[AArch64][3/8] LD support BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21
[binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2015 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfd_stdint.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31
32 /* This struct is used to pass information to routines called via
33 elf_link_hash_traverse which must return failure. */
34
35 struct elf_info_failed
36 {
37 struct bfd_link_info *info;
38 bfd_boolean failed;
39 };
40
41 /* This structure is used to pass information to
42 _bfd_elf_link_find_version_dependencies. */
43
44 struct elf_find_verdep_info
45 {
46 /* General link information. */
47 struct bfd_link_info *info;
48 /* The number of dependencies. */
49 unsigned int vers;
50 /* Whether we had a failure. */
51 bfd_boolean failed;
52 };
53
54 static bfd_boolean _bfd_elf_fix_symbol_flags
55 (struct elf_link_hash_entry *, struct elf_info_failed *);
56
57 asection *
58 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
59 unsigned long r_symndx,
60 bfd_boolean discard)
61 {
62 if (r_symndx >= cookie->locsymcount
63 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
64 {
65 struct elf_link_hash_entry *h;
66
67 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
68
69 while (h->root.type == bfd_link_hash_indirect
70 || h->root.type == bfd_link_hash_warning)
71 h = (struct elf_link_hash_entry *) h->root.u.i.link;
72
73 if ((h->root.type == bfd_link_hash_defined
74 || h->root.type == bfd_link_hash_defweak)
75 && discarded_section (h->root.u.def.section))
76 return h->root.u.def.section;
77 else
78 return NULL;
79 }
80 else
81 {
82 /* It's not a relocation against a global symbol,
83 but it could be a relocation against a local
84 symbol for a discarded section. */
85 asection *isec;
86 Elf_Internal_Sym *isym;
87
88 /* Need to: get the symbol; get the section. */
89 isym = &cookie->locsyms[r_symndx];
90 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
91 if (isec != NULL
92 && discard ? discarded_section (isec) : 1)
93 return isec;
94 }
95 return NULL;
96 }
97
98 /* Define a symbol in a dynamic linkage section. */
99
100 struct elf_link_hash_entry *
101 _bfd_elf_define_linkage_sym (bfd *abfd,
102 struct bfd_link_info *info,
103 asection *sec,
104 const char *name)
105 {
106 struct elf_link_hash_entry *h;
107 struct bfd_link_hash_entry *bh;
108 const struct elf_backend_data *bed;
109
110 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
111 if (h != NULL)
112 {
113 /* Zap symbol defined in an as-needed lib that wasn't linked.
114 This is a symptom of a larger problem: Absolute symbols
115 defined in shared libraries can't be overridden, because we
116 lose the link to the bfd which is via the symbol section. */
117 h->root.type = bfd_link_hash_new;
118 }
119
120 bh = &h->root;
121 bed = get_elf_backend_data (abfd);
122 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
123 sec, 0, NULL, FALSE, bed->collect,
124 &bh))
125 return NULL;
126 h = (struct elf_link_hash_entry *) bh;
127 h->def_regular = 1;
128 h->non_elf = 0;
129 h->root.linker_def = 1;
130 h->type = STT_OBJECT;
131 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
132 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
133
134 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
135 return h;
136 }
137
138 bfd_boolean
139 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
140 {
141 flagword flags;
142 asection *s;
143 struct elf_link_hash_entry *h;
144 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
145 struct elf_link_hash_table *htab = elf_hash_table (info);
146
147 /* This function may be called more than once. */
148 s = bfd_get_linker_section (abfd, ".got");
149 if (s != NULL)
150 return TRUE;
151
152 flags = bed->dynamic_sec_flags;
153
154 s = bfd_make_section_anyway_with_flags (abfd,
155 (bed->rela_plts_and_copies_p
156 ? ".rela.got" : ".rel.got"),
157 (bed->dynamic_sec_flags
158 | SEC_READONLY));
159 if (s == NULL
160 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
161 return FALSE;
162 htab->srelgot = s;
163
164 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
165 if (s == NULL
166 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
167 return FALSE;
168 htab->sgot = s;
169
170 if (bed->want_got_plt)
171 {
172 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
173 if (s == NULL
174 || !bfd_set_section_alignment (abfd, s,
175 bed->s->log_file_align))
176 return FALSE;
177 htab->sgotplt = s;
178 }
179
180 /* The first bit of the global offset table is the header. */
181 s->size += bed->got_header_size;
182
183 if (bed->want_got_sym)
184 {
185 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
186 (or .got.plt) section. We don't do this in the linker script
187 because we don't want to define the symbol if we are not creating
188 a global offset table. */
189 h = _bfd_elf_define_linkage_sym (abfd, info, s,
190 "_GLOBAL_OFFSET_TABLE_");
191 elf_hash_table (info)->hgot = h;
192 if (h == NULL)
193 return FALSE;
194 }
195
196 return TRUE;
197 }
198 \f
199 /* Create a strtab to hold the dynamic symbol names. */
200 static bfd_boolean
201 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
202 {
203 struct elf_link_hash_table *hash_table;
204
205 hash_table = elf_hash_table (info);
206 if (hash_table->dynobj == NULL)
207 hash_table->dynobj = abfd;
208
209 if (hash_table->dynstr == NULL)
210 {
211 hash_table->dynstr = _bfd_elf_strtab_init ();
212 if (hash_table->dynstr == NULL)
213 return FALSE;
214 }
215 return TRUE;
216 }
217
218 /* Create some sections which will be filled in with dynamic linking
219 information. ABFD is an input file which requires dynamic sections
220 to be created. The dynamic sections take up virtual memory space
221 when the final executable is run, so we need to create them before
222 addresses are assigned to the output sections. We work out the
223 actual contents and size of these sections later. */
224
225 bfd_boolean
226 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
227 {
228 flagword flags;
229 asection *s;
230 const struct elf_backend_data *bed;
231 struct elf_link_hash_entry *h;
232
233 if (! is_elf_hash_table (info->hash))
234 return FALSE;
235
236 if (elf_hash_table (info)->dynamic_sections_created)
237 return TRUE;
238
239 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
240 return FALSE;
241
242 abfd = elf_hash_table (info)->dynobj;
243 bed = get_elf_backend_data (abfd);
244
245 flags = bed->dynamic_sec_flags;
246
247 /* A dynamically linked executable has a .interp section, but a
248 shared library does not. */
249 if (info->executable)
250 {
251 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
252 flags | SEC_READONLY);
253 if (s == NULL)
254 return FALSE;
255 }
256
257 /* Create sections to hold version informations. These are removed
258 if they are not needed. */
259 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
260 flags | SEC_READONLY);
261 if (s == NULL
262 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
263 return FALSE;
264
265 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
266 flags | SEC_READONLY);
267 if (s == NULL
268 || ! bfd_set_section_alignment (abfd, s, 1))
269 return FALSE;
270
271 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
272 flags | SEC_READONLY);
273 if (s == NULL
274 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
275 return FALSE;
276
277 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
278 flags | SEC_READONLY);
279 if (s == NULL
280 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
281 return FALSE;
282
283 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
284 flags | SEC_READONLY);
285 if (s == NULL)
286 return FALSE;
287
288 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
289 if (s == NULL
290 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
291 return FALSE;
292
293 /* The special symbol _DYNAMIC is always set to the start of the
294 .dynamic section. We could set _DYNAMIC in a linker script, but we
295 only want to define it if we are, in fact, creating a .dynamic
296 section. We don't want to define it if there is no .dynamic
297 section, since on some ELF platforms the start up code examines it
298 to decide how to initialize the process. */
299 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
300 elf_hash_table (info)->hdynamic = h;
301 if (h == NULL)
302 return FALSE;
303
304 if (info->emit_hash)
305 {
306 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
307 flags | SEC_READONLY);
308 if (s == NULL
309 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
310 return FALSE;
311 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
312 }
313
314 if (info->emit_gnu_hash)
315 {
316 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
317 flags | SEC_READONLY);
318 if (s == NULL
319 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
320 return FALSE;
321 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
322 4 32-bit words followed by variable count of 64-bit words, then
323 variable count of 32-bit words. */
324 if (bed->s->arch_size == 64)
325 elf_section_data (s)->this_hdr.sh_entsize = 0;
326 else
327 elf_section_data (s)->this_hdr.sh_entsize = 4;
328 }
329
330 /* Let the backend create the rest of the sections. This lets the
331 backend set the right flags. The backend will normally create
332 the .got and .plt sections. */
333 if (bed->elf_backend_create_dynamic_sections == NULL
334 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
335 return FALSE;
336
337 elf_hash_table (info)->dynamic_sections_created = TRUE;
338
339 return TRUE;
340 }
341
342 /* Create dynamic sections when linking against a dynamic object. */
343
344 bfd_boolean
345 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
346 {
347 flagword flags, pltflags;
348 struct elf_link_hash_entry *h;
349 asection *s;
350 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
351 struct elf_link_hash_table *htab = elf_hash_table (info);
352
353 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
354 .rel[a].bss sections. */
355 flags = bed->dynamic_sec_flags;
356
357 pltflags = flags;
358 if (bed->plt_not_loaded)
359 /* We do not clear SEC_ALLOC here because we still want the OS to
360 allocate space for the section; it's just that there's nothing
361 to read in from the object file. */
362 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
363 else
364 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
365 if (bed->plt_readonly)
366 pltflags |= SEC_READONLY;
367
368 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
369 if (s == NULL
370 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
371 return FALSE;
372 htab->splt = s;
373
374 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
375 .plt section. */
376 if (bed->want_plt_sym)
377 {
378 h = _bfd_elf_define_linkage_sym (abfd, info, s,
379 "_PROCEDURE_LINKAGE_TABLE_");
380 elf_hash_table (info)->hplt = h;
381 if (h == NULL)
382 return FALSE;
383 }
384
385 s = bfd_make_section_anyway_with_flags (abfd,
386 (bed->rela_plts_and_copies_p
387 ? ".rela.plt" : ".rel.plt"),
388 flags | SEC_READONLY);
389 if (s == NULL
390 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
391 return FALSE;
392 htab->srelplt = s;
393
394 if (! _bfd_elf_create_got_section (abfd, info))
395 return FALSE;
396
397 if (bed->want_dynbss)
398 {
399 /* The .dynbss section is a place to put symbols which are defined
400 by dynamic objects, are referenced by regular objects, and are
401 not functions. We must allocate space for them in the process
402 image and use a R_*_COPY reloc to tell the dynamic linker to
403 initialize them at run time. The linker script puts the .dynbss
404 section into the .bss section of the final image. */
405 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
406 (SEC_ALLOC | SEC_LINKER_CREATED));
407 if (s == NULL)
408 return FALSE;
409
410 /* The .rel[a].bss section holds copy relocs. This section is not
411 normally needed. We need to create it here, though, so that the
412 linker will map it to an output section. We can't just create it
413 only if we need it, because we will not know whether we need it
414 until we have seen all the input files, and the first time the
415 main linker code calls BFD after examining all the input files
416 (size_dynamic_sections) the input sections have already been
417 mapped to the output sections. If the section turns out not to
418 be needed, we can discard it later. We will never need this
419 section when generating a shared object, since they do not use
420 copy relocs. */
421 if (! info->shared)
422 {
423 s = bfd_make_section_anyway_with_flags (abfd,
424 (bed->rela_plts_and_copies_p
425 ? ".rela.bss" : ".rel.bss"),
426 flags | SEC_READONLY);
427 if (s == NULL
428 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
429 return FALSE;
430 }
431 }
432
433 return TRUE;
434 }
435 \f
436 /* Record a new dynamic symbol. We record the dynamic symbols as we
437 read the input files, since we need to have a list of all of them
438 before we can determine the final sizes of the output sections.
439 Note that we may actually call this function even though we are not
440 going to output any dynamic symbols; in some cases we know that a
441 symbol should be in the dynamic symbol table, but only if there is
442 one. */
443
444 bfd_boolean
445 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
446 struct elf_link_hash_entry *h)
447 {
448 if (h->dynindx == -1)
449 {
450 struct elf_strtab_hash *dynstr;
451 char *p;
452 const char *name;
453 bfd_size_type indx;
454
455 /* XXX: The ABI draft says the linker must turn hidden and
456 internal symbols into STB_LOCAL symbols when producing the
457 DSO. However, if ld.so honors st_other in the dynamic table,
458 this would not be necessary. */
459 switch (ELF_ST_VISIBILITY (h->other))
460 {
461 case STV_INTERNAL:
462 case STV_HIDDEN:
463 if (h->root.type != bfd_link_hash_undefined
464 && h->root.type != bfd_link_hash_undefweak)
465 {
466 h->forced_local = 1;
467 if (!elf_hash_table (info)->is_relocatable_executable)
468 return TRUE;
469 }
470
471 default:
472 break;
473 }
474
475 h->dynindx = elf_hash_table (info)->dynsymcount;
476 ++elf_hash_table (info)->dynsymcount;
477
478 dynstr = elf_hash_table (info)->dynstr;
479 if (dynstr == NULL)
480 {
481 /* Create a strtab to hold the dynamic symbol names. */
482 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
483 if (dynstr == NULL)
484 return FALSE;
485 }
486
487 /* We don't put any version information in the dynamic string
488 table. */
489 name = h->root.root.string;
490 p = strchr (name, ELF_VER_CHR);
491 if (p != NULL)
492 /* We know that the p points into writable memory. In fact,
493 there are only a few symbols that have read-only names, being
494 those like _GLOBAL_OFFSET_TABLE_ that are created specially
495 by the backends. Most symbols will have names pointing into
496 an ELF string table read from a file, or to objalloc memory. */
497 *p = 0;
498
499 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
500
501 if (p != NULL)
502 *p = ELF_VER_CHR;
503
504 if (indx == (bfd_size_type) -1)
505 return FALSE;
506 h->dynstr_index = indx;
507 }
508
509 return TRUE;
510 }
511 \f
512 /* Mark a symbol dynamic. */
513
514 static void
515 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
516 struct elf_link_hash_entry *h,
517 Elf_Internal_Sym *sym)
518 {
519 struct bfd_elf_dynamic_list *d = info->dynamic_list;
520
521 /* It may be called more than once on the same H. */
522 if(h->dynamic || info->relocatable)
523 return;
524
525 if ((info->dynamic_data
526 && (h->type == STT_OBJECT
527 || (sym != NULL
528 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
529 || (d != NULL
530 && h->root.type == bfd_link_hash_new
531 && (*d->match) (&d->head, NULL, h->root.root.string)))
532 h->dynamic = 1;
533 }
534
535 /* Record an assignment to a symbol made by a linker script. We need
536 this in case some dynamic object refers to this symbol. */
537
538 bfd_boolean
539 bfd_elf_record_link_assignment (bfd *output_bfd,
540 struct bfd_link_info *info,
541 const char *name,
542 bfd_boolean provide,
543 bfd_boolean hidden)
544 {
545 struct elf_link_hash_entry *h, *hv;
546 struct elf_link_hash_table *htab;
547 const struct elf_backend_data *bed;
548
549 if (!is_elf_hash_table (info->hash))
550 return TRUE;
551
552 htab = elf_hash_table (info);
553 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
554 if (h == NULL)
555 return provide;
556
557 switch (h->root.type)
558 {
559 case bfd_link_hash_defined:
560 case bfd_link_hash_defweak:
561 case bfd_link_hash_common:
562 break;
563 case bfd_link_hash_undefweak:
564 case bfd_link_hash_undefined:
565 /* Since we're defining the symbol, don't let it seem to have not
566 been defined. record_dynamic_symbol and size_dynamic_sections
567 may depend on this. */
568 h->root.type = bfd_link_hash_new;
569 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
570 bfd_link_repair_undef_list (&htab->root);
571 break;
572 case bfd_link_hash_new:
573 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
574 h->non_elf = 0;
575 break;
576 case bfd_link_hash_indirect:
577 /* We had a versioned symbol in a dynamic library. We make the
578 the versioned symbol point to this one. */
579 bed = get_elf_backend_data (output_bfd);
580 hv = h;
581 while (hv->root.type == bfd_link_hash_indirect
582 || hv->root.type == bfd_link_hash_warning)
583 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
584 /* We don't need to update h->root.u since linker will set them
585 later. */
586 h->root.type = bfd_link_hash_undefined;
587 hv->root.type = bfd_link_hash_indirect;
588 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
589 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
590 break;
591 case bfd_link_hash_warning:
592 abort ();
593 break;
594 }
595
596 /* If this symbol is being provided by the linker script, and it is
597 currently defined by a dynamic object, but not by a regular
598 object, then mark it as undefined so that the generic linker will
599 force the correct value. */
600 if (provide
601 && h->def_dynamic
602 && !h->def_regular)
603 h->root.type = bfd_link_hash_undefined;
604
605 /* If this symbol is not being provided by the linker script, and it is
606 currently defined by a dynamic object, but not by a regular object,
607 then clear out any version information because the symbol will not be
608 associated with the dynamic object any more. */
609 if (!provide
610 && h->def_dynamic
611 && !h->def_regular)
612 h->verinfo.verdef = NULL;
613
614 h->def_regular = 1;
615
616 if (hidden)
617 {
618 bed = get_elf_backend_data (output_bfd);
619 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
620 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
621 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
622 }
623
624 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
625 and executables. */
626 if (!info->relocatable
627 && h->dynindx != -1
628 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
629 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
630 h->forced_local = 1;
631
632 if ((h->def_dynamic
633 || h->ref_dynamic
634 || info->shared
635 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
636 && h->dynindx == -1)
637 {
638 if (! bfd_elf_link_record_dynamic_symbol (info, h))
639 return FALSE;
640
641 /* If this is a weak defined symbol, and we know a corresponding
642 real symbol from the same dynamic object, make sure the real
643 symbol is also made into a dynamic symbol. */
644 if (h->u.weakdef != NULL
645 && h->u.weakdef->dynindx == -1)
646 {
647 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
648 return FALSE;
649 }
650 }
651
652 return TRUE;
653 }
654
655 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
656 success, and 2 on a failure caused by attempting to record a symbol
657 in a discarded section, eg. a discarded link-once section symbol. */
658
659 int
660 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
661 bfd *input_bfd,
662 long input_indx)
663 {
664 bfd_size_type amt;
665 struct elf_link_local_dynamic_entry *entry;
666 struct elf_link_hash_table *eht;
667 struct elf_strtab_hash *dynstr;
668 unsigned long dynstr_index;
669 char *name;
670 Elf_External_Sym_Shndx eshndx;
671 char esym[sizeof (Elf64_External_Sym)];
672
673 if (! is_elf_hash_table (info->hash))
674 return 0;
675
676 /* See if the entry exists already. */
677 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
678 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
679 return 1;
680
681 amt = sizeof (*entry);
682 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
683 if (entry == NULL)
684 return 0;
685
686 /* Go find the symbol, so that we can find it's name. */
687 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
688 1, input_indx, &entry->isym, esym, &eshndx))
689 {
690 bfd_release (input_bfd, entry);
691 return 0;
692 }
693
694 if (entry->isym.st_shndx != SHN_UNDEF
695 && entry->isym.st_shndx < SHN_LORESERVE)
696 {
697 asection *s;
698
699 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
700 if (s == NULL || bfd_is_abs_section (s->output_section))
701 {
702 /* We can still bfd_release here as nothing has done another
703 bfd_alloc. We can't do this later in this function. */
704 bfd_release (input_bfd, entry);
705 return 2;
706 }
707 }
708
709 name = (bfd_elf_string_from_elf_section
710 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
711 entry->isym.st_name));
712
713 dynstr = elf_hash_table (info)->dynstr;
714 if (dynstr == NULL)
715 {
716 /* Create a strtab to hold the dynamic symbol names. */
717 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
718 if (dynstr == NULL)
719 return 0;
720 }
721
722 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
723 if (dynstr_index == (unsigned long) -1)
724 return 0;
725 entry->isym.st_name = dynstr_index;
726
727 eht = elf_hash_table (info);
728
729 entry->next = eht->dynlocal;
730 eht->dynlocal = entry;
731 entry->input_bfd = input_bfd;
732 entry->input_indx = input_indx;
733 eht->dynsymcount++;
734
735 /* Whatever binding the symbol had before, it's now local. */
736 entry->isym.st_info
737 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
738
739 /* The dynindx will be set at the end of size_dynamic_sections. */
740
741 return 1;
742 }
743
744 /* Return the dynindex of a local dynamic symbol. */
745
746 long
747 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
748 bfd *input_bfd,
749 long input_indx)
750 {
751 struct elf_link_local_dynamic_entry *e;
752
753 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
754 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
755 return e->dynindx;
756 return -1;
757 }
758
759 /* This function is used to renumber the dynamic symbols, if some of
760 them are removed because they are marked as local. This is called
761 via elf_link_hash_traverse. */
762
763 static bfd_boolean
764 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
765 void *data)
766 {
767 size_t *count = (size_t *) data;
768
769 if (h->forced_local)
770 return TRUE;
771
772 if (h->dynindx != -1)
773 h->dynindx = ++(*count);
774
775 return TRUE;
776 }
777
778
779 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
780 STB_LOCAL binding. */
781
782 static bfd_boolean
783 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
784 void *data)
785 {
786 size_t *count = (size_t *) data;
787
788 if (!h->forced_local)
789 return TRUE;
790
791 if (h->dynindx != -1)
792 h->dynindx = ++(*count);
793
794 return TRUE;
795 }
796
797 /* Return true if the dynamic symbol for a given section should be
798 omitted when creating a shared library. */
799 bfd_boolean
800 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
801 struct bfd_link_info *info,
802 asection *p)
803 {
804 struct elf_link_hash_table *htab;
805 asection *ip;
806
807 switch (elf_section_data (p)->this_hdr.sh_type)
808 {
809 case SHT_PROGBITS:
810 case SHT_NOBITS:
811 /* If sh_type is yet undecided, assume it could be
812 SHT_PROGBITS/SHT_NOBITS. */
813 case SHT_NULL:
814 htab = elf_hash_table (info);
815 if (p == htab->tls_sec)
816 return FALSE;
817
818 if (htab->text_index_section != NULL)
819 return p != htab->text_index_section && p != htab->data_index_section;
820
821 return (htab->dynobj != NULL
822 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
823 && ip->output_section == p);
824
825 /* There shouldn't be section relative relocations
826 against any other section. */
827 default:
828 return TRUE;
829 }
830 }
831
832 /* Assign dynsym indices. In a shared library we generate a section
833 symbol for each output section, which come first. Next come symbols
834 which have been forced to local binding. Then all of the back-end
835 allocated local dynamic syms, followed by the rest of the global
836 symbols. */
837
838 static unsigned long
839 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
840 struct bfd_link_info *info,
841 unsigned long *section_sym_count)
842 {
843 unsigned long dynsymcount = 0;
844
845 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
846 {
847 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
848 asection *p;
849 for (p = output_bfd->sections; p ; p = p->next)
850 if ((p->flags & SEC_EXCLUDE) == 0
851 && (p->flags & SEC_ALLOC) != 0
852 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
853 elf_section_data (p)->dynindx = ++dynsymcount;
854 else
855 elf_section_data (p)->dynindx = 0;
856 }
857 *section_sym_count = dynsymcount;
858
859 elf_link_hash_traverse (elf_hash_table (info),
860 elf_link_renumber_local_hash_table_dynsyms,
861 &dynsymcount);
862
863 if (elf_hash_table (info)->dynlocal)
864 {
865 struct elf_link_local_dynamic_entry *p;
866 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
867 p->dynindx = ++dynsymcount;
868 }
869
870 elf_link_hash_traverse (elf_hash_table (info),
871 elf_link_renumber_hash_table_dynsyms,
872 &dynsymcount);
873
874 /* There is an unused NULL entry at the head of the table which
875 we must account for in our count. Unless there weren't any
876 symbols, which means we'll have no table at all. */
877 if (dynsymcount != 0)
878 ++dynsymcount;
879
880 elf_hash_table (info)->dynsymcount = dynsymcount;
881 return dynsymcount;
882 }
883
884 /* Merge st_other field. */
885
886 static void
887 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
888 const Elf_Internal_Sym *isym, asection *sec,
889 bfd_boolean definition, bfd_boolean dynamic)
890 {
891 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
892
893 /* If st_other has a processor-specific meaning, specific
894 code might be needed here. */
895 if (bed->elf_backend_merge_symbol_attribute)
896 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
897 dynamic);
898
899 if (!dynamic)
900 {
901 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
902 unsigned hvis = ELF_ST_VISIBILITY (h->other);
903
904 /* Keep the most constraining visibility. Leave the remainder
905 of the st_other field to elf_backend_merge_symbol_attribute. */
906 if (symvis - 1 < hvis - 1)
907 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
908 }
909 else if (definition
910 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
911 && (sec->flags & SEC_READONLY) == 0)
912 h->protected_def = 1;
913 }
914
915 /* This function is called when we want to merge a new symbol with an
916 existing symbol. It handles the various cases which arise when we
917 find a definition in a dynamic object, or when there is already a
918 definition in a dynamic object. The new symbol is described by
919 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
920 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
921 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
922 of an old common symbol. We set OVERRIDE if the old symbol is
923 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
924 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
925 to change. By OK to change, we mean that we shouldn't warn if the
926 type or size does change. */
927
928 static bfd_boolean
929 _bfd_elf_merge_symbol (bfd *abfd,
930 struct bfd_link_info *info,
931 const char *name,
932 Elf_Internal_Sym *sym,
933 asection **psec,
934 bfd_vma *pvalue,
935 struct elf_link_hash_entry **sym_hash,
936 bfd **poldbfd,
937 bfd_boolean *pold_weak,
938 unsigned int *pold_alignment,
939 bfd_boolean *skip,
940 bfd_boolean *override,
941 bfd_boolean *type_change_ok,
942 bfd_boolean *size_change_ok,
943 bfd_boolean *matched)
944 {
945 asection *sec, *oldsec;
946 struct elf_link_hash_entry *h;
947 struct elf_link_hash_entry *hi;
948 struct elf_link_hash_entry *flip;
949 int bind;
950 bfd *oldbfd;
951 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
952 bfd_boolean newweak, oldweak, newfunc, oldfunc;
953 const struct elf_backend_data *bed;
954 char *new_version;
955
956 *skip = FALSE;
957 *override = FALSE;
958
959 sec = *psec;
960 bind = ELF_ST_BIND (sym->st_info);
961
962 if (! bfd_is_und_section (sec))
963 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
964 else
965 h = ((struct elf_link_hash_entry *)
966 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
967 if (h == NULL)
968 return FALSE;
969 *sym_hash = h;
970
971 bed = get_elf_backend_data (abfd);
972
973 /* NEW_VERSION is the symbol version of the new symbol. */
974 if (h->versioned != unversioned)
975 {
976 /* Symbol version is unknown or versioned. */
977 new_version = strrchr (name, ELF_VER_CHR);
978 if (new_version)
979 {
980 if (h->versioned == unknown)
981 {
982 if (new_version > name && new_version[-1] != ELF_VER_CHR)
983 h->versioned = versioned_hidden;
984 else
985 h->versioned = versioned;
986 }
987 new_version += 1;
988 if (new_version[0] == '\0')
989 new_version = NULL;
990 }
991 else
992 h->versioned = unversioned;
993 }
994 else
995 new_version = NULL;
996
997 /* For merging, we only care about real symbols. But we need to make
998 sure that indirect symbol dynamic flags are updated. */
999 hi = h;
1000 while (h->root.type == bfd_link_hash_indirect
1001 || h->root.type == bfd_link_hash_warning)
1002 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1003
1004 if (!*matched)
1005 {
1006 if (hi == h || h->root.type == bfd_link_hash_new)
1007 *matched = TRUE;
1008 else
1009 {
1010 /* OLD_HIDDEN is true if the existing symbol is only visibile
1011 to the symbol with the same symbol version. NEW_HIDDEN is
1012 true if the new symbol is only visibile to the symbol with
1013 the same symbol version. */
1014 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1015 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1016 if (!old_hidden && !new_hidden)
1017 /* The new symbol matches the existing symbol if both
1018 aren't hidden. */
1019 *matched = TRUE;
1020 else
1021 {
1022 /* OLD_VERSION is the symbol version of the existing
1023 symbol. */
1024 char *old_version;
1025
1026 if (h->versioned >= versioned)
1027 old_version = strrchr (h->root.root.string,
1028 ELF_VER_CHR) + 1;
1029 else
1030 old_version = NULL;
1031
1032 /* The new symbol matches the existing symbol if they
1033 have the same symbol version. */
1034 *matched = (old_version == new_version
1035 || (old_version != NULL
1036 && new_version != NULL
1037 && strcmp (old_version, new_version) == 0));
1038 }
1039 }
1040 }
1041
1042 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1043 existing symbol. */
1044
1045 oldbfd = NULL;
1046 oldsec = NULL;
1047 switch (h->root.type)
1048 {
1049 default:
1050 break;
1051
1052 case bfd_link_hash_undefined:
1053 case bfd_link_hash_undefweak:
1054 oldbfd = h->root.u.undef.abfd;
1055 break;
1056
1057 case bfd_link_hash_defined:
1058 case bfd_link_hash_defweak:
1059 oldbfd = h->root.u.def.section->owner;
1060 oldsec = h->root.u.def.section;
1061 break;
1062
1063 case bfd_link_hash_common:
1064 oldbfd = h->root.u.c.p->section->owner;
1065 oldsec = h->root.u.c.p->section;
1066 if (pold_alignment)
1067 *pold_alignment = h->root.u.c.p->alignment_power;
1068 break;
1069 }
1070 if (poldbfd && *poldbfd == NULL)
1071 *poldbfd = oldbfd;
1072
1073 /* Differentiate strong and weak symbols. */
1074 newweak = bind == STB_WEAK;
1075 oldweak = (h->root.type == bfd_link_hash_defweak
1076 || h->root.type == bfd_link_hash_undefweak);
1077 if (pold_weak)
1078 *pold_weak = oldweak;
1079
1080 /* This code is for coping with dynamic objects, and is only useful
1081 if we are doing an ELF link. */
1082 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
1083 return TRUE;
1084
1085 /* We have to check it for every instance since the first few may be
1086 references and not all compilers emit symbol type for undefined
1087 symbols. */
1088 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1089
1090 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1091 respectively, is from a dynamic object. */
1092
1093 newdyn = (abfd->flags & DYNAMIC) != 0;
1094
1095 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1096 syms and defined syms in dynamic libraries respectively.
1097 ref_dynamic on the other hand can be set for a symbol defined in
1098 a dynamic library, and def_dynamic may not be set; When the
1099 definition in a dynamic lib is overridden by a definition in the
1100 executable use of the symbol in the dynamic lib becomes a
1101 reference to the executable symbol. */
1102 if (newdyn)
1103 {
1104 if (bfd_is_und_section (sec))
1105 {
1106 if (bind != STB_WEAK)
1107 {
1108 h->ref_dynamic_nonweak = 1;
1109 hi->ref_dynamic_nonweak = 1;
1110 }
1111 }
1112 else
1113 {
1114 /* Update the existing symbol only if they match. */
1115 if (*matched)
1116 h->dynamic_def = 1;
1117 hi->dynamic_def = 1;
1118 }
1119 }
1120
1121 /* If we just created the symbol, mark it as being an ELF symbol.
1122 Other than that, there is nothing to do--there is no merge issue
1123 with a newly defined symbol--so we just return. */
1124
1125 if (h->root.type == bfd_link_hash_new)
1126 {
1127 h->non_elf = 0;
1128 return TRUE;
1129 }
1130
1131 /* In cases involving weak versioned symbols, we may wind up trying
1132 to merge a symbol with itself. Catch that here, to avoid the
1133 confusion that results if we try to override a symbol with
1134 itself. The additional tests catch cases like
1135 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1136 dynamic object, which we do want to handle here. */
1137 if (abfd == oldbfd
1138 && (newweak || oldweak)
1139 && ((abfd->flags & DYNAMIC) == 0
1140 || !h->def_regular))
1141 return TRUE;
1142
1143 olddyn = FALSE;
1144 if (oldbfd != NULL)
1145 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1146 else if (oldsec != NULL)
1147 {
1148 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1149 indices used by MIPS ELF. */
1150 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1151 }
1152
1153 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1154 respectively, appear to be a definition rather than reference. */
1155
1156 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1157
1158 olddef = (h->root.type != bfd_link_hash_undefined
1159 && h->root.type != bfd_link_hash_undefweak
1160 && h->root.type != bfd_link_hash_common);
1161
1162 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1163 respectively, appear to be a function. */
1164
1165 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1166 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1167
1168 oldfunc = (h->type != STT_NOTYPE
1169 && bed->is_function_type (h->type));
1170
1171 /* When we try to create a default indirect symbol from the dynamic
1172 definition with the default version, we skip it if its type and
1173 the type of existing regular definition mismatch. */
1174 if (pold_alignment == NULL
1175 && newdyn
1176 && newdef
1177 && !olddyn
1178 && (((olddef || h->root.type == bfd_link_hash_common)
1179 && ELF_ST_TYPE (sym->st_info) != h->type
1180 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1181 && h->type != STT_NOTYPE
1182 && !(newfunc && oldfunc))
1183 || (olddef
1184 && ((h->type == STT_GNU_IFUNC)
1185 != (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))))
1186 {
1187 *skip = TRUE;
1188 return TRUE;
1189 }
1190
1191 /* Check TLS symbols. We don't check undefined symbols introduced
1192 by "ld -u" which have no type (and oldbfd NULL), and we don't
1193 check symbols from plugins because they also have no type. */
1194 if (oldbfd != NULL
1195 && (oldbfd->flags & BFD_PLUGIN) == 0
1196 && (abfd->flags & BFD_PLUGIN) == 0
1197 && ELF_ST_TYPE (sym->st_info) != h->type
1198 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1199 {
1200 bfd *ntbfd, *tbfd;
1201 bfd_boolean ntdef, tdef;
1202 asection *ntsec, *tsec;
1203
1204 if (h->type == STT_TLS)
1205 {
1206 ntbfd = abfd;
1207 ntsec = sec;
1208 ntdef = newdef;
1209 tbfd = oldbfd;
1210 tsec = oldsec;
1211 tdef = olddef;
1212 }
1213 else
1214 {
1215 ntbfd = oldbfd;
1216 ntsec = oldsec;
1217 ntdef = olddef;
1218 tbfd = abfd;
1219 tsec = sec;
1220 tdef = newdef;
1221 }
1222
1223 if (tdef && ntdef)
1224 (*_bfd_error_handler)
1225 (_("%s: TLS definition in %B section %A "
1226 "mismatches non-TLS definition in %B section %A"),
1227 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1228 else if (!tdef && !ntdef)
1229 (*_bfd_error_handler)
1230 (_("%s: TLS reference in %B "
1231 "mismatches non-TLS reference in %B"),
1232 tbfd, ntbfd, h->root.root.string);
1233 else if (tdef)
1234 (*_bfd_error_handler)
1235 (_("%s: TLS definition in %B section %A "
1236 "mismatches non-TLS reference in %B"),
1237 tbfd, tsec, ntbfd, h->root.root.string);
1238 else
1239 (*_bfd_error_handler)
1240 (_("%s: TLS reference in %B "
1241 "mismatches non-TLS definition in %B section %A"),
1242 tbfd, ntbfd, ntsec, h->root.root.string);
1243
1244 bfd_set_error (bfd_error_bad_value);
1245 return FALSE;
1246 }
1247
1248 /* If the old symbol has non-default visibility, we ignore the new
1249 definition from a dynamic object. */
1250 if (newdyn
1251 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1252 && !bfd_is_und_section (sec))
1253 {
1254 *skip = TRUE;
1255 /* Make sure this symbol is dynamic. */
1256 h->ref_dynamic = 1;
1257 hi->ref_dynamic = 1;
1258 /* A protected symbol has external availability. Make sure it is
1259 recorded as dynamic.
1260
1261 FIXME: Should we check type and size for protected symbol? */
1262 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1263 return bfd_elf_link_record_dynamic_symbol (info, h);
1264 else
1265 return TRUE;
1266 }
1267 else if (!newdyn
1268 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1269 && h->def_dynamic)
1270 {
1271 /* If the new symbol with non-default visibility comes from a
1272 relocatable file and the old definition comes from a dynamic
1273 object, we remove the old definition. */
1274 if (hi->root.type == bfd_link_hash_indirect)
1275 {
1276 /* Handle the case where the old dynamic definition is
1277 default versioned. We need to copy the symbol info from
1278 the symbol with default version to the normal one if it
1279 was referenced before. */
1280 if (h->ref_regular)
1281 {
1282 hi->root.type = h->root.type;
1283 h->root.type = bfd_link_hash_indirect;
1284 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1285
1286 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1287 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1288 {
1289 /* If the new symbol is hidden or internal, completely undo
1290 any dynamic link state. */
1291 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1292 h->forced_local = 0;
1293 h->ref_dynamic = 0;
1294 }
1295 else
1296 h->ref_dynamic = 1;
1297
1298 h->def_dynamic = 0;
1299 /* FIXME: Should we check type and size for protected symbol? */
1300 h->size = 0;
1301 h->type = 0;
1302
1303 h = hi;
1304 }
1305 else
1306 h = hi;
1307 }
1308
1309 /* If the old symbol was undefined before, then it will still be
1310 on the undefs list. If the new symbol is undefined or
1311 common, we can't make it bfd_link_hash_new here, because new
1312 undefined or common symbols will be added to the undefs list
1313 by _bfd_generic_link_add_one_symbol. Symbols may not be
1314 added twice to the undefs list. Also, if the new symbol is
1315 undefweak then we don't want to lose the strong undef. */
1316 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1317 {
1318 h->root.type = bfd_link_hash_undefined;
1319 h->root.u.undef.abfd = abfd;
1320 }
1321 else
1322 {
1323 h->root.type = bfd_link_hash_new;
1324 h->root.u.undef.abfd = NULL;
1325 }
1326
1327 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1328 {
1329 /* If the new symbol is hidden or internal, completely undo
1330 any dynamic link state. */
1331 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1332 h->forced_local = 0;
1333 h->ref_dynamic = 0;
1334 }
1335 else
1336 h->ref_dynamic = 1;
1337 h->def_dynamic = 0;
1338 /* FIXME: Should we check type and size for protected symbol? */
1339 h->size = 0;
1340 h->type = 0;
1341 return TRUE;
1342 }
1343
1344 /* If a new weak symbol definition comes from a regular file and the
1345 old symbol comes from a dynamic library, we treat the new one as
1346 strong. Similarly, an old weak symbol definition from a regular
1347 file is treated as strong when the new symbol comes from a dynamic
1348 library. Further, an old weak symbol from a dynamic library is
1349 treated as strong if the new symbol is from a dynamic library.
1350 This reflects the way glibc's ld.so works.
1351
1352 Do this before setting *type_change_ok or *size_change_ok so that
1353 we warn properly when dynamic library symbols are overridden. */
1354
1355 if (newdef && !newdyn && olddyn)
1356 newweak = FALSE;
1357 if (olddef && newdyn)
1358 oldweak = FALSE;
1359
1360 /* Allow changes between different types of function symbol. */
1361 if (newfunc && oldfunc)
1362 *type_change_ok = TRUE;
1363
1364 /* It's OK to change the type if either the existing symbol or the
1365 new symbol is weak. A type change is also OK if the old symbol
1366 is undefined and the new symbol is defined. */
1367
1368 if (oldweak
1369 || newweak
1370 || (newdef
1371 && h->root.type == bfd_link_hash_undefined))
1372 *type_change_ok = TRUE;
1373
1374 /* It's OK to change the size if either the existing symbol or the
1375 new symbol is weak, or if the old symbol is undefined. */
1376
1377 if (*type_change_ok
1378 || h->root.type == bfd_link_hash_undefined)
1379 *size_change_ok = TRUE;
1380
1381 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1382 symbol, respectively, appears to be a common symbol in a dynamic
1383 object. If a symbol appears in an uninitialized section, and is
1384 not weak, and is not a function, then it may be a common symbol
1385 which was resolved when the dynamic object was created. We want
1386 to treat such symbols specially, because they raise special
1387 considerations when setting the symbol size: if the symbol
1388 appears as a common symbol in a regular object, and the size in
1389 the regular object is larger, we must make sure that we use the
1390 larger size. This problematic case can always be avoided in C,
1391 but it must be handled correctly when using Fortran shared
1392 libraries.
1393
1394 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1395 likewise for OLDDYNCOMMON and OLDDEF.
1396
1397 Note that this test is just a heuristic, and that it is quite
1398 possible to have an uninitialized symbol in a shared object which
1399 is really a definition, rather than a common symbol. This could
1400 lead to some minor confusion when the symbol really is a common
1401 symbol in some regular object. However, I think it will be
1402 harmless. */
1403
1404 if (newdyn
1405 && newdef
1406 && !newweak
1407 && (sec->flags & SEC_ALLOC) != 0
1408 && (sec->flags & SEC_LOAD) == 0
1409 && sym->st_size > 0
1410 && !newfunc)
1411 newdyncommon = TRUE;
1412 else
1413 newdyncommon = FALSE;
1414
1415 if (olddyn
1416 && olddef
1417 && h->root.type == bfd_link_hash_defined
1418 && h->def_dynamic
1419 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1420 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1421 && h->size > 0
1422 && !oldfunc)
1423 olddyncommon = TRUE;
1424 else
1425 olddyncommon = FALSE;
1426
1427 /* We now know everything about the old and new symbols. We ask the
1428 backend to check if we can merge them. */
1429 if (bed->merge_symbol != NULL)
1430 {
1431 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1432 return FALSE;
1433 sec = *psec;
1434 }
1435
1436 /* If both the old and the new symbols look like common symbols in a
1437 dynamic object, set the size of the symbol to the larger of the
1438 two. */
1439
1440 if (olddyncommon
1441 && newdyncommon
1442 && sym->st_size != h->size)
1443 {
1444 /* Since we think we have two common symbols, issue a multiple
1445 common warning if desired. Note that we only warn if the
1446 size is different. If the size is the same, we simply let
1447 the old symbol override the new one as normally happens with
1448 symbols defined in dynamic objects. */
1449
1450 if (! ((*info->callbacks->multiple_common)
1451 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1452 return FALSE;
1453
1454 if (sym->st_size > h->size)
1455 h->size = sym->st_size;
1456
1457 *size_change_ok = TRUE;
1458 }
1459
1460 /* If we are looking at a dynamic object, and we have found a
1461 definition, we need to see if the symbol was already defined by
1462 some other object. If so, we want to use the existing
1463 definition, and we do not want to report a multiple symbol
1464 definition error; we do this by clobbering *PSEC to be
1465 bfd_und_section_ptr.
1466
1467 We treat a common symbol as a definition if the symbol in the
1468 shared library is a function, since common symbols always
1469 represent variables; this can cause confusion in principle, but
1470 any such confusion would seem to indicate an erroneous program or
1471 shared library. We also permit a common symbol in a regular
1472 object to override a weak symbol in a shared object. */
1473
1474 if (newdyn
1475 && newdef
1476 && (olddef
1477 || (h->root.type == bfd_link_hash_common
1478 && (newweak || newfunc))))
1479 {
1480 *override = TRUE;
1481 newdef = FALSE;
1482 newdyncommon = FALSE;
1483
1484 *psec = sec = bfd_und_section_ptr;
1485 *size_change_ok = TRUE;
1486
1487 /* If we get here when the old symbol is a common symbol, then
1488 we are explicitly letting it override a weak symbol or
1489 function in a dynamic object, and we don't want to warn about
1490 a type change. If the old symbol is a defined symbol, a type
1491 change warning may still be appropriate. */
1492
1493 if (h->root.type == bfd_link_hash_common)
1494 *type_change_ok = TRUE;
1495 }
1496
1497 /* Handle the special case of an old common symbol merging with a
1498 new symbol which looks like a common symbol in a shared object.
1499 We change *PSEC and *PVALUE to make the new symbol look like a
1500 common symbol, and let _bfd_generic_link_add_one_symbol do the
1501 right thing. */
1502
1503 if (newdyncommon
1504 && h->root.type == bfd_link_hash_common)
1505 {
1506 *override = TRUE;
1507 newdef = FALSE;
1508 newdyncommon = FALSE;
1509 *pvalue = sym->st_size;
1510 *psec = sec = bed->common_section (oldsec);
1511 *size_change_ok = TRUE;
1512 }
1513
1514 /* Skip weak definitions of symbols that are already defined. */
1515 if (newdef && olddef && newweak)
1516 {
1517 /* Don't skip new non-IR weak syms. */
1518 if (!(oldbfd != NULL
1519 && (oldbfd->flags & BFD_PLUGIN) != 0
1520 && (abfd->flags & BFD_PLUGIN) == 0))
1521 {
1522 newdef = FALSE;
1523 *skip = TRUE;
1524 }
1525
1526 /* Merge st_other. If the symbol already has a dynamic index,
1527 but visibility says it should not be visible, turn it into a
1528 local symbol. */
1529 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1530 if (h->dynindx != -1)
1531 switch (ELF_ST_VISIBILITY (h->other))
1532 {
1533 case STV_INTERNAL:
1534 case STV_HIDDEN:
1535 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1536 break;
1537 }
1538 }
1539
1540 /* If the old symbol is from a dynamic object, and the new symbol is
1541 a definition which is not from a dynamic object, then the new
1542 symbol overrides the old symbol. Symbols from regular files
1543 always take precedence over symbols from dynamic objects, even if
1544 they are defined after the dynamic object in the link.
1545
1546 As above, we again permit a common symbol in a regular object to
1547 override a definition in a shared object if the shared object
1548 symbol is a function or is weak. */
1549
1550 flip = NULL;
1551 if (!newdyn
1552 && (newdef
1553 || (bfd_is_com_section (sec)
1554 && (oldweak || oldfunc)))
1555 && olddyn
1556 && olddef
1557 && h->def_dynamic)
1558 {
1559 /* Change the hash table entry to undefined, and let
1560 _bfd_generic_link_add_one_symbol do the right thing with the
1561 new definition. */
1562
1563 h->root.type = bfd_link_hash_undefined;
1564 h->root.u.undef.abfd = h->root.u.def.section->owner;
1565 *size_change_ok = TRUE;
1566
1567 olddef = FALSE;
1568 olddyncommon = FALSE;
1569
1570 /* We again permit a type change when a common symbol may be
1571 overriding a function. */
1572
1573 if (bfd_is_com_section (sec))
1574 {
1575 if (oldfunc)
1576 {
1577 /* If a common symbol overrides a function, make sure
1578 that it isn't defined dynamically nor has type
1579 function. */
1580 h->def_dynamic = 0;
1581 h->type = STT_NOTYPE;
1582 }
1583 *type_change_ok = TRUE;
1584 }
1585
1586 if (hi->root.type == bfd_link_hash_indirect)
1587 flip = hi;
1588 else
1589 /* This union may have been set to be non-NULL when this symbol
1590 was seen in a dynamic object. We must force the union to be
1591 NULL, so that it is correct for a regular symbol. */
1592 h->verinfo.vertree = NULL;
1593 }
1594
1595 /* Handle the special case of a new common symbol merging with an
1596 old symbol that looks like it might be a common symbol defined in
1597 a shared object. Note that we have already handled the case in
1598 which a new common symbol should simply override the definition
1599 in the shared library. */
1600
1601 if (! newdyn
1602 && bfd_is_com_section (sec)
1603 && olddyncommon)
1604 {
1605 /* It would be best if we could set the hash table entry to a
1606 common symbol, but we don't know what to use for the section
1607 or the alignment. */
1608 if (! ((*info->callbacks->multiple_common)
1609 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1610 return FALSE;
1611
1612 /* If the presumed common symbol in the dynamic object is
1613 larger, pretend that the new symbol has its size. */
1614
1615 if (h->size > *pvalue)
1616 *pvalue = h->size;
1617
1618 /* We need to remember the alignment required by the symbol
1619 in the dynamic object. */
1620 BFD_ASSERT (pold_alignment);
1621 *pold_alignment = h->root.u.def.section->alignment_power;
1622
1623 olddef = FALSE;
1624 olddyncommon = FALSE;
1625
1626 h->root.type = bfd_link_hash_undefined;
1627 h->root.u.undef.abfd = h->root.u.def.section->owner;
1628
1629 *size_change_ok = TRUE;
1630 *type_change_ok = TRUE;
1631
1632 if (hi->root.type == bfd_link_hash_indirect)
1633 flip = hi;
1634 else
1635 h->verinfo.vertree = NULL;
1636 }
1637
1638 if (flip != NULL)
1639 {
1640 /* Handle the case where we had a versioned symbol in a dynamic
1641 library and now find a definition in a normal object. In this
1642 case, we make the versioned symbol point to the normal one. */
1643 flip->root.type = h->root.type;
1644 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1645 h->root.type = bfd_link_hash_indirect;
1646 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1647 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1648 if (h->def_dynamic)
1649 {
1650 h->def_dynamic = 0;
1651 flip->ref_dynamic = 1;
1652 }
1653 }
1654
1655 return TRUE;
1656 }
1657
1658 /* This function is called to create an indirect symbol from the
1659 default for the symbol with the default version if needed. The
1660 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1661 set DYNSYM if the new indirect symbol is dynamic. */
1662
1663 static bfd_boolean
1664 _bfd_elf_add_default_symbol (bfd *abfd,
1665 struct bfd_link_info *info,
1666 struct elf_link_hash_entry *h,
1667 const char *name,
1668 Elf_Internal_Sym *sym,
1669 asection *sec,
1670 bfd_vma value,
1671 bfd **poldbfd,
1672 bfd_boolean *dynsym)
1673 {
1674 bfd_boolean type_change_ok;
1675 bfd_boolean size_change_ok;
1676 bfd_boolean skip;
1677 char *shortname;
1678 struct elf_link_hash_entry *hi;
1679 struct bfd_link_hash_entry *bh;
1680 const struct elf_backend_data *bed;
1681 bfd_boolean collect;
1682 bfd_boolean dynamic;
1683 bfd_boolean override;
1684 char *p;
1685 size_t len, shortlen;
1686 asection *tmp_sec;
1687 bfd_boolean matched;
1688
1689 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1690 return TRUE;
1691
1692 /* If this symbol has a version, and it is the default version, we
1693 create an indirect symbol from the default name to the fully
1694 decorated name. This will cause external references which do not
1695 specify a version to be bound to this version of the symbol. */
1696 p = strchr (name, ELF_VER_CHR);
1697 if (h->versioned == unknown)
1698 {
1699 if (p == NULL)
1700 {
1701 h->versioned = unversioned;
1702 return TRUE;
1703 }
1704 else
1705 {
1706 if (p[1] != ELF_VER_CHR)
1707 {
1708 h->versioned = versioned_hidden;
1709 return TRUE;
1710 }
1711 else
1712 h->versioned = versioned;
1713 }
1714 }
1715
1716 bed = get_elf_backend_data (abfd);
1717 collect = bed->collect;
1718 dynamic = (abfd->flags & DYNAMIC) != 0;
1719
1720 shortlen = p - name;
1721 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1722 if (shortname == NULL)
1723 return FALSE;
1724 memcpy (shortname, name, shortlen);
1725 shortname[shortlen] = '\0';
1726
1727 /* We are going to create a new symbol. Merge it with any existing
1728 symbol with this name. For the purposes of the merge, act as
1729 though we were defining the symbol we just defined, although we
1730 actually going to define an indirect symbol. */
1731 type_change_ok = FALSE;
1732 size_change_ok = FALSE;
1733 matched = TRUE;
1734 tmp_sec = sec;
1735 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1736 &hi, poldbfd, NULL, NULL, &skip, &override,
1737 &type_change_ok, &size_change_ok, &matched))
1738 return FALSE;
1739
1740 if (skip)
1741 goto nondefault;
1742
1743 if (! override)
1744 {
1745 /* Add the default symbol if not performing a relocatable link. */
1746 if (! info->relocatable)
1747 {
1748 bh = &hi->root;
1749 if (! (_bfd_generic_link_add_one_symbol
1750 (info, abfd, shortname, BSF_INDIRECT,
1751 bfd_ind_section_ptr,
1752 0, name, FALSE, collect, &bh)))
1753 return FALSE;
1754 hi = (struct elf_link_hash_entry *) bh;
1755 }
1756 }
1757 else
1758 {
1759 /* In this case the symbol named SHORTNAME is overriding the
1760 indirect symbol we want to add. We were planning on making
1761 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1762 is the name without a version. NAME is the fully versioned
1763 name, and it is the default version.
1764
1765 Overriding means that we already saw a definition for the
1766 symbol SHORTNAME in a regular object, and it is overriding
1767 the symbol defined in the dynamic object.
1768
1769 When this happens, we actually want to change NAME, the
1770 symbol we just added, to refer to SHORTNAME. This will cause
1771 references to NAME in the shared object to become references
1772 to SHORTNAME in the regular object. This is what we expect
1773 when we override a function in a shared object: that the
1774 references in the shared object will be mapped to the
1775 definition in the regular object. */
1776
1777 while (hi->root.type == bfd_link_hash_indirect
1778 || hi->root.type == bfd_link_hash_warning)
1779 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1780
1781 h->root.type = bfd_link_hash_indirect;
1782 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1783 if (h->def_dynamic)
1784 {
1785 h->def_dynamic = 0;
1786 hi->ref_dynamic = 1;
1787 if (hi->ref_regular
1788 || hi->def_regular)
1789 {
1790 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1791 return FALSE;
1792 }
1793 }
1794
1795 /* Now set HI to H, so that the following code will set the
1796 other fields correctly. */
1797 hi = h;
1798 }
1799
1800 /* Check if HI is a warning symbol. */
1801 if (hi->root.type == bfd_link_hash_warning)
1802 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1803
1804 /* If there is a duplicate definition somewhere, then HI may not
1805 point to an indirect symbol. We will have reported an error to
1806 the user in that case. */
1807
1808 if (hi->root.type == bfd_link_hash_indirect)
1809 {
1810 struct elf_link_hash_entry *ht;
1811
1812 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1813 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1814
1815 /* A reference to the SHORTNAME symbol from a dynamic library
1816 will be satisfied by the versioned symbol at runtime. In
1817 effect, we have a reference to the versioned symbol. */
1818 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1819 hi->dynamic_def |= ht->dynamic_def;
1820
1821 /* See if the new flags lead us to realize that the symbol must
1822 be dynamic. */
1823 if (! *dynsym)
1824 {
1825 if (! dynamic)
1826 {
1827 if (! info->executable
1828 || hi->def_dynamic
1829 || hi->ref_dynamic)
1830 *dynsym = TRUE;
1831 }
1832 else
1833 {
1834 if (hi->ref_regular)
1835 *dynsym = TRUE;
1836 }
1837 }
1838 }
1839
1840 /* We also need to define an indirection from the nondefault version
1841 of the symbol. */
1842
1843 nondefault:
1844 len = strlen (name);
1845 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1846 if (shortname == NULL)
1847 return FALSE;
1848 memcpy (shortname, name, shortlen);
1849 memcpy (shortname + shortlen, p + 1, len - shortlen);
1850
1851 /* Once again, merge with any existing symbol. */
1852 type_change_ok = FALSE;
1853 size_change_ok = FALSE;
1854 tmp_sec = sec;
1855 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1856 &hi, poldbfd, NULL, NULL, &skip, &override,
1857 &type_change_ok, &size_change_ok, &matched))
1858 return FALSE;
1859
1860 if (skip)
1861 return TRUE;
1862
1863 if (override)
1864 {
1865 /* Here SHORTNAME is a versioned name, so we don't expect to see
1866 the type of override we do in the case above unless it is
1867 overridden by a versioned definition. */
1868 if (hi->root.type != bfd_link_hash_defined
1869 && hi->root.type != bfd_link_hash_defweak)
1870 (*_bfd_error_handler)
1871 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1872 abfd, shortname);
1873 }
1874 else
1875 {
1876 bh = &hi->root;
1877 if (! (_bfd_generic_link_add_one_symbol
1878 (info, abfd, shortname, BSF_INDIRECT,
1879 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1880 return FALSE;
1881 hi = (struct elf_link_hash_entry *) bh;
1882
1883 /* If there is a duplicate definition somewhere, then HI may not
1884 point to an indirect symbol. We will have reported an error
1885 to the user in that case. */
1886
1887 if (hi->root.type == bfd_link_hash_indirect)
1888 {
1889 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1890 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1891 hi->dynamic_def |= h->dynamic_def;
1892
1893 /* See if the new flags lead us to realize that the symbol
1894 must be dynamic. */
1895 if (! *dynsym)
1896 {
1897 if (! dynamic)
1898 {
1899 if (! info->executable
1900 || hi->ref_dynamic)
1901 *dynsym = TRUE;
1902 }
1903 else
1904 {
1905 if (hi->ref_regular)
1906 *dynsym = TRUE;
1907 }
1908 }
1909 }
1910 }
1911
1912 return TRUE;
1913 }
1914 \f
1915 /* This routine is used to export all defined symbols into the dynamic
1916 symbol table. It is called via elf_link_hash_traverse. */
1917
1918 static bfd_boolean
1919 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1920 {
1921 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1922
1923 /* Ignore indirect symbols. These are added by the versioning code. */
1924 if (h->root.type == bfd_link_hash_indirect)
1925 return TRUE;
1926
1927 /* Ignore this if we won't export it. */
1928 if (!eif->info->export_dynamic && !h->dynamic)
1929 return TRUE;
1930
1931 if (h->dynindx == -1
1932 && (h->def_regular || h->ref_regular)
1933 && ! bfd_hide_sym_by_version (eif->info->version_info,
1934 h->root.root.string))
1935 {
1936 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1937 {
1938 eif->failed = TRUE;
1939 return FALSE;
1940 }
1941 }
1942
1943 return TRUE;
1944 }
1945 \f
1946 /* Look through the symbols which are defined in other shared
1947 libraries and referenced here. Update the list of version
1948 dependencies. This will be put into the .gnu.version_r section.
1949 This function is called via elf_link_hash_traverse. */
1950
1951 static bfd_boolean
1952 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1953 void *data)
1954 {
1955 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1956 Elf_Internal_Verneed *t;
1957 Elf_Internal_Vernaux *a;
1958 bfd_size_type amt;
1959
1960 /* We only care about symbols defined in shared objects with version
1961 information. */
1962 if (!h->def_dynamic
1963 || h->def_regular
1964 || h->dynindx == -1
1965 || h->verinfo.verdef == NULL
1966 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
1967 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
1968 return TRUE;
1969
1970 /* See if we already know about this version. */
1971 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1972 t != NULL;
1973 t = t->vn_nextref)
1974 {
1975 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1976 continue;
1977
1978 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1979 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1980 return TRUE;
1981
1982 break;
1983 }
1984
1985 /* This is a new version. Add it to tree we are building. */
1986
1987 if (t == NULL)
1988 {
1989 amt = sizeof *t;
1990 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1991 if (t == NULL)
1992 {
1993 rinfo->failed = TRUE;
1994 return FALSE;
1995 }
1996
1997 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1998 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1999 elf_tdata (rinfo->info->output_bfd)->verref = t;
2000 }
2001
2002 amt = sizeof *a;
2003 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2004 if (a == NULL)
2005 {
2006 rinfo->failed = TRUE;
2007 return FALSE;
2008 }
2009
2010 /* Note that we are copying a string pointer here, and testing it
2011 above. If bfd_elf_string_from_elf_section is ever changed to
2012 discard the string data when low in memory, this will have to be
2013 fixed. */
2014 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2015
2016 a->vna_flags = h->verinfo.verdef->vd_flags;
2017 a->vna_nextptr = t->vn_auxptr;
2018
2019 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2020 ++rinfo->vers;
2021
2022 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2023
2024 t->vn_auxptr = a;
2025
2026 return TRUE;
2027 }
2028
2029 /* Figure out appropriate versions for all the symbols. We may not
2030 have the version number script until we have read all of the input
2031 files, so until that point we don't know which symbols should be
2032 local. This function is called via elf_link_hash_traverse. */
2033
2034 static bfd_boolean
2035 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2036 {
2037 struct elf_info_failed *sinfo;
2038 struct bfd_link_info *info;
2039 const struct elf_backend_data *bed;
2040 struct elf_info_failed eif;
2041 char *p;
2042 bfd_size_type amt;
2043
2044 sinfo = (struct elf_info_failed *) data;
2045 info = sinfo->info;
2046
2047 /* Fix the symbol flags. */
2048 eif.failed = FALSE;
2049 eif.info = info;
2050 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2051 {
2052 if (eif.failed)
2053 sinfo->failed = TRUE;
2054 return FALSE;
2055 }
2056
2057 /* We only need version numbers for symbols defined in regular
2058 objects. */
2059 if (!h->def_regular)
2060 return TRUE;
2061
2062 bed = get_elf_backend_data (info->output_bfd);
2063 p = strchr (h->root.root.string, ELF_VER_CHR);
2064 if (p != NULL && h->verinfo.vertree == NULL)
2065 {
2066 struct bfd_elf_version_tree *t;
2067
2068 ++p;
2069 if (*p == ELF_VER_CHR)
2070 ++p;
2071
2072 /* If there is no version string, we can just return out. */
2073 if (*p == '\0')
2074 return TRUE;
2075
2076 /* Look for the version. If we find it, it is no longer weak. */
2077 for (t = sinfo->info->version_info; t != NULL; t = t->next)
2078 {
2079 if (strcmp (t->name, p) == 0)
2080 {
2081 size_t len;
2082 char *alc;
2083 struct bfd_elf_version_expr *d;
2084
2085 len = p - h->root.root.string;
2086 alc = (char *) bfd_malloc (len);
2087 if (alc == NULL)
2088 {
2089 sinfo->failed = TRUE;
2090 return FALSE;
2091 }
2092 memcpy (alc, h->root.root.string, len - 1);
2093 alc[len - 1] = '\0';
2094 if (alc[len - 2] == ELF_VER_CHR)
2095 alc[len - 2] = '\0';
2096
2097 h->verinfo.vertree = t;
2098 t->used = TRUE;
2099 d = NULL;
2100
2101 if (t->globals.list != NULL)
2102 d = (*t->match) (&t->globals, NULL, alc);
2103
2104 /* See if there is anything to force this symbol to
2105 local scope. */
2106 if (d == NULL && t->locals.list != NULL)
2107 {
2108 d = (*t->match) (&t->locals, NULL, alc);
2109 if (d != NULL
2110 && h->dynindx != -1
2111 && ! info->export_dynamic)
2112 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2113 }
2114
2115 free (alc);
2116 break;
2117 }
2118 }
2119
2120 /* If we are building an application, we need to create a
2121 version node for this version. */
2122 if (t == NULL && info->executable)
2123 {
2124 struct bfd_elf_version_tree **pp;
2125 int version_index;
2126
2127 /* If we aren't going to export this symbol, we don't need
2128 to worry about it. */
2129 if (h->dynindx == -1)
2130 return TRUE;
2131
2132 amt = sizeof *t;
2133 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2134 if (t == NULL)
2135 {
2136 sinfo->failed = TRUE;
2137 return FALSE;
2138 }
2139
2140 t->name = p;
2141 t->name_indx = (unsigned int) -1;
2142 t->used = TRUE;
2143
2144 version_index = 1;
2145 /* Don't count anonymous version tag. */
2146 if (sinfo->info->version_info != NULL
2147 && sinfo->info->version_info->vernum == 0)
2148 version_index = 0;
2149 for (pp = &sinfo->info->version_info;
2150 *pp != NULL;
2151 pp = &(*pp)->next)
2152 ++version_index;
2153 t->vernum = version_index;
2154
2155 *pp = t;
2156
2157 h->verinfo.vertree = t;
2158 }
2159 else if (t == NULL)
2160 {
2161 /* We could not find the version for a symbol when
2162 generating a shared archive. Return an error. */
2163 (*_bfd_error_handler)
2164 (_("%B: version node not found for symbol %s"),
2165 info->output_bfd, h->root.root.string);
2166 bfd_set_error (bfd_error_bad_value);
2167 sinfo->failed = TRUE;
2168 return FALSE;
2169 }
2170 }
2171
2172 /* If we don't have a version for this symbol, see if we can find
2173 something. */
2174 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2175 {
2176 bfd_boolean hide;
2177
2178 h->verinfo.vertree
2179 = bfd_find_version_for_sym (sinfo->info->version_info,
2180 h->root.root.string, &hide);
2181 if (h->verinfo.vertree != NULL && hide)
2182 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2183 }
2184
2185 return TRUE;
2186 }
2187 \f
2188 /* Read and swap the relocs from the section indicated by SHDR. This
2189 may be either a REL or a RELA section. The relocations are
2190 translated into RELA relocations and stored in INTERNAL_RELOCS,
2191 which should have already been allocated to contain enough space.
2192 The EXTERNAL_RELOCS are a buffer where the external form of the
2193 relocations should be stored.
2194
2195 Returns FALSE if something goes wrong. */
2196
2197 static bfd_boolean
2198 elf_link_read_relocs_from_section (bfd *abfd,
2199 asection *sec,
2200 Elf_Internal_Shdr *shdr,
2201 void *external_relocs,
2202 Elf_Internal_Rela *internal_relocs)
2203 {
2204 const struct elf_backend_data *bed;
2205 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2206 const bfd_byte *erela;
2207 const bfd_byte *erelaend;
2208 Elf_Internal_Rela *irela;
2209 Elf_Internal_Shdr *symtab_hdr;
2210 size_t nsyms;
2211
2212 /* Position ourselves at the start of the section. */
2213 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2214 return FALSE;
2215
2216 /* Read the relocations. */
2217 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2218 return FALSE;
2219
2220 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2221 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2222
2223 bed = get_elf_backend_data (abfd);
2224
2225 /* Convert the external relocations to the internal format. */
2226 if (shdr->sh_entsize == bed->s->sizeof_rel)
2227 swap_in = bed->s->swap_reloc_in;
2228 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2229 swap_in = bed->s->swap_reloca_in;
2230 else
2231 {
2232 bfd_set_error (bfd_error_wrong_format);
2233 return FALSE;
2234 }
2235
2236 erela = (const bfd_byte *) external_relocs;
2237 erelaend = erela + shdr->sh_size;
2238 irela = internal_relocs;
2239 while (erela < erelaend)
2240 {
2241 bfd_vma r_symndx;
2242
2243 (*swap_in) (abfd, erela, irela);
2244 r_symndx = ELF32_R_SYM (irela->r_info);
2245 if (bed->s->arch_size == 64)
2246 r_symndx >>= 24;
2247 if (nsyms > 0)
2248 {
2249 if ((size_t) r_symndx >= nsyms)
2250 {
2251 (*_bfd_error_handler)
2252 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2253 " for offset 0x%lx in section `%A'"),
2254 abfd, sec,
2255 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2256 bfd_set_error (bfd_error_bad_value);
2257 return FALSE;
2258 }
2259 }
2260 else if (r_symndx != STN_UNDEF)
2261 {
2262 (*_bfd_error_handler)
2263 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2264 " when the object file has no symbol table"),
2265 abfd, sec,
2266 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2267 bfd_set_error (bfd_error_bad_value);
2268 return FALSE;
2269 }
2270 irela += bed->s->int_rels_per_ext_rel;
2271 erela += shdr->sh_entsize;
2272 }
2273
2274 return TRUE;
2275 }
2276
2277 /* Read and swap the relocs for a section O. They may have been
2278 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2279 not NULL, they are used as buffers to read into. They are known to
2280 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2281 the return value is allocated using either malloc or bfd_alloc,
2282 according to the KEEP_MEMORY argument. If O has two relocation
2283 sections (both REL and RELA relocations), then the REL_HDR
2284 relocations will appear first in INTERNAL_RELOCS, followed by the
2285 RELA_HDR relocations. */
2286
2287 Elf_Internal_Rela *
2288 _bfd_elf_link_read_relocs (bfd *abfd,
2289 asection *o,
2290 void *external_relocs,
2291 Elf_Internal_Rela *internal_relocs,
2292 bfd_boolean keep_memory)
2293 {
2294 void *alloc1 = NULL;
2295 Elf_Internal_Rela *alloc2 = NULL;
2296 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2297 struct bfd_elf_section_data *esdo = elf_section_data (o);
2298 Elf_Internal_Rela *internal_rela_relocs;
2299
2300 if (esdo->relocs != NULL)
2301 return esdo->relocs;
2302
2303 if (o->reloc_count == 0)
2304 return NULL;
2305
2306 if (internal_relocs == NULL)
2307 {
2308 bfd_size_type size;
2309
2310 size = o->reloc_count;
2311 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2312 if (keep_memory)
2313 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2314 else
2315 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2316 if (internal_relocs == NULL)
2317 goto error_return;
2318 }
2319
2320 if (external_relocs == NULL)
2321 {
2322 bfd_size_type size = 0;
2323
2324 if (esdo->rel.hdr)
2325 size += esdo->rel.hdr->sh_size;
2326 if (esdo->rela.hdr)
2327 size += esdo->rela.hdr->sh_size;
2328
2329 alloc1 = bfd_malloc (size);
2330 if (alloc1 == NULL)
2331 goto error_return;
2332 external_relocs = alloc1;
2333 }
2334
2335 internal_rela_relocs = internal_relocs;
2336 if (esdo->rel.hdr)
2337 {
2338 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2339 external_relocs,
2340 internal_relocs))
2341 goto error_return;
2342 external_relocs = (((bfd_byte *) external_relocs)
2343 + esdo->rel.hdr->sh_size);
2344 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2345 * bed->s->int_rels_per_ext_rel);
2346 }
2347
2348 if (esdo->rela.hdr
2349 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2350 external_relocs,
2351 internal_rela_relocs)))
2352 goto error_return;
2353
2354 /* Cache the results for next time, if we can. */
2355 if (keep_memory)
2356 esdo->relocs = internal_relocs;
2357
2358 if (alloc1 != NULL)
2359 free (alloc1);
2360
2361 /* Don't free alloc2, since if it was allocated we are passing it
2362 back (under the name of internal_relocs). */
2363
2364 return internal_relocs;
2365
2366 error_return:
2367 if (alloc1 != NULL)
2368 free (alloc1);
2369 if (alloc2 != NULL)
2370 {
2371 if (keep_memory)
2372 bfd_release (abfd, alloc2);
2373 else
2374 free (alloc2);
2375 }
2376 return NULL;
2377 }
2378
2379 /* Compute the size of, and allocate space for, REL_HDR which is the
2380 section header for a section containing relocations for O. */
2381
2382 static bfd_boolean
2383 _bfd_elf_link_size_reloc_section (bfd *abfd,
2384 struct bfd_elf_section_reloc_data *reldata)
2385 {
2386 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2387
2388 /* That allows us to calculate the size of the section. */
2389 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2390
2391 /* The contents field must last into write_object_contents, so we
2392 allocate it with bfd_alloc rather than malloc. Also since we
2393 cannot be sure that the contents will actually be filled in,
2394 we zero the allocated space. */
2395 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2396 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2397 return FALSE;
2398
2399 if (reldata->hashes == NULL && reldata->count)
2400 {
2401 struct elf_link_hash_entry **p;
2402
2403 p = ((struct elf_link_hash_entry **)
2404 bfd_zmalloc (reldata->count * sizeof (*p)));
2405 if (p == NULL)
2406 return FALSE;
2407
2408 reldata->hashes = p;
2409 }
2410
2411 return TRUE;
2412 }
2413
2414 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2415 originated from the section given by INPUT_REL_HDR) to the
2416 OUTPUT_BFD. */
2417
2418 bfd_boolean
2419 _bfd_elf_link_output_relocs (bfd *output_bfd,
2420 asection *input_section,
2421 Elf_Internal_Shdr *input_rel_hdr,
2422 Elf_Internal_Rela *internal_relocs,
2423 struct elf_link_hash_entry **rel_hash
2424 ATTRIBUTE_UNUSED)
2425 {
2426 Elf_Internal_Rela *irela;
2427 Elf_Internal_Rela *irelaend;
2428 bfd_byte *erel;
2429 struct bfd_elf_section_reloc_data *output_reldata;
2430 asection *output_section;
2431 const struct elf_backend_data *bed;
2432 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2433 struct bfd_elf_section_data *esdo;
2434
2435 output_section = input_section->output_section;
2436
2437 bed = get_elf_backend_data (output_bfd);
2438 esdo = elf_section_data (output_section);
2439 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2440 {
2441 output_reldata = &esdo->rel;
2442 swap_out = bed->s->swap_reloc_out;
2443 }
2444 else if (esdo->rela.hdr
2445 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2446 {
2447 output_reldata = &esdo->rela;
2448 swap_out = bed->s->swap_reloca_out;
2449 }
2450 else
2451 {
2452 (*_bfd_error_handler)
2453 (_("%B: relocation size mismatch in %B section %A"),
2454 output_bfd, input_section->owner, input_section);
2455 bfd_set_error (bfd_error_wrong_format);
2456 return FALSE;
2457 }
2458
2459 erel = output_reldata->hdr->contents;
2460 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2461 irela = internal_relocs;
2462 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2463 * bed->s->int_rels_per_ext_rel);
2464 while (irela < irelaend)
2465 {
2466 (*swap_out) (output_bfd, irela, erel);
2467 irela += bed->s->int_rels_per_ext_rel;
2468 erel += input_rel_hdr->sh_entsize;
2469 }
2470
2471 /* Bump the counter, so that we know where to add the next set of
2472 relocations. */
2473 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2474
2475 return TRUE;
2476 }
2477 \f
2478 /* Make weak undefined symbols in PIE dynamic. */
2479
2480 bfd_boolean
2481 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2482 struct elf_link_hash_entry *h)
2483 {
2484 if (info->pie
2485 && h->dynindx == -1
2486 && h->root.type == bfd_link_hash_undefweak)
2487 return bfd_elf_link_record_dynamic_symbol (info, h);
2488
2489 return TRUE;
2490 }
2491
2492 /* Fix up the flags for a symbol. This handles various cases which
2493 can only be fixed after all the input files are seen. This is
2494 currently called by both adjust_dynamic_symbol and
2495 assign_sym_version, which is unnecessary but perhaps more robust in
2496 the face of future changes. */
2497
2498 static bfd_boolean
2499 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2500 struct elf_info_failed *eif)
2501 {
2502 const struct elf_backend_data *bed;
2503
2504 /* If this symbol was mentioned in a non-ELF file, try to set
2505 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2506 permit a non-ELF file to correctly refer to a symbol defined in
2507 an ELF dynamic object. */
2508 if (h->non_elf)
2509 {
2510 while (h->root.type == bfd_link_hash_indirect)
2511 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2512
2513 if (h->root.type != bfd_link_hash_defined
2514 && h->root.type != bfd_link_hash_defweak)
2515 {
2516 h->ref_regular = 1;
2517 h->ref_regular_nonweak = 1;
2518 }
2519 else
2520 {
2521 if (h->root.u.def.section->owner != NULL
2522 && (bfd_get_flavour (h->root.u.def.section->owner)
2523 == bfd_target_elf_flavour))
2524 {
2525 h->ref_regular = 1;
2526 h->ref_regular_nonweak = 1;
2527 }
2528 else
2529 h->def_regular = 1;
2530 }
2531
2532 if (h->dynindx == -1
2533 && (h->def_dynamic
2534 || h->ref_dynamic))
2535 {
2536 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2537 {
2538 eif->failed = TRUE;
2539 return FALSE;
2540 }
2541 }
2542 }
2543 else
2544 {
2545 /* Unfortunately, NON_ELF is only correct if the symbol
2546 was first seen in a non-ELF file. Fortunately, if the symbol
2547 was first seen in an ELF file, we're probably OK unless the
2548 symbol was defined in a non-ELF file. Catch that case here.
2549 FIXME: We're still in trouble if the symbol was first seen in
2550 a dynamic object, and then later in a non-ELF regular object. */
2551 if ((h->root.type == bfd_link_hash_defined
2552 || h->root.type == bfd_link_hash_defweak)
2553 && !h->def_regular
2554 && (h->root.u.def.section->owner != NULL
2555 ? (bfd_get_flavour (h->root.u.def.section->owner)
2556 != bfd_target_elf_flavour)
2557 : (bfd_is_abs_section (h->root.u.def.section)
2558 && !h->def_dynamic)))
2559 h->def_regular = 1;
2560 }
2561
2562 /* Backend specific symbol fixup. */
2563 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2564 if (bed->elf_backend_fixup_symbol
2565 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2566 return FALSE;
2567
2568 /* If this is a final link, and the symbol was defined as a common
2569 symbol in a regular object file, and there was no definition in
2570 any dynamic object, then the linker will have allocated space for
2571 the symbol in a common section but the DEF_REGULAR
2572 flag will not have been set. */
2573 if (h->root.type == bfd_link_hash_defined
2574 && !h->def_regular
2575 && h->ref_regular
2576 && !h->def_dynamic
2577 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2578 h->def_regular = 1;
2579
2580 /* If -Bsymbolic was used (which means to bind references to global
2581 symbols to the definition within the shared object), and this
2582 symbol was defined in a regular object, then it actually doesn't
2583 need a PLT entry. Likewise, if the symbol has non-default
2584 visibility. If the symbol has hidden or internal visibility, we
2585 will force it local. */
2586 if (h->needs_plt
2587 && eif->info->shared
2588 && is_elf_hash_table (eif->info->hash)
2589 && (SYMBOLIC_BIND (eif->info, h)
2590 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2591 && h->def_regular)
2592 {
2593 bfd_boolean force_local;
2594
2595 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2596 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2597 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2598 }
2599
2600 /* If a weak undefined symbol has non-default visibility, we also
2601 hide it from the dynamic linker. */
2602 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2603 && h->root.type == bfd_link_hash_undefweak)
2604 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2605
2606 /* If this is a weak defined symbol in a dynamic object, and we know
2607 the real definition in the dynamic object, copy interesting flags
2608 over to the real definition. */
2609 if (h->u.weakdef != NULL)
2610 {
2611 /* If the real definition is defined by a regular object file,
2612 don't do anything special. See the longer description in
2613 _bfd_elf_adjust_dynamic_symbol, below. */
2614 if (h->u.weakdef->def_regular)
2615 h->u.weakdef = NULL;
2616 else
2617 {
2618 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2619
2620 while (h->root.type == bfd_link_hash_indirect)
2621 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2622
2623 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2624 || h->root.type == bfd_link_hash_defweak);
2625 BFD_ASSERT (weakdef->def_dynamic);
2626 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2627 || weakdef->root.type == bfd_link_hash_defweak);
2628 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2629 }
2630 }
2631
2632 return TRUE;
2633 }
2634
2635 /* Make the backend pick a good value for a dynamic symbol. This is
2636 called via elf_link_hash_traverse, and also calls itself
2637 recursively. */
2638
2639 static bfd_boolean
2640 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2641 {
2642 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2643 bfd *dynobj;
2644 const struct elf_backend_data *bed;
2645
2646 if (! is_elf_hash_table (eif->info->hash))
2647 return FALSE;
2648
2649 /* Ignore indirect symbols. These are added by the versioning code. */
2650 if (h->root.type == bfd_link_hash_indirect)
2651 return TRUE;
2652
2653 /* Fix the symbol flags. */
2654 if (! _bfd_elf_fix_symbol_flags (h, eif))
2655 return FALSE;
2656
2657 /* If this symbol does not require a PLT entry, and it is not
2658 defined by a dynamic object, or is not referenced by a regular
2659 object, ignore it. We do have to handle a weak defined symbol,
2660 even if no regular object refers to it, if we decided to add it
2661 to the dynamic symbol table. FIXME: Do we normally need to worry
2662 about symbols which are defined by one dynamic object and
2663 referenced by another one? */
2664 if (!h->needs_plt
2665 && h->type != STT_GNU_IFUNC
2666 && (h->def_regular
2667 || !h->def_dynamic
2668 || (!h->ref_regular
2669 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2670 {
2671 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2672 return TRUE;
2673 }
2674
2675 /* If we've already adjusted this symbol, don't do it again. This
2676 can happen via a recursive call. */
2677 if (h->dynamic_adjusted)
2678 return TRUE;
2679
2680 /* Don't look at this symbol again. Note that we must set this
2681 after checking the above conditions, because we may look at a
2682 symbol once, decide not to do anything, and then get called
2683 recursively later after REF_REGULAR is set below. */
2684 h->dynamic_adjusted = 1;
2685
2686 /* If this is a weak definition, and we know a real definition, and
2687 the real symbol is not itself defined by a regular object file,
2688 then get a good value for the real definition. We handle the
2689 real symbol first, for the convenience of the backend routine.
2690
2691 Note that there is a confusing case here. If the real definition
2692 is defined by a regular object file, we don't get the real symbol
2693 from the dynamic object, but we do get the weak symbol. If the
2694 processor backend uses a COPY reloc, then if some routine in the
2695 dynamic object changes the real symbol, we will not see that
2696 change in the corresponding weak symbol. This is the way other
2697 ELF linkers work as well, and seems to be a result of the shared
2698 library model.
2699
2700 I will clarify this issue. Most SVR4 shared libraries define the
2701 variable _timezone and define timezone as a weak synonym. The
2702 tzset call changes _timezone. If you write
2703 extern int timezone;
2704 int _timezone = 5;
2705 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2706 you might expect that, since timezone is a synonym for _timezone,
2707 the same number will print both times. However, if the processor
2708 backend uses a COPY reloc, then actually timezone will be copied
2709 into your process image, and, since you define _timezone
2710 yourself, _timezone will not. Thus timezone and _timezone will
2711 wind up at different memory locations. The tzset call will set
2712 _timezone, leaving timezone unchanged. */
2713
2714 if (h->u.weakdef != NULL)
2715 {
2716 /* If we get to this point, there is an implicit reference to
2717 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2718 h->u.weakdef->ref_regular = 1;
2719
2720 /* Ensure that the backend adjust_dynamic_symbol function sees
2721 H->U.WEAKDEF before H by recursively calling ourselves. */
2722 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2723 return FALSE;
2724 }
2725
2726 /* If a symbol has no type and no size and does not require a PLT
2727 entry, then we are probably about to do the wrong thing here: we
2728 are probably going to create a COPY reloc for an empty object.
2729 This case can arise when a shared object is built with assembly
2730 code, and the assembly code fails to set the symbol type. */
2731 if (h->size == 0
2732 && h->type == STT_NOTYPE
2733 && !h->needs_plt)
2734 (*_bfd_error_handler)
2735 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2736 h->root.root.string);
2737
2738 dynobj = elf_hash_table (eif->info)->dynobj;
2739 bed = get_elf_backend_data (dynobj);
2740
2741 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2742 {
2743 eif->failed = TRUE;
2744 return FALSE;
2745 }
2746
2747 return TRUE;
2748 }
2749
2750 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2751 DYNBSS. */
2752
2753 bfd_boolean
2754 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2755 struct elf_link_hash_entry *h,
2756 asection *dynbss)
2757 {
2758 unsigned int power_of_two;
2759 bfd_vma mask;
2760 asection *sec = h->root.u.def.section;
2761
2762 /* The section aligment of definition is the maximum alignment
2763 requirement of symbols defined in the section. Since we don't
2764 know the symbol alignment requirement, we start with the
2765 maximum alignment and check low bits of the symbol address
2766 for the minimum alignment. */
2767 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2768 mask = ((bfd_vma) 1 << power_of_two) - 1;
2769 while ((h->root.u.def.value & mask) != 0)
2770 {
2771 mask >>= 1;
2772 --power_of_two;
2773 }
2774
2775 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2776 dynbss))
2777 {
2778 /* Adjust the section alignment if needed. */
2779 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2780 power_of_two))
2781 return FALSE;
2782 }
2783
2784 /* We make sure that the symbol will be aligned properly. */
2785 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2786
2787 /* Define the symbol as being at this point in DYNBSS. */
2788 h->root.u.def.section = dynbss;
2789 h->root.u.def.value = dynbss->size;
2790
2791 /* Increment the size of DYNBSS to make room for the symbol. */
2792 dynbss->size += h->size;
2793
2794 /* No error if extern_protected_data is true. */
2795 if (h->protected_def
2796 && (!info->extern_protected_data
2797 || (info->extern_protected_data < 0
2798 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
2799 info->callbacks->einfo
2800 (_("%P: copy reloc against protected `%T' is dangerous\n"),
2801 h->root.root.string);
2802
2803 return TRUE;
2804 }
2805
2806 /* Adjust all external symbols pointing into SEC_MERGE sections
2807 to reflect the object merging within the sections. */
2808
2809 static bfd_boolean
2810 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2811 {
2812 asection *sec;
2813
2814 if ((h->root.type == bfd_link_hash_defined
2815 || h->root.type == bfd_link_hash_defweak)
2816 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2817 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2818 {
2819 bfd *output_bfd = (bfd *) data;
2820
2821 h->root.u.def.value =
2822 _bfd_merged_section_offset (output_bfd,
2823 &h->root.u.def.section,
2824 elf_section_data (sec)->sec_info,
2825 h->root.u.def.value);
2826 }
2827
2828 return TRUE;
2829 }
2830
2831 /* Returns false if the symbol referred to by H should be considered
2832 to resolve local to the current module, and true if it should be
2833 considered to bind dynamically. */
2834
2835 bfd_boolean
2836 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2837 struct bfd_link_info *info,
2838 bfd_boolean not_local_protected)
2839 {
2840 bfd_boolean binding_stays_local_p;
2841 const struct elf_backend_data *bed;
2842 struct elf_link_hash_table *hash_table;
2843
2844 if (h == NULL)
2845 return FALSE;
2846
2847 while (h->root.type == bfd_link_hash_indirect
2848 || h->root.type == bfd_link_hash_warning)
2849 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2850
2851 /* If it was forced local, then clearly it's not dynamic. */
2852 if (h->dynindx == -1)
2853 return FALSE;
2854 if (h->forced_local)
2855 return FALSE;
2856
2857 /* Identify the cases where name binding rules say that a
2858 visible symbol resolves locally. */
2859 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2860
2861 switch (ELF_ST_VISIBILITY (h->other))
2862 {
2863 case STV_INTERNAL:
2864 case STV_HIDDEN:
2865 return FALSE;
2866
2867 case STV_PROTECTED:
2868 hash_table = elf_hash_table (info);
2869 if (!is_elf_hash_table (hash_table))
2870 return FALSE;
2871
2872 bed = get_elf_backend_data (hash_table->dynobj);
2873
2874 /* Proper resolution for function pointer equality may require
2875 that these symbols perhaps be resolved dynamically, even though
2876 we should be resolving them to the current module. */
2877 if (!not_local_protected || !bed->is_function_type (h->type))
2878 binding_stays_local_p = TRUE;
2879 break;
2880
2881 default:
2882 break;
2883 }
2884
2885 /* If it isn't defined locally, then clearly it's dynamic. */
2886 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2887 return TRUE;
2888
2889 /* Otherwise, the symbol is dynamic if binding rules don't tell
2890 us that it remains local. */
2891 return !binding_stays_local_p;
2892 }
2893
2894 /* Return true if the symbol referred to by H should be considered
2895 to resolve local to the current module, and false otherwise. Differs
2896 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2897 undefined symbols. The two functions are virtually identical except
2898 for the place where forced_local and dynindx == -1 are tested. If
2899 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2900 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2901 the symbol is local only for defined symbols.
2902 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2903 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2904 treatment of undefined weak symbols. For those that do not make
2905 undefined weak symbols dynamic, both functions may return false. */
2906
2907 bfd_boolean
2908 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2909 struct bfd_link_info *info,
2910 bfd_boolean local_protected)
2911 {
2912 const struct elf_backend_data *bed;
2913 struct elf_link_hash_table *hash_table;
2914
2915 /* If it's a local sym, of course we resolve locally. */
2916 if (h == NULL)
2917 return TRUE;
2918
2919 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2920 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2921 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2922 return TRUE;
2923
2924 /* Common symbols that become definitions don't get the DEF_REGULAR
2925 flag set, so test it first, and don't bail out. */
2926 if (ELF_COMMON_DEF_P (h))
2927 /* Do nothing. */;
2928 /* If we don't have a definition in a regular file, then we can't
2929 resolve locally. The sym is either undefined or dynamic. */
2930 else if (!h->def_regular)
2931 return FALSE;
2932
2933 /* Forced local symbols resolve locally. */
2934 if (h->forced_local)
2935 return TRUE;
2936
2937 /* As do non-dynamic symbols. */
2938 if (h->dynindx == -1)
2939 return TRUE;
2940
2941 /* At this point, we know the symbol is defined and dynamic. In an
2942 executable it must resolve locally, likewise when building symbolic
2943 shared libraries. */
2944 if (info->executable || SYMBOLIC_BIND (info, h))
2945 return TRUE;
2946
2947 /* Now deal with defined dynamic symbols in shared libraries. Ones
2948 with default visibility might not resolve locally. */
2949 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2950 return FALSE;
2951
2952 hash_table = elf_hash_table (info);
2953 if (!is_elf_hash_table (hash_table))
2954 return TRUE;
2955
2956 bed = get_elf_backend_data (hash_table->dynobj);
2957
2958 /* If extern_protected_data is false, STV_PROTECTED non-function
2959 symbols are local. */
2960 if ((!info->extern_protected_data
2961 || (info->extern_protected_data < 0
2962 && !bed->extern_protected_data))
2963 && !bed->is_function_type (h->type))
2964 return TRUE;
2965
2966 /* Function pointer equality tests may require that STV_PROTECTED
2967 symbols be treated as dynamic symbols. If the address of a
2968 function not defined in an executable is set to that function's
2969 plt entry in the executable, then the address of the function in
2970 a shared library must also be the plt entry in the executable. */
2971 return local_protected;
2972 }
2973
2974 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2975 aligned. Returns the first TLS output section. */
2976
2977 struct bfd_section *
2978 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2979 {
2980 struct bfd_section *sec, *tls;
2981 unsigned int align = 0;
2982
2983 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2984 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2985 break;
2986 tls = sec;
2987
2988 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2989 if (sec->alignment_power > align)
2990 align = sec->alignment_power;
2991
2992 elf_hash_table (info)->tls_sec = tls;
2993
2994 /* Ensure the alignment of the first section is the largest alignment,
2995 so that the tls segment starts aligned. */
2996 if (tls != NULL)
2997 tls->alignment_power = align;
2998
2999 return tls;
3000 }
3001
3002 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3003 static bfd_boolean
3004 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3005 Elf_Internal_Sym *sym)
3006 {
3007 const struct elf_backend_data *bed;
3008
3009 /* Local symbols do not count, but target specific ones might. */
3010 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3011 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3012 return FALSE;
3013
3014 bed = get_elf_backend_data (abfd);
3015 /* Function symbols do not count. */
3016 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3017 return FALSE;
3018
3019 /* If the section is undefined, then so is the symbol. */
3020 if (sym->st_shndx == SHN_UNDEF)
3021 return FALSE;
3022
3023 /* If the symbol is defined in the common section, then
3024 it is a common definition and so does not count. */
3025 if (bed->common_definition (sym))
3026 return FALSE;
3027
3028 /* If the symbol is in a target specific section then we
3029 must rely upon the backend to tell us what it is. */
3030 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3031 /* FIXME - this function is not coded yet:
3032
3033 return _bfd_is_global_symbol_definition (abfd, sym);
3034
3035 Instead for now assume that the definition is not global,
3036 Even if this is wrong, at least the linker will behave
3037 in the same way that it used to do. */
3038 return FALSE;
3039
3040 return TRUE;
3041 }
3042
3043 /* Search the symbol table of the archive element of the archive ABFD
3044 whose archive map contains a mention of SYMDEF, and determine if
3045 the symbol is defined in this element. */
3046 static bfd_boolean
3047 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3048 {
3049 Elf_Internal_Shdr * hdr;
3050 bfd_size_type symcount;
3051 bfd_size_type extsymcount;
3052 bfd_size_type extsymoff;
3053 Elf_Internal_Sym *isymbuf;
3054 Elf_Internal_Sym *isym;
3055 Elf_Internal_Sym *isymend;
3056 bfd_boolean result;
3057
3058 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3059 if (abfd == NULL)
3060 return FALSE;
3061
3062 /* Return FALSE if the object has been claimed by plugin. */
3063 if (abfd->plugin_format == bfd_plugin_yes)
3064 return FALSE;
3065
3066 if (! bfd_check_format (abfd, bfd_object))
3067 return FALSE;
3068
3069 /* Select the appropriate symbol table. */
3070 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3071 hdr = &elf_tdata (abfd)->symtab_hdr;
3072 else
3073 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3074
3075 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3076
3077 /* The sh_info field of the symtab header tells us where the
3078 external symbols start. We don't care about the local symbols. */
3079 if (elf_bad_symtab (abfd))
3080 {
3081 extsymcount = symcount;
3082 extsymoff = 0;
3083 }
3084 else
3085 {
3086 extsymcount = symcount - hdr->sh_info;
3087 extsymoff = hdr->sh_info;
3088 }
3089
3090 if (extsymcount == 0)
3091 return FALSE;
3092
3093 /* Read in the symbol table. */
3094 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3095 NULL, NULL, NULL);
3096 if (isymbuf == NULL)
3097 return FALSE;
3098
3099 /* Scan the symbol table looking for SYMDEF. */
3100 result = FALSE;
3101 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3102 {
3103 const char *name;
3104
3105 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3106 isym->st_name);
3107 if (name == NULL)
3108 break;
3109
3110 if (strcmp (name, symdef->name) == 0)
3111 {
3112 result = is_global_data_symbol_definition (abfd, isym);
3113 break;
3114 }
3115 }
3116
3117 free (isymbuf);
3118
3119 return result;
3120 }
3121 \f
3122 /* Add an entry to the .dynamic table. */
3123
3124 bfd_boolean
3125 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3126 bfd_vma tag,
3127 bfd_vma val)
3128 {
3129 struct elf_link_hash_table *hash_table;
3130 const struct elf_backend_data *bed;
3131 asection *s;
3132 bfd_size_type newsize;
3133 bfd_byte *newcontents;
3134 Elf_Internal_Dyn dyn;
3135
3136 hash_table = elf_hash_table (info);
3137 if (! is_elf_hash_table (hash_table))
3138 return FALSE;
3139
3140 bed = get_elf_backend_data (hash_table->dynobj);
3141 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3142 BFD_ASSERT (s != NULL);
3143
3144 newsize = s->size + bed->s->sizeof_dyn;
3145 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3146 if (newcontents == NULL)
3147 return FALSE;
3148
3149 dyn.d_tag = tag;
3150 dyn.d_un.d_val = val;
3151 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3152
3153 s->size = newsize;
3154 s->contents = newcontents;
3155
3156 return TRUE;
3157 }
3158
3159 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3160 otherwise just check whether one already exists. Returns -1 on error,
3161 1 if a DT_NEEDED tag already exists, and 0 on success. */
3162
3163 static int
3164 elf_add_dt_needed_tag (bfd *abfd,
3165 struct bfd_link_info *info,
3166 const char *soname,
3167 bfd_boolean do_it)
3168 {
3169 struct elf_link_hash_table *hash_table;
3170 bfd_size_type strindex;
3171
3172 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3173 return -1;
3174
3175 hash_table = elf_hash_table (info);
3176 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3177 if (strindex == (bfd_size_type) -1)
3178 return -1;
3179
3180 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3181 {
3182 asection *sdyn;
3183 const struct elf_backend_data *bed;
3184 bfd_byte *extdyn;
3185
3186 bed = get_elf_backend_data (hash_table->dynobj);
3187 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3188 if (sdyn != NULL)
3189 for (extdyn = sdyn->contents;
3190 extdyn < sdyn->contents + sdyn->size;
3191 extdyn += bed->s->sizeof_dyn)
3192 {
3193 Elf_Internal_Dyn dyn;
3194
3195 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3196 if (dyn.d_tag == DT_NEEDED
3197 && dyn.d_un.d_val == strindex)
3198 {
3199 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3200 return 1;
3201 }
3202 }
3203 }
3204
3205 if (do_it)
3206 {
3207 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3208 return -1;
3209
3210 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3211 return -1;
3212 }
3213 else
3214 /* We were just checking for existence of the tag. */
3215 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3216
3217 return 0;
3218 }
3219
3220 static bfd_boolean
3221 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3222 {
3223 for (; needed != NULL; needed = needed->next)
3224 if ((elf_dyn_lib_class (needed->by) & DYN_AS_NEEDED) == 0
3225 && strcmp (soname, needed->name) == 0)
3226 return TRUE;
3227
3228 return FALSE;
3229 }
3230
3231 /* Sort symbol by value, section, and size. */
3232 static int
3233 elf_sort_symbol (const void *arg1, const void *arg2)
3234 {
3235 const struct elf_link_hash_entry *h1;
3236 const struct elf_link_hash_entry *h2;
3237 bfd_signed_vma vdiff;
3238
3239 h1 = *(const struct elf_link_hash_entry **) arg1;
3240 h2 = *(const struct elf_link_hash_entry **) arg2;
3241 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3242 if (vdiff != 0)
3243 return vdiff > 0 ? 1 : -1;
3244 else
3245 {
3246 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3247 if (sdiff != 0)
3248 return sdiff > 0 ? 1 : -1;
3249 }
3250 vdiff = h1->size - h2->size;
3251 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3252 }
3253
3254 /* This function is used to adjust offsets into .dynstr for
3255 dynamic symbols. This is called via elf_link_hash_traverse. */
3256
3257 static bfd_boolean
3258 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3259 {
3260 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3261
3262 if (h->dynindx != -1)
3263 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3264 return TRUE;
3265 }
3266
3267 /* Assign string offsets in .dynstr, update all structures referencing
3268 them. */
3269
3270 static bfd_boolean
3271 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3272 {
3273 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3274 struct elf_link_local_dynamic_entry *entry;
3275 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3276 bfd *dynobj = hash_table->dynobj;
3277 asection *sdyn;
3278 bfd_size_type size;
3279 const struct elf_backend_data *bed;
3280 bfd_byte *extdyn;
3281
3282 _bfd_elf_strtab_finalize (dynstr);
3283 size = _bfd_elf_strtab_size (dynstr);
3284
3285 bed = get_elf_backend_data (dynobj);
3286 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3287 BFD_ASSERT (sdyn != NULL);
3288
3289 /* Update all .dynamic entries referencing .dynstr strings. */
3290 for (extdyn = sdyn->contents;
3291 extdyn < sdyn->contents + sdyn->size;
3292 extdyn += bed->s->sizeof_dyn)
3293 {
3294 Elf_Internal_Dyn dyn;
3295
3296 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3297 switch (dyn.d_tag)
3298 {
3299 case DT_STRSZ:
3300 dyn.d_un.d_val = size;
3301 break;
3302 case DT_NEEDED:
3303 case DT_SONAME:
3304 case DT_RPATH:
3305 case DT_RUNPATH:
3306 case DT_FILTER:
3307 case DT_AUXILIARY:
3308 case DT_AUDIT:
3309 case DT_DEPAUDIT:
3310 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3311 break;
3312 default:
3313 continue;
3314 }
3315 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3316 }
3317
3318 /* Now update local dynamic symbols. */
3319 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3320 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3321 entry->isym.st_name);
3322
3323 /* And the rest of dynamic symbols. */
3324 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3325
3326 /* Adjust version definitions. */
3327 if (elf_tdata (output_bfd)->cverdefs)
3328 {
3329 asection *s;
3330 bfd_byte *p;
3331 bfd_size_type i;
3332 Elf_Internal_Verdef def;
3333 Elf_Internal_Verdaux defaux;
3334
3335 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3336 p = s->contents;
3337 do
3338 {
3339 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3340 &def);
3341 p += sizeof (Elf_External_Verdef);
3342 if (def.vd_aux != sizeof (Elf_External_Verdef))
3343 continue;
3344 for (i = 0; i < def.vd_cnt; ++i)
3345 {
3346 _bfd_elf_swap_verdaux_in (output_bfd,
3347 (Elf_External_Verdaux *) p, &defaux);
3348 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3349 defaux.vda_name);
3350 _bfd_elf_swap_verdaux_out (output_bfd,
3351 &defaux, (Elf_External_Verdaux *) p);
3352 p += sizeof (Elf_External_Verdaux);
3353 }
3354 }
3355 while (def.vd_next);
3356 }
3357
3358 /* Adjust version references. */
3359 if (elf_tdata (output_bfd)->verref)
3360 {
3361 asection *s;
3362 bfd_byte *p;
3363 bfd_size_type i;
3364 Elf_Internal_Verneed need;
3365 Elf_Internal_Vernaux needaux;
3366
3367 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3368 p = s->contents;
3369 do
3370 {
3371 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3372 &need);
3373 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3374 _bfd_elf_swap_verneed_out (output_bfd, &need,
3375 (Elf_External_Verneed *) p);
3376 p += sizeof (Elf_External_Verneed);
3377 for (i = 0; i < need.vn_cnt; ++i)
3378 {
3379 _bfd_elf_swap_vernaux_in (output_bfd,
3380 (Elf_External_Vernaux *) p, &needaux);
3381 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3382 needaux.vna_name);
3383 _bfd_elf_swap_vernaux_out (output_bfd,
3384 &needaux,
3385 (Elf_External_Vernaux *) p);
3386 p += sizeof (Elf_External_Vernaux);
3387 }
3388 }
3389 while (need.vn_next);
3390 }
3391
3392 return TRUE;
3393 }
3394 \f
3395 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3396 The default is to only match when the INPUT and OUTPUT are exactly
3397 the same target. */
3398
3399 bfd_boolean
3400 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3401 const bfd_target *output)
3402 {
3403 return input == output;
3404 }
3405
3406 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3407 This version is used when different targets for the same architecture
3408 are virtually identical. */
3409
3410 bfd_boolean
3411 _bfd_elf_relocs_compatible (const bfd_target *input,
3412 const bfd_target *output)
3413 {
3414 const struct elf_backend_data *obed, *ibed;
3415
3416 if (input == output)
3417 return TRUE;
3418
3419 ibed = xvec_get_elf_backend_data (input);
3420 obed = xvec_get_elf_backend_data (output);
3421
3422 if (ibed->arch != obed->arch)
3423 return FALSE;
3424
3425 /* If both backends are using this function, deem them compatible. */
3426 return ibed->relocs_compatible == obed->relocs_compatible;
3427 }
3428
3429 /* Make a special call to the linker "notice" function to tell it that
3430 we are about to handle an as-needed lib, or have finished
3431 processing the lib. */
3432
3433 bfd_boolean
3434 _bfd_elf_notice_as_needed (bfd *ibfd,
3435 struct bfd_link_info *info,
3436 enum notice_asneeded_action act)
3437 {
3438 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3439 }
3440
3441 /* Add symbols from an ELF object file to the linker hash table. */
3442
3443 static bfd_boolean
3444 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3445 {
3446 Elf_Internal_Ehdr *ehdr;
3447 Elf_Internal_Shdr *hdr;
3448 bfd_size_type symcount;
3449 bfd_size_type extsymcount;
3450 bfd_size_type extsymoff;
3451 struct elf_link_hash_entry **sym_hash;
3452 bfd_boolean dynamic;
3453 Elf_External_Versym *extversym = NULL;
3454 Elf_External_Versym *ever;
3455 struct elf_link_hash_entry *weaks;
3456 struct elf_link_hash_entry **nondeflt_vers = NULL;
3457 bfd_size_type nondeflt_vers_cnt = 0;
3458 Elf_Internal_Sym *isymbuf = NULL;
3459 Elf_Internal_Sym *isym;
3460 Elf_Internal_Sym *isymend;
3461 const struct elf_backend_data *bed;
3462 bfd_boolean add_needed;
3463 struct elf_link_hash_table *htab;
3464 bfd_size_type amt;
3465 void *alloc_mark = NULL;
3466 struct bfd_hash_entry **old_table = NULL;
3467 unsigned int old_size = 0;
3468 unsigned int old_count = 0;
3469 void *old_tab = NULL;
3470 void *old_ent;
3471 struct bfd_link_hash_entry *old_undefs = NULL;
3472 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3473 long old_dynsymcount = 0;
3474 bfd_size_type old_dynstr_size = 0;
3475 size_t tabsize = 0;
3476 asection *s;
3477 bfd_boolean just_syms;
3478
3479 htab = elf_hash_table (info);
3480 bed = get_elf_backend_data (abfd);
3481
3482 if ((abfd->flags & DYNAMIC) == 0)
3483 dynamic = FALSE;
3484 else
3485 {
3486 dynamic = TRUE;
3487
3488 /* You can't use -r against a dynamic object. Also, there's no
3489 hope of using a dynamic object which does not exactly match
3490 the format of the output file. */
3491 if (info->relocatable
3492 || !is_elf_hash_table (htab)
3493 || info->output_bfd->xvec != abfd->xvec)
3494 {
3495 if (info->relocatable)
3496 bfd_set_error (bfd_error_invalid_operation);
3497 else
3498 bfd_set_error (bfd_error_wrong_format);
3499 goto error_return;
3500 }
3501 }
3502
3503 ehdr = elf_elfheader (abfd);
3504 if (info->warn_alternate_em
3505 && bed->elf_machine_code != ehdr->e_machine
3506 && ((bed->elf_machine_alt1 != 0
3507 && ehdr->e_machine == bed->elf_machine_alt1)
3508 || (bed->elf_machine_alt2 != 0
3509 && ehdr->e_machine == bed->elf_machine_alt2)))
3510 info->callbacks->einfo
3511 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3512 ehdr->e_machine, abfd, bed->elf_machine_code);
3513
3514 /* As a GNU extension, any input sections which are named
3515 .gnu.warning.SYMBOL are treated as warning symbols for the given
3516 symbol. This differs from .gnu.warning sections, which generate
3517 warnings when they are included in an output file. */
3518 /* PR 12761: Also generate this warning when building shared libraries. */
3519 for (s = abfd->sections; s != NULL; s = s->next)
3520 {
3521 const char *name;
3522
3523 name = bfd_get_section_name (abfd, s);
3524 if (CONST_STRNEQ (name, ".gnu.warning."))
3525 {
3526 char *msg;
3527 bfd_size_type sz;
3528
3529 name += sizeof ".gnu.warning." - 1;
3530
3531 /* If this is a shared object, then look up the symbol
3532 in the hash table. If it is there, and it is already
3533 been defined, then we will not be using the entry
3534 from this shared object, so we don't need to warn.
3535 FIXME: If we see the definition in a regular object
3536 later on, we will warn, but we shouldn't. The only
3537 fix is to keep track of what warnings we are supposed
3538 to emit, and then handle them all at the end of the
3539 link. */
3540 if (dynamic)
3541 {
3542 struct elf_link_hash_entry *h;
3543
3544 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3545
3546 /* FIXME: What about bfd_link_hash_common? */
3547 if (h != NULL
3548 && (h->root.type == bfd_link_hash_defined
3549 || h->root.type == bfd_link_hash_defweak))
3550 continue;
3551 }
3552
3553 sz = s->size;
3554 msg = (char *) bfd_alloc (abfd, sz + 1);
3555 if (msg == NULL)
3556 goto error_return;
3557
3558 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3559 goto error_return;
3560
3561 msg[sz] = '\0';
3562
3563 if (! (_bfd_generic_link_add_one_symbol
3564 (info, abfd, name, BSF_WARNING, s, 0, msg,
3565 FALSE, bed->collect, NULL)))
3566 goto error_return;
3567
3568 if (info->executable)
3569 {
3570 /* Clobber the section size so that the warning does
3571 not get copied into the output file. */
3572 s->size = 0;
3573
3574 /* Also set SEC_EXCLUDE, so that symbols defined in
3575 the warning section don't get copied to the output. */
3576 s->flags |= SEC_EXCLUDE;
3577 }
3578 }
3579 }
3580
3581 just_syms = ((s = abfd->sections) != NULL
3582 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3583
3584 add_needed = TRUE;
3585 if (! dynamic)
3586 {
3587 /* If we are creating a shared library, create all the dynamic
3588 sections immediately. We need to attach them to something,
3589 so we attach them to this BFD, provided it is the right
3590 format and is not from ld --just-symbols. FIXME: If there
3591 are no input BFD's of the same format as the output, we can't
3592 make a shared library. */
3593 if (!just_syms
3594 && info->shared
3595 && is_elf_hash_table (htab)
3596 && info->output_bfd->xvec == abfd->xvec
3597 && !htab->dynamic_sections_created)
3598 {
3599 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3600 goto error_return;
3601 }
3602 }
3603 else if (!is_elf_hash_table (htab))
3604 goto error_return;
3605 else
3606 {
3607 const char *soname = NULL;
3608 char *audit = NULL;
3609 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3610 int ret;
3611
3612 /* ld --just-symbols and dynamic objects don't mix very well.
3613 ld shouldn't allow it. */
3614 if (just_syms)
3615 abort ();
3616
3617 /* If this dynamic lib was specified on the command line with
3618 --as-needed in effect, then we don't want to add a DT_NEEDED
3619 tag unless the lib is actually used. Similary for libs brought
3620 in by another lib's DT_NEEDED. When --no-add-needed is used
3621 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3622 any dynamic library in DT_NEEDED tags in the dynamic lib at
3623 all. */
3624 add_needed = (elf_dyn_lib_class (abfd)
3625 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3626 | DYN_NO_NEEDED)) == 0;
3627
3628 s = bfd_get_section_by_name (abfd, ".dynamic");
3629 if (s != NULL)
3630 {
3631 bfd_byte *dynbuf;
3632 bfd_byte *extdyn;
3633 unsigned int elfsec;
3634 unsigned long shlink;
3635
3636 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3637 {
3638 error_free_dyn:
3639 free (dynbuf);
3640 goto error_return;
3641 }
3642
3643 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3644 if (elfsec == SHN_BAD)
3645 goto error_free_dyn;
3646 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3647
3648 for (extdyn = dynbuf;
3649 extdyn < dynbuf + s->size;
3650 extdyn += bed->s->sizeof_dyn)
3651 {
3652 Elf_Internal_Dyn dyn;
3653
3654 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3655 if (dyn.d_tag == DT_SONAME)
3656 {
3657 unsigned int tagv = dyn.d_un.d_val;
3658 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3659 if (soname == NULL)
3660 goto error_free_dyn;
3661 }
3662 if (dyn.d_tag == DT_NEEDED)
3663 {
3664 struct bfd_link_needed_list *n, **pn;
3665 char *fnm, *anm;
3666 unsigned int tagv = dyn.d_un.d_val;
3667
3668 amt = sizeof (struct bfd_link_needed_list);
3669 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3670 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3671 if (n == NULL || fnm == NULL)
3672 goto error_free_dyn;
3673 amt = strlen (fnm) + 1;
3674 anm = (char *) bfd_alloc (abfd, amt);
3675 if (anm == NULL)
3676 goto error_free_dyn;
3677 memcpy (anm, fnm, amt);
3678 n->name = anm;
3679 n->by = abfd;
3680 n->next = NULL;
3681 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3682 ;
3683 *pn = n;
3684 }
3685 if (dyn.d_tag == DT_RUNPATH)
3686 {
3687 struct bfd_link_needed_list *n, **pn;
3688 char *fnm, *anm;
3689 unsigned int tagv = dyn.d_un.d_val;
3690
3691 amt = sizeof (struct bfd_link_needed_list);
3692 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3693 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3694 if (n == NULL || fnm == NULL)
3695 goto error_free_dyn;
3696 amt = strlen (fnm) + 1;
3697 anm = (char *) bfd_alloc (abfd, amt);
3698 if (anm == NULL)
3699 goto error_free_dyn;
3700 memcpy (anm, fnm, amt);
3701 n->name = anm;
3702 n->by = abfd;
3703 n->next = NULL;
3704 for (pn = & runpath;
3705 *pn != NULL;
3706 pn = &(*pn)->next)
3707 ;
3708 *pn = n;
3709 }
3710 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3711 if (!runpath && dyn.d_tag == DT_RPATH)
3712 {
3713 struct bfd_link_needed_list *n, **pn;
3714 char *fnm, *anm;
3715 unsigned int tagv = dyn.d_un.d_val;
3716
3717 amt = sizeof (struct bfd_link_needed_list);
3718 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3719 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3720 if (n == NULL || fnm == NULL)
3721 goto error_free_dyn;
3722 amt = strlen (fnm) + 1;
3723 anm = (char *) bfd_alloc (abfd, amt);
3724 if (anm == NULL)
3725 goto error_free_dyn;
3726 memcpy (anm, fnm, amt);
3727 n->name = anm;
3728 n->by = abfd;
3729 n->next = NULL;
3730 for (pn = & rpath;
3731 *pn != NULL;
3732 pn = &(*pn)->next)
3733 ;
3734 *pn = n;
3735 }
3736 if (dyn.d_tag == DT_AUDIT)
3737 {
3738 unsigned int tagv = dyn.d_un.d_val;
3739 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3740 }
3741 }
3742
3743 free (dynbuf);
3744 }
3745
3746 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3747 frees all more recently bfd_alloc'd blocks as well. */
3748 if (runpath)
3749 rpath = runpath;
3750
3751 if (rpath)
3752 {
3753 struct bfd_link_needed_list **pn;
3754 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3755 ;
3756 *pn = rpath;
3757 }
3758
3759 /* We do not want to include any of the sections in a dynamic
3760 object in the output file. We hack by simply clobbering the
3761 list of sections in the BFD. This could be handled more
3762 cleanly by, say, a new section flag; the existing
3763 SEC_NEVER_LOAD flag is not the one we want, because that one
3764 still implies that the section takes up space in the output
3765 file. */
3766 bfd_section_list_clear (abfd);
3767
3768 /* Find the name to use in a DT_NEEDED entry that refers to this
3769 object. If the object has a DT_SONAME entry, we use it.
3770 Otherwise, if the generic linker stuck something in
3771 elf_dt_name, we use that. Otherwise, we just use the file
3772 name. */
3773 if (soname == NULL || *soname == '\0')
3774 {
3775 soname = elf_dt_name (abfd);
3776 if (soname == NULL || *soname == '\0')
3777 soname = bfd_get_filename (abfd);
3778 }
3779
3780 /* Save the SONAME because sometimes the linker emulation code
3781 will need to know it. */
3782 elf_dt_name (abfd) = soname;
3783
3784 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3785 if (ret < 0)
3786 goto error_return;
3787
3788 /* If we have already included this dynamic object in the
3789 link, just ignore it. There is no reason to include a
3790 particular dynamic object more than once. */
3791 if (ret > 0)
3792 return TRUE;
3793
3794 /* Save the DT_AUDIT entry for the linker emulation code. */
3795 elf_dt_audit (abfd) = audit;
3796 }
3797
3798 /* If this is a dynamic object, we always link against the .dynsym
3799 symbol table, not the .symtab symbol table. The dynamic linker
3800 will only see the .dynsym symbol table, so there is no reason to
3801 look at .symtab for a dynamic object. */
3802
3803 if (! dynamic || elf_dynsymtab (abfd) == 0)
3804 hdr = &elf_tdata (abfd)->symtab_hdr;
3805 else
3806 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3807
3808 symcount = hdr->sh_size / bed->s->sizeof_sym;
3809
3810 /* The sh_info field of the symtab header tells us where the
3811 external symbols start. We don't care about the local symbols at
3812 this point. */
3813 if (elf_bad_symtab (abfd))
3814 {
3815 extsymcount = symcount;
3816 extsymoff = 0;
3817 }
3818 else
3819 {
3820 extsymcount = symcount - hdr->sh_info;
3821 extsymoff = hdr->sh_info;
3822 }
3823
3824 sym_hash = elf_sym_hashes (abfd);
3825 if (extsymcount != 0)
3826 {
3827 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3828 NULL, NULL, NULL);
3829 if (isymbuf == NULL)
3830 goto error_return;
3831
3832 if (sym_hash == NULL)
3833 {
3834 /* We store a pointer to the hash table entry for each
3835 external symbol. */
3836 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3837 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
3838 if (sym_hash == NULL)
3839 goto error_free_sym;
3840 elf_sym_hashes (abfd) = sym_hash;
3841 }
3842 }
3843
3844 if (dynamic)
3845 {
3846 /* Read in any version definitions. */
3847 if (!_bfd_elf_slurp_version_tables (abfd,
3848 info->default_imported_symver))
3849 goto error_free_sym;
3850
3851 /* Read in the symbol versions, but don't bother to convert them
3852 to internal format. */
3853 if (elf_dynversym (abfd) != 0)
3854 {
3855 Elf_Internal_Shdr *versymhdr;
3856
3857 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3858 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3859 if (extversym == NULL)
3860 goto error_free_sym;
3861 amt = versymhdr->sh_size;
3862 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3863 || bfd_bread (extversym, amt, abfd) != amt)
3864 goto error_free_vers;
3865 }
3866 }
3867
3868 /* If we are loading an as-needed shared lib, save the symbol table
3869 state before we start adding symbols. If the lib turns out
3870 to be unneeded, restore the state. */
3871 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3872 {
3873 unsigned int i;
3874 size_t entsize;
3875
3876 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3877 {
3878 struct bfd_hash_entry *p;
3879 struct elf_link_hash_entry *h;
3880
3881 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3882 {
3883 h = (struct elf_link_hash_entry *) p;
3884 entsize += htab->root.table.entsize;
3885 if (h->root.type == bfd_link_hash_warning)
3886 entsize += htab->root.table.entsize;
3887 }
3888 }
3889
3890 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3891 old_tab = bfd_malloc (tabsize + entsize);
3892 if (old_tab == NULL)
3893 goto error_free_vers;
3894
3895 /* Remember the current objalloc pointer, so that all mem for
3896 symbols added can later be reclaimed. */
3897 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3898 if (alloc_mark == NULL)
3899 goto error_free_vers;
3900
3901 /* Make a special call to the linker "notice" function to
3902 tell it that we are about to handle an as-needed lib. */
3903 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
3904 goto error_free_vers;
3905
3906 /* Clone the symbol table. Remember some pointers into the
3907 symbol table, and dynamic symbol count. */
3908 old_ent = (char *) old_tab + tabsize;
3909 memcpy (old_tab, htab->root.table.table, tabsize);
3910 old_undefs = htab->root.undefs;
3911 old_undefs_tail = htab->root.undefs_tail;
3912 old_table = htab->root.table.table;
3913 old_size = htab->root.table.size;
3914 old_count = htab->root.table.count;
3915 old_dynsymcount = htab->dynsymcount;
3916 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3917
3918 for (i = 0; i < htab->root.table.size; i++)
3919 {
3920 struct bfd_hash_entry *p;
3921 struct elf_link_hash_entry *h;
3922
3923 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3924 {
3925 memcpy (old_ent, p, htab->root.table.entsize);
3926 old_ent = (char *) old_ent + htab->root.table.entsize;
3927 h = (struct elf_link_hash_entry *) p;
3928 if (h->root.type == bfd_link_hash_warning)
3929 {
3930 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3931 old_ent = (char *) old_ent + htab->root.table.entsize;
3932 }
3933 }
3934 }
3935 }
3936
3937 weaks = NULL;
3938 ever = extversym != NULL ? extversym + extsymoff : NULL;
3939 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3940 isym < isymend;
3941 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3942 {
3943 int bind;
3944 bfd_vma value;
3945 asection *sec, *new_sec;
3946 flagword flags;
3947 const char *name;
3948 struct elf_link_hash_entry *h;
3949 struct elf_link_hash_entry *hi;
3950 bfd_boolean definition;
3951 bfd_boolean size_change_ok;
3952 bfd_boolean type_change_ok;
3953 bfd_boolean new_weakdef;
3954 bfd_boolean new_weak;
3955 bfd_boolean old_weak;
3956 bfd_boolean override;
3957 bfd_boolean common;
3958 unsigned int old_alignment;
3959 bfd *old_bfd;
3960 bfd_boolean matched;
3961
3962 override = FALSE;
3963
3964 flags = BSF_NO_FLAGS;
3965 sec = NULL;
3966 value = isym->st_value;
3967 common = bed->common_definition (isym);
3968
3969 bind = ELF_ST_BIND (isym->st_info);
3970 switch (bind)
3971 {
3972 case STB_LOCAL:
3973 /* This should be impossible, since ELF requires that all
3974 global symbols follow all local symbols, and that sh_info
3975 point to the first global symbol. Unfortunately, Irix 5
3976 screws this up. */
3977 continue;
3978
3979 case STB_GLOBAL:
3980 if (isym->st_shndx != SHN_UNDEF && !common)
3981 flags = BSF_GLOBAL;
3982 break;
3983
3984 case STB_WEAK:
3985 flags = BSF_WEAK;
3986 break;
3987
3988 case STB_GNU_UNIQUE:
3989 flags = BSF_GNU_UNIQUE;
3990 break;
3991
3992 default:
3993 /* Leave it up to the processor backend. */
3994 break;
3995 }
3996
3997 if (isym->st_shndx == SHN_UNDEF)
3998 sec = bfd_und_section_ptr;
3999 else if (isym->st_shndx == SHN_ABS)
4000 sec = bfd_abs_section_ptr;
4001 else if (isym->st_shndx == SHN_COMMON)
4002 {
4003 sec = bfd_com_section_ptr;
4004 /* What ELF calls the size we call the value. What ELF
4005 calls the value we call the alignment. */
4006 value = isym->st_size;
4007 }
4008 else
4009 {
4010 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4011 if (sec == NULL)
4012 sec = bfd_abs_section_ptr;
4013 else if (discarded_section (sec))
4014 {
4015 /* Symbols from discarded section are undefined. We keep
4016 its visibility. */
4017 sec = bfd_und_section_ptr;
4018 isym->st_shndx = SHN_UNDEF;
4019 }
4020 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4021 value -= sec->vma;
4022 }
4023
4024 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4025 isym->st_name);
4026 if (name == NULL)
4027 goto error_free_vers;
4028
4029 if (isym->st_shndx == SHN_COMMON
4030 && (abfd->flags & BFD_PLUGIN) != 0)
4031 {
4032 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4033
4034 if (xc == NULL)
4035 {
4036 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4037 | SEC_EXCLUDE);
4038 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4039 if (xc == NULL)
4040 goto error_free_vers;
4041 }
4042 sec = xc;
4043 }
4044 else if (isym->st_shndx == SHN_COMMON
4045 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4046 && !info->relocatable)
4047 {
4048 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4049
4050 if (tcomm == NULL)
4051 {
4052 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4053 | SEC_LINKER_CREATED);
4054 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4055 if (tcomm == NULL)
4056 goto error_free_vers;
4057 }
4058 sec = tcomm;
4059 }
4060 else if (bed->elf_add_symbol_hook)
4061 {
4062 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4063 &sec, &value))
4064 goto error_free_vers;
4065
4066 /* The hook function sets the name to NULL if this symbol
4067 should be skipped for some reason. */
4068 if (name == NULL)
4069 continue;
4070 }
4071
4072 /* Sanity check that all possibilities were handled. */
4073 if (sec == NULL)
4074 {
4075 bfd_set_error (bfd_error_bad_value);
4076 goto error_free_vers;
4077 }
4078
4079 /* Silently discard TLS symbols from --just-syms. There's
4080 no way to combine a static TLS block with a new TLS block
4081 for this executable. */
4082 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4083 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4084 continue;
4085
4086 if (bfd_is_und_section (sec)
4087 || bfd_is_com_section (sec))
4088 definition = FALSE;
4089 else
4090 definition = TRUE;
4091
4092 size_change_ok = FALSE;
4093 type_change_ok = bed->type_change_ok;
4094 old_weak = FALSE;
4095 matched = FALSE;
4096 old_alignment = 0;
4097 old_bfd = NULL;
4098 new_sec = sec;
4099
4100 if (is_elf_hash_table (htab))
4101 {
4102 Elf_Internal_Versym iver;
4103 unsigned int vernum = 0;
4104 bfd_boolean skip;
4105
4106 if (ever == NULL)
4107 {
4108 if (info->default_imported_symver)
4109 /* Use the default symbol version created earlier. */
4110 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4111 else
4112 iver.vs_vers = 0;
4113 }
4114 else
4115 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4116
4117 vernum = iver.vs_vers & VERSYM_VERSION;
4118
4119 /* If this is a hidden symbol, or if it is not version
4120 1, we append the version name to the symbol name.
4121 However, we do not modify a non-hidden absolute symbol
4122 if it is not a function, because it might be the version
4123 symbol itself. FIXME: What if it isn't? */
4124 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4125 || (vernum > 1
4126 && (!bfd_is_abs_section (sec)
4127 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4128 {
4129 const char *verstr;
4130 size_t namelen, verlen, newlen;
4131 char *newname, *p;
4132
4133 if (isym->st_shndx != SHN_UNDEF)
4134 {
4135 if (vernum > elf_tdata (abfd)->cverdefs)
4136 verstr = NULL;
4137 else if (vernum > 1)
4138 verstr =
4139 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4140 else
4141 verstr = "";
4142
4143 if (verstr == NULL)
4144 {
4145 (*_bfd_error_handler)
4146 (_("%B: %s: invalid version %u (max %d)"),
4147 abfd, name, vernum,
4148 elf_tdata (abfd)->cverdefs);
4149 bfd_set_error (bfd_error_bad_value);
4150 goto error_free_vers;
4151 }
4152 }
4153 else
4154 {
4155 /* We cannot simply test for the number of
4156 entries in the VERNEED section since the
4157 numbers for the needed versions do not start
4158 at 0. */
4159 Elf_Internal_Verneed *t;
4160
4161 verstr = NULL;
4162 for (t = elf_tdata (abfd)->verref;
4163 t != NULL;
4164 t = t->vn_nextref)
4165 {
4166 Elf_Internal_Vernaux *a;
4167
4168 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4169 {
4170 if (a->vna_other == vernum)
4171 {
4172 verstr = a->vna_nodename;
4173 break;
4174 }
4175 }
4176 if (a != NULL)
4177 break;
4178 }
4179 if (verstr == NULL)
4180 {
4181 (*_bfd_error_handler)
4182 (_("%B: %s: invalid needed version %d"),
4183 abfd, name, vernum);
4184 bfd_set_error (bfd_error_bad_value);
4185 goto error_free_vers;
4186 }
4187 }
4188
4189 namelen = strlen (name);
4190 verlen = strlen (verstr);
4191 newlen = namelen + verlen + 2;
4192 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4193 && isym->st_shndx != SHN_UNDEF)
4194 ++newlen;
4195
4196 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4197 if (newname == NULL)
4198 goto error_free_vers;
4199 memcpy (newname, name, namelen);
4200 p = newname + namelen;
4201 *p++ = ELF_VER_CHR;
4202 /* If this is a defined non-hidden version symbol,
4203 we add another @ to the name. This indicates the
4204 default version of the symbol. */
4205 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4206 && isym->st_shndx != SHN_UNDEF)
4207 *p++ = ELF_VER_CHR;
4208 memcpy (p, verstr, verlen + 1);
4209
4210 name = newname;
4211 }
4212
4213 /* If this symbol has default visibility and the user has
4214 requested we not re-export it, then mark it as hidden. */
4215 if (definition
4216 && !dynamic
4217 && abfd->no_export
4218 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4219 isym->st_other = (STV_HIDDEN
4220 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4221
4222 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4223 sym_hash, &old_bfd, &old_weak,
4224 &old_alignment, &skip, &override,
4225 &type_change_ok, &size_change_ok,
4226 &matched))
4227 goto error_free_vers;
4228
4229 if (skip)
4230 continue;
4231
4232 /* Override a definition only if the new symbol matches the
4233 existing one. */
4234 if (override && matched)
4235 definition = FALSE;
4236
4237 h = *sym_hash;
4238 while (h->root.type == bfd_link_hash_indirect
4239 || h->root.type == bfd_link_hash_warning)
4240 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4241
4242 if (elf_tdata (abfd)->verdef != NULL
4243 && vernum > 1
4244 && definition)
4245 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4246 }
4247
4248 if (! (_bfd_generic_link_add_one_symbol
4249 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4250 (struct bfd_link_hash_entry **) sym_hash)))
4251 goto error_free_vers;
4252
4253 h = *sym_hash;
4254 /* We need to make sure that indirect symbol dynamic flags are
4255 updated. */
4256 hi = h;
4257 while (h->root.type == bfd_link_hash_indirect
4258 || h->root.type == bfd_link_hash_warning)
4259 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4260
4261 *sym_hash = h;
4262
4263 new_weak = (flags & BSF_WEAK) != 0;
4264 new_weakdef = FALSE;
4265 if (dynamic
4266 && definition
4267 && new_weak
4268 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4269 && is_elf_hash_table (htab)
4270 && h->u.weakdef == NULL)
4271 {
4272 /* Keep a list of all weak defined non function symbols from
4273 a dynamic object, using the weakdef field. Later in this
4274 function we will set the weakdef field to the correct
4275 value. We only put non-function symbols from dynamic
4276 objects on this list, because that happens to be the only
4277 time we need to know the normal symbol corresponding to a
4278 weak symbol, and the information is time consuming to
4279 figure out. If the weakdef field is not already NULL,
4280 then this symbol was already defined by some previous
4281 dynamic object, and we will be using that previous
4282 definition anyhow. */
4283
4284 h->u.weakdef = weaks;
4285 weaks = h;
4286 new_weakdef = TRUE;
4287 }
4288
4289 /* Set the alignment of a common symbol. */
4290 if ((common || bfd_is_com_section (sec))
4291 && h->root.type == bfd_link_hash_common)
4292 {
4293 unsigned int align;
4294
4295 if (common)
4296 align = bfd_log2 (isym->st_value);
4297 else
4298 {
4299 /* The new symbol is a common symbol in a shared object.
4300 We need to get the alignment from the section. */
4301 align = new_sec->alignment_power;
4302 }
4303 if (align > old_alignment)
4304 h->root.u.c.p->alignment_power = align;
4305 else
4306 h->root.u.c.p->alignment_power = old_alignment;
4307 }
4308
4309 if (is_elf_hash_table (htab))
4310 {
4311 /* Set a flag in the hash table entry indicating the type of
4312 reference or definition we just found. A dynamic symbol
4313 is one which is referenced or defined by both a regular
4314 object and a shared object. */
4315 bfd_boolean dynsym = FALSE;
4316
4317 /* Plugin symbols aren't normal. Don't set def_regular or
4318 ref_regular for them, or make them dynamic. */
4319 if ((abfd->flags & BFD_PLUGIN) != 0)
4320 ;
4321 else if (! dynamic)
4322 {
4323 if (! definition)
4324 {
4325 h->ref_regular = 1;
4326 if (bind != STB_WEAK)
4327 h->ref_regular_nonweak = 1;
4328 }
4329 else
4330 {
4331 h->def_regular = 1;
4332 if (h->def_dynamic)
4333 {
4334 h->def_dynamic = 0;
4335 h->ref_dynamic = 1;
4336 }
4337 }
4338
4339 /* If the indirect symbol has been forced local, don't
4340 make the real symbol dynamic. */
4341 if ((h == hi || !hi->forced_local)
4342 && ((! info->executable && ! info->relocatable)
4343 || h->def_dynamic
4344 || h->ref_dynamic))
4345 dynsym = TRUE;
4346 }
4347 else
4348 {
4349 if (! definition)
4350 {
4351 h->ref_dynamic = 1;
4352 hi->ref_dynamic = 1;
4353 }
4354 else
4355 {
4356 h->def_dynamic = 1;
4357 hi->def_dynamic = 1;
4358 }
4359
4360 /* If the indirect symbol has been forced local, don't
4361 make the real symbol dynamic. */
4362 if ((h == hi || !hi->forced_local)
4363 && (h->def_regular
4364 || h->ref_regular
4365 || (h->u.weakdef != NULL
4366 && ! new_weakdef
4367 && h->u.weakdef->dynindx != -1)))
4368 dynsym = TRUE;
4369 }
4370
4371 /* Check to see if we need to add an indirect symbol for
4372 the default name. */
4373 if (definition
4374 || (!override && h->root.type == bfd_link_hash_common))
4375 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4376 sec, value, &old_bfd, &dynsym))
4377 goto error_free_vers;
4378
4379 /* Check the alignment when a common symbol is involved. This
4380 can change when a common symbol is overridden by a normal
4381 definition or a common symbol is ignored due to the old
4382 normal definition. We need to make sure the maximum
4383 alignment is maintained. */
4384 if ((old_alignment || common)
4385 && h->root.type != bfd_link_hash_common)
4386 {
4387 unsigned int common_align;
4388 unsigned int normal_align;
4389 unsigned int symbol_align;
4390 bfd *normal_bfd;
4391 bfd *common_bfd;
4392
4393 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4394 || h->root.type == bfd_link_hash_defweak);
4395
4396 symbol_align = ffs (h->root.u.def.value) - 1;
4397 if (h->root.u.def.section->owner != NULL
4398 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4399 {
4400 normal_align = h->root.u.def.section->alignment_power;
4401 if (normal_align > symbol_align)
4402 normal_align = symbol_align;
4403 }
4404 else
4405 normal_align = symbol_align;
4406
4407 if (old_alignment)
4408 {
4409 common_align = old_alignment;
4410 common_bfd = old_bfd;
4411 normal_bfd = abfd;
4412 }
4413 else
4414 {
4415 common_align = bfd_log2 (isym->st_value);
4416 common_bfd = abfd;
4417 normal_bfd = old_bfd;
4418 }
4419
4420 if (normal_align < common_align)
4421 {
4422 /* PR binutils/2735 */
4423 if (normal_bfd == NULL)
4424 (*_bfd_error_handler)
4425 (_("Warning: alignment %u of common symbol `%s' in %B is"
4426 " greater than the alignment (%u) of its section %A"),
4427 common_bfd, h->root.u.def.section,
4428 1 << common_align, name, 1 << normal_align);
4429 else
4430 (*_bfd_error_handler)
4431 (_("Warning: alignment %u of symbol `%s' in %B"
4432 " is smaller than %u in %B"),
4433 normal_bfd, common_bfd,
4434 1 << normal_align, name, 1 << common_align);
4435 }
4436 }
4437
4438 /* Remember the symbol size if it isn't undefined. */
4439 if (isym->st_size != 0
4440 && isym->st_shndx != SHN_UNDEF
4441 && (definition || h->size == 0))
4442 {
4443 if (h->size != 0
4444 && h->size != isym->st_size
4445 && ! size_change_ok)
4446 (*_bfd_error_handler)
4447 (_("Warning: size of symbol `%s' changed"
4448 " from %lu in %B to %lu in %B"),
4449 old_bfd, abfd,
4450 name, (unsigned long) h->size,
4451 (unsigned long) isym->st_size);
4452
4453 h->size = isym->st_size;
4454 }
4455
4456 /* If this is a common symbol, then we always want H->SIZE
4457 to be the size of the common symbol. The code just above
4458 won't fix the size if a common symbol becomes larger. We
4459 don't warn about a size change here, because that is
4460 covered by --warn-common. Allow changes between different
4461 function types. */
4462 if (h->root.type == bfd_link_hash_common)
4463 h->size = h->root.u.c.size;
4464
4465 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4466 && ((definition && !new_weak)
4467 || (old_weak && h->root.type == bfd_link_hash_common)
4468 || h->type == STT_NOTYPE))
4469 {
4470 unsigned int type = ELF_ST_TYPE (isym->st_info);
4471
4472 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4473 symbol. */
4474 if (type == STT_GNU_IFUNC
4475 && (abfd->flags & DYNAMIC) != 0)
4476 type = STT_FUNC;
4477
4478 if (h->type != type)
4479 {
4480 if (h->type != STT_NOTYPE && ! type_change_ok)
4481 (*_bfd_error_handler)
4482 (_("Warning: type of symbol `%s' changed"
4483 " from %d to %d in %B"),
4484 abfd, name, h->type, type);
4485
4486 h->type = type;
4487 }
4488 }
4489
4490 /* Merge st_other field. */
4491 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4492
4493 /* We don't want to make debug symbol dynamic. */
4494 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4495 dynsym = FALSE;
4496
4497 /* Nor should we make plugin symbols dynamic. */
4498 if ((abfd->flags & BFD_PLUGIN) != 0)
4499 dynsym = FALSE;
4500
4501 if (definition)
4502 {
4503 h->target_internal = isym->st_target_internal;
4504 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4505 }
4506
4507 if (definition && !dynamic)
4508 {
4509 char *p = strchr (name, ELF_VER_CHR);
4510 if (p != NULL && p[1] != ELF_VER_CHR)
4511 {
4512 /* Queue non-default versions so that .symver x, x@FOO
4513 aliases can be checked. */
4514 if (!nondeflt_vers)
4515 {
4516 amt = ((isymend - isym + 1)
4517 * sizeof (struct elf_link_hash_entry *));
4518 nondeflt_vers
4519 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4520 if (!nondeflt_vers)
4521 goto error_free_vers;
4522 }
4523 nondeflt_vers[nondeflt_vers_cnt++] = h;
4524 }
4525 }
4526
4527 if (dynsym && h->dynindx == -1)
4528 {
4529 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4530 goto error_free_vers;
4531 if (h->u.weakdef != NULL
4532 && ! new_weakdef
4533 && h->u.weakdef->dynindx == -1)
4534 {
4535 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4536 goto error_free_vers;
4537 }
4538 }
4539 else if (dynsym && h->dynindx != -1)
4540 /* If the symbol already has a dynamic index, but
4541 visibility says it should not be visible, turn it into
4542 a local symbol. */
4543 switch (ELF_ST_VISIBILITY (h->other))
4544 {
4545 case STV_INTERNAL:
4546 case STV_HIDDEN:
4547 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4548 dynsym = FALSE;
4549 break;
4550 }
4551
4552 /* Don't add DT_NEEDED for references from the dummy bfd. */
4553 if (!add_needed
4554 && definition
4555 && ((dynsym
4556 && h->ref_regular_nonweak
4557 && (old_bfd == NULL
4558 || (old_bfd->flags & BFD_PLUGIN) == 0))
4559 || (h->ref_dynamic_nonweak
4560 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4561 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4562 {
4563 int ret;
4564 const char *soname = elf_dt_name (abfd);
4565
4566 info->callbacks->minfo ("%!", soname, old_bfd,
4567 h->root.root.string);
4568
4569 /* A symbol from a library loaded via DT_NEEDED of some
4570 other library is referenced by a regular object.
4571 Add a DT_NEEDED entry for it. Issue an error if
4572 --no-add-needed is used and the reference was not
4573 a weak one. */
4574 if (old_bfd != NULL
4575 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4576 {
4577 (*_bfd_error_handler)
4578 (_("%B: undefined reference to symbol '%s'"),
4579 old_bfd, name);
4580 bfd_set_error (bfd_error_missing_dso);
4581 goto error_free_vers;
4582 }
4583
4584 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4585 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4586
4587 add_needed = TRUE;
4588 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4589 if (ret < 0)
4590 goto error_free_vers;
4591
4592 BFD_ASSERT (ret == 0);
4593 }
4594 }
4595 }
4596
4597 if (extversym != NULL)
4598 {
4599 free (extversym);
4600 extversym = NULL;
4601 }
4602
4603 if (isymbuf != NULL)
4604 {
4605 free (isymbuf);
4606 isymbuf = NULL;
4607 }
4608
4609 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4610 {
4611 unsigned int i;
4612
4613 /* Restore the symbol table. */
4614 old_ent = (char *) old_tab + tabsize;
4615 memset (elf_sym_hashes (abfd), 0,
4616 extsymcount * sizeof (struct elf_link_hash_entry *));
4617 htab->root.table.table = old_table;
4618 htab->root.table.size = old_size;
4619 htab->root.table.count = old_count;
4620 memcpy (htab->root.table.table, old_tab, tabsize);
4621 htab->root.undefs = old_undefs;
4622 htab->root.undefs_tail = old_undefs_tail;
4623 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4624 for (i = 0; i < htab->root.table.size; i++)
4625 {
4626 struct bfd_hash_entry *p;
4627 struct elf_link_hash_entry *h;
4628 bfd_size_type size;
4629 unsigned int alignment_power;
4630
4631 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4632 {
4633 h = (struct elf_link_hash_entry *) p;
4634 if (h->root.type == bfd_link_hash_warning)
4635 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4636 if (h->dynindx >= old_dynsymcount
4637 && h->dynstr_index < old_dynstr_size)
4638 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4639
4640 /* Preserve the maximum alignment and size for common
4641 symbols even if this dynamic lib isn't on DT_NEEDED
4642 since it can still be loaded at run time by another
4643 dynamic lib. */
4644 if (h->root.type == bfd_link_hash_common)
4645 {
4646 size = h->root.u.c.size;
4647 alignment_power = h->root.u.c.p->alignment_power;
4648 }
4649 else
4650 {
4651 size = 0;
4652 alignment_power = 0;
4653 }
4654 memcpy (p, old_ent, htab->root.table.entsize);
4655 old_ent = (char *) old_ent + htab->root.table.entsize;
4656 h = (struct elf_link_hash_entry *) p;
4657 if (h->root.type == bfd_link_hash_warning)
4658 {
4659 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4660 old_ent = (char *) old_ent + htab->root.table.entsize;
4661 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4662 }
4663 if (h->root.type == bfd_link_hash_common)
4664 {
4665 if (size > h->root.u.c.size)
4666 h->root.u.c.size = size;
4667 if (alignment_power > h->root.u.c.p->alignment_power)
4668 h->root.u.c.p->alignment_power = alignment_power;
4669 }
4670 }
4671 }
4672
4673 /* Make a special call to the linker "notice" function to
4674 tell it that symbols added for crefs may need to be removed. */
4675 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4676 goto error_free_vers;
4677
4678 free (old_tab);
4679 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4680 alloc_mark);
4681 if (nondeflt_vers != NULL)
4682 free (nondeflt_vers);
4683 return TRUE;
4684 }
4685
4686 if (old_tab != NULL)
4687 {
4688 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4689 goto error_free_vers;
4690 free (old_tab);
4691 old_tab = NULL;
4692 }
4693
4694 /* Now that all the symbols from this input file are created, if
4695 not performing a relocatable link, handle .symver foo, foo@BAR
4696 such that any relocs against foo become foo@BAR. */
4697 if (!info->relocatable && nondeflt_vers != NULL)
4698 {
4699 bfd_size_type cnt, symidx;
4700
4701 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4702 {
4703 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4704 char *shortname, *p;
4705
4706 p = strchr (h->root.root.string, ELF_VER_CHR);
4707 if (p == NULL
4708 || (h->root.type != bfd_link_hash_defined
4709 && h->root.type != bfd_link_hash_defweak))
4710 continue;
4711
4712 amt = p - h->root.root.string;
4713 shortname = (char *) bfd_malloc (amt + 1);
4714 if (!shortname)
4715 goto error_free_vers;
4716 memcpy (shortname, h->root.root.string, amt);
4717 shortname[amt] = '\0';
4718
4719 hi = (struct elf_link_hash_entry *)
4720 bfd_link_hash_lookup (&htab->root, shortname,
4721 FALSE, FALSE, FALSE);
4722 if (hi != NULL
4723 && hi->root.type == h->root.type
4724 && hi->root.u.def.value == h->root.u.def.value
4725 && hi->root.u.def.section == h->root.u.def.section)
4726 {
4727 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4728 hi->root.type = bfd_link_hash_indirect;
4729 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4730 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4731 sym_hash = elf_sym_hashes (abfd);
4732 if (sym_hash)
4733 for (symidx = 0; symidx < extsymcount; ++symidx)
4734 if (sym_hash[symidx] == hi)
4735 {
4736 sym_hash[symidx] = h;
4737 break;
4738 }
4739 }
4740 free (shortname);
4741 }
4742 free (nondeflt_vers);
4743 nondeflt_vers = NULL;
4744 }
4745
4746 /* Now set the weakdefs field correctly for all the weak defined
4747 symbols we found. The only way to do this is to search all the
4748 symbols. Since we only need the information for non functions in
4749 dynamic objects, that's the only time we actually put anything on
4750 the list WEAKS. We need this information so that if a regular
4751 object refers to a symbol defined weakly in a dynamic object, the
4752 real symbol in the dynamic object is also put in the dynamic
4753 symbols; we also must arrange for both symbols to point to the
4754 same memory location. We could handle the general case of symbol
4755 aliasing, but a general symbol alias can only be generated in
4756 assembler code, handling it correctly would be very time
4757 consuming, and other ELF linkers don't handle general aliasing
4758 either. */
4759 if (weaks != NULL)
4760 {
4761 struct elf_link_hash_entry **hpp;
4762 struct elf_link_hash_entry **hppend;
4763 struct elf_link_hash_entry **sorted_sym_hash;
4764 struct elf_link_hash_entry *h;
4765 size_t sym_count;
4766
4767 /* Since we have to search the whole symbol list for each weak
4768 defined symbol, search time for N weak defined symbols will be
4769 O(N^2). Binary search will cut it down to O(NlogN). */
4770 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4771 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4772 if (sorted_sym_hash == NULL)
4773 goto error_return;
4774 sym_hash = sorted_sym_hash;
4775 hpp = elf_sym_hashes (abfd);
4776 hppend = hpp + extsymcount;
4777 sym_count = 0;
4778 for (; hpp < hppend; hpp++)
4779 {
4780 h = *hpp;
4781 if (h != NULL
4782 && h->root.type == bfd_link_hash_defined
4783 && !bed->is_function_type (h->type))
4784 {
4785 *sym_hash = h;
4786 sym_hash++;
4787 sym_count++;
4788 }
4789 }
4790
4791 qsort (sorted_sym_hash, sym_count,
4792 sizeof (struct elf_link_hash_entry *),
4793 elf_sort_symbol);
4794
4795 while (weaks != NULL)
4796 {
4797 struct elf_link_hash_entry *hlook;
4798 asection *slook;
4799 bfd_vma vlook;
4800 size_t i, j, idx = 0;
4801
4802 hlook = weaks;
4803 weaks = hlook->u.weakdef;
4804 hlook->u.weakdef = NULL;
4805
4806 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4807 || hlook->root.type == bfd_link_hash_defweak
4808 || hlook->root.type == bfd_link_hash_common
4809 || hlook->root.type == bfd_link_hash_indirect);
4810 slook = hlook->root.u.def.section;
4811 vlook = hlook->root.u.def.value;
4812
4813 i = 0;
4814 j = sym_count;
4815 while (i != j)
4816 {
4817 bfd_signed_vma vdiff;
4818 idx = (i + j) / 2;
4819 h = sorted_sym_hash[idx];
4820 vdiff = vlook - h->root.u.def.value;
4821 if (vdiff < 0)
4822 j = idx;
4823 else if (vdiff > 0)
4824 i = idx + 1;
4825 else
4826 {
4827 long sdiff = slook->id - h->root.u.def.section->id;
4828 if (sdiff < 0)
4829 j = idx;
4830 else if (sdiff > 0)
4831 i = idx + 1;
4832 else
4833 break;
4834 }
4835 }
4836
4837 /* We didn't find a value/section match. */
4838 if (i == j)
4839 continue;
4840
4841 /* With multiple aliases, or when the weak symbol is already
4842 strongly defined, we have multiple matching symbols and
4843 the binary search above may land on any of them. Step
4844 one past the matching symbol(s). */
4845 while (++idx != j)
4846 {
4847 h = sorted_sym_hash[idx];
4848 if (h->root.u.def.section != slook
4849 || h->root.u.def.value != vlook)
4850 break;
4851 }
4852
4853 /* Now look back over the aliases. Since we sorted by size
4854 as well as value and section, we'll choose the one with
4855 the largest size. */
4856 while (idx-- != i)
4857 {
4858 h = sorted_sym_hash[idx];
4859
4860 /* Stop if value or section doesn't match. */
4861 if (h->root.u.def.section != slook
4862 || h->root.u.def.value != vlook)
4863 break;
4864 else if (h != hlook)
4865 {
4866 hlook->u.weakdef = h;
4867
4868 /* If the weak definition is in the list of dynamic
4869 symbols, make sure the real definition is put
4870 there as well. */
4871 if (hlook->dynindx != -1 && h->dynindx == -1)
4872 {
4873 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4874 {
4875 err_free_sym_hash:
4876 free (sorted_sym_hash);
4877 goto error_return;
4878 }
4879 }
4880
4881 /* If the real definition is in the list of dynamic
4882 symbols, make sure the weak definition is put
4883 there as well. If we don't do this, then the
4884 dynamic loader might not merge the entries for the
4885 real definition and the weak definition. */
4886 if (h->dynindx != -1 && hlook->dynindx == -1)
4887 {
4888 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4889 goto err_free_sym_hash;
4890 }
4891 break;
4892 }
4893 }
4894 }
4895
4896 free (sorted_sym_hash);
4897 }
4898
4899 if (bed->check_directives
4900 && !(*bed->check_directives) (abfd, info))
4901 return FALSE;
4902
4903 /* If this object is the same format as the output object, and it is
4904 not a shared library, then let the backend look through the
4905 relocs.
4906
4907 This is required to build global offset table entries and to
4908 arrange for dynamic relocs. It is not required for the
4909 particular common case of linking non PIC code, even when linking
4910 against shared libraries, but unfortunately there is no way of
4911 knowing whether an object file has been compiled PIC or not.
4912 Looking through the relocs is not particularly time consuming.
4913 The problem is that we must either (1) keep the relocs in memory,
4914 which causes the linker to require additional runtime memory or
4915 (2) read the relocs twice from the input file, which wastes time.
4916 This would be a good case for using mmap.
4917
4918 I have no idea how to handle linking PIC code into a file of a
4919 different format. It probably can't be done. */
4920 if (! dynamic
4921 && is_elf_hash_table (htab)
4922 && bed->check_relocs != NULL
4923 && elf_object_id (abfd) == elf_hash_table_id (htab)
4924 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4925 {
4926 asection *o;
4927
4928 for (o = abfd->sections; o != NULL; o = o->next)
4929 {
4930 Elf_Internal_Rela *internal_relocs;
4931 bfd_boolean ok;
4932
4933 if ((o->flags & SEC_RELOC) == 0
4934 || o->reloc_count == 0
4935 || ((info->strip == strip_all || info->strip == strip_debugger)
4936 && (o->flags & SEC_DEBUGGING) != 0)
4937 || bfd_is_abs_section (o->output_section))
4938 continue;
4939
4940 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4941 info->keep_memory);
4942 if (internal_relocs == NULL)
4943 goto error_return;
4944
4945 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4946
4947 if (elf_section_data (o)->relocs != internal_relocs)
4948 free (internal_relocs);
4949
4950 if (! ok)
4951 goto error_return;
4952 }
4953 }
4954
4955 /* If this is a non-traditional link, try to optimize the handling
4956 of the .stab/.stabstr sections. */
4957 if (! dynamic
4958 && ! info->traditional_format
4959 && is_elf_hash_table (htab)
4960 && (info->strip != strip_all && info->strip != strip_debugger))
4961 {
4962 asection *stabstr;
4963
4964 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4965 if (stabstr != NULL)
4966 {
4967 bfd_size_type string_offset = 0;
4968 asection *stab;
4969
4970 for (stab = abfd->sections; stab; stab = stab->next)
4971 if (CONST_STRNEQ (stab->name, ".stab")
4972 && (!stab->name[5] ||
4973 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4974 && (stab->flags & SEC_MERGE) == 0
4975 && !bfd_is_abs_section (stab->output_section))
4976 {
4977 struct bfd_elf_section_data *secdata;
4978
4979 secdata = elf_section_data (stab);
4980 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4981 stabstr, &secdata->sec_info,
4982 &string_offset))
4983 goto error_return;
4984 if (secdata->sec_info)
4985 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4986 }
4987 }
4988 }
4989
4990 if (is_elf_hash_table (htab) && add_needed)
4991 {
4992 /* Add this bfd to the loaded list. */
4993 struct elf_link_loaded_list *n;
4994
4995 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
4996 if (n == NULL)
4997 goto error_return;
4998 n->abfd = abfd;
4999 n->next = htab->loaded;
5000 htab->loaded = n;
5001 }
5002
5003 return TRUE;
5004
5005 error_free_vers:
5006 if (old_tab != NULL)
5007 free (old_tab);
5008 if (nondeflt_vers != NULL)
5009 free (nondeflt_vers);
5010 if (extversym != NULL)
5011 free (extversym);
5012 error_free_sym:
5013 if (isymbuf != NULL)
5014 free (isymbuf);
5015 error_return:
5016 return FALSE;
5017 }
5018
5019 /* Return the linker hash table entry of a symbol that might be
5020 satisfied by an archive symbol. Return -1 on error. */
5021
5022 struct elf_link_hash_entry *
5023 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5024 struct bfd_link_info *info,
5025 const char *name)
5026 {
5027 struct elf_link_hash_entry *h;
5028 char *p, *copy;
5029 size_t len, first;
5030
5031 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5032 if (h != NULL)
5033 return h;
5034
5035 /* If this is a default version (the name contains @@), look up the
5036 symbol again with only one `@' as well as without the version.
5037 The effect is that references to the symbol with and without the
5038 version will be matched by the default symbol in the archive. */
5039
5040 p = strchr (name, ELF_VER_CHR);
5041 if (p == NULL || p[1] != ELF_VER_CHR)
5042 return h;
5043
5044 /* First check with only one `@'. */
5045 len = strlen (name);
5046 copy = (char *) bfd_alloc (abfd, len);
5047 if (copy == NULL)
5048 return (struct elf_link_hash_entry *) 0 - 1;
5049
5050 first = p - name + 1;
5051 memcpy (copy, name, first);
5052 memcpy (copy + first, name + first + 1, len - first);
5053
5054 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5055 if (h == NULL)
5056 {
5057 /* We also need to check references to the symbol without the
5058 version. */
5059 copy[first - 1] = '\0';
5060 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5061 FALSE, FALSE, TRUE);
5062 }
5063
5064 bfd_release (abfd, copy);
5065 return h;
5066 }
5067
5068 /* Add symbols from an ELF archive file to the linker hash table. We
5069 don't use _bfd_generic_link_add_archive_symbols because we need to
5070 handle versioned symbols.
5071
5072 Fortunately, ELF archive handling is simpler than that done by
5073 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5074 oddities. In ELF, if we find a symbol in the archive map, and the
5075 symbol is currently undefined, we know that we must pull in that
5076 object file.
5077
5078 Unfortunately, we do have to make multiple passes over the symbol
5079 table until nothing further is resolved. */
5080
5081 static bfd_boolean
5082 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5083 {
5084 symindex c;
5085 unsigned char *included = NULL;
5086 carsym *symdefs;
5087 bfd_boolean loop;
5088 bfd_size_type amt;
5089 const struct elf_backend_data *bed;
5090 struct elf_link_hash_entry * (*archive_symbol_lookup)
5091 (bfd *, struct bfd_link_info *, const char *);
5092
5093 if (! bfd_has_map (abfd))
5094 {
5095 /* An empty archive is a special case. */
5096 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5097 return TRUE;
5098 bfd_set_error (bfd_error_no_armap);
5099 return FALSE;
5100 }
5101
5102 /* Keep track of all symbols we know to be already defined, and all
5103 files we know to be already included. This is to speed up the
5104 second and subsequent passes. */
5105 c = bfd_ardata (abfd)->symdef_count;
5106 if (c == 0)
5107 return TRUE;
5108 amt = c;
5109 amt *= sizeof (*included);
5110 included = (unsigned char *) bfd_zmalloc (amt);
5111 if (included == NULL)
5112 return FALSE;
5113
5114 symdefs = bfd_ardata (abfd)->symdefs;
5115 bed = get_elf_backend_data (abfd);
5116 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5117
5118 do
5119 {
5120 file_ptr last;
5121 symindex i;
5122 carsym *symdef;
5123 carsym *symdefend;
5124
5125 loop = FALSE;
5126 last = -1;
5127
5128 symdef = symdefs;
5129 symdefend = symdef + c;
5130 for (i = 0; symdef < symdefend; symdef++, i++)
5131 {
5132 struct elf_link_hash_entry *h;
5133 bfd *element;
5134 struct bfd_link_hash_entry *undefs_tail;
5135 symindex mark;
5136
5137 if (included[i])
5138 continue;
5139 if (symdef->file_offset == last)
5140 {
5141 included[i] = TRUE;
5142 continue;
5143 }
5144
5145 h = archive_symbol_lookup (abfd, info, symdef->name);
5146 if (h == (struct elf_link_hash_entry *) 0 - 1)
5147 goto error_return;
5148
5149 if (h == NULL)
5150 continue;
5151
5152 if (h->root.type == bfd_link_hash_common)
5153 {
5154 /* We currently have a common symbol. The archive map contains
5155 a reference to this symbol, so we may want to include it. We
5156 only want to include it however, if this archive element
5157 contains a definition of the symbol, not just another common
5158 declaration of it.
5159
5160 Unfortunately some archivers (including GNU ar) will put
5161 declarations of common symbols into their archive maps, as
5162 well as real definitions, so we cannot just go by the archive
5163 map alone. Instead we must read in the element's symbol
5164 table and check that to see what kind of symbol definition
5165 this is. */
5166 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5167 continue;
5168 }
5169 else if (h->root.type != bfd_link_hash_undefined)
5170 {
5171 if (h->root.type != bfd_link_hash_undefweak)
5172 /* Symbol must be defined. Don't check it again. */
5173 included[i] = TRUE;
5174 continue;
5175 }
5176
5177 /* We need to include this archive member. */
5178 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5179 if (element == NULL)
5180 goto error_return;
5181
5182 if (! bfd_check_format (element, bfd_object))
5183 goto error_return;
5184
5185 undefs_tail = info->hash->undefs_tail;
5186
5187 if (!(*info->callbacks
5188 ->add_archive_element) (info, element, symdef->name, &element))
5189 goto error_return;
5190 if (!bfd_link_add_symbols (element, info))
5191 goto error_return;
5192
5193 /* If there are any new undefined symbols, we need to make
5194 another pass through the archive in order to see whether
5195 they can be defined. FIXME: This isn't perfect, because
5196 common symbols wind up on undefs_tail and because an
5197 undefined symbol which is defined later on in this pass
5198 does not require another pass. This isn't a bug, but it
5199 does make the code less efficient than it could be. */
5200 if (undefs_tail != info->hash->undefs_tail)
5201 loop = TRUE;
5202
5203 /* Look backward to mark all symbols from this object file
5204 which we have already seen in this pass. */
5205 mark = i;
5206 do
5207 {
5208 included[mark] = TRUE;
5209 if (mark == 0)
5210 break;
5211 --mark;
5212 }
5213 while (symdefs[mark].file_offset == symdef->file_offset);
5214
5215 /* We mark subsequent symbols from this object file as we go
5216 on through the loop. */
5217 last = symdef->file_offset;
5218 }
5219 }
5220 while (loop);
5221
5222 free (included);
5223
5224 return TRUE;
5225
5226 error_return:
5227 if (included != NULL)
5228 free (included);
5229 return FALSE;
5230 }
5231
5232 /* Given an ELF BFD, add symbols to the global hash table as
5233 appropriate. */
5234
5235 bfd_boolean
5236 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5237 {
5238 switch (bfd_get_format (abfd))
5239 {
5240 case bfd_object:
5241 return elf_link_add_object_symbols (abfd, info);
5242 case bfd_archive:
5243 return elf_link_add_archive_symbols (abfd, info);
5244 default:
5245 bfd_set_error (bfd_error_wrong_format);
5246 return FALSE;
5247 }
5248 }
5249 \f
5250 struct hash_codes_info
5251 {
5252 unsigned long *hashcodes;
5253 bfd_boolean error;
5254 };
5255
5256 /* This function will be called though elf_link_hash_traverse to store
5257 all hash value of the exported symbols in an array. */
5258
5259 static bfd_boolean
5260 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5261 {
5262 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5263 const char *name;
5264 unsigned long ha;
5265 char *alc = NULL;
5266
5267 /* Ignore indirect symbols. These are added by the versioning code. */
5268 if (h->dynindx == -1)
5269 return TRUE;
5270
5271 name = h->root.root.string;
5272 if (h->versioned >= versioned)
5273 {
5274 char *p = strchr (name, ELF_VER_CHR);
5275 if (p != NULL)
5276 {
5277 alc = (char *) bfd_malloc (p - name + 1);
5278 if (alc == NULL)
5279 {
5280 inf->error = TRUE;
5281 return FALSE;
5282 }
5283 memcpy (alc, name, p - name);
5284 alc[p - name] = '\0';
5285 name = alc;
5286 }
5287 }
5288
5289 /* Compute the hash value. */
5290 ha = bfd_elf_hash (name);
5291
5292 /* Store the found hash value in the array given as the argument. */
5293 *(inf->hashcodes)++ = ha;
5294
5295 /* And store it in the struct so that we can put it in the hash table
5296 later. */
5297 h->u.elf_hash_value = ha;
5298
5299 if (alc != NULL)
5300 free (alc);
5301
5302 return TRUE;
5303 }
5304
5305 struct collect_gnu_hash_codes
5306 {
5307 bfd *output_bfd;
5308 const struct elf_backend_data *bed;
5309 unsigned long int nsyms;
5310 unsigned long int maskbits;
5311 unsigned long int *hashcodes;
5312 unsigned long int *hashval;
5313 unsigned long int *indx;
5314 unsigned long int *counts;
5315 bfd_vma *bitmask;
5316 bfd_byte *contents;
5317 long int min_dynindx;
5318 unsigned long int bucketcount;
5319 unsigned long int symindx;
5320 long int local_indx;
5321 long int shift1, shift2;
5322 unsigned long int mask;
5323 bfd_boolean error;
5324 };
5325
5326 /* This function will be called though elf_link_hash_traverse to store
5327 all hash value of the exported symbols in an array. */
5328
5329 static bfd_boolean
5330 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5331 {
5332 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5333 const char *name;
5334 unsigned long ha;
5335 char *alc = NULL;
5336
5337 /* Ignore indirect symbols. These are added by the versioning code. */
5338 if (h->dynindx == -1)
5339 return TRUE;
5340
5341 /* Ignore also local symbols and undefined symbols. */
5342 if (! (*s->bed->elf_hash_symbol) (h))
5343 return TRUE;
5344
5345 name = h->root.root.string;
5346 if (h->versioned >= versioned)
5347 {
5348 char *p = strchr (name, ELF_VER_CHR);
5349 if (p != NULL)
5350 {
5351 alc = (char *) bfd_malloc (p - name + 1);
5352 if (alc == NULL)
5353 {
5354 s->error = TRUE;
5355 return FALSE;
5356 }
5357 memcpy (alc, name, p - name);
5358 alc[p - name] = '\0';
5359 name = alc;
5360 }
5361 }
5362
5363 /* Compute the hash value. */
5364 ha = bfd_elf_gnu_hash (name);
5365
5366 /* Store the found hash value in the array for compute_bucket_count,
5367 and also for .dynsym reordering purposes. */
5368 s->hashcodes[s->nsyms] = ha;
5369 s->hashval[h->dynindx] = ha;
5370 ++s->nsyms;
5371 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5372 s->min_dynindx = h->dynindx;
5373
5374 if (alc != NULL)
5375 free (alc);
5376
5377 return TRUE;
5378 }
5379
5380 /* This function will be called though elf_link_hash_traverse to do
5381 final dynaminc symbol renumbering. */
5382
5383 static bfd_boolean
5384 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5385 {
5386 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5387 unsigned long int bucket;
5388 unsigned long int val;
5389
5390 /* Ignore indirect symbols. */
5391 if (h->dynindx == -1)
5392 return TRUE;
5393
5394 /* Ignore also local symbols and undefined symbols. */
5395 if (! (*s->bed->elf_hash_symbol) (h))
5396 {
5397 if (h->dynindx >= s->min_dynindx)
5398 h->dynindx = s->local_indx++;
5399 return TRUE;
5400 }
5401
5402 bucket = s->hashval[h->dynindx] % s->bucketcount;
5403 val = (s->hashval[h->dynindx] >> s->shift1)
5404 & ((s->maskbits >> s->shift1) - 1);
5405 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5406 s->bitmask[val]
5407 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5408 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5409 if (s->counts[bucket] == 1)
5410 /* Last element terminates the chain. */
5411 val |= 1;
5412 bfd_put_32 (s->output_bfd, val,
5413 s->contents + (s->indx[bucket] - s->symindx) * 4);
5414 --s->counts[bucket];
5415 h->dynindx = s->indx[bucket]++;
5416 return TRUE;
5417 }
5418
5419 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5420
5421 bfd_boolean
5422 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5423 {
5424 return !(h->forced_local
5425 || h->root.type == bfd_link_hash_undefined
5426 || h->root.type == bfd_link_hash_undefweak
5427 || ((h->root.type == bfd_link_hash_defined
5428 || h->root.type == bfd_link_hash_defweak)
5429 && h->root.u.def.section->output_section == NULL));
5430 }
5431
5432 /* Array used to determine the number of hash table buckets to use
5433 based on the number of symbols there are. If there are fewer than
5434 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5435 fewer than 37 we use 17 buckets, and so forth. We never use more
5436 than 32771 buckets. */
5437
5438 static const size_t elf_buckets[] =
5439 {
5440 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5441 16411, 32771, 0
5442 };
5443
5444 /* Compute bucket count for hashing table. We do not use a static set
5445 of possible tables sizes anymore. Instead we determine for all
5446 possible reasonable sizes of the table the outcome (i.e., the
5447 number of collisions etc) and choose the best solution. The
5448 weighting functions are not too simple to allow the table to grow
5449 without bounds. Instead one of the weighting factors is the size.
5450 Therefore the result is always a good payoff between few collisions
5451 (= short chain lengths) and table size. */
5452 static size_t
5453 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5454 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5455 unsigned long int nsyms,
5456 int gnu_hash)
5457 {
5458 size_t best_size = 0;
5459 unsigned long int i;
5460
5461 /* We have a problem here. The following code to optimize the table
5462 size requires an integer type with more the 32 bits. If
5463 BFD_HOST_U_64_BIT is set we know about such a type. */
5464 #ifdef BFD_HOST_U_64_BIT
5465 if (info->optimize)
5466 {
5467 size_t minsize;
5468 size_t maxsize;
5469 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5470 bfd *dynobj = elf_hash_table (info)->dynobj;
5471 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5472 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5473 unsigned long int *counts;
5474 bfd_size_type amt;
5475 unsigned int no_improvement_count = 0;
5476
5477 /* Possible optimization parameters: if we have NSYMS symbols we say
5478 that the hashing table must at least have NSYMS/4 and at most
5479 2*NSYMS buckets. */
5480 minsize = nsyms / 4;
5481 if (minsize == 0)
5482 minsize = 1;
5483 best_size = maxsize = nsyms * 2;
5484 if (gnu_hash)
5485 {
5486 if (minsize < 2)
5487 minsize = 2;
5488 if ((best_size & 31) == 0)
5489 ++best_size;
5490 }
5491
5492 /* Create array where we count the collisions in. We must use bfd_malloc
5493 since the size could be large. */
5494 amt = maxsize;
5495 amt *= sizeof (unsigned long int);
5496 counts = (unsigned long int *) bfd_malloc (amt);
5497 if (counts == NULL)
5498 return 0;
5499
5500 /* Compute the "optimal" size for the hash table. The criteria is a
5501 minimal chain length. The minor criteria is (of course) the size
5502 of the table. */
5503 for (i = minsize; i < maxsize; ++i)
5504 {
5505 /* Walk through the array of hashcodes and count the collisions. */
5506 BFD_HOST_U_64_BIT max;
5507 unsigned long int j;
5508 unsigned long int fact;
5509
5510 if (gnu_hash && (i & 31) == 0)
5511 continue;
5512
5513 memset (counts, '\0', i * sizeof (unsigned long int));
5514
5515 /* Determine how often each hash bucket is used. */
5516 for (j = 0; j < nsyms; ++j)
5517 ++counts[hashcodes[j] % i];
5518
5519 /* For the weight function we need some information about the
5520 pagesize on the target. This is information need not be 100%
5521 accurate. Since this information is not available (so far) we
5522 define it here to a reasonable default value. If it is crucial
5523 to have a better value some day simply define this value. */
5524 # ifndef BFD_TARGET_PAGESIZE
5525 # define BFD_TARGET_PAGESIZE (4096)
5526 # endif
5527
5528 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5529 and the chains. */
5530 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5531
5532 # if 1
5533 /* Variant 1: optimize for short chains. We add the squares
5534 of all the chain lengths (which favors many small chain
5535 over a few long chains). */
5536 for (j = 0; j < i; ++j)
5537 max += counts[j] * counts[j];
5538
5539 /* This adds penalties for the overall size of the table. */
5540 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5541 max *= fact * fact;
5542 # else
5543 /* Variant 2: Optimize a lot more for small table. Here we
5544 also add squares of the size but we also add penalties for
5545 empty slots (the +1 term). */
5546 for (j = 0; j < i; ++j)
5547 max += (1 + counts[j]) * (1 + counts[j]);
5548
5549 /* The overall size of the table is considered, but not as
5550 strong as in variant 1, where it is squared. */
5551 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5552 max *= fact;
5553 # endif
5554
5555 /* Compare with current best results. */
5556 if (max < best_chlen)
5557 {
5558 best_chlen = max;
5559 best_size = i;
5560 no_improvement_count = 0;
5561 }
5562 /* PR 11843: Avoid futile long searches for the best bucket size
5563 when there are a large number of symbols. */
5564 else if (++no_improvement_count == 100)
5565 break;
5566 }
5567
5568 free (counts);
5569 }
5570 else
5571 #endif /* defined (BFD_HOST_U_64_BIT) */
5572 {
5573 /* This is the fallback solution if no 64bit type is available or if we
5574 are not supposed to spend much time on optimizations. We select the
5575 bucket count using a fixed set of numbers. */
5576 for (i = 0; elf_buckets[i] != 0; i++)
5577 {
5578 best_size = elf_buckets[i];
5579 if (nsyms < elf_buckets[i + 1])
5580 break;
5581 }
5582 if (gnu_hash && best_size < 2)
5583 best_size = 2;
5584 }
5585
5586 return best_size;
5587 }
5588
5589 /* Size any SHT_GROUP section for ld -r. */
5590
5591 bfd_boolean
5592 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5593 {
5594 bfd *ibfd;
5595
5596 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5597 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5598 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5599 return FALSE;
5600 return TRUE;
5601 }
5602
5603 /* Set a default stack segment size. The value in INFO wins. If it
5604 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5605 undefined it is initialized. */
5606
5607 bfd_boolean
5608 bfd_elf_stack_segment_size (bfd *output_bfd,
5609 struct bfd_link_info *info,
5610 const char *legacy_symbol,
5611 bfd_vma default_size)
5612 {
5613 struct elf_link_hash_entry *h = NULL;
5614
5615 /* Look for legacy symbol. */
5616 if (legacy_symbol)
5617 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5618 FALSE, FALSE, FALSE);
5619 if (h && (h->root.type == bfd_link_hash_defined
5620 || h->root.type == bfd_link_hash_defweak)
5621 && h->def_regular
5622 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5623 {
5624 /* The symbol has no type if specified on the command line. */
5625 h->type = STT_OBJECT;
5626 if (info->stacksize)
5627 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5628 output_bfd, legacy_symbol);
5629 else if (h->root.u.def.section != bfd_abs_section_ptr)
5630 (*_bfd_error_handler) (_("%B: %s not absolute"),
5631 output_bfd, legacy_symbol);
5632 else
5633 info->stacksize = h->root.u.def.value;
5634 }
5635
5636 if (!info->stacksize)
5637 /* If the user didn't set a size, or explicitly inhibit the
5638 size, set it now. */
5639 info->stacksize = default_size;
5640
5641 /* Provide the legacy symbol, if it is referenced. */
5642 if (h && (h->root.type == bfd_link_hash_undefined
5643 || h->root.type == bfd_link_hash_undefweak))
5644 {
5645 struct bfd_link_hash_entry *bh = NULL;
5646
5647 if (!(_bfd_generic_link_add_one_symbol
5648 (info, output_bfd, legacy_symbol,
5649 BSF_GLOBAL, bfd_abs_section_ptr,
5650 info->stacksize >= 0 ? info->stacksize : 0,
5651 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5652 return FALSE;
5653
5654 h = (struct elf_link_hash_entry *) bh;
5655 h->def_regular = 1;
5656 h->type = STT_OBJECT;
5657 }
5658
5659 return TRUE;
5660 }
5661
5662 /* Set up the sizes and contents of the ELF dynamic sections. This is
5663 called by the ELF linker emulation before_allocation routine. We
5664 must set the sizes of the sections before the linker sets the
5665 addresses of the various sections. */
5666
5667 bfd_boolean
5668 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5669 const char *soname,
5670 const char *rpath,
5671 const char *filter_shlib,
5672 const char *audit,
5673 const char *depaudit,
5674 const char * const *auxiliary_filters,
5675 struct bfd_link_info *info,
5676 asection **sinterpptr)
5677 {
5678 bfd_size_type soname_indx;
5679 bfd *dynobj;
5680 const struct elf_backend_data *bed;
5681 struct elf_info_failed asvinfo;
5682
5683 *sinterpptr = NULL;
5684
5685 soname_indx = (bfd_size_type) -1;
5686
5687 if (!is_elf_hash_table (info->hash))
5688 return TRUE;
5689
5690 bed = get_elf_backend_data (output_bfd);
5691
5692 /* Any syms created from now on start with -1 in
5693 got.refcount/offset and plt.refcount/offset. */
5694 elf_hash_table (info)->init_got_refcount
5695 = elf_hash_table (info)->init_got_offset;
5696 elf_hash_table (info)->init_plt_refcount
5697 = elf_hash_table (info)->init_plt_offset;
5698
5699 if (info->relocatable
5700 && !_bfd_elf_size_group_sections (info))
5701 return FALSE;
5702
5703 /* The backend may have to create some sections regardless of whether
5704 we're dynamic or not. */
5705 if (bed->elf_backend_always_size_sections
5706 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5707 return FALSE;
5708
5709 /* Determine any GNU_STACK segment requirements, after the backend
5710 has had a chance to set a default segment size. */
5711 if (info->execstack)
5712 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5713 else if (info->noexecstack)
5714 elf_stack_flags (output_bfd) = PF_R | PF_W;
5715 else
5716 {
5717 bfd *inputobj;
5718 asection *notesec = NULL;
5719 int exec = 0;
5720
5721 for (inputobj = info->input_bfds;
5722 inputobj;
5723 inputobj = inputobj->link.next)
5724 {
5725 asection *s;
5726
5727 if (inputobj->flags
5728 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5729 continue;
5730 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5731 if (s)
5732 {
5733 if (s->flags & SEC_CODE)
5734 exec = PF_X;
5735 notesec = s;
5736 }
5737 else if (bed->default_execstack)
5738 exec = PF_X;
5739 }
5740 if (notesec || info->stacksize > 0)
5741 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5742 if (notesec && exec && info->relocatable
5743 && notesec->output_section != bfd_abs_section_ptr)
5744 notesec->output_section->flags |= SEC_CODE;
5745 }
5746
5747 dynobj = elf_hash_table (info)->dynobj;
5748
5749 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5750 {
5751 struct elf_info_failed eif;
5752 struct elf_link_hash_entry *h;
5753 asection *dynstr;
5754 struct bfd_elf_version_tree *t;
5755 struct bfd_elf_version_expr *d;
5756 asection *s;
5757 bfd_boolean all_defined;
5758
5759 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5760 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5761
5762 if (soname != NULL)
5763 {
5764 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5765 soname, TRUE);
5766 if (soname_indx == (bfd_size_type) -1
5767 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5768 return FALSE;
5769 }
5770
5771 if (info->symbolic)
5772 {
5773 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5774 return FALSE;
5775 info->flags |= DF_SYMBOLIC;
5776 }
5777
5778 if (rpath != NULL)
5779 {
5780 bfd_size_type indx;
5781 bfd_vma tag;
5782
5783 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5784 TRUE);
5785 if (indx == (bfd_size_type) -1)
5786 return FALSE;
5787
5788 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5789 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5790 return FALSE;
5791 }
5792
5793 if (filter_shlib != NULL)
5794 {
5795 bfd_size_type indx;
5796
5797 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5798 filter_shlib, TRUE);
5799 if (indx == (bfd_size_type) -1
5800 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5801 return FALSE;
5802 }
5803
5804 if (auxiliary_filters != NULL)
5805 {
5806 const char * const *p;
5807
5808 for (p = auxiliary_filters; *p != NULL; p++)
5809 {
5810 bfd_size_type indx;
5811
5812 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5813 *p, TRUE);
5814 if (indx == (bfd_size_type) -1
5815 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5816 return FALSE;
5817 }
5818 }
5819
5820 if (audit != NULL)
5821 {
5822 bfd_size_type indx;
5823
5824 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5825 TRUE);
5826 if (indx == (bfd_size_type) -1
5827 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5828 return FALSE;
5829 }
5830
5831 if (depaudit != NULL)
5832 {
5833 bfd_size_type indx;
5834
5835 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5836 TRUE);
5837 if (indx == (bfd_size_type) -1
5838 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5839 return FALSE;
5840 }
5841
5842 eif.info = info;
5843 eif.failed = FALSE;
5844
5845 /* If we are supposed to export all symbols into the dynamic symbol
5846 table (this is not the normal case), then do so. */
5847 if (info->export_dynamic
5848 || (info->executable && info->dynamic))
5849 {
5850 elf_link_hash_traverse (elf_hash_table (info),
5851 _bfd_elf_export_symbol,
5852 &eif);
5853 if (eif.failed)
5854 return FALSE;
5855 }
5856
5857 /* Make all global versions with definition. */
5858 for (t = info->version_info; t != NULL; t = t->next)
5859 for (d = t->globals.list; d != NULL; d = d->next)
5860 if (!d->symver && d->literal)
5861 {
5862 const char *verstr, *name;
5863 size_t namelen, verlen, newlen;
5864 char *newname, *p, leading_char;
5865 struct elf_link_hash_entry *newh;
5866
5867 leading_char = bfd_get_symbol_leading_char (output_bfd);
5868 name = d->pattern;
5869 namelen = strlen (name) + (leading_char != '\0');
5870 verstr = t->name;
5871 verlen = strlen (verstr);
5872 newlen = namelen + verlen + 3;
5873
5874 newname = (char *) bfd_malloc (newlen);
5875 if (newname == NULL)
5876 return FALSE;
5877 newname[0] = leading_char;
5878 memcpy (newname + (leading_char != '\0'), name, namelen);
5879
5880 /* Check the hidden versioned definition. */
5881 p = newname + namelen;
5882 *p++ = ELF_VER_CHR;
5883 memcpy (p, verstr, verlen + 1);
5884 newh = elf_link_hash_lookup (elf_hash_table (info),
5885 newname, FALSE, FALSE,
5886 FALSE);
5887 if (newh == NULL
5888 || (newh->root.type != bfd_link_hash_defined
5889 && newh->root.type != bfd_link_hash_defweak))
5890 {
5891 /* Check the default versioned definition. */
5892 *p++ = ELF_VER_CHR;
5893 memcpy (p, verstr, verlen + 1);
5894 newh = elf_link_hash_lookup (elf_hash_table (info),
5895 newname, FALSE, FALSE,
5896 FALSE);
5897 }
5898 free (newname);
5899
5900 /* Mark this version if there is a definition and it is
5901 not defined in a shared object. */
5902 if (newh != NULL
5903 && !newh->def_dynamic
5904 && (newh->root.type == bfd_link_hash_defined
5905 || newh->root.type == bfd_link_hash_defweak))
5906 d->symver = 1;
5907 }
5908
5909 /* Attach all the symbols to their version information. */
5910 asvinfo.info = info;
5911 asvinfo.failed = FALSE;
5912
5913 elf_link_hash_traverse (elf_hash_table (info),
5914 _bfd_elf_link_assign_sym_version,
5915 &asvinfo);
5916 if (asvinfo.failed)
5917 return FALSE;
5918
5919 if (!info->allow_undefined_version)
5920 {
5921 /* Check if all global versions have a definition. */
5922 all_defined = TRUE;
5923 for (t = info->version_info; t != NULL; t = t->next)
5924 for (d = t->globals.list; d != NULL; d = d->next)
5925 if (d->literal && !d->symver && !d->script)
5926 {
5927 (*_bfd_error_handler)
5928 (_("%s: undefined version: %s"),
5929 d->pattern, t->name);
5930 all_defined = FALSE;
5931 }
5932
5933 if (!all_defined)
5934 {
5935 bfd_set_error (bfd_error_bad_value);
5936 return FALSE;
5937 }
5938 }
5939
5940 /* Find all symbols which were defined in a dynamic object and make
5941 the backend pick a reasonable value for them. */
5942 elf_link_hash_traverse (elf_hash_table (info),
5943 _bfd_elf_adjust_dynamic_symbol,
5944 &eif);
5945 if (eif.failed)
5946 return FALSE;
5947
5948 /* Add some entries to the .dynamic section. We fill in some of the
5949 values later, in bfd_elf_final_link, but we must add the entries
5950 now so that we know the final size of the .dynamic section. */
5951
5952 /* If there are initialization and/or finalization functions to
5953 call then add the corresponding DT_INIT/DT_FINI entries. */
5954 h = (info->init_function
5955 ? elf_link_hash_lookup (elf_hash_table (info),
5956 info->init_function, FALSE,
5957 FALSE, FALSE)
5958 : NULL);
5959 if (h != NULL
5960 && (h->ref_regular
5961 || h->def_regular))
5962 {
5963 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5964 return FALSE;
5965 }
5966 h = (info->fini_function
5967 ? elf_link_hash_lookup (elf_hash_table (info),
5968 info->fini_function, FALSE,
5969 FALSE, FALSE)
5970 : NULL);
5971 if (h != NULL
5972 && (h->ref_regular
5973 || h->def_regular))
5974 {
5975 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5976 return FALSE;
5977 }
5978
5979 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5980 if (s != NULL && s->linker_has_input)
5981 {
5982 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5983 if (! info->executable)
5984 {
5985 bfd *sub;
5986 asection *o;
5987
5988 for (sub = info->input_bfds; sub != NULL;
5989 sub = sub->link.next)
5990 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5991 for (o = sub->sections; o != NULL; o = o->next)
5992 if (elf_section_data (o)->this_hdr.sh_type
5993 == SHT_PREINIT_ARRAY)
5994 {
5995 (*_bfd_error_handler)
5996 (_("%B: .preinit_array section is not allowed in DSO"),
5997 sub);
5998 break;
5999 }
6000
6001 bfd_set_error (bfd_error_nonrepresentable_section);
6002 return FALSE;
6003 }
6004
6005 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6006 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
6007 return FALSE;
6008 }
6009 s = bfd_get_section_by_name (output_bfd, ".init_array");
6010 if (s != NULL && s->linker_has_input)
6011 {
6012 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
6013 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
6014 return FALSE;
6015 }
6016 s = bfd_get_section_by_name (output_bfd, ".fini_array");
6017 if (s != NULL && s->linker_has_input)
6018 {
6019 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
6020 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
6021 return FALSE;
6022 }
6023
6024 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6025 /* If .dynstr is excluded from the link, we don't want any of
6026 these tags. Strictly, we should be checking each section
6027 individually; This quick check covers for the case where
6028 someone does a /DISCARD/ : { *(*) }. */
6029 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6030 {
6031 bfd_size_type strsize;
6032
6033 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6034 if ((info->emit_hash
6035 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6036 || (info->emit_gnu_hash
6037 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6038 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6039 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6040 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6041 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6042 bed->s->sizeof_sym))
6043 return FALSE;
6044 }
6045 }
6046
6047 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6048 return FALSE;
6049
6050 /* The backend must work out the sizes of all the other dynamic
6051 sections. */
6052 if (dynobj != NULL
6053 && bed->elf_backend_size_dynamic_sections != NULL
6054 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6055 return FALSE;
6056
6057 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6058 {
6059 unsigned long section_sym_count;
6060 struct bfd_elf_version_tree *verdefs;
6061 asection *s;
6062
6063 /* Set up the version definition section. */
6064 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6065 BFD_ASSERT (s != NULL);
6066
6067 /* We may have created additional version definitions if we are
6068 just linking a regular application. */
6069 verdefs = info->version_info;
6070
6071 /* Skip anonymous version tag. */
6072 if (verdefs != NULL && verdefs->vernum == 0)
6073 verdefs = verdefs->next;
6074
6075 if (verdefs == NULL && !info->create_default_symver)
6076 s->flags |= SEC_EXCLUDE;
6077 else
6078 {
6079 unsigned int cdefs;
6080 bfd_size_type size;
6081 struct bfd_elf_version_tree *t;
6082 bfd_byte *p;
6083 Elf_Internal_Verdef def;
6084 Elf_Internal_Verdaux defaux;
6085 struct bfd_link_hash_entry *bh;
6086 struct elf_link_hash_entry *h;
6087 const char *name;
6088
6089 cdefs = 0;
6090 size = 0;
6091
6092 /* Make space for the base version. */
6093 size += sizeof (Elf_External_Verdef);
6094 size += sizeof (Elf_External_Verdaux);
6095 ++cdefs;
6096
6097 /* Make space for the default version. */
6098 if (info->create_default_symver)
6099 {
6100 size += sizeof (Elf_External_Verdef);
6101 ++cdefs;
6102 }
6103
6104 for (t = verdefs; t != NULL; t = t->next)
6105 {
6106 struct bfd_elf_version_deps *n;
6107
6108 /* Don't emit base version twice. */
6109 if (t->vernum == 0)
6110 continue;
6111
6112 size += sizeof (Elf_External_Verdef);
6113 size += sizeof (Elf_External_Verdaux);
6114 ++cdefs;
6115
6116 for (n = t->deps; n != NULL; n = n->next)
6117 size += sizeof (Elf_External_Verdaux);
6118 }
6119
6120 s->size = size;
6121 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6122 if (s->contents == NULL && s->size != 0)
6123 return FALSE;
6124
6125 /* Fill in the version definition section. */
6126
6127 p = s->contents;
6128
6129 def.vd_version = VER_DEF_CURRENT;
6130 def.vd_flags = VER_FLG_BASE;
6131 def.vd_ndx = 1;
6132 def.vd_cnt = 1;
6133 if (info->create_default_symver)
6134 {
6135 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6136 def.vd_next = sizeof (Elf_External_Verdef);
6137 }
6138 else
6139 {
6140 def.vd_aux = sizeof (Elf_External_Verdef);
6141 def.vd_next = (sizeof (Elf_External_Verdef)
6142 + sizeof (Elf_External_Verdaux));
6143 }
6144
6145 if (soname_indx != (bfd_size_type) -1)
6146 {
6147 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6148 soname_indx);
6149 def.vd_hash = bfd_elf_hash (soname);
6150 defaux.vda_name = soname_indx;
6151 name = soname;
6152 }
6153 else
6154 {
6155 bfd_size_type indx;
6156
6157 name = lbasename (output_bfd->filename);
6158 def.vd_hash = bfd_elf_hash (name);
6159 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6160 name, FALSE);
6161 if (indx == (bfd_size_type) -1)
6162 return FALSE;
6163 defaux.vda_name = indx;
6164 }
6165 defaux.vda_next = 0;
6166
6167 _bfd_elf_swap_verdef_out (output_bfd, &def,
6168 (Elf_External_Verdef *) p);
6169 p += sizeof (Elf_External_Verdef);
6170 if (info->create_default_symver)
6171 {
6172 /* Add a symbol representing this version. */
6173 bh = NULL;
6174 if (! (_bfd_generic_link_add_one_symbol
6175 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6176 0, NULL, FALSE,
6177 get_elf_backend_data (dynobj)->collect, &bh)))
6178 return FALSE;
6179 h = (struct elf_link_hash_entry *) bh;
6180 h->non_elf = 0;
6181 h->def_regular = 1;
6182 h->type = STT_OBJECT;
6183 h->verinfo.vertree = NULL;
6184
6185 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6186 return FALSE;
6187
6188 /* Create a duplicate of the base version with the same
6189 aux block, but different flags. */
6190 def.vd_flags = 0;
6191 def.vd_ndx = 2;
6192 def.vd_aux = sizeof (Elf_External_Verdef);
6193 if (verdefs)
6194 def.vd_next = (sizeof (Elf_External_Verdef)
6195 + sizeof (Elf_External_Verdaux));
6196 else
6197 def.vd_next = 0;
6198 _bfd_elf_swap_verdef_out (output_bfd, &def,
6199 (Elf_External_Verdef *) p);
6200 p += sizeof (Elf_External_Verdef);
6201 }
6202 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6203 (Elf_External_Verdaux *) p);
6204 p += sizeof (Elf_External_Verdaux);
6205
6206 for (t = verdefs; t != NULL; t = t->next)
6207 {
6208 unsigned int cdeps;
6209 struct bfd_elf_version_deps *n;
6210
6211 /* Don't emit the base version twice. */
6212 if (t->vernum == 0)
6213 continue;
6214
6215 cdeps = 0;
6216 for (n = t->deps; n != NULL; n = n->next)
6217 ++cdeps;
6218
6219 /* Add a symbol representing this version. */
6220 bh = NULL;
6221 if (! (_bfd_generic_link_add_one_symbol
6222 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6223 0, NULL, FALSE,
6224 get_elf_backend_data (dynobj)->collect, &bh)))
6225 return FALSE;
6226 h = (struct elf_link_hash_entry *) bh;
6227 h->non_elf = 0;
6228 h->def_regular = 1;
6229 h->type = STT_OBJECT;
6230 h->verinfo.vertree = t;
6231
6232 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6233 return FALSE;
6234
6235 def.vd_version = VER_DEF_CURRENT;
6236 def.vd_flags = 0;
6237 if (t->globals.list == NULL
6238 && t->locals.list == NULL
6239 && ! t->used)
6240 def.vd_flags |= VER_FLG_WEAK;
6241 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6242 def.vd_cnt = cdeps + 1;
6243 def.vd_hash = bfd_elf_hash (t->name);
6244 def.vd_aux = sizeof (Elf_External_Verdef);
6245 def.vd_next = 0;
6246
6247 /* If a basever node is next, it *must* be the last node in
6248 the chain, otherwise Verdef construction breaks. */
6249 if (t->next != NULL && t->next->vernum == 0)
6250 BFD_ASSERT (t->next->next == NULL);
6251
6252 if (t->next != NULL && t->next->vernum != 0)
6253 def.vd_next = (sizeof (Elf_External_Verdef)
6254 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6255
6256 _bfd_elf_swap_verdef_out (output_bfd, &def,
6257 (Elf_External_Verdef *) p);
6258 p += sizeof (Elf_External_Verdef);
6259
6260 defaux.vda_name = h->dynstr_index;
6261 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6262 h->dynstr_index);
6263 defaux.vda_next = 0;
6264 if (t->deps != NULL)
6265 defaux.vda_next = sizeof (Elf_External_Verdaux);
6266 t->name_indx = defaux.vda_name;
6267
6268 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6269 (Elf_External_Verdaux *) p);
6270 p += sizeof (Elf_External_Verdaux);
6271
6272 for (n = t->deps; n != NULL; n = n->next)
6273 {
6274 if (n->version_needed == NULL)
6275 {
6276 /* This can happen if there was an error in the
6277 version script. */
6278 defaux.vda_name = 0;
6279 }
6280 else
6281 {
6282 defaux.vda_name = n->version_needed->name_indx;
6283 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6284 defaux.vda_name);
6285 }
6286 if (n->next == NULL)
6287 defaux.vda_next = 0;
6288 else
6289 defaux.vda_next = sizeof (Elf_External_Verdaux);
6290
6291 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6292 (Elf_External_Verdaux *) p);
6293 p += sizeof (Elf_External_Verdaux);
6294 }
6295 }
6296
6297 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6298 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6299 return FALSE;
6300
6301 elf_tdata (output_bfd)->cverdefs = cdefs;
6302 }
6303
6304 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6305 {
6306 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6307 return FALSE;
6308 }
6309 else if (info->flags & DF_BIND_NOW)
6310 {
6311 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6312 return FALSE;
6313 }
6314
6315 if (info->flags_1)
6316 {
6317 if (info->executable)
6318 info->flags_1 &= ~ (DF_1_INITFIRST
6319 | DF_1_NODELETE
6320 | DF_1_NOOPEN);
6321 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6322 return FALSE;
6323 }
6324
6325 /* Work out the size of the version reference section. */
6326
6327 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6328 BFD_ASSERT (s != NULL);
6329 {
6330 struct elf_find_verdep_info sinfo;
6331
6332 sinfo.info = info;
6333 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6334 if (sinfo.vers == 0)
6335 sinfo.vers = 1;
6336 sinfo.failed = FALSE;
6337
6338 elf_link_hash_traverse (elf_hash_table (info),
6339 _bfd_elf_link_find_version_dependencies,
6340 &sinfo);
6341 if (sinfo.failed)
6342 return FALSE;
6343
6344 if (elf_tdata (output_bfd)->verref == NULL)
6345 s->flags |= SEC_EXCLUDE;
6346 else
6347 {
6348 Elf_Internal_Verneed *t;
6349 unsigned int size;
6350 unsigned int crefs;
6351 bfd_byte *p;
6352
6353 /* Build the version dependency section. */
6354 size = 0;
6355 crefs = 0;
6356 for (t = elf_tdata (output_bfd)->verref;
6357 t != NULL;
6358 t = t->vn_nextref)
6359 {
6360 Elf_Internal_Vernaux *a;
6361
6362 size += sizeof (Elf_External_Verneed);
6363 ++crefs;
6364 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6365 size += sizeof (Elf_External_Vernaux);
6366 }
6367
6368 s->size = size;
6369 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6370 if (s->contents == NULL)
6371 return FALSE;
6372
6373 p = s->contents;
6374 for (t = elf_tdata (output_bfd)->verref;
6375 t != NULL;
6376 t = t->vn_nextref)
6377 {
6378 unsigned int caux;
6379 Elf_Internal_Vernaux *a;
6380 bfd_size_type indx;
6381
6382 caux = 0;
6383 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6384 ++caux;
6385
6386 t->vn_version = VER_NEED_CURRENT;
6387 t->vn_cnt = caux;
6388 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6389 elf_dt_name (t->vn_bfd) != NULL
6390 ? elf_dt_name (t->vn_bfd)
6391 : lbasename (t->vn_bfd->filename),
6392 FALSE);
6393 if (indx == (bfd_size_type) -1)
6394 return FALSE;
6395 t->vn_file = indx;
6396 t->vn_aux = sizeof (Elf_External_Verneed);
6397 if (t->vn_nextref == NULL)
6398 t->vn_next = 0;
6399 else
6400 t->vn_next = (sizeof (Elf_External_Verneed)
6401 + caux * sizeof (Elf_External_Vernaux));
6402
6403 _bfd_elf_swap_verneed_out (output_bfd, t,
6404 (Elf_External_Verneed *) p);
6405 p += sizeof (Elf_External_Verneed);
6406
6407 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6408 {
6409 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6410 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6411 a->vna_nodename, FALSE);
6412 if (indx == (bfd_size_type) -1)
6413 return FALSE;
6414 a->vna_name = indx;
6415 if (a->vna_nextptr == NULL)
6416 a->vna_next = 0;
6417 else
6418 a->vna_next = sizeof (Elf_External_Vernaux);
6419
6420 _bfd_elf_swap_vernaux_out (output_bfd, a,
6421 (Elf_External_Vernaux *) p);
6422 p += sizeof (Elf_External_Vernaux);
6423 }
6424 }
6425
6426 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6427 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6428 return FALSE;
6429
6430 elf_tdata (output_bfd)->cverrefs = crefs;
6431 }
6432 }
6433
6434 if ((elf_tdata (output_bfd)->cverrefs == 0
6435 && elf_tdata (output_bfd)->cverdefs == 0)
6436 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6437 &section_sym_count) == 0)
6438 {
6439 s = bfd_get_linker_section (dynobj, ".gnu.version");
6440 s->flags |= SEC_EXCLUDE;
6441 }
6442 }
6443 return TRUE;
6444 }
6445
6446 /* Find the first non-excluded output section. We'll use its
6447 section symbol for some emitted relocs. */
6448 void
6449 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6450 {
6451 asection *s;
6452
6453 for (s = output_bfd->sections; s != NULL; s = s->next)
6454 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6455 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6456 {
6457 elf_hash_table (info)->text_index_section = s;
6458 break;
6459 }
6460 }
6461
6462 /* Find two non-excluded output sections, one for code, one for data.
6463 We'll use their section symbols for some emitted relocs. */
6464 void
6465 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6466 {
6467 asection *s;
6468
6469 /* Data first, since setting text_index_section changes
6470 _bfd_elf_link_omit_section_dynsym. */
6471 for (s = output_bfd->sections; s != NULL; s = s->next)
6472 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6473 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6474 {
6475 elf_hash_table (info)->data_index_section = s;
6476 break;
6477 }
6478
6479 for (s = output_bfd->sections; s != NULL; s = s->next)
6480 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6481 == (SEC_ALLOC | SEC_READONLY))
6482 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6483 {
6484 elf_hash_table (info)->text_index_section = s;
6485 break;
6486 }
6487
6488 if (elf_hash_table (info)->text_index_section == NULL)
6489 elf_hash_table (info)->text_index_section
6490 = elf_hash_table (info)->data_index_section;
6491 }
6492
6493 bfd_boolean
6494 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6495 {
6496 const struct elf_backend_data *bed;
6497
6498 if (!is_elf_hash_table (info->hash))
6499 return TRUE;
6500
6501 bed = get_elf_backend_data (output_bfd);
6502 (*bed->elf_backend_init_index_section) (output_bfd, info);
6503
6504 if (elf_hash_table (info)->dynamic_sections_created)
6505 {
6506 bfd *dynobj;
6507 asection *s;
6508 bfd_size_type dynsymcount;
6509 unsigned long section_sym_count;
6510 unsigned int dtagcount;
6511
6512 dynobj = elf_hash_table (info)->dynobj;
6513
6514 /* Assign dynsym indicies. In a shared library we generate a
6515 section symbol for each output section, which come first.
6516 Next come all of the back-end allocated local dynamic syms,
6517 followed by the rest of the global symbols. */
6518
6519 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6520 &section_sym_count);
6521
6522 /* Work out the size of the symbol version section. */
6523 s = bfd_get_linker_section (dynobj, ".gnu.version");
6524 BFD_ASSERT (s != NULL);
6525 if (dynsymcount != 0
6526 && (s->flags & SEC_EXCLUDE) == 0)
6527 {
6528 s->size = dynsymcount * sizeof (Elf_External_Versym);
6529 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6530 if (s->contents == NULL)
6531 return FALSE;
6532
6533 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6534 return FALSE;
6535 }
6536
6537 /* Set the size of the .dynsym and .hash sections. We counted
6538 the number of dynamic symbols in elf_link_add_object_symbols.
6539 We will build the contents of .dynsym and .hash when we build
6540 the final symbol table, because until then we do not know the
6541 correct value to give the symbols. We built the .dynstr
6542 section as we went along in elf_link_add_object_symbols. */
6543 s = bfd_get_linker_section (dynobj, ".dynsym");
6544 BFD_ASSERT (s != NULL);
6545 s->size = dynsymcount * bed->s->sizeof_sym;
6546
6547 if (dynsymcount != 0)
6548 {
6549 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6550 if (s->contents == NULL)
6551 return FALSE;
6552
6553 /* The first entry in .dynsym is a dummy symbol.
6554 Clear all the section syms, in case we don't output them all. */
6555 ++section_sym_count;
6556 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6557 }
6558
6559 elf_hash_table (info)->bucketcount = 0;
6560
6561 /* Compute the size of the hashing table. As a side effect this
6562 computes the hash values for all the names we export. */
6563 if (info->emit_hash)
6564 {
6565 unsigned long int *hashcodes;
6566 struct hash_codes_info hashinf;
6567 bfd_size_type amt;
6568 unsigned long int nsyms;
6569 size_t bucketcount;
6570 size_t hash_entry_size;
6571
6572 /* Compute the hash values for all exported symbols. At the same
6573 time store the values in an array so that we could use them for
6574 optimizations. */
6575 amt = dynsymcount * sizeof (unsigned long int);
6576 hashcodes = (unsigned long int *) bfd_malloc (amt);
6577 if (hashcodes == NULL)
6578 return FALSE;
6579 hashinf.hashcodes = hashcodes;
6580 hashinf.error = FALSE;
6581
6582 /* Put all hash values in HASHCODES. */
6583 elf_link_hash_traverse (elf_hash_table (info),
6584 elf_collect_hash_codes, &hashinf);
6585 if (hashinf.error)
6586 {
6587 free (hashcodes);
6588 return FALSE;
6589 }
6590
6591 nsyms = hashinf.hashcodes - hashcodes;
6592 bucketcount
6593 = compute_bucket_count (info, hashcodes, nsyms, 0);
6594 free (hashcodes);
6595
6596 if (bucketcount == 0)
6597 return FALSE;
6598
6599 elf_hash_table (info)->bucketcount = bucketcount;
6600
6601 s = bfd_get_linker_section (dynobj, ".hash");
6602 BFD_ASSERT (s != NULL);
6603 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6604 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6605 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6606 if (s->contents == NULL)
6607 return FALSE;
6608
6609 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6610 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6611 s->contents + hash_entry_size);
6612 }
6613
6614 if (info->emit_gnu_hash)
6615 {
6616 size_t i, cnt;
6617 unsigned char *contents;
6618 struct collect_gnu_hash_codes cinfo;
6619 bfd_size_type amt;
6620 size_t bucketcount;
6621
6622 memset (&cinfo, 0, sizeof (cinfo));
6623
6624 /* Compute the hash values for all exported symbols. At the same
6625 time store the values in an array so that we could use them for
6626 optimizations. */
6627 amt = dynsymcount * 2 * sizeof (unsigned long int);
6628 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6629 if (cinfo.hashcodes == NULL)
6630 return FALSE;
6631
6632 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6633 cinfo.min_dynindx = -1;
6634 cinfo.output_bfd = output_bfd;
6635 cinfo.bed = bed;
6636
6637 /* Put all hash values in HASHCODES. */
6638 elf_link_hash_traverse (elf_hash_table (info),
6639 elf_collect_gnu_hash_codes, &cinfo);
6640 if (cinfo.error)
6641 {
6642 free (cinfo.hashcodes);
6643 return FALSE;
6644 }
6645
6646 bucketcount
6647 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6648
6649 if (bucketcount == 0)
6650 {
6651 free (cinfo.hashcodes);
6652 return FALSE;
6653 }
6654
6655 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6656 BFD_ASSERT (s != NULL);
6657
6658 if (cinfo.nsyms == 0)
6659 {
6660 /* Empty .gnu.hash section is special. */
6661 BFD_ASSERT (cinfo.min_dynindx == -1);
6662 free (cinfo.hashcodes);
6663 s->size = 5 * 4 + bed->s->arch_size / 8;
6664 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6665 if (contents == NULL)
6666 return FALSE;
6667 s->contents = contents;
6668 /* 1 empty bucket. */
6669 bfd_put_32 (output_bfd, 1, contents);
6670 /* SYMIDX above the special symbol 0. */
6671 bfd_put_32 (output_bfd, 1, contents + 4);
6672 /* Just one word for bitmask. */
6673 bfd_put_32 (output_bfd, 1, contents + 8);
6674 /* Only hash fn bloom filter. */
6675 bfd_put_32 (output_bfd, 0, contents + 12);
6676 /* No hashes are valid - empty bitmask. */
6677 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6678 /* No hashes in the only bucket. */
6679 bfd_put_32 (output_bfd, 0,
6680 contents + 16 + bed->s->arch_size / 8);
6681 }
6682 else
6683 {
6684 unsigned long int maskwords, maskbitslog2, x;
6685 BFD_ASSERT (cinfo.min_dynindx != -1);
6686
6687 x = cinfo.nsyms;
6688 maskbitslog2 = 1;
6689 while ((x >>= 1) != 0)
6690 ++maskbitslog2;
6691 if (maskbitslog2 < 3)
6692 maskbitslog2 = 5;
6693 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6694 maskbitslog2 = maskbitslog2 + 3;
6695 else
6696 maskbitslog2 = maskbitslog2 + 2;
6697 if (bed->s->arch_size == 64)
6698 {
6699 if (maskbitslog2 == 5)
6700 maskbitslog2 = 6;
6701 cinfo.shift1 = 6;
6702 }
6703 else
6704 cinfo.shift1 = 5;
6705 cinfo.mask = (1 << cinfo.shift1) - 1;
6706 cinfo.shift2 = maskbitslog2;
6707 cinfo.maskbits = 1 << maskbitslog2;
6708 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6709 amt = bucketcount * sizeof (unsigned long int) * 2;
6710 amt += maskwords * sizeof (bfd_vma);
6711 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6712 if (cinfo.bitmask == NULL)
6713 {
6714 free (cinfo.hashcodes);
6715 return FALSE;
6716 }
6717
6718 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6719 cinfo.indx = cinfo.counts + bucketcount;
6720 cinfo.symindx = dynsymcount - cinfo.nsyms;
6721 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6722
6723 /* Determine how often each hash bucket is used. */
6724 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6725 for (i = 0; i < cinfo.nsyms; ++i)
6726 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6727
6728 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6729 if (cinfo.counts[i] != 0)
6730 {
6731 cinfo.indx[i] = cnt;
6732 cnt += cinfo.counts[i];
6733 }
6734 BFD_ASSERT (cnt == dynsymcount);
6735 cinfo.bucketcount = bucketcount;
6736 cinfo.local_indx = cinfo.min_dynindx;
6737
6738 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6739 s->size += cinfo.maskbits / 8;
6740 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6741 if (contents == NULL)
6742 {
6743 free (cinfo.bitmask);
6744 free (cinfo.hashcodes);
6745 return FALSE;
6746 }
6747
6748 s->contents = contents;
6749 bfd_put_32 (output_bfd, bucketcount, contents);
6750 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6751 bfd_put_32 (output_bfd, maskwords, contents + 8);
6752 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6753 contents += 16 + cinfo.maskbits / 8;
6754
6755 for (i = 0; i < bucketcount; ++i)
6756 {
6757 if (cinfo.counts[i] == 0)
6758 bfd_put_32 (output_bfd, 0, contents);
6759 else
6760 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6761 contents += 4;
6762 }
6763
6764 cinfo.contents = contents;
6765
6766 /* Renumber dynamic symbols, populate .gnu.hash section. */
6767 elf_link_hash_traverse (elf_hash_table (info),
6768 elf_renumber_gnu_hash_syms, &cinfo);
6769
6770 contents = s->contents + 16;
6771 for (i = 0; i < maskwords; ++i)
6772 {
6773 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6774 contents);
6775 contents += bed->s->arch_size / 8;
6776 }
6777
6778 free (cinfo.bitmask);
6779 free (cinfo.hashcodes);
6780 }
6781 }
6782
6783 s = bfd_get_linker_section (dynobj, ".dynstr");
6784 BFD_ASSERT (s != NULL);
6785
6786 elf_finalize_dynstr (output_bfd, info);
6787
6788 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6789
6790 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6791 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6792 return FALSE;
6793 }
6794
6795 return TRUE;
6796 }
6797 \f
6798 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6799
6800 static void
6801 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6802 asection *sec)
6803 {
6804 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6805 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6806 }
6807
6808 /* Finish SHF_MERGE section merging. */
6809
6810 bfd_boolean
6811 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6812 {
6813 bfd *ibfd;
6814 asection *sec;
6815
6816 if (!is_elf_hash_table (info->hash))
6817 return FALSE;
6818
6819 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6820 if ((ibfd->flags & DYNAMIC) == 0)
6821 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6822 if ((sec->flags & SEC_MERGE) != 0
6823 && !bfd_is_abs_section (sec->output_section))
6824 {
6825 struct bfd_elf_section_data *secdata;
6826
6827 secdata = elf_section_data (sec);
6828 if (! _bfd_add_merge_section (abfd,
6829 &elf_hash_table (info)->merge_info,
6830 sec, &secdata->sec_info))
6831 return FALSE;
6832 else if (secdata->sec_info)
6833 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6834 }
6835
6836 if (elf_hash_table (info)->merge_info != NULL)
6837 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6838 merge_sections_remove_hook);
6839 return TRUE;
6840 }
6841
6842 /* Create an entry in an ELF linker hash table. */
6843
6844 struct bfd_hash_entry *
6845 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6846 struct bfd_hash_table *table,
6847 const char *string)
6848 {
6849 /* Allocate the structure if it has not already been allocated by a
6850 subclass. */
6851 if (entry == NULL)
6852 {
6853 entry = (struct bfd_hash_entry *)
6854 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6855 if (entry == NULL)
6856 return entry;
6857 }
6858
6859 /* Call the allocation method of the superclass. */
6860 entry = _bfd_link_hash_newfunc (entry, table, string);
6861 if (entry != NULL)
6862 {
6863 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6864 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6865
6866 /* Set local fields. */
6867 ret->indx = -1;
6868 ret->dynindx = -1;
6869 ret->got = htab->init_got_refcount;
6870 ret->plt = htab->init_plt_refcount;
6871 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6872 - offsetof (struct elf_link_hash_entry, size)));
6873 /* Assume that we have been called by a non-ELF symbol reader.
6874 This flag is then reset by the code which reads an ELF input
6875 file. This ensures that a symbol created by a non-ELF symbol
6876 reader will have the flag set correctly. */
6877 ret->non_elf = 1;
6878 }
6879
6880 return entry;
6881 }
6882
6883 /* Copy data from an indirect symbol to its direct symbol, hiding the
6884 old indirect symbol. Also used for copying flags to a weakdef. */
6885
6886 void
6887 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6888 struct elf_link_hash_entry *dir,
6889 struct elf_link_hash_entry *ind)
6890 {
6891 struct elf_link_hash_table *htab;
6892
6893 /* Copy down any references that we may have already seen to the
6894 symbol which just became indirect if DIR isn't a hidden versioned
6895 symbol. */
6896
6897 if (dir->versioned != versioned_hidden)
6898 {
6899 dir->ref_dynamic |= ind->ref_dynamic;
6900 dir->ref_regular |= ind->ref_regular;
6901 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6902 dir->non_got_ref |= ind->non_got_ref;
6903 dir->needs_plt |= ind->needs_plt;
6904 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6905 }
6906
6907 if (ind->root.type != bfd_link_hash_indirect)
6908 return;
6909
6910 /* Copy over the global and procedure linkage table refcount entries.
6911 These may have been already set up by a check_relocs routine. */
6912 htab = elf_hash_table (info);
6913 if (ind->got.refcount > htab->init_got_refcount.refcount)
6914 {
6915 if (dir->got.refcount < 0)
6916 dir->got.refcount = 0;
6917 dir->got.refcount += ind->got.refcount;
6918 ind->got.refcount = htab->init_got_refcount.refcount;
6919 }
6920
6921 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6922 {
6923 if (dir->plt.refcount < 0)
6924 dir->plt.refcount = 0;
6925 dir->plt.refcount += ind->plt.refcount;
6926 ind->plt.refcount = htab->init_plt_refcount.refcount;
6927 }
6928
6929 if (ind->dynindx != -1)
6930 {
6931 if (dir->dynindx != -1)
6932 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6933 dir->dynindx = ind->dynindx;
6934 dir->dynstr_index = ind->dynstr_index;
6935 ind->dynindx = -1;
6936 ind->dynstr_index = 0;
6937 }
6938 }
6939
6940 void
6941 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6942 struct elf_link_hash_entry *h,
6943 bfd_boolean force_local)
6944 {
6945 /* STT_GNU_IFUNC symbol must go through PLT. */
6946 if (h->type != STT_GNU_IFUNC)
6947 {
6948 h->plt = elf_hash_table (info)->init_plt_offset;
6949 h->needs_plt = 0;
6950 }
6951 if (force_local)
6952 {
6953 h->forced_local = 1;
6954 if (h->dynindx != -1)
6955 {
6956 h->dynindx = -1;
6957 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6958 h->dynstr_index);
6959 }
6960 }
6961 }
6962
6963 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6964 caller. */
6965
6966 bfd_boolean
6967 _bfd_elf_link_hash_table_init
6968 (struct elf_link_hash_table *table,
6969 bfd *abfd,
6970 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6971 struct bfd_hash_table *,
6972 const char *),
6973 unsigned int entsize,
6974 enum elf_target_id target_id)
6975 {
6976 bfd_boolean ret;
6977 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6978
6979 table->init_got_refcount.refcount = can_refcount - 1;
6980 table->init_plt_refcount.refcount = can_refcount - 1;
6981 table->init_got_offset.offset = -(bfd_vma) 1;
6982 table->init_plt_offset.offset = -(bfd_vma) 1;
6983 /* The first dynamic symbol is a dummy. */
6984 table->dynsymcount = 1;
6985
6986 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6987
6988 table->root.type = bfd_link_elf_hash_table;
6989 table->hash_table_id = target_id;
6990
6991 return ret;
6992 }
6993
6994 /* Create an ELF linker hash table. */
6995
6996 struct bfd_link_hash_table *
6997 _bfd_elf_link_hash_table_create (bfd *abfd)
6998 {
6999 struct elf_link_hash_table *ret;
7000 bfd_size_type amt = sizeof (struct elf_link_hash_table);
7001
7002 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7003 if (ret == NULL)
7004 return NULL;
7005
7006 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7007 sizeof (struct elf_link_hash_entry),
7008 GENERIC_ELF_DATA))
7009 {
7010 free (ret);
7011 return NULL;
7012 }
7013 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7014
7015 return &ret->root;
7016 }
7017
7018 /* Destroy an ELF linker hash table. */
7019
7020 void
7021 _bfd_elf_link_hash_table_free (bfd *obfd)
7022 {
7023 struct elf_link_hash_table *htab;
7024
7025 htab = (struct elf_link_hash_table *) obfd->link.hash;
7026 if (htab->dynstr != NULL)
7027 _bfd_elf_strtab_free (htab->dynstr);
7028 _bfd_merge_sections_free (htab->merge_info);
7029 _bfd_generic_link_hash_table_free (obfd);
7030 }
7031
7032 /* This is a hook for the ELF emulation code in the generic linker to
7033 tell the backend linker what file name to use for the DT_NEEDED
7034 entry for a dynamic object. */
7035
7036 void
7037 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7038 {
7039 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7040 && bfd_get_format (abfd) == bfd_object)
7041 elf_dt_name (abfd) = name;
7042 }
7043
7044 int
7045 bfd_elf_get_dyn_lib_class (bfd *abfd)
7046 {
7047 int lib_class;
7048 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7049 && bfd_get_format (abfd) == bfd_object)
7050 lib_class = elf_dyn_lib_class (abfd);
7051 else
7052 lib_class = 0;
7053 return lib_class;
7054 }
7055
7056 void
7057 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7058 {
7059 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7060 && bfd_get_format (abfd) == bfd_object)
7061 elf_dyn_lib_class (abfd) = lib_class;
7062 }
7063
7064 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7065 the linker ELF emulation code. */
7066
7067 struct bfd_link_needed_list *
7068 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7069 struct bfd_link_info *info)
7070 {
7071 if (! is_elf_hash_table (info->hash))
7072 return NULL;
7073 return elf_hash_table (info)->needed;
7074 }
7075
7076 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7077 hook for the linker ELF emulation code. */
7078
7079 struct bfd_link_needed_list *
7080 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7081 struct bfd_link_info *info)
7082 {
7083 if (! is_elf_hash_table (info->hash))
7084 return NULL;
7085 return elf_hash_table (info)->runpath;
7086 }
7087
7088 /* Get the name actually used for a dynamic object for a link. This
7089 is the SONAME entry if there is one. Otherwise, it is the string
7090 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7091
7092 const char *
7093 bfd_elf_get_dt_soname (bfd *abfd)
7094 {
7095 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7096 && bfd_get_format (abfd) == bfd_object)
7097 return elf_dt_name (abfd);
7098 return NULL;
7099 }
7100
7101 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7102 the ELF linker emulation code. */
7103
7104 bfd_boolean
7105 bfd_elf_get_bfd_needed_list (bfd *abfd,
7106 struct bfd_link_needed_list **pneeded)
7107 {
7108 asection *s;
7109 bfd_byte *dynbuf = NULL;
7110 unsigned int elfsec;
7111 unsigned long shlink;
7112 bfd_byte *extdyn, *extdynend;
7113 size_t extdynsize;
7114 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7115
7116 *pneeded = NULL;
7117
7118 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7119 || bfd_get_format (abfd) != bfd_object)
7120 return TRUE;
7121
7122 s = bfd_get_section_by_name (abfd, ".dynamic");
7123 if (s == NULL || s->size == 0)
7124 return TRUE;
7125
7126 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7127 goto error_return;
7128
7129 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7130 if (elfsec == SHN_BAD)
7131 goto error_return;
7132
7133 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7134
7135 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7136 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7137
7138 extdyn = dynbuf;
7139 extdynend = extdyn + s->size;
7140 for (; extdyn < extdynend; extdyn += extdynsize)
7141 {
7142 Elf_Internal_Dyn dyn;
7143
7144 (*swap_dyn_in) (abfd, extdyn, &dyn);
7145
7146 if (dyn.d_tag == DT_NULL)
7147 break;
7148
7149 if (dyn.d_tag == DT_NEEDED)
7150 {
7151 const char *string;
7152 struct bfd_link_needed_list *l;
7153 unsigned int tagv = dyn.d_un.d_val;
7154 bfd_size_type amt;
7155
7156 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7157 if (string == NULL)
7158 goto error_return;
7159
7160 amt = sizeof *l;
7161 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7162 if (l == NULL)
7163 goto error_return;
7164
7165 l->by = abfd;
7166 l->name = string;
7167 l->next = *pneeded;
7168 *pneeded = l;
7169 }
7170 }
7171
7172 free (dynbuf);
7173
7174 return TRUE;
7175
7176 error_return:
7177 if (dynbuf != NULL)
7178 free (dynbuf);
7179 return FALSE;
7180 }
7181
7182 struct elf_symbuf_symbol
7183 {
7184 unsigned long st_name; /* Symbol name, index in string tbl */
7185 unsigned char st_info; /* Type and binding attributes */
7186 unsigned char st_other; /* Visibilty, and target specific */
7187 };
7188
7189 struct elf_symbuf_head
7190 {
7191 struct elf_symbuf_symbol *ssym;
7192 bfd_size_type count;
7193 unsigned int st_shndx;
7194 };
7195
7196 struct elf_symbol
7197 {
7198 union
7199 {
7200 Elf_Internal_Sym *isym;
7201 struct elf_symbuf_symbol *ssym;
7202 } u;
7203 const char *name;
7204 };
7205
7206 /* Sort references to symbols by ascending section number. */
7207
7208 static int
7209 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7210 {
7211 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7212 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7213
7214 return s1->st_shndx - s2->st_shndx;
7215 }
7216
7217 static int
7218 elf_sym_name_compare (const void *arg1, const void *arg2)
7219 {
7220 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7221 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7222 return strcmp (s1->name, s2->name);
7223 }
7224
7225 static struct elf_symbuf_head *
7226 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7227 {
7228 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7229 struct elf_symbuf_symbol *ssym;
7230 struct elf_symbuf_head *ssymbuf, *ssymhead;
7231 bfd_size_type i, shndx_count, total_size;
7232
7233 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7234 if (indbuf == NULL)
7235 return NULL;
7236
7237 for (ind = indbuf, i = 0; i < symcount; i++)
7238 if (isymbuf[i].st_shndx != SHN_UNDEF)
7239 *ind++ = &isymbuf[i];
7240 indbufend = ind;
7241
7242 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7243 elf_sort_elf_symbol);
7244
7245 shndx_count = 0;
7246 if (indbufend > indbuf)
7247 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7248 if (ind[0]->st_shndx != ind[1]->st_shndx)
7249 shndx_count++;
7250
7251 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7252 + (indbufend - indbuf) * sizeof (*ssym));
7253 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7254 if (ssymbuf == NULL)
7255 {
7256 free (indbuf);
7257 return NULL;
7258 }
7259
7260 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7261 ssymbuf->ssym = NULL;
7262 ssymbuf->count = shndx_count;
7263 ssymbuf->st_shndx = 0;
7264 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7265 {
7266 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7267 {
7268 ssymhead++;
7269 ssymhead->ssym = ssym;
7270 ssymhead->count = 0;
7271 ssymhead->st_shndx = (*ind)->st_shndx;
7272 }
7273 ssym->st_name = (*ind)->st_name;
7274 ssym->st_info = (*ind)->st_info;
7275 ssym->st_other = (*ind)->st_other;
7276 ssymhead->count++;
7277 }
7278 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7279 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7280 == total_size));
7281
7282 free (indbuf);
7283 return ssymbuf;
7284 }
7285
7286 /* Check if 2 sections define the same set of local and global
7287 symbols. */
7288
7289 static bfd_boolean
7290 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7291 struct bfd_link_info *info)
7292 {
7293 bfd *bfd1, *bfd2;
7294 const struct elf_backend_data *bed1, *bed2;
7295 Elf_Internal_Shdr *hdr1, *hdr2;
7296 bfd_size_type symcount1, symcount2;
7297 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7298 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7299 Elf_Internal_Sym *isym, *isymend;
7300 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7301 bfd_size_type count1, count2, i;
7302 unsigned int shndx1, shndx2;
7303 bfd_boolean result;
7304
7305 bfd1 = sec1->owner;
7306 bfd2 = sec2->owner;
7307
7308 /* Both sections have to be in ELF. */
7309 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7310 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7311 return FALSE;
7312
7313 if (elf_section_type (sec1) != elf_section_type (sec2))
7314 return FALSE;
7315
7316 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7317 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7318 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7319 return FALSE;
7320
7321 bed1 = get_elf_backend_data (bfd1);
7322 bed2 = get_elf_backend_data (bfd2);
7323 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7324 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7325 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7326 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7327
7328 if (symcount1 == 0 || symcount2 == 0)
7329 return FALSE;
7330
7331 result = FALSE;
7332 isymbuf1 = NULL;
7333 isymbuf2 = NULL;
7334 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7335 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7336
7337 if (ssymbuf1 == NULL)
7338 {
7339 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7340 NULL, NULL, NULL);
7341 if (isymbuf1 == NULL)
7342 goto done;
7343
7344 if (!info->reduce_memory_overheads)
7345 elf_tdata (bfd1)->symbuf = ssymbuf1
7346 = elf_create_symbuf (symcount1, isymbuf1);
7347 }
7348
7349 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7350 {
7351 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7352 NULL, NULL, NULL);
7353 if (isymbuf2 == NULL)
7354 goto done;
7355
7356 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7357 elf_tdata (bfd2)->symbuf = ssymbuf2
7358 = elf_create_symbuf (symcount2, isymbuf2);
7359 }
7360
7361 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7362 {
7363 /* Optimized faster version. */
7364 bfd_size_type lo, hi, mid;
7365 struct elf_symbol *symp;
7366 struct elf_symbuf_symbol *ssym, *ssymend;
7367
7368 lo = 0;
7369 hi = ssymbuf1->count;
7370 ssymbuf1++;
7371 count1 = 0;
7372 while (lo < hi)
7373 {
7374 mid = (lo + hi) / 2;
7375 if (shndx1 < ssymbuf1[mid].st_shndx)
7376 hi = mid;
7377 else if (shndx1 > ssymbuf1[mid].st_shndx)
7378 lo = mid + 1;
7379 else
7380 {
7381 count1 = ssymbuf1[mid].count;
7382 ssymbuf1 += mid;
7383 break;
7384 }
7385 }
7386
7387 lo = 0;
7388 hi = ssymbuf2->count;
7389 ssymbuf2++;
7390 count2 = 0;
7391 while (lo < hi)
7392 {
7393 mid = (lo + hi) / 2;
7394 if (shndx2 < ssymbuf2[mid].st_shndx)
7395 hi = mid;
7396 else if (shndx2 > ssymbuf2[mid].st_shndx)
7397 lo = mid + 1;
7398 else
7399 {
7400 count2 = ssymbuf2[mid].count;
7401 ssymbuf2 += mid;
7402 break;
7403 }
7404 }
7405
7406 if (count1 == 0 || count2 == 0 || count1 != count2)
7407 goto done;
7408
7409 symtable1
7410 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7411 symtable2
7412 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7413 if (symtable1 == NULL || symtable2 == NULL)
7414 goto done;
7415
7416 symp = symtable1;
7417 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7418 ssym < ssymend; ssym++, symp++)
7419 {
7420 symp->u.ssym = ssym;
7421 symp->name = bfd_elf_string_from_elf_section (bfd1,
7422 hdr1->sh_link,
7423 ssym->st_name);
7424 }
7425
7426 symp = symtable2;
7427 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7428 ssym < ssymend; ssym++, symp++)
7429 {
7430 symp->u.ssym = ssym;
7431 symp->name = bfd_elf_string_from_elf_section (bfd2,
7432 hdr2->sh_link,
7433 ssym->st_name);
7434 }
7435
7436 /* Sort symbol by name. */
7437 qsort (symtable1, count1, sizeof (struct elf_symbol),
7438 elf_sym_name_compare);
7439 qsort (symtable2, count1, sizeof (struct elf_symbol),
7440 elf_sym_name_compare);
7441
7442 for (i = 0; i < count1; i++)
7443 /* Two symbols must have the same binding, type and name. */
7444 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7445 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7446 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7447 goto done;
7448
7449 result = TRUE;
7450 goto done;
7451 }
7452
7453 symtable1 = (struct elf_symbol *)
7454 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7455 symtable2 = (struct elf_symbol *)
7456 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7457 if (symtable1 == NULL || symtable2 == NULL)
7458 goto done;
7459
7460 /* Count definitions in the section. */
7461 count1 = 0;
7462 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7463 if (isym->st_shndx == shndx1)
7464 symtable1[count1++].u.isym = isym;
7465
7466 count2 = 0;
7467 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7468 if (isym->st_shndx == shndx2)
7469 symtable2[count2++].u.isym = isym;
7470
7471 if (count1 == 0 || count2 == 0 || count1 != count2)
7472 goto done;
7473
7474 for (i = 0; i < count1; i++)
7475 symtable1[i].name
7476 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7477 symtable1[i].u.isym->st_name);
7478
7479 for (i = 0; i < count2; i++)
7480 symtable2[i].name
7481 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7482 symtable2[i].u.isym->st_name);
7483
7484 /* Sort symbol by name. */
7485 qsort (symtable1, count1, sizeof (struct elf_symbol),
7486 elf_sym_name_compare);
7487 qsort (symtable2, count1, sizeof (struct elf_symbol),
7488 elf_sym_name_compare);
7489
7490 for (i = 0; i < count1; i++)
7491 /* Two symbols must have the same binding, type and name. */
7492 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7493 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7494 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7495 goto done;
7496
7497 result = TRUE;
7498
7499 done:
7500 if (symtable1)
7501 free (symtable1);
7502 if (symtable2)
7503 free (symtable2);
7504 if (isymbuf1)
7505 free (isymbuf1);
7506 if (isymbuf2)
7507 free (isymbuf2);
7508
7509 return result;
7510 }
7511
7512 /* Return TRUE if 2 section types are compatible. */
7513
7514 bfd_boolean
7515 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7516 bfd *bbfd, const asection *bsec)
7517 {
7518 if (asec == NULL
7519 || bsec == NULL
7520 || abfd->xvec->flavour != bfd_target_elf_flavour
7521 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7522 return TRUE;
7523
7524 return elf_section_type (asec) == elf_section_type (bsec);
7525 }
7526 \f
7527 /* Final phase of ELF linker. */
7528
7529 /* A structure we use to avoid passing large numbers of arguments. */
7530
7531 struct elf_final_link_info
7532 {
7533 /* General link information. */
7534 struct bfd_link_info *info;
7535 /* Output BFD. */
7536 bfd *output_bfd;
7537 /* Symbol string table. */
7538 struct elf_strtab_hash *symstrtab;
7539 /* .dynsym section. */
7540 asection *dynsym_sec;
7541 /* .hash section. */
7542 asection *hash_sec;
7543 /* symbol version section (.gnu.version). */
7544 asection *symver_sec;
7545 /* Buffer large enough to hold contents of any section. */
7546 bfd_byte *contents;
7547 /* Buffer large enough to hold external relocs of any section. */
7548 void *external_relocs;
7549 /* Buffer large enough to hold internal relocs of any section. */
7550 Elf_Internal_Rela *internal_relocs;
7551 /* Buffer large enough to hold external local symbols of any input
7552 BFD. */
7553 bfd_byte *external_syms;
7554 /* And a buffer for symbol section indices. */
7555 Elf_External_Sym_Shndx *locsym_shndx;
7556 /* Buffer large enough to hold internal local symbols of any input
7557 BFD. */
7558 Elf_Internal_Sym *internal_syms;
7559 /* Array large enough to hold a symbol index for each local symbol
7560 of any input BFD. */
7561 long *indices;
7562 /* Array large enough to hold a section pointer for each local
7563 symbol of any input BFD. */
7564 asection **sections;
7565 /* Buffer for SHT_SYMTAB_SHNDX section. */
7566 Elf_External_Sym_Shndx *symshndxbuf;
7567 /* Number of STT_FILE syms seen. */
7568 size_t filesym_count;
7569 };
7570
7571 /* This struct is used to pass information to elf_link_output_extsym. */
7572
7573 struct elf_outext_info
7574 {
7575 bfd_boolean failed;
7576 bfd_boolean localsyms;
7577 bfd_boolean file_sym_done;
7578 struct elf_final_link_info *flinfo;
7579 };
7580
7581
7582 /* Support for evaluating a complex relocation.
7583
7584 Complex relocations are generalized, self-describing relocations. The
7585 implementation of them consists of two parts: complex symbols, and the
7586 relocations themselves.
7587
7588 The relocations are use a reserved elf-wide relocation type code (R_RELC
7589 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7590 information (start bit, end bit, word width, etc) into the addend. This
7591 information is extracted from CGEN-generated operand tables within gas.
7592
7593 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7594 internal) representing prefix-notation expressions, including but not
7595 limited to those sorts of expressions normally encoded as addends in the
7596 addend field. The symbol mangling format is:
7597
7598 <node> := <literal>
7599 | <unary-operator> ':' <node>
7600 | <binary-operator> ':' <node> ':' <node>
7601 ;
7602
7603 <literal> := 's' <digits=N> ':' <N character symbol name>
7604 | 'S' <digits=N> ':' <N character section name>
7605 | '#' <hexdigits>
7606 ;
7607
7608 <binary-operator> := as in C
7609 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7610
7611 static void
7612 set_symbol_value (bfd *bfd_with_globals,
7613 Elf_Internal_Sym *isymbuf,
7614 size_t locsymcount,
7615 size_t symidx,
7616 bfd_vma val)
7617 {
7618 struct elf_link_hash_entry **sym_hashes;
7619 struct elf_link_hash_entry *h;
7620 size_t extsymoff = locsymcount;
7621
7622 if (symidx < locsymcount)
7623 {
7624 Elf_Internal_Sym *sym;
7625
7626 sym = isymbuf + symidx;
7627 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7628 {
7629 /* It is a local symbol: move it to the
7630 "absolute" section and give it a value. */
7631 sym->st_shndx = SHN_ABS;
7632 sym->st_value = val;
7633 return;
7634 }
7635 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7636 extsymoff = 0;
7637 }
7638
7639 /* It is a global symbol: set its link type
7640 to "defined" and give it a value. */
7641
7642 sym_hashes = elf_sym_hashes (bfd_with_globals);
7643 h = sym_hashes [symidx - extsymoff];
7644 while (h->root.type == bfd_link_hash_indirect
7645 || h->root.type == bfd_link_hash_warning)
7646 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7647 h->root.type = bfd_link_hash_defined;
7648 h->root.u.def.value = val;
7649 h->root.u.def.section = bfd_abs_section_ptr;
7650 }
7651
7652 static bfd_boolean
7653 resolve_symbol (const char *name,
7654 bfd *input_bfd,
7655 struct elf_final_link_info *flinfo,
7656 bfd_vma *result,
7657 Elf_Internal_Sym *isymbuf,
7658 size_t locsymcount)
7659 {
7660 Elf_Internal_Sym *sym;
7661 struct bfd_link_hash_entry *global_entry;
7662 const char *candidate = NULL;
7663 Elf_Internal_Shdr *symtab_hdr;
7664 size_t i;
7665
7666 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7667
7668 for (i = 0; i < locsymcount; ++ i)
7669 {
7670 sym = isymbuf + i;
7671
7672 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7673 continue;
7674
7675 candidate = bfd_elf_string_from_elf_section (input_bfd,
7676 symtab_hdr->sh_link,
7677 sym->st_name);
7678 #ifdef DEBUG
7679 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7680 name, candidate, (unsigned long) sym->st_value);
7681 #endif
7682 if (candidate && strcmp (candidate, name) == 0)
7683 {
7684 asection *sec = flinfo->sections [i];
7685
7686 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7687 *result += sec->output_offset + sec->output_section->vma;
7688 #ifdef DEBUG
7689 printf ("Found symbol with value %8.8lx\n",
7690 (unsigned long) *result);
7691 #endif
7692 return TRUE;
7693 }
7694 }
7695
7696 /* Hmm, haven't found it yet. perhaps it is a global. */
7697 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7698 FALSE, FALSE, TRUE);
7699 if (!global_entry)
7700 return FALSE;
7701
7702 if (global_entry->type == bfd_link_hash_defined
7703 || global_entry->type == bfd_link_hash_defweak)
7704 {
7705 *result = (global_entry->u.def.value
7706 + global_entry->u.def.section->output_section->vma
7707 + global_entry->u.def.section->output_offset);
7708 #ifdef DEBUG
7709 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7710 global_entry->root.string, (unsigned long) *result);
7711 #endif
7712 return TRUE;
7713 }
7714
7715 return FALSE;
7716 }
7717
7718 static bfd_boolean
7719 resolve_section (const char *name,
7720 asection *sections,
7721 bfd_vma *result)
7722 {
7723 asection *curr;
7724 unsigned int len;
7725
7726 for (curr = sections; curr; curr = curr->next)
7727 if (strcmp (curr->name, name) == 0)
7728 {
7729 *result = curr->vma;
7730 return TRUE;
7731 }
7732
7733 /* Hmm. still haven't found it. try pseudo-section names. */
7734 for (curr = sections; curr; curr = curr->next)
7735 {
7736 len = strlen (curr->name);
7737 if (len > strlen (name))
7738 continue;
7739
7740 if (strncmp (curr->name, name, len) == 0)
7741 {
7742 if (strncmp (".end", name + len, 4) == 0)
7743 {
7744 *result = curr->vma + curr->size;
7745 return TRUE;
7746 }
7747
7748 /* Insert more pseudo-section names here, if you like. */
7749 }
7750 }
7751
7752 return FALSE;
7753 }
7754
7755 static void
7756 undefined_reference (const char *reftype, const char *name)
7757 {
7758 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7759 reftype, name);
7760 }
7761
7762 static bfd_boolean
7763 eval_symbol (bfd_vma *result,
7764 const char **symp,
7765 bfd *input_bfd,
7766 struct elf_final_link_info *flinfo,
7767 bfd_vma dot,
7768 Elf_Internal_Sym *isymbuf,
7769 size_t locsymcount,
7770 int signed_p)
7771 {
7772 size_t len;
7773 size_t symlen;
7774 bfd_vma a;
7775 bfd_vma b;
7776 char symbuf[4096];
7777 const char *sym = *symp;
7778 const char *symend;
7779 bfd_boolean symbol_is_section = FALSE;
7780
7781 len = strlen (sym);
7782 symend = sym + len;
7783
7784 if (len < 1 || len > sizeof (symbuf))
7785 {
7786 bfd_set_error (bfd_error_invalid_operation);
7787 return FALSE;
7788 }
7789
7790 switch (* sym)
7791 {
7792 case '.':
7793 *result = dot;
7794 *symp = sym + 1;
7795 return TRUE;
7796
7797 case '#':
7798 ++sym;
7799 *result = strtoul (sym, (char **) symp, 16);
7800 return TRUE;
7801
7802 case 'S':
7803 symbol_is_section = TRUE;
7804 case 's':
7805 ++sym;
7806 symlen = strtol (sym, (char **) symp, 10);
7807 sym = *symp + 1; /* Skip the trailing ':'. */
7808
7809 if (symend < sym || symlen + 1 > sizeof (symbuf))
7810 {
7811 bfd_set_error (bfd_error_invalid_operation);
7812 return FALSE;
7813 }
7814
7815 memcpy (symbuf, sym, symlen);
7816 symbuf[symlen] = '\0';
7817 *symp = sym + symlen;
7818
7819 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7820 the symbol as a section, or vice-versa. so we're pretty liberal in our
7821 interpretation here; section means "try section first", not "must be a
7822 section", and likewise with symbol. */
7823
7824 if (symbol_is_section)
7825 {
7826 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7827 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7828 isymbuf, locsymcount))
7829 {
7830 undefined_reference ("section", symbuf);
7831 return FALSE;
7832 }
7833 }
7834 else
7835 {
7836 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7837 isymbuf, locsymcount)
7838 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7839 result))
7840 {
7841 undefined_reference ("symbol", symbuf);
7842 return FALSE;
7843 }
7844 }
7845
7846 return TRUE;
7847
7848 /* All that remains are operators. */
7849
7850 #define UNARY_OP(op) \
7851 if (strncmp (sym, #op, strlen (#op)) == 0) \
7852 { \
7853 sym += strlen (#op); \
7854 if (*sym == ':') \
7855 ++sym; \
7856 *symp = sym; \
7857 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7858 isymbuf, locsymcount, signed_p)) \
7859 return FALSE; \
7860 if (signed_p) \
7861 *result = op ((bfd_signed_vma) a); \
7862 else \
7863 *result = op a; \
7864 return TRUE; \
7865 }
7866
7867 #define BINARY_OP(op) \
7868 if (strncmp (sym, #op, strlen (#op)) == 0) \
7869 { \
7870 sym += strlen (#op); \
7871 if (*sym == ':') \
7872 ++sym; \
7873 *symp = sym; \
7874 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7875 isymbuf, locsymcount, signed_p)) \
7876 return FALSE; \
7877 ++*symp; \
7878 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7879 isymbuf, locsymcount, signed_p)) \
7880 return FALSE; \
7881 if (signed_p) \
7882 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7883 else \
7884 *result = a op b; \
7885 return TRUE; \
7886 }
7887
7888 default:
7889 UNARY_OP (0-);
7890 BINARY_OP (<<);
7891 BINARY_OP (>>);
7892 BINARY_OP (==);
7893 BINARY_OP (!=);
7894 BINARY_OP (<=);
7895 BINARY_OP (>=);
7896 BINARY_OP (&&);
7897 BINARY_OP (||);
7898 UNARY_OP (~);
7899 UNARY_OP (!);
7900 BINARY_OP (*);
7901 BINARY_OP (/);
7902 BINARY_OP (%);
7903 BINARY_OP (^);
7904 BINARY_OP (|);
7905 BINARY_OP (&);
7906 BINARY_OP (+);
7907 BINARY_OP (-);
7908 BINARY_OP (<);
7909 BINARY_OP (>);
7910 #undef UNARY_OP
7911 #undef BINARY_OP
7912 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7913 bfd_set_error (bfd_error_invalid_operation);
7914 return FALSE;
7915 }
7916 }
7917
7918 static void
7919 put_value (bfd_vma size,
7920 unsigned long chunksz,
7921 bfd *input_bfd,
7922 bfd_vma x,
7923 bfd_byte *location)
7924 {
7925 location += (size - chunksz);
7926
7927 for (; size; size -= chunksz, location -= chunksz)
7928 {
7929 switch (chunksz)
7930 {
7931 case 1:
7932 bfd_put_8 (input_bfd, x, location);
7933 x >>= 8;
7934 break;
7935 case 2:
7936 bfd_put_16 (input_bfd, x, location);
7937 x >>= 16;
7938 break;
7939 case 4:
7940 bfd_put_32 (input_bfd, x, location);
7941 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
7942 x >>= 16;
7943 x >>= 16;
7944 break;
7945 #ifdef BFD64
7946 case 8:
7947 bfd_put_64 (input_bfd, x, location);
7948 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
7949 x >>= 32;
7950 x >>= 32;
7951 break;
7952 #endif
7953 default:
7954 abort ();
7955 break;
7956 }
7957 }
7958 }
7959
7960 static bfd_vma
7961 get_value (bfd_vma size,
7962 unsigned long chunksz,
7963 bfd *input_bfd,
7964 bfd_byte *location)
7965 {
7966 int shift;
7967 bfd_vma x = 0;
7968
7969 /* Sanity checks. */
7970 BFD_ASSERT (chunksz <= sizeof (x)
7971 && size >= chunksz
7972 && chunksz != 0
7973 && (size % chunksz) == 0
7974 && input_bfd != NULL
7975 && location != NULL);
7976
7977 if (chunksz == sizeof (x))
7978 {
7979 BFD_ASSERT (size == chunksz);
7980
7981 /* Make sure that we do not perform an undefined shift operation.
7982 We know that size == chunksz so there will only be one iteration
7983 of the loop below. */
7984 shift = 0;
7985 }
7986 else
7987 shift = 8 * chunksz;
7988
7989 for (; size; size -= chunksz, location += chunksz)
7990 {
7991 switch (chunksz)
7992 {
7993 case 1:
7994 x = (x << shift) | bfd_get_8 (input_bfd, location);
7995 break;
7996 case 2:
7997 x = (x << shift) | bfd_get_16 (input_bfd, location);
7998 break;
7999 case 4:
8000 x = (x << shift) | bfd_get_32 (input_bfd, location);
8001 break;
8002 #ifdef BFD64
8003 case 8:
8004 x = (x << shift) | bfd_get_64 (input_bfd, location);
8005 break;
8006 #endif
8007 default:
8008 abort ();
8009 }
8010 }
8011 return x;
8012 }
8013
8014 static void
8015 decode_complex_addend (unsigned long *start, /* in bits */
8016 unsigned long *oplen, /* in bits */
8017 unsigned long *len, /* in bits */
8018 unsigned long *wordsz, /* in bytes */
8019 unsigned long *chunksz, /* in bytes */
8020 unsigned long *lsb0_p,
8021 unsigned long *signed_p,
8022 unsigned long *trunc_p,
8023 unsigned long encoded)
8024 {
8025 * start = encoded & 0x3F;
8026 * len = (encoded >> 6) & 0x3F;
8027 * oplen = (encoded >> 12) & 0x3F;
8028 * wordsz = (encoded >> 18) & 0xF;
8029 * chunksz = (encoded >> 22) & 0xF;
8030 * lsb0_p = (encoded >> 27) & 1;
8031 * signed_p = (encoded >> 28) & 1;
8032 * trunc_p = (encoded >> 29) & 1;
8033 }
8034
8035 bfd_reloc_status_type
8036 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8037 asection *input_section ATTRIBUTE_UNUSED,
8038 bfd_byte *contents,
8039 Elf_Internal_Rela *rel,
8040 bfd_vma relocation)
8041 {
8042 bfd_vma shift, x, mask;
8043 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8044 bfd_reloc_status_type r;
8045
8046 /* Perform this reloc, since it is complex.
8047 (this is not to say that it necessarily refers to a complex
8048 symbol; merely that it is a self-describing CGEN based reloc.
8049 i.e. the addend has the complete reloc information (bit start, end,
8050 word size, etc) encoded within it.). */
8051
8052 decode_complex_addend (&start, &oplen, &len, &wordsz,
8053 &chunksz, &lsb0_p, &signed_p,
8054 &trunc_p, rel->r_addend);
8055
8056 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8057
8058 if (lsb0_p)
8059 shift = (start + 1) - len;
8060 else
8061 shift = (8 * wordsz) - (start + len);
8062
8063 /* FIXME: octets_per_byte. */
8064 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
8065
8066 #ifdef DEBUG
8067 printf ("Doing complex reloc: "
8068 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8069 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8070 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8071 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8072 oplen, (unsigned long) x, (unsigned long) mask,
8073 (unsigned long) relocation);
8074 #endif
8075
8076 r = bfd_reloc_ok;
8077 if (! trunc_p)
8078 /* Now do an overflow check. */
8079 r = bfd_check_overflow ((signed_p
8080 ? complain_overflow_signed
8081 : complain_overflow_unsigned),
8082 len, 0, (8 * wordsz),
8083 relocation);
8084
8085 /* Do the deed. */
8086 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8087
8088 #ifdef DEBUG
8089 printf (" relocation: %8.8lx\n"
8090 " shifted mask: %8.8lx\n"
8091 " shifted/masked reloc: %8.8lx\n"
8092 " result: %8.8lx\n",
8093 (unsigned long) relocation, (unsigned long) (mask << shift),
8094 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8095 #endif
8096 /* FIXME: octets_per_byte. */
8097 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
8098 return r;
8099 }
8100
8101 /* qsort comparison functions sorting external relocs by r_offset. */
8102
8103 static int
8104 cmp_ext32l_r_offset (const void *p, const void *q)
8105 {
8106 union aligned32
8107 {
8108 uint32_t v;
8109 unsigned char c[4];
8110 };
8111 const union aligned32 *a
8112 = (const union aligned32 *) ((const Elf32_External_Rel *) p)->r_offset;
8113 const union aligned32 *b
8114 = (const union aligned32 *) ((const Elf32_External_Rel *) q)->r_offset;
8115
8116 uint32_t aval = ( (uint32_t) a->c[0]
8117 | (uint32_t) a->c[1] << 8
8118 | (uint32_t) a->c[2] << 16
8119 | (uint32_t) a->c[3] << 24);
8120 uint32_t bval = ( (uint32_t) b->c[0]
8121 | (uint32_t) b->c[1] << 8
8122 | (uint32_t) b->c[2] << 16
8123 | (uint32_t) b->c[3] << 24);
8124 if (aval < bval)
8125 return -1;
8126 else if (aval > bval)
8127 return 1;
8128 return 0;
8129 }
8130
8131 static int
8132 cmp_ext32b_r_offset (const void *p, const void *q)
8133 {
8134 union aligned32
8135 {
8136 uint32_t v;
8137 unsigned char c[4];
8138 };
8139 const union aligned32 *a
8140 = (const union aligned32 *) ((const Elf32_External_Rel *) p)->r_offset;
8141 const union aligned32 *b
8142 = (const union aligned32 *) ((const Elf32_External_Rel *) q)->r_offset;
8143
8144 uint32_t aval = ( (uint32_t) a->c[0] << 24
8145 | (uint32_t) a->c[1] << 16
8146 | (uint32_t) a->c[2] << 8
8147 | (uint32_t) a->c[3]);
8148 uint32_t bval = ( (uint32_t) b->c[0] << 24
8149 | (uint32_t) b->c[1] << 16
8150 | (uint32_t) b->c[2] << 8
8151 | (uint32_t) b->c[3]);
8152 if (aval < bval)
8153 return -1;
8154 else if (aval > bval)
8155 return 1;
8156 return 0;
8157 }
8158
8159 #ifdef BFD_HOST_64_BIT
8160 static int
8161 cmp_ext64l_r_offset (const void *p, const void *q)
8162 {
8163 union aligned64
8164 {
8165 uint64_t v;
8166 unsigned char c[8];
8167 };
8168 const union aligned64 *a
8169 = (const union aligned64 *) ((const Elf64_External_Rel *) p)->r_offset;
8170 const union aligned64 *b
8171 = (const union aligned64 *) ((const Elf64_External_Rel *) q)->r_offset;
8172
8173 uint64_t aval = ( (uint64_t) a->c[0]
8174 | (uint64_t) a->c[1] << 8
8175 | (uint64_t) a->c[2] << 16
8176 | (uint64_t) a->c[3] << 24
8177 | (uint64_t) a->c[4] << 32
8178 | (uint64_t) a->c[5] << 40
8179 | (uint64_t) a->c[6] << 48
8180 | (uint64_t) a->c[7] << 56);
8181 uint64_t bval = ( (uint64_t) b->c[0]
8182 | (uint64_t) b->c[1] << 8
8183 | (uint64_t) b->c[2] << 16
8184 | (uint64_t) b->c[3] << 24
8185 | (uint64_t) b->c[4] << 32
8186 | (uint64_t) b->c[5] << 40
8187 | (uint64_t) b->c[6] << 48
8188 | (uint64_t) b->c[7] << 56);
8189 if (aval < bval)
8190 return -1;
8191 else if (aval > bval)
8192 return 1;
8193 return 0;
8194 }
8195
8196 static int
8197 cmp_ext64b_r_offset (const void *p, const void *q)
8198 {
8199 union aligned64
8200 {
8201 uint64_t v;
8202 unsigned char c[8];
8203 };
8204 const union aligned64 *a
8205 = (const union aligned64 *) ((const Elf64_External_Rel *) p)->r_offset;
8206 const union aligned64 *b
8207 = (const union aligned64 *) ((const Elf64_External_Rel *) q)->r_offset;
8208
8209 uint64_t aval = ( (uint64_t) a->c[0] << 56
8210 | (uint64_t) a->c[1] << 48
8211 | (uint64_t) a->c[2] << 40
8212 | (uint64_t) a->c[3] << 32
8213 | (uint64_t) a->c[4] << 24
8214 | (uint64_t) a->c[5] << 16
8215 | (uint64_t) a->c[6] << 8
8216 | (uint64_t) a->c[7]);
8217 uint64_t bval = ( (uint64_t) b->c[0] << 56
8218 | (uint64_t) b->c[1] << 48
8219 | (uint64_t) b->c[2] << 40
8220 | (uint64_t) b->c[3] << 32
8221 | (uint64_t) b->c[4] << 24
8222 | (uint64_t) b->c[5] << 16
8223 | (uint64_t) b->c[6] << 8
8224 | (uint64_t) b->c[7]);
8225 if (aval < bval)
8226 return -1;
8227 else if (aval > bval)
8228 return 1;
8229 return 0;
8230 }
8231 #endif
8232
8233 /* When performing a relocatable link, the input relocations are
8234 preserved. But, if they reference global symbols, the indices
8235 referenced must be updated. Update all the relocations found in
8236 RELDATA. */
8237
8238 static void
8239 elf_link_adjust_relocs (bfd *abfd,
8240 struct bfd_elf_section_reloc_data *reldata,
8241 bfd_boolean sort)
8242 {
8243 unsigned int i;
8244 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8245 bfd_byte *erela;
8246 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8247 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8248 bfd_vma r_type_mask;
8249 int r_sym_shift;
8250 unsigned int count = reldata->count;
8251 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8252
8253 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8254 {
8255 swap_in = bed->s->swap_reloc_in;
8256 swap_out = bed->s->swap_reloc_out;
8257 }
8258 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8259 {
8260 swap_in = bed->s->swap_reloca_in;
8261 swap_out = bed->s->swap_reloca_out;
8262 }
8263 else
8264 abort ();
8265
8266 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8267 abort ();
8268
8269 if (bed->s->arch_size == 32)
8270 {
8271 r_type_mask = 0xff;
8272 r_sym_shift = 8;
8273 }
8274 else
8275 {
8276 r_type_mask = 0xffffffff;
8277 r_sym_shift = 32;
8278 }
8279
8280 erela = reldata->hdr->contents;
8281 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8282 {
8283 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8284 unsigned int j;
8285
8286 if (*rel_hash == NULL)
8287 continue;
8288
8289 BFD_ASSERT ((*rel_hash)->indx >= 0);
8290
8291 (*swap_in) (abfd, erela, irela);
8292 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8293 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8294 | (irela[j].r_info & r_type_mask));
8295 (*swap_out) (abfd, irela, erela);
8296 }
8297
8298 if (sort)
8299 {
8300 int (*compare) (const void *, const void *);
8301
8302 if (bed->s->arch_size == 32)
8303 {
8304 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8305 compare = cmp_ext32l_r_offset;
8306 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8307 compare = cmp_ext32b_r_offset;
8308 else
8309 abort ();
8310 }
8311 else
8312 {
8313 #ifdef BFD_HOST_64_BIT
8314 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8315 compare = cmp_ext64l_r_offset;
8316 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8317 compare = cmp_ext64b_r_offset;
8318 else
8319 #endif
8320 abort ();
8321 }
8322 qsort (reldata->hdr->contents, count, reldata->hdr->sh_entsize, compare);
8323 free (reldata->hashes);
8324 reldata->hashes = NULL;
8325 }
8326 }
8327
8328 struct elf_link_sort_rela
8329 {
8330 union {
8331 bfd_vma offset;
8332 bfd_vma sym_mask;
8333 } u;
8334 enum elf_reloc_type_class type;
8335 /* We use this as an array of size int_rels_per_ext_rel. */
8336 Elf_Internal_Rela rela[1];
8337 };
8338
8339 static int
8340 elf_link_sort_cmp1 (const void *A, const void *B)
8341 {
8342 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8343 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8344 int relativea, relativeb;
8345
8346 relativea = a->type == reloc_class_relative;
8347 relativeb = b->type == reloc_class_relative;
8348
8349 if (relativea < relativeb)
8350 return 1;
8351 if (relativea > relativeb)
8352 return -1;
8353 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8354 return -1;
8355 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8356 return 1;
8357 if (a->rela->r_offset < b->rela->r_offset)
8358 return -1;
8359 if (a->rela->r_offset > b->rela->r_offset)
8360 return 1;
8361 return 0;
8362 }
8363
8364 static int
8365 elf_link_sort_cmp2 (const void *A, const void *B)
8366 {
8367 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8368 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8369
8370 if (a->type < b->type)
8371 return -1;
8372 if (a->type > b->type)
8373 return 1;
8374 if (a->u.offset < b->u.offset)
8375 return -1;
8376 if (a->u.offset > b->u.offset)
8377 return 1;
8378 if (a->rela->r_offset < b->rela->r_offset)
8379 return -1;
8380 if (a->rela->r_offset > b->rela->r_offset)
8381 return 1;
8382 return 0;
8383 }
8384
8385 static size_t
8386 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8387 {
8388 asection *dynamic_relocs;
8389 asection *rela_dyn;
8390 asection *rel_dyn;
8391 bfd_size_type count, size;
8392 size_t i, ret, sort_elt, ext_size;
8393 bfd_byte *sort, *s_non_relative, *p;
8394 struct elf_link_sort_rela *sq;
8395 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8396 int i2e = bed->s->int_rels_per_ext_rel;
8397 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8398 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8399 struct bfd_link_order *lo;
8400 bfd_vma r_sym_mask;
8401 bfd_boolean use_rela;
8402
8403 /* Find a dynamic reloc section. */
8404 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8405 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8406 if (rela_dyn != NULL && rela_dyn->size > 0
8407 && rel_dyn != NULL && rel_dyn->size > 0)
8408 {
8409 bfd_boolean use_rela_initialised = FALSE;
8410
8411 /* This is just here to stop gcc from complaining.
8412 It's initialization checking code is not perfect. */
8413 use_rela = TRUE;
8414
8415 /* Both sections are present. Examine the sizes
8416 of the indirect sections to help us choose. */
8417 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8418 if (lo->type == bfd_indirect_link_order)
8419 {
8420 asection *o = lo->u.indirect.section;
8421
8422 if ((o->size % bed->s->sizeof_rela) == 0)
8423 {
8424 if ((o->size % bed->s->sizeof_rel) == 0)
8425 /* Section size is divisible by both rel and rela sizes.
8426 It is of no help to us. */
8427 ;
8428 else
8429 {
8430 /* Section size is only divisible by rela. */
8431 if (use_rela_initialised && (use_rela == FALSE))
8432 {
8433 _bfd_error_handler
8434 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8435 bfd_set_error (bfd_error_invalid_operation);
8436 return 0;
8437 }
8438 else
8439 {
8440 use_rela = TRUE;
8441 use_rela_initialised = TRUE;
8442 }
8443 }
8444 }
8445 else if ((o->size % bed->s->sizeof_rel) == 0)
8446 {
8447 /* Section size is only divisible by rel. */
8448 if (use_rela_initialised && (use_rela == TRUE))
8449 {
8450 _bfd_error_handler
8451 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8452 bfd_set_error (bfd_error_invalid_operation);
8453 return 0;
8454 }
8455 else
8456 {
8457 use_rela = FALSE;
8458 use_rela_initialised = TRUE;
8459 }
8460 }
8461 else
8462 {
8463 /* The section size is not divisible by either - something is wrong. */
8464 _bfd_error_handler
8465 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8466 bfd_set_error (bfd_error_invalid_operation);
8467 return 0;
8468 }
8469 }
8470
8471 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8472 if (lo->type == bfd_indirect_link_order)
8473 {
8474 asection *o = lo->u.indirect.section;
8475
8476 if ((o->size % bed->s->sizeof_rela) == 0)
8477 {
8478 if ((o->size % bed->s->sizeof_rel) == 0)
8479 /* Section size is divisible by both rel and rela sizes.
8480 It is of no help to us. */
8481 ;
8482 else
8483 {
8484 /* Section size is only divisible by rela. */
8485 if (use_rela_initialised && (use_rela == FALSE))
8486 {
8487 _bfd_error_handler
8488 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8489 bfd_set_error (bfd_error_invalid_operation);
8490 return 0;
8491 }
8492 else
8493 {
8494 use_rela = TRUE;
8495 use_rela_initialised = TRUE;
8496 }
8497 }
8498 }
8499 else if ((o->size % bed->s->sizeof_rel) == 0)
8500 {
8501 /* Section size is only divisible by rel. */
8502 if (use_rela_initialised && (use_rela == TRUE))
8503 {
8504 _bfd_error_handler
8505 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8506 bfd_set_error (bfd_error_invalid_operation);
8507 return 0;
8508 }
8509 else
8510 {
8511 use_rela = FALSE;
8512 use_rela_initialised = TRUE;
8513 }
8514 }
8515 else
8516 {
8517 /* The section size is not divisible by either - something is wrong. */
8518 _bfd_error_handler
8519 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8520 bfd_set_error (bfd_error_invalid_operation);
8521 return 0;
8522 }
8523 }
8524
8525 if (! use_rela_initialised)
8526 /* Make a guess. */
8527 use_rela = TRUE;
8528 }
8529 else if (rela_dyn != NULL && rela_dyn->size > 0)
8530 use_rela = TRUE;
8531 else if (rel_dyn != NULL && rel_dyn->size > 0)
8532 use_rela = FALSE;
8533 else
8534 return 0;
8535
8536 if (use_rela)
8537 {
8538 dynamic_relocs = rela_dyn;
8539 ext_size = bed->s->sizeof_rela;
8540 swap_in = bed->s->swap_reloca_in;
8541 swap_out = bed->s->swap_reloca_out;
8542 }
8543 else
8544 {
8545 dynamic_relocs = rel_dyn;
8546 ext_size = bed->s->sizeof_rel;
8547 swap_in = bed->s->swap_reloc_in;
8548 swap_out = bed->s->swap_reloc_out;
8549 }
8550
8551 size = 0;
8552 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8553 if (lo->type == bfd_indirect_link_order)
8554 size += lo->u.indirect.section->size;
8555
8556 if (size != dynamic_relocs->size)
8557 return 0;
8558
8559 sort_elt = (sizeof (struct elf_link_sort_rela)
8560 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8561
8562 count = dynamic_relocs->size / ext_size;
8563 if (count == 0)
8564 return 0;
8565 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8566
8567 if (sort == NULL)
8568 {
8569 (*info->callbacks->warning)
8570 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8571 return 0;
8572 }
8573
8574 if (bed->s->arch_size == 32)
8575 r_sym_mask = ~(bfd_vma) 0xff;
8576 else
8577 r_sym_mask = ~(bfd_vma) 0xffffffff;
8578
8579 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8580 if (lo->type == bfd_indirect_link_order)
8581 {
8582 bfd_byte *erel, *erelend;
8583 asection *o = lo->u.indirect.section;
8584
8585 if (o->contents == NULL && o->size != 0)
8586 {
8587 /* This is a reloc section that is being handled as a normal
8588 section. See bfd_section_from_shdr. We can't combine
8589 relocs in this case. */
8590 free (sort);
8591 return 0;
8592 }
8593 erel = o->contents;
8594 erelend = o->contents + o->size;
8595 /* FIXME: octets_per_byte. */
8596 p = sort + o->output_offset / ext_size * sort_elt;
8597
8598 while (erel < erelend)
8599 {
8600 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8601
8602 (*swap_in) (abfd, erel, s->rela);
8603 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8604 s->u.sym_mask = r_sym_mask;
8605 p += sort_elt;
8606 erel += ext_size;
8607 }
8608 }
8609
8610 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8611
8612 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8613 {
8614 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8615 if (s->type != reloc_class_relative)
8616 break;
8617 }
8618 ret = i;
8619 s_non_relative = p;
8620
8621 sq = (struct elf_link_sort_rela *) s_non_relative;
8622 for (; i < count; i++, p += sort_elt)
8623 {
8624 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8625 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8626 sq = sp;
8627 sp->u.offset = sq->rela->r_offset;
8628 }
8629
8630 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8631
8632 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8633 if (lo->type == bfd_indirect_link_order)
8634 {
8635 bfd_byte *erel, *erelend;
8636 asection *o = lo->u.indirect.section;
8637
8638 erel = o->contents;
8639 erelend = o->contents + o->size;
8640 /* FIXME: octets_per_byte. */
8641 p = sort + o->output_offset / ext_size * sort_elt;
8642 while (erel < erelend)
8643 {
8644 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8645 (*swap_out) (abfd, s->rela, erel);
8646 p += sort_elt;
8647 erel += ext_size;
8648 }
8649 }
8650
8651 free (sort);
8652 *psec = dynamic_relocs;
8653 return ret;
8654 }
8655
8656 /* Add a symbol to the output symbol string table. */
8657
8658 static int
8659 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
8660 const char *name,
8661 Elf_Internal_Sym *elfsym,
8662 asection *input_sec,
8663 struct elf_link_hash_entry *h)
8664 {
8665 int (*output_symbol_hook)
8666 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8667 struct elf_link_hash_entry *);
8668 struct elf_link_hash_table *hash_table;
8669 const struct elf_backend_data *bed;
8670 bfd_size_type strtabsize;
8671
8672 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8673
8674 bed = get_elf_backend_data (flinfo->output_bfd);
8675 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8676 if (output_symbol_hook != NULL)
8677 {
8678 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8679 if (ret != 1)
8680 return ret;
8681 }
8682
8683 if (name == NULL
8684 || *name == '\0'
8685 || (input_sec->flags & SEC_EXCLUDE))
8686 elfsym->st_name = (unsigned long) -1;
8687 else
8688 {
8689 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
8690 to get the final offset for st_name. */
8691 elfsym->st_name
8692 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
8693 name, FALSE);
8694 if (elfsym->st_name == (unsigned long) -1)
8695 return 0;
8696 }
8697
8698 hash_table = elf_hash_table (flinfo->info);
8699 strtabsize = hash_table->strtabsize;
8700 if (strtabsize <= hash_table->strtabcount)
8701 {
8702 strtabsize += strtabsize;
8703 hash_table->strtabsize = strtabsize;
8704 strtabsize *= sizeof (*hash_table->strtab);
8705 hash_table->strtab
8706 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
8707 strtabsize);
8708 if (hash_table->strtab == NULL)
8709 return 0;
8710 }
8711 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
8712 hash_table->strtab[hash_table->strtabcount].dest_index
8713 = hash_table->strtabcount;
8714 hash_table->strtab[hash_table->strtabcount].destshndx_index
8715 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
8716
8717 bfd_get_symcount (flinfo->output_bfd) += 1;
8718 hash_table->strtabcount += 1;
8719
8720 return 1;
8721 }
8722
8723 /* Swap symbols out to the symbol table and flush the output symbols to
8724 the file. */
8725
8726 static bfd_boolean
8727 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
8728 {
8729 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
8730 bfd_size_type amt, i;
8731 const struct elf_backend_data *bed;
8732 bfd_byte *symbuf;
8733 Elf_Internal_Shdr *hdr;
8734 file_ptr pos;
8735 bfd_boolean ret;
8736
8737 if (!hash_table->strtabcount)
8738 return TRUE;
8739
8740 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8741
8742 bed = get_elf_backend_data (flinfo->output_bfd);
8743
8744 amt = bed->s->sizeof_sym * hash_table->strtabcount;
8745 symbuf = (bfd_byte *) bfd_malloc (amt);
8746 if (symbuf == NULL)
8747 return FALSE;
8748
8749 if (flinfo->symshndxbuf)
8750 {
8751 amt = (sizeof (Elf_External_Sym_Shndx)
8752 * (bfd_get_symcount (flinfo->output_bfd)));
8753 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
8754 if (flinfo->symshndxbuf == NULL)
8755 {
8756 free (symbuf);
8757 return FALSE;
8758 }
8759 }
8760
8761 for (i = 0; i < hash_table->strtabcount; i++)
8762 {
8763 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
8764 if (elfsym->sym.st_name == (unsigned long) -1)
8765 elfsym->sym.st_name = 0;
8766 else
8767 elfsym->sym.st_name
8768 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
8769 elfsym->sym.st_name);
8770 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
8771 ((bfd_byte *) symbuf
8772 + (elfsym->dest_index
8773 * bed->s->sizeof_sym)),
8774 (flinfo->symshndxbuf
8775 + elfsym->destshndx_index));
8776 }
8777
8778 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8779 pos = hdr->sh_offset + hdr->sh_size;
8780 amt = hash_table->strtabcount * bed->s->sizeof_sym;
8781 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
8782 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
8783 {
8784 hdr->sh_size += amt;
8785 ret = TRUE;
8786 }
8787 else
8788 ret = FALSE;
8789
8790 free (symbuf);
8791
8792 free (hash_table->strtab);
8793 hash_table->strtab = NULL;
8794
8795 return ret;
8796 }
8797
8798 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8799
8800 static bfd_boolean
8801 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8802 {
8803 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8804 && sym->st_shndx < SHN_LORESERVE)
8805 {
8806 /* The gABI doesn't support dynamic symbols in output sections
8807 beyond 64k. */
8808 (*_bfd_error_handler)
8809 (_("%B: Too many sections: %d (>= %d)"),
8810 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8811 bfd_set_error (bfd_error_nonrepresentable_section);
8812 return FALSE;
8813 }
8814 return TRUE;
8815 }
8816
8817 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8818 allowing an unsatisfied unversioned symbol in the DSO to match a
8819 versioned symbol that would normally require an explicit version.
8820 We also handle the case that a DSO references a hidden symbol
8821 which may be satisfied by a versioned symbol in another DSO. */
8822
8823 static bfd_boolean
8824 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8825 const struct elf_backend_data *bed,
8826 struct elf_link_hash_entry *h)
8827 {
8828 bfd *abfd;
8829 struct elf_link_loaded_list *loaded;
8830
8831 if (!is_elf_hash_table (info->hash))
8832 return FALSE;
8833
8834 /* Check indirect symbol. */
8835 while (h->root.type == bfd_link_hash_indirect)
8836 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8837
8838 switch (h->root.type)
8839 {
8840 default:
8841 abfd = NULL;
8842 break;
8843
8844 case bfd_link_hash_undefined:
8845 case bfd_link_hash_undefweak:
8846 abfd = h->root.u.undef.abfd;
8847 if ((abfd->flags & DYNAMIC) == 0
8848 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8849 return FALSE;
8850 break;
8851
8852 case bfd_link_hash_defined:
8853 case bfd_link_hash_defweak:
8854 abfd = h->root.u.def.section->owner;
8855 break;
8856
8857 case bfd_link_hash_common:
8858 abfd = h->root.u.c.p->section->owner;
8859 break;
8860 }
8861 BFD_ASSERT (abfd != NULL);
8862
8863 for (loaded = elf_hash_table (info)->loaded;
8864 loaded != NULL;
8865 loaded = loaded->next)
8866 {
8867 bfd *input;
8868 Elf_Internal_Shdr *hdr;
8869 bfd_size_type symcount;
8870 bfd_size_type extsymcount;
8871 bfd_size_type extsymoff;
8872 Elf_Internal_Shdr *versymhdr;
8873 Elf_Internal_Sym *isym;
8874 Elf_Internal_Sym *isymend;
8875 Elf_Internal_Sym *isymbuf;
8876 Elf_External_Versym *ever;
8877 Elf_External_Versym *extversym;
8878
8879 input = loaded->abfd;
8880
8881 /* We check each DSO for a possible hidden versioned definition. */
8882 if (input == abfd
8883 || (input->flags & DYNAMIC) == 0
8884 || elf_dynversym (input) == 0)
8885 continue;
8886
8887 hdr = &elf_tdata (input)->dynsymtab_hdr;
8888
8889 symcount = hdr->sh_size / bed->s->sizeof_sym;
8890 if (elf_bad_symtab (input))
8891 {
8892 extsymcount = symcount;
8893 extsymoff = 0;
8894 }
8895 else
8896 {
8897 extsymcount = symcount - hdr->sh_info;
8898 extsymoff = hdr->sh_info;
8899 }
8900
8901 if (extsymcount == 0)
8902 continue;
8903
8904 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8905 NULL, NULL, NULL);
8906 if (isymbuf == NULL)
8907 return FALSE;
8908
8909 /* Read in any version definitions. */
8910 versymhdr = &elf_tdata (input)->dynversym_hdr;
8911 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8912 if (extversym == NULL)
8913 goto error_ret;
8914
8915 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8916 || (bfd_bread (extversym, versymhdr->sh_size, input)
8917 != versymhdr->sh_size))
8918 {
8919 free (extversym);
8920 error_ret:
8921 free (isymbuf);
8922 return FALSE;
8923 }
8924
8925 ever = extversym + extsymoff;
8926 isymend = isymbuf + extsymcount;
8927 for (isym = isymbuf; isym < isymend; isym++, ever++)
8928 {
8929 const char *name;
8930 Elf_Internal_Versym iver;
8931 unsigned short version_index;
8932
8933 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8934 || isym->st_shndx == SHN_UNDEF)
8935 continue;
8936
8937 name = bfd_elf_string_from_elf_section (input,
8938 hdr->sh_link,
8939 isym->st_name);
8940 if (strcmp (name, h->root.root.string) != 0)
8941 continue;
8942
8943 _bfd_elf_swap_versym_in (input, ever, &iver);
8944
8945 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8946 && !(h->def_regular
8947 && h->forced_local))
8948 {
8949 /* If we have a non-hidden versioned sym, then it should
8950 have provided a definition for the undefined sym unless
8951 it is defined in a non-shared object and forced local.
8952 */
8953 abort ();
8954 }
8955
8956 version_index = iver.vs_vers & VERSYM_VERSION;
8957 if (version_index == 1 || version_index == 2)
8958 {
8959 /* This is the base or first version. We can use it. */
8960 free (extversym);
8961 free (isymbuf);
8962 return TRUE;
8963 }
8964 }
8965
8966 free (extversym);
8967 free (isymbuf);
8968 }
8969
8970 return FALSE;
8971 }
8972
8973 /* Add an external symbol to the symbol table. This is called from
8974 the hash table traversal routine. When generating a shared object,
8975 we go through the symbol table twice. The first time we output
8976 anything that might have been forced to local scope in a version
8977 script. The second time we output the symbols that are still
8978 global symbols. */
8979
8980 static bfd_boolean
8981 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8982 {
8983 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8984 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8985 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8986 bfd_boolean strip;
8987 Elf_Internal_Sym sym;
8988 asection *input_sec;
8989 const struct elf_backend_data *bed;
8990 long indx;
8991 int ret;
8992 /* A symbol is bound locally if it is forced local or it is locally
8993 defined, hidden versioned, not referenced by shared library and
8994 not exported when linking executable. */
8995 bfd_boolean local_bind = (h->forced_local
8996 || (flinfo->info->executable
8997 && !flinfo->info->export_dynamic
8998 && !h->dynamic
8999 && !h->ref_dynamic
9000 && h->def_regular
9001 && h->versioned == versioned_hidden));
9002
9003 if (h->root.type == bfd_link_hash_warning)
9004 {
9005 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9006 if (h->root.type == bfd_link_hash_new)
9007 return TRUE;
9008 }
9009
9010 /* Decide whether to output this symbol in this pass. */
9011 if (eoinfo->localsyms)
9012 {
9013 if (!local_bind)
9014 return TRUE;
9015 }
9016 else
9017 {
9018 if (local_bind)
9019 return TRUE;
9020 }
9021
9022 bed = get_elf_backend_data (flinfo->output_bfd);
9023
9024 if (h->root.type == bfd_link_hash_undefined)
9025 {
9026 /* If we have an undefined symbol reference here then it must have
9027 come from a shared library that is being linked in. (Undefined
9028 references in regular files have already been handled unless
9029 they are in unreferenced sections which are removed by garbage
9030 collection). */
9031 bfd_boolean ignore_undef = FALSE;
9032
9033 /* Some symbols may be special in that the fact that they're
9034 undefined can be safely ignored - let backend determine that. */
9035 if (bed->elf_backend_ignore_undef_symbol)
9036 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9037
9038 /* If we are reporting errors for this situation then do so now. */
9039 if (!ignore_undef
9040 && h->ref_dynamic
9041 && (!h->ref_regular || flinfo->info->gc_sections)
9042 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9043 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9044 {
9045 if (!(flinfo->info->callbacks->undefined_symbol
9046 (flinfo->info, h->root.root.string,
9047 h->ref_regular ? NULL : h->root.u.undef.abfd,
9048 NULL, 0,
9049 (flinfo->info->unresolved_syms_in_shared_libs
9050 == RM_GENERATE_ERROR))))
9051 {
9052 bfd_set_error (bfd_error_bad_value);
9053 eoinfo->failed = TRUE;
9054 return FALSE;
9055 }
9056 }
9057 }
9058
9059 /* We should also warn if a forced local symbol is referenced from
9060 shared libraries. */
9061 if (flinfo->info->executable
9062 && h->forced_local
9063 && h->ref_dynamic
9064 && h->def_regular
9065 && !h->dynamic_def
9066 && h->ref_dynamic_nonweak
9067 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9068 {
9069 bfd *def_bfd;
9070 const char *msg;
9071 struct elf_link_hash_entry *hi = h;
9072
9073 /* Check indirect symbol. */
9074 while (hi->root.type == bfd_link_hash_indirect)
9075 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9076
9077 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9078 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
9079 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9080 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
9081 else
9082 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
9083 def_bfd = flinfo->output_bfd;
9084 if (hi->root.u.def.section != bfd_abs_section_ptr)
9085 def_bfd = hi->root.u.def.section->owner;
9086 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
9087 h->root.root.string);
9088 bfd_set_error (bfd_error_bad_value);
9089 eoinfo->failed = TRUE;
9090 return FALSE;
9091 }
9092
9093 /* We don't want to output symbols that have never been mentioned by
9094 a regular file, or that we have been told to strip. However, if
9095 h->indx is set to -2, the symbol is used by a reloc and we must
9096 output it. */
9097 strip = FALSE;
9098 if (h->indx == -2)
9099 ;
9100 else if ((h->def_dynamic
9101 || h->ref_dynamic
9102 || h->root.type == bfd_link_hash_new)
9103 && !h->def_regular
9104 && !h->ref_regular)
9105 strip = TRUE;
9106 else if (flinfo->info->strip == strip_all)
9107 strip = TRUE;
9108 else if (flinfo->info->strip == strip_some
9109 && bfd_hash_lookup (flinfo->info->keep_hash,
9110 h->root.root.string, FALSE, FALSE) == NULL)
9111 strip = TRUE;
9112 else if ((h->root.type == bfd_link_hash_defined
9113 || h->root.type == bfd_link_hash_defweak)
9114 && ((flinfo->info->strip_discarded
9115 && discarded_section (h->root.u.def.section))
9116 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9117 && h->root.u.def.section->owner != NULL
9118 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9119 strip = TRUE;
9120 else if ((h->root.type == bfd_link_hash_undefined
9121 || h->root.type == bfd_link_hash_undefweak)
9122 && h->root.u.undef.abfd != NULL
9123 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9124 strip = TRUE;
9125
9126 /* If we're stripping it, and it's not a dynamic symbol, there's
9127 nothing else to do. However, if it is a forced local symbol or
9128 an ifunc symbol we need to give the backend finish_dynamic_symbol
9129 function a chance to make it dynamic. */
9130 if (strip
9131 && h->dynindx == -1
9132 && h->type != STT_GNU_IFUNC
9133 && !h->forced_local)
9134 return TRUE;
9135
9136 sym.st_value = 0;
9137 sym.st_size = h->size;
9138 sym.st_other = h->other;
9139 if (local_bind)
9140 {
9141 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
9142 /* Turn off visibility on local symbol. */
9143 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
9144 }
9145 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
9146 else if (h->unique_global && h->def_regular)
9147 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
9148 else if (h->root.type == bfd_link_hash_undefweak
9149 || h->root.type == bfd_link_hash_defweak)
9150 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
9151 else
9152 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
9153 sym.st_target_internal = h->target_internal;
9154
9155 switch (h->root.type)
9156 {
9157 default:
9158 case bfd_link_hash_new:
9159 case bfd_link_hash_warning:
9160 abort ();
9161 return FALSE;
9162
9163 case bfd_link_hash_undefined:
9164 case bfd_link_hash_undefweak:
9165 input_sec = bfd_und_section_ptr;
9166 sym.st_shndx = SHN_UNDEF;
9167 break;
9168
9169 case bfd_link_hash_defined:
9170 case bfd_link_hash_defweak:
9171 {
9172 input_sec = h->root.u.def.section;
9173 if (input_sec->output_section != NULL)
9174 {
9175 sym.st_shndx =
9176 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9177 input_sec->output_section);
9178 if (sym.st_shndx == SHN_BAD)
9179 {
9180 (*_bfd_error_handler)
9181 (_("%B: could not find output section %A for input section %A"),
9182 flinfo->output_bfd, input_sec->output_section, input_sec);
9183 bfd_set_error (bfd_error_nonrepresentable_section);
9184 eoinfo->failed = TRUE;
9185 return FALSE;
9186 }
9187
9188 /* ELF symbols in relocatable files are section relative,
9189 but in nonrelocatable files they are virtual
9190 addresses. */
9191 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9192 if (!flinfo->info->relocatable)
9193 {
9194 sym.st_value += input_sec->output_section->vma;
9195 if (h->type == STT_TLS)
9196 {
9197 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9198 if (tls_sec != NULL)
9199 sym.st_value -= tls_sec->vma;
9200 }
9201 }
9202 }
9203 else
9204 {
9205 BFD_ASSERT (input_sec->owner == NULL
9206 || (input_sec->owner->flags & DYNAMIC) != 0);
9207 sym.st_shndx = SHN_UNDEF;
9208 input_sec = bfd_und_section_ptr;
9209 }
9210 }
9211 break;
9212
9213 case bfd_link_hash_common:
9214 input_sec = h->root.u.c.p->section;
9215 sym.st_shndx = bed->common_section_index (input_sec);
9216 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9217 break;
9218
9219 case bfd_link_hash_indirect:
9220 /* These symbols are created by symbol versioning. They point
9221 to the decorated version of the name. For example, if the
9222 symbol foo@@GNU_1.2 is the default, which should be used when
9223 foo is used with no version, then we add an indirect symbol
9224 foo which points to foo@@GNU_1.2. We ignore these symbols,
9225 since the indirected symbol is already in the hash table. */
9226 return TRUE;
9227 }
9228
9229 /* Give the processor backend a chance to tweak the symbol value,
9230 and also to finish up anything that needs to be done for this
9231 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9232 forced local syms when non-shared is due to a historical quirk.
9233 STT_GNU_IFUNC symbol must go through PLT. */
9234 if ((h->type == STT_GNU_IFUNC
9235 && h->def_regular
9236 && !flinfo->info->relocatable)
9237 || ((h->dynindx != -1
9238 || h->forced_local)
9239 && ((flinfo->info->shared
9240 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9241 || h->root.type != bfd_link_hash_undefweak))
9242 || !h->forced_local)
9243 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9244 {
9245 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9246 (flinfo->output_bfd, flinfo->info, h, &sym)))
9247 {
9248 eoinfo->failed = TRUE;
9249 return FALSE;
9250 }
9251 }
9252
9253 /* If we are marking the symbol as undefined, and there are no
9254 non-weak references to this symbol from a regular object, then
9255 mark the symbol as weak undefined; if there are non-weak
9256 references, mark the symbol as strong. We can't do this earlier,
9257 because it might not be marked as undefined until the
9258 finish_dynamic_symbol routine gets through with it. */
9259 if (sym.st_shndx == SHN_UNDEF
9260 && h->ref_regular
9261 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9262 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9263 {
9264 int bindtype;
9265 unsigned int type = ELF_ST_TYPE (sym.st_info);
9266
9267 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9268 if (type == STT_GNU_IFUNC)
9269 type = STT_FUNC;
9270
9271 if (h->ref_regular_nonweak)
9272 bindtype = STB_GLOBAL;
9273 else
9274 bindtype = STB_WEAK;
9275 sym.st_info = ELF_ST_INFO (bindtype, type);
9276 }
9277
9278 /* If this is a symbol defined in a dynamic library, don't use the
9279 symbol size from the dynamic library. Relinking an executable
9280 against a new library may introduce gratuitous changes in the
9281 executable's symbols if we keep the size. */
9282 if (sym.st_shndx == SHN_UNDEF
9283 && !h->def_regular
9284 && h->def_dynamic)
9285 sym.st_size = 0;
9286
9287 /* If a non-weak symbol with non-default visibility is not defined
9288 locally, it is a fatal error. */
9289 if (!flinfo->info->relocatable
9290 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9291 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9292 && h->root.type == bfd_link_hash_undefined
9293 && !h->def_regular)
9294 {
9295 const char *msg;
9296
9297 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9298 msg = _("%B: protected symbol `%s' isn't defined");
9299 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9300 msg = _("%B: internal symbol `%s' isn't defined");
9301 else
9302 msg = _("%B: hidden symbol `%s' isn't defined");
9303 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9304 bfd_set_error (bfd_error_bad_value);
9305 eoinfo->failed = TRUE;
9306 return FALSE;
9307 }
9308
9309 /* If this symbol should be put in the .dynsym section, then put it
9310 there now. We already know the symbol index. We also fill in
9311 the entry in the .hash section. */
9312 if (flinfo->dynsym_sec != NULL
9313 && h->dynindx != -1
9314 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9315 {
9316 bfd_byte *esym;
9317
9318 /* Since there is no version information in the dynamic string,
9319 if there is no version info in symbol version section, we will
9320 have a run-time problem if not linking executable, referenced
9321 by shared library, not locally defined, or not bound locally.
9322 */
9323 if (h->verinfo.verdef == NULL
9324 && !local_bind
9325 && (!flinfo->info->executable
9326 || h->ref_dynamic
9327 || !h->def_regular))
9328 {
9329 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9330
9331 if (p && p [1] != '\0')
9332 {
9333 (*_bfd_error_handler)
9334 (_("%B: No symbol version section for versioned symbol `%s'"),
9335 flinfo->output_bfd, h->root.root.string);
9336 eoinfo->failed = TRUE;
9337 return FALSE;
9338 }
9339 }
9340
9341 sym.st_name = h->dynstr_index;
9342 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9343 if (!check_dynsym (flinfo->output_bfd, &sym))
9344 {
9345 eoinfo->failed = TRUE;
9346 return FALSE;
9347 }
9348 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9349
9350 if (flinfo->hash_sec != NULL)
9351 {
9352 size_t hash_entry_size;
9353 bfd_byte *bucketpos;
9354 bfd_vma chain;
9355 size_t bucketcount;
9356 size_t bucket;
9357
9358 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9359 bucket = h->u.elf_hash_value % bucketcount;
9360
9361 hash_entry_size
9362 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9363 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9364 + (bucket + 2) * hash_entry_size);
9365 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9366 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9367 bucketpos);
9368 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9369 ((bfd_byte *) flinfo->hash_sec->contents
9370 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9371 }
9372
9373 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9374 {
9375 Elf_Internal_Versym iversym;
9376 Elf_External_Versym *eversym;
9377
9378 if (!h->def_regular)
9379 {
9380 if (h->verinfo.verdef == NULL
9381 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9382 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9383 iversym.vs_vers = 0;
9384 else
9385 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9386 }
9387 else
9388 {
9389 if (h->verinfo.vertree == NULL)
9390 iversym.vs_vers = 1;
9391 else
9392 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9393 if (flinfo->info->create_default_symver)
9394 iversym.vs_vers++;
9395 }
9396
9397 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
9398 defined locally. */
9399 if (h->versioned == versioned_hidden && h->def_regular)
9400 iversym.vs_vers |= VERSYM_HIDDEN;
9401
9402 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9403 eversym += h->dynindx;
9404 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9405 }
9406 }
9407
9408 /* If the symbol is undefined, and we didn't output it to .dynsym,
9409 strip it from .symtab too. Obviously we can't do this for
9410 relocatable output or when needed for --emit-relocs. */
9411 else if (input_sec == bfd_und_section_ptr
9412 && h->indx != -2
9413 && !flinfo->info->relocatable)
9414 return TRUE;
9415 /* Also strip others that we couldn't earlier due to dynamic symbol
9416 processing. */
9417 if (strip)
9418 return TRUE;
9419 if ((input_sec->flags & SEC_EXCLUDE) != 0)
9420 return TRUE;
9421
9422 /* Output a FILE symbol so that following locals are not associated
9423 with the wrong input file. We need one for forced local symbols
9424 if we've seen more than one FILE symbol or when we have exactly
9425 one FILE symbol but global symbols are present in a file other
9426 than the one with the FILE symbol. We also need one if linker
9427 defined symbols are present. In practice these conditions are
9428 always met, so just emit the FILE symbol unconditionally. */
9429 if (eoinfo->localsyms
9430 && !eoinfo->file_sym_done
9431 && eoinfo->flinfo->filesym_count != 0)
9432 {
9433 Elf_Internal_Sym fsym;
9434
9435 memset (&fsym, 0, sizeof (fsym));
9436 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9437 fsym.st_shndx = SHN_ABS;
9438 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
9439 bfd_und_section_ptr, NULL))
9440 return FALSE;
9441
9442 eoinfo->file_sym_done = TRUE;
9443 }
9444
9445 indx = bfd_get_symcount (flinfo->output_bfd);
9446 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
9447 input_sec, h);
9448 if (ret == 0)
9449 {
9450 eoinfo->failed = TRUE;
9451 return FALSE;
9452 }
9453 else if (ret == 1)
9454 h->indx = indx;
9455 else if (h->indx == -2)
9456 abort();
9457
9458 return TRUE;
9459 }
9460
9461 /* Return TRUE if special handling is done for relocs in SEC against
9462 symbols defined in discarded sections. */
9463
9464 static bfd_boolean
9465 elf_section_ignore_discarded_relocs (asection *sec)
9466 {
9467 const struct elf_backend_data *bed;
9468
9469 switch (sec->sec_info_type)
9470 {
9471 case SEC_INFO_TYPE_STABS:
9472 case SEC_INFO_TYPE_EH_FRAME:
9473 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
9474 return TRUE;
9475 default:
9476 break;
9477 }
9478
9479 bed = get_elf_backend_data (sec->owner);
9480 if (bed->elf_backend_ignore_discarded_relocs != NULL
9481 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9482 return TRUE;
9483
9484 return FALSE;
9485 }
9486
9487 /* Return a mask saying how ld should treat relocations in SEC against
9488 symbols defined in discarded sections. If this function returns
9489 COMPLAIN set, ld will issue a warning message. If this function
9490 returns PRETEND set, and the discarded section was link-once and the
9491 same size as the kept link-once section, ld will pretend that the
9492 symbol was actually defined in the kept section. Otherwise ld will
9493 zero the reloc (at least that is the intent, but some cooperation by
9494 the target dependent code is needed, particularly for REL targets). */
9495
9496 unsigned int
9497 _bfd_elf_default_action_discarded (asection *sec)
9498 {
9499 if (sec->flags & SEC_DEBUGGING)
9500 return PRETEND;
9501
9502 if (strcmp (".eh_frame", sec->name) == 0)
9503 return 0;
9504
9505 if (strcmp (".gcc_except_table", sec->name) == 0)
9506 return 0;
9507
9508 return COMPLAIN | PRETEND;
9509 }
9510
9511 /* Find a match between a section and a member of a section group. */
9512
9513 static asection *
9514 match_group_member (asection *sec, asection *group,
9515 struct bfd_link_info *info)
9516 {
9517 asection *first = elf_next_in_group (group);
9518 asection *s = first;
9519
9520 while (s != NULL)
9521 {
9522 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9523 return s;
9524
9525 s = elf_next_in_group (s);
9526 if (s == first)
9527 break;
9528 }
9529
9530 return NULL;
9531 }
9532
9533 /* Check if the kept section of a discarded section SEC can be used
9534 to replace it. Return the replacement if it is OK. Otherwise return
9535 NULL. */
9536
9537 asection *
9538 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9539 {
9540 asection *kept;
9541
9542 kept = sec->kept_section;
9543 if (kept != NULL)
9544 {
9545 if ((kept->flags & SEC_GROUP) != 0)
9546 kept = match_group_member (sec, kept, info);
9547 if (kept != NULL
9548 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9549 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9550 kept = NULL;
9551 sec->kept_section = kept;
9552 }
9553 return kept;
9554 }
9555
9556 /* Link an input file into the linker output file. This function
9557 handles all the sections and relocations of the input file at once.
9558 This is so that we only have to read the local symbols once, and
9559 don't have to keep them in memory. */
9560
9561 static bfd_boolean
9562 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9563 {
9564 int (*relocate_section)
9565 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9566 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9567 bfd *output_bfd;
9568 Elf_Internal_Shdr *symtab_hdr;
9569 size_t locsymcount;
9570 size_t extsymoff;
9571 Elf_Internal_Sym *isymbuf;
9572 Elf_Internal_Sym *isym;
9573 Elf_Internal_Sym *isymend;
9574 long *pindex;
9575 asection **ppsection;
9576 asection *o;
9577 const struct elf_backend_data *bed;
9578 struct elf_link_hash_entry **sym_hashes;
9579 bfd_size_type address_size;
9580 bfd_vma r_type_mask;
9581 int r_sym_shift;
9582 bfd_boolean have_file_sym = FALSE;
9583
9584 output_bfd = flinfo->output_bfd;
9585 bed = get_elf_backend_data (output_bfd);
9586 relocate_section = bed->elf_backend_relocate_section;
9587
9588 /* If this is a dynamic object, we don't want to do anything here:
9589 we don't want the local symbols, and we don't want the section
9590 contents. */
9591 if ((input_bfd->flags & DYNAMIC) != 0)
9592 return TRUE;
9593
9594 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9595 if (elf_bad_symtab (input_bfd))
9596 {
9597 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9598 extsymoff = 0;
9599 }
9600 else
9601 {
9602 locsymcount = symtab_hdr->sh_info;
9603 extsymoff = symtab_hdr->sh_info;
9604 }
9605
9606 /* Read the local symbols. */
9607 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9608 if (isymbuf == NULL && locsymcount != 0)
9609 {
9610 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9611 flinfo->internal_syms,
9612 flinfo->external_syms,
9613 flinfo->locsym_shndx);
9614 if (isymbuf == NULL)
9615 return FALSE;
9616 }
9617
9618 /* Find local symbol sections and adjust values of symbols in
9619 SEC_MERGE sections. Write out those local symbols we know are
9620 going into the output file. */
9621 isymend = isymbuf + locsymcount;
9622 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9623 isym < isymend;
9624 isym++, pindex++, ppsection++)
9625 {
9626 asection *isec;
9627 const char *name;
9628 Elf_Internal_Sym osym;
9629 long indx;
9630 int ret;
9631
9632 *pindex = -1;
9633
9634 if (elf_bad_symtab (input_bfd))
9635 {
9636 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9637 {
9638 *ppsection = NULL;
9639 continue;
9640 }
9641 }
9642
9643 if (isym->st_shndx == SHN_UNDEF)
9644 isec = bfd_und_section_ptr;
9645 else if (isym->st_shndx == SHN_ABS)
9646 isec = bfd_abs_section_ptr;
9647 else if (isym->st_shndx == SHN_COMMON)
9648 isec = bfd_com_section_ptr;
9649 else
9650 {
9651 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9652 if (isec == NULL)
9653 {
9654 /* Don't attempt to output symbols with st_shnx in the
9655 reserved range other than SHN_ABS and SHN_COMMON. */
9656 *ppsection = NULL;
9657 continue;
9658 }
9659 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9660 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9661 isym->st_value =
9662 _bfd_merged_section_offset (output_bfd, &isec,
9663 elf_section_data (isec)->sec_info,
9664 isym->st_value);
9665 }
9666
9667 *ppsection = isec;
9668
9669 /* Don't output the first, undefined, symbol. In fact, don't
9670 output any undefined local symbol. */
9671 if (isec == bfd_und_section_ptr)
9672 continue;
9673
9674 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9675 {
9676 /* We never output section symbols. Instead, we use the
9677 section symbol of the corresponding section in the output
9678 file. */
9679 continue;
9680 }
9681
9682 /* If we are stripping all symbols, we don't want to output this
9683 one. */
9684 if (flinfo->info->strip == strip_all)
9685 continue;
9686
9687 /* If we are discarding all local symbols, we don't want to
9688 output this one. If we are generating a relocatable output
9689 file, then some of the local symbols may be required by
9690 relocs; we output them below as we discover that they are
9691 needed. */
9692 if (flinfo->info->discard == discard_all)
9693 continue;
9694
9695 /* If this symbol is defined in a section which we are
9696 discarding, we don't need to keep it. */
9697 if (isym->st_shndx != SHN_UNDEF
9698 && isym->st_shndx < SHN_LORESERVE
9699 && bfd_section_removed_from_list (output_bfd,
9700 isec->output_section))
9701 continue;
9702
9703 /* Get the name of the symbol. */
9704 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9705 isym->st_name);
9706 if (name == NULL)
9707 return FALSE;
9708
9709 /* See if we are discarding symbols with this name. */
9710 if ((flinfo->info->strip == strip_some
9711 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9712 == NULL))
9713 || (((flinfo->info->discard == discard_sec_merge
9714 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9715 || flinfo->info->discard == discard_l)
9716 && bfd_is_local_label_name (input_bfd, name)))
9717 continue;
9718
9719 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9720 {
9721 if (input_bfd->lto_output)
9722 /* -flto puts a temp file name here. This means builds
9723 are not reproducible. Discard the symbol. */
9724 continue;
9725 have_file_sym = TRUE;
9726 flinfo->filesym_count += 1;
9727 }
9728 if (!have_file_sym)
9729 {
9730 /* In the absence of debug info, bfd_find_nearest_line uses
9731 FILE symbols to determine the source file for local
9732 function symbols. Provide a FILE symbol here if input
9733 files lack such, so that their symbols won't be
9734 associated with a previous input file. It's not the
9735 source file, but the best we can do. */
9736 have_file_sym = TRUE;
9737 flinfo->filesym_count += 1;
9738 memset (&osym, 0, sizeof (osym));
9739 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9740 osym.st_shndx = SHN_ABS;
9741 if (!elf_link_output_symstrtab (flinfo,
9742 (input_bfd->lto_output ? NULL
9743 : input_bfd->filename),
9744 &osym, bfd_abs_section_ptr,
9745 NULL))
9746 return FALSE;
9747 }
9748
9749 osym = *isym;
9750
9751 /* Adjust the section index for the output file. */
9752 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9753 isec->output_section);
9754 if (osym.st_shndx == SHN_BAD)
9755 return FALSE;
9756
9757 /* ELF symbols in relocatable files are section relative, but
9758 in executable files they are virtual addresses. Note that
9759 this code assumes that all ELF sections have an associated
9760 BFD section with a reasonable value for output_offset; below
9761 we assume that they also have a reasonable value for
9762 output_section. Any special sections must be set up to meet
9763 these requirements. */
9764 osym.st_value += isec->output_offset;
9765 if (!flinfo->info->relocatable)
9766 {
9767 osym.st_value += isec->output_section->vma;
9768 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9769 {
9770 /* STT_TLS symbols are relative to PT_TLS segment base. */
9771 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9772 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9773 }
9774 }
9775
9776 indx = bfd_get_symcount (output_bfd);
9777 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
9778 if (ret == 0)
9779 return FALSE;
9780 else if (ret == 1)
9781 *pindex = indx;
9782 }
9783
9784 if (bed->s->arch_size == 32)
9785 {
9786 r_type_mask = 0xff;
9787 r_sym_shift = 8;
9788 address_size = 4;
9789 }
9790 else
9791 {
9792 r_type_mask = 0xffffffff;
9793 r_sym_shift = 32;
9794 address_size = 8;
9795 }
9796
9797 /* Relocate the contents of each section. */
9798 sym_hashes = elf_sym_hashes (input_bfd);
9799 for (o = input_bfd->sections; o != NULL; o = o->next)
9800 {
9801 bfd_byte *contents;
9802
9803 if (! o->linker_mark)
9804 {
9805 /* This section was omitted from the link. */
9806 continue;
9807 }
9808
9809 if (flinfo->info->relocatable
9810 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9811 {
9812 /* Deal with the group signature symbol. */
9813 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9814 unsigned long symndx = sec_data->this_hdr.sh_info;
9815 asection *osec = o->output_section;
9816
9817 if (symndx >= locsymcount
9818 || (elf_bad_symtab (input_bfd)
9819 && flinfo->sections[symndx] == NULL))
9820 {
9821 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9822 while (h->root.type == bfd_link_hash_indirect
9823 || h->root.type == bfd_link_hash_warning)
9824 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9825 /* Arrange for symbol to be output. */
9826 h->indx = -2;
9827 elf_section_data (osec)->this_hdr.sh_info = -2;
9828 }
9829 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9830 {
9831 /* We'll use the output section target_index. */
9832 asection *sec = flinfo->sections[symndx]->output_section;
9833 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9834 }
9835 else
9836 {
9837 if (flinfo->indices[symndx] == -1)
9838 {
9839 /* Otherwise output the local symbol now. */
9840 Elf_Internal_Sym sym = isymbuf[symndx];
9841 asection *sec = flinfo->sections[symndx]->output_section;
9842 const char *name;
9843 long indx;
9844 int ret;
9845
9846 name = bfd_elf_string_from_elf_section (input_bfd,
9847 symtab_hdr->sh_link,
9848 sym.st_name);
9849 if (name == NULL)
9850 return FALSE;
9851
9852 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9853 sec);
9854 if (sym.st_shndx == SHN_BAD)
9855 return FALSE;
9856
9857 sym.st_value += o->output_offset;
9858
9859 indx = bfd_get_symcount (output_bfd);
9860 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
9861 NULL);
9862 if (ret == 0)
9863 return FALSE;
9864 else if (ret == 1)
9865 flinfo->indices[symndx] = indx;
9866 else
9867 abort ();
9868 }
9869 elf_section_data (osec)->this_hdr.sh_info
9870 = flinfo->indices[symndx];
9871 }
9872 }
9873
9874 if ((o->flags & SEC_HAS_CONTENTS) == 0
9875 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9876 continue;
9877
9878 if ((o->flags & SEC_LINKER_CREATED) != 0)
9879 {
9880 /* Section was created by _bfd_elf_link_create_dynamic_sections
9881 or somesuch. */
9882 continue;
9883 }
9884
9885 /* Get the contents of the section. They have been cached by a
9886 relaxation routine. Note that o is a section in an input
9887 file, so the contents field will not have been set by any of
9888 the routines which work on output files. */
9889 if (elf_section_data (o)->this_hdr.contents != NULL)
9890 {
9891 contents = elf_section_data (o)->this_hdr.contents;
9892 if (bed->caches_rawsize
9893 && o->rawsize != 0
9894 && o->rawsize < o->size)
9895 {
9896 memcpy (flinfo->contents, contents, o->rawsize);
9897 contents = flinfo->contents;
9898 }
9899 }
9900 else
9901 {
9902 contents = flinfo->contents;
9903 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9904 return FALSE;
9905 }
9906
9907 if ((o->flags & SEC_RELOC) != 0)
9908 {
9909 Elf_Internal_Rela *internal_relocs;
9910 Elf_Internal_Rela *rel, *relend;
9911 int action_discarded;
9912 int ret;
9913
9914 /* Get the swapped relocs. */
9915 internal_relocs
9916 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9917 flinfo->internal_relocs, FALSE);
9918 if (internal_relocs == NULL
9919 && o->reloc_count > 0)
9920 return FALSE;
9921
9922 /* We need to reverse-copy input .ctors/.dtors sections if
9923 they are placed in .init_array/.finit_array for output. */
9924 if (o->size > address_size
9925 && ((strncmp (o->name, ".ctors", 6) == 0
9926 && strcmp (o->output_section->name,
9927 ".init_array") == 0)
9928 || (strncmp (o->name, ".dtors", 6) == 0
9929 && strcmp (o->output_section->name,
9930 ".fini_array") == 0))
9931 && (o->name[6] == 0 || o->name[6] == '.'))
9932 {
9933 if (o->size != o->reloc_count * address_size)
9934 {
9935 (*_bfd_error_handler)
9936 (_("error: %B: size of section %A is not "
9937 "multiple of address size"),
9938 input_bfd, o);
9939 bfd_set_error (bfd_error_on_input);
9940 return FALSE;
9941 }
9942 o->flags |= SEC_ELF_REVERSE_COPY;
9943 }
9944
9945 action_discarded = -1;
9946 if (!elf_section_ignore_discarded_relocs (o))
9947 action_discarded = (*bed->action_discarded) (o);
9948
9949 /* Run through the relocs evaluating complex reloc symbols and
9950 looking for relocs against symbols from discarded sections
9951 or section symbols from removed link-once sections.
9952 Complain about relocs against discarded sections. Zero
9953 relocs against removed link-once sections. */
9954
9955 rel = internal_relocs;
9956 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9957 for ( ; rel < relend; rel++)
9958 {
9959 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9960 unsigned int s_type;
9961 asection **ps, *sec;
9962 struct elf_link_hash_entry *h = NULL;
9963 const char *sym_name;
9964
9965 if (r_symndx == STN_UNDEF)
9966 continue;
9967
9968 if (r_symndx >= locsymcount
9969 || (elf_bad_symtab (input_bfd)
9970 && flinfo->sections[r_symndx] == NULL))
9971 {
9972 h = sym_hashes[r_symndx - extsymoff];
9973
9974 /* Badly formatted input files can contain relocs that
9975 reference non-existant symbols. Check here so that
9976 we do not seg fault. */
9977 if (h == NULL)
9978 {
9979 char buffer [32];
9980
9981 sprintf_vma (buffer, rel->r_info);
9982 (*_bfd_error_handler)
9983 (_("error: %B contains a reloc (0x%s) for section %A "
9984 "that references a non-existent global symbol"),
9985 input_bfd, o, buffer);
9986 bfd_set_error (bfd_error_bad_value);
9987 return FALSE;
9988 }
9989
9990 while (h->root.type == bfd_link_hash_indirect
9991 || h->root.type == bfd_link_hash_warning)
9992 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9993
9994 s_type = h->type;
9995
9996 /* If a plugin symbol is referenced from a non-IR file,
9997 mark the symbol as undefined. Note that the
9998 linker may attach linker created dynamic sections
9999 to the plugin bfd. Symbols defined in linker
10000 created sections are not plugin symbols. */
10001 if (h->root.non_ir_ref
10002 && (h->root.type == bfd_link_hash_defined
10003 || h->root.type == bfd_link_hash_defweak)
10004 && (h->root.u.def.section->flags
10005 & SEC_LINKER_CREATED) == 0
10006 && h->root.u.def.section->owner != NULL
10007 && (h->root.u.def.section->owner->flags
10008 & BFD_PLUGIN) != 0)
10009 {
10010 h->root.type = bfd_link_hash_undefined;
10011 h->root.u.undef.abfd = h->root.u.def.section->owner;
10012 }
10013
10014 ps = NULL;
10015 if (h->root.type == bfd_link_hash_defined
10016 || h->root.type == bfd_link_hash_defweak)
10017 ps = &h->root.u.def.section;
10018
10019 sym_name = h->root.root.string;
10020 }
10021 else
10022 {
10023 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10024
10025 s_type = ELF_ST_TYPE (sym->st_info);
10026 ps = &flinfo->sections[r_symndx];
10027 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10028 sym, *ps);
10029 }
10030
10031 if ((s_type == STT_RELC || s_type == STT_SRELC)
10032 && !flinfo->info->relocatable)
10033 {
10034 bfd_vma val;
10035 bfd_vma dot = (rel->r_offset
10036 + o->output_offset + o->output_section->vma);
10037 #ifdef DEBUG
10038 printf ("Encountered a complex symbol!");
10039 printf (" (input_bfd %s, section %s, reloc %ld\n",
10040 input_bfd->filename, o->name,
10041 (long) (rel - internal_relocs));
10042 printf (" symbol: idx %8.8lx, name %s\n",
10043 r_symndx, sym_name);
10044 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10045 (unsigned long) rel->r_info,
10046 (unsigned long) rel->r_offset);
10047 #endif
10048 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10049 isymbuf, locsymcount, s_type == STT_SRELC))
10050 return FALSE;
10051
10052 /* Symbol evaluated OK. Update to absolute value. */
10053 set_symbol_value (input_bfd, isymbuf, locsymcount,
10054 r_symndx, val);
10055 continue;
10056 }
10057
10058 if (action_discarded != -1 && ps != NULL)
10059 {
10060 /* Complain if the definition comes from a
10061 discarded section. */
10062 if ((sec = *ps) != NULL && discarded_section (sec))
10063 {
10064 BFD_ASSERT (r_symndx != STN_UNDEF);
10065 if (action_discarded & COMPLAIN)
10066 (*flinfo->info->callbacks->einfo)
10067 (_("%X`%s' referenced in section `%A' of %B: "
10068 "defined in discarded section `%A' of %B\n"),
10069 sym_name, o, input_bfd, sec, sec->owner);
10070
10071 /* Try to do the best we can to support buggy old
10072 versions of gcc. Pretend that the symbol is
10073 really defined in the kept linkonce section.
10074 FIXME: This is quite broken. Modifying the
10075 symbol here means we will be changing all later
10076 uses of the symbol, not just in this section. */
10077 if (action_discarded & PRETEND)
10078 {
10079 asection *kept;
10080
10081 kept = _bfd_elf_check_kept_section (sec,
10082 flinfo->info);
10083 if (kept != NULL)
10084 {
10085 *ps = kept;
10086 continue;
10087 }
10088 }
10089 }
10090 }
10091 }
10092
10093 /* Relocate the section by invoking a back end routine.
10094
10095 The back end routine is responsible for adjusting the
10096 section contents as necessary, and (if using Rela relocs
10097 and generating a relocatable output file) adjusting the
10098 reloc addend as necessary.
10099
10100 The back end routine does not have to worry about setting
10101 the reloc address or the reloc symbol index.
10102
10103 The back end routine is given a pointer to the swapped in
10104 internal symbols, and can access the hash table entries
10105 for the external symbols via elf_sym_hashes (input_bfd).
10106
10107 When generating relocatable output, the back end routine
10108 must handle STB_LOCAL/STT_SECTION symbols specially. The
10109 output symbol is going to be a section symbol
10110 corresponding to the output section, which will require
10111 the addend to be adjusted. */
10112
10113 ret = (*relocate_section) (output_bfd, flinfo->info,
10114 input_bfd, o, contents,
10115 internal_relocs,
10116 isymbuf,
10117 flinfo->sections);
10118 if (!ret)
10119 return FALSE;
10120
10121 if (ret == 2
10122 || flinfo->info->relocatable
10123 || flinfo->info->emitrelocations)
10124 {
10125 Elf_Internal_Rela *irela;
10126 Elf_Internal_Rela *irelaend, *irelamid;
10127 bfd_vma last_offset;
10128 struct elf_link_hash_entry **rel_hash;
10129 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10130 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10131 unsigned int next_erel;
10132 bfd_boolean rela_normal;
10133 struct bfd_elf_section_data *esdi, *esdo;
10134
10135 esdi = elf_section_data (o);
10136 esdo = elf_section_data (o->output_section);
10137 rela_normal = FALSE;
10138
10139 /* Adjust the reloc addresses and symbol indices. */
10140
10141 irela = internal_relocs;
10142 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
10143 rel_hash = esdo->rel.hashes + esdo->rel.count;
10144 /* We start processing the REL relocs, if any. When we reach
10145 IRELAMID in the loop, we switch to the RELA relocs. */
10146 irelamid = irela;
10147 if (esdi->rel.hdr != NULL)
10148 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10149 * bed->s->int_rels_per_ext_rel);
10150 rel_hash_list = rel_hash;
10151 rela_hash_list = NULL;
10152 last_offset = o->output_offset;
10153 if (!flinfo->info->relocatable)
10154 last_offset += o->output_section->vma;
10155 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10156 {
10157 unsigned long r_symndx;
10158 asection *sec;
10159 Elf_Internal_Sym sym;
10160
10161 if (next_erel == bed->s->int_rels_per_ext_rel)
10162 {
10163 rel_hash++;
10164 next_erel = 0;
10165 }
10166
10167 if (irela == irelamid)
10168 {
10169 rel_hash = esdo->rela.hashes + esdo->rela.count;
10170 rela_hash_list = rel_hash;
10171 rela_normal = bed->rela_normal;
10172 }
10173
10174 irela->r_offset = _bfd_elf_section_offset (output_bfd,
10175 flinfo->info, o,
10176 irela->r_offset);
10177 if (irela->r_offset >= (bfd_vma) -2)
10178 {
10179 /* This is a reloc for a deleted entry or somesuch.
10180 Turn it into an R_*_NONE reloc, at the same
10181 offset as the last reloc. elf_eh_frame.c and
10182 bfd_elf_discard_info rely on reloc offsets
10183 being ordered. */
10184 irela->r_offset = last_offset;
10185 irela->r_info = 0;
10186 irela->r_addend = 0;
10187 continue;
10188 }
10189
10190 irela->r_offset += o->output_offset;
10191
10192 /* Relocs in an executable have to be virtual addresses. */
10193 if (!flinfo->info->relocatable)
10194 irela->r_offset += o->output_section->vma;
10195
10196 last_offset = irela->r_offset;
10197
10198 r_symndx = irela->r_info >> r_sym_shift;
10199 if (r_symndx == STN_UNDEF)
10200 continue;
10201
10202 if (r_symndx >= locsymcount
10203 || (elf_bad_symtab (input_bfd)
10204 && flinfo->sections[r_symndx] == NULL))
10205 {
10206 struct elf_link_hash_entry *rh;
10207 unsigned long indx;
10208
10209 /* This is a reloc against a global symbol. We
10210 have not yet output all the local symbols, so
10211 we do not know the symbol index of any global
10212 symbol. We set the rel_hash entry for this
10213 reloc to point to the global hash table entry
10214 for this symbol. The symbol index is then
10215 set at the end of bfd_elf_final_link. */
10216 indx = r_symndx - extsymoff;
10217 rh = elf_sym_hashes (input_bfd)[indx];
10218 while (rh->root.type == bfd_link_hash_indirect
10219 || rh->root.type == bfd_link_hash_warning)
10220 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10221
10222 /* Setting the index to -2 tells
10223 elf_link_output_extsym that this symbol is
10224 used by a reloc. */
10225 BFD_ASSERT (rh->indx < 0);
10226 rh->indx = -2;
10227
10228 *rel_hash = rh;
10229
10230 continue;
10231 }
10232
10233 /* This is a reloc against a local symbol. */
10234
10235 *rel_hash = NULL;
10236 sym = isymbuf[r_symndx];
10237 sec = flinfo->sections[r_symndx];
10238 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10239 {
10240 /* I suppose the backend ought to fill in the
10241 section of any STT_SECTION symbol against a
10242 processor specific section. */
10243 r_symndx = STN_UNDEF;
10244 if (bfd_is_abs_section (sec))
10245 ;
10246 else if (sec == NULL || sec->owner == NULL)
10247 {
10248 bfd_set_error (bfd_error_bad_value);
10249 return FALSE;
10250 }
10251 else
10252 {
10253 asection *osec = sec->output_section;
10254
10255 /* If we have discarded a section, the output
10256 section will be the absolute section. In
10257 case of discarded SEC_MERGE sections, use
10258 the kept section. relocate_section should
10259 have already handled discarded linkonce
10260 sections. */
10261 if (bfd_is_abs_section (osec)
10262 && sec->kept_section != NULL
10263 && sec->kept_section->output_section != NULL)
10264 {
10265 osec = sec->kept_section->output_section;
10266 irela->r_addend -= osec->vma;
10267 }
10268
10269 if (!bfd_is_abs_section (osec))
10270 {
10271 r_symndx = osec->target_index;
10272 if (r_symndx == STN_UNDEF)
10273 {
10274 irela->r_addend += osec->vma;
10275 osec = _bfd_nearby_section (output_bfd, osec,
10276 osec->vma);
10277 irela->r_addend -= osec->vma;
10278 r_symndx = osec->target_index;
10279 }
10280 }
10281 }
10282
10283 /* Adjust the addend according to where the
10284 section winds up in the output section. */
10285 if (rela_normal)
10286 irela->r_addend += sec->output_offset;
10287 }
10288 else
10289 {
10290 if (flinfo->indices[r_symndx] == -1)
10291 {
10292 unsigned long shlink;
10293 const char *name;
10294 asection *osec;
10295 long indx;
10296
10297 if (flinfo->info->strip == strip_all)
10298 {
10299 /* You can't do ld -r -s. */
10300 bfd_set_error (bfd_error_invalid_operation);
10301 return FALSE;
10302 }
10303
10304 /* This symbol was skipped earlier, but
10305 since it is needed by a reloc, we
10306 must output it now. */
10307 shlink = symtab_hdr->sh_link;
10308 name = (bfd_elf_string_from_elf_section
10309 (input_bfd, shlink, sym.st_name));
10310 if (name == NULL)
10311 return FALSE;
10312
10313 osec = sec->output_section;
10314 sym.st_shndx =
10315 _bfd_elf_section_from_bfd_section (output_bfd,
10316 osec);
10317 if (sym.st_shndx == SHN_BAD)
10318 return FALSE;
10319
10320 sym.st_value += sec->output_offset;
10321 if (!flinfo->info->relocatable)
10322 {
10323 sym.st_value += osec->vma;
10324 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10325 {
10326 /* STT_TLS symbols are relative to PT_TLS
10327 segment base. */
10328 BFD_ASSERT (elf_hash_table (flinfo->info)
10329 ->tls_sec != NULL);
10330 sym.st_value -= (elf_hash_table (flinfo->info)
10331 ->tls_sec->vma);
10332 }
10333 }
10334
10335 indx = bfd_get_symcount (output_bfd);
10336 ret = elf_link_output_symstrtab (flinfo, name,
10337 &sym, sec,
10338 NULL);
10339 if (ret == 0)
10340 return FALSE;
10341 else if (ret == 1)
10342 flinfo->indices[r_symndx] = indx;
10343 else
10344 abort ();
10345 }
10346
10347 r_symndx = flinfo->indices[r_symndx];
10348 }
10349
10350 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10351 | (irela->r_info & r_type_mask));
10352 }
10353
10354 /* Swap out the relocs. */
10355 input_rel_hdr = esdi->rel.hdr;
10356 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10357 {
10358 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10359 input_rel_hdr,
10360 internal_relocs,
10361 rel_hash_list))
10362 return FALSE;
10363 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10364 * bed->s->int_rels_per_ext_rel);
10365 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10366 }
10367
10368 input_rela_hdr = esdi->rela.hdr;
10369 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10370 {
10371 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10372 input_rela_hdr,
10373 internal_relocs,
10374 rela_hash_list))
10375 return FALSE;
10376 }
10377 }
10378 }
10379
10380 /* Write out the modified section contents. */
10381 if (bed->elf_backend_write_section
10382 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10383 contents))
10384 {
10385 /* Section written out. */
10386 }
10387 else switch (o->sec_info_type)
10388 {
10389 case SEC_INFO_TYPE_STABS:
10390 if (! (_bfd_write_section_stabs
10391 (output_bfd,
10392 &elf_hash_table (flinfo->info)->stab_info,
10393 o, &elf_section_data (o)->sec_info, contents)))
10394 return FALSE;
10395 break;
10396 case SEC_INFO_TYPE_MERGE:
10397 if (! _bfd_write_merged_section (output_bfd, o,
10398 elf_section_data (o)->sec_info))
10399 return FALSE;
10400 break;
10401 case SEC_INFO_TYPE_EH_FRAME:
10402 {
10403 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10404 o, contents))
10405 return FALSE;
10406 }
10407 break;
10408 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10409 {
10410 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
10411 flinfo->info,
10412 o, contents))
10413 return FALSE;
10414 }
10415 break;
10416 default:
10417 {
10418 /* FIXME: octets_per_byte. */
10419 if (! (o->flags & SEC_EXCLUDE))
10420 {
10421 file_ptr offset = (file_ptr) o->output_offset;
10422 bfd_size_type todo = o->size;
10423 if ((o->flags & SEC_ELF_REVERSE_COPY))
10424 {
10425 /* Reverse-copy input section to output. */
10426 do
10427 {
10428 todo -= address_size;
10429 if (! bfd_set_section_contents (output_bfd,
10430 o->output_section,
10431 contents + todo,
10432 offset,
10433 address_size))
10434 return FALSE;
10435 if (todo == 0)
10436 break;
10437 offset += address_size;
10438 }
10439 while (1);
10440 }
10441 else if (! bfd_set_section_contents (output_bfd,
10442 o->output_section,
10443 contents,
10444 offset, todo))
10445 return FALSE;
10446 }
10447 }
10448 break;
10449 }
10450 }
10451
10452 return TRUE;
10453 }
10454
10455 /* Generate a reloc when linking an ELF file. This is a reloc
10456 requested by the linker, and does not come from any input file. This
10457 is used to build constructor and destructor tables when linking
10458 with -Ur. */
10459
10460 static bfd_boolean
10461 elf_reloc_link_order (bfd *output_bfd,
10462 struct bfd_link_info *info,
10463 asection *output_section,
10464 struct bfd_link_order *link_order)
10465 {
10466 reloc_howto_type *howto;
10467 long indx;
10468 bfd_vma offset;
10469 bfd_vma addend;
10470 struct bfd_elf_section_reloc_data *reldata;
10471 struct elf_link_hash_entry **rel_hash_ptr;
10472 Elf_Internal_Shdr *rel_hdr;
10473 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10474 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10475 bfd_byte *erel;
10476 unsigned int i;
10477 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10478
10479 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10480 if (howto == NULL)
10481 {
10482 bfd_set_error (bfd_error_bad_value);
10483 return FALSE;
10484 }
10485
10486 addend = link_order->u.reloc.p->addend;
10487
10488 if (esdo->rel.hdr)
10489 reldata = &esdo->rel;
10490 else if (esdo->rela.hdr)
10491 reldata = &esdo->rela;
10492 else
10493 {
10494 reldata = NULL;
10495 BFD_ASSERT (0);
10496 }
10497
10498 /* Figure out the symbol index. */
10499 rel_hash_ptr = reldata->hashes + reldata->count;
10500 if (link_order->type == bfd_section_reloc_link_order)
10501 {
10502 indx = link_order->u.reloc.p->u.section->target_index;
10503 BFD_ASSERT (indx != 0);
10504 *rel_hash_ptr = NULL;
10505 }
10506 else
10507 {
10508 struct elf_link_hash_entry *h;
10509
10510 /* Treat a reloc against a defined symbol as though it were
10511 actually against the section. */
10512 h = ((struct elf_link_hash_entry *)
10513 bfd_wrapped_link_hash_lookup (output_bfd, info,
10514 link_order->u.reloc.p->u.name,
10515 FALSE, FALSE, TRUE));
10516 if (h != NULL
10517 && (h->root.type == bfd_link_hash_defined
10518 || h->root.type == bfd_link_hash_defweak))
10519 {
10520 asection *section;
10521
10522 section = h->root.u.def.section;
10523 indx = section->output_section->target_index;
10524 *rel_hash_ptr = NULL;
10525 /* It seems that we ought to add the symbol value to the
10526 addend here, but in practice it has already been added
10527 because it was passed to constructor_callback. */
10528 addend += section->output_section->vma + section->output_offset;
10529 }
10530 else if (h != NULL)
10531 {
10532 /* Setting the index to -2 tells elf_link_output_extsym that
10533 this symbol is used by a reloc. */
10534 h->indx = -2;
10535 *rel_hash_ptr = h;
10536 indx = 0;
10537 }
10538 else
10539 {
10540 if (! ((*info->callbacks->unattached_reloc)
10541 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10542 return FALSE;
10543 indx = 0;
10544 }
10545 }
10546
10547 /* If this is an inplace reloc, we must write the addend into the
10548 object file. */
10549 if (howto->partial_inplace && addend != 0)
10550 {
10551 bfd_size_type size;
10552 bfd_reloc_status_type rstat;
10553 bfd_byte *buf;
10554 bfd_boolean ok;
10555 const char *sym_name;
10556
10557 size = (bfd_size_type) bfd_get_reloc_size (howto);
10558 buf = (bfd_byte *) bfd_zmalloc (size);
10559 if (buf == NULL && size != 0)
10560 return FALSE;
10561 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10562 switch (rstat)
10563 {
10564 case bfd_reloc_ok:
10565 break;
10566
10567 default:
10568 case bfd_reloc_outofrange:
10569 abort ();
10570
10571 case bfd_reloc_overflow:
10572 if (link_order->type == bfd_section_reloc_link_order)
10573 sym_name = bfd_section_name (output_bfd,
10574 link_order->u.reloc.p->u.section);
10575 else
10576 sym_name = link_order->u.reloc.p->u.name;
10577 if (! ((*info->callbacks->reloc_overflow)
10578 (info, NULL, sym_name, howto->name, addend, NULL,
10579 NULL, (bfd_vma) 0)))
10580 {
10581 free (buf);
10582 return FALSE;
10583 }
10584 break;
10585 }
10586 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10587 link_order->offset, size);
10588 free (buf);
10589 if (! ok)
10590 return FALSE;
10591 }
10592
10593 /* The address of a reloc is relative to the section in a
10594 relocatable file, and is a virtual address in an executable
10595 file. */
10596 offset = link_order->offset;
10597 if (! info->relocatable)
10598 offset += output_section->vma;
10599
10600 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10601 {
10602 irel[i].r_offset = offset;
10603 irel[i].r_info = 0;
10604 irel[i].r_addend = 0;
10605 }
10606 if (bed->s->arch_size == 32)
10607 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10608 else
10609 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10610
10611 rel_hdr = reldata->hdr;
10612 erel = rel_hdr->contents;
10613 if (rel_hdr->sh_type == SHT_REL)
10614 {
10615 erel += reldata->count * bed->s->sizeof_rel;
10616 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10617 }
10618 else
10619 {
10620 irel[0].r_addend = addend;
10621 erel += reldata->count * bed->s->sizeof_rela;
10622 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10623 }
10624
10625 ++reldata->count;
10626
10627 return TRUE;
10628 }
10629
10630
10631 /* Get the output vma of the section pointed to by the sh_link field. */
10632
10633 static bfd_vma
10634 elf_get_linked_section_vma (struct bfd_link_order *p)
10635 {
10636 Elf_Internal_Shdr **elf_shdrp;
10637 asection *s;
10638 int elfsec;
10639
10640 s = p->u.indirect.section;
10641 elf_shdrp = elf_elfsections (s->owner);
10642 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10643 elfsec = elf_shdrp[elfsec]->sh_link;
10644 /* PR 290:
10645 The Intel C compiler generates SHT_IA_64_UNWIND with
10646 SHF_LINK_ORDER. But it doesn't set the sh_link or
10647 sh_info fields. Hence we could get the situation
10648 where elfsec is 0. */
10649 if (elfsec == 0)
10650 {
10651 const struct elf_backend_data *bed
10652 = get_elf_backend_data (s->owner);
10653 if (bed->link_order_error_handler)
10654 bed->link_order_error_handler
10655 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10656 return 0;
10657 }
10658 else
10659 {
10660 s = elf_shdrp[elfsec]->bfd_section;
10661 return s->output_section->vma + s->output_offset;
10662 }
10663 }
10664
10665
10666 /* Compare two sections based on the locations of the sections they are
10667 linked to. Used by elf_fixup_link_order. */
10668
10669 static int
10670 compare_link_order (const void * a, const void * b)
10671 {
10672 bfd_vma apos;
10673 bfd_vma bpos;
10674
10675 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10676 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10677 if (apos < bpos)
10678 return -1;
10679 return apos > bpos;
10680 }
10681
10682
10683 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10684 order as their linked sections. Returns false if this could not be done
10685 because an output section includes both ordered and unordered
10686 sections. Ideally we'd do this in the linker proper. */
10687
10688 static bfd_boolean
10689 elf_fixup_link_order (bfd *abfd, asection *o)
10690 {
10691 int seen_linkorder;
10692 int seen_other;
10693 int n;
10694 struct bfd_link_order *p;
10695 bfd *sub;
10696 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10697 unsigned elfsec;
10698 struct bfd_link_order **sections;
10699 asection *s, *other_sec, *linkorder_sec;
10700 bfd_vma offset;
10701
10702 other_sec = NULL;
10703 linkorder_sec = NULL;
10704 seen_other = 0;
10705 seen_linkorder = 0;
10706 for (p = o->map_head.link_order; p != NULL; p = p->next)
10707 {
10708 if (p->type == bfd_indirect_link_order)
10709 {
10710 s = p->u.indirect.section;
10711 sub = s->owner;
10712 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10713 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10714 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10715 && elfsec < elf_numsections (sub)
10716 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10717 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10718 {
10719 seen_linkorder++;
10720 linkorder_sec = s;
10721 }
10722 else
10723 {
10724 seen_other++;
10725 other_sec = s;
10726 }
10727 }
10728 else
10729 seen_other++;
10730
10731 if (seen_other && seen_linkorder)
10732 {
10733 if (other_sec && linkorder_sec)
10734 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10735 o, linkorder_sec,
10736 linkorder_sec->owner, other_sec,
10737 other_sec->owner);
10738 else
10739 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10740 o);
10741 bfd_set_error (bfd_error_bad_value);
10742 return FALSE;
10743 }
10744 }
10745
10746 if (!seen_linkorder)
10747 return TRUE;
10748
10749 sections = (struct bfd_link_order **)
10750 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10751 if (sections == NULL)
10752 return FALSE;
10753 seen_linkorder = 0;
10754
10755 for (p = o->map_head.link_order; p != NULL; p = p->next)
10756 {
10757 sections[seen_linkorder++] = p;
10758 }
10759 /* Sort the input sections in the order of their linked section. */
10760 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10761 compare_link_order);
10762
10763 /* Change the offsets of the sections. */
10764 offset = 0;
10765 for (n = 0; n < seen_linkorder; n++)
10766 {
10767 s = sections[n]->u.indirect.section;
10768 offset &= ~(bfd_vma) 0 << s->alignment_power;
10769 s->output_offset = offset;
10770 sections[n]->offset = offset;
10771 /* FIXME: octets_per_byte. */
10772 offset += sections[n]->size;
10773 }
10774
10775 free (sections);
10776 return TRUE;
10777 }
10778
10779 static void
10780 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10781 {
10782 asection *o;
10783
10784 if (flinfo->symstrtab != NULL)
10785 _bfd_elf_strtab_free (flinfo->symstrtab);
10786 if (flinfo->contents != NULL)
10787 free (flinfo->contents);
10788 if (flinfo->external_relocs != NULL)
10789 free (flinfo->external_relocs);
10790 if (flinfo->internal_relocs != NULL)
10791 free (flinfo->internal_relocs);
10792 if (flinfo->external_syms != NULL)
10793 free (flinfo->external_syms);
10794 if (flinfo->locsym_shndx != NULL)
10795 free (flinfo->locsym_shndx);
10796 if (flinfo->internal_syms != NULL)
10797 free (flinfo->internal_syms);
10798 if (flinfo->indices != NULL)
10799 free (flinfo->indices);
10800 if (flinfo->sections != NULL)
10801 free (flinfo->sections);
10802 if (flinfo->symshndxbuf != NULL)
10803 free (flinfo->symshndxbuf);
10804 for (o = obfd->sections; o != NULL; o = o->next)
10805 {
10806 struct bfd_elf_section_data *esdo = elf_section_data (o);
10807 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10808 free (esdo->rel.hashes);
10809 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10810 free (esdo->rela.hashes);
10811 }
10812 }
10813
10814 /* Do the final step of an ELF link. */
10815
10816 bfd_boolean
10817 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10818 {
10819 bfd_boolean dynamic;
10820 bfd_boolean emit_relocs;
10821 bfd *dynobj;
10822 struct elf_final_link_info flinfo;
10823 asection *o;
10824 struct bfd_link_order *p;
10825 bfd *sub;
10826 bfd_size_type max_contents_size;
10827 bfd_size_type max_external_reloc_size;
10828 bfd_size_type max_internal_reloc_count;
10829 bfd_size_type max_sym_count;
10830 bfd_size_type max_sym_shndx_count;
10831 Elf_Internal_Sym elfsym;
10832 unsigned int i;
10833 Elf_Internal_Shdr *symtab_hdr;
10834 Elf_Internal_Shdr *symtab_shndx_hdr;
10835 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10836 struct elf_outext_info eoinfo;
10837 bfd_boolean merged;
10838 size_t relativecount = 0;
10839 asection *reldyn = 0;
10840 bfd_size_type amt;
10841 asection *attr_section = NULL;
10842 bfd_vma attr_size = 0;
10843 const char *std_attrs_section;
10844
10845 if (! is_elf_hash_table (info->hash))
10846 return FALSE;
10847
10848 if (info->shared)
10849 abfd->flags |= DYNAMIC;
10850
10851 dynamic = elf_hash_table (info)->dynamic_sections_created;
10852 dynobj = elf_hash_table (info)->dynobj;
10853
10854 emit_relocs = (info->relocatable
10855 || info->emitrelocations);
10856
10857 flinfo.info = info;
10858 flinfo.output_bfd = abfd;
10859 flinfo.symstrtab = _bfd_elf_strtab_init ();
10860 if (flinfo.symstrtab == NULL)
10861 return FALSE;
10862
10863 if (! dynamic)
10864 {
10865 flinfo.dynsym_sec = NULL;
10866 flinfo.hash_sec = NULL;
10867 flinfo.symver_sec = NULL;
10868 }
10869 else
10870 {
10871 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10872 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10873 /* Note that dynsym_sec can be NULL (on VMS). */
10874 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10875 /* Note that it is OK if symver_sec is NULL. */
10876 }
10877
10878 flinfo.contents = NULL;
10879 flinfo.external_relocs = NULL;
10880 flinfo.internal_relocs = NULL;
10881 flinfo.external_syms = NULL;
10882 flinfo.locsym_shndx = NULL;
10883 flinfo.internal_syms = NULL;
10884 flinfo.indices = NULL;
10885 flinfo.sections = NULL;
10886 flinfo.symshndxbuf = NULL;
10887 flinfo.filesym_count = 0;
10888
10889 /* The object attributes have been merged. Remove the input
10890 sections from the link, and set the contents of the output
10891 secton. */
10892 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10893 for (o = abfd->sections; o != NULL; o = o->next)
10894 {
10895 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10896 || strcmp (o->name, ".gnu.attributes") == 0)
10897 {
10898 for (p = o->map_head.link_order; p != NULL; p = p->next)
10899 {
10900 asection *input_section;
10901
10902 if (p->type != bfd_indirect_link_order)
10903 continue;
10904 input_section = p->u.indirect.section;
10905 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10906 elf_link_input_bfd ignores this section. */
10907 input_section->flags &= ~SEC_HAS_CONTENTS;
10908 }
10909
10910 attr_size = bfd_elf_obj_attr_size (abfd);
10911 if (attr_size)
10912 {
10913 bfd_set_section_size (abfd, o, attr_size);
10914 attr_section = o;
10915 /* Skip this section later on. */
10916 o->map_head.link_order = NULL;
10917 }
10918 else
10919 o->flags |= SEC_EXCLUDE;
10920 }
10921 }
10922
10923 /* Count up the number of relocations we will output for each output
10924 section, so that we know the sizes of the reloc sections. We
10925 also figure out some maximum sizes. */
10926 max_contents_size = 0;
10927 max_external_reloc_size = 0;
10928 max_internal_reloc_count = 0;
10929 max_sym_count = 0;
10930 max_sym_shndx_count = 0;
10931 merged = FALSE;
10932 for (o = abfd->sections; o != NULL; o = o->next)
10933 {
10934 struct bfd_elf_section_data *esdo = elf_section_data (o);
10935 o->reloc_count = 0;
10936
10937 for (p = o->map_head.link_order; p != NULL; p = p->next)
10938 {
10939 unsigned int reloc_count = 0;
10940 struct bfd_elf_section_data *esdi = NULL;
10941
10942 if (p->type == bfd_section_reloc_link_order
10943 || p->type == bfd_symbol_reloc_link_order)
10944 reloc_count = 1;
10945 else if (p->type == bfd_indirect_link_order)
10946 {
10947 asection *sec;
10948
10949 sec = p->u.indirect.section;
10950 esdi = elf_section_data (sec);
10951
10952 /* Mark all sections which are to be included in the
10953 link. This will normally be every section. We need
10954 to do this so that we can identify any sections which
10955 the linker has decided to not include. */
10956 sec->linker_mark = TRUE;
10957
10958 if (sec->flags & SEC_MERGE)
10959 merged = TRUE;
10960
10961 if (esdo->this_hdr.sh_type == SHT_REL
10962 || esdo->this_hdr.sh_type == SHT_RELA)
10963 /* Some backends use reloc_count in relocation sections
10964 to count particular types of relocs. Of course,
10965 reloc sections themselves can't have relocations. */
10966 reloc_count = 0;
10967 else if (info->relocatable || info->emitrelocations)
10968 reloc_count = sec->reloc_count;
10969 else if (bed->elf_backend_count_relocs)
10970 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10971
10972 if (sec->rawsize > max_contents_size)
10973 max_contents_size = sec->rawsize;
10974 if (sec->size > max_contents_size)
10975 max_contents_size = sec->size;
10976
10977 /* We are interested in just local symbols, not all
10978 symbols. */
10979 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10980 && (sec->owner->flags & DYNAMIC) == 0)
10981 {
10982 size_t sym_count;
10983
10984 if (elf_bad_symtab (sec->owner))
10985 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10986 / bed->s->sizeof_sym);
10987 else
10988 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10989
10990 if (sym_count > max_sym_count)
10991 max_sym_count = sym_count;
10992
10993 if (sym_count > max_sym_shndx_count
10994 && elf_symtab_shndx (sec->owner) != 0)
10995 max_sym_shndx_count = sym_count;
10996
10997 if ((sec->flags & SEC_RELOC) != 0)
10998 {
10999 size_t ext_size = 0;
11000
11001 if (esdi->rel.hdr != NULL)
11002 ext_size = esdi->rel.hdr->sh_size;
11003 if (esdi->rela.hdr != NULL)
11004 ext_size += esdi->rela.hdr->sh_size;
11005
11006 if (ext_size > max_external_reloc_size)
11007 max_external_reloc_size = ext_size;
11008 if (sec->reloc_count > max_internal_reloc_count)
11009 max_internal_reloc_count = sec->reloc_count;
11010 }
11011 }
11012 }
11013
11014 if (reloc_count == 0)
11015 continue;
11016
11017 o->reloc_count += reloc_count;
11018
11019 if (p->type == bfd_indirect_link_order
11020 && (info->relocatable || info->emitrelocations))
11021 {
11022 if (esdi->rel.hdr)
11023 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
11024 if (esdi->rela.hdr)
11025 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
11026 }
11027 else
11028 {
11029 if (o->use_rela_p)
11030 esdo->rela.count += reloc_count;
11031 else
11032 esdo->rel.count += reloc_count;
11033 }
11034 }
11035
11036 if (o->reloc_count > 0)
11037 o->flags |= SEC_RELOC;
11038 else
11039 {
11040 /* Explicitly clear the SEC_RELOC flag. The linker tends to
11041 set it (this is probably a bug) and if it is set
11042 assign_section_numbers will create a reloc section. */
11043 o->flags &=~ SEC_RELOC;
11044 }
11045
11046 /* If the SEC_ALLOC flag is not set, force the section VMA to
11047 zero. This is done in elf_fake_sections as well, but forcing
11048 the VMA to 0 here will ensure that relocs against these
11049 sections are handled correctly. */
11050 if ((o->flags & SEC_ALLOC) == 0
11051 && ! o->user_set_vma)
11052 o->vma = 0;
11053 }
11054
11055 if (! info->relocatable && merged)
11056 elf_link_hash_traverse (elf_hash_table (info),
11057 _bfd_elf_link_sec_merge_syms, abfd);
11058
11059 /* Figure out the file positions for everything but the symbol table
11060 and the relocs. We set symcount to force assign_section_numbers
11061 to create a symbol table. */
11062 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
11063 BFD_ASSERT (! abfd->output_has_begun);
11064 if (! _bfd_elf_compute_section_file_positions (abfd, info))
11065 goto error_return;
11066
11067 /* Set sizes, and assign file positions for reloc sections. */
11068 for (o = abfd->sections; o != NULL; o = o->next)
11069 {
11070 struct bfd_elf_section_data *esdo = elf_section_data (o);
11071 if ((o->flags & SEC_RELOC) != 0)
11072 {
11073 if (esdo->rel.hdr
11074 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
11075 goto error_return;
11076
11077 if (esdo->rela.hdr
11078 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
11079 goto error_return;
11080 }
11081
11082 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
11083 to count upwards while actually outputting the relocations. */
11084 esdo->rel.count = 0;
11085 esdo->rela.count = 0;
11086
11087 if (esdo->this_hdr.sh_offset == (file_ptr) -1)
11088 {
11089 /* Cache the section contents so that they can be compressed
11090 later. Use bfd_malloc since it will be freed by
11091 bfd_compress_section_contents. */
11092 unsigned char *contents = esdo->this_hdr.contents;
11093 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
11094 abort ();
11095 contents
11096 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
11097 if (contents == NULL)
11098 goto error_return;
11099 esdo->this_hdr.contents = contents;
11100 }
11101 }
11102
11103 /* We have now assigned file positions for all the sections except
11104 .symtab, .strtab, and non-loaded reloc sections. We start the
11105 .symtab section at the current file position, and write directly
11106 to it. We build the .strtab section in memory. */
11107 bfd_get_symcount (abfd) = 0;
11108 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11109 /* sh_name is set in prep_headers. */
11110 symtab_hdr->sh_type = SHT_SYMTAB;
11111 /* sh_flags, sh_addr and sh_size all start off zero. */
11112 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
11113 /* sh_link is set in assign_section_numbers. */
11114 /* sh_info is set below. */
11115 /* sh_offset is set just below. */
11116 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
11117
11118 if (max_sym_count < 20)
11119 max_sym_count = 20;
11120 elf_hash_table (info)->strtabsize = max_sym_count;
11121 amt = max_sym_count * sizeof (struct elf_sym_strtab);
11122 elf_hash_table (info)->strtab
11123 = (struct elf_sym_strtab *) bfd_malloc (amt);
11124 if (elf_hash_table (info)->strtab == NULL)
11125 goto error_return;
11126 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
11127 flinfo.symshndxbuf
11128 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
11129 ? (Elf_External_Sym_Shndx *) -1 : NULL);
11130
11131 if (info->strip != strip_all || emit_relocs)
11132 {
11133 file_ptr off = elf_next_file_pos (abfd);
11134
11135 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
11136
11137 /* Note that at this point elf_next_file_pos (abfd) is
11138 incorrect. We do not yet know the size of the .symtab section.
11139 We correct next_file_pos below, after we do know the size. */
11140
11141 /* Start writing out the symbol table. The first symbol is always a
11142 dummy symbol. */
11143 elfsym.st_value = 0;
11144 elfsym.st_size = 0;
11145 elfsym.st_info = 0;
11146 elfsym.st_other = 0;
11147 elfsym.st_shndx = SHN_UNDEF;
11148 elfsym.st_target_internal = 0;
11149 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
11150 bfd_und_section_ptr, NULL) != 1)
11151 goto error_return;
11152
11153 /* Output a symbol for each section. We output these even if we are
11154 discarding local symbols, since they are used for relocs. These
11155 symbols have no names. We store the index of each one in the
11156 index field of the section, so that we can find it again when
11157 outputting relocs. */
11158
11159 elfsym.st_size = 0;
11160 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11161 elfsym.st_other = 0;
11162 elfsym.st_value = 0;
11163 elfsym.st_target_internal = 0;
11164 for (i = 1; i < elf_numsections (abfd); i++)
11165 {
11166 o = bfd_section_from_elf_index (abfd, i);
11167 if (o != NULL)
11168 {
11169 o->target_index = bfd_get_symcount (abfd);
11170 elfsym.st_shndx = i;
11171 if (!info->relocatable)
11172 elfsym.st_value = o->vma;
11173 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
11174 NULL) != 1)
11175 goto error_return;
11176 }
11177 }
11178 }
11179
11180 /* Allocate some memory to hold information read in from the input
11181 files. */
11182 if (max_contents_size != 0)
11183 {
11184 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
11185 if (flinfo.contents == NULL)
11186 goto error_return;
11187 }
11188
11189 if (max_external_reloc_size != 0)
11190 {
11191 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
11192 if (flinfo.external_relocs == NULL)
11193 goto error_return;
11194 }
11195
11196 if (max_internal_reloc_count != 0)
11197 {
11198 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
11199 amt *= sizeof (Elf_Internal_Rela);
11200 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
11201 if (flinfo.internal_relocs == NULL)
11202 goto error_return;
11203 }
11204
11205 if (max_sym_count != 0)
11206 {
11207 amt = max_sym_count * bed->s->sizeof_sym;
11208 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
11209 if (flinfo.external_syms == NULL)
11210 goto error_return;
11211
11212 amt = max_sym_count * sizeof (Elf_Internal_Sym);
11213 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
11214 if (flinfo.internal_syms == NULL)
11215 goto error_return;
11216
11217 amt = max_sym_count * sizeof (long);
11218 flinfo.indices = (long int *) bfd_malloc (amt);
11219 if (flinfo.indices == NULL)
11220 goto error_return;
11221
11222 amt = max_sym_count * sizeof (asection *);
11223 flinfo.sections = (asection **) bfd_malloc (amt);
11224 if (flinfo.sections == NULL)
11225 goto error_return;
11226 }
11227
11228 if (max_sym_shndx_count != 0)
11229 {
11230 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11231 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11232 if (flinfo.locsym_shndx == NULL)
11233 goto error_return;
11234 }
11235
11236 if (elf_hash_table (info)->tls_sec)
11237 {
11238 bfd_vma base, end = 0;
11239 asection *sec;
11240
11241 for (sec = elf_hash_table (info)->tls_sec;
11242 sec && (sec->flags & SEC_THREAD_LOCAL);
11243 sec = sec->next)
11244 {
11245 bfd_size_type size = sec->size;
11246
11247 if (size == 0
11248 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11249 {
11250 struct bfd_link_order *ord = sec->map_tail.link_order;
11251
11252 if (ord != NULL)
11253 size = ord->offset + ord->size;
11254 }
11255 end = sec->vma + size;
11256 }
11257 base = elf_hash_table (info)->tls_sec->vma;
11258 /* Only align end of TLS section if static TLS doesn't have special
11259 alignment requirements. */
11260 if (bed->static_tls_alignment == 1)
11261 end = align_power (end,
11262 elf_hash_table (info)->tls_sec->alignment_power);
11263 elf_hash_table (info)->tls_size = end - base;
11264 }
11265
11266 /* Reorder SHF_LINK_ORDER sections. */
11267 for (o = abfd->sections; o != NULL; o = o->next)
11268 {
11269 if (!elf_fixup_link_order (abfd, o))
11270 return FALSE;
11271 }
11272
11273 if (!_bfd_elf_fixup_eh_frame_hdr (info))
11274 return FALSE;
11275
11276 /* Since ELF permits relocations to be against local symbols, we
11277 must have the local symbols available when we do the relocations.
11278 Since we would rather only read the local symbols once, and we
11279 would rather not keep them in memory, we handle all the
11280 relocations for a single input file at the same time.
11281
11282 Unfortunately, there is no way to know the total number of local
11283 symbols until we have seen all of them, and the local symbol
11284 indices precede the global symbol indices. This means that when
11285 we are generating relocatable output, and we see a reloc against
11286 a global symbol, we can not know the symbol index until we have
11287 finished examining all the local symbols to see which ones we are
11288 going to output. To deal with this, we keep the relocations in
11289 memory, and don't output them until the end of the link. This is
11290 an unfortunate waste of memory, but I don't see a good way around
11291 it. Fortunately, it only happens when performing a relocatable
11292 link, which is not the common case. FIXME: If keep_memory is set
11293 we could write the relocs out and then read them again; I don't
11294 know how bad the memory loss will be. */
11295
11296 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11297 sub->output_has_begun = FALSE;
11298 for (o = abfd->sections; o != NULL; o = o->next)
11299 {
11300 for (p = o->map_head.link_order; p != NULL; p = p->next)
11301 {
11302 if (p->type == bfd_indirect_link_order
11303 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11304 == bfd_target_elf_flavour)
11305 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11306 {
11307 if (! sub->output_has_begun)
11308 {
11309 if (! elf_link_input_bfd (&flinfo, sub))
11310 goto error_return;
11311 sub->output_has_begun = TRUE;
11312 }
11313 }
11314 else if (p->type == bfd_section_reloc_link_order
11315 || p->type == bfd_symbol_reloc_link_order)
11316 {
11317 if (! elf_reloc_link_order (abfd, info, o, p))
11318 goto error_return;
11319 }
11320 else
11321 {
11322 if (! _bfd_default_link_order (abfd, info, o, p))
11323 {
11324 if (p->type == bfd_indirect_link_order
11325 && (bfd_get_flavour (sub)
11326 == bfd_target_elf_flavour)
11327 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11328 != bed->s->elfclass))
11329 {
11330 const char *iclass, *oclass;
11331
11332 if (bed->s->elfclass == ELFCLASS64)
11333 {
11334 iclass = "ELFCLASS32";
11335 oclass = "ELFCLASS64";
11336 }
11337 else
11338 {
11339 iclass = "ELFCLASS64";
11340 oclass = "ELFCLASS32";
11341 }
11342
11343 bfd_set_error (bfd_error_wrong_format);
11344 (*_bfd_error_handler)
11345 (_("%B: file class %s incompatible with %s"),
11346 sub, iclass, oclass);
11347 }
11348
11349 goto error_return;
11350 }
11351 }
11352 }
11353 }
11354
11355 /* Free symbol buffer if needed. */
11356 if (!info->reduce_memory_overheads)
11357 {
11358 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11359 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11360 && elf_tdata (sub)->symbuf)
11361 {
11362 free (elf_tdata (sub)->symbuf);
11363 elf_tdata (sub)->symbuf = NULL;
11364 }
11365 }
11366
11367 /* Output any global symbols that got converted to local in a
11368 version script or due to symbol visibility. We do this in a
11369 separate step since ELF requires all local symbols to appear
11370 prior to any global symbols. FIXME: We should only do this if
11371 some global symbols were, in fact, converted to become local.
11372 FIXME: Will this work correctly with the Irix 5 linker? */
11373 eoinfo.failed = FALSE;
11374 eoinfo.flinfo = &flinfo;
11375 eoinfo.localsyms = TRUE;
11376 eoinfo.file_sym_done = FALSE;
11377 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11378 if (eoinfo.failed)
11379 return FALSE;
11380
11381 /* If backend needs to output some local symbols not present in the hash
11382 table, do it now. */
11383 if (bed->elf_backend_output_arch_local_syms
11384 && (info->strip != strip_all || emit_relocs))
11385 {
11386 typedef int (*out_sym_func)
11387 (void *, const char *, Elf_Internal_Sym *, asection *,
11388 struct elf_link_hash_entry *);
11389
11390 if (! ((*bed->elf_backend_output_arch_local_syms)
11391 (abfd, info, &flinfo,
11392 (out_sym_func) elf_link_output_symstrtab)))
11393 return FALSE;
11394 }
11395
11396 /* That wrote out all the local symbols. Finish up the symbol table
11397 with the global symbols. Even if we want to strip everything we
11398 can, we still need to deal with those global symbols that got
11399 converted to local in a version script. */
11400
11401 /* The sh_info field records the index of the first non local symbol. */
11402 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11403
11404 if (dynamic
11405 && flinfo.dynsym_sec != NULL
11406 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11407 {
11408 Elf_Internal_Sym sym;
11409 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11410 long last_local = 0;
11411
11412 /* Write out the section symbols for the output sections. */
11413 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11414 {
11415 asection *s;
11416
11417 sym.st_size = 0;
11418 sym.st_name = 0;
11419 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11420 sym.st_other = 0;
11421 sym.st_target_internal = 0;
11422
11423 for (s = abfd->sections; s != NULL; s = s->next)
11424 {
11425 int indx;
11426 bfd_byte *dest;
11427 long dynindx;
11428
11429 dynindx = elf_section_data (s)->dynindx;
11430 if (dynindx <= 0)
11431 continue;
11432 indx = elf_section_data (s)->this_idx;
11433 BFD_ASSERT (indx > 0);
11434 sym.st_shndx = indx;
11435 if (! check_dynsym (abfd, &sym))
11436 return FALSE;
11437 sym.st_value = s->vma;
11438 dest = dynsym + dynindx * bed->s->sizeof_sym;
11439 if (last_local < dynindx)
11440 last_local = dynindx;
11441 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11442 }
11443 }
11444
11445 /* Write out the local dynsyms. */
11446 if (elf_hash_table (info)->dynlocal)
11447 {
11448 struct elf_link_local_dynamic_entry *e;
11449 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11450 {
11451 asection *s;
11452 bfd_byte *dest;
11453
11454 /* Copy the internal symbol and turn off visibility.
11455 Note that we saved a word of storage and overwrote
11456 the original st_name with the dynstr_index. */
11457 sym = e->isym;
11458 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11459
11460 s = bfd_section_from_elf_index (e->input_bfd,
11461 e->isym.st_shndx);
11462 if (s != NULL)
11463 {
11464 sym.st_shndx =
11465 elf_section_data (s->output_section)->this_idx;
11466 if (! check_dynsym (abfd, &sym))
11467 return FALSE;
11468 sym.st_value = (s->output_section->vma
11469 + s->output_offset
11470 + e->isym.st_value);
11471 }
11472
11473 if (last_local < e->dynindx)
11474 last_local = e->dynindx;
11475
11476 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11477 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11478 }
11479 }
11480
11481 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11482 last_local + 1;
11483 }
11484
11485 /* We get the global symbols from the hash table. */
11486 eoinfo.failed = FALSE;
11487 eoinfo.localsyms = FALSE;
11488 eoinfo.flinfo = &flinfo;
11489 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11490 if (eoinfo.failed)
11491 return FALSE;
11492
11493 /* If backend needs to output some symbols not present in the hash
11494 table, do it now. */
11495 if (bed->elf_backend_output_arch_syms
11496 && (info->strip != strip_all || emit_relocs))
11497 {
11498 typedef int (*out_sym_func)
11499 (void *, const char *, Elf_Internal_Sym *, asection *,
11500 struct elf_link_hash_entry *);
11501
11502 if (! ((*bed->elf_backend_output_arch_syms)
11503 (abfd, info, &flinfo,
11504 (out_sym_func) elf_link_output_symstrtab)))
11505 return FALSE;
11506 }
11507
11508 /* Finalize the .strtab section. */
11509 _bfd_elf_strtab_finalize (flinfo.symstrtab);
11510
11511 /* Swap out the .strtab section. */
11512 if (!elf_link_swap_symbols_out (&flinfo))
11513 return FALSE;
11514
11515 /* Now we know the size of the symtab section. */
11516 if (bfd_get_symcount (abfd) > 0)
11517 {
11518 /* Finish up and write out the symbol string table (.strtab)
11519 section. */
11520 Elf_Internal_Shdr *symstrtab_hdr;
11521 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
11522
11523 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11524 if (symtab_shndx_hdr->sh_name != 0)
11525 {
11526 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11527 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11528 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11529 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11530 symtab_shndx_hdr->sh_size = amt;
11531
11532 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11533 off, TRUE);
11534
11535 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11536 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11537 return FALSE;
11538 }
11539
11540 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11541 /* sh_name was set in prep_headers. */
11542 symstrtab_hdr->sh_type = SHT_STRTAB;
11543 symstrtab_hdr->sh_flags = 0;
11544 symstrtab_hdr->sh_addr = 0;
11545 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
11546 symstrtab_hdr->sh_entsize = 0;
11547 symstrtab_hdr->sh_link = 0;
11548 symstrtab_hdr->sh_info = 0;
11549 /* sh_offset is set just below. */
11550 symstrtab_hdr->sh_addralign = 1;
11551
11552 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
11553 off, TRUE);
11554 elf_next_file_pos (abfd) = off;
11555
11556 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11557 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
11558 return FALSE;
11559 }
11560
11561 /* Adjust the relocs to have the correct symbol indices. */
11562 for (o = abfd->sections; o != NULL; o = o->next)
11563 {
11564 struct bfd_elf_section_data *esdo = elf_section_data (o);
11565 bfd_boolean sort;
11566 if ((o->flags & SEC_RELOC) == 0)
11567 continue;
11568
11569 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
11570 if (esdo->rel.hdr != NULL)
11571 elf_link_adjust_relocs (abfd, &esdo->rel, sort);
11572 if (esdo->rela.hdr != NULL)
11573 elf_link_adjust_relocs (abfd, &esdo->rela, sort);
11574
11575 /* Set the reloc_count field to 0 to prevent write_relocs from
11576 trying to swap the relocs out itself. */
11577 o->reloc_count = 0;
11578 }
11579
11580 if (dynamic && info->combreloc && dynobj != NULL)
11581 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11582
11583 /* If we are linking against a dynamic object, or generating a
11584 shared library, finish up the dynamic linking information. */
11585 if (dynamic)
11586 {
11587 bfd_byte *dyncon, *dynconend;
11588
11589 /* Fix up .dynamic entries. */
11590 o = bfd_get_linker_section (dynobj, ".dynamic");
11591 BFD_ASSERT (o != NULL);
11592
11593 dyncon = o->contents;
11594 dynconend = o->contents + o->size;
11595 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11596 {
11597 Elf_Internal_Dyn dyn;
11598 const char *name;
11599 unsigned int type;
11600
11601 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11602
11603 switch (dyn.d_tag)
11604 {
11605 default:
11606 continue;
11607 case DT_NULL:
11608 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11609 {
11610 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11611 {
11612 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11613 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11614 default: continue;
11615 }
11616 dyn.d_un.d_val = relativecount;
11617 relativecount = 0;
11618 break;
11619 }
11620 continue;
11621
11622 case DT_INIT:
11623 name = info->init_function;
11624 goto get_sym;
11625 case DT_FINI:
11626 name = info->fini_function;
11627 get_sym:
11628 {
11629 struct elf_link_hash_entry *h;
11630
11631 h = elf_link_hash_lookup (elf_hash_table (info), name,
11632 FALSE, FALSE, TRUE);
11633 if (h != NULL
11634 && (h->root.type == bfd_link_hash_defined
11635 || h->root.type == bfd_link_hash_defweak))
11636 {
11637 dyn.d_un.d_ptr = h->root.u.def.value;
11638 o = h->root.u.def.section;
11639 if (o->output_section != NULL)
11640 dyn.d_un.d_ptr += (o->output_section->vma
11641 + o->output_offset);
11642 else
11643 {
11644 /* The symbol is imported from another shared
11645 library and does not apply to this one. */
11646 dyn.d_un.d_ptr = 0;
11647 }
11648 break;
11649 }
11650 }
11651 continue;
11652
11653 case DT_PREINIT_ARRAYSZ:
11654 name = ".preinit_array";
11655 goto get_size;
11656 case DT_INIT_ARRAYSZ:
11657 name = ".init_array";
11658 goto get_size;
11659 case DT_FINI_ARRAYSZ:
11660 name = ".fini_array";
11661 get_size:
11662 o = bfd_get_section_by_name (abfd, name);
11663 if (o == NULL)
11664 {
11665 (*_bfd_error_handler)
11666 (_("%B: could not find output section %s"), abfd, name);
11667 goto error_return;
11668 }
11669 if (o->size == 0)
11670 (*_bfd_error_handler)
11671 (_("warning: %s section has zero size"), name);
11672 dyn.d_un.d_val = o->size;
11673 break;
11674
11675 case DT_PREINIT_ARRAY:
11676 name = ".preinit_array";
11677 goto get_vma;
11678 case DT_INIT_ARRAY:
11679 name = ".init_array";
11680 goto get_vma;
11681 case DT_FINI_ARRAY:
11682 name = ".fini_array";
11683 goto get_vma;
11684
11685 case DT_HASH:
11686 name = ".hash";
11687 goto get_vma;
11688 case DT_GNU_HASH:
11689 name = ".gnu.hash";
11690 goto get_vma;
11691 case DT_STRTAB:
11692 name = ".dynstr";
11693 goto get_vma;
11694 case DT_SYMTAB:
11695 name = ".dynsym";
11696 goto get_vma;
11697 case DT_VERDEF:
11698 name = ".gnu.version_d";
11699 goto get_vma;
11700 case DT_VERNEED:
11701 name = ".gnu.version_r";
11702 goto get_vma;
11703 case DT_VERSYM:
11704 name = ".gnu.version";
11705 get_vma:
11706 o = bfd_get_section_by_name (abfd, name);
11707 if (o == NULL)
11708 {
11709 (*_bfd_error_handler)
11710 (_("%B: could not find output section %s"), abfd, name);
11711 goto error_return;
11712 }
11713 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11714 {
11715 (*_bfd_error_handler)
11716 (_("warning: section '%s' is being made into a note"), name);
11717 bfd_set_error (bfd_error_nonrepresentable_section);
11718 goto error_return;
11719 }
11720 dyn.d_un.d_ptr = o->vma;
11721 break;
11722
11723 case DT_REL:
11724 case DT_RELA:
11725 case DT_RELSZ:
11726 case DT_RELASZ:
11727 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11728 type = SHT_REL;
11729 else
11730 type = SHT_RELA;
11731 dyn.d_un.d_val = 0;
11732 dyn.d_un.d_ptr = 0;
11733 for (i = 1; i < elf_numsections (abfd); i++)
11734 {
11735 Elf_Internal_Shdr *hdr;
11736
11737 hdr = elf_elfsections (abfd)[i];
11738 if (hdr->sh_type == type
11739 && (hdr->sh_flags & SHF_ALLOC) != 0)
11740 {
11741 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11742 dyn.d_un.d_val += hdr->sh_size;
11743 else
11744 {
11745 if (dyn.d_un.d_ptr == 0
11746 || hdr->sh_addr < dyn.d_un.d_ptr)
11747 dyn.d_un.d_ptr = hdr->sh_addr;
11748 }
11749 }
11750 }
11751 break;
11752 }
11753 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11754 }
11755 }
11756
11757 /* If we have created any dynamic sections, then output them. */
11758 if (dynobj != NULL)
11759 {
11760 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11761 goto error_return;
11762
11763 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11764 if (((info->warn_shared_textrel && info->shared)
11765 || info->error_textrel)
11766 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11767 {
11768 bfd_byte *dyncon, *dynconend;
11769
11770 dyncon = o->contents;
11771 dynconend = o->contents + o->size;
11772 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11773 {
11774 Elf_Internal_Dyn dyn;
11775
11776 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11777
11778 if (dyn.d_tag == DT_TEXTREL)
11779 {
11780 if (info->error_textrel)
11781 info->callbacks->einfo
11782 (_("%P%X: read-only segment has dynamic relocations.\n"));
11783 else
11784 info->callbacks->einfo
11785 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11786 break;
11787 }
11788 }
11789 }
11790
11791 for (o = dynobj->sections; o != NULL; o = o->next)
11792 {
11793 if ((o->flags & SEC_HAS_CONTENTS) == 0
11794 || o->size == 0
11795 || o->output_section == bfd_abs_section_ptr)
11796 continue;
11797 if ((o->flags & SEC_LINKER_CREATED) == 0)
11798 {
11799 /* At this point, we are only interested in sections
11800 created by _bfd_elf_link_create_dynamic_sections. */
11801 continue;
11802 }
11803 if (elf_hash_table (info)->stab_info.stabstr == o)
11804 continue;
11805 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11806 continue;
11807 if (strcmp (o->name, ".dynstr") != 0)
11808 {
11809 /* FIXME: octets_per_byte. */
11810 if (! bfd_set_section_contents (abfd, o->output_section,
11811 o->contents,
11812 (file_ptr) o->output_offset,
11813 o->size))
11814 goto error_return;
11815 }
11816 else
11817 {
11818 /* The contents of the .dynstr section are actually in a
11819 stringtab. */
11820 file_ptr off;
11821
11822 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11823 if (bfd_seek (abfd, off, SEEK_SET) != 0
11824 || ! _bfd_elf_strtab_emit (abfd,
11825 elf_hash_table (info)->dynstr))
11826 goto error_return;
11827 }
11828 }
11829 }
11830
11831 if (info->relocatable)
11832 {
11833 bfd_boolean failed = FALSE;
11834
11835 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11836 if (failed)
11837 goto error_return;
11838 }
11839
11840 /* If we have optimized stabs strings, output them. */
11841 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11842 {
11843 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11844 goto error_return;
11845 }
11846
11847 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11848 goto error_return;
11849
11850 elf_final_link_free (abfd, &flinfo);
11851
11852 elf_linker (abfd) = TRUE;
11853
11854 if (attr_section)
11855 {
11856 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11857 if (contents == NULL)
11858 return FALSE; /* Bail out and fail. */
11859 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11860 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11861 free (contents);
11862 }
11863
11864 return TRUE;
11865
11866 error_return:
11867 elf_final_link_free (abfd, &flinfo);
11868 return FALSE;
11869 }
11870 \f
11871 /* Initialize COOKIE for input bfd ABFD. */
11872
11873 static bfd_boolean
11874 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11875 struct bfd_link_info *info, bfd *abfd)
11876 {
11877 Elf_Internal_Shdr *symtab_hdr;
11878 const struct elf_backend_data *bed;
11879
11880 bed = get_elf_backend_data (abfd);
11881 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11882
11883 cookie->abfd = abfd;
11884 cookie->sym_hashes = elf_sym_hashes (abfd);
11885 cookie->bad_symtab = elf_bad_symtab (abfd);
11886 if (cookie->bad_symtab)
11887 {
11888 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11889 cookie->extsymoff = 0;
11890 }
11891 else
11892 {
11893 cookie->locsymcount = symtab_hdr->sh_info;
11894 cookie->extsymoff = symtab_hdr->sh_info;
11895 }
11896
11897 if (bed->s->arch_size == 32)
11898 cookie->r_sym_shift = 8;
11899 else
11900 cookie->r_sym_shift = 32;
11901
11902 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11903 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11904 {
11905 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11906 cookie->locsymcount, 0,
11907 NULL, NULL, NULL);
11908 if (cookie->locsyms == NULL)
11909 {
11910 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11911 return FALSE;
11912 }
11913 if (info->keep_memory)
11914 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11915 }
11916 return TRUE;
11917 }
11918
11919 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11920
11921 static void
11922 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11923 {
11924 Elf_Internal_Shdr *symtab_hdr;
11925
11926 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11927 if (cookie->locsyms != NULL
11928 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11929 free (cookie->locsyms);
11930 }
11931
11932 /* Initialize the relocation information in COOKIE for input section SEC
11933 of input bfd ABFD. */
11934
11935 static bfd_boolean
11936 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11937 struct bfd_link_info *info, bfd *abfd,
11938 asection *sec)
11939 {
11940 const struct elf_backend_data *bed;
11941
11942 if (sec->reloc_count == 0)
11943 {
11944 cookie->rels = NULL;
11945 cookie->relend = NULL;
11946 }
11947 else
11948 {
11949 bed = get_elf_backend_data (abfd);
11950
11951 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11952 info->keep_memory);
11953 if (cookie->rels == NULL)
11954 return FALSE;
11955 cookie->rel = cookie->rels;
11956 cookie->relend = (cookie->rels
11957 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11958 }
11959 cookie->rel = cookie->rels;
11960 return TRUE;
11961 }
11962
11963 /* Free the memory allocated by init_reloc_cookie_rels,
11964 if appropriate. */
11965
11966 static void
11967 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11968 asection *sec)
11969 {
11970 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11971 free (cookie->rels);
11972 }
11973
11974 /* Initialize the whole of COOKIE for input section SEC. */
11975
11976 static bfd_boolean
11977 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11978 struct bfd_link_info *info,
11979 asection *sec)
11980 {
11981 if (!init_reloc_cookie (cookie, info, sec->owner))
11982 goto error1;
11983 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11984 goto error2;
11985 return TRUE;
11986
11987 error2:
11988 fini_reloc_cookie (cookie, sec->owner);
11989 error1:
11990 return FALSE;
11991 }
11992
11993 /* Free the memory allocated by init_reloc_cookie_for_section,
11994 if appropriate. */
11995
11996 static void
11997 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11998 asection *sec)
11999 {
12000 fini_reloc_cookie_rels (cookie, sec);
12001 fini_reloc_cookie (cookie, sec->owner);
12002 }
12003 \f
12004 /* Garbage collect unused sections. */
12005
12006 /* Default gc_mark_hook. */
12007
12008 asection *
12009 _bfd_elf_gc_mark_hook (asection *sec,
12010 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12011 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12012 struct elf_link_hash_entry *h,
12013 Elf_Internal_Sym *sym)
12014 {
12015 const char *sec_name;
12016
12017 if (h != NULL)
12018 {
12019 switch (h->root.type)
12020 {
12021 case bfd_link_hash_defined:
12022 case bfd_link_hash_defweak:
12023 return h->root.u.def.section;
12024
12025 case bfd_link_hash_common:
12026 return h->root.u.c.p->section;
12027
12028 case bfd_link_hash_undefined:
12029 case bfd_link_hash_undefweak:
12030 /* To work around a glibc bug, keep all XXX input sections
12031 when there is an as yet undefined reference to __start_XXX
12032 or __stop_XXX symbols. The linker will later define such
12033 symbols for orphan input sections that have a name
12034 representable as a C identifier. */
12035 if (strncmp (h->root.root.string, "__start_", 8) == 0)
12036 sec_name = h->root.root.string + 8;
12037 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
12038 sec_name = h->root.root.string + 7;
12039 else
12040 sec_name = NULL;
12041
12042 if (sec_name && *sec_name != '\0')
12043 {
12044 bfd *i;
12045
12046 for (i = info->input_bfds; i; i = i->link.next)
12047 {
12048 sec = bfd_get_section_by_name (i, sec_name);
12049 if (sec)
12050 sec->flags |= SEC_KEEP;
12051 }
12052 }
12053 break;
12054
12055 default:
12056 break;
12057 }
12058 }
12059 else
12060 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
12061
12062 return NULL;
12063 }
12064
12065 /* COOKIE->rel describes a relocation against section SEC, which is
12066 a section we've decided to keep. Return the section that contains
12067 the relocation symbol, or NULL if no section contains it. */
12068
12069 asection *
12070 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
12071 elf_gc_mark_hook_fn gc_mark_hook,
12072 struct elf_reloc_cookie *cookie)
12073 {
12074 unsigned long r_symndx;
12075 struct elf_link_hash_entry *h;
12076
12077 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
12078 if (r_symndx == STN_UNDEF)
12079 return NULL;
12080
12081 if (r_symndx >= cookie->locsymcount
12082 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12083 {
12084 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
12085 if (h == NULL)
12086 {
12087 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
12088 sec->owner);
12089 return NULL;
12090 }
12091 while (h->root.type == bfd_link_hash_indirect
12092 || h->root.type == bfd_link_hash_warning)
12093 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12094 h->mark = 1;
12095 /* If this symbol is weak and there is a non-weak definition, we
12096 keep the non-weak definition because many backends put
12097 dynamic reloc info on the non-weak definition for code
12098 handling copy relocs. */
12099 if (h->u.weakdef != NULL)
12100 h->u.weakdef->mark = 1;
12101 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
12102 }
12103
12104 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
12105 &cookie->locsyms[r_symndx]);
12106 }
12107
12108 /* COOKIE->rel describes a relocation against section SEC, which is
12109 a section we've decided to keep. Mark the section that contains
12110 the relocation symbol. */
12111
12112 bfd_boolean
12113 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
12114 asection *sec,
12115 elf_gc_mark_hook_fn gc_mark_hook,
12116 struct elf_reloc_cookie *cookie)
12117 {
12118 asection *rsec;
12119
12120 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
12121 if (rsec && !rsec->gc_mark)
12122 {
12123 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
12124 || (rsec->owner->flags & DYNAMIC) != 0)
12125 rsec->gc_mark = 1;
12126 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
12127 return FALSE;
12128 }
12129 return TRUE;
12130 }
12131
12132 /* The mark phase of garbage collection. For a given section, mark
12133 it and any sections in this section's group, and all the sections
12134 which define symbols to which it refers. */
12135
12136 bfd_boolean
12137 _bfd_elf_gc_mark (struct bfd_link_info *info,
12138 asection *sec,
12139 elf_gc_mark_hook_fn gc_mark_hook)
12140 {
12141 bfd_boolean ret;
12142 asection *group_sec, *eh_frame;
12143
12144 sec->gc_mark = 1;
12145
12146 /* Mark all the sections in the group. */
12147 group_sec = elf_section_data (sec)->next_in_group;
12148 if (group_sec && !group_sec->gc_mark)
12149 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
12150 return FALSE;
12151
12152 /* Look through the section relocs. */
12153 ret = TRUE;
12154 eh_frame = elf_eh_frame_section (sec->owner);
12155 if ((sec->flags & SEC_RELOC) != 0
12156 && sec->reloc_count > 0
12157 && sec != eh_frame)
12158 {
12159 struct elf_reloc_cookie cookie;
12160
12161 if (!init_reloc_cookie_for_section (&cookie, info, sec))
12162 ret = FALSE;
12163 else
12164 {
12165 for (; cookie.rel < cookie.relend; cookie.rel++)
12166 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
12167 {
12168 ret = FALSE;
12169 break;
12170 }
12171 fini_reloc_cookie_for_section (&cookie, sec);
12172 }
12173 }
12174
12175 if (ret && eh_frame && elf_fde_list (sec))
12176 {
12177 struct elf_reloc_cookie cookie;
12178
12179 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
12180 ret = FALSE;
12181 else
12182 {
12183 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
12184 gc_mark_hook, &cookie))
12185 ret = FALSE;
12186 fini_reloc_cookie_for_section (&cookie, eh_frame);
12187 }
12188 }
12189
12190 eh_frame = elf_section_eh_frame_entry (sec);
12191 if (ret && eh_frame && !eh_frame->gc_mark)
12192 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
12193 ret = FALSE;
12194
12195 return ret;
12196 }
12197
12198 /* Scan and mark sections in a special or debug section group. */
12199
12200 static void
12201 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
12202 {
12203 /* Point to first section of section group. */
12204 asection *ssec;
12205 /* Used to iterate the section group. */
12206 asection *msec;
12207
12208 bfd_boolean is_special_grp = TRUE;
12209 bfd_boolean is_debug_grp = TRUE;
12210
12211 /* First scan to see if group contains any section other than debug
12212 and special section. */
12213 ssec = msec = elf_next_in_group (grp);
12214 do
12215 {
12216 if ((msec->flags & SEC_DEBUGGING) == 0)
12217 is_debug_grp = FALSE;
12218
12219 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
12220 is_special_grp = FALSE;
12221
12222 msec = elf_next_in_group (msec);
12223 }
12224 while (msec != ssec);
12225
12226 /* If this is a pure debug section group or pure special section group,
12227 keep all sections in this group. */
12228 if (is_debug_grp || is_special_grp)
12229 {
12230 do
12231 {
12232 msec->gc_mark = 1;
12233 msec = elf_next_in_group (msec);
12234 }
12235 while (msec != ssec);
12236 }
12237 }
12238
12239 /* Keep debug and special sections. */
12240
12241 bfd_boolean
12242 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12243 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12244 {
12245 bfd *ibfd;
12246
12247 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12248 {
12249 asection *isec;
12250 bfd_boolean some_kept;
12251 bfd_boolean debug_frag_seen;
12252
12253 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12254 continue;
12255
12256 /* Ensure all linker created sections are kept,
12257 see if any other section is already marked,
12258 and note if we have any fragmented debug sections. */
12259 debug_frag_seen = some_kept = FALSE;
12260 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12261 {
12262 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12263 isec->gc_mark = 1;
12264 else if (isec->gc_mark)
12265 some_kept = TRUE;
12266
12267 if (debug_frag_seen == FALSE
12268 && (isec->flags & SEC_DEBUGGING)
12269 && CONST_STRNEQ (isec->name, ".debug_line."))
12270 debug_frag_seen = TRUE;
12271 }
12272
12273 /* If no section in this file will be kept, then we can
12274 toss out the debug and special sections. */
12275 if (!some_kept)
12276 continue;
12277
12278 /* Keep debug and special sections like .comment when they are
12279 not part of a group. Also keep section groups that contain
12280 just debug sections or special sections. */
12281 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12282 {
12283 if ((isec->flags & SEC_GROUP) != 0)
12284 _bfd_elf_gc_mark_debug_special_section_group (isec);
12285 else if (((isec->flags & SEC_DEBUGGING) != 0
12286 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12287 && elf_next_in_group (isec) == NULL)
12288 isec->gc_mark = 1;
12289 }
12290
12291 if (! debug_frag_seen)
12292 continue;
12293
12294 /* Look for CODE sections which are going to be discarded,
12295 and find and discard any fragmented debug sections which
12296 are associated with that code section. */
12297 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12298 if ((isec->flags & SEC_CODE) != 0
12299 && isec->gc_mark == 0)
12300 {
12301 unsigned int ilen;
12302 asection *dsec;
12303
12304 ilen = strlen (isec->name);
12305
12306 /* Association is determined by the name of the debug section
12307 containing the name of the code section as a suffix. For
12308 example .debug_line.text.foo is a debug section associated
12309 with .text.foo. */
12310 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12311 {
12312 unsigned int dlen;
12313
12314 if (dsec->gc_mark == 0
12315 || (dsec->flags & SEC_DEBUGGING) == 0)
12316 continue;
12317
12318 dlen = strlen (dsec->name);
12319
12320 if (dlen > ilen
12321 && strncmp (dsec->name + (dlen - ilen),
12322 isec->name, ilen) == 0)
12323 {
12324 dsec->gc_mark = 0;
12325 }
12326 }
12327 }
12328 }
12329 return TRUE;
12330 }
12331
12332 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
12333
12334 struct elf_gc_sweep_symbol_info
12335 {
12336 struct bfd_link_info *info;
12337 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
12338 bfd_boolean);
12339 };
12340
12341 static bfd_boolean
12342 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
12343 {
12344 if (!h->mark
12345 && (((h->root.type == bfd_link_hash_defined
12346 || h->root.type == bfd_link_hash_defweak)
12347 && !((h->def_regular || ELF_COMMON_DEF_P (h))
12348 && h->root.u.def.section->gc_mark))
12349 || h->root.type == bfd_link_hash_undefined
12350 || h->root.type == bfd_link_hash_undefweak))
12351 {
12352 struct elf_gc_sweep_symbol_info *inf;
12353
12354 inf = (struct elf_gc_sweep_symbol_info *) data;
12355 (*inf->hide_symbol) (inf->info, h, TRUE);
12356 h->def_regular = 0;
12357 h->ref_regular = 0;
12358 h->ref_regular_nonweak = 0;
12359 }
12360
12361 return TRUE;
12362 }
12363
12364 /* The sweep phase of garbage collection. Remove all garbage sections. */
12365
12366 typedef bfd_boolean (*gc_sweep_hook_fn)
12367 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
12368
12369 static bfd_boolean
12370 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
12371 {
12372 bfd *sub;
12373 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12374 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
12375 unsigned long section_sym_count;
12376 struct elf_gc_sweep_symbol_info sweep_info;
12377
12378 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12379 {
12380 asection *o;
12381
12382 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12383 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12384 continue;
12385
12386 for (o = sub->sections; o != NULL; o = o->next)
12387 {
12388 /* When any section in a section group is kept, we keep all
12389 sections in the section group. If the first member of
12390 the section group is excluded, we will also exclude the
12391 group section. */
12392 if (o->flags & SEC_GROUP)
12393 {
12394 asection *first = elf_next_in_group (o);
12395 o->gc_mark = first->gc_mark;
12396 }
12397
12398 if (o->gc_mark)
12399 continue;
12400
12401 /* Skip sweeping sections already excluded. */
12402 if (o->flags & SEC_EXCLUDE)
12403 continue;
12404
12405 /* Since this is early in the link process, it is simple
12406 to remove a section from the output. */
12407 o->flags |= SEC_EXCLUDE;
12408
12409 if (info->print_gc_sections && o->size != 0)
12410 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
12411
12412 /* But we also have to update some of the relocation
12413 info we collected before. */
12414 if (gc_sweep_hook
12415 && (o->flags & SEC_RELOC) != 0
12416 && o->reloc_count != 0
12417 && !((info->strip == strip_all || info->strip == strip_debugger)
12418 && (o->flags & SEC_DEBUGGING) != 0)
12419 && !bfd_is_abs_section (o->output_section))
12420 {
12421 Elf_Internal_Rela *internal_relocs;
12422 bfd_boolean r;
12423
12424 internal_relocs
12425 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12426 info->keep_memory);
12427 if (internal_relocs == NULL)
12428 return FALSE;
12429
12430 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12431
12432 if (elf_section_data (o)->relocs != internal_relocs)
12433 free (internal_relocs);
12434
12435 if (!r)
12436 return FALSE;
12437 }
12438 }
12439 }
12440
12441 /* Remove the symbols that were in the swept sections from the dynamic
12442 symbol table. GCFIXME: Anyone know how to get them out of the
12443 static symbol table as well? */
12444 sweep_info.info = info;
12445 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12446 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12447 &sweep_info);
12448
12449 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12450 return TRUE;
12451 }
12452
12453 /* Propagate collected vtable information. This is called through
12454 elf_link_hash_traverse. */
12455
12456 static bfd_boolean
12457 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12458 {
12459 /* Those that are not vtables. */
12460 if (h->vtable == NULL || h->vtable->parent == NULL)
12461 return TRUE;
12462
12463 /* Those vtables that do not have parents, we cannot merge. */
12464 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12465 return TRUE;
12466
12467 /* If we've already been done, exit. */
12468 if (h->vtable->used && h->vtable->used[-1])
12469 return TRUE;
12470
12471 /* Make sure the parent's table is up to date. */
12472 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12473
12474 if (h->vtable->used == NULL)
12475 {
12476 /* None of this table's entries were referenced. Re-use the
12477 parent's table. */
12478 h->vtable->used = h->vtable->parent->vtable->used;
12479 h->vtable->size = h->vtable->parent->vtable->size;
12480 }
12481 else
12482 {
12483 size_t n;
12484 bfd_boolean *cu, *pu;
12485
12486 /* Or the parent's entries into ours. */
12487 cu = h->vtable->used;
12488 cu[-1] = TRUE;
12489 pu = h->vtable->parent->vtable->used;
12490 if (pu != NULL)
12491 {
12492 const struct elf_backend_data *bed;
12493 unsigned int log_file_align;
12494
12495 bed = get_elf_backend_data (h->root.u.def.section->owner);
12496 log_file_align = bed->s->log_file_align;
12497 n = h->vtable->parent->vtable->size >> log_file_align;
12498 while (n--)
12499 {
12500 if (*pu)
12501 *cu = TRUE;
12502 pu++;
12503 cu++;
12504 }
12505 }
12506 }
12507
12508 return TRUE;
12509 }
12510
12511 static bfd_boolean
12512 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12513 {
12514 asection *sec;
12515 bfd_vma hstart, hend;
12516 Elf_Internal_Rela *relstart, *relend, *rel;
12517 const struct elf_backend_data *bed;
12518 unsigned int log_file_align;
12519
12520 /* Take care of both those symbols that do not describe vtables as
12521 well as those that are not loaded. */
12522 if (h->vtable == NULL || h->vtable->parent == NULL)
12523 return TRUE;
12524
12525 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12526 || h->root.type == bfd_link_hash_defweak);
12527
12528 sec = h->root.u.def.section;
12529 hstart = h->root.u.def.value;
12530 hend = hstart + h->size;
12531
12532 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12533 if (!relstart)
12534 return *(bfd_boolean *) okp = FALSE;
12535 bed = get_elf_backend_data (sec->owner);
12536 log_file_align = bed->s->log_file_align;
12537
12538 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12539
12540 for (rel = relstart; rel < relend; ++rel)
12541 if (rel->r_offset >= hstart && rel->r_offset < hend)
12542 {
12543 /* If the entry is in use, do nothing. */
12544 if (h->vtable->used
12545 && (rel->r_offset - hstart) < h->vtable->size)
12546 {
12547 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12548 if (h->vtable->used[entry])
12549 continue;
12550 }
12551 /* Otherwise, kill it. */
12552 rel->r_offset = rel->r_info = rel->r_addend = 0;
12553 }
12554
12555 return TRUE;
12556 }
12557
12558 /* Mark sections containing dynamically referenced symbols. When
12559 building shared libraries, we must assume that any visible symbol is
12560 referenced. */
12561
12562 bfd_boolean
12563 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12564 {
12565 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12566 struct bfd_elf_dynamic_list *d = info->dynamic_list;
12567
12568 if ((h->root.type == bfd_link_hash_defined
12569 || h->root.type == bfd_link_hash_defweak)
12570 && (h->ref_dynamic
12571 || ((h->def_regular || ELF_COMMON_DEF_P (h))
12572 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12573 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12574 && (!info->executable
12575 || info->export_dynamic
12576 || (h->dynamic
12577 && d != NULL
12578 && (*d->match) (&d->head, NULL, h->root.root.string)))
12579 && (h->versioned >= versioned
12580 || !bfd_hide_sym_by_version (info->version_info,
12581 h->root.root.string)))))
12582 h->root.u.def.section->flags |= SEC_KEEP;
12583
12584 return TRUE;
12585 }
12586
12587 /* Keep all sections containing symbols undefined on the command-line,
12588 and the section containing the entry symbol. */
12589
12590 void
12591 _bfd_elf_gc_keep (struct bfd_link_info *info)
12592 {
12593 struct bfd_sym_chain *sym;
12594
12595 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12596 {
12597 struct elf_link_hash_entry *h;
12598
12599 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12600 FALSE, FALSE, FALSE);
12601
12602 if (h != NULL
12603 && (h->root.type == bfd_link_hash_defined
12604 || h->root.type == bfd_link_hash_defweak)
12605 && !bfd_is_abs_section (h->root.u.def.section))
12606 h->root.u.def.section->flags |= SEC_KEEP;
12607 }
12608 }
12609
12610 bfd_boolean
12611 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
12612 struct bfd_link_info *info)
12613 {
12614 bfd *ibfd = info->input_bfds;
12615
12616 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12617 {
12618 asection *sec;
12619 struct elf_reloc_cookie cookie;
12620
12621 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12622 continue;
12623
12624 if (!init_reloc_cookie (&cookie, info, ibfd))
12625 return FALSE;
12626
12627 for (sec = ibfd->sections; sec; sec = sec->next)
12628 {
12629 if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
12630 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
12631 {
12632 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
12633 fini_reloc_cookie_rels (&cookie, sec);
12634 }
12635 }
12636 }
12637 return TRUE;
12638 }
12639
12640 /* Do mark and sweep of unused sections. */
12641
12642 bfd_boolean
12643 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12644 {
12645 bfd_boolean ok = TRUE;
12646 bfd *sub;
12647 elf_gc_mark_hook_fn gc_mark_hook;
12648 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12649 struct elf_link_hash_table *htab;
12650
12651 if (!bed->can_gc_sections
12652 || !is_elf_hash_table (info->hash))
12653 {
12654 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12655 return TRUE;
12656 }
12657
12658 bed->gc_keep (info);
12659 htab = elf_hash_table (info);
12660
12661 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12662 at the .eh_frame section if we can mark the FDEs individually. */
12663 for (sub = info->input_bfds;
12664 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
12665 sub = sub->link.next)
12666 {
12667 asection *sec;
12668 struct elf_reloc_cookie cookie;
12669
12670 sec = bfd_get_section_by_name (sub, ".eh_frame");
12671 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12672 {
12673 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12674 if (elf_section_data (sec)->sec_info
12675 && (sec->flags & SEC_LINKER_CREATED) == 0)
12676 elf_eh_frame_section (sub) = sec;
12677 fini_reloc_cookie_for_section (&cookie, sec);
12678 sec = bfd_get_next_section_by_name (sec);
12679 }
12680 }
12681
12682 /* Apply transitive closure to the vtable entry usage info. */
12683 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
12684 if (!ok)
12685 return FALSE;
12686
12687 /* Kill the vtable relocations that were not used. */
12688 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
12689 if (!ok)
12690 return FALSE;
12691
12692 /* Mark dynamically referenced symbols. */
12693 if (htab->dynamic_sections_created)
12694 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
12695
12696 /* Grovel through relocs to find out who stays ... */
12697 gc_mark_hook = bed->gc_mark_hook;
12698 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12699 {
12700 asection *o;
12701
12702 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12703 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12704 continue;
12705
12706 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12707 Also treat note sections as a root, if the section is not part
12708 of a group. */
12709 for (o = sub->sections; o != NULL; o = o->next)
12710 if (!o->gc_mark
12711 && (o->flags & SEC_EXCLUDE) == 0
12712 && ((o->flags & SEC_KEEP) != 0
12713 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12714 && elf_next_in_group (o) == NULL )))
12715 {
12716 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12717 return FALSE;
12718 }
12719 }
12720
12721 /* Allow the backend to mark additional target specific sections. */
12722 bed->gc_mark_extra_sections (info, gc_mark_hook);
12723
12724 /* ... and mark SEC_EXCLUDE for those that go. */
12725 return elf_gc_sweep (abfd, info);
12726 }
12727 \f
12728 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12729
12730 bfd_boolean
12731 bfd_elf_gc_record_vtinherit (bfd *abfd,
12732 asection *sec,
12733 struct elf_link_hash_entry *h,
12734 bfd_vma offset)
12735 {
12736 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12737 struct elf_link_hash_entry **search, *child;
12738 bfd_size_type extsymcount;
12739 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12740
12741 /* The sh_info field of the symtab header tells us where the
12742 external symbols start. We don't care about the local symbols at
12743 this point. */
12744 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12745 if (!elf_bad_symtab (abfd))
12746 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12747
12748 sym_hashes = elf_sym_hashes (abfd);
12749 sym_hashes_end = sym_hashes + extsymcount;
12750
12751 /* Hunt down the child symbol, which is in this section at the same
12752 offset as the relocation. */
12753 for (search = sym_hashes; search != sym_hashes_end; ++search)
12754 {
12755 if ((child = *search) != NULL
12756 && (child->root.type == bfd_link_hash_defined
12757 || child->root.type == bfd_link_hash_defweak)
12758 && child->root.u.def.section == sec
12759 && child->root.u.def.value == offset)
12760 goto win;
12761 }
12762
12763 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12764 abfd, sec, (unsigned long) offset);
12765 bfd_set_error (bfd_error_invalid_operation);
12766 return FALSE;
12767
12768 win:
12769 if (!child->vtable)
12770 {
12771 child->vtable = ((struct elf_link_virtual_table_entry *)
12772 bfd_zalloc (abfd, sizeof (*child->vtable)));
12773 if (!child->vtable)
12774 return FALSE;
12775 }
12776 if (!h)
12777 {
12778 /* This *should* only be the absolute section. It could potentially
12779 be that someone has defined a non-global vtable though, which
12780 would be bad. It isn't worth paging in the local symbols to be
12781 sure though; that case should simply be handled by the assembler. */
12782
12783 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12784 }
12785 else
12786 child->vtable->parent = h;
12787
12788 return TRUE;
12789 }
12790
12791 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12792
12793 bfd_boolean
12794 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12795 asection *sec ATTRIBUTE_UNUSED,
12796 struct elf_link_hash_entry *h,
12797 bfd_vma addend)
12798 {
12799 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12800 unsigned int log_file_align = bed->s->log_file_align;
12801
12802 if (!h->vtable)
12803 {
12804 h->vtable = ((struct elf_link_virtual_table_entry *)
12805 bfd_zalloc (abfd, sizeof (*h->vtable)));
12806 if (!h->vtable)
12807 return FALSE;
12808 }
12809
12810 if (addend >= h->vtable->size)
12811 {
12812 size_t size, bytes, file_align;
12813 bfd_boolean *ptr = h->vtable->used;
12814
12815 /* While the symbol is undefined, we have to be prepared to handle
12816 a zero size. */
12817 file_align = 1 << log_file_align;
12818 if (h->root.type == bfd_link_hash_undefined)
12819 size = addend + file_align;
12820 else
12821 {
12822 size = h->size;
12823 if (addend >= size)
12824 {
12825 /* Oops! We've got a reference past the defined end of
12826 the table. This is probably a bug -- shall we warn? */
12827 size = addend + file_align;
12828 }
12829 }
12830 size = (size + file_align - 1) & -file_align;
12831
12832 /* Allocate one extra entry for use as a "done" flag for the
12833 consolidation pass. */
12834 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12835
12836 if (ptr)
12837 {
12838 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12839
12840 if (ptr != NULL)
12841 {
12842 size_t oldbytes;
12843
12844 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12845 * sizeof (bfd_boolean));
12846 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12847 }
12848 }
12849 else
12850 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12851
12852 if (ptr == NULL)
12853 return FALSE;
12854
12855 /* And arrange for that done flag to be at index -1. */
12856 h->vtable->used = ptr + 1;
12857 h->vtable->size = size;
12858 }
12859
12860 h->vtable->used[addend >> log_file_align] = TRUE;
12861
12862 return TRUE;
12863 }
12864
12865 /* Map an ELF section header flag to its corresponding string. */
12866 typedef struct
12867 {
12868 char *flag_name;
12869 flagword flag_value;
12870 } elf_flags_to_name_table;
12871
12872 static elf_flags_to_name_table elf_flags_to_names [] =
12873 {
12874 { "SHF_WRITE", SHF_WRITE },
12875 { "SHF_ALLOC", SHF_ALLOC },
12876 { "SHF_EXECINSTR", SHF_EXECINSTR },
12877 { "SHF_MERGE", SHF_MERGE },
12878 { "SHF_STRINGS", SHF_STRINGS },
12879 { "SHF_INFO_LINK", SHF_INFO_LINK},
12880 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12881 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12882 { "SHF_GROUP", SHF_GROUP },
12883 { "SHF_TLS", SHF_TLS },
12884 { "SHF_MASKOS", SHF_MASKOS },
12885 { "SHF_EXCLUDE", SHF_EXCLUDE },
12886 };
12887
12888 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12889 bfd_boolean
12890 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12891 struct flag_info *flaginfo,
12892 asection *section)
12893 {
12894 const bfd_vma sh_flags = elf_section_flags (section);
12895
12896 if (!flaginfo->flags_initialized)
12897 {
12898 bfd *obfd = info->output_bfd;
12899 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12900 struct flag_info_list *tf = flaginfo->flag_list;
12901 int with_hex = 0;
12902 int without_hex = 0;
12903
12904 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12905 {
12906 unsigned i;
12907 flagword (*lookup) (char *);
12908
12909 lookup = bed->elf_backend_lookup_section_flags_hook;
12910 if (lookup != NULL)
12911 {
12912 flagword hexval = (*lookup) ((char *) tf->name);
12913
12914 if (hexval != 0)
12915 {
12916 if (tf->with == with_flags)
12917 with_hex |= hexval;
12918 else if (tf->with == without_flags)
12919 without_hex |= hexval;
12920 tf->valid = TRUE;
12921 continue;
12922 }
12923 }
12924 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12925 {
12926 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12927 {
12928 if (tf->with == with_flags)
12929 with_hex |= elf_flags_to_names[i].flag_value;
12930 else if (tf->with == without_flags)
12931 without_hex |= elf_flags_to_names[i].flag_value;
12932 tf->valid = TRUE;
12933 break;
12934 }
12935 }
12936 if (!tf->valid)
12937 {
12938 info->callbacks->einfo
12939 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12940 return FALSE;
12941 }
12942 }
12943 flaginfo->flags_initialized = TRUE;
12944 flaginfo->only_with_flags |= with_hex;
12945 flaginfo->not_with_flags |= without_hex;
12946 }
12947
12948 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12949 return FALSE;
12950
12951 if ((flaginfo->not_with_flags & sh_flags) != 0)
12952 return FALSE;
12953
12954 return TRUE;
12955 }
12956
12957 struct alloc_got_off_arg {
12958 bfd_vma gotoff;
12959 struct bfd_link_info *info;
12960 };
12961
12962 /* We need a special top-level link routine to convert got reference counts
12963 to real got offsets. */
12964
12965 static bfd_boolean
12966 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12967 {
12968 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12969 bfd *obfd = gofarg->info->output_bfd;
12970 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12971
12972 if (h->got.refcount > 0)
12973 {
12974 h->got.offset = gofarg->gotoff;
12975 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12976 }
12977 else
12978 h->got.offset = (bfd_vma) -1;
12979
12980 return TRUE;
12981 }
12982
12983 /* And an accompanying bit to work out final got entry offsets once
12984 we're done. Should be called from final_link. */
12985
12986 bfd_boolean
12987 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12988 struct bfd_link_info *info)
12989 {
12990 bfd *i;
12991 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12992 bfd_vma gotoff;
12993 struct alloc_got_off_arg gofarg;
12994
12995 BFD_ASSERT (abfd == info->output_bfd);
12996
12997 if (! is_elf_hash_table (info->hash))
12998 return FALSE;
12999
13000 /* The GOT offset is relative to the .got section, but the GOT header is
13001 put into the .got.plt section, if the backend uses it. */
13002 if (bed->want_got_plt)
13003 gotoff = 0;
13004 else
13005 gotoff = bed->got_header_size;
13006
13007 /* Do the local .got entries first. */
13008 for (i = info->input_bfds; i; i = i->link.next)
13009 {
13010 bfd_signed_vma *local_got;
13011 bfd_size_type j, locsymcount;
13012 Elf_Internal_Shdr *symtab_hdr;
13013
13014 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
13015 continue;
13016
13017 local_got = elf_local_got_refcounts (i);
13018 if (!local_got)
13019 continue;
13020
13021 symtab_hdr = &elf_tdata (i)->symtab_hdr;
13022 if (elf_bad_symtab (i))
13023 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13024 else
13025 locsymcount = symtab_hdr->sh_info;
13026
13027 for (j = 0; j < locsymcount; ++j)
13028 {
13029 if (local_got[j] > 0)
13030 {
13031 local_got[j] = gotoff;
13032 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
13033 }
13034 else
13035 local_got[j] = (bfd_vma) -1;
13036 }
13037 }
13038
13039 /* Then the global .got entries. .plt refcounts are handled by
13040 adjust_dynamic_symbol */
13041 gofarg.gotoff = gotoff;
13042 gofarg.info = info;
13043 elf_link_hash_traverse (elf_hash_table (info),
13044 elf_gc_allocate_got_offsets,
13045 &gofarg);
13046 return TRUE;
13047 }
13048
13049 /* Many folk need no more in the way of final link than this, once
13050 got entry reference counting is enabled. */
13051
13052 bfd_boolean
13053 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
13054 {
13055 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
13056 return FALSE;
13057
13058 /* Invoke the regular ELF backend linker to do all the work. */
13059 return bfd_elf_final_link (abfd, info);
13060 }
13061
13062 bfd_boolean
13063 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
13064 {
13065 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
13066
13067 if (rcookie->bad_symtab)
13068 rcookie->rel = rcookie->rels;
13069
13070 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
13071 {
13072 unsigned long r_symndx;
13073
13074 if (! rcookie->bad_symtab)
13075 if (rcookie->rel->r_offset > offset)
13076 return FALSE;
13077 if (rcookie->rel->r_offset != offset)
13078 continue;
13079
13080 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
13081 if (r_symndx == STN_UNDEF)
13082 return TRUE;
13083
13084 if (r_symndx >= rcookie->locsymcount
13085 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13086 {
13087 struct elf_link_hash_entry *h;
13088
13089 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
13090
13091 while (h->root.type == bfd_link_hash_indirect
13092 || h->root.type == bfd_link_hash_warning)
13093 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13094
13095 if ((h->root.type == bfd_link_hash_defined
13096 || h->root.type == bfd_link_hash_defweak)
13097 && (h->root.u.def.section->owner != rcookie->abfd
13098 || h->root.u.def.section->kept_section != NULL
13099 || discarded_section (h->root.u.def.section)))
13100 return TRUE;
13101 }
13102 else
13103 {
13104 /* It's not a relocation against a global symbol,
13105 but it could be a relocation against a local
13106 symbol for a discarded section. */
13107 asection *isec;
13108 Elf_Internal_Sym *isym;
13109
13110 /* Need to: get the symbol; get the section. */
13111 isym = &rcookie->locsyms[r_symndx];
13112 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
13113 if (isec != NULL
13114 && (isec->kept_section != NULL
13115 || discarded_section (isec)))
13116 return TRUE;
13117 }
13118 return FALSE;
13119 }
13120 return FALSE;
13121 }
13122
13123 /* Discard unneeded references to discarded sections.
13124 Returns -1 on error, 1 if any section's size was changed, 0 if
13125 nothing changed. This function assumes that the relocations are in
13126 sorted order, which is true for all known assemblers. */
13127
13128 int
13129 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
13130 {
13131 struct elf_reloc_cookie cookie;
13132 asection *o;
13133 bfd *abfd;
13134 int changed = 0;
13135
13136 if (info->traditional_format
13137 || !is_elf_hash_table (info->hash))
13138 return 0;
13139
13140 o = bfd_get_section_by_name (output_bfd, ".stab");
13141 if (o != NULL)
13142 {
13143 asection *i;
13144
13145 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13146 {
13147 if (i->size == 0
13148 || i->reloc_count == 0
13149 || i->sec_info_type != SEC_INFO_TYPE_STABS)
13150 continue;
13151
13152 abfd = i->owner;
13153 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13154 continue;
13155
13156 if (!init_reloc_cookie_for_section (&cookie, info, i))
13157 return -1;
13158
13159 if (_bfd_discard_section_stabs (abfd, i,
13160 elf_section_data (i)->sec_info,
13161 bfd_elf_reloc_symbol_deleted_p,
13162 &cookie))
13163 changed = 1;
13164
13165 fini_reloc_cookie_for_section (&cookie, i);
13166 }
13167 }
13168
13169 o = NULL;
13170 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
13171 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
13172 if (o != NULL)
13173 {
13174 asection *i;
13175
13176 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13177 {
13178 if (i->size == 0)
13179 continue;
13180
13181 abfd = i->owner;
13182 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13183 continue;
13184
13185 if (!init_reloc_cookie_for_section (&cookie, info, i))
13186 return -1;
13187
13188 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
13189 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
13190 bfd_elf_reloc_symbol_deleted_p,
13191 &cookie))
13192 changed = 1;
13193
13194 fini_reloc_cookie_for_section (&cookie, i);
13195 }
13196 }
13197
13198 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
13199 {
13200 const struct elf_backend_data *bed;
13201
13202 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13203 continue;
13204
13205 bed = get_elf_backend_data (abfd);
13206
13207 if (bed->elf_backend_discard_info != NULL)
13208 {
13209 if (!init_reloc_cookie (&cookie, info, abfd))
13210 return -1;
13211
13212 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
13213 changed = 1;
13214
13215 fini_reloc_cookie (&cookie, abfd);
13216 }
13217 }
13218
13219 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
13220 _bfd_elf_end_eh_frame_parsing (info);
13221
13222 if (info->eh_frame_hdr_type
13223 && !info->relocatable
13224 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
13225 changed = 1;
13226
13227 return changed;
13228 }
13229
13230 bfd_boolean
13231 _bfd_elf_section_already_linked (bfd *abfd,
13232 asection *sec,
13233 struct bfd_link_info *info)
13234 {
13235 flagword flags;
13236 const char *name, *key;
13237 struct bfd_section_already_linked *l;
13238 struct bfd_section_already_linked_hash_entry *already_linked_list;
13239
13240 if (sec->output_section == bfd_abs_section_ptr)
13241 return FALSE;
13242
13243 flags = sec->flags;
13244
13245 /* Return if it isn't a linkonce section. A comdat group section
13246 also has SEC_LINK_ONCE set. */
13247 if ((flags & SEC_LINK_ONCE) == 0)
13248 return FALSE;
13249
13250 /* Don't put group member sections on our list of already linked
13251 sections. They are handled as a group via their group section. */
13252 if (elf_sec_group (sec) != NULL)
13253 return FALSE;
13254
13255 /* For a SHT_GROUP section, use the group signature as the key. */
13256 name = sec->name;
13257 if ((flags & SEC_GROUP) != 0
13258 && elf_next_in_group (sec) != NULL
13259 && elf_group_name (elf_next_in_group (sec)) != NULL)
13260 key = elf_group_name (elf_next_in_group (sec));
13261 else
13262 {
13263 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
13264 if (CONST_STRNEQ (name, ".gnu.linkonce.")
13265 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
13266 key++;
13267 else
13268 /* Must be a user linkonce section that doesn't follow gcc's
13269 naming convention. In this case we won't be matching
13270 single member groups. */
13271 key = name;
13272 }
13273
13274 already_linked_list = bfd_section_already_linked_table_lookup (key);
13275
13276 for (l = already_linked_list->entry; l != NULL; l = l->next)
13277 {
13278 /* We may have 2 different types of sections on the list: group
13279 sections with a signature of <key> (<key> is some string),
13280 and linkonce sections named .gnu.linkonce.<type>.<key>.
13281 Match like sections. LTO plugin sections are an exception.
13282 They are always named .gnu.linkonce.t.<key> and match either
13283 type of section. */
13284 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13285 && ((flags & SEC_GROUP) != 0
13286 || strcmp (name, l->sec->name) == 0))
13287 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13288 {
13289 /* The section has already been linked. See if we should
13290 issue a warning. */
13291 if (!_bfd_handle_already_linked (sec, l, info))
13292 return FALSE;
13293
13294 if (flags & SEC_GROUP)
13295 {
13296 asection *first = elf_next_in_group (sec);
13297 asection *s = first;
13298
13299 while (s != NULL)
13300 {
13301 s->output_section = bfd_abs_section_ptr;
13302 /* Record which group discards it. */
13303 s->kept_section = l->sec;
13304 s = elf_next_in_group (s);
13305 /* These lists are circular. */
13306 if (s == first)
13307 break;
13308 }
13309 }
13310
13311 return TRUE;
13312 }
13313 }
13314
13315 /* A single member comdat group section may be discarded by a
13316 linkonce section and vice versa. */
13317 if ((flags & SEC_GROUP) != 0)
13318 {
13319 asection *first = elf_next_in_group (sec);
13320
13321 if (first != NULL && elf_next_in_group (first) == first)
13322 /* Check this single member group against linkonce sections. */
13323 for (l = already_linked_list->entry; l != NULL; l = l->next)
13324 if ((l->sec->flags & SEC_GROUP) == 0
13325 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
13326 {
13327 first->output_section = bfd_abs_section_ptr;
13328 first->kept_section = l->sec;
13329 sec->output_section = bfd_abs_section_ptr;
13330 break;
13331 }
13332 }
13333 else
13334 /* Check this linkonce section against single member groups. */
13335 for (l = already_linked_list->entry; l != NULL; l = l->next)
13336 if (l->sec->flags & SEC_GROUP)
13337 {
13338 asection *first = elf_next_in_group (l->sec);
13339
13340 if (first != NULL
13341 && elf_next_in_group (first) == first
13342 && bfd_elf_match_symbols_in_sections (first, sec, info))
13343 {
13344 sec->output_section = bfd_abs_section_ptr;
13345 sec->kept_section = first;
13346 break;
13347 }
13348 }
13349
13350 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
13351 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
13352 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
13353 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
13354 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
13355 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
13356 `.gnu.linkonce.t.F' section from a different bfd not requiring any
13357 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
13358 The reverse order cannot happen as there is never a bfd with only the
13359 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
13360 matter as here were are looking only for cross-bfd sections. */
13361
13362 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
13363 for (l = already_linked_list->entry; l != NULL; l = l->next)
13364 if ((l->sec->flags & SEC_GROUP) == 0
13365 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
13366 {
13367 if (abfd != l->sec->owner)
13368 sec->output_section = bfd_abs_section_ptr;
13369 break;
13370 }
13371
13372 /* This is the first section with this name. Record it. */
13373 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
13374 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
13375 return sec->output_section == bfd_abs_section_ptr;
13376 }
13377
13378 bfd_boolean
13379 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
13380 {
13381 return sym->st_shndx == SHN_COMMON;
13382 }
13383
13384 unsigned int
13385 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
13386 {
13387 return SHN_COMMON;
13388 }
13389
13390 asection *
13391 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
13392 {
13393 return bfd_com_section_ptr;
13394 }
13395
13396 bfd_vma
13397 _bfd_elf_default_got_elt_size (bfd *abfd,
13398 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13399 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
13400 bfd *ibfd ATTRIBUTE_UNUSED,
13401 unsigned long symndx ATTRIBUTE_UNUSED)
13402 {
13403 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13404 return bed->s->arch_size / 8;
13405 }
13406
13407 /* Routines to support the creation of dynamic relocs. */
13408
13409 /* Returns the name of the dynamic reloc section associated with SEC. */
13410
13411 static const char *
13412 get_dynamic_reloc_section_name (bfd * abfd,
13413 asection * sec,
13414 bfd_boolean is_rela)
13415 {
13416 char *name;
13417 const char *old_name = bfd_get_section_name (NULL, sec);
13418 const char *prefix = is_rela ? ".rela" : ".rel";
13419
13420 if (old_name == NULL)
13421 return NULL;
13422
13423 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
13424 sprintf (name, "%s%s", prefix, old_name);
13425
13426 return name;
13427 }
13428
13429 /* Returns the dynamic reloc section associated with SEC.
13430 If necessary compute the name of the dynamic reloc section based
13431 on SEC's name (looked up in ABFD's string table) and the setting
13432 of IS_RELA. */
13433
13434 asection *
13435 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
13436 asection * sec,
13437 bfd_boolean is_rela)
13438 {
13439 asection * reloc_sec = elf_section_data (sec)->sreloc;
13440
13441 if (reloc_sec == NULL)
13442 {
13443 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13444
13445 if (name != NULL)
13446 {
13447 reloc_sec = bfd_get_linker_section (abfd, name);
13448
13449 if (reloc_sec != NULL)
13450 elf_section_data (sec)->sreloc = reloc_sec;
13451 }
13452 }
13453
13454 return reloc_sec;
13455 }
13456
13457 /* Returns the dynamic reloc section associated with SEC. If the
13458 section does not exist it is created and attached to the DYNOBJ
13459 bfd and stored in the SRELOC field of SEC's elf_section_data
13460 structure.
13461
13462 ALIGNMENT is the alignment for the newly created section and
13463 IS_RELA defines whether the name should be .rela.<SEC's name>
13464 or .rel.<SEC's name>. The section name is looked up in the
13465 string table associated with ABFD. */
13466
13467 asection *
13468 _bfd_elf_make_dynamic_reloc_section (asection *sec,
13469 bfd *dynobj,
13470 unsigned int alignment,
13471 bfd *abfd,
13472 bfd_boolean is_rela)
13473 {
13474 asection * reloc_sec = elf_section_data (sec)->sreloc;
13475
13476 if (reloc_sec == NULL)
13477 {
13478 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13479
13480 if (name == NULL)
13481 return NULL;
13482
13483 reloc_sec = bfd_get_linker_section (dynobj, name);
13484
13485 if (reloc_sec == NULL)
13486 {
13487 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13488 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13489 if ((sec->flags & SEC_ALLOC) != 0)
13490 flags |= SEC_ALLOC | SEC_LOAD;
13491
13492 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13493 if (reloc_sec != NULL)
13494 {
13495 /* _bfd_elf_get_sec_type_attr chooses a section type by
13496 name. Override as it may be wrong, eg. for a user
13497 section named "auto" we'll get ".relauto" which is
13498 seen to be a .rela section. */
13499 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13500 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13501 reloc_sec = NULL;
13502 }
13503 }
13504
13505 elf_section_data (sec)->sreloc = reloc_sec;
13506 }
13507
13508 return reloc_sec;
13509 }
13510
13511 /* Copy the ELF symbol type and other attributes for a linker script
13512 assignment from HSRC to HDEST. Generally this should be treated as
13513 if we found a strong non-dynamic definition for HDEST (except that
13514 ld ignores multiple definition errors). */
13515 void
13516 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
13517 struct bfd_link_hash_entry *hdest,
13518 struct bfd_link_hash_entry *hsrc)
13519 {
13520 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
13521 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
13522 Elf_Internal_Sym isym;
13523
13524 ehdest->type = ehsrc->type;
13525 ehdest->target_internal = ehsrc->target_internal;
13526
13527 isym.st_other = ehsrc->other;
13528 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
13529 }
13530
13531 /* Append a RELA relocation REL to section S in BFD. */
13532
13533 void
13534 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13535 {
13536 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13537 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13538 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13539 bed->s->swap_reloca_out (abfd, rel, loc);
13540 }
13541
13542 /* Append a REL relocation REL to section S in BFD. */
13543
13544 void
13545 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13546 {
13547 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13548 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13549 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13550 bed->s->swap_reloc_out (abfd, rel, loc);
13551 }