* elf32-arm.c (elf32_arm_output_arch_local_syms): Skip non-program
[binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
32
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
35
36 struct elf_info_failed
37 {
38 struct bfd_link_info *info;
39 struct bfd_elf_version_tree *verdefs;
40 bfd_boolean failed;
41 };
42
43 /* This structure is used to pass information to
44 _bfd_elf_link_find_version_dependencies. */
45
46 struct elf_find_verdep_info
47 {
48 /* General link information. */
49 struct bfd_link_info *info;
50 /* The number of dependencies. */
51 unsigned int vers;
52 /* Whether we had a failure. */
53 bfd_boolean failed;
54 };
55
56 static bfd_boolean _bfd_elf_fix_symbol_flags
57 (struct elf_link_hash_entry *, struct elf_info_failed *);
58
59 /* Define a symbol in a dynamic linkage section. */
60
61 struct elf_link_hash_entry *
62 _bfd_elf_define_linkage_sym (bfd *abfd,
63 struct bfd_link_info *info,
64 asection *sec,
65 const char *name)
66 {
67 struct elf_link_hash_entry *h;
68 struct bfd_link_hash_entry *bh;
69 const struct elf_backend_data *bed;
70
71 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
72 if (h != NULL)
73 {
74 /* Zap symbol defined in an as-needed lib that wasn't linked.
75 This is a symptom of a larger problem: Absolute symbols
76 defined in shared libraries can't be overridden, because we
77 lose the link to the bfd which is via the symbol section. */
78 h->root.type = bfd_link_hash_new;
79 }
80
81 bh = &h->root;
82 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
83 sec, 0, NULL, FALSE,
84 get_elf_backend_data (abfd)->collect,
85 &bh))
86 return NULL;
87 h = (struct elf_link_hash_entry *) bh;
88 h->def_regular = 1;
89 h->type = STT_OBJECT;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
91
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94 return h;
95 }
96
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
99 {
100 flagword flags;
101 asection *s;
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
105
106 /* This function may be called more than once. */
107 s = bfd_get_section_by_name (abfd, ".got");
108 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
109 return TRUE;
110
111 flags = bed->dynamic_sec_flags;
112
113 s = bfd_make_section_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
117 | SEC_READONLY));
118 if (s == NULL
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
120 return FALSE;
121 htab->srelgot = s;
122
123 s = bfd_make_section_with_flags (abfd, ".got", flags);
124 if (s == NULL
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
126 return FALSE;
127 htab->sgot = s;
128
129 if (bed->want_got_plt)
130 {
131 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
132 if (s == NULL
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
135 return FALSE;
136 htab->sgotplt = s;
137 }
138
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
141
142 if (bed->want_got_sym)
143 {
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
151 if (h == NULL)
152 return FALSE;
153 }
154
155 return TRUE;
156 }
157 \f
158 /* Create a strtab to hold the dynamic symbol names. */
159 static bfd_boolean
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
161 {
162 struct elf_link_hash_table *hash_table;
163
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
167
168 if (hash_table->dynstr == NULL)
169 {
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
172 return FALSE;
173 }
174 return TRUE;
175 }
176
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
183
184 bfd_boolean
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
186 {
187 flagword flags;
188 asection *s;
189 const struct elf_backend_data *bed;
190
191 if (! is_elf_hash_table (info->hash))
192 return FALSE;
193
194 if (elf_hash_table (info)->dynamic_sections_created)
195 return TRUE;
196
197 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
198 return FALSE;
199
200 abfd = elf_hash_table (info)->dynobj;
201 bed = get_elf_backend_data (abfd);
202
203 flags = bed->dynamic_sec_flags;
204
205 /* A dynamically linked executable has a .interp section, but a
206 shared library does not. */
207 if (info->executable)
208 {
209 s = bfd_make_section_with_flags (abfd, ".interp",
210 flags | SEC_READONLY);
211 if (s == NULL)
212 return FALSE;
213 }
214
215 /* Create sections to hold version informations. These are removed
216 if they are not needed. */
217 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
218 flags | SEC_READONLY);
219 if (s == NULL
220 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
221 return FALSE;
222
223 s = bfd_make_section_with_flags (abfd, ".gnu.version",
224 flags | SEC_READONLY);
225 if (s == NULL
226 || ! bfd_set_section_alignment (abfd, s, 1))
227 return FALSE;
228
229 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
230 flags | SEC_READONLY);
231 if (s == NULL
232 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
233 return FALSE;
234
235 s = bfd_make_section_with_flags (abfd, ".dynsym",
236 flags | SEC_READONLY);
237 if (s == NULL
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239 return FALSE;
240
241 s = bfd_make_section_with_flags (abfd, ".dynstr",
242 flags | SEC_READONLY);
243 if (s == NULL)
244 return FALSE;
245
246 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
247 if (s == NULL
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249 return FALSE;
250
251 /* The special symbol _DYNAMIC is always set to the start of the
252 .dynamic section. We could set _DYNAMIC in a linker script, but we
253 only want to define it if we are, in fact, creating a .dynamic
254 section. We don't want to define it if there is no .dynamic
255 section, since on some ELF platforms the start up code examines it
256 to decide how to initialize the process. */
257 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
258 return FALSE;
259
260 if (info->emit_hash)
261 {
262 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
263 if (s == NULL
264 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
265 return FALSE;
266 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
267 }
268
269 if (info->emit_gnu_hash)
270 {
271 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
272 flags | SEC_READONLY);
273 if (s == NULL
274 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
275 return FALSE;
276 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
277 4 32-bit words followed by variable count of 64-bit words, then
278 variable count of 32-bit words. */
279 if (bed->s->arch_size == 64)
280 elf_section_data (s)->this_hdr.sh_entsize = 0;
281 else
282 elf_section_data (s)->this_hdr.sh_entsize = 4;
283 }
284
285 /* Let the backend create the rest of the sections. This lets the
286 backend set the right flags. The backend will normally create
287 the .got and .plt sections. */
288 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
289 return FALSE;
290
291 elf_hash_table (info)->dynamic_sections_created = TRUE;
292
293 return TRUE;
294 }
295
296 /* Create dynamic sections when linking against a dynamic object. */
297
298 bfd_boolean
299 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
300 {
301 flagword flags, pltflags;
302 struct elf_link_hash_entry *h;
303 asection *s;
304 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
305 struct elf_link_hash_table *htab = elf_hash_table (info);
306
307 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
308 .rel[a].bss sections. */
309 flags = bed->dynamic_sec_flags;
310
311 pltflags = flags;
312 if (bed->plt_not_loaded)
313 /* We do not clear SEC_ALLOC here because we still want the OS to
314 allocate space for the section; it's just that there's nothing
315 to read in from the object file. */
316 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
317 else
318 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
319 if (bed->plt_readonly)
320 pltflags |= SEC_READONLY;
321
322 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
323 if (s == NULL
324 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
325 return FALSE;
326 htab->splt = s;
327
328 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
329 .plt section. */
330 if (bed->want_plt_sym)
331 {
332 h = _bfd_elf_define_linkage_sym (abfd, info, s,
333 "_PROCEDURE_LINKAGE_TABLE_");
334 elf_hash_table (info)->hplt = h;
335 if (h == NULL)
336 return FALSE;
337 }
338
339 s = bfd_make_section_with_flags (abfd,
340 (bed->rela_plts_and_copies_p
341 ? ".rela.plt" : ".rel.plt"),
342 flags | SEC_READONLY);
343 if (s == NULL
344 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
345 return FALSE;
346 htab->srelplt = s;
347
348 if (! _bfd_elf_create_got_section (abfd, info))
349 return FALSE;
350
351 if (bed->want_dynbss)
352 {
353 /* The .dynbss section is a place to put symbols which are defined
354 by dynamic objects, are referenced by regular objects, and are
355 not functions. We must allocate space for them in the process
356 image and use a R_*_COPY reloc to tell the dynamic linker to
357 initialize them at run time. The linker script puts the .dynbss
358 section into the .bss section of the final image. */
359 s = bfd_make_section_with_flags (abfd, ".dynbss",
360 (SEC_ALLOC
361 | SEC_LINKER_CREATED));
362 if (s == NULL)
363 return FALSE;
364
365 /* The .rel[a].bss section holds copy relocs. This section is not
366 normally needed. We need to create it here, though, so that the
367 linker will map it to an output section. We can't just create it
368 only if we need it, because we will not know whether we need it
369 until we have seen all the input files, and the first time the
370 main linker code calls BFD after examining all the input files
371 (size_dynamic_sections) the input sections have already been
372 mapped to the output sections. If the section turns out not to
373 be needed, we can discard it later. We will never need this
374 section when generating a shared object, since they do not use
375 copy relocs. */
376 if (! info->shared)
377 {
378 s = bfd_make_section_with_flags (abfd,
379 (bed->rela_plts_and_copies_p
380 ? ".rela.bss" : ".rel.bss"),
381 flags | SEC_READONLY);
382 if (s == NULL
383 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
384 return FALSE;
385 }
386 }
387
388 return TRUE;
389 }
390 \f
391 /* Record a new dynamic symbol. We record the dynamic symbols as we
392 read the input files, since we need to have a list of all of them
393 before we can determine the final sizes of the output sections.
394 Note that we may actually call this function even though we are not
395 going to output any dynamic symbols; in some cases we know that a
396 symbol should be in the dynamic symbol table, but only if there is
397 one. */
398
399 bfd_boolean
400 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
401 struct elf_link_hash_entry *h)
402 {
403 if (h->dynindx == -1)
404 {
405 struct elf_strtab_hash *dynstr;
406 char *p;
407 const char *name;
408 bfd_size_type indx;
409
410 /* XXX: The ABI draft says the linker must turn hidden and
411 internal symbols into STB_LOCAL symbols when producing the
412 DSO. However, if ld.so honors st_other in the dynamic table,
413 this would not be necessary. */
414 switch (ELF_ST_VISIBILITY (h->other))
415 {
416 case STV_INTERNAL:
417 case STV_HIDDEN:
418 if (h->root.type != bfd_link_hash_undefined
419 && h->root.type != bfd_link_hash_undefweak)
420 {
421 h->forced_local = 1;
422 if (!elf_hash_table (info)->is_relocatable_executable)
423 return TRUE;
424 }
425
426 default:
427 break;
428 }
429
430 h->dynindx = elf_hash_table (info)->dynsymcount;
431 ++elf_hash_table (info)->dynsymcount;
432
433 dynstr = elf_hash_table (info)->dynstr;
434 if (dynstr == NULL)
435 {
436 /* Create a strtab to hold the dynamic symbol names. */
437 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
438 if (dynstr == NULL)
439 return FALSE;
440 }
441
442 /* We don't put any version information in the dynamic string
443 table. */
444 name = h->root.root.string;
445 p = strchr (name, ELF_VER_CHR);
446 if (p != NULL)
447 /* We know that the p points into writable memory. In fact,
448 there are only a few symbols that have read-only names, being
449 those like _GLOBAL_OFFSET_TABLE_ that are created specially
450 by the backends. Most symbols will have names pointing into
451 an ELF string table read from a file, or to objalloc memory. */
452 *p = 0;
453
454 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
455
456 if (p != NULL)
457 *p = ELF_VER_CHR;
458
459 if (indx == (bfd_size_type) -1)
460 return FALSE;
461 h->dynstr_index = indx;
462 }
463
464 return TRUE;
465 }
466 \f
467 /* Mark a symbol dynamic. */
468
469 static void
470 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
471 struct elf_link_hash_entry *h,
472 Elf_Internal_Sym *sym)
473 {
474 struct bfd_elf_dynamic_list *d = info->dynamic_list;
475
476 /* It may be called more than once on the same H. */
477 if(h->dynamic || info->relocatable)
478 return;
479
480 if ((info->dynamic_data
481 && (h->type == STT_OBJECT
482 || (sym != NULL
483 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
484 || (d != NULL
485 && h->root.type == bfd_link_hash_new
486 && (*d->match) (&d->head, NULL, h->root.root.string)))
487 h->dynamic = 1;
488 }
489
490 /* Record an assignment to a symbol made by a linker script. We need
491 this in case some dynamic object refers to this symbol. */
492
493 bfd_boolean
494 bfd_elf_record_link_assignment (bfd *output_bfd,
495 struct bfd_link_info *info,
496 const char *name,
497 bfd_boolean provide,
498 bfd_boolean hidden)
499 {
500 struct elf_link_hash_entry *h, *hv;
501 struct elf_link_hash_table *htab;
502 const struct elf_backend_data *bed;
503
504 if (!is_elf_hash_table (info->hash))
505 return TRUE;
506
507 htab = elf_hash_table (info);
508 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
509 if (h == NULL)
510 return provide;
511
512 switch (h->root.type)
513 {
514 case bfd_link_hash_defined:
515 case bfd_link_hash_defweak:
516 case bfd_link_hash_common:
517 break;
518 case bfd_link_hash_undefweak:
519 case bfd_link_hash_undefined:
520 /* Since we're defining the symbol, don't let it seem to have not
521 been defined. record_dynamic_symbol and size_dynamic_sections
522 may depend on this. */
523 h->root.type = bfd_link_hash_new;
524 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
525 bfd_link_repair_undef_list (&htab->root);
526 break;
527 case bfd_link_hash_new:
528 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
529 h->non_elf = 0;
530 break;
531 case bfd_link_hash_indirect:
532 /* We had a versioned symbol in a dynamic library. We make the
533 the versioned symbol point to this one. */
534 bed = get_elf_backend_data (output_bfd);
535 hv = h;
536 while (hv->root.type == bfd_link_hash_indirect
537 || hv->root.type == bfd_link_hash_warning)
538 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
539 /* We don't need to update h->root.u since linker will set them
540 later. */
541 h->root.type = bfd_link_hash_undefined;
542 hv->root.type = bfd_link_hash_indirect;
543 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
544 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
545 break;
546 case bfd_link_hash_warning:
547 abort ();
548 break;
549 }
550
551 /* If this symbol is being provided by the linker script, and it is
552 currently defined by a dynamic object, but not by a regular
553 object, then mark it as undefined so that the generic linker will
554 force the correct value. */
555 if (provide
556 && h->def_dynamic
557 && !h->def_regular)
558 h->root.type = bfd_link_hash_undefined;
559
560 /* If this symbol is not being provided by the linker script, and it is
561 currently defined by a dynamic object, but not by a regular object,
562 then clear out any version information because the symbol will not be
563 associated with the dynamic object any more. */
564 if (!provide
565 && h->def_dynamic
566 && !h->def_regular)
567 h->verinfo.verdef = NULL;
568
569 h->def_regular = 1;
570
571 if (provide && hidden)
572 {
573 bed = get_elf_backend_data (output_bfd);
574 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
575 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
576 }
577
578 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
579 and executables. */
580 if (!info->relocatable
581 && h->dynindx != -1
582 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
583 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
584 h->forced_local = 1;
585
586 if ((h->def_dynamic
587 || h->ref_dynamic
588 || info->shared
589 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
590 && h->dynindx == -1)
591 {
592 if (! bfd_elf_link_record_dynamic_symbol (info, h))
593 return FALSE;
594
595 /* If this is a weak defined symbol, and we know a corresponding
596 real symbol from the same dynamic object, make sure the real
597 symbol is also made into a dynamic symbol. */
598 if (h->u.weakdef != NULL
599 && h->u.weakdef->dynindx == -1)
600 {
601 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
602 return FALSE;
603 }
604 }
605
606 return TRUE;
607 }
608
609 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
610 success, and 2 on a failure caused by attempting to record a symbol
611 in a discarded section, eg. a discarded link-once section symbol. */
612
613 int
614 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
615 bfd *input_bfd,
616 long input_indx)
617 {
618 bfd_size_type amt;
619 struct elf_link_local_dynamic_entry *entry;
620 struct elf_link_hash_table *eht;
621 struct elf_strtab_hash *dynstr;
622 unsigned long dynstr_index;
623 char *name;
624 Elf_External_Sym_Shndx eshndx;
625 char esym[sizeof (Elf64_External_Sym)];
626
627 if (! is_elf_hash_table (info->hash))
628 return 0;
629
630 /* See if the entry exists already. */
631 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
632 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
633 return 1;
634
635 amt = sizeof (*entry);
636 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
637 if (entry == NULL)
638 return 0;
639
640 /* Go find the symbol, so that we can find it's name. */
641 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
642 1, input_indx, &entry->isym, esym, &eshndx))
643 {
644 bfd_release (input_bfd, entry);
645 return 0;
646 }
647
648 if (entry->isym.st_shndx != SHN_UNDEF
649 && entry->isym.st_shndx < SHN_LORESERVE)
650 {
651 asection *s;
652
653 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
654 if (s == NULL || bfd_is_abs_section (s->output_section))
655 {
656 /* We can still bfd_release here as nothing has done another
657 bfd_alloc. We can't do this later in this function. */
658 bfd_release (input_bfd, entry);
659 return 2;
660 }
661 }
662
663 name = (bfd_elf_string_from_elf_section
664 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
665 entry->isym.st_name));
666
667 dynstr = elf_hash_table (info)->dynstr;
668 if (dynstr == NULL)
669 {
670 /* Create a strtab to hold the dynamic symbol names. */
671 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
672 if (dynstr == NULL)
673 return 0;
674 }
675
676 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
677 if (dynstr_index == (unsigned long) -1)
678 return 0;
679 entry->isym.st_name = dynstr_index;
680
681 eht = elf_hash_table (info);
682
683 entry->next = eht->dynlocal;
684 eht->dynlocal = entry;
685 entry->input_bfd = input_bfd;
686 entry->input_indx = input_indx;
687 eht->dynsymcount++;
688
689 /* Whatever binding the symbol had before, it's now local. */
690 entry->isym.st_info
691 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
692
693 /* The dynindx will be set at the end of size_dynamic_sections. */
694
695 return 1;
696 }
697
698 /* Return the dynindex of a local dynamic symbol. */
699
700 long
701 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
702 bfd *input_bfd,
703 long input_indx)
704 {
705 struct elf_link_local_dynamic_entry *e;
706
707 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
708 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
709 return e->dynindx;
710 return -1;
711 }
712
713 /* This function is used to renumber the dynamic symbols, if some of
714 them are removed because they are marked as local. This is called
715 via elf_link_hash_traverse. */
716
717 static bfd_boolean
718 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
719 void *data)
720 {
721 size_t *count = (size_t *) data;
722
723 if (h->root.type == bfd_link_hash_warning)
724 h = (struct elf_link_hash_entry *) h->root.u.i.link;
725
726 if (h->forced_local)
727 return TRUE;
728
729 if (h->dynindx != -1)
730 h->dynindx = ++(*count);
731
732 return TRUE;
733 }
734
735
736 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
737 STB_LOCAL binding. */
738
739 static bfd_boolean
740 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
741 void *data)
742 {
743 size_t *count = (size_t *) data;
744
745 if (h->root.type == bfd_link_hash_warning)
746 h = (struct elf_link_hash_entry *) h->root.u.i.link;
747
748 if (!h->forced_local)
749 return TRUE;
750
751 if (h->dynindx != -1)
752 h->dynindx = ++(*count);
753
754 return TRUE;
755 }
756
757 /* Return true if the dynamic symbol for a given section should be
758 omitted when creating a shared library. */
759 bfd_boolean
760 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
761 struct bfd_link_info *info,
762 asection *p)
763 {
764 struct elf_link_hash_table *htab;
765
766 switch (elf_section_data (p)->this_hdr.sh_type)
767 {
768 case SHT_PROGBITS:
769 case SHT_NOBITS:
770 /* If sh_type is yet undecided, assume it could be
771 SHT_PROGBITS/SHT_NOBITS. */
772 case SHT_NULL:
773 htab = elf_hash_table (info);
774 if (p == htab->tls_sec)
775 return FALSE;
776
777 if (htab->text_index_section != NULL)
778 return p != htab->text_index_section && p != htab->data_index_section;
779
780 if (strcmp (p->name, ".got") == 0
781 || strcmp (p->name, ".got.plt") == 0
782 || strcmp (p->name, ".plt") == 0)
783 {
784 asection *ip;
785
786 if (htab->dynobj != NULL
787 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
788 && (ip->flags & SEC_LINKER_CREATED)
789 && ip->output_section == p)
790 return TRUE;
791 }
792 return FALSE;
793
794 /* There shouldn't be section relative relocations
795 against any other section. */
796 default:
797 return TRUE;
798 }
799 }
800
801 /* Assign dynsym indices. In a shared library we generate a section
802 symbol for each output section, which come first. Next come symbols
803 which have been forced to local binding. Then all of the back-end
804 allocated local dynamic syms, followed by the rest of the global
805 symbols. */
806
807 static unsigned long
808 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
809 struct bfd_link_info *info,
810 unsigned long *section_sym_count)
811 {
812 unsigned long dynsymcount = 0;
813
814 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
815 {
816 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
817 asection *p;
818 for (p = output_bfd->sections; p ; p = p->next)
819 if ((p->flags & SEC_EXCLUDE) == 0
820 && (p->flags & SEC_ALLOC) != 0
821 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
822 elf_section_data (p)->dynindx = ++dynsymcount;
823 else
824 elf_section_data (p)->dynindx = 0;
825 }
826 *section_sym_count = dynsymcount;
827
828 elf_link_hash_traverse (elf_hash_table (info),
829 elf_link_renumber_local_hash_table_dynsyms,
830 &dynsymcount);
831
832 if (elf_hash_table (info)->dynlocal)
833 {
834 struct elf_link_local_dynamic_entry *p;
835 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
836 p->dynindx = ++dynsymcount;
837 }
838
839 elf_link_hash_traverse (elf_hash_table (info),
840 elf_link_renumber_hash_table_dynsyms,
841 &dynsymcount);
842
843 /* There is an unused NULL entry at the head of the table which
844 we must account for in our count. Unless there weren't any
845 symbols, which means we'll have no table at all. */
846 if (dynsymcount != 0)
847 ++dynsymcount;
848
849 elf_hash_table (info)->dynsymcount = dynsymcount;
850 return dynsymcount;
851 }
852
853 /* Merge st_other field. */
854
855 static void
856 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
857 Elf_Internal_Sym *isym, bfd_boolean definition,
858 bfd_boolean dynamic)
859 {
860 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
861
862 /* If st_other has a processor-specific meaning, specific
863 code might be needed here. We never merge the visibility
864 attribute with the one from a dynamic object. */
865 if (bed->elf_backend_merge_symbol_attribute)
866 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
867 dynamic);
868
869 /* If this symbol has default visibility and the user has requested
870 we not re-export it, then mark it as hidden. */
871 if (definition
872 && !dynamic
873 && (abfd->no_export
874 || (abfd->my_archive && abfd->my_archive->no_export))
875 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
876 isym->st_other = (STV_HIDDEN
877 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
878
879 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
880 {
881 unsigned char hvis, symvis, other, nvis;
882
883 /* Only merge the visibility. Leave the remainder of the
884 st_other field to elf_backend_merge_symbol_attribute. */
885 other = h->other & ~ELF_ST_VISIBILITY (-1);
886
887 /* Combine visibilities, using the most constraining one. */
888 hvis = ELF_ST_VISIBILITY (h->other);
889 symvis = ELF_ST_VISIBILITY (isym->st_other);
890 if (! hvis)
891 nvis = symvis;
892 else if (! symvis)
893 nvis = hvis;
894 else
895 nvis = hvis < symvis ? hvis : symvis;
896
897 h->other = other | nvis;
898 }
899 }
900
901 /* This function is called when we want to define a new symbol. It
902 handles the various cases which arise when we find a definition in
903 a dynamic object, or when there is already a definition in a
904 dynamic object. The new symbol is described by NAME, SYM, PSEC,
905 and PVALUE. We set SYM_HASH to the hash table entry. We set
906 OVERRIDE if the old symbol is overriding a new definition. We set
907 TYPE_CHANGE_OK if it is OK for the type to change. We set
908 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
909 change, we mean that we shouldn't warn if the type or size does
910 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
911 object is overridden by a regular object. */
912
913 bfd_boolean
914 _bfd_elf_merge_symbol (bfd *abfd,
915 struct bfd_link_info *info,
916 const char *name,
917 Elf_Internal_Sym *sym,
918 asection **psec,
919 bfd_vma *pvalue,
920 unsigned int *pold_alignment,
921 struct elf_link_hash_entry **sym_hash,
922 bfd_boolean *skip,
923 bfd_boolean *override,
924 bfd_boolean *type_change_ok,
925 bfd_boolean *size_change_ok)
926 {
927 asection *sec, *oldsec;
928 struct elf_link_hash_entry *h;
929 struct elf_link_hash_entry *flip;
930 int bind;
931 bfd *oldbfd;
932 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
933 bfd_boolean newweak, oldweak, newfunc, oldfunc;
934 const struct elf_backend_data *bed;
935
936 *skip = FALSE;
937 *override = FALSE;
938
939 sec = *psec;
940 bind = ELF_ST_BIND (sym->st_info);
941
942 /* Silently discard TLS symbols from --just-syms. There's no way to
943 combine a static TLS block with a new TLS block for this executable. */
944 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
945 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
946 {
947 *skip = TRUE;
948 return TRUE;
949 }
950
951 if (! bfd_is_und_section (sec))
952 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
953 else
954 h = ((struct elf_link_hash_entry *)
955 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
956 if (h == NULL)
957 return FALSE;
958 *sym_hash = h;
959
960 bed = get_elf_backend_data (abfd);
961
962 /* This code is for coping with dynamic objects, and is only useful
963 if we are doing an ELF link. */
964 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
965 return TRUE;
966
967 /* For merging, we only care about real symbols. */
968
969 while (h->root.type == bfd_link_hash_indirect
970 || h->root.type == bfd_link_hash_warning)
971 h = (struct elf_link_hash_entry *) h->root.u.i.link;
972
973 /* We have to check it for every instance since the first few may be
974 refereences and not all compilers emit symbol type for undefined
975 symbols. */
976 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
977
978 /* If we just created the symbol, mark it as being an ELF symbol.
979 Other than that, there is nothing to do--there is no merge issue
980 with a newly defined symbol--so we just return. */
981
982 if (h->root.type == bfd_link_hash_new)
983 {
984 h->non_elf = 0;
985 return TRUE;
986 }
987
988 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
989 existing symbol. */
990
991 switch (h->root.type)
992 {
993 default:
994 oldbfd = NULL;
995 oldsec = NULL;
996 break;
997
998 case bfd_link_hash_undefined:
999 case bfd_link_hash_undefweak:
1000 oldbfd = h->root.u.undef.abfd;
1001 oldsec = NULL;
1002 break;
1003
1004 case bfd_link_hash_defined:
1005 case bfd_link_hash_defweak:
1006 oldbfd = h->root.u.def.section->owner;
1007 oldsec = h->root.u.def.section;
1008 break;
1009
1010 case bfd_link_hash_common:
1011 oldbfd = h->root.u.c.p->section->owner;
1012 oldsec = h->root.u.c.p->section;
1013 break;
1014 }
1015
1016 /* In cases involving weak versioned symbols, we may wind up trying
1017 to merge a symbol with itself. Catch that here, to avoid the
1018 confusion that results if we try to override a symbol with
1019 itself. The additional tests catch cases like
1020 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1021 dynamic object, which we do want to handle here. */
1022 if (abfd == oldbfd
1023 && ((abfd->flags & DYNAMIC) == 0
1024 || !h->def_regular))
1025 return TRUE;
1026
1027 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1028 respectively, is from a dynamic object. */
1029
1030 newdyn = (abfd->flags & DYNAMIC) != 0;
1031
1032 olddyn = FALSE;
1033 if (oldbfd != NULL)
1034 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1035 else if (oldsec != NULL)
1036 {
1037 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1038 indices used by MIPS ELF. */
1039 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1040 }
1041
1042 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1043 respectively, appear to be a definition rather than reference. */
1044
1045 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1046
1047 olddef = (h->root.type != bfd_link_hash_undefined
1048 && h->root.type != bfd_link_hash_undefweak
1049 && h->root.type != bfd_link_hash_common);
1050
1051 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1052 respectively, appear to be a function. */
1053
1054 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1055 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1056
1057 oldfunc = (h->type != STT_NOTYPE
1058 && bed->is_function_type (h->type));
1059
1060 /* When we try to create a default indirect symbol from the dynamic
1061 definition with the default version, we skip it if its type and
1062 the type of existing regular definition mismatch. We only do it
1063 if the existing regular definition won't be dynamic. */
1064 if (pold_alignment == NULL
1065 && !info->shared
1066 && !info->export_dynamic
1067 && !h->ref_dynamic
1068 && newdyn
1069 && newdef
1070 && !olddyn
1071 && (olddef || h->root.type == bfd_link_hash_common)
1072 && ELF_ST_TYPE (sym->st_info) != h->type
1073 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1074 && h->type != STT_NOTYPE
1075 && !(newfunc && oldfunc))
1076 {
1077 *skip = TRUE;
1078 return TRUE;
1079 }
1080
1081 /* Check TLS symbol. We don't check undefined symbol introduced by
1082 "ld -u". */
1083 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
1084 && ELF_ST_TYPE (sym->st_info) != h->type
1085 && oldbfd != NULL)
1086 {
1087 bfd *ntbfd, *tbfd;
1088 bfd_boolean ntdef, tdef;
1089 asection *ntsec, *tsec;
1090
1091 if (h->type == STT_TLS)
1092 {
1093 ntbfd = abfd;
1094 ntsec = sec;
1095 ntdef = newdef;
1096 tbfd = oldbfd;
1097 tsec = oldsec;
1098 tdef = olddef;
1099 }
1100 else
1101 {
1102 ntbfd = oldbfd;
1103 ntsec = oldsec;
1104 ntdef = olddef;
1105 tbfd = abfd;
1106 tsec = sec;
1107 tdef = newdef;
1108 }
1109
1110 if (tdef && ntdef)
1111 (*_bfd_error_handler)
1112 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1113 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1114 else if (!tdef && !ntdef)
1115 (*_bfd_error_handler)
1116 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1117 tbfd, ntbfd, h->root.root.string);
1118 else if (tdef)
1119 (*_bfd_error_handler)
1120 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1121 tbfd, tsec, ntbfd, h->root.root.string);
1122 else
1123 (*_bfd_error_handler)
1124 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1125 tbfd, ntbfd, ntsec, h->root.root.string);
1126
1127 bfd_set_error (bfd_error_bad_value);
1128 return FALSE;
1129 }
1130
1131 /* We need to remember if a symbol has a definition in a dynamic
1132 object or is weak in all dynamic objects. Internal and hidden
1133 visibility will make it unavailable to dynamic objects. */
1134 if (newdyn && !h->dynamic_def)
1135 {
1136 if (!bfd_is_und_section (sec))
1137 h->dynamic_def = 1;
1138 else
1139 {
1140 /* Check if this symbol is weak in all dynamic objects. If it
1141 is the first time we see it in a dynamic object, we mark
1142 if it is weak. Otherwise, we clear it. */
1143 if (!h->ref_dynamic)
1144 {
1145 if (bind == STB_WEAK)
1146 h->dynamic_weak = 1;
1147 }
1148 else if (bind != STB_WEAK)
1149 h->dynamic_weak = 0;
1150 }
1151 }
1152
1153 /* If the old symbol has non-default visibility, we ignore the new
1154 definition from a dynamic object. */
1155 if (newdyn
1156 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1157 && !bfd_is_und_section (sec))
1158 {
1159 *skip = TRUE;
1160 /* Make sure this symbol is dynamic. */
1161 h->ref_dynamic = 1;
1162 /* A protected symbol has external availability. Make sure it is
1163 recorded as dynamic.
1164
1165 FIXME: Should we check type and size for protected symbol? */
1166 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1167 return bfd_elf_link_record_dynamic_symbol (info, h);
1168 else
1169 return TRUE;
1170 }
1171 else if (!newdyn
1172 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1173 && h->def_dynamic)
1174 {
1175 /* If the new symbol with non-default visibility comes from a
1176 relocatable file and the old definition comes from a dynamic
1177 object, we remove the old definition. */
1178 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1179 {
1180 /* Handle the case where the old dynamic definition is
1181 default versioned. We need to copy the symbol info from
1182 the symbol with default version to the normal one if it
1183 was referenced before. */
1184 if (h->ref_regular)
1185 {
1186 struct elf_link_hash_entry *vh = *sym_hash;
1187
1188 vh->root.type = h->root.type;
1189 h->root.type = bfd_link_hash_indirect;
1190 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1191 /* Protected symbols will override the dynamic definition
1192 with default version. */
1193 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1194 {
1195 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1196 vh->dynamic_def = 1;
1197 vh->ref_dynamic = 1;
1198 }
1199 else
1200 {
1201 h->root.type = vh->root.type;
1202 vh->ref_dynamic = 0;
1203 /* We have to hide it here since it was made dynamic
1204 global with extra bits when the symbol info was
1205 copied from the old dynamic definition. */
1206 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1207 }
1208 h = vh;
1209 }
1210 else
1211 h = *sym_hash;
1212 }
1213
1214 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1215 && bfd_is_und_section (sec))
1216 {
1217 /* If the new symbol is undefined and the old symbol was
1218 also undefined before, we need to make sure
1219 _bfd_generic_link_add_one_symbol doesn't mess
1220 up the linker hash table undefs list. Since the old
1221 definition came from a dynamic object, it is still on the
1222 undefs list. */
1223 h->root.type = bfd_link_hash_undefined;
1224 h->root.u.undef.abfd = abfd;
1225 }
1226 else
1227 {
1228 h->root.type = bfd_link_hash_new;
1229 h->root.u.undef.abfd = NULL;
1230 }
1231
1232 if (h->def_dynamic)
1233 {
1234 h->def_dynamic = 0;
1235 h->ref_dynamic = 1;
1236 h->dynamic_def = 1;
1237 }
1238 /* FIXME: Should we check type and size for protected symbol? */
1239 h->size = 0;
1240 h->type = 0;
1241 return TRUE;
1242 }
1243
1244 /* Differentiate strong and weak symbols. */
1245 newweak = bind == STB_WEAK;
1246 oldweak = (h->root.type == bfd_link_hash_defweak
1247 || h->root.type == bfd_link_hash_undefweak);
1248
1249 if (bind == STB_GNU_UNIQUE)
1250 h->unique_global = 1;
1251
1252 /* If a new weak symbol definition comes from a regular file and the
1253 old symbol comes from a dynamic library, we treat the new one as
1254 strong. Similarly, an old weak symbol definition from a regular
1255 file is treated as strong when the new symbol comes from a dynamic
1256 library. Further, an old weak symbol from a dynamic library is
1257 treated as strong if the new symbol is from a dynamic library.
1258 This reflects the way glibc's ld.so works.
1259
1260 Do this before setting *type_change_ok or *size_change_ok so that
1261 we warn properly when dynamic library symbols are overridden. */
1262
1263 if (newdef && !newdyn && olddyn)
1264 newweak = FALSE;
1265 if (olddef && newdyn)
1266 oldweak = FALSE;
1267
1268 /* Allow changes between different types of function symbol. */
1269 if (newfunc && oldfunc)
1270 *type_change_ok = TRUE;
1271
1272 /* It's OK to change the type if either the existing symbol or the
1273 new symbol is weak. A type change is also OK if the old symbol
1274 is undefined and the new symbol is defined. */
1275
1276 if (oldweak
1277 || newweak
1278 || (newdef
1279 && h->root.type == bfd_link_hash_undefined))
1280 *type_change_ok = TRUE;
1281
1282 /* It's OK to change the size if either the existing symbol or the
1283 new symbol is weak, or if the old symbol is undefined. */
1284
1285 if (*type_change_ok
1286 || h->root.type == bfd_link_hash_undefined)
1287 *size_change_ok = TRUE;
1288
1289 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1290 symbol, respectively, appears to be a common symbol in a dynamic
1291 object. If a symbol appears in an uninitialized section, and is
1292 not weak, and is not a function, then it may be a common symbol
1293 which was resolved when the dynamic object was created. We want
1294 to treat such symbols specially, because they raise special
1295 considerations when setting the symbol size: if the symbol
1296 appears as a common symbol in a regular object, and the size in
1297 the regular object is larger, we must make sure that we use the
1298 larger size. This problematic case can always be avoided in C,
1299 but it must be handled correctly when using Fortran shared
1300 libraries.
1301
1302 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1303 likewise for OLDDYNCOMMON and OLDDEF.
1304
1305 Note that this test is just a heuristic, and that it is quite
1306 possible to have an uninitialized symbol in a shared object which
1307 is really a definition, rather than a common symbol. This could
1308 lead to some minor confusion when the symbol really is a common
1309 symbol in some regular object. However, I think it will be
1310 harmless. */
1311
1312 if (newdyn
1313 && newdef
1314 && !newweak
1315 && (sec->flags & SEC_ALLOC) != 0
1316 && (sec->flags & SEC_LOAD) == 0
1317 && sym->st_size > 0
1318 && !newfunc)
1319 newdyncommon = TRUE;
1320 else
1321 newdyncommon = FALSE;
1322
1323 if (olddyn
1324 && olddef
1325 && h->root.type == bfd_link_hash_defined
1326 && h->def_dynamic
1327 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1328 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1329 && h->size > 0
1330 && !oldfunc)
1331 olddyncommon = TRUE;
1332 else
1333 olddyncommon = FALSE;
1334
1335 /* We now know everything about the old and new symbols. We ask the
1336 backend to check if we can merge them. */
1337 if (bed->merge_symbol
1338 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1339 pold_alignment, skip, override,
1340 type_change_ok, size_change_ok,
1341 &newdyn, &newdef, &newdyncommon, &newweak,
1342 abfd, &sec,
1343 &olddyn, &olddef, &olddyncommon, &oldweak,
1344 oldbfd, &oldsec))
1345 return FALSE;
1346
1347 /* If both the old and the new symbols look like common symbols in a
1348 dynamic object, set the size of the symbol to the larger of the
1349 two. */
1350
1351 if (olddyncommon
1352 && newdyncommon
1353 && sym->st_size != h->size)
1354 {
1355 /* Since we think we have two common symbols, issue a multiple
1356 common warning if desired. Note that we only warn if the
1357 size is different. If the size is the same, we simply let
1358 the old symbol override the new one as normally happens with
1359 symbols defined in dynamic objects. */
1360
1361 if (! ((*info->callbacks->multiple_common)
1362 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1363 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1364 return FALSE;
1365
1366 if (sym->st_size > h->size)
1367 h->size = sym->st_size;
1368
1369 *size_change_ok = TRUE;
1370 }
1371
1372 /* If we are looking at a dynamic object, and we have found a
1373 definition, we need to see if the symbol was already defined by
1374 some other object. If so, we want to use the existing
1375 definition, and we do not want to report a multiple symbol
1376 definition error; we do this by clobbering *PSEC to be
1377 bfd_und_section_ptr.
1378
1379 We treat a common symbol as a definition if the symbol in the
1380 shared library is a function, since common symbols always
1381 represent variables; this can cause confusion in principle, but
1382 any such confusion would seem to indicate an erroneous program or
1383 shared library. We also permit a common symbol in a regular
1384 object to override a weak symbol in a shared object. */
1385
1386 if (newdyn
1387 && newdef
1388 && (olddef
1389 || (h->root.type == bfd_link_hash_common
1390 && (newweak || newfunc))))
1391 {
1392 *override = TRUE;
1393 newdef = FALSE;
1394 newdyncommon = FALSE;
1395
1396 *psec = sec = bfd_und_section_ptr;
1397 *size_change_ok = TRUE;
1398
1399 /* If we get here when the old symbol is a common symbol, then
1400 we are explicitly letting it override a weak symbol or
1401 function in a dynamic object, and we don't want to warn about
1402 a type change. If the old symbol is a defined symbol, a type
1403 change warning may still be appropriate. */
1404
1405 if (h->root.type == bfd_link_hash_common)
1406 *type_change_ok = TRUE;
1407 }
1408
1409 /* Handle the special case of an old common symbol merging with a
1410 new symbol which looks like a common symbol in a shared object.
1411 We change *PSEC and *PVALUE to make the new symbol look like a
1412 common symbol, and let _bfd_generic_link_add_one_symbol do the
1413 right thing. */
1414
1415 if (newdyncommon
1416 && h->root.type == bfd_link_hash_common)
1417 {
1418 *override = TRUE;
1419 newdef = FALSE;
1420 newdyncommon = FALSE;
1421 *pvalue = sym->st_size;
1422 *psec = sec = bed->common_section (oldsec);
1423 *size_change_ok = TRUE;
1424 }
1425
1426 /* Skip weak definitions of symbols that are already defined. */
1427 if (newdef && olddef && newweak)
1428 {
1429 *skip = TRUE;
1430
1431 /* Merge st_other. If the symbol already has a dynamic index,
1432 but visibility says it should not be visible, turn it into a
1433 local symbol. */
1434 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1435 if (h->dynindx != -1)
1436 switch (ELF_ST_VISIBILITY (h->other))
1437 {
1438 case STV_INTERNAL:
1439 case STV_HIDDEN:
1440 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1441 break;
1442 }
1443 }
1444
1445 /* If the old symbol is from a dynamic object, and the new symbol is
1446 a definition which is not from a dynamic object, then the new
1447 symbol overrides the old symbol. Symbols from regular files
1448 always take precedence over symbols from dynamic objects, even if
1449 they are defined after the dynamic object in the link.
1450
1451 As above, we again permit a common symbol in a regular object to
1452 override a definition in a shared object if the shared object
1453 symbol is a function or is weak. */
1454
1455 flip = NULL;
1456 if (!newdyn
1457 && (newdef
1458 || (bfd_is_com_section (sec)
1459 && (oldweak || oldfunc)))
1460 && olddyn
1461 && olddef
1462 && h->def_dynamic)
1463 {
1464 /* Change the hash table entry to undefined, and let
1465 _bfd_generic_link_add_one_symbol do the right thing with the
1466 new definition. */
1467
1468 h->root.type = bfd_link_hash_undefined;
1469 h->root.u.undef.abfd = h->root.u.def.section->owner;
1470 *size_change_ok = TRUE;
1471
1472 olddef = FALSE;
1473 olddyncommon = FALSE;
1474
1475 /* We again permit a type change when a common symbol may be
1476 overriding a function. */
1477
1478 if (bfd_is_com_section (sec))
1479 {
1480 if (oldfunc)
1481 {
1482 /* If a common symbol overrides a function, make sure
1483 that it isn't defined dynamically nor has type
1484 function. */
1485 h->def_dynamic = 0;
1486 h->type = STT_NOTYPE;
1487 }
1488 *type_change_ok = TRUE;
1489 }
1490
1491 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1492 flip = *sym_hash;
1493 else
1494 /* This union may have been set to be non-NULL when this symbol
1495 was seen in a dynamic object. We must force the union to be
1496 NULL, so that it is correct for a regular symbol. */
1497 h->verinfo.vertree = NULL;
1498 }
1499
1500 /* Handle the special case of a new common symbol merging with an
1501 old symbol that looks like it might be a common symbol defined in
1502 a shared object. Note that we have already handled the case in
1503 which a new common symbol should simply override the definition
1504 in the shared library. */
1505
1506 if (! newdyn
1507 && bfd_is_com_section (sec)
1508 && olddyncommon)
1509 {
1510 /* It would be best if we could set the hash table entry to a
1511 common symbol, but we don't know what to use for the section
1512 or the alignment. */
1513 if (! ((*info->callbacks->multiple_common)
1514 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1515 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1516 return FALSE;
1517
1518 /* If the presumed common symbol in the dynamic object is
1519 larger, pretend that the new symbol has its size. */
1520
1521 if (h->size > *pvalue)
1522 *pvalue = h->size;
1523
1524 /* We need to remember the alignment required by the symbol
1525 in the dynamic object. */
1526 BFD_ASSERT (pold_alignment);
1527 *pold_alignment = h->root.u.def.section->alignment_power;
1528
1529 olddef = FALSE;
1530 olddyncommon = FALSE;
1531
1532 h->root.type = bfd_link_hash_undefined;
1533 h->root.u.undef.abfd = h->root.u.def.section->owner;
1534
1535 *size_change_ok = TRUE;
1536 *type_change_ok = TRUE;
1537
1538 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1539 flip = *sym_hash;
1540 else
1541 h->verinfo.vertree = NULL;
1542 }
1543
1544 if (flip != NULL)
1545 {
1546 /* Handle the case where we had a versioned symbol in a dynamic
1547 library and now find a definition in a normal object. In this
1548 case, we make the versioned symbol point to the normal one. */
1549 flip->root.type = h->root.type;
1550 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1551 h->root.type = bfd_link_hash_indirect;
1552 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1553 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1554 if (h->def_dynamic)
1555 {
1556 h->def_dynamic = 0;
1557 flip->ref_dynamic = 1;
1558 }
1559 }
1560
1561 return TRUE;
1562 }
1563
1564 /* This function is called to create an indirect symbol from the
1565 default for the symbol with the default version if needed. The
1566 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1567 set DYNSYM if the new indirect symbol is dynamic. */
1568
1569 static bfd_boolean
1570 _bfd_elf_add_default_symbol (bfd *abfd,
1571 struct bfd_link_info *info,
1572 struct elf_link_hash_entry *h,
1573 const char *name,
1574 Elf_Internal_Sym *sym,
1575 asection **psec,
1576 bfd_vma *value,
1577 bfd_boolean *dynsym,
1578 bfd_boolean override)
1579 {
1580 bfd_boolean type_change_ok;
1581 bfd_boolean size_change_ok;
1582 bfd_boolean skip;
1583 char *shortname;
1584 struct elf_link_hash_entry *hi;
1585 struct bfd_link_hash_entry *bh;
1586 const struct elf_backend_data *bed;
1587 bfd_boolean collect;
1588 bfd_boolean dynamic;
1589 char *p;
1590 size_t len, shortlen;
1591 asection *sec;
1592
1593 /* If this symbol has a version, and it is the default version, we
1594 create an indirect symbol from the default name to the fully
1595 decorated name. This will cause external references which do not
1596 specify a version to be bound to this version of the symbol. */
1597 p = strchr (name, ELF_VER_CHR);
1598 if (p == NULL || p[1] != ELF_VER_CHR)
1599 return TRUE;
1600
1601 if (override)
1602 {
1603 /* We are overridden by an old definition. We need to check if we
1604 need to create the indirect symbol from the default name. */
1605 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1606 FALSE, FALSE);
1607 BFD_ASSERT (hi != NULL);
1608 if (hi == h)
1609 return TRUE;
1610 while (hi->root.type == bfd_link_hash_indirect
1611 || hi->root.type == bfd_link_hash_warning)
1612 {
1613 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1614 if (hi == h)
1615 return TRUE;
1616 }
1617 }
1618
1619 bed = get_elf_backend_data (abfd);
1620 collect = bed->collect;
1621 dynamic = (abfd->flags & DYNAMIC) != 0;
1622
1623 shortlen = p - name;
1624 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1625 if (shortname == NULL)
1626 return FALSE;
1627 memcpy (shortname, name, shortlen);
1628 shortname[shortlen] = '\0';
1629
1630 /* We are going to create a new symbol. Merge it with any existing
1631 symbol with this name. For the purposes of the merge, act as
1632 though we were defining the symbol we just defined, although we
1633 actually going to define an indirect symbol. */
1634 type_change_ok = FALSE;
1635 size_change_ok = FALSE;
1636 sec = *psec;
1637 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1638 NULL, &hi, &skip, &override,
1639 &type_change_ok, &size_change_ok))
1640 return FALSE;
1641
1642 if (skip)
1643 goto nondefault;
1644
1645 if (! override)
1646 {
1647 bh = &hi->root;
1648 if (! (_bfd_generic_link_add_one_symbol
1649 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1650 0, name, FALSE, collect, &bh)))
1651 return FALSE;
1652 hi = (struct elf_link_hash_entry *) bh;
1653 }
1654 else
1655 {
1656 /* In this case the symbol named SHORTNAME is overriding the
1657 indirect symbol we want to add. We were planning on making
1658 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1659 is the name without a version. NAME is the fully versioned
1660 name, and it is the default version.
1661
1662 Overriding means that we already saw a definition for the
1663 symbol SHORTNAME in a regular object, and it is overriding
1664 the symbol defined in the dynamic object.
1665
1666 When this happens, we actually want to change NAME, the
1667 symbol we just added, to refer to SHORTNAME. This will cause
1668 references to NAME in the shared object to become references
1669 to SHORTNAME in the regular object. This is what we expect
1670 when we override a function in a shared object: that the
1671 references in the shared object will be mapped to the
1672 definition in the regular object. */
1673
1674 while (hi->root.type == bfd_link_hash_indirect
1675 || hi->root.type == bfd_link_hash_warning)
1676 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1677
1678 h->root.type = bfd_link_hash_indirect;
1679 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1680 if (h->def_dynamic)
1681 {
1682 h->def_dynamic = 0;
1683 hi->ref_dynamic = 1;
1684 if (hi->ref_regular
1685 || hi->def_regular)
1686 {
1687 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1688 return FALSE;
1689 }
1690 }
1691
1692 /* Now set HI to H, so that the following code will set the
1693 other fields correctly. */
1694 hi = h;
1695 }
1696
1697 /* Check if HI is a warning symbol. */
1698 if (hi->root.type == bfd_link_hash_warning)
1699 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1700
1701 /* If there is a duplicate definition somewhere, then HI may not
1702 point to an indirect symbol. We will have reported an error to
1703 the user in that case. */
1704
1705 if (hi->root.type == bfd_link_hash_indirect)
1706 {
1707 struct elf_link_hash_entry *ht;
1708
1709 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1710 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1711
1712 /* See if the new flags lead us to realize that the symbol must
1713 be dynamic. */
1714 if (! *dynsym)
1715 {
1716 if (! dynamic)
1717 {
1718 if (info->shared
1719 || hi->ref_dynamic)
1720 *dynsym = TRUE;
1721 }
1722 else
1723 {
1724 if (hi->ref_regular)
1725 *dynsym = TRUE;
1726 }
1727 }
1728 }
1729
1730 /* We also need to define an indirection from the nondefault version
1731 of the symbol. */
1732
1733 nondefault:
1734 len = strlen (name);
1735 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1736 if (shortname == NULL)
1737 return FALSE;
1738 memcpy (shortname, name, shortlen);
1739 memcpy (shortname + shortlen, p + 1, len - shortlen);
1740
1741 /* Once again, merge with any existing symbol. */
1742 type_change_ok = FALSE;
1743 size_change_ok = FALSE;
1744 sec = *psec;
1745 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1746 NULL, &hi, &skip, &override,
1747 &type_change_ok, &size_change_ok))
1748 return FALSE;
1749
1750 if (skip)
1751 return TRUE;
1752
1753 if (override)
1754 {
1755 /* Here SHORTNAME is a versioned name, so we don't expect to see
1756 the type of override we do in the case above unless it is
1757 overridden by a versioned definition. */
1758 if (hi->root.type != bfd_link_hash_defined
1759 && hi->root.type != bfd_link_hash_defweak)
1760 (*_bfd_error_handler)
1761 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1762 abfd, shortname);
1763 }
1764 else
1765 {
1766 bh = &hi->root;
1767 if (! (_bfd_generic_link_add_one_symbol
1768 (info, abfd, shortname, BSF_INDIRECT,
1769 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1770 return FALSE;
1771 hi = (struct elf_link_hash_entry *) bh;
1772
1773 /* If there is a duplicate definition somewhere, then HI may not
1774 point to an indirect symbol. We will have reported an error
1775 to the user in that case. */
1776
1777 if (hi->root.type == bfd_link_hash_indirect)
1778 {
1779 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1780
1781 /* See if the new flags lead us to realize that the symbol
1782 must be dynamic. */
1783 if (! *dynsym)
1784 {
1785 if (! dynamic)
1786 {
1787 if (info->shared
1788 || hi->ref_dynamic)
1789 *dynsym = TRUE;
1790 }
1791 else
1792 {
1793 if (hi->ref_regular)
1794 *dynsym = TRUE;
1795 }
1796 }
1797 }
1798 }
1799
1800 return TRUE;
1801 }
1802 \f
1803 /* This routine is used to export all defined symbols into the dynamic
1804 symbol table. It is called via elf_link_hash_traverse. */
1805
1806 static bfd_boolean
1807 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1808 {
1809 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1810
1811 /* Ignore this if we won't export it. */
1812 if (!eif->info->export_dynamic && !h->dynamic)
1813 return TRUE;
1814
1815 /* Ignore indirect symbols. These are added by the versioning code. */
1816 if (h->root.type == bfd_link_hash_indirect)
1817 return TRUE;
1818
1819 if (h->root.type == bfd_link_hash_warning)
1820 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1821
1822 if (h->dynindx == -1
1823 && (h->def_regular
1824 || h->ref_regular))
1825 {
1826 bfd_boolean hide;
1827
1828 if (eif->verdefs == NULL
1829 || (bfd_find_version_for_sym (eif->verdefs, h->root.root.string, &hide)
1830 && !hide))
1831 {
1832 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1833 {
1834 eif->failed = TRUE;
1835 return FALSE;
1836 }
1837 }
1838 }
1839
1840 return TRUE;
1841 }
1842 \f
1843 /* Look through the symbols which are defined in other shared
1844 libraries and referenced here. Update the list of version
1845 dependencies. This will be put into the .gnu.version_r section.
1846 This function is called via elf_link_hash_traverse. */
1847
1848 static bfd_boolean
1849 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1850 void *data)
1851 {
1852 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1853 Elf_Internal_Verneed *t;
1854 Elf_Internal_Vernaux *a;
1855 bfd_size_type amt;
1856
1857 if (h->root.type == bfd_link_hash_warning)
1858 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1859
1860 /* We only care about symbols defined in shared objects with version
1861 information. */
1862 if (!h->def_dynamic
1863 || h->def_regular
1864 || h->dynindx == -1
1865 || h->verinfo.verdef == NULL)
1866 return TRUE;
1867
1868 /* See if we already know about this version. */
1869 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1870 t != NULL;
1871 t = t->vn_nextref)
1872 {
1873 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1874 continue;
1875
1876 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1877 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1878 return TRUE;
1879
1880 break;
1881 }
1882
1883 /* This is a new version. Add it to tree we are building. */
1884
1885 if (t == NULL)
1886 {
1887 amt = sizeof *t;
1888 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1889 if (t == NULL)
1890 {
1891 rinfo->failed = TRUE;
1892 return FALSE;
1893 }
1894
1895 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1896 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1897 elf_tdata (rinfo->info->output_bfd)->verref = t;
1898 }
1899
1900 amt = sizeof *a;
1901 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1902 if (a == NULL)
1903 {
1904 rinfo->failed = TRUE;
1905 return FALSE;
1906 }
1907
1908 /* Note that we are copying a string pointer here, and testing it
1909 above. If bfd_elf_string_from_elf_section is ever changed to
1910 discard the string data when low in memory, this will have to be
1911 fixed. */
1912 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1913
1914 a->vna_flags = h->verinfo.verdef->vd_flags;
1915 a->vna_nextptr = t->vn_auxptr;
1916
1917 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1918 ++rinfo->vers;
1919
1920 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1921
1922 t->vn_auxptr = a;
1923
1924 return TRUE;
1925 }
1926
1927 /* Figure out appropriate versions for all the symbols. We may not
1928 have the version number script until we have read all of the input
1929 files, so until that point we don't know which symbols should be
1930 local. This function is called via elf_link_hash_traverse. */
1931
1932 static bfd_boolean
1933 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1934 {
1935 struct elf_info_failed *sinfo;
1936 struct bfd_link_info *info;
1937 const struct elf_backend_data *bed;
1938 struct elf_info_failed eif;
1939 char *p;
1940 bfd_size_type amt;
1941
1942 sinfo = (struct elf_info_failed *) data;
1943 info = sinfo->info;
1944
1945 if (h->root.type == bfd_link_hash_warning)
1946 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1947
1948 /* Fix the symbol flags. */
1949 eif.failed = FALSE;
1950 eif.info = info;
1951 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1952 {
1953 if (eif.failed)
1954 sinfo->failed = TRUE;
1955 return FALSE;
1956 }
1957
1958 /* We only need version numbers for symbols defined in regular
1959 objects. */
1960 if (!h->def_regular)
1961 return TRUE;
1962
1963 bed = get_elf_backend_data (info->output_bfd);
1964 p = strchr (h->root.root.string, ELF_VER_CHR);
1965 if (p != NULL && h->verinfo.vertree == NULL)
1966 {
1967 struct bfd_elf_version_tree *t;
1968 bfd_boolean hidden;
1969
1970 hidden = TRUE;
1971
1972 /* There are two consecutive ELF_VER_CHR characters if this is
1973 not a hidden symbol. */
1974 ++p;
1975 if (*p == ELF_VER_CHR)
1976 {
1977 hidden = FALSE;
1978 ++p;
1979 }
1980
1981 /* If there is no version string, we can just return out. */
1982 if (*p == '\0')
1983 {
1984 if (hidden)
1985 h->hidden = 1;
1986 return TRUE;
1987 }
1988
1989 /* Look for the version. If we find it, it is no longer weak. */
1990 for (t = sinfo->verdefs; t != NULL; t = t->next)
1991 {
1992 if (strcmp (t->name, p) == 0)
1993 {
1994 size_t len;
1995 char *alc;
1996 struct bfd_elf_version_expr *d;
1997
1998 len = p - h->root.root.string;
1999 alc = (char *) bfd_malloc (len);
2000 if (alc == NULL)
2001 {
2002 sinfo->failed = TRUE;
2003 return FALSE;
2004 }
2005 memcpy (alc, h->root.root.string, len - 1);
2006 alc[len - 1] = '\0';
2007 if (alc[len - 2] == ELF_VER_CHR)
2008 alc[len - 2] = '\0';
2009
2010 h->verinfo.vertree = t;
2011 t->used = TRUE;
2012 d = NULL;
2013
2014 if (t->globals.list != NULL)
2015 d = (*t->match) (&t->globals, NULL, alc);
2016
2017 /* See if there is anything to force this symbol to
2018 local scope. */
2019 if (d == NULL && t->locals.list != NULL)
2020 {
2021 d = (*t->match) (&t->locals, NULL, alc);
2022 if (d != NULL
2023 && h->dynindx != -1
2024 && ! info->export_dynamic)
2025 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2026 }
2027
2028 free (alc);
2029 break;
2030 }
2031 }
2032
2033 /* If we are building an application, we need to create a
2034 version node for this version. */
2035 if (t == NULL && info->executable)
2036 {
2037 struct bfd_elf_version_tree **pp;
2038 int version_index;
2039
2040 /* If we aren't going to export this symbol, we don't need
2041 to worry about it. */
2042 if (h->dynindx == -1)
2043 return TRUE;
2044
2045 amt = sizeof *t;
2046 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2047 if (t == NULL)
2048 {
2049 sinfo->failed = TRUE;
2050 return FALSE;
2051 }
2052
2053 t->name = p;
2054 t->name_indx = (unsigned int) -1;
2055 t->used = TRUE;
2056
2057 version_index = 1;
2058 /* Don't count anonymous version tag. */
2059 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
2060 version_index = 0;
2061 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
2062 ++version_index;
2063 t->vernum = version_index;
2064
2065 *pp = t;
2066
2067 h->verinfo.vertree = t;
2068 }
2069 else if (t == NULL)
2070 {
2071 /* We could not find the version for a symbol when
2072 generating a shared archive. Return an error. */
2073 (*_bfd_error_handler)
2074 (_("%B: version node not found for symbol %s"),
2075 info->output_bfd, h->root.root.string);
2076 bfd_set_error (bfd_error_bad_value);
2077 sinfo->failed = TRUE;
2078 return FALSE;
2079 }
2080
2081 if (hidden)
2082 h->hidden = 1;
2083 }
2084
2085 /* If we don't have a version for this symbol, see if we can find
2086 something. */
2087 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
2088 {
2089 bfd_boolean hide;
2090
2091 h->verinfo.vertree = bfd_find_version_for_sym (sinfo->verdefs,
2092 h->root.root.string, &hide);
2093 if (h->verinfo.vertree != NULL && hide)
2094 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2095 }
2096
2097 return TRUE;
2098 }
2099 \f
2100 /* Read and swap the relocs from the section indicated by SHDR. This
2101 may be either a REL or a RELA section. The relocations are
2102 translated into RELA relocations and stored in INTERNAL_RELOCS,
2103 which should have already been allocated to contain enough space.
2104 The EXTERNAL_RELOCS are a buffer where the external form of the
2105 relocations should be stored.
2106
2107 Returns FALSE if something goes wrong. */
2108
2109 static bfd_boolean
2110 elf_link_read_relocs_from_section (bfd *abfd,
2111 asection *sec,
2112 Elf_Internal_Shdr *shdr,
2113 void *external_relocs,
2114 Elf_Internal_Rela *internal_relocs)
2115 {
2116 const struct elf_backend_data *bed;
2117 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2118 const bfd_byte *erela;
2119 const bfd_byte *erelaend;
2120 Elf_Internal_Rela *irela;
2121 Elf_Internal_Shdr *symtab_hdr;
2122 size_t nsyms;
2123
2124 /* Position ourselves at the start of the section. */
2125 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2126 return FALSE;
2127
2128 /* Read the relocations. */
2129 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2130 return FALSE;
2131
2132 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2133 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2134
2135 bed = get_elf_backend_data (abfd);
2136
2137 /* Convert the external relocations to the internal format. */
2138 if (shdr->sh_entsize == bed->s->sizeof_rel)
2139 swap_in = bed->s->swap_reloc_in;
2140 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2141 swap_in = bed->s->swap_reloca_in;
2142 else
2143 {
2144 bfd_set_error (bfd_error_wrong_format);
2145 return FALSE;
2146 }
2147
2148 erela = (const bfd_byte *) external_relocs;
2149 erelaend = erela + shdr->sh_size;
2150 irela = internal_relocs;
2151 while (erela < erelaend)
2152 {
2153 bfd_vma r_symndx;
2154
2155 (*swap_in) (abfd, erela, irela);
2156 r_symndx = ELF32_R_SYM (irela->r_info);
2157 if (bed->s->arch_size == 64)
2158 r_symndx >>= 24;
2159 if (nsyms > 0)
2160 {
2161 if ((size_t) r_symndx >= nsyms)
2162 {
2163 (*_bfd_error_handler)
2164 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2165 " for offset 0x%lx in section `%A'"),
2166 abfd, sec,
2167 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2168 bfd_set_error (bfd_error_bad_value);
2169 return FALSE;
2170 }
2171 }
2172 else if (r_symndx != 0)
2173 {
2174 (*_bfd_error_handler)
2175 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2176 " when the object file has no symbol table"),
2177 abfd, sec,
2178 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2179 bfd_set_error (bfd_error_bad_value);
2180 return FALSE;
2181 }
2182 irela += bed->s->int_rels_per_ext_rel;
2183 erela += shdr->sh_entsize;
2184 }
2185
2186 return TRUE;
2187 }
2188
2189 /* Read and swap the relocs for a section O. They may have been
2190 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2191 not NULL, they are used as buffers to read into. They are known to
2192 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2193 the return value is allocated using either malloc or bfd_alloc,
2194 according to the KEEP_MEMORY argument. If O has two relocation
2195 sections (both REL and RELA relocations), then the REL_HDR
2196 relocations will appear first in INTERNAL_RELOCS, followed by the
2197 REL_HDR2 relocations. */
2198
2199 Elf_Internal_Rela *
2200 _bfd_elf_link_read_relocs (bfd *abfd,
2201 asection *o,
2202 void *external_relocs,
2203 Elf_Internal_Rela *internal_relocs,
2204 bfd_boolean keep_memory)
2205 {
2206 Elf_Internal_Shdr *rel_hdr;
2207 void *alloc1 = NULL;
2208 Elf_Internal_Rela *alloc2 = NULL;
2209 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2210
2211 if (elf_section_data (o)->relocs != NULL)
2212 return elf_section_data (o)->relocs;
2213
2214 if (o->reloc_count == 0)
2215 return NULL;
2216
2217 rel_hdr = &elf_section_data (o)->rel_hdr;
2218
2219 if (internal_relocs == NULL)
2220 {
2221 bfd_size_type size;
2222
2223 size = o->reloc_count;
2224 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2225 if (keep_memory)
2226 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2227 else
2228 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2229 if (internal_relocs == NULL)
2230 goto error_return;
2231 }
2232
2233 if (external_relocs == NULL)
2234 {
2235 bfd_size_type size = rel_hdr->sh_size;
2236
2237 if (elf_section_data (o)->rel_hdr2)
2238 size += elf_section_data (o)->rel_hdr2->sh_size;
2239 alloc1 = bfd_malloc (size);
2240 if (alloc1 == NULL)
2241 goto error_return;
2242 external_relocs = alloc1;
2243 }
2244
2245 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
2246 external_relocs,
2247 internal_relocs))
2248 goto error_return;
2249 if (elf_section_data (o)->rel_hdr2
2250 && (!elf_link_read_relocs_from_section
2251 (abfd, o,
2252 elf_section_data (o)->rel_hdr2,
2253 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2254 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2255 * bed->s->int_rels_per_ext_rel))))
2256 goto error_return;
2257
2258 /* Cache the results for next time, if we can. */
2259 if (keep_memory)
2260 elf_section_data (o)->relocs = internal_relocs;
2261
2262 if (alloc1 != NULL)
2263 free (alloc1);
2264
2265 /* Don't free alloc2, since if it was allocated we are passing it
2266 back (under the name of internal_relocs). */
2267
2268 return internal_relocs;
2269
2270 error_return:
2271 if (alloc1 != NULL)
2272 free (alloc1);
2273 if (alloc2 != NULL)
2274 {
2275 if (keep_memory)
2276 bfd_release (abfd, alloc2);
2277 else
2278 free (alloc2);
2279 }
2280 return NULL;
2281 }
2282
2283 /* Compute the size of, and allocate space for, REL_HDR which is the
2284 section header for a section containing relocations for O. */
2285
2286 static bfd_boolean
2287 _bfd_elf_link_size_reloc_section (bfd *abfd,
2288 Elf_Internal_Shdr *rel_hdr,
2289 asection *o)
2290 {
2291 bfd_size_type reloc_count;
2292 bfd_size_type num_rel_hashes;
2293
2294 /* Figure out how many relocations there will be. */
2295 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2296 reloc_count = elf_section_data (o)->rel_count;
2297 else
2298 reloc_count = elf_section_data (o)->rel_count2;
2299
2300 num_rel_hashes = o->reloc_count;
2301 if (num_rel_hashes < reloc_count)
2302 num_rel_hashes = reloc_count;
2303
2304 /* That allows us to calculate the size of the section. */
2305 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2306
2307 /* The contents field must last into write_object_contents, so we
2308 allocate it with bfd_alloc rather than malloc. Also since we
2309 cannot be sure that the contents will actually be filled in,
2310 we zero the allocated space. */
2311 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2312 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2313 return FALSE;
2314
2315 /* We only allocate one set of hash entries, so we only do it the
2316 first time we are called. */
2317 if (elf_section_data (o)->rel_hashes == NULL
2318 && num_rel_hashes)
2319 {
2320 struct elf_link_hash_entry **p;
2321
2322 p = (struct elf_link_hash_entry **)
2323 bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2324 if (p == NULL)
2325 return FALSE;
2326
2327 elf_section_data (o)->rel_hashes = p;
2328 }
2329
2330 return TRUE;
2331 }
2332
2333 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2334 originated from the section given by INPUT_REL_HDR) to the
2335 OUTPUT_BFD. */
2336
2337 bfd_boolean
2338 _bfd_elf_link_output_relocs (bfd *output_bfd,
2339 asection *input_section,
2340 Elf_Internal_Shdr *input_rel_hdr,
2341 Elf_Internal_Rela *internal_relocs,
2342 struct elf_link_hash_entry **rel_hash
2343 ATTRIBUTE_UNUSED)
2344 {
2345 Elf_Internal_Rela *irela;
2346 Elf_Internal_Rela *irelaend;
2347 bfd_byte *erel;
2348 Elf_Internal_Shdr *output_rel_hdr;
2349 asection *output_section;
2350 unsigned int *rel_countp = NULL;
2351 const struct elf_backend_data *bed;
2352 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2353
2354 output_section = input_section->output_section;
2355 output_rel_hdr = NULL;
2356
2357 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2358 == input_rel_hdr->sh_entsize)
2359 {
2360 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2361 rel_countp = &elf_section_data (output_section)->rel_count;
2362 }
2363 else if (elf_section_data (output_section)->rel_hdr2
2364 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2365 == input_rel_hdr->sh_entsize))
2366 {
2367 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2368 rel_countp = &elf_section_data (output_section)->rel_count2;
2369 }
2370 else
2371 {
2372 (*_bfd_error_handler)
2373 (_("%B: relocation size mismatch in %B section %A"),
2374 output_bfd, input_section->owner, input_section);
2375 bfd_set_error (bfd_error_wrong_format);
2376 return FALSE;
2377 }
2378
2379 bed = get_elf_backend_data (output_bfd);
2380 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2381 swap_out = bed->s->swap_reloc_out;
2382 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2383 swap_out = bed->s->swap_reloca_out;
2384 else
2385 abort ();
2386
2387 erel = output_rel_hdr->contents;
2388 erel += *rel_countp * input_rel_hdr->sh_entsize;
2389 irela = internal_relocs;
2390 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2391 * bed->s->int_rels_per_ext_rel);
2392 while (irela < irelaend)
2393 {
2394 (*swap_out) (output_bfd, irela, erel);
2395 irela += bed->s->int_rels_per_ext_rel;
2396 erel += input_rel_hdr->sh_entsize;
2397 }
2398
2399 /* Bump the counter, so that we know where to add the next set of
2400 relocations. */
2401 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2402
2403 return TRUE;
2404 }
2405 \f
2406 /* Make weak undefined symbols in PIE dynamic. */
2407
2408 bfd_boolean
2409 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2410 struct elf_link_hash_entry *h)
2411 {
2412 if (info->pie
2413 && h->dynindx == -1
2414 && h->root.type == bfd_link_hash_undefweak)
2415 return bfd_elf_link_record_dynamic_symbol (info, h);
2416
2417 return TRUE;
2418 }
2419
2420 /* Fix up the flags for a symbol. This handles various cases which
2421 can only be fixed after all the input files are seen. This is
2422 currently called by both adjust_dynamic_symbol and
2423 assign_sym_version, which is unnecessary but perhaps more robust in
2424 the face of future changes. */
2425
2426 static bfd_boolean
2427 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2428 struct elf_info_failed *eif)
2429 {
2430 const struct elf_backend_data *bed;
2431
2432 /* If this symbol was mentioned in a non-ELF file, try to set
2433 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2434 permit a non-ELF file to correctly refer to a symbol defined in
2435 an ELF dynamic object. */
2436 if (h->non_elf)
2437 {
2438 while (h->root.type == bfd_link_hash_indirect)
2439 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2440
2441 if (h->root.type != bfd_link_hash_defined
2442 && h->root.type != bfd_link_hash_defweak)
2443 {
2444 h->ref_regular = 1;
2445 h->ref_regular_nonweak = 1;
2446 }
2447 else
2448 {
2449 if (h->root.u.def.section->owner != NULL
2450 && (bfd_get_flavour (h->root.u.def.section->owner)
2451 == bfd_target_elf_flavour))
2452 {
2453 h->ref_regular = 1;
2454 h->ref_regular_nonweak = 1;
2455 }
2456 else
2457 h->def_regular = 1;
2458 }
2459
2460 if (h->dynindx == -1
2461 && (h->def_dynamic
2462 || h->ref_dynamic))
2463 {
2464 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2465 {
2466 eif->failed = TRUE;
2467 return FALSE;
2468 }
2469 }
2470 }
2471 else
2472 {
2473 /* Unfortunately, NON_ELF is only correct if the symbol
2474 was first seen in a non-ELF file. Fortunately, if the symbol
2475 was first seen in an ELF file, we're probably OK unless the
2476 symbol was defined in a non-ELF file. Catch that case here.
2477 FIXME: We're still in trouble if the symbol was first seen in
2478 a dynamic object, and then later in a non-ELF regular object. */
2479 if ((h->root.type == bfd_link_hash_defined
2480 || h->root.type == bfd_link_hash_defweak)
2481 && !h->def_regular
2482 && (h->root.u.def.section->owner != NULL
2483 ? (bfd_get_flavour (h->root.u.def.section->owner)
2484 != bfd_target_elf_flavour)
2485 : (bfd_is_abs_section (h->root.u.def.section)
2486 && !h->def_dynamic)))
2487 h->def_regular = 1;
2488 }
2489
2490 /* Backend specific symbol fixup. */
2491 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2492 if (bed->elf_backend_fixup_symbol
2493 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2494 return FALSE;
2495
2496 /* If this is a final link, and the symbol was defined as a common
2497 symbol in a regular object file, and there was no definition in
2498 any dynamic object, then the linker will have allocated space for
2499 the symbol in a common section but the DEF_REGULAR
2500 flag will not have been set. */
2501 if (h->root.type == bfd_link_hash_defined
2502 && !h->def_regular
2503 && h->ref_regular
2504 && !h->def_dynamic
2505 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2506 h->def_regular = 1;
2507
2508 /* If -Bsymbolic was used (which means to bind references to global
2509 symbols to the definition within the shared object), and this
2510 symbol was defined in a regular object, then it actually doesn't
2511 need a PLT entry. Likewise, if the symbol has non-default
2512 visibility. If the symbol has hidden or internal visibility, we
2513 will force it local. */
2514 if (h->needs_plt
2515 && eif->info->shared
2516 && is_elf_hash_table (eif->info->hash)
2517 && (SYMBOLIC_BIND (eif->info, h)
2518 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2519 && h->def_regular)
2520 {
2521 bfd_boolean force_local;
2522
2523 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2524 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2525 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2526 }
2527
2528 /* If a weak undefined symbol has non-default visibility, we also
2529 hide it from the dynamic linker. */
2530 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2531 && h->root.type == bfd_link_hash_undefweak)
2532 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2533
2534 /* If this is a weak defined symbol in a dynamic object, and we know
2535 the real definition in the dynamic object, copy interesting flags
2536 over to the real definition. */
2537 if (h->u.weakdef != NULL)
2538 {
2539 struct elf_link_hash_entry *weakdef;
2540
2541 weakdef = h->u.weakdef;
2542 if (h->root.type == bfd_link_hash_indirect)
2543 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2544
2545 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2546 || h->root.type == bfd_link_hash_defweak);
2547 BFD_ASSERT (weakdef->def_dynamic);
2548
2549 /* If the real definition is defined by a regular object file,
2550 don't do anything special. See the longer description in
2551 _bfd_elf_adjust_dynamic_symbol, below. */
2552 if (weakdef->def_regular)
2553 h->u.weakdef = NULL;
2554 else
2555 {
2556 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2557 || weakdef->root.type == bfd_link_hash_defweak);
2558 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2559 }
2560 }
2561
2562 return TRUE;
2563 }
2564
2565 /* Make the backend pick a good value for a dynamic symbol. This is
2566 called via elf_link_hash_traverse, and also calls itself
2567 recursively. */
2568
2569 static bfd_boolean
2570 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2571 {
2572 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2573 bfd *dynobj;
2574 const struct elf_backend_data *bed;
2575
2576 if (! is_elf_hash_table (eif->info->hash))
2577 return FALSE;
2578
2579 if (h->root.type == bfd_link_hash_warning)
2580 {
2581 h->got = elf_hash_table (eif->info)->init_got_offset;
2582 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2583
2584 /* When warning symbols are created, they **replace** the "real"
2585 entry in the hash table, thus we never get to see the real
2586 symbol in a hash traversal. So look at it now. */
2587 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2588 }
2589
2590 /* Ignore indirect symbols. These are added by the versioning code. */
2591 if (h->root.type == bfd_link_hash_indirect)
2592 return TRUE;
2593
2594 /* Fix the symbol flags. */
2595 if (! _bfd_elf_fix_symbol_flags (h, eif))
2596 return FALSE;
2597
2598 /* If this symbol does not require a PLT entry, and it is not
2599 defined by a dynamic object, or is not referenced by a regular
2600 object, ignore it. We do have to handle a weak defined symbol,
2601 even if no regular object refers to it, if we decided to add it
2602 to the dynamic symbol table. FIXME: Do we normally need to worry
2603 about symbols which are defined by one dynamic object and
2604 referenced by another one? */
2605 if (!h->needs_plt
2606 && h->type != STT_GNU_IFUNC
2607 && (h->def_regular
2608 || !h->def_dynamic
2609 || (!h->ref_regular
2610 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2611 {
2612 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2613 return TRUE;
2614 }
2615
2616 /* If we've already adjusted this symbol, don't do it again. This
2617 can happen via a recursive call. */
2618 if (h->dynamic_adjusted)
2619 return TRUE;
2620
2621 /* Don't look at this symbol again. Note that we must set this
2622 after checking the above conditions, because we may look at a
2623 symbol once, decide not to do anything, and then get called
2624 recursively later after REF_REGULAR is set below. */
2625 h->dynamic_adjusted = 1;
2626
2627 /* If this is a weak definition, and we know a real definition, and
2628 the real symbol is not itself defined by a regular object file,
2629 then get a good value for the real definition. We handle the
2630 real symbol first, for the convenience of the backend routine.
2631
2632 Note that there is a confusing case here. If the real definition
2633 is defined by a regular object file, we don't get the real symbol
2634 from the dynamic object, but we do get the weak symbol. If the
2635 processor backend uses a COPY reloc, then if some routine in the
2636 dynamic object changes the real symbol, we will not see that
2637 change in the corresponding weak symbol. This is the way other
2638 ELF linkers work as well, and seems to be a result of the shared
2639 library model.
2640
2641 I will clarify this issue. Most SVR4 shared libraries define the
2642 variable _timezone and define timezone as a weak synonym. The
2643 tzset call changes _timezone. If you write
2644 extern int timezone;
2645 int _timezone = 5;
2646 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2647 you might expect that, since timezone is a synonym for _timezone,
2648 the same number will print both times. However, if the processor
2649 backend uses a COPY reloc, then actually timezone will be copied
2650 into your process image, and, since you define _timezone
2651 yourself, _timezone will not. Thus timezone and _timezone will
2652 wind up at different memory locations. The tzset call will set
2653 _timezone, leaving timezone unchanged. */
2654
2655 if (h->u.weakdef != NULL)
2656 {
2657 /* If we get to this point, we know there is an implicit
2658 reference by a regular object file via the weak symbol H.
2659 FIXME: Is this really true? What if the traversal finds
2660 H->U.WEAKDEF before it finds H? */
2661 h->u.weakdef->ref_regular = 1;
2662
2663 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2664 return FALSE;
2665 }
2666
2667 /* If a symbol has no type and no size and does not require a PLT
2668 entry, then we are probably about to do the wrong thing here: we
2669 are probably going to create a COPY reloc for an empty object.
2670 This case can arise when a shared object is built with assembly
2671 code, and the assembly code fails to set the symbol type. */
2672 if (h->size == 0
2673 && h->type == STT_NOTYPE
2674 && !h->needs_plt)
2675 (*_bfd_error_handler)
2676 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2677 h->root.root.string);
2678
2679 dynobj = elf_hash_table (eif->info)->dynobj;
2680 bed = get_elf_backend_data (dynobj);
2681
2682 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2683 {
2684 eif->failed = TRUE;
2685 return FALSE;
2686 }
2687
2688 return TRUE;
2689 }
2690
2691 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2692 DYNBSS. */
2693
2694 bfd_boolean
2695 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2696 asection *dynbss)
2697 {
2698 unsigned int power_of_two;
2699 bfd_vma mask;
2700 asection *sec = h->root.u.def.section;
2701
2702 /* The section aligment of definition is the maximum alignment
2703 requirement of symbols defined in the section. Since we don't
2704 know the symbol alignment requirement, we start with the
2705 maximum alignment and check low bits of the symbol address
2706 for the minimum alignment. */
2707 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2708 mask = ((bfd_vma) 1 << power_of_two) - 1;
2709 while ((h->root.u.def.value & mask) != 0)
2710 {
2711 mask >>= 1;
2712 --power_of_two;
2713 }
2714
2715 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2716 dynbss))
2717 {
2718 /* Adjust the section alignment if needed. */
2719 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2720 power_of_two))
2721 return FALSE;
2722 }
2723
2724 /* We make sure that the symbol will be aligned properly. */
2725 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2726
2727 /* Define the symbol as being at this point in DYNBSS. */
2728 h->root.u.def.section = dynbss;
2729 h->root.u.def.value = dynbss->size;
2730
2731 /* Increment the size of DYNBSS to make room for the symbol. */
2732 dynbss->size += h->size;
2733
2734 return TRUE;
2735 }
2736
2737 /* Adjust all external symbols pointing into SEC_MERGE sections
2738 to reflect the object merging within the sections. */
2739
2740 static bfd_boolean
2741 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2742 {
2743 asection *sec;
2744
2745 if (h->root.type == bfd_link_hash_warning)
2746 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2747
2748 if ((h->root.type == bfd_link_hash_defined
2749 || h->root.type == bfd_link_hash_defweak)
2750 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2751 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2752 {
2753 bfd *output_bfd = (bfd *) data;
2754
2755 h->root.u.def.value =
2756 _bfd_merged_section_offset (output_bfd,
2757 &h->root.u.def.section,
2758 elf_section_data (sec)->sec_info,
2759 h->root.u.def.value);
2760 }
2761
2762 return TRUE;
2763 }
2764
2765 /* Returns false if the symbol referred to by H should be considered
2766 to resolve local to the current module, and true if it should be
2767 considered to bind dynamically. */
2768
2769 bfd_boolean
2770 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2771 struct bfd_link_info *info,
2772 bfd_boolean ignore_protected)
2773 {
2774 bfd_boolean binding_stays_local_p;
2775 const struct elf_backend_data *bed;
2776 struct elf_link_hash_table *hash_table;
2777
2778 if (h == NULL)
2779 return FALSE;
2780
2781 while (h->root.type == bfd_link_hash_indirect
2782 || h->root.type == bfd_link_hash_warning)
2783 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2784
2785 /* If it was forced local, then clearly it's not dynamic. */
2786 if (h->dynindx == -1)
2787 return FALSE;
2788 if (h->forced_local)
2789 return FALSE;
2790
2791 /* Identify the cases where name binding rules say that a
2792 visible symbol resolves locally. */
2793 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2794
2795 switch (ELF_ST_VISIBILITY (h->other))
2796 {
2797 case STV_INTERNAL:
2798 case STV_HIDDEN:
2799 return FALSE;
2800
2801 case STV_PROTECTED:
2802 hash_table = elf_hash_table (info);
2803 if (!is_elf_hash_table (hash_table))
2804 return FALSE;
2805
2806 bed = get_elf_backend_data (hash_table->dynobj);
2807
2808 /* Proper resolution for function pointer equality may require
2809 that these symbols perhaps be resolved dynamically, even though
2810 we should be resolving them to the current module. */
2811 if (!ignore_protected || !bed->is_function_type (h->type))
2812 binding_stays_local_p = TRUE;
2813 break;
2814
2815 default:
2816 break;
2817 }
2818
2819 /* If it isn't defined locally, then clearly it's dynamic. */
2820 if (!h->def_regular)
2821 return TRUE;
2822
2823 /* Otherwise, the symbol is dynamic if binding rules don't tell
2824 us that it remains local. */
2825 return !binding_stays_local_p;
2826 }
2827
2828 /* Return true if the symbol referred to by H should be considered
2829 to resolve local to the current module, and false otherwise. Differs
2830 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2831 undefined symbols and weak symbols. */
2832
2833 bfd_boolean
2834 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2835 struct bfd_link_info *info,
2836 bfd_boolean local_protected)
2837 {
2838 const struct elf_backend_data *bed;
2839 struct elf_link_hash_table *hash_table;
2840
2841 /* If it's a local sym, of course we resolve locally. */
2842 if (h == NULL)
2843 return TRUE;
2844
2845 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2846 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2847 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2848 return TRUE;
2849
2850 /* Common symbols that become definitions don't get the DEF_REGULAR
2851 flag set, so test it first, and don't bail out. */
2852 if (ELF_COMMON_DEF_P (h))
2853 /* Do nothing. */;
2854 /* If we don't have a definition in a regular file, then we can't
2855 resolve locally. The sym is either undefined or dynamic. */
2856 else if (!h->def_regular)
2857 return FALSE;
2858
2859 /* Forced local symbols resolve locally. */
2860 if (h->forced_local)
2861 return TRUE;
2862
2863 /* As do non-dynamic symbols. */
2864 if (h->dynindx == -1)
2865 return TRUE;
2866
2867 /* At this point, we know the symbol is defined and dynamic. In an
2868 executable it must resolve locally, likewise when building symbolic
2869 shared libraries. */
2870 if (info->executable || SYMBOLIC_BIND (info, h))
2871 return TRUE;
2872
2873 /* Now deal with defined dynamic symbols in shared libraries. Ones
2874 with default visibility might not resolve locally. */
2875 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2876 return FALSE;
2877
2878 hash_table = elf_hash_table (info);
2879 if (!is_elf_hash_table (hash_table))
2880 return TRUE;
2881
2882 bed = get_elf_backend_data (hash_table->dynobj);
2883
2884 /* STV_PROTECTED non-function symbols are local. */
2885 if (!bed->is_function_type (h->type))
2886 return TRUE;
2887
2888 /* Function pointer equality tests may require that STV_PROTECTED
2889 symbols be treated as dynamic symbols, even when we know that the
2890 dynamic linker will resolve them locally. */
2891 return local_protected;
2892 }
2893
2894 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2895 aligned. Returns the first TLS output section. */
2896
2897 struct bfd_section *
2898 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2899 {
2900 struct bfd_section *sec, *tls;
2901 unsigned int align = 0;
2902
2903 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2904 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2905 break;
2906 tls = sec;
2907
2908 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2909 if (sec->alignment_power > align)
2910 align = sec->alignment_power;
2911
2912 elf_hash_table (info)->tls_sec = tls;
2913
2914 /* Ensure the alignment of the first section is the largest alignment,
2915 so that the tls segment starts aligned. */
2916 if (tls != NULL)
2917 tls->alignment_power = align;
2918
2919 return tls;
2920 }
2921
2922 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2923 static bfd_boolean
2924 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2925 Elf_Internal_Sym *sym)
2926 {
2927 const struct elf_backend_data *bed;
2928
2929 /* Local symbols do not count, but target specific ones might. */
2930 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2931 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2932 return FALSE;
2933
2934 bed = get_elf_backend_data (abfd);
2935 /* Function symbols do not count. */
2936 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2937 return FALSE;
2938
2939 /* If the section is undefined, then so is the symbol. */
2940 if (sym->st_shndx == SHN_UNDEF)
2941 return FALSE;
2942
2943 /* If the symbol is defined in the common section, then
2944 it is a common definition and so does not count. */
2945 if (bed->common_definition (sym))
2946 return FALSE;
2947
2948 /* If the symbol is in a target specific section then we
2949 must rely upon the backend to tell us what it is. */
2950 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2951 /* FIXME - this function is not coded yet:
2952
2953 return _bfd_is_global_symbol_definition (abfd, sym);
2954
2955 Instead for now assume that the definition is not global,
2956 Even if this is wrong, at least the linker will behave
2957 in the same way that it used to do. */
2958 return FALSE;
2959
2960 return TRUE;
2961 }
2962
2963 /* Search the symbol table of the archive element of the archive ABFD
2964 whose archive map contains a mention of SYMDEF, and determine if
2965 the symbol is defined in this element. */
2966 static bfd_boolean
2967 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2968 {
2969 Elf_Internal_Shdr * hdr;
2970 bfd_size_type symcount;
2971 bfd_size_type extsymcount;
2972 bfd_size_type extsymoff;
2973 Elf_Internal_Sym *isymbuf;
2974 Elf_Internal_Sym *isym;
2975 Elf_Internal_Sym *isymend;
2976 bfd_boolean result;
2977
2978 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2979 if (abfd == NULL)
2980 return FALSE;
2981
2982 if (! bfd_check_format (abfd, bfd_object))
2983 return FALSE;
2984
2985 /* If we have already included the element containing this symbol in the
2986 link then we do not need to include it again. Just claim that any symbol
2987 it contains is not a definition, so that our caller will not decide to
2988 (re)include this element. */
2989 if (abfd->archive_pass)
2990 return FALSE;
2991
2992 /* Select the appropriate symbol table. */
2993 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2994 hdr = &elf_tdata (abfd)->symtab_hdr;
2995 else
2996 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2997
2998 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2999
3000 /* The sh_info field of the symtab header tells us where the
3001 external symbols start. We don't care about the local symbols. */
3002 if (elf_bad_symtab (abfd))
3003 {
3004 extsymcount = symcount;
3005 extsymoff = 0;
3006 }
3007 else
3008 {
3009 extsymcount = symcount - hdr->sh_info;
3010 extsymoff = hdr->sh_info;
3011 }
3012
3013 if (extsymcount == 0)
3014 return FALSE;
3015
3016 /* Read in the symbol table. */
3017 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3018 NULL, NULL, NULL);
3019 if (isymbuf == NULL)
3020 return FALSE;
3021
3022 /* Scan the symbol table looking for SYMDEF. */
3023 result = FALSE;
3024 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3025 {
3026 const char *name;
3027
3028 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3029 isym->st_name);
3030 if (name == NULL)
3031 break;
3032
3033 if (strcmp (name, symdef->name) == 0)
3034 {
3035 result = is_global_data_symbol_definition (abfd, isym);
3036 break;
3037 }
3038 }
3039
3040 free (isymbuf);
3041
3042 return result;
3043 }
3044 \f
3045 /* Add an entry to the .dynamic table. */
3046
3047 bfd_boolean
3048 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3049 bfd_vma tag,
3050 bfd_vma val)
3051 {
3052 struct elf_link_hash_table *hash_table;
3053 const struct elf_backend_data *bed;
3054 asection *s;
3055 bfd_size_type newsize;
3056 bfd_byte *newcontents;
3057 Elf_Internal_Dyn dyn;
3058
3059 hash_table = elf_hash_table (info);
3060 if (! is_elf_hash_table (hash_table))
3061 return FALSE;
3062
3063 bed = get_elf_backend_data (hash_table->dynobj);
3064 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3065 BFD_ASSERT (s != NULL);
3066
3067 newsize = s->size + bed->s->sizeof_dyn;
3068 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3069 if (newcontents == NULL)
3070 return FALSE;
3071
3072 dyn.d_tag = tag;
3073 dyn.d_un.d_val = val;
3074 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3075
3076 s->size = newsize;
3077 s->contents = newcontents;
3078
3079 return TRUE;
3080 }
3081
3082 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3083 otherwise just check whether one already exists. Returns -1 on error,
3084 1 if a DT_NEEDED tag already exists, and 0 on success. */
3085
3086 static int
3087 elf_add_dt_needed_tag (bfd *abfd,
3088 struct bfd_link_info *info,
3089 const char *soname,
3090 bfd_boolean do_it)
3091 {
3092 struct elf_link_hash_table *hash_table;
3093 bfd_size_type oldsize;
3094 bfd_size_type strindex;
3095
3096 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3097 return -1;
3098
3099 hash_table = elf_hash_table (info);
3100 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3101 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3102 if (strindex == (bfd_size_type) -1)
3103 return -1;
3104
3105 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3106 {
3107 asection *sdyn;
3108 const struct elf_backend_data *bed;
3109 bfd_byte *extdyn;
3110
3111 bed = get_elf_backend_data (hash_table->dynobj);
3112 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3113 if (sdyn != NULL)
3114 for (extdyn = sdyn->contents;
3115 extdyn < sdyn->contents + sdyn->size;
3116 extdyn += bed->s->sizeof_dyn)
3117 {
3118 Elf_Internal_Dyn dyn;
3119
3120 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3121 if (dyn.d_tag == DT_NEEDED
3122 && dyn.d_un.d_val == strindex)
3123 {
3124 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3125 return 1;
3126 }
3127 }
3128 }
3129
3130 if (do_it)
3131 {
3132 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3133 return -1;
3134
3135 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3136 return -1;
3137 }
3138 else
3139 /* We were just checking for existence of the tag. */
3140 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3141
3142 return 0;
3143 }
3144
3145 static bfd_boolean
3146 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3147 {
3148 for (; needed != NULL; needed = needed->next)
3149 if (strcmp (soname, needed->name) == 0)
3150 return TRUE;
3151
3152 return FALSE;
3153 }
3154
3155 /* Sort symbol by value and section. */
3156 static int
3157 elf_sort_symbol (const void *arg1, const void *arg2)
3158 {
3159 const struct elf_link_hash_entry *h1;
3160 const struct elf_link_hash_entry *h2;
3161 bfd_signed_vma vdiff;
3162
3163 h1 = *(const struct elf_link_hash_entry **) arg1;
3164 h2 = *(const struct elf_link_hash_entry **) arg2;
3165 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3166 if (vdiff != 0)
3167 return vdiff > 0 ? 1 : -1;
3168 else
3169 {
3170 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3171 if (sdiff != 0)
3172 return sdiff > 0 ? 1 : -1;
3173 }
3174 return 0;
3175 }
3176
3177 /* This function is used to adjust offsets into .dynstr for
3178 dynamic symbols. This is called via elf_link_hash_traverse. */
3179
3180 static bfd_boolean
3181 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3182 {
3183 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3184
3185 if (h->root.type == bfd_link_hash_warning)
3186 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3187
3188 if (h->dynindx != -1)
3189 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3190 return TRUE;
3191 }
3192
3193 /* Assign string offsets in .dynstr, update all structures referencing
3194 them. */
3195
3196 static bfd_boolean
3197 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3198 {
3199 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3200 struct elf_link_local_dynamic_entry *entry;
3201 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3202 bfd *dynobj = hash_table->dynobj;
3203 asection *sdyn;
3204 bfd_size_type size;
3205 const struct elf_backend_data *bed;
3206 bfd_byte *extdyn;
3207
3208 _bfd_elf_strtab_finalize (dynstr);
3209 size = _bfd_elf_strtab_size (dynstr);
3210
3211 bed = get_elf_backend_data (dynobj);
3212 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3213 BFD_ASSERT (sdyn != NULL);
3214
3215 /* Update all .dynamic entries referencing .dynstr strings. */
3216 for (extdyn = sdyn->contents;
3217 extdyn < sdyn->contents + sdyn->size;
3218 extdyn += bed->s->sizeof_dyn)
3219 {
3220 Elf_Internal_Dyn dyn;
3221
3222 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3223 switch (dyn.d_tag)
3224 {
3225 case DT_STRSZ:
3226 dyn.d_un.d_val = size;
3227 break;
3228 case DT_NEEDED:
3229 case DT_SONAME:
3230 case DT_RPATH:
3231 case DT_RUNPATH:
3232 case DT_FILTER:
3233 case DT_AUXILIARY:
3234 case DT_AUDIT:
3235 case DT_DEPAUDIT:
3236 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3237 break;
3238 default:
3239 continue;
3240 }
3241 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3242 }
3243
3244 /* Now update local dynamic symbols. */
3245 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3246 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3247 entry->isym.st_name);
3248
3249 /* And the rest of dynamic symbols. */
3250 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3251
3252 /* Adjust version definitions. */
3253 if (elf_tdata (output_bfd)->cverdefs)
3254 {
3255 asection *s;
3256 bfd_byte *p;
3257 bfd_size_type i;
3258 Elf_Internal_Verdef def;
3259 Elf_Internal_Verdaux defaux;
3260
3261 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3262 p = s->contents;
3263 do
3264 {
3265 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3266 &def);
3267 p += sizeof (Elf_External_Verdef);
3268 if (def.vd_aux != sizeof (Elf_External_Verdef))
3269 continue;
3270 for (i = 0; i < def.vd_cnt; ++i)
3271 {
3272 _bfd_elf_swap_verdaux_in (output_bfd,
3273 (Elf_External_Verdaux *) p, &defaux);
3274 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3275 defaux.vda_name);
3276 _bfd_elf_swap_verdaux_out (output_bfd,
3277 &defaux, (Elf_External_Verdaux *) p);
3278 p += sizeof (Elf_External_Verdaux);
3279 }
3280 }
3281 while (def.vd_next);
3282 }
3283
3284 /* Adjust version references. */
3285 if (elf_tdata (output_bfd)->verref)
3286 {
3287 asection *s;
3288 bfd_byte *p;
3289 bfd_size_type i;
3290 Elf_Internal_Verneed need;
3291 Elf_Internal_Vernaux needaux;
3292
3293 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3294 p = s->contents;
3295 do
3296 {
3297 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3298 &need);
3299 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3300 _bfd_elf_swap_verneed_out (output_bfd, &need,
3301 (Elf_External_Verneed *) p);
3302 p += sizeof (Elf_External_Verneed);
3303 for (i = 0; i < need.vn_cnt; ++i)
3304 {
3305 _bfd_elf_swap_vernaux_in (output_bfd,
3306 (Elf_External_Vernaux *) p, &needaux);
3307 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3308 needaux.vna_name);
3309 _bfd_elf_swap_vernaux_out (output_bfd,
3310 &needaux,
3311 (Elf_External_Vernaux *) p);
3312 p += sizeof (Elf_External_Vernaux);
3313 }
3314 }
3315 while (need.vn_next);
3316 }
3317
3318 return TRUE;
3319 }
3320 \f
3321 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3322 The default is to only match when the INPUT and OUTPUT are exactly
3323 the same target. */
3324
3325 bfd_boolean
3326 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3327 const bfd_target *output)
3328 {
3329 return input == output;
3330 }
3331
3332 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3333 This version is used when different targets for the same architecture
3334 are virtually identical. */
3335
3336 bfd_boolean
3337 _bfd_elf_relocs_compatible (const bfd_target *input,
3338 const bfd_target *output)
3339 {
3340 const struct elf_backend_data *obed, *ibed;
3341
3342 if (input == output)
3343 return TRUE;
3344
3345 ibed = xvec_get_elf_backend_data (input);
3346 obed = xvec_get_elf_backend_data (output);
3347
3348 if (ibed->arch != obed->arch)
3349 return FALSE;
3350
3351 /* If both backends are using this function, deem them compatible. */
3352 return ibed->relocs_compatible == obed->relocs_compatible;
3353 }
3354
3355 /* Add symbols from an ELF object file to the linker hash table. */
3356
3357 static bfd_boolean
3358 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3359 {
3360 Elf_Internal_Ehdr *ehdr;
3361 Elf_Internal_Shdr *hdr;
3362 bfd_size_type symcount;
3363 bfd_size_type extsymcount;
3364 bfd_size_type extsymoff;
3365 struct elf_link_hash_entry **sym_hash;
3366 bfd_boolean dynamic;
3367 Elf_External_Versym *extversym = NULL;
3368 Elf_External_Versym *ever;
3369 struct elf_link_hash_entry *weaks;
3370 struct elf_link_hash_entry **nondeflt_vers = NULL;
3371 bfd_size_type nondeflt_vers_cnt = 0;
3372 Elf_Internal_Sym *isymbuf = NULL;
3373 Elf_Internal_Sym *isym;
3374 Elf_Internal_Sym *isymend;
3375 const struct elf_backend_data *bed;
3376 bfd_boolean add_needed;
3377 struct elf_link_hash_table *htab;
3378 bfd_size_type amt;
3379 void *alloc_mark = NULL;
3380 struct bfd_hash_entry **old_table = NULL;
3381 unsigned int old_size = 0;
3382 unsigned int old_count = 0;
3383 void *old_tab = NULL;
3384 void *old_hash;
3385 void *old_ent;
3386 struct bfd_link_hash_entry *old_undefs = NULL;
3387 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3388 long old_dynsymcount = 0;
3389 size_t tabsize = 0;
3390 size_t hashsize = 0;
3391
3392 htab = elf_hash_table (info);
3393 bed = get_elf_backend_data (abfd);
3394
3395 if ((abfd->flags & DYNAMIC) == 0)
3396 dynamic = FALSE;
3397 else
3398 {
3399 dynamic = TRUE;
3400
3401 /* You can't use -r against a dynamic object. Also, there's no
3402 hope of using a dynamic object which does not exactly match
3403 the format of the output file. */
3404 if (info->relocatable
3405 || !is_elf_hash_table (htab)
3406 || info->output_bfd->xvec != abfd->xvec)
3407 {
3408 if (info->relocatable)
3409 bfd_set_error (bfd_error_invalid_operation);
3410 else
3411 bfd_set_error (bfd_error_wrong_format);
3412 goto error_return;
3413 }
3414 }
3415
3416 ehdr = elf_elfheader (abfd);
3417 if (info->warn_alternate_em
3418 && bed->elf_machine_code != ehdr->e_machine
3419 && ((bed->elf_machine_alt1 != 0
3420 && ehdr->e_machine == bed->elf_machine_alt1)
3421 || (bed->elf_machine_alt2 != 0
3422 && ehdr->e_machine == bed->elf_machine_alt2)))
3423 info->callbacks->einfo
3424 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3425 ehdr->e_machine, abfd, bed->elf_machine_code);
3426
3427 /* As a GNU extension, any input sections which are named
3428 .gnu.warning.SYMBOL are treated as warning symbols for the given
3429 symbol. This differs from .gnu.warning sections, which generate
3430 warnings when they are included in an output file. */
3431 if (info->executable)
3432 {
3433 asection *s;
3434
3435 for (s = abfd->sections; s != NULL; s = s->next)
3436 {
3437 const char *name;
3438
3439 name = bfd_get_section_name (abfd, s);
3440 if (CONST_STRNEQ (name, ".gnu.warning."))
3441 {
3442 char *msg;
3443 bfd_size_type sz;
3444
3445 name += sizeof ".gnu.warning." - 1;
3446
3447 /* If this is a shared object, then look up the symbol
3448 in the hash table. If it is there, and it is already
3449 been defined, then we will not be using the entry
3450 from this shared object, so we don't need to warn.
3451 FIXME: If we see the definition in a regular object
3452 later on, we will warn, but we shouldn't. The only
3453 fix is to keep track of what warnings we are supposed
3454 to emit, and then handle them all at the end of the
3455 link. */
3456 if (dynamic)
3457 {
3458 struct elf_link_hash_entry *h;
3459
3460 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3461
3462 /* FIXME: What about bfd_link_hash_common? */
3463 if (h != NULL
3464 && (h->root.type == bfd_link_hash_defined
3465 || h->root.type == bfd_link_hash_defweak))
3466 {
3467 /* We don't want to issue this warning. Clobber
3468 the section size so that the warning does not
3469 get copied into the output file. */
3470 s->size = 0;
3471 continue;
3472 }
3473 }
3474
3475 sz = s->size;
3476 msg = (char *) bfd_alloc (abfd, sz + 1);
3477 if (msg == NULL)
3478 goto error_return;
3479
3480 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3481 goto error_return;
3482
3483 msg[sz] = '\0';
3484
3485 if (! (_bfd_generic_link_add_one_symbol
3486 (info, abfd, name, BSF_WARNING, s, 0, msg,
3487 FALSE, bed->collect, NULL)))
3488 goto error_return;
3489
3490 if (! info->relocatable)
3491 {
3492 /* Clobber the section size so that the warning does
3493 not get copied into the output file. */
3494 s->size = 0;
3495
3496 /* Also set SEC_EXCLUDE, so that symbols defined in
3497 the warning section don't get copied to the output. */
3498 s->flags |= SEC_EXCLUDE;
3499 }
3500 }
3501 }
3502 }
3503
3504 add_needed = TRUE;
3505 if (! dynamic)
3506 {
3507 /* If we are creating a shared library, create all the dynamic
3508 sections immediately. We need to attach them to something,
3509 so we attach them to this BFD, provided it is the right
3510 format. FIXME: If there are no input BFD's of the same
3511 format as the output, we can't make a shared library. */
3512 if (info->shared
3513 && is_elf_hash_table (htab)
3514 && info->output_bfd->xvec == abfd->xvec
3515 && !htab->dynamic_sections_created)
3516 {
3517 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3518 goto error_return;
3519 }
3520 }
3521 else if (!is_elf_hash_table (htab))
3522 goto error_return;
3523 else
3524 {
3525 asection *s;
3526 const char *soname = NULL;
3527 char *audit = NULL;
3528 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3529 int ret;
3530
3531 /* ld --just-symbols and dynamic objects don't mix very well.
3532 ld shouldn't allow it. */
3533 if ((s = abfd->sections) != NULL
3534 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3535 abort ();
3536
3537 /* If this dynamic lib was specified on the command line with
3538 --as-needed in effect, then we don't want to add a DT_NEEDED
3539 tag unless the lib is actually used. Similary for libs brought
3540 in by another lib's DT_NEEDED. When --no-add-needed is used
3541 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3542 any dynamic library in DT_NEEDED tags in the dynamic lib at
3543 all. */
3544 add_needed = (elf_dyn_lib_class (abfd)
3545 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3546 | DYN_NO_NEEDED)) == 0;
3547
3548 s = bfd_get_section_by_name (abfd, ".dynamic");
3549 if (s != NULL)
3550 {
3551 bfd_byte *dynbuf;
3552 bfd_byte *extdyn;
3553 unsigned int elfsec;
3554 unsigned long shlink;
3555
3556 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3557 {
3558 error_free_dyn:
3559 free (dynbuf);
3560 goto error_return;
3561 }
3562
3563 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3564 if (elfsec == SHN_BAD)
3565 goto error_free_dyn;
3566 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3567
3568 for (extdyn = dynbuf;
3569 extdyn < dynbuf + s->size;
3570 extdyn += bed->s->sizeof_dyn)
3571 {
3572 Elf_Internal_Dyn dyn;
3573
3574 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3575 if (dyn.d_tag == DT_SONAME)
3576 {
3577 unsigned int tagv = dyn.d_un.d_val;
3578 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3579 if (soname == NULL)
3580 goto error_free_dyn;
3581 }
3582 if (dyn.d_tag == DT_NEEDED)
3583 {
3584 struct bfd_link_needed_list *n, **pn;
3585 char *fnm, *anm;
3586 unsigned int tagv = dyn.d_un.d_val;
3587
3588 amt = sizeof (struct bfd_link_needed_list);
3589 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3590 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3591 if (n == NULL || fnm == NULL)
3592 goto error_free_dyn;
3593 amt = strlen (fnm) + 1;
3594 anm = (char *) bfd_alloc (abfd, amt);
3595 if (anm == NULL)
3596 goto error_free_dyn;
3597 memcpy (anm, fnm, amt);
3598 n->name = anm;
3599 n->by = abfd;
3600 n->next = NULL;
3601 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3602 ;
3603 *pn = n;
3604 }
3605 if (dyn.d_tag == DT_RUNPATH)
3606 {
3607 struct bfd_link_needed_list *n, **pn;
3608 char *fnm, *anm;
3609 unsigned int tagv = dyn.d_un.d_val;
3610
3611 amt = sizeof (struct bfd_link_needed_list);
3612 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3613 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3614 if (n == NULL || fnm == NULL)
3615 goto error_free_dyn;
3616 amt = strlen (fnm) + 1;
3617 anm = (char *) bfd_alloc (abfd, amt);
3618 if (anm == NULL)
3619 goto error_free_dyn;
3620 memcpy (anm, fnm, amt);
3621 n->name = anm;
3622 n->by = abfd;
3623 n->next = NULL;
3624 for (pn = & runpath;
3625 *pn != NULL;
3626 pn = &(*pn)->next)
3627 ;
3628 *pn = n;
3629 }
3630 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3631 if (!runpath && dyn.d_tag == DT_RPATH)
3632 {
3633 struct bfd_link_needed_list *n, **pn;
3634 char *fnm, *anm;
3635 unsigned int tagv = dyn.d_un.d_val;
3636
3637 amt = sizeof (struct bfd_link_needed_list);
3638 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3639 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3640 if (n == NULL || fnm == NULL)
3641 goto error_free_dyn;
3642 amt = strlen (fnm) + 1;
3643 anm = (char *) bfd_alloc (abfd, amt);
3644 if (anm == NULL)
3645 goto error_free_dyn;
3646 memcpy (anm, fnm, amt);
3647 n->name = anm;
3648 n->by = abfd;
3649 n->next = NULL;
3650 for (pn = & rpath;
3651 *pn != NULL;
3652 pn = &(*pn)->next)
3653 ;
3654 *pn = n;
3655 }
3656 if (dyn.d_tag == DT_AUDIT)
3657 {
3658 unsigned int tagv = dyn.d_un.d_val;
3659 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3660 }
3661 }
3662
3663 free (dynbuf);
3664 }
3665
3666 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3667 frees all more recently bfd_alloc'd blocks as well. */
3668 if (runpath)
3669 rpath = runpath;
3670
3671 if (rpath)
3672 {
3673 struct bfd_link_needed_list **pn;
3674 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3675 ;
3676 *pn = rpath;
3677 }
3678
3679 /* We do not want to include any of the sections in a dynamic
3680 object in the output file. We hack by simply clobbering the
3681 list of sections in the BFD. This could be handled more
3682 cleanly by, say, a new section flag; the existing
3683 SEC_NEVER_LOAD flag is not the one we want, because that one
3684 still implies that the section takes up space in the output
3685 file. */
3686 bfd_section_list_clear (abfd);
3687
3688 /* Find the name to use in a DT_NEEDED entry that refers to this
3689 object. If the object has a DT_SONAME entry, we use it.
3690 Otherwise, if the generic linker stuck something in
3691 elf_dt_name, we use that. Otherwise, we just use the file
3692 name. */
3693 if (soname == NULL || *soname == '\0')
3694 {
3695 soname = elf_dt_name (abfd);
3696 if (soname == NULL || *soname == '\0')
3697 soname = bfd_get_filename (abfd);
3698 }
3699
3700 /* Save the SONAME because sometimes the linker emulation code
3701 will need to know it. */
3702 elf_dt_name (abfd) = soname;
3703
3704 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3705 if (ret < 0)
3706 goto error_return;
3707
3708 /* If we have already included this dynamic object in the
3709 link, just ignore it. There is no reason to include a
3710 particular dynamic object more than once. */
3711 if (ret > 0)
3712 return TRUE;
3713
3714 /* Save the DT_AUDIT entry for the linker emulation code. */
3715 elf_dt_audit (abfd) = audit;
3716 }
3717
3718 /* If this is a dynamic object, we always link against the .dynsym
3719 symbol table, not the .symtab symbol table. The dynamic linker
3720 will only see the .dynsym symbol table, so there is no reason to
3721 look at .symtab for a dynamic object. */
3722
3723 if (! dynamic || elf_dynsymtab (abfd) == 0)
3724 hdr = &elf_tdata (abfd)->symtab_hdr;
3725 else
3726 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3727
3728 symcount = hdr->sh_size / bed->s->sizeof_sym;
3729
3730 /* The sh_info field of the symtab header tells us where the
3731 external symbols start. We don't care about the local symbols at
3732 this point. */
3733 if (elf_bad_symtab (abfd))
3734 {
3735 extsymcount = symcount;
3736 extsymoff = 0;
3737 }
3738 else
3739 {
3740 extsymcount = symcount - hdr->sh_info;
3741 extsymoff = hdr->sh_info;
3742 }
3743
3744 sym_hash = NULL;
3745 if (extsymcount != 0)
3746 {
3747 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3748 NULL, NULL, NULL);
3749 if (isymbuf == NULL)
3750 goto error_return;
3751
3752 /* We store a pointer to the hash table entry for each external
3753 symbol. */
3754 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3755 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3756 if (sym_hash == NULL)
3757 goto error_free_sym;
3758 elf_sym_hashes (abfd) = sym_hash;
3759 }
3760
3761 if (dynamic)
3762 {
3763 /* Read in any version definitions. */
3764 if (!_bfd_elf_slurp_version_tables (abfd,
3765 info->default_imported_symver))
3766 goto error_free_sym;
3767
3768 /* Read in the symbol versions, but don't bother to convert them
3769 to internal format. */
3770 if (elf_dynversym (abfd) != 0)
3771 {
3772 Elf_Internal_Shdr *versymhdr;
3773
3774 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3775 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3776 if (extversym == NULL)
3777 goto error_free_sym;
3778 amt = versymhdr->sh_size;
3779 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3780 || bfd_bread (extversym, amt, abfd) != amt)
3781 goto error_free_vers;
3782 }
3783 }
3784
3785 /* If we are loading an as-needed shared lib, save the symbol table
3786 state before we start adding symbols. If the lib turns out
3787 to be unneeded, restore the state. */
3788 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3789 {
3790 unsigned int i;
3791 size_t entsize;
3792
3793 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3794 {
3795 struct bfd_hash_entry *p;
3796 struct elf_link_hash_entry *h;
3797
3798 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3799 {
3800 h = (struct elf_link_hash_entry *) p;
3801 entsize += htab->root.table.entsize;
3802 if (h->root.type == bfd_link_hash_warning)
3803 entsize += htab->root.table.entsize;
3804 }
3805 }
3806
3807 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3808 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3809 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3810 if (old_tab == NULL)
3811 goto error_free_vers;
3812
3813 /* Remember the current objalloc pointer, so that all mem for
3814 symbols added can later be reclaimed. */
3815 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3816 if (alloc_mark == NULL)
3817 goto error_free_vers;
3818
3819 /* Make a special call to the linker "notice" function to
3820 tell it that we are about to handle an as-needed lib. */
3821 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3822 notice_as_needed))
3823 goto error_free_vers;
3824
3825 /* Clone the symbol table and sym hashes. Remember some
3826 pointers into the symbol table, and dynamic symbol count. */
3827 old_hash = (char *) old_tab + tabsize;
3828 old_ent = (char *) old_hash + hashsize;
3829 memcpy (old_tab, htab->root.table.table, tabsize);
3830 memcpy (old_hash, sym_hash, hashsize);
3831 old_undefs = htab->root.undefs;
3832 old_undefs_tail = htab->root.undefs_tail;
3833 old_table = htab->root.table.table;
3834 old_size = htab->root.table.size;
3835 old_count = htab->root.table.count;
3836 old_dynsymcount = htab->dynsymcount;
3837
3838 for (i = 0; i < htab->root.table.size; i++)
3839 {
3840 struct bfd_hash_entry *p;
3841 struct elf_link_hash_entry *h;
3842
3843 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3844 {
3845 memcpy (old_ent, p, htab->root.table.entsize);
3846 old_ent = (char *) old_ent + htab->root.table.entsize;
3847 h = (struct elf_link_hash_entry *) p;
3848 if (h->root.type == bfd_link_hash_warning)
3849 {
3850 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3851 old_ent = (char *) old_ent + htab->root.table.entsize;
3852 }
3853 }
3854 }
3855 }
3856
3857 weaks = NULL;
3858 ever = extversym != NULL ? extversym + extsymoff : NULL;
3859 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3860 isym < isymend;
3861 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3862 {
3863 int bind;
3864 bfd_vma value;
3865 asection *sec, *new_sec;
3866 flagword flags;
3867 const char *name;
3868 struct elf_link_hash_entry *h;
3869 bfd_boolean definition;
3870 bfd_boolean size_change_ok;
3871 bfd_boolean type_change_ok;
3872 bfd_boolean new_weakdef;
3873 bfd_boolean override;
3874 bfd_boolean common;
3875 unsigned int old_alignment;
3876 bfd *old_bfd;
3877 bfd * undef_bfd = NULL;
3878
3879 override = FALSE;
3880
3881 flags = BSF_NO_FLAGS;
3882 sec = NULL;
3883 value = isym->st_value;
3884 *sym_hash = NULL;
3885 common = bed->common_definition (isym);
3886
3887 bind = ELF_ST_BIND (isym->st_info);
3888 switch (bind)
3889 {
3890 case STB_LOCAL:
3891 /* This should be impossible, since ELF requires that all
3892 global symbols follow all local symbols, and that sh_info
3893 point to the first global symbol. Unfortunately, Irix 5
3894 screws this up. */
3895 continue;
3896
3897 case STB_GLOBAL:
3898 if (isym->st_shndx != SHN_UNDEF && !common)
3899 flags = BSF_GLOBAL;
3900 break;
3901
3902 case STB_WEAK:
3903 flags = BSF_WEAK;
3904 break;
3905
3906 case STB_GNU_UNIQUE:
3907 flags = BSF_GNU_UNIQUE;
3908 break;
3909
3910 default:
3911 /* Leave it up to the processor backend. */
3912 break;
3913 }
3914
3915 if (isym->st_shndx == SHN_UNDEF)
3916 sec = bfd_und_section_ptr;
3917 else if (isym->st_shndx == SHN_ABS)
3918 sec = bfd_abs_section_ptr;
3919 else if (isym->st_shndx == SHN_COMMON)
3920 {
3921 sec = bfd_com_section_ptr;
3922 /* What ELF calls the size we call the value. What ELF
3923 calls the value we call the alignment. */
3924 value = isym->st_size;
3925 }
3926 else
3927 {
3928 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3929 if (sec == NULL)
3930 sec = bfd_abs_section_ptr;
3931 else if (sec->kept_section)
3932 {
3933 /* Symbols from discarded section are undefined. We keep
3934 its visibility. */
3935 sec = bfd_und_section_ptr;
3936 isym->st_shndx = SHN_UNDEF;
3937 }
3938 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3939 value -= sec->vma;
3940 }
3941
3942 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3943 isym->st_name);
3944 if (name == NULL)
3945 goto error_free_vers;
3946
3947 if (isym->st_shndx == SHN_COMMON
3948 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3949 && !info->relocatable)
3950 {
3951 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3952
3953 if (tcomm == NULL)
3954 {
3955 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3956 (SEC_ALLOC
3957 | SEC_IS_COMMON
3958 | SEC_LINKER_CREATED
3959 | SEC_THREAD_LOCAL));
3960 if (tcomm == NULL)
3961 goto error_free_vers;
3962 }
3963 sec = tcomm;
3964 }
3965 else if (bed->elf_add_symbol_hook)
3966 {
3967 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3968 &sec, &value))
3969 goto error_free_vers;
3970
3971 /* The hook function sets the name to NULL if this symbol
3972 should be skipped for some reason. */
3973 if (name == NULL)
3974 continue;
3975 }
3976
3977 /* Sanity check that all possibilities were handled. */
3978 if (sec == NULL)
3979 {
3980 bfd_set_error (bfd_error_bad_value);
3981 goto error_free_vers;
3982 }
3983
3984 if (bfd_is_und_section (sec)
3985 || bfd_is_com_section (sec))
3986 definition = FALSE;
3987 else
3988 definition = TRUE;
3989
3990 size_change_ok = FALSE;
3991 type_change_ok = bed->type_change_ok;
3992 old_alignment = 0;
3993 old_bfd = NULL;
3994 new_sec = sec;
3995
3996 if (is_elf_hash_table (htab))
3997 {
3998 Elf_Internal_Versym iver;
3999 unsigned int vernum = 0;
4000 bfd_boolean skip;
4001
4002 /* If this is a definition of a symbol which was previously
4003 referenced in a non-weak manner then make a note of the bfd
4004 that contained the reference. This is used if we need to
4005 refer to the source of the reference later on. */
4006 if (! bfd_is_und_section (sec))
4007 {
4008 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4009
4010 if (h != NULL
4011 && h->root.type == bfd_link_hash_undefined
4012 && h->root.u.undef.abfd)
4013 undef_bfd = h->root.u.undef.abfd;
4014 }
4015
4016 if (ever == NULL)
4017 {
4018 if (info->default_imported_symver)
4019 /* Use the default symbol version created earlier. */
4020 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4021 else
4022 iver.vs_vers = 0;
4023 }
4024 else
4025 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4026
4027 vernum = iver.vs_vers & VERSYM_VERSION;
4028
4029 /* If this is a hidden symbol, or if it is not version
4030 1, we append the version name to the symbol name.
4031 However, we do not modify a non-hidden absolute symbol
4032 if it is not a function, because it might be the version
4033 symbol itself. FIXME: What if it isn't? */
4034 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4035 || (vernum > 1
4036 && (!bfd_is_abs_section (sec)
4037 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4038 {
4039 const char *verstr;
4040 size_t namelen, verlen, newlen;
4041 char *newname, *p;
4042
4043 if (isym->st_shndx != SHN_UNDEF)
4044 {
4045 if (vernum > elf_tdata (abfd)->cverdefs)
4046 verstr = NULL;
4047 else if (vernum > 1)
4048 verstr =
4049 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4050 else
4051 verstr = "";
4052
4053 if (verstr == NULL)
4054 {
4055 (*_bfd_error_handler)
4056 (_("%B: %s: invalid version %u (max %d)"),
4057 abfd, name, vernum,
4058 elf_tdata (abfd)->cverdefs);
4059 bfd_set_error (bfd_error_bad_value);
4060 goto error_free_vers;
4061 }
4062 }
4063 else
4064 {
4065 /* We cannot simply test for the number of
4066 entries in the VERNEED section since the
4067 numbers for the needed versions do not start
4068 at 0. */
4069 Elf_Internal_Verneed *t;
4070
4071 verstr = NULL;
4072 for (t = elf_tdata (abfd)->verref;
4073 t != NULL;
4074 t = t->vn_nextref)
4075 {
4076 Elf_Internal_Vernaux *a;
4077
4078 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4079 {
4080 if (a->vna_other == vernum)
4081 {
4082 verstr = a->vna_nodename;
4083 break;
4084 }
4085 }
4086 if (a != NULL)
4087 break;
4088 }
4089 if (verstr == NULL)
4090 {
4091 (*_bfd_error_handler)
4092 (_("%B: %s: invalid needed version %d"),
4093 abfd, name, vernum);
4094 bfd_set_error (bfd_error_bad_value);
4095 goto error_free_vers;
4096 }
4097 }
4098
4099 namelen = strlen (name);
4100 verlen = strlen (verstr);
4101 newlen = namelen + verlen + 2;
4102 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4103 && isym->st_shndx != SHN_UNDEF)
4104 ++newlen;
4105
4106 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4107 if (newname == NULL)
4108 goto error_free_vers;
4109 memcpy (newname, name, namelen);
4110 p = newname + namelen;
4111 *p++ = ELF_VER_CHR;
4112 /* If this is a defined non-hidden version symbol,
4113 we add another @ to the name. This indicates the
4114 default version of the symbol. */
4115 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4116 && isym->st_shndx != SHN_UNDEF)
4117 *p++ = ELF_VER_CHR;
4118 memcpy (p, verstr, verlen + 1);
4119
4120 name = newname;
4121 }
4122
4123 /* If necessary, make a second attempt to locate the bfd
4124 containing an unresolved, non-weak reference to the
4125 current symbol. */
4126 if (! bfd_is_und_section (sec) && undef_bfd == NULL)
4127 {
4128 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4129
4130 if (h != NULL
4131 && h->root.type == bfd_link_hash_undefined
4132 && h->root.u.undef.abfd)
4133 undef_bfd = h->root.u.undef.abfd;
4134 }
4135
4136 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4137 &value, &old_alignment,
4138 sym_hash, &skip, &override,
4139 &type_change_ok, &size_change_ok))
4140 goto error_free_vers;
4141
4142 if (skip)
4143 continue;
4144
4145 if (override)
4146 definition = FALSE;
4147
4148 h = *sym_hash;
4149 while (h->root.type == bfd_link_hash_indirect
4150 || h->root.type == bfd_link_hash_warning)
4151 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4152
4153 /* Remember the old alignment if this is a common symbol, so
4154 that we don't reduce the alignment later on. We can't
4155 check later, because _bfd_generic_link_add_one_symbol
4156 will set a default for the alignment which we want to
4157 override. We also remember the old bfd where the existing
4158 definition comes from. */
4159 switch (h->root.type)
4160 {
4161 default:
4162 break;
4163
4164 case bfd_link_hash_defined:
4165 case bfd_link_hash_defweak:
4166 old_bfd = h->root.u.def.section->owner;
4167 break;
4168
4169 case bfd_link_hash_common:
4170 old_bfd = h->root.u.c.p->section->owner;
4171 old_alignment = h->root.u.c.p->alignment_power;
4172 break;
4173 }
4174
4175 if (elf_tdata (abfd)->verdef != NULL
4176 && ! override
4177 && vernum > 1
4178 && definition)
4179 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4180 }
4181
4182 if (! (_bfd_generic_link_add_one_symbol
4183 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4184 (struct bfd_link_hash_entry **) sym_hash)))
4185 goto error_free_vers;
4186
4187 h = *sym_hash;
4188 while (h->root.type == bfd_link_hash_indirect
4189 || h->root.type == bfd_link_hash_warning)
4190 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4191
4192 *sym_hash = h;
4193 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4194
4195 new_weakdef = FALSE;
4196 if (dynamic
4197 && definition
4198 && (flags & BSF_WEAK) != 0
4199 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4200 && is_elf_hash_table (htab)
4201 && h->u.weakdef == NULL)
4202 {
4203 /* Keep a list of all weak defined non function symbols from
4204 a dynamic object, using the weakdef field. Later in this
4205 function we will set the weakdef field to the correct
4206 value. We only put non-function symbols from dynamic
4207 objects on this list, because that happens to be the only
4208 time we need to know the normal symbol corresponding to a
4209 weak symbol, and the information is time consuming to
4210 figure out. If the weakdef field is not already NULL,
4211 then this symbol was already defined by some previous
4212 dynamic object, and we will be using that previous
4213 definition anyhow. */
4214
4215 h->u.weakdef = weaks;
4216 weaks = h;
4217 new_weakdef = TRUE;
4218 }
4219
4220 /* Set the alignment of a common symbol. */
4221 if ((common || bfd_is_com_section (sec))
4222 && h->root.type == bfd_link_hash_common)
4223 {
4224 unsigned int align;
4225
4226 if (common)
4227 align = bfd_log2 (isym->st_value);
4228 else
4229 {
4230 /* The new symbol is a common symbol in a shared object.
4231 We need to get the alignment from the section. */
4232 align = new_sec->alignment_power;
4233 }
4234 if (align > old_alignment
4235 /* Permit an alignment power of zero if an alignment of one
4236 is specified and no other alignments have been specified. */
4237 || (isym->st_value == 1 && old_alignment == 0))
4238 h->root.u.c.p->alignment_power = align;
4239 else
4240 h->root.u.c.p->alignment_power = old_alignment;
4241 }
4242
4243 if (is_elf_hash_table (htab))
4244 {
4245 bfd_boolean dynsym;
4246
4247 /* Check the alignment when a common symbol is involved. This
4248 can change when a common symbol is overridden by a normal
4249 definition or a common symbol is ignored due to the old
4250 normal definition. We need to make sure the maximum
4251 alignment is maintained. */
4252 if ((old_alignment || common)
4253 && h->root.type != bfd_link_hash_common)
4254 {
4255 unsigned int common_align;
4256 unsigned int normal_align;
4257 unsigned int symbol_align;
4258 bfd *normal_bfd;
4259 bfd *common_bfd;
4260
4261 symbol_align = ffs (h->root.u.def.value) - 1;
4262 if (h->root.u.def.section->owner != NULL
4263 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4264 {
4265 normal_align = h->root.u.def.section->alignment_power;
4266 if (normal_align > symbol_align)
4267 normal_align = symbol_align;
4268 }
4269 else
4270 normal_align = symbol_align;
4271
4272 if (old_alignment)
4273 {
4274 common_align = old_alignment;
4275 common_bfd = old_bfd;
4276 normal_bfd = abfd;
4277 }
4278 else
4279 {
4280 common_align = bfd_log2 (isym->st_value);
4281 common_bfd = abfd;
4282 normal_bfd = old_bfd;
4283 }
4284
4285 if (normal_align < common_align)
4286 {
4287 /* PR binutils/2735 */
4288 if (normal_bfd == NULL)
4289 (*_bfd_error_handler)
4290 (_("Warning: alignment %u of common symbol `%s' in %B"
4291 " is greater than the alignment (%u) of its section %A"),
4292 common_bfd, h->root.u.def.section,
4293 1 << common_align, name, 1 << normal_align);
4294 else
4295 (*_bfd_error_handler)
4296 (_("Warning: alignment %u of symbol `%s' in %B"
4297 " is smaller than %u in %B"),
4298 normal_bfd, common_bfd,
4299 1 << normal_align, name, 1 << common_align);
4300 }
4301 }
4302
4303 /* Remember the symbol size if it isn't undefined. */
4304 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4305 && (definition || h->size == 0))
4306 {
4307 if (h->size != 0
4308 && h->size != isym->st_size
4309 && ! size_change_ok)
4310 (*_bfd_error_handler)
4311 (_("Warning: size of symbol `%s' changed"
4312 " from %lu in %B to %lu in %B"),
4313 old_bfd, abfd,
4314 name, (unsigned long) h->size,
4315 (unsigned long) isym->st_size);
4316
4317 h->size = isym->st_size;
4318 }
4319
4320 /* If this is a common symbol, then we always want H->SIZE
4321 to be the size of the common symbol. The code just above
4322 won't fix the size if a common symbol becomes larger. We
4323 don't warn about a size change here, because that is
4324 covered by --warn-common. Allow changed between different
4325 function types. */
4326 if (h->root.type == bfd_link_hash_common)
4327 h->size = h->root.u.c.size;
4328
4329 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4330 && (definition || h->type == STT_NOTYPE))
4331 {
4332 unsigned int type = ELF_ST_TYPE (isym->st_info);
4333
4334 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4335 symbol. */
4336 if (type == STT_GNU_IFUNC
4337 && (abfd->flags & DYNAMIC) != 0)
4338 type = STT_FUNC;
4339
4340 if (h->type != type)
4341 {
4342 if (h->type != STT_NOTYPE && ! type_change_ok)
4343 (*_bfd_error_handler)
4344 (_("Warning: type of symbol `%s' changed"
4345 " from %d to %d in %B"),
4346 abfd, name, h->type, type);
4347
4348 h->type = type;
4349 }
4350 }
4351
4352 /* Merge st_other field. */
4353 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4354
4355 /* Set a flag in the hash table entry indicating the type of
4356 reference or definition we just found. Keep a count of
4357 the number of dynamic symbols we find. A dynamic symbol
4358 is one which is referenced or defined by both a regular
4359 object and a shared object. */
4360 dynsym = FALSE;
4361 if (! dynamic)
4362 {
4363 if (! definition)
4364 {
4365 h->ref_regular = 1;
4366 if (bind != STB_WEAK)
4367 h->ref_regular_nonweak = 1;
4368 }
4369 else
4370 {
4371 h->def_regular = 1;
4372 if (h->def_dynamic)
4373 {
4374 h->def_dynamic = 0;
4375 h->ref_dynamic = 1;
4376 h->dynamic_def = 1;
4377 }
4378 }
4379 if (! info->executable
4380 || h->def_dynamic
4381 || h->ref_dynamic)
4382 dynsym = TRUE;
4383 }
4384 else
4385 {
4386 if (! definition)
4387 h->ref_dynamic = 1;
4388 else
4389 h->def_dynamic = 1;
4390 if (h->def_regular
4391 || h->ref_regular
4392 || (h->u.weakdef != NULL
4393 && ! new_weakdef
4394 && h->u.weakdef->dynindx != -1))
4395 dynsym = TRUE;
4396 }
4397
4398 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4399 {
4400 /* We don't want to make debug symbol dynamic. */
4401 dynsym = FALSE;
4402 }
4403
4404 /* Check to see if we need to add an indirect symbol for
4405 the default name. */
4406 if (definition || h->root.type == bfd_link_hash_common)
4407 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4408 &sec, &value, &dynsym,
4409 override))
4410 goto error_free_vers;
4411
4412 if (definition && !dynamic)
4413 {
4414 char *p = strchr (name, ELF_VER_CHR);
4415 if (p != NULL && p[1] != ELF_VER_CHR)
4416 {
4417 /* Queue non-default versions so that .symver x, x@FOO
4418 aliases can be checked. */
4419 if (!nondeflt_vers)
4420 {
4421 amt = ((isymend - isym + 1)
4422 * sizeof (struct elf_link_hash_entry *));
4423 nondeflt_vers =
4424 (struct elf_link_hash_entry **) bfd_malloc (amt);
4425 if (!nondeflt_vers)
4426 goto error_free_vers;
4427 }
4428 nondeflt_vers[nondeflt_vers_cnt++] = h;
4429 }
4430 }
4431
4432 if (dynsym && h->dynindx == -1)
4433 {
4434 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4435 goto error_free_vers;
4436 if (h->u.weakdef != NULL
4437 && ! new_weakdef
4438 && h->u.weakdef->dynindx == -1)
4439 {
4440 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4441 goto error_free_vers;
4442 }
4443 }
4444 else if (dynsym && h->dynindx != -1)
4445 /* If the symbol already has a dynamic index, but
4446 visibility says it should not be visible, turn it into
4447 a local symbol. */
4448 switch (ELF_ST_VISIBILITY (h->other))
4449 {
4450 case STV_INTERNAL:
4451 case STV_HIDDEN:
4452 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4453 dynsym = FALSE;
4454 break;
4455 }
4456
4457 if (!add_needed
4458 && definition
4459 && ((dynsym
4460 && h->ref_regular)
4461 || (h->ref_dynamic
4462 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4463 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4464 {
4465 int ret;
4466 const char *soname = elf_dt_name (abfd);
4467
4468 /* A symbol from a library loaded via DT_NEEDED of some
4469 other library is referenced by a regular object.
4470 Add a DT_NEEDED entry for it. Issue an error if
4471 --no-add-needed is used and the reference was not
4472 a weak one. */
4473 if (undef_bfd != NULL
4474 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4475 {
4476 (*_bfd_error_handler)
4477 (_("%B: undefined reference to symbol '%s'"),
4478 undef_bfd, name);
4479 (*_bfd_error_handler)
4480 (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4481 abfd, name);
4482 bfd_set_error (bfd_error_invalid_operation);
4483 goto error_free_vers;
4484 }
4485
4486 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4487 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4488
4489 add_needed = TRUE;
4490 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4491 if (ret < 0)
4492 goto error_free_vers;
4493
4494 BFD_ASSERT (ret == 0);
4495 }
4496 }
4497 }
4498
4499 if (extversym != NULL)
4500 {
4501 free (extversym);
4502 extversym = NULL;
4503 }
4504
4505 if (isymbuf != NULL)
4506 {
4507 free (isymbuf);
4508 isymbuf = NULL;
4509 }
4510
4511 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4512 {
4513 unsigned int i;
4514
4515 /* Restore the symbol table. */
4516 if (bed->as_needed_cleanup)
4517 (*bed->as_needed_cleanup) (abfd, info);
4518 old_hash = (char *) old_tab + tabsize;
4519 old_ent = (char *) old_hash + hashsize;
4520 sym_hash = elf_sym_hashes (abfd);
4521 htab->root.table.table = old_table;
4522 htab->root.table.size = old_size;
4523 htab->root.table.count = old_count;
4524 memcpy (htab->root.table.table, old_tab, tabsize);
4525 memcpy (sym_hash, old_hash, hashsize);
4526 htab->root.undefs = old_undefs;
4527 htab->root.undefs_tail = old_undefs_tail;
4528 for (i = 0; i < htab->root.table.size; i++)
4529 {
4530 struct bfd_hash_entry *p;
4531 struct elf_link_hash_entry *h;
4532
4533 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4534 {
4535 h = (struct elf_link_hash_entry *) p;
4536 if (h->root.type == bfd_link_hash_warning)
4537 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4538 if (h->dynindx >= old_dynsymcount)
4539 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4540
4541 memcpy (p, old_ent, htab->root.table.entsize);
4542 old_ent = (char *) old_ent + htab->root.table.entsize;
4543 h = (struct elf_link_hash_entry *) p;
4544 if (h->root.type == bfd_link_hash_warning)
4545 {
4546 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4547 old_ent = (char *) old_ent + htab->root.table.entsize;
4548 }
4549 }
4550 }
4551
4552 /* Make a special call to the linker "notice" function to
4553 tell it that symbols added for crefs may need to be removed. */
4554 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4555 notice_not_needed))
4556 goto error_free_vers;
4557
4558 free (old_tab);
4559 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4560 alloc_mark);
4561 if (nondeflt_vers != NULL)
4562 free (nondeflt_vers);
4563 return TRUE;
4564 }
4565
4566 if (old_tab != NULL)
4567 {
4568 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4569 notice_needed))
4570 goto error_free_vers;
4571 free (old_tab);
4572 old_tab = NULL;
4573 }
4574
4575 /* Now that all the symbols from this input file are created, handle
4576 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4577 if (nondeflt_vers != NULL)
4578 {
4579 bfd_size_type cnt, symidx;
4580
4581 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4582 {
4583 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4584 char *shortname, *p;
4585
4586 p = strchr (h->root.root.string, ELF_VER_CHR);
4587 if (p == NULL
4588 || (h->root.type != bfd_link_hash_defined
4589 && h->root.type != bfd_link_hash_defweak))
4590 continue;
4591
4592 amt = p - h->root.root.string;
4593 shortname = (char *) bfd_malloc (amt + 1);
4594 if (!shortname)
4595 goto error_free_vers;
4596 memcpy (shortname, h->root.root.string, amt);
4597 shortname[amt] = '\0';
4598
4599 hi = (struct elf_link_hash_entry *)
4600 bfd_link_hash_lookup (&htab->root, shortname,
4601 FALSE, FALSE, FALSE);
4602 if (hi != NULL
4603 && hi->root.type == h->root.type
4604 && hi->root.u.def.value == h->root.u.def.value
4605 && hi->root.u.def.section == h->root.u.def.section)
4606 {
4607 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4608 hi->root.type = bfd_link_hash_indirect;
4609 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4610 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4611 sym_hash = elf_sym_hashes (abfd);
4612 if (sym_hash)
4613 for (symidx = 0; symidx < extsymcount; ++symidx)
4614 if (sym_hash[symidx] == hi)
4615 {
4616 sym_hash[symidx] = h;
4617 break;
4618 }
4619 }
4620 free (shortname);
4621 }
4622 free (nondeflt_vers);
4623 nondeflt_vers = NULL;
4624 }
4625
4626 /* Now set the weakdefs field correctly for all the weak defined
4627 symbols we found. The only way to do this is to search all the
4628 symbols. Since we only need the information for non functions in
4629 dynamic objects, that's the only time we actually put anything on
4630 the list WEAKS. We need this information so that if a regular
4631 object refers to a symbol defined weakly in a dynamic object, the
4632 real symbol in the dynamic object is also put in the dynamic
4633 symbols; we also must arrange for both symbols to point to the
4634 same memory location. We could handle the general case of symbol
4635 aliasing, but a general symbol alias can only be generated in
4636 assembler code, handling it correctly would be very time
4637 consuming, and other ELF linkers don't handle general aliasing
4638 either. */
4639 if (weaks != NULL)
4640 {
4641 struct elf_link_hash_entry **hpp;
4642 struct elf_link_hash_entry **hppend;
4643 struct elf_link_hash_entry **sorted_sym_hash;
4644 struct elf_link_hash_entry *h;
4645 size_t sym_count;
4646
4647 /* Since we have to search the whole symbol list for each weak
4648 defined symbol, search time for N weak defined symbols will be
4649 O(N^2). Binary search will cut it down to O(NlogN). */
4650 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4651 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4652 if (sorted_sym_hash == NULL)
4653 goto error_return;
4654 sym_hash = sorted_sym_hash;
4655 hpp = elf_sym_hashes (abfd);
4656 hppend = hpp + extsymcount;
4657 sym_count = 0;
4658 for (; hpp < hppend; hpp++)
4659 {
4660 h = *hpp;
4661 if (h != NULL
4662 && h->root.type == bfd_link_hash_defined
4663 && !bed->is_function_type (h->type))
4664 {
4665 *sym_hash = h;
4666 sym_hash++;
4667 sym_count++;
4668 }
4669 }
4670
4671 qsort (sorted_sym_hash, sym_count,
4672 sizeof (struct elf_link_hash_entry *),
4673 elf_sort_symbol);
4674
4675 while (weaks != NULL)
4676 {
4677 struct elf_link_hash_entry *hlook;
4678 asection *slook;
4679 bfd_vma vlook;
4680 long ilook;
4681 size_t i, j, idx;
4682
4683 hlook = weaks;
4684 weaks = hlook->u.weakdef;
4685 hlook->u.weakdef = NULL;
4686
4687 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4688 || hlook->root.type == bfd_link_hash_defweak
4689 || hlook->root.type == bfd_link_hash_common
4690 || hlook->root.type == bfd_link_hash_indirect);
4691 slook = hlook->root.u.def.section;
4692 vlook = hlook->root.u.def.value;
4693
4694 ilook = -1;
4695 i = 0;
4696 j = sym_count;
4697 while (i < j)
4698 {
4699 bfd_signed_vma vdiff;
4700 idx = (i + j) / 2;
4701 h = sorted_sym_hash [idx];
4702 vdiff = vlook - h->root.u.def.value;
4703 if (vdiff < 0)
4704 j = idx;
4705 else if (vdiff > 0)
4706 i = idx + 1;
4707 else
4708 {
4709 long sdiff = slook->id - h->root.u.def.section->id;
4710 if (sdiff < 0)
4711 j = idx;
4712 else if (sdiff > 0)
4713 i = idx + 1;
4714 else
4715 {
4716 ilook = idx;
4717 break;
4718 }
4719 }
4720 }
4721
4722 /* We didn't find a value/section match. */
4723 if (ilook == -1)
4724 continue;
4725
4726 for (i = ilook; i < sym_count; i++)
4727 {
4728 h = sorted_sym_hash [i];
4729
4730 /* Stop if value or section doesn't match. */
4731 if (h->root.u.def.value != vlook
4732 || h->root.u.def.section != slook)
4733 break;
4734 else if (h != hlook)
4735 {
4736 hlook->u.weakdef = h;
4737
4738 /* If the weak definition is in the list of dynamic
4739 symbols, make sure the real definition is put
4740 there as well. */
4741 if (hlook->dynindx != -1 && h->dynindx == -1)
4742 {
4743 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4744 {
4745 err_free_sym_hash:
4746 free (sorted_sym_hash);
4747 goto error_return;
4748 }
4749 }
4750
4751 /* If the real definition is in the list of dynamic
4752 symbols, make sure the weak definition is put
4753 there as well. If we don't do this, then the
4754 dynamic loader might not merge the entries for the
4755 real definition and the weak definition. */
4756 if (h->dynindx != -1 && hlook->dynindx == -1)
4757 {
4758 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4759 goto err_free_sym_hash;
4760 }
4761 break;
4762 }
4763 }
4764 }
4765
4766 free (sorted_sym_hash);
4767 }
4768
4769 if (bed->check_directives
4770 && !(*bed->check_directives) (abfd, info))
4771 return FALSE;
4772
4773 /* If this object is the same format as the output object, and it is
4774 not a shared library, then let the backend look through the
4775 relocs.
4776
4777 This is required to build global offset table entries and to
4778 arrange for dynamic relocs. It is not required for the
4779 particular common case of linking non PIC code, even when linking
4780 against shared libraries, but unfortunately there is no way of
4781 knowing whether an object file has been compiled PIC or not.
4782 Looking through the relocs is not particularly time consuming.
4783 The problem is that we must either (1) keep the relocs in memory,
4784 which causes the linker to require additional runtime memory or
4785 (2) read the relocs twice from the input file, which wastes time.
4786 This would be a good case for using mmap.
4787
4788 I have no idea how to handle linking PIC code into a file of a
4789 different format. It probably can't be done. */
4790 if (! dynamic
4791 && is_elf_hash_table (htab)
4792 && bed->check_relocs != NULL
4793 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4794 {
4795 asection *o;
4796
4797 for (o = abfd->sections; o != NULL; o = o->next)
4798 {
4799 Elf_Internal_Rela *internal_relocs;
4800 bfd_boolean ok;
4801
4802 if ((o->flags & SEC_RELOC) == 0
4803 || o->reloc_count == 0
4804 || ((info->strip == strip_all || info->strip == strip_debugger)
4805 && (o->flags & SEC_DEBUGGING) != 0)
4806 || bfd_is_abs_section (o->output_section))
4807 continue;
4808
4809 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4810 info->keep_memory);
4811 if (internal_relocs == NULL)
4812 goto error_return;
4813
4814 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4815
4816 if (elf_section_data (o)->relocs != internal_relocs)
4817 free (internal_relocs);
4818
4819 if (! ok)
4820 goto error_return;
4821 }
4822 }
4823
4824 /* If this is a non-traditional link, try to optimize the handling
4825 of the .stab/.stabstr sections. */
4826 if (! dynamic
4827 && ! info->traditional_format
4828 && is_elf_hash_table (htab)
4829 && (info->strip != strip_all && info->strip != strip_debugger))
4830 {
4831 asection *stabstr;
4832
4833 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4834 if (stabstr != NULL)
4835 {
4836 bfd_size_type string_offset = 0;
4837 asection *stab;
4838
4839 for (stab = abfd->sections; stab; stab = stab->next)
4840 if (CONST_STRNEQ (stab->name, ".stab")
4841 && (!stab->name[5] ||
4842 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4843 && (stab->flags & SEC_MERGE) == 0
4844 && !bfd_is_abs_section (stab->output_section))
4845 {
4846 struct bfd_elf_section_data *secdata;
4847
4848 secdata = elf_section_data (stab);
4849 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4850 stabstr, &secdata->sec_info,
4851 &string_offset))
4852 goto error_return;
4853 if (secdata->sec_info)
4854 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4855 }
4856 }
4857 }
4858
4859 if (is_elf_hash_table (htab) && add_needed)
4860 {
4861 /* Add this bfd to the loaded list. */
4862 struct elf_link_loaded_list *n;
4863
4864 n = (struct elf_link_loaded_list *)
4865 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4866 if (n == NULL)
4867 goto error_return;
4868 n->abfd = abfd;
4869 n->next = htab->loaded;
4870 htab->loaded = n;
4871 }
4872
4873 return TRUE;
4874
4875 error_free_vers:
4876 if (old_tab != NULL)
4877 free (old_tab);
4878 if (nondeflt_vers != NULL)
4879 free (nondeflt_vers);
4880 if (extversym != NULL)
4881 free (extversym);
4882 error_free_sym:
4883 if (isymbuf != NULL)
4884 free (isymbuf);
4885 error_return:
4886 return FALSE;
4887 }
4888
4889 /* Return the linker hash table entry of a symbol that might be
4890 satisfied by an archive symbol. Return -1 on error. */
4891
4892 struct elf_link_hash_entry *
4893 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4894 struct bfd_link_info *info,
4895 const char *name)
4896 {
4897 struct elf_link_hash_entry *h;
4898 char *p, *copy;
4899 size_t len, first;
4900
4901 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4902 if (h != NULL)
4903 return h;
4904
4905 /* If this is a default version (the name contains @@), look up the
4906 symbol again with only one `@' as well as without the version.
4907 The effect is that references to the symbol with and without the
4908 version will be matched by the default symbol in the archive. */
4909
4910 p = strchr (name, ELF_VER_CHR);
4911 if (p == NULL || p[1] != ELF_VER_CHR)
4912 return h;
4913
4914 /* First check with only one `@'. */
4915 len = strlen (name);
4916 copy = (char *) bfd_alloc (abfd, len);
4917 if (copy == NULL)
4918 return (struct elf_link_hash_entry *) 0 - 1;
4919
4920 first = p - name + 1;
4921 memcpy (copy, name, first);
4922 memcpy (copy + first, name + first + 1, len - first);
4923
4924 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4925 if (h == NULL)
4926 {
4927 /* We also need to check references to the symbol without the
4928 version. */
4929 copy[first - 1] = '\0';
4930 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4931 FALSE, FALSE, FALSE);
4932 }
4933
4934 bfd_release (abfd, copy);
4935 return h;
4936 }
4937
4938 /* Add symbols from an ELF archive file to the linker hash table. We
4939 don't use _bfd_generic_link_add_archive_symbols because of a
4940 problem which arises on UnixWare. The UnixWare libc.so is an
4941 archive which includes an entry libc.so.1 which defines a bunch of
4942 symbols. The libc.so archive also includes a number of other
4943 object files, which also define symbols, some of which are the same
4944 as those defined in libc.so.1. Correct linking requires that we
4945 consider each object file in turn, and include it if it defines any
4946 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4947 this; it looks through the list of undefined symbols, and includes
4948 any object file which defines them. When this algorithm is used on
4949 UnixWare, it winds up pulling in libc.so.1 early and defining a
4950 bunch of symbols. This means that some of the other objects in the
4951 archive are not included in the link, which is incorrect since they
4952 precede libc.so.1 in the archive.
4953
4954 Fortunately, ELF archive handling is simpler than that done by
4955 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4956 oddities. In ELF, if we find a symbol in the archive map, and the
4957 symbol is currently undefined, we know that we must pull in that
4958 object file.
4959
4960 Unfortunately, we do have to make multiple passes over the symbol
4961 table until nothing further is resolved. */
4962
4963 static bfd_boolean
4964 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4965 {
4966 symindex c;
4967 bfd_boolean *defined = NULL;
4968 bfd_boolean *included = NULL;
4969 carsym *symdefs;
4970 bfd_boolean loop;
4971 bfd_size_type amt;
4972 const struct elf_backend_data *bed;
4973 struct elf_link_hash_entry * (*archive_symbol_lookup)
4974 (bfd *, struct bfd_link_info *, const char *);
4975
4976 if (! bfd_has_map (abfd))
4977 {
4978 /* An empty archive is a special case. */
4979 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4980 return TRUE;
4981 bfd_set_error (bfd_error_no_armap);
4982 return FALSE;
4983 }
4984
4985 /* Keep track of all symbols we know to be already defined, and all
4986 files we know to be already included. This is to speed up the
4987 second and subsequent passes. */
4988 c = bfd_ardata (abfd)->symdef_count;
4989 if (c == 0)
4990 return TRUE;
4991 amt = c;
4992 amt *= sizeof (bfd_boolean);
4993 defined = (bfd_boolean *) bfd_zmalloc (amt);
4994 included = (bfd_boolean *) bfd_zmalloc (amt);
4995 if (defined == NULL || included == NULL)
4996 goto error_return;
4997
4998 symdefs = bfd_ardata (abfd)->symdefs;
4999 bed = get_elf_backend_data (abfd);
5000 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5001
5002 do
5003 {
5004 file_ptr last;
5005 symindex i;
5006 carsym *symdef;
5007 carsym *symdefend;
5008
5009 loop = FALSE;
5010 last = -1;
5011
5012 symdef = symdefs;
5013 symdefend = symdef + c;
5014 for (i = 0; symdef < symdefend; symdef++, i++)
5015 {
5016 struct elf_link_hash_entry *h;
5017 bfd *element;
5018 struct bfd_link_hash_entry *undefs_tail;
5019 symindex mark;
5020
5021 if (defined[i] || included[i])
5022 continue;
5023 if (symdef->file_offset == last)
5024 {
5025 included[i] = TRUE;
5026 continue;
5027 }
5028
5029 h = archive_symbol_lookup (abfd, info, symdef->name);
5030 if (h == (struct elf_link_hash_entry *) 0 - 1)
5031 goto error_return;
5032
5033 if (h == NULL)
5034 continue;
5035
5036 if (h->root.type == bfd_link_hash_common)
5037 {
5038 /* We currently have a common symbol. The archive map contains
5039 a reference to this symbol, so we may want to include it. We
5040 only want to include it however, if this archive element
5041 contains a definition of the symbol, not just another common
5042 declaration of it.
5043
5044 Unfortunately some archivers (including GNU ar) will put
5045 declarations of common symbols into their archive maps, as
5046 well as real definitions, so we cannot just go by the archive
5047 map alone. Instead we must read in the element's symbol
5048 table and check that to see what kind of symbol definition
5049 this is. */
5050 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5051 continue;
5052 }
5053 else if (h->root.type != bfd_link_hash_undefined)
5054 {
5055 if (h->root.type != bfd_link_hash_undefweak)
5056 defined[i] = TRUE;
5057 continue;
5058 }
5059
5060 /* We need to include this archive member. */
5061 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5062 if (element == NULL)
5063 goto error_return;
5064
5065 if (! bfd_check_format (element, bfd_object))
5066 goto error_return;
5067
5068 /* Doublecheck that we have not included this object
5069 already--it should be impossible, but there may be
5070 something wrong with the archive. */
5071 if (element->archive_pass != 0)
5072 {
5073 bfd_set_error (bfd_error_bad_value);
5074 goto error_return;
5075 }
5076 element->archive_pass = 1;
5077
5078 undefs_tail = info->hash->undefs_tail;
5079
5080 if (! (*info->callbacks->add_archive_element) (info, element,
5081 symdef->name))
5082 goto error_return;
5083 if (! bfd_link_add_symbols (element, info))
5084 goto error_return;
5085
5086 /* If there are any new undefined symbols, we need to make
5087 another pass through the archive in order to see whether
5088 they can be defined. FIXME: This isn't perfect, because
5089 common symbols wind up on undefs_tail and because an
5090 undefined symbol which is defined later on in this pass
5091 does not require another pass. This isn't a bug, but it
5092 does make the code less efficient than it could be. */
5093 if (undefs_tail != info->hash->undefs_tail)
5094 loop = TRUE;
5095
5096 /* Look backward to mark all symbols from this object file
5097 which we have already seen in this pass. */
5098 mark = i;
5099 do
5100 {
5101 included[mark] = TRUE;
5102 if (mark == 0)
5103 break;
5104 --mark;
5105 }
5106 while (symdefs[mark].file_offset == symdef->file_offset);
5107
5108 /* We mark subsequent symbols from this object file as we go
5109 on through the loop. */
5110 last = symdef->file_offset;
5111 }
5112 }
5113 while (loop);
5114
5115 free (defined);
5116 free (included);
5117
5118 return TRUE;
5119
5120 error_return:
5121 if (defined != NULL)
5122 free (defined);
5123 if (included != NULL)
5124 free (included);
5125 return FALSE;
5126 }
5127
5128 /* Given an ELF BFD, add symbols to the global hash table as
5129 appropriate. */
5130
5131 bfd_boolean
5132 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5133 {
5134 switch (bfd_get_format (abfd))
5135 {
5136 case bfd_object:
5137 return elf_link_add_object_symbols (abfd, info);
5138 case bfd_archive:
5139 return elf_link_add_archive_symbols (abfd, info);
5140 default:
5141 bfd_set_error (bfd_error_wrong_format);
5142 return FALSE;
5143 }
5144 }
5145 \f
5146 struct hash_codes_info
5147 {
5148 unsigned long *hashcodes;
5149 bfd_boolean error;
5150 };
5151
5152 /* This function will be called though elf_link_hash_traverse to store
5153 all hash value of the exported symbols in an array. */
5154
5155 static bfd_boolean
5156 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5157 {
5158 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5159 const char *name;
5160 char *p;
5161 unsigned long ha;
5162 char *alc = NULL;
5163
5164 if (h->root.type == bfd_link_hash_warning)
5165 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5166
5167 /* Ignore indirect symbols. These are added by the versioning code. */
5168 if (h->dynindx == -1)
5169 return TRUE;
5170
5171 name = h->root.root.string;
5172 p = strchr (name, ELF_VER_CHR);
5173 if (p != NULL)
5174 {
5175 alc = (char *) bfd_malloc (p - name + 1);
5176 if (alc == NULL)
5177 {
5178 inf->error = TRUE;
5179 return FALSE;
5180 }
5181 memcpy (alc, name, p - name);
5182 alc[p - name] = '\0';
5183 name = alc;
5184 }
5185
5186 /* Compute the hash value. */
5187 ha = bfd_elf_hash (name);
5188
5189 /* Store the found hash value in the array given as the argument. */
5190 *(inf->hashcodes)++ = ha;
5191
5192 /* And store it in the struct so that we can put it in the hash table
5193 later. */
5194 h->u.elf_hash_value = ha;
5195
5196 if (alc != NULL)
5197 free (alc);
5198
5199 return TRUE;
5200 }
5201
5202 struct collect_gnu_hash_codes
5203 {
5204 bfd *output_bfd;
5205 const struct elf_backend_data *bed;
5206 unsigned long int nsyms;
5207 unsigned long int maskbits;
5208 unsigned long int *hashcodes;
5209 unsigned long int *hashval;
5210 unsigned long int *indx;
5211 unsigned long int *counts;
5212 bfd_vma *bitmask;
5213 bfd_byte *contents;
5214 long int min_dynindx;
5215 unsigned long int bucketcount;
5216 unsigned long int symindx;
5217 long int local_indx;
5218 long int shift1, shift2;
5219 unsigned long int mask;
5220 bfd_boolean error;
5221 };
5222
5223 /* This function will be called though elf_link_hash_traverse to store
5224 all hash value of the exported symbols in an array. */
5225
5226 static bfd_boolean
5227 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5228 {
5229 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5230 const char *name;
5231 char *p;
5232 unsigned long ha;
5233 char *alc = NULL;
5234
5235 if (h->root.type == bfd_link_hash_warning)
5236 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5237
5238 /* Ignore indirect symbols. These are added by the versioning code. */
5239 if (h->dynindx == -1)
5240 return TRUE;
5241
5242 /* Ignore also local symbols and undefined symbols. */
5243 if (! (*s->bed->elf_hash_symbol) (h))
5244 return TRUE;
5245
5246 name = h->root.root.string;
5247 p = strchr (name, ELF_VER_CHR);
5248 if (p != NULL)
5249 {
5250 alc = (char *) bfd_malloc (p - name + 1);
5251 if (alc == NULL)
5252 {
5253 s->error = TRUE;
5254 return FALSE;
5255 }
5256 memcpy (alc, name, p - name);
5257 alc[p - name] = '\0';
5258 name = alc;
5259 }
5260
5261 /* Compute the hash value. */
5262 ha = bfd_elf_gnu_hash (name);
5263
5264 /* Store the found hash value in the array for compute_bucket_count,
5265 and also for .dynsym reordering purposes. */
5266 s->hashcodes[s->nsyms] = ha;
5267 s->hashval[h->dynindx] = ha;
5268 ++s->nsyms;
5269 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5270 s->min_dynindx = h->dynindx;
5271
5272 if (alc != NULL)
5273 free (alc);
5274
5275 return TRUE;
5276 }
5277
5278 /* This function will be called though elf_link_hash_traverse to do
5279 final dynaminc symbol renumbering. */
5280
5281 static bfd_boolean
5282 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5283 {
5284 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5285 unsigned long int bucket;
5286 unsigned long int val;
5287
5288 if (h->root.type == bfd_link_hash_warning)
5289 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5290
5291 /* Ignore indirect symbols. */
5292 if (h->dynindx == -1)
5293 return TRUE;
5294
5295 /* Ignore also local symbols and undefined symbols. */
5296 if (! (*s->bed->elf_hash_symbol) (h))
5297 {
5298 if (h->dynindx >= s->min_dynindx)
5299 h->dynindx = s->local_indx++;
5300 return TRUE;
5301 }
5302
5303 bucket = s->hashval[h->dynindx] % s->bucketcount;
5304 val = (s->hashval[h->dynindx] >> s->shift1)
5305 & ((s->maskbits >> s->shift1) - 1);
5306 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5307 s->bitmask[val]
5308 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5309 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5310 if (s->counts[bucket] == 1)
5311 /* Last element terminates the chain. */
5312 val |= 1;
5313 bfd_put_32 (s->output_bfd, val,
5314 s->contents + (s->indx[bucket] - s->symindx) * 4);
5315 --s->counts[bucket];
5316 h->dynindx = s->indx[bucket]++;
5317 return TRUE;
5318 }
5319
5320 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5321
5322 bfd_boolean
5323 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5324 {
5325 return !(h->forced_local
5326 || h->root.type == bfd_link_hash_undefined
5327 || h->root.type == bfd_link_hash_undefweak
5328 || ((h->root.type == bfd_link_hash_defined
5329 || h->root.type == bfd_link_hash_defweak)
5330 && h->root.u.def.section->output_section == NULL));
5331 }
5332
5333 /* Array used to determine the number of hash table buckets to use
5334 based on the number of symbols there are. If there are fewer than
5335 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5336 fewer than 37 we use 17 buckets, and so forth. We never use more
5337 than 32771 buckets. */
5338
5339 static const size_t elf_buckets[] =
5340 {
5341 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5342 16411, 32771, 0
5343 };
5344
5345 /* Compute bucket count for hashing table. We do not use a static set
5346 of possible tables sizes anymore. Instead we determine for all
5347 possible reasonable sizes of the table the outcome (i.e., the
5348 number of collisions etc) and choose the best solution. The
5349 weighting functions are not too simple to allow the table to grow
5350 without bounds. Instead one of the weighting factors is the size.
5351 Therefore the result is always a good payoff between few collisions
5352 (= short chain lengths) and table size. */
5353 static size_t
5354 compute_bucket_count (struct bfd_link_info *info,
5355 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5356 unsigned long int nsyms,
5357 int gnu_hash)
5358 {
5359 size_t best_size = 0;
5360 unsigned long int i;
5361
5362 /* We have a problem here. The following code to optimize the table
5363 size requires an integer type with more the 32 bits. If
5364 BFD_HOST_U_64_BIT is set we know about such a type. */
5365 #ifdef BFD_HOST_U_64_BIT
5366 if (info->optimize)
5367 {
5368 size_t minsize;
5369 size_t maxsize;
5370 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5371 bfd *dynobj = elf_hash_table (info)->dynobj;
5372 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5373 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5374 unsigned long int *counts;
5375 bfd_size_type amt;
5376
5377 /* Possible optimization parameters: if we have NSYMS symbols we say
5378 that the hashing table must at least have NSYMS/4 and at most
5379 2*NSYMS buckets. */
5380 minsize = nsyms / 4;
5381 if (minsize == 0)
5382 minsize = 1;
5383 best_size = maxsize = nsyms * 2;
5384 if (gnu_hash)
5385 {
5386 if (minsize < 2)
5387 minsize = 2;
5388 if ((best_size & 31) == 0)
5389 ++best_size;
5390 }
5391
5392 /* Create array where we count the collisions in. We must use bfd_malloc
5393 since the size could be large. */
5394 amt = maxsize;
5395 amt *= sizeof (unsigned long int);
5396 counts = (unsigned long int *) bfd_malloc (amt);
5397 if (counts == NULL)
5398 return 0;
5399
5400 /* Compute the "optimal" size for the hash table. The criteria is a
5401 minimal chain length. The minor criteria is (of course) the size
5402 of the table. */
5403 for (i = minsize; i < maxsize; ++i)
5404 {
5405 /* Walk through the array of hashcodes and count the collisions. */
5406 BFD_HOST_U_64_BIT max;
5407 unsigned long int j;
5408 unsigned long int fact;
5409
5410 if (gnu_hash && (i & 31) == 0)
5411 continue;
5412
5413 memset (counts, '\0', i * sizeof (unsigned long int));
5414
5415 /* Determine how often each hash bucket is used. */
5416 for (j = 0; j < nsyms; ++j)
5417 ++counts[hashcodes[j] % i];
5418
5419 /* For the weight function we need some information about the
5420 pagesize on the target. This is information need not be 100%
5421 accurate. Since this information is not available (so far) we
5422 define it here to a reasonable default value. If it is crucial
5423 to have a better value some day simply define this value. */
5424 # ifndef BFD_TARGET_PAGESIZE
5425 # define BFD_TARGET_PAGESIZE (4096)
5426 # endif
5427
5428 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5429 and the chains. */
5430 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5431
5432 # if 1
5433 /* Variant 1: optimize for short chains. We add the squares
5434 of all the chain lengths (which favors many small chain
5435 over a few long chains). */
5436 for (j = 0; j < i; ++j)
5437 max += counts[j] * counts[j];
5438
5439 /* This adds penalties for the overall size of the table. */
5440 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5441 max *= fact * fact;
5442 # else
5443 /* Variant 2: Optimize a lot more for small table. Here we
5444 also add squares of the size but we also add penalties for
5445 empty slots (the +1 term). */
5446 for (j = 0; j < i; ++j)
5447 max += (1 + counts[j]) * (1 + counts[j]);
5448
5449 /* The overall size of the table is considered, but not as
5450 strong as in variant 1, where it is squared. */
5451 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5452 max *= fact;
5453 # endif
5454
5455 /* Compare with current best results. */
5456 if (max < best_chlen)
5457 {
5458 best_chlen = max;
5459 best_size = i;
5460 }
5461 }
5462
5463 free (counts);
5464 }
5465 else
5466 #endif /* defined (BFD_HOST_U_64_BIT) */
5467 {
5468 /* This is the fallback solution if no 64bit type is available or if we
5469 are not supposed to spend much time on optimizations. We select the
5470 bucket count using a fixed set of numbers. */
5471 for (i = 0; elf_buckets[i] != 0; i++)
5472 {
5473 best_size = elf_buckets[i];
5474 if (nsyms < elf_buckets[i + 1])
5475 break;
5476 }
5477 if (gnu_hash && best_size < 2)
5478 best_size = 2;
5479 }
5480
5481 return best_size;
5482 }
5483
5484 /* Size any SHT_GROUP section for ld -r. */
5485
5486 bfd_boolean
5487 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5488 {
5489 bfd *ibfd;
5490
5491 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5492 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5493 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5494 return FALSE;
5495 return TRUE;
5496 }
5497
5498 /* Set up the sizes and contents of the ELF dynamic sections. This is
5499 called by the ELF linker emulation before_allocation routine. We
5500 must set the sizes of the sections before the linker sets the
5501 addresses of the various sections. */
5502
5503 bfd_boolean
5504 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5505 const char *soname,
5506 const char *rpath,
5507 const char *filter_shlib,
5508 const char *audit,
5509 const char *depaudit,
5510 const char * const *auxiliary_filters,
5511 struct bfd_link_info *info,
5512 asection **sinterpptr,
5513 struct bfd_elf_version_tree *verdefs)
5514 {
5515 bfd_size_type soname_indx;
5516 bfd *dynobj;
5517 const struct elf_backend_data *bed;
5518 struct elf_info_failed asvinfo;
5519
5520 *sinterpptr = NULL;
5521
5522 soname_indx = (bfd_size_type) -1;
5523
5524 if (!is_elf_hash_table (info->hash))
5525 return TRUE;
5526
5527 bed = get_elf_backend_data (output_bfd);
5528 if (info->execstack)
5529 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5530 else if (info->noexecstack)
5531 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5532 else
5533 {
5534 bfd *inputobj;
5535 asection *notesec = NULL;
5536 int exec = 0;
5537
5538 for (inputobj = info->input_bfds;
5539 inputobj;
5540 inputobj = inputobj->link_next)
5541 {
5542 asection *s;
5543
5544 if (inputobj->flags & (DYNAMIC | EXEC_P | BFD_LINKER_CREATED))
5545 continue;
5546 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5547 if (s)
5548 {
5549 if (s->flags & SEC_CODE)
5550 exec = PF_X;
5551 notesec = s;
5552 }
5553 else if (bed->default_execstack)
5554 exec = PF_X;
5555 }
5556 if (notesec)
5557 {
5558 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5559 if (exec && info->relocatable
5560 && notesec->output_section != bfd_abs_section_ptr)
5561 notesec->output_section->flags |= SEC_CODE;
5562 }
5563 }
5564
5565 /* Any syms created from now on start with -1 in
5566 got.refcount/offset and plt.refcount/offset. */
5567 elf_hash_table (info)->init_got_refcount
5568 = elf_hash_table (info)->init_got_offset;
5569 elf_hash_table (info)->init_plt_refcount
5570 = elf_hash_table (info)->init_plt_offset;
5571
5572 if (info->relocatable
5573 && !_bfd_elf_size_group_sections (info))
5574 return FALSE;
5575
5576 /* The backend may have to create some sections regardless of whether
5577 we're dynamic or not. */
5578 if (bed->elf_backend_always_size_sections
5579 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5580 return FALSE;
5581
5582 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5583 return FALSE;
5584
5585 dynobj = elf_hash_table (info)->dynobj;
5586
5587 /* If there were no dynamic objects in the link, there is nothing to
5588 do here. */
5589 if (dynobj == NULL)
5590 return TRUE;
5591
5592 if (elf_hash_table (info)->dynamic_sections_created)
5593 {
5594 struct elf_info_failed eif;
5595 struct elf_link_hash_entry *h;
5596 asection *dynstr;
5597 struct bfd_elf_version_tree *t;
5598 struct bfd_elf_version_expr *d;
5599 asection *s;
5600 bfd_boolean all_defined;
5601
5602 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5603 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5604
5605 if (soname != NULL)
5606 {
5607 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5608 soname, TRUE);
5609 if (soname_indx == (bfd_size_type) -1
5610 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5611 return FALSE;
5612 }
5613
5614 if (info->symbolic)
5615 {
5616 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5617 return FALSE;
5618 info->flags |= DF_SYMBOLIC;
5619 }
5620
5621 if (rpath != NULL)
5622 {
5623 bfd_size_type indx;
5624
5625 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5626 TRUE);
5627 if (indx == (bfd_size_type) -1
5628 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5629 return FALSE;
5630
5631 if (info->new_dtags)
5632 {
5633 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5634 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5635 return FALSE;
5636 }
5637 }
5638
5639 if (filter_shlib != NULL)
5640 {
5641 bfd_size_type indx;
5642
5643 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5644 filter_shlib, TRUE);
5645 if (indx == (bfd_size_type) -1
5646 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5647 return FALSE;
5648 }
5649
5650 if (auxiliary_filters != NULL)
5651 {
5652 const char * const *p;
5653
5654 for (p = auxiliary_filters; *p != NULL; p++)
5655 {
5656 bfd_size_type indx;
5657
5658 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5659 *p, TRUE);
5660 if (indx == (bfd_size_type) -1
5661 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5662 return FALSE;
5663 }
5664 }
5665
5666 if (audit != NULL)
5667 {
5668 bfd_size_type indx;
5669
5670 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5671 TRUE);
5672 if (indx == (bfd_size_type) -1
5673 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5674 return FALSE;
5675 }
5676
5677 if (depaudit != NULL)
5678 {
5679 bfd_size_type indx;
5680
5681 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5682 TRUE);
5683 if (indx == (bfd_size_type) -1
5684 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5685 return FALSE;
5686 }
5687
5688 eif.info = info;
5689 eif.verdefs = verdefs;
5690 eif.failed = FALSE;
5691
5692 /* If we are supposed to export all symbols into the dynamic symbol
5693 table (this is not the normal case), then do so. */
5694 if (info->export_dynamic
5695 || (info->executable && info->dynamic))
5696 {
5697 elf_link_hash_traverse (elf_hash_table (info),
5698 _bfd_elf_export_symbol,
5699 &eif);
5700 if (eif.failed)
5701 return FALSE;
5702 }
5703
5704 /* Make all global versions with definition. */
5705 for (t = verdefs; t != NULL; t = t->next)
5706 for (d = t->globals.list; d != NULL; d = d->next)
5707 if (!d->symver && d->literal)
5708 {
5709 const char *verstr, *name;
5710 size_t namelen, verlen, newlen;
5711 char *newname, *p;
5712 struct elf_link_hash_entry *newh;
5713
5714 name = d->pattern;
5715 namelen = strlen (name);
5716 verstr = t->name;
5717 verlen = strlen (verstr);
5718 newlen = namelen + verlen + 3;
5719
5720 newname = (char *) bfd_malloc (newlen);
5721 if (newname == NULL)
5722 return FALSE;
5723 memcpy (newname, name, namelen);
5724
5725 /* Check the hidden versioned definition. */
5726 p = newname + namelen;
5727 *p++ = ELF_VER_CHR;
5728 memcpy (p, verstr, verlen + 1);
5729 newh = elf_link_hash_lookup (elf_hash_table (info),
5730 newname, FALSE, FALSE,
5731 FALSE);
5732 if (newh == NULL
5733 || (newh->root.type != bfd_link_hash_defined
5734 && newh->root.type != bfd_link_hash_defweak))
5735 {
5736 /* Check the default versioned definition. */
5737 *p++ = ELF_VER_CHR;
5738 memcpy (p, verstr, verlen + 1);
5739 newh = elf_link_hash_lookup (elf_hash_table (info),
5740 newname, FALSE, FALSE,
5741 FALSE);
5742 }
5743 free (newname);
5744
5745 /* Mark this version if there is a definition and it is
5746 not defined in a shared object. */
5747 if (newh != NULL
5748 && !newh->def_dynamic
5749 && (newh->root.type == bfd_link_hash_defined
5750 || newh->root.type == bfd_link_hash_defweak))
5751 d->symver = 1;
5752 }
5753
5754 /* Attach all the symbols to their version information. */
5755 asvinfo.info = info;
5756 asvinfo.verdefs = verdefs;
5757 asvinfo.failed = FALSE;
5758
5759 elf_link_hash_traverse (elf_hash_table (info),
5760 _bfd_elf_link_assign_sym_version,
5761 &asvinfo);
5762 if (asvinfo.failed)
5763 return FALSE;
5764
5765 if (!info->allow_undefined_version)
5766 {
5767 /* Check if all global versions have a definition. */
5768 all_defined = TRUE;
5769 for (t = verdefs; t != NULL; t = t->next)
5770 for (d = t->globals.list; d != NULL; d = d->next)
5771 if (d->literal && !d->symver && !d->script)
5772 {
5773 (*_bfd_error_handler)
5774 (_("%s: undefined version: %s"),
5775 d->pattern, t->name);
5776 all_defined = FALSE;
5777 }
5778
5779 if (!all_defined)
5780 {
5781 bfd_set_error (bfd_error_bad_value);
5782 return FALSE;
5783 }
5784 }
5785
5786 /* Find all symbols which were defined in a dynamic object and make
5787 the backend pick a reasonable value for them. */
5788 elf_link_hash_traverse (elf_hash_table (info),
5789 _bfd_elf_adjust_dynamic_symbol,
5790 &eif);
5791 if (eif.failed)
5792 return FALSE;
5793
5794 /* Add some entries to the .dynamic section. We fill in some of the
5795 values later, in bfd_elf_final_link, but we must add the entries
5796 now so that we know the final size of the .dynamic section. */
5797
5798 /* If there are initialization and/or finalization functions to
5799 call then add the corresponding DT_INIT/DT_FINI entries. */
5800 h = (info->init_function
5801 ? elf_link_hash_lookup (elf_hash_table (info),
5802 info->init_function, FALSE,
5803 FALSE, FALSE)
5804 : NULL);
5805 if (h != NULL
5806 && (h->ref_regular
5807 || h->def_regular))
5808 {
5809 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5810 return FALSE;
5811 }
5812 h = (info->fini_function
5813 ? elf_link_hash_lookup (elf_hash_table (info),
5814 info->fini_function, FALSE,
5815 FALSE, FALSE)
5816 : NULL);
5817 if (h != NULL
5818 && (h->ref_regular
5819 || h->def_regular))
5820 {
5821 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5822 return FALSE;
5823 }
5824
5825 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5826 if (s != NULL && s->linker_has_input)
5827 {
5828 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5829 if (! info->executable)
5830 {
5831 bfd *sub;
5832 asection *o;
5833
5834 for (sub = info->input_bfds; sub != NULL;
5835 sub = sub->link_next)
5836 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5837 for (o = sub->sections; o != NULL; o = o->next)
5838 if (elf_section_data (o)->this_hdr.sh_type
5839 == SHT_PREINIT_ARRAY)
5840 {
5841 (*_bfd_error_handler)
5842 (_("%B: .preinit_array section is not allowed in DSO"),
5843 sub);
5844 break;
5845 }
5846
5847 bfd_set_error (bfd_error_nonrepresentable_section);
5848 return FALSE;
5849 }
5850
5851 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5852 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5853 return FALSE;
5854 }
5855 s = bfd_get_section_by_name (output_bfd, ".init_array");
5856 if (s != NULL && s->linker_has_input)
5857 {
5858 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5859 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5860 return FALSE;
5861 }
5862 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5863 if (s != NULL && s->linker_has_input)
5864 {
5865 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5866 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5867 return FALSE;
5868 }
5869
5870 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5871 /* If .dynstr is excluded from the link, we don't want any of
5872 these tags. Strictly, we should be checking each section
5873 individually; This quick check covers for the case where
5874 someone does a /DISCARD/ : { *(*) }. */
5875 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5876 {
5877 bfd_size_type strsize;
5878
5879 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5880 if ((info->emit_hash
5881 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5882 || (info->emit_gnu_hash
5883 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5884 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5885 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5886 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5887 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5888 bed->s->sizeof_sym))
5889 return FALSE;
5890 }
5891 }
5892
5893 /* The backend must work out the sizes of all the other dynamic
5894 sections. */
5895 if (bed->elf_backend_size_dynamic_sections
5896 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5897 return FALSE;
5898
5899 if (elf_hash_table (info)->dynamic_sections_created)
5900 {
5901 unsigned long section_sym_count;
5902 asection *s;
5903
5904 /* Set up the version definition section. */
5905 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5906 BFD_ASSERT (s != NULL);
5907
5908 /* We may have created additional version definitions if we are
5909 just linking a regular application. */
5910 verdefs = asvinfo.verdefs;
5911
5912 /* Skip anonymous version tag. */
5913 if (verdefs != NULL && verdefs->vernum == 0)
5914 verdefs = verdefs->next;
5915
5916 if (verdefs == NULL && !info->create_default_symver)
5917 s->flags |= SEC_EXCLUDE;
5918 else
5919 {
5920 unsigned int cdefs;
5921 bfd_size_type size;
5922 struct bfd_elf_version_tree *t;
5923 bfd_byte *p;
5924 Elf_Internal_Verdef def;
5925 Elf_Internal_Verdaux defaux;
5926 struct bfd_link_hash_entry *bh;
5927 struct elf_link_hash_entry *h;
5928 const char *name;
5929
5930 cdefs = 0;
5931 size = 0;
5932
5933 /* Make space for the base version. */
5934 size += sizeof (Elf_External_Verdef);
5935 size += sizeof (Elf_External_Verdaux);
5936 ++cdefs;
5937
5938 /* Make space for the default version. */
5939 if (info->create_default_symver)
5940 {
5941 size += sizeof (Elf_External_Verdef);
5942 ++cdefs;
5943 }
5944
5945 for (t = verdefs; t != NULL; t = t->next)
5946 {
5947 struct bfd_elf_version_deps *n;
5948
5949 size += sizeof (Elf_External_Verdef);
5950 size += sizeof (Elf_External_Verdaux);
5951 ++cdefs;
5952
5953 for (n = t->deps; n != NULL; n = n->next)
5954 size += sizeof (Elf_External_Verdaux);
5955 }
5956
5957 s->size = size;
5958 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5959 if (s->contents == NULL && s->size != 0)
5960 return FALSE;
5961
5962 /* Fill in the version definition section. */
5963
5964 p = s->contents;
5965
5966 def.vd_version = VER_DEF_CURRENT;
5967 def.vd_flags = VER_FLG_BASE;
5968 def.vd_ndx = 1;
5969 def.vd_cnt = 1;
5970 if (info->create_default_symver)
5971 {
5972 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5973 def.vd_next = sizeof (Elf_External_Verdef);
5974 }
5975 else
5976 {
5977 def.vd_aux = sizeof (Elf_External_Verdef);
5978 def.vd_next = (sizeof (Elf_External_Verdef)
5979 + sizeof (Elf_External_Verdaux));
5980 }
5981
5982 if (soname_indx != (bfd_size_type) -1)
5983 {
5984 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5985 soname_indx);
5986 def.vd_hash = bfd_elf_hash (soname);
5987 defaux.vda_name = soname_indx;
5988 name = soname;
5989 }
5990 else
5991 {
5992 bfd_size_type indx;
5993
5994 name = lbasename (output_bfd->filename);
5995 def.vd_hash = bfd_elf_hash (name);
5996 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5997 name, FALSE);
5998 if (indx == (bfd_size_type) -1)
5999 return FALSE;
6000 defaux.vda_name = indx;
6001 }
6002 defaux.vda_next = 0;
6003
6004 _bfd_elf_swap_verdef_out (output_bfd, &def,
6005 (Elf_External_Verdef *) p);
6006 p += sizeof (Elf_External_Verdef);
6007 if (info->create_default_symver)
6008 {
6009 /* Add a symbol representing this version. */
6010 bh = NULL;
6011 if (! (_bfd_generic_link_add_one_symbol
6012 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6013 0, NULL, FALSE,
6014 get_elf_backend_data (dynobj)->collect, &bh)))
6015 return FALSE;
6016 h = (struct elf_link_hash_entry *) bh;
6017 h->non_elf = 0;
6018 h->def_regular = 1;
6019 h->type = STT_OBJECT;
6020 h->verinfo.vertree = NULL;
6021
6022 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6023 return FALSE;
6024
6025 /* Create a duplicate of the base version with the same
6026 aux block, but different flags. */
6027 def.vd_flags = 0;
6028 def.vd_ndx = 2;
6029 def.vd_aux = sizeof (Elf_External_Verdef);
6030 if (verdefs)
6031 def.vd_next = (sizeof (Elf_External_Verdef)
6032 + sizeof (Elf_External_Verdaux));
6033 else
6034 def.vd_next = 0;
6035 _bfd_elf_swap_verdef_out (output_bfd, &def,
6036 (Elf_External_Verdef *) p);
6037 p += sizeof (Elf_External_Verdef);
6038 }
6039 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6040 (Elf_External_Verdaux *) p);
6041 p += sizeof (Elf_External_Verdaux);
6042
6043 for (t = verdefs; t != NULL; t = t->next)
6044 {
6045 unsigned int cdeps;
6046 struct bfd_elf_version_deps *n;
6047
6048 cdeps = 0;
6049 for (n = t->deps; n != NULL; n = n->next)
6050 ++cdeps;
6051
6052 /* Add a symbol representing this version. */
6053 bh = NULL;
6054 if (! (_bfd_generic_link_add_one_symbol
6055 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6056 0, NULL, FALSE,
6057 get_elf_backend_data (dynobj)->collect, &bh)))
6058 return FALSE;
6059 h = (struct elf_link_hash_entry *) bh;
6060 h->non_elf = 0;
6061 h->def_regular = 1;
6062 h->type = STT_OBJECT;
6063 h->verinfo.vertree = t;
6064
6065 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6066 return FALSE;
6067
6068 def.vd_version = VER_DEF_CURRENT;
6069 def.vd_flags = 0;
6070 if (t->globals.list == NULL
6071 && t->locals.list == NULL
6072 && ! t->used)
6073 def.vd_flags |= VER_FLG_WEAK;
6074 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6075 def.vd_cnt = cdeps + 1;
6076 def.vd_hash = bfd_elf_hash (t->name);
6077 def.vd_aux = sizeof (Elf_External_Verdef);
6078 def.vd_next = 0;
6079 if (t->next != NULL)
6080 def.vd_next = (sizeof (Elf_External_Verdef)
6081 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6082
6083 _bfd_elf_swap_verdef_out (output_bfd, &def,
6084 (Elf_External_Verdef *) p);
6085 p += sizeof (Elf_External_Verdef);
6086
6087 defaux.vda_name = h->dynstr_index;
6088 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6089 h->dynstr_index);
6090 defaux.vda_next = 0;
6091 if (t->deps != NULL)
6092 defaux.vda_next = sizeof (Elf_External_Verdaux);
6093 t->name_indx = defaux.vda_name;
6094
6095 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6096 (Elf_External_Verdaux *) p);
6097 p += sizeof (Elf_External_Verdaux);
6098
6099 for (n = t->deps; n != NULL; n = n->next)
6100 {
6101 if (n->version_needed == NULL)
6102 {
6103 /* This can happen if there was an error in the
6104 version script. */
6105 defaux.vda_name = 0;
6106 }
6107 else
6108 {
6109 defaux.vda_name = n->version_needed->name_indx;
6110 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6111 defaux.vda_name);
6112 }
6113 if (n->next == NULL)
6114 defaux.vda_next = 0;
6115 else
6116 defaux.vda_next = sizeof (Elf_External_Verdaux);
6117
6118 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6119 (Elf_External_Verdaux *) p);
6120 p += sizeof (Elf_External_Verdaux);
6121 }
6122 }
6123
6124 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6125 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6126 return FALSE;
6127
6128 elf_tdata (output_bfd)->cverdefs = cdefs;
6129 }
6130
6131 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6132 {
6133 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6134 return FALSE;
6135 }
6136 else if (info->flags & DF_BIND_NOW)
6137 {
6138 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6139 return FALSE;
6140 }
6141
6142 if (info->flags_1)
6143 {
6144 if (info->executable)
6145 info->flags_1 &= ~ (DF_1_INITFIRST
6146 | DF_1_NODELETE
6147 | DF_1_NOOPEN);
6148 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6149 return FALSE;
6150 }
6151
6152 /* Work out the size of the version reference section. */
6153
6154 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
6155 BFD_ASSERT (s != NULL);
6156 {
6157 struct elf_find_verdep_info sinfo;
6158
6159 sinfo.info = info;
6160 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6161 if (sinfo.vers == 0)
6162 sinfo.vers = 1;
6163 sinfo.failed = FALSE;
6164
6165 elf_link_hash_traverse (elf_hash_table (info),
6166 _bfd_elf_link_find_version_dependencies,
6167 &sinfo);
6168 if (sinfo.failed)
6169 return FALSE;
6170
6171 if (elf_tdata (output_bfd)->verref == NULL)
6172 s->flags |= SEC_EXCLUDE;
6173 else
6174 {
6175 Elf_Internal_Verneed *t;
6176 unsigned int size;
6177 unsigned int crefs;
6178 bfd_byte *p;
6179
6180 /* Build the version definition section. */
6181 size = 0;
6182 crefs = 0;
6183 for (t = elf_tdata (output_bfd)->verref;
6184 t != NULL;
6185 t = t->vn_nextref)
6186 {
6187 Elf_Internal_Vernaux *a;
6188
6189 size += sizeof (Elf_External_Verneed);
6190 ++crefs;
6191 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6192 size += sizeof (Elf_External_Vernaux);
6193 }
6194
6195 s->size = size;
6196 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6197 if (s->contents == NULL)
6198 return FALSE;
6199
6200 p = s->contents;
6201 for (t = elf_tdata (output_bfd)->verref;
6202 t != NULL;
6203 t = t->vn_nextref)
6204 {
6205 unsigned int caux;
6206 Elf_Internal_Vernaux *a;
6207 bfd_size_type indx;
6208
6209 caux = 0;
6210 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6211 ++caux;
6212
6213 t->vn_version = VER_NEED_CURRENT;
6214 t->vn_cnt = caux;
6215 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6216 elf_dt_name (t->vn_bfd) != NULL
6217 ? elf_dt_name (t->vn_bfd)
6218 : lbasename (t->vn_bfd->filename),
6219 FALSE);
6220 if (indx == (bfd_size_type) -1)
6221 return FALSE;
6222 t->vn_file = indx;
6223 t->vn_aux = sizeof (Elf_External_Verneed);
6224 if (t->vn_nextref == NULL)
6225 t->vn_next = 0;
6226 else
6227 t->vn_next = (sizeof (Elf_External_Verneed)
6228 + caux * sizeof (Elf_External_Vernaux));
6229
6230 _bfd_elf_swap_verneed_out (output_bfd, t,
6231 (Elf_External_Verneed *) p);
6232 p += sizeof (Elf_External_Verneed);
6233
6234 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6235 {
6236 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6237 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6238 a->vna_nodename, FALSE);
6239 if (indx == (bfd_size_type) -1)
6240 return FALSE;
6241 a->vna_name = indx;
6242 if (a->vna_nextptr == NULL)
6243 a->vna_next = 0;
6244 else
6245 a->vna_next = sizeof (Elf_External_Vernaux);
6246
6247 _bfd_elf_swap_vernaux_out (output_bfd, a,
6248 (Elf_External_Vernaux *) p);
6249 p += sizeof (Elf_External_Vernaux);
6250 }
6251 }
6252
6253 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6254 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6255 return FALSE;
6256
6257 elf_tdata (output_bfd)->cverrefs = crefs;
6258 }
6259 }
6260
6261 if ((elf_tdata (output_bfd)->cverrefs == 0
6262 && elf_tdata (output_bfd)->cverdefs == 0)
6263 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6264 &section_sym_count) == 0)
6265 {
6266 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6267 s->flags |= SEC_EXCLUDE;
6268 }
6269 }
6270 return TRUE;
6271 }
6272
6273 /* Find the first non-excluded output section. We'll use its
6274 section symbol for some emitted relocs. */
6275 void
6276 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6277 {
6278 asection *s;
6279
6280 for (s = output_bfd->sections; s != NULL; s = s->next)
6281 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6282 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6283 {
6284 elf_hash_table (info)->text_index_section = s;
6285 break;
6286 }
6287 }
6288
6289 /* Find two non-excluded output sections, one for code, one for data.
6290 We'll use their section symbols for some emitted relocs. */
6291 void
6292 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6293 {
6294 asection *s;
6295
6296 /* Data first, since setting text_index_section changes
6297 _bfd_elf_link_omit_section_dynsym. */
6298 for (s = output_bfd->sections; s != NULL; s = s->next)
6299 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6300 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6301 {
6302 elf_hash_table (info)->data_index_section = s;
6303 break;
6304 }
6305
6306 for (s = output_bfd->sections; s != NULL; s = s->next)
6307 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6308 == (SEC_ALLOC | SEC_READONLY))
6309 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6310 {
6311 elf_hash_table (info)->text_index_section = s;
6312 break;
6313 }
6314
6315 if (elf_hash_table (info)->text_index_section == NULL)
6316 elf_hash_table (info)->text_index_section
6317 = elf_hash_table (info)->data_index_section;
6318 }
6319
6320 bfd_boolean
6321 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6322 {
6323 const struct elf_backend_data *bed;
6324
6325 if (!is_elf_hash_table (info->hash))
6326 return TRUE;
6327
6328 bed = get_elf_backend_data (output_bfd);
6329 (*bed->elf_backend_init_index_section) (output_bfd, info);
6330
6331 if (elf_hash_table (info)->dynamic_sections_created)
6332 {
6333 bfd *dynobj;
6334 asection *s;
6335 bfd_size_type dynsymcount;
6336 unsigned long section_sym_count;
6337 unsigned int dtagcount;
6338
6339 dynobj = elf_hash_table (info)->dynobj;
6340
6341 /* Assign dynsym indicies. In a shared library we generate a
6342 section symbol for each output section, which come first.
6343 Next come all of the back-end allocated local dynamic syms,
6344 followed by the rest of the global symbols. */
6345
6346 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6347 &section_sym_count);
6348
6349 /* Work out the size of the symbol version section. */
6350 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6351 BFD_ASSERT (s != NULL);
6352 if (dynsymcount != 0
6353 && (s->flags & SEC_EXCLUDE) == 0)
6354 {
6355 s->size = dynsymcount * sizeof (Elf_External_Versym);
6356 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6357 if (s->contents == NULL)
6358 return FALSE;
6359
6360 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6361 return FALSE;
6362 }
6363
6364 /* Set the size of the .dynsym and .hash sections. We counted
6365 the number of dynamic symbols in elf_link_add_object_symbols.
6366 We will build the contents of .dynsym and .hash when we build
6367 the final symbol table, because until then we do not know the
6368 correct value to give the symbols. We built the .dynstr
6369 section as we went along in elf_link_add_object_symbols. */
6370 s = bfd_get_section_by_name (dynobj, ".dynsym");
6371 BFD_ASSERT (s != NULL);
6372 s->size = dynsymcount * bed->s->sizeof_sym;
6373
6374 if (dynsymcount != 0)
6375 {
6376 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6377 if (s->contents == NULL)
6378 return FALSE;
6379
6380 /* The first entry in .dynsym is a dummy symbol.
6381 Clear all the section syms, in case we don't output them all. */
6382 ++section_sym_count;
6383 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6384 }
6385
6386 elf_hash_table (info)->bucketcount = 0;
6387
6388 /* Compute the size of the hashing table. As a side effect this
6389 computes the hash values for all the names we export. */
6390 if (info->emit_hash)
6391 {
6392 unsigned long int *hashcodes;
6393 struct hash_codes_info hashinf;
6394 bfd_size_type amt;
6395 unsigned long int nsyms;
6396 size_t bucketcount;
6397 size_t hash_entry_size;
6398
6399 /* Compute the hash values for all exported symbols. At the same
6400 time store the values in an array so that we could use them for
6401 optimizations. */
6402 amt = dynsymcount * sizeof (unsigned long int);
6403 hashcodes = (unsigned long int *) bfd_malloc (amt);
6404 if (hashcodes == NULL)
6405 return FALSE;
6406 hashinf.hashcodes = hashcodes;
6407 hashinf.error = FALSE;
6408
6409 /* Put all hash values in HASHCODES. */
6410 elf_link_hash_traverse (elf_hash_table (info),
6411 elf_collect_hash_codes, &hashinf);
6412 if (hashinf.error)
6413 {
6414 free (hashcodes);
6415 return FALSE;
6416 }
6417
6418 nsyms = hashinf.hashcodes - hashcodes;
6419 bucketcount
6420 = compute_bucket_count (info, hashcodes, nsyms, 0);
6421 free (hashcodes);
6422
6423 if (bucketcount == 0)
6424 return FALSE;
6425
6426 elf_hash_table (info)->bucketcount = bucketcount;
6427
6428 s = bfd_get_section_by_name (dynobj, ".hash");
6429 BFD_ASSERT (s != NULL);
6430 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6431 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6432 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6433 if (s->contents == NULL)
6434 return FALSE;
6435
6436 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6437 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6438 s->contents + hash_entry_size);
6439 }
6440
6441 if (info->emit_gnu_hash)
6442 {
6443 size_t i, cnt;
6444 unsigned char *contents;
6445 struct collect_gnu_hash_codes cinfo;
6446 bfd_size_type amt;
6447 size_t bucketcount;
6448
6449 memset (&cinfo, 0, sizeof (cinfo));
6450
6451 /* Compute the hash values for all exported symbols. At the same
6452 time store the values in an array so that we could use them for
6453 optimizations. */
6454 amt = dynsymcount * 2 * sizeof (unsigned long int);
6455 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6456 if (cinfo.hashcodes == NULL)
6457 return FALSE;
6458
6459 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6460 cinfo.min_dynindx = -1;
6461 cinfo.output_bfd = output_bfd;
6462 cinfo.bed = bed;
6463
6464 /* Put all hash values in HASHCODES. */
6465 elf_link_hash_traverse (elf_hash_table (info),
6466 elf_collect_gnu_hash_codes, &cinfo);
6467 if (cinfo.error)
6468 {
6469 free (cinfo.hashcodes);
6470 return FALSE;
6471 }
6472
6473 bucketcount
6474 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6475
6476 if (bucketcount == 0)
6477 {
6478 free (cinfo.hashcodes);
6479 return FALSE;
6480 }
6481
6482 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6483 BFD_ASSERT (s != NULL);
6484
6485 if (cinfo.nsyms == 0)
6486 {
6487 /* Empty .gnu.hash section is special. */
6488 BFD_ASSERT (cinfo.min_dynindx == -1);
6489 free (cinfo.hashcodes);
6490 s->size = 5 * 4 + bed->s->arch_size / 8;
6491 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6492 if (contents == NULL)
6493 return FALSE;
6494 s->contents = contents;
6495 /* 1 empty bucket. */
6496 bfd_put_32 (output_bfd, 1, contents);
6497 /* SYMIDX above the special symbol 0. */
6498 bfd_put_32 (output_bfd, 1, contents + 4);
6499 /* Just one word for bitmask. */
6500 bfd_put_32 (output_bfd, 1, contents + 8);
6501 /* Only hash fn bloom filter. */
6502 bfd_put_32 (output_bfd, 0, contents + 12);
6503 /* No hashes are valid - empty bitmask. */
6504 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6505 /* No hashes in the only bucket. */
6506 bfd_put_32 (output_bfd, 0,
6507 contents + 16 + bed->s->arch_size / 8);
6508 }
6509 else
6510 {
6511 unsigned long int maskwords, maskbitslog2;
6512 BFD_ASSERT (cinfo.min_dynindx != -1);
6513
6514 maskbitslog2 = bfd_log2 (cinfo.nsyms) + 1;
6515 if (maskbitslog2 < 3)
6516 maskbitslog2 = 5;
6517 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6518 maskbitslog2 = maskbitslog2 + 3;
6519 else
6520 maskbitslog2 = maskbitslog2 + 2;
6521 if (bed->s->arch_size == 64)
6522 {
6523 if (maskbitslog2 == 5)
6524 maskbitslog2 = 6;
6525 cinfo.shift1 = 6;
6526 }
6527 else
6528 cinfo.shift1 = 5;
6529 cinfo.mask = (1 << cinfo.shift1) - 1;
6530 cinfo.shift2 = maskbitslog2;
6531 cinfo.maskbits = 1 << maskbitslog2;
6532 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6533 amt = bucketcount * sizeof (unsigned long int) * 2;
6534 amt += maskwords * sizeof (bfd_vma);
6535 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6536 if (cinfo.bitmask == NULL)
6537 {
6538 free (cinfo.hashcodes);
6539 return FALSE;
6540 }
6541
6542 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6543 cinfo.indx = cinfo.counts + bucketcount;
6544 cinfo.symindx = dynsymcount - cinfo.nsyms;
6545 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6546
6547 /* Determine how often each hash bucket is used. */
6548 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6549 for (i = 0; i < cinfo.nsyms; ++i)
6550 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6551
6552 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6553 if (cinfo.counts[i] != 0)
6554 {
6555 cinfo.indx[i] = cnt;
6556 cnt += cinfo.counts[i];
6557 }
6558 BFD_ASSERT (cnt == dynsymcount);
6559 cinfo.bucketcount = bucketcount;
6560 cinfo.local_indx = cinfo.min_dynindx;
6561
6562 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6563 s->size += cinfo.maskbits / 8;
6564 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6565 if (contents == NULL)
6566 {
6567 free (cinfo.bitmask);
6568 free (cinfo.hashcodes);
6569 return FALSE;
6570 }
6571
6572 s->contents = contents;
6573 bfd_put_32 (output_bfd, bucketcount, contents);
6574 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6575 bfd_put_32 (output_bfd, maskwords, contents + 8);
6576 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6577 contents += 16 + cinfo.maskbits / 8;
6578
6579 for (i = 0; i < bucketcount; ++i)
6580 {
6581 if (cinfo.counts[i] == 0)
6582 bfd_put_32 (output_bfd, 0, contents);
6583 else
6584 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6585 contents += 4;
6586 }
6587
6588 cinfo.contents = contents;
6589
6590 /* Renumber dynamic symbols, populate .gnu.hash section. */
6591 elf_link_hash_traverse (elf_hash_table (info),
6592 elf_renumber_gnu_hash_syms, &cinfo);
6593
6594 contents = s->contents + 16;
6595 for (i = 0; i < maskwords; ++i)
6596 {
6597 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6598 contents);
6599 contents += bed->s->arch_size / 8;
6600 }
6601
6602 free (cinfo.bitmask);
6603 free (cinfo.hashcodes);
6604 }
6605 }
6606
6607 s = bfd_get_section_by_name (dynobj, ".dynstr");
6608 BFD_ASSERT (s != NULL);
6609
6610 elf_finalize_dynstr (output_bfd, info);
6611
6612 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6613
6614 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6615 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6616 return FALSE;
6617 }
6618
6619 return TRUE;
6620 }
6621 \f
6622 /* Indicate that we are only retrieving symbol values from this
6623 section. */
6624
6625 void
6626 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6627 {
6628 if (is_elf_hash_table (info->hash))
6629 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6630 _bfd_generic_link_just_syms (sec, info);
6631 }
6632
6633 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6634
6635 static void
6636 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6637 asection *sec)
6638 {
6639 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6640 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6641 }
6642
6643 /* Finish SHF_MERGE section merging. */
6644
6645 bfd_boolean
6646 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6647 {
6648 bfd *ibfd;
6649 asection *sec;
6650
6651 if (!is_elf_hash_table (info->hash))
6652 return FALSE;
6653
6654 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6655 if ((ibfd->flags & DYNAMIC) == 0)
6656 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6657 if ((sec->flags & SEC_MERGE) != 0
6658 && !bfd_is_abs_section (sec->output_section))
6659 {
6660 struct bfd_elf_section_data *secdata;
6661
6662 secdata = elf_section_data (sec);
6663 if (! _bfd_add_merge_section (abfd,
6664 &elf_hash_table (info)->merge_info,
6665 sec, &secdata->sec_info))
6666 return FALSE;
6667 else if (secdata->sec_info)
6668 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6669 }
6670
6671 if (elf_hash_table (info)->merge_info != NULL)
6672 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6673 merge_sections_remove_hook);
6674 return TRUE;
6675 }
6676
6677 /* Create an entry in an ELF linker hash table. */
6678
6679 struct bfd_hash_entry *
6680 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6681 struct bfd_hash_table *table,
6682 const char *string)
6683 {
6684 /* Allocate the structure if it has not already been allocated by a
6685 subclass. */
6686 if (entry == NULL)
6687 {
6688 entry = (struct bfd_hash_entry *)
6689 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6690 if (entry == NULL)
6691 return entry;
6692 }
6693
6694 /* Call the allocation method of the superclass. */
6695 entry = _bfd_link_hash_newfunc (entry, table, string);
6696 if (entry != NULL)
6697 {
6698 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6699 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6700
6701 /* Set local fields. */
6702 ret->indx = -1;
6703 ret->dynindx = -1;
6704 ret->got = htab->init_got_refcount;
6705 ret->plt = htab->init_plt_refcount;
6706 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6707 - offsetof (struct elf_link_hash_entry, size)));
6708 /* Assume that we have been called by a non-ELF symbol reader.
6709 This flag is then reset by the code which reads an ELF input
6710 file. This ensures that a symbol created by a non-ELF symbol
6711 reader will have the flag set correctly. */
6712 ret->non_elf = 1;
6713 }
6714
6715 return entry;
6716 }
6717
6718 /* Copy data from an indirect symbol to its direct symbol, hiding the
6719 old indirect symbol. Also used for copying flags to a weakdef. */
6720
6721 void
6722 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6723 struct elf_link_hash_entry *dir,
6724 struct elf_link_hash_entry *ind)
6725 {
6726 struct elf_link_hash_table *htab;
6727
6728 /* Copy down any references that we may have already seen to the
6729 symbol which just became indirect. */
6730
6731 dir->ref_dynamic |= ind->ref_dynamic;
6732 dir->ref_regular |= ind->ref_regular;
6733 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6734 dir->non_got_ref |= ind->non_got_ref;
6735 dir->needs_plt |= ind->needs_plt;
6736 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6737
6738 if (ind->root.type != bfd_link_hash_indirect)
6739 return;
6740
6741 /* Copy over the global and procedure linkage table refcount entries.
6742 These may have been already set up by a check_relocs routine. */
6743 htab = elf_hash_table (info);
6744 if (ind->got.refcount > htab->init_got_refcount.refcount)
6745 {
6746 if (dir->got.refcount < 0)
6747 dir->got.refcount = 0;
6748 dir->got.refcount += ind->got.refcount;
6749 ind->got.refcount = htab->init_got_refcount.refcount;
6750 }
6751
6752 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6753 {
6754 if (dir->plt.refcount < 0)
6755 dir->plt.refcount = 0;
6756 dir->plt.refcount += ind->plt.refcount;
6757 ind->plt.refcount = htab->init_plt_refcount.refcount;
6758 }
6759
6760 if (ind->dynindx != -1)
6761 {
6762 if (dir->dynindx != -1)
6763 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6764 dir->dynindx = ind->dynindx;
6765 dir->dynstr_index = ind->dynstr_index;
6766 ind->dynindx = -1;
6767 ind->dynstr_index = 0;
6768 }
6769 }
6770
6771 void
6772 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6773 struct elf_link_hash_entry *h,
6774 bfd_boolean force_local)
6775 {
6776 /* STT_GNU_IFUNC symbol must go through PLT. */
6777 if (h->type != STT_GNU_IFUNC)
6778 {
6779 h->plt = elf_hash_table (info)->init_plt_offset;
6780 h->needs_plt = 0;
6781 }
6782 if (force_local)
6783 {
6784 h->forced_local = 1;
6785 if (h->dynindx != -1)
6786 {
6787 h->dynindx = -1;
6788 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6789 h->dynstr_index);
6790 }
6791 }
6792 }
6793
6794 /* Initialize an ELF linker hash table. */
6795
6796 bfd_boolean
6797 _bfd_elf_link_hash_table_init
6798 (struct elf_link_hash_table *table,
6799 bfd *abfd,
6800 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6801 struct bfd_hash_table *,
6802 const char *),
6803 unsigned int entsize,
6804 enum elf_target_id target_id)
6805 {
6806 bfd_boolean ret;
6807 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6808
6809 memset (table, 0, sizeof * table);
6810 table->init_got_refcount.refcount = can_refcount - 1;
6811 table->init_plt_refcount.refcount = can_refcount - 1;
6812 table->init_got_offset.offset = -(bfd_vma) 1;
6813 table->init_plt_offset.offset = -(bfd_vma) 1;
6814 /* The first dynamic symbol is a dummy. */
6815 table->dynsymcount = 1;
6816
6817 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6818
6819 table->root.type = bfd_link_elf_hash_table;
6820 table->hash_table_id = target_id;
6821
6822 return ret;
6823 }
6824
6825 /* Create an ELF linker hash table. */
6826
6827 struct bfd_link_hash_table *
6828 _bfd_elf_link_hash_table_create (bfd *abfd)
6829 {
6830 struct elf_link_hash_table *ret;
6831 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6832
6833 ret = (struct elf_link_hash_table *) bfd_malloc (amt);
6834 if (ret == NULL)
6835 return NULL;
6836
6837 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6838 sizeof (struct elf_link_hash_entry),
6839 GENERIC_ELF_DATA))
6840 {
6841 free (ret);
6842 return NULL;
6843 }
6844
6845 return &ret->root;
6846 }
6847
6848 /* This is a hook for the ELF emulation code in the generic linker to
6849 tell the backend linker what file name to use for the DT_NEEDED
6850 entry for a dynamic object. */
6851
6852 void
6853 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6854 {
6855 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6856 && bfd_get_format (abfd) == bfd_object)
6857 elf_dt_name (abfd) = name;
6858 }
6859
6860 int
6861 bfd_elf_get_dyn_lib_class (bfd *abfd)
6862 {
6863 int lib_class;
6864 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6865 && bfd_get_format (abfd) == bfd_object)
6866 lib_class = elf_dyn_lib_class (abfd);
6867 else
6868 lib_class = 0;
6869 return lib_class;
6870 }
6871
6872 void
6873 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6874 {
6875 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6876 && bfd_get_format (abfd) == bfd_object)
6877 elf_dyn_lib_class (abfd) = lib_class;
6878 }
6879
6880 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6881 the linker ELF emulation code. */
6882
6883 struct bfd_link_needed_list *
6884 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6885 struct bfd_link_info *info)
6886 {
6887 if (! is_elf_hash_table (info->hash))
6888 return NULL;
6889 return elf_hash_table (info)->needed;
6890 }
6891
6892 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6893 hook for the linker ELF emulation code. */
6894
6895 struct bfd_link_needed_list *
6896 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6897 struct bfd_link_info *info)
6898 {
6899 if (! is_elf_hash_table (info->hash))
6900 return NULL;
6901 return elf_hash_table (info)->runpath;
6902 }
6903
6904 /* Get the name actually used for a dynamic object for a link. This
6905 is the SONAME entry if there is one. Otherwise, it is the string
6906 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6907
6908 const char *
6909 bfd_elf_get_dt_soname (bfd *abfd)
6910 {
6911 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6912 && bfd_get_format (abfd) == bfd_object)
6913 return elf_dt_name (abfd);
6914 return NULL;
6915 }
6916
6917 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6918 the ELF linker emulation code. */
6919
6920 bfd_boolean
6921 bfd_elf_get_bfd_needed_list (bfd *abfd,
6922 struct bfd_link_needed_list **pneeded)
6923 {
6924 asection *s;
6925 bfd_byte *dynbuf = NULL;
6926 unsigned int elfsec;
6927 unsigned long shlink;
6928 bfd_byte *extdyn, *extdynend;
6929 size_t extdynsize;
6930 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6931
6932 *pneeded = NULL;
6933
6934 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6935 || bfd_get_format (abfd) != bfd_object)
6936 return TRUE;
6937
6938 s = bfd_get_section_by_name (abfd, ".dynamic");
6939 if (s == NULL || s->size == 0)
6940 return TRUE;
6941
6942 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6943 goto error_return;
6944
6945 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6946 if (elfsec == SHN_BAD)
6947 goto error_return;
6948
6949 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6950
6951 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6952 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6953
6954 extdyn = dynbuf;
6955 extdynend = extdyn + s->size;
6956 for (; extdyn < extdynend; extdyn += extdynsize)
6957 {
6958 Elf_Internal_Dyn dyn;
6959
6960 (*swap_dyn_in) (abfd, extdyn, &dyn);
6961
6962 if (dyn.d_tag == DT_NULL)
6963 break;
6964
6965 if (dyn.d_tag == DT_NEEDED)
6966 {
6967 const char *string;
6968 struct bfd_link_needed_list *l;
6969 unsigned int tagv = dyn.d_un.d_val;
6970 bfd_size_type amt;
6971
6972 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6973 if (string == NULL)
6974 goto error_return;
6975
6976 amt = sizeof *l;
6977 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
6978 if (l == NULL)
6979 goto error_return;
6980
6981 l->by = abfd;
6982 l->name = string;
6983 l->next = *pneeded;
6984 *pneeded = l;
6985 }
6986 }
6987
6988 free (dynbuf);
6989
6990 return TRUE;
6991
6992 error_return:
6993 if (dynbuf != NULL)
6994 free (dynbuf);
6995 return FALSE;
6996 }
6997
6998 struct elf_symbuf_symbol
6999 {
7000 unsigned long st_name; /* Symbol name, index in string tbl */
7001 unsigned char st_info; /* Type and binding attributes */
7002 unsigned char st_other; /* Visibilty, and target specific */
7003 };
7004
7005 struct elf_symbuf_head
7006 {
7007 struct elf_symbuf_symbol *ssym;
7008 bfd_size_type count;
7009 unsigned int st_shndx;
7010 };
7011
7012 struct elf_symbol
7013 {
7014 union
7015 {
7016 Elf_Internal_Sym *isym;
7017 struct elf_symbuf_symbol *ssym;
7018 } u;
7019 const char *name;
7020 };
7021
7022 /* Sort references to symbols by ascending section number. */
7023
7024 static int
7025 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7026 {
7027 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7028 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7029
7030 return s1->st_shndx - s2->st_shndx;
7031 }
7032
7033 static int
7034 elf_sym_name_compare (const void *arg1, const void *arg2)
7035 {
7036 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7037 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7038 return strcmp (s1->name, s2->name);
7039 }
7040
7041 static struct elf_symbuf_head *
7042 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7043 {
7044 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7045 struct elf_symbuf_symbol *ssym;
7046 struct elf_symbuf_head *ssymbuf, *ssymhead;
7047 bfd_size_type i, shndx_count, total_size;
7048
7049 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7050 if (indbuf == NULL)
7051 return NULL;
7052
7053 for (ind = indbuf, i = 0; i < symcount; i++)
7054 if (isymbuf[i].st_shndx != SHN_UNDEF)
7055 *ind++ = &isymbuf[i];
7056 indbufend = ind;
7057
7058 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7059 elf_sort_elf_symbol);
7060
7061 shndx_count = 0;
7062 if (indbufend > indbuf)
7063 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7064 if (ind[0]->st_shndx != ind[1]->st_shndx)
7065 shndx_count++;
7066
7067 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7068 + (indbufend - indbuf) * sizeof (*ssym));
7069 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7070 if (ssymbuf == NULL)
7071 {
7072 free (indbuf);
7073 return NULL;
7074 }
7075
7076 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7077 ssymbuf->ssym = NULL;
7078 ssymbuf->count = shndx_count;
7079 ssymbuf->st_shndx = 0;
7080 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7081 {
7082 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7083 {
7084 ssymhead++;
7085 ssymhead->ssym = ssym;
7086 ssymhead->count = 0;
7087 ssymhead->st_shndx = (*ind)->st_shndx;
7088 }
7089 ssym->st_name = (*ind)->st_name;
7090 ssym->st_info = (*ind)->st_info;
7091 ssym->st_other = (*ind)->st_other;
7092 ssymhead->count++;
7093 }
7094 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7095 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7096 == total_size));
7097
7098 free (indbuf);
7099 return ssymbuf;
7100 }
7101
7102 /* Check if 2 sections define the same set of local and global
7103 symbols. */
7104
7105 static bfd_boolean
7106 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7107 struct bfd_link_info *info)
7108 {
7109 bfd *bfd1, *bfd2;
7110 const struct elf_backend_data *bed1, *bed2;
7111 Elf_Internal_Shdr *hdr1, *hdr2;
7112 bfd_size_type symcount1, symcount2;
7113 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7114 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7115 Elf_Internal_Sym *isym, *isymend;
7116 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7117 bfd_size_type count1, count2, i;
7118 unsigned int shndx1, shndx2;
7119 bfd_boolean result;
7120
7121 bfd1 = sec1->owner;
7122 bfd2 = sec2->owner;
7123
7124 /* Both sections have to be in ELF. */
7125 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7126 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7127 return FALSE;
7128
7129 if (elf_section_type (sec1) != elf_section_type (sec2))
7130 return FALSE;
7131
7132 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7133 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7134 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7135 return FALSE;
7136
7137 bed1 = get_elf_backend_data (bfd1);
7138 bed2 = get_elf_backend_data (bfd2);
7139 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7140 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7141 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7142 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7143
7144 if (symcount1 == 0 || symcount2 == 0)
7145 return FALSE;
7146
7147 result = FALSE;
7148 isymbuf1 = NULL;
7149 isymbuf2 = NULL;
7150 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7151 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7152
7153 if (ssymbuf1 == NULL)
7154 {
7155 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7156 NULL, NULL, NULL);
7157 if (isymbuf1 == NULL)
7158 goto done;
7159
7160 if (!info->reduce_memory_overheads)
7161 elf_tdata (bfd1)->symbuf = ssymbuf1
7162 = elf_create_symbuf (symcount1, isymbuf1);
7163 }
7164
7165 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7166 {
7167 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7168 NULL, NULL, NULL);
7169 if (isymbuf2 == NULL)
7170 goto done;
7171
7172 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7173 elf_tdata (bfd2)->symbuf = ssymbuf2
7174 = elf_create_symbuf (symcount2, isymbuf2);
7175 }
7176
7177 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7178 {
7179 /* Optimized faster version. */
7180 bfd_size_type lo, hi, mid;
7181 struct elf_symbol *symp;
7182 struct elf_symbuf_symbol *ssym, *ssymend;
7183
7184 lo = 0;
7185 hi = ssymbuf1->count;
7186 ssymbuf1++;
7187 count1 = 0;
7188 while (lo < hi)
7189 {
7190 mid = (lo + hi) / 2;
7191 if (shndx1 < ssymbuf1[mid].st_shndx)
7192 hi = mid;
7193 else if (shndx1 > ssymbuf1[mid].st_shndx)
7194 lo = mid + 1;
7195 else
7196 {
7197 count1 = ssymbuf1[mid].count;
7198 ssymbuf1 += mid;
7199 break;
7200 }
7201 }
7202
7203 lo = 0;
7204 hi = ssymbuf2->count;
7205 ssymbuf2++;
7206 count2 = 0;
7207 while (lo < hi)
7208 {
7209 mid = (lo + hi) / 2;
7210 if (shndx2 < ssymbuf2[mid].st_shndx)
7211 hi = mid;
7212 else if (shndx2 > ssymbuf2[mid].st_shndx)
7213 lo = mid + 1;
7214 else
7215 {
7216 count2 = ssymbuf2[mid].count;
7217 ssymbuf2 += mid;
7218 break;
7219 }
7220 }
7221
7222 if (count1 == 0 || count2 == 0 || count1 != count2)
7223 goto done;
7224
7225 symtable1 = (struct elf_symbol *)
7226 bfd_malloc (count1 * sizeof (struct elf_symbol));
7227 symtable2 = (struct elf_symbol *)
7228 bfd_malloc (count2 * sizeof (struct elf_symbol));
7229 if (symtable1 == NULL || symtable2 == NULL)
7230 goto done;
7231
7232 symp = symtable1;
7233 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7234 ssym < ssymend; ssym++, symp++)
7235 {
7236 symp->u.ssym = ssym;
7237 symp->name = bfd_elf_string_from_elf_section (bfd1,
7238 hdr1->sh_link,
7239 ssym->st_name);
7240 }
7241
7242 symp = symtable2;
7243 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7244 ssym < ssymend; ssym++, symp++)
7245 {
7246 symp->u.ssym = ssym;
7247 symp->name = bfd_elf_string_from_elf_section (bfd2,
7248 hdr2->sh_link,
7249 ssym->st_name);
7250 }
7251
7252 /* Sort symbol by name. */
7253 qsort (symtable1, count1, sizeof (struct elf_symbol),
7254 elf_sym_name_compare);
7255 qsort (symtable2, count1, sizeof (struct elf_symbol),
7256 elf_sym_name_compare);
7257
7258 for (i = 0; i < count1; i++)
7259 /* Two symbols must have the same binding, type and name. */
7260 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7261 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7262 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7263 goto done;
7264
7265 result = TRUE;
7266 goto done;
7267 }
7268
7269 symtable1 = (struct elf_symbol *)
7270 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7271 symtable2 = (struct elf_symbol *)
7272 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7273 if (symtable1 == NULL || symtable2 == NULL)
7274 goto done;
7275
7276 /* Count definitions in the section. */
7277 count1 = 0;
7278 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7279 if (isym->st_shndx == shndx1)
7280 symtable1[count1++].u.isym = isym;
7281
7282 count2 = 0;
7283 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7284 if (isym->st_shndx == shndx2)
7285 symtable2[count2++].u.isym = isym;
7286
7287 if (count1 == 0 || count2 == 0 || count1 != count2)
7288 goto done;
7289
7290 for (i = 0; i < count1; i++)
7291 symtable1[i].name
7292 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7293 symtable1[i].u.isym->st_name);
7294
7295 for (i = 0; i < count2; i++)
7296 symtable2[i].name
7297 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7298 symtable2[i].u.isym->st_name);
7299
7300 /* Sort symbol by name. */
7301 qsort (symtable1, count1, sizeof (struct elf_symbol),
7302 elf_sym_name_compare);
7303 qsort (symtable2, count1, sizeof (struct elf_symbol),
7304 elf_sym_name_compare);
7305
7306 for (i = 0; i < count1; i++)
7307 /* Two symbols must have the same binding, type and name. */
7308 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7309 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7310 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7311 goto done;
7312
7313 result = TRUE;
7314
7315 done:
7316 if (symtable1)
7317 free (symtable1);
7318 if (symtable2)
7319 free (symtable2);
7320 if (isymbuf1)
7321 free (isymbuf1);
7322 if (isymbuf2)
7323 free (isymbuf2);
7324
7325 return result;
7326 }
7327
7328 /* Return TRUE if 2 section types are compatible. */
7329
7330 bfd_boolean
7331 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7332 bfd *bbfd, const asection *bsec)
7333 {
7334 if (asec == NULL
7335 || bsec == NULL
7336 || abfd->xvec->flavour != bfd_target_elf_flavour
7337 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7338 return TRUE;
7339
7340 return elf_section_type (asec) == elf_section_type (bsec);
7341 }
7342 \f
7343 /* Final phase of ELF linker. */
7344
7345 /* A structure we use to avoid passing large numbers of arguments. */
7346
7347 struct elf_final_link_info
7348 {
7349 /* General link information. */
7350 struct bfd_link_info *info;
7351 /* Output BFD. */
7352 bfd *output_bfd;
7353 /* Symbol string table. */
7354 struct bfd_strtab_hash *symstrtab;
7355 /* .dynsym section. */
7356 asection *dynsym_sec;
7357 /* .hash section. */
7358 asection *hash_sec;
7359 /* symbol version section (.gnu.version). */
7360 asection *symver_sec;
7361 /* Buffer large enough to hold contents of any section. */
7362 bfd_byte *contents;
7363 /* Buffer large enough to hold external relocs of any section. */
7364 void *external_relocs;
7365 /* Buffer large enough to hold internal relocs of any section. */
7366 Elf_Internal_Rela *internal_relocs;
7367 /* Buffer large enough to hold external local symbols of any input
7368 BFD. */
7369 bfd_byte *external_syms;
7370 /* And a buffer for symbol section indices. */
7371 Elf_External_Sym_Shndx *locsym_shndx;
7372 /* Buffer large enough to hold internal local symbols of any input
7373 BFD. */
7374 Elf_Internal_Sym *internal_syms;
7375 /* Array large enough to hold a symbol index for each local symbol
7376 of any input BFD. */
7377 long *indices;
7378 /* Array large enough to hold a section pointer for each local
7379 symbol of any input BFD. */
7380 asection **sections;
7381 /* Buffer to hold swapped out symbols. */
7382 bfd_byte *symbuf;
7383 /* And one for symbol section indices. */
7384 Elf_External_Sym_Shndx *symshndxbuf;
7385 /* Number of swapped out symbols in buffer. */
7386 size_t symbuf_count;
7387 /* Number of symbols which fit in symbuf. */
7388 size_t symbuf_size;
7389 /* And same for symshndxbuf. */
7390 size_t shndxbuf_size;
7391 };
7392
7393 /* This struct is used to pass information to elf_link_output_extsym. */
7394
7395 struct elf_outext_info
7396 {
7397 bfd_boolean failed;
7398 bfd_boolean localsyms;
7399 struct elf_final_link_info *finfo;
7400 };
7401
7402
7403 /* Support for evaluating a complex relocation.
7404
7405 Complex relocations are generalized, self-describing relocations. The
7406 implementation of them consists of two parts: complex symbols, and the
7407 relocations themselves.
7408
7409 The relocations are use a reserved elf-wide relocation type code (R_RELC
7410 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7411 information (start bit, end bit, word width, etc) into the addend. This
7412 information is extracted from CGEN-generated operand tables within gas.
7413
7414 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7415 internal) representing prefix-notation expressions, including but not
7416 limited to those sorts of expressions normally encoded as addends in the
7417 addend field. The symbol mangling format is:
7418
7419 <node> := <literal>
7420 | <unary-operator> ':' <node>
7421 | <binary-operator> ':' <node> ':' <node>
7422 ;
7423
7424 <literal> := 's' <digits=N> ':' <N character symbol name>
7425 | 'S' <digits=N> ':' <N character section name>
7426 | '#' <hexdigits>
7427 ;
7428
7429 <binary-operator> := as in C
7430 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7431
7432 static void
7433 set_symbol_value (bfd *bfd_with_globals,
7434 Elf_Internal_Sym *isymbuf,
7435 size_t locsymcount,
7436 size_t symidx,
7437 bfd_vma val)
7438 {
7439 struct elf_link_hash_entry **sym_hashes;
7440 struct elf_link_hash_entry *h;
7441 size_t extsymoff = locsymcount;
7442
7443 if (symidx < locsymcount)
7444 {
7445 Elf_Internal_Sym *sym;
7446
7447 sym = isymbuf + symidx;
7448 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7449 {
7450 /* It is a local symbol: move it to the
7451 "absolute" section and give it a value. */
7452 sym->st_shndx = SHN_ABS;
7453 sym->st_value = val;
7454 return;
7455 }
7456 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7457 extsymoff = 0;
7458 }
7459
7460 /* It is a global symbol: set its link type
7461 to "defined" and give it a value. */
7462
7463 sym_hashes = elf_sym_hashes (bfd_with_globals);
7464 h = sym_hashes [symidx - extsymoff];
7465 while (h->root.type == bfd_link_hash_indirect
7466 || h->root.type == bfd_link_hash_warning)
7467 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7468 h->root.type = bfd_link_hash_defined;
7469 h->root.u.def.value = val;
7470 h->root.u.def.section = bfd_abs_section_ptr;
7471 }
7472
7473 static bfd_boolean
7474 resolve_symbol (const char *name,
7475 bfd *input_bfd,
7476 struct elf_final_link_info *finfo,
7477 bfd_vma *result,
7478 Elf_Internal_Sym *isymbuf,
7479 size_t locsymcount)
7480 {
7481 Elf_Internal_Sym *sym;
7482 struct bfd_link_hash_entry *global_entry;
7483 const char *candidate = NULL;
7484 Elf_Internal_Shdr *symtab_hdr;
7485 size_t i;
7486
7487 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7488
7489 for (i = 0; i < locsymcount; ++ i)
7490 {
7491 sym = isymbuf + i;
7492
7493 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7494 continue;
7495
7496 candidate = bfd_elf_string_from_elf_section (input_bfd,
7497 symtab_hdr->sh_link,
7498 sym->st_name);
7499 #ifdef DEBUG
7500 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7501 name, candidate, (unsigned long) sym->st_value);
7502 #endif
7503 if (candidate && strcmp (candidate, name) == 0)
7504 {
7505 asection *sec = finfo->sections [i];
7506
7507 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7508 *result += sec->output_offset + sec->output_section->vma;
7509 #ifdef DEBUG
7510 printf ("Found symbol with value %8.8lx\n",
7511 (unsigned long) *result);
7512 #endif
7513 return TRUE;
7514 }
7515 }
7516
7517 /* Hmm, haven't found it yet. perhaps it is a global. */
7518 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7519 FALSE, FALSE, TRUE);
7520 if (!global_entry)
7521 return FALSE;
7522
7523 if (global_entry->type == bfd_link_hash_defined
7524 || global_entry->type == bfd_link_hash_defweak)
7525 {
7526 *result = (global_entry->u.def.value
7527 + global_entry->u.def.section->output_section->vma
7528 + global_entry->u.def.section->output_offset);
7529 #ifdef DEBUG
7530 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7531 global_entry->root.string, (unsigned long) *result);
7532 #endif
7533 return TRUE;
7534 }
7535
7536 return FALSE;
7537 }
7538
7539 static bfd_boolean
7540 resolve_section (const char *name,
7541 asection *sections,
7542 bfd_vma *result)
7543 {
7544 asection *curr;
7545 unsigned int len;
7546
7547 for (curr = sections; curr; curr = curr->next)
7548 if (strcmp (curr->name, name) == 0)
7549 {
7550 *result = curr->vma;
7551 return TRUE;
7552 }
7553
7554 /* Hmm. still haven't found it. try pseudo-section names. */
7555 for (curr = sections; curr; curr = curr->next)
7556 {
7557 len = strlen (curr->name);
7558 if (len > strlen (name))
7559 continue;
7560
7561 if (strncmp (curr->name, name, len) == 0)
7562 {
7563 if (strncmp (".end", name + len, 4) == 0)
7564 {
7565 *result = curr->vma + curr->size;
7566 return TRUE;
7567 }
7568
7569 /* Insert more pseudo-section names here, if you like. */
7570 }
7571 }
7572
7573 return FALSE;
7574 }
7575
7576 static void
7577 undefined_reference (const char *reftype, const char *name)
7578 {
7579 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7580 reftype, name);
7581 }
7582
7583 static bfd_boolean
7584 eval_symbol (bfd_vma *result,
7585 const char **symp,
7586 bfd *input_bfd,
7587 struct elf_final_link_info *finfo,
7588 bfd_vma dot,
7589 Elf_Internal_Sym *isymbuf,
7590 size_t locsymcount,
7591 int signed_p)
7592 {
7593 size_t len;
7594 size_t symlen;
7595 bfd_vma a;
7596 bfd_vma b;
7597 char symbuf[4096];
7598 const char *sym = *symp;
7599 const char *symend;
7600 bfd_boolean symbol_is_section = FALSE;
7601
7602 len = strlen (sym);
7603 symend = sym + len;
7604
7605 if (len < 1 || len > sizeof (symbuf))
7606 {
7607 bfd_set_error (bfd_error_invalid_operation);
7608 return FALSE;
7609 }
7610
7611 switch (* sym)
7612 {
7613 case '.':
7614 *result = dot;
7615 *symp = sym + 1;
7616 return TRUE;
7617
7618 case '#':
7619 ++sym;
7620 *result = strtoul (sym, (char **) symp, 16);
7621 return TRUE;
7622
7623 case 'S':
7624 symbol_is_section = TRUE;
7625 case 's':
7626 ++sym;
7627 symlen = strtol (sym, (char **) symp, 10);
7628 sym = *symp + 1; /* Skip the trailing ':'. */
7629
7630 if (symend < sym || symlen + 1 > sizeof (symbuf))
7631 {
7632 bfd_set_error (bfd_error_invalid_operation);
7633 return FALSE;
7634 }
7635
7636 memcpy (symbuf, sym, symlen);
7637 symbuf[symlen] = '\0';
7638 *symp = sym + symlen;
7639
7640 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7641 the symbol as a section, or vice-versa. so we're pretty liberal in our
7642 interpretation here; section means "try section first", not "must be a
7643 section", and likewise with symbol. */
7644
7645 if (symbol_is_section)
7646 {
7647 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7648 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7649 isymbuf, locsymcount))
7650 {
7651 undefined_reference ("section", symbuf);
7652 return FALSE;
7653 }
7654 }
7655 else
7656 {
7657 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7658 isymbuf, locsymcount)
7659 && !resolve_section (symbuf, finfo->output_bfd->sections,
7660 result))
7661 {
7662 undefined_reference ("symbol", symbuf);
7663 return FALSE;
7664 }
7665 }
7666
7667 return TRUE;
7668
7669 /* All that remains are operators. */
7670
7671 #define UNARY_OP(op) \
7672 if (strncmp (sym, #op, strlen (#op)) == 0) \
7673 { \
7674 sym += strlen (#op); \
7675 if (*sym == ':') \
7676 ++sym; \
7677 *symp = sym; \
7678 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7679 isymbuf, locsymcount, signed_p)) \
7680 return FALSE; \
7681 if (signed_p) \
7682 *result = op ((bfd_signed_vma) a); \
7683 else \
7684 *result = op a; \
7685 return TRUE; \
7686 }
7687
7688 #define BINARY_OP(op) \
7689 if (strncmp (sym, #op, strlen (#op)) == 0) \
7690 { \
7691 sym += strlen (#op); \
7692 if (*sym == ':') \
7693 ++sym; \
7694 *symp = sym; \
7695 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7696 isymbuf, locsymcount, signed_p)) \
7697 return FALSE; \
7698 ++*symp; \
7699 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7700 isymbuf, locsymcount, signed_p)) \
7701 return FALSE; \
7702 if (signed_p) \
7703 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7704 else \
7705 *result = a op b; \
7706 return TRUE; \
7707 }
7708
7709 default:
7710 UNARY_OP (0-);
7711 BINARY_OP (<<);
7712 BINARY_OP (>>);
7713 BINARY_OP (==);
7714 BINARY_OP (!=);
7715 BINARY_OP (<=);
7716 BINARY_OP (>=);
7717 BINARY_OP (&&);
7718 BINARY_OP (||);
7719 UNARY_OP (~);
7720 UNARY_OP (!);
7721 BINARY_OP (*);
7722 BINARY_OP (/);
7723 BINARY_OP (%);
7724 BINARY_OP (^);
7725 BINARY_OP (|);
7726 BINARY_OP (&);
7727 BINARY_OP (+);
7728 BINARY_OP (-);
7729 BINARY_OP (<);
7730 BINARY_OP (>);
7731 #undef UNARY_OP
7732 #undef BINARY_OP
7733 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7734 bfd_set_error (bfd_error_invalid_operation);
7735 return FALSE;
7736 }
7737 }
7738
7739 static void
7740 put_value (bfd_vma size,
7741 unsigned long chunksz,
7742 bfd *input_bfd,
7743 bfd_vma x,
7744 bfd_byte *location)
7745 {
7746 location += (size - chunksz);
7747
7748 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7749 {
7750 switch (chunksz)
7751 {
7752 default:
7753 case 0:
7754 abort ();
7755 case 1:
7756 bfd_put_8 (input_bfd, x, location);
7757 break;
7758 case 2:
7759 bfd_put_16 (input_bfd, x, location);
7760 break;
7761 case 4:
7762 bfd_put_32 (input_bfd, x, location);
7763 break;
7764 case 8:
7765 #ifdef BFD64
7766 bfd_put_64 (input_bfd, x, location);
7767 #else
7768 abort ();
7769 #endif
7770 break;
7771 }
7772 }
7773 }
7774
7775 static bfd_vma
7776 get_value (bfd_vma size,
7777 unsigned long chunksz,
7778 bfd *input_bfd,
7779 bfd_byte *location)
7780 {
7781 bfd_vma x = 0;
7782
7783 for (; size; size -= chunksz, location += chunksz)
7784 {
7785 switch (chunksz)
7786 {
7787 default:
7788 case 0:
7789 abort ();
7790 case 1:
7791 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7792 break;
7793 case 2:
7794 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7795 break;
7796 case 4:
7797 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7798 break;
7799 case 8:
7800 #ifdef BFD64
7801 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7802 #else
7803 abort ();
7804 #endif
7805 break;
7806 }
7807 }
7808 return x;
7809 }
7810
7811 static void
7812 decode_complex_addend (unsigned long *start, /* in bits */
7813 unsigned long *oplen, /* in bits */
7814 unsigned long *len, /* in bits */
7815 unsigned long *wordsz, /* in bytes */
7816 unsigned long *chunksz, /* in bytes */
7817 unsigned long *lsb0_p,
7818 unsigned long *signed_p,
7819 unsigned long *trunc_p,
7820 unsigned long encoded)
7821 {
7822 * start = encoded & 0x3F;
7823 * len = (encoded >> 6) & 0x3F;
7824 * oplen = (encoded >> 12) & 0x3F;
7825 * wordsz = (encoded >> 18) & 0xF;
7826 * chunksz = (encoded >> 22) & 0xF;
7827 * lsb0_p = (encoded >> 27) & 1;
7828 * signed_p = (encoded >> 28) & 1;
7829 * trunc_p = (encoded >> 29) & 1;
7830 }
7831
7832 bfd_reloc_status_type
7833 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7834 asection *input_section ATTRIBUTE_UNUSED,
7835 bfd_byte *contents,
7836 Elf_Internal_Rela *rel,
7837 bfd_vma relocation)
7838 {
7839 bfd_vma shift, x, mask;
7840 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7841 bfd_reloc_status_type r;
7842
7843 /* Perform this reloc, since it is complex.
7844 (this is not to say that it necessarily refers to a complex
7845 symbol; merely that it is a self-describing CGEN based reloc.
7846 i.e. the addend has the complete reloc information (bit start, end,
7847 word size, etc) encoded within it.). */
7848
7849 decode_complex_addend (&start, &oplen, &len, &wordsz,
7850 &chunksz, &lsb0_p, &signed_p,
7851 &trunc_p, rel->r_addend);
7852
7853 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7854
7855 if (lsb0_p)
7856 shift = (start + 1) - len;
7857 else
7858 shift = (8 * wordsz) - (start + len);
7859
7860 /* FIXME: octets_per_byte. */
7861 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7862
7863 #ifdef DEBUG
7864 printf ("Doing complex reloc: "
7865 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7866 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7867 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7868 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7869 oplen, x, mask, relocation);
7870 #endif
7871
7872 r = bfd_reloc_ok;
7873 if (! trunc_p)
7874 /* Now do an overflow check. */
7875 r = bfd_check_overflow ((signed_p
7876 ? complain_overflow_signed
7877 : complain_overflow_unsigned),
7878 len, 0, (8 * wordsz),
7879 relocation);
7880
7881 /* Do the deed. */
7882 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7883
7884 #ifdef DEBUG
7885 printf (" relocation: %8.8lx\n"
7886 " shifted mask: %8.8lx\n"
7887 " shifted/masked reloc: %8.8lx\n"
7888 " result: %8.8lx\n",
7889 relocation, (mask << shift),
7890 ((relocation & mask) << shift), x);
7891 #endif
7892 /* FIXME: octets_per_byte. */
7893 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7894 return r;
7895 }
7896
7897 /* When performing a relocatable link, the input relocations are
7898 preserved. But, if they reference global symbols, the indices
7899 referenced must be updated. Update all the relocations in
7900 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
7901
7902 static void
7903 elf_link_adjust_relocs (bfd *abfd,
7904 Elf_Internal_Shdr *rel_hdr,
7905 unsigned int count,
7906 struct elf_link_hash_entry **rel_hash)
7907 {
7908 unsigned int i;
7909 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7910 bfd_byte *erela;
7911 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7912 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7913 bfd_vma r_type_mask;
7914 int r_sym_shift;
7915
7916 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
7917 {
7918 swap_in = bed->s->swap_reloc_in;
7919 swap_out = bed->s->swap_reloc_out;
7920 }
7921 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
7922 {
7923 swap_in = bed->s->swap_reloca_in;
7924 swap_out = bed->s->swap_reloca_out;
7925 }
7926 else
7927 abort ();
7928
7929 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7930 abort ();
7931
7932 if (bed->s->arch_size == 32)
7933 {
7934 r_type_mask = 0xff;
7935 r_sym_shift = 8;
7936 }
7937 else
7938 {
7939 r_type_mask = 0xffffffff;
7940 r_sym_shift = 32;
7941 }
7942
7943 erela = rel_hdr->contents;
7944 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
7945 {
7946 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7947 unsigned int j;
7948
7949 if (*rel_hash == NULL)
7950 continue;
7951
7952 BFD_ASSERT ((*rel_hash)->indx >= 0);
7953
7954 (*swap_in) (abfd, erela, irela);
7955 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7956 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7957 | (irela[j].r_info & r_type_mask));
7958 (*swap_out) (abfd, irela, erela);
7959 }
7960 }
7961
7962 struct elf_link_sort_rela
7963 {
7964 union {
7965 bfd_vma offset;
7966 bfd_vma sym_mask;
7967 } u;
7968 enum elf_reloc_type_class type;
7969 /* We use this as an array of size int_rels_per_ext_rel. */
7970 Elf_Internal_Rela rela[1];
7971 };
7972
7973 static int
7974 elf_link_sort_cmp1 (const void *A, const void *B)
7975 {
7976 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
7977 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
7978 int relativea, relativeb;
7979
7980 relativea = a->type == reloc_class_relative;
7981 relativeb = b->type == reloc_class_relative;
7982
7983 if (relativea < relativeb)
7984 return 1;
7985 if (relativea > relativeb)
7986 return -1;
7987 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
7988 return -1;
7989 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
7990 return 1;
7991 if (a->rela->r_offset < b->rela->r_offset)
7992 return -1;
7993 if (a->rela->r_offset > b->rela->r_offset)
7994 return 1;
7995 return 0;
7996 }
7997
7998 static int
7999 elf_link_sort_cmp2 (const void *A, const void *B)
8000 {
8001 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8002 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8003 int copya, copyb;
8004
8005 if (a->u.offset < b->u.offset)
8006 return -1;
8007 if (a->u.offset > b->u.offset)
8008 return 1;
8009 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
8010 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
8011 if (copya < copyb)
8012 return -1;
8013 if (copya > copyb)
8014 return 1;
8015 if (a->rela->r_offset < b->rela->r_offset)
8016 return -1;
8017 if (a->rela->r_offset > b->rela->r_offset)
8018 return 1;
8019 return 0;
8020 }
8021
8022 static size_t
8023 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8024 {
8025 asection *dynamic_relocs;
8026 asection *rela_dyn;
8027 asection *rel_dyn;
8028 bfd_size_type count, size;
8029 size_t i, ret, sort_elt, ext_size;
8030 bfd_byte *sort, *s_non_relative, *p;
8031 struct elf_link_sort_rela *sq;
8032 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8033 int i2e = bed->s->int_rels_per_ext_rel;
8034 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8035 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8036 struct bfd_link_order *lo;
8037 bfd_vma r_sym_mask;
8038 bfd_boolean use_rela;
8039
8040 /* Find a dynamic reloc section. */
8041 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8042 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8043 if (rela_dyn != NULL && rela_dyn->size > 0
8044 && rel_dyn != NULL && rel_dyn->size > 0)
8045 {
8046 bfd_boolean use_rela_initialised = FALSE;
8047
8048 /* This is just here to stop gcc from complaining.
8049 It's initialization checking code is not perfect. */
8050 use_rela = TRUE;
8051
8052 /* Both sections are present. Examine the sizes
8053 of the indirect sections to help us choose. */
8054 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8055 if (lo->type == bfd_indirect_link_order)
8056 {
8057 asection *o = lo->u.indirect.section;
8058
8059 if ((o->size % bed->s->sizeof_rela) == 0)
8060 {
8061 if ((o->size % bed->s->sizeof_rel) == 0)
8062 /* Section size is divisible by both rel and rela sizes.
8063 It is of no help to us. */
8064 ;
8065 else
8066 {
8067 /* Section size is only divisible by rela. */
8068 if (use_rela_initialised && (use_rela == FALSE))
8069 {
8070 _bfd_error_handler
8071 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8072 bfd_set_error (bfd_error_invalid_operation);
8073 return 0;
8074 }
8075 else
8076 {
8077 use_rela = TRUE;
8078 use_rela_initialised = TRUE;
8079 }
8080 }
8081 }
8082 else if ((o->size % bed->s->sizeof_rel) == 0)
8083 {
8084 /* Section size is only divisible by rel. */
8085 if (use_rela_initialised && (use_rela == TRUE))
8086 {
8087 _bfd_error_handler
8088 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8089 bfd_set_error (bfd_error_invalid_operation);
8090 return 0;
8091 }
8092 else
8093 {
8094 use_rela = FALSE;
8095 use_rela_initialised = TRUE;
8096 }
8097 }
8098 else
8099 {
8100 /* The section size is not divisible by either - something is wrong. */
8101 _bfd_error_handler
8102 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8103 bfd_set_error (bfd_error_invalid_operation);
8104 return 0;
8105 }
8106 }
8107
8108 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8109 if (lo->type == bfd_indirect_link_order)
8110 {
8111 asection *o = lo->u.indirect.section;
8112
8113 if ((o->size % bed->s->sizeof_rela) == 0)
8114 {
8115 if ((o->size % bed->s->sizeof_rel) == 0)
8116 /* Section size is divisible by both rel and rela sizes.
8117 It is of no help to us. */
8118 ;
8119 else
8120 {
8121 /* Section size is only divisible by rela. */
8122 if (use_rela_initialised && (use_rela == FALSE))
8123 {
8124 _bfd_error_handler
8125 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8126 bfd_set_error (bfd_error_invalid_operation);
8127 return 0;
8128 }
8129 else
8130 {
8131 use_rela = TRUE;
8132 use_rela_initialised = TRUE;
8133 }
8134 }
8135 }
8136 else if ((o->size % bed->s->sizeof_rel) == 0)
8137 {
8138 /* Section size is only divisible by rel. */
8139 if (use_rela_initialised && (use_rela == TRUE))
8140 {
8141 _bfd_error_handler
8142 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8143 bfd_set_error (bfd_error_invalid_operation);
8144 return 0;
8145 }
8146 else
8147 {
8148 use_rela = FALSE;
8149 use_rela_initialised = TRUE;
8150 }
8151 }
8152 else
8153 {
8154 /* The section size is not divisible by either - something is wrong. */
8155 _bfd_error_handler
8156 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8157 bfd_set_error (bfd_error_invalid_operation);
8158 return 0;
8159 }
8160 }
8161
8162 if (! use_rela_initialised)
8163 /* Make a guess. */
8164 use_rela = TRUE;
8165 }
8166 else if (rela_dyn != NULL && rela_dyn->size > 0)
8167 use_rela = TRUE;
8168 else if (rel_dyn != NULL && rel_dyn->size > 0)
8169 use_rela = FALSE;
8170 else
8171 return 0;
8172
8173 if (use_rela)
8174 {
8175 dynamic_relocs = rela_dyn;
8176 ext_size = bed->s->sizeof_rela;
8177 swap_in = bed->s->swap_reloca_in;
8178 swap_out = bed->s->swap_reloca_out;
8179 }
8180 else
8181 {
8182 dynamic_relocs = rel_dyn;
8183 ext_size = bed->s->sizeof_rel;
8184 swap_in = bed->s->swap_reloc_in;
8185 swap_out = bed->s->swap_reloc_out;
8186 }
8187
8188 size = 0;
8189 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8190 if (lo->type == bfd_indirect_link_order)
8191 size += lo->u.indirect.section->size;
8192
8193 if (size != dynamic_relocs->size)
8194 return 0;
8195
8196 sort_elt = (sizeof (struct elf_link_sort_rela)
8197 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8198
8199 count = dynamic_relocs->size / ext_size;
8200 if (count == 0)
8201 return 0;
8202 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8203
8204 if (sort == NULL)
8205 {
8206 (*info->callbacks->warning)
8207 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8208 return 0;
8209 }
8210
8211 if (bed->s->arch_size == 32)
8212 r_sym_mask = ~(bfd_vma) 0xff;
8213 else
8214 r_sym_mask = ~(bfd_vma) 0xffffffff;
8215
8216 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8217 if (lo->type == bfd_indirect_link_order)
8218 {
8219 bfd_byte *erel, *erelend;
8220 asection *o = lo->u.indirect.section;
8221
8222 if (o->contents == NULL && o->size != 0)
8223 {
8224 /* This is a reloc section that is being handled as a normal
8225 section. See bfd_section_from_shdr. We can't combine
8226 relocs in this case. */
8227 free (sort);
8228 return 0;
8229 }
8230 erel = o->contents;
8231 erelend = o->contents + o->size;
8232 /* FIXME: octets_per_byte. */
8233 p = sort + o->output_offset / ext_size * sort_elt;
8234
8235 while (erel < erelend)
8236 {
8237 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8238
8239 (*swap_in) (abfd, erel, s->rela);
8240 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8241 s->u.sym_mask = r_sym_mask;
8242 p += sort_elt;
8243 erel += ext_size;
8244 }
8245 }
8246
8247 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8248
8249 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8250 {
8251 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8252 if (s->type != reloc_class_relative)
8253 break;
8254 }
8255 ret = i;
8256 s_non_relative = p;
8257
8258 sq = (struct elf_link_sort_rela *) s_non_relative;
8259 for (; i < count; i++, p += sort_elt)
8260 {
8261 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8262 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8263 sq = sp;
8264 sp->u.offset = sq->rela->r_offset;
8265 }
8266
8267 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8268
8269 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8270 if (lo->type == bfd_indirect_link_order)
8271 {
8272 bfd_byte *erel, *erelend;
8273 asection *o = lo->u.indirect.section;
8274
8275 erel = o->contents;
8276 erelend = o->contents + o->size;
8277 /* FIXME: octets_per_byte. */
8278 p = sort + o->output_offset / ext_size * sort_elt;
8279 while (erel < erelend)
8280 {
8281 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8282 (*swap_out) (abfd, s->rela, erel);
8283 p += sort_elt;
8284 erel += ext_size;
8285 }
8286 }
8287
8288 free (sort);
8289 *psec = dynamic_relocs;
8290 return ret;
8291 }
8292
8293 /* Flush the output symbols to the file. */
8294
8295 static bfd_boolean
8296 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8297 const struct elf_backend_data *bed)
8298 {
8299 if (finfo->symbuf_count > 0)
8300 {
8301 Elf_Internal_Shdr *hdr;
8302 file_ptr pos;
8303 bfd_size_type amt;
8304
8305 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8306 pos = hdr->sh_offset + hdr->sh_size;
8307 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8308 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8309 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8310 return FALSE;
8311
8312 hdr->sh_size += amt;
8313 finfo->symbuf_count = 0;
8314 }
8315
8316 return TRUE;
8317 }
8318
8319 /* Add a symbol to the output symbol table. */
8320
8321 static int
8322 elf_link_output_sym (struct elf_final_link_info *finfo,
8323 const char *name,
8324 Elf_Internal_Sym *elfsym,
8325 asection *input_sec,
8326 struct elf_link_hash_entry *h)
8327 {
8328 bfd_byte *dest;
8329 Elf_External_Sym_Shndx *destshndx;
8330 int (*output_symbol_hook)
8331 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8332 struct elf_link_hash_entry *);
8333 const struct elf_backend_data *bed;
8334
8335 bed = get_elf_backend_data (finfo->output_bfd);
8336 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8337 if (output_symbol_hook != NULL)
8338 {
8339 int ret = (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h);
8340 if (ret != 1)
8341 return ret;
8342 }
8343
8344 if (name == NULL || *name == '\0')
8345 elfsym->st_name = 0;
8346 else if (input_sec->flags & SEC_EXCLUDE)
8347 elfsym->st_name = 0;
8348 else
8349 {
8350 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8351 name, TRUE, FALSE);
8352 if (elfsym->st_name == (unsigned long) -1)
8353 return 0;
8354 }
8355
8356 if (finfo->symbuf_count >= finfo->symbuf_size)
8357 {
8358 if (! elf_link_flush_output_syms (finfo, bed))
8359 return 0;
8360 }
8361
8362 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8363 destshndx = finfo->symshndxbuf;
8364 if (destshndx != NULL)
8365 {
8366 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8367 {
8368 bfd_size_type amt;
8369
8370 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8371 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8372 amt * 2);
8373 if (destshndx == NULL)
8374 return 0;
8375 finfo->symshndxbuf = destshndx;
8376 memset ((char *) destshndx + amt, 0, amt);
8377 finfo->shndxbuf_size *= 2;
8378 }
8379 destshndx += bfd_get_symcount (finfo->output_bfd);
8380 }
8381
8382 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8383 finfo->symbuf_count += 1;
8384 bfd_get_symcount (finfo->output_bfd) += 1;
8385
8386 return 1;
8387 }
8388
8389 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8390
8391 static bfd_boolean
8392 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8393 {
8394 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8395 && sym->st_shndx < SHN_LORESERVE)
8396 {
8397 /* The gABI doesn't support dynamic symbols in output sections
8398 beyond 64k. */
8399 (*_bfd_error_handler)
8400 (_("%B: Too many sections: %d (>= %d)"),
8401 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8402 bfd_set_error (bfd_error_nonrepresentable_section);
8403 return FALSE;
8404 }
8405 return TRUE;
8406 }
8407
8408 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8409 allowing an unsatisfied unversioned symbol in the DSO to match a
8410 versioned symbol that would normally require an explicit version.
8411 We also handle the case that a DSO references a hidden symbol
8412 which may be satisfied by a versioned symbol in another DSO. */
8413
8414 static bfd_boolean
8415 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8416 const struct elf_backend_data *bed,
8417 struct elf_link_hash_entry *h)
8418 {
8419 bfd *abfd;
8420 struct elf_link_loaded_list *loaded;
8421
8422 if (!is_elf_hash_table (info->hash))
8423 return FALSE;
8424
8425 switch (h->root.type)
8426 {
8427 default:
8428 abfd = NULL;
8429 break;
8430
8431 case bfd_link_hash_undefined:
8432 case bfd_link_hash_undefweak:
8433 abfd = h->root.u.undef.abfd;
8434 if ((abfd->flags & DYNAMIC) == 0
8435 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8436 return FALSE;
8437 break;
8438
8439 case bfd_link_hash_defined:
8440 case bfd_link_hash_defweak:
8441 abfd = h->root.u.def.section->owner;
8442 break;
8443
8444 case bfd_link_hash_common:
8445 abfd = h->root.u.c.p->section->owner;
8446 break;
8447 }
8448 BFD_ASSERT (abfd != NULL);
8449
8450 for (loaded = elf_hash_table (info)->loaded;
8451 loaded != NULL;
8452 loaded = loaded->next)
8453 {
8454 bfd *input;
8455 Elf_Internal_Shdr *hdr;
8456 bfd_size_type symcount;
8457 bfd_size_type extsymcount;
8458 bfd_size_type extsymoff;
8459 Elf_Internal_Shdr *versymhdr;
8460 Elf_Internal_Sym *isym;
8461 Elf_Internal_Sym *isymend;
8462 Elf_Internal_Sym *isymbuf;
8463 Elf_External_Versym *ever;
8464 Elf_External_Versym *extversym;
8465
8466 input = loaded->abfd;
8467
8468 /* We check each DSO for a possible hidden versioned definition. */
8469 if (input == abfd
8470 || (input->flags & DYNAMIC) == 0
8471 || elf_dynversym (input) == 0)
8472 continue;
8473
8474 hdr = &elf_tdata (input)->dynsymtab_hdr;
8475
8476 symcount = hdr->sh_size / bed->s->sizeof_sym;
8477 if (elf_bad_symtab (input))
8478 {
8479 extsymcount = symcount;
8480 extsymoff = 0;
8481 }
8482 else
8483 {
8484 extsymcount = symcount - hdr->sh_info;
8485 extsymoff = hdr->sh_info;
8486 }
8487
8488 if (extsymcount == 0)
8489 continue;
8490
8491 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8492 NULL, NULL, NULL);
8493 if (isymbuf == NULL)
8494 return FALSE;
8495
8496 /* Read in any version definitions. */
8497 versymhdr = &elf_tdata (input)->dynversym_hdr;
8498 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8499 if (extversym == NULL)
8500 goto error_ret;
8501
8502 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8503 || (bfd_bread (extversym, versymhdr->sh_size, input)
8504 != versymhdr->sh_size))
8505 {
8506 free (extversym);
8507 error_ret:
8508 free (isymbuf);
8509 return FALSE;
8510 }
8511
8512 ever = extversym + extsymoff;
8513 isymend = isymbuf + extsymcount;
8514 for (isym = isymbuf; isym < isymend; isym++, ever++)
8515 {
8516 const char *name;
8517 Elf_Internal_Versym iver;
8518 unsigned short version_index;
8519
8520 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8521 || isym->st_shndx == SHN_UNDEF)
8522 continue;
8523
8524 name = bfd_elf_string_from_elf_section (input,
8525 hdr->sh_link,
8526 isym->st_name);
8527 if (strcmp (name, h->root.root.string) != 0)
8528 continue;
8529
8530 _bfd_elf_swap_versym_in (input, ever, &iver);
8531
8532 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8533 && !(h->def_regular
8534 && h->forced_local))
8535 {
8536 /* If we have a non-hidden versioned sym, then it should
8537 have provided a definition for the undefined sym unless
8538 it is defined in a non-shared object and forced local.
8539 */
8540 abort ();
8541 }
8542
8543 version_index = iver.vs_vers & VERSYM_VERSION;
8544 if (version_index == 1 || version_index == 2)
8545 {
8546 /* This is the base or first version. We can use it. */
8547 free (extversym);
8548 free (isymbuf);
8549 return TRUE;
8550 }
8551 }
8552
8553 free (extversym);
8554 free (isymbuf);
8555 }
8556
8557 return FALSE;
8558 }
8559
8560 /* Add an external symbol to the symbol table. This is called from
8561 the hash table traversal routine. When generating a shared object,
8562 we go through the symbol table twice. The first time we output
8563 anything that might have been forced to local scope in a version
8564 script. The second time we output the symbols that are still
8565 global symbols. */
8566
8567 static bfd_boolean
8568 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
8569 {
8570 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8571 struct elf_final_link_info *finfo = eoinfo->finfo;
8572 bfd_boolean strip;
8573 Elf_Internal_Sym sym;
8574 asection *input_sec;
8575 const struct elf_backend_data *bed;
8576 long indx;
8577 int ret;
8578
8579 if (h->root.type == bfd_link_hash_warning)
8580 {
8581 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8582 if (h->root.type == bfd_link_hash_new)
8583 return TRUE;
8584 }
8585
8586 /* Decide whether to output this symbol in this pass. */
8587 if (eoinfo->localsyms)
8588 {
8589 if (!h->forced_local)
8590 return TRUE;
8591 }
8592 else
8593 {
8594 if (h->forced_local)
8595 return TRUE;
8596 }
8597
8598 bed = get_elf_backend_data (finfo->output_bfd);
8599
8600 if (h->root.type == bfd_link_hash_undefined)
8601 {
8602 /* If we have an undefined symbol reference here then it must have
8603 come from a shared library that is being linked in. (Undefined
8604 references in regular files have already been handled unless
8605 they are in unreferenced sections which are removed by garbage
8606 collection). */
8607 bfd_boolean ignore_undef = FALSE;
8608
8609 /* Some symbols may be special in that the fact that they're
8610 undefined can be safely ignored - let backend determine that. */
8611 if (bed->elf_backend_ignore_undef_symbol)
8612 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8613
8614 /* If we are reporting errors for this situation then do so now. */
8615 if (ignore_undef == FALSE
8616 && h->ref_dynamic
8617 && (!h->ref_regular || finfo->info->gc_sections)
8618 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8619 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8620 {
8621 if (! (finfo->info->callbacks->undefined_symbol
8622 (finfo->info, h->root.root.string,
8623 h->ref_regular ? NULL : h->root.u.undef.abfd,
8624 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8625 {
8626 eoinfo->failed = TRUE;
8627 return FALSE;
8628 }
8629 }
8630 }
8631
8632 /* We should also warn if a forced local symbol is referenced from
8633 shared libraries. */
8634 if (! finfo->info->relocatable
8635 && (! finfo->info->shared)
8636 && h->forced_local
8637 && h->ref_dynamic
8638 && !h->dynamic_def
8639 && !h->dynamic_weak
8640 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8641 {
8642 (*_bfd_error_handler)
8643 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
8644 finfo->output_bfd,
8645 h->root.u.def.section == bfd_abs_section_ptr
8646 ? finfo->output_bfd : h->root.u.def.section->owner,
8647 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
8648 ? "internal"
8649 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
8650 ? "hidden" : "local",
8651 h->root.root.string);
8652 eoinfo->failed = TRUE;
8653 return FALSE;
8654 }
8655
8656 /* We don't want to output symbols that have never been mentioned by
8657 a regular file, or that we have been told to strip. However, if
8658 h->indx is set to -2, the symbol is used by a reloc and we must
8659 output it. */
8660 if (h->indx == -2)
8661 strip = FALSE;
8662 else if ((h->def_dynamic
8663 || h->ref_dynamic
8664 || h->root.type == bfd_link_hash_new)
8665 && !h->def_regular
8666 && !h->ref_regular)
8667 strip = TRUE;
8668 else if (finfo->info->strip == strip_all)
8669 strip = TRUE;
8670 else if (finfo->info->strip == strip_some
8671 && bfd_hash_lookup (finfo->info->keep_hash,
8672 h->root.root.string, FALSE, FALSE) == NULL)
8673 strip = TRUE;
8674 else if (finfo->info->strip_discarded
8675 && (h->root.type == bfd_link_hash_defined
8676 || h->root.type == bfd_link_hash_defweak)
8677 && elf_discarded_section (h->root.u.def.section))
8678 strip = TRUE;
8679 else
8680 strip = FALSE;
8681
8682 /* If we're stripping it, and it's not a dynamic symbol, there's
8683 nothing else to do unless it is a forced local symbol or a
8684 STT_GNU_IFUNC symbol. */
8685 if (strip
8686 && h->dynindx == -1
8687 && h->type != STT_GNU_IFUNC
8688 && !h->forced_local)
8689 return TRUE;
8690
8691 sym.st_value = 0;
8692 sym.st_size = h->size;
8693 sym.st_other = h->other;
8694 if (h->forced_local)
8695 {
8696 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8697 /* Turn off visibility on local symbol. */
8698 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8699 }
8700 else if (h->unique_global)
8701 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8702 else if (h->root.type == bfd_link_hash_undefweak
8703 || h->root.type == bfd_link_hash_defweak)
8704 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8705 else
8706 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8707
8708 switch (h->root.type)
8709 {
8710 default:
8711 case bfd_link_hash_new:
8712 case bfd_link_hash_warning:
8713 abort ();
8714 return FALSE;
8715
8716 case bfd_link_hash_undefined:
8717 case bfd_link_hash_undefweak:
8718 input_sec = bfd_und_section_ptr;
8719 sym.st_shndx = SHN_UNDEF;
8720 break;
8721
8722 case bfd_link_hash_defined:
8723 case bfd_link_hash_defweak:
8724 {
8725 input_sec = h->root.u.def.section;
8726 if (input_sec->output_section != NULL)
8727 {
8728 sym.st_shndx =
8729 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8730 input_sec->output_section);
8731 if (sym.st_shndx == SHN_BAD)
8732 {
8733 (*_bfd_error_handler)
8734 (_("%B: could not find output section %A for input section %A"),
8735 finfo->output_bfd, input_sec->output_section, input_sec);
8736 eoinfo->failed = TRUE;
8737 return FALSE;
8738 }
8739
8740 /* ELF symbols in relocatable files are section relative,
8741 but in nonrelocatable files they are virtual
8742 addresses. */
8743 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8744 if (! finfo->info->relocatable)
8745 {
8746 sym.st_value += input_sec->output_section->vma;
8747 if (h->type == STT_TLS)
8748 {
8749 asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8750 if (tls_sec != NULL)
8751 sym.st_value -= tls_sec->vma;
8752 else
8753 {
8754 /* The TLS section may have been garbage collected. */
8755 BFD_ASSERT (finfo->info->gc_sections
8756 && !input_sec->gc_mark);
8757 }
8758 }
8759 }
8760 }
8761 else
8762 {
8763 BFD_ASSERT (input_sec->owner == NULL
8764 || (input_sec->owner->flags & DYNAMIC) != 0);
8765 sym.st_shndx = SHN_UNDEF;
8766 input_sec = bfd_und_section_ptr;
8767 }
8768 }
8769 break;
8770
8771 case bfd_link_hash_common:
8772 input_sec = h->root.u.c.p->section;
8773 sym.st_shndx = bed->common_section_index (input_sec);
8774 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8775 break;
8776
8777 case bfd_link_hash_indirect:
8778 /* These symbols are created by symbol versioning. They point
8779 to the decorated version of the name. For example, if the
8780 symbol foo@@GNU_1.2 is the default, which should be used when
8781 foo is used with no version, then we add an indirect symbol
8782 foo which points to foo@@GNU_1.2. We ignore these symbols,
8783 since the indirected symbol is already in the hash table. */
8784 return TRUE;
8785 }
8786
8787 /* Give the processor backend a chance to tweak the symbol value,
8788 and also to finish up anything that needs to be done for this
8789 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8790 forced local syms when non-shared is due to a historical quirk.
8791 STT_GNU_IFUNC symbol must go through PLT. */
8792 if ((h->type == STT_GNU_IFUNC
8793 && h->def_regular
8794 && !finfo->info->relocatable)
8795 || ((h->dynindx != -1
8796 || h->forced_local)
8797 && ((finfo->info->shared
8798 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8799 || h->root.type != bfd_link_hash_undefweak))
8800 || !h->forced_local)
8801 && elf_hash_table (finfo->info)->dynamic_sections_created))
8802 {
8803 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8804 (finfo->output_bfd, finfo->info, h, &sym)))
8805 {
8806 eoinfo->failed = TRUE;
8807 return FALSE;
8808 }
8809 }
8810
8811 /* If we are marking the symbol as undefined, and there are no
8812 non-weak references to this symbol from a regular object, then
8813 mark the symbol as weak undefined; if there are non-weak
8814 references, mark the symbol as strong. We can't do this earlier,
8815 because it might not be marked as undefined until the
8816 finish_dynamic_symbol routine gets through with it. */
8817 if (sym.st_shndx == SHN_UNDEF
8818 && h->ref_regular
8819 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8820 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8821 {
8822 int bindtype;
8823 unsigned int type = ELF_ST_TYPE (sym.st_info);
8824
8825 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8826 if (type == STT_GNU_IFUNC)
8827 type = STT_FUNC;
8828
8829 if (h->ref_regular_nonweak)
8830 bindtype = STB_GLOBAL;
8831 else
8832 bindtype = STB_WEAK;
8833 sym.st_info = ELF_ST_INFO (bindtype, type);
8834 }
8835
8836 /* If this is a symbol defined in a dynamic library, don't use the
8837 symbol size from the dynamic library. Relinking an executable
8838 against a new library may introduce gratuitous changes in the
8839 executable's symbols if we keep the size. */
8840 if (sym.st_shndx == SHN_UNDEF
8841 && !h->def_regular
8842 && h->def_dynamic)
8843 sym.st_size = 0;
8844
8845 /* If a non-weak symbol with non-default visibility is not defined
8846 locally, it is a fatal error. */
8847 if (! finfo->info->relocatable
8848 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8849 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8850 && h->root.type == bfd_link_hash_undefined
8851 && !h->def_regular)
8852 {
8853 (*_bfd_error_handler)
8854 (_("%B: %s symbol `%s' isn't defined"),
8855 finfo->output_bfd,
8856 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
8857 ? "protected"
8858 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
8859 ? "internal" : "hidden",
8860 h->root.root.string);
8861 eoinfo->failed = TRUE;
8862 return FALSE;
8863 }
8864
8865 /* If this symbol should be put in the .dynsym section, then put it
8866 there now. We already know the symbol index. We also fill in
8867 the entry in the .hash section. */
8868 if (h->dynindx != -1
8869 && elf_hash_table (finfo->info)->dynamic_sections_created)
8870 {
8871 bfd_byte *esym;
8872
8873 sym.st_name = h->dynstr_index;
8874 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8875 if (! check_dynsym (finfo->output_bfd, &sym))
8876 {
8877 eoinfo->failed = TRUE;
8878 return FALSE;
8879 }
8880 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8881
8882 if (finfo->hash_sec != NULL)
8883 {
8884 size_t hash_entry_size;
8885 bfd_byte *bucketpos;
8886 bfd_vma chain;
8887 size_t bucketcount;
8888 size_t bucket;
8889
8890 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8891 bucket = h->u.elf_hash_value % bucketcount;
8892
8893 hash_entry_size
8894 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8895 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8896 + (bucket + 2) * hash_entry_size);
8897 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8898 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8899 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8900 ((bfd_byte *) finfo->hash_sec->contents
8901 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8902 }
8903
8904 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8905 {
8906 Elf_Internal_Versym iversym;
8907 Elf_External_Versym *eversym;
8908
8909 if (!h->def_regular)
8910 {
8911 if (h->verinfo.verdef == NULL)
8912 iversym.vs_vers = 0;
8913 else
8914 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8915 }
8916 else
8917 {
8918 if (h->verinfo.vertree == NULL)
8919 iversym.vs_vers = 1;
8920 else
8921 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8922 if (finfo->info->create_default_symver)
8923 iversym.vs_vers++;
8924 }
8925
8926 if (h->hidden)
8927 iversym.vs_vers |= VERSYM_HIDDEN;
8928
8929 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8930 eversym += h->dynindx;
8931 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8932 }
8933 }
8934
8935 /* If we're stripping it, then it was just a dynamic symbol, and
8936 there's nothing else to do. */
8937 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8938 return TRUE;
8939
8940 indx = bfd_get_symcount (finfo->output_bfd);
8941 ret = elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h);
8942 if (ret == 0)
8943 {
8944 eoinfo->failed = TRUE;
8945 return FALSE;
8946 }
8947 else if (ret == 1)
8948 h->indx = indx;
8949 else if (h->indx == -2)
8950 abort();
8951
8952 return TRUE;
8953 }
8954
8955 /* Return TRUE if special handling is done for relocs in SEC against
8956 symbols defined in discarded sections. */
8957
8958 static bfd_boolean
8959 elf_section_ignore_discarded_relocs (asection *sec)
8960 {
8961 const struct elf_backend_data *bed;
8962
8963 switch (sec->sec_info_type)
8964 {
8965 case ELF_INFO_TYPE_STABS:
8966 case ELF_INFO_TYPE_EH_FRAME:
8967 return TRUE;
8968 default:
8969 break;
8970 }
8971
8972 bed = get_elf_backend_data (sec->owner);
8973 if (bed->elf_backend_ignore_discarded_relocs != NULL
8974 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8975 return TRUE;
8976
8977 return FALSE;
8978 }
8979
8980 /* Return a mask saying how ld should treat relocations in SEC against
8981 symbols defined in discarded sections. If this function returns
8982 COMPLAIN set, ld will issue a warning message. If this function
8983 returns PRETEND set, and the discarded section was link-once and the
8984 same size as the kept link-once section, ld will pretend that the
8985 symbol was actually defined in the kept section. Otherwise ld will
8986 zero the reloc (at least that is the intent, but some cooperation by
8987 the target dependent code is needed, particularly for REL targets). */
8988
8989 unsigned int
8990 _bfd_elf_default_action_discarded (asection *sec)
8991 {
8992 if (sec->flags & SEC_DEBUGGING)
8993 return PRETEND;
8994
8995 if (strcmp (".eh_frame", sec->name) == 0)
8996 return 0;
8997
8998 if (strcmp (".gcc_except_table", sec->name) == 0)
8999 return 0;
9000
9001 return COMPLAIN | PRETEND;
9002 }
9003
9004 /* Find a match between a section and a member of a section group. */
9005
9006 static asection *
9007 match_group_member (asection *sec, asection *group,
9008 struct bfd_link_info *info)
9009 {
9010 asection *first = elf_next_in_group (group);
9011 asection *s = first;
9012
9013 while (s != NULL)
9014 {
9015 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9016 return s;
9017
9018 s = elf_next_in_group (s);
9019 if (s == first)
9020 break;
9021 }
9022
9023 return NULL;
9024 }
9025
9026 /* Check if the kept section of a discarded section SEC can be used
9027 to replace it. Return the replacement if it is OK. Otherwise return
9028 NULL. */
9029
9030 asection *
9031 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9032 {
9033 asection *kept;
9034
9035 kept = sec->kept_section;
9036 if (kept != NULL)
9037 {
9038 if ((kept->flags & SEC_GROUP) != 0)
9039 kept = match_group_member (sec, kept, info);
9040 if (kept != NULL
9041 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9042 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9043 kept = NULL;
9044 sec->kept_section = kept;
9045 }
9046 return kept;
9047 }
9048
9049 /* Link an input file into the linker output file. This function
9050 handles all the sections and relocations of the input file at once.
9051 This is so that we only have to read the local symbols once, and
9052 don't have to keep them in memory. */
9053
9054 static bfd_boolean
9055 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
9056 {
9057 int (*relocate_section)
9058 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9059 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9060 bfd *output_bfd;
9061 Elf_Internal_Shdr *symtab_hdr;
9062 size_t locsymcount;
9063 size_t extsymoff;
9064 Elf_Internal_Sym *isymbuf;
9065 Elf_Internal_Sym *isym;
9066 Elf_Internal_Sym *isymend;
9067 long *pindex;
9068 asection **ppsection;
9069 asection *o;
9070 const struct elf_backend_data *bed;
9071 struct elf_link_hash_entry **sym_hashes;
9072
9073 output_bfd = finfo->output_bfd;
9074 bed = get_elf_backend_data (output_bfd);
9075 relocate_section = bed->elf_backend_relocate_section;
9076
9077 /* If this is a dynamic object, we don't want to do anything here:
9078 we don't want the local symbols, and we don't want the section
9079 contents. */
9080 if ((input_bfd->flags & DYNAMIC) != 0)
9081 return TRUE;
9082
9083 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9084 if (elf_bad_symtab (input_bfd))
9085 {
9086 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9087 extsymoff = 0;
9088 }
9089 else
9090 {
9091 locsymcount = symtab_hdr->sh_info;
9092 extsymoff = symtab_hdr->sh_info;
9093 }
9094
9095 /* Read the local symbols. */
9096 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9097 if (isymbuf == NULL && locsymcount != 0)
9098 {
9099 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9100 finfo->internal_syms,
9101 finfo->external_syms,
9102 finfo->locsym_shndx);
9103 if (isymbuf == NULL)
9104 return FALSE;
9105 }
9106
9107 /* Find local symbol sections and adjust values of symbols in
9108 SEC_MERGE sections. Write out those local symbols we know are
9109 going into the output file. */
9110 isymend = isymbuf + locsymcount;
9111 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
9112 isym < isymend;
9113 isym++, pindex++, ppsection++)
9114 {
9115 asection *isec;
9116 const char *name;
9117 Elf_Internal_Sym osym;
9118 long indx;
9119 int ret;
9120
9121 *pindex = -1;
9122
9123 if (elf_bad_symtab (input_bfd))
9124 {
9125 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9126 {
9127 *ppsection = NULL;
9128 continue;
9129 }
9130 }
9131
9132 if (isym->st_shndx == SHN_UNDEF)
9133 isec = bfd_und_section_ptr;
9134 else if (isym->st_shndx == SHN_ABS)
9135 isec = bfd_abs_section_ptr;
9136 else if (isym->st_shndx == SHN_COMMON)
9137 isec = bfd_com_section_ptr;
9138 else
9139 {
9140 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9141 if (isec == NULL)
9142 {
9143 /* Don't attempt to output symbols with st_shnx in the
9144 reserved range other than SHN_ABS and SHN_COMMON. */
9145 *ppsection = NULL;
9146 continue;
9147 }
9148 else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
9149 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9150 isym->st_value =
9151 _bfd_merged_section_offset (output_bfd, &isec,
9152 elf_section_data (isec)->sec_info,
9153 isym->st_value);
9154 }
9155
9156 *ppsection = isec;
9157
9158 /* Don't output the first, undefined, symbol. */
9159 if (ppsection == finfo->sections)
9160 continue;
9161
9162 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9163 {
9164 /* We never output section symbols. Instead, we use the
9165 section symbol of the corresponding section in the output
9166 file. */
9167 continue;
9168 }
9169
9170 /* If we are stripping all symbols, we don't want to output this
9171 one. */
9172 if (finfo->info->strip == strip_all)
9173 continue;
9174
9175 /* If we are discarding all local symbols, we don't want to
9176 output this one. If we are generating a relocatable output
9177 file, then some of the local symbols may be required by
9178 relocs; we output them below as we discover that they are
9179 needed. */
9180 if (finfo->info->discard == discard_all)
9181 continue;
9182
9183 /* If this symbol is defined in a section which we are
9184 discarding, we don't need to keep it. */
9185 if (isym->st_shndx != SHN_UNDEF
9186 && isym->st_shndx < SHN_LORESERVE
9187 && bfd_section_removed_from_list (output_bfd,
9188 isec->output_section))
9189 continue;
9190
9191 /* Get the name of the symbol. */
9192 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9193 isym->st_name);
9194 if (name == NULL)
9195 return FALSE;
9196
9197 /* See if we are discarding symbols with this name. */
9198 if ((finfo->info->strip == strip_some
9199 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
9200 == NULL))
9201 || (((finfo->info->discard == discard_sec_merge
9202 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
9203 || finfo->info->discard == discard_l)
9204 && bfd_is_local_label_name (input_bfd, name)))
9205 continue;
9206
9207 osym = *isym;
9208
9209 /* Adjust the section index for the output file. */
9210 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9211 isec->output_section);
9212 if (osym.st_shndx == SHN_BAD)
9213 return FALSE;
9214
9215 /* ELF symbols in relocatable files are section relative, but
9216 in executable files they are virtual addresses. Note that
9217 this code assumes that all ELF sections have an associated
9218 BFD section with a reasonable value for output_offset; below
9219 we assume that they also have a reasonable value for
9220 output_section. Any special sections must be set up to meet
9221 these requirements. */
9222 osym.st_value += isec->output_offset;
9223 if (! finfo->info->relocatable)
9224 {
9225 osym.st_value += isec->output_section->vma;
9226 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9227 {
9228 /* STT_TLS symbols are relative to PT_TLS segment base. */
9229 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9230 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9231 }
9232 }
9233
9234 indx = bfd_get_symcount (output_bfd);
9235 ret = elf_link_output_sym (finfo, name, &osym, isec, NULL);
9236 if (ret == 0)
9237 return FALSE;
9238 else if (ret == 1)
9239 *pindex = indx;
9240 }
9241
9242 /* Relocate the contents of each section. */
9243 sym_hashes = elf_sym_hashes (input_bfd);
9244 for (o = input_bfd->sections; o != NULL; o = o->next)
9245 {
9246 bfd_byte *contents;
9247
9248 if (! o->linker_mark)
9249 {
9250 /* This section was omitted from the link. */
9251 continue;
9252 }
9253
9254 if (finfo->info->relocatable
9255 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9256 {
9257 /* Deal with the group signature symbol. */
9258 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9259 unsigned long symndx = sec_data->this_hdr.sh_info;
9260 asection *osec = o->output_section;
9261
9262 if (symndx >= locsymcount
9263 || (elf_bad_symtab (input_bfd)
9264 && finfo->sections[symndx] == NULL))
9265 {
9266 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9267 while (h->root.type == bfd_link_hash_indirect
9268 || h->root.type == bfd_link_hash_warning)
9269 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9270 /* Arrange for symbol to be output. */
9271 h->indx = -2;
9272 elf_section_data (osec)->this_hdr.sh_info = -2;
9273 }
9274 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9275 {
9276 /* We'll use the output section target_index. */
9277 asection *sec = finfo->sections[symndx]->output_section;
9278 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9279 }
9280 else
9281 {
9282 if (finfo->indices[symndx] == -1)
9283 {
9284 /* Otherwise output the local symbol now. */
9285 Elf_Internal_Sym sym = isymbuf[symndx];
9286 asection *sec = finfo->sections[symndx]->output_section;
9287 const char *name;
9288 long indx;
9289 int ret;
9290
9291 name = bfd_elf_string_from_elf_section (input_bfd,
9292 symtab_hdr->sh_link,
9293 sym.st_name);
9294 if (name == NULL)
9295 return FALSE;
9296
9297 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9298 sec);
9299 if (sym.st_shndx == SHN_BAD)
9300 return FALSE;
9301
9302 sym.st_value += o->output_offset;
9303
9304 indx = bfd_get_symcount (output_bfd);
9305 ret = elf_link_output_sym (finfo, name, &sym, o, NULL);
9306 if (ret == 0)
9307 return FALSE;
9308 else if (ret == 1)
9309 finfo->indices[symndx] = indx;
9310 else
9311 abort ();
9312 }
9313 elf_section_data (osec)->this_hdr.sh_info
9314 = finfo->indices[symndx];
9315 }
9316 }
9317
9318 if ((o->flags & SEC_HAS_CONTENTS) == 0
9319 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9320 continue;
9321
9322 if ((o->flags & SEC_LINKER_CREATED) != 0)
9323 {
9324 /* Section was created by _bfd_elf_link_create_dynamic_sections
9325 or somesuch. */
9326 continue;
9327 }
9328
9329 /* Get the contents of the section. They have been cached by a
9330 relaxation routine. Note that o is a section in an input
9331 file, so the contents field will not have been set by any of
9332 the routines which work on output files. */
9333 if (elf_section_data (o)->this_hdr.contents != NULL)
9334 contents = elf_section_data (o)->this_hdr.contents;
9335 else
9336 {
9337 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
9338
9339 contents = finfo->contents;
9340 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
9341 return FALSE;
9342 }
9343
9344 if ((o->flags & SEC_RELOC) != 0)
9345 {
9346 Elf_Internal_Rela *internal_relocs;
9347 Elf_Internal_Rela *rel, *relend;
9348 bfd_vma r_type_mask;
9349 int r_sym_shift;
9350 int action_discarded;
9351 int ret;
9352
9353 /* Get the swapped relocs. */
9354 internal_relocs
9355 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9356 finfo->internal_relocs, FALSE);
9357 if (internal_relocs == NULL
9358 && o->reloc_count > 0)
9359 return FALSE;
9360
9361 if (bed->s->arch_size == 32)
9362 {
9363 r_type_mask = 0xff;
9364 r_sym_shift = 8;
9365 }
9366 else
9367 {
9368 r_type_mask = 0xffffffff;
9369 r_sym_shift = 32;
9370 }
9371
9372 action_discarded = -1;
9373 if (!elf_section_ignore_discarded_relocs (o))
9374 action_discarded = (*bed->action_discarded) (o);
9375
9376 /* Run through the relocs evaluating complex reloc symbols and
9377 looking for relocs against symbols from discarded sections
9378 or section symbols from removed link-once sections.
9379 Complain about relocs against discarded sections. Zero
9380 relocs against removed link-once sections. */
9381
9382 rel = internal_relocs;
9383 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9384 for ( ; rel < relend; rel++)
9385 {
9386 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9387 unsigned int s_type;
9388 asection **ps, *sec;
9389 struct elf_link_hash_entry *h = NULL;
9390 const char *sym_name;
9391
9392 if (r_symndx == STN_UNDEF)
9393 continue;
9394
9395 if (r_symndx >= locsymcount
9396 || (elf_bad_symtab (input_bfd)
9397 && finfo->sections[r_symndx] == NULL))
9398 {
9399 h = sym_hashes[r_symndx - extsymoff];
9400
9401 /* Badly formatted input files can contain relocs that
9402 reference non-existant symbols. Check here so that
9403 we do not seg fault. */
9404 if (h == NULL)
9405 {
9406 char buffer [32];
9407
9408 sprintf_vma (buffer, rel->r_info);
9409 (*_bfd_error_handler)
9410 (_("error: %B contains a reloc (0x%s) for section %A "
9411 "that references a non-existent global symbol"),
9412 input_bfd, o, buffer);
9413 bfd_set_error (bfd_error_bad_value);
9414 return FALSE;
9415 }
9416
9417 while (h->root.type == bfd_link_hash_indirect
9418 || h->root.type == bfd_link_hash_warning)
9419 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9420
9421 s_type = h->type;
9422
9423 ps = NULL;
9424 if (h->root.type == bfd_link_hash_defined
9425 || h->root.type == bfd_link_hash_defweak)
9426 ps = &h->root.u.def.section;
9427
9428 sym_name = h->root.root.string;
9429 }
9430 else
9431 {
9432 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9433
9434 s_type = ELF_ST_TYPE (sym->st_info);
9435 ps = &finfo->sections[r_symndx];
9436 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9437 sym, *ps);
9438 }
9439
9440 if ((s_type == STT_RELC || s_type == STT_SRELC)
9441 && !finfo->info->relocatable)
9442 {
9443 bfd_vma val;
9444 bfd_vma dot = (rel->r_offset
9445 + o->output_offset + o->output_section->vma);
9446 #ifdef DEBUG
9447 printf ("Encountered a complex symbol!");
9448 printf (" (input_bfd %s, section %s, reloc %ld\n",
9449 input_bfd->filename, o->name, rel - internal_relocs);
9450 printf (" symbol: idx %8.8lx, name %s\n",
9451 r_symndx, sym_name);
9452 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9453 (unsigned long) rel->r_info,
9454 (unsigned long) rel->r_offset);
9455 #endif
9456 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9457 isymbuf, locsymcount, s_type == STT_SRELC))
9458 return FALSE;
9459
9460 /* Symbol evaluated OK. Update to absolute value. */
9461 set_symbol_value (input_bfd, isymbuf, locsymcount,
9462 r_symndx, val);
9463 continue;
9464 }
9465
9466 if (action_discarded != -1 && ps != NULL)
9467 {
9468 /* Complain if the definition comes from a
9469 discarded section. */
9470 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9471 {
9472 BFD_ASSERT (r_symndx != 0);
9473 if (action_discarded & COMPLAIN)
9474 (*finfo->info->callbacks->einfo)
9475 (_("%X`%s' referenced in section `%A' of %B: "
9476 "defined in discarded section `%A' of %B\n"),
9477 sym_name, o, input_bfd, sec, sec->owner);
9478
9479 /* Try to do the best we can to support buggy old
9480 versions of gcc. Pretend that the symbol is
9481 really defined in the kept linkonce section.
9482 FIXME: This is quite broken. Modifying the
9483 symbol here means we will be changing all later
9484 uses of the symbol, not just in this section. */
9485 if (action_discarded & PRETEND)
9486 {
9487 asection *kept;
9488
9489 kept = _bfd_elf_check_kept_section (sec,
9490 finfo->info);
9491 if (kept != NULL)
9492 {
9493 *ps = kept;
9494 continue;
9495 }
9496 }
9497 }
9498 }
9499 }
9500
9501 /* Relocate the section by invoking a back end routine.
9502
9503 The back end routine is responsible for adjusting the
9504 section contents as necessary, and (if using Rela relocs
9505 and generating a relocatable output file) adjusting the
9506 reloc addend as necessary.
9507
9508 The back end routine does not have to worry about setting
9509 the reloc address or the reloc symbol index.
9510
9511 The back end routine is given a pointer to the swapped in
9512 internal symbols, and can access the hash table entries
9513 for the external symbols via elf_sym_hashes (input_bfd).
9514
9515 When generating relocatable output, the back end routine
9516 must handle STB_LOCAL/STT_SECTION symbols specially. The
9517 output symbol is going to be a section symbol
9518 corresponding to the output section, which will require
9519 the addend to be adjusted. */
9520
9521 ret = (*relocate_section) (output_bfd, finfo->info,
9522 input_bfd, o, contents,
9523 internal_relocs,
9524 isymbuf,
9525 finfo->sections);
9526 if (!ret)
9527 return FALSE;
9528
9529 if (ret == 2
9530 || finfo->info->relocatable
9531 || finfo->info->emitrelocations)
9532 {
9533 Elf_Internal_Rela *irela;
9534 Elf_Internal_Rela *irelaend;
9535 bfd_vma last_offset;
9536 struct elf_link_hash_entry **rel_hash;
9537 struct elf_link_hash_entry **rel_hash_list;
9538 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
9539 unsigned int next_erel;
9540 bfd_boolean rela_normal;
9541
9542 input_rel_hdr = &elf_section_data (o)->rel_hdr;
9543 rela_normal = (bed->rela_normal
9544 && (input_rel_hdr->sh_entsize
9545 == bed->s->sizeof_rela));
9546
9547 /* Adjust the reloc addresses and symbol indices. */
9548
9549 irela = internal_relocs;
9550 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9551 rel_hash = (elf_section_data (o->output_section)->rel_hashes
9552 + elf_section_data (o->output_section)->rel_count
9553 + elf_section_data (o->output_section)->rel_count2);
9554 rel_hash_list = rel_hash;
9555 last_offset = o->output_offset;
9556 if (!finfo->info->relocatable)
9557 last_offset += o->output_section->vma;
9558 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9559 {
9560 unsigned long r_symndx;
9561 asection *sec;
9562 Elf_Internal_Sym sym;
9563
9564 if (next_erel == bed->s->int_rels_per_ext_rel)
9565 {
9566 rel_hash++;
9567 next_erel = 0;
9568 }
9569
9570 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9571 finfo->info, o,
9572 irela->r_offset);
9573 if (irela->r_offset >= (bfd_vma) -2)
9574 {
9575 /* This is a reloc for a deleted entry or somesuch.
9576 Turn it into an R_*_NONE reloc, at the same
9577 offset as the last reloc. elf_eh_frame.c and
9578 bfd_elf_discard_info rely on reloc offsets
9579 being ordered. */
9580 irela->r_offset = last_offset;
9581 irela->r_info = 0;
9582 irela->r_addend = 0;
9583 continue;
9584 }
9585
9586 irela->r_offset += o->output_offset;
9587
9588 /* Relocs in an executable have to be virtual addresses. */
9589 if (!finfo->info->relocatable)
9590 irela->r_offset += o->output_section->vma;
9591
9592 last_offset = irela->r_offset;
9593
9594 r_symndx = irela->r_info >> r_sym_shift;
9595 if (r_symndx == STN_UNDEF)
9596 continue;
9597
9598 if (r_symndx >= locsymcount
9599 || (elf_bad_symtab (input_bfd)
9600 && finfo->sections[r_symndx] == NULL))
9601 {
9602 struct elf_link_hash_entry *rh;
9603 unsigned long indx;
9604
9605 /* This is a reloc against a global symbol. We
9606 have not yet output all the local symbols, so
9607 we do not know the symbol index of any global
9608 symbol. We set the rel_hash entry for this
9609 reloc to point to the global hash table entry
9610 for this symbol. The symbol index is then
9611 set at the end of bfd_elf_final_link. */
9612 indx = r_symndx - extsymoff;
9613 rh = elf_sym_hashes (input_bfd)[indx];
9614 while (rh->root.type == bfd_link_hash_indirect
9615 || rh->root.type == bfd_link_hash_warning)
9616 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9617
9618 /* Setting the index to -2 tells
9619 elf_link_output_extsym that this symbol is
9620 used by a reloc. */
9621 BFD_ASSERT (rh->indx < 0);
9622 rh->indx = -2;
9623
9624 *rel_hash = rh;
9625
9626 continue;
9627 }
9628
9629 /* This is a reloc against a local symbol. */
9630
9631 *rel_hash = NULL;
9632 sym = isymbuf[r_symndx];
9633 sec = finfo->sections[r_symndx];
9634 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9635 {
9636 /* I suppose the backend ought to fill in the
9637 section of any STT_SECTION symbol against a
9638 processor specific section. */
9639 r_symndx = 0;
9640 if (bfd_is_abs_section (sec))
9641 ;
9642 else if (sec == NULL || sec->owner == NULL)
9643 {
9644 bfd_set_error (bfd_error_bad_value);
9645 return FALSE;
9646 }
9647 else
9648 {
9649 asection *osec = sec->output_section;
9650
9651 /* If we have discarded a section, the output
9652 section will be the absolute section. In
9653 case of discarded SEC_MERGE sections, use
9654 the kept section. relocate_section should
9655 have already handled discarded linkonce
9656 sections. */
9657 if (bfd_is_abs_section (osec)
9658 && sec->kept_section != NULL
9659 && sec->kept_section->output_section != NULL)
9660 {
9661 osec = sec->kept_section->output_section;
9662 irela->r_addend -= osec->vma;
9663 }
9664
9665 if (!bfd_is_abs_section (osec))
9666 {
9667 r_symndx = osec->target_index;
9668 if (r_symndx == 0)
9669 {
9670 struct elf_link_hash_table *htab;
9671 asection *oi;
9672
9673 htab = elf_hash_table (finfo->info);
9674 oi = htab->text_index_section;
9675 if ((osec->flags & SEC_READONLY) == 0
9676 && htab->data_index_section != NULL)
9677 oi = htab->data_index_section;
9678
9679 if (oi != NULL)
9680 {
9681 irela->r_addend += osec->vma - oi->vma;
9682 r_symndx = oi->target_index;
9683 }
9684 }
9685
9686 BFD_ASSERT (r_symndx != 0);
9687 }
9688 }
9689
9690 /* Adjust the addend according to where the
9691 section winds up in the output section. */
9692 if (rela_normal)
9693 irela->r_addend += sec->output_offset;
9694 }
9695 else
9696 {
9697 if (finfo->indices[r_symndx] == -1)
9698 {
9699 unsigned long shlink;
9700 const char *name;
9701 asection *osec;
9702 long indx;
9703
9704 if (finfo->info->strip == strip_all)
9705 {
9706 /* You can't do ld -r -s. */
9707 bfd_set_error (bfd_error_invalid_operation);
9708 return FALSE;
9709 }
9710
9711 /* This symbol was skipped earlier, but
9712 since it is needed by a reloc, we
9713 must output it now. */
9714 shlink = symtab_hdr->sh_link;
9715 name = (bfd_elf_string_from_elf_section
9716 (input_bfd, shlink, sym.st_name));
9717 if (name == NULL)
9718 return FALSE;
9719
9720 osec = sec->output_section;
9721 sym.st_shndx =
9722 _bfd_elf_section_from_bfd_section (output_bfd,
9723 osec);
9724 if (sym.st_shndx == SHN_BAD)
9725 return FALSE;
9726
9727 sym.st_value += sec->output_offset;
9728 if (! finfo->info->relocatable)
9729 {
9730 sym.st_value += osec->vma;
9731 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9732 {
9733 /* STT_TLS symbols are relative to PT_TLS
9734 segment base. */
9735 BFD_ASSERT (elf_hash_table (finfo->info)
9736 ->tls_sec != NULL);
9737 sym.st_value -= (elf_hash_table (finfo->info)
9738 ->tls_sec->vma);
9739 }
9740 }
9741
9742 indx = bfd_get_symcount (output_bfd);
9743 ret = elf_link_output_sym (finfo, name, &sym, sec,
9744 NULL);
9745 if (ret == 0)
9746 return FALSE;
9747 else if (ret == 1)
9748 finfo->indices[r_symndx] = indx;
9749 else
9750 abort ();
9751 }
9752
9753 r_symndx = finfo->indices[r_symndx];
9754 }
9755
9756 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9757 | (irela->r_info & r_type_mask));
9758 }
9759
9760 /* Swap out the relocs. */
9761 if (input_rel_hdr->sh_size != 0
9762 && !bed->elf_backend_emit_relocs (output_bfd, o,
9763 input_rel_hdr,
9764 internal_relocs,
9765 rel_hash_list))
9766 return FALSE;
9767
9768 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
9769 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
9770 {
9771 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9772 * bed->s->int_rels_per_ext_rel);
9773 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9774 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9775 input_rel_hdr2,
9776 internal_relocs,
9777 rel_hash_list))
9778 return FALSE;
9779 }
9780 }
9781 }
9782
9783 /* Write out the modified section contents. */
9784 if (bed->elf_backend_write_section
9785 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9786 contents))
9787 {
9788 /* Section written out. */
9789 }
9790 else switch (o->sec_info_type)
9791 {
9792 case ELF_INFO_TYPE_STABS:
9793 if (! (_bfd_write_section_stabs
9794 (output_bfd,
9795 &elf_hash_table (finfo->info)->stab_info,
9796 o, &elf_section_data (o)->sec_info, contents)))
9797 return FALSE;
9798 break;
9799 case ELF_INFO_TYPE_MERGE:
9800 if (! _bfd_write_merged_section (output_bfd, o,
9801 elf_section_data (o)->sec_info))
9802 return FALSE;
9803 break;
9804 case ELF_INFO_TYPE_EH_FRAME:
9805 {
9806 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9807 o, contents))
9808 return FALSE;
9809 }
9810 break;
9811 default:
9812 {
9813 /* FIXME: octets_per_byte. */
9814 if (! (o->flags & SEC_EXCLUDE)
9815 && ! (o->output_section->flags & SEC_NEVER_LOAD)
9816 && ! bfd_set_section_contents (output_bfd, o->output_section,
9817 contents,
9818 (file_ptr) o->output_offset,
9819 o->size))
9820 return FALSE;
9821 }
9822 break;
9823 }
9824 }
9825
9826 return TRUE;
9827 }
9828
9829 /* Generate a reloc when linking an ELF file. This is a reloc
9830 requested by the linker, and does not come from any input file. This
9831 is used to build constructor and destructor tables when linking
9832 with -Ur. */
9833
9834 static bfd_boolean
9835 elf_reloc_link_order (bfd *output_bfd,
9836 struct bfd_link_info *info,
9837 asection *output_section,
9838 struct bfd_link_order *link_order)
9839 {
9840 reloc_howto_type *howto;
9841 long indx;
9842 bfd_vma offset;
9843 bfd_vma addend;
9844 struct elf_link_hash_entry **rel_hash_ptr;
9845 Elf_Internal_Shdr *rel_hdr;
9846 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9847 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9848 bfd_byte *erel;
9849 unsigned int i;
9850
9851 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9852 if (howto == NULL)
9853 {
9854 bfd_set_error (bfd_error_bad_value);
9855 return FALSE;
9856 }
9857
9858 addend = link_order->u.reloc.p->addend;
9859
9860 /* Figure out the symbol index. */
9861 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
9862 + elf_section_data (output_section)->rel_count
9863 + elf_section_data (output_section)->rel_count2);
9864 if (link_order->type == bfd_section_reloc_link_order)
9865 {
9866 indx = link_order->u.reloc.p->u.section->target_index;
9867 BFD_ASSERT (indx != 0);
9868 *rel_hash_ptr = NULL;
9869 }
9870 else
9871 {
9872 struct elf_link_hash_entry *h;
9873
9874 /* Treat a reloc against a defined symbol as though it were
9875 actually against the section. */
9876 h = ((struct elf_link_hash_entry *)
9877 bfd_wrapped_link_hash_lookup (output_bfd, info,
9878 link_order->u.reloc.p->u.name,
9879 FALSE, FALSE, TRUE));
9880 if (h != NULL
9881 && (h->root.type == bfd_link_hash_defined
9882 || h->root.type == bfd_link_hash_defweak))
9883 {
9884 asection *section;
9885
9886 section = h->root.u.def.section;
9887 indx = section->output_section->target_index;
9888 *rel_hash_ptr = NULL;
9889 /* It seems that we ought to add the symbol value to the
9890 addend here, but in practice it has already been added
9891 because it was passed to constructor_callback. */
9892 addend += section->output_section->vma + section->output_offset;
9893 }
9894 else if (h != NULL)
9895 {
9896 /* Setting the index to -2 tells elf_link_output_extsym that
9897 this symbol is used by a reloc. */
9898 h->indx = -2;
9899 *rel_hash_ptr = h;
9900 indx = 0;
9901 }
9902 else
9903 {
9904 if (! ((*info->callbacks->unattached_reloc)
9905 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9906 return FALSE;
9907 indx = 0;
9908 }
9909 }
9910
9911 /* If this is an inplace reloc, we must write the addend into the
9912 object file. */
9913 if (howto->partial_inplace && addend != 0)
9914 {
9915 bfd_size_type size;
9916 bfd_reloc_status_type rstat;
9917 bfd_byte *buf;
9918 bfd_boolean ok;
9919 const char *sym_name;
9920
9921 size = (bfd_size_type) bfd_get_reloc_size (howto);
9922 buf = (bfd_byte *) bfd_zmalloc (size);
9923 if (buf == NULL)
9924 return FALSE;
9925 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
9926 switch (rstat)
9927 {
9928 case bfd_reloc_ok:
9929 break;
9930
9931 default:
9932 case bfd_reloc_outofrange:
9933 abort ();
9934
9935 case bfd_reloc_overflow:
9936 if (link_order->type == bfd_section_reloc_link_order)
9937 sym_name = bfd_section_name (output_bfd,
9938 link_order->u.reloc.p->u.section);
9939 else
9940 sym_name = link_order->u.reloc.p->u.name;
9941 if (! ((*info->callbacks->reloc_overflow)
9942 (info, NULL, sym_name, howto->name, addend, NULL,
9943 NULL, (bfd_vma) 0)))
9944 {
9945 free (buf);
9946 return FALSE;
9947 }
9948 break;
9949 }
9950 ok = bfd_set_section_contents (output_bfd, output_section, buf,
9951 link_order->offset, size);
9952 free (buf);
9953 if (! ok)
9954 return FALSE;
9955 }
9956
9957 /* The address of a reloc is relative to the section in a
9958 relocatable file, and is a virtual address in an executable
9959 file. */
9960 offset = link_order->offset;
9961 if (! info->relocatable)
9962 offset += output_section->vma;
9963
9964 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
9965 {
9966 irel[i].r_offset = offset;
9967 irel[i].r_info = 0;
9968 irel[i].r_addend = 0;
9969 }
9970 if (bed->s->arch_size == 32)
9971 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
9972 else
9973 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
9974
9975 rel_hdr = &elf_section_data (output_section)->rel_hdr;
9976 erel = rel_hdr->contents;
9977 if (rel_hdr->sh_type == SHT_REL)
9978 {
9979 erel += (elf_section_data (output_section)->rel_count
9980 * bed->s->sizeof_rel);
9981 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
9982 }
9983 else
9984 {
9985 irel[0].r_addend = addend;
9986 erel += (elf_section_data (output_section)->rel_count
9987 * bed->s->sizeof_rela);
9988 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
9989 }
9990
9991 ++elf_section_data (output_section)->rel_count;
9992
9993 return TRUE;
9994 }
9995
9996
9997 /* Get the output vma of the section pointed to by the sh_link field. */
9998
9999 static bfd_vma
10000 elf_get_linked_section_vma (struct bfd_link_order *p)
10001 {
10002 Elf_Internal_Shdr **elf_shdrp;
10003 asection *s;
10004 int elfsec;
10005
10006 s = p->u.indirect.section;
10007 elf_shdrp = elf_elfsections (s->owner);
10008 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10009 elfsec = elf_shdrp[elfsec]->sh_link;
10010 /* PR 290:
10011 The Intel C compiler generates SHT_IA_64_UNWIND with
10012 SHF_LINK_ORDER. But it doesn't set the sh_link or
10013 sh_info fields. Hence we could get the situation
10014 where elfsec is 0. */
10015 if (elfsec == 0)
10016 {
10017 const struct elf_backend_data *bed
10018 = get_elf_backend_data (s->owner);
10019 if (bed->link_order_error_handler)
10020 bed->link_order_error_handler
10021 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10022 return 0;
10023 }
10024 else
10025 {
10026 s = elf_shdrp[elfsec]->bfd_section;
10027 return s->output_section->vma + s->output_offset;
10028 }
10029 }
10030
10031
10032 /* Compare two sections based on the locations of the sections they are
10033 linked to. Used by elf_fixup_link_order. */
10034
10035 static int
10036 compare_link_order (const void * a, const void * b)
10037 {
10038 bfd_vma apos;
10039 bfd_vma bpos;
10040
10041 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10042 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10043 if (apos < bpos)
10044 return -1;
10045 return apos > bpos;
10046 }
10047
10048
10049 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10050 order as their linked sections. Returns false if this could not be done
10051 because an output section includes both ordered and unordered
10052 sections. Ideally we'd do this in the linker proper. */
10053
10054 static bfd_boolean
10055 elf_fixup_link_order (bfd *abfd, asection *o)
10056 {
10057 int seen_linkorder;
10058 int seen_other;
10059 int n;
10060 struct bfd_link_order *p;
10061 bfd *sub;
10062 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10063 unsigned elfsec;
10064 struct bfd_link_order **sections;
10065 asection *s, *other_sec, *linkorder_sec;
10066 bfd_vma offset;
10067
10068 other_sec = NULL;
10069 linkorder_sec = NULL;
10070 seen_other = 0;
10071 seen_linkorder = 0;
10072 for (p = o->map_head.link_order; p != NULL; p = p->next)
10073 {
10074 if (p->type == bfd_indirect_link_order)
10075 {
10076 s = p->u.indirect.section;
10077 sub = s->owner;
10078 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10079 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10080 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10081 && elfsec < elf_numsections (sub)
10082 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10083 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10084 {
10085 seen_linkorder++;
10086 linkorder_sec = s;
10087 }
10088 else
10089 {
10090 seen_other++;
10091 other_sec = s;
10092 }
10093 }
10094 else
10095 seen_other++;
10096
10097 if (seen_other && seen_linkorder)
10098 {
10099 if (other_sec && linkorder_sec)
10100 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10101 o, linkorder_sec,
10102 linkorder_sec->owner, other_sec,
10103 other_sec->owner);
10104 else
10105 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10106 o);
10107 bfd_set_error (bfd_error_bad_value);
10108 return FALSE;
10109 }
10110 }
10111
10112 if (!seen_linkorder)
10113 return TRUE;
10114
10115 sections = (struct bfd_link_order **)
10116 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10117 if (sections == NULL)
10118 return FALSE;
10119 seen_linkorder = 0;
10120
10121 for (p = o->map_head.link_order; p != NULL; p = p->next)
10122 {
10123 sections[seen_linkorder++] = p;
10124 }
10125 /* Sort the input sections in the order of their linked section. */
10126 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10127 compare_link_order);
10128
10129 /* Change the offsets of the sections. */
10130 offset = 0;
10131 for (n = 0; n < seen_linkorder; n++)
10132 {
10133 s = sections[n]->u.indirect.section;
10134 offset &= ~(bfd_vma) 0 << s->alignment_power;
10135 s->output_offset = offset;
10136 sections[n]->offset = offset;
10137 /* FIXME: octets_per_byte. */
10138 offset += sections[n]->size;
10139 }
10140
10141 free (sections);
10142 return TRUE;
10143 }
10144
10145
10146 /* Do the final step of an ELF link. */
10147
10148 bfd_boolean
10149 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10150 {
10151 bfd_boolean dynamic;
10152 bfd_boolean emit_relocs;
10153 bfd *dynobj;
10154 struct elf_final_link_info finfo;
10155 asection *o;
10156 struct bfd_link_order *p;
10157 bfd *sub;
10158 bfd_size_type max_contents_size;
10159 bfd_size_type max_external_reloc_size;
10160 bfd_size_type max_internal_reloc_count;
10161 bfd_size_type max_sym_count;
10162 bfd_size_type max_sym_shndx_count;
10163 file_ptr off;
10164 Elf_Internal_Sym elfsym;
10165 unsigned int i;
10166 Elf_Internal_Shdr *symtab_hdr;
10167 Elf_Internal_Shdr *symtab_shndx_hdr;
10168 Elf_Internal_Shdr *symstrtab_hdr;
10169 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10170 struct elf_outext_info eoinfo;
10171 bfd_boolean merged;
10172 size_t relativecount = 0;
10173 asection *reldyn = 0;
10174 bfd_size_type amt;
10175 asection *attr_section = NULL;
10176 bfd_vma attr_size = 0;
10177 const char *std_attrs_section;
10178
10179 if (! is_elf_hash_table (info->hash))
10180 return FALSE;
10181
10182 if (info->shared)
10183 abfd->flags |= DYNAMIC;
10184
10185 dynamic = elf_hash_table (info)->dynamic_sections_created;
10186 dynobj = elf_hash_table (info)->dynobj;
10187
10188 emit_relocs = (info->relocatable
10189 || info->emitrelocations);
10190
10191 finfo.info = info;
10192 finfo.output_bfd = abfd;
10193 finfo.symstrtab = _bfd_elf_stringtab_init ();
10194 if (finfo.symstrtab == NULL)
10195 return FALSE;
10196
10197 if (! dynamic)
10198 {
10199 finfo.dynsym_sec = NULL;
10200 finfo.hash_sec = NULL;
10201 finfo.symver_sec = NULL;
10202 }
10203 else
10204 {
10205 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10206 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
10207 BFD_ASSERT (finfo.dynsym_sec != NULL);
10208 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10209 /* Note that it is OK if symver_sec is NULL. */
10210 }
10211
10212 finfo.contents = NULL;
10213 finfo.external_relocs = NULL;
10214 finfo.internal_relocs = NULL;
10215 finfo.external_syms = NULL;
10216 finfo.locsym_shndx = NULL;
10217 finfo.internal_syms = NULL;
10218 finfo.indices = NULL;
10219 finfo.sections = NULL;
10220 finfo.symbuf = NULL;
10221 finfo.symshndxbuf = NULL;
10222 finfo.symbuf_count = 0;
10223 finfo.shndxbuf_size = 0;
10224
10225 /* The object attributes have been merged. Remove the input
10226 sections from the link, and set the contents of the output
10227 secton. */
10228 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10229 for (o = abfd->sections; o != NULL; o = o->next)
10230 {
10231 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10232 || strcmp (o->name, ".gnu.attributes") == 0)
10233 {
10234 for (p = o->map_head.link_order; p != NULL; p = p->next)
10235 {
10236 asection *input_section;
10237
10238 if (p->type != bfd_indirect_link_order)
10239 continue;
10240 input_section = p->u.indirect.section;
10241 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10242 elf_link_input_bfd ignores this section. */
10243 input_section->flags &= ~SEC_HAS_CONTENTS;
10244 }
10245
10246 attr_size = bfd_elf_obj_attr_size (abfd);
10247 if (attr_size)
10248 {
10249 bfd_set_section_size (abfd, o, attr_size);
10250 attr_section = o;
10251 /* Skip this section later on. */
10252 o->map_head.link_order = NULL;
10253 }
10254 else
10255 o->flags |= SEC_EXCLUDE;
10256 }
10257 }
10258
10259 /* Count up the number of relocations we will output for each output
10260 section, so that we know the sizes of the reloc sections. We
10261 also figure out some maximum sizes. */
10262 max_contents_size = 0;
10263 max_external_reloc_size = 0;
10264 max_internal_reloc_count = 0;
10265 max_sym_count = 0;
10266 max_sym_shndx_count = 0;
10267 merged = FALSE;
10268 for (o = abfd->sections; o != NULL; o = o->next)
10269 {
10270 struct bfd_elf_section_data *esdo = elf_section_data (o);
10271 o->reloc_count = 0;
10272
10273 for (p = o->map_head.link_order; p != NULL; p = p->next)
10274 {
10275 unsigned int reloc_count = 0;
10276 struct bfd_elf_section_data *esdi = NULL;
10277 unsigned int *rel_count1;
10278
10279 if (p->type == bfd_section_reloc_link_order
10280 || p->type == bfd_symbol_reloc_link_order)
10281 reloc_count = 1;
10282 else if (p->type == bfd_indirect_link_order)
10283 {
10284 asection *sec;
10285
10286 sec = p->u.indirect.section;
10287 esdi = elf_section_data (sec);
10288
10289 /* Mark all sections which are to be included in the
10290 link. This will normally be every section. We need
10291 to do this so that we can identify any sections which
10292 the linker has decided to not include. */
10293 sec->linker_mark = TRUE;
10294
10295 if (sec->flags & SEC_MERGE)
10296 merged = TRUE;
10297
10298 if (info->relocatable || info->emitrelocations)
10299 reloc_count = sec->reloc_count;
10300 else if (bed->elf_backend_count_relocs)
10301 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10302
10303 if (sec->rawsize > max_contents_size)
10304 max_contents_size = sec->rawsize;
10305 if (sec->size > max_contents_size)
10306 max_contents_size = sec->size;
10307
10308 /* We are interested in just local symbols, not all
10309 symbols. */
10310 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10311 && (sec->owner->flags & DYNAMIC) == 0)
10312 {
10313 size_t sym_count;
10314
10315 if (elf_bad_symtab (sec->owner))
10316 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10317 / bed->s->sizeof_sym);
10318 else
10319 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10320
10321 if (sym_count > max_sym_count)
10322 max_sym_count = sym_count;
10323
10324 if (sym_count > max_sym_shndx_count
10325 && elf_symtab_shndx (sec->owner) != 0)
10326 max_sym_shndx_count = sym_count;
10327
10328 if ((sec->flags & SEC_RELOC) != 0)
10329 {
10330 size_t ext_size;
10331
10332 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
10333 if (ext_size > max_external_reloc_size)
10334 max_external_reloc_size = ext_size;
10335 if (sec->reloc_count > max_internal_reloc_count)
10336 max_internal_reloc_count = sec->reloc_count;
10337 }
10338 }
10339 }
10340
10341 if (reloc_count == 0)
10342 continue;
10343
10344 o->reloc_count += reloc_count;
10345
10346 /* MIPS may have a mix of REL and RELA relocs on sections.
10347 To support this curious ABI we keep reloc counts in
10348 elf_section_data too. We must be careful to add the
10349 relocations from the input section to the right output
10350 count. FIXME: Get rid of one count. We have
10351 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
10352 rel_count1 = &esdo->rel_count;
10353 if (esdi != NULL)
10354 {
10355 bfd_boolean same_size;
10356 bfd_size_type entsize1;
10357
10358 entsize1 = esdi->rel_hdr.sh_entsize;
10359 /* PR 9827: If the header size has not been set yet then
10360 assume that it will match the output section's reloc type. */
10361 if (entsize1 == 0)
10362 entsize1 = o->use_rela_p ? bed->s->sizeof_rela : bed->s->sizeof_rel;
10363 else
10364 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
10365 || entsize1 == bed->s->sizeof_rela);
10366 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
10367
10368 if (!same_size)
10369 rel_count1 = &esdo->rel_count2;
10370
10371 if (esdi->rel_hdr2 != NULL)
10372 {
10373 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
10374 unsigned int alt_count;
10375 unsigned int *rel_count2;
10376
10377 BFD_ASSERT (entsize2 != entsize1
10378 && (entsize2 == bed->s->sizeof_rel
10379 || entsize2 == bed->s->sizeof_rela));
10380
10381 rel_count2 = &esdo->rel_count2;
10382 if (!same_size)
10383 rel_count2 = &esdo->rel_count;
10384
10385 /* The following is probably too simplistic if the
10386 backend counts output relocs unusually. */
10387 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
10388 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
10389 *rel_count2 += alt_count;
10390 reloc_count -= alt_count;
10391 }
10392 }
10393 *rel_count1 += reloc_count;
10394 }
10395
10396 if (o->reloc_count > 0)
10397 o->flags |= SEC_RELOC;
10398 else
10399 {
10400 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10401 set it (this is probably a bug) and if it is set
10402 assign_section_numbers will create a reloc section. */
10403 o->flags &=~ SEC_RELOC;
10404 }
10405
10406 /* If the SEC_ALLOC flag is not set, force the section VMA to
10407 zero. This is done in elf_fake_sections as well, but forcing
10408 the VMA to 0 here will ensure that relocs against these
10409 sections are handled correctly. */
10410 if ((o->flags & SEC_ALLOC) == 0
10411 && ! o->user_set_vma)
10412 o->vma = 0;
10413 }
10414
10415 if (! info->relocatable && merged)
10416 elf_link_hash_traverse (elf_hash_table (info),
10417 _bfd_elf_link_sec_merge_syms, abfd);
10418
10419 /* Figure out the file positions for everything but the symbol table
10420 and the relocs. We set symcount to force assign_section_numbers
10421 to create a symbol table. */
10422 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10423 BFD_ASSERT (! abfd->output_has_begun);
10424 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10425 goto error_return;
10426
10427 /* Set sizes, and assign file positions for reloc sections. */
10428 for (o = abfd->sections; o != NULL; o = o->next)
10429 {
10430 if ((o->flags & SEC_RELOC) != 0)
10431 {
10432 if (!(_bfd_elf_link_size_reloc_section
10433 (abfd, &elf_section_data (o)->rel_hdr, o)))
10434 goto error_return;
10435
10436 if (elf_section_data (o)->rel_hdr2
10437 && !(_bfd_elf_link_size_reloc_section
10438 (abfd, elf_section_data (o)->rel_hdr2, o)))
10439 goto error_return;
10440 }
10441
10442 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10443 to count upwards while actually outputting the relocations. */
10444 elf_section_data (o)->rel_count = 0;
10445 elf_section_data (o)->rel_count2 = 0;
10446 }
10447
10448 _bfd_elf_assign_file_positions_for_relocs (abfd);
10449
10450 /* We have now assigned file positions for all the sections except
10451 .symtab and .strtab. We start the .symtab section at the current
10452 file position, and write directly to it. We build the .strtab
10453 section in memory. */
10454 bfd_get_symcount (abfd) = 0;
10455 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10456 /* sh_name is set in prep_headers. */
10457 symtab_hdr->sh_type = SHT_SYMTAB;
10458 /* sh_flags, sh_addr and sh_size all start off zero. */
10459 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10460 /* sh_link is set in assign_section_numbers. */
10461 /* sh_info is set below. */
10462 /* sh_offset is set just below. */
10463 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10464
10465 off = elf_tdata (abfd)->next_file_pos;
10466 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10467
10468 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10469 incorrect. We do not yet know the size of the .symtab section.
10470 We correct next_file_pos below, after we do know the size. */
10471
10472 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10473 continuously seeking to the right position in the file. */
10474 if (! info->keep_memory || max_sym_count < 20)
10475 finfo.symbuf_size = 20;
10476 else
10477 finfo.symbuf_size = max_sym_count;
10478 amt = finfo.symbuf_size;
10479 amt *= bed->s->sizeof_sym;
10480 finfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10481 if (finfo.symbuf == NULL)
10482 goto error_return;
10483 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10484 {
10485 /* Wild guess at number of output symbols. realloc'd as needed. */
10486 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10487 finfo.shndxbuf_size = amt;
10488 amt *= sizeof (Elf_External_Sym_Shndx);
10489 finfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10490 if (finfo.symshndxbuf == NULL)
10491 goto error_return;
10492 }
10493
10494 /* Start writing out the symbol table. The first symbol is always a
10495 dummy symbol. */
10496 if (info->strip != strip_all
10497 || emit_relocs)
10498 {
10499 elfsym.st_value = 0;
10500 elfsym.st_size = 0;
10501 elfsym.st_info = 0;
10502 elfsym.st_other = 0;
10503 elfsym.st_shndx = SHN_UNDEF;
10504 if (elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10505 NULL) != 1)
10506 goto error_return;
10507 }
10508
10509 /* Output a symbol for each section. We output these even if we are
10510 discarding local symbols, since they are used for relocs. These
10511 symbols have no names. We store the index of each one in the
10512 index field of the section, so that we can find it again when
10513 outputting relocs. */
10514 if (info->strip != strip_all
10515 || emit_relocs)
10516 {
10517 elfsym.st_size = 0;
10518 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10519 elfsym.st_other = 0;
10520 elfsym.st_value = 0;
10521 for (i = 1; i < elf_numsections (abfd); i++)
10522 {
10523 o = bfd_section_from_elf_index (abfd, i);
10524 if (o != NULL)
10525 {
10526 o->target_index = bfd_get_symcount (abfd);
10527 elfsym.st_shndx = i;
10528 if (!info->relocatable)
10529 elfsym.st_value = o->vma;
10530 if (elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL) != 1)
10531 goto error_return;
10532 }
10533 }
10534 }
10535
10536 /* Allocate some memory to hold information read in from the input
10537 files. */
10538 if (max_contents_size != 0)
10539 {
10540 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10541 if (finfo.contents == NULL)
10542 goto error_return;
10543 }
10544
10545 if (max_external_reloc_size != 0)
10546 {
10547 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10548 if (finfo.external_relocs == NULL)
10549 goto error_return;
10550 }
10551
10552 if (max_internal_reloc_count != 0)
10553 {
10554 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10555 amt *= sizeof (Elf_Internal_Rela);
10556 finfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10557 if (finfo.internal_relocs == NULL)
10558 goto error_return;
10559 }
10560
10561 if (max_sym_count != 0)
10562 {
10563 amt = max_sym_count * bed->s->sizeof_sym;
10564 finfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10565 if (finfo.external_syms == NULL)
10566 goto error_return;
10567
10568 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10569 finfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10570 if (finfo.internal_syms == NULL)
10571 goto error_return;
10572
10573 amt = max_sym_count * sizeof (long);
10574 finfo.indices = (long int *) bfd_malloc (amt);
10575 if (finfo.indices == NULL)
10576 goto error_return;
10577
10578 amt = max_sym_count * sizeof (asection *);
10579 finfo.sections = (asection **) bfd_malloc (amt);
10580 if (finfo.sections == NULL)
10581 goto error_return;
10582 }
10583
10584 if (max_sym_shndx_count != 0)
10585 {
10586 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10587 finfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10588 if (finfo.locsym_shndx == NULL)
10589 goto error_return;
10590 }
10591
10592 if (elf_hash_table (info)->tls_sec)
10593 {
10594 bfd_vma base, end = 0;
10595 asection *sec;
10596
10597 for (sec = elf_hash_table (info)->tls_sec;
10598 sec && (sec->flags & SEC_THREAD_LOCAL);
10599 sec = sec->next)
10600 {
10601 bfd_size_type size = sec->size;
10602
10603 if (size == 0
10604 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10605 {
10606 struct bfd_link_order *ord = sec->map_tail.link_order;
10607
10608 if (ord != NULL)
10609 size = ord->offset + ord->size;
10610 }
10611 end = sec->vma + size;
10612 }
10613 base = elf_hash_table (info)->tls_sec->vma;
10614 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
10615 elf_hash_table (info)->tls_size = end - base;
10616 }
10617
10618 /* Reorder SHF_LINK_ORDER sections. */
10619 for (o = abfd->sections; o != NULL; o = o->next)
10620 {
10621 if (!elf_fixup_link_order (abfd, o))
10622 return FALSE;
10623 }
10624
10625 /* Since ELF permits relocations to be against local symbols, we
10626 must have the local symbols available when we do the relocations.
10627 Since we would rather only read the local symbols once, and we
10628 would rather not keep them in memory, we handle all the
10629 relocations for a single input file at the same time.
10630
10631 Unfortunately, there is no way to know the total number of local
10632 symbols until we have seen all of them, and the local symbol
10633 indices precede the global symbol indices. This means that when
10634 we are generating relocatable output, and we see a reloc against
10635 a global symbol, we can not know the symbol index until we have
10636 finished examining all the local symbols to see which ones we are
10637 going to output. To deal with this, we keep the relocations in
10638 memory, and don't output them until the end of the link. This is
10639 an unfortunate waste of memory, but I don't see a good way around
10640 it. Fortunately, it only happens when performing a relocatable
10641 link, which is not the common case. FIXME: If keep_memory is set
10642 we could write the relocs out and then read them again; I don't
10643 know how bad the memory loss will be. */
10644
10645 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10646 sub->output_has_begun = FALSE;
10647 for (o = abfd->sections; o != NULL; o = o->next)
10648 {
10649 for (p = o->map_head.link_order; p != NULL; p = p->next)
10650 {
10651 if (p->type == bfd_indirect_link_order
10652 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10653 == bfd_target_elf_flavour)
10654 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10655 {
10656 if (! sub->output_has_begun)
10657 {
10658 if (! elf_link_input_bfd (&finfo, sub))
10659 goto error_return;
10660 sub->output_has_begun = TRUE;
10661 }
10662 }
10663 else if (p->type == bfd_section_reloc_link_order
10664 || p->type == bfd_symbol_reloc_link_order)
10665 {
10666 if (! elf_reloc_link_order (abfd, info, o, p))
10667 goto error_return;
10668 }
10669 else
10670 {
10671 if (! _bfd_default_link_order (abfd, info, o, p))
10672 goto error_return;
10673 }
10674 }
10675 }
10676
10677 /* Free symbol buffer if needed. */
10678 if (!info->reduce_memory_overheads)
10679 {
10680 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10681 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10682 && elf_tdata (sub)->symbuf)
10683 {
10684 free (elf_tdata (sub)->symbuf);
10685 elf_tdata (sub)->symbuf = NULL;
10686 }
10687 }
10688
10689 /* Output any global symbols that got converted to local in a
10690 version script or due to symbol visibility. We do this in a
10691 separate step since ELF requires all local symbols to appear
10692 prior to any global symbols. FIXME: We should only do this if
10693 some global symbols were, in fact, converted to become local.
10694 FIXME: Will this work correctly with the Irix 5 linker? */
10695 eoinfo.failed = FALSE;
10696 eoinfo.finfo = &finfo;
10697 eoinfo.localsyms = TRUE;
10698 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10699 &eoinfo);
10700 if (eoinfo.failed)
10701 return FALSE;
10702
10703 /* If backend needs to output some local symbols not present in the hash
10704 table, do it now. */
10705 if (bed->elf_backend_output_arch_local_syms)
10706 {
10707 typedef int (*out_sym_func)
10708 (void *, const char *, Elf_Internal_Sym *, asection *,
10709 struct elf_link_hash_entry *);
10710
10711 if (! ((*bed->elf_backend_output_arch_local_syms)
10712 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10713 return FALSE;
10714 }
10715
10716 /* That wrote out all the local symbols. Finish up the symbol table
10717 with the global symbols. Even if we want to strip everything we
10718 can, we still need to deal with those global symbols that got
10719 converted to local in a version script. */
10720
10721 /* The sh_info field records the index of the first non local symbol. */
10722 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10723
10724 if (dynamic
10725 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10726 {
10727 Elf_Internal_Sym sym;
10728 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10729 long last_local = 0;
10730
10731 /* Write out the section symbols for the output sections. */
10732 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10733 {
10734 asection *s;
10735
10736 sym.st_size = 0;
10737 sym.st_name = 0;
10738 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10739 sym.st_other = 0;
10740
10741 for (s = abfd->sections; s != NULL; s = s->next)
10742 {
10743 int indx;
10744 bfd_byte *dest;
10745 long dynindx;
10746
10747 dynindx = elf_section_data (s)->dynindx;
10748 if (dynindx <= 0)
10749 continue;
10750 indx = elf_section_data (s)->this_idx;
10751 BFD_ASSERT (indx > 0);
10752 sym.st_shndx = indx;
10753 if (! check_dynsym (abfd, &sym))
10754 return FALSE;
10755 sym.st_value = s->vma;
10756 dest = dynsym + dynindx * bed->s->sizeof_sym;
10757 if (last_local < dynindx)
10758 last_local = dynindx;
10759 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10760 }
10761 }
10762
10763 /* Write out the local dynsyms. */
10764 if (elf_hash_table (info)->dynlocal)
10765 {
10766 struct elf_link_local_dynamic_entry *e;
10767 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10768 {
10769 asection *s;
10770 bfd_byte *dest;
10771
10772 /* Copy the internal symbol and turn off visibility.
10773 Note that we saved a word of storage and overwrote
10774 the original st_name with the dynstr_index. */
10775 sym = e->isym;
10776 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10777
10778 s = bfd_section_from_elf_index (e->input_bfd,
10779 e->isym.st_shndx);
10780 if (s != NULL)
10781 {
10782 sym.st_shndx =
10783 elf_section_data (s->output_section)->this_idx;
10784 if (! check_dynsym (abfd, &sym))
10785 return FALSE;
10786 sym.st_value = (s->output_section->vma
10787 + s->output_offset
10788 + e->isym.st_value);
10789 }
10790
10791 if (last_local < e->dynindx)
10792 last_local = e->dynindx;
10793
10794 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10795 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10796 }
10797 }
10798
10799 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10800 last_local + 1;
10801 }
10802
10803 /* We get the global symbols from the hash table. */
10804 eoinfo.failed = FALSE;
10805 eoinfo.localsyms = FALSE;
10806 eoinfo.finfo = &finfo;
10807 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10808 &eoinfo);
10809 if (eoinfo.failed)
10810 return FALSE;
10811
10812 /* If backend needs to output some symbols not present in the hash
10813 table, do it now. */
10814 if (bed->elf_backend_output_arch_syms)
10815 {
10816 typedef int (*out_sym_func)
10817 (void *, const char *, Elf_Internal_Sym *, asection *,
10818 struct elf_link_hash_entry *);
10819
10820 if (! ((*bed->elf_backend_output_arch_syms)
10821 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10822 return FALSE;
10823 }
10824
10825 /* Flush all symbols to the file. */
10826 if (! elf_link_flush_output_syms (&finfo, bed))
10827 return FALSE;
10828
10829 /* Now we know the size of the symtab section. */
10830 off += symtab_hdr->sh_size;
10831
10832 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10833 if (symtab_shndx_hdr->sh_name != 0)
10834 {
10835 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10836 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10837 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10838 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10839 symtab_shndx_hdr->sh_size = amt;
10840
10841 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10842 off, TRUE);
10843
10844 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10845 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10846 return FALSE;
10847 }
10848
10849
10850 /* Finish up and write out the symbol string table (.strtab)
10851 section. */
10852 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10853 /* sh_name was set in prep_headers. */
10854 symstrtab_hdr->sh_type = SHT_STRTAB;
10855 symstrtab_hdr->sh_flags = 0;
10856 symstrtab_hdr->sh_addr = 0;
10857 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10858 symstrtab_hdr->sh_entsize = 0;
10859 symstrtab_hdr->sh_link = 0;
10860 symstrtab_hdr->sh_info = 0;
10861 /* sh_offset is set just below. */
10862 symstrtab_hdr->sh_addralign = 1;
10863
10864 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10865 elf_tdata (abfd)->next_file_pos = off;
10866
10867 if (bfd_get_symcount (abfd) > 0)
10868 {
10869 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10870 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10871 return FALSE;
10872 }
10873
10874 /* Adjust the relocs to have the correct symbol indices. */
10875 for (o = abfd->sections; o != NULL; o = o->next)
10876 {
10877 if ((o->flags & SEC_RELOC) == 0)
10878 continue;
10879
10880 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
10881 elf_section_data (o)->rel_count,
10882 elf_section_data (o)->rel_hashes);
10883 if (elf_section_data (o)->rel_hdr2 != NULL)
10884 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
10885 elf_section_data (o)->rel_count2,
10886 (elf_section_data (o)->rel_hashes
10887 + elf_section_data (o)->rel_count));
10888
10889 /* Set the reloc_count field to 0 to prevent write_relocs from
10890 trying to swap the relocs out itself. */
10891 o->reloc_count = 0;
10892 }
10893
10894 if (dynamic && info->combreloc && dynobj != NULL)
10895 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10896
10897 /* If we are linking against a dynamic object, or generating a
10898 shared library, finish up the dynamic linking information. */
10899 if (dynamic)
10900 {
10901 bfd_byte *dyncon, *dynconend;
10902
10903 /* Fix up .dynamic entries. */
10904 o = bfd_get_section_by_name (dynobj, ".dynamic");
10905 BFD_ASSERT (o != NULL);
10906
10907 dyncon = o->contents;
10908 dynconend = o->contents + o->size;
10909 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10910 {
10911 Elf_Internal_Dyn dyn;
10912 const char *name;
10913 unsigned int type;
10914
10915 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10916
10917 switch (dyn.d_tag)
10918 {
10919 default:
10920 continue;
10921 case DT_NULL:
10922 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
10923 {
10924 switch (elf_section_data (reldyn)->this_hdr.sh_type)
10925 {
10926 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
10927 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
10928 default: continue;
10929 }
10930 dyn.d_un.d_val = relativecount;
10931 relativecount = 0;
10932 break;
10933 }
10934 continue;
10935
10936 case DT_INIT:
10937 name = info->init_function;
10938 goto get_sym;
10939 case DT_FINI:
10940 name = info->fini_function;
10941 get_sym:
10942 {
10943 struct elf_link_hash_entry *h;
10944
10945 h = elf_link_hash_lookup (elf_hash_table (info), name,
10946 FALSE, FALSE, TRUE);
10947 if (h != NULL
10948 && (h->root.type == bfd_link_hash_defined
10949 || h->root.type == bfd_link_hash_defweak))
10950 {
10951 dyn.d_un.d_ptr = h->root.u.def.value;
10952 o = h->root.u.def.section;
10953 if (o->output_section != NULL)
10954 dyn.d_un.d_ptr += (o->output_section->vma
10955 + o->output_offset);
10956 else
10957 {
10958 /* The symbol is imported from another shared
10959 library and does not apply to this one. */
10960 dyn.d_un.d_ptr = 0;
10961 }
10962 break;
10963 }
10964 }
10965 continue;
10966
10967 case DT_PREINIT_ARRAYSZ:
10968 name = ".preinit_array";
10969 goto get_size;
10970 case DT_INIT_ARRAYSZ:
10971 name = ".init_array";
10972 goto get_size;
10973 case DT_FINI_ARRAYSZ:
10974 name = ".fini_array";
10975 get_size:
10976 o = bfd_get_section_by_name (abfd, name);
10977 if (o == NULL)
10978 {
10979 (*_bfd_error_handler)
10980 (_("%B: could not find output section %s"), abfd, name);
10981 goto error_return;
10982 }
10983 if (o->size == 0)
10984 (*_bfd_error_handler)
10985 (_("warning: %s section has zero size"), name);
10986 dyn.d_un.d_val = o->size;
10987 break;
10988
10989 case DT_PREINIT_ARRAY:
10990 name = ".preinit_array";
10991 goto get_vma;
10992 case DT_INIT_ARRAY:
10993 name = ".init_array";
10994 goto get_vma;
10995 case DT_FINI_ARRAY:
10996 name = ".fini_array";
10997 goto get_vma;
10998
10999 case DT_HASH:
11000 name = ".hash";
11001 goto get_vma;
11002 case DT_GNU_HASH:
11003 name = ".gnu.hash";
11004 goto get_vma;
11005 case DT_STRTAB:
11006 name = ".dynstr";
11007 goto get_vma;
11008 case DT_SYMTAB:
11009 name = ".dynsym";
11010 goto get_vma;
11011 case DT_VERDEF:
11012 name = ".gnu.version_d";
11013 goto get_vma;
11014 case DT_VERNEED:
11015 name = ".gnu.version_r";
11016 goto get_vma;
11017 case DT_VERSYM:
11018 name = ".gnu.version";
11019 get_vma:
11020 o = bfd_get_section_by_name (abfd, name);
11021 if (o == NULL)
11022 {
11023 (*_bfd_error_handler)
11024 (_("%B: could not find output section %s"), abfd, name);
11025 goto error_return;
11026 }
11027 dyn.d_un.d_ptr = o->vma;
11028 break;
11029
11030 case DT_REL:
11031 case DT_RELA:
11032 case DT_RELSZ:
11033 case DT_RELASZ:
11034 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11035 type = SHT_REL;
11036 else
11037 type = SHT_RELA;
11038 dyn.d_un.d_val = 0;
11039 dyn.d_un.d_ptr = 0;
11040 for (i = 1; i < elf_numsections (abfd); i++)
11041 {
11042 Elf_Internal_Shdr *hdr;
11043
11044 hdr = elf_elfsections (abfd)[i];
11045 if (hdr->sh_type == type
11046 && (hdr->sh_flags & SHF_ALLOC) != 0)
11047 {
11048 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11049 dyn.d_un.d_val += hdr->sh_size;
11050 else
11051 {
11052 if (dyn.d_un.d_ptr == 0
11053 || hdr->sh_addr < dyn.d_un.d_ptr)
11054 dyn.d_un.d_ptr = hdr->sh_addr;
11055 }
11056 }
11057 }
11058 break;
11059 }
11060 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11061 }
11062 }
11063
11064 /* If we have created any dynamic sections, then output them. */
11065 if (dynobj != NULL)
11066 {
11067 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11068 goto error_return;
11069
11070 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11071 if (info->warn_shared_textrel && info->shared)
11072 {
11073 bfd_byte *dyncon, *dynconend;
11074
11075 /* Fix up .dynamic entries. */
11076 o = bfd_get_section_by_name (dynobj, ".dynamic");
11077 BFD_ASSERT (o != NULL);
11078
11079 dyncon = o->contents;
11080 dynconend = o->contents + o->size;
11081 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11082 {
11083 Elf_Internal_Dyn dyn;
11084
11085 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11086
11087 if (dyn.d_tag == DT_TEXTREL)
11088 {
11089 info->callbacks->einfo
11090 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11091 break;
11092 }
11093 }
11094 }
11095
11096 for (o = dynobj->sections; o != NULL; o = o->next)
11097 {
11098 if ((o->flags & SEC_HAS_CONTENTS) == 0
11099 || o->size == 0
11100 || o->output_section == bfd_abs_section_ptr)
11101 continue;
11102 if ((o->flags & SEC_LINKER_CREATED) == 0)
11103 {
11104 /* At this point, we are only interested in sections
11105 created by _bfd_elf_link_create_dynamic_sections. */
11106 continue;
11107 }
11108 if (elf_hash_table (info)->stab_info.stabstr == o)
11109 continue;
11110 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11111 continue;
11112 if ((elf_section_data (o->output_section)->this_hdr.sh_type
11113 != SHT_STRTAB)
11114 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
11115 {
11116 /* FIXME: octets_per_byte. */
11117 if (! bfd_set_section_contents (abfd, o->output_section,
11118 o->contents,
11119 (file_ptr) o->output_offset,
11120 o->size))
11121 goto error_return;
11122 }
11123 else
11124 {
11125 /* The contents of the .dynstr section are actually in a
11126 stringtab. */
11127 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11128 if (bfd_seek (abfd, off, SEEK_SET) != 0
11129 || ! _bfd_elf_strtab_emit (abfd,
11130 elf_hash_table (info)->dynstr))
11131 goto error_return;
11132 }
11133 }
11134 }
11135
11136 if (info->relocatable)
11137 {
11138 bfd_boolean failed = FALSE;
11139
11140 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11141 if (failed)
11142 goto error_return;
11143 }
11144
11145 /* If we have optimized stabs strings, output them. */
11146 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11147 {
11148 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11149 goto error_return;
11150 }
11151
11152 if (info->eh_frame_hdr)
11153 {
11154 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11155 goto error_return;
11156 }
11157
11158 if (finfo.symstrtab != NULL)
11159 _bfd_stringtab_free (finfo.symstrtab);
11160 if (finfo.contents != NULL)
11161 free (finfo.contents);
11162 if (finfo.external_relocs != NULL)
11163 free (finfo.external_relocs);
11164 if (finfo.internal_relocs != NULL)
11165 free (finfo.internal_relocs);
11166 if (finfo.external_syms != NULL)
11167 free (finfo.external_syms);
11168 if (finfo.locsym_shndx != NULL)
11169 free (finfo.locsym_shndx);
11170 if (finfo.internal_syms != NULL)
11171 free (finfo.internal_syms);
11172 if (finfo.indices != NULL)
11173 free (finfo.indices);
11174 if (finfo.sections != NULL)
11175 free (finfo.sections);
11176 if (finfo.symbuf != NULL)
11177 free (finfo.symbuf);
11178 if (finfo.symshndxbuf != NULL)
11179 free (finfo.symshndxbuf);
11180 for (o = abfd->sections; o != NULL; o = o->next)
11181 {
11182 if ((o->flags & SEC_RELOC) != 0
11183 && elf_section_data (o)->rel_hashes != NULL)
11184 free (elf_section_data (o)->rel_hashes);
11185 }
11186
11187 elf_tdata (abfd)->linker = TRUE;
11188
11189 if (attr_section)
11190 {
11191 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11192 if (contents == NULL)
11193 return FALSE; /* Bail out and fail. */
11194 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11195 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11196 free (contents);
11197 }
11198
11199 return TRUE;
11200
11201 error_return:
11202 if (finfo.symstrtab != NULL)
11203 _bfd_stringtab_free (finfo.symstrtab);
11204 if (finfo.contents != NULL)
11205 free (finfo.contents);
11206 if (finfo.external_relocs != NULL)
11207 free (finfo.external_relocs);
11208 if (finfo.internal_relocs != NULL)
11209 free (finfo.internal_relocs);
11210 if (finfo.external_syms != NULL)
11211 free (finfo.external_syms);
11212 if (finfo.locsym_shndx != NULL)
11213 free (finfo.locsym_shndx);
11214 if (finfo.internal_syms != NULL)
11215 free (finfo.internal_syms);
11216 if (finfo.indices != NULL)
11217 free (finfo.indices);
11218 if (finfo.sections != NULL)
11219 free (finfo.sections);
11220 if (finfo.symbuf != NULL)
11221 free (finfo.symbuf);
11222 if (finfo.symshndxbuf != NULL)
11223 free (finfo.symshndxbuf);
11224 for (o = abfd->sections; o != NULL; o = o->next)
11225 {
11226 if ((o->flags & SEC_RELOC) != 0
11227 && elf_section_data (o)->rel_hashes != NULL)
11228 free (elf_section_data (o)->rel_hashes);
11229 }
11230
11231 return FALSE;
11232 }
11233 \f
11234 /* Initialize COOKIE for input bfd ABFD. */
11235
11236 static bfd_boolean
11237 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11238 struct bfd_link_info *info, bfd *abfd)
11239 {
11240 Elf_Internal_Shdr *symtab_hdr;
11241 const struct elf_backend_data *bed;
11242
11243 bed = get_elf_backend_data (abfd);
11244 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11245
11246 cookie->abfd = abfd;
11247 cookie->sym_hashes = elf_sym_hashes (abfd);
11248 cookie->bad_symtab = elf_bad_symtab (abfd);
11249 if (cookie->bad_symtab)
11250 {
11251 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11252 cookie->extsymoff = 0;
11253 }
11254 else
11255 {
11256 cookie->locsymcount = symtab_hdr->sh_info;
11257 cookie->extsymoff = symtab_hdr->sh_info;
11258 }
11259
11260 if (bed->s->arch_size == 32)
11261 cookie->r_sym_shift = 8;
11262 else
11263 cookie->r_sym_shift = 32;
11264
11265 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11266 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11267 {
11268 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11269 cookie->locsymcount, 0,
11270 NULL, NULL, NULL);
11271 if (cookie->locsyms == NULL)
11272 {
11273 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11274 return FALSE;
11275 }
11276 if (info->keep_memory)
11277 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11278 }
11279 return TRUE;
11280 }
11281
11282 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11283
11284 static void
11285 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11286 {
11287 Elf_Internal_Shdr *symtab_hdr;
11288
11289 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11290 if (cookie->locsyms != NULL
11291 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11292 free (cookie->locsyms);
11293 }
11294
11295 /* Initialize the relocation information in COOKIE for input section SEC
11296 of input bfd ABFD. */
11297
11298 static bfd_boolean
11299 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11300 struct bfd_link_info *info, bfd *abfd,
11301 asection *sec)
11302 {
11303 const struct elf_backend_data *bed;
11304
11305 if (sec->reloc_count == 0)
11306 {
11307 cookie->rels = NULL;
11308 cookie->relend = NULL;
11309 }
11310 else
11311 {
11312 bed = get_elf_backend_data (abfd);
11313
11314 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11315 info->keep_memory);
11316 if (cookie->rels == NULL)
11317 return FALSE;
11318 cookie->rel = cookie->rels;
11319 cookie->relend = (cookie->rels
11320 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11321 }
11322 cookie->rel = cookie->rels;
11323 return TRUE;
11324 }
11325
11326 /* Free the memory allocated by init_reloc_cookie_rels,
11327 if appropriate. */
11328
11329 static void
11330 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11331 asection *sec)
11332 {
11333 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11334 free (cookie->rels);
11335 }
11336
11337 /* Initialize the whole of COOKIE for input section SEC. */
11338
11339 static bfd_boolean
11340 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11341 struct bfd_link_info *info,
11342 asection *sec)
11343 {
11344 if (!init_reloc_cookie (cookie, info, sec->owner))
11345 goto error1;
11346 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11347 goto error2;
11348 return TRUE;
11349
11350 error2:
11351 fini_reloc_cookie (cookie, sec->owner);
11352 error1:
11353 return FALSE;
11354 }
11355
11356 /* Free the memory allocated by init_reloc_cookie_for_section,
11357 if appropriate. */
11358
11359 static void
11360 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11361 asection *sec)
11362 {
11363 fini_reloc_cookie_rels (cookie, sec);
11364 fini_reloc_cookie (cookie, sec->owner);
11365 }
11366 \f
11367 /* Garbage collect unused sections. */
11368
11369 /* Default gc_mark_hook. */
11370
11371 asection *
11372 _bfd_elf_gc_mark_hook (asection *sec,
11373 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11374 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11375 struct elf_link_hash_entry *h,
11376 Elf_Internal_Sym *sym)
11377 {
11378 const char *sec_name;
11379
11380 if (h != NULL)
11381 {
11382 switch (h->root.type)
11383 {
11384 case bfd_link_hash_defined:
11385 case bfd_link_hash_defweak:
11386 return h->root.u.def.section;
11387
11388 case bfd_link_hash_common:
11389 return h->root.u.c.p->section;
11390
11391 case bfd_link_hash_undefined:
11392 case bfd_link_hash_undefweak:
11393 /* To work around a glibc bug, keep all XXX input sections
11394 when there is an as yet undefined reference to __start_XXX
11395 or __stop_XXX symbols. The linker will later define such
11396 symbols for orphan input sections that have a name
11397 representable as a C identifier. */
11398 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11399 sec_name = h->root.root.string + 8;
11400 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11401 sec_name = h->root.root.string + 7;
11402 else
11403 sec_name = NULL;
11404
11405 if (sec_name && *sec_name != '\0')
11406 {
11407 bfd *i;
11408
11409 for (i = info->input_bfds; i; i = i->link_next)
11410 {
11411 sec = bfd_get_section_by_name (i, sec_name);
11412 if (sec)
11413 sec->flags |= SEC_KEEP;
11414 }
11415 }
11416 break;
11417
11418 default:
11419 break;
11420 }
11421 }
11422 else
11423 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11424
11425 return NULL;
11426 }
11427
11428 /* COOKIE->rel describes a relocation against section SEC, which is
11429 a section we've decided to keep. Return the section that contains
11430 the relocation symbol, or NULL if no section contains it. */
11431
11432 asection *
11433 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11434 elf_gc_mark_hook_fn gc_mark_hook,
11435 struct elf_reloc_cookie *cookie)
11436 {
11437 unsigned long r_symndx;
11438 struct elf_link_hash_entry *h;
11439
11440 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11441 if (r_symndx == 0)
11442 return NULL;
11443
11444 if (r_symndx >= cookie->locsymcount
11445 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11446 {
11447 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11448 while (h->root.type == bfd_link_hash_indirect
11449 || h->root.type == bfd_link_hash_warning)
11450 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11451 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11452 }
11453
11454 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11455 &cookie->locsyms[r_symndx]);
11456 }
11457
11458 /* COOKIE->rel describes a relocation against section SEC, which is
11459 a section we've decided to keep. Mark the section that contains
11460 the relocation symbol. */
11461
11462 bfd_boolean
11463 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11464 asection *sec,
11465 elf_gc_mark_hook_fn gc_mark_hook,
11466 struct elf_reloc_cookie *cookie)
11467 {
11468 asection *rsec;
11469
11470 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11471 if (rsec && !rsec->gc_mark)
11472 {
11473 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11474 rsec->gc_mark = 1;
11475 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11476 return FALSE;
11477 }
11478 return TRUE;
11479 }
11480
11481 /* The mark phase of garbage collection. For a given section, mark
11482 it and any sections in this section's group, and all the sections
11483 which define symbols to which it refers. */
11484
11485 bfd_boolean
11486 _bfd_elf_gc_mark (struct bfd_link_info *info,
11487 asection *sec,
11488 elf_gc_mark_hook_fn gc_mark_hook)
11489 {
11490 bfd_boolean ret;
11491 asection *group_sec, *eh_frame;
11492
11493 sec->gc_mark = 1;
11494
11495 /* Mark all the sections in the group. */
11496 group_sec = elf_section_data (sec)->next_in_group;
11497 if (group_sec && !group_sec->gc_mark)
11498 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11499 return FALSE;
11500
11501 /* Look through the section relocs. */
11502 ret = TRUE;
11503 eh_frame = elf_eh_frame_section (sec->owner);
11504 if ((sec->flags & SEC_RELOC) != 0
11505 && sec->reloc_count > 0
11506 && sec != eh_frame)
11507 {
11508 struct elf_reloc_cookie cookie;
11509
11510 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11511 ret = FALSE;
11512 else
11513 {
11514 for (; cookie.rel < cookie.relend; cookie.rel++)
11515 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11516 {
11517 ret = FALSE;
11518 break;
11519 }
11520 fini_reloc_cookie_for_section (&cookie, sec);
11521 }
11522 }
11523
11524 if (ret && eh_frame && elf_fde_list (sec))
11525 {
11526 struct elf_reloc_cookie cookie;
11527
11528 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11529 ret = FALSE;
11530 else
11531 {
11532 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11533 gc_mark_hook, &cookie))
11534 ret = FALSE;
11535 fini_reloc_cookie_for_section (&cookie, eh_frame);
11536 }
11537 }
11538
11539 return ret;
11540 }
11541
11542 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11543
11544 struct elf_gc_sweep_symbol_info
11545 {
11546 struct bfd_link_info *info;
11547 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11548 bfd_boolean);
11549 };
11550
11551 static bfd_boolean
11552 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11553 {
11554 if (h->root.type == bfd_link_hash_warning)
11555 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11556
11557 if ((h->root.type == bfd_link_hash_defined
11558 || h->root.type == bfd_link_hash_defweak)
11559 && !h->root.u.def.section->gc_mark
11560 && !(h->root.u.def.section->owner->flags & DYNAMIC))
11561 {
11562 struct elf_gc_sweep_symbol_info *inf =
11563 (struct elf_gc_sweep_symbol_info *) data;
11564 (*inf->hide_symbol) (inf->info, h, TRUE);
11565 }
11566
11567 return TRUE;
11568 }
11569
11570 /* The sweep phase of garbage collection. Remove all garbage sections. */
11571
11572 typedef bfd_boolean (*gc_sweep_hook_fn)
11573 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11574
11575 static bfd_boolean
11576 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11577 {
11578 bfd *sub;
11579 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11580 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11581 unsigned long section_sym_count;
11582 struct elf_gc_sweep_symbol_info sweep_info;
11583
11584 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11585 {
11586 asection *o;
11587
11588 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11589 continue;
11590
11591 for (o = sub->sections; o != NULL; o = o->next)
11592 {
11593 /* When any section in a section group is kept, we keep all
11594 sections in the section group. If the first member of
11595 the section group is excluded, we will also exclude the
11596 group section. */
11597 if (o->flags & SEC_GROUP)
11598 {
11599 asection *first = elf_next_in_group (o);
11600 o->gc_mark = first->gc_mark;
11601 }
11602 else if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
11603 || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0
11604 || elf_section_data (o)->this_hdr.sh_type == SHT_NOTE)
11605 {
11606 /* Keep debug, special and SHT_NOTE sections. */
11607 o->gc_mark = 1;
11608 }
11609
11610 if (o->gc_mark)
11611 continue;
11612
11613 /* Skip sweeping sections already excluded. */
11614 if (o->flags & SEC_EXCLUDE)
11615 continue;
11616
11617 /* Since this is early in the link process, it is simple
11618 to remove a section from the output. */
11619 o->flags |= SEC_EXCLUDE;
11620
11621 if (info->print_gc_sections && o->size != 0)
11622 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11623
11624 /* But we also have to update some of the relocation
11625 info we collected before. */
11626 if (gc_sweep_hook
11627 && (o->flags & SEC_RELOC) != 0
11628 && o->reloc_count > 0
11629 && !bfd_is_abs_section (o->output_section))
11630 {
11631 Elf_Internal_Rela *internal_relocs;
11632 bfd_boolean r;
11633
11634 internal_relocs
11635 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11636 info->keep_memory);
11637 if (internal_relocs == NULL)
11638 return FALSE;
11639
11640 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11641
11642 if (elf_section_data (o)->relocs != internal_relocs)
11643 free (internal_relocs);
11644
11645 if (!r)
11646 return FALSE;
11647 }
11648 }
11649 }
11650
11651 /* Remove the symbols that were in the swept sections from the dynamic
11652 symbol table. GCFIXME: Anyone know how to get them out of the
11653 static symbol table as well? */
11654 sweep_info.info = info;
11655 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11656 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11657 &sweep_info);
11658
11659 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11660 return TRUE;
11661 }
11662
11663 /* Propagate collected vtable information. This is called through
11664 elf_link_hash_traverse. */
11665
11666 static bfd_boolean
11667 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11668 {
11669 if (h->root.type == bfd_link_hash_warning)
11670 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11671
11672 /* Those that are not vtables. */
11673 if (h->vtable == NULL || h->vtable->parent == NULL)
11674 return TRUE;
11675
11676 /* Those vtables that do not have parents, we cannot merge. */
11677 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11678 return TRUE;
11679
11680 /* If we've already been done, exit. */
11681 if (h->vtable->used && h->vtable->used[-1])
11682 return TRUE;
11683
11684 /* Make sure the parent's table is up to date. */
11685 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11686
11687 if (h->vtable->used == NULL)
11688 {
11689 /* None of this table's entries were referenced. Re-use the
11690 parent's table. */
11691 h->vtable->used = h->vtable->parent->vtable->used;
11692 h->vtable->size = h->vtable->parent->vtable->size;
11693 }
11694 else
11695 {
11696 size_t n;
11697 bfd_boolean *cu, *pu;
11698
11699 /* Or the parent's entries into ours. */
11700 cu = h->vtable->used;
11701 cu[-1] = TRUE;
11702 pu = h->vtable->parent->vtable->used;
11703 if (pu != NULL)
11704 {
11705 const struct elf_backend_data *bed;
11706 unsigned int log_file_align;
11707
11708 bed = get_elf_backend_data (h->root.u.def.section->owner);
11709 log_file_align = bed->s->log_file_align;
11710 n = h->vtable->parent->vtable->size >> log_file_align;
11711 while (n--)
11712 {
11713 if (*pu)
11714 *cu = TRUE;
11715 pu++;
11716 cu++;
11717 }
11718 }
11719 }
11720
11721 return TRUE;
11722 }
11723
11724 static bfd_boolean
11725 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11726 {
11727 asection *sec;
11728 bfd_vma hstart, hend;
11729 Elf_Internal_Rela *relstart, *relend, *rel;
11730 const struct elf_backend_data *bed;
11731 unsigned int log_file_align;
11732
11733 if (h->root.type == bfd_link_hash_warning)
11734 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11735
11736 /* Take care of both those symbols that do not describe vtables as
11737 well as those that are not loaded. */
11738 if (h->vtable == NULL || h->vtable->parent == NULL)
11739 return TRUE;
11740
11741 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11742 || h->root.type == bfd_link_hash_defweak);
11743
11744 sec = h->root.u.def.section;
11745 hstart = h->root.u.def.value;
11746 hend = hstart + h->size;
11747
11748 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11749 if (!relstart)
11750 return *(bfd_boolean *) okp = FALSE;
11751 bed = get_elf_backend_data (sec->owner);
11752 log_file_align = bed->s->log_file_align;
11753
11754 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11755
11756 for (rel = relstart; rel < relend; ++rel)
11757 if (rel->r_offset >= hstart && rel->r_offset < hend)
11758 {
11759 /* If the entry is in use, do nothing. */
11760 if (h->vtable->used
11761 && (rel->r_offset - hstart) < h->vtable->size)
11762 {
11763 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11764 if (h->vtable->used[entry])
11765 continue;
11766 }
11767 /* Otherwise, kill it. */
11768 rel->r_offset = rel->r_info = rel->r_addend = 0;
11769 }
11770
11771 return TRUE;
11772 }
11773
11774 /* Mark sections containing dynamically referenced symbols. When
11775 building shared libraries, we must assume that any visible symbol is
11776 referenced. */
11777
11778 bfd_boolean
11779 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11780 {
11781 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11782
11783 if (h->root.type == bfd_link_hash_warning)
11784 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11785
11786 if ((h->root.type == bfd_link_hash_defined
11787 || h->root.type == bfd_link_hash_defweak)
11788 && (h->ref_dynamic
11789 || (!info->executable
11790 && h->def_regular
11791 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11792 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
11793 h->root.u.def.section->flags |= SEC_KEEP;
11794
11795 return TRUE;
11796 }
11797
11798 /* Keep all sections containing symbols undefined on the command-line,
11799 and the section containing the entry symbol. */
11800
11801 void
11802 _bfd_elf_gc_keep (struct bfd_link_info *info)
11803 {
11804 struct bfd_sym_chain *sym;
11805
11806 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11807 {
11808 struct elf_link_hash_entry *h;
11809
11810 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11811 FALSE, FALSE, FALSE);
11812
11813 if (h != NULL
11814 && (h->root.type == bfd_link_hash_defined
11815 || h->root.type == bfd_link_hash_defweak)
11816 && !bfd_is_abs_section (h->root.u.def.section))
11817 h->root.u.def.section->flags |= SEC_KEEP;
11818 }
11819 }
11820
11821 /* Do mark and sweep of unused sections. */
11822
11823 bfd_boolean
11824 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11825 {
11826 bfd_boolean ok = TRUE;
11827 bfd *sub;
11828 elf_gc_mark_hook_fn gc_mark_hook;
11829 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11830
11831 if (!bed->can_gc_sections
11832 || !is_elf_hash_table (info->hash))
11833 {
11834 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11835 return TRUE;
11836 }
11837
11838 bed->gc_keep (info);
11839
11840 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11841 at the .eh_frame section if we can mark the FDEs individually. */
11842 _bfd_elf_begin_eh_frame_parsing (info);
11843 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11844 {
11845 asection *sec;
11846 struct elf_reloc_cookie cookie;
11847
11848 sec = bfd_get_section_by_name (sub, ".eh_frame");
11849 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
11850 {
11851 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
11852 if (elf_section_data (sec)->sec_info)
11853 elf_eh_frame_section (sub) = sec;
11854 fini_reloc_cookie_for_section (&cookie, sec);
11855 }
11856 }
11857 _bfd_elf_end_eh_frame_parsing (info);
11858
11859 /* Apply transitive closure to the vtable entry usage info. */
11860 elf_link_hash_traverse (elf_hash_table (info),
11861 elf_gc_propagate_vtable_entries_used,
11862 &ok);
11863 if (!ok)
11864 return FALSE;
11865
11866 /* Kill the vtable relocations that were not used. */
11867 elf_link_hash_traverse (elf_hash_table (info),
11868 elf_gc_smash_unused_vtentry_relocs,
11869 &ok);
11870 if (!ok)
11871 return FALSE;
11872
11873 /* Mark dynamically referenced symbols. */
11874 if (elf_hash_table (info)->dynamic_sections_created)
11875 elf_link_hash_traverse (elf_hash_table (info),
11876 bed->gc_mark_dynamic_ref,
11877 info);
11878
11879 /* Grovel through relocs to find out who stays ... */
11880 gc_mark_hook = bed->gc_mark_hook;
11881 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11882 {
11883 asection *o;
11884
11885 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11886 continue;
11887
11888 for (o = sub->sections; o != NULL; o = o->next)
11889 if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark)
11890 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11891 return FALSE;
11892 }
11893
11894 /* Allow the backend to mark additional target specific sections. */
11895 if (bed->gc_mark_extra_sections)
11896 bed->gc_mark_extra_sections (info, gc_mark_hook);
11897
11898 /* ... and mark SEC_EXCLUDE for those that go. */
11899 return elf_gc_sweep (abfd, info);
11900 }
11901 \f
11902 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11903
11904 bfd_boolean
11905 bfd_elf_gc_record_vtinherit (bfd *abfd,
11906 asection *sec,
11907 struct elf_link_hash_entry *h,
11908 bfd_vma offset)
11909 {
11910 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
11911 struct elf_link_hash_entry **search, *child;
11912 bfd_size_type extsymcount;
11913 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11914
11915 /* The sh_info field of the symtab header tells us where the
11916 external symbols start. We don't care about the local symbols at
11917 this point. */
11918 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
11919 if (!elf_bad_symtab (abfd))
11920 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
11921
11922 sym_hashes = elf_sym_hashes (abfd);
11923 sym_hashes_end = sym_hashes + extsymcount;
11924
11925 /* Hunt down the child symbol, which is in this section at the same
11926 offset as the relocation. */
11927 for (search = sym_hashes; search != sym_hashes_end; ++search)
11928 {
11929 if ((child = *search) != NULL
11930 && (child->root.type == bfd_link_hash_defined
11931 || child->root.type == bfd_link_hash_defweak)
11932 && child->root.u.def.section == sec
11933 && child->root.u.def.value == offset)
11934 goto win;
11935 }
11936
11937 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
11938 abfd, sec, (unsigned long) offset);
11939 bfd_set_error (bfd_error_invalid_operation);
11940 return FALSE;
11941
11942 win:
11943 if (!child->vtable)
11944 {
11945 child->vtable = (struct elf_link_virtual_table_entry *)
11946 bfd_zalloc (abfd, sizeof (*child->vtable));
11947 if (!child->vtable)
11948 return FALSE;
11949 }
11950 if (!h)
11951 {
11952 /* This *should* only be the absolute section. It could potentially
11953 be that someone has defined a non-global vtable though, which
11954 would be bad. It isn't worth paging in the local symbols to be
11955 sure though; that case should simply be handled by the assembler. */
11956
11957 child->vtable->parent = (struct elf_link_hash_entry *) -1;
11958 }
11959 else
11960 child->vtable->parent = h;
11961
11962 return TRUE;
11963 }
11964
11965 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
11966
11967 bfd_boolean
11968 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
11969 asection *sec ATTRIBUTE_UNUSED,
11970 struct elf_link_hash_entry *h,
11971 bfd_vma addend)
11972 {
11973 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11974 unsigned int log_file_align = bed->s->log_file_align;
11975
11976 if (!h->vtable)
11977 {
11978 h->vtable = (struct elf_link_virtual_table_entry *)
11979 bfd_zalloc (abfd, sizeof (*h->vtable));
11980 if (!h->vtable)
11981 return FALSE;
11982 }
11983
11984 if (addend >= h->vtable->size)
11985 {
11986 size_t size, bytes, file_align;
11987 bfd_boolean *ptr = h->vtable->used;
11988
11989 /* While the symbol is undefined, we have to be prepared to handle
11990 a zero size. */
11991 file_align = 1 << log_file_align;
11992 if (h->root.type == bfd_link_hash_undefined)
11993 size = addend + file_align;
11994 else
11995 {
11996 size = h->size;
11997 if (addend >= size)
11998 {
11999 /* Oops! We've got a reference past the defined end of
12000 the table. This is probably a bug -- shall we warn? */
12001 size = addend + file_align;
12002 }
12003 }
12004 size = (size + file_align - 1) & -file_align;
12005
12006 /* Allocate one extra entry for use as a "done" flag for the
12007 consolidation pass. */
12008 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12009
12010 if (ptr)
12011 {
12012 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12013
12014 if (ptr != NULL)
12015 {
12016 size_t oldbytes;
12017
12018 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12019 * sizeof (bfd_boolean));
12020 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12021 }
12022 }
12023 else
12024 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12025
12026 if (ptr == NULL)
12027 return FALSE;
12028
12029 /* And arrange for that done flag to be at index -1. */
12030 h->vtable->used = ptr + 1;
12031 h->vtable->size = size;
12032 }
12033
12034 h->vtable->used[addend >> log_file_align] = TRUE;
12035
12036 return TRUE;
12037 }
12038
12039 struct alloc_got_off_arg {
12040 bfd_vma gotoff;
12041 struct bfd_link_info *info;
12042 };
12043
12044 /* We need a special top-level link routine to convert got reference counts
12045 to real got offsets. */
12046
12047 static bfd_boolean
12048 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12049 {
12050 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12051 bfd *obfd = gofarg->info->output_bfd;
12052 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12053
12054 if (h->root.type == bfd_link_hash_warning)
12055 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12056
12057 if (h->got.refcount > 0)
12058 {
12059 h->got.offset = gofarg->gotoff;
12060 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12061 }
12062 else
12063 h->got.offset = (bfd_vma) -1;
12064
12065 return TRUE;
12066 }
12067
12068 /* And an accompanying bit to work out final got entry offsets once
12069 we're done. Should be called from final_link. */
12070
12071 bfd_boolean
12072 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12073 struct bfd_link_info *info)
12074 {
12075 bfd *i;
12076 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12077 bfd_vma gotoff;
12078 struct alloc_got_off_arg gofarg;
12079
12080 BFD_ASSERT (abfd == info->output_bfd);
12081
12082 if (! is_elf_hash_table (info->hash))
12083 return FALSE;
12084
12085 /* The GOT offset is relative to the .got section, but the GOT header is
12086 put into the .got.plt section, if the backend uses it. */
12087 if (bed->want_got_plt)
12088 gotoff = 0;
12089 else
12090 gotoff = bed->got_header_size;
12091
12092 /* Do the local .got entries first. */
12093 for (i = info->input_bfds; i; i = i->link_next)
12094 {
12095 bfd_signed_vma *local_got;
12096 bfd_size_type j, locsymcount;
12097 Elf_Internal_Shdr *symtab_hdr;
12098
12099 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12100 continue;
12101
12102 local_got = elf_local_got_refcounts (i);
12103 if (!local_got)
12104 continue;
12105
12106 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12107 if (elf_bad_symtab (i))
12108 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12109 else
12110 locsymcount = symtab_hdr->sh_info;
12111
12112 for (j = 0; j < locsymcount; ++j)
12113 {
12114 if (local_got[j] > 0)
12115 {
12116 local_got[j] = gotoff;
12117 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12118 }
12119 else
12120 local_got[j] = (bfd_vma) -1;
12121 }
12122 }
12123
12124 /* Then the global .got entries. .plt refcounts are handled by
12125 adjust_dynamic_symbol */
12126 gofarg.gotoff = gotoff;
12127 gofarg.info = info;
12128 elf_link_hash_traverse (elf_hash_table (info),
12129 elf_gc_allocate_got_offsets,
12130 &gofarg);
12131 return TRUE;
12132 }
12133
12134 /* Many folk need no more in the way of final link than this, once
12135 got entry reference counting is enabled. */
12136
12137 bfd_boolean
12138 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12139 {
12140 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12141 return FALSE;
12142
12143 /* Invoke the regular ELF backend linker to do all the work. */
12144 return bfd_elf_final_link (abfd, info);
12145 }
12146
12147 bfd_boolean
12148 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12149 {
12150 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12151
12152 if (rcookie->bad_symtab)
12153 rcookie->rel = rcookie->rels;
12154
12155 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12156 {
12157 unsigned long r_symndx;
12158
12159 if (! rcookie->bad_symtab)
12160 if (rcookie->rel->r_offset > offset)
12161 return FALSE;
12162 if (rcookie->rel->r_offset != offset)
12163 continue;
12164
12165 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12166 if (r_symndx == SHN_UNDEF)
12167 return TRUE;
12168
12169 if (r_symndx >= rcookie->locsymcount
12170 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12171 {
12172 struct elf_link_hash_entry *h;
12173
12174 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12175
12176 while (h->root.type == bfd_link_hash_indirect
12177 || h->root.type == bfd_link_hash_warning)
12178 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12179
12180 if ((h->root.type == bfd_link_hash_defined
12181 || h->root.type == bfd_link_hash_defweak)
12182 && elf_discarded_section (h->root.u.def.section))
12183 return TRUE;
12184 else
12185 return FALSE;
12186 }
12187 else
12188 {
12189 /* It's not a relocation against a global symbol,
12190 but it could be a relocation against a local
12191 symbol for a discarded section. */
12192 asection *isec;
12193 Elf_Internal_Sym *isym;
12194
12195 /* Need to: get the symbol; get the section. */
12196 isym = &rcookie->locsyms[r_symndx];
12197 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12198 if (isec != NULL && elf_discarded_section (isec))
12199 return TRUE;
12200 }
12201 return FALSE;
12202 }
12203 return FALSE;
12204 }
12205
12206 /* Discard unneeded references to discarded sections.
12207 Returns TRUE if any section's size was changed. */
12208 /* This function assumes that the relocations are in sorted order,
12209 which is true for all known assemblers. */
12210
12211 bfd_boolean
12212 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12213 {
12214 struct elf_reloc_cookie cookie;
12215 asection *stab, *eh;
12216 const struct elf_backend_data *bed;
12217 bfd *abfd;
12218 bfd_boolean ret = FALSE;
12219
12220 if (info->traditional_format
12221 || !is_elf_hash_table (info->hash))
12222 return FALSE;
12223
12224 _bfd_elf_begin_eh_frame_parsing (info);
12225 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12226 {
12227 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12228 continue;
12229
12230 bed = get_elf_backend_data (abfd);
12231
12232 if ((abfd->flags & DYNAMIC) != 0)
12233 continue;
12234
12235 eh = NULL;
12236 if (!info->relocatable)
12237 {
12238 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12239 if (eh != NULL
12240 && (eh->size == 0
12241 || bfd_is_abs_section (eh->output_section)))
12242 eh = NULL;
12243 }
12244
12245 stab = bfd_get_section_by_name (abfd, ".stab");
12246 if (stab != NULL
12247 && (stab->size == 0
12248 || bfd_is_abs_section (stab->output_section)
12249 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
12250 stab = NULL;
12251
12252 if (stab == NULL
12253 && eh == NULL
12254 && bed->elf_backend_discard_info == NULL)
12255 continue;
12256
12257 if (!init_reloc_cookie (&cookie, info, abfd))
12258 return FALSE;
12259
12260 if (stab != NULL
12261 && stab->reloc_count > 0
12262 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12263 {
12264 if (_bfd_discard_section_stabs (abfd, stab,
12265 elf_section_data (stab)->sec_info,
12266 bfd_elf_reloc_symbol_deleted_p,
12267 &cookie))
12268 ret = TRUE;
12269 fini_reloc_cookie_rels (&cookie, stab);
12270 }
12271
12272 if (eh != NULL
12273 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12274 {
12275 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12276 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12277 bfd_elf_reloc_symbol_deleted_p,
12278 &cookie))
12279 ret = TRUE;
12280 fini_reloc_cookie_rels (&cookie, eh);
12281 }
12282
12283 if (bed->elf_backend_discard_info != NULL
12284 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12285 ret = TRUE;
12286
12287 fini_reloc_cookie (&cookie, abfd);
12288 }
12289 _bfd_elf_end_eh_frame_parsing (info);
12290
12291 if (info->eh_frame_hdr
12292 && !info->relocatable
12293 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12294 ret = TRUE;
12295
12296 return ret;
12297 }
12298
12299 /* For a SHT_GROUP section, return the group signature. For other
12300 sections, return the normal section name. */
12301
12302 static const char *
12303 section_signature (asection *sec)
12304 {
12305 if ((sec->flags & SEC_GROUP) != 0
12306 && elf_next_in_group (sec) != NULL
12307 && elf_group_name (elf_next_in_group (sec)) != NULL)
12308 return elf_group_name (elf_next_in_group (sec));
12309 return sec->name;
12310 }
12311
12312 void
12313 _bfd_elf_section_already_linked (bfd *abfd, asection *sec,
12314 struct bfd_link_info *info)
12315 {
12316 flagword flags;
12317 const char *name, *p;
12318 struct bfd_section_already_linked *l;
12319 struct bfd_section_already_linked_hash_entry *already_linked_list;
12320
12321 if (sec->output_section == bfd_abs_section_ptr)
12322 return;
12323
12324 flags = sec->flags;
12325
12326 /* Return if it isn't a linkonce section. A comdat group section
12327 also has SEC_LINK_ONCE set. */
12328 if ((flags & SEC_LINK_ONCE) == 0)
12329 return;
12330
12331 /* Don't put group member sections on our list of already linked
12332 sections. They are handled as a group via their group section. */
12333 if (elf_sec_group (sec) != NULL)
12334 return;
12335
12336 /* FIXME: When doing a relocatable link, we may have trouble
12337 copying relocations in other sections that refer to local symbols
12338 in the section being discarded. Those relocations will have to
12339 be converted somehow; as of this writing I'm not sure that any of
12340 the backends handle that correctly.
12341
12342 It is tempting to instead not discard link once sections when
12343 doing a relocatable link (technically, they should be discarded
12344 whenever we are building constructors). However, that fails,
12345 because the linker winds up combining all the link once sections
12346 into a single large link once section, which defeats the purpose
12347 of having link once sections in the first place.
12348
12349 Also, not merging link once sections in a relocatable link
12350 causes trouble for MIPS ELF, which relies on link once semantics
12351 to handle the .reginfo section correctly. */
12352
12353 name = section_signature (sec);
12354
12355 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12356 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12357 p++;
12358 else
12359 p = name;
12360
12361 already_linked_list = bfd_section_already_linked_table_lookup (p);
12362
12363 for (l = already_linked_list->entry; l != NULL; l = l->next)
12364 {
12365 /* We may have 2 different types of sections on the list: group
12366 sections and linkonce sections. Match like sections. */
12367 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12368 && strcmp (name, section_signature (l->sec)) == 0
12369 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
12370 {
12371 /* The section has already been linked. See if we should
12372 issue a warning. */
12373 switch (flags & SEC_LINK_DUPLICATES)
12374 {
12375 default:
12376 abort ();
12377
12378 case SEC_LINK_DUPLICATES_DISCARD:
12379 break;
12380
12381 case SEC_LINK_DUPLICATES_ONE_ONLY:
12382 (*_bfd_error_handler)
12383 (_("%B: ignoring duplicate section `%A'"),
12384 abfd, sec);
12385 break;
12386
12387 case SEC_LINK_DUPLICATES_SAME_SIZE:
12388 if (sec->size != l->sec->size)
12389 (*_bfd_error_handler)
12390 (_("%B: duplicate section `%A' has different size"),
12391 abfd, sec);
12392 break;
12393
12394 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
12395 if (sec->size != l->sec->size)
12396 (*_bfd_error_handler)
12397 (_("%B: duplicate section `%A' has different size"),
12398 abfd, sec);
12399 else if (sec->size != 0)
12400 {
12401 bfd_byte *sec_contents, *l_sec_contents;
12402
12403 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
12404 (*_bfd_error_handler)
12405 (_("%B: warning: could not read contents of section `%A'"),
12406 abfd, sec);
12407 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
12408 &l_sec_contents))
12409 (*_bfd_error_handler)
12410 (_("%B: warning: could not read contents of section `%A'"),
12411 l->sec->owner, l->sec);
12412 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
12413 (*_bfd_error_handler)
12414 (_("%B: warning: duplicate section `%A' has different contents"),
12415 abfd, sec);
12416
12417 if (sec_contents)
12418 free (sec_contents);
12419 if (l_sec_contents)
12420 free (l_sec_contents);
12421 }
12422 break;
12423 }
12424
12425 /* Set the output_section field so that lang_add_section
12426 does not create a lang_input_section structure for this
12427 section. Since there might be a symbol in the section
12428 being discarded, we must retain a pointer to the section
12429 which we are really going to use. */
12430 sec->output_section = bfd_abs_section_ptr;
12431 sec->kept_section = l->sec;
12432
12433 if (flags & SEC_GROUP)
12434 {
12435 asection *first = elf_next_in_group (sec);
12436 asection *s = first;
12437
12438 while (s != NULL)
12439 {
12440 s->output_section = bfd_abs_section_ptr;
12441 /* Record which group discards it. */
12442 s->kept_section = l->sec;
12443 s = elf_next_in_group (s);
12444 /* These lists are circular. */
12445 if (s == first)
12446 break;
12447 }
12448 }
12449
12450 return;
12451 }
12452 }
12453
12454 /* A single member comdat group section may be discarded by a
12455 linkonce section and vice versa. */
12456
12457 if ((flags & SEC_GROUP) != 0)
12458 {
12459 asection *first = elf_next_in_group (sec);
12460
12461 if (first != NULL && elf_next_in_group (first) == first)
12462 /* Check this single member group against linkonce sections. */
12463 for (l = already_linked_list->entry; l != NULL; l = l->next)
12464 if ((l->sec->flags & SEC_GROUP) == 0
12465 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
12466 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12467 {
12468 first->output_section = bfd_abs_section_ptr;
12469 first->kept_section = l->sec;
12470 sec->output_section = bfd_abs_section_ptr;
12471 break;
12472 }
12473 }
12474 else
12475 /* Check this linkonce section against single member groups. */
12476 for (l = already_linked_list->entry; l != NULL; l = l->next)
12477 if (l->sec->flags & SEC_GROUP)
12478 {
12479 asection *first = elf_next_in_group (l->sec);
12480
12481 if (first != NULL
12482 && elf_next_in_group (first) == first
12483 && bfd_elf_match_symbols_in_sections (first, sec, info))
12484 {
12485 sec->output_section = bfd_abs_section_ptr;
12486 sec->kept_section = first;
12487 break;
12488 }
12489 }
12490
12491 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12492 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12493 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12494 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12495 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12496 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12497 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12498 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12499 The reverse order cannot happen as there is never a bfd with only the
12500 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12501 matter as here were are looking only for cross-bfd sections. */
12502
12503 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12504 for (l = already_linked_list->entry; l != NULL; l = l->next)
12505 if ((l->sec->flags & SEC_GROUP) == 0
12506 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12507 {
12508 if (abfd != l->sec->owner)
12509 sec->output_section = bfd_abs_section_ptr;
12510 break;
12511 }
12512
12513 /* This is the first section with this name. Record it. */
12514 if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
12515 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12516 }
12517
12518 bfd_boolean
12519 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12520 {
12521 return sym->st_shndx == SHN_COMMON;
12522 }
12523
12524 unsigned int
12525 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12526 {
12527 return SHN_COMMON;
12528 }
12529
12530 asection *
12531 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12532 {
12533 return bfd_com_section_ptr;
12534 }
12535
12536 bfd_vma
12537 _bfd_elf_default_got_elt_size (bfd *abfd,
12538 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12539 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12540 bfd *ibfd ATTRIBUTE_UNUSED,
12541 unsigned long symndx ATTRIBUTE_UNUSED)
12542 {
12543 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12544 return bed->s->arch_size / 8;
12545 }
12546
12547 /* Routines to support the creation of dynamic relocs. */
12548
12549 /* Return true if NAME is a name of a relocation
12550 section associated with section S. */
12551
12552 static bfd_boolean
12553 is_reloc_section (bfd_boolean rela, const char * name, asection * s)
12554 {
12555 if (rela)
12556 return CONST_STRNEQ (name, ".rela")
12557 && strcmp (bfd_get_section_name (NULL, s), name + 5) == 0;
12558
12559 return CONST_STRNEQ (name, ".rel")
12560 && strcmp (bfd_get_section_name (NULL, s), name + 4) == 0;
12561 }
12562
12563 /* Returns the name of the dynamic reloc section associated with SEC. */
12564
12565 static const char *
12566 get_dynamic_reloc_section_name (bfd * abfd,
12567 asection * sec,
12568 bfd_boolean is_rela)
12569 {
12570 const char * name;
12571 unsigned int strndx = elf_elfheader (abfd)->e_shstrndx;
12572 unsigned int shnam = elf_section_data (sec)->rel_hdr.sh_name;
12573
12574 name = bfd_elf_string_from_elf_section (abfd, strndx, shnam);
12575 if (name == NULL)
12576 return NULL;
12577
12578 if (! is_reloc_section (is_rela, name, sec))
12579 {
12580 static bfd_boolean complained = FALSE;
12581
12582 if (! complained)
12583 {
12584 (*_bfd_error_handler)
12585 (_("%B: bad relocation section name `%s\'"), abfd, name);
12586 complained = TRUE;
12587 }
12588 name = NULL;
12589 }
12590
12591 return name;
12592 }
12593
12594 /* Returns the dynamic reloc section associated with SEC.
12595 If necessary compute the name of the dynamic reloc section based
12596 on SEC's name (looked up in ABFD's string table) and the setting
12597 of IS_RELA. */
12598
12599 asection *
12600 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12601 asection * sec,
12602 bfd_boolean is_rela)
12603 {
12604 asection * reloc_sec = elf_section_data (sec)->sreloc;
12605
12606 if (reloc_sec == NULL)
12607 {
12608 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12609
12610 if (name != NULL)
12611 {
12612 reloc_sec = bfd_get_section_by_name (abfd, name);
12613
12614 if (reloc_sec != NULL)
12615 elf_section_data (sec)->sreloc = reloc_sec;
12616 }
12617 }
12618
12619 return reloc_sec;
12620 }
12621
12622 /* Returns the dynamic reloc section associated with SEC. If the
12623 section does not exist it is created and attached to the DYNOBJ
12624 bfd and stored in the SRELOC field of SEC's elf_section_data
12625 structure.
12626
12627 ALIGNMENT is the alignment for the newly created section and
12628 IS_RELA defines whether the name should be .rela.<SEC's name>
12629 or .rel.<SEC's name>. The section name is looked up in the
12630 string table associated with ABFD. */
12631
12632 asection *
12633 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12634 bfd * dynobj,
12635 unsigned int alignment,
12636 bfd * abfd,
12637 bfd_boolean is_rela)
12638 {
12639 asection * reloc_sec = elf_section_data (sec)->sreloc;
12640
12641 if (reloc_sec == NULL)
12642 {
12643 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12644
12645 if (name == NULL)
12646 return NULL;
12647
12648 reloc_sec = bfd_get_section_by_name (dynobj, name);
12649
12650 if (reloc_sec == NULL)
12651 {
12652 flagword flags;
12653
12654 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12655 if ((sec->flags & SEC_ALLOC) != 0)
12656 flags |= SEC_ALLOC | SEC_LOAD;
12657
12658 reloc_sec = bfd_make_section_with_flags (dynobj, name, flags);
12659 if (reloc_sec != NULL)
12660 {
12661 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12662 reloc_sec = NULL;
12663 }
12664 }
12665
12666 elf_section_data (sec)->sreloc = reloc_sec;
12667 }
12668
12669 return reloc_sec;
12670 }
12671
12672 /* Copy the ELF symbol type associated with a linker hash entry. */
12673 void
12674 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
12675 struct bfd_link_hash_entry * hdest,
12676 struct bfd_link_hash_entry * hsrc)
12677 {
12678 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
12679 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
12680
12681 ehdest->type = ehsrc->type;
12682 }