Bi-endian patches for moxie
[binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
32
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
35
36 struct elf_info_failed
37 {
38 struct bfd_link_info *info;
39 bfd_boolean failed;
40 };
41
42 /* This structure is used to pass information to
43 _bfd_elf_link_find_version_dependencies. */
44
45 struct elf_find_verdep_info
46 {
47 /* General link information. */
48 struct bfd_link_info *info;
49 /* The number of dependencies. */
50 unsigned int vers;
51 /* Whether we had a failure. */
52 bfd_boolean failed;
53 };
54
55 static bfd_boolean _bfd_elf_fix_symbol_flags
56 (struct elf_link_hash_entry *, struct elf_info_failed *);
57
58 /* Define a symbol in a dynamic linkage section. */
59
60 struct elf_link_hash_entry *
61 _bfd_elf_define_linkage_sym (bfd *abfd,
62 struct bfd_link_info *info,
63 asection *sec,
64 const char *name)
65 {
66 struct elf_link_hash_entry *h;
67 struct bfd_link_hash_entry *bh;
68 const struct elf_backend_data *bed;
69
70 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
71 if (h != NULL)
72 {
73 /* Zap symbol defined in an as-needed lib that wasn't linked.
74 This is a symptom of a larger problem: Absolute symbols
75 defined in shared libraries can't be overridden, because we
76 lose the link to the bfd which is via the symbol section. */
77 h->root.type = bfd_link_hash_new;
78 }
79
80 bh = &h->root;
81 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
82 sec, 0, NULL, FALSE,
83 get_elf_backend_data (abfd)->collect,
84 &bh))
85 return NULL;
86 h = (struct elf_link_hash_entry *) bh;
87 h->def_regular = 1;
88 h->non_elf = 0;
89 h->type = STT_OBJECT;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
91
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94 return h;
95 }
96
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
99 {
100 flagword flags;
101 asection *s;
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
105
106 /* This function may be called more than once. */
107 s = bfd_get_linker_section (abfd, ".got");
108 if (s != NULL)
109 return TRUE;
110
111 flags = bed->dynamic_sec_flags;
112
113 s = bfd_make_section_anyway_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
117 | SEC_READONLY));
118 if (s == NULL
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
120 return FALSE;
121 htab->srelgot = s;
122
123 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
124 if (s == NULL
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
126 return FALSE;
127 htab->sgot = s;
128
129 if (bed->want_got_plt)
130 {
131 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
132 if (s == NULL
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
135 return FALSE;
136 htab->sgotplt = s;
137 }
138
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
141
142 if (bed->want_got_sym)
143 {
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
151 if (h == NULL)
152 return FALSE;
153 }
154
155 return TRUE;
156 }
157 \f
158 /* Create a strtab to hold the dynamic symbol names. */
159 static bfd_boolean
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
161 {
162 struct elf_link_hash_table *hash_table;
163
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
167
168 if (hash_table->dynstr == NULL)
169 {
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
172 return FALSE;
173 }
174 return TRUE;
175 }
176
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
183
184 bfd_boolean
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
186 {
187 flagword flags;
188 asection *s;
189 const struct elf_backend_data *bed;
190 struct elf_link_hash_entry *h;
191
192 if (! is_elf_hash_table (info->hash))
193 return FALSE;
194
195 if (elf_hash_table (info)->dynamic_sections_created)
196 return TRUE;
197
198 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
199 return FALSE;
200
201 abfd = elf_hash_table (info)->dynobj;
202 bed = get_elf_backend_data (abfd);
203
204 flags = bed->dynamic_sec_flags;
205
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
208 if (info->executable)
209 {
210 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
211 flags | SEC_READONLY);
212 if (s == NULL)
213 return FALSE;
214 }
215
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
218 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
219 flags | SEC_READONLY);
220 if (s == NULL
221 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
222 return FALSE;
223
224 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
225 flags | SEC_READONLY);
226 if (s == NULL
227 || ! bfd_set_section_alignment (abfd, s, 1))
228 return FALSE;
229
230 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
231 flags | SEC_READONLY);
232 if (s == NULL
233 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
234 return FALSE;
235
236 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
237 flags | SEC_READONLY);
238 if (s == NULL
239 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
240 return FALSE;
241
242 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
243 flags | SEC_READONLY);
244 if (s == NULL)
245 return FALSE;
246
247 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
248 if (s == NULL
249 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
250 return FALSE;
251
252 /* The special symbol _DYNAMIC is always set to the start of the
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
258 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
259 elf_hash_table (info)->hdynamic = h;
260 if (h == NULL)
261 return FALSE;
262
263 if (info->emit_hash)
264 {
265 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
266 flags | SEC_READONLY);
267 if (s == NULL
268 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
269 return FALSE;
270 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
271 }
272
273 if (info->emit_gnu_hash)
274 {
275 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
276 flags | SEC_READONLY);
277 if (s == NULL
278 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
279 return FALSE;
280 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
281 4 32-bit words followed by variable count of 64-bit words, then
282 variable count of 32-bit words. */
283 if (bed->s->arch_size == 64)
284 elf_section_data (s)->this_hdr.sh_entsize = 0;
285 else
286 elf_section_data (s)->this_hdr.sh_entsize = 4;
287 }
288
289 /* Let the backend create the rest of the sections. This lets the
290 backend set the right flags. The backend will normally create
291 the .got and .plt sections. */
292 if (bed->elf_backend_create_dynamic_sections == NULL
293 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
294 return FALSE;
295
296 elf_hash_table (info)->dynamic_sections_created = TRUE;
297
298 return TRUE;
299 }
300
301 /* Create dynamic sections when linking against a dynamic object. */
302
303 bfd_boolean
304 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
305 {
306 flagword flags, pltflags;
307 struct elf_link_hash_entry *h;
308 asection *s;
309 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
310 struct elf_link_hash_table *htab = elf_hash_table (info);
311
312 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
313 .rel[a].bss sections. */
314 flags = bed->dynamic_sec_flags;
315
316 pltflags = flags;
317 if (bed->plt_not_loaded)
318 /* We do not clear SEC_ALLOC here because we still want the OS to
319 allocate space for the section; it's just that there's nothing
320 to read in from the object file. */
321 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
322 else
323 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
324 if (bed->plt_readonly)
325 pltflags |= SEC_READONLY;
326
327 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
328 if (s == NULL
329 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
330 return FALSE;
331 htab->splt = s;
332
333 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
334 .plt section. */
335 if (bed->want_plt_sym)
336 {
337 h = _bfd_elf_define_linkage_sym (abfd, info, s,
338 "_PROCEDURE_LINKAGE_TABLE_");
339 elf_hash_table (info)->hplt = h;
340 if (h == NULL)
341 return FALSE;
342 }
343
344 s = bfd_make_section_anyway_with_flags (abfd,
345 (bed->rela_plts_and_copies_p
346 ? ".rela.plt" : ".rel.plt"),
347 flags | SEC_READONLY);
348 if (s == NULL
349 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
350 return FALSE;
351 htab->srelplt = s;
352
353 if (! _bfd_elf_create_got_section (abfd, info))
354 return FALSE;
355
356 if (bed->want_dynbss)
357 {
358 /* The .dynbss section is a place to put symbols which are defined
359 by dynamic objects, are referenced by regular objects, and are
360 not functions. We must allocate space for them in the process
361 image and use a R_*_COPY reloc to tell the dynamic linker to
362 initialize them at run time. The linker script puts the .dynbss
363 section into the .bss section of the final image. */
364 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
365 (SEC_ALLOC | SEC_LINKER_CREATED));
366 if (s == NULL)
367 return FALSE;
368
369 /* The .rel[a].bss section holds copy relocs. This section is not
370 normally needed. We need to create it here, though, so that the
371 linker will map it to an output section. We can't just create it
372 only if we need it, because we will not know whether we need it
373 until we have seen all the input files, and the first time the
374 main linker code calls BFD after examining all the input files
375 (size_dynamic_sections) the input sections have already been
376 mapped to the output sections. If the section turns out not to
377 be needed, we can discard it later. We will never need this
378 section when generating a shared object, since they do not use
379 copy relocs. */
380 if (! info->shared)
381 {
382 s = bfd_make_section_anyway_with_flags (abfd,
383 (bed->rela_plts_and_copies_p
384 ? ".rela.bss" : ".rel.bss"),
385 flags | SEC_READONLY);
386 if (s == NULL
387 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
388 return FALSE;
389 }
390 }
391
392 return TRUE;
393 }
394 \f
395 /* Record a new dynamic symbol. We record the dynamic symbols as we
396 read the input files, since we need to have a list of all of them
397 before we can determine the final sizes of the output sections.
398 Note that we may actually call this function even though we are not
399 going to output any dynamic symbols; in some cases we know that a
400 symbol should be in the dynamic symbol table, but only if there is
401 one. */
402
403 bfd_boolean
404 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
405 struct elf_link_hash_entry *h)
406 {
407 if (h->dynindx == -1)
408 {
409 struct elf_strtab_hash *dynstr;
410 char *p;
411 const char *name;
412 bfd_size_type indx;
413
414 /* XXX: The ABI draft says the linker must turn hidden and
415 internal symbols into STB_LOCAL symbols when producing the
416 DSO. However, if ld.so honors st_other in the dynamic table,
417 this would not be necessary. */
418 switch (ELF_ST_VISIBILITY (h->other))
419 {
420 case STV_INTERNAL:
421 case STV_HIDDEN:
422 if (h->root.type != bfd_link_hash_undefined
423 && h->root.type != bfd_link_hash_undefweak)
424 {
425 h->forced_local = 1;
426 if (!elf_hash_table (info)->is_relocatable_executable)
427 return TRUE;
428 }
429
430 default:
431 break;
432 }
433
434 h->dynindx = elf_hash_table (info)->dynsymcount;
435 ++elf_hash_table (info)->dynsymcount;
436
437 dynstr = elf_hash_table (info)->dynstr;
438 if (dynstr == NULL)
439 {
440 /* Create a strtab to hold the dynamic symbol names. */
441 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
442 if (dynstr == NULL)
443 return FALSE;
444 }
445
446 /* We don't put any version information in the dynamic string
447 table. */
448 name = h->root.root.string;
449 p = strchr (name, ELF_VER_CHR);
450 if (p != NULL)
451 /* We know that the p points into writable memory. In fact,
452 there are only a few symbols that have read-only names, being
453 those like _GLOBAL_OFFSET_TABLE_ that are created specially
454 by the backends. Most symbols will have names pointing into
455 an ELF string table read from a file, or to objalloc memory. */
456 *p = 0;
457
458 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
459
460 if (p != NULL)
461 *p = ELF_VER_CHR;
462
463 if (indx == (bfd_size_type) -1)
464 return FALSE;
465 h->dynstr_index = indx;
466 }
467
468 return TRUE;
469 }
470 \f
471 /* Mark a symbol dynamic. */
472
473 static void
474 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
475 struct elf_link_hash_entry *h,
476 Elf_Internal_Sym *sym)
477 {
478 struct bfd_elf_dynamic_list *d = info->dynamic_list;
479
480 /* It may be called more than once on the same H. */
481 if(h->dynamic || info->relocatable)
482 return;
483
484 if ((info->dynamic_data
485 && (h->type == STT_OBJECT
486 || (sym != NULL
487 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
488 || (d != NULL
489 && h->root.type == bfd_link_hash_new
490 && (*d->match) (&d->head, NULL, h->root.root.string)))
491 h->dynamic = 1;
492 }
493
494 /* Record an assignment to a symbol made by a linker script. We need
495 this in case some dynamic object refers to this symbol. */
496
497 bfd_boolean
498 bfd_elf_record_link_assignment (bfd *output_bfd,
499 struct bfd_link_info *info,
500 const char *name,
501 bfd_boolean provide,
502 bfd_boolean hidden)
503 {
504 struct elf_link_hash_entry *h, *hv;
505 struct elf_link_hash_table *htab;
506 const struct elf_backend_data *bed;
507
508 if (!is_elf_hash_table (info->hash))
509 return TRUE;
510
511 htab = elf_hash_table (info);
512 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
513 if (h == NULL)
514 return provide;
515
516 switch (h->root.type)
517 {
518 case bfd_link_hash_defined:
519 case bfd_link_hash_defweak:
520 case bfd_link_hash_common:
521 break;
522 case bfd_link_hash_undefweak:
523 case bfd_link_hash_undefined:
524 /* Since we're defining the symbol, don't let it seem to have not
525 been defined. record_dynamic_symbol and size_dynamic_sections
526 may depend on this. */
527 h->root.type = bfd_link_hash_new;
528 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
529 bfd_link_repair_undef_list (&htab->root);
530 break;
531 case bfd_link_hash_new:
532 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
533 h->non_elf = 0;
534 break;
535 case bfd_link_hash_indirect:
536 /* We had a versioned symbol in a dynamic library. We make the
537 the versioned symbol point to this one. */
538 bed = get_elf_backend_data (output_bfd);
539 hv = h;
540 while (hv->root.type == bfd_link_hash_indirect
541 || hv->root.type == bfd_link_hash_warning)
542 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
543 /* We don't need to update h->root.u since linker will set them
544 later. */
545 h->root.type = bfd_link_hash_undefined;
546 hv->root.type = bfd_link_hash_indirect;
547 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
548 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
549 break;
550 case bfd_link_hash_warning:
551 abort ();
552 break;
553 }
554
555 /* If this symbol is being provided by the linker script, and it is
556 currently defined by a dynamic object, but not by a regular
557 object, then mark it as undefined so that the generic linker will
558 force the correct value. */
559 if (provide
560 && h->def_dynamic
561 && !h->def_regular)
562 h->root.type = bfd_link_hash_undefined;
563
564 /* If this symbol is not being provided by the linker script, and it is
565 currently defined by a dynamic object, but not by a regular object,
566 then clear out any version information because the symbol will not be
567 associated with the dynamic object any more. */
568 if (!provide
569 && h->def_dynamic
570 && !h->def_regular)
571 h->verinfo.verdef = NULL;
572
573 h->def_regular = 1;
574
575 if (hidden)
576 {
577 bed = get_elf_backend_data (output_bfd);
578 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
579 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
580 }
581
582 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
583 and executables. */
584 if (!info->relocatable
585 && h->dynindx != -1
586 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
587 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
588 h->forced_local = 1;
589
590 if ((h->def_dynamic
591 || h->ref_dynamic
592 || info->shared
593 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
594 && h->dynindx == -1)
595 {
596 if (! bfd_elf_link_record_dynamic_symbol (info, h))
597 return FALSE;
598
599 /* If this is a weak defined symbol, and we know a corresponding
600 real symbol from the same dynamic object, make sure the real
601 symbol is also made into a dynamic symbol. */
602 if (h->u.weakdef != NULL
603 && h->u.weakdef->dynindx == -1)
604 {
605 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
606 return FALSE;
607 }
608 }
609
610 return TRUE;
611 }
612
613 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
614 success, and 2 on a failure caused by attempting to record a symbol
615 in a discarded section, eg. a discarded link-once section symbol. */
616
617 int
618 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
619 bfd *input_bfd,
620 long input_indx)
621 {
622 bfd_size_type amt;
623 struct elf_link_local_dynamic_entry *entry;
624 struct elf_link_hash_table *eht;
625 struct elf_strtab_hash *dynstr;
626 unsigned long dynstr_index;
627 char *name;
628 Elf_External_Sym_Shndx eshndx;
629 char esym[sizeof (Elf64_External_Sym)];
630
631 if (! is_elf_hash_table (info->hash))
632 return 0;
633
634 /* See if the entry exists already. */
635 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
636 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
637 return 1;
638
639 amt = sizeof (*entry);
640 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
641 if (entry == NULL)
642 return 0;
643
644 /* Go find the symbol, so that we can find it's name. */
645 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
646 1, input_indx, &entry->isym, esym, &eshndx))
647 {
648 bfd_release (input_bfd, entry);
649 return 0;
650 }
651
652 if (entry->isym.st_shndx != SHN_UNDEF
653 && entry->isym.st_shndx < SHN_LORESERVE)
654 {
655 asection *s;
656
657 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
658 if (s == NULL || bfd_is_abs_section (s->output_section))
659 {
660 /* We can still bfd_release here as nothing has done another
661 bfd_alloc. We can't do this later in this function. */
662 bfd_release (input_bfd, entry);
663 return 2;
664 }
665 }
666
667 name = (bfd_elf_string_from_elf_section
668 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
669 entry->isym.st_name));
670
671 dynstr = elf_hash_table (info)->dynstr;
672 if (dynstr == NULL)
673 {
674 /* Create a strtab to hold the dynamic symbol names. */
675 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
676 if (dynstr == NULL)
677 return 0;
678 }
679
680 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
681 if (dynstr_index == (unsigned long) -1)
682 return 0;
683 entry->isym.st_name = dynstr_index;
684
685 eht = elf_hash_table (info);
686
687 entry->next = eht->dynlocal;
688 eht->dynlocal = entry;
689 entry->input_bfd = input_bfd;
690 entry->input_indx = input_indx;
691 eht->dynsymcount++;
692
693 /* Whatever binding the symbol had before, it's now local. */
694 entry->isym.st_info
695 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
696
697 /* The dynindx will be set at the end of size_dynamic_sections. */
698
699 return 1;
700 }
701
702 /* Return the dynindex of a local dynamic symbol. */
703
704 long
705 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
706 bfd *input_bfd,
707 long input_indx)
708 {
709 struct elf_link_local_dynamic_entry *e;
710
711 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
712 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
713 return e->dynindx;
714 return -1;
715 }
716
717 /* This function is used to renumber the dynamic symbols, if some of
718 them are removed because they are marked as local. This is called
719 via elf_link_hash_traverse. */
720
721 static bfd_boolean
722 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
723 void *data)
724 {
725 size_t *count = (size_t *) data;
726
727 if (h->forced_local)
728 return TRUE;
729
730 if (h->dynindx != -1)
731 h->dynindx = ++(*count);
732
733 return TRUE;
734 }
735
736
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
739
740 static bfd_boolean
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
742 void *data)
743 {
744 size_t *count = (size_t *) data;
745
746 if (!h->forced_local)
747 return TRUE;
748
749 if (h->dynindx != -1)
750 h->dynindx = ++(*count);
751
752 return TRUE;
753 }
754
755 /* Return true if the dynamic symbol for a given section should be
756 omitted when creating a shared library. */
757 bfd_boolean
758 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
759 struct bfd_link_info *info,
760 asection *p)
761 {
762 struct elf_link_hash_table *htab;
763
764 switch (elf_section_data (p)->this_hdr.sh_type)
765 {
766 case SHT_PROGBITS:
767 case SHT_NOBITS:
768 /* If sh_type is yet undecided, assume it could be
769 SHT_PROGBITS/SHT_NOBITS. */
770 case SHT_NULL:
771 htab = elf_hash_table (info);
772 if (p == htab->tls_sec)
773 return FALSE;
774
775 if (htab->text_index_section != NULL)
776 return p != htab->text_index_section && p != htab->data_index_section;
777
778 if (strcmp (p->name, ".got") == 0
779 || strcmp (p->name, ".got.plt") == 0
780 || strcmp (p->name, ".plt") == 0)
781 {
782 asection *ip;
783
784 if (htab->dynobj != NULL
785 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
786 && ip->output_section == p)
787 return TRUE;
788 }
789 return FALSE;
790
791 /* There shouldn't be section relative relocations
792 against any other section. */
793 default:
794 return TRUE;
795 }
796 }
797
798 /* Assign dynsym indices. In a shared library we generate a section
799 symbol for each output section, which come first. Next come symbols
800 which have been forced to local binding. Then all of the back-end
801 allocated local dynamic syms, followed by the rest of the global
802 symbols. */
803
804 static unsigned long
805 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
806 struct bfd_link_info *info,
807 unsigned long *section_sym_count)
808 {
809 unsigned long dynsymcount = 0;
810
811 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
812 {
813 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
814 asection *p;
815 for (p = output_bfd->sections; p ; p = p->next)
816 if ((p->flags & SEC_EXCLUDE) == 0
817 && (p->flags & SEC_ALLOC) != 0
818 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
819 elf_section_data (p)->dynindx = ++dynsymcount;
820 else
821 elf_section_data (p)->dynindx = 0;
822 }
823 *section_sym_count = dynsymcount;
824
825 elf_link_hash_traverse (elf_hash_table (info),
826 elf_link_renumber_local_hash_table_dynsyms,
827 &dynsymcount);
828
829 if (elf_hash_table (info)->dynlocal)
830 {
831 struct elf_link_local_dynamic_entry *p;
832 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
833 p->dynindx = ++dynsymcount;
834 }
835
836 elf_link_hash_traverse (elf_hash_table (info),
837 elf_link_renumber_hash_table_dynsyms,
838 &dynsymcount);
839
840 /* There is an unused NULL entry at the head of the table which
841 we must account for in our count. Unless there weren't any
842 symbols, which means we'll have no table at all. */
843 if (dynsymcount != 0)
844 ++dynsymcount;
845
846 elf_hash_table (info)->dynsymcount = dynsymcount;
847 return dynsymcount;
848 }
849
850 /* Merge st_other field. */
851
852 static void
853 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
854 Elf_Internal_Sym *isym, bfd_boolean definition,
855 bfd_boolean dynamic)
856 {
857 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
858
859 /* If st_other has a processor-specific meaning, specific
860 code might be needed here. We never merge the visibility
861 attribute with the one from a dynamic object. */
862 if (bed->elf_backend_merge_symbol_attribute)
863 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
864 dynamic);
865
866 /* If this symbol has default visibility and the user has requested
867 we not re-export it, then mark it as hidden. */
868 if (definition
869 && !dynamic
870 && (abfd->no_export
871 || (abfd->my_archive && abfd->my_archive->no_export))
872 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
873 isym->st_other = (STV_HIDDEN
874 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
875
876 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
877 {
878 unsigned char hvis, symvis, other, nvis;
879
880 /* Only merge the visibility. Leave the remainder of the
881 st_other field to elf_backend_merge_symbol_attribute. */
882 other = h->other & ~ELF_ST_VISIBILITY (-1);
883
884 /* Combine visibilities, using the most constraining one. */
885 hvis = ELF_ST_VISIBILITY (h->other);
886 symvis = ELF_ST_VISIBILITY (isym->st_other);
887 if (! hvis)
888 nvis = symvis;
889 else if (! symvis)
890 nvis = hvis;
891 else
892 nvis = hvis < symvis ? hvis : symvis;
893
894 h->other = other | nvis;
895 }
896 }
897
898 /* Mark if a symbol has a definition in a dynamic object or is
899 weak in all dynamic objects. */
900
901 static void
902 _bfd_elf_mark_dynamic_def_weak (struct elf_link_hash_entry *h,
903 asection *sec, int bind)
904 {
905 if (!h->dynamic_def)
906 {
907 if (!bfd_is_und_section (sec))
908 h->dynamic_def = 1;
909 else
910 {
911 /* Check if this symbol is weak in all dynamic objects. If it
912 is the first time we see it in a dynamic object, we mark
913 if it is weak. Otherwise, we clear it. */
914 if (!h->ref_dynamic)
915 {
916 if (bind == STB_WEAK)
917 h->dynamic_weak = 1;
918 }
919 else if (bind != STB_WEAK)
920 h->dynamic_weak = 0;
921 }
922 }
923 }
924
925 /* This function is called when we want to define a new symbol. It
926 handles the various cases which arise when we find a definition in
927 a dynamic object, or when there is already a definition in a
928 dynamic object. The new symbol is described by NAME, SYM, PSEC,
929 and PVALUE. We set SYM_HASH to the hash table entry. We set
930 OVERRIDE if the old symbol is overriding a new definition. We set
931 TYPE_CHANGE_OK if it is OK for the type to change. We set
932 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
933 change, we mean that we shouldn't warn if the type or size does
934 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
935 object is overridden by a regular object. */
936
937 bfd_boolean
938 _bfd_elf_merge_symbol (bfd *abfd,
939 struct bfd_link_info *info,
940 const char *name,
941 Elf_Internal_Sym *sym,
942 asection **psec,
943 bfd_vma *pvalue,
944 unsigned int *pold_alignment,
945 struct elf_link_hash_entry **sym_hash,
946 bfd_boolean *skip,
947 bfd_boolean *override,
948 bfd_boolean *type_change_ok,
949 bfd_boolean *size_change_ok)
950 {
951 asection *sec, *oldsec;
952 struct elf_link_hash_entry *h;
953 struct elf_link_hash_entry *hi;
954 struct elf_link_hash_entry *flip;
955 int bind;
956 bfd *oldbfd;
957 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
958 bfd_boolean newweak, oldweak, newfunc, oldfunc;
959 const struct elf_backend_data *bed;
960
961 *skip = FALSE;
962 *override = FALSE;
963
964 sec = *psec;
965 bind = ELF_ST_BIND (sym->st_info);
966
967 /* Silently discard TLS symbols from --just-syms. There's no way to
968 combine a static TLS block with a new TLS block for this executable. */
969 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
970 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
971 {
972 *skip = TRUE;
973 return TRUE;
974 }
975
976 if (! bfd_is_und_section (sec))
977 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
978 else
979 h = ((struct elf_link_hash_entry *)
980 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
981 if (h == NULL)
982 return FALSE;
983 *sym_hash = h;
984
985 bed = get_elf_backend_data (abfd);
986
987 /* This code is for coping with dynamic objects, and is only useful
988 if we are doing an ELF link. */
989 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
990 return TRUE;
991
992 /* For merging, we only care about real symbols. But we need to make
993 sure that indirect symbol dynamic flags are updated. */
994 hi = h;
995 while (h->root.type == bfd_link_hash_indirect
996 || h->root.type == bfd_link_hash_warning)
997 h = (struct elf_link_hash_entry *) h->root.u.i.link;
998
999 /* We have to check it for every instance since the first few may be
1000 refereences and not all compilers emit symbol type for undefined
1001 symbols. */
1002 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1003
1004 /* If we just created the symbol, mark it as being an ELF symbol.
1005 Other than that, there is nothing to do--there is no merge issue
1006 with a newly defined symbol--so we just return. */
1007
1008 if (h->root.type == bfd_link_hash_new)
1009 {
1010 h->non_elf = 0;
1011 return TRUE;
1012 }
1013
1014 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1015 existing symbol. */
1016
1017 switch (h->root.type)
1018 {
1019 default:
1020 oldbfd = NULL;
1021 oldsec = NULL;
1022 break;
1023
1024 case bfd_link_hash_undefined:
1025 case bfd_link_hash_undefweak:
1026 oldbfd = h->root.u.undef.abfd;
1027 oldsec = NULL;
1028 break;
1029
1030 case bfd_link_hash_defined:
1031 case bfd_link_hash_defweak:
1032 oldbfd = h->root.u.def.section->owner;
1033 oldsec = h->root.u.def.section;
1034 break;
1035
1036 case bfd_link_hash_common:
1037 oldbfd = h->root.u.c.p->section->owner;
1038 oldsec = h->root.u.c.p->section;
1039 break;
1040 }
1041
1042 /* Differentiate strong and weak symbols. */
1043 newweak = bind == STB_WEAK;
1044 oldweak = (h->root.type == bfd_link_hash_defweak
1045 || h->root.type == bfd_link_hash_undefweak);
1046
1047 /* In cases involving weak versioned symbols, we may wind up trying
1048 to merge a symbol with itself. Catch that here, to avoid the
1049 confusion that results if we try to override a symbol with
1050 itself. The additional tests catch cases like
1051 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1052 dynamic object, which we do want to handle here. */
1053 if (abfd == oldbfd
1054 && (newweak || oldweak)
1055 && ((abfd->flags & DYNAMIC) == 0
1056 || !h->def_regular))
1057 return TRUE;
1058
1059 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1060 respectively, is from a dynamic object. */
1061
1062 newdyn = (abfd->flags & DYNAMIC) != 0;
1063
1064 olddyn = FALSE;
1065 if (oldbfd != NULL)
1066 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1067 else if (oldsec != NULL)
1068 {
1069 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1070 indices used by MIPS ELF. */
1071 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1072 }
1073
1074 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1075 respectively, appear to be a definition rather than reference. */
1076
1077 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1078
1079 olddef = (h->root.type != bfd_link_hash_undefined
1080 && h->root.type != bfd_link_hash_undefweak
1081 && h->root.type != bfd_link_hash_common);
1082
1083 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1084 respectively, appear to be a function. */
1085
1086 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1087 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1088
1089 oldfunc = (h->type != STT_NOTYPE
1090 && bed->is_function_type (h->type));
1091
1092 /* When we try to create a default indirect symbol from the dynamic
1093 definition with the default version, we skip it if its type and
1094 the type of existing regular definition mismatch. We only do it
1095 if the existing regular definition won't be dynamic. */
1096 if (pold_alignment == NULL
1097 && !info->shared
1098 && !info->export_dynamic
1099 && !h->ref_dynamic
1100 && newdyn
1101 && newdef
1102 && !olddyn
1103 && (olddef || h->root.type == bfd_link_hash_common)
1104 && ELF_ST_TYPE (sym->st_info) != h->type
1105 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1106 && h->type != STT_NOTYPE
1107 && !(newfunc && oldfunc))
1108 {
1109 *skip = TRUE;
1110 return TRUE;
1111 }
1112
1113 /* Plugin symbol type isn't currently set. Stop bogus errors. */
1114 if (oldbfd != NULL && (oldbfd->flags & BFD_PLUGIN) != 0)
1115 *type_change_ok = TRUE;
1116
1117 /* Check TLS symbol. We don't check undefined symbol introduced by
1118 "ld -u". */
1119 else if (oldbfd != NULL
1120 && ELF_ST_TYPE (sym->st_info) != h->type
1121 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1122 {
1123 bfd *ntbfd, *tbfd;
1124 bfd_boolean ntdef, tdef;
1125 asection *ntsec, *tsec;
1126
1127 if (h->type == STT_TLS)
1128 {
1129 ntbfd = abfd;
1130 ntsec = sec;
1131 ntdef = newdef;
1132 tbfd = oldbfd;
1133 tsec = oldsec;
1134 tdef = olddef;
1135 }
1136 else
1137 {
1138 ntbfd = oldbfd;
1139 ntsec = oldsec;
1140 ntdef = olddef;
1141 tbfd = abfd;
1142 tsec = sec;
1143 tdef = newdef;
1144 }
1145
1146 if (tdef && ntdef)
1147 (*_bfd_error_handler)
1148 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1149 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1150 else if (!tdef && !ntdef)
1151 (*_bfd_error_handler)
1152 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1153 tbfd, ntbfd, h->root.root.string);
1154 else if (tdef)
1155 (*_bfd_error_handler)
1156 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1157 tbfd, tsec, ntbfd, h->root.root.string);
1158 else
1159 (*_bfd_error_handler)
1160 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1161 tbfd, ntbfd, ntsec, h->root.root.string);
1162
1163 bfd_set_error (bfd_error_bad_value);
1164 return FALSE;
1165 }
1166
1167 /* We need to remember if a symbol has a definition in a dynamic
1168 object or is weak in all dynamic objects. Internal and hidden
1169 visibility will make it unavailable to dynamic objects. */
1170 if (newdyn)
1171 {
1172 _bfd_elf_mark_dynamic_def_weak (h, sec, bind);
1173 if (h != hi)
1174 _bfd_elf_mark_dynamic_def_weak (hi, sec, bind);
1175 }
1176
1177 /* If the old symbol has non-default visibility, we ignore the new
1178 definition from a dynamic object. */
1179 if (newdyn
1180 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1181 && !bfd_is_und_section (sec))
1182 {
1183 *skip = TRUE;
1184 /* Make sure this symbol is dynamic. */
1185 h->ref_dynamic = 1;
1186 hi->ref_dynamic = 1;
1187 /* A protected symbol has external availability. Make sure it is
1188 recorded as dynamic.
1189
1190 FIXME: Should we check type and size for protected symbol? */
1191 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1192 return bfd_elf_link_record_dynamic_symbol (info, h);
1193 else
1194 return TRUE;
1195 }
1196 else if (!newdyn
1197 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1198 && h->def_dynamic)
1199 {
1200 /* If the new symbol with non-default visibility comes from a
1201 relocatable file and the old definition comes from a dynamic
1202 object, we remove the old definition. */
1203 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1204 {
1205 /* Handle the case where the old dynamic definition is
1206 default versioned. We need to copy the symbol info from
1207 the symbol with default version to the normal one if it
1208 was referenced before. */
1209 if (h->ref_regular)
1210 {
1211 struct elf_link_hash_entry *vh = *sym_hash;
1212
1213 vh->root.type = h->root.type;
1214 h->root.type = bfd_link_hash_indirect;
1215 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1216
1217 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1218 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1219 {
1220 /* If the new symbol is hidden or internal, completely undo
1221 any dynamic link state. */
1222 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1223 h->forced_local = 0;
1224 h->ref_dynamic = 0;
1225 }
1226 else
1227 h->ref_dynamic = 1;
1228
1229 h->def_dynamic = 0;
1230 h->dynamic_def = 0;
1231 /* FIXME: Should we check type and size for protected symbol? */
1232 h->size = 0;
1233 h->type = 0;
1234
1235 h = vh;
1236 }
1237 else
1238 h = *sym_hash;
1239 }
1240
1241 /* If the old symbol was undefined before, then it will still be
1242 on the undefs list. If the new symbol is undefined or
1243 common, we can't make it bfd_link_hash_new here, because new
1244 undefined or common symbols will be added to the undefs list
1245 by _bfd_generic_link_add_one_symbol. Symbols may not be
1246 added twice to the undefs list. Also, if the new symbol is
1247 undefweak then we don't want to lose the strong undef. */
1248 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1249 {
1250 h->root.type = bfd_link_hash_undefined;
1251 h->root.u.undef.abfd = abfd;
1252 }
1253 else
1254 {
1255 h->root.type = bfd_link_hash_new;
1256 h->root.u.undef.abfd = NULL;
1257 }
1258
1259 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1260 {
1261 /* If the new symbol is hidden or internal, completely undo
1262 any dynamic link state. */
1263 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1264 h->forced_local = 0;
1265 h->ref_dynamic = 0;
1266 }
1267 else
1268 h->ref_dynamic = 1;
1269 h->def_dynamic = 0;
1270 h->dynamic_def = 0;
1271 /* FIXME: Should we check type and size for protected symbol? */
1272 h->size = 0;
1273 h->type = 0;
1274 return TRUE;
1275 }
1276
1277 if (bind == STB_GNU_UNIQUE)
1278 h->unique_global = 1;
1279
1280 /* If a new weak symbol definition comes from a regular file and the
1281 old symbol comes from a dynamic library, we treat the new one as
1282 strong. Similarly, an old weak symbol definition from a regular
1283 file is treated as strong when the new symbol comes from a dynamic
1284 library. Further, an old weak symbol from a dynamic library is
1285 treated as strong if the new symbol is from a dynamic library.
1286 This reflects the way glibc's ld.so works.
1287
1288 Do this before setting *type_change_ok or *size_change_ok so that
1289 we warn properly when dynamic library symbols are overridden. */
1290
1291 if (newdef && !newdyn && olddyn)
1292 newweak = FALSE;
1293 if (olddef && newdyn)
1294 oldweak = FALSE;
1295
1296 /* Allow changes between different types of function symbol. */
1297 if (newfunc && oldfunc)
1298 *type_change_ok = TRUE;
1299
1300 /* It's OK to change the type if either the existing symbol or the
1301 new symbol is weak. A type change is also OK if the old symbol
1302 is undefined and the new symbol is defined. */
1303
1304 if (oldweak
1305 || newweak
1306 || (newdef
1307 && h->root.type == bfd_link_hash_undefined))
1308 *type_change_ok = TRUE;
1309
1310 /* It's OK to change the size if either the existing symbol or the
1311 new symbol is weak, or if the old symbol is undefined. */
1312
1313 if (*type_change_ok
1314 || h->root.type == bfd_link_hash_undefined)
1315 *size_change_ok = TRUE;
1316
1317 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1318 symbol, respectively, appears to be a common symbol in a dynamic
1319 object. If a symbol appears in an uninitialized section, and is
1320 not weak, and is not a function, then it may be a common symbol
1321 which was resolved when the dynamic object was created. We want
1322 to treat such symbols specially, because they raise special
1323 considerations when setting the symbol size: if the symbol
1324 appears as a common symbol in a regular object, and the size in
1325 the regular object is larger, we must make sure that we use the
1326 larger size. This problematic case can always be avoided in C,
1327 but it must be handled correctly when using Fortran shared
1328 libraries.
1329
1330 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1331 likewise for OLDDYNCOMMON and OLDDEF.
1332
1333 Note that this test is just a heuristic, and that it is quite
1334 possible to have an uninitialized symbol in a shared object which
1335 is really a definition, rather than a common symbol. This could
1336 lead to some minor confusion when the symbol really is a common
1337 symbol in some regular object. However, I think it will be
1338 harmless. */
1339
1340 if (newdyn
1341 && newdef
1342 && !newweak
1343 && (sec->flags & SEC_ALLOC) != 0
1344 && (sec->flags & SEC_LOAD) == 0
1345 && sym->st_size > 0
1346 && !newfunc)
1347 newdyncommon = TRUE;
1348 else
1349 newdyncommon = FALSE;
1350
1351 if (olddyn
1352 && olddef
1353 && h->root.type == bfd_link_hash_defined
1354 && h->def_dynamic
1355 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1356 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1357 && h->size > 0
1358 && !oldfunc)
1359 olddyncommon = TRUE;
1360 else
1361 olddyncommon = FALSE;
1362
1363 /* We now know everything about the old and new symbols. We ask the
1364 backend to check if we can merge them. */
1365 if (bed->merge_symbol
1366 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1367 pold_alignment, skip, override,
1368 type_change_ok, size_change_ok,
1369 &newdyn, &newdef, &newdyncommon, &newweak,
1370 abfd, &sec,
1371 &olddyn, &olddef, &olddyncommon, &oldweak,
1372 oldbfd, &oldsec))
1373 return FALSE;
1374
1375 /* If both the old and the new symbols look like common symbols in a
1376 dynamic object, set the size of the symbol to the larger of the
1377 two. */
1378
1379 if (olddyncommon
1380 && newdyncommon
1381 && sym->st_size != h->size)
1382 {
1383 /* Since we think we have two common symbols, issue a multiple
1384 common warning if desired. Note that we only warn if the
1385 size is different. If the size is the same, we simply let
1386 the old symbol override the new one as normally happens with
1387 symbols defined in dynamic objects. */
1388
1389 if (! ((*info->callbacks->multiple_common)
1390 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1391 return FALSE;
1392
1393 if (sym->st_size > h->size)
1394 h->size = sym->st_size;
1395
1396 *size_change_ok = TRUE;
1397 }
1398
1399 /* If we are looking at a dynamic object, and we have found a
1400 definition, we need to see if the symbol was already defined by
1401 some other object. If so, we want to use the existing
1402 definition, and we do not want to report a multiple symbol
1403 definition error; we do this by clobbering *PSEC to be
1404 bfd_und_section_ptr.
1405
1406 We treat a common symbol as a definition if the symbol in the
1407 shared library is a function, since common symbols always
1408 represent variables; this can cause confusion in principle, but
1409 any such confusion would seem to indicate an erroneous program or
1410 shared library. We also permit a common symbol in a regular
1411 object to override a weak symbol in a shared object. */
1412
1413 if (newdyn
1414 && newdef
1415 && (olddef
1416 || (h->root.type == bfd_link_hash_common
1417 && (newweak || newfunc))))
1418 {
1419 *override = TRUE;
1420 newdef = FALSE;
1421 newdyncommon = FALSE;
1422
1423 *psec = sec = bfd_und_section_ptr;
1424 *size_change_ok = TRUE;
1425
1426 /* If we get here when the old symbol is a common symbol, then
1427 we are explicitly letting it override a weak symbol or
1428 function in a dynamic object, and we don't want to warn about
1429 a type change. If the old symbol is a defined symbol, a type
1430 change warning may still be appropriate. */
1431
1432 if (h->root.type == bfd_link_hash_common)
1433 *type_change_ok = TRUE;
1434 }
1435
1436 /* Handle the special case of an old common symbol merging with a
1437 new symbol which looks like a common symbol in a shared object.
1438 We change *PSEC and *PVALUE to make the new symbol look like a
1439 common symbol, and let _bfd_generic_link_add_one_symbol do the
1440 right thing. */
1441
1442 if (newdyncommon
1443 && h->root.type == bfd_link_hash_common)
1444 {
1445 *override = TRUE;
1446 newdef = FALSE;
1447 newdyncommon = FALSE;
1448 *pvalue = sym->st_size;
1449 *psec = sec = bed->common_section (oldsec);
1450 *size_change_ok = TRUE;
1451 }
1452
1453 /* Skip weak definitions of symbols that are already defined. */
1454 if (newdef && olddef && newweak)
1455 {
1456 /* Don't skip new non-IR weak syms. */
1457 if (!(oldbfd != NULL
1458 && (oldbfd->flags & BFD_PLUGIN) != 0
1459 && (abfd->flags & BFD_PLUGIN) == 0))
1460 *skip = TRUE;
1461
1462 /* Merge st_other. If the symbol already has a dynamic index,
1463 but visibility says it should not be visible, turn it into a
1464 local symbol. */
1465 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1466 if (h->dynindx != -1)
1467 switch (ELF_ST_VISIBILITY (h->other))
1468 {
1469 case STV_INTERNAL:
1470 case STV_HIDDEN:
1471 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1472 break;
1473 }
1474 }
1475
1476 /* If the old symbol is from a dynamic object, and the new symbol is
1477 a definition which is not from a dynamic object, then the new
1478 symbol overrides the old symbol. Symbols from regular files
1479 always take precedence over symbols from dynamic objects, even if
1480 they are defined after the dynamic object in the link.
1481
1482 As above, we again permit a common symbol in a regular object to
1483 override a definition in a shared object if the shared object
1484 symbol is a function or is weak. */
1485
1486 flip = NULL;
1487 if (!newdyn
1488 && (newdef
1489 || (bfd_is_com_section (sec)
1490 && (oldweak || oldfunc)))
1491 && olddyn
1492 && olddef
1493 && h->def_dynamic)
1494 {
1495 /* Change the hash table entry to undefined, and let
1496 _bfd_generic_link_add_one_symbol do the right thing with the
1497 new definition. */
1498
1499 h->root.type = bfd_link_hash_undefined;
1500 h->root.u.undef.abfd = h->root.u.def.section->owner;
1501 *size_change_ok = TRUE;
1502
1503 olddef = FALSE;
1504 olddyncommon = FALSE;
1505
1506 /* We again permit a type change when a common symbol may be
1507 overriding a function. */
1508
1509 if (bfd_is_com_section (sec))
1510 {
1511 if (oldfunc)
1512 {
1513 /* If a common symbol overrides a function, make sure
1514 that it isn't defined dynamically nor has type
1515 function. */
1516 h->def_dynamic = 0;
1517 h->type = STT_NOTYPE;
1518 }
1519 *type_change_ok = TRUE;
1520 }
1521
1522 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1523 flip = *sym_hash;
1524 else
1525 /* This union may have been set to be non-NULL when this symbol
1526 was seen in a dynamic object. We must force the union to be
1527 NULL, so that it is correct for a regular symbol. */
1528 h->verinfo.vertree = NULL;
1529 }
1530
1531 /* Handle the special case of a new common symbol merging with an
1532 old symbol that looks like it might be a common symbol defined in
1533 a shared object. Note that we have already handled the case in
1534 which a new common symbol should simply override the definition
1535 in the shared library. */
1536
1537 if (! newdyn
1538 && bfd_is_com_section (sec)
1539 && olddyncommon)
1540 {
1541 /* It would be best if we could set the hash table entry to a
1542 common symbol, but we don't know what to use for the section
1543 or the alignment. */
1544 if (! ((*info->callbacks->multiple_common)
1545 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1546 return FALSE;
1547
1548 /* If the presumed common symbol in the dynamic object is
1549 larger, pretend that the new symbol has its size. */
1550
1551 if (h->size > *pvalue)
1552 *pvalue = h->size;
1553
1554 /* We need to remember the alignment required by the symbol
1555 in the dynamic object. */
1556 BFD_ASSERT (pold_alignment);
1557 *pold_alignment = h->root.u.def.section->alignment_power;
1558
1559 olddef = FALSE;
1560 olddyncommon = FALSE;
1561
1562 h->root.type = bfd_link_hash_undefined;
1563 h->root.u.undef.abfd = h->root.u.def.section->owner;
1564
1565 *size_change_ok = TRUE;
1566 *type_change_ok = TRUE;
1567
1568 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1569 flip = *sym_hash;
1570 else
1571 h->verinfo.vertree = NULL;
1572 }
1573
1574 if (flip != NULL)
1575 {
1576 /* Handle the case where we had a versioned symbol in a dynamic
1577 library and now find a definition in a normal object. In this
1578 case, we make the versioned symbol point to the normal one. */
1579 flip->root.type = h->root.type;
1580 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1581 h->root.type = bfd_link_hash_indirect;
1582 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1583 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1584 if (h->def_dynamic)
1585 {
1586 h->def_dynamic = 0;
1587 flip->ref_dynamic = 1;
1588 }
1589 }
1590
1591 return TRUE;
1592 }
1593
1594 /* This function is called to create an indirect symbol from the
1595 default for the symbol with the default version if needed. The
1596 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1597 set DYNSYM if the new indirect symbol is dynamic. */
1598
1599 static bfd_boolean
1600 _bfd_elf_add_default_symbol (bfd *abfd,
1601 struct bfd_link_info *info,
1602 struct elf_link_hash_entry *h,
1603 const char *name,
1604 Elf_Internal_Sym *sym,
1605 asection **psec,
1606 bfd_vma *value,
1607 bfd_boolean *dynsym,
1608 bfd_boolean override)
1609 {
1610 bfd_boolean type_change_ok;
1611 bfd_boolean size_change_ok;
1612 bfd_boolean skip;
1613 char *shortname;
1614 struct elf_link_hash_entry *hi;
1615 struct bfd_link_hash_entry *bh;
1616 const struct elf_backend_data *bed;
1617 bfd_boolean collect;
1618 bfd_boolean dynamic;
1619 char *p;
1620 size_t len, shortlen;
1621 asection *sec;
1622
1623 /* If this symbol has a version, and it is the default version, we
1624 create an indirect symbol from the default name to the fully
1625 decorated name. This will cause external references which do not
1626 specify a version to be bound to this version of the symbol. */
1627 p = strchr (name, ELF_VER_CHR);
1628 if (p == NULL || p[1] != ELF_VER_CHR)
1629 return TRUE;
1630
1631 if (override)
1632 {
1633 /* We are overridden by an old definition. We need to check if we
1634 need to create the indirect symbol from the default name. */
1635 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1636 FALSE, FALSE);
1637 BFD_ASSERT (hi != NULL);
1638 if (hi == h)
1639 return TRUE;
1640 while (hi->root.type == bfd_link_hash_indirect
1641 || hi->root.type == bfd_link_hash_warning)
1642 {
1643 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1644 if (hi == h)
1645 return TRUE;
1646 }
1647 }
1648
1649 bed = get_elf_backend_data (abfd);
1650 collect = bed->collect;
1651 dynamic = (abfd->flags & DYNAMIC) != 0;
1652
1653 shortlen = p - name;
1654 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1655 if (shortname == NULL)
1656 return FALSE;
1657 memcpy (shortname, name, shortlen);
1658 shortname[shortlen] = '\0';
1659
1660 /* We are going to create a new symbol. Merge it with any existing
1661 symbol with this name. For the purposes of the merge, act as
1662 though we were defining the symbol we just defined, although we
1663 actually going to define an indirect symbol. */
1664 type_change_ok = FALSE;
1665 size_change_ok = FALSE;
1666 sec = *psec;
1667 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1668 NULL, &hi, &skip, &override,
1669 &type_change_ok, &size_change_ok))
1670 return FALSE;
1671
1672 if (skip)
1673 goto nondefault;
1674
1675 if (! override)
1676 {
1677 bh = &hi->root;
1678 if (! (_bfd_generic_link_add_one_symbol
1679 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1680 0, name, FALSE, collect, &bh)))
1681 return FALSE;
1682 hi = (struct elf_link_hash_entry *) bh;
1683 }
1684 else
1685 {
1686 /* In this case the symbol named SHORTNAME is overriding the
1687 indirect symbol we want to add. We were planning on making
1688 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1689 is the name without a version. NAME is the fully versioned
1690 name, and it is the default version.
1691
1692 Overriding means that we already saw a definition for the
1693 symbol SHORTNAME in a regular object, and it is overriding
1694 the symbol defined in the dynamic object.
1695
1696 When this happens, we actually want to change NAME, the
1697 symbol we just added, to refer to SHORTNAME. This will cause
1698 references to NAME in the shared object to become references
1699 to SHORTNAME in the regular object. This is what we expect
1700 when we override a function in a shared object: that the
1701 references in the shared object will be mapped to the
1702 definition in the regular object. */
1703
1704 while (hi->root.type == bfd_link_hash_indirect
1705 || hi->root.type == bfd_link_hash_warning)
1706 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1707
1708 h->root.type = bfd_link_hash_indirect;
1709 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1710 if (h->def_dynamic)
1711 {
1712 h->def_dynamic = 0;
1713 hi->ref_dynamic = 1;
1714 if (hi->ref_regular
1715 || hi->def_regular)
1716 {
1717 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1718 return FALSE;
1719 }
1720 }
1721
1722 /* Now set HI to H, so that the following code will set the
1723 other fields correctly. */
1724 hi = h;
1725 }
1726
1727 /* Check if HI is a warning symbol. */
1728 if (hi->root.type == bfd_link_hash_warning)
1729 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1730
1731 /* If there is a duplicate definition somewhere, then HI may not
1732 point to an indirect symbol. We will have reported an error to
1733 the user in that case. */
1734
1735 if (hi->root.type == bfd_link_hash_indirect)
1736 {
1737 struct elf_link_hash_entry *ht;
1738
1739 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1740 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1741
1742 /* See if the new flags lead us to realize that the symbol must
1743 be dynamic. */
1744 if (! *dynsym)
1745 {
1746 if (! dynamic)
1747 {
1748 if (! info->executable
1749 || hi->def_dynamic
1750 || hi->ref_dynamic)
1751 *dynsym = TRUE;
1752 }
1753 else
1754 {
1755 if (hi->ref_regular)
1756 *dynsym = TRUE;
1757 }
1758 }
1759 }
1760
1761 /* We also need to define an indirection from the nondefault version
1762 of the symbol. */
1763
1764 nondefault:
1765 len = strlen (name);
1766 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1767 if (shortname == NULL)
1768 return FALSE;
1769 memcpy (shortname, name, shortlen);
1770 memcpy (shortname + shortlen, p + 1, len - shortlen);
1771
1772 /* Once again, merge with any existing symbol. */
1773 type_change_ok = FALSE;
1774 size_change_ok = FALSE;
1775 sec = *psec;
1776 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1777 NULL, &hi, &skip, &override,
1778 &type_change_ok, &size_change_ok))
1779 return FALSE;
1780
1781 if (skip)
1782 return TRUE;
1783
1784 if (override)
1785 {
1786 /* Here SHORTNAME is a versioned name, so we don't expect to see
1787 the type of override we do in the case above unless it is
1788 overridden by a versioned definition. */
1789 if (hi->root.type != bfd_link_hash_defined
1790 && hi->root.type != bfd_link_hash_defweak)
1791 (*_bfd_error_handler)
1792 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1793 abfd, shortname);
1794 }
1795 else
1796 {
1797 bh = &hi->root;
1798 if (! (_bfd_generic_link_add_one_symbol
1799 (info, abfd, shortname, BSF_INDIRECT,
1800 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1801 return FALSE;
1802 hi = (struct elf_link_hash_entry *) bh;
1803
1804 /* If there is a duplicate definition somewhere, then HI may not
1805 point to an indirect symbol. We will have reported an error
1806 to the user in that case. */
1807
1808 if (hi->root.type == bfd_link_hash_indirect)
1809 {
1810 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1811
1812 /* See if the new flags lead us to realize that the symbol
1813 must be dynamic. */
1814 if (! *dynsym)
1815 {
1816 if (! dynamic)
1817 {
1818 if (! info->executable
1819 || hi->ref_dynamic)
1820 *dynsym = TRUE;
1821 }
1822 else
1823 {
1824 if (hi->ref_regular)
1825 *dynsym = TRUE;
1826 }
1827 }
1828 }
1829 }
1830
1831 return TRUE;
1832 }
1833 \f
1834 /* This routine is used to export all defined symbols into the dynamic
1835 symbol table. It is called via elf_link_hash_traverse. */
1836
1837 static bfd_boolean
1838 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1839 {
1840 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1841
1842 /* Ignore indirect symbols. These are added by the versioning code. */
1843 if (h->root.type == bfd_link_hash_indirect)
1844 return TRUE;
1845
1846 /* Ignore this if we won't export it. */
1847 if (!eif->info->export_dynamic && !h->dynamic)
1848 return TRUE;
1849
1850 if (h->dynindx == -1
1851 && (h->def_regular || h->ref_regular)
1852 && ! bfd_hide_sym_by_version (eif->info->version_info,
1853 h->root.root.string))
1854 {
1855 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1856 {
1857 eif->failed = TRUE;
1858 return FALSE;
1859 }
1860 }
1861
1862 return TRUE;
1863 }
1864 \f
1865 /* Look through the symbols which are defined in other shared
1866 libraries and referenced here. Update the list of version
1867 dependencies. This will be put into the .gnu.version_r section.
1868 This function is called via elf_link_hash_traverse. */
1869
1870 static bfd_boolean
1871 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1872 void *data)
1873 {
1874 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1875 Elf_Internal_Verneed *t;
1876 Elf_Internal_Vernaux *a;
1877 bfd_size_type amt;
1878
1879 /* We only care about symbols defined in shared objects with version
1880 information. */
1881 if (!h->def_dynamic
1882 || h->def_regular
1883 || h->dynindx == -1
1884 || h->verinfo.verdef == NULL)
1885 return TRUE;
1886
1887 /* See if we already know about this version. */
1888 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1889 t != NULL;
1890 t = t->vn_nextref)
1891 {
1892 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1893 continue;
1894
1895 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1896 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1897 return TRUE;
1898
1899 break;
1900 }
1901
1902 /* This is a new version. Add it to tree we are building. */
1903
1904 if (t == NULL)
1905 {
1906 amt = sizeof *t;
1907 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1908 if (t == NULL)
1909 {
1910 rinfo->failed = TRUE;
1911 return FALSE;
1912 }
1913
1914 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1915 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1916 elf_tdata (rinfo->info->output_bfd)->verref = t;
1917 }
1918
1919 amt = sizeof *a;
1920 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1921 if (a == NULL)
1922 {
1923 rinfo->failed = TRUE;
1924 return FALSE;
1925 }
1926
1927 /* Note that we are copying a string pointer here, and testing it
1928 above. If bfd_elf_string_from_elf_section is ever changed to
1929 discard the string data when low in memory, this will have to be
1930 fixed. */
1931 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1932
1933 a->vna_flags = h->verinfo.verdef->vd_flags;
1934 a->vna_nextptr = t->vn_auxptr;
1935
1936 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1937 ++rinfo->vers;
1938
1939 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1940
1941 t->vn_auxptr = a;
1942
1943 return TRUE;
1944 }
1945
1946 /* Figure out appropriate versions for all the symbols. We may not
1947 have the version number script until we have read all of the input
1948 files, so until that point we don't know which symbols should be
1949 local. This function is called via elf_link_hash_traverse. */
1950
1951 static bfd_boolean
1952 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1953 {
1954 struct elf_info_failed *sinfo;
1955 struct bfd_link_info *info;
1956 const struct elf_backend_data *bed;
1957 struct elf_info_failed eif;
1958 char *p;
1959 bfd_size_type amt;
1960
1961 sinfo = (struct elf_info_failed *) data;
1962 info = sinfo->info;
1963
1964 /* Fix the symbol flags. */
1965 eif.failed = FALSE;
1966 eif.info = info;
1967 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1968 {
1969 if (eif.failed)
1970 sinfo->failed = TRUE;
1971 return FALSE;
1972 }
1973
1974 /* We only need version numbers for symbols defined in regular
1975 objects. */
1976 if (!h->def_regular)
1977 return TRUE;
1978
1979 bed = get_elf_backend_data (info->output_bfd);
1980 p = strchr (h->root.root.string, ELF_VER_CHR);
1981 if (p != NULL && h->verinfo.vertree == NULL)
1982 {
1983 struct bfd_elf_version_tree *t;
1984 bfd_boolean hidden;
1985
1986 hidden = TRUE;
1987
1988 /* There are two consecutive ELF_VER_CHR characters if this is
1989 not a hidden symbol. */
1990 ++p;
1991 if (*p == ELF_VER_CHR)
1992 {
1993 hidden = FALSE;
1994 ++p;
1995 }
1996
1997 /* If there is no version string, we can just return out. */
1998 if (*p == '\0')
1999 {
2000 if (hidden)
2001 h->hidden = 1;
2002 return TRUE;
2003 }
2004
2005 /* Look for the version. If we find it, it is no longer weak. */
2006 for (t = sinfo->info->version_info; t != NULL; t = t->next)
2007 {
2008 if (strcmp (t->name, p) == 0)
2009 {
2010 size_t len;
2011 char *alc;
2012 struct bfd_elf_version_expr *d;
2013
2014 len = p - h->root.root.string;
2015 alc = (char *) bfd_malloc (len);
2016 if (alc == NULL)
2017 {
2018 sinfo->failed = TRUE;
2019 return FALSE;
2020 }
2021 memcpy (alc, h->root.root.string, len - 1);
2022 alc[len - 1] = '\0';
2023 if (alc[len - 2] == ELF_VER_CHR)
2024 alc[len - 2] = '\0';
2025
2026 h->verinfo.vertree = t;
2027 t->used = TRUE;
2028 d = NULL;
2029
2030 if (t->globals.list != NULL)
2031 d = (*t->match) (&t->globals, NULL, alc);
2032
2033 /* See if there is anything to force this symbol to
2034 local scope. */
2035 if (d == NULL && t->locals.list != NULL)
2036 {
2037 d = (*t->match) (&t->locals, NULL, alc);
2038 if (d != NULL
2039 && h->dynindx != -1
2040 && ! info->export_dynamic)
2041 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2042 }
2043
2044 free (alc);
2045 break;
2046 }
2047 }
2048
2049 /* If we are building an application, we need to create a
2050 version node for this version. */
2051 if (t == NULL && info->executable)
2052 {
2053 struct bfd_elf_version_tree **pp;
2054 int version_index;
2055
2056 /* If we aren't going to export this symbol, we don't need
2057 to worry about it. */
2058 if (h->dynindx == -1)
2059 return TRUE;
2060
2061 amt = sizeof *t;
2062 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2063 if (t == NULL)
2064 {
2065 sinfo->failed = TRUE;
2066 return FALSE;
2067 }
2068
2069 t->name = p;
2070 t->name_indx = (unsigned int) -1;
2071 t->used = TRUE;
2072
2073 version_index = 1;
2074 /* Don't count anonymous version tag. */
2075 if (sinfo->info->version_info != NULL
2076 && sinfo->info->version_info->vernum == 0)
2077 version_index = 0;
2078 for (pp = &sinfo->info->version_info;
2079 *pp != NULL;
2080 pp = &(*pp)->next)
2081 ++version_index;
2082 t->vernum = version_index;
2083
2084 *pp = t;
2085
2086 h->verinfo.vertree = t;
2087 }
2088 else if (t == NULL)
2089 {
2090 /* We could not find the version for a symbol when
2091 generating a shared archive. Return an error. */
2092 (*_bfd_error_handler)
2093 (_("%B: version node not found for symbol %s"),
2094 info->output_bfd, h->root.root.string);
2095 bfd_set_error (bfd_error_bad_value);
2096 sinfo->failed = TRUE;
2097 return FALSE;
2098 }
2099
2100 if (hidden)
2101 h->hidden = 1;
2102 }
2103
2104 /* If we don't have a version for this symbol, see if we can find
2105 something. */
2106 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2107 {
2108 bfd_boolean hide;
2109
2110 h->verinfo.vertree
2111 = bfd_find_version_for_sym (sinfo->info->version_info,
2112 h->root.root.string, &hide);
2113 if (h->verinfo.vertree != NULL && hide)
2114 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2115 }
2116
2117 return TRUE;
2118 }
2119 \f
2120 /* Read and swap the relocs from the section indicated by SHDR. This
2121 may be either a REL or a RELA section. The relocations are
2122 translated into RELA relocations and stored in INTERNAL_RELOCS,
2123 which should have already been allocated to contain enough space.
2124 The EXTERNAL_RELOCS are a buffer where the external form of the
2125 relocations should be stored.
2126
2127 Returns FALSE if something goes wrong. */
2128
2129 static bfd_boolean
2130 elf_link_read_relocs_from_section (bfd *abfd,
2131 asection *sec,
2132 Elf_Internal_Shdr *shdr,
2133 void *external_relocs,
2134 Elf_Internal_Rela *internal_relocs)
2135 {
2136 const struct elf_backend_data *bed;
2137 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2138 const bfd_byte *erela;
2139 const bfd_byte *erelaend;
2140 Elf_Internal_Rela *irela;
2141 Elf_Internal_Shdr *symtab_hdr;
2142 size_t nsyms;
2143
2144 /* Position ourselves at the start of the section. */
2145 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2146 return FALSE;
2147
2148 /* Read the relocations. */
2149 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2150 return FALSE;
2151
2152 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2153 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2154
2155 bed = get_elf_backend_data (abfd);
2156
2157 /* Convert the external relocations to the internal format. */
2158 if (shdr->sh_entsize == bed->s->sizeof_rel)
2159 swap_in = bed->s->swap_reloc_in;
2160 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2161 swap_in = bed->s->swap_reloca_in;
2162 else
2163 {
2164 bfd_set_error (bfd_error_wrong_format);
2165 return FALSE;
2166 }
2167
2168 erela = (const bfd_byte *) external_relocs;
2169 erelaend = erela + shdr->sh_size;
2170 irela = internal_relocs;
2171 while (erela < erelaend)
2172 {
2173 bfd_vma r_symndx;
2174
2175 (*swap_in) (abfd, erela, irela);
2176 r_symndx = ELF32_R_SYM (irela->r_info);
2177 if (bed->s->arch_size == 64)
2178 r_symndx >>= 24;
2179 if (nsyms > 0)
2180 {
2181 if ((size_t) r_symndx >= nsyms)
2182 {
2183 (*_bfd_error_handler)
2184 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2185 " for offset 0x%lx in section `%A'"),
2186 abfd, sec,
2187 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2188 bfd_set_error (bfd_error_bad_value);
2189 return FALSE;
2190 }
2191 }
2192 else if (r_symndx != STN_UNDEF)
2193 {
2194 (*_bfd_error_handler)
2195 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2196 " when the object file has no symbol table"),
2197 abfd, sec,
2198 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2199 bfd_set_error (bfd_error_bad_value);
2200 return FALSE;
2201 }
2202 irela += bed->s->int_rels_per_ext_rel;
2203 erela += shdr->sh_entsize;
2204 }
2205
2206 return TRUE;
2207 }
2208
2209 /* Read and swap the relocs for a section O. They may have been
2210 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2211 not NULL, they are used as buffers to read into. They are known to
2212 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2213 the return value is allocated using either malloc or bfd_alloc,
2214 according to the KEEP_MEMORY argument. If O has two relocation
2215 sections (both REL and RELA relocations), then the REL_HDR
2216 relocations will appear first in INTERNAL_RELOCS, followed by the
2217 RELA_HDR relocations. */
2218
2219 Elf_Internal_Rela *
2220 _bfd_elf_link_read_relocs (bfd *abfd,
2221 asection *o,
2222 void *external_relocs,
2223 Elf_Internal_Rela *internal_relocs,
2224 bfd_boolean keep_memory)
2225 {
2226 void *alloc1 = NULL;
2227 Elf_Internal_Rela *alloc2 = NULL;
2228 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2229 struct bfd_elf_section_data *esdo = elf_section_data (o);
2230 Elf_Internal_Rela *internal_rela_relocs;
2231
2232 if (esdo->relocs != NULL)
2233 return esdo->relocs;
2234
2235 if (o->reloc_count == 0)
2236 return NULL;
2237
2238 if (internal_relocs == NULL)
2239 {
2240 bfd_size_type size;
2241
2242 size = o->reloc_count;
2243 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2244 if (keep_memory)
2245 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2246 else
2247 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2248 if (internal_relocs == NULL)
2249 goto error_return;
2250 }
2251
2252 if (external_relocs == NULL)
2253 {
2254 bfd_size_type size = 0;
2255
2256 if (esdo->rel.hdr)
2257 size += esdo->rel.hdr->sh_size;
2258 if (esdo->rela.hdr)
2259 size += esdo->rela.hdr->sh_size;
2260
2261 alloc1 = bfd_malloc (size);
2262 if (alloc1 == NULL)
2263 goto error_return;
2264 external_relocs = alloc1;
2265 }
2266
2267 internal_rela_relocs = internal_relocs;
2268 if (esdo->rel.hdr)
2269 {
2270 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2271 external_relocs,
2272 internal_relocs))
2273 goto error_return;
2274 external_relocs = (((bfd_byte *) external_relocs)
2275 + esdo->rel.hdr->sh_size);
2276 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2277 * bed->s->int_rels_per_ext_rel);
2278 }
2279
2280 if (esdo->rela.hdr
2281 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2282 external_relocs,
2283 internal_rela_relocs)))
2284 goto error_return;
2285
2286 /* Cache the results for next time, if we can. */
2287 if (keep_memory)
2288 esdo->relocs = internal_relocs;
2289
2290 if (alloc1 != NULL)
2291 free (alloc1);
2292
2293 /* Don't free alloc2, since if it was allocated we are passing it
2294 back (under the name of internal_relocs). */
2295
2296 return internal_relocs;
2297
2298 error_return:
2299 if (alloc1 != NULL)
2300 free (alloc1);
2301 if (alloc2 != NULL)
2302 {
2303 if (keep_memory)
2304 bfd_release (abfd, alloc2);
2305 else
2306 free (alloc2);
2307 }
2308 return NULL;
2309 }
2310
2311 /* Compute the size of, and allocate space for, REL_HDR which is the
2312 section header for a section containing relocations for O. */
2313
2314 static bfd_boolean
2315 _bfd_elf_link_size_reloc_section (bfd *abfd,
2316 struct bfd_elf_section_reloc_data *reldata)
2317 {
2318 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2319
2320 /* That allows us to calculate the size of the section. */
2321 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2322
2323 /* The contents field must last into write_object_contents, so we
2324 allocate it with bfd_alloc rather than malloc. Also since we
2325 cannot be sure that the contents will actually be filled in,
2326 we zero the allocated space. */
2327 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2328 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2329 return FALSE;
2330
2331 if (reldata->hashes == NULL && reldata->count)
2332 {
2333 struct elf_link_hash_entry **p;
2334
2335 p = (struct elf_link_hash_entry **)
2336 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2337 if (p == NULL)
2338 return FALSE;
2339
2340 reldata->hashes = p;
2341 }
2342
2343 return TRUE;
2344 }
2345
2346 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2347 originated from the section given by INPUT_REL_HDR) to the
2348 OUTPUT_BFD. */
2349
2350 bfd_boolean
2351 _bfd_elf_link_output_relocs (bfd *output_bfd,
2352 asection *input_section,
2353 Elf_Internal_Shdr *input_rel_hdr,
2354 Elf_Internal_Rela *internal_relocs,
2355 struct elf_link_hash_entry **rel_hash
2356 ATTRIBUTE_UNUSED)
2357 {
2358 Elf_Internal_Rela *irela;
2359 Elf_Internal_Rela *irelaend;
2360 bfd_byte *erel;
2361 struct bfd_elf_section_reloc_data *output_reldata;
2362 asection *output_section;
2363 const struct elf_backend_data *bed;
2364 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2365 struct bfd_elf_section_data *esdo;
2366
2367 output_section = input_section->output_section;
2368
2369 bed = get_elf_backend_data (output_bfd);
2370 esdo = elf_section_data (output_section);
2371 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2372 {
2373 output_reldata = &esdo->rel;
2374 swap_out = bed->s->swap_reloc_out;
2375 }
2376 else if (esdo->rela.hdr
2377 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2378 {
2379 output_reldata = &esdo->rela;
2380 swap_out = bed->s->swap_reloca_out;
2381 }
2382 else
2383 {
2384 (*_bfd_error_handler)
2385 (_("%B: relocation size mismatch in %B section %A"),
2386 output_bfd, input_section->owner, input_section);
2387 bfd_set_error (bfd_error_wrong_format);
2388 return FALSE;
2389 }
2390
2391 erel = output_reldata->hdr->contents;
2392 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2393 irela = internal_relocs;
2394 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2395 * bed->s->int_rels_per_ext_rel);
2396 while (irela < irelaend)
2397 {
2398 (*swap_out) (output_bfd, irela, erel);
2399 irela += bed->s->int_rels_per_ext_rel;
2400 erel += input_rel_hdr->sh_entsize;
2401 }
2402
2403 /* Bump the counter, so that we know where to add the next set of
2404 relocations. */
2405 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2406
2407 return TRUE;
2408 }
2409 \f
2410 /* Make weak undefined symbols in PIE dynamic. */
2411
2412 bfd_boolean
2413 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2414 struct elf_link_hash_entry *h)
2415 {
2416 if (info->pie
2417 && h->dynindx == -1
2418 && h->root.type == bfd_link_hash_undefweak)
2419 return bfd_elf_link_record_dynamic_symbol (info, h);
2420
2421 return TRUE;
2422 }
2423
2424 /* Fix up the flags for a symbol. This handles various cases which
2425 can only be fixed after all the input files are seen. This is
2426 currently called by both adjust_dynamic_symbol and
2427 assign_sym_version, which is unnecessary but perhaps more robust in
2428 the face of future changes. */
2429
2430 static bfd_boolean
2431 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2432 struct elf_info_failed *eif)
2433 {
2434 const struct elf_backend_data *bed;
2435
2436 /* If this symbol was mentioned in a non-ELF file, try to set
2437 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2438 permit a non-ELF file to correctly refer to a symbol defined in
2439 an ELF dynamic object. */
2440 if (h->non_elf)
2441 {
2442 while (h->root.type == bfd_link_hash_indirect)
2443 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2444
2445 if (h->root.type != bfd_link_hash_defined
2446 && h->root.type != bfd_link_hash_defweak)
2447 {
2448 h->ref_regular = 1;
2449 h->ref_regular_nonweak = 1;
2450 }
2451 else
2452 {
2453 if (h->root.u.def.section->owner != NULL
2454 && (bfd_get_flavour (h->root.u.def.section->owner)
2455 == bfd_target_elf_flavour))
2456 {
2457 h->ref_regular = 1;
2458 h->ref_regular_nonweak = 1;
2459 }
2460 else
2461 h->def_regular = 1;
2462 }
2463
2464 if (h->dynindx == -1
2465 && (h->def_dynamic
2466 || h->ref_dynamic))
2467 {
2468 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2469 {
2470 eif->failed = TRUE;
2471 return FALSE;
2472 }
2473 }
2474 }
2475 else
2476 {
2477 /* Unfortunately, NON_ELF is only correct if the symbol
2478 was first seen in a non-ELF file. Fortunately, if the symbol
2479 was first seen in an ELF file, we're probably OK unless the
2480 symbol was defined in a non-ELF file. Catch that case here.
2481 FIXME: We're still in trouble if the symbol was first seen in
2482 a dynamic object, and then later in a non-ELF regular object. */
2483 if ((h->root.type == bfd_link_hash_defined
2484 || h->root.type == bfd_link_hash_defweak)
2485 && !h->def_regular
2486 && (h->root.u.def.section->owner != NULL
2487 ? (bfd_get_flavour (h->root.u.def.section->owner)
2488 != bfd_target_elf_flavour)
2489 : (bfd_is_abs_section (h->root.u.def.section)
2490 && !h->def_dynamic)))
2491 h->def_regular = 1;
2492 }
2493
2494 /* Backend specific symbol fixup. */
2495 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2496 if (bed->elf_backend_fixup_symbol
2497 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2498 return FALSE;
2499
2500 /* If this is a final link, and the symbol was defined as a common
2501 symbol in a regular object file, and there was no definition in
2502 any dynamic object, then the linker will have allocated space for
2503 the symbol in a common section but the DEF_REGULAR
2504 flag will not have been set. */
2505 if (h->root.type == bfd_link_hash_defined
2506 && !h->def_regular
2507 && h->ref_regular
2508 && !h->def_dynamic
2509 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2510 h->def_regular = 1;
2511
2512 /* If -Bsymbolic was used (which means to bind references to global
2513 symbols to the definition within the shared object), and this
2514 symbol was defined in a regular object, then it actually doesn't
2515 need a PLT entry. Likewise, if the symbol has non-default
2516 visibility. If the symbol has hidden or internal visibility, we
2517 will force it local. */
2518 if (h->needs_plt
2519 && eif->info->shared
2520 && is_elf_hash_table (eif->info->hash)
2521 && (SYMBOLIC_BIND (eif->info, h)
2522 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2523 && h->def_regular)
2524 {
2525 bfd_boolean force_local;
2526
2527 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2528 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2529 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2530 }
2531
2532 /* If a weak undefined symbol has non-default visibility, we also
2533 hide it from the dynamic linker. */
2534 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2535 && h->root.type == bfd_link_hash_undefweak)
2536 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2537
2538 /* If this is a weak defined symbol in a dynamic object, and we know
2539 the real definition in the dynamic object, copy interesting flags
2540 over to the real definition. */
2541 if (h->u.weakdef != NULL)
2542 {
2543 /* If the real definition is defined by a regular object file,
2544 don't do anything special. See the longer description in
2545 _bfd_elf_adjust_dynamic_symbol, below. */
2546 if (h->u.weakdef->def_regular)
2547 h->u.weakdef = NULL;
2548 else
2549 {
2550 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2551
2552 while (h->root.type == bfd_link_hash_indirect)
2553 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2554
2555 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2556 || h->root.type == bfd_link_hash_defweak);
2557 BFD_ASSERT (weakdef->def_dynamic);
2558 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2559 || weakdef->root.type == bfd_link_hash_defweak);
2560 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2561 }
2562 }
2563
2564 return TRUE;
2565 }
2566
2567 /* Make the backend pick a good value for a dynamic symbol. This is
2568 called via elf_link_hash_traverse, and also calls itself
2569 recursively. */
2570
2571 static bfd_boolean
2572 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2573 {
2574 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2575 bfd *dynobj;
2576 const struct elf_backend_data *bed;
2577
2578 if (! is_elf_hash_table (eif->info->hash))
2579 return FALSE;
2580
2581 /* Ignore indirect symbols. These are added by the versioning code. */
2582 if (h->root.type == bfd_link_hash_indirect)
2583 return TRUE;
2584
2585 /* Fix the symbol flags. */
2586 if (! _bfd_elf_fix_symbol_flags (h, eif))
2587 return FALSE;
2588
2589 /* If this symbol does not require a PLT entry, and it is not
2590 defined by a dynamic object, or is not referenced by a regular
2591 object, ignore it. We do have to handle a weak defined symbol,
2592 even if no regular object refers to it, if we decided to add it
2593 to the dynamic symbol table. FIXME: Do we normally need to worry
2594 about symbols which are defined by one dynamic object and
2595 referenced by another one? */
2596 if (!h->needs_plt
2597 && h->type != STT_GNU_IFUNC
2598 && (h->def_regular
2599 || !h->def_dynamic
2600 || (!h->ref_regular
2601 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2602 {
2603 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2604 return TRUE;
2605 }
2606
2607 /* If we've already adjusted this symbol, don't do it again. This
2608 can happen via a recursive call. */
2609 if (h->dynamic_adjusted)
2610 return TRUE;
2611
2612 /* Don't look at this symbol again. Note that we must set this
2613 after checking the above conditions, because we may look at a
2614 symbol once, decide not to do anything, and then get called
2615 recursively later after REF_REGULAR is set below. */
2616 h->dynamic_adjusted = 1;
2617
2618 /* If this is a weak definition, and we know a real definition, and
2619 the real symbol is not itself defined by a regular object file,
2620 then get a good value for the real definition. We handle the
2621 real symbol first, for the convenience of the backend routine.
2622
2623 Note that there is a confusing case here. If the real definition
2624 is defined by a regular object file, we don't get the real symbol
2625 from the dynamic object, but we do get the weak symbol. If the
2626 processor backend uses a COPY reloc, then if some routine in the
2627 dynamic object changes the real symbol, we will not see that
2628 change in the corresponding weak symbol. This is the way other
2629 ELF linkers work as well, and seems to be a result of the shared
2630 library model.
2631
2632 I will clarify this issue. Most SVR4 shared libraries define the
2633 variable _timezone and define timezone as a weak synonym. The
2634 tzset call changes _timezone. If you write
2635 extern int timezone;
2636 int _timezone = 5;
2637 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2638 you might expect that, since timezone is a synonym for _timezone,
2639 the same number will print both times. However, if the processor
2640 backend uses a COPY reloc, then actually timezone will be copied
2641 into your process image, and, since you define _timezone
2642 yourself, _timezone will not. Thus timezone and _timezone will
2643 wind up at different memory locations. The tzset call will set
2644 _timezone, leaving timezone unchanged. */
2645
2646 if (h->u.weakdef != NULL)
2647 {
2648 /* If we get to this point, there is an implicit reference to
2649 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2650 h->u.weakdef->ref_regular = 1;
2651
2652 /* Ensure that the backend adjust_dynamic_symbol function sees
2653 H->U.WEAKDEF before H by recursively calling ourselves. */
2654 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2655 return FALSE;
2656 }
2657
2658 /* If a symbol has no type and no size and does not require a PLT
2659 entry, then we are probably about to do the wrong thing here: we
2660 are probably going to create a COPY reloc for an empty object.
2661 This case can arise when a shared object is built with assembly
2662 code, and the assembly code fails to set the symbol type. */
2663 if (h->size == 0
2664 && h->type == STT_NOTYPE
2665 && !h->needs_plt)
2666 (*_bfd_error_handler)
2667 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2668 h->root.root.string);
2669
2670 dynobj = elf_hash_table (eif->info)->dynobj;
2671 bed = get_elf_backend_data (dynobj);
2672
2673 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2674 {
2675 eif->failed = TRUE;
2676 return FALSE;
2677 }
2678
2679 return TRUE;
2680 }
2681
2682 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2683 DYNBSS. */
2684
2685 bfd_boolean
2686 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2687 asection *dynbss)
2688 {
2689 unsigned int power_of_two;
2690 bfd_vma mask;
2691 asection *sec = h->root.u.def.section;
2692
2693 /* The section aligment of definition is the maximum alignment
2694 requirement of symbols defined in the section. Since we don't
2695 know the symbol alignment requirement, we start with the
2696 maximum alignment and check low bits of the symbol address
2697 for the minimum alignment. */
2698 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2699 mask = ((bfd_vma) 1 << power_of_two) - 1;
2700 while ((h->root.u.def.value & mask) != 0)
2701 {
2702 mask >>= 1;
2703 --power_of_two;
2704 }
2705
2706 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2707 dynbss))
2708 {
2709 /* Adjust the section alignment if needed. */
2710 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2711 power_of_two))
2712 return FALSE;
2713 }
2714
2715 /* We make sure that the symbol will be aligned properly. */
2716 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2717
2718 /* Define the symbol as being at this point in DYNBSS. */
2719 h->root.u.def.section = dynbss;
2720 h->root.u.def.value = dynbss->size;
2721
2722 /* Increment the size of DYNBSS to make room for the symbol. */
2723 dynbss->size += h->size;
2724
2725 return TRUE;
2726 }
2727
2728 /* Adjust all external symbols pointing into SEC_MERGE sections
2729 to reflect the object merging within the sections. */
2730
2731 static bfd_boolean
2732 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2733 {
2734 asection *sec;
2735
2736 if ((h->root.type == bfd_link_hash_defined
2737 || h->root.type == bfd_link_hash_defweak)
2738 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2739 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2740 {
2741 bfd *output_bfd = (bfd *) data;
2742
2743 h->root.u.def.value =
2744 _bfd_merged_section_offset (output_bfd,
2745 &h->root.u.def.section,
2746 elf_section_data (sec)->sec_info,
2747 h->root.u.def.value);
2748 }
2749
2750 return TRUE;
2751 }
2752
2753 /* Returns false if the symbol referred to by H should be considered
2754 to resolve local to the current module, and true if it should be
2755 considered to bind dynamically. */
2756
2757 bfd_boolean
2758 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2759 struct bfd_link_info *info,
2760 bfd_boolean not_local_protected)
2761 {
2762 bfd_boolean binding_stays_local_p;
2763 const struct elf_backend_data *bed;
2764 struct elf_link_hash_table *hash_table;
2765
2766 if (h == NULL)
2767 return FALSE;
2768
2769 while (h->root.type == bfd_link_hash_indirect
2770 || h->root.type == bfd_link_hash_warning)
2771 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2772
2773 /* If it was forced local, then clearly it's not dynamic. */
2774 if (h->dynindx == -1)
2775 return FALSE;
2776 if (h->forced_local)
2777 return FALSE;
2778
2779 /* Identify the cases where name binding rules say that a
2780 visible symbol resolves locally. */
2781 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2782
2783 switch (ELF_ST_VISIBILITY (h->other))
2784 {
2785 case STV_INTERNAL:
2786 case STV_HIDDEN:
2787 return FALSE;
2788
2789 case STV_PROTECTED:
2790 hash_table = elf_hash_table (info);
2791 if (!is_elf_hash_table (hash_table))
2792 return FALSE;
2793
2794 bed = get_elf_backend_data (hash_table->dynobj);
2795
2796 /* Proper resolution for function pointer equality may require
2797 that these symbols perhaps be resolved dynamically, even though
2798 we should be resolving them to the current module. */
2799 if (!not_local_protected || !bed->is_function_type (h->type))
2800 binding_stays_local_p = TRUE;
2801 break;
2802
2803 default:
2804 break;
2805 }
2806
2807 /* If it isn't defined locally, then clearly it's dynamic. */
2808 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2809 return TRUE;
2810
2811 /* Otherwise, the symbol is dynamic if binding rules don't tell
2812 us that it remains local. */
2813 return !binding_stays_local_p;
2814 }
2815
2816 /* Return true if the symbol referred to by H should be considered
2817 to resolve local to the current module, and false otherwise. Differs
2818 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2819 undefined symbols. The two functions are virtually identical except
2820 for the place where forced_local and dynindx == -1 are tested. If
2821 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2822 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2823 the symbol is local only for defined symbols.
2824 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2825 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2826 treatment of undefined weak symbols. For those that do not make
2827 undefined weak symbols dynamic, both functions may return false. */
2828
2829 bfd_boolean
2830 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2831 struct bfd_link_info *info,
2832 bfd_boolean local_protected)
2833 {
2834 const struct elf_backend_data *bed;
2835 struct elf_link_hash_table *hash_table;
2836
2837 /* If it's a local sym, of course we resolve locally. */
2838 if (h == NULL)
2839 return TRUE;
2840
2841 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2842 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2843 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2844 return TRUE;
2845
2846 /* Common symbols that become definitions don't get the DEF_REGULAR
2847 flag set, so test it first, and don't bail out. */
2848 if (ELF_COMMON_DEF_P (h))
2849 /* Do nothing. */;
2850 /* If we don't have a definition in a regular file, then we can't
2851 resolve locally. The sym is either undefined or dynamic. */
2852 else if (!h->def_regular)
2853 return FALSE;
2854
2855 /* Forced local symbols resolve locally. */
2856 if (h->forced_local)
2857 return TRUE;
2858
2859 /* As do non-dynamic symbols. */
2860 if (h->dynindx == -1)
2861 return TRUE;
2862
2863 /* At this point, we know the symbol is defined and dynamic. In an
2864 executable it must resolve locally, likewise when building symbolic
2865 shared libraries. */
2866 if (info->executable || SYMBOLIC_BIND (info, h))
2867 return TRUE;
2868
2869 /* Now deal with defined dynamic symbols in shared libraries. Ones
2870 with default visibility might not resolve locally. */
2871 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2872 return FALSE;
2873
2874 hash_table = elf_hash_table (info);
2875 if (!is_elf_hash_table (hash_table))
2876 return TRUE;
2877
2878 bed = get_elf_backend_data (hash_table->dynobj);
2879
2880 /* STV_PROTECTED non-function symbols are local. */
2881 if (!bed->is_function_type (h->type))
2882 return TRUE;
2883
2884 /* Function pointer equality tests may require that STV_PROTECTED
2885 symbols be treated as dynamic symbols. If the address of a
2886 function not defined in an executable is set to that function's
2887 plt entry in the executable, then the address of the function in
2888 a shared library must also be the plt entry in the executable. */
2889 return local_protected;
2890 }
2891
2892 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2893 aligned. Returns the first TLS output section. */
2894
2895 struct bfd_section *
2896 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2897 {
2898 struct bfd_section *sec, *tls;
2899 unsigned int align = 0;
2900
2901 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2902 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2903 break;
2904 tls = sec;
2905
2906 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2907 if (sec->alignment_power > align)
2908 align = sec->alignment_power;
2909
2910 elf_hash_table (info)->tls_sec = tls;
2911
2912 /* Ensure the alignment of the first section is the largest alignment,
2913 so that the tls segment starts aligned. */
2914 if (tls != NULL)
2915 tls->alignment_power = align;
2916
2917 return tls;
2918 }
2919
2920 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2921 static bfd_boolean
2922 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2923 Elf_Internal_Sym *sym)
2924 {
2925 const struct elf_backend_data *bed;
2926
2927 /* Local symbols do not count, but target specific ones might. */
2928 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2929 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2930 return FALSE;
2931
2932 bed = get_elf_backend_data (abfd);
2933 /* Function symbols do not count. */
2934 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2935 return FALSE;
2936
2937 /* If the section is undefined, then so is the symbol. */
2938 if (sym->st_shndx == SHN_UNDEF)
2939 return FALSE;
2940
2941 /* If the symbol is defined in the common section, then
2942 it is a common definition and so does not count. */
2943 if (bed->common_definition (sym))
2944 return FALSE;
2945
2946 /* If the symbol is in a target specific section then we
2947 must rely upon the backend to tell us what it is. */
2948 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2949 /* FIXME - this function is not coded yet:
2950
2951 return _bfd_is_global_symbol_definition (abfd, sym);
2952
2953 Instead for now assume that the definition is not global,
2954 Even if this is wrong, at least the linker will behave
2955 in the same way that it used to do. */
2956 return FALSE;
2957
2958 return TRUE;
2959 }
2960
2961 /* Search the symbol table of the archive element of the archive ABFD
2962 whose archive map contains a mention of SYMDEF, and determine if
2963 the symbol is defined in this element. */
2964 static bfd_boolean
2965 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2966 {
2967 Elf_Internal_Shdr * hdr;
2968 bfd_size_type symcount;
2969 bfd_size_type extsymcount;
2970 bfd_size_type extsymoff;
2971 Elf_Internal_Sym *isymbuf;
2972 Elf_Internal_Sym *isym;
2973 Elf_Internal_Sym *isymend;
2974 bfd_boolean result;
2975
2976 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2977 if (abfd == NULL)
2978 return FALSE;
2979
2980 if (! bfd_check_format (abfd, bfd_object))
2981 return FALSE;
2982
2983 /* If we have already included the element containing this symbol in the
2984 link then we do not need to include it again. Just claim that any symbol
2985 it contains is not a definition, so that our caller will not decide to
2986 (re)include this element. */
2987 if (abfd->archive_pass)
2988 return FALSE;
2989
2990 /* Select the appropriate symbol table. */
2991 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2992 hdr = &elf_tdata (abfd)->symtab_hdr;
2993 else
2994 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2995
2996 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2997
2998 /* The sh_info field of the symtab header tells us where the
2999 external symbols start. We don't care about the local symbols. */
3000 if (elf_bad_symtab (abfd))
3001 {
3002 extsymcount = symcount;
3003 extsymoff = 0;
3004 }
3005 else
3006 {
3007 extsymcount = symcount - hdr->sh_info;
3008 extsymoff = hdr->sh_info;
3009 }
3010
3011 if (extsymcount == 0)
3012 return FALSE;
3013
3014 /* Read in the symbol table. */
3015 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3016 NULL, NULL, NULL);
3017 if (isymbuf == NULL)
3018 return FALSE;
3019
3020 /* Scan the symbol table looking for SYMDEF. */
3021 result = FALSE;
3022 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3023 {
3024 const char *name;
3025
3026 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3027 isym->st_name);
3028 if (name == NULL)
3029 break;
3030
3031 if (strcmp (name, symdef->name) == 0)
3032 {
3033 result = is_global_data_symbol_definition (abfd, isym);
3034 break;
3035 }
3036 }
3037
3038 free (isymbuf);
3039
3040 return result;
3041 }
3042 \f
3043 /* Add an entry to the .dynamic table. */
3044
3045 bfd_boolean
3046 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3047 bfd_vma tag,
3048 bfd_vma val)
3049 {
3050 struct elf_link_hash_table *hash_table;
3051 const struct elf_backend_data *bed;
3052 asection *s;
3053 bfd_size_type newsize;
3054 bfd_byte *newcontents;
3055 Elf_Internal_Dyn dyn;
3056
3057 hash_table = elf_hash_table (info);
3058 if (! is_elf_hash_table (hash_table))
3059 return FALSE;
3060
3061 bed = get_elf_backend_data (hash_table->dynobj);
3062 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3063 BFD_ASSERT (s != NULL);
3064
3065 newsize = s->size + bed->s->sizeof_dyn;
3066 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3067 if (newcontents == NULL)
3068 return FALSE;
3069
3070 dyn.d_tag = tag;
3071 dyn.d_un.d_val = val;
3072 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3073
3074 s->size = newsize;
3075 s->contents = newcontents;
3076
3077 return TRUE;
3078 }
3079
3080 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3081 otherwise just check whether one already exists. Returns -1 on error,
3082 1 if a DT_NEEDED tag already exists, and 0 on success. */
3083
3084 static int
3085 elf_add_dt_needed_tag (bfd *abfd,
3086 struct bfd_link_info *info,
3087 const char *soname,
3088 bfd_boolean do_it)
3089 {
3090 struct elf_link_hash_table *hash_table;
3091 bfd_size_type oldsize;
3092 bfd_size_type strindex;
3093
3094 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3095 return -1;
3096
3097 hash_table = elf_hash_table (info);
3098 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3099 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3100 if (strindex == (bfd_size_type) -1)
3101 return -1;
3102
3103 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3104 {
3105 asection *sdyn;
3106 const struct elf_backend_data *bed;
3107 bfd_byte *extdyn;
3108
3109 bed = get_elf_backend_data (hash_table->dynobj);
3110 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3111 if (sdyn != NULL)
3112 for (extdyn = sdyn->contents;
3113 extdyn < sdyn->contents + sdyn->size;
3114 extdyn += bed->s->sizeof_dyn)
3115 {
3116 Elf_Internal_Dyn dyn;
3117
3118 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3119 if (dyn.d_tag == DT_NEEDED
3120 && dyn.d_un.d_val == strindex)
3121 {
3122 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3123 return 1;
3124 }
3125 }
3126 }
3127
3128 if (do_it)
3129 {
3130 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3131 return -1;
3132
3133 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3134 return -1;
3135 }
3136 else
3137 /* We were just checking for existence of the tag. */
3138 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3139
3140 return 0;
3141 }
3142
3143 static bfd_boolean
3144 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3145 {
3146 for (; needed != NULL; needed = needed->next)
3147 if (strcmp (soname, needed->name) == 0)
3148 return TRUE;
3149
3150 return FALSE;
3151 }
3152
3153 /* Sort symbol by value, section, and size. */
3154 static int
3155 elf_sort_symbol (const void *arg1, const void *arg2)
3156 {
3157 const struct elf_link_hash_entry *h1;
3158 const struct elf_link_hash_entry *h2;
3159 bfd_signed_vma vdiff;
3160
3161 h1 = *(const struct elf_link_hash_entry **) arg1;
3162 h2 = *(const struct elf_link_hash_entry **) arg2;
3163 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3164 if (vdiff != 0)
3165 return vdiff > 0 ? 1 : -1;
3166 else
3167 {
3168 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3169 if (sdiff != 0)
3170 return sdiff > 0 ? 1 : -1;
3171 }
3172 vdiff = h1->size - h2->size;
3173 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3174 }
3175
3176 /* This function is used to adjust offsets into .dynstr for
3177 dynamic symbols. This is called via elf_link_hash_traverse. */
3178
3179 static bfd_boolean
3180 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3181 {
3182 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3183
3184 if (h->dynindx != -1)
3185 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3186 return TRUE;
3187 }
3188
3189 /* Assign string offsets in .dynstr, update all structures referencing
3190 them. */
3191
3192 static bfd_boolean
3193 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3194 {
3195 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3196 struct elf_link_local_dynamic_entry *entry;
3197 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3198 bfd *dynobj = hash_table->dynobj;
3199 asection *sdyn;
3200 bfd_size_type size;
3201 const struct elf_backend_data *bed;
3202 bfd_byte *extdyn;
3203
3204 _bfd_elf_strtab_finalize (dynstr);
3205 size = _bfd_elf_strtab_size (dynstr);
3206
3207 bed = get_elf_backend_data (dynobj);
3208 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3209 BFD_ASSERT (sdyn != NULL);
3210
3211 /* Update all .dynamic entries referencing .dynstr strings. */
3212 for (extdyn = sdyn->contents;
3213 extdyn < sdyn->contents + sdyn->size;
3214 extdyn += bed->s->sizeof_dyn)
3215 {
3216 Elf_Internal_Dyn dyn;
3217
3218 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3219 switch (dyn.d_tag)
3220 {
3221 case DT_STRSZ:
3222 dyn.d_un.d_val = size;
3223 break;
3224 case DT_NEEDED:
3225 case DT_SONAME:
3226 case DT_RPATH:
3227 case DT_RUNPATH:
3228 case DT_FILTER:
3229 case DT_AUXILIARY:
3230 case DT_AUDIT:
3231 case DT_DEPAUDIT:
3232 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3233 break;
3234 default:
3235 continue;
3236 }
3237 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3238 }
3239
3240 /* Now update local dynamic symbols. */
3241 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3242 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3243 entry->isym.st_name);
3244
3245 /* And the rest of dynamic symbols. */
3246 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3247
3248 /* Adjust version definitions. */
3249 if (elf_tdata (output_bfd)->cverdefs)
3250 {
3251 asection *s;
3252 bfd_byte *p;
3253 bfd_size_type i;
3254 Elf_Internal_Verdef def;
3255 Elf_Internal_Verdaux defaux;
3256
3257 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3258 p = s->contents;
3259 do
3260 {
3261 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3262 &def);
3263 p += sizeof (Elf_External_Verdef);
3264 if (def.vd_aux != sizeof (Elf_External_Verdef))
3265 continue;
3266 for (i = 0; i < def.vd_cnt; ++i)
3267 {
3268 _bfd_elf_swap_verdaux_in (output_bfd,
3269 (Elf_External_Verdaux *) p, &defaux);
3270 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3271 defaux.vda_name);
3272 _bfd_elf_swap_verdaux_out (output_bfd,
3273 &defaux, (Elf_External_Verdaux *) p);
3274 p += sizeof (Elf_External_Verdaux);
3275 }
3276 }
3277 while (def.vd_next);
3278 }
3279
3280 /* Adjust version references. */
3281 if (elf_tdata (output_bfd)->verref)
3282 {
3283 asection *s;
3284 bfd_byte *p;
3285 bfd_size_type i;
3286 Elf_Internal_Verneed need;
3287 Elf_Internal_Vernaux needaux;
3288
3289 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3290 p = s->contents;
3291 do
3292 {
3293 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3294 &need);
3295 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3296 _bfd_elf_swap_verneed_out (output_bfd, &need,
3297 (Elf_External_Verneed *) p);
3298 p += sizeof (Elf_External_Verneed);
3299 for (i = 0; i < need.vn_cnt; ++i)
3300 {
3301 _bfd_elf_swap_vernaux_in (output_bfd,
3302 (Elf_External_Vernaux *) p, &needaux);
3303 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3304 needaux.vna_name);
3305 _bfd_elf_swap_vernaux_out (output_bfd,
3306 &needaux,
3307 (Elf_External_Vernaux *) p);
3308 p += sizeof (Elf_External_Vernaux);
3309 }
3310 }
3311 while (need.vn_next);
3312 }
3313
3314 return TRUE;
3315 }
3316 \f
3317 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3318 The default is to only match when the INPUT and OUTPUT are exactly
3319 the same target. */
3320
3321 bfd_boolean
3322 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3323 const bfd_target *output)
3324 {
3325 return input == output;
3326 }
3327
3328 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3329 This version is used when different targets for the same architecture
3330 are virtually identical. */
3331
3332 bfd_boolean
3333 _bfd_elf_relocs_compatible (const bfd_target *input,
3334 const bfd_target *output)
3335 {
3336 const struct elf_backend_data *obed, *ibed;
3337
3338 if (input == output)
3339 return TRUE;
3340
3341 ibed = xvec_get_elf_backend_data (input);
3342 obed = xvec_get_elf_backend_data (output);
3343
3344 if (ibed->arch != obed->arch)
3345 return FALSE;
3346
3347 /* If both backends are using this function, deem them compatible. */
3348 return ibed->relocs_compatible == obed->relocs_compatible;
3349 }
3350
3351 /* Add symbols from an ELF object file to the linker hash table. */
3352
3353 static bfd_boolean
3354 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3355 {
3356 Elf_Internal_Ehdr *ehdr;
3357 Elf_Internal_Shdr *hdr;
3358 bfd_size_type symcount;
3359 bfd_size_type extsymcount;
3360 bfd_size_type extsymoff;
3361 struct elf_link_hash_entry **sym_hash;
3362 bfd_boolean dynamic;
3363 Elf_External_Versym *extversym = NULL;
3364 Elf_External_Versym *ever;
3365 struct elf_link_hash_entry *weaks;
3366 struct elf_link_hash_entry **nondeflt_vers = NULL;
3367 bfd_size_type nondeflt_vers_cnt = 0;
3368 Elf_Internal_Sym *isymbuf = NULL;
3369 Elf_Internal_Sym *isym;
3370 Elf_Internal_Sym *isymend;
3371 const struct elf_backend_data *bed;
3372 bfd_boolean add_needed;
3373 struct elf_link_hash_table *htab;
3374 bfd_size_type amt;
3375 void *alloc_mark = NULL;
3376 struct bfd_hash_entry **old_table = NULL;
3377 unsigned int old_size = 0;
3378 unsigned int old_count = 0;
3379 void *old_tab = NULL;
3380 void *old_hash;
3381 void *old_ent;
3382 struct bfd_link_hash_entry *old_undefs = NULL;
3383 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3384 long old_dynsymcount = 0;
3385 size_t tabsize = 0;
3386 size_t hashsize = 0;
3387
3388 htab = elf_hash_table (info);
3389 bed = get_elf_backend_data (abfd);
3390
3391 if ((abfd->flags & DYNAMIC) == 0)
3392 dynamic = FALSE;
3393 else
3394 {
3395 dynamic = TRUE;
3396
3397 /* You can't use -r against a dynamic object. Also, there's no
3398 hope of using a dynamic object which does not exactly match
3399 the format of the output file. */
3400 if (info->relocatable
3401 || !is_elf_hash_table (htab)
3402 || info->output_bfd->xvec != abfd->xvec)
3403 {
3404 if (info->relocatable)
3405 bfd_set_error (bfd_error_invalid_operation);
3406 else
3407 bfd_set_error (bfd_error_wrong_format);
3408 goto error_return;
3409 }
3410 }
3411
3412 ehdr = elf_elfheader (abfd);
3413 if (info->warn_alternate_em
3414 && bed->elf_machine_code != ehdr->e_machine
3415 && ((bed->elf_machine_alt1 != 0
3416 && ehdr->e_machine == bed->elf_machine_alt1)
3417 || (bed->elf_machine_alt2 != 0
3418 && ehdr->e_machine == bed->elf_machine_alt2)))
3419 info->callbacks->einfo
3420 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3421 ehdr->e_machine, abfd, bed->elf_machine_code);
3422
3423 /* As a GNU extension, any input sections which are named
3424 .gnu.warning.SYMBOL are treated as warning symbols for the given
3425 symbol. This differs from .gnu.warning sections, which generate
3426 warnings when they are included in an output file. */
3427 /* PR 12761: Also generate this warning when building shared libraries. */
3428 if (info->executable || info->shared)
3429 {
3430 asection *s;
3431
3432 for (s = abfd->sections; s != NULL; s = s->next)
3433 {
3434 const char *name;
3435
3436 name = bfd_get_section_name (abfd, s);
3437 if (CONST_STRNEQ (name, ".gnu.warning."))
3438 {
3439 char *msg;
3440 bfd_size_type sz;
3441
3442 name += sizeof ".gnu.warning." - 1;
3443
3444 /* If this is a shared object, then look up the symbol
3445 in the hash table. If it is there, and it is already
3446 been defined, then we will not be using the entry
3447 from this shared object, so we don't need to warn.
3448 FIXME: If we see the definition in a regular object
3449 later on, we will warn, but we shouldn't. The only
3450 fix is to keep track of what warnings we are supposed
3451 to emit, and then handle them all at the end of the
3452 link. */
3453 if (dynamic)
3454 {
3455 struct elf_link_hash_entry *h;
3456
3457 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3458
3459 /* FIXME: What about bfd_link_hash_common? */
3460 if (h != NULL
3461 && (h->root.type == bfd_link_hash_defined
3462 || h->root.type == bfd_link_hash_defweak))
3463 {
3464 /* We don't want to issue this warning. Clobber
3465 the section size so that the warning does not
3466 get copied into the output file. */
3467 s->size = 0;
3468 continue;
3469 }
3470 }
3471
3472 sz = s->size;
3473 msg = (char *) bfd_alloc (abfd, sz + 1);
3474 if (msg == NULL)
3475 goto error_return;
3476
3477 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3478 goto error_return;
3479
3480 msg[sz] = '\0';
3481
3482 if (! (_bfd_generic_link_add_one_symbol
3483 (info, abfd, name, BSF_WARNING, s, 0, msg,
3484 FALSE, bed->collect, NULL)))
3485 goto error_return;
3486
3487 if (! info->relocatable)
3488 {
3489 /* Clobber the section size so that the warning does
3490 not get copied into the output file. */
3491 s->size = 0;
3492
3493 /* Also set SEC_EXCLUDE, so that symbols defined in
3494 the warning section don't get copied to the output. */
3495 s->flags |= SEC_EXCLUDE;
3496 }
3497 }
3498 }
3499 }
3500
3501 add_needed = TRUE;
3502 if (! dynamic)
3503 {
3504 /* If we are creating a shared library, create all the dynamic
3505 sections immediately. We need to attach them to something,
3506 so we attach them to this BFD, provided it is the right
3507 format. FIXME: If there are no input BFD's of the same
3508 format as the output, we can't make a shared library. */
3509 if (info->shared
3510 && is_elf_hash_table (htab)
3511 && info->output_bfd->xvec == abfd->xvec
3512 && !htab->dynamic_sections_created)
3513 {
3514 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3515 goto error_return;
3516 }
3517 }
3518 else if (!is_elf_hash_table (htab))
3519 goto error_return;
3520 else
3521 {
3522 asection *s;
3523 const char *soname = NULL;
3524 char *audit = NULL;
3525 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3526 int ret;
3527
3528 /* ld --just-symbols and dynamic objects don't mix very well.
3529 ld shouldn't allow it. */
3530 if ((s = abfd->sections) != NULL
3531 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3532 abort ();
3533
3534 /* If this dynamic lib was specified on the command line with
3535 --as-needed in effect, then we don't want to add a DT_NEEDED
3536 tag unless the lib is actually used. Similary for libs brought
3537 in by another lib's DT_NEEDED. When --no-add-needed is used
3538 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3539 any dynamic library in DT_NEEDED tags in the dynamic lib at
3540 all. */
3541 add_needed = (elf_dyn_lib_class (abfd)
3542 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3543 | DYN_NO_NEEDED)) == 0;
3544
3545 s = bfd_get_section_by_name (abfd, ".dynamic");
3546 if (s != NULL)
3547 {
3548 bfd_byte *dynbuf;
3549 bfd_byte *extdyn;
3550 unsigned int elfsec;
3551 unsigned long shlink;
3552
3553 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3554 {
3555 error_free_dyn:
3556 free (dynbuf);
3557 goto error_return;
3558 }
3559
3560 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3561 if (elfsec == SHN_BAD)
3562 goto error_free_dyn;
3563 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3564
3565 for (extdyn = dynbuf;
3566 extdyn < dynbuf + s->size;
3567 extdyn += bed->s->sizeof_dyn)
3568 {
3569 Elf_Internal_Dyn dyn;
3570
3571 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3572 if (dyn.d_tag == DT_SONAME)
3573 {
3574 unsigned int tagv = dyn.d_un.d_val;
3575 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3576 if (soname == NULL)
3577 goto error_free_dyn;
3578 }
3579 if (dyn.d_tag == DT_NEEDED)
3580 {
3581 struct bfd_link_needed_list *n, **pn;
3582 char *fnm, *anm;
3583 unsigned int tagv = dyn.d_un.d_val;
3584
3585 amt = sizeof (struct bfd_link_needed_list);
3586 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3587 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3588 if (n == NULL || fnm == NULL)
3589 goto error_free_dyn;
3590 amt = strlen (fnm) + 1;
3591 anm = (char *) bfd_alloc (abfd, amt);
3592 if (anm == NULL)
3593 goto error_free_dyn;
3594 memcpy (anm, fnm, amt);
3595 n->name = anm;
3596 n->by = abfd;
3597 n->next = NULL;
3598 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3599 ;
3600 *pn = n;
3601 }
3602 if (dyn.d_tag == DT_RUNPATH)
3603 {
3604 struct bfd_link_needed_list *n, **pn;
3605 char *fnm, *anm;
3606 unsigned int tagv = dyn.d_un.d_val;
3607
3608 amt = sizeof (struct bfd_link_needed_list);
3609 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3610 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3611 if (n == NULL || fnm == NULL)
3612 goto error_free_dyn;
3613 amt = strlen (fnm) + 1;
3614 anm = (char *) bfd_alloc (abfd, amt);
3615 if (anm == NULL)
3616 goto error_free_dyn;
3617 memcpy (anm, fnm, amt);
3618 n->name = anm;
3619 n->by = abfd;
3620 n->next = NULL;
3621 for (pn = & runpath;
3622 *pn != NULL;
3623 pn = &(*pn)->next)
3624 ;
3625 *pn = n;
3626 }
3627 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3628 if (!runpath && dyn.d_tag == DT_RPATH)
3629 {
3630 struct bfd_link_needed_list *n, **pn;
3631 char *fnm, *anm;
3632 unsigned int tagv = dyn.d_un.d_val;
3633
3634 amt = sizeof (struct bfd_link_needed_list);
3635 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3636 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3637 if (n == NULL || fnm == NULL)
3638 goto error_free_dyn;
3639 amt = strlen (fnm) + 1;
3640 anm = (char *) bfd_alloc (abfd, amt);
3641 if (anm == NULL)
3642 goto error_free_dyn;
3643 memcpy (anm, fnm, amt);
3644 n->name = anm;
3645 n->by = abfd;
3646 n->next = NULL;
3647 for (pn = & rpath;
3648 *pn != NULL;
3649 pn = &(*pn)->next)
3650 ;
3651 *pn = n;
3652 }
3653 if (dyn.d_tag == DT_AUDIT)
3654 {
3655 unsigned int tagv = dyn.d_un.d_val;
3656 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3657 }
3658 }
3659
3660 free (dynbuf);
3661 }
3662
3663 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3664 frees all more recently bfd_alloc'd blocks as well. */
3665 if (runpath)
3666 rpath = runpath;
3667
3668 if (rpath)
3669 {
3670 struct bfd_link_needed_list **pn;
3671 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3672 ;
3673 *pn = rpath;
3674 }
3675
3676 /* We do not want to include any of the sections in a dynamic
3677 object in the output file. We hack by simply clobbering the
3678 list of sections in the BFD. This could be handled more
3679 cleanly by, say, a new section flag; the existing
3680 SEC_NEVER_LOAD flag is not the one we want, because that one
3681 still implies that the section takes up space in the output
3682 file. */
3683 bfd_section_list_clear (abfd);
3684
3685 /* Find the name to use in a DT_NEEDED entry that refers to this
3686 object. If the object has a DT_SONAME entry, we use it.
3687 Otherwise, if the generic linker stuck something in
3688 elf_dt_name, we use that. Otherwise, we just use the file
3689 name. */
3690 if (soname == NULL || *soname == '\0')
3691 {
3692 soname = elf_dt_name (abfd);
3693 if (soname == NULL || *soname == '\0')
3694 soname = bfd_get_filename (abfd);
3695 }
3696
3697 /* Save the SONAME because sometimes the linker emulation code
3698 will need to know it. */
3699 elf_dt_name (abfd) = soname;
3700
3701 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3702 if (ret < 0)
3703 goto error_return;
3704
3705 /* If we have already included this dynamic object in the
3706 link, just ignore it. There is no reason to include a
3707 particular dynamic object more than once. */
3708 if (ret > 0)
3709 return TRUE;
3710
3711 /* Save the DT_AUDIT entry for the linker emulation code. */
3712 elf_dt_audit (abfd) = audit;
3713 }
3714
3715 /* If this is a dynamic object, we always link against the .dynsym
3716 symbol table, not the .symtab symbol table. The dynamic linker
3717 will only see the .dynsym symbol table, so there is no reason to
3718 look at .symtab for a dynamic object. */
3719
3720 if (! dynamic || elf_dynsymtab (abfd) == 0)
3721 hdr = &elf_tdata (abfd)->symtab_hdr;
3722 else
3723 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3724
3725 symcount = hdr->sh_size / bed->s->sizeof_sym;
3726
3727 /* The sh_info field of the symtab header tells us where the
3728 external symbols start. We don't care about the local symbols at
3729 this point. */
3730 if (elf_bad_symtab (abfd))
3731 {
3732 extsymcount = symcount;
3733 extsymoff = 0;
3734 }
3735 else
3736 {
3737 extsymcount = symcount - hdr->sh_info;
3738 extsymoff = hdr->sh_info;
3739 }
3740
3741 sym_hash = NULL;
3742 if (extsymcount != 0)
3743 {
3744 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3745 NULL, NULL, NULL);
3746 if (isymbuf == NULL)
3747 goto error_return;
3748
3749 /* We store a pointer to the hash table entry for each external
3750 symbol. */
3751 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3752 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3753 if (sym_hash == NULL)
3754 goto error_free_sym;
3755 elf_sym_hashes (abfd) = sym_hash;
3756 }
3757
3758 if (dynamic)
3759 {
3760 /* Read in any version definitions. */
3761 if (!_bfd_elf_slurp_version_tables (abfd,
3762 info->default_imported_symver))
3763 goto error_free_sym;
3764
3765 /* Read in the symbol versions, but don't bother to convert them
3766 to internal format. */
3767 if (elf_dynversym (abfd) != 0)
3768 {
3769 Elf_Internal_Shdr *versymhdr;
3770
3771 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3772 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3773 if (extversym == NULL)
3774 goto error_free_sym;
3775 amt = versymhdr->sh_size;
3776 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3777 || bfd_bread (extversym, amt, abfd) != amt)
3778 goto error_free_vers;
3779 }
3780 }
3781
3782 /* If we are loading an as-needed shared lib, save the symbol table
3783 state before we start adding symbols. If the lib turns out
3784 to be unneeded, restore the state. */
3785 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3786 {
3787 unsigned int i;
3788 size_t entsize;
3789
3790 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3791 {
3792 struct bfd_hash_entry *p;
3793 struct elf_link_hash_entry *h;
3794
3795 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3796 {
3797 h = (struct elf_link_hash_entry *) p;
3798 entsize += htab->root.table.entsize;
3799 if (h->root.type == bfd_link_hash_warning)
3800 entsize += htab->root.table.entsize;
3801 }
3802 }
3803
3804 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3805 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3806 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3807 if (old_tab == NULL)
3808 goto error_free_vers;
3809
3810 /* Remember the current objalloc pointer, so that all mem for
3811 symbols added can later be reclaimed. */
3812 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3813 if (alloc_mark == NULL)
3814 goto error_free_vers;
3815
3816 /* Make a special call to the linker "notice" function to
3817 tell it that we are about to handle an as-needed lib. */
3818 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3819 notice_as_needed, 0, NULL))
3820 goto error_free_vers;
3821
3822 /* Clone the symbol table and sym hashes. Remember some
3823 pointers into the symbol table, and dynamic symbol count. */
3824 old_hash = (char *) old_tab + tabsize;
3825 old_ent = (char *) old_hash + hashsize;
3826 memcpy (old_tab, htab->root.table.table, tabsize);
3827 memcpy (old_hash, sym_hash, hashsize);
3828 old_undefs = htab->root.undefs;
3829 old_undefs_tail = htab->root.undefs_tail;
3830 old_table = htab->root.table.table;
3831 old_size = htab->root.table.size;
3832 old_count = htab->root.table.count;
3833 old_dynsymcount = htab->dynsymcount;
3834
3835 for (i = 0; i < htab->root.table.size; i++)
3836 {
3837 struct bfd_hash_entry *p;
3838 struct elf_link_hash_entry *h;
3839
3840 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3841 {
3842 memcpy (old_ent, p, htab->root.table.entsize);
3843 old_ent = (char *) old_ent + htab->root.table.entsize;
3844 h = (struct elf_link_hash_entry *) p;
3845 if (h->root.type == bfd_link_hash_warning)
3846 {
3847 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3848 old_ent = (char *) old_ent + htab->root.table.entsize;
3849 }
3850 }
3851 }
3852 }
3853
3854 weaks = NULL;
3855 ever = extversym != NULL ? extversym + extsymoff : NULL;
3856 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3857 isym < isymend;
3858 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3859 {
3860 int bind;
3861 bfd_vma value;
3862 asection *sec, *new_sec;
3863 flagword flags;
3864 const char *name;
3865 struct elf_link_hash_entry *h;
3866 struct elf_link_hash_entry *hi;
3867 bfd_boolean definition;
3868 bfd_boolean size_change_ok;
3869 bfd_boolean type_change_ok;
3870 bfd_boolean new_weakdef;
3871 bfd_boolean override;
3872 bfd_boolean common;
3873 unsigned int old_alignment;
3874 bfd *old_bfd;
3875 bfd * undef_bfd = NULL;
3876
3877 override = FALSE;
3878
3879 flags = BSF_NO_FLAGS;
3880 sec = NULL;
3881 value = isym->st_value;
3882 *sym_hash = NULL;
3883 common = bed->common_definition (isym);
3884
3885 bind = ELF_ST_BIND (isym->st_info);
3886 switch (bind)
3887 {
3888 case STB_LOCAL:
3889 /* This should be impossible, since ELF requires that all
3890 global symbols follow all local symbols, and that sh_info
3891 point to the first global symbol. Unfortunately, Irix 5
3892 screws this up. */
3893 continue;
3894
3895 case STB_GLOBAL:
3896 if (isym->st_shndx != SHN_UNDEF && !common)
3897 flags = BSF_GLOBAL;
3898 break;
3899
3900 case STB_WEAK:
3901 flags = BSF_WEAK;
3902 break;
3903
3904 case STB_GNU_UNIQUE:
3905 flags = BSF_GNU_UNIQUE;
3906 break;
3907
3908 default:
3909 /* Leave it up to the processor backend. */
3910 break;
3911 }
3912
3913 if (isym->st_shndx == SHN_UNDEF)
3914 sec = bfd_und_section_ptr;
3915 else if (isym->st_shndx == SHN_ABS)
3916 sec = bfd_abs_section_ptr;
3917 else if (isym->st_shndx == SHN_COMMON)
3918 {
3919 sec = bfd_com_section_ptr;
3920 /* What ELF calls the size we call the value. What ELF
3921 calls the value we call the alignment. */
3922 value = isym->st_size;
3923 }
3924 else
3925 {
3926 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3927 if (sec == NULL)
3928 sec = bfd_abs_section_ptr;
3929 else if (discarded_section (sec))
3930 {
3931 /* Symbols from discarded section are undefined. We keep
3932 its visibility. */
3933 sec = bfd_und_section_ptr;
3934 isym->st_shndx = SHN_UNDEF;
3935 }
3936 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3937 value -= sec->vma;
3938 }
3939
3940 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3941 isym->st_name);
3942 if (name == NULL)
3943 goto error_free_vers;
3944
3945 if (isym->st_shndx == SHN_COMMON
3946 && (abfd->flags & BFD_PLUGIN) != 0)
3947 {
3948 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3949
3950 if (xc == NULL)
3951 {
3952 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3953 | SEC_EXCLUDE);
3954 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3955 if (xc == NULL)
3956 goto error_free_vers;
3957 }
3958 sec = xc;
3959 }
3960 else if (isym->st_shndx == SHN_COMMON
3961 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3962 && !info->relocatable)
3963 {
3964 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3965
3966 if (tcomm == NULL)
3967 {
3968 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3969 | SEC_LINKER_CREATED);
3970 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3971 if (tcomm == NULL)
3972 goto error_free_vers;
3973 }
3974 sec = tcomm;
3975 }
3976 else if (bed->elf_add_symbol_hook)
3977 {
3978 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3979 &sec, &value))
3980 goto error_free_vers;
3981
3982 /* The hook function sets the name to NULL if this symbol
3983 should be skipped for some reason. */
3984 if (name == NULL)
3985 continue;
3986 }
3987
3988 /* Sanity check that all possibilities were handled. */
3989 if (sec == NULL)
3990 {
3991 bfd_set_error (bfd_error_bad_value);
3992 goto error_free_vers;
3993 }
3994
3995 if (bfd_is_und_section (sec)
3996 || bfd_is_com_section (sec))
3997 definition = FALSE;
3998 else
3999 definition = TRUE;
4000
4001 size_change_ok = FALSE;
4002 type_change_ok = bed->type_change_ok;
4003 old_alignment = 0;
4004 old_bfd = NULL;
4005 new_sec = sec;
4006
4007 if (is_elf_hash_table (htab))
4008 {
4009 Elf_Internal_Versym iver;
4010 unsigned int vernum = 0;
4011 bfd_boolean skip;
4012
4013 /* If this is a definition of a symbol which was previously
4014 referenced in a non-weak manner then make a note of the bfd
4015 that contained the reference. This is used if we need to
4016 refer to the source of the reference later on. */
4017 if (! bfd_is_und_section (sec))
4018 {
4019 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4020
4021 if (h != NULL
4022 && h->root.type == bfd_link_hash_undefined
4023 && h->root.u.undef.abfd)
4024 undef_bfd = h->root.u.undef.abfd;
4025 }
4026
4027 if (ever == NULL)
4028 {
4029 if (info->default_imported_symver)
4030 /* Use the default symbol version created earlier. */
4031 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4032 else
4033 iver.vs_vers = 0;
4034 }
4035 else
4036 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4037
4038 vernum = iver.vs_vers & VERSYM_VERSION;
4039
4040 /* If this is a hidden symbol, or if it is not version
4041 1, we append the version name to the symbol name.
4042 However, we do not modify a non-hidden absolute symbol
4043 if it is not a function, because it might be the version
4044 symbol itself. FIXME: What if it isn't? */
4045 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4046 || (vernum > 1
4047 && (!bfd_is_abs_section (sec)
4048 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4049 {
4050 const char *verstr;
4051 size_t namelen, verlen, newlen;
4052 char *newname, *p;
4053
4054 if (isym->st_shndx != SHN_UNDEF)
4055 {
4056 if (vernum > elf_tdata (abfd)->cverdefs)
4057 verstr = NULL;
4058 else if (vernum > 1)
4059 verstr =
4060 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4061 else
4062 verstr = "";
4063
4064 if (verstr == NULL)
4065 {
4066 (*_bfd_error_handler)
4067 (_("%B: %s: invalid version %u (max %d)"),
4068 abfd, name, vernum,
4069 elf_tdata (abfd)->cverdefs);
4070 bfd_set_error (bfd_error_bad_value);
4071 goto error_free_vers;
4072 }
4073 }
4074 else
4075 {
4076 /* We cannot simply test for the number of
4077 entries in the VERNEED section since the
4078 numbers for the needed versions do not start
4079 at 0. */
4080 Elf_Internal_Verneed *t;
4081
4082 verstr = NULL;
4083 for (t = elf_tdata (abfd)->verref;
4084 t != NULL;
4085 t = t->vn_nextref)
4086 {
4087 Elf_Internal_Vernaux *a;
4088
4089 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4090 {
4091 if (a->vna_other == vernum)
4092 {
4093 verstr = a->vna_nodename;
4094 break;
4095 }
4096 }
4097 if (a != NULL)
4098 break;
4099 }
4100 if (verstr == NULL)
4101 {
4102 (*_bfd_error_handler)
4103 (_("%B: %s: invalid needed version %d"),
4104 abfd, name, vernum);
4105 bfd_set_error (bfd_error_bad_value);
4106 goto error_free_vers;
4107 }
4108 }
4109
4110 namelen = strlen (name);
4111 verlen = strlen (verstr);
4112 newlen = namelen + verlen + 2;
4113 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4114 && isym->st_shndx != SHN_UNDEF)
4115 ++newlen;
4116
4117 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4118 if (newname == NULL)
4119 goto error_free_vers;
4120 memcpy (newname, name, namelen);
4121 p = newname + namelen;
4122 *p++ = ELF_VER_CHR;
4123 /* If this is a defined non-hidden version symbol,
4124 we add another @ to the name. This indicates the
4125 default version of the symbol. */
4126 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4127 && isym->st_shndx != SHN_UNDEF)
4128 *p++ = ELF_VER_CHR;
4129 memcpy (p, verstr, verlen + 1);
4130
4131 name = newname;
4132 }
4133
4134 /* If necessary, make a second attempt to locate the bfd
4135 containing an unresolved, non-weak reference to the
4136 current symbol. */
4137 if (! bfd_is_und_section (sec) && undef_bfd == NULL)
4138 {
4139 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4140
4141 if (h != NULL
4142 && h->root.type == bfd_link_hash_undefined
4143 && h->root.u.undef.abfd)
4144 undef_bfd = h->root.u.undef.abfd;
4145 }
4146
4147 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4148 &value, &old_alignment,
4149 sym_hash, &skip, &override,
4150 &type_change_ok, &size_change_ok))
4151 goto error_free_vers;
4152
4153 if (skip)
4154 continue;
4155
4156 if (override)
4157 definition = FALSE;
4158
4159 h = *sym_hash;
4160 while (h->root.type == bfd_link_hash_indirect
4161 || h->root.type == bfd_link_hash_warning)
4162 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4163
4164 /* Remember the old alignment if this is a common symbol, so
4165 that we don't reduce the alignment later on. We can't
4166 check later, because _bfd_generic_link_add_one_symbol
4167 will set a default for the alignment which we want to
4168 override. We also remember the old bfd where the existing
4169 definition comes from. */
4170 switch (h->root.type)
4171 {
4172 default:
4173 break;
4174
4175 case bfd_link_hash_defined:
4176 case bfd_link_hash_defweak:
4177 old_bfd = h->root.u.def.section->owner;
4178 break;
4179
4180 case bfd_link_hash_common:
4181 old_bfd = h->root.u.c.p->section->owner;
4182 old_alignment = h->root.u.c.p->alignment_power;
4183 break;
4184 }
4185
4186 if (elf_tdata (abfd)->verdef != NULL
4187 && ! override
4188 && vernum > 1
4189 && definition)
4190 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4191 }
4192
4193 if (! (_bfd_generic_link_add_one_symbol
4194 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4195 (struct bfd_link_hash_entry **) sym_hash)))
4196 goto error_free_vers;
4197
4198 h = *sym_hash;
4199 /* We need to make sure that indirect symbol dynamic flags are
4200 updated. */
4201 hi = h;
4202 while (h->root.type == bfd_link_hash_indirect
4203 || h->root.type == bfd_link_hash_warning)
4204 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4205
4206 *sym_hash = h;
4207 if (is_elf_hash_table (htab))
4208 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4209
4210 new_weakdef = FALSE;
4211 if (dynamic
4212 && definition
4213 && (flags & BSF_WEAK) != 0
4214 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4215 && is_elf_hash_table (htab)
4216 && h->u.weakdef == NULL)
4217 {
4218 /* Keep a list of all weak defined non function symbols from
4219 a dynamic object, using the weakdef field. Later in this
4220 function we will set the weakdef field to the correct
4221 value. We only put non-function symbols from dynamic
4222 objects on this list, because that happens to be the only
4223 time we need to know the normal symbol corresponding to a
4224 weak symbol, and the information is time consuming to
4225 figure out. If the weakdef field is not already NULL,
4226 then this symbol was already defined by some previous
4227 dynamic object, and we will be using that previous
4228 definition anyhow. */
4229
4230 h->u.weakdef = weaks;
4231 weaks = h;
4232 new_weakdef = TRUE;
4233 }
4234
4235 /* Set the alignment of a common symbol. */
4236 if ((common || bfd_is_com_section (sec))
4237 && h->root.type == bfd_link_hash_common)
4238 {
4239 unsigned int align;
4240
4241 if (common)
4242 align = bfd_log2 (isym->st_value);
4243 else
4244 {
4245 /* The new symbol is a common symbol in a shared object.
4246 We need to get the alignment from the section. */
4247 align = new_sec->alignment_power;
4248 }
4249 if (align > old_alignment)
4250 h->root.u.c.p->alignment_power = align;
4251 else
4252 h->root.u.c.p->alignment_power = old_alignment;
4253 }
4254
4255 if (is_elf_hash_table (htab))
4256 {
4257 bfd_boolean dynsym;
4258
4259 /* Check the alignment when a common symbol is involved. This
4260 can change when a common symbol is overridden by a normal
4261 definition or a common symbol is ignored due to the old
4262 normal definition. We need to make sure the maximum
4263 alignment is maintained. */
4264 if ((old_alignment || common)
4265 && h->root.type != bfd_link_hash_common)
4266 {
4267 unsigned int common_align;
4268 unsigned int normal_align;
4269 unsigned int symbol_align;
4270 bfd *normal_bfd;
4271 bfd *common_bfd;
4272
4273 symbol_align = ffs (h->root.u.def.value) - 1;
4274 if (h->root.u.def.section->owner != NULL
4275 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4276 {
4277 normal_align = h->root.u.def.section->alignment_power;
4278 if (normal_align > symbol_align)
4279 normal_align = symbol_align;
4280 }
4281 else
4282 normal_align = symbol_align;
4283
4284 if (old_alignment)
4285 {
4286 common_align = old_alignment;
4287 common_bfd = old_bfd;
4288 normal_bfd = abfd;
4289 }
4290 else
4291 {
4292 common_align = bfd_log2 (isym->st_value);
4293 common_bfd = abfd;
4294 normal_bfd = old_bfd;
4295 }
4296
4297 if (normal_align < common_align)
4298 {
4299 /* PR binutils/2735 */
4300 if (normal_bfd == NULL)
4301 (*_bfd_error_handler)
4302 (_("Warning: alignment %u of common symbol `%s' in %B"
4303 " is greater than the alignment (%u) of its section %A"),
4304 common_bfd, h->root.u.def.section,
4305 1 << common_align, name, 1 << normal_align);
4306 else
4307 (*_bfd_error_handler)
4308 (_("Warning: alignment %u of symbol `%s' in %B"
4309 " is smaller than %u in %B"),
4310 normal_bfd, common_bfd,
4311 1 << normal_align, name, 1 << common_align);
4312 }
4313 }
4314
4315 /* Remember the symbol size if it isn't undefined. */
4316 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4317 && (definition || h->size == 0))
4318 {
4319 if (h->size != 0
4320 && h->size != isym->st_size
4321 && ! size_change_ok)
4322 (*_bfd_error_handler)
4323 (_("Warning: size of symbol `%s' changed"
4324 " from %lu in %B to %lu in %B"),
4325 old_bfd, abfd,
4326 name, (unsigned long) h->size,
4327 (unsigned long) isym->st_size);
4328
4329 h->size = isym->st_size;
4330 }
4331
4332 /* If this is a common symbol, then we always want H->SIZE
4333 to be the size of the common symbol. The code just above
4334 won't fix the size if a common symbol becomes larger. We
4335 don't warn about a size change here, because that is
4336 covered by --warn-common. Allow changed between different
4337 function types. */
4338 if (h->root.type == bfd_link_hash_common)
4339 h->size = h->root.u.c.size;
4340
4341 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4342 && (definition || h->type == STT_NOTYPE))
4343 {
4344 unsigned int type = ELF_ST_TYPE (isym->st_info);
4345
4346 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4347 symbol. */
4348 if (type == STT_GNU_IFUNC
4349 && (abfd->flags & DYNAMIC) != 0)
4350 type = STT_FUNC;
4351
4352 if (h->type != type)
4353 {
4354 if (h->type != STT_NOTYPE && ! type_change_ok)
4355 (*_bfd_error_handler)
4356 (_("Warning: type of symbol `%s' changed"
4357 " from %d to %d in %B"),
4358 abfd, name, h->type, type);
4359
4360 h->type = type;
4361 }
4362 }
4363
4364 /* Merge st_other field. */
4365 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4366
4367 /* Set a flag in the hash table entry indicating the type of
4368 reference or definition we just found. Keep a count of
4369 the number of dynamic symbols we find. A dynamic symbol
4370 is one which is referenced or defined by both a regular
4371 object and a shared object. */
4372 dynsym = FALSE;
4373 if (! dynamic)
4374 {
4375 if (! definition)
4376 {
4377 h->ref_regular = 1;
4378 if (bind != STB_WEAK)
4379 h->ref_regular_nonweak = 1;
4380 }
4381 else
4382 {
4383 h->def_regular = 1;
4384 if (h->def_dynamic)
4385 {
4386 h->def_dynamic = 0;
4387 h->ref_dynamic = 1;
4388 }
4389 }
4390
4391 /* If the indirect symbol has been forced local, don't
4392 make the real symbol dynamic. */
4393 if ((h == hi || !hi->forced_local)
4394 && (! info->executable
4395 || h->def_dynamic
4396 || h->ref_dynamic))
4397 dynsym = TRUE;
4398 }
4399 else
4400 {
4401 if (! definition)
4402 {
4403 h->ref_dynamic = 1;
4404 hi->ref_dynamic = 1;
4405 }
4406 else
4407 {
4408 h->def_dynamic = 1;
4409 h->dynamic_def = 1;
4410 hi->def_dynamic = 1;
4411 hi->dynamic_def = 1;
4412 }
4413
4414 /* If the indirect symbol has been forced local, don't
4415 make the real symbol dynamic. */
4416 if ((h == hi || !hi->forced_local)
4417 && (h->def_regular
4418 || h->ref_regular
4419 || (h->u.weakdef != NULL
4420 && ! new_weakdef
4421 && h->u.weakdef->dynindx != -1)))
4422 dynsym = TRUE;
4423 }
4424
4425 /* We don't want to make debug symbol dynamic. */
4426 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4427 dynsym = FALSE;
4428
4429 /* Nor should we make plugin symbols dynamic. */
4430 if ((abfd->flags & BFD_PLUGIN) != 0)
4431 dynsym = FALSE;
4432
4433 if (definition)
4434 h->target_internal = isym->st_target_internal;
4435
4436 /* Check to see if we need to add an indirect symbol for
4437 the default name. */
4438 if (definition || h->root.type == bfd_link_hash_common)
4439 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4440 &sec, &value, &dynsym,
4441 override))
4442 goto error_free_vers;
4443
4444 if (definition && !dynamic)
4445 {
4446 char *p = strchr (name, ELF_VER_CHR);
4447 if (p != NULL && p[1] != ELF_VER_CHR)
4448 {
4449 /* Queue non-default versions so that .symver x, x@FOO
4450 aliases can be checked. */
4451 if (!nondeflt_vers)
4452 {
4453 amt = ((isymend - isym + 1)
4454 * sizeof (struct elf_link_hash_entry *));
4455 nondeflt_vers =
4456 (struct elf_link_hash_entry **) bfd_malloc (amt);
4457 if (!nondeflt_vers)
4458 goto error_free_vers;
4459 }
4460 nondeflt_vers[nondeflt_vers_cnt++] = h;
4461 }
4462 }
4463
4464 if (dynsym && h->dynindx == -1)
4465 {
4466 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4467 goto error_free_vers;
4468 if (h->u.weakdef != NULL
4469 && ! new_weakdef
4470 && h->u.weakdef->dynindx == -1)
4471 {
4472 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4473 goto error_free_vers;
4474 }
4475 }
4476 else if (dynsym && h->dynindx != -1)
4477 /* If the symbol already has a dynamic index, but
4478 visibility says it should not be visible, turn it into
4479 a local symbol. */
4480 switch (ELF_ST_VISIBILITY (h->other))
4481 {
4482 case STV_INTERNAL:
4483 case STV_HIDDEN:
4484 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4485 dynsym = FALSE;
4486 break;
4487 }
4488
4489 if (!add_needed
4490 && definition
4491 && ((dynsym
4492 && h->ref_regular)
4493 || (h->ref_dynamic
4494 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4495 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4496 {
4497 int ret;
4498 const char *soname = elf_dt_name (abfd);
4499
4500 /* A symbol from a library loaded via DT_NEEDED of some
4501 other library is referenced by a regular object.
4502 Add a DT_NEEDED entry for it. Issue an error if
4503 --no-add-needed is used and the reference was not
4504 a weak one. */
4505 if (undef_bfd != NULL
4506 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4507 {
4508 (*_bfd_error_handler)
4509 (_("%B: undefined reference to symbol '%s'"),
4510 undef_bfd, name);
4511 (*_bfd_error_handler)
4512 (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4513 abfd, name);
4514 bfd_set_error (bfd_error_invalid_operation);
4515 goto error_free_vers;
4516 }
4517
4518 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4519 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4520
4521 add_needed = TRUE;
4522 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4523 if (ret < 0)
4524 goto error_free_vers;
4525
4526 BFD_ASSERT (ret == 0);
4527 }
4528 }
4529 }
4530
4531 if (extversym != NULL)
4532 {
4533 free (extversym);
4534 extversym = NULL;
4535 }
4536
4537 if (isymbuf != NULL)
4538 {
4539 free (isymbuf);
4540 isymbuf = NULL;
4541 }
4542
4543 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4544 {
4545 unsigned int i;
4546
4547 /* Restore the symbol table. */
4548 if (bed->as_needed_cleanup)
4549 (*bed->as_needed_cleanup) (abfd, info);
4550 old_hash = (char *) old_tab + tabsize;
4551 old_ent = (char *) old_hash + hashsize;
4552 sym_hash = elf_sym_hashes (abfd);
4553 htab->root.table.table = old_table;
4554 htab->root.table.size = old_size;
4555 htab->root.table.count = old_count;
4556 memcpy (htab->root.table.table, old_tab, tabsize);
4557 memcpy (sym_hash, old_hash, hashsize);
4558 htab->root.undefs = old_undefs;
4559 htab->root.undefs_tail = old_undefs_tail;
4560 for (i = 0; i < htab->root.table.size; i++)
4561 {
4562 struct bfd_hash_entry *p;
4563 struct elf_link_hash_entry *h;
4564 bfd_size_type size;
4565 unsigned int alignment_power;
4566
4567 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4568 {
4569 h = (struct elf_link_hash_entry *) p;
4570 if (h->root.type == bfd_link_hash_warning)
4571 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4572 if (h->dynindx >= old_dynsymcount)
4573 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4574
4575 /* Preserve the maximum alignment and size for common
4576 symbols even if this dynamic lib isn't on DT_NEEDED
4577 since it can still be loaded at the run-time by another
4578 dynamic lib. */
4579 if (h->root.type == bfd_link_hash_common)
4580 {
4581 size = h->root.u.c.size;
4582 alignment_power = h->root.u.c.p->alignment_power;
4583 }
4584 else
4585 {
4586 size = 0;
4587 alignment_power = 0;
4588 }
4589 memcpy (p, old_ent, htab->root.table.entsize);
4590 old_ent = (char *) old_ent + htab->root.table.entsize;
4591 h = (struct elf_link_hash_entry *) p;
4592 if (h->root.type == bfd_link_hash_warning)
4593 {
4594 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4595 old_ent = (char *) old_ent + htab->root.table.entsize;
4596 }
4597 else if (h->root.type == bfd_link_hash_common)
4598 {
4599 if (size > h->root.u.c.size)
4600 h->root.u.c.size = size;
4601 if (alignment_power > h->root.u.c.p->alignment_power)
4602 h->root.u.c.p->alignment_power = alignment_power;
4603 }
4604 }
4605 }
4606
4607 /* Make a special call to the linker "notice" function to
4608 tell it that symbols added for crefs may need to be removed. */
4609 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4610 notice_not_needed, 0, NULL))
4611 goto error_free_vers;
4612
4613 free (old_tab);
4614 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4615 alloc_mark);
4616 if (nondeflt_vers != NULL)
4617 free (nondeflt_vers);
4618 return TRUE;
4619 }
4620
4621 if (old_tab != NULL)
4622 {
4623 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4624 notice_needed, 0, NULL))
4625 goto error_free_vers;
4626 free (old_tab);
4627 old_tab = NULL;
4628 }
4629
4630 /* Now that all the symbols from this input file are created, handle
4631 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4632 if (nondeflt_vers != NULL)
4633 {
4634 bfd_size_type cnt, symidx;
4635
4636 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4637 {
4638 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4639 char *shortname, *p;
4640
4641 p = strchr (h->root.root.string, ELF_VER_CHR);
4642 if (p == NULL
4643 || (h->root.type != bfd_link_hash_defined
4644 && h->root.type != bfd_link_hash_defweak))
4645 continue;
4646
4647 amt = p - h->root.root.string;
4648 shortname = (char *) bfd_malloc (amt + 1);
4649 if (!shortname)
4650 goto error_free_vers;
4651 memcpy (shortname, h->root.root.string, amt);
4652 shortname[amt] = '\0';
4653
4654 hi = (struct elf_link_hash_entry *)
4655 bfd_link_hash_lookup (&htab->root, shortname,
4656 FALSE, FALSE, FALSE);
4657 if (hi != NULL
4658 && hi->root.type == h->root.type
4659 && hi->root.u.def.value == h->root.u.def.value
4660 && hi->root.u.def.section == h->root.u.def.section)
4661 {
4662 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4663 hi->root.type = bfd_link_hash_indirect;
4664 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4665 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4666 sym_hash = elf_sym_hashes (abfd);
4667 if (sym_hash)
4668 for (symidx = 0; symidx < extsymcount; ++symidx)
4669 if (sym_hash[symidx] == hi)
4670 {
4671 sym_hash[symidx] = h;
4672 break;
4673 }
4674 }
4675 free (shortname);
4676 }
4677 free (nondeflt_vers);
4678 nondeflt_vers = NULL;
4679 }
4680
4681 /* Now set the weakdefs field correctly for all the weak defined
4682 symbols we found. The only way to do this is to search all the
4683 symbols. Since we only need the information for non functions in
4684 dynamic objects, that's the only time we actually put anything on
4685 the list WEAKS. We need this information so that if a regular
4686 object refers to a symbol defined weakly in a dynamic object, the
4687 real symbol in the dynamic object is also put in the dynamic
4688 symbols; we also must arrange for both symbols to point to the
4689 same memory location. We could handle the general case of symbol
4690 aliasing, but a general symbol alias can only be generated in
4691 assembler code, handling it correctly would be very time
4692 consuming, and other ELF linkers don't handle general aliasing
4693 either. */
4694 if (weaks != NULL)
4695 {
4696 struct elf_link_hash_entry **hpp;
4697 struct elf_link_hash_entry **hppend;
4698 struct elf_link_hash_entry **sorted_sym_hash;
4699 struct elf_link_hash_entry *h;
4700 size_t sym_count;
4701
4702 /* Since we have to search the whole symbol list for each weak
4703 defined symbol, search time for N weak defined symbols will be
4704 O(N^2). Binary search will cut it down to O(NlogN). */
4705 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4706 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4707 if (sorted_sym_hash == NULL)
4708 goto error_return;
4709 sym_hash = sorted_sym_hash;
4710 hpp = elf_sym_hashes (abfd);
4711 hppend = hpp + extsymcount;
4712 sym_count = 0;
4713 for (; hpp < hppend; hpp++)
4714 {
4715 h = *hpp;
4716 if (h != NULL
4717 && h->root.type == bfd_link_hash_defined
4718 && !bed->is_function_type (h->type))
4719 {
4720 *sym_hash = h;
4721 sym_hash++;
4722 sym_count++;
4723 }
4724 }
4725
4726 qsort (sorted_sym_hash, sym_count,
4727 sizeof (struct elf_link_hash_entry *),
4728 elf_sort_symbol);
4729
4730 while (weaks != NULL)
4731 {
4732 struct elf_link_hash_entry *hlook;
4733 asection *slook;
4734 bfd_vma vlook;
4735 size_t i, j, idx;
4736
4737 hlook = weaks;
4738 weaks = hlook->u.weakdef;
4739 hlook->u.weakdef = NULL;
4740
4741 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4742 || hlook->root.type == bfd_link_hash_defweak
4743 || hlook->root.type == bfd_link_hash_common
4744 || hlook->root.type == bfd_link_hash_indirect);
4745 slook = hlook->root.u.def.section;
4746 vlook = hlook->root.u.def.value;
4747
4748 i = 0;
4749 j = sym_count;
4750 while (i != j)
4751 {
4752 bfd_signed_vma vdiff;
4753 idx = (i + j) / 2;
4754 h = sorted_sym_hash[idx];
4755 vdiff = vlook - h->root.u.def.value;
4756 if (vdiff < 0)
4757 j = idx;
4758 else if (vdiff > 0)
4759 i = idx + 1;
4760 else
4761 {
4762 long sdiff = slook->id - h->root.u.def.section->id;
4763 if (sdiff < 0)
4764 j = idx;
4765 else if (sdiff > 0)
4766 i = idx + 1;
4767 else
4768 break;
4769 }
4770 }
4771
4772 /* We didn't find a value/section match. */
4773 if (i == j)
4774 continue;
4775
4776 /* With multiple aliases, or when the weak symbol is already
4777 strongly defined, we have multiple matching symbols and
4778 the binary search above may land on any of them. Step
4779 one past the matching symbol(s). */
4780 while (++idx != j)
4781 {
4782 h = sorted_sym_hash[idx];
4783 if (h->root.u.def.section != slook
4784 || h->root.u.def.value != vlook)
4785 break;
4786 }
4787
4788 /* Now look back over the aliases. Since we sorted by size
4789 as well as value and section, we'll choose the one with
4790 the largest size. */
4791 while (idx-- != i)
4792 {
4793 h = sorted_sym_hash[idx];
4794
4795 /* Stop if value or section doesn't match. */
4796 if (h->root.u.def.section != slook
4797 || h->root.u.def.value != vlook)
4798 break;
4799 else if (h != hlook)
4800 {
4801 hlook->u.weakdef = h;
4802
4803 /* If the weak definition is in the list of dynamic
4804 symbols, make sure the real definition is put
4805 there as well. */
4806 if (hlook->dynindx != -1 && h->dynindx == -1)
4807 {
4808 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4809 {
4810 err_free_sym_hash:
4811 free (sorted_sym_hash);
4812 goto error_return;
4813 }
4814 }
4815
4816 /* If the real definition is in the list of dynamic
4817 symbols, make sure the weak definition is put
4818 there as well. If we don't do this, then the
4819 dynamic loader might not merge the entries for the
4820 real definition and the weak definition. */
4821 if (h->dynindx != -1 && hlook->dynindx == -1)
4822 {
4823 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4824 goto err_free_sym_hash;
4825 }
4826 break;
4827 }
4828 }
4829 }
4830
4831 free (sorted_sym_hash);
4832 }
4833
4834 if (bed->check_directives
4835 && !(*bed->check_directives) (abfd, info))
4836 return FALSE;
4837
4838 /* If this object is the same format as the output object, and it is
4839 not a shared library, then let the backend look through the
4840 relocs.
4841
4842 This is required to build global offset table entries and to
4843 arrange for dynamic relocs. It is not required for the
4844 particular common case of linking non PIC code, even when linking
4845 against shared libraries, but unfortunately there is no way of
4846 knowing whether an object file has been compiled PIC or not.
4847 Looking through the relocs is not particularly time consuming.
4848 The problem is that we must either (1) keep the relocs in memory,
4849 which causes the linker to require additional runtime memory or
4850 (2) read the relocs twice from the input file, which wastes time.
4851 This would be a good case for using mmap.
4852
4853 I have no idea how to handle linking PIC code into a file of a
4854 different format. It probably can't be done. */
4855 if (! dynamic
4856 && is_elf_hash_table (htab)
4857 && bed->check_relocs != NULL
4858 && elf_object_id (abfd) == elf_hash_table_id (htab)
4859 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4860 {
4861 asection *o;
4862
4863 for (o = abfd->sections; o != NULL; o = o->next)
4864 {
4865 Elf_Internal_Rela *internal_relocs;
4866 bfd_boolean ok;
4867
4868 if ((o->flags & SEC_RELOC) == 0
4869 || o->reloc_count == 0
4870 || ((info->strip == strip_all || info->strip == strip_debugger)
4871 && (o->flags & SEC_DEBUGGING) != 0)
4872 || bfd_is_abs_section (o->output_section))
4873 continue;
4874
4875 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4876 info->keep_memory);
4877 if (internal_relocs == NULL)
4878 goto error_return;
4879
4880 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4881
4882 if (elf_section_data (o)->relocs != internal_relocs)
4883 free (internal_relocs);
4884
4885 if (! ok)
4886 goto error_return;
4887 }
4888 }
4889
4890 /* If this is a non-traditional link, try to optimize the handling
4891 of the .stab/.stabstr sections. */
4892 if (! dynamic
4893 && ! info->traditional_format
4894 && is_elf_hash_table (htab)
4895 && (info->strip != strip_all && info->strip != strip_debugger))
4896 {
4897 asection *stabstr;
4898
4899 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4900 if (stabstr != NULL)
4901 {
4902 bfd_size_type string_offset = 0;
4903 asection *stab;
4904
4905 for (stab = abfd->sections; stab; stab = stab->next)
4906 if (CONST_STRNEQ (stab->name, ".stab")
4907 && (!stab->name[5] ||
4908 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4909 && (stab->flags & SEC_MERGE) == 0
4910 && !bfd_is_abs_section (stab->output_section))
4911 {
4912 struct bfd_elf_section_data *secdata;
4913
4914 secdata = elf_section_data (stab);
4915 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4916 stabstr, &secdata->sec_info,
4917 &string_offset))
4918 goto error_return;
4919 if (secdata->sec_info)
4920 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4921 }
4922 }
4923 }
4924
4925 if (is_elf_hash_table (htab) && add_needed)
4926 {
4927 /* Add this bfd to the loaded list. */
4928 struct elf_link_loaded_list *n;
4929
4930 n = (struct elf_link_loaded_list *)
4931 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4932 if (n == NULL)
4933 goto error_return;
4934 n->abfd = abfd;
4935 n->next = htab->loaded;
4936 htab->loaded = n;
4937 }
4938
4939 return TRUE;
4940
4941 error_free_vers:
4942 if (old_tab != NULL)
4943 free (old_tab);
4944 if (nondeflt_vers != NULL)
4945 free (nondeflt_vers);
4946 if (extversym != NULL)
4947 free (extversym);
4948 error_free_sym:
4949 if (isymbuf != NULL)
4950 free (isymbuf);
4951 error_return:
4952 return FALSE;
4953 }
4954
4955 /* Return the linker hash table entry of a symbol that might be
4956 satisfied by an archive symbol. Return -1 on error. */
4957
4958 struct elf_link_hash_entry *
4959 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4960 struct bfd_link_info *info,
4961 const char *name)
4962 {
4963 struct elf_link_hash_entry *h;
4964 char *p, *copy;
4965 size_t len, first;
4966
4967 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4968 if (h != NULL)
4969 return h;
4970
4971 /* If this is a default version (the name contains @@), look up the
4972 symbol again with only one `@' as well as without the version.
4973 The effect is that references to the symbol with and without the
4974 version will be matched by the default symbol in the archive. */
4975
4976 p = strchr (name, ELF_VER_CHR);
4977 if (p == NULL || p[1] != ELF_VER_CHR)
4978 return h;
4979
4980 /* First check with only one `@'. */
4981 len = strlen (name);
4982 copy = (char *) bfd_alloc (abfd, len);
4983 if (copy == NULL)
4984 return (struct elf_link_hash_entry *) 0 - 1;
4985
4986 first = p - name + 1;
4987 memcpy (copy, name, first);
4988 memcpy (copy + first, name + first + 1, len - first);
4989
4990 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4991 if (h == NULL)
4992 {
4993 /* We also need to check references to the symbol without the
4994 version. */
4995 copy[first - 1] = '\0';
4996 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4997 FALSE, FALSE, TRUE);
4998 }
4999
5000 bfd_release (abfd, copy);
5001 return h;
5002 }
5003
5004 /* Add symbols from an ELF archive file to the linker hash table. We
5005 don't use _bfd_generic_link_add_archive_symbols because of a
5006 problem which arises on UnixWare. The UnixWare libc.so is an
5007 archive which includes an entry libc.so.1 which defines a bunch of
5008 symbols. The libc.so archive also includes a number of other
5009 object files, which also define symbols, some of which are the same
5010 as those defined in libc.so.1. Correct linking requires that we
5011 consider each object file in turn, and include it if it defines any
5012 symbols we need. _bfd_generic_link_add_archive_symbols does not do
5013 this; it looks through the list of undefined symbols, and includes
5014 any object file which defines them. When this algorithm is used on
5015 UnixWare, it winds up pulling in libc.so.1 early and defining a
5016 bunch of symbols. This means that some of the other objects in the
5017 archive are not included in the link, which is incorrect since they
5018 precede libc.so.1 in the archive.
5019
5020 Fortunately, ELF archive handling is simpler than that done by
5021 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5022 oddities. In ELF, if we find a symbol in the archive map, and the
5023 symbol is currently undefined, we know that we must pull in that
5024 object file.
5025
5026 Unfortunately, we do have to make multiple passes over the symbol
5027 table until nothing further is resolved. */
5028
5029 static bfd_boolean
5030 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5031 {
5032 symindex c;
5033 bfd_boolean *defined = NULL;
5034 bfd_boolean *included = NULL;
5035 carsym *symdefs;
5036 bfd_boolean loop;
5037 bfd_size_type amt;
5038 const struct elf_backend_data *bed;
5039 struct elf_link_hash_entry * (*archive_symbol_lookup)
5040 (bfd *, struct bfd_link_info *, const char *);
5041
5042 if (! bfd_has_map (abfd))
5043 {
5044 /* An empty archive is a special case. */
5045 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5046 return TRUE;
5047 bfd_set_error (bfd_error_no_armap);
5048 return FALSE;
5049 }
5050
5051 /* Keep track of all symbols we know to be already defined, and all
5052 files we know to be already included. This is to speed up the
5053 second and subsequent passes. */
5054 c = bfd_ardata (abfd)->symdef_count;
5055 if (c == 0)
5056 return TRUE;
5057 amt = c;
5058 amt *= sizeof (bfd_boolean);
5059 defined = (bfd_boolean *) bfd_zmalloc (amt);
5060 included = (bfd_boolean *) bfd_zmalloc (amt);
5061 if (defined == NULL || included == NULL)
5062 goto error_return;
5063
5064 symdefs = bfd_ardata (abfd)->symdefs;
5065 bed = get_elf_backend_data (abfd);
5066 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5067
5068 do
5069 {
5070 file_ptr last;
5071 symindex i;
5072 carsym *symdef;
5073 carsym *symdefend;
5074
5075 loop = FALSE;
5076 last = -1;
5077
5078 symdef = symdefs;
5079 symdefend = symdef + c;
5080 for (i = 0; symdef < symdefend; symdef++, i++)
5081 {
5082 struct elf_link_hash_entry *h;
5083 bfd *element;
5084 struct bfd_link_hash_entry *undefs_tail;
5085 symindex mark;
5086
5087 if (defined[i] || included[i])
5088 continue;
5089 if (symdef->file_offset == last)
5090 {
5091 included[i] = TRUE;
5092 continue;
5093 }
5094
5095 h = archive_symbol_lookup (abfd, info, symdef->name);
5096 if (h == (struct elf_link_hash_entry *) 0 - 1)
5097 goto error_return;
5098
5099 if (h == NULL)
5100 continue;
5101
5102 if (h->root.type == bfd_link_hash_common)
5103 {
5104 /* We currently have a common symbol. The archive map contains
5105 a reference to this symbol, so we may want to include it. We
5106 only want to include it however, if this archive element
5107 contains a definition of the symbol, not just another common
5108 declaration of it.
5109
5110 Unfortunately some archivers (including GNU ar) will put
5111 declarations of common symbols into their archive maps, as
5112 well as real definitions, so we cannot just go by the archive
5113 map alone. Instead we must read in the element's symbol
5114 table and check that to see what kind of symbol definition
5115 this is. */
5116 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5117 continue;
5118 }
5119 else if (h->root.type != bfd_link_hash_undefined)
5120 {
5121 if (h->root.type != bfd_link_hash_undefweak)
5122 defined[i] = TRUE;
5123 continue;
5124 }
5125
5126 /* We need to include this archive member. */
5127 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5128 if (element == NULL)
5129 goto error_return;
5130
5131 if (! bfd_check_format (element, bfd_object))
5132 goto error_return;
5133
5134 /* Doublecheck that we have not included this object
5135 already--it should be impossible, but there may be
5136 something wrong with the archive. */
5137 if (element->archive_pass != 0)
5138 {
5139 bfd_set_error (bfd_error_bad_value);
5140 goto error_return;
5141 }
5142 element->archive_pass = 1;
5143
5144 undefs_tail = info->hash->undefs_tail;
5145
5146 if (!(*info->callbacks
5147 ->add_archive_element) (info, element, symdef->name, &element))
5148 goto error_return;
5149 if (!bfd_link_add_symbols (element, info))
5150 goto error_return;
5151
5152 /* If there are any new undefined symbols, we need to make
5153 another pass through the archive in order to see whether
5154 they can be defined. FIXME: This isn't perfect, because
5155 common symbols wind up on undefs_tail and because an
5156 undefined symbol which is defined later on in this pass
5157 does not require another pass. This isn't a bug, but it
5158 does make the code less efficient than it could be. */
5159 if (undefs_tail != info->hash->undefs_tail)
5160 loop = TRUE;
5161
5162 /* Look backward to mark all symbols from this object file
5163 which we have already seen in this pass. */
5164 mark = i;
5165 do
5166 {
5167 included[mark] = TRUE;
5168 if (mark == 0)
5169 break;
5170 --mark;
5171 }
5172 while (symdefs[mark].file_offset == symdef->file_offset);
5173
5174 /* We mark subsequent symbols from this object file as we go
5175 on through the loop. */
5176 last = symdef->file_offset;
5177 }
5178 }
5179 while (loop);
5180
5181 free (defined);
5182 free (included);
5183
5184 return TRUE;
5185
5186 error_return:
5187 if (defined != NULL)
5188 free (defined);
5189 if (included != NULL)
5190 free (included);
5191 return FALSE;
5192 }
5193
5194 /* Given an ELF BFD, add symbols to the global hash table as
5195 appropriate. */
5196
5197 bfd_boolean
5198 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5199 {
5200 switch (bfd_get_format (abfd))
5201 {
5202 case bfd_object:
5203 return elf_link_add_object_symbols (abfd, info);
5204 case bfd_archive:
5205 return elf_link_add_archive_symbols (abfd, info);
5206 default:
5207 bfd_set_error (bfd_error_wrong_format);
5208 return FALSE;
5209 }
5210 }
5211 \f
5212 struct hash_codes_info
5213 {
5214 unsigned long *hashcodes;
5215 bfd_boolean error;
5216 };
5217
5218 /* This function will be called though elf_link_hash_traverse to store
5219 all hash value of the exported symbols in an array. */
5220
5221 static bfd_boolean
5222 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5223 {
5224 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5225 const char *name;
5226 char *p;
5227 unsigned long ha;
5228 char *alc = NULL;
5229
5230 /* Ignore indirect symbols. These are added by the versioning code. */
5231 if (h->dynindx == -1)
5232 return TRUE;
5233
5234 name = h->root.root.string;
5235 p = strchr (name, ELF_VER_CHR);
5236 if (p != NULL)
5237 {
5238 alc = (char *) bfd_malloc (p - name + 1);
5239 if (alc == NULL)
5240 {
5241 inf->error = TRUE;
5242 return FALSE;
5243 }
5244 memcpy (alc, name, p - name);
5245 alc[p - name] = '\0';
5246 name = alc;
5247 }
5248
5249 /* Compute the hash value. */
5250 ha = bfd_elf_hash (name);
5251
5252 /* Store the found hash value in the array given as the argument. */
5253 *(inf->hashcodes)++ = ha;
5254
5255 /* And store it in the struct so that we can put it in the hash table
5256 later. */
5257 h->u.elf_hash_value = ha;
5258
5259 if (alc != NULL)
5260 free (alc);
5261
5262 return TRUE;
5263 }
5264
5265 struct collect_gnu_hash_codes
5266 {
5267 bfd *output_bfd;
5268 const struct elf_backend_data *bed;
5269 unsigned long int nsyms;
5270 unsigned long int maskbits;
5271 unsigned long int *hashcodes;
5272 unsigned long int *hashval;
5273 unsigned long int *indx;
5274 unsigned long int *counts;
5275 bfd_vma *bitmask;
5276 bfd_byte *contents;
5277 long int min_dynindx;
5278 unsigned long int bucketcount;
5279 unsigned long int symindx;
5280 long int local_indx;
5281 long int shift1, shift2;
5282 unsigned long int mask;
5283 bfd_boolean error;
5284 };
5285
5286 /* This function will be called though elf_link_hash_traverse to store
5287 all hash value of the exported symbols in an array. */
5288
5289 static bfd_boolean
5290 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5291 {
5292 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5293 const char *name;
5294 char *p;
5295 unsigned long ha;
5296 char *alc = NULL;
5297
5298 /* Ignore indirect symbols. These are added by the versioning code. */
5299 if (h->dynindx == -1)
5300 return TRUE;
5301
5302 /* Ignore also local symbols and undefined symbols. */
5303 if (! (*s->bed->elf_hash_symbol) (h))
5304 return TRUE;
5305
5306 name = h->root.root.string;
5307 p = strchr (name, ELF_VER_CHR);
5308 if (p != NULL)
5309 {
5310 alc = (char *) bfd_malloc (p - name + 1);
5311 if (alc == NULL)
5312 {
5313 s->error = TRUE;
5314 return FALSE;
5315 }
5316 memcpy (alc, name, p - name);
5317 alc[p - name] = '\0';
5318 name = alc;
5319 }
5320
5321 /* Compute the hash value. */
5322 ha = bfd_elf_gnu_hash (name);
5323
5324 /* Store the found hash value in the array for compute_bucket_count,
5325 and also for .dynsym reordering purposes. */
5326 s->hashcodes[s->nsyms] = ha;
5327 s->hashval[h->dynindx] = ha;
5328 ++s->nsyms;
5329 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5330 s->min_dynindx = h->dynindx;
5331
5332 if (alc != NULL)
5333 free (alc);
5334
5335 return TRUE;
5336 }
5337
5338 /* This function will be called though elf_link_hash_traverse to do
5339 final dynaminc symbol renumbering. */
5340
5341 static bfd_boolean
5342 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5343 {
5344 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5345 unsigned long int bucket;
5346 unsigned long int val;
5347
5348 /* Ignore indirect symbols. */
5349 if (h->dynindx == -1)
5350 return TRUE;
5351
5352 /* Ignore also local symbols and undefined symbols. */
5353 if (! (*s->bed->elf_hash_symbol) (h))
5354 {
5355 if (h->dynindx >= s->min_dynindx)
5356 h->dynindx = s->local_indx++;
5357 return TRUE;
5358 }
5359
5360 bucket = s->hashval[h->dynindx] % s->bucketcount;
5361 val = (s->hashval[h->dynindx] >> s->shift1)
5362 & ((s->maskbits >> s->shift1) - 1);
5363 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5364 s->bitmask[val]
5365 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5366 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5367 if (s->counts[bucket] == 1)
5368 /* Last element terminates the chain. */
5369 val |= 1;
5370 bfd_put_32 (s->output_bfd, val,
5371 s->contents + (s->indx[bucket] - s->symindx) * 4);
5372 --s->counts[bucket];
5373 h->dynindx = s->indx[bucket]++;
5374 return TRUE;
5375 }
5376
5377 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5378
5379 bfd_boolean
5380 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5381 {
5382 return !(h->forced_local
5383 || h->root.type == bfd_link_hash_undefined
5384 || h->root.type == bfd_link_hash_undefweak
5385 || ((h->root.type == bfd_link_hash_defined
5386 || h->root.type == bfd_link_hash_defweak)
5387 && h->root.u.def.section->output_section == NULL));
5388 }
5389
5390 /* Array used to determine the number of hash table buckets to use
5391 based on the number of symbols there are. If there are fewer than
5392 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5393 fewer than 37 we use 17 buckets, and so forth. We never use more
5394 than 32771 buckets. */
5395
5396 static const size_t elf_buckets[] =
5397 {
5398 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5399 16411, 32771, 0
5400 };
5401
5402 /* Compute bucket count for hashing table. We do not use a static set
5403 of possible tables sizes anymore. Instead we determine for all
5404 possible reasonable sizes of the table the outcome (i.e., the
5405 number of collisions etc) and choose the best solution. The
5406 weighting functions are not too simple to allow the table to grow
5407 without bounds. Instead one of the weighting factors is the size.
5408 Therefore the result is always a good payoff between few collisions
5409 (= short chain lengths) and table size. */
5410 static size_t
5411 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5412 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5413 unsigned long int nsyms,
5414 int gnu_hash)
5415 {
5416 size_t best_size = 0;
5417 unsigned long int i;
5418
5419 /* We have a problem here. The following code to optimize the table
5420 size requires an integer type with more the 32 bits. If
5421 BFD_HOST_U_64_BIT is set we know about such a type. */
5422 #ifdef BFD_HOST_U_64_BIT
5423 if (info->optimize)
5424 {
5425 size_t minsize;
5426 size_t maxsize;
5427 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5428 bfd *dynobj = elf_hash_table (info)->dynobj;
5429 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5430 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5431 unsigned long int *counts;
5432 bfd_size_type amt;
5433 unsigned int no_improvement_count = 0;
5434
5435 /* Possible optimization parameters: if we have NSYMS symbols we say
5436 that the hashing table must at least have NSYMS/4 and at most
5437 2*NSYMS buckets. */
5438 minsize = nsyms / 4;
5439 if (minsize == 0)
5440 minsize = 1;
5441 best_size = maxsize = nsyms * 2;
5442 if (gnu_hash)
5443 {
5444 if (minsize < 2)
5445 minsize = 2;
5446 if ((best_size & 31) == 0)
5447 ++best_size;
5448 }
5449
5450 /* Create array where we count the collisions in. We must use bfd_malloc
5451 since the size could be large. */
5452 amt = maxsize;
5453 amt *= sizeof (unsigned long int);
5454 counts = (unsigned long int *) bfd_malloc (amt);
5455 if (counts == NULL)
5456 return 0;
5457
5458 /* Compute the "optimal" size for the hash table. The criteria is a
5459 minimal chain length. The minor criteria is (of course) the size
5460 of the table. */
5461 for (i = minsize; i < maxsize; ++i)
5462 {
5463 /* Walk through the array of hashcodes and count the collisions. */
5464 BFD_HOST_U_64_BIT max;
5465 unsigned long int j;
5466 unsigned long int fact;
5467
5468 if (gnu_hash && (i & 31) == 0)
5469 continue;
5470
5471 memset (counts, '\0', i * sizeof (unsigned long int));
5472
5473 /* Determine how often each hash bucket is used. */
5474 for (j = 0; j < nsyms; ++j)
5475 ++counts[hashcodes[j] % i];
5476
5477 /* For the weight function we need some information about the
5478 pagesize on the target. This is information need not be 100%
5479 accurate. Since this information is not available (so far) we
5480 define it here to a reasonable default value. If it is crucial
5481 to have a better value some day simply define this value. */
5482 # ifndef BFD_TARGET_PAGESIZE
5483 # define BFD_TARGET_PAGESIZE (4096)
5484 # endif
5485
5486 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5487 and the chains. */
5488 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5489
5490 # if 1
5491 /* Variant 1: optimize for short chains. We add the squares
5492 of all the chain lengths (which favors many small chain
5493 over a few long chains). */
5494 for (j = 0; j < i; ++j)
5495 max += counts[j] * counts[j];
5496
5497 /* This adds penalties for the overall size of the table. */
5498 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5499 max *= fact * fact;
5500 # else
5501 /* Variant 2: Optimize a lot more for small table. Here we
5502 also add squares of the size but we also add penalties for
5503 empty slots (the +1 term). */
5504 for (j = 0; j < i; ++j)
5505 max += (1 + counts[j]) * (1 + counts[j]);
5506
5507 /* The overall size of the table is considered, but not as
5508 strong as in variant 1, where it is squared. */
5509 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5510 max *= fact;
5511 # endif
5512
5513 /* Compare with current best results. */
5514 if (max < best_chlen)
5515 {
5516 best_chlen = max;
5517 best_size = i;
5518 no_improvement_count = 0;
5519 }
5520 /* PR 11843: Avoid futile long searches for the best bucket size
5521 when there are a large number of symbols. */
5522 else if (++no_improvement_count == 100)
5523 break;
5524 }
5525
5526 free (counts);
5527 }
5528 else
5529 #endif /* defined (BFD_HOST_U_64_BIT) */
5530 {
5531 /* This is the fallback solution if no 64bit type is available or if we
5532 are not supposed to spend much time on optimizations. We select the
5533 bucket count using a fixed set of numbers. */
5534 for (i = 0; elf_buckets[i] != 0; i++)
5535 {
5536 best_size = elf_buckets[i];
5537 if (nsyms < elf_buckets[i + 1])
5538 break;
5539 }
5540 if (gnu_hash && best_size < 2)
5541 best_size = 2;
5542 }
5543
5544 return best_size;
5545 }
5546
5547 /* Size any SHT_GROUP section for ld -r. */
5548
5549 bfd_boolean
5550 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5551 {
5552 bfd *ibfd;
5553
5554 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5555 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5556 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5557 return FALSE;
5558 return TRUE;
5559 }
5560
5561 /* Set up the sizes and contents of the ELF dynamic sections. This is
5562 called by the ELF linker emulation before_allocation routine. We
5563 must set the sizes of the sections before the linker sets the
5564 addresses of the various sections. */
5565
5566 bfd_boolean
5567 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5568 const char *soname,
5569 const char *rpath,
5570 const char *filter_shlib,
5571 const char *audit,
5572 const char *depaudit,
5573 const char * const *auxiliary_filters,
5574 struct bfd_link_info *info,
5575 asection **sinterpptr)
5576 {
5577 bfd_size_type soname_indx;
5578 bfd *dynobj;
5579 const struct elf_backend_data *bed;
5580 struct elf_info_failed asvinfo;
5581
5582 *sinterpptr = NULL;
5583
5584 soname_indx = (bfd_size_type) -1;
5585
5586 if (!is_elf_hash_table (info->hash))
5587 return TRUE;
5588
5589 bed = get_elf_backend_data (output_bfd);
5590 if (info->execstack)
5591 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5592 else if (info->noexecstack)
5593 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5594 else
5595 {
5596 bfd *inputobj;
5597 asection *notesec = NULL;
5598 int exec = 0;
5599
5600 for (inputobj = info->input_bfds;
5601 inputobj;
5602 inputobj = inputobj->link_next)
5603 {
5604 asection *s;
5605
5606 if (inputobj->flags
5607 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5608 continue;
5609 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5610 if (s)
5611 {
5612 if (s->flags & SEC_CODE)
5613 exec = PF_X;
5614 notesec = s;
5615 }
5616 else if (bed->default_execstack)
5617 exec = PF_X;
5618 }
5619 if (notesec)
5620 {
5621 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5622 if (exec && info->relocatable
5623 && notesec->output_section != bfd_abs_section_ptr)
5624 notesec->output_section->flags |= SEC_CODE;
5625 }
5626 }
5627
5628 /* Any syms created from now on start with -1 in
5629 got.refcount/offset and plt.refcount/offset. */
5630 elf_hash_table (info)->init_got_refcount
5631 = elf_hash_table (info)->init_got_offset;
5632 elf_hash_table (info)->init_plt_refcount
5633 = elf_hash_table (info)->init_plt_offset;
5634
5635 if (info->relocatable
5636 && !_bfd_elf_size_group_sections (info))
5637 return FALSE;
5638
5639 /* The backend may have to create some sections regardless of whether
5640 we're dynamic or not. */
5641 if (bed->elf_backend_always_size_sections
5642 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5643 return FALSE;
5644
5645 dynobj = elf_hash_table (info)->dynobj;
5646
5647 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5648 {
5649 struct elf_info_failed eif;
5650 struct elf_link_hash_entry *h;
5651 asection *dynstr;
5652 struct bfd_elf_version_tree *t;
5653 struct bfd_elf_version_expr *d;
5654 asection *s;
5655 bfd_boolean all_defined;
5656
5657 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5658 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5659
5660 if (soname != NULL)
5661 {
5662 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5663 soname, TRUE);
5664 if (soname_indx == (bfd_size_type) -1
5665 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5666 return FALSE;
5667 }
5668
5669 if (info->symbolic)
5670 {
5671 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5672 return FALSE;
5673 info->flags |= DF_SYMBOLIC;
5674 }
5675
5676 if (rpath != NULL)
5677 {
5678 bfd_size_type indx;
5679
5680 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5681 TRUE);
5682 if (indx == (bfd_size_type) -1
5683 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5684 return FALSE;
5685
5686 if (info->new_dtags)
5687 {
5688 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5689 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5690 return FALSE;
5691 }
5692 }
5693
5694 if (filter_shlib != NULL)
5695 {
5696 bfd_size_type indx;
5697
5698 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5699 filter_shlib, TRUE);
5700 if (indx == (bfd_size_type) -1
5701 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5702 return FALSE;
5703 }
5704
5705 if (auxiliary_filters != NULL)
5706 {
5707 const char * const *p;
5708
5709 for (p = auxiliary_filters; *p != NULL; p++)
5710 {
5711 bfd_size_type indx;
5712
5713 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5714 *p, TRUE);
5715 if (indx == (bfd_size_type) -1
5716 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5717 return FALSE;
5718 }
5719 }
5720
5721 if (audit != NULL)
5722 {
5723 bfd_size_type indx;
5724
5725 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5726 TRUE);
5727 if (indx == (bfd_size_type) -1
5728 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5729 return FALSE;
5730 }
5731
5732 if (depaudit != NULL)
5733 {
5734 bfd_size_type indx;
5735
5736 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5737 TRUE);
5738 if (indx == (bfd_size_type) -1
5739 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5740 return FALSE;
5741 }
5742
5743 eif.info = info;
5744 eif.failed = FALSE;
5745
5746 /* If we are supposed to export all symbols into the dynamic symbol
5747 table (this is not the normal case), then do so. */
5748 if (info->export_dynamic
5749 || (info->executable && info->dynamic))
5750 {
5751 elf_link_hash_traverse (elf_hash_table (info),
5752 _bfd_elf_export_symbol,
5753 &eif);
5754 if (eif.failed)
5755 return FALSE;
5756 }
5757
5758 /* Make all global versions with definition. */
5759 for (t = info->version_info; t != NULL; t = t->next)
5760 for (d = t->globals.list; d != NULL; d = d->next)
5761 if (!d->symver && d->literal)
5762 {
5763 const char *verstr, *name;
5764 size_t namelen, verlen, newlen;
5765 char *newname, *p, leading_char;
5766 struct elf_link_hash_entry *newh;
5767
5768 leading_char = bfd_get_symbol_leading_char (output_bfd);
5769 name = d->pattern;
5770 namelen = strlen (name) + (leading_char != '\0');
5771 verstr = t->name;
5772 verlen = strlen (verstr);
5773 newlen = namelen + verlen + 3;
5774
5775 newname = (char *) bfd_malloc (newlen);
5776 if (newname == NULL)
5777 return FALSE;
5778 newname[0] = leading_char;
5779 memcpy (newname + (leading_char != '\0'), name, namelen);
5780
5781 /* Check the hidden versioned definition. */
5782 p = newname + namelen;
5783 *p++ = ELF_VER_CHR;
5784 memcpy (p, verstr, verlen + 1);
5785 newh = elf_link_hash_lookup (elf_hash_table (info),
5786 newname, FALSE, FALSE,
5787 FALSE);
5788 if (newh == NULL
5789 || (newh->root.type != bfd_link_hash_defined
5790 && newh->root.type != bfd_link_hash_defweak))
5791 {
5792 /* Check the default versioned definition. */
5793 *p++ = ELF_VER_CHR;
5794 memcpy (p, verstr, verlen + 1);
5795 newh = elf_link_hash_lookup (elf_hash_table (info),
5796 newname, FALSE, FALSE,
5797 FALSE);
5798 }
5799 free (newname);
5800
5801 /* Mark this version if there is a definition and it is
5802 not defined in a shared object. */
5803 if (newh != NULL
5804 && !newh->def_dynamic
5805 && (newh->root.type == bfd_link_hash_defined
5806 || newh->root.type == bfd_link_hash_defweak))
5807 d->symver = 1;
5808 }
5809
5810 /* Attach all the symbols to their version information. */
5811 asvinfo.info = info;
5812 asvinfo.failed = FALSE;
5813
5814 elf_link_hash_traverse (elf_hash_table (info),
5815 _bfd_elf_link_assign_sym_version,
5816 &asvinfo);
5817 if (asvinfo.failed)
5818 return FALSE;
5819
5820 if (!info->allow_undefined_version)
5821 {
5822 /* Check if all global versions have a definition. */
5823 all_defined = TRUE;
5824 for (t = info->version_info; t != NULL; t = t->next)
5825 for (d = t->globals.list; d != NULL; d = d->next)
5826 if (d->literal && !d->symver && !d->script)
5827 {
5828 (*_bfd_error_handler)
5829 (_("%s: undefined version: %s"),
5830 d->pattern, t->name);
5831 all_defined = FALSE;
5832 }
5833
5834 if (!all_defined)
5835 {
5836 bfd_set_error (bfd_error_bad_value);
5837 return FALSE;
5838 }
5839 }
5840
5841 /* Find all symbols which were defined in a dynamic object and make
5842 the backend pick a reasonable value for them. */
5843 elf_link_hash_traverse (elf_hash_table (info),
5844 _bfd_elf_adjust_dynamic_symbol,
5845 &eif);
5846 if (eif.failed)
5847 return FALSE;
5848
5849 /* Add some entries to the .dynamic section. We fill in some of the
5850 values later, in bfd_elf_final_link, but we must add the entries
5851 now so that we know the final size of the .dynamic section. */
5852
5853 /* If there are initialization and/or finalization functions to
5854 call then add the corresponding DT_INIT/DT_FINI entries. */
5855 h = (info->init_function
5856 ? elf_link_hash_lookup (elf_hash_table (info),
5857 info->init_function, FALSE,
5858 FALSE, FALSE)
5859 : NULL);
5860 if (h != NULL
5861 && (h->ref_regular
5862 || h->def_regular))
5863 {
5864 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5865 return FALSE;
5866 }
5867 h = (info->fini_function
5868 ? elf_link_hash_lookup (elf_hash_table (info),
5869 info->fini_function, FALSE,
5870 FALSE, FALSE)
5871 : NULL);
5872 if (h != NULL
5873 && (h->ref_regular
5874 || h->def_regular))
5875 {
5876 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5877 return FALSE;
5878 }
5879
5880 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5881 if (s != NULL && s->linker_has_input)
5882 {
5883 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5884 if (! info->executable)
5885 {
5886 bfd *sub;
5887 asection *o;
5888
5889 for (sub = info->input_bfds; sub != NULL;
5890 sub = sub->link_next)
5891 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5892 for (o = sub->sections; o != NULL; o = o->next)
5893 if (elf_section_data (o)->this_hdr.sh_type
5894 == SHT_PREINIT_ARRAY)
5895 {
5896 (*_bfd_error_handler)
5897 (_("%B: .preinit_array section is not allowed in DSO"),
5898 sub);
5899 break;
5900 }
5901
5902 bfd_set_error (bfd_error_nonrepresentable_section);
5903 return FALSE;
5904 }
5905
5906 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5907 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5908 return FALSE;
5909 }
5910 s = bfd_get_section_by_name (output_bfd, ".init_array");
5911 if (s != NULL && s->linker_has_input)
5912 {
5913 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5914 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5915 return FALSE;
5916 }
5917 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5918 if (s != NULL && s->linker_has_input)
5919 {
5920 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5921 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5922 return FALSE;
5923 }
5924
5925 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5926 /* If .dynstr is excluded from the link, we don't want any of
5927 these tags. Strictly, we should be checking each section
5928 individually; This quick check covers for the case where
5929 someone does a /DISCARD/ : { *(*) }. */
5930 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5931 {
5932 bfd_size_type strsize;
5933
5934 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5935 if ((info->emit_hash
5936 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5937 || (info->emit_gnu_hash
5938 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5939 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5940 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5941 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5942 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5943 bed->s->sizeof_sym))
5944 return FALSE;
5945 }
5946 }
5947
5948 /* The backend must work out the sizes of all the other dynamic
5949 sections. */
5950 if (dynobj != NULL
5951 && bed->elf_backend_size_dynamic_sections != NULL
5952 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5953 return FALSE;
5954
5955 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5956 return FALSE;
5957
5958 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5959 {
5960 unsigned long section_sym_count;
5961 struct bfd_elf_version_tree *verdefs;
5962 asection *s;
5963
5964 /* Set up the version definition section. */
5965 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
5966 BFD_ASSERT (s != NULL);
5967
5968 /* We may have created additional version definitions if we are
5969 just linking a regular application. */
5970 verdefs = info->version_info;
5971
5972 /* Skip anonymous version tag. */
5973 if (verdefs != NULL && verdefs->vernum == 0)
5974 verdefs = verdefs->next;
5975
5976 if (verdefs == NULL && !info->create_default_symver)
5977 s->flags |= SEC_EXCLUDE;
5978 else
5979 {
5980 unsigned int cdefs;
5981 bfd_size_type size;
5982 struct bfd_elf_version_tree *t;
5983 bfd_byte *p;
5984 Elf_Internal_Verdef def;
5985 Elf_Internal_Verdaux defaux;
5986 struct bfd_link_hash_entry *bh;
5987 struct elf_link_hash_entry *h;
5988 const char *name;
5989
5990 cdefs = 0;
5991 size = 0;
5992
5993 /* Make space for the base version. */
5994 size += sizeof (Elf_External_Verdef);
5995 size += sizeof (Elf_External_Verdaux);
5996 ++cdefs;
5997
5998 /* Make space for the default version. */
5999 if (info->create_default_symver)
6000 {
6001 size += sizeof (Elf_External_Verdef);
6002 ++cdefs;
6003 }
6004
6005 for (t = verdefs; t != NULL; t = t->next)
6006 {
6007 struct bfd_elf_version_deps *n;
6008
6009 /* Don't emit base version twice. */
6010 if (t->vernum == 0)
6011 continue;
6012
6013 size += sizeof (Elf_External_Verdef);
6014 size += sizeof (Elf_External_Verdaux);
6015 ++cdefs;
6016
6017 for (n = t->deps; n != NULL; n = n->next)
6018 size += sizeof (Elf_External_Verdaux);
6019 }
6020
6021 s->size = size;
6022 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6023 if (s->contents == NULL && s->size != 0)
6024 return FALSE;
6025
6026 /* Fill in the version definition section. */
6027
6028 p = s->contents;
6029
6030 def.vd_version = VER_DEF_CURRENT;
6031 def.vd_flags = VER_FLG_BASE;
6032 def.vd_ndx = 1;
6033 def.vd_cnt = 1;
6034 if (info->create_default_symver)
6035 {
6036 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6037 def.vd_next = sizeof (Elf_External_Verdef);
6038 }
6039 else
6040 {
6041 def.vd_aux = sizeof (Elf_External_Verdef);
6042 def.vd_next = (sizeof (Elf_External_Verdef)
6043 + sizeof (Elf_External_Verdaux));
6044 }
6045
6046 if (soname_indx != (bfd_size_type) -1)
6047 {
6048 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6049 soname_indx);
6050 def.vd_hash = bfd_elf_hash (soname);
6051 defaux.vda_name = soname_indx;
6052 name = soname;
6053 }
6054 else
6055 {
6056 bfd_size_type indx;
6057
6058 name = lbasename (output_bfd->filename);
6059 def.vd_hash = bfd_elf_hash (name);
6060 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6061 name, FALSE);
6062 if (indx == (bfd_size_type) -1)
6063 return FALSE;
6064 defaux.vda_name = indx;
6065 }
6066 defaux.vda_next = 0;
6067
6068 _bfd_elf_swap_verdef_out (output_bfd, &def,
6069 (Elf_External_Verdef *) p);
6070 p += sizeof (Elf_External_Verdef);
6071 if (info->create_default_symver)
6072 {
6073 /* Add a symbol representing this version. */
6074 bh = NULL;
6075 if (! (_bfd_generic_link_add_one_symbol
6076 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6077 0, NULL, FALSE,
6078 get_elf_backend_data (dynobj)->collect, &bh)))
6079 return FALSE;
6080 h = (struct elf_link_hash_entry *) bh;
6081 h->non_elf = 0;
6082 h->def_regular = 1;
6083 h->type = STT_OBJECT;
6084 h->verinfo.vertree = NULL;
6085
6086 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6087 return FALSE;
6088
6089 /* Create a duplicate of the base version with the same
6090 aux block, but different flags. */
6091 def.vd_flags = 0;
6092 def.vd_ndx = 2;
6093 def.vd_aux = sizeof (Elf_External_Verdef);
6094 if (verdefs)
6095 def.vd_next = (sizeof (Elf_External_Verdef)
6096 + sizeof (Elf_External_Verdaux));
6097 else
6098 def.vd_next = 0;
6099 _bfd_elf_swap_verdef_out (output_bfd, &def,
6100 (Elf_External_Verdef *) p);
6101 p += sizeof (Elf_External_Verdef);
6102 }
6103 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6104 (Elf_External_Verdaux *) p);
6105 p += sizeof (Elf_External_Verdaux);
6106
6107 for (t = verdefs; t != NULL; t = t->next)
6108 {
6109 unsigned int cdeps;
6110 struct bfd_elf_version_deps *n;
6111
6112 /* Don't emit the base version twice. */
6113 if (t->vernum == 0)
6114 continue;
6115
6116 cdeps = 0;
6117 for (n = t->deps; n != NULL; n = n->next)
6118 ++cdeps;
6119
6120 /* Add a symbol representing this version. */
6121 bh = NULL;
6122 if (! (_bfd_generic_link_add_one_symbol
6123 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6124 0, NULL, FALSE,
6125 get_elf_backend_data (dynobj)->collect, &bh)))
6126 return FALSE;
6127 h = (struct elf_link_hash_entry *) bh;
6128 h->non_elf = 0;
6129 h->def_regular = 1;
6130 h->type = STT_OBJECT;
6131 h->verinfo.vertree = t;
6132
6133 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6134 return FALSE;
6135
6136 def.vd_version = VER_DEF_CURRENT;
6137 def.vd_flags = 0;
6138 if (t->globals.list == NULL
6139 && t->locals.list == NULL
6140 && ! t->used)
6141 def.vd_flags |= VER_FLG_WEAK;
6142 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6143 def.vd_cnt = cdeps + 1;
6144 def.vd_hash = bfd_elf_hash (t->name);
6145 def.vd_aux = sizeof (Elf_External_Verdef);
6146 def.vd_next = 0;
6147
6148 /* If a basever node is next, it *must* be the last node in
6149 the chain, otherwise Verdef construction breaks. */
6150 if (t->next != NULL && t->next->vernum == 0)
6151 BFD_ASSERT (t->next->next == NULL);
6152
6153 if (t->next != NULL && t->next->vernum != 0)
6154 def.vd_next = (sizeof (Elf_External_Verdef)
6155 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6156
6157 _bfd_elf_swap_verdef_out (output_bfd, &def,
6158 (Elf_External_Verdef *) p);
6159 p += sizeof (Elf_External_Verdef);
6160
6161 defaux.vda_name = h->dynstr_index;
6162 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6163 h->dynstr_index);
6164 defaux.vda_next = 0;
6165 if (t->deps != NULL)
6166 defaux.vda_next = sizeof (Elf_External_Verdaux);
6167 t->name_indx = defaux.vda_name;
6168
6169 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6170 (Elf_External_Verdaux *) p);
6171 p += sizeof (Elf_External_Verdaux);
6172
6173 for (n = t->deps; n != NULL; n = n->next)
6174 {
6175 if (n->version_needed == NULL)
6176 {
6177 /* This can happen if there was an error in the
6178 version script. */
6179 defaux.vda_name = 0;
6180 }
6181 else
6182 {
6183 defaux.vda_name = n->version_needed->name_indx;
6184 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6185 defaux.vda_name);
6186 }
6187 if (n->next == NULL)
6188 defaux.vda_next = 0;
6189 else
6190 defaux.vda_next = sizeof (Elf_External_Verdaux);
6191
6192 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6193 (Elf_External_Verdaux *) p);
6194 p += sizeof (Elf_External_Verdaux);
6195 }
6196 }
6197
6198 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6199 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6200 return FALSE;
6201
6202 elf_tdata (output_bfd)->cverdefs = cdefs;
6203 }
6204
6205 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6206 {
6207 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6208 return FALSE;
6209 }
6210 else if (info->flags & DF_BIND_NOW)
6211 {
6212 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6213 return FALSE;
6214 }
6215
6216 if (info->flags_1)
6217 {
6218 if (info->executable)
6219 info->flags_1 &= ~ (DF_1_INITFIRST
6220 | DF_1_NODELETE
6221 | DF_1_NOOPEN);
6222 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6223 return FALSE;
6224 }
6225
6226 /* Work out the size of the version reference section. */
6227
6228 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6229 BFD_ASSERT (s != NULL);
6230 {
6231 struct elf_find_verdep_info sinfo;
6232
6233 sinfo.info = info;
6234 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6235 if (sinfo.vers == 0)
6236 sinfo.vers = 1;
6237 sinfo.failed = FALSE;
6238
6239 elf_link_hash_traverse (elf_hash_table (info),
6240 _bfd_elf_link_find_version_dependencies,
6241 &sinfo);
6242 if (sinfo.failed)
6243 return FALSE;
6244
6245 if (elf_tdata (output_bfd)->verref == NULL)
6246 s->flags |= SEC_EXCLUDE;
6247 else
6248 {
6249 Elf_Internal_Verneed *t;
6250 unsigned int size;
6251 unsigned int crefs;
6252 bfd_byte *p;
6253
6254 /* Build the version dependency section. */
6255 size = 0;
6256 crefs = 0;
6257 for (t = elf_tdata (output_bfd)->verref;
6258 t != NULL;
6259 t = t->vn_nextref)
6260 {
6261 Elf_Internal_Vernaux *a;
6262
6263 size += sizeof (Elf_External_Verneed);
6264 ++crefs;
6265 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6266 size += sizeof (Elf_External_Vernaux);
6267 }
6268
6269 s->size = size;
6270 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6271 if (s->contents == NULL)
6272 return FALSE;
6273
6274 p = s->contents;
6275 for (t = elf_tdata (output_bfd)->verref;
6276 t != NULL;
6277 t = t->vn_nextref)
6278 {
6279 unsigned int caux;
6280 Elf_Internal_Vernaux *a;
6281 bfd_size_type indx;
6282
6283 caux = 0;
6284 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6285 ++caux;
6286
6287 t->vn_version = VER_NEED_CURRENT;
6288 t->vn_cnt = caux;
6289 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6290 elf_dt_name (t->vn_bfd) != NULL
6291 ? elf_dt_name (t->vn_bfd)
6292 : lbasename (t->vn_bfd->filename),
6293 FALSE);
6294 if (indx == (bfd_size_type) -1)
6295 return FALSE;
6296 t->vn_file = indx;
6297 t->vn_aux = sizeof (Elf_External_Verneed);
6298 if (t->vn_nextref == NULL)
6299 t->vn_next = 0;
6300 else
6301 t->vn_next = (sizeof (Elf_External_Verneed)
6302 + caux * sizeof (Elf_External_Vernaux));
6303
6304 _bfd_elf_swap_verneed_out (output_bfd, t,
6305 (Elf_External_Verneed *) p);
6306 p += sizeof (Elf_External_Verneed);
6307
6308 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6309 {
6310 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6311 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6312 a->vna_nodename, FALSE);
6313 if (indx == (bfd_size_type) -1)
6314 return FALSE;
6315 a->vna_name = indx;
6316 if (a->vna_nextptr == NULL)
6317 a->vna_next = 0;
6318 else
6319 a->vna_next = sizeof (Elf_External_Vernaux);
6320
6321 _bfd_elf_swap_vernaux_out (output_bfd, a,
6322 (Elf_External_Vernaux *) p);
6323 p += sizeof (Elf_External_Vernaux);
6324 }
6325 }
6326
6327 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6328 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6329 return FALSE;
6330
6331 elf_tdata (output_bfd)->cverrefs = crefs;
6332 }
6333 }
6334
6335 if ((elf_tdata (output_bfd)->cverrefs == 0
6336 && elf_tdata (output_bfd)->cverdefs == 0)
6337 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6338 &section_sym_count) == 0)
6339 {
6340 s = bfd_get_linker_section (dynobj, ".gnu.version");
6341 s->flags |= SEC_EXCLUDE;
6342 }
6343 }
6344 return TRUE;
6345 }
6346
6347 /* Find the first non-excluded output section. We'll use its
6348 section symbol for some emitted relocs. */
6349 void
6350 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6351 {
6352 asection *s;
6353
6354 for (s = output_bfd->sections; s != NULL; s = s->next)
6355 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6356 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6357 {
6358 elf_hash_table (info)->text_index_section = s;
6359 break;
6360 }
6361 }
6362
6363 /* Find two non-excluded output sections, one for code, one for data.
6364 We'll use their section symbols for some emitted relocs. */
6365 void
6366 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6367 {
6368 asection *s;
6369
6370 /* Data first, since setting text_index_section changes
6371 _bfd_elf_link_omit_section_dynsym. */
6372 for (s = output_bfd->sections; s != NULL; s = s->next)
6373 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6374 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6375 {
6376 elf_hash_table (info)->data_index_section = s;
6377 break;
6378 }
6379
6380 for (s = output_bfd->sections; s != NULL; s = s->next)
6381 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6382 == (SEC_ALLOC | SEC_READONLY))
6383 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6384 {
6385 elf_hash_table (info)->text_index_section = s;
6386 break;
6387 }
6388
6389 if (elf_hash_table (info)->text_index_section == NULL)
6390 elf_hash_table (info)->text_index_section
6391 = elf_hash_table (info)->data_index_section;
6392 }
6393
6394 bfd_boolean
6395 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6396 {
6397 const struct elf_backend_data *bed;
6398
6399 if (!is_elf_hash_table (info->hash))
6400 return TRUE;
6401
6402 bed = get_elf_backend_data (output_bfd);
6403 (*bed->elf_backend_init_index_section) (output_bfd, info);
6404
6405 if (elf_hash_table (info)->dynamic_sections_created)
6406 {
6407 bfd *dynobj;
6408 asection *s;
6409 bfd_size_type dynsymcount;
6410 unsigned long section_sym_count;
6411 unsigned int dtagcount;
6412
6413 dynobj = elf_hash_table (info)->dynobj;
6414
6415 /* Assign dynsym indicies. In a shared library we generate a
6416 section symbol for each output section, which come first.
6417 Next come all of the back-end allocated local dynamic syms,
6418 followed by the rest of the global symbols. */
6419
6420 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6421 &section_sym_count);
6422
6423 /* Work out the size of the symbol version section. */
6424 s = bfd_get_linker_section (dynobj, ".gnu.version");
6425 BFD_ASSERT (s != NULL);
6426 if (dynsymcount != 0
6427 && (s->flags & SEC_EXCLUDE) == 0)
6428 {
6429 s->size = dynsymcount * sizeof (Elf_External_Versym);
6430 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6431 if (s->contents == NULL)
6432 return FALSE;
6433
6434 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6435 return FALSE;
6436 }
6437
6438 /* Set the size of the .dynsym and .hash sections. We counted
6439 the number of dynamic symbols in elf_link_add_object_symbols.
6440 We will build the contents of .dynsym and .hash when we build
6441 the final symbol table, because until then we do not know the
6442 correct value to give the symbols. We built the .dynstr
6443 section as we went along in elf_link_add_object_symbols. */
6444 s = bfd_get_linker_section (dynobj, ".dynsym");
6445 BFD_ASSERT (s != NULL);
6446 s->size = dynsymcount * bed->s->sizeof_sym;
6447
6448 if (dynsymcount != 0)
6449 {
6450 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6451 if (s->contents == NULL)
6452 return FALSE;
6453
6454 /* The first entry in .dynsym is a dummy symbol.
6455 Clear all the section syms, in case we don't output them all. */
6456 ++section_sym_count;
6457 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6458 }
6459
6460 elf_hash_table (info)->bucketcount = 0;
6461
6462 /* Compute the size of the hashing table. As a side effect this
6463 computes the hash values for all the names we export. */
6464 if (info->emit_hash)
6465 {
6466 unsigned long int *hashcodes;
6467 struct hash_codes_info hashinf;
6468 bfd_size_type amt;
6469 unsigned long int nsyms;
6470 size_t bucketcount;
6471 size_t hash_entry_size;
6472
6473 /* Compute the hash values for all exported symbols. At the same
6474 time store the values in an array so that we could use them for
6475 optimizations. */
6476 amt = dynsymcount * sizeof (unsigned long int);
6477 hashcodes = (unsigned long int *) bfd_malloc (amt);
6478 if (hashcodes == NULL)
6479 return FALSE;
6480 hashinf.hashcodes = hashcodes;
6481 hashinf.error = FALSE;
6482
6483 /* Put all hash values in HASHCODES. */
6484 elf_link_hash_traverse (elf_hash_table (info),
6485 elf_collect_hash_codes, &hashinf);
6486 if (hashinf.error)
6487 {
6488 free (hashcodes);
6489 return FALSE;
6490 }
6491
6492 nsyms = hashinf.hashcodes - hashcodes;
6493 bucketcount
6494 = compute_bucket_count (info, hashcodes, nsyms, 0);
6495 free (hashcodes);
6496
6497 if (bucketcount == 0)
6498 return FALSE;
6499
6500 elf_hash_table (info)->bucketcount = bucketcount;
6501
6502 s = bfd_get_linker_section (dynobj, ".hash");
6503 BFD_ASSERT (s != NULL);
6504 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6505 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6506 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6507 if (s->contents == NULL)
6508 return FALSE;
6509
6510 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6511 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6512 s->contents + hash_entry_size);
6513 }
6514
6515 if (info->emit_gnu_hash)
6516 {
6517 size_t i, cnt;
6518 unsigned char *contents;
6519 struct collect_gnu_hash_codes cinfo;
6520 bfd_size_type amt;
6521 size_t bucketcount;
6522
6523 memset (&cinfo, 0, sizeof (cinfo));
6524
6525 /* Compute the hash values for all exported symbols. At the same
6526 time store the values in an array so that we could use them for
6527 optimizations. */
6528 amt = dynsymcount * 2 * sizeof (unsigned long int);
6529 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6530 if (cinfo.hashcodes == NULL)
6531 return FALSE;
6532
6533 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6534 cinfo.min_dynindx = -1;
6535 cinfo.output_bfd = output_bfd;
6536 cinfo.bed = bed;
6537
6538 /* Put all hash values in HASHCODES. */
6539 elf_link_hash_traverse (elf_hash_table (info),
6540 elf_collect_gnu_hash_codes, &cinfo);
6541 if (cinfo.error)
6542 {
6543 free (cinfo.hashcodes);
6544 return FALSE;
6545 }
6546
6547 bucketcount
6548 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6549
6550 if (bucketcount == 0)
6551 {
6552 free (cinfo.hashcodes);
6553 return FALSE;
6554 }
6555
6556 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6557 BFD_ASSERT (s != NULL);
6558
6559 if (cinfo.nsyms == 0)
6560 {
6561 /* Empty .gnu.hash section is special. */
6562 BFD_ASSERT (cinfo.min_dynindx == -1);
6563 free (cinfo.hashcodes);
6564 s->size = 5 * 4 + bed->s->arch_size / 8;
6565 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6566 if (contents == NULL)
6567 return FALSE;
6568 s->contents = contents;
6569 /* 1 empty bucket. */
6570 bfd_put_32 (output_bfd, 1, contents);
6571 /* SYMIDX above the special symbol 0. */
6572 bfd_put_32 (output_bfd, 1, contents + 4);
6573 /* Just one word for bitmask. */
6574 bfd_put_32 (output_bfd, 1, contents + 8);
6575 /* Only hash fn bloom filter. */
6576 bfd_put_32 (output_bfd, 0, contents + 12);
6577 /* No hashes are valid - empty bitmask. */
6578 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6579 /* No hashes in the only bucket. */
6580 bfd_put_32 (output_bfd, 0,
6581 contents + 16 + bed->s->arch_size / 8);
6582 }
6583 else
6584 {
6585 unsigned long int maskwords, maskbitslog2, x;
6586 BFD_ASSERT (cinfo.min_dynindx != -1);
6587
6588 x = cinfo.nsyms;
6589 maskbitslog2 = 1;
6590 while ((x >>= 1) != 0)
6591 ++maskbitslog2;
6592 if (maskbitslog2 < 3)
6593 maskbitslog2 = 5;
6594 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6595 maskbitslog2 = maskbitslog2 + 3;
6596 else
6597 maskbitslog2 = maskbitslog2 + 2;
6598 if (bed->s->arch_size == 64)
6599 {
6600 if (maskbitslog2 == 5)
6601 maskbitslog2 = 6;
6602 cinfo.shift1 = 6;
6603 }
6604 else
6605 cinfo.shift1 = 5;
6606 cinfo.mask = (1 << cinfo.shift1) - 1;
6607 cinfo.shift2 = maskbitslog2;
6608 cinfo.maskbits = 1 << maskbitslog2;
6609 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6610 amt = bucketcount * sizeof (unsigned long int) * 2;
6611 amt += maskwords * sizeof (bfd_vma);
6612 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6613 if (cinfo.bitmask == NULL)
6614 {
6615 free (cinfo.hashcodes);
6616 return FALSE;
6617 }
6618
6619 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6620 cinfo.indx = cinfo.counts + bucketcount;
6621 cinfo.symindx = dynsymcount - cinfo.nsyms;
6622 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6623
6624 /* Determine how often each hash bucket is used. */
6625 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6626 for (i = 0; i < cinfo.nsyms; ++i)
6627 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6628
6629 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6630 if (cinfo.counts[i] != 0)
6631 {
6632 cinfo.indx[i] = cnt;
6633 cnt += cinfo.counts[i];
6634 }
6635 BFD_ASSERT (cnt == dynsymcount);
6636 cinfo.bucketcount = bucketcount;
6637 cinfo.local_indx = cinfo.min_dynindx;
6638
6639 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6640 s->size += cinfo.maskbits / 8;
6641 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6642 if (contents == NULL)
6643 {
6644 free (cinfo.bitmask);
6645 free (cinfo.hashcodes);
6646 return FALSE;
6647 }
6648
6649 s->contents = contents;
6650 bfd_put_32 (output_bfd, bucketcount, contents);
6651 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6652 bfd_put_32 (output_bfd, maskwords, contents + 8);
6653 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6654 contents += 16 + cinfo.maskbits / 8;
6655
6656 for (i = 0; i < bucketcount; ++i)
6657 {
6658 if (cinfo.counts[i] == 0)
6659 bfd_put_32 (output_bfd, 0, contents);
6660 else
6661 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6662 contents += 4;
6663 }
6664
6665 cinfo.contents = contents;
6666
6667 /* Renumber dynamic symbols, populate .gnu.hash section. */
6668 elf_link_hash_traverse (elf_hash_table (info),
6669 elf_renumber_gnu_hash_syms, &cinfo);
6670
6671 contents = s->contents + 16;
6672 for (i = 0; i < maskwords; ++i)
6673 {
6674 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6675 contents);
6676 contents += bed->s->arch_size / 8;
6677 }
6678
6679 free (cinfo.bitmask);
6680 free (cinfo.hashcodes);
6681 }
6682 }
6683
6684 s = bfd_get_linker_section (dynobj, ".dynstr");
6685 BFD_ASSERT (s != NULL);
6686
6687 elf_finalize_dynstr (output_bfd, info);
6688
6689 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6690
6691 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6692 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6693 return FALSE;
6694 }
6695
6696 return TRUE;
6697 }
6698 \f
6699 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6700
6701 static void
6702 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6703 asection *sec)
6704 {
6705 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6706 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6707 }
6708
6709 /* Finish SHF_MERGE section merging. */
6710
6711 bfd_boolean
6712 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6713 {
6714 bfd *ibfd;
6715 asection *sec;
6716
6717 if (!is_elf_hash_table (info->hash))
6718 return FALSE;
6719
6720 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6721 if ((ibfd->flags & DYNAMIC) == 0)
6722 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6723 if ((sec->flags & SEC_MERGE) != 0
6724 && !bfd_is_abs_section (sec->output_section))
6725 {
6726 struct bfd_elf_section_data *secdata;
6727
6728 secdata = elf_section_data (sec);
6729 if (! _bfd_add_merge_section (abfd,
6730 &elf_hash_table (info)->merge_info,
6731 sec, &secdata->sec_info))
6732 return FALSE;
6733 else if (secdata->sec_info)
6734 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6735 }
6736
6737 if (elf_hash_table (info)->merge_info != NULL)
6738 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6739 merge_sections_remove_hook);
6740 return TRUE;
6741 }
6742
6743 /* Create an entry in an ELF linker hash table. */
6744
6745 struct bfd_hash_entry *
6746 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6747 struct bfd_hash_table *table,
6748 const char *string)
6749 {
6750 /* Allocate the structure if it has not already been allocated by a
6751 subclass. */
6752 if (entry == NULL)
6753 {
6754 entry = (struct bfd_hash_entry *)
6755 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6756 if (entry == NULL)
6757 return entry;
6758 }
6759
6760 /* Call the allocation method of the superclass. */
6761 entry = _bfd_link_hash_newfunc (entry, table, string);
6762 if (entry != NULL)
6763 {
6764 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6765 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6766
6767 /* Set local fields. */
6768 ret->indx = -1;
6769 ret->dynindx = -1;
6770 ret->got = htab->init_got_refcount;
6771 ret->plt = htab->init_plt_refcount;
6772 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6773 - offsetof (struct elf_link_hash_entry, size)));
6774 /* Assume that we have been called by a non-ELF symbol reader.
6775 This flag is then reset by the code which reads an ELF input
6776 file. This ensures that a symbol created by a non-ELF symbol
6777 reader will have the flag set correctly. */
6778 ret->non_elf = 1;
6779 }
6780
6781 return entry;
6782 }
6783
6784 /* Copy data from an indirect symbol to its direct symbol, hiding the
6785 old indirect symbol. Also used for copying flags to a weakdef. */
6786
6787 void
6788 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6789 struct elf_link_hash_entry *dir,
6790 struct elf_link_hash_entry *ind)
6791 {
6792 struct elf_link_hash_table *htab;
6793
6794 /* Copy down any references that we may have already seen to the
6795 symbol which just became indirect. */
6796
6797 dir->ref_dynamic |= ind->ref_dynamic;
6798 dir->ref_regular |= ind->ref_regular;
6799 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6800 dir->non_got_ref |= ind->non_got_ref;
6801 dir->needs_plt |= ind->needs_plt;
6802 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6803
6804 if (ind->root.type != bfd_link_hash_indirect)
6805 return;
6806
6807 /* Copy over the global and procedure linkage table refcount entries.
6808 These may have been already set up by a check_relocs routine. */
6809 htab = elf_hash_table (info);
6810 if (ind->got.refcount > htab->init_got_refcount.refcount)
6811 {
6812 if (dir->got.refcount < 0)
6813 dir->got.refcount = 0;
6814 dir->got.refcount += ind->got.refcount;
6815 ind->got.refcount = htab->init_got_refcount.refcount;
6816 }
6817
6818 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6819 {
6820 if (dir->plt.refcount < 0)
6821 dir->plt.refcount = 0;
6822 dir->plt.refcount += ind->plt.refcount;
6823 ind->plt.refcount = htab->init_plt_refcount.refcount;
6824 }
6825
6826 if (ind->dynindx != -1)
6827 {
6828 if (dir->dynindx != -1)
6829 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6830 dir->dynindx = ind->dynindx;
6831 dir->dynstr_index = ind->dynstr_index;
6832 ind->dynindx = -1;
6833 ind->dynstr_index = 0;
6834 }
6835 }
6836
6837 void
6838 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6839 struct elf_link_hash_entry *h,
6840 bfd_boolean force_local)
6841 {
6842 /* STT_GNU_IFUNC symbol must go through PLT. */
6843 if (h->type != STT_GNU_IFUNC)
6844 {
6845 h->plt = elf_hash_table (info)->init_plt_offset;
6846 h->needs_plt = 0;
6847 }
6848 if (force_local)
6849 {
6850 h->forced_local = 1;
6851 if (h->dynindx != -1)
6852 {
6853 h->dynindx = -1;
6854 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6855 h->dynstr_index);
6856 }
6857 }
6858 }
6859
6860 /* Initialize an ELF linker hash table. */
6861
6862 bfd_boolean
6863 _bfd_elf_link_hash_table_init
6864 (struct elf_link_hash_table *table,
6865 bfd *abfd,
6866 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6867 struct bfd_hash_table *,
6868 const char *),
6869 unsigned int entsize,
6870 enum elf_target_id target_id)
6871 {
6872 bfd_boolean ret;
6873 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6874
6875 memset (table, 0, sizeof * table);
6876 table->init_got_refcount.refcount = can_refcount - 1;
6877 table->init_plt_refcount.refcount = can_refcount - 1;
6878 table->init_got_offset.offset = -(bfd_vma) 1;
6879 table->init_plt_offset.offset = -(bfd_vma) 1;
6880 /* The first dynamic symbol is a dummy. */
6881 table->dynsymcount = 1;
6882
6883 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6884
6885 table->root.type = bfd_link_elf_hash_table;
6886 table->hash_table_id = target_id;
6887
6888 return ret;
6889 }
6890
6891 /* Create an ELF linker hash table. */
6892
6893 struct bfd_link_hash_table *
6894 _bfd_elf_link_hash_table_create (bfd *abfd)
6895 {
6896 struct elf_link_hash_table *ret;
6897 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6898
6899 ret = (struct elf_link_hash_table *) bfd_malloc (amt);
6900 if (ret == NULL)
6901 return NULL;
6902
6903 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6904 sizeof (struct elf_link_hash_entry),
6905 GENERIC_ELF_DATA))
6906 {
6907 free (ret);
6908 return NULL;
6909 }
6910
6911 return &ret->root;
6912 }
6913
6914 /* This is a hook for the ELF emulation code in the generic linker to
6915 tell the backend linker what file name to use for the DT_NEEDED
6916 entry for a dynamic object. */
6917
6918 void
6919 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6920 {
6921 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6922 && bfd_get_format (abfd) == bfd_object)
6923 elf_dt_name (abfd) = name;
6924 }
6925
6926 int
6927 bfd_elf_get_dyn_lib_class (bfd *abfd)
6928 {
6929 int lib_class;
6930 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6931 && bfd_get_format (abfd) == bfd_object)
6932 lib_class = elf_dyn_lib_class (abfd);
6933 else
6934 lib_class = 0;
6935 return lib_class;
6936 }
6937
6938 void
6939 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6940 {
6941 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6942 && bfd_get_format (abfd) == bfd_object)
6943 elf_dyn_lib_class (abfd) = lib_class;
6944 }
6945
6946 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6947 the linker ELF emulation code. */
6948
6949 struct bfd_link_needed_list *
6950 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6951 struct bfd_link_info *info)
6952 {
6953 if (! is_elf_hash_table (info->hash))
6954 return NULL;
6955 return elf_hash_table (info)->needed;
6956 }
6957
6958 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6959 hook for the linker ELF emulation code. */
6960
6961 struct bfd_link_needed_list *
6962 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6963 struct bfd_link_info *info)
6964 {
6965 if (! is_elf_hash_table (info->hash))
6966 return NULL;
6967 return elf_hash_table (info)->runpath;
6968 }
6969
6970 /* Get the name actually used for a dynamic object for a link. This
6971 is the SONAME entry if there is one. Otherwise, it is the string
6972 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6973
6974 const char *
6975 bfd_elf_get_dt_soname (bfd *abfd)
6976 {
6977 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6978 && bfd_get_format (abfd) == bfd_object)
6979 return elf_dt_name (abfd);
6980 return NULL;
6981 }
6982
6983 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6984 the ELF linker emulation code. */
6985
6986 bfd_boolean
6987 bfd_elf_get_bfd_needed_list (bfd *abfd,
6988 struct bfd_link_needed_list **pneeded)
6989 {
6990 asection *s;
6991 bfd_byte *dynbuf = NULL;
6992 unsigned int elfsec;
6993 unsigned long shlink;
6994 bfd_byte *extdyn, *extdynend;
6995 size_t extdynsize;
6996 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6997
6998 *pneeded = NULL;
6999
7000 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7001 || bfd_get_format (abfd) != bfd_object)
7002 return TRUE;
7003
7004 s = bfd_get_section_by_name (abfd, ".dynamic");
7005 if (s == NULL || s->size == 0)
7006 return TRUE;
7007
7008 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7009 goto error_return;
7010
7011 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7012 if (elfsec == SHN_BAD)
7013 goto error_return;
7014
7015 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7016
7017 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7018 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7019
7020 extdyn = dynbuf;
7021 extdynend = extdyn + s->size;
7022 for (; extdyn < extdynend; extdyn += extdynsize)
7023 {
7024 Elf_Internal_Dyn dyn;
7025
7026 (*swap_dyn_in) (abfd, extdyn, &dyn);
7027
7028 if (dyn.d_tag == DT_NULL)
7029 break;
7030
7031 if (dyn.d_tag == DT_NEEDED)
7032 {
7033 const char *string;
7034 struct bfd_link_needed_list *l;
7035 unsigned int tagv = dyn.d_un.d_val;
7036 bfd_size_type amt;
7037
7038 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7039 if (string == NULL)
7040 goto error_return;
7041
7042 amt = sizeof *l;
7043 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7044 if (l == NULL)
7045 goto error_return;
7046
7047 l->by = abfd;
7048 l->name = string;
7049 l->next = *pneeded;
7050 *pneeded = l;
7051 }
7052 }
7053
7054 free (dynbuf);
7055
7056 return TRUE;
7057
7058 error_return:
7059 if (dynbuf != NULL)
7060 free (dynbuf);
7061 return FALSE;
7062 }
7063
7064 struct elf_symbuf_symbol
7065 {
7066 unsigned long st_name; /* Symbol name, index in string tbl */
7067 unsigned char st_info; /* Type and binding attributes */
7068 unsigned char st_other; /* Visibilty, and target specific */
7069 };
7070
7071 struct elf_symbuf_head
7072 {
7073 struct elf_symbuf_symbol *ssym;
7074 bfd_size_type count;
7075 unsigned int st_shndx;
7076 };
7077
7078 struct elf_symbol
7079 {
7080 union
7081 {
7082 Elf_Internal_Sym *isym;
7083 struct elf_symbuf_symbol *ssym;
7084 } u;
7085 const char *name;
7086 };
7087
7088 /* Sort references to symbols by ascending section number. */
7089
7090 static int
7091 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7092 {
7093 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7094 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7095
7096 return s1->st_shndx - s2->st_shndx;
7097 }
7098
7099 static int
7100 elf_sym_name_compare (const void *arg1, const void *arg2)
7101 {
7102 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7103 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7104 return strcmp (s1->name, s2->name);
7105 }
7106
7107 static struct elf_symbuf_head *
7108 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7109 {
7110 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7111 struct elf_symbuf_symbol *ssym;
7112 struct elf_symbuf_head *ssymbuf, *ssymhead;
7113 bfd_size_type i, shndx_count, total_size;
7114
7115 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7116 if (indbuf == NULL)
7117 return NULL;
7118
7119 for (ind = indbuf, i = 0; i < symcount; i++)
7120 if (isymbuf[i].st_shndx != SHN_UNDEF)
7121 *ind++ = &isymbuf[i];
7122 indbufend = ind;
7123
7124 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7125 elf_sort_elf_symbol);
7126
7127 shndx_count = 0;
7128 if (indbufend > indbuf)
7129 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7130 if (ind[0]->st_shndx != ind[1]->st_shndx)
7131 shndx_count++;
7132
7133 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7134 + (indbufend - indbuf) * sizeof (*ssym));
7135 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7136 if (ssymbuf == NULL)
7137 {
7138 free (indbuf);
7139 return NULL;
7140 }
7141
7142 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7143 ssymbuf->ssym = NULL;
7144 ssymbuf->count = shndx_count;
7145 ssymbuf->st_shndx = 0;
7146 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7147 {
7148 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7149 {
7150 ssymhead++;
7151 ssymhead->ssym = ssym;
7152 ssymhead->count = 0;
7153 ssymhead->st_shndx = (*ind)->st_shndx;
7154 }
7155 ssym->st_name = (*ind)->st_name;
7156 ssym->st_info = (*ind)->st_info;
7157 ssym->st_other = (*ind)->st_other;
7158 ssymhead->count++;
7159 }
7160 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7161 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7162 == total_size));
7163
7164 free (indbuf);
7165 return ssymbuf;
7166 }
7167
7168 /* Check if 2 sections define the same set of local and global
7169 symbols. */
7170
7171 static bfd_boolean
7172 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7173 struct bfd_link_info *info)
7174 {
7175 bfd *bfd1, *bfd2;
7176 const struct elf_backend_data *bed1, *bed2;
7177 Elf_Internal_Shdr *hdr1, *hdr2;
7178 bfd_size_type symcount1, symcount2;
7179 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7180 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7181 Elf_Internal_Sym *isym, *isymend;
7182 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7183 bfd_size_type count1, count2, i;
7184 unsigned int shndx1, shndx2;
7185 bfd_boolean result;
7186
7187 bfd1 = sec1->owner;
7188 bfd2 = sec2->owner;
7189
7190 /* Both sections have to be in ELF. */
7191 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7192 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7193 return FALSE;
7194
7195 if (elf_section_type (sec1) != elf_section_type (sec2))
7196 return FALSE;
7197
7198 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7199 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7200 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7201 return FALSE;
7202
7203 bed1 = get_elf_backend_data (bfd1);
7204 bed2 = get_elf_backend_data (bfd2);
7205 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7206 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7207 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7208 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7209
7210 if (symcount1 == 0 || symcount2 == 0)
7211 return FALSE;
7212
7213 result = FALSE;
7214 isymbuf1 = NULL;
7215 isymbuf2 = NULL;
7216 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7217 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7218
7219 if (ssymbuf1 == NULL)
7220 {
7221 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7222 NULL, NULL, NULL);
7223 if (isymbuf1 == NULL)
7224 goto done;
7225
7226 if (!info->reduce_memory_overheads)
7227 elf_tdata (bfd1)->symbuf = ssymbuf1
7228 = elf_create_symbuf (symcount1, isymbuf1);
7229 }
7230
7231 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7232 {
7233 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7234 NULL, NULL, NULL);
7235 if (isymbuf2 == NULL)
7236 goto done;
7237
7238 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7239 elf_tdata (bfd2)->symbuf = ssymbuf2
7240 = elf_create_symbuf (symcount2, isymbuf2);
7241 }
7242
7243 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7244 {
7245 /* Optimized faster version. */
7246 bfd_size_type lo, hi, mid;
7247 struct elf_symbol *symp;
7248 struct elf_symbuf_symbol *ssym, *ssymend;
7249
7250 lo = 0;
7251 hi = ssymbuf1->count;
7252 ssymbuf1++;
7253 count1 = 0;
7254 while (lo < hi)
7255 {
7256 mid = (lo + hi) / 2;
7257 if (shndx1 < ssymbuf1[mid].st_shndx)
7258 hi = mid;
7259 else if (shndx1 > ssymbuf1[mid].st_shndx)
7260 lo = mid + 1;
7261 else
7262 {
7263 count1 = ssymbuf1[mid].count;
7264 ssymbuf1 += mid;
7265 break;
7266 }
7267 }
7268
7269 lo = 0;
7270 hi = ssymbuf2->count;
7271 ssymbuf2++;
7272 count2 = 0;
7273 while (lo < hi)
7274 {
7275 mid = (lo + hi) / 2;
7276 if (shndx2 < ssymbuf2[mid].st_shndx)
7277 hi = mid;
7278 else if (shndx2 > ssymbuf2[mid].st_shndx)
7279 lo = mid + 1;
7280 else
7281 {
7282 count2 = ssymbuf2[mid].count;
7283 ssymbuf2 += mid;
7284 break;
7285 }
7286 }
7287
7288 if (count1 == 0 || count2 == 0 || count1 != count2)
7289 goto done;
7290
7291 symtable1 = (struct elf_symbol *)
7292 bfd_malloc (count1 * sizeof (struct elf_symbol));
7293 symtable2 = (struct elf_symbol *)
7294 bfd_malloc (count2 * sizeof (struct elf_symbol));
7295 if (symtable1 == NULL || symtable2 == NULL)
7296 goto done;
7297
7298 symp = symtable1;
7299 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7300 ssym < ssymend; ssym++, symp++)
7301 {
7302 symp->u.ssym = ssym;
7303 symp->name = bfd_elf_string_from_elf_section (bfd1,
7304 hdr1->sh_link,
7305 ssym->st_name);
7306 }
7307
7308 symp = symtable2;
7309 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7310 ssym < ssymend; ssym++, symp++)
7311 {
7312 symp->u.ssym = ssym;
7313 symp->name = bfd_elf_string_from_elf_section (bfd2,
7314 hdr2->sh_link,
7315 ssym->st_name);
7316 }
7317
7318 /* Sort symbol by name. */
7319 qsort (symtable1, count1, sizeof (struct elf_symbol),
7320 elf_sym_name_compare);
7321 qsort (symtable2, count1, sizeof (struct elf_symbol),
7322 elf_sym_name_compare);
7323
7324 for (i = 0; i < count1; i++)
7325 /* Two symbols must have the same binding, type and name. */
7326 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7327 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7328 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7329 goto done;
7330
7331 result = TRUE;
7332 goto done;
7333 }
7334
7335 symtable1 = (struct elf_symbol *)
7336 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7337 symtable2 = (struct elf_symbol *)
7338 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7339 if (symtable1 == NULL || symtable2 == NULL)
7340 goto done;
7341
7342 /* Count definitions in the section. */
7343 count1 = 0;
7344 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7345 if (isym->st_shndx == shndx1)
7346 symtable1[count1++].u.isym = isym;
7347
7348 count2 = 0;
7349 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7350 if (isym->st_shndx == shndx2)
7351 symtable2[count2++].u.isym = isym;
7352
7353 if (count1 == 0 || count2 == 0 || count1 != count2)
7354 goto done;
7355
7356 for (i = 0; i < count1; i++)
7357 symtable1[i].name
7358 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7359 symtable1[i].u.isym->st_name);
7360
7361 for (i = 0; i < count2; i++)
7362 symtable2[i].name
7363 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7364 symtable2[i].u.isym->st_name);
7365
7366 /* Sort symbol by name. */
7367 qsort (symtable1, count1, sizeof (struct elf_symbol),
7368 elf_sym_name_compare);
7369 qsort (symtable2, count1, sizeof (struct elf_symbol),
7370 elf_sym_name_compare);
7371
7372 for (i = 0; i < count1; i++)
7373 /* Two symbols must have the same binding, type and name. */
7374 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7375 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7376 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7377 goto done;
7378
7379 result = TRUE;
7380
7381 done:
7382 if (symtable1)
7383 free (symtable1);
7384 if (symtable2)
7385 free (symtable2);
7386 if (isymbuf1)
7387 free (isymbuf1);
7388 if (isymbuf2)
7389 free (isymbuf2);
7390
7391 return result;
7392 }
7393
7394 /* Return TRUE if 2 section types are compatible. */
7395
7396 bfd_boolean
7397 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7398 bfd *bbfd, const asection *bsec)
7399 {
7400 if (asec == NULL
7401 || bsec == NULL
7402 || abfd->xvec->flavour != bfd_target_elf_flavour
7403 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7404 return TRUE;
7405
7406 return elf_section_type (asec) == elf_section_type (bsec);
7407 }
7408 \f
7409 /* Final phase of ELF linker. */
7410
7411 /* A structure we use to avoid passing large numbers of arguments. */
7412
7413 struct elf_final_link_info
7414 {
7415 /* General link information. */
7416 struct bfd_link_info *info;
7417 /* Output BFD. */
7418 bfd *output_bfd;
7419 /* Symbol string table. */
7420 struct bfd_strtab_hash *symstrtab;
7421 /* .dynsym section. */
7422 asection *dynsym_sec;
7423 /* .hash section. */
7424 asection *hash_sec;
7425 /* symbol version section (.gnu.version). */
7426 asection *symver_sec;
7427 /* Buffer large enough to hold contents of any section. */
7428 bfd_byte *contents;
7429 /* Buffer large enough to hold external relocs of any section. */
7430 void *external_relocs;
7431 /* Buffer large enough to hold internal relocs of any section. */
7432 Elf_Internal_Rela *internal_relocs;
7433 /* Buffer large enough to hold external local symbols of any input
7434 BFD. */
7435 bfd_byte *external_syms;
7436 /* And a buffer for symbol section indices. */
7437 Elf_External_Sym_Shndx *locsym_shndx;
7438 /* Buffer large enough to hold internal local symbols of any input
7439 BFD. */
7440 Elf_Internal_Sym *internal_syms;
7441 /* Array large enough to hold a symbol index for each local symbol
7442 of any input BFD. */
7443 long *indices;
7444 /* Array large enough to hold a section pointer for each local
7445 symbol of any input BFD. */
7446 asection **sections;
7447 /* Buffer to hold swapped out symbols. */
7448 bfd_byte *symbuf;
7449 /* And one for symbol section indices. */
7450 Elf_External_Sym_Shndx *symshndxbuf;
7451 /* Number of swapped out symbols in buffer. */
7452 size_t symbuf_count;
7453 /* Number of symbols which fit in symbuf. */
7454 size_t symbuf_size;
7455 /* And same for symshndxbuf. */
7456 size_t shndxbuf_size;
7457 /* Number of STT_FILE syms seen. */
7458 size_t filesym_count;
7459 };
7460
7461 /* This struct is used to pass information to elf_link_output_extsym. */
7462
7463 struct elf_outext_info
7464 {
7465 bfd_boolean failed;
7466 bfd_boolean localsyms;
7467 bfd_boolean need_second_pass;
7468 bfd_boolean second_pass;
7469 struct elf_final_link_info *flinfo;
7470 };
7471
7472
7473 /* Support for evaluating a complex relocation.
7474
7475 Complex relocations are generalized, self-describing relocations. The
7476 implementation of them consists of two parts: complex symbols, and the
7477 relocations themselves.
7478
7479 The relocations are use a reserved elf-wide relocation type code (R_RELC
7480 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7481 information (start bit, end bit, word width, etc) into the addend. This
7482 information is extracted from CGEN-generated operand tables within gas.
7483
7484 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7485 internal) representing prefix-notation expressions, including but not
7486 limited to those sorts of expressions normally encoded as addends in the
7487 addend field. The symbol mangling format is:
7488
7489 <node> := <literal>
7490 | <unary-operator> ':' <node>
7491 | <binary-operator> ':' <node> ':' <node>
7492 ;
7493
7494 <literal> := 's' <digits=N> ':' <N character symbol name>
7495 | 'S' <digits=N> ':' <N character section name>
7496 | '#' <hexdigits>
7497 ;
7498
7499 <binary-operator> := as in C
7500 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7501
7502 static void
7503 set_symbol_value (bfd *bfd_with_globals,
7504 Elf_Internal_Sym *isymbuf,
7505 size_t locsymcount,
7506 size_t symidx,
7507 bfd_vma val)
7508 {
7509 struct elf_link_hash_entry **sym_hashes;
7510 struct elf_link_hash_entry *h;
7511 size_t extsymoff = locsymcount;
7512
7513 if (symidx < locsymcount)
7514 {
7515 Elf_Internal_Sym *sym;
7516
7517 sym = isymbuf + symidx;
7518 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7519 {
7520 /* It is a local symbol: move it to the
7521 "absolute" section and give it a value. */
7522 sym->st_shndx = SHN_ABS;
7523 sym->st_value = val;
7524 return;
7525 }
7526 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7527 extsymoff = 0;
7528 }
7529
7530 /* It is a global symbol: set its link type
7531 to "defined" and give it a value. */
7532
7533 sym_hashes = elf_sym_hashes (bfd_with_globals);
7534 h = sym_hashes [symidx - extsymoff];
7535 while (h->root.type == bfd_link_hash_indirect
7536 || h->root.type == bfd_link_hash_warning)
7537 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7538 h->root.type = bfd_link_hash_defined;
7539 h->root.u.def.value = val;
7540 h->root.u.def.section = bfd_abs_section_ptr;
7541 }
7542
7543 static bfd_boolean
7544 resolve_symbol (const char *name,
7545 bfd *input_bfd,
7546 struct elf_final_link_info *flinfo,
7547 bfd_vma *result,
7548 Elf_Internal_Sym *isymbuf,
7549 size_t locsymcount)
7550 {
7551 Elf_Internal_Sym *sym;
7552 struct bfd_link_hash_entry *global_entry;
7553 const char *candidate = NULL;
7554 Elf_Internal_Shdr *symtab_hdr;
7555 size_t i;
7556
7557 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7558
7559 for (i = 0; i < locsymcount; ++ i)
7560 {
7561 sym = isymbuf + i;
7562
7563 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7564 continue;
7565
7566 candidate = bfd_elf_string_from_elf_section (input_bfd,
7567 symtab_hdr->sh_link,
7568 sym->st_name);
7569 #ifdef DEBUG
7570 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7571 name, candidate, (unsigned long) sym->st_value);
7572 #endif
7573 if (candidate && strcmp (candidate, name) == 0)
7574 {
7575 asection *sec = flinfo->sections [i];
7576
7577 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7578 *result += sec->output_offset + sec->output_section->vma;
7579 #ifdef DEBUG
7580 printf ("Found symbol with value %8.8lx\n",
7581 (unsigned long) *result);
7582 #endif
7583 return TRUE;
7584 }
7585 }
7586
7587 /* Hmm, haven't found it yet. perhaps it is a global. */
7588 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7589 FALSE, FALSE, TRUE);
7590 if (!global_entry)
7591 return FALSE;
7592
7593 if (global_entry->type == bfd_link_hash_defined
7594 || global_entry->type == bfd_link_hash_defweak)
7595 {
7596 *result = (global_entry->u.def.value
7597 + global_entry->u.def.section->output_section->vma
7598 + global_entry->u.def.section->output_offset);
7599 #ifdef DEBUG
7600 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7601 global_entry->root.string, (unsigned long) *result);
7602 #endif
7603 return TRUE;
7604 }
7605
7606 return FALSE;
7607 }
7608
7609 static bfd_boolean
7610 resolve_section (const char *name,
7611 asection *sections,
7612 bfd_vma *result)
7613 {
7614 asection *curr;
7615 unsigned int len;
7616
7617 for (curr = sections; curr; curr = curr->next)
7618 if (strcmp (curr->name, name) == 0)
7619 {
7620 *result = curr->vma;
7621 return TRUE;
7622 }
7623
7624 /* Hmm. still haven't found it. try pseudo-section names. */
7625 for (curr = sections; curr; curr = curr->next)
7626 {
7627 len = strlen (curr->name);
7628 if (len > strlen (name))
7629 continue;
7630
7631 if (strncmp (curr->name, name, len) == 0)
7632 {
7633 if (strncmp (".end", name + len, 4) == 0)
7634 {
7635 *result = curr->vma + curr->size;
7636 return TRUE;
7637 }
7638
7639 /* Insert more pseudo-section names here, if you like. */
7640 }
7641 }
7642
7643 return FALSE;
7644 }
7645
7646 static void
7647 undefined_reference (const char *reftype, const char *name)
7648 {
7649 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7650 reftype, name);
7651 }
7652
7653 static bfd_boolean
7654 eval_symbol (bfd_vma *result,
7655 const char **symp,
7656 bfd *input_bfd,
7657 struct elf_final_link_info *flinfo,
7658 bfd_vma dot,
7659 Elf_Internal_Sym *isymbuf,
7660 size_t locsymcount,
7661 int signed_p)
7662 {
7663 size_t len;
7664 size_t symlen;
7665 bfd_vma a;
7666 bfd_vma b;
7667 char symbuf[4096];
7668 const char *sym = *symp;
7669 const char *symend;
7670 bfd_boolean symbol_is_section = FALSE;
7671
7672 len = strlen (sym);
7673 symend = sym + len;
7674
7675 if (len < 1 || len > sizeof (symbuf))
7676 {
7677 bfd_set_error (bfd_error_invalid_operation);
7678 return FALSE;
7679 }
7680
7681 switch (* sym)
7682 {
7683 case '.':
7684 *result = dot;
7685 *symp = sym + 1;
7686 return TRUE;
7687
7688 case '#':
7689 ++sym;
7690 *result = strtoul (sym, (char **) symp, 16);
7691 return TRUE;
7692
7693 case 'S':
7694 symbol_is_section = TRUE;
7695 case 's':
7696 ++sym;
7697 symlen = strtol (sym, (char **) symp, 10);
7698 sym = *symp + 1; /* Skip the trailing ':'. */
7699
7700 if (symend < sym || symlen + 1 > sizeof (symbuf))
7701 {
7702 bfd_set_error (bfd_error_invalid_operation);
7703 return FALSE;
7704 }
7705
7706 memcpy (symbuf, sym, symlen);
7707 symbuf[symlen] = '\0';
7708 *symp = sym + symlen;
7709
7710 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7711 the symbol as a section, or vice-versa. so we're pretty liberal in our
7712 interpretation here; section means "try section first", not "must be a
7713 section", and likewise with symbol. */
7714
7715 if (symbol_is_section)
7716 {
7717 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7718 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7719 isymbuf, locsymcount))
7720 {
7721 undefined_reference ("section", symbuf);
7722 return FALSE;
7723 }
7724 }
7725 else
7726 {
7727 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7728 isymbuf, locsymcount)
7729 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7730 result))
7731 {
7732 undefined_reference ("symbol", symbuf);
7733 return FALSE;
7734 }
7735 }
7736
7737 return TRUE;
7738
7739 /* All that remains are operators. */
7740
7741 #define UNARY_OP(op) \
7742 if (strncmp (sym, #op, strlen (#op)) == 0) \
7743 { \
7744 sym += strlen (#op); \
7745 if (*sym == ':') \
7746 ++sym; \
7747 *symp = sym; \
7748 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7749 isymbuf, locsymcount, signed_p)) \
7750 return FALSE; \
7751 if (signed_p) \
7752 *result = op ((bfd_signed_vma) a); \
7753 else \
7754 *result = op a; \
7755 return TRUE; \
7756 }
7757
7758 #define BINARY_OP(op) \
7759 if (strncmp (sym, #op, strlen (#op)) == 0) \
7760 { \
7761 sym += strlen (#op); \
7762 if (*sym == ':') \
7763 ++sym; \
7764 *symp = sym; \
7765 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7766 isymbuf, locsymcount, signed_p)) \
7767 return FALSE; \
7768 ++*symp; \
7769 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7770 isymbuf, locsymcount, signed_p)) \
7771 return FALSE; \
7772 if (signed_p) \
7773 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7774 else \
7775 *result = a op b; \
7776 return TRUE; \
7777 }
7778
7779 default:
7780 UNARY_OP (0-);
7781 BINARY_OP (<<);
7782 BINARY_OP (>>);
7783 BINARY_OP (==);
7784 BINARY_OP (!=);
7785 BINARY_OP (<=);
7786 BINARY_OP (>=);
7787 BINARY_OP (&&);
7788 BINARY_OP (||);
7789 UNARY_OP (~);
7790 UNARY_OP (!);
7791 BINARY_OP (*);
7792 BINARY_OP (/);
7793 BINARY_OP (%);
7794 BINARY_OP (^);
7795 BINARY_OP (|);
7796 BINARY_OP (&);
7797 BINARY_OP (+);
7798 BINARY_OP (-);
7799 BINARY_OP (<);
7800 BINARY_OP (>);
7801 #undef UNARY_OP
7802 #undef BINARY_OP
7803 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7804 bfd_set_error (bfd_error_invalid_operation);
7805 return FALSE;
7806 }
7807 }
7808
7809 static void
7810 put_value (bfd_vma size,
7811 unsigned long chunksz,
7812 bfd *input_bfd,
7813 bfd_vma x,
7814 bfd_byte *location)
7815 {
7816 location += (size - chunksz);
7817
7818 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7819 {
7820 switch (chunksz)
7821 {
7822 default:
7823 case 0:
7824 abort ();
7825 case 1:
7826 bfd_put_8 (input_bfd, x, location);
7827 break;
7828 case 2:
7829 bfd_put_16 (input_bfd, x, location);
7830 break;
7831 case 4:
7832 bfd_put_32 (input_bfd, x, location);
7833 break;
7834 case 8:
7835 #ifdef BFD64
7836 bfd_put_64 (input_bfd, x, location);
7837 #else
7838 abort ();
7839 #endif
7840 break;
7841 }
7842 }
7843 }
7844
7845 static bfd_vma
7846 get_value (bfd_vma size,
7847 unsigned long chunksz,
7848 bfd *input_bfd,
7849 bfd_byte *location)
7850 {
7851 bfd_vma x = 0;
7852
7853 for (; size; size -= chunksz, location += chunksz)
7854 {
7855 switch (chunksz)
7856 {
7857 default:
7858 case 0:
7859 abort ();
7860 case 1:
7861 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7862 break;
7863 case 2:
7864 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7865 break;
7866 case 4:
7867 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7868 break;
7869 case 8:
7870 #ifdef BFD64
7871 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7872 #else
7873 abort ();
7874 #endif
7875 break;
7876 }
7877 }
7878 return x;
7879 }
7880
7881 static void
7882 decode_complex_addend (unsigned long *start, /* in bits */
7883 unsigned long *oplen, /* in bits */
7884 unsigned long *len, /* in bits */
7885 unsigned long *wordsz, /* in bytes */
7886 unsigned long *chunksz, /* in bytes */
7887 unsigned long *lsb0_p,
7888 unsigned long *signed_p,
7889 unsigned long *trunc_p,
7890 unsigned long encoded)
7891 {
7892 * start = encoded & 0x3F;
7893 * len = (encoded >> 6) & 0x3F;
7894 * oplen = (encoded >> 12) & 0x3F;
7895 * wordsz = (encoded >> 18) & 0xF;
7896 * chunksz = (encoded >> 22) & 0xF;
7897 * lsb0_p = (encoded >> 27) & 1;
7898 * signed_p = (encoded >> 28) & 1;
7899 * trunc_p = (encoded >> 29) & 1;
7900 }
7901
7902 bfd_reloc_status_type
7903 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7904 asection *input_section ATTRIBUTE_UNUSED,
7905 bfd_byte *contents,
7906 Elf_Internal_Rela *rel,
7907 bfd_vma relocation)
7908 {
7909 bfd_vma shift, x, mask;
7910 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7911 bfd_reloc_status_type r;
7912
7913 /* Perform this reloc, since it is complex.
7914 (this is not to say that it necessarily refers to a complex
7915 symbol; merely that it is a self-describing CGEN based reloc.
7916 i.e. the addend has the complete reloc information (bit start, end,
7917 word size, etc) encoded within it.). */
7918
7919 decode_complex_addend (&start, &oplen, &len, &wordsz,
7920 &chunksz, &lsb0_p, &signed_p,
7921 &trunc_p, rel->r_addend);
7922
7923 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7924
7925 if (lsb0_p)
7926 shift = (start + 1) - len;
7927 else
7928 shift = (8 * wordsz) - (start + len);
7929
7930 /* FIXME: octets_per_byte. */
7931 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7932
7933 #ifdef DEBUG
7934 printf ("Doing complex reloc: "
7935 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7936 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7937 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7938 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7939 oplen, (unsigned long) x, (unsigned long) mask,
7940 (unsigned long) relocation);
7941 #endif
7942
7943 r = bfd_reloc_ok;
7944 if (! trunc_p)
7945 /* Now do an overflow check. */
7946 r = bfd_check_overflow ((signed_p
7947 ? complain_overflow_signed
7948 : complain_overflow_unsigned),
7949 len, 0, (8 * wordsz),
7950 relocation);
7951
7952 /* Do the deed. */
7953 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7954
7955 #ifdef DEBUG
7956 printf (" relocation: %8.8lx\n"
7957 " shifted mask: %8.8lx\n"
7958 " shifted/masked reloc: %8.8lx\n"
7959 " result: %8.8lx\n",
7960 (unsigned long) relocation, (unsigned long) (mask << shift),
7961 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7962 #endif
7963 /* FIXME: octets_per_byte. */
7964 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7965 return r;
7966 }
7967
7968 /* When performing a relocatable link, the input relocations are
7969 preserved. But, if they reference global symbols, the indices
7970 referenced must be updated. Update all the relocations found in
7971 RELDATA. */
7972
7973 static void
7974 elf_link_adjust_relocs (bfd *abfd,
7975 struct bfd_elf_section_reloc_data *reldata)
7976 {
7977 unsigned int i;
7978 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7979 bfd_byte *erela;
7980 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7981 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7982 bfd_vma r_type_mask;
7983 int r_sym_shift;
7984 unsigned int count = reldata->count;
7985 struct elf_link_hash_entry **rel_hash = reldata->hashes;
7986
7987 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
7988 {
7989 swap_in = bed->s->swap_reloc_in;
7990 swap_out = bed->s->swap_reloc_out;
7991 }
7992 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
7993 {
7994 swap_in = bed->s->swap_reloca_in;
7995 swap_out = bed->s->swap_reloca_out;
7996 }
7997 else
7998 abort ();
7999
8000 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8001 abort ();
8002
8003 if (bed->s->arch_size == 32)
8004 {
8005 r_type_mask = 0xff;
8006 r_sym_shift = 8;
8007 }
8008 else
8009 {
8010 r_type_mask = 0xffffffff;
8011 r_sym_shift = 32;
8012 }
8013
8014 erela = reldata->hdr->contents;
8015 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8016 {
8017 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8018 unsigned int j;
8019
8020 if (*rel_hash == NULL)
8021 continue;
8022
8023 BFD_ASSERT ((*rel_hash)->indx >= 0);
8024
8025 (*swap_in) (abfd, erela, irela);
8026 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8027 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8028 | (irela[j].r_info & r_type_mask));
8029 (*swap_out) (abfd, irela, erela);
8030 }
8031 }
8032
8033 struct elf_link_sort_rela
8034 {
8035 union {
8036 bfd_vma offset;
8037 bfd_vma sym_mask;
8038 } u;
8039 enum elf_reloc_type_class type;
8040 /* We use this as an array of size int_rels_per_ext_rel. */
8041 Elf_Internal_Rela rela[1];
8042 };
8043
8044 static int
8045 elf_link_sort_cmp1 (const void *A, const void *B)
8046 {
8047 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8048 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8049 int relativea, relativeb;
8050
8051 relativea = a->type == reloc_class_relative;
8052 relativeb = b->type == reloc_class_relative;
8053
8054 if (relativea < relativeb)
8055 return 1;
8056 if (relativea > relativeb)
8057 return -1;
8058 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8059 return -1;
8060 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8061 return 1;
8062 if (a->rela->r_offset < b->rela->r_offset)
8063 return -1;
8064 if (a->rela->r_offset > b->rela->r_offset)
8065 return 1;
8066 return 0;
8067 }
8068
8069 static int
8070 elf_link_sort_cmp2 (const void *A, const void *B)
8071 {
8072 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8073 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8074 int copya, copyb;
8075
8076 if (a->u.offset < b->u.offset)
8077 return -1;
8078 if (a->u.offset > b->u.offset)
8079 return 1;
8080 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
8081 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
8082 if (copya < copyb)
8083 return -1;
8084 if (copya > copyb)
8085 return 1;
8086 if (a->rela->r_offset < b->rela->r_offset)
8087 return -1;
8088 if (a->rela->r_offset > b->rela->r_offset)
8089 return 1;
8090 return 0;
8091 }
8092
8093 static size_t
8094 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8095 {
8096 asection *dynamic_relocs;
8097 asection *rela_dyn;
8098 asection *rel_dyn;
8099 bfd_size_type count, size;
8100 size_t i, ret, sort_elt, ext_size;
8101 bfd_byte *sort, *s_non_relative, *p;
8102 struct elf_link_sort_rela *sq;
8103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8104 int i2e = bed->s->int_rels_per_ext_rel;
8105 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8106 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8107 struct bfd_link_order *lo;
8108 bfd_vma r_sym_mask;
8109 bfd_boolean use_rela;
8110
8111 /* Find a dynamic reloc section. */
8112 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8113 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8114 if (rela_dyn != NULL && rela_dyn->size > 0
8115 && rel_dyn != NULL && rel_dyn->size > 0)
8116 {
8117 bfd_boolean use_rela_initialised = FALSE;
8118
8119 /* This is just here to stop gcc from complaining.
8120 It's initialization checking code is not perfect. */
8121 use_rela = TRUE;
8122
8123 /* Both sections are present. Examine the sizes
8124 of the indirect sections to help us choose. */
8125 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8126 if (lo->type == bfd_indirect_link_order)
8127 {
8128 asection *o = lo->u.indirect.section;
8129
8130 if ((o->size % bed->s->sizeof_rela) == 0)
8131 {
8132 if ((o->size % bed->s->sizeof_rel) == 0)
8133 /* Section size is divisible by both rel and rela sizes.
8134 It is of no help to us. */
8135 ;
8136 else
8137 {
8138 /* Section size is only divisible by rela. */
8139 if (use_rela_initialised && (use_rela == FALSE))
8140 {
8141 _bfd_error_handler
8142 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8143 bfd_set_error (bfd_error_invalid_operation);
8144 return 0;
8145 }
8146 else
8147 {
8148 use_rela = TRUE;
8149 use_rela_initialised = TRUE;
8150 }
8151 }
8152 }
8153 else if ((o->size % bed->s->sizeof_rel) == 0)
8154 {
8155 /* Section size is only divisible by rel. */
8156 if (use_rela_initialised && (use_rela == TRUE))
8157 {
8158 _bfd_error_handler
8159 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8160 bfd_set_error (bfd_error_invalid_operation);
8161 return 0;
8162 }
8163 else
8164 {
8165 use_rela = FALSE;
8166 use_rela_initialised = TRUE;
8167 }
8168 }
8169 else
8170 {
8171 /* The section size is not divisible by either - something is wrong. */
8172 _bfd_error_handler
8173 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8174 bfd_set_error (bfd_error_invalid_operation);
8175 return 0;
8176 }
8177 }
8178
8179 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8180 if (lo->type == bfd_indirect_link_order)
8181 {
8182 asection *o = lo->u.indirect.section;
8183
8184 if ((o->size % bed->s->sizeof_rela) == 0)
8185 {
8186 if ((o->size % bed->s->sizeof_rel) == 0)
8187 /* Section size is divisible by both rel and rela sizes.
8188 It is of no help to us. */
8189 ;
8190 else
8191 {
8192 /* Section size is only divisible by rela. */
8193 if (use_rela_initialised && (use_rela == FALSE))
8194 {
8195 _bfd_error_handler
8196 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8197 bfd_set_error (bfd_error_invalid_operation);
8198 return 0;
8199 }
8200 else
8201 {
8202 use_rela = TRUE;
8203 use_rela_initialised = TRUE;
8204 }
8205 }
8206 }
8207 else if ((o->size % bed->s->sizeof_rel) == 0)
8208 {
8209 /* Section size is only divisible by rel. */
8210 if (use_rela_initialised && (use_rela == TRUE))
8211 {
8212 _bfd_error_handler
8213 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8214 bfd_set_error (bfd_error_invalid_operation);
8215 return 0;
8216 }
8217 else
8218 {
8219 use_rela = FALSE;
8220 use_rela_initialised = TRUE;
8221 }
8222 }
8223 else
8224 {
8225 /* The section size is not divisible by either - something is wrong. */
8226 _bfd_error_handler
8227 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8228 bfd_set_error (bfd_error_invalid_operation);
8229 return 0;
8230 }
8231 }
8232
8233 if (! use_rela_initialised)
8234 /* Make a guess. */
8235 use_rela = TRUE;
8236 }
8237 else if (rela_dyn != NULL && rela_dyn->size > 0)
8238 use_rela = TRUE;
8239 else if (rel_dyn != NULL && rel_dyn->size > 0)
8240 use_rela = FALSE;
8241 else
8242 return 0;
8243
8244 if (use_rela)
8245 {
8246 dynamic_relocs = rela_dyn;
8247 ext_size = bed->s->sizeof_rela;
8248 swap_in = bed->s->swap_reloca_in;
8249 swap_out = bed->s->swap_reloca_out;
8250 }
8251 else
8252 {
8253 dynamic_relocs = rel_dyn;
8254 ext_size = bed->s->sizeof_rel;
8255 swap_in = bed->s->swap_reloc_in;
8256 swap_out = bed->s->swap_reloc_out;
8257 }
8258
8259 size = 0;
8260 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8261 if (lo->type == bfd_indirect_link_order)
8262 size += lo->u.indirect.section->size;
8263
8264 if (size != dynamic_relocs->size)
8265 return 0;
8266
8267 sort_elt = (sizeof (struct elf_link_sort_rela)
8268 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8269
8270 count = dynamic_relocs->size / ext_size;
8271 if (count == 0)
8272 return 0;
8273 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8274
8275 if (sort == NULL)
8276 {
8277 (*info->callbacks->warning)
8278 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8279 return 0;
8280 }
8281
8282 if (bed->s->arch_size == 32)
8283 r_sym_mask = ~(bfd_vma) 0xff;
8284 else
8285 r_sym_mask = ~(bfd_vma) 0xffffffff;
8286
8287 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8288 if (lo->type == bfd_indirect_link_order)
8289 {
8290 bfd_byte *erel, *erelend;
8291 asection *o = lo->u.indirect.section;
8292
8293 if (o->contents == NULL && o->size != 0)
8294 {
8295 /* This is a reloc section that is being handled as a normal
8296 section. See bfd_section_from_shdr. We can't combine
8297 relocs in this case. */
8298 free (sort);
8299 return 0;
8300 }
8301 erel = o->contents;
8302 erelend = o->contents + o->size;
8303 /* FIXME: octets_per_byte. */
8304 p = sort + o->output_offset / ext_size * sort_elt;
8305
8306 while (erel < erelend)
8307 {
8308 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8309
8310 (*swap_in) (abfd, erel, s->rela);
8311 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8312 s->u.sym_mask = r_sym_mask;
8313 p += sort_elt;
8314 erel += ext_size;
8315 }
8316 }
8317
8318 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8319
8320 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8321 {
8322 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8323 if (s->type != reloc_class_relative)
8324 break;
8325 }
8326 ret = i;
8327 s_non_relative = p;
8328
8329 sq = (struct elf_link_sort_rela *) s_non_relative;
8330 for (; i < count; i++, p += sort_elt)
8331 {
8332 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8333 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8334 sq = sp;
8335 sp->u.offset = sq->rela->r_offset;
8336 }
8337
8338 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8339
8340 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8341 if (lo->type == bfd_indirect_link_order)
8342 {
8343 bfd_byte *erel, *erelend;
8344 asection *o = lo->u.indirect.section;
8345
8346 erel = o->contents;
8347 erelend = o->contents + o->size;
8348 /* FIXME: octets_per_byte. */
8349 p = sort + o->output_offset / ext_size * sort_elt;
8350 while (erel < erelend)
8351 {
8352 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8353 (*swap_out) (abfd, s->rela, erel);
8354 p += sort_elt;
8355 erel += ext_size;
8356 }
8357 }
8358
8359 free (sort);
8360 *psec = dynamic_relocs;
8361 return ret;
8362 }
8363
8364 /* Flush the output symbols to the file. */
8365
8366 static bfd_boolean
8367 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8368 const struct elf_backend_data *bed)
8369 {
8370 if (flinfo->symbuf_count > 0)
8371 {
8372 Elf_Internal_Shdr *hdr;
8373 file_ptr pos;
8374 bfd_size_type amt;
8375
8376 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8377 pos = hdr->sh_offset + hdr->sh_size;
8378 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8379 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8380 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8381 return FALSE;
8382
8383 hdr->sh_size += amt;
8384 flinfo->symbuf_count = 0;
8385 }
8386
8387 return TRUE;
8388 }
8389
8390 /* Add a symbol to the output symbol table. */
8391
8392 static int
8393 elf_link_output_sym (struct elf_final_link_info *flinfo,
8394 const char *name,
8395 Elf_Internal_Sym *elfsym,
8396 asection *input_sec,
8397 struct elf_link_hash_entry *h)
8398 {
8399 bfd_byte *dest;
8400 Elf_External_Sym_Shndx *destshndx;
8401 int (*output_symbol_hook)
8402 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8403 struct elf_link_hash_entry *);
8404 const struct elf_backend_data *bed;
8405
8406 bed = get_elf_backend_data (flinfo->output_bfd);
8407 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8408 if (output_symbol_hook != NULL)
8409 {
8410 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8411 if (ret != 1)
8412 return ret;
8413 }
8414
8415 if (name == NULL || *name == '\0')
8416 elfsym->st_name = 0;
8417 else if (input_sec->flags & SEC_EXCLUDE)
8418 elfsym->st_name = 0;
8419 else
8420 {
8421 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8422 name, TRUE, FALSE);
8423 if (elfsym->st_name == (unsigned long) -1)
8424 return 0;
8425 }
8426
8427 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8428 {
8429 if (! elf_link_flush_output_syms (flinfo, bed))
8430 return 0;
8431 }
8432
8433 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8434 destshndx = flinfo->symshndxbuf;
8435 if (destshndx != NULL)
8436 {
8437 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8438 {
8439 bfd_size_type amt;
8440
8441 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8442 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8443 amt * 2);
8444 if (destshndx == NULL)
8445 return 0;
8446 flinfo->symshndxbuf = destshndx;
8447 memset ((char *) destshndx + amt, 0, amt);
8448 flinfo->shndxbuf_size *= 2;
8449 }
8450 destshndx += bfd_get_symcount (flinfo->output_bfd);
8451 }
8452
8453 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8454 flinfo->symbuf_count += 1;
8455 bfd_get_symcount (flinfo->output_bfd) += 1;
8456
8457 return 1;
8458 }
8459
8460 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8461
8462 static bfd_boolean
8463 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8464 {
8465 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8466 && sym->st_shndx < SHN_LORESERVE)
8467 {
8468 /* The gABI doesn't support dynamic symbols in output sections
8469 beyond 64k. */
8470 (*_bfd_error_handler)
8471 (_("%B: Too many sections: %d (>= %d)"),
8472 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8473 bfd_set_error (bfd_error_nonrepresentable_section);
8474 return FALSE;
8475 }
8476 return TRUE;
8477 }
8478
8479 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8480 allowing an unsatisfied unversioned symbol in the DSO to match a
8481 versioned symbol that would normally require an explicit version.
8482 We also handle the case that a DSO references a hidden symbol
8483 which may be satisfied by a versioned symbol in another DSO. */
8484
8485 static bfd_boolean
8486 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8487 const struct elf_backend_data *bed,
8488 struct elf_link_hash_entry *h)
8489 {
8490 bfd *abfd;
8491 struct elf_link_loaded_list *loaded;
8492
8493 if (!is_elf_hash_table (info->hash))
8494 return FALSE;
8495
8496 /* Check indirect symbol. */
8497 while (h->root.type == bfd_link_hash_indirect)
8498 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8499
8500 switch (h->root.type)
8501 {
8502 default:
8503 abfd = NULL;
8504 break;
8505
8506 case bfd_link_hash_undefined:
8507 case bfd_link_hash_undefweak:
8508 abfd = h->root.u.undef.abfd;
8509 if ((abfd->flags & DYNAMIC) == 0
8510 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8511 return FALSE;
8512 break;
8513
8514 case bfd_link_hash_defined:
8515 case bfd_link_hash_defweak:
8516 abfd = h->root.u.def.section->owner;
8517 break;
8518
8519 case bfd_link_hash_common:
8520 abfd = h->root.u.c.p->section->owner;
8521 break;
8522 }
8523 BFD_ASSERT (abfd != NULL);
8524
8525 for (loaded = elf_hash_table (info)->loaded;
8526 loaded != NULL;
8527 loaded = loaded->next)
8528 {
8529 bfd *input;
8530 Elf_Internal_Shdr *hdr;
8531 bfd_size_type symcount;
8532 bfd_size_type extsymcount;
8533 bfd_size_type extsymoff;
8534 Elf_Internal_Shdr *versymhdr;
8535 Elf_Internal_Sym *isym;
8536 Elf_Internal_Sym *isymend;
8537 Elf_Internal_Sym *isymbuf;
8538 Elf_External_Versym *ever;
8539 Elf_External_Versym *extversym;
8540
8541 input = loaded->abfd;
8542
8543 /* We check each DSO for a possible hidden versioned definition. */
8544 if (input == abfd
8545 || (input->flags & DYNAMIC) == 0
8546 || elf_dynversym (input) == 0)
8547 continue;
8548
8549 hdr = &elf_tdata (input)->dynsymtab_hdr;
8550
8551 symcount = hdr->sh_size / bed->s->sizeof_sym;
8552 if (elf_bad_symtab (input))
8553 {
8554 extsymcount = symcount;
8555 extsymoff = 0;
8556 }
8557 else
8558 {
8559 extsymcount = symcount - hdr->sh_info;
8560 extsymoff = hdr->sh_info;
8561 }
8562
8563 if (extsymcount == 0)
8564 continue;
8565
8566 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8567 NULL, NULL, NULL);
8568 if (isymbuf == NULL)
8569 return FALSE;
8570
8571 /* Read in any version definitions. */
8572 versymhdr = &elf_tdata (input)->dynversym_hdr;
8573 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8574 if (extversym == NULL)
8575 goto error_ret;
8576
8577 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8578 || (bfd_bread (extversym, versymhdr->sh_size, input)
8579 != versymhdr->sh_size))
8580 {
8581 free (extversym);
8582 error_ret:
8583 free (isymbuf);
8584 return FALSE;
8585 }
8586
8587 ever = extversym + extsymoff;
8588 isymend = isymbuf + extsymcount;
8589 for (isym = isymbuf; isym < isymend; isym++, ever++)
8590 {
8591 const char *name;
8592 Elf_Internal_Versym iver;
8593 unsigned short version_index;
8594
8595 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8596 || isym->st_shndx == SHN_UNDEF)
8597 continue;
8598
8599 name = bfd_elf_string_from_elf_section (input,
8600 hdr->sh_link,
8601 isym->st_name);
8602 if (strcmp (name, h->root.root.string) != 0)
8603 continue;
8604
8605 _bfd_elf_swap_versym_in (input, ever, &iver);
8606
8607 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8608 && !(h->def_regular
8609 && h->forced_local))
8610 {
8611 /* If we have a non-hidden versioned sym, then it should
8612 have provided a definition for the undefined sym unless
8613 it is defined in a non-shared object and forced local.
8614 */
8615 abort ();
8616 }
8617
8618 version_index = iver.vs_vers & VERSYM_VERSION;
8619 if (version_index == 1 || version_index == 2)
8620 {
8621 /* This is the base or first version. We can use it. */
8622 free (extversym);
8623 free (isymbuf);
8624 return TRUE;
8625 }
8626 }
8627
8628 free (extversym);
8629 free (isymbuf);
8630 }
8631
8632 return FALSE;
8633 }
8634
8635 /* Add an external symbol to the symbol table. This is called from
8636 the hash table traversal routine. When generating a shared object,
8637 we go through the symbol table twice. The first time we output
8638 anything that might have been forced to local scope in a version
8639 script. The second time we output the symbols that are still
8640 global symbols. */
8641
8642 static bfd_boolean
8643 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8644 {
8645 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8646 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8647 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8648 bfd_boolean strip;
8649 Elf_Internal_Sym sym;
8650 asection *input_sec;
8651 const struct elf_backend_data *bed;
8652 long indx;
8653 int ret;
8654
8655 if (h->root.type == bfd_link_hash_warning)
8656 {
8657 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8658 if (h->root.type == bfd_link_hash_new)
8659 return TRUE;
8660 }
8661
8662 /* Decide whether to output this symbol in this pass. */
8663 if (eoinfo->localsyms)
8664 {
8665 if (!h->forced_local)
8666 return TRUE;
8667 if (eoinfo->second_pass
8668 && !((h->root.type == bfd_link_hash_defined
8669 || h->root.type == bfd_link_hash_defweak)
8670 && h->root.u.def.section->output_section != NULL))
8671 return TRUE;
8672 }
8673 else
8674 {
8675 if (h->forced_local)
8676 return TRUE;
8677 }
8678
8679 bed = get_elf_backend_data (flinfo->output_bfd);
8680
8681 if (h->root.type == bfd_link_hash_undefined)
8682 {
8683 /* If we have an undefined symbol reference here then it must have
8684 come from a shared library that is being linked in. (Undefined
8685 references in regular files have already been handled unless
8686 they are in unreferenced sections which are removed by garbage
8687 collection). */
8688 bfd_boolean ignore_undef = FALSE;
8689
8690 /* Some symbols may be special in that the fact that they're
8691 undefined can be safely ignored - let backend determine that. */
8692 if (bed->elf_backend_ignore_undef_symbol)
8693 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8694
8695 /* If we are reporting errors for this situation then do so now. */
8696 if (!ignore_undef
8697 && h->ref_dynamic
8698 && (!h->ref_regular || flinfo->info->gc_sections)
8699 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8700 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8701 {
8702 if (!(flinfo->info->callbacks->undefined_symbol
8703 (flinfo->info, h->root.root.string,
8704 h->ref_regular ? NULL : h->root.u.undef.abfd,
8705 NULL, 0,
8706 (flinfo->info->unresolved_syms_in_shared_libs
8707 == RM_GENERATE_ERROR))))
8708 {
8709 bfd_set_error (bfd_error_bad_value);
8710 eoinfo->failed = TRUE;
8711 return FALSE;
8712 }
8713 }
8714 }
8715
8716 /* We should also warn if a forced local symbol is referenced from
8717 shared libraries. */
8718 if (!flinfo->info->relocatable
8719 && flinfo->info->executable
8720 && h->forced_local
8721 && h->ref_dynamic
8722 && h->def_regular
8723 && !h->dynamic_def
8724 && !h->dynamic_weak
8725 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8726 {
8727 bfd *def_bfd;
8728 const char *msg;
8729 struct elf_link_hash_entry *hi = h;
8730
8731 /* Check indirect symbol. */
8732 while (hi->root.type == bfd_link_hash_indirect)
8733 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8734
8735 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8736 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8737 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8738 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8739 else
8740 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8741 def_bfd = flinfo->output_bfd;
8742 if (hi->root.u.def.section != bfd_abs_section_ptr)
8743 def_bfd = hi->root.u.def.section->owner;
8744 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8745 h->root.root.string);
8746 bfd_set_error (bfd_error_bad_value);
8747 eoinfo->failed = TRUE;
8748 return FALSE;
8749 }
8750
8751 /* We don't want to output symbols that have never been mentioned by
8752 a regular file, or that we have been told to strip. However, if
8753 h->indx is set to -2, the symbol is used by a reloc and we must
8754 output it. */
8755 if (h->indx == -2)
8756 strip = FALSE;
8757 else if ((h->def_dynamic
8758 || h->ref_dynamic
8759 || h->root.type == bfd_link_hash_new)
8760 && !h->def_regular
8761 && !h->ref_regular)
8762 strip = TRUE;
8763 else if (flinfo->info->strip == strip_all)
8764 strip = TRUE;
8765 else if (flinfo->info->strip == strip_some
8766 && bfd_hash_lookup (flinfo->info->keep_hash,
8767 h->root.root.string, FALSE, FALSE) == NULL)
8768 strip = TRUE;
8769 else if ((h->root.type == bfd_link_hash_defined
8770 || h->root.type == bfd_link_hash_defweak)
8771 && ((flinfo->info->strip_discarded
8772 && discarded_section (h->root.u.def.section))
8773 || (h->root.u.def.section->owner != NULL
8774 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8775 strip = TRUE;
8776 else if ((h->root.type == bfd_link_hash_undefined
8777 || h->root.type == bfd_link_hash_undefweak)
8778 && h->root.u.undef.abfd != NULL
8779 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8780 strip = TRUE;
8781 else
8782 strip = FALSE;
8783
8784 /* If we're stripping it, and it's not a dynamic symbol, there's
8785 nothing else to do unless it is a forced local symbol or a
8786 STT_GNU_IFUNC symbol. */
8787 if (strip
8788 && h->dynindx == -1
8789 && h->type != STT_GNU_IFUNC
8790 && !h->forced_local)
8791 return TRUE;
8792
8793 sym.st_value = 0;
8794 sym.st_size = h->size;
8795 sym.st_other = h->other;
8796 if (h->forced_local)
8797 {
8798 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8799 /* Turn off visibility on local symbol. */
8800 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8801 }
8802 else if (h->unique_global)
8803 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8804 else if (h->root.type == bfd_link_hash_undefweak
8805 || h->root.type == bfd_link_hash_defweak)
8806 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8807 else
8808 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8809 sym.st_target_internal = h->target_internal;
8810
8811 switch (h->root.type)
8812 {
8813 default:
8814 case bfd_link_hash_new:
8815 case bfd_link_hash_warning:
8816 abort ();
8817 return FALSE;
8818
8819 case bfd_link_hash_undefined:
8820 case bfd_link_hash_undefweak:
8821 input_sec = bfd_und_section_ptr;
8822 sym.st_shndx = SHN_UNDEF;
8823 break;
8824
8825 case bfd_link_hash_defined:
8826 case bfd_link_hash_defweak:
8827 {
8828 input_sec = h->root.u.def.section;
8829 if (input_sec->output_section != NULL)
8830 {
8831 if (eoinfo->localsyms && flinfo->filesym_count == 1)
8832 {
8833 bfd_boolean second_pass_sym
8834 = (input_sec->owner == flinfo->output_bfd
8835 || input_sec->owner == NULL
8836 || (input_sec->flags & SEC_LINKER_CREATED) != 0
8837 || (input_sec->owner->flags & BFD_LINKER_CREATED) != 0);
8838
8839 eoinfo->need_second_pass |= second_pass_sym;
8840 if (eoinfo->second_pass != second_pass_sym)
8841 return TRUE;
8842 }
8843
8844 sym.st_shndx =
8845 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
8846 input_sec->output_section);
8847 if (sym.st_shndx == SHN_BAD)
8848 {
8849 (*_bfd_error_handler)
8850 (_("%B: could not find output section %A for input section %A"),
8851 flinfo->output_bfd, input_sec->output_section, input_sec);
8852 bfd_set_error (bfd_error_nonrepresentable_section);
8853 eoinfo->failed = TRUE;
8854 return FALSE;
8855 }
8856
8857 /* ELF symbols in relocatable files are section relative,
8858 but in nonrelocatable files they are virtual
8859 addresses. */
8860 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8861 if (!flinfo->info->relocatable)
8862 {
8863 sym.st_value += input_sec->output_section->vma;
8864 if (h->type == STT_TLS)
8865 {
8866 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
8867 if (tls_sec != NULL)
8868 sym.st_value -= tls_sec->vma;
8869 else
8870 {
8871 /* The TLS section may have been garbage collected. */
8872 BFD_ASSERT (flinfo->info->gc_sections
8873 && !input_sec->gc_mark);
8874 }
8875 }
8876 }
8877 }
8878 else
8879 {
8880 BFD_ASSERT (input_sec->owner == NULL
8881 || (input_sec->owner->flags & DYNAMIC) != 0);
8882 sym.st_shndx = SHN_UNDEF;
8883 input_sec = bfd_und_section_ptr;
8884 }
8885 }
8886 break;
8887
8888 case bfd_link_hash_common:
8889 input_sec = h->root.u.c.p->section;
8890 sym.st_shndx = bed->common_section_index (input_sec);
8891 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8892 break;
8893
8894 case bfd_link_hash_indirect:
8895 /* These symbols are created by symbol versioning. They point
8896 to the decorated version of the name. For example, if the
8897 symbol foo@@GNU_1.2 is the default, which should be used when
8898 foo is used with no version, then we add an indirect symbol
8899 foo which points to foo@@GNU_1.2. We ignore these symbols,
8900 since the indirected symbol is already in the hash table. */
8901 return TRUE;
8902 }
8903
8904 /* Give the processor backend a chance to tweak the symbol value,
8905 and also to finish up anything that needs to be done for this
8906 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8907 forced local syms when non-shared is due to a historical quirk.
8908 STT_GNU_IFUNC symbol must go through PLT. */
8909 if ((h->type == STT_GNU_IFUNC
8910 && h->def_regular
8911 && !flinfo->info->relocatable)
8912 || ((h->dynindx != -1
8913 || h->forced_local)
8914 && ((flinfo->info->shared
8915 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8916 || h->root.type != bfd_link_hash_undefweak))
8917 || !h->forced_local)
8918 && elf_hash_table (flinfo->info)->dynamic_sections_created))
8919 {
8920 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8921 (flinfo->output_bfd, flinfo->info, h, &sym)))
8922 {
8923 eoinfo->failed = TRUE;
8924 return FALSE;
8925 }
8926 }
8927
8928 /* If we are marking the symbol as undefined, and there are no
8929 non-weak references to this symbol from a regular object, then
8930 mark the symbol as weak undefined; if there are non-weak
8931 references, mark the symbol as strong. We can't do this earlier,
8932 because it might not be marked as undefined until the
8933 finish_dynamic_symbol routine gets through with it. */
8934 if (sym.st_shndx == SHN_UNDEF
8935 && h->ref_regular
8936 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8937 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8938 {
8939 int bindtype;
8940 unsigned int type = ELF_ST_TYPE (sym.st_info);
8941
8942 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8943 if (type == STT_GNU_IFUNC)
8944 type = STT_FUNC;
8945
8946 if (h->ref_regular_nonweak)
8947 bindtype = STB_GLOBAL;
8948 else
8949 bindtype = STB_WEAK;
8950 sym.st_info = ELF_ST_INFO (bindtype, type);
8951 }
8952
8953 /* If this is a symbol defined in a dynamic library, don't use the
8954 symbol size from the dynamic library. Relinking an executable
8955 against a new library may introduce gratuitous changes in the
8956 executable's symbols if we keep the size. */
8957 if (sym.st_shndx == SHN_UNDEF
8958 && !h->def_regular
8959 && h->def_dynamic)
8960 sym.st_size = 0;
8961
8962 /* If a non-weak symbol with non-default visibility is not defined
8963 locally, it is a fatal error. */
8964 if (!flinfo->info->relocatable
8965 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8966 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8967 && h->root.type == bfd_link_hash_undefined
8968 && !h->def_regular)
8969 {
8970 const char *msg;
8971
8972 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
8973 msg = _("%B: protected symbol `%s' isn't defined");
8974 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
8975 msg = _("%B: internal symbol `%s' isn't defined");
8976 else
8977 msg = _("%B: hidden symbol `%s' isn't defined");
8978 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
8979 bfd_set_error (bfd_error_bad_value);
8980 eoinfo->failed = TRUE;
8981 return FALSE;
8982 }
8983
8984 /* If this symbol should be put in the .dynsym section, then put it
8985 there now. We already know the symbol index. We also fill in
8986 the entry in the .hash section. */
8987 if (flinfo->dynsym_sec != NULL
8988 && h->dynindx != -1
8989 && elf_hash_table (flinfo->info)->dynamic_sections_created)
8990 {
8991 bfd_byte *esym;
8992
8993 /* Since there is no version information in the dynamic string,
8994 if there is no version info in symbol version section, we will
8995 have a run-time problem. */
8996 if (h->verinfo.verdef == NULL)
8997 {
8998 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
8999
9000 if (p && p [1] != '\0')
9001 {
9002 (*_bfd_error_handler)
9003 (_("%B: No symbol version section for versioned symbol `%s'"),
9004 flinfo->output_bfd, h->root.root.string);
9005 eoinfo->failed = TRUE;
9006 return FALSE;
9007 }
9008 }
9009
9010 sym.st_name = h->dynstr_index;
9011 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9012 if (!check_dynsym (flinfo->output_bfd, &sym))
9013 {
9014 eoinfo->failed = TRUE;
9015 return FALSE;
9016 }
9017 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9018
9019 if (flinfo->hash_sec != NULL)
9020 {
9021 size_t hash_entry_size;
9022 bfd_byte *bucketpos;
9023 bfd_vma chain;
9024 size_t bucketcount;
9025 size_t bucket;
9026
9027 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9028 bucket = h->u.elf_hash_value % bucketcount;
9029
9030 hash_entry_size
9031 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9032 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9033 + (bucket + 2) * hash_entry_size);
9034 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9035 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9036 bucketpos);
9037 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9038 ((bfd_byte *) flinfo->hash_sec->contents
9039 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9040 }
9041
9042 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9043 {
9044 Elf_Internal_Versym iversym;
9045 Elf_External_Versym *eversym;
9046
9047 if (!h->def_regular)
9048 {
9049 if (h->verinfo.verdef == NULL)
9050 iversym.vs_vers = 0;
9051 else
9052 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9053 }
9054 else
9055 {
9056 if (h->verinfo.vertree == NULL)
9057 iversym.vs_vers = 1;
9058 else
9059 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9060 if (flinfo->info->create_default_symver)
9061 iversym.vs_vers++;
9062 }
9063
9064 if (h->hidden)
9065 iversym.vs_vers |= VERSYM_HIDDEN;
9066
9067 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9068 eversym += h->dynindx;
9069 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9070 }
9071 }
9072
9073 /* If we're stripping it, then it was just a dynamic symbol, and
9074 there's nothing else to do. */
9075 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
9076 return TRUE;
9077
9078 indx = bfd_get_symcount (flinfo->output_bfd);
9079 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9080 if (ret == 0)
9081 {
9082 eoinfo->failed = TRUE;
9083 return FALSE;
9084 }
9085 else if (ret == 1)
9086 h->indx = indx;
9087 else if (h->indx == -2)
9088 abort();
9089
9090 return TRUE;
9091 }
9092
9093 /* Return TRUE if special handling is done for relocs in SEC against
9094 symbols defined in discarded sections. */
9095
9096 static bfd_boolean
9097 elf_section_ignore_discarded_relocs (asection *sec)
9098 {
9099 const struct elf_backend_data *bed;
9100
9101 switch (sec->sec_info_type)
9102 {
9103 case SEC_INFO_TYPE_STABS:
9104 case SEC_INFO_TYPE_EH_FRAME:
9105 return TRUE;
9106 default:
9107 break;
9108 }
9109
9110 bed = get_elf_backend_data (sec->owner);
9111 if (bed->elf_backend_ignore_discarded_relocs != NULL
9112 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9113 return TRUE;
9114
9115 return FALSE;
9116 }
9117
9118 /* Return a mask saying how ld should treat relocations in SEC against
9119 symbols defined in discarded sections. If this function returns
9120 COMPLAIN set, ld will issue a warning message. If this function
9121 returns PRETEND set, and the discarded section was link-once and the
9122 same size as the kept link-once section, ld will pretend that the
9123 symbol was actually defined in the kept section. Otherwise ld will
9124 zero the reloc (at least that is the intent, but some cooperation by
9125 the target dependent code is needed, particularly for REL targets). */
9126
9127 unsigned int
9128 _bfd_elf_default_action_discarded (asection *sec)
9129 {
9130 if (sec->flags & SEC_DEBUGGING)
9131 return PRETEND;
9132
9133 if (strcmp (".eh_frame", sec->name) == 0)
9134 return 0;
9135
9136 if (strcmp (".gcc_except_table", sec->name) == 0)
9137 return 0;
9138
9139 return COMPLAIN | PRETEND;
9140 }
9141
9142 /* Find a match between a section and a member of a section group. */
9143
9144 static asection *
9145 match_group_member (asection *sec, asection *group,
9146 struct bfd_link_info *info)
9147 {
9148 asection *first = elf_next_in_group (group);
9149 asection *s = first;
9150
9151 while (s != NULL)
9152 {
9153 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9154 return s;
9155
9156 s = elf_next_in_group (s);
9157 if (s == first)
9158 break;
9159 }
9160
9161 return NULL;
9162 }
9163
9164 /* Check if the kept section of a discarded section SEC can be used
9165 to replace it. Return the replacement if it is OK. Otherwise return
9166 NULL. */
9167
9168 asection *
9169 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9170 {
9171 asection *kept;
9172
9173 kept = sec->kept_section;
9174 if (kept != NULL)
9175 {
9176 if ((kept->flags & SEC_GROUP) != 0)
9177 kept = match_group_member (sec, kept, info);
9178 if (kept != NULL
9179 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9180 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9181 kept = NULL;
9182 sec->kept_section = kept;
9183 }
9184 return kept;
9185 }
9186
9187 /* Link an input file into the linker output file. This function
9188 handles all the sections and relocations of the input file at once.
9189 This is so that we only have to read the local symbols once, and
9190 don't have to keep them in memory. */
9191
9192 static bfd_boolean
9193 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9194 {
9195 int (*relocate_section)
9196 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9197 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9198 bfd *output_bfd;
9199 Elf_Internal_Shdr *symtab_hdr;
9200 size_t locsymcount;
9201 size_t extsymoff;
9202 Elf_Internal_Sym *isymbuf;
9203 Elf_Internal_Sym *isym;
9204 Elf_Internal_Sym *isymend;
9205 long *pindex;
9206 asection **ppsection;
9207 asection *o;
9208 const struct elf_backend_data *bed;
9209 struct elf_link_hash_entry **sym_hashes;
9210 bfd_size_type address_size;
9211 bfd_vma r_type_mask;
9212 int r_sym_shift;
9213 bfd_boolean have_file_sym = FALSE;
9214
9215 output_bfd = flinfo->output_bfd;
9216 bed = get_elf_backend_data (output_bfd);
9217 relocate_section = bed->elf_backend_relocate_section;
9218
9219 /* If this is a dynamic object, we don't want to do anything here:
9220 we don't want the local symbols, and we don't want the section
9221 contents. */
9222 if ((input_bfd->flags & DYNAMIC) != 0)
9223 return TRUE;
9224
9225 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9226 if (elf_bad_symtab (input_bfd))
9227 {
9228 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9229 extsymoff = 0;
9230 }
9231 else
9232 {
9233 locsymcount = symtab_hdr->sh_info;
9234 extsymoff = symtab_hdr->sh_info;
9235 }
9236
9237 /* Read the local symbols. */
9238 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9239 if (isymbuf == NULL && locsymcount != 0)
9240 {
9241 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9242 flinfo->internal_syms,
9243 flinfo->external_syms,
9244 flinfo->locsym_shndx);
9245 if (isymbuf == NULL)
9246 return FALSE;
9247 }
9248
9249 /* Find local symbol sections and adjust values of symbols in
9250 SEC_MERGE sections. Write out those local symbols we know are
9251 going into the output file. */
9252 isymend = isymbuf + locsymcount;
9253 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9254 isym < isymend;
9255 isym++, pindex++, ppsection++)
9256 {
9257 asection *isec;
9258 const char *name;
9259 Elf_Internal_Sym osym;
9260 long indx;
9261 int ret;
9262
9263 *pindex = -1;
9264
9265 if (elf_bad_symtab (input_bfd))
9266 {
9267 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9268 {
9269 *ppsection = NULL;
9270 continue;
9271 }
9272 }
9273
9274 if (isym->st_shndx == SHN_UNDEF)
9275 isec = bfd_und_section_ptr;
9276 else if (isym->st_shndx == SHN_ABS)
9277 isec = bfd_abs_section_ptr;
9278 else if (isym->st_shndx == SHN_COMMON)
9279 isec = bfd_com_section_ptr;
9280 else
9281 {
9282 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9283 if (isec == NULL)
9284 {
9285 /* Don't attempt to output symbols with st_shnx in the
9286 reserved range other than SHN_ABS and SHN_COMMON. */
9287 *ppsection = NULL;
9288 continue;
9289 }
9290 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9291 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9292 isym->st_value =
9293 _bfd_merged_section_offset (output_bfd, &isec,
9294 elf_section_data (isec)->sec_info,
9295 isym->st_value);
9296 }
9297
9298 *ppsection = isec;
9299
9300 /* Don't output the first, undefined, symbol. */
9301 if (ppsection == flinfo->sections)
9302 continue;
9303
9304 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9305 {
9306 /* We never output section symbols. Instead, we use the
9307 section symbol of the corresponding section in the output
9308 file. */
9309 continue;
9310 }
9311
9312 /* If we are stripping all symbols, we don't want to output this
9313 one. */
9314 if (flinfo->info->strip == strip_all)
9315 continue;
9316
9317 /* If we are discarding all local symbols, we don't want to
9318 output this one. If we are generating a relocatable output
9319 file, then some of the local symbols may be required by
9320 relocs; we output them below as we discover that they are
9321 needed. */
9322 if (flinfo->info->discard == discard_all)
9323 continue;
9324
9325 /* If this symbol is defined in a section which we are
9326 discarding, we don't need to keep it. */
9327 if (isym->st_shndx != SHN_UNDEF
9328 && isym->st_shndx < SHN_LORESERVE
9329 && bfd_section_removed_from_list (output_bfd,
9330 isec->output_section))
9331 continue;
9332
9333 /* Get the name of the symbol. */
9334 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9335 isym->st_name);
9336 if (name == NULL)
9337 return FALSE;
9338
9339 /* See if we are discarding symbols with this name. */
9340 if ((flinfo->info->strip == strip_some
9341 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9342 == NULL))
9343 || (((flinfo->info->discard == discard_sec_merge
9344 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9345 || flinfo->info->discard == discard_l)
9346 && bfd_is_local_label_name (input_bfd, name)))
9347 continue;
9348
9349 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9350 {
9351 have_file_sym = TRUE;
9352 flinfo->filesym_count += 1;
9353 }
9354 if (!have_file_sym)
9355 {
9356 /* In the absence of debug info, bfd_find_nearest_line uses
9357 FILE symbols to determine the source file for local
9358 function symbols. Provide a FILE symbol here if input
9359 files lack such, so that their symbols won't be
9360 associated with a previous input file. It's not the
9361 source file, but the best we can do. */
9362 have_file_sym = TRUE;
9363 flinfo->filesym_count += 1;
9364 memset (&osym, 0, sizeof (osym));
9365 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9366 osym.st_shndx = SHN_ABS;
9367 if (!elf_link_output_sym (flinfo, input_bfd->filename, &osym,
9368 bfd_abs_section_ptr, NULL))
9369 return FALSE;
9370 }
9371
9372 osym = *isym;
9373
9374 /* Adjust the section index for the output file. */
9375 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9376 isec->output_section);
9377 if (osym.st_shndx == SHN_BAD)
9378 return FALSE;
9379
9380 /* ELF symbols in relocatable files are section relative, but
9381 in executable files they are virtual addresses. Note that
9382 this code assumes that all ELF sections have an associated
9383 BFD section with a reasonable value for output_offset; below
9384 we assume that they also have a reasonable value for
9385 output_section. Any special sections must be set up to meet
9386 these requirements. */
9387 osym.st_value += isec->output_offset;
9388 if (!flinfo->info->relocatable)
9389 {
9390 osym.st_value += isec->output_section->vma;
9391 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9392 {
9393 /* STT_TLS symbols are relative to PT_TLS segment base. */
9394 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9395 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9396 }
9397 }
9398
9399 indx = bfd_get_symcount (output_bfd);
9400 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9401 if (ret == 0)
9402 return FALSE;
9403 else if (ret == 1)
9404 *pindex = indx;
9405 }
9406
9407 if (bed->s->arch_size == 32)
9408 {
9409 r_type_mask = 0xff;
9410 r_sym_shift = 8;
9411 address_size = 4;
9412 }
9413 else
9414 {
9415 r_type_mask = 0xffffffff;
9416 r_sym_shift = 32;
9417 address_size = 8;
9418 }
9419
9420 /* Relocate the contents of each section. */
9421 sym_hashes = elf_sym_hashes (input_bfd);
9422 for (o = input_bfd->sections; o != NULL; o = o->next)
9423 {
9424 bfd_byte *contents;
9425
9426 if (! o->linker_mark)
9427 {
9428 /* This section was omitted from the link. */
9429 continue;
9430 }
9431
9432 if (flinfo->info->relocatable
9433 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9434 {
9435 /* Deal with the group signature symbol. */
9436 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9437 unsigned long symndx = sec_data->this_hdr.sh_info;
9438 asection *osec = o->output_section;
9439
9440 if (symndx >= locsymcount
9441 || (elf_bad_symtab (input_bfd)
9442 && flinfo->sections[symndx] == NULL))
9443 {
9444 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9445 while (h->root.type == bfd_link_hash_indirect
9446 || h->root.type == bfd_link_hash_warning)
9447 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9448 /* Arrange for symbol to be output. */
9449 h->indx = -2;
9450 elf_section_data (osec)->this_hdr.sh_info = -2;
9451 }
9452 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9453 {
9454 /* We'll use the output section target_index. */
9455 asection *sec = flinfo->sections[symndx]->output_section;
9456 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9457 }
9458 else
9459 {
9460 if (flinfo->indices[symndx] == -1)
9461 {
9462 /* Otherwise output the local symbol now. */
9463 Elf_Internal_Sym sym = isymbuf[symndx];
9464 asection *sec = flinfo->sections[symndx]->output_section;
9465 const char *name;
9466 long indx;
9467 int ret;
9468
9469 name = bfd_elf_string_from_elf_section (input_bfd,
9470 symtab_hdr->sh_link,
9471 sym.st_name);
9472 if (name == NULL)
9473 return FALSE;
9474
9475 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9476 sec);
9477 if (sym.st_shndx == SHN_BAD)
9478 return FALSE;
9479
9480 sym.st_value += o->output_offset;
9481
9482 indx = bfd_get_symcount (output_bfd);
9483 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9484 if (ret == 0)
9485 return FALSE;
9486 else if (ret == 1)
9487 flinfo->indices[symndx] = indx;
9488 else
9489 abort ();
9490 }
9491 elf_section_data (osec)->this_hdr.sh_info
9492 = flinfo->indices[symndx];
9493 }
9494 }
9495
9496 if ((o->flags & SEC_HAS_CONTENTS) == 0
9497 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9498 continue;
9499
9500 if ((o->flags & SEC_LINKER_CREATED) != 0)
9501 {
9502 /* Section was created by _bfd_elf_link_create_dynamic_sections
9503 or somesuch. */
9504 continue;
9505 }
9506
9507 /* Get the contents of the section. They have been cached by a
9508 relaxation routine. Note that o is a section in an input
9509 file, so the contents field will not have been set by any of
9510 the routines which work on output files. */
9511 if (elf_section_data (o)->this_hdr.contents != NULL)
9512 contents = elf_section_data (o)->this_hdr.contents;
9513 else
9514 {
9515 contents = flinfo->contents;
9516 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9517 return FALSE;
9518 }
9519
9520 if ((o->flags & SEC_RELOC) != 0)
9521 {
9522 Elf_Internal_Rela *internal_relocs;
9523 Elf_Internal_Rela *rel, *relend;
9524 int action_discarded;
9525 int ret;
9526
9527 /* Get the swapped relocs. */
9528 internal_relocs
9529 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9530 flinfo->internal_relocs, FALSE);
9531 if (internal_relocs == NULL
9532 && o->reloc_count > 0)
9533 return FALSE;
9534
9535 /* We need to reverse-copy input .ctors/.dtors sections if
9536 they are placed in .init_array/.finit_array for output. */
9537 if (o->size > address_size
9538 && ((strncmp (o->name, ".ctors", 6) == 0
9539 && strcmp (o->output_section->name,
9540 ".init_array") == 0)
9541 || (strncmp (o->name, ".dtors", 6) == 0
9542 && strcmp (o->output_section->name,
9543 ".fini_array") == 0))
9544 && (o->name[6] == 0 || o->name[6] == '.'))
9545 {
9546 if (o->size != o->reloc_count * address_size)
9547 {
9548 (*_bfd_error_handler)
9549 (_("error: %B: size of section %A is not "
9550 "multiple of address size"),
9551 input_bfd, o);
9552 bfd_set_error (bfd_error_on_input);
9553 return FALSE;
9554 }
9555 o->flags |= SEC_ELF_REVERSE_COPY;
9556 }
9557
9558 action_discarded = -1;
9559 if (!elf_section_ignore_discarded_relocs (o))
9560 action_discarded = (*bed->action_discarded) (o);
9561
9562 /* Run through the relocs evaluating complex reloc symbols and
9563 looking for relocs against symbols from discarded sections
9564 or section symbols from removed link-once sections.
9565 Complain about relocs against discarded sections. Zero
9566 relocs against removed link-once sections. */
9567
9568 rel = internal_relocs;
9569 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9570 for ( ; rel < relend; rel++)
9571 {
9572 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9573 unsigned int s_type;
9574 asection **ps, *sec;
9575 struct elf_link_hash_entry *h = NULL;
9576 const char *sym_name;
9577
9578 if (r_symndx == STN_UNDEF)
9579 continue;
9580
9581 if (r_symndx >= locsymcount
9582 || (elf_bad_symtab (input_bfd)
9583 && flinfo->sections[r_symndx] == NULL))
9584 {
9585 h = sym_hashes[r_symndx - extsymoff];
9586
9587 /* Badly formatted input files can contain relocs that
9588 reference non-existant symbols. Check here so that
9589 we do not seg fault. */
9590 if (h == NULL)
9591 {
9592 char buffer [32];
9593
9594 sprintf_vma (buffer, rel->r_info);
9595 (*_bfd_error_handler)
9596 (_("error: %B contains a reloc (0x%s) for section %A "
9597 "that references a non-existent global symbol"),
9598 input_bfd, o, buffer);
9599 bfd_set_error (bfd_error_bad_value);
9600 return FALSE;
9601 }
9602
9603 while (h->root.type == bfd_link_hash_indirect
9604 || h->root.type == bfd_link_hash_warning)
9605 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9606
9607 s_type = h->type;
9608
9609 ps = NULL;
9610 if (h->root.type == bfd_link_hash_defined
9611 || h->root.type == bfd_link_hash_defweak)
9612 ps = &h->root.u.def.section;
9613
9614 sym_name = h->root.root.string;
9615 }
9616 else
9617 {
9618 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9619
9620 s_type = ELF_ST_TYPE (sym->st_info);
9621 ps = &flinfo->sections[r_symndx];
9622 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9623 sym, *ps);
9624 }
9625
9626 if ((s_type == STT_RELC || s_type == STT_SRELC)
9627 && !flinfo->info->relocatable)
9628 {
9629 bfd_vma val;
9630 bfd_vma dot = (rel->r_offset
9631 + o->output_offset + o->output_section->vma);
9632 #ifdef DEBUG
9633 printf ("Encountered a complex symbol!");
9634 printf (" (input_bfd %s, section %s, reloc %ld\n",
9635 input_bfd->filename, o->name,
9636 (long) (rel - internal_relocs));
9637 printf (" symbol: idx %8.8lx, name %s\n",
9638 r_symndx, sym_name);
9639 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9640 (unsigned long) rel->r_info,
9641 (unsigned long) rel->r_offset);
9642 #endif
9643 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9644 isymbuf, locsymcount, s_type == STT_SRELC))
9645 return FALSE;
9646
9647 /* Symbol evaluated OK. Update to absolute value. */
9648 set_symbol_value (input_bfd, isymbuf, locsymcount,
9649 r_symndx, val);
9650 continue;
9651 }
9652
9653 if (action_discarded != -1 && ps != NULL)
9654 {
9655 /* Complain if the definition comes from a
9656 discarded section. */
9657 if ((sec = *ps) != NULL && discarded_section (sec))
9658 {
9659 BFD_ASSERT (r_symndx != STN_UNDEF);
9660 if (action_discarded & COMPLAIN)
9661 (*flinfo->info->callbacks->einfo)
9662 (_("%X`%s' referenced in section `%A' of %B: "
9663 "defined in discarded section `%A' of %B\n"),
9664 sym_name, o, input_bfd, sec, sec->owner);
9665
9666 /* Try to do the best we can to support buggy old
9667 versions of gcc. Pretend that the symbol is
9668 really defined in the kept linkonce section.
9669 FIXME: This is quite broken. Modifying the
9670 symbol here means we will be changing all later
9671 uses of the symbol, not just in this section. */
9672 if (action_discarded & PRETEND)
9673 {
9674 asection *kept;
9675
9676 kept = _bfd_elf_check_kept_section (sec,
9677 flinfo->info);
9678 if (kept != NULL)
9679 {
9680 *ps = kept;
9681 continue;
9682 }
9683 }
9684 }
9685 }
9686 }
9687
9688 /* Relocate the section by invoking a back end routine.
9689
9690 The back end routine is responsible for adjusting the
9691 section contents as necessary, and (if using Rela relocs
9692 and generating a relocatable output file) adjusting the
9693 reloc addend as necessary.
9694
9695 The back end routine does not have to worry about setting
9696 the reloc address or the reloc symbol index.
9697
9698 The back end routine is given a pointer to the swapped in
9699 internal symbols, and can access the hash table entries
9700 for the external symbols via elf_sym_hashes (input_bfd).
9701
9702 When generating relocatable output, the back end routine
9703 must handle STB_LOCAL/STT_SECTION symbols specially. The
9704 output symbol is going to be a section symbol
9705 corresponding to the output section, which will require
9706 the addend to be adjusted. */
9707
9708 ret = (*relocate_section) (output_bfd, flinfo->info,
9709 input_bfd, o, contents,
9710 internal_relocs,
9711 isymbuf,
9712 flinfo->sections);
9713 if (!ret)
9714 return FALSE;
9715
9716 if (ret == 2
9717 || flinfo->info->relocatable
9718 || flinfo->info->emitrelocations)
9719 {
9720 Elf_Internal_Rela *irela;
9721 Elf_Internal_Rela *irelaend, *irelamid;
9722 bfd_vma last_offset;
9723 struct elf_link_hash_entry **rel_hash;
9724 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9725 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9726 unsigned int next_erel;
9727 bfd_boolean rela_normal;
9728 struct bfd_elf_section_data *esdi, *esdo;
9729
9730 esdi = elf_section_data (o);
9731 esdo = elf_section_data (o->output_section);
9732 rela_normal = FALSE;
9733
9734 /* Adjust the reloc addresses and symbol indices. */
9735
9736 irela = internal_relocs;
9737 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9738 rel_hash = esdo->rel.hashes + esdo->rel.count;
9739 /* We start processing the REL relocs, if any. When we reach
9740 IRELAMID in the loop, we switch to the RELA relocs. */
9741 irelamid = irela;
9742 if (esdi->rel.hdr != NULL)
9743 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9744 * bed->s->int_rels_per_ext_rel);
9745 rel_hash_list = rel_hash;
9746 rela_hash_list = NULL;
9747 last_offset = o->output_offset;
9748 if (!flinfo->info->relocatable)
9749 last_offset += o->output_section->vma;
9750 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9751 {
9752 unsigned long r_symndx;
9753 asection *sec;
9754 Elf_Internal_Sym sym;
9755
9756 if (next_erel == bed->s->int_rels_per_ext_rel)
9757 {
9758 rel_hash++;
9759 next_erel = 0;
9760 }
9761
9762 if (irela == irelamid)
9763 {
9764 rel_hash = esdo->rela.hashes + esdo->rela.count;
9765 rela_hash_list = rel_hash;
9766 rela_normal = bed->rela_normal;
9767 }
9768
9769 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9770 flinfo->info, o,
9771 irela->r_offset);
9772 if (irela->r_offset >= (bfd_vma) -2)
9773 {
9774 /* This is a reloc for a deleted entry or somesuch.
9775 Turn it into an R_*_NONE reloc, at the same
9776 offset as the last reloc. elf_eh_frame.c and
9777 bfd_elf_discard_info rely on reloc offsets
9778 being ordered. */
9779 irela->r_offset = last_offset;
9780 irela->r_info = 0;
9781 irela->r_addend = 0;
9782 continue;
9783 }
9784
9785 irela->r_offset += o->output_offset;
9786
9787 /* Relocs in an executable have to be virtual addresses. */
9788 if (!flinfo->info->relocatable)
9789 irela->r_offset += o->output_section->vma;
9790
9791 last_offset = irela->r_offset;
9792
9793 r_symndx = irela->r_info >> r_sym_shift;
9794 if (r_symndx == STN_UNDEF)
9795 continue;
9796
9797 if (r_symndx >= locsymcount
9798 || (elf_bad_symtab (input_bfd)
9799 && flinfo->sections[r_symndx] == NULL))
9800 {
9801 struct elf_link_hash_entry *rh;
9802 unsigned long indx;
9803
9804 /* This is a reloc against a global symbol. We
9805 have not yet output all the local symbols, so
9806 we do not know the symbol index of any global
9807 symbol. We set the rel_hash entry for this
9808 reloc to point to the global hash table entry
9809 for this symbol. The symbol index is then
9810 set at the end of bfd_elf_final_link. */
9811 indx = r_symndx - extsymoff;
9812 rh = elf_sym_hashes (input_bfd)[indx];
9813 while (rh->root.type == bfd_link_hash_indirect
9814 || rh->root.type == bfd_link_hash_warning)
9815 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9816
9817 /* Setting the index to -2 tells
9818 elf_link_output_extsym that this symbol is
9819 used by a reloc. */
9820 BFD_ASSERT (rh->indx < 0);
9821 rh->indx = -2;
9822
9823 *rel_hash = rh;
9824
9825 continue;
9826 }
9827
9828 /* This is a reloc against a local symbol. */
9829
9830 *rel_hash = NULL;
9831 sym = isymbuf[r_symndx];
9832 sec = flinfo->sections[r_symndx];
9833 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9834 {
9835 /* I suppose the backend ought to fill in the
9836 section of any STT_SECTION symbol against a
9837 processor specific section. */
9838 r_symndx = STN_UNDEF;
9839 if (bfd_is_abs_section (sec))
9840 ;
9841 else if (sec == NULL || sec->owner == NULL)
9842 {
9843 bfd_set_error (bfd_error_bad_value);
9844 return FALSE;
9845 }
9846 else
9847 {
9848 asection *osec = sec->output_section;
9849
9850 /* If we have discarded a section, the output
9851 section will be the absolute section. In
9852 case of discarded SEC_MERGE sections, use
9853 the kept section. relocate_section should
9854 have already handled discarded linkonce
9855 sections. */
9856 if (bfd_is_abs_section (osec)
9857 && sec->kept_section != NULL
9858 && sec->kept_section->output_section != NULL)
9859 {
9860 osec = sec->kept_section->output_section;
9861 irela->r_addend -= osec->vma;
9862 }
9863
9864 if (!bfd_is_abs_section (osec))
9865 {
9866 r_symndx = osec->target_index;
9867 if (r_symndx == STN_UNDEF)
9868 {
9869 irela->r_addend += osec->vma;
9870 osec = _bfd_nearby_section (output_bfd, osec,
9871 osec->vma);
9872 irela->r_addend -= osec->vma;
9873 r_symndx = osec->target_index;
9874 }
9875 }
9876 }
9877
9878 /* Adjust the addend according to where the
9879 section winds up in the output section. */
9880 if (rela_normal)
9881 irela->r_addend += sec->output_offset;
9882 }
9883 else
9884 {
9885 if (flinfo->indices[r_symndx] == -1)
9886 {
9887 unsigned long shlink;
9888 const char *name;
9889 asection *osec;
9890 long indx;
9891
9892 if (flinfo->info->strip == strip_all)
9893 {
9894 /* You can't do ld -r -s. */
9895 bfd_set_error (bfd_error_invalid_operation);
9896 return FALSE;
9897 }
9898
9899 /* This symbol was skipped earlier, but
9900 since it is needed by a reloc, we
9901 must output it now. */
9902 shlink = symtab_hdr->sh_link;
9903 name = (bfd_elf_string_from_elf_section
9904 (input_bfd, shlink, sym.st_name));
9905 if (name == NULL)
9906 return FALSE;
9907
9908 osec = sec->output_section;
9909 sym.st_shndx =
9910 _bfd_elf_section_from_bfd_section (output_bfd,
9911 osec);
9912 if (sym.st_shndx == SHN_BAD)
9913 return FALSE;
9914
9915 sym.st_value += sec->output_offset;
9916 if (!flinfo->info->relocatable)
9917 {
9918 sym.st_value += osec->vma;
9919 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9920 {
9921 /* STT_TLS symbols are relative to PT_TLS
9922 segment base. */
9923 BFD_ASSERT (elf_hash_table (flinfo->info)
9924 ->tls_sec != NULL);
9925 sym.st_value -= (elf_hash_table (flinfo->info)
9926 ->tls_sec->vma);
9927 }
9928 }
9929
9930 indx = bfd_get_symcount (output_bfd);
9931 ret = elf_link_output_sym (flinfo, name, &sym, sec,
9932 NULL);
9933 if (ret == 0)
9934 return FALSE;
9935 else if (ret == 1)
9936 flinfo->indices[r_symndx] = indx;
9937 else
9938 abort ();
9939 }
9940
9941 r_symndx = flinfo->indices[r_symndx];
9942 }
9943
9944 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9945 | (irela->r_info & r_type_mask));
9946 }
9947
9948 /* Swap out the relocs. */
9949 input_rel_hdr = esdi->rel.hdr;
9950 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
9951 {
9952 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9953 input_rel_hdr,
9954 internal_relocs,
9955 rel_hash_list))
9956 return FALSE;
9957 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9958 * bed->s->int_rels_per_ext_rel);
9959 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9960 }
9961
9962 input_rela_hdr = esdi->rela.hdr;
9963 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
9964 {
9965 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9966 input_rela_hdr,
9967 internal_relocs,
9968 rela_hash_list))
9969 return FALSE;
9970 }
9971 }
9972 }
9973
9974 /* Write out the modified section contents. */
9975 if (bed->elf_backend_write_section
9976 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
9977 contents))
9978 {
9979 /* Section written out. */
9980 }
9981 else switch (o->sec_info_type)
9982 {
9983 case SEC_INFO_TYPE_STABS:
9984 if (! (_bfd_write_section_stabs
9985 (output_bfd,
9986 &elf_hash_table (flinfo->info)->stab_info,
9987 o, &elf_section_data (o)->sec_info, contents)))
9988 return FALSE;
9989 break;
9990 case SEC_INFO_TYPE_MERGE:
9991 if (! _bfd_write_merged_section (output_bfd, o,
9992 elf_section_data (o)->sec_info))
9993 return FALSE;
9994 break;
9995 case SEC_INFO_TYPE_EH_FRAME:
9996 {
9997 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
9998 o, contents))
9999 return FALSE;
10000 }
10001 break;
10002 default:
10003 {
10004 /* FIXME: octets_per_byte. */
10005 if (! (o->flags & SEC_EXCLUDE))
10006 {
10007 file_ptr offset = (file_ptr) o->output_offset;
10008 bfd_size_type todo = o->size;
10009 if ((o->flags & SEC_ELF_REVERSE_COPY))
10010 {
10011 /* Reverse-copy input section to output. */
10012 do
10013 {
10014 todo -= address_size;
10015 if (! bfd_set_section_contents (output_bfd,
10016 o->output_section,
10017 contents + todo,
10018 offset,
10019 address_size))
10020 return FALSE;
10021 if (todo == 0)
10022 break;
10023 offset += address_size;
10024 }
10025 while (1);
10026 }
10027 else if (! bfd_set_section_contents (output_bfd,
10028 o->output_section,
10029 contents,
10030 offset, todo))
10031 return FALSE;
10032 }
10033 }
10034 break;
10035 }
10036 }
10037
10038 return TRUE;
10039 }
10040
10041 /* Generate a reloc when linking an ELF file. This is a reloc
10042 requested by the linker, and does not come from any input file. This
10043 is used to build constructor and destructor tables when linking
10044 with -Ur. */
10045
10046 static bfd_boolean
10047 elf_reloc_link_order (bfd *output_bfd,
10048 struct bfd_link_info *info,
10049 asection *output_section,
10050 struct bfd_link_order *link_order)
10051 {
10052 reloc_howto_type *howto;
10053 long indx;
10054 bfd_vma offset;
10055 bfd_vma addend;
10056 struct bfd_elf_section_reloc_data *reldata;
10057 struct elf_link_hash_entry **rel_hash_ptr;
10058 Elf_Internal_Shdr *rel_hdr;
10059 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10060 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10061 bfd_byte *erel;
10062 unsigned int i;
10063 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10064
10065 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10066 if (howto == NULL)
10067 {
10068 bfd_set_error (bfd_error_bad_value);
10069 return FALSE;
10070 }
10071
10072 addend = link_order->u.reloc.p->addend;
10073
10074 if (esdo->rel.hdr)
10075 reldata = &esdo->rel;
10076 else if (esdo->rela.hdr)
10077 reldata = &esdo->rela;
10078 else
10079 {
10080 reldata = NULL;
10081 BFD_ASSERT (0);
10082 }
10083
10084 /* Figure out the symbol index. */
10085 rel_hash_ptr = reldata->hashes + reldata->count;
10086 if (link_order->type == bfd_section_reloc_link_order)
10087 {
10088 indx = link_order->u.reloc.p->u.section->target_index;
10089 BFD_ASSERT (indx != 0);
10090 *rel_hash_ptr = NULL;
10091 }
10092 else
10093 {
10094 struct elf_link_hash_entry *h;
10095
10096 /* Treat a reloc against a defined symbol as though it were
10097 actually against the section. */
10098 h = ((struct elf_link_hash_entry *)
10099 bfd_wrapped_link_hash_lookup (output_bfd, info,
10100 link_order->u.reloc.p->u.name,
10101 FALSE, FALSE, TRUE));
10102 if (h != NULL
10103 && (h->root.type == bfd_link_hash_defined
10104 || h->root.type == bfd_link_hash_defweak))
10105 {
10106 asection *section;
10107
10108 section = h->root.u.def.section;
10109 indx = section->output_section->target_index;
10110 *rel_hash_ptr = NULL;
10111 /* It seems that we ought to add the symbol value to the
10112 addend here, but in practice it has already been added
10113 because it was passed to constructor_callback. */
10114 addend += section->output_section->vma + section->output_offset;
10115 }
10116 else if (h != NULL)
10117 {
10118 /* Setting the index to -2 tells elf_link_output_extsym that
10119 this symbol is used by a reloc. */
10120 h->indx = -2;
10121 *rel_hash_ptr = h;
10122 indx = 0;
10123 }
10124 else
10125 {
10126 if (! ((*info->callbacks->unattached_reloc)
10127 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10128 return FALSE;
10129 indx = 0;
10130 }
10131 }
10132
10133 /* If this is an inplace reloc, we must write the addend into the
10134 object file. */
10135 if (howto->partial_inplace && addend != 0)
10136 {
10137 bfd_size_type size;
10138 bfd_reloc_status_type rstat;
10139 bfd_byte *buf;
10140 bfd_boolean ok;
10141 const char *sym_name;
10142
10143 size = (bfd_size_type) bfd_get_reloc_size (howto);
10144 buf = (bfd_byte *) bfd_zmalloc (size);
10145 if (buf == NULL)
10146 return FALSE;
10147 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10148 switch (rstat)
10149 {
10150 case bfd_reloc_ok:
10151 break;
10152
10153 default:
10154 case bfd_reloc_outofrange:
10155 abort ();
10156
10157 case bfd_reloc_overflow:
10158 if (link_order->type == bfd_section_reloc_link_order)
10159 sym_name = bfd_section_name (output_bfd,
10160 link_order->u.reloc.p->u.section);
10161 else
10162 sym_name = link_order->u.reloc.p->u.name;
10163 if (! ((*info->callbacks->reloc_overflow)
10164 (info, NULL, sym_name, howto->name, addend, NULL,
10165 NULL, (bfd_vma) 0)))
10166 {
10167 free (buf);
10168 return FALSE;
10169 }
10170 break;
10171 }
10172 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10173 link_order->offset, size);
10174 free (buf);
10175 if (! ok)
10176 return FALSE;
10177 }
10178
10179 /* The address of a reloc is relative to the section in a
10180 relocatable file, and is a virtual address in an executable
10181 file. */
10182 offset = link_order->offset;
10183 if (! info->relocatable)
10184 offset += output_section->vma;
10185
10186 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10187 {
10188 irel[i].r_offset = offset;
10189 irel[i].r_info = 0;
10190 irel[i].r_addend = 0;
10191 }
10192 if (bed->s->arch_size == 32)
10193 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10194 else
10195 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10196
10197 rel_hdr = reldata->hdr;
10198 erel = rel_hdr->contents;
10199 if (rel_hdr->sh_type == SHT_REL)
10200 {
10201 erel += reldata->count * bed->s->sizeof_rel;
10202 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10203 }
10204 else
10205 {
10206 irel[0].r_addend = addend;
10207 erel += reldata->count * bed->s->sizeof_rela;
10208 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10209 }
10210
10211 ++reldata->count;
10212
10213 return TRUE;
10214 }
10215
10216
10217 /* Get the output vma of the section pointed to by the sh_link field. */
10218
10219 static bfd_vma
10220 elf_get_linked_section_vma (struct bfd_link_order *p)
10221 {
10222 Elf_Internal_Shdr **elf_shdrp;
10223 asection *s;
10224 int elfsec;
10225
10226 s = p->u.indirect.section;
10227 elf_shdrp = elf_elfsections (s->owner);
10228 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10229 elfsec = elf_shdrp[elfsec]->sh_link;
10230 /* PR 290:
10231 The Intel C compiler generates SHT_IA_64_UNWIND with
10232 SHF_LINK_ORDER. But it doesn't set the sh_link or
10233 sh_info fields. Hence we could get the situation
10234 where elfsec is 0. */
10235 if (elfsec == 0)
10236 {
10237 const struct elf_backend_data *bed
10238 = get_elf_backend_data (s->owner);
10239 if (bed->link_order_error_handler)
10240 bed->link_order_error_handler
10241 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10242 return 0;
10243 }
10244 else
10245 {
10246 s = elf_shdrp[elfsec]->bfd_section;
10247 return s->output_section->vma + s->output_offset;
10248 }
10249 }
10250
10251
10252 /* Compare two sections based on the locations of the sections they are
10253 linked to. Used by elf_fixup_link_order. */
10254
10255 static int
10256 compare_link_order (const void * a, const void * b)
10257 {
10258 bfd_vma apos;
10259 bfd_vma bpos;
10260
10261 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10262 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10263 if (apos < bpos)
10264 return -1;
10265 return apos > bpos;
10266 }
10267
10268
10269 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10270 order as their linked sections. Returns false if this could not be done
10271 because an output section includes both ordered and unordered
10272 sections. Ideally we'd do this in the linker proper. */
10273
10274 static bfd_boolean
10275 elf_fixup_link_order (bfd *abfd, asection *o)
10276 {
10277 int seen_linkorder;
10278 int seen_other;
10279 int n;
10280 struct bfd_link_order *p;
10281 bfd *sub;
10282 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10283 unsigned elfsec;
10284 struct bfd_link_order **sections;
10285 asection *s, *other_sec, *linkorder_sec;
10286 bfd_vma offset;
10287
10288 other_sec = NULL;
10289 linkorder_sec = NULL;
10290 seen_other = 0;
10291 seen_linkorder = 0;
10292 for (p = o->map_head.link_order; p != NULL; p = p->next)
10293 {
10294 if (p->type == bfd_indirect_link_order)
10295 {
10296 s = p->u.indirect.section;
10297 sub = s->owner;
10298 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10299 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10300 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10301 && elfsec < elf_numsections (sub)
10302 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10303 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10304 {
10305 seen_linkorder++;
10306 linkorder_sec = s;
10307 }
10308 else
10309 {
10310 seen_other++;
10311 other_sec = s;
10312 }
10313 }
10314 else
10315 seen_other++;
10316
10317 if (seen_other && seen_linkorder)
10318 {
10319 if (other_sec && linkorder_sec)
10320 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10321 o, linkorder_sec,
10322 linkorder_sec->owner, other_sec,
10323 other_sec->owner);
10324 else
10325 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10326 o);
10327 bfd_set_error (bfd_error_bad_value);
10328 return FALSE;
10329 }
10330 }
10331
10332 if (!seen_linkorder)
10333 return TRUE;
10334
10335 sections = (struct bfd_link_order **)
10336 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10337 if (sections == NULL)
10338 return FALSE;
10339 seen_linkorder = 0;
10340
10341 for (p = o->map_head.link_order; p != NULL; p = p->next)
10342 {
10343 sections[seen_linkorder++] = p;
10344 }
10345 /* Sort the input sections in the order of their linked section. */
10346 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10347 compare_link_order);
10348
10349 /* Change the offsets of the sections. */
10350 offset = 0;
10351 for (n = 0; n < seen_linkorder; n++)
10352 {
10353 s = sections[n]->u.indirect.section;
10354 offset &= ~(bfd_vma) 0 << s->alignment_power;
10355 s->output_offset = offset;
10356 sections[n]->offset = offset;
10357 /* FIXME: octets_per_byte. */
10358 offset += sections[n]->size;
10359 }
10360
10361 free (sections);
10362 return TRUE;
10363 }
10364
10365
10366 /* Do the final step of an ELF link. */
10367
10368 bfd_boolean
10369 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10370 {
10371 bfd_boolean dynamic;
10372 bfd_boolean emit_relocs;
10373 bfd *dynobj;
10374 struct elf_final_link_info flinfo;
10375 asection *o;
10376 struct bfd_link_order *p;
10377 bfd *sub;
10378 bfd_size_type max_contents_size;
10379 bfd_size_type max_external_reloc_size;
10380 bfd_size_type max_internal_reloc_count;
10381 bfd_size_type max_sym_count;
10382 bfd_size_type max_sym_shndx_count;
10383 file_ptr off;
10384 Elf_Internal_Sym elfsym;
10385 unsigned int i;
10386 Elf_Internal_Shdr *symtab_hdr;
10387 Elf_Internal_Shdr *symtab_shndx_hdr;
10388 Elf_Internal_Shdr *symstrtab_hdr;
10389 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10390 struct elf_outext_info eoinfo;
10391 bfd_boolean merged;
10392 size_t relativecount = 0;
10393 asection *reldyn = 0;
10394 bfd_size_type amt;
10395 asection *attr_section = NULL;
10396 bfd_vma attr_size = 0;
10397 const char *std_attrs_section;
10398
10399 if (! is_elf_hash_table (info->hash))
10400 return FALSE;
10401
10402 if (info->shared)
10403 abfd->flags |= DYNAMIC;
10404
10405 dynamic = elf_hash_table (info)->dynamic_sections_created;
10406 dynobj = elf_hash_table (info)->dynobj;
10407
10408 emit_relocs = (info->relocatable
10409 || info->emitrelocations);
10410
10411 flinfo.info = info;
10412 flinfo.output_bfd = abfd;
10413 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10414 if (flinfo.symstrtab == NULL)
10415 return FALSE;
10416
10417 if (! dynamic)
10418 {
10419 flinfo.dynsym_sec = NULL;
10420 flinfo.hash_sec = NULL;
10421 flinfo.symver_sec = NULL;
10422 }
10423 else
10424 {
10425 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10426 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10427 /* Note that dynsym_sec can be NULL (on VMS). */
10428 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10429 /* Note that it is OK if symver_sec is NULL. */
10430 }
10431
10432 flinfo.contents = NULL;
10433 flinfo.external_relocs = NULL;
10434 flinfo.internal_relocs = NULL;
10435 flinfo.external_syms = NULL;
10436 flinfo.locsym_shndx = NULL;
10437 flinfo.internal_syms = NULL;
10438 flinfo.indices = NULL;
10439 flinfo.sections = NULL;
10440 flinfo.symbuf = NULL;
10441 flinfo.symshndxbuf = NULL;
10442 flinfo.symbuf_count = 0;
10443 flinfo.shndxbuf_size = 0;
10444 flinfo.filesym_count = 0;
10445
10446 /* The object attributes have been merged. Remove the input
10447 sections from the link, and set the contents of the output
10448 secton. */
10449 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10450 for (o = abfd->sections; o != NULL; o = o->next)
10451 {
10452 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10453 || strcmp (o->name, ".gnu.attributes") == 0)
10454 {
10455 for (p = o->map_head.link_order; p != NULL; p = p->next)
10456 {
10457 asection *input_section;
10458
10459 if (p->type != bfd_indirect_link_order)
10460 continue;
10461 input_section = p->u.indirect.section;
10462 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10463 elf_link_input_bfd ignores this section. */
10464 input_section->flags &= ~SEC_HAS_CONTENTS;
10465 }
10466
10467 attr_size = bfd_elf_obj_attr_size (abfd);
10468 if (attr_size)
10469 {
10470 bfd_set_section_size (abfd, o, attr_size);
10471 attr_section = o;
10472 /* Skip this section later on. */
10473 o->map_head.link_order = NULL;
10474 }
10475 else
10476 o->flags |= SEC_EXCLUDE;
10477 }
10478 }
10479
10480 /* Count up the number of relocations we will output for each output
10481 section, so that we know the sizes of the reloc sections. We
10482 also figure out some maximum sizes. */
10483 max_contents_size = 0;
10484 max_external_reloc_size = 0;
10485 max_internal_reloc_count = 0;
10486 max_sym_count = 0;
10487 max_sym_shndx_count = 0;
10488 merged = FALSE;
10489 for (o = abfd->sections; o != NULL; o = o->next)
10490 {
10491 struct bfd_elf_section_data *esdo = elf_section_data (o);
10492 o->reloc_count = 0;
10493
10494 for (p = o->map_head.link_order; p != NULL; p = p->next)
10495 {
10496 unsigned int reloc_count = 0;
10497 struct bfd_elf_section_data *esdi = NULL;
10498
10499 if (p->type == bfd_section_reloc_link_order
10500 || p->type == bfd_symbol_reloc_link_order)
10501 reloc_count = 1;
10502 else if (p->type == bfd_indirect_link_order)
10503 {
10504 asection *sec;
10505
10506 sec = p->u.indirect.section;
10507 esdi = elf_section_data (sec);
10508
10509 /* Mark all sections which are to be included in the
10510 link. This will normally be every section. We need
10511 to do this so that we can identify any sections which
10512 the linker has decided to not include. */
10513 sec->linker_mark = TRUE;
10514
10515 if (sec->flags & SEC_MERGE)
10516 merged = TRUE;
10517
10518 if (esdo->this_hdr.sh_type == SHT_REL
10519 || esdo->this_hdr.sh_type == SHT_RELA)
10520 /* Some backends use reloc_count in relocation sections
10521 to count particular types of relocs. Of course,
10522 reloc sections themselves can't have relocations. */
10523 reloc_count = 0;
10524 else if (info->relocatable || info->emitrelocations)
10525 reloc_count = sec->reloc_count;
10526 else if (bed->elf_backend_count_relocs)
10527 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10528
10529 if (sec->rawsize > max_contents_size)
10530 max_contents_size = sec->rawsize;
10531 if (sec->size > max_contents_size)
10532 max_contents_size = sec->size;
10533
10534 /* We are interested in just local symbols, not all
10535 symbols. */
10536 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10537 && (sec->owner->flags & DYNAMIC) == 0)
10538 {
10539 size_t sym_count;
10540
10541 if (elf_bad_symtab (sec->owner))
10542 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10543 / bed->s->sizeof_sym);
10544 else
10545 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10546
10547 if (sym_count > max_sym_count)
10548 max_sym_count = sym_count;
10549
10550 if (sym_count > max_sym_shndx_count
10551 && elf_symtab_shndx (sec->owner) != 0)
10552 max_sym_shndx_count = sym_count;
10553
10554 if ((sec->flags & SEC_RELOC) != 0)
10555 {
10556 size_t ext_size = 0;
10557
10558 if (esdi->rel.hdr != NULL)
10559 ext_size = esdi->rel.hdr->sh_size;
10560 if (esdi->rela.hdr != NULL)
10561 ext_size += esdi->rela.hdr->sh_size;
10562
10563 if (ext_size > max_external_reloc_size)
10564 max_external_reloc_size = ext_size;
10565 if (sec->reloc_count > max_internal_reloc_count)
10566 max_internal_reloc_count = sec->reloc_count;
10567 }
10568 }
10569 }
10570
10571 if (reloc_count == 0)
10572 continue;
10573
10574 o->reloc_count += reloc_count;
10575
10576 if (p->type == bfd_indirect_link_order
10577 && (info->relocatable || info->emitrelocations))
10578 {
10579 if (esdi->rel.hdr)
10580 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10581 if (esdi->rela.hdr)
10582 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10583 }
10584 else
10585 {
10586 if (o->use_rela_p)
10587 esdo->rela.count += reloc_count;
10588 else
10589 esdo->rel.count += reloc_count;
10590 }
10591 }
10592
10593 if (o->reloc_count > 0)
10594 o->flags |= SEC_RELOC;
10595 else
10596 {
10597 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10598 set it (this is probably a bug) and if it is set
10599 assign_section_numbers will create a reloc section. */
10600 o->flags &=~ SEC_RELOC;
10601 }
10602
10603 /* If the SEC_ALLOC flag is not set, force the section VMA to
10604 zero. This is done in elf_fake_sections as well, but forcing
10605 the VMA to 0 here will ensure that relocs against these
10606 sections are handled correctly. */
10607 if ((o->flags & SEC_ALLOC) == 0
10608 && ! o->user_set_vma)
10609 o->vma = 0;
10610 }
10611
10612 if (! info->relocatable && merged)
10613 elf_link_hash_traverse (elf_hash_table (info),
10614 _bfd_elf_link_sec_merge_syms, abfd);
10615
10616 /* Figure out the file positions for everything but the symbol table
10617 and the relocs. We set symcount to force assign_section_numbers
10618 to create a symbol table. */
10619 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10620 BFD_ASSERT (! abfd->output_has_begun);
10621 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10622 goto error_return;
10623
10624 /* Set sizes, and assign file positions for reloc sections. */
10625 for (o = abfd->sections; o != NULL; o = o->next)
10626 {
10627 struct bfd_elf_section_data *esdo = elf_section_data (o);
10628 if ((o->flags & SEC_RELOC) != 0)
10629 {
10630 if (esdo->rel.hdr
10631 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10632 goto error_return;
10633
10634 if (esdo->rela.hdr
10635 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10636 goto error_return;
10637 }
10638
10639 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10640 to count upwards while actually outputting the relocations. */
10641 esdo->rel.count = 0;
10642 esdo->rela.count = 0;
10643 }
10644
10645 _bfd_elf_assign_file_positions_for_relocs (abfd);
10646
10647 /* We have now assigned file positions for all the sections except
10648 .symtab and .strtab. We start the .symtab section at the current
10649 file position, and write directly to it. We build the .strtab
10650 section in memory. */
10651 bfd_get_symcount (abfd) = 0;
10652 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10653 /* sh_name is set in prep_headers. */
10654 symtab_hdr->sh_type = SHT_SYMTAB;
10655 /* sh_flags, sh_addr and sh_size all start off zero. */
10656 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10657 /* sh_link is set in assign_section_numbers. */
10658 /* sh_info is set below. */
10659 /* sh_offset is set just below. */
10660 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10661
10662 off = elf_tdata (abfd)->next_file_pos;
10663 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10664
10665 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10666 incorrect. We do not yet know the size of the .symtab section.
10667 We correct next_file_pos below, after we do know the size. */
10668
10669 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10670 continuously seeking to the right position in the file. */
10671 if (! info->keep_memory || max_sym_count < 20)
10672 flinfo.symbuf_size = 20;
10673 else
10674 flinfo.symbuf_size = max_sym_count;
10675 amt = flinfo.symbuf_size;
10676 amt *= bed->s->sizeof_sym;
10677 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10678 if (flinfo.symbuf == NULL)
10679 goto error_return;
10680 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10681 {
10682 /* Wild guess at number of output symbols. realloc'd as needed. */
10683 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10684 flinfo.shndxbuf_size = amt;
10685 amt *= sizeof (Elf_External_Sym_Shndx);
10686 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10687 if (flinfo.symshndxbuf == NULL)
10688 goto error_return;
10689 }
10690
10691 /* Start writing out the symbol table. The first symbol is always a
10692 dummy symbol. */
10693 if (info->strip != strip_all
10694 || emit_relocs)
10695 {
10696 elfsym.st_value = 0;
10697 elfsym.st_size = 0;
10698 elfsym.st_info = 0;
10699 elfsym.st_other = 0;
10700 elfsym.st_shndx = SHN_UNDEF;
10701 elfsym.st_target_internal = 0;
10702 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10703 NULL) != 1)
10704 goto error_return;
10705 }
10706
10707 /* Output a symbol for each section. We output these even if we are
10708 discarding local symbols, since they are used for relocs. These
10709 symbols have no names. We store the index of each one in the
10710 index field of the section, so that we can find it again when
10711 outputting relocs. */
10712 if (info->strip != strip_all
10713 || emit_relocs)
10714 {
10715 elfsym.st_size = 0;
10716 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10717 elfsym.st_other = 0;
10718 elfsym.st_value = 0;
10719 elfsym.st_target_internal = 0;
10720 for (i = 1; i < elf_numsections (abfd); i++)
10721 {
10722 o = bfd_section_from_elf_index (abfd, i);
10723 if (o != NULL)
10724 {
10725 o->target_index = bfd_get_symcount (abfd);
10726 elfsym.st_shndx = i;
10727 if (!info->relocatable)
10728 elfsym.st_value = o->vma;
10729 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10730 goto error_return;
10731 }
10732 }
10733 }
10734
10735 /* Allocate some memory to hold information read in from the input
10736 files. */
10737 if (max_contents_size != 0)
10738 {
10739 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10740 if (flinfo.contents == NULL)
10741 goto error_return;
10742 }
10743
10744 if (max_external_reloc_size != 0)
10745 {
10746 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10747 if (flinfo.external_relocs == NULL)
10748 goto error_return;
10749 }
10750
10751 if (max_internal_reloc_count != 0)
10752 {
10753 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10754 amt *= sizeof (Elf_Internal_Rela);
10755 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10756 if (flinfo.internal_relocs == NULL)
10757 goto error_return;
10758 }
10759
10760 if (max_sym_count != 0)
10761 {
10762 amt = max_sym_count * bed->s->sizeof_sym;
10763 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10764 if (flinfo.external_syms == NULL)
10765 goto error_return;
10766
10767 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10768 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10769 if (flinfo.internal_syms == NULL)
10770 goto error_return;
10771
10772 amt = max_sym_count * sizeof (long);
10773 flinfo.indices = (long int *) bfd_malloc (amt);
10774 if (flinfo.indices == NULL)
10775 goto error_return;
10776
10777 amt = max_sym_count * sizeof (asection *);
10778 flinfo.sections = (asection **) bfd_malloc (amt);
10779 if (flinfo.sections == NULL)
10780 goto error_return;
10781 }
10782
10783 if (max_sym_shndx_count != 0)
10784 {
10785 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10786 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10787 if (flinfo.locsym_shndx == NULL)
10788 goto error_return;
10789 }
10790
10791 if (elf_hash_table (info)->tls_sec)
10792 {
10793 bfd_vma base, end = 0;
10794 asection *sec;
10795
10796 for (sec = elf_hash_table (info)->tls_sec;
10797 sec && (sec->flags & SEC_THREAD_LOCAL);
10798 sec = sec->next)
10799 {
10800 bfd_size_type size = sec->size;
10801
10802 if (size == 0
10803 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10804 {
10805 struct bfd_link_order *ord = sec->map_tail.link_order;
10806
10807 if (ord != NULL)
10808 size = ord->offset + ord->size;
10809 }
10810 end = sec->vma + size;
10811 }
10812 base = elf_hash_table (info)->tls_sec->vma;
10813 /* Only align end of TLS section if static TLS doesn't have special
10814 alignment requirements. */
10815 if (bed->static_tls_alignment == 1)
10816 end = align_power (end,
10817 elf_hash_table (info)->tls_sec->alignment_power);
10818 elf_hash_table (info)->tls_size = end - base;
10819 }
10820
10821 /* Reorder SHF_LINK_ORDER sections. */
10822 for (o = abfd->sections; o != NULL; o = o->next)
10823 {
10824 if (!elf_fixup_link_order (abfd, o))
10825 return FALSE;
10826 }
10827
10828 /* Since ELF permits relocations to be against local symbols, we
10829 must have the local symbols available when we do the relocations.
10830 Since we would rather only read the local symbols once, and we
10831 would rather not keep them in memory, we handle all the
10832 relocations for a single input file at the same time.
10833
10834 Unfortunately, there is no way to know the total number of local
10835 symbols until we have seen all of them, and the local symbol
10836 indices precede the global symbol indices. This means that when
10837 we are generating relocatable output, and we see a reloc against
10838 a global symbol, we can not know the symbol index until we have
10839 finished examining all the local symbols to see which ones we are
10840 going to output. To deal with this, we keep the relocations in
10841 memory, and don't output them until the end of the link. This is
10842 an unfortunate waste of memory, but I don't see a good way around
10843 it. Fortunately, it only happens when performing a relocatable
10844 link, which is not the common case. FIXME: If keep_memory is set
10845 we could write the relocs out and then read them again; I don't
10846 know how bad the memory loss will be. */
10847
10848 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10849 sub->output_has_begun = FALSE;
10850 for (o = abfd->sections; o != NULL; o = o->next)
10851 {
10852 for (p = o->map_head.link_order; p != NULL; p = p->next)
10853 {
10854 if (p->type == bfd_indirect_link_order
10855 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10856 == bfd_target_elf_flavour)
10857 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10858 {
10859 if (! sub->output_has_begun)
10860 {
10861 if (! elf_link_input_bfd (&flinfo, sub))
10862 goto error_return;
10863 sub->output_has_begun = TRUE;
10864 }
10865 }
10866 else if (p->type == bfd_section_reloc_link_order
10867 || p->type == bfd_symbol_reloc_link_order)
10868 {
10869 if (! elf_reloc_link_order (abfd, info, o, p))
10870 goto error_return;
10871 }
10872 else
10873 {
10874 if (! _bfd_default_link_order (abfd, info, o, p))
10875 {
10876 if (p->type == bfd_indirect_link_order
10877 && (bfd_get_flavour (sub)
10878 == bfd_target_elf_flavour)
10879 && (elf_elfheader (sub)->e_ident[EI_CLASS]
10880 != bed->s->elfclass))
10881 {
10882 const char *iclass, *oclass;
10883
10884 if (bed->s->elfclass == ELFCLASS64)
10885 {
10886 iclass = "ELFCLASS32";
10887 oclass = "ELFCLASS64";
10888 }
10889 else
10890 {
10891 iclass = "ELFCLASS64";
10892 oclass = "ELFCLASS32";
10893 }
10894
10895 bfd_set_error (bfd_error_wrong_format);
10896 (*_bfd_error_handler)
10897 (_("%B: file class %s incompatible with %s"),
10898 sub, iclass, oclass);
10899 }
10900
10901 goto error_return;
10902 }
10903 }
10904 }
10905 }
10906
10907 /* Free symbol buffer if needed. */
10908 if (!info->reduce_memory_overheads)
10909 {
10910 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10911 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10912 && elf_tdata (sub)->symbuf)
10913 {
10914 free (elf_tdata (sub)->symbuf);
10915 elf_tdata (sub)->symbuf = NULL;
10916 }
10917 }
10918
10919 /* Output a FILE symbol so that following locals are not associated
10920 with the wrong input file. */
10921 memset (&elfsym, 0, sizeof (elfsym));
10922 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10923 elfsym.st_shndx = SHN_ABS;
10924
10925 if (flinfo.filesym_count > 1
10926 && !elf_link_output_sym (&flinfo, NULL, &elfsym,
10927 bfd_und_section_ptr, NULL))
10928 return FALSE;
10929
10930 /* Output any global symbols that got converted to local in a
10931 version script or due to symbol visibility. We do this in a
10932 separate step since ELF requires all local symbols to appear
10933 prior to any global symbols. FIXME: We should only do this if
10934 some global symbols were, in fact, converted to become local.
10935 FIXME: Will this work correctly with the Irix 5 linker? */
10936 eoinfo.failed = FALSE;
10937 eoinfo.flinfo = &flinfo;
10938 eoinfo.localsyms = TRUE;
10939 eoinfo.need_second_pass = FALSE;
10940 eoinfo.second_pass = FALSE;
10941 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
10942 if (eoinfo.failed)
10943 return FALSE;
10944
10945 if (flinfo.filesym_count == 1
10946 && !elf_link_output_sym (&flinfo, NULL, &elfsym,
10947 bfd_und_section_ptr, NULL))
10948 return FALSE;
10949
10950 if (eoinfo.need_second_pass)
10951 {
10952 eoinfo.second_pass = TRUE;
10953 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
10954 if (eoinfo.failed)
10955 return FALSE;
10956 }
10957
10958 /* If backend needs to output some local symbols not present in the hash
10959 table, do it now. */
10960 if (bed->elf_backend_output_arch_local_syms)
10961 {
10962 typedef int (*out_sym_func)
10963 (void *, const char *, Elf_Internal_Sym *, asection *,
10964 struct elf_link_hash_entry *);
10965
10966 if (! ((*bed->elf_backend_output_arch_local_syms)
10967 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
10968 return FALSE;
10969 }
10970
10971 /* That wrote out all the local symbols. Finish up the symbol table
10972 with the global symbols. Even if we want to strip everything we
10973 can, we still need to deal with those global symbols that got
10974 converted to local in a version script. */
10975
10976 /* The sh_info field records the index of the first non local symbol. */
10977 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10978
10979 if (dynamic
10980 && flinfo.dynsym_sec != NULL
10981 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10982 {
10983 Elf_Internal_Sym sym;
10984 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
10985 long last_local = 0;
10986
10987 /* Write out the section symbols for the output sections. */
10988 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10989 {
10990 asection *s;
10991
10992 sym.st_size = 0;
10993 sym.st_name = 0;
10994 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10995 sym.st_other = 0;
10996 sym.st_target_internal = 0;
10997
10998 for (s = abfd->sections; s != NULL; s = s->next)
10999 {
11000 int indx;
11001 bfd_byte *dest;
11002 long dynindx;
11003
11004 dynindx = elf_section_data (s)->dynindx;
11005 if (dynindx <= 0)
11006 continue;
11007 indx = elf_section_data (s)->this_idx;
11008 BFD_ASSERT (indx > 0);
11009 sym.st_shndx = indx;
11010 if (! check_dynsym (abfd, &sym))
11011 return FALSE;
11012 sym.st_value = s->vma;
11013 dest = dynsym + dynindx * bed->s->sizeof_sym;
11014 if (last_local < dynindx)
11015 last_local = dynindx;
11016 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11017 }
11018 }
11019
11020 /* Write out the local dynsyms. */
11021 if (elf_hash_table (info)->dynlocal)
11022 {
11023 struct elf_link_local_dynamic_entry *e;
11024 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11025 {
11026 asection *s;
11027 bfd_byte *dest;
11028
11029 /* Copy the internal symbol and turn off visibility.
11030 Note that we saved a word of storage and overwrote
11031 the original st_name with the dynstr_index. */
11032 sym = e->isym;
11033 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11034
11035 s = bfd_section_from_elf_index (e->input_bfd,
11036 e->isym.st_shndx);
11037 if (s != NULL)
11038 {
11039 sym.st_shndx =
11040 elf_section_data (s->output_section)->this_idx;
11041 if (! check_dynsym (abfd, &sym))
11042 return FALSE;
11043 sym.st_value = (s->output_section->vma
11044 + s->output_offset
11045 + e->isym.st_value);
11046 }
11047
11048 if (last_local < e->dynindx)
11049 last_local = e->dynindx;
11050
11051 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11052 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11053 }
11054 }
11055
11056 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11057 last_local + 1;
11058 }
11059
11060 /* We get the global symbols from the hash table. */
11061 eoinfo.failed = FALSE;
11062 eoinfo.localsyms = FALSE;
11063 eoinfo.flinfo = &flinfo;
11064 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11065 if (eoinfo.failed)
11066 return FALSE;
11067
11068 /* If backend needs to output some symbols not present in the hash
11069 table, do it now. */
11070 if (bed->elf_backend_output_arch_syms)
11071 {
11072 typedef int (*out_sym_func)
11073 (void *, const char *, Elf_Internal_Sym *, asection *,
11074 struct elf_link_hash_entry *);
11075
11076 if (! ((*bed->elf_backend_output_arch_syms)
11077 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11078 return FALSE;
11079 }
11080
11081 /* Flush all symbols to the file. */
11082 if (! elf_link_flush_output_syms (&flinfo, bed))
11083 return FALSE;
11084
11085 /* Now we know the size of the symtab section. */
11086 off += symtab_hdr->sh_size;
11087
11088 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11089 if (symtab_shndx_hdr->sh_name != 0)
11090 {
11091 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11092 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11093 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11094 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11095 symtab_shndx_hdr->sh_size = amt;
11096
11097 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11098 off, TRUE);
11099
11100 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11101 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11102 return FALSE;
11103 }
11104
11105
11106 /* Finish up and write out the symbol string table (.strtab)
11107 section. */
11108 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11109 /* sh_name was set in prep_headers. */
11110 symstrtab_hdr->sh_type = SHT_STRTAB;
11111 symstrtab_hdr->sh_flags = 0;
11112 symstrtab_hdr->sh_addr = 0;
11113 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11114 symstrtab_hdr->sh_entsize = 0;
11115 symstrtab_hdr->sh_link = 0;
11116 symstrtab_hdr->sh_info = 0;
11117 /* sh_offset is set just below. */
11118 symstrtab_hdr->sh_addralign = 1;
11119
11120 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
11121 elf_tdata (abfd)->next_file_pos = off;
11122
11123 if (bfd_get_symcount (abfd) > 0)
11124 {
11125 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11126 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11127 return FALSE;
11128 }
11129
11130 /* Adjust the relocs to have the correct symbol indices. */
11131 for (o = abfd->sections; o != NULL; o = o->next)
11132 {
11133 struct bfd_elf_section_data *esdo = elf_section_data (o);
11134 if ((o->flags & SEC_RELOC) == 0)
11135 continue;
11136
11137 if (esdo->rel.hdr != NULL)
11138 elf_link_adjust_relocs (abfd, &esdo->rel);
11139 if (esdo->rela.hdr != NULL)
11140 elf_link_adjust_relocs (abfd, &esdo->rela);
11141
11142 /* Set the reloc_count field to 0 to prevent write_relocs from
11143 trying to swap the relocs out itself. */
11144 o->reloc_count = 0;
11145 }
11146
11147 if (dynamic && info->combreloc && dynobj != NULL)
11148 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11149
11150 /* If we are linking against a dynamic object, or generating a
11151 shared library, finish up the dynamic linking information. */
11152 if (dynamic)
11153 {
11154 bfd_byte *dyncon, *dynconend;
11155
11156 /* Fix up .dynamic entries. */
11157 o = bfd_get_linker_section (dynobj, ".dynamic");
11158 BFD_ASSERT (o != NULL);
11159
11160 dyncon = o->contents;
11161 dynconend = o->contents + o->size;
11162 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11163 {
11164 Elf_Internal_Dyn dyn;
11165 const char *name;
11166 unsigned int type;
11167
11168 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11169
11170 switch (dyn.d_tag)
11171 {
11172 default:
11173 continue;
11174 case DT_NULL:
11175 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11176 {
11177 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11178 {
11179 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11180 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11181 default: continue;
11182 }
11183 dyn.d_un.d_val = relativecount;
11184 relativecount = 0;
11185 break;
11186 }
11187 continue;
11188
11189 case DT_INIT:
11190 name = info->init_function;
11191 goto get_sym;
11192 case DT_FINI:
11193 name = info->fini_function;
11194 get_sym:
11195 {
11196 struct elf_link_hash_entry *h;
11197
11198 h = elf_link_hash_lookup (elf_hash_table (info), name,
11199 FALSE, FALSE, TRUE);
11200 if (h != NULL
11201 && (h->root.type == bfd_link_hash_defined
11202 || h->root.type == bfd_link_hash_defweak))
11203 {
11204 dyn.d_un.d_ptr = h->root.u.def.value;
11205 o = h->root.u.def.section;
11206 if (o->output_section != NULL)
11207 dyn.d_un.d_ptr += (o->output_section->vma
11208 + o->output_offset);
11209 else
11210 {
11211 /* The symbol is imported from another shared
11212 library and does not apply to this one. */
11213 dyn.d_un.d_ptr = 0;
11214 }
11215 break;
11216 }
11217 }
11218 continue;
11219
11220 case DT_PREINIT_ARRAYSZ:
11221 name = ".preinit_array";
11222 goto get_size;
11223 case DT_INIT_ARRAYSZ:
11224 name = ".init_array";
11225 goto get_size;
11226 case DT_FINI_ARRAYSZ:
11227 name = ".fini_array";
11228 get_size:
11229 o = bfd_get_section_by_name (abfd, name);
11230 if (o == NULL)
11231 {
11232 (*_bfd_error_handler)
11233 (_("%B: could not find output section %s"), abfd, name);
11234 goto error_return;
11235 }
11236 if (o->size == 0)
11237 (*_bfd_error_handler)
11238 (_("warning: %s section has zero size"), name);
11239 dyn.d_un.d_val = o->size;
11240 break;
11241
11242 case DT_PREINIT_ARRAY:
11243 name = ".preinit_array";
11244 goto get_vma;
11245 case DT_INIT_ARRAY:
11246 name = ".init_array";
11247 goto get_vma;
11248 case DT_FINI_ARRAY:
11249 name = ".fini_array";
11250 goto get_vma;
11251
11252 case DT_HASH:
11253 name = ".hash";
11254 goto get_vma;
11255 case DT_GNU_HASH:
11256 name = ".gnu.hash";
11257 goto get_vma;
11258 case DT_STRTAB:
11259 name = ".dynstr";
11260 goto get_vma;
11261 case DT_SYMTAB:
11262 name = ".dynsym";
11263 goto get_vma;
11264 case DT_VERDEF:
11265 name = ".gnu.version_d";
11266 goto get_vma;
11267 case DT_VERNEED:
11268 name = ".gnu.version_r";
11269 goto get_vma;
11270 case DT_VERSYM:
11271 name = ".gnu.version";
11272 get_vma:
11273 o = bfd_get_section_by_name (abfd, name);
11274 if (o == NULL)
11275 {
11276 (*_bfd_error_handler)
11277 (_("%B: could not find output section %s"), abfd, name);
11278 goto error_return;
11279 }
11280 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11281 {
11282 (*_bfd_error_handler)
11283 (_("warning: section '%s' is being made into a note"), name);
11284 bfd_set_error (bfd_error_nonrepresentable_section);
11285 goto error_return;
11286 }
11287 dyn.d_un.d_ptr = o->vma;
11288 break;
11289
11290 case DT_REL:
11291 case DT_RELA:
11292 case DT_RELSZ:
11293 case DT_RELASZ:
11294 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11295 type = SHT_REL;
11296 else
11297 type = SHT_RELA;
11298 dyn.d_un.d_val = 0;
11299 dyn.d_un.d_ptr = 0;
11300 for (i = 1; i < elf_numsections (abfd); i++)
11301 {
11302 Elf_Internal_Shdr *hdr;
11303
11304 hdr = elf_elfsections (abfd)[i];
11305 if (hdr->sh_type == type
11306 && (hdr->sh_flags & SHF_ALLOC) != 0)
11307 {
11308 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11309 dyn.d_un.d_val += hdr->sh_size;
11310 else
11311 {
11312 if (dyn.d_un.d_ptr == 0
11313 || hdr->sh_addr < dyn.d_un.d_ptr)
11314 dyn.d_un.d_ptr = hdr->sh_addr;
11315 }
11316 }
11317 }
11318 break;
11319 }
11320 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11321 }
11322 }
11323
11324 /* If we have created any dynamic sections, then output them. */
11325 if (dynobj != NULL)
11326 {
11327 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11328 goto error_return;
11329
11330 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11331 if (((info->warn_shared_textrel && info->shared)
11332 || info->error_textrel)
11333 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11334 {
11335 bfd_byte *dyncon, *dynconend;
11336
11337 dyncon = o->contents;
11338 dynconend = o->contents + o->size;
11339 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11340 {
11341 Elf_Internal_Dyn dyn;
11342
11343 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11344
11345 if (dyn.d_tag == DT_TEXTREL)
11346 {
11347 if (info->error_textrel)
11348 info->callbacks->einfo
11349 (_("%P%X: read-only segment has dynamic relocations.\n"));
11350 else
11351 info->callbacks->einfo
11352 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11353 break;
11354 }
11355 }
11356 }
11357
11358 for (o = dynobj->sections; o != NULL; o = o->next)
11359 {
11360 if ((o->flags & SEC_HAS_CONTENTS) == 0
11361 || o->size == 0
11362 || o->output_section == bfd_abs_section_ptr)
11363 continue;
11364 if ((o->flags & SEC_LINKER_CREATED) == 0)
11365 {
11366 /* At this point, we are only interested in sections
11367 created by _bfd_elf_link_create_dynamic_sections. */
11368 continue;
11369 }
11370 if (elf_hash_table (info)->stab_info.stabstr == o)
11371 continue;
11372 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11373 continue;
11374 if (strcmp (o->name, ".dynstr") != 0)
11375 {
11376 /* FIXME: octets_per_byte. */
11377 if (! bfd_set_section_contents (abfd, o->output_section,
11378 o->contents,
11379 (file_ptr) o->output_offset,
11380 o->size))
11381 goto error_return;
11382 }
11383 else
11384 {
11385 /* The contents of the .dynstr section are actually in a
11386 stringtab. */
11387 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11388 if (bfd_seek (abfd, off, SEEK_SET) != 0
11389 || ! _bfd_elf_strtab_emit (abfd,
11390 elf_hash_table (info)->dynstr))
11391 goto error_return;
11392 }
11393 }
11394 }
11395
11396 if (info->relocatable)
11397 {
11398 bfd_boolean failed = FALSE;
11399
11400 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11401 if (failed)
11402 goto error_return;
11403 }
11404
11405 /* If we have optimized stabs strings, output them. */
11406 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11407 {
11408 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11409 goto error_return;
11410 }
11411
11412 if (info->eh_frame_hdr)
11413 {
11414 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11415 goto error_return;
11416 }
11417
11418 if (flinfo.symstrtab != NULL)
11419 _bfd_stringtab_free (flinfo.symstrtab);
11420 if (flinfo.contents != NULL)
11421 free (flinfo.contents);
11422 if (flinfo.external_relocs != NULL)
11423 free (flinfo.external_relocs);
11424 if (flinfo.internal_relocs != NULL)
11425 free (flinfo.internal_relocs);
11426 if (flinfo.external_syms != NULL)
11427 free (flinfo.external_syms);
11428 if (flinfo.locsym_shndx != NULL)
11429 free (flinfo.locsym_shndx);
11430 if (flinfo.internal_syms != NULL)
11431 free (flinfo.internal_syms);
11432 if (flinfo.indices != NULL)
11433 free (flinfo.indices);
11434 if (flinfo.sections != NULL)
11435 free (flinfo.sections);
11436 if (flinfo.symbuf != NULL)
11437 free (flinfo.symbuf);
11438 if (flinfo.symshndxbuf != NULL)
11439 free (flinfo.symshndxbuf);
11440 for (o = abfd->sections; o != NULL; o = o->next)
11441 {
11442 struct bfd_elf_section_data *esdo = elf_section_data (o);
11443 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11444 free (esdo->rel.hashes);
11445 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11446 free (esdo->rela.hashes);
11447 }
11448
11449 elf_tdata (abfd)->linker = TRUE;
11450
11451 if (attr_section)
11452 {
11453 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11454 if (contents == NULL)
11455 return FALSE; /* Bail out and fail. */
11456 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11457 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11458 free (contents);
11459 }
11460
11461 return TRUE;
11462
11463 error_return:
11464 if (flinfo.symstrtab != NULL)
11465 _bfd_stringtab_free (flinfo.symstrtab);
11466 if (flinfo.contents != NULL)
11467 free (flinfo.contents);
11468 if (flinfo.external_relocs != NULL)
11469 free (flinfo.external_relocs);
11470 if (flinfo.internal_relocs != NULL)
11471 free (flinfo.internal_relocs);
11472 if (flinfo.external_syms != NULL)
11473 free (flinfo.external_syms);
11474 if (flinfo.locsym_shndx != NULL)
11475 free (flinfo.locsym_shndx);
11476 if (flinfo.internal_syms != NULL)
11477 free (flinfo.internal_syms);
11478 if (flinfo.indices != NULL)
11479 free (flinfo.indices);
11480 if (flinfo.sections != NULL)
11481 free (flinfo.sections);
11482 if (flinfo.symbuf != NULL)
11483 free (flinfo.symbuf);
11484 if (flinfo.symshndxbuf != NULL)
11485 free (flinfo.symshndxbuf);
11486 for (o = abfd->sections; o != NULL; o = o->next)
11487 {
11488 struct bfd_elf_section_data *esdo = elf_section_data (o);
11489 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11490 free (esdo->rel.hashes);
11491 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11492 free (esdo->rela.hashes);
11493 }
11494
11495 return FALSE;
11496 }
11497 \f
11498 /* Initialize COOKIE for input bfd ABFD. */
11499
11500 static bfd_boolean
11501 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11502 struct bfd_link_info *info, bfd *abfd)
11503 {
11504 Elf_Internal_Shdr *symtab_hdr;
11505 const struct elf_backend_data *bed;
11506
11507 bed = get_elf_backend_data (abfd);
11508 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11509
11510 cookie->abfd = abfd;
11511 cookie->sym_hashes = elf_sym_hashes (abfd);
11512 cookie->bad_symtab = elf_bad_symtab (abfd);
11513 if (cookie->bad_symtab)
11514 {
11515 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11516 cookie->extsymoff = 0;
11517 }
11518 else
11519 {
11520 cookie->locsymcount = symtab_hdr->sh_info;
11521 cookie->extsymoff = symtab_hdr->sh_info;
11522 }
11523
11524 if (bed->s->arch_size == 32)
11525 cookie->r_sym_shift = 8;
11526 else
11527 cookie->r_sym_shift = 32;
11528
11529 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11530 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11531 {
11532 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11533 cookie->locsymcount, 0,
11534 NULL, NULL, NULL);
11535 if (cookie->locsyms == NULL)
11536 {
11537 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11538 return FALSE;
11539 }
11540 if (info->keep_memory)
11541 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11542 }
11543 return TRUE;
11544 }
11545
11546 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11547
11548 static void
11549 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11550 {
11551 Elf_Internal_Shdr *symtab_hdr;
11552
11553 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11554 if (cookie->locsyms != NULL
11555 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11556 free (cookie->locsyms);
11557 }
11558
11559 /* Initialize the relocation information in COOKIE for input section SEC
11560 of input bfd ABFD. */
11561
11562 static bfd_boolean
11563 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11564 struct bfd_link_info *info, bfd *abfd,
11565 asection *sec)
11566 {
11567 const struct elf_backend_data *bed;
11568
11569 if (sec->reloc_count == 0)
11570 {
11571 cookie->rels = NULL;
11572 cookie->relend = NULL;
11573 }
11574 else
11575 {
11576 bed = get_elf_backend_data (abfd);
11577
11578 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11579 info->keep_memory);
11580 if (cookie->rels == NULL)
11581 return FALSE;
11582 cookie->rel = cookie->rels;
11583 cookie->relend = (cookie->rels
11584 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11585 }
11586 cookie->rel = cookie->rels;
11587 return TRUE;
11588 }
11589
11590 /* Free the memory allocated by init_reloc_cookie_rels,
11591 if appropriate. */
11592
11593 static void
11594 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11595 asection *sec)
11596 {
11597 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11598 free (cookie->rels);
11599 }
11600
11601 /* Initialize the whole of COOKIE for input section SEC. */
11602
11603 static bfd_boolean
11604 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11605 struct bfd_link_info *info,
11606 asection *sec)
11607 {
11608 if (!init_reloc_cookie (cookie, info, sec->owner))
11609 goto error1;
11610 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11611 goto error2;
11612 return TRUE;
11613
11614 error2:
11615 fini_reloc_cookie (cookie, sec->owner);
11616 error1:
11617 return FALSE;
11618 }
11619
11620 /* Free the memory allocated by init_reloc_cookie_for_section,
11621 if appropriate. */
11622
11623 static void
11624 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11625 asection *sec)
11626 {
11627 fini_reloc_cookie_rels (cookie, sec);
11628 fini_reloc_cookie (cookie, sec->owner);
11629 }
11630 \f
11631 /* Garbage collect unused sections. */
11632
11633 /* Default gc_mark_hook. */
11634
11635 asection *
11636 _bfd_elf_gc_mark_hook (asection *sec,
11637 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11638 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11639 struct elf_link_hash_entry *h,
11640 Elf_Internal_Sym *sym)
11641 {
11642 const char *sec_name;
11643
11644 if (h != NULL)
11645 {
11646 switch (h->root.type)
11647 {
11648 case bfd_link_hash_defined:
11649 case bfd_link_hash_defweak:
11650 return h->root.u.def.section;
11651
11652 case bfd_link_hash_common:
11653 return h->root.u.c.p->section;
11654
11655 case bfd_link_hash_undefined:
11656 case bfd_link_hash_undefweak:
11657 /* To work around a glibc bug, keep all XXX input sections
11658 when there is an as yet undefined reference to __start_XXX
11659 or __stop_XXX symbols. The linker will later define such
11660 symbols for orphan input sections that have a name
11661 representable as a C identifier. */
11662 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11663 sec_name = h->root.root.string + 8;
11664 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11665 sec_name = h->root.root.string + 7;
11666 else
11667 sec_name = NULL;
11668
11669 if (sec_name && *sec_name != '\0')
11670 {
11671 bfd *i;
11672
11673 for (i = info->input_bfds; i; i = i->link_next)
11674 {
11675 sec = bfd_get_section_by_name (i, sec_name);
11676 if (sec)
11677 sec->flags |= SEC_KEEP;
11678 }
11679 }
11680 break;
11681
11682 default:
11683 break;
11684 }
11685 }
11686 else
11687 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11688
11689 return NULL;
11690 }
11691
11692 /* COOKIE->rel describes a relocation against section SEC, which is
11693 a section we've decided to keep. Return the section that contains
11694 the relocation symbol, or NULL if no section contains it. */
11695
11696 asection *
11697 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11698 elf_gc_mark_hook_fn gc_mark_hook,
11699 struct elf_reloc_cookie *cookie)
11700 {
11701 unsigned long r_symndx;
11702 struct elf_link_hash_entry *h;
11703
11704 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11705 if (r_symndx == STN_UNDEF)
11706 return NULL;
11707
11708 if (r_symndx >= cookie->locsymcount
11709 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11710 {
11711 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11712 while (h->root.type == bfd_link_hash_indirect
11713 || h->root.type == bfd_link_hash_warning)
11714 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11715 h->mark = 1;
11716 /* If this symbol is weak and there is a non-weak definition, we
11717 keep the non-weak definition because many backends put
11718 dynamic reloc info on the non-weak definition for code
11719 handling copy relocs. */
11720 if (h->u.weakdef != NULL)
11721 h->u.weakdef->mark = 1;
11722 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11723 }
11724
11725 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11726 &cookie->locsyms[r_symndx]);
11727 }
11728
11729 /* COOKIE->rel describes a relocation against section SEC, which is
11730 a section we've decided to keep. Mark the section that contains
11731 the relocation symbol. */
11732
11733 bfd_boolean
11734 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11735 asection *sec,
11736 elf_gc_mark_hook_fn gc_mark_hook,
11737 struct elf_reloc_cookie *cookie)
11738 {
11739 asection *rsec;
11740
11741 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11742 if (rsec && !rsec->gc_mark)
11743 {
11744 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11745 || (rsec->owner->flags & DYNAMIC) != 0)
11746 rsec->gc_mark = 1;
11747 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11748 return FALSE;
11749 }
11750 return TRUE;
11751 }
11752
11753 /* The mark phase of garbage collection. For a given section, mark
11754 it and any sections in this section's group, and all the sections
11755 which define symbols to which it refers. */
11756
11757 bfd_boolean
11758 _bfd_elf_gc_mark (struct bfd_link_info *info,
11759 asection *sec,
11760 elf_gc_mark_hook_fn gc_mark_hook)
11761 {
11762 bfd_boolean ret;
11763 asection *group_sec, *eh_frame;
11764
11765 sec->gc_mark = 1;
11766
11767 /* Mark all the sections in the group. */
11768 group_sec = elf_section_data (sec)->next_in_group;
11769 if (group_sec && !group_sec->gc_mark)
11770 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11771 return FALSE;
11772
11773 /* Look through the section relocs. */
11774 ret = TRUE;
11775 eh_frame = elf_eh_frame_section (sec->owner);
11776 if ((sec->flags & SEC_RELOC) != 0
11777 && sec->reloc_count > 0
11778 && sec != eh_frame)
11779 {
11780 struct elf_reloc_cookie cookie;
11781
11782 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11783 ret = FALSE;
11784 else
11785 {
11786 for (; cookie.rel < cookie.relend; cookie.rel++)
11787 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11788 {
11789 ret = FALSE;
11790 break;
11791 }
11792 fini_reloc_cookie_for_section (&cookie, sec);
11793 }
11794 }
11795
11796 if (ret && eh_frame && elf_fde_list (sec))
11797 {
11798 struct elf_reloc_cookie cookie;
11799
11800 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11801 ret = FALSE;
11802 else
11803 {
11804 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11805 gc_mark_hook, &cookie))
11806 ret = FALSE;
11807 fini_reloc_cookie_for_section (&cookie, eh_frame);
11808 }
11809 }
11810
11811 return ret;
11812 }
11813
11814 /* Keep debug and special sections. */
11815
11816 bfd_boolean
11817 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11818 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11819 {
11820 bfd *ibfd;
11821
11822 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11823 {
11824 asection *isec;
11825 bfd_boolean some_kept;
11826
11827 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11828 continue;
11829
11830 /* Ensure all linker created sections are kept, and see whether
11831 any other section is already marked. */
11832 some_kept = FALSE;
11833 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11834 {
11835 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11836 isec->gc_mark = 1;
11837 else if (isec->gc_mark)
11838 some_kept = TRUE;
11839 }
11840
11841 /* If no section in this file will be kept, then we can
11842 toss out debug sections. */
11843 if (!some_kept)
11844 continue;
11845
11846 /* Keep debug and special sections like .comment when they are
11847 not part of a group, or when we have single-member groups. */
11848 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11849 if ((elf_next_in_group (isec) == NULL
11850 || elf_next_in_group (isec) == isec)
11851 && ((isec->flags & SEC_DEBUGGING) != 0
11852 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
11853 isec->gc_mark = 1;
11854 }
11855 return TRUE;
11856 }
11857
11858 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11859
11860 struct elf_gc_sweep_symbol_info
11861 {
11862 struct bfd_link_info *info;
11863 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11864 bfd_boolean);
11865 };
11866
11867 static bfd_boolean
11868 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11869 {
11870 if (!h->mark
11871 && (((h->root.type == bfd_link_hash_defined
11872 || h->root.type == bfd_link_hash_defweak)
11873 && !(h->def_regular
11874 && h->root.u.def.section->gc_mark))
11875 || h->root.type == bfd_link_hash_undefined
11876 || h->root.type == bfd_link_hash_undefweak))
11877 {
11878 struct elf_gc_sweep_symbol_info *inf;
11879
11880 inf = (struct elf_gc_sweep_symbol_info *) data;
11881 (*inf->hide_symbol) (inf->info, h, TRUE);
11882 h->def_regular = 0;
11883 h->ref_regular = 0;
11884 h->ref_regular_nonweak = 0;
11885 }
11886
11887 return TRUE;
11888 }
11889
11890 /* The sweep phase of garbage collection. Remove all garbage sections. */
11891
11892 typedef bfd_boolean (*gc_sweep_hook_fn)
11893 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11894
11895 static bfd_boolean
11896 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11897 {
11898 bfd *sub;
11899 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11900 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11901 unsigned long section_sym_count;
11902 struct elf_gc_sweep_symbol_info sweep_info;
11903
11904 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11905 {
11906 asection *o;
11907
11908 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11909 continue;
11910
11911 for (o = sub->sections; o != NULL; o = o->next)
11912 {
11913 /* When any section in a section group is kept, we keep all
11914 sections in the section group. If the first member of
11915 the section group is excluded, we will also exclude the
11916 group section. */
11917 if (o->flags & SEC_GROUP)
11918 {
11919 asection *first = elf_next_in_group (o);
11920 o->gc_mark = first->gc_mark;
11921 }
11922
11923 if (o->gc_mark)
11924 continue;
11925
11926 /* Skip sweeping sections already excluded. */
11927 if (o->flags & SEC_EXCLUDE)
11928 continue;
11929
11930 /* Since this is early in the link process, it is simple
11931 to remove a section from the output. */
11932 o->flags |= SEC_EXCLUDE;
11933
11934 if (info->print_gc_sections && o->size != 0)
11935 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11936
11937 /* But we also have to update some of the relocation
11938 info we collected before. */
11939 if (gc_sweep_hook
11940 && (o->flags & SEC_RELOC) != 0
11941 && o->reloc_count > 0
11942 && !bfd_is_abs_section (o->output_section))
11943 {
11944 Elf_Internal_Rela *internal_relocs;
11945 bfd_boolean r;
11946
11947 internal_relocs
11948 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11949 info->keep_memory);
11950 if (internal_relocs == NULL)
11951 return FALSE;
11952
11953 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11954
11955 if (elf_section_data (o)->relocs != internal_relocs)
11956 free (internal_relocs);
11957
11958 if (!r)
11959 return FALSE;
11960 }
11961 }
11962 }
11963
11964 /* Remove the symbols that were in the swept sections from the dynamic
11965 symbol table. GCFIXME: Anyone know how to get them out of the
11966 static symbol table as well? */
11967 sweep_info.info = info;
11968 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11969 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11970 &sweep_info);
11971
11972 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11973 return TRUE;
11974 }
11975
11976 /* Propagate collected vtable information. This is called through
11977 elf_link_hash_traverse. */
11978
11979 static bfd_boolean
11980 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11981 {
11982 /* Those that are not vtables. */
11983 if (h->vtable == NULL || h->vtable->parent == NULL)
11984 return TRUE;
11985
11986 /* Those vtables that do not have parents, we cannot merge. */
11987 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11988 return TRUE;
11989
11990 /* If we've already been done, exit. */
11991 if (h->vtable->used && h->vtable->used[-1])
11992 return TRUE;
11993
11994 /* Make sure the parent's table is up to date. */
11995 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11996
11997 if (h->vtable->used == NULL)
11998 {
11999 /* None of this table's entries were referenced. Re-use the
12000 parent's table. */
12001 h->vtable->used = h->vtable->parent->vtable->used;
12002 h->vtable->size = h->vtable->parent->vtable->size;
12003 }
12004 else
12005 {
12006 size_t n;
12007 bfd_boolean *cu, *pu;
12008
12009 /* Or the parent's entries into ours. */
12010 cu = h->vtable->used;
12011 cu[-1] = TRUE;
12012 pu = h->vtable->parent->vtable->used;
12013 if (pu != NULL)
12014 {
12015 const struct elf_backend_data *bed;
12016 unsigned int log_file_align;
12017
12018 bed = get_elf_backend_data (h->root.u.def.section->owner);
12019 log_file_align = bed->s->log_file_align;
12020 n = h->vtable->parent->vtable->size >> log_file_align;
12021 while (n--)
12022 {
12023 if (*pu)
12024 *cu = TRUE;
12025 pu++;
12026 cu++;
12027 }
12028 }
12029 }
12030
12031 return TRUE;
12032 }
12033
12034 static bfd_boolean
12035 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12036 {
12037 asection *sec;
12038 bfd_vma hstart, hend;
12039 Elf_Internal_Rela *relstart, *relend, *rel;
12040 const struct elf_backend_data *bed;
12041 unsigned int log_file_align;
12042
12043 /* Take care of both those symbols that do not describe vtables as
12044 well as those that are not loaded. */
12045 if (h->vtable == NULL || h->vtable->parent == NULL)
12046 return TRUE;
12047
12048 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12049 || h->root.type == bfd_link_hash_defweak);
12050
12051 sec = h->root.u.def.section;
12052 hstart = h->root.u.def.value;
12053 hend = hstart + h->size;
12054
12055 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12056 if (!relstart)
12057 return *(bfd_boolean *) okp = FALSE;
12058 bed = get_elf_backend_data (sec->owner);
12059 log_file_align = bed->s->log_file_align;
12060
12061 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12062
12063 for (rel = relstart; rel < relend; ++rel)
12064 if (rel->r_offset >= hstart && rel->r_offset < hend)
12065 {
12066 /* If the entry is in use, do nothing. */
12067 if (h->vtable->used
12068 && (rel->r_offset - hstart) < h->vtable->size)
12069 {
12070 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12071 if (h->vtable->used[entry])
12072 continue;
12073 }
12074 /* Otherwise, kill it. */
12075 rel->r_offset = rel->r_info = rel->r_addend = 0;
12076 }
12077
12078 return TRUE;
12079 }
12080
12081 /* Mark sections containing dynamically referenced symbols. When
12082 building shared libraries, we must assume that any visible symbol is
12083 referenced. */
12084
12085 bfd_boolean
12086 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12087 {
12088 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12089
12090 if ((h->root.type == bfd_link_hash_defined
12091 || h->root.type == bfd_link_hash_defweak)
12092 && (h->ref_dynamic
12093 || ((!info->executable || info->export_dynamic)
12094 && h->def_regular
12095 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12096 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12097 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12098 || !bfd_hide_sym_by_version (info->version_info,
12099 h->root.root.string)))))
12100 h->root.u.def.section->flags |= SEC_KEEP;
12101
12102 return TRUE;
12103 }
12104
12105 /* Keep all sections containing symbols undefined on the command-line,
12106 and the section containing the entry symbol. */
12107
12108 void
12109 _bfd_elf_gc_keep (struct bfd_link_info *info)
12110 {
12111 struct bfd_sym_chain *sym;
12112
12113 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12114 {
12115 struct elf_link_hash_entry *h;
12116
12117 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12118 FALSE, FALSE, FALSE);
12119
12120 if (h != NULL
12121 && (h->root.type == bfd_link_hash_defined
12122 || h->root.type == bfd_link_hash_defweak)
12123 && !bfd_is_abs_section (h->root.u.def.section))
12124 h->root.u.def.section->flags |= SEC_KEEP;
12125 }
12126 }
12127
12128 /* Do mark and sweep of unused sections. */
12129
12130 bfd_boolean
12131 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12132 {
12133 bfd_boolean ok = TRUE;
12134 bfd *sub;
12135 elf_gc_mark_hook_fn gc_mark_hook;
12136 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12137
12138 if (!bed->can_gc_sections
12139 || !is_elf_hash_table (info->hash))
12140 {
12141 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12142 return TRUE;
12143 }
12144
12145 bed->gc_keep (info);
12146
12147 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12148 at the .eh_frame section if we can mark the FDEs individually. */
12149 _bfd_elf_begin_eh_frame_parsing (info);
12150 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12151 {
12152 asection *sec;
12153 struct elf_reloc_cookie cookie;
12154
12155 sec = bfd_get_section_by_name (sub, ".eh_frame");
12156 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12157 {
12158 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12159 if (elf_section_data (sec)->sec_info
12160 && (sec->flags & SEC_LINKER_CREATED) == 0)
12161 elf_eh_frame_section (sub) = sec;
12162 fini_reloc_cookie_for_section (&cookie, sec);
12163 sec = bfd_get_next_section_by_name (sec);
12164 }
12165 }
12166 _bfd_elf_end_eh_frame_parsing (info);
12167
12168 /* Apply transitive closure to the vtable entry usage info. */
12169 elf_link_hash_traverse (elf_hash_table (info),
12170 elf_gc_propagate_vtable_entries_used,
12171 &ok);
12172 if (!ok)
12173 return FALSE;
12174
12175 /* Kill the vtable relocations that were not used. */
12176 elf_link_hash_traverse (elf_hash_table (info),
12177 elf_gc_smash_unused_vtentry_relocs,
12178 &ok);
12179 if (!ok)
12180 return FALSE;
12181
12182 /* Mark dynamically referenced symbols. */
12183 if (elf_hash_table (info)->dynamic_sections_created)
12184 elf_link_hash_traverse (elf_hash_table (info),
12185 bed->gc_mark_dynamic_ref,
12186 info);
12187
12188 /* Grovel through relocs to find out who stays ... */
12189 gc_mark_hook = bed->gc_mark_hook;
12190 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12191 {
12192 asection *o;
12193
12194 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12195 continue;
12196
12197 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12198 Also treat note sections as a root, if the section is not part
12199 of a group. */
12200 for (o = sub->sections; o != NULL; o = o->next)
12201 if (!o->gc_mark
12202 && (o->flags & SEC_EXCLUDE) == 0
12203 && ((o->flags & SEC_KEEP) != 0
12204 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12205 && elf_next_in_group (o) == NULL )))
12206 {
12207 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12208 return FALSE;
12209 }
12210 }
12211
12212 /* Allow the backend to mark additional target specific sections. */
12213 bed->gc_mark_extra_sections (info, gc_mark_hook);
12214
12215 /* ... and mark SEC_EXCLUDE for those that go. */
12216 return elf_gc_sweep (abfd, info);
12217 }
12218 \f
12219 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12220
12221 bfd_boolean
12222 bfd_elf_gc_record_vtinherit (bfd *abfd,
12223 asection *sec,
12224 struct elf_link_hash_entry *h,
12225 bfd_vma offset)
12226 {
12227 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12228 struct elf_link_hash_entry **search, *child;
12229 bfd_size_type extsymcount;
12230 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12231
12232 /* The sh_info field of the symtab header tells us where the
12233 external symbols start. We don't care about the local symbols at
12234 this point. */
12235 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12236 if (!elf_bad_symtab (abfd))
12237 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12238
12239 sym_hashes = elf_sym_hashes (abfd);
12240 sym_hashes_end = sym_hashes + extsymcount;
12241
12242 /* Hunt down the child symbol, which is in this section at the same
12243 offset as the relocation. */
12244 for (search = sym_hashes; search != sym_hashes_end; ++search)
12245 {
12246 if ((child = *search) != NULL
12247 && (child->root.type == bfd_link_hash_defined
12248 || child->root.type == bfd_link_hash_defweak)
12249 && child->root.u.def.section == sec
12250 && child->root.u.def.value == offset)
12251 goto win;
12252 }
12253
12254 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12255 abfd, sec, (unsigned long) offset);
12256 bfd_set_error (bfd_error_invalid_operation);
12257 return FALSE;
12258
12259 win:
12260 if (!child->vtable)
12261 {
12262 child->vtable = (struct elf_link_virtual_table_entry *)
12263 bfd_zalloc (abfd, sizeof (*child->vtable));
12264 if (!child->vtable)
12265 return FALSE;
12266 }
12267 if (!h)
12268 {
12269 /* This *should* only be the absolute section. It could potentially
12270 be that someone has defined a non-global vtable though, which
12271 would be bad. It isn't worth paging in the local symbols to be
12272 sure though; that case should simply be handled by the assembler. */
12273
12274 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12275 }
12276 else
12277 child->vtable->parent = h;
12278
12279 return TRUE;
12280 }
12281
12282 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12283
12284 bfd_boolean
12285 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12286 asection *sec ATTRIBUTE_UNUSED,
12287 struct elf_link_hash_entry *h,
12288 bfd_vma addend)
12289 {
12290 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12291 unsigned int log_file_align = bed->s->log_file_align;
12292
12293 if (!h->vtable)
12294 {
12295 h->vtable = (struct elf_link_virtual_table_entry *)
12296 bfd_zalloc (abfd, sizeof (*h->vtable));
12297 if (!h->vtable)
12298 return FALSE;
12299 }
12300
12301 if (addend >= h->vtable->size)
12302 {
12303 size_t size, bytes, file_align;
12304 bfd_boolean *ptr = h->vtable->used;
12305
12306 /* While the symbol is undefined, we have to be prepared to handle
12307 a zero size. */
12308 file_align = 1 << log_file_align;
12309 if (h->root.type == bfd_link_hash_undefined)
12310 size = addend + file_align;
12311 else
12312 {
12313 size = h->size;
12314 if (addend >= size)
12315 {
12316 /* Oops! We've got a reference past the defined end of
12317 the table. This is probably a bug -- shall we warn? */
12318 size = addend + file_align;
12319 }
12320 }
12321 size = (size + file_align - 1) & -file_align;
12322
12323 /* Allocate one extra entry for use as a "done" flag for the
12324 consolidation pass. */
12325 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12326
12327 if (ptr)
12328 {
12329 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12330
12331 if (ptr != NULL)
12332 {
12333 size_t oldbytes;
12334
12335 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12336 * sizeof (bfd_boolean));
12337 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12338 }
12339 }
12340 else
12341 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12342
12343 if (ptr == NULL)
12344 return FALSE;
12345
12346 /* And arrange for that done flag to be at index -1. */
12347 h->vtable->used = ptr + 1;
12348 h->vtable->size = size;
12349 }
12350
12351 h->vtable->used[addend >> log_file_align] = TRUE;
12352
12353 return TRUE;
12354 }
12355
12356 /* Map an ELF section header flag to its corresponding string. */
12357 typedef struct
12358 {
12359 char *flag_name;
12360 flagword flag_value;
12361 } elf_flags_to_name_table;
12362
12363 static elf_flags_to_name_table elf_flags_to_names [] =
12364 {
12365 { "SHF_WRITE", SHF_WRITE },
12366 { "SHF_ALLOC", SHF_ALLOC },
12367 { "SHF_EXECINSTR", SHF_EXECINSTR },
12368 { "SHF_MERGE", SHF_MERGE },
12369 { "SHF_STRINGS", SHF_STRINGS },
12370 { "SHF_INFO_LINK", SHF_INFO_LINK},
12371 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12372 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12373 { "SHF_GROUP", SHF_GROUP },
12374 { "SHF_TLS", SHF_TLS },
12375 { "SHF_MASKOS", SHF_MASKOS },
12376 { "SHF_EXCLUDE", SHF_EXCLUDE },
12377 };
12378
12379 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12380 bfd_boolean
12381 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12382 struct flag_info *flaginfo,
12383 asection *section)
12384 {
12385 const bfd_vma sh_flags = elf_section_flags (section);
12386
12387 if (!flaginfo->flags_initialized)
12388 {
12389 bfd *obfd = info->output_bfd;
12390 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12391 struct flag_info_list *tf = flaginfo->flag_list;
12392 int with_hex = 0;
12393 int without_hex = 0;
12394
12395 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12396 {
12397 unsigned i;
12398 flagword (*lookup) (char *);
12399
12400 lookup = bed->elf_backend_lookup_section_flags_hook;
12401 if (lookup != NULL)
12402 {
12403 flagword hexval = (*lookup) ((char *) tf->name);
12404
12405 if (hexval != 0)
12406 {
12407 if (tf->with == with_flags)
12408 with_hex |= hexval;
12409 else if (tf->with == without_flags)
12410 without_hex |= hexval;
12411 tf->valid = TRUE;
12412 continue;
12413 }
12414 }
12415 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12416 {
12417 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12418 {
12419 if (tf->with == with_flags)
12420 with_hex |= elf_flags_to_names[i].flag_value;
12421 else if (tf->with == without_flags)
12422 without_hex |= elf_flags_to_names[i].flag_value;
12423 tf->valid = TRUE;
12424 break;
12425 }
12426 }
12427 if (!tf->valid)
12428 {
12429 info->callbacks->einfo
12430 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12431 return FALSE;
12432 }
12433 }
12434 flaginfo->flags_initialized = TRUE;
12435 flaginfo->only_with_flags |= with_hex;
12436 flaginfo->not_with_flags |= without_hex;
12437 }
12438
12439 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12440 return FALSE;
12441
12442 if ((flaginfo->not_with_flags & sh_flags) != 0)
12443 return FALSE;
12444
12445 return TRUE;
12446 }
12447
12448 struct alloc_got_off_arg {
12449 bfd_vma gotoff;
12450 struct bfd_link_info *info;
12451 };
12452
12453 /* We need a special top-level link routine to convert got reference counts
12454 to real got offsets. */
12455
12456 static bfd_boolean
12457 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12458 {
12459 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12460 bfd *obfd = gofarg->info->output_bfd;
12461 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12462
12463 if (h->got.refcount > 0)
12464 {
12465 h->got.offset = gofarg->gotoff;
12466 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12467 }
12468 else
12469 h->got.offset = (bfd_vma) -1;
12470
12471 return TRUE;
12472 }
12473
12474 /* And an accompanying bit to work out final got entry offsets once
12475 we're done. Should be called from final_link. */
12476
12477 bfd_boolean
12478 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12479 struct bfd_link_info *info)
12480 {
12481 bfd *i;
12482 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12483 bfd_vma gotoff;
12484 struct alloc_got_off_arg gofarg;
12485
12486 BFD_ASSERT (abfd == info->output_bfd);
12487
12488 if (! is_elf_hash_table (info->hash))
12489 return FALSE;
12490
12491 /* The GOT offset is relative to the .got section, but the GOT header is
12492 put into the .got.plt section, if the backend uses it. */
12493 if (bed->want_got_plt)
12494 gotoff = 0;
12495 else
12496 gotoff = bed->got_header_size;
12497
12498 /* Do the local .got entries first. */
12499 for (i = info->input_bfds; i; i = i->link_next)
12500 {
12501 bfd_signed_vma *local_got;
12502 bfd_size_type j, locsymcount;
12503 Elf_Internal_Shdr *symtab_hdr;
12504
12505 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12506 continue;
12507
12508 local_got = elf_local_got_refcounts (i);
12509 if (!local_got)
12510 continue;
12511
12512 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12513 if (elf_bad_symtab (i))
12514 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12515 else
12516 locsymcount = symtab_hdr->sh_info;
12517
12518 for (j = 0; j < locsymcount; ++j)
12519 {
12520 if (local_got[j] > 0)
12521 {
12522 local_got[j] = gotoff;
12523 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12524 }
12525 else
12526 local_got[j] = (bfd_vma) -1;
12527 }
12528 }
12529
12530 /* Then the global .got entries. .plt refcounts are handled by
12531 adjust_dynamic_symbol */
12532 gofarg.gotoff = gotoff;
12533 gofarg.info = info;
12534 elf_link_hash_traverse (elf_hash_table (info),
12535 elf_gc_allocate_got_offsets,
12536 &gofarg);
12537 return TRUE;
12538 }
12539
12540 /* Many folk need no more in the way of final link than this, once
12541 got entry reference counting is enabled. */
12542
12543 bfd_boolean
12544 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12545 {
12546 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12547 return FALSE;
12548
12549 /* Invoke the regular ELF backend linker to do all the work. */
12550 return bfd_elf_final_link (abfd, info);
12551 }
12552
12553 bfd_boolean
12554 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12555 {
12556 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12557
12558 if (rcookie->bad_symtab)
12559 rcookie->rel = rcookie->rels;
12560
12561 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12562 {
12563 unsigned long r_symndx;
12564
12565 if (! rcookie->bad_symtab)
12566 if (rcookie->rel->r_offset > offset)
12567 return FALSE;
12568 if (rcookie->rel->r_offset != offset)
12569 continue;
12570
12571 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12572 if (r_symndx == STN_UNDEF)
12573 return TRUE;
12574
12575 if (r_symndx >= rcookie->locsymcount
12576 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12577 {
12578 struct elf_link_hash_entry *h;
12579
12580 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12581
12582 while (h->root.type == bfd_link_hash_indirect
12583 || h->root.type == bfd_link_hash_warning)
12584 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12585
12586 if ((h->root.type == bfd_link_hash_defined
12587 || h->root.type == bfd_link_hash_defweak)
12588 && discarded_section (h->root.u.def.section))
12589 return TRUE;
12590 else
12591 return FALSE;
12592 }
12593 else
12594 {
12595 /* It's not a relocation against a global symbol,
12596 but it could be a relocation against a local
12597 symbol for a discarded section. */
12598 asection *isec;
12599 Elf_Internal_Sym *isym;
12600
12601 /* Need to: get the symbol; get the section. */
12602 isym = &rcookie->locsyms[r_symndx];
12603 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12604 if (isec != NULL && discarded_section (isec))
12605 return TRUE;
12606 }
12607 return FALSE;
12608 }
12609 return FALSE;
12610 }
12611
12612 /* Discard unneeded references to discarded sections.
12613 Returns TRUE if any section's size was changed. */
12614 /* This function assumes that the relocations are in sorted order,
12615 which is true for all known assemblers. */
12616
12617 bfd_boolean
12618 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12619 {
12620 struct elf_reloc_cookie cookie;
12621 asection *stab, *eh;
12622 const struct elf_backend_data *bed;
12623 bfd *abfd;
12624 bfd_boolean ret = FALSE;
12625
12626 if (info->traditional_format
12627 || !is_elf_hash_table (info->hash))
12628 return FALSE;
12629
12630 _bfd_elf_begin_eh_frame_parsing (info);
12631 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12632 {
12633 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12634 continue;
12635
12636 bed = get_elf_backend_data (abfd);
12637
12638 eh = NULL;
12639 if (!info->relocatable)
12640 {
12641 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12642 while (eh != NULL
12643 && (eh->size == 0
12644 || bfd_is_abs_section (eh->output_section)))
12645 eh = bfd_get_next_section_by_name (eh);
12646 }
12647
12648 stab = bfd_get_section_by_name (abfd, ".stab");
12649 if (stab != NULL
12650 && (stab->size == 0
12651 || bfd_is_abs_section (stab->output_section)
12652 || stab->sec_info_type != SEC_INFO_TYPE_STABS))
12653 stab = NULL;
12654
12655 if (stab == NULL
12656 && eh == NULL
12657 && bed->elf_backend_discard_info == NULL)
12658 continue;
12659
12660 if (!init_reloc_cookie (&cookie, info, abfd))
12661 return FALSE;
12662
12663 if (stab != NULL
12664 && stab->reloc_count > 0
12665 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12666 {
12667 if (_bfd_discard_section_stabs (abfd, stab,
12668 elf_section_data (stab)->sec_info,
12669 bfd_elf_reloc_symbol_deleted_p,
12670 &cookie))
12671 ret = TRUE;
12672 fini_reloc_cookie_rels (&cookie, stab);
12673 }
12674
12675 while (eh != NULL
12676 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12677 {
12678 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12679 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12680 bfd_elf_reloc_symbol_deleted_p,
12681 &cookie))
12682 ret = TRUE;
12683 fini_reloc_cookie_rels (&cookie, eh);
12684 eh = bfd_get_next_section_by_name (eh);
12685 }
12686
12687 if (bed->elf_backend_discard_info != NULL
12688 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12689 ret = TRUE;
12690
12691 fini_reloc_cookie (&cookie, abfd);
12692 }
12693 _bfd_elf_end_eh_frame_parsing (info);
12694
12695 if (info->eh_frame_hdr
12696 && !info->relocatable
12697 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12698 ret = TRUE;
12699
12700 return ret;
12701 }
12702
12703 bfd_boolean
12704 _bfd_elf_section_already_linked (bfd *abfd,
12705 asection *sec,
12706 struct bfd_link_info *info)
12707 {
12708 flagword flags;
12709 const char *name, *key;
12710 struct bfd_section_already_linked *l;
12711 struct bfd_section_already_linked_hash_entry *already_linked_list;
12712
12713 if (sec->output_section == bfd_abs_section_ptr)
12714 return FALSE;
12715
12716 flags = sec->flags;
12717
12718 /* Return if it isn't a linkonce section. A comdat group section
12719 also has SEC_LINK_ONCE set. */
12720 if ((flags & SEC_LINK_ONCE) == 0)
12721 return FALSE;
12722
12723 /* Don't put group member sections on our list of already linked
12724 sections. They are handled as a group via their group section. */
12725 if (elf_sec_group (sec) != NULL)
12726 return FALSE;
12727
12728 /* For a SHT_GROUP section, use the group signature as the key. */
12729 name = sec->name;
12730 if ((flags & SEC_GROUP) != 0
12731 && elf_next_in_group (sec) != NULL
12732 && elf_group_name (elf_next_in_group (sec)) != NULL)
12733 key = elf_group_name (elf_next_in_group (sec));
12734 else
12735 {
12736 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12737 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12738 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12739 key++;
12740 else
12741 /* Must be a user linkonce section that doesn't follow gcc's
12742 naming convention. In this case we won't be matching
12743 single member groups. */
12744 key = name;
12745 }
12746
12747 already_linked_list = bfd_section_already_linked_table_lookup (key);
12748
12749 for (l = already_linked_list->entry; l != NULL; l = l->next)
12750 {
12751 /* We may have 2 different types of sections on the list: group
12752 sections with a signature of <key> (<key> is some string),
12753 and linkonce sections named .gnu.linkonce.<type>.<key>.
12754 Match like sections. LTO plugin sections are an exception.
12755 They are always named .gnu.linkonce.t.<key> and match either
12756 type of section. */
12757 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12758 && ((flags & SEC_GROUP) != 0
12759 || strcmp (name, l->sec->name) == 0))
12760 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
12761 {
12762 /* The section has already been linked. See if we should
12763 issue a warning. */
12764 if (!_bfd_handle_already_linked (sec, l, info))
12765 return FALSE;
12766
12767 if (flags & SEC_GROUP)
12768 {
12769 asection *first = elf_next_in_group (sec);
12770 asection *s = first;
12771
12772 while (s != NULL)
12773 {
12774 s->output_section = bfd_abs_section_ptr;
12775 /* Record which group discards it. */
12776 s->kept_section = l->sec;
12777 s = elf_next_in_group (s);
12778 /* These lists are circular. */
12779 if (s == first)
12780 break;
12781 }
12782 }
12783
12784 return TRUE;
12785 }
12786 }
12787
12788 /* A single member comdat group section may be discarded by a
12789 linkonce section and vice versa. */
12790 if ((flags & SEC_GROUP) != 0)
12791 {
12792 asection *first = elf_next_in_group (sec);
12793
12794 if (first != NULL && elf_next_in_group (first) == first)
12795 /* Check this single member group against linkonce sections. */
12796 for (l = already_linked_list->entry; l != NULL; l = l->next)
12797 if ((l->sec->flags & SEC_GROUP) == 0
12798 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12799 {
12800 first->output_section = bfd_abs_section_ptr;
12801 first->kept_section = l->sec;
12802 sec->output_section = bfd_abs_section_ptr;
12803 break;
12804 }
12805 }
12806 else
12807 /* Check this linkonce section against single member groups. */
12808 for (l = already_linked_list->entry; l != NULL; l = l->next)
12809 if (l->sec->flags & SEC_GROUP)
12810 {
12811 asection *first = elf_next_in_group (l->sec);
12812
12813 if (first != NULL
12814 && elf_next_in_group (first) == first
12815 && bfd_elf_match_symbols_in_sections (first, sec, info))
12816 {
12817 sec->output_section = bfd_abs_section_ptr;
12818 sec->kept_section = first;
12819 break;
12820 }
12821 }
12822
12823 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12824 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12825 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12826 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12827 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12828 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12829 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12830 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12831 The reverse order cannot happen as there is never a bfd with only the
12832 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12833 matter as here were are looking only for cross-bfd sections. */
12834
12835 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12836 for (l = already_linked_list->entry; l != NULL; l = l->next)
12837 if ((l->sec->flags & SEC_GROUP) == 0
12838 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12839 {
12840 if (abfd != l->sec->owner)
12841 sec->output_section = bfd_abs_section_ptr;
12842 break;
12843 }
12844
12845 /* This is the first section with this name. Record it. */
12846 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
12847 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12848 return sec->output_section == bfd_abs_section_ptr;
12849 }
12850
12851 bfd_boolean
12852 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12853 {
12854 return sym->st_shndx == SHN_COMMON;
12855 }
12856
12857 unsigned int
12858 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12859 {
12860 return SHN_COMMON;
12861 }
12862
12863 asection *
12864 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12865 {
12866 return bfd_com_section_ptr;
12867 }
12868
12869 bfd_vma
12870 _bfd_elf_default_got_elt_size (bfd *abfd,
12871 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12872 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12873 bfd *ibfd ATTRIBUTE_UNUSED,
12874 unsigned long symndx ATTRIBUTE_UNUSED)
12875 {
12876 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12877 return bed->s->arch_size / 8;
12878 }
12879
12880 /* Routines to support the creation of dynamic relocs. */
12881
12882 /* Returns the name of the dynamic reloc section associated with SEC. */
12883
12884 static const char *
12885 get_dynamic_reloc_section_name (bfd * abfd,
12886 asection * sec,
12887 bfd_boolean is_rela)
12888 {
12889 char *name;
12890 const char *old_name = bfd_get_section_name (NULL, sec);
12891 const char *prefix = is_rela ? ".rela" : ".rel";
12892
12893 if (old_name == NULL)
12894 return NULL;
12895
12896 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12897 sprintf (name, "%s%s", prefix, old_name);
12898
12899 return name;
12900 }
12901
12902 /* Returns the dynamic reloc section associated with SEC.
12903 If necessary compute the name of the dynamic reloc section based
12904 on SEC's name (looked up in ABFD's string table) and the setting
12905 of IS_RELA. */
12906
12907 asection *
12908 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12909 asection * sec,
12910 bfd_boolean is_rela)
12911 {
12912 asection * reloc_sec = elf_section_data (sec)->sreloc;
12913
12914 if (reloc_sec == NULL)
12915 {
12916 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12917
12918 if (name != NULL)
12919 {
12920 reloc_sec = bfd_get_linker_section (abfd, name);
12921
12922 if (reloc_sec != NULL)
12923 elf_section_data (sec)->sreloc = reloc_sec;
12924 }
12925 }
12926
12927 return reloc_sec;
12928 }
12929
12930 /* Returns the dynamic reloc section associated with SEC. If the
12931 section does not exist it is created and attached to the DYNOBJ
12932 bfd and stored in the SRELOC field of SEC's elf_section_data
12933 structure.
12934
12935 ALIGNMENT is the alignment for the newly created section and
12936 IS_RELA defines whether the name should be .rela.<SEC's name>
12937 or .rel.<SEC's name>. The section name is looked up in the
12938 string table associated with ABFD. */
12939
12940 asection *
12941 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12942 bfd * dynobj,
12943 unsigned int alignment,
12944 bfd * abfd,
12945 bfd_boolean is_rela)
12946 {
12947 asection * reloc_sec = elf_section_data (sec)->sreloc;
12948
12949 if (reloc_sec == NULL)
12950 {
12951 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12952
12953 if (name == NULL)
12954 return NULL;
12955
12956 reloc_sec = bfd_get_linker_section (dynobj, name);
12957
12958 if (reloc_sec == NULL)
12959 {
12960 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
12961 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12962 if ((sec->flags & SEC_ALLOC) != 0)
12963 flags |= SEC_ALLOC | SEC_LOAD;
12964
12965 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
12966 if (reloc_sec != NULL)
12967 {
12968 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12969 reloc_sec = NULL;
12970 }
12971 }
12972
12973 elf_section_data (sec)->sreloc = reloc_sec;
12974 }
12975
12976 return reloc_sec;
12977 }
12978
12979 /* Copy the ELF symbol type associated with a linker hash entry. */
12980 void
12981 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
12982 struct bfd_link_hash_entry * hdest,
12983 struct bfd_link_hash_entry * hsrc)
12984 {
12985 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
12986 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
12987
12988 ehdest->type = ehsrc->type;
12989 ehdest->target_internal = ehsrc->target_internal;
12990 }
12991
12992 /* Append a RELA relocation REL to section S in BFD. */
12993
12994 void
12995 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
12996 {
12997 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12998 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
12999 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13000 bed->s->swap_reloca_out (abfd, rel, loc);
13001 }
13002
13003 /* Append a REL relocation REL to section S in BFD. */
13004
13005 void
13006 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13007 {
13008 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13009 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13010 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13011 bed->s->swap_reloca_out (abfd, rel, loc);
13012 }