* elflink.c (elf_link_add_object_symbols): Save and restore
[binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
29 #include "objalloc.h"
30
31 /* Define a symbol in a dynamic linkage section. */
32
33 struct elf_link_hash_entry *
34 _bfd_elf_define_linkage_sym (bfd *abfd,
35 struct bfd_link_info *info,
36 asection *sec,
37 const char *name)
38 {
39 struct elf_link_hash_entry *h;
40 struct bfd_link_hash_entry *bh;
41 const struct elf_backend_data *bed;
42
43 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
44 if (h != NULL)
45 {
46 /* Zap symbol defined in an as-needed lib that wasn't linked.
47 This is a symptom of a larger problem: Absolute symbols
48 defined in shared libraries can't be overridden, because we
49 lose the link to the bfd which is via the symbol section. */
50 h->root.type = bfd_link_hash_new;
51 }
52
53 bh = &h->root;
54 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
55 sec, 0, NULL, FALSE,
56 get_elf_backend_data (abfd)->collect,
57 &bh))
58 return NULL;
59 h = (struct elf_link_hash_entry *) bh;
60 h->def_regular = 1;
61 h->type = STT_OBJECT;
62 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
63
64 bed = get_elf_backend_data (abfd);
65 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
66 return h;
67 }
68
69 bfd_boolean
70 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
71 {
72 flagword flags;
73 asection *s;
74 struct elf_link_hash_entry *h;
75 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
76 int ptralign;
77
78 /* This function may be called more than once. */
79 s = bfd_get_section_by_name (abfd, ".got");
80 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
81 return TRUE;
82
83 switch (bed->s->arch_size)
84 {
85 case 32:
86 ptralign = 2;
87 break;
88
89 case 64:
90 ptralign = 3;
91 break;
92
93 default:
94 bfd_set_error (bfd_error_bad_value);
95 return FALSE;
96 }
97
98 flags = bed->dynamic_sec_flags;
99
100 s = bfd_make_section_with_flags (abfd, ".got", flags);
101 if (s == NULL
102 || !bfd_set_section_alignment (abfd, s, ptralign))
103 return FALSE;
104
105 if (bed->want_got_plt)
106 {
107 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
108 if (s == NULL
109 || !bfd_set_section_alignment (abfd, s, ptralign))
110 return FALSE;
111 }
112
113 if (bed->want_got_sym)
114 {
115 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
116 (or .got.plt) section. We don't do this in the linker script
117 because we don't want to define the symbol if we are not creating
118 a global offset table. */
119 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_GLOBAL_OFFSET_TABLE_");
120 elf_hash_table (info)->hgot = h;
121 if (h == NULL)
122 return FALSE;
123 }
124
125 /* The first bit of the global offset table is the header. */
126 s->size += bed->got_header_size;
127
128 return TRUE;
129 }
130 \f
131 /* Create a strtab to hold the dynamic symbol names. */
132 static bfd_boolean
133 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
134 {
135 struct elf_link_hash_table *hash_table;
136
137 hash_table = elf_hash_table (info);
138 if (hash_table->dynobj == NULL)
139 hash_table->dynobj = abfd;
140
141 if (hash_table->dynstr == NULL)
142 {
143 hash_table->dynstr = _bfd_elf_strtab_init ();
144 if (hash_table->dynstr == NULL)
145 return FALSE;
146 }
147 return TRUE;
148 }
149
150 /* Create some sections which will be filled in with dynamic linking
151 information. ABFD is an input file which requires dynamic sections
152 to be created. The dynamic sections take up virtual memory space
153 when the final executable is run, so we need to create them before
154 addresses are assigned to the output sections. We work out the
155 actual contents and size of these sections later. */
156
157 bfd_boolean
158 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
159 {
160 flagword flags;
161 register asection *s;
162 const struct elf_backend_data *bed;
163
164 if (! is_elf_hash_table (info->hash))
165 return FALSE;
166
167 if (elf_hash_table (info)->dynamic_sections_created)
168 return TRUE;
169
170 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
171 return FALSE;
172
173 abfd = elf_hash_table (info)->dynobj;
174 bed = get_elf_backend_data (abfd);
175
176 flags = bed->dynamic_sec_flags;
177
178 /* A dynamically linked executable has a .interp section, but a
179 shared library does not. */
180 if (info->executable)
181 {
182 s = bfd_make_section_with_flags (abfd, ".interp",
183 flags | SEC_READONLY);
184 if (s == NULL)
185 return FALSE;
186 }
187
188 if (! info->traditional_format)
189 {
190 s = bfd_make_section_with_flags (abfd, ".eh_frame_hdr",
191 flags | SEC_READONLY);
192 if (s == NULL
193 || ! bfd_set_section_alignment (abfd, s, 2))
194 return FALSE;
195 elf_hash_table (info)->eh_info.hdr_sec = s;
196 }
197
198 /* Create sections to hold version informations. These are removed
199 if they are not needed. */
200 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
201 flags | SEC_READONLY);
202 if (s == NULL
203 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
204 return FALSE;
205
206 s = bfd_make_section_with_flags (abfd, ".gnu.version",
207 flags | SEC_READONLY);
208 if (s == NULL
209 || ! bfd_set_section_alignment (abfd, s, 1))
210 return FALSE;
211
212 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
213 flags | SEC_READONLY);
214 if (s == NULL
215 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
216 return FALSE;
217
218 s = bfd_make_section_with_flags (abfd, ".dynsym",
219 flags | SEC_READONLY);
220 if (s == NULL
221 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
222 return FALSE;
223
224 s = bfd_make_section_with_flags (abfd, ".dynstr",
225 flags | SEC_READONLY);
226 if (s == NULL)
227 return FALSE;
228
229 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
230 if (s == NULL
231 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
232 return FALSE;
233
234 /* The special symbol _DYNAMIC is always set to the start of the
235 .dynamic section. We could set _DYNAMIC in a linker script, but we
236 only want to define it if we are, in fact, creating a .dynamic
237 section. We don't want to define it if there is no .dynamic
238 section, since on some ELF platforms the start up code examines it
239 to decide how to initialize the process. */
240 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
241 return FALSE;
242
243 s = bfd_make_section_with_flags (abfd, ".hash",
244 flags | SEC_READONLY);
245 if (s == NULL
246 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
247 return FALSE;
248 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
249
250 /* Let the backend create the rest of the sections. This lets the
251 backend set the right flags. The backend will normally create
252 the .got and .plt sections. */
253 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
254 return FALSE;
255
256 elf_hash_table (info)->dynamic_sections_created = TRUE;
257
258 return TRUE;
259 }
260
261 /* Create dynamic sections when linking against a dynamic object. */
262
263 bfd_boolean
264 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
265 {
266 flagword flags, pltflags;
267 struct elf_link_hash_entry *h;
268 asection *s;
269 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
270
271 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
272 .rel[a].bss sections. */
273 flags = bed->dynamic_sec_flags;
274
275 pltflags = flags;
276 if (bed->plt_not_loaded)
277 /* We do not clear SEC_ALLOC here because we still want the OS to
278 allocate space for the section; it's just that there's nothing
279 to read in from the object file. */
280 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
281 else
282 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
283 if (bed->plt_readonly)
284 pltflags |= SEC_READONLY;
285
286 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
287 if (s == NULL
288 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
289 return FALSE;
290
291 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
292 .plt section. */
293 if (bed->want_plt_sym)
294 {
295 h = _bfd_elf_define_linkage_sym (abfd, info, s,
296 "_PROCEDURE_LINKAGE_TABLE_");
297 elf_hash_table (info)->hplt = h;
298 if (h == NULL)
299 return FALSE;
300 }
301
302 s = bfd_make_section_with_flags (abfd,
303 (bed->default_use_rela_p
304 ? ".rela.plt" : ".rel.plt"),
305 flags | SEC_READONLY);
306 if (s == NULL
307 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
308 return FALSE;
309
310 if (! _bfd_elf_create_got_section (abfd, info))
311 return FALSE;
312
313 if (bed->want_dynbss)
314 {
315 /* The .dynbss section is a place to put symbols which are defined
316 by dynamic objects, are referenced by regular objects, and are
317 not functions. We must allocate space for them in the process
318 image and use a R_*_COPY reloc to tell the dynamic linker to
319 initialize them at run time. The linker script puts the .dynbss
320 section into the .bss section of the final image. */
321 s = bfd_make_section_with_flags (abfd, ".dynbss",
322 (SEC_ALLOC
323 | SEC_LINKER_CREATED));
324 if (s == NULL)
325 return FALSE;
326
327 /* The .rel[a].bss section holds copy relocs. This section is not
328 normally needed. We need to create it here, though, so that the
329 linker will map it to an output section. We can't just create it
330 only if we need it, because we will not know whether we need it
331 until we have seen all the input files, and the first time the
332 main linker code calls BFD after examining all the input files
333 (size_dynamic_sections) the input sections have already been
334 mapped to the output sections. If the section turns out not to
335 be needed, we can discard it later. We will never need this
336 section when generating a shared object, since they do not use
337 copy relocs. */
338 if (! info->shared)
339 {
340 s = bfd_make_section_with_flags (abfd,
341 (bed->default_use_rela_p
342 ? ".rela.bss" : ".rel.bss"),
343 flags | SEC_READONLY);
344 if (s == NULL
345 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
346 return FALSE;
347 }
348 }
349
350 return TRUE;
351 }
352 \f
353 /* Record a new dynamic symbol. We record the dynamic symbols as we
354 read the input files, since we need to have a list of all of them
355 before we can determine the final sizes of the output sections.
356 Note that we may actually call this function even though we are not
357 going to output any dynamic symbols; in some cases we know that a
358 symbol should be in the dynamic symbol table, but only if there is
359 one. */
360
361 bfd_boolean
362 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
363 struct elf_link_hash_entry *h)
364 {
365 if (h->dynindx == -1)
366 {
367 struct elf_strtab_hash *dynstr;
368 char *p;
369 const char *name;
370 bfd_size_type indx;
371
372 /* XXX: The ABI draft says the linker must turn hidden and
373 internal symbols into STB_LOCAL symbols when producing the
374 DSO. However, if ld.so honors st_other in the dynamic table,
375 this would not be necessary. */
376 switch (ELF_ST_VISIBILITY (h->other))
377 {
378 case STV_INTERNAL:
379 case STV_HIDDEN:
380 if (h->root.type != bfd_link_hash_undefined
381 && h->root.type != bfd_link_hash_undefweak)
382 {
383 h->forced_local = 1;
384 if (!elf_hash_table (info)->is_relocatable_executable)
385 return TRUE;
386 }
387
388 default:
389 break;
390 }
391
392 h->dynindx = elf_hash_table (info)->dynsymcount;
393 ++elf_hash_table (info)->dynsymcount;
394
395 dynstr = elf_hash_table (info)->dynstr;
396 if (dynstr == NULL)
397 {
398 /* Create a strtab to hold the dynamic symbol names. */
399 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
400 if (dynstr == NULL)
401 return FALSE;
402 }
403
404 /* We don't put any version information in the dynamic string
405 table. */
406 name = h->root.root.string;
407 p = strchr (name, ELF_VER_CHR);
408 if (p != NULL)
409 /* We know that the p points into writable memory. In fact,
410 there are only a few symbols that have read-only names, being
411 those like _GLOBAL_OFFSET_TABLE_ that are created specially
412 by the backends. Most symbols will have names pointing into
413 an ELF string table read from a file, or to objalloc memory. */
414 *p = 0;
415
416 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
417
418 if (p != NULL)
419 *p = ELF_VER_CHR;
420
421 if (indx == (bfd_size_type) -1)
422 return FALSE;
423 h->dynstr_index = indx;
424 }
425
426 return TRUE;
427 }
428 \f
429 /* Record an assignment to a symbol made by a linker script. We need
430 this in case some dynamic object refers to this symbol. */
431
432 bfd_boolean
433 bfd_elf_record_link_assignment (bfd *output_bfd,
434 struct bfd_link_info *info,
435 const char *name,
436 bfd_boolean provide,
437 bfd_boolean hidden)
438 {
439 struct elf_link_hash_entry *h;
440 struct elf_link_hash_table *htab;
441
442 if (!is_elf_hash_table (info->hash))
443 return TRUE;
444
445 htab = elf_hash_table (info);
446 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
447 if (h == NULL)
448 return provide;
449
450 /* Since we're defining the symbol, don't let it seem to have not
451 been defined. record_dynamic_symbol and size_dynamic_sections
452 may depend on this. */
453 if (h->root.type == bfd_link_hash_undefweak
454 || h->root.type == bfd_link_hash_undefined)
455 {
456 h->root.type = bfd_link_hash_new;
457 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
458 bfd_link_repair_undef_list (&htab->root);
459 }
460
461 if (h->root.type == bfd_link_hash_new)
462 h->non_elf = 0;
463
464 /* If this symbol is being provided by the linker script, and it is
465 currently defined by a dynamic object, but not by a regular
466 object, then mark it as undefined so that the generic linker will
467 force the correct value. */
468 if (provide
469 && h->def_dynamic
470 && !h->def_regular)
471 h->root.type = bfd_link_hash_undefined;
472
473 /* If this symbol is not being provided by the linker script, and it is
474 currently defined by a dynamic object, but not by a regular object,
475 then clear out any version information because the symbol will not be
476 associated with the dynamic object any more. */
477 if (!provide
478 && h->def_dynamic
479 && !h->def_regular)
480 h->verinfo.verdef = NULL;
481
482 h->def_regular = 1;
483
484 if (provide && hidden)
485 {
486 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
487
488 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
489 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
490 }
491
492 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
493 and executables. */
494 if (!info->relocatable
495 && h->dynindx != -1
496 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
497 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
498 h->forced_local = 1;
499
500 if ((h->def_dynamic
501 || h->ref_dynamic
502 || info->shared
503 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
504 && h->dynindx == -1)
505 {
506 if (! bfd_elf_link_record_dynamic_symbol (info, h))
507 return FALSE;
508
509 /* If this is a weak defined symbol, and we know a corresponding
510 real symbol from the same dynamic object, make sure the real
511 symbol is also made into a dynamic symbol. */
512 if (h->u.weakdef != NULL
513 && h->u.weakdef->dynindx == -1)
514 {
515 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
516 return FALSE;
517 }
518 }
519
520 return TRUE;
521 }
522
523 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
524 success, and 2 on a failure caused by attempting to record a symbol
525 in a discarded section, eg. a discarded link-once section symbol. */
526
527 int
528 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
529 bfd *input_bfd,
530 long input_indx)
531 {
532 bfd_size_type amt;
533 struct elf_link_local_dynamic_entry *entry;
534 struct elf_link_hash_table *eht;
535 struct elf_strtab_hash *dynstr;
536 unsigned long dynstr_index;
537 char *name;
538 Elf_External_Sym_Shndx eshndx;
539 char esym[sizeof (Elf64_External_Sym)];
540
541 if (! is_elf_hash_table (info->hash))
542 return 0;
543
544 /* See if the entry exists already. */
545 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
546 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
547 return 1;
548
549 amt = sizeof (*entry);
550 entry = bfd_alloc (input_bfd, amt);
551 if (entry == NULL)
552 return 0;
553
554 /* Go find the symbol, so that we can find it's name. */
555 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
556 1, input_indx, &entry->isym, esym, &eshndx))
557 {
558 bfd_release (input_bfd, entry);
559 return 0;
560 }
561
562 if (entry->isym.st_shndx != SHN_UNDEF
563 && (entry->isym.st_shndx < SHN_LORESERVE
564 || entry->isym.st_shndx > SHN_HIRESERVE))
565 {
566 asection *s;
567
568 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
569 if (s == NULL || bfd_is_abs_section (s->output_section))
570 {
571 /* We can still bfd_release here as nothing has done another
572 bfd_alloc. We can't do this later in this function. */
573 bfd_release (input_bfd, entry);
574 return 2;
575 }
576 }
577
578 name = (bfd_elf_string_from_elf_section
579 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
580 entry->isym.st_name));
581
582 dynstr = elf_hash_table (info)->dynstr;
583 if (dynstr == NULL)
584 {
585 /* Create a strtab to hold the dynamic symbol names. */
586 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
587 if (dynstr == NULL)
588 return 0;
589 }
590
591 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
592 if (dynstr_index == (unsigned long) -1)
593 return 0;
594 entry->isym.st_name = dynstr_index;
595
596 eht = elf_hash_table (info);
597
598 entry->next = eht->dynlocal;
599 eht->dynlocal = entry;
600 entry->input_bfd = input_bfd;
601 entry->input_indx = input_indx;
602 eht->dynsymcount++;
603
604 /* Whatever binding the symbol had before, it's now local. */
605 entry->isym.st_info
606 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
607
608 /* The dynindx will be set at the end of size_dynamic_sections. */
609
610 return 1;
611 }
612
613 /* Return the dynindex of a local dynamic symbol. */
614
615 long
616 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
617 bfd *input_bfd,
618 long input_indx)
619 {
620 struct elf_link_local_dynamic_entry *e;
621
622 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
623 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
624 return e->dynindx;
625 return -1;
626 }
627
628 /* This function is used to renumber the dynamic symbols, if some of
629 them are removed because they are marked as local. This is called
630 via elf_link_hash_traverse. */
631
632 static bfd_boolean
633 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
634 void *data)
635 {
636 size_t *count = data;
637
638 if (h->root.type == bfd_link_hash_warning)
639 h = (struct elf_link_hash_entry *) h->root.u.i.link;
640
641 if (h->forced_local)
642 return TRUE;
643
644 if (h->dynindx != -1)
645 h->dynindx = ++(*count);
646
647 return TRUE;
648 }
649
650
651 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
652 STB_LOCAL binding. */
653
654 static bfd_boolean
655 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
656 void *data)
657 {
658 size_t *count = data;
659
660 if (h->root.type == bfd_link_hash_warning)
661 h = (struct elf_link_hash_entry *) h->root.u.i.link;
662
663 if (!h->forced_local)
664 return TRUE;
665
666 if (h->dynindx != -1)
667 h->dynindx = ++(*count);
668
669 return TRUE;
670 }
671
672 /* Return true if the dynamic symbol for a given section should be
673 omitted when creating a shared library. */
674 bfd_boolean
675 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
676 struct bfd_link_info *info,
677 asection *p)
678 {
679 switch (elf_section_data (p)->this_hdr.sh_type)
680 {
681 case SHT_PROGBITS:
682 case SHT_NOBITS:
683 /* If sh_type is yet undecided, assume it could be
684 SHT_PROGBITS/SHT_NOBITS. */
685 case SHT_NULL:
686 if (strcmp (p->name, ".got") == 0
687 || strcmp (p->name, ".got.plt") == 0
688 || strcmp (p->name, ".plt") == 0)
689 {
690 asection *ip;
691 bfd *dynobj = elf_hash_table (info)->dynobj;
692
693 if (dynobj != NULL
694 && (ip = bfd_get_section_by_name (dynobj, p->name)) != NULL
695 && (ip->flags & SEC_LINKER_CREATED)
696 && ip->output_section == p)
697 return TRUE;
698 }
699 return FALSE;
700
701 /* There shouldn't be section relative relocations
702 against any other section. */
703 default:
704 return TRUE;
705 }
706 }
707
708 /* Assign dynsym indices. In a shared library we generate a section
709 symbol for each output section, which come first. Next come symbols
710 which have been forced to local binding. Then all of the back-end
711 allocated local dynamic syms, followed by the rest of the global
712 symbols. */
713
714 static unsigned long
715 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
716 struct bfd_link_info *info,
717 unsigned long *section_sym_count)
718 {
719 unsigned long dynsymcount = 0;
720
721 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
722 {
723 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
724 asection *p;
725 for (p = output_bfd->sections; p ; p = p->next)
726 if ((p->flags & SEC_EXCLUDE) == 0
727 && (p->flags & SEC_ALLOC) != 0
728 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
729 elf_section_data (p)->dynindx = ++dynsymcount;
730 }
731 *section_sym_count = dynsymcount;
732
733 elf_link_hash_traverse (elf_hash_table (info),
734 elf_link_renumber_local_hash_table_dynsyms,
735 &dynsymcount);
736
737 if (elf_hash_table (info)->dynlocal)
738 {
739 struct elf_link_local_dynamic_entry *p;
740 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
741 p->dynindx = ++dynsymcount;
742 }
743
744 elf_link_hash_traverse (elf_hash_table (info),
745 elf_link_renumber_hash_table_dynsyms,
746 &dynsymcount);
747
748 /* There is an unused NULL entry at the head of the table which
749 we must account for in our count. Unless there weren't any
750 symbols, which means we'll have no table at all. */
751 if (dynsymcount != 0)
752 ++dynsymcount;
753
754 elf_hash_table (info)->dynsymcount = dynsymcount;
755 return dynsymcount;
756 }
757
758 /* This function is called when we want to define a new symbol. It
759 handles the various cases which arise when we find a definition in
760 a dynamic object, or when there is already a definition in a
761 dynamic object. The new symbol is described by NAME, SYM, PSEC,
762 and PVALUE. We set SYM_HASH to the hash table entry. We set
763 OVERRIDE if the old symbol is overriding a new definition. We set
764 TYPE_CHANGE_OK if it is OK for the type to change. We set
765 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
766 change, we mean that we shouldn't warn if the type or size does
767 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
768 object is overridden by a regular object. */
769
770 bfd_boolean
771 _bfd_elf_merge_symbol (bfd *abfd,
772 struct bfd_link_info *info,
773 const char *name,
774 Elf_Internal_Sym *sym,
775 asection **psec,
776 bfd_vma *pvalue,
777 unsigned int *pold_alignment,
778 struct elf_link_hash_entry **sym_hash,
779 bfd_boolean *skip,
780 bfd_boolean *override,
781 bfd_boolean *type_change_ok,
782 bfd_boolean *size_change_ok)
783 {
784 asection *sec, *oldsec;
785 struct elf_link_hash_entry *h;
786 struct elf_link_hash_entry *flip;
787 int bind;
788 bfd *oldbfd;
789 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
790 bfd_boolean newweak, oldweak;
791 const struct elf_backend_data *bed;
792
793 *skip = FALSE;
794 *override = FALSE;
795
796 sec = *psec;
797 bind = ELF_ST_BIND (sym->st_info);
798
799 if (! bfd_is_und_section (sec))
800 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
801 else
802 h = ((struct elf_link_hash_entry *)
803 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
804 if (h == NULL)
805 return FALSE;
806 *sym_hash = h;
807
808 /* This code is for coping with dynamic objects, and is only useful
809 if we are doing an ELF link. */
810 if (info->hash->creator != abfd->xvec)
811 return TRUE;
812
813 /* For merging, we only care about real symbols. */
814
815 while (h->root.type == bfd_link_hash_indirect
816 || h->root.type == bfd_link_hash_warning)
817 h = (struct elf_link_hash_entry *) h->root.u.i.link;
818
819 /* If we just created the symbol, mark it as being an ELF symbol.
820 Other than that, there is nothing to do--there is no merge issue
821 with a newly defined symbol--so we just return. */
822
823 if (h->root.type == bfd_link_hash_new)
824 {
825 h->non_elf = 0;
826 return TRUE;
827 }
828
829 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
830 existing symbol. */
831
832 switch (h->root.type)
833 {
834 default:
835 oldbfd = NULL;
836 oldsec = NULL;
837 break;
838
839 case bfd_link_hash_undefined:
840 case bfd_link_hash_undefweak:
841 oldbfd = h->root.u.undef.abfd;
842 oldsec = NULL;
843 break;
844
845 case bfd_link_hash_defined:
846 case bfd_link_hash_defweak:
847 oldbfd = h->root.u.def.section->owner;
848 oldsec = h->root.u.def.section;
849 break;
850
851 case bfd_link_hash_common:
852 oldbfd = h->root.u.c.p->section->owner;
853 oldsec = h->root.u.c.p->section;
854 break;
855 }
856
857 /* In cases involving weak versioned symbols, we may wind up trying
858 to merge a symbol with itself. Catch that here, to avoid the
859 confusion that results if we try to override a symbol with
860 itself. The additional tests catch cases like
861 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
862 dynamic object, which we do want to handle here. */
863 if (abfd == oldbfd
864 && ((abfd->flags & DYNAMIC) == 0
865 || !h->def_regular))
866 return TRUE;
867
868 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
869 respectively, is from a dynamic object. */
870
871 newdyn = (abfd->flags & DYNAMIC) != 0;
872
873 olddyn = FALSE;
874 if (oldbfd != NULL)
875 olddyn = (oldbfd->flags & DYNAMIC) != 0;
876 else if (oldsec != NULL)
877 {
878 /* This handles the special SHN_MIPS_{TEXT,DATA} section
879 indices used by MIPS ELF. */
880 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
881 }
882
883 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
884 respectively, appear to be a definition rather than reference. */
885
886 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
887
888 olddef = (h->root.type != bfd_link_hash_undefined
889 && h->root.type != bfd_link_hash_undefweak
890 && h->root.type != bfd_link_hash_common);
891
892 /* When we try to create a default indirect symbol from the dynamic
893 definition with the default version, we skip it if its type and
894 the type of existing regular definition mismatch. We only do it
895 if the existing regular definition won't be dynamic. */
896 if (pold_alignment == NULL
897 && !info->shared
898 && !info->export_dynamic
899 && !h->ref_dynamic
900 && newdyn
901 && newdef
902 && !olddyn
903 && (olddef || h->root.type == bfd_link_hash_common)
904 && ELF_ST_TYPE (sym->st_info) != h->type
905 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
906 && h->type != STT_NOTYPE)
907 {
908 *skip = TRUE;
909 return TRUE;
910 }
911
912 /* Check TLS symbol. We don't check undefined symbol introduced by
913 "ld -u". */
914 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
915 && ELF_ST_TYPE (sym->st_info) != h->type
916 && oldbfd != NULL)
917 {
918 bfd *ntbfd, *tbfd;
919 bfd_boolean ntdef, tdef;
920 asection *ntsec, *tsec;
921
922 if (h->type == STT_TLS)
923 {
924 ntbfd = abfd;
925 ntsec = sec;
926 ntdef = newdef;
927 tbfd = oldbfd;
928 tsec = oldsec;
929 tdef = olddef;
930 }
931 else
932 {
933 ntbfd = oldbfd;
934 ntsec = oldsec;
935 ntdef = olddef;
936 tbfd = abfd;
937 tsec = sec;
938 tdef = newdef;
939 }
940
941 if (tdef && ntdef)
942 (*_bfd_error_handler)
943 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
944 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
945 else if (!tdef && !ntdef)
946 (*_bfd_error_handler)
947 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
948 tbfd, ntbfd, h->root.root.string);
949 else if (tdef)
950 (*_bfd_error_handler)
951 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
952 tbfd, tsec, ntbfd, h->root.root.string);
953 else
954 (*_bfd_error_handler)
955 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
956 tbfd, ntbfd, ntsec, h->root.root.string);
957
958 bfd_set_error (bfd_error_bad_value);
959 return FALSE;
960 }
961
962 /* We need to remember if a symbol has a definition in a dynamic
963 object or is weak in all dynamic objects. Internal and hidden
964 visibility will make it unavailable to dynamic objects. */
965 if (newdyn && !h->dynamic_def)
966 {
967 if (!bfd_is_und_section (sec))
968 h->dynamic_def = 1;
969 else
970 {
971 /* Check if this symbol is weak in all dynamic objects. If it
972 is the first time we see it in a dynamic object, we mark
973 if it is weak. Otherwise, we clear it. */
974 if (!h->ref_dynamic)
975 {
976 if (bind == STB_WEAK)
977 h->dynamic_weak = 1;
978 }
979 else if (bind != STB_WEAK)
980 h->dynamic_weak = 0;
981 }
982 }
983
984 /* If the old symbol has non-default visibility, we ignore the new
985 definition from a dynamic object. */
986 if (newdyn
987 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
988 && !bfd_is_und_section (sec))
989 {
990 *skip = TRUE;
991 /* Make sure this symbol is dynamic. */
992 h->ref_dynamic = 1;
993 /* A protected symbol has external availability. Make sure it is
994 recorded as dynamic.
995
996 FIXME: Should we check type and size for protected symbol? */
997 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
998 return bfd_elf_link_record_dynamic_symbol (info, h);
999 else
1000 return TRUE;
1001 }
1002 else if (!newdyn
1003 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1004 && h->def_dynamic)
1005 {
1006 /* If the new symbol with non-default visibility comes from a
1007 relocatable file and the old definition comes from a dynamic
1008 object, we remove the old definition. */
1009 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1010 h = *sym_hash;
1011
1012 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1013 && bfd_is_und_section (sec))
1014 {
1015 /* If the new symbol is undefined and the old symbol was
1016 also undefined before, we need to make sure
1017 _bfd_generic_link_add_one_symbol doesn't mess
1018 up the linker hash table undefs list. Since the old
1019 definition came from a dynamic object, it is still on the
1020 undefs list. */
1021 h->root.type = bfd_link_hash_undefined;
1022 h->root.u.undef.abfd = abfd;
1023 }
1024 else
1025 {
1026 h->root.type = bfd_link_hash_new;
1027 h->root.u.undef.abfd = NULL;
1028 }
1029
1030 if (h->def_dynamic)
1031 {
1032 h->def_dynamic = 0;
1033 h->ref_dynamic = 1;
1034 h->dynamic_def = 1;
1035 }
1036 /* FIXME: Should we check type and size for protected symbol? */
1037 h->size = 0;
1038 h->type = 0;
1039 return TRUE;
1040 }
1041
1042 /* Differentiate strong and weak symbols. */
1043 newweak = bind == STB_WEAK;
1044 oldweak = (h->root.type == bfd_link_hash_defweak
1045 || h->root.type == bfd_link_hash_undefweak);
1046
1047 /* If a new weak symbol definition comes from a regular file and the
1048 old symbol comes from a dynamic library, we treat the new one as
1049 strong. Similarly, an old weak symbol definition from a regular
1050 file is treated as strong when the new symbol comes from a dynamic
1051 library. Further, an old weak symbol from a dynamic library is
1052 treated as strong if the new symbol is from a dynamic library.
1053 This reflects the way glibc's ld.so works.
1054
1055 Do this before setting *type_change_ok or *size_change_ok so that
1056 we warn properly when dynamic library symbols are overridden. */
1057
1058 if (newdef && !newdyn && olddyn)
1059 newweak = FALSE;
1060 if (olddef && newdyn)
1061 oldweak = FALSE;
1062
1063 /* It's OK to change the type if either the existing symbol or the
1064 new symbol is weak. A type change is also OK if the old symbol
1065 is undefined and the new symbol is defined. */
1066
1067 if (oldweak
1068 || newweak
1069 || (newdef
1070 && h->root.type == bfd_link_hash_undefined))
1071 *type_change_ok = TRUE;
1072
1073 /* It's OK to change the size if either the existing symbol or the
1074 new symbol is weak, or if the old symbol is undefined. */
1075
1076 if (*type_change_ok
1077 || h->root.type == bfd_link_hash_undefined)
1078 *size_change_ok = TRUE;
1079
1080 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1081 symbol, respectively, appears to be a common symbol in a dynamic
1082 object. If a symbol appears in an uninitialized section, and is
1083 not weak, and is not a function, then it may be a common symbol
1084 which was resolved when the dynamic object was created. We want
1085 to treat such symbols specially, because they raise special
1086 considerations when setting the symbol size: if the symbol
1087 appears as a common symbol in a regular object, and the size in
1088 the regular object is larger, we must make sure that we use the
1089 larger size. This problematic case can always be avoided in C,
1090 but it must be handled correctly when using Fortran shared
1091 libraries.
1092
1093 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1094 likewise for OLDDYNCOMMON and OLDDEF.
1095
1096 Note that this test is just a heuristic, and that it is quite
1097 possible to have an uninitialized symbol in a shared object which
1098 is really a definition, rather than a common symbol. This could
1099 lead to some minor confusion when the symbol really is a common
1100 symbol in some regular object. However, I think it will be
1101 harmless. */
1102
1103 if (newdyn
1104 && newdef
1105 && !newweak
1106 && (sec->flags & SEC_ALLOC) != 0
1107 && (sec->flags & SEC_LOAD) == 0
1108 && sym->st_size > 0
1109 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
1110 newdyncommon = TRUE;
1111 else
1112 newdyncommon = FALSE;
1113
1114 if (olddyn
1115 && olddef
1116 && h->root.type == bfd_link_hash_defined
1117 && h->def_dynamic
1118 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1119 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1120 && h->size > 0
1121 && h->type != STT_FUNC)
1122 olddyncommon = TRUE;
1123 else
1124 olddyncommon = FALSE;
1125
1126 /* We now know everything about the old and new symbols. We ask the
1127 backend to check if we can merge them. */
1128 bed = get_elf_backend_data (abfd);
1129 if (bed->merge_symbol
1130 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1131 pold_alignment, skip, override,
1132 type_change_ok, size_change_ok,
1133 &newdyn, &newdef, &newdyncommon, &newweak,
1134 abfd, &sec,
1135 &olddyn, &olddef, &olddyncommon, &oldweak,
1136 oldbfd, &oldsec))
1137 return FALSE;
1138
1139 /* If both the old and the new symbols look like common symbols in a
1140 dynamic object, set the size of the symbol to the larger of the
1141 two. */
1142
1143 if (olddyncommon
1144 && newdyncommon
1145 && sym->st_size != h->size)
1146 {
1147 /* Since we think we have two common symbols, issue a multiple
1148 common warning if desired. Note that we only warn if the
1149 size is different. If the size is the same, we simply let
1150 the old symbol override the new one as normally happens with
1151 symbols defined in dynamic objects. */
1152
1153 if (! ((*info->callbacks->multiple_common)
1154 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1155 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1156 return FALSE;
1157
1158 if (sym->st_size > h->size)
1159 h->size = sym->st_size;
1160
1161 *size_change_ok = TRUE;
1162 }
1163
1164 /* If we are looking at a dynamic object, and we have found a
1165 definition, we need to see if the symbol was already defined by
1166 some other object. If so, we want to use the existing
1167 definition, and we do not want to report a multiple symbol
1168 definition error; we do this by clobbering *PSEC to be
1169 bfd_und_section_ptr.
1170
1171 We treat a common symbol as a definition if the symbol in the
1172 shared library is a function, since common symbols always
1173 represent variables; this can cause confusion in principle, but
1174 any such confusion would seem to indicate an erroneous program or
1175 shared library. We also permit a common symbol in a regular
1176 object to override a weak symbol in a shared object. */
1177
1178 if (newdyn
1179 && newdef
1180 && (olddef
1181 || (h->root.type == bfd_link_hash_common
1182 && (newweak
1183 || ELF_ST_TYPE (sym->st_info) == STT_FUNC))))
1184 {
1185 *override = TRUE;
1186 newdef = FALSE;
1187 newdyncommon = FALSE;
1188
1189 *psec = sec = bfd_und_section_ptr;
1190 *size_change_ok = TRUE;
1191
1192 /* If we get here when the old symbol is a common symbol, then
1193 we are explicitly letting it override a weak symbol or
1194 function in a dynamic object, and we don't want to warn about
1195 a type change. If the old symbol is a defined symbol, a type
1196 change warning may still be appropriate. */
1197
1198 if (h->root.type == bfd_link_hash_common)
1199 *type_change_ok = TRUE;
1200 }
1201
1202 /* Handle the special case of an old common symbol merging with a
1203 new symbol which looks like a common symbol in a shared object.
1204 We change *PSEC and *PVALUE to make the new symbol look like a
1205 common symbol, and let _bfd_generic_link_add_one_symbol do the
1206 right thing. */
1207
1208 if (newdyncommon
1209 && h->root.type == bfd_link_hash_common)
1210 {
1211 *override = TRUE;
1212 newdef = FALSE;
1213 newdyncommon = FALSE;
1214 *pvalue = sym->st_size;
1215 *psec = sec = bed->common_section (oldsec);
1216 *size_change_ok = TRUE;
1217 }
1218
1219 /* Skip weak definitions of symbols that are already defined. */
1220 if (newdef && olddef && newweak)
1221 *skip = TRUE;
1222
1223 /* If the old symbol is from a dynamic object, and the new symbol is
1224 a definition which is not from a dynamic object, then the new
1225 symbol overrides the old symbol. Symbols from regular files
1226 always take precedence over symbols from dynamic objects, even if
1227 they are defined after the dynamic object in the link.
1228
1229 As above, we again permit a common symbol in a regular object to
1230 override a definition in a shared object if the shared object
1231 symbol is a function or is weak. */
1232
1233 flip = NULL;
1234 if (!newdyn
1235 && (newdef
1236 || (bfd_is_com_section (sec)
1237 && (oldweak
1238 || h->type == STT_FUNC)))
1239 && olddyn
1240 && olddef
1241 && h->def_dynamic)
1242 {
1243 /* Change the hash table entry to undefined, and let
1244 _bfd_generic_link_add_one_symbol do the right thing with the
1245 new definition. */
1246
1247 h->root.type = bfd_link_hash_undefined;
1248 h->root.u.undef.abfd = h->root.u.def.section->owner;
1249 *size_change_ok = TRUE;
1250
1251 olddef = FALSE;
1252 olddyncommon = FALSE;
1253
1254 /* We again permit a type change when a common symbol may be
1255 overriding a function. */
1256
1257 if (bfd_is_com_section (sec))
1258 *type_change_ok = TRUE;
1259
1260 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1261 flip = *sym_hash;
1262 else
1263 /* This union may have been set to be non-NULL when this symbol
1264 was seen in a dynamic object. We must force the union to be
1265 NULL, so that it is correct for a regular symbol. */
1266 h->verinfo.vertree = NULL;
1267 }
1268
1269 /* Handle the special case of a new common symbol merging with an
1270 old symbol that looks like it might be a common symbol defined in
1271 a shared object. Note that we have already handled the case in
1272 which a new common symbol should simply override the definition
1273 in the shared library. */
1274
1275 if (! newdyn
1276 && bfd_is_com_section (sec)
1277 && olddyncommon)
1278 {
1279 /* It would be best if we could set the hash table entry to a
1280 common symbol, but we don't know what to use for the section
1281 or the alignment. */
1282 if (! ((*info->callbacks->multiple_common)
1283 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1284 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1285 return FALSE;
1286
1287 /* If the presumed common symbol in the dynamic object is
1288 larger, pretend that the new symbol has its size. */
1289
1290 if (h->size > *pvalue)
1291 *pvalue = h->size;
1292
1293 /* We need to remember the alignment required by the symbol
1294 in the dynamic object. */
1295 BFD_ASSERT (pold_alignment);
1296 *pold_alignment = h->root.u.def.section->alignment_power;
1297
1298 olddef = FALSE;
1299 olddyncommon = FALSE;
1300
1301 h->root.type = bfd_link_hash_undefined;
1302 h->root.u.undef.abfd = h->root.u.def.section->owner;
1303
1304 *size_change_ok = TRUE;
1305 *type_change_ok = TRUE;
1306
1307 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1308 flip = *sym_hash;
1309 else
1310 h->verinfo.vertree = NULL;
1311 }
1312
1313 if (flip != NULL)
1314 {
1315 /* Handle the case where we had a versioned symbol in a dynamic
1316 library and now find a definition in a normal object. In this
1317 case, we make the versioned symbol point to the normal one. */
1318 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1319 flip->root.type = h->root.type;
1320 h->root.type = bfd_link_hash_indirect;
1321 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1322 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1323 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1324 if (h->def_dynamic)
1325 {
1326 h->def_dynamic = 0;
1327 flip->ref_dynamic = 1;
1328 }
1329 }
1330
1331 return TRUE;
1332 }
1333
1334 /* This function is called to create an indirect symbol from the
1335 default for the symbol with the default version if needed. The
1336 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1337 set DYNSYM if the new indirect symbol is dynamic. */
1338
1339 bfd_boolean
1340 _bfd_elf_add_default_symbol (bfd *abfd,
1341 struct bfd_link_info *info,
1342 struct elf_link_hash_entry *h,
1343 const char *name,
1344 Elf_Internal_Sym *sym,
1345 asection **psec,
1346 bfd_vma *value,
1347 bfd_boolean *dynsym,
1348 bfd_boolean override)
1349 {
1350 bfd_boolean type_change_ok;
1351 bfd_boolean size_change_ok;
1352 bfd_boolean skip;
1353 char *shortname;
1354 struct elf_link_hash_entry *hi;
1355 struct bfd_link_hash_entry *bh;
1356 const struct elf_backend_data *bed;
1357 bfd_boolean collect;
1358 bfd_boolean dynamic;
1359 char *p;
1360 size_t len, shortlen;
1361 asection *sec;
1362
1363 /* If this symbol has a version, and it is the default version, we
1364 create an indirect symbol from the default name to the fully
1365 decorated name. This will cause external references which do not
1366 specify a version to be bound to this version of the symbol. */
1367 p = strchr (name, ELF_VER_CHR);
1368 if (p == NULL || p[1] != ELF_VER_CHR)
1369 return TRUE;
1370
1371 if (override)
1372 {
1373 /* We are overridden by an old definition. We need to check if we
1374 need to create the indirect symbol from the default name. */
1375 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1376 FALSE, FALSE);
1377 BFD_ASSERT (hi != NULL);
1378 if (hi == h)
1379 return TRUE;
1380 while (hi->root.type == bfd_link_hash_indirect
1381 || hi->root.type == bfd_link_hash_warning)
1382 {
1383 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1384 if (hi == h)
1385 return TRUE;
1386 }
1387 }
1388
1389 bed = get_elf_backend_data (abfd);
1390 collect = bed->collect;
1391 dynamic = (abfd->flags & DYNAMIC) != 0;
1392
1393 shortlen = p - name;
1394 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1395 if (shortname == NULL)
1396 return FALSE;
1397 memcpy (shortname, name, shortlen);
1398 shortname[shortlen] = '\0';
1399
1400 /* We are going to create a new symbol. Merge it with any existing
1401 symbol with this name. For the purposes of the merge, act as
1402 though we were defining the symbol we just defined, although we
1403 actually going to define an indirect symbol. */
1404 type_change_ok = FALSE;
1405 size_change_ok = FALSE;
1406 sec = *psec;
1407 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1408 NULL, &hi, &skip, &override,
1409 &type_change_ok, &size_change_ok))
1410 return FALSE;
1411
1412 if (skip)
1413 goto nondefault;
1414
1415 if (! override)
1416 {
1417 bh = &hi->root;
1418 if (! (_bfd_generic_link_add_one_symbol
1419 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1420 0, name, FALSE, collect, &bh)))
1421 return FALSE;
1422 hi = (struct elf_link_hash_entry *) bh;
1423 }
1424 else
1425 {
1426 /* In this case the symbol named SHORTNAME is overriding the
1427 indirect symbol we want to add. We were planning on making
1428 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1429 is the name without a version. NAME is the fully versioned
1430 name, and it is the default version.
1431
1432 Overriding means that we already saw a definition for the
1433 symbol SHORTNAME in a regular object, and it is overriding
1434 the symbol defined in the dynamic object.
1435
1436 When this happens, we actually want to change NAME, the
1437 symbol we just added, to refer to SHORTNAME. This will cause
1438 references to NAME in the shared object to become references
1439 to SHORTNAME in the regular object. This is what we expect
1440 when we override a function in a shared object: that the
1441 references in the shared object will be mapped to the
1442 definition in the regular object. */
1443
1444 while (hi->root.type == bfd_link_hash_indirect
1445 || hi->root.type == bfd_link_hash_warning)
1446 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1447
1448 h->root.type = bfd_link_hash_indirect;
1449 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1450 if (h->def_dynamic)
1451 {
1452 h->def_dynamic = 0;
1453 hi->ref_dynamic = 1;
1454 if (hi->ref_regular
1455 || hi->def_regular)
1456 {
1457 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1458 return FALSE;
1459 }
1460 }
1461
1462 /* Now set HI to H, so that the following code will set the
1463 other fields correctly. */
1464 hi = h;
1465 }
1466
1467 /* If there is a duplicate definition somewhere, then HI may not
1468 point to an indirect symbol. We will have reported an error to
1469 the user in that case. */
1470
1471 if (hi->root.type == bfd_link_hash_indirect)
1472 {
1473 struct elf_link_hash_entry *ht;
1474
1475 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1476 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1477
1478 /* See if the new flags lead us to realize that the symbol must
1479 be dynamic. */
1480 if (! *dynsym)
1481 {
1482 if (! dynamic)
1483 {
1484 if (info->shared
1485 || hi->ref_dynamic)
1486 *dynsym = TRUE;
1487 }
1488 else
1489 {
1490 if (hi->ref_regular)
1491 *dynsym = TRUE;
1492 }
1493 }
1494 }
1495
1496 /* We also need to define an indirection from the nondefault version
1497 of the symbol. */
1498
1499 nondefault:
1500 len = strlen (name);
1501 shortname = bfd_hash_allocate (&info->hash->table, len);
1502 if (shortname == NULL)
1503 return FALSE;
1504 memcpy (shortname, name, shortlen);
1505 memcpy (shortname + shortlen, p + 1, len - shortlen);
1506
1507 /* Once again, merge with any existing symbol. */
1508 type_change_ok = FALSE;
1509 size_change_ok = FALSE;
1510 sec = *psec;
1511 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1512 NULL, &hi, &skip, &override,
1513 &type_change_ok, &size_change_ok))
1514 return FALSE;
1515
1516 if (skip)
1517 return TRUE;
1518
1519 if (override)
1520 {
1521 /* Here SHORTNAME is a versioned name, so we don't expect to see
1522 the type of override we do in the case above unless it is
1523 overridden by a versioned definition. */
1524 if (hi->root.type != bfd_link_hash_defined
1525 && hi->root.type != bfd_link_hash_defweak)
1526 (*_bfd_error_handler)
1527 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1528 abfd, shortname);
1529 }
1530 else
1531 {
1532 bh = &hi->root;
1533 if (! (_bfd_generic_link_add_one_symbol
1534 (info, abfd, shortname, BSF_INDIRECT,
1535 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1536 return FALSE;
1537 hi = (struct elf_link_hash_entry *) bh;
1538
1539 /* If there is a duplicate definition somewhere, then HI may not
1540 point to an indirect symbol. We will have reported an error
1541 to the user in that case. */
1542
1543 if (hi->root.type == bfd_link_hash_indirect)
1544 {
1545 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1546
1547 /* See if the new flags lead us to realize that the symbol
1548 must be dynamic. */
1549 if (! *dynsym)
1550 {
1551 if (! dynamic)
1552 {
1553 if (info->shared
1554 || hi->ref_dynamic)
1555 *dynsym = TRUE;
1556 }
1557 else
1558 {
1559 if (hi->ref_regular)
1560 *dynsym = TRUE;
1561 }
1562 }
1563 }
1564 }
1565
1566 return TRUE;
1567 }
1568 \f
1569 /* This routine is used to export all defined symbols into the dynamic
1570 symbol table. It is called via elf_link_hash_traverse. */
1571
1572 bfd_boolean
1573 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1574 {
1575 struct elf_info_failed *eif = data;
1576
1577 /* Ignore indirect symbols. These are added by the versioning code. */
1578 if (h->root.type == bfd_link_hash_indirect)
1579 return TRUE;
1580
1581 if (h->root.type == bfd_link_hash_warning)
1582 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1583
1584 if (h->dynindx == -1
1585 && (h->def_regular
1586 || h->ref_regular))
1587 {
1588 struct bfd_elf_version_tree *t;
1589 struct bfd_elf_version_expr *d;
1590
1591 for (t = eif->verdefs; t != NULL; t = t->next)
1592 {
1593 if (t->globals.list != NULL)
1594 {
1595 d = (*t->match) (&t->globals, NULL, h->root.root.string);
1596 if (d != NULL)
1597 goto doit;
1598 }
1599
1600 if (t->locals.list != NULL)
1601 {
1602 d = (*t->match) (&t->locals, NULL, h->root.root.string);
1603 if (d != NULL)
1604 return TRUE;
1605 }
1606 }
1607
1608 if (!eif->verdefs)
1609 {
1610 doit:
1611 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1612 {
1613 eif->failed = TRUE;
1614 return FALSE;
1615 }
1616 }
1617 }
1618
1619 return TRUE;
1620 }
1621 \f
1622 /* Look through the symbols which are defined in other shared
1623 libraries and referenced here. Update the list of version
1624 dependencies. This will be put into the .gnu.version_r section.
1625 This function is called via elf_link_hash_traverse. */
1626
1627 bfd_boolean
1628 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1629 void *data)
1630 {
1631 struct elf_find_verdep_info *rinfo = data;
1632 Elf_Internal_Verneed *t;
1633 Elf_Internal_Vernaux *a;
1634 bfd_size_type amt;
1635
1636 if (h->root.type == bfd_link_hash_warning)
1637 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1638
1639 /* We only care about symbols defined in shared objects with version
1640 information. */
1641 if (!h->def_dynamic
1642 || h->def_regular
1643 || h->dynindx == -1
1644 || h->verinfo.verdef == NULL)
1645 return TRUE;
1646
1647 /* See if we already know about this version. */
1648 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
1649 {
1650 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1651 continue;
1652
1653 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1654 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1655 return TRUE;
1656
1657 break;
1658 }
1659
1660 /* This is a new version. Add it to tree we are building. */
1661
1662 if (t == NULL)
1663 {
1664 amt = sizeof *t;
1665 t = bfd_zalloc (rinfo->output_bfd, amt);
1666 if (t == NULL)
1667 {
1668 rinfo->failed = TRUE;
1669 return FALSE;
1670 }
1671
1672 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1673 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
1674 elf_tdata (rinfo->output_bfd)->verref = t;
1675 }
1676
1677 amt = sizeof *a;
1678 a = bfd_zalloc (rinfo->output_bfd, amt);
1679
1680 /* Note that we are copying a string pointer here, and testing it
1681 above. If bfd_elf_string_from_elf_section is ever changed to
1682 discard the string data when low in memory, this will have to be
1683 fixed. */
1684 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1685
1686 a->vna_flags = h->verinfo.verdef->vd_flags;
1687 a->vna_nextptr = t->vn_auxptr;
1688
1689 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1690 ++rinfo->vers;
1691
1692 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1693
1694 t->vn_auxptr = a;
1695
1696 return TRUE;
1697 }
1698
1699 /* Figure out appropriate versions for all the symbols. We may not
1700 have the version number script until we have read all of the input
1701 files, so until that point we don't know which symbols should be
1702 local. This function is called via elf_link_hash_traverse. */
1703
1704 bfd_boolean
1705 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1706 {
1707 struct elf_assign_sym_version_info *sinfo;
1708 struct bfd_link_info *info;
1709 const struct elf_backend_data *bed;
1710 struct elf_info_failed eif;
1711 char *p;
1712 bfd_size_type amt;
1713
1714 sinfo = data;
1715 info = sinfo->info;
1716
1717 if (h->root.type == bfd_link_hash_warning)
1718 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1719
1720 /* Fix the symbol flags. */
1721 eif.failed = FALSE;
1722 eif.info = info;
1723 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1724 {
1725 if (eif.failed)
1726 sinfo->failed = TRUE;
1727 return FALSE;
1728 }
1729
1730 /* We only need version numbers for symbols defined in regular
1731 objects. */
1732 if (!h->def_regular)
1733 return TRUE;
1734
1735 bed = get_elf_backend_data (sinfo->output_bfd);
1736 p = strchr (h->root.root.string, ELF_VER_CHR);
1737 if (p != NULL && h->verinfo.vertree == NULL)
1738 {
1739 struct bfd_elf_version_tree *t;
1740 bfd_boolean hidden;
1741
1742 hidden = TRUE;
1743
1744 /* There are two consecutive ELF_VER_CHR characters if this is
1745 not a hidden symbol. */
1746 ++p;
1747 if (*p == ELF_VER_CHR)
1748 {
1749 hidden = FALSE;
1750 ++p;
1751 }
1752
1753 /* If there is no version string, we can just return out. */
1754 if (*p == '\0')
1755 {
1756 if (hidden)
1757 h->hidden = 1;
1758 return TRUE;
1759 }
1760
1761 /* Look for the version. If we find it, it is no longer weak. */
1762 for (t = sinfo->verdefs; t != NULL; t = t->next)
1763 {
1764 if (strcmp (t->name, p) == 0)
1765 {
1766 size_t len;
1767 char *alc;
1768 struct bfd_elf_version_expr *d;
1769
1770 len = p - h->root.root.string;
1771 alc = bfd_malloc (len);
1772 if (alc == NULL)
1773 return FALSE;
1774 memcpy (alc, h->root.root.string, len - 1);
1775 alc[len - 1] = '\0';
1776 if (alc[len - 2] == ELF_VER_CHR)
1777 alc[len - 2] = '\0';
1778
1779 h->verinfo.vertree = t;
1780 t->used = TRUE;
1781 d = NULL;
1782
1783 if (t->globals.list != NULL)
1784 d = (*t->match) (&t->globals, NULL, alc);
1785
1786 /* See if there is anything to force this symbol to
1787 local scope. */
1788 if (d == NULL && t->locals.list != NULL)
1789 {
1790 d = (*t->match) (&t->locals, NULL, alc);
1791 if (d != NULL
1792 && h->dynindx != -1
1793 && ! info->export_dynamic)
1794 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1795 }
1796
1797 free (alc);
1798 break;
1799 }
1800 }
1801
1802 /* If we are building an application, we need to create a
1803 version node for this version. */
1804 if (t == NULL && info->executable)
1805 {
1806 struct bfd_elf_version_tree **pp;
1807 int version_index;
1808
1809 /* If we aren't going to export this symbol, we don't need
1810 to worry about it. */
1811 if (h->dynindx == -1)
1812 return TRUE;
1813
1814 amt = sizeof *t;
1815 t = bfd_zalloc (sinfo->output_bfd, amt);
1816 if (t == NULL)
1817 {
1818 sinfo->failed = TRUE;
1819 return FALSE;
1820 }
1821
1822 t->name = p;
1823 t->name_indx = (unsigned int) -1;
1824 t->used = TRUE;
1825
1826 version_index = 1;
1827 /* Don't count anonymous version tag. */
1828 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
1829 version_index = 0;
1830 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
1831 ++version_index;
1832 t->vernum = version_index;
1833
1834 *pp = t;
1835
1836 h->verinfo.vertree = t;
1837 }
1838 else if (t == NULL)
1839 {
1840 /* We could not find the version for a symbol when
1841 generating a shared archive. Return an error. */
1842 (*_bfd_error_handler)
1843 (_("%B: undefined versioned symbol name %s"),
1844 sinfo->output_bfd, h->root.root.string);
1845 bfd_set_error (bfd_error_bad_value);
1846 sinfo->failed = TRUE;
1847 return FALSE;
1848 }
1849
1850 if (hidden)
1851 h->hidden = 1;
1852 }
1853
1854 /* If we don't have a version for this symbol, see if we can find
1855 something. */
1856 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
1857 {
1858 struct bfd_elf_version_tree *t;
1859 struct bfd_elf_version_tree *local_ver;
1860 struct bfd_elf_version_expr *d;
1861
1862 /* See if can find what version this symbol is in. If the
1863 symbol is supposed to be local, then don't actually register
1864 it. */
1865 local_ver = NULL;
1866 for (t = sinfo->verdefs; t != NULL; t = t->next)
1867 {
1868 if (t->globals.list != NULL)
1869 {
1870 bfd_boolean matched;
1871
1872 matched = FALSE;
1873 d = NULL;
1874 while ((d = (*t->match) (&t->globals, d,
1875 h->root.root.string)) != NULL)
1876 if (d->symver)
1877 matched = TRUE;
1878 else
1879 {
1880 /* There is a version without definition. Make
1881 the symbol the default definition for this
1882 version. */
1883 h->verinfo.vertree = t;
1884 local_ver = NULL;
1885 d->script = 1;
1886 break;
1887 }
1888 if (d != NULL)
1889 break;
1890 else if (matched)
1891 /* There is no undefined version for this symbol. Hide the
1892 default one. */
1893 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1894 }
1895
1896 if (t->locals.list != NULL)
1897 {
1898 d = NULL;
1899 while ((d = (*t->match) (&t->locals, d,
1900 h->root.root.string)) != NULL)
1901 {
1902 local_ver = t;
1903 /* If the match is "*", keep looking for a more
1904 explicit, perhaps even global, match.
1905 XXX: Shouldn't this be !d->wildcard instead? */
1906 if (d->pattern[0] != '*' || d->pattern[1] != '\0')
1907 break;
1908 }
1909
1910 if (d != NULL)
1911 break;
1912 }
1913 }
1914
1915 if (local_ver != NULL)
1916 {
1917 h->verinfo.vertree = local_ver;
1918 if (h->dynindx != -1
1919 && ! info->export_dynamic)
1920 {
1921 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1922 }
1923 }
1924 }
1925
1926 return TRUE;
1927 }
1928 \f
1929 /* Read and swap the relocs from the section indicated by SHDR. This
1930 may be either a REL or a RELA section. The relocations are
1931 translated into RELA relocations and stored in INTERNAL_RELOCS,
1932 which should have already been allocated to contain enough space.
1933 The EXTERNAL_RELOCS are a buffer where the external form of the
1934 relocations should be stored.
1935
1936 Returns FALSE if something goes wrong. */
1937
1938 static bfd_boolean
1939 elf_link_read_relocs_from_section (bfd *abfd,
1940 asection *sec,
1941 Elf_Internal_Shdr *shdr,
1942 void *external_relocs,
1943 Elf_Internal_Rela *internal_relocs)
1944 {
1945 const struct elf_backend_data *bed;
1946 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
1947 const bfd_byte *erela;
1948 const bfd_byte *erelaend;
1949 Elf_Internal_Rela *irela;
1950 Elf_Internal_Shdr *symtab_hdr;
1951 size_t nsyms;
1952
1953 /* Position ourselves at the start of the section. */
1954 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
1955 return FALSE;
1956
1957 /* Read the relocations. */
1958 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
1959 return FALSE;
1960
1961 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1962 nsyms = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
1963
1964 bed = get_elf_backend_data (abfd);
1965
1966 /* Convert the external relocations to the internal format. */
1967 if (shdr->sh_entsize == bed->s->sizeof_rel)
1968 swap_in = bed->s->swap_reloc_in;
1969 else if (shdr->sh_entsize == bed->s->sizeof_rela)
1970 swap_in = bed->s->swap_reloca_in;
1971 else
1972 {
1973 bfd_set_error (bfd_error_wrong_format);
1974 return FALSE;
1975 }
1976
1977 erela = external_relocs;
1978 erelaend = erela + shdr->sh_size;
1979 irela = internal_relocs;
1980 while (erela < erelaend)
1981 {
1982 bfd_vma r_symndx;
1983
1984 (*swap_in) (abfd, erela, irela);
1985 r_symndx = ELF32_R_SYM (irela->r_info);
1986 if (bed->s->arch_size == 64)
1987 r_symndx >>= 24;
1988 if ((size_t) r_symndx >= nsyms)
1989 {
1990 (*_bfd_error_handler)
1991 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
1992 " for offset 0x%lx in section `%A'"),
1993 abfd, sec,
1994 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
1995 bfd_set_error (bfd_error_bad_value);
1996 return FALSE;
1997 }
1998 irela += bed->s->int_rels_per_ext_rel;
1999 erela += shdr->sh_entsize;
2000 }
2001
2002 return TRUE;
2003 }
2004
2005 /* Read and swap the relocs for a section O. They may have been
2006 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2007 not NULL, they are used as buffers to read into. They are known to
2008 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2009 the return value is allocated using either malloc or bfd_alloc,
2010 according to the KEEP_MEMORY argument. If O has two relocation
2011 sections (both REL and RELA relocations), then the REL_HDR
2012 relocations will appear first in INTERNAL_RELOCS, followed by the
2013 REL_HDR2 relocations. */
2014
2015 Elf_Internal_Rela *
2016 _bfd_elf_link_read_relocs (bfd *abfd,
2017 asection *o,
2018 void *external_relocs,
2019 Elf_Internal_Rela *internal_relocs,
2020 bfd_boolean keep_memory)
2021 {
2022 Elf_Internal_Shdr *rel_hdr;
2023 void *alloc1 = NULL;
2024 Elf_Internal_Rela *alloc2 = NULL;
2025 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2026
2027 if (elf_section_data (o)->relocs != NULL)
2028 return elf_section_data (o)->relocs;
2029
2030 if (o->reloc_count == 0)
2031 return NULL;
2032
2033 rel_hdr = &elf_section_data (o)->rel_hdr;
2034
2035 if (internal_relocs == NULL)
2036 {
2037 bfd_size_type size;
2038
2039 size = o->reloc_count;
2040 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2041 if (keep_memory)
2042 internal_relocs = bfd_alloc (abfd, size);
2043 else
2044 internal_relocs = alloc2 = bfd_malloc (size);
2045 if (internal_relocs == NULL)
2046 goto error_return;
2047 }
2048
2049 if (external_relocs == NULL)
2050 {
2051 bfd_size_type size = rel_hdr->sh_size;
2052
2053 if (elf_section_data (o)->rel_hdr2)
2054 size += elf_section_data (o)->rel_hdr2->sh_size;
2055 alloc1 = bfd_malloc (size);
2056 if (alloc1 == NULL)
2057 goto error_return;
2058 external_relocs = alloc1;
2059 }
2060
2061 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
2062 external_relocs,
2063 internal_relocs))
2064 goto error_return;
2065 if (elf_section_data (o)->rel_hdr2
2066 && (!elf_link_read_relocs_from_section
2067 (abfd, o,
2068 elf_section_data (o)->rel_hdr2,
2069 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2070 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2071 * bed->s->int_rels_per_ext_rel))))
2072 goto error_return;
2073
2074 /* Cache the results for next time, if we can. */
2075 if (keep_memory)
2076 elf_section_data (o)->relocs = internal_relocs;
2077
2078 if (alloc1 != NULL)
2079 free (alloc1);
2080
2081 /* Don't free alloc2, since if it was allocated we are passing it
2082 back (under the name of internal_relocs). */
2083
2084 return internal_relocs;
2085
2086 error_return:
2087 if (alloc1 != NULL)
2088 free (alloc1);
2089 if (alloc2 != NULL)
2090 free (alloc2);
2091 return NULL;
2092 }
2093
2094 /* Compute the size of, and allocate space for, REL_HDR which is the
2095 section header for a section containing relocations for O. */
2096
2097 bfd_boolean
2098 _bfd_elf_link_size_reloc_section (bfd *abfd,
2099 Elf_Internal_Shdr *rel_hdr,
2100 asection *o)
2101 {
2102 bfd_size_type reloc_count;
2103 bfd_size_type num_rel_hashes;
2104
2105 /* Figure out how many relocations there will be. */
2106 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2107 reloc_count = elf_section_data (o)->rel_count;
2108 else
2109 reloc_count = elf_section_data (o)->rel_count2;
2110
2111 num_rel_hashes = o->reloc_count;
2112 if (num_rel_hashes < reloc_count)
2113 num_rel_hashes = reloc_count;
2114
2115 /* That allows us to calculate the size of the section. */
2116 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2117
2118 /* The contents field must last into write_object_contents, so we
2119 allocate it with bfd_alloc rather than malloc. Also since we
2120 cannot be sure that the contents will actually be filled in,
2121 we zero the allocated space. */
2122 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
2123 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2124 return FALSE;
2125
2126 /* We only allocate one set of hash entries, so we only do it the
2127 first time we are called. */
2128 if (elf_section_data (o)->rel_hashes == NULL
2129 && num_rel_hashes)
2130 {
2131 struct elf_link_hash_entry **p;
2132
2133 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2134 if (p == NULL)
2135 return FALSE;
2136
2137 elf_section_data (o)->rel_hashes = p;
2138 }
2139
2140 return TRUE;
2141 }
2142
2143 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2144 originated from the section given by INPUT_REL_HDR) to the
2145 OUTPUT_BFD. */
2146
2147 bfd_boolean
2148 _bfd_elf_link_output_relocs (bfd *output_bfd,
2149 asection *input_section,
2150 Elf_Internal_Shdr *input_rel_hdr,
2151 Elf_Internal_Rela *internal_relocs,
2152 struct elf_link_hash_entry **rel_hash
2153 ATTRIBUTE_UNUSED)
2154 {
2155 Elf_Internal_Rela *irela;
2156 Elf_Internal_Rela *irelaend;
2157 bfd_byte *erel;
2158 Elf_Internal_Shdr *output_rel_hdr;
2159 asection *output_section;
2160 unsigned int *rel_countp = NULL;
2161 const struct elf_backend_data *bed;
2162 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2163
2164 output_section = input_section->output_section;
2165 output_rel_hdr = NULL;
2166
2167 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2168 == input_rel_hdr->sh_entsize)
2169 {
2170 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2171 rel_countp = &elf_section_data (output_section)->rel_count;
2172 }
2173 else if (elf_section_data (output_section)->rel_hdr2
2174 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2175 == input_rel_hdr->sh_entsize))
2176 {
2177 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2178 rel_countp = &elf_section_data (output_section)->rel_count2;
2179 }
2180 else
2181 {
2182 (*_bfd_error_handler)
2183 (_("%B: relocation size mismatch in %B section %A"),
2184 output_bfd, input_section->owner, input_section);
2185 bfd_set_error (bfd_error_wrong_object_format);
2186 return FALSE;
2187 }
2188
2189 bed = get_elf_backend_data (output_bfd);
2190 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2191 swap_out = bed->s->swap_reloc_out;
2192 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2193 swap_out = bed->s->swap_reloca_out;
2194 else
2195 abort ();
2196
2197 erel = output_rel_hdr->contents;
2198 erel += *rel_countp * input_rel_hdr->sh_entsize;
2199 irela = internal_relocs;
2200 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2201 * bed->s->int_rels_per_ext_rel);
2202 while (irela < irelaend)
2203 {
2204 (*swap_out) (output_bfd, irela, erel);
2205 irela += bed->s->int_rels_per_ext_rel;
2206 erel += input_rel_hdr->sh_entsize;
2207 }
2208
2209 /* Bump the counter, so that we know where to add the next set of
2210 relocations. */
2211 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2212
2213 return TRUE;
2214 }
2215 \f
2216 /* Make weak undefined symbols in PIE dynamic. */
2217
2218 bfd_boolean
2219 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2220 struct elf_link_hash_entry *h)
2221 {
2222 if (info->pie
2223 && h->dynindx == -1
2224 && h->root.type == bfd_link_hash_undefweak)
2225 return bfd_elf_link_record_dynamic_symbol (info, h);
2226
2227 return TRUE;
2228 }
2229
2230 /* Fix up the flags for a symbol. This handles various cases which
2231 can only be fixed after all the input files are seen. This is
2232 currently called by both adjust_dynamic_symbol and
2233 assign_sym_version, which is unnecessary but perhaps more robust in
2234 the face of future changes. */
2235
2236 bfd_boolean
2237 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2238 struct elf_info_failed *eif)
2239 {
2240 const struct elf_backend_data *bed = NULL;
2241
2242 /* If this symbol was mentioned in a non-ELF file, try to set
2243 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2244 permit a non-ELF file to correctly refer to a symbol defined in
2245 an ELF dynamic object. */
2246 if (h->non_elf)
2247 {
2248 while (h->root.type == bfd_link_hash_indirect)
2249 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2250
2251 if (h->root.type != bfd_link_hash_defined
2252 && h->root.type != bfd_link_hash_defweak)
2253 {
2254 h->ref_regular = 1;
2255 h->ref_regular_nonweak = 1;
2256 }
2257 else
2258 {
2259 if (h->root.u.def.section->owner != NULL
2260 && (bfd_get_flavour (h->root.u.def.section->owner)
2261 == bfd_target_elf_flavour))
2262 {
2263 h->ref_regular = 1;
2264 h->ref_regular_nonweak = 1;
2265 }
2266 else
2267 h->def_regular = 1;
2268 }
2269
2270 if (h->dynindx == -1
2271 && (h->def_dynamic
2272 || h->ref_dynamic))
2273 {
2274 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2275 {
2276 eif->failed = TRUE;
2277 return FALSE;
2278 }
2279 }
2280 }
2281 else
2282 {
2283 /* Unfortunately, NON_ELF is only correct if the symbol
2284 was first seen in a non-ELF file. Fortunately, if the symbol
2285 was first seen in an ELF file, we're probably OK unless the
2286 symbol was defined in a non-ELF file. Catch that case here.
2287 FIXME: We're still in trouble if the symbol was first seen in
2288 a dynamic object, and then later in a non-ELF regular object. */
2289 if ((h->root.type == bfd_link_hash_defined
2290 || h->root.type == bfd_link_hash_defweak)
2291 && !h->def_regular
2292 && (h->root.u.def.section->owner != NULL
2293 ? (bfd_get_flavour (h->root.u.def.section->owner)
2294 != bfd_target_elf_flavour)
2295 : (bfd_is_abs_section (h->root.u.def.section)
2296 && !h->def_dynamic)))
2297 h->def_regular = 1;
2298 }
2299
2300 /* Backend specific symbol fixup. */
2301 if (elf_hash_table (eif->info)->dynobj)
2302 {
2303 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2304 if (bed->elf_backend_fixup_symbol
2305 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2306 return FALSE;
2307 }
2308
2309 /* If this is a final link, and the symbol was defined as a common
2310 symbol in a regular object file, and there was no definition in
2311 any dynamic object, then the linker will have allocated space for
2312 the symbol in a common section but the DEF_REGULAR
2313 flag will not have been set. */
2314 if (h->root.type == bfd_link_hash_defined
2315 && !h->def_regular
2316 && h->ref_regular
2317 && !h->def_dynamic
2318 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2319 h->def_regular = 1;
2320
2321 /* If -Bsymbolic was used (which means to bind references to global
2322 symbols to the definition within the shared object), and this
2323 symbol was defined in a regular object, then it actually doesn't
2324 need a PLT entry. Likewise, if the symbol has non-default
2325 visibility. If the symbol has hidden or internal visibility, we
2326 will force it local. */
2327 if (h->needs_plt
2328 && eif->info->shared
2329 && is_elf_hash_table (eif->info->hash)
2330 && (eif->info->symbolic
2331 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2332 && h->def_regular)
2333 {
2334 bfd_boolean force_local;
2335
2336 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2337 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2338 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2339 }
2340
2341 /* If a weak undefined symbol has non-default visibility, we also
2342 hide it from the dynamic linker. */
2343 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2344 && h->root.type == bfd_link_hash_undefweak)
2345 {
2346 const struct elf_backend_data *bed;
2347 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2348 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2349 }
2350
2351 /* If this is a weak defined symbol in a dynamic object, and we know
2352 the real definition in the dynamic object, copy interesting flags
2353 over to the real definition. */
2354 if (h->u.weakdef != NULL)
2355 {
2356 struct elf_link_hash_entry *weakdef;
2357
2358 weakdef = h->u.weakdef;
2359 if (h->root.type == bfd_link_hash_indirect)
2360 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2361
2362 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2363 || h->root.type == bfd_link_hash_defweak);
2364 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2365 || weakdef->root.type == bfd_link_hash_defweak);
2366 BFD_ASSERT (weakdef->def_dynamic);
2367
2368 /* If the real definition is defined by a regular object file,
2369 don't do anything special. See the longer description in
2370 _bfd_elf_adjust_dynamic_symbol, below. */
2371 if (weakdef->def_regular)
2372 h->u.weakdef = NULL;
2373 else
2374 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef,
2375 h);
2376 }
2377
2378 return TRUE;
2379 }
2380
2381 /* Make the backend pick a good value for a dynamic symbol. This is
2382 called via elf_link_hash_traverse, and also calls itself
2383 recursively. */
2384
2385 bfd_boolean
2386 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2387 {
2388 struct elf_info_failed *eif = data;
2389 bfd *dynobj;
2390 const struct elf_backend_data *bed;
2391
2392 if (! is_elf_hash_table (eif->info->hash))
2393 return FALSE;
2394
2395 if (h->root.type == bfd_link_hash_warning)
2396 {
2397 h->got = elf_hash_table (eif->info)->init_got_offset;
2398 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2399
2400 /* When warning symbols are created, they **replace** the "real"
2401 entry in the hash table, thus we never get to see the real
2402 symbol in a hash traversal. So look at it now. */
2403 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2404 }
2405
2406 /* Ignore indirect symbols. These are added by the versioning code. */
2407 if (h->root.type == bfd_link_hash_indirect)
2408 return TRUE;
2409
2410 /* Fix the symbol flags. */
2411 if (! _bfd_elf_fix_symbol_flags (h, eif))
2412 return FALSE;
2413
2414 /* If this symbol does not require a PLT entry, and it is not
2415 defined by a dynamic object, or is not referenced by a regular
2416 object, ignore it. We do have to handle a weak defined symbol,
2417 even if no regular object refers to it, if we decided to add it
2418 to the dynamic symbol table. FIXME: Do we normally need to worry
2419 about symbols which are defined by one dynamic object and
2420 referenced by another one? */
2421 if (!h->needs_plt
2422 && (h->def_regular
2423 || !h->def_dynamic
2424 || (!h->ref_regular
2425 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2426 {
2427 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2428 return TRUE;
2429 }
2430
2431 /* If we've already adjusted this symbol, don't do it again. This
2432 can happen via a recursive call. */
2433 if (h->dynamic_adjusted)
2434 return TRUE;
2435
2436 /* Don't look at this symbol again. Note that we must set this
2437 after checking the above conditions, because we may look at a
2438 symbol once, decide not to do anything, and then get called
2439 recursively later after REF_REGULAR is set below. */
2440 h->dynamic_adjusted = 1;
2441
2442 /* If this is a weak definition, and we know a real definition, and
2443 the real symbol is not itself defined by a regular object file,
2444 then get a good value for the real definition. We handle the
2445 real symbol first, for the convenience of the backend routine.
2446
2447 Note that there is a confusing case here. If the real definition
2448 is defined by a regular object file, we don't get the real symbol
2449 from the dynamic object, but we do get the weak symbol. If the
2450 processor backend uses a COPY reloc, then if some routine in the
2451 dynamic object changes the real symbol, we will not see that
2452 change in the corresponding weak symbol. This is the way other
2453 ELF linkers work as well, and seems to be a result of the shared
2454 library model.
2455
2456 I will clarify this issue. Most SVR4 shared libraries define the
2457 variable _timezone and define timezone as a weak synonym. The
2458 tzset call changes _timezone. If you write
2459 extern int timezone;
2460 int _timezone = 5;
2461 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2462 you might expect that, since timezone is a synonym for _timezone,
2463 the same number will print both times. However, if the processor
2464 backend uses a COPY reloc, then actually timezone will be copied
2465 into your process image, and, since you define _timezone
2466 yourself, _timezone will not. Thus timezone and _timezone will
2467 wind up at different memory locations. The tzset call will set
2468 _timezone, leaving timezone unchanged. */
2469
2470 if (h->u.weakdef != NULL)
2471 {
2472 /* If we get to this point, we know there is an implicit
2473 reference by a regular object file via the weak symbol H.
2474 FIXME: Is this really true? What if the traversal finds
2475 H->U.WEAKDEF before it finds H? */
2476 h->u.weakdef->ref_regular = 1;
2477
2478 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2479 return FALSE;
2480 }
2481
2482 /* If a symbol has no type and no size and does not require a PLT
2483 entry, then we are probably about to do the wrong thing here: we
2484 are probably going to create a COPY reloc for an empty object.
2485 This case can arise when a shared object is built with assembly
2486 code, and the assembly code fails to set the symbol type. */
2487 if (h->size == 0
2488 && h->type == STT_NOTYPE
2489 && !h->needs_plt)
2490 (*_bfd_error_handler)
2491 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2492 h->root.root.string);
2493
2494 dynobj = elf_hash_table (eif->info)->dynobj;
2495 bed = get_elf_backend_data (dynobj);
2496 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2497 {
2498 eif->failed = TRUE;
2499 return FALSE;
2500 }
2501
2502 return TRUE;
2503 }
2504
2505 /* Adjust all external symbols pointing into SEC_MERGE sections
2506 to reflect the object merging within the sections. */
2507
2508 bfd_boolean
2509 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2510 {
2511 asection *sec;
2512
2513 if (h->root.type == bfd_link_hash_warning)
2514 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2515
2516 if ((h->root.type == bfd_link_hash_defined
2517 || h->root.type == bfd_link_hash_defweak)
2518 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2519 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2520 {
2521 bfd *output_bfd = data;
2522
2523 h->root.u.def.value =
2524 _bfd_merged_section_offset (output_bfd,
2525 &h->root.u.def.section,
2526 elf_section_data (sec)->sec_info,
2527 h->root.u.def.value);
2528 }
2529
2530 return TRUE;
2531 }
2532
2533 /* Returns false if the symbol referred to by H should be considered
2534 to resolve local to the current module, and true if it should be
2535 considered to bind dynamically. */
2536
2537 bfd_boolean
2538 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2539 struct bfd_link_info *info,
2540 bfd_boolean ignore_protected)
2541 {
2542 bfd_boolean binding_stays_local_p;
2543
2544 if (h == NULL)
2545 return FALSE;
2546
2547 while (h->root.type == bfd_link_hash_indirect
2548 || h->root.type == bfd_link_hash_warning)
2549 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2550
2551 /* If it was forced local, then clearly it's not dynamic. */
2552 if (h->dynindx == -1)
2553 return FALSE;
2554 if (h->forced_local)
2555 return FALSE;
2556
2557 /* Identify the cases where name binding rules say that a
2558 visible symbol resolves locally. */
2559 binding_stays_local_p = info->executable || info->symbolic;
2560
2561 switch (ELF_ST_VISIBILITY (h->other))
2562 {
2563 case STV_INTERNAL:
2564 case STV_HIDDEN:
2565 return FALSE;
2566
2567 case STV_PROTECTED:
2568 /* Proper resolution for function pointer equality may require
2569 that these symbols perhaps be resolved dynamically, even though
2570 we should be resolving them to the current module. */
2571 if (!ignore_protected || h->type != STT_FUNC)
2572 binding_stays_local_p = TRUE;
2573 break;
2574
2575 default:
2576 break;
2577 }
2578
2579 /* If it isn't defined locally, then clearly it's dynamic. */
2580 if (!h->def_regular)
2581 return TRUE;
2582
2583 /* Otherwise, the symbol is dynamic if binding rules don't tell
2584 us that it remains local. */
2585 return !binding_stays_local_p;
2586 }
2587
2588 /* Return true if the symbol referred to by H should be considered
2589 to resolve local to the current module, and false otherwise. Differs
2590 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2591 undefined symbols and weak symbols. */
2592
2593 bfd_boolean
2594 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2595 struct bfd_link_info *info,
2596 bfd_boolean local_protected)
2597 {
2598 /* If it's a local sym, of course we resolve locally. */
2599 if (h == NULL)
2600 return TRUE;
2601
2602 /* Common symbols that become definitions don't get the DEF_REGULAR
2603 flag set, so test it first, and don't bail out. */
2604 if (ELF_COMMON_DEF_P (h))
2605 /* Do nothing. */;
2606 /* If we don't have a definition in a regular file, then we can't
2607 resolve locally. The sym is either undefined or dynamic. */
2608 else if (!h->def_regular)
2609 return FALSE;
2610
2611 /* Forced local symbols resolve locally. */
2612 if (h->forced_local)
2613 return TRUE;
2614
2615 /* As do non-dynamic symbols. */
2616 if (h->dynindx == -1)
2617 return TRUE;
2618
2619 /* At this point, we know the symbol is defined and dynamic. In an
2620 executable it must resolve locally, likewise when building symbolic
2621 shared libraries. */
2622 if (info->executable || info->symbolic)
2623 return TRUE;
2624
2625 /* Now deal with defined dynamic symbols in shared libraries. Ones
2626 with default visibility might not resolve locally. */
2627 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2628 return FALSE;
2629
2630 /* However, STV_HIDDEN or STV_INTERNAL ones must be local. */
2631 if (ELF_ST_VISIBILITY (h->other) != STV_PROTECTED)
2632 return TRUE;
2633
2634 /* STV_PROTECTED non-function symbols are local. */
2635 if (h->type != STT_FUNC)
2636 return TRUE;
2637
2638 /* Function pointer equality tests may require that STV_PROTECTED
2639 symbols be treated as dynamic symbols, even when we know that the
2640 dynamic linker will resolve them locally. */
2641 return local_protected;
2642 }
2643
2644 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2645 aligned. Returns the first TLS output section. */
2646
2647 struct bfd_section *
2648 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2649 {
2650 struct bfd_section *sec, *tls;
2651 unsigned int align = 0;
2652
2653 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2654 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2655 break;
2656 tls = sec;
2657
2658 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2659 if (sec->alignment_power > align)
2660 align = sec->alignment_power;
2661
2662 elf_hash_table (info)->tls_sec = tls;
2663
2664 /* Ensure the alignment of the first section is the largest alignment,
2665 so that the tls segment starts aligned. */
2666 if (tls != NULL)
2667 tls->alignment_power = align;
2668
2669 return tls;
2670 }
2671
2672 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2673 static bfd_boolean
2674 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2675 Elf_Internal_Sym *sym)
2676 {
2677 const struct elf_backend_data *bed;
2678
2679 /* Local symbols do not count, but target specific ones might. */
2680 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2681 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2682 return FALSE;
2683
2684 /* Function symbols do not count. */
2685 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC)
2686 return FALSE;
2687
2688 /* If the section is undefined, then so is the symbol. */
2689 if (sym->st_shndx == SHN_UNDEF)
2690 return FALSE;
2691
2692 /* If the symbol is defined in the common section, then
2693 it is a common definition and so does not count. */
2694 bed = get_elf_backend_data (abfd);
2695 if (bed->common_definition (sym))
2696 return FALSE;
2697
2698 /* If the symbol is in a target specific section then we
2699 must rely upon the backend to tell us what it is. */
2700 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2701 /* FIXME - this function is not coded yet:
2702
2703 return _bfd_is_global_symbol_definition (abfd, sym);
2704
2705 Instead for now assume that the definition is not global,
2706 Even if this is wrong, at least the linker will behave
2707 in the same way that it used to do. */
2708 return FALSE;
2709
2710 return TRUE;
2711 }
2712
2713 /* Search the symbol table of the archive element of the archive ABFD
2714 whose archive map contains a mention of SYMDEF, and determine if
2715 the symbol is defined in this element. */
2716 static bfd_boolean
2717 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2718 {
2719 Elf_Internal_Shdr * hdr;
2720 bfd_size_type symcount;
2721 bfd_size_type extsymcount;
2722 bfd_size_type extsymoff;
2723 Elf_Internal_Sym *isymbuf;
2724 Elf_Internal_Sym *isym;
2725 Elf_Internal_Sym *isymend;
2726 bfd_boolean result;
2727
2728 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2729 if (abfd == NULL)
2730 return FALSE;
2731
2732 if (! bfd_check_format (abfd, bfd_object))
2733 return FALSE;
2734
2735 /* If we have already included the element containing this symbol in the
2736 link then we do not need to include it again. Just claim that any symbol
2737 it contains is not a definition, so that our caller will not decide to
2738 (re)include this element. */
2739 if (abfd->archive_pass)
2740 return FALSE;
2741
2742 /* Select the appropriate symbol table. */
2743 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2744 hdr = &elf_tdata (abfd)->symtab_hdr;
2745 else
2746 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2747
2748 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2749
2750 /* The sh_info field of the symtab header tells us where the
2751 external symbols start. We don't care about the local symbols. */
2752 if (elf_bad_symtab (abfd))
2753 {
2754 extsymcount = symcount;
2755 extsymoff = 0;
2756 }
2757 else
2758 {
2759 extsymcount = symcount - hdr->sh_info;
2760 extsymoff = hdr->sh_info;
2761 }
2762
2763 if (extsymcount == 0)
2764 return FALSE;
2765
2766 /* Read in the symbol table. */
2767 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2768 NULL, NULL, NULL);
2769 if (isymbuf == NULL)
2770 return FALSE;
2771
2772 /* Scan the symbol table looking for SYMDEF. */
2773 result = FALSE;
2774 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2775 {
2776 const char *name;
2777
2778 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2779 isym->st_name);
2780 if (name == NULL)
2781 break;
2782
2783 if (strcmp (name, symdef->name) == 0)
2784 {
2785 result = is_global_data_symbol_definition (abfd, isym);
2786 break;
2787 }
2788 }
2789
2790 free (isymbuf);
2791
2792 return result;
2793 }
2794 \f
2795 /* Add an entry to the .dynamic table. */
2796
2797 bfd_boolean
2798 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
2799 bfd_vma tag,
2800 bfd_vma val)
2801 {
2802 struct elf_link_hash_table *hash_table;
2803 const struct elf_backend_data *bed;
2804 asection *s;
2805 bfd_size_type newsize;
2806 bfd_byte *newcontents;
2807 Elf_Internal_Dyn dyn;
2808
2809 hash_table = elf_hash_table (info);
2810 if (! is_elf_hash_table (hash_table))
2811 return FALSE;
2812
2813 bed = get_elf_backend_data (hash_table->dynobj);
2814 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
2815 BFD_ASSERT (s != NULL);
2816
2817 newsize = s->size + bed->s->sizeof_dyn;
2818 newcontents = bfd_realloc (s->contents, newsize);
2819 if (newcontents == NULL)
2820 return FALSE;
2821
2822 dyn.d_tag = tag;
2823 dyn.d_un.d_val = val;
2824 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
2825
2826 s->size = newsize;
2827 s->contents = newcontents;
2828
2829 return TRUE;
2830 }
2831
2832 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
2833 otherwise just check whether one already exists. Returns -1 on error,
2834 1 if a DT_NEEDED tag already exists, and 0 on success. */
2835
2836 static int
2837 elf_add_dt_needed_tag (bfd *abfd,
2838 struct bfd_link_info *info,
2839 const char *soname,
2840 bfd_boolean do_it)
2841 {
2842 struct elf_link_hash_table *hash_table;
2843 bfd_size_type oldsize;
2844 bfd_size_type strindex;
2845
2846 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
2847 return -1;
2848
2849 hash_table = elf_hash_table (info);
2850 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
2851 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
2852 if (strindex == (bfd_size_type) -1)
2853 return -1;
2854
2855 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
2856 {
2857 asection *sdyn;
2858 const struct elf_backend_data *bed;
2859 bfd_byte *extdyn;
2860
2861 bed = get_elf_backend_data (hash_table->dynobj);
2862 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
2863 if (sdyn != NULL)
2864 for (extdyn = sdyn->contents;
2865 extdyn < sdyn->contents + sdyn->size;
2866 extdyn += bed->s->sizeof_dyn)
2867 {
2868 Elf_Internal_Dyn dyn;
2869
2870 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
2871 if (dyn.d_tag == DT_NEEDED
2872 && dyn.d_un.d_val == strindex)
2873 {
2874 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2875 return 1;
2876 }
2877 }
2878 }
2879
2880 if (do_it)
2881 {
2882 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
2883 return -1;
2884
2885 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
2886 return -1;
2887 }
2888 else
2889 /* We were just checking for existence of the tag. */
2890 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2891
2892 return 0;
2893 }
2894
2895 /* Sort symbol by value and section. */
2896 static int
2897 elf_sort_symbol (const void *arg1, const void *arg2)
2898 {
2899 const struct elf_link_hash_entry *h1;
2900 const struct elf_link_hash_entry *h2;
2901 bfd_signed_vma vdiff;
2902
2903 h1 = *(const struct elf_link_hash_entry **) arg1;
2904 h2 = *(const struct elf_link_hash_entry **) arg2;
2905 vdiff = h1->root.u.def.value - h2->root.u.def.value;
2906 if (vdiff != 0)
2907 return vdiff > 0 ? 1 : -1;
2908 else
2909 {
2910 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
2911 if (sdiff != 0)
2912 return sdiff > 0 ? 1 : -1;
2913 }
2914 return 0;
2915 }
2916
2917 /* This function is used to adjust offsets into .dynstr for
2918 dynamic symbols. This is called via elf_link_hash_traverse. */
2919
2920 static bfd_boolean
2921 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
2922 {
2923 struct elf_strtab_hash *dynstr = data;
2924
2925 if (h->root.type == bfd_link_hash_warning)
2926 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2927
2928 if (h->dynindx != -1)
2929 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
2930 return TRUE;
2931 }
2932
2933 /* Assign string offsets in .dynstr, update all structures referencing
2934 them. */
2935
2936 static bfd_boolean
2937 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
2938 {
2939 struct elf_link_hash_table *hash_table = elf_hash_table (info);
2940 struct elf_link_local_dynamic_entry *entry;
2941 struct elf_strtab_hash *dynstr = hash_table->dynstr;
2942 bfd *dynobj = hash_table->dynobj;
2943 asection *sdyn;
2944 bfd_size_type size;
2945 const struct elf_backend_data *bed;
2946 bfd_byte *extdyn;
2947
2948 _bfd_elf_strtab_finalize (dynstr);
2949 size = _bfd_elf_strtab_size (dynstr);
2950
2951 bed = get_elf_backend_data (dynobj);
2952 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2953 BFD_ASSERT (sdyn != NULL);
2954
2955 /* Update all .dynamic entries referencing .dynstr strings. */
2956 for (extdyn = sdyn->contents;
2957 extdyn < sdyn->contents + sdyn->size;
2958 extdyn += bed->s->sizeof_dyn)
2959 {
2960 Elf_Internal_Dyn dyn;
2961
2962 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
2963 switch (dyn.d_tag)
2964 {
2965 case DT_STRSZ:
2966 dyn.d_un.d_val = size;
2967 break;
2968 case DT_NEEDED:
2969 case DT_SONAME:
2970 case DT_RPATH:
2971 case DT_RUNPATH:
2972 case DT_FILTER:
2973 case DT_AUXILIARY:
2974 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
2975 break;
2976 default:
2977 continue;
2978 }
2979 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
2980 }
2981
2982 /* Now update local dynamic symbols. */
2983 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
2984 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
2985 entry->isym.st_name);
2986
2987 /* And the rest of dynamic symbols. */
2988 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
2989
2990 /* Adjust version definitions. */
2991 if (elf_tdata (output_bfd)->cverdefs)
2992 {
2993 asection *s;
2994 bfd_byte *p;
2995 bfd_size_type i;
2996 Elf_Internal_Verdef def;
2997 Elf_Internal_Verdaux defaux;
2998
2999 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3000 p = s->contents;
3001 do
3002 {
3003 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3004 &def);
3005 p += sizeof (Elf_External_Verdef);
3006 if (def.vd_aux != sizeof (Elf_External_Verdef))
3007 continue;
3008 for (i = 0; i < def.vd_cnt; ++i)
3009 {
3010 _bfd_elf_swap_verdaux_in (output_bfd,
3011 (Elf_External_Verdaux *) p, &defaux);
3012 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3013 defaux.vda_name);
3014 _bfd_elf_swap_verdaux_out (output_bfd,
3015 &defaux, (Elf_External_Verdaux *) p);
3016 p += sizeof (Elf_External_Verdaux);
3017 }
3018 }
3019 while (def.vd_next);
3020 }
3021
3022 /* Adjust version references. */
3023 if (elf_tdata (output_bfd)->verref)
3024 {
3025 asection *s;
3026 bfd_byte *p;
3027 bfd_size_type i;
3028 Elf_Internal_Verneed need;
3029 Elf_Internal_Vernaux needaux;
3030
3031 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3032 p = s->contents;
3033 do
3034 {
3035 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3036 &need);
3037 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3038 _bfd_elf_swap_verneed_out (output_bfd, &need,
3039 (Elf_External_Verneed *) p);
3040 p += sizeof (Elf_External_Verneed);
3041 for (i = 0; i < need.vn_cnt; ++i)
3042 {
3043 _bfd_elf_swap_vernaux_in (output_bfd,
3044 (Elf_External_Vernaux *) p, &needaux);
3045 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3046 needaux.vna_name);
3047 _bfd_elf_swap_vernaux_out (output_bfd,
3048 &needaux,
3049 (Elf_External_Vernaux *) p);
3050 p += sizeof (Elf_External_Vernaux);
3051 }
3052 }
3053 while (need.vn_next);
3054 }
3055
3056 return TRUE;
3057 }
3058 \f
3059 /* Add symbols from an ELF object file to the linker hash table. */
3060
3061 static bfd_boolean
3062 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3063 {
3064 Elf_Internal_Shdr *hdr;
3065 bfd_size_type symcount;
3066 bfd_size_type extsymcount;
3067 bfd_size_type extsymoff;
3068 struct elf_link_hash_entry **sym_hash;
3069 bfd_boolean dynamic;
3070 Elf_External_Versym *extversym = NULL;
3071 Elf_External_Versym *ever;
3072 struct elf_link_hash_entry *weaks;
3073 struct elf_link_hash_entry **nondeflt_vers = NULL;
3074 bfd_size_type nondeflt_vers_cnt = 0;
3075 Elf_Internal_Sym *isymbuf = NULL;
3076 Elf_Internal_Sym *isym;
3077 Elf_Internal_Sym *isymend;
3078 const struct elf_backend_data *bed;
3079 bfd_boolean add_needed;
3080 struct elf_link_hash_table *htab;
3081 bfd_size_type amt;
3082 void *alloc_mark = NULL;
3083 struct bfd_hash_entry **old_table = NULL;
3084 unsigned int old_size = 0;
3085 unsigned int old_count = 0;
3086 void *old_tab = NULL;
3087 void *old_hash;
3088 void *old_ent;
3089 struct bfd_link_hash_entry *old_undefs = NULL;
3090 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3091 long old_dynsymcount = 0;
3092 size_t tabsize = 0;
3093 size_t hashsize = 0;
3094
3095 htab = elf_hash_table (info);
3096 bed = get_elf_backend_data (abfd);
3097
3098 if ((abfd->flags & DYNAMIC) == 0)
3099 dynamic = FALSE;
3100 else
3101 {
3102 dynamic = TRUE;
3103
3104 /* You can't use -r against a dynamic object. Also, there's no
3105 hope of using a dynamic object which does not exactly match
3106 the format of the output file. */
3107 if (info->relocatable
3108 || !is_elf_hash_table (htab)
3109 || htab->root.creator != abfd->xvec)
3110 {
3111 if (info->relocatable)
3112 bfd_set_error (bfd_error_invalid_operation);
3113 else
3114 bfd_set_error (bfd_error_wrong_format);
3115 goto error_return;
3116 }
3117 }
3118
3119 /* As a GNU extension, any input sections which are named
3120 .gnu.warning.SYMBOL are treated as warning symbols for the given
3121 symbol. This differs from .gnu.warning sections, which generate
3122 warnings when they are included in an output file. */
3123 if (info->executable)
3124 {
3125 asection *s;
3126
3127 for (s = abfd->sections; s != NULL; s = s->next)
3128 {
3129 const char *name;
3130
3131 name = bfd_get_section_name (abfd, s);
3132 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
3133 {
3134 char *msg;
3135 bfd_size_type sz;
3136
3137 name += sizeof ".gnu.warning." - 1;
3138
3139 /* If this is a shared object, then look up the symbol
3140 in the hash table. If it is there, and it is already
3141 been defined, then we will not be using the entry
3142 from this shared object, so we don't need to warn.
3143 FIXME: If we see the definition in a regular object
3144 later on, we will warn, but we shouldn't. The only
3145 fix is to keep track of what warnings we are supposed
3146 to emit, and then handle them all at the end of the
3147 link. */
3148 if (dynamic)
3149 {
3150 struct elf_link_hash_entry *h;
3151
3152 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3153
3154 /* FIXME: What about bfd_link_hash_common? */
3155 if (h != NULL
3156 && (h->root.type == bfd_link_hash_defined
3157 || h->root.type == bfd_link_hash_defweak))
3158 {
3159 /* We don't want to issue this warning. Clobber
3160 the section size so that the warning does not
3161 get copied into the output file. */
3162 s->size = 0;
3163 continue;
3164 }
3165 }
3166
3167 sz = s->size;
3168 msg = bfd_alloc (abfd, sz + 1);
3169 if (msg == NULL)
3170 goto error_return;
3171
3172 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3173 goto error_return;
3174
3175 msg[sz] = '\0';
3176
3177 if (! (_bfd_generic_link_add_one_symbol
3178 (info, abfd, name, BSF_WARNING, s, 0, msg,
3179 FALSE, bed->collect, NULL)))
3180 goto error_return;
3181
3182 if (! info->relocatable)
3183 {
3184 /* Clobber the section size so that the warning does
3185 not get copied into the output file. */
3186 s->size = 0;
3187
3188 /* Also set SEC_EXCLUDE, so that symbols defined in
3189 the warning section don't get copied to the output. */
3190 s->flags |= SEC_EXCLUDE;
3191 }
3192 }
3193 }
3194 }
3195
3196 add_needed = TRUE;
3197 if (! dynamic)
3198 {
3199 /* If we are creating a shared library, create all the dynamic
3200 sections immediately. We need to attach them to something,
3201 so we attach them to this BFD, provided it is the right
3202 format. FIXME: If there are no input BFD's of the same
3203 format as the output, we can't make a shared library. */
3204 if (info->shared
3205 && is_elf_hash_table (htab)
3206 && htab->root.creator == abfd->xvec
3207 && !htab->dynamic_sections_created)
3208 {
3209 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3210 goto error_return;
3211 }
3212 }
3213 else if (!is_elf_hash_table (htab))
3214 goto error_return;
3215 else
3216 {
3217 asection *s;
3218 const char *soname = NULL;
3219 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3220 int ret;
3221
3222 /* ld --just-symbols and dynamic objects don't mix very well.
3223 ld shouldn't allow it. */
3224 if ((s = abfd->sections) != NULL
3225 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3226 abort ();
3227
3228 /* If this dynamic lib was specified on the command line with
3229 --as-needed in effect, then we don't want to add a DT_NEEDED
3230 tag unless the lib is actually used. Similary for libs brought
3231 in by another lib's DT_NEEDED. When --no-add-needed is used
3232 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3233 any dynamic library in DT_NEEDED tags in the dynamic lib at
3234 all. */
3235 add_needed = (elf_dyn_lib_class (abfd)
3236 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3237 | DYN_NO_NEEDED)) == 0;
3238
3239 s = bfd_get_section_by_name (abfd, ".dynamic");
3240 if (s != NULL)
3241 {
3242 bfd_byte *dynbuf;
3243 bfd_byte *extdyn;
3244 int elfsec;
3245 unsigned long shlink;
3246
3247 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3248 goto error_free_dyn;
3249
3250 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3251 if (elfsec == -1)
3252 goto error_free_dyn;
3253 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3254
3255 for (extdyn = dynbuf;
3256 extdyn < dynbuf + s->size;
3257 extdyn += bed->s->sizeof_dyn)
3258 {
3259 Elf_Internal_Dyn dyn;
3260
3261 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3262 if (dyn.d_tag == DT_SONAME)
3263 {
3264 unsigned int tagv = dyn.d_un.d_val;
3265 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3266 if (soname == NULL)
3267 goto error_free_dyn;
3268 }
3269 if (dyn.d_tag == DT_NEEDED)
3270 {
3271 struct bfd_link_needed_list *n, **pn;
3272 char *fnm, *anm;
3273 unsigned int tagv = dyn.d_un.d_val;
3274
3275 amt = sizeof (struct bfd_link_needed_list);
3276 n = bfd_alloc (abfd, amt);
3277 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3278 if (n == NULL || fnm == NULL)
3279 goto error_free_dyn;
3280 amt = strlen (fnm) + 1;
3281 anm = bfd_alloc (abfd, amt);
3282 if (anm == NULL)
3283 goto error_free_dyn;
3284 memcpy (anm, fnm, amt);
3285 n->name = anm;
3286 n->by = abfd;
3287 n->next = NULL;
3288 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3289 ;
3290 *pn = n;
3291 }
3292 if (dyn.d_tag == DT_RUNPATH)
3293 {
3294 struct bfd_link_needed_list *n, **pn;
3295 char *fnm, *anm;
3296 unsigned int tagv = dyn.d_un.d_val;
3297
3298 amt = sizeof (struct bfd_link_needed_list);
3299 n = bfd_alloc (abfd, amt);
3300 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3301 if (n == NULL || fnm == NULL)
3302 goto error_free_dyn;
3303 amt = strlen (fnm) + 1;
3304 anm = bfd_alloc (abfd, amt);
3305 if (anm == NULL)
3306 goto error_free_dyn;
3307 memcpy (anm, fnm, amt);
3308 n->name = anm;
3309 n->by = abfd;
3310 n->next = NULL;
3311 for (pn = & runpath;
3312 *pn != NULL;
3313 pn = &(*pn)->next)
3314 ;
3315 *pn = n;
3316 }
3317 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3318 if (!runpath && dyn.d_tag == DT_RPATH)
3319 {
3320 struct bfd_link_needed_list *n, **pn;
3321 char *fnm, *anm;
3322 unsigned int tagv = dyn.d_un.d_val;
3323
3324 amt = sizeof (struct bfd_link_needed_list);
3325 n = bfd_alloc (abfd, amt);
3326 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3327 if (n == NULL || fnm == NULL)
3328 goto error_free_dyn;
3329 amt = strlen (fnm) + 1;
3330 anm = bfd_alloc (abfd, amt);
3331 if (anm == NULL)
3332 {
3333 error_free_dyn:
3334 free (dynbuf);
3335 goto error_return;
3336 }
3337 memcpy (anm, fnm, amt);
3338 n->name = anm;
3339 n->by = abfd;
3340 n->next = NULL;
3341 for (pn = & rpath;
3342 *pn != NULL;
3343 pn = &(*pn)->next)
3344 ;
3345 *pn = n;
3346 }
3347 }
3348
3349 free (dynbuf);
3350 }
3351
3352 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3353 frees all more recently bfd_alloc'd blocks as well. */
3354 if (runpath)
3355 rpath = runpath;
3356
3357 if (rpath)
3358 {
3359 struct bfd_link_needed_list **pn;
3360 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3361 ;
3362 *pn = rpath;
3363 }
3364
3365 /* We do not want to include any of the sections in a dynamic
3366 object in the output file. We hack by simply clobbering the
3367 list of sections in the BFD. This could be handled more
3368 cleanly by, say, a new section flag; the existing
3369 SEC_NEVER_LOAD flag is not the one we want, because that one
3370 still implies that the section takes up space in the output
3371 file. */
3372 bfd_section_list_clear (abfd);
3373
3374 /* Find the name to use in a DT_NEEDED entry that refers to this
3375 object. If the object has a DT_SONAME entry, we use it.
3376 Otherwise, if the generic linker stuck something in
3377 elf_dt_name, we use that. Otherwise, we just use the file
3378 name. */
3379 if (soname == NULL || *soname == '\0')
3380 {
3381 soname = elf_dt_name (abfd);
3382 if (soname == NULL || *soname == '\0')
3383 soname = bfd_get_filename (abfd);
3384 }
3385
3386 /* Save the SONAME because sometimes the linker emulation code
3387 will need to know it. */
3388 elf_dt_name (abfd) = soname;
3389
3390 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3391 if (ret < 0)
3392 goto error_return;
3393
3394 /* If we have already included this dynamic object in the
3395 link, just ignore it. There is no reason to include a
3396 particular dynamic object more than once. */
3397 if (ret > 0)
3398 return TRUE;
3399 }
3400
3401 /* If this is a dynamic object, we always link against the .dynsym
3402 symbol table, not the .symtab symbol table. The dynamic linker
3403 will only see the .dynsym symbol table, so there is no reason to
3404 look at .symtab for a dynamic object. */
3405
3406 if (! dynamic || elf_dynsymtab (abfd) == 0)
3407 hdr = &elf_tdata (abfd)->symtab_hdr;
3408 else
3409 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3410
3411 symcount = hdr->sh_size / bed->s->sizeof_sym;
3412
3413 /* The sh_info field of the symtab header tells us where the
3414 external symbols start. We don't care about the local symbols at
3415 this point. */
3416 if (elf_bad_symtab (abfd))
3417 {
3418 extsymcount = symcount;
3419 extsymoff = 0;
3420 }
3421 else
3422 {
3423 extsymcount = symcount - hdr->sh_info;
3424 extsymoff = hdr->sh_info;
3425 }
3426
3427 sym_hash = NULL;
3428 if (extsymcount != 0)
3429 {
3430 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3431 NULL, NULL, NULL);
3432 if (isymbuf == NULL)
3433 goto error_return;
3434
3435 /* We store a pointer to the hash table entry for each external
3436 symbol. */
3437 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3438 sym_hash = bfd_alloc (abfd, amt);
3439 if (sym_hash == NULL)
3440 goto error_free_sym;
3441 elf_sym_hashes (abfd) = sym_hash;
3442 }
3443
3444 if (dynamic)
3445 {
3446 /* Read in any version definitions. */
3447 if (!_bfd_elf_slurp_version_tables (abfd,
3448 info->default_imported_symver))
3449 goto error_free_sym;
3450
3451 /* Read in the symbol versions, but don't bother to convert them
3452 to internal format. */
3453 if (elf_dynversym (abfd) != 0)
3454 {
3455 Elf_Internal_Shdr *versymhdr;
3456
3457 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3458 extversym = bfd_malloc (versymhdr->sh_size);
3459 if (extversym == NULL)
3460 goto error_free_sym;
3461 amt = versymhdr->sh_size;
3462 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3463 || bfd_bread (extversym, amt, abfd) != amt)
3464 goto error_free_vers;
3465 }
3466 }
3467
3468 /* If we are loading an as-needed shared lib, save the symbol table
3469 state before we start adding symbols. If the lib turns out
3470 to be unneeded, restore the state. */
3471 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3472 {
3473 unsigned int i;
3474 size_t entsize;
3475
3476 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3477 {
3478 struct bfd_hash_entry *p;
3479 struct elf_link_hash_entry *h;
3480
3481 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3482 {
3483 h = (struct elf_link_hash_entry *) p;
3484 entsize += htab->root.table.entsize;
3485 if (h->root.type == bfd_link_hash_warning)
3486 entsize += htab->root.table.entsize;
3487 }
3488 }
3489
3490 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3491 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3492 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3493 if (old_tab == NULL)
3494 goto error_free_vers;
3495
3496 /* Remember the current objalloc pointer, so that all mem for
3497 symbols added can later be reclaimed. */
3498 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3499 if (alloc_mark == NULL)
3500 goto error_free_vers;
3501
3502 /* Clone the symbol table and sym hashes. Remember some
3503 pointers into the symbol table, and dynamic symbol count. */
3504 old_hash = (char *) old_tab + tabsize;
3505 old_ent = (char *) old_hash + hashsize;
3506 memcpy (old_tab, htab->root.table.table, tabsize);
3507 memcpy (old_hash, sym_hash, hashsize);
3508 old_undefs = htab->root.undefs;
3509 old_undefs_tail = htab->root.undefs_tail;
3510 old_table = htab->root.table.table;
3511 old_size = htab->root.table.size;
3512 old_count = htab->root.table.count;
3513 old_dynsymcount = htab->dynsymcount;
3514
3515 for (i = 0; i < htab->root.table.size; i++)
3516 {
3517 struct bfd_hash_entry *p;
3518 struct elf_link_hash_entry *h;
3519
3520 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3521 {
3522 memcpy (old_ent, p, htab->root.table.entsize);
3523 old_ent = (char *) old_ent + htab->root.table.entsize;
3524 h = (struct elf_link_hash_entry *) p;
3525 if (h->root.type == bfd_link_hash_warning)
3526 {
3527 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3528 old_ent = (char *) old_ent + htab->root.table.entsize;
3529 }
3530 }
3531 }
3532 }
3533
3534 weaks = NULL;
3535 ever = extversym != NULL ? extversym + extsymoff : NULL;
3536 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3537 isym < isymend;
3538 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3539 {
3540 int bind;
3541 bfd_vma value;
3542 asection *sec, *new_sec;
3543 flagword flags;
3544 const char *name;
3545 struct elf_link_hash_entry *h;
3546 bfd_boolean definition;
3547 bfd_boolean size_change_ok;
3548 bfd_boolean type_change_ok;
3549 bfd_boolean new_weakdef;
3550 bfd_boolean override;
3551 bfd_boolean common;
3552 unsigned int old_alignment;
3553 bfd *old_bfd;
3554
3555 override = FALSE;
3556
3557 flags = BSF_NO_FLAGS;
3558 sec = NULL;
3559 value = isym->st_value;
3560 *sym_hash = NULL;
3561 common = bed->common_definition (isym);
3562
3563 bind = ELF_ST_BIND (isym->st_info);
3564 if (bind == STB_LOCAL)
3565 {
3566 /* This should be impossible, since ELF requires that all
3567 global symbols follow all local symbols, and that sh_info
3568 point to the first global symbol. Unfortunately, Irix 5
3569 screws this up. */
3570 continue;
3571 }
3572 else if (bind == STB_GLOBAL)
3573 {
3574 if (isym->st_shndx != SHN_UNDEF && !common)
3575 flags = BSF_GLOBAL;
3576 }
3577 else if (bind == STB_WEAK)
3578 flags = BSF_WEAK;
3579 else
3580 {
3581 /* Leave it up to the processor backend. */
3582 }
3583
3584 if (isym->st_shndx == SHN_UNDEF)
3585 sec = bfd_und_section_ptr;
3586 else if (isym->st_shndx < SHN_LORESERVE
3587 || isym->st_shndx > SHN_HIRESERVE)
3588 {
3589 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3590 if (sec == NULL)
3591 sec = bfd_abs_section_ptr;
3592 else if (sec->kept_section)
3593 {
3594 /* Symbols from discarded section are undefined, and have
3595 default visibility. */
3596 sec = bfd_und_section_ptr;
3597 isym->st_shndx = SHN_UNDEF;
3598 isym->st_other = (STV_DEFAULT
3599 | (isym->st_other & ~ ELF_ST_VISIBILITY (-1)));
3600 }
3601 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3602 value -= sec->vma;
3603 }
3604 else if (isym->st_shndx == SHN_ABS)
3605 sec = bfd_abs_section_ptr;
3606 else if (isym->st_shndx == SHN_COMMON)
3607 {
3608 sec = bfd_com_section_ptr;
3609 /* What ELF calls the size we call the value. What ELF
3610 calls the value we call the alignment. */
3611 value = isym->st_size;
3612 }
3613 else
3614 {
3615 /* Leave it up to the processor backend. */
3616 }
3617
3618 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3619 isym->st_name);
3620 if (name == NULL)
3621 goto error_free_vers;
3622
3623 if (isym->st_shndx == SHN_COMMON
3624 && ELF_ST_TYPE (isym->st_info) == STT_TLS)
3625 {
3626 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3627
3628 if (tcomm == NULL)
3629 {
3630 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3631 (SEC_ALLOC
3632 | SEC_IS_COMMON
3633 | SEC_LINKER_CREATED
3634 | SEC_THREAD_LOCAL));
3635 if (tcomm == NULL)
3636 goto error_free_vers;
3637 }
3638 sec = tcomm;
3639 }
3640 else if (bed->elf_add_symbol_hook)
3641 {
3642 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3643 &sec, &value))
3644 goto error_free_vers;
3645
3646 /* The hook function sets the name to NULL if this symbol
3647 should be skipped for some reason. */
3648 if (name == NULL)
3649 continue;
3650 }
3651
3652 /* Sanity check that all possibilities were handled. */
3653 if (sec == NULL)
3654 {
3655 bfd_set_error (bfd_error_bad_value);
3656 goto error_free_vers;
3657 }
3658
3659 if (bfd_is_und_section (sec)
3660 || bfd_is_com_section (sec))
3661 definition = FALSE;
3662 else
3663 definition = TRUE;
3664
3665 size_change_ok = FALSE;
3666 type_change_ok = bed->type_change_ok;
3667 old_alignment = 0;
3668 old_bfd = NULL;
3669 new_sec = sec;
3670
3671 if (is_elf_hash_table (htab))
3672 {
3673 Elf_Internal_Versym iver;
3674 unsigned int vernum = 0;
3675 bfd_boolean skip;
3676
3677 if (ever == NULL)
3678 {
3679 if (info->default_imported_symver)
3680 /* Use the default symbol version created earlier. */
3681 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3682 else
3683 iver.vs_vers = 0;
3684 }
3685 else
3686 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3687
3688 vernum = iver.vs_vers & VERSYM_VERSION;
3689
3690 /* If this is a hidden symbol, or if it is not version
3691 1, we append the version name to the symbol name.
3692 However, we do not modify a non-hidden absolute symbol
3693 if it is not a function, because it might be the version
3694 symbol itself. FIXME: What if it isn't? */
3695 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3696 || (vernum > 1 && (! bfd_is_abs_section (sec)
3697 || ELF_ST_TYPE (isym->st_info) == STT_FUNC)))
3698 {
3699 const char *verstr;
3700 size_t namelen, verlen, newlen;
3701 char *newname, *p;
3702
3703 if (isym->st_shndx != SHN_UNDEF)
3704 {
3705 if (vernum > elf_tdata (abfd)->cverdefs)
3706 verstr = NULL;
3707 else if (vernum > 1)
3708 verstr =
3709 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
3710 else
3711 verstr = "";
3712
3713 if (verstr == NULL)
3714 {
3715 (*_bfd_error_handler)
3716 (_("%B: %s: invalid version %u (max %d)"),
3717 abfd, name, vernum,
3718 elf_tdata (abfd)->cverdefs);
3719 bfd_set_error (bfd_error_bad_value);
3720 goto error_free_vers;
3721 }
3722 }
3723 else
3724 {
3725 /* We cannot simply test for the number of
3726 entries in the VERNEED section since the
3727 numbers for the needed versions do not start
3728 at 0. */
3729 Elf_Internal_Verneed *t;
3730
3731 verstr = NULL;
3732 for (t = elf_tdata (abfd)->verref;
3733 t != NULL;
3734 t = t->vn_nextref)
3735 {
3736 Elf_Internal_Vernaux *a;
3737
3738 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3739 {
3740 if (a->vna_other == vernum)
3741 {
3742 verstr = a->vna_nodename;
3743 break;
3744 }
3745 }
3746 if (a != NULL)
3747 break;
3748 }
3749 if (verstr == NULL)
3750 {
3751 (*_bfd_error_handler)
3752 (_("%B: %s: invalid needed version %d"),
3753 abfd, name, vernum);
3754 bfd_set_error (bfd_error_bad_value);
3755 goto error_free_vers;
3756 }
3757 }
3758
3759 namelen = strlen (name);
3760 verlen = strlen (verstr);
3761 newlen = namelen + verlen + 2;
3762 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3763 && isym->st_shndx != SHN_UNDEF)
3764 ++newlen;
3765
3766 newname = bfd_hash_allocate (&htab->root.table, newlen);
3767 if (newname == NULL)
3768 goto error_free_vers;
3769 memcpy (newname, name, namelen);
3770 p = newname + namelen;
3771 *p++ = ELF_VER_CHR;
3772 /* If this is a defined non-hidden version symbol,
3773 we add another @ to the name. This indicates the
3774 default version of the symbol. */
3775 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3776 && isym->st_shndx != SHN_UNDEF)
3777 *p++ = ELF_VER_CHR;
3778 memcpy (p, verstr, verlen + 1);
3779
3780 name = newname;
3781 }
3782
3783 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
3784 &value, &old_alignment,
3785 sym_hash, &skip, &override,
3786 &type_change_ok, &size_change_ok))
3787 goto error_free_vers;
3788
3789 if (skip)
3790 continue;
3791
3792 if (override)
3793 definition = FALSE;
3794
3795 h = *sym_hash;
3796 while (h->root.type == bfd_link_hash_indirect
3797 || h->root.type == bfd_link_hash_warning)
3798 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3799
3800 /* Remember the old alignment if this is a common symbol, so
3801 that we don't reduce the alignment later on. We can't
3802 check later, because _bfd_generic_link_add_one_symbol
3803 will set a default for the alignment which we want to
3804 override. We also remember the old bfd where the existing
3805 definition comes from. */
3806 switch (h->root.type)
3807 {
3808 default:
3809 break;
3810
3811 case bfd_link_hash_defined:
3812 case bfd_link_hash_defweak:
3813 old_bfd = h->root.u.def.section->owner;
3814 break;
3815
3816 case bfd_link_hash_common:
3817 old_bfd = h->root.u.c.p->section->owner;
3818 old_alignment = h->root.u.c.p->alignment_power;
3819 break;
3820 }
3821
3822 if (elf_tdata (abfd)->verdef != NULL
3823 && ! override
3824 && vernum > 1
3825 && definition)
3826 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
3827 }
3828
3829 if (! (_bfd_generic_link_add_one_symbol
3830 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
3831 (struct bfd_link_hash_entry **) sym_hash)))
3832 goto error_free_vers;
3833
3834 h = *sym_hash;
3835 while (h->root.type == bfd_link_hash_indirect
3836 || h->root.type == bfd_link_hash_warning)
3837 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3838 *sym_hash = h;
3839
3840 new_weakdef = FALSE;
3841 if (dynamic
3842 && definition
3843 && (flags & BSF_WEAK) != 0
3844 && ELF_ST_TYPE (isym->st_info) != STT_FUNC
3845 && is_elf_hash_table (htab)
3846 && h->u.weakdef == NULL)
3847 {
3848 /* Keep a list of all weak defined non function symbols from
3849 a dynamic object, using the weakdef field. Later in this
3850 function we will set the weakdef field to the correct
3851 value. We only put non-function symbols from dynamic
3852 objects on this list, because that happens to be the only
3853 time we need to know the normal symbol corresponding to a
3854 weak symbol, and the information is time consuming to
3855 figure out. If the weakdef field is not already NULL,
3856 then this symbol was already defined by some previous
3857 dynamic object, and we will be using that previous
3858 definition anyhow. */
3859
3860 h->u.weakdef = weaks;
3861 weaks = h;
3862 new_weakdef = TRUE;
3863 }
3864
3865 /* Set the alignment of a common symbol. */
3866 if ((common || bfd_is_com_section (sec))
3867 && h->root.type == bfd_link_hash_common)
3868 {
3869 unsigned int align;
3870
3871 if (common)
3872 align = bfd_log2 (isym->st_value);
3873 else
3874 {
3875 /* The new symbol is a common symbol in a shared object.
3876 We need to get the alignment from the section. */
3877 align = new_sec->alignment_power;
3878 }
3879 if (align > old_alignment
3880 /* Permit an alignment power of zero if an alignment of one
3881 is specified and no other alignments have been specified. */
3882 || (isym->st_value == 1 && old_alignment == 0))
3883 h->root.u.c.p->alignment_power = align;
3884 else
3885 h->root.u.c.p->alignment_power = old_alignment;
3886 }
3887
3888 if (is_elf_hash_table (htab))
3889 {
3890 bfd_boolean dynsym;
3891
3892 /* Check the alignment when a common symbol is involved. This
3893 can change when a common symbol is overridden by a normal
3894 definition or a common symbol is ignored due to the old
3895 normal definition. We need to make sure the maximum
3896 alignment is maintained. */
3897 if ((old_alignment || common)
3898 && h->root.type != bfd_link_hash_common)
3899 {
3900 unsigned int common_align;
3901 unsigned int normal_align;
3902 unsigned int symbol_align;
3903 bfd *normal_bfd;
3904 bfd *common_bfd;
3905
3906 symbol_align = ffs (h->root.u.def.value) - 1;
3907 if (h->root.u.def.section->owner != NULL
3908 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3909 {
3910 normal_align = h->root.u.def.section->alignment_power;
3911 if (normal_align > symbol_align)
3912 normal_align = symbol_align;
3913 }
3914 else
3915 normal_align = symbol_align;
3916
3917 if (old_alignment)
3918 {
3919 common_align = old_alignment;
3920 common_bfd = old_bfd;
3921 normal_bfd = abfd;
3922 }
3923 else
3924 {
3925 common_align = bfd_log2 (isym->st_value);
3926 common_bfd = abfd;
3927 normal_bfd = old_bfd;
3928 }
3929
3930 if (normal_align < common_align)
3931 {
3932 /* PR binutils/2735 */
3933 if (normal_bfd == NULL)
3934 (*_bfd_error_handler)
3935 (_("Warning: alignment %u of common symbol `%s' in %B"
3936 " is greater than the alignment (%u) of its section %A"),
3937 common_bfd, h->root.u.def.section,
3938 1 << common_align, name, 1 << normal_align);
3939 else
3940 (*_bfd_error_handler)
3941 (_("Warning: alignment %u of symbol `%s' in %B"
3942 " is smaller than %u in %B"),
3943 normal_bfd, common_bfd,
3944 1 << normal_align, name, 1 << common_align);
3945 }
3946 }
3947
3948 /* Remember the symbol size and type. */
3949 if (isym->st_size != 0
3950 && (definition || h->size == 0))
3951 {
3952 if (h->size != 0 && h->size != isym->st_size && ! size_change_ok)
3953 (*_bfd_error_handler)
3954 (_("Warning: size of symbol `%s' changed"
3955 " from %lu in %B to %lu in %B"),
3956 old_bfd, abfd,
3957 name, (unsigned long) h->size,
3958 (unsigned long) isym->st_size);
3959
3960 h->size = isym->st_size;
3961 }
3962
3963 /* If this is a common symbol, then we always want H->SIZE
3964 to be the size of the common symbol. The code just above
3965 won't fix the size if a common symbol becomes larger. We
3966 don't warn about a size change here, because that is
3967 covered by --warn-common. */
3968 if (h->root.type == bfd_link_hash_common)
3969 h->size = h->root.u.c.size;
3970
3971 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
3972 && (definition || h->type == STT_NOTYPE))
3973 {
3974 if (h->type != STT_NOTYPE
3975 && h->type != ELF_ST_TYPE (isym->st_info)
3976 && ! type_change_ok)
3977 (*_bfd_error_handler)
3978 (_("Warning: type of symbol `%s' changed"
3979 " from %d to %d in %B"),
3980 abfd, name, h->type, ELF_ST_TYPE (isym->st_info));
3981
3982 h->type = ELF_ST_TYPE (isym->st_info);
3983 }
3984
3985 /* If st_other has a processor-specific meaning, specific
3986 code might be needed here. We never merge the visibility
3987 attribute with the one from a dynamic object. */
3988 if (bed->elf_backend_merge_symbol_attribute)
3989 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
3990 dynamic);
3991
3992 /* If this symbol has default visibility and the user has requested
3993 we not re-export it, then mark it as hidden. */
3994 if (definition && !dynamic
3995 && (abfd->no_export
3996 || (abfd->my_archive && abfd->my_archive->no_export))
3997 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
3998 isym->st_other = (STV_HIDDEN
3999 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4000
4001 if (isym->st_other != 0 && !dynamic)
4002 {
4003 unsigned char hvis, symvis, other, nvis;
4004
4005 /* Take the balance of OTHER from the definition. */
4006 other = (definition ? isym->st_other : h->other);
4007 other &= ~ ELF_ST_VISIBILITY (-1);
4008
4009 /* Combine visibilities, using the most constraining one. */
4010 hvis = ELF_ST_VISIBILITY (h->other);
4011 symvis = ELF_ST_VISIBILITY (isym->st_other);
4012 if (! hvis)
4013 nvis = symvis;
4014 else if (! symvis)
4015 nvis = hvis;
4016 else
4017 nvis = hvis < symvis ? hvis : symvis;
4018
4019 h->other = other | nvis;
4020 }
4021
4022 /* Set a flag in the hash table entry indicating the type of
4023 reference or definition we just found. Keep a count of
4024 the number of dynamic symbols we find. A dynamic symbol
4025 is one which is referenced or defined by both a regular
4026 object and a shared object. */
4027 dynsym = FALSE;
4028 if (! dynamic)
4029 {
4030 if (! definition)
4031 {
4032 h->ref_regular = 1;
4033 if (bind != STB_WEAK)
4034 h->ref_regular_nonweak = 1;
4035 }
4036 else
4037 h->def_regular = 1;
4038 if (! info->executable
4039 || h->def_dynamic
4040 || h->ref_dynamic)
4041 dynsym = TRUE;
4042 }
4043 else
4044 {
4045 if (! definition)
4046 h->ref_dynamic = 1;
4047 else
4048 h->def_dynamic = 1;
4049 if (h->def_regular
4050 || h->ref_regular
4051 || (h->u.weakdef != NULL
4052 && ! new_weakdef
4053 && h->u.weakdef->dynindx != -1))
4054 dynsym = TRUE;
4055 }
4056
4057 /* Check to see if we need to add an indirect symbol for
4058 the default name. */
4059 if (definition || h->root.type == bfd_link_hash_common)
4060 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4061 &sec, &value, &dynsym,
4062 override))
4063 goto error_free_vers;
4064
4065 if (definition && !dynamic)
4066 {
4067 char *p = strchr (name, ELF_VER_CHR);
4068 if (p != NULL && p[1] != ELF_VER_CHR)
4069 {
4070 /* Queue non-default versions so that .symver x, x@FOO
4071 aliases can be checked. */
4072 if (!nondeflt_vers)
4073 {
4074 amt = ((isymend - isym + 1)
4075 * sizeof (struct elf_link_hash_entry *));
4076 nondeflt_vers = bfd_malloc (amt);
4077 }
4078 nondeflt_vers[nondeflt_vers_cnt++] = h;
4079 }
4080 }
4081
4082 if (dynsym && h->dynindx == -1)
4083 {
4084 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4085 goto error_free_vers;
4086 if (h->u.weakdef != NULL
4087 && ! new_weakdef
4088 && h->u.weakdef->dynindx == -1)
4089 {
4090 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4091 goto error_free_vers;
4092 }
4093 }
4094 else if (dynsym && h->dynindx != -1)
4095 /* If the symbol already has a dynamic index, but
4096 visibility says it should not be visible, turn it into
4097 a local symbol. */
4098 switch (ELF_ST_VISIBILITY (h->other))
4099 {
4100 case STV_INTERNAL:
4101 case STV_HIDDEN:
4102 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4103 dynsym = FALSE;
4104 break;
4105 }
4106
4107 if (!add_needed
4108 && definition
4109 && dynsym
4110 && h->ref_regular)
4111 {
4112 int ret;
4113 const char *soname = elf_dt_name (abfd);
4114
4115 /* A symbol from a library loaded via DT_NEEDED of some
4116 other library is referenced by a regular object.
4117 Add a DT_NEEDED entry for it. Issue an error if
4118 --no-add-needed is used. */
4119 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4120 {
4121 (*_bfd_error_handler)
4122 (_("%s: invalid DSO for symbol `%s' definition"),
4123 abfd, name);
4124 bfd_set_error (bfd_error_bad_value);
4125 goto error_free_vers;
4126 }
4127
4128 elf_dyn_lib_class (abfd) &= ~DYN_AS_NEEDED;
4129
4130 add_needed = TRUE;
4131 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4132 if (ret < 0)
4133 goto error_free_vers;
4134
4135 BFD_ASSERT (ret == 0);
4136 }
4137 }
4138 }
4139
4140 if (extversym != NULL)
4141 {
4142 free (extversym);
4143 extversym = NULL;
4144 }
4145
4146 if (isymbuf != NULL)
4147 {
4148 free (isymbuf);
4149 isymbuf = NULL;
4150 }
4151
4152 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4153 {
4154 unsigned int i;
4155
4156 /* Restore the symbol table. */
4157 old_hash = (char *) old_tab + tabsize;
4158 old_ent = (char *) old_hash + hashsize;
4159 sym_hash = elf_sym_hashes (abfd);
4160 htab->root.table.table = old_table;
4161 htab->root.table.size = old_size;
4162 htab->root.table.count = old_count;
4163 memcpy (htab->root.table.table, old_tab, tabsize);
4164 memcpy (sym_hash, old_hash, hashsize);
4165 htab->root.undefs = old_undefs;
4166 htab->root.undefs_tail = old_undefs_tail;
4167 for (i = 0; i < htab->root.table.size; i++)
4168 {
4169 struct bfd_hash_entry *p;
4170 struct elf_link_hash_entry *h;
4171
4172 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4173 {
4174 h = (struct elf_link_hash_entry *) p;
4175 if (h->root.type == bfd_link_hash_warning)
4176 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4177 if (h->dynindx >= old_dynsymcount)
4178 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4179
4180 memcpy (p, old_ent, htab->root.table.entsize);
4181 old_ent = (char *) old_ent + htab->root.table.entsize;
4182 h = (struct elf_link_hash_entry *) p;
4183 if (h->root.type == bfd_link_hash_warning)
4184 {
4185 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4186 old_ent = (char *) old_ent + htab->root.table.entsize;
4187 }
4188 }
4189 }
4190
4191 free (old_tab);
4192 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4193 alloc_mark);
4194 if (nondeflt_vers != NULL)
4195 free (nondeflt_vers);
4196 return TRUE;
4197 }
4198
4199 if (old_tab != NULL)
4200 {
4201 free (old_tab);
4202 old_tab = NULL;
4203 }
4204
4205 /* Now that all the symbols from this input file are created, handle
4206 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4207 if (nondeflt_vers != NULL)
4208 {
4209 bfd_size_type cnt, symidx;
4210
4211 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4212 {
4213 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4214 char *shortname, *p;
4215
4216 p = strchr (h->root.root.string, ELF_VER_CHR);
4217 if (p == NULL
4218 || (h->root.type != bfd_link_hash_defined
4219 && h->root.type != bfd_link_hash_defweak))
4220 continue;
4221
4222 amt = p - h->root.root.string;
4223 shortname = bfd_malloc (amt + 1);
4224 memcpy (shortname, h->root.root.string, amt);
4225 shortname[amt] = '\0';
4226
4227 hi = (struct elf_link_hash_entry *)
4228 bfd_link_hash_lookup (&htab->root, shortname,
4229 FALSE, FALSE, FALSE);
4230 if (hi != NULL
4231 && hi->root.type == h->root.type
4232 && hi->root.u.def.value == h->root.u.def.value
4233 && hi->root.u.def.section == h->root.u.def.section)
4234 {
4235 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4236 hi->root.type = bfd_link_hash_indirect;
4237 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4238 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4239 sym_hash = elf_sym_hashes (abfd);
4240 if (sym_hash)
4241 for (symidx = 0; symidx < extsymcount; ++symidx)
4242 if (sym_hash[symidx] == hi)
4243 {
4244 sym_hash[symidx] = h;
4245 break;
4246 }
4247 }
4248 free (shortname);
4249 }
4250 free (nondeflt_vers);
4251 nondeflt_vers = NULL;
4252 }
4253
4254 /* Now set the weakdefs field correctly for all the weak defined
4255 symbols we found. The only way to do this is to search all the
4256 symbols. Since we only need the information for non functions in
4257 dynamic objects, that's the only time we actually put anything on
4258 the list WEAKS. We need this information so that if a regular
4259 object refers to a symbol defined weakly in a dynamic object, the
4260 real symbol in the dynamic object is also put in the dynamic
4261 symbols; we also must arrange for both symbols to point to the
4262 same memory location. We could handle the general case of symbol
4263 aliasing, but a general symbol alias can only be generated in
4264 assembler code, handling it correctly would be very time
4265 consuming, and other ELF linkers don't handle general aliasing
4266 either. */
4267 if (weaks != NULL)
4268 {
4269 struct elf_link_hash_entry **hpp;
4270 struct elf_link_hash_entry **hppend;
4271 struct elf_link_hash_entry **sorted_sym_hash;
4272 struct elf_link_hash_entry *h;
4273 size_t sym_count;
4274
4275 /* Since we have to search the whole symbol list for each weak
4276 defined symbol, search time for N weak defined symbols will be
4277 O(N^2). Binary search will cut it down to O(NlogN). */
4278 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4279 sorted_sym_hash = bfd_malloc (amt);
4280 if (sorted_sym_hash == NULL)
4281 goto error_return;
4282 sym_hash = sorted_sym_hash;
4283 hpp = elf_sym_hashes (abfd);
4284 hppend = hpp + extsymcount;
4285 sym_count = 0;
4286 for (; hpp < hppend; hpp++)
4287 {
4288 h = *hpp;
4289 if (h != NULL
4290 && h->root.type == bfd_link_hash_defined
4291 && h->type != STT_FUNC)
4292 {
4293 *sym_hash = h;
4294 sym_hash++;
4295 sym_count++;
4296 }
4297 }
4298
4299 qsort (sorted_sym_hash, sym_count,
4300 sizeof (struct elf_link_hash_entry *),
4301 elf_sort_symbol);
4302
4303 while (weaks != NULL)
4304 {
4305 struct elf_link_hash_entry *hlook;
4306 asection *slook;
4307 bfd_vma vlook;
4308 long ilook;
4309 size_t i, j, idx;
4310
4311 hlook = weaks;
4312 weaks = hlook->u.weakdef;
4313 hlook->u.weakdef = NULL;
4314
4315 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4316 || hlook->root.type == bfd_link_hash_defweak
4317 || hlook->root.type == bfd_link_hash_common
4318 || hlook->root.type == bfd_link_hash_indirect);
4319 slook = hlook->root.u.def.section;
4320 vlook = hlook->root.u.def.value;
4321
4322 ilook = -1;
4323 i = 0;
4324 j = sym_count;
4325 while (i < j)
4326 {
4327 bfd_signed_vma vdiff;
4328 idx = (i + j) / 2;
4329 h = sorted_sym_hash [idx];
4330 vdiff = vlook - h->root.u.def.value;
4331 if (vdiff < 0)
4332 j = idx;
4333 else if (vdiff > 0)
4334 i = idx + 1;
4335 else
4336 {
4337 long sdiff = slook->id - h->root.u.def.section->id;
4338 if (sdiff < 0)
4339 j = idx;
4340 else if (sdiff > 0)
4341 i = idx + 1;
4342 else
4343 {
4344 ilook = idx;
4345 break;
4346 }
4347 }
4348 }
4349
4350 /* We didn't find a value/section match. */
4351 if (ilook == -1)
4352 continue;
4353
4354 for (i = ilook; i < sym_count; i++)
4355 {
4356 h = sorted_sym_hash [i];
4357
4358 /* Stop if value or section doesn't match. */
4359 if (h->root.u.def.value != vlook
4360 || h->root.u.def.section != slook)
4361 break;
4362 else if (h != hlook)
4363 {
4364 hlook->u.weakdef = h;
4365
4366 /* If the weak definition is in the list of dynamic
4367 symbols, make sure the real definition is put
4368 there as well. */
4369 if (hlook->dynindx != -1 && h->dynindx == -1)
4370 {
4371 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4372 goto error_return;
4373 }
4374
4375 /* If the real definition is in the list of dynamic
4376 symbols, make sure the weak definition is put
4377 there as well. If we don't do this, then the
4378 dynamic loader might not merge the entries for the
4379 real definition and the weak definition. */
4380 if (h->dynindx != -1 && hlook->dynindx == -1)
4381 {
4382 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4383 goto error_return;
4384 }
4385 break;
4386 }
4387 }
4388 }
4389
4390 free (sorted_sym_hash);
4391 }
4392
4393 if (bed->check_directives)
4394 (*bed->check_directives) (abfd, info);
4395
4396 /* If this object is the same format as the output object, and it is
4397 not a shared library, then let the backend look through the
4398 relocs.
4399
4400 This is required to build global offset table entries and to
4401 arrange for dynamic relocs. It is not required for the
4402 particular common case of linking non PIC code, even when linking
4403 against shared libraries, but unfortunately there is no way of
4404 knowing whether an object file has been compiled PIC or not.
4405 Looking through the relocs is not particularly time consuming.
4406 The problem is that we must either (1) keep the relocs in memory,
4407 which causes the linker to require additional runtime memory or
4408 (2) read the relocs twice from the input file, which wastes time.
4409 This would be a good case for using mmap.
4410
4411 I have no idea how to handle linking PIC code into a file of a
4412 different format. It probably can't be done. */
4413 if (! dynamic
4414 && is_elf_hash_table (htab)
4415 && htab->root.creator == abfd->xvec
4416 && bed->check_relocs != NULL)
4417 {
4418 asection *o;
4419
4420 for (o = abfd->sections; o != NULL; o = o->next)
4421 {
4422 Elf_Internal_Rela *internal_relocs;
4423 bfd_boolean ok;
4424
4425 if ((o->flags & SEC_RELOC) == 0
4426 || o->reloc_count == 0
4427 || ((info->strip == strip_all || info->strip == strip_debugger)
4428 && (o->flags & SEC_DEBUGGING) != 0)
4429 || bfd_is_abs_section (o->output_section))
4430 continue;
4431
4432 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4433 info->keep_memory);
4434 if (internal_relocs == NULL)
4435 goto error_return;
4436
4437 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4438
4439 if (elf_section_data (o)->relocs != internal_relocs)
4440 free (internal_relocs);
4441
4442 if (! ok)
4443 goto error_return;
4444 }
4445 }
4446
4447 /* If this is a non-traditional link, try to optimize the handling
4448 of the .stab/.stabstr sections. */
4449 if (! dynamic
4450 && ! info->traditional_format
4451 && is_elf_hash_table (htab)
4452 && (info->strip != strip_all && info->strip != strip_debugger))
4453 {
4454 asection *stabstr;
4455
4456 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4457 if (stabstr != NULL)
4458 {
4459 bfd_size_type string_offset = 0;
4460 asection *stab;
4461
4462 for (stab = abfd->sections; stab; stab = stab->next)
4463 if (strncmp (".stab", stab->name, 5) == 0
4464 && (!stab->name[5] ||
4465 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4466 && (stab->flags & SEC_MERGE) == 0
4467 && !bfd_is_abs_section (stab->output_section))
4468 {
4469 struct bfd_elf_section_data *secdata;
4470
4471 secdata = elf_section_data (stab);
4472 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4473 stabstr, &secdata->sec_info,
4474 &string_offset))
4475 goto error_return;
4476 if (secdata->sec_info)
4477 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4478 }
4479 }
4480 }
4481
4482 if (is_elf_hash_table (htab) && add_needed)
4483 {
4484 /* Add this bfd to the loaded list. */
4485 struct elf_link_loaded_list *n;
4486
4487 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4488 if (n == NULL)
4489 goto error_return;
4490 n->abfd = abfd;
4491 n->next = htab->loaded;
4492 htab->loaded = n;
4493 }
4494
4495 return TRUE;
4496
4497 error_free_vers:
4498 if (old_tab != NULL)
4499 free (old_tab);
4500 if (nondeflt_vers != NULL)
4501 free (nondeflt_vers);
4502 if (extversym != NULL)
4503 free (extversym);
4504 error_free_sym:
4505 if (isymbuf != NULL)
4506 free (isymbuf);
4507 error_return:
4508 return FALSE;
4509 }
4510
4511 /* Return the linker hash table entry of a symbol that might be
4512 satisfied by an archive symbol. Return -1 on error. */
4513
4514 struct elf_link_hash_entry *
4515 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4516 struct bfd_link_info *info,
4517 const char *name)
4518 {
4519 struct elf_link_hash_entry *h;
4520 char *p, *copy;
4521 size_t len, first;
4522
4523 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4524 if (h != NULL)
4525 return h;
4526
4527 /* If this is a default version (the name contains @@), look up the
4528 symbol again with only one `@' as well as without the version.
4529 The effect is that references to the symbol with and without the
4530 version will be matched by the default symbol in the archive. */
4531
4532 p = strchr (name, ELF_VER_CHR);
4533 if (p == NULL || p[1] != ELF_VER_CHR)
4534 return h;
4535
4536 /* First check with only one `@'. */
4537 len = strlen (name);
4538 copy = bfd_alloc (abfd, len);
4539 if (copy == NULL)
4540 return (struct elf_link_hash_entry *) 0 - 1;
4541
4542 first = p - name + 1;
4543 memcpy (copy, name, first);
4544 memcpy (copy + first, name + first + 1, len - first);
4545
4546 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4547 if (h == NULL)
4548 {
4549 /* We also need to check references to the symbol without the
4550 version. */
4551 copy[first - 1] = '\0';
4552 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4553 FALSE, FALSE, FALSE);
4554 }
4555
4556 bfd_release (abfd, copy);
4557 return h;
4558 }
4559
4560 /* Add symbols from an ELF archive file to the linker hash table. We
4561 don't use _bfd_generic_link_add_archive_symbols because of a
4562 problem which arises on UnixWare. The UnixWare libc.so is an
4563 archive which includes an entry libc.so.1 which defines a bunch of
4564 symbols. The libc.so archive also includes a number of other
4565 object files, which also define symbols, some of which are the same
4566 as those defined in libc.so.1. Correct linking requires that we
4567 consider each object file in turn, and include it if it defines any
4568 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4569 this; it looks through the list of undefined symbols, and includes
4570 any object file which defines them. When this algorithm is used on
4571 UnixWare, it winds up pulling in libc.so.1 early and defining a
4572 bunch of symbols. This means that some of the other objects in the
4573 archive are not included in the link, which is incorrect since they
4574 precede libc.so.1 in the archive.
4575
4576 Fortunately, ELF archive handling is simpler than that done by
4577 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4578 oddities. In ELF, if we find a symbol in the archive map, and the
4579 symbol is currently undefined, we know that we must pull in that
4580 object file.
4581
4582 Unfortunately, we do have to make multiple passes over the symbol
4583 table until nothing further is resolved. */
4584
4585 static bfd_boolean
4586 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4587 {
4588 symindex c;
4589 bfd_boolean *defined = NULL;
4590 bfd_boolean *included = NULL;
4591 carsym *symdefs;
4592 bfd_boolean loop;
4593 bfd_size_type amt;
4594 const struct elf_backend_data *bed;
4595 struct elf_link_hash_entry * (*archive_symbol_lookup)
4596 (bfd *, struct bfd_link_info *, const char *);
4597
4598 if (! bfd_has_map (abfd))
4599 {
4600 /* An empty archive is a special case. */
4601 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4602 return TRUE;
4603 bfd_set_error (bfd_error_no_armap);
4604 return FALSE;
4605 }
4606
4607 /* Keep track of all symbols we know to be already defined, and all
4608 files we know to be already included. This is to speed up the
4609 second and subsequent passes. */
4610 c = bfd_ardata (abfd)->symdef_count;
4611 if (c == 0)
4612 return TRUE;
4613 amt = c;
4614 amt *= sizeof (bfd_boolean);
4615 defined = bfd_zmalloc (amt);
4616 included = bfd_zmalloc (amt);
4617 if (defined == NULL || included == NULL)
4618 goto error_return;
4619
4620 symdefs = bfd_ardata (abfd)->symdefs;
4621 bed = get_elf_backend_data (abfd);
4622 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4623
4624 do
4625 {
4626 file_ptr last;
4627 symindex i;
4628 carsym *symdef;
4629 carsym *symdefend;
4630
4631 loop = FALSE;
4632 last = -1;
4633
4634 symdef = symdefs;
4635 symdefend = symdef + c;
4636 for (i = 0; symdef < symdefend; symdef++, i++)
4637 {
4638 struct elf_link_hash_entry *h;
4639 bfd *element;
4640 struct bfd_link_hash_entry *undefs_tail;
4641 symindex mark;
4642
4643 if (defined[i] || included[i])
4644 continue;
4645 if (symdef->file_offset == last)
4646 {
4647 included[i] = TRUE;
4648 continue;
4649 }
4650
4651 h = archive_symbol_lookup (abfd, info, symdef->name);
4652 if (h == (struct elf_link_hash_entry *) 0 - 1)
4653 goto error_return;
4654
4655 if (h == NULL)
4656 continue;
4657
4658 if (h->root.type == bfd_link_hash_common)
4659 {
4660 /* We currently have a common symbol. The archive map contains
4661 a reference to this symbol, so we may want to include it. We
4662 only want to include it however, if this archive element
4663 contains a definition of the symbol, not just another common
4664 declaration of it.
4665
4666 Unfortunately some archivers (including GNU ar) will put
4667 declarations of common symbols into their archive maps, as
4668 well as real definitions, so we cannot just go by the archive
4669 map alone. Instead we must read in the element's symbol
4670 table and check that to see what kind of symbol definition
4671 this is. */
4672 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
4673 continue;
4674 }
4675 else if (h->root.type != bfd_link_hash_undefined)
4676 {
4677 if (h->root.type != bfd_link_hash_undefweak)
4678 defined[i] = TRUE;
4679 continue;
4680 }
4681
4682 /* We need to include this archive member. */
4683 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
4684 if (element == NULL)
4685 goto error_return;
4686
4687 if (! bfd_check_format (element, bfd_object))
4688 goto error_return;
4689
4690 /* Doublecheck that we have not included this object
4691 already--it should be impossible, but there may be
4692 something wrong with the archive. */
4693 if (element->archive_pass != 0)
4694 {
4695 bfd_set_error (bfd_error_bad_value);
4696 goto error_return;
4697 }
4698 element->archive_pass = 1;
4699
4700 undefs_tail = info->hash->undefs_tail;
4701
4702 if (! (*info->callbacks->add_archive_element) (info, element,
4703 symdef->name))
4704 goto error_return;
4705 if (! bfd_link_add_symbols (element, info))
4706 goto error_return;
4707
4708 /* If there are any new undefined symbols, we need to make
4709 another pass through the archive in order to see whether
4710 they can be defined. FIXME: This isn't perfect, because
4711 common symbols wind up on undefs_tail and because an
4712 undefined symbol which is defined later on in this pass
4713 does not require another pass. This isn't a bug, but it
4714 does make the code less efficient than it could be. */
4715 if (undefs_tail != info->hash->undefs_tail)
4716 loop = TRUE;
4717
4718 /* Look backward to mark all symbols from this object file
4719 which we have already seen in this pass. */
4720 mark = i;
4721 do
4722 {
4723 included[mark] = TRUE;
4724 if (mark == 0)
4725 break;
4726 --mark;
4727 }
4728 while (symdefs[mark].file_offset == symdef->file_offset);
4729
4730 /* We mark subsequent symbols from this object file as we go
4731 on through the loop. */
4732 last = symdef->file_offset;
4733 }
4734 }
4735 while (loop);
4736
4737 free (defined);
4738 free (included);
4739
4740 return TRUE;
4741
4742 error_return:
4743 if (defined != NULL)
4744 free (defined);
4745 if (included != NULL)
4746 free (included);
4747 return FALSE;
4748 }
4749
4750 /* Given an ELF BFD, add symbols to the global hash table as
4751 appropriate. */
4752
4753 bfd_boolean
4754 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
4755 {
4756 switch (bfd_get_format (abfd))
4757 {
4758 case bfd_object:
4759 return elf_link_add_object_symbols (abfd, info);
4760 case bfd_archive:
4761 return elf_link_add_archive_symbols (abfd, info);
4762 default:
4763 bfd_set_error (bfd_error_wrong_format);
4764 return FALSE;
4765 }
4766 }
4767 \f
4768 /* This function will be called though elf_link_hash_traverse to store
4769 all hash value of the exported symbols in an array. */
4770
4771 static bfd_boolean
4772 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
4773 {
4774 unsigned long **valuep = data;
4775 const char *name;
4776 char *p;
4777 unsigned long ha;
4778 char *alc = NULL;
4779
4780 if (h->root.type == bfd_link_hash_warning)
4781 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4782
4783 /* Ignore indirect symbols. These are added by the versioning code. */
4784 if (h->dynindx == -1)
4785 return TRUE;
4786
4787 name = h->root.root.string;
4788 p = strchr (name, ELF_VER_CHR);
4789 if (p != NULL)
4790 {
4791 alc = bfd_malloc (p - name + 1);
4792 memcpy (alc, name, p - name);
4793 alc[p - name] = '\0';
4794 name = alc;
4795 }
4796
4797 /* Compute the hash value. */
4798 ha = bfd_elf_hash (name);
4799
4800 /* Store the found hash value in the array given as the argument. */
4801 *(*valuep)++ = ha;
4802
4803 /* And store it in the struct so that we can put it in the hash table
4804 later. */
4805 h->u.elf_hash_value = ha;
4806
4807 if (alc != NULL)
4808 free (alc);
4809
4810 return TRUE;
4811 }
4812
4813 /* Array used to determine the number of hash table buckets to use
4814 based on the number of symbols there are. If there are fewer than
4815 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
4816 fewer than 37 we use 17 buckets, and so forth. We never use more
4817 than 32771 buckets. */
4818
4819 static const size_t elf_buckets[] =
4820 {
4821 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
4822 16411, 32771, 0
4823 };
4824
4825 /* Compute bucket count for hashing table. We do not use a static set
4826 of possible tables sizes anymore. Instead we determine for all
4827 possible reasonable sizes of the table the outcome (i.e., the
4828 number of collisions etc) and choose the best solution. The
4829 weighting functions are not too simple to allow the table to grow
4830 without bounds. Instead one of the weighting factors is the size.
4831 Therefore the result is always a good payoff between few collisions
4832 (= short chain lengths) and table size. */
4833 static size_t
4834 compute_bucket_count (struct bfd_link_info *info)
4835 {
4836 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
4837 size_t best_size = 0;
4838 unsigned long int *hashcodes;
4839 unsigned long int *hashcodesp;
4840 unsigned long int i;
4841 bfd_size_type amt;
4842
4843 /* Compute the hash values for all exported symbols. At the same
4844 time store the values in an array so that we could use them for
4845 optimizations. */
4846 amt = dynsymcount;
4847 amt *= sizeof (unsigned long int);
4848 hashcodes = bfd_malloc (amt);
4849 if (hashcodes == NULL)
4850 return 0;
4851 hashcodesp = hashcodes;
4852
4853 /* Put all hash values in HASHCODES. */
4854 elf_link_hash_traverse (elf_hash_table (info),
4855 elf_collect_hash_codes, &hashcodesp);
4856
4857 /* We have a problem here. The following code to optimize the table
4858 size requires an integer type with more the 32 bits. If
4859 BFD_HOST_U_64_BIT is set we know about such a type. */
4860 #ifdef BFD_HOST_U_64_BIT
4861 if (info->optimize)
4862 {
4863 unsigned long int nsyms = hashcodesp - hashcodes;
4864 size_t minsize;
4865 size_t maxsize;
4866 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
4867 unsigned long int *counts ;
4868 bfd *dynobj = elf_hash_table (info)->dynobj;
4869 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
4870
4871 /* Possible optimization parameters: if we have NSYMS symbols we say
4872 that the hashing table must at least have NSYMS/4 and at most
4873 2*NSYMS buckets. */
4874 minsize = nsyms / 4;
4875 if (minsize == 0)
4876 minsize = 1;
4877 best_size = maxsize = nsyms * 2;
4878
4879 /* Create array where we count the collisions in. We must use bfd_malloc
4880 since the size could be large. */
4881 amt = maxsize;
4882 amt *= sizeof (unsigned long int);
4883 counts = bfd_malloc (amt);
4884 if (counts == NULL)
4885 {
4886 free (hashcodes);
4887 return 0;
4888 }
4889
4890 /* Compute the "optimal" size for the hash table. The criteria is a
4891 minimal chain length. The minor criteria is (of course) the size
4892 of the table. */
4893 for (i = minsize; i < maxsize; ++i)
4894 {
4895 /* Walk through the array of hashcodes and count the collisions. */
4896 BFD_HOST_U_64_BIT max;
4897 unsigned long int j;
4898 unsigned long int fact;
4899
4900 memset (counts, '\0', i * sizeof (unsigned long int));
4901
4902 /* Determine how often each hash bucket is used. */
4903 for (j = 0; j < nsyms; ++j)
4904 ++counts[hashcodes[j] % i];
4905
4906 /* For the weight function we need some information about the
4907 pagesize on the target. This is information need not be 100%
4908 accurate. Since this information is not available (so far) we
4909 define it here to a reasonable default value. If it is crucial
4910 to have a better value some day simply define this value. */
4911 # ifndef BFD_TARGET_PAGESIZE
4912 # define BFD_TARGET_PAGESIZE (4096)
4913 # endif
4914
4915 /* We in any case need 2 + NSYMS entries for the size values and
4916 the chains. */
4917 max = (2 + nsyms) * (bed->s->arch_size / 8);
4918
4919 # if 1
4920 /* Variant 1: optimize for short chains. We add the squares
4921 of all the chain lengths (which favors many small chain
4922 over a few long chains). */
4923 for (j = 0; j < i; ++j)
4924 max += counts[j] * counts[j];
4925
4926 /* This adds penalties for the overall size of the table. */
4927 fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1;
4928 max *= fact * fact;
4929 # else
4930 /* Variant 2: Optimize a lot more for small table. Here we
4931 also add squares of the size but we also add penalties for
4932 empty slots (the +1 term). */
4933 for (j = 0; j < i; ++j)
4934 max += (1 + counts[j]) * (1 + counts[j]);
4935
4936 /* The overall size of the table is considered, but not as
4937 strong as in variant 1, where it is squared. */
4938 fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1;
4939 max *= fact;
4940 # endif
4941
4942 /* Compare with current best results. */
4943 if (max < best_chlen)
4944 {
4945 best_chlen = max;
4946 best_size = i;
4947 }
4948 }
4949
4950 free (counts);
4951 }
4952 else
4953 #endif /* defined (BFD_HOST_U_64_BIT) */
4954 {
4955 /* This is the fallback solution if no 64bit type is available or if we
4956 are not supposed to spend much time on optimizations. We select the
4957 bucket count using a fixed set of numbers. */
4958 for (i = 0; elf_buckets[i] != 0; i++)
4959 {
4960 best_size = elf_buckets[i];
4961 if (dynsymcount < elf_buckets[i + 1])
4962 break;
4963 }
4964 }
4965
4966 /* Free the arrays we needed. */
4967 free (hashcodes);
4968
4969 return best_size;
4970 }
4971
4972 /* Set up the sizes and contents of the ELF dynamic sections. This is
4973 called by the ELF linker emulation before_allocation routine. We
4974 must set the sizes of the sections before the linker sets the
4975 addresses of the various sections. */
4976
4977 bfd_boolean
4978 bfd_elf_size_dynamic_sections (bfd *output_bfd,
4979 const char *soname,
4980 const char *rpath,
4981 const char *filter_shlib,
4982 const char * const *auxiliary_filters,
4983 struct bfd_link_info *info,
4984 asection **sinterpptr,
4985 struct bfd_elf_version_tree *verdefs)
4986 {
4987 bfd_size_type soname_indx;
4988 bfd *dynobj;
4989 const struct elf_backend_data *bed;
4990 struct elf_assign_sym_version_info asvinfo;
4991
4992 *sinterpptr = NULL;
4993
4994 soname_indx = (bfd_size_type) -1;
4995
4996 if (!is_elf_hash_table (info->hash))
4997 return TRUE;
4998
4999 elf_tdata (output_bfd)->relro = info->relro;
5000 if (info->execstack)
5001 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5002 else if (info->noexecstack)
5003 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5004 else
5005 {
5006 bfd *inputobj;
5007 asection *notesec = NULL;
5008 int exec = 0;
5009
5010 for (inputobj = info->input_bfds;
5011 inputobj;
5012 inputobj = inputobj->link_next)
5013 {
5014 asection *s;
5015
5016 if (inputobj->flags & (DYNAMIC | BFD_LINKER_CREATED))
5017 continue;
5018 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5019 if (s)
5020 {
5021 if (s->flags & SEC_CODE)
5022 exec = PF_X;
5023 notesec = s;
5024 }
5025 else
5026 exec = PF_X;
5027 }
5028 if (notesec)
5029 {
5030 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5031 if (exec && info->relocatable
5032 && notesec->output_section != bfd_abs_section_ptr)
5033 notesec->output_section->flags |= SEC_CODE;
5034 }
5035 }
5036
5037 /* Any syms created from now on start with -1 in
5038 got.refcount/offset and plt.refcount/offset. */
5039 elf_hash_table (info)->init_got_refcount
5040 = elf_hash_table (info)->init_got_offset;
5041 elf_hash_table (info)->init_plt_refcount
5042 = elf_hash_table (info)->init_plt_offset;
5043
5044 /* The backend may have to create some sections regardless of whether
5045 we're dynamic or not. */
5046 bed = get_elf_backend_data (output_bfd);
5047 if (bed->elf_backend_always_size_sections
5048 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5049 return FALSE;
5050
5051 dynobj = elf_hash_table (info)->dynobj;
5052
5053 /* If there were no dynamic objects in the link, there is nothing to
5054 do here. */
5055 if (dynobj == NULL)
5056 return TRUE;
5057
5058 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5059 return FALSE;
5060
5061 if (elf_hash_table (info)->dynamic_sections_created)
5062 {
5063 struct elf_info_failed eif;
5064 struct elf_link_hash_entry *h;
5065 asection *dynstr;
5066 struct bfd_elf_version_tree *t;
5067 struct bfd_elf_version_expr *d;
5068 asection *s;
5069 bfd_boolean all_defined;
5070
5071 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5072 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5073
5074 if (soname != NULL)
5075 {
5076 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5077 soname, TRUE);
5078 if (soname_indx == (bfd_size_type) -1
5079 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5080 return FALSE;
5081 }
5082
5083 if (info->symbolic)
5084 {
5085 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5086 return FALSE;
5087 info->flags |= DF_SYMBOLIC;
5088 }
5089
5090 if (rpath != NULL)
5091 {
5092 bfd_size_type indx;
5093
5094 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5095 TRUE);
5096 if (indx == (bfd_size_type) -1
5097 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5098 return FALSE;
5099
5100 if (info->new_dtags)
5101 {
5102 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5103 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5104 return FALSE;
5105 }
5106 }
5107
5108 if (filter_shlib != NULL)
5109 {
5110 bfd_size_type indx;
5111
5112 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5113 filter_shlib, TRUE);
5114 if (indx == (bfd_size_type) -1
5115 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5116 return FALSE;
5117 }
5118
5119 if (auxiliary_filters != NULL)
5120 {
5121 const char * const *p;
5122
5123 for (p = auxiliary_filters; *p != NULL; p++)
5124 {
5125 bfd_size_type indx;
5126
5127 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5128 *p, TRUE);
5129 if (indx == (bfd_size_type) -1
5130 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5131 return FALSE;
5132 }
5133 }
5134
5135 eif.info = info;
5136 eif.verdefs = verdefs;
5137 eif.failed = FALSE;
5138
5139 /* If we are supposed to export all symbols into the dynamic symbol
5140 table (this is not the normal case), then do so. */
5141 if (info->export_dynamic)
5142 {
5143 elf_link_hash_traverse (elf_hash_table (info),
5144 _bfd_elf_export_symbol,
5145 &eif);
5146 if (eif.failed)
5147 return FALSE;
5148 }
5149
5150 /* Make all global versions with definition. */
5151 for (t = verdefs; t != NULL; t = t->next)
5152 for (d = t->globals.list; d != NULL; d = d->next)
5153 if (!d->symver && d->symbol)
5154 {
5155 const char *verstr, *name;
5156 size_t namelen, verlen, newlen;
5157 char *newname, *p;
5158 struct elf_link_hash_entry *newh;
5159
5160 name = d->symbol;
5161 namelen = strlen (name);
5162 verstr = t->name;
5163 verlen = strlen (verstr);
5164 newlen = namelen + verlen + 3;
5165
5166 newname = bfd_malloc (newlen);
5167 if (newname == NULL)
5168 return FALSE;
5169 memcpy (newname, name, namelen);
5170
5171 /* Check the hidden versioned definition. */
5172 p = newname + namelen;
5173 *p++ = ELF_VER_CHR;
5174 memcpy (p, verstr, verlen + 1);
5175 newh = elf_link_hash_lookup (elf_hash_table (info),
5176 newname, FALSE, FALSE,
5177 FALSE);
5178 if (newh == NULL
5179 || (newh->root.type != bfd_link_hash_defined
5180 && newh->root.type != bfd_link_hash_defweak))
5181 {
5182 /* Check the default versioned definition. */
5183 *p++ = ELF_VER_CHR;
5184 memcpy (p, verstr, verlen + 1);
5185 newh = elf_link_hash_lookup (elf_hash_table (info),
5186 newname, FALSE, FALSE,
5187 FALSE);
5188 }
5189 free (newname);
5190
5191 /* Mark this version if there is a definition and it is
5192 not defined in a shared object. */
5193 if (newh != NULL
5194 && !newh->def_dynamic
5195 && (newh->root.type == bfd_link_hash_defined
5196 || newh->root.type == bfd_link_hash_defweak))
5197 d->symver = 1;
5198 }
5199
5200 /* Attach all the symbols to their version information. */
5201 asvinfo.output_bfd = output_bfd;
5202 asvinfo.info = info;
5203 asvinfo.verdefs = verdefs;
5204 asvinfo.failed = FALSE;
5205
5206 elf_link_hash_traverse (elf_hash_table (info),
5207 _bfd_elf_link_assign_sym_version,
5208 &asvinfo);
5209 if (asvinfo.failed)
5210 return FALSE;
5211
5212 if (!info->allow_undefined_version)
5213 {
5214 /* Check if all global versions have a definition. */
5215 all_defined = TRUE;
5216 for (t = verdefs; t != NULL; t = t->next)
5217 for (d = t->globals.list; d != NULL; d = d->next)
5218 if (!d->symver && !d->script)
5219 {
5220 (*_bfd_error_handler)
5221 (_("%s: undefined version: %s"),
5222 d->pattern, t->name);
5223 all_defined = FALSE;
5224 }
5225
5226 if (!all_defined)
5227 {
5228 bfd_set_error (bfd_error_bad_value);
5229 return FALSE;
5230 }
5231 }
5232
5233 /* Find all symbols which were defined in a dynamic object and make
5234 the backend pick a reasonable value for them. */
5235 elf_link_hash_traverse (elf_hash_table (info),
5236 _bfd_elf_adjust_dynamic_symbol,
5237 &eif);
5238 if (eif.failed)
5239 return FALSE;
5240
5241 /* Add some entries to the .dynamic section. We fill in some of the
5242 values later, in bfd_elf_final_link, but we must add the entries
5243 now so that we know the final size of the .dynamic section. */
5244
5245 /* If there are initialization and/or finalization functions to
5246 call then add the corresponding DT_INIT/DT_FINI entries. */
5247 h = (info->init_function
5248 ? elf_link_hash_lookup (elf_hash_table (info),
5249 info->init_function, FALSE,
5250 FALSE, FALSE)
5251 : NULL);
5252 if (h != NULL
5253 && (h->ref_regular
5254 || h->def_regular))
5255 {
5256 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5257 return FALSE;
5258 }
5259 h = (info->fini_function
5260 ? elf_link_hash_lookup (elf_hash_table (info),
5261 info->fini_function, FALSE,
5262 FALSE, FALSE)
5263 : NULL);
5264 if (h != NULL
5265 && (h->ref_regular
5266 || h->def_regular))
5267 {
5268 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5269 return FALSE;
5270 }
5271
5272 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5273 if (s != NULL && s->linker_has_input)
5274 {
5275 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5276 if (! info->executable)
5277 {
5278 bfd *sub;
5279 asection *o;
5280
5281 for (sub = info->input_bfds; sub != NULL;
5282 sub = sub->link_next)
5283 for (o = sub->sections; o != NULL; o = o->next)
5284 if (elf_section_data (o)->this_hdr.sh_type
5285 == SHT_PREINIT_ARRAY)
5286 {
5287 (*_bfd_error_handler)
5288 (_("%B: .preinit_array section is not allowed in DSO"),
5289 sub);
5290 break;
5291 }
5292
5293 bfd_set_error (bfd_error_nonrepresentable_section);
5294 return FALSE;
5295 }
5296
5297 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5298 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5299 return FALSE;
5300 }
5301 s = bfd_get_section_by_name (output_bfd, ".init_array");
5302 if (s != NULL && s->linker_has_input)
5303 {
5304 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5305 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5306 return FALSE;
5307 }
5308 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5309 if (s != NULL && s->linker_has_input)
5310 {
5311 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5312 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5313 return FALSE;
5314 }
5315
5316 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5317 /* If .dynstr is excluded from the link, we don't want any of
5318 these tags. Strictly, we should be checking each section
5319 individually; This quick check covers for the case where
5320 someone does a /DISCARD/ : { *(*) }. */
5321 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5322 {
5323 bfd_size_type strsize;
5324
5325 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5326 if (!_bfd_elf_add_dynamic_entry (info, DT_HASH, 0)
5327 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5328 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5329 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5330 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5331 bed->s->sizeof_sym))
5332 return FALSE;
5333 }
5334 }
5335
5336 /* The backend must work out the sizes of all the other dynamic
5337 sections. */
5338 if (bed->elf_backend_size_dynamic_sections
5339 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5340 return FALSE;
5341
5342 if (elf_hash_table (info)->dynamic_sections_created)
5343 {
5344 unsigned long section_sym_count;
5345 asection *s;
5346
5347 /* Set up the version definition section. */
5348 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5349 BFD_ASSERT (s != NULL);
5350
5351 /* We may have created additional version definitions if we are
5352 just linking a regular application. */
5353 verdefs = asvinfo.verdefs;
5354
5355 /* Skip anonymous version tag. */
5356 if (verdefs != NULL && verdefs->vernum == 0)
5357 verdefs = verdefs->next;
5358
5359 if (verdefs == NULL && !info->create_default_symver)
5360 s->flags |= SEC_EXCLUDE;
5361 else
5362 {
5363 unsigned int cdefs;
5364 bfd_size_type size;
5365 struct bfd_elf_version_tree *t;
5366 bfd_byte *p;
5367 Elf_Internal_Verdef def;
5368 Elf_Internal_Verdaux defaux;
5369 struct bfd_link_hash_entry *bh;
5370 struct elf_link_hash_entry *h;
5371 const char *name;
5372
5373 cdefs = 0;
5374 size = 0;
5375
5376 /* Make space for the base version. */
5377 size += sizeof (Elf_External_Verdef);
5378 size += sizeof (Elf_External_Verdaux);
5379 ++cdefs;
5380
5381 /* Make space for the default version. */
5382 if (info->create_default_symver)
5383 {
5384 size += sizeof (Elf_External_Verdef);
5385 ++cdefs;
5386 }
5387
5388 for (t = verdefs; t != NULL; t = t->next)
5389 {
5390 struct bfd_elf_version_deps *n;
5391
5392 size += sizeof (Elf_External_Verdef);
5393 size += sizeof (Elf_External_Verdaux);
5394 ++cdefs;
5395
5396 for (n = t->deps; n != NULL; n = n->next)
5397 size += sizeof (Elf_External_Verdaux);
5398 }
5399
5400 s->size = size;
5401 s->contents = bfd_alloc (output_bfd, s->size);
5402 if (s->contents == NULL && s->size != 0)
5403 return FALSE;
5404
5405 /* Fill in the version definition section. */
5406
5407 p = s->contents;
5408
5409 def.vd_version = VER_DEF_CURRENT;
5410 def.vd_flags = VER_FLG_BASE;
5411 def.vd_ndx = 1;
5412 def.vd_cnt = 1;
5413 if (info->create_default_symver)
5414 {
5415 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5416 def.vd_next = sizeof (Elf_External_Verdef);
5417 }
5418 else
5419 {
5420 def.vd_aux = sizeof (Elf_External_Verdef);
5421 def.vd_next = (sizeof (Elf_External_Verdef)
5422 + sizeof (Elf_External_Verdaux));
5423 }
5424
5425 if (soname_indx != (bfd_size_type) -1)
5426 {
5427 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5428 soname_indx);
5429 def.vd_hash = bfd_elf_hash (soname);
5430 defaux.vda_name = soname_indx;
5431 name = soname;
5432 }
5433 else
5434 {
5435 bfd_size_type indx;
5436
5437 name = lbasename (output_bfd->filename);
5438 def.vd_hash = bfd_elf_hash (name);
5439 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5440 name, FALSE);
5441 if (indx == (bfd_size_type) -1)
5442 return FALSE;
5443 defaux.vda_name = indx;
5444 }
5445 defaux.vda_next = 0;
5446
5447 _bfd_elf_swap_verdef_out (output_bfd, &def,
5448 (Elf_External_Verdef *) p);
5449 p += sizeof (Elf_External_Verdef);
5450 if (info->create_default_symver)
5451 {
5452 /* Add a symbol representing this version. */
5453 bh = NULL;
5454 if (! (_bfd_generic_link_add_one_symbol
5455 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5456 0, NULL, FALSE,
5457 get_elf_backend_data (dynobj)->collect, &bh)))
5458 return FALSE;
5459 h = (struct elf_link_hash_entry *) bh;
5460 h->non_elf = 0;
5461 h->def_regular = 1;
5462 h->type = STT_OBJECT;
5463 h->verinfo.vertree = NULL;
5464
5465 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5466 return FALSE;
5467
5468 /* Create a duplicate of the base version with the same
5469 aux block, but different flags. */
5470 def.vd_flags = 0;
5471 def.vd_ndx = 2;
5472 def.vd_aux = sizeof (Elf_External_Verdef);
5473 if (verdefs)
5474 def.vd_next = (sizeof (Elf_External_Verdef)
5475 + sizeof (Elf_External_Verdaux));
5476 else
5477 def.vd_next = 0;
5478 _bfd_elf_swap_verdef_out (output_bfd, &def,
5479 (Elf_External_Verdef *) p);
5480 p += sizeof (Elf_External_Verdef);
5481 }
5482 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5483 (Elf_External_Verdaux *) p);
5484 p += sizeof (Elf_External_Verdaux);
5485
5486 for (t = verdefs; t != NULL; t = t->next)
5487 {
5488 unsigned int cdeps;
5489 struct bfd_elf_version_deps *n;
5490
5491 cdeps = 0;
5492 for (n = t->deps; n != NULL; n = n->next)
5493 ++cdeps;
5494
5495 /* Add a symbol representing this version. */
5496 bh = NULL;
5497 if (! (_bfd_generic_link_add_one_symbol
5498 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5499 0, NULL, FALSE,
5500 get_elf_backend_data (dynobj)->collect, &bh)))
5501 return FALSE;
5502 h = (struct elf_link_hash_entry *) bh;
5503 h->non_elf = 0;
5504 h->def_regular = 1;
5505 h->type = STT_OBJECT;
5506 h->verinfo.vertree = t;
5507
5508 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5509 return FALSE;
5510
5511 def.vd_version = VER_DEF_CURRENT;
5512 def.vd_flags = 0;
5513 if (t->globals.list == NULL
5514 && t->locals.list == NULL
5515 && ! t->used)
5516 def.vd_flags |= VER_FLG_WEAK;
5517 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
5518 def.vd_cnt = cdeps + 1;
5519 def.vd_hash = bfd_elf_hash (t->name);
5520 def.vd_aux = sizeof (Elf_External_Verdef);
5521 def.vd_next = 0;
5522 if (t->next != NULL)
5523 def.vd_next = (sizeof (Elf_External_Verdef)
5524 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
5525
5526 _bfd_elf_swap_verdef_out (output_bfd, &def,
5527 (Elf_External_Verdef *) p);
5528 p += sizeof (Elf_External_Verdef);
5529
5530 defaux.vda_name = h->dynstr_index;
5531 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5532 h->dynstr_index);
5533 defaux.vda_next = 0;
5534 if (t->deps != NULL)
5535 defaux.vda_next = sizeof (Elf_External_Verdaux);
5536 t->name_indx = defaux.vda_name;
5537
5538 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5539 (Elf_External_Verdaux *) p);
5540 p += sizeof (Elf_External_Verdaux);
5541
5542 for (n = t->deps; n != NULL; n = n->next)
5543 {
5544 if (n->version_needed == NULL)
5545 {
5546 /* This can happen if there was an error in the
5547 version script. */
5548 defaux.vda_name = 0;
5549 }
5550 else
5551 {
5552 defaux.vda_name = n->version_needed->name_indx;
5553 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5554 defaux.vda_name);
5555 }
5556 if (n->next == NULL)
5557 defaux.vda_next = 0;
5558 else
5559 defaux.vda_next = sizeof (Elf_External_Verdaux);
5560
5561 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5562 (Elf_External_Verdaux *) p);
5563 p += sizeof (Elf_External_Verdaux);
5564 }
5565 }
5566
5567 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
5568 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
5569 return FALSE;
5570
5571 elf_tdata (output_bfd)->cverdefs = cdefs;
5572 }
5573
5574 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
5575 {
5576 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
5577 return FALSE;
5578 }
5579 else if (info->flags & DF_BIND_NOW)
5580 {
5581 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
5582 return FALSE;
5583 }
5584
5585 if (info->flags_1)
5586 {
5587 if (info->executable)
5588 info->flags_1 &= ~ (DF_1_INITFIRST
5589 | DF_1_NODELETE
5590 | DF_1_NOOPEN);
5591 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
5592 return FALSE;
5593 }
5594
5595 /* Work out the size of the version reference section. */
5596
5597 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
5598 BFD_ASSERT (s != NULL);
5599 {
5600 struct elf_find_verdep_info sinfo;
5601
5602 sinfo.output_bfd = output_bfd;
5603 sinfo.info = info;
5604 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
5605 if (sinfo.vers == 0)
5606 sinfo.vers = 1;
5607 sinfo.failed = FALSE;
5608
5609 elf_link_hash_traverse (elf_hash_table (info),
5610 _bfd_elf_link_find_version_dependencies,
5611 &sinfo);
5612
5613 if (elf_tdata (output_bfd)->verref == NULL)
5614 s->flags |= SEC_EXCLUDE;
5615 else
5616 {
5617 Elf_Internal_Verneed *t;
5618 unsigned int size;
5619 unsigned int crefs;
5620 bfd_byte *p;
5621
5622 /* Build the version definition section. */
5623 size = 0;
5624 crefs = 0;
5625 for (t = elf_tdata (output_bfd)->verref;
5626 t != NULL;
5627 t = t->vn_nextref)
5628 {
5629 Elf_Internal_Vernaux *a;
5630
5631 size += sizeof (Elf_External_Verneed);
5632 ++crefs;
5633 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5634 size += sizeof (Elf_External_Vernaux);
5635 }
5636
5637 s->size = size;
5638 s->contents = bfd_alloc (output_bfd, s->size);
5639 if (s->contents == NULL)
5640 return FALSE;
5641
5642 p = s->contents;
5643 for (t = elf_tdata (output_bfd)->verref;
5644 t != NULL;
5645 t = t->vn_nextref)
5646 {
5647 unsigned int caux;
5648 Elf_Internal_Vernaux *a;
5649 bfd_size_type indx;
5650
5651 caux = 0;
5652 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5653 ++caux;
5654
5655 t->vn_version = VER_NEED_CURRENT;
5656 t->vn_cnt = caux;
5657 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5658 elf_dt_name (t->vn_bfd) != NULL
5659 ? elf_dt_name (t->vn_bfd)
5660 : lbasename (t->vn_bfd->filename),
5661 FALSE);
5662 if (indx == (bfd_size_type) -1)
5663 return FALSE;
5664 t->vn_file = indx;
5665 t->vn_aux = sizeof (Elf_External_Verneed);
5666 if (t->vn_nextref == NULL)
5667 t->vn_next = 0;
5668 else
5669 t->vn_next = (sizeof (Elf_External_Verneed)
5670 + caux * sizeof (Elf_External_Vernaux));
5671
5672 _bfd_elf_swap_verneed_out (output_bfd, t,
5673 (Elf_External_Verneed *) p);
5674 p += sizeof (Elf_External_Verneed);
5675
5676 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5677 {
5678 a->vna_hash = bfd_elf_hash (a->vna_nodename);
5679 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5680 a->vna_nodename, FALSE);
5681 if (indx == (bfd_size_type) -1)
5682 return FALSE;
5683 a->vna_name = indx;
5684 if (a->vna_nextptr == NULL)
5685 a->vna_next = 0;
5686 else
5687 a->vna_next = sizeof (Elf_External_Vernaux);
5688
5689 _bfd_elf_swap_vernaux_out (output_bfd, a,
5690 (Elf_External_Vernaux *) p);
5691 p += sizeof (Elf_External_Vernaux);
5692 }
5693 }
5694
5695 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
5696 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
5697 return FALSE;
5698
5699 elf_tdata (output_bfd)->cverrefs = crefs;
5700 }
5701 }
5702
5703 if ((elf_tdata (output_bfd)->cverrefs == 0
5704 && elf_tdata (output_bfd)->cverdefs == 0)
5705 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
5706 &section_sym_count) == 0)
5707 {
5708 s = bfd_get_section_by_name (dynobj, ".gnu.version");
5709 s->flags |= SEC_EXCLUDE;
5710 }
5711 }
5712 return TRUE;
5713 }
5714
5715 bfd_boolean
5716 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
5717 {
5718 if (!is_elf_hash_table (info->hash))
5719 return TRUE;
5720
5721 if (elf_hash_table (info)->dynamic_sections_created)
5722 {
5723 bfd *dynobj;
5724 const struct elf_backend_data *bed;
5725 asection *s;
5726 bfd_size_type dynsymcount;
5727 unsigned long section_sym_count;
5728 size_t bucketcount = 0;
5729 size_t hash_entry_size;
5730 unsigned int dtagcount;
5731
5732 dynobj = elf_hash_table (info)->dynobj;
5733
5734 /* Assign dynsym indicies. In a shared library we generate a
5735 section symbol for each output section, which come first.
5736 Next come all of the back-end allocated local dynamic syms,
5737 followed by the rest of the global symbols. */
5738
5739 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
5740 &section_sym_count);
5741
5742 /* Work out the size of the symbol version section. */
5743 s = bfd_get_section_by_name (dynobj, ".gnu.version");
5744 BFD_ASSERT (s != NULL);
5745 if (dynsymcount != 0
5746 && (s->flags & SEC_EXCLUDE) == 0)
5747 {
5748 s->size = dynsymcount * sizeof (Elf_External_Versym);
5749 s->contents = bfd_zalloc (output_bfd, s->size);
5750 if (s->contents == NULL)
5751 return FALSE;
5752
5753 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
5754 return FALSE;
5755 }
5756
5757 /* Set the size of the .dynsym and .hash sections. We counted
5758 the number of dynamic symbols in elf_link_add_object_symbols.
5759 We will build the contents of .dynsym and .hash when we build
5760 the final symbol table, because until then we do not know the
5761 correct value to give the symbols. We built the .dynstr
5762 section as we went along in elf_link_add_object_symbols. */
5763 s = bfd_get_section_by_name (dynobj, ".dynsym");
5764 BFD_ASSERT (s != NULL);
5765 bed = get_elf_backend_data (output_bfd);
5766 s->size = dynsymcount * bed->s->sizeof_sym;
5767
5768 if (dynsymcount != 0)
5769 {
5770 s->contents = bfd_alloc (output_bfd, s->size);
5771 if (s->contents == NULL)
5772 return FALSE;
5773
5774 /* The first entry in .dynsym is a dummy symbol.
5775 Clear all the section syms, in case we don't output them all. */
5776 ++section_sym_count;
5777 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
5778 }
5779
5780 /* Compute the size of the hashing table. As a side effect this
5781 computes the hash values for all the names we export. */
5782 bucketcount = compute_bucket_count (info);
5783
5784 s = bfd_get_section_by_name (dynobj, ".hash");
5785 BFD_ASSERT (s != NULL);
5786 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
5787 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
5788 s->contents = bfd_zalloc (output_bfd, s->size);
5789 if (s->contents == NULL)
5790 return FALSE;
5791
5792 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
5793 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
5794 s->contents + hash_entry_size);
5795
5796 elf_hash_table (info)->bucketcount = bucketcount;
5797
5798 s = bfd_get_section_by_name (dynobj, ".dynstr");
5799 BFD_ASSERT (s != NULL);
5800
5801 elf_finalize_dynstr (output_bfd, info);
5802
5803 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5804
5805 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
5806 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
5807 return FALSE;
5808 }
5809
5810 return TRUE;
5811 }
5812
5813 /* Final phase of ELF linker. */
5814
5815 /* A structure we use to avoid passing large numbers of arguments. */
5816
5817 struct elf_final_link_info
5818 {
5819 /* General link information. */
5820 struct bfd_link_info *info;
5821 /* Output BFD. */
5822 bfd *output_bfd;
5823 /* Symbol string table. */
5824 struct bfd_strtab_hash *symstrtab;
5825 /* .dynsym section. */
5826 asection *dynsym_sec;
5827 /* .hash section. */
5828 asection *hash_sec;
5829 /* symbol version section (.gnu.version). */
5830 asection *symver_sec;
5831 /* Buffer large enough to hold contents of any section. */
5832 bfd_byte *contents;
5833 /* Buffer large enough to hold external relocs of any section. */
5834 void *external_relocs;
5835 /* Buffer large enough to hold internal relocs of any section. */
5836 Elf_Internal_Rela *internal_relocs;
5837 /* Buffer large enough to hold external local symbols of any input
5838 BFD. */
5839 bfd_byte *external_syms;
5840 /* And a buffer for symbol section indices. */
5841 Elf_External_Sym_Shndx *locsym_shndx;
5842 /* Buffer large enough to hold internal local symbols of any input
5843 BFD. */
5844 Elf_Internal_Sym *internal_syms;
5845 /* Array large enough to hold a symbol index for each local symbol
5846 of any input BFD. */
5847 long *indices;
5848 /* Array large enough to hold a section pointer for each local
5849 symbol of any input BFD. */
5850 asection **sections;
5851 /* Buffer to hold swapped out symbols. */
5852 bfd_byte *symbuf;
5853 /* And one for symbol section indices. */
5854 Elf_External_Sym_Shndx *symshndxbuf;
5855 /* Number of swapped out symbols in buffer. */
5856 size_t symbuf_count;
5857 /* Number of symbols which fit in symbuf. */
5858 size_t symbuf_size;
5859 /* And same for symshndxbuf. */
5860 size_t shndxbuf_size;
5861 };
5862
5863 /* This struct is used to pass information to elf_link_output_extsym. */
5864
5865 struct elf_outext_info
5866 {
5867 bfd_boolean failed;
5868 bfd_boolean localsyms;
5869 struct elf_final_link_info *finfo;
5870 };
5871
5872 /* When performing a relocatable link, the input relocations are
5873 preserved. But, if they reference global symbols, the indices
5874 referenced must be updated. Update all the relocations in
5875 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
5876
5877 static void
5878 elf_link_adjust_relocs (bfd *abfd,
5879 Elf_Internal_Shdr *rel_hdr,
5880 unsigned int count,
5881 struct elf_link_hash_entry **rel_hash)
5882 {
5883 unsigned int i;
5884 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5885 bfd_byte *erela;
5886 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
5887 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
5888 bfd_vma r_type_mask;
5889 int r_sym_shift;
5890
5891 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
5892 {
5893 swap_in = bed->s->swap_reloc_in;
5894 swap_out = bed->s->swap_reloc_out;
5895 }
5896 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
5897 {
5898 swap_in = bed->s->swap_reloca_in;
5899 swap_out = bed->s->swap_reloca_out;
5900 }
5901 else
5902 abort ();
5903
5904 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
5905 abort ();
5906
5907 if (bed->s->arch_size == 32)
5908 {
5909 r_type_mask = 0xff;
5910 r_sym_shift = 8;
5911 }
5912 else
5913 {
5914 r_type_mask = 0xffffffff;
5915 r_sym_shift = 32;
5916 }
5917
5918 erela = rel_hdr->contents;
5919 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
5920 {
5921 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
5922 unsigned int j;
5923
5924 if (*rel_hash == NULL)
5925 continue;
5926
5927 BFD_ASSERT ((*rel_hash)->indx >= 0);
5928
5929 (*swap_in) (abfd, erela, irela);
5930 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
5931 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
5932 | (irela[j].r_info & r_type_mask));
5933 (*swap_out) (abfd, irela, erela);
5934 }
5935 }
5936
5937 struct elf_link_sort_rela
5938 {
5939 union {
5940 bfd_vma offset;
5941 bfd_vma sym_mask;
5942 } u;
5943 enum elf_reloc_type_class type;
5944 /* We use this as an array of size int_rels_per_ext_rel. */
5945 Elf_Internal_Rela rela[1];
5946 };
5947
5948 static int
5949 elf_link_sort_cmp1 (const void *A, const void *B)
5950 {
5951 const struct elf_link_sort_rela *a = A;
5952 const struct elf_link_sort_rela *b = B;
5953 int relativea, relativeb;
5954
5955 relativea = a->type == reloc_class_relative;
5956 relativeb = b->type == reloc_class_relative;
5957
5958 if (relativea < relativeb)
5959 return 1;
5960 if (relativea > relativeb)
5961 return -1;
5962 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
5963 return -1;
5964 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
5965 return 1;
5966 if (a->rela->r_offset < b->rela->r_offset)
5967 return -1;
5968 if (a->rela->r_offset > b->rela->r_offset)
5969 return 1;
5970 return 0;
5971 }
5972
5973 static int
5974 elf_link_sort_cmp2 (const void *A, const void *B)
5975 {
5976 const struct elf_link_sort_rela *a = A;
5977 const struct elf_link_sort_rela *b = B;
5978 int copya, copyb;
5979
5980 if (a->u.offset < b->u.offset)
5981 return -1;
5982 if (a->u.offset > b->u.offset)
5983 return 1;
5984 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
5985 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
5986 if (copya < copyb)
5987 return -1;
5988 if (copya > copyb)
5989 return 1;
5990 if (a->rela->r_offset < b->rela->r_offset)
5991 return -1;
5992 if (a->rela->r_offset > b->rela->r_offset)
5993 return 1;
5994 return 0;
5995 }
5996
5997 static size_t
5998 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
5999 {
6000 asection *reldyn;
6001 bfd_size_type count, size;
6002 size_t i, ret, sort_elt, ext_size;
6003 bfd_byte *sort, *s_non_relative, *p;
6004 struct elf_link_sort_rela *sq;
6005 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6006 int i2e = bed->s->int_rels_per_ext_rel;
6007 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
6008 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
6009 struct bfd_link_order *lo;
6010 bfd_vma r_sym_mask;
6011
6012 reldyn = bfd_get_section_by_name (abfd, ".rela.dyn");
6013 if (reldyn == NULL || reldyn->size == 0)
6014 {
6015 reldyn = bfd_get_section_by_name (abfd, ".rel.dyn");
6016 if (reldyn == NULL || reldyn->size == 0)
6017 return 0;
6018 ext_size = bed->s->sizeof_rel;
6019 swap_in = bed->s->swap_reloc_in;
6020 swap_out = bed->s->swap_reloc_out;
6021 }
6022 else
6023 {
6024 ext_size = bed->s->sizeof_rela;
6025 swap_in = bed->s->swap_reloca_in;
6026 swap_out = bed->s->swap_reloca_out;
6027 }
6028 count = reldyn->size / ext_size;
6029
6030 size = 0;
6031 for (lo = reldyn->map_head.link_order; lo != NULL; lo = lo->next)
6032 if (lo->type == bfd_indirect_link_order)
6033 {
6034 asection *o = lo->u.indirect.section;
6035 size += o->size;
6036 }
6037
6038 if (size != reldyn->size)
6039 return 0;
6040
6041 sort_elt = (sizeof (struct elf_link_sort_rela)
6042 + (i2e - 1) * sizeof (Elf_Internal_Rela));
6043 sort = bfd_zmalloc (sort_elt * count);
6044 if (sort == NULL)
6045 {
6046 (*info->callbacks->warning)
6047 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
6048 return 0;
6049 }
6050
6051 if (bed->s->arch_size == 32)
6052 r_sym_mask = ~(bfd_vma) 0xff;
6053 else
6054 r_sym_mask = ~(bfd_vma) 0xffffffff;
6055
6056 for (lo = reldyn->map_head.link_order; lo != NULL; lo = lo->next)
6057 if (lo->type == bfd_indirect_link_order)
6058 {
6059 bfd_byte *erel, *erelend;
6060 asection *o = lo->u.indirect.section;
6061
6062 if (o->contents == NULL && o->size != 0)
6063 {
6064 /* This is a reloc section that is being handled as a normal
6065 section. See bfd_section_from_shdr. We can't combine
6066 relocs in this case. */
6067 free (sort);
6068 return 0;
6069 }
6070 erel = o->contents;
6071 erelend = o->contents + o->size;
6072 p = sort + o->output_offset / ext_size * sort_elt;
6073 while (erel < erelend)
6074 {
6075 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
6076 (*swap_in) (abfd, erel, s->rela);
6077 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
6078 s->u.sym_mask = r_sym_mask;
6079 p += sort_elt;
6080 erel += ext_size;
6081 }
6082 }
6083
6084 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
6085
6086 for (i = 0, p = sort; i < count; i++, p += sort_elt)
6087 {
6088 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
6089 if (s->type != reloc_class_relative)
6090 break;
6091 }
6092 ret = i;
6093 s_non_relative = p;
6094
6095 sq = (struct elf_link_sort_rela *) s_non_relative;
6096 for (; i < count; i++, p += sort_elt)
6097 {
6098 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
6099 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
6100 sq = sp;
6101 sp->u.offset = sq->rela->r_offset;
6102 }
6103
6104 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
6105
6106 for (lo = reldyn->map_head.link_order; lo != NULL; lo = lo->next)
6107 if (lo->type == bfd_indirect_link_order)
6108 {
6109 bfd_byte *erel, *erelend;
6110 asection *o = lo->u.indirect.section;
6111
6112 erel = o->contents;
6113 erelend = o->contents + o->size;
6114 p = sort + o->output_offset / ext_size * sort_elt;
6115 while (erel < erelend)
6116 {
6117 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
6118 (*swap_out) (abfd, s->rela, erel);
6119 p += sort_elt;
6120 erel += ext_size;
6121 }
6122 }
6123
6124 free (sort);
6125 *psec = reldyn;
6126 return ret;
6127 }
6128
6129 /* Flush the output symbols to the file. */
6130
6131 static bfd_boolean
6132 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
6133 const struct elf_backend_data *bed)
6134 {
6135 if (finfo->symbuf_count > 0)
6136 {
6137 Elf_Internal_Shdr *hdr;
6138 file_ptr pos;
6139 bfd_size_type amt;
6140
6141 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
6142 pos = hdr->sh_offset + hdr->sh_size;
6143 amt = finfo->symbuf_count * bed->s->sizeof_sym;
6144 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
6145 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
6146 return FALSE;
6147
6148 hdr->sh_size += amt;
6149 finfo->symbuf_count = 0;
6150 }
6151
6152 return TRUE;
6153 }
6154
6155 /* Add a symbol to the output symbol table. */
6156
6157 static bfd_boolean
6158 elf_link_output_sym (struct elf_final_link_info *finfo,
6159 const char *name,
6160 Elf_Internal_Sym *elfsym,
6161 asection *input_sec,
6162 struct elf_link_hash_entry *h)
6163 {
6164 bfd_byte *dest;
6165 Elf_External_Sym_Shndx *destshndx;
6166 bfd_boolean (*output_symbol_hook)
6167 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
6168 struct elf_link_hash_entry *);
6169 const struct elf_backend_data *bed;
6170
6171 bed = get_elf_backend_data (finfo->output_bfd);
6172 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
6173 if (output_symbol_hook != NULL)
6174 {
6175 if (! (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h))
6176 return FALSE;
6177 }
6178
6179 if (name == NULL || *name == '\0')
6180 elfsym->st_name = 0;
6181 else if (input_sec->flags & SEC_EXCLUDE)
6182 elfsym->st_name = 0;
6183 else
6184 {
6185 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
6186 name, TRUE, FALSE);
6187 if (elfsym->st_name == (unsigned long) -1)
6188 return FALSE;
6189 }
6190
6191 if (finfo->symbuf_count >= finfo->symbuf_size)
6192 {
6193 if (! elf_link_flush_output_syms (finfo, bed))
6194 return FALSE;
6195 }
6196
6197 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
6198 destshndx = finfo->symshndxbuf;
6199 if (destshndx != NULL)
6200 {
6201 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
6202 {
6203 bfd_size_type amt;
6204
6205 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
6206 finfo->symshndxbuf = destshndx = bfd_realloc (destshndx, amt * 2);
6207 if (destshndx == NULL)
6208 return FALSE;
6209 memset ((char *) destshndx + amt, 0, amt);
6210 finfo->shndxbuf_size *= 2;
6211 }
6212 destshndx += bfd_get_symcount (finfo->output_bfd);
6213 }
6214
6215 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
6216 finfo->symbuf_count += 1;
6217 bfd_get_symcount (finfo->output_bfd) += 1;
6218
6219 return TRUE;
6220 }
6221
6222 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
6223
6224 static bfd_boolean
6225 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
6226 {
6227 if (sym->st_shndx > SHN_HIRESERVE)
6228 {
6229 /* The gABI doesn't support dynamic symbols in output sections
6230 beyond 64k. */
6231 (*_bfd_error_handler)
6232 (_("%B: Too many sections: %d (>= %d)"),
6233 abfd, bfd_count_sections (abfd), SHN_LORESERVE);
6234 bfd_set_error (bfd_error_nonrepresentable_section);
6235 return FALSE;
6236 }
6237 return TRUE;
6238 }
6239
6240 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
6241 allowing an unsatisfied unversioned symbol in the DSO to match a
6242 versioned symbol that would normally require an explicit version.
6243 We also handle the case that a DSO references a hidden symbol
6244 which may be satisfied by a versioned symbol in another DSO. */
6245
6246 static bfd_boolean
6247 elf_link_check_versioned_symbol (struct bfd_link_info *info,
6248 const struct elf_backend_data *bed,
6249 struct elf_link_hash_entry *h)
6250 {
6251 bfd *abfd;
6252 struct elf_link_loaded_list *loaded;
6253
6254 if (!is_elf_hash_table (info->hash))
6255 return FALSE;
6256
6257 switch (h->root.type)
6258 {
6259 default:
6260 abfd = NULL;
6261 break;
6262
6263 case bfd_link_hash_undefined:
6264 case bfd_link_hash_undefweak:
6265 abfd = h->root.u.undef.abfd;
6266 if ((abfd->flags & DYNAMIC) == 0
6267 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
6268 return FALSE;
6269 break;
6270
6271 case bfd_link_hash_defined:
6272 case bfd_link_hash_defweak:
6273 abfd = h->root.u.def.section->owner;
6274 break;
6275
6276 case bfd_link_hash_common:
6277 abfd = h->root.u.c.p->section->owner;
6278 break;
6279 }
6280 BFD_ASSERT (abfd != NULL);
6281
6282 for (loaded = elf_hash_table (info)->loaded;
6283 loaded != NULL;
6284 loaded = loaded->next)
6285 {
6286 bfd *input;
6287 Elf_Internal_Shdr *hdr;
6288 bfd_size_type symcount;
6289 bfd_size_type extsymcount;
6290 bfd_size_type extsymoff;
6291 Elf_Internal_Shdr *versymhdr;
6292 Elf_Internal_Sym *isym;
6293 Elf_Internal_Sym *isymend;
6294 Elf_Internal_Sym *isymbuf;
6295 Elf_External_Versym *ever;
6296 Elf_External_Versym *extversym;
6297
6298 input = loaded->abfd;
6299
6300 /* We check each DSO for a possible hidden versioned definition. */
6301 if (input == abfd
6302 || (input->flags & DYNAMIC) == 0
6303 || elf_dynversym (input) == 0)
6304 continue;
6305
6306 hdr = &elf_tdata (input)->dynsymtab_hdr;
6307
6308 symcount = hdr->sh_size / bed->s->sizeof_sym;
6309 if (elf_bad_symtab (input))
6310 {
6311 extsymcount = symcount;
6312 extsymoff = 0;
6313 }
6314 else
6315 {
6316 extsymcount = symcount - hdr->sh_info;
6317 extsymoff = hdr->sh_info;
6318 }
6319
6320 if (extsymcount == 0)
6321 continue;
6322
6323 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
6324 NULL, NULL, NULL);
6325 if (isymbuf == NULL)
6326 return FALSE;
6327
6328 /* Read in any version definitions. */
6329 versymhdr = &elf_tdata (input)->dynversym_hdr;
6330 extversym = bfd_malloc (versymhdr->sh_size);
6331 if (extversym == NULL)
6332 goto error_ret;
6333
6334 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
6335 || (bfd_bread (extversym, versymhdr->sh_size, input)
6336 != versymhdr->sh_size))
6337 {
6338 free (extversym);
6339 error_ret:
6340 free (isymbuf);
6341 return FALSE;
6342 }
6343
6344 ever = extversym + extsymoff;
6345 isymend = isymbuf + extsymcount;
6346 for (isym = isymbuf; isym < isymend; isym++, ever++)
6347 {
6348 const char *name;
6349 Elf_Internal_Versym iver;
6350 unsigned short version_index;
6351
6352 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
6353 || isym->st_shndx == SHN_UNDEF)
6354 continue;
6355
6356 name = bfd_elf_string_from_elf_section (input,
6357 hdr->sh_link,
6358 isym->st_name);
6359 if (strcmp (name, h->root.root.string) != 0)
6360 continue;
6361
6362 _bfd_elf_swap_versym_in (input, ever, &iver);
6363
6364 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
6365 {
6366 /* If we have a non-hidden versioned sym, then it should
6367 have provided a definition for the undefined sym. */
6368 abort ();
6369 }
6370
6371 version_index = iver.vs_vers & VERSYM_VERSION;
6372 if (version_index == 1 || version_index == 2)
6373 {
6374 /* This is the base or first version. We can use it. */
6375 free (extversym);
6376 free (isymbuf);
6377 return TRUE;
6378 }
6379 }
6380
6381 free (extversym);
6382 free (isymbuf);
6383 }
6384
6385 return FALSE;
6386 }
6387
6388 /* Add an external symbol to the symbol table. This is called from
6389 the hash table traversal routine. When generating a shared object,
6390 we go through the symbol table twice. The first time we output
6391 anything that might have been forced to local scope in a version
6392 script. The second time we output the symbols that are still
6393 global symbols. */
6394
6395 static bfd_boolean
6396 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
6397 {
6398 struct elf_outext_info *eoinfo = data;
6399 struct elf_final_link_info *finfo = eoinfo->finfo;
6400 bfd_boolean strip;
6401 Elf_Internal_Sym sym;
6402 asection *input_sec;
6403 const struct elf_backend_data *bed;
6404
6405 if (h->root.type == bfd_link_hash_warning)
6406 {
6407 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6408 if (h->root.type == bfd_link_hash_new)
6409 return TRUE;
6410 }
6411
6412 /* Decide whether to output this symbol in this pass. */
6413 if (eoinfo->localsyms)
6414 {
6415 if (!h->forced_local)
6416 return TRUE;
6417 }
6418 else
6419 {
6420 if (h->forced_local)
6421 return TRUE;
6422 }
6423
6424 bed = get_elf_backend_data (finfo->output_bfd);
6425
6426 if (h->root.type == bfd_link_hash_undefined)
6427 {
6428 /* If we have an undefined symbol reference here then it must have
6429 come from a shared library that is being linked in. (Undefined
6430 references in regular files have already been handled). */
6431 bfd_boolean ignore_undef = FALSE;
6432
6433 /* Some symbols may be special in that the fact that they're
6434 undefined can be safely ignored - let backend determine that. */
6435 if (bed->elf_backend_ignore_undef_symbol)
6436 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
6437
6438 /* If we are reporting errors for this situation then do so now. */
6439 if (ignore_undef == FALSE
6440 && h->ref_dynamic
6441 && ! h->ref_regular
6442 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
6443 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
6444 {
6445 if (! (finfo->info->callbacks->undefined_symbol
6446 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
6447 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
6448 {
6449 eoinfo->failed = TRUE;
6450 return FALSE;
6451 }
6452 }
6453 }
6454
6455 /* We should also warn if a forced local symbol is referenced from
6456 shared libraries. */
6457 if (! finfo->info->relocatable
6458 && (! finfo->info->shared)
6459 && h->forced_local
6460 && h->ref_dynamic
6461 && !h->dynamic_def
6462 && !h->dynamic_weak
6463 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
6464 {
6465 (*_bfd_error_handler)
6466 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
6467 finfo->output_bfd,
6468 h->root.u.def.section == bfd_abs_section_ptr
6469 ? finfo->output_bfd : h->root.u.def.section->owner,
6470 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
6471 ? "internal"
6472 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
6473 ? "hidden" : "local",
6474 h->root.root.string);
6475 eoinfo->failed = TRUE;
6476 return FALSE;
6477 }
6478
6479 /* We don't want to output symbols that have never been mentioned by
6480 a regular file, or that we have been told to strip. However, if
6481 h->indx is set to -2, the symbol is used by a reloc and we must
6482 output it. */
6483 if (h->indx == -2)
6484 strip = FALSE;
6485 else if ((h->def_dynamic
6486 || h->ref_dynamic
6487 || h->root.type == bfd_link_hash_new)
6488 && !h->def_regular
6489 && !h->ref_regular)
6490 strip = TRUE;
6491 else if (finfo->info->strip == strip_all)
6492 strip = TRUE;
6493 else if (finfo->info->strip == strip_some
6494 && bfd_hash_lookup (finfo->info->keep_hash,
6495 h->root.root.string, FALSE, FALSE) == NULL)
6496 strip = TRUE;
6497 else if (finfo->info->strip_discarded
6498 && (h->root.type == bfd_link_hash_defined
6499 || h->root.type == bfd_link_hash_defweak)
6500 && elf_discarded_section (h->root.u.def.section))
6501 strip = TRUE;
6502 else
6503 strip = FALSE;
6504
6505 /* If we're stripping it, and it's not a dynamic symbol, there's
6506 nothing else to do unless it is a forced local symbol. */
6507 if (strip
6508 && h->dynindx == -1
6509 && !h->forced_local)
6510 return TRUE;
6511
6512 sym.st_value = 0;
6513 sym.st_size = h->size;
6514 sym.st_other = h->other;
6515 if (h->forced_local)
6516 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
6517 else if (h->root.type == bfd_link_hash_undefweak
6518 || h->root.type == bfd_link_hash_defweak)
6519 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
6520 else
6521 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
6522
6523 switch (h->root.type)
6524 {
6525 default:
6526 case bfd_link_hash_new:
6527 case bfd_link_hash_warning:
6528 abort ();
6529 return FALSE;
6530
6531 case bfd_link_hash_undefined:
6532 case bfd_link_hash_undefweak:
6533 input_sec = bfd_und_section_ptr;
6534 sym.st_shndx = SHN_UNDEF;
6535 break;
6536
6537 case bfd_link_hash_defined:
6538 case bfd_link_hash_defweak:
6539 {
6540 input_sec = h->root.u.def.section;
6541 if (input_sec->output_section != NULL)
6542 {
6543 sym.st_shndx =
6544 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
6545 input_sec->output_section);
6546 if (sym.st_shndx == SHN_BAD)
6547 {
6548 (*_bfd_error_handler)
6549 (_("%B: could not find output section %A for input section %A"),
6550 finfo->output_bfd, input_sec->output_section, input_sec);
6551 eoinfo->failed = TRUE;
6552 return FALSE;
6553 }
6554
6555 /* ELF symbols in relocatable files are section relative,
6556 but in nonrelocatable files they are virtual
6557 addresses. */
6558 sym.st_value = h->root.u.def.value + input_sec->output_offset;
6559 if (! finfo->info->relocatable)
6560 {
6561 sym.st_value += input_sec->output_section->vma;
6562 if (h->type == STT_TLS)
6563 {
6564 /* STT_TLS symbols are relative to PT_TLS segment
6565 base. */
6566 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
6567 sym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
6568 }
6569 }
6570 }
6571 else
6572 {
6573 BFD_ASSERT (input_sec->owner == NULL
6574 || (input_sec->owner->flags & DYNAMIC) != 0);
6575 sym.st_shndx = SHN_UNDEF;
6576 input_sec = bfd_und_section_ptr;
6577 }
6578 }
6579 break;
6580
6581 case bfd_link_hash_common:
6582 input_sec = h->root.u.c.p->section;
6583 sym.st_shndx = bed->common_section_index (input_sec);
6584 sym.st_value = 1 << h->root.u.c.p->alignment_power;
6585 break;
6586
6587 case bfd_link_hash_indirect:
6588 /* These symbols are created by symbol versioning. They point
6589 to the decorated version of the name. For example, if the
6590 symbol foo@@GNU_1.2 is the default, which should be used when
6591 foo is used with no version, then we add an indirect symbol
6592 foo which points to foo@@GNU_1.2. We ignore these symbols,
6593 since the indirected symbol is already in the hash table. */
6594 return TRUE;
6595 }
6596
6597 /* Give the processor backend a chance to tweak the symbol value,
6598 and also to finish up anything that needs to be done for this
6599 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
6600 forced local syms when non-shared is due to a historical quirk. */
6601 if ((h->dynindx != -1
6602 || h->forced_local)
6603 && ((finfo->info->shared
6604 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6605 || h->root.type != bfd_link_hash_undefweak))
6606 || !h->forced_local)
6607 && elf_hash_table (finfo->info)->dynamic_sections_created)
6608 {
6609 if (! ((*bed->elf_backend_finish_dynamic_symbol)
6610 (finfo->output_bfd, finfo->info, h, &sym)))
6611 {
6612 eoinfo->failed = TRUE;
6613 return FALSE;
6614 }
6615 }
6616
6617 /* If we are marking the symbol as undefined, and there are no
6618 non-weak references to this symbol from a regular object, then
6619 mark the symbol as weak undefined; if there are non-weak
6620 references, mark the symbol as strong. We can't do this earlier,
6621 because it might not be marked as undefined until the
6622 finish_dynamic_symbol routine gets through with it. */
6623 if (sym.st_shndx == SHN_UNDEF
6624 && h->ref_regular
6625 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
6626 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
6627 {
6628 int bindtype;
6629
6630 if (h->ref_regular_nonweak)
6631 bindtype = STB_GLOBAL;
6632 else
6633 bindtype = STB_WEAK;
6634 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
6635 }
6636
6637 /* If a non-weak symbol with non-default visibility is not defined
6638 locally, it is a fatal error. */
6639 if (! finfo->info->relocatable
6640 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
6641 && ELF_ST_BIND (sym.st_info) != STB_WEAK
6642 && h->root.type == bfd_link_hash_undefined
6643 && !h->def_regular)
6644 {
6645 (*_bfd_error_handler)
6646 (_("%B: %s symbol `%s' isn't defined"),
6647 finfo->output_bfd,
6648 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
6649 ? "protected"
6650 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
6651 ? "internal" : "hidden",
6652 h->root.root.string);
6653 eoinfo->failed = TRUE;
6654 return FALSE;
6655 }
6656
6657 /* If this symbol should be put in the .dynsym section, then put it
6658 there now. We already know the symbol index. We also fill in
6659 the entry in the .hash section. */
6660 if (h->dynindx != -1
6661 && elf_hash_table (finfo->info)->dynamic_sections_created)
6662 {
6663 size_t bucketcount;
6664 size_t bucket;
6665 size_t hash_entry_size;
6666 bfd_byte *bucketpos;
6667 bfd_vma chain;
6668 bfd_byte *esym;
6669
6670 sym.st_name = h->dynstr_index;
6671 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
6672 if (! check_dynsym (finfo->output_bfd, &sym))
6673 {
6674 eoinfo->failed = TRUE;
6675 return FALSE;
6676 }
6677 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
6678
6679 bucketcount = elf_hash_table (finfo->info)->bucketcount;
6680 bucket = h->u.elf_hash_value % bucketcount;
6681 hash_entry_size
6682 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
6683 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
6684 + (bucket + 2) * hash_entry_size);
6685 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
6686 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
6687 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
6688 ((bfd_byte *) finfo->hash_sec->contents
6689 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
6690
6691 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
6692 {
6693 Elf_Internal_Versym iversym;
6694 Elf_External_Versym *eversym;
6695
6696 if (!h->def_regular)
6697 {
6698 if (h->verinfo.verdef == NULL)
6699 iversym.vs_vers = 0;
6700 else
6701 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
6702 }
6703 else
6704 {
6705 if (h->verinfo.vertree == NULL)
6706 iversym.vs_vers = 1;
6707 else
6708 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
6709 if (finfo->info->create_default_symver)
6710 iversym.vs_vers++;
6711 }
6712
6713 if (h->hidden)
6714 iversym.vs_vers |= VERSYM_HIDDEN;
6715
6716 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
6717 eversym += h->dynindx;
6718 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
6719 }
6720 }
6721
6722 /* If we're stripping it, then it was just a dynamic symbol, and
6723 there's nothing else to do. */
6724 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
6725 return TRUE;
6726
6727 h->indx = bfd_get_symcount (finfo->output_bfd);
6728
6729 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h))
6730 {
6731 eoinfo->failed = TRUE;
6732 return FALSE;
6733 }
6734
6735 return TRUE;
6736 }
6737
6738 /* Return TRUE if special handling is done for relocs in SEC against
6739 symbols defined in discarded sections. */
6740
6741 static bfd_boolean
6742 elf_section_ignore_discarded_relocs (asection *sec)
6743 {
6744 const struct elf_backend_data *bed;
6745
6746 switch (sec->sec_info_type)
6747 {
6748 case ELF_INFO_TYPE_STABS:
6749 case ELF_INFO_TYPE_EH_FRAME:
6750 return TRUE;
6751 default:
6752 break;
6753 }
6754
6755 bed = get_elf_backend_data (sec->owner);
6756 if (bed->elf_backend_ignore_discarded_relocs != NULL
6757 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
6758 return TRUE;
6759
6760 return FALSE;
6761 }
6762
6763 /* Return a mask saying how ld should treat relocations in SEC against
6764 symbols defined in discarded sections. If this function returns
6765 COMPLAIN set, ld will issue a warning message. If this function
6766 returns PRETEND set, and the discarded section was link-once and the
6767 same size as the kept link-once section, ld will pretend that the
6768 symbol was actually defined in the kept section. Otherwise ld will
6769 zero the reloc (at least that is the intent, but some cooperation by
6770 the target dependent code is needed, particularly for REL targets). */
6771
6772 unsigned int
6773 _bfd_elf_default_action_discarded (asection *sec)
6774 {
6775 if (sec->flags & SEC_DEBUGGING)
6776 return PRETEND;
6777
6778 if (strcmp (".eh_frame", sec->name) == 0)
6779 return 0;
6780
6781 if (strcmp (".gcc_except_table", sec->name) == 0)
6782 return 0;
6783
6784 return COMPLAIN | PRETEND;
6785 }
6786
6787 /* Find a match between a section and a member of a section group. */
6788
6789 static asection *
6790 match_group_member (asection *sec, asection *group)
6791 {
6792 asection *first = elf_next_in_group (group);
6793 asection *s = first;
6794
6795 while (s != NULL)
6796 {
6797 if (bfd_elf_match_symbols_in_sections (s, sec))
6798 return s;
6799
6800 s = elf_next_in_group (s);
6801 if (s == first)
6802 break;
6803 }
6804
6805 return NULL;
6806 }
6807
6808 /* Check if the kept section of a discarded section SEC can be used
6809 to replace it. Return the replacement if it is OK. Otherwise return
6810 NULL. */
6811
6812 asection *
6813 _bfd_elf_check_kept_section (asection *sec)
6814 {
6815 asection *kept;
6816
6817 kept = sec->kept_section;
6818 if (kept != NULL)
6819 {
6820 if (elf_sec_group (sec) != NULL)
6821 kept = match_group_member (sec, kept);
6822 if (kept != NULL && sec->size != kept->size)
6823 kept = NULL;
6824 }
6825 return kept;
6826 }
6827
6828 /* Link an input file into the linker output file. This function
6829 handles all the sections and relocations of the input file at once.
6830 This is so that we only have to read the local symbols once, and
6831 don't have to keep them in memory. */
6832
6833 static bfd_boolean
6834 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
6835 {
6836 bfd_boolean (*relocate_section)
6837 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
6838 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
6839 bfd *output_bfd;
6840 Elf_Internal_Shdr *symtab_hdr;
6841 size_t locsymcount;
6842 size_t extsymoff;
6843 Elf_Internal_Sym *isymbuf;
6844 Elf_Internal_Sym *isym;
6845 Elf_Internal_Sym *isymend;
6846 long *pindex;
6847 asection **ppsection;
6848 asection *o;
6849 const struct elf_backend_data *bed;
6850 bfd_boolean emit_relocs;
6851 struct elf_link_hash_entry **sym_hashes;
6852
6853 output_bfd = finfo->output_bfd;
6854 bed = get_elf_backend_data (output_bfd);
6855 relocate_section = bed->elf_backend_relocate_section;
6856
6857 /* If this is a dynamic object, we don't want to do anything here:
6858 we don't want the local symbols, and we don't want the section
6859 contents. */
6860 if ((input_bfd->flags & DYNAMIC) != 0)
6861 return TRUE;
6862
6863 emit_relocs = (finfo->info->relocatable
6864 || finfo->info->emitrelocations);
6865
6866 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6867 if (elf_bad_symtab (input_bfd))
6868 {
6869 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
6870 extsymoff = 0;
6871 }
6872 else
6873 {
6874 locsymcount = symtab_hdr->sh_info;
6875 extsymoff = symtab_hdr->sh_info;
6876 }
6877
6878 /* Read the local symbols. */
6879 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6880 if (isymbuf == NULL && locsymcount != 0)
6881 {
6882 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6883 finfo->internal_syms,
6884 finfo->external_syms,
6885 finfo->locsym_shndx);
6886 if (isymbuf == NULL)
6887 return FALSE;
6888 }
6889
6890 /* Find local symbol sections and adjust values of symbols in
6891 SEC_MERGE sections. Write out those local symbols we know are
6892 going into the output file. */
6893 isymend = isymbuf + locsymcount;
6894 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
6895 isym < isymend;
6896 isym++, pindex++, ppsection++)
6897 {
6898 asection *isec;
6899 const char *name;
6900 Elf_Internal_Sym osym;
6901
6902 *pindex = -1;
6903
6904 if (elf_bad_symtab (input_bfd))
6905 {
6906 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
6907 {
6908 *ppsection = NULL;
6909 continue;
6910 }
6911 }
6912
6913 if (isym->st_shndx == SHN_UNDEF)
6914 isec = bfd_und_section_ptr;
6915 else if (isym->st_shndx < SHN_LORESERVE
6916 || isym->st_shndx > SHN_HIRESERVE)
6917 {
6918 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
6919 if (isec
6920 && isec->sec_info_type == ELF_INFO_TYPE_MERGE
6921 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
6922 isym->st_value =
6923 _bfd_merged_section_offset (output_bfd, &isec,
6924 elf_section_data (isec)->sec_info,
6925 isym->st_value);
6926 }
6927 else if (isym->st_shndx == SHN_ABS)
6928 isec = bfd_abs_section_ptr;
6929 else if (isym->st_shndx == SHN_COMMON)
6930 isec = bfd_com_section_ptr;
6931 else
6932 {
6933 /* Don't attempt to output symbols with st_shnx in the
6934 reserved range other than SHN_ABS and SHN_COMMON. */
6935 *ppsection = NULL;
6936 continue;
6937 }
6938
6939 *ppsection = isec;
6940
6941 /* Don't output the first, undefined, symbol. */
6942 if (ppsection == finfo->sections)
6943 continue;
6944
6945 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
6946 {
6947 /* We never output section symbols. Instead, we use the
6948 section symbol of the corresponding section in the output
6949 file. */
6950 continue;
6951 }
6952
6953 /* If we are stripping all symbols, we don't want to output this
6954 one. */
6955 if (finfo->info->strip == strip_all)
6956 continue;
6957
6958 /* If we are discarding all local symbols, we don't want to
6959 output this one. If we are generating a relocatable output
6960 file, then some of the local symbols may be required by
6961 relocs; we output them below as we discover that they are
6962 needed. */
6963 if (finfo->info->discard == discard_all)
6964 continue;
6965
6966 /* If this symbol is defined in a section which we are
6967 discarding, we don't need to keep it. */
6968 if (isym->st_shndx != SHN_UNDEF
6969 && (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
6970 && (isec == NULL
6971 || bfd_section_removed_from_list (output_bfd,
6972 isec->output_section)))
6973 continue;
6974
6975 /* Get the name of the symbol. */
6976 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
6977 isym->st_name);
6978 if (name == NULL)
6979 return FALSE;
6980
6981 /* See if we are discarding symbols with this name. */
6982 if ((finfo->info->strip == strip_some
6983 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
6984 == NULL))
6985 || (((finfo->info->discard == discard_sec_merge
6986 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
6987 || finfo->info->discard == discard_l)
6988 && bfd_is_local_label_name (input_bfd, name)))
6989 continue;
6990
6991 /* If we get here, we are going to output this symbol. */
6992
6993 osym = *isym;
6994
6995 /* Adjust the section index for the output file. */
6996 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
6997 isec->output_section);
6998 if (osym.st_shndx == SHN_BAD)
6999 return FALSE;
7000
7001 *pindex = bfd_get_symcount (output_bfd);
7002
7003 /* ELF symbols in relocatable files are section relative, but
7004 in executable files they are virtual addresses. Note that
7005 this code assumes that all ELF sections have an associated
7006 BFD section with a reasonable value for output_offset; below
7007 we assume that they also have a reasonable value for
7008 output_section. Any special sections must be set up to meet
7009 these requirements. */
7010 osym.st_value += isec->output_offset;
7011 if (! finfo->info->relocatable)
7012 {
7013 osym.st_value += isec->output_section->vma;
7014 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
7015 {
7016 /* STT_TLS symbols are relative to PT_TLS segment base. */
7017 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
7018 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
7019 }
7020 }
7021
7022 if (! elf_link_output_sym (finfo, name, &osym, isec, NULL))
7023 return FALSE;
7024 }
7025
7026 /* Relocate the contents of each section. */
7027 sym_hashes = elf_sym_hashes (input_bfd);
7028 for (o = input_bfd->sections; o != NULL; o = o->next)
7029 {
7030 bfd_byte *contents;
7031
7032 if (! o->linker_mark)
7033 {
7034 /* This section was omitted from the link. */
7035 continue;
7036 }
7037
7038 if ((o->flags & SEC_HAS_CONTENTS) == 0
7039 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
7040 continue;
7041
7042 if ((o->flags & SEC_LINKER_CREATED) != 0)
7043 {
7044 /* Section was created by _bfd_elf_link_create_dynamic_sections
7045 or somesuch. */
7046 continue;
7047 }
7048
7049 /* Get the contents of the section. They have been cached by a
7050 relaxation routine. Note that o is a section in an input
7051 file, so the contents field will not have been set by any of
7052 the routines which work on output files. */
7053 if (elf_section_data (o)->this_hdr.contents != NULL)
7054 contents = elf_section_data (o)->this_hdr.contents;
7055 else
7056 {
7057 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
7058
7059 contents = finfo->contents;
7060 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
7061 return FALSE;
7062 }
7063
7064 if ((o->flags & SEC_RELOC) != 0)
7065 {
7066 Elf_Internal_Rela *internal_relocs;
7067 bfd_vma r_type_mask;
7068 int r_sym_shift;
7069
7070 /* Get the swapped relocs. */
7071 internal_relocs
7072 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
7073 finfo->internal_relocs, FALSE);
7074 if (internal_relocs == NULL
7075 && o->reloc_count > 0)
7076 return FALSE;
7077
7078 if (bed->s->arch_size == 32)
7079 {
7080 r_type_mask = 0xff;
7081 r_sym_shift = 8;
7082 }
7083 else
7084 {
7085 r_type_mask = 0xffffffff;
7086 r_sym_shift = 32;
7087 }
7088
7089 /* Run through the relocs looking for any against symbols
7090 from discarded sections and section symbols from
7091 removed link-once sections. Complain about relocs
7092 against discarded sections. Zero relocs against removed
7093 link-once sections. */
7094 if (!elf_section_ignore_discarded_relocs (o))
7095 {
7096 Elf_Internal_Rela *rel, *relend;
7097 unsigned int action = (*bed->action_discarded) (o);
7098
7099 rel = internal_relocs;
7100 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
7101 for ( ; rel < relend; rel++)
7102 {
7103 unsigned long r_symndx = rel->r_info >> r_sym_shift;
7104 asection **ps, *sec;
7105 struct elf_link_hash_entry *h = NULL;
7106 const char *sym_name;
7107
7108 if (r_symndx == STN_UNDEF)
7109 continue;
7110
7111 if (r_symndx >= locsymcount
7112 || (elf_bad_symtab (input_bfd)
7113 && finfo->sections[r_symndx] == NULL))
7114 {
7115 h = sym_hashes[r_symndx - extsymoff];
7116
7117 /* Badly formatted input files can contain relocs that
7118 reference non-existant symbols. Check here so that
7119 we do not seg fault. */
7120 if (h == NULL)
7121 {
7122 char buffer [32];
7123
7124 sprintf_vma (buffer, rel->r_info);
7125 (*_bfd_error_handler)
7126 (_("error: %B contains a reloc (0x%s) for section %A "
7127 "that references a non-existent global symbol"),
7128 input_bfd, o, buffer);
7129 bfd_set_error (bfd_error_bad_value);
7130 return FALSE;
7131 }
7132
7133 while (h->root.type == bfd_link_hash_indirect
7134 || h->root.type == bfd_link_hash_warning)
7135 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7136
7137 if (h->root.type != bfd_link_hash_defined
7138 && h->root.type != bfd_link_hash_defweak)
7139 continue;
7140
7141 ps = &h->root.u.def.section;
7142 sym_name = h->root.root.string;
7143 }
7144 else
7145 {
7146 Elf_Internal_Sym *sym = isymbuf + r_symndx;
7147 ps = &finfo->sections[r_symndx];
7148 sym_name = bfd_elf_sym_name (input_bfd,
7149 symtab_hdr,
7150 sym, *ps);
7151 }
7152
7153 /* Complain if the definition comes from a
7154 discarded section. */
7155 if ((sec = *ps) != NULL && elf_discarded_section (sec))
7156 {
7157 BFD_ASSERT (r_symndx != 0);
7158 if (action & COMPLAIN)
7159 (*finfo->info->callbacks->einfo)
7160 (_("%X`%s' referenced in section `%A' of %B: "
7161 "defined in discarded section `%A' of %B\n"),
7162 sym_name, o, input_bfd, sec, sec->owner);
7163
7164 /* Try to do the best we can to support buggy old
7165 versions of gcc. Pretend that the symbol is
7166 really defined in the kept linkonce section.
7167 FIXME: This is quite broken. Modifying the
7168 symbol here means we will be changing all later
7169 uses of the symbol, not just in this section. */
7170 if (action & PRETEND)
7171 {
7172 asection *kept;
7173
7174 kept = _bfd_elf_check_kept_section (sec);
7175 if (kept != NULL)
7176 {
7177 *ps = kept;
7178 continue;
7179 }
7180 }
7181
7182 /* Remove the symbol reference from the reloc, but
7183 don't kill the reloc completely. This is so that
7184 a zero value will be written into the section,
7185 which may have non-zero contents put there by the
7186 assembler. Zero in things like an eh_frame fde
7187 pc_begin allows stack unwinders to recognize the
7188 fde as bogus. */
7189 rel->r_info &= r_type_mask;
7190 rel->r_addend = 0;
7191 }
7192 }
7193 }
7194
7195 /* Relocate the section by invoking a back end routine.
7196
7197 The back end routine is responsible for adjusting the
7198 section contents as necessary, and (if using Rela relocs
7199 and generating a relocatable output file) adjusting the
7200 reloc addend as necessary.
7201
7202 The back end routine does not have to worry about setting
7203 the reloc address or the reloc symbol index.
7204
7205 The back end routine is given a pointer to the swapped in
7206 internal symbols, and can access the hash table entries
7207 for the external symbols via elf_sym_hashes (input_bfd).
7208
7209 When generating relocatable output, the back end routine
7210 must handle STB_LOCAL/STT_SECTION symbols specially. The
7211 output symbol is going to be a section symbol
7212 corresponding to the output section, which will require
7213 the addend to be adjusted. */
7214
7215 if (! (*relocate_section) (output_bfd, finfo->info,
7216 input_bfd, o, contents,
7217 internal_relocs,
7218 isymbuf,
7219 finfo->sections))
7220 return FALSE;
7221
7222 if (emit_relocs)
7223 {
7224 Elf_Internal_Rela *irela;
7225 Elf_Internal_Rela *irelaend;
7226 bfd_vma last_offset;
7227 struct elf_link_hash_entry **rel_hash;
7228 struct elf_link_hash_entry **rel_hash_list;
7229 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
7230 unsigned int next_erel;
7231 bfd_boolean rela_normal;
7232
7233 input_rel_hdr = &elf_section_data (o)->rel_hdr;
7234 rela_normal = (bed->rela_normal
7235 && (input_rel_hdr->sh_entsize
7236 == bed->s->sizeof_rela));
7237
7238 /* Adjust the reloc addresses and symbol indices. */
7239
7240 irela = internal_relocs;
7241 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
7242 rel_hash = (elf_section_data (o->output_section)->rel_hashes
7243 + elf_section_data (o->output_section)->rel_count
7244 + elf_section_data (o->output_section)->rel_count2);
7245 rel_hash_list = rel_hash;
7246 last_offset = o->output_offset;
7247 if (!finfo->info->relocatable)
7248 last_offset += o->output_section->vma;
7249 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
7250 {
7251 unsigned long r_symndx;
7252 asection *sec;
7253 Elf_Internal_Sym sym;
7254
7255 if (next_erel == bed->s->int_rels_per_ext_rel)
7256 {
7257 rel_hash++;
7258 next_erel = 0;
7259 }
7260
7261 irela->r_offset = _bfd_elf_section_offset (output_bfd,
7262 finfo->info, o,
7263 irela->r_offset);
7264 if (irela->r_offset >= (bfd_vma) -2)
7265 {
7266 /* This is a reloc for a deleted entry or somesuch.
7267 Turn it into an R_*_NONE reloc, at the same
7268 offset as the last reloc. elf_eh_frame.c and
7269 bfd_elf_discard_info rely on reloc offsets
7270 being ordered. */
7271 irela->r_offset = last_offset;
7272 irela->r_info = 0;
7273 irela->r_addend = 0;
7274 continue;
7275 }
7276
7277 irela->r_offset += o->output_offset;
7278
7279 /* Relocs in an executable have to be virtual addresses. */
7280 if (!finfo->info->relocatable)
7281 irela->r_offset += o->output_section->vma;
7282
7283 last_offset = irela->r_offset;
7284
7285 r_symndx = irela->r_info >> r_sym_shift;
7286 if (r_symndx == STN_UNDEF)
7287 continue;
7288
7289 if (r_symndx >= locsymcount
7290 || (elf_bad_symtab (input_bfd)
7291 && finfo->sections[r_symndx] == NULL))
7292 {
7293 struct elf_link_hash_entry *rh;
7294 unsigned long indx;
7295
7296 /* This is a reloc against a global symbol. We
7297 have not yet output all the local symbols, so
7298 we do not know the symbol index of any global
7299 symbol. We set the rel_hash entry for this
7300 reloc to point to the global hash table entry
7301 for this symbol. The symbol index is then
7302 set at the end of bfd_elf_final_link. */
7303 indx = r_symndx - extsymoff;
7304 rh = elf_sym_hashes (input_bfd)[indx];
7305 while (rh->root.type == bfd_link_hash_indirect
7306 || rh->root.type == bfd_link_hash_warning)
7307 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
7308
7309 /* Setting the index to -2 tells
7310 elf_link_output_extsym that this symbol is
7311 used by a reloc. */
7312 BFD_ASSERT (rh->indx < 0);
7313 rh->indx = -2;
7314
7315 *rel_hash = rh;
7316
7317 continue;
7318 }
7319
7320 /* This is a reloc against a local symbol. */
7321
7322 *rel_hash = NULL;
7323 sym = isymbuf[r_symndx];
7324 sec = finfo->sections[r_symndx];
7325 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
7326 {
7327 /* I suppose the backend ought to fill in the
7328 section of any STT_SECTION symbol against a
7329 processor specific section. */
7330 r_symndx = 0;
7331 if (bfd_is_abs_section (sec))
7332 ;
7333 else if (sec == NULL || sec->owner == NULL)
7334 {
7335 bfd_set_error (bfd_error_bad_value);
7336 return FALSE;
7337 }
7338 else
7339 {
7340 asection *osec = sec->output_section;
7341
7342 /* If we have discarded a section, the output
7343 section will be the absolute section. In
7344 case of discarded link-once and discarded
7345 SEC_MERGE sections, use the kept section. */
7346 if (bfd_is_abs_section (osec)
7347 && sec->kept_section != NULL
7348 && sec->kept_section->output_section != NULL)
7349 {
7350 osec = sec->kept_section->output_section;
7351 irela->r_addend -= osec->vma;
7352 }
7353
7354 if (!bfd_is_abs_section (osec))
7355 {
7356 r_symndx = osec->target_index;
7357 BFD_ASSERT (r_symndx != 0);
7358 }
7359 }
7360
7361 /* Adjust the addend according to where the
7362 section winds up in the output section. */
7363 if (rela_normal)
7364 irela->r_addend += sec->output_offset;
7365 }
7366 else
7367 {
7368 if (finfo->indices[r_symndx] == -1)
7369 {
7370 unsigned long shlink;
7371 const char *name;
7372 asection *osec;
7373
7374 if (finfo->info->strip == strip_all)
7375 {
7376 /* You can't do ld -r -s. */
7377 bfd_set_error (bfd_error_invalid_operation);
7378 return FALSE;
7379 }
7380
7381 /* This symbol was skipped earlier, but
7382 since it is needed by a reloc, we
7383 must output it now. */
7384 shlink = symtab_hdr->sh_link;
7385 name = (bfd_elf_string_from_elf_section
7386 (input_bfd, shlink, sym.st_name));
7387 if (name == NULL)
7388 return FALSE;
7389
7390 osec = sec->output_section;
7391 sym.st_shndx =
7392 _bfd_elf_section_from_bfd_section (output_bfd,
7393 osec);
7394 if (sym.st_shndx == SHN_BAD)
7395 return FALSE;
7396
7397 sym.st_value += sec->output_offset;
7398 if (! finfo->info->relocatable)
7399 {
7400 sym.st_value += osec->vma;
7401 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
7402 {
7403 /* STT_TLS symbols are relative to PT_TLS
7404 segment base. */
7405 BFD_ASSERT (elf_hash_table (finfo->info)
7406 ->tls_sec != NULL);
7407 sym.st_value -= (elf_hash_table (finfo->info)
7408 ->tls_sec->vma);
7409 }
7410 }
7411
7412 finfo->indices[r_symndx]
7413 = bfd_get_symcount (output_bfd);
7414
7415 if (! elf_link_output_sym (finfo, name, &sym, sec,
7416 NULL))
7417 return FALSE;
7418 }
7419
7420 r_symndx = finfo->indices[r_symndx];
7421 }
7422
7423 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
7424 | (irela->r_info & r_type_mask));
7425 }
7426
7427 /* Swap out the relocs. */
7428 if (input_rel_hdr->sh_size != 0
7429 && !bed->elf_backend_emit_relocs (output_bfd, o,
7430 input_rel_hdr,
7431 internal_relocs,
7432 rel_hash_list))
7433 return FALSE;
7434
7435 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
7436 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
7437 {
7438 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
7439 * bed->s->int_rels_per_ext_rel);
7440 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
7441 if (!bed->elf_backend_emit_relocs (output_bfd, o,
7442 input_rel_hdr2,
7443 internal_relocs,
7444 rel_hash_list))
7445 return FALSE;
7446 }
7447 }
7448 }
7449
7450 /* Write out the modified section contents. */
7451 if (bed->elf_backend_write_section
7452 && (*bed->elf_backend_write_section) (output_bfd, o, contents))
7453 {
7454 /* Section written out. */
7455 }
7456 else switch (o->sec_info_type)
7457 {
7458 case ELF_INFO_TYPE_STABS:
7459 if (! (_bfd_write_section_stabs
7460 (output_bfd,
7461 &elf_hash_table (finfo->info)->stab_info,
7462 o, &elf_section_data (o)->sec_info, contents)))
7463 return FALSE;
7464 break;
7465 case ELF_INFO_TYPE_MERGE:
7466 if (! _bfd_write_merged_section (output_bfd, o,
7467 elf_section_data (o)->sec_info))
7468 return FALSE;
7469 break;
7470 case ELF_INFO_TYPE_EH_FRAME:
7471 {
7472 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
7473 o, contents))
7474 return FALSE;
7475 }
7476 break;
7477 default:
7478 {
7479 if (! (o->flags & SEC_EXCLUDE)
7480 && ! bfd_set_section_contents (output_bfd, o->output_section,
7481 contents,
7482 (file_ptr) o->output_offset,
7483 o->size))
7484 return FALSE;
7485 }
7486 break;
7487 }
7488 }
7489
7490 return TRUE;
7491 }
7492
7493 /* Generate a reloc when linking an ELF file. This is a reloc
7494 requested by the linker, and does not come from any input file. This
7495 is used to build constructor and destructor tables when linking
7496 with -Ur. */
7497
7498 static bfd_boolean
7499 elf_reloc_link_order (bfd *output_bfd,
7500 struct bfd_link_info *info,
7501 asection *output_section,
7502 struct bfd_link_order *link_order)
7503 {
7504 reloc_howto_type *howto;
7505 long indx;
7506 bfd_vma offset;
7507 bfd_vma addend;
7508 struct elf_link_hash_entry **rel_hash_ptr;
7509 Elf_Internal_Shdr *rel_hdr;
7510 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
7511 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
7512 bfd_byte *erel;
7513 unsigned int i;
7514
7515 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
7516 if (howto == NULL)
7517 {
7518 bfd_set_error (bfd_error_bad_value);
7519 return FALSE;
7520 }
7521
7522 addend = link_order->u.reloc.p->addend;
7523
7524 /* Figure out the symbol index. */
7525 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
7526 + elf_section_data (output_section)->rel_count
7527 + elf_section_data (output_section)->rel_count2);
7528 if (link_order->type == bfd_section_reloc_link_order)
7529 {
7530 indx = link_order->u.reloc.p->u.section->target_index;
7531 BFD_ASSERT (indx != 0);
7532 *rel_hash_ptr = NULL;
7533 }
7534 else
7535 {
7536 struct elf_link_hash_entry *h;
7537
7538 /* Treat a reloc against a defined symbol as though it were
7539 actually against the section. */
7540 h = ((struct elf_link_hash_entry *)
7541 bfd_wrapped_link_hash_lookup (output_bfd, info,
7542 link_order->u.reloc.p->u.name,
7543 FALSE, FALSE, TRUE));
7544 if (h != NULL
7545 && (h->root.type == bfd_link_hash_defined
7546 || h->root.type == bfd_link_hash_defweak))
7547 {
7548 asection *section;
7549
7550 section = h->root.u.def.section;
7551 indx = section->output_section->target_index;
7552 *rel_hash_ptr = NULL;
7553 /* It seems that we ought to add the symbol value to the
7554 addend here, but in practice it has already been added
7555 because it was passed to constructor_callback. */
7556 addend += section->output_section->vma + section->output_offset;
7557 }
7558 else if (h != NULL)
7559 {
7560 /* Setting the index to -2 tells elf_link_output_extsym that
7561 this symbol is used by a reloc. */
7562 h->indx = -2;
7563 *rel_hash_ptr = h;
7564 indx = 0;
7565 }
7566 else
7567 {
7568 if (! ((*info->callbacks->unattached_reloc)
7569 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
7570 return FALSE;
7571 indx = 0;
7572 }
7573 }
7574
7575 /* If this is an inplace reloc, we must write the addend into the
7576 object file. */
7577 if (howto->partial_inplace && addend != 0)
7578 {
7579 bfd_size_type size;
7580 bfd_reloc_status_type rstat;
7581 bfd_byte *buf;
7582 bfd_boolean ok;
7583 const char *sym_name;
7584
7585 size = bfd_get_reloc_size (howto);
7586 buf = bfd_zmalloc (size);
7587 if (buf == NULL)
7588 return FALSE;
7589 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
7590 switch (rstat)
7591 {
7592 case bfd_reloc_ok:
7593 break;
7594
7595 default:
7596 case bfd_reloc_outofrange:
7597 abort ();
7598
7599 case bfd_reloc_overflow:
7600 if (link_order->type == bfd_section_reloc_link_order)
7601 sym_name = bfd_section_name (output_bfd,
7602 link_order->u.reloc.p->u.section);
7603 else
7604 sym_name = link_order->u.reloc.p->u.name;
7605 if (! ((*info->callbacks->reloc_overflow)
7606 (info, NULL, sym_name, howto->name, addend, NULL,
7607 NULL, (bfd_vma) 0)))
7608 {
7609 free (buf);
7610 return FALSE;
7611 }
7612 break;
7613 }
7614 ok = bfd_set_section_contents (output_bfd, output_section, buf,
7615 link_order->offset, size);
7616 free (buf);
7617 if (! ok)
7618 return FALSE;
7619 }
7620
7621 /* The address of a reloc is relative to the section in a
7622 relocatable file, and is a virtual address in an executable
7623 file. */
7624 offset = link_order->offset;
7625 if (! info->relocatable)
7626 offset += output_section->vma;
7627
7628 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7629 {
7630 irel[i].r_offset = offset;
7631 irel[i].r_info = 0;
7632 irel[i].r_addend = 0;
7633 }
7634 if (bed->s->arch_size == 32)
7635 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
7636 else
7637 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
7638
7639 rel_hdr = &elf_section_data (output_section)->rel_hdr;
7640 erel = rel_hdr->contents;
7641 if (rel_hdr->sh_type == SHT_REL)
7642 {
7643 erel += (elf_section_data (output_section)->rel_count
7644 * bed->s->sizeof_rel);
7645 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
7646 }
7647 else
7648 {
7649 irel[0].r_addend = addend;
7650 erel += (elf_section_data (output_section)->rel_count
7651 * bed->s->sizeof_rela);
7652 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
7653 }
7654
7655 ++elf_section_data (output_section)->rel_count;
7656
7657 return TRUE;
7658 }
7659
7660
7661 /* Get the output vma of the section pointed to by the sh_link field. */
7662
7663 static bfd_vma
7664 elf_get_linked_section_vma (struct bfd_link_order *p)
7665 {
7666 Elf_Internal_Shdr **elf_shdrp;
7667 asection *s;
7668 int elfsec;
7669
7670 s = p->u.indirect.section;
7671 elf_shdrp = elf_elfsections (s->owner);
7672 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
7673 elfsec = elf_shdrp[elfsec]->sh_link;
7674 /* PR 290:
7675 The Intel C compiler generates SHT_IA_64_UNWIND with
7676 SHF_LINK_ORDER. But it doesn't set the sh_link or
7677 sh_info fields. Hence we could get the situation
7678 where elfsec is 0. */
7679 if (elfsec == 0)
7680 {
7681 const struct elf_backend_data *bed
7682 = get_elf_backend_data (s->owner);
7683 if (bed->link_order_error_handler)
7684 bed->link_order_error_handler
7685 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
7686 return 0;
7687 }
7688 else
7689 {
7690 s = elf_shdrp[elfsec]->bfd_section;
7691 return s->output_section->vma + s->output_offset;
7692 }
7693 }
7694
7695
7696 /* Compare two sections based on the locations of the sections they are
7697 linked to. Used by elf_fixup_link_order. */
7698
7699 static int
7700 compare_link_order (const void * a, const void * b)
7701 {
7702 bfd_vma apos;
7703 bfd_vma bpos;
7704
7705 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
7706 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
7707 if (apos < bpos)
7708 return -1;
7709 return apos > bpos;
7710 }
7711
7712
7713 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
7714 order as their linked sections. Returns false if this could not be done
7715 because an output section includes both ordered and unordered
7716 sections. Ideally we'd do this in the linker proper. */
7717
7718 static bfd_boolean
7719 elf_fixup_link_order (bfd *abfd, asection *o)
7720 {
7721 int seen_linkorder;
7722 int seen_other;
7723 int n;
7724 struct bfd_link_order *p;
7725 bfd *sub;
7726 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7727 unsigned elfsec;
7728 struct bfd_link_order **sections;
7729 asection *s, *other_sec, *linkorder_sec;
7730 bfd_vma offset;
7731
7732 other_sec = NULL;
7733 linkorder_sec = NULL;
7734 seen_other = 0;
7735 seen_linkorder = 0;
7736 for (p = o->map_head.link_order; p != NULL; p = p->next)
7737 {
7738 if (p->type == bfd_indirect_link_order)
7739 {
7740 s = p->u.indirect.section;
7741 sub = s->owner;
7742 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
7743 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
7744 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
7745 && elfsec < elf_numsections (sub)
7746 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER)
7747 {
7748 seen_linkorder++;
7749 linkorder_sec = s;
7750 }
7751 else
7752 {
7753 seen_other++;
7754 other_sec = s;
7755 }
7756 }
7757 else
7758 seen_other++;
7759
7760 if (seen_other && seen_linkorder)
7761 {
7762 if (other_sec && linkorder_sec)
7763 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
7764 o, linkorder_sec,
7765 linkorder_sec->owner, other_sec,
7766 other_sec->owner);
7767 else
7768 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
7769 o);
7770 bfd_set_error (bfd_error_bad_value);
7771 return FALSE;
7772 }
7773 }
7774
7775 if (!seen_linkorder)
7776 return TRUE;
7777
7778 sections = (struct bfd_link_order **)
7779 xmalloc (seen_linkorder * sizeof (struct bfd_link_order *));
7780 seen_linkorder = 0;
7781
7782 for (p = o->map_head.link_order; p != NULL; p = p->next)
7783 {
7784 sections[seen_linkorder++] = p;
7785 }
7786 /* Sort the input sections in the order of their linked section. */
7787 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
7788 compare_link_order);
7789
7790 /* Change the offsets of the sections. */
7791 offset = 0;
7792 for (n = 0; n < seen_linkorder; n++)
7793 {
7794 s = sections[n]->u.indirect.section;
7795 offset &= ~(bfd_vma)((1 << s->alignment_power) - 1);
7796 s->output_offset = offset;
7797 sections[n]->offset = offset;
7798 offset += sections[n]->size;
7799 }
7800
7801 return TRUE;
7802 }
7803
7804
7805 /* Do the final step of an ELF link. */
7806
7807 bfd_boolean
7808 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
7809 {
7810 bfd_boolean dynamic;
7811 bfd_boolean emit_relocs;
7812 bfd *dynobj;
7813 struct elf_final_link_info finfo;
7814 register asection *o;
7815 register struct bfd_link_order *p;
7816 register bfd *sub;
7817 bfd_size_type max_contents_size;
7818 bfd_size_type max_external_reloc_size;
7819 bfd_size_type max_internal_reloc_count;
7820 bfd_size_type max_sym_count;
7821 bfd_size_type max_sym_shndx_count;
7822 file_ptr off;
7823 Elf_Internal_Sym elfsym;
7824 unsigned int i;
7825 Elf_Internal_Shdr *symtab_hdr;
7826 Elf_Internal_Shdr *symtab_shndx_hdr;
7827 Elf_Internal_Shdr *symstrtab_hdr;
7828 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7829 struct elf_outext_info eoinfo;
7830 bfd_boolean merged;
7831 size_t relativecount = 0;
7832 asection *reldyn = 0;
7833 bfd_size_type amt;
7834
7835 if (! is_elf_hash_table (info->hash))
7836 return FALSE;
7837
7838 if (info->shared)
7839 abfd->flags |= DYNAMIC;
7840
7841 dynamic = elf_hash_table (info)->dynamic_sections_created;
7842 dynobj = elf_hash_table (info)->dynobj;
7843
7844 emit_relocs = (info->relocatable
7845 || info->emitrelocations);
7846
7847 finfo.info = info;
7848 finfo.output_bfd = abfd;
7849 finfo.symstrtab = _bfd_elf_stringtab_init ();
7850 if (finfo.symstrtab == NULL)
7851 return FALSE;
7852
7853 if (! dynamic)
7854 {
7855 finfo.dynsym_sec = NULL;
7856 finfo.hash_sec = NULL;
7857 finfo.symver_sec = NULL;
7858 }
7859 else
7860 {
7861 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
7862 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
7863 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
7864 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
7865 /* Note that it is OK if symver_sec is NULL. */
7866 }
7867
7868 finfo.contents = NULL;
7869 finfo.external_relocs = NULL;
7870 finfo.internal_relocs = NULL;
7871 finfo.external_syms = NULL;
7872 finfo.locsym_shndx = NULL;
7873 finfo.internal_syms = NULL;
7874 finfo.indices = NULL;
7875 finfo.sections = NULL;
7876 finfo.symbuf = NULL;
7877 finfo.symshndxbuf = NULL;
7878 finfo.symbuf_count = 0;
7879 finfo.shndxbuf_size = 0;
7880
7881 /* Count up the number of relocations we will output for each output
7882 section, so that we know the sizes of the reloc sections. We
7883 also figure out some maximum sizes. */
7884 max_contents_size = 0;
7885 max_external_reloc_size = 0;
7886 max_internal_reloc_count = 0;
7887 max_sym_count = 0;
7888 max_sym_shndx_count = 0;
7889 merged = FALSE;
7890 for (o = abfd->sections; o != NULL; o = o->next)
7891 {
7892 struct bfd_elf_section_data *esdo = elf_section_data (o);
7893 o->reloc_count = 0;
7894
7895 for (p = o->map_head.link_order; p != NULL; p = p->next)
7896 {
7897 unsigned int reloc_count = 0;
7898 struct bfd_elf_section_data *esdi = NULL;
7899 unsigned int *rel_count1;
7900
7901 if (p->type == bfd_section_reloc_link_order
7902 || p->type == bfd_symbol_reloc_link_order)
7903 reloc_count = 1;
7904 else if (p->type == bfd_indirect_link_order)
7905 {
7906 asection *sec;
7907
7908 sec = p->u.indirect.section;
7909 esdi = elf_section_data (sec);
7910
7911 /* Mark all sections which are to be included in the
7912 link. This will normally be every section. We need
7913 to do this so that we can identify any sections which
7914 the linker has decided to not include. */
7915 sec->linker_mark = TRUE;
7916
7917 if (sec->flags & SEC_MERGE)
7918 merged = TRUE;
7919
7920 if (info->relocatable || info->emitrelocations)
7921 reloc_count = sec->reloc_count;
7922 else if (bed->elf_backend_count_relocs)
7923 {
7924 Elf_Internal_Rela * relocs;
7925
7926 relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
7927 info->keep_memory);
7928
7929 reloc_count = (*bed->elf_backend_count_relocs) (sec, relocs);
7930
7931 if (elf_section_data (o)->relocs != relocs)
7932 free (relocs);
7933 }
7934
7935 if (sec->rawsize > max_contents_size)
7936 max_contents_size = sec->rawsize;
7937 if (sec->size > max_contents_size)
7938 max_contents_size = sec->size;
7939
7940 /* We are interested in just local symbols, not all
7941 symbols. */
7942 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
7943 && (sec->owner->flags & DYNAMIC) == 0)
7944 {
7945 size_t sym_count;
7946
7947 if (elf_bad_symtab (sec->owner))
7948 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
7949 / bed->s->sizeof_sym);
7950 else
7951 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
7952
7953 if (sym_count > max_sym_count)
7954 max_sym_count = sym_count;
7955
7956 if (sym_count > max_sym_shndx_count
7957 && elf_symtab_shndx (sec->owner) != 0)
7958 max_sym_shndx_count = sym_count;
7959
7960 if ((sec->flags & SEC_RELOC) != 0)
7961 {
7962 size_t ext_size;
7963
7964 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
7965 if (ext_size > max_external_reloc_size)
7966 max_external_reloc_size = ext_size;
7967 if (sec->reloc_count > max_internal_reloc_count)
7968 max_internal_reloc_count = sec->reloc_count;
7969 }
7970 }
7971 }
7972
7973 if (reloc_count == 0)
7974 continue;
7975
7976 o->reloc_count += reloc_count;
7977
7978 /* MIPS may have a mix of REL and RELA relocs on sections.
7979 To support this curious ABI we keep reloc counts in
7980 elf_section_data too. We must be careful to add the
7981 relocations from the input section to the right output
7982 count. FIXME: Get rid of one count. We have
7983 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
7984 rel_count1 = &esdo->rel_count;
7985 if (esdi != NULL)
7986 {
7987 bfd_boolean same_size;
7988 bfd_size_type entsize1;
7989
7990 entsize1 = esdi->rel_hdr.sh_entsize;
7991 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
7992 || entsize1 == bed->s->sizeof_rela);
7993 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
7994
7995 if (!same_size)
7996 rel_count1 = &esdo->rel_count2;
7997
7998 if (esdi->rel_hdr2 != NULL)
7999 {
8000 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
8001 unsigned int alt_count;
8002 unsigned int *rel_count2;
8003
8004 BFD_ASSERT (entsize2 != entsize1
8005 && (entsize2 == bed->s->sizeof_rel
8006 || entsize2 == bed->s->sizeof_rela));
8007
8008 rel_count2 = &esdo->rel_count2;
8009 if (!same_size)
8010 rel_count2 = &esdo->rel_count;
8011
8012 /* The following is probably too simplistic if the
8013 backend counts output relocs unusually. */
8014 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
8015 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
8016 *rel_count2 += alt_count;
8017 reloc_count -= alt_count;
8018 }
8019 }
8020 *rel_count1 += reloc_count;
8021 }
8022
8023 if (o->reloc_count > 0)
8024 o->flags |= SEC_RELOC;
8025 else
8026 {
8027 /* Explicitly clear the SEC_RELOC flag. The linker tends to
8028 set it (this is probably a bug) and if it is set
8029 assign_section_numbers will create a reloc section. */
8030 o->flags &=~ SEC_RELOC;
8031 }
8032
8033 /* If the SEC_ALLOC flag is not set, force the section VMA to
8034 zero. This is done in elf_fake_sections as well, but forcing
8035 the VMA to 0 here will ensure that relocs against these
8036 sections are handled correctly. */
8037 if ((o->flags & SEC_ALLOC) == 0
8038 && ! o->user_set_vma)
8039 o->vma = 0;
8040 }
8041
8042 if (! info->relocatable && merged)
8043 elf_link_hash_traverse (elf_hash_table (info),
8044 _bfd_elf_link_sec_merge_syms, abfd);
8045
8046 /* Figure out the file positions for everything but the symbol table
8047 and the relocs. We set symcount to force assign_section_numbers
8048 to create a symbol table. */
8049 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
8050 BFD_ASSERT (! abfd->output_has_begun);
8051 if (! _bfd_elf_compute_section_file_positions (abfd, info))
8052 goto error_return;
8053
8054 /* Set sizes, and assign file positions for reloc sections. */
8055 for (o = abfd->sections; o != NULL; o = o->next)
8056 {
8057 if ((o->flags & SEC_RELOC) != 0)
8058 {
8059 if (!(_bfd_elf_link_size_reloc_section
8060 (abfd, &elf_section_data (o)->rel_hdr, o)))
8061 goto error_return;
8062
8063 if (elf_section_data (o)->rel_hdr2
8064 && !(_bfd_elf_link_size_reloc_section
8065 (abfd, elf_section_data (o)->rel_hdr2, o)))
8066 goto error_return;
8067 }
8068
8069 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
8070 to count upwards while actually outputting the relocations. */
8071 elf_section_data (o)->rel_count = 0;
8072 elf_section_data (o)->rel_count2 = 0;
8073 }
8074
8075 _bfd_elf_assign_file_positions_for_relocs (abfd);
8076
8077 /* We have now assigned file positions for all the sections except
8078 .symtab and .strtab. We start the .symtab section at the current
8079 file position, and write directly to it. We build the .strtab
8080 section in memory. */
8081 bfd_get_symcount (abfd) = 0;
8082 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8083 /* sh_name is set in prep_headers. */
8084 symtab_hdr->sh_type = SHT_SYMTAB;
8085 /* sh_flags, sh_addr and sh_size all start off zero. */
8086 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
8087 /* sh_link is set in assign_section_numbers. */
8088 /* sh_info is set below. */
8089 /* sh_offset is set just below. */
8090 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
8091
8092 off = elf_tdata (abfd)->next_file_pos;
8093 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
8094
8095 /* Note that at this point elf_tdata (abfd)->next_file_pos is
8096 incorrect. We do not yet know the size of the .symtab section.
8097 We correct next_file_pos below, after we do know the size. */
8098
8099 /* Allocate a buffer to hold swapped out symbols. This is to avoid
8100 continuously seeking to the right position in the file. */
8101 if (! info->keep_memory || max_sym_count < 20)
8102 finfo.symbuf_size = 20;
8103 else
8104 finfo.symbuf_size = max_sym_count;
8105 amt = finfo.symbuf_size;
8106 amt *= bed->s->sizeof_sym;
8107 finfo.symbuf = bfd_malloc (amt);
8108 if (finfo.symbuf == NULL)
8109 goto error_return;
8110 if (elf_numsections (abfd) > SHN_LORESERVE)
8111 {
8112 /* Wild guess at number of output symbols. realloc'd as needed. */
8113 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
8114 finfo.shndxbuf_size = amt;
8115 amt *= sizeof (Elf_External_Sym_Shndx);
8116 finfo.symshndxbuf = bfd_zmalloc (amt);
8117 if (finfo.symshndxbuf == NULL)
8118 goto error_return;
8119 }
8120
8121 /* Start writing out the symbol table. The first symbol is always a
8122 dummy symbol. */
8123 if (info->strip != strip_all
8124 || emit_relocs)
8125 {
8126 elfsym.st_value = 0;
8127 elfsym.st_size = 0;
8128 elfsym.st_info = 0;
8129 elfsym.st_other = 0;
8130 elfsym.st_shndx = SHN_UNDEF;
8131 if (! elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
8132 NULL))
8133 goto error_return;
8134 }
8135
8136 /* Output a symbol for each section. We output these even if we are
8137 discarding local symbols, since they are used for relocs. These
8138 symbols have no names. We store the index of each one in the
8139 index field of the section, so that we can find it again when
8140 outputting relocs. */
8141 if (info->strip != strip_all
8142 || emit_relocs)
8143 {
8144 elfsym.st_size = 0;
8145 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8146 elfsym.st_other = 0;
8147 elfsym.st_value = 0;
8148 for (i = 1; i < elf_numsections (abfd); i++)
8149 {
8150 o = bfd_section_from_elf_index (abfd, i);
8151 if (o != NULL)
8152 {
8153 o->target_index = bfd_get_symcount (abfd);
8154 elfsym.st_shndx = i;
8155 if (!info->relocatable)
8156 elfsym.st_value = o->vma;
8157 if (!elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL))
8158 goto error_return;
8159 }
8160 if (i == SHN_LORESERVE - 1)
8161 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
8162 }
8163 }
8164
8165 /* Allocate some memory to hold information read in from the input
8166 files. */
8167 if (max_contents_size != 0)
8168 {
8169 finfo.contents = bfd_malloc (max_contents_size);
8170 if (finfo.contents == NULL)
8171 goto error_return;
8172 }
8173
8174 if (max_external_reloc_size != 0)
8175 {
8176 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
8177 if (finfo.external_relocs == NULL)
8178 goto error_return;
8179 }
8180
8181 if (max_internal_reloc_count != 0)
8182 {
8183 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
8184 amt *= sizeof (Elf_Internal_Rela);
8185 finfo.internal_relocs = bfd_malloc (amt);
8186 if (finfo.internal_relocs == NULL)
8187 goto error_return;
8188 }
8189
8190 if (max_sym_count != 0)
8191 {
8192 amt = max_sym_count * bed->s->sizeof_sym;
8193 finfo.external_syms = bfd_malloc (amt);
8194 if (finfo.external_syms == NULL)
8195 goto error_return;
8196
8197 amt = max_sym_count * sizeof (Elf_Internal_Sym);
8198 finfo.internal_syms = bfd_malloc (amt);
8199 if (finfo.internal_syms == NULL)
8200 goto error_return;
8201
8202 amt = max_sym_count * sizeof (long);
8203 finfo.indices = bfd_malloc (amt);
8204 if (finfo.indices == NULL)
8205 goto error_return;
8206
8207 amt = max_sym_count * sizeof (asection *);
8208 finfo.sections = bfd_malloc (amt);
8209 if (finfo.sections == NULL)
8210 goto error_return;
8211 }
8212
8213 if (max_sym_shndx_count != 0)
8214 {
8215 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
8216 finfo.locsym_shndx = bfd_malloc (amt);
8217 if (finfo.locsym_shndx == NULL)
8218 goto error_return;
8219 }
8220
8221 if (elf_hash_table (info)->tls_sec)
8222 {
8223 bfd_vma base, end = 0;
8224 asection *sec;
8225
8226 for (sec = elf_hash_table (info)->tls_sec;
8227 sec && (sec->flags & SEC_THREAD_LOCAL);
8228 sec = sec->next)
8229 {
8230 bfd_size_type size = sec->size;
8231
8232 if (size == 0
8233 && (sec->flags & SEC_HAS_CONTENTS) == 0)
8234 {
8235 struct bfd_link_order *o = sec->map_tail.link_order;
8236 if (o != NULL)
8237 size = o->offset + o->size;
8238 }
8239 end = sec->vma + size;
8240 }
8241 base = elf_hash_table (info)->tls_sec->vma;
8242 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
8243 elf_hash_table (info)->tls_size = end - base;
8244 }
8245
8246 /* Reorder SHF_LINK_ORDER sections. */
8247 for (o = abfd->sections; o != NULL; o = o->next)
8248 {
8249 if (!elf_fixup_link_order (abfd, o))
8250 return FALSE;
8251 }
8252
8253 /* Since ELF permits relocations to be against local symbols, we
8254 must have the local symbols available when we do the relocations.
8255 Since we would rather only read the local symbols once, and we
8256 would rather not keep them in memory, we handle all the
8257 relocations for a single input file at the same time.
8258
8259 Unfortunately, there is no way to know the total number of local
8260 symbols until we have seen all of them, and the local symbol
8261 indices precede the global symbol indices. This means that when
8262 we are generating relocatable output, and we see a reloc against
8263 a global symbol, we can not know the symbol index until we have
8264 finished examining all the local symbols to see which ones we are
8265 going to output. To deal with this, we keep the relocations in
8266 memory, and don't output them until the end of the link. This is
8267 an unfortunate waste of memory, but I don't see a good way around
8268 it. Fortunately, it only happens when performing a relocatable
8269 link, which is not the common case. FIXME: If keep_memory is set
8270 we could write the relocs out and then read them again; I don't
8271 know how bad the memory loss will be. */
8272
8273 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8274 sub->output_has_begun = FALSE;
8275 for (o = abfd->sections; o != NULL; o = o->next)
8276 {
8277 for (p = o->map_head.link_order; p != NULL; p = p->next)
8278 {
8279 if (p->type == bfd_indirect_link_order
8280 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
8281 == bfd_target_elf_flavour)
8282 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
8283 {
8284 if (! sub->output_has_begun)
8285 {
8286 if (! elf_link_input_bfd (&finfo, sub))
8287 goto error_return;
8288 sub->output_has_begun = TRUE;
8289 }
8290 }
8291 else if (p->type == bfd_section_reloc_link_order
8292 || p->type == bfd_symbol_reloc_link_order)
8293 {
8294 if (! elf_reloc_link_order (abfd, info, o, p))
8295 goto error_return;
8296 }
8297 else
8298 {
8299 if (! _bfd_default_link_order (abfd, info, o, p))
8300 goto error_return;
8301 }
8302 }
8303 }
8304
8305 /* Output any global symbols that got converted to local in a
8306 version script or due to symbol visibility. We do this in a
8307 separate step since ELF requires all local symbols to appear
8308 prior to any global symbols. FIXME: We should only do this if
8309 some global symbols were, in fact, converted to become local.
8310 FIXME: Will this work correctly with the Irix 5 linker? */
8311 eoinfo.failed = FALSE;
8312 eoinfo.finfo = &finfo;
8313 eoinfo.localsyms = TRUE;
8314 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
8315 &eoinfo);
8316 if (eoinfo.failed)
8317 return FALSE;
8318
8319 /* If backend needs to output some local symbols not present in the hash
8320 table, do it now. */
8321 if (bed->elf_backend_output_arch_local_syms)
8322 {
8323 typedef bfd_boolean (*out_sym_func)
8324 (void *, const char *, Elf_Internal_Sym *, asection *,
8325 struct elf_link_hash_entry *);
8326
8327 if (! ((*bed->elf_backend_output_arch_local_syms)
8328 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
8329 return FALSE;
8330 }
8331
8332 /* That wrote out all the local symbols. Finish up the symbol table
8333 with the global symbols. Even if we want to strip everything we
8334 can, we still need to deal with those global symbols that got
8335 converted to local in a version script. */
8336
8337 /* The sh_info field records the index of the first non local symbol. */
8338 symtab_hdr->sh_info = bfd_get_symcount (abfd);
8339
8340 if (dynamic
8341 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
8342 {
8343 Elf_Internal_Sym sym;
8344 bfd_byte *dynsym = finfo.dynsym_sec->contents;
8345 long last_local = 0;
8346
8347 /* Write out the section symbols for the output sections. */
8348 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
8349 {
8350 asection *s;
8351
8352 sym.st_size = 0;
8353 sym.st_name = 0;
8354 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8355 sym.st_other = 0;
8356
8357 for (s = abfd->sections; s != NULL; s = s->next)
8358 {
8359 int indx;
8360 bfd_byte *dest;
8361 long dynindx;
8362
8363 dynindx = elf_section_data (s)->dynindx;
8364 if (dynindx <= 0)
8365 continue;
8366 indx = elf_section_data (s)->this_idx;
8367 BFD_ASSERT (indx > 0);
8368 sym.st_shndx = indx;
8369 if (! check_dynsym (abfd, &sym))
8370 return FALSE;
8371 sym.st_value = s->vma;
8372 dest = dynsym + dynindx * bed->s->sizeof_sym;
8373 if (last_local < dynindx)
8374 last_local = dynindx;
8375 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
8376 }
8377 }
8378
8379 /* Write out the local dynsyms. */
8380 if (elf_hash_table (info)->dynlocal)
8381 {
8382 struct elf_link_local_dynamic_entry *e;
8383 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
8384 {
8385 asection *s;
8386 bfd_byte *dest;
8387
8388 sym.st_size = e->isym.st_size;
8389 sym.st_other = e->isym.st_other;
8390
8391 /* Copy the internal symbol as is.
8392 Note that we saved a word of storage and overwrote
8393 the original st_name with the dynstr_index. */
8394 sym = e->isym;
8395
8396 if (e->isym.st_shndx != SHN_UNDEF
8397 && (e->isym.st_shndx < SHN_LORESERVE
8398 || e->isym.st_shndx > SHN_HIRESERVE))
8399 {
8400 s = bfd_section_from_elf_index (e->input_bfd,
8401 e->isym.st_shndx);
8402
8403 sym.st_shndx =
8404 elf_section_data (s->output_section)->this_idx;
8405 if (! check_dynsym (abfd, &sym))
8406 return FALSE;
8407 sym.st_value = (s->output_section->vma
8408 + s->output_offset
8409 + e->isym.st_value);
8410 }
8411
8412 if (last_local < e->dynindx)
8413 last_local = e->dynindx;
8414
8415 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
8416 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
8417 }
8418 }
8419
8420 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
8421 last_local + 1;
8422 }
8423
8424 /* We get the global symbols from the hash table. */
8425 eoinfo.failed = FALSE;
8426 eoinfo.localsyms = FALSE;
8427 eoinfo.finfo = &finfo;
8428 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
8429 &eoinfo);
8430 if (eoinfo.failed)
8431 return FALSE;
8432
8433 /* If backend needs to output some symbols not present in the hash
8434 table, do it now. */
8435 if (bed->elf_backend_output_arch_syms)
8436 {
8437 typedef bfd_boolean (*out_sym_func)
8438 (void *, const char *, Elf_Internal_Sym *, asection *,
8439 struct elf_link_hash_entry *);
8440
8441 if (! ((*bed->elf_backend_output_arch_syms)
8442 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
8443 return FALSE;
8444 }
8445
8446 /* Flush all symbols to the file. */
8447 if (! elf_link_flush_output_syms (&finfo, bed))
8448 return FALSE;
8449
8450 /* Now we know the size of the symtab section. */
8451 off += symtab_hdr->sh_size;
8452
8453 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
8454 if (symtab_shndx_hdr->sh_name != 0)
8455 {
8456 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
8457 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
8458 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
8459 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
8460 symtab_shndx_hdr->sh_size = amt;
8461
8462 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
8463 off, TRUE);
8464
8465 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
8466 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
8467 return FALSE;
8468 }
8469
8470
8471 /* Finish up and write out the symbol string table (.strtab)
8472 section. */
8473 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
8474 /* sh_name was set in prep_headers. */
8475 symstrtab_hdr->sh_type = SHT_STRTAB;
8476 symstrtab_hdr->sh_flags = 0;
8477 symstrtab_hdr->sh_addr = 0;
8478 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
8479 symstrtab_hdr->sh_entsize = 0;
8480 symstrtab_hdr->sh_link = 0;
8481 symstrtab_hdr->sh_info = 0;
8482 /* sh_offset is set just below. */
8483 symstrtab_hdr->sh_addralign = 1;
8484
8485 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
8486 elf_tdata (abfd)->next_file_pos = off;
8487
8488 if (bfd_get_symcount (abfd) > 0)
8489 {
8490 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
8491 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
8492 return FALSE;
8493 }
8494
8495 /* Adjust the relocs to have the correct symbol indices. */
8496 for (o = abfd->sections; o != NULL; o = o->next)
8497 {
8498 if ((o->flags & SEC_RELOC) == 0)
8499 continue;
8500
8501 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
8502 elf_section_data (o)->rel_count,
8503 elf_section_data (o)->rel_hashes);
8504 if (elf_section_data (o)->rel_hdr2 != NULL)
8505 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
8506 elf_section_data (o)->rel_count2,
8507 (elf_section_data (o)->rel_hashes
8508 + elf_section_data (o)->rel_count));
8509
8510 /* Set the reloc_count field to 0 to prevent write_relocs from
8511 trying to swap the relocs out itself. */
8512 o->reloc_count = 0;
8513 }
8514
8515 if (dynamic && info->combreloc && dynobj != NULL)
8516 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
8517
8518 /* If we are linking against a dynamic object, or generating a
8519 shared library, finish up the dynamic linking information. */
8520 if (dynamic)
8521 {
8522 bfd_byte *dyncon, *dynconend;
8523
8524 /* Fix up .dynamic entries. */
8525 o = bfd_get_section_by_name (dynobj, ".dynamic");
8526 BFD_ASSERT (o != NULL);
8527
8528 dyncon = o->contents;
8529 dynconend = o->contents + o->size;
8530 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
8531 {
8532 Elf_Internal_Dyn dyn;
8533 const char *name;
8534 unsigned int type;
8535
8536 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
8537
8538 switch (dyn.d_tag)
8539 {
8540 default:
8541 continue;
8542 case DT_NULL:
8543 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
8544 {
8545 switch (elf_section_data (reldyn)->this_hdr.sh_type)
8546 {
8547 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
8548 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
8549 default: continue;
8550 }
8551 dyn.d_un.d_val = relativecount;
8552 relativecount = 0;
8553 break;
8554 }
8555 continue;
8556
8557 case DT_INIT:
8558 name = info->init_function;
8559 goto get_sym;
8560 case DT_FINI:
8561 name = info->fini_function;
8562 get_sym:
8563 {
8564 struct elf_link_hash_entry *h;
8565
8566 h = elf_link_hash_lookup (elf_hash_table (info), name,
8567 FALSE, FALSE, TRUE);
8568 if (h != NULL
8569 && (h->root.type == bfd_link_hash_defined
8570 || h->root.type == bfd_link_hash_defweak))
8571 {
8572 dyn.d_un.d_val = h->root.u.def.value;
8573 o = h->root.u.def.section;
8574 if (o->output_section != NULL)
8575 dyn.d_un.d_val += (o->output_section->vma
8576 + o->output_offset);
8577 else
8578 {
8579 /* The symbol is imported from another shared
8580 library and does not apply to this one. */
8581 dyn.d_un.d_val = 0;
8582 }
8583 break;
8584 }
8585 }
8586 continue;
8587
8588 case DT_PREINIT_ARRAYSZ:
8589 name = ".preinit_array";
8590 goto get_size;
8591 case DT_INIT_ARRAYSZ:
8592 name = ".init_array";
8593 goto get_size;
8594 case DT_FINI_ARRAYSZ:
8595 name = ".fini_array";
8596 get_size:
8597 o = bfd_get_section_by_name (abfd, name);
8598 if (o == NULL)
8599 {
8600 (*_bfd_error_handler)
8601 (_("%B: could not find output section %s"), abfd, name);
8602 goto error_return;
8603 }
8604 if (o->size == 0)
8605 (*_bfd_error_handler)
8606 (_("warning: %s section has zero size"), name);
8607 dyn.d_un.d_val = o->size;
8608 break;
8609
8610 case DT_PREINIT_ARRAY:
8611 name = ".preinit_array";
8612 goto get_vma;
8613 case DT_INIT_ARRAY:
8614 name = ".init_array";
8615 goto get_vma;
8616 case DT_FINI_ARRAY:
8617 name = ".fini_array";
8618 goto get_vma;
8619
8620 case DT_HASH:
8621 name = ".hash";
8622 goto get_vma;
8623 case DT_STRTAB:
8624 name = ".dynstr";
8625 goto get_vma;
8626 case DT_SYMTAB:
8627 name = ".dynsym";
8628 goto get_vma;
8629 case DT_VERDEF:
8630 name = ".gnu.version_d";
8631 goto get_vma;
8632 case DT_VERNEED:
8633 name = ".gnu.version_r";
8634 goto get_vma;
8635 case DT_VERSYM:
8636 name = ".gnu.version";
8637 get_vma:
8638 o = bfd_get_section_by_name (abfd, name);
8639 if (o == NULL)
8640 {
8641 (*_bfd_error_handler)
8642 (_("%B: could not find output section %s"), abfd, name);
8643 goto error_return;
8644 }
8645 dyn.d_un.d_ptr = o->vma;
8646 break;
8647
8648 case DT_REL:
8649 case DT_RELA:
8650 case DT_RELSZ:
8651 case DT_RELASZ:
8652 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
8653 type = SHT_REL;
8654 else
8655 type = SHT_RELA;
8656 dyn.d_un.d_val = 0;
8657 for (i = 1; i < elf_numsections (abfd); i++)
8658 {
8659 Elf_Internal_Shdr *hdr;
8660
8661 hdr = elf_elfsections (abfd)[i];
8662 if (hdr->sh_type == type
8663 && (hdr->sh_flags & SHF_ALLOC) != 0)
8664 {
8665 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
8666 dyn.d_un.d_val += hdr->sh_size;
8667 else
8668 {
8669 if (dyn.d_un.d_val == 0
8670 || hdr->sh_addr < dyn.d_un.d_val)
8671 dyn.d_un.d_val = hdr->sh_addr;
8672 }
8673 }
8674 }
8675 break;
8676 }
8677 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
8678 }
8679 }
8680
8681 /* If we have created any dynamic sections, then output them. */
8682 if (dynobj != NULL)
8683 {
8684 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
8685 goto error_return;
8686
8687 /* Check for DT_TEXTREL (late, in case the backend removes it). */
8688 if (info->warn_shared_textrel && info->shared)
8689 {
8690 bfd_byte *dyncon, *dynconend;
8691
8692 /* Fix up .dynamic entries. */
8693 o = bfd_get_section_by_name (dynobj, ".dynamic");
8694 BFD_ASSERT (o != NULL);
8695
8696 dyncon = o->contents;
8697 dynconend = o->contents + o->size;
8698 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
8699 {
8700 Elf_Internal_Dyn dyn;
8701
8702 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
8703
8704 if (dyn.d_tag == DT_TEXTREL)
8705 {
8706 _bfd_error_handler
8707 (_("warning: creating a DT_TEXTREL in a shared object."));
8708 break;
8709 }
8710 }
8711 }
8712
8713 for (o = dynobj->sections; o != NULL; o = o->next)
8714 {
8715 if ((o->flags & SEC_HAS_CONTENTS) == 0
8716 || o->size == 0
8717 || o->output_section == bfd_abs_section_ptr)
8718 continue;
8719 if ((o->flags & SEC_LINKER_CREATED) == 0)
8720 {
8721 /* At this point, we are only interested in sections
8722 created by _bfd_elf_link_create_dynamic_sections. */
8723 continue;
8724 }
8725 if (elf_hash_table (info)->stab_info.stabstr == o)
8726 continue;
8727 if (elf_hash_table (info)->eh_info.hdr_sec == o)
8728 continue;
8729 if ((elf_section_data (o->output_section)->this_hdr.sh_type
8730 != SHT_STRTAB)
8731 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
8732 {
8733 if (! bfd_set_section_contents (abfd, o->output_section,
8734 o->contents,
8735 (file_ptr) o->output_offset,
8736 o->size))
8737 goto error_return;
8738 }
8739 else
8740 {
8741 /* The contents of the .dynstr section are actually in a
8742 stringtab. */
8743 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
8744 if (bfd_seek (abfd, off, SEEK_SET) != 0
8745 || ! _bfd_elf_strtab_emit (abfd,
8746 elf_hash_table (info)->dynstr))
8747 goto error_return;
8748 }
8749 }
8750 }
8751
8752 if (info->relocatable)
8753 {
8754 bfd_boolean failed = FALSE;
8755
8756 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
8757 if (failed)
8758 goto error_return;
8759 }
8760
8761 /* If we have optimized stabs strings, output them. */
8762 if (elf_hash_table (info)->stab_info.stabstr != NULL)
8763 {
8764 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
8765 goto error_return;
8766 }
8767
8768 if (info->eh_frame_hdr)
8769 {
8770 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
8771 goto error_return;
8772 }
8773
8774 if (finfo.symstrtab != NULL)
8775 _bfd_stringtab_free (finfo.symstrtab);
8776 if (finfo.contents != NULL)
8777 free (finfo.contents);
8778 if (finfo.external_relocs != NULL)
8779 free (finfo.external_relocs);
8780 if (finfo.internal_relocs != NULL)
8781 free (finfo.internal_relocs);
8782 if (finfo.external_syms != NULL)
8783 free (finfo.external_syms);
8784 if (finfo.locsym_shndx != NULL)
8785 free (finfo.locsym_shndx);
8786 if (finfo.internal_syms != NULL)
8787 free (finfo.internal_syms);
8788 if (finfo.indices != NULL)
8789 free (finfo.indices);
8790 if (finfo.sections != NULL)
8791 free (finfo.sections);
8792 if (finfo.symbuf != NULL)
8793 free (finfo.symbuf);
8794 if (finfo.symshndxbuf != NULL)
8795 free (finfo.symshndxbuf);
8796 for (o = abfd->sections; o != NULL; o = o->next)
8797 {
8798 if ((o->flags & SEC_RELOC) != 0
8799 && elf_section_data (o)->rel_hashes != NULL)
8800 free (elf_section_data (o)->rel_hashes);
8801 }
8802
8803 elf_tdata (abfd)->linker = TRUE;
8804
8805 return TRUE;
8806
8807 error_return:
8808 if (finfo.symstrtab != NULL)
8809 _bfd_stringtab_free (finfo.symstrtab);
8810 if (finfo.contents != NULL)
8811 free (finfo.contents);
8812 if (finfo.external_relocs != NULL)
8813 free (finfo.external_relocs);
8814 if (finfo.internal_relocs != NULL)
8815 free (finfo.internal_relocs);
8816 if (finfo.external_syms != NULL)
8817 free (finfo.external_syms);
8818 if (finfo.locsym_shndx != NULL)
8819 free (finfo.locsym_shndx);
8820 if (finfo.internal_syms != NULL)
8821 free (finfo.internal_syms);
8822 if (finfo.indices != NULL)
8823 free (finfo.indices);
8824 if (finfo.sections != NULL)
8825 free (finfo.sections);
8826 if (finfo.symbuf != NULL)
8827 free (finfo.symbuf);
8828 if (finfo.symshndxbuf != NULL)
8829 free (finfo.symshndxbuf);
8830 for (o = abfd->sections; o != NULL; o = o->next)
8831 {
8832 if ((o->flags & SEC_RELOC) != 0
8833 && elf_section_data (o)->rel_hashes != NULL)
8834 free (elf_section_data (o)->rel_hashes);
8835 }
8836
8837 return FALSE;
8838 }
8839 \f
8840 /* Garbage collect unused sections. */
8841
8842 /* The mark phase of garbage collection. For a given section, mark
8843 it and any sections in this section's group, and all the sections
8844 which define symbols to which it refers. */
8845
8846 typedef asection * (*gc_mark_hook_fn)
8847 (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
8848 struct elf_link_hash_entry *, Elf_Internal_Sym *);
8849
8850 bfd_boolean
8851 _bfd_elf_gc_mark (struct bfd_link_info *info,
8852 asection *sec,
8853 gc_mark_hook_fn gc_mark_hook)
8854 {
8855 bfd_boolean ret;
8856 bfd_boolean is_eh;
8857 asection *group_sec;
8858
8859 sec->gc_mark = 1;
8860
8861 /* Mark all the sections in the group. */
8862 group_sec = elf_section_data (sec)->next_in_group;
8863 if (group_sec && !group_sec->gc_mark)
8864 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
8865 return FALSE;
8866
8867 /* Look through the section relocs. */
8868 ret = TRUE;
8869 is_eh = strcmp (sec->name, ".eh_frame") == 0;
8870 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
8871 {
8872 Elf_Internal_Rela *relstart, *rel, *relend;
8873 Elf_Internal_Shdr *symtab_hdr;
8874 struct elf_link_hash_entry **sym_hashes;
8875 size_t nlocsyms;
8876 size_t extsymoff;
8877 bfd *input_bfd = sec->owner;
8878 const struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
8879 Elf_Internal_Sym *isym = NULL;
8880 int r_sym_shift;
8881
8882 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8883 sym_hashes = elf_sym_hashes (input_bfd);
8884
8885 /* Read the local symbols. */
8886 if (elf_bad_symtab (input_bfd))
8887 {
8888 nlocsyms = symtab_hdr->sh_size / bed->s->sizeof_sym;
8889 extsymoff = 0;
8890 }
8891 else
8892 extsymoff = nlocsyms = symtab_hdr->sh_info;
8893
8894 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
8895 if (isym == NULL && nlocsyms != 0)
8896 {
8897 isym = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, nlocsyms, 0,
8898 NULL, NULL, NULL);
8899 if (isym == NULL)
8900 return FALSE;
8901 }
8902
8903 /* Read the relocations. */
8904 relstart = _bfd_elf_link_read_relocs (input_bfd, sec, NULL, NULL,
8905 info->keep_memory);
8906 if (relstart == NULL)
8907 {
8908 ret = FALSE;
8909 goto out1;
8910 }
8911 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8912
8913 if (bed->s->arch_size == 32)
8914 r_sym_shift = 8;
8915 else
8916 r_sym_shift = 32;
8917
8918 for (rel = relstart; rel < relend; rel++)
8919 {
8920 unsigned long r_symndx;
8921 asection *rsec;
8922 struct elf_link_hash_entry *h;
8923
8924 r_symndx = rel->r_info >> r_sym_shift;
8925 if (r_symndx == 0)
8926 continue;
8927
8928 if (r_symndx >= nlocsyms
8929 || ELF_ST_BIND (isym[r_symndx].st_info) != STB_LOCAL)
8930 {
8931 h = sym_hashes[r_symndx - extsymoff];
8932 while (h->root.type == bfd_link_hash_indirect
8933 || h->root.type == bfd_link_hash_warning)
8934 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8935 rsec = (*gc_mark_hook) (sec, info, rel, h, NULL);
8936 }
8937 else
8938 {
8939 rsec = (*gc_mark_hook) (sec, info, rel, NULL, &isym[r_symndx]);
8940 }
8941
8942 if (rsec && !rsec->gc_mark)
8943 {
8944 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
8945 rsec->gc_mark = 1;
8946 else if (is_eh)
8947 rsec->gc_mark_from_eh = 1;
8948 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
8949 {
8950 ret = FALSE;
8951 goto out2;
8952 }
8953 }
8954 }
8955
8956 out2:
8957 if (elf_section_data (sec)->relocs != relstart)
8958 free (relstart);
8959 out1:
8960 if (isym != NULL && symtab_hdr->contents != (unsigned char *) isym)
8961 {
8962 if (! info->keep_memory)
8963 free (isym);
8964 else
8965 symtab_hdr->contents = (unsigned char *) isym;
8966 }
8967 }
8968
8969 return ret;
8970 }
8971
8972 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
8973
8974 struct elf_gc_sweep_symbol_info {
8975 struct bfd_link_info *info;
8976 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
8977 bfd_boolean);
8978 };
8979
8980 static bfd_boolean
8981 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
8982 {
8983 if (h->root.type == bfd_link_hash_warning)
8984 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8985
8986 if ((h->root.type == bfd_link_hash_defined
8987 || h->root.type == bfd_link_hash_defweak)
8988 && !h->root.u.def.section->gc_mark
8989 && !(h->root.u.def.section->owner->flags & DYNAMIC))
8990 {
8991 struct elf_gc_sweep_symbol_info *inf = data;
8992 (*inf->hide_symbol) (inf->info, h, TRUE);
8993 }
8994
8995 return TRUE;
8996 }
8997
8998 /* The sweep phase of garbage collection. Remove all garbage sections. */
8999
9000 typedef bfd_boolean (*gc_sweep_hook_fn)
9001 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
9002
9003 static bfd_boolean
9004 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
9005 {
9006 bfd *sub;
9007 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9008 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
9009 unsigned long section_sym_count;
9010 struct elf_gc_sweep_symbol_info sweep_info;
9011
9012 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
9013 {
9014 asection *o;
9015
9016 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
9017 continue;
9018
9019 for (o = sub->sections; o != NULL; o = o->next)
9020 {
9021 /* Keep debug and special sections. */
9022 if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
9023 || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
9024 o->gc_mark = 1;
9025
9026 if (o->gc_mark)
9027 continue;
9028
9029 /* Skip sweeping sections already excluded. */
9030 if (o->flags & SEC_EXCLUDE)
9031 continue;
9032
9033 /* Since this is early in the link process, it is simple
9034 to remove a section from the output. */
9035 o->flags |= SEC_EXCLUDE;
9036
9037 /* But we also have to update some of the relocation
9038 info we collected before. */
9039 if (gc_sweep_hook
9040 && (o->flags & SEC_RELOC) != 0
9041 && o->reloc_count > 0
9042 && !bfd_is_abs_section (o->output_section))
9043 {
9044 Elf_Internal_Rela *internal_relocs;
9045 bfd_boolean r;
9046
9047 internal_relocs
9048 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
9049 info->keep_memory);
9050 if (internal_relocs == NULL)
9051 return FALSE;
9052
9053 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
9054
9055 if (elf_section_data (o)->relocs != internal_relocs)
9056 free (internal_relocs);
9057
9058 if (!r)
9059 return FALSE;
9060 }
9061 }
9062 }
9063
9064 /* Remove the symbols that were in the swept sections from the dynamic
9065 symbol table. GCFIXME: Anyone know how to get them out of the
9066 static symbol table as well? */
9067 sweep_info.info = info;
9068 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
9069 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
9070 &sweep_info);
9071
9072 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
9073 return TRUE;
9074 }
9075
9076 /* Propagate collected vtable information. This is called through
9077 elf_link_hash_traverse. */
9078
9079 static bfd_boolean
9080 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
9081 {
9082 if (h->root.type == bfd_link_hash_warning)
9083 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9084
9085 /* Those that are not vtables. */
9086 if (h->vtable == NULL || h->vtable->parent == NULL)
9087 return TRUE;
9088
9089 /* Those vtables that do not have parents, we cannot merge. */
9090 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
9091 return TRUE;
9092
9093 /* If we've already been done, exit. */
9094 if (h->vtable->used && h->vtable->used[-1])
9095 return TRUE;
9096
9097 /* Make sure the parent's table is up to date. */
9098 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
9099
9100 if (h->vtable->used == NULL)
9101 {
9102 /* None of this table's entries were referenced. Re-use the
9103 parent's table. */
9104 h->vtable->used = h->vtable->parent->vtable->used;
9105 h->vtable->size = h->vtable->parent->vtable->size;
9106 }
9107 else
9108 {
9109 size_t n;
9110 bfd_boolean *cu, *pu;
9111
9112 /* Or the parent's entries into ours. */
9113 cu = h->vtable->used;
9114 cu[-1] = TRUE;
9115 pu = h->vtable->parent->vtable->used;
9116 if (pu != NULL)
9117 {
9118 const struct elf_backend_data *bed;
9119 unsigned int log_file_align;
9120
9121 bed = get_elf_backend_data (h->root.u.def.section->owner);
9122 log_file_align = bed->s->log_file_align;
9123 n = h->vtable->parent->vtable->size >> log_file_align;
9124 while (n--)
9125 {
9126 if (*pu)
9127 *cu = TRUE;
9128 pu++;
9129 cu++;
9130 }
9131 }
9132 }
9133
9134 return TRUE;
9135 }
9136
9137 static bfd_boolean
9138 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
9139 {
9140 asection *sec;
9141 bfd_vma hstart, hend;
9142 Elf_Internal_Rela *relstart, *relend, *rel;
9143 const struct elf_backend_data *bed;
9144 unsigned int log_file_align;
9145
9146 if (h->root.type == bfd_link_hash_warning)
9147 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9148
9149 /* Take care of both those symbols that do not describe vtables as
9150 well as those that are not loaded. */
9151 if (h->vtable == NULL || h->vtable->parent == NULL)
9152 return TRUE;
9153
9154 BFD_ASSERT (h->root.type == bfd_link_hash_defined
9155 || h->root.type == bfd_link_hash_defweak);
9156
9157 sec = h->root.u.def.section;
9158 hstart = h->root.u.def.value;
9159 hend = hstart + h->size;
9160
9161 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
9162 if (!relstart)
9163 return *(bfd_boolean *) okp = FALSE;
9164 bed = get_elf_backend_data (sec->owner);
9165 log_file_align = bed->s->log_file_align;
9166
9167 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
9168
9169 for (rel = relstart; rel < relend; ++rel)
9170 if (rel->r_offset >= hstart && rel->r_offset < hend)
9171 {
9172 /* If the entry is in use, do nothing. */
9173 if (h->vtable->used
9174 && (rel->r_offset - hstart) < h->vtable->size)
9175 {
9176 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
9177 if (h->vtable->used[entry])
9178 continue;
9179 }
9180 /* Otherwise, kill it. */
9181 rel->r_offset = rel->r_info = rel->r_addend = 0;
9182 }
9183
9184 return TRUE;
9185 }
9186
9187 /* Mark sections containing dynamically referenced symbols. When
9188 building shared libraries, we must assume that any visible symbol is
9189 referenced. */
9190
9191 bfd_boolean
9192 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
9193 {
9194 struct bfd_link_info *info = (struct bfd_link_info *) inf;
9195
9196 if (h->root.type == bfd_link_hash_warning)
9197 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9198
9199 if ((h->root.type == bfd_link_hash_defined
9200 || h->root.type == bfd_link_hash_defweak)
9201 && (h->ref_dynamic
9202 || (!info->executable
9203 && h->def_regular
9204 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
9205 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
9206 h->root.u.def.section->flags |= SEC_KEEP;
9207
9208 return TRUE;
9209 }
9210
9211 /* Do mark and sweep of unused sections. */
9212
9213 bfd_boolean
9214 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
9215 {
9216 bfd_boolean ok = TRUE;
9217 bfd *sub;
9218 asection * (*gc_mark_hook)
9219 (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
9220 struct elf_link_hash_entry *h, Elf_Internal_Sym *);
9221 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9222
9223 if (!bed->can_gc_sections
9224 || info->relocatable
9225 || info->emitrelocations
9226 || !is_elf_hash_table (info->hash))
9227 {
9228 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
9229 return TRUE;
9230 }
9231
9232 /* Apply transitive closure to the vtable entry usage info. */
9233 elf_link_hash_traverse (elf_hash_table (info),
9234 elf_gc_propagate_vtable_entries_used,
9235 &ok);
9236 if (!ok)
9237 return FALSE;
9238
9239 /* Kill the vtable relocations that were not used. */
9240 elf_link_hash_traverse (elf_hash_table (info),
9241 elf_gc_smash_unused_vtentry_relocs,
9242 &ok);
9243 if (!ok)
9244 return FALSE;
9245
9246 /* Mark dynamically referenced symbols. */
9247 if (elf_hash_table (info)->dynamic_sections_created)
9248 elf_link_hash_traverse (elf_hash_table (info),
9249 bed->gc_mark_dynamic_ref,
9250 info);
9251
9252 /* Grovel through relocs to find out who stays ... */
9253 gc_mark_hook = bed->gc_mark_hook;
9254 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
9255 {
9256 asection *o;
9257
9258 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
9259 continue;
9260
9261 for (o = sub->sections; o != NULL; o = o->next)
9262 if ((o->flags & SEC_KEEP) != 0 && !o->gc_mark)
9263 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
9264 return FALSE;
9265 }
9266
9267 /* ... again for sections marked from eh_frame. */
9268 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
9269 {
9270 asection *o;
9271
9272 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
9273 continue;
9274
9275 /* Keep .gcc_except_table.* if the associated .text.* is
9276 marked. This isn't very nice, but the proper solution,
9277 splitting .eh_frame up and using comdat doesn't pan out
9278 easily due to needing special relocs to handle the
9279 difference of two symbols in separate sections.
9280 Don't keep code sections referenced by .eh_frame. */
9281 for (o = sub->sections; o != NULL; o = o->next)
9282 if (!o->gc_mark && o->gc_mark_from_eh && (o->flags & SEC_CODE) == 0)
9283 {
9284 if (strncmp (o->name, ".gcc_except_table.", 18) == 0)
9285 {
9286 unsigned long len;
9287 char *fn_name;
9288 asection *fn_text;
9289
9290 len = strlen (o->name + 18) + 1;
9291 fn_name = bfd_malloc (len + 6);
9292 if (fn_name == NULL)
9293 return FALSE;
9294 memcpy (fn_name, ".text.", 6);
9295 memcpy (fn_name + 6, o->name + 18, len);
9296 fn_text = bfd_get_section_by_name (sub, fn_name);
9297 free (fn_name);
9298 if (fn_text == NULL || !fn_text->gc_mark)
9299 continue;
9300 }
9301
9302 /* If not using specially named exception table section,
9303 then keep whatever we are using. */
9304 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
9305 return FALSE;
9306 }
9307 }
9308
9309 /* ... and mark SEC_EXCLUDE for those that go. */
9310 return elf_gc_sweep (abfd, info);
9311 }
9312 \f
9313 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
9314
9315 bfd_boolean
9316 bfd_elf_gc_record_vtinherit (bfd *abfd,
9317 asection *sec,
9318 struct elf_link_hash_entry *h,
9319 bfd_vma offset)
9320 {
9321 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
9322 struct elf_link_hash_entry **search, *child;
9323 bfd_size_type extsymcount;
9324 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9325
9326 /* The sh_info field of the symtab header tells us where the
9327 external symbols start. We don't care about the local symbols at
9328 this point. */
9329 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
9330 if (!elf_bad_symtab (abfd))
9331 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
9332
9333 sym_hashes = elf_sym_hashes (abfd);
9334 sym_hashes_end = sym_hashes + extsymcount;
9335
9336 /* Hunt down the child symbol, which is in this section at the same
9337 offset as the relocation. */
9338 for (search = sym_hashes; search != sym_hashes_end; ++search)
9339 {
9340 if ((child = *search) != NULL
9341 && (child->root.type == bfd_link_hash_defined
9342 || child->root.type == bfd_link_hash_defweak)
9343 && child->root.u.def.section == sec
9344 && child->root.u.def.value == offset)
9345 goto win;
9346 }
9347
9348 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
9349 abfd, sec, (unsigned long) offset);
9350 bfd_set_error (bfd_error_invalid_operation);
9351 return FALSE;
9352
9353 win:
9354 if (!child->vtable)
9355 {
9356 child->vtable = bfd_zalloc (abfd, sizeof (*child->vtable));
9357 if (!child->vtable)
9358 return FALSE;
9359 }
9360 if (!h)
9361 {
9362 /* This *should* only be the absolute section. It could potentially
9363 be that someone has defined a non-global vtable though, which
9364 would be bad. It isn't worth paging in the local symbols to be
9365 sure though; that case should simply be handled by the assembler. */
9366
9367 child->vtable->parent = (struct elf_link_hash_entry *) -1;
9368 }
9369 else
9370 child->vtable->parent = h;
9371
9372 return TRUE;
9373 }
9374
9375 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
9376
9377 bfd_boolean
9378 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
9379 asection *sec ATTRIBUTE_UNUSED,
9380 struct elf_link_hash_entry *h,
9381 bfd_vma addend)
9382 {
9383 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9384 unsigned int log_file_align = bed->s->log_file_align;
9385
9386 if (!h->vtable)
9387 {
9388 h->vtable = bfd_zalloc (abfd, sizeof (*h->vtable));
9389 if (!h->vtable)
9390 return FALSE;
9391 }
9392
9393 if (addend >= h->vtable->size)
9394 {
9395 size_t size, bytes, file_align;
9396 bfd_boolean *ptr = h->vtable->used;
9397
9398 /* While the symbol is undefined, we have to be prepared to handle
9399 a zero size. */
9400 file_align = 1 << log_file_align;
9401 if (h->root.type == bfd_link_hash_undefined)
9402 size = addend + file_align;
9403 else
9404 {
9405 size = h->size;
9406 if (addend >= size)
9407 {
9408 /* Oops! We've got a reference past the defined end of
9409 the table. This is probably a bug -- shall we warn? */
9410 size = addend + file_align;
9411 }
9412 }
9413 size = (size + file_align - 1) & -file_align;
9414
9415 /* Allocate one extra entry for use as a "done" flag for the
9416 consolidation pass. */
9417 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
9418
9419 if (ptr)
9420 {
9421 ptr = bfd_realloc (ptr - 1, bytes);
9422
9423 if (ptr != NULL)
9424 {
9425 size_t oldbytes;
9426
9427 oldbytes = (((h->vtable->size >> log_file_align) + 1)
9428 * sizeof (bfd_boolean));
9429 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
9430 }
9431 }
9432 else
9433 ptr = bfd_zmalloc (bytes);
9434
9435 if (ptr == NULL)
9436 return FALSE;
9437
9438 /* And arrange for that done flag to be at index -1. */
9439 h->vtable->used = ptr + 1;
9440 h->vtable->size = size;
9441 }
9442
9443 h->vtable->used[addend >> log_file_align] = TRUE;
9444
9445 return TRUE;
9446 }
9447
9448 struct alloc_got_off_arg {
9449 bfd_vma gotoff;
9450 unsigned int got_elt_size;
9451 };
9452
9453 /* We need a special top-level link routine to convert got reference counts
9454 to real got offsets. */
9455
9456 static bfd_boolean
9457 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
9458 {
9459 struct alloc_got_off_arg *gofarg = arg;
9460
9461 if (h->root.type == bfd_link_hash_warning)
9462 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9463
9464 if (h->got.refcount > 0)
9465 {
9466 h->got.offset = gofarg->gotoff;
9467 gofarg->gotoff += gofarg->got_elt_size;
9468 }
9469 else
9470 h->got.offset = (bfd_vma) -1;
9471
9472 return TRUE;
9473 }
9474
9475 /* And an accompanying bit to work out final got entry offsets once
9476 we're done. Should be called from final_link. */
9477
9478 bfd_boolean
9479 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
9480 struct bfd_link_info *info)
9481 {
9482 bfd *i;
9483 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9484 bfd_vma gotoff;
9485 unsigned int got_elt_size = bed->s->arch_size / 8;
9486 struct alloc_got_off_arg gofarg;
9487
9488 if (! is_elf_hash_table (info->hash))
9489 return FALSE;
9490
9491 /* The GOT offset is relative to the .got section, but the GOT header is
9492 put into the .got.plt section, if the backend uses it. */
9493 if (bed->want_got_plt)
9494 gotoff = 0;
9495 else
9496 gotoff = bed->got_header_size;
9497
9498 /* Do the local .got entries first. */
9499 for (i = info->input_bfds; i; i = i->link_next)
9500 {
9501 bfd_signed_vma *local_got;
9502 bfd_size_type j, locsymcount;
9503 Elf_Internal_Shdr *symtab_hdr;
9504
9505 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
9506 continue;
9507
9508 local_got = elf_local_got_refcounts (i);
9509 if (!local_got)
9510 continue;
9511
9512 symtab_hdr = &elf_tdata (i)->symtab_hdr;
9513 if (elf_bad_symtab (i))
9514 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9515 else
9516 locsymcount = symtab_hdr->sh_info;
9517
9518 for (j = 0; j < locsymcount; ++j)
9519 {
9520 if (local_got[j] > 0)
9521 {
9522 local_got[j] = gotoff;
9523 gotoff += got_elt_size;
9524 }
9525 else
9526 local_got[j] = (bfd_vma) -1;
9527 }
9528 }
9529
9530 /* Then the global .got entries. .plt refcounts are handled by
9531 adjust_dynamic_symbol */
9532 gofarg.gotoff = gotoff;
9533 gofarg.got_elt_size = got_elt_size;
9534 elf_link_hash_traverse (elf_hash_table (info),
9535 elf_gc_allocate_got_offsets,
9536 &gofarg);
9537 return TRUE;
9538 }
9539
9540 /* Many folk need no more in the way of final link than this, once
9541 got entry reference counting is enabled. */
9542
9543 bfd_boolean
9544 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
9545 {
9546 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
9547 return FALSE;
9548
9549 /* Invoke the regular ELF backend linker to do all the work. */
9550 return bfd_elf_final_link (abfd, info);
9551 }
9552
9553 bfd_boolean
9554 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
9555 {
9556 struct elf_reloc_cookie *rcookie = cookie;
9557
9558 if (rcookie->bad_symtab)
9559 rcookie->rel = rcookie->rels;
9560
9561 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
9562 {
9563 unsigned long r_symndx;
9564
9565 if (! rcookie->bad_symtab)
9566 if (rcookie->rel->r_offset > offset)
9567 return FALSE;
9568 if (rcookie->rel->r_offset != offset)
9569 continue;
9570
9571 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
9572 if (r_symndx == SHN_UNDEF)
9573 return TRUE;
9574
9575 if (r_symndx >= rcookie->locsymcount
9576 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
9577 {
9578 struct elf_link_hash_entry *h;
9579
9580 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
9581
9582 while (h->root.type == bfd_link_hash_indirect
9583 || h->root.type == bfd_link_hash_warning)
9584 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9585
9586 if ((h->root.type == bfd_link_hash_defined
9587 || h->root.type == bfd_link_hash_defweak)
9588 && elf_discarded_section (h->root.u.def.section))
9589 return TRUE;
9590 else
9591 return FALSE;
9592 }
9593 else
9594 {
9595 /* It's not a relocation against a global symbol,
9596 but it could be a relocation against a local
9597 symbol for a discarded section. */
9598 asection *isec;
9599 Elf_Internal_Sym *isym;
9600
9601 /* Need to: get the symbol; get the section. */
9602 isym = &rcookie->locsyms[r_symndx];
9603 if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
9604 {
9605 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
9606 if (isec != NULL && elf_discarded_section (isec))
9607 return TRUE;
9608 }
9609 }
9610 return FALSE;
9611 }
9612 return FALSE;
9613 }
9614
9615 /* Discard unneeded references to discarded sections.
9616 Returns TRUE if any section's size was changed. */
9617 /* This function assumes that the relocations are in sorted order,
9618 which is true for all known assemblers. */
9619
9620 bfd_boolean
9621 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
9622 {
9623 struct elf_reloc_cookie cookie;
9624 asection *stab, *eh;
9625 Elf_Internal_Shdr *symtab_hdr;
9626 const struct elf_backend_data *bed;
9627 bfd *abfd;
9628 unsigned int count;
9629 bfd_boolean ret = FALSE;
9630
9631 if (info->traditional_format
9632 || !is_elf_hash_table (info->hash))
9633 return FALSE;
9634
9635 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
9636 {
9637 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
9638 continue;
9639
9640 bed = get_elf_backend_data (abfd);
9641
9642 if ((abfd->flags & DYNAMIC) != 0)
9643 continue;
9644
9645 eh = bfd_get_section_by_name (abfd, ".eh_frame");
9646 if (info->relocatable
9647 || (eh != NULL
9648 && (eh->size == 0
9649 || bfd_is_abs_section (eh->output_section))))
9650 eh = NULL;
9651
9652 stab = bfd_get_section_by_name (abfd, ".stab");
9653 if (stab != NULL
9654 && (stab->size == 0
9655 || bfd_is_abs_section (stab->output_section)
9656 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
9657 stab = NULL;
9658
9659 if (stab == NULL
9660 && eh == NULL
9661 && bed->elf_backend_discard_info == NULL)
9662 continue;
9663
9664 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9665 cookie.abfd = abfd;
9666 cookie.sym_hashes = elf_sym_hashes (abfd);
9667 cookie.bad_symtab = elf_bad_symtab (abfd);
9668 if (cookie.bad_symtab)
9669 {
9670 cookie.locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9671 cookie.extsymoff = 0;
9672 }
9673 else
9674 {
9675 cookie.locsymcount = symtab_hdr->sh_info;
9676 cookie.extsymoff = symtab_hdr->sh_info;
9677 }
9678
9679 if (bed->s->arch_size == 32)
9680 cookie.r_sym_shift = 8;
9681 else
9682 cookie.r_sym_shift = 32;
9683
9684 cookie.locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
9685 if (cookie.locsyms == NULL && cookie.locsymcount != 0)
9686 {
9687 cookie.locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
9688 cookie.locsymcount, 0,
9689 NULL, NULL, NULL);
9690 if (cookie.locsyms == NULL)
9691 return FALSE;
9692 }
9693
9694 if (stab != NULL)
9695 {
9696 cookie.rels = NULL;
9697 count = stab->reloc_count;
9698 if (count != 0)
9699 cookie.rels = _bfd_elf_link_read_relocs (abfd, stab, NULL, NULL,
9700 info->keep_memory);
9701 if (cookie.rels != NULL)
9702 {
9703 cookie.rel = cookie.rels;
9704 cookie.relend = cookie.rels;
9705 cookie.relend += count * bed->s->int_rels_per_ext_rel;
9706 if (_bfd_discard_section_stabs (abfd, stab,
9707 elf_section_data (stab)->sec_info,
9708 bfd_elf_reloc_symbol_deleted_p,
9709 &cookie))
9710 ret = TRUE;
9711 if (elf_section_data (stab)->relocs != cookie.rels)
9712 free (cookie.rels);
9713 }
9714 }
9715
9716 if (eh != NULL)
9717 {
9718 cookie.rels = NULL;
9719 count = eh->reloc_count;
9720 if (count != 0)
9721 cookie.rels = _bfd_elf_link_read_relocs (abfd, eh, NULL, NULL,
9722 info->keep_memory);
9723 cookie.rel = cookie.rels;
9724 cookie.relend = cookie.rels;
9725 if (cookie.rels != NULL)
9726 cookie.relend += count * bed->s->int_rels_per_ext_rel;
9727
9728 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
9729 bfd_elf_reloc_symbol_deleted_p,
9730 &cookie))
9731 ret = TRUE;
9732
9733 if (cookie.rels != NULL
9734 && elf_section_data (eh)->relocs != cookie.rels)
9735 free (cookie.rels);
9736 }
9737
9738 if (bed->elf_backend_discard_info != NULL
9739 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
9740 ret = TRUE;
9741
9742 if (cookie.locsyms != NULL
9743 && symtab_hdr->contents != (unsigned char *) cookie.locsyms)
9744 {
9745 if (! info->keep_memory)
9746 free (cookie.locsyms);
9747 else
9748 symtab_hdr->contents = (unsigned char *) cookie.locsyms;
9749 }
9750 }
9751
9752 if (info->eh_frame_hdr
9753 && !info->relocatable
9754 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
9755 ret = TRUE;
9756
9757 return ret;
9758 }
9759
9760 void
9761 _bfd_elf_section_already_linked (bfd *abfd, struct bfd_section * sec)
9762 {
9763 flagword flags;
9764 const char *name, *p;
9765 struct bfd_section_already_linked *l;
9766 struct bfd_section_already_linked_hash_entry *already_linked_list;
9767 asection *group;
9768
9769 /* A single member comdat group section may be discarded by a
9770 linkonce section. See below. */
9771 if (sec->output_section == bfd_abs_section_ptr)
9772 return;
9773
9774 flags = sec->flags;
9775
9776 /* Check if it belongs to a section group. */
9777 group = elf_sec_group (sec);
9778
9779 /* Return if it isn't a linkonce section nor a member of a group. A
9780 comdat group section also has SEC_LINK_ONCE set. */
9781 if ((flags & SEC_LINK_ONCE) == 0 && group == NULL)
9782 return;
9783
9784 if (group)
9785 {
9786 /* If this is the member of a single member comdat group, check if
9787 the group should be discarded. */
9788 if (elf_next_in_group (sec) == sec
9789 && (group->flags & SEC_LINK_ONCE) != 0)
9790 sec = group;
9791 else
9792 return;
9793 }
9794
9795 /* FIXME: When doing a relocatable link, we may have trouble
9796 copying relocations in other sections that refer to local symbols
9797 in the section being discarded. Those relocations will have to
9798 be converted somehow; as of this writing I'm not sure that any of
9799 the backends handle that correctly.
9800
9801 It is tempting to instead not discard link once sections when
9802 doing a relocatable link (technically, they should be discarded
9803 whenever we are building constructors). However, that fails,
9804 because the linker winds up combining all the link once sections
9805 into a single large link once section, which defeats the purpose
9806 of having link once sections in the first place.
9807
9808 Also, not merging link once sections in a relocatable link
9809 causes trouble for MIPS ELF, which relies on link once semantics
9810 to handle the .reginfo section correctly. */
9811
9812 name = bfd_get_section_name (abfd, sec);
9813
9814 if (strncmp (name, ".gnu.linkonce.", sizeof (".gnu.linkonce.") - 1) == 0
9815 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
9816 p++;
9817 else
9818 p = name;
9819
9820 already_linked_list = bfd_section_already_linked_table_lookup (p);
9821
9822 for (l = already_linked_list->entry; l != NULL; l = l->next)
9823 {
9824 /* We may have 3 different sections on the list: group section,
9825 comdat section and linkonce section. SEC may be a linkonce or
9826 group section. We match a group section with a group section,
9827 a linkonce section with a linkonce section, and ignore comdat
9828 section. */
9829 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
9830 && strcmp (name, l->sec->name) == 0
9831 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
9832 {
9833 /* The section has already been linked. See if we should
9834 issue a warning. */
9835 switch (flags & SEC_LINK_DUPLICATES)
9836 {
9837 default:
9838 abort ();
9839
9840 case SEC_LINK_DUPLICATES_DISCARD:
9841 break;
9842
9843 case SEC_LINK_DUPLICATES_ONE_ONLY:
9844 (*_bfd_error_handler)
9845 (_("%B: ignoring duplicate section `%A'"),
9846 abfd, sec);
9847 break;
9848
9849 case SEC_LINK_DUPLICATES_SAME_SIZE:
9850 if (sec->size != l->sec->size)
9851 (*_bfd_error_handler)
9852 (_("%B: duplicate section `%A' has different size"),
9853 abfd, sec);
9854 break;
9855
9856 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
9857 if (sec->size != l->sec->size)
9858 (*_bfd_error_handler)
9859 (_("%B: duplicate section `%A' has different size"),
9860 abfd, sec);
9861 else if (sec->size != 0)
9862 {
9863 bfd_byte *sec_contents, *l_sec_contents;
9864
9865 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
9866 (*_bfd_error_handler)
9867 (_("%B: warning: could not read contents of section `%A'"),
9868 abfd, sec);
9869 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
9870 &l_sec_contents))
9871 (*_bfd_error_handler)
9872 (_("%B: warning: could not read contents of section `%A'"),
9873 l->sec->owner, l->sec);
9874 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
9875 (*_bfd_error_handler)
9876 (_("%B: warning: duplicate section `%A' has different contents"),
9877 abfd, sec);
9878
9879 if (sec_contents)
9880 free (sec_contents);
9881 if (l_sec_contents)
9882 free (l_sec_contents);
9883 }
9884 break;
9885 }
9886
9887 /* Set the output_section field so that lang_add_section
9888 does not create a lang_input_section structure for this
9889 section. Since there might be a symbol in the section
9890 being discarded, we must retain a pointer to the section
9891 which we are really going to use. */
9892 sec->output_section = bfd_abs_section_ptr;
9893 sec->kept_section = l->sec;
9894
9895 if (flags & SEC_GROUP)
9896 {
9897 asection *first = elf_next_in_group (sec);
9898 asection *s = first;
9899
9900 while (s != NULL)
9901 {
9902 s->output_section = bfd_abs_section_ptr;
9903 /* Record which group discards it. */
9904 s->kept_section = l->sec;
9905 s = elf_next_in_group (s);
9906 /* These lists are circular. */
9907 if (s == first)
9908 break;
9909 }
9910 }
9911
9912 return;
9913 }
9914 }
9915
9916 if (group)
9917 {
9918 /* If this is the member of a single member comdat group and the
9919 group hasn't be discarded, we check if it matches a linkonce
9920 section. We only record the discarded comdat group. Otherwise
9921 the undiscarded group will be discarded incorrectly later since
9922 itself has been recorded. */
9923 for (l = already_linked_list->entry; l != NULL; l = l->next)
9924 if ((l->sec->flags & SEC_GROUP) == 0
9925 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
9926 && bfd_elf_match_symbols_in_sections (l->sec,
9927 elf_next_in_group (sec)))
9928 {
9929 elf_next_in_group (sec)->output_section = bfd_abs_section_ptr;
9930 elf_next_in_group (sec)->kept_section = l->sec;
9931 group->output_section = bfd_abs_section_ptr;
9932 break;
9933 }
9934 if (l == NULL)
9935 return;
9936 }
9937 else
9938 /* There is no direct match. But for linkonce section, we should
9939 check if there is a match with comdat group member. We always
9940 record the linkonce section, discarded or not. */
9941 for (l = already_linked_list->entry; l != NULL; l = l->next)
9942 if (l->sec->flags & SEC_GROUP)
9943 {
9944 asection *first = elf_next_in_group (l->sec);
9945
9946 if (first != NULL
9947 && elf_next_in_group (first) == first
9948 && bfd_elf_match_symbols_in_sections (first, sec))
9949 {
9950 sec->output_section = bfd_abs_section_ptr;
9951 sec->kept_section = l->sec;
9952 break;
9953 }
9954 }
9955
9956 /* This is the first section with this name. Record it. */
9957 bfd_section_already_linked_table_insert (already_linked_list, sec);
9958 }
9959
9960 bfd_boolean
9961 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
9962 {
9963 return sym->st_shndx == SHN_COMMON;
9964 }
9965
9966 unsigned int
9967 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
9968 {
9969 return SHN_COMMON;
9970 }
9971
9972 asection *
9973 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
9974 {
9975 return bfd_com_section_ptr;
9976 }