Fix 17492, ld segfault with --oformat=binary
[binutils-gdb.git] / bfd / elf64-x86-64.c
1 /* X86-64 specific support for ELF
2 Copyright (C) 2000-2014 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka <jh@suse.cz>.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "elf-nacl.h"
28 #include "bfd_stdint.h"
29 #include "objalloc.h"
30 #include "hashtab.h"
31 #include "dwarf2.h"
32 #include "libiberty.h"
33
34 #include "elf/x86-64.h"
35
36 #ifdef CORE_HEADER
37 #include <stdarg.h>
38 #include CORE_HEADER
39 #endif
40
41 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
42 #define MINUS_ONE (~ (bfd_vma) 0)
43
44 /* Since both 32-bit and 64-bit x86-64 encode relocation type in the
45 identical manner, we use ELF32_R_TYPE instead of ELF64_R_TYPE to get
46 relocation type. We also use ELF_ST_TYPE instead of ELF64_ST_TYPE
47 since they are the same. */
48
49 #define ABI_64_P(abfd) \
50 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
51
52 /* The relocation "howto" table. Order of fields:
53 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
54 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
55 static reloc_howto_type x86_64_elf_howto_table[] =
56 {
57 HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
58 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
59 FALSE),
60 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
61 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
62 FALSE),
63 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
64 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
65 TRUE),
66 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
67 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
68 FALSE),
69 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
70 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
71 TRUE),
72 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
73 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
74 FALSE),
75 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
76 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
77 MINUS_ONE, FALSE),
78 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
79 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
80 MINUS_ONE, FALSE),
81 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
82 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
83 MINUS_ONE, FALSE),
84 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
85 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
86 0xffffffff, TRUE),
87 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
88 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
89 FALSE),
90 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
91 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
92 FALSE),
93 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
94 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
95 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
96 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
97 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
98 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
99 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
100 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
101 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
102 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
103 MINUS_ONE, FALSE),
104 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
105 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
106 MINUS_ONE, FALSE),
107 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
108 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
109 MINUS_ONE, FALSE),
110 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
111 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
112 0xffffffff, TRUE),
113 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
114 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
115 0xffffffff, TRUE),
116 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
117 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
118 0xffffffff, FALSE),
119 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
120 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
121 0xffffffff, TRUE),
122 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
123 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
124 0xffffffff, FALSE),
125 HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
126 bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
127 TRUE),
128 HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
129 bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
130 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
131 HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
132 bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
133 FALSE, 0xffffffff, 0xffffffff, TRUE),
134 HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
135 bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE,
136 FALSE),
137 HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
138 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE,
139 MINUS_ONE, TRUE),
140 HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
141 bfd_elf_generic_reloc, "R_X86_64_GOTPC64",
142 FALSE, MINUS_ONE, MINUS_ONE, TRUE),
143 HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
144 bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE,
145 MINUS_ONE, FALSE),
146 HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
147 bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE,
148 MINUS_ONE, FALSE),
149 HOWTO(R_X86_64_SIZE32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
150 bfd_elf_generic_reloc, "R_X86_64_SIZE32", FALSE, 0xffffffff, 0xffffffff,
151 FALSE),
152 HOWTO(R_X86_64_SIZE64, 0, 4, 64, FALSE, 0, complain_overflow_unsigned,
153 bfd_elf_generic_reloc, "R_X86_64_SIZE64", FALSE, MINUS_ONE, MINUS_ONE,
154 FALSE),
155 HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0,
156 complain_overflow_bitfield, bfd_elf_generic_reloc,
157 "R_X86_64_GOTPC32_TLSDESC",
158 FALSE, 0xffffffff, 0xffffffff, TRUE),
159 HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0,
160 complain_overflow_dont, bfd_elf_generic_reloc,
161 "R_X86_64_TLSDESC_CALL",
162 FALSE, 0, 0, FALSE),
163 HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0,
164 complain_overflow_bitfield, bfd_elf_generic_reloc,
165 "R_X86_64_TLSDESC",
166 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
167 HOWTO(R_X86_64_IRELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
168 bfd_elf_generic_reloc, "R_X86_64_IRELATIVE", FALSE, MINUS_ONE,
169 MINUS_ONE, FALSE),
170 HOWTO(R_X86_64_RELATIVE64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
171 bfd_elf_generic_reloc, "R_X86_64_RELATIVE64", FALSE, MINUS_ONE,
172 MINUS_ONE, FALSE),
173 HOWTO(R_X86_64_PC32_BND, 0, 2, 32, TRUE, 0, complain_overflow_signed,
174 bfd_elf_generic_reloc, "R_X86_64_PC32_BND", FALSE, 0xffffffff, 0xffffffff,
175 TRUE),
176 HOWTO(R_X86_64_PLT32_BND, 0, 2, 32, TRUE, 0, complain_overflow_signed,
177 bfd_elf_generic_reloc, "R_X86_64_PLT32_BND", FALSE, 0xffffffff, 0xffffffff,
178 TRUE),
179
180 /* We have a gap in the reloc numbers here.
181 R_X86_64_standard counts the number up to this point, and
182 R_X86_64_vt_offset is the value to subtract from a reloc type of
183 R_X86_64_GNU_VT* to form an index into this table. */
184 #define R_X86_64_standard (R_X86_64_PLT32_BND + 1)
185 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
186
187 /* GNU extension to record C++ vtable hierarchy. */
188 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
189 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
190
191 /* GNU extension to record C++ vtable member usage. */
192 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
193 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
194 FALSE),
195
196 /* Use complain_overflow_bitfield on R_X86_64_32 for x32. */
197 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
198 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
199 FALSE)
200 };
201
202 #define IS_X86_64_PCREL_TYPE(TYPE) \
203 ( ((TYPE) == R_X86_64_PC8) \
204 || ((TYPE) == R_X86_64_PC16) \
205 || ((TYPE) == R_X86_64_PC32) \
206 || ((TYPE) == R_X86_64_PC32_BND) \
207 || ((TYPE) == R_X86_64_PC64))
208
209 /* Map BFD relocs to the x86_64 elf relocs. */
210 struct elf_reloc_map
211 {
212 bfd_reloc_code_real_type bfd_reloc_val;
213 unsigned char elf_reloc_val;
214 };
215
216 static const struct elf_reloc_map x86_64_reloc_map[] =
217 {
218 { BFD_RELOC_NONE, R_X86_64_NONE, },
219 { BFD_RELOC_64, R_X86_64_64, },
220 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
221 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
222 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
223 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
224 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
225 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
226 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
227 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
228 { BFD_RELOC_32, R_X86_64_32, },
229 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
230 { BFD_RELOC_16, R_X86_64_16, },
231 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
232 { BFD_RELOC_8, R_X86_64_8, },
233 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
234 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
235 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
236 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
237 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
238 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
239 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
240 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
241 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
242 { BFD_RELOC_64_PCREL, R_X86_64_PC64, },
243 { BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, },
244 { BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, },
245 { BFD_RELOC_X86_64_GOT64, R_X86_64_GOT64, },
246 { BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, },
247 { BFD_RELOC_X86_64_GOTPC64, R_X86_64_GOTPC64, },
248 { BFD_RELOC_X86_64_GOTPLT64, R_X86_64_GOTPLT64, },
249 { BFD_RELOC_X86_64_PLTOFF64, R_X86_64_PLTOFF64, },
250 { BFD_RELOC_SIZE32, R_X86_64_SIZE32, },
251 { BFD_RELOC_SIZE64, R_X86_64_SIZE64, },
252 { BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, },
253 { BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, },
254 { BFD_RELOC_X86_64_TLSDESC, R_X86_64_TLSDESC, },
255 { BFD_RELOC_X86_64_IRELATIVE, R_X86_64_IRELATIVE, },
256 { BFD_RELOC_X86_64_PC32_BND, R_X86_64_PC32_BND,},
257 { BFD_RELOC_X86_64_PLT32_BND, R_X86_64_PLT32_BND,},
258 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
259 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
260 };
261
262 static reloc_howto_type *
263 elf_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type)
264 {
265 unsigned i;
266
267 if (r_type == (unsigned int) R_X86_64_32)
268 {
269 if (ABI_64_P (abfd))
270 i = r_type;
271 else
272 i = ARRAY_SIZE (x86_64_elf_howto_table) - 1;
273 }
274 else if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
275 || r_type >= (unsigned int) R_X86_64_max)
276 {
277 if (r_type >= (unsigned int) R_X86_64_standard)
278 {
279 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
280 abfd, (int) r_type);
281 r_type = R_X86_64_NONE;
282 }
283 i = r_type;
284 }
285 else
286 i = r_type - (unsigned int) R_X86_64_vt_offset;
287 BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type);
288 return &x86_64_elf_howto_table[i];
289 }
290
291 /* Given a BFD reloc type, return a HOWTO structure. */
292 static reloc_howto_type *
293 elf_x86_64_reloc_type_lookup (bfd *abfd,
294 bfd_reloc_code_real_type code)
295 {
296 unsigned int i;
297
298 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
299 i++)
300 {
301 if (x86_64_reloc_map[i].bfd_reloc_val == code)
302 return elf_x86_64_rtype_to_howto (abfd,
303 x86_64_reloc_map[i].elf_reloc_val);
304 }
305 return 0;
306 }
307
308 static reloc_howto_type *
309 elf_x86_64_reloc_name_lookup (bfd *abfd,
310 const char *r_name)
311 {
312 unsigned int i;
313
314 if (!ABI_64_P (abfd) && strcasecmp (r_name, "R_X86_64_32") == 0)
315 {
316 /* Get x32 R_X86_64_32. */
317 reloc_howto_type *reloc
318 = &x86_64_elf_howto_table[ARRAY_SIZE (x86_64_elf_howto_table) - 1];
319 BFD_ASSERT (reloc->type == (unsigned int) R_X86_64_32);
320 return reloc;
321 }
322
323 for (i = 0; i < ARRAY_SIZE (x86_64_elf_howto_table); i++)
324 if (x86_64_elf_howto_table[i].name != NULL
325 && strcasecmp (x86_64_elf_howto_table[i].name, r_name) == 0)
326 return &x86_64_elf_howto_table[i];
327
328 return NULL;
329 }
330
331 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
332
333 static void
334 elf_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
335 Elf_Internal_Rela *dst)
336 {
337 unsigned r_type;
338
339 r_type = ELF32_R_TYPE (dst->r_info);
340 cache_ptr->howto = elf_x86_64_rtype_to_howto (abfd, r_type);
341 BFD_ASSERT (r_type == cache_ptr->howto->type);
342 }
343 \f
344 /* Support for core dump NOTE sections. */
345 static bfd_boolean
346 elf_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
347 {
348 int offset;
349 size_t size;
350
351 switch (note->descsz)
352 {
353 default:
354 return FALSE;
355
356 case 296: /* sizeof(istruct elf_prstatus) on Linux/x32 */
357 /* pr_cursig */
358 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
359
360 /* pr_pid */
361 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
362
363 /* pr_reg */
364 offset = 72;
365 size = 216;
366
367 break;
368
369 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
370 /* pr_cursig */
371 elf_tdata (abfd)->core->signal
372 = bfd_get_16 (abfd, note->descdata + 12);
373
374 /* pr_pid */
375 elf_tdata (abfd)->core->lwpid
376 = bfd_get_32 (abfd, note->descdata + 32);
377
378 /* pr_reg */
379 offset = 112;
380 size = 216;
381
382 break;
383 }
384
385 /* Make a ".reg/999" section. */
386 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
387 size, note->descpos + offset);
388 }
389
390 static bfd_boolean
391 elf_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
392 {
393 switch (note->descsz)
394 {
395 default:
396 return FALSE;
397
398 case 124: /* sizeof(struct elf_prpsinfo) on Linux/x32 */
399 elf_tdata (abfd)->core->pid
400 = bfd_get_32 (abfd, note->descdata + 12);
401 elf_tdata (abfd)->core->program
402 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
403 elf_tdata (abfd)->core->command
404 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
405 break;
406
407 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
408 elf_tdata (abfd)->core->pid
409 = bfd_get_32 (abfd, note->descdata + 24);
410 elf_tdata (abfd)->core->program
411 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
412 elf_tdata (abfd)->core->command
413 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
414 }
415
416 /* Note that for some reason, a spurious space is tacked
417 onto the end of the args in some (at least one anyway)
418 implementations, so strip it off if it exists. */
419
420 {
421 char *command = elf_tdata (abfd)->core->command;
422 int n = strlen (command);
423
424 if (0 < n && command[n - 1] == ' ')
425 command[n - 1] = '\0';
426 }
427
428 return TRUE;
429 }
430
431 #ifdef CORE_HEADER
432 static char *
433 elf_x86_64_write_core_note (bfd *abfd, char *buf, int *bufsiz,
434 int note_type, ...)
435 {
436 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
437 va_list ap;
438 const char *fname, *psargs;
439 long pid;
440 int cursig;
441 const void *gregs;
442
443 switch (note_type)
444 {
445 default:
446 return NULL;
447
448 case NT_PRPSINFO:
449 va_start (ap, note_type);
450 fname = va_arg (ap, const char *);
451 psargs = va_arg (ap, const char *);
452 va_end (ap);
453
454 if (bed->s->elfclass == ELFCLASS32)
455 {
456 prpsinfo32_t data;
457 memset (&data, 0, sizeof (data));
458 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
459 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
460 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
461 &data, sizeof (data));
462 }
463 else
464 {
465 prpsinfo64_t data;
466 memset (&data, 0, sizeof (data));
467 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
468 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
469 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
470 &data, sizeof (data));
471 }
472 /* NOTREACHED */
473
474 case NT_PRSTATUS:
475 va_start (ap, note_type);
476 pid = va_arg (ap, long);
477 cursig = va_arg (ap, int);
478 gregs = va_arg (ap, const void *);
479 va_end (ap);
480
481 if (bed->s->elfclass == ELFCLASS32)
482 {
483 if (bed->elf_machine_code == EM_X86_64)
484 {
485 prstatusx32_t prstat;
486 memset (&prstat, 0, sizeof (prstat));
487 prstat.pr_pid = pid;
488 prstat.pr_cursig = cursig;
489 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
490 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
491 &prstat, sizeof (prstat));
492 }
493 else
494 {
495 prstatus32_t prstat;
496 memset (&prstat, 0, sizeof (prstat));
497 prstat.pr_pid = pid;
498 prstat.pr_cursig = cursig;
499 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
500 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
501 &prstat, sizeof (prstat));
502 }
503 }
504 else
505 {
506 prstatus64_t prstat;
507 memset (&prstat, 0, sizeof (prstat));
508 prstat.pr_pid = pid;
509 prstat.pr_cursig = cursig;
510 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
511 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
512 &prstat, sizeof (prstat));
513 }
514 }
515 /* NOTREACHED */
516 }
517 #endif
518 \f
519 /* Functions for the x86-64 ELF linker. */
520
521 /* The name of the dynamic interpreter. This is put in the .interp
522 section. */
523
524 #define ELF64_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
525 #define ELF32_DYNAMIC_INTERPRETER "/lib/ldx32.so.1"
526
527 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
528 copying dynamic variables from a shared lib into an app's dynbss
529 section, and instead use a dynamic relocation to point into the
530 shared lib. */
531 #define ELIMINATE_COPY_RELOCS 1
532
533 /* The size in bytes of an entry in the global offset table. */
534
535 #define GOT_ENTRY_SIZE 8
536
537 /* The size in bytes of an entry in the procedure linkage table. */
538
539 #define PLT_ENTRY_SIZE 16
540
541 /* The first entry in a procedure linkage table looks like this. See the
542 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
543
544 static const bfd_byte elf_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
545 {
546 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
547 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
548 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */
549 };
550
551 /* Subsequent entries in a procedure linkage table look like this. */
552
553 static const bfd_byte elf_x86_64_plt_entry[PLT_ENTRY_SIZE] =
554 {
555 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
556 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
557 0x68, /* pushq immediate */
558 0, 0, 0, 0, /* replaced with index into relocation table. */
559 0xe9, /* jmp relative */
560 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
561 };
562
563 /* The first entry in a procedure linkage table with BND relocations
564 like this. */
565
566 static const bfd_byte elf_x86_64_bnd_plt0_entry[PLT_ENTRY_SIZE] =
567 {
568 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
569 0xf2, 0xff, 0x25, 16, 0, 0, 0, /* bnd jmpq *GOT+16(%rip) */
570 0x0f, 0x1f, 0 /* nopl (%rax) */
571 };
572
573 /* Subsequent entries for legacy branches in a procedure linkage table
574 with BND relocations look like this. */
575
576 static const bfd_byte elf_x86_64_legacy_plt_entry[PLT_ENTRY_SIZE] =
577 {
578 0x68, 0, 0, 0, 0, /* pushq immediate */
579 0xe9, 0, 0, 0, 0, /* jmpq relative */
580 0x66, 0x0f, 0x1f, 0x44, 0, 0 /* nopw (%rax,%rax,1) */
581 };
582
583 /* Subsequent entries for branches with BND prefx in a procedure linkage
584 table with BND relocations look like this. */
585
586 static const bfd_byte elf_x86_64_bnd_plt_entry[PLT_ENTRY_SIZE] =
587 {
588 0x68, 0, 0, 0, 0, /* pushq immediate */
589 0xf2, 0xe9, 0, 0, 0, 0, /* bnd jmpq relative */
590 0x0f, 0x1f, 0x44, 0, 0 /* nopl 0(%rax,%rax,1) */
591 };
592
593 /* Entries for legacy branches in the second procedure linkage table
594 look like this. */
595
596 static const bfd_byte elf_x86_64_legacy_plt2_entry[8] =
597 {
598 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
599 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
600 0x66, 0x90 /* xchg %ax,%ax */
601 };
602
603 /* Entries for branches with BND prefix in the second procedure linkage
604 table look like this. */
605
606 static const bfd_byte elf_x86_64_bnd_plt2_entry[8] =
607 {
608 0xf2, 0xff, 0x25, /* bnd jmpq *name@GOTPC(%rip) */
609 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
610 0x90 /* nop */
611 };
612
613 /* .eh_frame covering the .plt section. */
614
615 static const bfd_byte elf_x86_64_eh_frame_plt[] =
616 {
617 #define PLT_CIE_LENGTH 20
618 #define PLT_FDE_LENGTH 36
619 #define PLT_FDE_START_OFFSET 4 + PLT_CIE_LENGTH + 8
620 #define PLT_FDE_LEN_OFFSET 4 + PLT_CIE_LENGTH + 12
621 PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */
622 0, 0, 0, 0, /* CIE ID */
623 1, /* CIE version */
624 'z', 'R', 0, /* Augmentation string */
625 1, /* Code alignment factor */
626 0x78, /* Data alignment factor */
627 16, /* Return address column */
628 1, /* Augmentation size */
629 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
630 DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
631 DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
632 DW_CFA_nop, DW_CFA_nop,
633
634 PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */
635 PLT_CIE_LENGTH + 8, 0, 0, 0, /* CIE pointer */
636 0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */
637 0, 0, 0, 0, /* .plt size goes here */
638 0, /* Augmentation size */
639 DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */
640 DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */
641 DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */
642 DW_CFA_advance_loc + 10, /* DW_CFA_advance_loc: 10 to __PLT__+16 */
643 DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */
644 11, /* Block length */
645 DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */
646 DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */
647 DW_OP_lit15, DW_OP_and, DW_OP_lit11, DW_OP_ge,
648 DW_OP_lit3, DW_OP_shl, DW_OP_plus,
649 DW_CFA_nop, DW_CFA_nop, DW_CFA_nop, DW_CFA_nop
650 };
651
652 /* Architecture-specific backend data for x86-64. */
653
654 struct elf_x86_64_backend_data
655 {
656 /* Templates for the initial PLT entry and for subsequent entries. */
657 const bfd_byte *plt0_entry;
658 const bfd_byte *plt_entry;
659 unsigned int plt_entry_size; /* Size of each PLT entry. */
660
661 /* Offsets into plt0_entry that are to be replaced with GOT[1] and GOT[2]. */
662 unsigned int plt0_got1_offset;
663 unsigned int plt0_got2_offset;
664
665 /* Offset of the end of the PC-relative instruction containing
666 plt0_got2_offset. */
667 unsigned int plt0_got2_insn_end;
668
669 /* Offsets into plt_entry that are to be replaced with... */
670 unsigned int plt_got_offset; /* ... address of this symbol in .got. */
671 unsigned int plt_reloc_offset; /* ... offset into relocation table. */
672 unsigned int plt_plt_offset; /* ... offset to start of .plt. */
673
674 /* Length of the PC-relative instruction containing plt_got_offset. */
675 unsigned int plt_got_insn_size;
676
677 /* Offset of the end of the PC-relative jump to plt0_entry. */
678 unsigned int plt_plt_insn_end;
679
680 /* Offset into plt_entry where the initial value of the GOT entry points. */
681 unsigned int plt_lazy_offset;
682
683 /* .eh_frame covering the .plt section. */
684 const bfd_byte *eh_frame_plt;
685 unsigned int eh_frame_plt_size;
686 };
687
688 #define get_elf_x86_64_arch_data(bed) \
689 ((const struct elf_x86_64_backend_data *) (bed)->arch_data)
690
691 #define get_elf_x86_64_backend_data(abfd) \
692 get_elf_x86_64_arch_data (get_elf_backend_data (abfd))
693
694 #define GET_PLT_ENTRY_SIZE(abfd) \
695 get_elf_x86_64_backend_data (abfd)->plt_entry_size
696
697 /* These are the standard parameters. */
698 static const struct elf_x86_64_backend_data elf_x86_64_arch_bed =
699 {
700 elf_x86_64_plt0_entry, /* plt0_entry */
701 elf_x86_64_plt_entry, /* plt_entry */
702 sizeof (elf_x86_64_plt_entry), /* plt_entry_size */
703 2, /* plt0_got1_offset */
704 8, /* plt0_got2_offset */
705 12, /* plt0_got2_insn_end */
706 2, /* plt_got_offset */
707 7, /* plt_reloc_offset */
708 12, /* plt_plt_offset */
709 6, /* plt_got_insn_size */
710 PLT_ENTRY_SIZE, /* plt_plt_insn_end */
711 6, /* plt_lazy_offset */
712 elf_x86_64_eh_frame_plt, /* eh_frame_plt */
713 sizeof (elf_x86_64_eh_frame_plt), /* eh_frame_plt_size */
714 };
715
716 static const struct elf_x86_64_backend_data elf_x86_64_bnd_arch_bed =
717 {
718 elf_x86_64_bnd_plt0_entry, /* plt0_entry */
719 elf_x86_64_bnd_plt_entry, /* plt_entry */
720 sizeof (elf_x86_64_bnd_plt_entry), /* plt_entry_size */
721 2, /* plt0_got1_offset */
722 1+8, /* plt0_got2_offset */
723 1+12, /* plt0_got2_insn_end */
724 1+2, /* plt_got_offset */
725 1, /* plt_reloc_offset */
726 7, /* plt_plt_offset */
727 1+6, /* plt_got_insn_size */
728 11, /* plt_plt_insn_end */
729 0, /* plt_lazy_offset */
730 elf_x86_64_eh_frame_plt, /* eh_frame_plt */
731 sizeof (elf_x86_64_eh_frame_plt), /* eh_frame_plt_size */
732 };
733
734 #define elf_backend_arch_data &elf_x86_64_arch_bed
735
736 /* x86-64 ELF linker hash entry. */
737
738 struct elf_x86_64_link_hash_entry
739 {
740 struct elf_link_hash_entry elf;
741
742 /* Track dynamic relocs copied for this symbol. */
743 struct elf_dyn_relocs *dyn_relocs;
744
745 #define GOT_UNKNOWN 0
746 #define GOT_NORMAL 1
747 #define GOT_TLS_GD 2
748 #define GOT_TLS_IE 3
749 #define GOT_TLS_GDESC 4
750 #define GOT_TLS_GD_BOTH_P(type) \
751 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
752 #define GOT_TLS_GD_P(type) \
753 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
754 #define GOT_TLS_GDESC_P(type) \
755 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
756 #define GOT_TLS_GD_ANY_P(type) \
757 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
758 unsigned char tls_type;
759
760 /* TRUE if symbol has at least one BND relocation. */
761 bfd_boolean has_bnd_reloc;
762
763 /* Information about the second PLT entry. Filled when has_bnd_reloc is
764 set. */
765 union gotplt_union plt_bnd;
766
767 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
768 starting at the end of the jump table. */
769 bfd_vma tlsdesc_got;
770 };
771
772 #define elf_x86_64_hash_entry(ent) \
773 ((struct elf_x86_64_link_hash_entry *)(ent))
774
775 struct elf_x86_64_obj_tdata
776 {
777 struct elf_obj_tdata root;
778
779 /* tls_type for each local got entry. */
780 char *local_got_tls_type;
781
782 /* GOTPLT entries for TLS descriptors. */
783 bfd_vma *local_tlsdesc_gotent;
784 };
785
786 #define elf_x86_64_tdata(abfd) \
787 ((struct elf_x86_64_obj_tdata *) (abfd)->tdata.any)
788
789 #define elf_x86_64_local_got_tls_type(abfd) \
790 (elf_x86_64_tdata (abfd)->local_got_tls_type)
791
792 #define elf_x86_64_local_tlsdesc_gotent(abfd) \
793 (elf_x86_64_tdata (abfd)->local_tlsdesc_gotent)
794
795 #define is_x86_64_elf(bfd) \
796 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
797 && elf_tdata (bfd) != NULL \
798 && elf_object_id (bfd) == X86_64_ELF_DATA)
799
800 static bfd_boolean
801 elf_x86_64_mkobject (bfd *abfd)
802 {
803 return bfd_elf_allocate_object (abfd, sizeof (struct elf_x86_64_obj_tdata),
804 X86_64_ELF_DATA);
805 }
806
807 /* x86-64 ELF linker hash table. */
808
809 struct elf_x86_64_link_hash_table
810 {
811 struct elf_link_hash_table elf;
812
813 /* Short-cuts to get to dynamic linker sections. */
814 asection *sdynbss;
815 asection *srelbss;
816 asection *plt_eh_frame;
817 asection *plt_bnd;
818
819 union
820 {
821 bfd_signed_vma refcount;
822 bfd_vma offset;
823 } tls_ld_got;
824
825 /* The amount of space used by the jump slots in the GOT. */
826 bfd_vma sgotplt_jump_table_size;
827
828 /* Small local sym cache. */
829 struct sym_cache sym_cache;
830
831 bfd_vma (*r_info) (bfd_vma, bfd_vma);
832 bfd_vma (*r_sym) (bfd_vma);
833 unsigned int pointer_r_type;
834 const char *dynamic_interpreter;
835 int dynamic_interpreter_size;
836
837 /* _TLS_MODULE_BASE_ symbol. */
838 struct bfd_link_hash_entry *tls_module_base;
839
840 /* Used by local STT_GNU_IFUNC symbols. */
841 htab_t loc_hash_table;
842 void * loc_hash_memory;
843
844 /* The offset into splt of the PLT entry for the TLS descriptor
845 resolver. Special values are 0, if not necessary (or not found
846 to be necessary yet), and -1 if needed but not determined
847 yet. */
848 bfd_vma tlsdesc_plt;
849 /* The offset into sgot of the GOT entry used by the PLT entry
850 above. */
851 bfd_vma tlsdesc_got;
852
853 /* The index of the next R_X86_64_JUMP_SLOT entry in .rela.plt. */
854 bfd_vma next_jump_slot_index;
855 /* The index of the next R_X86_64_IRELATIVE entry in .rela.plt. */
856 bfd_vma next_irelative_index;
857 };
858
859 /* Get the x86-64 ELF linker hash table from a link_info structure. */
860
861 #define elf_x86_64_hash_table(p) \
862 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
863 == X86_64_ELF_DATA ? ((struct elf_x86_64_link_hash_table *) ((p)->hash)) : NULL)
864
865 #define elf_x86_64_compute_jump_table_size(htab) \
866 ((htab)->elf.srelplt->reloc_count * GOT_ENTRY_SIZE)
867
868 /* Create an entry in an x86-64 ELF linker hash table. */
869
870 static struct bfd_hash_entry *
871 elf_x86_64_link_hash_newfunc (struct bfd_hash_entry *entry,
872 struct bfd_hash_table *table,
873 const char *string)
874 {
875 /* Allocate the structure if it has not already been allocated by a
876 subclass. */
877 if (entry == NULL)
878 {
879 entry = (struct bfd_hash_entry *)
880 bfd_hash_allocate (table,
881 sizeof (struct elf_x86_64_link_hash_entry));
882 if (entry == NULL)
883 return entry;
884 }
885
886 /* Call the allocation method of the superclass. */
887 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
888 if (entry != NULL)
889 {
890 struct elf_x86_64_link_hash_entry *eh;
891
892 eh = (struct elf_x86_64_link_hash_entry *) entry;
893 eh->dyn_relocs = NULL;
894 eh->tls_type = GOT_UNKNOWN;
895 eh->has_bnd_reloc = FALSE;
896 eh->plt_bnd.offset = (bfd_vma) -1;
897 eh->tlsdesc_got = (bfd_vma) -1;
898 }
899
900 return entry;
901 }
902
903 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
904 for local symbol so that we can handle local STT_GNU_IFUNC symbols
905 as global symbol. We reuse indx and dynstr_index for local symbol
906 hash since they aren't used by global symbols in this backend. */
907
908 static hashval_t
909 elf_x86_64_local_htab_hash (const void *ptr)
910 {
911 struct elf_link_hash_entry *h
912 = (struct elf_link_hash_entry *) ptr;
913 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
914 }
915
916 /* Compare local hash entries. */
917
918 static int
919 elf_x86_64_local_htab_eq (const void *ptr1, const void *ptr2)
920 {
921 struct elf_link_hash_entry *h1
922 = (struct elf_link_hash_entry *) ptr1;
923 struct elf_link_hash_entry *h2
924 = (struct elf_link_hash_entry *) ptr2;
925
926 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
927 }
928
929 /* Find and/or create a hash entry for local symbol. */
930
931 static struct elf_link_hash_entry *
932 elf_x86_64_get_local_sym_hash (struct elf_x86_64_link_hash_table *htab,
933 bfd *abfd, const Elf_Internal_Rela *rel,
934 bfd_boolean create)
935 {
936 struct elf_x86_64_link_hash_entry e, *ret;
937 asection *sec = abfd->sections;
938 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
939 htab->r_sym (rel->r_info));
940 void **slot;
941
942 e.elf.indx = sec->id;
943 e.elf.dynstr_index = htab->r_sym (rel->r_info);
944 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
945 create ? INSERT : NO_INSERT);
946
947 if (!slot)
948 return NULL;
949
950 if (*slot)
951 {
952 ret = (struct elf_x86_64_link_hash_entry *) *slot;
953 return &ret->elf;
954 }
955
956 ret = (struct elf_x86_64_link_hash_entry *)
957 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
958 sizeof (struct elf_x86_64_link_hash_entry));
959 if (ret)
960 {
961 memset (ret, 0, sizeof (*ret));
962 ret->elf.indx = sec->id;
963 ret->elf.dynstr_index = htab->r_sym (rel->r_info);
964 ret->elf.dynindx = -1;
965 *slot = ret;
966 }
967 return &ret->elf;
968 }
969
970 /* Destroy an X86-64 ELF linker hash table. */
971
972 static void
973 elf_x86_64_link_hash_table_free (bfd *obfd)
974 {
975 struct elf_x86_64_link_hash_table *htab
976 = (struct elf_x86_64_link_hash_table *) obfd->link.hash;
977
978 if (htab->loc_hash_table)
979 htab_delete (htab->loc_hash_table);
980 if (htab->loc_hash_memory)
981 objalloc_free ((struct objalloc *) htab->loc_hash_memory);
982 _bfd_elf_link_hash_table_free (obfd);
983 }
984
985 /* Create an X86-64 ELF linker hash table. */
986
987 static struct bfd_link_hash_table *
988 elf_x86_64_link_hash_table_create (bfd *abfd)
989 {
990 struct elf_x86_64_link_hash_table *ret;
991 bfd_size_type amt = sizeof (struct elf_x86_64_link_hash_table);
992
993 ret = (struct elf_x86_64_link_hash_table *) bfd_zmalloc (amt);
994 if (ret == NULL)
995 return NULL;
996
997 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
998 elf_x86_64_link_hash_newfunc,
999 sizeof (struct elf_x86_64_link_hash_entry),
1000 X86_64_ELF_DATA))
1001 {
1002 free (ret);
1003 return NULL;
1004 }
1005
1006 if (ABI_64_P (abfd))
1007 {
1008 ret->r_info = elf64_r_info;
1009 ret->r_sym = elf64_r_sym;
1010 ret->pointer_r_type = R_X86_64_64;
1011 ret->dynamic_interpreter = ELF64_DYNAMIC_INTERPRETER;
1012 ret->dynamic_interpreter_size = sizeof ELF64_DYNAMIC_INTERPRETER;
1013 }
1014 else
1015 {
1016 ret->r_info = elf32_r_info;
1017 ret->r_sym = elf32_r_sym;
1018 ret->pointer_r_type = R_X86_64_32;
1019 ret->dynamic_interpreter = ELF32_DYNAMIC_INTERPRETER;
1020 ret->dynamic_interpreter_size = sizeof ELF32_DYNAMIC_INTERPRETER;
1021 }
1022
1023 ret->loc_hash_table = htab_try_create (1024,
1024 elf_x86_64_local_htab_hash,
1025 elf_x86_64_local_htab_eq,
1026 NULL);
1027 ret->loc_hash_memory = objalloc_create ();
1028 if (!ret->loc_hash_table || !ret->loc_hash_memory)
1029 {
1030 elf_x86_64_link_hash_table_free (abfd);
1031 return NULL;
1032 }
1033 ret->elf.root.hash_table_free = elf_x86_64_link_hash_table_free;
1034
1035 return &ret->elf.root;
1036 }
1037
1038 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
1039 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
1040 hash table. */
1041
1042 static bfd_boolean
1043 elf_x86_64_create_dynamic_sections (bfd *dynobj,
1044 struct bfd_link_info *info)
1045 {
1046 struct elf_x86_64_link_hash_table *htab;
1047
1048 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
1049 return FALSE;
1050
1051 htab = elf_x86_64_hash_table (info);
1052 if (htab == NULL)
1053 return FALSE;
1054
1055 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
1056 if (!info->shared)
1057 htab->srelbss = bfd_get_linker_section (dynobj, ".rela.bss");
1058
1059 if (!htab->sdynbss
1060 || (!info->shared && !htab->srelbss))
1061 abort ();
1062
1063 if (!info->no_ld_generated_unwind_info
1064 && htab->plt_eh_frame == NULL
1065 && htab->elf.splt != NULL)
1066 {
1067 flagword flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
1068 | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1069 | SEC_LINKER_CREATED);
1070 htab->plt_eh_frame
1071 = bfd_make_section_anyway_with_flags (dynobj, ".eh_frame", flags);
1072 if (htab->plt_eh_frame == NULL
1073 || !bfd_set_section_alignment (dynobj, htab->plt_eh_frame, 3))
1074 return FALSE;
1075 }
1076 return TRUE;
1077 }
1078
1079 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1080
1081 static void
1082 elf_x86_64_copy_indirect_symbol (struct bfd_link_info *info,
1083 struct elf_link_hash_entry *dir,
1084 struct elf_link_hash_entry *ind)
1085 {
1086 struct elf_x86_64_link_hash_entry *edir, *eind;
1087
1088 edir = (struct elf_x86_64_link_hash_entry *) dir;
1089 eind = (struct elf_x86_64_link_hash_entry *) ind;
1090
1091 if (!edir->has_bnd_reloc)
1092 edir->has_bnd_reloc = eind->has_bnd_reloc;
1093
1094 if (eind->dyn_relocs != NULL)
1095 {
1096 if (edir->dyn_relocs != NULL)
1097 {
1098 struct elf_dyn_relocs **pp;
1099 struct elf_dyn_relocs *p;
1100
1101 /* Add reloc counts against the indirect sym to the direct sym
1102 list. Merge any entries against the same section. */
1103 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
1104 {
1105 struct elf_dyn_relocs *q;
1106
1107 for (q = edir->dyn_relocs; q != NULL; q = q->next)
1108 if (q->sec == p->sec)
1109 {
1110 q->pc_count += p->pc_count;
1111 q->count += p->count;
1112 *pp = p->next;
1113 break;
1114 }
1115 if (q == NULL)
1116 pp = &p->next;
1117 }
1118 *pp = edir->dyn_relocs;
1119 }
1120
1121 edir->dyn_relocs = eind->dyn_relocs;
1122 eind->dyn_relocs = NULL;
1123 }
1124
1125 if (ind->root.type == bfd_link_hash_indirect
1126 && dir->got.refcount <= 0)
1127 {
1128 edir->tls_type = eind->tls_type;
1129 eind->tls_type = GOT_UNKNOWN;
1130 }
1131
1132 if (ELIMINATE_COPY_RELOCS
1133 && ind->root.type != bfd_link_hash_indirect
1134 && dir->dynamic_adjusted)
1135 {
1136 /* If called to transfer flags for a weakdef during processing
1137 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1138 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1139 dir->ref_dynamic |= ind->ref_dynamic;
1140 dir->ref_regular |= ind->ref_regular;
1141 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1142 dir->needs_plt |= ind->needs_plt;
1143 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1144 }
1145 else
1146 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
1147 }
1148
1149 static bfd_boolean
1150 elf64_x86_64_elf_object_p (bfd *abfd)
1151 {
1152 /* Set the right machine number for an x86-64 elf64 file. */
1153 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
1154 return TRUE;
1155 }
1156
1157 static bfd_boolean
1158 elf32_x86_64_elf_object_p (bfd *abfd)
1159 {
1160 /* Set the right machine number for an x86-64 elf32 file. */
1161 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x64_32);
1162 return TRUE;
1163 }
1164
1165 /* Return TRUE if the TLS access code sequence support transition
1166 from R_TYPE. */
1167
1168 static bfd_boolean
1169 elf_x86_64_check_tls_transition (bfd *abfd,
1170 struct bfd_link_info *info,
1171 asection *sec,
1172 bfd_byte *contents,
1173 Elf_Internal_Shdr *symtab_hdr,
1174 struct elf_link_hash_entry **sym_hashes,
1175 unsigned int r_type,
1176 const Elf_Internal_Rela *rel,
1177 const Elf_Internal_Rela *relend)
1178 {
1179 unsigned int val;
1180 unsigned long r_symndx;
1181 bfd_boolean largepic = FALSE;
1182 struct elf_link_hash_entry *h;
1183 bfd_vma offset;
1184 struct elf_x86_64_link_hash_table *htab;
1185
1186 /* Get the section contents. */
1187 if (contents == NULL)
1188 {
1189 if (elf_section_data (sec)->this_hdr.contents != NULL)
1190 contents = elf_section_data (sec)->this_hdr.contents;
1191 else
1192 {
1193 /* FIXME: How to better handle error condition? */
1194 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
1195 return FALSE;
1196
1197 /* Cache the section contents for elf_link_input_bfd. */
1198 elf_section_data (sec)->this_hdr.contents = contents;
1199 }
1200 }
1201
1202 htab = elf_x86_64_hash_table (info);
1203 offset = rel->r_offset;
1204 switch (r_type)
1205 {
1206 case R_X86_64_TLSGD:
1207 case R_X86_64_TLSLD:
1208 if ((rel + 1) >= relend)
1209 return FALSE;
1210
1211 if (r_type == R_X86_64_TLSGD)
1212 {
1213 /* Check transition from GD access model. For 64bit, only
1214 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
1215 .word 0x6666; rex64; call __tls_get_addr
1216 can transit to different access model. For 32bit, only
1217 leaq foo@tlsgd(%rip), %rdi
1218 .word 0x6666; rex64; call __tls_get_addr
1219 can transit to different access model. For largepic
1220 we also support:
1221 leaq foo@tlsgd(%rip), %rdi
1222 movabsq $__tls_get_addr@pltoff, %rax
1223 addq $rbx, %rax
1224 call *%rax. */
1225
1226 static const unsigned char call[] = { 0x66, 0x66, 0x48, 0xe8 };
1227 static const unsigned char leaq[] = { 0x66, 0x48, 0x8d, 0x3d };
1228
1229 if ((offset + 12) > sec->size)
1230 return FALSE;
1231
1232 if (memcmp (contents + offset + 4, call, 4) != 0)
1233 {
1234 if (!ABI_64_P (abfd)
1235 || (offset + 19) > sec->size
1236 || offset < 3
1237 || memcmp (contents + offset - 3, leaq + 1, 3) != 0
1238 || memcmp (contents + offset + 4, "\x48\xb8", 2) != 0
1239 || memcmp (contents + offset + 14, "\x48\x01\xd8\xff\xd0", 5)
1240 != 0)
1241 return FALSE;
1242 largepic = TRUE;
1243 }
1244 else if (ABI_64_P (abfd))
1245 {
1246 if (offset < 4
1247 || memcmp (contents + offset - 4, leaq, 4) != 0)
1248 return FALSE;
1249 }
1250 else
1251 {
1252 if (offset < 3
1253 || memcmp (contents + offset - 3, leaq + 1, 3) != 0)
1254 return FALSE;
1255 }
1256 }
1257 else
1258 {
1259 /* Check transition from LD access model. Only
1260 leaq foo@tlsld(%rip), %rdi;
1261 call __tls_get_addr
1262 can transit to different access model. For largepic
1263 we also support:
1264 leaq foo@tlsld(%rip), %rdi
1265 movabsq $__tls_get_addr@pltoff, %rax
1266 addq $rbx, %rax
1267 call *%rax. */
1268
1269 static const unsigned char lea[] = { 0x48, 0x8d, 0x3d };
1270
1271 if (offset < 3 || (offset + 9) > sec->size)
1272 return FALSE;
1273
1274 if (memcmp (contents + offset - 3, lea, 3) != 0)
1275 return FALSE;
1276
1277 if (0xe8 != *(contents + offset + 4))
1278 {
1279 if (!ABI_64_P (abfd)
1280 || (offset + 19) > sec->size
1281 || memcmp (contents + offset + 4, "\x48\xb8", 2) != 0
1282 || memcmp (contents + offset + 14, "\x48\x01\xd8\xff\xd0", 5)
1283 != 0)
1284 return FALSE;
1285 largepic = TRUE;
1286 }
1287 }
1288
1289 r_symndx = htab->r_sym (rel[1].r_info);
1290 if (r_symndx < symtab_hdr->sh_info)
1291 return FALSE;
1292
1293 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1294 /* Use strncmp to check __tls_get_addr since __tls_get_addr
1295 may be versioned. */
1296 return (h != NULL
1297 && h->root.root.string != NULL
1298 && (largepic
1299 ? ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PLTOFF64
1300 : (ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PC32
1301 || ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PLT32))
1302 && (strncmp (h->root.root.string,
1303 "__tls_get_addr", 14) == 0));
1304
1305 case R_X86_64_GOTTPOFF:
1306 /* Check transition from IE access model:
1307 mov foo@gottpoff(%rip), %reg
1308 add foo@gottpoff(%rip), %reg
1309 */
1310
1311 /* Check REX prefix first. */
1312 if (offset >= 3 && (offset + 4) <= sec->size)
1313 {
1314 val = bfd_get_8 (abfd, contents + offset - 3);
1315 if (val != 0x48 && val != 0x4c)
1316 {
1317 /* X32 may have 0x44 REX prefix or no REX prefix. */
1318 if (ABI_64_P (abfd))
1319 return FALSE;
1320 }
1321 }
1322 else
1323 {
1324 /* X32 may not have any REX prefix. */
1325 if (ABI_64_P (abfd))
1326 return FALSE;
1327 if (offset < 2 || (offset + 3) > sec->size)
1328 return FALSE;
1329 }
1330
1331 val = bfd_get_8 (abfd, contents + offset - 2);
1332 if (val != 0x8b && val != 0x03)
1333 return FALSE;
1334
1335 val = bfd_get_8 (abfd, contents + offset - 1);
1336 return (val & 0xc7) == 5;
1337
1338 case R_X86_64_GOTPC32_TLSDESC:
1339 /* Check transition from GDesc access model:
1340 leaq x@tlsdesc(%rip), %rax
1341
1342 Make sure it's a leaq adding rip to a 32-bit offset
1343 into any register, although it's probably almost always
1344 going to be rax. */
1345
1346 if (offset < 3 || (offset + 4) > sec->size)
1347 return FALSE;
1348
1349 val = bfd_get_8 (abfd, contents + offset - 3);
1350 if ((val & 0xfb) != 0x48)
1351 return FALSE;
1352
1353 if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d)
1354 return FALSE;
1355
1356 val = bfd_get_8 (abfd, contents + offset - 1);
1357 return (val & 0xc7) == 0x05;
1358
1359 case R_X86_64_TLSDESC_CALL:
1360 /* Check transition from GDesc access model:
1361 call *x@tlsdesc(%rax)
1362 */
1363 if (offset + 2 <= sec->size)
1364 {
1365 /* Make sure that it's a call *x@tlsdesc(%rax). */
1366 static const unsigned char call[] = { 0xff, 0x10 };
1367 return memcmp (contents + offset, call, 2) == 0;
1368 }
1369
1370 return FALSE;
1371
1372 default:
1373 abort ();
1374 }
1375 }
1376
1377 /* Return TRUE if the TLS access transition is OK or no transition
1378 will be performed. Update R_TYPE if there is a transition. */
1379
1380 static bfd_boolean
1381 elf_x86_64_tls_transition (struct bfd_link_info *info, bfd *abfd,
1382 asection *sec, bfd_byte *contents,
1383 Elf_Internal_Shdr *symtab_hdr,
1384 struct elf_link_hash_entry **sym_hashes,
1385 unsigned int *r_type, int tls_type,
1386 const Elf_Internal_Rela *rel,
1387 const Elf_Internal_Rela *relend,
1388 struct elf_link_hash_entry *h,
1389 unsigned long r_symndx)
1390 {
1391 unsigned int from_type = *r_type;
1392 unsigned int to_type = from_type;
1393 bfd_boolean check = TRUE;
1394
1395 /* Skip TLS transition for functions. */
1396 if (h != NULL
1397 && (h->type == STT_FUNC
1398 || h->type == STT_GNU_IFUNC))
1399 return TRUE;
1400
1401 switch (from_type)
1402 {
1403 case R_X86_64_TLSGD:
1404 case R_X86_64_GOTPC32_TLSDESC:
1405 case R_X86_64_TLSDESC_CALL:
1406 case R_X86_64_GOTTPOFF:
1407 if (info->executable)
1408 {
1409 if (h == NULL)
1410 to_type = R_X86_64_TPOFF32;
1411 else
1412 to_type = R_X86_64_GOTTPOFF;
1413 }
1414
1415 /* When we are called from elf_x86_64_relocate_section,
1416 CONTENTS isn't NULL and there may be additional transitions
1417 based on TLS_TYPE. */
1418 if (contents != NULL)
1419 {
1420 unsigned int new_to_type = to_type;
1421
1422 if (info->executable
1423 && h != NULL
1424 && h->dynindx == -1
1425 && tls_type == GOT_TLS_IE)
1426 new_to_type = R_X86_64_TPOFF32;
1427
1428 if (to_type == R_X86_64_TLSGD
1429 || to_type == R_X86_64_GOTPC32_TLSDESC
1430 || to_type == R_X86_64_TLSDESC_CALL)
1431 {
1432 if (tls_type == GOT_TLS_IE)
1433 new_to_type = R_X86_64_GOTTPOFF;
1434 }
1435
1436 /* We checked the transition before when we were called from
1437 elf_x86_64_check_relocs. We only want to check the new
1438 transition which hasn't been checked before. */
1439 check = new_to_type != to_type && from_type == to_type;
1440 to_type = new_to_type;
1441 }
1442
1443 break;
1444
1445 case R_X86_64_TLSLD:
1446 if (info->executable)
1447 to_type = R_X86_64_TPOFF32;
1448 break;
1449
1450 default:
1451 return TRUE;
1452 }
1453
1454 /* Return TRUE if there is no transition. */
1455 if (from_type == to_type)
1456 return TRUE;
1457
1458 /* Check if the transition can be performed. */
1459 if (check
1460 && ! elf_x86_64_check_tls_transition (abfd, info, sec, contents,
1461 symtab_hdr, sym_hashes,
1462 from_type, rel, relend))
1463 {
1464 reloc_howto_type *from, *to;
1465 const char *name;
1466
1467 from = elf_x86_64_rtype_to_howto (abfd, from_type);
1468 to = elf_x86_64_rtype_to_howto (abfd, to_type);
1469
1470 if (h)
1471 name = h->root.root.string;
1472 else
1473 {
1474 struct elf_x86_64_link_hash_table *htab;
1475
1476 htab = elf_x86_64_hash_table (info);
1477 if (htab == NULL)
1478 name = "*unknown*";
1479 else
1480 {
1481 Elf_Internal_Sym *isym;
1482
1483 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1484 abfd, r_symndx);
1485 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1486 }
1487 }
1488
1489 (*_bfd_error_handler)
1490 (_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
1491 "in section `%A' failed"),
1492 abfd, sec, from->name, to->name, name,
1493 (unsigned long) rel->r_offset);
1494 bfd_set_error (bfd_error_bad_value);
1495 return FALSE;
1496 }
1497
1498 *r_type = to_type;
1499 return TRUE;
1500 }
1501
1502 /* Look through the relocs for a section during the first phase, and
1503 calculate needed space in the global offset table, procedure
1504 linkage table, and dynamic reloc sections. */
1505
1506 static bfd_boolean
1507 elf_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info,
1508 asection *sec,
1509 const Elf_Internal_Rela *relocs)
1510 {
1511 struct elf_x86_64_link_hash_table *htab;
1512 Elf_Internal_Shdr *symtab_hdr;
1513 struct elf_link_hash_entry **sym_hashes;
1514 const Elf_Internal_Rela *rel;
1515 const Elf_Internal_Rela *rel_end;
1516 asection *sreloc;
1517
1518 if (info->relocatable)
1519 return TRUE;
1520
1521 BFD_ASSERT (is_x86_64_elf (abfd));
1522
1523 htab = elf_x86_64_hash_table (info);
1524 if (htab == NULL)
1525 return FALSE;
1526
1527 symtab_hdr = &elf_symtab_hdr (abfd);
1528 sym_hashes = elf_sym_hashes (abfd);
1529
1530 sreloc = NULL;
1531
1532 rel_end = relocs + sec->reloc_count;
1533 for (rel = relocs; rel < rel_end; rel++)
1534 {
1535 unsigned int r_type;
1536 unsigned long r_symndx;
1537 struct elf_link_hash_entry *h;
1538 Elf_Internal_Sym *isym;
1539 const char *name;
1540 bfd_boolean size_reloc;
1541
1542 r_symndx = htab->r_sym (rel->r_info);
1543 r_type = ELF32_R_TYPE (rel->r_info);
1544
1545 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1546 {
1547 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1548 abfd, r_symndx);
1549 return FALSE;
1550 }
1551
1552 if (r_symndx < symtab_hdr->sh_info)
1553 {
1554 /* A local symbol. */
1555 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1556 abfd, r_symndx);
1557 if (isym == NULL)
1558 return FALSE;
1559
1560 /* Check relocation against local STT_GNU_IFUNC symbol. */
1561 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1562 {
1563 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel,
1564 TRUE);
1565 if (h == NULL)
1566 return FALSE;
1567
1568 /* Fake a STT_GNU_IFUNC symbol. */
1569 h->type = STT_GNU_IFUNC;
1570 h->def_regular = 1;
1571 h->ref_regular = 1;
1572 h->forced_local = 1;
1573 h->root.type = bfd_link_hash_defined;
1574 }
1575 else
1576 h = NULL;
1577 }
1578 else
1579 {
1580 isym = NULL;
1581 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1582 while (h->root.type == bfd_link_hash_indirect
1583 || h->root.type == bfd_link_hash_warning)
1584 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1585 }
1586
1587 /* Check invalid x32 relocations. */
1588 if (!ABI_64_P (abfd))
1589 switch (r_type)
1590 {
1591 default:
1592 break;
1593
1594 case R_X86_64_DTPOFF64:
1595 case R_X86_64_TPOFF64:
1596 case R_X86_64_PC64:
1597 case R_X86_64_GOTOFF64:
1598 case R_X86_64_GOT64:
1599 case R_X86_64_GOTPCREL64:
1600 case R_X86_64_GOTPC64:
1601 case R_X86_64_GOTPLT64:
1602 case R_X86_64_PLTOFF64:
1603 {
1604 if (h)
1605 name = h->root.root.string;
1606 else
1607 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1608 NULL);
1609 (*_bfd_error_handler)
1610 (_("%B: relocation %s against symbol `%s' isn't "
1611 "supported in x32 mode"), abfd,
1612 x86_64_elf_howto_table[r_type].name, name);
1613 bfd_set_error (bfd_error_bad_value);
1614 return FALSE;
1615 }
1616 break;
1617 }
1618
1619 if (h != NULL)
1620 {
1621 /* Create the ifunc sections for static executables. If we
1622 never see an indirect function symbol nor we are building
1623 a static executable, those sections will be empty and
1624 won't appear in output. */
1625 switch (r_type)
1626 {
1627 default:
1628 break;
1629
1630 case R_X86_64_PC32_BND:
1631 case R_X86_64_PLT32_BND:
1632 /* MPX PLT is supported only if elf_x86_64_arch_bed
1633 is used in 64-bit mode. */
1634 if (ABI_64_P (abfd)
1635 && (get_elf_x86_64_backend_data (abfd)
1636 == &elf_x86_64_arch_bed))
1637 {
1638 elf_x86_64_hash_entry (h)->has_bnd_reloc = TRUE;
1639
1640 /* Create the second PLT for Intel MPX support. */
1641 if (htab->plt_bnd == NULL)
1642 {
1643 unsigned int plt_bnd_align;
1644 const struct elf_backend_data *bed;
1645
1646 bed = get_elf_backend_data (info->output_bfd);
1647 switch (sizeof (elf_x86_64_bnd_plt2_entry))
1648 {
1649 case 8:
1650 plt_bnd_align = 3;
1651 break;
1652 case 16:
1653 plt_bnd_align = 4;
1654 break;
1655 default:
1656 abort ();
1657 }
1658
1659 if (htab->elf.dynobj == NULL)
1660 htab->elf.dynobj = abfd;
1661 htab->plt_bnd
1662 = bfd_make_section_anyway_with_flags (htab->elf.dynobj,
1663 ".plt.bnd",
1664 (bed->dynamic_sec_flags
1665 | SEC_ALLOC
1666 | SEC_CODE
1667 | SEC_LOAD
1668 | SEC_READONLY));
1669 if (htab->plt_bnd == NULL
1670 || !bfd_set_section_alignment (htab->elf.dynobj,
1671 htab->plt_bnd,
1672 plt_bnd_align))
1673 return FALSE;
1674 }
1675 }
1676
1677 case R_X86_64_32S:
1678 case R_X86_64_32:
1679 case R_X86_64_64:
1680 case R_X86_64_PC32:
1681 case R_X86_64_PC64:
1682 case R_X86_64_PLT32:
1683 case R_X86_64_GOTPCREL:
1684 case R_X86_64_GOTPCREL64:
1685 if (htab->elf.dynobj == NULL)
1686 htab->elf.dynobj = abfd;
1687 if (!_bfd_elf_create_ifunc_sections (htab->elf.dynobj, info))
1688 return FALSE;
1689 break;
1690 }
1691
1692 /* It is referenced by a non-shared object. */
1693 h->ref_regular = 1;
1694 h->root.non_ir_ref = 1;
1695 }
1696
1697 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
1698 symtab_hdr, sym_hashes,
1699 &r_type, GOT_UNKNOWN,
1700 rel, rel_end, h, r_symndx))
1701 return FALSE;
1702
1703 switch (r_type)
1704 {
1705 case R_X86_64_TLSLD:
1706 htab->tls_ld_got.refcount += 1;
1707 goto create_got;
1708
1709 case R_X86_64_TPOFF32:
1710 if (!info->executable && ABI_64_P (abfd))
1711 {
1712 if (h)
1713 name = h->root.root.string;
1714 else
1715 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1716 NULL);
1717 (*_bfd_error_handler)
1718 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1719 abfd,
1720 x86_64_elf_howto_table[r_type].name, name);
1721 bfd_set_error (bfd_error_bad_value);
1722 return FALSE;
1723 }
1724 break;
1725
1726 case R_X86_64_GOTTPOFF:
1727 if (!info->executable)
1728 info->flags |= DF_STATIC_TLS;
1729 /* Fall through */
1730
1731 case R_X86_64_GOT32:
1732 case R_X86_64_GOTPCREL:
1733 case R_X86_64_TLSGD:
1734 case R_X86_64_GOT64:
1735 case R_X86_64_GOTPCREL64:
1736 case R_X86_64_GOTPLT64:
1737 case R_X86_64_GOTPC32_TLSDESC:
1738 case R_X86_64_TLSDESC_CALL:
1739 /* This symbol requires a global offset table entry. */
1740 {
1741 int tls_type, old_tls_type;
1742
1743 switch (r_type)
1744 {
1745 default: tls_type = GOT_NORMAL; break;
1746 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
1747 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
1748 case R_X86_64_GOTPC32_TLSDESC:
1749 case R_X86_64_TLSDESC_CALL:
1750 tls_type = GOT_TLS_GDESC; break;
1751 }
1752
1753 if (h != NULL)
1754 {
1755 if (r_type == R_X86_64_GOTPLT64)
1756 {
1757 /* This relocation indicates that we also need
1758 a PLT entry, as this is a function. We don't need
1759 a PLT entry for local symbols. */
1760 h->needs_plt = 1;
1761 h->plt.refcount += 1;
1762 }
1763 h->got.refcount += 1;
1764 old_tls_type = elf_x86_64_hash_entry (h)->tls_type;
1765 }
1766 else
1767 {
1768 bfd_signed_vma *local_got_refcounts;
1769
1770 /* This is a global offset table entry for a local symbol. */
1771 local_got_refcounts = elf_local_got_refcounts (abfd);
1772 if (local_got_refcounts == NULL)
1773 {
1774 bfd_size_type size;
1775
1776 size = symtab_hdr->sh_info;
1777 size *= sizeof (bfd_signed_vma)
1778 + sizeof (bfd_vma) + sizeof (char);
1779 local_got_refcounts = ((bfd_signed_vma *)
1780 bfd_zalloc (abfd, size));
1781 if (local_got_refcounts == NULL)
1782 return FALSE;
1783 elf_local_got_refcounts (abfd) = local_got_refcounts;
1784 elf_x86_64_local_tlsdesc_gotent (abfd)
1785 = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info);
1786 elf_x86_64_local_got_tls_type (abfd)
1787 = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
1788 }
1789 local_got_refcounts[r_symndx] += 1;
1790 old_tls_type
1791 = elf_x86_64_local_got_tls_type (abfd) [r_symndx];
1792 }
1793
1794 /* If a TLS symbol is accessed using IE at least once,
1795 there is no point to use dynamic model for it. */
1796 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1797 && (! GOT_TLS_GD_ANY_P (old_tls_type)
1798 || tls_type != GOT_TLS_IE))
1799 {
1800 if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type))
1801 tls_type = old_tls_type;
1802 else if (GOT_TLS_GD_ANY_P (old_tls_type)
1803 && GOT_TLS_GD_ANY_P (tls_type))
1804 tls_type |= old_tls_type;
1805 else
1806 {
1807 if (h)
1808 name = h->root.root.string;
1809 else
1810 name = bfd_elf_sym_name (abfd, symtab_hdr,
1811 isym, NULL);
1812 (*_bfd_error_handler)
1813 (_("%B: '%s' accessed both as normal and thread local symbol"),
1814 abfd, name);
1815 bfd_set_error (bfd_error_bad_value);
1816 return FALSE;
1817 }
1818 }
1819
1820 if (old_tls_type != tls_type)
1821 {
1822 if (h != NULL)
1823 elf_x86_64_hash_entry (h)->tls_type = tls_type;
1824 else
1825 elf_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
1826 }
1827 }
1828 /* Fall through */
1829
1830 case R_X86_64_GOTOFF64:
1831 case R_X86_64_GOTPC32:
1832 case R_X86_64_GOTPC64:
1833 create_got:
1834 if (htab->elf.sgot == NULL)
1835 {
1836 if (htab->elf.dynobj == NULL)
1837 htab->elf.dynobj = abfd;
1838 if (!_bfd_elf_create_got_section (htab->elf.dynobj,
1839 info))
1840 return FALSE;
1841 }
1842 break;
1843
1844 case R_X86_64_PLT32:
1845 case R_X86_64_PLT32_BND:
1846 /* This symbol requires a procedure linkage table entry. We
1847 actually build the entry in adjust_dynamic_symbol,
1848 because this might be a case of linking PIC code which is
1849 never referenced by a dynamic object, in which case we
1850 don't need to generate a procedure linkage table entry
1851 after all. */
1852
1853 /* If this is a local symbol, we resolve it directly without
1854 creating a procedure linkage table entry. */
1855 if (h == NULL)
1856 continue;
1857
1858 h->needs_plt = 1;
1859 h->plt.refcount += 1;
1860 break;
1861
1862 case R_X86_64_PLTOFF64:
1863 /* This tries to form the 'address' of a function relative
1864 to GOT. For global symbols we need a PLT entry. */
1865 if (h != NULL)
1866 {
1867 h->needs_plt = 1;
1868 h->plt.refcount += 1;
1869 }
1870 goto create_got;
1871
1872 case R_X86_64_SIZE32:
1873 case R_X86_64_SIZE64:
1874 size_reloc = TRUE;
1875 goto do_size;
1876
1877 case R_X86_64_32:
1878 if (!ABI_64_P (abfd))
1879 goto pointer;
1880 case R_X86_64_8:
1881 case R_X86_64_16:
1882 case R_X86_64_32S:
1883 /* Let's help debug shared library creation. These relocs
1884 cannot be used in shared libs. Don't error out for
1885 sections we don't care about, such as debug sections or
1886 non-constant sections. */
1887 if (info->shared
1888 && (sec->flags & SEC_ALLOC) != 0
1889 && (sec->flags & SEC_READONLY) != 0)
1890 {
1891 if (h)
1892 name = h->root.root.string;
1893 else
1894 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1895 (*_bfd_error_handler)
1896 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1897 abfd, x86_64_elf_howto_table[r_type].name, name);
1898 bfd_set_error (bfd_error_bad_value);
1899 return FALSE;
1900 }
1901 /* Fall through. */
1902
1903 case R_X86_64_PC8:
1904 case R_X86_64_PC16:
1905 case R_X86_64_PC32:
1906 case R_X86_64_PC32_BND:
1907 case R_X86_64_PC64:
1908 case R_X86_64_64:
1909 pointer:
1910 if (h != NULL && info->executable)
1911 {
1912 /* If this reloc is in a read-only section, we might
1913 need a copy reloc. We can't check reliably at this
1914 stage whether the section is read-only, as input
1915 sections have not yet been mapped to output sections.
1916 Tentatively set the flag for now, and correct in
1917 adjust_dynamic_symbol. */
1918 h->non_got_ref = 1;
1919
1920 /* We may need a .plt entry if the function this reloc
1921 refers to is in a shared lib. */
1922 h->plt.refcount += 1;
1923 if (r_type != R_X86_64_PC32
1924 && r_type != R_X86_64_PC32_BND
1925 && r_type != R_X86_64_PC64)
1926 h->pointer_equality_needed = 1;
1927 }
1928
1929 size_reloc = FALSE;
1930 do_size:
1931 /* If we are creating a shared library, and this is a reloc
1932 against a global symbol, or a non PC relative reloc
1933 against a local symbol, then we need to copy the reloc
1934 into the shared library. However, if we are linking with
1935 -Bsymbolic, we do not need to copy a reloc against a
1936 global symbol which is defined in an object we are
1937 including in the link (i.e., DEF_REGULAR is set). At
1938 this point we have not seen all the input files, so it is
1939 possible that DEF_REGULAR is not set now but will be set
1940 later (it is never cleared). In case of a weak definition,
1941 DEF_REGULAR may be cleared later by a strong definition in
1942 a shared library. We account for that possibility below by
1943 storing information in the relocs_copied field of the hash
1944 table entry. A similar situation occurs when creating
1945 shared libraries and symbol visibility changes render the
1946 symbol local.
1947
1948 If on the other hand, we are creating an executable, we
1949 may need to keep relocations for symbols satisfied by a
1950 dynamic library if we manage to avoid copy relocs for the
1951 symbol. */
1952 if ((info->shared
1953 && (sec->flags & SEC_ALLOC) != 0
1954 && (! IS_X86_64_PCREL_TYPE (r_type)
1955 || (h != NULL
1956 && (! SYMBOLIC_BIND (info, h)
1957 || h->root.type == bfd_link_hash_defweak
1958 || !h->def_regular))))
1959 || (ELIMINATE_COPY_RELOCS
1960 && !info->shared
1961 && (sec->flags & SEC_ALLOC) != 0
1962 && h != NULL
1963 && (h->root.type == bfd_link_hash_defweak
1964 || !h->def_regular)))
1965 {
1966 struct elf_dyn_relocs *p;
1967 struct elf_dyn_relocs **head;
1968
1969 /* We must copy these reloc types into the output file.
1970 Create a reloc section in dynobj and make room for
1971 this reloc. */
1972 if (sreloc == NULL)
1973 {
1974 if (htab->elf.dynobj == NULL)
1975 htab->elf.dynobj = abfd;
1976
1977 sreloc = _bfd_elf_make_dynamic_reloc_section
1978 (sec, htab->elf.dynobj, ABI_64_P (abfd) ? 3 : 2,
1979 abfd, /*rela?*/ TRUE);
1980
1981 if (sreloc == NULL)
1982 return FALSE;
1983 }
1984
1985 /* If this is a global symbol, we count the number of
1986 relocations we need for this symbol. */
1987 if (h != NULL)
1988 {
1989 head = &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs;
1990 }
1991 else
1992 {
1993 /* Track dynamic relocs needed for local syms too.
1994 We really need local syms available to do this
1995 easily. Oh well. */
1996 asection *s;
1997 void **vpp;
1998
1999 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
2000 abfd, r_symndx);
2001 if (isym == NULL)
2002 return FALSE;
2003
2004 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
2005 if (s == NULL)
2006 s = sec;
2007
2008 /* Beware of type punned pointers vs strict aliasing
2009 rules. */
2010 vpp = &(elf_section_data (s)->local_dynrel);
2011 head = (struct elf_dyn_relocs **)vpp;
2012 }
2013
2014 p = *head;
2015 if (p == NULL || p->sec != sec)
2016 {
2017 bfd_size_type amt = sizeof *p;
2018
2019 p = ((struct elf_dyn_relocs *)
2020 bfd_alloc (htab->elf.dynobj, amt));
2021 if (p == NULL)
2022 return FALSE;
2023 p->next = *head;
2024 *head = p;
2025 p->sec = sec;
2026 p->count = 0;
2027 p->pc_count = 0;
2028 }
2029
2030 p->count += 1;
2031 /* Count size relocation as PC-relative relocation. */
2032 if (IS_X86_64_PCREL_TYPE (r_type) || size_reloc)
2033 p->pc_count += 1;
2034 }
2035 break;
2036
2037 /* This relocation describes the C++ object vtable hierarchy.
2038 Reconstruct it for later use during GC. */
2039 case R_X86_64_GNU_VTINHERIT:
2040 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2041 return FALSE;
2042 break;
2043
2044 /* This relocation describes which C++ vtable entries are actually
2045 used. Record for later use during GC. */
2046 case R_X86_64_GNU_VTENTRY:
2047 BFD_ASSERT (h != NULL);
2048 if (h != NULL
2049 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2050 return FALSE;
2051 break;
2052
2053 default:
2054 break;
2055 }
2056 }
2057
2058 return TRUE;
2059 }
2060
2061 /* Return the section that should be marked against GC for a given
2062 relocation. */
2063
2064 static asection *
2065 elf_x86_64_gc_mark_hook (asection *sec,
2066 struct bfd_link_info *info,
2067 Elf_Internal_Rela *rel,
2068 struct elf_link_hash_entry *h,
2069 Elf_Internal_Sym *sym)
2070 {
2071 if (h != NULL)
2072 switch (ELF32_R_TYPE (rel->r_info))
2073 {
2074 case R_X86_64_GNU_VTINHERIT:
2075 case R_X86_64_GNU_VTENTRY:
2076 return NULL;
2077 }
2078
2079 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
2080 }
2081
2082 /* Update the got entry reference counts for the section being removed. */
2083
2084 static bfd_boolean
2085 elf_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
2086 asection *sec,
2087 const Elf_Internal_Rela *relocs)
2088 {
2089 struct elf_x86_64_link_hash_table *htab;
2090 Elf_Internal_Shdr *symtab_hdr;
2091 struct elf_link_hash_entry **sym_hashes;
2092 bfd_signed_vma *local_got_refcounts;
2093 const Elf_Internal_Rela *rel, *relend;
2094
2095 if (info->relocatable)
2096 return TRUE;
2097
2098 htab = elf_x86_64_hash_table (info);
2099 if (htab == NULL)
2100 return FALSE;
2101
2102 elf_section_data (sec)->local_dynrel = NULL;
2103
2104 symtab_hdr = &elf_symtab_hdr (abfd);
2105 sym_hashes = elf_sym_hashes (abfd);
2106 local_got_refcounts = elf_local_got_refcounts (abfd);
2107
2108 htab = elf_x86_64_hash_table (info);
2109 relend = relocs + sec->reloc_count;
2110 for (rel = relocs; rel < relend; rel++)
2111 {
2112 unsigned long r_symndx;
2113 unsigned int r_type;
2114 struct elf_link_hash_entry *h = NULL;
2115
2116 r_symndx = htab->r_sym (rel->r_info);
2117 if (r_symndx >= symtab_hdr->sh_info)
2118 {
2119 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2120 while (h->root.type == bfd_link_hash_indirect
2121 || h->root.type == bfd_link_hash_warning)
2122 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2123 }
2124 else
2125 {
2126 /* A local symbol. */
2127 Elf_Internal_Sym *isym;
2128
2129 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
2130 abfd, r_symndx);
2131
2132 /* Check relocation against local STT_GNU_IFUNC symbol. */
2133 if (isym != NULL
2134 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
2135 {
2136 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel, FALSE);
2137 if (h == NULL)
2138 abort ();
2139 }
2140 }
2141
2142 if (h)
2143 {
2144 struct elf_x86_64_link_hash_entry *eh;
2145 struct elf_dyn_relocs **pp;
2146 struct elf_dyn_relocs *p;
2147
2148 eh = (struct elf_x86_64_link_hash_entry *) h;
2149
2150 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
2151 if (p->sec == sec)
2152 {
2153 /* Everything must go for SEC. */
2154 *pp = p->next;
2155 break;
2156 }
2157 }
2158
2159 r_type = ELF32_R_TYPE (rel->r_info);
2160 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
2161 symtab_hdr, sym_hashes,
2162 &r_type, GOT_UNKNOWN,
2163 rel, relend, h, r_symndx))
2164 return FALSE;
2165
2166 switch (r_type)
2167 {
2168 case R_X86_64_TLSLD:
2169 if (htab->tls_ld_got.refcount > 0)
2170 htab->tls_ld_got.refcount -= 1;
2171 break;
2172
2173 case R_X86_64_TLSGD:
2174 case R_X86_64_GOTPC32_TLSDESC:
2175 case R_X86_64_TLSDESC_CALL:
2176 case R_X86_64_GOTTPOFF:
2177 case R_X86_64_GOT32:
2178 case R_X86_64_GOTPCREL:
2179 case R_X86_64_GOT64:
2180 case R_X86_64_GOTPCREL64:
2181 case R_X86_64_GOTPLT64:
2182 if (h != NULL)
2183 {
2184 if (r_type == R_X86_64_GOTPLT64 && h->plt.refcount > 0)
2185 h->plt.refcount -= 1;
2186 if (h->got.refcount > 0)
2187 h->got.refcount -= 1;
2188 if (h->type == STT_GNU_IFUNC)
2189 {
2190 if (h->plt.refcount > 0)
2191 h->plt.refcount -= 1;
2192 }
2193 }
2194 else if (local_got_refcounts != NULL)
2195 {
2196 if (local_got_refcounts[r_symndx] > 0)
2197 local_got_refcounts[r_symndx] -= 1;
2198 }
2199 break;
2200
2201 case R_X86_64_8:
2202 case R_X86_64_16:
2203 case R_X86_64_32:
2204 case R_X86_64_64:
2205 case R_X86_64_32S:
2206 case R_X86_64_PC8:
2207 case R_X86_64_PC16:
2208 case R_X86_64_PC32:
2209 case R_X86_64_PC32_BND:
2210 case R_X86_64_PC64:
2211 case R_X86_64_SIZE32:
2212 case R_X86_64_SIZE64:
2213 if (info->shared
2214 && (h == NULL || h->type != STT_GNU_IFUNC))
2215 break;
2216 /* Fall thru */
2217
2218 case R_X86_64_PLT32:
2219 case R_X86_64_PLT32_BND:
2220 case R_X86_64_PLTOFF64:
2221 if (h != NULL)
2222 {
2223 if (h->plt.refcount > 0)
2224 h->plt.refcount -= 1;
2225 }
2226 break;
2227
2228 default:
2229 break;
2230 }
2231 }
2232
2233 return TRUE;
2234 }
2235
2236 /* Adjust a symbol defined by a dynamic object and referenced by a
2237 regular object. The current definition is in some section of the
2238 dynamic object, but we're not including those sections. We have to
2239 change the definition to something the rest of the link can
2240 understand. */
2241
2242 static bfd_boolean
2243 elf_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
2244 struct elf_link_hash_entry *h)
2245 {
2246 struct elf_x86_64_link_hash_table *htab;
2247 asection *s;
2248 struct elf_x86_64_link_hash_entry *eh;
2249 struct elf_dyn_relocs *p;
2250
2251 /* STT_GNU_IFUNC symbol must go through PLT. */
2252 if (h->type == STT_GNU_IFUNC)
2253 {
2254 /* All local STT_GNU_IFUNC references must be treate as local
2255 calls via local PLT. */
2256 if (h->ref_regular
2257 && SYMBOL_CALLS_LOCAL (info, h))
2258 {
2259 bfd_size_type pc_count = 0, count = 0;
2260 struct elf_dyn_relocs **pp;
2261
2262 eh = (struct elf_x86_64_link_hash_entry *) h;
2263 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2264 {
2265 pc_count += p->pc_count;
2266 p->count -= p->pc_count;
2267 p->pc_count = 0;
2268 count += p->count;
2269 if (p->count == 0)
2270 *pp = p->next;
2271 else
2272 pp = &p->next;
2273 }
2274
2275 if (pc_count || count)
2276 {
2277 h->needs_plt = 1;
2278 h->non_got_ref = 1;
2279 if (h->plt.refcount <= 0)
2280 h->plt.refcount = 1;
2281 else
2282 h->plt.refcount += 1;
2283 }
2284 }
2285
2286 if (h->plt.refcount <= 0)
2287 {
2288 h->plt.offset = (bfd_vma) -1;
2289 h->needs_plt = 0;
2290 }
2291 return TRUE;
2292 }
2293
2294 /* If this is a function, put it in the procedure linkage table. We
2295 will fill in the contents of the procedure linkage table later,
2296 when we know the address of the .got section. */
2297 if (h->type == STT_FUNC
2298 || h->needs_plt)
2299 {
2300 if (h->plt.refcount <= 0
2301 || SYMBOL_CALLS_LOCAL (info, h)
2302 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2303 && h->root.type == bfd_link_hash_undefweak))
2304 {
2305 /* This case can occur if we saw a PLT32 reloc in an input
2306 file, but the symbol was never referred to by a dynamic
2307 object, or if all references were garbage collected. In
2308 such a case, we don't actually need to build a procedure
2309 linkage table, and we can just do a PC32 reloc instead. */
2310 h->plt.offset = (bfd_vma) -1;
2311 h->needs_plt = 0;
2312 }
2313
2314 return TRUE;
2315 }
2316 else
2317 /* It's possible that we incorrectly decided a .plt reloc was
2318 needed for an R_X86_64_PC32 reloc to a non-function sym in
2319 check_relocs. We can't decide accurately between function and
2320 non-function syms in check-relocs; Objects loaded later in
2321 the link may change h->type. So fix it now. */
2322 h->plt.offset = (bfd_vma) -1;
2323
2324 /* If this is a weak symbol, and there is a real definition, the
2325 processor independent code will have arranged for us to see the
2326 real definition first, and we can just use the same value. */
2327 if (h->u.weakdef != NULL)
2328 {
2329 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
2330 || h->u.weakdef->root.type == bfd_link_hash_defweak);
2331 h->root.u.def.section = h->u.weakdef->root.u.def.section;
2332 h->root.u.def.value = h->u.weakdef->root.u.def.value;
2333 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
2334 h->non_got_ref = h->u.weakdef->non_got_ref;
2335 return TRUE;
2336 }
2337
2338 /* This is a reference to a symbol defined by a dynamic object which
2339 is not a function. */
2340
2341 /* If we are creating a shared library, we must presume that the
2342 only references to the symbol are via the global offset table.
2343 For such cases we need not do anything here; the relocations will
2344 be handled correctly by relocate_section. */
2345 if (info->shared)
2346 return TRUE;
2347
2348 /* If there are no references to this symbol that do not use the
2349 GOT, we don't need to generate a copy reloc. */
2350 if (!h->non_got_ref)
2351 return TRUE;
2352
2353 /* If -z nocopyreloc was given, we won't generate them either. */
2354 if (info->nocopyreloc)
2355 {
2356 h->non_got_ref = 0;
2357 return TRUE;
2358 }
2359
2360 if (ELIMINATE_COPY_RELOCS)
2361 {
2362 eh = (struct elf_x86_64_link_hash_entry *) h;
2363 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2364 {
2365 s = p->sec->output_section;
2366 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2367 break;
2368 }
2369
2370 /* If we didn't find any dynamic relocs in read-only sections, then
2371 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
2372 if (p == NULL)
2373 {
2374 h->non_got_ref = 0;
2375 return TRUE;
2376 }
2377 }
2378
2379 /* We must allocate the symbol in our .dynbss section, which will
2380 become part of the .bss section of the executable. There will be
2381 an entry for this symbol in the .dynsym section. The dynamic
2382 object will contain position independent code, so all references
2383 from the dynamic object to this symbol will go through the global
2384 offset table. The dynamic linker will use the .dynsym entry to
2385 determine the address it must put in the global offset table, so
2386 both the dynamic object and the regular object will refer to the
2387 same memory location for the variable. */
2388
2389 htab = elf_x86_64_hash_table (info);
2390 if (htab == NULL)
2391 return FALSE;
2392
2393 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
2394 to copy the initial value out of the dynamic object and into the
2395 runtime process image. */
2396 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
2397 {
2398 const struct elf_backend_data *bed;
2399 bed = get_elf_backend_data (info->output_bfd);
2400 htab->srelbss->size += bed->s->sizeof_rela;
2401 h->needs_copy = 1;
2402 }
2403
2404 s = htab->sdynbss;
2405
2406 return _bfd_elf_adjust_dynamic_copy (h, s);
2407 }
2408
2409 /* Allocate space in .plt, .got and associated reloc sections for
2410 dynamic relocs. */
2411
2412 static bfd_boolean
2413 elf_x86_64_allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
2414 {
2415 struct bfd_link_info *info;
2416 struct elf_x86_64_link_hash_table *htab;
2417 struct elf_x86_64_link_hash_entry *eh;
2418 struct elf_dyn_relocs *p;
2419 const struct elf_backend_data *bed;
2420 unsigned int plt_entry_size;
2421
2422 if (h->root.type == bfd_link_hash_indirect)
2423 return TRUE;
2424
2425 eh = (struct elf_x86_64_link_hash_entry *) h;
2426
2427 info = (struct bfd_link_info *) inf;
2428 htab = elf_x86_64_hash_table (info);
2429 if (htab == NULL)
2430 return FALSE;
2431 bed = get_elf_backend_data (info->output_bfd);
2432 plt_entry_size = GET_PLT_ENTRY_SIZE (info->output_bfd);
2433
2434 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
2435 here if it is defined and referenced in a non-shared object. */
2436 if (h->type == STT_GNU_IFUNC
2437 && h->def_regular)
2438 {
2439 if (_bfd_elf_allocate_ifunc_dyn_relocs (info, h,
2440 &eh->dyn_relocs,
2441 plt_entry_size,
2442 plt_entry_size,
2443 GOT_ENTRY_SIZE))
2444 {
2445 asection *s = htab->plt_bnd;
2446 if (h->plt.offset != (bfd_vma) -1 && s != NULL)
2447 {
2448 /* Use the .plt.bnd section if it is created. */
2449 eh->plt_bnd.offset = s->size;
2450
2451 /* Make room for this entry in the .plt.bnd section. */
2452 s->size += sizeof (elf_x86_64_legacy_plt2_entry);
2453 }
2454
2455 return TRUE;
2456 }
2457 else
2458 return FALSE;
2459 }
2460 else if (htab->elf.dynamic_sections_created
2461 && h->plt.refcount > 0)
2462 {
2463 /* Make sure this symbol is output as a dynamic symbol.
2464 Undefined weak syms won't yet be marked as dynamic. */
2465 if (h->dynindx == -1
2466 && !h->forced_local)
2467 {
2468 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2469 return FALSE;
2470 }
2471
2472 if (info->shared
2473 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
2474 {
2475 asection *s = htab->elf.splt;
2476 asection *bnd_s = htab->plt_bnd;
2477
2478 /* If this is the first .plt entry, make room for the special
2479 first entry. */
2480 if (s->size == 0)
2481 s->size = plt_entry_size;
2482
2483 h->plt.offset = s->size;
2484 if (bnd_s)
2485 eh->plt_bnd.offset = bnd_s->size;
2486
2487 /* If this symbol is not defined in a regular file, and we are
2488 not generating a shared library, then set the symbol to this
2489 location in the .plt. This is required to make function
2490 pointers compare as equal between the normal executable and
2491 the shared library. */
2492 if (! info->shared
2493 && !h->def_regular)
2494 {
2495 if (bnd_s)
2496 {
2497 /* We need to make a call to the entry of the second
2498 PLT instead of regular PLT entry. */
2499 h->root.u.def.section = bnd_s;
2500 h->root.u.def.value = eh->plt_bnd.offset;
2501 }
2502 else
2503 {
2504 h->root.u.def.section = s;
2505 h->root.u.def.value = h->plt.offset;
2506 }
2507 }
2508
2509 /* Make room for this entry. */
2510 s->size += plt_entry_size;
2511 if (bnd_s)
2512 {
2513 BFD_ASSERT (sizeof (elf_x86_64_bnd_plt2_entry)
2514 == sizeof (elf_x86_64_legacy_plt2_entry));
2515 bnd_s->size += sizeof (elf_x86_64_legacy_plt2_entry);
2516 }
2517
2518 /* We also need to make an entry in the .got.plt section, which
2519 will be placed in the .got section by the linker script. */
2520 htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
2521
2522 /* We also need to make an entry in the .rela.plt section. */
2523 htab->elf.srelplt->size += bed->s->sizeof_rela;
2524 htab->elf.srelplt->reloc_count++;
2525 }
2526 else
2527 {
2528 h->plt.offset = (bfd_vma) -1;
2529 h->needs_plt = 0;
2530 }
2531 }
2532 else
2533 {
2534 h->plt.offset = (bfd_vma) -1;
2535 h->needs_plt = 0;
2536 }
2537
2538 eh->tlsdesc_got = (bfd_vma) -1;
2539
2540 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
2541 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
2542 if (h->got.refcount > 0
2543 && info->executable
2544 && h->dynindx == -1
2545 && elf_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
2546 {
2547 h->got.offset = (bfd_vma) -1;
2548 }
2549 else if (h->got.refcount > 0)
2550 {
2551 asection *s;
2552 bfd_boolean dyn;
2553 int tls_type = elf_x86_64_hash_entry (h)->tls_type;
2554
2555 /* Make sure this symbol is output as a dynamic symbol.
2556 Undefined weak syms won't yet be marked as dynamic. */
2557 if (h->dynindx == -1
2558 && !h->forced_local)
2559 {
2560 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2561 return FALSE;
2562 }
2563
2564 if (GOT_TLS_GDESC_P (tls_type))
2565 {
2566 eh->tlsdesc_got = htab->elf.sgotplt->size
2567 - elf_x86_64_compute_jump_table_size (htab);
2568 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2569 h->got.offset = (bfd_vma) -2;
2570 }
2571 if (! GOT_TLS_GDESC_P (tls_type)
2572 || GOT_TLS_GD_P (tls_type))
2573 {
2574 s = htab->elf.sgot;
2575 h->got.offset = s->size;
2576 s->size += GOT_ENTRY_SIZE;
2577 if (GOT_TLS_GD_P (tls_type))
2578 s->size += GOT_ENTRY_SIZE;
2579 }
2580 dyn = htab->elf.dynamic_sections_created;
2581 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
2582 and two if global.
2583 R_X86_64_GOTTPOFF needs one dynamic relocation. */
2584 if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
2585 || tls_type == GOT_TLS_IE)
2586 htab->elf.srelgot->size += bed->s->sizeof_rela;
2587 else if (GOT_TLS_GD_P (tls_type))
2588 htab->elf.srelgot->size += 2 * bed->s->sizeof_rela;
2589 else if (! GOT_TLS_GDESC_P (tls_type)
2590 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2591 || h->root.type != bfd_link_hash_undefweak)
2592 && (info->shared
2593 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
2594 htab->elf.srelgot->size += bed->s->sizeof_rela;
2595 if (GOT_TLS_GDESC_P (tls_type))
2596 {
2597 htab->elf.srelplt->size += bed->s->sizeof_rela;
2598 htab->tlsdesc_plt = (bfd_vma) -1;
2599 }
2600 }
2601 else
2602 h->got.offset = (bfd_vma) -1;
2603
2604 if (eh->dyn_relocs == NULL)
2605 return TRUE;
2606
2607 /* In the shared -Bsymbolic case, discard space allocated for
2608 dynamic pc-relative relocs against symbols which turn out to be
2609 defined in regular objects. For the normal shared case, discard
2610 space for pc-relative relocs that have become local due to symbol
2611 visibility changes. */
2612
2613 if (info->shared)
2614 {
2615 /* Relocs that use pc_count are those that appear on a call
2616 insn, or certain REL relocs that can generated via assembly.
2617 We want calls to protected symbols to resolve directly to the
2618 function rather than going via the plt. If people want
2619 function pointer comparisons to work as expected then they
2620 should avoid writing weird assembly. */
2621 if (SYMBOL_CALLS_LOCAL (info, h))
2622 {
2623 struct elf_dyn_relocs **pp;
2624
2625 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2626 {
2627 p->count -= p->pc_count;
2628 p->pc_count = 0;
2629 if (p->count == 0)
2630 *pp = p->next;
2631 else
2632 pp = &p->next;
2633 }
2634 }
2635
2636 /* Also discard relocs on undefined weak syms with non-default
2637 visibility. */
2638 if (eh->dyn_relocs != NULL
2639 && h->root.type == bfd_link_hash_undefweak)
2640 {
2641 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2642 eh->dyn_relocs = NULL;
2643
2644 /* Make sure undefined weak symbols are output as a dynamic
2645 symbol in PIEs. */
2646 else if (h->dynindx == -1
2647 && ! h->forced_local
2648 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2649 return FALSE;
2650 }
2651
2652 }
2653 else if (ELIMINATE_COPY_RELOCS)
2654 {
2655 /* For the non-shared case, discard space for relocs against
2656 symbols which turn out to need copy relocs or are not
2657 dynamic. */
2658
2659 if (!h->non_got_ref
2660 && ((h->def_dynamic
2661 && !h->def_regular)
2662 || (htab->elf.dynamic_sections_created
2663 && (h->root.type == bfd_link_hash_undefweak
2664 || h->root.type == bfd_link_hash_undefined))))
2665 {
2666 /* Make sure this symbol is output as a dynamic symbol.
2667 Undefined weak syms won't yet be marked as dynamic. */
2668 if (h->dynindx == -1
2669 && ! h->forced_local
2670 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2671 return FALSE;
2672
2673 /* If that succeeded, we know we'll be keeping all the
2674 relocs. */
2675 if (h->dynindx != -1)
2676 goto keep;
2677 }
2678
2679 eh->dyn_relocs = NULL;
2680
2681 keep: ;
2682 }
2683
2684 /* Finally, allocate space. */
2685 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2686 {
2687 asection * sreloc;
2688
2689 sreloc = elf_section_data (p->sec)->sreloc;
2690
2691 BFD_ASSERT (sreloc != NULL);
2692
2693 sreloc->size += p->count * bed->s->sizeof_rela;
2694 }
2695
2696 return TRUE;
2697 }
2698
2699 /* Allocate space in .plt, .got and associated reloc sections for
2700 local dynamic relocs. */
2701
2702 static bfd_boolean
2703 elf_x86_64_allocate_local_dynrelocs (void **slot, void *inf)
2704 {
2705 struct elf_link_hash_entry *h
2706 = (struct elf_link_hash_entry *) *slot;
2707
2708 if (h->type != STT_GNU_IFUNC
2709 || !h->def_regular
2710 || !h->ref_regular
2711 || !h->forced_local
2712 || h->root.type != bfd_link_hash_defined)
2713 abort ();
2714
2715 return elf_x86_64_allocate_dynrelocs (h, inf);
2716 }
2717
2718 /* Find any dynamic relocs that apply to read-only sections. */
2719
2720 static bfd_boolean
2721 elf_x86_64_readonly_dynrelocs (struct elf_link_hash_entry *h,
2722 void * inf)
2723 {
2724 struct elf_x86_64_link_hash_entry *eh;
2725 struct elf_dyn_relocs *p;
2726
2727 /* Skip local IFUNC symbols. */
2728 if (h->forced_local && h->type == STT_GNU_IFUNC)
2729 return TRUE;
2730
2731 eh = (struct elf_x86_64_link_hash_entry *) h;
2732 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2733 {
2734 asection *s = p->sec->output_section;
2735
2736 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2737 {
2738 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2739
2740 info->flags |= DF_TEXTREL;
2741
2742 if (info->warn_shared_textrel && info->shared)
2743 info->callbacks->einfo (_("%P: %B: warning: relocation against `%s' in readonly section `%A'.\n"),
2744 p->sec->owner, h->root.root.string,
2745 p->sec);
2746
2747 /* Not an error, just cut short the traversal. */
2748 return FALSE;
2749 }
2750 }
2751 return TRUE;
2752 }
2753
2754 /* Convert
2755 mov foo@GOTPCREL(%rip), %reg
2756 to
2757 lea foo(%rip), %reg
2758 with the local symbol, foo. */
2759
2760 static bfd_boolean
2761 elf_x86_64_convert_mov_to_lea (bfd *abfd, asection *sec,
2762 struct bfd_link_info *link_info)
2763 {
2764 Elf_Internal_Shdr *symtab_hdr;
2765 Elf_Internal_Rela *internal_relocs;
2766 Elf_Internal_Rela *irel, *irelend;
2767 bfd_byte *contents;
2768 struct elf_x86_64_link_hash_table *htab;
2769 bfd_boolean changed_contents;
2770 bfd_boolean changed_relocs;
2771 bfd_signed_vma *local_got_refcounts;
2772
2773 /* Don't even try to convert non-ELF outputs. */
2774 if (!is_elf_hash_table (link_info->hash))
2775 return FALSE;
2776
2777 /* Nothing to do if there are no codes, no relocations or no output. */
2778 if ((sec->flags & (SEC_CODE | SEC_RELOC)) != (SEC_CODE | SEC_RELOC)
2779 || sec->reloc_count == 0
2780 || bfd_is_abs_section (sec->output_section))
2781 return TRUE;
2782
2783 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2784
2785 /* Load the relocations for this section. */
2786 internal_relocs = (_bfd_elf_link_read_relocs
2787 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
2788 link_info->keep_memory));
2789 if (internal_relocs == NULL)
2790 return FALSE;
2791
2792 htab = elf_x86_64_hash_table (link_info);
2793 changed_contents = FALSE;
2794 changed_relocs = FALSE;
2795 local_got_refcounts = elf_local_got_refcounts (abfd);
2796
2797 /* Get the section contents. */
2798 if (elf_section_data (sec)->this_hdr.contents != NULL)
2799 contents = elf_section_data (sec)->this_hdr.contents;
2800 else
2801 {
2802 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
2803 goto error_return;
2804 }
2805
2806 irelend = internal_relocs + sec->reloc_count;
2807 for (irel = internal_relocs; irel < irelend; irel++)
2808 {
2809 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
2810 unsigned int r_symndx = htab->r_sym (irel->r_info);
2811 unsigned int indx;
2812 struct elf_link_hash_entry *h;
2813
2814 if (r_type != R_X86_64_GOTPCREL)
2815 continue;
2816
2817 /* Get the symbol referred to by the reloc. */
2818 if (r_symndx < symtab_hdr->sh_info)
2819 {
2820 Elf_Internal_Sym *isym;
2821
2822 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
2823 abfd, r_symndx);
2824
2825 /* STT_GNU_IFUNC must keep R_X86_64_GOTPCREL relocation. */
2826 if (ELF_ST_TYPE (isym->st_info) != STT_GNU_IFUNC
2827 && irel->r_offset >= 2
2828 && bfd_get_8 (input_bfd,
2829 contents + irel->r_offset - 2) == 0x8b)
2830 {
2831 bfd_put_8 (output_bfd, 0x8d,
2832 contents + irel->r_offset - 2);
2833 irel->r_info = htab->r_info (r_symndx, R_X86_64_PC32);
2834 if (local_got_refcounts != NULL
2835 && local_got_refcounts[r_symndx] > 0)
2836 local_got_refcounts[r_symndx] -= 1;
2837 changed_contents = TRUE;
2838 changed_relocs = TRUE;
2839 }
2840 continue;
2841 }
2842
2843 indx = r_symndx - symtab_hdr->sh_info;
2844 h = elf_sym_hashes (abfd)[indx];
2845 BFD_ASSERT (h != NULL);
2846
2847 while (h->root.type == bfd_link_hash_indirect
2848 || h->root.type == bfd_link_hash_warning)
2849 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2850
2851 /* STT_GNU_IFUNC must keep R_X86_64_GOTPCREL relocation. We also
2852 avoid optimizing _DYNAMIC since ld.so may use its link-time
2853 address. */
2854 if (h->def_regular
2855 && h->type != STT_GNU_IFUNC
2856 && h != htab->elf.hdynamic
2857 && SYMBOL_REFERENCES_LOCAL (link_info, h)
2858 && irel->r_offset >= 2
2859 && bfd_get_8 (input_bfd,
2860 contents + irel->r_offset - 2) == 0x8b)
2861 {
2862 bfd_put_8 (output_bfd, 0x8d,
2863 contents + irel->r_offset - 2);
2864 irel->r_info = htab->r_info (r_symndx, R_X86_64_PC32);
2865 if (h->got.refcount > 0)
2866 h->got.refcount -= 1;
2867 changed_contents = TRUE;
2868 changed_relocs = TRUE;
2869 }
2870 }
2871
2872 if (contents != NULL
2873 && elf_section_data (sec)->this_hdr.contents != contents)
2874 {
2875 if (!changed_contents && !link_info->keep_memory)
2876 free (contents);
2877 else
2878 {
2879 /* Cache the section contents for elf_link_input_bfd. */
2880 elf_section_data (sec)->this_hdr.contents = contents;
2881 }
2882 }
2883
2884 if (elf_section_data (sec)->relocs != internal_relocs)
2885 {
2886 if (!changed_relocs)
2887 free (internal_relocs);
2888 else
2889 elf_section_data (sec)->relocs = internal_relocs;
2890 }
2891
2892 return TRUE;
2893
2894 error_return:
2895 if (contents != NULL
2896 && elf_section_data (sec)->this_hdr.contents != contents)
2897 free (contents);
2898 if (internal_relocs != NULL
2899 && elf_section_data (sec)->relocs != internal_relocs)
2900 free (internal_relocs);
2901 return FALSE;
2902 }
2903
2904 /* Set the sizes of the dynamic sections. */
2905
2906 static bfd_boolean
2907 elf_x86_64_size_dynamic_sections (bfd *output_bfd,
2908 struct bfd_link_info *info)
2909 {
2910 struct elf_x86_64_link_hash_table *htab;
2911 bfd *dynobj;
2912 asection *s;
2913 bfd_boolean relocs;
2914 bfd *ibfd;
2915 const struct elf_backend_data *bed;
2916
2917 htab = elf_x86_64_hash_table (info);
2918 if (htab == NULL)
2919 return FALSE;
2920 bed = get_elf_backend_data (output_bfd);
2921
2922 dynobj = htab->elf.dynobj;
2923 if (dynobj == NULL)
2924 abort ();
2925
2926 if (htab->elf.dynamic_sections_created)
2927 {
2928 /* Set the contents of the .interp section to the interpreter. */
2929 if (info->executable)
2930 {
2931 s = bfd_get_linker_section (dynobj, ".interp");
2932 if (s == NULL)
2933 abort ();
2934 s->size = htab->dynamic_interpreter_size;
2935 s->contents = (unsigned char *) htab->dynamic_interpreter;
2936 }
2937 }
2938
2939 /* Set up .got offsets for local syms, and space for local dynamic
2940 relocs. */
2941 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
2942 {
2943 bfd_signed_vma *local_got;
2944 bfd_signed_vma *end_local_got;
2945 char *local_tls_type;
2946 bfd_vma *local_tlsdesc_gotent;
2947 bfd_size_type locsymcount;
2948 Elf_Internal_Shdr *symtab_hdr;
2949 asection *srel;
2950
2951 if (! is_x86_64_elf (ibfd))
2952 continue;
2953
2954 for (s = ibfd->sections; s != NULL; s = s->next)
2955 {
2956 struct elf_dyn_relocs *p;
2957
2958 if (!elf_x86_64_convert_mov_to_lea (ibfd, s, info))
2959 return FALSE;
2960
2961 for (p = (struct elf_dyn_relocs *)
2962 (elf_section_data (s)->local_dynrel);
2963 p != NULL;
2964 p = p->next)
2965 {
2966 if (!bfd_is_abs_section (p->sec)
2967 && bfd_is_abs_section (p->sec->output_section))
2968 {
2969 /* Input section has been discarded, either because
2970 it is a copy of a linkonce section or due to
2971 linker script /DISCARD/, so we'll be discarding
2972 the relocs too. */
2973 }
2974 else if (p->count != 0)
2975 {
2976 srel = elf_section_data (p->sec)->sreloc;
2977 srel->size += p->count * bed->s->sizeof_rela;
2978 if ((p->sec->output_section->flags & SEC_READONLY) != 0
2979 && (info->flags & DF_TEXTREL) == 0)
2980 {
2981 info->flags |= DF_TEXTREL;
2982 if (info->warn_shared_textrel && info->shared)
2983 info->callbacks->einfo (_("%P: %B: warning: relocation in readonly section `%A'.\n"),
2984 p->sec->owner, p->sec);
2985 }
2986 }
2987 }
2988 }
2989
2990 local_got = elf_local_got_refcounts (ibfd);
2991 if (!local_got)
2992 continue;
2993
2994 symtab_hdr = &elf_symtab_hdr (ibfd);
2995 locsymcount = symtab_hdr->sh_info;
2996 end_local_got = local_got + locsymcount;
2997 local_tls_type = elf_x86_64_local_got_tls_type (ibfd);
2998 local_tlsdesc_gotent = elf_x86_64_local_tlsdesc_gotent (ibfd);
2999 s = htab->elf.sgot;
3000 srel = htab->elf.srelgot;
3001 for (; local_got < end_local_got;
3002 ++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
3003 {
3004 *local_tlsdesc_gotent = (bfd_vma) -1;
3005 if (*local_got > 0)
3006 {
3007 if (GOT_TLS_GDESC_P (*local_tls_type))
3008 {
3009 *local_tlsdesc_gotent = htab->elf.sgotplt->size
3010 - elf_x86_64_compute_jump_table_size (htab);
3011 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
3012 *local_got = (bfd_vma) -2;
3013 }
3014 if (! GOT_TLS_GDESC_P (*local_tls_type)
3015 || GOT_TLS_GD_P (*local_tls_type))
3016 {
3017 *local_got = s->size;
3018 s->size += GOT_ENTRY_SIZE;
3019 if (GOT_TLS_GD_P (*local_tls_type))
3020 s->size += GOT_ENTRY_SIZE;
3021 }
3022 if (info->shared
3023 || GOT_TLS_GD_ANY_P (*local_tls_type)
3024 || *local_tls_type == GOT_TLS_IE)
3025 {
3026 if (GOT_TLS_GDESC_P (*local_tls_type))
3027 {
3028 htab->elf.srelplt->size
3029 += bed->s->sizeof_rela;
3030 htab->tlsdesc_plt = (bfd_vma) -1;
3031 }
3032 if (! GOT_TLS_GDESC_P (*local_tls_type)
3033 || GOT_TLS_GD_P (*local_tls_type))
3034 srel->size += bed->s->sizeof_rela;
3035 }
3036 }
3037 else
3038 *local_got = (bfd_vma) -1;
3039 }
3040 }
3041
3042 if (htab->tls_ld_got.refcount > 0)
3043 {
3044 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
3045 relocs. */
3046 htab->tls_ld_got.offset = htab->elf.sgot->size;
3047 htab->elf.sgot->size += 2 * GOT_ENTRY_SIZE;
3048 htab->elf.srelgot->size += bed->s->sizeof_rela;
3049 }
3050 else
3051 htab->tls_ld_got.offset = -1;
3052
3053 /* Allocate global sym .plt and .got entries, and space for global
3054 sym dynamic relocs. */
3055 elf_link_hash_traverse (&htab->elf, elf_x86_64_allocate_dynrelocs,
3056 info);
3057
3058 /* Allocate .plt and .got entries, and space for local symbols. */
3059 htab_traverse (htab->loc_hash_table,
3060 elf_x86_64_allocate_local_dynrelocs,
3061 info);
3062
3063 /* For every jump slot reserved in the sgotplt, reloc_count is
3064 incremented. However, when we reserve space for TLS descriptors,
3065 it's not incremented, so in order to compute the space reserved
3066 for them, it suffices to multiply the reloc count by the jump
3067 slot size.
3068
3069 PR ld/13302: We start next_irelative_index at the end of .rela.plt
3070 so that R_X86_64_IRELATIVE entries come last. */
3071 if (htab->elf.srelplt)
3072 {
3073 htab->sgotplt_jump_table_size
3074 = elf_x86_64_compute_jump_table_size (htab);
3075 htab->next_irelative_index = htab->elf.srelplt->reloc_count - 1;
3076 }
3077 else if (htab->elf.irelplt)
3078 htab->next_irelative_index = htab->elf.irelplt->reloc_count - 1;
3079
3080 if (htab->tlsdesc_plt)
3081 {
3082 /* If we're not using lazy TLS relocations, don't generate the
3083 PLT and GOT entries they require. */
3084 if ((info->flags & DF_BIND_NOW))
3085 htab->tlsdesc_plt = 0;
3086 else
3087 {
3088 htab->tlsdesc_got = htab->elf.sgot->size;
3089 htab->elf.sgot->size += GOT_ENTRY_SIZE;
3090 /* Reserve room for the initial entry.
3091 FIXME: we could probably do away with it in this case. */
3092 if (htab->elf.splt->size == 0)
3093 htab->elf.splt->size += GET_PLT_ENTRY_SIZE (output_bfd);
3094 htab->tlsdesc_plt = htab->elf.splt->size;
3095 htab->elf.splt->size += GET_PLT_ENTRY_SIZE (output_bfd);
3096 }
3097 }
3098
3099 if (htab->elf.sgotplt)
3100 {
3101 /* Don't allocate .got.plt section if there are no GOT nor PLT
3102 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
3103 if ((htab->elf.hgot == NULL
3104 || !htab->elf.hgot->ref_regular_nonweak)
3105 && (htab->elf.sgotplt->size
3106 == get_elf_backend_data (output_bfd)->got_header_size)
3107 && (htab->elf.splt == NULL
3108 || htab->elf.splt->size == 0)
3109 && (htab->elf.sgot == NULL
3110 || htab->elf.sgot->size == 0)
3111 && (htab->elf.iplt == NULL
3112 || htab->elf.iplt->size == 0)
3113 && (htab->elf.igotplt == NULL
3114 || htab->elf.igotplt->size == 0))
3115 htab->elf.sgotplt->size = 0;
3116 }
3117
3118 if (htab->plt_eh_frame != NULL
3119 && htab->elf.splt != NULL
3120 && htab->elf.splt->size != 0
3121 && !bfd_is_abs_section (htab->elf.splt->output_section)
3122 && _bfd_elf_eh_frame_present (info))
3123 {
3124 const struct elf_x86_64_backend_data *arch_data
3125 = get_elf_x86_64_arch_data (bed);
3126 htab->plt_eh_frame->size = arch_data->eh_frame_plt_size;
3127 }
3128
3129 /* We now have determined the sizes of the various dynamic sections.
3130 Allocate memory for them. */
3131 relocs = FALSE;
3132 for (s = dynobj->sections; s != NULL; s = s->next)
3133 {
3134 if ((s->flags & SEC_LINKER_CREATED) == 0)
3135 continue;
3136
3137 if (s == htab->elf.splt
3138 || s == htab->elf.sgot
3139 || s == htab->elf.sgotplt
3140 || s == htab->elf.iplt
3141 || s == htab->elf.igotplt
3142 || s == htab->plt_bnd
3143 || s == htab->plt_eh_frame
3144 || s == htab->sdynbss)
3145 {
3146 /* Strip this section if we don't need it; see the
3147 comment below. */
3148 }
3149 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
3150 {
3151 if (s->size != 0 && s != htab->elf.srelplt)
3152 relocs = TRUE;
3153
3154 /* We use the reloc_count field as a counter if we need
3155 to copy relocs into the output file. */
3156 if (s != htab->elf.srelplt)
3157 s->reloc_count = 0;
3158 }
3159 else
3160 {
3161 /* It's not one of our sections, so don't allocate space. */
3162 continue;
3163 }
3164
3165 if (s->size == 0)
3166 {
3167 /* If we don't need this section, strip it from the
3168 output file. This is mostly to handle .rela.bss and
3169 .rela.plt. We must create both sections in
3170 create_dynamic_sections, because they must be created
3171 before the linker maps input sections to output
3172 sections. The linker does that before
3173 adjust_dynamic_symbol is called, and it is that
3174 function which decides whether anything needs to go
3175 into these sections. */
3176
3177 s->flags |= SEC_EXCLUDE;
3178 continue;
3179 }
3180
3181 if ((s->flags & SEC_HAS_CONTENTS) == 0)
3182 continue;
3183
3184 /* Allocate memory for the section contents. We use bfd_zalloc
3185 here in case unused entries are not reclaimed before the
3186 section's contents are written out. This should not happen,
3187 but this way if it does, we get a R_X86_64_NONE reloc instead
3188 of garbage. */
3189 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
3190 if (s->contents == NULL)
3191 return FALSE;
3192 }
3193
3194 if (htab->plt_eh_frame != NULL
3195 && htab->plt_eh_frame->contents != NULL)
3196 {
3197 const struct elf_x86_64_backend_data *arch_data
3198 = get_elf_x86_64_arch_data (bed);
3199
3200 memcpy (htab->plt_eh_frame->contents,
3201 arch_data->eh_frame_plt, htab->plt_eh_frame->size);
3202 bfd_put_32 (dynobj, htab->elf.splt->size,
3203 htab->plt_eh_frame->contents + PLT_FDE_LEN_OFFSET);
3204 }
3205
3206 if (htab->elf.dynamic_sections_created)
3207 {
3208 /* Add some entries to the .dynamic section. We fill in the
3209 values later, in elf_x86_64_finish_dynamic_sections, but we
3210 must add the entries now so that we get the correct size for
3211 the .dynamic section. The DT_DEBUG entry is filled in by the
3212 dynamic linker and used by the debugger. */
3213 #define add_dynamic_entry(TAG, VAL) \
3214 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3215
3216 if (info->executable)
3217 {
3218 if (!add_dynamic_entry (DT_DEBUG, 0))
3219 return FALSE;
3220 }
3221
3222 if (htab->elf.splt->size != 0)
3223 {
3224 if (!add_dynamic_entry (DT_PLTGOT, 0)
3225 || !add_dynamic_entry (DT_PLTRELSZ, 0)
3226 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
3227 || !add_dynamic_entry (DT_JMPREL, 0))
3228 return FALSE;
3229
3230 if (htab->tlsdesc_plt
3231 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
3232 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
3233 return FALSE;
3234 }
3235
3236 if (relocs)
3237 {
3238 if (!add_dynamic_entry (DT_RELA, 0)
3239 || !add_dynamic_entry (DT_RELASZ, 0)
3240 || !add_dynamic_entry (DT_RELAENT, bed->s->sizeof_rela))
3241 return FALSE;
3242
3243 /* If any dynamic relocs apply to a read-only section,
3244 then we need a DT_TEXTREL entry. */
3245 if ((info->flags & DF_TEXTREL) == 0)
3246 elf_link_hash_traverse (&htab->elf,
3247 elf_x86_64_readonly_dynrelocs,
3248 info);
3249
3250 if ((info->flags & DF_TEXTREL) != 0)
3251 {
3252 if (!add_dynamic_entry (DT_TEXTREL, 0))
3253 return FALSE;
3254 }
3255 }
3256 }
3257 #undef add_dynamic_entry
3258
3259 return TRUE;
3260 }
3261
3262 static bfd_boolean
3263 elf_x86_64_always_size_sections (bfd *output_bfd,
3264 struct bfd_link_info *info)
3265 {
3266 asection *tls_sec = elf_hash_table (info)->tls_sec;
3267
3268 if (tls_sec)
3269 {
3270 struct elf_link_hash_entry *tlsbase;
3271
3272 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
3273 "_TLS_MODULE_BASE_",
3274 FALSE, FALSE, FALSE);
3275
3276 if (tlsbase && tlsbase->type == STT_TLS)
3277 {
3278 struct elf_x86_64_link_hash_table *htab;
3279 struct bfd_link_hash_entry *bh = NULL;
3280 const struct elf_backend_data *bed
3281 = get_elf_backend_data (output_bfd);
3282
3283 htab = elf_x86_64_hash_table (info);
3284 if (htab == NULL)
3285 return FALSE;
3286
3287 if (!(_bfd_generic_link_add_one_symbol
3288 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
3289 tls_sec, 0, NULL, FALSE,
3290 bed->collect, &bh)))
3291 return FALSE;
3292
3293 htab->tls_module_base = bh;
3294
3295 tlsbase = (struct elf_link_hash_entry *)bh;
3296 tlsbase->def_regular = 1;
3297 tlsbase->other = STV_HIDDEN;
3298 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
3299 }
3300 }
3301
3302 return TRUE;
3303 }
3304
3305 /* _TLS_MODULE_BASE_ needs to be treated especially when linking
3306 executables. Rather than setting it to the beginning of the TLS
3307 section, we have to set it to the end. This function may be called
3308 multiple times, it is idempotent. */
3309
3310 static void
3311 elf_x86_64_set_tls_module_base (struct bfd_link_info *info)
3312 {
3313 struct elf_x86_64_link_hash_table *htab;
3314 struct bfd_link_hash_entry *base;
3315
3316 if (!info->executable)
3317 return;
3318
3319 htab = elf_x86_64_hash_table (info);
3320 if (htab == NULL)
3321 return;
3322
3323 base = htab->tls_module_base;
3324 if (base == NULL)
3325 return;
3326
3327 base->u.def.value = htab->elf.tls_size;
3328 }
3329
3330 /* Return the base VMA address which should be subtracted from real addresses
3331 when resolving @dtpoff relocation.
3332 This is PT_TLS segment p_vaddr. */
3333
3334 static bfd_vma
3335 elf_x86_64_dtpoff_base (struct bfd_link_info *info)
3336 {
3337 /* If tls_sec is NULL, we should have signalled an error already. */
3338 if (elf_hash_table (info)->tls_sec == NULL)
3339 return 0;
3340 return elf_hash_table (info)->tls_sec->vma;
3341 }
3342
3343 /* Return the relocation value for @tpoff relocation
3344 if STT_TLS virtual address is ADDRESS. */
3345
3346 static bfd_vma
3347 elf_x86_64_tpoff (struct bfd_link_info *info, bfd_vma address)
3348 {
3349 struct elf_link_hash_table *htab = elf_hash_table (info);
3350 const struct elf_backend_data *bed = get_elf_backend_data (info->output_bfd);
3351 bfd_vma static_tls_size;
3352
3353 /* If tls_segment is NULL, we should have signalled an error already. */
3354 if (htab->tls_sec == NULL)
3355 return 0;
3356
3357 /* Consider special static TLS alignment requirements. */
3358 static_tls_size = BFD_ALIGN (htab->tls_size, bed->static_tls_alignment);
3359 return address - static_tls_size - htab->tls_sec->vma;
3360 }
3361
3362 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
3363 branch? */
3364
3365 static bfd_boolean
3366 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
3367 {
3368 /* Opcode Instruction
3369 0xe8 call
3370 0xe9 jump
3371 0x0f 0x8x conditional jump */
3372 return ((offset > 0
3373 && (contents [offset - 1] == 0xe8
3374 || contents [offset - 1] == 0xe9))
3375 || (offset > 1
3376 && contents [offset - 2] == 0x0f
3377 && (contents [offset - 1] & 0xf0) == 0x80));
3378 }
3379
3380 /* Relocate an x86_64 ELF section. */
3381
3382 static bfd_boolean
3383 elf_x86_64_relocate_section (bfd *output_bfd,
3384 struct bfd_link_info *info,
3385 bfd *input_bfd,
3386 asection *input_section,
3387 bfd_byte *contents,
3388 Elf_Internal_Rela *relocs,
3389 Elf_Internal_Sym *local_syms,
3390 asection **local_sections)
3391 {
3392 struct elf_x86_64_link_hash_table *htab;
3393 Elf_Internal_Shdr *symtab_hdr;
3394 struct elf_link_hash_entry **sym_hashes;
3395 bfd_vma *local_got_offsets;
3396 bfd_vma *local_tlsdesc_gotents;
3397 Elf_Internal_Rela *rel;
3398 Elf_Internal_Rela *relend;
3399 const unsigned int plt_entry_size = GET_PLT_ENTRY_SIZE (info->output_bfd);
3400
3401 BFD_ASSERT (is_x86_64_elf (input_bfd));
3402
3403 htab = elf_x86_64_hash_table (info);
3404 if (htab == NULL)
3405 return FALSE;
3406 symtab_hdr = &elf_symtab_hdr (input_bfd);
3407 sym_hashes = elf_sym_hashes (input_bfd);
3408 local_got_offsets = elf_local_got_offsets (input_bfd);
3409 local_tlsdesc_gotents = elf_x86_64_local_tlsdesc_gotent (input_bfd);
3410
3411 elf_x86_64_set_tls_module_base (info);
3412
3413 rel = relocs;
3414 relend = relocs + input_section->reloc_count;
3415 for (; rel < relend; rel++)
3416 {
3417 unsigned int r_type;
3418 reloc_howto_type *howto;
3419 unsigned long r_symndx;
3420 struct elf_link_hash_entry *h;
3421 struct elf_x86_64_link_hash_entry *eh;
3422 Elf_Internal_Sym *sym;
3423 asection *sec;
3424 bfd_vma off, offplt, plt_offset;
3425 bfd_vma relocation;
3426 bfd_boolean unresolved_reloc;
3427 bfd_reloc_status_type r;
3428 int tls_type;
3429 asection *base_got, *resolved_plt;
3430 bfd_vma st_size;
3431
3432 r_type = ELF32_R_TYPE (rel->r_info);
3433 if (r_type == (int) R_X86_64_GNU_VTINHERIT
3434 || r_type == (int) R_X86_64_GNU_VTENTRY)
3435 continue;
3436
3437 if (r_type >= (int) R_X86_64_standard)
3438 {
3439 (*_bfd_error_handler)
3440 (_("%B: unrecognized relocation (0x%x) in section `%A'"),
3441 input_bfd, input_section, r_type);
3442 bfd_set_error (bfd_error_bad_value);
3443 return FALSE;
3444 }
3445
3446 if (r_type != (int) R_X86_64_32
3447 || ABI_64_P (output_bfd))
3448 howto = x86_64_elf_howto_table + r_type;
3449 else
3450 howto = (x86_64_elf_howto_table
3451 + ARRAY_SIZE (x86_64_elf_howto_table) - 1);
3452 r_symndx = htab->r_sym (rel->r_info);
3453 h = NULL;
3454 sym = NULL;
3455 sec = NULL;
3456 unresolved_reloc = FALSE;
3457 if (r_symndx < symtab_hdr->sh_info)
3458 {
3459 sym = local_syms + r_symndx;
3460 sec = local_sections[r_symndx];
3461
3462 relocation = _bfd_elf_rela_local_sym (output_bfd, sym,
3463 &sec, rel);
3464 st_size = sym->st_size;
3465
3466 /* Relocate against local STT_GNU_IFUNC symbol. */
3467 if (!info->relocatable
3468 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
3469 {
3470 h = elf_x86_64_get_local_sym_hash (htab, input_bfd,
3471 rel, FALSE);
3472 if (h == NULL)
3473 abort ();
3474
3475 /* Set STT_GNU_IFUNC symbol value. */
3476 h->root.u.def.value = sym->st_value;
3477 h->root.u.def.section = sec;
3478 }
3479 }
3480 else
3481 {
3482 bfd_boolean warned ATTRIBUTE_UNUSED;
3483 bfd_boolean ignored ATTRIBUTE_UNUSED;
3484
3485 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3486 r_symndx, symtab_hdr, sym_hashes,
3487 h, sec, relocation,
3488 unresolved_reloc, warned, ignored);
3489 st_size = h->size;
3490 }
3491
3492 if (sec != NULL && discarded_section (sec))
3493 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3494 rel, 1, relend, howto, 0, contents);
3495
3496 if (info->relocatable)
3497 continue;
3498
3499 if (rel->r_addend == 0 && !ABI_64_P (output_bfd))
3500 {
3501 if (r_type == R_X86_64_64)
3502 {
3503 /* For x32, treat R_X86_64_64 like R_X86_64_32 and
3504 zero-extend it to 64bit if addend is zero. */
3505 r_type = R_X86_64_32;
3506 memset (contents + rel->r_offset + 4, 0, 4);
3507 }
3508 else if (r_type == R_X86_64_SIZE64)
3509 {
3510 /* For x32, treat R_X86_64_SIZE64 like R_X86_64_SIZE32 and
3511 zero-extend it to 64bit if addend is zero. */
3512 r_type = R_X86_64_SIZE32;
3513 memset (contents + rel->r_offset + 4, 0, 4);
3514 }
3515 }
3516
3517 eh = (struct elf_x86_64_link_hash_entry *) h;
3518
3519 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
3520 it here if it is defined in a non-shared object. */
3521 if (h != NULL
3522 && h->type == STT_GNU_IFUNC
3523 && h->def_regular)
3524 {
3525 bfd_vma plt_index;
3526 const char *name;
3527
3528 if ((input_section->flags & SEC_ALLOC) == 0
3529 || h->plt.offset == (bfd_vma) -1)
3530 abort ();
3531
3532 /* STT_GNU_IFUNC symbol must go through PLT. */
3533 if (htab->elf.splt != NULL)
3534 {
3535 if (htab->plt_bnd != NULL)
3536 {
3537 resolved_plt = htab->plt_bnd;
3538 plt_offset = eh->plt_bnd.offset;
3539 }
3540 else
3541 {
3542 resolved_plt = htab->elf.splt;
3543 plt_offset = h->plt.offset;
3544 }
3545 }
3546 else
3547 {
3548 resolved_plt = htab->elf.iplt;
3549 plt_offset = h->plt.offset;
3550 }
3551
3552 relocation = (resolved_plt->output_section->vma
3553 + resolved_plt->output_offset + plt_offset);
3554
3555 switch (r_type)
3556 {
3557 default:
3558 if (h->root.root.string)
3559 name = h->root.root.string;
3560 else
3561 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
3562 NULL);
3563 (*_bfd_error_handler)
3564 (_("%B: relocation %s against STT_GNU_IFUNC "
3565 "symbol `%s' isn't handled by %s"), input_bfd,
3566 x86_64_elf_howto_table[r_type].name,
3567 name, __FUNCTION__);
3568 bfd_set_error (bfd_error_bad_value);
3569 return FALSE;
3570
3571 case R_X86_64_32S:
3572 if (info->shared)
3573 abort ();
3574 goto do_relocation;
3575
3576 case R_X86_64_32:
3577 if (ABI_64_P (output_bfd))
3578 goto do_relocation;
3579 /* FALLTHROUGH */
3580 case R_X86_64_64:
3581 if (rel->r_addend != 0)
3582 {
3583 if (h->root.root.string)
3584 name = h->root.root.string;
3585 else
3586 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
3587 sym, NULL);
3588 (*_bfd_error_handler)
3589 (_("%B: relocation %s against STT_GNU_IFUNC "
3590 "symbol `%s' has non-zero addend: %d"),
3591 input_bfd, x86_64_elf_howto_table[r_type].name,
3592 name, rel->r_addend);
3593 bfd_set_error (bfd_error_bad_value);
3594 return FALSE;
3595 }
3596
3597 /* Generate dynamic relcoation only when there is a
3598 non-GOT reference in a shared object. */
3599 if (info->shared && h->non_got_ref)
3600 {
3601 Elf_Internal_Rela outrel;
3602 asection *sreloc;
3603
3604 /* Need a dynamic relocation to get the real function
3605 address. */
3606 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
3607 info,
3608 input_section,
3609 rel->r_offset);
3610 if (outrel.r_offset == (bfd_vma) -1
3611 || outrel.r_offset == (bfd_vma) -2)
3612 abort ();
3613
3614 outrel.r_offset += (input_section->output_section->vma
3615 + input_section->output_offset);
3616
3617 if (h->dynindx == -1
3618 || h->forced_local
3619 || info->executable)
3620 {
3621 /* This symbol is resolved locally. */
3622 outrel.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
3623 outrel.r_addend = (h->root.u.def.value
3624 + h->root.u.def.section->output_section->vma
3625 + h->root.u.def.section->output_offset);
3626 }
3627 else
3628 {
3629 outrel.r_info = htab->r_info (h->dynindx, r_type);
3630 outrel.r_addend = 0;
3631 }
3632
3633 sreloc = htab->elf.irelifunc;
3634 elf_append_rela (output_bfd, sreloc, &outrel);
3635
3636 /* If this reloc is against an external symbol, we
3637 do not want to fiddle with the addend. Otherwise,
3638 we need to include the symbol value so that it
3639 becomes an addend for the dynamic reloc. For an
3640 internal symbol, we have updated addend. */
3641 continue;
3642 }
3643 /* FALLTHROUGH */
3644 case R_X86_64_PC32:
3645 case R_X86_64_PC32_BND:
3646 case R_X86_64_PC64:
3647 case R_X86_64_PLT32:
3648 case R_X86_64_PLT32_BND:
3649 goto do_relocation;
3650
3651 case R_X86_64_GOTPCREL:
3652 case R_X86_64_GOTPCREL64:
3653 base_got = htab->elf.sgot;
3654 off = h->got.offset;
3655
3656 if (base_got == NULL)
3657 abort ();
3658
3659 if (off == (bfd_vma) -1)
3660 {
3661 /* We can't use h->got.offset here to save state, or
3662 even just remember the offset, as finish_dynamic_symbol
3663 would use that as offset into .got. */
3664
3665 if (htab->elf.splt != NULL)
3666 {
3667 plt_index = h->plt.offset / plt_entry_size - 1;
3668 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3669 base_got = htab->elf.sgotplt;
3670 }
3671 else
3672 {
3673 plt_index = h->plt.offset / plt_entry_size;
3674 off = plt_index * GOT_ENTRY_SIZE;
3675 base_got = htab->elf.igotplt;
3676 }
3677
3678 if (h->dynindx == -1
3679 || h->forced_local
3680 || info->symbolic)
3681 {
3682 /* This references the local defitionion. We must
3683 initialize this entry in the global offset table.
3684 Since the offset must always be a multiple of 8,
3685 we use the least significant bit to record
3686 whether we have initialized it already.
3687
3688 When doing a dynamic link, we create a .rela.got
3689 relocation entry to initialize the value. This
3690 is done in the finish_dynamic_symbol routine. */
3691 if ((off & 1) != 0)
3692 off &= ~1;
3693 else
3694 {
3695 bfd_put_64 (output_bfd, relocation,
3696 base_got->contents + off);
3697 /* Note that this is harmless for the GOTPLT64
3698 case, as -1 | 1 still is -1. */
3699 h->got.offset |= 1;
3700 }
3701 }
3702 }
3703
3704 relocation = (base_got->output_section->vma
3705 + base_got->output_offset + off);
3706
3707 goto do_relocation;
3708 }
3709 }
3710
3711 /* When generating a shared object, the relocations handled here are
3712 copied into the output file to be resolved at run time. */
3713 switch (r_type)
3714 {
3715 case R_X86_64_GOT32:
3716 case R_X86_64_GOT64:
3717 /* Relocation is to the entry for this symbol in the global
3718 offset table. */
3719 case R_X86_64_GOTPCREL:
3720 case R_X86_64_GOTPCREL64:
3721 /* Use global offset table entry as symbol value. */
3722 case R_X86_64_GOTPLT64:
3723 /* This is the same as GOT64 for relocation purposes, but
3724 indicates the existence of a PLT entry. The difficulty is,
3725 that we must calculate the GOT slot offset from the PLT
3726 offset, if this symbol got a PLT entry (it was global).
3727 Additionally if it's computed from the PLT entry, then that
3728 GOT offset is relative to .got.plt, not to .got. */
3729 base_got = htab->elf.sgot;
3730
3731 if (htab->elf.sgot == NULL)
3732 abort ();
3733
3734 if (h != NULL)
3735 {
3736 bfd_boolean dyn;
3737
3738 off = h->got.offset;
3739 if (h->needs_plt
3740 && h->plt.offset != (bfd_vma)-1
3741 && off == (bfd_vma)-1)
3742 {
3743 /* We can't use h->got.offset here to save
3744 state, or even just remember the offset, as
3745 finish_dynamic_symbol would use that as offset into
3746 .got. */
3747 bfd_vma plt_index = h->plt.offset / plt_entry_size - 1;
3748 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3749 base_got = htab->elf.sgotplt;
3750 }
3751
3752 dyn = htab->elf.dynamic_sections_created;
3753
3754 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3755 || (info->shared
3756 && SYMBOL_REFERENCES_LOCAL (info, h))
3757 || (ELF_ST_VISIBILITY (h->other)
3758 && h->root.type == bfd_link_hash_undefweak))
3759 {
3760 /* This is actually a static link, or it is a -Bsymbolic
3761 link and the symbol is defined locally, or the symbol
3762 was forced to be local because of a version file. We
3763 must initialize this entry in the global offset table.
3764 Since the offset must always be a multiple of 8, we
3765 use the least significant bit to record whether we
3766 have initialized it already.
3767
3768 When doing a dynamic link, we create a .rela.got
3769 relocation entry to initialize the value. This is
3770 done in the finish_dynamic_symbol routine. */
3771 if ((off & 1) != 0)
3772 off &= ~1;
3773 else
3774 {
3775 bfd_put_64 (output_bfd, relocation,
3776 base_got->contents + off);
3777 /* Note that this is harmless for the GOTPLT64 case,
3778 as -1 | 1 still is -1. */
3779 h->got.offset |= 1;
3780 }
3781 }
3782 else
3783 unresolved_reloc = FALSE;
3784 }
3785 else
3786 {
3787 if (local_got_offsets == NULL)
3788 abort ();
3789
3790 off = local_got_offsets[r_symndx];
3791
3792 /* The offset must always be a multiple of 8. We use
3793 the least significant bit to record whether we have
3794 already generated the necessary reloc. */
3795 if ((off & 1) != 0)
3796 off &= ~1;
3797 else
3798 {
3799 bfd_put_64 (output_bfd, relocation,
3800 base_got->contents + off);
3801
3802 if (info->shared)
3803 {
3804 asection *s;
3805 Elf_Internal_Rela outrel;
3806
3807 /* We need to generate a R_X86_64_RELATIVE reloc
3808 for the dynamic linker. */
3809 s = htab->elf.srelgot;
3810 if (s == NULL)
3811 abort ();
3812
3813 outrel.r_offset = (base_got->output_section->vma
3814 + base_got->output_offset
3815 + off);
3816 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
3817 outrel.r_addend = relocation;
3818 elf_append_rela (output_bfd, s, &outrel);
3819 }
3820
3821 local_got_offsets[r_symndx] |= 1;
3822 }
3823 }
3824
3825 if (off >= (bfd_vma) -2)
3826 abort ();
3827
3828 relocation = base_got->output_section->vma
3829 + base_got->output_offset + off;
3830 if (r_type != R_X86_64_GOTPCREL && r_type != R_X86_64_GOTPCREL64)
3831 relocation -= htab->elf.sgotplt->output_section->vma
3832 - htab->elf.sgotplt->output_offset;
3833
3834 break;
3835
3836 case R_X86_64_GOTOFF64:
3837 /* Relocation is relative to the start of the global offset
3838 table. */
3839
3840 /* Check to make sure it isn't a protected function symbol
3841 for shared library since it may not be local when used
3842 as function address. */
3843 if (!info->executable
3844 && h
3845 && !SYMBOLIC_BIND (info, h)
3846 && h->def_regular
3847 && h->type == STT_FUNC
3848 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
3849 {
3850 (*_bfd_error_handler)
3851 (_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
3852 input_bfd, h->root.root.string);
3853 bfd_set_error (bfd_error_bad_value);
3854 return FALSE;
3855 }
3856
3857 /* Note that sgot is not involved in this
3858 calculation. We always want the start of .got.plt. If we
3859 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
3860 permitted by the ABI, we might have to change this
3861 calculation. */
3862 relocation -= htab->elf.sgotplt->output_section->vma
3863 + htab->elf.sgotplt->output_offset;
3864 break;
3865
3866 case R_X86_64_GOTPC32:
3867 case R_X86_64_GOTPC64:
3868 /* Use global offset table as symbol value. */
3869 relocation = htab->elf.sgotplt->output_section->vma
3870 + htab->elf.sgotplt->output_offset;
3871 unresolved_reloc = FALSE;
3872 break;
3873
3874 case R_X86_64_PLTOFF64:
3875 /* Relocation is PLT entry relative to GOT. For local
3876 symbols it's the symbol itself relative to GOT. */
3877 if (h != NULL
3878 /* See PLT32 handling. */
3879 && h->plt.offset != (bfd_vma) -1
3880 && htab->elf.splt != NULL)
3881 {
3882 if (htab->plt_bnd != NULL)
3883 {
3884 resolved_plt = htab->plt_bnd;
3885 plt_offset = eh->plt_bnd.offset;
3886 }
3887 else
3888 {
3889 resolved_plt = htab->elf.splt;
3890 plt_offset = h->plt.offset;
3891 }
3892
3893 relocation = (resolved_plt->output_section->vma
3894 + resolved_plt->output_offset
3895 + plt_offset);
3896 unresolved_reloc = FALSE;
3897 }
3898
3899 relocation -= htab->elf.sgotplt->output_section->vma
3900 + htab->elf.sgotplt->output_offset;
3901 break;
3902
3903 case R_X86_64_PLT32:
3904 case R_X86_64_PLT32_BND:
3905 /* Relocation is to the entry for this symbol in the
3906 procedure linkage table. */
3907
3908 /* Resolve a PLT32 reloc against a local symbol directly,
3909 without using the procedure linkage table. */
3910 if (h == NULL)
3911 break;
3912
3913 if (h->plt.offset == (bfd_vma) -1
3914 || htab->elf.splt == NULL)
3915 {
3916 /* We didn't make a PLT entry for this symbol. This
3917 happens when statically linking PIC code, or when
3918 using -Bsymbolic. */
3919 break;
3920 }
3921
3922 if (htab->plt_bnd != NULL)
3923 {
3924 resolved_plt = htab->plt_bnd;
3925 plt_offset = eh->plt_bnd.offset;
3926 }
3927 else
3928 {
3929 resolved_plt = htab->elf.splt;
3930 plt_offset = h->plt.offset;
3931 }
3932
3933 relocation = (resolved_plt->output_section->vma
3934 + resolved_plt->output_offset
3935 + plt_offset);
3936 unresolved_reloc = FALSE;
3937 break;
3938
3939 case R_X86_64_SIZE32:
3940 case R_X86_64_SIZE64:
3941 /* Set to symbol size. */
3942 relocation = st_size;
3943 goto direct;
3944
3945 case R_X86_64_PC8:
3946 case R_X86_64_PC16:
3947 case R_X86_64_PC32:
3948 case R_X86_64_PC32_BND:
3949 if (info->shared
3950 && (input_section->flags & SEC_ALLOC) != 0
3951 && (input_section->flags & SEC_READONLY) != 0
3952 && h != NULL)
3953 {
3954 bfd_boolean fail = FALSE;
3955 bfd_boolean branch
3956 = ((r_type == R_X86_64_PC32
3957 || r_type == R_X86_64_PC32_BND)
3958 && is_32bit_relative_branch (contents, rel->r_offset));
3959
3960 if (SYMBOL_REFERENCES_LOCAL (info, h))
3961 {
3962 /* Symbol is referenced locally. Make sure it is
3963 defined locally or for a branch. */
3964 fail = !h->def_regular && !branch;
3965 }
3966 else
3967 {
3968 /* Symbol isn't referenced locally. We only allow
3969 branch to symbol with non-default visibility. */
3970 fail = (!branch
3971 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT);
3972 }
3973
3974 if (fail)
3975 {
3976 const char *fmt;
3977 const char *v;
3978 const char *pic = "";
3979
3980 switch (ELF_ST_VISIBILITY (h->other))
3981 {
3982 case STV_HIDDEN:
3983 v = _("hidden symbol");
3984 break;
3985 case STV_INTERNAL:
3986 v = _("internal symbol");
3987 break;
3988 case STV_PROTECTED:
3989 v = _("protected symbol");
3990 break;
3991 default:
3992 v = _("symbol");
3993 pic = _("; recompile with -fPIC");
3994 break;
3995 }
3996
3997 if (h->def_regular)
3998 fmt = _("%B: relocation %s against %s `%s' can not be used when making a shared object%s");
3999 else
4000 fmt = _("%B: relocation %s against undefined %s `%s' can not be used when making a shared object%s");
4001
4002 (*_bfd_error_handler) (fmt, input_bfd,
4003 x86_64_elf_howto_table[r_type].name,
4004 v, h->root.root.string, pic);
4005 bfd_set_error (bfd_error_bad_value);
4006 return FALSE;
4007 }
4008 }
4009 /* Fall through. */
4010
4011 case R_X86_64_8:
4012 case R_X86_64_16:
4013 case R_X86_64_32:
4014 case R_X86_64_PC64:
4015 case R_X86_64_64:
4016 /* FIXME: The ABI says the linker should make sure the value is
4017 the same when it's zeroextended to 64 bit. */
4018
4019 direct:
4020 if ((input_section->flags & SEC_ALLOC) == 0)
4021 break;
4022
4023 if ((info->shared
4024 && (h == NULL
4025 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
4026 || h->root.type != bfd_link_hash_undefweak)
4027 && ((! IS_X86_64_PCREL_TYPE (r_type)
4028 && r_type != R_X86_64_SIZE32
4029 && r_type != R_X86_64_SIZE64)
4030 || ! SYMBOL_CALLS_LOCAL (info, h)))
4031 || (ELIMINATE_COPY_RELOCS
4032 && !info->shared
4033 && h != NULL
4034 && h->dynindx != -1
4035 && !h->non_got_ref
4036 && ((h->def_dynamic
4037 && !h->def_regular)
4038 || h->root.type == bfd_link_hash_undefweak
4039 || h->root.type == bfd_link_hash_undefined)))
4040 {
4041 Elf_Internal_Rela outrel;
4042 bfd_boolean skip, relocate;
4043 asection *sreloc;
4044
4045 /* When generating a shared object, these relocations
4046 are copied into the output file to be resolved at run
4047 time. */
4048 skip = FALSE;
4049 relocate = FALSE;
4050
4051 outrel.r_offset =
4052 _bfd_elf_section_offset (output_bfd, info, input_section,
4053 rel->r_offset);
4054 if (outrel.r_offset == (bfd_vma) -1)
4055 skip = TRUE;
4056 else if (outrel.r_offset == (bfd_vma) -2)
4057 skip = TRUE, relocate = TRUE;
4058
4059 outrel.r_offset += (input_section->output_section->vma
4060 + input_section->output_offset);
4061
4062 if (skip)
4063 memset (&outrel, 0, sizeof outrel);
4064
4065 /* h->dynindx may be -1 if this symbol was marked to
4066 become local. */
4067 else if (h != NULL
4068 && h->dynindx != -1
4069 && (IS_X86_64_PCREL_TYPE (r_type)
4070 || ! info->shared
4071 || ! SYMBOLIC_BIND (info, h)
4072 || ! h->def_regular))
4073 {
4074 outrel.r_info = htab->r_info (h->dynindx, r_type);
4075 outrel.r_addend = rel->r_addend;
4076 }
4077 else
4078 {
4079 /* This symbol is local, or marked to become local. */
4080 if (r_type == htab->pointer_r_type)
4081 {
4082 relocate = TRUE;
4083 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
4084 outrel.r_addend = relocation + rel->r_addend;
4085 }
4086 else if (r_type == R_X86_64_64
4087 && !ABI_64_P (output_bfd))
4088 {
4089 relocate = TRUE;
4090 outrel.r_info = htab->r_info (0,
4091 R_X86_64_RELATIVE64);
4092 outrel.r_addend = relocation + rel->r_addend;
4093 /* Check addend overflow. */
4094 if ((outrel.r_addend & 0x80000000)
4095 != (rel->r_addend & 0x80000000))
4096 {
4097 const char *name;
4098 int addend = rel->r_addend;
4099 if (h && h->root.root.string)
4100 name = h->root.root.string;
4101 else
4102 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
4103 sym, NULL);
4104 if (addend < 0)
4105 (*_bfd_error_handler)
4106 (_("%B: addend -0x%x in relocation %s against "
4107 "symbol `%s' at 0x%lx in section `%A' is "
4108 "out of range"),
4109 input_bfd, input_section, addend,
4110 x86_64_elf_howto_table[r_type].name,
4111 name, (unsigned long) rel->r_offset);
4112 else
4113 (*_bfd_error_handler)
4114 (_("%B: addend 0x%x in relocation %s against "
4115 "symbol `%s' at 0x%lx in section `%A' is "
4116 "out of range"),
4117 input_bfd, input_section, addend,
4118 x86_64_elf_howto_table[r_type].name,
4119 name, (unsigned long) rel->r_offset);
4120 bfd_set_error (bfd_error_bad_value);
4121 return FALSE;
4122 }
4123 }
4124 else
4125 {
4126 long sindx;
4127
4128 if (bfd_is_abs_section (sec))
4129 sindx = 0;
4130 else if (sec == NULL || sec->owner == NULL)
4131 {
4132 bfd_set_error (bfd_error_bad_value);
4133 return FALSE;
4134 }
4135 else
4136 {
4137 asection *osec;
4138
4139 /* We are turning this relocation into one
4140 against a section symbol. It would be
4141 proper to subtract the symbol's value,
4142 osec->vma, from the emitted reloc addend,
4143 but ld.so expects buggy relocs. */
4144 osec = sec->output_section;
4145 sindx = elf_section_data (osec)->dynindx;
4146 if (sindx == 0)
4147 {
4148 asection *oi = htab->elf.text_index_section;
4149 sindx = elf_section_data (oi)->dynindx;
4150 }
4151 BFD_ASSERT (sindx != 0);
4152 }
4153
4154 outrel.r_info = htab->r_info (sindx, r_type);
4155 outrel.r_addend = relocation + rel->r_addend;
4156 }
4157 }
4158
4159 sreloc = elf_section_data (input_section)->sreloc;
4160
4161 if (sreloc == NULL || sreloc->contents == NULL)
4162 {
4163 r = bfd_reloc_notsupported;
4164 goto check_relocation_error;
4165 }
4166
4167 elf_append_rela (output_bfd, sreloc, &outrel);
4168
4169 /* If this reloc is against an external symbol, we do
4170 not want to fiddle with the addend. Otherwise, we
4171 need to include the symbol value so that it becomes
4172 an addend for the dynamic reloc. */
4173 if (! relocate)
4174 continue;
4175 }
4176
4177 break;
4178
4179 case R_X86_64_TLSGD:
4180 case R_X86_64_GOTPC32_TLSDESC:
4181 case R_X86_64_TLSDESC_CALL:
4182 case R_X86_64_GOTTPOFF:
4183 tls_type = GOT_UNKNOWN;
4184 if (h == NULL && local_got_offsets)
4185 tls_type = elf_x86_64_local_got_tls_type (input_bfd) [r_symndx];
4186 else if (h != NULL)
4187 tls_type = elf_x86_64_hash_entry (h)->tls_type;
4188
4189 if (! elf_x86_64_tls_transition (info, input_bfd,
4190 input_section, contents,
4191 symtab_hdr, sym_hashes,
4192 &r_type, tls_type, rel,
4193 relend, h, r_symndx))
4194 return FALSE;
4195
4196 if (r_type == R_X86_64_TPOFF32)
4197 {
4198 bfd_vma roff = rel->r_offset;
4199
4200 BFD_ASSERT (! unresolved_reloc);
4201
4202 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
4203 {
4204 /* GD->LE transition. For 64bit, change
4205 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
4206 .word 0x6666; rex64; call __tls_get_addr
4207 into:
4208 movq %fs:0, %rax
4209 leaq foo@tpoff(%rax), %rax
4210 For 32bit, change
4211 leaq foo@tlsgd(%rip), %rdi
4212 .word 0x6666; rex64; call __tls_get_addr
4213 into:
4214 movl %fs:0, %eax
4215 leaq foo@tpoff(%rax), %rax
4216 For largepic, change:
4217 leaq foo@tlsgd(%rip), %rdi
4218 movabsq $__tls_get_addr@pltoff, %rax
4219 addq %rbx, %rax
4220 call *%rax
4221 into:
4222 movq %fs:0, %rax
4223 leaq foo@tpoff(%rax), %rax
4224 nopw 0x0(%rax,%rax,1) */
4225 int largepic = 0;
4226 if (ABI_64_P (output_bfd)
4227 && contents[roff + 5] == (bfd_byte) '\xb8')
4228 {
4229 memcpy (contents + roff - 3,
4230 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80"
4231 "\0\0\0\0\x66\x0f\x1f\x44\0", 22);
4232 largepic = 1;
4233 }
4234 else if (ABI_64_P (output_bfd))
4235 memcpy (contents + roff - 4,
4236 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
4237 16);
4238 else
4239 memcpy (contents + roff - 3,
4240 "\x64\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
4241 15);
4242 bfd_put_32 (output_bfd,
4243 elf_x86_64_tpoff (info, relocation),
4244 contents + roff + 8 + largepic);
4245 /* Skip R_X86_64_PC32/R_X86_64_PLT32/R_X86_64_PLTOFF64. */
4246 rel++;
4247 continue;
4248 }
4249 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
4250 {
4251 /* GDesc -> LE transition.
4252 It's originally something like:
4253 leaq x@tlsdesc(%rip), %rax
4254
4255 Change it to:
4256 movl $x@tpoff, %rax. */
4257
4258 unsigned int val, type;
4259
4260 type = bfd_get_8 (input_bfd, contents + roff - 3);
4261 val = bfd_get_8 (input_bfd, contents + roff - 1);
4262 bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1),
4263 contents + roff - 3);
4264 bfd_put_8 (output_bfd, 0xc7, contents + roff - 2);
4265 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
4266 contents + roff - 1);
4267 bfd_put_32 (output_bfd,
4268 elf_x86_64_tpoff (info, relocation),
4269 contents + roff);
4270 continue;
4271 }
4272 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
4273 {
4274 /* GDesc -> LE transition.
4275 It's originally:
4276 call *(%rax)
4277 Turn it into:
4278 xchg %ax,%ax. */
4279 bfd_put_8 (output_bfd, 0x66, contents + roff);
4280 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
4281 continue;
4282 }
4283 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTTPOFF)
4284 {
4285 /* IE->LE transition:
4286 Originally it can be one of:
4287 movq foo@gottpoff(%rip), %reg
4288 addq foo@gottpoff(%rip), %reg
4289 We change it into:
4290 movq $foo, %reg
4291 leaq foo(%reg), %reg
4292 addq $foo, %reg. */
4293
4294 unsigned int val, type, reg;
4295
4296 val = bfd_get_8 (input_bfd, contents + roff - 3);
4297 type = bfd_get_8 (input_bfd, contents + roff - 2);
4298 reg = bfd_get_8 (input_bfd, contents + roff - 1);
4299 reg >>= 3;
4300 if (type == 0x8b)
4301 {
4302 /* movq */
4303 if (val == 0x4c)
4304 bfd_put_8 (output_bfd, 0x49,
4305 contents + roff - 3);
4306 else if (!ABI_64_P (output_bfd) && val == 0x44)
4307 bfd_put_8 (output_bfd, 0x41,
4308 contents + roff - 3);
4309 bfd_put_8 (output_bfd, 0xc7,
4310 contents + roff - 2);
4311 bfd_put_8 (output_bfd, 0xc0 | reg,
4312 contents + roff - 1);
4313 }
4314 else if (reg == 4)
4315 {
4316 /* addq -> addq - addressing with %rsp/%r12 is
4317 special */
4318 if (val == 0x4c)
4319 bfd_put_8 (output_bfd, 0x49,
4320 contents + roff - 3);
4321 else if (!ABI_64_P (output_bfd) && val == 0x44)
4322 bfd_put_8 (output_bfd, 0x41,
4323 contents + roff - 3);
4324 bfd_put_8 (output_bfd, 0x81,
4325 contents + roff - 2);
4326 bfd_put_8 (output_bfd, 0xc0 | reg,
4327 contents + roff - 1);
4328 }
4329 else
4330 {
4331 /* addq -> leaq */
4332 if (val == 0x4c)
4333 bfd_put_8 (output_bfd, 0x4d,
4334 contents + roff - 3);
4335 else if (!ABI_64_P (output_bfd) && val == 0x44)
4336 bfd_put_8 (output_bfd, 0x45,
4337 contents + roff - 3);
4338 bfd_put_8 (output_bfd, 0x8d,
4339 contents + roff - 2);
4340 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
4341 contents + roff - 1);
4342 }
4343 bfd_put_32 (output_bfd,
4344 elf_x86_64_tpoff (info, relocation),
4345 contents + roff);
4346 continue;
4347 }
4348 else
4349 BFD_ASSERT (FALSE);
4350 }
4351
4352 if (htab->elf.sgot == NULL)
4353 abort ();
4354
4355 if (h != NULL)
4356 {
4357 off = h->got.offset;
4358 offplt = elf_x86_64_hash_entry (h)->tlsdesc_got;
4359 }
4360 else
4361 {
4362 if (local_got_offsets == NULL)
4363 abort ();
4364
4365 off = local_got_offsets[r_symndx];
4366 offplt = local_tlsdesc_gotents[r_symndx];
4367 }
4368
4369 if ((off & 1) != 0)
4370 off &= ~1;
4371 else
4372 {
4373 Elf_Internal_Rela outrel;
4374 int dr_type, indx;
4375 asection *sreloc;
4376
4377 if (htab->elf.srelgot == NULL)
4378 abort ();
4379
4380 indx = h && h->dynindx != -1 ? h->dynindx : 0;
4381
4382 if (GOT_TLS_GDESC_P (tls_type))
4383 {
4384 outrel.r_info = htab->r_info (indx, R_X86_64_TLSDESC);
4385 BFD_ASSERT (htab->sgotplt_jump_table_size + offplt
4386 + 2 * GOT_ENTRY_SIZE <= htab->elf.sgotplt->size);
4387 outrel.r_offset = (htab->elf.sgotplt->output_section->vma
4388 + htab->elf.sgotplt->output_offset
4389 + offplt
4390 + htab->sgotplt_jump_table_size);
4391 sreloc = htab->elf.srelplt;
4392 if (indx == 0)
4393 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
4394 else
4395 outrel.r_addend = 0;
4396 elf_append_rela (output_bfd, sreloc, &outrel);
4397 }
4398
4399 sreloc = htab->elf.srelgot;
4400
4401 outrel.r_offset = (htab->elf.sgot->output_section->vma
4402 + htab->elf.sgot->output_offset + off);
4403
4404 if (GOT_TLS_GD_P (tls_type))
4405 dr_type = R_X86_64_DTPMOD64;
4406 else if (GOT_TLS_GDESC_P (tls_type))
4407 goto dr_done;
4408 else
4409 dr_type = R_X86_64_TPOFF64;
4410
4411 bfd_put_64 (output_bfd, 0, htab->elf.sgot->contents + off);
4412 outrel.r_addend = 0;
4413 if ((dr_type == R_X86_64_TPOFF64
4414 || dr_type == R_X86_64_TLSDESC) && indx == 0)
4415 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
4416 outrel.r_info = htab->r_info (indx, dr_type);
4417
4418 elf_append_rela (output_bfd, sreloc, &outrel);
4419
4420 if (GOT_TLS_GD_P (tls_type))
4421 {
4422 if (indx == 0)
4423 {
4424 BFD_ASSERT (! unresolved_reloc);
4425 bfd_put_64 (output_bfd,
4426 relocation - elf_x86_64_dtpoff_base (info),
4427 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4428 }
4429 else
4430 {
4431 bfd_put_64 (output_bfd, 0,
4432 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4433 outrel.r_info = htab->r_info (indx,
4434 R_X86_64_DTPOFF64);
4435 outrel.r_offset += GOT_ENTRY_SIZE;
4436 elf_append_rela (output_bfd, sreloc,
4437 &outrel);
4438 }
4439 }
4440
4441 dr_done:
4442 if (h != NULL)
4443 h->got.offset |= 1;
4444 else
4445 local_got_offsets[r_symndx] |= 1;
4446 }
4447
4448 if (off >= (bfd_vma) -2
4449 && ! GOT_TLS_GDESC_P (tls_type))
4450 abort ();
4451 if (r_type == ELF32_R_TYPE (rel->r_info))
4452 {
4453 if (r_type == R_X86_64_GOTPC32_TLSDESC
4454 || r_type == R_X86_64_TLSDESC_CALL)
4455 relocation = htab->elf.sgotplt->output_section->vma
4456 + htab->elf.sgotplt->output_offset
4457 + offplt + htab->sgotplt_jump_table_size;
4458 else
4459 relocation = htab->elf.sgot->output_section->vma
4460 + htab->elf.sgot->output_offset + off;
4461 unresolved_reloc = FALSE;
4462 }
4463 else
4464 {
4465 bfd_vma roff = rel->r_offset;
4466
4467 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
4468 {
4469 /* GD->IE transition. For 64bit, change
4470 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
4471 .word 0x6666; rex64; call __tls_get_addr@plt
4472 into:
4473 movq %fs:0, %rax
4474 addq foo@gottpoff(%rip), %rax
4475 For 32bit, change
4476 leaq foo@tlsgd(%rip), %rdi
4477 .word 0x6666; rex64; call __tls_get_addr@plt
4478 into:
4479 movl %fs:0, %eax
4480 addq foo@gottpoff(%rip), %rax
4481 For largepic, change:
4482 leaq foo@tlsgd(%rip), %rdi
4483 movabsq $__tls_get_addr@pltoff, %rax
4484 addq %rbx, %rax
4485 call *%rax
4486 into:
4487 movq %fs:0, %rax
4488 addq foo@gottpoff(%rax), %rax
4489 nopw 0x0(%rax,%rax,1) */
4490 int largepic = 0;
4491 if (ABI_64_P (output_bfd)
4492 && contents[roff + 5] == (bfd_byte) '\xb8')
4493 {
4494 memcpy (contents + roff - 3,
4495 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05"
4496 "\0\0\0\0\x66\x0f\x1f\x44\0", 22);
4497 largepic = 1;
4498 }
4499 else if (ABI_64_P (output_bfd))
4500 memcpy (contents + roff - 4,
4501 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
4502 16);
4503 else
4504 memcpy (contents + roff - 3,
4505 "\x64\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
4506 15);
4507
4508 relocation = (htab->elf.sgot->output_section->vma
4509 + htab->elf.sgot->output_offset + off
4510 - roff
4511 - largepic
4512 - input_section->output_section->vma
4513 - input_section->output_offset
4514 - 12);
4515 bfd_put_32 (output_bfd, relocation,
4516 contents + roff + 8 + largepic);
4517 /* Skip R_X86_64_PLT32/R_X86_64_PLTOFF64. */
4518 rel++;
4519 continue;
4520 }
4521 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
4522 {
4523 /* GDesc -> IE transition.
4524 It's originally something like:
4525 leaq x@tlsdesc(%rip), %rax
4526
4527 Change it to:
4528 movq x@gottpoff(%rip), %rax # before xchg %ax,%ax. */
4529
4530 /* Now modify the instruction as appropriate. To
4531 turn a leaq into a movq in the form we use it, it
4532 suffices to change the second byte from 0x8d to
4533 0x8b. */
4534 bfd_put_8 (output_bfd, 0x8b, contents + roff - 2);
4535
4536 bfd_put_32 (output_bfd,
4537 htab->elf.sgot->output_section->vma
4538 + htab->elf.sgot->output_offset + off
4539 - rel->r_offset
4540 - input_section->output_section->vma
4541 - input_section->output_offset
4542 - 4,
4543 contents + roff);
4544 continue;
4545 }
4546 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
4547 {
4548 /* GDesc -> IE transition.
4549 It's originally:
4550 call *(%rax)
4551
4552 Change it to:
4553 xchg %ax, %ax. */
4554
4555 bfd_put_8 (output_bfd, 0x66, contents + roff);
4556 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
4557 continue;
4558 }
4559 else
4560 BFD_ASSERT (FALSE);
4561 }
4562 break;
4563
4564 case R_X86_64_TLSLD:
4565 if (! elf_x86_64_tls_transition (info, input_bfd,
4566 input_section, contents,
4567 symtab_hdr, sym_hashes,
4568 &r_type, GOT_UNKNOWN,
4569 rel, relend, h, r_symndx))
4570 return FALSE;
4571
4572 if (r_type != R_X86_64_TLSLD)
4573 {
4574 /* LD->LE transition:
4575 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
4576 For 64bit, we change it into:
4577 .word 0x6666; .byte 0x66; movq %fs:0, %rax.
4578 For 32bit, we change it into:
4579 nopl 0x0(%rax); movl %fs:0, %eax.
4580 For largepic, change:
4581 leaq foo@tlsgd(%rip), %rdi
4582 movabsq $__tls_get_addr@pltoff, %rax
4583 addq %rbx, %rax
4584 call *%rax
4585 into:
4586 data32 data32 data32 nopw %cs:0x0(%rax,%rax,1)
4587 movq %fs:0, %eax */
4588
4589 BFD_ASSERT (r_type == R_X86_64_TPOFF32);
4590 if (ABI_64_P (output_bfd)
4591 && contents[rel->r_offset + 5] == (bfd_byte) '\xb8')
4592 memcpy (contents + rel->r_offset - 3,
4593 "\x66\x66\x66\x66\x2e\x0f\x1f\x84\0\0\0\0\0"
4594 "\x64\x48\x8b\x04\x25\0\0\0", 22);
4595 else if (ABI_64_P (output_bfd))
4596 memcpy (contents + rel->r_offset - 3,
4597 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
4598 else
4599 memcpy (contents + rel->r_offset - 3,
4600 "\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0", 12);
4601 /* Skip R_X86_64_PC32/R_X86_64_PLT32/R_X86_64_PLTOFF64. */
4602 rel++;
4603 continue;
4604 }
4605
4606 if (htab->elf.sgot == NULL)
4607 abort ();
4608
4609 off = htab->tls_ld_got.offset;
4610 if (off & 1)
4611 off &= ~1;
4612 else
4613 {
4614 Elf_Internal_Rela outrel;
4615
4616 if (htab->elf.srelgot == NULL)
4617 abort ();
4618
4619 outrel.r_offset = (htab->elf.sgot->output_section->vma
4620 + htab->elf.sgot->output_offset + off);
4621
4622 bfd_put_64 (output_bfd, 0,
4623 htab->elf.sgot->contents + off);
4624 bfd_put_64 (output_bfd, 0,
4625 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4626 outrel.r_info = htab->r_info (0, R_X86_64_DTPMOD64);
4627 outrel.r_addend = 0;
4628 elf_append_rela (output_bfd, htab->elf.srelgot,
4629 &outrel);
4630 htab->tls_ld_got.offset |= 1;
4631 }
4632 relocation = htab->elf.sgot->output_section->vma
4633 + htab->elf.sgot->output_offset + off;
4634 unresolved_reloc = FALSE;
4635 break;
4636
4637 case R_X86_64_DTPOFF32:
4638 if (!info->executable|| (input_section->flags & SEC_CODE) == 0)
4639 relocation -= elf_x86_64_dtpoff_base (info);
4640 else
4641 relocation = elf_x86_64_tpoff (info, relocation);
4642 break;
4643
4644 case R_X86_64_TPOFF32:
4645 case R_X86_64_TPOFF64:
4646 BFD_ASSERT (info->executable);
4647 relocation = elf_x86_64_tpoff (info, relocation);
4648 break;
4649
4650 case R_X86_64_DTPOFF64:
4651 BFD_ASSERT ((input_section->flags & SEC_CODE) == 0);
4652 relocation -= elf_x86_64_dtpoff_base (info);
4653 break;
4654
4655 default:
4656 break;
4657 }
4658
4659 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
4660 because such sections are not SEC_ALLOC and thus ld.so will
4661 not process them. */
4662 if (unresolved_reloc
4663 && !((input_section->flags & SEC_DEBUGGING) != 0
4664 && h->def_dynamic)
4665 && _bfd_elf_section_offset (output_bfd, info, input_section,
4666 rel->r_offset) != (bfd_vma) -1)
4667 {
4668 (*_bfd_error_handler)
4669 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
4670 input_bfd,
4671 input_section,
4672 (long) rel->r_offset,
4673 howto->name,
4674 h->root.root.string);
4675 return FALSE;
4676 }
4677
4678 do_relocation:
4679 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
4680 contents, rel->r_offset,
4681 relocation, rel->r_addend);
4682
4683 check_relocation_error:
4684 if (r != bfd_reloc_ok)
4685 {
4686 const char *name;
4687
4688 if (h != NULL)
4689 name = h->root.root.string;
4690 else
4691 {
4692 name = bfd_elf_string_from_elf_section (input_bfd,
4693 symtab_hdr->sh_link,
4694 sym->st_name);
4695 if (name == NULL)
4696 return FALSE;
4697 if (*name == '\0')
4698 name = bfd_section_name (input_bfd, sec);
4699 }
4700
4701 if (r == bfd_reloc_overflow)
4702 {
4703 if (! ((*info->callbacks->reloc_overflow)
4704 (info, (h ? &h->root : NULL), name, howto->name,
4705 (bfd_vma) 0, input_bfd, input_section,
4706 rel->r_offset)))
4707 return FALSE;
4708 }
4709 else
4710 {
4711 (*_bfd_error_handler)
4712 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
4713 input_bfd, input_section,
4714 (long) rel->r_offset, name, (int) r);
4715 return FALSE;
4716 }
4717 }
4718 }
4719
4720 return TRUE;
4721 }
4722
4723 /* Finish up dynamic symbol handling. We set the contents of various
4724 dynamic sections here. */
4725
4726 static bfd_boolean
4727 elf_x86_64_finish_dynamic_symbol (bfd *output_bfd,
4728 struct bfd_link_info *info,
4729 struct elf_link_hash_entry *h,
4730 Elf_Internal_Sym *sym ATTRIBUTE_UNUSED)
4731 {
4732 struct elf_x86_64_link_hash_table *htab;
4733 const struct elf_x86_64_backend_data *abed;
4734 bfd_boolean use_plt_bnd;
4735
4736 htab = elf_x86_64_hash_table (info);
4737 if (htab == NULL)
4738 return FALSE;
4739
4740 /* Use MPX backend data in case of BND relocation. Use .plt_bnd
4741 section only if there is .plt section. */
4742 use_plt_bnd = htab->elf.splt != NULL && htab->plt_bnd != NULL;
4743 abed = (use_plt_bnd
4744 ? &elf_x86_64_bnd_arch_bed
4745 : get_elf_x86_64_backend_data (output_bfd));
4746
4747 if (h->plt.offset != (bfd_vma) -1)
4748 {
4749 bfd_vma plt_index;
4750 bfd_vma got_offset, plt_offset, plt_plt_offset, plt_got_offset;
4751 bfd_vma plt_plt_insn_end, plt_got_insn_size;
4752 Elf_Internal_Rela rela;
4753 bfd_byte *loc;
4754 asection *plt, *gotplt, *relplt, *resolved_plt;
4755 const struct elf_backend_data *bed;
4756
4757 /* When building a static executable, use .iplt, .igot.plt and
4758 .rela.iplt sections for STT_GNU_IFUNC symbols. */
4759 if (htab->elf.splt != NULL)
4760 {
4761 plt = htab->elf.splt;
4762 gotplt = htab->elf.sgotplt;
4763 relplt = htab->elf.srelplt;
4764 }
4765 else
4766 {
4767 plt = htab->elf.iplt;
4768 gotplt = htab->elf.igotplt;
4769 relplt = htab->elf.irelplt;
4770 }
4771
4772 /* This symbol has an entry in the procedure linkage table. Set
4773 it up. */
4774 if ((h->dynindx == -1
4775 && !((h->forced_local || info->executable)
4776 && h->def_regular
4777 && h->type == STT_GNU_IFUNC))
4778 || plt == NULL
4779 || gotplt == NULL
4780 || relplt == NULL)
4781 abort ();
4782
4783 /* Get the index in the procedure linkage table which
4784 corresponds to this symbol. This is the index of this symbol
4785 in all the symbols for which we are making plt entries. The
4786 first entry in the procedure linkage table is reserved.
4787
4788 Get the offset into the .got table of the entry that
4789 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
4790 bytes. The first three are reserved for the dynamic linker.
4791
4792 For static executables, we don't reserve anything. */
4793
4794 if (plt == htab->elf.splt)
4795 {
4796 got_offset = h->plt.offset / abed->plt_entry_size - 1;
4797 got_offset = (got_offset + 3) * GOT_ENTRY_SIZE;
4798 }
4799 else
4800 {
4801 got_offset = h->plt.offset / abed->plt_entry_size;
4802 got_offset = got_offset * GOT_ENTRY_SIZE;
4803 }
4804
4805 plt_plt_insn_end = abed->plt_plt_insn_end;
4806 plt_plt_offset = abed->plt_plt_offset;
4807 plt_got_insn_size = abed->plt_got_insn_size;
4808 plt_got_offset = abed->plt_got_offset;
4809 if (use_plt_bnd)
4810 {
4811 /* Use the second PLT with BND relocations. */
4812 const bfd_byte *plt_entry, *plt2_entry;
4813 struct elf_x86_64_link_hash_entry *eh
4814 = (struct elf_x86_64_link_hash_entry *) h;
4815
4816 if (eh->has_bnd_reloc)
4817 {
4818 plt_entry = elf_x86_64_bnd_plt_entry;
4819 plt2_entry = elf_x86_64_bnd_plt2_entry;
4820 }
4821 else
4822 {
4823 plt_entry = elf_x86_64_legacy_plt_entry;
4824 plt2_entry = elf_x86_64_legacy_plt2_entry;
4825
4826 /* Subtract 1 since there is no BND prefix. */
4827 plt_plt_insn_end -= 1;
4828 plt_plt_offset -= 1;
4829 plt_got_insn_size -= 1;
4830 plt_got_offset -= 1;
4831 }
4832
4833 BFD_ASSERT (sizeof (elf_x86_64_bnd_plt_entry)
4834 == sizeof (elf_x86_64_legacy_plt_entry));
4835
4836 /* Fill in the entry in the procedure linkage table. */
4837 memcpy (plt->contents + h->plt.offset,
4838 plt_entry, sizeof (elf_x86_64_legacy_plt_entry));
4839 /* Fill in the entry in the second PLT. */
4840 memcpy (htab->plt_bnd->contents + eh->plt_bnd.offset,
4841 plt2_entry, sizeof (elf_x86_64_legacy_plt2_entry));
4842
4843 resolved_plt = htab->plt_bnd;
4844 plt_offset = eh->plt_bnd.offset;
4845 }
4846 else
4847 {
4848 /* Fill in the entry in the procedure linkage table. */
4849 memcpy (plt->contents + h->plt.offset, abed->plt_entry,
4850 abed->plt_entry_size);
4851
4852 resolved_plt = plt;
4853 plt_offset = h->plt.offset;
4854 }
4855
4856 /* Insert the relocation positions of the plt section. */
4857
4858 /* Put offset the PC-relative instruction referring to the GOT entry,
4859 subtracting the size of that instruction. */
4860 bfd_put_32 (output_bfd,
4861 (gotplt->output_section->vma
4862 + gotplt->output_offset
4863 + got_offset
4864 - resolved_plt->output_section->vma
4865 - resolved_plt->output_offset
4866 - plt_offset
4867 - plt_got_insn_size),
4868 resolved_plt->contents + plt_offset + plt_got_offset);
4869
4870 /* Fill in the entry in the global offset table, initially this
4871 points to the second part of the PLT entry. */
4872 bfd_put_64 (output_bfd, (plt->output_section->vma
4873 + plt->output_offset
4874 + h->plt.offset + abed->plt_lazy_offset),
4875 gotplt->contents + got_offset);
4876
4877 /* Fill in the entry in the .rela.plt section. */
4878 rela.r_offset = (gotplt->output_section->vma
4879 + gotplt->output_offset
4880 + got_offset);
4881 if (h->dynindx == -1
4882 || ((info->executable
4883 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
4884 && h->def_regular
4885 && h->type == STT_GNU_IFUNC))
4886 {
4887 /* If an STT_GNU_IFUNC symbol is locally defined, generate
4888 R_X86_64_IRELATIVE instead of R_X86_64_JUMP_SLOT. */
4889 rela.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
4890 rela.r_addend = (h->root.u.def.value
4891 + h->root.u.def.section->output_section->vma
4892 + h->root.u.def.section->output_offset);
4893 /* R_X86_64_IRELATIVE comes last. */
4894 plt_index = htab->next_irelative_index--;
4895 }
4896 else
4897 {
4898 rela.r_info = htab->r_info (h->dynindx, R_X86_64_JUMP_SLOT);
4899 rela.r_addend = 0;
4900 plt_index = htab->next_jump_slot_index++;
4901 }
4902
4903 /* Don't fill PLT entry for static executables. */
4904 if (plt == htab->elf.splt)
4905 {
4906 /* Put relocation index. */
4907 bfd_put_32 (output_bfd, plt_index,
4908 plt->contents + h->plt.offset + abed->plt_reloc_offset);
4909 /* Put offset for jmp .PLT0. */
4910 bfd_put_32 (output_bfd, - (h->plt.offset + plt_plt_insn_end),
4911 plt->contents + h->plt.offset + plt_plt_offset);
4912 }
4913
4914 bed = get_elf_backend_data (output_bfd);
4915 loc = relplt->contents + plt_index * bed->s->sizeof_rela;
4916 bed->s->swap_reloca_out (output_bfd, &rela, loc);
4917
4918 if (!h->def_regular)
4919 {
4920 /* Mark the symbol as undefined, rather than as defined in
4921 the .plt section. Leave the value if there were any
4922 relocations where pointer equality matters (this is a clue
4923 for the dynamic linker, to make function pointer
4924 comparisons work between an application and shared
4925 library), otherwise set it to zero. If a function is only
4926 called from a binary, there is no need to slow down
4927 shared libraries because of that. */
4928 sym->st_shndx = SHN_UNDEF;
4929 if (!h->pointer_equality_needed)
4930 sym->st_value = 0;
4931 }
4932 }
4933
4934 if (h->got.offset != (bfd_vma) -1
4935 && ! GOT_TLS_GD_ANY_P (elf_x86_64_hash_entry (h)->tls_type)
4936 && elf_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
4937 {
4938 Elf_Internal_Rela rela;
4939
4940 /* This symbol has an entry in the global offset table. Set it
4941 up. */
4942 if (htab->elf.sgot == NULL || htab->elf.srelgot == NULL)
4943 abort ();
4944
4945 rela.r_offset = (htab->elf.sgot->output_section->vma
4946 + htab->elf.sgot->output_offset
4947 + (h->got.offset &~ (bfd_vma) 1));
4948
4949 /* If this is a static link, or it is a -Bsymbolic link and the
4950 symbol is defined locally or was forced to be local because
4951 of a version file, we just want to emit a RELATIVE reloc.
4952 The entry in the global offset table will already have been
4953 initialized in the relocate_section function. */
4954 if (h->def_regular
4955 && h->type == STT_GNU_IFUNC)
4956 {
4957 if (info->shared)
4958 {
4959 /* Generate R_X86_64_GLOB_DAT. */
4960 goto do_glob_dat;
4961 }
4962 else
4963 {
4964 asection *plt;
4965
4966 if (!h->pointer_equality_needed)
4967 abort ();
4968
4969 /* For non-shared object, we can't use .got.plt, which
4970 contains the real function addres if we need pointer
4971 equality. We load the GOT entry with the PLT entry. */
4972 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
4973 bfd_put_64 (output_bfd, (plt->output_section->vma
4974 + plt->output_offset
4975 + h->plt.offset),
4976 htab->elf.sgot->contents + h->got.offset);
4977 return TRUE;
4978 }
4979 }
4980 else if (info->shared
4981 && SYMBOL_REFERENCES_LOCAL (info, h))
4982 {
4983 if (!h->def_regular)
4984 return FALSE;
4985 BFD_ASSERT((h->got.offset & 1) != 0);
4986 rela.r_info = htab->r_info (0, R_X86_64_RELATIVE);
4987 rela.r_addend = (h->root.u.def.value
4988 + h->root.u.def.section->output_section->vma
4989 + h->root.u.def.section->output_offset);
4990 }
4991 else
4992 {
4993 BFD_ASSERT((h->got.offset & 1) == 0);
4994 do_glob_dat:
4995 bfd_put_64 (output_bfd, (bfd_vma) 0,
4996 htab->elf.sgot->contents + h->got.offset);
4997 rela.r_info = htab->r_info (h->dynindx, R_X86_64_GLOB_DAT);
4998 rela.r_addend = 0;
4999 }
5000
5001 elf_append_rela (output_bfd, htab->elf.srelgot, &rela);
5002 }
5003
5004 if (h->needs_copy)
5005 {
5006 Elf_Internal_Rela rela;
5007
5008 /* This symbol needs a copy reloc. Set it up. */
5009
5010 if (h->dynindx == -1
5011 || (h->root.type != bfd_link_hash_defined
5012 && h->root.type != bfd_link_hash_defweak)
5013 || htab->srelbss == NULL)
5014 abort ();
5015
5016 rela.r_offset = (h->root.u.def.value
5017 + h->root.u.def.section->output_section->vma
5018 + h->root.u.def.section->output_offset);
5019 rela.r_info = htab->r_info (h->dynindx, R_X86_64_COPY);
5020 rela.r_addend = 0;
5021 elf_append_rela (output_bfd, htab->srelbss, &rela);
5022 }
5023
5024 return TRUE;
5025 }
5026
5027 /* Finish up local dynamic symbol handling. We set the contents of
5028 various dynamic sections here. */
5029
5030 static bfd_boolean
5031 elf_x86_64_finish_local_dynamic_symbol (void **slot, void *inf)
5032 {
5033 struct elf_link_hash_entry *h
5034 = (struct elf_link_hash_entry *) *slot;
5035 struct bfd_link_info *info
5036 = (struct bfd_link_info *) inf;
5037
5038 return elf_x86_64_finish_dynamic_symbol (info->output_bfd,
5039 info, h, NULL);
5040 }
5041
5042 /* Used to decide how to sort relocs in an optimal manner for the
5043 dynamic linker, before writing them out. */
5044
5045 static enum elf_reloc_type_class
5046 elf_x86_64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
5047 const asection *rel_sec ATTRIBUTE_UNUSED,
5048 const Elf_Internal_Rela *rela)
5049 {
5050 switch ((int) ELF32_R_TYPE (rela->r_info))
5051 {
5052 case R_X86_64_RELATIVE:
5053 case R_X86_64_RELATIVE64:
5054 return reloc_class_relative;
5055 case R_X86_64_JUMP_SLOT:
5056 return reloc_class_plt;
5057 case R_X86_64_COPY:
5058 return reloc_class_copy;
5059 default:
5060 return reloc_class_normal;
5061 }
5062 }
5063
5064 /* Finish up the dynamic sections. */
5065
5066 static bfd_boolean
5067 elf_x86_64_finish_dynamic_sections (bfd *output_bfd,
5068 struct bfd_link_info *info)
5069 {
5070 struct elf_x86_64_link_hash_table *htab;
5071 bfd *dynobj;
5072 asection *sdyn;
5073 const struct elf_x86_64_backend_data *abed;
5074
5075 htab = elf_x86_64_hash_table (info);
5076 if (htab == NULL)
5077 return FALSE;
5078
5079 /* Use MPX backend data in case of BND relocation. Use .plt_bnd
5080 section only if there is .plt section. */
5081 abed = (htab->elf.splt != NULL && htab->plt_bnd != NULL
5082 ? &elf_x86_64_bnd_arch_bed
5083 : get_elf_x86_64_backend_data (output_bfd));
5084
5085 dynobj = htab->elf.dynobj;
5086 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
5087
5088 if (htab->elf.dynamic_sections_created)
5089 {
5090 bfd_byte *dyncon, *dynconend;
5091 const struct elf_backend_data *bed;
5092 bfd_size_type sizeof_dyn;
5093
5094 if (sdyn == NULL || htab->elf.sgot == NULL)
5095 abort ();
5096
5097 bed = get_elf_backend_data (dynobj);
5098 sizeof_dyn = bed->s->sizeof_dyn;
5099 dyncon = sdyn->contents;
5100 dynconend = sdyn->contents + sdyn->size;
5101 for (; dyncon < dynconend; dyncon += sizeof_dyn)
5102 {
5103 Elf_Internal_Dyn dyn;
5104 asection *s;
5105
5106 (*bed->s->swap_dyn_in) (dynobj, dyncon, &dyn);
5107
5108 switch (dyn.d_tag)
5109 {
5110 default:
5111 continue;
5112
5113 case DT_PLTGOT:
5114 s = htab->elf.sgotplt;
5115 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
5116 break;
5117
5118 case DT_JMPREL:
5119 dyn.d_un.d_ptr = htab->elf.srelplt->output_section->vma;
5120 break;
5121
5122 case DT_PLTRELSZ:
5123 s = htab->elf.srelplt->output_section;
5124 dyn.d_un.d_val = s->size;
5125 break;
5126
5127 case DT_RELASZ:
5128 /* The procedure linkage table relocs (DT_JMPREL) should
5129 not be included in the overall relocs (DT_RELA).
5130 Therefore, we override the DT_RELASZ entry here to
5131 make it not include the JMPREL relocs. Since the
5132 linker script arranges for .rela.plt to follow all
5133 other relocation sections, we don't have to worry
5134 about changing the DT_RELA entry. */
5135 if (htab->elf.srelplt != NULL)
5136 {
5137 s = htab->elf.srelplt->output_section;
5138 dyn.d_un.d_val -= s->size;
5139 }
5140 break;
5141
5142 case DT_TLSDESC_PLT:
5143 s = htab->elf.splt;
5144 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
5145 + htab->tlsdesc_plt;
5146 break;
5147
5148 case DT_TLSDESC_GOT:
5149 s = htab->elf.sgot;
5150 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
5151 + htab->tlsdesc_got;
5152 break;
5153 }
5154
5155 (*bed->s->swap_dyn_out) (output_bfd, &dyn, dyncon);
5156 }
5157
5158 /* Fill in the special first entry in the procedure linkage table. */
5159 if (htab->elf.splt && htab->elf.splt->size > 0)
5160 {
5161 /* Fill in the first entry in the procedure linkage table. */
5162 memcpy (htab->elf.splt->contents,
5163 abed->plt0_entry, abed->plt_entry_size);
5164 /* Add offset for pushq GOT+8(%rip), since the instruction
5165 uses 6 bytes subtract this value. */
5166 bfd_put_32 (output_bfd,
5167 (htab->elf.sgotplt->output_section->vma
5168 + htab->elf.sgotplt->output_offset
5169 + 8
5170 - htab->elf.splt->output_section->vma
5171 - htab->elf.splt->output_offset
5172 - 6),
5173 htab->elf.splt->contents + abed->plt0_got1_offset);
5174 /* Add offset for the PC-relative instruction accessing GOT+16,
5175 subtracting the offset to the end of that instruction. */
5176 bfd_put_32 (output_bfd,
5177 (htab->elf.sgotplt->output_section->vma
5178 + htab->elf.sgotplt->output_offset
5179 + 16
5180 - htab->elf.splt->output_section->vma
5181 - htab->elf.splt->output_offset
5182 - abed->plt0_got2_insn_end),
5183 htab->elf.splt->contents + abed->plt0_got2_offset);
5184
5185 elf_section_data (htab->elf.splt->output_section)
5186 ->this_hdr.sh_entsize = abed->plt_entry_size;
5187
5188 if (htab->tlsdesc_plt)
5189 {
5190 bfd_put_64 (output_bfd, (bfd_vma) 0,
5191 htab->elf.sgot->contents + htab->tlsdesc_got);
5192
5193 memcpy (htab->elf.splt->contents + htab->tlsdesc_plt,
5194 abed->plt0_entry, abed->plt_entry_size);
5195
5196 /* Add offset for pushq GOT+8(%rip), since the
5197 instruction uses 6 bytes subtract this value. */
5198 bfd_put_32 (output_bfd,
5199 (htab->elf.sgotplt->output_section->vma
5200 + htab->elf.sgotplt->output_offset
5201 + 8
5202 - htab->elf.splt->output_section->vma
5203 - htab->elf.splt->output_offset
5204 - htab->tlsdesc_plt
5205 - 6),
5206 htab->elf.splt->contents
5207 + htab->tlsdesc_plt + abed->plt0_got1_offset);
5208 /* Add offset for the PC-relative instruction accessing GOT+TDG,
5209 where TGD stands for htab->tlsdesc_got, subtracting the offset
5210 to the end of that instruction. */
5211 bfd_put_32 (output_bfd,
5212 (htab->elf.sgot->output_section->vma
5213 + htab->elf.sgot->output_offset
5214 + htab->tlsdesc_got
5215 - htab->elf.splt->output_section->vma
5216 - htab->elf.splt->output_offset
5217 - htab->tlsdesc_plt
5218 - abed->plt0_got2_insn_end),
5219 htab->elf.splt->contents
5220 + htab->tlsdesc_plt + abed->plt0_got2_offset);
5221 }
5222 }
5223 }
5224
5225 if (htab->plt_bnd != NULL)
5226 elf_section_data (htab->plt_bnd->output_section)
5227 ->this_hdr.sh_entsize = sizeof (elf_x86_64_bnd_plt2_entry);
5228
5229 if (htab->elf.sgotplt)
5230 {
5231 if (bfd_is_abs_section (htab->elf.sgotplt->output_section))
5232 {
5233 (*_bfd_error_handler)
5234 (_("discarded output section: `%A'"), htab->elf.sgotplt);
5235 return FALSE;
5236 }
5237
5238 /* Fill in the first three entries in the global offset table. */
5239 if (htab->elf.sgotplt->size > 0)
5240 {
5241 /* Set the first entry in the global offset table to the address of
5242 the dynamic section. */
5243 if (sdyn == NULL)
5244 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents);
5245 else
5246 bfd_put_64 (output_bfd,
5247 sdyn->output_section->vma + sdyn->output_offset,
5248 htab->elf.sgotplt->contents);
5249 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
5250 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
5251 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE*2);
5252 }
5253
5254 elf_section_data (htab->elf.sgotplt->output_section)->this_hdr.sh_entsize =
5255 GOT_ENTRY_SIZE;
5256 }
5257
5258 /* Adjust .eh_frame for .plt section. */
5259 if (htab->plt_eh_frame != NULL
5260 && htab->plt_eh_frame->contents != NULL)
5261 {
5262 if (htab->elf.splt != NULL
5263 && htab->elf.splt->size != 0
5264 && (htab->elf.splt->flags & SEC_EXCLUDE) == 0
5265 && htab->elf.splt->output_section != NULL
5266 && htab->plt_eh_frame->output_section != NULL)
5267 {
5268 bfd_vma plt_start = htab->elf.splt->output_section->vma;
5269 bfd_vma eh_frame_start = htab->plt_eh_frame->output_section->vma
5270 + htab->plt_eh_frame->output_offset
5271 + PLT_FDE_START_OFFSET;
5272 bfd_put_signed_32 (dynobj, plt_start - eh_frame_start,
5273 htab->plt_eh_frame->contents
5274 + PLT_FDE_START_OFFSET);
5275 }
5276 if (htab->plt_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME)
5277 {
5278 if (! _bfd_elf_write_section_eh_frame (output_bfd, info,
5279 htab->plt_eh_frame,
5280 htab->plt_eh_frame->contents))
5281 return FALSE;
5282 }
5283 }
5284
5285 if (htab->elf.sgot && htab->elf.sgot->size > 0)
5286 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize
5287 = GOT_ENTRY_SIZE;
5288
5289 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
5290 htab_traverse (htab->loc_hash_table,
5291 elf_x86_64_finish_local_dynamic_symbol,
5292 info);
5293
5294 return TRUE;
5295 }
5296
5297 /* Return address in section PLT for the Ith GOTPLT relocation, for
5298 relocation REL or (bfd_vma) -1 if it should not be included. */
5299
5300 static bfd_vma
5301 elf_x86_64_plt_sym_val (bfd_vma i, const asection *plt,
5302 const arelent *rel)
5303 {
5304 bfd *abfd;
5305 const struct elf_x86_64_backend_data *bed;
5306 bfd_vma plt_offset;
5307
5308 /* Only match R_X86_64_JUMP_SLOT and R_X86_64_IRELATIVE. */
5309 if (rel->howto->type != R_X86_64_JUMP_SLOT
5310 && rel->howto->type != R_X86_64_IRELATIVE)
5311 return (bfd_vma) -1;
5312
5313 abfd = plt->owner;
5314 bed = get_elf_x86_64_backend_data (abfd);
5315 plt_offset = bed->plt_entry_size;
5316
5317 if (elf_elfheader (abfd)->e_ident[EI_OSABI] != ELFOSABI_GNU)
5318 return plt->vma + (i + 1) * plt_offset;
5319
5320 while (plt_offset < plt->size)
5321 {
5322 bfd_vma reloc_index;
5323 bfd_byte reloc_index_raw[4];
5324
5325 if (!bfd_get_section_contents (abfd, (asection *) plt,
5326 reloc_index_raw,
5327 plt_offset + bed->plt_reloc_offset,
5328 sizeof (reloc_index_raw)))
5329 return (bfd_vma) -1;
5330
5331 reloc_index = H_GET_32 (abfd, reloc_index_raw);
5332 if (reloc_index == i)
5333 return plt->vma + plt_offset;
5334 plt_offset += bed->plt_entry_size;
5335 }
5336
5337 abort ();
5338 }
5339
5340 /* Return offset in .plt.bnd section for the Ith GOTPLT relocation with
5341 PLT section, or (bfd_vma) -1 if it should not be included. */
5342
5343 static bfd_vma
5344 elf_x86_64_plt_sym_val_offset_plt_bnd (bfd_vma i, const asection *plt)
5345 {
5346 const struct elf_x86_64_backend_data *bed = &elf_x86_64_bnd_arch_bed;
5347 bfd *abfd = plt->owner;
5348 bfd_vma plt_offset = bed->plt_entry_size;
5349
5350 if (elf_elfheader (abfd)->e_ident[EI_OSABI] != ELFOSABI_GNU)
5351 return i * sizeof (elf_x86_64_legacy_plt2_entry);
5352
5353 while (plt_offset < plt->size)
5354 {
5355 bfd_vma reloc_index;
5356 bfd_byte reloc_index_raw[4];
5357
5358 if (!bfd_get_section_contents (abfd, (asection *) plt,
5359 reloc_index_raw,
5360 plt_offset + bed->plt_reloc_offset,
5361 sizeof (reloc_index_raw)))
5362 return (bfd_vma) -1;
5363
5364 reloc_index = H_GET_32 (abfd, reloc_index_raw);
5365 if (reloc_index == i)
5366 {
5367 /* This is the index in .plt section. */
5368 long plt_index = plt_offset / bed->plt_entry_size;
5369 /* Return the offset in .plt.bnd section. */
5370 return (plt_index - 1) * sizeof (elf_x86_64_legacy_plt2_entry);
5371 }
5372 plt_offset += bed->plt_entry_size;
5373 }
5374
5375 abort ();
5376 }
5377
5378 /* Similar to _bfd_elf_get_synthetic_symtab, with .plt.bnd section
5379 support. */
5380
5381 static long
5382 elf_x86_64_get_synthetic_symtab (bfd *abfd,
5383 long symcount,
5384 asymbol **syms,
5385 long dynsymcount,
5386 asymbol **dynsyms,
5387 asymbol **ret)
5388 {
5389 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5390 asection *relplt;
5391 asymbol *s;
5392 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
5393 arelent *p;
5394 long count, i, n;
5395 size_t size;
5396 Elf_Internal_Shdr *hdr;
5397 char *names;
5398 asection *plt, *plt_push;
5399
5400 plt_push = bfd_get_section_by_name (abfd, ".plt");
5401 if (plt_push == NULL)
5402 return 0;
5403
5404 plt = bfd_get_section_by_name (abfd, ".plt.bnd");
5405 /* Use the generic ELF version if there is no .plt.bnd section. */
5406 if (plt == NULL)
5407 return _bfd_elf_get_synthetic_symtab (abfd, symcount, syms,
5408 dynsymcount, dynsyms, ret);
5409
5410 *ret = NULL;
5411
5412 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
5413 return 0;
5414
5415 if (dynsymcount <= 0)
5416 return 0;
5417
5418 relplt = bfd_get_section_by_name (abfd, ".rela.plt");
5419 if (relplt == NULL)
5420 return 0;
5421
5422 hdr = &elf_section_data (relplt)->this_hdr;
5423 if (hdr->sh_link != elf_dynsymtab (abfd)
5424 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
5425 return 0;
5426
5427 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
5428 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
5429 return -1;
5430
5431 count = relplt->size / hdr->sh_entsize;
5432 size = count * sizeof (asymbol);
5433 p = relplt->relocation;
5434 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
5435 {
5436 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
5437 if (p->addend != 0)
5438 size += sizeof ("+0x") - 1 + 8 + 8;
5439 }
5440
5441 s = *ret = (asymbol *) bfd_malloc (size);
5442 if (s == NULL)
5443 return -1;
5444
5445 names = (char *) (s + count);
5446 p = relplt->relocation;
5447 n = 0;
5448 for (i = 0; i < count; i++, p++)
5449 {
5450 bfd_vma offset;
5451 size_t len;
5452
5453 if (p->howto->type != R_X86_64_JUMP_SLOT
5454 && p->howto->type != R_X86_64_IRELATIVE)
5455 continue;
5456
5457 offset = elf_x86_64_plt_sym_val_offset_plt_bnd (i, plt_push);
5458
5459 *s = **p->sym_ptr_ptr;
5460 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
5461 we are defining a symbol, ensure one of them is set. */
5462 if ((s->flags & BSF_LOCAL) == 0)
5463 s->flags |= BSF_GLOBAL;
5464 s->flags |= BSF_SYNTHETIC;
5465 s->section = plt;
5466 s->value = offset;
5467 s->name = names;
5468 s->udata.p = NULL;
5469 len = strlen ((*p->sym_ptr_ptr)->name);
5470 memcpy (names, (*p->sym_ptr_ptr)->name, len);
5471 names += len;
5472 if (p->addend != 0)
5473 {
5474 char buf[30], *a;
5475
5476 memcpy (names, "+0x", sizeof ("+0x") - 1);
5477 names += sizeof ("+0x") - 1;
5478 bfd_sprintf_vma (abfd, buf, p->addend);
5479 for (a = buf; *a == '0'; ++a)
5480 ;
5481 len = strlen (a);
5482 memcpy (names, a, len);
5483 names += len;
5484 }
5485 memcpy (names, "@plt", sizeof ("@plt"));
5486 names += sizeof ("@plt");
5487 ++s, ++n;
5488 }
5489
5490 return n;
5491 }
5492
5493 /* Handle an x86-64 specific section when reading an object file. This
5494 is called when elfcode.h finds a section with an unknown type. */
5495
5496 static bfd_boolean
5497 elf_x86_64_section_from_shdr (bfd *abfd, Elf_Internal_Shdr *hdr,
5498 const char *name, int shindex)
5499 {
5500 if (hdr->sh_type != SHT_X86_64_UNWIND)
5501 return FALSE;
5502
5503 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5504 return FALSE;
5505
5506 return TRUE;
5507 }
5508
5509 /* Hook called by the linker routine which adds symbols from an object
5510 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
5511 of .bss. */
5512
5513 static bfd_boolean
5514 elf_x86_64_add_symbol_hook (bfd *abfd,
5515 struct bfd_link_info *info,
5516 Elf_Internal_Sym *sym,
5517 const char **namep ATTRIBUTE_UNUSED,
5518 flagword *flagsp ATTRIBUTE_UNUSED,
5519 asection **secp,
5520 bfd_vma *valp)
5521 {
5522 asection *lcomm;
5523
5524 switch (sym->st_shndx)
5525 {
5526 case SHN_X86_64_LCOMMON:
5527 lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
5528 if (lcomm == NULL)
5529 {
5530 lcomm = bfd_make_section_with_flags (abfd,
5531 "LARGE_COMMON",
5532 (SEC_ALLOC
5533 | SEC_IS_COMMON
5534 | SEC_LINKER_CREATED));
5535 if (lcomm == NULL)
5536 return FALSE;
5537 elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
5538 }
5539 *secp = lcomm;
5540 *valp = sym->st_size;
5541 return TRUE;
5542 }
5543
5544 if ((ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
5545 || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE)
5546 && (abfd->flags & DYNAMIC) == 0
5547 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
5548 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
5549
5550 return TRUE;
5551 }
5552
5553
5554 /* Given a BFD section, try to locate the corresponding ELF section
5555 index. */
5556
5557 static bfd_boolean
5558 elf_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5559 asection *sec, int *index_return)
5560 {
5561 if (sec == &_bfd_elf_large_com_section)
5562 {
5563 *index_return = SHN_X86_64_LCOMMON;
5564 return TRUE;
5565 }
5566 return FALSE;
5567 }
5568
5569 /* Process a symbol. */
5570
5571 static void
5572 elf_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
5573 asymbol *asym)
5574 {
5575 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
5576
5577 switch (elfsym->internal_elf_sym.st_shndx)
5578 {
5579 case SHN_X86_64_LCOMMON:
5580 asym->section = &_bfd_elf_large_com_section;
5581 asym->value = elfsym->internal_elf_sym.st_size;
5582 /* Common symbol doesn't set BSF_GLOBAL. */
5583 asym->flags &= ~BSF_GLOBAL;
5584 break;
5585 }
5586 }
5587
5588 static bfd_boolean
5589 elf_x86_64_common_definition (Elf_Internal_Sym *sym)
5590 {
5591 return (sym->st_shndx == SHN_COMMON
5592 || sym->st_shndx == SHN_X86_64_LCOMMON);
5593 }
5594
5595 static unsigned int
5596 elf_x86_64_common_section_index (asection *sec)
5597 {
5598 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
5599 return SHN_COMMON;
5600 else
5601 return SHN_X86_64_LCOMMON;
5602 }
5603
5604 static asection *
5605 elf_x86_64_common_section (asection *sec)
5606 {
5607 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
5608 return bfd_com_section_ptr;
5609 else
5610 return &_bfd_elf_large_com_section;
5611 }
5612
5613 static bfd_boolean
5614 elf_x86_64_merge_symbol (struct elf_link_hash_entry *h,
5615 const Elf_Internal_Sym *sym,
5616 asection **psec,
5617 bfd_boolean newdef,
5618 bfd_boolean olddef,
5619 bfd *oldbfd,
5620 const asection *oldsec)
5621 {
5622 /* A normal common symbol and a large common symbol result in a
5623 normal common symbol. We turn the large common symbol into a
5624 normal one. */
5625 if (!olddef
5626 && h->root.type == bfd_link_hash_common
5627 && !newdef
5628 && bfd_is_com_section (*psec)
5629 && oldsec != *psec)
5630 {
5631 if (sym->st_shndx == SHN_COMMON
5632 && (elf_section_flags (oldsec) & SHF_X86_64_LARGE) != 0)
5633 {
5634 h->root.u.c.p->section
5635 = bfd_make_section_old_way (oldbfd, "COMMON");
5636 h->root.u.c.p->section->flags = SEC_ALLOC;
5637 }
5638 else if (sym->st_shndx == SHN_X86_64_LCOMMON
5639 && (elf_section_flags (oldsec) & SHF_X86_64_LARGE) == 0)
5640 *psec = bfd_com_section_ptr;
5641 }
5642
5643 return TRUE;
5644 }
5645
5646 static int
5647 elf_x86_64_additional_program_headers (bfd *abfd,
5648 struct bfd_link_info *info ATTRIBUTE_UNUSED)
5649 {
5650 asection *s;
5651 int count = 0;
5652
5653 /* Check to see if we need a large readonly segment. */
5654 s = bfd_get_section_by_name (abfd, ".lrodata");
5655 if (s && (s->flags & SEC_LOAD))
5656 count++;
5657
5658 /* Check to see if we need a large data segment. Since .lbss sections
5659 is placed right after the .bss section, there should be no need for
5660 a large data segment just because of .lbss. */
5661 s = bfd_get_section_by_name (abfd, ".ldata");
5662 if (s && (s->flags & SEC_LOAD))
5663 count++;
5664
5665 return count;
5666 }
5667
5668 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5669
5670 static bfd_boolean
5671 elf_x86_64_hash_symbol (struct elf_link_hash_entry *h)
5672 {
5673 if (h->plt.offset != (bfd_vma) -1
5674 && !h->def_regular
5675 && !h->pointer_equality_needed)
5676 return FALSE;
5677
5678 return _bfd_elf_hash_symbol (h);
5679 }
5680
5681 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. */
5682
5683 static bfd_boolean
5684 elf_x86_64_relocs_compatible (const bfd_target *input,
5685 const bfd_target *output)
5686 {
5687 return ((xvec_get_elf_backend_data (input)->s->elfclass
5688 == xvec_get_elf_backend_data (output)->s->elfclass)
5689 && _bfd_elf_relocs_compatible (input, output));
5690 }
5691
5692 static const struct bfd_elf_special_section
5693 elf_x86_64_special_sections[]=
5694 {
5695 { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
5696 { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
5697 { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
5698 { STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
5699 { STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
5700 { STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
5701 { NULL, 0, 0, 0, 0 }
5702 };
5703
5704 #define TARGET_LITTLE_SYM x86_64_elf64_vec
5705 #define TARGET_LITTLE_NAME "elf64-x86-64"
5706 #define ELF_ARCH bfd_arch_i386
5707 #define ELF_TARGET_ID X86_64_ELF_DATA
5708 #define ELF_MACHINE_CODE EM_X86_64
5709 #define ELF_MAXPAGESIZE 0x200000
5710 #define ELF_MINPAGESIZE 0x1000
5711 #define ELF_COMMONPAGESIZE 0x1000
5712
5713 #define elf_backend_can_gc_sections 1
5714 #define elf_backend_can_refcount 1
5715 #define elf_backend_want_got_plt 1
5716 #define elf_backend_plt_readonly 1
5717 #define elf_backend_want_plt_sym 0
5718 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
5719 #define elf_backend_rela_normal 1
5720 #define elf_backend_plt_alignment 4
5721
5722 #define elf_info_to_howto elf_x86_64_info_to_howto
5723
5724 #define bfd_elf64_bfd_link_hash_table_create \
5725 elf_x86_64_link_hash_table_create
5726 #define bfd_elf64_bfd_reloc_type_lookup elf_x86_64_reloc_type_lookup
5727 #define bfd_elf64_bfd_reloc_name_lookup \
5728 elf_x86_64_reloc_name_lookup
5729
5730 #define elf_backend_adjust_dynamic_symbol elf_x86_64_adjust_dynamic_symbol
5731 #define elf_backend_relocs_compatible elf_x86_64_relocs_compatible
5732 #define elf_backend_check_relocs elf_x86_64_check_relocs
5733 #define elf_backend_copy_indirect_symbol elf_x86_64_copy_indirect_symbol
5734 #define elf_backend_create_dynamic_sections elf_x86_64_create_dynamic_sections
5735 #define elf_backend_finish_dynamic_sections elf_x86_64_finish_dynamic_sections
5736 #define elf_backend_finish_dynamic_symbol elf_x86_64_finish_dynamic_symbol
5737 #define elf_backend_gc_mark_hook elf_x86_64_gc_mark_hook
5738 #define elf_backend_gc_sweep_hook elf_x86_64_gc_sweep_hook
5739 #define elf_backend_grok_prstatus elf_x86_64_grok_prstatus
5740 #define elf_backend_grok_psinfo elf_x86_64_grok_psinfo
5741 #ifdef CORE_HEADER
5742 #define elf_backend_write_core_note elf_x86_64_write_core_note
5743 #endif
5744 #define elf_backend_reloc_type_class elf_x86_64_reloc_type_class
5745 #define elf_backend_relocate_section elf_x86_64_relocate_section
5746 #define elf_backend_size_dynamic_sections elf_x86_64_size_dynamic_sections
5747 #define elf_backend_always_size_sections elf_x86_64_always_size_sections
5748 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
5749 #define elf_backend_plt_sym_val elf_x86_64_plt_sym_val
5750 #define elf_backend_object_p elf64_x86_64_elf_object_p
5751 #define bfd_elf64_mkobject elf_x86_64_mkobject
5752 #define bfd_elf64_get_synthetic_symtab elf_x86_64_get_synthetic_symtab
5753
5754 #define elf_backend_section_from_shdr \
5755 elf_x86_64_section_from_shdr
5756
5757 #define elf_backend_section_from_bfd_section \
5758 elf_x86_64_elf_section_from_bfd_section
5759 #define elf_backend_add_symbol_hook \
5760 elf_x86_64_add_symbol_hook
5761 #define elf_backend_symbol_processing \
5762 elf_x86_64_symbol_processing
5763 #define elf_backend_common_section_index \
5764 elf_x86_64_common_section_index
5765 #define elf_backend_common_section \
5766 elf_x86_64_common_section
5767 #define elf_backend_common_definition \
5768 elf_x86_64_common_definition
5769 #define elf_backend_merge_symbol \
5770 elf_x86_64_merge_symbol
5771 #define elf_backend_special_sections \
5772 elf_x86_64_special_sections
5773 #define elf_backend_additional_program_headers \
5774 elf_x86_64_additional_program_headers
5775 #define elf_backend_hash_symbol \
5776 elf_x86_64_hash_symbol
5777
5778 #include "elf64-target.h"
5779
5780 /* FreeBSD support. */
5781
5782 #undef TARGET_LITTLE_SYM
5783 #define TARGET_LITTLE_SYM x86_64_elf64_fbsd_vec
5784 #undef TARGET_LITTLE_NAME
5785 #define TARGET_LITTLE_NAME "elf64-x86-64-freebsd"
5786
5787 #undef ELF_OSABI
5788 #define ELF_OSABI ELFOSABI_FREEBSD
5789
5790 #undef elf64_bed
5791 #define elf64_bed elf64_x86_64_fbsd_bed
5792
5793 #include "elf64-target.h"
5794
5795 /* Solaris 2 support. */
5796
5797 #undef TARGET_LITTLE_SYM
5798 #define TARGET_LITTLE_SYM x86_64_elf64_sol2_vec
5799 #undef TARGET_LITTLE_NAME
5800 #define TARGET_LITTLE_NAME "elf64-x86-64-sol2"
5801
5802 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
5803 objects won't be recognized. */
5804 #undef ELF_OSABI
5805
5806 #undef elf64_bed
5807 #define elf64_bed elf64_x86_64_sol2_bed
5808
5809 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte
5810 boundary. */
5811 #undef elf_backend_static_tls_alignment
5812 #define elf_backend_static_tls_alignment 16
5813
5814 /* The Solaris 2 ABI requires a plt symbol on all platforms.
5815
5816 Cf. Linker and Libraries Guide, Ch. 2, Link-Editor, Generating the Output
5817 File, p.63. */
5818 #undef elf_backend_want_plt_sym
5819 #define elf_backend_want_plt_sym 1
5820
5821 #include "elf64-target.h"
5822
5823 #undef bfd_elf64_get_synthetic_symtab
5824
5825 /* Native Client support. */
5826
5827 static bfd_boolean
5828 elf64_x86_64_nacl_elf_object_p (bfd *abfd)
5829 {
5830 /* Set the right machine number for a NaCl x86-64 ELF64 file. */
5831 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64_nacl);
5832 return TRUE;
5833 }
5834
5835 #undef TARGET_LITTLE_SYM
5836 #define TARGET_LITTLE_SYM x86_64_elf64_nacl_vec
5837 #undef TARGET_LITTLE_NAME
5838 #define TARGET_LITTLE_NAME "elf64-x86-64-nacl"
5839 #undef elf64_bed
5840 #define elf64_bed elf64_x86_64_nacl_bed
5841
5842 #undef ELF_MAXPAGESIZE
5843 #undef ELF_MINPAGESIZE
5844 #undef ELF_COMMONPAGESIZE
5845 #define ELF_MAXPAGESIZE 0x10000
5846 #define ELF_MINPAGESIZE 0x10000
5847 #define ELF_COMMONPAGESIZE 0x10000
5848
5849 /* Restore defaults. */
5850 #undef ELF_OSABI
5851 #undef elf_backend_static_tls_alignment
5852 #undef elf_backend_want_plt_sym
5853 #define elf_backend_want_plt_sym 0
5854
5855 /* NaCl uses substantially different PLT entries for the same effects. */
5856
5857 #undef elf_backend_plt_alignment
5858 #define elf_backend_plt_alignment 5
5859 #define NACL_PLT_ENTRY_SIZE 64
5860 #define NACLMASK 0xe0 /* 32-byte alignment mask. */
5861
5862 static const bfd_byte elf_x86_64_nacl_plt0_entry[NACL_PLT_ENTRY_SIZE] =
5863 {
5864 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
5865 0x4c, 0x8b, 0x1d, 16, 0, 0, 0, /* mov GOT+16(%rip), %r11 */
5866 0x41, 0x83, 0xe3, NACLMASK, /* and $-32, %r11d */
5867 0x4d, 0x01, 0xfb, /* add %r15, %r11 */
5868 0x41, 0xff, 0xe3, /* jmpq *%r11 */
5869
5870 /* 9-byte nop sequence to pad out to the next 32-byte boundary. */
5871 0x66, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw 0x0(%rax,%rax,1) */
5872
5873 /* 32 bytes of nop to pad out to the standard size. */
5874 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
5875 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
5876 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
5877 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
5878 0x66, /* excess data32 prefix */
5879 0x90 /* nop */
5880 };
5881
5882 static const bfd_byte elf_x86_64_nacl_plt_entry[NACL_PLT_ENTRY_SIZE] =
5883 {
5884 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, /* mov name@GOTPCREL(%rip),%r11 */
5885 0x41, 0x83, 0xe3, NACLMASK, /* and $-32, %r11d */
5886 0x4d, 0x01, 0xfb, /* add %r15, %r11 */
5887 0x41, 0xff, 0xe3, /* jmpq *%r11 */
5888
5889 /* 15-byte nop sequence to pad out to the next 32-byte boundary. */
5890 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
5891 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
5892
5893 /* Lazy GOT entries point here (32-byte aligned). */
5894 0x68, /* pushq immediate */
5895 0, 0, 0, 0, /* replaced with index into relocation table. */
5896 0xe9, /* jmp relative */
5897 0, 0, 0, 0, /* replaced with offset to start of .plt0. */
5898
5899 /* 22 bytes of nop to pad out to the standard size. */
5900 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
5901 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
5902 0x0f, 0x1f, 0x80, 0, 0, 0, 0, /* nopl 0x0(%rax) */
5903 };
5904
5905 /* .eh_frame covering the .plt section. */
5906
5907 static const bfd_byte elf_x86_64_nacl_eh_frame_plt[] =
5908 {
5909 #if (PLT_CIE_LENGTH != 20 \
5910 || PLT_FDE_LENGTH != 36 \
5911 || PLT_FDE_START_OFFSET != 4 + PLT_CIE_LENGTH + 8 \
5912 || PLT_FDE_LEN_OFFSET != 4 + PLT_CIE_LENGTH + 12)
5913 # error "Need elf_x86_64_backend_data parameters for eh_frame_plt offsets!"
5914 #endif
5915 PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */
5916 0, 0, 0, 0, /* CIE ID */
5917 1, /* CIE version */
5918 'z', 'R', 0, /* Augmentation string */
5919 1, /* Code alignment factor */
5920 0x78, /* Data alignment factor */
5921 16, /* Return address column */
5922 1, /* Augmentation size */
5923 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
5924 DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
5925 DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
5926 DW_CFA_nop, DW_CFA_nop,
5927
5928 PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */
5929 PLT_CIE_LENGTH + 8, 0, 0, 0,/* CIE pointer */
5930 0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */
5931 0, 0, 0, 0, /* .plt size goes here */
5932 0, /* Augmentation size */
5933 DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */
5934 DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */
5935 DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */
5936 DW_CFA_advance_loc + 58, /* DW_CFA_advance_loc: 58 to __PLT__+64 */
5937 DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */
5938 13, /* Block length */
5939 DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */
5940 DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */
5941 DW_OP_const1u, 63, DW_OP_and, DW_OP_const1u, 37, DW_OP_ge,
5942 DW_OP_lit3, DW_OP_shl, DW_OP_plus,
5943 DW_CFA_nop, DW_CFA_nop
5944 };
5945
5946 static const struct elf_x86_64_backend_data elf_x86_64_nacl_arch_bed =
5947 {
5948 elf_x86_64_nacl_plt0_entry, /* plt0_entry */
5949 elf_x86_64_nacl_plt_entry, /* plt_entry */
5950 NACL_PLT_ENTRY_SIZE, /* plt_entry_size */
5951 2, /* plt0_got1_offset */
5952 9, /* plt0_got2_offset */
5953 13, /* plt0_got2_insn_end */
5954 3, /* plt_got_offset */
5955 33, /* plt_reloc_offset */
5956 38, /* plt_plt_offset */
5957 7, /* plt_got_insn_size */
5958 42, /* plt_plt_insn_end */
5959 32, /* plt_lazy_offset */
5960 elf_x86_64_nacl_eh_frame_plt, /* eh_frame_plt */
5961 sizeof (elf_x86_64_nacl_eh_frame_plt), /* eh_frame_plt_size */
5962 };
5963
5964 #undef elf_backend_arch_data
5965 #define elf_backend_arch_data &elf_x86_64_nacl_arch_bed
5966
5967 #undef elf_backend_object_p
5968 #define elf_backend_object_p elf64_x86_64_nacl_elf_object_p
5969 #undef elf_backend_modify_segment_map
5970 #define elf_backend_modify_segment_map nacl_modify_segment_map
5971 #undef elf_backend_modify_program_headers
5972 #define elf_backend_modify_program_headers nacl_modify_program_headers
5973 #undef elf_backend_final_write_processing
5974 #define elf_backend_final_write_processing nacl_final_write_processing
5975
5976 #include "elf64-target.h"
5977
5978 /* Native Client x32 support. */
5979
5980 static bfd_boolean
5981 elf32_x86_64_nacl_elf_object_p (bfd *abfd)
5982 {
5983 /* Set the right machine number for a NaCl x86-64 ELF32 file. */
5984 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x64_32_nacl);
5985 return TRUE;
5986 }
5987
5988 #undef TARGET_LITTLE_SYM
5989 #define TARGET_LITTLE_SYM x86_64_elf32_nacl_vec
5990 #undef TARGET_LITTLE_NAME
5991 #define TARGET_LITTLE_NAME "elf32-x86-64-nacl"
5992 #undef elf32_bed
5993 #define elf32_bed elf32_x86_64_nacl_bed
5994
5995 #define bfd_elf32_bfd_link_hash_table_create \
5996 elf_x86_64_link_hash_table_create
5997 #define bfd_elf32_bfd_reloc_type_lookup \
5998 elf_x86_64_reloc_type_lookup
5999 #define bfd_elf32_bfd_reloc_name_lookup \
6000 elf_x86_64_reloc_name_lookup
6001 #define bfd_elf32_mkobject \
6002 elf_x86_64_mkobject
6003
6004 #undef elf_backend_object_p
6005 #define elf_backend_object_p \
6006 elf32_x86_64_nacl_elf_object_p
6007
6008 #undef elf_backend_bfd_from_remote_memory
6009 #define elf_backend_bfd_from_remote_memory \
6010 _bfd_elf32_bfd_from_remote_memory
6011
6012 #undef elf_backend_size_info
6013 #define elf_backend_size_info \
6014 _bfd_elf32_size_info
6015
6016 #include "elf32-target.h"
6017
6018 /* Restore defaults. */
6019 #undef elf_backend_object_p
6020 #define elf_backend_object_p elf64_x86_64_elf_object_p
6021 #undef elf_backend_bfd_from_remote_memory
6022 #undef elf_backend_size_info
6023 #undef elf_backend_modify_segment_map
6024 #undef elf_backend_modify_program_headers
6025 #undef elf_backend_final_write_processing
6026
6027 /* Intel L1OM support. */
6028
6029 static bfd_boolean
6030 elf64_l1om_elf_object_p (bfd *abfd)
6031 {
6032 /* Set the right machine number for an L1OM elf64 file. */
6033 bfd_default_set_arch_mach (abfd, bfd_arch_l1om, bfd_mach_l1om);
6034 return TRUE;
6035 }
6036
6037 #undef TARGET_LITTLE_SYM
6038 #define TARGET_LITTLE_SYM l1om_elf64_vec
6039 #undef TARGET_LITTLE_NAME
6040 #define TARGET_LITTLE_NAME "elf64-l1om"
6041 #undef ELF_ARCH
6042 #define ELF_ARCH bfd_arch_l1om
6043
6044 #undef ELF_MACHINE_CODE
6045 #define ELF_MACHINE_CODE EM_L1OM
6046
6047 #undef ELF_OSABI
6048
6049 #undef elf64_bed
6050 #define elf64_bed elf64_l1om_bed
6051
6052 #undef elf_backend_object_p
6053 #define elf_backend_object_p elf64_l1om_elf_object_p
6054
6055 /* Restore defaults. */
6056 #undef ELF_MAXPAGESIZE
6057 #undef ELF_MINPAGESIZE
6058 #undef ELF_COMMONPAGESIZE
6059 #define ELF_MAXPAGESIZE 0x200000
6060 #define ELF_MINPAGESIZE 0x1000
6061 #define ELF_COMMONPAGESIZE 0x1000
6062 #undef elf_backend_plt_alignment
6063 #define elf_backend_plt_alignment 4
6064 #undef elf_backend_arch_data
6065 #define elf_backend_arch_data &elf_x86_64_arch_bed
6066
6067 #include "elf64-target.h"
6068
6069 /* FreeBSD L1OM support. */
6070
6071 #undef TARGET_LITTLE_SYM
6072 #define TARGET_LITTLE_SYM l1om_elf64_fbsd_vec
6073 #undef TARGET_LITTLE_NAME
6074 #define TARGET_LITTLE_NAME "elf64-l1om-freebsd"
6075
6076 #undef ELF_OSABI
6077 #define ELF_OSABI ELFOSABI_FREEBSD
6078
6079 #undef elf64_bed
6080 #define elf64_bed elf64_l1om_fbsd_bed
6081
6082 #include "elf64-target.h"
6083
6084 /* Intel K1OM support. */
6085
6086 static bfd_boolean
6087 elf64_k1om_elf_object_p (bfd *abfd)
6088 {
6089 /* Set the right machine number for an K1OM elf64 file. */
6090 bfd_default_set_arch_mach (abfd, bfd_arch_k1om, bfd_mach_k1om);
6091 return TRUE;
6092 }
6093
6094 #undef TARGET_LITTLE_SYM
6095 #define TARGET_LITTLE_SYM k1om_elf64_vec
6096 #undef TARGET_LITTLE_NAME
6097 #define TARGET_LITTLE_NAME "elf64-k1om"
6098 #undef ELF_ARCH
6099 #define ELF_ARCH bfd_arch_k1om
6100
6101 #undef ELF_MACHINE_CODE
6102 #define ELF_MACHINE_CODE EM_K1OM
6103
6104 #undef ELF_OSABI
6105
6106 #undef elf64_bed
6107 #define elf64_bed elf64_k1om_bed
6108
6109 #undef elf_backend_object_p
6110 #define elf_backend_object_p elf64_k1om_elf_object_p
6111
6112 #undef elf_backend_static_tls_alignment
6113
6114 #undef elf_backend_want_plt_sym
6115 #define elf_backend_want_plt_sym 0
6116
6117 #include "elf64-target.h"
6118
6119 /* FreeBSD K1OM support. */
6120
6121 #undef TARGET_LITTLE_SYM
6122 #define TARGET_LITTLE_SYM k1om_elf64_fbsd_vec
6123 #undef TARGET_LITTLE_NAME
6124 #define TARGET_LITTLE_NAME "elf64-k1om-freebsd"
6125
6126 #undef ELF_OSABI
6127 #define ELF_OSABI ELFOSABI_FREEBSD
6128
6129 #undef elf64_bed
6130 #define elf64_bed elf64_k1om_fbsd_bed
6131
6132 #include "elf64-target.h"
6133
6134 /* 32bit x86-64 support. */
6135
6136 #undef TARGET_LITTLE_SYM
6137 #define TARGET_LITTLE_SYM x86_64_elf32_vec
6138 #undef TARGET_LITTLE_NAME
6139 #define TARGET_LITTLE_NAME "elf32-x86-64"
6140 #undef elf32_bed
6141
6142 #undef ELF_ARCH
6143 #define ELF_ARCH bfd_arch_i386
6144
6145 #undef ELF_MACHINE_CODE
6146 #define ELF_MACHINE_CODE EM_X86_64
6147
6148 #undef ELF_OSABI
6149
6150 #undef elf_backend_object_p
6151 #define elf_backend_object_p \
6152 elf32_x86_64_elf_object_p
6153
6154 #undef elf_backend_bfd_from_remote_memory
6155 #define elf_backend_bfd_from_remote_memory \
6156 _bfd_elf32_bfd_from_remote_memory
6157
6158 #undef elf_backend_size_info
6159 #define elf_backend_size_info \
6160 _bfd_elf32_size_info
6161
6162 #include "elf32-target.h"