Exclude linker created file from dynobj
[binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2016 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfd_stdint.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31
32 /* This struct is used to pass information to routines called via
33 elf_link_hash_traverse which must return failure. */
34
35 struct elf_info_failed
36 {
37 struct bfd_link_info *info;
38 bfd_boolean failed;
39 };
40
41 /* This structure is used to pass information to
42 _bfd_elf_link_find_version_dependencies. */
43
44 struct elf_find_verdep_info
45 {
46 /* General link information. */
47 struct bfd_link_info *info;
48 /* The number of dependencies. */
49 unsigned int vers;
50 /* Whether we had a failure. */
51 bfd_boolean failed;
52 };
53
54 static bfd_boolean _bfd_elf_fix_symbol_flags
55 (struct elf_link_hash_entry *, struct elf_info_failed *);
56
57 asection *
58 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
59 unsigned long r_symndx,
60 bfd_boolean discard)
61 {
62 if (r_symndx >= cookie->locsymcount
63 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
64 {
65 struct elf_link_hash_entry *h;
66
67 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
68
69 while (h->root.type == bfd_link_hash_indirect
70 || h->root.type == bfd_link_hash_warning)
71 h = (struct elf_link_hash_entry *) h->root.u.i.link;
72
73 if ((h->root.type == bfd_link_hash_defined
74 || h->root.type == bfd_link_hash_defweak)
75 && discarded_section (h->root.u.def.section))
76 return h->root.u.def.section;
77 else
78 return NULL;
79 }
80 else
81 {
82 /* It's not a relocation against a global symbol,
83 but it could be a relocation against a local
84 symbol for a discarded section. */
85 asection *isec;
86 Elf_Internal_Sym *isym;
87
88 /* Need to: get the symbol; get the section. */
89 isym = &cookie->locsyms[r_symndx];
90 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
91 if (isec != NULL
92 && discard ? discarded_section (isec) : 1)
93 return isec;
94 }
95 return NULL;
96 }
97
98 /* Define a symbol in a dynamic linkage section. */
99
100 struct elf_link_hash_entry *
101 _bfd_elf_define_linkage_sym (bfd *abfd,
102 struct bfd_link_info *info,
103 asection *sec,
104 const char *name)
105 {
106 struct elf_link_hash_entry *h;
107 struct bfd_link_hash_entry *bh;
108 const struct elf_backend_data *bed;
109
110 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
111 if (h != NULL)
112 {
113 /* Zap symbol defined in an as-needed lib that wasn't linked.
114 This is a symptom of a larger problem: Absolute symbols
115 defined in shared libraries can't be overridden, because we
116 lose the link to the bfd which is via the symbol section. */
117 h->root.type = bfd_link_hash_new;
118 }
119
120 bh = &h->root;
121 bed = get_elf_backend_data (abfd);
122 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
123 sec, 0, NULL, FALSE, bed->collect,
124 &bh))
125 return NULL;
126 h = (struct elf_link_hash_entry *) bh;
127 h->def_regular = 1;
128 h->non_elf = 0;
129 h->root.linker_def = 1;
130 h->type = STT_OBJECT;
131 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
132 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
133
134 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
135 return h;
136 }
137
138 bfd_boolean
139 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
140 {
141 flagword flags;
142 asection *s;
143 struct elf_link_hash_entry *h;
144 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
145 struct elf_link_hash_table *htab = elf_hash_table (info);
146
147 /* This function may be called more than once. */
148 s = bfd_get_linker_section (abfd, ".got");
149 if (s != NULL)
150 return TRUE;
151
152 flags = bed->dynamic_sec_flags;
153
154 s = bfd_make_section_anyway_with_flags (abfd,
155 (bed->rela_plts_and_copies_p
156 ? ".rela.got" : ".rel.got"),
157 (bed->dynamic_sec_flags
158 | SEC_READONLY));
159 if (s == NULL
160 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
161 return FALSE;
162 htab->srelgot = s;
163
164 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
165 if (s == NULL
166 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
167 return FALSE;
168 htab->sgot = s;
169
170 if (bed->want_got_plt)
171 {
172 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
173 if (s == NULL
174 || !bfd_set_section_alignment (abfd, s,
175 bed->s->log_file_align))
176 return FALSE;
177 htab->sgotplt = s;
178 }
179
180 /* The first bit of the global offset table is the header. */
181 s->size += bed->got_header_size;
182
183 if (bed->want_got_sym)
184 {
185 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
186 (or .got.plt) section. We don't do this in the linker script
187 because we don't want to define the symbol if we are not creating
188 a global offset table. */
189 h = _bfd_elf_define_linkage_sym (abfd, info, s,
190 "_GLOBAL_OFFSET_TABLE_");
191 elf_hash_table (info)->hgot = h;
192 if (h == NULL)
193 return FALSE;
194 }
195
196 return TRUE;
197 }
198 \f
199 /* Create a strtab to hold the dynamic symbol names. */
200 static bfd_boolean
201 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
202 {
203 struct elf_link_hash_table *hash_table;
204
205 hash_table = elf_hash_table (info);
206 if (hash_table->dynobj == NULL)
207 {
208 /* We may not set dynobj, an input file holding linker created
209 dynamic sections to abfd, which may be a dynamic object with
210 its own dynamic sections. We need to find a normal input file
211 to hold linker created sections if possible. */
212 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
213 {
214 bfd *ibfd;
215 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
216 if ((ibfd->flags
217 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0)
218 {
219 abfd = ibfd;
220 break;
221 }
222 }
223 hash_table->dynobj = abfd;
224 }
225
226 if (hash_table->dynstr == NULL)
227 {
228 hash_table->dynstr = _bfd_elf_strtab_init ();
229 if (hash_table->dynstr == NULL)
230 return FALSE;
231 }
232 return TRUE;
233 }
234
235 /* Create some sections which will be filled in with dynamic linking
236 information. ABFD is an input file which requires dynamic sections
237 to be created. The dynamic sections take up virtual memory space
238 when the final executable is run, so we need to create them before
239 addresses are assigned to the output sections. We work out the
240 actual contents and size of these sections later. */
241
242 bfd_boolean
243 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
244 {
245 flagword flags;
246 asection *s;
247 const struct elf_backend_data *bed;
248 struct elf_link_hash_entry *h;
249
250 if (! is_elf_hash_table (info->hash))
251 return FALSE;
252
253 if (elf_hash_table (info)->dynamic_sections_created)
254 return TRUE;
255
256 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
257 return FALSE;
258
259 abfd = elf_hash_table (info)->dynobj;
260 bed = get_elf_backend_data (abfd);
261
262 flags = bed->dynamic_sec_flags;
263
264 /* A dynamically linked executable has a .interp section, but a
265 shared library does not. */
266 if (bfd_link_executable (info) && !info->nointerp)
267 {
268 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
269 flags | SEC_READONLY);
270 if (s == NULL)
271 return FALSE;
272 }
273
274 /* Create sections to hold version informations. These are removed
275 if they are not needed. */
276 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
277 flags | SEC_READONLY);
278 if (s == NULL
279 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
280 return FALSE;
281
282 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
283 flags | SEC_READONLY);
284 if (s == NULL
285 || ! bfd_set_section_alignment (abfd, s, 1))
286 return FALSE;
287
288 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
289 flags | SEC_READONLY);
290 if (s == NULL
291 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
292 return FALSE;
293
294 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
295 flags | SEC_READONLY);
296 if (s == NULL
297 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
298 return FALSE;
299 elf_hash_table (info)->dynsym = s;
300
301 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
302 flags | SEC_READONLY);
303 if (s == NULL)
304 return FALSE;
305
306 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
307 if (s == NULL
308 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
309 return FALSE;
310
311 /* The special symbol _DYNAMIC is always set to the start of the
312 .dynamic section. We could set _DYNAMIC in a linker script, but we
313 only want to define it if we are, in fact, creating a .dynamic
314 section. We don't want to define it if there is no .dynamic
315 section, since on some ELF platforms the start up code examines it
316 to decide how to initialize the process. */
317 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
318 elf_hash_table (info)->hdynamic = h;
319 if (h == NULL)
320 return FALSE;
321
322 if (info->emit_hash)
323 {
324 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
325 flags | SEC_READONLY);
326 if (s == NULL
327 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
328 return FALSE;
329 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
330 }
331
332 if (info->emit_gnu_hash)
333 {
334 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
335 flags | SEC_READONLY);
336 if (s == NULL
337 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
338 return FALSE;
339 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
340 4 32-bit words followed by variable count of 64-bit words, then
341 variable count of 32-bit words. */
342 if (bed->s->arch_size == 64)
343 elf_section_data (s)->this_hdr.sh_entsize = 0;
344 else
345 elf_section_data (s)->this_hdr.sh_entsize = 4;
346 }
347
348 /* Let the backend create the rest of the sections. This lets the
349 backend set the right flags. The backend will normally create
350 the .got and .plt sections. */
351 if (bed->elf_backend_create_dynamic_sections == NULL
352 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
353 return FALSE;
354
355 elf_hash_table (info)->dynamic_sections_created = TRUE;
356
357 return TRUE;
358 }
359
360 /* Create dynamic sections when linking against a dynamic object. */
361
362 bfd_boolean
363 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
364 {
365 flagword flags, pltflags;
366 struct elf_link_hash_entry *h;
367 asection *s;
368 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
369 struct elf_link_hash_table *htab = elf_hash_table (info);
370
371 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
372 .rel[a].bss sections. */
373 flags = bed->dynamic_sec_flags;
374
375 pltflags = flags;
376 if (bed->plt_not_loaded)
377 /* We do not clear SEC_ALLOC here because we still want the OS to
378 allocate space for the section; it's just that there's nothing
379 to read in from the object file. */
380 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
381 else
382 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
383 if (bed->plt_readonly)
384 pltflags |= SEC_READONLY;
385
386 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
387 if (s == NULL
388 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
389 return FALSE;
390 htab->splt = s;
391
392 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
393 .plt section. */
394 if (bed->want_plt_sym)
395 {
396 h = _bfd_elf_define_linkage_sym (abfd, info, s,
397 "_PROCEDURE_LINKAGE_TABLE_");
398 elf_hash_table (info)->hplt = h;
399 if (h == NULL)
400 return FALSE;
401 }
402
403 s = bfd_make_section_anyway_with_flags (abfd,
404 (bed->rela_plts_and_copies_p
405 ? ".rela.plt" : ".rel.plt"),
406 flags | SEC_READONLY);
407 if (s == NULL
408 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
409 return FALSE;
410 htab->srelplt = s;
411
412 if (! _bfd_elf_create_got_section (abfd, info))
413 return FALSE;
414
415 if (bed->want_dynbss)
416 {
417 /* The .dynbss section is a place to put symbols which are defined
418 by dynamic objects, are referenced by regular objects, and are
419 not functions. We must allocate space for them in the process
420 image and use a R_*_COPY reloc to tell the dynamic linker to
421 initialize them at run time. The linker script puts the .dynbss
422 section into the .bss section of the final image. */
423 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
424 (SEC_ALLOC | SEC_LINKER_CREATED));
425 if (s == NULL)
426 return FALSE;
427
428 /* The .rel[a].bss section holds copy relocs. This section is not
429 normally needed. We need to create it here, though, so that the
430 linker will map it to an output section. We can't just create it
431 only if we need it, because we will not know whether we need it
432 until we have seen all the input files, and the first time the
433 main linker code calls BFD after examining all the input files
434 (size_dynamic_sections) the input sections have already been
435 mapped to the output sections. If the section turns out not to
436 be needed, we can discard it later. We will never need this
437 section when generating a shared object, since they do not use
438 copy relocs. */
439 if (! bfd_link_pic (info))
440 {
441 s = bfd_make_section_anyway_with_flags (abfd,
442 (bed->rela_plts_and_copies_p
443 ? ".rela.bss" : ".rel.bss"),
444 flags | SEC_READONLY);
445 if (s == NULL
446 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
447 return FALSE;
448 }
449 }
450
451 return TRUE;
452 }
453 \f
454 /* Record a new dynamic symbol. We record the dynamic symbols as we
455 read the input files, since we need to have a list of all of them
456 before we can determine the final sizes of the output sections.
457 Note that we may actually call this function even though we are not
458 going to output any dynamic symbols; in some cases we know that a
459 symbol should be in the dynamic symbol table, but only if there is
460 one. */
461
462 bfd_boolean
463 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
464 struct elf_link_hash_entry *h)
465 {
466 if (h->dynindx == -1)
467 {
468 struct elf_strtab_hash *dynstr;
469 char *p;
470 const char *name;
471 bfd_size_type indx;
472
473 /* XXX: The ABI draft says the linker must turn hidden and
474 internal symbols into STB_LOCAL symbols when producing the
475 DSO. However, if ld.so honors st_other in the dynamic table,
476 this would not be necessary. */
477 switch (ELF_ST_VISIBILITY (h->other))
478 {
479 case STV_INTERNAL:
480 case STV_HIDDEN:
481 if (h->root.type != bfd_link_hash_undefined
482 && h->root.type != bfd_link_hash_undefweak)
483 {
484 h->forced_local = 1;
485 if (!elf_hash_table (info)->is_relocatable_executable)
486 return TRUE;
487 }
488
489 default:
490 break;
491 }
492
493 h->dynindx = elf_hash_table (info)->dynsymcount;
494 ++elf_hash_table (info)->dynsymcount;
495
496 dynstr = elf_hash_table (info)->dynstr;
497 if (dynstr == NULL)
498 {
499 /* Create a strtab to hold the dynamic symbol names. */
500 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
501 if (dynstr == NULL)
502 return FALSE;
503 }
504
505 /* We don't put any version information in the dynamic string
506 table. */
507 name = h->root.root.string;
508 p = strchr (name, ELF_VER_CHR);
509 if (p != NULL)
510 /* We know that the p points into writable memory. In fact,
511 there are only a few symbols that have read-only names, being
512 those like _GLOBAL_OFFSET_TABLE_ that are created specially
513 by the backends. Most symbols will have names pointing into
514 an ELF string table read from a file, or to objalloc memory. */
515 *p = 0;
516
517 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
518
519 if (p != NULL)
520 *p = ELF_VER_CHR;
521
522 if (indx == (bfd_size_type) -1)
523 return FALSE;
524 h->dynstr_index = indx;
525 }
526
527 return TRUE;
528 }
529 \f
530 /* Mark a symbol dynamic. */
531
532 static void
533 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
534 struct elf_link_hash_entry *h,
535 Elf_Internal_Sym *sym)
536 {
537 struct bfd_elf_dynamic_list *d = info->dynamic_list;
538
539 /* It may be called more than once on the same H. */
540 if(h->dynamic || bfd_link_relocatable (info))
541 return;
542
543 if ((info->dynamic_data
544 && (h->type == STT_OBJECT
545 || h->type == STT_COMMON
546 || (sym != NULL
547 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
548 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
549 || (d != NULL
550 && h->root.type == bfd_link_hash_new
551 && (*d->match) (&d->head, NULL, h->root.root.string)))
552 h->dynamic = 1;
553 }
554
555 /* Record an assignment to a symbol made by a linker script. We need
556 this in case some dynamic object refers to this symbol. */
557
558 bfd_boolean
559 bfd_elf_record_link_assignment (bfd *output_bfd,
560 struct bfd_link_info *info,
561 const char *name,
562 bfd_boolean provide,
563 bfd_boolean hidden)
564 {
565 struct elf_link_hash_entry *h, *hv;
566 struct elf_link_hash_table *htab;
567 const struct elf_backend_data *bed;
568
569 if (!is_elf_hash_table (info->hash))
570 return TRUE;
571
572 htab = elf_hash_table (info);
573 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
574 if (h == NULL)
575 return provide;
576
577 if (h->versioned == unknown)
578 {
579 /* Set versioned if symbol version is unknown. */
580 char *version = strrchr (name, ELF_VER_CHR);
581 if (version)
582 {
583 if (version > name && version[-1] != ELF_VER_CHR)
584 h->versioned = versioned_hidden;
585 else
586 h->versioned = versioned;
587 }
588 }
589
590 switch (h->root.type)
591 {
592 case bfd_link_hash_defined:
593 case bfd_link_hash_defweak:
594 case bfd_link_hash_common:
595 break;
596 case bfd_link_hash_undefweak:
597 case bfd_link_hash_undefined:
598 /* Since we're defining the symbol, don't let it seem to have not
599 been defined. record_dynamic_symbol and size_dynamic_sections
600 may depend on this. */
601 h->root.type = bfd_link_hash_new;
602 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
603 bfd_link_repair_undef_list (&htab->root);
604 break;
605 case bfd_link_hash_new:
606 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
607 h->non_elf = 0;
608 break;
609 case bfd_link_hash_indirect:
610 /* We had a versioned symbol in a dynamic library. We make the
611 the versioned symbol point to this one. */
612 bed = get_elf_backend_data (output_bfd);
613 hv = h;
614 while (hv->root.type == bfd_link_hash_indirect
615 || hv->root.type == bfd_link_hash_warning)
616 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
617 /* We don't need to update h->root.u since linker will set them
618 later. */
619 h->root.type = bfd_link_hash_undefined;
620 hv->root.type = bfd_link_hash_indirect;
621 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
622 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
623 break;
624 case bfd_link_hash_warning:
625 abort ();
626 break;
627 }
628
629 /* If this symbol is being provided by the linker script, and it is
630 currently defined by a dynamic object, but not by a regular
631 object, then mark it as undefined so that the generic linker will
632 force the correct value. */
633 if (provide
634 && h->def_dynamic
635 && !h->def_regular)
636 h->root.type = bfd_link_hash_undefined;
637
638 /* If this symbol is not being provided by the linker script, and it is
639 currently defined by a dynamic object, but not by a regular object,
640 then clear out any version information because the symbol will not be
641 associated with the dynamic object any more. */
642 if (!provide
643 && h->def_dynamic
644 && !h->def_regular)
645 h->verinfo.verdef = NULL;
646
647 h->def_regular = 1;
648
649 if (hidden)
650 {
651 bed = get_elf_backend_data (output_bfd);
652 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
653 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
654 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
655 }
656
657 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
658 and executables. */
659 if (!bfd_link_relocatable (info)
660 && h->dynindx != -1
661 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
662 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
663 h->forced_local = 1;
664
665 if ((h->def_dynamic
666 || h->ref_dynamic
667 || bfd_link_dll (info)
668 || elf_hash_table (info)->is_relocatable_executable)
669 && h->dynindx == -1)
670 {
671 if (! bfd_elf_link_record_dynamic_symbol (info, h))
672 return FALSE;
673
674 /* If this is a weak defined symbol, and we know a corresponding
675 real symbol from the same dynamic object, make sure the real
676 symbol is also made into a dynamic symbol. */
677 if (h->u.weakdef != NULL
678 && h->u.weakdef->dynindx == -1)
679 {
680 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
681 return FALSE;
682 }
683 }
684
685 return TRUE;
686 }
687
688 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
689 success, and 2 on a failure caused by attempting to record a symbol
690 in a discarded section, eg. a discarded link-once section symbol. */
691
692 int
693 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
694 bfd *input_bfd,
695 long input_indx)
696 {
697 bfd_size_type amt;
698 struct elf_link_local_dynamic_entry *entry;
699 struct elf_link_hash_table *eht;
700 struct elf_strtab_hash *dynstr;
701 unsigned long dynstr_index;
702 char *name;
703 Elf_External_Sym_Shndx eshndx;
704 char esym[sizeof (Elf64_External_Sym)];
705
706 if (! is_elf_hash_table (info->hash))
707 return 0;
708
709 /* See if the entry exists already. */
710 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
711 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
712 return 1;
713
714 amt = sizeof (*entry);
715 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
716 if (entry == NULL)
717 return 0;
718
719 /* Go find the symbol, so that we can find it's name. */
720 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
721 1, input_indx, &entry->isym, esym, &eshndx))
722 {
723 bfd_release (input_bfd, entry);
724 return 0;
725 }
726
727 if (entry->isym.st_shndx != SHN_UNDEF
728 && entry->isym.st_shndx < SHN_LORESERVE)
729 {
730 asection *s;
731
732 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
733 if (s == NULL || bfd_is_abs_section (s->output_section))
734 {
735 /* We can still bfd_release here as nothing has done another
736 bfd_alloc. We can't do this later in this function. */
737 bfd_release (input_bfd, entry);
738 return 2;
739 }
740 }
741
742 name = (bfd_elf_string_from_elf_section
743 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
744 entry->isym.st_name));
745
746 dynstr = elf_hash_table (info)->dynstr;
747 if (dynstr == NULL)
748 {
749 /* Create a strtab to hold the dynamic symbol names. */
750 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
751 if (dynstr == NULL)
752 return 0;
753 }
754
755 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
756 if (dynstr_index == (unsigned long) -1)
757 return 0;
758 entry->isym.st_name = dynstr_index;
759
760 eht = elf_hash_table (info);
761
762 entry->next = eht->dynlocal;
763 eht->dynlocal = entry;
764 entry->input_bfd = input_bfd;
765 entry->input_indx = input_indx;
766 eht->dynsymcount++;
767
768 /* Whatever binding the symbol had before, it's now local. */
769 entry->isym.st_info
770 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
771
772 /* The dynindx will be set at the end of size_dynamic_sections. */
773
774 return 1;
775 }
776
777 /* Return the dynindex of a local dynamic symbol. */
778
779 long
780 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
781 bfd *input_bfd,
782 long input_indx)
783 {
784 struct elf_link_local_dynamic_entry *e;
785
786 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
787 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
788 return e->dynindx;
789 return -1;
790 }
791
792 /* This function is used to renumber the dynamic symbols, if some of
793 them are removed because they are marked as local. This is called
794 via elf_link_hash_traverse. */
795
796 static bfd_boolean
797 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
798 void *data)
799 {
800 size_t *count = (size_t *) data;
801
802 if (h->forced_local)
803 return TRUE;
804
805 if (h->dynindx != -1)
806 h->dynindx = ++(*count);
807
808 return TRUE;
809 }
810
811
812 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
813 STB_LOCAL binding. */
814
815 static bfd_boolean
816 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
817 void *data)
818 {
819 size_t *count = (size_t *) data;
820
821 if (!h->forced_local)
822 return TRUE;
823
824 if (h->dynindx != -1)
825 h->dynindx = ++(*count);
826
827 return TRUE;
828 }
829
830 /* Return true if the dynamic symbol for a given section should be
831 omitted when creating a shared library. */
832 bfd_boolean
833 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
834 struct bfd_link_info *info,
835 asection *p)
836 {
837 struct elf_link_hash_table *htab;
838 asection *ip;
839
840 switch (elf_section_data (p)->this_hdr.sh_type)
841 {
842 case SHT_PROGBITS:
843 case SHT_NOBITS:
844 /* If sh_type is yet undecided, assume it could be
845 SHT_PROGBITS/SHT_NOBITS. */
846 case SHT_NULL:
847 htab = elf_hash_table (info);
848 if (p == htab->tls_sec)
849 return FALSE;
850
851 if (htab->text_index_section != NULL)
852 return p != htab->text_index_section && p != htab->data_index_section;
853
854 return (htab->dynobj != NULL
855 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
856 && ip->output_section == p);
857
858 /* There shouldn't be section relative relocations
859 against any other section. */
860 default:
861 return TRUE;
862 }
863 }
864
865 /* Assign dynsym indices. In a shared library we generate a section
866 symbol for each output section, which come first. Next come symbols
867 which have been forced to local binding. Then all of the back-end
868 allocated local dynamic syms, followed by the rest of the global
869 symbols. */
870
871 static unsigned long
872 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
873 struct bfd_link_info *info,
874 unsigned long *section_sym_count)
875 {
876 unsigned long dynsymcount = 0;
877
878 if (bfd_link_pic (info)
879 || elf_hash_table (info)->is_relocatable_executable)
880 {
881 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
882 asection *p;
883 for (p = output_bfd->sections; p ; p = p->next)
884 if ((p->flags & SEC_EXCLUDE) == 0
885 && (p->flags & SEC_ALLOC) != 0
886 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
887 elf_section_data (p)->dynindx = ++dynsymcount;
888 else
889 elf_section_data (p)->dynindx = 0;
890 }
891 *section_sym_count = dynsymcount;
892
893 elf_link_hash_traverse (elf_hash_table (info),
894 elf_link_renumber_local_hash_table_dynsyms,
895 &dynsymcount);
896
897 if (elf_hash_table (info)->dynlocal)
898 {
899 struct elf_link_local_dynamic_entry *p;
900 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
901 p->dynindx = ++dynsymcount;
902 }
903
904 elf_link_hash_traverse (elf_hash_table (info),
905 elf_link_renumber_hash_table_dynsyms,
906 &dynsymcount);
907
908 /* There is an unused NULL entry at the head of the table which
909 we must account for in our count. We always create the dynsym
910 section, even if it is empty, with dynamic sections. */
911 if (elf_hash_table (info)->dynamic_sections_created)
912 ++dynsymcount;
913
914 elf_hash_table (info)->dynsymcount = dynsymcount;
915 return dynsymcount;
916 }
917
918 /* Merge st_other field. */
919
920 static void
921 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
922 const Elf_Internal_Sym *isym, asection *sec,
923 bfd_boolean definition, bfd_boolean dynamic)
924 {
925 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
926
927 /* If st_other has a processor-specific meaning, specific
928 code might be needed here. */
929 if (bed->elf_backend_merge_symbol_attribute)
930 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
931 dynamic);
932
933 if (!dynamic)
934 {
935 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
936 unsigned hvis = ELF_ST_VISIBILITY (h->other);
937
938 /* Keep the most constraining visibility. Leave the remainder
939 of the st_other field to elf_backend_merge_symbol_attribute. */
940 if (symvis - 1 < hvis - 1)
941 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
942 }
943 else if (definition
944 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
945 && (sec->flags & SEC_READONLY) == 0)
946 h->protected_def = 1;
947 }
948
949 /* This function is called when we want to merge a new symbol with an
950 existing symbol. It handles the various cases which arise when we
951 find a definition in a dynamic object, or when there is already a
952 definition in a dynamic object. The new symbol is described by
953 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
954 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
955 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
956 of an old common symbol. We set OVERRIDE if the old symbol is
957 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
958 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
959 to change. By OK to change, we mean that we shouldn't warn if the
960 type or size does change. */
961
962 static bfd_boolean
963 _bfd_elf_merge_symbol (bfd *abfd,
964 struct bfd_link_info *info,
965 const char *name,
966 Elf_Internal_Sym *sym,
967 asection **psec,
968 bfd_vma *pvalue,
969 struct elf_link_hash_entry **sym_hash,
970 bfd **poldbfd,
971 bfd_boolean *pold_weak,
972 unsigned int *pold_alignment,
973 bfd_boolean *skip,
974 bfd_boolean *override,
975 bfd_boolean *type_change_ok,
976 bfd_boolean *size_change_ok,
977 bfd_boolean *matched)
978 {
979 asection *sec, *oldsec;
980 struct elf_link_hash_entry *h;
981 struct elf_link_hash_entry *hi;
982 struct elf_link_hash_entry *flip;
983 int bind;
984 bfd *oldbfd;
985 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
986 bfd_boolean newweak, oldweak, newfunc, oldfunc;
987 const struct elf_backend_data *bed;
988 char *new_version;
989
990 *skip = FALSE;
991 *override = FALSE;
992
993 sec = *psec;
994 bind = ELF_ST_BIND (sym->st_info);
995
996 if (! bfd_is_und_section (sec))
997 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
998 else
999 h = ((struct elf_link_hash_entry *)
1000 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1001 if (h == NULL)
1002 return FALSE;
1003 *sym_hash = h;
1004
1005 bed = get_elf_backend_data (abfd);
1006
1007 /* NEW_VERSION is the symbol version of the new symbol. */
1008 if (h->versioned != unversioned)
1009 {
1010 /* Symbol version is unknown or versioned. */
1011 new_version = strrchr (name, ELF_VER_CHR);
1012 if (new_version)
1013 {
1014 if (h->versioned == unknown)
1015 {
1016 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1017 h->versioned = versioned_hidden;
1018 else
1019 h->versioned = versioned;
1020 }
1021 new_version += 1;
1022 if (new_version[0] == '\0')
1023 new_version = NULL;
1024 }
1025 else
1026 h->versioned = unversioned;
1027 }
1028 else
1029 new_version = NULL;
1030
1031 /* For merging, we only care about real symbols. But we need to make
1032 sure that indirect symbol dynamic flags are updated. */
1033 hi = h;
1034 while (h->root.type == bfd_link_hash_indirect
1035 || h->root.type == bfd_link_hash_warning)
1036 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1037
1038 if (!*matched)
1039 {
1040 if (hi == h || h->root.type == bfd_link_hash_new)
1041 *matched = TRUE;
1042 else
1043 {
1044 /* OLD_HIDDEN is true if the existing symbol is only visible
1045 to the symbol with the same symbol version. NEW_HIDDEN is
1046 true if the new symbol is only visible to the symbol with
1047 the same symbol version. */
1048 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1049 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1050 if (!old_hidden && !new_hidden)
1051 /* The new symbol matches the existing symbol if both
1052 aren't hidden. */
1053 *matched = TRUE;
1054 else
1055 {
1056 /* OLD_VERSION is the symbol version of the existing
1057 symbol. */
1058 char *old_version;
1059
1060 if (h->versioned >= versioned)
1061 old_version = strrchr (h->root.root.string,
1062 ELF_VER_CHR) + 1;
1063 else
1064 old_version = NULL;
1065
1066 /* The new symbol matches the existing symbol if they
1067 have the same symbol version. */
1068 *matched = (old_version == new_version
1069 || (old_version != NULL
1070 && new_version != NULL
1071 && strcmp (old_version, new_version) == 0));
1072 }
1073 }
1074 }
1075
1076 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1077 existing symbol. */
1078
1079 oldbfd = NULL;
1080 oldsec = NULL;
1081 switch (h->root.type)
1082 {
1083 default:
1084 break;
1085
1086 case bfd_link_hash_undefined:
1087 case bfd_link_hash_undefweak:
1088 oldbfd = h->root.u.undef.abfd;
1089 break;
1090
1091 case bfd_link_hash_defined:
1092 case bfd_link_hash_defweak:
1093 oldbfd = h->root.u.def.section->owner;
1094 oldsec = h->root.u.def.section;
1095 break;
1096
1097 case bfd_link_hash_common:
1098 oldbfd = h->root.u.c.p->section->owner;
1099 oldsec = h->root.u.c.p->section;
1100 if (pold_alignment)
1101 *pold_alignment = h->root.u.c.p->alignment_power;
1102 break;
1103 }
1104 if (poldbfd && *poldbfd == NULL)
1105 *poldbfd = oldbfd;
1106
1107 /* Differentiate strong and weak symbols. */
1108 newweak = bind == STB_WEAK;
1109 oldweak = (h->root.type == bfd_link_hash_defweak
1110 || h->root.type == bfd_link_hash_undefweak);
1111 if (pold_weak)
1112 *pold_weak = oldweak;
1113
1114 /* This code is for coping with dynamic objects, and is only useful
1115 if we are doing an ELF link. */
1116 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
1117 return TRUE;
1118
1119 /* We have to check it for every instance since the first few may be
1120 references and not all compilers emit symbol type for undefined
1121 symbols. */
1122 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1123
1124 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1125 respectively, is from a dynamic object. */
1126
1127 newdyn = (abfd->flags & DYNAMIC) != 0;
1128
1129 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1130 syms and defined syms in dynamic libraries respectively.
1131 ref_dynamic on the other hand can be set for a symbol defined in
1132 a dynamic library, and def_dynamic may not be set; When the
1133 definition in a dynamic lib is overridden by a definition in the
1134 executable use of the symbol in the dynamic lib becomes a
1135 reference to the executable symbol. */
1136 if (newdyn)
1137 {
1138 if (bfd_is_und_section (sec))
1139 {
1140 if (bind != STB_WEAK)
1141 {
1142 h->ref_dynamic_nonweak = 1;
1143 hi->ref_dynamic_nonweak = 1;
1144 }
1145 }
1146 else
1147 {
1148 /* Update the existing symbol only if they match. */
1149 if (*matched)
1150 h->dynamic_def = 1;
1151 hi->dynamic_def = 1;
1152 }
1153 }
1154
1155 /* If we just created the symbol, mark it as being an ELF symbol.
1156 Other than that, there is nothing to do--there is no merge issue
1157 with a newly defined symbol--so we just return. */
1158
1159 if (h->root.type == bfd_link_hash_new)
1160 {
1161 h->non_elf = 0;
1162 return TRUE;
1163 }
1164
1165 /* In cases involving weak versioned symbols, we may wind up trying
1166 to merge a symbol with itself. Catch that here, to avoid the
1167 confusion that results if we try to override a symbol with
1168 itself. The additional tests catch cases like
1169 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1170 dynamic object, which we do want to handle here. */
1171 if (abfd == oldbfd
1172 && (newweak || oldweak)
1173 && ((abfd->flags & DYNAMIC) == 0
1174 || !h->def_regular))
1175 return TRUE;
1176
1177 olddyn = FALSE;
1178 if (oldbfd != NULL)
1179 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1180 else if (oldsec != NULL)
1181 {
1182 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1183 indices used by MIPS ELF. */
1184 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1185 }
1186
1187 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1188 respectively, appear to be a definition rather than reference. */
1189
1190 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1191
1192 olddef = (h->root.type != bfd_link_hash_undefined
1193 && h->root.type != bfd_link_hash_undefweak
1194 && h->root.type != bfd_link_hash_common);
1195
1196 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1197 respectively, appear to be a function. */
1198
1199 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1200 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1201
1202 oldfunc = (h->type != STT_NOTYPE
1203 && bed->is_function_type (h->type));
1204
1205 /* When we try to create a default indirect symbol from the dynamic
1206 definition with the default version, we skip it if its type and
1207 the type of existing regular definition mismatch. */
1208 if (pold_alignment == NULL
1209 && newdyn
1210 && newdef
1211 && !olddyn
1212 && (((olddef || h->root.type == bfd_link_hash_common)
1213 && ELF_ST_TYPE (sym->st_info) != h->type
1214 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1215 && h->type != STT_NOTYPE
1216 && !(newfunc && oldfunc))
1217 || (olddef
1218 && ((h->type == STT_GNU_IFUNC)
1219 != (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))))
1220 {
1221 *skip = TRUE;
1222 return TRUE;
1223 }
1224
1225 /* Check TLS symbols. We don't check undefined symbols introduced
1226 by "ld -u" which have no type (and oldbfd NULL), and we don't
1227 check symbols from plugins because they also have no type. */
1228 if (oldbfd != NULL
1229 && (oldbfd->flags & BFD_PLUGIN) == 0
1230 && (abfd->flags & BFD_PLUGIN) == 0
1231 && ELF_ST_TYPE (sym->st_info) != h->type
1232 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1233 {
1234 bfd *ntbfd, *tbfd;
1235 bfd_boolean ntdef, tdef;
1236 asection *ntsec, *tsec;
1237
1238 if (h->type == STT_TLS)
1239 {
1240 ntbfd = abfd;
1241 ntsec = sec;
1242 ntdef = newdef;
1243 tbfd = oldbfd;
1244 tsec = oldsec;
1245 tdef = olddef;
1246 }
1247 else
1248 {
1249 ntbfd = oldbfd;
1250 ntsec = oldsec;
1251 ntdef = olddef;
1252 tbfd = abfd;
1253 tsec = sec;
1254 tdef = newdef;
1255 }
1256
1257 if (tdef && ntdef)
1258 (*_bfd_error_handler)
1259 (_("%s: TLS definition in %B section %A "
1260 "mismatches non-TLS definition in %B section %A"),
1261 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1262 else if (!tdef && !ntdef)
1263 (*_bfd_error_handler)
1264 (_("%s: TLS reference in %B "
1265 "mismatches non-TLS reference in %B"),
1266 tbfd, ntbfd, h->root.root.string);
1267 else if (tdef)
1268 (*_bfd_error_handler)
1269 (_("%s: TLS definition in %B section %A "
1270 "mismatches non-TLS reference in %B"),
1271 tbfd, tsec, ntbfd, h->root.root.string);
1272 else
1273 (*_bfd_error_handler)
1274 (_("%s: TLS reference in %B "
1275 "mismatches non-TLS definition in %B section %A"),
1276 tbfd, ntbfd, ntsec, h->root.root.string);
1277
1278 bfd_set_error (bfd_error_bad_value);
1279 return FALSE;
1280 }
1281
1282 /* If the old symbol has non-default visibility, we ignore the new
1283 definition from a dynamic object. */
1284 if (newdyn
1285 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1286 && !bfd_is_und_section (sec))
1287 {
1288 *skip = TRUE;
1289 /* Make sure this symbol is dynamic. */
1290 h->ref_dynamic = 1;
1291 hi->ref_dynamic = 1;
1292 /* A protected symbol has external availability. Make sure it is
1293 recorded as dynamic.
1294
1295 FIXME: Should we check type and size for protected symbol? */
1296 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1297 return bfd_elf_link_record_dynamic_symbol (info, h);
1298 else
1299 return TRUE;
1300 }
1301 else if (!newdyn
1302 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1303 && h->def_dynamic)
1304 {
1305 /* If the new symbol with non-default visibility comes from a
1306 relocatable file and the old definition comes from a dynamic
1307 object, we remove the old definition. */
1308 if (hi->root.type == bfd_link_hash_indirect)
1309 {
1310 /* Handle the case where the old dynamic definition is
1311 default versioned. We need to copy the symbol info from
1312 the symbol with default version to the normal one if it
1313 was referenced before. */
1314 if (h->ref_regular)
1315 {
1316 hi->root.type = h->root.type;
1317 h->root.type = bfd_link_hash_indirect;
1318 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1319
1320 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1321 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1322 {
1323 /* If the new symbol is hidden or internal, completely undo
1324 any dynamic link state. */
1325 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1326 h->forced_local = 0;
1327 h->ref_dynamic = 0;
1328 }
1329 else
1330 h->ref_dynamic = 1;
1331
1332 h->def_dynamic = 0;
1333 /* FIXME: Should we check type and size for protected symbol? */
1334 h->size = 0;
1335 h->type = 0;
1336
1337 h = hi;
1338 }
1339 else
1340 h = hi;
1341 }
1342
1343 /* If the old symbol was undefined before, then it will still be
1344 on the undefs list. If the new symbol is undefined or
1345 common, we can't make it bfd_link_hash_new here, because new
1346 undefined or common symbols will be added to the undefs list
1347 by _bfd_generic_link_add_one_symbol. Symbols may not be
1348 added twice to the undefs list. Also, if the new symbol is
1349 undefweak then we don't want to lose the strong undef. */
1350 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1351 {
1352 h->root.type = bfd_link_hash_undefined;
1353 h->root.u.undef.abfd = abfd;
1354 }
1355 else
1356 {
1357 h->root.type = bfd_link_hash_new;
1358 h->root.u.undef.abfd = NULL;
1359 }
1360
1361 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1362 {
1363 /* If the new symbol is hidden or internal, completely undo
1364 any dynamic link state. */
1365 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1366 h->forced_local = 0;
1367 h->ref_dynamic = 0;
1368 }
1369 else
1370 h->ref_dynamic = 1;
1371 h->def_dynamic = 0;
1372 /* FIXME: Should we check type and size for protected symbol? */
1373 h->size = 0;
1374 h->type = 0;
1375 return TRUE;
1376 }
1377
1378 /* If a new weak symbol definition comes from a regular file and the
1379 old symbol comes from a dynamic library, we treat the new one as
1380 strong. Similarly, an old weak symbol definition from a regular
1381 file is treated as strong when the new symbol comes from a dynamic
1382 library. Further, an old weak symbol from a dynamic library is
1383 treated as strong if the new symbol is from a dynamic library.
1384 This reflects the way glibc's ld.so works.
1385
1386 Do this before setting *type_change_ok or *size_change_ok so that
1387 we warn properly when dynamic library symbols are overridden. */
1388
1389 if (newdef && !newdyn && olddyn)
1390 newweak = FALSE;
1391 if (olddef && newdyn)
1392 oldweak = FALSE;
1393
1394 /* Allow changes between different types of function symbol. */
1395 if (newfunc && oldfunc)
1396 *type_change_ok = TRUE;
1397
1398 /* It's OK to change the type if either the existing symbol or the
1399 new symbol is weak. A type change is also OK if the old symbol
1400 is undefined and the new symbol is defined. */
1401
1402 if (oldweak
1403 || newweak
1404 || (newdef
1405 && h->root.type == bfd_link_hash_undefined))
1406 *type_change_ok = TRUE;
1407
1408 /* It's OK to change the size if either the existing symbol or the
1409 new symbol is weak, or if the old symbol is undefined. */
1410
1411 if (*type_change_ok
1412 || h->root.type == bfd_link_hash_undefined)
1413 *size_change_ok = TRUE;
1414
1415 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1416 symbol, respectively, appears to be a common symbol in a dynamic
1417 object. If a symbol appears in an uninitialized section, and is
1418 not weak, and is not a function, then it may be a common symbol
1419 which was resolved when the dynamic object was created. We want
1420 to treat such symbols specially, because they raise special
1421 considerations when setting the symbol size: if the symbol
1422 appears as a common symbol in a regular object, and the size in
1423 the regular object is larger, we must make sure that we use the
1424 larger size. This problematic case can always be avoided in C,
1425 but it must be handled correctly when using Fortran shared
1426 libraries.
1427
1428 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1429 likewise for OLDDYNCOMMON and OLDDEF.
1430
1431 Note that this test is just a heuristic, and that it is quite
1432 possible to have an uninitialized symbol in a shared object which
1433 is really a definition, rather than a common symbol. This could
1434 lead to some minor confusion when the symbol really is a common
1435 symbol in some regular object. However, I think it will be
1436 harmless. */
1437
1438 if (newdyn
1439 && newdef
1440 && !newweak
1441 && (sec->flags & SEC_ALLOC) != 0
1442 && (sec->flags & SEC_LOAD) == 0
1443 && sym->st_size > 0
1444 && !newfunc)
1445 newdyncommon = TRUE;
1446 else
1447 newdyncommon = FALSE;
1448
1449 if (olddyn
1450 && olddef
1451 && h->root.type == bfd_link_hash_defined
1452 && h->def_dynamic
1453 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1454 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1455 && h->size > 0
1456 && !oldfunc)
1457 olddyncommon = TRUE;
1458 else
1459 olddyncommon = FALSE;
1460
1461 /* We now know everything about the old and new symbols. We ask the
1462 backend to check if we can merge them. */
1463 if (bed->merge_symbol != NULL)
1464 {
1465 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1466 return FALSE;
1467 sec = *psec;
1468 }
1469
1470 /* If both the old and the new symbols look like common symbols in a
1471 dynamic object, set the size of the symbol to the larger of the
1472 two. */
1473
1474 if (olddyncommon
1475 && newdyncommon
1476 && sym->st_size != h->size)
1477 {
1478 /* Since we think we have two common symbols, issue a multiple
1479 common warning if desired. Note that we only warn if the
1480 size is different. If the size is the same, we simply let
1481 the old symbol override the new one as normally happens with
1482 symbols defined in dynamic objects. */
1483
1484 if (! ((*info->callbacks->multiple_common)
1485 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1486 return FALSE;
1487
1488 if (sym->st_size > h->size)
1489 h->size = sym->st_size;
1490
1491 *size_change_ok = TRUE;
1492 }
1493
1494 /* If we are looking at a dynamic object, and we have found a
1495 definition, we need to see if the symbol was already defined by
1496 some other object. If so, we want to use the existing
1497 definition, and we do not want to report a multiple symbol
1498 definition error; we do this by clobbering *PSEC to be
1499 bfd_und_section_ptr.
1500
1501 We treat a common symbol as a definition if the symbol in the
1502 shared library is a function, since common symbols always
1503 represent variables; this can cause confusion in principle, but
1504 any such confusion would seem to indicate an erroneous program or
1505 shared library. We also permit a common symbol in a regular
1506 object to override a weak symbol in a shared object. A common
1507 symbol in executable also overrides a symbol in a shared object. */
1508
1509 if (newdyn
1510 && newdef
1511 && (olddef
1512 || (h->root.type == bfd_link_hash_common
1513 && (newweak
1514 || newfunc
1515 || (!olddyn && bfd_link_executable (info))))))
1516 {
1517 *override = TRUE;
1518 newdef = FALSE;
1519 newdyncommon = FALSE;
1520
1521 *psec = sec = bfd_und_section_ptr;
1522 *size_change_ok = TRUE;
1523
1524 /* If we get here when the old symbol is a common symbol, then
1525 we are explicitly letting it override a weak symbol or
1526 function in a dynamic object, and we don't want to warn about
1527 a type change. If the old symbol is a defined symbol, a type
1528 change warning may still be appropriate. */
1529
1530 if (h->root.type == bfd_link_hash_common)
1531 *type_change_ok = TRUE;
1532 }
1533
1534 /* Handle the special case of an old common symbol merging with a
1535 new symbol which looks like a common symbol in a shared object.
1536 We change *PSEC and *PVALUE to make the new symbol look like a
1537 common symbol, and let _bfd_generic_link_add_one_symbol do the
1538 right thing. */
1539
1540 if (newdyncommon
1541 && h->root.type == bfd_link_hash_common)
1542 {
1543 *override = TRUE;
1544 newdef = FALSE;
1545 newdyncommon = FALSE;
1546 *pvalue = sym->st_size;
1547 *psec = sec = bed->common_section (oldsec);
1548 *size_change_ok = TRUE;
1549 }
1550
1551 /* Skip weak definitions of symbols that are already defined. */
1552 if (newdef && olddef && newweak)
1553 {
1554 /* Don't skip new non-IR weak syms. */
1555 if (!(oldbfd != NULL
1556 && (oldbfd->flags & BFD_PLUGIN) != 0
1557 && (abfd->flags & BFD_PLUGIN) == 0))
1558 {
1559 newdef = FALSE;
1560 *skip = TRUE;
1561 }
1562
1563 /* Merge st_other. If the symbol already has a dynamic index,
1564 but visibility says it should not be visible, turn it into a
1565 local symbol. */
1566 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1567 if (h->dynindx != -1)
1568 switch (ELF_ST_VISIBILITY (h->other))
1569 {
1570 case STV_INTERNAL:
1571 case STV_HIDDEN:
1572 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1573 break;
1574 }
1575 }
1576
1577 /* If the old symbol is from a dynamic object, and the new symbol is
1578 a definition which is not from a dynamic object, then the new
1579 symbol overrides the old symbol. Symbols from regular files
1580 always take precedence over symbols from dynamic objects, even if
1581 they are defined after the dynamic object in the link.
1582
1583 As above, we again permit a common symbol in a regular object to
1584 override a definition in a shared object if the shared object
1585 symbol is a function or is weak. */
1586
1587 flip = NULL;
1588 if (!newdyn
1589 && (newdef
1590 || (bfd_is_com_section (sec)
1591 && (oldweak || oldfunc)))
1592 && olddyn
1593 && olddef
1594 && h->def_dynamic)
1595 {
1596 /* Change the hash table entry to undefined, and let
1597 _bfd_generic_link_add_one_symbol do the right thing with the
1598 new definition. */
1599
1600 h->root.type = bfd_link_hash_undefined;
1601 h->root.u.undef.abfd = h->root.u.def.section->owner;
1602 *size_change_ok = TRUE;
1603
1604 olddef = FALSE;
1605 olddyncommon = FALSE;
1606
1607 /* We again permit a type change when a common symbol may be
1608 overriding a function. */
1609
1610 if (bfd_is_com_section (sec))
1611 {
1612 if (oldfunc)
1613 {
1614 /* If a common symbol overrides a function, make sure
1615 that it isn't defined dynamically nor has type
1616 function. */
1617 h->def_dynamic = 0;
1618 h->type = STT_NOTYPE;
1619 }
1620 *type_change_ok = TRUE;
1621 }
1622
1623 if (hi->root.type == bfd_link_hash_indirect)
1624 flip = hi;
1625 else
1626 /* This union may have been set to be non-NULL when this symbol
1627 was seen in a dynamic object. We must force the union to be
1628 NULL, so that it is correct for a regular symbol. */
1629 h->verinfo.vertree = NULL;
1630 }
1631
1632 /* Handle the special case of a new common symbol merging with an
1633 old symbol that looks like it might be a common symbol defined in
1634 a shared object. Note that we have already handled the case in
1635 which a new common symbol should simply override the definition
1636 in the shared library. */
1637
1638 if (! newdyn
1639 && bfd_is_com_section (sec)
1640 && olddyncommon)
1641 {
1642 /* It would be best if we could set the hash table entry to a
1643 common symbol, but we don't know what to use for the section
1644 or the alignment. */
1645 if (! ((*info->callbacks->multiple_common)
1646 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1647 return FALSE;
1648
1649 /* If the presumed common symbol in the dynamic object is
1650 larger, pretend that the new symbol has its size. */
1651
1652 if (h->size > *pvalue)
1653 *pvalue = h->size;
1654
1655 /* We need to remember the alignment required by the symbol
1656 in the dynamic object. */
1657 BFD_ASSERT (pold_alignment);
1658 *pold_alignment = h->root.u.def.section->alignment_power;
1659
1660 olddef = FALSE;
1661 olddyncommon = FALSE;
1662
1663 h->root.type = bfd_link_hash_undefined;
1664 h->root.u.undef.abfd = h->root.u.def.section->owner;
1665
1666 *size_change_ok = TRUE;
1667 *type_change_ok = TRUE;
1668
1669 if (hi->root.type == bfd_link_hash_indirect)
1670 flip = hi;
1671 else
1672 h->verinfo.vertree = NULL;
1673 }
1674
1675 if (flip != NULL)
1676 {
1677 /* Handle the case where we had a versioned symbol in a dynamic
1678 library and now find a definition in a normal object. In this
1679 case, we make the versioned symbol point to the normal one. */
1680 flip->root.type = h->root.type;
1681 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1682 h->root.type = bfd_link_hash_indirect;
1683 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1684 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1685 if (h->def_dynamic)
1686 {
1687 h->def_dynamic = 0;
1688 flip->ref_dynamic = 1;
1689 }
1690 }
1691
1692 return TRUE;
1693 }
1694
1695 /* This function is called to create an indirect symbol from the
1696 default for the symbol with the default version if needed. The
1697 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1698 set DYNSYM if the new indirect symbol is dynamic. */
1699
1700 static bfd_boolean
1701 _bfd_elf_add_default_symbol (bfd *abfd,
1702 struct bfd_link_info *info,
1703 struct elf_link_hash_entry *h,
1704 const char *name,
1705 Elf_Internal_Sym *sym,
1706 asection *sec,
1707 bfd_vma value,
1708 bfd **poldbfd,
1709 bfd_boolean *dynsym)
1710 {
1711 bfd_boolean type_change_ok;
1712 bfd_boolean size_change_ok;
1713 bfd_boolean skip;
1714 char *shortname;
1715 struct elf_link_hash_entry *hi;
1716 struct bfd_link_hash_entry *bh;
1717 const struct elf_backend_data *bed;
1718 bfd_boolean collect;
1719 bfd_boolean dynamic;
1720 bfd_boolean override;
1721 char *p;
1722 size_t len, shortlen;
1723 asection *tmp_sec;
1724 bfd_boolean matched;
1725
1726 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1727 return TRUE;
1728
1729 /* If this symbol has a version, and it is the default version, we
1730 create an indirect symbol from the default name to the fully
1731 decorated name. This will cause external references which do not
1732 specify a version to be bound to this version of the symbol. */
1733 p = strchr (name, ELF_VER_CHR);
1734 if (h->versioned == unknown)
1735 {
1736 if (p == NULL)
1737 {
1738 h->versioned = unversioned;
1739 return TRUE;
1740 }
1741 else
1742 {
1743 if (p[1] != ELF_VER_CHR)
1744 {
1745 h->versioned = versioned_hidden;
1746 return TRUE;
1747 }
1748 else
1749 h->versioned = versioned;
1750 }
1751 }
1752 else
1753 {
1754 /* PR ld/19073: We may see an unversioned definition after the
1755 default version. */
1756 if (p == NULL)
1757 return TRUE;
1758 }
1759
1760 bed = get_elf_backend_data (abfd);
1761 collect = bed->collect;
1762 dynamic = (abfd->flags & DYNAMIC) != 0;
1763
1764 shortlen = p - name;
1765 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1766 if (shortname == NULL)
1767 return FALSE;
1768 memcpy (shortname, name, shortlen);
1769 shortname[shortlen] = '\0';
1770
1771 /* We are going to create a new symbol. Merge it with any existing
1772 symbol with this name. For the purposes of the merge, act as
1773 though we were defining the symbol we just defined, although we
1774 actually going to define an indirect symbol. */
1775 type_change_ok = FALSE;
1776 size_change_ok = FALSE;
1777 matched = TRUE;
1778 tmp_sec = sec;
1779 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1780 &hi, poldbfd, NULL, NULL, &skip, &override,
1781 &type_change_ok, &size_change_ok, &matched))
1782 return FALSE;
1783
1784 if (skip)
1785 goto nondefault;
1786
1787 if (! override)
1788 {
1789 /* Add the default symbol if not performing a relocatable link. */
1790 if (! bfd_link_relocatable (info))
1791 {
1792 bh = &hi->root;
1793 if (! (_bfd_generic_link_add_one_symbol
1794 (info, abfd, shortname, BSF_INDIRECT,
1795 bfd_ind_section_ptr,
1796 0, name, FALSE, collect, &bh)))
1797 return FALSE;
1798 hi = (struct elf_link_hash_entry *) bh;
1799 }
1800 }
1801 else
1802 {
1803 /* In this case the symbol named SHORTNAME is overriding the
1804 indirect symbol we want to add. We were planning on making
1805 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1806 is the name without a version. NAME is the fully versioned
1807 name, and it is the default version.
1808
1809 Overriding means that we already saw a definition for the
1810 symbol SHORTNAME in a regular object, and it is overriding
1811 the symbol defined in the dynamic object.
1812
1813 When this happens, we actually want to change NAME, the
1814 symbol we just added, to refer to SHORTNAME. This will cause
1815 references to NAME in the shared object to become references
1816 to SHORTNAME in the regular object. This is what we expect
1817 when we override a function in a shared object: that the
1818 references in the shared object will be mapped to the
1819 definition in the regular object. */
1820
1821 while (hi->root.type == bfd_link_hash_indirect
1822 || hi->root.type == bfd_link_hash_warning)
1823 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1824
1825 h->root.type = bfd_link_hash_indirect;
1826 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1827 if (h->def_dynamic)
1828 {
1829 h->def_dynamic = 0;
1830 hi->ref_dynamic = 1;
1831 if (hi->ref_regular
1832 || hi->def_regular)
1833 {
1834 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1835 return FALSE;
1836 }
1837 }
1838
1839 /* Now set HI to H, so that the following code will set the
1840 other fields correctly. */
1841 hi = h;
1842 }
1843
1844 /* Check if HI is a warning symbol. */
1845 if (hi->root.type == bfd_link_hash_warning)
1846 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1847
1848 /* If there is a duplicate definition somewhere, then HI may not
1849 point to an indirect symbol. We will have reported an error to
1850 the user in that case. */
1851
1852 if (hi->root.type == bfd_link_hash_indirect)
1853 {
1854 struct elf_link_hash_entry *ht;
1855
1856 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1857 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1858
1859 /* A reference to the SHORTNAME symbol from a dynamic library
1860 will be satisfied by the versioned symbol at runtime. In
1861 effect, we have a reference to the versioned symbol. */
1862 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1863 hi->dynamic_def |= ht->dynamic_def;
1864
1865 /* See if the new flags lead us to realize that the symbol must
1866 be dynamic. */
1867 if (! *dynsym)
1868 {
1869 if (! dynamic)
1870 {
1871 if (! bfd_link_executable (info)
1872 || hi->def_dynamic
1873 || hi->ref_dynamic)
1874 *dynsym = TRUE;
1875 }
1876 else
1877 {
1878 if (hi->ref_regular)
1879 *dynsym = TRUE;
1880 }
1881 }
1882 }
1883
1884 /* We also need to define an indirection from the nondefault version
1885 of the symbol. */
1886
1887 nondefault:
1888 len = strlen (name);
1889 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1890 if (shortname == NULL)
1891 return FALSE;
1892 memcpy (shortname, name, shortlen);
1893 memcpy (shortname + shortlen, p + 1, len - shortlen);
1894
1895 /* Once again, merge with any existing symbol. */
1896 type_change_ok = FALSE;
1897 size_change_ok = FALSE;
1898 tmp_sec = sec;
1899 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1900 &hi, poldbfd, NULL, NULL, &skip, &override,
1901 &type_change_ok, &size_change_ok, &matched))
1902 return FALSE;
1903
1904 if (skip)
1905 return TRUE;
1906
1907 if (override)
1908 {
1909 /* Here SHORTNAME is a versioned name, so we don't expect to see
1910 the type of override we do in the case above unless it is
1911 overridden by a versioned definition. */
1912 if (hi->root.type != bfd_link_hash_defined
1913 && hi->root.type != bfd_link_hash_defweak)
1914 (*_bfd_error_handler)
1915 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1916 abfd, shortname);
1917 }
1918 else
1919 {
1920 bh = &hi->root;
1921 if (! (_bfd_generic_link_add_one_symbol
1922 (info, abfd, shortname, BSF_INDIRECT,
1923 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1924 return FALSE;
1925 hi = (struct elf_link_hash_entry *) bh;
1926
1927 /* If there is a duplicate definition somewhere, then HI may not
1928 point to an indirect symbol. We will have reported an error
1929 to the user in that case. */
1930
1931 if (hi->root.type == bfd_link_hash_indirect)
1932 {
1933 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1934 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1935 hi->dynamic_def |= h->dynamic_def;
1936
1937 /* See if the new flags lead us to realize that the symbol
1938 must be dynamic. */
1939 if (! *dynsym)
1940 {
1941 if (! dynamic)
1942 {
1943 if (! bfd_link_executable (info)
1944 || hi->ref_dynamic)
1945 *dynsym = TRUE;
1946 }
1947 else
1948 {
1949 if (hi->ref_regular)
1950 *dynsym = TRUE;
1951 }
1952 }
1953 }
1954 }
1955
1956 return TRUE;
1957 }
1958 \f
1959 /* This routine is used to export all defined symbols into the dynamic
1960 symbol table. It is called via elf_link_hash_traverse. */
1961
1962 static bfd_boolean
1963 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1964 {
1965 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1966
1967 /* Ignore indirect symbols. These are added by the versioning code. */
1968 if (h->root.type == bfd_link_hash_indirect)
1969 return TRUE;
1970
1971 /* Ignore this if we won't export it. */
1972 if (!eif->info->export_dynamic && !h->dynamic)
1973 return TRUE;
1974
1975 if (h->dynindx == -1
1976 && (h->def_regular || h->ref_regular)
1977 && ! bfd_hide_sym_by_version (eif->info->version_info,
1978 h->root.root.string))
1979 {
1980 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1981 {
1982 eif->failed = TRUE;
1983 return FALSE;
1984 }
1985 }
1986
1987 return TRUE;
1988 }
1989 \f
1990 /* Look through the symbols which are defined in other shared
1991 libraries and referenced here. Update the list of version
1992 dependencies. This will be put into the .gnu.version_r section.
1993 This function is called via elf_link_hash_traverse. */
1994
1995 static bfd_boolean
1996 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1997 void *data)
1998 {
1999 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2000 Elf_Internal_Verneed *t;
2001 Elf_Internal_Vernaux *a;
2002 bfd_size_type amt;
2003
2004 /* We only care about symbols defined in shared objects with version
2005 information. */
2006 if (!h->def_dynamic
2007 || h->def_regular
2008 || h->dynindx == -1
2009 || h->verinfo.verdef == NULL
2010 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2011 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2012 return TRUE;
2013
2014 /* See if we already know about this version. */
2015 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2016 t != NULL;
2017 t = t->vn_nextref)
2018 {
2019 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2020 continue;
2021
2022 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2023 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2024 return TRUE;
2025
2026 break;
2027 }
2028
2029 /* This is a new version. Add it to tree we are building. */
2030
2031 if (t == NULL)
2032 {
2033 amt = sizeof *t;
2034 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2035 if (t == NULL)
2036 {
2037 rinfo->failed = TRUE;
2038 return FALSE;
2039 }
2040
2041 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2042 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2043 elf_tdata (rinfo->info->output_bfd)->verref = t;
2044 }
2045
2046 amt = sizeof *a;
2047 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2048 if (a == NULL)
2049 {
2050 rinfo->failed = TRUE;
2051 return FALSE;
2052 }
2053
2054 /* Note that we are copying a string pointer here, and testing it
2055 above. If bfd_elf_string_from_elf_section is ever changed to
2056 discard the string data when low in memory, this will have to be
2057 fixed. */
2058 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2059
2060 a->vna_flags = h->verinfo.verdef->vd_flags;
2061 a->vna_nextptr = t->vn_auxptr;
2062
2063 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2064 ++rinfo->vers;
2065
2066 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2067
2068 t->vn_auxptr = a;
2069
2070 return TRUE;
2071 }
2072
2073 /* Figure out appropriate versions for all the symbols. We may not
2074 have the version number script until we have read all of the input
2075 files, so until that point we don't know which symbols should be
2076 local. This function is called via elf_link_hash_traverse. */
2077
2078 static bfd_boolean
2079 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2080 {
2081 struct elf_info_failed *sinfo;
2082 struct bfd_link_info *info;
2083 const struct elf_backend_data *bed;
2084 struct elf_info_failed eif;
2085 char *p;
2086 bfd_size_type amt;
2087
2088 sinfo = (struct elf_info_failed *) data;
2089 info = sinfo->info;
2090
2091 /* Fix the symbol flags. */
2092 eif.failed = FALSE;
2093 eif.info = info;
2094 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2095 {
2096 if (eif.failed)
2097 sinfo->failed = TRUE;
2098 return FALSE;
2099 }
2100
2101 /* We only need version numbers for symbols defined in regular
2102 objects. */
2103 if (!h->def_regular)
2104 return TRUE;
2105
2106 bed = get_elf_backend_data (info->output_bfd);
2107 p = strchr (h->root.root.string, ELF_VER_CHR);
2108 if (p != NULL && h->verinfo.vertree == NULL)
2109 {
2110 struct bfd_elf_version_tree *t;
2111
2112 ++p;
2113 if (*p == ELF_VER_CHR)
2114 ++p;
2115
2116 /* If there is no version string, we can just return out. */
2117 if (*p == '\0')
2118 return TRUE;
2119
2120 /* Look for the version. If we find it, it is no longer weak. */
2121 for (t = sinfo->info->version_info; t != NULL; t = t->next)
2122 {
2123 if (strcmp (t->name, p) == 0)
2124 {
2125 size_t len;
2126 char *alc;
2127 struct bfd_elf_version_expr *d;
2128
2129 len = p - h->root.root.string;
2130 alc = (char *) bfd_malloc (len);
2131 if (alc == NULL)
2132 {
2133 sinfo->failed = TRUE;
2134 return FALSE;
2135 }
2136 memcpy (alc, h->root.root.string, len - 1);
2137 alc[len - 1] = '\0';
2138 if (alc[len - 2] == ELF_VER_CHR)
2139 alc[len - 2] = '\0';
2140
2141 h->verinfo.vertree = t;
2142 t->used = TRUE;
2143 d = NULL;
2144
2145 if (t->globals.list != NULL)
2146 d = (*t->match) (&t->globals, NULL, alc);
2147
2148 /* See if there is anything to force this symbol to
2149 local scope. */
2150 if (d == NULL && t->locals.list != NULL)
2151 {
2152 d = (*t->match) (&t->locals, NULL, alc);
2153 if (d != NULL
2154 && h->dynindx != -1
2155 && ! info->export_dynamic)
2156 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2157 }
2158
2159 free (alc);
2160 break;
2161 }
2162 }
2163
2164 /* If we are building an application, we need to create a
2165 version node for this version. */
2166 if (t == NULL && bfd_link_executable (info))
2167 {
2168 struct bfd_elf_version_tree **pp;
2169 int version_index;
2170
2171 /* If we aren't going to export this symbol, we don't need
2172 to worry about it. */
2173 if (h->dynindx == -1)
2174 return TRUE;
2175
2176 amt = sizeof *t;
2177 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2178 if (t == NULL)
2179 {
2180 sinfo->failed = TRUE;
2181 return FALSE;
2182 }
2183
2184 t->name = p;
2185 t->name_indx = (unsigned int) -1;
2186 t->used = TRUE;
2187
2188 version_index = 1;
2189 /* Don't count anonymous version tag. */
2190 if (sinfo->info->version_info != NULL
2191 && sinfo->info->version_info->vernum == 0)
2192 version_index = 0;
2193 for (pp = &sinfo->info->version_info;
2194 *pp != NULL;
2195 pp = &(*pp)->next)
2196 ++version_index;
2197 t->vernum = version_index;
2198
2199 *pp = t;
2200
2201 h->verinfo.vertree = t;
2202 }
2203 else if (t == NULL)
2204 {
2205 /* We could not find the version for a symbol when
2206 generating a shared archive. Return an error. */
2207 (*_bfd_error_handler)
2208 (_("%B: version node not found for symbol %s"),
2209 info->output_bfd, h->root.root.string);
2210 bfd_set_error (bfd_error_bad_value);
2211 sinfo->failed = TRUE;
2212 return FALSE;
2213 }
2214 }
2215
2216 /* If we don't have a version for this symbol, see if we can find
2217 something. */
2218 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2219 {
2220 bfd_boolean hide;
2221
2222 h->verinfo.vertree
2223 = bfd_find_version_for_sym (sinfo->info->version_info,
2224 h->root.root.string, &hide);
2225 if (h->verinfo.vertree != NULL && hide)
2226 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2227 }
2228
2229 return TRUE;
2230 }
2231 \f
2232 /* Read and swap the relocs from the section indicated by SHDR. This
2233 may be either a REL or a RELA section. The relocations are
2234 translated into RELA relocations and stored in INTERNAL_RELOCS,
2235 which should have already been allocated to contain enough space.
2236 The EXTERNAL_RELOCS are a buffer where the external form of the
2237 relocations should be stored.
2238
2239 Returns FALSE if something goes wrong. */
2240
2241 static bfd_boolean
2242 elf_link_read_relocs_from_section (bfd *abfd,
2243 asection *sec,
2244 Elf_Internal_Shdr *shdr,
2245 void *external_relocs,
2246 Elf_Internal_Rela *internal_relocs)
2247 {
2248 const struct elf_backend_data *bed;
2249 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2250 const bfd_byte *erela;
2251 const bfd_byte *erelaend;
2252 Elf_Internal_Rela *irela;
2253 Elf_Internal_Shdr *symtab_hdr;
2254 size_t nsyms;
2255
2256 /* Position ourselves at the start of the section. */
2257 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2258 return FALSE;
2259
2260 /* Read the relocations. */
2261 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2262 return FALSE;
2263
2264 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2265 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2266
2267 bed = get_elf_backend_data (abfd);
2268
2269 /* Convert the external relocations to the internal format. */
2270 if (shdr->sh_entsize == bed->s->sizeof_rel)
2271 swap_in = bed->s->swap_reloc_in;
2272 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2273 swap_in = bed->s->swap_reloca_in;
2274 else
2275 {
2276 bfd_set_error (bfd_error_wrong_format);
2277 return FALSE;
2278 }
2279
2280 erela = (const bfd_byte *) external_relocs;
2281 erelaend = erela + shdr->sh_size;
2282 irela = internal_relocs;
2283 while (erela < erelaend)
2284 {
2285 bfd_vma r_symndx;
2286
2287 (*swap_in) (abfd, erela, irela);
2288 r_symndx = ELF32_R_SYM (irela->r_info);
2289 if (bed->s->arch_size == 64)
2290 r_symndx >>= 24;
2291 if (nsyms > 0)
2292 {
2293 if ((size_t) r_symndx >= nsyms)
2294 {
2295 (*_bfd_error_handler)
2296 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2297 " for offset 0x%lx in section `%A'"),
2298 abfd, sec,
2299 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2300 bfd_set_error (bfd_error_bad_value);
2301 return FALSE;
2302 }
2303 }
2304 else if (r_symndx != STN_UNDEF)
2305 {
2306 (*_bfd_error_handler)
2307 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2308 " when the object file has no symbol table"),
2309 abfd, sec,
2310 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2311 bfd_set_error (bfd_error_bad_value);
2312 return FALSE;
2313 }
2314 irela += bed->s->int_rels_per_ext_rel;
2315 erela += shdr->sh_entsize;
2316 }
2317
2318 return TRUE;
2319 }
2320
2321 /* Read and swap the relocs for a section O. They may have been
2322 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2323 not NULL, they are used as buffers to read into. They are known to
2324 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2325 the return value is allocated using either malloc or bfd_alloc,
2326 according to the KEEP_MEMORY argument. If O has two relocation
2327 sections (both REL and RELA relocations), then the REL_HDR
2328 relocations will appear first in INTERNAL_RELOCS, followed by the
2329 RELA_HDR relocations. */
2330
2331 Elf_Internal_Rela *
2332 _bfd_elf_link_read_relocs (bfd *abfd,
2333 asection *o,
2334 void *external_relocs,
2335 Elf_Internal_Rela *internal_relocs,
2336 bfd_boolean keep_memory)
2337 {
2338 void *alloc1 = NULL;
2339 Elf_Internal_Rela *alloc2 = NULL;
2340 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2341 struct bfd_elf_section_data *esdo = elf_section_data (o);
2342 Elf_Internal_Rela *internal_rela_relocs;
2343
2344 if (esdo->relocs != NULL)
2345 return esdo->relocs;
2346
2347 if (o->reloc_count == 0)
2348 return NULL;
2349
2350 if (internal_relocs == NULL)
2351 {
2352 bfd_size_type size;
2353
2354 size = o->reloc_count;
2355 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2356 if (keep_memory)
2357 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2358 else
2359 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2360 if (internal_relocs == NULL)
2361 goto error_return;
2362 }
2363
2364 if (external_relocs == NULL)
2365 {
2366 bfd_size_type size = 0;
2367
2368 if (esdo->rel.hdr)
2369 size += esdo->rel.hdr->sh_size;
2370 if (esdo->rela.hdr)
2371 size += esdo->rela.hdr->sh_size;
2372
2373 alloc1 = bfd_malloc (size);
2374 if (alloc1 == NULL)
2375 goto error_return;
2376 external_relocs = alloc1;
2377 }
2378
2379 internal_rela_relocs = internal_relocs;
2380 if (esdo->rel.hdr)
2381 {
2382 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2383 external_relocs,
2384 internal_relocs))
2385 goto error_return;
2386 external_relocs = (((bfd_byte *) external_relocs)
2387 + esdo->rel.hdr->sh_size);
2388 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2389 * bed->s->int_rels_per_ext_rel);
2390 }
2391
2392 if (esdo->rela.hdr
2393 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2394 external_relocs,
2395 internal_rela_relocs)))
2396 goto error_return;
2397
2398 /* Cache the results for next time, if we can. */
2399 if (keep_memory)
2400 esdo->relocs = internal_relocs;
2401
2402 if (alloc1 != NULL)
2403 free (alloc1);
2404
2405 /* Don't free alloc2, since if it was allocated we are passing it
2406 back (under the name of internal_relocs). */
2407
2408 return internal_relocs;
2409
2410 error_return:
2411 if (alloc1 != NULL)
2412 free (alloc1);
2413 if (alloc2 != NULL)
2414 {
2415 if (keep_memory)
2416 bfd_release (abfd, alloc2);
2417 else
2418 free (alloc2);
2419 }
2420 return NULL;
2421 }
2422
2423 /* Compute the size of, and allocate space for, REL_HDR which is the
2424 section header for a section containing relocations for O. */
2425
2426 static bfd_boolean
2427 _bfd_elf_link_size_reloc_section (bfd *abfd,
2428 struct bfd_elf_section_reloc_data *reldata)
2429 {
2430 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2431
2432 /* That allows us to calculate the size of the section. */
2433 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2434
2435 /* The contents field must last into write_object_contents, so we
2436 allocate it with bfd_alloc rather than malloc. Also since we
2437 cannot be sure that the contents will actually be filled in,
2438 we zero the allocated space. */
2439 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2440 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2441 return FALSE;
2442
2443 if (reldata->hashes == NULL && reldata->count)
2444 {
2445 struct elf_link_hash_entry **p;
2446
2447 p = ((struct elf_link_hash_entry **)
2448 bfd_zmalloc (reldata->count * sizeof (*p)));
2449 if (p == NULL)
2450 return FALSE;
2451
2452 reldata->hashes = p;
2453 }
2454
2455 return TRUE;
2456 }
2457
2458 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2459 originated from the section given by INPUT_REL_HDR) to the
2460 OUTPUT_BFD. */
2461
2462 bfd_boolean
2463 _bfd_elf_link_output_relocs (bfd *output_bfd,
2464 asection *input_section,
2465 Elf_Internal_Shdr *input_rel_hdr,
2466 Elf_Internal_Rela *internal_relocs,
2467 struct elf_link_hash_entry **rel_hash
2468 ATTRIBUTE_UNUSED)
2469 {
2470 Elf_Internal_Rela *irela;
2471 Elf_Internal_Rela *irelaend;
2472 bfd_byte *erel;
2473 struct bfd_elf_section_reloc_data *output_reldata;
2474 asection *output_section;
2475 const struct elf_backend_data *bed;
2476 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2477 struct bfd_elf_section_data *esdo;
2478
2479 output_section = input_section->output_section;
2480
2481 bed = get_elf_backend_data (output_bfd);
2482 esdo = elf_section_data (output_section);
2483 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2484 {
2485 output_reldata = &esdo->rel;
2486 swap_out = bed->s->swap_reloc_out;
2487 }
2488 else if (esdo->rela.hdr
2489 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2490 {
2491 output_reldata = &esdo->rela;
2492 swap_out = bed->s->swap_reloca_out;
2493 }
2494 else
2495 {
2496 (*_bfd_error_handler)
2497 (_("%B: relocation size mismatch in %B section %A"),
2498 output_bfd, input_section->owner, input_section);
2499 bfd_set_error (bfd_error_wrong_format);
2500 return FALSE;
2501 }
2502
2503 erel = output_reldata->hdr->contents;
2504 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2505 irela = internal_relocs;
2506 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2507 * bed->s->int_rels_per_ext_rel);
2508 while (irela < irelaend)
2509 {
2510 (*swap_out) (output_bfd, irela, erel);
2511 irela += bed->s->int_rels_per_ext_rel;
2512 erel += input_rel_hdr->sh_entsize;
2513 }
2514
2515 /* Bump the counter, so that we know where to add the next set of
2516 relocations. */
2517 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2518
2519 return TRUE;
2520 }
2521 \f
2522 /* Make weak undefined symbols in PIE dynamic. */
2523
2524 bfd_boolean
2525 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2526 struct elf_link_hash_entry *h)
2527 {
2528 if (bfd_link_pie (info)
2529 && h->dynindx == -1
2530 && h->root.type == bfd_link_hash_undefweak)
2531 return bfd_elf_link_record_dynamic_symbol (info, h);
2532
2533 return TRUE;
2534 }
2535
2536 /* Fix up the flags for a symbol. This handles various cases which
2537 can only be fixed after all the input files are seen. This is
2538 currently called by both adjust_dynamic_symbol and
2539 assign_sym_version, which is unnecessary but perhaps more robust in
2540 the face of future changes. */
2541
2542 static bfd_boolean
2543 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2544 struct elf_info_failed *eif)
2545 {
2546 const struct elf_backend_data *bed;
2547
2548 /* If this symbol was mentioned in a non-ELF file, try to set
2549 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2550 permit a non-ELF file to correctly refer to a symbol defined in
2551 an ELF dynamic object. */
2552 if (h->non_elf)
2553 {
2554 while (h->root.type == bfd_link_hash_indirect)
2555 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2556
2557 if (h->root.type != bfd_link_hash_defined
2558 && h->root.type != bfd_link_hash_defweak)
2559 {
2560 h->ref_regular = 1;
2561 h->ref_regular_nonweak = 1;
2562 }
2563 else
2564 {
2565 if (h->root.u.def.section->owner != NULL
2566 && (bfd_get_flavour (h->root.u.def.section->owner)
2567 == bfd_target_elf_flavour))
2568 {
2569 h->ref_regular = 1;
2570 h->ref_regular_nonweak = 1;
2571 }
2572 else
2573 h->def_regular = 1;
2574 }
2575
2576 if (h->dynindx == -1
2577 && (h->def_dynamic
2578 || h->ref_dynamic))
2579 {
2580 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2581 {
2582 eif->failed = TRUE;
2583 return FALSE;
2584 }
2585 }
2586 }
2587 else
2588 {
2589 /* Unfortunately, NON_ELF is only correct if the symbol
2590 was first seen in a non-ELF file. Fortunately, if the symbol
2591 was first seen in an ELF file, we're probably OK unless the
2592 symbol was defined in a non-ELF file. Catch that case here.
2593 FIXME: We're still in trouble if the symbol was first seen in
2594 a dynamic object, and then later in a non-ELF regular object. */
2595 if ((h->root.type == bfd_link_hash_defined
2596 || h->root.type == bfd_link_hash_defweak)
2597 && !h->def_regular
2598 && (h->root.u.def.section->owner != NULL
2599 ? (bfd_get_flavour (h->root.u.def.section->owner)
2600 != bfd_target_elf_flavour)
2601 : (bfd_is_abs_section (h->root.u.def.section)
2602 && !h->def_dynamic)))
2603 h->def_regular = 1;
2604 }
2605
2606 /* Backend specific symbol fixup. */
2607 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2608 if (bed->elf_backend_fixup_symbol
2609 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2610 return FALSE;
2611
2612 /* If this is a final link, and the symbol was defined as a common
2613 symbol in a regular object file, and there was no definition in
2614 any dynamic object, then the linker will have allocated space for
2615 the symbol in a common section but the DEF_REGULAR
2616 flag will not have been set. */
2617 if (h->root.type == bfd_link_hash_defined
2618 && !h->def_regular
2619 && h->ref_regular
2620 && !h->def_dynamic
2621 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2622 h->def_regular = 1;
2623
2624 /* If -Bsymbolic was used (which means to bind references to global
2625 symbols to the definition within the shared object), and this
2626 symbol was defined in a regular object, then it actually doesn't
2627 need a PLT entry. Likewise, if the symbol has non-default
2628 visibility. If the symbol has hidden or internal visibility, we
2629 will force it local. */
2630 if (h->needs_plt
2631 && bfd_link_pic (eif->info)
2632 && is_elf_hash_table (eif->info->hash)
2633 && (SYMBOLIC_BIND (eif->info, h)
2634 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2635 && h->def_regular)
2636 {
2637 bfd_boolean force_local;
2638
2639 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2640 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2641 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2642 }
2643
2644 /* If a weak undefined symbol has non-default visibility, we also
2645 hide it from the dynamic linker. */
2646 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2647 && h->root.type == bfd_link_hash_undefweak)
2648 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2649
2650 /* If this is a weak defined symbol in a dynamic object, and we know
2651 the real definition in the dynamic object, copy interesting flags
2652 over to the real definition. */
2653 if (h->u.weakdef != NULL)
2654 {
2655 /* If the real definition is defined by a regular object file,
2656 don't do anything special. See the longer description in
2657 _bfd_elf_adjust_dynamic_symbol, below. */
2658 if (h->u.weakdef->def_regular)
2659 h->u.weakdef = NULL;
2660 else
2661 {
2662 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2663
2664 while (h->root.type == bfd_link_hash_indirect)
2665 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2666
2667 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2668 || h->root.type == bfd_link_hash_defweak);
2669 BFD_ASSERT (weakdef->def_dynamic);
2670 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2671 || weakdef->root.type == bfd_link_hash_defweak);
2672 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2673 }
2674 }
2675
2676 return TRUE;
2677 }
2678
2679 /* Make the backend pick a good value for a dynamic symbol. This is
2680 called via elf_link_hash_traverse, and also calls itself
2681 recursively. */
2682
2683 static bfd_boolean
2684 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2685 {
2686 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2687 bfd *dynobj;
2688 const struct elf_backend_data *bed;
2689
2690 if (! is_elf_hash_table (eif->info->hash))
2691 return FALSE;
2692
2693 /* Ignore indirect symbols. These are added by the versioning code. */
2694 if (h->root.type == bfd_link_hash_indirect)
2695 return TRUE;
2696
2697 /* Fix the symbol flags. */
2698 if (! _bfd_elf_fix_symbol_flags (h, eif))
2699 return FALSE;
2700
2701 /* If this symbol does not require a PLT entry, and it is not
2702 defined by a dynamic object, or is not referenced by a regular
2703 object, ignore it. We do have to handle a weak defined symbol,
2704 even if no regular object refers to it, if we decided to add it
2705 to the dynamic symbol table. FIXME: Do we normally need to worry
2706 about symbols which are defined by one dynamic object and
2707 referenced by another one? */
2708 if (!h->needs_plt
2709 && h->type != STT_GNU_IFUNC
2710 && (h->def_regular
2711 || !h->def_dynamic
2712 || (!h->ref_regular
2713 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2714 {
2715 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2716 return TRUE;
2717 }
2718
2719 /* If we've already adjusted this symbol, don't do it again. This
2720 can happen via a recursive call. */
2721 if (h->dynamic_adjusted)
2722 return TRUE;
2723
2724 /* Don't look at this symbol again. Note that we must set this
2725 after checking the above conditions, because we may look at a
2726 symbol once, decide not to do anything, and then get called
2727 recursively later after REF_REGULAR is set below. */
2728 h->dynamic_adjusted = 1;
2729
2730 /* If this is a weak definition, and we know a real definition, and
2731 the real symbol is not itself defined by a regular object file,
2732 then get a good value for the real definition. We handle the
2733 real symbol first, for the convenience of the backend routine.
2734
2735 Note that there is a confusing case here. If the real definition
2736 is defined by a regular object file, we don't get the real symbol
2737 from the dynamic object, but we do get the weak symbol. If the
2738 processor backend uses a COPY reloc, then if some routine in the
2739 dynamic object changes the real symbol, we will not see that
2740 change in the corresponding weak symbol. This is the way other
2741 ELF linkers work as well, and seems to be a result of the shared
2742 library model.
2743
2744 I will clarify this issue. Most SVR4 shared libraries define the
2745 variable _timezone and define timezone as a weak synonym. The
2746 tzset call changes _timezone. If you write
2747 extern int timezone;
2748 int _timezone = 5;
2749 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2750 you might expect that, since timezone is a synonym for _timezone,
2751 the same number will print both times. However, if the processor
2752 backend uses a COPY reloc, then actually timezone will be copied
2753 into your process image, and, since you define _timezone
2754 yourself, _timezone will not. Thus timezone and _timezone will
2755 wind up at different memory locations. The tzset call will set
2756 _timezone, leaving timezone unchanged. */
2757
2758 if (h->u.weakdef != NULL)
2759 {
2760 /* If we get to this point, there is an implicit reference to
2761 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2762 h->u.weakdef->ref_regular = 1;
2763
2764 /* Ensure that the backend adjust_dynamic_symbol function sees
2765 H->U.WEAKDEF before H by recursively calling ourselves. */
2766 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2767 return FALSE;
2768 }
2769
2770 /* If a symbol has no type and no size and does not require a PLT
2771 entry, then we are probably about to do the wrong thing here: we
2772 are probably going to create a COPY reloc for an empty object.
2773 This case can arise when a shared object is built with assembly
2774 code, and the assembly code fails to set the symbol type. */
2775 if (h->size == 0
2776 && h->type == STT_NOTYPE
2777 && !h->needs_plt)
2778 (*_bfd_error_handler)
2779 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2780 h->root.root.string);
2781
2782 dynobj = elf_hash_table (eif->info)->dynobj;
2783 bed = get_elf_backend_data (dynobj);
2784
2785 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2786 {
2787 eif->failed = TRUE;
2788 return FALSE;
2789 }
2790
2791 return TRUE;
2792 }
2793
2794 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2795 DYNBSS. */
2796
2797 bfd_boolean
2798 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2799 struct elf_link_hash_entry *h,
2800 asection *dynbss)
2801 {
2802 unsigned int power_of_two;
2803 bfd_vma mask;
2804 asection *sec = h->root.u.def.section;
2805
2806 /* The section aligment of definition is the maximum alignment
2807 requirement of symbols defined in the section. Since we don't
2808 know the symbol alignment requirement, we start with the
2809 maximum alignment and check low bits of the symbol address
2810 for the minimum alignment. */
2811 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2812 mask = ((bfd_vma) 1 << power_of_two) - 1;
2813 while ((h->root.u.def.value & mask) != 0)
2814 {
2815 mask >>= 1;
2816 --power_of_two;
2817 }
2818
2819 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2820 dynbss))
2821 {
2822 /* Adjust the section alignment if needed. */
2823 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2824 power_of_two))
2825 return FALSE;
2826 }
2827
2828 /* We make sure that the symbol will be aligned properly. */
2829 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2830
2831 /* Define the symbol as being at this point in DYNBSS. */
2832 h->root.u.def.section = dynbss;
2833 h->root.u.def.value = dynbss->size;
2834
2835 /* Increment the size of DYNBSS to make room for the symbol. */
2836 dynbss->size += h->size;
2837
2838 /* No error if extern_protected_data is true. */
2839 if (h->protected_def
2840 && (!info->extern_protected_data
2841 || (info->extern_protected_data < 0
2842 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
2843 info->callbacks->einfo
2844 (_("%P: copy reloc against protected `%T' is dangerous\n"),
2845 h->root.root.string);
2846
2847 return TRUE;
2848 }
2849
2850 /* Adjust all external symbols pointing into SEC_MERGE sections
2851 to reflect the object merging within the sections. */
2852
2853 static bfd_boolean
2854 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2855 {
2856 asection *sec;
2857
2858 if ((h->root.type == bfd_link_hash_defined
2859 || h->root.type == bfd_link_hash_defweak)
2860 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2861 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2862 {
2863 bfd *output_bfd = (bfd *) data;
2864
2865 h->root.u.def.value =
2866 _bfd_merged_section_offset (output_bfd,
2867 &h->root.u.def.section,
2868 elf_section_data (sec)->sec_info,
2869 h->root.u.def.value);
2870 }
2871
2872 return TRUE;
2873 }
2874
2875 /* Returns false if the symbol referred to by H should be considered
2876 to resolve local to the current module, and true if it should be
2877 considered to bind dynamically. */
2878
2879 bfd_boolean
2880 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2881 struct bfd_link_info *info,
2882 bfd_boolean not_local_protected)
2883 {
2884 bfd_boolean binding_stays_local_p;
2885 const struct elf_backend_data *bed;
2886 struct elf_link_hash_table *hash_table;
2887
2888 if (h == NULL)
2889 return FALSE;
2890
2891 while (h->root.type == bfd_link_hash_indirect
2892 || h->root.type == bfd_link_hash_warning)
2893 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2894
2895 /* If it was forced local, then clearly it's not dynamic. */
2896 if (h->dynindx == -1)
2897 return FALSE;
2898 if (h->forced_local)
2899 return FALSE;
2900
2901 /* Identify the cases where name binding rules say that a
2902 visible symbol resolves locally. */
2903 binding_stays_local_p = (bfd_link_executable (info)
2904 || SYMBOLIC_BIND (info, h));
2905
2906 switch (ELF_ST_VISIBILITY (h->other))
2907 {
2908 case STV_INTERNAL:
2909 case STV_HIDDEN:
2910 return FALSE;
2911
2912 case STV_PROTECTED:
2913 hash_table = elf_hash_table (info);
2914 if (!is_elf_hash_table (hash_table))
2915 return FALSE;
2916
2917 bed = get_elf_backend_data (hash_table->dynobj);
2918
2919 /* Proper resolution for function pointer equality may require
2920 that these symbols perhaps be resolved dynamically, even though
2921 we should be resolving them to the current module. */
2922 if (!not_local_protected || !bed->is_function_type (h->type))
2923 binding_stays_local_p = TRUE;
2924 break;
2925
2926 default:
2927 break;
2928 }
2929
2930 /* If it isn't defined locally, then clearly it's dynamic. */
2931 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2932 return TRUE;
2933
2934 /* Otherwise, the symbol is dynamic if binding rules don't tell
2935 us that it remains local. */
2936 return !binding_stays_local_p;
2937 }
2938
2939 /* Return true if the symbol referred to by H should be considered
2940 to resolve local to the current module, and false otherwise. Differs
2941 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2942 undefined symbols. The two functions are virtually identical except
2943 for the place where forced_local and dynindx == -1 are tested. If
2944 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2945 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2946 the symbol is local only for defined symbols.
2947 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2948 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2949 treatment of undefined weak symbols. For those that do not make
2950 undefined weak symbols dynamic, both functions may return false. */
2951
2952 bfd_boolean
2953 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2954 struct bfd_link_info *info,
2955 bfd_boolean local_protected)
2956 {
2957 const struct elf_backend_data *bed;
2958 struct elf_link_hash_table *hash_table;
2959
2960 /* If it's a local sym, of course we resolve locally. */
2961 if (h == NULL)
2962 return TRUE;
2963
2964 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2965 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2966 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2967 return TRUE;
2968
2969 /* Common symbols that become definitions don't get the DEF_REGULAR
2970 flag set, so test it first, and don't bail out. */
2971 if (ELF_COMMON_DEF_P (h))
2972 /* Do nothing. */;
2973 /* If we don't have a definition in a regular file, then we can't
2974 resolve locally. The sym is either undefined or dynamic. */
2975 else if (!h->def_regular)
2976 return FALSE;
2977
2978 /* Forced local symbols resolve locally. */
2979 if (h->forced_local)
2980 return TRUE;
2981
2982 /* As do non-dynamic symbols. */
2983 if (h->dynindx == -1)
2984 return TRUE;
2985
2986 /* At this point, we know the symbol is defined and dynamic. In an
2987 executable it must resolve locally, likewise when building symbolic
2988 shared libraries. */
2989 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
2990 return TRUE;
2991
2992 /* Now deal with defined dynamic symbols in shared libraries. Ones
2993 with default visibility might not resolve locally. */
2994 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2995 return FALSE;
2996
2997 hash_table = elf_hash_table (info);
2998 if (!is_elf_hash_table (hash_table))
2999 return TRUE;
3000
3001 bed = get_elf_backend_data (hash_table->dynobj);
3002
3003 /* If extern_protected_data is false, STV_PROTECTED non-function
3004 symbols are local. */
3005 if ((!info->extern_protected_data
3006 || (info->extern_protected_data < 0
3007 && !bed->extern_protected_data))
3008 && !bed->is_function_type (h->type))
3009 return TRUE;
3010
3011 /* Function pointer equality tests may require that STV_PROTECTED
3012 symbols be treated as dynamic symbols. If the address of a
3013 function not defined in an executable is set to that function's
3014 plt entry in the executable, then the address of the function in
3015 a shared library must also be the plt entry in the executable. */
3016 return local_protected;
3017 }
3018
3019 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3020 aligned. Returns the first TLS output section. */
3021
3022 struct bfd_section *
3023 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3024 {
3025 struct bfd_section *sec, *tls;
3026 unsigned int align = 0;
3027
3028 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3029 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3030 break;
3031 tls = sec;
3032
3033 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3034 if (sec->alignment_power > align)
3035 align = sec->alignment_power;
3036
3037 elf_hash_table (info)->tls_sec = tls;
3038
3039 /* Ensure the alignment of the first section is the largest alignment,
3040 so that the tls segment starts aligned. */
3041 if (tls != NULL)
3042 tls->alignment_power = align;
3043
3044 return tls;
3045 }
3046
3047 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3048 static bfd_boolean
3049 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3050 Elf_Internal_Sym *sym)
3051 {
3052 const struct elf_backend_data *bed;
3053
3054 /* Local symbols do not count, but target specific ones might. */
3055 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3056 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3057 return FALSE;
3058
3059 bed = get_elf_backend_data (abfd);
3060 /* Function symbols do not count. */
3061 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3062 return FALSE;
3063
3064 /* If the section is undefined, then so is the symbol. */
3065 if (sym->st_shndx == SHN_UNDEF)
3066 return FALSE;
3067
3068 /* If the symbol is defined in the common section, then
3069 it is a common definition and so does not count. */
3070 if (bed->common_definition (sym))
3071 return FALSE;
3072
3073 /* If the symbol is in a target specific section then we
3074 must rely upon the backend to tell us what it is. */
3075 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3076 /* FIXME - this function is not coded yet:
3077
3078 return _bfd_is_global_symbol_definition (abfd, sym);
3079
3080 Instead for now assume that the definition is not global,
3081 Even if this is wrong, at least the linker will behave
3082 in the same way that it used to do. */
3083 return FALSE;
3084
3085 return TRUE;
3086 }
3087
3088 /* Search the symbol table of the archive element of the archive ABFD
3089 whose archive map contains a mention of SYMDEF, and determine if
3090 the symbol is defined in this element. */
3091 static bfd_boolean
3092 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3093 {
3094 Elf_Internal_Shdr * hdr;
3095 bfd_size_type symcount;
3096 bfd_size_type extsymcount;
3097 bfd_size_type extsymoff;
3098 Elf_Internal_Sym *isymbuf;
3099 Elf_Internal_Sym *isym;
3100 Elf_Internal_Sym *isymend;
3101 bfd_boolean result;
3102
3103 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3104 if (abfd == NULL)
3105 return FALSE;
3106
3107 /* Return FALSE if the object has been claimed by plugin. */
3108 if (abfd->plugin_format == bfd_plugin_yes)
3109 return FALSE;
3110
3111 if (! bfd_check_format (abfd, bfd_object))
3112 return FALSE;
3113
3114 /* Select the appropriate symbol table. */
3115 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3116 hdr = &elf_tdata (abfd)->symtab_hdr;
3117 else
3118 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3119
3120 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3121
3122 /* The sh_info field of the symtab header tells us where the
3123 external symbols start. We don't care about the local symbols. */
3124 if (elf_bad_symtab (abfd))
3125 {
3126 extsymcount = symcount;
3127 extsymoff = 0;
3128 }
3129 else
3130 {
3131 extsymcount = symcount - hdr->sh_info;
3132 extsymoff = hdr->sh_info;
3133 }
3134
3135 if (extsymcount == 0)
3136 return FALSE;
3137
3138 /* Read in the symbol table. */
3139 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3140 NULL, NULL, NULL);
3141 if (isymbuf == NULL)
3142 return FALSE;
3143
3144 /* Scan the symbol table looking for SYMDEF. */
3145 result = FALSE;
3146 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3147 {
3148 const char *name;
3149
3150 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3151 isym->st_name);
3152 if (name == NULL)
3153 break;
3154
3155 if (strcmp (name, symdef->name) == 0)
3156 {
3157 result = is_global_data_symbol_definition (abfd, isym);
3158 break;
3159 }
3160 }
3161
3162 free (isymbuf);
3163
3164 return result;
3165 }
3166 \f
3167 /* Add an entry to the .dynamic table. */
3168
3169 bfd_boolean
3170 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3171 bfd_vma tag,
3172 bfd_vma val)
3173 {
3174 struct elf_link_hash_table *hash_table;
3175 const struct elf_backend_data *bed;
3176 asection *s;
3177 bfd_size_type newsize;
3178 bfd_byte *newcontents;
3179 Elf_Internal_Dyn dyn;
3180
3181 hash_table = elf_hash_table (info);
3182 if (! is_elf_hash_table (hash_table))
3183 return FALSE;
3184
3185 bed = get_elf_backend_data (hash_table->dynobj);
3186 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3187 BFD_ASSERT (s != NULL);
3188
3189 newsize = s->size + bed->s->sizeof_dyn;
3190 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3191 if (newcontents == NULL)
3192 return FALSE;
3193
3194 dyn.d_tag = tag;
3195 dyn.d_un.d_val = val;
3196 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3197
3198 s->size = newsize;
3199 s->contents = newcontents;
3200
3201 return TRUE;
3202 }
3203
3204 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3205 otherwise just check whether one already exists. Returns -1 on error,
3206 1 if a DT_NEEDED tag already exists, and 0 on success. */
3207
3208 static int
3209 elf_add_dt_needed_tag (bfd *abfd,
3210 struct bfd_link_info *info,
3211 const char *soname,
3212 bfd_boolean do_it)
3213 {
3214 struct elf_link_hash_table *hash_table;
3215 bfd_size_type strindex;
3216
3217 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3218 return -1;
3219
3220 hash_table = elf_hash_table (info);
3221 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3222 if (strindex == (bfd_size_type) -1)
3223 return -1;
3224
3225 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3226 {
3227 asection *sdyn;
3228 const struct elf_backend_data *bed;
3229 bfd_byte *extdyn;
3230
3231 bed = get_elf_backend_data (hash_table->dynobj);
3232 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3233 if (sdyn != NULL)
3234 for (extdyn = sdyn->contents;
3235 extdyn < sdyn->contents + sdyn->size;
3236 extdyn += bed->s->sizeof_dyn)
3237 {
3238 Elf_Internal_Dyn dyn;
3239
3240 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3241 if (dyn.d_tag == DT_NEEDED
3242 && dyn.d_un.d_val == strindex)
3243 {
3244 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3245 return 1;
3246 }
3247 }
3248 }
3249
3250 if (do_it)
3251 {
3252 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3253 return -1;
3254
3255 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3256 return -1;
3257 }
3258 else
3259 /* We were just checking for existence of the tag. */
3260 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3261
3262 return 0;
3263 }
3264
3265 /* Return true if SONAME is on the needed list between NEEDED and STOP
3266 (or the end of list if STOP is NULL), and needed by a library that
3267 will be loaded. */
3268
3269 static bfd_boolean
3270 on_needed_list (const char *soname,
3271 struct bfd_link_needed_list *needed,
3272 struct bfd_link_needed_list *stop)
3273 {
3274 struct bfd_link_needed_list *look;
3275 for (look = needed; look != stop; look = look->next)
3276 if (strcmp (soname, look->name) == 0
3277 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3278 /* If needed by a library that itself is not directly
3279 needed, recursively check whether that library is
3280 indirectly needed. Since we add DT_NEEDED entries to
3281 the end of the list, library dependencies appear after
3282 the library. Therefore search prior to the current
3283 LOOK, preventing possible infinite recursion. */
3284 || on_needed_list (elf_dt_name (look->by), needed, look)))
3285 return TRUE;
3286
3287 return FALSE;
3288 }
3289
3290 /* Sort symbol by value, section, and size. */
3291 static int
3292 elf_sort_symbol (const void *arg1, const void *arg2)
3293 {
3294 const struct elf_link_hash_entry *h1;
3295 const struct elf_link_hash_entry *h2;
3296 bfd_signed_vma vdiff;
3297
3298 h1 = *(const struct elf_link_hash_entry **) arg1;
3299 h2 = *(const struct elf_link_hash_entry **) arg2;
3300 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3301 if (vdiff != 0)
3302 return vdiff > 0 ? 1 : -1;
3303 else
3304 {
3305 int sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3306 if (sdiff != 0)
3307 return sdiff > 0 ? 1 : -1;
3308 }
3309 vdiff = h1->size - h2->size;
3310 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3311 }
3312
3313 /* This function is used to adjust offsets into .dynstr for
3314 dynamic symbols. This is called via elf_link_hash_traverse. */
3315
3316 static bfd_boolean
3317 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3318 {
3319 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3320
3321 if (h->dynindx != -1)
3322 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3323 return TRUE;
3324 }
3325
3326 /* Assign string offsets in .dynstr, update all structures referencing
3327 them. */
3328
3329 static bfd_boolean
3330 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3331 {
3332 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3333 struct elf_link_local_dynamic_entry *entry;
3334 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3335 bfd *dynobj = hash_table->dynobj;
3336 asection *sdyn;
3337 bfd_size_type size;
3338 const struct elf_backend_data *bed;
3339 bfd_byte *extdyn;
3340
3341 _bfd_elf_strtab_finalize (dynstr);
3342 size = _bfd_elf_strtab_size (dynstr);
3343
3344 bed = get_elf_backend_data (dynobj);
3345 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3346 BFD_ASSERT (sdyn != NULL);
3347
3348 /* Update all .dynamic entries referencing .dynstr strings. */
3349 for (extdyn = sdyn->contents;
3350 extdyn < sdyn->contents + sdyn->size;
3351 extdyn += bed->s->sizeof_dyn)
3352 {
3353 Elf_Internal_Dyn dyn;
3354
3355 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3356 switch (dyn.d_tag)
3357 {
3358 case DT_STRSZ:
3359 dyn.d_un.d_val = size;
3360 break;
3361 case DT_NEEDED:
3362 case DT_SONAME:
3363 case DT_RPATH:
3364 case DT_RUNPATH:
3365 case DT_FILTER:
3366 case DT_AUXILIARY:
3367 case DT_AUDIT:
3368 case DT_DEPAUDIT:
3369 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3370 break;
3371 default:
3372 continue;
3373 }
3374 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3375 }
3376
3377 /* Now update local dynamic symbols. */
3378 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3379 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3380 entry->isym.st_name);
3381
3382 /* And the rest of dynamic symbols. */
3383 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3384
3385 /* Adjust version definitions. */
3386 if (elf_tdata (output_bfd)->cverdefs)
3387 {
3388 asection *s;
3389 bfd_byte *p;
3390 bfd_size_type i;
3391 Elf_Internal_Verdef def;
3392 Elf_Internal_Verdaux defaux;
3393
3394 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3395 p = s->contents;
3396 do
3397 {
3398 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3399 &def);
3400 p += sizeof (Elf_External_Verdef);
3401 if (def.vd_aux != sizeof (Elf_External_Verdef))
3402 continue;
3403 for (i = 0; i < def.vd_cnt; ++i)
3404 {
3405 _bfd_elf_swap_verdaux_in (output_bfd,
3406 (Elf_External_Verdaux *) p, &defaux);
3407 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3408 defaux.vda_name);
3409 _bfd_elf_swap_verdaux_out (output_bfd,
3410 &defaux, (Elf_External_Verdaux *) p);
3411 p += sizeof (Elf_External_Verdaux);
3412 }
3413 }
3414 while (def.vd_next);
3415 }
3416
3417 /* Adjust version references. */
3418 if (elf_tdata (output_bfd)->verref)
3419 {
3420 asection *s;
3421 bfd_byte *p;
3422 bfd_size_type i;
3423 Elf_Internal_Verneed need;
3424 Elf_Internal_Vernaux needaux;
3425
3426 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3427 p = s->contents;
3428 do
3429 {
3430 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3431 &need);
3432 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3433 _bfd_elf_swap_verneed_out (output_bfd, &need,
3434 (Elf_External_Verneed *) p);
3435 p += sizeof (Elf_External_Verneed);
3436 for (i = 0; i < need.vn_cnt; ++i)
3437 {
3438 _bfd_elf_swap_vernaux_in (output_bfd,
3439 (Elf_External_Vernaux *) p, &needaux);
3440 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3441 needaux.vna_name);
3442 _bfd_elf_swap_vernaux_out (output_bfd,
3443 &needaux,
3444 (Elf_External_Vernaux *) p);
3445 p += sizeof (Elf_External_Vernaux);
3446 }
3447 }
3448 while (need.vn_next);
3449 }
3450
3451 return TRUE;
3452 }
3453 \f
3454 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3455 The default is to only match when the INPUT and OUTPUT are exactly
3456 the same target. */
3457
3458 bfd_boolean
3459 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3460 const bfd_target *output)
3461 {
3462 return input == output;
3463 }
3464
3465 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3466 This version is used when different targets for the same architecture
3467 are virtually identical. */
3468
3469 bfd_boolean
3470 _bfd_elf_relocs_compatible (const bfd_target *input,
3471 const bfd_target *output)
3472 {
3473 const struct elf_backend_data *obed, *ibed;
3474
3475 if (input == output)
3476 return TRUE;
3477
3478 ibed = xvec_get_elf_backend_data (input);
3479 obed = xvec_get_elf_backend_data (output);
3480
3481 if (ibed->arch != obed->arch)
3482 return FALSE;
3483
3484 /* If both backends are using this function, deem them compatible. */
3485 return ibed->relocs_compatible == obed->relocs_compatible;
3486 }
3487
3488 /* Make a special call to the linker "notice" function to tell it that
3489 we are about to handle an as-needed lib, or have finished
3490 processing the lib. */
3491
3492 bfd_boolean
3493 _bfd_elf_notice_as_needed (bfd *ibfd,
3494 struct bfd_link_info *info,
3495 enum notice_asneeded_action act)
3496 {
3497 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3498 }
3499
3500 /* Check relocations an ELF object file. */
3501
3502 bfd_boolean
3503 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3504 {
3505 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3506 struct elf_link_hash_table *htab = elf_hash_table (info);
3507
3508 /* If this object is the same format as the output object, and it is
3509 not a shared library, then let the backend look through the
3510 relocs.
3511
3512 This is required to build global offset table entries and to
3513 arrange for dynamic relocs. It is not required for the
3514 particular common case of linking non PIC code, even when linking
3515 against shared libraries, but unfortunately there is no way of
3516 knowing whether an object file has been compiled PIC or not.
3517 Looking through the relocs is not particularly time consuming.
3518 The problem is that we must either (1) keep the relocs in memory,
3519 which causes the linker to require additional runtime memory or
3520 (2) read the relocs twice from the input file, which wastes time.
3521 This would be a good case for using mmap.
3522
3523 I have no idea how to handle linking PIC code into a file of a
3524 different format. It probably can't be done. */
3525 if ((abfd->flags & DYNAMIC) == 0
3526 && is_elf_hash_table (htab)
3527 && bed->check_relocs != NULL
3528 && elf_object_id (abfd) == elf_hash_table_id (htab)
3529 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3530 {
3531 asection *o;
3532
3533 for (o = abfd->sections; o != NULL; o = o->next)
3534 {
3535 Elf_Internal_Rela *internal_relocs;
3536 bfd_boolean ok;
3537
3538 /* Don't check relocations in excluded sections. */
3539 if ((o->flags & SEC_RELOC) == 0
3540 || (o->flags & SEC_EXCLUDE) != 0
3541 || o->reloc_count == 0
3542 || ((info->strip == strip_all || info->strip == strip_debugger)
3543 && (o->flags & SEC_DEBUGGING) != 0)
3544 || bfd_is_abs_section (o->output_section))
3545 continue;
3546
3547 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3548 info->keep_memory);
3549 if (internal_relocs == NULL)
3550 return FALSE;
3551
3552 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3553
3554 if (elf_section_data (o)->relocs != internal_relocs)
3555 free (internal_relocs);
3556
3557 if (! ok)
3558 return FALSE;
3559 }
3560 }
3561
3562 return TRUE;
3563 }
3564
3565 /* Add symbols from an ELF object file to the linker hash table. */
3566
3567 static bfd_boolean
3568 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3569 {
3570 Elf_Internal_Ehdr *ehdr;
3571 Elf_Internal_Shdr *hdr;
3572 bfd_size_type symcount;
3573 bfd_size_type extsymcount;
3574 bfd_size_type extsymoff;
3575 struct elf_link_hash_entry **sym_hash;
3576 bfd_boolean dynamic;
3577 Elf_External_Versym *extversym = NULL;
3578 Elf_External_Versym *ever;
3579 struct elf_link_hash_entry *weaks;
3580 struct elf_link_hash_entry **nondeflt_vers = NULL;
3581 bfd_size_type nondeflt_vers_cnt = 0;
3582 Elf_Internal_Sym *isymbuf = NULL;
3583 Elf_Internal_Sym *isym;
3584 Elf_Internal_Sym *isymend;
3585 const struct elf_backend_data *bed;
3586 bfd_boolean add_needed;
3587 struct elf_link_hash_table *htab;
3588 bfd_size_type amt;
3589 void *alloc_mark = NULL;
3590 struct bfd_hash_entry **old_table = NULL;
3591 unsigned int old_size = 0;
3592 unsigned int old_count = 0;
3593 void *old_tab = NULL;
3594 void *old_ent;
3595 struct bfd_link_hash_entry *old_undefs = NULL;
3596 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3597 long old_dynsymcount = 0;
3598 bfd_size_type old_dynstr_size = 0;
3599 size_t tabsize = 0;
3600 asection *s;
3601 bfd_boolean just_syms;
3602
3603 htab = elf_hash_table (info);
3604 bed = get_elf_backend_data (abfd);
3605
3606 if ((abfd->flags & DYNAMIC) == 0)
3607 dynamic = FALSE;
3608 else
3609 {
3610 dynamic = TRUE;
3611
3612 /* You can't use -r against a dynamic object. Also, there's no
3613 hope of using a dynamic object which does not exactly match
3614 the format of the output file. */
3615 if (bfd_link_relocatable (info)
3616 || !is_elf_hash_table (htab)
3617 || info->output_bfd->xvec != abfd->xvec)
3618 {
3619 if (bfd_link_relocatable (info))
3620 bfd_set_error (bfd_error_invalid_operation);
3621 else
3622 bfd_set_error (bfd_error_wrong_format);
3623 goto error_return;
3624 }
3625 }
3626
3627 ehdr = elf_elfheader (abfd);
3628 if (info->warn_alternate_em
3629 && bed->elf_machine_code != ehdr->e_machine
3630 && ((bed->elf_machine_alt1 != 0
3631 && ehdr->e_machine == bed->elf_machine_alt1)
3632 || (bed->elf_machine_alt2 != 0
3633 && ehdr->e_machine == bed->elf_machine_alt2)))
3634 info->callbacks->einfo
3635 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3636 ehdr->e_machine, abfd, bed->elf_machine_code);
3637
3638 /* As a GNU extension, any input sections which are named
3639 .gnu.warning.SYMBOL are treated as warning symbols for the given
3640 symbol. This differs from .gnu.warning sections, which generate
3641 warnings when they are included in an output file. */
3642 /* PR 12761: Also generate this warning when building shared libraries. */
3643 for (s = abfd->sections; s != NULL; s = s->next)
3644 {
3645 const char *name;
3646
3647 name = bfd_get_section_name (abfd, s);
3648 if (CONST_STRNEQ (name, ".gnu.warning."))
3649 {
3650 char *msg;
3651 bfd_size_type sz;
3652
3653 name += sizeof ".gnu.warning." - 1;
3654
3655 /* If this is a shared object, then look up the symbol
3656 in the hash table. If it is there, and it is already
3657 been defined, then we will not be using the entry
3658 from this shared object, so we don't need to warn.
3659 FIXME: If we see the definition in a regular object
3660 later on, we will warn, but we shouldn't. The only
3661 fix is to keep track of what warnings we are supposed
3662 to emit, and then handle them all at the end of the
3663 link. */
3664 if (dynamic)
3665 {
3666 struct elf_link_hash_entry *h;
3667
3668 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3669
3670 /* FIXME: What about bfd_link_hash_common? */
3671 if (h != NULL
3672 && (h->root.type == bfd_link_hash_defined
3673 || h->root.type == bfd_link_hash_defweak))
3674 continue;
3675 }
3676
3677 sz = s->size;
3678 msg = (char *) bfd_alloc (abfd, sz + 1);
3679 if (msg == NULL)
3680 goto error_return;
3681
3682 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3683 goto error_return;
3684
3685 msg[sz] = '\0';
3686
3687 if (! (_bfd_generic_link_add_one_symbol
3688 (info, abfd, name, BSF_WARNING, s, 0, msg,
3689 FALSE, bed->collect, NULL)))
3690 goto error_return;
3691
3692 if (bfd_link_executable (info))
3693 {
3694 /* Clobber the section size so that the warning does
3695 not get copied into the output file. */
3696 s->size = 0;
3697
3698 /* Also set SEC_EXCLUDE, so that symbols defined in
3699 the warning section don't get copied to the output. */
3700 s->flags |= SEC_EXCLUDE;
3701 }
3702 }
3703 }
3704
3705 just_syms = ((s = abfd->sections) != NULL
3706 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3707
3708 add_needed = TRUE;
3709 if (! dynamic)
3710 {
3711 /* If we are creating a shared library, create all the dynamic
3712 sections immediately. We need to attach them to something,
3713 so we attach them to this BFD, provided it is the right
3714 format and is not from ld --just-symbols. Always create the
3715 dynamic sections for -E/--dynamic-list. FIXME: If there
3716 are no input BFD's of the same format as the output, we can't
3717 make a shared library. */
3718 if (!just_syms
3719 && (bfd_link_pic (info)
3720 || (!bfd_link_relocatable (info)
3721 && (info->export_dynamic || info->dynamic)))
3722 && is_elf_hash_table (htab)
3723 && info->output_bfd->xvec == abfd->xvec
3724 && !htab->dynamic_sections_created)
3725 {
3726 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3727 goto error_return;
3728 }
3729 }
3730 else if (!is_elf_hash_table (htab))
3731 goto error_return;
3732 else
3733 {
3734 const char *soname = NULL;
3735 char *audit = NULL;
3736 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3737 int ret;
3738
3739 /* ld --just-symbols and dynamic objects don't mix very well.
3740 ld shouldn't allow it. */
3741 if (just_syms)
3742 abort ();
3743
3744 /* If this dynamic lib was specified on the command line with
3745 --as-needed in effect, then we don't want to add a DT_NEEDED
3746 tag unless the lib is actually used. Similary for libs brought
3747 in by another lib's DT_NEEDED. When --no-add-needed is used
3748 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3749 any dynamic library in DT_NEEDED tags in the dynamic lib at
3750 all. */
3751 add_needed = (elf_dyn_lib_class (abfd)
3752 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3753 | DYN_NO_NEEDED)) == 0;
3754
3755 s = bfd_get_section_by_name (abfd, ".dynamic");
3756 if (s != NULL)
3757 {
3758 bfd_byte *dynbuf;
3759 bfd_byte *extdyn;
3760 unsigned int elfsec;
3761 unsigned long shlink;
3762
3763 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3764 {
3765 error_free_dyn:
3766 free (dynbuf);
3767 goto error_return;
3768 }
3769
3770 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3771 if (elfsec == SHN_BAD)
3772 goto error_free_dyn;
3773 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3774
3775 for (extdyn = dynbuf;
3776 extdyn < dynbuf + s->size;
3777 extdyn += bed->s->sizeof_dyn)
3778 {
3779 Elf_Internal_Dyn dyn;
3780
3781 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3782 if (dyn.d_tag == DT_SONAME)
3783 {
3784 unsigned int tagv = dyn.d_un.d_val;
3785 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3786 if (soname == NULL)
3787 goto error_free_dyn;
3788 }
3789 if (dyn.d_tag == DT_NEEDED)
3790 {
3791 struct bfd_link_needed_list *n, **pn;
3792 char *fnm, *anm;
3793 unsigned int tagv = dyn.d_un.d_val;
3794
3795 amt = sizeof (struct bfd_link_needed_list);
3796 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3797 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3798 if (n == NULL || fnm == NULL)
3799 goto error_free_dyn;
3800 amt = strlen (fnm) + 1;
3801 anm = (char *) bfd_alloc (abfd, amt);
3802 if (anm == NULL)
3803 goto error_free_dyn;
3804 memcpy (anm, fnm, amt);
3805 n->name = anm;
3806 n->by = abfd;
3807 n->next = NULL;
3808 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3809 ;
3810 *pn = n;
3811 }
3812 if (dyn.d_tag == DT_RUNPATH)
3813 {
3814 struct bfd_link_needed_list *n, **pn;
3815 char *fnm, *anm;
3816 unsigned int tagv = dyn.d_un.d_val;
3817
3818 amt = sizeof (struct bfd_link_needed_list);
3819 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3820 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3821 if (n == NULL || fnm == NULL)
3822 goto error_free_dyn;
3823 amt = strlen (fnm) + 1;
3824 anm = (char *) bfd_alloc (abfd, amt);
3825 if (anm == NULL)
3826 goto error_free_dyn;
3827 memcpy (anm, fnm, amt);
3828 n->name = anm;
3829 n->by = abfd;
3830 n->next = NULL;
3831 for (pn = & runpath;
3832 *pn != NULL;
3833 pn = &(*pn)->next)
3834 ;
3835 *pn = n;
3836 }
3837 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3838 if (!runpath && dyn.d_tag == DT_RPATH)
3839 {
3840 struct bfd_link_needed_list *n, **pn;
3841 char *fnm, *anm;
3842 unsigned int tagv = dyn.d_un.d_val;
3843
3844 amt = sizeof (struct bfd_link_needed_list);
3845 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3846 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3847 if (n == NULL || fnm == NULL)
3848 goto error_free_dyn;
3849 amt = strlen (fnm) + 1;
3850 anm = (char *) bfd_alloc (abfd, amt);
3851 if (anm == NULL)
3852 goto error_free_dyn;
3853 memcpy (anm, fnm, amt);
3854 n->name = anm;
3855 n->by = abfd;
3856 n->next = NULL;
3857 for (pn = & rpath;
3858 *pn != NULL;
3859 pn = &(*pn)->next)
3860 ;
3861 *pn = n;
3862 }
3863 if (dyn.d_tag == DT_AUDIT)
3864 {
3865 unsigned int tagv = dyn.d_un.d_val;
3866 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3867 }
3868 }
3869
3870 free (dynbuf);
3871 }
3872
3873 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3874 frees all more recently bfd_alloc'd blocks as well. */
3875 if (runpath)
3876 rpath = runpath;
3877
3878 if (rpath)
3879 {
3880 struct bfd_link_needed_list **pn;
3881 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3882 ;
3883 *pn = rpath;
3884 }
3885
3886 /* We do not want to include any of the sections in a dynamic
3887 object in the output file. We hack by simply clobbering the
3888 list of sections in the BFD. This could be handled more
3889 cleanly by, say, a new section flag; the existing
3890 SEC_NEVER_LOAD flag is not the one we want, because that one
3891 still implies that the section takes up space in the output
3892 file. */
3893 bfd_section_list_clear (abfd);
3894
3895 /* Find the name to use in a DT_NEEDED entry that refers to this
3896 object. If the object has a DT_SONAME entry, we use it.
3897 Otherwise, if the generic linker stuck something in
3898 elf_dt_name, we use that. Otherwise, we just use the file
3899 name. */
3900 if (soname == NULL || *soname == '\0')
3901 {
3902 soname = elf_dt_name (abfd);
3903 if (soname == NULL || *soname == '\0')
3904 soname = bfd_get_filename (abfd);
3905 }
3906
3907 /* Save the SONAME because sometimes the linker emulation code
3908 will need to know it. */
3909 elf_dt_name (abfd) = soname;
3910
3911 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3912 if (ret < 0)
3913 goto error_return;
3914
3915 /* If we have already included this dynamic object in the
3916 link, just ignore it. There is no reason to include a
3917 particular dynamic object more than once. */
3918 if (ret > 0)
3919 return TRUE;
3920
3921 /* Save the DT_AUDIT entry for the linker emulation code. */
3922 elf_dt_audit (abfd) = audit;
3923 }
3924
3925 /* If this is a dynamic object, we always link against the .dynsym
3926 symbol table, not the .symtab symbol table. The dynamic linker
3927 will only see the .dynsym symbol table, so there is no reason to
3928 look at .symtab for a dynamic object. */
3929
3930 if (! dynamic || elf_dynsymtab (abfd) == 0)
3931 hdr = &elf_tdata (abfd)->symtab_hdr;
3932 else
3933 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3934
3935 symcount = hdr->sh_size / bed->s->sizeof_sym;
3936
3937 /* The sh_info field of the symtab header tells us where the
3938 external symbols start. We don't care about the local symbols at
3939 this point. */
3940 if (elf_bad_symtab (abfd))
3941 {
3942 extsymcount = symcount;
3943 extsymoff = 0;
3944 }
3945 else
3946 {
3947 extsymcount = symcount - hdr->sh_info;
3948 extsymoff = hdr->sh_info;
3949 }
3950
3951 sym_hash = elf_sym_hashes (abfd);
3952 if (extsymcount != 0)
3953 {
3954 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3955 NULL, NULL, NULL);
3956 if (isymbuf == NULL)
3957 goto error_return;
3958
3959 if (sym_hash == NULL)
3960 {
3961 /* We store a pointer to the hash table entry for each
3962 external symbol. */
3963 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3964 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
3965 if (sym_hash == NULL)
3966 goto error_free_sym;
3967 elf_sym_hashes (abfd) = sym_hash;
3968 }
3969 }
3970
3971 if (dynamic)
3972 {
3973 /* Read in any version definitions. */
3974 if (!_bfd_elf_slurp_version_tables (abfd,
3975 info->default_imported_symver))
3976 goto error_free_sym;
3977
3978 /* Read in the symbol versions, but don't bother to convert them
3979 to internal format. */
3980 if (elf_dynversym (abfd) != 0)
3981 {
3982 Elf_Internal_Shdr *versymhdr;
3983
3984 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3985 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3986 if (extversym == NULL)
3987 goto error_free_sym;
3988 amt = versymhdr->sh_size;
3989 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3990 || bfd_bread (extversym, amt, abfd) != amt)
3991 goto error_free_vers;
3992 }
3993 }
3994
3995 /* If we are loading an as-needed shared lib, save the symbol table
3996 state before we start adding symbols. If the lib turns out
3997 to be unneeded, restore the state. */
3998 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3999 {
4000 unsigned int i;
4001 size_t entsize;
4002
4003 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4004 {
4005 struct bfd_hash_entry *p;
4006 struct elf_link_hash_entry *h;
4007
4008 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4009 {
4010 h = (struct elf_link_hash_entry *) p;
4011 entsize += htab->root.table.entsize;
4012 if (h->root.type == bfd_link_hash_warning)
4013 entsize += htab->root.table.entsize;
4014 }
4015 }
4016
4017 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4018 old_tab = bfd_malloc (tabsize + entsize);
4019 if (old_tab == NULL)
4020 goto error_free_vers;
4021
4022 /* Remember the current objalloc pointer, so that all mem for
4023 symbols added can later be reclaimed. */
4024 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4025 if (alloc_mark == NULL)
4026 goto error_free_vers;
4027
4028 /* Make a special call to the linker "notice" function to
4029 tell it that we are about to handle an as-needed lib. */
4030 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4031 goto error_free_vers;
4032
4033 /* Clone the symbol table. Remember some pointers into the
4034 symbol table, and dynamic symbol count. */
4035 old_ent = (char *) old_tab + tabsize;
4036 memcpy (old_tab, htab->root.table.table, tabsize);
4037 old_undefs = htab->root.undefs;
4038 old_undefs_tail = htab->root.undefs_tail;
4039 old_table = htab->root.table.table;
4040 old_size = htab->root.table.size;
4041 old_count = htab->root.table.count;
4042 old_dynsymcount = htab->dynsymcount;
4043 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
4044
4045 for (i = 0; i < htab->root.table.size; i++)
4046 {
4047 struct bfd_hash_entry *p;
4048 struct elf_link_hash_entry *h;
4049
4050 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4051 {
4052 memcpy (old_ent, p, htab->root.table.entsize);
4053 old_ent = (char *) old_ent + htab->root.table.entsize;
4054 h = (struct elf_link_hash_entry *) p;
4055 if (h->root.type == bfd_link_hash_warning)
4056 {
4057 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4058 old_ent = (char *) old_ent + htab->root.table.entsize;
4059 }
4060 }
4061 }
4062 }
4063
4064 weaks = NULL;
4065 ever = extversym != NULL ? extversym + extsymoff : NULL;
4066 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4067 isym < isymend;
4068 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4069 {
4070 int bind;
4071 bfd_vma value;
4072 asection *sec, *new_sec;
4073 flagword flags;
4074 const char *name;
4075 struct elf_link_hash_entry *h;
4076 struct elf_link_hash_entry *hi;
4077 bfd_boolean definition;
4078 bfd_boolean size_change_ok;
4079 bfd_boolean type_change_ok;
4080 bfd_boolean new_weakdef;
4081 bfd_boolean new_weak;
4082 bfd_boolean old_weak;
4083 bfd_boolean override;
4084 bfd_boolean common;
4085 unsigned int old_alignment;
4086 bfd *old_bfd;
4087 bfd_boolean matched;
4088
4089 override = FALSE;
4090
4091 flags = BSF_NO_FLAGS;
4092 sec = NULL;
4093 value = isym->st_value;
4094 common = bed->common_definition (isym);
4095
4096 bind = ELF_ST_BIND (isym->st_info);
4097 switch (bind)
4098 {
4099 case STB_LOCAL:
4100 /* This should be impossible, since ELF requires that all
4101 global symbols follow all local symbols, and that sh_info
4102 point to the first global symbol. Unfortunately, Irix 5
4103 screws this up. */
4104 continue;
4105
4106 case STB_GLOBAL:
4107 if (isym->st_shndx != SHN_UNDEF && !common)
4108 flags = BSF_GLOBAL;
4109 break;
4110
4111 case STB_WEAK:
4112 flags = BSF_WEAK;
4113 break;
4114
4115 case STB_GNU_UNIQUE:
4116 flags = BSF_GNU_UNIQUE;
4117 break;
4118
4119 default:
4120 /* Leave it up to the processor backend. */
4121 break;
4122 }
4123
4124 if (isym->st_shndx == SHN_UNDEF)
4125 sec = bfd_und_section_ptr;
4126 else if (isym->st_shndx == SHN_ABS)
4127 sec = bfd_abs_section_ptr;
4128 else if (isym->st_shndx == SHN_COMMON)
4129 {
4130 sec = bfd_com_section_ptr;
4131 /* What ELF calls the size we call the value. What ELF
4132 calls the value we call the alignment. */
4133 value = isym->st_size;
4134 }
4135 else
4136 {
4137 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4138 if (sec == NULL)
4139 sec = bfd_abs_section_ptr;
4140 else if (discarded_section (sec))
4141 {
4142 /* Symbols from discarded section are undefined. We keep
4143 its visibility. */
4144 sec = bfd_und_section_ptr;
4145 isym->st_shndx = SHN_UNDEF;
4146 }
4147 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4148 value -= sec->vma;
4149 }
4150
4151 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4152 isym->st_name);
4153 if (name == NULL)
4154 goto error_free_vers;
4155
4156 if (isym->st_shndx == SHN_COMMON
4157 && (abfd->flags & BFD_PLUGIN) != 0)
4158 {
4159 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4160
4161 if (xc == NULL)
4162 {
4163 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4164 | SEC_EXCLUDE);
4165 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4166 if (xc == NULL)
4167 goto error_free_vers;
4168 }
4169 sec = xc;
4170 }
4171 else if (isym->st_shndx == SHN_COMMON
4172 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4173 && !bfd_link_relocatable (info))
4174 {
4175 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4176
4177 if (tcomm == NULL)
4178 {
4179 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4180 | SEC_LINKER_CREATED);
4181 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4182 if (tcomm == NULL)
4183 goto error_free_vers;
4184 }
4185 sec = tcomm;
4186 }
4187 else if (bed->elf_add_symbol_hook)
4188 {
4189 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4190 &sec, &value))
4191 goto error_free_vers;
4192
4193 /* The hook function sets the name to NULL if this symbol
4194 should be skipped for some reason. */
4195 if (name == NULL)
4196 continue;
4197 }
4198
4199 /* Sanity check that all possibilities were handled. */
4200 if (sec == NULL)
4201 {
4202 bfd_set_error (bfd_error_bad_value);
4203 goto error_free_vers;
4204 }
4205
4206 /* Silently discard TLS symbols from --just-syms. There's
4207 no way to combine a static TLS block with a new TLS block
4208 for this executable. */
4209 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4210 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4211 continue;
4212
4213 if (bfd_is_und_section (sec)
4214 || bfd_is_com_section (sec))
4215 definition = FALSE;
4216 else
4217 definition = TRUE;
4218
4219 size_change_ok = FALSE;
4220 type_change_ok = bed->type_change_ok;
4221 old_weak = FALSE;
4222 matched = FALSE;
4223 old_alignment = 0;
4224 old_bfd = NULL;
4225 new_sec = sec;
4226
4227 if (is_elf_hash_table (htab))
4228 {
4229 Elf_Internal_Versym iver;
4230 unsigned int vernum = 0;
4231 bfd_boolean skip;
4232
4233 if (ever == NULL)
4234 {
4235 if (info->default_imported_symver)
4236 /* Use the default symbol version created earlier. */
4237 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4238 else
4239 iver.vs_vers = 0;
4240 }
4241 else
4242 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4243
4244 vernum = iver.vs_vers & VERSYM_VERSION;
4245
4246 /* If this is a hidden symbol, or if it is not version
4247 1, we append the version name to the symbol name.
4248 However, we do not modify a non-hidden absolute symbol
4249 if it is not a function, because it might be the version
4250 symbol itself. FIXME: What if it isn't? */
4251 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4252 || (vernum > 1
4253 && (!bfd_is_abs_section (sec)
4254 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4255 {
4256 const char *verstr;
4257 size_t namelen, verlen, newlen;
4258 char *newname, *p;
4259
4260 if (isym->st_shndx != SHN_UNDEF)
4261 {
4262 if (vernum > elf_tdata (abfd)->cverdefs)
4263 verstr = NULL;
4264 else if (vernum > 1)
4265 verstr =
4266 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4267 else
4268 verstr = "";
4269
4270 if (verstr == NULL)
4271 {
4272 (*_bfd_error_handler)
4273 (_("%B: %s: invalid version %u (max %d)"),
4274 abfd, name, vernum,
4275 elf_tdata (abfd)->cverdefs);
4276 bfd_set_error (bfd_error_bad_value);
4277 goto error_free_vers;
4278 }
4279 }
4280 else
4281 {
4282 /* We cannot simply test for the number of
4283 entries in the VERNEED section since the
4284 numbers for the needed versions do not start
4285 at 0. */
4286 Elf_Internal_Verneed *t;
4287
4288 verstr = NULL;
4289 for (t = elf_tdata (abfd)->verref;
4290 t != NULL;
4291 t = t->vn_nextref)
4292 {
4293 Elf_Internal_Vernaux *a;
4294
4295 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4296 {
4297 if (a->vna_other == vernum)
4298 {
4299 verstr = a->vna_nodename;
4300 break;
4301 }
4302 }
4303 if (a != NULL)
4304 break;
4305 }
4306 if (verstr == NULL)
4307 {
4308 (*_bfd_error_handler)
4309 (_("%B: %s: invalid needed version %d"),
4310 abfd, name, vernum);
4311 bfd_set_error (bfd_error_bad_value);
4312 goto error_free_vers;
4313 }
4314 }
4315
4316 namelen = strlen (name);
4317 verlen = strlen (verstr);
4318 newlen = namelen + verlen + 2;
4319 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4320 && isym->st_shndx != SHN_UNDEF)
4321 ++newlen;
4322
4323 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4324 if (newname == NULL)
4325 goto error_free_vers;
4326 memcpy (newname, name, namelen);
4327 p = newname + namelen;
4328 *p++ = ELF_VER_CHR;
4329 /* If this is a defined non-hidden version symbol,
4330 we add another @ to the name. This indicates the
4331 default version of the symbol. */
4332 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4333 && isym->st_shndx != SHN_UNDEF)
4334 *p++ = ELF_VER_CHR;
4335 memcpy (p, verstr, verlen + 1);
4336
4337 name = newname;
4338 }
4339
4340 /* If this symbol has default visibility and the user has
4341 requested we not re-export it, then mark it as hidden. */
4342 if (!bfd_is_und_section (sec)
4343 && !dynamic
4344 && abfd->no_export
4345 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4346 isym->st_other = (STV_HIDDEN
4347 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4348
4349 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4350 sym_hash, &old_bfd, &old_weak,
4351 &old_alignment, &skip, &override,
4352 &type_change_ok, &size_change_ok,
4353 &matched))
4354 goto error_free_vers;
4355
4356 if (skip)
4357 continue;
4358
4359 /* Override a definition only if the new symbol matches the
4360 existing one. */
4361 if (override && matched)
4362 definition = FALSE;
4363
4364 h = *sym_hash;
4365 while (h->root.type == bfd_link_hash_indirect
4366 || h->root.type == bfd_link_hash_warning)
4367 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4368
4369 if (elf_tdata (abfd)->verdef != NULL
4370 && vernum > 1
4371 && definition)
4372 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4373 }
4374
4375 if (! (_bfd_generic_link_add_one_symbol
4376 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4377 (struct bfd_link_hash_entry **) sym_hash)))
4378 goto error_free_vers;
4379
4380 h = *sym_hash;
4381 /* We need to make sure that indirect symbol dynamic flags are
4382 updated. */
4383 hi = h;
4384 while (h->root.type == bfd_link_hash_indirect
4385 || h->root.type == bfd_link_hash_warning)
4386 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4387
4388 *sym_hash = h;
4389
4390 new_weak = (flags & BSF_WEAK) != 0;
4391 new_weakdef = FALSE;
4392 if (dynamic
4393 && definition
4394 && new_weak
4395 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4396 && is_elf_hash_table (htab)
4397 && h->u.weakdef == NULL)
4398 {
4399 /* Keep a list of all weak defined non function symbols from
4400 a dynamic object, using the weakdef field. Later in this
4401 function we will set the weakdef field to the correct
4402 value. We only put non-function symbols from dynamic
4403 objects on this list, because that happens to be the only
4404 time we need to know the normal symbol corresponding to a
4405 weak symbol, and the information is time consuming to
4406 figure out. If the weakdef field is not already NULL,
4407 then this symbol was already defined by some previous
4408 dynamic object, and we will be using that previous
4409 definition anyhow. */
4410
4411 h->u.weakdef = weaks;
4412 weaks = h;
4413 new_weakdef = TRUE;
4414 }
4415
4416 /* Set the alignment of a common symbol. */
4417 if ((common || bfd_is_com_section (sec))
4418 && h->root.type == bfd_link_hash_common)
4419 {
4420 unsigned int align;
4421
4422 if (common)
4423 align = bfd_log2 (isym->st_value);
4424 else
4425 {
4426 /* The new symbol is a common symbol in a shared object.
4427 We need to get the alignment from the section. */
4428 align = new_sec->alignment_power;
4429 }
4430 if (align > old_alignment)
4431 h->root.u.c.p->alignment_power = align;
4432 else
4433 h->root.u.c.p->alignment_power = old_alignment;
4434 }
4435
4436 if (is_elf_hash_table (htab))
4437 {
4438 /* Set a flag in the hash table entry indicating the type of
4439 reference or definition we just found. A dynamic symbol
4440 is one which is referenced or defined by both a regular
4441 object and a shared object. */
4442 bfd_boolean dynsym = FALSE;
4443
4444 /* Plugin symbols aren't normal. Don't set def_regular or
4445 ref_regular for them, or make them dynamic. */
4446 if ((abfd->flags & BFD_PLUGIN) != 0)
4447 ;
4448 else if (! dynamic)
4449 {
4450 if (! definition)
4451 {
4452 h->ref_regular = 1;
4453 if (bind != STB_WEAK)
4454 h->ref_regular_nonweak = 1;
4455 }
4456 else
4457 {
4458 h->def_regular = 1;
4459 if (h->def_dynamic)
4460 {
4461 h->def_dynamic = 0;
4462 h->ref_dynamic = 1;
4463 }
4464 }
4465
4466 /* If the indirect symbol has been forced local, don't
4467 make the real symbol dynamic. */
4468 if ((h == hi || !hi->forced_local)
4469 && (bfd_link_dll (info)
4470 || h->def_dynamic
4471 || h->ref_dynamic))
4472 dynsym = TRUE;
4473 }
4474 else
4475 {
4476 if (! definition)
4477 {
4478 h->ref_dynamic = 1;
4479 hi->ref_dynamic = 1;
4480 }
4481 else
4482 {
4483 h->def_dynamic = 1;
4484 hi->def_dynamic = 1;
4485 }
4486
4487 /* If the indirect symbol has been forced local, don't
4488 make the real symbol dynamic. */
4489 if ((h == hi || !hi->forced_local)
4490 && (h->def_regular
4491 || h->ref_regular
4492 || (h->u.weakdef != NULL
4493 && ! new_weakdef
4494 && h->u.weakdef->dynindx != -1)))
4495 dynsym = TRUE;
4496 }
4497
4498 /* Check to see if we need to add an indirect symbol for
4499 the default name. */
4500 if (definition
4501 || (!override && h->root.type == bfd_link_hash_common))
4502 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4503 sec, value, &old_bfd, &dynsym))
4504 goto error_free_vers;
4505
4506 /* Check the alignment when a common symbol is involved. This
4507 can change when a common symbol is overridden by a normal
4508 definition or a common symbol is ignored due to the old
4509 normal definition. We need to make sure the maximum
4510 alignment is maintained. */
4511 if ((old_alignment || common)
4512 && h->root.type != bfd_link_hash_common)
4513 {
4514 unsigned int common_align;
4515 unsigned int normal_align;
4516 unsigned int symbol_align;
4517 bfd *normal_bfd;
4518 bfd *common_bfd;
4519
4520 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4521 || h->root.type == bfd_link_hash_defweak);
4522
4523 symbol_align = ffs (h->root.u.def.value) - 1;
4524 if (h->root.u.def.section->owner != NULL
4525 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4526 {
4527 normal_align = h->root.u.def.section->alignment_power;
4528 if (normal_align > symbol_align)
4529 normal_align = symbol_align;
4530 }
4531 else
4532 normal_align = symbol_align;
4533
4534 if (old_alignment)
4535 {
4536 common_align = old_alignment;
4537 common_bfd = old_bfd;
4538 normal_bfd = abfd;
4539 }
4540 else
4541 {
4542 common_align = bfd_log2 (isym->st_value);
4543 common_bfd = abfd;
4544 normal_bfd = old_bfd;
4545 }
4546
4547 if (normal_align < common_align)
4548 {
4549 /* PR binutils/2735 */
4550 if (normal_bfd == NULL)
4551 (*_bfd_error_handler)
4552 (_("Warning: alignment %u of common symbol `%s' in %B is"
4553 " greater than the alignment (%u) of its section %A"),
4554 common_bfd, h->root.u.def.section,
4555 1 << common_align, name, 1 << normal_align);
4556 else
4557 (*_bfd_error_handler)
4558 (_("Warning: alignment %u of symbol `%s' in %B"
4559 " is smaller than %u in %B"),
4560 normal_bfd, common_bfd,
4561 1 << normal_align, name, 1 << common_align);
4562 }
4563 }
4564
4565 /* Remember the symbol size if it isn't undefined. */
4566 if (isym->st_size != 0
4567 && isym->st_shndx != SHN_UNDEF
4568 && (definition || h->size == 0))
4569 {
4570 if (h->size != 0
4571 && h->size != isym->st_size
4572 && ! size_change_ok)
4573 (*_bfd_error_handler)
4574 (_("Warning: size of symbol `%s' changed"
4575 " from %lu in %B to %lu in %B"),
4576 old_bfd, abfd,
4577 name, (unsigned long) h->size,
4578 (unsigned long) isym->st_size);
4579
4580 h->size = isym->st_size;
4581 }
4582
4583 /* If this is a common symbol, then we always want H->SIZE
4584 to be the size of the common symbol. The code just above
4585 won't fix the size if a common symbol becomes larger. We
4586 don't warn about a size change here, because that is
4587 covered by --warn-common. Allow changes between different
4588 function types. */
4589 if (h->root.type == bfd_link_hash_common)
4590 h->size = h->root.u.c.size;
4591
4592 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4593 && ((definition && !new_weak)
4594 || (old_weak && h->root.type == bfd_link_hash_common)
4595 || h->type == STT_NOTYPE))
4596 {
4597 unsigned int type = ELF_ST_TYPE (isym->st_info);
4598
4599 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4600 symbol. */
4601 if (type == STT_GNU_IFUNC
4602 && (abfd->flags & DYNAMIC) != 0)
4603 type = STT_FUNC;
4604
4605 if (h->type != type)
4606 {
4607 if (h->type != STT_NOTYPE && ! type_change_ok)
4608 (*_bfd_error_handler)
4609 (_("Warning: type of symbol `%s' changed"
4610 " from %d to %d in %B"),
4611 abfd, name, h->type, type);
4612
4613 h->type = type;
4614 }
4615 }
4616
4617 /* Merge st_other field. */
4618 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4619
4620 /* We don't want to make debug symbol dynamic. */
4621 if (definition
4622 && (sec->flags & SEC_DEBUGGING)
4623 && !bfd_link_relocatable (info))
4624 dynsym = FALSE;
4625
4626 /* Nor should we make plugin symbols dynamic. */
4627 if ((abfd->flags & BFD_PLUGIN) != 0)
4628 dynsym = FALSE;
4629
4630 if (definition)
4631 {
4632 h->target_internal = isym->st_target_internal;
4633 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4634 }
4635
4636 if (definition && !dynamic)
4637 {
4638 char *p = strchr (name, ELF_VER_CHR);
4639 if (p != NULL && p[1] != ELF_VER_CHR)
4640 {
4641 /* Queue non-default versions so that .symver x, x@FOO
4642 aliases can be checked. */
4643 if (!nondeflt_vers)
4644 {
4645 amt = ((isymend - isym + 1)
4646 * sizeof (struct elf_link_hash_entry *));
4647 nondeflt_vers
4648 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4649 if (!nondeflt_vers)
4650 goto error_free_vers;
4651 }
4652 nondeflt_vers[nondeflt_vers_cnt++] = h;
4653 }
4654 }
4655
4656 if (dynsym && h->dynindx == -1)
4657 {
4658 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4659 goto error_free_vers;
4660 if (h->u.weakdef != NULL
4661 && ! new_weakdef
4662 && h->u.weakdef->dynindx == -1)
4663 {
4664 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4665 goto error_free_vers;
4666 }
4667 }
4668 else if (h->dynindx != -1)
4669 /* If the symbol already has a dynamic index, but
4670 visibility says it should not be visible, turn it into
4671 a local symbol. */
4672 switch (ELF_ST_VISIBILITY (h->other))
4673 {
4674 case STV_INTERNAL:
4675 case STV_HIDDEN:
4676 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4677 dynsym = FALSE;
4678 break;
4679 }
4680
4681 /* Don't add DT_NEEDED for references from the dummy bfd nor
4682 for unmatched symbol. */
4683 if (!add_needed
4684 && matched
4685 && definition
4686 && ((dynsym
4687 && h->ref_regular_nonweak
4688 && (old_bfd == NULL
4689 || (old_bfd->flags & BFD_PLUGIN) == 0))
4690 || (h->ref_dynamic_nonweak
4691 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4692 && !on_needed_list (elf_dt_name (abfd),
4693 htab->needed, NULL))))
4694 {
4695 int ret;
4696 const char *soname = elf_dt_name (abfd);
4697
4698 info->callbacks->minfo ("%!", soname, old_bfd,
4699 h->root.root.string);
4700
4701 /* A symbol from a library loaded via DT_NEEDED of some
4702 other library is referenced by a regular object.
4703 Add a DT_NEEDED entry for it. Issue an error if
4704 --no-add-needed is used and the reference was not
4705 a weak one. */
4706 if (old_bfd != NULL
4707 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4708 {
4709 (*_bfd_error_handler)
4710 (_("%B: undefined reference to symbol '%s'"),
4711 old_bfd, name);
4712 bfd_set_error (bfd_error_missing_dso);
4713 goto error_free_vers;
4714 }
4715
4716 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4717 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4718
4719 add_needed = TRUE;
4720 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4721 if (ret < 0)
4722 goto error_free_vers;
4723
4724 BFD_ASSERT (ret == 0);
4725 }
4726 }
4727 }
4728
4729 if (extversym != NULL)
4730 {
4731 free (extversym);
4732 extversym = NULL;
4733 }
4734
4735 if (isymbuf != NULL)
4736 {
4737 free (isymbuf);
4738 isymbuf = NULL;
4739 }
4740
4741 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4742 {
4743 unsigned int i;
4744
4745 /* Restore the symbol table. */
4746 old_ent = (char *) old_tab + tabsize;
4747 memset (elf_sym_hashes (abfd), 0,
4748 extsymcount * sizeof (struct elf_link_hash_entry *));
4749 htab->root.table.table = old_table;
4750 htab->root.table.size = old_size;
4751 htab->root.table.count = old_count;
4752 memcpy (htab->root.table.table, old_tab, tabsize);
4753 htab->root.undefs = old_undefs;
4754 htab->root.undefs_tail = old_undefs_tail;
4755 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4756 for (i = 0; i < htab->root.table.size; i++)
4757 {
4758 struct bfd_hash_entry *p;
4759 struct elf_link_hash_entry *h;
4760 bfd_size_type size;
4761 unsigned int alignment_power;
4762
4763 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4764 {
4765 h = (struct elf_link_hash_entry *) p;
4766 if (h->root.type == bfd_link_hash_warning)
4767 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4768 if (h->dynindx >= old_dynsymcount
4769 && h->dynstr_index < old_dynstr_size)
4770 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4771
4772 /* Preserve the maximum alignment and size for common
4773 symbols even if this dynamic lib isn't on DT_NEEDED
4774 since it can still be loaded at run time by another
4775 dynamic lib. */
4776 if (h->root.type == bfd_link_hash_common)
4777 {
4778 size = h->root.u.c.size;
4779 alignment_power = h->root.u.c.p->alignment_power;
4780 }
4781 else
4782 {
4783 size = 0;
4784 alignment_power = 0;
4785 }
4786 memcpy (p, old_ent, htab->root.table.entsize);
4787 old_ent = (char *) old_ent + htab->root.table.entsize;
4788 h = (struct elf_link_hash_entry *) p;
4789 if (h->root.type == bfd_link_hash_warning)
4790 {
4791 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4792 old_ent = (char *) old_ent + htab->root.table.entsize;
4793 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4794 }
4795 if (h->root.type == bfd_link_hash_common)
4796 {
4797 if (size > h->root.u.c.size)
4798 h->root.u.c.size = size;
4799 if (alignment_power > h->root.u.c.p->alignment_power)
4800 h->root.u.c.p->alignment_power = alignment_power;
4801 }
4802 }
4803 }
4804
4805 /* Make a special call to the linker "notice" function to
4806 tell it that symbols added for crefs may need to be removed. */
4807 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4808 goto error_free_vers;
4809
4810 free (old_tab);
4811 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4812 alloc_mark);
4813 if (nondeflt_vers != NULL)
4814 free (nondeflt_vers);
4815 return TRUE;
4816 }
4817
4818 if (old_tab != NULL)
4819 {
4820 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4821 goto error_free_vers;
4822 free (old_tab);
4823 old_tab = NULL;
4824 }
4825
4826 /* Now that all the symbols from this input file are created, if
4827 not performing a relocatable link, handle .symver foo, foo@BAR
4828 such that any relocs against foo become foo@BAR. */
4829 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
4830 {
4831 bfd_size_type cnt, symidx;
4832
4833 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4834 {
4835 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4836 char *shortname, *p;
4837
4838 p = strchr (h->root.root.string, ELF_VER_CHR);
4839 if (p == NULL
4840 || (h->root.type != bfd_link_hash_defined
4841 && h->root.type != bfd_link_hash_defweak))
4842 continue;
4843
4844 amt = p - h->root.root.string;
4845 shortname = (char *) bfd_malloc (amt + 1);
4846 if (!shortname)
4847 goto error_free_vers;
4848 memcpy (shortname, h->root.root.string, amt);
4849 shortname[amt] = '\0';
4850
4851 hi = (struct elf_link_hash_entry *)
4852 bfd_link_hash_lookup (&htab->root, shortname,
4853 FALSE, FALSE, FALSE);
4854 if (hi != NULL
4855 && hi->root.type == h->root.type
4856 && hi->root.u.def.value == h->root.u.def.value
4857 && hi->root.u.def.section == h->root.u.def.section)
4858 {
4859 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4860 hi->root.type = bfd_link_hash_indirect;
4861 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4862 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4863 sym_hash = elf_sym_hashes (abfd);
4864 if (sym_hash)
4865 for (symidx = 0; symidx < extsymcount; ++symidx)
4866 if (sym_hash[symidx] == hi)
4867 {
4868 sym_hash[symidx] = h;
4869 break;
4870 }
4871 }
4872 free (shortname);
4873 }
4874 free (nondeflt_vers);
4875 nondeflt_vers = NULL;
4876 }
4877
4878 /* Now set the weakdefs field correctly for all the weak defined
4879 symbols we found. The only way to do this is to search all the
4880 symbols. Since we only need the information for non functions in
4881 dynamic objects, that's the only time we actually put anything on
4882 the list WEAKS. We need this information so that if a regular
4883 object refers to a symbol defined weakly in a dynamic object, the
4884 real symbol in the dynamic object is also put in the dynamic
4885 symbols; we also must arrange for both symbols to point to the
4886 same memory location. We could handle the general case of symbol
4887 aliasing, but a general symbol alias can only be generated in
4888 assembler code, handling it correctly would be very time
4889 consuming, and other ELF linkers don't handle general aliasing
4890 either. */
4891 if (weaks != NULL)
4892 {
4893 struct elf_link_hash_entry **hpp;
4894 struct elf_link_hash_entry **hppend;
4895 struct elf_link_hash_entry **sorted_sym_hash;
4896 struct elf_link_hash_entry *h;
4897 size_t sym_count;
4898
4899 /* Since we have to search the whole symbol list for each weak
4900 defined symbol, search time for N weak defined symbols will be
4901 O(N^2). Binary search will cut it down to O(NlogN). */
4902 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4903 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4904 if (sorted_sym_hash == NULL)
4905 goto error_return;
4906 sym_hash = sorted_sym_hash;
4907 hpp = elf_sym_hashes (abfd);
4908 hppend = hpp + extsymcount;
4909 sym_count = 0;
4910 for (; hpp < hppend; hpp++)
4911 {
4912 h = *hpp;
4913 if (h != NULL
4914 && h->root.type == bfd_link_hash_defined
4915 && !bed->is_function_type (h->type))
4916 {
4917 *sym_hash = h;
4918 sym_hash++;
4919 sym_count++;
4920 }
4921 }
4922
4923 qsort (sorted_sym_hash, sym_count,
4924 sizeof (struct elf_link_hash_entry *),
4925 elf_sort_symbol);
4926
4927 while (weaks != NULL)
4928 {
4929 struct elf_link_hash_entry *hlook;
4930 asection *slook;
4931 bfd_vma vlook;
4932 size_t i, j, idx = 0;
4933
4934 hlook = weaks;
4935 weaks = hlook->u.weakdef;
4936 hlook->u.weakdef = NULL;
4937
4938 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4939 || hlook->root.type == bfd_link_hash_defweak
4940 || hlook->root.type == bfd_link_hash_common
4941 || hlook->root.type == bfd_link_hash_indirect);
4942 slook = hlook->root.u.def.section;
4943 vlook = hlook->root.u.def.value;
4944
4945 i = 0;
4946 j = sym_count;
4947 while (i != j)
4948 {
4949 bfd_signed_vma vdiff;
4950 idx = (i + j) / 2;
4951 h = sorted_sym_hash[idx];
4952 vdiff = vlook - h->root.u.def.value;
4953 if (vdiff < 0)
4954 j = idx;
4955 else if (vdiff > 0)
4956 i = idx + 1;
4957 else
4958 {
4959 int sdiff = slook->id - h->root.u.def.section->id;
4960 if (sdiff < 0)
4961 j = idx;
4962 else if (sdiff > 0)
4963 i = idx + 1;
4964 else
4965 break;
4966 }
4967 }
4968
4969 /* We didn't find a value/section match. */
4970 if (i == j)
4971 continue;
4972
4973 /* With multiple aliases, or when the weak symbol is already
4974 strongly defined, we have multiple matching symbols and
4975 the binary search above may land on any of them. Step
4976 one past the matching symbol(s). */
4977 while (++idx != j)
4978 {
4979 h = sorted_sym_hash[idx];
4980 if (h->root.u.def.section != slook
4981 || h->root.u.def.value != vlook)
4982 break;
4983 }
4984
4985 /* Now look back over the aliases. Since we sorted by size
4986 as well as value and section, we'll choose the one with
4987 the largest size. */
4988 while (idx-- != i)
4989 {
4990 h = sorted_sym_hash[idx];
4991
4992 /* Stop if value or section doesn't match. */
4993 if (h->root.u.def.section != slook
4994 || h->root.u.def.value != vlook)
4995 break;
4996 else if (h != hlook)
4997 {
4998 hlook->u.weakdef = h;
4999
5000 /* If the weak definition is in the list of dynamic
5001 symbols, make sure the real definition is put
5002 there as well. */
5003 if (hlook->dynindx != -1 && h->dynindx == -1)
5004 {
5005 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5006 {
5007 err_free_sym_hash:
5008 free (sorted_sym_hash);
5009 goto error_return;
5010 }
5011 }
5012
5013 /* If the real definition is in the list of dynamic
5014 symbols, make sure the weak definition is put
5015 there as well. If we don't do this, then the
5016 dynamic loader might not merge the entries for the
5017 real definition and the weak definition. */
5018 if (h->dynindx != -1 && hlook->dynindx == -1)
5019 {
5020 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5021 goto err_free_sym_hash;
5022 }
5023 break;
5024 }
5025 }
5026 }
5027
5028 free (sorted_sym_hash);
5029 }
5030
5031 if (bed->check_directives
5032 && !(*bed->check_directives) (abfd, info))
5033 return FALSE;
5034
5035 if (!info->check_relocs_after_open_input
5036 && !_bfd_elf_link_check_relocs (abfd, info))
5037 return FALSE;
5038
5039 /* If this is a non-traditional link, try to optimize the handling
5040 of the .stab/.stabstr sections. */
5041 if (! dynamic
5042 && ! info->traditional_format
5043 && is_elf_hash_table (htab)
5044 && (info->strip != strip_all && info->strip != strip_debugger))
5045 {
5046 asection *stabstr;
5047
5048 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5049 if (stabstr != NULL)
5050 {
5051 bfd_size_type string_offset = 0;
5052 asection *stab;
5053
5054 for (stab = abfd->sections; stab; stab = stab->next)
5055 if (CONST_STRNEQ (stab->name, ".stab")
5056 && (!stab->name[5] ||
5057 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5058 && (stab->flags & SEC_MERGE) == 0
5059 && !bfd_is_abs_section (stab->output_section))
5060 {
5061 struct bfd_elf_section_data *secdata;
5062
5063 secdata = elf_section_data (stab);
5064 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5065 stabstr, &secdata->sec_info,
5066 &string_offset))
5067 goto error_return;
5068 if (secdata->sec_info)
5069 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5070 }
5071 }
5072 }
5073
5074 if (is_elf_hash_table (htab) && add_needed)
5075 {
5076 /* Add this bfd to the loaded list. */
5077 struct elf_link_loaded_list *n;
5078
5079 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5080 if (n == NULL)
5081 goto error_return;
5082 n->abfd = abfd;
5083 n->next = htab->loaded;
5084 htab->loaded = n;
5085 }
5086
5087 return TRUE;
5088
5089 error_free_vers:
5090 if (old_tab != NULL)
5091 free (old_tab);
5092 if (nondeflt_vers != NULL)
5093 free (nondeflt_vers);
5094 if (extversym != NULL)
5095 free (extversym);
5096 error_free_sym:
5097 if (isymbuf != NULL)
5098 free (isymbuf);
5099 error_return:
5100 return FALSE;
5101 }
5102
5103 /* Return the linker hash table entry of a symbol that might be
5104 satisfied by an archive symbol. Return -1 on error. */
5105
5106 struct elf_link_hash_entry *
5107 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5108 struct bfd_link_info *info,
5109 const char *name)
5110 {
5111 struct elf_link_hash_entry *h;
5112 char *p, *copy;
5113 size_t len, first;
5114
5115 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5116 if (h != NULL)
5117 return h;
5118
5119 /* If this is a default version (the name contains @@), look up the
5120 symbol again with only one `@' as well as without the version.
5121 The effect is that references to the symbol with and without the
5122 version will be matched by the default symbol in the archive. */
5123
5124 p = strchr (name, ELF_VER_CHR);
5125 if (p == NULL || p[1] != ELF_VER_CHR)
5126 return h;
5127
5128 /* First check with only one `@'. */
5129 len = strlen (name);
5130 copy = (char *) bfd_alloc (abfd, len);
5131 if (copy == NULL)
5132 return (struct elf_link_hash_entry *) 0 - 1;
5133
5134 first = p - name + 1;
5135 memcpy (copy, name, first);
5136 memcpy (copy + first, name + first + 1, len - first);
5137
5138 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5139 if (h == NULL)
5140 {
5141 /* We also need to check references to the symbol without the
5142 version. */
5143 copy[first - 1] = '\0';
5144 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5145 FALSE, FALSE, TRUE);
5146 }
5147
5148 bfd_release (abfd, copy);
5149 return h;
5150 }
5151
5152 /* Add symbols from an ELF archive file to the linker hash table. We
5153 don't use _bfd_generic_link_add_archive_symbols because we need to
5154 handle versioned symbols.
5155
5156 Fortunately, ELF archive handling is simpler than that done by
5157 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5158 oddities. In ELF, if we find a symbol in the archive map, and the
5159 symbol is currently undefined, we know that we must pull in that
5160 object file.
5161
5162 Unfortunately, we do have to make multiple passes over the symbol
5163 table until nothing further is resolved. */
5164
5165 static bfd_boolean
5166 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5167 {
5168 symindex c;
5169 unsigned char *included = NULL;
5170 carsym *symdefs;
5171 bfd_boolean loop;
5172 bfd_size_type amt;
5173 const struct elf_backend_data *bed;
5174 struct elf_link_hash_entry * (*archive_symbol_lookup)
5175 (bfd *, struct bfd_link_info *, const char *);
5176
5177 if (! bfd_has_map (abfd))
5178 {
5179 /* An empty archive is a special case. */
5180 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5181 return TRUE;
5182 bfd_set_error (bfd_error_no_armap);
5183 return FALSE;
5184 }
5185
5186 /* Keep track of all symbols we know to be already defined, and all
5187 files we know to be already included. This is to speed up the
5188 second and subsequent passes. */
5189 c = bfd_ardata (abfd)->symdef_count;
5190 if (c == 0)
5191 return TRUE;
5192 amt = c;
5193 amt *= sizeof (*included);
5194 included = (unsigned char *) bfd_zmalloc (amt);
5195 if (included == NULL)
5196 return FALSE;
5197
5198 symdefs = bfd_ardata (abfd)->symdefs;
5199 bed = get_elf_backend_data (abfd);
5200 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5201
5202 do
5203 {
5204 file_ptr last;
5205 symindex i;
5206 carsym *symdef;
5207 carsym *symdefend;
5208
5209 loop = FALSE;
5210 last = -1;
5211
5212 symdef = symdefs;
5213 symdefend = symdef + c;
5214 for (i = 0; symdef < symdefend; symdef++, i++)
5215 {
5216 struct elf_link_hash_entry *h;
5217 bfd *element;
5218 struct bfd_link_hash_entry *undefs_tail;
5219 symindex mark;
5220
5221 if (included[i])
5222 continue;
5223 if (symdef->file_offset == last)
5224 {
5225 included[i] = TRUE;
5226 continue;
5227 }
5228
5229 h = archive_symbol_lookup (abfd, info, symdef->name);
5230 if (h == (struct elf_link_hash_entry *) 0 - 1)
5231 goto error_return;
5232
5233 if (h == NULL)
5234 continue;
5235
5236 if (h->root.type == bfd_link_hash_common)
5237 {
5238 /* We currently have a common symbol. The archive map contains
5239 a reference to this symbol, so we may want to include it. We
5240 only want to include it however, if this archive element
5241 contains a definition of the symbol, not just another common
5242 declaration of it.
5243
5244 Unfortunately some archivers (including GNU ar) will put
5245 declarations of common symbols into their archive maps, as
5246 well as real definitions, so we cannot just go by the archive
5247 map alone. Instead we must read in the element's symbol
5248 table and check that to see what kind of symbol definition
5249 this is. */
5250 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5251 continue;
5252 }
5253 else if (h->root.type != bfd_link_hash_undefined)
5254 {
5255 if (h->root.type != bfd_link_hash_undefweak)
5256 /* Symbol must be defined. Don't check it again. */
5257 included[i] = TRUE;
5258 continue;
5259 }
5260
5261 /* We need to include this archive member. */
5262 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5263 if (element == NULL)
5264 goto error_return;
5265
5266 if (! bfd_check_format (element, bfd_object))
5267 goto error_return;
5268
5269 undefs_tail = info->hash->undefs_tail;
5270
5271 if (!(*info->callbacks
5272 ->add_archive_element) (info, element, symdef->name, &element))
5273 goto error_return;
5274 if (!bfd_link_add_symbols (element, info))
5275 goto error_return;
5276
5277 /* If there are any new undefined symbols, we need to make
5278 another pass through the archive in order to see whether
5279 they can be defined. FIXME: This isn't perfect, because
5280 common symbols wind up on undefs_tail and because an
5281 undefined symbol which is defined later on in this pass
5282 does not require another pass. This isn't a bug, but it
5283 does make the code less efficient than it could be. */
5284 if (undefs_tail != info->hash->undefs_tail)
5285 loop = TRUE;
5286
5287 /* Look backward to mark all symbols from this object file
5288 which we have already seen in this pass. */
5289 mark = i;
5290 do
5291 {
5292 included[mark] = TRUE;
5293 if (mark == 0)
5294 break;
5295 --mark;
5296 }
5297 while (symdefs[mark].file_offset == symdef->file_offset);
5298
5299 /* We mark subsequent symbols from this object file as we go
5300 on through the loop. */
5301 last = symdef->file_offset;
5302 }
5303 }
5304 while (loop);
5305
5306 free (included);
5307
5308 return TRUE;
5309
5310 error_return:
5311 if (included != NULL)
5312 free (included);
5313 return FALSE;
5314 }
5315
5316 /* Given an ELF BFD, add symbols to the global hash table as
5317 appropriate. */
5318
5319 bfd_boolean
5320 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5321 {
5322 switch (bfd_get_format (abfd))
5323 {
5324 case bfd_object:
5325 return elf_link_add_object_symbols (abfd, info);
5326 case bfd_archive:
5327 return elf_link_add_archive_symbols (abfd, info);
5328 default:
5329 bfd_set_error (bfd_error_wrong_format);
5330 return FALSE;
5331 }
5332 }
5333 \f
5334 struct hash_codes_info
5335 {
5336 unsigned long *hashcodes;
5337 bfd_boolean error;
5338 };
5339
5340 /* This function will be called though elf_link_hash_traverse to store
5341 all hash value of the exported symbols in an array. */
5342
5343 static bfd_boolean
5344 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5345 {
5346 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5347 const char *name;
5348 unsigned long ha;
5349 char *alc = NULL;
5350
5351 /* Ignore indirect symbols. These are added by the versioning code. */
5352 if (h->dynindx == -1)
5353 return TRUE;
5354
5355 name = h->root.root.string;
5356 if (h->versioned >= versioned)
5357 {
5358 char *p = strchr (name, ELF_VER_CHR);
5359 if (p != NULL)
5360 {
5361 alc = (char *) bfd_malloc (p - name + 1);
5362 if (alc == NULL)
5363 {
5364 inf->error = TRUE;
5365 return FALSE;
5366 }
5367 memcpy (alc, name, p - name);
5368 alc[p - name] = '\0';
5369 name = alc;
5370 }
5371 }
5372
5373 /* Compute the hash value. */
5374 ha = bfd_elf_hash (name);
5375
5376 /* Store the found hash value in the array given as the argument. */
5377 *(inf->hashcodes)++ = ha;
5378
5379 /* And store it in the struct so that we can put it in the hash table
5380 later. */
5381 h->u.elf_hash_value = ha;
5382
5383 if (alc != NULL)
5384 free (alc);
5385
5386 return TRUE;
5387 }
5388
5389 struct collect_gnu_hash_codes
5390 {
5391 bfd *output_bfd;
5392 const struct elf_backend_data *bed;
5393 unsigned long int nsyms;
5394 unsigned long int maskbits;
5395 unsigned long int *hashcodes;
5396 unsigned long int *hashval;
5397 unsigned long int *indx;
5398 unsigned long int *counts;
5399 bfd_vma *bitmask;
5400 bfd_byte *contents;
5401 long int min_dynindx;
5402 unsigned long int bucketcount;
5403 unsigned long int symindx;
5404 long int local_indx;
5405 long int shift1, shift2;
5406 unsigned long int mask;
5407 bfd_boolean error;
5408 };
5409
5410 /* This function will be called though elf_link_hash_traverse to store
5411 all hash value of the exported symbols in an array. */
5412
5413 static bfd_boolean
5414 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5415 {
5416 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5417 const char *name;
5418 unsigned long ha;
5419 char *alc = NULL;
5420
5421 /* Ignore indirect symbols. These are added by the versioning code. */
5422 if (h->dynindx == -1)
5423 return TRUE;
5424
5425 /* Ignore also local symbols and undefined symbols. */
5426 if (! (*s->bed->elf_hash_symbol) (h))
5427 return TRUE;
5428
5429 name = h->root.root.string;
5430 if (h->versioned >= versioned)
5431 {
5432 char *p = strchr (name, ELF_VER_CHR);
5433 if (p != NULL)
5434 {
5435 alc = (char *) bfd_malloc (p - name + 1);
5436 if (alc == NULL)
5437 {
5438 s->error = TRUE;
5439 return FALSE;
5440 }
5441 memcpy (alc, name, p - name);
5442 alc[p - name] = '\0';
5443 name = alc;
5444 }
5445 }
5446
5447 /* Compute the hash value. */
5448 ha = bfd_elf_gnu_hash (name);
5449
5450 /* Store the found hash value in the array for compute_bucket_count,
5451 and also for .dynsym reordering purposes. */
5452 s->hashcodes[s->nsyms] = ha;
5453 s->hashval[h->dynindx] = ha;
5454 ++s->nsyms;
5455 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5456 s->min_dynindx = h->dynindx;
5457
5458 if (alc != NULL)
5459 free (alc);
5460
5461 return TRUE;
5462 }
5463
5464 /* This function will be called though elf_link_hash_traverse to do
5465 final dynaminc symbol renumbering. */
5466
5467 static bfd_boolean
5468 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5469 {
5470 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5471 unsigned long int bucket;
5472 unsigned long int val;
5473
5474 /* Ignore indirect symbols. */
5475 if (h->dynindx == -1)
5476 return TRUE;
5477
5478 /* Ignore also local symbols and undefined symbols. */
5479 if (! (*s->bed->elf_hash_symbol) (h))
5480 {
5481 if (h->dynindx >= s->min_dynindx)
5482 h->dynindx = s->local_indx++;
5483 return TRUE;
5484 }
5485
5486 bucket = s->hashval[h->dynindx] % s->bucketcount;
5487 val = (s->hashval[h->dynindx] >> s->shift1)
5488 & ((s->maskbits >> s->shift1) - 1);
5489 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5490 s->bitmask[val]
5491 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5492 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5493 if (s->counts[bucket] == 1)
5494 /* Last element terminates the chain. */
5495 val |= 1;
5496 bfd_put_32 (s->output_bfd, val,
5497 s->contents + (s->indx[bucket] - s->symindx) * 4);
5498 --s->counts[bucket];
5499 h->dynindx = s->indx[bucket]++;
5500 return TRUE;
5501 }
5502
5503 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5504
5505 bfd_boolean
5506 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5507 {
5508 return !(h->forced_local
5509 || h->root.type == bfd_link_hash_undefined
5510 || h->root.type == bfd_link_hash_undefweak
5511 || ((h->root.type == bfd_link_hash_defined
5512 || h->root.type == bfd_link_hash_defweak)
5513 && h->root.u.def.section->output_section == NULL));
5514 }
5515
5516 /* Array used to determine the number of hash table buckets to use
5517 based on the number of symbols there are. If there are fewer than
5518 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5519 fewer than 37 we use 17 buckets, and so forth. We never use more
5520 than 32771 buckets. */
5521
5522 static const size_t elf_buckets[] =
5523 {
5524 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5525 16411, 32771, 0
5526 };
5527
5528 /* Compute bucket count for hashing table. We do not use a static set
5529 of possible tables sizes anymore. Instead we determine for all
5530 possible reasonable sizes of the table the outcome (i.e., the
5531 number of collisions etc) and choose the best solution. The
5532 weighting functions are not too simple to allow the table to grow
5533 without bounds. Instead one of the weighting factors is the size.
5534 Therefore the result is always a good payoff between few collisions
5535 (= short chain lengths) and table size. */
5536 static size_t
5537 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5538 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5539 unsigned long int nsyms,
5540 int gnu_hash)
5541 {
5542 size_t best_size = 0;
5543 unsigned long int i;
5544
5545 /* We have a problem here. The following code to optimize the table
5546 size requires an integer type with more the 32 bits. If
5547 BFD_HOST_U_64_BIT is set we know about such a type. */
5548 #ifdef BFD_HOST_U_64_BIT
5549 if (info->optimize)
5550 {
5551 size_t minsize;
5552 size_t maxsize;
5553 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5554 bfd *dynobj = elf_hash_table (info)->dynobj;
5555 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5556 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5557 unsigned long int *counts;
5558 bfd_size_type amt;
5559 unsigned int no_improvement_count = 0;
5560
5561 /* Possible optimization parameters: if we have NSYMS symbols we say
5562 that the hashing table must at least have NSYMS/4 and at most
5563 2*NSYMS buckets. */
5564 minsize = nsyms / 4;
5565 if (minsize == 0)
5566 minsize = 1;
5567 best_size = maxsize = nsyms * 2;
5568 if (gnu_hash)
5569 {
5570 if (minsize < 2)
5571 minsize = 2;
5572 if ((best_size & 31) == 0)
5573 ++best_size;
5574 }
5575
5576 /* Create array where we count the collisions in. We must use bfd_malloc
5577 since the size could be large. */
5578 amt = maxsize;
5579 amt *= sizeof (unsigned long int);
5580 counts = (unsigned long int *) bfd_malloc (amt);
5581 if (counts == NULL)
5582 return 0;
5583
5584 /* Compute the "optimal" size for the hash table. The criteria is a
5585 minimal chain length. The minor criteria is (of course) the size
5586 of the table. */
5587 for (i = minsize; i < maxsize; ++i)
5588 {
5589 /* Walk through the array of hashcodes and count the collisions. */
5590 BFD_HOST_U_64_BIT max;
5591 unsigned long int j;
5592 unsigned long int fact;
5593
5594 if (gnu_hash && (i & 31) == 0)
5595 continue;
5596
5597 memset (counts, '\0', i * sizeof (unsigned long int));
5598
5599 /* Determine how often each hash bucket is used. */
5600 for (j = 0; j < nsyms; ++j)
5601 ++counts[hashcodes[j] % i];
5602
5603 /* For the weight function we need some information about the
5604 pagesize on the target. This is information need not be 100%
5605 accurate. Since this information is not available (so far) we
5606 define it here to a reasonable default value. If it is crucial
5607 to have a better value some day simply define this value. */
5608 # ifndef BFD_TARGET_PAGESIZE
5609 # define BFD_TARGET_PAGESIZE (4096)
5610 # endif
5611
5612 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5613 and the chains. */
5614 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5615
5616 # if 1
5617 /* Variant 1: optimize for short chains. We add the squares
5618 of all the chain lengths (which favors many small chain
5619 over a few long chains). */
5620 for (j = 0; j < i; ++j)
5621 max += counts[j] * counts[j];
5622
5623 /* This adds penalties for the overall size of the table. */
5624 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5625 max *= fact * fact;
5626 # else
5627 /* Variant 2: Optimize a lot more for small table. Here we
5628 also add squares of the size but we also add penalties for
5629 empty slots (the +1 term). */
5630 for (j = 0; j < i; ++j)
5631 max += (1 + counts[j]) * (1 + counts[j]);
5632
5633 /* The overall size of the table is considered, but not as
5634 strong as in variant 1, where it is squared. */
5635 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5636 max *= fact;
5637 # endif
5638
5639 /* Compare with current best results. */
5640 if (max < best_chlen)
5641 {
5642 best_chlen = max;
5643 best_size = i;
5644 no_improvement_count = 0;
5645 }
5646 /* PR 11843: Avoid futile long searches for the best bucket size
5647 when there are a large number of symbols. */
5648 else if (++no_improvement_count == 100)
5649 break;
5650 }
5651
5652 free (counts);
5653 }
5654 else
5655 #endif /* defined (BFD_HOST_U_64_BIT) */
5656 {
5657 /* This is the fallback solution if no 64bit type is available or if we
5658 are not supposed to spend much time on optimizations. We select the
5659 bucket count using a fixed set of numbers. */
5660 for (i = 0; elf_buckets[i] != 0; i++)
5661 {
5662 best_size = elf_buckets[i];
5663 if (nsyms < elf_buckets[i + 1])
5664 break;
5665 }
5666 if (gnu_hash && best_size < 2)
5667 best_size = 2;
5668 }
5669
5670 return best_size;
5671 }
5672
5673 /* Size any SHT_GROUP section for ld -r. */
5674
5675 bfd_boolean
5676 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5677 {
5678 bfd *ibfd;
5679
5680 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5681 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5682 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5683 return FALSE;
5684 return TRUE;
5685 }
5686
5687 /* Set a default stack segment size. The value in INFO wins. If it
5688 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5689 undefined it is initialized. */
5690
5691 bfd_boolean
5692 bfd_elf_stack_segment_size (bfd *output_bfd,
5693 struct bfd_link_info *info,
5694 const char *legacy_symbol,
5695 bfd_vma default_size)
5696 {
5697 struct elf_link_hash_entry *h = NULL;
5698
5699 /* Look for legacy symbol. */
5700 if (legacy_symbol)
5701 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5702 FALSE, FALSE, FALSE);
5703 if (h && (h->root.type == bfd_link_hash_defined
5704 || h->root.type == bfd_link_hash_defweak)
5705 && h->def_regular
5706 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5707 {
5708 /* The symbol has no type if specified on the command line. */
5709 h->type = STT_OBJECT;
5710 if (info->stacksize)
5711 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5712 output_bfd, legacy_symbol);
5713 else if (h->root.u.def.section != bfd_abs_section_ptr)
5714 (*_bfd_error_handler) (_("%B: %s not absolute"),
5715 output_bfd, legacy_symbol);
5716 else
5717 info->stacksize = h->root.u.def.value;
5718 }
5719
5720 if (!info->stacksize)
5721 /* If the user didn't set a size, or explicitly inhibit the
5722 size, set it now. */
5723 info->stacksize = default_size;
5724
5725 /* Provide the legacy symbol, if it is referenced. */
5726 if (h && (h->root.type == bfd_link_hash_undefined
5727 || h->root.type == bfd_link_hash_undefweak))
5728 {
5729 struct bfd_link_hash_entry *bh = NULL;
5730
5731 if (!(_bfd_generic_link_add_one_symbol
5732 (info, output_bfd, legacy_symbol,
5733 BSF_GLOBAL, bfd_abs_section_ptr,
5734 info->stacksize >= 0 ? info->stacksize : 0,
5735 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5736 return FALSE;
5737
5738 h = (struct elf_link_hash_entry *) bh;
5739 h->def_regular = 1;
5740 h->type = STT_OBJECT;
5741 }
5742
5743 return TRUE;
5744 }
5745
5746 /* Set up the sizes and contents of the ELF dynamic sections. This is
5747 called by the ELF linker emulation before_allocation routine. We
5748 must set the sizes of the sections before the linker sets the
5749 addresses of the various sections. */
5750
5751 bfd_boolean
5752 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5753 const char *soname,
5754 const char *rpath,
5755 const char *filter_shlib,
5756 const char *audit,
5757 const char *depaudit,
5758 const char * const *auxiliary_filters,
5759 struct bfd_link_info *info,
5760 asection **sinterpptr)
5761 {
5762 bfd_size_type soname_indx;
5763 bfd *dynobj;
5764 const struct elf_backend_data *bed;
5765 struct elf_info_failed asvinfo;
5766
5767 *sinterpptr = NULL;
5768
5769 soname_indx = (bfd_size_type) -1;
5770
5771 if (!is_elf_hash_table (info->hash))
5772 return TRUE;
5773
5774 bed = get_elf_backend_data (output_bfd);
5775
5776 /* Any syms created from now on start with -1 in
5777 got.refcount/offset and plt.refcount/offset. */
5778 elf_hash_table (info)->init_got_refcount
5779 = elf_hash_table (info)->init_got_offset;
5780 elf_hash_table (info)->init_plt_refcount
5781 = elf_hash_table (info)->init_plt_offset;
5782
5783 if (bfd_link_relocatable (info)
5784 && !_bfd_elf_size_group_sections (info))
5785 return FALSE;
5786
5787 /* The backend may have to create some sections regardless of whether
5788 we're dynamic or not. */
5789 if (bed->elf_backend_always_size_sections
5790 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5791 return FALSE;
5792
5793 /* Determine any GNU_STACK segment requirements, after the backend
5794 has had a chance to set a default segment size. */
5795 if (info->execstack)
5796 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5797 else if (info->noexecstack)
5798 elf_stack_flags (output_bfd) = PF_R | PF_W;
5799 else
5800 {
5801 bfd *inputobj;
5802 asection *notesec = NULL;
5803 int exec = 0;
5804
5805 for (inputobj = info->input_bfds;
5806 inputobj;
5807 inputobj = inputobj->link.next)
5808 {
5809 asection *s;
5810
5811 if (inputobj->flags
5812 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5813 continue;
5814 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5815 if (s)
5816 {
5817 if (s->flags & SEC_CODE)
5818 exec = PF_X;
5819 notesec = s;
5820 }
5821 else if (bed->default_execstack)
5822 exec = PF_X;
5823 }
5824 if (notesec || info->stacksize > 0)
5825 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5826 if (notesec && exec && bfd_link_relocatable (info)
5827 && notesec->output_section != bfd_abs_section_ptr)
5828 notesec->output_section->flags |= SEC_CODE;
5829 }
5830
5831 dynobj = elf_hash_table (info)->dynobj;
5832
5833 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5834 {
5835 struct elf_info_failed eif;
5836 struct elf_link_hash_entry *h;
5837 asection *dynstr;
5838 struct bfd_elf_version_tree *t;
5839 struct bfd_elf_version_expr *d;
5840 asection *s;
5841 bfd_boolean all_defined;
5842
5843 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5844 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
5845
5846 if (soname != NULL)
5847 {
5848 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5849 soname, TRUE);
5850 if (soname_indx == (bfd_size_type) -1
5851 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5852 return FALSE;
5853 }
5854
5855 if (info->symbolic)
5856 {
5857 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5858 return FALSE;
5859 info->flags |= DF_SYMBOLIC;
5860 }
5861
5862 if (rpath != NULL)
5863 {
5864 bfd_size_type indx;
5865 bfd_vma tag;
5866
5867 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5868 TRUE);
5869 if (indx == (bfd_size_type) -1)
5870 return FALSE;
5871
5872 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5873 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5874 return FALSE;
5875 }
5876
5877 if (filter_shlib != NULL)
5878 {
5879 bfd_size_type indx;
5880
5881 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5882 filter_shlib, TRUE);
5883 if (indx == (bfd_size_type) -1
5884 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5885 return FALSE;
5886 }
5887
5888 if (auxiliary_filters != NULL)
5889 {
5890 const char * const *p;
5891
5892 for (p = auxiliary_filters; *p != NULL; p++)
5893 {
5894 bfd_size_type indx;
5895
5896 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5897 *p, TRUE);
5898 if (indx == (bfd_size_type) -1
5899 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5900 return FALSE;
5901 }
5902 }
5903
5904 if (audit != NULL)
5905 {
5906 bfd_size_type indx;
5907
5908 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5909 TRUE);
5910 if (indx == (bfd_size_type) -1
5911 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5912 return FALSE;
5913 }
5914
5915 if (depaudit != NULL)
5916 {
5917 bfd_size_type indx;
5918
5919 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5920 TRUE);
5921 if (indx == (bfd_size_type) -1
5922 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5923 return FALSE;
5924 }
5925
5926 eif.info = info;
5927 eif.failed = FALSE;
5928
5929 /* If we are supposed to export all symbols into the dynamic symbol
5930 table (this is not the normal case), then do so. */
5931 if (info->export_dynamic
5932 || (bfd_link_executable (info) && info->dynamic))
5933 {
5934 elf_link_hash_traverse (elf_hash_table (info),
5935 _bfd_elf_export_symbol,
5936 &eif);
5937 if (eif.failed)
5938 return FALSE;
5939 }
5940
5941 /* Make all global versions with definition. */
5942 for (t = info->version_info; t != NULL; t = t->next)
5943 for (d = t->globals.list; d != NULL; d = d->next)
5944 if (!d->symver && d->literal)
5945 {
5946 const char *verstr, *name;
5947 size_t namelen, verlen, newlen;
5948 char *newname, *p, leading_char;
5949 struct elf_link_hash_entry *newh;
5950
5951 leading_char = bfd_get_symbol_leading_char (output_bfd);
5952 name = d->pattern;
5953 namelen = strlen (name) + (leading_char != '\0');
5954 verstr = t->name;
5955 verlen = strlen (verstr);
5956 newlen = namelen + verlen + 3;
5957
5958 newname = (char *) bfd_malloc (newlen);
5959 if (newname == NULL)
5960 return FALSE;
5961 newname[0] = leading_char;
5962 memcpy (newname + (leading_char != '\0'), name, namelen);
5963
5964 /* Check the hidden versioned definition. */
5965 p = newname + namelen;
5966 *p++ = ELF_VER_CHR;
5967 memcpy (p, verstr, verlen + 1);
5968 newh = elf_link_hash_lookup (elf_hash_table (info),
5969 newname, FALSE, FALSE,
5970 FALSE);
5971 if (newh == NULL
5972 || (newh->root.type != bfd_link_hash_defined
5973 && newh->root.type != bfd_link_hash_defweak))
5974 {
5975 /* Check the default versioned definition. */
5976 *p++ = ELF_VER_CHR;
5977 memcpy (p, verstr, verlen + 1);
5978 newh = elf_link_hash_lookup (elf_hash_table (info),
5979 newname, FALSE, FALSE,
5980 FALSE);
5981 }
5982 free (newname);
5983
5984 /* Mark this version if there is a definition and it is
5985 not defined in a shared object. */
5986 if (newh != NULL
5987 && !newh->def_dynamic
5988 && (newh->root.type == bfd_link_hash_defined
5989 || newh->root.type == bfd_link_hash_defweak))
5990 d->symver = 1;
5991 }
5992
5993 /* Attach all the symbols to their version information. */
5994 asvinfo.info = info;
5995 asvinfo.failed = FALSE;
5996
5997 elf_link_hash_traverse (elf_hash_table (info),
5998 _bfd_elf_link_assign_sym_version,
5999 &asvinfo);
6000 if (asvinfo.failed)
6001 return FALSE;
6002
6003 if (!info->allow_undefined_version)
6004 {
6005 /* Check if all global versions have a definition. */
6006 all_defined = TRUE;
6007 for (t = info->version_info; t != NULL; t = t->next)
6008 for (d = t->globals.list; d != NULL; d = d->next)
6009 if (d->literal && !d->symver && !d->script)
6010 {
6011 (*_bfd_error_handler)
6012 (_("%s: undefined version: %s"),
6013 d->pattern, t->name);
6014 all_defined = FALSE;
6015 }
6016
6017 if (!all_defined)
6018 {
6019 bfd_set_error (bfd_error_bad_value);
6020 return FALSE;
6021 }
6022 }
6023
6024 /* Find all symbols which were defined in a dynamic object and make
6025 the backend pick a reasonable value for them. */
6026 elf_link_hash_traverse (elf_hash_table (info),
6027 _bfd_elf_adjust_dynamic_symbol,
6028 &eif);
6029 if (eif.failed)
6030 return FALSE;
6031
6032 /* Add some entries to the .dynamic section. We fill in some of the
6033 values later, in bfd_elf_final_link, but we must add the entries
6034 now so that we know the final size of the .dynamic section. */
6035
6036 /* If there are initialization and/or finalization functions to
6037 call then add the corresponding DT_INIT/DT_FINI entries. */
6038 h = (info->init_function
6039 ? elf_link_hash_lookup (elf_hash_table (info),
6040 info->init_function, FALSE,
6041 FALSE, FALSE)
6042 : NULL);
6043 if (h != NULL
6044 && (h->ref_regular
6045 || h->def_regular))
6046 {
6047 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
6048 return FALSE;
6049 }
6050 h = (info->fini_function
6051 ? elf_link_hash_lookup (elf_hash_table (info),
6052 info->fini_function, FALSE,
6053 FALSE, FALSE)
6054 : NULL);
6055 if (h != NULL
6056 && (h->ref_regular
6057 || h->def_regular))
6058 {
6059 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
6060 return FALSE;
6061 }
6062
6063 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
6064 if (s != NULL && s->linker_has_input)
6065 {
6066 /* DT_PREINIT_ARRAY is not allowed in shared library. */
6067 if (! bfd_link_executable (info))
6068 {
6069 bfd *sub;
6070 asection *o;
6071
6072 for (sub = info->input_bfds; sub != NULL;
6073 sub = sub->link.next)
6074 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
6075 for (o = sub->sections; o != NULL; o = o->next)
6076 if (elf_section_data (o)->this_hdr.sh_type
6077 == SHT_PREINIT_ARRAY)
6078 {
6079 (*_bfd_error_handler)
6080 (_("%B: .preinit_array section is not allowed in DSO"),
6081 sub);
6082 break;
6083 }
6084
6085 bfd_set_error (bfd_error_nonrepresentable_section);
6086 return FALSE;
6087 }
6088
6089 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6090 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
6091 return FALSE;
6092 }
6093 s = bfd_get_section_by_name (output_bfd, ".init_array");
6094 if (s != NULL && s->linker_has_input)
6095 {
6096 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
6097 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
6098 return FALSE;
6099 }
6100 s = bfd_get_section_by_name (output_bfd, ".fini_array");
6101 if (s != NULL && s->linker_has_input)
6102 {
6103 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
6104 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
6105 return FALSE;
6106 }
6107
6108 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6109 /* If .dynstr is excluded from the link, we don't want any of
6110 these tags. Strictly, we should be checking each section
6111 individually; This quick check covers for the case where
6112 someone does a /DISCARD/ : { *(*) }. */
6113 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6114 {
6115 bfd_size_type strsize;
6116
6117 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6118 if ((info->emit_hash
6119 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6120 || (info->emit_gnu_hash
6121 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6122 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6123 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6124 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6125 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6126 bed->s->sizeof_sym))
6127 return FALSE;
6128 }
6129 }
6130
6131 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6132 return FALSE;
6133
6134 /* The backend must work out the sizes of all the other dynamic
6135 sections. */
6136 if (dynobj != NULL
6137 && bed->elf_backend_size_dynamic_sections != NULL
6138 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6139 return FALSE;
6140
6141 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6142 {
6143 unsigned long section_sym_count;
6144 struct bfd_elf_version_tree *verdefs;
6145 asection *s;
6146
6147 /* Set up the version definition section. */
6148 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6149 BFD_ASSERT (s != NULL);
6150
6151 /* We may have created additional version definitions if we are
6152 just linking a regular application. */
6153 verdefs = info->version_info;
6154
6155 /* Skip anonymous version tag. */
6156 if (verdefs != NULL && verdefs->vernum == 0)
6157 verdefs = verdefs->next;
6158
6159 if (verdefs == NULL && !info->create_default_symver)
6160 s->flags |= SEC_EXCLUDE;
6161 else
6162 {
6163 unsigned int cdefs;
6164 bfd_size_type size;
6165 struct bfd_elf_version_tree *t;
6166 bfd_byte *p;
6167 Elf_Internal_Verdef def;
6168 Elf_Internal_Verdaux defaux;
6169 struct bfd_link_hash_entry *bh;
6170 struct elf_link_hash_entry *h;
6171 const char *name;
6172
6173 cdefs = 0;
6174 size = 0;
6175
6176 /* Make space for the base version. */
6177 size += sizeof (Elf_External_Verdef);
6178 size += sizeof (Elf_External_Verdaux);
6179 ++cdefs;
6180
6181 /* Make space for the default version. */
6182 if (info->create_default_symver)
6183 {
6184 size += sizeof (Elf_External_Verdef);
6185 ++cdefs;
6186 }
6187
6188 for (t = verdefs; t != NULL; t = t->next)
6189 {
6190 struct bfd_elf_version_deps *n;
6191
6192 /* Don't emit base version twice. */
6193 if (t->vernum == 0)
6194 continue;
6195
6196 size += sizeof (Elf_External_Verdef);
6197 size += sizeof (Elf_External_Verdaux);
6198 ++cdefs;
6199
6200 for (n = t->deps; n != NULL; n = n->next)
6201 size += sizeof (Elf_External_Verdaux);
6202 }
6203
6204 s->size = size;
6205 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6206 if (s->contents == NULL && s->size != 0)
6207 return FALSE;
6208
6209 /* Fill in the version definition section. */
6210
6211 p = s->contents;
6212
6213 def.vd_version = VER_DEF_CURRENT;
6214 def.vd_flags = VER_FLG_BASE;
6215 def.vd_ndx = 1;
6216 def.vd_cnt = 1;
6217 if (info->create_default_symver)
6218 {
6219 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6220 def.vd_next = sizeof (Elf_External_Verdef);
6221 }
6222 else
6223 {
6224 def.vd_aux = sizeof (Elf_External_Verdef);
6225 def.vd_next = (sizeof (Elf_External_Verdef)
6226 + sizeof (Elf_External_Verdaux));
6227 }
6228
6229 if (soname_indx != (bfd_size_type) -1)
6230 {
6231 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6232 soname_indx);
6233 def.vd_hash = bfd_elf_hash (soname);
6234 defaux.vda_name = soname_indx;
6235 name = soname;
6236 }
6237 else
6238 {
6239 bfd_size_type indx;
6240
6241 name = lbasename (output_bfd->filename);
6242 def.vd_hash = bfd_elf_hash (name);
6243 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6244 name, FALSE);
6245 if (indx == (bfd_size_type) -1)
6246 return FALSE;
6247 defaux.vda_name = indx;
6248 }
6249 defaux.vda_next = 0;
6250
6251 _bfd_elf_swap_verdef_out (output_bfd, &def,
6252 (Elf_External_Verdef *) p);
6253 p += sizeof (Elf_External_Verdef);
6254 if (info->create_default_symver)
6255 {
6256 /* Add a symbol representing this version. */
6257 bh = NULL;
6258 if (! (_bfd_generic_link_add_one_symbol
6259 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6260 0, NULL, FALSE,
6261 get_elf_backend_data (dynobj)->collect, &bh)))
6262 return FALSE;
6263 h = (struct elf_link_hash_entry *) bh;
6264 h->non_elf = 0;
6265 h->def_regular = 1;
6266 h->type = STT_OBJECT;
6267 h->verinfo.vertree = NULL;
6268
6269 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6270 return FALSE;
6271
6272 /* Create a duplicate of the base version with the same
6273 aux block, but different flags. */
6274 def.vd_flags = 0;
6275 def.vd_ndx = 2;
6276 def.vd_aux = sizeof (Elf_External_Verdef);
6277 if (verdefs)
6278 def.vd_next = (sizeof (Elf_External_Verdef)
6279 + sizeof (Elf_External_Verdaux));
6280 else
6281 def.vd_next = 0;
6282 _bfd_elf_swap_verdef_out (output_bfd, &def,
6283 (Elf_External_Verdef *) p);
6284 p += sizeof (Elf_External_Verdef);
6285 }
6286 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6287 (Elf_External_Verdaux *) p);
6288 p += sizeof (Elf_External_Verdaux);
6289
6290 for (t = verdefs; t != NULL; t = t->next)
6291 {
6292 unsigned int cdeps;
6293 struct bfd_elf_version_deps *n;
6294
6295 /* Don't emit the base version twice. */
6296 if (t->vernum == 0)
6297 continue;
6298
6299 cdeps = 0;
6300 for (n = t->deps; n != NULL; n = n->next)
6301 ++cdeps;
6302
6303 /* Add a symbol representing this version. */
6304 bh = NULL;
6305 if (! (_bfd_generic_link_add_one_symbol
6306 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6307 0, NULL, FALSE,
6308 get_elf_backend_data (dynobj)->collect, &bh)))
6309 return FALSE;
6310 h = (struct elf_link_hash_entry *) bh;
6311 h->non_elf = 0;
6312 h->def_regular = 1;
6313 h->type = STT_OBJECT;
6314 h->verinfo.vertree = t;
6315
6316 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6317 return FALSE;
6318
6319 def.vd_version = VER_DEF_CURRENT;
6320 def.vd_flags = 0;
6321 if (t->globals.list == NULL
6322 && t->locals.list == NULL
6323 && ! t->used)
6324 def.vd_flags |= VER_FLG_WEAK;
6325 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6326 def.vd_cnt = cdeps + 1;
6327 def.vd_hash = bfd_elf_hash (t->name);
6328 def.vd_aux = sizeof (Elf_External_Verdef);
6329 def.vd_next = 0;
6330
6331 /* If a basever node is next, it *must* be the last node in
6332 the chain, otherwise Verdef construction breaks. */
6333 if (t->next != NULL && t->next->vernum == 0)
6334 BFD_ASSERT (t->next->next == NULL);
6335
6336 if (t->next != NULL && t->next->vernum != 0)
6337 def.vd_next = (sizeof (Elf_External_Verdef)
6338 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6339
6340 _bfd_elf_swap_verdef_out (output_bfd, &def,
6341 (Elf_External_Verdef *) p);
6342 p += sizeof (Elf_External_Verdef);
6343
6344 defaux.vda_name = h->dynstr_index;
6345 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6346 h->dynstr_index);
6347 defaux.vda_next = 0;
6348 if (t->deps != NULL)
6349 defaux.vda_next = sizeof (Elf_External_Verdaux);
6350 t->name_indx = defaux.vda_name;
6351
6352 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6353 (Elf_External_Verdaux *) p);
6354 p += sizeof (Elf_External_Verdaux);
6355
6356 for (n = t->deps; n != NULL; n = n->next)
6357 {
6358 if (n->version_needed == NULL)
6359 {
6360 /* This can happen if there was an error in the
6361 version script. */
6362 defaux.vda_name = 0;
6363 }
6364 else
6365 {
6366 defaux.vda_name = n->version_needed->name_indx;
6367 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6368 defaux.vda_name);
6369 }
6370 if (n->next == NULL)
6371 defaux.vda_next = 0;
6372 else
6373 defaux.vda_next = sizeof (Elf_External_Verdaux);
6374
6375 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6376 (Elf_External_Verdaux *) p);
6377 p += sizeof (Elf_External_Verdaux);
6378 }
6379 }
6380
6381 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6382 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6383 return FALSE;
6384
6385 elf_tdata (output_bfd)->cverdefs = cdefs;
6386 }
6387
6388 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6389 {
6390 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6391 return FALSE;
6392 }
6393 else if (info->flags & DF_BIND_NOW)
6394 {
6395 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6396 return FALSE;
6397 }
6398
6399 if (info->flags_1)
6400 {
6401 if (bfd_link_executable (info))
6402 info->flags_1 &= ~ (DF_1_INITFIRST
6403 | DF_1_NODELETE
6404 | DF_1_NOOPEN);
6405 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6406 return FALSE;
6407 }
6408
6409 /* Work out the size of the version reference section. */
6410
6411 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6412 BFD_ASSERT (s != NULL);
6413 {
6414 struct elf_find_verdep_info sinfo;
6415
6416 sinfo.info = info;
6417 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6418 if (sinfo.vers == 0)
6419 sinfo.vers = 1;
6420 sinfo.failed = FALSE;
6421
6422 elf_link_hash_traverse (elf_hash_table (info),
6423 _bfd_elf_link_find_version_dependencies,
6424 &sinfo);
6425 if (sinfo.failed)
6426 return FALSE;
6427
6428 if (elf_tdata (output_bfd)->verref == NULL)
6429 s->flags |= SEC_EXCLUDE;
6430 else
6431 {
6432 Elf_Internal_Verneed *t;
6433 unsigned int size;
6434 unsigned int crefs;
6435 bfd_byte *p;
6436
6437 /* Build the version dependency section. */
6438 size = 0;
6439 crefs = 0;
6440 for (t = elf_tdata (output_bfd)->verref;
6441 t != NULL;
6442 t = t->vn_nextref)
6443 {
6444 Elf_Internal_Vernaux *a;
6445
6446 size += sizeof (Elf_External_Verneed);
6447 ++crefs;
6448 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6449 size += sizeof (Elf_External_Vernaux);
6450 }
6451
6452 s->size = size;
6453 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6454 if (s->contents == NULL)
6455 return FALSE;
6456
6457 p = s->contents;
6458 for (t = elf_tdata (output_bfd)->verref;
6459 t != NULL;
6460 t = t->vn_nextref)
6461 {
6462 unsigned int caux;
6463 Elf_Internal_Vernaux *a;
6464 bfd_size_type indx;
6465
6466 caux = 0;
6467 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6468 ++caux;
6469
6470 t->vn_version = VER_NEED_CURRENT;
6471 t->vn_cnt = caux;
6472 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6473 elf_dt_name (t->vn_bfd) != NULL
6474 ? elf_dt_name (t->vn_bfd)
6475 : lbasename (t->vn_bfd->filename),
6476 FALSE);
6477 if (indx == (bfd_size_type) -1)
6478 return FALSE;
6479 t->vn_file = indx;
6480 t->vn_aux = sizeof (Elf_External_Verneed);
6481 if (t->vn_nextref == NULL)
6482 t->vn_next = 0;
6483 else
6484 t->vn_next = (sizeof (Elf_External_Verneed)
6485 + caux * sizeof (Elf_External_Vernaux));
6486
6487 _bfd_elf_swap_verneed_out (output_bfd, t,
6488 (Elf_External_Verneed *) p);
6489 p += sizeof (Elf_External_Verneed);
6490
6491 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6492 {
6493 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6494 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6495 a->vna_nodename, FALSE);
6496 if (indx == (bfd_size_type) -1)
6497 return FALSE;
6498 a->vna_name = indx;
6499 if (a->vna_nextptr == NULL)
6500 a->vna_next = 0;
6501 else
6502 a->vna_next = sizeof (Elf_External_Vernaux);
6503
6504 _bfd_elf_swap_vernaux_out (output_bfd, a,
6505 (Elf_External_Vernaux *) p);
6506 p += sizeof (Elf_External_Vernaux);
6507 }
6508 }
6509
6510 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6511 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6512 return FALSE;
6513
6514 elf_tdata (output_bfd)->cverrefs = crefs;
6515 }
6516 }
6517
6518 if ((elf_tdata (output_bfd)->cverrefs == 0
6519 && elf_tdata (output_bfd)->cverdefs == 0)
6520 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6521 &section_sym_count) == 0)
6522 {
6523 s = bfd_get_linker_section (dynobj, ".gnu.version");
6524 s->flags |= SEC_EXCLUDE;
6525 }
6526 }
6527 return TRUE;
6528 }
6529
6530 /* Find the first non-excluded output section. We'll use its
6531 section symbol for some emitted relocs. */
6532 void
6533 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6534 {
6535 asection *s;
6536
6537 for (s = output_bfd->sections; s != NULL; s = s->next)
6538 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6539 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6540 {
6541 elf_hash_table (info)->text_index_section = s;
6542 break;
6543 }
6544 }
6545
6546 /* Find two non-excluded output sections, one for code, one for data.
6547 We'll use their section symbols for some emitted relocs. */
6548 void
6549 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6550 {
6551 asection *s;
6552
6553 /* Data first, since setting text_index_section changes
6554 _bfd_elf_link_omit_section_dynsym. */
6555 for (s = output_bfd->sections; s != NULL; s = s->next)
6556 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6557 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6558 {
6559 elf_hash_table (info)->data_index_section = s;
6560 break;
6561 }
6562
6563 for (s = output_bfd->sections; s != NULL; s = s->next)
6564 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6565 == (SEC_ALLOC | SEC_READONLY))
6566 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6567 {
6568 elf_hash_table (info)->text_index_section = s;
6569 break;
6570 }
6571
6572 if (elf_hash_table (info)->text_index_section == NULL)
6573 elf_hash_table (info)->text_index_section
6574 = elf_hash_table (info)->data_index_section;
6575 }
6576
6577 bfd_boolean
6578 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6579 {
6580 const struct elf_backend_data *bed;
6581
6582 if (!is_elf_hash_table (info->hash))
6583 return TRUE;
6584
6585 bed = get_elf_backend_data (output_bfd);
6586 (*bed->elf_backend_init_index_section) (output_bfd, info);
6587
6588 if (elf_hash_table (info)->dynamic_sections_created)
6589 {
6590 bfd *dynobj;
6591 asection *s;
6592 bfd_size_type dynsymcount;
6593 unsigned long section_sym_count;
6594 unsigned int dtagcount;
6595
6596 dynobj = elf_hash_table (info)->dynobj;
6597
6598 /* Assign dynsym indicies. In a shared library we generate a
6599 section symbol for each output section, which come first.
6600 Next come all of the back-end allocated local dynamic syms,
6601 followed by the rest of the global symbols. */
6602
6603 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6604 &section_sym_count);
6605
6606 /* Work out the size of the symbol version section. */
6607 s = bfd_get_linker_section (dynobj, ".gnu.version");
6608 BFD_ASSERT (s != NULL);
6609 if (dynsymcount != 0
6610 && (s->flags & SEC_EXCLUDE) == 0)
6611 {
6612 s->size = dynsymcount * sizeof (Elf_External_Versym);
6613 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6614 if (s->contents == NULL)
6615 return FALSE;
6616
6617 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6618 return FALSE;
6619 }
6620
6621 /* Set the size of the .dynsym and .hash sections. We counted
6622 the number of dynamic symbols in elf_link_add_object_symbols.
6623 We will build the contents of .dynsym and .hash when we build
6624 the final symbol table, because until then we do not know the
6625 correct value to give the symbols. We built the .dynstr
6626 section as we went along in elf_link_add_object_symbols. */
6627 s = elf_hash_table (info)->dynsym;
6628 BFD_ASSERT (s != NULL);
6629 s->size = dynsymcount * bed->s->sizeof_sym;
6630
6631 if (dynsymcount != 0)
6632 {
6633 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6634 if (s->contents == NULL)
6635 return FALSE;
6636
6637 /* The first entry in .dynsym is a dummy symbol.
6638 Clear all the section syms, in case we don't output them all. */
6639 ++section_sym_count;
6640 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6641 }
6642
6643 elf_hash_table (info)->bucketcount = 0;
6644
6645 /* Compute the size of the hashing table. As a side effect this
6646 computes the hash values for all the names we export. */
6647 if (info->emit_hash)
6648 {
6649 unsigned long int *hashcodes;
6650 struct hash_codes_info hashinf;
6651 bfd_size_type amt;
6652 unsigned long int nsyms;
6653 size_t bucketcount;
6654 size_t hash_entry_size;
6655
6656 /* Compute the hash values for all exported symbols. At the same
6657 time store the values in an array so that we could use them for
6658 optimizations. */
6659 amt = dynsymcount * sizeof (unsigned long int);
6660 hashcodes = (unsigned long int *) bfd_malloc (amt);
6661 if (hashcodes == NULL)
6662 return FALSE;
6663 hashinf.hashcodes = hashcodes;
6664 hashinf.error = FALSE;
6665
6666 /* Put all hash values in HASHCODES. */
6667 elf_link_hash_traverse (elf_hash_table (info),
6668 elf_collect_hash_codes, &hashinf);
6669 if (hashinf.error)
6670 {
6671 free (hashcodes);
6672 return FALSE;
6673 }
6674
6675 nsyms = hashinf.hashcodes - hashcodes;
6676 bucketcount
6677 = compute_bucket_count (info, hashcodes, nsyms, 0);
6678 free (hashcodes);
6679
6680 if (bucketcount == 0)
6681 return FALSE;
6682
6683 elf_hash_table (info)->bucketcount = bucketcount;
6684
6685 s = bfd_get_linker_section (dynobj, ".hash");
6686 BFD_ASSERT (s != NULL);
6687 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6688 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6689 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6690 if (s->contents == NULL)
6691 return FALSE;
6692
6693 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6694 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6695 s->contents + hash_entry_size);
6696 }
6697
6698 if (info->emit_gnu_hash)
6699 {
6700 size_t i, cnt;
6701 unsigned char *contents;
6702 struct collect_gnu_hash_codes cinfo;
6703 bfd_size_type amt;
6704 size_t bucketcount;
6705
6706 memset (&cinfo, 0, sizeof (cinfo));
6707
6708 /* Compute the hash values for all exported symbols. At the same
6709 time store the values in an array so that we could use them for
6710 optimizations. */
6711 amt = dynsymcount * 2 * sizeof (unsigned long int);
6712 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6713 if (cinfo.hashcodes == NULL)
6714 return FALSE;
6715
6716 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6717 cinfo.min_dynindx = -1;
6718 cinfo.output_bfd = output_bfd;
6719 cinfo.bed = bed;
6720
6721 /* Put all hash values in HASHCODES. */
6722 elf_link_hash_traverse (elf_hash_table (info),
6723 elf_collect_gnu_hash_codes, &cinfo);
6724 if (cinfo.error)
6725 {
6726 free (cinfo.hashcodes);
6727 return FALSE;
6728 }
6729
6730 bucketcount
6731 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6732
6733 if (bucketcount == 0)
6734 {
6735 free (cinfo.hashcodes);
6736 return FALSE;
6737 }
6738
6739 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6740 BFD_ASSERT (s != NULL);
6741
6742 if (cinfo.nsyms == 0)
6743 {
6744 /* Empty .gnu.hash section is special. */
6745 BFD_ASSERT (cinfo.min_dynindx == -1);
6746 free (cinfo.hashcodes);
6747 s->size = 5 * 4 + bed->s->arch_size / 8;
6748 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6749 if (contents == NULL)
6750 return FALSE;
6751 s->contents = contents;
6752 /* 1 empty bucket. */
6753 bfd_put_32 (output_bfd, 1, contents);
6754 /* SYMIDX above the special symbol 0. */
6755 bfd_put_32 (output_bfd, 1, contents + 4);
6756 /* Just one word for bitmask. */
6757 bfd_put_32 (output_bfd, 1, contents + 8);
6758 /* Only hash fn bloom filter. */
6759 bfd_put_32 (output_bfd, 0, contents + 12);
6760 /* No hashes are valid - empty bitmask. */
6761 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6762 /* No hashes in the only bucket. */
6763 bfd_put_32 (output_bfd, 0,
6764 contents + 16 + bed->s->arch_size / 8);
6765 }
6766 else
6767 {
6768 unsigned long int maskwords, maskbitslog2, x;
6769 BFD_ASSERT (cinfo.min_dynindx != -1);
6770
6771 x = cinfo.nsyms;
6772 maskbitslog2 = 1;
6773 while ((x >>= 1) != 0)
6774 ++maskbitslog2;
6775 if (maskbitslog2 < 3)
6776 maskbitslog2 = 5;
6777 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6778 maskbitslog2 = maskbitslog2 + 3;
6779 else
6780 maskbitslog2 = maskbitslog2 + 2;
6781 if (bed->s->arch_size == 64)
6782 {
6783 if (maskbitslog2 == 5)
6784 maskbitslog2 = 6;
6785 cinfo.shift1 = 6;
6786 }
6787 else
6788 cinfo.shift1 = 5;
6789 cinfo.mask = (1 << cinfo.shift1) - 1;
6790 cinfo.shift2 = maskbitslog2;
6791 cinfo.maskbits = 1 << maskbitslog2;
6792 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6793 amt = bucketcount * sizeof (unsigned long int) * 2;
6794 amt += maskwords * sizeof (bfd_vma);
6795 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6796 if (cinfo.bitmask == NULL)
6797 {
6798 free (cinfo.hashcodes);
6799 return FALSE;
6800 }
6801
6802 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6803 cinfo.indx = cinfo.counts + bucketcount;
6804 cinfo.symindx = dynsymcount - cinfo.nsyms;
6805 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6806
6807 /* Determine how often each hash bucket is used. */
6808 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6809 for (i = 0; i < cinfo.nsyms; ++i)
6810 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6811
6812 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6813 if (cinfo.counts[i] != 0)
6814 {
6815 cinfo.indx[i] = cnt;
6816 cnt += cinfo.counts[i];
6817 }
6818 BFD_ASSERT (cnt == dynsymcount);
6819 cinfo.bucketcount = bucketcount;
6820 cinfo.local_indx = cinfo.min_dynindx;
6821
6822 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6823 s->size += cinfo.maskbits / 8;
6824 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6825 if (contents == NULL)
6826 {
6827 free (cinfo.bitmask);
6828 free (cinfo.hashcodes);
6829 return FALSE;
6830 }
6831
6832 s->contents = contents;
6833 bfd_put_32 (output_bfd, bucketcount, contents);
6834 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6835 bfd_put_32 (output_bfd, maskwords, contents + 8);
6836 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6837 contents += 16 + cinfo.maskbits / 8;
6838
6839 for (i = 0; i < bucketcount; ++i)
6840 {
6841 if (cinfo.counts[i] == 0)
6842 bfd_put_32 (output_bfd, 0, contents);
6843 else
6844 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6845 contents += 4;
6846 }
6847
6848 cinfo.contents = contents;
6849
6850 /* Renumber dynamic symbols, populate .gnu.hash section. */
6851 elf_link_hash_traverse (elf_hash_table (info),
6852 elf_renumber_gnu_hash_syms, &cinfo);
6853
6854 contents = s->contents + 16;
6855 for (i = 0; i < maskwords; ++i)
6856 {
6857 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6858 contents);
6859 contents += bed->s->arch_size / 8;
6860 }
6861
6862 free (cinfo.bitmask);
6863 free (cinfo.hashcodes);
6864 }
6865 }
6866
6867 s = bfd_get_linker_section (dynobj, ".dynstr");
6868 BFD_ASSERT (s != NULL);
6869
6870 elf_finalize_dynstr (output_bfd, info);
6871
6872 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6873
6874 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6875 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6876 return FALSE;
6877 }
6878
6879 return TRUE;
6880 }
6881 \f
6882 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6883
6884 static void
6885 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6886 asection *sec)
6887 {
6888 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6889 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6890 }
6891
6892 /* Finish SHF_MERGE section merging. */
6893
6894 bfd_boolean
6895 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
6896 {
6897 bfd *ibfd;
6898 asection *sec;
6899
6900 if (!is_elf_hash_table (info->hash))
6901 return FALSE;
6902
6903 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6904 if ((ibfd->flags & DYNAMIC) == 0
6905 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
6906 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
6907 == get_elf_backend_data (obfd)->s->elfclass))
6908 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6909 if ((sec->flags & SEC_MERGE) != 0
6910 && !bfd_is_abs_section (sec->output_section))
6911 {
6912 struct bfd_elf_section_data *secdata;
6913
6914 secdata = elf_section_data (sec);
6915 if (! _bfd_add_merge_section (obfd,
6916 &elf_hash_table (info)->merge_info,
6917 sec, &secdata->sec_info))
6918 return FALSE;
6919 else if (secdata->sec_info)
6920 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6921 }
6922
6923 if (elf_hash_table (info)->merge_info != NULL)
6924 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
6925 merge_sections_remove_hook);
6926 return TRUE;
6927 }
6928
6929 /* Create an entry in an ELF linker hash table. */
6930
6931 struct bfd_hash_entry *
6932 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6933 struct bfd_hash_table *table,
6934 const char *string)
6935 {
6936 /* Allocate the structure if it has not already been allocated by a
6937 subclass. */
6938 if (entry == NULL)
6939 {
6940 entry = (struct bfd_hash_entry *)
6941 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6942 if (entry == NULL)
6943 return entry;
6944 }
6945
6946 /* Call the allocation method of the superclass. */
6947 entry = _bfd_link_hash_newfunc (entry, table, string);
6948 if (entry != NULL)
6949 {
6950 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6951 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6952
6953 /* Set local fields. */
6954 ret->indx = -1;
6955 ret->dynindx = -1;
6956 ret->got = htab->init_got_refcount;
6957 ret->plt = htab->init_plt_refcount;
6958 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6959 - offsetof (struct elf_link_hash_entry, size)));
6960 /* Assume that we have been called by a non-ELF symbol reader.
6961 This flag is then reset by the code which reads an ELF input
6962 file. This ensures that a symbol created by a non-ELF symbol
6963 reader will have the flag set correctly. */
6964 ret->non_elf = 1;
6965 }
6966
6967 return entry;
6968 }
6969
6970 /* Copy data from an indirect symbol to its direct symbol, hiding the
6971 old indirect symbol. Also used for copying flags to a weakdef. */
6972
6973 void
6974 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6975 struct elf_link_hash_entry *dir,
6976 struct elf_link_hash_entry *ind)
6977 {
6978 struct elf_link_hash_table *htab;
6979
6980 /* Copy down any references that we may have already seen to the
6981 symbol which just became indirect if DIR isn't a hidden versioned
6982 symbol. */
6983
6984 if (dir->versioned != versioned_hidden)
6985 {
6986 dir->ref_dynamic |= ind->ref_dynamic;
6987 dir->ref_regular |= ind->ref_regular;
6988 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6989 dir->non_got_ref |= ind->non_got_ref;
6990 dir->needs_plt |= ind->needs_plt;
6991 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6992 }
6993
6994 if (ind->root.type != bfd_link_hash_indirect)
6995 return;
6996
6997 /* Copy over the global and procedure linkage table refcount entries.
6998 These may have been already set up by a check_relocs routine. */
6999 htab = elf_hash_table (info);
7000 if (ind->got.refcount > htab->init_got_refcount.refcount)
7001 {
7002 if (dir->got.refcount < 0)
7003 dir->got.refcount = 0;
7004 dir->got.refcount += ind->got.refcount;
7005 ind->got.refcount = htab->init_got_refcount.refcount;
7006 }
7007
7008 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7009 {
7010 if (dir->plt.refcount < 0)
7011 dir->plt.refcount = 0;
7012 dir->plt.refcount += ind->plt.refcount;
7013 ind->plt.refcount = htab->init_plt_refcount.refcount;
7014 }
7015
7016 if (ind->dynindx != -1)
7017 {
7018 if (dir->dynindx != -1)
7019 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7020 dir->dynindx = ind->dynindx;
7021 dir->dynstr_index = ind->dynstr_index;
7022 ind->dynindx = -1;
7023 ind->dynstr_index = 0;
7024 }
7025 }
7026
7027 void
7028 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7029 struct elf_link_hash_entry *h,
7030 bfd_boolean force_local)
7031 {
7032 /* STT_GNU_IFUNC symbol must go through PLT. */
7033 if (h->type != STT_GNU_IFUNC)
7034 {
7035 h->plt = elf_hash_table (info)->init_plt_offset;
7036 h->needs_plt = 0;
7037 }
7038 if (force_local)
7039 {
7040 h->forced_local = 1;
7041 if (h->dynindx != -1)
7042 {
7043 h->dynindx = -1;
7044 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7045 h->dynstr_index);
7046 }
7047 }
7048 }
7049
7050 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7051 caller. */
7052
7053 bfd_boolean
7054 _bfd_elf_link_hash_table_init
7055 (struct elf_link_hash_table *table,
7056 bfd *abfd,
7057 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7058 struct bfd_hash_table *,
7059 const char *),
7060 unsigned int entsize,
7061 enum elf_target_id target_id)
7062 {
7063 bfd_boolean ret;
7064 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7065
7066 table->init_got_refcount.refcount = can_refcount - 1;
7067 table->init_plt_refcount.refcount = can_refcount - 1;
7068 table->init_got_offset.offset = -(bfd_vma) 1;
7069 table->init_plt_offset.offset = -(bfd_vma) 1;
7070 /* The first dynamic symbol is a dummy. */
7071 table->dynsymcount = 1;
7072
7073 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7074
7075 table->root.type = bfd_link_elf_hash_table;
7076 table->hash_table_id = target_id;
7077
7078 return ret;
7079 }
7080
7081 /* Create an ELF linker hash table. */
7082
7083 struct bfd_link_hash_table *
7084 _bfd_elf_link_hash_table_create (bfd *abfd)
7085 {
7086 struct elf_link_hash_table *ret;
7087 bfd_size_type amt = sizeof (struct elf_link_hash_table);
7088
7089 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7090 if (ret == NULL)
7091 return NULL;
7092
7093 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7094 sizeof (struct elf_link_hash_entry),
7095 GENERIC_ELF_DATA))
7096 {
7097 free (ret);
7098 return NULL;
7099 }
7100 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7101
7102 return &ret->root;
7103 }
7104
7105 /* Destroy an ELF linker hash table. */
7106
7107 void
7108 _bfd_elf_link_hash_table_free (bfd *obfd)
7109 {
7110 struct elf_link_hash_table *htab;
7111
7112 htab = (struct elf_link_hash_table *) obfd->link.hash;
7113 if (htab->dynstr != NULL)
7114 _bfd_elf_strtab_free (htab->dynstr);
7115 _bfd_merge_sections_free (htab->merge_info);
7116 _bfd_generic_link_hash_table_free (obfd);
7117 }
7118
7119 /* This is a hook for the ELF emulation code in the generic linker to
7120 tell the backend linker what file name to use for the DT_NEEDED
7121 entry for a dynamic object. */
7122
7123 void
7124 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7125 {
7126 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7127 && bfd_get_format (abfd) == bfd_object)
7128 elf_dt_name (abfd) = name;
7129 }
7130
7131 int
7132 bfd_elf_get_dyn_lib_class (bfd *abfd)
7133 {
7134 int lib_class;
7135 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7136 && bfd_get_format (abfd) == bfd_object)
7137 lib_class = elf_dyn_lib_class (abfd);
7138 else
7139 lib_class = 0;
7140 return lib_class;
7141 }
7142
7143 void
7144 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7145 {
7146 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7147 && bfd_get_format (abfd) == bfd_object)
7148 elf_dyn_lib_class (abfd) = lib_class;
7149 }
7150
7151 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7152 the linker ELF emulation code. */
7153
7154 struct bfd_link_needed_list *
7155 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7156 struct bfd_link_info *info)
7157 {
7158 if (! is_elf_hash_table (info->hash))
7159 return NULL;
7160 return elf_hash_table (info)->needed;
7161 }
7162
7163 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7164 hook for the linker ELF emulation code. */
7165
7166 struct bfd_link_needed_list *
7167 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7168 struct bfd_link_info *info)
7169 {
7170 if (! is_elf_hash_table (info->hash))
7171 return NULL;
7172 return elf_hash_table (info)->runpath;
7173 }
7174
7175 /* Get the name actually used for a dynamic object for a link. This
7176 is the SONAME entry if there is one. Otherwise, it is the string
7177 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7178
7179 const char *
7180 bfd_elf_get_dt_soname (bfd *abfd)
7181 {
7182 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7183 && bfd_get_format (abfd) == bfd_object)
7184 return elf_dt_name (abfd);
7185 return NULL;
7186 }
7187
7188 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7189 the ELF linker emulation code. */
7190
7191 bfd_boolean
7192 bfd_elf_get_bfd_needed_list (bfd *abfd,
7193 struct bfd_link_needed_list **pneeded)
7194 {
7195 asection *s;
7196 bfd_byte *dynbuf = NULL;
7197 unsigned int elfsec;
7198 unsigned long shlink;
7199 bfd_byte *extdyn, *extdynend;
7200 size_t extdynsize;
7201 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7202
7203 *pneeded = NULL;
7204
7205 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7206 || bfd_get_format (abfd) != bfd_object)
7207 return TRUE;
7208
7209 s = bfd_get_section_by_name (abfd, ".dynamic");
7210 if (s == NULL || s->size == 0)
7211 return TRUE;
7212
7213 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7214 goto error_return;
7215
7216 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7217 if (elfsec == SHN_BAD)
7218 goto error_return;
7219
7220 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7221
7222 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7223 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7224
7225 extdyn = dynbuf;
7226 extdynend = extdyn + s->size;
7227 for (; extdyn < extdynend; extdyn += extdynsize)
7228 {
7229 Elf_Internal_Dyn dyn;
7230
7231 (*swap_dyn_in) (abfd, extdyn, &dyn);
7232
7233 if (dyn.d_tag == DT_NULL)
7234 break;
7235
7236 if (dyn.d_tag == DT_NEEDED)
7237 {
7238 const char *string;
7239 struct bfd_link_needed_list *l;
7240 unsigned int tagv = dyn.d_un.d_val;
7241 bfd_size_type amt;
7242
7243 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7244 if (string == NULL)
7245 goto error_return;
7246
7247 amt = sizeof *l;
7248 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7249 if (l == NULL)
7250 goto error_return;
7251
7252 l->by = abfd;
7253 l->name = string;
7254 l->next = *pneeded;
7255 *pneeded = l;
7256 }
7257 }
7258
7259 free (dynbuf);
7260
7261 return TRUE;
7262
7263 error_return:
7264 if (dynbuf != NULL)
7265 free (dynbuf);
7266 return FALSE;
7267 }
7268
7269 struct elf_symbuf_symbol
7270 {
7271 unsigned long st_name; /* Symbol name, index in string tbl */
7272 unsigned char st_info; /* Type and binding attributes */
7273 unsigned char st_other; /* Visibilty, and target specific */
7274 };
7275
7276 struct elf_symbuf_head
7277 {
7278 struct elf_symbuf_symbol *ssym;
7279 bfd_size_type count;
7280 unsigned int st_shndx;
7281 };
7282
7283 struct elf_symbol
7284 {
7285 union
7286 {
7287 Elf_Internal_Sym *isym;
7288 struct elf_symbuf_symbol *ssym;
7289 } u;
7290 const char *name;
7291 };
7292
7293 /* Sort references to symbols by ascending section number. */
7294
7295 static int
7296 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7297 {
7298 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7299 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7300
7301 return s1->st_shndx - s2->st_shndx;
7302 }
7303
7304 static int
7305 elf_sym_name_compare (const void *arg1, const void *arg2)
7306 {
7307 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7308 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7309 return strcmp (s1->name, s2->name);
7310 }
7311
7312 static struct elf_symbuf_head *
7313 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7314 {
7315 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7316 struct elf_symbuf_symbol *ssym;
7317 struct elf_symbuf_head *ssymbuf, *ssymhead;
7318 bfd_size_type i, shndx_count, total_size;
7319
7320 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7321 if (indbuf == NULL)
7322 return NULL;
7323
7324 for (ind = indbuf, i = 0; i < symcount; i++)
7325 if (isymbuf[i].st_shndx != SHN_UNDEF)
7326 *ind++ = &isymbuf[i];
7327 indbufend = ind;
7328
7329 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7330 elf_sort_elf_symbol);
7331
7332 shndx_count = 0;
7333 if (indbufend > indbuf)
7334 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7335 if (ind[0]->st_shndx != ind[1]->st_shndx)
7336 shndx_count++;
7337
7338 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7339 + (indbufend - indbuf) * sizeof (*ssym));
7340 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7341 if (ssymbuf == NULL)
7342 {
7343 free (indbuf);
7344 return NULL;
7345 }
7346
7347 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7348 ssymbuf->ssym = NULL;
7349 ssymbuf->count = shndx_count;
7350 ssymbuf->st_shndx = 0;
7351 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7352 {
7353 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7354 {
7355 ssymhead++;
7356 ssymhead->ssym = ssym;
7357 ssymhead->count = 0;
7358 ssymhead->st_shndx = (*ind)->st_shndx;
7359 }
7360 ssym->st_name = (*ind)->st_name;
7361 ssym->st_info = (*ind)->st_info;
7362 ssym->st_other = (*ind)->st_other;
7363 ssymhead->count++;
7364 }
7365 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7366 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7367 == total_size));
7368
7369 free (indbuf);
7370 return ssymbuf;
7371 }
7372
7373 /* Check if 2 sections define the same set of local and global
7374 symbols. */
7375
7376 static bfd_boolean
7377 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7378 struct bfd_link_info *info)
7379 {
7380 bfd *bfd1, *bfd2;
7381 const struct elf_backend_data *bed1, *bed2;
7382 Elf_Internal_Shdr *hdr1, *hdr2;
7383 bfd_size_type symcount1, symcount2;
7384 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7385 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7386 Elf_Internal_Sym *isym, *isymend;
7387 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7388 bfd_size_type count1, count2, i;
7389 unsigned int shndx1, shndx2;
7390 bfd_boolean result;
7391
7392 bfd1 = sec1->owner;
7393 bfd2 = sec2->owner;
7394
7395 /* Both sections have to be in ELF. */
7396 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7397 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7398 return FALSE;
7399
7400 if (elf_section_type (sec1) != elf_section_type (sec2))
7401 return FALSE;
7402
7403 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7404 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7405 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7406 return FALSE;
7407
7408 bed1 = get_elf_backend_data (bfd1);
7409 bed2 = get_elf_backend_data (bfd2);
7410 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7411 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7412 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7413 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7414
7415 if (symcount1 == 0 || symcount2 == 0)
7416 return FALSE;
7417
7418 result = FALSE;
7419 isymbuf1 = NULL;
7420 isymbuf2 = NULL;
7421 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7422 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7423
7424 if (ssymbuf1 == NULL)
7425 {
7426 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7427 NULL, NULL, NULL);
7428 if (isymbuf1 == NULL)
7429 goto done;
7430
7431 if (!info->reduce_memory_overheads)
7432 elf_tdata (bfd1)->symbuf = ssymbuf1
7433 = elf_create_symbuf (symcount1, isymbuf1);
7434 }
7435
7436 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7437 {
7438 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7439 NULL, NULL, NULL);
7440 if (isymbuf2 == NULL)
7441 goto done;
7442
7443 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7444 elf_tdata (bfd2)->symbuf = ssymbuf2
7445 = elf_create_symbuf (symcount2, isymbuf2);
7446 }
7447
7448 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7449 {
7450 /* Optimized faster version. */
7451 bfd_size_type lo, hi, mid;
7452 struct elf_symbol *symp;
7453 struct elf_symbuf_symbol *ssym, *ssymend;
7454
7455 lo = 0;
7456 hi = ssymbuf1->count;
7457 ssymbuf1++;
7458 count1 = 0;
7459 while (lo < hi)
7460 {
7461 mid = (lo + hi) / 2;
7462 if (shndx1 < ssymbuf1[mid].st_shndx)
7463 hi = mid;
7464 else if (shndx1 > ssymbuf1[mid].st_shndx)
7465 lo = mid + 1;
7466 else
7467 {
7468 count1 = ssymbuf1[mid].count;
7469 ssymbuf1 += mid;
7470 break;
7471 }
7472 }
7473
7474 lo = 0;
7475 hi = ssymbuf2->count;
7476 ssymbuf2++;
7477 count2 = 0;
7478 while (lo < hi)
7479 {
7480 mid = (lo + hi) / 2;
7481 if (shndx2 < ssymbuf2[mid].st_shndx)
7482 hi = mid;
7483 else if (shndx2 > ssymbuf2[mid].st_shndx)
7484 lo = mid + 1;
7485 else
7486 {
7487 count2 = ssymbuf2[mid].count;
7488 ssymbuf2 += mid;
7489 break;
7490 }
7491 }
7492
7493 if (count1 == 0 || count2 == 0 || count1 != count2)
7494 goto done;
7495
7496 symtable1
7497 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7498 symtable2
7499 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7500 if (symtable1 == NULL || symtable2 == NULL)
7501 goto done;
7502
7503 symp = symtable1;
7504 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7505 ssym < ssymend; ssym++, symp++)
7506 {
7507 symp->u.ssym = ssym;
7508 symp->name = bfd_elf_string_from_elf_section (bfd1,
7509 hdr1->sh_link,
7510 ssym->st_name);
7511 }
7512
7513 symp = symtable2;
7514 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7515 ssym < ssymend; ssym++, symp++)
7516 {
7517 symp->u.ssym = ssym;
7518 symp->name = bfd_elf_string_from_elf_section (bfd2,
7519 hdr2->sh_link,
7520 ssym->st_name);
7521 }
7522
7523 /* Sort symbol by name. */
7524 qsort (symtable1, count1, sizeof (struct elf_symbol),
7525 elf_sym_name_compare);
7526 qsort (symtable2, count1, sizeof (struct elf_symbol),
7527 elf_sym_name_compare);
7528
7529 for (i = 0; i < count1; i++)
7530 /* Two symbols must have the same binding, type and name. */
7531 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7532 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7533 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7534 goto done;
7535
7536 result = TRUE;
7537 goto done;
7538 }
7539
7540 symtable1 = (struct elf_symbol *)
7541 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7542 symtable2 = (struct elf_symbol *)
7543 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7544 if (symtable1 == NULL || symtable2 == NULL)
7545 goto done;
7546
7547 /* Count definitions in the section. */
7548 count1 = 0;
7549 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7550 if (isym->st_shndx == shndx1)
7551 symtable1[count1++].u.isym = isym;
7552
7553 count2 = 0;
7554 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7555 if (isym->st_shndx == shndx2)
7556 symtable2[count2++].u.isym = isym;
7557
7558 if (count1 == 0 || count2 == 0 || count1 != count2)
7559 goto done;
7560
7561 for (i = 0; i < count1; i++)
7562 symtable1[i].name
7563 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7564 symtable1[i].u.isym->st_name);
7565
7566 for (i = 0; i < count2; i++)
7567 symtable2[i].name
7568 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7569 symtable2[i].u.isym->st_name);
7570
7571 /* Sort symbol by name. */
7572 qsort (symtable1, count1, sizeof (struct elf_symbol),
7573 elf_sym_name_compare);
7574 qsort (symtable2, count1, sizeof (struct elf_symbol),
7575 elf_sym_name_compare);
7576
7577 for (i = 0; i < count1; i++)
7578 /* Two symbols must have the same binding, type and name. */
7579 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7580 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7581 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7582 goto done;
7583
7584 result = TRUE;
7585
7586 done:
7587 if (symtable1)
7588 free (symtable1);
7589 if (symtable2)
7590 free (symtable2);
7591 if (isymbuf1)
7592 free (isymbuf1);
7593 if (isymbuf2)
7594 free (isymbuf2);
7595
7596 return result;
7597 }
7598
7599 /* Return TRUE if 2 section types are compatible. */
7600
7601 bfd_boolean
7602 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7603 bfd *bbfd, const asection *bsec)
7604 {
7605 if (asec == NULL
7606 || bsec == NULL
7607 || abfd->xvec->flavour != bfd_target_elf_flavour
7608 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7609 return TRUE;
7610
7611 return elf_section_type (asec) == elf_section_type (bsec);
7612 }
7613 \f
7614 /* Final phase of ELF linker. */
7615
7616 /* A structure we use to avoid passing large numbers of arguments. */
7617
7618 struct elf_final_link_info
7619 {
7620 /* General link information. */
7621 struct bfd_link_info *info;
7622 /* Output BFD. */
7623 bfd *output_bfd;
7624 /* Symbol string table. */
7625 struct elf_strtab_hash *symstrtab;
7626 /* .hash section. */
7627 asection *hash_sec;
7628 /* symbol version section (.gnu.version). */
7629 asection *symver_sec;
7630 /* Buffer large enough to hold contents of any section. */
7631 bfd_byte *contents;
7632 /* Buffer large enough to hold external relocs of any section. */
7633 void *external_relocs;
7634 /* Buffer large enough to hold internal relocs of any section. */
7635 Elf_Internal_Rela *internal_relocs;
7636 /* Buffer large enough to hold external local symbols of any input
7637 BFD. */
7638 bfd_byte *external_syms;
7639 /* And a buffer for symbol section indices. */
7640 Elf_External_Sym_Shndx *locsym_shndx;
7641 /* Buffer large enough to hold internal local symbols of any input
7642 BFD. */
7643 Elf_Internal_Sym *internal_syms;
7644 /* Array large enough to hold a symbol index for each local symbol
7645 of any input BFD. */
7646 long *indices;
7647 /* Array large enough to hold a section pointer for each local
7648 symbol of any input BFD. */
7649 asection **sections;
7650 /* Buffer for SHT_SYMTAB_SHNDX section. */
7651 Elf_External_Sym_Shndx *symshndxbuf;
7652 /* Number of STT_FILE syms seen. */
7653 size_t filesym_count;
7654 };
7655
7656 /* This struct is used to pass information to elf_link_output_extsym. */
7657
7658 struct elf_outext_info
7659 {
7660 bfd_boolean failed;
7661 bfd_boolean localsyms;
7662 bfd_boolean file_sym_done;
7663 struct elf_final_link_info *flinfo;
7664 };
7665
7666
7667 /* Support for evaluating a complex relocation.
7668
7669 Complex relocations are generalized, self-describing relocations. The
7670 implementation of them consists of two parts: complex symbols, and the
7671 relocations themselves.
7672
7673 The relocations are use a reserved elf-wide relocation type code (R_RELC
7674 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7675 information (start bit, end bit, word width, etc) into the addend. This
7676 information is extracted from CGEN-generated operand tables within gas.
7677
7678 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7679 internal) representing prefix-notation expressions, including but not
7680 limited to those sorts of expressions normally encoded as addends in the
7681 addend field. The symbol mangling format is:
7682
7683 <node> := <literal>
7684 | <unary-operator> ':' <node>
7685 | <binary-operator> ':' <node> ':' <node>
7686 ;
7687
7688 <literal> := 's' <digits=N> ':' <N character symbol name>
7689 | 'S' <digits=N> ':' <N character section name>
7690 | '#' <hexdigits>
7691 ;
7692
7693 <binary-operator> := as in C
7694 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7695
7696 static void
7697 set_symbol_value (bfd *bfd_with_globals,
7698 Elf_Internal_Sym *isymbuf,
7699 size_t locsymcount,
7700 size_t symidx,
7701 bfd_vma val)
7702 {
7703 struct elf_link_hash_entry **sym_hashes;
7704 struct elf_link_hash_entry *h;
7705 size_t extsymoff = locsymcount;
7706
7707 if (symidx < locsymcount)
7708 {
7709 Elf_Internal_Sym *sym;
7710
7711 sym = isymbuf + symidx;
7712 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7713 {
7714 /* It is a local symbol: move it to the
7715 "absolute" section and give it a value. */
7716 sym->st_shndx = SHN_ABS;
7717 sym->st_value = val;
7718 return;
7719 }
7720 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7721 extsymoff = 0;
7722 }
7723
7724 /* It is a global symbol: set its link type
7725 to "defined" and give it a value. */
7726
7727 sym_hashes = elf_sym_hashes (bfd_with_globals);
7728 h = sym_hashes [symidx - extsymoff];
7729 while (h->root.type == bfd_link_hash_indirect
7730 || h->root.type == bfd_link_hash_warning)
7731 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7732 h->root.type = bfd_link_hash_defined;
7733 h->root.u.def.value = val;
7734 h->root.u.def.section = bfd_abs_section_ptr;
7735 }
7736
7737 static bfd_boolean
7738 resolve_symbol (const char *name,
7739 bfd *input_bfd,
7740 struct elf_final_link_info *flinfo,
7741 bfd_vma *result,
7742 Elf_Internal_Sym *isymbuf,
7743 size_t locsymcount)
7744 {
7745 Elf_Internal_Sym *sym;
7746 struct bfd_link_hash_entry *global_entry;
7747 const char *candidate = NULL;
7748 Elf_Internal_Shdr *symtab_hdr;
7749 size_t i;
7750
7751 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7752
7753 for (i = 0; i < locsymcount; ++ i)
7754 {
7755 sym = isymbuf + i;
7756
7757 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7758 continue;
7759
7760 candidate = bfd_elf_string_from_elf_section (input_bfd,
7761 symtab_hdr->sh_link,
7762 sym->st_name);
7763 #ifdef DEBUG
7764 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7765 name, candidate, (unsigned long) sym->st_value);
7766 #endif
7767 if (candidate && strcmp (candidate, name) == 0)
7768 {
7769 asection *sec = flinfo->sections [i];
7770
7771 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7772 *result += sec->output_offset + sec->output_section->vma;
7773 #ifdef DEBUG
7774 printf ("Found symbol with value %8.8lx\n",
7775 (unsigned long) *result);
7776 #endif
7777 return TRUE;
7778 }
7779 }
7780
7781 /* Hmm, haven't found it yet. perhaps it is a global. */
7782 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7783 FALSE, FALSE, TRUE);
7784 if (!global_entry)
7785 return FALSE;
7786
7787 if (global_entry->type == bfd_link_hash_defined
7788 || global_entry->type == bfd_link_hash_defweak)
7789 {
7790 *result = (global_entry->u.def.value
7791 + global_entry->u.def.section->output_section->vma
7792 + global_entry->u.def.section->output_offset);
7793 #ifdef DEBUG
7794 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7795 global_entry->root.string, (unsigned long) *result);
7796 #endif
7797 return TRUE;
7798 }
7799
7800 return FALSE;
7801 }
7802
7803 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
7804 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
7805 names like "foo.end" which is the end address of section "foo". */
7806
7807 static bfd_boolean
7808 resolve_section (const char *name,
7809 asection *sections,
7810 bfd_vma *result,
7811 bfd * abfd)
7812 {
7813 asection *curr;
7814 unsigned int len;
7815
7816 for (curr = sections; curr; curr = curr->next)
7817 if (strcmp (curr->name, name) == 0)
7818 {
7819 *result = curr->vma;
7820 return TRUE;
7821 }
7822
7823 /* Hmm. still haven't found it. try pseudo-section names. */
7824 /* FIXME: This could be coded more efficiently... */
7825 for (curr = sections; curr; curr = curr->next)
7826 {
7827 len = strlen (curr->name);
7828 if (len > strlen (name))
7829 continue;
7830
7831 if (strncmp (curr->name, name, len) == 0)
7832 {
7833 if (strncmp (".end", name + len, 4) == 0)
7834 {
7835 *result = curr->vma + curr->size / bfd_octets_per_byte (abfd);
7836 return TRUE;
7837 }
7838
7839 /* Insert more pseudo-section names here, if you like. */
7840 }
7841 }
7842
7843 return FALSE;
7844 }
7845
7846 static void
7847 undefined_reference (const char *reftype, const char *name)
7848 {
7849 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7850 reftype, name);
7851 }
7852
7853 static bfd_boolean
7854 eval_symbol (bfd_vma *result,
7855 const char **symp,
7856 bfd *input_bfd,
7857 struct elf_final_link_info *flinfo,
7858 bfd_vma dot,
7859 Elf_Internal_Sym *isymbuf,
7860 size_t locsymcount,
7861 int signed_p)
7862 {
7863 size_t len;
7864 size_t symlen;
7865 bfd_vma a;
7866 bfd_vma b;
7867 char symbuf[4096];
7868 const char *sym = *symp;
7869 const char *symend;
7870 bfd_boolean symbol_is_section = FALSE;
7871
7872 len = strlen (sym);
7873 symend = sym + len;
7874
7875 if (len < 1 || len > sizeof (symbuf))
7876 {
7877 bfd_set_error (bfd_error_invalid_operation);
7878 return FALSE;
7879 }
7880
7881 switch (* sym)
7882 {
7883 case '.':
7884 *result = dot;
7885 *symp = sym + 1;
7886 return TRUE;
7887
7888 case '#':
7889 ++sym;
7890 *result = strtoul (sym, (char **) symp, 16);
7891 return TRUE;
7892
7893 case 'S':
7894 symbol_is_section = TRUE;
7895 case 's':
7896 ++sym;
7897 symlen = strtol (sym, (char **) symp, 10);
7898 sym = *symp + 1; /* Skip the trailing ':'. */
7899
7900 if (symend < sym || symlen + 1 > sizeof (symbuf))
7901 {
7902 bfd_set_error (bfd_error_invalid_operation);
7903 return FALSE;
7904 }
7905
7906 memcpy (symbuf, sym, symlen);
7907 symbuf[symlen] = '\0';
7908 *symp = sym + symlen;
7909
7910 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7911 the symbol as a section, or vice-versa. so we're pretty liberal in our
7912 interpretation here; section means "try section first", not "must be a
7913 section", and likewise with symbol. */
7914
7915 if (symbol_is_section)
7916 {
7917 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
7918 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7919 isymbuf, locsymcount))
7920 {
7921 undefined_reference ("section", symbuf);
7922 return FALSE;
7923 }
7924 }
7925 else
7926 {
7927 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7928 isymbuf, locsymcount)
7929 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7930 result, input_bfd))
7931 {
7932 undefined_reference ("symbol", symbuf);
7933 return FALSE;
7934 }
7935 }
7936
7937 return TRUE;
7938
7939 /* All that remains are operators. */
7940
7941 #define UNARY_OP(op) \
7942 if (strncmp (sym, #op, strlen (#op)) == 0) \
7943 { \
7944 sym += strlen (#op); \
7945 if (*sym == ':') \
7946 ++sym; \
7947 *symp = sym; \
7948 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7949 isymbuf, locsymcount, signed_p)) \
7950 return FALSE; \
7951 if (signed_p) \
7952 *result = op ((bfd_signed_vma) a); \
7953 else \
7954 *result = op a; \
7955 return TRUE; \
7956 }
7957
7958 #define BINARY_OP(op) \
7959 if (strncmp (sym, #op, strlen (#op)) == 0) \
7960 { \
7961 sym += strlen (#op); \
7962 if (*sym == ':') \
7963 ++sym; \
7964 *symp = sym; \
7965 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7966 isymbuf, locsymcount, signed_p)) \
7967 return FALSE; \
7968 ++*symp; \
7969 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7970 isymbuf, locsymcount, signed_p)) \
7971 return FALSE; \
7972 if (signed_p) \
7973 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7974 else \
7975 *result = a op b; \
7976 return TRUE; \
7977 }
7978
7979 default:
7980 UNARY_OP (0-);
7981 BINARY_OP (<<);
7982 BINARY_OP (>>);
7983 BINARY_OP (==);
7984 BINARY_OP (!=);
7985 BINARY_OP (<=);
7986 BINARY_OP (>=);
7987 BINARY_OP (&&);
7988 BINARY_OP (||);
7989 UNARY_OP (~);
7990 UNARY_OP (!);
7991 BINARY_OP (*);
7992 BINARY_OP (/);
7993 BINARY_OP (%);
7994 BINARY_OP (^);
7995 BINARY_OP (|);
7996 BINARY_OP (&);
7997 BINARY_OP (+);
7998 BINARY_OP (-);
7999 BINARY_OP (<);
8000 BINARY_OP (>);
8001 #undef UNARY_OP
8002 #undef BINARY_OP
8003 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8004 bfd_set_error (bfd_error_invalid_operation);
8005 return FALSE;
8006 }
8007 }
8008
8009 static void
8010 put_value (bfd_vma size,
8011 unsigned long chunksz,
8012 bfd *input_bfd,
8013 bfd_vma x,
8014 bfd_byte *location)
8015 {
8016 location += (size - chunksz);
8017
8018 for (; size; size -= chunksz, location -= chunksz)
8019 {
8020 switch (chunksz)
8021 {
8022 case 1:
8023 bfd_put_8 (input_bfd, x, location);
8024 x >>= 8;
8025 break;
8026 case 2:
8027 bfd_put_16 (input_bfd, x, location);
8028 x >>= 16;
8029 break;
8030 case 4:
8031 bfd_put_32 (input_bfd, x, location);
8032 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8033 x >>= 16;
8034 x >>= 16;
8035 break;
8036 #ifdef BFD64
8037 case 8:
8038 bfd_put_64 (input_bfd, x, location);
8039 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8040 x >>= 32;
8041 x >>= 32;
8042 break;
8043 #endif
8044 default:
8045 abort ();
8046 break;
8047 }
8048 }
8049 }
8050
8051 static bfd_vma
8052 get_value (bfd_vma size,
8053 unsigned long chunksz,
8054 bfd *input_bfd,
8055 bfd_byte *location)
8056 {
8057 int shift;
8058 bfd_vma x = 0;
8059
8060 /* Sanity checks. */
8061 BFD_ASSERT (chunksz <= sizeof (x)
8062 && size >= chunksz
8063 && chunksz != 0
8064 && (size % chunksz) == 0
8065 && input_bfd != NULL
8066 && location != NULL);
8067
8068 if (chunksz == sizeof (x))
8069 {
8070 BFD_ASSERT (size == chunksz);
8071
8072 /* Make sure that we do not perform an undefined shift operation.
8073 We know that size == chunksz so there will only be one iteration
8074 of the loop below. */
8075 shift = 0;
8076 }
8077 else
8078 shift = 8 * chunksz;
8079
8080 for (; size; size -= chunksz, location += chunksz)
8081 {
8082 switch (chunksz)
8083 {
8084 case 1:
8085 x = (x << shift) | bfd_get_8 (input_bfd, location);
8086 break;
8087 case 2:
8088 x = (x << shift) | bfd_get_16 (input_bfd, location);
8089 break;
8090 case 4:
8091 x = (x << shift) | bfd_get_32 (input_bfd, location);
8092 break;
8093 #ifdef BFD64
8094 case 8:
8095 x = (x << shift) | bfd_get_64 (input_bfd, location);
8096 break;
8097 #endif
8098 default:
8099 abort ();
8100 }
8101 }
8102 return x;
8103 }
8104
8105 static void
8106 decode_complex_addend (unsigned long *start, /* in bits */
8107 unsigned long *oplen, /* in bits */
8108 unsigned long *len, /* in bits */
8109 unsigned long *wordsz, /* in bytes */
8110 unsigned long *chunksz, /* in bytes */
8111 unsigned long *lsb0_p,
8112 unsigned long *signed_p,
8113 unsigned long *trunc_p,
8114 unsigned long encoded)
8115 {
8116 * start = encoded & 0x3F;
8117 * len = (encoded >> 6) & 0x3F;
8118 * oplen = (encoded >> 12) & 0x3F;
8119 * wordsz = (encoded >> 18) & 0xF;
8120 * chunksz = (encoded >> 22) & 0xF;
8121 * lsb0_p = (encoded >> 27) & 1;
8122 * signed_p = (encoded >> 28) & 1;
8123 * trunc_p = (encoded >> 29) & 1;
8124 }
8125
8126 bfd_reloc_status_type
8127 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8128 asection *input_section ATTRIBUTE_UNUSED,
8129 bfd_byte *contents,
8130 Elf_Internal_Rela *rel,
8131 bfd_vma relocation)
8132 {
8133 bfd_vma shift, x, mask;
8134 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8135 bfd_reloc_status_type r;
8136
8137 /* Perform this reloc, since it is complex.
8138 (this is not to say that it necessarily refers to a complex
8139 symbol; merely that it is a self-describing CGEN based reloc.
8140 i.e. the addend has the complete reloc information (bit start, end,
8141 word size, etc) encoded within it.). */
8142
8143 decode_complex_addend (&start, &oplen, &len, &wordsz,
8144 &chunksz, &lsb0_p, &signed_p,
8145 &trunc_p, rel->r_addend);
8146
8147 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8148
8149 if (lsb0_p)
8150 shift = (start + 1) - len;
8151 else
8152 shift = (8 * wordsz) - (start + len);
8153
8154 x = get_value (wordsz, chunksz, input_bfd,
8155 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8156
8157 #ifdef DEBUG
8158 printf ("Doing complex reloc: "
8159 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8160 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8161 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8162 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8163 oplen, (unsigned long) x, (unsigned long) mask,
8164 (unsigned long) relocation);
8165 #endif
8166
8167 r = bfd_reloc_ok;
8168 if (! trunc_p)
8169 /* Now do an overflow check. */
8170 r = bfd_check_overflow ((signed_p
8171 ? complain_overflow_signed
8172 : complain_overflow_unsigned),
8173 len, 0, (8 * wordsz),
8174 relocation);
8175
8176 /* Do the deed. */
8177 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8178
8179 #ifdef DEBUG
8180 printf (" relocation: %8.8lx\n"
8181 " shifted mask: %8.8lx\n"
8182 " shifted/masked reloc: %8.8lx\n"
8183 " result: %8.8lx\n",
8184 (unsigned long) relocation, (unsigned long) (mask << shift),
8185 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8186 #endif
8187 put_value (wordsz, chunksz, input_bfd, x,
8188 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8189 return r;
8190 }
8191
8192 /* Functions to read r_offset from external (target order) reloc
8193 entry. Faster than bfd_getl32 et al, because we let the compiler
8194 know the value is aligned. */
8195
8196 static bfd_vma
8197 ext32l_r_offset (const void *p)
8198 {
8199 union aligned32
8200 {
8201 uint32_t v;
8202 unsigned char c[4];
8203 };
8204 const union aligned32 *a
8205 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8206
8207 uint32_t aval = ( (uint32_t) a->c[0]
8208 | (uint32_t) a->c[1] << 8
8209 | (uint32_t) a->c[2] << 16
8210 | (uint32_t) a->c[3] << 24);
8211 return aval;
8212 }
8213
8214 static bfd_vma
8215 ext32b_r_offset (const void *p)
8216 {
8217 union aligned32
8218 {
8219 uint32_t v;
8220 unsigned char c[4];
8221 };
8222 const union aligned32 *a
8223 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8224
8225 uint32_t aval = ( (uint32_t) a->c[0] << 24
8226 | (uint32_t) a->c[1] << 16
8227 | (uint32_t) a->c[2] << 8
8228 | (uint32_t) a->c[3]);
8229 return aval;
8230 }
8231
8232 #ifdef BFD_HOST_64_BIT
8233 static bfd_vma
8234 ext64l_r_offset (const void *p)
8235 {
8236 union aligned64
8237 {
8238 uint64_t v;
8239 unsigned char c[8];
8240 };
8241 const union aligned64 *a
8242 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8243
8244 uint64_t aval = ( (uint64_t) a->c[0]
8245 | (uint64_t) a->c[1] << 8
8246 | (uint64_t) a->c[2] << 16
8247 | (uint64_t) a->c[3] << 24
8248 | (uint64_t) a->c[4] << 32
8249 | (uint64_t) a->c[5] << 40
8250 | (uint64_t) a->c[6] << 48
8251 | (uint64_t) a->c[7] << 56);
8252 return aval;
8253 }
8254
8255 static bfd_vma
8256 ext64b_r_offset (const void *p)
8257 {
8258 union aligned64
8259 {
8260 uint64_t v;
8261 unsigned char c[8];
8262 };
8263 const union aligned64 *a
8264 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8265
8266 uint64_t aval = ( (uint64_t) a->c[0] << 56
8267 | (uint64_t) a->c[1] << 48
8268 | (uint64_t) a->c[2] << 40
8269 | (uint64_t) a->c[3] << 32
8270 | (uint64_t) a->c[4] << 24
8271 | (uint64_t) a->c[5] << 16
8272 | (uint64_t) a->c[6] << 8
8273 | (uint64_t) a->c[7]);
8274 return aval;
8275 }
8276 #endif
8277
8278 /* When performing a relocatable link, the input relocations are
8279 preserved. But, if they reference global symbols, the indices
8280 referenced must be updated. Update all the relocations found in
8281 RELDATA. */
8282
8283 static bfd_boolean
8284 elf_link_adjust_relocs (bfd *abfd,
8285 struct bfd_elf_section_reloc_data *reldata,
8286 bfd_boolean sort)
8287 {
8288 unsigned int i;
8289 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8290 bfd_byte *erela;
8291 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8292 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8293 bfd_vma r_type_mask;
8294 int r_sym_shift;
8295 unsigned int count = reldata->count;
8296 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8297
8298 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8299 {
8300 swap_in = bed->s->swap_reloc_in;
8301 swap_out = bed->s->swap_reloc_out;
8302 }
8303 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8304 {
8305 swap_in = bed->s->swap_reloca_in;
8306 swap_out = bed->s->swap_reloca_out;
8307 }
8308 else
8309 abort ();
8310
8311 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8312 abort ();
8313
8314 if (bed->s->arch_size == 32)
8315 {
8316 r_type_mask = 0xff;
8317 r_sym_shift = 8;
8318 }
8319 else
8320 {
8321 r_type_mask = 0xffffffff;
8322 r_sym_shift = 32;
8323 }
8324
8325 erela = reldata->hdr->contents;
8326 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8327 {
8328 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8329 unsigned int j;
8330
8331 if (*rel_hash == NULL)
8332 continue;
8333
8334 BFD_ASSERT ((*rel_hash)->indx >= 0);
8335
8336 (*swap_in) (abfd, erela, irela);
8337 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8338 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8339 | (irela[j].r_info & r_type_mask));
8340 (*swap_out) (abfd, irela, erela);
8341 }
8342
8343 if (sort && count != 0)
8344 {
8345 bfd_vma (*ext_r_off) (const void *);
8346 bfd_vma r_off;
8347 size_t elt_size;
8348 bfd_byte *base, *end, *p, *loc;
8349 bfd_byte *buf = NULL;
8350
8351 if (bed->s->arch_size == 32)
8352 {
8353 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8354 ext_r_off = ext32l_r_offset;
8355 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8356 ext_r_off = ext32b_r_offset;
8357 else
8358 abort ();
8359 }
8360 else
8361 {
8362 #ifdef BFD_HOST_64_BIT
8363 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8364 ext_r_off = ext64l_r_offset;
8365 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8366 ext_r_off = ext64b_r_offset;
8367 else
8368 #endif
8369 abort ();
8370 }
8371
8372 /* Must use a stable sort here. A modified insertion sort,
8373 since the relocs are mostly sorted already. */
8374 elt_size = reldata->hdr->sh_entsize;
8375 base = reldata->hdr->contents;
8376 end = base + count * elt_size;
8377 if (elt_size > sizeof (Elf64_External_Rela))
8378 abort ();
8379
8380 /* Ensure the first element is lowest. This acts as a sentinel,
8381 speeding the main loop below. */
8382 r_off = (*ext_r_off) (base);
8383 for (p = loc = base; (p += elt_size) < end; )
8384 {
8385 bfd_vma r_off2 = (*ext_r_off) (p);
8386 if (r_off > r_off2)
8387 {
8388 r_off = r_off2;
8389 loc = p;
8390 }
8391 }
8392 if (loc != base)
8393 {
8394 /* Don't just swap *base and *loc as that changes the order
8395 of the original base[0] and base[1] if they happen to
8396 have the same r_offset. */
8397 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
8398 memcpy (onebuf, loc, elt_size);
8399 memmove (base + elt_size, base, loc - base);
8400 memcpy (base, onebuf, elt_size);
8401 }
8402
8403 for (p = base + elt_size; (p += elt_size) < end; )
8404 {
8405 /* base to p is sorted, *p is next to insert. */
8406 r_off = (*ext_r_off) (p);
8407 /* Search the sorted region for location to insert. */
8408 loc = p - elt_size;
8409 while (r_off < (*ext_r_off) (loc))
8410 loc -= elt_size;
8411 loc += elt_size;
8412 if (loc != p)
8413 {
8414 /* Chances are there is a run of relocs to insert here,
8415 from one of more input files. Files are not always
8416 linked in order due to the way elf_link_input_bfd is
8417 called. See pr17666. */
8418 size_t sortlen = p - loc;
8419 bfd_vma r_off2 = (*ext_r_off) (loc);
8420 size_t runlen = elt_size;
8421 size_t buf_size = 96 * 1024;
8422 while (p + runlen < end
8423 && (sortlen <= buf_size
8424 || runlen + elt_size <= buf_size)
8425 && r_off2 > (*ext_r_off) (p + runlen))
8426 runlen += elt_size;
8427 if (buf == NULL)
8428 {
8429 buf = bfd_malloc (buf_size);
8430 if (buf == NULL)
8431 return FALSE;
8432 }
8433 if (runlen < sortlen)
8434 {
8435 memcpy (buf, p, runlen);
8436 memmove (loc + runlen, loc, sortlen);
8437 memcpy (loc, buf, runlen);
8438 }
8439 else
8440 {
8441 memcpy (buf, loc, sortlen);
8442 memmove (loc, p, runlen);
8443 memcpy (loc + runlen, buf, sortlen);
8444 }
8445 p += runlen - elt_size;
8446 }
8447 }
8448 /* Hashes are no longer valid. */
8449 free (reldata->hashes);
8450 reldata->hashes = NULL;
8451 free (buf);
8452 }
8453 return TRUE;
8454 }
8455
8456 struct elf_link_sort_rela
8457 {
8458 union {
8459 bfd_vma offset;
8460 bfd_vma sym_mask;
8461 } u;
8462 enum elf_reloc_type_class type;
8463 /* We use this as an array of size int_rels_per_ext_rel. */
8464 Elf_Internal_Rela rela[1];
8465 };
8466
8467 static int
8468 elf_link_sort_cmp1 (const void *A, const void *B)
8469 {
8470 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8471 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8472 int relativea, relativeb;
8473
8474 relativea = a->type == reloc_class_relative;
8475 relativeb = b->type == reloc_class_relative;
8476
8477 if (relativea < relativeb)
8478 return 1;
8479 if (relativea > relativeb)
8480 return -1;
8481 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8482 return -1;
8483 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8484 return 1;
8485 if (a->rela->r_offset < b->rela->r_offset)
8486 return -1;
8487 if (a->rela->r_offset > b->rela->r_offset)
8488 return 1;
8489 return 0;
8490 }
8491
8492 static int
8493 elf_link_sort_cmp2 (const void *A, const void *B)
8494 {
8495 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8496 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8497
8498 if (a->type < b->type)
8499 return -1;
8500 if (a->type > b->type)
8501 return 1;
8502 if (a->u.offset < b->u.offset)
8503 return -1;
8504 if (a->u.offset > b->u.offset)
8505 return 1;
8506 if (a->rela->r_offset < b->rela->r_offset)
8507 return -1;
8508 if (a->rela->r_offset > b->rela->r_offset)
8509 return 1;
8510 return 0;
8511 }
8512
8513 static size_t
8514 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8515 {
8516 asection *dynamic_relocs;
8517 asection *rela_dyn;
8518 asection *rel_dyn;
8519 bfd_size_type count, size;
8520 size_t i, ret, sort_elt, ext_size;
8521 bfd_byte *sort, *s_non_relative, *p;
8522 struct elf_link_sort_rela *sq;
8523 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8524 int i2e = bed->s->int_rels_per_ext_rel;
8525 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8526 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8527 struct bfd_link_order *lo;
8528 bfd_vma r_sym_mask;
8529 bfd_boolean use_rela;
8530
8531 /* Find a dynamic reloc section. */
8532 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8533 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8534 if (rela_dyn != NULL && rela_dyn->size > 0
8535 && rel_dyn != NULL && rel_dyn->size > 0)
8536 {
8537 bfd_boolean use_rela_initialised = FALSE;
8538
8539 /* This is just here to stop gcc from complaining.
8540 It's initialization checking code is not perfect. */
8541 use_rela = TRUE;
8542
8543 /* Both sections are present. Examine the sizes
8544 of the indirect sections to help us choose. */
8545 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8546 if (lo->type == bfd_indirect_link_order)
8547 {
8548 asection *o = lo->u.indirect.section;
8549
8550 if ((o->size % bed->s->sizeof_rela) == 0)
8551 {
8552 if ((o->size % bed->s->sizeof_rel) == 0)
8553 /* Section size is divisible by both rel and rela sizes.
8554 It is of no help to us. */
8555 ;
8556 else
8557 {
8558 /* Section size is only divisible by rela. */
8559 if (use_rela_initialised && (use_rela == FALSE))
8560 {
8561 _bfd_error_handler
8562 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8563 bfd_set_error (bfd_error_invalid_operation);
8564 return 0;
8565 }
8566 else
8567 {
8568 use_rela = TRUE;
8569 use_rela_initialised = TRUE;
8570 }
8571 }
8572 }
8573 else if ((o->size % bed->s->sizeof_rel) == 0)
8574 {
8575 /* Section size is only divisible by rel. */
8576 if (use_rela_initialised && (use_rela == TRUE))
8577 {
8578 _bfd_error_handler
8579 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8580 bfd_set_error (bfd_error_invalid_operation);
8581 return 0;
8582 }
8583 else
8584 {
8585 use_rela = FALSE;
8586 use_rela_initialised = TRUE;
8587 }
8588 }
8589 else
8590 {
8591 /* The section size is not divisible by either - something is wrong. */
8592 _bfd_error_handler
8593 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8594 bfd_set_error (bfd_error_invalid_operation);
8595 return 0;
8596 }
8597 }
8598
8599 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8600 if (lo->type == bfd_indirect_link_order)
8601 {
8602 asection *o = lo->u.indirect.section;
8603
8604 if ((o->size % bed->s->sizeof_rela) == 0)
8605 {
8606 if ((o->size % bed->s->sizeof_rel) == 0)
8607 /* Section size is divisible by both rel and rela sizes.
8608 It is of no help to us. */
8609 ;
8610 else
8611 {
8612 /* Section size is only divisible by rela. */
8613 if (use_rela_initialised && (use_rela == FALSE))
8614 {
8615 _bfd_error_handler
8616 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8617 bfd_set_error (bfd_error_invalid_operation);
8618 return 0;
8619 }
8620 else
8621 {
8622 use_rela = TRUE;
8623 use_rela_initialised = TRUE;
8624 }
8625 }
8626 }
8627 else if ((o->size % bed->s->sizeof_rel) == 0)
8628 {
8629 /* Section size is only divisible by rel. */
8630 if (use_rela_initialised && (use_rela == TRUE))
8631 {
8632 _bfd_error_handler
8633 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8634 bfd_set_error (bfd_error_invalid_operation);
8635 return 0;
8636 }
8637 else
8638 {
8639 use_rela = FALSE;
8640 use_rela_initialised = TRUE;
8641 }
8642 }
8643 else
8644 {
8645 /* The section size is not divisible by either - something is wrong. */
8646 _bfd_error_handler
8647 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8648 bfd_set_error (bfd_error_invalid_operation);
8649 return 0;
8650 }
8651 }
8652
8653 if (! use_rela_initialised)
8654 /* Make a guess. */
8655 use_rela = TRUE;
8656 }
8657 else if (rela_dyn != NULL && rela_dyn->size > 0)
8658 use_rela = TRUE;
8659 else if (rel_dyn != NULL && rel_dyn->size > 0)
8660 use_rela = FALSE;
8661 else
8662 return 0;
8663
8664 if (use_rela)
8665 {
8666 dynamic_relocs = rela_dyn;
8667 ext_size = bed->s->sizeof_rela;
8668 swap_in = bed->s->swap_reloca_in;
8669 swap_out = bed->s->swap_reloca_out;
8670 }
8671 else
8672 {
8673 dynamic_relocs = rel_dyn;
8674 ext_size = bed->s->sizeof_rel;
8675 swap_in = bed->s->swap_reloc_in;
8676 swap_out = bed->s->swap_reloc_out;
8677 }
8678
8679 size = 0;
8680 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8681 if (lo->type == bfd_indirect_link_order)
8682 size += lo->u.indirect.section->size;
8683
8684 if (size != dynamic_relocs->size)
8685 return 0;
8686
8687 sort_elt = (sizeof (struct elf_link_sort_rela)
8688 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8689
8690 count = dynamic_relocs->size / ext_size;
8691 if (count == 0)
8692 return 0;
8693 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8694
8695 if (sort == NULL)
8696 {
8697 (*info->callbacks->warning)
8698 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8699 return 0;
8700 }
8701
8702 if (bed->s->arch_size == 32)
8703 r_sym_mask = ~(bfd_vma) 0xff;
8704 else
8705 r_sym_mask = ~(bfd_vma) 0xffffffff;
8706
8707 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8708 if (lo->type == bfd_indirect_link_order)
8709 {
8710 bfd_byte *erel, *erelend;
8711 asection *o = lo->u.indirect.section;
8712
8713 if (o->contents == NULL && o->size != 0)
8714 {
8715 /* This is a reloc section that is being handled as a normal
8716 section. See bfd_section_from_shdr. We can't combine
8717 relocs in this case. */
8718 free (sort);
8719 return 0;
8720 }
8721 erel = o->contents;
8722 erelend = o->contents + o->size;
8723 /* FIXME: octets_per_byte. */
8724 p = sort + o->output_offset / ext_size * sort_elt;
8725
8726 while (erel < erelend)
8727 {
8728 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8729
8730 (*swap_in) (abfd, erel, s->rela);
8731 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8732 s->u.sym_mask = r_sym_mask;
8733 p += sort_elt;
8734 erel += ext_size;
8735 }
8736 }
8737
8738 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8739
8740 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8741 {
8742 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8743 if (s->type != reloc_class_relative)
8744 break;
8745 }
8746 ret = i;
8747 s_non_relative = p;
8748
8749 sq = (struct elf_link_sort_rela *) s_non_relative;
8750 for (; i < count; i++, p += sort_elt)
8751 {
8752 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8753 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8754 sq = sp;
8755 sp->u.offset = sq->rela->r_offset;
8756 }
8757
8758 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8759
8760 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8761 if (lo->type == bfd_indirect_link_order)
8762 {
8763 bfd_byte *erel, *erelend;
8764 asection *o = lo->u.indirect.section;
8765
8766 erel = o->contents;
8767 erelend = o->contents + o->size;
8768 /* FIXME: octets_per_byte. */
8769 p = sort + o->output_offset / ext_size * sort_elt;
8770 while (erel < erelend)
8771 {
8772 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8773 (*swap_out) (abfd, s->rela, erel);
8774 p += sort_elt;
8775 erel += ext_size;
8776 }
8777 }
8778
8779 free (sort);
8780 *psec = dynamic_relocs;
8781 return ret;
8782 }
8783
8784 /* Add a symbol to the output symbol string table. */
8785
8786 static int
8787 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
8788 const char *name,
8789 Elf_Internal_Sym *elfsym,
8790 asection *input_sec,
8791 struct elf_link_hash_entry *h)
8792 {
8793 int (*output_symbol_hook)
8794 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8795 struct elf_link_hash_entry *);
8796 struct elf_link_hash_table *hash_table;
8797 const struct elf_backend_data *bed;
8798 bfd_size_type strtabsize;
8799
8800 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8801
8802 bed = get_elf_backend_data (flinfo->output_bfd);
8803 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8804 if (output_symbol_hook != NULL)
8805 {
8806 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8807 if (ret != 1)
8808 return ret;
8809 }
8810
8811 if (name == NULL
8812 || *name == '\0'
8813 || (input_sec->flags & SEC_EXCLUDE))
8814 elfsym->st_name = (unsigned long) -1;
8815 else
8816 {
8817 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
8818 to get the final offset for st_name. */
8819 elfsym->st_name
8820 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
8821 name, FALSE);
8822 if (elfsym->st_name == (unsigned long) -1)
8823 return 0;
8824 }
8825
8826 hash_table = elf_hash_table (flinfo->info);
8827 strtabsize = hash_table->strtabsize;
8828 if (strtabsize <= hash_table->strtabcount)
8829 {
8830 strtabsize += strtabsize;
8831 hash_table->strtabsize = strtabsize;
8832 strtabsize *= sizeof (*hash_table->strtab);
8833 hash_table->strtab
8834 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
8835 strtabsize);
8836 if (hash_table->strtab == NULL)
8837 return 0;
8838 }
8839 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
8840 hash_table->strtab[hash_table->strtabcount].dest_index
8841 = hash_table->strtabcount;
8842 hash_table->strtab[hash_table->strtabcount].destshndx_index
8843 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
8844
8845 bfd_get_symcount (flinfo->output_bfd) += 1;
8846 hash_table->strtabcount += 1;
8847
8848 return 1;
8849 }
8850
8851 /* Swap symbols out to the symbol table and flush the output symbols to
8852 the file. */
8853
8854 static bfd_boolean
8855 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
8856 {
8857 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
8858 bfd_size_type amt, i;
8859 const struct elf_backend_data *bed;
8860 bfd_byte *symbuf;
8861 Elf_Internal_Shdr *hdr;
8862 file_ptr pos;
8863 bfd_boolean ret;
8864
8865 if (!hash_table->strtabcount)
8866 return TRUE;
8867
8868 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8869
8870 bed = get_elf_backend_data (flinfo->output_bfd);
8871
8872 amt = bed->s->sizeof_sym * hash_table->strtabcount;
8873 symbuf = (bfd_byte *) bfd_malloc (amt);
8874 if (symbuf == NULL)
8875 return FALSE;
8876
8877 if (flinfo->symshndxbuf)
8878 {
8879 amt = (sizeof (Elf_External_Sym_Shndx)
8880 * (bfd_get_symcount (flinfo->output_bfd)));
8881 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
8882 if (flinfo->symshndxbuf == NULL)
8883 {
8884 free (symbuf);
8885 return FALSE;
8886 }
8887 }
8888
8889 for (i = 0; i < hash_table->strtabcount; i++)
8890 {
8891 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
8892 if (elfsym->sym.st_name == (unsigned long) -1)
8893 elfsym->sym.st_name = 0;
8894 else
8895 elfsym->sym.st_name
8896 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
8897 elfsym->sym.st_name);
8898 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
8899 ((bfd_byte *) symbuf
8900 + (elfsym->dest_index
8901 * bed->s->sizeof_sym)),
8902 (flinfo->symshndxbuf
8903 + elfsym->destshndx_index));
8904 }
8905
8906 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8907 pos = hdr->sh_offset + hdr->sh_size;
8908 amt = hash_table->strtabcount * bed->s->sizeof_sym;
8909 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
8910 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
8911 {
8912 hdr->sh_size += amt;
8913 ret = TRUE;
8914 }
8915 else
8916 ret = FALSE;
8917
8918 free (symbuf);
8919
8920 free (hash_table->strtab);
8921 hash_table->strtab = NULL;
8922
8923 return ret;
8924 }
8925
8926 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8927
8928 static bfd_boolean
8929 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8930 {
8931 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8932 && sym->st_shndx < SHN_LORESERVE)
8933 {
8934 /* The gABI doesn't support dynamic symbols in output sections
8935 beyond 64k. */
8936 (*_bfd_error_handler)
8937 (_("%B: Too many sections: %d (>= %d)"),
8938 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8939 bfd_set_error (bfd_error_nonrepresentable_section);
8940 return FALSE;
8941 }
8942 return TRUE;
8943 }
8944
8945 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8946 allowing an unsatisfied unversioned symbol in the DSO to match a
8947 versioned symbol that would normally require an explicit version.
8948 We also handle the case that a DSO references a hidden symbol
8949 which may be satisfied by a versioned symbol in another DSO. */
8950
8951 static bfd_boolean
8952 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8953 const struct elf_backend_data *bed,
8954 struct elf_link_hash_entry *h)
8955 {
8956 bfd *abfd;
8957 struct elf_link_loaded_list *loaded;
8958
8959 if (!is_elf_hash_table (info->hash))
8960 return FALSE;
8961
8962 /* Check indirect symbol. */
8963 while (h->root.type == bfd_link_hash_indirect)
8964 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8965
8966 switch (h->root.type)
8967 {
8968 default:
8969 abfd = NULL;
8970 break;
8971
8972 case bfd_link_hash_undefined:
8973 case bfd_link_hash_undefweak:
8974 abfd = h->root.u.undef.abfd;
8975 if ((abfd->flags & DYNAMIC) == 0
8976 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8977 return FALSE;
8978 break;
8979
8980 case bfd_link_hash_defined:
8981 case bfd_link_hash_defweak:
8982 abfd = h->root.u.def.section->owner;
8983 break;
8984
8985 case bfd_link_hash_common:
8986 abfd = h->root.u.c.p->section->owner;
8987 break;
8988 }
8989 BFD_ASSERT (abfd != NULL);
8990
8991 for (loaded = elf_hash_table (info)->loaded;
8992 loaded != NULL;
8993 loaded = loaded->next)
8994 {
8995 bfd *input;
8996 Elf_Internal_Shdr *hdr;
8997 bfd_size_type symcount;
8998 bfd_size_type extsymcount;
8999 bfd_size_type extsymoff;
9000 Elf_Internal_Shdr *versymhdr;
9001 Elf_Internal_Sym *isym;
9002 Elf_Internal_Sym *isymend;
9003 Elf_Internal_Sym *isymbuf;
9004 Elf_External_Versym *ever;
9005 Elf_External_Versym *extversym;
9006
9007 input = loaded->abfd;
9008
9009 /* We check each DSO for a possible hidden versioned definition. */
9010 if (input == abfd
9011 || (input->flags & DYNAMIC) == 0
9012 || elf_dynversym (input) == 0)
9013 continue;
9014
9015 hdr = &elf_tdata (input)->dynsymtab_hdr;
9016
9017 symcount = hdr->sh_size / bed->s->sizeof_sym;
9018 if (elf_bad_symtab (input))
9019 {
9020 extsymcount = symcount;
9021 extsymoff = 0;
9022 }
9023 else
9024 {
9025 extsymcount = symcount - hdr->sh_info;
9026 extsymoff = hdr->sh_info;
9027 }
9028
9029 if (extsymcount == 0)
9030 continue;
9031
9032 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9033 NULL, NULL, NULL);
9034 if (isymbuf == NULL)
9035 return FALSE;
9036
9037 /* Read in any version definitions. */
9038 versymhdr = &elf_tdata (input)->dynversym_hdr;
9039 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
9040 if (extversym == NULL)
9041 goto error_ret;
9042
9043 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9044 || (bfd_bread (extversym, versymhdr->sh_size, input)
9045 != versymhdr->sh_size))
9046 {
9047 free (extversym);
9048 error_ret:
9049 free (isymbuf);
9050 return FALSE;
9051 }
9052
9053 ever = extversym + extsymoff;
9054 isymend = isymbuf + extsymcount;
9055 for (isym = isymbuf; isym < isymend; isym++, ever++)
9056 {
9057 const char *name;
9058 Elf_Internal_Versym iver;
9059 unsigned short version_index;
9060
9061 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9062 || isym->st_shndx == SHN_UNDEF)
9063 continue;
9064
9065 name = bfd_elf_string_from_elf_section (input,
9066 hdr->sh_link,
9067 isym->st_name);
9068 if (strcmp (name, h->root.root.string) != 0)
9069 continue;
9070
9071 _bfd_elf_swap_versym_in (input, ever, &iver);
9072
9073 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9074 && !(h->def_regular
9075 && h->forced_local))
9076 {
9077 /* If we have a non-hidden versioned sym, then it should
9078 have provided a definition for the undefined sym unless
9079 it is defined in a non-shared object and forced local.
9080 */
9081 abort ();
9082 }
9083
9084 version_index = iver.vs_vers & VERSYM_VERSION;
9085 if (version_index == 1 || version_index == 2)
9086 {
9087 /* This is the base or first version. We can use it. */
9088 free (extversym);
9089 free (isymbuf);
9090 return TRUE;
9091 }
9092 }
9093
9094 free (extversym);
9095 free (isymbuf);
9096 }
9097
9098 return FALSE;
9099 }
9100
9101 /* Convert ELF common symbol TYPE. */
9102
9103 static int
9104 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9105 {
9106 /* Commom symbol can only appear in relocatable link. */
9107 if (!bfd_link_relocatable (info))
9108 abort ();
9109 switch (info->elf_stt_common)
9110 {
9111 case unchanged:
9112 break;
9113 case elf_stt_common:
9114 type = STT_COMMON;
9115 break;
9116 case no_elf_stt_common:
9117 type = STT_OBJECT;
9118 break;
9119 }
9120 return type;
9121 }
9122
9123 /* Add an external symbol to the symbol table. This is called from
9124 the hash table traversal routine. When generating a shared object,
9125 we go through the symbol table twice. The first time we output
9126 anything that might have been forced to local scope in a version
9127 script. The second time we output the symbols that are still
9128 global symbols. */
9129
9130 static bfd_boolean
9131 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9132 {
9133 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9134 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9135 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9136 bfd_boolean strip;
9137 Elf_Internal_Sym sym;
9138 asection *input_sec;
9139 const struct elf_backend_data *bed;
9140 long indx;
9141 int ret;
9142 unsigned int type;
9143 /* A symbol is bound locally if it is forced local or it is locally
9144 defined, hidden versioned, not referenced by shared library and
9145 not exported when linking executable. */
9146 bfd_boolean local_bind = (h->forced_local
9147 || (bfd_link_executable (flinfo->info)
9148 && !flinfo->info->export_dynamic
9149 && !h->dynamic
9150 && !h->ref_dynamic
9151 && h->def_regular
9152 && h->versioned == versioned_hidden));
9153
9154 if (h->root.type == bfd_link_hash_warning)
9155 {
9156 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9157 if (h->root.type == bfd_link_hash_new)
9158 return TRUE;
9159 }
9160
9161 /* Decide whether to output this symbol in this pass. */
9162 if (eoinfo->localsyms)
9163 {
9164 if (!local_bind)
9165 return TRUE;
9166 }
9167 else
9168 {
9169 if (local_bind)
9170 return TRUE;
9171 }
9172
9173 bed = get_elf_backend_data (flinfo->output_bfd);
9174
9175 if (h->root.type == bfd_link_hash_undefined)
9176 {
9177 /* If we have an undefined symbol reference here then it must have
9178 come from a shared library that is being linked in. (Undefined
9179 references in regular files have already been handled unless
9180 they are in unreferenced sections which are removed by garbage
9181 collection). */
9182 bfd_boolean ignore_undef = FALSE;
9183
9184 /* Some symbols may be special in that the fact that they're
9185 undefined can be safely ignored - let backend determine that. */
9186 if (bed->elf_backend_ignore_undef_symbol)
9187 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9188
9189 /* If we are reporting errors for this situation then do so now. */
9190 if (!ignore_undef
9191 && h->ref_dynamic
9192 && (!h->ref_regular || flinfo->info->gc_sections)
9193 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9194 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9195 {
9196 if (!(flinfo->info->callbacks->undefined_symbol
9197 (flinfo->info, h->root.root.string,
9198 h->ref_regular ? NULL : h->root.u.undef.abfd,
9199 NULL, 0,
9200 (flinfo->info->unresolved_syms_in_shared_libs
9201 == RM_GENERATE_ERROR))))
9202 {
9203 bfd_set_error (bfd_error_bad_value);
9204 eoinfo->failed = TRUE;
9205 return FALSE;
9206 }
9207 }
9208 }
9209
9210 /* We should also warn if a forced local symbol is referenced from
9211 shared libraries. */
9212 if (bfd_link_executable (flinfo->info)
9213 && h->forced_local
9214 && h->ref_dynamic
9215 && h->def_regular
9216 && !h->dynamic_def
9217 && h->ref_dynamic_nonweak
9218 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9219 {
9220 bfd *def_bfd;
9221 const char *msg;
9222 struct elf_link_hash_entry *hi = h;
9223
9224 /* Check indirect symbol. */
9225 while (hi->root.type == bfd_link_hash_indirect)
9226 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9227
9228 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9229 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
9230 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9231 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
9232 else
9233 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
9234 def_bfd = flinfo->output_bfd;
9235 if (hi->root.u.def.section != bfd_abs_section_ptr)
9236 def_bfd = hi->root.u.def.section->owner;
9237 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
9238 h->root.root.string);
9239 bfd_set_error (bfd_error_bad_value);
9240 eoinfo->failed = TRUE;
9241 return FALSE;
9242 }
9243
9244 /* We don't want to output symbols that have never been mentioned by
9245 a regular file, or that we have been told to strip. However, if
9246 h->indx is set to -2, the symbol is used by a reloc and we must
9247 output it. */
9248 strip = FALSE;
9249 if (h->indx == -2)
9250 ;
9251 else if ((h->def_dynamic
9252 || h->ref_dynamic
9253 || h->root.type == bfd_link_hash_new)
9254 && !h->def_regular
9255 && !h->ref_regular)
9256 strip = TRUE;
9257 else if (flinfo->info->strip == strip_all)
9258 strip = TRUE;
9259 else if (flinfo->info->strip == strip_some
9260 && bfd_hash_lookup (flinfo->info->keep_hash,
9261 h->root.root.string, FALSE, FALSE) == NULL)
9262 strip = TRUE;
9263 else if ((h->root.type == bfd_link_hash_defined
9264 || h->root.type == bfd_link_hash_defweak)
9265 && ((flinfo->info->strip_discarded
9266 && discarded_section (h->root.u.def.section))
9267 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9268 && h->root.u.def.section->owner != NULL
9269 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9270 strip = TRUE;
9271 else if ((h->root.type == bfd_link_hash_undefined
9272 || h->root.type == bfd_link_hash_undefweak)
9273 && h->root.u.undef.abfd != NULL
9274 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9275 strip = TRUE;
9276
9277 type = h->type;
9278
9279 /* If we're stripping it, and it's not a dynamic symbol, there's
9280 nothing else to do. However, if it is a forced local symbol or
9281 an ifunc symbol we need to give the backend finish_dynamic_symbol
9282 function a chance to make it dynamic. */
9283 if (strip
9284 && h->dynindx == -1
9285 && type != STT_GNU_IFUNC
9286 && !h->forced_local)
9287 return TRUE;
9288
9289 sym.st_value = 0;
9290 sym.st_size = h->size;
9291 sym.st_other = h->other;
9292 switch (h->root.type)
9293 {
9294 default:
9295 case bfd_link_hash_new:
9296 case bfd_link_hash_warning:
9297 abort ();
9298 return FALSE;
9299
9300 case bfd_link_hash_undefined:
9301 case bfd_link_hash_undefweak:
9302 input_sec = bfd_und_section_ptr;
9303 sym.st_shndx = SHN_UNDEF;
9304 break;
9305
9306 case bfd_link_hash_defined:
9307 case bfd_link_hash_defweak:
9308 {
9309 input_sec = h->root.u.def.section;
9310 if (input_sec->output_section != NULL)
9311 {
9312 sym.st_shndx =
9313 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9314 input_sec->output_section);
9315 if (sym.st_shndx == SHN_BAD)
9316 {
9317 (*_bfd_error_handler)
9318 (_("%B: could not find output section %A for input section %A"),
9319 flinfo->output_bfd, input_sec->output_section, input_sec);
9320 bfd_set_error (bfd_error_nonrepresentable_section);
9321 eoinfo->failed = TRUE;
9322 return FALSE;
9323 }
9324
9325 /* ELF symbols in relocatable files are section relative,
9326 but in nonrelocatable files they are virtual
9327 addresses. */
9328 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9329 if (!bfd_link_relocatable (flinfo->info))
9330 {
9331 sym.st_value += input_sec->output_section->vma;
9332 if (h->type == STT_TLS)
9333 {
9334 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9335 if (tls_sec != NULL)
9336 sym.st_value -= tls_sec->vma;
9337 }
9338 }
9339 }
9340 else
9341 {
9342 BFD_ASSERT (input_sec->owner == NULL
9343 || (input_sec->owner->flags & DYNAMIC) != 0);
9344 sym.st_shndx = SHN_UNDEF;
9345 input_sec = bfd_und_section_ptr;
9346 }
9347 }
9348 break;
9349
9350 case bfd_link_hash_common:
9351 input_sec = h->root.u.c.p->section;
9352 sym.st_shndx = bed->common_section_index (input_sec);
9353 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9354 break;
9355
9356 case bfd_link_hash_indirect:
9357 /* These symbols are created by symbol versioning. They point
9358 to the decorated version of the name. For example, if the
9359 symbol foo@@GNU_1.2 is the default, which should be used when
9360 foo is used with no version, then we add an indirect symbol
9361 foo which points to foo@@GNU_1.2. We ignore these symbols,
9362 since the indirected symbol is already in the hash table. */
9363 return TRUE;
9364 }
9365
9366 if (type == STT_COMMON || type == STT_OBJECT)
9367 switch (h->root.type)
9368 {
9369 case bfd_link_hash_common:
9370 type = elf_link_convert_common_type (flinfo->info, type);
9371 break;
9372 case bfd_link_hash_defined:
9373 case bfd_link_hash_defweak:
9374 if (bed->common_definition (&sym))
9375 type = elf_link_convert_common_type (flinfo->info, type);
9376 else
9377 type = STT_OBJECT;
9378 break;
9379 case bfd_link_hash_undefined:
9380 case bfd_link_hash_undefweak:
9381 break;
9382 default:
9383 abort ();
9384 }
9385
9386 if (local_bind)
9387 {
9388 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
9389 /* Turn off visibility on local symbol. */
9390 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
9391 }
9392 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
9393 else if (h->unique_global && h->def_regular)
9394 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
9395 else if (h->root.type == bfd_link_hash_undefweak
9396 || h->root.type == bfd_link_hash_defweak)
9397 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
9398 else
9399 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
9400 sym.st_target_internal = h->target_internal;
9401
9402 /* Give the processor backend a chance to tweak the symbol value,
9403 and also to finish up anything that needs to be done for this
9404 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9405 forced local syms when non-shared is due to a historical quirk.
9406 STT_GNU_IFUNC symbol must go through PLT. */
9407 if ((h->type == STT_GNU_IFUNC
9408 && h->def_regular
9409 && !bfd_link_relocatable (flinfo->info))
9410 || ((h->dynindx != -1
9411 || h->forced_local)
9412 && ((bfd_link_pic (flinfo->info)
9413 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9414 || h->root.type != bfd_link_hash_undefweak))
9415 || !h->forced_local)
9416 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9417 {
9418 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9419 (flinfo->output_bfd, flinfo->info, h, &sym)))
9420 {
9421 eoinfo->failed = TRUE;
9422 return FALSE;
9423 }
9424 }
9425
9426 /* If we are marking the symbol as undefined, and there are no
9427 non-weak references to this symbol from a regular object, then
9428 mark the symbol as weak undefined; if there are non-weak
9429 references, mark the symbol as strong. We can't do this earlier,
9430 because it might not be marked as undefined until the
9431 finish_dynamic_symbol routine gets through with it. */
9432 if (sym.st_shndx == SHN_UNDEF
9433 && h->ref_regular
9434 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9435 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9436 {
9437 int bindtype;
9438 type = ELF_ST_TYPE (sym.st_info);
9439
9440 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9441 if (type == STT_GNU_IFUNC)
9442 type = STT_FUNC;
9443
9444 if (h->ref_regular_nonweak)
9445 bindtype = STB_GLOBAL;
9446 else
9447 bindtype = STB_WEAK;
9448 sym.st_info = ELF_ST_INFO (bindtype, type);
9449 }
9450
9451 /* If this is a symbol defined in a dynamic library, don't use the
9452 symbol size from the dynamic library. Relinking an executable
9453 against a new library may introduce gratuitous changes in the
9454 executable's symbols if we keep the size. */
9455 if (sym.st_shndx == SHN_UNDEF
9456 && !h->def_regular
9457 && h->def_dynamic)
9458 sym.st_size = 0;
9459
9460 /* If a non-weak symbol with non-default visibility is not defined
9461 locally, it is a fatal error. */
9462 if (!bfd_link_relocatable (flinfo->info)
9463 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9464 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9465 && h->root.type == bfd_link_hash_undefined
9466 && !h->def_regular)
9467 {
9468 const char *msg;
9469
9470 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9471 msg = _("%B: protected symbol `%s' isn't defined");
9472 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9473 msg = _("%B: internal symbol `%s' isn't defined");
9474 else
9475 msg = _("%B: hidden symbol `%s' isn't defined");
9476 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9477 bfd_set_error (bfd_error_bad_value);
9478 eoinfo->failed = TRUE;
9479 return FALSE;
9480 }
9481
9482 /* If this symbol should be put in the .dynsym section, then put it
9483 there now. We already know the symbol index. We also fill in
9484 the entry in the .hash section. */
9485 if (elf_hash_table (flinfo->info)->dynsym != NULL
9486 && h->dynindx != -1
9487 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9488 {
9489 bfd_byte *esym;
9490
9491 /* Since there is no version information in the dynamic string,
9492 if there is no version info in symbol version section, we will
9493 have a run-time problem if not linking executable, referenced
9494 by shared library, not locally defined, or not bound locally.
9495 */
9496 if (h->verinfo.verdef == NULL
9497 && !local_bind
9498 && (!bfd_link_executable (flinfo->info)
9499 || h->ref_dynamic
9500 || !h->def_regular))
9501 {
9502 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9503
9504 if (p && p [1] != '\0')
9505 {
9506 (*_bfd_error_handler)
9507 (_("%B: No symbol version section for versioned symbol `%s'"),
9508 flinfo->output_bfd, h->root.root.string);
9509 eoinfo->failed = TRUE;
9510 return FALSE;
9511 }
9512 }
9513
9514 sym.st_name = h->dynstr_index;
9515 esym = (elf_hash_table (flinfo->info)->dynsym->contents
9516 + h->dynindx * bed->s->sizeof_sym);
9517 if (!check_dynsym (flinfo->output_bfd, &sym))
9518 {
9519 eoinfo->failed = TRUE;
9520 return FALSE;
9521 }
9522 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9523
9524 if (flinfo->hash_sec != NULL)
9525 {
9526 size_t hash_entry_size;
9527 bfd_byte *bucketpos;
9528 bfd_vma chain;
9529 size_t bucketcount;
9530 size_t bucket;
9531
9532 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9533 bucket = h->u.elf_hash_value % bucketcount;
9534
9535 hash_entry_size
9536 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9537 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9538 + (bucket + 2) * hash_entry_size);
9539 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9540 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9541 bucketpos);
9542 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9543 ((bfd_byte *) flinfo->hash_sec->contents
9544 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9545 }
9546
9547 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9548 {
9549 Elf_Internal_Versym iversym;
9550 Elf_External_Versym *eversym;
9551
9552 if (!h->def_regular)
9553 {
9554 if (h->verinfo.verdef == NULL
9555 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9556 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9557 iversym.vs_vers = 0;
9558 else
9559 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9560 }
9561 else
9562 {
9563 if (h->verinfo.vertree == NULL)
9564 iversym.vs_vers = 1;
9565 else
9566 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9567 if (flinfo->info->create_default_symver)
9568 iversym.vs_vers++;
9569 }
9570
9571 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
9572 defined locally. */
9573 if (h->versioned == versioned_hidden && h->def_regular)
9574 iversym.vs_vers |= VERSYM_HIDDEN;
9575
9576 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9577 eversym += h->dynindx;
9578 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9579 }
9580 }
9581
9582 /* If the symbol is undefined, and we didn't output it to .dynsym,
9583 strip it from .symtab too. Obviously we can't do this for
9584 relocatable output or when needed for --emit-relocs. */
9585 else if (input_sec == bfd_und_section_ptr
9586 && h->indx != -2
9587 && !bfd_link_relocatable (flinfo->info))
9588 return TRUE;
9589 /* Also strip others that we couldn't earlier due to dynamic symbol
9590 processing. */
9591 if (strip)
9592 return TRUE;
9593 if ((input_sec->flags & SEC_EXCLUDE) != 0)
9594 return TRUE;
9595
9596 /* Output a FILE symbol so that following locals are not associated
9597 with the wrong input file. We need one for forced local symbols
9598 if we've seen more than one FILE symbol or when we have exactly
9599 one FILE symbol but global symbols are present in a file other
9600 than the one with the FILE symbol. We also need one if linker
9601 defined symbols are present. In practice these conditions are
9602 always met, so just emit the FILE symbol unconditionally. */
9603 if (eoinfo->localsyms
9604 && !eoinfo->file_sym_done
9605 && eoinfo->flinfo->filesym_count != 0)
9606 {
9607 Elf_Internal_Sym fsym;
9608
9609 memset (&fsym, 0, sizeof (fsym));
9610 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9611 fsym.st_shndx = SHN_ABS;
9612 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
9613 bfd_und_section_ptr, NULL))
9614 return FALSE;
9615
9616 eoinfo->file_sym_done = TRUE;
9617 }
9618
9619 indx = bfd_get_symcount (flinfo->output_bfd);
9620 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
9621 input_sec, h);
9622 if (ret == 0)
9623 {
9624 eoinfo->failed = TRUE;
9625 return FALSE;
9626 }
9627 else if (ret == 1)
9628 h->indx = indx;
9629 else if (h->indx == -2)
9630 abort();
9631
9632 return TRUE;
9633 }
9634
9635 /* Return TRUE if special handling is done for relocs in SEC against
9636 symbols defined in discarded sections. */
9637
9638 static bfd_boolean
9639 elf_section_ignore_discarded_relocs (asection *sec)
9640 {
9641 const struct elf_backend_data *bed;
9642
9643 switch (sec->sec_info_type)
9644 {
9645 case SEC_INFO_TYPE_STABS:
9646 case SEC_INFO_TYPE_EH_FRAME:
9647 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
9648 return TRUE;
9649 default:
9650 break;
9651 }
9652
9653 bed = get_elf_backend_data (sec->owner);
9654 if (bed->elf_backend_ignore_discarded_relocs != NULL
9655 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9656 return TRUE;
9657
9658 return FALSE;
9659 }
9660
9661 /* Return a mask saying how ld should treat relocations in SEC against
9662 symbols defined in discarded sections. If this function returns
9663 COMPLAIN set, ld will issue a warning message. If this function
9664 returns PRETEND set, and the discarded section was link-once and the
9665 same size as the kept link-once section, ld will pretend that the
9666 symbol was actually defined in the kept section. Otherwise ld will
9667 zero the reloc (at least that is the intent, but some cooperation by
9668 the target dependent code is needed, particularly for REL targets). */
9669
9670 unsigned int
9671 _bfd_elf_default_action_discarded (asection *sec)
9672 {
9673 if (sec->flags & SEC_DEBUGGING)
9674 return PRETEND;
9675
9676 if (strcmp (".eh_frame", sec->name) == 0)
9677 return 0;
9678
9679 if (strcmp (".gcc_except_table", sec->name) == 0)
9680 return 0;
9681
9682 return COMPLAIN | PRETEND;
9683 }
9684
9685 /* Find a match between a section and a member of a section group. */
9686
9687 static asection *
9688 match_group_member (asection *sec, asection *group,
9689 struct bfd_link_info *info)
9690 {
9691 asection *first = elf_next_in_group (group);
9692 asection *s = first;
9693
9694 while (s != NULL)
9695 {
9696 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9697 return s;
9698
9699 s = elf_next_in_group (s);
9700 if (s == first)
9701 break;
9702 }
9703
9704 return NULL;
9705 }
9706
9707 /* Check if the kept section of a discarded section SEC can be used
9708 to replace it. Return the replacement if it is OK. Otherwise return
9709 NULL. */
9710
9711 asection *
9712 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9713 {
9714 asection *kept;
9715
9716 kept = sec->kept_section;
9717 if (kept != NULL)
9718 {
9719 if ((kept->flags & SEC_GROUP) != 0)
9720 kept = match_group_member (sec, kept, info);
9721 if (kept != NULL
9722 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9723 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9724 kept = NULL;
9725 sec->kept_section = kept;
9726 }
9727 return kept;
9728 }
9729
9730 /* Link an input file into the linker output file. This function
9731 handles all the sections and relocations of the input file at once.
9732 This is so that we only have to read the local symbols once, and
9733 don't have to keep them in memory. */
9734
9735 static bfd_boolean
9736 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9737 {
9738 int (*relocate_section)
9739 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9740 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9741 bfd *output_bfd;
9742 Elf_Internal_Shdr *symtab_hdr;
9743 size_t locsymcount;
9744 size_t extsymoff;
9745 Elf_Internal_Sym *isymbuf;
9746 Elf_Internal_Sym *isym;
9747 Elf_Internal_Sym *isymend;
9748 long *pindex;
9749 asection **ppsection;
9750 asection *o;
9751 const struct elf_backend_data *bed;
9752 struct elf_link_hash_entry **sym_hashes;
9753 bfd_size_type address_size;
9754 bfd_vma r_type_mask;
9755 int r_sym_shift;
9756 bfd_boolean have_file_sym = FALSE;
9757
9758 output_bfd = flinfo->output_bfd;
9759 bed = get_elf_backend_data (output_bfd);
9760 relocate_section = bed->elf_backend_relocate_section;
9761
9762 /* If this is a dynamic object, we don't want to do anything here:
9763 we don't want the local symbols, and we don't want the section
9764 contents. */
9765 if ((input_bfd->flags & DYNAMIC) != 0)
9766 return TRUE;
9767
9768 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9769 if (elf_bad_symtab (input_bfd))
9770 {
9771 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9772 extsymoff = 0;
9773 }
9774 else
9775 {
9776 locsymcount = symtab_hdr->sh_info;
9777 extsymoff = symtab_hdr->sh_info;
9778 }
9779
9780 /* Read the local symbols. */
9781 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9782 if (isymbuf == NULL && locsymcount != 0)
9783 {
9784 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9785 flinfo->internal_syms,
9786 flinfo->external_syms,
9787 flinfo->locsym_shndx);
9788 if (isymbuf == NULL)
9789 return FALSE;
9790 }
9791
9792 /* Find local symbol sections and adjust values of symbols in
9793 SEC_MERGE sections. Write out those local symbols we know are
9794 going into the output file. */
9795 isymend = isymbuf + locsymcount;
9796 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9797 isym < isymend;
9798 isym++, pindex++, ppsection++)
9799 {
9800 asection *isec;
9801 const char *name;
9802 Elf_Internal_Sym osym;
9803 long indx;
9804 int ret;
9805
9806 *pindex = -1;
9807
9808 if (elf_bad_symtab (input_bfd))
9809 {
9810 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9811 {
9812 *ppsection = NULL;
9813 continue;
9814 }
9815 }
9816
9817 if (isym->st_shndx == SHN_UNDEF)
9818 isec = bfd_und_section_ptr;
9819 else if (isym->st_shndx == SHN_ABS)
9820 isec = bfd_abs_section_ptr;
9821 else if (isym->st_shndx == SHN_COMMON)
9822 isec = bfd_com_section_ptr;
9823 else
9824 {
9825 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9826 if (isec == NULL)
9827 {
9828 /* Don't attempt to output symbols with st_shnx in the
9829 reserved range other than SHN_ABS and SHN_COMMON. */
9830 *ppsection = NULL;
9831 continue;
9832 }
9833 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9834 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9835 isym->st_value =
9836 _bfd_merged_section_offset (output_bfd, &isec,
9837 elf_section_data (isec)->sec_info,
9838 isym->st_value);
9839 }
9840
9841 *ppsection = isec;
9842
9843 /* Don't output the first, undefined, symbol. In fact, don't
9844 output any undefined local symbol. */
9845 if (isec == bfd_und_section_ptr)
9846 continue;
9847
9848 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9849 {
9850 /* We never output section symbols. Instead, we use the
9851 section symbol of the corresponding section in the output
9852 file. */
9853 continue;
9854 }
9855
9856 /* If we are stripping all symbols, we don't want to output this
9857 one. */
9858 if (flinfo->info->strip == strip_all)
9859 continue;
9860
9861 /* If we are discarding all local symbols, we don't want to
9862 output this one. If we are generating a relocatable output
9863 file, then some of the local symbols may be required by
9864 relocs; we output them below as we discover that they are
9865 needed. */
9866 if (flinfo->info->discard == discard_all)
9867 continue;
9868
9869 /* If this symbol is defined in a section which we are
9870 discarding, we don't need to keep it. */
9871 if (isym->st_shndx != SHN_UNDEF
9872 && isym->st_shndx < SHN_LORESERVE
9873 && bfd_section_removed_from_list (output_bfd,
9874 isec->output_section))
9875 continue;
9876
9877 /* Get the name of the symbol. */
9878 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9879 isym->st_name);
9880 if (name == NULL)
9881 return FALSE;
9882
9883 /* See if we are discarding symbols with this name. */
9884 if ((flinfo->info->strip == strip_some
9885 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9886 == NULL))
9887 || (((flinfo->info->discard == discard_sec_merge
9888 && (isec->flags & SEC_MERGE)
9889 && !bfd_link_relocatable (flinfo->info))
9890 || flinfo->info->discard == discard_l)
9891 && bfd_is_local_label_name (input_bfd, name)))
9892 continue;
9893
9894 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9895 {
9896 if (input_bfd->lto_output)
9897 /* -flto puts a temp file name here. This means builds
9898 are not reproducible. Discard the symbol. */
9899 continue;
9900 have_file_sym = TRUE;
9901 flinfo->filesym_count += 1;
9902 }
9903 if (!have_file_sym)
9904 {
9905 /* In the absence of debug info, bfd_find_nearest_line uses
9906 FILE symbols to determine the source file for local
9907 function symbols. Provide a FILE symbol here if input
9908 files lack such, so that their symbols won't be
9909 associated with a previous input file. It's not the
9910 source file, but the best we can do. */
9911 have_file_sym = TRUE;
9912 flinfo->filesym_count += 1;
9913 memset (&osym, 0, sizeof (osym));
9914 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9915 osym.st_shndx = SHN_ABS;
9916 if (!elf_link_output_symstrtab (flinfo,
9917 (input_bfd->lto_output ? NULL
9918 : input_bfd->filename),
9919 &osym, bfd_abs_section_ptr,
9920 NULL))
9921 return FALSE;
9922 }
9923
9924 osym = *isym;
9925
9926 /* Adjust the section index for the output file. */
9927 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9928 isec->output_section);
9929 if (osym.st_shndx == SHN_BAD)
9930 return FALSE;
9931
9932 /* ELF symbols in relocatable files are section relative, but
9933 in executable files they are virtual addresses. Note that
9934 this code assumes that all ELF sections have an associated
9935 BFD section with a reasonable value for output_offset; below
9936 we assume that they also have a reasonable value for
9937 output_section. Any special sections must be set up to meet
9938 these requirements. */
9939 osym.st_value += isec->output_offset;
9940 if (!bfd_link_relocatable (flinfo->info))
9941 {
9942 osym.st_value += isec->output_section->vma;
9943 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9944 {
9945 /* STT_TLS symbols are relative to PT_TLS segment base. */
9946 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9947 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9948 }
9949 }
9950
9951 indx = bfd_get_symcount (output_bfd);
9952 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
9953 if (ret == 0)
9954 return FALSE;
9955 else if (ret == 1)
9956 *pindex = indx;
9957 }
9958
9959 if (bed->s->arch_size == 32)
9960 {
9961 r_type_mask = 0xff;
9962 r_sym_shift = 8;
9963 address_size = 4;
9964 }
9965 else
9966 {
9967 r_type_mask = 0xffffffff;
9968 r_sym_shift = 32;
9969 address_size = 8;
9970 }
9971
9972 /* Relocate the contents of each section. */
9973 sym_hashes = elf_sym_hashes (input_bfd);
9974 for (o = input_bfd->sections; o != NULL; o = o->next)
9975 {
9976 bfd_byte *contents;
9977
9978 if (! o->linker_mark)
9979 {
9980 /* This section was omitted from the link. */
9981 continue;
9982 }
9983
9984 if (bfd_link_relocatable (flinfo->info)
9985 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9986 {
9987 /* Deal with the group signature symbol. */
9988 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9989 unsigned long symndx = sec_data->this_hdr.sh_info;
9990 asection *osec = o->output_section;
9991
9992 if (symndx >= locsymcount
9993 || (elf_bad_symtab (input_bfd)
9994 && flinfo->sections[symndx] == NULL))
9995 {
9996 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9997 while (h->root.type == bfd_link_hash_indirect
9998 || h->root.type == bfd_link_hash_warning)
9999 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10000 /* Arrange for symbol to be output. */
10001 h->indx = -2;
10002 elf_section_data (osec)->this_hdr.sh_info = -2;
10003 }
10004 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10005 {
10006 /* We'll use the output section target_index. */
10007 asection *sec = flinfo->sections[symndx]->output_section;
10008 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10009 }
10010 else
10011 {
10012 if (flinfo->indices[symndx] == -1)
10013 {
10014 /* Otherwise output the local symbol now. */
10015 Elf_Internal_Sym sym = isymbuf[symndx];
10016 asection *sec = flinfo->sections[symndx]->output_section;
10017 const char *name;
10018 long indx;
10019 int ret;
10020
10021 name = bfd_elf_string_from_elf_section (input_bfd,
10022 symtab_hdr->sh_link,
10023 sym.st_name);
10024 if (name == NULL)
10025 return FALSE;
10026
10027 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10028 sec);
10029 if (sym.st_shndx == SHN_BAD)
10030 return FALSE;
10031
10032 sym.st_value += o->output_offset;
10033
10034 indx = bfd_get_symcount (output_bfd);
10035 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10036 NULL);
10037 if (ret == 0)
10038 return FALSE;
10039 else if (ret == 1)
10040 flinfo->indices[symndx] = indx;
10041 else
10042 abort ();
10043 }
10044 elf_section_data (osec)->this_hdr.sh_info
10045 = flinfo->indices[symndx];
10046 }
10047 }
10048
10049 if ((o->flags & SEC_HAS_CONTENTS) == 0
10050 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10051 continue;
10052
10053 if ((o->flags & SEC_LINKER_CREATED) != 0)
10054 {
10055 /* Section was created by _bfd_elf_link_create_dynamic_sections
10056 or somesuch. */
10057 continue;
10058 }
10059
10060 /* Get the contents of the section. They have been cached by a
10061 relaxation routine. Note that o is a section in an input
10062 file, so the contents field will not have been set by any of
10063 the routines which work on output files. */
10064 if (elf_section_data (o)->this_hdr.contents != NULL)
10065 {
10066 contents = elf_section_data (o)->this_hdr.contents;
10067 if (bed->caches_rawsize
10068 && o->rawsize != 0
10069 && o->rawsize < o->size)
10070 {
10071 memcpy (flinfo->contents, contents, o->rawsize);
10072 contents = flinfo->contents;
10073 }
10074 }
10075 else
10076 {
10077 contents = flinfo->contents;
10078 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10079 return FALSE;
10080 }
10081
10082 if ((o->flags & SEC_RELOC) != 0)
10083 {
10084 Elf_Internal_Rela *internal_relocs;
10085 Elf_Internal_Rela *rel, *relend;
10086 int action_discarded;
10087 int ret;
10088
10089 /* Get the swapped relocs. */
10090 internal_relocs
10091 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10092 flinfo->internal_relocs, FALSE);
10093 if (internal_relocs == NULL
10094 && o->reloc_count > 0)
10095 return FALSE;
10096
10097 /* We need to reverse-copy input .ctors/.dtors sections if
10098 they are placed in .init_array/.finit_array for output. */
10099 if (o->size > address_size
10100 && ((strncmp (o->name, ".ctors", 6) == 0
10101 && strcmp (o->output_section->name,
10102 ".init_array") == 0)
10103 || (strncmp (o->name, ".dtors", 6) == 0
10104 && strcmp (o->output_section->name,
10105 ".fini_array") == 0))
10106 && (o->name[6] == 0 || o->name[6] == '.'))
10107 {
10108 if (o->size != o->reloc_count * address_size)
10109 {
10110 (*_bfd_error_handler)
10111 (_("error: %B: size of section %A is not "
10112 "multiple of address size"),
10113 input_bfd, o);
10114 bfd_set_error (bfd_error_on_input);
10115 return FALSE;
10116 }
10117 o->flags |= SEC_ELF_REVERSE_COPY;
10118 }
10119
10120 action_discarded = -1;
10121 if (!elf_section_ignore_discarded_relocs (o))
10122 action_discarded = (*bed->action_discarded) (o);
10123
10124 /* Run through the relocs evaluating complex reloc symbols and
10125 looking for relocs against symbols from discarded sections
10126 or section symbols from removed link-once sections.
10127 Complain about relocs against discarded sections. Zero
10128 relocs against removed link-once sections. */
10129
10130 rel = internal_relocs;
10131 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
10132 for ( ; rel < relend; rel++)
10133 {
10134 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10135 unsigned int s_type;
10136 asection **ps, *sec;
10137 struct elf_link_hash_entry *h = NULL;
10138 const char *sym_name;
10139
10140 if (r_symndx == STN_UNDEF)
10141 continue;
10142
10143 if (r_symndx >= locsymcount
10144 || (elf_bad_symtab (input_bfd)
10145 && flinfo->sections[r_symndx] == NULL))
10146 {
10147 h = sym_hashes[r_symndx - extsymoff];
10148
10149 /* Badly formatted input files can contain relocs that
10150 reference non-existant symbols. Check here so that
10151 we do not seg fault. */
10152 if (h == NULL)
10153 {
10154 char buffer [32];
10155
10156 sprintf_vma (buffer, rel->r_info);
10157 (*_bfd_error_handler)
10158 (_("error: %B contains a reloc (0x%s) for section %A "
10159 "that references a non-existent global symbol"),
10160 input_bfd, o, buffer);
10161 bfd_set_error (bfd_error_bad_value);
10162 return FALSE;
10163 }
10164
10165 while (h->root.type == bfd_link_hash_indirect
10166 || h->root.type == bfd_link_hash_warning)
10167 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10168
10169 s_type = h->type;
10170
10171 /* If a plugin symbol is referenced from a non-IR file,
10172 mark the symbol as undefined. Note that the
10173 linker may attach linker created dynamic sections
10174 to the plugin bfd. Symbols defined in linker
10175 created sections are not plugin symbols. */
10176 if (h->root.non_ir_ref
10177 && (h->root.type == bfd_link_hash_defined
10178 || h->root.type == bfd_link_hash_defweak)
10179 && (h->root.u.def.section->flags
10180 & SEC_LINKER_CREATED) == 0
10181 && h->root.u.def.section->owner != NULL
10182 && (h->root.u.def.section->owner->flags
10183 & BFD_PLUGIN) != 0)
10184 {
10185 h->root.type = bfd_link_hash_undefined;
10186 h->root.u.undef.abfd = h->root.u.def.section->owner;
10187 }
10188
10189 ps = NULL;
10190 if (h->root.type == bfd_link_hash_defined
10191 || h->root.type == bfd_link_hash_defweak)
10192 ps = &h->root.u.def.section;
10193
10194 sym_name = h->root.root.string;
10195 }
10196 else
10197 {
10198 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10199
10200 s_type = ELF_ST_TYPE (sym->st_info);
10201 ps = &flinfo->sections[r_symndx];
10202 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10203 sym, *ps);
10204 }
10205
10206 if ((s_type == STT_RELC || s_type == STT_SRELC)
10207 && !bfd_link_relocatable (flinfo->info))
10208 {
10209 bfd_vma val;
10210 bfd_vma dot = (rel->r_offset
10211 + o->output_offset + o->output_section->vma);
10212 #ifdef DEBUG
10213 printf ("Encountered a complex symbol!");
10214 printf (" (input_bfd %s, section %s, reloc %ld\n",
10215 input_bfd->filename, o->name,
10216 (long) (rel - internal_relocs));
10217 printf (" symbol: idx %8.8lx, name %s\n",
10218 r_symndx, sym_name);
10219 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10220 (unsigned long) rel->r_info,
10221 (unsigned long) rel->r_offset);
10222 #endif
10223 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10224 isymbuf, locsymcount, s_type == STT_SRELC))
10225 return FALSE;
10226
10227 /* Symbol evaluated OK. Update to absolute value. */
10228 set_symbol_value (input_bfd, isymbuf, locsymcount,
10229 r_symndx, val);
10230 continue;
10231 }
10232
10233 if (action_discarded != -1 && ps != NULL)
10234 {
10235 /* Complain if the definition comes from a
10236 discarded section. */
10237 if ((sec = *ps) != NULL && discarded_section (sec))
10238 {
10239 BFD_ASSERT (r_symndx != STN_UNDEF);
10240 if (action_discarded & COMPLAIN)
10241 (*flinfo->info->callbacks->einfo)
10242 (_("%X`%s' referenced in section `%A' of %B: "
10243 "defined in discarded section `%A' of %B\n"),
10244 sym_name, o, input_bfd, sec, sec->owner);
10245
10246 /* Try to do the best we can to support buggy old
10247 versions of gcc. Pretend that the symbol is
10248 really defined in the kept linkonce section.
10249 FIXME: This is quite broken. Modifying the
10250 symbol here means we will be changing all later
10251 uses of the symbol, not just in this section. */
10252 if (action_discarded & PRETEND)
10253 {
10254 asection *kept;
10255
10256 kept = _bfd_elf_check_kept_section (sec,
10257 flinfo->info);
10258 if (kept != NULL)
10259 {
10260 *ps = kept;
10261 continue;
10262 }
10263 }
10264 }
10265 }
10266 }
10267
10268 /* Relocate the section by invoking a back end routine.
10269
10270 The back end routine is responsible for adjusting the
10271 section contents as necessary, and (if using Rela relocs
10272 and generating a relocatable output file) adjusting the
10273 reloc addend as necessary.
10274
10275 The back end routine does not have to worry about setting
10276 the reloc address or the reloc symbol index.
10277
10278 The back end routine is given a pointer to the swapped in
10279 internal symbols, and can access the hash table entries
10280 for the external symbols via elf_sym_hashes (input_bfd).
10281
10282 When generating relocatable output, the back end routine
10283 must handle STB_LOCAL/STT_SECTION symbols specially. The
10284 output symbol is going to be a section symbol
10285 corresponding to the output section, which will require
10286 the addend to be adjusted. */
10287
10288 ret = (*relocate_section) (output_bfd, flinfo->info,
10289 input_bfd, o, contents,
10290 internal_relocs,
10291 isymbuf,
10292 flinfo->sections);
10293 if (!ret)
10294 return FALSE;
10295
10296 if (ret == 2
10297 || bfd_link_relocatable (flinfo->info)
10298 || flinfo->info->emitrelocations)
10299 {
10300 Elf_Internal_Rela *irela;
10301 Elf_Internal_Rela *irelaend, *irelamid;
10302 bfd_vma last_offset;
10303 struct elf_link_hash_entry **rel_hash;
10304 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10305 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10306 unsigned int next_erel;
10307 bfd_boolean rela_normal;
10308 struct bfd_elf_section_data *esdi, *esdo;
10309
10310 esdi = elf_section_data (o);
10311 esdo = elf_section_data (o->output_section);
10312 rela_normal = FALSE;
10313
10314 /* Adjust the reloc addresses and symbol indices. */
10315
10316 irela = internal_relocs;
10317 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
10318 rel_hash = esdo->rel.hashes + esdo->rel.count;
10319 /* We start processing the REL relocs, if any. When we reach
10320 IRELAMID in the loop, we switch to the RELA relocs. */
10321 irelamid = irela;
10322 if (esdi->rel.hdr != NULL)
10323 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10324 * bed->s->int_rels_per_ext_rel);
10325 rel_hash_list = rel_hash;
10326 rela_hash_list = NULL;
10327 last_offset = o->output_offset;
10328 if (!bfd_link_relocatable (flinfo->info))
10329 last_offset += o->output_section->vma;
10330 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10331 {
10332 unsigned long r_symndx;
10333 asection *sec;
10334 Elf_Internal_Sym sym;
10335
10336 if (next_erel == bed->s->int_rels_per_ext_rel)
10337 {
10338 rel_hash++;
10339 next_erel = 0;
10340 }
10341
10342 if (irela == irelamid)
10343 {
10344 rel_hash = esdo->rela.hashes + esdo->rela.count;
10345 rela_hash_list = rel_hash;
10346 rela_normal = bed->rela_normal;
10347 }
10348
10349 irela->r_offset = _bfd_elf_section_offset (output_bfd,
10350 flinfo->info, o,
10351 irela->r_offset);
10352 if (irela->r_offset >= (bfd_vma) -2)
10353 {
10354 /* This is a reloc for a deleted entry or somesuch.
10355 Turn it into an R_*_NONE reloc, at the same
10356 offset as the last reloc. elf_eh_frame.c and
10357 bfd_elf_discard_info rely on reloc offsets
10358 being ordered. */
10359 irela->r_offset = last_offset;
10360 irela->r_info = 0;
10361 irela->r_addend = 0;
10362 continue;
10363 }
10364
10365 irela->r_offset += o->output_offset;
10366
10367 /* Relocs in an executable have to be virtual addresses. */
10368 if (!bfd_link_relocatable (flinfo->info))
10369 irela->r_offset += o->output_section->vma;
10370
10371 last_offset = irela->r_offset;
10372
10373 r_symndx = irela->r_info >> r_sym_shift;
10374 if (r_symndx == STN_UNDEF)
10375 continue;
10376
10377 if (r_symndx >= locsymcount
10378 || (elf_bad_symtab (input_bfd)
10379 && flinfo->sections[r_symndx] == NULL))
10380 {
10381 struct elf_link_hash_entry *rh;
10382 unsigned long indx;
10383
10384 /* This is a reloc against a global symbol. We
10385 have not yet output all the local symbols, so
10386 we do not know the symbol index of any global
10387 symbol. We set the rel_hash entry for this
10388 reloc to point to the global hash table entry
10389 for this symbol. The symbol index is then
10390 set at the end of bfd_elf_final_link. */
10391 indx = r_symndx - extsymoff;
10392 rh = elf_sym_hashes (input_bfd)[indx];
10393 while (rh->root.type == bfd_link_hash_indirect
10394 || rh->root.type == bfd_link_hash_warning)
10395 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10396
10397 /* Setting the index to -2 tells
10398 elf_link_output_extsym that this symbol is
10399 used by a reloc. */
10400 BFD_ASSERT (rh->indx < 0);
10401 rh->indx = -2;
10402
10403 *rel_hash = rh;
10404
10405 continue;
10406 }
10407
10408 /* This is a reloc against a local symbol. */
10409
10410 *rel_hash = NULL;
10411 sym = isymbuf[r_symndx];
10412 sec = flinfo->sections[r_symndx];
10413 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10414 {
10415 /* I suppose the backend ought to fill in the
10416 section of any STT_SECTION symbol against a
10417 processor specific section. */
10418 r_symndx = STN_UNDEF;
10419 if (bfd_is_abs_section (sec))
10420 ;
10421 else if (sec == NULL || sec->owner == NULL)
10422 {
10423 bfd_set_error (bfd_error_bad_value);
10424 return FALSE;
10425 }
10426 else
10427 {
10428 asection *osec = sec->output_section;
10429
10430 /* If we have discarded a section, the output
10431 section will be the absolute section. In
10432 case of discarded SEC_MERGE sections, use
10433 the kept section. relocate_section should
10434 have already handled discarded linkonce
10435 sections. */
10436 if (bfd_is_abs_section (osec)
10437 && sec->kept_section != NULL
10438 && sec->kept_section->output_section != NULL)
10439 {
10440 osec = sec->kept_section->output_section;
10441 irela->r_addend -= osec->vma;
10442 }
10443
10444 if (!bfd_is_abs_section (osec))
10445 {
10446 r_symndx = osec->target_index;
10447 if (r_symndx == STN_UNDEF)
10448 {
10449 irela->r_addend += osec->vma;
10450 osec = _bfd_nearby_section (output_bfd, osec,
10451 osec->vma);
10452 irela->r_addend -= osec->vma;
10453 r_symndx = osec->target_index;
10454 }
10455 }
10456 }
10457
10458 /* Adjust the addend according to where the
10459 section winds up in the output section. */
10460 if (rela_normal)
10461 irela->r_addend += sec->output_offset;
10462 }
10463 else
10464 {
10465 if (flinfo->indices[r_symndx] == -1)
10466 {
10467 unsigned long shlink;
10468 const char *name;
10469 asection *osec;
10470 long indx;
10471
10472 if (flinfo->info->strip == strip_all)
10473 {
10474 /* You can't do ld -r -s. */
10475 bfd_set_error (bfd_error_invalid_operation);
10476 return FALSE;
10477 }
10478
10479 /* This symbol was skipped earlier, but
10480 since it is needed by a reloc, we
10481 must output it now. */
10482 shlink = symtab_hdr->sh_link;
10483 name = (bfd_elf_string_from_elf_section
10484 (input_bfd, shlink, sym.st_name));
10485 if (name == NULL)
10486 return FALSE;
10487
10488 osec = sec->output_section;
10489 sym.st_shndx =
10490 _bfd_elf_section_from_bfd_section (output_bfd,
10491 osec);
10492 if (sym.st_shndx == SHN_BAD)
10493 return FALSE;
10494
10495 sym.st_value += sec->output_offset;
10496 if (!bfd_link_relocatable (flinfo->info))
10497 {
10498 sym.st_value += osec->vma;
10499 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10500 {
10501 /* STT_TLS symbols are relative to PT_TLS
10502 segment base. */
10503 BFD_ASSERT (elf_hash_table (flinfo->info)
10504 ->tls_sec != NULL);
10505 sym.st_value -= (elf_hash_table (flinfo->info)
10506 ->tls_sec->vma);
10507 }
10508 }
10509
10510 indx = bfd_get_symcount (output_bfd);
10511 ret = elf_link_output_symstrtab (flinfo, name,
10512 &sym, sec,
10513 NULL);
10514 if (ret == 0)
10515 return FALSE;
10516 else if (ret == 1)
10517 flinfo->indices[r_symndx] = indx;
10518 else
10519 abort ();
10520 }
10521
10522 r_symndx = flinfo->indices[r_symndx];
10523 }
10524
10525 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10526 | (irela->r_info & r_type_mask));
10527 }
10528
10529 /* Swap out the relocs. */
10530 input_rel_hdr = esdi->rel.hdr;
10531 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10532 {
10533 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10534 input_rel_hdr,
10535 internal_relocs,
10536 rel_hash_list))
10537 return FALSE;
10538 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10539 * bed->s->int_rels_per_ext_rel);
10540 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10541 }
10542
10543 input_rela_hdr = esdi->rela.hdr;
10544 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10545 {
10546 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10547 input_rela_hdr,
10548 internal_relocs,
10549 rela_hash_list))
10550 return FALSE;
10551 }
10552 }
10553 }
10554
10555 /* Write out the modified section contents. */
10556 if (bed->elf_backend_write_section
10557 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10558 contents))
10559 {
10560 /* Section written out. */
10561 }
10562 else switch (o->sec_info_type)
10563 {
10564 case SEC_INFO_TYPE_STABS:
10565 if (! (_bfd_write_section_stabs
10566 (output_bfd,
10567 &elf_hash_table (flinfo->info)->stab_info,
10568 o, &elf_section_data (o)->sec_info, contents)))
10569 return FALSE;
10570 break;
10571 case SEC_INFO_TYPE_MERGE:
10572 if (! _bfd_write_merged_section (output_bfd, o,
10573 elf_section_data (o)->sec_info))
10574 return FALSE;
10575 break;
10576 case SEC_INFO_TYPE_EH_FRAME:
10577 {
10578 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10579 o, contents))
10580 return FALSE;
10581 }
10582 break;
10583 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10584 {
10585 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
10586 flinfo->info,
10587 o, contents))
10588 return FALSE;
10589 }
10590 break;
10591 default:
10592 {
10593 if (! (o->flags & SEC_EXCLUDE))
10594 {
10595 file_ptr offset = (file_ptr) o->output_offset;
10596 bfd_size_type todo = o->size;
10597
10598 offset *= bfd_octets_per_byte (output_bfd);
10599
10600 if ((o->flags & SEC_ELF_REVERSE_COPY))
10601 {
10602 /* Reverse-copy input section to output. */
10603 do
10604 {
10605 todo -= address_size;
10606 if (! bfd_set_section_contents (output_bfd,
10607 o->output_section,
10608 contents + todo,
10609 offset,
10610 address_size))
10611 return FALSE;
10612 if (todo == 0)
10613 break;
10614 offset += address_size;
10615 }
10616 while (1);
10617 }
10618 else if (! bfd_set_section_contents (output_bfd,
10619 o->output_section,
10620 contents,
10621 offset, todo))
10622 return FALSE;
10623 }
10624 }
10625 break;
10626 }
10627 }
10628
10629 return TRUE;
10630 }
10631
10632 /* Generate a reloc when linking an ELF file. This is a reloc
10633 requested by the linker, and does not come from any input file. This
10634 is used to build constructor and destructor tables when linking
10635 with -Ur. */
10636
10637 static bfd_boolean
10638 elf_reloc_link_order (bfd *output_bfd,
10639 struct bfd_link_info *info,
10640 asection *output_section,
10641 struct bfd_link_order *link_order)
10642 {
10643 reloc_howto_type *howto;
10644 long indx;
10645 bfd_vma offset;
10646 bfd_vma addend;
10647 struct bfd_elf_section_reloc_data *reldata;
10648 struct elf_link_hash_entry **rel_hash_ptr;
10649 Elf_Internal_Shdr *rel_hdr;
10650 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10651 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10652 bfd_byte *erel;
10653 unsigned int i;
10654 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10655
10656 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10657 if (howto == NULL)
10658 {
10659 bfd_set_error (bfd_error_bad_value);
10660 return FALSE;
10661 }
10662
10663 addend = link_order->u.reloc.p->addend;
10664
10665 if (esdo->rel.hdr)
10666 reldata = &esdo->rel;
10667 else if (esdo->rela.hdr)
10668 reldata = &esdo->rela;
10669 else
10670 {
10671 reldata = NULL;
10672 BFD_ASSERT (0);
10673 }
10674
10675 /* Figure out the symbol index. */
10676 rel_hash_ptr = reldata->hashes + reldata->count;
10677 if (link_order->type == bfd_section_reloc_link_order)
10678 {
10679 indx = link_order->u.reloc.p->u.section->target_index;
10680 BFD_ASSERT (indx != 0);
10681 *rel_hash_ptr = NULL;
10682 }
10683 else
10684 {
10685 struct elf_link_hash_entry *h;
10686
10687 /* Treat a reloc against a defined symbol as though it were
10688 actually against the section. */
10689 h = ((struct elf_link_hash_entry *)
10690 bfd_wrapped_link_hash_lookup (output_bfd, info,
10691 link_order->u.reloc.p->u.name,
10692 FALSE, FALSE, TRUE));
10693 if (h != NULL
10694 && (h->root.type == bfd_link_hash_defined
10695 || h->root.type == bfd_link_hash_defweak))
10696 {
10697 asection *section;
10698
10699 section = h->root.u.def.section;
10700 indx = section->output_section->target_index;
10701 *rel_hash_ptr = NULL;
10702 /* It seems that we ought to add the symbol value to the
10703 addend here, but in practice it has already been added
10704 because it was passed to constructor_callback. */
10705 addend += section->output_section->vma + section->output_offset;
10706 }
10707 else if (h != NULL)
10708 {
10709 /* Setting the index to -2 tells elf_link_output_extsym that
10710 this symbol is used by a reloc. */
10711 h->indx = -2;
10712 *rel_hash_ptr = h;
10713 indx = 0;
10714 }
10715 else
10716 {
10717 if (! ((*info->callbacks->unattached_reloc)
10718 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10719 return FALSE;
10720 indx = 0;
10721 }
10722 }
10723
10724 /* If this is an inplace reloc, we must write the addend into the
10725 object file. */
10726 if (howto->partial_inplace && addend != 0)
10727 {
10728 bfd_size_type size;
10729 bfd_reloc_status_type rstat;
10730 bfd_byte *buf;
10731 bfd_boolean ok;
10732 const char *sym_name;
10733
10734 size = (bfd_size_type) bfd_get_reloc_size (howto);
10735 buf = (bfd_byte *) bfd_zmalloc (size);
10736 if (buf == NULL && size != 0)
10737 return FALSE;
10738 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10739 switch (rstat)
10740 {
10741 case bfd_reloc_ok:
10742 break;
10743
10744 default:
10745 case bfd_reloc_outofrange:
10746 abort ();
10747
10748 case bfd_reloc_overflow:
10749 if (link_order->type == bfd_section_reloc_link_order)
10750 sym_name = bfd_section_name (output_bfd,
10751 link_order->u.reloc.p->u.section);
10752 else
10753 sym_name = link_order->u.reloc.p->u.name;
10754 if (! ((*info->callbacks->reloc_overflow)
10755 (info, NULL, sym_name, howto->name, addend, NULL,
10756 NULL, (bfd_vma) 0)))
10757 {
10758 free (buf);
10759 return FALSE;
10760 }
10761 break;
10762 }
10763
10764 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10765 link_order->offset
10766 * bfd_octets_per_byte (output_bfd),
10767 size);
10768 free (buf);
10769 if (! ok)
10770 return FALSE;
10771 }
10772
10773 /* The address of a reloc is relative to the section in a
10774 relocatable file, and is a virtual address in an executable
10775 file. */
10776 offset = link_order->offset;
10777 if (! bfd_link_relocatable (info))
10778 offset += output_section->vma;
10779
10780 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10781 {
10782 irel[i].r_offset = offset;
10783 irel[i].r_info = 0;
10784 irel[i].r_addend = 0;
10785 }
10786 if (bed->s->arch_size == 32)
10787 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10788 else
10789 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10790
10791 rel_hdr = reldata->hdr;
10792 erel = rel_hdr->contents;
10793 if (rel_hdr->sh_type == SHT_REL)
10794 {
10795 erel += reldata->count * bed->s->sizeof_rel;
10796 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10797 }
10798 else
10799 {
10800 irel[0].r_addend = addend;
10801 erel += reldata->count * bed->s->sizeof_rela;
10802 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10803 }
10804
10805 ++reldata->count;
10806
10807 return TRUE;
10808 }
10809
10810
10811 /* Get the output vma of the section pointed to by the sh_link field. */
10812
10813 static bfd_vma
10814 elf_get_linked_section_vma (struct bfd_link_order *p)
10815 {
10816 Elf_Internal_Shdr **elf_shdrp;
10817 asection *s;
10818 int elfsec;
10819
10820 s = p->u.indirect.section;
10821 elf_shdrp = elf_elfsections (s->owner);
10822 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10823 elfsec = elf_shdrp[elfsec]->sh_link;
10824 /* PR 290:
10825 The Intel C compiler generates SHT_IA_64_UNWIND with
10826 SHF_LINK_ORDER. But it doesn't set the sh_link or
10827 sh_info fields. Hence we could get the situation
10828 where elfsec is 0. */
10829 if (elfsec == 0)
10830 {
10831 const struct elf_backend_data *bed
10832 = get_elf_backend_data (s->owner);
10833 if (bed->link_order_error_handler)
10834 bed->link_order_error_handler
10835 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10836 return 0;
10837 }
10838 else
10839 {
10840 s = elf_shdrp[elfsec]->bfd_section;
10841 return s->output_section->vma + s->output_offset;
10842 }
10843 }
10844
10845
10846 /* Compare two sections based on the locations of the sections they are
10847 linked to. Used by elf_fixup_link_order. */
10848
10849 static int
10850 compare_link_order (const void * a, const void * b)
10851 {
10852 bfd_vma apos;
10853 bfd_vma bpos;
10854
10855 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10856 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10857 if (apos < bpos)
10858 return -1;
10859 return apos > bpos;
10860 }
10861
10862
10863 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10864 order as their linked sections. Returns false if this could not be done
10865 because an output section includes both ordered and unordered
10866 sections. Ideally we'd do this in the linker proper. */
10867
10868 static bfd_boolean
10869 elf_fixup_link_order (bfd *abfd, asection *o)
10870 {
10871 int seen_linkorder;
10872 int seen_other;
10873 int n;
10874 struct bfd_link_order *p;
10875 bfd *sub;
10876 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10877 unsigned elfsec;
10878 struct bfd_link_order **sections;
10879 asection *s, *other_sec, *linkorder_sec;
10880 bfd_vma offset;
10881
10882 other_sec = NULL;
10883 linkorder_sec = NULL;
10884 seen_other = 0;
10885 seen_linkorder = 0;
10886 for (p = o->map_head.link_order; p != NULL; p = p->next)
10887 {
10888 if (p->type == bfd_indirect_link_order)
10889 {
10890 s = p->u.indirect.section;
10891 sub = s->owner;
10892 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10893 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10894 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10895 && elfsec < elf_numsections (sub)
10896 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10897 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10898 {
10899 seen_linkorder++;
10900 linkorder_sec = s;
10901 }
10902 else
10903 {
10904 seen_other++;
10905 other_sec = s;
10906 }
10907 }
10908 else
10909 seen_other++;
10910
10911 if (seen_other && seen_linkorder)
10912 {
10913 if (other_sec && linkorder_sec)
10914 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10915 o, linkorder_sec,
10916 linkorder_sec->owner, other_sec,
10917 other_sec->owner);
10918 else
10919 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10920 o);
10921 bfd_set_error (bfd_error_bad_value);
10922 return FALSE;
10923 }
10924 }
10925
10926 if (!seen_linkorder)
10927 return TRUE;
10928
10929 sections = (struct bfd_link_order **)
10930 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10931 if (sections == NULL)
10932 return FALSE;
10933 seen_linkorder = 0;
10934
10935 for (p = o->map_head.link_order; p != NULL; p = p->next)
10936 {
10937 sections[seen_linkorder++] = p;
10938 }
10939 /* Sort the input sections in the order of their linked section. */
10940 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10941 compare_link_order);
10942
10943 /* Change the offsets of the sections. */
10944 offset = 0;
10945 for (n = 0; n < seen_linkorder; n++)
10946 {
10947 s = sections[n]->u.indirect.section;
10948 offset &= ~(bfd_vma) 0 << s->alignment_power;
10949 s->output_offset = offset / bfd_octets_per_byte (abfd);
10950 sections[n]->offset = offset;
10951 offset += sections[n]->size;
10952 }
10953
10954 free (sections);
10955 return TRUE;
10956 }
10957
10958 static void
10959 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10960 {
10961 asection *o;
10962
10963 if (flinfo->symstrtab != NULL)
10964 _bfd_elf_strtab_free (flinfo->symstrtab);
10965 if (flinfo->contents != NULL)
10966 free (flinfo->contents);
10967 if (flinfo->external_relocs != NULL)
10968 free (flinfo->external_relocs);
10969 if (flinfo->internal_relocs != NULL)
10970 free (flinfo->internal_relocs);
10971 if (flinfo->external_syms != NULL)
10972 free (flinfo->external_syms);
10973 if (flinfo->locsym_shndx != NULL)
10974 free (flinfo->locsym_shndx);
10975 if (flinfo->internal_syms != NULL)
10976 free (flinfo->internal_syms);
10977 if (flinfo->indices != NULL)
10978 free (flinfo->indices);
10979 if (flinfo->sections != NULL)
10980 free (flinfo->sections);
10981 if (flinfo->symshndxbuf != NULL)
10982 free (flinfo->symshndxbuf);
10983 for (o = obfd->sections; o != NULL; o = o->next)
10984 {
10985 struct bfd_elf_section_data *esdo = elf_section_data (o);
10986 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10987 free (esdo->rel.hashes);
10988 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10989 free (esdo->rela.hashes);
10990 }
10991 }
10992
10993 /* Do the final step of an ELF link. */
10994
10995 bfd_boolean
10996 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10997 {
10998 bfd_boolean dynamic;
10999 bfd_boolean emit_relocs;
11000 bfd *dynobj;
11001 struct elf_final_link_info flinfo;
11002 asection *o;
11003 struct bfd_link_order *p;
11004 bfd *sub;
11005 bfd_size_type max_contents_size;
11006 bfd_size_type max_external_reloc_size;
11007 bfd_size_type max_internal_reloc_count;
11008 bfd_size_type max_sym_count;
11009 bfd_size_type max_sym_shndx_count;
11010 Elf_Internal_Sym elfsym;
11011 unsigned int i;
11012 Elf_Internal_Shdr *symtab_hdr;
11013 Elf_Internal_Shdr *symtab_shndx_hdr;
11014 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11015 struct elf_outext_info eoinfo;
11016 bfd_boolean merged;
11017 size_t relativecount = 0;
11018 asection *reldyn = 0;
11019 bfd_size_type amt;
11020 asection *attr_section = NULL;
11021 bfd_vma attr_size = 0;
11022 const char *std_attrs_section;
11023
11024 if (! is_elf_hash_table (info->hash))
11025 return FALSE;
11026
11027 if (bfd_link_pic (info))
11028 abfd->flags |= DYNAMIC;
11029
11030 dynamic = elf_hash_table (info)->dynamic_sections_created;
11031 dynobj = elf_hash_table (info)->dynobj;
11032
11033 emit_relocs = (bfd_link_relocatable (info)
11034 || info->emitrelocations);
11035
11036 flinfo.info = info;
11037 flinfo.output_bfd = abfd;
11038 flinfo.symstrtab = _bfd_elf_strtab_init ();
11039 if (flinfo.symstrtab == NULL)
11040 return FALSE;
11041
11042 if (! dynamic)
11043 {
11044 flinfo.hash_sec = NULL;
11045 flinfo.symver_sec = NULL;
11046 }
11047 else
11048 {
11049 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11050 /* Note that dynsym_sec can be NULL (on VMS). */
11051 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11052 /* Note that it is OK if symver_sec is NULL. */
11053 }
11054
11055 flinfo.contents = NULL;
11056 flinfo.external_relocs = NULL;
11057 flinfo.internal_relocs = NULL;
11058 flinfo.external_syms = NULL;
11059 flinfo.locsym_shndx = NULL;
11060 flinfo.internal_syms = NULL;
11061 flinfo.indices = NULL;
11062 flinfo.sections = NULL;
11063 flinfo.symshndxbuf = NULL;
11064 flinfo.filesym_count = 0;
11065
11066 /* The object attributes have been merged. Remove the input
11067 sections from the link, and set the contents of the output
11068 secton. */
11069 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11070 for (o = abfd->sections; o != NULL; o = o->next)
11071 {
11072 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11073 || strcmp (o->name, ".gnu.attributes") == 0)
11074 {
11075 for (p = o->map_head.link_order; p != NULL; p = p->next)
11076 {
11077 asection *input_section;
11078
11079 if (p->type != bfd_indirect_link_order)
11080 continue;
11081 input_section = p->u.indirect.section;
11082 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11083 elf_link_input_bfd ignores this section. */
11084 input_section->flags &= ~SEC_HAS_CONTENTS;
11085 }
11086
11087 attr_size = bfd_elf_obj_attr_size (abfd);
11088 if (attr_size)
11089 {
11090 bfd_set_section_size (abfd, o, attr_size);
11091 attr_section = o;
11092 /* Skip this section later on. */
11093 o->map_head.link_order = NULL;
11094 }
11095 else
11096 o->flags |= SEC_EXCLUDE;
11097 }
11098 }
11099
11100 /* Count up the number of relocations we will output for each output
11101 section, so that we know the sizes of the reloc sections. We
11102 also figure out some maximum sizes. */
11103 max_contents_size = 0;
11104 max_external_reloc_size = 0;
11105 max_internal_reloc_count = 0;
11106 max_sym_count = 0;
11107 max_sym_shndx_count = 0;
11108 merged = FALSE;
11109 for (o = abfd->sections; o != NULL; o = o->next)
11110 {
11111 struct bfd_elf_section_data *esdo = elf_section_data (o);
11112 o->reloc_count = 0;
11113
11114 for (p = o->map_head.link_order; p != NULL; p = p->next)
11115 {
11116 unsigned int reloc_count = 0;
11117 unsigned int additional_reloc_count = 0;
11118 struct bfd_elf_section_data *esdi = NULL;
11119
11120 if (p->type == bfd_section_reloc_link_order
11121 || p->type == bfd_symbol_reloc_link_order)
11122 reloc_count = 1;
11123 else if (p->type == bfd_indirect_link_order)
11124 {
11125 asection *sec;
11126
11127 sec = p->u.indirect.section;
11128 esdi = elf_section_data (sec);
11129
11130 /* Mark all sections which are to be included in the
11131 link. This will normally be every section. We need
11132 to do this so that we can identify any sections which
11133 the linker has decided to not include. */
11134 sec->linker_mark = TRUE;
11135
11136 if (sec->flags & SEC_MERGE)
11137 merged = TRUE;
11138
11139 if (esdo->this_hdr.sh_type == SHT_REL
11140 || esdo->this_hdr.sh_type == SHT_RELA)
11141 /* Some backends use reloc_count in relocation sections
11142 to count particular types of relocs. Of course,
11143 reloc sections themselves can't have relocations. */
11144 reloc_count = 0;
11145 else if (emit_relocs)
11146 {
11147 reloc_count = sec->reloc_count;
11148 if (bed->elf_backend_count_additional_relocs)
11149 {
11150 int c;
11151 c = (*bed->elf_backend_count_additional_relocs) (sec);
11152 additional_reloc_count += c;
11153 }
11154 }
11155 else if (bed->elf_backend_count_relocs)
11156 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11157
11158 if (sec->rawsize > max_contents_size)
11159 max_contents_size = sec->rawsize;
11160 if (sec->size > max_contents_size)
11161 max_contents_size = sec->size;
11162
11163 /* We are interested in just local symbols, not all
11164 symbols. */
11165 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11166 && (sec->owner->flags & DYNAMIC) == 0)
11167 {
11168 size_t sym_count;
11169
11170 if (elf_bad_symtab (sec->owner))
11171 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11172 / bed->s->sizeof_sym);
11173 else
11174 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11175
11176 if (sym_count > max_sym_count)
11177 max_sym_count = sym_count;
11178
11179 if (sym_count > max_sym_shndx_count
11180 && elf_symtab_shndx_list (sec->owner) != NULL)
11181 max_sym_shndx_count = sym_count;
11182
11183 if ((sec->flags & SEC_RELOC) != 0)
11184 {
11185 size_t ext_size = 0;
11186
11187 if (esdi->rel.hdr != NULL)
11188 ext_size = esdi->rel.hdr->sh_size;
11189 if (esdi->rela.hdr != NULL)
11190 ext_size += esdi->rela.hdr->sh_size;
11191
11192 if (ext_size > max_external_reloc_size)
11193 max_external_reloc_size = ext_size;
11194 if (sec->reloc_count > max_internal_reloc_count)
11195 max_internal_reloc_count = sec->reloc_count;
11196 }
11197 }
11198 }
11199
11200 if (reloc_count == 0)
11201 continue;
11202
11203 reloc_count += additional_reloc_count;
11204 o->reloc_count += reloc_count;
11205
11206 if (p->type == bfd_indirect_link_order && emit_relocs)
11207 {
11208 if (esdi->rel.hdr)
11209 {
11210 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
11211 esdo->rel.count += additional_reloc_count;
11212 }
11213 if (esdi->rela.hdr)
11214 {
11215 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
11216 esdo->rela.count += additional_reloc_count;
11217 }
11218 }
11219 else
11220 {
11221 if (o->use_rela_p)
11222 esdo->rela.count += reloc_count;
11223 else
11224 esdo->rel.count += reloc_count;
11225 }
11226 }
11227
11228 if (o->reloc_count > 0)
11229 o->flags |= SEC_RELOC;
11230 else
11231 {
11232 /* Explicitly clear the SEC_RELOC flag. The linker tends to
11233 set it (this is probably a bug) and if it is set
11234 assign_section_numbers will create a reloc section. */
11235 o->flags &=~ SEC_RELOC;
11236 }
11237
11238 /* If the SEC_ALLOC flag is not set, force the section VMA to
11239 zero. This is done in elf_fake_sections as well, but forcing
11240 the VMA to 0 here will ensure that relocs against these
11241 sections are handled correctly. */
11242 if ((o->flags & SEC_ALLOC) == 0
11243 && ! o->user_set_vma)
11244 o->vma = 0;
11245 }
11246
11247 if (! bfd_link_relocatable (info) && merged)
11248 elf_link_hash_traverse (elf_hash_table (info),
11249 _bfd_elf_link_sec_merge_syms, abfd);
11250
11251 /* Figure out the file positions for everything but the symbol table
11252 and the relocs. We set symcount to force assign_section_numbers
11253 to create a symbol table. */
11254 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
11255 BFD_ASSERT (! abfd->output_has_begun);
11256 if (! _bfd_elf_compute_section_file_positions (abfd, info))
11257 goto error_return;
11258
11259 /* Set sizes, and assign file positions for reloc sections. */
11260 for (o = abfd->sections; o != NULL; o = o->next)
11261 {
11262 struct bfd_elf_section_data *esdo = elf_section_data (o);
11263 if ((o->flags & SEC_RELOC) != 0)
11264 {
11265 if (esdo->rel.hdr
11266 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
11267 goto error_return;
11268
11269 if (esdo->rela.hdr
11270 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
11271 goto error_return;
11272 }
11273
11274 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
11275 to count upwards while actually outputting the relocations. */
11276 esdo->rel.count = 0;
11277 esdo->rela.count = 0;
11278
11279 if (esdo->this_hdr.sh_offset == (file_ptr) -1)
11280 {
11281 /* Cache the section contents so that they can be compressed
11282 later. Use bfd_malloc since it will be freed by
11283 bfd_compress_section_contents. */
11284 unsigned char *contents = esdo->this_hdr.contents;
11285 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
11286 abort ();
11287 contents
11288 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
11289 if (contents == NULL)
11290 goto error_return;
11291 esdo->this_hdr.contents = contents;
11292 }
11293 }
11294
11295 /* We have now assigned file positions for all the sections except
11296 .symtab, .strtab, and non-loaded reloc sections. We start the
11297 .symtab section at the current file position, and write directly
11298 to it. We build the .strtab section in memory. */
11299 bfd_get_symcount (abfd) = 0;
11300 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11301 /* sh_name is set in prep_headers. */
11302 symtab_hdr->sh_type = SHT_SYMTAB;
11303 /* sh_flags, sh_addr and sh_size all start off zero. */
11304 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
11305 /* sh_link is set in assign_section_numbers. */
11306 /* sh_info is set below. */
11307 /* sh_offset is set just below. */
11308 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
11309
11310 if (max_sym_count < 20)
11311 max_sym_count = 20;
11312 elf_hash_table (info)->strtabsize = max_sym_count;
11313 amt = max_sym_count * sizeof (struct elf_sym_strtab);
11314 elf_hash_table (info)->strtab
11315 = (struct elf_sym_strtab *) bfd_malloc (amt);
11316 if (elf_hash_table (info)->strtab == NULL)
11317 goto error_return;
11318 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
11319 flinfo.symshndxbuf
11320 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
11321 ? (Elf_External_Sym_Shndx *) -1 : NULL);
11322
11323 if (info->strip != strip_all || emit_relocs)
11324 {
11325 file_ptr off = elf_next_file_pos (abfd);
11326
11327 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
11328
11329 /* Note that at this point elf_next_file_pos (abfd) is
11330 incorrect. We do not yet know the size of the .symtab section.
11331 We correct next_file_pos below, after we do know the size. */
11332
11333 /* Start writing out the symbol table. The first symbol is always a
11334 dummy symbol. */
11335 elfsym.st_value = 0;
11336 elfsym.st_size = 0;
11337 elfsym.st_info = 0;
11338 elfsym.st_other = 0;
11339 elfsym.st_shndx = SHN_UNDEF;
11340 elfsym.st_target_internal = 0;
11341 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
11342 bfd_und_section_ptr, NULL) != 1)
11343 goto error_return;
11344
11345 /* Output a symbol for each section. We output these even if we are
11346 discarding local symbols, since they are used for relocs. These
11347 symbols have no names. We store the index of each one in the
11348 index field of the section, so that we can find it again when
11349 outputting relocs. */
11350
11351 elfsym.st_size = 0;
11352 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11353 elfsym.st_other = 0;
11354 elfsym.st_value = 0;
11355 elfsym.st_target_internal = 0;
11356 for (i = 1; i < elf_numsections (abfd); i++)
11357 {
11358 o = bfd_section_from_elf_index (abfd, i);
11359 if (o != NULL)
11360 {
11361 o->target_index = bfd_get_symcount (abfd);
11362 elfsym.st_shndx = i;
11363 if (!bfd_link_relocatable (info))
11364 elfsym.st_value = o->vma;
11365 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
11366 NULL) != 1)
11367 goto error_return;
11368 }
11369 }
11370 }
11371
11372 /* Allocate some memory to hold information read in from the input
11373 files. */
11374 if (max_contents_size != 0)
11375 {
11376 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
11377 if (flinfo.contents == NULL)
11378 goto error_return;
11379 }
11380
11381 if (max_external_reloc_size != 0)
11382 {
11383 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
11384 if (flinfo.external_relocs == NULL)
11385 goto error_return;
11386 }
11387
11388 if (max_internal_reloc_count != 0)
11389 {
11390 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
11391 amt *= sizeof (Elf_Internal_Rela);
11392 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
11393 if (flinfo.internal_relocs == NULL)
11394 goto error_return;
11395 }
11396
11397 if (max_sym_count != 0)
11398 {
11399 amt = max_sym_count * bed->s->sizeof_sym;
11400 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
11401 if (flinfo.external_syms == NULL)
11402 goto error_return;
11403
11404 amt = max_sym_count * sizeof (Elf_Internal_Sym);
11405 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
11406 if (flinfo.internal_syms == NULL)
11407 goto error_return;
11408
11409 amt = max_sym_count * sizeof (long);
11410 flinfo.indices = (long int *) bfd_malloc (amt);
11411 if (flinfo.indices == NULL)
11412 goto error_return;
11413
11414 amt = max_sym_count * sizeof (asection *);
11415 flinfo.sections = (asection **) bfd_malloc (amt);
11416 if (flinfo.sections == NULL)
11417 goto error_return;
11418 }
11419
11420 if (max_sym_shndx_count != 0)
11421 {
11422 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11423 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11424 if (flinfo.locsym_shndx == NULL)
11425 goto error_return;
11426 }
11427
11428 if (elf_hash_table (info)->tls_sec)
11429 {
11430 bfd_vma base, end = 0;
11431 asection *sec;
11432
11433 for (sec = elf_hash_table (info)->tls_sec;
11434 sec && (sec->flags & SEC_THREAD_LOCAL);
11435 sec = sec->next)
11436 {
11437 bfd_size_type size = sec->size;
11438
11439 if (size == 0
11440 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11441 {
11442 struct bfd_link_order *ord = sec->map_tail.link_order;
11443
11444 if (ord != NULL)
11445 size = ord->offset + ord->size;
11446 }
11447 end = sec->vma + size;
11448 }
11449 base = elf_hash_table (info)->tls_sec->vma;
11450 /* Only align end of TLS section if static TLS doesn't have special
11451 alignment requirements. */
11452 if (bed->static_tls_alignment == 1)
11453 end = align_power (end,
11454 elf_hash_table (info)->tls_sec->alignment_power);
11455 elf_hash_table (info)->tls_size = end - base;
11456 }
11457
11458 /* Reorder SHF_LINK_ORDER sections. */
11459 for (o = abfd->sections; o != NULL; o = o->next)
11460 {
11461 if (!elf_fixup_link_order (abfd, o))
11462 return FALSE;
11463 }
11464
11465 if (!_bfd_elf_fixup_eh_frame_hdr (info))
11466 return FALSE;
11467
11468 /* Since ELF permits relocations to be against local symbols, we
11469 must have the local symbols available when we do the relocations.
11470 Since we would rather only read the local symbols once, and we
11471 would rather not keep them in memory, we handle all the
11472 relocations for a single input file at the same time.
11473
11474 Unfortunately, there is no way to know the total number of local
11475 symbols until we have seen all of them, and the local symbol
11476 indices precede the global symbol indices. This means that when
11477 we are generating relocatable output, and we see a reloc against
11478 a global symbol, we can not know the symbol index until we have
11479 finished examining all the local symbols to see which ones we are
11480 going to output. To deal with this, we keep the relocations in
11481 memory, and don't output them until the end of the link. This is
11482 an unfortunate waste of memory, but I don't see a good way around
11483 it. Fortunately, it only happens when performing a relocatable
11484 link, which is not the common case. FIXME: If keep_memory is set
11485 we could write the relocs out and then read them again; I don't
11486 know how bad the memory loss will be. */
11487
11488 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11489 sub->output_has_begun = FALSE;
11490 for (o = abfd->sections; o != NULL; o = o->next)
11491 {
11492 for (p = o->map_head.link_order; p != NULL; p = p->next)
11493 {
11494 if (p->type == bfd_indirect_link_order
11495 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11496 == bfd_target_elf_flavour)
11497 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11498 {
11499 if (! sub->output_has_begun)
11500 {
11501 if (! elf_link_input_bfd (&flinfo, sub))
11502 goto error_return;
11503 sub->output_has_begun = TRUE;
11504 }
11505 }
11506 else if (p->type == bfd_section_reloc_link_order
11507 || p->type == bfd_symbol_reloc_link_order)
11508 {
11509 if (! elf_reloc_link_order (abfd, info, o, p))
11510 goto error_return;
11511 }
11512 else
11513 {
11514 if (! _bfd_default_link_order (abfd, info, o, p))
11515 {
11516 if (p->type == bfd_indirect_link_order
11517 && (bfd_get_flavour (sub)
11518 == bfd_target_elf_flavour)
11519 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11520 != bed->s->elfclass))
11521 {
11522 const char *iclass, *oclass;
11523
11524 switch (bed->s->elfclass)
11525 {
11526 case ELFCLASS64: oclass = "ELFCLASS64"; break;
11527 case ELFCLASS32: oclass = "ELFCLASS32"; break;
11528 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
11529 default: abort ();
11530 }
11531
11532 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
11533 {
11534 case ELFCLASS64: iclass = "ELFCLASS64"; break;
11535 case ELFCLASS32: iclass = "ELFCLASS32"; break;
11536 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
11537 default: abort ();
11538 }
11539
11540 bfd_set_error (bfd_error_wrong_format);
11541 (*_bfd_error_handler)
11542 (_("%B: file class %s incompatible with %s"),
11543 sub, iclass, oclass);
11544 }
11545
11546 goto error_return;
11547 }
11548 }
11549 }
11550 }
11551
11552 /* Free symbol buffer if needed. */
11553 if (!info->reduce_memory_overheads)
11554 {
11555 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11556 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11557 && elf_tdata (sub)->symbuf)
11558 {
11559 free (elf_tdata (sub)->symbuf);
11560 elf_tdata (sub)->symbuf = NULL;
11561 }
11562 }
11563
11564 /* Output any global symbols that got converted to local in a
11565 version script or due to symbol visibility. We do this in a
11566 separate step since ELF requires all local symbols to appear
11567 prior to any global symbols. FIXME: We should only do this if
11568 some global symbols were, in fact, converted to become local.
11569 FIXME: Will this work correctly with the Irix 5 linker? */
11570 eoinfo.failed = FALSE;
11571 eoinfo.flinfo = &flinfo;
11572 eoinfo.localsyms = TRUE;
11573 eoinfo.file_sym_done = FALSE;
11574 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11575 if (eoinfo.failed)
11576 return FALSE;
11577
11578 /* If backend needs to output some local symbols not present in the hash
11579 table, do it now. */
11580 if (bed->elf_backend_output_arch_local_syms
11581 && (info->strip != strip_all || emit_relocs))
11582 {
11583 typedef int (*out_sym_func)
11584 (void *, const char *, Elf_Internal_Sym *, asection *,
11585 struct elf_link_hash_entry *);
11586
11587 if (! ((*bed->elf_backend_output_arch_local_syms)
11588 (abfd, info, &flinfo,
11589 (out_sym_func) elf_link_output_symstrtab)))
11590 return FALSE;
11591 }
11592
11593 /* That wrote out all the local symbols. Finish up the symbol table
11594 with the global symbols. Even if we want to strip everything we
11595 can, we still need to deal with those global symbols that got
11596 converted to local in a version script. */
11597
11598 /* The sh_info field records the index of the first non local symbol. */
11599 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11600
11601 if (dynamic
11602 && elf_hash_table (info)->dynsym != NULL
11603 && (elf_hash_table (info)->dynsym->output_section
11604 != bfd_abs_section_ptr))
11605 {
11606 Elf_Internal_Sym sym;
11607 bfd_byte *dynsym = elf_hash_table (info)->dynsym->contents;
11608 long last_local = 0;
11609
11610 /* Write out the section symbols for the output sections. */
11611 if (bfd_link_pic (info)
11612 || elf_hash_table (info)->is_relocatable_executable)
11613 {
11614 asection *s;
11615
11616 sym.st_size = 0;
11617 sym.st_name = 0;
11618 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11619 sym.st_other = 0;
11620 sym.st_target_internal = 0;
11621
11622 for (s = abfd->sections; s != NULL; s = s->next)
11623 {
11624 int indx;
11625 bfd_byte *dest;
11626 long dynindx;
11627
11628 dynindx = elf_section_data (s)->dynindx;
11629 if (dynindx <= 0)
11630 continue;
11631 indx = elf_section_data (s)->this_idx;
11632 BFD_ASSERT (indx > 0);
11633 sym.st_shndx = indx;
11634 if (! check_dynsym (abfd, &sym))
11635 return FALSE;
11636 sym.st_value = s->vma;
11637 dest = dynsym + dynindx * bed->s->sizeof_sym;
11638 if (last_local < dynindx)
11639 last_local = dynindx;
11640 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11641 }
11642 }
11643
11644 /* Write out the local dynsyms. */
11645 if (elf_hash_table (info)->dynlocal)
11646 {
11647 struct elf_link_local_dynamic_entry *e;
11648 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11649 {
11650 asection *s;
11651 bfd_byte *dest;
11652
11653 /* Copy the internal symbol and turn off visibility.
11654 Note that we saved a word of storage and overwrote
11655 the original st_name with the dynstr_index. */
11656 sym = e->isym;
11657 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11658
11659 s = bfd_section_from_elf_index (e->input_bfd,
11660 e->isym.st_shndx);
11661 if (s != NULL)
11662 {
11663 sym.st_shndx =
11664 elf_section_data (s->output_section)->this_idx;
11665 if (! check_dynsym (abfd, &sym))
11666 return FALSE;
11667 sym.st_value = (s->output_section->vma
11668 + s->output_offset
11669 + e->isym.st_value);
11670 }
11671
11672 if (last_local < e->dynindx)
11673 last_local = e->dynindx;
11674
11675 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11676 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11677 }
11678 }
11679
11680 elf_section_data (elf_hash_table (info)->dynsym->output_section)->this_hdr.sh_info =
11681 last_local + 1;
11682 }
11683
11684 /* We get the global symbols from the hash table. */
11685 eoinfo.failed = FALSE;
11686 eoinfo.localsyms = FALSE;
11687 eoinfo.flinfo = &flinfo;
11688 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11689 if (eoinfo.failed)
11690 return FALSE;
11691
11692 /* If backend needs to output some symbols not present in the hash
11693 table, do it now. */
11694 if (bed->elf_backend_output_arch_syms
11695 && (info->strip != strip_all || emit_relocs))
11696 {
11697 typedef int (*out_sym_func)
11698 (void *, const char *, Elf_Internal_Sym *, asection *,
11699 struct elf_link_hash_entry *);
11700
11701 if (! ((*bed->elf_backend_output_arch_syms)
11702 (abfd, info, &flinfo,
11703 (out_sym_func) elf_link_output_symstrtab)))
11704 return FALSE;
11705 }
11706
11707 /* Finalize the .strtab section. */
11708 _bfd_elf_strtab_finalize (flinfo.symstrtab);
11709
11710 /* Swap out the .strtab section. */
11711 if (!elf_link_swap_symbols_out (&flinfo))
11712 return FALSE;
11713
11714 /* Now we know the size of the symtab section. */
11715 if (bfd_get_symcount (abfd) > 0)
11716 {
11717 /* Finish up and write out the symbol string table (.strtab)
11718 section. */
11719 Elf_Internal_Shdr *symstrtab_hdr;
11720 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
11721
11722 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
11723 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
11724 {
11725 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11726 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11727 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11728 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11729 symtab_shndx_hdr->sh_size = amt;
11730
11731 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11732 off, TRUE);
11733
11734 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11735 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11736 return FALSE;
11737 }
11738
11739 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11740 /* sh_name was set in prep_headers. */
11741 symstrtab_hdr->sh_type = SHT_STRTAB;
11742 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
11743 symstrtab_hdr->sh_addr = 0;
11744 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
11745 symstrtab_hdr->sh_entsize = 0;
11746 symstrtab_hdr->sh_link = 0;
11747 symstrtab_hdr->sh_info = 0;
11748 /* sh_offset is set just below. */
11749 symstrtab_hdr->sh_addralign = 1;
11750
11751 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
11752 off, TRUE);
11753 elf_next_file_pos (abfd) = off;
11754
11755 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11756 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
11757 return FALSE;
11758 }
11759
11760 /* Adjust the relocs to have the correct symbol indices. */
11761 for (o = abfd->sections; o != NULL; o = o->next)
11762 {
11763 struct bfd_elf_section_data *esdo = elf_section_data (o);
11764 bfd_boolean sort;
11765 if ((o->flags & SEC_RELOC) == 0)
11766 continue;
11767
11768 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
11769 if (esdo->rel.hdr != NULL
11770 && !elf_link_adjust_relocs (abfd, &esdo->rel, sort))
11771 return FALSE;
11772 if (esdo->rela.hdr != NULL
11773 && !elf_link_adjust_relocs (abfd, &esdo->rela, sort))
11774 return FALSE;
11775
11776 /* Set the reloc_count field to 0 to prevent write_relocs from
11777 trying to swap the relocs out itself. */
11778 o->reloc_count = 0;
11779 }
11780
11781 if (dynamic && info->combreloc && dynobj != NULL)
11782 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11783
11784 /* If we are linking against a dynamic object, or generating a
11785 shared library, finish up the dynamic linking information. */
11786 if (dynamic)
11787 {
11788 bfd_byte *dyncon, *dynconend;
11789
11790 /* Fix up .dynamic entries. */
11791 o = bfd_get_linker_section (dynobj, ".dynamic");
11792 BFD_ASSERT (o != NULL);
11793
11794 dyncon = o->contents;
11795 dynconend = o->contents + o->size;
11796 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11797 {
11798 Elf_Internal_Dyn dyn;
11799 const char *name;
11800 unsigned int type;
11801
11802 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11803
11804 switch (dyn.d_tag)
11805 {
11806 default:
11807 continue;
11808 case DT_NULL:
11809 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11810 {
11811 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11812 {
11813 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11814 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11815 default: continue;
11816 }
11817 dyn.d_un.d_val = relativecount;
11818 relativecount = 0;
11819 break;
11820 }
11821 continue;
11822
11823 case DT_INIT:
11824 name = info->init_function;
11825 goto get_sym;
11826 case DT_FINI:
11827 name = info->fini_function;
11828 get_sym:
11829 {
11830 struct elf_link_hash_entry *h;
11831
11832 h = elf_link_hash_lookup (elf_hash_table (info), name,
11833 FALSE, FALSE, TRUE);
11834 if (h != NULL
11835 && (h->root.type == bfd_link_hash_defined
11836 || h->root.type == bfd_link_hash_defweak))
11837 {
11838 dyn.d_un.d_ptr = h->root.u.def.value;
11839 o = h->root.u.def.section;
11840 if (o->output_section != NULL)
11841 dyn.d_un.d_ptr += (o->output_section->vma
11842 + o->output_offset);
11843 else
11844 {
11845 /* The symbol is imported from another shared
11846 library and does not apply to this one. */
11847 dyn.d_un.d_ptr = 0;
11848 }
11849 break;
11850 }
11851 }
11852 continue;
11853
11854 case DT_PREINIT_ARRAYSZ:
11855 name = ".preinit_array";
11856 goto get_size;
11857 case DT_INIT_ARRAYSZ:
11858 name = ".init_array";
11859 goto get_size;
11860 case DT_FINI_ARRAYSZ:
11861 name = ".fini_array";
11862 get_size:
11863 o = bfd_get_section_by_name (abfd, name);
11864 if (o == NULL)
11865 {
11866 (*_bfd_error_handler)
11867 (_("%B: could not find output section %s"), abfd, name);
11868 goto error_return;
11869 }
11870 if (o->size == 0)
11871 (*_bfd_error_handler)
11872 (_("warning: %s section has zero size"), name);
11873 dyn.d_un.d_val = o->size;
11874 break;
11875
11876 case DT_PREINIT_ARRAY:
11877 name = ".preinit_array";
11878 goto get_vma;
11879 case DT_INIT_ARRAY:
11880 name = ".init_array";
11881 goto get_vma;
11882 case DT_FINI_ARRAY:
11883 name = ".fini_array";
11884 goto get_vma;
11885
11886 case DT_HASH:
11887 name = ".hash";
11888 goto get_vma;
11889 case DT_GNU_HASH:
11890 name = ".gnu.hash";
11891 goto get_vma;
11892 case DT_STRTAB:
11893 name = ".dynstr";
11894 goto get_vma;
11895 case DT_SYMTAB:
11896 name = ".dynsym";
11897 goto get_vma;
11898 case DT_VERDEF:
11899 name = ".gnu.version_d";
11900 goto get_vma;
11901 case DT_VERNEED:
11902 name = ".gnu.version_r";
11903 goto get_vma;
11904 case DT_VERSYM:
11905 name = ".gnu.version";
11906 get_vma:
11907 o = bfd_get_section_by_name (abfd, name);
11908 if (o == NULL)
11909 {
11910 (*_bfd_error_handler)
11911 (_("%B: could not find output section %s"), abfd, name);
11912 goto error_return;
11913 }
11914 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11915 {
11916 (*_bfd_error_handler)
11917 (_("warning: section '%s' is being made into a note"), name);
11918 bfd_set_error (bfd_error_nonrepresentable_section);
11919 goto error_return;
11920 }
11921 dyn.d_un.d_ptr = o->vma;
11922 break;
11923
11924 case DT_REL:
11925 case DT_RELA:
11926 case DT_RELSZ:
11927 case DT_RELASZ:
11928 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11929 type = SHT_REL;
11930 else
11931 type = SHT_RELA;
11932 dyn.d_un.d_val = 0;
11933 dyn.d_un.d_ptr = 0;
11934 for (i = 1; i < elf_numsections (abfd); i++)
11935 {
11936 Elf_Internal_Shdr *hdr;
11937
11938 hdr = elf_elfsections (abfd)[i];
11939 if (hdr->sh_type == type
11940 && (hdr->sh_flags & SHF_ALLOC) != 0)
11941 {
11942 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11943 dyn.d_un.d_val += hdr->sh_size;
11944 else
11945 {
11946 if (dyn.d_un.d_ptr == 0
11947 || hdr->sh_addr < dyn.d_un.d_ptr)
11948 dyn.d_un.d_ptr = hdr->sh_addr;
11949 }
11950 }
11951 }
11952 break;
11953 }
11954 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11955 }
11956 }
11957
11958 /* If we have created any dynamic sections, then output them. */
11959 if (dynobj != NULL)
11960 {
11961 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11962 goto error_return;
11963
11964 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11965 if (((info->warn_shared_textrel && bfd_link_pic (info))
11966 || info->error_textrel)
11967 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11968 {
11969 bfd_byte *dyncon, *dynconend;
11970
11971 dyncon = o->contents;
11972 dynconend = o->contents + o->size;
11973 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11974 {
11975 Elf_Internal_Dyn dyn;
11976
11977 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11978
11979 if (dyn.d_tag == DT_TEXTREL)
11980 {
11981 if (info->error_textrel)
11982 info->callbacks->einfo
11983 (_("%P%X: read-only segment has dynamic relocations.\n"));
11984 else
11985 info->callbacks->einfo
11986 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11987 break;
11988 }
11989 }
11990 }
11991
11992 for (o = dynobj->sections; o != NULL; o = o->next)
11993 {
11994 if ((o->flags & SEC_HAS_CONTENTS) == 0
11995 || o->size == 0
11996 || o->output_section == bfd_abs_section_ptr)
11997 continue;
11998 if ((o->flags & SEC_LINKER_CREATED) == 0)
11999 {
12000 /* At this point, we are only interested in sections
12001 created by _bfd_elf_link_create_dynamic_sections. */
12002 continue;
12003 }
12004 if (elf_hash_table (info)->stab_info.stabstr == o)
12005 continue;
12006 if (elf_hash_table (info)->eh_info.hdr_sec == o)
12007 continue;
12008 if (strcmp (o->name, ".dynstr") != 0)
12009 {
12010 if (! bfd_set_section_contents (abfd, o->output_section,
12011 o->contents,
12012 (file_ptr) o->output_offset
12013 * bfd_octets_per_byte (abfd),
12014 o->size))
12015 goto error_return;
12016 }
12017 else
12018 {
12019 /* The contents of the .dynstr section are actually in a
12020 stringtab. */
12021 file_ptr off;
12022
12023 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12024 if (bfd_seek (abfd, off, SEEK_SET) != 0
12025 || ! _bfd_elf_strtab_emit (abfd,
12026 elf_hash_table (info)->dynstr))
12027 goto error_return;
12028 }
12029 }
12030 }
12031
12032 if (bfd_link_relocatable (info))
12033 {
12034 bfd_boolean failed = FALSE;
12035
12036 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
12037 if (failed)
12038 goto error_return;
12039 }
12040
12041 /* If we have optimized stabs strings, output them. */
12042 if (elf_hash_table (info)->stab_info.stabstr != NULL)
12043 {
12044 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
12045 goto error_return;
12046 }
12047
12048 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
12049 goto error_return;
12050
12051 elf_final_link_free (abfd, &flinfo);
12052
12053 elf_linker (abfd) = TRUE;
12054
12055 if (attr_section)
12056 {
12057 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
12058 if (contents == NULL)
12059 return FALSE; /* Bail out and fail. */
12060 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
12061 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
12062 free (contents);
12063 }
12064
12065 return TRUE;
12066
12067 error_return:
12068 elf_final_link_free (abfd, &flinfo);
12069 return FALSE;
12070 }
12071 \f
12072 /* Initialize COOKIE for input bfd ABFD. */
12073
12074 static bfd_boolean
12075 init_reloc_cookie (struct elf_reloc_cookie *cookie,
12076 struct bfd_link_info *info, bfd *abfd)
12077 {
12078 Elf_Internal_Shdr *symtab_hdr;
12079 const struct elf_backend_data *bed;
12080
12081 bed = get_elf_backend_data (abfd);
12082 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12083
12084 cookie->abfd = abfd;
12085 cookie->sym_hashes = elf_sym_hashes (abfd);
12086 cookie->bad_symtab = elf_bad_symtab (abfd);
12087 if (cookie->bad_symtab)
12088 {
12089 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12090 cookie->extsymoff = 0;
12091 }
12092 else
12093 {
12094 cookie->locsymcount = symtab_hdr->sh_info;
12095 cookie->extsymoff = symtab_hdr->sh_info;
12096 }
12097
12098 if (bed->s->arch_size == 32)
12099 cookie->r_sym_shift = 8;
12100 else
12101 cookie->r_sym_shift = 32;
12102
12103 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12104 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
12105 {
12106 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12107 cookie->locsymcount, 0,
12108 NULL, NULL, NULL);
12109 if (cookie->locsyms == NULL)
12110 {
12111 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12112 return FALSE;
12113 }
12114 if (info->keep_memory)
12115 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
12116 }
12117 return TRUE;
12118 }
12119
12120 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
12121
12122 static void
12123 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
12124 {
12125 Elf_Internal_Shdr *symtab_hdr;
12126
12127 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12128 if (cookie->locsyms != NULL
12129 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
12130 free (cookie->locsyms);
12131 }
12132
12133 /* Initialize the relocation information in COOKIE for input section SEC
12134 of input bfd ABFD. */
12135
12136 static bfd_boolean
12137 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12138 struct bfd_link_info *info, bfd *abfd,
12139 asection *sec)
12140 {
12141 const struct elf_backend_data *bed;
12142
12143 if (sec->reloc_count == 0)
12144 {
12145 cookie->rels = NULL;
12146 cookie->relend = NULL;
12147 }
12148 else
12149 {
12150 bed = get_elf_backend_data (abfd);
12151
12152 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
12153 info->keep_memory);
12154 if (cookie->rels == NULL)
12155 return FALSE;
12156 cookie->rel = cookie->rels;
12157 cookie->relend = (cookie->rels
12158 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
12159 }
12160 cookie->rel = cookie->rels;
12161 return TRUE;
12162 }
12163
12164 /* Free the memory allocated by init_reloc_cookie_rels,
12165 if appropriate. */
12166
12167 static void
12168 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12169 asection *sec)
12170 {
12171 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
12172 free (cookie->rels);
12173 }
12174
12175 /* Initialize the whole of COOKIE for input section SEC. */
12176
12177 static bfd_boolean
12178 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12179 struct bfd_link_info *info,
12180 asection *sec)
12181 {
12182 if (!init_reloc_cookie (cookie, info, sec->owner))
12183 goto error1;
12184 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
12185 goto error2;
12186 return TRUE;
12187
12188 error2:
12189 fini_reloc_cookie (cookie, sec->owner);
12190 error1:
12191 return FALSE;
12192 }
12193
12194 /* Free the memory allocated by init_reloc_cookie_for_section,
12195 if appropriate. */
12196
12197 static void
12198 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12199 asection *sec)
12200 {
12201 fini_reloc_cookie_rels (cookie, sec);
12202 fini_reloc_cookie (cookie, sec->owner);
12203 }
12204 \f
12205 /* Garbage collect unused sections. */
12206
12207 /* Default gc_mark_hook. */
12208
12209 asection *
12210 _bfd_elf_gc_mark_hook (asection *sec,
12211 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12212 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12213 struct elf_link_hash_entry *h,
12214 Elf_Internal_Sym *sym)
12215 {
12216 if (h != NULL)
12217 {
12218 switch (h->root.type)
12219 {
12220 case bfd_link_hash_defined:
12221 case bfd_link_hash_defweak:
12222 return h->root.u.def.section;
12223
12224 case bfd_link_hash_common:
12225 return h->root.u.c.p->section;
12226
12227 default:
12228 break;
12229 }
12230 }
12231 else
12232 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
12233
12234 return NULL;
12235 }
12236
12237 /* COOKIE->rel describes a relocation against section SEC, which is
12238 a section we've decided to keep. Return the section that contains
12239 the relocation symbol, or NULL if no section contains it. */
12240
12241 asection *
12242 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
12243 elf_gc_mark_hook_fn gc_mark_hook,
12244 struct elf_reloc_cookie *cookie,
12245 bfd_boolean *start_stop)
12246 {
12247 unsigned long r_symndx;
12248 struct elf_link_hash_entry *h;
12249
12250 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
12251 if (r_symndx == STN_UNDEF)
12252 return NULL;
12253
12254 if (r_symndx >= cookie->locsymcount
12255 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12256 {
12257 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
12258 if (h == NULL)
12259 {
12260 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
12261 sec->owner);
12262 return NULL;
12263 }
12264 while (h->root.type == bfd_link_hash_indirect
12265 || h->root.type == bfd_link_hash_warning)
12266 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12267 h->mark = 1;
12268 /* If this symbol is weak and there is a non-weak definition, we
12269 keep the non-weak definition because many backends put
12270 dynamic reloc info on the non-weak definition for code
12271 handling copy relocs. */
12272 if (h->u.weakdef != NULL)
12273 h->u.weakdef->mark = 1;
12274
12275 if (start_stop != NULL
12276 && (h->root.type == bfd_link_hash_undefined
12277 || h->root.type == bfd_link_hash_undefweak))
12278 {
12279 /* To work around a glibc bug, mark all XXX input sections
12280 when there is an as yet undefined reference to __start_XXX
12281 or __stop_XXX symbols. The linker will later define such
12282 symbols for orphan input sections that have a name
12283 representable as a C identifier. */
12284 const char *sec_name = NULL;
12285 if (strncmp (h->root.root.string, "__start_", 8) == 0)
12286 sec_name = h->root.root.string + 8;
12287 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
12288 sec_name = h->root.root.string + 7;
12289
12290 if (sec_name != NULL && *sec_name != '\0')
12291 {
12292 bfd *i;
12293
12294 for (i = info->input_bfds; i != NULL; i = i->link.next)
12295 {
12296 asection *s = bfd_get_section_by_name (i, sec_name);
12297 if (s != NULL && !s->gc_mark)
12298 {
12299 *start_stop = TRUE;
12300 return s;
12301 }
12302 }
12303 }
12304 }
12305
12306 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
12307 }
12308
12309 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
12310 &cookie->locsyms[r_symndx]);
12311 }
12312
12313 /* COOKIE->rel describes a relocation against section SEC, which is
12314 a section we've decided to keep. Mark the section that contains
12315 the relocation symbol. */
12316
12317 bfd_boolean
12318 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
12319 asection *sec,
12320 elf_gc_mark_hook_fn gc_mark_hook,
12321 struct elf_reloc_cookie *cookie)
12322 {
12323 asection *rsec;
12324 bfd_boolean start_stop = FALSE;
12325
12326 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
12327 while (rsec != NULL)
12328 {
12329 if (!rsec->gc_mark)
12330 {
12331 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
12332 || (rsec->owner->flags & DYNAMIC) != 0)
12333 rsec->gc_mark = 1;
12334 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
12335 return FALSE;
12336 }
12337 if (!start_stop)
12338 break;
12339 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
12340 }
12341 return TRUE;
12342 }
12343
12344 /* The mark phase of garbage collection. For a given section, mark
12345 it and any sections in this section's group, and all the sections
12346 which define symbols to which it refers. */
12347
12348 bfd_boolean
12349 _bfd_elf_gc_mark (struct bfd_link_info *info,
12350 asection *sec,
12351 elf_gc_mark_hook_fn gc_mark_hook)
12352 {
12353 bfd_boolean ret;
12354 asection *group_sec, *eh_frame;
12355
12356 sec->gc_mark = 1;
12357
12358 /* Mark all the sections in the group. */
12359 group_sec = elf_section_data (sec)->next_in_group;
12360 if (group_sec && !group_sec->gc_mark)
12361 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
12362 return FALSE;
12363
12364 /* Look through the section relocs. */
12365 ret = TRUE;
12366 eh_frame = elf_eh_frame_section (sec->owner);
12367 if ((sec->flags & SEC_RELOC) != 0
12368 && sec->reloc_count > 0
12369 && sec != eh_frame)
12370 {
12371 struct elf_reloc_cookie cookie;
12372
12373 if (!init_reloc_cookie_for_section (&cookie, info, sec))
12374 ret = FALSE;
12375 else
12376 {
12377 for (; cookie.rel < cookie.relend; cookie.rel++)
12378 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
12379 {
12380 ret = FALSE;
12381 break;
12382 }
12383 fini_reloc_cookie_for_section (&cookie, sec);
12384 }
12385 }
12386
12387 if (ret && eh_frame && elf_fde_list (sec))
12388 {
12389 struct elf_reloc_cookie cookie;
12390
12391 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
12392 ret = FALSE;
12393 else
12394 {
12395 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
12396 gc_mark_hook, &cookie))
12397 ret = FALSE;
12398 fini_reloc_cookie_for_section (&cookie, eh_frame);
12399 }
12400 }
12401
12402 eh_frame = elf_section_eh_frame_entry (sec);
12403 if (ret && eh_frame && !eh_frame->gc_mark)
12404 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
12405 ret = FALSE;
12406
12407 return ret;
12408 }
12409
12410 /* Scan and mark sections in a special or debug section group. */
12411
12412 static void
12413 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
12414 {
12415 /* Point to first section of section group. */
12416 asection *ssec;
12417 /* Used to iterate the section group. */
12418 asection *msec;
12419
12420 bfd_boolean is_special_grp = TRUE;
12421 bfd_boolean is_debug_grp = TRUE;
12422
12423 /* First scan to see if group contains any section other than debug
12424 and special section. */
12425 ssec = msec = elf_next_in_group (grp);
12426 do
12427 {
12428 if ((msec->flags & SEC_DEBUGGING) == 0)
12429 is_debug_grp = FALSE;
12430
12431 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
12432 is_special_grp = FALSE;
12433
12434 msec = elf_next_in_group (msec);
12435 }
12436 while (msec != ssec);
12437
12438 /* If this is a pure debug section group or pure special section group,
12439 keep all sections in this group. */
12440 if (is_debug_grp || is_special_grp)
12441 {
12442 do
12443 {
12444 msec->gc_mark = 1;
12445 msec = elf_next_in_group (msec);
12446 }
12447 while (msec != ssec);
12448 }
12449 }
12450
12451 /* Keep debug and special sections. */
12452
12453 bfd_boolean
12454 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12455 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12456 {
12457 bfd *ibfd;
12458
12459 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12460 {
12461 asection *isec;
12462 bfd_boolean some_kept;
12463 bfd_boolean debug_frag_seen;
12464
12465 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12466 continue;
12467
12468 /* Ensure all linker created sections are kept,
12469 see if any other section is already marked,
12470 and note if we have any fragmented debug sections. */
12471 debug_frag_seen = some_kept = FALSE;
12472 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12473 {
12474 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12475 isec->gc_mark = 1;
12476 else if (isec->gc_mark)
12477 some_kept = TRUE;
12478
12479 if (debug_frag_seen == FALSE
12480 && (isec->flags & SEC_DEBUGGING)
12481 && CONST_STRNEQ (isec->name, ".debug_line."))
12482 debug_frag_seen = TRUE;
12483 }
12484
12485 /* If no section in this file will be kept, then we can
12486 toss out the debug and special sections. */
12487 if (!some_kept)
12488 continue;
12489
12490 /* Keep debug and special sections like .comment when they are
12491 not part of a group. Also keep section groups that contain
12492 just debug sections or special sections. */
12493 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12494 {
12495 if ((isec->flags & SEC_GROUP) != 0)
12496 _bfd_elf_gc_mark_debug_special_section_group (isec);
12497 else if (((isec->flags & SEC_DEBUGGING) != 0
12498 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12499 && elf_next_in_group (isec) == NULL)
12500 isec->gc_mark = 1;
12501 }
12502
12503 if (! debug_frag_seen)
12504 continue;
12505
12506 /* Look for CODE sections which are going to be discarded,
12507 and find and discard any fragmented debug sections which
12508 are associated with that code section. */
12509 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12510 if ((isec->flags & SEC_CODE) != 0
12511 && isec->gc_mark == 0)
12512 {
12513 unsigned int ilen;
12514 asection *dsec;
12515
12516 ilen = strlen (isec->name);
12517
12518 /* Association is determined by the name of the debug section
12519 containing the name of the code section as a suffix. For
12520 example .debug_line.text.foo is a debug section associated
12521 with .text.foo. */
12522 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12523 {
12524 unsigned int dlen;
12525
12526 if (dsec->gc_mark == 0
12527 || (dsec->flags & SEC_DEBUGGING) == 0)
12528 continue;
12529
12530 dlen = strlen (dsec->name);
12531
12532 if (dlen > ilen
12533 && strncmp (dsec->name + (dlen - ilen),
12534 isec->name, ilen) == 0)
12535 {
12536 dsec->gc_mark = 0;
12537 }
12538 }
12539 }
12540 }
12541 return TRUE;
12542 }
12543
12544 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
12545
12546 struct elf_gc_sweep_symbol_info
12547 {
12548 struct bfd_link_info *info;
12549 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
12550 bfd_boolean);
12551 };
12552
12553 static bfd_boolean
12554 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
12555 {
12556 if (!h->mark
12557 && (((h->root.type == bfd_link_hash_defined
12558 || h->root.type == bfd_link_hash_defweak)
12559 && !((h->def_regular || ELF_COMMON_DEF_P (h))
12560 && h->root.u.def.section->gc_mark))
12561 || h->root.type == bfd_link_hash_undefined
12562 || h->root.type == bfd_link_hash_undefweak))
12563 {
12564 struct elf_gc_sweep_symbol_info *inf;
12565
12566 inf = (struct elf_gc_sweep_symbol_info *) data;
12567 (*inf->hide_symbol) (inf->info, h, TRUE);
12568 h->def_regular = 0;
12569 h->ref_regular = 0;
12570 h->ref_regular_nonweak = 0;
12571 }
12572
12573 return TRUE;
12574 }
12575
12576 /* The sweep phase of garbage collection. Remove all garbage sections. */
12577
12578 typedef bfd_boolean (*gc_sweep_hook_fn)
12579 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
12580
12581 static bfd_boolean
12582 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
12583 {
12584 bfd *sub;
12585 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12586 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
12587 unsigned long section_sym_count;
12588 struct elf_gc_sweep_symbol_info sweep_info;
12589
12590 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12591 {
12592 asection *o;
12593
12594 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12595 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12596 continue;
12597
12598 for (o = sub->sections; o != NULL; o = o->next)
12599 {
12600 /* When any section in a section group is kept, we keep all
12601 sections in the section group. If the first member of
12602 the section group is excluded, we will also exclude the
12603 group section. */
12604 if (o->flags & SEC_GROUP)
12605 {
12606 asection *first = elf_next_in_group (o);
12607 o->gc_mark = first->gc_mark;
12608 }
12609
12610 if (o->gc_mark)
12611 continue;
12612
12613 /* Skip sweeping sections already excluded. */
12614 if (o->flags & SEC_EXCLUDE)
12615 continue;
12616
12617 /* Since this is early in the link process, it is simple
12618 to remove a section from the output. */
12619 o->flags |= SEC_EXCLUDE;
12620
12621 if (info->print_gc_sections && o->size != 0)
12622 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
12623
12624 /* But we also have to update some of the relocation
12625 info we collected before. */
12626 if (gc_sweep_hook
12627 && (o->flags & SEC_RELOC) != 0
12628 && o->reloc_count != 0
12629 && !((info->strip == strip_all || info->strip == strip_debugger)
12630 && (o->flags & SEC_DEBUGGING) != 0)
12631 && !bfd_is_abs_section (o->output_section))
12632 {
12633 Elf_Internal_Rela *internal_relocs;
12634 bfd_boolean r;
12635
12636 internal_relocs
12637 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12638 info->keep_memory);
12639 if (internal_relocs == NULL)
12640 return FALSE;
12641
12642 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12643
12644 if (elf_section_data (o)->relocs != internal_relocs)
12645 free (internal_relocs);
12646
12647 if (!r)
12648 return FALSE;
12649 }
12650 }
12651 }
12652
12653 /* Remove the symbols that were in the swept sections from the dynamic
12654 symbol table. GCFIXME: Anyone know how to get them out of the
12655 static symbol table as well? */
12656 sweep_info.info = info;
12657 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12658 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12659 &sweep_info);
12660
12661 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12662 return TRUE;
12663 }
12664
12665 /* Propagate collected vtable information. This is called through
12666 elf_link_hash_traverse. */
12667
12668 static bfd_boolean
12669 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12670 {
12671 /* Those that are not vtables. */
12672 if (h->vtable == NULL || h->vtable->parent == NULL)
12673 return TRUE;
12674
12675 /* Those vtables that do not have parents, we cannot merge. */
12676 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12677 return TRUE;
12678
12679 /* If we've already been done, exit. */
12680 if (h->vtable->used && h->vtable->used[-1])
12681 return TRUE;
12682
12683 /* Make sure the parent's table is up to date. */
12684 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12685
12686 if (h->vtable->used == NULL)
12687 {
12688 /* None of this table's entries were referenced. Re-use the
12689 parent's table. */
12690 h->vtable->used = h->vtable->parent->vtable->used;
12691 h->vtable->size = h->vtable->parent->vtable->size;
12692 }
12693 else
12694 {
12695 size_t n;
12696 bfd_boolean *cu, *pu;
12697
12698 /* Or the parent's entries into ours. */
12699 cu = h->vtable->used;
12700 cu[-1] = TRUE;
12701 pu = h->vtable->parent->vtable->used;
12702 if (pu != NULL)
12703 {
12704 const struct elf_backend_data *bed;
12705 unsigned int log_file_align;
12706
12707 bed = get_elf_backend_data (h->root.u.def.section->owner);
12708 log_file_align = bed->s->log_file_align;
12709 n = h->vtable->parent->vtable->size >> log_file_align;
12710 while (n--)
12711 {
12712 if (*pu)
12713 *cu = TRUE;
12714 pu++;
12715 cu++;
12716 }
12717 }
12718 }
12719
12720 return TRUE;
12721 }
12722
12723 static bfd_boolean
12724 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12725 {
12726 asection *sec;
12727 bfd_vma hstart, hend;
12728 Elf_Internal_Rela *relstart, *relend, *rel;
12729 const struct elf_backend_data *bed;
12730 unsigned int log_file_align;
12731
12732 /* Take care of both those symbols that do not describe vtables as
12733 well as those that are not loaded. */
12734 if (h->vtable == NULL || h->vtable->parent == NULL)
12735 return TRUE;
12736
12737 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12738 || h->root.type == bfd_link_hash_defweak);
12739
12740 sec = h->root.u.def.section;
12741 hstart = h->root.u.def.value;
12742 hend = hstart + h->size;
12743
12744 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12745 if (!relstart)
12746 return *(bfd_boolean *) okp = FALSE;
12747 bed = get_elf_backend_data (sec->owner);
12748 log_file_align = bed->s->log_file_align;
12749
12750 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12751
12752 for (rel = relstart; rel < relend; ++rel)
12753 if (rel->r_offset >= hstart && rel->r_offset < hend)
12754 {
12755 /* If the entry is in use, do nothing. */
12756 if (h->vtable->used
12757 && (rel->r_offset - hstart) < h->vtable->size)
12758 {
12759 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12760 if (h->vtable->used[entry])
12761 continue;
12762 }
12763 /* Otherwise, kill it. */
12764 rel->r_offset = rel->r_info = rel->r_addend = 0;
12765 }
12766
12767 return TRUE;
12768 }
12769
12770 /* Mark sections containing dynamically referenced symbols. When
12771 building shared libraries, we must assume that any visible symbol is
12772 referenced. */
12773
12774 bfd_boolean
12775 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12776 {
12777 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12778 struct bfd_elf_dynamic_list *d = info->dynamic_list;
12779
12780 if ((h->root.type == bfd_link_hash_defined
12781 || h->root.type == bfd_link_hash_defweak)
12782 && (h->ref_dynamic
12783 || ((h->def_regular || ELF_COMMON_DEF_P (h))
12784 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12785 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12786 && (!bfd_link_executable (info)
12787 || info->export_dynamic
12788 || (h->dynamic
12789 && d != NULL
12790 && (*d->match) (&d->head, NULL, h->root.root.string)))
12791 && (h->versioned >= versioned
12792 || !bfd_hide_sym_by_version (info->version_info,
12793 h->root.root.string)))))
12794 h->root.u.def.section->flags |= SEC_KEEP;
12795
12796 return TRUE;
12797 }
12798
12799 /* Keep all sections containing symbols undefined on the command-line,
12800 and the section containing the entry symbol. */
12801
12802 void
12803 _bfd_elf_gc_keep (struct bfd_link_info *info)
12804 {
12805 struct bfd_sym_chain *sym;
12806
12807 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12808 {
12809 struct elf_link_hash_entry *h;
12810
12811 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12812 FALSE, FALSE, FALSE);
12813
12814 if (h != NULL
12815 && (h->root.type == bfd_link_hash_defined
12816 || h->root.type == bfd_link_hash_defweak)
12817 && !bfd_is_abs_section (h->root.u.def.section))
12818 h->root.u.def.section->flags |= SEC_KEEP;
12819 }
12820 }
12821
12822 bfd_boolean
12823 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
12824 struct bfd_link_info *info)
12825 {
12826 bfd *ibfd = info->input_bfds;
12827
12828 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12829 {
12830 asection *sec;
12831 struct elf_reloc_cookie cookie;
12832
12833 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12834 continue;
12835
12836 if (!init_reloc_cookie (&cookie, info, ibfd))
12837 return FALSE;
12838
12839 for (sec = ibfd->sections; sec; sec = sec->next)
12840 {
12841 if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
12842 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
12843 {
12844 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
12845 fini_reloc_cookie_rels (&cookie, sec);
12846 }
12847 }
12848 }
12849 return TRUE;
12850 }
12851
12852 /* Do mark and sweep of unused sections. */
12853
12854 bfd_boolean
12855 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12856 {
12857 bfd_boolean ok = TRUE;
12858 bfd *sub;
12859 elf_gc_mark_hook_fn gc_mark_hook;
12860 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12861 struct elf_link_hash_table *htab;
12862
12863 if (!bed->can_gc_sections
12864 || !is_elf_hash_table (info->hash))
12865 {
12866 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12867 return TRUE;
12868 }
12869
12870 bed->gc_keep (info);
12871 htab = elf_hash_table (info);
12872
12873 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12874 at the .eh_frame section if we can mark the FDEs individually. */
12875 for (sub = info->input_bfds;
12876 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
12877 sub = sub->link.next)
12878 {
12879 asection *sec;
12880 struct elf_reloc_cookie cookie;
12881
12882 sec = bfd_get_section_by_name (sub, ".eh_frame");
12883 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12884 {
12885 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12886 if (elf_section_data (sec)->sec_info
12887 && (sec->flags & SEC_LINKER_CREATED) == 0)
12888 elf_eh_frame_section (sub) = sec;
12889 fini_reloc_cookie_for_section (&cookie, sec);
12890 sec = bfd_get_next_section_by_name (NULL, sec);
12891 }
12892 }
12893
12894 /* Apply transitive closure to the vtable entry usage info. */
12895 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
12896 if (!ok)
12897 return FALSE;
12898
12899 /* Kill the vtable relocations that were not used. */
12900 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
12901 if (!ok)
12902 return FALSE;
12903
12904 /* Mark dynamically referenced symbols. */
12905 if (htab->dynamic_sections_created)
12906 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
12907
12908 /* Grovel through relocs to find out who stays ... */
12909 gc_mark_hook = bed->gc_mark_hook;
12910 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12911 {
12912 asection *o;
12913
12914 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12915 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12916 continue;
12917
12918 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12919 Also treat note sections as a root, if the section is not part
12920 of a group. */
12921 for (o = sub->sections; o != NULL; o = o->next)
12922 if (!o->gc_mark
12923 && (o->flags & SEC_EXCLUDE) == 0
12924 && ((o->flags & SEC_KEEP) != 0
12925 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12926 && elf_next_in_group (o) == NULL )))
12927 {
12928 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12929 return FALSE;
12930 }
12931 }
12932
12933 /* Allow the backend to mark additional target specific sections. */
12934 bed->gc_mark_extra_sections (info, gc_mark_hook);
12935
12936 /* ... and mark SEC_EXCLUDE for those that go. */
12937 return elf_gc_sweep (abfd, info);
12938 }
12939 \f
12940 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12941
12942 bfd_boolean
12943 bfd_elf_gc_record_vtinherit (bfd *abfd,
12944 asection *sec,
12945 struct elf_link_hash_entry *h,
12946 bfd_vma offset)
12947 {
12948 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12949 struct elf_link_hash_entry **search, *child;
12950 bfd_size_type extsymcount;
12951 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12952
12953 /* The sh_info field of the symtab header tells us where the
12954 external symbols start. We don't care about the local symbols at
12955 this point. */
12956 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12957 if (!elf_bad_symtab (abfd))
12958 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12959
12960 sym_hashes = elf_sym_hashes (abfd);
12961 sym_hashes_end = sym_hashes + extsymcount;
12962
12963 /* Hunt down the child symbol, which is in this section at the same
12964 offset as the relocation. */
12965 for (search = sym_hashes; search != sym_hashes_end; ++search)
12966 {
12967 if ((child = *search) != NULL
12968 && (child->root.type == bfd_link_hash_defined
12969 || child->root.type == bfd_link_hash_defweak)
12970 && child->root.u.def.section == sec
12971 && child->root.u.def.value == offset)
12972 goto win;
12973 }
12974
12975 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12976 abfd, sec, (unsigned long) offset);
12977 bfd_set_error (bfd_error_invalid_operation);
12978 return FALSE;
12979
12980 win:
12981 if (!child->vtable)
12982 {
12983 child->vtable = ((struct elf_link_virtual_table_entry *)
12984 bfd_zalloc (abfd, sizeof (*child->vtable)));
12985 if (!child->vtable)
12986 return FALSE;
12987 }
12988 if (!h)
12989 {
12990 /* This *should* only be the absolute section. It could potentially
12991 be that someone has defined a non-global vtable though, which
12992 would be bad. It isn't worth paging in the local symbols to be
12993 sure though; that case should simply be handled by the assembler. */
12994
12995 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12996 }
12997 else
12998 child->vtable->parent = h;
12999
13000 return TRUE;
13001 }
13002
13003 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
13004
13005 bfd_boolean
13006 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
13007 asection *sec ATTRIBUTE_UNUSED,
13008 struct elf_link_hash_entry *h,
13009 bfd_vma addend)
13010 {
13011 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13012 unsigned int log_file_align = bed->s->log_file_align;
13013
13014 if (!h->vtable)
13015 {
13016 h->vtable = ((struct elf_link_virtual_table_entry *)
13017 bfd_zalloc (abfd, sizeof (*h->vtable)));
13018 if (!h->vtable)
13019 return FALSE;
13020 }
13021
13022 if (addend >= h->vtable->size)
13023 {
13024 size_t size, bytes, file_align;
13025 bfd_boolean *ptr = h->vtable->used;
13026
13027 /* While the symbol is undefined, we have to be prepared to handle
13028 a zero size. */
13029 file_align = 1 << log_file_align;
13030 if (h->root.type == bfd_link_hash_undefined)
13031 size = addend + file_align;
13032 else
13033 {
13034 size = h->size;
13035 if (addend >= size)
13036 {
13037 /* Oops! We've got a reference past the defined end of
13038 the table. This is probably a bug -- shall we warn? */
13039 size = addend + file_align;
13040 }
13041 }
13042 size = (size + file_align - 1) & -file_align;
13043
13044 /* Allocate one extra entry for use as a "done" flag for the
13045 consolidation pass. */
13046 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
13047
13048 if (ptr)
13049 {
13050 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
13051
13052 if (ptr != NULL)
13053 {
13054 size_t oldbytes;
13055
13056 oldbytes = (((h->vtable->size >> log_file_align) + 1)
13057 * sizeof (bfd_boolean));
13058 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
13059 }
13060 }
13061 else
13062 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
13063
13064 if (ptr == NULL)
13065 return FALSE;
13066
13067 /* And arrange for that done flag to be at index -1. */
13068 h->vtable->used = ptr + 1;
13069 h->vtable->size = size;
13070 }
13071
13072 h->vtable->used[addend >> log_file_align] = TRUE;
13073
13074 return TRUE;
13075 }
13076
13077 /* Map an ELF section header flag to its corresponding string. */
13078 typedef struct
13079 {
13080 char *flag_name;
13081 flagword flag_value;
13082 } elf_flags_to_name_table;
13083
13084 static elf_flags_to_name_table elf_flags_to_names [] =
13085 {
13086 { "SHF_WRITE", SHF_WRITE },
13087 { "SHF_ALLOC", SHF_ALLOC },
13088 { "SHF_EXECINSTR", SHF_EXECINSTR },
13089 { "SHF_MERGE", SHF_MERGE },
13090 { "SHF_STRINGS", SHF_STRINGS },
13091 { "SHF_INFO_LINK", SHF_INFO_LINK},
13092 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
13093 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
13094 { "SHF_GROUP", SHF_GROUP },
13095 { "SHF_TLS", SHF_TLS },
13096 { "SHF_MASKOS", SHF_MASKOS },
13097 { "SHF_EXCLUDE", SHF_EXCLUDE },
13098 };
13099
13100 /* Returns TRUE if the section is to be included, otherwise FALSE. */
13101 bfd_boolean
13102 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
13103 struct flag_info *flaginfo,
13104 asection *section)
13105 {
13106 const bfd_vma sh_flags = elf_section_flags (section);
13107
13108 if (!flaginfo->flags_initialized)
13109 {
13110 bfd *obfd = info->output_bfd;
13111 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13112 struct flag_info_list *tf = flaginfo->flag_list;
13113 int with_hex = 0;
13114 int without_hex = 0;
13115
13116 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
13117 {
13118 unsigned i;
13119 flagword (*lookup) (char *);
13120
13121 lookup = bed->elf_backend_lookup_section_flags_hook;
13122 if (lookup != NULL)
13123 {
13124 flagword hexval = (*lookup) ((char *) tf->name);
13125
13126 if (hexval != 0)
13127 {
13128 if (tf->with == with_flags)
13129 with_hex |= hexval;
13130 else if (tf->with == without_flags)
13131 without_hex |= hexval;
13132 tf->valid = TRUE;
13133 continue;
13134 }
13135 }
13136 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
13137 {
13138 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
13139 {
13140 if (tf->with == with_flags)
13141 with_hex |= elf_flags_to_names[i].flag_value;
13142 else if (tf->with == without_flags)
13143 without_hex |= elf_flags_to_names[i].flag_value;
13144 tf->valid = TRUE;
13145 break;
13146 }
13147 }
13148 if (!tf->valid)
13149 {
13150 info->callbacks->einfo
13151 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
13152 return FALSE;
13153 }
13154 }
13155 flaginfo->flags_initialized = TRUE;
13156 flaginfo->only_with_flags |= with_hex;
13157 flaginfo->not_with_flags |= without_hex;
13158 }
13159
13160 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
13161 return FALSE;
13162
13163 if ((flaginfo->not_with_flags & sh_flags) != 0)
13164 return FALSE;
13165
13166 return TRUE;
13167 }
13168
13169 struct alloc_got_off_arg {
13170 bfd_vma gotoff;
13171 struct bfd_link_info *info;
13172 };
13173
13174 /* We need a special top-level link routine to convert got reference counts
13175 to real got offsets. */
13176
13177 static bfd_boolean
13178 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
13179 {
13180 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
13181 bfd *obfd = gofarg->info->output_bfd;
13182 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13183
13184 if (h->got.refcount > 0)
13185 {
13186 h->got.offset = gofarg->gotoff;
13187 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
13188 }
13189 else
13190 h->got.offset = (bfd_vma) -1;
13191
13192 return TRUE;
13193 }
13194
13195 /* And an accompanying bit to work out final got entry offsets once
13196 we're done. Should be called from final_link. */
13197
13198 bfd_boolean
13199 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
13200 struct bfd_link_info *info)
13201 {
13202 bfd *i;
13203 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13204 bfd_vma gotoff;
13205 struct alloc_got_off_arg gofarg;
13206
13207 BFD_ASSERT (abfd == info->output_bfd);
13208
13209 if (! is_elf_hash_table (info->hash))
13210 return FALSE;
13211
13212 /* The GOT offset is relative to the .got section, but the GOT header is
13213 put into the .got.plt section, if the backend uses it. */
13214 if (bed->want_got_plt)
13215 gotoff = 0;
13216 else
13217 gotoff = bed->got_header_size;
13218
13219 /* Do the local .got entries first. */
13220 for (i = info->input_bfds; i; i = i->link.next)
13221 {
13222 bfd_signed_vma *local_got;
13223 bfd_size_type j, locsymcount;
13224 Elf_Internal_Shdr *symtab_hdr;
13225
13226 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
13227 continue;
13228
13229 local_got = elf_local_got_refcounts (i);
13230 if (!local_got)
13231 continue;
13232
13233 symtab_hdr = &elf_tdata (i)->symtab_hdr;
13234 if (elf_bad_symtab (i))
13235 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13236 else
13237 locsymcount = symtab_hdr->sh_info;
13238
13239 for (j = 0; j < locsymcount; ++j)
13240 {
13241 if (local_got[j] > 0)
13242 {
13243 local_got[j] = gotoff;
13244 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
13245 }
13246 else
13247 local_got[j] = (bfd_vma) -1;
13248 }
13249 }
13250
13251 /* Then the global .got entries. .plt refcounts are handled by
13252 adjust_dynamic_symbol */
13253 gofarg.gotoff = gotoff;
13254 gofarg.info = info;
13255 elf_link_hash_traverse (elf_hash_table (info),
13256 elf_gc_allocate_got_offsets,
13257 &gofarg);
13258 return TRUE;
13259 }
13260
13261 /* Many folk need no more in the way of final link than this, once
13262 got entry reference counting is enabled. */
13263
13264 bfd_boolean
13265 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
13266 {
13267 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
13268 return FALSE;
13269
13270 /* Invoke the regular ELF backend linker to do all the work. */
13271 return bfd_elf_final_link (abfd, info);
13272 }
13273
13274 bfd_boolean
13275 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
13276 {
13277 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
13278
13279 if (rcookie->bad_symtab)
13280 rcookie->rel = rcookie->rels;
13281
13282 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
13283 {
13284 unsigned long r_symndx;
13285
13286 if (! rcookie->bad_symtab)
13287 if (rcookie->rel->r_offset > offset)
13288 return FALSE;
13289 if (rcookie->rel->r_offset != offset)
13290 continue;
13291
13292 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
13293 if (r_symndx == STN_UNDEF)
13294 return TRUE;
13295
13296 if (r_symndx >= rcookie->locsymcount
13297 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13298 {
13299 struct elf_link_hash_entry *h;
13300
13301 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
13302
13303 while (h->root.type == bfd_link_hash_indirect
13304 || h->root.type == bfd_link_hash_warning)
13305 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13306
13307 if ((h->root.type == bfd_link_hash_defined
13308 || h->root.type == bfd_link_hash_defweak)
13309 && (h->root.u.def.section->owner != rcookie->abfd
13310 || h->root.u.def.section->kept_section != NULL
13311 || discarded_section (h->root.u.def.section)))
13312 return TRUE;
13313 }
13314 else
13315 {
13316 /* It's not a relocation against a global symbol,
13317 but it could be a relocation against a local
13318 symbol for a discarded section. */
13319 asection *isec;
13320 Elf_Internal_Sym *isym;
13321
13322 /* Need to: get the symbol; get the section. */
13323 isym = &rcookie->locsyms[r_symndx];
13324 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
13325 if (isec != NULL
13326 && (isec->kept_section != NULL
13327 || discarded_section (isec)))
13328 return TRUE;
13329 }
13330 return FALSE;
13331 }
13332 return FALSE;
13333 }
13334
13335 /* Discard unneeded references to discarded sections.
13336 Returns -1 on error, 1 if any section's size was changed, 0 if
13337 nothing changed. This function assumes that the relocations are in
13338 sorted order, which is true for all known assemblers. */
13339
13340 int
13341 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
13342 {
13343 struct elf_reloc_cookie cookie;
13344 asection *o;
13345 bfd *abfd;
13346 int changed = 0;
13347
13348 if (info->traditional_format
13349 || !is_elf_hash_table (info->hash))
13350 return 0;
13351
13352 o = bfd_get_section_by_name (output_bfd, ".stab");
13353 if (o != NULL)
13354 {
13355 asection *i;
13356
13357 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13358 {
13359 if (i->size == 0
13360 || i->reloc_count == 0
13361 || i->sec_info_type != SEC_INFO_TYPE_STABS)
13362 continue;
13363
13364 abfd = i->owner;
13365 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13366 continue;
13367
13368 if (!init_reloc_cookie_for_section (&cookie, info, i))
13369 return -1;
13370
13371 if (_bfd_discard_section_stabs (abfd, i,
13372 elf_section_data (i)->sec_info,
13373 bfd_elf_reloc_symbol_deleted_p,
13374 &cookie))
13375 changed = 1;
13376
13377 fini_reloc_cookie_for_section (&cookie, i);
13378 }
13379 }
13380
13381 o = NULL;
13382 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
13383 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
13384 if (o != NULL)
13385 {
13386 asection *i;
13387
13388 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13389 {
13390 if (i->size == 0)
13391 continue;
13392
13393 abfd = i->owner;
13394 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13395 continue;
13396
13397 if (!init_reloc_cookie_for_section (&cookie, info, i))
13398 return -1;
13399
13400 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
13401 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
13402 bfd_elf_reloc_symbol_deleted_p,
13403 &cookie))
13404 changed = 1;
13405
13406 fini_reloc_cookie_for_section (&cookie, i);
13407 }
13408 }
13409
13410 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
13411 {
13412 const struct elf_backend_data *bed;
13413
13414 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13415 continue;
13416
13417 bed = get_elf_backend_data (abfd);
13418
13419 if (bed->elf_backend_discard_info != NULL)
13420 {
13421 if (!init_reloc_cookie (&cookie, info, abfd))
13422 return -1;
13423
13424 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
13425 changed = 1;
13426
13427 fini_reloc_cookie (&cookie, abfd);
13428 }
13429 }
13430
13431 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
13432 _bfd_elf_end_eh_frame_parsing (info);
13433
13434 if (info->eh_frame_hdr_type
13435 && !bfd_link_relocatable (info)
13436 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
13437 changed = 1;
13438
13439 return changed;
13440 }
13441
13442 bfd_boolean
13443 _bfd_elf_section_already_linked (bfd *abfd,
13444 asection *sec,
13445 struct bfd_link_info *info)
13446 {
13447 flagword flags;
13448 const char *name, *key;
13449 struct bfd_section_already_linked *l;
13450 struct bfd_section_already_linked_hash_entry *already_linked_list;
13451
13452 if (sec->output_section == bfd_abs_section_ptr)
13453 return FALSE;
13454
13455 flags = sec->flags;
13456
13457 /* Return if it isn't a linkonce section. A comdat group section
13458 also has SEC_LINK_ONCE set. */
13459 if ((flags & SEC_LINK_ONCE) == 0)
13460 return FALSE;
13461
13462 /* Don't put group member sections on our list of already linked
13463 sections. They are handled as a group via their group section. */
13464 if (elf_sec_group (sec) != NULL)
13465 return FALSE;
13466
13467 /* For a SHT_GROUP section, use the group signature as the key. */
13468 name = sec->name;
13469 if ((flags & SEC_GROUP) != 0
13470 && elf_next_in_group (sec) != NULL
13471 && elf_group_name (elf_next_in_group (sec)) != NULL)
13472 key = elf_group_name (elf_next_in_group (sec));
13473 else
13474 {
13475 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
13476 if (CONST_STRNEQ (name, ".gnu.linkonce.")
13477 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
13478 key++;
13479 else
13480 /* Must be a user linkonce section that doesn't follow gcc's
13481 naming convention. In this case we won't be matching
13482 single member groups. */
13483 key = name;
13484 }
13485
13486 already_linked_list = bfd_section_already_linked_table_lookup (key);
13487
13488 for (l = already_linked_list->entry; l != NULL; l = l->next)
13489 {
13490 /* We may have 2 different types of sections on the list: group
13491 sections with a signature of <key> (<key> is some string),
13492 and linkonce sections named .gnu.linkonce.<type>.<key>.
13493 Match like sections. LTO plugin sections are an exception.
13494 They are always named .gnu.linkonce.t.<key> and match either
13495 type of section. */
13496 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13497 && ((flags & SEC_GROUP) != 0
13498 || strcmp (name, l->sec->name) == 0))
13499 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13500 {
13501 /* The section has already been linked. See if we should
13502 issue a warning. */
13503 if (!_bfd_handle_already_linked (sec, l, info))
13504 return FALSE;
13505
13506 if (flags & SEC_GROUP)
13507 {
13508 asection *first = elf_next_in_group (sec);
13509 asection *s = first;
13510
13511 while (s != NULL)
13512 {
13513 s->output_section = bfd_abs_section_ptr;
13514 /* Record which group discards it. */
13515 s->kept_section = l->sec;
13516 s = elf_next_in_group (s);
13517 /* These lists are circular. */
13518 if (s == first)
13519 break;
13520 }
13521 }
13522
13523 return TRUE;
13524 }
13525 }
13526
13527 /* A single member comdat group section may be discarded by a
13528 linkonce section and vice versa. */
13529 if ((flags & SEC_GROUP) != 0)
13530 {
13531 asection *first = elf_next_in_group (sec);
13532
13533 if (first != NULL && elf_next_in_group (first) == first)
13534 /* Check this single member group against linkonce sections. */
13535 for (l = already_linked_list->entry; l != NULL; l = l->next)
13536 if ((l->sec->flags & SEC_GROUP) == 0
13537 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
13538 {
13539 first->output_section = bfd_abs_section_ptr;
13540 first->kept_section = l->sec;
13541 sec->output_section = bfd_abs_section_ptr;
13542 break;
13543 }
13544 }
13545 else
13546 /* Check this linkonce section against single member groups. */
13547 for (l = already_linked_list->entry; l != NULL; l = l->next)
13548 if (l->sec->flags & SEC_GROUP)
13549 {
13550 asection *first = elf_next_in_group (l->sec);
13551
13552 if (first != NULL
13553 && elf_next_in_group (first) == first
13554 && bfd_elf_match_symbols_in_sections (first, sec, info))
13555 {
13556 sec->output_section = bfd_abs_section_ptr;
13557 sec->kept_section = first;
13558 break;
13559 }
13560 }
13561
13562 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
13563 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
13564 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
13565 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
13566 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
13567 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
13568 `.gnu.linkonce.t.F' section from a different bfd not requiring any
13569 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
13570 The reverse order cannot happen as there is never a bfd with only the
13571 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
13572 matter as here were are looking only for cross-bfd sections. */
13573
13574 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
13575 for (l = already_linked_list->entry; l != NULL; l = l->next)
13576 if ((l->sec->flags & SEC_GROUP) == 0
13577 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
13578 {
13579 if (abfd != l->sec->owner)
13580 sec->output_section = bfd_abs_section_ptr;
13581 break;
13582 }
13583
13584 /* This is the first section with this name. Record it. */
13585 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
13586 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
13587 return sec->output_section == bfd_abs_section_ptr;
13588 }
13589
13590 bfd_boolean
13591 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
13592 {
13593 return sym->st_shndx == SHN_COMMON;
13594 }
13595
13596 unsigned int
13597 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
13598 {
13599 return SHN_COMMON;
13600 }
13601
13602 asection *
13603 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
13604 {
13605 return bfd_com_section_ptr;
13606 }
13607
13608 bfd_vma
13609 _bfd_elf_default_got_elt_size (bfd *abfd,
13610 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13611 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
13612 bfd *ibfd ATTRIBUTE_UNUSED,
13613 unsigned long symndx ATTRIBUTE_UNUSED)
13614 {
13615 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13616 return bed->s->arch_size / 8;
13617 }
13618
13619 /* Routines to support the creation of dynamic relocs. */
13620
13621 /* Returns the name of the dynamic reloc section associated with SEC. */
13622
13623 static const char *
13624 get_dynamic_reloc_section_name (bfd * abfd,
13625 asection * sec,
13626 bfd_boolean is_rela)
13627 {
13628 char *name;
13629 const char *old_name = bfd_get_section_name (NULL, sec);
13630 const char *prefix = is_rela ? ".rela" : ".rel";
13631
13632 if (old_name == NULL)
13633 return NULL;
13634
13635 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
13636 sprintf (name, "%s%s", prefix, old_name);
13637
13638 return name;
13639 }
13640
13641 /* Returns the dynamic reloc section associated with SEC.
13642 If necessary compute the name of the dynamic reloc section based
13643 on SEC's name (looked up in ABFD's string table) and the setting
13644 of IS_RELA. */
13645
13646 asection *
13647 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
13648 asection * sec,
13649 bfd_boolean is_rela)
13650 {
13651 asection * reloc_sec = elf_section_data (sec)->sreloc;
13652
13653 if (reloc_sec == NULL)
13654 {
13655 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13656
13657 if (name != NULL)
13658 {
13659 reloc_sec = bfd_get_linker_section (abfd, name);
13660
13661 if (reloc_sec != NULL)
13662 elf_section_data (sec)->sreloc = reloc_sec;
13663 }
13664 }
13665
13666 return reloc_sec;
13667 }
13668
13669 /* Returns the dynamic reloc section associated with SEC. If the
13670 section does not exist it is created and attached to the DYNOBJ
13671 bfd and stored in the SRELOC field of SEC's elf_section_data
13672 structure.
13673
13674 ALIGNMENT is the alignment for the newly created section and
13675 IS_RELA defines whether the name should be .rela.<SEC's name>
13676 or .rel.<SEC's name>. The section name is looked up in the
13677 string table associated with ABFD. */
13678
13679 asection *
13680 _bfd_elf_make_dynamic_reloc_section (asection *sec,
13681 bfd *dynobj,
13682 unsigned int alignment,
13683 bfd *abfd,
13684 bfd_boolean is_rela)
13685 {
13686 asection * reloc_sec = elf_section_data (sec)->sreloc;
13687
13688 if (reloc_sec == NULL)
13689 {
13690 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13691
13692 if (name == NULL)
13693 return NULL;
13694
13695 reloc_sec = bfd_get_linker_section (dynobj, name);
13696
13697 if (reloc_sec == NULL)
13698 {
13699 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13700 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13701 if ((sec->flags & SEC_ALLOC) != 0)
13702 flags |= SEC_ALLOC | SEC_LOAD;
13703
13704 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13705 if (reloc_sec != NULL)
13706 {
13707 /* _bfd_elf_get_sec_type_attr chooses a section type by
13708 name. Override as it may be wrong, eg. for a user
13709 section named "auto" we'll get ".relauto" which is
13710 seen to be a .rela section. */
13711 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13712 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13713 reloc_sec = NULL;
13714 }
13715 }
13716
13717 elf_section_data (sec)->sreloc = reloc_sec;
13718 }
13719
13720 return reloc_sec;
13721 }
13722
13723 /* Copy the ELF symbol type and other attributes for a linker script
13724 assignment from HSRC to HDEST. Generally this should be treated as
13725 if we found a strong non-dynamic definition for HDEST (except that
13726 ld ignores multiple definition errors). */
13727 void
13728 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
13729 struct bfd_link_hash_entry *hdest,
13730 struct bfd_link_hash_entry *hsrc)
13731 {
13732 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
13733 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
13734 Elf_Internal_Sym isym;
13735
13736 ehdest->type = ehsrc->type;
13737 ehdest->target_internal = ehsrc->target_internal;
13738
13739 isym.st_other = ehsrc->other;
13740 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
13741 }
13742
13743 /* Append a RELA relocation REL to section S in BFD. */
13744
13745 void
13746 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13747 {
13748 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13749 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13750 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13751 bed->s->swap_reloca_out (abfd, rel, loc);
13752 }
13753
13754 /* Append a REL relocation REL to section S in BFD. */
13755
13756 void
13757 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13758 {
13759 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13760 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13761 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13762 bed->s->swap_reloc_out (abfd, rel, loc);
13763 }