892 0x41, 0x83, 0xe3, NACLMASK, /* and $-32, %r11d */
5893 0x4d, 0x01, 0xfb, /* add %r15, %r11 */
5894 0x41, 0xff, 0xe3, /* jmpq *%r11 */
5895
5896 /* 15-byte nop sequence to pad out to the next 32-byte boundary. */
5897 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
5898 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
5899
5900 /* Lazy GOT entries point here (32-byte aligned). */
5901 0x68, /* pushq immediate */
5902 0, 0, 0, 0, /* replaced with index into relocation table. */
5903 0xe9, /* jmp relative */
5904 0, 0, 0, 0, /* replaced with offset to start of .plt0. */
5905
5906 /* 22 bytes of nop to pad out to the standard size. */
5907 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
5908 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
5909 0x0f, 0x1f, 0x80, 0, 0, 0, 0, /* nopl 0x0(%rax) */
5910 };
5911
5912 /* .eh_frame covering the .plt section. */
5913
5914 static const bfd_byte elf_x86_64_nacl_eh_frame_plt[] =
5915 {
5916 #if (PLT_CIE_LENGTH != 20 \
5917 || PLT_FDE_LENGTH != 36 \
5918 || PLT_FDE_START_OFFSET != 4 + PLT_CIE_LENGTH + 8 \
5919 || PLT_FDE_LEN_OFFSET != 4 + PLT_CIE_LENGTH + 12)
5920 # error "Need elf_x86_64_backend_data parameters for eh_frame_plt offsets!"
5921 #endif
5922 PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */
5923 0, 0, 0, 0, /* CIE ID */
5924 1, /* CIE version */
5925 'z', 'R', 0, /* Augmentation string */
5926 1, /* Code alignment factor */
5927 0x78, /* Data alignment factor */
5928 16, /* Return address column */
5929 1, /* Augmentation size */
5930 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
5931 DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
5932 DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
5933 DW_CFA_nop, DW_CFA_nop,
5934
5935 PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */
5936 PLT_CIE_LENGTH + 8, 0, 0, 0,/* CIE pointer */
5937 0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */
5938 0, 0, 0, 0, /* .plt size goes here */
5939 0, /* Augmentation size */
5940 DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */
5941 DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */
5942 DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */
5943 DW_CFA_advance_loc + 58, /* DW_CFA_advance_loc: 58 to __PLT__+64 */
5944 DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */
5945 13, /* Block length */
5946 DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */
5947 DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */
5948 DW_OP_const1u, 63, DW_OP_and, DW_OP_const1u, 37, DW_OP_ge,
5949 DW_OP_lit3, DW_OP_shl, DW_OP_plus,
5950 DW_CFA_nop, DW_CFA_nop
5951 };
5952
5953 static const struct elf_x86_64_backend_data elf_x86_64_nacl_arch_bed =
5954 {
5955 elf_x86_64_nacl_plt0_entry, /* plt0_entry */
5956 elf_x86_64_nacl_plt_entry, /* plt_entry */
5957 NACL_PLT_ENTRY_SIZE, /* plt_entry_size */
5958 2, /* plt0_got1_offset */
5959 9, /* plt0_got2_offset */
5960 13, /* plt0_got2_insn_end */
5961 3, /* plt_got_offset */
5962 33, /* plt_reloc_offset */
5963 38, /* plt_plt_offset */
5964 7, /* plt_got_insn_size */
5965 42, /* plt_plt_insn_end */
5966 32, /* plt_lazy_offset */
5967 elf_x86_64_nacl_eh_frame_plt, /* eh_frame_plt */
5968 sizeof (elf_x86_64_nacl_eh_frame_plt), /* eh_frame_plt_size */
5969 };
5970
5971 #undef elf_backend_arch_data
5972 #define elf_backend_arch_data &elf_x86_64_nacl_arch_bed
5973
5974 #undef elf_backend_object_p
5975 #define elf_backend_object_p elf64_x86_64_nacl_elf_object_p
5976 #undef elf_backend_modify_segment_map
5977 #define elf_backend_modify_segment_map nacl_modify_segment_map
5978 #undef elf_backend_modify_program_headers
5979 #define elf_backend_modify_program_headers nacl_modify_program_headers
5980 #undef elf_backend_final_write_processing
5981 #define elf_backend_final_write_processing nacl_final_write_processing
5982
5983 #include "elf64-target.h"
5984
5985 /* Native Client x32 support. */
5986
5987 static bfd_boolean
5988 elf32_x86_64_nacl_elf_object_p (bfd *abfd)
5989 {
5990 /* Set the right machine number for a NaCl x86-64 ELF32 file. */
5991 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x64_32_nacl);
5992 return TRUE;
5993 }
5994
5995 #undef TARGET_LITTLE_SYM
5996 #define TARGET_LITTLE_SYM x86_64_elf32_nacl_vec
5997 #undef TARGET_LITTLE_NAME
5998 #define TARGET_LITTLE_NAME "elf32-x86-64-nacl"
5999 #undef elf32_bed
6000 #define elf32_bed elf32_x86_64_nacl_bed
6001
6002 #define bfd_elf32_bfd_link_hash_table_create \
6003 elf_x86_64_link_hash_table_create
6004 #define bfd_elf32_bfd_reloc_type_lookup \
6005 elf_x86_64_reloc_type_lookup
6006 #define bfd_elf32_bfd_reloc_name_lookup \
6007 elf_x86_64_reloc_name_lookup
6008 #define bfd_elf32_mkobject \
6009 elf_x86_64_mkobject
6010
6011 #undef elf_backend_object_p
6012 #define elf_backend_object_p \
6013 elf32_x86_64_nacl_elf_object_p
6014
6015 #undef elf_backend_bfd_from_remote_memory
6016 #define elf_backend_bfd_from_remote_memory \
6017 _bfd_elf32_bfd_from_remote_memory
6018
6019 #undef elf_backend_size_info
6020 #define elf_backend_size_info \
6021 _bfd_elf32_size_info
6022
6023 #include "elf32-target.h"
6024
6025 /* Restore defaults. */
6026 #undef elf_backend_object_p
6027 #define elf_backend_object_p elf64_x86_64_elf_object_p
6028 #undef elf_backend_bfd_from_remote_memory
6029 #undef elf_backend_size_info
6030 #undef elf_backend_modify_segment_map
6031 #undef elf_backend_modify_program_headers
6032 #undef elf_backend_final_write_processing
6033
6034 /* Intel L1OM support. */
6035
6036 static bfd_boolean
6037 elf64_l1om_elf_object_p (bfd *abfd)
6038 {
6039 /* Set the right machine number for an L1OM elf64 file. */
6040 bfd_default_set_arch_mach (abfd, bfd_arch_l1om, bfd_mach_l1om);
6041 return TRUE;
6042 }
6043
6044 #undef TARGET_LITTLE_SYM
6045 #define TARGET_LITTLE_SYM l1om_elf64_vec
6046 #undef TARGET_LITTLE_NAME
6047 #define TARGET_LITTLE_NAME "elf64-l1om"
6048 #undef ELF_ARCH
6049 #define ELF_ARCH bfd_arch_l1om
6050
6051 #undef ELF_MACHINE_CODE
6052 #define ELF_MACHINE_CODE EM_L1OM
6053
6054 #undef ELF_OSABI
6055
6056 #undef elf64_bed
6057 #define elf64_bed elf64_l1om_bed
6058
6059 #undef elf_backend_object_p
6060 #define elf_backend_object_p elf64_l1om_elf_object_p
6061
6062 /* Restore defaults. */
6063 #undef ELF_MAXPAGESIZE
6064 #undef ELF_MINPAGESIZE
6065 #undef ELF_COMMONPAGESIZE
6066 #define ELF_MAXPAGESIZE 0x200000
6067 #define ELF_MINPAGESIZE 0x1000
6068 #define ELF_COMMONPAGESIZE 0x1000
6069 #undef elf_backend_plt_alignment
6070 #define elf_backend_plt_alignment 4
6071 #undef elf_backend_arch_data
6072 #define elf_backend_arch_data &elf_x86_64_arch_bed
6073
6074 #include "elf64-target.h"
6075
6076 /* FreeBSD L1OM support. */
6077
6078 #undef TARGET_LITTLE_SYM
6079 #define TARGET_LITTLE_SYM l1om_elf64_fbsd_vec
6080 #undef TARGET_LITTLE_NAME
6081 #define TARGET_LITTLE_NAME "elf64-l1om-freebsd"
6082
6083 #undef ELF_OSABI
6084 #define ELF_OSABI ELFOSABI_FREEBSD
6085
6086 #undef elf64_bed
6087 #define elf64_bed elf64_l1om_fbsd_bed
6088
6089 #include "elf64-target.h"
6090
6091 /* Intel K1OM support. */
6092
6093 static bfd_boolean
6094 elf64_k1om_elf_object_p (bfd *abfd)
6095 {
6096 /* Set the right machine number for an K1OM elf64 file. */
6097 bfd_default_set_arch_mach (abfd, bfd_arch_k1om, bfd_mach_k1om);
6098 return TRUE;
6099 }
6100
6101 #undef TARGET_LITTLE_SYM
6102 #define TARGET_LITTLE_SYM k1om_elf64_vec
6103 #undef TARGET_LITTLE_NAME
6104 #define TARGET_LITTLE_NAME "elf64-k1om"
6105 #undef ELF_ARCH
6106 #define ELF_ARCH bfd_arch_k1om
6107
6108 #undef ELF_MACHINE_CODE
6109 #define ELF_MACHINE_CODE EM_K1OM
6110
6111 #undef ELF_OSABI
6112
6113 #undef elf64_bed
6114 #define elf64_bed elf64_k1om_bed
6115
6116 #undef elf_backend_object_p
6117 #define elf_backend_object_p elf64_k1om_elf_object_p
6118
6119 #undef elf_backend_static_tls_alignment
6120
6121 #undef elf_backend_want_plt_sym
6122 #define elf_backend_want_plt_sym 0
6123
6124 #include "elf64-target.h"
6125
6126 /* FreeBSD K1OM support. */
6127
6128 #undef TARGET_LITTLE_SYM
6129 #define TARGET_LITTLE_SYM k1om_elf64_fbsd_vec
6130 #undef TARGET_LITTLE_NAME
6131 #define TARGET_LITTLE_NAME "elf64-k1om-freebsd"
6132
6133 #undef ELF_OSABI
6134 #define ELF_OSABI ELFOSABI_FREEBSD
6135
6136 #undef elf64_bed
6137 #define elf64_bed elf64_k1om_fbsd_bed
6138
6139 #include "elf64-target.h"
6140
6141 /* 32bit x86-64 support. */
6142
6143 #undef TARGET_LITTLE_SYM
6144 #define TARGET_LITTLE_SYM x86_64_elf32_vec
6145 #undef TARGET_LITTLE_NAME
6146 #define TARGET_LITTLE_NAME "elf32-x86-64"
6147 #undef elf32_bed
6148
6149 #undef ELF_ARCH
6150 #define ELF_ARCH bfd_arch_i386
6151
6152 #undef ELF_MACHINE_CODE
6153 #define ELF_MACHINE_CODE EM_X86_64
6154
6155 #undef ELF_OSABI
6156
6157 #undef elf_backend_object_p
6158 #define elf_backend_object_p \
6159 elf32_x86_64_elf_object_p
6160
6161 #undef elf_backend_bfd_from_remote_memory
6162 #define elf_backend_bfd_from_remote_memory \
6163 _bfd_elf32_bfd_from_remote_memory
6164
6165 #undef elf_backend_size_info
6166 #define elf_backend_size_info \
6167 _bfd_elf32_size_info
6168
6169 #include "elf32-target.h"