Regenerate configure in bfd/binutils/gas/gdb
[binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2015 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfd_stdint.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31
32 /* This struct is used to pass information to routines called via
33 elf_link_hash_traverse which must return failure. */
34
35 struct elf_info_failed
36 {
37 struct bfd_link_info *info;
38 bfd_boolean failed;
39 };
40
41 /* This structure is used to pass information to
42 _bfd_elf_link_find_version_dependencies. */
43
44 struct elf_find_verdep_info
45 {
46 /* General link information. */
47 struct bfd_link_info *info;
48 /* The number of dependencies. */
49 unsigned int vers;
50 /* Whether we had a failure. */
51 bfd_boolean failed;
52 };
53
54 static bfd_boolean _bfd_elf_fix_symbol_flags
55 (struct elf_link_hash_entry *, struct elf_info_failed *);
56
57 /* Define a symbol in a dynamic linkage section. */
58
59 struct elf_link_hash_entry *
60 _bfd_elf_define_linkage_sym (bfd *abfd,
61 struct bfd_link_info *info,
62 asection *sec,
63 const char *name)
64 {
65 struct elf_link_hash_entry *h;
66 struct bfd_link_hash_entry *bh;
67 const struct elf_backend_data *bed;
68
69 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
70 if (h != NULL)
71 {
72 /* Zap symbol defined in an as-needed lib that wasn't linked.
73 This is a symptom of a larger problem: Absolute symbols
74 defined in shared libraries can't be overridden, because we
75 lose the link to the bfd which is via the symbol section. */
76 h->root.type = bfd_link_hash_new;
77 }
78
79 bh = &h->root;
80 bed = get_elf_backend_data (abfd);
81 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
82 sec, 0, NULL, FALSE, bed->collect,
83 &bh))
84 return NULL;
85 h = (struct elf_link_hash_entry *) bh;
86 h->def_regular = 1;
87 h->non_elf = 0;
88 h->root.linker_def = 1;
89 h->type = STT_OBJECT;
90 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
91 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
92
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94 return h;
95 }
96
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
99 {
100 flagword flags;
101 asection *s;
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
105
106 /* This function may be called more than once. */
107 s = bfd_get_linker_section (abfd, ".got");
108 if (s != NULL)
109 return TRUE;
110
111 flags = bed->dynamic_sec_flags;
112
113 s = bfd_make_section_anyway_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
117 | SEC_READONLY));
118 if (s == NULL
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
120 return FALSE;
121 htab->srelgot = s;
122
123 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
124 if (s == NULL
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
126 return FALSE;
127 htab->sgot = s;
128
129 if (bed->want_got_plt)
130 {
131 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
132 if (s == NULL
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
135 return FALSE;
136 htab->sgotplt = s;
137 }
138
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
141
142 if (bed->want_got_sym)
143 {
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
151 if (h == NULL)
152 return FALSE;
153 }
154
155 return TRUE;
156 }
157 \f
158 /* Create a strtab to hold the dynamic symbol names. */
159 static bfd_boolean
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
161 {
162 struct elf_link_hash_table *hash_table;
163
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
167
168 if (hash_table->dynstr == NULL)
169 {
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
172 return FALSE;
173 }
174 return TRUE;
175 }
176
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
183
184 bfd_boolean
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
186 {
187 flagword flags;
188 asection *s;
189 const struct elf_backend_data *bed;
190 struct elf_link_hash_entry *h;
191
192 if (! is_elf_hash_table (info->hash))
193 return FALSE;
194
195 if (elf_hash_table (info)->dynamic_sections_created)
196 return TRUE;
197
198 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
199 return FALSE;
200
201 abfd = elf_hash_table (info)->dynobj;
202 bed = get_elf_backend_data (abfd);
203
204 flags = bed->dynamic_sec_flags;
205
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
208 if (info->executable)
209 {
210 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
211 flags | SEC_READONLY);
212 if (s == NULL)
213 return FALSE;
214 }
215
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
218 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
219 flags | SEC_READONLY);
220 if (s == NULL
221 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
222 return FALSE;
223
224 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
225 flags | SEC_READONLY);
226 if (s == NULL
227 || ! bfd_set_section_alignment (abfd, s, 1))
228 return FALSE;
229
230 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
231 flags | SEC_READONLY);
232 if (s == NULL
233 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
234 return FALSE;
235
236 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
237 flags | SEC_READONLY);
238 if (s == NULL
239 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
240 return FALSE;
241
242 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
243 flags | SEC_READONLY);
244 if (s == NULL)
245 return FALSE;
246
247 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
248 if (s == NULL
249 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
250 return FALSE;
251
252 /* The special symbol _DYNAMIC is always set to the start of the
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
258 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
259 elf_hash_table (info)->hdynamic = h;
260 if (h == NULL)
261 return FALSE;
262
263 if (info->emit_hash)
264 {
265 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
266 flags | SEC_READONLY);
267 if (s == NULL
268 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
269 return FALSE;
270 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
271 }
272
273 if (info->emit_gnu_hash)
274 {
275 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
276 flags | SEC_READONLY);
277 if (s == NULL
278 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
279 return FALSE;
280 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
281 4 32-bit words followed by variable count of 64-bit words, then
282 variable count of 32-bit words. */
283 if (bed->s->arch_size == 64)
284 elf_section_data (s)->this_hdr.sh_entsize = 0;
285 else
286 elf_section_data (s)->this_hdr.sh_entsize = 4;
287 }
288
289 /* Let the backend create the rest of the sections. This lets the
290 backend set the right flags. The backend will normally create
291 the .got and .plt sections. */
292 if (bed->elf_backend_create_dynamic_sections == NULL
293 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
294 return FALSE;
295
296 elf_hash_table (info)->dynamic_sections_created = TRUE;
297
298 return TRUE;
299 }
300
301 /* Create dynamic sections when linking against a dynamic object. */
302
303 bfd_boolean
304 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
305 {
306 flagword flags, pltflags;
307 struct elf_link_hash_entry *h;
308 asection *s;
309 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
310 struct elf_link_hash_table *htab = elf_hash_table (info);
311
312 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
313 .rel[a].bss sections. */
314 flags = bed->dynamic_sec_flags;
315
316 pltflags = flags;
317 if (bed->plt_not_loaded)
318 /* We do not clear SEC_ALLOC here because we still want the OS to
319 allocate space for the section; it's just that there's nothing
320 to read in from the object file. */
321 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
322 else
323 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
324 if (bed->plt_readonly)
325 pltflags |= SEC_READONLY;
326
327 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
328 if (s == NULL
329 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
330 return FALSE;
331 htab->splt = s;
332
333 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
334 .plt section. */
335 if (bed->want_plt_sym)
336 {
337 h = _bfd_elf_define_linkage_sym (abfd, info, s,
338 "_PROCEDURE_LINKAGE_TABLE_");
339 elf_hash_table (info)->hplt = h;
340 if (h == NULL)
341 return FALSE;
342 }
343
344 s = bfd_make_section_anyway_with_flags (abfd,
345 (bed->rela_plts_and_copies_p
346 ? ".rela.plt" : ".rel.plt"),
347 flags | SEC_READONLY);
348 if (s == NULL
349 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
350 return FALSE;
351 htab->srelplt = s;
352
353 if (! _bfd_elf_create_got_section (abfd, info))
354 return FALSE;
355
356 if (bed->want_dynbss)
357 {
358 /* The .dynbss section is a place to put symbols which are defined
359 by dynamic objects, are referenced by regular objects, and are
360 not functions. We must allocate space for them in the process
361 image and use a R_*_COPY reloc to tell the dynamic linker to
362 initialize them at run time. The linker script puts the .dynbss
363 section into the .bss section of the final image. */
364 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
365 (SEC_ALLOC | SEC_LINKER_CREATED));
366 if (s == NULL)
367 return FALSE;
368
369 /* The .rel[a].bss section holds copy relocs. This section is not
370 normally needed. We need to create it here, though, so that the
371 linker will map it to an output section. We can't just create it
372 only if we need it, because we will not know whether we need it
373 until we have seen all the input files, and the first time the
374 main linker code calls BFD after examining all the input files
375 (size_dynamic_sections) the input sections have already been
376 mapped to the output sections. If the section turns out not to
377 be needed, we can discard it later. We will never need this
378 section when generating a shared object, since they do not use
379 copy relocs. */
380 if (! info->shared)
381 {
382 s = bfd_make_section_anyway_with_flags (abfd,
383 (bed->rela_plts_and_copies_p
384 ? ".rela.bss" : ".rel.bss"),
385 flags | SEC_READONLY);
386 if (s == NULL
387 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
388 return FALSE;
389 }
390 }
391
392 return TRUE;
393 }
394 \f
395 /* Record a new dynamic symbol. We record the dynamic symbols as we
396 read the input files, since we need to have a list of all of them
397 before we can determine the final sizes of the output sections.
398 Note that we may actually call this function even though we are not
399 going to output any dynamic symbols; in some cases we know that a
400 symbol should be in the dynamic symbol table, but only if there is
401 one. */
402
403 bfd_boolean
404 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
405 struct elf_link_hash_entry *h)
406 {
407 if (h->dynindx == -1)
408 {
409 struct elf_strtab_hash *dynstr;
410 char *p;
411 const char *name;
412 bfd_size_type indx;
413
414 /* XXX: The ABI draft says the linker must turn hidden and
415 internal symbols into STB_LOCAL symbols when producing the
416 DSO. However, if ld.so honors st_other in the dynamic table,
417 this would not be necessary. */
418 switch (ELF_ST_VISIBILITY (h->other))
419 {
420 case STV_INTERNAL:
421 case STV_HIDDEN:
422 if (h->root.type != bfd_link_hash_undefined
423 && h->root.type != bfd_link_hash_undefweak)
424 {
425 h->forced_local = 1;
426 if (!elf_hash_table (info)->is_relocatable_executable)
427 return TRUE;
428 }
429
430 default:
431 break;
432 }
433
434 h->dynindx = elf_hash_table (info)->dynsymcount;
435 ++elf_hash_table (info)->dynsymcount;
436
437 dynstr = elf_hash_table (info)->dynstr;
438 if (dynstr == NULL)
439 {
440 /* Create a strtab to hold the dynamic symbol names. */
441 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
442 if (dynstr == NULL)
443 return FALSE;
444 }
445
446 /* We don't put any version information in the dynamic string
447 table. */
448 name = h->root.root.string;
449 p = strchr (name, ELF_VER_CHR);
450 if (p != NULL)
451 /* We know that the p points into writable memory. In fact,
452 there are only a few symbols that have read-only names, being
453 those like _GLOBAL_OFFSET_TABLE_ that are created specially
454 by the backends. Most symbols will have names pointing into
455 an ELF string table read from a file, or to objalloc memory. */
456 *p = 0;
457
458 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
459
460 if (p != NULL)
461 *p = ELF_VER_CHR;
462
463 if (indx == (bfd_size_type) -1)
464 return FALSE;
465 h->dynstr_index = indx;
466 }
467
468 return TRUE;
469 }
470 \f
471 /* Mark a symbol dynamic. */
472
473 static void
474 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
475 struct elf_link_hash_entry *h,
476 Elf_Internal_Sym *sym)
477 {
478 struct bfd_elf_dynamic_list *d = info->dynamic_list;
479
480 /* It may be called more than once on the same H. */
481 if(h->dynamic || info->relocatable)
482 return;
483
484 if ((info->dynamic_data
485 && (h->type == STT_OBJECT
486 || (sym != NULL
487 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
488 || (d != NULL
489 && h->root.type == bfd_link_hash_new
490 && (*d->match) (&d->head, NULL, h->root.root.string)))
491 h->dynamic = 1;
492 }
493
494 /* Record an assignment to a symbol made by a linker script. We need
495 this in case some dynamic object refers to this symbol. */
496
497 bfd_boolean
498 bfd_elf_record_link_assignment (bfd *output_bfd,
499 struct bfd_link_info *info,
500 const char *name,
501 bfd_boolean provide,
502 bfd_boolean hidden)
503 {
504 struct elf_link_hash_entry *h, *hv;
505 struct elf_link_hash_table *htab;
506 const struct elf_backend_data *bed;
507
508 if (!is_elf_hash_table (info->hash))
509 return TRUE;
510
511 htab = elf_hash_table (info);
512 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
513 if (h == NULL)
514 return provide;
515
516 switch (h->root.type)
517 {
518 case bfd_link_hash_defined:
519 case bfd_link_hash_defweak:
520 case bfd_link_hash_common:
521 break;
522 case bfd_link_hash_undefweak:
523 case bfd_link_hash_undefined:
524 /* Since we're defining the symbol, don't let it seem to have not
525 been defined. record_dynamic_symbol and size_dynamic_sections
526 may depend on this. */
527 h->root.type = bfd_link_hash_new;
528 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
529 bfd_link_repair_undef_list (&htab->root);
530 break;
531 case bfd_link_hash_new:
532 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
533 h->non_elf = 0;
534 break;
535 case bfd_link_hash_indirect:
536 /* We had a versioned symbol in a dynamic library. We make the
537 the versioned symbol point to this one. */
538 bed = get_elf_backend_data (output_bfd);
539 hv = h;
540 while (hv->root.type == bfd_link_hash_indirect
541 || hv->root.type == bfd_link_hash_warning)
542 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
543 /* We don't need to update h->root.u since linker will set them
544 later. */
545 h->root.type = bfd_link_hash_undefined;
546 hv->root.type = bfd_link_hash_indirect;
547 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
548 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
549 break;
550 case bfd_link_hash_warning:
551 abort ();
552 break;
553 }
554
555 /* If this symbol is being provided by the linker script, and it is
556 currently defined by a dynamic object, but not by a regular
557 object, then mark it as undefined so that the generic linker will
558 force the correct value. */
559 if (provide
560 && h->def_dynamic
561 && !h->def_regular)
562 h->root.type = bfd_link_hash_undefined;
563
564 /* If this symbol is not being provided by the linker script, and it is
565 currently defined by a dynamic object, but not by a regular object,
566 then clear out any version information because the symbol will not be
567 associated with the dynamic object any more. */
568 if (!provide
569 && h->def_dynamic
570 && !h->def_regular)
571 h->verinfo.verdef = NULL;
572
573 h->def_regular = 1;
574
575 if (hidden)
576 {
577 bed = get_elf_backend_data (output_bfd);
578 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
579 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
580 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
581 }
582
583 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
584 and executables. */
585 if (!info->relocatable
586 && h->dynindx != -1
587 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
588 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
589 h->forced_local = 1;
590
591 if ((h->def_dynamic
592 || h->ref_dynamic
593 || info->shared
594 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
595 && h->dynindx == -1)
596 {
597 if (! bfd_elf_link_record_dynamic_symbol (info, h))
598 return FALSE;
599
600 /* If this is a weak defined symbol, and we know a corresponding
601 real symbol from the same dynamic object, make sure the real
602 symbol is also made into a dynamic symbol. */
603 if (h->u.weakdef != NULL
604 && h->u.weakdef->dynindx == -1)
605 {
606 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
607 return FALSE;
608 }
609 }
610
611 return TRUE;
612 }
613
614 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
615 success, and 2 on a failure caused by attempting to record a symbol
616 in a discarded section, eg. a discarded link-once section symbol. */
617
618 int
619 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
620 bfd *input_bfd,
621 long input_indx)
622 {
623 bfd_size_type amt;
624 struct elf_link_local_dynamic_entry *entry;
625 struct elf_link_hash_table *eht;
626 struct elf_strtab_hash *dynstr;
627 unsigned long dynstr_index;
628 char *name;
629 Elf_External_Sym_Shndx eshndx;
630 char esym[sizeof (Elf64_External_Sym)];
631
632 if (! is_elf_hash_table (info->hash))
633 return 0;
634
635 /* See if the entry exists already. */
636 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
637 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
638 return 1;
639
640 amt = sizeof (*entry);
641 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
642 if (entry == NULL)
643 return 0;
644
645 /* Go find the symbol, so that we can find it's name. */
646 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
647 1, input_indx, &entry->isym, esym, &eshndx))
648 {
649 bfd_release (input_bfd, entry);
650 return 0;
651 }
652
653 if (entry->isym.st_shndx != SHN_UNDEF
654 && entry->isym.st_shndx < SHN_LORESERVE)
655 {
656 asection *s;
657
658 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
659 if (s == NULL || bfd_is_abs_section (s->output_section))
660 {
661 /* We can still bfd_release here as nothing has done another
662 bfd_alloc. We can't do this later in this function. */
663 bfd_release (input_bfd, entry);
664 return 2;
665 }
666 }
667
668 name = (bfd_elf_string_from_elf_section
669 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
670 entry->isym.st_name));
671
672 dynstr = elf_hash_table (info)->dynstr;
673 if (dynstr == NULL)
674 {
675 /* Create a strtab to hold the dynamic symbol names. */
676 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
677 if (dynstr == NULL)
678 return 0;
679 }
680
681 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
682 if (dynstr_index == (unsigned long) -1)
683 return 0;
684 entry->isym.st_name = dynstr_index;
685
686 eht = elf_hash_table (info);
687
688 entry->next = eht->dynlocal;
689 eht->dynlocal = entry;
690 entry->input_bfd = input_bfd;
691 entry->input_indx = input_indx;
692 eht->dynsymcount++;
693
694 /* Whatever binding the symbol had before, it's now local. */
695 entry->isym.st_info
696 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
697
698 /* The dynindx will be set at the end of size_dynamic_sections. */
699
700 return 1;
701 }
702
703 /* Return the dynindex of a local dynamic symbol. */
704
705 long
706 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
707 bfd *input_bfd,
708 long input_indx)
709 {
710 struct elf_link_local_dynamic_entry *e;
711
712 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
713 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
714 return e->dynindx;
715 return -1;
716 }
717
718 /* This function is used to renumber the dynamic symbols, if some of
719 them are removed because they are marked as local. This is called
720 via elf_link_hash_traverse. */
721
722 static bfd_boolean
723 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
724 void *data)
725 {
726 size_t *count = (size_t *) data;
727
728 if (h->forced_local)
729 return TRUE;
730
731 if (h->dynindx != -1)
732 h->dynindx = ++(*count);
733
734 return TRUE;
735 }
736
737
738 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
739 STB_LOCAL binding. */
740
741 static bfd_boolean
742 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
743 void *data)
744 {
745 size_t *count = (size_t *) data;
746
747 if (!h->forced_local)
748 return TRUE;
749
750 if (h->dynindx != -1)
751 h->dynindx = ++(*count);
752
753 return TRUE;
754 }
755
756 /* Return true if the dynamic symbol for a given section should be
757 omitted when creating a shared library. */
758 bfd_boolean
759 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
760 struct bfd_link_info *info,
761 asection *p)
762 {
763 struct elf_link_hash_table *htab;
764 asection *ip;
765
766 switch (elf_section_data (p)->this_hdr.sh_type)
767 {
768 case SHT_PROGBITS:
769 case SHT_NOBITS:
770 /* If sh_type is yet undecided, assume it could be
771 SHT_PROGBITS/SHT_NOBITS. */
772 case SHT_NULL:
773 htab = elf_hash_table (info);
774 if (p == htab->tls_sec)
775 return FALSE;
776
777 if (htab->text_index_section != NULL)
778 return p != htab->text_index_section && p != htab->data_index_section;
779
780 return (htab->dynobj != NULL
781 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
782 && ip->output_section == p);
783
784 /* There shouldn't be section relative relocations
785 against any other section. */
786 default:
787 return TRUE;
788 }
789 }
790
791 /* Assign dynsym indices. In a shared library we generate a section
792 symbol for each output section, which come first. Next come symbols
793 which have been forced to local binding. Then all of the back-end
794 allocated local dynamic syms, followed by the rest of the global
795 symbols. */
796
797 static unsigned long
798 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
799 struct bfd_link_info *info,
800 unsigned long *section_sym_count)
801 {
802 unsigned long dynsymcount = 0;
803
804 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
805 {
806 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
807 asection *p;
808 for (p = output_bfd->sections; p ; p = p->next)
809 if ((p->flags & SEC_EXCLUDE) == 0
810 && (p->flags & SEC_ALLOC) != 0
811 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
812 elf_section_data (p)->dynindx = ++dynsymcount;
813 else
814 elf_section_data (p)->dynindx = 0;
815 }
816 *section_sym_count = dynsymcount;
817
818 elf_link_hash_traverse (elf_hash_table (info),
819 elf_link_renumber_local_hash_table_dynsyms,
820 &dynsymcount);
821
822 if (elf_hash_table (info)->dynlocal)
823 {
824 struct elf_link_local_dynamic_entry *p;
825 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
826 p->dynindx = ++dynsymcount;
827 }
828
829 elf_link_hash_traverse (elf_hash_table (info),
830 elf_link_renumber_hash_table_dynsyms,
831 &dynsymcount);
832
833 /* There is an unused NULL entry at the head of the table which
834 we must account for in our count. Unless there weren't any
835 symbols, which means we'll have no table at all. */
836 if (dynsymcount != 0)
837 ++dynsymcount;
838
839 elf_hash_table (info)->dynsymcount = dynsymcount;
840 return dynsymcount;
841 }
842
843 /* Merge st_other field. */
844
845 static void
846 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
847 const Elf_Internal_Sym *isym, asection *sec,
848 bfd_boolean definition, bfd_boolean dynamic)
849 {
850 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
851
852 /* If st_other has a processor-specific meaning, specific
853 code might be needed here. */
854 if (bed->elf_backend_merge_symbol_attribute)
855 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
856 dynamic);
857
858 if (!dynamic)
859 {
860 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
861 unsigned hvis = ELF_ST_VISIBILITY (h->other);
862
863 /* Keep the most constraining visibility. Leave the remainder
864 of the st_other field to elf_backend_merge_symbol_attribute. */
865 if (symvis - 1 < hvis - 1)
866 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
867 }
868 else if (definition
869 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
870 && (sec->flags & SEC_READONLY) == 0)
871 h->protected_def = 1;
872 }
873
874 /* This function is called when we want to merge a new symbol with an
875 existing symbol. It handles the various cases which arise when we
876 find a definition in a dynamic object, or when there is already a
877 definition in a dynamic object. The new symbol is described by
878 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
879 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
880 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
881 of an old common symbol. We set OVERRIDE if the old symbol is
882 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
883 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
884 to change. By OK to change, we mean that we shouldn't warn if the
885 type or size does change. */
886
887 static bfd_boolean
888 _bfd_elf_merge_symbol (bfd *abfd,
889 struct bfd_link_info *info,
890 const char *name,
891 Elf_Internal_Sym *sym,
892 asection **psec,
893 bfd_vma *pvalue,
894 struct elf_link_hash_entry **sym_hash,
895 bfd **poldbfd,
896 bfd_boolean *pold_weak,
897 unsigned int *pold_alignment,
898 bfd_boolean *skip,
899 bfd_boolean *override,
900 bfd_boolean *type_change_ok,
901 bfd_boolean *size_change_ok)
902 {
903 asection *sec, *oldsec;
904 struct elf_link_hash_entry *h;
905 struct elf_link_hash_entry *hi;
906 struct elf_link_hash_entry *flip;
907 int bind;
908 bfd *oldbfd;
909 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
910 bfd_boolean newweak, oldweak, newfunc, oldfunc;
911 const struct elf_backend_data *bed;
912
913 *skip = FALSE;
914 *override = FALSE;
915
916 sec = *psec;
917 bind = ELF_ST_BIND (sym->st_info);
918
919 if (! bfd_is_und_section (sec))
920 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
921 else
922 h = ((struct elf_link_hash_entry *)
923 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
924 if (h == NULL)
925 return FALSE;
926 *sym_hash = h;
927
928 bed = get_elf_backend_data (abfd);
929
930 /* For merging, we only care about real symbols. But we need to make
931 sure that indirect symbol dynamic flags are updated. */
932 hi = h;
933 while (h->root.type == bfd_link_hash_indirect
934 || h->root.type == bfd_link_hash_warning)
935 h = (struct elf_link_hash_entry *) h->root.u.i.link;
936
937 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
938 existing symbol. */
939
940 oldbfd = NULL;
941 oldsec = NULL;
942 switch (h->root.type)
943 {
944 default:
945 break;
946
947 case bfd_link_hash_undefined:
948 case bfd_link_hash_undefweak:
949 oldbfd = h->root.u.undef.abfd;
950 break;
951
952 case bfd_link_hash_defined:
953 case bfd_link_hash_defweak:
954 oldbfd = h->root.u.def.section->owner;
955 oldsec = h->root.u.def.section;
956 break;
957
958 case bfd_link_hash_common:
959 oldbfd = h->root.u.c.p->section->owner;
960 oldsec = h->root.u.c.p->section;
961 if (pold_alignment)
962 *pold_alignment = h->root.u.c.p->alignment_power;
963 break;
964 }
965 if (poldbfd && *poldbfd == NULL)
966 *poldbfd = oldbfd;
967
968 /* Differentiate strong and weak symbols. */
969 newweak = bind == STB_WEAK;
970 oldweak = (h->root.type == bfd_link_hash_defweak
971 || h->root.type == bfd_link_hash_undefweak);
972 if (pold_weak)
973 *pold_weak = oldweak;
974
975 /* This code is for coping with dynamic objects, and is only useful
976 if we are doing an ELF link. */
977 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
978 return TRUE;
979
980 /* We have to check it for every instance since the first few may be
981 references and not all compilers emit symbol type for undefined
982 symbols. */
983 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
984
985 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
986 respectively, is from a dynamic object. */
987
988 newdyn = (abfd->flags & DYNAMIC) != 0;
989
990 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
991 syms and defined syms in dynamic libraries respectively.
992 ref_dynamic on the other hand can be set for a symbol defined in
993 a dynamic library, and def_dynamic may not be set; When the
994 definition in a dynamic lib is overridden by a definition in the
995 executable use of the symbol in the dynamic lib becomes a
996 reference to the executable symbol. */
997 if (newdyn)
998 {
999 if (bfd_is_und_section (sec))
1000 {
1001 if (bind != STB_WEAK)
1002 {
1003 h->ref_dynamic_nonweak = 1;
1004 hi->ref_dynamic_nonweak = 1;
1005 }
1006 }
1007 else
1008 {
1009 h->dynamic_def = 1;
1010 hi->dynamic_def = 1;
1011 }
1012 }
1013
1014 /* If we just created the symbol, mark it as being an ELF symbol.
1015 Other than that, there is nothing to do--there is no merge issue
1016 with a newly defined symbol--so we just return. */
1017
1018 if (h->root.type == bfd_link_hash_new)
1019 {
1020 h->non_elf = 0;
1021 return TRUE;
1022 }
1023
1024 /* In cases involving weak versioned symbols, we may wind up trying
1025 to merge a symbol with itself. Catch that here, to avoid the
1026 confusion that results if we try to override a symbol with
1027 itself. The additional tests catch cases like
1028 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1029 dynamic object, which we do want to handle here. */
1030 if (abfd == oldbfd
1031 && (newweak || oldweak)
1032 && ((abfd->flags & DYNAMIC) == 0
1033 || !h->def_regular))
1034 return TRUE;
1035
1036 olddyn = FALSE;
1037 if (oldbfd != NULL)
1038 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1039 else if (oldsec != NULL)
1040 {
1041 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1042 indices used by MIPS ELF. */
1043 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1044 }
1045
1046 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1047 respectively, appear to be a definition rather than reference. */
1048
1049 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1050
1051 olddef = (h->root.type != bfd_link_hash_undefined
1052 && h->root.type != bfd_link_hash_undefweak
1053 && h->root.type != bfd_link_hash_common);
1054
1055 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1056 respectively, appear to be a function. */
1057
1058 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1059 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1060
1061 oldfunc = (h->type != STT_NOTYPE
1062 && bed->is_function_type (h->type));
1063
1064 /* When we try to create a default indirect symbol from the dynamic
1065 definition with the default version, we skip it if its type and
1066 the type of existing regular definition mismatch. */
1067 if (pold_alignment == NULL
1068 && newdyn
1069 && newdef
1070 && !olddyn
1071 && (((olddef || h->root.type == bfd_link_hash_common)
1072 && ELF_ST_TYPE (sym->st_info) != h->type
1073 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1074 && h->type != STT_NOTYPE
1075 && !(newfunc && oldfunc))
1076 || (olddef
1077 && ((h->type == STT_GNU_IFUNC)
1078 != (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))))
1079 {
1080 *skip = TRUE;
1081 return TRUE;
1082 }
1083
1084 /* Check TLS symbols. We don't check undefined symbols introduced
1085 by "ld -u" which have no type (and oldbfd NULL), and we don't
1086 check symbols from plugins because they also have no type. */
1087 if (oldbfd != NULL
1088 && (oldbfd->flags & BFD_PLUGIN) == 0
1089 && (abfd->flags & BFD_PLUGIN) == 0
1090 && ELF_ST_TYPE (sym->st_info) != h->type
1091 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1092 {
1093 bfd *ntbfd, *tbfd;
1094 bfd_boolean ntdef, tdef;
1095 asection *ntsec, *tsec;
1096
1097 if (h->type == STT_TLS)
1098 {
1099 ntbfd = abfd;
1100 ntsec = sec;
1101 ntdef = newdef;
1102 tbfd = oldbfd;
1103 tsec = oldsec;
1104 tdef = olddef;
1105 }
1106 else
1107 {
1108 ntbfd = oldbfd;
1109 ntsec = oldsec;
1110 ntdef = olddef;
1111 tbfd = abfd;
1112 tsec = sec;
1113 tdef = newdef;
1114 }
1115
1116 if (tdef && ntdef)
1117 (*_bfd_error_handler)
1118 (_("%s: TLS definition in %B section %A "
1119 "mismatches non-TLS definition in %B section %A"),
1120 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1121 else if (!tdef && !ntdef)
1122 (*_bfd_error_handler)
1123 (_("%s: TLS reference in %B "
1124 "mismatches non-TLS reference in %B"),
1125 tbfd, ntbfd, h->root.root.string);
1126 else if (tdef)
1127 (*_bfd_error_handler)
1128 (_("%s: TLS definition in %B section %A "
1129 "mismatches non-TLS reference in %B"),
1130 tbfd, tsec, ntbfd, h->root.root.string);
1131 else
1132 (*_bfd_error_handler)
1133 (_("%s: TLS reference in %B "
1134 "mismatches non-TLS definition in %B section %A"),
1135 tbfd, ntbfd, ntsec, h->root.root.string);
1136
1137 bfd_set_error (bfd_error_bad_value);
1138 return FALSE;
1139 }
1140
1141 /* If the old symbol has non-default visibility, we ignore the new
1142 definition from a dynamic object. */
1143 if (newdyn
1144 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1145 && !bfd_is_und_section (sec))
1146 {
1147 *skip = TRUE;
1148 /* Make sure this symbol is dynamic. */
1149 h->ref_dynamic = 1;
1150 hi->ref_dynamic = 1;
1151 /* A protected symbol has external availability. Make sure it is
1152 recorded as dynamic.
1153
1154 FIXME: Should we check type and size for protected symbol? */
1155 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1156 return bfd_elf_link_record_dynamic_symbol (info, h);
1157 else
1158 return TRUE;
1159 }
1160 else if (!newdyn
1161 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1162 && h->def_dynamic)
1163 {
1164 /* If the new symbol with non-default visibility comes from a
1165 relocatable file and the old definition comes from a dynamic
1166 object, we remove the old definition. */
1167 if (hi->root.type == bfd_link_hash_indirect)
1168 {
1169 /* Handle the case where the old dynamic definition is
1170 default versioned. We need to copy the symbol info from
1171 the symbol with default version to the normal one if it
1172 was referenced before. */
1173 if (h->ref_regular)
1174 {
1175 hi->root.type = h->root.type;
1176 h->root.type = bfd_link_hash_indirect;
1177 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1178
1179 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1180 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1181 {
1182 /* If the new symbol is hidden or internal, completely undo
1183 any dynamic link state. */
1184 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1185 h->forced_local = 0;
1186 h->ref_dynamic = 0;
1187 }
1188 else
1189 h->ref_dynamic = 1;
1190
1191 h->def_dynamic = 0;
1192 /* FIXME: Should we check type and size for protected symbol? */
1193 h->size = 0;
1194 h->type = 0;
1195
1196 h = hi;
1197 }
1198 else
1199 h = hi;
1200 }
1201
1202 /* If the old symbol was undefined before, then it will still be
1203 on the undefs list. If the new symbol is undefined or
1204 common, we can't make it bfd_link_hash_new here, because new
1205 undefined or common symbols will be added to the undefs list
1206 by _bfd_generic_link_add_one_symbol. Symbols may not be
1207 added twice to the undefs list. Also, if the new symbol is
1208 undefweak then we don't want to lose the strong undef. */
1209 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1210 {
1211 h->root.type = bfd_link_hash_undefined;
1212 h->root.u.undef.abfd = abfd;
1213 }
1214 else
1215 {
1216 h->root.type = bfd_link_hash_new;
1217 h->root.u.undef.abfd = NULL;
1218 }
1219
1220 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1221 {
1222 /* If the new symbol is hidden or internal, completely undo
1223 any dynamic link state. */
1224 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1225 h->forced_local = 0;
1226 h->ref_dynamic = 0;
1227 }
1228 else
1229 h->ref_dynamic = 1;
1230 h->def_dynamic = 0;
1231 /* FIXME: Should we check type and size for protected symbol? */
1232 h->size = 0;
1233 h->type = 0;
1234 return TRUE;
1235 }
1236
1237 /* If a new weak symbol definition comes from a regular file and the
1238 old symbol comes from a dynamic library, we treat the new one as
1239 strong. Similarly, an old weak symbol definition from a regular
1240 file is treated as strong when the new symbol comes from a dynamic
1241 library. Further, an old weak symbol from a dynamic library is
1242 treated as strong if the new symbol is from a dynamic library.
1243 This reflects the way glibc's ld.so works.
1244
1245 Do this before setting *type_change_ok or *size_change_ok so that
1246 we warn properly when dynamic library symbols are overridden. */
1247
1248 if (newdef && !newdyn && olddyn)
1249 newweak = FALSE;
1250 if (olddef && newdyn)
1251 oldweak = FALSE;
1252
1253 /* Allow changes between different types of function symbol. */
1254 if (newfunc && oldfunc)
1255 *type_change_ok = TRUE;
1256
1257 /* It's OK to change the type if either the existing symbol or the
1258 new symbol is weak. A type change is also OK if the old symbol
1259 is undefined and the new symbol is defined. */
1260
1261 if (oldweak
1262 || newweak
1263 || (newdef
1264 && h->root.type == bfd_link_hash_undefined))
1265 *type_change_ok = TRUE;
1266
1267 /* It's OK to change the size if either the existing symbol or the
1268 new symbol is weak, or if the old symbol is undefined. */
1269
1270 if (*type_change_ok
1271 || h->root.type == bfd_link_hash_undefined)
1272 *size_change_ok = TRUE;
1273
1274 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1275 symbol, respectively, appears to be a common symbol in a dynamic
1276 object. If a symbol appears in an uninitialized section, and is
1277 not weak, and is not a function, then it may be a common symbol
1278 which was resolved when the dynamic object was created. We want
1279 to treat such symbols specially, because they raise special
1280 considerations when setting the symbol size: if the symbol
1281 appears as a common symbol in a regular object, and the size in
1282 the regular object is larger, we must make sure that we use the
1283 larger size. This problematic case can always be avoided in C,
1284 but it must be handled correctly when using Fortran shared
1285 libraries.
1286
1287 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1288 likewise for OLDDYNCOMMON and OLDDEF.
1289
1290 Note that this test is just a heuristic, and that it is quite
1291 possible to have an uninitialized symbol in a shared object which
1292 is really a definition, rather than a common symbol. This could
1293 lead to some minor confusion when the symbol really is a common
1294 symbol in some regular object. However, I think it will be
1295 harmless. */
1296
1297 if (newdyn
1298 && newdef
1299 && !newweak
1300 && (sec->flags & SEC_ALLOC) != 0
1301 && (sec->flags & SEC_LOAD) == 0
1302 && sym->st_size > 0
1303 && !newfunc)
1304 newdyncommon = TRUE;
1305 else
1306 newdyncommon = FALSE;
1307
1308 if (olddyn
1309 && olddef
1310 && h->root.type == bfd_link_hash_defined
1311 && h->def_dynamic
1312 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1313 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1314 && h->size > 0
1315 && !oldfunc)
1316 olddyncommon = TRUE;
1317 else
1318 olddyncommon = FALSE;
1319
1320 /* We now know everything about the old and new symbols. We ask the
1321 backend to check if we can merge them. */
1322 if (bed->merge_symbol != NULL)
1323 {
1324 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1325 return FALSE;
1326 sec = *psec;
1327 }
1328
1329 /* If both the old and the new symbols look like common symbols in a
1330 dynamic object, set the size of the symbol to the larger of the
1331 two. */
1332
1333 if (olddyncommon
1334 && newdyncommon
1335 && sym->st_size != h->size)
1336 {
1337 /* Since we think we have two common symbols, issue a multiple
1338 common warning if desired. Note that we only warn if the
1339 size is different. If the size is the same, we simply let
1340 the old symbol override the new one as normally happens with
1341 symbols defined in dynamic objects. */
1342
1343 if (! ((*info->callbacks->multiple_common)
1344 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1345 return FALSE;
1346
1347 if (sym->st_size > h->size)
1348 h->size = sym->st_size;
1349
1350 *size_change_ok = TRUE;
1351 }
1352
1353 /* If we are looking at a dynamic object, and we have found a
1354 definition, we need to see if the symbol was already defined by
1355 some other object. If so, we want to use the existing
1356 definition, and we do not want to report a multiple symbol
1357 definition error; we do this by clobbering *PSEC to be
1358 bfd_und_section_ptr.
1359
1360 We treat a common symbol as a definition if the symbol in the
1361 shared library is a function, since common symbols always
1362 represent variables; this can cause confusion in principle, but
1363 any such confusion would seem to indicate an erroneous program or
1364 shared library. We also permit a common symbol in a regular
1365 object to override a weak symbol in a shared object. */
1366
1367 if (newdyn
1368 && newdef
1369 && (olddef
1370 || (h->root.type == bfd_link_hash_common
1371 && (newweak || newfunc))))
1372 {
1373 *override = TRUE;
1374 newdef = FALSE;
1375 newdyncommon = FALSE;
1376
1377 *psec = sec = bfd_und_section_ptr;
1378 *size_change_ok = TRUE;
1379
1380 /* If we get here when the old symbol is a common symbol, then
1381 we are explicitly letting it override a weak symbol or
1382 function in a dynamic object, and we don't want to warn about
1383 a type change. If the old symbol is a defined symbol, a type
1384 change warning may still be appropriate. */
1385
1386 if (h->root.type == bfd_link_hash_common)
1387 *type_change_ok = TRUE;
1388 }
1389
1390 /* Handle the special case of an old common symbol merging with a
1391 new symbol which looks like a common symbol in a shared object.
1392 We change *PSEC and *PVALUE to make the new symbol look like a
1393 common symbol, and let _bfd_generic_link_add_one_symbol do the
1394 right thing. */
1395
1396 if (newdyncommon
1397 && h->root.type == bfd_link_hash_common)
1398 {
1399 *override = TRUE;
1400 newdef = FALSE;
1401 newdyncommon = FALSE;
1402 *pvalue = sym->st_size;
1403 *psec = sec = bed->common_section (oldsec);
1404 *size_change_ok = TRUE;
1405 }
1406
1407 /* Skip weak definitions of symbols that are already defined. */
1408 if (newdef && olddef && newweak)
1409 {
1410 /* Don't skip new non-IR weak syms. */
1411 if (!(oldbfd != NULL
1412 && (oldbfd->flags & BFD_PLUGIN) != 0
1413 && (abfd->flags & BFD_PLUGIN) == 0))
1414 {
1415 newdef = FALSE;
1416 *skip = TRUE;
1417 }
1418
1419 /* Merge st_other. If the symbol already has a dynamic index,
1420 but visibility says it should not be visible, turn it into a
1421 local symbol. */
1422 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1423 if (h->dynindx != -1)
1424 switch (ELF_ST_VISIBILITY (h->other))
1425 {
1426 case STV_INTERNAL:
1427 case STV_HIDDEN:
1428 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1429 break;
1430 }
1431 }
1432
1433 /* If the old symbol is from a dynamic object, and the new symbol is
1434 a definition which is not from a dynamic object, then the new
1435 symbol overrides the old symbol. Symbols from regular files
1436 always take precedence over symbols from dynamic objects, even if
1437 they are defined after the dynamic object in the link.
1438
1439 As above, we again permit a common symbol in a regular object to
1440 override a definition in a shared object if the shared object
1441 symbol is a function or is weak. */
1442
1443 flip = NULL;
1444 if (!newdyn
1445 && (newdef
1446 || (bfd_is_com_section (sec)
1447 && (oldweak || oldfunc)))
1448 && olddyn
1449 && olddef
1450 && h->def_dynamic)
1451 {
1452 /* Change the hash table entry to undefined, and let
1453 _bfd_generic_link_add_one_symbol do the right thing with the
1454 new definition. */
1455
1456 h->root.type = bfd_link_hash_undefined;
1457 h->root.u.undef.abfd = h->root.u.def.section->owner;
1458 *size_change_ok = TRUE;
1459
1460 olddef = FALSE;
1461 olddyncommon = FALSE;
1462
1463 /* We again permit a type change when a common symbol may be
1464 overriding a function. */
1465
1466 if (bfd_is_com_section (sec))
1467 {
1468 if (oldfunc)
1469 {
1470 /* If a common symbol overrides a function, make sure
1471 that it isn't defined dynamically nor has type
1472 function. */
1473 h->def_dynamic = 0;
1474 h->type = STT_NOTYPE;
1475 }
1476 *type_change_ok = TRUE;
1477 }
1478
1479 if (hi->root.type == bfd_link_hash_indirect)
1480 flip = hi;
1481 else
1482 /* This union may have been set to be non-NULL when this symbol
1483 was seen in a dynamic object. We must force the union to be
1484 NULL, so that it is correct for a regular symbol. */
1485 h->verinfo.vertree = NULL;
1486 }
1487
1488 /* Handle the special case of a new common symbol merging with an
1489 old symbol that looks like it might be a common symbol defined in
1490 a shared object. Note that we have already handled the case in
1491 which a new common symbol should simply override the definition
1492 in the shared library. */
1493
1494 if (! newdyn
1495 && bfd_is_com_section (sec)
1496 && olddyncommon)
1497 {
1498 /* It would be best if we could set the hash table entry to a
1499 common symbol, but we don't know what to use for the section
1500 or the alignment. */
1501 if (! ((*info->callbacks->multiple_common)
1502 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1503 return FALSE;
1504
1505 /* If the presumed common symbol in the dynamic object is
1506 larger, pretend that the new symbol has its size. */
1507
1508 if (h->size > *pvalue)
1509 *pvalue = h->size;
1510
1511 /* We need to remember the alignment required by the symbol
1512 in the dynamic object. */
1513 BFD_ASSERT (pold_alignment);
1514 *pold_alignment = h->root.u.def.section->alignment_power;
1515
1516 olddef = FALSE;
1517 olddyncommon = FALSE;
1518
1519 h->root.type = bfd_link_hash_undefined;
1520 h->root.u.undef.abfd = h->root.u.def.section->owner;
1521
1522 *size_change_ok = TRUE;
1523 *type_change_ok = TRUE;
1524
1525 if (hi->root.type == bfd_link_hash_indirect)
1526 flip = hi;
1527 else
1528 h->verinfo.vertree = NULL;
1529 }
1530
1531 if (flip != NULL)
1532 {
1533 /* Handle the case where we had a versioned symbol in a dynamic
1534 library and now find a definition in a normal object. In this
1535 case, we make the versioned symbol point to the normal one. */
1536 flip->root.type = h->root.type;
1537 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1538 h->root.type = bfd_link_hash_indirect;
1539 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1540 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1541 if (h->def_dynamic)
1542 {
1543 h->def_dynamic = 0;
1544 flip->ref_dynamic = 1;
1545 }
1546 }
1547
1548 return TRUE;
1549 }
1550
1551 /* This function is called to create an indirect symbol from the
1552 default for the symbol with the default version if needed. The
1553 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1554 set DYNSYM if the new indirect symbol is dynamic. */
1555
1556 static bfd_boolean
1557 _bfd_elf_add_default_symbol (bfd *abfd,
1558 struct bfd_link_info *info,
1559 struct elf_link_hash_entry *h,
1560 const char *name,
1561 Elf_Internal_Sym *sym,
1562 asection *sec,
1563 bfd_vma value,
1564 bfd **poldbfd,
1565 bfd_boolean *dynsym)
1566 {
1567 bfd_boolean type_change_ok;
1568 bfd_boolean size_change_ok;
1569 bfd_boolean skip;
1570 char *shortname;
1571 struct elf_link_hash_entry *hi;
1572 struct bfd_link_hash_entry *bh;
1573 const struct elf_backend_data *bed;
1574 bfd_boolean collect;
1575 bfd_boolean dynamic;
1576 bfd_boolean override;
1577 char *p;
1578 size_t len, shortlen;
1579 asection *tmp_sec;
1580
1581 /* If this symbol has a version, and it is the default version, we
1582 create an indirect symbol from the default name to the fully
1583 decorated name. This will cause external references which do not
1584 specify a version to be bound to this version of the symbol. */
1585 p = strchr (name, ELF_VER_CHR);
1586 if (p == NULL || p[1] != ELF_VER_CHR)
1587 return TRUE;
1588
1589 bed = get_elf_backend_data (abfd);
1590 collect = bed->collect;
1591 dynamic = (abfd->flags & DYNAMIC) != 0;
1592
1593 shortlen = p - name;
1594 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1595 if (shortname == NULL)
1596 return FALSE;
1597 memcpy (shortname, name, shortlen);
1598 shortname[shortlen] = '\0';
1599
1600 /* We are going to create a new symbol. Merge it with any existing
1601 symbol with this name. For the purposes of the merge, act as
1602 though we were defining the symbol we just defined, although we
1603 actually going to define an indirect symbol. */
1604 type_change_ok = FALSE;
1605 size_change_ok = FALSE;
1606 tmp_sec = sec;
1607 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1608 &hi, poldbfd, NULL, NULL, &skip, &override,
1609 &type_change_ok, &size_change_ok))
1610 return FALSE;
1611
1612 if (skip)
1613 goto nondefault;
1614
1615 if (! override)
1616 {
1617 bh = &hi->root;
1618 if (! (_bfd_generic_link_add_one_symbol
1619 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1620 0, name, FALSE, collect, &bh)))
1621 return FALSE;
1622 hi = (struct elf_link_hash_entry *) bh;
1623 }
1624 else
1625 {
1626 /* In this case the symbol named SHORTNAME is overriding the
1627 indirect symbol we want to add. We were planning on making
1628 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1629 is the name without a version. NAME is the fully versioned
1630 name, and it is the default version.
1631
1632 Overriding means that we already saw a definition for the
1633 symbol SHORTNAME in a regular object, and it is overriding
1634 the symbol defined in the dynamic object.
1635
1636 When this happens, we actually want to change NAME, the
1637 symbol we just added, to refer to SHORTNAME. This will cause
1638 references to NAME in the shared object to become references
1639 to SHORTNAME in the regular object. This is what we expect
1640 when we override a function in a shared object: that the
1641 references in the shared object will be mapped to the
1642 definition in the regular object. */
1643
1644 while (hi->root.type == bfd_link_hash_indirect
1645 || hi->root.type == bfd_link_hash_warning)
1646 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1647
1648 h->root.type = bfd_link_hash_indirect;
1649 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1650 if (h->def_dynamic)
1651 {
1652 h->def_dynamic = 0;
1653 hi->ref_dynamic = 1;
1654 if (hi->ref_regular
1655 || hi->def_regular)
1656 {
1657 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1658 return FALSE;
1659 }
1660 }
1661
1662 /* Now set HI to H, so that the following code will set the
1663 other fields correctly. */
1664 hi = h;
1665 }
1666
1667 /* Check if HI is a warning symbol. */
1668 if (hi->root.type == bfd_link_hash_warning)
1669 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1670
1671 /* If there is a duplicate definition somewhere, then HI may not
1672 point to an indirect symbol. We will have reported an error to
1673 the user in that case. */
1674
1675 if (hi->root.type == bfd_link_hash_indirect)
1676 {
1677 struct elf_link_hash_entry *ht;
1678
1679 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1680 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1681
1682 /* A reference to the SHORTNAME symbol from a dynamic library
1683 will be satisfied by the versioned symbol at runtime. In
1684 effect, we have a reference to the versioned symbol. */
1685 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1686 hi->dynamic_def |= ht->dynamic_def;
1687
1688 /* See if the new flags lead us to realize that the symbol must
1689 be dynamic. */
1690 if (! *dynsym)
1691 {
1692 if (! dynamic)
1693 {
1694 if (! info->executable
1695 || hi->def_dynamic
1696 || hi->ref_dynamic)
1697 *dynsym = TRUE;
1698 }
1699 else
1700 {
1701 if (hi->ref_regular)
1702 *dynsym = TRUE;
1703 }
1704 }
1705 }
1706
1707 /* We also need to define an indirection from the nondefault version
1708 of the symbol. */
1709
1710 nondefault:
1711 len = strlen (name);
1712 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1713 if (shortname == NULL)
1714 return FALSE;
1715 memcpy (shortname, name, shortlen);
1716 memcpy (shortname + shortlen, p + 1, len - shortlen);
1717
1718 /* Once again, merge with any existing symbol. */
1719 type_change_ok = FALSE;
1720 size_change_ok = FALSE;
1721 tmp_sec = sec;
1722 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1723 &hi, poldbfd, NULL, NULL, &skip, &override,
1724 &type_change_ok, &size_change_ok))
1725 return FALSE;
1726
1727 if (skip)
1728 return TRUE;
1729
1730 if (override)
1731 {
1732 /* Here SHORTNAME is a versioned name, so we don't expect to see
1733 the type of override we do in the case above unless it is
1734 overridden by a versioned definition. */
1735 if (hi->root.type != bfd_link_hash_defined
1736 && hi->root.type != bfd_link_hash_defweak)
1737 (*_bfd_error_handler)
1738 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1739 abfd, shortname);
1740 }
1741 else
1742 {
1743 bh = &hi->root;
1744 if (! (_bfd_generic_link_add_one_symbol
1745 (info, abfd, shortname, BSF_INDIRECT,
1746 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1747 return FALSE;
1748 hi = (struct elf_link_hash_entry *) bh;
1749
1750 /* If there is a duplicate definition somewhere, then HI may not
1751 point to an indirect symbol. We will have reported an error
1752 to the user in that case. */
1753
1754 if (hi->root.type == bfd_link_hash_indirect)
1755 {
1756 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1757 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1758 hi->dynamic_def |= h->dynamic_def;
1759
1760 /* See if the new flags lead us to realize that the symbol
1761 must be dynamic. */
1762 if (! *dynsym)
1763 {
1764 if (! dynamic)
1765 {
1766 if (! info->executable
1767 || hi->ref_dynamic)
1768 *dynsym = TRUE;
1769 }
1770 else
1771 {
1772 if (hi->ref_regular)
1773 *dynsym = TRUE;
1774 }
1775 }
1776 }
1777 }
1778
1779 return TRUE;
1780 }
1781 \f
1782 /* This routine is used to export all defined symbols into the dynamic
1783 symbol table. It is called via elf_link_hash_traverse. */
1784
1785 static bfd_boolean
1786 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1787 {
1788 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1789
1790 /* Ignore indirect symbols. These are added by the versioning code. */
1791 if (h->root.type == bfd_link_hash_indirect)
1792 return TRUE;
1793
1794 /* Ignore this if we won't export it. */
1795 if (!eif->info->export_dynamic && !h->dynamic)
1796 return TRUE;
1797
1798 if (h->dynindx == -1
1799 && (h->def_regular || h->ref_regular)
1800 && ! bfd_hide_sym_by_version (eif->info->version_info,
1801 h->root.root.string))
1802 {
1803 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1804 {
1805 eif->failed = TRUE;
1806 return FALSE;
1807 }
1808 }
1809
1810 return TRUE;
1811 }
1812 \f
1813 /* Look through the symbols which are defined in other shared
1814 libraries and referenced here. Update the list of version
1815 dependencies. This will be put into the .gnu.version_r section.
1816 This function is called via elf_link_hash_traverse. */
1817
1818 static bfd_boolean
1819 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1820 void *data)
1821 {
1822 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1823 Elf_Internal_Verneed *t;
1824 Elf_Internal_Vernaux *a;
1825 bfd_size_type amt;
1826
1827 /* We only care about symbols defined in shared objects with version
1828 information. */
1829 if (!h->def_dynamic
1830 || h->def_regular
1831 || h->dynindx == -1
1832 || h->verinfo.verdef == NULL
1833 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
1834 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
1835 return TRUE;
1836
1837 /* See if we already know about this version. */
1838 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1839 t != NULL;
1840 t = t->vn_nextref)
1841 {
1842 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1843 continue;
1844
1845 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1846 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1847 return TRUE;
1848
1849 break;
1850 }
1851
1852 /* This is a new version. Add it to tree we are building. */
1853
1854 if (t == NULL)
1855 {
1856 amt = sizeof *t;
1857 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1858 if (t == NULL)
1859 {
1860 rinfo->failed = TRUE;
1861 return FALSE;
1862 }
1863
1864 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1865 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1866 elf_tdata (rinfo->info->output_bfd)->verref = t;
1867 }
1868
1869 amt = sizeof *a;
1870 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1871 if (a == NULL)
1872 {
1873 rinfo->failed = TRUE;
1874 return FALSE;
1875 }
1876
1877 /* Note that we are copying a string pointer here, and testing it
1878 above. If bfd_elf_string_from_elf_section is ever changed to
1879 discard the string data when low in memory, this will have to be
1880 fixed. */
1881 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1882
1883 a->vna_flags = h->verinfo.verdef->vd_flags;
1884 a->vna_nextptr = t->vn_auxptr;
1885
1886 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1887 ++rinfo->vers;
1888
1889 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1890
1891 t->vn_auxptr = a;
1892
1893 return TRUE;
1894 }
1895
1896 /* Figure out appropriate versions for all the symbols. We may not
1897 have the version number script until we have read all of the input
1898 files, so until that point we don't know which symbols should be
1899 local. This function is called via elf_link_hash_traverse. */
1900
1901 static bfd_boolean
1902 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1903 {
1904 struct elf_info_failed *sinfo;
1905 struct bfd_link_info *info;
1906 const struct elf_backend_data *bed;
1907 struct elf_info_failed eif;
1908 char *p;
1909 bfd_size_type amt;
1910
1911 sinfo = (struct elf_info_failed *) data;
1912 info = sinfo->info;
1913
1914 /* Fix the symbol flags. */
1915 eif.failed = FALSE;
1916 eif.info = info;
1917 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1918 {
1919 if (eif.failed)
1920 sinfo->failed = TRUE;
1921 return FALSE;
1922 }
1923
1924 /* We only need version numbers for symbols defined in regular
1925 objects. */
1926 if (!h->def_regular)
1927 return TRUE;
1928
1929 bed = get_elf_backend_data (info->output_bfd);
1930 p = strchr (h->root.root.string, ELF_VER_CHR);
1931 if (p != NULL && h->verinfo.vertree == NULL)
1932 {
1933 struct bfd_elf_version_tree *t;
1934 bfd_boolean hidden;
1935
1936 hidden = TRUE;
1937
1938 /* There are two consecutive ELF_VER_CHR characters if this is
1939 not a hidden symbol. */
1940 ++p;
1941 if (*p == ELF_VER_CHR)
1942 {
1943 hidden = FALSE;
1944 ++p;
1945 }
1946
1947 /* If there is no version string, we can just return out. */
1948 if (*p == '\0')
1949 {
1950 if (hidden)
1951 h->hidden = 1;
1952 return TRUE;
1953 }
1954
1955 /* Look for the version. If we find it, it is no longer weak. */
1956 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1957 {
1958 if (strcmp (t->name, p) == 0)
1959 {
1960 size_t len;
1961 char *alc;
1962 struct bfd_elf_version_expr *d;
1963
1964 len = p - h->root.root.string;
1965 alc = (char *) bfd_malloc (len);
1966 if (alc == NULL)
1967 {
1968 sinfo->failed = TRUE;
1969 return FALSE;
1970 }
1971 memcpy (alc, h->root.root.string, len - 1);
1972 alc[len - 1] = '\0';
1973 if (alc[len - 2] == ELF_VER_CHR)
1974 alc[len - 2] = '\0';
1975
1976 h->verinfo.vertree = t;
1977 t->used = TRUE;
1978 d = NULL;
1979
1980 if (t->globals.list != NULL)
1981 d = (*t->match) (&t->globals, NULL, alc);
1982
1983 /* See if there is anything to force this symbol to
1984 local scope. */
1985 if (d == NULL && t->locals.list != NULL)
1986 {
1987 d = (*t->match) (&t->locals, NULL, alc);
1988 if (d != NULL
1989 && h->dynindx != -1
1990 && ! info->export_dynamic)
1991 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1992 }
1993
1994 free (alc);
1995 break;
1996 }
1997 }
1998
1999 /* If we are building an application, we need to create a
2000 version node for this version. */
2001 if (t == NULL && info->executable)
2002 {
2003 struct bfd_elf_version_tree **pp;
2004 int version_index;
2005
2006 /* If we aren't going to export this symbol, we don't need
2007 to worry about it. */
2008 if (h->dynindx == -1)
2009 return TRUE;
2010
2011 amt = sizeof *t;
2012 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2013 if (t == NULL)
2014 {
2015 sinfo->failed = TRUE;
2016 return FALSE;
2017 }
2018
2019 t->name = p;
2020 t->name_indx = (unsigned int) -1;
2021 t->used = TRUE;
2022
2023 version_index = 1;
2024 /* Don't count anonymous version tag. */
2025 if (sinfo->info->version_info != NULL
2026 && sinfo->info->version_info->vernum == 0)
2027 version_index = 0;
2028 for (pp = &sinfo->info->version_info;
2029 *pp != NULL;
2030 pp = &(*pp)->next)
2031 ++version_index;
2032 t->vernum = version_index;
2033
2034 *pp = t;
2035
2036 h->verinfo.vertree = t;
2037 }
2038 else if (t == NULL)
2039 {
2040 /* We could not find the version for a symbol when
2041 generating a shared archive. Return an error. */
2042 (*_bfd_error_handler)
2043 (_("%B: version node not found for symbol %s"),
2044 info->output_bfd, h->root.root.string);
2045 bfd_set_error (bfd_error_bad_value);
2046 sinfo->failed = TRUE;
2047 return FALSE;
2048 }
2049
2050 if (hidden)
2051 h->hidden = 1;
2052 }
2053
2054 /* If we don't have a version for this symbol, see if we can find
2055 something. */
2056 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2057 {
2058 bfd_boolean hide;
2059
2060 h->verinfo.vertree
2061 = bfd_find_version_for_sym (sinfo->info->version_info,
2062 h->root.root.string, &hide);
2063 if (h->verinfo.vertree != NULL && hide)
2064 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2065 }
2066
2067 return TRUE;
2068 }
2069 \f
2070 /* Read and swap the relocs from the section indicated by SHDR. This
2071 may be either a REL or a RELA section. The relocations are
2072 translated into RELA relocations and stored in INTERNAL_RELOCS,
2073 which should have already been allocated to contain enough space.
2074 The EXTERNAL_RELOCS are a buffer where the external form of the
2075 relocations should be stored.
2076
2077 Returns FALSE if something goes wrong. */
2078
2079 static bfd_boolean
2080 elf_link_read_relocs_from_section (bfd *abfd,
2081 asection *sec,
2082 Elf_Internal_Shdr *shdr,
2083 void *external_relocs,
2084 Elf_Internal_Rela *internal_relocs)
2085 {
2086 const struct elf_backend_data *bed;
2087 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2088 const bfd_byte *erela;
2089 const bfd_byte *erelaend;
2090 Elf_Internal_Rela *irela;
2091 Elf_Internal_Shdr *symtab_hdr;
2092 size_t nsyms;
2093
2094 /* Position ourselves at the start of the section. */
2095 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2096 return FALSE;
2097
2098 /* Read the relocations. */
2099 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2100 return FALSE;
2101
2102 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2103 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2104
2105 bed = get_elf_backend_data (abfd);
2106
2107 /* Convert the external relocations to the internal format. */
2108 if (shdr->sh_entsize == bed->s->sizeof_rel)
2109 swap_in = bed->s->swap_reloc_in;
2110 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2111 swap_in = bed->s->swap_reloca_in;
2112 else
2113 {
2114 bfd_set_error (bfd_error_wrong_format);
2115 return FALSE;
2116 }
2117
2118 erela = (const bfd_byte *) external_relocs;
2119 erelaend = erela + shdr->sh_size;
2120 irela = internal_relocs;
2121 while (erela < erelaend)
2122 {
2123 bfd_vma r_symndx;
2124
2125 (*swap_in) (abfd, erela, irela);
2126 r_symndx = ELF32_R_SYM (irela->r_info);
2127 if (bed->s->arch_size == 64)
2128 r_symndx >>= 24;
2129 if (nsyms > 0)
2130 {
2131 if ((size_t) r_symndx >= nsyms)
2132 {
2133 (*_bfd_error_handler)
2134 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2135 " for offset 0x%lx in section `%A'"),
2136 abfd, sec,
2137 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2138 bfd_set_error (bfd_error_bad_value);
2139 return FALSE;
2140 }
2141 }
2142 else if (r_symndx != STN_UNDEF)
2143 {
2144 (*_bfd_error_handler)
2145 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2146 " when the object file has no symbol table"),
2147 abfd, sec,
2148 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2149 bfd_set_error (bfd_error_bad_value);
2150 return FALSE;
2151 }
2152 irela += bed->s->int_rels_per_ext_rel;
2153 erela += shdr->sh_entsize;
2154 }
2155
2156 return TRUE;
2157 }
2158
2159 /* Read and swap the relocs for a section O. They may have been
2160 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2161 not NULL, they are used as buffers to read into. They are known to
2162 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2163 the return value is allocated using either malloc or bfd_alloc,
2164 according to the KEEP_MEMORY argument. If O has two relocation
2165 sections (both REL and RELA relocations), then the REL_HDR
2166 relocations will appear first in INTERNAL_RELOCS, followed by the
2167 RELA_HDR relocations. */
2168
2169 Elf_Internal_Rela *
2170 _bfd_elf_link_read_relocs (bfd *abfd,
2171 asection *o,
2172 void *external_relocs,
2173 Elf_Internal_Rela *internal_relocs,
2174 bfd_boolean keep_memory)
2175 {
2176 void *alloc1 = NULL;
2177 Elf_Internal_Rela *alloc2 = NULL;
2178 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2179 struct bfd_elf_section_data *esdo = elf_section_data (o);
2180 Elf_Internal_Rela *internal_rela_relocs;
2181
2182 if (esdo->relocs != NULL)
2183 return esdo->relocs;
2184
2185 if (o->reloc_count == 0)
2186 return NULL;
2187
2188 if (internal_relocs == NULL)
2189 {
2190 bfd_size_type size;
2191
2192 size = o->reloc_count;
2193 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2194 if (keep_memory)
2195 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2196 else
2197 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2198 if (internal_relocs == NULL)
2199 goto error_return;
2200 }
2201
2202 if (external_relocs == NULL)
2203 {
2204 bfd_size_type size = 0;
2205
2206 if (esdo->rel.hdr)
2207 size += esdo->rel.hdr->sh_size;
2208 if (esdo->rela.hdr)
2209 size += esdo->rela.hdr->sh_size;
2210
2211 alloc1 = bfd_malloc (size);
2212 if (alloc1 == NULL)
2213 goto error_return;
2214 external_relocs = alloc1;
2215 }
2216
2217 internal_rela_relocs = internal_relocs;
2218 if (esdo->rel.hdr)
2219 {
2220 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2221 external_relocs,
2222 internal_relocs))
2223 goto error_return;
2224 external_relocs = (((bfd_byte *) external_relocs)
2225 + esdo->rel.hdr->sh_size);
2226 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2227 * bed->s->int_rels_per_ext_rel);
2228 }
2229
2230 if (esdo->rela.hdr
2231 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2232 external_relocs,
2233 internal_rela_relocs)))
2234 goto error_return;
2235
2236 /* Cache the results for next time, if we can. */
2237 if (keep_memory)
2238 esdo->relocs = internal_relocs;
2239
2240 if (alloc1 != NULL)
2241 free (alloc1);
2242
2243 /* Don't free alloc2, since if it was allocated we are passing it
2244 back (under the name of internal_relocs). */
2245
2246 return internal_relocs;
2247
2248 error_return:
2249 if (alloc1 != NULL)
2250 free (alloc1);
2251 if (alloc2 != NULL)
2252 {
2253 if (keep_memory)
2254 bfd_release (abfd, alloc2);
2255 else
2256 free (alloc2);
2257 }
2258 return NULL;
2259 }
2260
2261 /* Compute the size of, and allocate space for, REL_HDR which is the
2262 section header for a section containing relocations for O. */
2263
2264 static bfd_boolean
2265 _bfd_elf_link_size_reloc_section (bfd *abfd,
2266 struct bfd_elf_section_reloc_data *reldata)
2267 {
2268 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2269
2270 /* That allows us to calculate the size of the section. */
2271 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2272
2273 /* The contents field must last into write_object_contents, so we
2274 allocate it with bfd_alloc rather than malloc. Also since we
2275 cannot be sure that the contents will actually be filled in,
2276 we zero the allocated space. */
2277 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2278 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2279 return FALSE;
2280
2281 if (reldata->hashes == NULL && reldata->count)
2282 {
2283 struct elf_link_hash_entry **p;
2284
2285 p = ((struct elf_link_hash_entry **)
2286 bfd_zmalloc (reldata->count * sizeof (*p)));
2287 if (p == NULL)
2288 return FALSE;
2289
2290 reldata->hashes = p;
2291 }
2292
2293 return TRUE;
2294 }
2295
2296 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2297 originated from the section given by INPUT_REL_HDR) to the
2298 OUTPUT_BFD. */
2299
2300 bfd_boolean
2301 _bfd_elf_link_output_relocs (bfd *output_bfd,
2302 asection *input_section,
2303 Elf_Internal_Shdr *input_rel_hdr,
2304 Elf_Internal_Rela *internal_relocs,
2305 struct elf_link_hash_entry **rel_hash
2306 ATTRIBUTE_UNUSED)
2307 {
2308 Elf_Internal_Rela *irela;
2309 Elf_Internal_Rela *irelaend;
2310 bfd_byte *erel;
2311 struct bfd_elf_section_reloc_data *output_reldata;
2312 asection *output_section;
2313 const struct elf_backend_data *bed;
2314 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2315 struct bfd_elf_section_data *esdo;
2316
2317 output_section = input_section->output_section;
2318
2319 bed = get_elf_backend_data (output_bfd);
2320 esdo = elf_section_data (output_section);
2321 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2322 {
2323 output_reldata = &esdo->rel;
2324 swap_out = bed->s->swap_reloc_out;
2325 }
2326 else if (esdo->rela.hdr
2327 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2328 {
2329 output_reldata = &esdo->rela;
2330 swap_out = bed->s->swap_reloca_out;
2331 }
2332 else
2333 {
2334 (*_bfd_error_handler)
2335 (_("%B: relocation size mismatch in %B section %A"),
2336 output_bfd, input_section->owner, input_section);
2337 bfd_set_error (bfd_error_wrong_format);
2338 return FALSE;
2339 }
2340
2341 erel = output_reldata->hdr->contents;
2342 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2343 irela = internal_relocs;
2344 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2345 * bed->s->int_rels_per_ext_rel);
2346 while (irela < irelaend)
2347 {
2348 (*swap_out) (output_bfd, irela, erel);
2349 irela += bed->s->int_rels_per_ext_rel;
2350 erel += input_rel_hdr->sh_entsize;
2351 }
2352
2353 /* Bump the counter, so that we know where to add the next set of
2354 relocations. */
2355 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2356
2357 return TRUE;
2358 }
2359 \f
2360 /* Make weak undefined symbols in PIE dynamic. */
2361
2362 bfd_boolean
2363 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2364 struct elf_link_hash_entry *h)
2365 {
2366 if (info->pie
2367 && h->dynindx == -1
2368 && h->root.type == bfd_link_hash_undefweak)
2369 return bfd_elf_link_record_dynamic_symbol (info, h);
2370
2371 return TRUE;
2372 }
2373
2374 /* Fix up the flags for a symbol. This handles various cases which
2375 can only be fixed after all the input files are seen. This is
2376 currently called by both adjust_dynamic_symbol and
2377 assign_sym_version, which is unnecessary but perhaps more robust in
2378 the face of future changes. */
2379
2380 static bfd_boolean
2381 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2382 struct elf_info_failed *eif)
2383 {
2384 const struct elf_backend_data *bed;
2385
2386 /* If this symbol was mentioned in a non-ELF file, try to set
2387 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2388 permit a non-ELF file to correctly refer to a symbol defined in
2389 an ELF dynamic object. */
2390 if (h->non_elf)
2391 {
2392 while (h->root.type == bfd_link_hash_indirect)
2393 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2394
2395 if (h->root.type != bfd_link_hash_defined
2396 && h->root.type != bfd_link_hash_defweak)
2397 {
2398 h->ref_regular = 1;
2399 h->ref_regular_nonweak = 1;
2400 }
2401 else
2402 {
2403 if (h->root.u.def.section->owner != NULL
2404 && (bfd_get_flavour (h->root.u.def.section->owner)
2405 == bfd_target_elf_flavour))
2406 {
2407 h->ref_regular = 1;
2408 h->ref_regular_nonweak = 1;
2409 }
2410 else
2411 h->def_regular = 1;
2412 }
2413
2414 if (h->dynindx == -1
2415 && (h->def_dynamic
2416 || h->ref_dynamic))
2417 {
2418 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2419 {
2420 eif->failed = TRUE;
2421 return FALSE;
2422 }
2423 }
2424 }
2425 else
2426 {
2427 /* Unfortunately, NON_ELF is only correct if the symbol
2428 was first seen in a non-ELF file. Fortunately, if the symbol
2429 was first seen in an ELF file, we're probably OK unless the
2430 symbol was defined in a non-ELF file. Catch that case here.
2431 FIXME: We're still in trouble if the symbol was first seen in
2432 a dynamic object, and then later in a non-ELF regular object. */
2433 if ((h->root.type == bfd_link_hash_defined
2434 || h->root.type == bfd_link_hash_defweak)
2435 && !h->def_regular
2436 && (h->root.u.def.section->owner != NULL
2437 ? (bfd_get_flavour (h->root.u.def.section->owner)
2438 != bfd_target_elf_flavour)
2439 : (bfd_is_abs_section (h->root.u.def.section)
2440 && !h->def_dynamic)))
2441 h->def_regular = 1;
2442 }
2443
2444 /* Backend specific symbol fixup. */
2445 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2446 if (bed->elf_backend_fixup_symbol
2447 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2448 return FALSE;
2449
2450 /* If this is a final link, and the symbol was defined as a common
2451 symbol in a regular object file, and there was no definition in
2452 any dynamic object, then the linker will have allocated space for
2453 the symbol in a common section but the DEF_REGULAR
2454 flag will not have been set. */
2455 if (h->root.type == bfd_link_hash_defined
2456 && !h->def_regular
2457 && h->ref_regular
2458 && !h->def_dynamic
2459 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2460 h->def_regular = 1;
2461
2462 /* If -Bsymbolic was used (which means to bind references to global
2463 symbols to the definition within the shared object), and this
2464 symbol was defined in a regular object, then it actually doesn't
2465 need a PLT entry. Likewise, if the symbol has non-default
2466 visibility. If the symbol has hidden or internal visibility, we
2467 will force it local. */
2468 if (h->needs_plt
2469 && eif->info->shared
2470 && is_elf_hash_table (eif->info->hash)
2471 && (SYMBOLIC_BIND (eif->info, h)
2472 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2473 && h->def_regular)
2474 {
2475 bfd_boolean force_local;
2476
2477 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2478 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2479 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2480 }
2481
2482 /* If a weak undefined symbol has non-default visibility, we also
2483 hide it from the dynamic linker. */
2484 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2485 && h->root.type == bfd_link_hash_undefweak)
2486 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2487
2488 /* If this is a weak defined symbol in a dynamic object, and we know
2489 the real definition in the dynamic object, copy interesting flags
2490 over to the real definition. */
2491 if (h->u.weakdef != NULL)
2492 {
2493 /* If the real definition is defined by a regular object file,
2494 don't do anything special. See the longer description in
2495 _bfd_elf_adjust_dynamic_symbol, below. */
2496 if (h->u.weakdef->def_regular)
2497 h->u.weakdef = NULL;
2498 else
2499 {
2500 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2501
2502 while (h->root.type == bfd_link_hash_indirect)
2503 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2504
2505 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2506 || h->root.type == bfd_link_hash_defweak);
2507 BFD_ASSERT (weakdef->def_dynamic);
2508 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2509 || weakdef->root.type == bfd_link_hash_defweak);
2510 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2511 }
2512 }
2513
2514 return TRUE;
2515 }
2516
2517 /* Make the backend pick a good value for a dynamic symbol. This is
2518 called via elf_link_hash_traverse, and also calls itself
2519 recursively. */
2520
2521 static bfd_boolean
2522 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2523 {
2524 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2525 bfd *dynobj;
2526 const struct elf_backend_data *bed;
2527
2528 if (! is_elf_hash_table (eif->info->hash))
2529 return FALSE;
2530
2531 /* Ignore indirect symbols. These are added by the versioning code. */
2532 if (h->root.type == bfd_link_hash_indirect)
2533 return TRUE;
2534
2535 /* Fix the symbol flags. */
2536 if (! _bfd_elf_fix_symbol_flags (h, eif))
2537 return FALSE;
2538
2539 /* If this symbol does not require a PLT entry, and it is not
2540 defined by a dynamic object, or is not referenced by a regular
2541 object, ignore it. We do have to handle a weak defined symbol,
2542 even if no regular object refers to it, if we decided to add it
2543 to the dynamic symbol table. FIXME: Do we normally need to worry
2544 about symbols which are defined by one dynamic object and
2545 referenced by another one? */
2546 if (!h->needs_plt
2547 && h->type != STT_GNU_IFUNC
2548 && (h->def_regular
2549 || !h->def_dynamic
2550 || (!h->ref_regular
2551 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2552 {
2553 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2554 return TRUE;
2555 }
2556
2557 /* If we've already adjusted this symbol, don't do it again. This
2558 can happen via a recursive call. */
2559 if (h->dynamic_adjusted)
2560 return TRUE;
2561
2562 /* Don't look at this symbol again. Note that we must set this
2563 after checking the above conditions, because we may look at a
2564 symbol once, decide not to do anything, and then get called
2565 recursively later after REF_REGULAR is set below. */
2566 h->dynamic_adjusted = 1;
2567
2568 /* If this is a weak definition, and we know a real definition, and
2569 the real symbol is not itself defined by a regular object file,
2570 then get a good value for the real definition. We handle the
2571 real symbol first, for the convenience of the backend routine.
2572
2573 Note that there is a confusing case here. If the real definition
2574 is defined by a regular object file, we don't get the real symbol
2575 from the dynamic object, but we do get the weak symbol. If the
2576 processor backend uses a COPY reloc, then if some routine in the
2577 dynamic object changes the real symbol, we will not see that
2578 change in the corresponding weak symbol. This is the way other
2579 ELF linkers work as well, and seems to be a result of the shared
2580 library model.
2581
2582 I will clarify this issue. Most SVR4 shared libraries define the
2583 variable _timezone and define timezone as a weak synonym. The
2584 tzset call changes _timezone. If you write
2585 extern int timezone;
2586 int _timezone = 5;
2587 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2588 you might expect that, since timezone is a synonym for _timezone,
2589 the same number will print both times. However, if the processor
2590 backend uses a COPY reloc, then actually timezone will be copied
2591 into your process image, and, since you define _timezone
2592 yourself, _timezone will not. Thus timezone and _timezone will
2593 wind up at different memory locations. The tzset call will set
2594 _timezone, leaving timezone unchanged. */
2595
2596 if (h->u.weakdef != NULL)
2597 {
2598 /* If we get to this point, there is an implicit reference to
2599 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2600 h->u.weakdef->ref_regular = 1;
2601
2602 /* Ensure that the backend adjust_dynamic_symbol function sees
2603 H->U.WEAKDEF before H by recursively calling ourselves. */
2604 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2605 return FALSE;
2606 }
2607
2608 /* If a symbol has no type and no size and does not require a PLT
2609 entry, then we are probably about to do the wrong thing here: we
2610 are probably going to create a COPY reloc for an empty object.
2611 This case can arise when a shared object is built with assembly
2612 code, and the assembly code fails to set the symbol type. */
2613 if (h->size == 0
2614 && h->type == STT_NOTYPE
2615 && !h->needs_plt)
2616 (*_bfd_error_handler)
2617 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2618 h->root.root.string);
2619
2620 dynobj = elf_hash_table (eif->info)->dynobj;
2621 bed = get_elf_backend_data (dynobj);
2622
2623 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2624 {
2625 eif->failed = TRUE;
2626 return FALSE;
2627 }
2628
2629 return TRUE;
2630 }
2631
2632 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2633 DYNBSS. */
2634
2635 bfd_boolean
2636 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2637 struct elf_link_hash_entry *h,
2638 asection *dynbss)
2639 {
2640 unsigned int power_of_two;
2641 bfd_vma mask;
2642 asection *sec = h->root.u.def.section;
2643
2644 /* The section aligment of definition is the maximum alignment
2645 requirement of symbols defined in the section. Since we don't
2646 know the symbol alignment requirement, we start with the
2647 maximum alignment and check low bits of the symbol address
2648 for the minimum alignment. */
2649 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2650 mask = ((bfd_vma) 1 << power_of_two) - 1;
2651 while ((h->root.u.def.value & mask) != 0)
2652 {
2653 mask >>= 1;
2654 --power_of_two;
2655 }
2656
2657 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2658 dynbss))
2659 {
2660 /* Adjust the section alignment if needed. */
2661 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2662 power_of_two))
2663 return FALSE;
2664 }
2665
2666 /* We make sure that the symbol will be aligned properly. */
2667 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2668
2669 /* Define the symbol as being at this point in DYNBSS. */
2670 h->root.u.def.section = dynbss;
2671 h->root.u.def.value = dynbss->size;
2672
2673 /* Increment the size of DYNBSS to make room for the symbol. */
2674 dynbss->size += h->size;
2675
2676 /* No error if extern_protected_data is true. */
2677 if (h->protected_def
2678 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)
2679 {
2680 info->callbacks->einfo
2681 (_("%P: copy reloc against protected `%T' is invalid\n"),
2682 h->root.root.string);
2683 bfd_set_error (bfd_error_bad_value);
2684 return FALSE;
2685 }
2686
2687 return TRUE;
2688 }
2689
2690 /* Adjust all external symbols pointing into SEC_MERGE sections
2691 to reflect the object merging within the sections. */
2692
2693 static bfd_boolean
2694 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2695 {
2696 asection *sec;
2697
2698 if ((h->root.type == bfd_link_hash_defined
2699 || h->root.type == bfd_link_hash_defweak)
2700 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2701 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2702 {
2703 bfd *output_bfd = (bfd *) data;
2704
2705 h->root.u.def.value =
2706 _bfd_merged_section_offset (output_bfd,
2707 &h->root.u.def.section,
2708 elf_section_data (sec)->sec_info,
2709 h->root.u.def.value);
2710 }
2711
2712 return TRUE;
2713 }
2714
2715 /* Returns false if the symbol referred to by H should be considered
2716 to resolve local to the current module, and true if it should be
2717 considered to bind dynamically. */
2718
2719 bfd_boolean
2720 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2721 struct bfd_link_info *info,
2722 bfd_boolean not_local_protected)
2723 {
2724 bfd_boolean binding_stays_local_p;
2725 const struct elf_backend_data *bed;
2726 struct elf_link_hash_table *hash_table;
2727
2728 if (h == NULL)
2729 return FALSE;
2730
2731 while (h->root.type == bfd_link_hash_indirect
2732 || h->root.type == bfd_link_hash_warning)
2733 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2734
2735 /* If it was forced local, then clearly it's not dynamic. */
2736 if (h->dynindx == -1)
2737 return FALSE;
2738 if (h->forced_local)
2739 return FALSE;
2740
2741 /* Identify the cases where name binding rules say that a
2742 visible symbol resolves locally. */
2743 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2744
2745 switch (ELF_ST_VISIBILITY (h->other))
2746 {
2747 case STV_INTERNAL:
2748 case STV_HIDDEN:
2749 return FALSE;
2750
2751 case STV_PROTECTED:
2752 hash_table = elf_hash_table (info);
2753 if (!is_elf_hash_table (hash_table))
2754 return FALSE;
2755
2756 bed = get_elf_backend_data (hash_table->dynobj);
2757
2758 /* Proper resolution for function pointer equality may require
2759 that these symbols perhaps be resolved dynamically, even though
2760 we should be resolving them to the current module. */
2761 if (!not_local_protected || !bed->is_function_type (h->type))
2762 binding_stays_local_p = TRUE;
2763 break;
2764
2765 default:
2766 break;
2767 }
2768
2769 /* If it isn't defined locally, then clearly it's dynamic. */
2770 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2771 return TRUE;
2772
2773 /* Otherwise, the symbol is dynamic if binding rules don't tell
2774 us that it remains local. */
2775 return !binding_stays_local_p;
2776 }
2777
2778 /* Return true if the symbol referred to by H should be considered
2779 to resolve local to the current module, and false otherwise. Differs
2780 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2781 undefined symbols. The two functions are virtually identical except
2782 for the place where forced_local and dynindx == -1 are tested. If
2783 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2784 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2785 the symbol is local only for defined symbols.
2786 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2787 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2788 treatment of undefined weak symbols. For those that do not make
2789 undefined weak symbols dynamic, both functions may return false. */
2790
2791 bfd_boolean
2792 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2793 struct bfd_link_info *info,
2794 bfd_boolean local_protected)
2795 {
2796 const struct elf_backend_data *bed;
2797 struct elf_link_hash_table *hash_table;
2798
2799 /* If it's a local sym, of course we resolve locally. */
2800 if (h == NULL)
2801 return TRUE;
2802
2803 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2804 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2805 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2806 return TRUE;
2807
2808 /* Common symbols that become definitions don't get the DEF_REGULAR
2809 flag set, so test it first, and don't bail out. */
2810 if (ELF_COMMON_DEF_P (h))
2811 /* Do nothing. */;
2812 /* If we don't have a definition in a regular file, then we can't
2813 resolve locally. The sym is either undefined or dynamic. */
2814 else if (!h->def_regular)
2815 return FALSE;
2816
2817 /* Forced local symbols resolve locally. */
2818 if (h->forced_local)
2819 return TRUE;
2820
2821 /* As do non-dynamic symbols. */
2822 if (h->dynindx == -1)
2823 return TRUE;
2824
2825 /* At this point, we know the symbol is defined and dynamic. In an
2826 executable it must resolve locally, likewise when building symbolic
2827 shared libraries. */
2828 if (info->executable || SYMBOLIC_BIND (info, h))
2829 return TRUE;
2830
2831 /* Now deal with defined dynamic symbols in shared libraries. Ones
2832 with default visibility might not resolve locally. */
2833 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2834 return FALSE;
2835
2836 hash_table = elf_hash_table (info);
2837 if (!is_elf_hash_table (hash_table))
2838 return TRUE;
2839
2840 bed = get_elf_backend_data (hash_table->dynobj);
2841
2842 /* If extern_protected_data is false, STV_PROTECTED non-function
2843 symbols are local. */
2844 if (!bed->extern_protected_data && !bed->is_function_type (h->type))
2845 return TRUE;
2846
2847 /* Function pointer equality tests may require that STV_PROTECTED
2848 symbols be treated as dynamic symbols. If the address of a
2849 function not defined in an executable is set to that function's
2850 plt entry in the executable, then the address of the function in
2851 a shared library must also be the plt entry in the executable. */
2852 return local_protected;
2853 }
2854
2855 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2856 aligned. Returns the first TLS output section. */
2857
2858 struct bfd_section *
2859 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2860 {
2861 struct bfd_section *sec, *tls;
2862 unsigned int align = 0;
2863
2864 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2865 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2866 break;
2867 tls = sec;
2868
2869 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2870 if (sec->alignment_power > align)
2871 align = sec->alignment_power;
2872
2873 elf_hash_table (info)->tls_sec = tls;
2874
2875 /* Ensure the alignment of the first section is the largest alignment,
2876 so that the tls segment starts aligned. */
2877 if (tls != NULL)
2878 tls->alignment_power = align;
2879
2880 return tls;
2881 }
2882
2883 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2884 static bfd_boolean
2885 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2886 Elf_Internal_Sym *sym)
2887 {
2888 const struct elf_backend_data *bed;
2889
2890 /* Local symbols do not count, but target specific ones might. */
2891 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2892 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2893 return FALSE;
2894
2895 bed = get_elf_backend_data (abfd);
2896 /* Function symbols do not count. */
2897 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2898 return FALSE;
2899
2900 /* If the section is undefined, then so is the symbol. */
2901 if (sym->st_shndx == SHN_UNDEF)
2902 return FALSE;
2903
2904 /* If the symbol is defined in the common section, then
2905 it is a common definition and so does not count. */
2906 if (bed->common_definition (sym))
2907 return FALSE;
2908
2909 /* If the symbol is in a target specific section then we
2910 must rely upon the backend to tell us what it is. */
2911 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2912 /* FIXME - this function is not coded yet:
2913
2914 return _bfd_is_global_symbol_definition (abfd, sym);
2915
2916 Instead for now assume that the definition is not global,
2917 Even if this is wrong, at least the linker will behave
2918 in the same way that it used to do. */
2919 return FALSE;
2920
2921 return TRUE;
2922 }
2923
2924 /* Search the symbol table of the archive element of the archive ABFD
2925 whose archive map contains a mention of SYMDEF, and determine if
2926 the symbol is defined in this element. */
2927 static bfd_boolean
2928 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2929 {
2930 Elf_Internal_Shdr * hdr;
2931 bfd_size_type symcount;
2932 bfd_size_type extsymcount;
2933 bfd_size_type extsymoff;
2934 Elf_Internal_Sym *isymbuf;
2935 Elf_Internal_Sym *isym;
2936 Elf_Internal_Sym *isymend;
2937 bfd_boolean result;
2938
2939 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2940 if (abfd == NULL)
2941 return FALSE;
2942
2943 if (! bfd_check_format (abfd, bfd_object))
2944 return FALSE;
2945
2946 /* Select the appropriate symbol table. */
2947 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2948 hdr = &elf_tdata (abfd)->symtab_hdr;
2949 else
2950 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2951
2952 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2953
2954 /* The sh_info field of the symtab header tells us where the
2955 external symbols start. We don't care about the local symbols. */
2956 if (elf_bad_symtab (abfd))
2957 {
2958 extsymcount = symcount;
2959 extsymoff = 0;
2960 }
2961 else
2962 {
2963 extsymcount = symcount - hdr->sh_info;
2964 extsymoff = hdr->sh_info;
2965 }
2966
2967 if (extsymcount == 0)
2968 return FALSE;
2969
2970 /* Read in the symbol table. */
2971 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2972 NULL, NULL, NULL);
2973 if (isymbuf == NULL)
2974 return FALSE;
2975
2976 /* Scan the symbol table looking for SYMDEF. */
2977 result = FALSE;
2978 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2979 {
2980 const char *name;
2981
2982 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2983 isym->st_name);
2984 if (name == NULL)
2985 break;
2986
2987 if (strcmp (name, symdef->name) == 0)
2988 {
2989 result = is_global_data_symbol_definition (abfd, isym);
2990 break;
2991 }
2992 }
2993
2994 free (isymbuf);
2995
2996 return result;
2997 }
2998 \f
2999 /* Add an entry to the .dynamic table. */
3000
3001 bfd_boolean
3002 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3003 bfd_vma tag,
3004 bfd_vma val)
3005 {
3006 struct elf_link_hash_table *hash_table;
3007 const struct elf_backend_data *bed;
3008 asection *s;
3009 bfd_size_type newsize;
3010 bfd_byte *newcontents;
3011 Elf_Internal_Dyn dyn;
3012
3013 hash_table = elf_hash_table (info);
3014 if (! is_elf_hash_table (hash_table))
3015 return FALSE;
3016
3017 bed = get_elf_backend_data (hash_table->dynobj);
3018 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3019 BFD_ASSERT (s != NULL);
3020
3021 newsize = s->size + bed->s->sizeof_dyn;
3022 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3023 if (newcontents == NULL)
3024 return FALSE;
3025
3026 dyn.d_tag = tag;
3027 dyn.d_un.d_val = val;
3028 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3029
3030 s->size = newsize;
3031 s->contents = newcontents;
3032
3033 return TRUE;
3034 }
3035
3036 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3037 otherwise just check whether one already exists. Returns -1 on error,
3038 1 if a DT_NEEDED tag already exists, and 0 on success. */
3039
3040 static int
3041 elf_add_dt_needed_tag (bfd *abfd,
3042 struct bfd_link_info *info,
3043 const char *soname,
3044 bfd_boolean do_it)
3045 {
3046 struct elf_link_hash_table *hash_table;
3047 bfd_size_type strindex;
3048
3049 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3050 return -1;
3051
3052 hash_table = elf_hash_table (info);
3053 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3054 if (strindex == (bfd_size_type) -1)
3055 return -1;
3056
3057 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3058 {
3059 asection *sdyn;
3060 const struct elf_backend_data *bed;
3061 bfd_byte *extdyn;
3062
3063 bed = get_elf_backend_data (hash_table->dynobj);
3064 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3065 if (sdyn != NULL)
3066 for (extdyn = sdyn->contents;
3067 extdyn < sdyn->contents + sdyn->size;
3068 extdyn += bed->s->sizeof_dyn)
3069 {
3070 Elf_Internal_Dyn dyn;
3071
3072 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3073 if (dyn.d_tag == DT_NEEDED
3074 && dyn.d_un.d_val == strindex)
3075 {
3076 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3077 return 1;
3078 }
3079 }
3080 }
3081
3082 if (do_it)
3083 {
3084 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3085 return -1;
3086
3087 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3088 return -1;
3089 }
3090 else
3091 /* We were just checking for existence of the tag. */
3092 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3093
3094 return 0;
3095 }
3096
3097 static bfd_boolean
3098 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3099 {
3100 for (; needed != NULL; needed = needed->next)
3101 if ((elf_dyn_lib_class (needed->by) & DYN_AS_NEEDED) == 0
3102 && strcmp (soname, needed->name) == 0)
3103 return TRUE;
3104
3105 return FALSE;
3106 }
3107
3108 /* Sort symbol by value, section, and size. */
3109 static int
3110 elf_sort_symbol (const void *arg1, const void *arg2)
3111 {
3112 const struct elf_link_hash_entry *h1;
3113 const struct elf_link_hash_entry *h2;
3114 bfd_signed_vma vdiff;
3115
3116 h1 = *(const struct elf_link_hash_entry **) arg1;
3117 h2 = *(const struct elf_link_hash_entry **) arg2;
3118 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3119 if (vdiff != 0)
3120 return vdiff > 0 ? 1 : -1;
3121 else
3122 {
3123 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3124 if (sdiff != 0)
3125 return sdiff > 0 ? 1 : -1;
3126 }
3127 vdiff = h1->size - h2->size;
3128 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3129 }
3130
3131 /* This function is used to adjust offsets into .dynstr for
3132 dynamic symbols. This is called via elf_link_hash_traverse. */
3133
3134 static bfd_boolean
3135 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3136 {
3137 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3138
3139 if (h->dynindx != -1)
3140 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3141 return TRUE;
3142 }
3143
3144 /* Assign string offsets in .dynstr, update all structures referencing
3145 them. */
3146
3147 static bfd_boolean
3148 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3149 {
3150 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3151 struct elf_link_local_dynamic_entry *entry;
3152 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3153 bfd *dynobj = hash_table->dynobj;
3154 asection *sdyn;
3155 bfd_size_type size;
3156 const struct elf_backend_data *bed;
3157 bfd_byte *extdyn;
3158
3159 _bfd_elf_strtab_finalize (dynstr);
3160 size = _bfd_elf_strtab_size (dynstr);
3161
3162 bed = get_elf_backend_data (dynobj);
3163 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3164 BFD_ASSERT (sdyn != NULL);
3165
3166 /* Update all .dynamic entries referencing .dynstr strings. */
3167 for (extdyn = sdyn->contents;
3168 extdyn < sdyn->contents + sdyn->size;
3169 extdyn += bed->s->sizeof_dyn)
3170 {
3171 Elf_Internal_Dyn dyn;
3172
3173 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3174 switch (dyn.d_tag)
3175 {
3176 case DT_STRSZ:
3177 dyn.d_un.d_val = size;
3178 break;
3179 case DT_NEEDED:
3180 case DT_SONAME:
3181 case DT_RPATH:
3182 case DT_RUNPATH:
3183 case DT_FILTER:
3184 case DT_AUXILIARY:
3185 case DT_AUDIT:
3186 case DT_DEPAUDIT:
3187 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3188 break;
3189 default:
3190 continue;
3191 }
3192 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3193 }
3194
3195 /* Now update local dynamic symbols. */
3196 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3197 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3198 entry->isym.st_name);
3199
3200 /* And the rest of dynamic symbols. */
3201 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3202
3203 /* Adjust version definitions. */
3204 if (elf_tdata (output_bfd)->cverdefs)
3205 {
3206 asection *s;
3207 bfd_byte *p;
3208 bfd_size_type i;
3209 Elf_Internal_Verdef def;
3210 Elf_Internal_Verdaux defaux;
3211
3212 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3213 p = s->contents;
3214 do
3215 {
3216 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3217 &def);
3218 p += sizeof (Elf_External_Verdef);
3219 if (def.vd_aux != sizeof (Elf_External_Verdef))
3220 continue;
3221 for (i = 0; i < def.vd_cnt; ++i)
3222 {
3223 _bfd_elf_swap_verdaux_in (output_bfd,
3224 (Elf_External_Verdaux *) p, &defaux);
3225 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3226 defaux.vda_name);
3227 _bfd_elf_swap_verdaux_out (output_bfd,
3228 &defaux, (Elf_External_Verdaux *) p);
3229 p += sizeof (Elf_External_Verdaux);
3230 }
3231 }
3232 while (def.vd_next);
3233 }
3234
3235 /* Adjust version references. */
3236 if (elf_tdata (output_bfd)->verref)
3237 {
3238 asection *s;
3239 bfd_byte *p;
3240 bfd_size_type i;
3241 Elf_Internal_Verneed need;
3242 Elf_Internal_Vernaux needaux;
3243
3244 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3245 p = s->contents;
3246 do
3247 {
3248 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3249 &need);
3250 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3251 _bfd_elf_swap_verneed_out (output_bfd, &need,
3252 (Elf_External_Verneed *) p);
3253 p += sizeof (Elf_External_Verneed);
3254 for (i = 0; i < need.vn_cnt; ++i)
3255 {
3256 _bfd_elf_swap_vernaux_in (output_bfd,
3257 (Elf_External_Vernaux *) p, &needaux);
3258 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3259 needaux.vna_name);
3260 _bfd_elf_swap_vernaux_out (output_bfd,
3261 &needaux,
3262 (Elf_External_Vernaux *) p);
3263 p += sizeof (Elf_External_Vernaux);
3264 }
3265 }
3266 while (need.vn_next);
3267 }
3268
3269 return TRUE;
3270 }
3271 \f
3272 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3273 The default is to only match when the INPUT and OUTPUT are exactly
3274 the same target. */
3275
3276 bfd_boolean
3277 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3278 const bfd_target *output)
3279 {
3280 return input == output;
3281 }
3282
3283 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3284 This version is used when different targets for the same architecture
3285 are virtually identical. */
3286
3287 bfd_boolean
3288 _bfd_elf_relocs_compatible (const bfd_target *input,
3289 const bfd_target *output)
3290 {
3291 const struct elf_backend_data *obed, *ibed;
3292
3293 if (input == output)
3294 return TRUE;
3295
3296 ibed = xvec_get_elf_backend_data (input);
3297 obed = xvec_get_elf_backend_data (output);
3298
3299 if (ibed->arch != obed->arch)
3300 return FALSE;
3301
3302 /* If both backends are using this function, deem them compatible. */
3303 return ibed->relocs_compatible == obed->relocs_compatible;
3304 }
3305
3306 /* Make a special call to the linker "notice" function to tell it that
3307 we are about to handle an as-needed lib, or have finished
3308 processing the lib. */
3309
3310 bfd_boolean
3311 _bfd_elf_notice_as_needed (bfd *ibfd,
3312 struct bfd_link_info *info,
3313 enum notice_asneeded_action act)
3314 {
3315 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3316 }
3317
3318 /* Add symbols from an ELF object file to the linker hash table. */
3319
3320 static bfd_boolean
3321 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3322 {
3323 Elf_Internal_Ehdr *ehdr;
3324 Elf_Internal_Shdr *hdr;
3325 bfd_size_type symcount;
3326 bfd_size_type extsymcount;
3327 bfd_size_type extsymoff;
3328 struct elf_link_hash_entry **sym_hash;
3329 bfd_boolean dynamic;
3330 Elf_External_Versym *extversym = NULL;
3331 Elf_External_Versym *ever;
3332 struct elf_link_hash_entry *weaks;
3333 struct elf_link_hash_entry **nondeflt_vers = NULL;
3334 bfd_size_type nondeflt_vers_cnt = 0;
3335 Elf_Internal_Sym *isymbuf = NULL;
3336 Elf_Internal_Sym *isym;
3337 Elf_Internal_Sym *isymend;
3338 const struct elf_backend_data *bed;
3339 bfd_boolean add_needed;
3340 struct elf_link_hash_table *htab;
3341 bfd_size_type amt;
3342 void *alloc_mark = NULL;
3343 struct bfd_hash_entry **old_table = NULL;
3344 unsigned int old_size = 0;
3345 unsigned int old_count = 0;
3346 void *old_tab = NULL;
3347 void *old_ent;
3348 struct bfd_link_hash_entry *old_undefs = NULL;
3349 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3350 long old_dynsymcount = 0;
3351 bfd_size_type old_dynstr_size = 0;
3352 size_t tabsize = 0;
3353 asection *s;
3354 bfd_boolean just_syms;
3355
3356 htab = elf_hash_table (info);
3357 bed = get_elf_backend_data (abfd);
3358
3359 if ((abfd->flags & DYNAMIC) == 0)
3360 dynamic = FALSE;
3361 else
3362 {
3363 dynamic = TRUE;
3364
3365 /* You can't use -r against a dynamic object. Also, there's no
3366 hope of using a dynamic object which does not exactly match
3367 the format of the output file. */
3368 if (info->relocatable
3369 || !is_elf_hash_table (htab)
3370 || info->output_bfd->xvec != abfd->xvec)
3371 {
3372 if (info->relocatable)
3373 bfd_set_error (bfd_error_invalid_operation);
3374 else
3375 bfd_set_error (bfd_error_wrong_format);
3376 goto error_return;
3377 }
3378 }
3379
3380 ehdr = elf_elfheader (abfd);
3381 if (info->warn_alternate_em
3382 && bed->elf_machine_code != ehdr->e_machine
3383 && ((bed->elf_machine_alt1 != 0
3384 && ehdr->e_machine == bed->elf_machine_alt1)
3385 || (bed->elf_machine_alt2 != 0
3386 && ehdr->e_machine == bed->elf_machine_alt2)))
3387 info->callbacks->einfo
3388 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3389 ehdr->e_machine, abfd, bed->elf_machine_code);
3390
3391 /* As a GNU extension, any input sections which are named
3392 .gnu.warning.SYMBOL are treated as warning symbols for the given
3393 symbol. This differs from .gnu.warning sections, which generate
3394 warnings when they are included in an output file. */
3395 /* PR 12761: Also generate this warning when building shared libraries. */
3396 for (s = abfd->sections; s != NULL; s = s->next)
3397 {
3398 const char *name;
3399
3400 name = bfd_get_section_name (abfd, s);
3401 if (CONST_STRNEQ (name, ".gnu.warning."))
3402 {
3403 char *msg;
3404 bfd_size_type sz;
3405
3406 name += sizeof ".gnu.warning." - 1;
3407
3408 /* If this is a shared object, then look up the symbol
3409 in the hash table. If it is there, and it is already
3410 been defined, then we will not be using the entry
3411 from this shared object, so we don't need to warn.
3412 FIXME: If we see the definition in a regular object
3413 later on, we will warn, but we shouldn't. The only
3414 fix is to keep track of what warnings we are supposed
3415 to emit, and then handle them all at the end of the
3416 link. */
3417 if (dynamic)
3418 {
3419 struct elf_link_hash_entry *h;
3420
3421 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3422
3423 /* FIXME: What about bfd_link_hash_common? */
3424 if (h != NULL
3425 && (h->root.type == bfd_link_hash_defined
3426 || h->root.type == bfd_link_hash_defweak))
3427 continue;
3428 }
3429
3430 sz = s->size;
3431 msg = (char *) bfd_alloc (abfd, sz + 1);
3432 if (msg == NULL)
3433 goto error_return;
3434
3435 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3436 goto error_return;
3437
3438 msg[sz] = '\0';
3439
3440 if (! (_bfd_generic_link_add_one_symbol
3441 (info, abfd, name, BSF_WARNING, s, 0, msg,
3442 FALSE, bed->collect, NULL)))
3443 goto error_return;
3444
3445 if (!info->relocatable && info->executable)
3446 {
3447 /* Clobber the section size so that the warning does
3448 not get copied into the output file. */
3449 s->size = 0;
3450
3451 /* Also set SEC_EXCLUDE, so that symbols defined in
3452 the warning section don't get copied to the output. */
3453 s->flags |= SEC_EXCLUDE;
3454 }
3455 }
3456 }
3457
3458 just_syms = ((s = abfd->sections) != NULL
3459 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3460
3461 add_needed = TRUE;
3462 if (! dynamic)
3463 {
3464 /* If we are creating a shared library, create all the dynamic
3465 sections immediately. We need to attach them to something,
3466 so we attach them to this BFD, provided it is the right
3467 format and is not from ld --just-symbols. FIXME: If there
3468 are no input BFD's of the same format as the output, we can't
3469 make a shared library. */
3470 if (!just_syms
3471 && info->shared
3472 && is_elf_hash_table (htab)
3473 && info->output_bfd->xvec == abfd->xvec
3474 && !htab->dynamic_sections_created)
3475 {
3476 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3477 goto error_return;
3478 }
3479 }
3480 else if (!is_elf_hash_table (htab))
3481 goto error_return;
3482 else
3483 {
3484 const char *soname = NULL;
3485 char *audit = NULL;
3486 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3487 int ret;
3488
3489 /* ld --just-symbols and dynamic objects don't mix very well.
3490 ld shouldn't allow it. */
3491 if (just_syms)
3492 abort ();
3493
3494 /* If this dynamic lib was specified on the command line with
3495 --as-needed in effect, then we don't want to add a DT_NEEDED
3496 tag unless the lib is actually used. Similary for libs brought
3497 in by another lib's DT_NEEDED. When --no-add-needed is used
3498 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3499 any dynamic library in DT_NEEDED tags in the dynamic lib at
3500 all. */
3501 add_needed = (elf_dyn_lib_class (abfd)
3502 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3503 | DYN_NO_NEEDED)) == 0;
3504
3505 s = bfd_get_section_by_name (abfd, ".dynamic");
3506 if (s != NULL)
3507 {
3508 bfd_byte *dynbuf;
3509 bfd_byte *extdyn;
3510 unsigned int elfsec;
3511 unsigned long shlink;
3512
3513 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3514 {
3515 error_free_dyn:
3516 free (dynbuf);
3517 goto error_return;
3518 }
3519
3520 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3521 if (elfsec == SHN_BAD)
3522 goto error_free_dyn;
3523 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3524
3525 for (extdyn = dynbuf;
3526 extdyn < dynbuf + s->size;
3527 extdyn += bed->s->sizeof_dyn)
3528 {
3529 Elf_Internal_Dyn dyn;
3530
3531 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3532 if (dyn.d_tag == DT_SONAME)
3533 {
3534 unsigned int tagv = dyn.d_un.d_val;
3535 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3536 if (soname == NULL)
3537 goto error_free_dyn;
3538 }
3539 if (dyn.d_tag == DT_NEEDED)
3540 {
3541 struct bfd_link_needed_list *n, **pn;
3542 char *fnm, *anm;
3543 unsigned int tagv = dyn.d_un.d_val;
3544
3545 amt = sizeof (struct bfd_link_needed_list);
3546 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3547 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3548 if (n == NULL || fnm == NULL)
3549 goto error_free_dyn;
3550 amt = strlen (fnm) + 1;
3551 anm = (char *) bfd_alloc (abfd, amt);
3552 if (anm == NULL)
3553 goto error_free_dyn;
3554 memcpy (anm, fnm, amt);
3555 n->name = anm;
3556 n->by = abfd;
3557 n->next = NULL;
3558 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3559 ;
3560 *pn = n;
3561 }
3562 if (dyn.d_tag == DT_RUNPATH)
3563 {
3564 struct bfd_link_needed_list *n, **pn;
3565 char *fnm, *anm;
3566 unsigned int tagv = dyn.d_un.d_val;
3567
3568 amt = sizeof (struct bfd_link_needed_list);
3569 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3570 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3571 if (n == NULL || fnm == NULL)
3572 goto error_free_dyn;
3573 amt = strlen (fnm) + 1;
3574 anm = (char *) bfd_alloc (abfd, amt);
3575 if (anm == NULL)
3576 goto error_free_dyn;
3577 memcpy (anm, fnm, amt);
3578 n->name = anm;
3579 n->by = abfd;
3580 n->next = NULL;
3581 for (pn = & runpath;
3582 *pn != NULL;
3583 pn = &(*pn)->next)
3584 ;
3585 *pn = n;
3586 }
3587 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3588 if (!runpath && dyn.d_tag == DT_RPATH)
3589 {
3590 struct bfd_link_needed_list *n, **pn;
3591 char *fnm, *anm;
3592 unsigned int tagv = dyn.d_un.d_val;
3593
3594 amt = sizeof (struct bfd_link_needed_list);
3595 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3596 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3597 if (n == NULL || fnm == NULL)
3598 goto error_free_dyn;
3599 amt = strlen (fnm) + 1;
3600 anm = (char *) bfd_alloc (abfd, amt);
3601 if (anm == NULL)
3602 goto error_free_dyn;
3603 memcpy (anm, fnm, amt);
3604 n->name = anm;
3605 n->by = abfd;
3606 n->next = NULL;
3607 for (pn = & rpath;
3608 *pn != NULL;
3609 pn = &(*pn)->next)
3610 ;
3611 *pn = n;
3612 }
3613 if (dyn.d_tag == DT_AUDIT)
3614 {
3615 unsigned int tagv = dyn.d_un.d_val;
3616 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3617 }
3618 }
3619
3620 free (dynbuf);
3621 }
3622
3623 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3624 frees all more recently bfd_alloc'd blocks as well. */
3625 if (runpath)
3626 rpath = runpath;
3627
3628 if (rpath)
3629 {
3630 struct bfd_link_needed_list **pn;
3631 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3632 ;
3633 *pn = rpath;
3634 }
3635
3636 /* We do not want to include any of the sections in a dynamic
3637 object in the output file. We hack by simply clobbering the
3638 list of sections in the BFD. This could be handled more
3639 cleanly by, say, a new section flag; the existing
3640 SEC_NEVER_LOAD flag is not the one we want, because that one
3641 still implies that the section takes up space in the output
3642 file. */
3643 bfd_section_list_clear (abfd);
3644
3645 /* Find the name to use in a DT_NEEDED entry that refers to this
3646 object. If the object has a DT_SONAME entry, we use it.
3647 Otherwise, if the generic linker stuck something in
3648 elf_dt_name, we use that. Otherwise, we just use the file
3649 name. */
3650 if (soname == NULL || *soname == '\0')
3651 {
3652 soname = elf_dt_name (abfd);
3653 if (soname == NULL || *soname == '\0')
3654 soname = bfd_get_filename (abfd);
3655 }
3656
3657 /* Save the SONAME because sometimes the linker emulation code
3658 will need to know it. */
3659 elf_dt_name (abfd) = soname;
3660
3661 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3662 if (ret < 0)
3663 goto error_return;
3664
3665 /* If we have already included this dynamic object in the
3666 link, just ignore it. There is no reason to include a
3667 particular dynamic object more than once. */
3668 if (ret > 0)
3669 return TRUE;
3670
3671 /* Save the DT_AUDIT entry for the linker emulation code. */
3672 elf_dt_audit (abfd) = audit;
3673 }
3674
3675 /* If this is a dynamic object, we always link against the .dynsym
3676 symbol table, not the .symtab symbol table. The dynamic linker
3677 will only see the .dynsym symbol table, so there is no reason to
3678 look at .symtab for a dynamic object. */
3679
3680 if (! dynamic || elf_dynsymtab (abfd) == 0)
3681 hdr = &elf_tdata (abfd)->symtab_hdr;
3682 else
3683 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3684
3685 symcount = hdr->sh_size / bed->s->sizeof_sym;
3686
3687 /* The sh_info field of the symtab header tells us where the
3688 external symbols start. We don't care about the local symbols at
3689 this point. */
3690 if (elf_bad_symtab (abfd))
3691 {
3692 extsymcount = symcount;
3693 extsymoff = 0;
3694 }
3695 else
3696 {
3697 extsymcount = symcount - hdr->sh_info;
3698 extsymoff = hdr->sh_info;
3699 }
3700
3701 sym_hash = elf_sym_hashes (abfd);
3702 if (extsymcount != 0)
3703 {
3704 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3705 NULL, NULL, NULL);
3706 if (isymbuf == NULL)
3707 goto error_return;
3708
3709 if (sym_hash == NULL)
3710 {
3711 /* We store a pointer to the hash table entry for each
3712 external symbol. */
3713 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3714 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
3715 if (sym_hash == NULL)
3716 goto error_free_sym;
3717 elf_sym_hashes (abfd) = sym_hash;
3718 }
3719 }
3720
3721 if (dynamic)
3722 {
3723 /* Read in any version definitions. */
3724 if (!_bfd_elf_slurp_version_tables (abfd,
3725 info->default_imported_symver))
3726 goto error_free_sym;
3727
3728 /* Read in the symbol versions, but don't bother to convert them
3729 to internal format. */
3730 if (elf_dynversym (abfd) != 0)
3731 {
3732 Elf_Internal_Shdr *versymhdr;
3733
3734 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3735 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3736 if (extversym == NULL)
3737 goto error_free_sym;
3738 amt = versymhdr->sh_size;
3739 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3740 || bfd_bread (extversym, amt, abfd) != amt)
3741 goto error_free_vers;
3742 }
3743 }
3744
3745 /* If we are loading an as-needed shared lib, save the symbol table
3746 state before we start adding symbols. If the lib turns out
3747 to be unneeded, restore the state. */
3748 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3749 {
3750 unsigned int i;
3751 size_t entsize;
3752
3753 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3754 {
3755 struct bfd_hash_entry *p;
3756 struct elf_link_hash_entry *h;
3757
3758 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3759 {
3760 h = (struct elf_link_hash_entry *) p;
3761 entsize += htab->root.table.entsize;
3762 if (h->root.type == bfd_link_hash_warning)
3763 entsize += htab->root.table.entsize;
3764 }
3765 }
3766
3767 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3768 old_tab = bfd_malloc (tabsize + entsize);
3769 if (old_tab == NULL)
3770 goto error_free_vers;
3771
3772 /* Remember the current objalloc pointer, so that all mem for
3773 symbols added can later be reclaimed. */
3774 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3775 if (alloc_mark == NULL)
3776 goto error_free_vers;
3777
3778 /* Make a special call to the linker "notice" function to
3779 tell it that we are about to handle an as-needed lib. */
3780 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
3781 goto error_free_vers;
3782
3783 /* Clone the symbol table. Remember some pointers into the
3784 symbol table, and dynamic symbol count. */
3785 old_ent = (char *) old_tab + tabsize;
3786 memcpy (old_tab, htab->root.table.table, tabsize);
3787 old_undefs = htab->root.undefs;
3788 old_undefs_tail = htab->root.undefs_tail;
3789 old_table = htab->root.table.table;
3790 old_size = htab->root.table.size;
3791 old_count = htab->root.table.count;
3792 old_dynsymcount = htab->dynsymcount;
3793 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3794
3795 for (i = 0; i < htab->root.table.size; i++)
3796 {
3797 struct bfd_hash_entry *p;
3798 struct elf_link_hash_entry *h;
3799
3800 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3801 {
3802 memcpy (old_ent, p, htab->root.table.entsize);
3803 old_ent = (char *) old_ent + htab->root.table.entsize;
3804 h = (struct elf_link_hash_entry *) p;
3805 if (h->root.type == bfd_link_hash_warning)
3806 {
3807 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3808 old_ent = (char *) old_ent + htab->root.table.entsize;
3809 }
3810 }
3811 }
3812 }
3813
3814 weaks = NULL;
3815 ever = extversym != NULL ? extversym + extsymoff : NULL;
3816 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3817 isym < isymend;
3818 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3819 {
3820 int bind;
3821 bfd_vma value;
3822 asection *sec, *new_sec;
3823 flagword flags;
3824 const char *name;
3825 struct elf_link_hash_entry *h;
3826 struct elf_link_hash_entry *hi;
3827 bfd_boolean definition;
3828 bfd_boolean size_change_ok;
3829 bfd_boolean type_change_ok;
3830 bfd_boolean new_weakdef;
3831 bfd_boolean new_weak;
3832 bfd_boolean old_weak;
3833 bfd_boolean override;
3834 bfd_boolean common;
3835 unsigned int old_alignment;
3836 bfd *old_bfd;
3837
3838 override = FALSE;
3839
3840 flags = BSF_NO_FLAGS;
3841 sec = NULL;
3842 value = isym->st_value;
3843 common = bed->common_definition (isym);
3844
3845 bind = ELF_ST_BIND (isym->st_info);
3846 switch (bind)
3847 {
3848 case STB_LOCAL:
3849 /* This should be impossible, since ELF requires that all
3850 global symbols follow all local symbols, and that sh_info
3851 point to the first global symbol. Unfortunately, Irix 5
3852 screws this up. */
3853 continue;
3854
3855 case STB_GLOBAL:
3856 if (isym->st_shndx != SHN_UNDEF && !common)
3857 flags = BSF_GLOBAL;
3858 break;
3859
3860 case STB_WEAK:
3861 flags = BSF_WEAK;
3862 break;
3863
3864 case STB_GNU_UNIQUE:
3865 flags = BSF_GNU_UNIQUE;
3866 break;
3867
3868 default:
3869 /* Leave it up to the processor backend. */
3870 break;
3871 }
3872
3873 if (isym->st_shndx == SHN_UNDEF)
3874 sec = bfd_und_section_ptr;
3875 else if (isym->st_shndx == SHN_ABS)
3876 sec = bfd_abs_section_ptr;
3877 else if (isym->st_shndx == SHN_COMMON)
3878 {
3879 sec = bfd_com_section_ptr;
3880 /* What ELF calls the size we call the value. What ELF
3881 calls the value we call the alignment. */
3882 value = isym->st_size;
3883 }
3884 else
3885 {
3886 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3887 if (sec == NULL)
3888 sec = bfd_abs_section_ptr;
3889 else if (discarded_section (sec))
3890 {
3891 /* Symbols from discarded section are undefined. We keep
3892 its visibility. */
3893 sec = bfd_und_section_ptr;
3894 isym->st_shndx = SHN_UNDEF;
3895 }
3896 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3897 value -= sec->vma;
3898 }
3899
3900 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3901 isym->st_name);
3902 if (name == NULL)
3903 goto error_free_vers;
3904
3905 if (isym->st_shndx == SHN_COMMON
3906 && (abfd->flags & BFD_PLUGIN) != 0)
3907 {
3908 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3909
3910 if (xc == NULL)
3911 {
3912 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3913 | SEC_EXCLUDE);
3914 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3915 if (xc == NULL)
3916 goto error_free_vers;
3917 }
3918 sec = xc;
3919 }
3920 else if (isym->st_shndx == SHN_COMMON
3921 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3922 && !info->relocatable)
3923 {
3924 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3925
3926 if (tcomm == NULL)
3927 {
3928 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3929 | SEC_LINKER_CREATED);
3930 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3931 if (tcomm == NULL)
3932 goto error_free_vers;
3933 }
3934 sec = tcomm;
3935 }
3936 else if (bed->elf_add_symbol_hook)
3937 {
3938 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3939 &sec, &value))
3940 goto error_free_vers;
3941
3942 /* The hook function sets the name to NULL if this symbol
3943 should be skipped for some reason. */
3944 if (name == NULL)
3945 continue;
3946 }
3947
3948 /* Sanity check that all possibilities were handled. */
3949 if (sec == NULL)
3950 {
3951 bfd_set_error (bfd_error_bad_value);
3952 goto error_free_vers;
3953 }
3954
3955 /* Silently discard TLS symbols from --just-syms. There's
3956 no way to combine a static TLS block with a new TLS block
3957 for this executable. */
3958 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
3959 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3960 continue;
3961
3962 if (bfd_is_und_section (sec)
3963 || bfd_is_com_section (sec))
3964 definition = FALSE;
3965 else
3966 definition = TRUE;
3967
3968 size_change_ok = FALSE;
3969 type_change_ok = bed->type_change_ok;
3970 old_weak = FALSE;
3971 old_alignment = 0;
3972 old_bfd = NULL;
3973 new_sec = sec;
3974
3975 if (is_elf_hash_table (htab))
3976 {
3977 Elf_Internal_Versym iver;
3978 unsigned int vernum = 0;
3979 bfd_boolean skip;
3980
3981 if (ever == NULL)
3982 {
3983 if (info->default_imported_symver)
3984 /* Use the default symbol version created earlier. */
3985 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3986 else
3987 iver.vs_vers = 0;
3988 }
3989 else
3990 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3991
3992 vernum = iver.vs_vers & VERSYM_VERSION;
3993
3994 /* If this is a hidden symbol, or if it is not version
3995 1, we append the version name to the symbol name.
3996 However, we do not modify a non-hidden absolute symbol
3997 if it is not a function, because it might be the version
3998 symbol itself. FIXME: What if it isn't? */
3999 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4000 || (vernum > 1
4001 && (!bfd_is_abs_section (sec)
4002 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4003 {
4004 const char *verstr;
4005 size_t namelen, verlen, newlen;
4006 char *newname, *p;
4007
4008 if (isym->st_shndx != SHN_UNDEF)
4009 {
4010 if (vernum > elf_tdata (abfd)->cverdefs)
4011 verstr = NULL;
4012 else if (vernum > 1)
4013 verstr =
4014 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4015 else
4016 verstr = "";
4017
4018 if (verstr == NULL)
4019 {
4020 (*_bfd_error_handler)
4021 (_("%B: %s: invalid version %u (max %d)"),
4022 abfd, name, vernum,
4023 elf_tdata (abfd)->cverdefs);
4024 bfd_set_error (bfd_error_bad_value);
4025 goto error_free_vers;
4026 }
4027 }
4028 else
4029 {
4030 /* We cannot simply test for the number of
4031 entries in the VERNEED section since the
4032 numbers for the needed versions do not start
4033 at 0. */
4034 Elf_Internal_Verneed *t;
4035
4036 verstr = NULL;
4037 for (t = elf_tdata (abfd)->verref;
4038 t != NULL;
4039 t = t->vn_nextref)
4040 {
4041 Elf_Internal_Vernaux *a;
4042
4043 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4044 {
4045 if (a->vna_other == vernum)
4046 {
4047 verstr = a->vna_nodename;
4048 break;
4049 }
4050 }
4051 if (a != NULL)
4052 break;
4053 }
4054 if (verstr == NULL)
4055 {
4056 (*_bfd_error_handler)
4057 (_("%B: %s: invalid needed version %d"),
4058 abfd, name, vernum);
4059 bfd_set_error (bfd_error_bad_value);
4060 goto error_free_vers;
4061 }
4062 }
4063
4064 namelen = strlen (name);
4065 verlen = strlen (verstr);
4066 newlen = namelen + verlen + 2;
4067 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4068 && isym->st_shndx != SHN_UNDEF)
4069 ++newlen;
4070
4071 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4072 if (newname == NULL)
4073 goto error_free_vers;
4074 memcpy (newname, name, namelen);
4075 p = newname + namelen;
4076 *p++ = ELF_VER_CHR;
4077 /* If this is a defined non-hidden version symbol,
4078 we add another @ to the name. This indicates the
4079 default version of the symbol. */
4080 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4081 && isym->st_shndx != SHN_UNDEF)
4082 *p++ = ELF_VER_CHR;
4083 memcpy (p, verstr, verlen + 1);
4084
4085 name = newname;
4086 }
4087
4088 /* If this symbol has default visibility and the user has
4089 requested we not re-export it, then mark it as hidden. */
4090 if (definition
4091 && !dynamic
4092 && abfd->no_export
4093 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4094 isym->st_other = (STV_HIDDEN
4095 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4096
4097 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4098 sym_hash, &old_bfd, &old_weak,
4099 &old_alignment, &skip, &override,
4100 &type_change_ok, &size_change_ok))
4101 goto error_free_vers;
4102
4103 if (skip)
4104 continue;
4105
4106 if (override)
4107 definition = FALSE;
4108
4109 h = *sym_hash;
4110 while (h->root.type == bfd_link_hash_indirect
4111 || h->root.type == bfd_link_hash_warning)
4112 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4113
4114 if (elf_tdata (abfd)->verdef != NULL
4115 && vernum > 1
4116 && definition)
4117 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4118 }
4119
4120 if (! (_bfd_generic_link_add_one_symbol
4121 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4122 (struct bfd_link_hash_entry **) sym_hash)))
4123 goto error_free_vers;
4124
4125 h = *sym_hash;
4126 /* We need to make sure that indirect symbol dynamic flags are
4127 updated. */
4128 hi = h;
4129 while (h->root.type == bfd_link_hash_indirect
4130 || h->root.type == bfd_link_hash_warning)
4131 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4132
4133 *sym_hash = h;
4134
4135 new_weak = (flags & BSF_WEAK) != 0;
4136 new_weakdef = FALSE;
4137 if (dynamic
4138 && definition
4139 && new_weak
4140 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4141 && is_elf_hash_table (htab)
4142 && h->u.weakdef == NULL)
4143 {
4144 /* Keep a list of all weak defined non function symbols from
4145 a dynamic object, using the weakdef field. Later in this
4146 function we will set the weakdef field to the correct
4147 value. We only put non-function symbols from dynamic
4148 objects on this list, because that happens to be the only
4149 time we need to know the normal symbol corresponding to a
4150 weak symbol, and the information is time consuming to
4151 figure out. If the weakdef field is not already NULL,
4152 then this symbol was already defined by some previous
4153 dynamic object, and we will be using that previous
4154 definition anyhow. */
4155
4156 h->u.weakdef = weaks;
4157 weaks = h;
4158 new_weakdef = TRUE;
4159 }
4160
4161 /* Set the alignment of a common symbol. */
4162 if ((common || bfd_is_com_section (sec))
4163 && h->root.type == bfd_link_hash_common)
4164 {
4165 unsigned int align;
4166
4167 if (common)
4168 align = bfd_log2 (isym->st_value);
4169 else
4170 {
4171 /* The new symbol is a common symbol in a shared object.
4172 We need to get the alignment from the section. */
4173 align = new_sec->alignment_power;
4174 }
4175 if (align > old_alignment)
4176 h->root.u.c.p->alignment_power = align;
4177 else
4178 h->root.u.c.p->alignment_power = old_alignment;
4179 }
4180
4181 if (is_elf_hash_table (htab))
4182 {
4183 /* Set a flag in the hash table entry indicating the type of
4184 reference or definition we just found. A dynamic symbol
4185 is one which is referenced or defined by both a regular
4186 object and a shared object. */
4187 bfd_boolean dynsym = FALSE;
4188
4189 /* Plugin symbols aren't normal. Don't set def_regular or
4190 ref_regular for them, or make them dynamic. */
4191 if ((abfd->flags & BFD_PLUGIN) != 0)
4192 ;
4193 else if (! dynamic)
4194 {
4195 if (! definition)
4196 {
4197 h->ref_regular = 1;
4198 if (bind != STB_WEAK)
4199 h->ref_regular_nonweak = 1;
4200 }
4201 else
4202 {
4203 h->def_regular = 1;
4204 if (h->def_dynamic)
4205 {
4206 h->def_dynamic = 0;
4207 h->ref_dynamic = 1;
4208 }
4209 }
4210
4211 /* If the indirect symbol has been forced local, don't
4212 make the real symbol dynamic. */
4213 if ((h == hi || !hi->forced_local)
4214 && (! info->executable
4215 || h->def_dynamic
4216 || h->ref_dynamic))
4217 dynsym = TRUE;
4218 }
4219 else
4220 {
4221 if (! definition)
4222 {
4223 h->ref_dynamic = 1;
4224 hi->ref_dynamic = 1;
4225 }
4226 else
4227 {
4228 h->def_dynamic = 1;
4229 hi->def_dynamic = 1;
4230 }
4231
4232 /* If the indirect symbol has been forced local, don't
4233 make the real symbol dynamic. */
4234 if ((h == hi || !hi->forced_local)
4235 && (h->def_regular
4236 || h->ref_regular
4237 || (h->u.weakdef != NULL
4238 && ! new_weakdef
4239 && h->u.weakdef->dynindx != -1)))
4240 dynsym = TRUE;
4241 }
4242
4243 /* Check to see if we need to add an indirect symbol for
4244 the default name. */
4245 if (definition
4246 || (!override && h->root.type == bfd_link_hash_common))
4247 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4248 sec, value, &old_bfd, &dynsym))
4249 goto error_free_vers;
4250
4251 /* Check the alignment when a common symbol is involved. This
4252 can change when a common symbol is overridden by a normal
4253 definition or a common symbol is ignored due to the old
4254 normal definition. We need to make sure the maximum
4255 alignment is maintained. */
4256 if ((old_alignment || common)
4257 && h->root.type != bfd_link_hash_common)
4258 {
4259 unsigned int common_align;
4260 unsigned int normal_align;
4261 unsigned int symbol_align;
4262 bfd *normal_bfd;
4263 bfd *common_bfd;
4264
4265 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4266 || h->root.type == bfd_link_hash_defweak);
4267
4268 symbol_align = ffs (h->root.u.def.value) - 1;
4269 if (h->root.u.def.section->owner != NULL
4270 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4271 {
4272 normal_align = h->root.u.def.section->alignment_power;
4273 if (normal_align > symbol_align)
4274 normal_align = symbol_align;
4275 }
4276 else
4277 normal_align = symbol_align;
4278
4279 if (old_alignment)
4280 {
4281 common_align = old_alignment;
4282 common_bfd = old_bfd;
4283 normal_bfd = abfd;
4284 }
4285 else
4286 {
4287 common_align = bfd_log2 (isym->st_value);
4288 common_bfd = abfd;
4289 normal_bfd = old_bfd;
4290 }
4291
4292 if (normal_align < common_align)
4293 {
4294 /* PR binutils/2735 */
4295 if (normal_bfd == NULL)
4296 (*_bfd_error_handler)
4297 (_("Warning: alignment %u of common symbol `%s' in %B is"
4298 " greater than the alignment (%u) of its section %A"),
4299 common_bfd, h->root.u.def.section,
4300 1 << common_align, name, 1 << normal_align);
4301 else
4302 (*_bfd_error_handler)
4303 (_("Warning: alignment %u of symbol `%s' in %B"
4304 " is smaller than %u in %B"),
4305 normal_bfd, common_bfd,
4306 1 << normal_align, name, 1 << common_align);
4307 }
4308 }
4309
4310 /* Remember the symbol size if it isn't undefined. */
4311 if (isym->st_size != 0
4312 && isym->st_shndx != SHN_UNDEF
4313 && (definition || h->size == 0))
4314 {
4315 if (h->size != 0
4316 && h->size != isym->st_size
4317 && ! size_change_ok)
4318 (*_bfd_error_handler)
4319 (_("Warning: size of symbol `%s' changed"
4320 " from %lu in %B to %lu in %B"),
4321 old_bfd, abfd,
4322 name, (unsigned long) h->size,
4323 (unsigned long) isym->st_size);
4324
4325 h->size = isym->st_size;
4326 }
4327
4328 /* If this is a common symbol, then we always want H->SIZE
4329 to be the size of the common symbol. The code just above
4330 won't fix the size if a common symbol becomes larger. We
4331 don't warn about a size change here, because that is
4332 covered by --warn-common. Allow changes between different
4333 function types. */
4334 if (h->root.type == bfd_link_hash_common)
4335 h->size = h->root.u.c.size;
4336
4337 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4338 && ((definition && !new_weak)
4339 || (old_weak && h->root.type == bfd_link_hash_common)
4340 || h->type == STT_NOTYPE))
4341 {
4342 unsigned int type = ELF_ST_TYPE (isym->st_info);
4343
4344 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4345 symbol. */
4346 if (type == STT_GNU_IFUNC
4347 && (abfd->flags & DYNAMIC) != 0)
4348 type = STT_FUNC;
4349
4350 if (h->type != type)
4351 {
4352 if (h->type != STT_NOTYPE && ! type_change_ok)
4353 (*_bfd_error_handler)
4354 (_("Warning: type of symbol `%s' changed"
4355 " from %d to %d in %B"),
4356 abfd, name, h->type, type);
4357
4358 h->type = type;
4359 }
4360 }
4361
4362 /* Merge st_other field. */
4363 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4364
4365 /* We don't want to make debug symbol dynamic. */
4366 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4367 dynsym = FALSE;
4368
4369 /* Nor should we make plugin symbols dynamic. */
4370 if ((abfd->flags & BFD_PLUGIN) != 0)
4371 dynsym = FALSE;
4372
4373 if (definition)
4374 {
4375 h->target_internal = isym->st_target_internal;
4376 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4377 }
4378
4379 if (definition && !dynamic)
4380 {
4381 char *p = strchr (name, ELF_VER_CHR);
4382 if (p != NULL && p[1] != ELF_VER_CHR)
4383 {
4384 /* Queue non-default versions so that .symver x, x@FOO
4385 aliases can be checked. */
4386 if (!nondeflt_vers)
4387 {
4388 amt = ((isymend - isym + 1)
4389 * sizeof (struct elf_link_hash_entry *));
4390 nondeflt_vers
4391 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4392 if (!nondeflt_vers)
4393 goto error_free_vers;
4394 }
4395 nondeflt_vers[nondeflt_vers_cnt++] = h;
4396 }
4397 }
4398
4399 if (dynsym && h->dynindx == -1)
4400 {
4401 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4402 goto error_free_vers;
4403 if (h->u.weakdef != NULL
4404 && ! new_weakdef
4405 && h->u.weakdef->dynindx == -1)
4406 {
4407 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4408 goto error_free_vers;
4409 }
4410 }
4411 else if (dynsym && h->dynindx != -1)
4412 /* If the symbol already has a dynamic index, but
4413 visibility says it should not be visible, turn it into
4414 a local symbol. */
4415 switch (ELF_ST_VISIBILITY (h->other))
4416 {
4417 case STV_INTERNAL:
4418 case STV_HIDDEN:
4419 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4420 dynsym = FALSE;
4421 break;
4422 }
4423
4424 /* Don't add DT_NEEDED for references from the dummy bfd. */
4425 if (!add_needed
4426 && definition
4427 && ((dynsym
4428 && h->ref_regular_nonweak
4429 && (old_bfd == NULL
4430 || (old_bfd->flags & BFD_PLUGIN) == 0))
4431 || (h->ref_dynamic_nonweak
4432 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4433 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4434 {
4435 int ret;
4436 const char *soname = elf_dt_name (abfd);
4437
4438 info->callbacks->minfo ("%!", soname, old_bfd,
4439 h->root.root.string);
4440
4441 /* A symbol from a library loaded via DT_NEEDED of some
4442 other library is referenced by a regular object.
4443 Add a DT_NEEDED entry for it. Issue an error if
4444 --no-add-needed is used and the reference was not
4445 a weak one. */
4446 if (old_bfd != NULL
4447 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4448 {
4449 (*_bfd_error_handler)
4450 (_("%B: undefined reference to symbol '%s'"),
4451 old_bfd, name);
4452 bfd_set_error (bfd_error_missing_dso);
4453 goto error_free_vers;
4454 }
4455
4456 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4457 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4458
4459 add_needed = TRUE;
4460 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4461 if (ret < 0)
4462 goto error_free_vers;
4463
4464 BFD_ASSERT (ret == 0);
4465 }
4466 }
4467 }
4468
4469 if (extversym != NULL)
4470 {
4471 free (extversym);
4472 extversym = NULL;
4473 }
4474
4475 if (isymbuf != NULL)
4476 {
4477 free (isymbuf);
4478 isymbuf = NULL;
4479 }
4480
4481 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4482 {
4483 unsigned int i;
4484
4485 /* Restore the symbol table. */
4486 old_ent = (char *) old_tab + tabsize;
4487 memset (elf_sym_hashes (abfd), 0,
4488 extsymcount * sizeof (struct elf_link_hash_entry *));
4489 htab->root.table.table = old_table;
4490 htab->root.table.size = old_size;
4491 htab->root.table.count = old_count;
4492 memcpy (htab->root.table.table, old_tab, tabsize);
4493 htab->root.undefs = old_undefs;
4494 htab->root.undefs_tail = old_undefs_tail;
4495 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4496 for (i = 0; i < htab->root.table.size; i++)
4497 {
4498 struct bfd_hash_entry *p;
4499 struct elf_link_hash_entry *h;
4500 bfd_size_type size;
4501 unsigned int alignment_power;
4502
4503 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4504 {
4505 h = (struct elf_link_hash_entry *) p;
4506 if (h->root.type == bfd_link_hash_warning)
4507 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4508 if (h->dynindx >= old_dynsymcount
4509 && h->dynstr_index < old_dynstr_size)
4510 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4511
4512 /* Preserve the maximum alignment and size for common
4513 symbols even if this dynamic lib isn't on DT_NEEDED
4514 since it can still be loaded at run time by another
4515 dynamic lib. */
4516 if (h->root.type == bfd_link_hash_common)
4517 {
4518 size = h->root.u.c.size;
4519 alignment_power = h->root.u.c.p->alignment_power;
4520 }
4521 else
4522 {
4523 size = 0;
4524 alignment_power = 0;
4525 }
4526 memcpy (p, old_ent, htab->root.table.entsize);
4527 old_ent = (char *) old_ent + htab->root.table.entsize;
4528 h = (struct elf_link_hash_entry *) p;
4529 if (h->root.type == bfd_link_hash_warning)
4530 {
4531 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4532 old_ent = (char *) old_ent + htab->root.table.entsize;
4533 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4534 }
4535 if (h->root.type == bfd_link_hash_common)
4536 {
4537 if (size > h->root.u.c.size)
4538 h->root.u.c.size = size;
4539 if (alignment_power > h->root.u.c.p->alignment_power)
4540 h->root.u.c.p->alignment_power = alignment_power;
4541 }
4542 }
4543 }
4544
4545 /* Make a special call to the linker "notice" function to
4546 tell it that symbols added for crefs may need to be removed. */
4547 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4548 goto error_free_vers;
4549
4550 free (old_tab);
4551 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4552 alloc_mark);
4553 if (nondeflt_vers != NULL)
4554 free (nondeflt_vers);
4555 return TRUE;
4556 }
4557
4558 if (old_tab != NULL)
4559 {
4560 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4561 goto error_free_vers;
4562 free (old_tab);
4563 old_tab = NULL;
4564 }
4565
4566 /* Now that all the symbols from this input file are created, handle
4567 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4568 if (nondeflt_vers != NULL)
4569 {
4570 bfd_size_type cnt, symidx;
4571
4572 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4573 {
4574 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4575 char *shortname, *p;
4576
4577 p = strchr (h->root.root.string, ELF_VER_CHR);
4578 if (p == NULL
4579 || (h->root.type != bfd_link_hash_defined
4580 && h->root.type != bfd_link_hash_defweak))
4581 continue;
4582
4583 amt = p - h->root.root.string;
4584 shortname = (char *) bfd_malloc (amt + 1);
4585 if (!shortname)
4586 goto error_free_vers;
4587 memcpy (shortname, h->root.root.string, amt);
4588 shortname[amt] = '\0';
4589
4590 hi = (struct elf_link_hash_entry *)
4591 bfd_link_hash_lookup (&htab->root, shortname,
4592 FALSE, FALSE, FALSE);
4593 if (hi != NULL
4594 && hi->root.type == h->root.type
4595 && hi->root.u.def.value == h->root.u.def.value
4596 && hi->root.u.def.section == h->root.u.def.section)
4597 {
4598 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4599 hi->root.type = bfd_link_hash_indirect;
4600 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4601 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4602 sym_hash = elf_sym_hashes (abfd);
4603 if (sym_hash)
4604 for (symidx = 0; symidx < extsymcount; ++symidx)
4605 if (sym_hash[symidx] == hi)
4606 {
4607 sym_hash[symidx] = h;
4608 break;
4609 }
4610 }
4611 free (shortname);
4612 }
4613 free (nondeflt_vers);
4614 nondeflt_vers = NULL;
4615 }
4616
4617 /* Now set the weakdefs field correctly for all the weak defined
4618 symbols we found. The only way to do this is to search all the
4619 symbols. Since we only need the information for non functions in
4620 dynamic objects, that's the only time we actually put anything on
4621 the list WEAKS. We need this information so that if a regular
4622 object refers to a symbol defined weakly in a dynamic object, the
4623 real symbol in the dynamic object is also put in the dynamic
4624 symbols; we also must arrange for both symbols to point to the
4625 same memory location. We could handle the general case of symbol
4626 aliasing, but a general symbol alias can only be generated in
4627 assembler code, handling it correctly would be very time
4628 consuming, and other ELF linkers don't handle general aliasing
4629 either. */
4630 if (weaks != NULL)
4631 {
4632 struct elf_link_hash_entry **hpp;
4633 struct elf_link_hash_entry **hppend;
4634 struct elf_link_hash_entry **sorted_sym_hash;
4635 struct elf_link_hash_entry *h;
4636 size_t sym_count;
4637
4638 /* Since we have to search the whole symbol list for each weak
4639 defined symbol, search time for N weak defined symbols will be
4640 O(N^2). Binary search will cut it down to O(NlogN). */
4641 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4642 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4643 if (sorted_sym_hash == NULL)
4644 goto error_return;
4645 sym_hash = sorted_sym_hash;
4646 hpp = elf_sym_hashes (abfd);
4647 hppend = hpp + extsymcount;
4648 sym_count = 0;
4649 for (; hpp < hppend; hpp++)
4650 {
4651 h = *hpp;
4652 if (h != NULL
4653 && h->root.type == bfd_link_hash_defined
4654 && !bed->is_function_type (h->type))
4655 {
4656 *sym_hash = h;
4657 sym_hash++;
4658 sym_count++;
4659 }
4660 }
4661
4662 qsort (sorted_sym_hash, sym_count,
4663 sizeof (struct elf_link_hash_entry *),
4664 elf_sort_symbol);
4665
4666 while (weaks != NULL)
4667 {
4668 struct elf_link_hash_entry *hlook;
4669 asection *slook;
4670 bfd_vma vlook;
4671 size_t i, j, idx = 0;
4672
4673 hlook = weaks;
4674 weaks = hlook->u.weakdef;
4675 hlook->u.weakdef = NULL;
4676
4677 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4678 || hlook->root.type == bfd_link_hash_defweak
4679 || hlook->root.type == bfd_link_hash_common
4680 || hlook->root.type == bfd_link_hash_indirect);
4681 slook = hlook->root.u.def.section;
4682 vlook = hlook->root.u.def.value;
4683
4684 i = 0;
4685 j = sym_count;
4686 while (i != j)
4687 {
4688 bfd_signed_vma vdiff;
4689 idx = (i + j) / 2;
4690 h = sorted_sym_hash[idx];
4691 vdiff = vlook - h->root.u.def.value;
4692 if (vdiff < 0)
4693 j = idx;
4694 else if (vdiff > 0)
4695 i = idx + 1;
4696 else
4697 {
4698 long sdiff = slook->id - h->root.u.def.section->id;
4699 if (sdiff < 0)
4700 j = idx;
4701 else if (sdiff > 0)
4702 i = idx + 1;
4703 else
4704 break;
4705 }
4706 }
4707
4708 /* We didn't find a value/section match. */
4709 if (i == j)
4710 continue;
4711
4712 /* With multiple aliases, or when the weak symbol is already
4713 strongly defined, we have multiple matching symbols and
4714 the binary search above may land on any of them. Step
4715 one past the matching symbol(s). */
4716 while (++idx != j)
4717 {
4718 h = sorted_sym_hash[idx];
4719 if (h->root.u.def.section != slook
4720 || h->root.u.def.value != vlook)
4721 break;
4722 }
4723
4724 /* Now look back over the aliases. Since we sorted by size
4725 as well as value and section, we'll choose the one with
4726 the largest size. */
4727 while (idx-- != i)
4728 {
4729 h = sorted_sym_hash[idx];
4730
4731 /* Stop if value or section doesn't match. */
4732 if (h->root.u.def.section != slook
4733 || h->root.u.def.value != vlook)
4734 break;
4735 else if (h != hlook)
4736 {
4737 hlook->u.weakdef = h;
4738
4739 /* If the weak definition is in the list of dynamic
4740 symbols, make sure the real definition is put
4741 there as well. */
4742 if (hlook->dynindx != -1 && h->dynindx == -1)
4743 {
4744 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4745 {
4746 err_free_sym_hash:
4747 free (sorted_sym_hash);
4748 goto error_return;
4749 }
4750 }
4751
4752 /* If the real definition is in the list of dynamic
4753 symbols, make sure the weak definition is put
4754 there as well. If we don't do this, then the
4755 dynamic loader might not merge the entries for the
4756 real definition and the weak definition. */
4757 if (h->dynindx != -1 && hlook->dynindx == -1)
4758 {
4759 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4760 goto err_free_sym_hash;
4761 }
4762 break;
4763 }
4764 }
4765 }
4766
4767 free (sorted_sym_hash);
4768 }
4769
4770 if (bed->check_directives
4771 && !(*bed->check_directives) (abfd, info))
4772 return FALSE;
4773
4774 /* If this object is the same format as the output object, and it is
4775 not a shared library, then let the backend look through the
4776 relocs.
4777
4778 This is required to build global offset table entries and to
4779 arrange for dynamic relocs. It is not required for the
4780 particular common case of linking non PIC code, even when linking
4781 against shared libraries, but unfortunately there is no way of
4782 knowing whether an object file has been compiled PIC or not.
4783 Looking through the relocs is not particularly time consuming.
4784 The problem is that we must either (1) keep the relocs in memory,
4785 which causes the linker to require additional runtime memory or
4786 (2) read the relocs twice from the input file, which wastes time.
4787 This would be a good case for using mmap.
4788
4789 I have no idea how to handle linking PIC code into a file of a
4790 different format. It probably can't be done. */
4791 if (! dynamic
4792 && is_elf_hash_table (htab)
4793 && bed->check_relocs != NULL
4794 && elf_object_id (abfd) == elf_hash_table_id (htab)
4795 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4796 {
4797 asection *o;
4798
4799 for (o = abfd->sections; o != NULL; o = o->next)
4800 {
4801 Elf_Internal_Rela *internal_relocs;
4802 bfd_boolean ok;
4803
4804 if ((o->flags & SEC_RELOC) == 0
4805 || o->reloc_count == 0
4806 || ((info->strip == strip_all || info->strip == strip_debugger)
4807 && (o->flags & SEC_DEBUGGING) != 0)
4808 || bfd_is_abs_section (o->output_section))
4809 continue;
4810
4811 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4812 info->keep_memory);
4813 if (internal_relocs == NULL)
4814 goto error_return;
4815
4816 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4817
4818 if (elf_section_data (o)->relocs != internal_relocs)
4819 free (internal_relocs);
4820
4821 if (! ok)
4822 goto error_return;
4823 }
4824 }
4825
4826 /* If this is a non-traditional link, try to optimize the handling
4827 of the .stab/.stabstr sections. */
4828 if (! dynamic
4829 && ! info->traditional_format
4830 && is_elf_hash_table (htab)
4831 && (info->strip != strip_all && info->strip != strip_debugger))
4832 {
4833 asection *stabstr;
4834
4835 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4836 if (stabstr != NULL)
4837 {
4838 bfd_size_type string_offset = 0;
4839 asection *stab;
4840
4841 for (stab = abfd->sections; stab; stab = stab->next)
4842 if (CONST_STRNEQ (stab->name, ".stab")
4843 && (!stab->name[5] ||
4844 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4845 && (stab->flags & SEC_MERGE) == 0
4846 && !bfd_is_abs_section (stab->output_section))
4847 {
4848 struct bfd_elf_section_data *secdata;
4849
4850 secdata = elf_section_data (stab);
4851 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4852 stabstr, &secdata->sec_info,
4853 &string_offset))
4854 goto error_return;
4855 if (secdata->sec_info)
4856 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4857 }
4858 }
4859 }
4860
4861 if (is_elf_hash_table (htab) && add_needed)
4862 {
4863 /* Add this bfd to the loaded list. */
4864 struct elf_link_loaded_list *n;
4865
4866 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
4867 if (n == NULL)
4868 goto error_return;
4869 n->abfd = abfd;
4870 n->next = htab->loaded;
4871 htab->loaded = n;
4872 }
4873
4874 return TRUE;
4875
4876 error_free_vers:
4877 if (old_tab != NULL)
4878 free (old_tab);
4879 if (nondeflt_vers != NULL)
4880 free (nondeflt_vers);
4881 if (extversym != NULL)
4882 free (extversym);
4883 error_free_sym:
4884 if (isymbuf != NULL)
4885 free (isymbuf);
4886 error_return:
4887 return FALSE;
4888 }
4889
4890 /* Return the linker hash table entry of a symbol that might be
4891 satisfied by an archive symbol. Return -1 on error. */
4892
4893 struct elf_link_hash_entry *
4894 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4895 struct bfd_link_info *info,
4896 const char *name)
4897 {
4898 struct elf_link_hash_entry *h;
4899 char *p, *copy;
4900 size_t len, first;
4901
4902 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4903 if (h != NULL)
4904 return h;
4905
4906 /* If this is a default version (the name contains @@), look up the
4907 symbol again with only one `@' as well as without the version.
4908 The effect is that references to the symbol with and without the
4909 version will be matched by the default symbol in the archive. */
4910
4911 p = strchr (name, ELF_VER_CHR);
4912 if (p == NULL || p[1] != ELF_VER_CHR)
4913 return h;
4914
4915 /* First check with only one `@'. */
4916 len = strlen (name);
4917 copy = (char *) bfd_alloc (abfd, len);
4918 if (copy == NULL)
4919 return (struct elf_link_hash_entry *) 0 - 1;
4920
4921 first = p - name + 1;
4922 memcpy (copy, name, first);
4923 memcpy (copy + first, name + first + 1, len - first);
4924
4925 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4926 if (h == NULL)
4927 {
4928 /* We also need to check references to the symbol without the
4929 version. */
4930 copy[first - 1] = '\0';
4931 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4932 FALSE, FALSE, TRUE);
4933 }
4934
4935 bfd_release (abfd, copy);
4936 return h;
4937 }
4938
4939 /* Add symbols from an ELF archive file to the linker hash table. We
4940 don't use _bfd_generic_link_add_archive_symbols because we need to
4941 handle versioned symbols.
4942
4943 Fortunately, ELF archive handling is simpler than that done by
4944 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4945 oddities. In ELF, if we find a symbol in the archive map, and the
4946 symbol is currently undefined, we know that we must pull in that
4947 object file.
4948
4949 Unfortunately, we do have to make multiple passes over the symbol
4950 table until nothing further is resolved. */
4951
4952 static bfd_boolean
4953 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4954 {
4955 symindex c;
4956 unsigned char *included = NULL;
4957 carsym *symdefs;
4958 bfd_boolean loop;
4959 bfd_size_type amt;
4960 const struct elf_backend_data *bed;
4961 struct elf_link_hash_entry * (*archive_symbol_lookup)
4962 (bfd *, struct bfd_link_info *, const char *);
4963
4964 if (! bfd_has_map (abfd))
4965 {
4966 /* An empty archive is a special case. */
4967 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4968 return TRUE;
4969 bfd_set_error (bfd_error_no_armap);
4970 return FALSE;
4971 }
4972
4973 /* Keep track of all symbols we know to be already defined, and all
4974 files we know to be already included. This is to speed up the
4975 second and subsequent passes. */
4976 c = bfd_ardata (abfd)->symdef_count;
4977 if (c == 0)
4978 return TRUE;
4979 amt = c;
4980 amt *= sizeof (*included);
4981 included = (unsigned char *) bfd_zmalloc (amt);
4982 if (included == NULL)
4983 return FALSE;
4984
4985 symdefs = bfd_ardata (abfd)->symdefs;
4986 bed = get_elf_backend_data (abfd);
4987 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4988
4989 do
4990 {
4991 file_ptr last;
4992 symindex i;
4993 carsym *symdef;
4994 carsym *symdefend;
4995
4996 loop = FALSE;
4997 last = -1;
4998
4999 symdef = symdefs;
5000 symdefend = symdef + c;
5001 for (i = 0; symdef < symdefend; symdef++, i++)
5002 {
5003 struct elf_link_hash_entry *h;
5004 bfd *element;
5005 struct bfd_link_hash_entry *undefs_tail;
5006 symindex mark;
5007
5008 if (included[i])
5009 continue;
5010 if (symdef->file_offset == last)
5011 {
5012 included[i] = TRUE;
5013 continue;
5014 }
5015
5016 h = archive_symbol_lookup (abfd, info, symdef->name);
5017 if (h == (struct elf_link_hash_entry *) 0 - 1)
5018 goto error_return;
5019
5020 if (h == NULL)
5021 continue;
5022
5023 if (h->root.type == bfd_link_hash_common)
5024 {
5025 /* We currently have a common symbol. The archive map contains
5026 a reference to this symbol, so we may want to include it. We
5027 only want to include it however, if this archive element
5028 contains a definition of the symbol, not just another common
5029 declaration of it.
5030
5031 Unfortunately some archivers (including GNU ar) will put
5032 declarations of common symbols into their archive maps, as
5033 well as real definitions, so we cannot just go by the archive
5034 map alone. Instead we must read in the element's symbol
5035 table and check that to see what kind of symbol definition
5036 this is. */
5037 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5038 continue;
5039 }
5040 else if (h->root.type != bfd_link_hash_undefined)
5041 {
5042 if (h->root.type != bfd_link_hash_undefweak)
5043 /* Symbol must be defined. Don't check it again. */
5044 included[i] = TRUE;
5045 continue;
5046 }
5047
5048 /* We need to include this archive member. */
5049 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5050 if (element == NULL)
5051 goto error_return;
5052
5053 if (! bfd_check_format (element, bfd_object))
5054 goto error_return;
5055
5056 undefs_tail = info->hash->undefs_tail;
5057
5058 if (!(*info->callbacks
5059 ->add_archive_element) (info, element, symdef->name, &element))
5060 goto error_return;
5061 if (!bfd_link_add_symbols (element, info))
5062 goto error_return;
5063
5064 /* If there are any new undefined symbols, we need to make
5065 another pass through the archive in order to see whether
5066 they can be defined. FIXME: This isn't perfect, because
5067 common symbols wind up on undefs_tail and because an
5068 undefined symbol which is defined later on in this pass
5069 does not require another pass. This isn't a bug, but it
5070 does make the code less efficient than it could be. */
5071 if (undefs_tail != info->hash->undefs_tail)
5072 loop = TRUE;
5073
5074 /* Look backward to mark all symbols from this object file
5075 which we have already seen in this pass. */
5076 mark = i;
5077 do
5078 {
5079 included[mark] = TRUE;
5080 if (mark == 0)
5081 break;
5082 --mark;
5083 }
5084 while (symdefs[mark].file_offset == symdef->file_offset);
5085
5086 /* We mark subsequent symbols from this object file as we go
5087 on through the loop. */
5088 last = symdef->file_offset;
5089 }
5090 }
5091 while (loop);
5092
5093 free (included);
5094
5095 return TRUE;
5096
5097 error_return:
5098 if (included != NULL)
5099 free (included);
5100 return FALSE;
5101 }
5102
5103 /* Given an ELF BFD, add symbols to the global hash table as
5104 appropriate. */
5105
5106 bfd_boolean
5107 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5108 {
5109 switch (bfd_get_format (abfd))
5110 {
5111 case bfd_object:
5112 return elf_link_add_object_symbols (abfd, info);
5113 case bfd_archive:
5114 return elf_link_add_archive_symbols (abfd, info);
5115 default:
5116 bfd_set_error (bfd_error_wrong_format);
5117 return FALSE;
5118 }
5119 }
5120 \f
5121 struct hash_codes_info
5122 {
5123 unsigned long *hashcodes;
5124 bfd_boolean error;
5125 };
5126
5127 /* This function will be called though elf_link_hash_traverse to store
5128 all hash value of the exported symbols in an array. */
5129
5130 static bfd_boolean
5131 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5132 {
5133 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5134 const char *name;
5135 char *p;
5136 unsigned long ha;
5137 char *alc = NULL;
5138
5139 /* Ignore indirect symbols. These are added by the versioning code. */
5140 if (h->dynindx == -1)
5141 return TRUE;
5142
5143 name = h->root.root.string;
5144 p = strchr (name, ELF_VER_CHR);
5145 if (p != NULL)
5146 {
5147 alc = (char *) bfd_malloc (p - name + 1);
5148 if (alc == NULL)
5149 {
5150 inf->error = TRUE;
5151 return FALSE;
5152 }
5153 memcpy (alc, name, p - name);
5154 alc[p - name] = '\0';
5155 name = alc;
5156 }
5157
5158 /* Compute the hash value. */
5159 ha = bfd_elf_hash (name);
5160
5161 /* Store the found hash value in the array given as the argument. */
5162 *(inf->hashcodes)++ = ha;
5163
5164 /* And store it in the struct so that we can put it in the hash table
5165 later. */
5166 h->u.elf_hash_value = ha;
5167
5168 if (alc != NULL)
5169 free (alc);
5170
5171 return TRUE;
5172 }
5173
5174 struct collect_gnu_hash_codes
5175 {
5176 bfd *output_bfd;
5177 const struct elf_backend_data *bed;
5178 unsigned long int nsyms;
5179 unsigned long int maskbits;
5180 unsigned long int *hashcodes;
5181 unsigned long int *hashval;
5182 unsigned long int *indx;
5183 unsigned long int *counts;
5184 bfd_vma *bitmask;
5185 bfd_byte *contents;
5186 long int min_dynindx;
5187 unsigned long int bucketcount;
5188 unsigned long int symindx;
5189 long int local_indx;
5190 long int shift1, shift2;
5191 unsigned long int mask;
5192 bfd_boolean error;
5193 };
5194
5195 /* This function will be called though elf_link_hash_traverse to store
5196 all hash value of the exported symbols in an array. */
5197
5198 static bfd_boolean
5199 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5200 {
5201 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5202 const char *name;
5203 char *p;
5204 unsigned long ha;
5205 char *alc = NULL;
5206
5207 /* Ignore indirect symbols. These are added by the versioning code. */
5208 if (h->dynindx == -1)
5209 return TRUE;
5210
5211 /* Ignore also local symbols and undefined symbols. */
5212 if (! (*s->bed->elf_hash_symbol) (h))
5213 return TRUE;
5214
5215 name = h->root.root.string;
5216 p = strchr (name, ELF_VER_CHR);
5217 if (p != NULL)
5218 {
5219 alc = (char *) bfd_malloc (p - name + 1);
5220 if (alc == NULL)
5221 {
5222 s->error = TRUE;
5223 return FALSE;
5224 }
5225 memcpy (alc, name, p - name);
5226 alc[p - name] = '\0';
5227 name = alc;
5228 }
5229
5230 /* Compute the hash value. */
5231 ha = bfd_elf_gnu_hash (name);
5232
5233 /* Store the found hash value in the array for compute_bucket_count,
5234 and also for .dynsym reordering purposes. */
5235 s->hashcodes[s->nsyms] = ha;
5236 s->hashval[h->dynindx] = ha;
5237 ++s->nsyms;
5238 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5239 s->min_dynindx = h->dynindx;
5240
5241 if (alc != NULL)
5242 free (alc);
5243
5244 return TRUE;
5245 }
5246
5247 /* This function will be called though elf_link_hash_traverse to do
5248 final dynaminc symbol renumbering. */
5249
5250 static bfd_boolean
5251 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5252 {
5253 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5254 unsigned long int bucket;
5255 unsigned long int val;
5256
5257 /* Ignore indirect symbols. */
5258 if (h->dynindx == -1)
5259 return TRUE;
5260
5261 /* Ignore also local symbols and undefined symbols. */
5262 if (! (*s->bed->elf_hash_symbol) (h))
5263 {
5264 if (h->dynindx >= s->min_dynindx)
5265 h->dynindx = s->local_indx++;
5266 return TRUE;
5267 }
5268
5269 bucket = s->hashval[h->dynindx] % s->bucketcount;
5270 val = (s->hashval[h->dynindx] >> s->shift1)
5271 & ((s->maskbits >> s->shift1) - 1);
5272 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5273 s->bitmask[val]
5274 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5275 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5276 if (s->counts[bucket] == 1)
5277 /* Last element terminates the chain. */
5278 val |= 1;
5279 bfd_put_32 (s->output_bfd, val,
5280 s->contents + (s->indx[bucket] - s->symindx) * 4);
5281 --s->counts[bucket];
5282 h->dynindx = s->indx[bucket]++;
5283 return TRUE;
5284 }
5285
5286 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5287
5288 bfd_boolean
5289 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5290 {
5291 return !(h->forced_local
5292 || h->root.type == bfd_link_hash_undefined
5293 || h->root.type == bfd_link_hash_undefweak
5294 || ((h->root.type == bfd_link_hash_defined
5295 || h->root.type == bfd_link_hash_defweak)
5296 && h->root.u.def.section->output_section == NULL));
5297 }
5298
5299 /* Array used to determine the number of hash table buckets to use
5300 based on the number of symbols there are. If there are fewer than
5301 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5302 fewer than 37 we use 17 buckets, and so forth. We never use more
5303 than 32771 buckets. */
5304
5305 static const size_t elf_buckets[] =
5306 {
5307 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5308 16411, 32771, 0
5309 };
5310
5311 /* Compute bucket count for hashing table. We do not use a static set
5312 of possible tables sizes anymore. Instead we determine for all
5313 possible reasonable sizes of the table the outcome (i.e., the
5314 number of collisions etc) and choose the best solution. The
5315 weighting functions are not too simple to allow the table to grow
5316 without bounds. Instead one of the weighting factors is the size.
5317 Therefore the result is always a good payoff between few collisions
5318 (= short chain lengths) and table size. */
5319 static size_t
5320 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5321 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5322 unsigned long int nsyms,
5323 int gnu_hash)
5324 {
5325 size_t best_size = 0;
5326 unsigned long int i;
5327
5328 /* We have a problem here. The following code to optimize the table
5329 size requires an integer type with more the 32 bits. If
5330 BFD_HOST_U_64_BIT is set we know about such a type. */
5331 #ifdef BFD_HOST_U_64_BIT
5332 if (info->optimize)
5333 {
5334 size_t minsize;
5335 size_t maxsize;
5336 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5337 bfd *dynobj = elf_hash_table (info)->dynobj;
5338 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5339 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5340 unsigned long int *counts;
5341 bfd_size_type amt;
5342 unsigned int no_improvement_count = 0;
5343
5344 /* Possible optimization parameters: if we have NSYMS symbols we say
5345 that the hashing table must at least have NSYMS/4 and at most
5346 2*NSYMS buckets. */
5347 minsize = nsyms / 4;
5348 if (minsize == 0)
5349 minsize = 1;
5350 best_size = maxsize = nsyms * 2;
5351 if (gnu_hash)
5352 {
5353 if (minsize < 2)
5354 minsize = 2;
5355 if ((best_size & 31) == 0)
5356 ++best_size;
5357 }
5358
5359 /* Create array where we count the collisions in. We must use bfd_malloc
5360 since the size could be large. */
5361 amt = maxsize;
5362 amt *= sizeof (unsigned long int);
5363 counts = (unsigned long int *) bfd_malloc (amt);
5364 if (counts == NULL)
5365 return 0;
5366
5367 /* Compute the "optimal" size for the hash table. The criteria is a
5368 minimal chain length. The minor criteria is (of course) the size
5369 of the table. */
5370 for (i = minsize; i < maxsize; ++i)
5371 {
5372 /* Walk through the array of hashcodes and count the collisions. */
5373 BFD_HOST_U_64_BIT max;
5374 unsigned long int j;
5375 unsigned long int fact;
5376
5377 if (gnu_hash && (i & 31) == 0)
5378 continue;
5379
5380 memset (counts, '\0', i * sizeof (unsigned long int));
5381
5382 /* Determine how often each hash bucket is used. */
5383 for (j = 0; j < nsyms; ++j)
5384 ++counts[hashcodes[j] % i];
5385
5386 /* For the weight function we need some information about the
5387 pagesize on the target. This is information need not be 100%
5388 accurate. Since this information is not available (so far) we
5389 define it here to a reasonable default value. If it is crucial
5390 to have a better value some day simply define this value. */
5391 # ifndef BFD_TARGET_PAGESIZE
5392 # define BFD_TARGET_PAGESIZE (4096)
5393 # endif
5394
5395 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5396 and the chains. */
5397 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5398
5399 # if 1
5400 /* Variant 1: optimize for short chains. We add the squares
5401 of all the chain lengths (which favors many small chain
5402 over a few long chains). */
5403 for (j = 0; j < i; ++j)
5404 max += counts[j] * counts[j];
5405
5406 /* This adds penalties for the overall size of the table. */
5407 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5408 max *= fact * fact;
5409 # else
5410 /* Variant 2: Optimize a lot more for small table. Here we
5411 also add squares of the size but we also add penalties for
5412 empty slots (the +1 term). */
5413 for (j = 0; j < i; ++j)
5414 max += (1 + counts[j]) * (1 + counts[j]);
5415
5416 /* The overall size of the table is considered, but not as
5417 strong as in variant 1, where it is squared. */
5418 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5419 max *= fact;
5420 # endif
5421
5422 /* Compare with current best results. */
5423 if (max < best_chlen)
5424 {
5425 best_chlen = max;
5426 best_size = i;
5427 no_improvement_count = 0;
5428 }
5429 /* PR 11843: Avoid futile long searches for the best bucket size
5430 when there are a large number of symbols. */
5431 else if (++no_improvement_count == 100)
5432 break;
5433 }
5434
5435 free (counts);
5436 }
5437 else
5438 #endif /* defined (BFD_HOST_U_64_BIT) */
5439 {
5440 /* This is the fallback solution if no 64bit type is available or if we
5441 are not supposed to spend much time on optimizations. We select the
5442 bucket count using a fixed set of numbers. */
5443 for (i = 0; elf_buckets[i] != 0; i++)
5444 {
5445 best_size = elf_buckets[i];
5446 if (nsyms < elf_buckets[i + 1])
5447 break;
5448 }
5449 if (gnu_hash && best_size < 2)
5450 best_size = 2;
5451 }
5452
5453 return best_size;
5454 }
5455
5456 /* Size any SHT_GROUP section for ld -r. */
5457
5458 bfd_boolean
5459 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5460 {
5461 bfd *ibfd;
5462
5463 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5464 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5465 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5466 return FALSE;
5467 return TRUE;
5468 }
5469
5470 /* Set a default stack segment size. The value in INFO wins. If it
5471 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5472 undefined it is initialized. */
5473
5474 bfd_boolean
5475 bfd_elf_stack_segment_size (bfd *output_bfd,
5476 struct bfd_link_info *info,
5477 const char *legacy_symbol,
5478 bfd_vma default_size)
5479 {
5480 struct elf_link_hash_entry *h = NULL;
5481
5482 /* Look for legacy symbol. */
5483 if (legacy_symbol)
5484 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5485 FALSE, FALSE, FALSE);
5486 if (h && (h->root.type == bfd_link_hash_defined
5487 || h->root.type == bfd_link_hash_defweak)
5488 && h->def_regular
5489 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5490 {
5491 /* The symbol has no type if specified on the command line. */
5492 h->type = STT_OBJECT;
5493 if (info->stacksize)
5494 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5495 output_bfd, legacy_symbol);
5496 else if (h->root.u.def.section != bfd_abs_section_ptr)
5497 (*_bfd_error_handler) (_("%B: %s not absolute"),
5498 output_bfd, legacy_symbol);
5499 else
5500 info->stacksize = h->root.u.def.value;
5501 }
5502
5503 if (!info->stacksize)
5504 /* If the user didn't set a size, or explicitly inhibit the
5505 size, set it now. */
5506 info->stacksize = default_size;
5507
5508 /* Provide the legacy symbol, if it is referenced. */
5509 if (h && (h->root.type == bfd_link_hash_undefined
5510 || h->root.type == bfd_link_hash_undefweak))
5511 {
5512 struct bfd_link_hash_entry *bh = NULL;
5513
5514 if (!(_bfd_generic_link_add_one_symbol
5515 (info, output_bfd, legacy_symbol,
5516 BSF_GLOBAL, bfd_abs_section_ptr,
5517 info->stacksize >= 0 ? info->stacksize : 0,
5518 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5519 return FALSE;
5520
5521 h = (struct elf_link_hash_entry *) bh;
5522 h->def_regular = 1;
5523 h->type = STT_OBJECT;
5524 }
5525
5526 return TRUE;
5527 }
5528
5529 /* Set up the sizes and contents of the ELF dynamic sections. This is
5530 called by the ELF linker emulation before_allocation routine. We
5531 must set the sizes of the sections before the linker sets the
5532 addresses of the various sections. */
5533
5534 bfd_boolean
5535 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5536 const char *soname,
5537 const char *rpath,
5538 const char *filter_shlib,
5539 const char *audit,
5540 const char *depaudit,
5541 const char * const *auxiliary_filters,
5542 struct bfd_link_info *info,
5543 asection **sinterpptr)
5544 {
5545 bfd_size_type soname_indx;
5546 bfd *dynobj;
5547 const struct elf_backend_data *bed;
5548 struct elf_info_failed asvinfo;
5549
5550 *sinterpptr = NULL;
5551
5552 soname_indx = (bfd_size_type) -1;
5553
5554 if (!is_elf_hash_table (info->hash))
5555 return TRUE;
5556
5557 bed = get_elf_backend_data (output_bfd);
5558
5559 /* Any syms created from now on start with -1 in
5560 got.refcount/offset and plt.refcount/offset. */
5561 elf_hash_table (info)->init_got_refcount
5562 = elf_hash_table (info)->init_got_offset;
5563 elf_hash_table (info)->init_plt_refcount
5564 = elf_hash_table (info)->init_plt_offset;
5565
5566 if (info->relocatable
5567 && !_bfd_elf_size_group_sections (info))
5568 return FALSE;
5569
5570 /* The backend may have to create some sections regardless of whether
5571 we're dynamic or not. */
5572 if (bed->elf_backend_always_size_sections
5573 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5574 return FALSE;
5575
5576 /* Determine any GNU_STACK segment requirements, after the backend
5577 has had a chance to set a default segment size. */
5578 if (info->execstack)
5579 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5580 else if (info->noexecstack)
5581 elf_stack_flags (output_bfd) = PF_R | PF_W;
5582 else
5583 {
5584 bfd *inputobj;
5585 asection *notesec = NULL;
5586 int exec = 0;
5587
5588 for (inputobj = info->input_bfds;
5589 inputobj;
5590 inputobj = inputobj->link.next)
5591 {
5592 asection *s;
5593
5594 if (inputobj->flags
5595 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5596 continue;
5597 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5598 if (s)
5599 {
5600 if (s->flags & SEC_CODE)
5601 exec = PF_X;
5602 notesec = s;
5603 }
5604 else if (bed->default_execstack)
5605 exec = PF_X;
5606 }
5607 if (notesec || info->stacksize > 0)
5608 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5609 if (notesec && exec && info->relocatable
5610 && notesec->output_section != bfd_abs_section_ptr)
5611 notesec->output_section->flags |= SEC_CODE;
5612 }
5613
5614 dynobj = elf_hash_table (info)->dynobj;
5615
5616 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5617 {
5618 struct elf_info_failed eif;
5619 struct elf_link_hash_entry *h;
5620 asection *dynstr;
5621 struct bfd_elf_version_tree *t;
5622 struct bfd_elf_version_expr *d;
5623 asection *s;
5624 bfd_boolean all_defined;
5625
5626 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5627 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5628
5629 if (soname != NULL)
5630 {
5631 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5632 soname, TRUE);
5633 if (soname_indx == (bfd_size_type) -1
5634 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5635 return FALSE;
5636 }
5637
5638 if (info->symbolic)
5639 {
5640 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5641 return FALSE;
5642 info->flags |= DF_SYMBOLIC;
5643 }
5644
5645 if (rpath != NULL)
5646 {
5647 bfd_size_type indx;
5648 bfd_vma tag;
5649
5650 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5651 TRUE);
5652 if (indx == (bfd_size_type) -1)
5653 return FALSE;
5654
5655 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5656 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5657 return FALSE;
5658 }
5659
5660 if (filter_shlib != NULL)
5661 {
5662 bfd_size_type indx;
5663
5664 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5665 filter_shlib, TRUE);
5666 if (indx == (bfd_size_type) -1
5667 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5668 return FALSE;
5669 }
5670
5671 if (auxiliary_filters != NULL)
5672 {
5673 const char * const *p;
5674
5675 for (p = auxiliary_filters; *p != NULL; p++)
5676 {
5677 bfd_size_type indx;
5678
5679 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5680 *p, TRUE);
5681 if (indx == (bfd_size_type) -1
5682 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5683 return FALSE;
5684 }
5685 }
5686
5687 if (audit != NULL)
5688 {
5689 bfd_size_type indx;
5690
5691 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5692 TRUE);
5693 if (indx == (bfd_size_type) -1
5694 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5695 return FALSE;
5696 }
5697
5698 if (depaudit != NULL)
5699 {
5700 bfd_size_type indx;
5701
5702 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5703 TRUE);
5704 if (indx == (bfd_size_type) -1
5705 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5706 return FALSE;
5707 }
5708
5709 eif.info = info;
5710 eif.failed = FALSE;
5711
5712 /* If we are supposed to export all symbols into the dynamic symbol
5713 table (this is not the normal case), then do so. */
5714 if (info->export_dynamic
5715 || (info->executable && info->dynamic))
5716 {
5717 elf_link_hash_traverse (elf_hash_table (info),
5718 _bfd_elf_export_symbol,
5719 &eif);
5720 if (eif.failed)
5721 return FALSE;
5722 }
5723
5724 /* Make all global versions with definition. */
5725 for (t = info->version_info; t != NULL; t = t->next)
5726 for (d = t->globals.list; d != NULL; d = d->next)
5727 if (!d->symver && d->literal)
5728 {
5729 const char *verstr, *name;
5730 size_t namelen, verlen, newlen;
5731 char *newname, *p, leading_char;
5732 struct elf_link_hash_entry *newh;
5733
5734 leading_char = bfd_get_symbol_leading_char (output_bfd);
5735 name = d->pattern;
5736 namelen = strlen (name) + (leading_char != '\0');
5737 verstr = t->name;
5738 verlen = strlen (verstr);
5739 newlen = namelen + verlen + 3;
5740
5741 newname = (char *) bfd_malloc (newlen);
5742 if (newname == NULL)
5743 return FALSE;
5744 newname[0] = leading_char;
5745 memcpy (newname + (leading_char != '\0'), name, namelen);
5746
5747 /* Check the hidden versioned definition. */
5748 p = newname + namelen;
5749 *p++ = ELF_VER_CHR;
5750 memcpy (p, verstr, verlen + 1);
5751 newh = elf_link_hash_lookup (elf_hash_table (info),
5752 newname, FALSE, FALSE,
5753 FALSE);
5754 if (newh == NULL
5755 || (newh->root.type != bfd_link_hash_defined
5756 && newh->root.type != bfd_link_hash_defweak))
5757 {
5758 /* Check the default versioned definition. */
5759 *p++ = ELF_VER_CHR;
5760 memcpy (p, verstr, verlen + 1);
5761 newh = elf_link_hash_lookup (elf_hash_table (info),
5762 newname, FALSE, FALSE,
5763 FALSE);
5764 }
5765 free (newname);
5766
5767 /* Mark this version if there is a definition and it is
5768 not defined in a shared object. */
5769 if (newh != NULL
5770 && !newh->def_dynamic
5771 && (newh->root.type == bfd_link_hash_defined
5772 || newh->root.type == bfd_link_hash_defweak))
5773 d->symver = 1;
5774 }
5775
5776 /* Attach all the symbols to their version information. */
5777 asvinfo.info = info;
5778 asvinfo.failed = FALSE;
5779
5780 elf_link_hash_traverse (elf_hash_table (info),
5781 _bfd_elf_link_assign_sym_version,
5782 &asvinfo);
5783 if (asvinfo.failed)
5784 return FALSE;
5785
5786 if (!info->allow_undefined_version)
5787 {
5788 /* Check if all global versions have a definition. */
5789 all_defined = TRUE;
5790 for (t = info->version_info; t != NULL; t = t->next)
5791 for (d = t->globals.list; d != NULL; d = d->next)
5792 if (d->literal && !d->symver && !d->script)
5793 {
5794 (*_bfd_error_handler)
5795 (_("%s: undefined version: %s"),
5796 d->pattern, t->name);
5797 all_defined = FALSE;
5798 }
5799
5800 if (!all_defined)
5801 {
5802 bfd_set_error (bfd_error_bad_value);
5803 return FALSE;
5804 }
5805 }
5806
5807 /* Find all symbols which were defined in a dynamic object and make
5808 the backend pick a reasonable value for them. */
5809 elf_link_hash_traverse (elf_hash_table (info),
5810 _bfd_elf_adjust_dynamic_symbol,
5811 &eif);
5812 if (eif.failed)
5813 return FALSE;
5814
5815 /* Add some entries to the .dynamic section. We fill in some of the
5816 values later, in bfd_elf_final_link, but we must add the entries
5817 now so that we know the final size of the .dynamic section. */
5818
5819 /* If there are initialization and/or finalization functions to
5820 call then add the corresponding DT_INIT/DT_FINI entries. */
5821 h = (info->init_function
5822 ? elf_link_hash_lookup (elf_hash_table (info),
5823 info->init_function, FALSE,
5824 FALSE, FALSE)
5825 : NULL);
5826 if (h != NULL
5827 && (h->ref_regular
5828 || h->def_regular))
5829 {
5830 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5831 return FALSE;
5832 }
5833 h = (info->fini_function
5834 ? elf_link_hash_lookup (elf_hash_table (info),
5835 info->fini_function, FALSE,
5836 FALSE, FALSE)
5837 : NULL);
5838 if (h != NULL
5839 && (h->ref_regular
5840 || h->def_regular))
5841 {
5842 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5843 return FALSE;
5844 }
5845
5846 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5847 if (s != NULL && s->linker_has_input)
5848 {
5849 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5850 if (! info->executable)
5851 {
5852 bfd *sub;
5853 asection *o;
5854
5855 for (sub = info->input_bfds; sub != NULL;
5856 sub = sub->link.next)
5857 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5858 for (o = sub->sections; o != NULL; o = o->next)
5859 if (elf_section_data (o)->this_hdr.sh_type
5860 == SHT_PREINIT_ARRAY)
5861 {
5862 (*_bfd_error_handler)
5863 (_("%B: .preinit_array section is not allowed in DSO"),
5864 sub);
5865 break;
5866 }
5867
5868 bfd_set_error (bfd_error_nonrepresentable_section);
5869 return FALSE;
5870 }
5871
5872 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5873 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5874 return FALSE;
5875 }
5876 s = bfd_get_section_by_name (output_bfd, ".init_array");
5877 if (s != NULL && s->linker_has_input)
5878 {
5879 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5880 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5881 return FALSE;
5882 }
5883 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5884 if (s != NULL && s->linker_has_input)
5885 {
5886 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5887 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5888 return FALSE;
5889 }
5890
5891 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5892 /* If .dynstr is excluded from the link, we don't want any of
5893 these tags. Strictly, we should be checking each section
5894 individually; This quick check covers for the case where
5895 someone does a /DISCARD/ : { *(*) }. */
5896 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5897 {
5898 bfd_size_type strsize;
5899
5900 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5901 if ((info->emit_hash
5902 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5903 || (info->emit_gnu_hash
5904 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5905 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5906 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5907 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5908 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5909 bed->s->sizeof_sym))
5910 return FALSE;
5911 }
5912 }
5913
5914 /* The backend must work out the sizes of all the other dynamic
5915 sections. */
5916 if (dynobj != NULL
5917 && bed->elf_backend_size_dynamic_sections != NULL
5918 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5919 return FALSE;
5920
5921 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5922 return FALSE;
5923
5924 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5925 {
5926 unsigned long section_sym_count;
5927 struct bfd_elf_version_tree *verdefs;
5928 asection *s;
5929
5930 /* Set up the version definition section. */
5931 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
5932 BFD_ASSERT (s != NULL);
5933
5934 /* We may have created additional version definitions if we are
5935 just linking a regular application. */
5936 verdefs = info->version_info;
5937
5938 /* Skip anonymous version tag. */
5939 if (verdefs != NULL && verdefs->vernum == 0)
5940 verdefs = verdefs->next;
5941
5942 if (verdefs == NULL && !info->create_default_symver)
5943 s->flags |= SEC_EXCLUDE;
5944 else
5945 {
5946 unsigned int cdefs;
5947 bfd_size_type size;
5948 struct bfd_elf_version_tree *t;
5949 bfd_byte *p;
5950 Elf_Internal_Verdef def;
5951 Elf_Internal_Verdaux defaux;
5952 struct bfd_link_hash_entry *bh;
5953 struct elf_link_hash_entry *h;
5954 const char *name;
5955
5956 cdefs = 0;
5957 size = 0;
5958
5959 /* Make space for the base version. */
5960 size += sizeof (Elf_External_Verdef);
5961 size += sizeof (Elf_External_Verdaux);
5962 ++cdefs;
5963
5964 /* Make space for the default version. */
5965 if (info->create_default_symver)
5966 {
5967 size += sizeof (Elf_External_Verdef);
5968 ++cdefs;
5969 }
5970
5971 for (t = verdefs; t != NULL; t = t->next)
5972 {
5973 struct bfd_elf_version_deps *n;
5974
5975 /* Don't emit base version twice. */
5976 if (t->vernum == 0)
5977 continue;
5978
5979 size += sizeof (Elf_External_Verdef);
5980 size += sizeof (Elf_External_Verdaux);
5981 ++cdefs;
5982
5983 for (n = t->deps; n != NULL; n = n->next)
5984 size += sizeof (Elf_External_Verdaux);
5985 }
5986
5987 s->size = size;
5988 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5989 if (s->contents == NULL && s->size != 0)
5990 return FALSE;
5991
5992 /* Fill in the version definition section. */
5993
5994 p = s->contents;
5995
5996 def.vd_version = VER_DEF_CURRENT;
5997 def.vd_flags = VER_FLG_BASE;
5998 def.vd_ndx = 1;
5999 def.vd_cnt = 1;
6000 if (info->create_default_symver)
6001 {
6002 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6003 def.vd_next = sizeof (Elf_External_Verdef);
6004 }
6005 else
6006 {
6007 def.vd_aux = sizeof (Elf_External_Verdef);
6008 def.vd_next = (sizeof (Elf_External_Verdef)
6009 + sizeof (Elf_External_Verdaux));
6010 }
6011
6012 if (soname_indx != (bfd_size_type) -1)
6013 {
6014 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6015 soname_indx);
6016 def.vd_hash = bfd_elf_hash (soname);
6017 defaux.vda_name = soname_indx;
6018 name = soname;
6019 }
6020 else
6021 {
6022 bfd_size_type indx;
6023
6024 name = lbasename (output_bfd->filename);
6025 def.vd_hash = bfd_elf_hash (name);
6026 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6027 name, FALSE);
6028 if (indx == (bfd_size_type) -1)
6029 return FALSE;
6030 defaux.vda_name = indx;
6031 }
6032 defaux.vda_next = 0;
6033
6034 _bfd_elf_swap_verdef_out (output_bfd, &def,
6035 (Elf_External_Verdef *) p);
6036 p += sizeof (Elf_External_Verdef);
6037 if (info->create_default_symver)
6038 {
6039 /* Add a symbol representing this version. */
6040 bh = NULL;
6041 if (! (_bfd_generic_link_add_one_symbol
6042 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6043 0, NULL, FALSE,
6044 get_elf_backend_data (dynobj)->collect, &bh)))
6045 return FALSE;
6046 h = (struct elf_link_hash_entry *) bh;
6047 h->non_elf = 0;
6048 h->def_regular = 1;
6049 h->type = STT_OBJECT;
6050 h->verinfo.vertree = NULL;
6051
6052 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6053 return FALSE;
6054
6055 /* Create a duplicate of the base version with the same
6056 aux block, but different flags. */
6057 def.vd_flags = 0;
6058 def.vd_ndx = 2;
6059 def.vd_aux = sizeof (Elf_External_Verdef);
6060 if (verdefs)
6061 def.vd_next = (sizeof (Elf_External_Verdef)
6062 + sizeof (Elf_External_Verdaux));
6063 else
6064 def.vd_next = 0;
6065 _bfd_elf_swap_verdef_out (output_bfd, &def,
6066 (Elf_External_Verdef *) p);
6067 p += sizeof (Elf_External_Verdef);
6068 }
6069 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6070 (Elf_External_Verdaux *) p);
6071 p += sizeof (Elf_External_Verdaux);
6072
6073 for (t = verdefs; t != NULL; t = t->next)
6074 {
6075 unsigned int cdeps;
6076 struct bfd_elf_version_deps *n;
6077
6078 /* Don't emit the base version twice. */
6079 if (t->vernum == 0)
6080 continue;
6081
6082 cdeps = 0;
6083 for (n = t->deps; n != NULL; n = n->next)
6084 ++cdeps;
6085
6086 /* Add a symbol representing this version. */
6087 bh = NULL;
6088 if (! (_bfd_generic_link_add_one_symbol
6089 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6090 0, NULL, FALSE,
6091 get_elf_backend_data (dynobj)->collect, &bh)))
6092 return FALSE;
6093 h = (struct elf_link_hash_entry *) bh;
6094 h->non_elf = 0;
6095 h->def_regular = 1;
6096 h->type = STT_OBJECT;
6097 h->verinfo.vertree = t;
6098
6099 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6100 return FALSE;
6101
6102 def.vd_version = VER_DEF_CURRENT;
6103 def.vd_flags = 0;
6104 if (t->globals.list == NULL
6105 && t->locals.list == NULL
6106 && ! t->used)
6107 def.vd_flags |= VER_FLG_WEAK;
6108 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6109 def.vd_cnt = cdeps + 1;
6110 def.vd_hash = bfd_elf_hash (t->name);
6111 def.vd_aux = sizeof (Elf_External_Verdef);
6112 def.vd_next = 0;
6113
6114 /* If a basever node is next, it *must* be the last node in
6115 the chain, otherwise Verdef construction breaks. */
6116 if (t->next != NULL && t->next->vernum == 0)
6117 BFD_ASSERT (t->next->next == NULL);
6118
6119 if (t->next != NULL && t->next->vernum != 0)
6120 def.vd_next = (sizeof (Elf_External_Verdef)
6121 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6122
6123 _bfd_elf_swap_verdef_out (output_bfd, &def,
6124 (Elf_External_Verdef *) p);
6125 p += sizeof (Elf_External_Verdef);
6126
6127 defaux.vda_name = h->dynstr_index;
6128 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6129 h->dynstr_index);
6130 defaux.vda_next = 0;
6131 if (t->deps != NULL)
6132 defaux.vda_next = sizeof (Elf_External_Verdaux);
6133 t->name_indx = defaux.vda_name;
6134
6135 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6136 (Elf_External_Verdaux *) p);
6137 p += sizeof (Elf_External_Verdaux);
6138
6139 for (n = t->deps; n != NULL; n = n->next)
6140 {
6141 if (n->version_needed == NULL)
6142 {
6143 /* This can happen if there was an error in the
6144 version script. */
6145 defaux.vda_name = 0;
6146 }
6147 else
6148 {
6149 defaux.vda_name = n->version_needed->name_indx;
6150 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6151 defaux.vda_name);
6152 }
6153 if (n->next == NULL)
6154 defaux.vda_next = 0;
6155 else
6156 defaux.vda_next = sizeof (Elf_External_Verdaux);
6157
6158 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6159 (Elf_External_Verdaux *) p);
6160 p += sizeof (Elf_External_Verdaux);
6161 }
6162 }
6163
6164 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6165 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6166 return FALSE;
6167
6168 elf_tdata (output_bfd)->cverdefs = cdefs;
6169 }
6170
6171 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6172 {
6173 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6174 return FALSE;
6175 }
6176 else if (info->flags & DF_BIND_NOW)
6177 {
6178 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6179 return FALSE;
6180 }
6181
6182 if (info->flags_1)
6183 {
6184 if (info->executable)
6185 info->flags_1 &= ~ (DF_1_INITFIRST
6186 | DF_1_NODELETE
6187 | DF_1_NOOPEN);
6188 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6189 return FALSE;
6190 }
6191
6192 /* Work out the size of the version reference section. */
6193
6194 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6195 BFD_ASSERT (s != NULL);
6196 {
6197 struct elf_find_verdep_info sinfo;
6198
6199 sinfo.info = info;
6200 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6201 if (sinfo.vers == 0)
6202 sinfo.vers = 1;
6203 sinfo.failed = FALSE;
6204
6205 elf_link_hash_traverse (elf_hash_table (info),
6206 _bfd_elf_link_find_version_dependencies,
6207 &sinfo);
6208 if (sinfo.failed)
6209 return FALSE;
6210
6211 if (elf_tdata (output_bfd)->verref == NULL)
6212 s->flags |= SEC_EXCLUDE;
6213 else
6214 {
6215 Elf_Internal_Verneed *t;
6216 unsigned int size;
6217 unsigned int crefs;
6218 bfd_byte *p;
6219
6220 /* Build the version dependency section. */
6221 size = 0;
6222 crefs = 0;
6223 for (t = elf_tdata (output_bfd)->verref;
6224 t != NULL;
6225 t = t->vn_nextref)
6226 {
6227 Elf_Internal_Vernaux *a;
6228
6229 size += sizeof (Elf_External_Verneed);
6230 ++crefs;
6231 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6232 size += sizeof (Elf_External_Vernaux);
6233 }
6234
6235 s->size = size;
6236 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6237 if (s->contents == NULL)
6238 return FALSE;
6239
6240 p = s->contents;
6241 for (t = elf_tdata (output_bfd)->verref;
6242 t != NULL;
6243 t = t->vn_nextref)
6244 {
6245 unsigned int caux;
6246 Elf_Internal_Vernaux *a;
6247 bfd_size_type indx;
6248
6249 caux = 0;
6250 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6251 ++caux;
6252
6253 t->vn_version = VER_NEED_CURRENT;
6254 t->vn_cnt = caux;
6255 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6256 elf_dt_name (t->vn_bfd) != NULL
6257 ? elf_dt_name (t->vn_bfd)
6258 : lbasename (t->vn_bfd->filename),
6259 FALSE);
6260 if (indx == (bfd_size_type) -1)
6261 return FALSE;
6262 t->vn_file = indx;
6263 t->vn_aux = sizeof (Elf_External_Verneed);
6264 if (t->vn_nextref == NULL)
6265 t->vn_next = 0;
6266 else
6267 t->vn_next = (sizeof (Elf_External_Verneed)
6268 + caux * sizeof (Elf_External_Vernaux));
6269
6270 _bfd_elf_swap_verneed_out (output_bfd, t,
6271 (Elf_External_Verneed *) p);
6272 p += sizeof (Elf_External_Verneed);
6273
6274 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6275 {
6276 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6277 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6278 a->vna_nodename, FALSE);
6279 if (indx == (bfd_size_type) -1)
6280 return FALSE;
6281 a->vna_name = indx;
6282 if (a->vna_nextptr == NULL)
6283 a->vna_next = 0;
6284 else
6285 a->vna_next = sizeof (Elf_External_Vernaux);
6286
6287 _bfd_elf_swap_vernaux_out (output_bfd, a,
6288 (Elf_External_Vernaux *) p);
6289 p += sizeof (Elf_External_Vernaux);
6290 }
6291 }
6292
6293 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6294 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6295 return FALSE;
6296
6297 elf_tdata (output_bfd)->cverrefs = crefs;
6298 }
6299 }
6300
6301 if ((elf_tdata (output_bfd)->cverrefs == 0
6302 && elf_tdata (output_bfd)->cverdefs == 0)
6303 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6304 &section_sym_count) == 0)
6305 {
6306 s = bfd_get_linker_section (dynobj, ".gnu.version");
6307 s->flags |= SEC_EXCLUDE;
6308 }
6309 }
6310 return TRUE;
6311 }
6312
6313 /* Find the first non-excluded output section. We'll use its
6314 section symbol for some emitted relocs. */
6315 void
6316 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6317 {
6318 asection *s;
6319
6320 for (s = output_bfd->sections; s != NULL; s = s->next)
6321 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6322 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6323 {
6324 elf_hash_table (info)->text_index_section = s;
6325 break;
6326 }
6327 }
6328
6329 /* Find two non-excluded output sections, one for code, one for data.
6330 We'll use their section symbols for some emitted relocs. */
6331 void
6332 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6333 {
6334 asection *s;
6335
6336 /* Data first, since setting text_index_section changes
6337 _bfd_elf_link_omit_section_dynsym. */
6338 for (s = output_bfd->sections; s != NULL; s = s->next)
6339 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6340 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6341 {
6342 elf_hash_table (info)->data_index_section = s;
6343 break;
6344 }
6345
6346 for (s = output_bfd->sections; s != NULL; s = s->next)
6347 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6348 == (SEC_ALLOC | SEC_READONLY))
6349 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6350 {
6351 elf_hash_table (info)->text_index_section = s;
6352 break;
6353 }
6354
6355 if (elf_hash_table (info)->text_index_section == NULL)
6356 elf_hash_table (info)->text_index_section
6357 = elf_hash_table (info)->data_index_section;
6358 }
6359
6360 bfd_boolean
6361 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6362 {
6363 const struct elf_backend_data *bed;
6364
6365 if (!is_elf_hash_table (info->hash))
6366 return TRUE;
6367
6368 bed = get_elf_backend_data (output_bfd);
6369 (*bed->elf_backend_init_index_section) (output_bfd, info);
6370
6371 if (elf_hash_table (info)->dynamic_sections_created)
6372 {
6373 bfd *dynobj;
6374 asection *s;
6375 bfd_size_type dynsymcount;
6376 unsigned long section_sym_count;
6377 unsigned int dtagcount;
6378
6379 dynobj = elf_hash_table (info)->dynobj;
6380
6381 /* Assign dynsym indicies. In a shared library we generate a
6382 section symbol for each output section, which come first.
6383 Next come all of the back-end allocated local dynamic syms,
6384 followed by the rest of the global symbols. */
6385
6386 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6387 &section_sym_count);
6388
6389 /* Work out the size of the symbol version section. */
6390 s = bfd_get_linker_section (dynobj, ".gnu.version");
6391 BFD_ASSERT (s != NULL);
6392 if (dynsymcount != 0
6393 && (s->flags & SEC_EXCLUDE) == 0)
6394 {
6395 s->size = dynsymcount * sizeof (Elf_External_Versym);
6396 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6397 if (s->contents == NULL)
6398 return FALSE;
6399
6400 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6401 return FALSE;
6402 }
6403
6404 /* Set the size of the .dynsym and .hash sections. We counted
6405 the number of dynamic symbols in elf_link_add_object_symbols.
6406 We will build the contents of .dynsym and .hash when we build
6407 the final symbol table, because until then we do not know the
6408 correct value to give the symbols. We built the .dynstr
6409 section as we went along in elf_link_add_object_symbols. */
6410 s = bfd_get_linker_section (dynobj, ".dynsym");
6411 BFD_ASSERT (s != NULL);
6412 s->size = dynsymcount * bed->s->sizeof_sym;
6413
6414 if (dynsymcount != 0)
6415 {
6416 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6417 if (s->contents == NULL)
6418 return FALSE;
6419
6420 /* The first entry in .dynsym is a dummy symbol.
6421 Clear all the section syms, in case we don't output them all. */
6422 ++section_sym_count;
6423 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6424 }
6425
6426 elf_hash_table (info)->bucketcount = 0;
6427
6428 /* Compute the size of the hashing table. As a side effect this
6429 computes the hash values for all the names we export. */
6430 if (info->emit_hash)
6431 {
6432 unsigned long int *hashcodes;
6433 struct hash_codes_info hashinf;
6434 bfd_size_type amt;
6435 unsigned long int nsyms;
6436 size_t bucketcount;
6437 size_t hash_entry_size;
6438
6439 /* Compute the hash values for all exported symbols. At the same
6440 time store the values in an array so that we could use them for
6441 optimizations. */
6442 amt = dynsymcount * sizeof (unsigned long int);
6443 hashcodes = (unsigned long int *) bfd_malloc (amt);
6444 if (hashcodes == NULL)
6445 return FALSE;
6446 hashinf.hashcodes = hashcodes;
6447 hashinf.error = FALSE;
6448
6449 /* Put all hash values in HASHCODES. */
6450 elf_link_hash_traverse (elf_hash_table (info),
6451 elf_collect_hash_codes, &hashinf);
6452 if (hashinf.error)
6453 {
6454 free (hashcodes);
6455 return FALSE;
6456 }
6457
6458 nsyms = hashinf.hashcodes - hashcodes;
6459 bucketcount
6460 = compute_bucket_count (info, hashcodes, nsyms, 0);
6461 free (hashcodes);
6462
6463 if (bucketcount == 0)
6464 return FALSE;
6465
6466 elf_hash_table (info)->bucketcount = bucketcount;
6467
6468 s = bfd_get_linker_section (dynobj, ".hash");
6469 BFD_ASSERT (s != NULL);
6470 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6471 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6472 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6473 if (s->contents == NULL)
6474 return FALSE;
6475
6476 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6477 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6478 s->contents + hash_entry_size);
6479 }
6480
6481 if (info->emit_gnu_hash)
6482 {
6483 size_t i, cnt;
6484 unsigned char *contents;
6485 struct collect_gnu_hash_codes cinfo;
6486 bfd_size_type amt;
6487 size_t bucketcount;
6488
6489 memset (&cinfo, 0, sizeof (cinfo));
6490
6491 /* Compute the hash values for all exported symbols. At the same
6492 time store the values in an array so that we could use them for
6493 optimizations. */
6494 amt = dynsymcount * 2 * sizeof (unsigned long int);
6495 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6496 if (cinfo.hashcodes == NULL)
6497 return FALSE;
6498
6499 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6500 cinfo.min_dynindx = -1;
6501 cinfo.output_bfd = output_bfd;
6502 cinfo.bed = bed;
6503
6504 /* Put all hash values in HASHCODES. */
6505 elf_link_hash_traverse (elf_hash_table (info),
6506 elf_collect_gnu_hash_codes, &cinfo);
6507 if (cinfo.error)
6508 {
6509 free (cinfo.hashcodes);
6510 return FALSE;
6511 }
6512
6513 bucketcount
6514 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6515
6516 if (bucketcount == 0)
6517 {
6518 free (cinfo.hashcodes);
6519 return FALSE;
6520 }
6521
6522 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6523 BFD_ASSERT (s != NULL);
6524
6525 if (cinfo.nsyms == 0)
6526 {
6527 /* Empty .gnu.hash section is special. */
6528 BFD_ASSERT (cinfo.min_dynindx == -1);
6529 free (cinfo.hashcodes);
6530 s->size = 5 * 4 + bed->s->arch_size / 8;
6531 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6532 if (contents == NULL)
6533 return FALSE;
6534 s->contents = contents;
6535 /* 1 empty bucket. */
6536 bfd_put_32 (output_bfd, 1, contents);
6537 /* SYMIDX above the special symbol 0. */
6538 bfd_put_32 (output_bfd, 1, contents + 4);
6539 /* Just one word for bitmask. */
6540 bfd_put_32 (output_bfd, 1, contents + 8);
6541 /* Only hash fn bloom filter. */
6542 bfd_put_32 (output_bfd, 0, contents + 12);
6543 /* No hashes are valid - empty bitmask. */
6544 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6545 /* No hashes in the only bucket. */
6546 bfd_put_32 (output_bfd, 0,
6547 contents + 16 + bed->s->arch_size / 8);
6548 }
6549 else
6550 {
6551 unsigned long int maskwords, maskbitslog2, x;
6552 BFD_ASSERT (cinfo.min_dynindx != -1);
6553
6554 x = cinfo.nsyms;
6555 maskbitslog2 = 1;
6556 while ((x >>= 1) != 0)
6557 ++maskbitslog2;
6558 if (maskbitslog2 < 3)
6559 maskbitslog2 = 5;
6560 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6561 maskbitslog2 = maskbitslog2 + 3;
6562 else
6563 maskbitslog2 = maskbitslog2 + 2;
6564 if (bed->s->arch_size == 64)
6565 {
6566 if (maskbitslog2 == 5)
6567 maskbitslog2 = 6;
6568 cinfo.shift1 = 6;
6569 }
6570 else
6571 cinfo.shift1 = 5;
6572 cinfo.mask = (1 << cinfo.shift1) - 1;
6573 cinfo.shift2 = maskbitslog2;
6574 cinfo.maskbits = 1 << maskbitslog2;
6575 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6576 amt = bucketcount * sizeof (unsigned long int) * 2;
6577 amt += maskwords * sizeof (bfd_vma);
6578 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6579 if (cinfo.bitmask == NULL)
6580 {
6581 free (cinfo.hashcodes);
6582 return FALSE;
6583 }
6584
6585 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6586 cinfo.indx = cinfo.counts + bucketcount;
6587 cinfo.symindx = dynsymcount - cinfo.nsyms;
6588 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6589
6590 /* Determine how often each hash bucket is used. */
6591 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6592 for (i = 0; i < cinfo.nsyms; ++i)
6593 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6594
6595 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6596 if (cinfo.counts[i] != 0)
6597 {
6598 cinfo.indx[i] = cnt;
6599 cnt += cinfo.counts[i];
6600 }
6601 BFD_ASSERT (cnt == dynsymcount);
6602 cinfo.bucketcount = bucketcount;
6603 cinfo.local_indx = cinfo.min_dynindx;
6604
6605 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6606 s->size += cinfo.maskbits / 8;
6607 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6608 if (contents == NULL)
6609 {
6610 free (cinfo.bitmask);
6611 free (cinfo.hashcodes);
6612 return FALSE;
6613 }
6614
6615 s->contents = contents;
6616 bfd_put_32 (output_bfd, bucketcount, contents);
6617 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6618 bfd_put_32 (output_bfd, maskwords, contents + 8);
6619 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6620 contents += 16 + cinfo.maskbits / 8;
6621
6622 for (i = 0; i < bucketcount; ++i)
6623 {
6624 if (cinfo.counts[i] == 0)
6625 bfd_put_32 (output_bfd, 0, contents);
6626 else
6627 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6628 contents += 4;
6629 }
6630
6631 cinfo.contents = contents;
6632
6633 /* Renumber dynamic symbols, populate .gnu.hash section. */
6634 elf_link_hash_traverse (elf_hash_table (info),
6635 elf_renumber_gnu_hash_syms, &cinfo);
6636
6637 contents = s->contents + 16;
6638 for (i = 0; i < maskwords; ++i)
6639 {
6640 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6641 contents);
6642 contents += bed->s->arch_size / 8;
6643 }
6644
6645 free (cinfo.bitmask);
6646 free (cinfo.hashcodes);
6647 }
6648 }
6649
6650 s = bfd_get_linker_section (dynobj, ".dynstr");
6651 BFD_ASSERT (s != NULL);
6652
6653 elf_finalize_dynstr (output_bfd, info);
6654
6655 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6656
6657 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6658 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6659 return FALSE;
6660 }
6661
6662 return TRUE;
6663 }
6664 \f
6665 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6666
6667 static void
6668 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6669 asection *sec)
6670 {
6671 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6672 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6673 }
6674
6675 /* Finish SHF_MERGE section merging. */
6676
6677 bfd_boolean
6678 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6679 {
6680 bfd *ibfd;
6681 asection *sec;
6682
6683 if (!is_elf_hash_table (info->hash))
6684 return FALSE;
6685
6686 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6687 if ((ibfd->flags & DYNAMIC) == 0)
6688 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6689 if ((sec->flags & SEC_MERGE) != 0
6690 && !bfd_is_abs_section (sec->output_section))
6691 {
6692 struct bfd_elf_section_data *secdata;
6693
6694 secdata = elf_section_data (sec);
6695 if (! _bfd_add_merge_section (abfd,
6696 &elf_hash_table (info)->merge_info,
6697 sec, &secdata->sec_info))
6698 return FALSE;
6699 else if (secdata->sec_info)
6700 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6701 }
6702
6703 if (elf_hash_table (info)->merge_info != NULL)
6704 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6705 merge_sections_remove_hook);
6706 return TRUE;
6707 }
6708
6709 /* Create an entry in an ELF linker hash table. */
6710
6711 struct bfd_hash_entry *
6712 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6713 struct bfd_hash_table *table,
6714 const char *string)
6715 {
6716 /* Allocate the structure if it has not already been allocated by a
6717 subclass. */
6718 if (entry == NULL)
6719 {
6720 entry = (struct bfd_hash_entry *)
6721 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6722 if (entry == NULL)
6723 return entry;
6724 }
6725
6726 /* Call the allocation method of the superclass. */
6727 entry = _bfd_link_hash_newfunc (entry, table, string);
6728 if (entry != NULL)
6729 {
6730 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6731 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6732
6733 /* Set local fields. */
6734 ret->indx = -1;
6735 ret->dynindx = -1;
6736 ret->got = htab->init_got_refcount;
6737 ret->plt = htab->init_plt_refcount;
6738 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6739 - offsetof (struct elf_link_hash_entry, size)));
6740 /* Assume that we have been called by a non-ELF symbol reader.
6741 This flag is then reset by the code which reads an ELF input
6742 file. This ensures that a symbol created by a non-ELF symbol
6743 reader will have the flag set correctly. */
6744 ret->non_elf = 1;
6745 }
6746
6747 return entry;
6748 }
6749
6750 /* Copy data from an indirect symbol to its direct symbol, hiding the
6751 old indirect symbol. Also used for copying flags to a weakdef. */
6752
6753 void
6754 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6755 struct elf_link_hash_entry *dir,
6756 struct elf_link_hash_entry *ind)
6757 {
6758 struct elf_link_hash_table *htab;
6759
6760 /* Copy down any references that we may have already seen to the
6761 symbol which just became indirect. */
6762
6763 dir->ref_dynamic |= ind->ref_dynamic;
6764 dir->ref_regular |= ind->ref_regular;
6765 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6766 dir->non_got_ref |= ind->non_got_ref;
6767 dir->needs_plt |= ind->needs_plt;
6768 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6769
6770 if (ind->root.type != bfd_link_hash_indirect)
6771 return;
6772
6773 /* Copy over the global and procedure linkage table refcount entries.
6774 These may have been already set up by a check_relocs routine. */
6775 htab = elf_hash_table (info);
6776 if (ind->got.refcount > htab->init_got_refcount.refcount)
6777 {
6778 if (dir->got.refcount < 0)
6779 dir->got.refcount = 0;
6780 dir->got.refcount += ind->got.refcount;
6781 ind->got.refcount = htab->init_got_refcount.refcount;
6782 }
6783
6784 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6785 {
6786 if (dir->plt.refcount < 0)
6787 dir->plt.refcount = 0;
6788 dir->plt.refcount += ind->plt.refcount;
6789 ind->plt.refcount = htab->init_plt_refcount.refcount;
6790 }
6791
6792 if (ind->dynindx != -1)
6793 {
6794 if (dir->dynindx != -1)
6795 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6796 dir->dynindx = ind->dynindx;
6797 dir->dynstr_index = ind->dynstr_index;
6798 ind->dynindx = -1;
6799 ind->dynstr_index = 0;
6800 }
6801 }
6802
6803 void
6804 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6805 struct elf_link_hash_entry *h,
6806 bfd_boolean force_local)
6807 {
6808 /* STT_GNU_IFUNC symbol must go through PLT. */
6809 if (h->type != STT_GNU_IFUNC)
6810 {
6811 h->plt = elf_hash_table (info)->init_plt_offset;
6812 h->needs_plt = 0;
6813 }
6814 if (force_local)
6815 {
6816 h->forced_local = 1;
6817 if (h->dynindx != -1)
6818 {
6819 h->dynindx = -1;
6820 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6821 h->dynstr_index);
6822 }
6823 }
6824 }
6825
6826 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6827 caller. */
6828
6829 bfd_boolean
6830 _bfd_elf_link_hash_table_init
6831 (struct elf_link_hash_table *table,
6832 bfd *abfd,
6833 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6834 struct bfd_hash_table *,
6835 const char *),
6836 unsigned int entsize,
6837 enum elf_target_id target_id)
6838 {
6839 bfd_boolean ret;
6840 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6841
6842 table->init_got_refcount.refcount = can_refcount - 1;
6843 table->init_plt_refcount.refcount = can_refcount - 1;
6844 table->init_got_offset.offset = -(bfd_vma) 1;
6845 table->init_plt_offset.offset = -(bfd_vma) 1;
6846 /* The first dynamic symbol is a dummy. */
6847 table->dynsymcount = 1;
6848
6849 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6850
6851 table->root.type = bfd_link_elf_hash_table;
6852 table->hash_table_id = target_id;
6853
6854 return ret;
6855 }
6856
6857 /* Create an ELF linker hash table. */
6858
6859 struct bfd_link_hash_table *
6860 _bfd_elf_link_hash_table_create (bfd *abfd)
6861 {
6862 struct elf_link_hash_table *ret;
6863 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6864
6865 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
6866 if (ret == NULL)
6867 return NULL;
6868
6869 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6870 sizeof (struct elf_link_hash_entry),
6871 GENERIC_ELF_DATA))
6872 {
6873 free (ret);
6874 return NULL;
6875 }
6876 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
6877
6878 return &ret->root;
6879 }
6880
6881 /* Destroy an ELF linker hash table. */
6882
6883 void
6884 _bfd_elf_link_hash_table_free (bfd *obfd)
6885 {
6886 struct elf_link_hash_table *htab;
6887
6888 htab = (struct elf_link_hash_table *) obfd->link.hash;
6889 if (htab->dynstr != NULL)
6890 _bfd_elf_strtab_free (htab->dynstr);
6891 _bfd_merge_sections_free (htab->merge_info);
6892 _bfd_generic_link_hash_table_free (obfd);
6893 }
6894
6895 /* This is a hook for the ELF emulation code in the generic linker to
6896 tell the backend linker what file name to use for the DT_NEEDED
6897 entry for a dynamic object. */
6898
6899 void
6900 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6901 {
6902 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6903 && bfd_get_format (abfd) == bfd_object)
6904 elf_dt_name (abfd) = name;
6905 }
6906
6907 int
6908 bfd_elf_get_dyn_lib_class (bfd *abfd)
6909 {
6910 int lib_class;
6911 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6912 && bfd_get_format (abfd) == bfd_object)
6913 lib_class = elf_dyn_lib_class (abfd);
6914 else
6915 lib_class = 0;
6916 return lib_class;
6917 }
6918
6919 void
6920 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6921 {
6922 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6923 && bfd_get_format (abfd) == bfd_object)
6924 elf_dyn_lib_class (abfd) = lib_class;
6925 }
6926
6927 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6928 the linker ELF emulation code. */
6929
6930 struct bfd_link_needed_list *
6931 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6932 struct bfd_link_info *info)
6933 {
6934 if (! is_elf_hash_table (info->hash))
6935 return NULL;
6936 return elf_hash_table (info)->needed;
6937 }
6938
6939 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6940 hook for the linker ELF emulation code. */
6941
6942 struct bfd_link_needed_list *
6943 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6944 struct bfd_link_info *info)
6945 {
6946 if (! is_elf_hash_table (info->hash))
6947 return NULL;
6948 return elf_hash_table (info)->runpath;
6949 }
6950
6951 /* Get the name actually used for a dynamic object for a link. This
6952 is the SONAME entry if there is one. Otherwise, it is the string
6953 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6954
6955 const char *
6956 bfd_elf_get_dt_soname (bfd *abfd)
6957 {
6958 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6959 && bfd_get_format (abfd) == bfd_object)
6960 return elf_dt_name (abfd);
6961 return NULL;
6962 }
6963
6964 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6965 the ELF linker emulation code. */
6966
6967 bfd_boolean
6968 bfd_elf_get_bfd_needed_list (bfd *abfd,
6969 struct bfd_link_needed_list **pneeded)
6970 {
6971 asection *s;
6972 bfd_byte *dynbuf = NULL;
6973 unsigned int elfsec;
6974 unsigned long shlink;
6975 bfd_byte *extdyn, *extdynend;
6976 size_t extdynsize;
6977 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6978
6979 *pneeded = NULL;
6980
6981 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6982 || bfd_get_format (abfd) != bfd_object)
6983 return TRUE;
6984
6985 s = bfd_get_section_by_name (abfd, ".dynamic");
6986 if (s == NULL || s->size == 0)
6987 return TRUE;
6988
6989 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6990 goto error_return;
6991
6992 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6993 if (elfsec == SHN_BAD)
6994 goto error_return;
6995
6996 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6997
6998 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6999 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7000
7001 extdyn = dynbuf;
7002 extdynend = extdyn + s->size;
7003 for (; extdyn < extdynend; extdyn += extdynsize)
7004 {
7005 Elf_Internal_Dyn dyn;
7006
7007 (*swap_dyn_in) (abfd, extdyn, &dyn);
7008
7009 if (dyn.d_tag == DT_NULL)
7010 break;
7011
7012 if (dyn.d_tag == DT_NEEDED)
7013 {
7014 const char *string;
7015 struct bfd_link_needed_list *l;
7016 unsigned int tagv = dyn.d_un.d_val;
7017 bfd_size_type amt;
7018
7019 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7020 if (string == NULL)
7021 goto error_return;
7022
7023 amt = sizeof *l;
7024 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7025 if (l == NULL)
7026 goto error_return;
7027
7028 l->by = abfd;
7029 l->name = string;
7030 l->next = *pneeded;
7031 *pneeded = l;
7032 }
7033 }
7034
7035 free (dynbuf);
7036
7037 return TRUE;
7038
7039 error_return:
7040 if (dynbuf != NULL)
7041 free (dynbuf);
7042 return FALSE;
7043 }
7044
7045 struct elf_symbuf_symbol
7046 {
7047 unsigned long st_name; /* Symbol name, index in string tbl */
7048 unsigned char st_info; /* Type and binding attributes */
7049 unsigned char st_other; /* Visibilty, and target specific */
7050 };
7051
7052 struct elf_symbuf_head
7053 {
7054 struct elf_symbuf_symbol *ssym;
7055 bfd_size_type count;
7056 unsigned int st_shndx;
7057 };
7058
7059 struct elf_symbol
7060 {
7061 union
7062 {
7063 Elf_Internal_Sym *isym;
7064 struct elf_symbuf_symbol *ssym;
7065 } u;
7066 const char *name;
7067 };
7068
7069 /* Sort references to symbols by ascending section number. */
7070
7071 static int
7072 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7073 {
7074 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7075 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7076
7077 return s1->st_shndx - s2->st_shndx;
7078 }
7079
7080 static int
7081 elf_sym_name_compare (const void *arg1, const void *arg2)
7082 {
7083 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7084 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7085 return strcmp (s1->name, s2->name);
7086 }
7087
7088 static struct elf_symbuf_head *
7089 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7090 {
7091 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7092 struct elf_symbuf_symbol *ssym;
7093 struct elf_symbuf_head *ssymbuf, *ssymhead;
7094 bfd_size_type i, shndx_count, total_size;
7095
7096 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7097 if (indbuf == NULL)
7098 return NULL;
7099
7100 for (ind = indbuf, i = 0; i < symcount; i++)
7101 if (isymbuf[i].st_shndx != SHN_UNDEF)
7102 *ind++ = &isymbuf[i];
7103 indbufend = ind;
7104
7105 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7106 elf_sort_elf_symbol);
7107
7108 shndx_count = 0;
7109 if (indbufend > indbuf)
7110 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7111 if (ind[0]->st_shndx != ind[1]->st_shndx)
7112 shndx_count++;
7113
7114 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7115 + (indbufend - indbuf) * sizeof (*ssym));
7116 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7117 if (ssymbuf == NULL)
7118 {
7119 free (indbuf);
7120 return NULL;
7121 }
7122
7123 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7124 ssymbuf->ssym = NULL;
7125 ssymbuf->count = shndx_count;
7126 ssymbuf->st_shndx = 0;
7127 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7128 {
7129 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7130 {
7131 ssymhead++;
7132 ssymhead->ssym = ssym;
7133 ssymhead->count = 0;
7134 ssymhead->st_shndx = (*ind)->st_shndx;
7135 }
7136 ssym->st_name = (*ind)->st_name;
7137 ssym->st_info = (*ind)->st_info;
7138 ssym->st_other = (*ind)->st_other;
7139 ssymhead->count++;
7140 }
7141 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7142 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7143 == total_size));
7144
7145 free (indbuf);
7146 return ssymbuf;
7147 }
7148
7149 /* Check if 2 sections define the same set of local and global
7150 symbols. */
7151
7152 static bfd_boolean
7153 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7154 struct bfd_link_info *info)
7155 {
7156 bfd *bfd1, *bfd2;
7157 const struct elf_backend_data *bed1, *bed2;
7158 Elf_Internal_Shdr *hdr1, *hdr2;
7159 bfd_size_type symcount1, symcount2;
7160 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7161 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7162 Elf_Internal_Sym *isym, *isymend;
7163 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7164 bfd_size_type count1, count2, i;
7165 unsigned int shndx1, shndx2;
7166 bfd_boolean result;
7167
7168 bfd1 = sec1->owner;
7169 bfd2 = sec2->owner;
7170
7171 /* Both sections have to be in ELF. */
7172 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7173 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7174 return FALSE;
7175
7176 if (elf_section_type (sec1) != elf_section_type (sec2))
7177 return FALSE;
7178
7179 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7180 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7181 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7182 return FALSE;
7183
7184 bed1 = get_elf_backend_data (bfd1);
7185 bed2 = get_elf_backend_data (bfd2);
7186 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7187 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7188 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7189 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7190
7191 if (symcount1 == 0 || symcount2 == 0)
7192 return FALSE;
7193
7194 result = FALSE;
7195 isymbuf1 = NULL;
7196 isymbuf2 = NULL;
7197 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7198 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7199
7200 if (ssymbuf1 == NULL)
7201 {
7202 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7203 NULL, NULL, NULL);
7204 if (isymbuf1 == NULL)
7205 goto done;
7206
7207 if (!info->reduce_memory_overheads)
7208 elf_tdata (bfd1)->symbuf = ssymbuf1
7209 = elf_create_symbuf (symcount1, isymbuf1);
7210 }
7211
7212 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7213 {
7214 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7215 NULL, NULL, NULL);
7216 if (isymbuf2 == NULL)
7217 goto done;
7218
7219 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7220 elf_tdata (bfd2)->symbuf = ssymbuf2
7221 = elf_create_symbuf (symcount2, isymbuf2);
7222 }
7223
7224 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7225 {
7226 /* Optimized faster version. */
7227 bfd_size_type lo, hi, mid;
7228 struct elf_symbol *symp;
7229 struct elf_symbuf_symbol *ssym, *ssymend;
7230
7231 lo = 0;
7232 hi = ssymbuf1->count;
7233 ssymbuf1++;
7234 count1 = 0;
7235 while (lo < hi)
7236 {
7237 mid = (lo + hi) / 2;
7238 if (shndx1 < ssymbuf1[mid].st_shndx)
7239 hi = mid;
7240 else if (shndx1 > ssymbuf1[mid].st_shndx)
7241 lo = mid + 1;
7242 else
7243 {
7244 count1 = ssymbuf1[mid].count;
7245 ssymbuf1 += mid;
7246 break;
7247 }
7248 }
7249
7250 lo = 0;
7251 hi = ssymbuf2->count;
7252 ssymbuf2++;
7253 count2 = 0;
7254 while (lo < hi)
7255 {
7256 mid = (lo + hi) / 2;
7257 if (shndx2 < ssymbuf2[mid].st_shndx)
7258 hi = mid;
7259 else if (shndx2 > ssymbuf2[mid].st_shndx)
7260 lo = mid + 1;
7261 else
7262 {
7263 count2 = ssymbuf2[mid].count;
7264 ssymbuf2 += mid;
7265 break;
7266 }
7267 }
7268
7269 if (count1 == 0 || count2 == 0 || count1 != count2)
7270 goto done;
7271
7272 symtable1
7273 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7274 symtable2
7275 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7276 if (symtable1 == NULL || symtable2 == NULL)
7277 goto done;
7278
7279 symp = symtable1;
7280 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7281 ssym < ssymend; ssym++, symp++)
7282 {
7283 symp->u.ssym = ssym;
7284 symp->name = bfd_elf_string_from_elf_section (bfd1,
7285 hdr1->sh_link,
7286 ssym->st_name);
7287 }
7288
7289 symp = symtable2;
7290 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7291 ssym < ssymend; ssym++, symp++)
7292 {
7293 symp->u.ssym = ssym;
7294 symp->name = bfd_elf_string_from_elf_section (bfd2,
7295 hdr2->sh_link,
7296 ssym->st_name);
7297 }
7298
7299 /* Sort symbol by name. */
7300 qsort (symtable1, count1, sizeof (struct elf_symbol),
7301 elf_sym_name_compare);
7302 qsort (symtable2, count1, sizeof (struct elf_symbol),
7303 elf_sym_name_compare);
7304
7305 for (i = 0; i < count1; i++)
7306 /* Two symbols must have the same binding, type and name. */
7307 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7308 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7309 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7310 goto done;
7311
7312 result = TRUE;
7313 goto done;
7314 }
7315
7316 symtable1 = (struct elf_symbol *)
7317 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7318 symtable2 = (struct elf_symbol *)
7319 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7320 if (symtable1 == NULL || symtable2 == NULL)
7321 goto done;
7322
7323 /* Count definitions in the section. */
7324 count1 = 0;
7325 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7326 if (isym->st_shndx == shndx1)
7327 symtable1[count1++].u.isym = isym;
7328
7329 count2 = 0;
7330 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7331 if (isym->st_shndx == shndx2)
7332 symtable2[count2++].u.isym = isym;
7333
7334 if (count1 == 0 || count2 == 0 || count1 != count2)
7335 goto done;
7336
7337 for (i = 0; i < count1; i++)
7338 symtable1[i].name
7339 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7340 symtable1[i].u.isym->st_name);
7341
7342 for (i = 0; i < count2; i++)
7343 symtable2[i].name
7344 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7345 symtable2[i].u.isym->st_name);
7346
7347 /* Sort symbol by name. */
7348 qsort (symtable1, count1, sizeof (struct elf_symbol),
7349 elf_sym_name_compare);
7350 qsort (symtable2, count1, sizeof (struct elf_symbol),
7351 elf_sym_name_compare);
7352
7353 for (i = 0; i < count1; i++)
7354 /* Two symbols must have the same binding, type and name. */
7355 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7356 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7357 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7358 goto done;
7359
7360 result = TRUE;
7361
7362 done:
7363 if (symtable1)
7364 free (symtable1);
7365 if (symtable2)
7366 free (symtable2);
7367 if (isymbuf1)
7368 free (isymbuf1);
7369 if (isymbuf2)
7370 free (isymbuf2);
7371
7372 return result;
7373 }
7374
7375 /* Return TRUE if 2 section types are compatible. */
7376
7377 bfd_boolean
7378 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7379 bfd *bbfd, const asection *bsec)
7380 {
7381 if (asec == NULL
7382 || bsec == NULL
7383 || abfd->xvec->flavour != bfd_target_elf_flavour
7384 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7385 return TRUE;
7386
7387 return elf_section_type (asec) == elf_section_type (bsec);
7388 }
7389 \f
7390 /* Final phase of ELF linker. */
7391
7392 /* A structure we use to avoid passing large numbers of arguments. */
7393
7394 struct elf_final_link_info
7395 {
7396 /* General link information. */
7397 struct bfd_link_info *info;
7398 /* Output BFD. */
7399 bfd *output_bfd;
7400 /* Symbol string table. */
7401 struct bfd_strtab_hash *symstrtab;
7402 /* .dynsym section. */
7403 asection *dynsym_sec;
7404 /* .hash section. */
7405 asection *hash_sec;
7406 /* symbol version section (.gnu.version). */
7407 asection *symver_sec;
7408 /* Buffer large enough to hold contents of any section. */
7409 bfd_byte *contents;
7410 /* Buffer large enough to hold external relocs of any section. */
7411 void *external_relocs;
7412 /* Buffer large enough to hold internal relocs of any section. */
7413 Elf_Internal_Rela *internal_relocs;
7414 /* Buffer large enough to hold external local symbols of any input
7415 BFD. */
7416 bfd_byte *external_syms;
7417 /* And a buffer for symbol section indices. */
7418 Elf_External_Sym_Shndx *locsym_shndx;
7419 /* Buffer large enough to hold internal local symbols of any input
7420 BFD. */
7421 Elf_Internal_Sym *internal_syms;
7422 /* Array large enough to hold a symbol index for each local symbol
7423 of any input BFD. */
7424 long *indices;
7425 /* Array large enough to hold a section pointer for each local
7426 symbol of any input BFD. */
7427 asection **sections;
7428 /* Buffer to hold swapped out symbols. */
7429 bfd_byte *symbuf;
7430 /* And one for symbol section indices. */
7431 Elf_External_Sym_Shndx *symshndxbuf;
7432 /* Number of swapped out symbols in buffer. */
7433 size_t symbuf_count;
7434 /* Number of symbols which fit in symbuf. */
7435 size_t symbuf_size;
7436 /* And same for symshndxbuf. */
7437 size_t shndxbuf_size;
7438 /* Number of STT_FILE syms seen. */
7439 size_t filesym_count;
7440 };
7441
7442 /* This struct is used to pass information to elf_link_output_extsym. */
7443
7444 struct elf_outext_info
7445 {
7446 bfd_boolean failed;
7447 bfd_boolean localsyms;
7448 bfd_boolean file_sym_done;
7449 struct elf_final_link_info *flinfo;
7450 };
7451
7452
7453 /* Support for evaluating a complex relocation.
7454
7455 Complex relocations are generalized, self-describing relocations. The
7456 implementation of them consists of two parts: complex symbols, and the
7457 relocations themselves.
7458
7459 The relocations are use a reserved elf-wide relocation type code (R_RELC
7460 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7461 information (start bit, end bit, word width, etc) into the addend. This
7462 information is extracted from CGEN-generated operand tables within gas.
7463
7464 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7465 internal) representing prefix-notation expressions, including but not
7466 limited to those sorts of expressions normally encoded as addends in the
7467 addend field. The symbol mangling format is:
7468
7469 <node> := <literal>
7470 | <unary-operator> ':' <node>
7471 | <binary-operator> ':' <node> ':' <node>
7472 ;
7473
7474 <literal> := 's' <digits=N> ':' <N character symbol name>
7475 | 'S' <digits=N> ':' <N character section name>
7476 | '#' <hexdigits>
7477 ;
7478
7479 <binary-operator> := as in C
7480 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7481
7482 static void
7483 set_symbol_value (bfd *bfd_with_globals,
7484 Elf_Internal_Sym *isymbuf,
7485 size_t locsymcount,
7486 size_t symidx,
7487 bfd_vma val)
7488 {
7489 struct elf_link_hash_entry **sym_hashes;
7490 struct elf_link_hash_entry *h;
7491 size_t extsymoff = locsymcount;
7492
7493 if (symidx < locsymcount)
7494 {
7495 Elf_Internal_Sym *sym;
7496
7497 sym = isymbuf + symidx;
7498 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7499 {
7500 /* It is a local symbol: move it to the
7501 "absolute" section and give it a value. */
7502 sym->st_shndx = SHN_ABS;
7503 sym->st_value = val;
7504 return;
7505 }
7506 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7507 extsymoff = 0;
7508 }
7509
7510 /* It is a global symbol: set its link type
7511 to "defined" and give it a value. */
7512
7513 sym_hashes = elf_sym_hashes (bfd_with_globals);
7514 h = sym_hashes [symidx - extsymoff];
7515 while (h->root.type == bfd_link_hash_indirect
7516 || h->root.type == bfd_link_hash_warning)
7517 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7518 h->root.type = bfd_link_hash_defined;
7519 h->root.u.def.value = val;
7520 h->root.u.def.section = bfd_abs_section_ptr;
7521 }
7522
7523 static bfd_boolean
7524 resolve_symbol (const char *name,
7525 bfd *input_bfd,
7526 struct elf_final_link_info *flinfo,
7527 bfd_vma *result,
7528 Elf_Internal_Sym *isymbuf,
7529 size_t locsymcount)
7530 {
7531 Elf_Internal_Sym *sym;
7532 struct bfd_link_hash_entry *global_entry;
7533 const char *candidate = NULL;
7534 Elf_Internal_Shdr *symtab_hdr;
7535 size_t i;
7536
7537 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7538
7539 for (i = 0; i < locsymcount; ++ i)
7540 {
7541 sym = isymbuf + i;
7542
7543 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7544 continue;
7545
7546 candidate = bfd_elf_string_from_elf_section (input_bfd,
7547 symtab_hdr->sh_link,
7548 sym->st_name);
7549 #ifdef DEBUG
7550 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7551 name, candidate, (unsigned long) sym->st_value);
7552 #endif
7553 if (candidate && strcmp (candidate, name) == 0)
7554 {
7555 asection *sec = flinfo->sections [i];
7556
7557 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7558 *result += sec->output_offset + sec->output_section->vma;
7559 #ifdef DEBUG
7560 printf ("Found symbol with value %8.8lx\n",
7561 (unsigned long) *result);
7562 #endif
7563 return TRUE;
7564 }
7565 }
7566
7567 /* Hmm, haven't found it yet. perhaps it is a global. */
7568 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7569 FALSE, FALSE, TRUE);
7570 if (!global_entry)
7571 return FALSE;
7572
7573 if (global_entry->type == bfd_link_hash_defined
7574 || global_entry->type == bfd_link_hash_defweak)
7575 {
7576 *result = (global_entry->u.def.value
7577 + global_entry->u.def.section->output_section->vma
7578 + global_entry->u.def.section->output_offset);
7579 #ifdef DEBUG
7580 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7581 global_entry->root.string, (unsigned long) *result);
7582 #endif
7583 return TRUE;
7584 }
7585
7586 return FALSE;
7587 }
7588
7589 static bfd_boolean
7590 resolve_section (const char *name,
7591 asection *sections,
7592 bfd_vma *result)
7593 {
7594 asection *curr;
7595 unsigned int len;
7596
7597 for (curr = sections; curr; curr = curr->next)
7598 if (strcmp (curr->name, name) == 0)
7599 {
7600 *result = curr->vma;
7601 return TRUE;
7602 }
7603
7604 /* Hmm. still haven't found it. try pseudo-section names. */
7605 for (curr = sections; curr; curr = curr->next)
7606 {
7607 len = strlen (curr->name);
7608 if (len > strlen (name))
7609 continue;
7610
7611 if (strncmp (curr->name, name, len) == 0)
7612 {
7613 if (strncmp (".end", name + len, 4) == 0)
7614 {
7615 *result = curr->vma + curr->size;
7616 return TRUE;
7617 }
7618
7619 /* Insert more pseudo-section names here, if you like. */
7620 }
7621 }
7622
7623 return FALSE;
7624 }
7625
7626 static void
7627 undefined_reference (const char *reftype, const char *name)
7628 {
7629 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7630 reftype, name);
7631 }
7632
7633 static bfd_boolean
7634 eval_symbol (bfd_vma *result,
7635 const char **symp,
7636 bfd *input_bfd,
7637 struct elf_final_link_info *flinfo,
7638 bfd_vma dot,
7639 Elf_Internal_Sym *isymbuf,
7640 size_t locsymcount,
7641 int signed_p)
7642 {
7643 size_t len;
7644 size_t symlen;
7645 bfd_vma a;
7646 bfd_vma b;
7647 char symbuf[4096];
7648 const char *sym = *symp;
7649 const char *symend;
7650 bfd_boolean symbol_is_section = FALSE;
7651
7652 len = strlen (sym);
7653 symend = sym + len;
7654
7655 if (len < 1 || len > sizeof (symbuf))
7656 {
7657 bfd_set_error (bfd_error_invalid_operation);
7658 return FALSE;
7659 }
7660
7661 switch (* sym)
7662 {
7663 case '.':
7664 *result = dot;
7665 *symp = sym + 1;
7666 return TRUE;
7667
7668 case '#':
7669 ++sym;
7670 *result = strtoul (sym, (char **) symp, 16);
7671 return TRUE;
7672
7673 case 'S':
7674 symbol_is_section = TRUE;
7675 case 's':
7676 ++sym;
7677 symlen = strtol (sym, (char **) symp, 10);
7678 sym = *symp + 1; /* Skip the trailing ':'. */
7679
7680 if (symend < sym || symlen + 1 > sizeof (symbuf))
7681 {
7682 bfd_set_error (bfd_error_invalid_operation);
7683 return FALSE;
7684 }
7685
7686 memcpy (symbuf, sym, symlen);
7687 symbuf[symlen] = '\0';
7688 *symp = sym + symlen;
7689
7690 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7691 the symbol as a section, or vice-versa. so we're pretty liberal in our
7692 interpretation here; section means "try section first", not "must be a
7693 section", and likewise with symbol. */
7694
7695 if (symbol_is_section)
7696 {
7697 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7698 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7699 isymbuf, locsymcount))
7700 {
7701 undefined_reference ("section", symbuf);
7702 return FALSE;
7703 }
7704 }
7705 else
7706 {
7707 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7708 isymbuf, locsymcount)
7709 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7710 result))
7711 {
7712 undefined_reference ("symbol", symbuf);
7713 return FALSE;
7714 }
7715 }
7716
7717 return TRUE;
7718
7719 /* All that remains are operators. */
7720
7721 #define UNARY_OP(op) \
7722 if (strncmp (sym, #op, strlen (#op)) == 0) \
7723 { \
7724 sym += strlen (#op); \
7725 if (*sym == ':') \
7726 ++sym; \
7727 *symp = sym; \
7728 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7729 isymbuf, locsymcount, signed_p)) \
7730 return FALSE; \
7731 if (signed_p) \
7732 *result = op ((bfd_signed_vma) a); \
7733 else \
7734 *result = op a; \
7735 return TRUE; \
7736 }
7737
7738 #define BINARY_OP(op) \
7739 if (strncmp (sym, #op, strlen (#op)) == 0) \
7740 { \
7741 sym += strlen (#op); \
7742 if (*sym == ':') \
7743 ++sym; \
7744 *symp = sym; \
7745 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7746 isymbuf, locsymcount, signed_p)) \
7747 return FALSE; \
7748 ++*symp; \
7749 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7750 isymbuf, locsymcount, signed_p)) \
7751 return FALSE; \
7752 if (signed_p) \
7753 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7754 else \
7755 *result = a op b; \
7756 return TRUE; \
7757 }
7758
7759 default:
7760 UNARY_OP (0-);
7761 BINARY_OP (<<);
7762 BINARY_OP (>>);
7763 BINARY_OP (==);
7764 BINARY_OP (!=);
7765 BINARY_OP (<=);
7766 BINARY_OP (>=);
7767 BINARY_OP (&&);
7768 BINARY_OP (||);
7769 UNARY_OP (~);
7770 UNARY_OP (!);
7771 BINARY_OP (*);
7772 BINARY_OP (/);
7773 BINARY_OP (%);
7774 BINARY_OP (^);
7775 BINARY_OP (|);
7776 BINARY_OP (&);
7777 BINARY_OP (+);
7778 BINARY_OP (-);
7779 BINARY_OP (<);
7780 BINARY_OP (>);
7781 #undef UNARY_OP
7782 #undef BINARY_OP
7783 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7784 bfd_set_error (bfd_error_invalid_operation);
7785 return FALSE;
7786 }
7787 }
7788
7789 static void
7790 put_value (bfd_vma size,
7791 unsigned long chunksz,
7792 bfd *input_bfd,
7793 bfd_vma x,
7794 bfd_byte *location)
7795 {
7796 location += (size - chunksz);
7797
7798 for (; size; size -= chunksz, location -= chunksz)
7799 {
7800 switch (chunksz)
7801 {
7802 case 1:
7803 bfd_put_8 (input_bfd, x, location);
7804 x >>= 8;
7805 break;
7806 case 2:
7807 bfd_put_16 (input_bfd, x, location);
7808 x >>= 16;
7809 break;
7810 case 4:
7811 bfd_put_32 (input_bfd, x, location);
7812 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
7813 x >>= 16;
7814 x >>= 16;
7815 break;
7816 #ifdef BFD64
7817 case 8:
7818 bfd_put_64 (input_bfd, x, location);
7819 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
7820 x >>= 32;
7821 x >>= 32;
7822 break;
7823 #endif
7824 default:
7825 abort ();
7826 break;
7827 }
7828 }
7829 }
7830
7831 static bfd_vma
7832 get_value (bfd_vma size,
7833 unsigned long chunksz,
7834 bfd *input_bfd,
7835 bfd_byte *location)
7836 {
7837 int shift;
7838 bfd_vma x = 0;
7839
7840 /* Sanity checks. */
7841 BFD_ASSERT (chunksz <= sizeof (x)
7842 && size >= chunksz
7843 && chunksz != 0
7844 && (size % chunksz) == 0
7845 && input_bfd != NULL
7846 && location != NULL);
7847
7848 if (chunksz == sizeof (x))
7849 {
7850 BFD_ASSERT (size == chunksz);
7851
7852 /* Make sure that we do not perform an undefined shift operation.
7853 We know that size == chunksz so there will only be one iteration
7854 of the loop below. */
7855 shift = 0;
7856 }
7857 else
7858 shift = 8 * chunksz;
7859
7860 for (; size; size -= chunksz, location += chunksz)
7861 {
7862 switch (chunksz)
7863 {
7864 case 1:
7865 x = (x << shift) | bfd_get_8 (input_bfd, location);
7866 break;
7867 case 2:
7868 x = (x << shift) | bfd_get_16 (input_bfd, location);
7869 break;
7870 case 4:
7871 x = (x << shift) | bfd_get_32 (input_bfd, location);
7872 break;
7873 #ifdef BFD64
7874 case 8:
7875 x = (x << shift) | bfd_get_64 (input_bfd, location);
7876 break;
7877 #endif
7878 default:
7879 abort ();
7880 }
7881 }
7882 return x;
7883 }
7884
7885 static void
7886 decode_complex_addend (unsigned long *start, /* in bits */
7887 unsigned long *oplen, /* in bits */
7888 unsigned long *len, /* in bits */
7889 unsigned long *wordsz, /* in bytes */
7890 unsigned long *chunksz, /* in bytes */
7891 unsigned long *lsb0_p,
7892 unsigned long *signed_p,
7893 unsigned long *trunc_p,
7894 unsigned long encoded)
7895 {
7896 * start = encoded & 0x3F;
7897 * len = (encoded >> 6) & 0x3F;
7898 * oplen = (encoded >> 12) & 0x3F;
7899 * wordsz = (encoded >> 18) & 0xF;
7900 * chunksz = (encoded >> 22) & 0xF;
7901 * lsb0_p = (encoded >> 27) & 1;
7902 * signed_p = (encoded >> 28) & 1;
7903 * trunc_p = (encoded >> 29) & 1;
7904 }
7905
7906 bfd_reloc_status_type
7907 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7908 asection *input_section ATTRIBUTE_UNUSED,
7909 bfd_byte *contents,
7910 Elf_Internal_Rela *rel,
7911 bfd_vma relocation)
7912 {
7913 bfd_vma shift, x, mask;
7914 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7915 bfd_reloc_status_type r;
7916
7917 /* Perform this reloc, since it is complex.
7918 (this is not to say that it necessarily refers to a complex
7919 symbol; merely that it is a self-describing CGEN based reloc.
7920 i.e. the addend has the complete reloc information (bit start, end,
7921 word size, etc) encoded within it.). */
7922
7923 decode_complex_addend (&start, &oplen, &len, &wordsz,
7924 &chunksz, &lsb0_p, &signed_p,
7925 &trunc_p, rel->r_addend);
7926
7927 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7928
7929 if (lsb0_p)
7930 shift = (start + 1) - len;
7931 else
7932 shift = (8 * wordsz) - (start + len);
7933
7934 /* FIXME: octets_per_byte. */
7935 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7936
7937 #ifdef DEBUG
7938 printf ("Doing complex reloc: "
7939 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7940 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7941 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7942 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7943 oplen, (unsigned long) x, (unsigned long) mask,
7944 (unsigned long) relocation);
7945 #endif
7946
7947 r = bfd_reloc_ok;
7948 if (! trunc_p)
7949 /* Now do an overflow check. */
7950 r = bfd_check_overflow ((signed_p
7951 ? complain_overflow_signed
7952 : complain_overflow_unsigned),
7953 len, 0, (8 * wordsz),
7954 relocation);
7955
7956 /* Do the deed. */
7957 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7958
7959 #ifdef DEBUG
7960 printf (" relocation: %8.8lx\n"
7961 " shifted mask: %8.8lx\n"
7962 " shifted/masked reloc: %8.8lx\n"
7963 " result: %8.8lx\n",
7964 (unsigned long) relocation, (unsigned long) (mask << shift),
7965 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7966 #endif
7967 /* FIXME: octets_per_byte. */
7968 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7969 return r;
7970 }
7971
7972 /* qsort comparison functions sorting external relocs by r_offset. */
7973
7974 static int
7975 cmp_ext32l_r_offset (const void *p, const void *q)
7976 {
7977 union aligned32
7978 {
7979 uint32_t v;
7980 unsigned char c[4];
7981 };
7982 const union aligned32 *a
7983 = (const union aligned32 *) ((const Elf32_External_Rel *) p)->r_offset;
7984 const union aligned32 *b
7985 = (const union aligned32 *) ((const Elf32_External_Rel *) q)->r_offset;
7986
7987 uint32_t aval = ( (uint32_t) a->c[0]
7988 | (uint32_t) a->c[1] << 8
7989 | (uint32_t) a->c[2] << 16
7990 | (uint32_t) a->c[3] << 24);
7991 uint32_t bval = ( (uint32_t) b->c[0]
7992 | (uint32_t) b->c[1] << 8
7993 | (uint32_t) b->c[2] << 16
7994 | (uint32_t) b->c[3] << 24);
7995 if (aval < bval)
7996 return -1;
7997 else if (aval > bval)
7998 return 1;
7999 return 0;
8000 }
8001
8002 static int
8003 cmp_ext32b_r_offset (const void *p, const void *q)
8004 {
8005 union aligned32
8006 {
8007 uint32_t v;
8008 unsigned char c[4];
8009 };
8010 const union aligned32 *a
8011 = (const union aligned32 *) ((const Elf32_External_Rel *) p)->r_offset;
8012 const union aligned32 *b
8013 = (const union aligned32 *) ((const Elf32_External_Rel *) q)->r_offset;
8014
8015 uint32_t aval = ( (uint32_t) a->c[0] << 24
8016 | (uint32_t) a->c[1] << 16
8017 | (uint32_t) a->c[2] << 8
8018 | (uint32_t) a->c[3]);
8019 uint32_t bval = ( (uint32_t) b->c[0] << 24
8020 | (uint32_t) b->c[1] << 16
8021 | (uint32_t) b->c[2] << 8
8022 | (uint32_t) b->c[3]);
8023 if (aval < bval)
8024 return -1;
8025 else if (aval > bval)
8026 return 1;
8027 return 0;
8028 }
8029
8030 #ifdef BFD_HOST_64_BIT
8031 static int
8032 cmp_ext64l_r_offset (const void *p, const void *q)
8033 {
8034 union aligned64
8035 {
8036 uint64_t v;
8037 unsigned char c[8];
8038 };
8039 const union aligned64 *a
8040 = (const union aligned64 *) ((const Elf64_External_Rel *) p)->r_offset;
8041 const union aligned64 *b
8042 = (const union aligned64 *) ((const Elf64_External_Rel *) q)->r_offset;
8043
8044 uint64_t aval = ( (uint64_t) a->c[0]
8045 | (uint64_t) a->c[1] << 8
8046 | (uint64_t) a->c[2] << 16
8047 | (uint64_t) a->c[3] << 24
8048 | (uint64_t) a->c[4] << 32
8049 | (uint64_t) a->c[5] << 40
8050 | (uint64_t) a->c[6] << 48
8051 | (uint64_t) a->c[7] << 56);
8052 uint64_t bval = ( (uint64_t) b->c[0]
8053 | (uint64_t) b->c[1] << 8
8054 | (uint64_t) b->c[2] << 16
8055 | (uint64_t) b->c[3] << 24
8056 | (uint64_t) b->c[4] << 32
8057 | (uint64_t) b->c[5] << 40
8058 | (uint64_t) b->c[6] << 48
8059 | (uint64_t) b->c[7] << 56);
8060 if (aval < bval)
8061 return -1;
8062 else if (aval > bval)
8063 return 1;
8064 return 0;
8065 }
8066
8067 static int
8068 cmp_ext64b_r_offset (const void *p, const void *q)
8069 {
8070 union aligned64
8071 {
8072 uint64_t v;
8073 unsigned char c[8];
8074 };
8075 const union aligned64 *a
8076 = (const union aligned64 *) ((const Elf64_External_Rel *) p)->r_offset;
8077 const union aligned64 *b
8078 = (const union aligned64 *) ((const Elf64_External_Rel *) q)->r_offset;
8079
8080 uint64_t aval = ( (uint64_t) a->c[0] << 56
8081 | (uint64_t) a->c[1] << 48
8082 | (uint64_t) a->c[2] << 40
8083 | (uint64_t) a->c[3] << 32
8084 | (uint64_t) a->c[4] << 24
8085 | (uint64_t) a->c[5] << 16
8086 | (uint64_t) a->c[6] << 8
8087 | (uint64_t) a->c[7]);
8088 uint64_t bval = ( (uint64_t) b->c[0] << 56
8089 | (uint64_t) b->c[1] << 48
8090 | (uint64_t) b->c[2] << 40
8091 | (uint64_t) b->c[3] << 32
8092 | (uint64_t) b->c[4] << 24
8093 | (uint64_t) b->c[5] << 16
8094 | (uint64_t) b->c[6] << 8
8095 | (uint64_t) b->c[7]);
8096 if (aval < bval)
8097 return -1;
8098 else if (aval > bval)
8099 return 1;
8100 return 0;
8101 }
8102 #endif
8103
8104 /* When performing a relocatable link, the input relocations are
8105 preserved. But, if they reference global symbols, the indices
8106 referenced must be updated. Update all the relocations found in
8107 RELDATA. */
8108
8109 static void
8110 elf_link_adjust_relocs (bfd *abfd,
8111 struct bfd_elf_section_reloc_data *reldata,
8112 bfd_boolean sort)
8113 {
8114 unsigned int i;
8115 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8116 bfd_byte *erela;
8117 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8118 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8119 bfd_vma r_type_mask;
8120 int r_sym_shift;
8121 unsigned int count = reldata->count;
8122 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8123
8124 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8125 {
8126 swap_in = bed->s->swap_reloc_in;
8127 swap_out = bed->s->swap_reloc_out;
8128 }
8129 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8130 {
8131 swap_in = bed->s->swap_reloca_in;
8132 swap_out = bed->s->swap_reloca_out;
8133 }
8134 else
8135 abort ();
8136
8137 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8138 abort ();
8139
8140 if (bed->s->arch_size == 32)
8141 {
8142 r_type_mask = 0xff;
8143 r_sym_shift = 8;
8144 }
8145 else
8146 {
8147 r_type_mask = 0xffffffff;
8148 r_sym_shift = 32;
8149 }
8150
8151 erela = reldata->hdr->contents;
8152 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8153 {
8154 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8155 unsigned int j;
8156
8157 if (*rel_hash == NULL)
8158 continue;
8159
8160 BFD_ASSERT ((*rel_hash)->indx >= 0);
8161
8162 (*swap_in) (abfd, erela, irela);
8163 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8164 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8165 | (irela[j].r_info & r_type_mask));
8166 (*swap_out) (abfd, irela, erela);
8167 }
8168
8169 if (sort)
8170 {
8171 int (*compare) (const void *, const void *);
8172
8173 if (bed->s->arch_size == 32)
8174 {
8175 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8176 compare = cmp_ext32l_r_offset;
8177 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8178 compare = cmp_ext32b_r_offset;
8179 else
8180 abort ();
8181 }
8182 else
8183 {
8184 #ifdef BFD_HOST_64_BIT
8185 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8186 compare = cmp_ext64l_r_offset;
8187 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8188 compare = cmp_ext64b_r_offset;
8189 else
8190 #endif
8191 abort ();
8192 }
8193 qsort (reldata->hdr->contents, count, reldata->hdr->sh_entsize, compare);
8194 free (reldata->hashes);
8195 reldata->hashes = NULL;
8196 }
8197 }
8198
8199 struct elf_link_sort_rela
8200 {
8201 union {
8202 bfd_vma offset;
8203 bfd_vma sym_mask;
8204 } u;
8205 enum elf_reloc_type_class type;
8206 /* We use this as an array of size int_rels_per_ext_rel. */
8207 Elf_Internal_Rela rela[1];
8208 };
8209
8210 static int
8211 elf_link_sort_cmp1 (const void *A, const void *B)
8212 {
8213 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8214 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8215 int relativea, relativeb;
8216
8217 relativea = a->type == reloc_class_relative;
8218 relativeb = b->type == reloc_class_relative;
8219
8220 if (relativea < relativeb)
8221 return 1;
8222 if (relativea > relativeb)
8223 return -1;
8224 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8225 return -1;
8226 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8227 return 1;
8228 if (a->rela->r_offset < b->rela->r_offset)
8229 return -1;
8230 if (a->rela->r_offset > b->rela->r_offset)
8231 return 1;
8232 return 0;
8233 }
8234
8235 static int
8236 elf_link_sort_cmp2 (const void *A, const void *B)
8237 {
8238 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8239 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8240
8241 if (a->type < b->type)
8242 return -1;
8243 if (a->type > b->type)
8244 return 1;
8245 if (a->u.offset < b->u.offset)
8246 return -1;
8247 if (a->u.offset > b->u.offset)
8248 return 1;
8249 if (a->rela->r_offset < b->rela->r_offset)
8250 return -1;
8251 if (a->rela->r_offset > b->rela->r_offset)
8252 return 1;
8253 return 0;
8254 }
8255
8256 static size_t
8257 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8258 {
8259 asection *dynamic_relocs;
8260 asection *rela_dyn;
8261 asection *rel_dyn;
8262 bfd_size_type count, size;
8263 size_t i, ret, sort_elt, ext_size;
8264 bfd_byte *sort, *s_non_relative, *p;
8265 struct elf_link_sort_rela *sq;
8266 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8267 int i2e = bed->s->int_rels_per_ext_rel;
8268 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8269 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8270 struct bfd_link_order *lo;
8271 bfd_vma r_sym_mask;
8272 bfd_boolean use_rela;
8273
8274 /* Find a dynamic reloc section. */
8275 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8276 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8277 if (rela_dyn != NULL && rela_dyn->size > 0
8278 && rel_dyn != NULL && rel_dyn->size > 0)
8279 {
8280 bfd_boolean use_rela_initialised = FALSE;
8281
8282 /* This is just here to stop gcc from complaining.
8283 It's initialization checking code is not perfect. */
8284 use_rela = TRUE;
8285
8286 /* Both sections are present. Examine the sizes
8287 of the indirect sections to help us choose. */
8288 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8289 if (lo->type == bfd_indirect_link_order)
8290 {
8291 asection *o = lo->u.indirect.section;
8292
8293 if ((o->size % bed->s->sizeof_rela) == 0)
8294 {
8295 if ((o->size % bed->s->sizeof_rel) == 0)
8296 /* Section size is divisible by both rel and rela sizes.
8297 It is of no help to us. */
8298 ;
8299 else
8300 {
8301 /* Section size is only divisible by rela. */
8302 if (use_rela_initialised && (use_rela == FALSE))
8303 {
8304 _bfd_error_handler
8305 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8306 bfd_set_error (bfd_error_invalid_operation);
8307 return 0;
8308 }
8309 else
8310 {
8311 use_rela = TRUE;
8312 use_rela_initialised = TRUE;
8313 }
8314 }
8315 }
8316 else if ((o->size % bed->s->sizeof_rel) == 0)
8317 {
8318 /* Section size is only divisible by rel. */
8319 if (use_rela_initialised && (use_rela == TRUE))
8320 {
8321 _bfd_error_handler
8322 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8323 bfd_set_error (bfd_error_invalid_operation);
8324 return 0;
8325 }
8326 else
8327 {
8328 use_rela = FALSE;
8329 use_rela_initialised = TRUE;
8330 }
8331 }
8332 else
8333 {
8334 /* The section size is not divisible by either - something is wrong. */
8335 _bfd_error_handler
8336 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8337 bfd_set_error (bfd_error_invalid_operation);
8338 return 0;
8339 }
8340 }
8341
8342 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8343 if (lo->type == bfd_indirect_link_order)
8344 {
8345 asection *o = lo->u.indirect.section;
8346
8347 if ((o->size % bed->s->sizeof_rela) == 0)
8348 {
8349 if ((o->size % bed->s->sizeof_rel) == 0)
8350 /* Section size is divisible by both rel and rela sizes.
8351 It is of no help to us. */
8352 ;
8353 else
8354 {
8355 /* Section size is only divisible by rela. */
8356 if (use_rela_initialised && (use_rela == FALSE))
8357 {
8358 _bfd_error_handler
8359 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8360 bfd_set_error (bfd_error_invalid_operation);
8361 return 0;
8362 }
8363 else
8364 {
8365 use_rela = TRUE;
8366 use_rela_initialised = TRUE;
8367 }
8368 }
8369 }
8370 else if ((o->size % bed->s->sizeof_rel) == 0)
8371 {
8372 /* Section size is only divisible by rel. */
8373 if (use_rela_initialised && (use_rela == TRUE))
8374 {
8375 _bfd_error_handler
8376 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8377 bfd_set_error (bfd_error_invalid_operation);
8378 return 0;
8379 }
8380 else
8381 {
8382 use_rela = FALSE;
8383 use_rela_initialised = TRUE;
8384 }
8385 }
8386 else
8387 {
8388 /* The section size is not divisible by either - something is wrong. */
8389 _bfd_error_handler
8390 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8391 bfd_set_error (bfd_error_invalid_operation);
8392 return 0;
8393 }
8394 }
8395
8396 if (! use_rela_initialised)
8397 /* Make a guess. */
8398 use_rela = TRUE;
8399 }
8400 else if (rela_dyn != NULL && rela_dyn->size > 0)
8401 use_rela = TRUE;
8402 else if (rel_dyn != NULL && rel_dyn->size > 0)
8403 use_rela = FALSE;
8404 else
8405 return 0;
8406
8407 if (use_rela)
8408 {
8409 dynamic_relocs = rela_dyn;
8410 ext_size = bed->s->sizeof_rela;
8411 swap_in = bed->s->swap_reloca_in;
8412 swap_out = bed->s->swap_reloca_out;
8413 }
8414 else
8415 {
8416 dynamic_relocs = rel_dyn;
8417 ext_size = bed->s->sizeof_rel;
8418 swap_in = bed->s->swap_reloc_in;
8419 swap_out = bed->s->swap_reloc_out;
8420 }
8421
8422 size = 0;
8423 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8424 if (lo->type == bfd_indirect_link_order)
8425 size += lo->u.indirect.section->size;
8426
8427 if (size != dynamic_relocs->size)
8428 return 0;
8429
8430 sort_elt = (sizeof (struct elf_link_sort_rela)
8431 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8432
8433 count = dynamic_relocs->size / ext_size;
8434 if (count == 0)
8435 return 0;
8436 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8437
8438 if (sort == NULL)
8439 {
8440 (*info->callbacks->warning)
8441 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8442 return 0;
8443 }
8444
8445 if (bed->s->arch_size == 32)
8446 r_sym_mask = ~(bfd_vma) 0xff;
8447 else
8448 r_sym_mask = ~(bfd_vma) 0xffffffff;
8449
8450 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8451 if (lo->type == bfd_indirect_link_order)
8452 {
8453 bfd_byte *erel, *erelend;
8454 asection *o = lo->u.indirect.section;
8455
8456 if (o->contents == NULL && o->size != 0)
8457 {
8458 /* This is a reloc section that is being handled as a normal
8459 section. See bfd_section_from_shdr. We can't combine
8460 relocs in this case. */
8461 free (sort);
8462 return 0;
8463 }
8464 erel = o->contents;
8465 erelend = o->contents + o->size;
8466 /* FIXME: octets_per_byte. */
8467 p = sort + o->output_offset / ext_size * sort_elt;
8468
8469 while (erel < erelend)
8470 {
8471 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8472
8473 (*swap_in) (abfd, erel, s->rela);
8474 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8475 s->u.sym_mask = r_sym_mask;
8476 p += sort_elt;
8477 erel += ext_size;
8478 }
8479 }
8480
8481 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8482
8483 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8484 {
8485 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8486 if (s->type != reloc_class_relative)
8487 break;
8488 }
8489 ret = i;
8490 s_non_relative = p;
8491
8492 sq = (struct elf_link_sort_rela *) s_non_relative;
8493 for (; i < count; i++, p += sort_elt)
8494 {
8495 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8496 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8497 sq = sp;
8498 sp->u.offset = sq->rela->r_offset;
8499 }
8500
8501 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8502
8503 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8504 if (lo->type == bfd_indirect_link_order)
8505 {
8506 bfd_byte *erel, *erelend;
8507 asection *o = lo->u.indirect.section;
8508
8509 erel = o->contents;
8510 erelend = o->contents + o->size;
8511 /* FIXME: octets_per_byte. */
8512 p = sort + o->output_offset / ext_size * sort_elt;
8513 while (erel < erelend)
8514 {
8515 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8516 (*swap_out) (abfd, s->rela, erel);
8517 p += sort_elt;
8518 erel += ext_size;
8519 }
8520 }
8521
8522 free (sort);
8523 *psec = dynamic_relocs;
8524 return ret;
8525 }
8526
8527 /* Flush the output symbols to the file. */
8528
8529 static bfd_boolean
8530 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8531 const struct elf_backend_data *bed)
8532 {
8533 if (flinfo->symbuf_count > 0)
8534 {
8535 Elf_Internal_Shdr *hdr;
8536 file_ptr pos;
8537 bfd_size_type amt;
8538
8539 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8540 pos = hdr->sh_offset + hdr->sh_size;
8541 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8542 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8543 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8544 return FALSE;
8545
8546 hdr->sh_size += amt;
8547 flinfo->symbuf_count = 0;
8548 }
8549
8550 return TRUE;
8551 }
8552
8553 /* Add a symbol to the output symbol table. */
8554
8555 static int
8556 elf_link_output_sym (struct elf_final_link_info *flinfo,
8557 const char *name,
8558 Elf_Internal_Sym *elfsym,
8559 asection *input_sec,
8560 struct elf_link_hash_entry *h)
8561 {
8562 bfd_byte *dest;
8563 Elf_External_Sym_Shndx *destshndx;
8564 int (*output_symbol_hook)
8565 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8566 struct elf_link_hash_entry *);
8567 const struct elf_backend_data *bed;
8568
8569 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8570
8571 bed = get_elf_backend_data (flinfo->output_bfd);
8572 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8573 if (output_symbol_hook != NULL)
8574 {
8575 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8576 if (ret != 1)
8577 return ret;
8578 }
8579
8580 if (name == NULL || *name == '\0')
8581 elfsym->st_name = 0;
8582 else if (input_sec->flags & SEC_EXCLUDE)
8583 elfsym->st_name = 0;
8584 else
8585 {
8586 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8587 name, TRUE, FALSE);
8588 if (elfsym->st_name == (unsigned long) -1)
8589 return 0;
8590 }
8591
8592 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8593 {
8594 if (! elf_link_flush_output_syms (flinfo, bed))
8595 return 0;
8596 }
8597
8598 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8599 destshndx = flinfo->symshndxbuf;
8600 if (destshndx != NULL)
8601 {
8602 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8603 {
8604 bfd_size_type amt;
8605
8606 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8607 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8608 amt * 2);
8609 if (destshndx == NULL)
8610 return 0;
8611 flinfo->symshndxbuf = destshndx;
8612 memset ((char *) destshndx + amt, 0, amt);
8613 flinfo->shndxbuf_size *= 2;
8614 }
8615 destshndx += bfd_get_symcount (flinfo->output_bfd);
8616 }
8617
8618 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8619 flinfo->symbuf_count += 1;
8620 bfd_get_symcount (flinfo->output_bfd) += 1;
8621
8622 return 1;
8623 }
8624
8625 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8626
8627 static bfd_boolean
8628 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8629 {
8630 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8631 && sym->st_shndx < SHN_LORESERVE)
8632 {
8633 /* The gABI doesn't support dynamic symbols in output sections
8634 beyond 64k. */
8635 (*_bfd_error_handler)
8636 (_("%B: Too many sections: %d (>= %d)"),
8637 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8638 bfd_set_error (bfd_error_nonrepresentable_section);
8639 return FALSE;
8640 }
8641 return TRUE;
8642 }
8643
8644 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8645 allowing an unsatisfied unversioned symbol in the DSO to match a
8646 versioned symbol that would normally require an explicit version.
8647 We also handle the case that a DSO references a hidden symbol
8648 which may be satisfied by a versioned symbol in another DSO. */
8649
8650 static bfd_boolean
8651 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8652 const struct elf_backend_data *bed,
8653 struct elf_link_hash_entry *h)
8654 {
8655 bfd *abfd;
8656 struct elf_link_loaded_list *loaded;
8657
8658 if (!is_elf_hash_table (info->hash))
8659 return FALSE;
8660
8661 /* Check indirect symbol. */
8662 while (h->root.type == bfd_link_hash_indirect)
8663 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8664
8665 switch (h->root.type)
8666 {
8667 default:
8668 abfd = NULL;
8669 break;
8670
8671 case bfd_link_hash_undefined:
8672 case bfd_link_hash_undefweak:
8673 abfd = h->root.u.undef.abfd;
8674 if ((abfd->flags & DYNAMIC) == 0
8675 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8676 return FALSE;
8677 break;
8678
8679 case bfd_link_hash_defined:
8680 case bfd_link_hash_defweak:
8681 abfd = h->root.u.def.section->owner;
8682 break;
8683
8684 case bfd_link_hash_common:
8685 abfd = h->root.u.c.p->section->owner;
8686 break;
8687 }
8688 BFD_ASSERT (abfd != NULL);
8689
8690 for (loaded = elf_hash_table (info)->loaded;
8691 loaded != NULL;
8692 loaded = loaded->next)
8693 {
8694 bfd *input;
8695 Elf_Internal_Shdr *hdr;
8696 bfd_size_type symcount;
8697 bfd_size_type extsymcount;
8698 bfd_size_type extsymoff;
8699 Elf_Internal_Shdr *versymhdr;
8700 Elf_Internal_Sym *isym;
8701 Elf_Internal_Sym *isymend;
8702 Elf_Internal_Sym *isymbuf;
8703 Elf_External_Versym *ever;
8704 Elf_External_Versym *extversym;
8705
8706 input = loaded->abfd;
8707
8708 /* We check each DSO for a possible hidden versioned definition. */
8709 if (input == abfd
8710 || (input->flags & DYNAMIC) == 0
8711 || elf_dynversym (input) == 0)
8712 continue;
8713
8714 hdr = &elf_tdata (input)->dynsymtab_hdr;
8715
8716 symcount = hdr->sh_size / bed->s->sizeof_sym;
8717 if (elf_bad_symtab (input))
8718 {
8719 extsymcount = symcount;
8720 extsymoff = 0;
8721 }
8722 else
8723 {
8724 extsymcount = symcount - hdr->sh_info;
8725 extsymoff = hdr->sh_info;
8726 }
8727
8728 if (extsymcount == 0)
8729 continue;
8730
8731 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8732 NULL, NULL, NULL);
8733 if (isymbuf == NULL)
8734 return FALSE;
8735
8736 /* Read in any version definitions. */
8737 versymhdr = &elf_tdata (input)->dynversym_hdr;
8738 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8739 if (extversym == NULL)
8740 goto error_ret;
8741
8742 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8743 || (bfd_bread (extversym, versymhdr->sh_size, input)
8744 != versymhdr->sh_size))
8745 {
8746 free (extversym);
8747 error_ret:
8748 free (isymbuf);
8749 return FALSE;
8750 }
8751
8752 ever = extversym + extsymoff;
8753 isymend = isymbuf + extsymcount;
8754 for (isym = isymbuf; isym < isymend; isym++, ever++)
8755 {
8756 const char *name;
8757 Elf_Internal_Versym iver;
8758 unsigned short version_index;
8759
8760 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8761 || isym->st_shndx == SHN_UNDEF)
8762 continue;
8763
8764 name = bfd_elf_string_from_elf_section (input,
8765 hdr->sh_link,
8766 isym->st_name);
8767 if (strcmp (name, h->root.root.string) != 0)
8768 continue;
8769
8770 _bfd_elf_swap_versym_in (input, ever, &iver);
8771
8772 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8773 && !(h->def_regular
8774 && h->forced_local))
8775 {
8776 /* If we have a non-hidden versioned sym, then it should
8777 have provided a definition for the undefined sym unless
8778 it is defined in a non-shared object and forced local.
8779 */
8780 abort ();
8781 }
8782
8783 version_index = iver.vs_vers & VERSYM_VERSION;
8784 if (version_index == 1 || version_index == 2)
8785 {
8786 /* This is the base or first version. We can use it. */
8787 free (extversym);
8788 free (isymbuf);
8789 return TRUE;
8790 }
8791 }
8792
8793 free (extversym);
8794 free (isymbuf);
8795 }
8796
8797 return FALSE;
8798 }
8799
8800 /* Add an external symbol to the symbol table. This is called from
8801 the hash table traversal routine. When generating a shared object,
8802 we go through the symbol table twice. The first time we output
8803 anything that might have been forced to local scope in a version
8804 script. The second time we output the symbols that are still
8805 global symbols. */
8806
8807 static bfd_boolean
8808 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8809 {
8810 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8811 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8812 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8813 bfd_boolean strip;
8814 Elf_Internal_Sym sym;
8815 asection *input_sec;
8816 const struct elf_backend_data *bed;
8817 long indx;
8818 int ret;
8819
8820 if (h->root.type == bfd_link_hash_warning)
8821 {
8822 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8823 if (h->root.type == bfd_link_hash_new)
8824 return TRUE;
8825 }
8826
8827 /* Decide whether to output this symbol in this pass. */
8828 if (eoinfo->localsyms)
8829 {
8830 if (!h->forced_local)
8831 return TRUE;
8832 }
8833 else
8834 {
8835 if (h->forced_local)
8836 return TRUE;
8837 }
8838
8839 bed = get_elf_backend_data (flinfo->output_bfd);
8840
8841 if (h->root.type == bfd_link_hash_undefined)
8842 {
8843 /* If we have an undefined symbol reference here then it must have
8844 come from a shared library that is being linked in. (Undefined
8845 references in regular files have already been handled unless
8846 they are in unreferenced sections which are removed by garbage
8847 collection). */
8848 bfd_boolean ignore_undef = FALSE;
8849
8850 /* Some symbols may be special in that the fact that they're
8851 undefined can be safely ignored - let backend determine that. */
8852 if (bed->elf_backend_ignore_undef_symbol)
8853 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8854
8855 /* If we are reporting errors for this situation then do so now. */
8856 if (!ignore_undef
8857 && h->ref_dynamic
8858 && (!h->ref_regular || flinfo->info->gc_sections)
8859 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8860 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8861 {
8862 if (!(flinfo->info->callbacks->undefined_symbol
8863 (flinfo->info, h->root.root.string,
8864 h->ref_regular ? NULL : h->root.u.undef.abfd,
8865 NULL, 0,
8866 (flinfo->info->unresolved_syms_in_shared_libs
8867 == RM_GENERATE_ERROR))))
8868 {
8869 bfd_set_error (bfd_error_bad_value);
8870 eoinfo->failed = TRUE;
8871 return FALSE;
8872 }
8873 }
8874 }
8875
8876 /* We should also warn if a forced local symbol is referenced from
8877 shared libraries. */
8878 if (!flinfo->info->relocatable
8879 && flinfo->info->executable
8880 && h->forced_local
8881 && h->ref_dynamic
8882 && h->def_regular
8883 && !h->dynamic_def
8884 && h->ref_dynamic_nonweak
8885 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8886 {
8887 bfd *def_bfd;
8888 const char *msg;
8889 struct elf_link_hash_entry *hi = h;
8890
8891 /* Check indirect symbol. */
8892 while (hi->root.type == bfd_link_hash_indirect)
8893 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8894
8895 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8896 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8897 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8898 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8899 else
8900 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8901 def_bfd = flinfo->output_bfd;
8902 if (hi->root.u.def.section != bfd_abs_section_ptr)
8903 def_bfd = hi->root.u.def.section->owner;
8904 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8905 h->root.root.string);
8906 bfd_set_error (bfd_error_bad_value);
8907 eoinfo->failed = TRUE;
8908 return FALSE;
8909 }
8910
8911 /* We don't want to output symbols that have never been mentioned by
8912 a regular file, or that we have been told to strip. However, if
8913 h->indx is set to -2, the symbol is used by a reloc and we must
8914 output it. */
8915 strip = FALSE;
8916 if (h->indx == -2)
8917 ;
8918 else if ((h->def_dynamic
8919 || h->ref_dynamic
8920 || h->root.type == bfd_link_hash_new)
8921 && !h->def_regular
8922 && !h->ref_regular)
8923 strip = TRUE;
8924 else if (flinfo->info->strip == strip_all)
8925 strip = TRUE;
8926 else if (flinfo->info->strip == strip_some
8927 && bfd_hash_lookup (flinfo->info->keep_hash,
8928 h->root.root.string, FALSE, FALSE) == NULL)
8929 strip = TRUE;
8930 else if ((h->root.type == bfd_link_hash_defined
8931 || h->root.type == bfd_link_hash_defweak)
8932 && ((flinfo->info->strip_discarded
8933 && discarded_section (h->root.u.def.section))
8934 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
8935 && h->root.u.def.section->owner != NULL
8936 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8937 strip = TRUE;
8938 else if ((h->root.type == bfd_link_hash_undefined
8939 || h->root.type == bfd_link_hash_undefweak)
8940 && h->root.u.undef.abfd != NULL
8941 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8942 strip = TRUE;
8943
8944 /* If we're stripping it, and it's not a dynamic symbol, there's
8945 nothing else to do. However, if it is a forced local symbol or
8946 an ifunc symbol we need to give the backend finish_dynamic_symbol
8947 function a chance to make it dynamic. */
8948 if (strip
8949 && h->dynindx == -1
8950 && h->type != STT_GNU_IFUNC
8951 && !h->forced_local)
8952 return TRUE;
8953
8954 sym.st_value = 0;
8955 sym.st_size = h->size;
8956 sym.st_other = h->other;
8957 if (h->forced_local)
8958 {
8959 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8960 /* Turn off visibility on local symbol. */
8961 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8962 }
8963 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
8964 else if (h->unique_global && h->def_regular)
8965 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8966 else if (h->root.type == bfd_link_hash_undefweak
8967 || h->root.type == bfd_link_hash_defweak)
8968 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8969 else
8970 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8971 sym.st_target_internal = h->target_internal;
8972
8973 switch (h->root.type)
8974 {
8975 default:
8976 case bfd_link_hash_new:
8977 case bfd_link_hash_warning:
8978 abort ();
8979 return FALSE;
8980
8981 case bfd_link_hash_undefined:
8982 case bfd_link_hash_undefweak:
8983 input_sec = bfd_und_section_ptr;
8984 sym.st_shndx = SHN_UNDEF;
8985 break;
8986
8987 case bfd_link_hash_defined:
8988 case bfd_link_hash_defweak:
8989 {
8990 input_sec = h->root.u.def.section;
8991 if (input_sec->output_section != NULL)
8992 {
8993 sym.st_shndx =
8994 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
8995 input_sec->output_section);
8996 if (sym.st_shndx == SHN_BAD)
8997 {
8998 (*_bfd_error_handler)
8999 (_("%B: could not find output section %A for input section %A"),
9000 flinfo->output_bfd, input_sec->output_section, input_sec);
9001 bfd_set_error (bfd_error_nonrepresentable_section);
9002 eoinfo->failed = TRUE;
9003 return FALSE;
9004 }
9005
9006 /* ELF symbols in relocatable files are section relative,
9007 but in nonrelocatable files they are virtual
9008 addresses. */
9009 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9010 if (!flinfo->info->relocatable)
9011 {
9012 sym.st_value += input_sec->output_section->vma;
9013 if (h->type == STT_TLS)
9014 {
9015 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9016 if (tls_sec != NULL)
9017 sym.st_value -= tls_sec->vma;
9018 }
9019 }
9020 }
9021 else
9022 {
9023 BFD_ASSERT (input_sec->owner == NULL
9024 || (input_sec->owner->flags & DYNAMIC) != 0);
9025 sym.st_shndx = SHN_UNDEF;
9026 input_sec = bfd_und_section_ptr;
9027 }
9028 }
9029 break;
9030
9031 case bfd_link_hash_common:
9032 input_sec = h->root.u.c.p->section;
9033 sym.st_shndx = bed->common_section_index (input_sec);
9034 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9035 break;
9036
9037 case bfd_link_hash_indirect:
9038 /* These symbols are created by symbol versioning. They point
9039 to the decorated version of the name. For example, if the
9040 symbol foo@@GNU_1.2 is the default, which should be used when
9041 foo is used with no version, then we add an indirect symbol
9042 foo which points to foo@@GNU_1.2. We ignore these symbols,
9043 since the indirected symbol is already in the hash table. */
9044 return TRUE;
9045 }
9046
9047 /* Give the processor backend a chance to tweak the symbol value,
9048 and also to finish up anything that needs to be done for this
9049 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9050 forced local syms when non-shared is due to a historical quirk.
9051 STT_GNU_IFUNC symbol must go through PLT. */
9052 if ((h->type == STT_GNU_IFUNC
9053 && h->def_regular
9054 && !flinfo->info->relocatable)
9055 || ((h->dynindx != -1
9056 || h->forced_local)
9057 && ((flinfo->info->shared
9058 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9059 || h->root.type != bfd_link_hash_undefweak))
9060 || !h->forced_local)
9061 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9062 {
9063 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9064 (flinfo->output_bfd, flinfo->info, h, &sym)))
9065 {
9066 eoinfo->failed = TRUE;
9067 return FALSE;
9068 }
9069 }
9070
9071 /* If we are marking the symbol as undefined, and there are no
9072 non-weak references to this symbol from a regular object, then
9073 mark the symbol as weak undefined; if there are non-weak
9074 references, mark the symbol as strong. We can't do this earlier,
9075 because it might not be marked as undefined until the
9076 finish_dynamic_symbol routine gets through with it. */
9077 if (sym.st_shndx == SHN_UNDEF
9078 && h->ref_regular
9079 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9080 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9081 {
9082 int bindtype;
9083 unsigned int type = ELF_ST_TYPE (sym.st_info);
9084
9085 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9086 if (type == STT_GNU_IFUNC)
9087 type = STT_FUNC;
9088
9089 if (h->ref_regular_nonweak)
9090 bindtype = STB_GLOBAL;
9091 else
9092 bindtype = STB_WEAK;
9093 sym.st_info = ELF_ST_INFO (bindtype, type);
9094 }
9095
9096 /* If this is a symbol defined in a dynamic library, don't use the
9097 symbol size from the dynamic library. Relinking an executable
9098 against a new library may introduce gratuitous changes in the
9099 executable's symbols if we keep the size. */
9100 if (sym.st_shndx == SHN_UNDEF
9101 && !h->def_regular
9102 && h->def_dynamic)
9103 sym.st_size = 0;
9104
9105 /* If a non-weak symbol with non-default visibility is not defined
9106 locally, it is a fatal error. */
9107 if (!flinfo->info->relocatable
9108 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9109 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9110 && h->root.type == bfd_link_hash_undefined
9111 && !h->def_regular)
9112 {
9113 const char *msg;
9114
9115 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9116 msg = _("%B: protected symbol `%s' isn't defined");
9117 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9118 msg = _("%B: internal symbol `%s' isn't defined");
9119 else
9120 msg = _("%B: hidden symbol `%s' isn't defined");
9121 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9122 bfd_set_error (bfd_error_bad_value);
9123 eoinfo->failed = TRUE;
9124 return FALSE;
9125 }
9126
9127 /* If this symbol should be put in the .dynsym section, then put it
9128 there now. We already know the symbol index. We also fill in
9129 the entry in the .hash section. */
9130 if (flinfo->dynsym_sec != NULL
9131 && h->dynindx != -1
9132 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9133 {
9134 bfd_byte *esym;
9135
9136 /* Since there is no version information in the dynamic string,
9137 if there is no version info in symbol version section, we will
9138 have a run-time problem. */
9139 if (h->verinfo.verdef == NULL)
9140 {
9141 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9142
9143 if (p && p [1] != '\0')
9144 {
9145 (*_bfd_error_handler)
9146 (_("%B: No symbol version section for versioned symbol `%s'"),
9147 flinfo->output_bfd, h->root.root.string);
9148 eoinfo->failed = TRUE;
9149 return FALSE;
9150 }
9151 }
9152
9153 sym.st_name = h->dynstr_index;
9154 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9155 if (!check_dynsym (flinfo->output_bfd, &sym))
9156 {
9157 eoinfo->failed = TRUE;
9158 return FALSE;
9159 }
9160 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9161
9162 if (flinfo->hash_sec != NULL)
9163 {
9164 size_t hash_entry_size;
9165 bfd_byte *bucketpos;
9166 bfd_vma chain;
9167 size_t bucketcount;
9168 size_t bucket;
9169
9170 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9171 bucket = h->u.elf_hash_value % bucketcount;
9172
9173 hash_entry_size
9174 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9175 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9176 + (bucket + 2) * hash_entry_size);
9177 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9178 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9179 bucketpos);
9180 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9181 ((bfd_byte *) flinfo->hash_sec->contents
9182 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9183 }
9184
9185 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9186 {
9187 Elf_Internal_Versym iversym;
9188 Elf_External_Versym *eversym;
9189
9190 if (!h->def_regular)
9191 {
9192 if (h->verinfo.verdef == NULL
9193 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9194 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9195 iversym.vs_vers = 0;
9196 else
9197 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9198 }
9199 else
9200 {
9201 if (h->verinfo.vertree == NULL)
9202 iversym.vs_vers = 1;
9203 else
9204 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9205 if (flinfo->info->create_default_symver)
9206 iversym.vs_vers++;
9207 }
9208
9209 if (h->hidden)
9210 iversym.vs_vers |= VERSYM_HIDDEN;
9211
9212 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9213 eversym += h->dynindx;
9214 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9215 }
9216 }
9217
9218 /* If the symbol is undefined, and we didn't output it to .dynsym,
9219 strip it from .symtab too. Obviously we can't do this for
9220 relocatable output or when needed for --emit-relocs. */
9221 else if (input_sec == bfd_und_section_ptr
9222 && h->indx != -2
9223 && !flinfo->info->relocatable)
9224 return TRUE;
9225 /* Also strip others that we couldn't earlier due to dynamic symbol
9226 processing. */
9227 if (strip)
9228 return TRUE;
9229 if ((input_sec->flags & SEC_EXCLUDE) != 0)
9230 return TRUE;
9231
9232 /* Output a FILE symbol so that following locals are not associated
9233 with the wrong input file. We need one for forced local symbols
9234 if we've seen more than one FILE symbol or when we have exactly
9235 one FILE symbol but global symbols are present in a file other
9236 than the one with the FILE symbol. We also need one if linker
9237 defined symbols are present. In practice these conditions are
9238 always met, so just emit the FILE symbol unconditionally. */
9239 if (eoinfo->localsyms
9240 && !eoinfo->file_sym_done
9241 && eoinfo->flinfo->filesym_count != 0)
9242 {
9243 Elf_Internal_Sym fsym;
9244
9245 memset (&fsym, 0, sizeof (fsym));
9246 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9247 fsym.st_shndx = SHN_ABS;
9248 if (!elf_link_output_sym (eoinfo->flinfo, NULL, &fsym,
9249 bfd_und_section_ptr, NULL))
9250 return FALSE;
9251
9252 eoinfo->file_sym_done = TRUE;
9253 }
9254
9255 indx = bfd_get_symcount (flinfo->output_bfd);
9256 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9257 if (ret == 0)
9258 {
9259 eoinfo->failed = TRUE;
9260 return FALSE;
9261 }
9262 else if (ret == 1)
9263 h->indx = indx;
9264 else if (h->indx == -2)
9265 abort();
9266
9267 return TRUE;
9268 }
9269
9270 /* Return TRUE if special handling is done for relocs in SEC against
9271 symbols defined in discarded sections. */
9272
9273 static bfd_boolean
9274 elf_section_ignore_discarded_relocs (asection *sec)
9275 {
9276 const struct elf_backend_data *bed;
9277
9278 switch (sec->sec_info_type)
9279 {
9280 case SEC_INFO_TYPE_STABS:
9281 case SEC_INFO_TYPE_EH_FRAME:
9282 return TRUE;
9283 default:
9284 break;
9285 }
9286
9287 bed = get_elf_backend_data (sec->owner);
9288 if (bed->elf_backend_ignore_discarded_relocs != NULL
9289 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9290 return TRUE;
9291
9292 return FALSE;
9293 }
9294
9295 /* Return a mask saying how ld should treat relocations in SEC against
9296 symbols defined in discarded sections. If this function returns
9297 COMPLAIN set, ld will issue a warning message. If this function
9298 returns PRETEND set, and the discarded section was link-once and the
9299 same size as the kept link-once section, ld will pretend that the
9300 symbol was actually defined in the kept section. Otherwise ld will
9301 zero the reloc (at least that is the intent, but some cooperation by
9302 the target dependent code is needed, particularly for REL targets). */
9303
9304 unsigned int
9305 _bfd_elf_default_action_discarded (asection *sec)
9306 {
9307 if (sec->flags & SEC_DEBUGGING)
9308 return PRETEND;
9309
9310 if (strcmp (".eh_frame", sec->name) == 0)
9311 return 0;
9312
9313 if (strcmp (".gcc_except_table", sec->name) == 0)
9314 return 0;
9315
9316 return COMPLAIN | PRETEND;
9317 }
9318
9319 /* Find a match between a section and a member of a section group. */
9320
9321 static asection *
9322 match_group_member (asection *sec, asection *group,
9323 struct bfd_link_info *info)
9324 {
9325 asection *first = elf_next_in_group (group);
9326 asection *s = first;
9327
9328 while (s != NULL)
9329 {
9330 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9331 return s;
9332
9333 s = elf_next_in_group (s);
9334 if (s == first)
9335 break;
9336 }
9337
9338 return NULL;
9339 }
9340
9341 /* Check if the kept section of a discarded section SEC can be used
9342 to replace it. Return the replacement if it is OK. Otherwise return
9343 NULL. */
9344
9345 asection *
9346 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9347 {
9348 asection *kept;
9349
9350 kept = sec->kept_section;
9351 if (kept != NULL)
9352 {
9353 if ((kept->flags & SEC_GROUP) != 0)
9354 kept = match_group_member (sec, kept, info);
9355 if (kept != NULL
9356 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9357 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9358 kept = NULL;
9359 sec->kept_section = kept;
9360 }
9361 return kept;
9362 }
9363
9364 /* Link an input file into the linker output file. This function
9365 handles all the sections and relocations of the input file at once.
9366 This is so that we only have to read the local symbols once, and
9367 don't have to keep them in memory. */
9368
9369 static bfd_boolean
9370 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9371 {
9372 int (*relocate_section)
9373 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9374 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9375 bfd *output_bfd;
9376 Elf_Internal_Shdr *symtab_hdr;
9377 size_t locsymcount;
9378 size_t extsymoff;
9379 Elf_Internal_Sym *isymbuf;
9380 Elf_Internal_Sym *isym;
9381 Elf_Internal_Sym *isymend;
9382 long *pindex;
9383 asection **ppsection;
9384 asection *o;
9385 const struct elf_backend_data *bed;
9386 struct elf_link_hash_entry **sym_hashes;
9387 bfd_size_type address_size;
9388 bfd_vma r_type_mask;
9389 int r_sym_shift;
9390 bfd_boolean have_file_sym = FALSE;
9391
9392 output_bfd = flinfo->output_bfd;
9393 bed = get_elf_backend_data (output_bfd);
9394 relocate_section = bed->elf_backend_relocate_section;
9395
9396 /* If this is a dynamic object, we don't want to do anything here:
9397 we don't want the local symbols, and we don't want the section
9398 contents. */
9399 if ((input_bfd->flags & DYNAMIC) != 0)
9400 return TRUE;
9401
9402 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9403 if (elf_bad_symtab (input_bfd))
9404 {
9405 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9406 extsymoff = 0;
9407 }
9408 else
9409 {
9410 locsymcount = symtab_hdr->sh_info;
9411 extsymoff = symtab_hdr->sh_info;
9412 }
9413
9414 /* Read the local symbols. */
9415 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9416 if (isymbuf == NULL && locsymcount != 0)
9417 {
9418 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9419 flinfo->internal_syms,
9420 flinfo->external_syms,
9421 flinfo->locsym_shndx);
9422 if (isymbuf == NULL)
9423 return FALSE;
9424 }
9425
9426 /* Find local symbol sections and adjust values of symbols in
9427 SEC_MERGE sections. Write out those local symbols we know are
9428 going into the output file. */
9429 isymend = isymbuf + locsymcount;
9430 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9431 isym < isymend;
9432 isym++, pindex++, ppsection++)
9433 {
9434 asection *isec;
9435 const char *name;
9436 Elf_Internal_Sym osym;
9437 long indx;
9438 int ret;
9439
9440 *pindex = -1;
9441
9442 if (elf_bad_symtab (input_bfd))
9443 {
9444 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9445 {
9446 *ppsection = NULL;
9447 continue;
9448 }
9449 }
9450
9451 if (isym->st_shndx == SHN_UNDEF)
9452 isec = bfd_und_section_ptr;
9453 else if (isym->st_shndx == SHN_ABS)
9454 isec = bfd_abs_section_ptr;
9455 else if (isym->st_shndx == SHN_COMMON)
9456 isec = bfd_com_section_ptr;
9457 else
9458 {
9459 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9460 if (isec == NULL)
9461 {
9462 /* Don't attempt to output symbols with st_shnx in the
9463 reserved range other than SHN_ABS and SHN_COMMON. */
9464 *ppsection = NULL;
9465 continue;
9466 }
9467 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9468 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9469 isym->st_value =
9470 _bfd_merged_section_offset (output_bfd, &isec,
9471 elf_section_data (isec)->sec_info,
9472 isym->st_value);
9473 }
9474
9475 *ppsection = isec;
9476
9477 /* Don't output the first, undefined, symbol. In fact, don't
9478 output any undefined local symbol. */
9479 if (isec == bfd_und_section_ptr)
9480 continue;
9481
9482 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9483 {
9484 /* We never output section symbols. Instead, we use the
9485 section symbol of the corresponding section in the output
9486 file. */
9487 continue;
9488 }
9489
9490 /* If we are stripping all symbols, we don't want to output this
9491 one. */
9492 if (flinfo->info->strip == strip_all)
9493 continue;
9494
9495 /* If we are discarding all local symbols, we don't want to
9496 output this one. If we are generating a relocatable output
9497 file, then some of the local symbols may be required by
9498 relocs; we output them below as we discover that they are
9499 needed. */
9500 if (flinfo->info->discard == discard_all)
9501 continue;
9502
9503 /* If this symbol is defined in a section which we are
9504 discarding, we don't need to keep it. */
9505 if (isym->st_shndx != SHN_UNDEF
9506 && isym->st_shndx < SHN_LORESERVE
9507 && bfd_section_removed_from_list (output_bfd,
9508 isec->output_section))
9509 continue;
9510
9511 /* Get the name of the symbol. */
9512 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9513 isym->st_name);
9514 if (name == NULL)
9515 return FALSE;
9516
9517 /* See if we are discarding symbols with this name. */
9518 if ((flinfo->info->strip == strip_some
9519 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9520 == NULL))
9521 || (((flinfo->info->discard == discard_sec_merge
9522 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9523 || flinfo->info->discard == discard_l)
9524 && bfd_is_local_label_name (input_bfd, name)))
9525 continue;
9526
9527 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9528 {
9529 if (input_bfd->lto_output)
9530 /* -flto puts a temp file name here. This means builds
9531 are not reproducible. Discard the symbol. */
9532 continue;
9533 have_file_sym = TRUE;
9534 flinfo->filesym_count += 1;
9535 }
9536 if (!have_file_sym)
9537 {
9538 /* In the absence of debug info, bfd_find_nearest_line uses
9539 FILE symbols to determine the source file for local
9540 function symbols. Provide a FILE symbol here if input
9541 files lack such, so that their symbols won't be
9542 associated with a previous input file. It's not the
9543 source file, but the best we can do. */
9544 have_file_sym = TRUE;
9545 flinfo->filesym_count += 1;
9546 memset (&osym, 0, sizeof (osym));
9547 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9548 osym.st_shndx = SHN_ABS;
9549 if (!elf_link_output_sym (flinfo,
9550 (input_bfd->lto_output ? NULL
9551 : input_bfd->filename),
9552 &osym, bfd_abs_section_ptr, NULL))
9553 return FALSE;
9554 }
9555
9556 osym = *isym;
9557
9558 /* Adjust the section index for the output file. */
9559 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9560 isec->output_section);
9561 if (osym.st_shndx == SHN_BAD)
9562 return FALSE;
9563
9564 /* ELF symbols in relocatable files are section relative, but
9565 in executable files they are virtual addresses. Note that
9566 this code assumes that all ELF sections have an associated
9567 BFD section with a reasonable value for output_offset; below
9568 we assume that they also have a reasonable value for
9569 output_section. Any special sections must be set up to meet
9570 these requirements. */
9571 osym.st_value += isec->output_offset;
9572 if (!flinfo->info->relocatable)
9573 {
9574 osym.st_value += isec->output_section->vma;
9575 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9576 {
9577 /* STT_TLS symbols are relative to PT_TLS segment base. */
9578 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9579 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9580 }
9581 }
9582
9583 indx = bfd_get_symcount (output_bfd);
9584 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9585 if (ret == 0)
9586 return FALSE;
9587 else if (ret == 1)
9588 *pindex = indx;
9589 }
9590
9591 if (bed->s->arch_size == 32)
9592 {
9593 r_type_mask = 0xff;
9594 r_sym_shift = 8;
9595 address_size = 4;
9596 }
9597 else
9598 {
9599 r_type_mask = 0xffffffff;
9600 r_sym_shift = 32;
9601 address_size = 8;
9602 }
9603
9604 /* Relocate the contents of each section. */
9605 sym_hashes = elf_sym_hashes (input_bfd);
9606 for (o = input_bfd->sections; o != NULL; o = o->next)
9607 {
9608 bfd_byte *contents;
9609
9610 if (! o->linker_mark)
9611 {
9612 /* This section was omitted from the link. */
9613 continue;
9614 }
9615
9616 if (flinfo->info->relocatable
9617 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9618 {
9619 /* Deal with the group signature symbol. */
9620 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9621 unsigned long symndx = sec_data->this_hdr.sh_info;
9622 asection *osec = o->output_section;
9623
9624 if (symndx >= locsymcount
9625 || (elf_bad_symtab (input_bfd)
9626 && flinfo->sections[symndx] == NULL))
9627 {
9628 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9629 while (h->root.type == bfd_link_hash_indirect
9630 || h->root.type == bfd_link_hash_warning)
9631 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9632 /* Arrange for symbol to be output. */
9633 h->indx = -2;
9634 elf_section_data (osec)->this_hdr.sh_info = -2;
9635 }
9636 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9637 {
9638 /* We'll use the output section target_index. */
9639 asection *sec = flinfo->sections[symndx]->output_section;
9640 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9641 }
9642 else
9643 {
9644 if (flinfo->indices[symndx] == -1)
9645 {
9646 /* Otherwise output the local symbol now. */
9647 Elf_Internal_Sym sym = isymbuf[symndx];
9648 asection *sec = flinfo->sections[symndx]->output_section;
9649 const char *name;
9650 long indx;
9651 int ret;
9652
9653 name = bfd_elf_string_from_elf_section (input_bfd,
9654 symtab_hdr->sh_link,
9655 sym.st_name);
9656 if (name == NULL)
9657 return FALSE;
9658
9659 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9660 sec);
9661 if (sym.st_shndx == SHN_BAD)
9662 return FALSE;
9663
9664 sym.st_value += o->output_offset;
9665
9666 indx = bfd_get_symcount (output_bfd);
9667 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9668 if (ret == 0)
9669 return FALSE;
9670 else if (ret == 1)
9671 flinfo->indices[symndx] = indx;
9672 else
9673 abort ();
9674 }
9675 elf_section_data (osec)->this_hdr.sh_info
9676 = flinfo->indices[symndx];
9677 }
9678 }
9679
9680 if ((o->flags & SEC_HAS_CONTENTS) == 0
9681 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9682 continue;
9683
9684 if ((o->flags & SEC_LINKER_CREATED) != 0)
9685 {
9686 /* Section was created by _bfd_elf_link_create_dynamic_sections
9687 or somesuch. */
9688 continue;
9689 }
9690
9691 /* Get the contents of the section. They have been cached by a
9692 relaxation routine. Note that o is a section in an input
9693 file, so the contents field will not have been set by any of
9694 the routines which work on output files. */
9695 if (elf_section_data (o)->this_hdr.contents != NULL)
9696 {
9697 contents = elf_section_data (o)->this_hdr.contents;
9698 if (bed->caches_rawsize
9699 && o->rawsize != 0
9700 && o->rawsize < o->size)
9701 {
9702 memcpy (flinfo->contents, contents, o->rawsize);
9703 contents = flinfo->contents;
9704 }
9705 }
9706 else
9707 {
9708 contents = flinfo->contents;
9709 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9710 return FALSE;
9711 }
9712
9713 if ((o->flags & SEC_RELOC) != 0)
9714 {
9715 Elf_Internal_Rela *internal_relocs;
9716 Elf_Internal_Rela *rel, *relend;
9717 int action_discarded;
9718 int ret;
9719
9720 /* Get the swapped relocs. */
9721 internal_relocs
9722 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9723 flinfo->internal_relocs, FALSE);
9724 if (internal_relocs == NULL
9725 && o->reloc_count > 0)
9726 return FALSE;
9727
9728 /* We need to reverse-copy input .ctors/.dtors sections if
9729 they are placed in .init_array/.finit_array for output. */
9730 if (o->size > address_size
9731 && ((strncmp (o->name, ".ctors", 6) == 0
9732 && strcmp (o->output_section->name,
9733 ".init_array") == 0)
9734 || (strncmp (o->name, ".dtors", 6) == 0
9735 && strcmp (o->output_section->name,
9736 ".fini_array") == 0))
9737 && (o->name[6] == 0 || o->name[6] == '.'))
9738 {
9739 if (o->size != o->reloc_count * address_size)
9740 {
9741 (*_bfd_error_handler)
9742 (_("error: %B: size of section %A is not "
9743 "multiple of address size"),
9744 input_bfd, o);
9745 bfd_set_error (bfd_error_on_input);
9746 return FALSE;
9747 }
9748 o->flags |= SEC_ELF_REVERSE_COPY;
9749 }
9750
9751 action_discarded = -1;
9752 if (!elf_section_ignore_discarded_relocs (o))
9753 action_discarded = (*bed->action_discarded) (o);
9754
9755 /* Run through the relocs evaluating complex reloc symbols and
9756 looking for relocs against symbols from discarded sections
9757 or section symbols from removed link-once sections.
9758 Complain about relocs against discarded sections. Zero
9759 relocs against removed link-once sections. */
9760
9761 rel = internal_relocs;
9762 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9763 for ( ; rel < relend; rel++)
9764 {
9765 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9766 unsigned int s_type;
9767 asection **ps, *sec;
9768 struct elf_link_hash_entry *h = NULL;
9769 const char *sym_name;
9770
9771 if (r_symndx == STN_UNDEF)
9772 continue;
9773
9774 if (r_symndx >= locsymcount
9775 || (elf_bad_symtab (input_bfd)
9776 && flinfo->sections[r_symndx] == NULL))
9777 {
9778 h = sym_hashes[r_symndx - extsymoff];
9779
9780 /* Badly formatted input files can contain relocs that
9781 reference non-existant symbols. Check here so that
9782 we do not seg fault. */
9783 if (h == NULL)
9784 {
9785 char buffer [32];
9786
9787 sprintf_vma (buffer, rel->r_info);
9788 (*_bfd_error_handler)
9789 (_("error: %B contains a reloc (0x%s) for section %A "
9790 "that references a non-existent global symbol"),
9791 input_bfd, o, buffer);
9792 bfd_set_error (bfd_error_bad_value);
9793 return FALSE;
9794 }
9795
9796 while (h->root.type == bfd_link_hash_indirect
9797 || h->root.type == bfd_link_hash_warning)
9798 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9799
9800 s_type = h->type;
9801
9802 /* If a plugin symbol is referenced from a non-IR file,
9803 mark the symbol as undefined. Note that the
9804 linker may attach linker created dynamic sections
9805 to the plugin bfd. Symbols defined in linker
9806 created sections are not plugin symbols. */
9807 if (h->root.non_ir_ref
9808 && (h->root.type == bfd_link_hash_defined
9809 || h->root.type == bfd_link_hash_defweak)
9810 && (h->root.u.def.section->flags
9811 & SEC_LINKER_CREATED) == 0
9812 && h->root.u.def.section->owner != NULL
9813 && (h->root.u.def.section->owner->flags
9814 & BFD_PLUGIN) != 0)
9815 {
9816 h->root.type = bfd_link_hash_undefined;
9817 h->root.u.undef.abfd = h->root.u.def.section->owner;
9818 }
9819
9820 ps = NULL;
9821 if (h->root.type == bfd_link_hash_defined
9822 || h->root.type == bfd_link_hash_defweak)
9823 ps = &h->root.u.def.section;
9824
9825 sym_name = h->root.root.string;
9826 }
9827 else
9828 {
9829 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9830
9831 s_type = ELF_ST_TYPE (sym->st_info);
9832 ps = &flinfo->sections[r_symndx];
9833 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9834 sym, *ps);
9835 }
9836
9837 if ((s_type == STT_RELC || s_type == STT_SRELC)
9838 && !flinfo->info->relocatable)
9839 {
9840 bfd_vma val;
9841 bfd_vma dot = (rel->r_offset
9842 + o->output_offset + o->output_section->vma);
9843 #ifdef DEBUG
9844 printf ("Encountered a complex symbol!");
9845 printf (" (input_bfd %s, section %s, reloc %ld\n",
9846 input_bfd->filename, o->name,
9847 (long) (rel - internal_relocs));
9848 printf (" symbol: idx %8.8lx, name %s\n",
9849 r_symndx, sym_name);
9850 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9851 (unsigned long) rel->r_info,
9852 (unsigned long) rel->r_offset);
9853 #endif
9854 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9855 isymbuf, locsymcount, s_type == STT_SRELC))
9856 return FALSE;
9857
9858 /* Symbol evaluated OK. Update to absolute value. */
9859 set_symbol_value (input_bfd, isymbuf, locsymcount,
9860 r_symndx, val);
9861 continue;
9862 }
9863
9864 if (action_discarded != -1 && ps != NULL)
9865 {
9866 /* Complain if the definition comes from a
9867 discarded section. */
9868 if ((sec = *ps) != NULL && discarded_section (sec))
9869 {
9870 BFD_ASSERT (r_symndx != STN_UNDEF);
9871 if (action_discarded & COMPLAIN)
9872 (*flinfo->info->callbacks->einfo)
9873 (_("%X`%s' referenced in section `%A' of %B: "
9874 "defined in discarded section `%A' of %B\n"),
9875 sym_name, o, input_bfd, sec, sec->owner);
9876
9877 /* Try to do the best we can to support buggy old
9878 versions of gcc. Pretend that the symbol is
9879 really defined in the kept linkonce section.
9880 FIXME: This is quite broken. Modifying the
9881 symbol here means we will be changing all later
9882 uses of the symbol, not just in this section. */
9883 if (action_discarded & PRETEND)
9884 {
9885 asection *kept;
9886
9887 kept = _bfd_elf_check_kept_section (sec,
9888 flinfo->info);
9889 if (kept != NULL)
9890 {
9891 *ps = kept;
9892 continue;
9893 }
9894 }
9895 }
9896 }
9897 }
9898
9899 /* Relocate the section by invoking a back end routine.
9900
9901 The back end routine is responsible for adjusting the
9902 section contents as necessary, and (if using Rela relocs
9903 and generating a relocatable output file) adjusting the
9904 reloc addend as necessary.
9905
9906 The back end routine does not have to worry about setting
9907 the reloc address or the reloc symbol index.
9908
9909 The back end routine is given a pointer to the swapped in
9910 internal symbols, and can access the hash table entries
9911 for the external symbols via elf_sym_hashes (input_bfd).
9912
9913 When generating relocatable output, the back end routine
9914 must handle STB_LOCAL/STT_SECTION symbols specially. The
9915 output symbol is going to be a section symbol
9916 corresponding to the output section, which will require
9917 the addend to be adjusted. */
9918
9919 ret = (*relocate_section) (output_bfd, flinfo->info,
9920 input_bfd, o, contents,
9921 internal_relocs,
9922 isymbuf,
9923 flinfo->sections);
9924 if (!ret)
9925 return FALSE;
9926
9927 if (ret == 2
9928 || flinfo->info->relocatable
9929 || flinfo->info->emitrelocations)
9930 {
9931 Elf_Internal_Rela *irela;
9932 Elf_Internal_Rela *irelaend, *irelamid;
9933 bfd_vma last_offset;
9934 struct elf_link_hash_entry **rel_hash;
9935 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9936 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9937 unsigned int next_erel;
9938 bfd_boolean rela_normal;
9939 struct bfd_elf_section_data *esdi, *esdo;
9940
9941 esdi = elf_section_data (o);
9942 esdo = elf_section_data (o->output_section);
9943 rela_normal = FALSE;
9944
9945 /* Adjust the reloc addresses and symbol indices. */
9946
9947 irela = internal_relocs;
9948 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9949 rel_hash = esdo->rel.hashes + esdo->rel.count;
9950 /* We start processing the REL relocs, if any. When we reach
9951 IRELAMID in the loop, we switch to the RELA relocs. */
9952 irelamid = irela;
9953 if (esdi->rel.hdr != NULL)
9954 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9955 * bed->s->int_rels_per_ext_rel);
9956 rel_hash_list = rel_hash;
9957 rela_hash_list = NULL;
9958 last_offset = o->output_offset;
9959 if (!flinfo->info->relocatable)
9960 last_offset += o->output_section->vma;
9961 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9962 {
9963 unsigned long r_symndx;
9964 asection *sec;
9965 Elf_Internal_Sym sym;
9966
9967 if (next_erel == bed->s->int_rels_per_ext_rel)
9968 {
9969 rel_hash++;
9970 next_erel = 0;
9971 }
9972
9973 if (irela == irelamid)
9974 {
9975 rel_hash = esdo->rela.hashes + esdo->rela.count;
9976 rela_hash_list = rel_hash;
9977 rela_normal = bed->rela_normal;
9978 }
9979
9980 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9981 flinfo->info, o,
9982 irela->r_offset);
9983 if (irela->r_offset >= (bfd_vma) -2)
9984 {
9985 /* This is a reloc for a deleted entry or somesuch.
9986 Turn it into an R_*_NONE reloc, at the same
9987 offset as the last reloc. elf_eh_frame.c and
9988 bfd_elf_discard_info rely on reloc offsets
9989 being ordered. */
9990 irela->r_offset = last_offset;
9991 irela->r_info = 0;
9992 irela->r_addend = 0;
9993 continue;
9994 }
9995
9996 irela->r_offset += o->output_offset;
9997
9998 /* Relocs in an executable have to be virtual addresses. */
9999 if (!flinfo->info->relocatable)
10000 irela->r_offset += o->output_section->vma;
10001
10002 last_offset = irela->r_offset;
10003
10004 r_symndx = irela->r_info >> r_sym_shift;
10005 if (r_symndx == STN_UNDEF)
10006 continue;
10007
10008 if (r_symndx >= locsymcount
10009 || (elf_bad_symtab (input_bfd)
10010 && flinfo->sections[r_symndx] == NULL))
10011 {
10012 struct elf_link_hash_entry *rh;
10013 unsigned long indx;
10014
10015 /* This is a reloc against a global symbol. We
10016 have not yet output all the local symbols, so
10017 we do not know the symbol index of any global
10018 symbol. We set the rel_hash entry for this
10019 reloc to point to the global hash table entry
10020 for this symbol. The symbol index is then
10021 set at the end of bfd_elf_final_link. */
10022 indx = r_symndx - extsymoff;
10023 rh = elf_sym_hashes (input_bfd)[indx];
10024 while (rh->root.type == bfd_link_hash_indirect
10025 || rh->root.type == bfd_link_hash_warning)
10026 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10027
10028 /* Setting the index to -2 tells
10029 elf_link_output_extsym that this symbol is
10030 used by a reloc. */
10031 BFD_ASSERT (rh->indx < 0);
10032 rh->indx = -2;
10033
10034 *rel_hash = rh;
10035
10036 continue;
10037 }
10038
10039 /* This is a reloc against a local symbol. */
10040
10041 *rel_hash = NULL;
10042 sym = isymbuf[r_symndx];
10043 sec = flinfo->sections[r_symndx];
10044 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10045 {
10046 /* I suppose the backend ought to fill in the
10047 section of any STT_SECTION symbol against a
10048 processor specific section. */
10049 r_symndx = STN_UNDEF;
10050 if (bfd_is_abs_section (sec))
10051 ;
10052 else if (sec == NULL || sec->owner == NULL)
10053 {
10054 bfd_set_error (bfd_error_bad_value);
10055 return FALSE;
10056 }
10057 else
10058 {
10059 asection *osec = sec->output_section;
10060
10061 /* If we have discarded a section, the output
10062 section will be the absolute section. In
10063 case of discarded SEC_MERGE sections, use
10064 the kept section. relocate_section should
10065 have already handled discarded linkonce
10066 sections. */
10067 if (bfd_is_abs_section (osec)
10068 && sec->kept_section != NULL
10069 && sec->kept_section->output_section != NULL)
10070 {
10071 osec = sec->kept_section->output_section;
10072 irela->r_addend -= osec->vma;
10073 }
10074
10075 if (!bfd_is_abs_section (osec))
10076 {
10077 r_symndx = osec->target_index;
10078 if (r_symndx == STN_UNDEF)
10079 {
10080 irela->r_addend += osec->vma;
10081 osec = _bfd_nearby_section (output_bfd, osec,
10082 osec->vma);
10083 irela->r_addend -= osec->vma;
10084 r_symndx = osec->target_index;
10085 }
10086 }
10087 }
10088
10089 /* Adjust the addend according to where the
10090 section winds up in the output section. */
10091 if (rela_normal)
10092 irela->r_addend += sec->output_offset;
10093 }
10094 else
10095 {
10096 if (flinfo->indices[r_symndx] == -1)
10097 {
10098 unsigned long shlink;
10099 const char *name;
10100 asection *osec;
10101 long indx;
10102
10103 if (flinfo->info->strip == strip_all)
10104 {
10105 /* You can't do ld -r -s. */
10106 bfd_set_error (bfd_error_invalid_operation);
10107 return FALSE;
10108 }
10109
10110 /* This symbol was skipped earlier, but
10111 since it is needed by a reloc, we
10112 must output it now. */
10113 shlink = symtab_hdr->sh_link;
10114 name = (bfd_elf_string_from_elf_section
10115 (input_bfd, shlink, sym.st_name));
10116 if (name == NULL)
10117 return FALSE;
10118
10119 osec = sec->output_section;
10120 sym.st_shndx =
10121 _bfd_elf_section_from_bfd_section (output_bfd,
10122 osec);
10123 if (sym.st_shndx == SHN_BAD)
10124 return FALSE;
10125
10126 sym.st_value += sec->output_offset;
10127 if (!flinfo->info->relocatable)
10128 {
10129 sym.st_value += osec->vma;
10130 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10131 {
10132 /* STT_TLS symbols are relative to PT_TLS
10133 segment base. */
10134 BFD_ASSERT (elf_hash_table (flinfo->info)
10135 ->tls_sec != NULL);
10136 sym.st_value -= (elf_hash_table (flinfo->info)
10137 ->tls_sec->vma);
10138 }
10139 }
10140
10141 indx = bfd_get_symcount (output_bfd);
10142 ret = elf_link_output_sym (flinfo, name, &sym, sec,
10143 NULL);
10144 if (ret == 0)
10145 return FALSE;
10146 else if (ret == 1)
10147 flinfo->indices[r_symndx] = indx;
10148 else
10149 abort ();
10150 }
10151
10152 r_symndx = flinfo->indices[r_symndx];
10153 }
10154
10155 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10156 | (irela->r_info & r_type_mask));
10157 }
10158
10159 /* Swap out the relocs. */
10160 input_rel_hdr = esdi->rel.hdr;
10161 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10162 {
10163 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10164 input_rel_hdr,
10165 internal_relocs,
10166 rel_hash_list))
10167 return FALSE;
10168 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10169 * bed->s->int_rels_per_ext_rel);
10170 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10171 }
10172
10173 input_rela_hdr = esdi->rela.hdr;
10174 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10175 {
10176 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10177 input_rela_hdr,
10178 internal_relocs,
10179 rela_hash_list))
10180 return FALSE;
10181 }
10182 }
10183 }
10184
10185 /* Write out the modified section contents. */
10186 if (bed->elf_backend_write_section
10187 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10188 contents))
10189 {
10190 /* Section written out. */
10191 }
10192 else switch (o->sec_info_type)
10193 {
10194 case SEC_INFO_TYPE_STABS:
10195 if (! (_bfd_write_section_stabs
10196 (output_bfd,
10197 &elf_hash_table (flinfo->info)->stab_info,
10198 o, &elf_section_data (o)->sec_info, contents)))
10199 return FALSE;
10200 break;
10201 case SEC_INFO_TYPE_MERGE:
10202 if (! _bfd_write_merged_section (output_bfd, o,
10203 elf_section_data (o)->sec_info))
10204 return FALSE;
10205 break;
10206 case SEC_INFO_TYPE_EH_FRAME:
10207 {
10208 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10209 o, contents))
10210 return FALSE;
10211 }
10212 break;
10213 default:
10214 {
10215 /* FIXME: octets_per_byte. */
10216 if (! (o->flags & SEC_EXCLUDE))
10217 {
10218 file_ptr offset = (file_ptr) o->output_offset;
10219 bfd_size_type todo = o->size;
10220 if ((o->flags & SEC_ELF_REVERSE_COPY))
10221 {
10222 /* Reverse-copy input section to output. */
10223 do
10224 {
10225 todo -= address_size;
10226 if (! bfd_set_section_contents (output_bfd,
10227 o->output_section,
10228 contents + todo,
10229 offset,
10230 address_size))
10231 return FALSE;
10232 if (todo == 0)
10233 break;
10234 offset += address_size;
10235 }
10236 while (1);
10237 }
10238 else if (! bfd_set_section_contents (output_bfd,
10239 o->output_section,
10240 contents,
10241 offset, todo))
10242 return FALSE;
10243 }
10244 }
10245 break;
10246 }
10247 }
10248
10249 return TRUE;
10250 }
10251
10252 /* Generate a reloc when linking an ELF file. This is a reloc
10253 requested by the linker, and does not come from any input file. This
10254 is used to build constructor and destructor tables when linking
10255 with -Ur. */
10256
10257 static bfd_boolean
10258 elf_reloc_link_order (bfd *output_bfd,
10259 struct bfd_link_info *info,
10260 asection *output_section,
10261 struct bfd_link_order *link_order)
10262 {
10263 reloc_howto_type *howto;
10264 long indx;
10265 bfd_vma offset;
10266 bfd_vma addend;
10267 struct bfd_elf_section_reloc_data *reldata;
10268 struct elf_link_hash_entry **rel_hash_ptr;
10269 Elf_Internal_Shdr *rel_hdr;
10270 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10271 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10272 bfd_byte *erel;
10273 unsigned int i;
10274 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10275
10276 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10277 if (howto == NULL)
10278 {
10279 bfd_set_error (bfd_error_bad_value);
10280 return FALSE;
10281 }
10282
10283 addend = link_order->u.reloc.p->addend;
10284
10285 if (esdo->rel.hdr)
10286 reldata = &esdo->rel;
10287 else if (esdo->rela.hdr)
10288 reldata = &esdo->rela;
10289 else
10290 {
10291 reldata = NULL;
10292 BFD_ASSERT (0);
10293 }
10294
10295 /* Figure out the symbol index. */
10296 rel_hash_ptr = reldata->hashes + reldata->count;
10297 if (link_order->type == bfd_section_reloc_link_order)
10298 {
10299 indx = link_order->u.reloc.p->u.section->target_index;
10300 BFD_ASSERT (indx != 0);
10301 *rel_hash_ptr = NULL;
10302 }
10303 else
10304 {
10305 struct elf_link_hash_entry *h;
10306
10307 /* Treat a reloc against a defined symbol as though it were
10308 actually against the section. */
10309 h = ((struct elf_link_hash_entry *)
10310 bfd_wrapped_link_hash_lookup (output_bfd, info,
10311 link_order->u.reloc.p->u.name,
10312 FALSE, FALSE, TRUE));
10313 if (h != NULL
10314 && (h->root.type == bfd_link_hash_defined
10315 || h->root.type == bfd_link_hash_defweak))
10316 {
10317 asection *section;
10318
10319 section = h->root.u.def.section;
10320 indx = section->output_section->target_index;
10321 *rel_hash_ptr = NULL;
10322 /* It seems that we ought to add the symbol value to the
10323 addend here, but in practice it has already been added
10324 because it was passed to constructor_callback. */
10325 addend += section->output_section->vma + section->output_offset;
10326 }
10327 else if (h != NULL)
10328 {
10329 /* Setting the index to -2 tells elf_link_output_extsym that
10330 this symbol is used by a reloc. */
10331 h->indx = -2;
10332 *rel_hash_ptr = h;
10333 indx = 0;
10334 }
10335 else
10336 {
10337 if (! ((*info->callbacks->unattached_reloc)
10338 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10339 return FALSE;
10340 indx = 0;
10341 }
10342 }
10343
10344 /* If this is an inplace reloc, we must write the addend into the
10345 object file. */
10346 if (howto->partial_inplace && addend != 0)
10347 {
10348 bfd_size_type size;
10349 bfd_reloc_status_type rstat;
10350 bfd_byte *buf;
10351 bfd_boolean ok;
10352 const char *sym_name;
10353
10354 size = (bfd_size_type) bfd_get_reloc_size (howto);
10355 buf = (bfd_byte *) bfd_zmalloc (size);
10356 if (buf == NULL && size != 0)
10357 return FALSE;
10358 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10359 switch (rstat)
10360 {
10361 case bfd_reloc_ok:
10362 break;
10363
10364 default:
10365 case bfd_reloc_outofrange:
10366 abort ();
10367
10368 case bfd_reloc_overflow:
10369 if (link_order->type == bfd_section_reloc_link_order)
10370 sym_name = bfd_section_name (output_bfd,
10371 link_order->u.reloc.p->u.section);
10372 else
10373 sym_name = link_order->u.reloc.p->u.name;
10374 if (! ((*info->callbacks->reloc_overflow)
10375 (info, NULL, sym_name, howto->name, addend, NULL,
10376 NULL, (bfd_vma) 0)))
10377 {
10378 free (buf);
10379 return FALSE;
10380 }
10381 break;
10382 }
10383 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10384 link_order->offset, size);
10385 free (buf);
10386 if (! ok)
10387 return FALSE;
10388 }
10389
10390 /* The address of a reloc is relative to the section in a
10391 relocatable file, and is a virtual address in an executable
10392 file. */
10393 offset = link_order->offset;
10394 if (! info->relocatable)
10395 offset += output_section->vma;
10396
10397 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10398 {
10399 irel[i].r_offset = offset;
10400 irel[i].r_info = 0;
10401 irel[i].r_addend = 0;
10402 }
10403 if (bed->s->arch_size == 32)
10404 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10405 else
10406 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10407
10408 rel_hdr = reldata->hdr;
10409 erel = rel_hdr->contents;
10410 if (rel_hdr->sh_type == SHT_REL)
10411 {
10412 erel += reldata->count * bed->s->sizeof_rel;
10413 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10414 }
10415 else
10416 {
10417 irel[0].r_addend = addend;
10418 erel += reldata->count * bed->s->sizeof_rela;
10419 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10420 }
10421
10422 ++reldata->count;
10423
10424 return TRUE;
10425 }
10426
10427
10428 /* Get the output vma of the section pointed to by the sh_link field. */
10429
10430 static bfd_vma
10431 elf_get_linked_section_vma (struct bfd_link_order *p)
10432 {
10433 Elf_Internal_Shdr **elf_shdrp;
10434 asection *s;
10435 int elfsec;
10436
10437 s = p->u.indirect.section;
10438 elf_shdrp = elf_elfsections (s->owner);
10439 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10440 elfsec = elf_shdrp[elfsec]->sh_link;
10441 /* PR 290:
10442 The Intel C compiler generates SHT_IA_64_UNWIND with
10443 SHF_LINK_ORDER. But it doesn't set the sh_link or
10444 sh_info fields. Hence we could get the situation
10445 where elfsec is 0. */
10446 if (elfsec == 0)
10447 {
10448 const struct elf_backend_data *bed
10449 = get_elf_backend_data (s->owner);
10450 if (bed->link_order_error_handler)
10451 bed->link_order_error_handler
10452 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10453 return 0;
10454 }
10455 else
10456 {
10457 s = elf_shdrp[elfsec]->bfd_section;
10458 return s->output_section->vma + s->output_offset;
10459 }
10460 }
10461
10462
10463 /* Compare two sections based on the locations of the sections they are
10464 linked to. Used by elf_fixup_link_order. */
10465
10466 static int
10467 compare_link_order (const void * a, const void * b)
10468 {
10469 bfd_vma apos;
10470 bfd_vma bpos;
10471
10472 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10473 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10474 if (apos < bpos)
10475 return -1;
10476 return apos > bpos;
10477 }
10478
10479
10480 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10481 order as their linked sections. Returns false if this could not be done
10482 because an output section includes both ordered and unordered
10483 sections. Ideally we'd do this in the linker proper. */
10484
10485 static bfd_boolean
10486 elf_fixup_link_order (bfd *abfd, asection *o)
10487 {
10488 int seen_linkorder;
10489 int seen_other;
10490 int n;
10491 struct bfd_link_order *p;
10492 bfd *sub;
10493 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10494 unsigned elfsec;
10495 struct bfd_link_order **sections;
10496 asection *s, *other_sec, *linkorder_sec;
10497 bfd_vma offset;
10498
10499 other_sec = NULL;
10500 linkorder_sec = NULL;
10501 seen_other = 0;
10502 seen_linkorder = 0;
10503 for (p = o->map_head.link_order; p != NULL; p = p->next)
10504 {
10505 if (p->type == bfd_indirect_link_order)
10506 {
10507 s = p->u.indirect.section;
10508 sub = s->owner;
10509 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10510 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10511 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10512 && elfsec < elf_numsections (sub)
10513 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10514 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10515 {
10516 seen_linkorder++;
10517 linkorder_sec = s;
10518 }
10519 else
10520 {
10521 seen_other++;
10522 other_sec = s;
10523 }
10524 }
10525 else
10526 seen_other++;
10527
10528 if (seen_other && seen_linkorder)
10529 {
10530 if (other_sec && linkorder_sec)
10531 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10532 o, linkorder_sec,
10533 linkorder_sec->owner, other_sec,
10534 other_sec->owner);
10535 else
10536 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10537 o);
10538 bfd_set_error (bfd_error_bad_value);
10539 return FALSE;
10540 }
10541 }
10542
10543 if (!seen_linkorder)
10544 return TRUE;
10545
10546 sections = (struct bfd_link_order **)
10547 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10548 if (sections == NULL)
10549 return FALSE;
10550 seen_linkorder = 0;
10551
10552 for (p = o->map_head.link_order; p != NULL; p = p->next)
10553 {
10554 sections[seen_linkorder++] = p;
10555 }
10556 /* Sort the input sections in the order of their linked section. */
10557 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10558 compare_link_order);
10559
10560 /* Change the offsets of the sections. */
10561 offset = 0;
10562 for (n = 0; n < seen_linkorder; n++)
10563 {
10564 s = sections[n]->u.indirect.section;
10565 offset &= ~(bfd_vma) 0 << s->alignment_power;
10566 s->output_offset = offset;
10567 sections[n]->offset = offset;
10568 /* FIXME: octets_per_byte. */
10569 offset += sections[n]->size;
10570 }
10571
10572 free (sections);
10573 return TRUE;
10574 }
10575
10576 static void
10577 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10578 {
10579 asection *o;
10580
10581 if (flinfo->symstrtab != NULL)
10582 _bfd_stringtab_free (flinfo->symstrtab);
10583 if (flinfo->contents != NULL)
10584 free (flinfo->contents);
10585 if (flinfo->external_relocs != NULL)
10586 free (flinfo->external_relocs);
10587 if (flinfo->internal_relocs != NULL)
10588 free (flinfo->internal_relocs);
10589 if (flinfo->external_syms != NULL)
10590 free (flinfo->external_syms);
10591 if (flinfo->locsym_shndx != NULL)
10592 free (flinfo->locsym_shndx);
10593 if (flinfo->internal_syms != NULL)
10594 free (flinfo->internal_syms);
10595 if (flinfo->indices != NULL)
10596 free (flinfo->indices);
10597 if (flinfo->sections != NULL)
10598 free (flinfo->sections);
10599 if (flinfo->symbuf != NULL)
10600 free (flinfo->symbuf);
10601 if (flinfo->symshndxbuf != NULL)
10602 free (flinfo->symshndxbuf);
10603 for (o = obfd->sections; o != NULL; o = o->next)
10604 {
10605 struct bfd_elf_section_data *esdo = elf_section_data (o);
10606 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10607 free (esdo->rel.hashes);
10608 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10609 free (esdo->rela.hashes);
10610 }
10611 }
10612
10613 /* Do the final step of an ELF link. */
10614
10615 bfd_boolean
10616 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10617 {
10618 bfd_boolean dynamic;
10619 bfd_boolean emit_relocs;
10620 bfd *dynobj;
10621 struct elf_final_link_info flinfo;
10622 asection *o;
10623 struct bfd_link_order *p;
10624 bfd *sub;
10625 bfd_size_type max_contents_size;
10626 bfd_size_type max_external_reloc_size;
10627 bfd_size_type max_internal_reloc_count;
10628 bfd_size_type max_sym_count;
10629 bfd_size_type max_sym_shndx_count;
10630 Elf_Internal_Sym elfsym;
10631 unsigned int i;
10632 Elf_Internal_Shdr *symtab_hdr;
10633 Elf_Internal_Shdr *symtab_shndx_hdr;
10634 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10635 struct elf_outext_info eoinfo;
10636 bfd_boolean merged;
10637 size_t relativecount = 0;
10638 asection *reldyn = 0;
10639 bfd_size_type amt;
10640 asection *attr_section = NULL;
10641 bfd_vma attr_size = 0;
10642 const char *std_attrs_section;
10643
10644 if (! is_elf_hash_table (info->hash))
10645 return FALSE;
10646
10647 if (info->shared)
10648 abfd->flags |= DYNAMIC;
10649
10650 dynamic = elf_hash_table (info)->dynamic_sections_created;
10651 dynobj = elf_hash_table (info)->dynobj;
10652
10653 emit_relocs = (info->relocatable
10654 || info->emitrelocations);
10655
10656 flinfo.info = info;
10657 flinfo.output_bfd = abfd;
10658 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10659 if (flinfo.symstrtab == NULL)
10660 return FALSE;
10661
10662 if (! dynamic)
10663 {
10664 flinfo.dynsym_sec = NULL;
10665 flinfo.hash_sec = NULL;
10666 flinfo.symver_sec = NULL;
10667 }
10668 else
10669 {
10670 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10671 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10672 /* Note that dynsym_sec can be NULL (on VMS). */
10673 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10674 /* Note that it is OK if symver_sec is NULL. */
10675 }
10676
10677 flinfo.contents = NULL;
10678 flinfo.external_relocs = NULL;
10679 flinfo.internal_relocs = NULL;
10680 flinfo.external_syms = NULL;
10681 flinfo.locsym_shndx = NULL;
10682 flinfo.internal_syms = NULL;
10683 flinfo.indices = NULL;
10684 flinfo.sections = NULL;
10685 flinfo.symbuf = NULL;
10686 flinfo.symshndxbuf = NULL;
10687 flinfo.symbuf_count = 0;
10688 flinfo.shndxbuf_size = 0;
10689 flinfo.filesym_count = 0;
10690
10691 /* The object attributes have been merged. Remove the input
10692 sections from the link, and set the contents of the output
10693 secton. */
10694 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10695 for (o = abfd->sections; o != NULL; o = o->next)
10696 {
10697 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10698 || strcmp (o->name, ".gnu.attributes") == 0)
10699 {
10700 for (p = o->map_head.link_order; p != NULL; p = p->next)
10701 {
10702 asection *input_section;
10703
10704 if (p->type != bfd_indirect_link_order)
10705 continue;
10706 input_section = p->u.indirect.section;
10707 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10708 elf_link_input_bfd ignores this section. */
10709 input_section->flags &= ~SEC_HAS_CONTENTS;
10710 }
10711
10712 attr_size = bfd_elf_obj_attr_size (abfd);
10713 if (attr_size)
10714 {
10715 bfd_set_section_size (abfd, o, attr_size);
10716 attr_section = o;
10717 /* Skip this section later on. */
10718 o->map_head.link_order = NULL;
10719 }
10720 else
10721 o->flags |= SEC_EXCLUDE;
10722 }
10723 }
10724
10725 /* Count up the number of relocations we will output for each output
10726 section, so that we know the sizes of the reloc sections. We
10727 also figure out some maximum sizes. */
10728 max_contents_size = 0;
10729 max_external_reloc_size = 0;
10730 max_internal_reloc_count = 0;
10731 max_sym_count = 0;
10732 max_sym_shndx_count = 0;
10733 merged = FALSE;
10734 for (o = abfd->sections; o != NULL; o = o->next)
10735 {
10736 struct bfd_elf_section_data *esdo = elf_section_data (o);
10737 o->reloc_count = 0;
10738
10739 for (p = o->map_head.link_order; p != NULL; p = p->next)
10740 {
10741 unsigned int reloc_count = 0;
10742 struct bfd_elf_section_data *esdi = NULL;
10743
10744 if (p->type == bfd_section_reloc_link_order
10745 || p->type == bfd_symbol_reloc_link_order)
10746 reloc_count = 1;
10747 else if (p->type == bfd_indirect_link_order)
10748 {
10749 asection *sec;
10750
10751 sec = p->u.indirect.section;
10752 esdi = elf_section_data (sec);
10753
10754 /* Mark all sections which are to be included in the
10755 link. This will normally be every section. We need
10756 to do this so that we can identify any sections which
10757 the linker has decided to not include. */
10758 sec->linker_mark = TRUE;
10759
10760 if (sec->flags & SEC_MERGE)
10761 merged = TRUE;
10762
10763 if (esdo->this_hdr.sh_type == SHT_REL
10764 || esdo->this_hdr.sh_type == SHT_RELA)
10765 /* Some backends use reloc_count in relocation sections
10766 to count particular types of relocs. Of course,
10767 reloc sections themselves can't have relocations. */
10768 reloc_count = 0;
10769 else if (info->relocatable || info->emitrelocations)
10770 reloc_count = sec->reloc_count;
10771 else if (bed->elf_backend_count_relocs)
10772 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10773
10774 if (sec->rawsize > max_contents_size)
10775 max_contents_size = sec->rawsize;
10776 if (sec->size > max_contents_size)
10777 max_contents_size = sec->size;
10778
10779 /* We are interested in just local symbols, not all
10780 symbols. */
10781 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10782 && (sec->owner->flags & DYNAMIC) == 0)
10783 {
10784 size_t sym_count;
10785
10786 if (elf_bad_symtab (sec->owner))
10787 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10788 / bed->s->sizeof_sym);
10789 else
10790 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10791
10792 if (sym_count > max_sym_count)
10793 max_sym_count = sym_count;
10794
10795 if (sym_count > max_sym_shndx_count
10796 && elf_symtab_shndx (sec->owner) != 0)
10797 max_sym_shndx_count = sym_count;
10798
10799 if ((sec->flags & SEC_RELOC) != 0)
10800 {
10801 size_t ext_size = 0;
10802
10803 if (esdi->rel.hdr != NULL)
10804 ext_size = esdi->rel.hdr->sh_size;
10805 if (esdi->rela.hdr != NULL)
10806 ext_size += esdi->rela.hdr->sh_size;
10807
10808 if (ext_size > max_external_reloc_size)
10809 max_external_reloc_size = ext_size;
10810 if (sec->reloc_count > max_internal_reloc_count)
10811 max_internal_reloc_count = sec->reloc_count;
10812 }
10813 }
10814 }
10815
10816 if (reloc_count == 0)
10817 continue;
10818
10819 o->reloc_count += reloc_count;
10820
10821 if (p->type == bfd_indirect_link_order
10822 && (info->relocatable || info->emitrelocations))
10823 {
10824 if (esdi->rel.hdr)
10825 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10826 if (esdi->rela.hdr)
10827 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10828 }
10829 else
10830 {
10831 if (o->use_rela_p)
10832 esdo->rela.count += reloc_count;
10833 else
10834 esdo->rel.count += reloc_count;
10835 }
10836 }
10837
10838 if (o->reloc_count > 0)
10839 o->flags |= SEC_RELOC;
10840 else
10841 {
10842 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10843 set it (this is probably a bug) and if it is set
10844 assign_section_numbers will create a reloc section. */
10845 o->flags &=~ SEC_RELOC;
10846 }
10847
10848 /* If the SEC_ALLOC flag is not set, force the section VMA to
10849 zero. This is done in elf_fake_sections as well, but forcing
10850 the VMA to 0 here will ensure that relocs against these
10851 sections are handled correctly. */
10852 if ((o->flags & SEC_ALLOC) == 0
10853 && ! o->user_set_vma)
10854 o->vma = 0;
10855 }
10856
10857 if (! info->relocatable && merged)
10858 elf_link_hash_traverse (elf_hash_table (info),
10859 _bfd_elf_link_sec_merge_syms, abfd);
10860
10861 /* Figure out the file positions for everything but the symbol table
10862 and the relocs. We set symcount to force assign_section_numbers
10863 to create a symbol table. */
10864 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
10865 BFD_ASSERT (! abfd->output_has_begun);
10866 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10867 goto error_return;
10868
10869 /* Set sizes, and assign file positions for reloc sections. */
10870 for (o = abfd->sections; o != NULL; o = o->next)
10871 {
10872 struct bfd_elf_section_data *esdo = elf_section_data (o);
10873 if ((o->flags & SEC_RELOC) != 0)
10874 {
10875 if (esdo->rel.hdr
10876 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10877 goto error_return;
10878
10879 if (esdo->rela.hdr
10880 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10881 goto error_return;
10882 }
10883
10884 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10885 to count upwards while actually outputting the relocations. */
10886 esdo->rel.count = 0;
10887 esdo->rela.count = 0;
10888 }
10889
10890 /* We have now assigned file positions for all the sections except
10891 .symtab, .strtab, and non-loaded reloc sections. We start the
10892 .symtab section at the current file position, and write directly
10893 to it. We build the .strtab section in memory. */
10894 bfd_get_symcount (abfd) = 0;
10895 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10896 /* sh_name is set in prep_headers. */
10897 symtab_hdr->sh_type = SHT_SYMTAB;
10898 /* sh_flags, sh_addr and sh_size all start off zero. */
10899 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10900 /* sh_link is set in assign_section_numbers. */
10901 /* sh_info is set below. */
10902 /* sh_offset is set just below. */
10903 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10904
10905 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10906 continuously seeking to the right position in the file. */
10907 if (! info->keep_memory || max_sym_count < 20)
10908 flinfo.symbuf_size = 20;
10909 else
10910 flinfo.symbuf_size = max_sym_count;
10911 amt = flinfo.symbuf_size;
10912 amt *= bed->s->sizeof_sym;
10913 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10914 if (flinfo.symbuf == NULL)
10915 goto error_return;
10916 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10917 {
10918 /* Wild guess at number of output symbols. realloc'd as needed. */
10919 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10920 flinfo.shndxbuf_size = amt;
10921 amt *= sizeof (Elf_External_Sym_Shndx);
10922 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10923 if (flinfo.symshndxbuf == NULL)
10924 goto error_return;
10925 }
10926
10927 if (info->strip != strip_all || emit_relocs)
10928 {
10929 file_ptr off = elf_next_file_pos (abfd);
10930
10931 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10932
10933 /* Note that at this point elf_next_file_pos (abfd) is
10934 incorrect. We do not yet know the size of the .symtab section.
10935 We correct next_file_pos below, after we do know the size. */
10936
10937 /* Start writing out the symbol table. The first symbol is always a
10938 dummy symbol. */
10939 elfsym.st_value = 0;
10940 elfsym.st_size = 0;
10941 elfsym.st_info = 0;
10942 elfsym.st_other = 0;
10943 elfsym.st_shndx = SHN_UNDEF;
10944 elfsym.st_target_internal = 0;
10945 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10946 NULL) != 1)
10947 goto error_return;
10948
10949 /* Output a symbol for each section. We output these even if we are
10950 discarding local symbols, since they are used for relocs. These
10951 symbols have no names. We store the index of each one in the
10952 index field of the section, so that we can find it again when
10953 outputting relocs. */
10954
10955 elfsym.st_size = 0;
10956 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10957 elfsym.st_other = 0;
10958 elfsym.st_value = 0;
10959 elfsym.st_target_internal = 0;
10960 for (i = 1; i < elf_numsections (abfd); i++)
10961 {
10962 o = bfd_section_from_elf_index (abfd, i);
10963 if (o != NULL)
10964 {
10965 o->target_index = bfd_get_symcount (abfd);
10966 elfsym.st_shndx = i;
10967 if (!info->relocatable)
10968 elfsym.st_value = o->vma;
10969 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10970 goto error_return;
10971 }
10972 }
10973 }
10974
10975 /* Allocate some memory to hold information read in from the input
10976 files. */
10977 if (max_contents_size != 0)
10978 {
10979 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10980 if (flinfo.contents == NULL)
10981 goto error_return;
10982 }
10983
10984 if (max_external_reloc_size != 0)
10985 {
10986 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10987 if (flinfo.external_relocs == NULL)
10988 goto error_return;
10989 }
10990
10991 if (max_internal_reloc_count != 0)
10992 {
10993 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10994 amt *= sizeof (Elf_Internal_Rela);
10995 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10996 if (flinfo.internal_relocs == NULL)
10997 goto error_return;
10998 }
10999
11000 if (max_sym_count != 0)
11001 {
11002 amt = max_sym_count * bed->s->sizeof_sym;
11003 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
11004 if (flinfo.external_syms == NULL)
11005 goto error_return;
11006
11007 amt = max_sym_count * sizeof (Elf_Internal_Sym);
11008 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
11009 if (flinfo.internal_syms == NULL)
11010 goto error_return;
11011
11012 amt = max_sym_count * sizeof (long);
11013 flinfo.indices = (long int *) bfd_malloc (amt);
11014 if (flinfo.indices == NULL)
11015 goto error_return;
11016
11017 amt = max_sym_count * sizeof (asection *);
11018 flinfo.sections = (asection **) bfd_malloc (amt);
11019 if (flinfo.sections == NULL)
11020 goto error_return;
11021 }
11022
11023 if (max_sym_shndx_count != 0)
11024 {
11025 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11026 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11027 if (flinfo.locsym_shndx == NULL)
11028 goto error_return;
11029 }
11030
11031 if (elf_hash_table (info)->tls_sec)
11032 {
11033 bfd_vma base, end = 0;
11034 asection *sec;
11035
11036 for (sec = elf_hash_table (info)->tls_sec;
11037 sec && (sec->flags & SEC_THREAD_LOCAL);
11038 sec = sec->next)
11039 {
11040 bfd_size_type size = sec->size;
11041
11042 if (size == 0
11043 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11044 {
11045 struct bfd_link_order *ord = sec->map_tail.link_order;
11046
11047 if (ord != NULL)
11048 size = ord->offset + ord->size;
11049 }
11050 end = sec->vma + size;
11051 }
11052 base = elf_hash_table (info)->tls_sec->vma;
11053 /* Only align end of TLS section if static TLS doesn't have special
11054 alignment requirements. */
11055 if (bed->static_tls_alignment == 1)
11056 end = align_power (end,
11057 elf_hash_table (info)->tls_sec->alignment_power);
11058 elf_hash_table (info)->tls_size = end - base;
11059 }
11060
11061 /* Reorder SHF_LINK_ORDER sections. */
11062 for (o = abfd->sections; o != NULL; o = o->next)
11063 {
11064 if (!elf_fixup_link_order (abfd, o))
11065 return FALSE;
11066 }
11067
11068 /* Since ELF permits relocations to be against local symbols, we
11069 must have the local symbols available when we do the relocations.
11070 Since we would rather only read the local symbols once, and we
11071 would rather not keep them in memory, we handle all the
11072 relocations for a single input file at the same time.
11073
11074 Unfortunately, there is no way to know the total number of local
11075 symbols until we have seen all of them, and the local symbol
11076 indices precede the global symbol indices. This means that when
11077 we are generating relocatable output, and we see a reloc against
11078 a global symbol, we can not know the symbol index until we have
11079 finished examining all the local symbols to see which ones we are
11080 going to output. To deal with this, we keep the relocations in
11081 memory, and don't output them until the end of the link. This is
11082 an unfortunate waste of memory, but I don't see a good way around
11083 it. Fortunately, it only happens when performing a relocatable
11084 link, which is not the common case. FIXME: If keep_memory is set
11085 we could write the relocs out and then read them again; I don't
11086 know how bad the memory loss will be. */
11087
11088 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11089 sub->output_has_begun = FALSE;
11090 for (o = abfd->sections; o != NULL; o = o->next)
11091 {
11092 for (p = o->map_head.link_order; p != NULL; p = p->next)
11093 {
11094 if (p->type == bfd_indirect_link_order
11095 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11096 == bfd_target_elf_flavour)
11097 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11098 {
11099 if (! sub->output_has_begun)
11100 {
11101 if (! elf_link_input_bfd (&flinfo, sub))
11102 goto error_return;
11103 sub->output_has_begun = TRUE;
11104 }
11105 }
11106 else if (p->type == bfd_section_reloc_link_order
11107 || p->type == bfd_symbol_reloc_link_order)
11108 {
11109 if (! elf_reloc_link_order (abfd, info, o, p))
11110 goto error_return;
11111 }
11112 else
11113 {
11114 if (! _bfd_default_link_order (abfd, info, o, p))
11115 {
11116 if (p->type == bfd_indirect_link_order
11117 && (bfd_get_flavour (sub)
11118 == bfd_target_elf_flavour)
11119 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11120 != bed->s->elfclass))
11121 {
11122 const char *iclass, *oclass;
11123
11124 if (bed->s->elfclass == ELFCLASS64)
11125 {
11126 iclass = "ELFCLASS32";
11127 oclass = "ELFCLASS64";
11128 }
11129 else
11130 {
11131 iclass = "ELFCLASS64";
11132 oclass = "ELFCLASS32";
11133 }
11134
11135 bfd_set_error (bfd_error_wrong_format);
11136 (*_bfd_error_handler)
11137 (_("%B: file class %s incompatible with %s"),
11138 sub, iclass, oclass);
11139 }
11140
11141 goto error_return;
11142 }
11143 }
11144 }
11145 }
11146
11147 /* Free symbol buffer if needed. */
11148 if (!info->reduce_memory_overheads)
11149 {
11150 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11151 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11152 && elf_tdata (sub)->symbuf)
11153 {
11154 free (elf_tdata (sub)->symbuf);
11155 elf_tdata (sub)->symbuf = NULL;
11156 }
11157 }
11158
11159 /* Output any global symbols that got converted to local in a
11160 version script or due to symbol visibility. We do this in a
11161 separate step since ELF requires all local symbols to appear
11162 prior to any global symbols. FIXME: We should only do this if
11163 some global symbols were, in fact, converted to become local.
11164 FIXME: Will this work correctly with the Irix 5 linker? */
11165 eoinfo.failed = FALSE;
11166 eoinfo.flinfo = &flinfo;
11167 eoinfo.localsyms = TRUE;
11168 eoinfo.file_sym_done = FALSE;
11169 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11170 if (eoinfo.failed)
11171 return FALSE;
11172
11173 /* If backend needs to output some local symbols not present in the hash
11174 table, do it now. */
11175 if (bed->elf_backend_output_arch_local_syms
11176 && (info->strip != strip_all || emit_relocs))
11177 {
11178 typedef int (*out_sym_func)
11179 (void *, const char *, Elf_Internal_Sym *, asection *,
11180 struct elf_link_hash_entry *);
11181
11182 if (! ((*bed->elf_backend_output_arch_local_syms)
11183 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11184 return FALSE;
11185 }
11186
11187 /* That wrote out all the local symbols. Finish up the symbol table
11188 with the global symbols. Even if we want to strip everything we
11189 can, we still need to deal with those global symbols that got
11190 converted to local in a version script. */
11191
11192 /* The sh_info field records the index of the first non local symbol. */
11193 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11194
11195 if (dynamic
11196 && flinfo.dynsym_sec != NULL
11197 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11198 {
11199 Elf_Internal_Sym sym;
11200 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11201 long last_local = 0;
11202
11203 /* Write out the section symbols for the output sections. */
11204 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11205 {
11206 asection *s;
11207
11208 sym.st_size = 0;
11209 sym.st_name = 0;
11210 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11211 sym.st_other = 0;
11212 sym.st_target_internal = 0;
11213
11214 for (s = abfd->sections; s != NULL; s = s->next)
11215 {
11216 int indx;
11217 bfd_byte *dest;
11218 long dynindx;
11219
11220 dynindx = elf_section_data (s)->dynindx;
11221 if (dynindx <= 0)
11222 continue;
11223 indx = elf_section_data (s)->this_idx;
11224 BFD_ASSERT (indx > 0);
11225 sym.st_shndx = indx;
11226 if (! check_dynsym (abfd, &sym))
11227 return FALSE;
11228 sym.st_value = s->vma;
11229 dest = dynsym + dynindx * bed->s->sizeof_sym;
11230 if (last_local < dynindx)
11231 last_local = dynindx;
11232 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11233 }
11234 }
11235
11236 /* Write out the local dynsyms. */
11237 if (elf_hash_table (info)->dynlocal)
11238 {
11239 struct elf_link_local_dynamic_entry *e;
11240 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11241 {
11242 asection *s;
11243 bfd_byte *dest;
11244
11245 /* Copy the internal symbol and turn off visibility.
11246 Note that we saved a word of storage and overwrote
11247 the original st_name with the dynstr_index. */
11248 sym = e->isym;
11249 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11250
11251 s = bfd_section_from_elf_index (e->input_bfd,
11252 e->isym.st_shndx);
11253 if (s != NULL)
11254 {
11255 sym.st_shndx =
11256 elf_section_data (s->output_section)->this_idx;
11257 if (! check_dynsym (abfd, &sym))
11258 return FALSE;
11259 sym.st_value = (s->output_section->vma
11260 + s->output_offset
11261 + e->isym.st_value);
11262 }
11263
11264 if (last_local < e->dynindx)
11265 last_local = e->dynindx;
11266
11267 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11268 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11269 }
11270 }
11271
11272 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11273 last_local + 1;
11274 }
11275
11276 /* We get the global symbols from the hash table. */
11277 eoinfo.failed = FALSE;
11278 eoinfo.localsyms = FALSE;
11279 eoinfo.flinfo = &flinfo;
11280 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11281 if (eoinfo.failed)
11282 return FALSE;
11283
11284 /* If backend needs to output some symbols not present in the hash
11285 table, do it now. */
11286 if (bed->elf_backend_output_arch_syms
11287 && (info->strip != strip_all || emit_relocs))
11288 {
11289 typedef int (*out_sym_func)
11290 (void *, const char *, Elf_Internal_Sym *, asection *,
11291 struct elf_link_hash_entry *);
11292
11293 if (! ((*bed->elf_backend_output_arch_syms)
11294 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11295 return FALSE;
11296 }
11297
11298 /* Flush all symbols to the file. */
11299 if (! elf_link_flush_output_syms (&flinfo, bed))
11300 return FALSE;
11301
11302 /* Now we know the size of the symtab section. */
11303 if (bfd_get_symcount (abfd) > 0)
11304 {
11305 /* Finish up and write out the symbol string table (.strtab)
11306 section. */
11307 Elf_Internal_Shdr *symstrtab_hdr;
11308 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
11309
11310 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11311 if (symtab_shndx_hdr->sh_name != 0)
11312 {
11313 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11314 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11315 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11316 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11317 symtab_shndx_hdr->sh_size = amt;
11318
11319 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11320 off, TRUE);
11321
11322 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11323 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11324 return FALSE;
11325 }
11326
11327 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11328 /* sh_name was set in prep_headers. */
11329 symstrtab_hdr->sh_type = SHT_STRTAB;
11330 symstrtab_hdr->sh_flags = 0;
11331 symstrtab_hdr->sh_addr = 0;
11332 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11333 symstrtab_hdr->sh_entsize = 0;
11334 symstrtab_hdr->sh_link = 0;
11335 symstrtab_hdr->sh_info = 0;
11336 /* sh_offset is set just below. */
11337 symstrtab_hdr->sh_addralign = 1;
11338
11339 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
11340 off, TRUE);
11341 elf_next_file_pos (abfd) = off;
11342
11343 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11344 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11345 return FALSE;
11346 }
11347
11348 /* Adjust the relocs to have the correct symbol indices. */
11349 for (o = abfd->sections; o != NULL; o = o->next)
11350 {
11351 struct bfd_elf_section_data *esdo = elf_section_data (o);
11352 bfd_boolean sort;
11353 if ((o->flags & SEC_RELOC) == 0)
11354 continue;
11355
11356 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
11357 if (esdo->rel.hdr != NULL)
11358 elf_link_adjust_relocs (abfd, &esdo->rel, sort);
11359 if (esdo->rela.hdr != NULL)
11360 elf_link_adjust_relocs (abfd, &esdo->rela, sort);
11361
11362 /* Set the reloc_count field to 0 to prevent write_relocs from
11363 trying to swap the relocs out itself. */
11364 o->reloc_count = 0;
11365 }
11366
11367 if (dynamic && info->combreloc && dynobj != NULL)
11368 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11369
11370 /* If we are linking against a dynamic object, or generating a
11371 shared library, finish up the dynamic linking information. */
11372 if (dynamic)
11373 {
11374 bfd_byte *dyncon, *dynconend;
11375
11376 /* Fix up .dynamic entries. */
11377 o = bfd_get_linker_section (dynobj, ".dynamic");
11378 BFD_ASSERT (o != NULL);
11379
11380 dyncon = o->contents;
11381 dynconend = o->contents + o->size;
11382 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11383 {
11384 Elf_Internal_Dyn dyn;
11385 const char *name;
11386 unsigned int type;
11387
11388 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11389
11390 switch (dyn.d_tag)
11391 {
11392 default:
11393 continue;
11394 case DT_NULL:
11395 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11396 {
11397 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11398 {
11399 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11400 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11401 default: continue;
11402 }
11403 dyn.d_un.d_val = relativecount;
11404 relativecount = 0;
11405 break;
11406 }
11407 continue;
11408
11409 case DT_INIT:
11410 name = info->init_function;
11411 goto get_sym;
11412 case DT_FINI:
11413 name = info->fini_function;
11414 get_sym:
11415 {
11416 struct elf_link_hash_entry *h;
11417
11418 h = elf_link_hash_lookup (elf_hash_table (info), name,
11419 FALSE, FALSE, TRUE);
11420 if (h != NULL
11421 && (h->root.type == bfd_link_hash_defined
11422 || h->root.type == bfd_link_hash_defweak))
11423 {
11424 dyn.d_un.d_ptr = h->root.u.def.value;
11425 o = h->root.u.def.section;
11426 if (o->output_section != NULL)
11427 dyn.d_un.d_ptr += (o->output_section->vma
11428 + o->output_offset);
11429 else
11430 {
11431 /* The symbol is imported from another shared
11432 library and does not apply to this one. */
11433 dyn.d_un.d_ptr = 0;
11434 }
11435 break;
11436 }
11437 }
11438 continue;
11439
11440 case DT_PREINIT_ARRAYSZ:
11441 name = ".preinit_array";
11442 goto get_size;
11443 case DT_INIT_ARRAYSZ:
11444 name = ".init_array";
11445 goto get_size;
11446 case DT_FINI_ARRAYSZ:
11447 name = ".fini_array";
11448 get_size:
11449 o = bfd_get_section_by_name (abfd, name);
11450 if (o == NULL)
11451 {
11452 (*_bfd_error_handler)
11453 (_("%B: could not find output section %s"), abfd, name);
11454 goto error_return;
11455 }
11456 if (o->size == 0)
11457 (*_bfd_error_handler)
11458 (_("warning: %s section has zero size"), name);
11459 dyn.d_un.d_val = o->size;
11460 break;
11461
11462 case DT_PREINIT_ARRAY:
11463 name = ".preinit_array";
11464 goto get_vma;
11465 case DT_INIT_ARRAY:
11466 name = ".init_array";
11467 goto get_vma;
11468 case DT_FINI_ARRAY:
11469 name = ".fini_array";
11470 goto get_vma;
11471
11472 case DT_HASH:
11473 name = ".hash";
11474 goto get_vma;
11475 case DT_GNU_HASH:
11476 name = ".gnu.hash";
11477 goto get_vma;
11478 case DT_STRTAB:
11479 name = ".dynstr";
11480 goto get_vma;
11481 case DT_SYMTAB:
11482 name = ".dynsym";
11483 goto get_vma;
11484 case DT_VERDEF:
11485 name = ".gnu.version_d";
11486 goto get_vma;
11487 case DT_VERNEED:
11488 name = ".gnu.version_r";
11489 goto get_vma;
11490 case DT_VERSYM:
11491 name = ".gnu.version";
11492 get_vma:
11493 o = bfd_get_section_by_name (abfd, name);
11494 if (o == NULL)
11495 {
11496 (*_bfd_error_handler)
11497 (_("%B: could not find output section %s"), abfd, name);
11498 goto error_return;
11499 }
11500 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11501 {
11502 (*_bfd_error_handler)
11503 (_("warning: section '%s' is being made into a note"), name);
11504 bfd_set_error (bfd_error_nonrepresentable_section);
11505 goto error_return;
11506 }
11507 dyn.d_un.d_ptr = o->vma;
11508 break;
11509
11510 case DT_REL:
11511 case DT_RELA:
11512 case DT_RELSZ:
11513 case DT_RELASZ:
11514 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11515 type = SHT_REL;
11516 else
11517 type = SHT_RELA;
11518 dyn.d_un.d_val = 0;
11519 dyn.d_un.d_ptr = 0;
11520 for (i = 1; i < elf_numsections (abfd); i++)
11521 {
11522 Elf_Internal_Shdr *hdr;
11523
11524 hdr = elf_elfsections (abfd)[i];
11525 if (hdr->sh_type == type
11526 && (hdr->sh_flags & SHF_ALLOC) != 0)
11527 {
11528 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11529 dyn.d_un.d_val += hdr->sh_size;
11530 else
11531 {
11532 if (dyn.d_un.d_ptr == 0
11533 || hdr->sh_addr < dyn.d_un.d_ptr)
11534 dyn.d_un.d_ptr = hdr->sh_addr;
11535 }
11536 }
11537 }
11538 break;
11539 }
11540 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11541 }
11542 }
11543
11544 /* If we have created any dynamic sections, then output them. */
11545 if (dynobj != NULL)
11546 {
11547 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11548 goto error_return;
11549
11550 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11551 if (((info->warn_shared_textrel && info->shared)
11552 || info->error_textrel)
11553 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11554 {
11555 bfd_byte *dyncon, *dynconend;
11556
11557 dyncon = o->contents;
11558 dynconend = o->contents + o->size;
11559 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11560 {
11561 Elf_Internal_Dyn dyn;
11562
11563 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11564
11565 if (dyn.d_tag == DT_TEXTREL)
11566 {
11567 if (info->error_textrel)
11568 info->callbacks->einfo
11569 (_("%P%X: read-only segment has dynamic relocations.\n"));
11570 else
11571 info->callbacks->einfo
11572 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11573 break;
11574 }
11575 }
11576 }
11577
11578 for (o = dynobj->sections; o != NULL; o = o->next)
11579 {
11580 if ((o->flags & SEC_HAS_CONTENTS) == 0
11581 || o->size == 0
11582 || o->output_section == bfd_abs_section_ptr)
11583 continue;
11584 if ((o->flags & SEC_LINKER_CREATED) == 0)
11585 {
11586 /* At this point, we are only interested in sections
11587 created by _bfd_elf_link_create_dynamic_sections. */
11588 continue;
11589 }
11590 if (elf_hash_table (info)->stab_info.stabstr == o)
11591 continue;
11592 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11593 continue;
11594 if (strcmp (o->name, ".dynstr") != 0)
11595 {
11596 /* FIXME: octets_per_byte. */
11597 if (! bfd_set_section_contents (abfd, o->output_section,
11598 o->contents,
11599 (file_ptr) o->output_offset,
11600 o->size))
11601 goto error_return;
11602 }
11603 else
11604 {
11605 /* The contents of the .dynstr section are actually in a
11606 stringtab. */
11607 file_ptr off;
11608
11609 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11610 if (bfd_seek (abfd, off, SEEK_SET) != 0
11611 || ! _bfd_elf_strtab_emit (abfd,
11612 elf_hash_table (info)->dynstr))
11613 goto error_return;
11614 }
11615 }
11616 }
11617
11618 if (info->relocatable)
11619 {
11620 bfd_boolean failed = FALSE;
11621
11622 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11623 if (failed)
11624 goto error_return;
11625 }
11626
11627 /* If we have optimized stabs strings, output them. */
11628 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11629 {
11630 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11631 goto error_return;
11632 }
11633
11634 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11635 goto error_return;
11636
11637 elf_final_link_free (abfd, &flinfo);
11638
11639 elf_linker (abfd) = TRUE;
11640
11641 if (attr_section)
11642 {
11643 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11644 if (contents == NULL)
11645 return FALSE; /* Bail out and fail. */
11646 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11647 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11648 free (contents);
11649 }
11650
11651 return TRUE;
11652
11653 error_return:
11654 elf_final_link_free (abfd, &flinfo);
11655 return FALSE;
11656 }
11657 \f
11658 /* Initialize COOKIE for input bfd ABFD. */
11659
11660 static bfd_boolean
11661 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11662 struct bfd_link_info *info, bfd *abfd)
11663 {
11664 Elf_Internal_Shdr *symtab_hdr;
11665 const struct elf_backend_data *bed;
11666
11667 bed = get_elf_backend_data (abfd);
11668 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11669
11670 cookie->abfd = abfd;
11671 cookie->sym_hashes = elf_sym_hashes (abfd);
11672 cookie->bad_symtab = elf_bad_symtab (abfd);
11673 if (cookie->bad_symtab)
11674 {
11675 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11676 cookie->extsymoff = 0;
11677 }
11678 else
11679 {
11680 cookie->locsymcount = symtab_hdr->sh_info;
11681 cookie->extsymoff = symtab_hdr->sh_info;
11682 }
11683
11684 if (bed->s->arch_size == 32)
11685 cookie->r_sym_shift = 8;
11686 else
11687 cookie->r_sym_shift = 32;
11688
11689 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11690 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11691 {
11692 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11693 cookie->locsymcount, 0,
11694 NULL, NULL, NULL);
11695 if (cookie->locsyms == NULL)
11696 {
11697 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11698 return FALSE;
11699 }
11700 if (info->keep_memory)
11701 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11702 }
11703 return TRUE;
11704 }
11705
11706 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11707
11708 static void
11709 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11710 {
11711 Elf_Internal_Shdr *symtab_hdr;
11712
11713 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11714 if (cookie->locsyms != NULL
11715 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11716 free (cookie->locsyms);
11717 }
11718
11719 /* Initialize the relocation information in COOKIE for input section SEC
11720 of input bfd ABFD. */
11721
11722 static bfd_boolean
11723 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11724 struct bfd_link_info *info, bfd *abfd,
11725 asection *sec)
11726 {
11727 const struct elf_backend_data *bed;
11728
11729 if (sec->reloc_count == 0)
11730 {
11731 cookie->rels = NULL;
11732 cookie->relend = NULL;
11733 }
11734 else
11735 {
11736 bed = get_elf_backend_data (abfd);
11737
11738 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11739 info->keep_memory);
11740 if (cookie->rels == NULL)
11741 return FALSE;
11742 cookie->rel = cookie->rels;
11743 cookie->relend = (cookie->rels
11744 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11745 }
11746 cookie->rel = cookie->rels;
11747 return TRUE;
11748 }
11749
11750 /* Free the memory allocated by init_reloc_cookie_rels,
11751 if appropriate. */
11752
11753 static void
11754 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11755 asection *sec)
11756 {
11757 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11758 free (cookie->rels);
11759 }
11760
11761 /* Initialize the whole of COOKIE for input section SEC. */
11762
11763 static bfd_boolean
11764 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11765 struct bfd_link_info *info,
11766 asection *sec)
11767 {
11768 if (!init_reloc_cookie (cookie, info, sec->owner))
11769 goto error1;
11770 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11771 goto error2;
11772 return TRUE;
11773
11774 error2:
11775 fini_reloc_cookie (cookie, sec->owner);
11776 error1:
11777 return FALSE;
11778 }
11779
11780 /* Free the memory allocated by init_reloc_cookie_for_section,
11781 if appropriate. */
11782
11783 static void
11784 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11785 asection *sec)
11786 {
11787 fini_reloc_cookie_rels (cookie, sec);
11788 fini_reloc_cookie (cookie, sec->owner);
11789 }
11790 \f
11791 /* Garbage collect unused sections. */
11792
11793 /* Default gc_mark_hook. */
11794
11795 asection *
11796 _bfd_elf_gc_mark_hook (asection *sec,
11797 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11798 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11799 struct elf_link_hash_entry *h,
11800 Elf_Internal_Sym *sym)
11801 {
11802 const char *sec_name;
11803
11804 if (h != NULL)
11805 {
11806 switch (h->root.type)
11807 {
11808 case bfd_link_hash_defined:
11809 case bfd_link_hash_defweak:
11810 return h->root.u.def.section;
11811
11812 case bfd_link_hash_common:
11813 return h->root.u.c.p->section;
11814
11815 case bfd_link_hash_undefined:
11816 case bfd_link_hash_undefweak:
11817 /* To work around a glibc bug, keep all XXX input sections
11818 when there is an as yet undefined reference to __start_XXX
11819 or __stop_XXX symbols. The linker will later define such
11820 symbols for orphan input sections that have a name
11821 representable as a C identifier. */
11822 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11823 sec_name = h->root.root.string + 8;
11824 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11825 sec_name = h->root.root.string + 7;
11826 else
11827 sec_name = NULL;
11828
11829 if (sec_name && *sec_name != '\0')
11830 {
11831 bfd *i;
11832
11833 for (i = info->input_bfds; i; i = i->link.next)
11834 {
11835 sec = bfd_get_section_by_name (i, sec_name);
11836 if (sec)
11837 sec->flags |= SEC_KEEP;
11838 }
11839 }
11840 break;
11841
11842 default:
11843 break;
11844 }
11845 }
11846 else
11847 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11848
11849 return NULL;
11850 }
11851
11852 /* COOKIE->rel describes a relocation against section SEC, which is
11853 a section we've decided to keep. Return the section that contains
11854 the relocation symbol, or NULL if no section contains it. */
11855
11856 asection *
11857 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11858 elf_gc_mark_hook_fn gc_mark_hook,
11859 struct elf_reloc_cookie *cookie)
11860 {
11861 unsigned long r_symndx;
11862 struct elf_link_hash_entry *h;
11863
11864 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11865 if (r_symndx == STN_UNDEF)
11866 return NULL;
11867
11868 if (r_symndx >= cookie->locsymcount
11869 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11870 {
11871 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11872 if (h == NULL)
11873 {
11874 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
11875 sec->owner);
11876 return NULL;
11877 }
11878 while (h->root.type == bfd_link_hash_indirect
11879 || h->root.type == bfd_link_hash_warning)
11880 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11881 h->mark = 1;
11882 /* If this symbol is weak and there is a non-weak definition, we
11883 keep the non-weak definition because many backends put
11884 dynamic reloc info on the non-weak definition for code
11885 handling copy relocs. */
11886 if (h->u.weakdef != NULL)
11887 h->u.weakdef->mark = 1;
11888 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11889 }
11890
11891 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11892 &cookie->locsyms[r_symndx]);
11893 }
11894
11895 /* COOKIE->rel describes a relocation against section SEC, which is
11896 a section we've decided to keep. Mark the section that contains
11897 the relocation symbol. */
11898
11899 bfd_boolean
11900 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11901 asection *sec,
11902 elf_gc_mark_hook_fn gc_mark_hook,
11903 struct elf_reloc_cookie *cookie)
11904 {
11905 asection *rsec;
11906
11907 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11908 if (rsec && !rsec->gc_mark)
11909 {
11910 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11911 || (rsec->owner->flags & DYNAMIC) != 0)
11912 rsec->gc_mark = 1;
11913 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11914 return FALSE;
11915 }
11916 return TRUE;
11917 }
11918
11919 /* The mark phase of garbage collection. For a given section, mark
11920 it and any sections in this section's group, and all the sections
11921 which define symbols to which it refers. */
11922
11923 bfd_boolean
11924 _bfd_elf_gc_mark (struct bfd_link_info *info,
11925 asection *sec,
11926 elf_gc_mark_hook_fn gc_mark_hook)
11927 {
11928 bfd_boolean ret;
11929 asection *group_sec, *eh_frame;
11930
11931 sec->gc_mark = 1;
11932
11933 /* Mark all the sections in the group. */
11934 group_sec = elf_section_data (sec)->next_in_group;
11935 if (group_sec && !group_sec->gc_mark)
11936 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11937 return FALSE;
11938
11939 /* Look through the section relocs. */
11940 ret = TRUE;
11941 eh_frame = elf_eh_frame_section (sec->owner);
11942 if ((sec->flags & SEC_RELOC) != 0
11943 && sec->reloc_count > 0
11944 && sec != eh_frame)
11945 {
11946 struct elf_reloc_cookie cookie;
11947
11948 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11949 ret = FALSE;
11950 else
11951 {
11952 for (; cookie.rel < cookie.relend; cookie.rel++)
11953 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11954 {
11955 ret = FALSE;
11956 break;
11957 }
11958 fini_reloc_cookie_for_section (&cookie, sec);
11959 }
11960 }
11961
11962 if (ret && eh_frame && elf_fde_list (sec))
11963 {
11964 struct elf_reloc_cookie cookie;
11965
11966 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11967 ret = FALSE;
11968 else
11969 {
11970 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11971 gc_mark_hook, &cookie))
11972 ret = FALSE;
11973 fini_reloc_cookie_for_section (&cookie, eh_frame);
11974 }
11975 }
11976
11977 return ret;
11978 }
11979
11980 /* Scan and mark sections in a special or debug section group. */
11981
11982 static void
11983 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
11984 {
11985 /* Point to first section of section group. */
11986 asection *ssec;
11987 /* Used to iterate the section group. */
11988 asection *msec;
11989
11990 bfd_boolean is_special_grp = TRUE;
11991 bfd_boolean is_debug_grp = TRUE;
11992
11993 /* First scan to see if group contains any section other than debug
11994 and special section. */
11995 ssec = msec = elf_next_in_group (grp);
11996 do
11997 {
11998 if ((msec->flags & SEC_DEBUGGING) == 0)
11999 is_debug_grp = FALSE;
12000
12001 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
12002 is_special_grp = FALSE;
12003
12004 msec = elf_next_in_group (msec);
12005 }
12006 while (msec != ssec);
12007
12008 /* If this is a pure debug section group or pure special section group,
12009 keep all sections in this group. */
12010 if (is_debug_grp || is_special_grp)
12011 {
12012 do
12013 {
12014 msec->gc_mark = 1;
12015 msec = elf_next_in_group (msec);
12016 }
12017 while (msec != ssec);
12018 }
12019 }
12020
12021 /* Keep debug and special sections. */
12022
12023 bfd_boolean
12024 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12025 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12026 {
12027 bfd *ibfd;
12028
12029 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12030 {
12031 asection *isec;
12032 bfd_boolean some_kept;
12033 bfd_boolean debug_frag_seen;
12034
12035 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12036 continue;
12037
12038 /* Ensure all linker created sections are kept,
12039 see if any other section is already marked,
12040 and note if we have any fragmented debug sections. */
12041 debug_frag_seen = some_kept = FALSE;
12042 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12043 {
12044 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12045 isec->gc_mark = 1;
12046 else if (isec->gc_mark)
12047 some_kept = TRUE;
12048
12049 if (debug_frag_seen == FALSE
12050 && (isec->flags & SEC_DEBUGGING)
12051 && CONST_STRNEQ (isec->name, ".debug_line."))
12052 debug_frag_seen = TRUE;
12053 }
12054
12055 /* If no section in this file will be kept, then we can
12056 toss out the debug and special sections. */
12057 if (!some_kept)
12058 continue;
12059
12060 /* Keep debug and special sections like .comment when they are
12061 not part of a group. Also keep section groups that contain
12062 just debug sections or special sections. */
12063 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12064 {
12065 if ((isec->flags & SEC_GROUP) != 0)
12066 _bfd_elf_gc_mark_debug_special_section_group (isec);
12067 else if (((isec->flags & SEC_DEBUGGING) != 0
12068 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12069 && elf_next_in_group (isec) == NULL)
12070 isec->gc_mark = 1;
12071 }
12072
12073 if (! debug_frag_seen)
12074 continue;
12075
12076 /* Look for CODE sections which are going to be discarded,
12077 and find and discard any fragmented debug sections which
12078 are associated with that code section. */
12079 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12080 if ((isec->flags & SEC_CODE) != 0
12081 && isec->gc_mark == 0)
12082 {
12083 unsigned int ilen;
12084 asection *dsec;
12085
12086 ilen = strlen (isec->name);
12087
12088 /* Association is determined by the name of the debug section
12089 containing the name of the code section as a suffix. For
12090 example .debug_line.text.foo is a debug section associated
12091 with .text.foo. */
12092 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12093 {
12094 unsigned int dlen;
12095
12096 if (dsec->gc_mark == 0
12097 || (dsec->flags & SEC_DEBUGGING) == 0)
12098 continue;
12099
12100 dlen = strlen (dsec->name);
12101
12102 if (dlen > ilen
12103 && strncmp (dsec->name + (dlen - ilen),
12104 isec->name, ilen) == 0)
12105 {
12106 dsec->gc_mark = 0;
12107 }
12108 }
12109 }
12110 }
12111 return TRUE;
12112 }
12113
12114 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
12115
12116 struct elf_gc_sweep_symbol_info
12117 {
12118 struct bfd_link_info *info;
12119 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
12120 bfd_boolean);
12121 };
12122
12123 static bfd_boolean
12124 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
12125 {
12126 if (!h->mark
12127 && (((h->root.type == bfd_link_hash_defined
12128 || h->root.type == bfd_link_hash_defweak)
12129 && !((h->def_regular || ELF_COMMON_DEF_P (h))
12130 && h->root.u.def.section->gc_mark))
12131 || h->root.type == bfd_link_hash_undefined
12132 || h->root.type == bfd_link_hash_undefweak))
12133 {
12134 struct elf_gc_sweep_symbol_info *inf;
12135
12136 inf = (struct elf_gc_sweep_symbol_info *) data;
12137 (*inf->hide_symbol) (inf->info, h, TRUE);
12138 h->def_regular = 0;
12139 h->ref_regular = 0;
12140 h->ref_regular_nonweak = 0;
12141 }
12142
12143 return TRUE;
12144 }
12145
12146 /* The sweep phase of garbage collection. Remove all garbage sections. */
12147
12148 typedef bfd_boolean (*gc_sweep_hook_fn)
12149 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
12150
12151 static bfd_boolean
12152 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
12153 {
12154 bfd *sub;
12155 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12156 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
12157 unsigned long section_sym_count;
12158 struct elf_gc_sweep_symbol_info sweep_info;
12159
12160 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12161 {
12162 asection *o;
12163
12164 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12165 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12166 continue;
12167
12168 for (o = sub->sections; o != NULL; o = o->next)
12169 {
12170 /* When any section in a section group is kept, we keep all
12171 sections in the section group. If the first member of
12172 the section group is excluded, we will also exclude the
12173 group section. */
12174 if (o->flags & SEC_GROUP)
12175 {
12176 asection *first = elf_next_in_group (o);
12177 o->gc_mark = first->gc_mark;
12178 }
12179
12180 if (o->gc_mark)
12181 continue;
12182
12183 /* Skip sweeping sections already excluded. */
12184 if (o->flags & SEC_EXCLUDE)
12185 continue;
12186
12187 /* Since this is early in the link process, it is simple
12188 to remove a section from the output. */
12189 o->flags |= SEC_EXCLUDE;
12190
12191 if (info->print_gc_sections && o->size != 0)
12192 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
12193
12194 /* But we also have to update some of the relocation
12195 info we collected before. */
12196 if (gc_sweep_hook
12197 && (o->flags & SEC_RELOC) != 0
12198 && o->reloc_count != 0
12199 && !((info->strip == strip_all || info->strip == strip_debugger)
12200 && (o->flags & SEC_DEBUGGING) != 0)
12201 && !bfd_is_abs_section (o->output_section))
12202 {
12203 Elf_Internal_Rela *internal_relocs;
12204 bfd_boolean r;
12205
12206 internal_relocs
12207 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12208 info->keep_memory);
12209 if (internal_relocs == NULL)
12210 return FALSE;
12211
12212 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12213
12214 if (elf_section_data (o)->relocs != internal_relocs)
12215 free (internal_relocs);
12216
12217 if (!r)
12218 return FALSE;
12219 }
12220 }
12221 }
12222
12223 /* Remove the symbols that were in the swept sections from the dynamic
12224 symbol table. GCFIXME: Anyone know how to get them out of the
12225 static symbol table as well? */
12226 sweep_info.info = info;
12227 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12228 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12229 &sweep_info);
12230
12231 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12232 return TRUE;
12233 }
12234
12235 /* Propagate collected vtable information. This is called through
12236 elf_link_hash_traverse. */
12237
12238 static bfd_boolean
12239 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12240 {
12241 /* Those that are not vtables. */
12242 if (h->vtable == NULL || h->vtable->parent == NULL)
12243 return TRUE;
12244
12245 /* Those vtables that do not have parents, we cannot merge. */
12246 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12247 return TRUE;
12248
12249 /* If we've already been done, exit. */
12250 if (h->vtable->used && h->vtable->used[-1])
12251 return TRUE;
12252
12253 /* Make sure the parent's table is up to date. */
12254 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12255
12256 if (h->vtable->used == NULL)
12257 {
12258 /* None of this table's entries were referenced. Re-use the
12259 parent's table. */
12260 h->vtable->used = h->vtable->parent->vtable->used;
12261 h->vtable->size = h->vtable->parent->vtable->size;
12262 }
12263 else
12264 {
12265 size_t n;
12266 bfd_boolean *cu, *pu;
12267
12268 /* Or the parent's entries into ours. */
12269 cu = h->vtable->used;
12270 cu[-1] = TRUE;
12271 pu = h->vtable->parent->vtable->used;
12272 if (pu != NULL)
12273 {
12274 const struct elf_backend_data *bed;
12275 unsigned int log_file_align;
12276
12277 bed = get_elf_backend_data (h->root.u.def.section->owner);
12278 log_file_align = bed->s->log_file_align;
12279 n = h->vtable->parent->vtable->size >> log_file_align;
12280 while (n--)
12281 {
12282 if (*pu)
12283 *cu = TRUE;
12284 pu++;
12285 cu++;
12286 }
12287 }
12288 }
12289
12290 return TRUE;
12291 }
12292
12293 static bfd_boolean
12294 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12295 {
12296 asection *sec;
12297 bfd_vma hstart, hend;
12298 Elf_Internal_Rela *relstart, *relend, *rel;
12299 const struct elf_backend_data *bed;
12300 unsigned int log_file_align;
12301
12302 /* Take care of both those symbols that do not describe vtables as
12303 well as those that are not loaded. */
12304 if (h->vtable == NULL || h->vtable->parent == NULL)
12305 return TRUE;
12306
12307 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12308 || h->root.type == bfd_link_hash_defweak);
12309
12310 sec = h->root.u.def.section;
12311 hstart = h->root.u.def.value;
12312 hend = hstart + h->size;
12313
12314 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12315 if (!relstart)
12316 return *(bfd_boolean *) okp = FALSE;
12317 bed = get_elf_backend_data (sec->owner);
12318 log_file_align = bed->s->log_file_align;
12319
12320 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12321
12322 for (rel = relstart; rel < relend; ++rel)
12323 if (rel->r_offset >= hstart && rel->r_offset < hend)
12324 {
12325 /* If the entry is in use, do nothing. */
12326 if (h->vtable->used
12327 && (rel->r_offset - hstart) < h->vtable->size)
12328 {
12329 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12330 if (h->vtable->used[entry])
12331 continue;
12332 }
12333 /* Otherwise, kill it. */
12334 rel->r_offset = rel->r_info = rel->r_addend = 0;
12335 }
12336
12337 return TRUE;
12338 }
12339
12340 /* Mark sections containing dynamically referenced symbols. When
12341 building shared libraries, we must assume that any visible symbol is
12342 referenced. */
12343
12344 bfd_boolean
12345 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12346 {
12347 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12348 struct bfd_elf_dynamic_list *d = info->dynamic_list;
12349
12350 if ((h->root.type == bfd_link_hash_defined
12351 || h->root.type == bfd_link_hash_defweak)
12352 && (h->ref_dynamic
12353 || ((h->def_regular || ELF_COMMON_DEF_P (h))
12354 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12355 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12356 && (!info->executable
12357 || info->export_dynamic
12358 || (h->dynamic
12359 && d != NULL
12360 && (*d->match) (&d->head, NULL, h->root.root.string)))
12361 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12362 || !bfd_hide_sym_by_version (info->version_info,
12363 h->root.root.string)))))
12364 h->root.u.def.section->flags |= SEC_KEEP;
12365
12366 return TRUE;
12367 }
12368
12369 /* Keep all sections containing symbols undefined on the command-line,
12370 and the section containing the entry symbol. */
12371
12372 void
12373 _bfd_elf_gc_keep (struct bfd_link_info *info)
12374 {
12375 struct bfd_sym_chain *sym;
12376
12377 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12378 {
12379 struct elf_link_hash_entry *h;
12380
12381 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12382 FALSE, FALSE, FALSE);
12383
12384 if (h != NULL
12385 && (h->root.type == bfd_link_hash_defined
12386 || h->root.type == bfd_link_hash_defweak)
12387 && !bfd_is_abs_section (h->root.u.def.section))
12388 h->root.u.def.section->flags |= SEC_KEEP;
12389 }
12390 }
12391
12392 /* Do mark and sweep of unused sections. */
12393
12394 bfd_boolean
12395 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12396 {
12397 bfd_boolean ok = TRUE;
12398 bfd *sub;
12399 elf_gc_mark_hook_fn gc_mark_hook;
12400 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12401 struct elf_link_hash_table *htab;
12402
12403 if (!bed->can_gc_sections
12404 || !is_elf_hash_table (info->hash))
12405 {
12406 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12407 return TRUE;
12408 }
12409
12410 bed->gc_keep (info);
12411 htab = elf_hash_table (info);
12412
12413 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12414 at the .eh_frame section if we can mark the FDEs individually. */
12415 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12416 {
12417 asection *sec;
12418 struct elf_reloc_cookie cookie;
12419
12420 sec = bfd_get_section_by_name (sub, ".eh_frame");
12421 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12422 {
12423 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12424 if (elf_section_data (sec)->sec_info
12425 && (sec->flags & SEC_LINKER_CREATED) == 0)
12426 elf_eh_frame_section (sub) = sec;
12427 fini_reloc_cookie_for_section (&cookie, sec);
12428 sec = bfd_get_next_section_by_name (sec);
12429 }
12430 }
12431
12432 /* Apply transitive closure to the vtable entry usage info. */
12433 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
12434 if (!ok)
12435 return FALSE;
12436
12437 /* Kill the vtable relocations that were not used. */
12438 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
12439 if (!ok)
12440 return FALSE;
12441
12442 /* Mark dynamically referenced symbols. */
12443 if (htab->dynamic_sections_created)
12444 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
12445
12446 /* Grovel through relocs to find out who stays ... */
12447 gc_mark_hook = bed->gc_mark_hook;
12448 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12449 {
12450 asection *o;
12451
12452 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12453 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12454 continue;
12455
12456 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12457 Also treat note sections as a root, if the section is not part
12458 of a group. */
12459 for (o = sub->sections; o != NULL; o = o->next)
12460 if (!o->gc_mark
12461 && (o->flags & SEC_EXCLUDE) == 0
12462 && ((o->flags & SEC_KEEP) != 0
12463 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12464 && elf_next_in_group (o) == NULL )))
12465 {
12466 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12467 return FALSE;
12468 }
12469 }
12470
12471 /* Allow the backend to mark additional target specific sections. */
12472 bed->gc_mark_extra_sections (info, gc_mark_hook);
12473
12474 /* ... and mark SEC_EXCLUDE for those that go. */
12475 return elf_gc_sweep (abfd, info);
12476 }
12477 \f
12478 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12479
12480 bfd_boolean
12481 bfd_elf_gc_record_vtinherit (bfd *abfd,
12482 asection *sec,
12483 struct elf_link_hash_entry *h,
12484 bfd_vma offset)
12485 {
12486 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12487 struct elf_link_hash_entry **search, *child;
12488 bfd_size_type extsymcount;
12489 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12490
12491 /* The sh_info field of the symtab header tells us where the
12492 external symbols start. We don't care about the local symbols at
12493 this point. */
12494 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12495 if (!elf_bad_symtab (abfd))
12496 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12497
12498 sym_hashes = elf_sym_hashes (abfd);
12499 sym_hashes_end = sym_hashes + extsymcount;
12500
12501 /* Hunt down the child symbol, which is in this section at the same
12502 offset as the relocation. */
12503 for (search = sym_hashes; search != sym_hashes_end; ++search)
12504 {
12505 if ((child = *search) != NULL
12506 && (child->root.type == bfd_link_hash_defined
12507 || child->root.type == bfd_link_hash_defweak)
12508 && child->root.u.def.section == sec
12509 && child->root.u.def.value == offset)
12510 goto win;
12511 }
12512
12513 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12514 abfd, sec, (unsigned long) offset);
12515 bfd_set_error (bfd_error_invalid_operation);
12516 return FALSE;
12517
12518 win:
12519 if (!child->vtable)
12520 {
12521 child->vtable = ((struct elf_link_virtual_table_entry *)
12522 bfd_zalloc (abfd, sizeof (*child->vtable)));
12523 if (!child->vtable)
12524 return FALSE;
12525 }
12526 if (!h)
12527 {
12528 /* This *should* only be the absolute section. It could potentially
12529 be that someone has defined a non-global vtable though, which
12530 would be bad. It isn't worth paging in the local symbols to be
12531 sure though; that case should simply be handled by the assembler. */
12532
12533 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12534 }
12535 else
12536 child->vtable->parent = h;
12537
12538 return TRUE;
12539 }
12540
12541 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12542
12543 bfd_boolean
12544 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12545 asection *sec ATTRIBUTE_UNUSED,
12546 struct elf_link_hash_entry *h,
12547 bfd_vma addend)
12548 {
12549 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12550 unsigned int log_file_align = bed->s->log_file_align;
12551
12552 if (!h->vtable)
12553 {
12554 h->vtable = ((struct elf_link_virtual_table_entry *)
12555 bfd_zalloc (abfd, sizeof (*h->vtable)));
12556 if (!h->vtable)
12557 return FALSE;
12558 }
12559
12560 if (addend >= h->vtable->size)
12561 {
12562 size_t size, bytes, file_align;
12563 bfd_boolean *ptr = h->vtable->used;
12564
12565 /* While the symbol is undefined, we have to be prepared to handle
12566 a zero size. */
12567 file_align = 1 << log_file_align;
12568 if (h->root.type == bfd_link_hash_undefined)
12569 size = addend + file_align;
12570 else
12571 {
12572 size = h->size;
12573 if (addend >= size)
12574 {
12575 /* Oops! We've got a reference past the defined end of
12576 the table. This is probably a bug -- shall we warn? */
12577 size = addend + file_align;
12578 }
12579 }
12580 size = (size + file_align - 1) & -file_align;
12581
12582 /* Allocate one extra entry for use as a "done" flag for the
12583 consolidation pass. */
12584 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12585
12586 if (ptr)
12587 {
12588 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12589
12590 if (ptr != NULL)
12591 {
12592 size_t oldbytes;
12593
12594 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12595 * sizeof (bfd_boolean));
12596 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12597 }
12598 }
12599 else
12600 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12601
12602 if (ptr == NULL)
12603 return FALSE;
12604
12605 /* And arrange for that done flag to be at index -1. */
12606 h->vtable->used = ptr + 1;
12607 h->vtable->size = size;
12608 }
12609
12610 h->vtable->used[addend >> log_file_align] = TRUE;
12611
12612 return TRUE;
12613 }
12614
12615 /* Map an ELF section header flag to its corresponding string. */
12616 typedef struct
12617 {
12618 char *flag_name;
12619 flagword flag_value;
12620 } elf_flags_to_name_table;
12621
12622 static elf_flags_to_name_table elf_flags_to_names [] =
12623 {
12624 { "SHF_WRITE", SHF_WRITE },
12625 { "SHF_ALLOC", SHF_ALLOC },
12626 { "SHF_EXECINSTR", SHF_EXECINSTR },
12627 { "SHF_MERGE", SHF_MERGE },
12628 { "SHF_STRINGS", SHF_STRINGS },
12629 { "SHF_INFO_LINK", SHF_INFO_LINK},
12630 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12631 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12632 { "SHF_GROUP", SHF_GROUP },
12633 { "SHF_TLS", SHF_TLS },
12634 { "SHF_MASKOS", SHF_MASKOS },
12635 { "SHF_EXCLUDE", SHF_EXCLUDE },
12636 };
12637
12638 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12639 bfd_boolean
12640 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12641 struct flag_info *flaginfo,
12642 asection *section)
12643 {
12644 const bfd_vma sh_flags = elf_section_flags (section);
12645
12646 if (!flaginfo->flags_initialized)
12647 {
12648 bfd *obfd = info->output_bfd;
12649 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12650 struct flag_info_list *tf = flaginfo->flag_list;
12651 int with_hex = 0;
12652 int without_hex = 0;
12653
12654 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12655 {
12656 unsigned i;
12657 flagword (*lookup) (char *);
12658
12659 lookup = bed->elf_backend_lookup_section_flags_hook;
12660 if (lookup != NULL)
12661 {
12662 flagword hexval = (*lookup) ((char *) tf->name);
12663
12664 if (hexval != 0)
12665 {
12666 if (tf->with == with_flags)
12667 with_hex |= hexval;
12668 else if (tf->with == without_flags)
12669 without_hex |= hexval;
12670 tf->valid = TRUE;
12671 continue;
12672 }
12673 }
12674 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12675 {
12676 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12677 {
12678 if (tf->with == with_flags)
12679 with_hex |= elf_flags_to_names[i].flag_value;
12680 else if (tf->with == without_flags)
12681 without_hex |= elf_flags_to_names[i].flag_value;
12682 tf->valid = TRUE;
12683 break;
12684 }
12685 }
12686 if (!tf->valid)
12687 {
12688 info->callbacks->einfo
12689 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12690 return FALSE;
12691 }
12692 }
12693 flaginfo->flags_initialized = TRUE;
12694 flaginfo->only_with_flags |= with_hex;
12695 flaginfo->not_with_flags |= without_hex;
12696 }
12697
12698 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12699 return FALSE;
12700
12701 if ((flaginfo->not_with_flags & sh_flags) != 0)
12702 return FALSE;
12703
12704 return TRUE;
12705 }
12706
12707 struct alloc_got_off_arg {
12708 bfd_vma gotoff;
12709 struct bfd_link_info *info;
12710 };
12711
12712 /* We need a special top-level link routine to convert got reference counts
12713 to real got offsets. */
12714
12715 static bfd_boolean
12716 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12717 {
12718 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12719 bfd *obfd = gofarg->info->output_bfd;
12720 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12721
12722 if (h->got.refcount > 0)
12723 {
12724 h->got.offset = gofarg->gotoff;
12725 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12726 }
12727 else
12728 h->got.offset = (bfd_vma) -1;
12729
12730 return TRUE;
12731 }
12732
12733 /* And an accompanying bit to work out final got entry offsets once
12734 we're done. Should be called from final_link. */
12735
12736 bfd_boolean
12737 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12738 struct bfd_link_info *info)
12739 {
12740 bfd *i;
12741 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12742 bfd_vma gotoff;
12743 struct alloc_got_off_arg gofarg;
12744
12745 BFD_ASSERT (abfd == info->output_bfd);
12746
12747 if (! is_elf_hash_table (info->hash))
12748 return FALSE;
12749
12750 /* The GOT offset is relative to the .got section, but the GOT header is
12751 put into the .got.plt section, if the backend uses it. */
12752 if (bed->want_got_plt)
12753 gotoff = 0;
12754 else
12755 gotoff = bed->got_header_size;
12756
12757 /* Do the local .got entries first. */
12758 for (i = info->input_bfds; i; i = i->link.next)
12759 {
12760 bfd_signed_vma *local_got;
12761 bfd_size_type j, locsymcount;
12762 Elf_Internal_Shdr *symtab_hdr;
12763
12764 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12765 continue;
12766
12767 local_got = elf_local_got_refcounts (i);
12768 if (!local_got)
12769 continue;
12770
12771 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12772 if (elf_bad_symtab (i))
12773 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12774 else
12775 locsymcount = symtab_hdr->sh_info;
12776
12777 for (j = 0; j < locsymcount; ++j)
12778 {
12779 if (local_got[j] > 0)
12780 {
12781 local_got[j] = gotoff;
12782 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12783 }
12784 else
12785 local_got[j] = (bfd_vma) -1;
12786 }
12787 }
12788
12789 /* Then the global .got entries. .plt refcounts are handled by
12790 adjust_dynamic_symbol */
12791 gofarg.gotoff = gotoff;
12792 gofarg.info = info;
12793 elf_link_hash_traverse (elf_hash_table (info),
12794 elf_gc_allocate_got_offsets,
12795 &gofarg);
12796 return TRUE;
12797 }
12798
12799 /* Many folk need no more in the way of final link than this, once
12800 got entry reference counting is enabled. */
12801
12802 bfd_boolean
12803 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12804 {
12805 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12806 return FALSE;
12807
12808 /* Invoke the regular ELF backend linker to do all the work. */
12809 return bfd_elf_final_link (abfd, info);
12810 }
12811
12812 bfd_boolean
12813 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12814 {
12815 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12816
12817 if (rcookie->bad_symtab)
12818 rcookie->rel = rcookie->rels;
12819
12820 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12821 {
12822 unsigned long r_symndx;
12823
12824 if (! rcookie->bad_symtab)
12825 if (rcookie->rel->r_offset > offset)
12826 return FALSE;
12827 if (rcookie->rel->r_offset != offset)
12828 continue;
12829
12830 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12831 if (r_symndx == STN_UNDEF)
12832 return TRUE;
12833
12834 if (r_symndx >= rcookie->locsymcount
12835 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12836 {
12837 struct elf_link_hash_entry *h;
12838
12839 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12840
12841 while (h->root.type == bfd_link_hash_indirect
12842 || h->root.type == bfd_link_hash_warning)
12843 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12844
12845 if ((h->root.type == bfd_link_hash_defined
12846 || h->root.type == bfd_link_hash_defweak)
12847 && (h->root.u.def.section->owner != rcookie->abfd
12848 || h->root.u.def.section->kept_section != NULL
12849 || discarded_section (h->root.u.def.section)))
12850 return TRUE;
12851 }
12852 else
12853 {
12854 /* It's not a relocation against a global symbol,
12855 but it could be a relocation against a local
12856 symbol for a discarded section. */
12857 asection *isec;
12858 Elf_Internal_Sym *isym;
12859
12860 /* Need to: get the symbol; get the section. */
12861 isym = &rcookie->locsyms[r_symndx];
12862 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12863 if (isec != NULL
12864 && (isec->kept_section != NULL
12865 || discarded_section (isec)))
12866 return TRUE;
12867 }
12868 return FALSE;
12869 }
12870 return FALSE;
12871 }
12872
12873 /* Discard unneeded references to discarded sections.
12874 Returns -1 on error, 1 if any section's size was changed, 0 if
12875 nothing changed. This function assumes that the relocations are in
12876 sorted order, which is true for all known assemblers. */
12877
12878 int
12879 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12880 {
12881 struct elf_reloc_cookie cookie;
12882 asection *o;
12883 bfd *abfd;
12884 int changed = 0;
12885
12886 if (info->traditional_format
12887 || !is_elf_hash_table (info->hash))
12888 return 0;
12889
12890 o = bfd_get_section_by_name (output_bfd, ".stab");
12891 if (o != NULL)
12892 {
12893 asection *i;
12894
12895 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12896 {
12897 if (i->size == 0
12898 || i->reloc_count == 0
12899 || i->sec_info_type != SEC_INFO_TYPE_STABS)
12900 continue;
12901
12902 abfd = i->owner;
12903 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12904 continue;
12905
12906 if (!init_reloc_cookie_for_section (&cookie, info, i))
12907 return -1;
12908
12909 if (_bfd_discard_section_stabs (abfd, i,
12910 elf_section_data (i)->sec_info,
12911 bfd_elf_reloc_symbol_deleted_p,
12912 &cookie))
12913 changed = 1;
12914
12915 fini_reloc_cookie_for_section (&cookie, i);
12916 }
12917 }
12918
12919 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
12920 if (o != NULL)
12921 {
12922 asection *i;
12923
12924 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12925 {
12926 if (i->size == 0)
12927 continue;
12928
12929 abfd = i->owner;
12930 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12931 continue;
12932
12933 if (!init_reloc_cookie_for_section (&cookie, info, i))
12934 return -1;
12935
12936 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
12937 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
12938 bfd_elf_reloc_symbol_deleted_p,
12939 &cookie))
12940 changed = 1;
12941
12942 fini_reloc_cookie_for_section (&cookie, i);
12943 }
12944 }
12945
12946 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
12947 {
12948 const struct elf_backend_data *bed;
12949
12950 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12951 continue;
12952
12953 bed = get_elf_backend_data (abfd);
12954
12955 if (bed->elf_backend_discard_info != NULL)
12956 {
12957 if (!init_reloc_cookie (&cookie, info, abfd))
12958 return -1;
12959
12960 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
12961 changed = 1;
12962
12963 fini_reloc_cookie (&cookie, abfd);
12964 }
12965 }
12966
12967 if (info->eh_frame_hdr
12968 && !info->relocatable
12969 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12970 changed = 1;
12971
12972 return changed;
12973 }
12974
12975 bfd_boolean
12976 _bfd_elf_section_already_linked (bfd *abfd,
12977 asection *sec,
12978 struct bfd_link_info *info)
12979 {
12980 flagword flags;
12981 const char *name, *key;
12982 struct bfd_section_already_linked *l;
12983 struct bfd_section_already_linked_hash_entry *already_linked_list;
12984
12985 if (sec->output_section == bfd_abs_section_ptr)
12986 return FALSE;
12987
12988 flags = sec->flags;
12989
12990 /* Return if it isn't a linkonce section. A comdat group section
12991 also has SEC_LINK_ONCE set. */
12992 if ((flags & SEC_LINK_ONCE) == 0)
12993 return FALSE;
12994
12995 /* Don't put group member sections on our list of already linked
12996 sections. They are handled as a group via their group section. */
12997 if (elf_sec_group (sec) != NULL)
12998 return FALSE;
12999
13000 /* For a SHT_GROUP section, use the group signature as the key. */
13001 name = sec->name;
13002 if ((flags & SEC_GROUP) != 0
13003 && elf_next_in_group (sec) != NULL
13004 && elf_group_name (elf_next_in_group (sec)) != NULL)
13005 key = elf_group_name (elf_next_in_group (sec));
13006 else
13007 {
13008 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
13009 if (CONST_STRNEQ (name, ".gnu.linkonce.")
13010 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
13011 key++;
13012 else
13013 /* Must be a user linkonce section that doesn't follow gcc's
13014 naming convention. In this case we won't be matching
13015 single member groups. */
13016 key = name;
13017 }
13018
13019 already_linked_list = bfd_section_already_linked_table_lookup (key);
13020
13021 for (l = already_linked_list->entry; l != NULL; l = l->next)
13022 {
13023 /* We may have 2 different types of sections on the list: group
13024 sections with a signature of <key> (<key> is some string),
13025 and linkonce sections named .gnu.linkonce.<type>.<key>.
13026 Match like sections. LTO plugin sections are an exception.
13027 They are always named .gnu.linkonce.t.<key> and match either
13028 type of section. */
13029 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13030 && ((flags & SEC_GROUP) != 0
13031 || strcmp (name, l->sec->name) == 0))
13032 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13033 {
13034 /* The section has already been linked. See if we should
13035 issue a warning. */
13036 if (!_bfd_handle_already_linked (sec, l, info))
13037 return FALSE;
13038
13039 if (flags & SEC_GROUP)
13040 {
13041 asection *first = elf_next_in_group (sec);
13042 asection *s = first;
13043
13044 while (s != NULL)
13045 {
13046 s->output_section = bfd_abs_section_ptr;
13047 /* Record which group discards it. */
13048 s->kept_section = l->sec;
13049 s = elf_next_in_group (s);
13050 /* These lists are circular. */
13051 if (s == first)
13052 break;
13053 }
13054 }
13055
13056 return TRUE;
13057 }
13058 }
13059
13060 /* A single member comdat group section may be discarded by a
13061 linkonce section and vice versa. */
13062 if ((flags & SEC_GROUP) != 0)
13063 {
13064 asection *first = elf_next_in_group (sec);
13065
13066 if (first != NULL && elf_next_in_group (first) == first)
13067 /* Check this single member group against linkonce sections. */
13068 for (l = already_linked_list->entry; l != NULL; l = l->next)
13069 if ((l->sec->flags & SEC_GROUP) == 0
13070 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
13071 {
13072 first->output_section = bfd_abs_section_ptr;
13073 first->kept_section = l->sec;
13074 sec->output_section = bfd_abs_section_ptr;
13075 break;
13076 }
13077 }
13078 else
13079 /* Check this linkonce section against single member groups. */
13080 for (l = already_linked_list->entry; l != NULL; l = l->next)
13081 if (l->sec->flags & SEC_GROUP)
13082 {
13083 asection *first = elf_next_in_group (l->sec);
13084
13085 if (first != NULL
13086 && elf_next_in_group (first) == first
13087 && bfd_elf_match_symbols_in_sections (first, sec, info))
13088 {
13089 sec->output_section = bfd_abs_section_ptr;
13090 sec->kept_section = first;
13091 break;
13092 }
13093 }
13094
13095 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
13096 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
13097 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
13098 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
13099 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
13100 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
13101 `.gnu.linkonce.t.F' section from a different bfd not requiring any
13102 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
13103 The reverse order cannot happen as there is never a bfd with only the
13104 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
13105 matter as here were are looking only for cross-bfd sections. */
13106
13107 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
13108 for (l = already_linked_list->entry; l != NULL; l = l->next)
13109 if ((l->sec->flags & SEC_GROUP) == 0
13110 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
13111 {
13112 if (abfd != l->sec->owner)
13113 sec->output_section = bfd_abs_section_ptr;
13114 break;
13115 }
13116
13117 /* This is the first section with this name. Record it. */
13118 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
13119 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
13120 return sec->output_section == bfd_abs_section_ptr;
13121 }
13122
13123 bfd_boolean
13124 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
13125 {
13126 return sym->st_shndx == SHN_COMMON;
13127 }
13128
13129 unsigned int
13130 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
13131 {
13132 return SHN_COMMON;
13133 }
13134
13135 asection *
13136 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
13137 {
13138 return bfd_com_section_ptr;
13139 }
13140
13141 bfd_vma
13142 _bfd_elf_default_got_elt_size (bfd *abfd,
13143 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13144 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
13145 bfd *ibfd ATTRIBUTE_UNUSED,
13146 unsigned long symndx ATTRIBUTE_UNUSED)
13147 {
13148 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13149 return bed->s->arch_size / 8;
13150 }
13151
13152 /* Routines to support the creation of dynamic relocs. */
13153
13154 /* Returns the name of the dynamic reloc section associated with SEC. */
13155
13156 static const char *
13157 get_dynamic_reloc_section_name (bfd * abfd,
13158 asection * sec,
13159 bfd_boolean is_rela)
13160 {
13161 char *name;
13162 const char *old_name = bfd_get_section_name (NULL, sec);
13163 const char *prefix = is_rela ? ".rela" : ".rel";
13164
13165 if (old_name == NULL)
13166 return NULL;
13167
13168 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
13169 sprintf (name, "%s%s", prefix, old_name);
13170
13171 return name;
13172 }
13173
13174 /* Returns the dynamic reloc section associated with SEC.
13175 If necessary compute the name of the dynamic reloc section based
13176 on SEC's name (looked up in ABFD's string table) and the setting
13177 of IS_RELA. */
13178
13179 asection *
13180 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
13181 asection * sec,
13182 bfd_boolean is_rela)
13183 {
13184 asection * reloc_sec = elf_section_data (sec)->sreloc;
13185
13186 if (reloc_sec == NULL)
13187 {
13188 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13189
13190 if (name != NULL)
13191 {
13192 reloc_sec = bfd_get_linker_section (abfd, name);
13193
13194 if (reloc_sec != NULL)
13195 elf_section_data (sec)->sreloc = reloc_sec;
13196 }
13197 }
13198
13199 return reloc_sec;
13200 }
13201
13202 /* Returns the dynamic reloc section associated with SEC. If the
13203 section does not exist it is created and attached to the DYNOBJ
13204 bfd and stored in the SRELOC field of SEC's elf_section_data
13205 structure.
13206
13207 ALIGNMENT is the alignment for the newly created section and
13208 IS_RELA defines whether the name should be .rela.<SEC's name>
13209 or .rel.<SEC's name>. The section name is looked up in the
13210 string table associated with ABFD. */
13211
13212 asection *
13213 _bfd_elf_make_dynamic_reloc_section (asection *sec,
13214 bfd *dynobj,
13215 unsigned int alignment,
13216 bfd *abfd,
13217 bfd_boolean is_rela)
13218 {
13219 asection * reloc_sec = elf_section_data (sec)->sreloc;
13220
13221 if (reloc_sec == NULL)
13222 {
13223 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13224
13225 if (name == NULL)
13226 return NULL;
13227
13228 reloc_sec = bfd_get_linker_section (dynobj, name);
13229
13230 if (reloc_sec == NULL)
13231 {
13232 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13233 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13234 if ((sec->flags & SEC_ALLOC) != 0)
13235 flags |= SEC_ALLOC | SEC_LOAD;
13236
13237 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13238 if (reloc_sec != NULL)
13239 {
13240 /* _bfd_elf_get_sec_type_attr chooses a section type by
13241 name. Override as it may be wrong, eg. for a user
13242 section named "auto" we'll get ".relauto" which is
13243 seen to be a .rela section. */
13244 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13245 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13246 reloc_sec = NULL;
13247 }
13248 }
13249
13250 elf_section_data (sec)->sreloc = reloc_sec;
13251 }
13252
13253 return reloc_sec;
13254 }
13255
13256 /* Copy the ELF symbol type and other attributes for a linker script
13257 assignment from HSRC to HDEST. Generally this should be treated as
13258 if we found a strong non-dynamic definition for HDEST (except that
13259 ld ignores multiple definition errors). */
13260 void
13261 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
13262 struct bfd_link_hash_entry *hdest,
13263 struct bfd_link_hash_entry *hsrc)
13264 {
13265 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
13266 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
13267 Elf_Internal_Sym isym;
13268
13269 ehdest->type = ehsrc->type;
13270 ehdest->target_internal = ehsrc->target_internal;
13271
13272 isym.st_other = ehsrc->other;
13273 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
13274 }
13275
13276 /* Append a RELA relocation REL to section S in BFD. */
13277
13278 void
13279 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13280 {
13281 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13282 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13283 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13284 bed->s->swap_reloca_out (abfd, rel, loc);
13285 }
13286
13287 /* Append a REL relocation REL to section S in BFD. */
13288
13289 void
13290 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13291 {
13292 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13293 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13294 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13295 bed->s->swap_reloc_out (abfd, rel, loc);
13296 }