[AArch64] Sort TLS reloc types alphabetically
[binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2015 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfd_stdint.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31
32 /* This struct is used to pass information to routines called via
33 elf_link_hash_traverse which must return failure. */
34
35 struct elf_info_failed
36 {
37 struct bfd_link_info *info;
38 bfd_boolean failed;
39 };
40
41 /* This structure is used to pass information to
42 _bfd_elf_link_find_version_dependencies. */
43
44 struct elf_find_verdep_info
45 {
46 /* General link information. */
47 struct bfd_link_info *info;
48 /* The number of dependencies. */
49 unsigned int vers;
50 /* Whether we had a failure. */
51 bfd_boolean failed;
52 };
53
54 static bfd_boolean _bfd_elf_fix_symbol_flags
55 (struct elf_link_hash_entry *, struct elf_info_failed *);
56
57 asection *
58 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
59 unsigned long r_symndx,
60 bfd_boolean discard)
61 {
62 if (r_symndx >= cookie->locsymcount
63 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
64 {
65 struct elf_link_hash_entry *h;
66
67 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
68
69 while (h->root.type == bfd_link_hash_indirect
70 || h->root.type == bfd_link_hash_warning)
71 h = (struct elf_link_hash_entry *) h->root.u.i.link;
72
73 if ((h->root.type == bfd_link_hash_defined
74 || h->root.type == bfd_link_hash_defweak)
75 && discarded_section (h->root.u.def.section))
76 return h->root.u.def.section;
77 else
78 return NULL;
79 }
80 else
81 {
82 /* It's not a relocation against a global symbol,
83 but it could be a relocation against a local
84 symbol for a discarded section. */
85 asection *isec;
86 Elf_Internal_Sym *isym;
87
88 /* Need to: get the symbol; get the section. */
89 isym = &cookie->locsyms[r_symndx];
90 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
91 if (isec != NULL
92 && discard ? discarded_section (isec) : 1)
93 return isec;
94 }
95 return NULL;
96 }
97
98 /* Define a symbol in a dynamic linkage section. */
99
100 struct elf_link_hash_entry *
101 _bfd_elf_define_linkage_sym (bfd *abfd,
102 struct bfd_link_info *info,
103 asection *sec,
104 const char *name)
105 {
106 struct elf_link_hash_entry *h;
107 struct bfd_link_hash_entry *bh;
108 const struct elf_backend_data *bed;
109
110 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
111 if (h != NULL)
112 {
113 /* Zap symbol defined in an as-needed lib that wasn't linked.
114 This is a symptom of a larger problem: Absolute symbols
115 defined in shared libraries can't be overridden, because we
116 lose the link to the bfd which is via the symbol section. */
117 h->root.type = bfd_link_hash_new;
118 }
119
120 bh = &h->root;
121 bed = get_elf_backend_data (abfd);
122 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
123 sec, 0, NULL, FALSE, bed->collect,
124 &bh))
125 return NULL;
126 h = (struct elf_link_hash_entry *) bh;
127 h->def_regular = 1;
128 h->non_elf = 0;
129 h->root.linker_def = 1;
130 h->type = STT_OBJECT;
131 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
132 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
133
134 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
135 return h;
136 }
137
138 bfd_boolean
139 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
140 {
141 flagword flags;
142 asection *s;
143 struct elf_link_hash_entry *h;
144 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
145 struct elf_link_hash_table *htab = elf_hash_table (info);
146
147 /* This function may be called more than once. */
148 s = bfd_get_linker_section (abfd, ".got");
149 if (s != NULL)
150 return TRUE;
151
152 flags = bed->dynamic_sec_flags;
153
154 s = bfd_make_section_anyway_with_flags (abfd,
155 (bed->rela_plts_and_copies_p
156 ? ".rela.got" : ".rel.got"),
157 (bed->dynamic_sec_flags
158 | SEC_READONLY));
159 if (s == NULL
160 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
161 return FALSE;
162 htab->srelgot = s;
163
164 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
165 if (s == NULL
166 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
167 return FALSE;
168 htab->sgot = s;
169
170 if (bed->want_got_plt)
171 {
172 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
173 if (s == NULL
174 || !bfd_set_section_alignment (abfd, s,
175 bed->s->log_file_align))
176 return FALSE;
177 htab->sgotplt = s;
178 }
179
180 /* The first bit of the global offset table is the header. */
181 s->size += bed->got_header_size;
182
183 if (bed->want_got_sym)
184 {
185 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
186 (or .got.plt) section. We don't do this in the linker script
187 because we don't want to define the symbol if we are not creating
188 a global offset table. */
189 h = _bfd_elf_define_linkage_sym (abfd, info, s,
190 "_GLOBAL_OFFSET_TABLE_");
191 elf_hash_table (info)->hgot = h;
192 if (h == NULL)
193 return FALSE;
194 }
195
196 return TRUE;
197 }
198 \f
199 /* Create a strtab to hold the dynamic symbol names. */
200 static bfd_boolean
201 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
202 {
203 struct elf_link_hash_table *hash_table;
204
205 hash_table = elf_hash_table (info);
206 if (hash_table->dynobj == NULL)
207 hash_table->dynobj = abfd;
208
209 if (hash_table->dynstr == NULL)
210 {
211 hash_table->dynstr = _bfd_elf_strtab_init ();
212 if (hash_table->dynstr == NULL)
213 return FALSE;
214 }
215 return TRUE;
216 }
217
218 /* Create some sections which will be filled in with dynamic linking
219 information. ABFD is an input file which requires dynamic sections
220 to be created. The dynamic sections take up virtual memory space
221 when the final executable is run, so we need to create them before
222 addresses are assigned to the output sections. We work out the
223 actual contents and size of these sections later. */
224
225 bfd_boolean
226 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
227 {
228 flagword flags;
229 asection *s;
230 const struct elf_backend_data *bed;
231 struct elf_link_hash_entry *h;
232
233 if (! is_elf_hash_table (info->hash))
234 return FALSE;
235
236 if (elf_hash_table (info)->dynamic_sections_created)
237 return TRUE;
238
239 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
240 return FALSE;
241
242 abfd = elf_hash_table (info)->dynobj;
243 bed = get_elf_backend_data (abfd);
244
245 flags = bed->dynamic_sec_flags;
246
247 /* A dynamically linked executable has a .interp section, but a
248 shared library does not. */
249 if (info->executable)
250 {
251 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
252 flags | SEC_READONLY);
253 if (s == NULL)
254 return FALSE;
255 }
256
257 /* Create sections to hold version informations. These are removed
258 if they are not needed. */
259 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
260 flags | SEC_READONLY);
261 if (s == NULL
262 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
263 return FALSE;
264
265 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
266 flags | SEC_READONLY);
267 if (s == NULL
268 || ! bfd_set_section_alignment (abfd, s, 1))
269 return FALSE;
270
271 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
272 flags | SEC_READONLY);
273 if (s == NULL
274 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
275 return FALSE;
276
277 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
278 flags | SEC_READONLY);
279 if (s == NULL
280 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
281 return FALSE;
282
283 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
284 flags | SEC_READONLY);
285 if (s == NULL)
286 return FALSE;
287
288 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
289 if (s == NULL
290 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
291 return FALSE;
292
293 /* The special symbol _DYNAMIC is always set to the start of the
294 .dynamic section. We could set _DYNAMIC in a linker script, but we
295 only want to define it if we are, in fact, creating a .dynamic
296 section. We don't want to define it if there is no .dynamic
297 section, since on some ELF platforms the start up code examines it
298 to decide how to initialize the process. */
299 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
300 elf_hash_table (info)->hdynamic = h;
301 if (h == NULL)
302 return FALSE;
303
304 if (info->emit_hash)
305 {
306 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
307 flags | SEC_READONLY);
308 if (s == NULL
309 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
310 return FALSE;
311 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
312 }
313
314 if (info->emit_gnu_hash)
315 {
316 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
317 flags | SEC_READONLY);
318 if (s == NULL
319 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
320 return FALSE;
321 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
322 4 32-bit words followed by variable count of 64-bit words, then
323 variable count of 32-bit words. */
324 if (bed->s->arch_size == 64)
325 elf_section_data (s)->this_hdr.sh_entsize = 0;
326 else
327 elf_section_data (s)->this_hdr.sh_entsize = 4;
328 }
329
330 /* Let the backend create the rest of the sections. This lets the
331 backend set the right flags. The backend will normally create
332 the .got and .plt sections. */
333 if (bed->elf_backend_create_dynamic_sections == NULL
334 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
335 return FALSE;
336
337 elf_hash_table (info)->dynamic_sections_created = TRUE;
338
339 return TRUE;
340 }
341
342 /* Create dynamic sections when linking against a dynamic object. */
343
344 bfd_boolean
345 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
346 {
347 flagword flags, pltflags;
348 struct elf_link_hash_entry *h;
349 asection *s;
350 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
351 struct elf_link_hash_table *htab = elf_hash_table (info);
352
353 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
354 .rel[a].bss sections. */
355 flags = bed->dynamic_sec_flags;
356
357 pltflags = flags;
358 if (bed->plt_not_loaded)
359 /* We do not clear SEC_ALLOC here because we still want the OS to
360 allocate space for the section; it's just that there's nothing
361 to read in from the object file. */
362 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
363 else
364 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
365 if (bed->plt_readonly)
366 pltflags |= SEC_READONLY;
367
368 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
369 if (s == NULL
370 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
371 return FALSE;
372 htab->splt = s;
373
374 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
375 .plt section. */
376 if (bed->want_plt_sym)
377 {
378 h = _bfd_elf_define_linkage_sym (abfd, info, s,
379 "_PROCEDURE_LINKAGE_TABLE_");
380 elf_hash_table (info)->hplt = h;
381 if (h == NULL)
382 return FALSE;
383 }
384
385 s = bfd_make_section_anyway_with_flags (abfd,
386 (bed->rela_plts_and_copies_p
387 ? ".rela.plt" : ".rel.plt"),
388 flags | SEC_READONLY);
389 if (s == NULL
390 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
391 return FALSE;
392 htab->srelplt = s;
393
394 if (! _bfd_elf_create_got_section (abfd, info))
395 return FALSE;
396
397 if (bed->want_dynbss)
398 {
399 /* The .dynbss section is a place to put symbols which are defined
400 by dynamic objects, are referenced by regular objects, and are
401 not functions. We must allocate space for them in the process
402 image and use a R_*_COPY reloc to tell the dynamic linker to
403 initialize them at run time. The linker script puts the .dynbss
404 section into the .bss section of the final image. */
405 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
406 (SEC_ALLOC | SEC_LINKER_CREATED));
407 if (s == NULL)
408 return FALSE;
409
410 /* The .rel[a].bss section holds copy relocs. This section is not
411 normally needed. We need to create it here, though, so that the
412 linker will map it to an output section. We can't just create it
413 only if we need it, because we will not know whether we need it
414 until we have seen all the input files, and the first time the
415 main linker code calls BFD after examining all the input files
416 (size_dynamic_sections) the input sections have already been
417 mapped to the output sections. If the section turns out not to
418 be needed, we can discard it later. We will never need this
419 section when generating a shared object, since they do not use
420 copy relocs. */
421 if (! info->shared)
422 {
423 s = bfd_make_section_anyway_with_flags (abfd,
424 (bed->rela_plts_and_copies_p
425 ? ".rela.bss" : ".rel.bss"),
426 flags | SEC_READONLY);
427 if (s == NULL
428 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
429 return FALSE;
430 }
431 }
432
433 return TRUE;
434 }
435 \f
436 /* Record a new dynamic symbol. We record the dynamic symbols as we
437 read the input files, since we need to have a list of all of them
438 before we can determine the final sizes of the output sections.
439 Note that we may actually call this function even though we are not
440 going to output any dynamic symbols; in some cases we know that a
441 symbol should be in the dynamic symbol table, but only if there is
442 one. */
443
444 bfd_boolean
445 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
446 struct elf_link_hash_entry *h)
447 {
448 if (h->dynindx == -1)
449 {
450 struct elf_strtab_hash *dynstr;
451 char *p;
452 const char *name;
453 bfd_size_type indx;
454
455 /* XXX: The ABI draft says the linker must turn hidden and
456 internal symbols into STB_LOCAL symbols when producing the
457 DSO. However, if ld.so honors st_other in the dynamic table,
458 this would not be necessary. */
459 switch (ELF_ST_VISIBILITY (h->other))
460 {
461 case STV_INTERNAL:
462 case STV_HIDDEN:
463 if (h->root.type != bfd_link_hash_undefined
464 && h->root.type != bfd_link_hash_undefweak)
465 {
466 h->forced_local = 1;
467 if (!elf_hash_table (info)->is_relocatable_executable)
468 return TRUE;
469 }
470
471 default:
472 break;
473 }
474
475 h->dynindx = elf_hash_table (info)->dynsymcount;
476 ++elf_hash_table (info)->dynsymcount;
477
478 dynstr = elf_hash_table (info)->dynstr;
479 if (dynstr == NULL)
480 {
481 /* Create a strtab to hold the dynamic symbol names. */
482 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
483 if (dynstr == NULL)
484 return FALSE;
485 }
486
487 /* We don't put any version information in the dynamic string
488 table. */
489 name = h->root.root.string;
490 p = strchr (name, ELF_VER_CHR);
491 if (p != NULL)
492 /* We know that the p points into writable memory. In fact,
493 there are only a few symbols that have read-only names, being
494 those like _GLOBAL_OFFSET_TABLE_ that are created specially
495 by the backends. Most symbols will have names pointing into
496 an ELF string table read from a file, or to objalloc memory. */
497 *p = 0;
498
499 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
500
501 if (p != NULL)
502 *p = ELF_VER_CHR;
503
504 if (indx == (bfd_size_type) -1)
505 return FALSE;
506 h->dynstr_index = indx;
507 }
508
509 return TRUE;
510 }
511 \f
512 /* Mark a symbol dynamic. */
513
514 static void
515 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
516 struct elf_link_hash_entry *h,
517 Elf_Internal_Sym *sym)
518 {
519 struct bfd_elf_dynamic_list *d = info->dynamic_list;
520
521 /* It may be called more than once on the same H. */
522 if(h->dynamic || info->relocatable)
523 return;
524
525 if ((info->dynamic_data
526 && (h->type == STT_OBJECT
527 || (sym != NULL
528 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
529 || (d != NULL
530 && h->root.type == bfd_link_hash_new
531 && (*d->match) (&d->head, NULL, h->root.root.string)))
532 h->dynamic = 1;
533 }
534
535 /* Record an assignment to a symbol made by a linker script. We need
536 this in case some dynamic object refers to this symbol. */
537
538 bfd_boolean
539 bfd_elf_record_link_assignment (bfd *output_bfd,
540 struct bfd_link_info *info,
541 const char *name,
542 bfd_boolean provide,
543 bfd_boolean hidden)
544 {
545 struct elf_link_hash_entry *h, *hv;
546 struct elf_link_hash_table *htab;
547 const struct elf_backend_data *bed;
548
549 if (!is_elf_hash_table (info->hash))
550 return TRUE;
551
552 htab = elf_hash_table (info);
553 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
554 if (h == NULL)
555 return provide;
556
557 switch (h->root.type)
558 {
559 case bfd_link_hash_defined:
560 case bfd_link_hash_defweak:
561 case bfd_link_hash_common:
562 break;
563 case bfd_link_hash_undefweak:
564 case bfd_link_hash_undefined:
565 /* Since we're defining the symbol, don't let it seem to have not
566 been defined. record_dynamic_symbol and size_dynamic_sections
567 may depend on this. */
568 h->root.type = bfd_link_hash_new;
569 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
570 bfd_link_repair_undef_list (&htab->root);
571 break;
572 case bfd_link_hash_new:
573 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
574 h->non_elf = 0;
575 break;
576 case bfd_link_hash_indirect:
577 /* We had a versioned symbol in a dynamic library. We make the
578 the versioned symbol point to this one. */
579 bed = get_elf_backend_data (output_bfd);
580 hv = h;
581 while (hv->root.type == bfd_link_hash_indirect
582 || hv->root.type == bfd_link_hash_warning)
583 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
584 /* We don't need to update h->root.u since linker will set them
585 later. */
586 h->root.type = bfd_link_hash_undefined;
587 hv->root.type = bfd_link_hash_indirect;
588 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
589 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
590 break;
591 case bfd_link_hash_warning:
592 abort ();
593 break;
594 }
595
596 /* If this symbol is being provided by the linker script, and it is
597 currently defined by a dynamic object, but not by a regular
598 object, then mark it as undefined so that the generic linker will
599 force the correct value. */
600 if (provide
601 && h->def_dynamic
602 && !h->def_regular)
603 h->root.type = bfd_link_hash_undefined;
604
605 /* If this symbol is not being provided by the linker script, and it is
606 currently defined by a dynamic object, but not by a regular object,
607 then clear out any version information because the symbol will not be
608 associated with the dynamic object any more. */
609 if (!provide
610 && h->def_dynamic
611 && !h->def_regular)
612 h->verinfo.verdef = NULL;
613
614 h->def_regular = 1;
615
616 if (hidden)
617 {
618 bed = get_elf_backend_data (output_bfd);
619 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
620 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
621 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
622 }
623
624 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
625 and executables. */
626 if (!info->relocatable
627 && h->dynindx != -1
628 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
629 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
630 h->forced_local = 1;
631
632 if ((h->def_dynamic
633 || h->ref_dynamic
634 || info->shared
635 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
636 && h->dynindx == -1)
637 {
638 if (! bfd_elf_link_record_dynamic_symbol (info, h))
639 return FALSE;
640
641 /* If this is a weak defined symbol, and we know a corresponding
642 real symbol from the same dynamic object, make sure the real
643 symbol is also made into a dynamic symbol. */
644 if (h->u.weakdef != NULL
645 && h->u.weakdef->dynindx == -1)
646 {
647 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
648 return FALSE;
649 }
650 }
651
652 return TRUE;
653 }
654
655 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
656 success, and 2 on a failure caused by attempting to record a symbol
657 in a discarded section, eg. a discarded link-once section symbol. */
658
659 int
660 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
661 bfd *input_bfd,
662 long input_indx)
663 {
664 bfd_size_type amt;
665 struct elf_link_local_dynamic_entry *entry;
666 struct elf_link_hash_table *eht;
667 struct elf_strtab_hash *dynstr;
668 unsigned long dynstr_index;
669 char *name;
670 Elf_External_Sym_Shndx eshndx;
671 char esym[sizeof (Elf64_External_Sym)];
672
673 if (! is_elf_hash_table (info->hash))
674 return 0;
675
676 /* See if the entry exists already. */
677 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
678 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
679 return 1;
680
681 amt = sizeof (*entry);
682 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
683 if (entry == NULL)
684 return 0;
685
686 /* Go find the symbol, so that we can find it's name. */
687 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
688 1, input_indx, &entry->isym, esym, &eshndx))
689 {
690 bfd_release (input_bfd, entry);
691 return 0;
692 }
693
694 if (entry->isym.st_shndx != SHN_UNDEF
695 && entry->isym.st_shndx < SHN_LORESERVE)
696 {
697 asection *s;
698
699 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
700 if (s == NULL || bfd_is_abs_section (s->output_section))
701 {
702 /* We can still bfd_release here as nothing has done another
703 bfd_alloc. We can't do this later in this function. */
704 bfd_release (input_bfd, entry);
705 return 2;
706 }
707 }
708
709 name = (bfd_elf_string_from_elf_section
710 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
711 entry->isym.st_name));
712
713 dynstr = elf_hash_table (info)->dynstr;
714 if (dynstr == NULL)
715 {
716 /* Create a strtab to hold the dynamic symbol names. */
717 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
718 if (dynstr == NULL)
719 return 0;
720 }
721
722 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
723 if (dynstr_index == (unsigned long) -1)
724 return 0;
725 entry->isym.st_name = dynstr_index;
726
727 eht = elf_hash_table (info);
728
729 entry->next = eht->dynlocal;
730 eht->dynlocal = entry;
731 entry->input_bfd = input_bfd;
732 entry->input_indx = input_indx;
733 eht->dynsymcount++;
734
735 /* Whatever binding the symbol had before, it's now local. */
736 entry->isym.st_info
737 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
738
739 /* The dynindx will be set at the end of size_dynamic_sections. */
740
741 return 1;
742 }
743
744 /* Return the dynindex of a local dynamic symbol. */
745
746 long
747 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
748 bfd *input_bfd,
749 long input_indx)
750 {
751 struct elf_link_local_dynamic_entry *e;
752
753 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
754 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
755 return e->dynindx;
756 return -1;
757 }
758
759 /* This function is used to renumber the dynamic symbols, if some of
760 them are removed because they are marked as local. This is called
761 via elf_link_hash_traverse. */
762
763 static bfd_boolean
764 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
765 void *data)
766 {
767 size_t *count = (size_t *) data;
768
769 if (h->forced_local)
770 return TRUE;
771
772 if (h->dynindx != -1)
773 h->dynindx = ++(*count);
774
775 return TRUE;
776 }
777
778
779 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
780 STB_LOCAL binding. */
781
782 static bfd_boolean
783 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
784 void *data)
785 {
786 size_t *count = (size_t *) data;
787
788 if (!h->forced_local)
789 return TRUE;
790
791 if (h->dynindx != -1)
792 h->dynindx = ++(*count);
793
794 return TRUE;
795 }
796
797 /* Return true if the dynamic symbol for a given section should be
798 omitted when creating a shared library. */
799 bfd_boolean
800 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
801 struct bfd_link_info *info,
802 asection *p)
803 {
804 struct elf_link_hash_table *htab;
805 asection *ip;
806
807 switch (elf_section_data (p)->this_hdr.sh_type)
808 {
809 case SHT_PROGBITS:
810 case SHT_NOBITS:
811 /* If sh_type is yet undecided, assume it could be
812 SHT_PROGBITS/SHT_NOBITS. */
813 case SHT_NULL:
814 htab = elf_hash_table (info);
815 if (p == htab->tls_sec)
816 return FALSE;
817
818 if (htab->text_index_section != NULL)
819 return p != htab->text_index_section && p != htab->data_index_section;
820
821 return (htab->dynobj != NULL
822 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
823 && ip->output_section == p);
824
825 /* There shouldn't be section relative relocations
826 against any other section. */
827 default:
828 return TRUE;
829 }
830 }
831
832 /* Assign dynsym indices. In a shared library we generate a section
833 symbol for each output section, which come first. Next come symbols
834 which have been forced to local binding. Then all of the back-end
835 allocated local dynamic syms, followed by the rest of the global
836 symbols. */
837
838 static unsigned long
839 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
840 struct bfd_link_info *info,
841 unsigned long *section_sym_count)
842 {
843 unsigned long dynsymcount = 0;
844
845 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
846 {
847 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
848 asection *p;
849 for (p = output_bfd->sections; p ; p = p->next)
850 if ((p->flags & SEC_EXCLUDE) == 0
851 && (p->flags & SEC_ALLOC) != 0
852 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
853 elf_section_data (p)->dynindx = ++dynsymcount;
854 else
855 elf_section_data (p)->dynindx = 0;
856 }
857 *section_sym_count = dynsymcount;
858
859 elf_link_hash_traverse (elf_hash_table (info),
860 elf_link_renumber_local_hash_table_dynsyms,
861 &dynsymcount);
862
863 if (elf_hash_table (info)->dynlocal)
864 {
865 struct elf_link_local_dynamic_entry *p;
866 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
867 p->dynindx = ++dynsymcount;
868 }
869
870 elf_link_hash_traverse (elf_hash_table (info),
871 elf_link_renumber_hash_table_dynsyms,
872 &dynsymcount);
873
874 /* There is an unused NULL entry at the head of the table which
875 we must account for in our count. Unless there weren't any
876 symbols, which means we'll have no table at all. */
877 if (dynsymcount != 0)
878 ++dynsymcount;
879
880 elf_hash_table (info)->dynsymcount = dynsymcount;
881 return dynsymcount;
882 }
883
884 /* Merge st_other field. */
885
886 static void
887 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
888 const Elf_Internal_Sym *isym, asection *sec,
889 bfd_boolean definition, bfd_boolean dynamic)
890 {
891 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
892
893 /* If st_other has a processor-specific meaning, specific
894 code might be needed here. */
895 if (bed->elf_backend_merge_symbol_attribute)
896 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
897 dynamic);
898
899 if (!dynamic)
900 {
901 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
902 unsigned hvis = ELF_ST_VISIBILITY (h->other);
903
904 /* Keep the most constraining visibility. Leave the remainder
905 of the st_other field to elf_backend_merge_symbol_attribute. */
906 if (symvis - 1 < hvis - 1)
907 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
908 }
909 else if (definition
910 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
911 && (sec->flags & SEC_READONLY) == 0)
912 h->protected_def = 1;
913 }
914
915 /* This function is called when we want to merge a new symbol with an
916 existing symbol. It handles the various cases which arise when we
917 find a definition in a dynamic object, or when there is already a
918 definition in a dynamic object. The new symbol is described by
919 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
920 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
921 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
922 of an old common symbol. We set OVERRIDE if the old symbol is
923 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
924 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
925 to change. By OK to change, we mean that we shouldn't warn if the
926 type or size does change. */
927
928 static bfd_boolean
929 _bfd_elf_merge_symbol (bfd *abfd,
930 struct bfd_link_info *info,
931 const char *name,
932 Elf_Internal_Sym *sym,
933 asection **psec,
934 bfd_vma *pvalue,
935 struct elf_link_hash_entry **sym_hash,
936 bfd **poldbfd,
937 bfd_boolean *pold_weak,
938 unsigned int *pold_alignment,
939 bfd_boolean *skip,
940 bfd_boolean *override,
941 bfd_boolean *type_change_ok,
942 bfd_boolean *size_change_ok)
943 {
944 asection *sec, *oldsec;
945 struct elf_link_hash_entry *h;
946 struct elf_link_hash_entry *hi;
947 struct elf_link_hash_entry *flip;
948 int bind;
949 bfd *oldbfd;
950 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
951 bfd_boolean newweak, oldweak, newfunc, oldfunc;
952 const struct elf_backend_data *bed;
953
954 *skip = FALSE;
955 *override = FALSE;
956
957 sec = *psec;
958 bind = ELF_ST_BIND (sym->st_info);
959
960 if (! bfd_is_und_section (sec))
961 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
962 else
963 h = ((struct elf_link_hash_entry *)
964 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
965 if (h == NULL)
966 return FALSE;
967 *sym_hash = h;
968
969 bed = get_elf_backend_data (abfd);
970
971 /* For merging, we only care about real symbols. But we need to make
972 sure that indirect symbol dynamic flags are updated. */
973 hi = h;
974 while (h->root.type == bfd_link_hash_indirect
975 || h->root.type == bfd_link_hash_warning)
976 h = (struct elf_link_hash_entry *) h->root.u.i.link;
977
978 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
979 existing symbol. */
980
981 oldbfd = NULL;
982 oldsec = NULL;
983 switch (h->root.type)
984 {
985 default:
986 break;
987
988 case bfd_link_hash_undefined:
989 case bfd_link_hash_undefweak:
990 oldbfd = h->root.u.undef.abfd;
991 break;
992
993 case bfd_link_hash_defined:
994 case bfd_link_hash_defweak:
995 oldbfd = h->root.u.def.section->owner;
996 oldsec = h->root.u.def.section;
997 break;
998
999 case bfd_link_hash_common:
1000 oldbfd = h->root.u.c.p->section->owner;
1001 oldsec = h->root.u.c.p->section;
1002 if (pold_alignment)
1003 *pold_alignment = h->root.u.c.p->alignment_power;
1004 break;
1005 }
1006 if (poldbfd && *poldbfd == NULL)
1007 *poldbfd = oldbfd;
1008
1009 /* Differentiate strong and weak symbols. */
1010 newweak = bind == STB_WEAK;
1011 oldweak = (h->root.type == bfd_link_hash_defweak
1012 || h->root.type == bfd_link_hash_undefweak);
1013 if (pold_weak)
1014 *pold_weak = oldweak;
1015
1016 /* This code is for coping with dynamic objects, and is only useful
1017 if we are doing an ELF link. */
1018 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
1019 return TRUE;
1020
1021 /* We have to check it for every instance since the first few may be
1022 references and not all compilers emit symbol type for undefined
1023 symbols. */
1024 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1025
1026 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1027 respectively, is from a dynamic object. */
1028
1029 newdyn = (abfd->flags & DYNAMIC) != 0;
1030
1031 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1032 syms and defined syms in dynamic libraries respectively.
1033 ref_dynamic on the other hand can be set for a symbol defined in
1034 a dynamic library, and def_dynamic may not be set; When the
1035 definition in a dynamic lib is overridden by a definition in the
1036 executable use of the symbol in the dynamic lib becomes a
1037 reference to the executable symbol. */
1038 if (newdyn)
1039 {
1040 if (bfd_is_und_section (sec))
1041 {
1042 if (bind != STB_WEAK)
1043 {
1044 h->ref_dynamic_nonweak = 1;
1045 hi->ref_dynamic_nonweak = 1;
1046 }
1047 }
1048 else
1049 {
1050 h->dynamic_def = 1;
1051 hi->dynamic_def = 1;
1052 }
1053 }
1054
1055 /* If we just created the symbol, mark it as being an ELF symbol.
1056 Other than that, there is nothing to do--there is no merge issue
1057 with a newly defined symbol--so we just return. */
1058
1059 if (h->root.type == bfd_link_hash_new)
1060 {
1061 h->non_elf = 0;
1062 return TRUE;
1063 }
1064
1065 /* In cases involving weak versioned symbols, we may wind up trying
1066 to merge a symbol with itself. Catch that here, to avoid the
1067 confusion that results if we try to override a symbol with
1068 itself. The additional tests catch cases like
1069 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1070 dynamic object, which we do want to handle here. */
1071 if (abfd == oldbfd
1072 && (newweak || oldweak)
1073 && ((abfd->flags & DYNAMIC) == 0
1074 || !h->def_regular))
1075 return TRUE;
1076
1077 olddyn = FALSE;
1078 if (oldbfd != NULL)
1079 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1080 else if (oldsec != NULL)
1081 {
1082 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1083 indices used by MIPS ELF. */
1084 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1085 }
1086
1087 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1088 respectively, appear to be a definition rather than reference. */
1089
1090 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1091
1092 olddef = (h->root.type != bfd_link_hash_undefined
1093 && h->root.type != bfd_link_hash_undefweak
1094 && h->root.type != bfd_link_hash_common);
1095
1096 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1097 respectively, appear to be a function. */
1098
1099 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1100 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1101
1102 oldfunc = (h->type != STT_NOTYPE
1103 && bed->is_function_type (h->type));
1104
1105 /* When we try to create a default indirect symbol from the dynamic
1106 definition with the default version, we skip it if its type and
1107 the type of existing regular definition mismatch. */
1108 if (pold_alignment == NULL
1109 && newdyn
1110 && newdef
1111 && !olddyn
1112 && (((olddef || h->root.type == bfd_link_hash_common)
1113 && ELF_ST_TYPE (sym->st_info) != h->type
1114 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1115 && h->type != STT_NOTYPE
1116 && !(newfunc && oldfunc))
1117 || (olddef
1118 && ((h->type == STT_GNU_IFUNC)
1119 != (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))))
1120 {
1121 *skip = TRUE;
1122 return TRUE;
1123 }
1124
1125 /* Check TLS symbols. We don't check undefined symbols introduced
1126 by "ld -u" which have no type (and oldbfd NULL), and we don't
1127 check symbols from plugins because they also have no type. */
1128 if (oldbfd != NULL
1129 && (oldbfd->flags & BFD_PLUGIN) == 0
1130 && (abfd->flags & BFD_PLUGIN) == 0
1131 && ELF_ST_TYPE (sym->st_info) != h->type
1132 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1133 {
1134 bfd *ntbfd, *tbfd;
1135 bfd_boolean ntdef, tdef;
1136 asection *ntsec, *tsec;
1137
1138 if (h->type == STT_TLS)
1139 {
1140 ntbfd = abfd;
1141 ntsec = sec;
1142 ntdef = newdef;
1143 tbfd = oldbfd;
1144 tsec = oldsec;
1145 tdef = olddef;
1146 }
1147 else
1148 {
1149 ntbfd = oldbfd;
1150 ntsec = oldsec;
1151 ntdef = olddef;
1152 tbfd = abfd;
1153 tsec = sec;
1154 tdef = newdef;
1155 }
1156
1157 if (tdef && ntdef)
1158 (*_bfd_error_handler)
1159 (_("%s: TLS definition in %B section %A "
1160 "mismatches non-TLS definition in %B section %A"),
1161 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1162 else if (!tdef && !ntdef)
1163 (*_bfd_error_handler)
1164 (_("%s: TLS reference in %B "
1165 "mismatches non-TLS reference in %B"),
1166 tbfd, ntbfd, h->root.root.string);
1167 else if (tdef)
1168 (*_bfd_error_handler)
1169 (_("%s: TLS definition in %B section %A "
1170 "mismatches non-TLS reference in %B"),
1171 tbfd, tsec, ntbfd, h->root.root.string);
1172 else
1173 (*_bfd_error_handler)
1174 (_("%s: TLS reference in %B "
1175 "mismatches non-TLS definition in %B section %A"),
1176 tbfd, ntbfd, ntsec, h->root.root.string);
1177
1178 bfd_set_error (bfd_error_bad_value);
1179 return FALSE;
1180 }
1181
1182 /* If the old symbol has non-default visibility, we ignore the new
1183 definition from a dynamic object. */
1184 if (newdyn
1185 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1186 && !bfd_is_und_section (sec))
1187 {
1188 *skip = TRUE;
1189 /* Make sure this symbol is dynamic. */
1190 h->ref_dynamic = 1;
1191 hi->ref_dynamic = 1;
1192 /* A protected symbol has external availability. Make sure it is
1193 recorded as dynamic.
1194
1195 FIXME: Should we check type and size for protected symbol? */
1196 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1197 return bfd_elf_link_record_dynamic_symbol (info, h);
1198 else
1199 return TRUE;
1200 }
1201 else if (!newdyn
1202 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1203 && h->def_dynamic)
1204 {
1205 /* If the new symbol with non-default visibility comes from a
1206 relocatable file and the old definition comes from a dynamic
1207 object, we remove the old definition. */
1208 if (hi->root.type == bfd_link_hash_indirect)
1209 {
1210 /* Handle the case where the old dynamic definition is
1211 default versioned. We need to copy the symbol info from
1212 the symbol with default version to the normal one if it
1213 was referenced before. */
1214 if (h->ref_regular)
1215 {
1216 hi->root.type = h->root.type;
1217 h->root.type = bfd_link_hash_indirect;
1218 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1219
1220 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1221 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1222 {
1223 /* If the new symbol is hidden or internal, completely undo
1224 any dynamic link state. */
1225 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1226 h->forced_local = 0;
1227 h->ref_dynamic = 0;
1228 }
1229 else
1230 h->ref_dynamic = 1;
1231
1232 h->def_dynamic = 0;
1233 /* FIXME: Should we check type and size for protected symbol? */
1234 h->size = 0;
1235 h->type = 0;
1236
1237 h = hi;
1238 }
1239 else
1240 h = hi;
1241 }
1242
1243 /* If the old symbol was undefined before, then it will still be
1244 on the undefs list. If the new symbol is undefined or
1245 common, we can't make it bfd_link_hash_new here, because new
1246 undefined or common symbols will be added to the undefs list
1247 by _bfd_generic_link_add_one_symbol. Symbols may not be
1248 added twice to the undefs list. Also, if the new symbol is
1249 undefweak then we don't want to lose the strong undef. */
1250 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1251 {
1252 h->root.type = bfd_link_hash_undefined;
1253 h->root.u.undef.abfd = abfd;
1254 }
1255 else
1256 {
1257 h->root.type = bfd_link_hash_new;
1258 h->root.u.undef.abfd = NULL;
1259 }
1260
1261 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1262 {
1263 /* If the new symbol is hidden or internal, completely undo
1264 any dynamic link state. */
1265 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1266 h->forced_local = 0;
1267 h->ref_dynamic = 0;
1268 }
1269 else
1270 h->ref_dynamic = 1;
1271 h->def_dynamic = 0;
1272 /* FIXME: Should we check type and size for protected symbol? */
1273 h->size = 0;
1274 h->type = 0;
1275 return TRUE;
1276 }
1277
1278 /* If a new weak symbol definition comes from a regular file and the
1279 old symbol comes from a dynamic library, we treat the new one as
1280 strong. Similarly, an old weak symbol definition from a regular
1281 file is treated as strong when the new symbol comes from a dynamic
1282 library. Further, an old weak symbol from a dynamic library is
1283 treated as strong if the new symbol is from a dynamic library.
1284 This reflects the way glibc's ld.so works.
1285
1286 Do this before setting *type_change_ok or *size_change_ok so that
1287 we warn properly when dynamic library symbols are overridden. */
1288
1289 if (newdef && !newdyn && olddyn)
1290 newweak = FALSE;
1291 if (olddef && newdyn)
1292 oldweak = FALSE;
1293
1294 /* Allow changes between different types of function symbol. */
1295 if (newfunc && oldfunc)
1296 *type_change_ok = TRUE;
1297
1298 /* It's OK to change the type if either the existing symbol or the
1299 new symbol is weak. A type change is also OK if the old symbol
1300 is undefined and the new symbol is defined. */
1301
1302 if (oldweak
1303 || newweak
1304 || (newdef
1305 && h->root.type == bfd_link_hash_undefined))
1306 *type_change_ok = TRUE;
1307
1308 /* It's OK to change the size if either the existing symbol or the
1309 new symbol is weak, or if the old symbol is undefined. */
1310
1311 if (*type_change_ok
1312 || h->root.type == bfd_link_hash_undefined)
1313 *size_change_ok = TRUE;
1314
1315 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1316 symbol, respectively, appears to be a common symbol in a dynamic
1317 object. If a symbol appears in an uninitialized section, and is
1318 not weak, and is not a function, then it may be a common symbol
1319 which was resolved when the dynamic object was created. We want
1320 to treat such symbols specially, because they raise special
1321 considerations when setting the symbol size: if the symbol
1322 appears as a common symbol in a regular object, and the size in
1323 the regular object is larger, we must make sure that we use the
1324 larger size. This problematic case can always be avoided in C,
1325 but it must be handled correctly when using Fortran shared
1326 libraries.
1327
1328 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1329 likewise for OLDDYNCOMMON and OLDDEF.
1330
1331 Note that this test is just a heuristic, and that it is quite
1332 possible to have an uninitialized symbol in a shared object which
1333 is really a definition, rather than a common symbol. This could
1334 lead to some minor confusion when the symbol really is a common
1335 symbol in some regular object. However, I think it will be
1336 harmless. */
1337
1338 if (newdyn
1339 && newdef
1340 && !newweak
1341 && (sec->flags & SEC_ALLOC) != 0
1342 && (sec->flags & SEC_LOAD) == 0
1343 && sym->st_size > 0
1344 && !newfunc)
1345 newdyncommon = TRUE;
1346 else
1347 newdyncommon = FALSE;
1348
1349 if (olddyn
1350 && olddef
1351 && h->root.type == bfd_link_hash_defined
1352 && h->def_dynamic
1353 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1354 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1355 && h->size > 0
1356 && !oldfunc)
1357 olddyncommon = TRUE;
1358 else
1359 olddyncommon = FALSE;
1360
1361 /* We now know everything about the old and new symbols. We ask the
1362 backend to check if we can merge them. */
1363 if (bed->merge_symbol != NULL)
1364 {
1365 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1366 return FALSE;
1367 sec = *psec;
1368 }
1369
1370 /* If both the old and the new symbols look like common symbols in a
1371 dynamic object, set the size of the symbol to the larger of the
1372 two. */
1373
1374 if (olddyncommon
1375 && newdyncommon
1376 && sym->st_size != h->size)
1377 {
1378 /* Since we think we have two common symbols, issue a multiple
1379 common warning if desired. Note that we only warn if the
1380 size is different. If the size is the same, we simply let
1381 the old symbol override the new one as normally happens with
1382 symbols defined in dynamic objects. */
1383
1384 if (! ((*info->callbacks->multiple_common)
1385 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1386 return FALSE;
1387
1388 if (sym->st_size > h->size)
1389 h->size = sym->st_size;
1390
1391 *size_change_ok = TRUE;
1392 }
1393
1394 /* If we are looking at a dynamic object, and we have found a
1395 definition, we need to see if the symbol was already defined by
1396 some other object. If so, we want to use the existing
1397 definition, and we do not want to report a multiple symbol
1398 definition error; we do this by clobbering *PSEC to be
1399 bfd_und_section_ptr.
1400
1401 We treat a common symbol as a definition if the symbol in the
1402 shared library is a function, since common symbols always
1403 represent variables; this can cause confusion in principle, but
1404 any such confusion would seem to indicate an erroneous program or
1405 shared library. We also permit a common symbol in a regular
1406 object to override a weak symbol in a shared object. */
1407
1408 if (newdyn
1409 && newdef
1410 && (olddef
1411 || (h->root.type == bfd_link_hash_common
1412 && (newweak || newfunc))))
1413 {
1414 *override = TRUE;
1415 newdef = FALSE;
1416 newdyncommon = FALSE;
1417
1418 *psec = sec = bfd_und_section_ptr;
1419 *size_change_ok = TRUE;
1420
1421 /* If we get here when the old symbol is a common symbol, then
1422 we are explicitly letting it override a weak symbol or
1423 function in a dynamic object, and we don't want to warn about
1424 a type change. If the old symbol is a defined symbol, a type
1425 change warning may still be appropriate. */
1426
1427 if (h->root.type == bfd_link_hash_common)
1428 *type_change_ok = TRUE;
1429 }
1430
1431 /* Handle the special case of an old common symbol merging with a
1432 new symbol which looks like a common symbol in a shared object.
1433 We change *PSEC and *PVALUE to make the new symbol look like a
1434 common symbol, and let _bfd_generic_link_add_one_symbol do the
1435 right thing. */
1436
1437 if (newdyncommon
1438 && h->root.type == bfd_link_hash_common)
1439 {
1440 *override = TRUE;
1441 newdef = FALSE;
1442 newdyncommon = FALSE;
1443 *pvalue = sym->st_size;
1444 *psec = sec = bed->common_section (oldsec);
1445 *size_change_ok = TRUE;
1446 }
1447
1448 /* Skip weak definitions of symbols that are already defined. */
1449 if (newdef && olddef && newweak)
1450 {
1451 /* Don't skip new non-IR weak syms. */
1452 if (!(oldbfd != NULL
1453 && (oldbfd->flags & BFD_PLUGIN) != 0
1454 && (abfd->flags & BFD_PLUGIN) == 0))
1455 {
1456 newdef = FALSE;
1457 *skip = TRUE;
1458 }
1459
1460 /* Merge st_other. If the symbol already has a dynamic index,
1461 but visibility says it should not be visible, turn it into a
1462 local symbol. */
1463 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1464 if (h->dynindx != -1)
1465 switch (ELF_ST_VISIBILITY (h->other))
1466 {
1467 case STV_INTERNAL:
1468 case STV_HIDDEN:
1469 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1470 break;
1471 }
1472 }
1473
1474 /* If the old symbol is from a dynamic object, and the new symbol is
1475 a definition which is not from a dynamic object, then the new
1476 symbol overrides the old symbol. Symbols from regular files
1477 always take precedence over symbols from dynamic objects, even if
1478 they are defined after the dynamic object in the link.
1479
1480 As above, we again permit a common symbol in a regular object to
1481 override a definition in a shared object if the shared object
1482 symbol is a function or is weak. */
1483
1484 flip = NULL;
1485 if (!newdyn
1486 && (newdef
1487 || (bfd_is_com_section (sec)
1488 && (oldweak || oldfunc)))
1489 && olddyn
1490 && olddef
1491 && h->def_dynamic)
1492 {
1493 /* Change the hash table entry to undefined, and let
1494 _bfd_generic_link_add_one_symbol do the right thing with the
1495 new definition. */
1496
1497 h->root.type = bfd_link_hash_undefined;
1498 h->root.u.undef.abfd = h->root.u.def.section->owner;
1499 *size_change_ok = TRUE;
1500
1501 olddef = FALSE;
1502 olddyncommon = FALSE;
1503
1504 /* We again permit a type change when a common symbol may be
1505 overriding a function. */
1506
1507 if (bfd_is_com_section (sec))
1508 {
1509 if (oldfunc)
1510 {
1511 /* If a common symbol overrides a function, make sure
1512 that it isn't defined dynamically nor has type
1513 function. */
1514 h->def_dynamic = 0;
1515 h->type = STT_NOTYPE;
1516 }
1517 *type_change_ok = TRUE;
1518 }
1519
1520 if (hi->root.type == bfd_link_hash_indirect)
1521 flip = hi;
1522 else
1523 /* This union may have been set to be non-NULL when this symbol
1524 was seen in a dynamic object. We must force the union to be
1525 NULL, so that it is correct for a regular symbol. */
1526 h->verinfo.vertree = NULL;
1527 }
1528
1529 /* Handle the special case of a new common symbol merging with an
1530 old symbol that looks like it might be a common symbol defined in
1531 a shared object. Note that we have already handled the case in
1532 which a new common symbol should simply override the definition
1533 in the shared library. */
1534
1535 if (! newdyn
1536 && bfd_is_com_section (sec)
1537 && olddyncommon)
1538 {
1539 /* It would be best if we could set the hash table entry to a
1540 common symbol, but we don't know what to use for the section
1541 or the alignment. */
1542 if (! ((*info->callbacks->multiple_common)
1543 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1544 return FALSE;
1545
1546 /* If the presumed common symbol in the dynamic object is
1547 larger, pretend that the new symbol has its size. */
1548
1549 if (h->size > *pvalue)
1550 *pvalue = h->size;
1551
1552 /* We need to remember the alignment required by the symbol
1553 in the dynamic object. */
1554 BFD_ASSERT (pold_alignment);
1555 *pold_alignment = h->root.u.def.section->alignment_power;
1556
1557 olddef = FALSE;
1558 olddyncommon = FALSE;
1559
1560 h->root.type = bfd_link_hash_undefined;
1561 h->root.u.undef.abfd = h->root.u.def.section->owner;
1562
1563 *size_change_ok = TRUE;
1564 *type_change_ok = TRUE;
1565
1566 if (hi->root.type == bfd_link_hash_indirect)
1567 flip = hi;
1568 else
1569 h->verinfo.vertree = NULL;
1570 }
1571
1572 if (flip != NULL)
1573 {
1574 /* Handle the case where we had a versioned symbol in a dynamic
1575 library and now find a definition in a normal object. In this
1576 case, we make the versioned symbol point to the normal one. */
1577 flip->root.type = h->root.type;
1578 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1579 h->root.type = bfd_link_hash_indirect;
1580 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1581 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1582 if (h->def_dynamic)
1583 {
1584 h->def_dynamic = 0;
1585 flip->ref_dynamic = 1;
1586 }
1587 }
1588
1589 return TRUE;
1590 }
1591
1592 /* This function is called to create an indirect symbol from the
1593 default for the symbol with the default version if needed. The
1594 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1595 set DYNSYM if the new indirect symbol is dynamic. */
1596
1597 static bfd_boolean
1598 _bfd_elf_add_default_symbol (bfd *abfd,
1599 struct bfd_link_info *info,
1600 struct elf_link_hash_entry *h,
1601 const char *name,
1602 Elf_Internal_Sym *sym,
1603 asection *sec,
1604 bfd_vma value,
1605 bfd **poldbfd,
1606 bfd_boolean *dynsym)
1607 {
1608 bfd_boolean type_change_ok;
1609 bfd_boolean size_change_ok;
1610 bfd_boolean skip;
1611 char *shortname;
1612 struct elf_link_hash_entry *hi;
1613 struct bfd_link_hash_entry *bh;
1614 const struct elf_backend_data *bed;
1615 bfd_boolean collect;
1616 bfd_boolean dynamic;
1617 bfd_boolean override;
1618 char *p;
1619 size_t len, shortlen;
1620 asection *tmp_sec;
1621
1622 /* If this symbol has a version, and it is the default version, we
1623 create an indirect symbol from the default name to the fully
1624 decorated name. This will cause external references which do not
1625 specify a version to be bound to this version of the symbol. */
1626 p = strchr (name, ELF_VER_CHR);
1627 if (p == NULL || p[1] != ELF_VER_CHR)
1628 return TRUE;
1629
1630 bed = get_elf_backend_data (abfd);
1631 collect = bed->collect;
1632 dynamic = (abfd->flags & DYNAMIC) != 0;
1633
1634 shortlen = p - name;
1635 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1636 if (shortname == NULL)
1637 return FALSE;
1638 memcpy (shortname, name, shortlen);
1639 shortname[shortlen] = '\0';
1640
1641 /* We are going to create a new symbol. Merge it with any existing
1642 symbol with this name. For the purposes of the merge, act as
1643 though we were defining the symbol we just defined, although we
1644 actually going to define an indirect symbol. */
1645 type_change_ok = FALSE;
1646 size_change_ok = FALSE;
1647 tmp_sec = sec;
1648 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1649 &hi, poldbfd, NULL, NULL, &skip, &override,
1650 &type_change_ok, &size_change_ok))
1651 return FALSE;
1652
1653 if (skip)
1654 goto nondefault;
1655
1656 if (! override)
1657 {
1658 bh = &hi->root;
1659 if (! (_bfd_generic_link_add_one_symbol
1660 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1661 0, name, FALSE, collect, &bh)))
1662 return FALSE;
1663 hi = (struct elf_link_hash_entry *) bh;
1664 }
1665 else
1666 {
1667 /* In this case the symbol named SHORTNAME is overriding the
1668 indirect symbol we want to add. We were planning on making
1669 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1670 is the name without a version. NAME is the fully versioned
1671 name, and it is the default version.
1672
1673 Overriding means that we already saw a definition for the
1674 symbol SHORTNAME in a regular object, and it is overriding
1675 the symbol defined in the dynamic object.
1676
1677 When this happens, we actually want to change NAME, the
1678 symbol we just added, to refer to SHORTNAME. This will cause
1679 references to NAME in the shared object to become references
1680 to SHORTNAME in the regular object. This is what we expect
1681 when we override a function in a shared object: that the
1682 references in the shared object will be mapped to the
1683 definition in the regular object. */
1684
1685 while (hi->root.type == bfd_link_hash_indirect
1686 || hi->root.type == bfd_link_hash_warning)
1687 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1688
1689 h->root.type = bfd_link_hash_indirect;
1690 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1691 if (h->def_dynamic)
1692 {
1693 h->def_dynamic = 0;
1694 hi->ref_dynamic = 1;
1695 if (hi->ref_regular
1696 || hi->def_regular)
1697 {
1698 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1699 return FALSE;
1700 }
1701 }
1702
1703 /* Now set HI to H, so that the following code will set the
1704 other fields correctly. */
1705 hi = h;
1706 }
1707
1708 /* Check if HI is a warning symbol. */
1709 if (hi->root.type == bfd_link_hash_warning)
1710 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1711
1712 /* If there is a duplicate definition somewhere, then HI may not
1713 point to an indirect symbol. We will have reported an error to
1714 the user in that case. */
1715
1716 if (hi->root.type == bfd_link_hash_indirect)
1717 {
1718 struct elf_link_hash_entry *ht;
1719
1720 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1721 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1722
1723 /* A reference to the SHORTNAME symbol from a dynamic library
1724 will be satisfied by the versioned symbol at runtime. In
1725 effect, we have a reference to the versioned symbol. */
1726 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1727 hi->dynamic_def |= ht->dynamic_def;
1728
1729 /* See if the new flags lead us to realize that the symbol must
1730 be dynamic. */
1731 if (! *dynsym)
1732 {
1733 if (! dynamic)
1734 {
1735 if (! info->executable
1736 || hi->def_dynamic
1737 || hi->ref_dynamic)
1738 *dynsym = TRUE;
1739 }
1740 else
1741 {
1742 if (hi->ref_regular)
1743 *dynsym = TRUE;
1744 }
1745 }
1746 }
1747
1748 /* We also need to define an indirection from the nondefault version
1749 of the symbol. */
1750
1751 nondefault:
1752 len = strlen (name);
1753 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1754 if (shortname == NULL)
1755 return FALSE;
1756 memcpy (shortname, name, shortlen);
1757 memcpy (shortname + shortlen, p + 1, len - shortlen);
1758
1759 /* Once again, merge with any existing symbol. */
1760 type_change_ok = FALSE;
1761 size_change_ok = FALSE;
1762 tmp_sec = sec;
1763 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1764 &hi, poldbfd, NULL, NULL, &skip, &override,
1765 &type_change_ok, &size_change_ok))
1766 return FALSE;
1767
1768 if (skip)
1769 return TRUE;
1770
1771 if (override)
1772 {
1773 /* Here SHORTNAME is a versioned name, so we don't expect to see
1774 the type of override we do in the case above unless it is
1775 overridden by a versioned definition. */
1776 if (hi->root.type != bfd_link_hash_defined
1777 && hi->root.type != bfd_link_hash_defweak)
1778 (*_bfd_error_handler)
1779 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1780 abfd, shortname);
1781 }
1782 else
1783 {
1784 bh = &hi->root;
1785 if (! (_bfd_generic_link_add_one_symbol
1786 (info, abfd, shortname, BSF_INDIRECT,
1787 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1788 return FALSE;
1789 hi = (struct elf_link_hash_entry *) bh;
1790
1791 /* If there is a duplicate definition somewhere, then HI may not
1792 point to an indirect symbol. We will have reported an error
1793 to the user in that case. */
1794
1795 if (hi->root.type == bfd_link_hash_indirect)
1796 {
1797 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1798 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1799 hi->dynamic_def |= h->dynamic_def;
1800
1801 /* See if the new flags lead us to realize that the symbol
1802 must be dynamic. */
1803 if (! *dynsym)
1804 {
1805 if (! dynamic)
1806 {
1807 if (! info->executable
1808 || hi->ref_dynamic)
1809 *dynsym = TRUE;
1810 }
1811 else
1812 {
1813 if (hi->ref_regular)
1814 *dynsym = TRUE;
1815 }
1816 }
1817 }
1818 }
1819
1820 return TRUE;
1821 }
1822 \f
1823 /* This routine is used to export all defined symbols into the dynamic
1824 symbol table. It is called via elf_link_hash_traverse. */
1825
1826 static bfd_boolean
1827 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1828 {
1829 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1830
1831 /* Ignore indirect symbols. These are added by the versioning code. */
1832 if (h->root.type == bfd_link_hash_indirect)
1833 return TRUE;
1834
1835 /* Ignore this if we won't export it. */
1836 if (!eif->info->export_dynamic && !h->dynamic)
1837 return TRUE;
1838
1839 if (h->dynindx == -1
1840 && (h->def_regular || h->ref_regular)
1841 && ! bfd_hide_sym_by_version (eif->info->version_info,
1842 h->root.root.string))
1843 {
1844 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1845 {
1846 eif->failed = TRUE;
1847 return FALSE;
1848 }
1849 }
1850
1851 return TRUE;
1852 }
1853 \f
1854 /* Look through the symbols which are defined in other shared
1855 libraries and referenced here. Update the list of version
1856 dependencies. This will be put into the .gnu.version_r section.
1857 This function is called via elf_link_hash_traverse. */
1858
1859 static bfd_boolean
1860 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1861 void *data)
1862 {
1863 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1864 Elf_Internal_Verneed *t;
1865 Elf_Internal_Vernaux *a;
1866 bfd_size_type amt;
1867
1868 /* We only care about symbols defined in shared objects with version
1869 information. */
1870 if (!h->def_dynamic
1871 || h->def_regular
1872 || h->dynindx == -1
1873 || h->verinfo.verdef == NULL
1874 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
1875 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
1876 return TRUE;
1877
1878 /* See if we already know about this version. */
1879 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1880 t != NULL;
1881 t = t->vn_nextref)
1882 {
1883 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1884 continue;
1885
1886 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1887 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1888 return TRUE;
1889
1890 break;
1891 }
1892
1893 /* This is a new version. Add it to tree we are building. */
1894
1895 if (t == NULL)
1896 {
1897 amt = sizeof *t;
1898 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1899 if (t == NULL)
1900 {
1901 rinfo->failed = TRUE;
1902 return FALSE;
1903 }
1904
1905 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1906 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1907 elf_tdata (rinfo->info->output_bfd)->verref = t;
1908 }
1909
1910 amt = sizeof *a;
1911 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1912 if (a == NULL)
1913 {
1914 rinfo->failed = TRUE;
1915 return FALSE;
1916 }
1917
1918 /* Note that we are copying a string pointer here, and testing it
1919 above. If bfd_elf_string_from_elf_section is ever changed to
1920 discard the string data when low in memory, this will have to be
1921 fixed. */
1922 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1923
1924 a->vna_flags = h->verinfo.verdef->vd_flags;
1925 a->vna_nextptr = t->vn_auxptr;
1926
1927 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1928 ++rinfo->vers;
1929
1930 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1931
1932 t->vn_auxptr = a;
1933
1934 return TRUE;
1935 }
1936
1937 /* Figure out appropriate versions for all the symbols. We may not
1938 have the version number script until we have read all of the input
1939 files, so until that point we don't know which symbols should be
1940 local. This function is called via elf_link_hash_traverse. */
1941
1942 static bfd_boolean
1943 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1944 {
1945 struct elf_info_failed *sinfo;
1946 struct bfd_link_info *info;
1947 const struct elf_backend_data *bed;
1948 struct elf_info_failed eif;
1949 char *p;
1950 bfd_size_type amt;
1951
1952 sinfo = (struct elf_info_failed *) data;
1953 info = sinfo->info;
1954
1955 /* Fix the symbol flags. */
1956 eif.failed = FALSE;
1957 eif.info = info;
1958 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1959 {
1960 if (eif.failed)
1961 sinfo->failed = TRUE;
1962 return FALSE;
1963 }
1964
1965 /* We only need version numbers for symbols defined in regular
1966 objects. */
1967 if (!h->def_regular)
1968 return TRUE;
1969
1970 bed = get_elf_backend_data (info->output_bfd);
1971 p = strchr (h->root.root.string, ELF_VER_CHR);
1972 if (p != NULL && h->verinfo.vertree == NULL)
1973 {
1974 struct bfd_elf_version_tree *t;
1975 bfd_boolean hidden;
1976
1977 hidden = TRUE;
1978
1979 /* There are two consecutive ELF_VER_CHR characters if this is
1980 not a hidden symbol. */
1981 ++p;
1982 if (*p == ELF_VER_CHR)
1983 {
1984 hidden = FALSE;
1985 ++p;
1986 }
1987
1988 /* If there is no version string, we can just return out. */
1989 if (*p == '\0')
1990 {
1991 if (hidden)
1992 h->hidden = 1;
1993 return TRUE;
1994 }
1995
1996 /* Look for the version. If we find it, it is no longer weak. */
1997 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1998 {
1999 if (strcmp (t->name, p) == 0)
2000 {
2001 size_t len;
2002 char *alc;
2003 struct bfd_elf_version_expr *d;
2004
2005 len = p - h->root.root.string;
2006 alc = (char *) bfd_malloc (len);
2007 if (alc == NULL)
2008 {
2009 sinfo->failed = TRUE;
2010 return FALSE;
2011 }
2012 memcpy (alc, h->root.root.string, len - 1);
2013 alc[len - 1] = '\0';
2014 if (alc[len - 2] == ELF_VER_CHR)
2015 alc[len - 2] = '\0';
2016
2017 h->verinfo.vertree = t;
2018 t->used = TRUE;
2019 d = NULL;
2020
2021 if (t->globals.list != NULL)
2022 d = (*t->match) (&t->globals, NULL, alc);
2023
2024 /* See if there is anything to force this symbol to
2025 local scope. */
2026 if (d == NULL && t->locals.list != NULL)
2027 {
2028 d = (*t->match) (&t->locals, NULL, alc);
2029 if (d != NULL
2030 && h->dynindx != -1
2031 && ! info->export_dynamic)
2032 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2033 }
2034
2035 free (alc);
2036 break;
2037 }
2038 }
2039
2040 /* If we are building an application, we need to create a
2041 version node for this version. */
2042 if (t == NULL && info->executable)
2043 {
2044 struct bfd_elf_version_tree **pp;
2045 int version_index;
2046
2047 /* If we aren't going to export this symbol, we don't need
2048 to worry about it. */
2049 if (h->dynindx == -1)
2050 return TRUE;
2051
2052 amt = sizeof *t;
2053 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2054 if (t == NULL)
2055 {
2056 sinfo->failed = TRUE;
2057 return FALSE;
2058 }
2059
2060 t->name = p;
2061 t->name_indx = (unsigned int) -1;
2062 t->used = TRUE;
2063
2064 version_index = 1;
2065 /* Don't count anonymous version tag. */
2066 if (sinfo->info->version_info != NULL
2067 && sinfo->info->version_info->vernum == 0)
2068 version_index = 0;
2069 for (pp = &sinfo->info->version_info;
2070 *pp != NULL;
2071 pp = &(*pp)->next)
2072 ++version_index;
2073 t->vernum = version_index;
2074
2075 *pp = t;
2076
2077 h->verinfo.vertree = t;
2078 }
2079 else if (t == NULL)
2080 {
2081 /* We could not find the version for a symbol when
2082 generating a shared archive. Return an error. */
2083 (*_bfd_error_handler)
2084 (_("%B: version node not found for symbol %s"),
2085 info->output_bfd, h->root.root.string);
2086 bfd_set_error (bfd_error_bad_value);
2087 sinfo->failed = TRUE;
2088 return FALSE;
2089 }
2090
2091 if (hidden)
2092 h->hidden = 1;
2093 }
2094
2095 /* If we don't have a version for this symbol, see if we can find
2096 something. */
2097 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2098 {
2099 bfd_boolean hide;
2100
2101 h->verinfo.vertree
2102 = bfd_find_version_for_sym (sinfo->info->version_info,
2103 h->root.root.string, &hide);
2104 if (h->verinfo.vertree != NULL && hide)
2105 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2106 }
2107
2108 return TRUE;
2109 }
2110 \f
2111 /* Read and swap the relocs from the section indicated by SHDR. This
2112 may be either a REL or a RELA section. The relocations are
2113 translated into RELA relocations and stored in INTERNAL_RELOCS,
2114 which should have already been allocated to contain enough space.
2115 The EXTERNAL_RELOCS are a buffer where the external form of the
2116 relocations should be stored.
2117
2118 Returns FALSE if something goes wrong. */
2119
2120 static bfd_boolean
2121 elf_link_read_relocs_from_section (bfd *abfd,
2122 asection *sec,
2123 Elf_Internal_Shdr *shdr,
2124 void *external_relocs,
2125 Elf_Internal_Rela *internal_relocs)
2126 {
2127 const struct elf_backend_data *bed;
2128 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2129 const bfd_byte *erela;
2130 const bfd_byte *erelaend;
2131 Elf_Internal_Rela *irela;
2132 Elf_Internal_Shdr *symtab_hdr;
2133 size_t nsyms;
2134
2135 /* Position ourselves at the start of the section. */
2136 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2137 return FALSE;
2138
2139 /* Read the relocations. */
2140 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2141 return FALSE;
2142
2143 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2144 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2145
2146 bed = get_elf_backend_data (abfd);
2147
2148 /* Convert the external relocations to the internal format. */
2149 if (shdr->sh_entsize == bed->s->sizeof_rel)
2150 swap_in = bed->s->swap_reloc_in;
2151 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2152 swap_in = bed->s->swap_reloca_in;
2153 else
2154 {
2155 bfd_set_error (bfd_error_wrong_format);
2156 return FALSE;
2157 }
2158
2159 erela = (const bfd_byte *) external_relocs;
2160 erelaend = erela + shdr->sh_size;
2161 irela = internal_relocs;
2162 while (erela < erelaend)
2163 {
2164 bfd_vma r_symndx;
2165
2166 (*swap_in) (abfd, erela, irela);
2167 r_symndx = ELF32_R_SYM (irela->r_info);
2168 if (bed->s->arch_size == 64)
2169 r_symndx >>= 24;
2170 if (nsyms > 0)
2171 {
2172 if ((size_t) r_symndx >= nsyms)
2173 {
2174 (*_bfd_error_handler)
2175 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2176 " for offset 0x%lx in section `%A'"),
2177 abfd, sec,
2178 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2179 bfd_set_error (bfd_error_bad_value);
2180 return FALSE;
2181 }
2182 }
2183 else if (r_symndx != STN_UNDEF)
2184 {
2185 (*_bfd_error_handler)
2186 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2187 " when the object file has no symbol table"),
2188 abfd, sec,
2189 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2190 bfd_set_error (bfd_error_bad_value);
2191 return FALSE;
2192 }
2193 irela += bed->s->int_rels_per_ext_rel;
2194 erela += shdr->sh_entsize;
2195 }
2196
2197 return TRUE;
2198 }
2199
2200 /* Read and swap the relocs for a section O. They may have been
2201 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2202 not NULL, they are used as buffers to read into. They are known to
2203 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2204 the return value is allocated using either malloc or bfd_alloc,
2205 according to the KEEP_MEMORY argument. If O has two relocation
2206 sections (both REL and RELA relocations), then the REL_HDR
2207 relocations will appear first in INTERNAL_RELOCS, followed by the
2208 RELA_HDR relocations. */
2209
2210 Elf_Internal_Rela *
2211 _bfd_elf_link_read_relocs (bfd *abfd,
2212 asection *o,
2213 void *external_relocs,
2214 Elf_Internal_Rela *internal_relocs,
2215 bfd_boolean keep_memory)
2216 {
2217 void *alloc1 = NULL;
2218 Elf_Internal_Rela *alloc2 = NULL;
2219 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2220 struct bfd_elf_section_data *esdo = elf_section_data (o);
2221 Elf_Internal_Rela *internal_rela_relocs;
2222
2223 if (esdo->relocs != NULL)
2224 return esdo->relocs;
2225
2226 if (o->reloc_count == 0)
2227 return NULL;
2228
2229 if (internal_relocs == NULL)
2230 {
2231 bfd_size_type size;
2232
2233 size = o->reloc_count;
2234 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2235 if (keep_memory)
2236 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2237 else
2238 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2239 if (internal_relocs == NULL)
2240 goto error_return;
2241 }
2242
2243 if (external_relocs == NULL)
2244 {
2245 bfd_size_type size = 0;
2246
2247 if (esdo->rel.hdr)
2248 size += esdo->rel.hdr->sh_size;
2249 if (esdo->rela.hdr)
2250 size += esdo->rela.hdr->sh_size;
2251
2252 alloc1 = bfd_malloc (size);
2253 if (alloc1 == NULL)
2254 goto error_return;
2255 external_relocs = alloc1;
2256 }
2257
2258 internal_rela_relocs = internal_relocs;
2259 if (esdo->rel.hdr)
2260 {
2261 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2262 external_relocs,
2263 internal_relocs))
2264 goto error_return;
2265 external_relocs = (((bfd_byte *) external_relocs)
2266 + esdo->rel.hdr->sh_size);
2267 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2268 * bed->s->int_rels_per_ext_rel);
2269 }
2270
2271 if (esdo->rela.hdr
2272 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2273 external_relocs,
2274 internal_rela_relocs)))
2275 goto error_return;
2276
2277 /* Cache the results for next time, if we can. */
2278 if (keep_memory)
2279 esdo->relocs = internal_relocs;
2280
2281 if (alloc1 != NULL)
2282 free (alloc1);
2283
2284 /* Don't free alloc2, since if it was allocated we are passing it
2285 back (under the name of internal_relocs). */
2286
2287 return internal_relocs;
2288
2289 error_return:
2290 if (alloc1 != NULL)
2291 free (alloc1);
2292 if (alloc2 != NULL)
2293 {
2294 if (keep_memory)
2295 bfd_release (abfd, alloc2);
2296 else
2297 free (alloc2);
2298 }
2299 return NULL;
2300 }
2301
2302 /* Compute the size of, and allocate space for, REL_HDR which is the
2303 section header for a section containing relocations for O. */
2304
2305 static bfd_boolean
2306 _bfd_elf_link_size_reloc_section (bfd *abfd,
2307 struct bfd_elf_section_reloc_data *reldata)
2308 {
2309 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2310
2311 /* That allows us to calculate the size of the section. */
2312 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2313
2314 /* The contents field must last into write_object_contents, so we
2315 allocate it with bfd_alloc rather than malloc. Also since we
2316 cannot be sure that the contents will actually be filled in,
2317 we zero the allocated space. */
2318 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2319 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2320 return FALSE;
2321
2322 if (reldata->hashes == NULL && reldata->count)
2323 {
2324 struct elf_link_hash_entry **p;
2325
2326 p = ((struct elf_link_hash_entry **)
2327 bfd_zmalloc (reldata->count * sizeof (*p)));
2328 if (p == NULL)
2329 return FALSE;
2330
2331 reldata->hashes = p;
2332 }
2333
2334 return TRUE;
2335 }
2336
2337 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2338 originated from the section given by INPUT_REL_HDR) to the
2339 OUTPUT_BFD. */
2340
2341 bfd_boolean
2342 _bfd_elf_link_output_relocs (bfd *output_bfd,
2343 asection *input_section,
2344 Elf_Internal_Shdr *input_rel_hdr,
2345 Elf_Internal_Rela *internal_relocs,
2346 struct elf_link_hash_entry **rel_hash
2347 ATTRIBUTE_UNUSED)
2348 {
2349 Elf_Internal_Rela *irela;
2350 Elf_Internal_Rela *irelaend;
2351 bfd_byte *erel;
2352 struct bfd_elf_section_reloc_data *output_reldata;
2353 asection *output_section;
2354 const struct elf_backend_data *bed;
2355 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2356 struct bfd_elf_section_data *esdo;
2357
2358 output_section = input_section->output_section;
2359
2360 bed = get_elf_backend_data (output_bfd);
2361 esdo = elf_section_data (output_section);
2362 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2363 {
2364 output_reldata = &esdo->rel;
2365 swap_out = bed->s->swap_reloc_out;
2366 }
2367 else if (esdo->rela.hdr
2368 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2369 {
2370 output_reldata = &esdo->rela;
2371 swap_out = bed->s->swap_reloca_out;
2372 }
2373 else
2374 {
2375 (*_bfd_error_handler)
2376 (_("%B: relocation size mismatch in %B section %A"),
2377 output_bfd, input_section->owner, input_section);
2378 bfd_set_error (bfd_error_wrong_format);
2379 return FALSE;
2380 }
2381
2382 erel = output_reldata->hdr->contents;
2383 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2384 irela = internal_relocs;
2385 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2386 * bed->s->int_rels_per_ext_rel);
2387 while (irela < irelaend)
2388 {
2389 (*swap_out) (output_bfd, irela, erel);
2390 irela += bed->s->int_rels_per_ext_rel;
2391 erel += input_rel_hdr->sh_entsize;
2392 }
2393
2394 /* Bump the counter, so that we know where to add the next set of
2395 relocations. */
2396 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2397
2398 return TRUE;
2399 }
2400 \f
2401 /* Make weak undefined symbols in PIE dynamic. */
2402
2403 bfd_boolean
2404 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2405 struct elf_link_hash_entry *h)
2406 {
2407 if (info->pie
2408 && h->dynindx == -1
2409 && h->root.type == bfd_link_hash_undefweak)
2410 return bfd_elf_link_record_dynamic_symbol (info, h);
2411
2412 return TRUE;
2413 }
2414
2415 /* Fix up the flags for a symbol. This handles various cases which
2416 can only be fixed after all the input files are seen. This is
2417 currently called by both adjust_dynamic_symbol and
2418 assign_sym_version, which is unnecessary but perhaps more robust in
2419 the face of future changes. */
2420
2421 static bfd_boolean
2422 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2423 struct elf_info_failed *eif)
2424 {
2425 const struct elf_backend_data *bed;
2426
2427 /* If this symbol was mentioned in a non-ELF file, try to set
2428 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2429 permit a non-ELF file to correctly refer to a symbol defined in
2430 an ELF dynamic object. */
2431 if (h->non_elf)
2432 {
2433 while (h->root.type == bfd_link_hash_indirect)
2434 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2435
2436 if (h->root.type != bfd_link_hash_defined
2437 && h->root.type != bfd_link_hash_defweak)
2438 {
2439 h->ref_regular = 1;
2440 h->ref_regular_nonweak = 1;
2441 }
2442 else
2443 {
2444 if (h->root.u.def.section->owner != NULL
2445 && (bfd_get_flavour (h->root.u.def.section->owner)
2446 == bfd_target_elf_flavour))
2447 {
2448 h->ref_regular = 1;
2449 h->ref_regular_nonweak = 1;
2450 }
2451 else
2452 h->def_regular = 1;
2453 }
2454
2455 if (h->dynindx == -1
2456 && (h->def_dynamic
2457 || h->ref_dynamic))
2458 {
2459 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2460 {
2461 eif->failed = TRUE;
2462 return FALSE;
2463 }
2464 }
2465 }
2466 else
2467 {
2468 /* Unfortunately, NON_ELF is only correct if the symbol
2469 was first seen in a non-ELF file. Fortunately, if the symbol
2470 was first seen in an ELF file, we're probably OK unless the
2471 symbol was defined in a non-ELF file. Catch that case here.
2472 FIXME: We're still in trouble if the symbol was first seen in
2473 a dynamic object, and then later in a non-ELF regular object. */
2474 if ((h->root.type == bfd_link_hash_defined
2475 || h->root.type == bfd_link_hash_defweak)
2476 && !h->def_regular
2477 && (h->root.u.def.section->owner != NULL
2478 ? (bfd_get_flavour (h->root.u.def.section->owner)
2479 != bfd_target_elf_flavour)
2480 : (bfd_is_abs_section (h->root.u.def.section)
2481 && !h->def_dynamic)))
2482 h->def_regular = 1;
2483 }
2484
2485 /* Backend specific symbol fixup. */
2486 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2487 if (bed->elf_backend_fixup_symbol
2488 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2489 return FALSE;
2490
2491 /* If this is a final link, and the symbol was defined as a common
2492 symbol in a regular object file, and there was no definition in
2493 any dynamic object, then the linker will have allocated space for
2494 the symbol in a common section but the DEF_REGULAR
2495 flag will not have been set. */
2496 if (h->root.type == bfd_link_hash_defined
2497 && !h->def_regular
2498 && h->ref_regular
2499 && !h->def_dynamic
2500 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2501 h->def_regular = 1;
2502
2503 /* If -Bsymbolic was used (which means to bind references to global
2504 symbols to the definition within the shared object), and this
2505 symbol was defined in a regular object, then it actually doesn't
2506 need a PLT entry. Likewise, if the symbol has non-default
2507 visibility. If the symbol has hidden or internal visibility, we
2508 will force it local. */
2509 if (h->needs_plt
2510 && eif->info->shared
2511 && is_elf_hash_table (eif->info->hash)
2512 && (SYMBOLIC_BIND (eif->info, h)
2513 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2514 && h->def_regular)
2515 {
2516 bfd_boolean force_local;
2517
2518 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2519 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2520 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2521 }
2522
2523 /* If a weak undefined symbol has non-default visibility, we also
2524 hide it from the dynamic linker. */
2525 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2526 && h->root.type == bfd_link_hash_undefweak)
2527 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2528
2529 /* If this is a weak defined symbol in a dynamic object, and we know
2530 the real definition in the dynamic object, copy interesting flags
2531 over to the real definition. */
2532 if (h->u.weakdef != NULL)
2533 {
2534 /* If the real definition is defined by a regular object file,
2535 don't do anything special. See the longer description in
2536 _bfd_elf_adjust_dynamic_symbol, below. */
2537 if (h->u.weakdef->def_regular)
2538 h->u.weakdef = NULL;
2539 else
2540 {
2541 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2542
2543 while (h->root.type == bfd_link_hash_indirect)
2544 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2545
2546 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2547 || h->root.type == bfd_link_hash_defweak);
2548 BFD_ASSERT (weakdef->def_dynamic);
2549 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2550 || weakdef->root.type == bfd_link_hash_defweak);
2551 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2552 }
2553 }
2554
2555 return TRUE;
2556 }
2557
2558 /* Make the backend pick a good value for a dynamic symbol. This is
2559 called via elf_link_hash_traverse, and also calls itself
2560 recursively. */
2561
2562 static bfd_boolean
2563 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2564 {
2565 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2566 bfd *dynobj;
2567 const struct elf_backend_data *bed;
2568
2569 if (! is_elf_hash_table (eif->info->hash))
2570 return FALSE;
2571
2572 /* Ignore indirect symbols. These are added by the versioning code. */
2573 if (h->root.type == bfd_link_hash_indirect)
2574 return TRUE;
2575
2576 /* Fix the symbol flags. */
2577 if (! _bfd_elf_fix_symbol_flags (h, eif))
2578 return FALSE;
2579
2580 /* If this symbol does not require a PLT entry, and it is not
2581 defined by a dynamic object, or is not referenced by a regular
2582 object, ignore it. We do have to handle a weak defined symbol,
2583 even if no regular object refers to it, if we decided to add it
2584 to the dynamic symbol table. FIXME: Do we normally need to worry
2585 about symbols which are defined by one dynamic object and
2586 referenced by another one? */
2587 if (!h->needs_plt
2588 && h->type != STT_GNU_IFUNC
2589 && (h->def_regular
2590 || !h->def_dynamic
2591 || (!h->ref_regular
2592 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2593 {
2594 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2595 return TRUE;
2596 }
2597
2598 /* If we've already adjusted this symbol, don't do it again. This
2599 can happen via a recursive call. */
2600 if (h->dynamic_adjusted)
2601 return TRUE;
2602
2603 /* Don't look at this symbol again. Note that we must set this
2604 after checking the above conditions, because we may look at a
2605 symbol once, decide not to do anything, and then get called
2606 recursively later after REF_REGULAR is set below. */
2607 h->dynamic_adjusted = 1;
2608
2609 /* If this is a weak definition, and we know a real definition, and
2610 the real symbol is not itself defined by a regular object file,
2611 then get a good value for the real definition. We handle the
2612 real symbol first, for the convenience of the backend routine.
2613
2614 Note that there is a confusing case here. If the real definition
2615 is defined by a regular object file, we don't get the real symbol
2616 from the dynamic object, but we do get the weak symbol. If the
2617 processor backend uses a COPY reloc, then if some routine in the
2618 dynamic object changes the real symbol, we will not see that
2619 change in the corresponding weak symbol. This is the way other
2620 ELF linkers work as well, and seems to be a result of the shared
2621 library model.
2622
2623 I will clarify this issue. Most SVR4 shared libraries define the
2624 variable _timezone and define timezone as a weak synonym. The
2625 tzset call changes _timezone. If you write
2626 extern int timezone;
2627 int _timezone = 5;
2628 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2629 you might expect that, since timezone is a synonym for _timezone,
2630 the same number will print both times. However, if the processor
2631 backend uses a COPY reloc, then actually timezone will be copied
2632 into your process image, and, since you define _timezone
2633 yourself, _timezone will not. Thus timezone and _timezone will
2634 wind up at different memory locations. The tzset call will set
2635 _timezone, leaving timezone unchanged. */
2636
2637 if (h->u.weakdef != NULL)
2638 {
2639 /* If we get to this point, there is an implicit reference to
2640 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2641 h->u.weakdef->ref_regular = 1;
2642
2643 /* Ensure that the backend adjust_dynamic_symbol function sees
2644 H->U.WEAKDEF before H by recursively calling ourselves. */
2645 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2646 return FALSE;
2647 }
2648
2649 /* If a symbol has no type and no size and does not require a PLT
2650 entry, then we are probably about to do the wrong thing here: we
2651 are probably going to create a COPY reloc for an empty object.
2652 This case can arise when a shared object is built with assembly
2653 code, and the assembly code fails to set the symbol type. */
2654 if (h->size == 0
2655 && h->type == STT_NOTYPE
2656 && !h->needs_plt)
2657 (*_bfd_error_handler)
2658 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2659 h->root.root.string);
2660
2661 dynobj = elf_hash_table (eif->info)->dynobj;
2662 bed = get_elf_backend_data (dynobj);
2663
2664 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2665 {
2666 eif->failed = TRUE;
2667 return FALSE;
2668 }
2669
2670 return TRUE;
2671 }
2672
2673 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2674 DYNBSS. */
2675
2676 bfd_boolean
2677 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2678 struct elf_link_hash_entry *h,
2679 asection *dynbss)
2680 {
2681 unsigned int power_of_two;
2682 bfd_vma mask;
2683 asection *sec = h->root.u.def.section;
2684
2685 /* The section aligment of definition is the maximum alignment
2686 requirement of symbols defined in the section. Since we don't
2687 know the symbol alignment requirement, we start with the
2688 maximum alignment and check low bits of the symbol address
2689 for the minimum alignment. */
2690 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2691 mask = ((bfd_vma) 1 << power_of_two) - 1;
2692 while ((h->root.u.def.value & mask) != 0)
2693 {
2694 mask >>= 1;
2695 --power_of_two;
2696 }
2697
2698 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2699 dynbss))
2700 {
2701 /* Adjust the section alignment if needed. */
2702 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2703 power_of_two))
2704 return FALSE;
2705 }
2706
2707 /* We make sure that the symbol will be aligned properly. */
2708 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2709
2710 /* Define the symbol as being at this point in DYNBSS. */
2711 h->root.u.def.section = dynbss;
2712 h->root.u.def.value = dynbss->size;
2713
2714 /* Increment the size of DYNBSS to make room for the symbol. */
2715 dynbss->size += h->size;
2716
2717 /* No error if extern_protected_data is true. */
2718 if (h->protected_def
2719 && (!info->extern_protected_data
2720 || (info->extern_protected_data < 0
2721 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
2722 info->callbacks->einfo
2723 (_("%P: copy reloc against protected `%T' is dangerous\n"),
2724 h->root.root.string);
2725
2726 return TRUE;
2727 }
2728
2729 /* Adjust all external symbols pointing into SEC_MERGE sections
2730 to reflect the object merging within the sections. */
2731
2732 static bfd_boolean
2733 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2734 {
2735 asection *sec;
2736
2737 if ((h->root.type == bfd_link_hash_defined
2738 || h->root.type == bfd_link_hash_defweak)
2739 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2740 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2741 {
2742 bfd *output_bfd = (bfd *) data;
2743
2744 h->root.u.def.value =
2745 _bfd_merged_section_offset (output_bfd,
2746 &h->root.u.def.section,
2747 elf_section_data (sec)->sec_info,
2748 h->root.u.def.value);
2749 }
2750
2751 return TRUE;
2752 }
2753
2754 /* Returns false if the symbol referred to by H should be considered
2755 to resolve local to the current module, and true if it should be
2756 considered to bind dynamically. */
2757
2758 bfd_boolean
2759 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2760 struct bfd_link_info *info,
2761 bfd_boolean not_local_protected)
2762 {
2763 bfd_boolean binding_stays_local_p;
2764 const struct elf_backend_data *bed;
2765 struct elf_link_hash_table *hash_table;
2766
2767 if (h == NULL)
2768 return FALSE;
2769
2770 while (h->root.type == bfd_link_hash_indirect
2771 || h->root.type == bfd_link_hash_warning)
2772 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2773
2774 /* If it was forced local, then clearly it's not dynamic. */
2775 if (h->dynindx == -1)
2776 return FALSE;
2777 if (h->forced_local)
2778 return FALSE;
2779
2780 /* Identify the cases where name binding rules say that a
2781 visible symbol resolves locally. */
2782 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2783
2784 switch (ELF_ST_VISIBILITY (h->other))
2785 {
2786 case STV_INTERNAL:
2787 case STV_HIDDEN:
2788 return FALSE;
2789
2790 case STV_PROTECTED:
2791 hash_table = elf_hash_table (info);
2792 if (!is_elf_hash_table (hash_table))
2793 return FALSE;
2794
2795 bed = get_elf_backend_data (hash_table->dynobj);
2796
2797 /* Proper resolution for function pointer equality may require
2798 that these symbols perhaps be resolved dynamically, even though
2799 we should be resolving them to the current module. */
2800 if (!not_local_protected || !bed->is_function_type (h->type))
2801 binding_stays_local_p = TRUE;
2802 break;
2803
2804 default:
2805 break;
2806 }
2807
2808 /* If it isn't defined locally, then clearly it's dynamic. */
2809 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2810 return TRUE;
2811
2812 /* Otherwise, the symbol is dynamic if binding rules don't tell
2813 us that it remains local. */
2814 return !binding_stays_local_p;
2815 }
2816
2817 /* Return true if the symbol referred to by H should be considered
2818 to resolve local to the current module, and false otherwise. Differs
2819 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2820 undefined symbols. The two functions are virtually identical except
2821 for the place where forced_local and dynindx == -1 are tested. If
2822 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2823 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2824 the symbol is local only for defined symbols.
2825 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2826 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2827 treatment of undefined weak symbols. For those that do not make
2828 undefined weak symbols dynamic, both functions may return false. */
2829
2830 bfd_boolean
2831 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2832 struct bfd_link_info *info,
2833 bfd_boolean local_protected)
2834 {
2835 const struct elf_backend_data *bed;
2836 struct elf_link_hash_table *hash_table;
2837
2838 /* If it's a local sym, of course we resolve locally. */
2839 if (h == NULL)
2840 return TRUE;
2841
2842 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2843 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2844 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2845 return TRUE;
2846
2847 /* Common symbols that become definitions don't get the DEF_REGULAR
2848 flag set, so test it first, and don't bail out. */
2849 if (ELF_COMMON_DEF_P (h))
2850 /* Do nothing. */;
2851 /* If we don't have a definition in a regular file, then we can't
2852 resolve locally. The sym is either undefined or dynamic. */
2853 else if (!h->def_regular)
2854 return FALSE;
2855
2856 /* Forced local symbols resolve locally. */
2857 if (h->forced_local)
2858 return TRUE;
2859
2860 /* As do non-dynamic symbols. */
2861 if (h->dynindx == -1)
2862 return TRUE;
2863
2864 /* At this point, we know the symbol is defined and dynamic. In an
2865 executable it must resolve locally, likewise when building symbolic
2866 shared libraries. */
2867 if (info->executable || SYMBOLIC_BIND (info, h))
2868 return TRUE;
2869
2870 /* Now deal with defined dynamic symbols in shared libraries. Ones
2871 with default visibility might not resolve locally. */
2872 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2873 return FALSE;
2874
2875 hash_table = elf_hash_table (info);
2876 if (!is_elf_hash_table (hash_table))
2877 return TRUE;
2878
2879 bed = get_elf_backend_data (hash_table->dynobj);
2880
2881 /* If extern_protected_data is false, STV_PROTECTED non-function
2882 symbols are local. */
2883 if ((!info->extern_protected_data
2884 || (info->extern_protected_data < 0
2885 && !bed->extern_protected_data))
2886 && !bed->is_function_type (h->type))
2887 return TRUE;
2888
2889 /* Function pointer equality tests may require that STV_PROTECTED
2890 symbols be treated as dynamic symbols. If the address of a
2891 function not defined in an executable is set to that function's
2892 plt entry in the executable, then the address of the function in
2893 a shared library must also be the plt entry in the executable. */
2894 return local_protected;
2895 }
2896
2897 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2898 aligned. Returns the first TLS output section. */
2899
2900 struct bfd_section *
2901 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2902 {
2903 struct bfd_section *sec, *tls;
2904 unsigned int align = 0;
2905
2906 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2907 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2908 break;
2909 tls = sec;
2910
2911 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2912 if (sec->alignment_power > align)
2913 align = sec->alignment_power;
2914
2915 elf_hash_table (info)->tls_sec = tls;
2916
2917 /* Ensure the alignment of the first section is the largest alignment,
2918 so that the tls segment starts aligned. */
2919 if (tls != NULL)
2920 tls->alignment_power = align;
2921
2922 return tls;
2923 }
2924
2925 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2926 static bfd_boolean
2927 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2928 Elf_Internal_Sym *sym)
2929 {
2930 const struct elf_backend_data *bed;
2931
2932 /* Local symbols do not count, but target specific ones might. */
2933 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2934 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2935 return FALSE;
2936
2937 bed = get_elf_backend_data (abfd);
2938 /* Function symbols do not count. */
2939 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2940 return FALSE;
2941
2942 /* If the section is undefined, then so is the symbol. */
2943 if (sym->st_shndx == SHN_UNDEF)
2944 return FALSE;
2945
2946 /* If the symbol is defined in the common section, then
2947 it is a common definition and so does not count. */
2948 if (bed->common_definition (sym))
2949 return FALSE;
2950
2951 /* If the symbol is in a target specific section then we
2952 must rely upon the backend to tell us what it is. */
2953 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2954 /* FIXME - this function is not coded yet:
2955
2956 return _bfd_is_global_symbol_definition (abfd, sym);
2957
2958 Instead for now assume that the definition is not global,
2959 Even if this is wrong, at least the linker will behave
2960 in the same way that it used to do. */
2961 return FALSE;
2962
2963 return TRUE;
2964 }
2965
2966 /* Search the symbol table of the archive element of the archive ABFD
2967 whose archive map contains a mention of SYMDEF, and determine if
2968 the symbol is defined in this element. */
2969 static bfd_boolean
2970 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2971 {
2972 Elf_Internal_Shdr * hdr;
2973 bfd_size_type symcount;
2974 bfd_size_type extsymcount;
2975 bfd_size_type extsymoff;
2976 Elf_Internal_Sym *isymbuf;
2977 Elf_Internal_Sym *isym;
2978 Elf_Internal_Sym *isymend;
2979 bfd_boolean result;
2980
2981 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2982 if (abfd == NULL)
2983 return FALSE;
2984
2985 /* Return FALSE if the object has been claimed by plugin. */
2986 if (abfd->plugin_format == bfd_plugin_yes)
2987 return FALSE;
2988
2989 if (! bfd_check_format (abfd, bfd_object))
2990 return FALSE;
2991
2992 /* Select the appropriate symbol table. */
2993 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2994 hdr = &elf_tdata (abfd)->symtab_hdr;
2995 else
2996 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2997
2998 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2999
3000 /* The sh_info field of the symtab header tells us where the
3001 external symbols start. We don't care about the local symbols. */
3002 if (elf_bad_symtab (abfd))
3003 {
3004 extsymcount = symcount;
3005 extsymoff = 0;
3006 }
3007 else
3008 {
3009 extsymcount = symcount - hdr->sh_info;
3010 extsymoff = hdr->sh_info;
3011 }
3012
3013 if (extsymcount == 0)
3014 return FALSE;
3015
3016 /* Read in the symbol table. */
3017 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3018 NULL, NULL, NULL);
3019 if (isymbuf == NULL)
3020 return FALSE;
3021
3022 /* Scan the symbol table looking for SYMDEF. */
3023 result = FALSE;
3024 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3025 {
3026 const char *name;
3027
3028 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3029 isym->st_name);
3030 if (name == NULL)
3031 break;
3032
3033 if (strcmp (name, symdef->name) == 0)
3034 {
3035 result = is_global_data_symbol_definition (abfd, isym);
3036 break;
3037 }
3038 }
3039
3040 free (isymbuf);
3041
3042 return result;
3043 }
3044 \f
3045 /* Add an entry to the .dynamic table. */
3046
3047 bfd_boolean
3048 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3049 bfd_vma tag,
3050 bfd_vma val)
3051 {
3052 struct elf_link_hash_table *hash_table;
3053 const struct elf_backend_data *bed;
3054 asection *s;
3055 bfd_size_type newsize;
3056 bfd_byte *newcontents;
3057 Elf_Internal_Dyn dyn;
3058
3059 hash_table = elf_hash_table (info);
3060 if (! is_elf_hash_table (hash_table))
3061 return FALSE;
3062
3063 bed = get_elf_backend_data (hash_table->dynobj);
3064 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3065 BFD_ASSERT (s != NULL);
3066
3067 newsize = s->size + bed->s->sizeof_dyn;
3068 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3069 if (newcontents == NULL)
3070 return FALSE;
3071
3072 dyn.d_tag = tag;
3073 dyn.d_un.d_val = val;
3074 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3075
3076 s->size = newsize;
3077 s->contents = newcontents;
3078
3079 return TRUE;
3080 }
3081
3082 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3083 otherwise just check whether one already exists. Returns -1 on error,
3084 1 if a DT_NEEDED tag already exists, and 0 on success. */
3085
3086 static int
3087 elf_add_dt_needed_tag (bfd *abfd,
3088 struct bfd_link_info *info,
3089 const char *soname,
3090 bfd_boolean do_it)
3091 {
3092 struct elf_link_hash_table *hash_table;
3093 bfd_size_type strindex;
3094
3095 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3096 return -1;
3097
3098 hash_table = elf_hash_table (info);
3099 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3100 if (strindex == (bfd_size_type) -1)
3101 return -1;
3102
3103 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3104 {
3105 asection *sdyn;
3106 const struct elf_backend_data *bed;
3107 bfd_byte *extdyn;
3108
3109 bed = get_elf_backend_data (hash_table->dynobj);
3110 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3111 if (sdyn != NULL)
3112 for (extdyn = sdyn->contents;
3113 extdyn < sdyn->contents + sdyn->size;
3114 extdyn += bed->s->sizeof_dyn)
3115 {
3116 Elf_Internal_Dyn dyn;
3117
3118 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3119 if (dyn.d_tag == DT_NEEDED
3120 && dyn.d_un.d_val == strindex)
3121 {
3122 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3123 return 1;
3124 }
3125 }
3126 }
3127
3128 if (do_it)
3129 {
3130 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3131 return -1;
3132
3133 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3134 return -1;
3135 }
3136 else
3137 /* We were just checking for existence of the tag. */
3138 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3139
3140 return 0;
3141 }
3142
3143 static bfd_boolean
3144 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3145 {
3146 for (; needed != NULL; needed = needed->next)
3147 if ((elf_dyn_lib_class (needed->by) & DYN_AS_NEEDED) == 0
3148 && strcmp (soname, needed->name) == 0)
3149 return TRUE;
3150
3151 return FALSE;
3152 }
3153
3154 /* Sort symbol by value, section, and size. */
3155 static int
3156 elf_sort_symbol (const void *arg1, const void *arg2)
3157 {
3158 const struct elf_link_hash_entry *h1;
3159 const struct elf_link_hash_entry *h2;
3160 bfd_signed_vma vdiff;
3161
3162 h1 = *(const struct elf_link_hash_entry **) arg1;
3163 h2 = *(const struct elf_link_hash_entry **) arg2;
3164 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3165 if (vdiff != 0)
3166 return vdiff > 0 ? 1 : -1;
3167 else
3168 {
3169 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3170 if (sdiff != 0)
3171 return sdiff > 0 ? 1 : -1;
3172 }
3173 vdiff = h1->size - h2->size;
3174 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3175 }
3176
3177 /* This function is used to adjust offsets into .dynstr for
3178 dynamic symbols. This is called via elf_link_hash_traverse. */
3179
3180 static bfd_boolean
3181 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3182 {
3183 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3184
3185 if (h->dynindx != -1)
3186 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3187 return TRUE;
3188 }
3189
3190 /* Assign string offsets in .dynstr, update all structures referencing
3191 them. */
3192
3193 static bfd_boolean
3194 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3195 {
3196 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3197 struct elf_link_local_dynamic_entry *entry;
3198 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3199 bfd *dynobj = hash_table->dynobj;
3200 asection *sdyn;
3201 bfd_size_type size;
3202 const struct elf_backend_data *bed;
3203 bfd_byte *extdyn;
3204
3205 _bfd_elf_strtab_finalize (dynstr);
3206 size = _bfd_elf_strtab_size (dynstr);
3207
3208 bed = get_elf_backend_data (dynobj);
3209 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3210 BFD_ASSERT (sdyn != NULL);
3211
3212 /* Update all .dynamic entries referencing .dynstr strings. */
3213 for (extdyn = sdyn->contents;
3214 extdyn < sdyn->contents + sdyn->size;
3215 extdyn += bed->s->sizeof_dyn)
3216 {
3217 Elf_Internal_Dyn dyn;
3218
3219 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3220 switch (dyn.d_tag)
3221 {
3222 case DT_STRSZ:
3223 dyn.d_un.d_val = size;
3224 break;
3225 case DT_NEEDED:
3226 case DT_SONAME:
3227 case DT_RPATH:
3228 case DT_RUNPATH:
3229 case DT_FILTER:
3230 case DT_AUXILIARY:
3231 case DT_AUDIT:
3232 case DT_DEPAUDIT:
3233 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3234 break;
3235 default:
3236 continue;
3237 }
3238 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3239 }
3240
3241 /* Now update local dynamic symbols. */
3242 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3243 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3244 entry->isym.st_name);
3245
3246 /* And the rest of dynamic symbols. */
3247 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3248
3249 /* Adjust version definitions. */
3250 if (elf_tdata (output_bfd)->cverdefs)
3251 {
3252 asection *s;
3253 bfd_byte *p;
3254 bfd_size_type i;
3255 Elf_Internal_Verdef def;
3256 Elf_Internal_Verdaux defaux;
3257
3258 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3259 p = s->contents;
3260 do
3261 {
3262 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3263 &def);
3264 p += sizeof (Elf_External_Verdef);
3265 if (def.vd_aux != sizeof (Elf_External_Verdef))
3266 continue;
3267 for (i = 0; i < def.vd_cnt; ++i)
3268 {
3269 _bfd_elf_swap_verdaux_in (output_bfd,
3270 (Elf_External_Verdaux *) p, &defaux);
3271 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3272 defaux.vda_name);
3273 _bfd_elf_swap_verdaux_out (output_bfd,
3274 &defaux, (Elf_External_Verdaux *) p);
3275 p += sizeof (Elf_External_Verdaux);
3276 }
3277 }
3278 while (def.vd_next);
3279 }
3280
3281 /* Adjust version references. */
3282 if (elf_tdata (output_bfd)->verref)
3283 {
3284 asection *s;
3285 bfd_byte *p;
3286 bfd_size_type i;
3287 Elf_Internal_Verneed need;
3288 Elf_Internal_Vernaux needaux;
3289
3290 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3291 p = s->contents;
3292 do
3293 {
3294 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3295 &need);
3296 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3297 _bfd_elf_swap_verneed_out (output_bfd, &need,
3298 (Elf_External_Verneed *) p);
3299 p += sizeof (Elf_External_Verneed);
3300 for (i = 0; i < need.vn_cnt; ++i)
3301 {
3302 _bfd_elf_swap_vernaux_in (output_bfd,
3303 (Elf_External_Vernaux *) p, &needaux);
3304 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3305 needaux.vna_name);
3306 _bfd_elf_swap_vernaux_out (output_bfd,
3307 &needaux,
3308 (Elf_External_Vernaux *) p);
3309 p += sizeof (Elf_External_Vernaux);
3310 }
3311 }
3312 while (need.vn_next);
3313 }
3314
3315 return TRUE;
3316 }
3317 \f
3318 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3319 The default is to only match when the INPUT and OUTPUT are exactly
3320 the same target. */
3321
3322 bfd_boolean
3323 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3324 const bfd_target *output)
3325 {
3326 return input == output;
3327 }
3328
3329 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3330 This version is used when different targets for the same architecture
3331 are virtually identical. */
3332
3333 bfd_boolean
3334 _bfd_elf_relocs_compatible (const bfd_target *input,
3335 const bfd_target *output)
3336 {
3337 const struct elf_backend_data *obed, *ibed;
3338
3339 if (input == output)
3340 return TRUE;
3341
3342 ibed = xvec_get_elf_backend_data (input);
3343 obed = xvec_get_elf_backend_data (output);
3344
3345 if (ibed->arch != obed->arch)
3346 return FALSE;
3347
3348 /* If both backends are using this function, deem them compatible. */
3349 return ibed->relocs_compatible == obed->relocs_compatible;
3350 }
3351
3352 /* Make a special call to the linker "notice" function to tell it that
3353 we are about to handle an as-needed lib, or have finished
3354 processing the lib. */
3355
3356 bfd_boolean
3357 _bfd_elf_notice_as_needed (bfd *ibfd,
3358 struct bfd_link_info *info,
3359 enum notice_asneeded_action act)
3360 {
3361 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3362 }
3363
3364 /* Add symbols from an ELF object file to the linker hash table. */
3365
3366 static bfd_boolean
3367 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3368 {
3369 Elf_Internal_Ehdr *ehdr;
3370 Elf_Internal_Shdr *hdr;
3371 bfd_size_type symcount;
3372 bfd_size_type extsymcount;
3373 bfd_size_type extsymoff;
3374 struct elf_link_hash_entry **sym_hash;
3375 bfd_boolean dynamic;
3376 Elf_External_Versym *extversym = NULL;
3377 Elf_External_Versym *ever;
3378 struct elf_link_hash_entry *weaks;
3379 struct elf_link_hash_entry **nondeflt_vers = NULL;
3380 bfd_size_type nondeflt_vers_cnt = 0;
3381 Elf_Internal_Sym *isymbuf = NULL;
3382 Elf_Internal_Sym *isym;
3383 Elf_Internal_Sym *isymend;
3384 const struct elf_backend_data *bed;
3385 bfd_boolean add_needed;
3386 struct elf_link_hash_table *htab;
3387 bfd_size_type amt;
3388 void *alloc_mark = NULL;
3389 struct bfd_hash_entry **old_table = NULL;
3390 unsigned int old_size = 0;
3391 unsigned int old_count = 0;
3392 void *old_tab = NULL;
3393 void *old_ent;
3394 struct bfd_link_hash_entry *old_undefs = NULL;
3395 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3396 long old_dynsymcount = 0;
3397 bfd_size_type old_dynstr_size = 0;
3398 size_t tabsize = 0;
3399 asection *s;
3400 bfd_boolean just_syms;
3401
3402 htab = elf_hash_table (info);
3403 bed = get_elf_backend_data (abfd);
3404
3405 if ((abfd->flags & DYNAMIC) == 0)
3406 dynamic = FALSE;
3407 else
3408 {
3409 dynamic = TRUE;
3410
3411 /* You can't use -r against a dynamic object. Also, there's no
3412 hope of using a dynamic object which does not exactly match
3413 the format of the output file. */
3414 if (info->relocatable
3415 || !is_elf_hash_table (htab)
3416 || info->output_bfd->xvec != abfd->xvec)
3417 {
3418 if (info->relocatable)
3419 bfd_set_error (bfd_error_invalid_operation);
3420 else
3421 bfd_set_error (bfd_error_wrong_format);
3422 goto error_return;
3423 }
3424 }
3425
3426 ehdr = elf_elfheader (abfd);
3427 if (info->warn_alternate_em
3428 && bed->elf_machine_code != ehdr->e_machine
3429 && ((bed->elf_machine_alt1 != 0
3430 && ehdr->e_machine == bed->elf_machine_alt1)
3431 || (bed->elf_machine_alt2 != 0
3432 && ehdr->e_machine == bed->elf_machine_alt2)))
3433 info->callbacks->einfo
3434 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3435 ehdr->e_machine, abfd, bed->elf_machine_code);
3436
3437 /* As a GNU extension, any input sections which are named
3438 .gnu.warning.SYMBOL are treated as warning symbols for the given
3439 symbol. This differs from .gnu.warning sections, which generate
3440 warnings when they are included in an output file. */
3441 /* PR 12761: Also generate this warning when building shared libraries. */
3442 for (s = abfd->sections; s != NULL; s = s->next)
3443 {
3444 const char *name;
3445
3446 name = bfd_get_section_name (abfd, s);
3447 if (CONST_STRNEQ (name, ".gnu.warning."))
3448 {
3449 char *msg;
3450 bfd_size_type sz;
3451
3452 name += sizeof ".gnu.warning." - 1;
3453
3454 /* If this is a shared object, then look up the symbol
3455 in the hash table. If it is there, and it is already
3456 been defined, then we will not be using the entry
3457 from this shared object, so we don't need to warn.
3458 FIXME: If we see the definition in a regular object
3459 later on, we will warn, but we shouldn't. The only
3460 fix is to keep track of what warnings we are supposed
3461 to emit, and then handle them all at the end of the
3462 link. */
3463 if (dynamic)
3464 {
3465 struct elf_link_hash_entry *h;
3466
3467 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3468
3469 /* FIXME: What about bfd_link_hash_common? */
3470 if (h != NULL
3471 && (h->root.type == bfd_link_hash_defined
3472 || h->root.type == bfd_link_hash_defweak))
3473 continue;
3474 }
3475
3476 sz = s->size;
3477 msg = (char *) bfd_alloc (abfd, sz + 1);
3478 if (msg == NULL)
3479 goto error_return;
3480
3481 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3482 goto error_return;
3483
3484 msg[sz] = '\0';
3485
3486 if (! (_bfd_generic_link_add_one_symbol
3487 (info, abfd, name, BSF_WARNING, s, 0, msg,
3488 FALSE, bed->collect, NULL)))
3489 goto error_return;
3490
3491 if (!info->relocatable && info->executable)
3492 {
3493 /* Clobber the section size so that the warning does
3494 not get copied into the output file. */
3495 s->size = 0;
3496
3497 /* Also set SEC_EXCLUDE, so that symbols defined in
3498 the warning section don't get copied to the output. */
3499 s->flags |= SEC_EXCLUDE;
3500 }
3501 }
3502 }
3503
3504 just_syms = ((s = abfd->sections) != NULL
3505 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3506
3507 add_needed = TRUE;
3508 if (! dynamic)
3509 {
3510 /* If we are creating a shared library, create all the dynamic
3511 sections immediately. We need to attach them to something,
3512 so we attach them to this BFD, provided it is the right
3513 format and is not from ld --just-symbols. FIXME: If there
3514 are no input BFD's of the same format as the output, we can't
3515 make a shared library. */
3516 if (!just_syms
3517 && info->shared
3518 && is_elf_hash_table (htab)
3519 && info->output_bfd->xvec == abfd->xvec
3520 && !htab->dynamic_sections_created)
3521 {
3522 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3523 goto error_return;
3524 }
3525 }
3526 else if (!is_elf_hash_table (htab))
3527 goto error_return;
3528 else
3529 {
3530 const char *soname = NULL;
3531 char *audit = NULL;
3532 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3533 int ret;
3534
3535 /* ld --just-symbols and dynamic objects don't mix very well.
3536 ld shouldn't allow it. */
3537 if (just_syms)
3538 abort ();
3539
3540 /* If this dynamic lib was specified on the command line with
3541 --as-needed in effect, then we don't want to add a DT_NEEDED
3542 tag unless the lib is actually used. Similary for libs brought
3543 in by another lib's DT_NEEDED. When --no-add-needed is used
3544 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3545 any dynamic library in DT_NEEDED tags in the dynamic lib at
3546 all. */
3547 add_needed = (elf_dyn_lib_class (abfd)
3548 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3549 | DYN_NO_NEEDED)) == 0;
3550
3551 s = bfd_get_section_by_name (abfd, ".dynamic");
3552 if (s != NULL)
3553 {
3554 bfd_byte *dynbuf;
3555 bfd_byte *extdyn;
3556 unsigned int elfsec;
3557 unsigned long shlink;
3558
3559 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3560 {
3561 error_free_dyn:
3562 free (dynbuf);
3563 goto error_return;
3564 }
3565
3566 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3567 if (elfsec == SHN_BAD)
3568 goto error_free_dyn;
3569 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3570
3571 for (extdyn = dynbuf;
3572 extdyn < dynbuf + s->size;
3573 extdyn += bed->s->sizeof_dyn)
3574 {
3575 Elf_Internal_Dyn dyn;
3576
3577 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3578 if (dyn.d_tag == DT_SONAME)
3579 {
3580 unsigned int tagv = dyn.d_un.d_val;
3581 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3582 if (soname == NULL)
3583 goto error_free_dyn;
3584 }
3585 if (dyn.d_tag == DT_NEEDED)
3586 {
3587 struct bfd_link_needed_list *n, **pn;
3588 char *fnm, *anm;
3589 unsigned int tagv = dyn.d_un.d_val;
3590
3591 amt = sizeof (struct bfd_link_needed_list);
3592 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3593 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3594 if (n == NULL || fnm == NULL)
3595 goto error_free_dyn;
3596 amt = strlen (fnm) + 1;
3597 anm = (char *) bfd_alloc (abfd, amt);
3598 if (anm == NULL)
3599 goto error_free_dyn;
3600 memcpy (anm, fnm, amt);
3601 n->name = anm;
3602 n->by = abfd;
3603 n->next = NULL;
3604 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3605 ;
3606 *pn = n;
3607 }
3608 if (dyn.d_tag == DT_RUNPATH)
3609 {
3610 struct bfd_link_needed_list *n, **pn;
3611 char *fnm, *anm;
3612 unsigned int tagv = dyn.d_un.d_val;
3613
3614 amt = sizeof (struct bfd_link_needed_list);
3615 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3616 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3617 if (n == NULL || fnm == NULL)
3618 goto error_free_dyn;
3619 amt = strlen (fnm) + 1;
3620 anm = (char *) bfd_alloc (abfd, amt);
3621 if (anm == NULL)
3622 goto error_free_dyn;
3623 memcpy (anm, fnm, amt);
3624 n->name = anm;
3625 n->by = abfd;
3626 n->next = NULL;
3627 for (pn = & runpath;
3628 *pn != NULL;
3629 pn = &(*pn)->next)
3630 ;
3631 *pn = n;
3632 }
3633 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3634 if (!runpath && dyn.d_tag == DT_RPATH)
3635 {
3636 struct bfd_link_needed_list *n, **pn;
3637 char *fnm, *anm;
3638 unsigned int tagv = dyn.d_un.d_val;
3639
3640 amt = sizeof (struct bfd_link_needed_list);
3641 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3642 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3643 if (n == NULL || fnm == NULL)
3644 goto error_free_dyn;
3645 amt = strlen (fnm) + 1;
3646 anm = (char *) bfd_alloc (abfd, amt);
3647 if (anm == NULL)
3648 goto error_free_dyn;
3649 memcpy (anm, fnm, amt);
3650 n->name = anm;
3651 n->by = abfd;
3652 n->next = NULL;
3653 for (pn = & rpath;
3654 *pn != NULL;
3655 pn = &(*pn)->next)
3656 ;
3657 *pn = n;
3658 }
3659 if (dyn.d_tag == DT_AUDIT)
3660 {
3661 unsigned int tagv = dyn.d_un.d_val;
3662 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3663 }
3664 }
3665
3666 free (dynbuf);
3667 }
3668
3669 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3670 frees all more recently bfd_alloc'd blocks as well. */
3671 if (runpath)
3672 rpath = runpath;
3673
3674 if (rpath)
3675 {
3676 struct bfd_link_needed_list **pn;
3677 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3678 ;
3679 *pn = rpath;
3680 }
3681
3682 /* We do not want to include any of the sections in a dynamic
3683 object in the output file. We hack by simply clobbering the
3684 list of sections in the BFD. This could be handled more
3685 cleanly by, say, a new section flag; the existing
3686 SEC_NEVER_LOAD flag is not the one we want, because that one
3687 still implies that the section takes up space in the output
3688 file. */
3689 bfd_section_list_clear (abfd);
3690
3691 /* Find the name to use in a DT_NEEDED entry that refers to this
3692 object. If the object has a DT_SONAME entry, we use it.
3693 Otherwise, if the generic linker stuck something in
3694 elf_dt_name, we use that. Otherwise, we just use the file
3695 name. */
3696 if (soname == NULL || *soname == '\0')
3697 {
3698 soname = elf_dt_name (abfd);
3699 if (soname == NULL || *soname == '\0')
3700 soname = bfd_get_filename (abfd);
3701 }
3702
3703 /* Save the SONAME because sometimes the linker emulation code
3704 will need to know it. */
3705 elf_dt_name (abfd) = soname;
3706
3707 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3708 if (ret < 0)
3709 goto error_return;
3710
3711 /* If we have already included this dynamic object in the
3712 link, just ignore it. There is no reason to include a
3713 particular dynamic object more than once. */
3714 if (ret > 0)
3715 return TRUE;
3716
3717 /* Save the DT_AUDIT entry for the linker emulation code. */
3718 elf_dt_audit (abfd) = audit;
3719 }
3720
3721 /* If this is a dynamic object, we always link against the .dynsym
3722 symbol table, not the .symtab symbol table. The dynamic linker
3723 will only see the .dynsym symbol table, so there is no reason to
3724 look at .symtab for a dynamic object. */
3725
3726 if (! dynamic || elf_dynsymtab (abfd) == 0)
3727 hdr = &elf_tdata (abfd)->symtab_hdr;
3728 else
3729 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3730
3731 symcount = hdr->sh_size / bed->s->sizeof_sym;
3732
3733 /* The sh_info field of the symtab header tells us where the
3734 external symbols start. We don't care about the local symbols at
3735 this point. */
3736 if (elf_bad_symtab (abfd))
3737 {
3738 extsymcount = symcount;
3739 extsymoff = 0;
3740 }
3741 else
3742 {
3743 extsymcount = symcount - hdr->sh_info;
3744 extsymoff = hdr->sh_info;
3745 }
3746
3747 sym_hash = elf_sym_hashes (abfd);
3748 if (extsymcount != 0)
3749 {
3750 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3751 NULL, NULL, NULL);
3752 if (isymbuf == NULL)
3753 goto error_return;
3754
3755 if (sym_hash == NULL)
3756 {
3757 /* We store a pointer to the hash table entry for each
3758 external symbol. */
3759 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3760 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
3761 if (sym_hash == NULL)
3762 goto error_free_sym;
3763 elf_sym_hashes (abfd) = sym_hash;
3764 }
3765 }
3766
3767 if (dynamic)
3768 {
3769 /* Read in any version definitions. */
3770 if (!_bfd_elf_slurp_version_tables (abfd,
3771 info->default_imported_symver))
3772 goto error_free_sym;
3773
3774 /* Read in the symbol versions, but don't bother to convert them
3775 to internal format. */
3776 if (elf_dynversym (abfd) != 0)
3777 {
3778 Elf_Internal_Shdr *versymhdr;
3779
3780 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3781 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3782 if (extversym == NULL)
3783 goto error_free_sym;
3784 amt = versymhdr->sh_size;
3785 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3786 || bfd_bread (extversym, amt, abfd) != amt)
3787 goto error_free_vers;
3788 }
3789 }
3790
3791 /* If we are loading an as-needed shared lib, save the symbol table
3792 state before we start adding symbols. If the lib turns out
3793 to be unneeded, restore the state. */
3794 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3795 {
3796 unsigned int i;
3797 size_t entsize;
3798
3799 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3800 {
3801 struct bfd_hash_entry *p;
3802 struct elf_link_hash_entry *h;
3803
3804 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3805 {
3806 h = (struct elf_link_hash_entry *) p;
3807 entsize += htab->root.table.entsize;
3808 if (h->root.type == bfd_link_hash_warning)
3809 entsize += htab->root.table.entsize;
3810 }
3811 }
3812
3813 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3814 old_tab = bfd_malloc (tabsize + entsize);
3815 if (old_tab == NULL)
3816 goto error_free_vers;
3817
3818 /* Remember the current objalloc pointer, so that all mem for
3819 symbols added can later be reclaimed. */
3820 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3821 if (alloc_mark == NULL)
3822 goto error_free_vers;
3823
3824 /* Make a special call to the linker "notice" function to
3825 tell it that we are about to handle an as-needed lib. */
3826 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
3827 goto error_free_vers;
3828
3829 /* Clone the symbol table. Remember some pointers into the
3830 symbol table, and dynamic symbol count. */
3831 old_ent = (char *) old_tab + tabsize;
3832 memcpy (old_tab, htab->root.table.table, tabsize);
3833 old_undefs = htab->root.undefs;
3834 old_undefs_tail = htab->root.undefs_tail;
3835 old_table = htab->root.table.table;
3836 old_size = htab->root.table.size;
3837 old_count = htab->root.table.count;
3838 old_dynsymcount = htab->dynsymcount;
3839 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3840
3841 for (i = 0; i < htab->root.table.size; i++)
3842 {
3843 struct bfd_hash_entry *p;
3844 struct elf_link_hash_entry *h;
3845
3846 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3847 {
3848 memcpy (old_ent, p, htab->root.table.entsize);
3849 old_ent = (char *) old_ent + htab->root.table.entsize;
3850 h = (struct elf_link_hash_entry *) p;
3851 if (h->root.type == bfd_link_hash_warning)
3852 {
3853 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3854 old_ent = (char *) old_ent + htab->root.table.entsize;
3855 }
3856 }
3857 }
3858 }
3859
3860 weaks = NULL;
3861 ever = extversym != NULL ? extversym + extsymoff : NULL;
3862 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3863 isym < isymend;
3864 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3865 {
3866 int bind;
3867 bfd_vma value;
3868 asection *sec, *new_sec;
3869 flagword flags;
3870 const char *name;
3871 struct elf_link_hash_entry *h;
3872 struct elf_link_hash_entry *hi;
3873 bfd_boolean definition;
3874 bfd_boolean size_change_ok;
3875 bfd_boolean type_change_ok;
3876 bfd_boolean new_weakdef;
3877 bfd_boolean new_weak;
3878 bfd_boolean old_weak;
3879 bfd_boolean override;
3880 bfd_boolean common;
3881 unsigned int old_alignment;
3882 bfd *old_bfd;
3883
3884 override = FALSE;
3885
3886 flags = BSF_NO_FLAGS;
3887 sec = NULL;
3888 value = isym->st_value;
3889 common = bed->common_definition (isym);
3890
3891 bind = ELF_ST_BIND (isym->st_info);
3892 switch (bind)
3893 {
3894 case STB_LOCAL:
3895 /* This should be impossible, since ELF requires that all
3896 global symbols follow all local symbols, and that sh_info
3897 point to the first global symbol. Unfortunately, Irix 5
3898 screws this up. */
3899 continue;
3900
3901 case STB_GLOBAL:
3902 if (isym->st_shndx != SHN_UNDEF && !common)
3903 flags = BSF_GLOBAL;
3904 break;
3905
3906 case STB_WEAK:
3907 flags = BSF_WEAK;
3908 break;
3909
3910 case STB_GNU_UNIQUE:
3911 flags = BSF_GNU_UNIQUE;
3912 break;
3913
3914 default:
3915 /* Leave it up to the processor backend. */
3916 break;
3917 }
3918
3919 if (isym->st_shndx == SHN_UNDEF)
3920 sec = bfd_und_section_ptr;
3921 else if (isym->st_shndx == SHN_ABS)
3922 sec = bfd_abs_section_ptr;
3923 else if (isym->st_shndx == SHN_COMMON)
3924 {
3925 sec = bfd_com_section_ptr;
3926 /* What ELF calls the size we call the value. What ELF
3927 calls the value we call the alignment. */
3928 value = isym->st_size;
3929 }
3930 else
3931 {
3932 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3933 if (sec == NULL)
3934 sec = bfd_abs_section_ptr;
3935 else if (discarded_section (sec))
3936 {
3937 /* Symbols from discarded section are undefined. We keep
3938 its visibility. */
3939 sec = bfd_und_section_ptr;
3940 isym->st_shndx = SHN_UNDEF;
3941 }
3942 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3943 value -= sec->vma;
3944 }
3945
3946 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3947 isym->st_name);
3948 if (name == NULL)
3949 goto error_free_vers;
3950
3951 if (isym->st_shndx == SHN_COMMON
3952 && (abfd->flags & BFD_PLUGIN) != 0)
3953 {
3954 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3955
3956 if (xc == NULL)
3957 {
3958 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3959 | SEC_EXCLUDE);
3960 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3961 if (xc == NULL)
3962 goto error_free_vers;
3963 }
3964 sec = xc;
3965 }
3966 else if (isym->st_shndx == SHN_COMMON
3967 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3968 && !info->relocatable)
3969 {
3970 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3971
3972 if (tcomm == NULL)
3973 {
3974 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3975 | SEC_LINKER_CREATED);
3976 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3977 if (tcomm == NULL)
3978 goto error_free_vers;
3979 }
3980 sec = tcomm;
3981 }
3982 else if (bed->elf_add_symbol_hook)
3983 {
3984 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3985 &sec, &value))
3986 goto error_free_vers;
3987
3988 /* The hook function sets the name to NULL if this symbol
3989 should be skipped for some reason. */
3990 if (name == NULL)
3991 continue;
3992 }
3993
3994 /* Sanity check that all possibilities were handled. */
3995 if (sec == NULL)
3996 {
3997 bfd_set_error (bfd_error_bad_value);
3998 goto error_free_vers;
3999 }
4000
4001 /* Silently discard TLS symbols from --just-syms. There's
4002 no way to combine a static TLS block with a new TLS block
4003 for this executable. */
4004 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4005 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4006 continue;
4007
4008 if (bfd_is_und_section (sec)
4009 || bfd_is_com_section (sec))
4010 definition = FALSE;
4011 else
4012 definition = TRUE;
4013
4014 size_change_ok = FALSE;
4015 type_change_ok = bed->type_change_ok;
4016 old_weak = FALSE;
4017 old_alignment = 0;
4018 old_bfd = NULL;
4019 new_sec = sec;
4020
4021 if (is_elf_hash_table (htab))
4022 {
4023 Elf_Internal_Versym iver;
4024 unsigned int vernum = 0;
4025 bfd_boolean skip;
4026
4027 if (ever == NULL)
4028 {
4029 if (info->default_imported_symver)
4030 /* Use the default symbol version created earlier. */
4031 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4032 else
4033 iver.vs_vers = 0;
4034 }
4035 else
4036 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4037
4038 vernum = iver.vs_vers & VERSYM_VERSION;
4039
4040 /* If this is a hidden symbol, or if it is not version
4041 1, we append the version name to the symbol name.
4042 However, we do not modify a non-hidden absolute symbol
4043 if it is not a function, because it might be the version
4044 symbol itself. FIXME: What if it isn't? */
4045 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4046 || (vernum > 1
4047 && (!bfd_is_abs_section (sec)
4048 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4049 {
4050 const char *verstr;
4051 size_t namelen, verlen, newlen;
4052 char *newname, *p;
4053
4054 if (isym->st_shndx != SHN_UNDEF)
4055 {
4056 if (vernum > elf_tdata (abfd)->cverdefs)
4057 verstr = NULL;
4058 else if (vernum > 1)
4059 verstr =
4060 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4061 else
4062 verstr = "";
4063
4064 if (verstr == NULL)
4065 {
4066 (*_bfd_error_handler)
4067 (_("%B: %s: invalid version %u (max %d)"),
4068 abfd, name, vernum,
4069 elf_tdata (abfd)->cverdefs);
4070 bfd_set_error (bfd_error_bad_value);
4071 goto error_free_vers;
4072 }
4073 }
4074 else
4075 {
4076 /* We cannot simply test for the number of
4077 entries in the VERNEED section since the
4078 numbers for the needed versions do not start
4079 at 0. */
4080 Elf_Internal_Verneed *t;
4081
4082 verstr = NULL;
4083 for (t = elf_tdata (abfd)->verref;
4084 t != NULL;
4085 t = t->vn_nextref)
4086 {
4087 Elf_Internal_Vernaux *a;
4088
4089 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4090 {
4091 if (a->vna_other == vernum)
4092 {
4093 verstr = a->vna_nodename;
4094 break;
4095 }
4096 }
4097 if (a != NULL)
4098 break;
4099 }
4100 if (verstr == NULL)
4101 {
4102 (*_bfd_error_handler)
4103 (_("%B: %s: invalid needed version %d"),
4104 abfd, name, vernum);
4105 bfd_set_error (bfd_error_bad_value);
4106 goto error_free_vers;
4107 }
4108 }
4109
4110 namelen = strlen (name);
4111 verlen = strlen (verstr);
4112 newlen = namelen + verlen + 2;
4113 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4114 && isym->st_shndx != SHN_UNDEF)
4115 ++newlen;
4116
4117 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4118 if (newname == NULL)
4119 goto error_free_vers;
4120 memcpy (newname, name, namelen);
4121 p = newname + namelen;
4122 *p++ = ELF_VER_CHR;
4123 /* If this is a defined non-hidden version symbol,
4124 we add another @ to the name. This indicates the
4125 default version of the symbol. */
4126 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4127 && isym->st_shndx != SHN_UNDEF)
4128 *p++ = ELF_VER_CHR;
4129 memcpy (p, verstr, verlen + 1);
4130
4131 name = newname;
4132 }
4133
4134 /* If this symbol has default visibility and the user has
4135 requested we not re-export it, then mark it as hidden. */
4136 if (definition
4137 && !dynamic
4138 && abfd->no_export
4139 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4140 isym->st_other = (STV_HIDDEN
4141 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4142
4143 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4144 sym_hash, &old_bfd, &old_weak,
4145 &old_alignment, &skip, &override,
4146 &type_change_ok, &size_change_ok))
4147 goto error_free_vers;
4148
4149 if (skip)
4150 continue;
4151
4152 if (override)
4153 definition = FALSE;
4154
4155 h = *sym_hash;
4156 while (h->root.type == bfd_link_hash_indirect
4157 || h->root.type == bfd_link_hash_warning)
4158 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4159
4160 if (elf_tdata (abfd)->verdef != NULL
4161 && vernum > 1
4162 && definition)
4163 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4164 }
4165
4166 if (! (_bfd_generic_link_add_one_symbol
4167 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4168 (struct bfd_link_hash_entry **) sym_hash)))
4169 goto error_free_vers;
4170
4171 h = *sym_hash;
4172 /* We need to make sure that indirect symbol dynamic flags are
4173 updated. */
4174 hi = h;
4175 while (h->root.type == bfd_link_hash_indirect
4176 || h->root.type == bfd_link_hash_warning)
4177 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4178
4179 *sym_hash = h;
4180
4181 new_weak = (flags & BSF_WEAK) != 0;
4182 new_weakdef = FALSE;
4183 if (dynamic
4184 && definition
4185 && new_weak
4186 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4187 && is_elf_hash_table (htab)
4188 && h->u.weakdef == NULL)
4189 {
4190 /* Keep a list of all weak defined non function symbols from
4191 a dynamic object, using the weakdef field. Later in this
4192 function we will set the weakdef field to the correct
4193 value. We only put non-function symbols from dynamic
4194 objects on this list, because that happens to be the only
4195 time we need to know the normal symbol corresponding to a
4196 weak symbol, and the information is time consuming to
4197 figure out. If the weakdef field is not already NULL,
4198 then this symbol was already defined by some previous
4199 dynamic object, and we will be using that previous
4200 definition anyhow. */
4201
4202 h->u.weakdef = weaks;
4203 weaks = h;
4204 new_weakdef = TRUE;
4205 }
4206
4207 /* Set the alignment of a common symbol. */
4208 if ((common || bfd_is_com_section (sec))
4209 && h->root.type == bfd_link_hash_common)
4210 {
4211 unsigned int align;
4212
4213 if (common)
4214 align = bfd_log2 (isym->st_value);
4215 else
4216 {
4217 /* The new symbol is a common symbol in a shared object.
4218 We need to get the alignment from the section. */
4219 align = new_sec->alignment_power;
4220 }
4221 if (align > old_alignment)
4222 h->root.u.c.p->alignment_power = align;
4223 else
4224 h->root.u.c.p->alignment_power = old_alignment;
4225 }
4226
4227 if (is_elf_hash_table (htab))
4228 {
4229 /* Set a flag in the hash table entry indicating the type of
4230 reference or definition we just found. A dynamic symbol
4231 is one which is referenced or defined by both a regular
4232 object and a shared object. */
4233 bfd_boolean dynsym = FALSE;
4234
4235 /* Plugin symbols aren't normal. Don't set def_regular or
4236 ref_regular for them, or make them dynamic. */
4237 if ((abfd->flags & BFD_PLUGIN) != 0)
4238 ;
4239 else if (! dynamic)
4240 {
4241 if (! definition)
4242 {
4243 h->ref_regular = 1;
4244 if (bind != STB_WEAK)
4245 h->ref_regular_nonweak = 1;
4246 }
4247 else
4248 {
4249 h->def_regular = 1;
4250 if (h->def_dynamic)
4251 {
4252 h->def_dynamic = 0;
4253 h->ref_dynamic = 1;
4254 }
4255 }
4256
4257 /* If the indirect symbol has been forced local, don't
4258 make the real symbol dynamic. */
4259 if ((h == hi || !hi->forced_local)
4260 && (! info->executable
4261 || h->def_dynamic
4262 || h->ref_dynamic))
4263 dynsym = TRUE;
4264 }
4265 else
4266 {
4267 if (! definition)
4268 {
4269 h->ref_dynamic = 1;
4270 hi->ref_dynamic = 1;
4271 }
4272 else
4273 {
4274 h->def_dynamic = 1;
4275 hi->def_dynamic = 1;
4276 }
4277
4278 /* If the indirect symbol has been forced local, don't
4279 make the real symbol dynamic. */
4280 if ((h == hi || !hi->forced_local)
4281 && (h->def_regular
4282 || h->ref_regular
4283 || (h->u.weakdef != NULL
4284 && ! new_weakdef
4285 && h->u.weakdef->dynindx != -1)))
4286 dynsym = TRUE;
4287 }
4288
4289 /* Check to see if we need to add an indirect symbol for
4290 the default name. */
4291 if (definition
4292 || (!override && h->root.type == bfd_link_hash_common))
4293 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4294 sec, value, &old_bfd, &dynsym))
4295 goto error_free_vers;
4296
4297 /* Check the alignment when a common symbol is involved. This
4298 can change when a common symbol is overridden by a normal
4299 definition or a common symbol is ignored due to the old
4300 normal definition. We need to make sure the maximum
4301 alignment is maintained. */
4302 if ((old_alignment || common)
4303 && h->root.type != bfd_link_hash_common)
4304 {
4305 unsigned int common_align;
4306 unsigned int normal_align;
4307 unsigned int symbol_align;
4308 bfd *normal_bfd;
4309 bfd *common_bfd;
4310
4311 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4312 || h->root.type == bfd_link_hash_defweak);
4313
4314 symbol_align = ffs (h->root.u.def.value) - 1;
4315 if (h->root.u.def.section->owner != NULL
4316 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4317 {
4318 normal_align = h->root.u.def.section->alignment_power;
4319 if (normal_align > symbol_align)
4320 normal_align = symbol_align;
4321 }
4322 else
4323 normal_align = symbol_align;
4324
4325 if (old_alignment)
4326 {
4327 common_align = old_alignment;
4328 common_bfd = old_bfd;
4329 normal_bfd = abfd;
4330 }
4331 else
4332 {
4333 common_align = bfd_log2 (isym->st_value);
4334 common_bfd = abfd;
4335 normal_bfd = old_bfd;
4336 }
4337
4338 if (normal_align < common_align)
4339 {
4340 /* PR binutils/2735 */
4341 if (normal_bfd == NULL)
4342 (*_bfd_error_handler)
4343 (_("Warning: alignment %u of common symbol `%s' in %B is"
4344 " greater than the alignment (%u) of its section %A"),
4345 common_bfd, h->root.u.def.section,
4346 1 << common_align, name, 1 << normal_align);
4347 else
4348 (*_bfd_error_handler)
4349 (_("Warning: alignment %u of symbol `%s' in %B"
4350 " is smaller than %u in %B"),
4351 normal_bfd, common_bfd,
4352 1 << normal_align, name, 1 << common_align);
4353 }
4354 }
4355
4356 /* Remember the symbol size if it isn't undefined. */
4357 if (isym->st_size != 0
4358 && isym->st_shndx != SHN_UNDEF
4359 && (definition || h->size == 0))
4360 {
4361 if (h->size != 0
4362 && h->size != isym->st_size
4363 && ! size_change_ok)
4364 (*_bfd_error_handler)
4365 (_("Warning: size of symbol `%s' changed"
4366 " from %lu in %B to %lu in %B"),
4367 old_bfd, abfd,
4368 name, (unsigned long) h->size,
4369 (unsigned long) isym->st_size);
4370
4371 h->size = isym->st_size;
4372 }
4373
4374 /* If this is a common symbol, then we always want H->SIZE
4375 to be the size of the common symbol. The code just above
4376 won't fix the size if a common symbol becomes larger. We
4377 don't warn about a size change here, because that is
4378 covered by --warn-common. Allow changes between different
4379 function types. */
4380 if (h->root.type == bfd_link_hash_common)
4381 h->size = h->root.u.c.size;
4382
4383 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4384 && ((definition && !new_weak)
4385 || (old_weak && h->root.type == bfd_link_hash_common)
4386 || h->type == STT_NOTYPE))
4387 {
4388 unsigned int type = ELF_ST_TYPE (isym->st_info);
4389
4390 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4391 symbol. */
4392 if (type == STT_GNU_IFUNC
4393 && (abfd->flags & DYNAMIC) != 0)
4394 type = STT_FUNC;
4395
4396 if (h->type != type)
4397 {
4398 if (h->type != STT_NOTYPE && ! type_change_ok)
4399 (*_bfd_error_handler)
4400 (_("Warning: type of symbol `%s' changed"
4401 " from %d to %d in %B"),
4402 abfd, name, h->type, type);
4403
4404 h->type = type;
4405 }
4406 }
4407
4408 /* Merge st_other field. */
4409 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4410
4411 /* We don't want to make debug symbol dynamic. */
4412 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4413 dynsym = FALSE;
4414
4415 /* Nor should we make plugin symbols dynamic. */
4416 if ((abfd->flags & BFD_PLUGIN) != 0)
4417 dynsym = FALSE;
4418
4419 if (definition)
4420 {
4421 h->target_internal = isym->st_target_internal;
4422 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4423 }
4424
4425 if (definition && !dynamic)
4426 {
4427 char *p = strchr (name, ELF_VER_CHR);
4428 if (p != NULL && p[1] != ELF_VER_CHR)
4429 {
4430 /* Queue non-default versions so that .symver x, x@FOO
4431 aliases can be checked. */
4432 if (!nondeflt_vers)
4433 {
4434 amt = ((isymend - isym + 1)
4435 * sizeof (struct elf_link_hash_entry *));
4436 nondeflt_vers
4437 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4438 if (!nondeflt_vers)
4439 goto error_free_vers;
4440 }
4441 nondeflt_vers[nondeflt_vers_cnt++] = h;
4442 }
4443 }
4444
4445 if (dynsym && h->dynindx == -1)
4446 {
4447 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4448 goto error_free_vers;
4449 if (h->u.weakdef != NULL
4450 && ! new_weakdef
4451 && h->u.weakdef->dynindx == -1)
4452 {
4453 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4454 goto error_free_vers;
4455 }
4456 }
4457 else if (dynsym && h->dynindx != -1)
4458 /* If the symbol already has a dynamic index, but
4459 visibility says it should not be visible, turn it into
4460 a local symbol. */
4461 switch (ELF_ST_VISIBILITY (h->other))
4462 {
4463 case STV_INTERNAL:
4464 case STV_HIDDEN:
4465 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4466 dynsym = FALSE;
4467 break;
4468 }
4469
4470 /* Don't add DT_NEEDED for references from the dummy bfd. */
4471 if (!add_needed
4472 && definition
4473 && ((dynsym
4474 && h->ref_regular_nonweak
4475 && (old_bfd == NULL
4476 || (old_bfd->flags & BFD_PLUGIN) == 0))
4477 || (h->ref_dynamic_nonweak
4478 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4479 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4480 {
4481 int ret;
4482 const char *soname = elf_dt_name (abfd);
4483
4484 info->callbacks->minfo ("%!", soname, old_bfd,
4485 h->root.root.string);
4486
4487 /* A symbol from a library loaded via DT_NEEDED of some
4488 other library is referenced by a regular object.
4489 Add a DT_NEEDED entry for it. Issue an error if
4490 --no-add-needed is used and the reference was not
4491 a weak one. */
4492 if (old_bfd != NULL
4493 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4494 {
4495 (*_bfd_error_handler)
4496 (_("%B: undefined reference to symbol '%s'"),
4497 old_bfd, name);
4498 bfd_set_error (bfd_error_missing_dso);
4499 goto error_free_vers;
4500 }
4501
4502 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4503 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4504
4505 add_needed = TRUE;
4506 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4507 if (ret < 0)
4508 goto error_free_vers;
4509
4510 BFD_ASSERT (ret == 0);
4511 }
4512 }
4513 }
4514
4515 if (extversym != NULL)
4516 {
4517 free (extversym);
4518 extversym = NULL;
4519 }
4520
4521 if (isymbuf != NULL)
4522 {
4523 free (isymbuf);
4524 isymbuf = NULL;
4525 }
4526
4527 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4528 {
4529 unsigned int i;
4530
4531 /* Restore the symbol table. */
4532 old_ent = (char *) old_tab + tabsize;
4533 memset (elf_sym_hashes (abfd), 0,
4534 extsymcount * sizeof (struct elf_link_hash_entry *));
4535 htab->root.table.table = old_table;
4536 htab->root.table.size = old_size;
4537 htab->root.table.count = old_count;
4538 memcpy (htab->root.table.table, old_tab, tabsize);
4539 htab->root.undefs = old_undefs;
4540 htab->root.undefs_tail = old_undefs_tail;
4541 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4542 for (i = 0; i < htab->root.table.size; i++)
4543 {
4544 struct bfd_hash_entry *p;
4545 struct elf_link_hash_entry *h;
4546 bfd_size_type size;
4547 unsigned int alignment_power;
4548
4549 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4550 {
4551 h = (struct elf_link_hash_entry *) p;
4552 if (h->root.type == bfd_link_hash_warning)
4553 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4554 if (h->dynindx >= old_dynsymcount
4555 && h->dynstr_index < old_dynstr_size)
4556 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4557
4558 /* Preserve the maximum alignment and size for common
4559 symbols even if this dynamic lib isn't on DT_NEEDED
4560 since it can still be loaded at run time by another
4561 dynamic lib. */
4562 if (h->root.type == bfd_link_hash_common)
4563 {
4564 size = h->root.u.c.size;
4565 alignment_power = h->root.u.c.p->alignment_power;
4566 }
4567 else
4568 {
4569 size = 0;
4570 alignment_power = 0;
4571 }
4572 memcpy (p, old_ent, htab->root.table.entsize);
4573 old_ent = (char *) old_ent + htab->root.table.entsize;
4574 h = (struct elf_link_hash_entry *) p;
4575 if (h->root.type == bfd_link_hash_warning)
4576 {
4577 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4578 old_ent = (char *) old_ent + htab->root.table.entsize;
4579 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4580 }
4581 if (h->root.type == bfd_link_hash_common)
4582 {
4583 if (size > h->root.u.c.size)
4584 h->root.u.c.size = size;
4585 if (alignment_power > h->root.u.c.p->alignment_power)
4586 h->root.u.c.p->alignment_power = alignment_power;
4587 }
4588 }
4589 }
4590
4591 /* Make a special call to the linker "notice" function to
4592 tell it that symbols added for crefs may need to be removed. */
4593 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4594 goto error_free_vers;
4595
4596 free (old_tab);
4597 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4598 alloc_mark);
4599 if (nondeflt_vers != NULL)
4600 free (nondeflt_vers);
4601 return TRUE;
4602 }
4603
4604 if (old_tab != NULL)
4605 {
4606 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4607 goto error_free_vers;
4608 free (old_tab);
4609 old_tab = NULL;
4610 }
4611
4612 /* Now that all the symbols from this input file are created, handle
4613 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4614 if (nondeflt_vers != NULL)
4615 {
4616 bfd_size_type cnt, symidx;
4617
4618 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4619 {
4620 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4621 char *shortname, *p;
4622
4623 p = strchr (h->root.root.string, ELF_VER_CHR);
4624 if (p == NULL
4625 || (h->root.type != bfd_link_hash_defined
4626 && h->root.type != bfd_link_hash_defweak))
4627 continue;
4628
4629 amt = p - h->root.root.string;
4630 shortname = (char *) bfd_malloc (amt + 1);
4631 if (!shortname)
4632 goto error_free_vers;
4633 memcpy (shortname, h->root.root.string, amt);
4634 shortname[amt] = '\0';
4635
4636 hi = (struct elf_link_hash_entry *)
4637 bfd_link_hash_lookup (&htab->root, shortname,
4638 FALSE, FALSE, FALSE);
4639 if (hi != NULL
4640 && hi->root.type == h->root.type
4641 && hi->root.u.def.value == h->root.u.def.value
4642 && hi->root.u.def.section == h->root.u.def.section)
4643 {
4644 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4645 hi->root.type = bfd_link_hash_indirect;
4646 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4647 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4648 sym_hash = elf_sym_hashes (abfd);
4649 if (sym_hash)
4650 for (symidx = 0; symidx < extsymcount; ++symidx)
4651 if (sym_hash[symidx] == hi)
4652 {
4653 sym_hash[symidx] = h;
4654 break;
4655 }
4656 }
4657 free (shortname);
4658 }
4659 free (nondeflt_vers);
4660 nondeflt_vers = NULL;
4661 }
4662
4663 /* Now set the weakdefs field correctly for all the weak defined
4664 symbols we found. The only way to do this is to search all the
4665 symbols. Since we only need the information for non functions in
4666 dynamic objects, that's the only time we actually put anything on
4667 the list WEAKS. We need this information so that if a regular
4668 object refers to a symbol defined weakly in a dynamic object, the
4669 real symbol in the dynamic object is also put in the dynamic
4670 symbols; we also must arrange for both symbols to point to the
4671 same memory location. We could handle the general case of symbol
4672 aliasing, but a general symbol alias can only be generated in
4673 assembler code, handling it correctly would be very time
4674 consuming, and other ELF linkers don't handle general aliasing
4675 either. */
4676 if (weaks != NULL)
4677 {
4678 struct elf_link_hash_entry **hpp;
4679 struct elf_link_hash_entry **hppend;
4680 struct elf_link_hash_entry **sorted_sym_hash;
4681 struct elf_link_hash_entry *h;
4682 size_t sym_count;
4683
4684 /* Since we have to search the whole symbol list for each weak
4685 defined symbol, search time for N weak defined symbols will be
4686 O(N^2). Binary search will cut it down to O(NlogN). */
4687 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4688 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4689 if (sorted_sym_hash == NULL)
4690 goto error_return;
4691 sym_hash = sorted_sym_hash;
4692 hpp = elf_sym_hashes (abfd);
4693 hppend = hpp + extsymcount;
4694 sym_count = 0;
4695 for (; hpp < hppend; hpp++)
4696 {
4697 h = *hpp;
4698 if (h != NULL
4699 && h->root.type == bfd_link_hash_defined
4700 && !bed->is_function_type (h->type))
4701 {
4702 *sym_hash = h;
4703 sym_hash++;
4704 sym_count++;
4705 }
4706 }
4707
4708 qsort (sorted_sym_hash, sym_count,
4709 sizeof (struct elf_link_hash_entry *),
4710 elf_sort_symbol);
4711
4712 while (weaks != NULL)
4713 {
4714 struct elf_link_hash_entry *hlook;
4715 asection *slook;
4716 bfd_vma vlook;
4717 size_t i, j, idx = 0;
4718
4719 hlook = weaks;
4720 weaks = hlook->u.weakdef;
4721 hlook->u.weakdef = NULL;
4722
4723 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4724 || hlook->root.type == bfd_link_hash_defweak
4725 || hlook->root.type == bfd_link_hash_common
4726 || hlook->root.type == bfd_link_hash_indirect);
4727 slook = hlook->root.u.def.section;
4728 vlook = hlook->root.u.def.value;
4729
4730 i = 0;
4731 j = sym_count;
4732 while (i != j)
4733 {
4734 bfd_signed_vma vdiff;
4735 idx = (i + j) / 2;
4736 h = sorted_sym_hash[idx];
4737 vdiff = vlook - h->root.u.def.value;
4738 if (vdiff < 0)
4739 j = idx;
4740 else if (vdiff > 0)
4741 i = idx + 1;
4742 else
4743 {
4744 long sdiff = slook->id - h->root.u.def.section->id;
4745 if (sdiff < 0)
4746 j = idx;
4747 else if (sdiff > 0)
4748 i = idx + 1;
4749 else
4750 break;
4751 }
4752 }
4753
4754 /* We didn't find a value/section match. */
4755 if (i == j)
4756 continue;
4757
4758 /* With multiple aliases, or when the weak symbol is already
4759 strongly defined, we have multiple matching symbols and
4760 the binary search above may land on any of them. Step
4761 one past the matching symbol(s). */
4762 while (++idx != j)
4763 {
4764 h = sorted_sym_hash[idx];
4765 if (h->root.u.def.section != slook
4766 || h->root.u.def.value != vlook)
4767 break;
4768 }
4769
4770 /* Now look back over the aliases. Since we sorted by size
4771 as well as value and section, we'll choose the one with
4772 the largest size. */
4773 while (idx-- != i)
4774 {
4775 h = sorted_sym_hash[idx];
4776
4777 /* Stop if value or section doesn't match. */
4778 if (h->root.u.def.section != slook
4779 || h->root.u.def.value != vlook)
4780 break;
4781 else if (h != hlook)
4782 {
4783 hlook->u.weakdef = h;
4784
4785 /* If the weak definition is in the list of dynamic
4786 symbols, make sure the real definition is put
4787 there as well. */
4788 if (hlook->dynindx != -1 && h->dynindx == -1)
4789 {
4790 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4791 {
4792 err_free_sym_hash:
4793 free (sorted_sym_hash);
4794 goto error_return;
4795 }
4796 }
4797
4798 /* If the real definition is in the list of dynamic
4799 symbols, make sure the weak definition is put
4800 there as well. If we don't do this, then the
4801 dynamic loader might not merge the entries for the
4802 real definition and the weak definition. */
4803 if (h->dynindx != -1 && hlook->dynindx == -1)
4804 {
4805 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4806 goto err_free_sym_hash;
4807 }
4808 break;
4809 }
4810 }
4811 }
4812
4813 free (sorted_sym_hash);
4814 }
4815
4816 if (bed->check_directives
4817 && !(*bed->check_directives) (abfd, info))
4818 return FALSE;
4819
4820 /* If this object is the same format as the output object, and it is
4821 not a shared library, then let the backend look through the
4822 relocs.
4823
4824 This is required to build global offset table entries and to
4825 arrange for dynamic relocs. It is not required for the
4826 particular common case of linking non PIC code, even when linking
4827 against shared libraries, but unfortunately there is no way of
4828 knowing whether an object file has been compiled PIC or not.
4829 Looking through the relocs is not particularly time consuming.
4830 The problem is that we must either (1) keep the relocs in memory,
4831 which causes the linker to require additional runtime memory or
4832 (2) read the relocs twice from the input file, which wastes time.
4833 This would be a good case for using mmap.
4834
4835 I have no idea how to handle linking PIC code into a file of a
4836 different format. It probably can't be done. */
4837 if (! dynamic
4838 && is_elf_hash_table (htab)
4839 && bed->check_relocs != NULL
4840 && elf_object_id (abfd) == elf_hash_table_id (htab)
4841 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4842 {
4843 asection *o;
4844
4845 for (o = abfd->sections; o != NULL; o = o->next)
4846 {
4847 Elf_Internal_Rela *internal_relocs;
4848 bfd_boolean ok;
4849
4850 if ((o->flags & SEC_RELOC) == 0
4851 || o->reloc_count == 0
4852 || ((info->strip == strip_all || info->strip == strip_debugger)
4853 && (o->flags & SEC_DEBUGGING) != 0)
4854 || bfd_is_abs_section (o->output_section))
4855 continue;
4856
4857 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4858 info->keep_memory);
4859 if (internal_relocs == NULL)
4860 goto error_return;
4861
4862 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4863
4864 if (elf_section_data (o)->relocs != internal_relocs)
4865 free (internal_relocs);
4866
4867 if (! ok)
4868 goto error_return;
4869 }
4870 }
4871
4872 /* If this is a non-traditional link, try to optimize the handling
4873 of the .stab/.stabstr sections. */
4874 if (! dynamic
4875 && ! info->traditional_format
4876 && is_elf_hash_table (htab)
4877 && (info->strip != strip_all && info->strip != strip_debugger))
4878 {
4879 asection *stabstr;
4880
4881 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4882 if (stabstr != NULL)
4883 {
4884 bfd_size_type string_offset = 0;
4885 asection *stab;
4886
4887 for (stab = abfd->sections; stab; stab = stab->next)
4888 if (CONST_STRNEQ (stab->name, ".stab")
4889 && (!stab->name[5] ||
4890 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4891 && (stab->flags & SEC_MERGE) == 0
4892 && !bfd_is_abs_section (stab->output_section))
4893 {
4894 struct bfd_elf_section_data *secdata;
4895
4896 secdata = elf_section_data (stab);
4897 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4898 stabstr, &secdata->sec_info,
4899 &string_offset))
4900 goto error_return;
4901 if (secdata->sec_info)
4902 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4903 }
4904 }
4905 }
4906
4907 if (is_elf_hash_table (htab) && add_needed)
4908 {
4909 /* Add this bfd to the loaded list. */
4910 struct elf_link_loaded_list *n;
4911
4912 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
4913 if (n == NULL)
4914 goto error_return;
4915 n->abfd = abfd;
4916 n->next = htab->loaded;
4917 htab->loaded = n;
4918 }
4919
4920 return TRUE;
4921
4922 error_free_vers:
4923 if (old_tab != NULL)
4924 free (old_tab);
4925 if (nondeflt_vers != NULL)
4926 free (nondeflt_vers);
4927 if (extversym != NULL)
4928 free (extversym);
4929 error_free_sym:
4930 if (isymbuf != NULL)
4931 free (isymbuf);
4932 error_return:
4933 return FALSE;
4934 }
4935
4936 /* Return the linker hash table entry of a symbol that might be
4937 satisfied by an archive symbol. Return -1 on error. */
4938
4939 struct elf_link_hash_entry *
4940 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4941 struct bfd_link_info *info,
4942 const char *name)
4943 {
4944 struct elf_link_hash_entry *h;
4945 char *p, *copy;
4946 size_t len, first;
4947
4948 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4949 if (h != NULL)
4950 return h;
4951
4952 /* If this is a default version (the name contains @@), look up the
4953 symbol again with only one `@' as well as without the version.
4954 The effect is that references to the symbol with and without the
4955 version will be matched by the default symbol in the archive. */
4956
4957 p = strchr (name, ELF_VER_CHR);
4958 if (p == NULL || p[1] != ELF_VER_CHR)
4959 return h;
4960
4961 /* First check with only one `@'. */
4962 len = strlen (name);
4963 copy = (char *) bfd_alloc (abfd, len);
4964 if (copy == NULL)
4965 return (struct elf_link_hash_entry *) 0 - 1;
4966
4967 first = p - name + 1;
4968 memcpy (copy, name, first);
4969 memcpy (copy + first, name + first + 1, len - first);
4970
4971 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4972 if (h == NULL)
4973 {
4974 /* We also need to check references to the symbol without the
4975 version. */
4976 copy[first - 1] = '\0';
4977 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4978 FALSE, FALSE, TRUE);
4979 }
4980
4981 bfd_release (abfd, copy);
4982 return h;
4983 }
4984
4985 /* Add symbols from an ELF archive file to the linker hash table. We
4986 don't use _bfd_generic_link_add_archive_symbols because we need to
4987 handle versioned symbols.
4988
4989 Fortunately, ELF archive handling is simpler than that done by
4990 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4991 oddities. In ELF, if we find a symbol in the archive map, and the
4992 symbol is currently undefined, we know that we must pull in that
4993 object file.
4994
4995 Unfortunately, we do have to make multiple passes over the symbol
4996 table until nothing further is resolved. */
4997
4998 static bfd_boolean
4999 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5000 {
5001 symindex c;
5002 unsigned char *included = NULL;
5003 carsym *symdefs;
5004 bfd_boolean loop;
5005 bfd_size_type amt;
5006 const struct elf_backend_data *bed;
5007 struct elf_link_hash_entry * (*archive_symbol_lookup)
5008 (bfd *, struct bfd_link_info *, const char *);
5009
5010 if (! bfd_has_map (abfd))
5011 {
5012 /* An empty archive is a special case. */
5013 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5014 return TRUE;
5015 bfd_set_error (bfd_error_no_armap);
5016 return FALSE;
5017 }
5018
5019 /* Keep track of all symbols we know to be already defined, and all
5020 files we know to be already included. This is to speed up the
5021 second and subsequent passes. */
5022 c = bfd_ardata (abfd)->symdef_count;
5023 if (c == 0)
5024 return TRUE;
5025 amt = c;
5026 amt *= sizeof (*included);
5027 included = (unsigned char *) bfd_zmalloc (amt);
5028 if (included == NULL)
5029 return FALSE;
5030
5031 symdefs = bfd_ardata (abfd)->symdefs;
5032 bed = get_elf_backend_data (abfd);
5033 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5034
5035 do
5036 {
5037 file_ptr last;
5038 symindex i;
5039 carsym *symdef;
5040 carsym *symdefend;
5041
5042 loop = FALSE;
5043 last = -1;
5044
5045 symdef = symdefs;
5046 symdefend = symdef + c;
5047 for (i = 0; symdef < symdefend; symdef++, i++)
5048 {
5049 struct elf_link_hash_entry *h;
5050 bfd *element;
5051 struct bfd_link_hash_entry *undefs_tail;
5052 symindex mark;
5053
5054 if (included[i])
5055 continue;
5056 if (symdef->file_offset == last)
5057 {
5058 included[i] = TRUE;
5059 continue;
5060 }
5061
5062 h = archive_symbol_lookup (abfd, info, symdef->name);
5063 if (h == (struct elf_link_hash_entry *) 0 - 1)
5064 goto error_return;
5065
5066 if (h == NULL)
5067 continue;
5068
5069 if (h->root.type == bfd_link_hash_common)
5070 {
5071 /* We currently have a common symbol. The archive map contains
5072 a reference to this symbol, so we may want to include it. We
5073 only want to include it however, if this archive element
5074 contains a definition of the symbol, not just another common
5075 declaration of it.
5076
5077 Unfortunately some archivers (including GNU ar) will put
5078 declarations of common symbols into their archive maps, as
5079 well as real definitions, so we cannot just go by the archive
5080 map alone. Instead we must read in the element's symbol
5081 table and check that to see what kind of symbol definition
5082 this is. */
5083 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5084 continue;
5085 }
5086 else if (h->root.type != bfd_link_hash_undefined)
5087 {
5088 if (h->root.type != bfd_link_hash_undefweak)
5089 /* Symbol must be defined. Don't check it again. */
5090 included[i] = TRUE;
5091 continue;
5092 }
5093
5094 /* We need to include this archive member. */
5095 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5096 if (element == NULL)
5097 goto error_return;
5098
5099 if (! bfd_check_format (element, bfd_object))
5100 goto error_return;
5101
5102 undefs_tail = info->hash->undefs_tail;
5103
5104 if (!(*info->callbacks
5105 ->add_archive_element) (info, element, symdef->name, &element))
5106 goto error_return;
5107 if (!bfd_link_add_symbols (element, info))
5108 goto error_return;
5109
5110 /* If there are any new undefined symbols, we need to make
5111 another pass through the archive in order to see whether
5112 they can be defined. FIXME: This isn't perfect, because
5113 common symbols wind up on undefs_tail and because an
5114 undefined symbol which is defined later on in this pass
5115 does not require another pass. This isn't a bug, but it
5116 does make the code less efficient than it could be. */
5117 if (undefs_tail != info->hash->undefs_tail)
5118 loop = TRUE;
5119
5120 /* Look backward to mark all symbols from this object file
5121 which we have already seen in this pass. */
5122 mark = i;
5123 do
5124 {
5125 included[mark] = TRUE;
5126 if (mark == 0)
5127 break;
5128 --mark;
5129 }
5130 while (symdefs[mark].file_offset == symdef->file_offset);
5131
5132 /* We mark subsequent symbols from this object file as we go
5133 on through the loop. */
5134 last = symdef->file_offset;
5135 }
5136 }
5137 while (loop);
5138
5139 free (included);
5140
5141 return TRUE;
5142
5143 error_return:
5144 if (included != NULL)
5145 free (included);
5146 return FALSE;
5147 }
5148
5149 /* Given an ELF BFD, add symbols to the global hash table as
5150 appropriate. */
5151
5152 bfd_boolean
5153 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5154 {
5155 switch (bfd_get_format (abfd))
5156 {
5157 case bfd_object:
5158 return elf_link_add_object_symbols (abfd, info);
5159 case bfd_archive:
5160 return elf_link_add_archive_symbols (abfd, info);
5161 default:
5162 bfd_set_error (bfd_error_wrong_format);
5163 return FALSE;
5164 }
5165 }
5166 \f
5167 struct hash_codes_info
5168 {
5169 unsigned long *hashcodes;
5170 bfd_boolean error;
5171 };
5172
5173 /* This function will be called though elf_link_hash_traverse to store
5174 all hash value of the exported symbols in an array. */
5175
5176 static bfd_boolean
5177 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5178 {
5179 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5180 const char *name;
5181 char *p;
5182 unsigned long ha;
5183 char *alc = NULL;
5184
5185 /* Ignore indirect symbols. These are added by the versioning code. */
5186 if (h->dynindx == -1)
5187 return TRUE;
5188
5189 name = h->root.root.string;
5190 p = strchr (name, ELF_VER_CHR);
5191 if (p != NULL)
5192 {
5193 alc = (char *) bfd_malloc (p - name + 1);
5194 if (alc == NULL)
5195 {
5196 inf->error = TRUE;
5197 return FALSE;
5198 }
5199 memcpy (alc, name, p - name);
5200 alc[p - name] = '\0';
5201 name = alc;
5202 }
5203
5204 /* Compute the hash value. */
5205 ha = bfd_elf_hash (name);
5206
5207 /* Store the found hash value in the array given as the argument. */
5208 *(inf->hashcodes)++ = ha;
5209
5210 /* And store it in the struct so that we can put it in the hash table
5211 later. */
5212 h->u.elf_hash_value = ha;
5213
5214 if (alc != NULL)
5215 free (alc);
5216
5217 return TRUE;
5218 }
5219
5220 struct collect_gnu_hash_codes
5221 {
5222 bfd *output_bfd;
5223 const struct elf_backend_data *bed;
5224 unsigned long int nsyms;
5225 unsigned long int maskbits;
5226 unsigned long int *hashcodes;
5227 unsigned long int *hashval;
5228 unsigned long int *indx;
5229 unsigned long int *counts;
5230 bfd_vma *bitmask;
5231 bfd_byte *contents;
5232 long int min_dynindx;
5233 unsigned long int bucketcount;
5234 unsigned long int symindx;
5235 long int local_indx;
5236 long int shift1, shift2;
5237 unsigned long int mask;
5238 bfd_boolean error;
5239 };
5240
5241 /* This function will be called though elf_link_hash_traverse to store
5242 all hash value of the exported symbols in an array. */
5243
5244 static bfd_boolean
5245 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5246 {
5247 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5248 const char *name;
5249 char *p;
5250 unsigned long ha;
5251 char *alc = NULL;
5252
5253 /* Ignore indirect symbols. These are added by the versioning code. */
5254 if (h->dynindx == -1)
5255 return TRUE;
5256
5257 /* Ignore also local symbols and undefined symbols. */
5258 if (! (*s->bed->elf_hash_symbol) (h))
5259 return TRUE;
5260
5261 name = h->root.root.string;
5262 p = strchr (name, ELF_VER_CHR);
5263 if (p != NULL)
5264 {
5265 alc = (char *) bfd_malloc (p - name + 1);
5266 if (alc == NULL)
5267 {
5268 s->error = TRUE;
5269 return FALSE;
5270 }
5271 memcpy (alc, name, p - name);
5272 alc[p - name] = '\0';
5273 name = alc;
5274 }
5275
5276 /* Compute the hash value. */
5277 ha = bfd_elf_gnu_hash (name);
5278
5279 /* Store the found hash value in the array for compute_bucket_count,
5280 and also for .dynsym reordering purposes. */
5281 s->hashcodes[s->nsyms] = ha;
5282 s->hashval[h->dynindx] = ha;
5283 ++s->nsyms;
5284 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5285 s->min_dynindx = h->dynindx;
5286
5287 if (alc != NULL)
5288 free (alc);
5289
5290 return TRUE;
5291 }
5292
5293 /* This function will be called though elf_link_hash_traverse to do
5294 final dynaminc symbol renumbering. */
5295
5296 static bfd_boolean
5297 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5298 {
5299 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5300 unsigned long int bucket;
5301 unsigned long int val;
5302
5303 /* Ignore indirect symbols. */
5304 if (h->dynindx == -1)
5305 return TRUE;
5306
5307 /* Ignore also local symbols and undefined symbols. */
5308 if (! (*s->bed->elf_hash_symbol) (h))
5309 {
5310 if (h->dynindx >= s->min_dynindx)
5311 h->dynindx = s->local_indx++;
5312 return TRUE;
5313 }
5314
5315 bucket = s->hashval[h->dynindx] % s->bucketcount;
5316 val = (s->hashval[h->dynindx] >> s->shift1)
5317 & ((s->maskbits >> s->shift1) - 1);
5318 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5319 s->bitmask[val]
5320 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5321 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5322 if (s->counts[bucket] == 1)
5323 /* Last element terminates the chain. */
5324 val |= 1;
5325 bfd_put_32 (s->output_bfd, val,
5326 s->contents + (s->indx[bucket] - s->symindx) * 4);
5327 --s->counts[bucket];
5328 h->dynindx = s->indx[bucket]++;
5329 return TRUE;
5330 }
5331
5332 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5333
5334 bfd_boolean
5335 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5336 {
5337 return !(h->forced_local
5338 || h->root.type == bfd_link_hash_undefined
5339 || h->root.type == bfd_link_hash_undefweak
5340 || ((h->root.type == bfd_link_hash_defined
5341 || h->root.type == bfd_link_hash_defweak)
5342 && h->root.u.def.section->output_section == NULL));
5343 }
5344
5345 /* Array used to determine the number of hash table buckets to use
5346 based on the number of symbols there are. If there are fewer than
5347 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5348 fewer than 37 we use 17 buckets, and so forth. We never use more
5349 than 32771 buckets. */
5350
5351 static const size_t elf_buckets[] =
5352 {
5353 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5354 16411, 32771, 0
5355 };
5356
5357 /* Compute bucket count for hashing table. We do not use a static set
5358 of possible tables sizes anymore. Instead we determine for all
5359 possible reasonable sizes of the table the outcome (i.e., the
5360 number of collisions etc) and choose the best solution. The
5361 weighting functions are not too simple to allow the table to grow
5362 without bounds. Instead one of the weighting factors is the size.
5363 Therefore the result is always a good payoff between few collisions
5364 (= short chain lengths) and table size. */
5365 static size_t
5366 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5367 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5368 unsigned long int nsyms,
5369 int gnu_hash)
5370 {
5371 size_t best_size = 0;
5372 unsigned long int i;
5373
5374 /* We have a problem here. The following code to optimize the table
5375 size requires an integer type with more the 32 bits. If
5376 BFD_HOST_U_64_BIT is set we know about such a type. */
5377 #ifdef BFD_HOST_U_64_BIT
5378 if (info->optimize)
5379 {
5380 size_t minsize;
5381 size_t maxsize;
5382 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5383 bfd *dynobj = elf_hash_table (info)->dynobj;
5384 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5385 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5386 unsigned long int *counts;
5387 bfd_size_type amt;
5388 unsigned int no_improvement_count = 0;
5389
5390 /* Possible optimization parameters: if we have NSYMS symbols we say
5391 that the hashing table must at least have NSYMS/4 and at most
5392 2*NSYMS buckets. */
5393 minsize = nsyms / 4;
5394 if (minsize == 0)
5395 minsize = 1;
5396 best_size = maxsize = nsyms * 2;
5397 if (gnu_hash)
5398 {
5399 if (minsize < 2)
5400 minsize = 2;
5401 if ((best_size & 31) == 0)
5402 ++best_size;
5403 }
5404
5405 /* Create array where we count the collisions in. We must use bfd_malloc
5406 since the size could be large. */
5407 amt = maxsize;
5408 amt *= sizeof (unsigned long int);
5409 counts = (unsigned long int *) bfd_malloc (amt);
5410 if (counts == NULL)
5411 return 0;
5412
5413 /* Compute the "optimal" size for the hash table. The criteria is a
5414 minimal chain length. The minor criteria is (of course) the size
5415 of the table. */
5416 for (i = minsize; i < maxsize; ++i)
5417 {
5418 /* Walk through the array of hashcodes and count the collisions. */
5419 BFD_HOST_U_64_BIT max;
5420 unsigned long int j;
5421 unsigned long int fact;
5422
5423 if (gnu_hash && (i & 31) == 0)
5424 continue;
5425
5426 memset (counts, '\0', i * sizeof (unsigned long int));
5427
5428 /* Determine how often each hash bucket is used. */
5429 for (j = 0; j < nsyms; ++j)
5430 ++counts[hashcodes[j] % i];
5431
5432 /* For the weight function we need some information about the
5433 pagesize on the target. This is information need not be 100%
5434 accurate. Since this information is not available (so far) we
5435 define it here to a reasonable default value. If it is crucial
5436 to have a better value some day simply define this value. */
5437 # ifndef BFD_TARGET_PAGESIZE
5438 # define BFD_TARGET_PAGESIZE (4096)
5439 # endif
5440
5441 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5442 and the chains. */
5443 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5444
5445 # if 1
5446 /* Variant 1: optimize for short chains. We add the squares
5447 of all the chain lengths (which favors many small chain
5448 over a few long chains). */
5449 for (j = 0; j < i; ++j)
5450 max += counts[j] * counts[j];
5451
5452 /* This adds penalties for the overall size of the table. */
5453 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5454 max *= fact * fact;
5455 # else
5456 /* Variant 2: Optimize a lot more for small table. Here we
5457 also add squares of the size but we also add penalties for
5458 empty slots (the +1 term). */
5459 for (j = 0; j < i; ++j)
5460 max += (1 + counts[j]) * (1 + counts[j]);
5461
5462 /* The overall size of the table is considered, but not as
5463 strong as in variant 1, where it is squared. */
5464 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5465 max *= fact;
5466 # endif
5467
5468 /* Compare with current best results. */
5469 if (max < best_chlen)
5470 {
5471 best_chlen = max;
5472 best_size = i;
5473 no_improvement_count = 0;
5474 }
5475 /* PR 11843: Avoid futile long searches for the best bucket size
5476 when there are a large number of symbols. */
5477 else if (++no_improvement_count == 100)
5478 break;
5479 }
5480
5481 free (counts);
5482 }
5483 else
5484 #endif /* defined (BFD_HOST_U_64_BIT) */
5485 {
5486 /* This is the fallback solution if no 64bit type is available or if we
5487 are not supposed to spend much time on optimizations. We select the
5488 bucket count using a fixed set of numbers. */
5489 for (i = 0; elf_buckets[i] != 0; i++)
5490 {
5491 best_size = elf_buckets[i];
5492 if (nsyms < elf_buckets[i + 1])
5493 break;
5494 }
5495 if (gnu_hash && best_size < 2)
5496 best_size = 2;
5497 }
5498
5499 return best_size;
5500 }
5501
5502 /* Size any SHT_GROUP section for ld -r. */
5503
5504 bfd_boolean
5505 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5506 {
5507 bfd *ibfd;
5508
5509 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5510 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5511 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5512 return FALSE;
5513 return TRUE;
5514 }
5515
5516 /* Set a default stack segment size. The value in INFO wins. If it
5517 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5518 undefined it is initialized. */
5519
5520 bfd_boolean
5521 bfd_elf_stack_segment_size (bfd *output_bfd,
5522 struct bfd_link_info *info,
5523 const char *legacy_symbol,
5524 bfd_vma default_size)
5525 {
5526 struct elf_link_hash_entry *h = NULL;
5527
5528 /* Look for legacy symbol. */
5529 if (legacy_symbol)
5530 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5531 FALSE, FALSE, FALSE);
5532 if (h && (h->root.type == bfd_link_hash_defined
5533 || h->root.type == bfd_link_hash_defweak)
5534 && h->def_regular
5535 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5536 {
5537 /* The symbol has no type if specified on the command line. */
5538 h->type = STT_OBJECT;
5539 if (info->stacksize)
5540 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5541 output_bfd, legacy_symbol);
5542 else if (h->root.u.def.section != bfd_abs_section_ptr)
5543 (*_bfd_error_handler) (_("%B: %s not absolute"),
5544 output_bfd, legacy_symbol);
5545 else
5546 info->stacksize = h->root.u.def.value;
5547 }
5548
5549 if (!info->stacksize)
5550 /* If the user didn't set a size, or explicitly inhibit the
5551 size, set it now. */
5552 info->stacksize = default_size;
5553
5554 /* Provide the legacy symbol, if it is referenced. */
5555 if (h && (h->root.type == bfd_link_hash_undefined
5556 || h->root.type == bfd_link_hash_undefweak))
5557 {
5558 struct bfd_link_hash_entry *bh = NULL;
5559
5560 if (!(_bfd_generic_link_add_one_symbol
5561 (info, output_bfd, legacy_symbol,
5562 BSF_GLOBAL, bfd_abs_section_ptr,
5563 info->stacksize >= 0 ? info->stacksize : 0,
5564 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5565 return FALSE;
5566
5567 h = (struct elf_link_hash_entry *) bh;
5568 h->def_regular = 1;
5569 h->type = STT_OBJECT;
5570 }
5571
5572 return TRUE;
5573 }
5574
5575 /* Set up the sizes and contents of the ELF dynamic sections. This is
5576 called by the ELF linker emulation before_allocation routine. We
5577 must set the sizes of the sections before the linker sets the
5578 addresses of the various sections. */
5579
5580 bfd_boolean
5581 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5582 const char *soname,
5583 const char *rpath,
5584 const char *filter_shlib,
5585 const char *audit,
5586 const char *depaudit,
5587 const char * const *auxiliary_filters,
5588 struct bfd_link_info *info,
5589 asection **sinterpptr)
5590 {
5591 bfd_size_type soname_indx;
5592 bfd *dynobj;
5593 const struct elf_backend_data *bed;
5594 struct elf_info_failed asvinfo;
5595
5596 *sinterpptr = NULL;
5597
5598 soname_indx = (bfd_size_type) -1;
5599
5600 if (!is_elf_hash_table (info->hash))
5601 return TRUE;
5602
5603 bed = get_elf_backend_data (output_bfd);
5604
5605 /* Any syms created from now on start with -1 in
5606 got.refcount/offset and plt.refcount/offset. */
5607 elf_hash_table (info)->init_got_refcount
5608 = elf_hash_table (info)->init_got_offset;
5609 elf_hash_table (info)->init_plt_refcount
5610 = elf_hash_table (info)->init_plt_offset;
5611
5612 if (info->relocatable
5613 && !_bfd_elf_size_group_sections (info))
5614 return FALSE;
5615
5616 /* The backend may have to create some sections regardless of whether
5617 we're dynamic or not. */
5618 if (bed->elf_backend_always_size_sections
5619 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5620 return FALSE;
5621
5622 /* Determine any GNU_STACK segment requirements, after the backend
5623 has had a chance to set a default segment size. */
5624 if (info->execstack)
5625 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5626 else if (info->noexecstack)
5627 elf_stack_flags (output_bfd) = PF_R | PF_W;
5628 else
5629 {
5630 bfd *inputobj;
5631 asection *notesec = NULL;
5632 int exec = 0;
5633
5634 for (inputobj = info->input_bfds;
5635 inputobj;
5636 inputobj = inputobj->link.next)
5637 {
5638 asection *s;
5639
5640 if (inputobj->flags
5641 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5642 continue;
5643 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5644 if (s)
5645 {
5646 if (s->flags & SEC_CODE)
5647 exec = PF_X;
5648 notesec = s;
5649 }
5650 else if (bed->default_execstack)
5651 exec = PF_X;
5652 }
5653 if (notesec || info->stacksize > 0)
5654 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5655 if (notesec && exec && info->relocatable
5656 && notesec->output_section != bfd_abs_section_ptr)
5657 notesec->output_section->flags |= SEC_CODE;
5658 }
5659
5660 dynobj = elf_hash_table (info)->dynobj;
5661
5662 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5663 {
5664 struct elf_info_failed eif;
5665 struct elf_link_hash_entry *h;
5666 asection *dynstr;
5667 struct bfd_elf_version_tree *t;
5668 struct bfd_elf_version_expr *d;
5669 asection *s;
5670 bfd_boolean all_defined;
5671
5672 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5673 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5674
5675 if (soname != NULL)
5676 {
5677 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5678 soname, TRUE);
5679 if (soname_indx == (bfd_size_type) -1
5680 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5681 return FALSE;
5682 }
5683
5684 if (info->symbolic)
5685 {
5686 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5687 return FALSE;
5688 info->flags |= DF_SYMBOLIC;
5689 }
5690
5691 if (rpath != NULL)
5692 {
5693 bfd_size_type indx;
5694 bfd_vma tag;
5695
5696 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5697 TRUE);
5698 if (indx == (bfd_size_type) -1)
5699 return FALSE;
5700
5701 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5702 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5703 return FALSE;
5704 }
5705
5706 if (filter_shlib != NULL)
5707 {
5708 bfd_size_type indx;
5709
5710 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5711 filter_shlib, TRUE);
5712 if (indx == (bfd_size_type) -1
5713 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5714 return FALSE;
5715 }
5716
5717 if (auxiliary_filters != NULL)
5718 {
5719 const char * const *p;
5720
5721 for (p = auxiliary_filters; *p != NULL; p++)
5722 {
5723 bfd_size_type indx;
5724
5725 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5726 *p, TRUE);
5727 if (indx == (bfd_size_type) -1
5728 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5729 return FALSE;
5730 }
5731 }
5732
5733 if (audit != NULL)
5734 {
5735 bfd_size_type indx;
5736
5737 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5738 TRUE);
5739 if (indx == (bfd_size_type) -1
5740 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5741 return FALSE;
5742 }
5743
5744 if (depaudit != NULL)
5745 {
5746 bfd_size_type indx;
5747
5748 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5749 TRUE);
5750 if (indx == (bfd_size_type) -1
5751 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5752 return FALSE;
5753 }
5754
5755 eif.info = info;
5756 eif.failed = FALSE;
5757
5758 /* If we are supposed to export all symbols into the dynamic symbol
5759 table (this is not the normal case), then do so. */
5760 if (info->export_dynamic
5761 || (info->executable && info->dynamic))
5762 {
5763 elf_link_hash_traverse (elf_hash_table (info),
5764 _bfd_elf_export_symbol,
5765 &eif);
5766 if (eif.failed)
5767 return FALSE;
5768 }
5769
5770 /* Make all global versions with definition. */
5771 for (t = info->version_info; t != NULL; t = t->next)
5772 for (d = t->globals.list; d != NULL; d = d->next)
5773 if (!d->symver && d->literal)
5774 {
5775 const char *verstr, *name;
5776 size_t namelen, verlen, newlen;
5777 char *newname, *p, leading_char;
5778 struct elf_link_hash_entry *newh;
5779
5780 leading_char = bfd_get_symbol_leading_char (output_bfd);
5781 name = d->pattern;
5782 namelen = strlen (name) + (leading_char != '\0');
5783 verstr = t->name;
5784 verlen = strlen (verstr);
5785 newlen = namelen + verlen + 3;
5786
5787 newname = (char *) bfd_malloc (newlen);
5788 if (newname == NULL)
5789 return FALSE;
5790 newname[0] = leading_char;
5791 memcpy (newname + (leading_char != '\0'), name, namelen);
5792
5793 /* Check the hidden versioned definition. */
5794 p = newname + namelen;
5795 *p++ = ELF_VER_CHR;
5796 memcpy (p, verstr, verlen + 1);
5797 newh = elf_link_hash_lookup (elf_hash_table (info),
5798 newname, FALSE, FALSE,
5799 FALSE);
5800 if (newh == NULL
5801 || (newh->root.type != bfd_link_hash_defined
5802 && newh->root.type != bfd_link_hash_defweak))
5803 {
5804 /* Check the default versioned definition. */
5805 *p++ = ELF_VER_CHR;
5806 memcpy (p, verstr, verlen + 1);
5807 newh = elf_link_hash_lookup (elf_hash_table (info),
5808 newname, FALSE, FALSE,
5809 FALSE);
5810 }
5811 free (newname);
5812
5813 /* Mark this version if there is a definition and it is
5814 not defined in a shared object. */
5815 if (newh != NULL
5816 && !newh->def_dynamic
5817 && (newh->root.type == bfd_link_hash_defined
5818 || newh->root.type == bfd_link_hash_defweak))
5819 d->symver = 1;
5820 }
5821
5822 /* Attach all the symbols to their version information. */
5823 asvinfo.info = info;
5824 asvinfo.failed = FALSE;
5825
5826 elf_link_hash_traverse (elf_hash_table (info),
5827 _bfd_elf_link_assign_sym_version,
5828 &asvinfo);
5829 if (asvinfo.failed)
5830 return FALSE;
5831
5832 if (!info->allow_undefined_version)
5833 {
5834 /* Check if all global versions have a definition. */
5835 all_defined = TRUE;
5836 for (t = info->version_info; t != NULL; t = t->next)
5837 for (d = t->globals.list; d != NULL; d = d->next)
5838 if (d->literal && !d->symver && !d->script)
5839 {
5840 (*_bfd_error_handler)
5841 (_("%s: undefined version: %s"),
5842 d->pattern, t->name);
5843 all_defined = FALSE;
5844 }
5845
5846 if (!all_defined)
5847 {
5848 bfd_set_error (bfd_error_bad_value);
5849 return FALSE;
5850 }
5851 }
5852
5853 /* Find all symbols which were defined in a dynamic object and make
5854 the backend pick a reasonable value for them. */
5855 elf_link_hash_traverse (elf_hash_table (info),
5856 _bfd_elf_adjust_dynamic_symbol,
5857 &eif);
5858 if (eif.failed)
5859 return FALSE;
5860
5861 /* Add some entries to the .dynamic section. We fill in some of the
5862 values later, in bfd_elf_final_link, but we must add the entries
5863 now so that we know the final size of the .dynamic section. */
5864
5865 /* If there are initialization and/or finalization functions to
5866 call then add the corresponding DT_INIT/DT_FINI entries. */
5867 h = (info->init_function
5868 ? elf_link_hash_lookup (elf_hash_table (info),
5869 info->init_function, FALSE,
5870 FALSE, FALSE)
5871 : NULL);
5872 if (h != NULL
5873 && (h->ref_regular
5874 || h->def_regular))
5875 {
5876 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5877 return FALSE;
5878 }
5879 h = (info->fini_function
5880 ? elf_link_hash_lookup (elf_hash_table (info),
5881 info->fini_function, FALSE,
5882 FALSE, FALSE)
5883 : NULL);
5884 if (h != NULL
5885 && (h->ref_regular
5886 || h->def_regular))
5887 {
5888 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5889 return FALSE;
5890 }
5891
5892 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5893 if (s != NULL && s->linker_has_input)
5894 {
5895 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5896 if (! info->executable)
5897 {
5898 bfd *sub;
5899 asection *o;
5900
5901 for (sub = info->input_bfds; sub != NULL;
5902 sub = sub->link.next)
5903 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5904 for (o = sub->sections; o != NULL; o = o->next)
5905 if (elf_section_data (o)->this_hdr.sh_type
5906 == SHT_PREINIT_ARRAY)
5907 {
5908 (*_bfd_error_handler)
5909 (_("%B: .preinit_array section is not allowed in DSO"),
5910 sub);
5911 break;
5912 }
5913
5914 bfd_set_error (bfd_error_nonrepresentable_section);
5915 return FALSE;
5916 }
5917
5918 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5919 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5920 return FALSE;
5921 }
5922 s = bfd_get_section_by_name (output_bfd, ".init_array");
5923 if (s != NULL && s->linker_has_input)
5924 {
5925 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5926 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5927 return FALSE;
5928 }
5929 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5930 if (s != NULL && s->linker_has_input)
5931 {
5932 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5933 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5934 return FALSE;
5935 }
5936
5937 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5938 /* If .dynstr is excluded from the link, we don't want any of
5939 these tags. Strictly, we should be checking each section
5940 individually; This quick check covers for the case where
5941 someone does a /DISCARD/ : { *(*) }. */
5942 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5943 {
5944 bfd_size_type strsize;
5945
5946 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5947 if ((info->emit_hash
5948 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5949 || (info->emit_gnu_hash
5950 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5951 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5952 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5953 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5954 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5955 bed->s->sizeof_sym))
5956 return FALSE;
5957 }
5958 }
5959
5960 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5961 return FALSE;
5962
5963 /* The backend must work out the sizes of all the other dynamic
5964 sections. */
5965 if (dynobj != NULL
5966 && bed->elf_backend_size_dynamic_sections != NULL
5967 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5968 return FALSE;
5969
5970 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5971 {
5972 unsigned long section_sym_count;
5973 struct bfd_elf_version_tree *verdefs;
5974 asection *s;
5975
5976 /* Set up the version definition section. */
5977 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
5978 BFD_ASSERT (s != NULL);
5979
5980 /* We may have created additional version definitions if we are
5981 just linking a regular application. */
5982 verdefs = info->version_info;
5983
5984 /* Skip anonymous version tag. */
5985 if (verdefs != NULL && verdefs->vernum == 0)
5986 verdefs = verdefs->next;
5987
5988 if (verdefs == NULL && !info->create_default_symver)
5989 s->flags |= SEC_EXCLUDE;
5990 else
5991 {
5992 unsigned int cdefs;
5993 bfd_size_type size;
5994 struct bfd_elf_version_tree *t;
5995 bfd_byte *p;
5996 Elf_Internal_Verdef def;
5997 Elf_Internal_Verdaux defaux;
5998 struct bfd_link_hash_entry *bh;
5999 struct elf_link_hash_entry *h;
6000 const char *name;
6001
6002 cdefs = 0;
6003 size = 0;
6004
6005 /* Make space for the base version. */
6006 size += sizeof (Elf_External_Verdef);
6007 size += sizeof (Elf_External_Verdaux);
6008 ++cdefs;
6009
6010 /* Make space for the default version. */
6011 if (info->create_default_symver)
6012 {
6013 size += sizeof (Elf_External_Verdef);
6014 ++cdefs;
6015 }
6016
6017 for (t = verdefs; t != NULL; t = t->next)
6018 {
6019 struct bfd_elf_version_deps *n;
6020
6021 /* Don't emit base version twice. */
6022 if (t->vernum == 0)
6023 continue;
6024
6025 size += sizeof (Elf_External_Verdef);
6026 size += sizeof (Elf_External_Verdaux);
6027 ++cdefs;
6028
6029 for (n = t->deps; n != NULL; n = n->next)
6030 size += sizeof (Elf_External_Verdaux);
6031 }
6032
6033 s->size = size;
6034 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6035 if (s->contents == NULL && s->size != 0)
6036 return FALSE;
6037
6038 /* Fill in the version definition section. */
6039
6040 p = s->contents;
6041
6042 def.vd_version = VER_DEF_CURRENT;
6043 def.vd_flags = VER_FLG_BASE;
6044 def.vd_ndx = 1;
6045 def.vd_cnt = 1;
6046 if (info->create_default_symver)
6047 {
6048 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6049 def.vd_next = sizeof (Elf_External_Verdef);
6050 }
6051 else
6052 {
6053 def.vd_aux = sizeof (Elf_External_Verdef);
6054 def.vd_next = (sizeof (Elf_External_Verdef)
6055 + sizeof (Elf_External_Verdaux));
6056 }
6057
6058 if (soname_indx != (bfd_size_type) -1)
6059 {
6060 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6061 soname_indx);
6062 def.vd_hash = bfd_elf_hash (soname);
6063 defaux.vda_name = soname_indx;
6064 name = soname;
6065 }
6066 else
6067 {
6068 bfd_size_type indx;
6069
6070 name = lbasename (output_bfd->filename);
6071 def.vd_hash = bfd_elf_hash (name);
6072 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6073 name, FALSE);
6074 if (indx == (bfd_size_type) -1)
6075 return FALSE;
6076 defaux.vda_name = indx;
6077 }
6078 defaux.vda_next = 0;
6079
6080 _bfd_elf_swap_verdef_out (output_bfd, &def,
6081 (Elf_External_Verdef *) p);
6082 p += sizeof (Elf_External_Verdef);
6083 if (info->create_default_symver)
6084 {
6085 /* Add a symbol representing this version. */
6086 bh = NULL;
6087 if (! (_bfd_generic_link_add_one_symbol
6088 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6089 0, NULL, FALSE,
6090 get_elf_backend_data (dynobj)->collect, &bh)))
6091 return FALSE;
6092 h = (struct elf_link_hash_entry *) bh;
6093 h->non_elf = 0;
6094 h->def_regular = 1;
6095 h->type = STT_OBJECT;
6096 h->verinfo.vertree = NULL;
6097
6098 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6099 return FALSE;
6100
6101 /* Create a duplicate of the base version with the same
6102 aux block, but different flags. */
6103 def.vd_flags = 0;
6104 def.vd_ndx = 2;
6105 def.vd_aux = sizeof (Elf_External_Verdef);
6106 if (verdefs)
6107 def.vd_next = (sizeof (Elf_External_Verdef)
6108 + sizeof (Elf_External_Verdaux));
6109 else
6110 def.vd_next = 0;
6111 _bfd_elf_swap_verdef_out (output_bfd, &def,
6112 (Elf_External_Verdef *) p);
6113 p += sizeof (Elf_External_Verdef);
6114 }
6115 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6116 (Elf_External_Verdaux *) p);
6117 p += sizeof (Elf_External_Verdaux);
6118
6119 for (t = verdefs; t != NULL; t = t->next)
6120 {
6121 unsigned int cdeps;
6122 struct bfd_elf_version_deps *n;
6123
6124 /* Don't emit the base version twice. */
6125 if (t->vernum == 0)
6126 continue;
6127
6128 cdeps = 0;
6129 for (n = t->deps; n != NULL; n = n->next)
6130 ++cdeps;
6131
6132 /* Add a symbol representing this version. */
6133 bh = NULL;
6134 if (! (_bfd_generic_link_add_one_symbol
6135 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6136 0, NULL, FALSE,
6137 get_elf_backend_data (dynobj)->collect, &bh)))
6138 return FALSE;
6139 h = (struct elf_link_hash_entry *) bh;
6140 h->non_elf = 0;
6141 h->def_regular = 1;
6142 h->type = STT_OBJECT;
6143 h->verinfo.vertree = t;
6144
6145 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6146 return FALSE;
6147
6148 def.vd_version = VER_DEF_CURRENT;
6149 def.vd_flags = 0;
6150 if (t->globals.list == NULL
6151 && t->locals.list == NULL
6152 && ! t->used)
6153 def.vd_flags |= VER_FLG_WEAK;
6154 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6155 def.vd_cnt = cdeps + 1;
6156 def.vd_hash = bfd_elf_hash (t->name);
6157 def.vd_aux = sizeof (Elf_External_Verdef);
6158 def.vd_next = 0;
6159
6160 /* If a basever node is next, it *must* be the last node in
6161 the chain, otherwise Verdef construction breaks. */
6162 if (t->next != NULL && t->next->vernum == 0)
6163 BFD_ASSERT (t->next->next == NULL);
6164
6165 if (t->next != NULL && t->next->vernum != 0)
6166 def.vd_next = (sizeof (Elf_External_Verdef)
6167 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6168
6169 _bfd_elf_swap_verdef_out (output_bfd, &def,
6170 (Elf_External_Verdef *) p);
6171 p += sizeof (Elf_External_Verdef);
6172
6173 defaux.vda_name = h->dynstr_index;
6174 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6175 h->dynstr_index);
6176 defaux.vda_next = 0;
6177 if (t->deps != NULL)
6178 defaux.vda_next = sizeof (Elf_External_Verdaux);
6179 t->name_indx = defaux.vda_name;
6180
6181 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6182 (Elf_External_Verdaux *) p);
6183 p += sizeof (Elf_External_Verdaux);
6184
6185 for (n = t->deps; n != NULL; n = n->next)
6186 {
6187 if (n->version_needed == NULL)
6188 {
6189 /* This can happen if there was an error in the
6190 version script. */
6191 defaux.vda_name = 0;
6192 }
6193 else
6194 {
6195 defaux.vda_name = n->version_needed->name_indx;
6196 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6197 defaux.vda_name);
6198 }
6199 if (n->next == NULL)
6200 defaux.vda_next = 0;
6201 else
6202 defaux.vda_next = sizeof (Elf_External_Verdaux);
6203
6204 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6205 (Elf_External_Verdaux *) p);
6206 p += sizeof (Elf_External_Verdaux);
6207 }
6208 }
6209
6210 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6211 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6212 return FALSE;
6213
6214 elf_tdata (output_bfd)->cverdefs = cdefs;
6215 }
6216
6217 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6218 {
6219 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6220 return FALSE;
6221 }
6222 else if (info->flags & DF_BIND_NOW)
6223 {
6224 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6225 return FALSE;
6226 }
6227
6228 if (info->flags_1)
6229 {
6230 if (info->executable)
6231 info->flags_1 &= ~ (DF_1_INITFIRST
6232 | DF_1_NODELETE
6233 | DF_1_NOOPEN);
6234 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6235 return FALSE;
6236 }
6237
6238 /* Work out the size of the version reference section. */
6239
6240 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6241 BFD_ASSERT (s != NULL);
6242 {
6243 struct elf_find_verdep_info sinfo;
6244
6245 sinfo.info = info;
6246 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6247 if (sinfo.vers == 0)
6248 sinfo.vers = 1;
6249 sinfo.failed = FALSE;
6250
6251 elf_link_hash_traverse (elf_hash_table (info),
6252 _bfd_elf_link_find_version_dependencies,
6253 &sinfo);
6254 if (sinfo.failed)
6255 return FALSE;
6256
6257 if (elf_tdata (output_bfd)->verref == NULL)
6258 s->flags |= SEC_EXCLUDE;
6259 else
6260 {
6261 Elf_Internal_Verneed *t;
6262 unsigned int size;
6263 unsigned int crefs;
6264 bfd_byte *p;
6265
6266 /* Build the version dependency section. */
6267 size = 0;
6268 crefs = 0;
6269 for (t = elf_tdata (output_bfd)->verref;
6270 t != NULL;
6271 t = t->vn_nextref)
6272 {
6273 Elf_Internal_Vernaux *a;
6274
6275 size += sizeof (Elf_External_Verneed);
6276 ++crefs;
6277 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6278 size += sizeof (Elf_External_Vernaux);
6279 }
6280
6281 s->size = size;
6282 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6283 if (s->contents == NULL)
6284 return FALSE;
6285
6286 p = s->contents;
6287 for (t = elf_tdata (output_bfd)->verref;
6288 t != NULL;
6289 t = t->vn_nextref)
6290 {
6291 unsigned int caux;
6292 Elf_Internal_Vernaux *a;
6293 bfd_size_type indx;
6294
6295 caux = 0;
6296 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6297 ++caux;
6298
6299 t->vn_version = VER_NEED_CURRENT;
6300 t->vn_cnt = caux;
6301 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6302 elf_dt_name (t->vn_bfd) != NULL
6303 ? elf_dt_name (t->vn_bfd)
6304 : lbasename (t->vn_bfd->filename),
6305 FALSE);
6306 if (indx == (bfd_size_type) -1)
6307 return FALSE;
6308 t->vn_file = indx;
6309 t->vn_aux = sizeof (Elf_External_Verneed);
6310 if (t->vn_nextref == NULL)
6311 t->vn_next = 0;
6312 else
6313 t->vn_next = (sizeof (Elf_External_Verneed)
6314 + caux * sizeof (Elf_External_Vernaux));
6315
6316 _bfd_elf_swap_verneed_out (output_bfd, t,
6317 (Elf_External_Verneed *) p);
6318 p += sizeof (Elf_External_Verneed);
6319
6320 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6321 {
6322 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6323 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6324 a->vna_nodename, FALSE);
6325 if (indx == (bfd_size_type) -1)
6326 return FALSE;
6327 a->vna_name = indx;
6328 if (a->vna_nextptr == NULL)
6329 a->vna_next = 0;
6330 else
6331 a->vna_next = sizeof (Elf_External_Vernaux);
6332
6333 _bfd_elf_swap_vernaux_out (output_bfd, a,
6334 (Elf_External_Vernaux *) p);
6335 p += sizeof (Elf_External_Vernaux);
6336 }
6337 }
6338
6339 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6340 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6341 return FALSE;
6342
6343 elf_tdata (output_bfd)->cverrefs = crefs;
6344 }
6345 }
6346
6347 if ((elf_tdata (output_bfd)->cverrefs == 0
6348 && elf_tdata (output_bfd)->cverdefs == 0)
6349 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6350 &section_sym_count) == 0)
6351 {
6352 s = bfd_get_linker_section (dynobj, ".gnu.version");
6353 s->flags |= SEC_EXCLUDE;
6354 }
6355 }
6356 return TRUE;
6357 }
6358
6359 /* Find the first non-excluded output section. We'll use its
6360 section symbol for some emitted relocs. */
6361 void
6362 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6363 {
6364 asection *s;
6365
6366 for (s = output_bfd->sections; s != NULL; s = s->next)
6367 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6368 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6369 {
6370 elf_hash_table (info)->text_index_section = s;
6371 break;
6372 }
6373 }
6374
6375 /* Find two non-excluded output sections, one for code, one for data.
6376 We'll use their section symbols for some emitted relocs. */
6377 void
6378 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6379 {
6380 asection *s;
6381
6382 /* Data first, since setting text_index_section changes
6383 _bfd_elf_link_omit_section_dynsym. */
6384 for (s = output_bfd->sections; s != NULL; s = s->next)
6385 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6386 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6387 {
6388 elf_hash_table (info)->data_index_section = s;
6389 break;
6390 }
6391
6392 for (s = output_bfd->sections; s != NULL; s = s->next)
6393 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6394 == (SEC_ALLOC | SEC_READONLY))
6395 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6396 {
6397 elf_hash_table (info)->text_index_section = s;
6398 break;
6399 }
6400
6401 if (elf_hash_table (info)->text_index_section == NULL)
6402 elf_hash_table (info)->text_index_section
6403 = elf_hash_table (info)->data_index_section;
6404 }
6405
6406 bfd_boolean
6407 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6408 {
6409 const struct elf_backend_data *bed;
6410
6411 if (!is_elf_hash_table (info->hash))
6412 return TRUE;
6413
6414 bed = get_elf_backend_data (output_bfd);
6415 (*bed->elf_backend_init_index_section) (output_bfd, info);
6416
6417 if (elf_hash_table (info)->dynamic_sections_created)
6418 {
6419 bfd *dynobj;
6420 asection *s;
6421 bfd_size_type dynsymcount;
6422 unsigned long section_sym_count;
6423 unsigned int dtagcount;
6424
6425 dynobj = elf_hash_table (info)->dynobj;
6426
6427 /* Assign dynsym indicies. In a shared library we generate a
6428 section symbol for each output section, which come first.
6429 Next come all of the back-end allocated local dynamic syms,
6430 followed by the rest of the global symbols. */
6431
6432 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6433 &section_sym_count);
6434
6435 /* Work out the size of the symbol version section. */
6436 s = bfd_get_linker_section (dynobj, ".gnu.version");
6437 BFD_ASSERT (s != NULL);
6438 if (dynsymcount != 0
6439 && (s->flags & SEC_EXCLUDE) == 0)
6440 {
6441 s->size = dynsymcount * sizeof (Elf_External_Versym);
6442 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6443 if (s->contents == NULL)
6444 return FALSE;
6445
6446 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6447 return FALSE;
6448 }
6449
6450 /* Set the size of the .dynsym and .hash sections. We counted
6451 the number of dynamic symbols in elf_link_add_object_symbols.
6452 We will build the contents of .dynsym and .hash when we build
6453 the final symbol table, because until then we do not know the
6454 correct value to give the symbols. We built the .dynstr
6455 section as we went along in elf_link_add_object_symbols. */
6456 s = bfd_get_linker_section (dynobj, ".dynsym");
6457 BFD_ASSERT (s != NULL);
6458 s->size = dynsymcount * bed->s->sizeof_sym;
6459
6460 if (dynsymcount != 0)
6461 {
6462 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6463 if (s->contents == NULL)
6464 return FALSE;
6465
6466 /* The first entry in .dynsym is a dummy symbol.
6467 Clear all the section syms, in case we don't output them all. */
6468 ++section_sym_count;
6469 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6470 }
6471
6472 elf_hash_table (info)->bucketcount = 0;
6473
6474 /* Compute the size of the hashing table. As a side effect this
6475 computes the hash values for all the names we export. */
6476 if (info->emit_hash)
6477 {
6478 unsigned long int *hashcodes;
6479 struct hash_codes_info hashinf;
6480 bfd_size_type amt;
6481 unsigned long int nsyms;
6482 size_t bucketcount;
6483 size_t hash_entry_size;
6484
6485 /* Compute the hash values for all exported symbols. At the same
6486 time store the values in an array so that we could use them for
6487 optimizations. */
6488 amt = dynsymcount * sizeof (unsigned long int);
6489 hashcodes = (unsigned long int *) bfd_malloc (amt);
6490 if (hashcodes == NULL)
6491 return FALSE;
6492 hashinf.hashcodes = hashcodes;
6493 hashinf.error = FALSE;
6494
6495 /* Put all hash values in HASHCODES. */
6496 elf_link_hash_traverse (elf_hash_table (info),
6497 elf_collect_hash_codes, &hashinf);
6498 if (hashinf.error)
6499 {
6500 free (hashcodes);
6501 return FALSE;
6502 }
6503
6504 nsyms = hashinf.hashcodes - hashcodes;
6505 bucketcount
6506 = compute_bucket_count (info, hashcodes, nsyms, 0);
6507 free (hashcodes);
6508
6509 if (bucketcount == 0)
6510 return FALSE;
6511
6512 elf_hash_table (info)->bucketcount = bucketcount;
6513
6514 s = bfd_get_linker_section (dynobj, ".hash");
6515 BFD_ASSERT (s != NULL);
6516 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6517 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6518 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6519 if (s->contents == NULL)
6520 return FALSE;
6521
6522 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6523 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6524 s->contents + hash_entry_size);
6525 }
6526
6527 if (info->emit_gnu_hash)
6528 {
6529 size_t i, cnt;
6530 unsigned char *contents;
6531 struct collect_gnu_hash_codes cinfo;
6532 bfd_size_type amt;
6533 size_t bucketcount;
6534
6535 memset (&cinfo, 0, sizeof (cinfo));
6536
6537 /* Compute the hash values for all exported symbols. At the same
6538 time store the values in an array so that we could use them for
6539 optimizations. */
6540 amt = dynsymcount * 2 * sizeof (unsigned long int);
6541 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6542 if (cinfo.hashcodes == NULL)
6543 return FALSE;
6544
6545 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6546 cinfo.min_dynindx = -1;
6547 cinfo.output_bfd = output_bfd;
6548 cinfo.bed = bed;
6549
6550 /* Put all hash values in HASHCODES. */
6551 elf_link_hash_traverse (elf_hash_table (info),
6552 elf_collect_gnu_hash_codes, &cinfo);
6553 if (cinfo.error)
6554 {
6555 free (cinfo.hashcodes);
6556 return FALSE;
6557 }
6558
6559 bucketcount
6560 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6561
6562 if (bucketcount == 0)
6563 {
6564 free (cinfo.hashcodes);
6565 return FALSE;
6566 }
6567
6568 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6569 BFD_ASSERT (s != NULL);
6570
6571 if (cinfo.nsyms == 0)
6572 {
6573 /* Empty .gnu.hash section is special. */
6574 BFD_ASSERT (cinfo.min_dynindx == -1);
6575 free (cinfo.hashcodes);
6576 s->size = 5 * 4 + bed->s->arch_size / 8;
6577 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6578 if (contents == NULL)
6579 return FALSE;
6580 s->contents = contents;
6581 /* 1 empty bucket. */
6582 bfd_put_32 (output_bfd, 1, contents);
6583 /* SYMIDX above the special symbol 0. */
6584 bfd_put_32 (output_bfd, 1, contents + 4);
6585 /* Just one word for bitmask. */
6586 bfd_put_32 (output_bfd, 1, contents + 8);
6587 /* Only hash fn bloom filter. */
6588 bfd_put_32 (output_bfd, 0, contents + 12);
6589 /* No hashes are valid - empty bitmask. */
6590 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6591 /* No hashes in the only bucket. */
6592 bfd_put_32 (output_bfd, 0,
6593 contents + 16 + bed->s->arch_size / 8);
6594 }
6595 else
6596 {
6597 unsigned long int maskwords, maskbitslog2, x;
6598 BFD_ASSERT (cinfo.min_dynindx != -1);
6599
6600 x = cinfo.nsyms;
6601 maskbitslog2 = 1;
6602 while ((x >>= 1) != 0)
6603 ++maskbitslog2;
6604 if (maskbitslog2 < 3)
6605 maskbitslog2 = 5;
6606 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6607 maskbitslog2 = maskbitslog2 + 3;
6608 else
6609 maskbitslog2 = maskbitslog2 + 2;
6610 if (bed->s->arch_size == 64)
6611 {
6612 if (maskbitslog2 == 5)
6613 maskbitslog2 = 6;
6614 cinfo.shift1 = 6;
6615 }
6616 else
6617 cinfo.shift1 = 5;
6618 cinfo.mask = (1 << cinfo.shift1) - 1;
6619 cinfo.shift2 = maskbitslog2;
6620 cinfo.maskbits = 1 << maskbitslog2;
6621 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6622 amt = bucketcount * sizeof (unsigned long int) * 2;
6623 amt += maskwords * sizeof (bfd_vma);
6624 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6625 if (cinfo.bitmask == NULL)
6626 {
6627 free (cinfo.hashcodes);
6628 return FALSE;
6629 }
6630
6631 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6632 cinfo.indx = cinfo.counts + bucketcount;
6633 cinfo.symindx = dynsymcount - cinfo.nsyms;
6634 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6635
6636 /* Determine how often each hash bucket is used. */
6637 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6638 for (i = 0; i < cinfo.nsyms; ++i)
6639 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6640
6641 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6642 if (cinfo.counts[i] != 0)
6643 {
6644 cinfo.indx[i] = cnt;
6645 cnt += cinfo.counts[i];
6646 }
6647 BFD_ASSERT (cnt == dynsymcount);
6648 cinfo.bucketcount = bucketcount;
6649 cinfo.local_indx = cinfo.min_dynindx;
6650
6651 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6652 s->size += cinfo.maskbits / 8;
6653 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6654 if (contents == NULL)
6655 {
6656 free (cinfo.bitmask);
6657 free (cinfo.hashcodes);
6658 return FALSE;
6659 }
6660
6661 s->contents = contents;
6662 bfd_put_32 (output_bfd, bucketcount, contents);
6663 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6664 bfd_put_32 (output_bfd, maskwords, contents + 8);
6665 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6666 contents += 16 + cinfo.maskbits / 8;
6667
6668 for (i = 0; i < bucketcount; ++i)
6669 {
6670 if (cinfo.counts[i] == 0)
6671 bfd_put_32 (output_bfd, 0, contents);
6672 else
6673 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6674 contents += 4;
6675 }
6676
6677 cinfo.contents = contents;
6678
6679 /* Renumber dynamic symbols, populate .gnu.hash section. */
6680 elf_link_hash_traverse (elf_hash_table (info),
6681 elf_renumber_gnu_hash_syms, &cinfo);
6682
6683 contents = s->contents + 16;
6684 for (i = 0; i < maskwords; ++i)
6685 {
6686 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6687 contents);
6688 contents += bed->s->arch_size / 8;
6689 }
6690
6691 free (cinfo.bitmask);
6692 free (cinfo.hashcodes);
6693 }
6694 }
6695
6696 s = bfd_get_linker_section (dynobj, ".dynstr");
6697 BFD_ASSERT (s != NULL);
6698
6699 elf_finalize_dynstr (output_bfd, info);
6700
6701 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6702
6703 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6704 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6705 return FALSE;
6706 }
6707
6708 return TRUE;
6709 }
6710 \f
6711 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6712
6713 static void
6714 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6715 asection *sec)
6716 {
6717 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6718 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6719 }
6720
6721 /* Finish SHF_MERGE section merging. */
6722
6723 bfd_boolean
6724 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6725 {
6726 bfd *ibfd;
6727 asection *sec;
6728
6729 if (!is_elf_hash_table (info->hash))
6730 return FALSE;
6731
6732 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6733 if ((ibfd->flags & DYNAMIC) == 0)
6734 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6735 if ((sec->flags & SEC_MERGE) != 0
6736 && !bfd_is_abs_section (sec->output_section))
6737 {
6738 struct bfd_elf_section_data *secdata;
6739
6740 secdata = elf_section_data (sec);
6741 if (! _bfd_add_merge_section (abfd,
6742 &elf_hash_table (info)->merge_info,
6743 sec, &secdata->sec_info))
6744 return FALSE;
6745 else if (secdata->sec_info)
6746 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6747 }
6748
6749 if (elf_hash_table (info)->merge_info != NULL)
6750 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6751 merge_sections_remove_hook);
6752 return TRUE;
6753 }
6754
6755 /* Create an entry in an ELF linker hash table. */
6756
6757 struct bfd_hash_entry *
6758 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6759 struct bfd_hash_table *table,
6760 const char *string)
6761 {
6762 /* Allocate the structure if it has not already been allocated by a
6763 subclass. */
6764 if (entry == NULL)
6765 {
6766 entry = (struct bfd_hash_entry *)
6767 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6768 if (entry == NULL)
6769 return entry;
6770 }
6771
6772 /* Call the allocation method of the superclass. */
6773 entry = _bfd_link_hash_newfunc (entry, table, string);
6774 if (entry != NULL)
6775 {
6776 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6777 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6778
6779 /* Set local fields. */
6780 ret->indx = -1;
6781 ret->dynindx = -1;
6782 ret->got = htab->init_got_refcount;
6783 ret->plt = htab->init_plt_refcount;
6784 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6785 - offsetof (struct elf_link_hash_entry, size)));
6786 /* Assume that we have been called by a non-ELF symbol reader.
6787 This flag is then reset by the code which reads an ELF input
6788 file. This ensures that a symbol created by a non-ELF symbol
6789 reader will have the flag set correctly. */
6790 ret->non_elf = 1;
6791 }
6792
6793 return entry;
6794 }
6795
6796 /* Copy data from an indirect symbol to its direct symbol, hiding the
6797 old indirect symbol. Also used for copying flags to a weakdef. */
6798
6799 void
6800 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6801 struct elf_link_hash_entry *dir,
6802 struct elf_link_hash_entry *ind)
6803 {
6804 struct elf_link_hash_table *htab;
6805
6806 /* Copy down any references that we may have already seen to the
6807 symbol which just became indirect. */
6808
6809 dir->ref_dynamic |= ind->ref_dynamic;
6810 dir->ref_regular |= ind->ref_regular;
6811 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6812 dir->non_got_ref |= ind->non_got_ref;
6813 dir->needs_plt |= ind->needs_plt;
6814 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6815
6816 if (ind->root.type != bfd_link_hash_indirect)
6817 return;
6818
6819 /* Copy over the global and procedure linkage table refcount entries.
6820 These may have been already set up by a check_relocs routine. */
6821 htab = elf_hash_table (info);
6822 if (ind->got.refcount > htab->init_got_refcount.refcount)
6823 {
6824 if (dir->got.refcount < 0)
6825 dir->got.refcount = 0;
6826 dir->got.refcount += ind->got.refcount;
6827 ind->got.refcount = htab->init_got_refcount.refcount;
6828 }
6829
6830 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6831 {
6832 if (dir->plt.refcount < 0)
6833 dir->plt.refcount = 0;
6834 dir->plt.refcount += ind->plt.refcount;
6835 ind->plt.refcount = htab->init_plt_refcount.refcount;
6836 }
6837
6838 if (ind->dynindx != -1)
6839 {
6840 if (dir->dynindx != -1)
6841 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6842 dir->dynindx = ind->dynindx;
6843 dir->dynstr_index = ind->dynstr_index;
6844 ind->dynindx = -1;
6845 ind->dynstr_index = 0;
6846 }
6847 }
6848
6849 void
6850 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6851 struct elf_link_hash_entry *h,
6852 bfd_boolean force_local)
6853 {
6854 /* STT_GNU_IFUNC symbol must go through PLT. */
6855 if (h->type != STT_GNU_IFUNC)
6856 {
6857 h->plt = elf_hash_table (info)->init_plt_offset;
6858 h->needs_plt = 0;
6859 }
6860 if (force_local)
6861 {
6862 h->forced_local = 1;
6863 if (h->dynindx != -1)
6864 {
6865 h->dynindx = -1;
6866 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6867 h->dynstr_index);
6868 }
6869 }
6870 }
6871
6872 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6873 caller. */
6874
6875 bfd_boolean
6876 _bfd_elf_link_hash_table_init
6877 (struct elf_link_hash_table *table,
6878 bfd *abfd,
6879 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6880 struct bfd_hash_table *,
6881 const char *),
6882 unsigned int entsize,
6883 enum elf_target_id target_id)
6884 {
6885 bfd_boolean ret;
6886 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6887
6888 table->init_got_refcount.refcount = can_refcount - 1;
6889 table->init_plt_refcount.refcount = can_refcount - 1;
6890 table->init_got_offset.offset = -(bfd_vma) 1;
6891 table->init_plt_offset.offset = -(bfd_vma) 1;
6892 /* The first dynamic symbol is a dummy. */
6893 table->dynsymcount = 1;
6894
6895 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6896
6897 table->root.type = bfd_link_elf_hash_table;
6898 table->hash_table_id = target_id;
6899
6900 return ret;
6901 }
6902
6903 /* Create an ELF linker hash table. */
6904
6905 struct bfd_link_hash_table *
6906 _bfd_elf_link_hash_table_create (bfd *abfd)
6907 {
6908 struct elf_link_hash_table *ret;
6909 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6910
6911 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
6912 if (ret == NULL)
6913 return NULL;
6914
6915 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6916 sizeof (struct elf_link_hash_entry),
6917 GENERIC_ELF_DATA))
6918 {
6919 free (ret);
6920 return NULL;
6921 }
6922 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
6923
6924 return &ret->root;
6925 }
6926
6927 /* Destroy an ELF linker hash table. */
6928
6929 void
6930 _bfd_elf_link_hash_table_free (bfd *obfd)
6931 {
6932 struct elf_link_hash_table *htab;
6933
6934 htab = (struct elf_link_hash_table *) obfd->link.hash;
6935 if (htab->dynstr != NULL)
6936 _bfd_elf_strtab_free (htab->dynstr);
6937 _bfd_merge_sections_free (htab->merge_info);
6938 _bfd_generic_link_hash_table_free (obfd);
6939 }
6940
6941 /* This is a hook for the ELF emulation code in the generic linker to
6942 tell the backend linker what file name to use for the DT_NEEDED
6943 entry for a dynamic object. */
6944
6945 void
6946 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6947 {
6948 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6949 && bfd_get_format (abfd) == bfd_object)
6950 elf_dt_name (abfd) = name;
6951 }
6952
6953 int
6954 bfd_elf_get_dyn_lib_class (bfd *abfd)
6955 {
6956 int lib_class;
6957 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6958 && bfd_get_format (abfd) == bfd_object)
6959 lib_class = elf_dyn_lib_class (abfd);
6960 else
6961 lib_class = 0;
6962 return lib_class;
6963 }
6964
6965 void
6966 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6967 {
6968 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6969 && bfd_get_format (abfd) == bfd_object)
6970 elf_dyn_lib_class (abfd) = lib_class;
6971 }
6972
6973 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6974 the linker ELF emulation code. */
6975
6976 struct bfd_link_needed_list *
6977 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6978 struct bfd_link_info *info)
6979 {
6980 if (! is_elf_hash_table (info->hash))
6981 return NULL;
6982 return elf_hash_table (info)->needed;
6983 }
6984
6985 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6986 hook for the linker ELF emulation code. */
6987
6988 struct bfd_link_needed_list *
6989 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6990 struct bfd_link_info *info)
6991 {
6992 if (! is_elf_hash_table (info->hash))
6993 return NULL;
6994 return elf_hash_table (info)->runpath;
6995 }
6996
6997 /* Get the name actually used for a dynamic object for a link. This
6998 is the SONAME entry if there is one. Otherwise, it is the string
6999 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7000
7001 const char *
7002 bfd_elf_get_dt_soname (bfd *abfd)
7003 {
7004 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7005 && bfd_get_format (abfd) == bfd_object)
7006 return elf_dt_name (abfd);
7007 return NULL;
7008 }
7009
7010 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7011 the ELF linker emulation code. */
7012
7013 bfd_boolean
7014 bfd_elf_get_bfd_needed_list (bfd *abfd,
7015 struct bfd_link_needed_list **pneeded)
7016 {
7017 asection *s;
7018 bfd_byte *dynbuf = NULL;
7019 unsigned int elfsec;
7020 unsigned long shlink;
7021 bfd_byte *extdyn, *extdynend;
7022 size_t extdynsize;
7023 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7024
7025 *pneeded = NULL;
7026
7027 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7028 || bfd_get_format (abfd) != bfd_object)
7029 return TRUE;
7030
7031 s = bfd_get_section_by_name (abfd, ".dynamic");
7032 if (s == NULL || s->size == 0)
7033 return TRUE;
7034
7035 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7036 goto error_return;
7037
7038 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7039 if (elfsec == SHN_BAD)
7040 goto error_return;
7041
7042 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7043
7044 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7045 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7046
7047 extdyn = dynbuf;
7048 extdynend = extdyn + s->size;
7049 for (; extdyn < extdynend; extdyn += extdynsize)
7050 {
7051 Elf_Internal_Dyn dyn;
7052
7053 (*swap_dyn_in) (abfd, extdyn, &dyn);
7054
7055 if (dyn.d_tag == DT_NULL)
7056 break;
7057
7058 if (dyn.d_tag == DT_NEEDED)
7059 {
7060 const char *string;
7061 struct bfd_link_needed_list *l;
7062 unsigned int tagv = dyn.d_un.d_val;
7063 bfd_size_type amt;
7064
7065 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7066 if (string == NULL)
7067 goto error_return;
7068
7069 amt = sizeof *l;
7070 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7071 if (l == NULL)
7072 goto error_return;
7073
7074 l->by = abfd;
7075 l->name = string;
7076 l->next = *pneeded;
7077 *pneeded = l;
7078 }
7079 }
7080
7081 free (dynbuf);
7082
7083 return TRUE;
7084
7085 error_return:
7086 if (dynbuf != NULL)
7087 free (dynbuf);
7088 return FALSE;
7089 }
7090
7091 struct elf_symbuf_symbol
7092 {
7093 unsigned long st_name; /* Symbol name, index in string tbl */
7094 unsigned char st_info; /* Type and binding attributes */
7095 unsigned char st_other; /* Visibilty, and target specific */
7096 };
7097
7098 struct elf_symbuf_head
7099 {
7100 struct elf_symbuf_symbol *ssym;
7101 bfd_size_type count;
7102 unsigned int st_shndx;
7103 };
7104
7105 struct elf_symbol
7106 {
7107 union
7108 {
7109 Elf_Internal_Sym *isym;
7110 struct elf_symbuf_symbol *ssym;
7111 } u;
7112 const char *name;
7113 };
7114
7115 /* Sort references to symbols by ascending section number. */
7116
7117 static int
7118 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7119 {
7120 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7121 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7122
7123 return s1->st_shndx - s2->st_shndx;
7124 }
7125
7126 static int
7127 elf_sym_name_compare (const void *arg1, const void *arg2)
7128 {
7129 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7130 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7131 return strcmp (s1->name, s2->name);
7132 }
7133
7134 static struct elf_symbuf_head *
7135 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7136 {
7137 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7138 struct elf_symbuf_symbol *ssym;
7139 struct elf_symbuf_head *ssymbuf, *ssymhead;
7140 bfd_size_type i, shndx_count, total_size;
7141
7142 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7143 if (indbuf == NULL)
7144 return NULL;
7145
7146 for (ind = indbuf, i = 0; i < symcount; i++)
7147 if (isymbuf[i].st_shndx != SHN_UNDEF)
7148 *ind++ = &isymbuf[i];
7149 indbufend = ind;
7150
7151 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7152 elf_sort_elf_symbol);
7153
7154 shndx_count = 0;
7155 if (indbufend > indbuf)
7156 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7157 if (ind[0]->st_shndx != ind[1]->st_shndx)
7158 shndx_count++;
7159
7160 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7161 + (indbufend - indbuf) * sizeof (*ssym));
7162 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7163 if (ssymbuf == NULL)
7164 {
7165 free (indbuf);
7166 return NULL;
7167 }
7168
7169 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7170 ssymbuf->ssym = NULL;
7171 ssymbuf->count = shndx_count;
7172 ssymbuf->st_shndx = 0;
7173 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7174 {
7175 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7176 {
7177 ssymhead++;
7178 ssymhead->ssym = ssym;
7179 ssymhead->count = 0;
7180 ssymhead->st_shndx = (*ind)->st_shndx;
7181 }
7182 ssym->st_name = (*ind)->st_name;
7183 ssym->st_info = (*ind)->st_info;
7184 ssym->st_other = (*ind)->st_other;
7185 ssymhead->count++;
7186 }
7187 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7188 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7189 == total_size));
7190
7191 free (indbuf);
7192 return ssymbuf;
7193 }
7194
7195 /* Check if 2 sections define the same set of local and global
7196 symbols. */
7197
7198 static bfd_boolean
7199 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7200 struct bfd_link_info *info)
7201 {
7202 bfd *bfd1, *bfd2;
7203 const struct elf_backend_data *bed1, *bed2;
7204 Elf_Internal_Shdr *hdr1, *hdr2;
7205 bfd_size_type symcount1, symcount2;
7206 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7207 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7208 Elf_Internal_Sym *isym, *isymend;
7209 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7210 bfd_size_type count1, count2, i;
7211 unsigned int shndx1, shndx2;
7212 bfd_boolean result;
7213
7214 bfd1 = sec1->owner;
7215 bfd2 = sec2->owner;
7216
7217 /* Both sections have to be in ELF. */
7218 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7219 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7220 return FALSE;
7221
7222 if (elf_section_type (sec1) != elf_section_type (sec2))
7223 return FALSE;
7224
7225 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7226 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7227 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7228 return FALSE;
7229
7230 bed1 = get_elf_backend_data (bfd1);
7231 bed2 = get_elf_backend_data (bfd2);
7232 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7233 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7234 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7235 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7236
7237 if (symcount1 == 0 || symcount2 == 0)
7238 return FALSE;
7239
7240 result = FALSE;
7241 isymbuf1 = NULL;
7242 isymbuf2 = NULL;
7243 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7244 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7245
7246 if (ssymbuf1 == NULL)
7247 {
7248 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7249 NULL, NULL, NULL);
7250 if (isymbuf1 == NULL)
7251 goto done;
7252
7253 if (!info->reduce_memory_overheads)
7254 elf_tdata (bfd1)->symbuf = ssymbuf1
7255 = elf_create_symbuf (symcount1, isymbuf1);
7256 }
7257
7258 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7259 {
7260 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7261 NULL, NULL, NULL);
7262 if (isymbuf2 == NULL)
7263 goto done;
7264
7265 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7266 elf_tdata (bfd2)->symbuf = ssymbuf2
7267 = elf_create_symbuf (symcount2, isymbuf2);
7268 }
7269
7270 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7271 {
7272 /* Optimized faster version. */
7273 bfd_size_type lo, hi, mid;
7274 struct elf_symbol *symp;
7275 struct elf_symbuf_symbol *ssym, *ssymend;
7276
7277 lo = 0;
7278 hi = ssymbuf1->count;
7279 ssymbuf1++;
7280 count1 = 0;
7281 while (lo < hi)
7282 {
7283 mid = (lo + hi) / 2;
7284 if (shndx1 < ssymbuf1[mid].st_shndx)
7285 hi = mid;
7286 else if (shndx1 > ssymbuf1[mid].st_shndx)
7287 lo = mid + 1;
7288 else
7289 {
7290 count1 = ssymbuf1[mid].count;
7291 ssymbuf1 += mid;
7292 break;
7293 }
7294 }
7295
7296 lo = 0;
7297 hi = ssymbuf2->count;
7298 ssymbuf2++;
7299 count2 = 0;
7300 while (lo < hi)
7301 {
7302 mid = (lo + hi) / 2;
7303 if (shndx2 < ssymbuf2[mid].st_shndx)
7304 hi = mid;
7305 else if (shndx2 > ssymbuf2[mid].st_shndx)
7306 lo = mid + 1;
7307 else
7308 {
7309 count2 = ssymbuf2[mid].count;
7310 ssymbuf2 += mid;
7311 break;
7312 }
7313 }
7314
7315 if (count1 == 0 || count2 == 0 || count1 != count2)
7316 goto done;
7317
7318 symtable1
7319 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7320 symtable2
7321 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7322 if (symtable1 == NULL || symtable2 == NULL)
7323 goto done;
7324
7325 symp = symtable1;
7326 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7327 ssym < ssymend; ssym++, symp++)
7328 {
7329 symp->u.ssym = ssym;
7330 symp->name = bfd_elf_string_from_elf_section (bfd1,
7331 hdr1->sh_link,
7332 ssym->st_name);
7333 }
7334
7335 symp = symtable2;
7336 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7337 ssym < ssymend; ssym++, symp++)
7338 {
7339 symp->u.ssym = ssym;
7340 symp->name = bfd_elf_string_from_elf_section (bfd2,
7341 hdr2->sh_link,
7342 ssym->st_name);
7343 }
7344
7345 /* Sort symbol by name. */
7346 qsort (symtable1, count1, sizeof (struct elf_symbol),
7347 elf_sym_name_compare);
7348 qsort (symtable2, count1, sizeof (struct elf_symbol),
7349 elf_sym_name_compare);
7350
7351 for (i = 0; i < count1; i++)
7352 /* Two symbols must have the same binding, type and name. */
7353 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7354 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7355 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7356 goto done;
7357
7358 result = TRUE;
7359 goto done;
7360 }
7361
7362 symtable1 = (struct elf_symbol *)
7363 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7364 symtable2 = (struct elf_symbol *)
7365 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7366 if (symtable1 == NULL || symtable2 == NULL)
7367 goto done;
7368
7369 /* Count definitions in the section. */
7370 count1 = 0;
7371 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7372 if (isym->st_shndx == shndx1)
7373 symtable1[count1++].u.isym = isym;
7374
7375 count2 = 0;
7376 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7377 if (isym->st_shndx == shndx2)
7378 symtable2[count2++].u.isym = isym;
7379
7380 if (count1 == 0 || count2 == 0 || count1 != count2)
7381 goto done;
7382
7383 for (i = 0; i < count1; i++)
7384 symtable1[i].name
7385 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7386 symtable1[i].u.isym->st_name);
7387
7388 for (i = 0; i < count2; i++)
7389 symtable2[i].name
7390 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7391 symtable2[i].u.isym->st_name);
7392
7393 /* Sort symbol by name. */
7394 qsort (symtable1, count1, sizeof (struct elf_symbol),
7395 elf_sym_name_compare);
7396 qsort (symtable2, count1, sizeof (struct elf_symbol),
7397 elf_sym_name_compare);
7398
7399 for (i = 0; i < count1; i++)
7400 /* Two symbols must have the same binding, type and name. */
7401 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7402 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7403 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7404 goto done;
7405
7406 result = TRUE;
7407
7408 done:
7409 if (symtable1)
7410 free (symtable1);
7411 if (symtable2)
7412 free (symtable2);
7413 if (isymbuf1)
7414 free (isymbuf1);
7415 if (isymbuf2)
7416 free (isymbuf2);
7417
7418 return result;
7419 }
7420
7421 /* Return TRUE if 2 section types are compatible. */
7422
7423 bfd_boolean
7424 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7425 bfd *bbfd, const asection *bsec)
7426 {
7427 if (asec == NULL
7428 || bsec == NULL
7429 || abfd->xvec->flavour != bfd_target_elf_flavour
7430 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7431 return TRUE;
7432
7433 return elf_section_type (asec) == elf_section_type (bsec);
7434 }
7435 \f
7436 /* Final phase of ELF linker. */
7437
7438 /* A structure we use to avoid passing large numbers of arguments. */
7439
7440 struct elf_final_link_info
7441 {
7442 /* General link information. */
7443 struct bfd_link_info *info;
7444 /* Output BFD. */
7445 bfd *output_bfd;
7446 /* Symbol string table. */
7447 struct elf_strtab_hash *symstrtab;
7448 /* .dynsym section. */
7449 asection *dynsym_sec;
7450 /* .hash section. */
7451 asection *hash_sec;
7452 /* symbol version section (.gnu.version). */
7453 asection *symver_sec;
7454 /* Buffer large enough to hold contents of any section. */
7455 bfd_byte *contents;
7456 /* Buffer large enough to hold external relocs of any section. */
7457 void *external_relocs;
7458 /* Buffer large enough to hold internal relocs of any section. */
7459 Elf_Internal_Rela *internal_relocs;
7460 /* Buffer large enough to hold external local symbols of any input
7461 BFD. */
7462 bfd_byte *external_syms;
7463 /* And a buffer for symbol section indices. */
7464 Elf_External_Sym_Shndx *locsym_shndx;
7465 /* Buffer large enough to hold internal local symbols of any input
7466 BFD. */
7467 Elf_Internal_Sym *internal_syms;
7468 /* Array large enough to hold a symbol index for each local symbol
7469 of any input BFD. */
7470 long *indices;
7471 /* Array large enough to hold a section pointer for each local
7472 symbol of any input BFD. */
7473 asection **sections;
7474 /* Buffer for SHT_SYMTAB_SHNDX section. */
7475 Elf_External_Sym_Shndx *symshndxbuf;
7476 /* Number of STT_FILE syms seen. */
7477 size_t filesym_count;
7478 };
7479
7480 /* This struct is used to pass information to elf_link_output_extsym. */
7481
7482 struct elf_outext_info
7483 {
7484 bfd_boolean failed;
7485 bfd_boolean localsyms;
7486 bfd_boolean file_sym_done;
7487 struct elf_final_link_info *flinfo;
7488 };
7489
7490
7491 /* Support for evaluating a complex relocation.
7492
7493 Complex relocations are generalized, self-describing relocations. The
7494 implementation of them consists of two parts: complex symbols, and the
7495 relocations themselves.
7496
7497 The relocations are use a reserved elf-wide relocation type code (R_RELC
7498 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7499 information (start bit, end bit, word width, etc) into the addend. This
7500 information is extracted from CGEN-generated operand tables within gas.
7501
7502 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7503 internal) representing prefix-notation expressions, including but not
7504 limited to those sorts of expressions normally encoded as addends in the
7505 addend field. The symbol mangling format is:
7506
7507 <node> := <literal>
7508 | <unary-operator> ':' <node>
7509 | <binary-operator> ':' <node> ':' <node>
7510 ;
7511
7512 <literal> := 's' <digits=N> ':' <N character symbol name>
7513 | 'S' <digits=N> ':' <N character section name>
7514 | '#' <hexdigits>
7515 ;
7516
7517 <binary-operator> := as in C
7518 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7519
7520 static void
7521 set_symbol_value (bfd *bfd_with_globals,
7522 Elf_Internal_Sym *isymbuf,
7523 size_t locsymcount,
7524 size_t symidx,
7525 bfd_vma val)
7526 {
7527 struct elf_link_hash_entry **sym_hashes;
7528 struct elf_link_hash_entry *h;
7529 size_t extsymoff = locsymcount;
7530
7531 if (symidx < locsymcount)
7532 {
7533 Elf_Internal_Sym *sym;
7534
7535 sym = isymbuf + symidx;
7536 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7537 {
7538 /* It is a local symbol: move it to the
7539 "absolute" section and give it a value. */
7540 sym->st_shndx = SHN_ABS;
7541 sym->st_value = val;
7542 return;
7543 }
7544 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7545 extsymoff = 0;
7546 }
7547
7548 /* It is a global symbol: set its link type
7549 to "defined" and give it a value. */
7550
7551 sym_hashes = elf_sym_hashes (bfd_with_globals);
7552 h = sym_hashes [symidx - extsymoff];
7553 while (h->root.type == bfd_link_hash_indirect
7554 || h->root.type == bfd_link_hash_warning)
7555 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7556 h->root.type = bfd_link_hash_defined;
7557 h->root.u.def.value = val;
7558 h->root.u.def.section = bfd_abs_section_ptr;
7559 }
7560
7561 static bfd_boolean
7562 resolve_symbol (const char *name,
7563 bfd *input_bfd,
7564 struct elf_final_link_info *flinfo,
7565 bfd_vma *result,
7566 Elf_Internal_Sym *isymbuf,
7567 size_t locsymcount)
7568 {
7569 Elf_Internal_Sym *sym;
7570 struct bfd_link_hash_entry *global_entry;
7571 const char *candidate = NULL;
7572 Elf_Internal_Shdr *symtab_hdr;
7573 size_t i;
7574
7575 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7576
7577 for (i = 0; i < locsymcount; ++ i)
7578 {
7579 sym = isymbuf + i;
7580
7581 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7582 continue;
7583
7584 candidate = bfd_elf_string_from_elf_section (input_bfd,
7585 symtab_hdr->sh_link,
7586 sym->st_name);
7587 #ifdef DEBUG
7588 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7589 name, candidate, (unsigned long) sym->st_value);
7590 #endif
7591 if (candidate && strcmp (candidate, name) == 0)
7592 {
7593 asection *sec = flinfo->sections [i];
7594
7595 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7596 *result += sec->output_offset + sec->output_section->vma;
7597 #ifdef DEBUG
7598 printf ("Found symbol with value %8.8lx\n",
7599 (unsigned long) *result);
7600 #endif
7601 return TRUE;
7602 }
7603 }
7604
7605 /* Hmm, haven't found it yet. perhaps it is a global. */
7606 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7607 FALSE, FALSE, TRUE);
7608 if (!global_entry)
7609 return FALSE;
7610
7611 if (global_entry->type == bfd_link_hash_defined
7612 || global_entry->type == bfd_link_hash_defweak)
7613 {
7614 *result = (global_entry->u.def.value
7615 + global_entry->u.def.section->output_section->vma
7616 + global_entry->u.def.section->output_offset);
7617 #ifdef DEBUG
7618 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7619 global_entry->root.string, (unsigned long) *result);
7620 #endif
7621 return TRUE;
7622 }
7623
7624 return FALSE;
7625 }
7626
7627 static bfd_boolean
7628 resolve_section (const char *name,
7629 asection *sections,
7630 bfd_vma *result)
7631 {
7632 asection *curr;
7633 unsigned int len;
7634
7635 for (curr = sections; curr; curr = curr->next)
7636 if (strcmp (curr->name, name) == 0)
7637 {
7638 *result = curr->vma;
7639 return TRUE;
7640 }
7641
7642 /* Hmm. still haven't found it. try pseudo-section names. */
7643 for (curr = sections; curr; curr = curr->next)
7644 {
7645 len = strlen (curr->name);
7646 if (len > strlen (name))
7647 continue;
7648
7649 if (strncmp (curr->name, name, len) == 0)
7650 {
7651 if (strncmp (".end", name + len, 4) == 0)
7652 {
7653 *result = curr->vma + curr->size;
7654 return TRUE;
7655 }
7656
7657 /* Insert more pseudo-section names here, if you like. */
7658 }
7659 }
7660
7661 return FALSE;
7662 }
7663
7664 static void
7665 undefined_reference (const char *reftype, const char *name)
7666 {
7667 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7668 reftype, name);
7669 }
7670
7671 static bfd_boolean
7672 eval_symbol (bfd_vma *result,
7673 const char **symp,
7674 bfd *input_bfd,
7675 struct elf_final_link_info *flinfo,
7676 bfd_vma dot,
7677 Elf_Internal_Sym *isymbuf,
7678 size_t locsymcount,
7679 int signed_p)
7680 {
7681 size_t len;
7682 size_t symlen;
7683 bfd_vma a;
7684 bfd_vma b;
7685 char symbuf[4096];
7686 const char *sym = *symp;
7687 const char *symend;
7688 bfd_boolean symbol_is_section = FALSE;
7689
7690 len = strlen (sym);
7691 symend = sym + len;
7692
7693 if (len < 1 || len > sizeof (symbuf))
7694 {
7695 bfd_set_error (bfd_error_invalid_operation);
7696 return FALSE;
7697 }
7698
7699 switch (* sym)
7700 {
7701 case '.':
7702 *result = dot;
7703 *symp = sym + 1;
7704 return TRUE;
7705
7706 case '#':
7707 ++sym;
7708 *result = strtoul (sym, (char **) symp, 16);
7709 return TRUE;
7710
7711 case 'S':
7712 symbol_is_section = TRUE;
7713 case 's':
7714 ++sym;
7715 symlen = strtol (sym, (char **) symp, 10);
7716 sym = *symp + 1; /* Skip the trailing ':'. */
7717
7718 if (symend < sym || symlen + 1 > sizeof (symbuf))
7719 {
7720 bfd_set_error (bfd_error_invalid_operation);
7721 return FALSE;
7722 }
7723
7724 memcpy (symbuf, sym, symlen);
7725 symbuf[symlen] = '\0';
7726 *symp = sym + symlen;
7727
7728 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7729 the symbol as a section, or vice-versa. so we're pretty liberal in our
7730 interpretation here; section means "try section first", not "must be a
7731 section", and likewise with symbol. */
7732
7733 if (symbol_is_section)
7734 {
7735 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7736 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7737 isymbuf, locsymcount))
7738 {
7739 undefined_reference ("section", symbuf);
7740 return FALSE;
7741 }
7742 }
7743 else
7744 {
7745 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7746 isymbuf, locsymcount)
7747 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7748 result))
7749 {
7750 undefined_reference ("symbol", symbuf);
7751 return FALSE;
7752 }
7753 }
7754
7755 return TRUE;
7756
7757 /* All that remains are operators. */
7758
7759 #define UNARY_OP(op) \
7760 if (strncmp (sym, #op, strlen (#op)) == 0) \
7761 { \
7762 sym += strlen (#op); \
7763 if (*sym == ':') \
7764 ++sym; \
7765 *symp = sym; \
7766 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7767 isymbuf, locsymcount, signed_p)) \
7768 return FALSE; \
7769 if (signed_p) \
7770 *result = op ((bfd_signed_vma) a); \
7771 else \
7772 *result = op a; \
7773 return TRUE; \
7774 }
7775
7776 #define BINARY_OP(op) \
7777 if (strncmp (sym, #op, strlen (#op)) == 0) \
7778 { \
7779 sym += strlen (#op); \
7780 if (*sym == ':') \
7781 ++sym; \
7782 *symp = sym; \
7783 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7784 isymbuf, locsymcount, signed_p)) \
7785 return FALSE; \
7786 ++*symp; \
7787 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7788 isymbuf, locsymcount, signed_p)) \
7789 return FALSE; \
7790 if (signed_p) \
7791 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7792 else \
7793 *result = a op b; \
7794 return TRUE; \
7795 }
7796
7797 default:
7798 UNARY_OP (0-);
7799 BINARY_OP (<<);
7800 BINARY_OP (>>);
7801 BINARY_OP (==);
7802 BINARY_OP (!=);
7803 BINARY_OP (<=);
7804 BINARY_OP (>=);
7805 BINARY_OP (&&);
7806 BINARY_OP (||);
7807 UNARY_OP (~);
7808 UNARY_OP (!);
7809 BINARY_OP (*);
7810 BINARY_OP (/);
7811 BINARY_OP (%);
7812 BINARY_OP (^);
7813 BINARY_OP (|);
7814 BINARY_OP (&);
7815 BINARY_OP (+);
7816 BINARY_OP (-);
7817 BINARY_OP (<);
7818 BINARY_OP (>);
7819 #undef UNARY_OP
7820 #undef BINARY_OP
7821 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7822 bfd_set_error (bfd_error_invalid_operation);
7823 return FALSE;
7824 }
7825 }
7826
7827 static void
7828 put_value (bfd_vma size,
7829 unsigned long chunksz,
7830 bfd *input_bfd,
7831 bfd_vma x,
7832 bfd_byte *location)
7833 {
7834 location += (size - chunksz);
7835
7836 for (; size; size -= chunksz, location -= chunksz)
7837 {
7838 switch (chunksz)
7839 {
7840 case 1:
7841 bfd_put_8 (input_bfd, x, location);
7842 x >>= 8;
7843 break;
7844 case 2:
7845 bfd_put_16 (input_bfd, x, location);
7846 x >>= 16;
7847 break;
7848 case 4:
7849 bfd_put_32 (input_bfd, x, location);
7850 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
7851 x >>= 16;
7852 x >>= 16;
7853 break;
7854 #ifdef BFD64
7855 case 8:
7856 bfd_put_64 (input_bfd, x, location);
7857 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
7858 x >>= 32;
7859 x >>= 32;
7860 break;
7861 #endif
7862 default:
7863 abort ();
7864 break;
7865 }
7866 }
7867 }
7868
7869 static bfd_vma
7870 get_value (bfd_vma size,
7871 unsigned long chunksz,
7872 bfd *input_bfd,
7873 bfd_byte *location)
7874 {
7875 int shift;
7876 bfd_vma x = 0;
7877
7878 /* Sanity checks. */
7879 BFD_ASSERT (chunksz <= sizeof (x)
7880 && size >= chunksz
7881 && chunksz != 0
7882 && (size % chunksz) == 0
7883 && input_bfd != NULL
7884 && location != NULL);
7885
7886 if (chunksz == sizeof (x))
7887 {
7888 BFD_ASSERT (size == chunksz);
7889
7890 /* Make sure that we do not perform an undefined shift operation.
7891 We know that size == chunksz so there will only be one iteration
7892 of the loop below. */
7893 shift = 0;
7894 }
7895 else
7896 shift = 8 * chunksz;
7897
7898 for (; size; size -= chunksz, location += chunksz)
7899 {
7900 switch (chunksz)
7901 {
7902 case 1:
7903 x = (x << shift) | bfd_get_8 (input_bfd, location);
7904 break;
7905 case 2:
7906 x = (x << shift) | bfd_get_16 (input_bfd, location);
7907 break;
7908 case 4:
7909 x = (x << shift) | bfd_get_32 (input_bfd, location);
7910 break;
7911 #ifdef BFD64
7912 case 8:
7913 x = (x << shift) | bfd_get_64 (input_bfd, location);
7914 break;
7915 #endif
7916 default:
7917 abort ();
7918 }
7919 }
7920 return x;
7921 }
7922
7923 static void
7924 decode_complex_addend (unsigned long *start, /* in bits */
7925 unsigned long *oplen, /* in bits */
7926 unsigned long *len, /* in bits */
7927 unsigned long *wordsz, /* in bytes */
7928 unsigned long *chunksz, /* in bytes */
7929 unsigned long *lsb0_p,
7930 unsigned long *signed_p,
7931 unsigned long *trunc_p,
7932 unsigned long encoded)
7933 {
7934 * start = encoded & 0x3F;
7935 * len = (encoded >> 6) & 0x3F;
7936 * oplen = (encoded >> 12) & 0x3F;
7937 * wordsz = (encoded >> 18) & 0xF;
7938 * chunksz = (encoded >> 22) & 0xF;
7939 * lsb0_p = (encoded >> 27) & 1;
7940 * signed_p = (encoded >> 28) & 1;
7941 * trunc_p = (encoded >> 29) & 1;
7942 }
7943
7944 bfd_reloc_status_type
7945 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7946 asection *input_section ATTRIBUTE_UNUSED,
7947 bfd_byte *contents,
7948 Elf_Internal_Rela *rel,
7949 bfd_vma relocation)
7950 {
7951 bfd_vma shift, x, mask;
7952 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7953 bfd_reloc_status_type r;
7954
7955 /* Perform this reloc, since it is complex.
7956 (this is not to say that it necessarily refers to a complex
7957 symbol; merely that it is a self-describing CGEN based reloc.
7958 i.e. the addend has the complete reloc information (bit start, end,
7959 word size, etc) encoded within it.). */
7960
7961 decode_complex_addend (&start, &oplen, &len, &wordsz,
7962 &chunksz, &lsb0_p, &signed_p,
7963 &trunc_p, rel->r_addend);
7964
7965 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7966
7967 if (lsb0_p)
7968 shift = (start + 1) - len;
7969 else
7970 shift = (8 * wordsz) - (start + len);
7971
7972 /* FIXME: octets_per_byte. */
7973 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7974
7975 #ifdef DEBUG
7976 printf ("Doing complex reloc: "
7977 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7978 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7979 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7980 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7981 oplen, (unsigned long) x, (unsigned long) mask,
7982 (unsigned long) relocation);
7983 #endif
7984
7985 r = bfd_reloc_ok;
7986 if (! trunc_p)
7987 /* Now do an overflow check. */
7988 r = bfd_check_overflow ((signed_p
7989 ? complain_overflow_signed
7990 : complain_overflow_unsigned),
7991 len, 0, (8 * wordsz),
7992 relocation);
7993
7994 /* Do the deed. */
7995 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7996
7997 #ifdef DEBUG
7998 printf (" relocation: %8.8lx\n"
7999 " shifted mask: %8.8lx\n"
8000 " shifted/masked reloc: %8.8lx\n"
8001 " result: %8.8lx\n",
8002 (unsigned long) relocation, (unsigned long) (mask << shift),
8003 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8004 #endif
8005 /* FIXME: octets_per_byte. */
8006 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
8007 return r;
8008 }
8009
8010 /* qsort comparison functions sorting external relocs by r_offset. */
8011
8012 static int
8013 cmp_ext32l_r_offset (const void *p, const void *q)
8014 {
8015 union aligned32
8016 {
8017 uint32_t v;
8018 unsigned char c[4];
8019 };
8020 const union aligned32 *a
8021 = (const union aligned32 *) ((const Elf32_External_Rel *) p)->r_offset;
8022 const union aligned32 *b
8023 = (const union aligned32 *) ((const Elf32_External_Rel *) q)->r_offset;
8024
8025 uint32_t aval = ( (uint32_t) a->c[0]
8026 | (uint32_t) a->c[1] << 8
8027 | (uint32_t) a->c[2] << 16
8028 | (uint32_t) a->c[3] << 24);
8029 uint32_t bval = ( (uint32_t) b->c[0]
8030 | (uint32_t) b->c[1] << 8
8031 | (uint32_t) b->c[2] << 16
8032 | (uint32_t) b->c[3] << 24);
8033 if (aval < bval)
8034 return -1;
8035 else if (aval > bval)
8036 return 1;
8037 return 0;
8038 }
8039
8040 static int
8041 cmp_ext32b_r_offset (const void *p, const void *q)
8042 {
8043 union aligned32
8044 {
8045 uint32_t v;
8046 unsigned char c[4];
8047 };
8048 const union aligned32 *a
8049 = (const union aligned32 *) ((const Elf32_External_Rel *) p)->r_offset;
8050 const union aligned32 *b
8051 = (const union aligned32 *) ((const Elf32_External_Rel *) q)->r_offset;
8052
8053 uint32_t aval = ( (uint32_t) a->c[0] << 24
8054 | (uint32_t) a->c[1] << 16
8055 | (uint32_t) a->c[2] << 8
8056 | (uint32_t) a->c[3]);
8057 uint32_t bval = ( (uint32_t) b->c[0] << 24
8058 | (uint32_t) b->c[1] << 16
8059 | (uint32_t) b->c[2] << 8
8060 | (uint32_t) b->c[3]);
8061 if (aval < bval)
8062 return -1;
8063 else if (aval > bval)
8064 return 1;
8065 return 0;
8066 }
8067
8068 #ifdef BFD_HOST_64_BIT
8069 static int
8070 cmp_ext64l_r_offset (const void *p, const void *q)
8071 {
8072 union aligned64
8073 {
8074 uint64_t v;
8075 unsigned char c[8];
8076 };
8077 const union aligned64 *a
8078 = (const union aligned64 *) ((const Elf64_External_Rel *) p)->r_offset;
8079 const union aligned64 *b
8080 = (const union aligned64 *) ((const Elf64_External_Rel *) q)->r_offset;
8081
8082 uint64_t aval = ( (uint64_t) a->c[0]
8083 | (uint64_t) a->c[1] << 8
8084 | (uint64_t) a->c[2] << 16
8085 | (uint64_t) a->c[3] << 24
8086 | (uint64_t) a->c[4] << 32
8087 | (uint64_t) a->c[5] << 40
8088 | (uint64_t) a->c[6] << 48
8089 | (uint64_t) a->c[7] << 56);
8090 uint64_t bval = ( (uint64_t) b->c[0]
8091 | (uint64_t) b->c[1] << 8
8092 | (uint64_t) b->c[2] << 16
8093 | (uint64_t) b->c[3] << 24
8094 | (uint64_t) b->c[4] << 32
8095 | (uint64_t) b->c[5] << 40
8096 | (uint64_t) b->c[6] << 48
8097 | (uint64_t) b->c[7] << 56);
8098 if (aval < bval)
8099 return -1;
8100 else if (aval > bval)
8101 return 1;
8102 return 0;
8103 }
8104
8105 static int
8106 cmp_ext64b_r_offset (const void *p, const void *q)
8107 {
8108 union aligned64
8109 {
8110 uint64_t v;
8111 unsigned char c[8];
8112 };
8113 const union aligned64 *a
8114 = (const union aligned64 *) ((const Elf64_External_Rel *) p)->r_offset;
8115 const union aligned64 *b
8116 = (const union aligned64 *) ((const Elf64_External_Rel *) q)->r_offset;
8117
8118 uint64_t aval = ( (uint64_t) a->c[0] << 56
8119 | (uint64_t) a->c[1] << 48
8120 | (uint64_t) a->c[2] << 40
8121 | (uint64_t) a->c[3] << 32
8122 | (uint64_t) a->c[4] << 24
8123 | (uint64_t) a->c[5] << 16
8124 | (uint64_t) a->c[6] << 8
8125 | (uint64_t) a->c[7]);
8126 uint64_t bval = ( (uint64_t) b->c[0] << 56
8127 | (uint64_t) b->c[1] << 48
8128 | (uint64_t) b->c[2] << 40
8129 | (uint64_t) b->c[3] << 32
8130 | (uint64_t) b->c[4] << 24
8131 | (uint64_t) b->c[5] << 16
8132 | (uint64_t) b->c[6] << 8
8133 | (uint64_t) b->c[7]);
8134 if (aval < bval)
8135 return -1;
8136 else if (aval > bval)
8137 return 1;
8138 return 0;
8139 }
8140 #endif
8141
8142 /* When performing a relocatable link, the input relocations are
8143 preserved. But, if they reference global symbols, the indices
8144 referenced must be updated. Update all the relocations found in
8145 RELDATA. */
8146
8147 static void
8148 elf_link_adjust_relocs (bfd *abfd,
8149 struct bfd_elf_section_reloc_data *reldata,
8150 bfd_boolean sort)
8151 {
8152 unsigned int i;
8153 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8154 bfd_byte *erela;
8155 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8156 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8157 bfd_vma r_type_mask;
8158 int r_sym_shift;
8159 unsigned int count = reldata->count;
8160 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8161
8162 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8163 {
8164 swap_in = bed->s->swap_reloc_in;
8165 swap_out = bed->s->swap_reloc_out;
8166 }
8167 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8168 {
8169 swap_in = bed->s->swap_reloca_in;
8170 swap_out = bed->s->swap_reloca_out;
8171 }
8172 else
8173 abort ();
8174
8175 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8176 abort ();
8177
8178 if (bed->s->arch_size == 32)
8179 {
8180 r_type_mask = 0xff;
8181 r_sym_shift = 8;
8182 }
8183 else
8184 {
8185 r_type_mask = 0xffffffff;
8186 r_sym_shift = 32;
8187 }
8188
8189 erela = reldata->hdr->contents;
8190 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8191 {
8192 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8193 unsigned int j;
8194
8195 if (*rel_hash == NULL)
8196 continue;
8197
8198 BFD_ASSERT ((*rel_hash)->indx >= 0);
8199
8200 (*swap_in) (abfd, erela, irela);
8201 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8202 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8203 | (irela[j].r_info & r_type_mask));
8204 (*swap_out) (abfd, irela, erela);
8205 }
8206
8207 if (sort)
8208 {
8209 int (*compare) (const void *, const void *);
8210
8211 if (bed->s->arch_size == 32)
8212 {
8213 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8214 compare = cmp_ext32l_r_offset;
8215 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8216 compare = cmp_ext32b_r_offset;
8217 else
8218 abort ();
8219 }
8220 else
8221 {
8222 #ifdef BFD_HOST_64_BIT
8223 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8224 compare = cmp_ext64l_r_offset;
8225 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8226 compare = cmp_ext64b_r_offset;
8227 else
8228 #endif
8229 abort ();
8230 }
8231 qsort (reldata->hdr->contents, count, reldata->hdr->sh_entsize, compare);
8232 free (reldata->hashes);
8233 reldata->hashes = NULL;
8234 }
8235 }
8236
8237 struct elf_link_sort_rela
8238 {
8239 union {
8240 bfd_vma offset;
8241 bfd_vma sym_mask;
8242 } u;
8243 enum elf_reloc_type_class type;
8244 /* We use this as an array of size int_rels_per_ext_rel. */
8245 Elf_Internal_Rela rela[1];
8246 };
8247
8248 static int
8249 elf_link_sort_cmp1 (const void *A, const void *B)
8250 {
8251 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8252 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8253 int relativea, relativeb;
8254
8255 relativea = a->type == reloc_class_relative;
8256 relativeb = b->type == reloc_class_relative;
8257
8258 if (relativea < relativeb)
8259 return 1;
8260 if (relativea > relativeb)
8261 return -1;
8262 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8263 return -1;
8264 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8265 return 1;
8266 if (a->rela->r_offset < b->rela->r_offset)
8267 return -1;
8268 if (a->rela->r_offset > b->rela->r_offset)
8269 return 1;
8270 return 0;
8271 }
8272
8273 static int
8274 elf_link_sort_cmp2 (const void *A, const void *B)
8275 {
8276 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8277 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8278
8279 if (a->type < b->type)
8280 return -1;
8281 if (a->type > b->type)
8282 return 1;
8283 if (a->u.offset < b->u.offset)
8284 return -1;
8285 if (a->u.offset > b->u.offset)
8286 return 1;
8287 if (a->rela->r_offset < b->rela->r_offset)
8288 return -1;
8289 if (a->rela->r_offset > b->rela->r_offset)
8290 return 1;
8291 return 0;
8292 }
8293
8294 static size_t
8295 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8296 {
8297 asection *dynamic_relocs;
8298 asection *rela_dyn;
8299 asection *rel_dyn;
8300 bfd_size_type count, size;
8301 size_t i, ret, sort_elt, ext_size;
8302 bfd_byte *sort, *s_non_relative, *p;
8303 struct elf_link_sort_rela *sq;
8304 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8305 int i2e = bed->s->int_rels_per_ext_rel;
8306 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8307 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8308 struct bfd_link_order *lo;
8309 bfd_vma r_sym_mask;
8310 bfd_boolean use_rela;
8311
8312 /* Find a dynamic reloc section. */
8313 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8314 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8315 if (rela_dyn != NULL && rela_dyn->size > 0
8316 && rel_dyn != NULL && rel_dyn->size > 0)
8317 {
8318 bfd_boolean use_rela_initialised = FALSE;
8319
8320 /* This is just here to stop gcc from complaining.
8321 It's initialization checking code is not perfect. */
8322 use_rela = TRUE;
8323
8324 /* Both sections are present. Examine the sizes
8325 of the indirect sections to help us choose. */
8326 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8327 if (lo->type == bfd_indirect_link_order)
8328 {
8329 asection *o = lo->u.indirect.section;
8330
8331 if ((o->size % bed->s->sizeof_rela) == 0)
8332 {
8333 if ((o->size % bed->s->sizeof_rel) == 0)
8334 /* Section size is divisible by both rel and rela sizes.
8335 It is of no help to us. */
8336 ;
8337 else
8338 {
8339 /* Section size is only divisible by rela. */
8340 if (use_rela_initialised && (use_rela == FALSE))
8341 {
8342 _bfd_error_handler
8343 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8344 bfd_set_error (bfd_error_invalid_operation);
8345 return 0;
8346 }
8347 else
8348 {
8349 use_rela = TRUE;
8350 use_rela_initialised = TRUE;
8351 }
8352 }
8353 }
8354 else if ((o->size % bed->s->sizeof_rel) == 0)
8355 {
8356 /* Section size is only divisible by rel. */
8357 if (use_rela_initialised && (use_rela == TRUE))
8358 {
8359 _bfd_error_handler
8360 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8361 bfd_set_error (bfd_error_invalid_operation);
8362 return 0;
8363 }
8364 else
8365 {
8366 use_rela = FALSE;
8367 use_rela_initialised = TRUE;
8368 }
8369 }
8370 else
8371 {
8372 /* The section size is not divisible by either - something is wrong. */
8373 _bfd_error_handler
8374 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8375 bfd_set_error (bfd_error_invalid_operation);
8376 return 0;
8377 }
8378 }
8379
8380 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8381 if (lo->type == bfd_indirect_link_order)
8382 {
8383 asection *o = lo->u.indirect.section;
8384
8385 if ((o->size % bed->s->sizeof_rela) == 0)
8386 {
8387 if ((o->size % bed->s->sizeof_rel) == 0)
8388 /* Section size is divisible by both rel and rela sizes.
8389 It is of no help to us. */
8390 ;
8391 else
8392 {
8393 /* Section size is only divisible by rela. */
8394 if (use_rela_initialised && (use_rela == FALSE))
8395 {
8396 _bfd_error_handler
8397 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8398 bfd_set_error (bfd_error_invalid_operation);
8399 return 0;
8400 }
8401 else
8402 {
8403 use_rela = TRUE;
8404 use_rela_initialised = TRUE;
8405 }
8406 }
8407 }
8408 else if ((o->size % bed->s->sizeof_rel) == 0)
8409 {
8410 /* Section size is only divisible by rel. */
8411 if (use_rela_initialised && (use_rela == TRUE))
8412 {
8413 _bfd_error_handler
8414 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8415 bfd_set_error (bfd_error_invalid_operation);
8416 return 0;
8417 }
8418 else
8419 {
8420 use_rela = FALSE;
8421 use_rela_initialised = TRUE;
8422 }
8423 }
8424 else
8425 {
8426 /* The section size is not divisible by either - something is wrong. */
8427 _bfd_error_handler
8428 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8429 bfd_set_error (bfd_error_invalid_operation);
8430 return 0;
8431 }
8432 }
8433
8434 if (! use_rela_initialised)
8435 /* Make a guess. */
8436 use_rela = TRUE;
8437 }
8438 else if (rela_dyn != NULL && rela_dyn->size > 0)
8439 use_rela = TRUE;
8440 else if (rel_dyn != NULL && rel_dyn->size > 0)
8441 use_rela = FALSE;
8442 else
8443 return 0;
8444
8445 if (use_rela)
8446 {
8447 dynamic_relocs = rela_dyn;
8448 ext_size = bed->s->sizeof_rela;
8449 swap_in = bed->s->swap_reloca_in;
8450 swap_out = bed->s->swap_reloca_out;
8451 }
8452 else
8453 {
8454 dynamic_relocs = rel_dyn;
8455 ext_size = bed->s->sizeof_rel;
8456 swap_in = bed->s->swap_reloc_in;
8457 swap_out = bed->s->swap_reloc_out;
8458 }
8459
8460 size = 0;
8461 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8462 if (lo->type == bfd_indirect_link_order)
8463 size += lo->u.indirect.section->size;
8464
8465 if (size != dynamic_relocs->size)
8466 return 0;
8467
8468 sort_elt = (sizeof (struct elf_link_sort_rela)
8469 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8470
8471 count = dynamic_relocs->size / ext_size;
8472 if (count == 0)
8473 return 0;
8474 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8475
8476 if (sort == NULL)
8477 {
8478 (*info->callbacks->warning)
8479 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8480 return 0;
8481 }
8482
8483 if (bed->s->arch_size == 32)
8484 r_sym_mask = ~(bfd_vma) 0xff;
8485 else
8486 r_sym_mask = ~(bfd_vma) 0xffffffff;
8487
8488 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8489 if (lo->type == bfd_indirect_link_order)
8490 {
8491 bfd_byte *erel, *erelend;
8492 asection *o = lo->u.indirect.section;
8493
8494 if (o->contents == NULL && o->size != 0)
8495 {
8496 /* This is a reloc section that is being handled as a normal
8497 section. See bfd_section_from_shdr. We can't combine
8498 relocs in this case. */
8499 free (sort);
8500 return 0;
8501 }
8502 erel = o->contents;
8503 erelend = o->contents + o->size;
8504 /* FIXME: octets_per_byte. */
8505 p = sort + o->output_offset / ext_size * sort_elt;
8506
8507 while (erel < erelend)
8508 {
8509 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8510
8511 (*swap_in) (abfd, erel, s->rela);
8512 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8513 s->u.sym_mask = r_sym_mask;
8514 p += sort_elt;
8515 erel += ext_size;
8516 }
8517 }
8518
8519 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8520
8521 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8522 {
8523 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8524 if (s->type != reloc_class_relative)
8525 break;
8526 }
8527 ret = i;
8528 s_non_relative = p;
8529
8530 sq = (struct elf_link_sort_rela *) s_non_relative;
8531 for (; i < count; i++, p += sort_elt)
8532 {
8533 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8534 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8535 sq = sp;
8536 sp->u.offset = sq->rela->r_offset;
8537 }
8538
8539 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8540
8541 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8542 if (lo->type == bfd_indirect_link_order)
8543 {
8544 bfd_byte *erel, *erelend;
8545 asection *o = lo->u.indirect.section;
8546
8547 erel = o->contents;
8548 erelend = o->contents + o->size;
8549 /* FIXME: octets_per_byte. */
8550 p = sort + o->output_offset / ext_size * sort_elt;
8551 while (erel < erelend)
8552 {
8553 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8554 (*swap_out) (abfd, s->rela, erel);
8555 p += sort_elt;
8556 erel += ext_size;
8557 }
8558 }
8559
8560 free (sort);
8561 *psec = dynamic_relocs;
8562 return ret;
8563 }
8564
8565 /* Add a symbol to the output symbol string table. */
8566
8567 static int
8568 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
8569 const char *name,
8570 Elf_Internal_Sym *elfsym,
8571 asection *input_sec,
8572 struct elf_link_hash_entry *h)
8573 {
8574 int (*output_symbol_hook)
8575 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8576 struct elf_link_hash_entry *);
8577 struct elf_link_hash_table *hash_table;
8578 const struct elf_backend_data *bed;
8579 bfd_size_type strtabsize;
8580
8581 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8582
8583 bed = get_elf_backend_data (flinfo->output_bfd);
8584 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8585 if (output_symbol_hook != NULL)
8586 {
8587 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8588 if (ret != 1)
8589 return ret;
8590 }
8591
8592 if (name == NULL
8593 || *name == '\0'
8594 || (input_sec->flags & SEC_EXCLUDE))
8595 elfsym->st_name = (unsigned long) -1;
8596 else
8597 {
8598 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
8599 to get the final offset for st_name. */
8600 elfsym->st_name
8601 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
8602 name, FALSE);
8603 if (elfsym->st_name == (unsigned long) -1)
8604 return 0;
8605 }
8606
8607 hash_table = elf_hash_table (flinfo->info);
8608 strtabsize = hash_table->strtabsize;
8609 if (strtabsize <= hash_table->strtabcount)
8610 {
8611 strtabsize += strtabsize;
8612 hash_table->strtabsize = strtabsize;
8613 strtabsize *= sizeof (*hash_table->strtab);
8614 hash_table->strtab
8615 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
8616 strtabsize);
8617 if (hash_table->strtab == NULL)
8618 return 0;
8619 }
8620 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
8621 hash_table->strtab[hash_table->strtabcount].dest_index
8622 = hash_table->strtabcount;
8623 hash_table->strtab[hash_table->strtabcount].destshndx_index
8624 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
8625
8626 bfd_get_symcount (flinfo->output_bfd) += 1;
8627 hash_table->strtabcount += 1;
8628
8629 return 1;
8630 }
8631
8632 /* Swap symbols out to the symbol table and flush the output symbols to
8633 the file. */
8634
8635 static bfd_boolean
8636 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
8637 {
8638 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
8639 bfd_size_type amt, i;
8640 const struct elf_backend_data *bed;
8641 bfd_byte *symbuf;
8642 Elf_Internal_Shdr *hdr;
8643 file_ptr pos;
8644 bfd_boolean ret;
8645
8646 if (!hash_table->strtabcount)
8647 return TRUE;
8648
8649 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8650
8651 bed = get_elf_backend_data (flinfo->output_bfd);
8652
8653 amt = bed->s->sizeof_sym * hash_table->strtabcount;
8654 symbuf = (bfd_byte *) bfd_malloc (amt);
8655 if (symbuf == NULL)
8656 return FALSE;
8657
8658 if (flinfo->symshndxbuf)
8659 {
8660 amt = (sizeof (Elf_External_Sym_Shndx)
8661 * (bfd_get_symcount (flinfo->output_bfd)));
8662 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
8663 if (flinfo->symshndxbuf == NULL)
8664 {
8665 free (symbuf);
8666 return FALSE;
8667 }
8668 }
8669
8670 for (i = 0; i < hash_table->strtabcount; i++)
8671 {
8672 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
8673 if (elfsym->sym.st_name == (unsigned long) -1)
8674 elfsym->sym.st_name = 0;
8675 else
8676 elfsym->sym.st_name
8677 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
8678 elfsym->sym.st_name);
8679 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
8680 ((bfd_byte *) symbuf
8681 + (elfsym->dest_index
8682 * bed->s->sizeof_sym)),
8683 (flinfo->symshndxbuf
8684 + elfsym->destshndx_index));
8685 }
8686
8687 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8688 pos = hdr->sh_offset + hdr->sh_size;
8689 amt = hash_table->strtabcount * bed->s->sizeof_sym;
8690 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
8691 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
8692 {
8693 hdr->sh_size += amt;
8694 ret = TRUE;
8695 }
8696 else
8697 ret = FALSE;
8698
8699 free (symbuf);
8700
8701 free (hash_table->strtab);
8702 hash_table->strtab = NULL;
8703
8704 return ret;
8705 }
8706
8707 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8708
8709 static bfd_boolean
8710 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8711 {
8712 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8713 && sym->st_shndx < SHN_LORESERVE)
8714 {
8715 /* The gABI doesn't support dynamic symbols in output sections
8716 beyond 64k. */
8717 (*_bfd_error_handler)
8718 (_("%B: Too many sections: %d (>= %d)"),
8719 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8720 bfd_set_error (bfd_error_nonrepresentable_section);
8721 return FALSE;
8722 }
8723 return TRUE;
8724 }
8725
8726 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8727 allowing an unsatisfied unversioned symbol in the DSO to match a
8728 versioned symbol that would normally require an explicit version.
8729 We also handle the case that a DSO references a hidden symbol
8730 which may be satisfied by a versioned symbol in another DSO. */
8731
8732 static bfd_boolean
8733 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8734 const struct elf_backend_data *bed,
8735 struct elf_link_hash_entry *h)
8736 {
8737 bfd *abfd;
8738 struct elf_link_loaded_list *loaded;
8739
8740 if (!is_elf_hash_table (info->hash))
8741 return FALSE;
8742
8743 /* Check indirect symbol. */
8744 while (h->root.type == bfd_link_hash_indirect)
8745 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8746
8747 switch (h->root.type)
8748 {
8749 default:
8750 abfd = NULL;
8751 break;
8752
8753 case bfd_link_hash_undefined:
8754 case bfd_link_hash_undefweak:
8755 abfd = h->root.u.undef.abfd;
8756 if ((abfd->flags & DYNAMIC) == 0
8757 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8758 return FALSE;
8759 break;
8760
8761 case bfd_link_hash_defined:
8762 case bfd_link_hash_defweak:
8763 abfd = h->root.u.def.section->owner;
8764 break;
8765
8766 case bfd_link_hash_common:
8767 abfd = h->root.u.c.p->section->owner;
8768 break;
8769 }
8770 BFD_ASSERT (abfd != NULL);
8771
8772 for (loaded = elf_hash_table (info)->loaded;
8773 loaded != NULL;
8774 loaded = loaded->next)
8775 {
8776 bfd *input;
8777 Elf_Internal_Shdr *hdr;
8778 bfd_size_type symcount;
8779 bfd_size_type extsymcount;
8780 bfd_size_type extsymoff;
8781 Elf_Internal_Shdr *versymhdr;
8782 Elf_Internal_Sym *isym;
8783 Elf_Internal_Sym *isymend;
8784 Elf_Internal_Sym *isymbuf;
8785 Elf_External_Versym *ever;
8786 Elf_External_Versym *extversym;
8787
8788 input = loaded->abfd;
8789
8790 /* We check each DSO for a possible hidden versioned definition. */
8791 if (input == abfd
8792 || (input->flags & DYNAMIC) == 0
8793 || elf_dynversym (input) == 0)
8794 continue;
8795
8796 hdr = &elf_tdata (input)->dynsymtab_hdr;
8797
8798 symcount = hdr->sh_size / bed->s->sizeof_sym;
8799 if (elf_bad_symtab (input))
8800 {
8801 extsymcount = symcount;
8802 extsymoff = 0;
8803 }
8804 else
8805 {
8806 extsymcount = symcount - hdr->sh_info;
8807 extsymoff = hdr->sh_info;
8808 }
8809
8810 if (extsymcount == 0)
8811 continue;
8812
8813 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8814 NULL, NULL, NULL);
8815 if (isymbuf == NULL)
8816 return FALSE;
8817
8818 /* Read in any version definitions. */
8819 versymhdr = &elf_tdata (input)->dynversym_hdr;
8820 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8821 if (extversym == NULL)
8822 goto error_ret;
8823
8824 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8825 || (bfd_bread (extversym, versymhdr->sh_size, input)
8826 != versymhdr->sh_size))
8827 {
8828 free (extversym);
8829 error_ret:
8830 free (isymbuf);
8831 return FALSE;
8832 }
8833
8834 ever = extversym + extsymoff;
8835 isymend = isymbuf + extsymcount;
8836 for (isym = isymbuf; isym < isymend; isym++, ever++)
8837 {
8838 const char *name;
8839 Elf_Internal_Versym iver;
8840 unsigned short version_index;
8841
8842 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8843 || isym->st_shndx == SHN_UNDEF)
8844 continue;
8845
8846 name = bfd_elf_string_from_elf_section (input,
8847 hdr->sh_link,
8848 isym->st_name);
8849 if (strcmp (name, h->root.root.string) != 0)
8850 continue;
8851
8852 _bfd_elf_swap_versym_in (input, ever, &iver);
8853
8854 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8855 && !(h->def_regular
8856 && h->forced_local))
8857 {
8858 /* If we have a non-hidden versioned sym, then it should
8859 have provided a definition for the undefined sym unless
8860 it is defined in a non-shared object and forced local.
8861 */
8862 abort ();
8863 }
8864
8865 version_index = iver.vs_vers & VERSYM_VERSION;
8866 if (version_index == 1 || version_index == 2)
8867 {
8868 /* This is the base or first version. We can use it. */
8869 free (extversym);
8870 free (isymbuf);
8871 return TRUE;
8872 }
8873 }
8874
8875 free (extversym);
8876 free (isymbuf);
8877 }
8878
8879 return FALSE;
8880 }
8881
8882 /* Add an external symbol to the symbol table. This is called from
8883 the hash table traversal routine. When generating a shared object,
8884 we go through the symbol table twice. The first time we output
8885 anything that might have been forced to local scope in a version
8886 script. The second time we output the symbols that are still
8887 global symbols. */
8888
8889 static bfd_boolean
8890 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8891 {
8892 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8893 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8894 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8895 bfd_boolean strip;
8896 Elf_Internal_Sym sym;
8897 asection *input_sec;
8898 const struct elf_backend_data *bed;
8899 long indx;
8900 int ret;
8901
8902 if (h->root.type == bfd_link_hash_warning)
8903 {
8904 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8905 if (h->root.type == bfd_link_hash_new)
8906 return TRUE;
8907 }
8908
8909 /* Decide whether to output this symbol in this pass. */
8910 if (eoinfo->localsyms)
8911 {
8912 if (!h->forced_local)
8913 return TRUE;
8914 }
8915 else
8916 {
8917 if (h->forced_local)
8918 return TRUE;
8919 }
8920
8921 bed = get_elf_backend_data (flinfo->output_bfd);
8922
8923 if (h->root.type == bfd_link_hash_undefined)
8924 {
8925 /* If we have an undefined symbol reference here then it must have
8926 come from a shared library that is being linked in. (Undefined
8927 references in regular files have already been handled unless
8928 they are in unreferenced sections which are removed by garbage
8929 collection). */
8930 bfd_boolean ignore_undef = FALSE;
8931
8932 /* Some symbols may be special in that the fact that they're
8933 undefined can be safely ignored - let backend determine that. */
8934 if (bed->elf_backend_ignore_undef_symbol)
8935 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8936
8937 /* If we are reporting errors for this situation then do so now. */
8938 if (!ignore_undef
8939 && h->ref_dynamic
8940 && (!h->ref_regular || flinfo->info->gc_sections)
8941 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8942 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8943 {
8944 if (!(flinfo->info->callbacks->undefined_symbol
8945 (flinfo->info, h->root.root.string,
8946 h->ref_regular ? NULL : h->root.u.undef.abfd,
8947 NULL, 0,
8948 (flinfo->info->unresolved_syms_in_shared_libs
8949 == RM_GENERATE_ERROR))))
8950 {
8951 bfd_set_error (bfd_error_bad_value);
8952 eoinfo->failed = TRUE;
8953 return FALSE;
8954 }
8955 }
8956 }
8957
8958 /* We should also warn if a forced local symbol is referenced from
8959 shared libraries. */
8960 if (!flinfo->info->relocatable
8961 && flinfo->info->executable
8962 && h->forced_local
8963 && h->ref_dynamic
8964 && h->def_regular
8965 && !h->dynamic_def
8966 && h->ref_dynamic_nonweak
8967 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8968 {
8969 bfd *def_bfd;
8970 const char *msg;
8971 struct elf_link_hash_entry *hi = h;
8972
8973 /* Check indirect symbol. */
8974 while (hi->root.type == bfd_link_hash_indirect)
8975 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8976
8977 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8978 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8979 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8980 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8981 else
8982 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8983 def_bfd = flinfo->output_bfd;
8984 if (hi->root.u.def.section != bfd_abs_section_ptr)
8985 def_bfd = hi->root.u.def.section->owner;
8986 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8987 h->root.root.string);
8988 bfd_set_error (bfd_error_bad_value);
8989 eoinfo->failed = TRUE;
8990 return FALSE;
8991 }
8992
8993 /* We don't want to output symbols that have never been mentioned by
8994 a regular file, or that we have been told to strip. However, if
8995 h->indx is set to -2, the symbol is used by a reloc and we must
8996 output it. */
8997 strip = FALSE;
8998 if (h->indx == -2)
8999 ;
9000 else if ((h->def_dynamic
9001 || h->ref_dynamic
9002 || h->root.type == bfd_link_hash_new)
9003 && !h->def_regular
9004 && !h->ref_regular)
9005 strip = TRUE;
9006 else if (flinfo->info->strip == strip_all)
9007 strip = TRUE;
9008 else if (flinfo->info->strip == strip_some
9009 && bfd_hash_lookup (flinfo->info->keep_hash,
9010 h->root.root.string, FALSE, FALSE) == NULL)
9011 strip = TRUE;
9012 else if ((h->root.type == bfd_link_hash_defined
9013 || h->root.type == bfd_link_hash_defweak)
9014 && ((flinfo->info->strip_discarded
9015 && discarded_section (h->root.u.def.section))
9016 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9017 && h->root.u.def.section->owner != NULL
9018 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9019 strip = TRUE;
9020 else if ((h->root.type == bfd_link_hash_undefined
9021 || h->root.type == bfd_link_hash_undefweak)
9022 && h->root.u.undef.abfd != NULL
9023 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9024 strip = TRUE;
9025
9026 /* If we're stripping it, and it's not a dynamic symbol, there's
9027 nothing else to do. However, if it is a forced local symbol or
9028 an ifunc symbol we need to give the backend finish_dynamic_symbol
9029 function a chance to make it dynamic. */
9030 if (strip
9031 && h->dynindx == -1
9032 && h->type != STT_GNU_IFUNC
9033 && !h->forced_local)
9034 return TRUE;
9035
9036 sym.st_value = 0;
9037 sym.st_size = h->size;
9038 sym.st_other = h->other;
9039 if (h->forced_local)
9040 {
9041 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
9042 /* Turn off visibility on local symbol. */
9043 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
9044 }
9045 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
9046 else if (h->unique_global && h->def_regular)
9047 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
9048 else if (h->root.type == bfd_link_hash_undefweak
9049 || h->root.type == bfd_link_hash_defweak)
9050 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
9051 else
9052 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
9053 sym.st_target_internal = h->target_internal;
9054
9055 switch (h->root.type)
9056 {
9057 default:
9058 case bfd_link_hash_new:
9059 case bfd_link_hash_warning:
9060 abort ();
9061 return FALSE;
9062
9063 case bfd_link_hash_undefined:
9064 case bfd_link_hash_undefweak:
9065 input_sec = bfd_und_section_ptr;
9066 sym.st_shndx = SHN_UNDEF;
9067 break;
9068
9069 case bfd_link_hash_defined:
9070 case bfd_link_hash_defweak:
9071 {
9072 input_sec = h->root.u.def.section;
9073 if (input_sec->output_section != NULL)
9074 {
9075 sym.st_shndx =
9076 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9077 input_sec->output_section);
9078 if (sym.st_shndx == SHN_BAD)
9079 {
9080 (*_bfd_error_handler)
9081 (_("%B: could not find output section %A for input section %A"),
9082 flinfo->output_bfd, input_sec->output_section, input_sec);
9083 bfd_set_error (bfd_error_nonrepresentable_section);
9084 eoinfo->failed = TRUE;
9085 return FALSE;
9086 }
9087
9088 /* ELF symbols in relocatable files are section relative,
9089 but in nonrelocatable files they are virtual
9090 addresses. */
9091 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9092 if (!flinfo->info->relocatable)
9093 {
9094 sym.st_value += input_sec->output_section->vma;
9095 if (h->type == STT_TLS)
9096 {
9097 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9098 if (tls_sec != NULL)
9099 sym.st_value -= tls_sec->vma;
9100 }
9101 }
9102 }
9103 else
9104 {
9105 BFD_ASSERT (input_sec->owner == NULL
9106 || (input_sec->owner->flags & DYNAMIC) != 0);
9107 sym.st_shndx = SHN_UNDEF;
9108 input_sec = bfd_und_section_ptr;
9109 }
9110 }
9111 break;
9112
9113 case bfd_link_hash_common:
9114 input_sec = h->root.u.c.p->section;
9115 sym.st_shndx = bed->common_section_index (input_sec);
9116 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9117 break;
9118
9119 case bfd_link_hash_indirect:
9120 /* These symbols are created by symbol versioning. They point
9121 to the decorated version of the name. For example, if the
9122 symbol foo@@GNU_1.2 is the default, which should be used when
9123 foo is used with no version, then we add an indirect symbol
9124 foo which points to foo@@GNU_1.2. We ignore these symbols,
9125 since the indirected symbol is already in the hash table. */
9126 return TRUE;
9127 }
9128
9129 /* Give the processor backend a chance to tweak the symbol value,
9130 and also to finish up anything that needs to be done for this
9131 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9132 forced local syms when non-shared is due to a historical quirk.
9133 STT_GNU_IFUNC symbol must go through PLT. */
9134 if ((h->type == STT_GNU_IFUNC
9135 && h->def_regular
9136 && !flinfo->info->relocatable)
9137 || ((h->dynindx != -1
9138 || h->forced_local)
9139 && ((flinfo->info->shared
9140 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9141 || h->root.type != bfd_link_hash_undefweak))
9142 || !h->forced_local)
9143 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9144 {
9145 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9146 (flinfo->output_bfd, flinfo->info, h, &sym)))
9147 {
9148 eoinfo->failed = TRUE;
9149 return FALSE;
9150 }
9151 }
9152
9153 /* If we are marking the symbol as undefined, and there are no
9154 non-weak references to this symbol from a regular object, then
9155 mark the symbol as weak undefined; if there are non-weak
9156 references, mark the symbol as strong. We can't do this earlier,
9157 because it might not be marked as undefined until the
9158 finish_dynamic_symbol routine gets through with it. */
9159 if (sym.st_shndx == SHN_UNDEF
9160 && h->ref_regular
9161 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9162 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9163 {
9164 int bindtype;
9165 unsigned int type = ELF_ST_TYPE (sym.st_info);
9166
9167 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9168 if (type == STT_GNU_IFUNC)
9169 type = STT_FUNC;
9170
9171 if (h->ref_regular_nonweak)
9172 bindtype = STB_GLOBAL;
9173 else
9174 bindtype = STB_WEAK;
9175 sym.st_info = ELF_ST_INFO (bindtype, type);
9176 }
9177
9178 /* If this is a symbol defined in a dynamic library, don't use the
9179 symbol size from the dynamic library. Relinking an executable
9180 against a new library may introduce gratuitous changes in the
9181 executable's symbols if we keep the size. */
9182 if (sym.st_shndx == SHN_UNDEF
9183 && !h->def_regular
9184 && h->def_dynamic)
9185 sym.st_size = 0;
9186
9187 /* If a non-weak symbol with non-default visibility is not defined
9188 locally, it is a fatal error. */
9189 if (!flinfo->info->relocatable
9190 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9191 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9192 && h->root.type == bfd_link_hash_undefined
9193 && !h->def_regular)
9194 {
9195 const char *msg;
9196
9197 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9198 msg = _("%B: protected symbol `%s' isn't defined");
9199 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9200 msg = _("%B: internal symbol `%s' isn't defined");
9201 else
9202 msg = _("%B: hidden symbol `%s' isn't defined");
9203 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9204 bfd_set_error (bfd_error_bad_value);
9205 eoinfo->failed = TRUE;
9206 return FALSE;
9207 }
9208
9209 /* If this symbol should be put in the .dynsym section, then put it
9210 there now. We already know the symbol index. We also fill in
9211 the entry in the .hash section. */
9212 if (flinfo->dynsym_sec != NULL
9213 && h->dynindx != -1
9214 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9215 {
9216 bfd_byte *esym;
9217
9218 /* Since there is no version information in the dynamic string,
9219 if there is no version info in symbol version section, we will
9220 have a run-time problem. */
9221 if (h->verinfo.verdef == NULL)
9222 {
9223 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9224
9225 if (p && p [1] != '\0')
9226 {
9227 (*_bfd_error_handler)
9228 (_("%B: No symbol version section for versioned symbol `%s'"),
9229 flinfo->output_bfd, h->root.root.string);
9230 eoinfo->failed = TRUE;
9231 return FALSE;
9232 }
9233 }
9234
9235 sym.st_name = h->dynstr_index;
9236 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9237 if (!check_dynsym (flinfo->output_bfd, &sym))
9238 {
9239 eoinfo->failed = TRUE;
9240 return FALSE;
9241 }
9242 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9243
9244 if (flinfo->hash_sec != NULL)
9245 {
9246 size_t hash_entry_size;
9247 bfd_byte *bucketpos;
9248 bfd_vma chain;
9249 size_t bucketcount;
9250 size_t bucket;
9251
9252 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9253 bucket = h->u.elf_hash_value % bucketcount;
9254
9255 hash_entry_size
9256 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9257 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9258 + (bucket + 2) * hash_entry_size);
9259 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9260 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9261 bucketpos);
9262 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9263 ((bfd_byte *) flinfo->hash_sec->contents
9264 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9265 }
9266
9267 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9268 {
9269 Elf_Internal_Versym iversym;
9270 Elf_External_Versym *eversym;
9271
9272 if (!h->def_regular)
9273 {
9274 if (h->verinfo.verdef == NULL
9275 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9276 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9277 iversym.vs_vers = 0;
9278 else
9279 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9280 }
9281 else
9282 {
9283 if (h->verinfo.vertree == NULL)
9284 iversym.vs_vers = 1;
9285 else
9286 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9287 if (flinfo->info->create_default_symver)
9288 iversym.vs_vers++;
9289 }
9290
9291 if (h->hidden)
9292 iversym.vs_vers |= VERSYM_HIDDEN;
9293
9294 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9295 eversym += h->dynindx;
9296 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9297 }
9298 }
9299
9300 /* If the symbol is undefined, and we didn't output it to .dynsym,
9301 strip it from .symtab too. Obviously we can't do this for
9302 relocatable output or when needed for --emit-relocs. */
9303 else if (input_sec == bfd_und_section_ptr
9304 && h->indx != -2
9305 && !flinfo->info->relocatable)
9306 return TRUE;
9307 /* Also strip others that we couldn't earlier due to dynamic symbol
9308 processing. */
9309 if (strip)
9310 return TRUE;
9311 if ((input_sec->flags & SEC_EXCLUDE) != 0)
9312 return TRUE;
9313
9314 /* Output a FILE symbol so that following locals are not associated
9315 with the wrong input file. We need one for forced local symbols
9316 if we've seen more than one FILE symbol or when we have exactly
9317 one FILE symbol but global symbols are present in a file other
9318 than the one with the FILE symbol. We also need one if linker
9319 defined symbols are present. In practice these conditions are
9320 always met, so just emit the FILE symbol unconditionally. */
9321 if (eoinfo->localsyms
9322 && !eoinfo->file_sym_done
9323 && eoinfo->flinfo->filesym_count != 0)
9324 {
9325 Elf_Internal_Sym fsym;
9326
9327 memset (&fsym, 0, sizeof (fsym));
9328 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9329 fsym.st_shndx = SHN_ABS;
9330 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
9331 bfd_und_section_ptr, NULL))
9332 return FALSE;
9333
9334 eoinfo->file_sym_done = TRUE;
9335 }
9336
9337 indx = bfd_get_symcount (flinfo->output_bfd);
9338 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
9339 input_sec, h);
9340 if (ret == 0)
9341 {
9342 eoinfo->failed = TRUE;
9343 return FALSE;
9344 }
9345 else if (ret == 1)
9346 h->indx = indx;
9347 else if (h->indx == -2)
9348 abort();
9349
9350 return TRUE;
9351 }
9352
9353 /* Return TRUE if special handling is done for relocs in SEC against
9354 symbols defined in discarded sections. */
9355
9356 static bfd_boolean
9357 elf_section_ignore_discarded_relocs (asection *sec)
9358 {
9359 const struct elf_backend_data *bed;
9360
9361 switch (sec->sec_info_type)
9362 {
9363 case SEC_INFO_TYPE_STABS:
9364 case SEC_INFO_TYPE_EH_FRAME:
9365 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
9366 return TRUE;
9367 default:
9368 break;
9369 }
9370
9371 bed = get_elf_backend_data (sec->owner);
9372 if (bed->elf_backend_ignore_discarded_relocs != NULL
9373 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9374 return TRUE;
9375
9376 return FALSE;
9377 }
9378
9379 /* Return a mask saying how ld should treat relocations in SEC against
9380 symbols defined in discarded sections. If this function returns
9381 COMPLAIN set, ld will issue a warning message. If this function
9382 returns PRETEND set, and the discarded section was link-once and the
9383 same size as the kept link-once section, ld will pretend that the
9384 symbol was actually defined in the kept section. Otherwise ld will
9385 zero the reloc (at least that is the intent, but some cooperation by
9386 the target dependent code is needed, particularly for REL targets). */
9387
9388 unsigned int
9389 _bfd_elf_default_action_discarded (asection *sec)
9390 {
9391 if (sec->flags & SEC_DEBUGGING)
9392 return PRETEND;
9393
9394 if (strcmp (".eh_frame", sec->name) == 0)
9395 return 0;
9396
9397 if (strcmp (".gcc_except_table", sec->name) == 0)
9398 return 0;
9399
9400 return COMPLAIN | PRETEND;
9401 }
9402
9403 /* Find a match between a section and a member of a section group. */
9404
9405 static asection *
9406 match_group_member (asection *sec, asection *group,
9407 struct bfd_link_info *info)
9408 {
9409 asection *first = elf_next_in_group (group);
9410 asection *s = first;
9411
9412 while (s != NULL)
9413 {
9414 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9415 return s;
9416
9417 s = elf_next_in_group (s);
9418 if (s == first)
9419 break;
9420 }
9421
9422 return NULL;
9423 }
9424
9425 /* Check if the kept section of a discarded section SEC can be used
9426 to replace it. Return the replacement if it is OK. Otherwise return
9427 NULL. */
9428
9429 asection *
9430 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9431 {
9432 asection *kept;
9433
9434 kept = sec->kept_section;
9435 if (kept != NULL)
9436 {
9437 if ((kept->flags & SEC_GROUP) != 0)
9438 kept = match_group_member (sec, kept, info);
9439 if (kept != NULL
9440 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9441 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9442 kept = NULL;
9443 sec->kept_section = kept;
9444 }
9445 return kept;
9446 }
9447
9448 /* Link an input file into the linker output file. This function
9449 handles all the sections and relocations of the input file at once.
9450 This is so that we only have to read the local symbols once, and
9451 don't have to keep them in memory. */
9452
9453 static bfd_boolean
9454 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9455 {
9456 int (*relocate_section)
9457 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9458 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9459 bfd *output_bfd;
9460 Elf_Internal_Shdr *symtab_hdr;
9461 size_t locsymcount;
9462 size_t extsymoff;
9463 Elf_Internal_Sym *isymbuf;
9464 Elf_Internal_Sym *isym;
9465 Elf_Internal_Sym *isymend;
9466 long *pindex;
9467 asection **ppsection;
9468 asection *o;
9469 const struct elf_backend_data *bed;
9470 struct elf_link_hash_entry **sym_hashes;
9471 bfd_size_type address_size;
9472 bfd_vma r_type_mask;
9473 int r_sym_shift;
9474 bfd_boolean have_file_sym = FALSE;
9475
9476 output_bfd = flinfo->output_bfd;
9477 bed = get_elf_backend_data (output_bfd);
9478 relocate_section = bed->elf_backend_relocate_section;
9479
9480 /* If this is a dynamic object, we don't want to do anything here:
9481 we don't want the local symbols, and we don't want the section
9482 contents. */
9483 if ((input_bfd->flags & DYNAMIC) != 0)
9484 return TRUE;
9485
9486 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9487 if (elf_bad_symtab (input_bfd))
9488 {
9489 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9490 extsymoff = 0;
9491 }
9492 else
9493 {
9494 locsymcount = symtab_hdr->sh_info;
9495 extsymoff = symtab_hdr->sh_info;
9496 }
9497
9498 /* Read the local symbols. */
9499 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9500 if (isymbuf == NULL && locsymcount != 0)
9501 {
9502 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9503 flinfo->internal_syms,
9504 flinfo->external_syms,
9505 flinfo->locsym_shndx);
9506 if (isymbuf == NULL)
9507 return FALSE;
9508 }
9509
9510 /* Find local symbol sections and adjust values of symbols in
9511 SEC_MERGE sections. Write out those local symbols we know are
9512 going into the output file. */
9513 isymend = isymbuf + locsymcount;
9514 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9515 isym < isymend;
9516 isym++, pindex++, ppsection++)
9517 {
9518 asection *isec;
9519 const char *name;
9520 Elf_Internal_Sym osym;
9521 long indx;
9522 int ret;
9523
9524 *pindex = -1;
9525
9526 if (elf_bad_symtab (input_bfd))
9527 {
9528 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9529 {
9530 *ppsection = NULL;
9531 continue;
9532 }
9533 }
9534
9535 if (isym->st_shndx == SHN_UNDEF)
9536 isec = bfd_und_section_ptr;
9537 else if (isym->st_shndx == SHN_ABS)
9538 isec = bfd_abs_section_ptr;
9539 else if (isym->st_shndx == SHN_COMMON)
9540 isec = bfd_com_section_ptr;
9541 else
9542 {
9543 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9544 if (isec == NULL)
9545 {
9546 /* Don't attempt to output symbols with st_shnx in the
9547 reserved range other than SHN_ABS and SHN_COMMON. */
9548 *ppsection = NULL;
9549 continue;
9550 }
9551 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9552 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9553 isym->st_value =
9554 _bfd_merged_section_offset (output_bfd, &isec,
9555 elf_section_data (isec)->sec_info,
9556 isym->st_value);
9557 }
9558
9559 *ppsection = isec;
9560
9561 /* Don't output the first, undefined, symbol. In fact, don't
9562 output any undefined local symbol. */
9563 if (isec == bfd_und_section_ptr)
9564 continue;
9565
9566 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9567 {
9568 /* We never output section symbols. Instead, we use the
9569 section symbol of the corresponding section in the output
9570 file. */
9571 continue;
9572 }
9573
9574 /* If we are stripping all symbols, we don't want to output this
9575 one. */
9576 if (flinfo->info->strip == strip_all)
9577 continue;
9578
9579 /* If we are discarding all local symbols, we don't want to
9580 output this one. If we are generating a relocatable output
9581 file, then some of the local symbols may be required by
9582 relocs; we output them below as we discover that they are
9583 needed. */
9584 if (flinfo->info->discard == discard_all)
9585 continue;
9586
9587 /* If this symbol is defined in a section which we are
9588 discarding, we don't need to keep it. */
9589 if (isym->st_shndx != SHN_UNDEF
9590 && isym->st_shndx < SHN_LORESERVE
9591 && bfd_section_removed_from_list (output_bfd,
9592 isec->output_section))
9593 continue;
9594
9595 /* Get the name of the symbol. */
9596 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9597 isym->st_name);
9598 if (name == NULL)
9599 return FALSE;
9600
9601 /* See if we are discarding symbols with this name. */
9602 if ((flinfo->info->strip == strip_some
9603 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9604 == NULL))
9605 || (((flinfo->info->discard == discard_sec_merge
9606 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9607 || flinfo->info->discard == discard_l)
9608 && bfd_is_local_label_name (input_bfd, name)))
9609 continue;
9610
9611 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9612 {
9613 if (input_bfd->lto_output)
9614 /* -flto puts a temp file name here. This means builds
9615 are not reproducible. Discard the symbol. */
9616 continue;
9617 have_file_sym = TRUE;
9618 flinfo->filesym_count += 1;
9619 }
9620 if (!have_file_sym)
9621 {
9622 /* In the absence of debug info, bfd_find_nearest_line uses
9623 FILE symbols to determine the source file for local
9624 function symbols. Provide a FILE symbol here if input
9625 files lack such, so that their symbols won't be
9626 associated with a previous input file. It's not the
9627 source file, but the best we can do. */
9628 have_file_sym = TRUE;
9629 flinfo->filesym_count += 1;
9630 memset (&osym, 0, sizeof (osym));
9631 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9632 osym.st_shndx = SHN_ABS;
9633 if (!elf_link_output_symstrtab (flinfo,
9634 (input_bfd->lto_output ? NULL
9635 : input_bfd->filename),
9636 &osym, bfd_abs_section_ptr,
9637 NULL))
9638 return FALSE;
9639 }
9640
9641 osym = *isym;
9642
9643 /* Adjust the section index for the output file. */
9644 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9645 isec->output_section);
9646 if (osym.st_shndx == SHN_BAD)
9647 return FALSE;
9648
9649 /* ELF symbols in relocatable files are section relative, but
9650 in executable files they are virtual addresses. Note that
9651 this code assumes that all ELF sections have an associated
9652 BFD section with a reasonable value for output_offset; below
9653 we assume that they also have a reasonable value for
9654 output_section. Any special sections must be set up to meet
9655 these requirements. */
9656 osym.st_value += isec->output_offset;
9657 if (!flinfo->info->relocatable)
9658 {
9659 osym.st_value += isec->output_section->vma;
9660 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9661 {
9662 /* STT_TLS symbols are relative to PT_TLS segment base. */
9663 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9664 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9665 }
9666 }
9667
9668 indx = bfd_get_symcount (output_bfd);
9669 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
9670 if (ret == 0)
9671 return FALSE;
9672 else if (ret == 1)
9673 *pindex = indx;
9674 }
9675
9676 if (bed->s->arch_size == 32)
9677 {
9678 r_type_mask = 0xff;
9679 r_sym_shift = 8;
9680 address_size = 4;
9681 }
9682 else
9683 {
9684 r_type_mask = 0xffffffff;
9685 r_sym_shift = 32;
9686 address_size = 8;
9687 }
9688
9689 /* Relocate the contents of each section. */
9690 sym_hashes = elf_sym_hashes (input_bfd);
9691 for (o = input_bfd->sections; o != NULL; o = o->next)
9692 {
9693 bfd_byte *contents;
9694
9695 if (! o->linker_mark)
9696 {
9697 /* This section was omitted from the link. */
9698 continue;
9699 }
9700
9701 if (flinfo->info->relocatable
9702 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9703 {
9704 /* Deal with the group signature symbol. */
9705 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9706 unsigned long symndx = sec_data->this_hdr.sh_info;
9707 asection *osec = o->output_section;
9708
9709 if (symndx >= locsymcount
9710 || (elf_bad_symtab (input_bfd)
9711 && flinfo->sections[symndx] == NULL))
9712 {
9713 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9714 while (h->root.type == bfd_link_hash_indirect
9715 || h->root.type == bfd_link_hash_warning)
9716 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9717 /* Arrange for symbol to be output. */
9718 h->indx = -2;
9719 elf_section_data (osec)->this_hdr.sh_info = -2;
9720 }
9721 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9722 {
9723 /* We'll use the output section target_index. */
9724 asection *sec = flinfo->sections[symndx]->output_section;
9725 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9726 }
9727 else
9728 {
9729 if (flinfo->indices[symndx] == -1)
9730 {
9731 /* Otherwise output the local symbol now. */
9732 Elf_Internal_Sym sym = isymbuf[symndx];
9733 asection *sec = flinfo->sections[symndx]->output_section;
9734 const char *name;
9735 long indx;
9736 int ret;
9737
9738 name = bfd_elf_string_from_elf_section (input_bfd,
9739 symtab_hdr->sh_link,
9740 sym.st_name);
9741 if (name == NULL)
9742 return FALSE;
9743
9744 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9745 sec);
9746 if (sym.st_shndx == SHN_BAD)
9747 return FALSE;
9748
9749 sym.st_value += o->output_offset;
9750
9751 indx = bfd_get_symcount (output_bfd);
9752 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
9753 NULL);
9754 if (ret == 0)
9755 return FALSE;
9756 else if (ret == 1)
9757 flinfo->indices[symndx] = indx;
9758 else
9759 abort ();
9760 }
9761 elf_section_data (osec)->this_hdr.sh_info
9762 = flinfo->indices[symndx];
9763 }
9764 }
9765
9766 if ((o->flags & SEC_HAS_CONTENTS) == 0
9767 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9768 continue;
9769
9770 if ((o->flags & SEC_LINKER_CREATED) != 0)
9771 {
9772 /* Section was created by _bfd_elf_link_create_dynamic_sections
9773 or somesuch. */
9774 continue;
9775 }
9776
9777 /* Get the contents of the section. They have been cached by a
9778 relaxation routine. Note that o is a section in an input
9779 file, so the contents field will not have been set by any of
9780 the routines which work on output files. */
9781 if (elf_section_data (o)->this_hdr.contents != NULL)
9782 {
9783 contents = elf_section_data (o)->this_hdr.contents;
9784 if (bed->caches_rawsize
9785 && o->rawsize != 0
9786 && o->rawsize < o->size)
9787 {
9788 memcpy (flinfo->contents, contents, o->rawsize);
9789 contents = flinfo->contents;
9790 }
9791 }
9792 else
9793 {
9794 contents = flinfo->contents;
9795 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9796 return FALSE;
9797 }
9798
9799 if ((o->flags & SEC_RELOC) != 0)
9800 {
9801 Elf_Internal_Rela *internal_relocs;
9802 Elf_Internal_Rela *rel, *relend;
9803 int action_discarded;
9804 int ret;
9805
9806 /* Get the swapped relocs. */
9807 internal_relocs
9808 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9809 flinfo->internal_relocs, FALSE);
9810 if (internal_relocs == NULL
9811 && o->reloc_count > 0)
9812 return FALSE;
9813
9814 /* We need to reverse-copy input .ctors/.dtors sections if
9815 they are placed in .init_array/.finit_array for output. */
9816 if (o->size > address_size
9817 && ((strncmp (o->name, ".ctors", 6) == 0
9818 && strcmp (o->output_section->name,
9819 ".init_array") == 0)
9820 || (strncmp (o->name, ".dtors", 6) == 0
9821 && strcmp (o->output_section->name,
9822 ".fini_array") == 0))
9823 && (o->name[6] == 0 || o->name[6] == '.'))
9824 {
9825 if (o->size != o->reloc_count * address_size)
9826 {
9827 (*_bfd_error_handler)
9828 (_("error: %B: size of section %A is not "
9829 "multiple of address size"),
9830 input_bfd, o);
9831 bfd_set_error (bfd_error_on_input);
9832 return FALSE;
9833 }
9834 o->flags |= SEC_ELF_REVERSE_COPY;
9835 }
9836
9837 action_discarded = -1;
9838 if (!elf_section_ignore_discarded_relocs (o))
9839 action_discarded = (*bed->action_discarded) (o);
9840
9841 /* Run through the relocs evaluating complex reloc symbols and
9842 looking for relocs against symbols from discarded sections
9843 or section symbols from removed link-once sections.
9844 Complain about relocs against discarded sections. Zero
9845 relocs against removed link-once sections. */
9846
9847 rel = internal_relocs;
9848 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9849 for ( ; rel < relend; rel++)
9850 {
9851 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9852 unsigned int s_type;
9853 asection **ps, *sec;
9854 struct elf_link_hash_entry *h = NULL;
9855 const char *sym_name;
9856
9857 if (r_symndx == STN_UNDEF)
9858 continue;
9859
9860 if (r_symndx >= locsymcount
9861 || (elf_bad_symtab (input_bfd)
9862 && flinfo->sections[r_symndx] == NULL))
9863 {
9864 h = sym_hashes[r_symndx - extsymoff];
9865
9866 /* Badly formatted input files can contain relocs that
9867 reference non-existant symbols. Check here so that
9868 we do not seg fault. */
9869 if (h == NULL)
9870 {
9871 char buffer [32];
9872
9873 sprintf_vma (buffer, rel->r_info);
9874 (*_bfd_error_handler)
9875 (_("error: %B contains a reloc (0x%s) for section %A "
9876 "that references a non-existent global symbol"),
9877 input_bfd, o, buffer);
9878 bfd_set_error (bfd_error_bad_value);
9879 return FALSE;
9880 }
9881
9882 while (h->root.type == bfd_link_hash_indirect
9883 || h->root.type == bfd_link_hash_warning)
9884 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9885
9886 s_type = h->type;
9887
9888 /* If a plugin symbol is referenced from a non-IR file,
9889 mark the symbol as undefined. Note that the
9890 linker may attach linker created dynamic sections
9891 to the plugin bfd. Symbols defined in linker
9892 created sections are not plugin symbols. */
9893 if (h->root.non_ir_ref
9894 && (h->root.type == bfd_link_hash_defined
9895 || h->root.type == bfd_link_hash_defweak)
9896 && (h->root.u.def.section->flags
9897 & SEC_LINKER_CREATED) == 0
9898 && h->root.u.def.section->owner != NULL
9899 && (h->root.u.def.section->owner->flags
9900 & BFD_PLUGIN) != 0)
9901 {
9902 h->root.type = bfd_link_hash_undefined;
9903 h->root.u.undef.abfd = h->root.u.def.section->owner;
9904 }
9905
9906 ps = NULL;
9907 if (h->root.type == bfd_link_hash_defined
9908 || h->root.type == bfd_link_hash_defweak)
9909 ps = &h->root.u.def.section;
9910
9911 sym_name = h->root.root.string;
9912 }
9913 else
9914 {
9915 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9916
9917 s_type = ELF_ST_TYPE (sym->st_info);
9918 ps = &flinfo->sections[r_symndx];
9919 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9920 sym, *ps);
9921 }
9922
9923 if ((s_type == STT_RELC || s_type == STT_SRELC)
9924 && !flinfo->info->relocatable)
9925 {
9926 bfd_vma val;
9927 bfd_vma dot = (rel->r_offset
9928 + o->output_offset + o->output_section->vma);
9929 #ifdef DEBUG
9930 printf ("Encountered a complex symbol!");
9931 printf (" (input_bfd %s, section %s, reloc %ld\n",
9932 input_bfd->filename, o->name,
9933 (long) (rel - internal_relocs));
9934 printf (" symbol: idx %8.8lx, name %s\n",
9935 r_symndx, sym_name);
9936 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9937 (unsigned long) rel->r_info,
9938 (unsigned long) rel->r_offset);
9939 #endif
9940 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9941 isymbuf, locsymcount, s_type == STT_SRELC))
9942 return FALSE;
9943
9944 /* Symbol evaluated OK. Update to absolute value. */
9945 set_symbol_value (input_bfd, isymbuf, locsymcount,
9946 r_symndx, val);
9947 continue;
9948 }
9949
9950 if (action_discarded != -1 && ps != NULL)
9951 {
9952 /* Complain if the definition comes from a
9953 discarded section. */
9954 if ((sec = *ps) != NULL && discarded_section (sec))
9955 {
9956 BFD_ASSERT (r_symndx != STN_UNDEF);
9957 if (action_discarded & COMPLAIN)
9958 (*flinfo->info->callbacks->einfo)
9959 (_("%X`%s' referenced in section `%A' of %B: "
9960 "defined in discarded section `%A' of %B\n"),
9961 sym_name, o, input_bfd, sec, sec->owner);
9962
9963 /* Try to do the best we can to support buggy old
9964 versions of gcc. Pretend that the symbol is
9965 really defined in the kept linkonce section.
9966 FIXME: This is quite broken. Modifying the
9967 symbol here means we will be changing all later
9968 uses of the symbol, not just in this section. */
9969 if (action_discarded & PRETEND)
9970 {
9971 asection *kept;
9972
9973 kept = _bfd_elf_check_kept_section (sec,
9974 flinfo->info);
9975 if (kept != NULL)
9976 {
9977 *ps = kept;
9978 continue;
9979 }
9980 }
9981 }
9982 }
9983 }
9984
9985 /* Relocate the section by invoking a back end routine.
9986
9987 The back end routine is responsible for adjusting the
9988 section contents as necessary, and (if using Rela relocs
9989 and generating a relocatable output file) adjusting the
9990 reloc addend as necessary.
9991
9992 The back end routine does not have to worry about setting
9993 the reloc address or the reloc symbol index.
9994
9995 The back end routine is given a pointer to the swapped in
9996 internal symbols, and can access the hash table entries
9997 for the external symbols via elf_sym_hashes (input_bfd).
9998
9999 When generating relocatable output, the back end routine
10000 must handle STB_LOCAL/STT_SECTION symbols specially. The
10001 output symbol is going to be a section symbol
10002 corresponding to the output section, which will require
10003 the addend to be adjusted. */
10004
10005 ret = (*relocate_section) (output_bfd, flinfo->info,
10006 input_bfd, o, contents,
10007 internal_relocs,
10008 isymbuf,
10009 flinfo->sections);
10010 if (!ret)
10011 return FALSE;
10012
10013 if (ret == 2
10014 || flinfo->info->relocatable
10015 || flinfo->info->emitrelocations)
10016 {
10017 Elf_Internal_Rela *irela;
10018 Elf_Internal_Rela *irelaend, *irelamid;
10019 bfd_vma last_offset;
10020 struct elf_link_hash_entry **rel_hash;
10021 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10022 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10023 unsigned int next_erel;
10024 bfd_boolean rela_normal;
10025 struct bfd_elf_section_data *esdi, *esdo;
10026
10027 esdi = elf_section_data (o);
10028 esdo = elf_section_data (o->output_section);
10029 rela_normal = FALSE;
10030
10031 /* Adjust the reloc addresses and symbol indices. */
10032
10033 irela = internal_relocs;
10034 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
10035 rel_hash = esdo->rel.hashes + esdo->rel.count;
10036 /* We start processing the REL relocs, if any. When we reach
10037 IRELAMID in the loop, we switch to the RELA relocs. */
10038 irelamid = irela;
10039 if (esdi->rel.hdr != NULL)
10040 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10041 * bed->s->int_rels_per_ext_rel);
10042 rel_hash_list = rel_hash;
10043 rela_hash_list = NULL;
10044 last_offset = o->output_offset;
10045 if (!flinfo->info->relocatable)
10046 last_offset += o->output_section->vma;
10047 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10048 {
10049 unsigned long r_symndx;
10050 asection *sec;
10051 Elf_Internal_Sym sym;
10052
10053 if (next_erel == bed->s->int_rels_per_ext_rel)
10054 {
10055 rel_hash++;
10056 next_erel = 0;
10057 }
10058
10059 if (irela == irelamid)
10060 {
10061 rel_hash = esdo->rela.hashes + esdo->rela.count;
10062 rela_hash_list = rel_hash;
10063 rela_normal = bed->rela_normal;
10064 }
10065
10066 irela->r_offset = _bfd_elf_section_offset (output_bfd,
10067 flinfo->info, o,
10068 irela->r_offset);
10069 if (irela->r_offset >= (bfd_vma) -2)
10070 {
10071 /* This is a reloc for a deleted entry or somesuch.
10072 Turn it into an R_*_NONE reloc, at the same
10073 offset as the last reloc. elf_eh_frame.c and
10074 bfd_elf_discard_info rely on reloc offsets
10075 being ordered. */
10076 irela->r_offset = last_offset;
10077 irela->r_info = 0;
10078 irela->r_addend = 0;
10079 continue;
10080 }
10081
10082 irela->r_offset += o->output_offset;
10083
10084 /* Relocs in an executable have to be virtual addresses. */
10085 if (!flinfo->info->relocatable)
10086 irela->r_offset += o->output_section->vma;
10087
10088 last_offset = irela->r_offset;
10089
10090 r_symndx = irela->r_info >> r_sym_shift;
10091 if (r_symndx == STN_UNDEF)
10092 continue;
10093
10094 if (r_symndx >= locsymcount
10095 || (elf_bad_symtab (input_bfd)
10096 && flinfo->sections[r_symndx] == NULL))
10097 {
10098 struct elf_link_hash_entry *rh;
10099 unsigned long indx;
10100
10101 /* This is a reloc against a global symbol. We
10102 have not yet output all the local symbols, so
10103 we do not know the symbol index of any global
10104 symbol. We set the rel_hash entry for this
10105 reloc to point to the global hash table entry
10106 for this symbol. The symbol index is then
10107 set at the end of bfd_elf_final_link. */
10108 indx = r_symndx - extsymoff;
10109 rh = elf_sym_hashes (input_bfd)[indx];
10110 while (rh->root.type == bfd_link_hash_indirect
10111 || rh->root.type == bfd_link_hash_warning)
10112 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10113
10114 /* Setting the index to -2 tells
10115 elf_link_output_extsym that this symbol is
10116 used by a reloc. */
10117 BFD_ASSERT (rh->indx < 0);
10118 rh->indx = -2;
10119
10120 *rel_hash = rh;
10121
10122 continue;
10123 }
10124
10125 /* This is a reloc against a local symbol. */
10126
10127 *rel_hash = NULL;
10128 sym = isymbuf[r_symndx];
10129 sec = flinfo->sections[r_symndx];
10130 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10131 {
10132 /* I suppose the backend ought to fill in the
10133 section of any STT_SECTION symbol against a
10134 processor specific section. */
10135 r_symndx = STN_UNDEF;
10136 if (bfd_is_abs_section (sec))
10137 ;
10138 else if (sec == NULL || sec->owner == NULL)
10139 {
10140 bfd_set_error (bfd_error_bad_value);
10141 return FALSE;
10142 }
10143 else
10144 {
10145 asection *osec = sec->output_section;
10146
10147 /* If we have discarded a section, the output
10148 section will be the absolute section. In
10149 case of discarded SEC_MERGE sections, use
10150 the kept section. relocate_section should
10151 have already handled discarded linkonce
10152 sections. */
10153 if (bfd_is_abs_section (osec)
10154 && sec->kept_section != NULL
10155 && sec->kept_section->output_section != NULL)
10156 {
10157 osec = sec->kept_section->output_section;
10158 irela->r_addend -= osec->vma;
10159 }
10160
10161 if (!bfd_is_abs_section (osec))
10162 {
10163 r_symndx = osec->target_index;
10164 if (r_symndx == STN_UNDEF)
10165 {
10166 irela->r_addend += osec->vma;
10167 osec = _bfd_nearby_section (output_bfd, osec,
10168 osec->vma);
10169 irela->r_addend -= osec->vma;
10170 r_symndx = osec->target_index;
10171 }
10172 }
10173 }
10174
10175 /* Adjust the addend according to where the
10176 section winds up in the output section. */
10177 if (rela_normal)
10178 irela->r_addend += sec->output_offset;
10179 }
10180 else
10181 {
10182 if (flinfo->indices[r_symndx] == -1)
10183 {
10184 unsigned long shlink;
10185 const char *name;
10186 asection *osec;
10187 long indx;
10188
10189 if (flinfo->info->strip == strip_all)
10190 {
10191 /* You can't do ld -r -s. */
10192 bfd_set_error (bfd_error_invalid_operation);
10193 return FALSE;
10194 }
10195
10196 /* This symbol was skipped earlier, but
10197 since it is needed by a reloc, we
10198 must output it now. */
10199 shlink = symtab_hdr->sh_link;
10200 name = (bfd_elf_string_from_elf_section
10201 (input_bfd, shlink, sym.st_name));
10202 if (name == NULL)
10203 return FALSE;
10204
10205 osec = sec->output_section;
10206 sym.st_shndx =
10207 _bfd_elf_section_from_bfd_section (output_bfd,
10208 osec);
10209 if (sym.st_shndx == SHN_BAD)
10210 return FALSE;
10211
10212 sym.st_value += sec->output_offset;
10213 if (!flinfo->info->relocatable)
10214 {
10215 sym.st_value += osec->vma;
10216 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10217 {
10218 /* STT_TLS symbols are relative to PT_TLS
10219 segment base. */
10220 BFD_ASSERT (elf_hash_table (flinfo->info)
10221 ->tls_sec != NULL);
10222 sym.st_value -= (elf_hash_table (flinfo->info)
10223 ->tls_sec->vma);
10224 }
10225 }
10226
10227 indx = bfd_get_symcount (output_bfd);
10228 ret = elf_link_output_symstrtab (flinfo, name,
10229 &sym, sec,
10230 NULL);
10231 if (ret == 0)
10232 return FALSE;
10233 else if (ret == 1)
10234 flinfo->indices[r_symndx] = indx;
10235 else
10236 abort ();
10237 }
10238
10239 r_symndx = flinfo->indices[r_symndx];
10240 }
10241
10242 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10243 | (irela->r_info & r_type_mask));
10244 }
10245
10246 /* Swap out the relocs. */
10247 input_rel_hdr = esdi->rel.hdr;
10248 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10249 {
10250 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10251 input_rel_hdr,
10252 internal_relocs,
10253 rel_hash_list))
10254 return FALSE;
10255 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10256 * bed->s->int_rels_per_ext_rel);
10257 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10258 }
10259
10260 input_rela_hdr = esdi->rela.hdr;
10261 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10262 {
10263 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10264 input_rela_hdr,
10265 internal_relocs,
10266 rela_hash_list))
10267 return FALSE;
10268 }
10269 }
10270 }
10271
10272 /* Write out the modified section contents. */
10273 if (bed->elf_backend_write_section
10274 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10275 contents))
10276 {
10277 /* Section written out. */
10278 }
10279 else switch (o->sec_info_type)
10280 {
10281 case SEC_INFO_TYPE_STABS:
10282 if (! (_bfd_write_section_stabs
10283 (output_bfd,
10284 &elf_hash_table (flinfo->info)->stab_info,
10285 o, &elf_section_data (o)->sec_info, contents)))
10286 return FALSE;
10287 break;
10288 case SEC_INFO_TYPE_MERGE:
10289 if (! _bfd_write_merged_section (output_bfd, o,
10290 elf_section_data (o)->sec_info))
10291 return FALSE;
10292 break;
10293 case SEC_INFO_TYPE_EH_FRAME:
10294 {
10295 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10296 o, contents))
10297 return FALSE;
10298 }
10299 break;
10300 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10301 {
10302 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
10303 flinfo->info,
10304 o, contents))
10305 return FALSE;
10306 }
10307 break;
10308 default:
10309 {
10310 /* FIXME: octets_per_byte. */
10311 if (! (o->flags & SEC_EXCLUDE))
10312 {
10313 file_ptr offset = (file_ptr) o->output_offset;
10314 bfd_size_type todo = o->size;
10315 if ((o->flags & SEC_ELF_REVERSE_COPY))
10316 {
10317 /* Reverse-copy input section to output. */
10318 do
10319 {
10320 todo -= address_size;
10321 if (! bfd_set_section_contents (output_bfd,
10322 o->output_section,
10323 contents + todo,
10324 offset,
10325 address_size))
10326 return FALSE;
10327 if (todo == 0)
10328 break;
10329 offset += address_size;
10330 }
10331 while (1);
10332 }
10333 else if (! bfd_set_section_contents (output_bfd,
10334 o->output_section,
10335 contents,
10336 offset, todo))
10337 return FALSE;
10338 }
10339 }
10340 break;
10341 }
10342 }
10343
10344 return TRUE;
10345 }
10346
10347 /* Generate a reloc when linking an ELF file. This is a reloc
10348 requested by the linker, and does not come from any input file. This
10349 is used to build constructor and destructor tables when linking
10350 with -Ur. */
10351
10352 static bfd_boolean
10353 elf_reloc_link_order (bfd *output_bfd,
10354 struct bfd_link_info *info,
10355 asection *output_section,
10356 struct bfd_link_order *link_order)
10357 {
10358 reloc_howto_type *howto;
10359 long indx;
10360 bfd_vma offset;
10361 bfd_vma addend;
10362 struct bfd_elf_section_reloc_data *reldata;
10363 struct elf_link_hash_entry **rel_hash_ptr;
10364 Elf_Internal_Shdr *rel_hdr;
10365 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10366 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10367 bfd_byte *erel;
10368 unsigned int i;
10369 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10370
10371 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10372 if (howto == NULL)
10373 {
10374 bfd_set_error (bfd_error_bad_value);
10375 return FALSE;
10376 }
10377
10378 addend = link_order->u.reloc.p->addend;
10379
10380 if (esdo->rel.hdr)
10381 reldata = &esdo->rel;
10382 else if (esdo->rela.hdr)
10383 reldata = &esdo->rela;
10384 else
10385 {
10386 reldata = NULL;
10387 BFD_ASSERT (0);
10388 }
10389
10390 /* Figure out the symbol index. */
10391 rel_hash_ptr = reldata->hashes + reldata->count;
10392 if (link_order->type == bfd_section_reloc_link_order)
10393 {
10394 indx = link_order->u.reloc.p->u.section->target_index;
10395 BFD_ASSERT (indx != 0);
10396 *rel_hash_ptr = NULL;
10397 }
10398 else
10399 {
10400 struct elf_link_hash_entry *h;
10401
10402 /* Treat a reloc against a defined symbol as though it were
10403 actually against the section. */
10404 h = ((struct elf_link_hash_entry *)
10405 bfd_wrapped_link_hash_lookup (output_bfd, info,
10406 link_order->u.reloc.p->u.name,
10407 FALSE, FALSE, TRUE));
10408 if (h != NULL
10409 && (h->root.type == bfd_link_hash_defined
10410 || h->root.type == bfd_link_hash_defweak))
10411 {
10412 asection *section;
10413
10414 section = h->root.u.def.section;
10415 indx = section->output_section->target_index;
10416 *rel_hash_ptr = NULL;
10417 /* It seems that we ought to add the symbol value to the
10418 addend here, but in practice it has already been added
10419 because it was passed to constructor_callback. */
10420 addend += section->output_section->vma + section->output_offset;
10421 }
10422 else if (h != NULL)
10423 {
10424 /* Setting the index to -2 tells elf_link_output_extsym that
10425 this symbol is used by a reloc. */
10426 h->indx = -2;
10427 *rel_hash_ptr = h;
10428 indx = 0;
10429 }
10430 else
10431 {
10432 if (! ((*info->callbacks->unattached_reloc)
10433 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10434 return FALSE;
10435 indx = 0;
10436 }
10437 }
10438
10439 /* If this is an inplace reloc, we must write the addend into the
10440 object file. */
10441 if (howto->partial_inplace && addend != 0)
10442 {
10443 bfd_size_type size;
10444 bfd_reloc_status_type rstat;
10445 bfd_byte *buf;
10446 bfd_boolean ok;
10447 const char *sym_name;
10448
10449 size = (bfd_size_type) bfd_get_reloc_size (howto);
10450 buf = (bfd_byte *) bfd_zmalloc (size);
10451 if (buf == NULL && size != 0)
10452 return FALSE;
10453 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10454 switch (rstat)
10455 {
10456 case bfd_reloc_ok:
10457 break;
10458
10459 default:
10460 case bfd_reloc_outofrange:
10461 abort ();
10462
10463 case bfd_reloc_overflow:
10464 if (link_order->type == bfd_section_reloc_link_order)
10465 sym_name = bfd_section_name (output_bfd,
10466 link_order->u.reloc.p->u.section);
10467 else
10468 sym_name = link_order->u.reloc.p->u.name;
10469 if (! ((*info->callbacks->reloc_overflow)
10470 (info, NULL, sym_name, howto->name, addend, NULL,
10471 NULL, (bfd_vma) 0)))
10472 {
10473 free (buf);
10474 return FALSE;
10475 }
10476 break;
10477 }
10478 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10479 link_order->offset, size);
10480 free (buf);
10481 if (! ok)
10482 return FALSE;
10483 }
10484
10485 /* The address of a reloc is relative to the section in a
10486 relocatable file, and is a virtual address in an executable
10487 file. */
10488 offset = link_order->offset;
10489 if (! info->relocatable)
10490 offset += output_section->vma;
10491
10492 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10493 {
10494 irel[i].r_offset = offset;
10495 irel[i].r_info = 0;
10496 irel[i].r_addend = 0;
10497 }
10498 if (bed->s->arch_size == 32)
10499 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10500 else
10501 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10502
10503 rel_hdr = reldata->hdr;
10504 erel = rel_hdr->contents;
10505 if (rel_hdr->sh_type == SHT_REL)
10506 {
10507 erel += reldata->count * bed->s->sizeof_rel;
10508 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10509 }
10510 else
10511 {
10512 irel[0].r_addend = addend;
10513 erel += reldata->count * bed->s->sizeof_rela;
10514 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10515 }
10516
10517 ++reldata->count;
10518
10519 return TRUE;
10520 }
10521
10522
10523 /* Get the output vma of the section pointed to by the sh_link field. */
10524
10525 static bfd_vma
10526 elf_get_linked_section_vma (struct bfd_link_order *p)
10527 {
10528 Elf_Internal_Shdr **elf_shdrp;
10529 asection *s;
10530 int elfsec;
10531
10532 s = p->u.indirect.section;
10533 elf_shdrp = elf_elfsections (s->owner);
10534 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10535 elfsec = elf_shdrp[elfsec]->sh_link;
10536 /* PR 290:
10537 The Intel C compiler generates SHT_IA_64_UNWIND with
10538 SHF_LINK_ORDER. But it doesn't set the sh_link or
10539 sh_info fields. Hence we could get the situation
10540 where elfsec is 0. */
10541 if (elfsec == 0)
10542 {
10543 const struct elf_backend_data *bed
10544 = get_elf_backend_data (s->owner);
10545 if (bed->link_order_error_handler)
10546 bed->link_order_error_handler
10547 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10548 return 0;
10549 }
10550 else
10551 {
10552 s = elf_shdrp[elfsec]->bfd_section;
10553 return s->output_section->vma + s->output_offset;
10554 }
10555 }
10556
10557
10558 /* Compare two sections based on the locations of the sections they are
10559 linked to. Used by elf_fixup_link_order. */
10560
10561 static int
10562 compare_link_order (const void * a, const void * b)
10563 {
10564 bfd_vma apos;
10565 bfd_vma bpos;
10566
10567 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10568 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10569 if (apos < bpos)
10570 return -1;
10571 return apos > bpos;
10572 }
10573
10574
10575 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10576 order as their linked sections. Returns false if this could not be done
10577 because an output section includes both ordered and unordered
10578 sections. Ideally we'd do this in the linker proper. */
10579
10580 static bfd_boolean
10581 elf_fixup_link_order (bfd *abfd, asection *o)
10582 {
10583 int seen_linkorder;
10584 int seen_other;
10585 int n;
10586 struct bfd_link_order *p;
10587 bfd *sub;
10588 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10589 unsigned elfsec;
10590 struct bfd_link_order **sections;
10591 asection *s, *other_sec, *linkorder_sec;
10592 bfd_vma offset;
10593
10594 other_sec = NULL;
10595 linkorder_sec = NULL;
10596 seen_other = 0;
10597 seen_linkorder = 0;
10598 for (p = o->map_head.link_order; p != NULL; p = p->next)
10599 {
10600 if (p->type == bfd_indirect_link_order)
10601 {
10602 s = p->u.indirect.section;
10603 sub = s->owner;
10604 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10605 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10606 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10607 && elfsec < elf_numsections (sub)
10608 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10609 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10610 {
10611 seen_linkorder++;
10612 linkorder_sec = s;
10613 }
10614 else
10615 {
10616 seen_other++;
10617 other_sec = s;
10618 }
10619 }
10620 else
10621 seen_other++;
10622
10623 if (seen_other && seen_linkorder)
10624 {
10625 if (other_sec && linkorder_sec)
10626 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10627 o, linkorder_sec,
10628 linkorder_sec->owner, other_sec,
10629 other_sec->owner);
10630 else
10631 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10632 o);
10633 bfd_set_error (bfd_error_bad_value);
10634 return FALSE;
10635 }
10636 }
10637
10638 if (!seen_linkorder)
10639 return TRUE;
10640
10641 sections = (struct bfd_link_order **)
10642 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10643 if (sections == NULL)
10644 return FALSE;
10645 seen_linkorder = 0;
10646
10647 for (p = o->map_head.link_order; p != NULL; p = p->next)
10648 {
10649 sections[seen_linkorder++] = p;
10650 }
10651 /* Sort the input sections in the order of their linked section. */
10652 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10653 compare_link_order);
10654
10655 /* Change the offsets of the sections. */
10656 offset = 0;
10657 for (n = 0; n < seen_linkorder; n++)
10658 {
10659 s = sections[n]->u.indirect.section;
10660 offset &= ~(bfd_vma) 0 << s->alignment_power;
10661 s->output_offset = offset;
10662 sections[n]->offset = offset;
10663 /* FIXME: octets_per_byte. */
10664 offset += sections[n]->size;
10665 }
10666
10667 free (sections);
10668 return TRUE;
10669 }
10670
10671 static void
10672 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10673 {
10674 asection *o;
10675
10676 if (flinfo->symstrtab != NULL)
10677 _bfd_elf_strtab_free (flinfo->symstrtab);
10678 if (flinfo->contents != NULL)
10679 free (flinfo->contents);
10680 if (flinfo->external_relocs != NULL)
10681 free (flinfo->external_relocs);
10682 if (flinfo->internal_relocs != NULL)
10683 free (flinfo->internal_relocs);
10684 if (flinfo->external_syms != NULL)
10685 free (flinfo->external_syms);
10686 if (flinfo->locsym_shndx != NULL)
10687 free (flinfo->locsym_shndx);
10688 if (flinfo->internal_syms != NULL)
10689 free (flinfo->internal_syms);
10690 if (flinfo->indices != NULL)
10691 free (flinfo->indices);
10692 if (flinfo->sections != NULL)
10693 free (flinfo->sections);
10694 if (flinfo->symshndxbuf != NULL)
10695 free (flinfo->symshndxbuf);
10696 for (o = obfd->sections; o != NULL; o = o->next)
10697 {
10698 struct bfd_elf_section_data *esdo = elf_section_data (o);
10699 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10700 free (esdo->rel.hashes);
10701 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10702 free (esdo->rela.hashes);
10703 }
10704 }
10705
10706 /* Do the final step of an ELF link. */
10707
10708 bfd_boolean
10709 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10710 {
10711 bfd_boolean dynamic;
10712 bfd_boolean emit_relocs;
10713 bfd *dynobj;
10714 struct elf_final_link_info flinfo;
10715 asection *o;
10716 struct bfd_link_order *p;
10717 bfd *sub;
10718 bfd_size_type max_contents_size;
10719 bfd_size_type max_external_reloc_size;
10720 bfd_size_type max_internal_reloc_count;
10721 bfd_size_type max_sym_count;
10722 bfd_size_type max_sym_shndx_count;
10723 Elf_Internal_Sym elfsym;
10724 unsigned int i;
10725 Elf_Internal_Shdr *symtab_hdr;
10726 Elf_Internal_Shdr *symtab_shndx_hdr;
10727 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10728 struct elf_outext_info eoinfo;
10729 bfd_boolean merged;
10730 size_t relativecount = 0;
10731 asection *reldyn = 0;
10732 bfd_size_type amt;
10733 asection *attr_section = NULL;
10734 bfd_vma attr_size = 0;
10735 const char *std_attrs_section;
10736
10737 if (! is_elf_hash_table (info->hash))
10738 return FALSE;
10739
10740 if (info->shared)
10741 abfd->flags |= DYNAMIC;
10742
10743 dynamic = elf_hash_table (info)->dynamic_sections_created;
10744 dynobj = elf_hash_table (info)->dynobj;
10745
10746 emit_relocs = (info->relocatable
10747 || info->emitrelocations);
10748
10749 flinfo.info = info;
10750 flinfo.output_bfd = abfd;
10751 flinfo.symstrtab = _bfd_elf_strtab_init ();
10752 if (flinfo.symstrtab == NULL)
10753 return FALSE;
10754
10755 if (! dynamic)
10756 {
10757 flinfo.dynsym_sec = NULL;
10758 flinfo.hash_sec = NULL;
10759 flinfo.symver_sec = NULL;
10760 }
10761 else
10762 {
10763 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10764 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10765 /* Note that dynsym_sec can be NULL (on VMS). */
10766 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10767 /* Note that it is OK if symver_sec is NULL. */
10768 }
10769
10770 flinfo.contents = NULL;
10771 flinfo.external_relocs = NULL;
10772 flinfo.internal_relocs = NULL;
10773 flinfo.external_syms = NULL;
10774 flinfo.locsym_shndx = NULL;
10775 flinfo.internal_syms = NULL;
10776 flinfo.indices = NULL;
10777 flinfo.sections = NULL;
10778 flinfo.symshndxbuf = NULL;
10779 flinfo.filesym_count = 0;
10780
10781 /* The object attributes have been merged. Remove the input
10782 sections from the link, and set the contents of the output
10783 secton. */
10784 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10785 for (o = abfd->sections; o != NULL; o = o->next)
10786 {
10787 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10788 || strcmp (o->name, ".gnu.attributes") == 0)
10789 {
10790 for (p = o->map_head.link_order; p != NULL; p = p->next)
10791 {
10792 asection *input_section;
10793
10794 if (p->type != bfd_indirect_link_order)
10795 continue;
10796 input_section = p->u.indirect.section;
10797 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10798 elf_link_input_bfd ignores this section. */
10799 input_section->flags &= ~SEC_HAS_CONTENTS;
10800 }
10801
10802 attr_size = bfd_elf_obj_attr_size (abfd);
10803 if (attr_size)
10804 {
10805 bfd_set_section_size (abfd, o, attr_size);
10806 attr_section = o;
10807 /* Skip this section later on. */
10808 o->map_head.link_order = NULL;
10809 }
10810 else
10811 o->flags |= SEC_EXCLUDE;
10812 }
10813 }
10814
10815 /* Count up the number of relocations we will output for each output
10816 section, so that we know the sizes of the reloc sections. We
10817 also figure out some maximum sizes. */
10818 max_contents_size = 0;
10819 max_external_reloc_size = 0;
10820 max_internal_reloc_count = 0;
10821 max_sym_count = 0;
10822 max_sym_shndx_count = 0;
10823 merged = FALSE;
10824 for (o = abfd->sections; o != NULL; o = o->next)
10825 {
10826 struct bfd_elf_section_data *esdo = elf_section_data (o);
10827 o->reloc_count = 0;
10828
10829 for (p = o->map_head.link_order; p != NULL; p = p->next)
10830 {
10831 unsigned int reloc_count = 0;
10832 struct bfd_elf_section_data *esdi = NULL;
10833
10834 if (p->type == bfd_section_reloc_link_order
10835 || p->type == bfd_symbol_reloc_link_order)
10836 reloc_count = 1;
10837 else if (p->type == bfd_indirect_link_order)
10838 {
10839 asection *sec;
10840
10841 sec = p->u.indirect.section;
10842 esdi = elf_section_data (sec);
10843
10844 /* Mark all sections which are to be included in the
10845 link. This will normally be every section. We need
10846 to do this so that we can identify any sections which
10847 the linker has decided to not include. */
10848 sec->linker_mark = TRUE;
10849
10850 if (sec->flags & SEC_MERGE)
10851 merged = TRUE;
10852
10853 if (esdo->this_hdr.sh_type == SHT_REL
10854 || esdo->this_hdr.sh_type == SHT_RELA)
10855 /* Some backends use reloc_count in relocation sections
10856 to count particular types of relocs. Of course,
10857 reloc sections themselves can't have relocations. */
10858 reloc_count = 0;
10859 else if (info->relocatable || info->emitrelocations)
10860 reloc_count = sec->reloc_count;
10861 else if (bed->elf_backend_count_relocs)
10862 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10863
10864 if (sec->rawsize > max_contents_size)
10865 max_contents_size = sec->rawsize;
10866 if (sec->size > max_contents_size)
10867 max_contents_size = sec->size;
10868
10869 /* We are interested in just local symbols, not all
10870 symbols. */
10871 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10872 && (sec->owner->flags & DYNAMIC) == 0)
10873 {
10874 size_t sym_count;
10875
10876 if (elf_bad_symtab (sec->owner))
10877 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10878 / bed->s->sizeof_sym);
10879 else
10880 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10881
10882 if (sym_count > max_sym_count)
10883 max_sym_count = sym_count;
10884
10885 if (sym_count > max_sym_shndx_count
10886 && elf_symtab_shndx (sec->owner) != 0)
10887 max_sym_shndx_count = sym_count;
10888
10889 if ((sec->flags & SEC_RELOC) != 0)
10890 {
10891 size_t ext_size = 0;
10892
10893 if (esdi->rel.hdr != NULL)
10894 ext_size = esdi->rel.hdr->sh_size;
10895 if (esdi->rela.hdr != NULL)
10896 ext_size += esdi->rela.hdr->sh_size;
10897
10898 if (ext_size > max_external_reloc_size)
10899 max_external_reloc_size = ext_size;
10900 if (sec->reloc_count > max_internal_reloc_count)
10901 max_internal_reloc_count = sec->reloc_count;
10902 }
10903 }
10904 }
10905
10906 if (reloc_count == 0)
10907 continue;
10908
10909 o->reloc_count += reloc_count;
10910
10911 if (p->type == bfd_indirect_link_order
10912 && (info->relocatable || info->emitrelocations))
10913 {
10914 if (esdi->rel.hdr)
10915 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10916 if (esdi->rela.hdr)
10917 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10918 }
10919 else
10920 {
10921 if (o->use_rela_p)
10922 esdo->rela.count += reloc_count;
10923 else
10924 esdo->rel.count += reloc_count;
10925 }
10926 }
10927
10928 if (o->reloc_count > 0)
10929 o->flags |= SEC_RELOC;
10930 else
10931 {
10932 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10933 set it (this is probably a bug) and if it is set
10934 assign_section_numbers will create a reloc section. */
10935 o->flags &=~ SEC_RELOC;
10936 }
10937
10938 /* If the SEC_ALLOC flag is not set, force the section VMA to
10939 zero. This is done in elf_fake_sections as well, but forcing
10940 the VMA to 0 here will ensure that relocs against these
10941 sections are handled correctly. */
10942 if ((o->flags & SEC_ALLOC) == 0
10943 && ! o->user_set_vma)
10944 o->vma = 0;
10945 }
10946
10947 if (! info->relocatable && merged)
10948 elf_link_hash_traverse (elf_hash_table (info),
10949 _bfd_elf_link_sec_merge_syms, abfd);
10950
10951 /* Figure out the file positions for everything but the symbol table
10952 and the relocs. We set symcount to force assign_section_numbers
10953 to create a symbol table. */
10954 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
10955 BFD_ASSERT (! abfd->output_has_begun);
10956 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10957 goto error_return;
10958
10959 /* Set sizes, and assign file positions for reloc sections. */
10960 for (o = abfd->sections; o != NULL; o = o->next)
10961 {
10962 struct bfd_elf_section_data *esdo = elf_section_data (o);
10963 if ((o->flags & SEC_RELOC) != 0)
10964 {
10965 if (esdo->rel.hdr
10966 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10967 goto error_return;
10968
10969 if (esdo->rela.hdr
10970 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10971 goto error_return;
10972 }
10973
10974 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10975 to count upwards while actually outputting the relocations. */
10976 esdo->rel.count = 0;
10977 esdo->rela.count = 0;
10978
10979 if (esdo->this_hdr.sh_offset == (file_ptr) -1)
10980 {
10981 /* Cache the section contents so that they can be compressed
10982 later. Use bfd_malloc since it will be freed by
10983 bfd_compress_section_contents. */
10984 unsigned char *contents = esdo->this_hdr.contents;
10985 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
10986 abort ();
10987 contents
10988 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
10989 if (contents == NULL)
10990 goto error_return;
10991 esdo->this_hdr.contents = contents;
10992 }
10993 }
10994
10995 /* We have now assigned file positions for all the sections except
10996 .symtab, .strtab, and non-loaded reloc sections. We start the
10997 .symtab section at the current file position, and write directly
10998 to it. We build the .strtab section in memory. */
10999 bfd_get_symcount (abfd) = 0;
11000 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11001 /* sh_name is set in prep_headers. */
11002 symtab_hdr->sh_type = SHT_SYMTAB;
11003 /* sh_flags, sh_addr and sh_size all start off zero. */
11004 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
11005 /* sh_link is set in assign_section_numbers. */
11006 /* sh_info is set below. */
11007 /* sh_offset is set just below. */
11008 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
11009
11010 if (max_sym_count < 20)
11011 max_sym_count = 20;
11012 elf_hash_table (info)->strtabsize = max_sym_count;
11013 amt = max_sym_count * sizeof (struct elf_sym_strtab);
11014 elf_hash_table (info)->strtab
11015 = (struct elf_sym_strtab *) bfd_malloc (amt);
11016 if (elf_hash_table (info)->strtab == NULL)
11017 goto error_return;
11018 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
11019 flinfo.symshndxbuf
11020 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
11021 ? (Elf_External_Sym_Shndx *) -1 : NULL);
11022
11023 if (info->strip != strip_all || emit_relocs)
11024 {
11025 file_ptr off = elf_next_file_pos (abfd);
11026
11027 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
11028
11029 /* Note that at this point elf_next_file_pos (abfd) is
11030 incorrect. We do not yet know the size of the .symtab section.
11031 We correct next_file_pos below, after we do know the size. */
11032
11033 /* Start writing out the symbol table. The first symbol is always a
11034 dummy symbol. */
11035 elfsym.st_value = 0;
11036 elfsym.st_size = 0;
11037 elfsym.st_info = 0;
11038 elfsym.st_other = 0;
11039 elfsym.st_shndx = SHN_UNDEF;
11040 elfsym.st_target_internal = 0;
11041 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
11042 bfd_und_section_ptr, NULL) != 1)
11043 goto error_return;
11044
11045 /* Output a symbol for each section. We output these even if we are
11046 discarding local symbols, since they are used for relocs. These
11047 symbols have no names. We store the index of each one in the
11048 index field of the section, so that we can find it again when
11049 outputting relocs. */
11050
11051 elfsym.st_size = 0;
11052 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11053 elfsym.st_other = 0;
11054 elfsym.st_value = 0;
11055 elfsym.st_target_internal = 0;
11056 for (i = 1; i < elf_numsections (abfd); i++)
11057 {
11058 o = bfd_section_from_elf_index (abfd, i);
11059 if (o != NULL)
11060 {
11061 o->target_index = bfd_get_symcount (abfd);
11062 elfsym.st_shndx = i;
11063 if (!info->relocatable)
11064 elfsym.st_value = o->vma;
11065 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
11066 NULL) != 1)
11067 goto error_return;
11068 }
11069 }
11070 }
11071
11072 /* Allocate some memory to hold information read in from the input
11073 files. */
11074 if (max_contents_size != 0)
11075 {
11076 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
11077 if (flinfo.contents == NULL)
11078 goto error_return;
11079 }
11080
11081 if (max_external_reloc_size != 0)
11082 {
11083 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
11084 if (flinfo.external_relocs == NULL)
11085 goto error_return;
11086 }
11087
11088 if (max_internal_reloc_count != 0)
11089 {
11090 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
11091 amt *= sizeof (Elf_Internal_Rela);
11092 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
11093 if (flinfo.internal_relocs == NULL)
11094 goto error_return;
11095 }
11096
11097 if (max_sym_count != 0)
11098 {
11099 amt = max_sym_count * bed->s->sizeof_sym;
11100 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
11101 if (flinfo.external_syms == NULL)
11102 goto error_return;
11103
11104 amt = max_sym_count * sizeof (Elf_Internal_Sym);
11105 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
11106 if (flinfo.internal_syms == NULL)
11107 goto error_return;
11108
11109 amt = max_sym_count * sizeof (long);
11110 flinfo.indices = (long int *) bfd_malloc (amt);
11111 if (flinfo.indices == NULL)
11112 goto error_return;
11113
11114 amt = max_sym_count * sizeof (asection *);
11115 flinfo.sections = (asection **) bfd_malloc (amt);
11116 if (flinfo.sections == NULL)
11117 goto error_return;
11118 }
11119
11120 if (max_sym_shndx_count != 0)
11121 {
11122 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11123 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11124 if (flinfo.locsym_shndx == NULL)
11125 goto error_return;
11126 }
11127
11128 if (elf_hash_table (info)->tls_sec)
11129 {
11130 bfd_vma base, end = 0;
11131 asection *sec;
11132
11133 for (sec = elf_hash_table (info)->tls_sec;
11134 sec && (sec->flags & SEC_THREAD_LOCAL);
11135 sec = sec->next)
11136 {
11137 bfd_size_type size = sec->size;
11138
11139 if (size == 0
11140 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11141 {
11142 struct bfd_link_order *ord = sec->map_tail.link_order;
11143
11144 if (ord != NULL)
11145 size = ord->offset + ord->size;
11146 }
11147 end = sec->vma + size;
11148 }
11149 base = elf_hash_table (info)->tls_sec->vma;
11150 /* Only align end of TLS section if static TLS doesn't have special
11151 alignment requirements. */
11152 if (bed->static_tls_alignment == 1)
11153 end = align_power (end,
11154 elf_hash_table (info)->tls_sec->alignment_power);
11155 elf_hash_table (info)->tls_size = end - base;
11156 }
11157
11158 /* Reorder SHF_LINK_ORDER sections. */
11159 for (o = abfd->sections; o != NULL; o = o->next)
11160 {
11161 if (!elf_fixup_link_order (abfd, o))
11162 return FALSE;
11163 }
11164
11165 if (!_bfd_elf_fixup_eh_frame_hdr (info))
11166 return FALSE;
11167
11168 /* Since ELF permits relocations to be against local symbols, we
11169 must have the local symbols available when we do the relocations.
11170 Since we would rather only read the local symbols once, and we
11171 would rather not keep them in memory, we handle all the
11172 relocations for a single input file at the same time.
11173
11174 Unfortunately, there is no way to know the total number of local
11175 symbols until we have seen all of them, and the local symbol
11176 indices precede the global symbol indices. This means that when
11177 we are generating relocatable output, and we see a reloc against
11178 a global symbol, we can not know the symbol index until we have
11179 finished examining all the local symbols to see which ones we are
11180 going to output. To deal with this, we keep the relocations in
11181 memory, and don't output them until the end of the link. This is
11182 an unfortunate waste of memory, but I don't see a good way around
11183 it. Fortunately, it only happens when performing a relocatable
11184 link, which is not the common case. FIXME: If keep_memory is set
11185 we could write the relocs out and then read them again; I don't
11186 know how bad the memory loss will be. */
11187
11188 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11189 sub->output_has_begun = FALSE;
11190 for (o = abfd->sections; o != NULL; o = o->next)
11191 {
11192 for (p = o->map_head.link_order; p != NULL; p = p->next)
11193 {
11194 if (p->type == bfd_indirect_link_order
11195 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11196 == bfd_target_elf_flavour)
11197 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11198 {
11199 if (! sub->output_has_begun)
11200 {
11201 if (! elf_link_input_bfd (&flinfo, sub))
11202 goto error_return;
11203 sub->output_has_begun = TRUE;
11204 }
11205 }
11206 else if (p->type == bfd_section_reloc_link_order
11207 || p->type == bfd_symbol_reloc_link_order)
11208 {
11209 if (! elf_reloc_link_order (abfd, info, o, p))
11210 goto error_return;
11211 }
11212 else
11213 {
11214 if (! _bfd_default_link_order (abfd, info, o, p))
11215 {
11216 if (p->type == bfd_indirect_link_order
11217 && (bfd_get_flavour (sub)
11218 == bfd_target_elf_flavour)
11219 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11220 != bed->s->elfclass))
11221 {
11222 const char *iclass, *oclass;
11223
11224 if (bed->s->elfclass == ELFCLASS64)
11225 {
11226 iclass = "ELFCLASS32";
11227 oclass = "ELFCLASS64";
11228 }
11229 else
11230 {
11231 iclass = "ELFCLASS64";
11232 oclass = "ELFCLASS32";
11233 }
11234
11235 bfd_set_error (bfd_error_wrong_format);
11236 (*_bfd_error_handler)
11237 (_("%B: file class %s incompatible with %s"),
11238 sub, iclass, oclass);
11239 }
11240
11241 goto error_return;
11242 }
11243 }
11244 }
11245 }
11246
11247 /* Free symbol buffer if needed. */
11248 if (!info->reduce_memory_overheads)
11249 {
11250 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11251 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11252 && elf_tdata (sub)->symbuf)
11253 {
11254 free (elf_tdata (sub)->symbuf);
11255 elf_tdata (sub)->symbuf = NULL;
11256 }
11257 }
11258
11259 /* Output any global symbols that got converted to local in a
11260 version script or due to symbol visibility. We do this in a
11261 separate step since ELF requires all local symbols to appear
11262 prior to any global symbols. FIXME: We should only do this if
11263 some global symbols were, in fact, converted to become local.
11264 FIXME: Will this work correctly with the Irix 5 linker? */
11265 eoinfo.failed = FALSE;
11266 eoinfo.flinfo = &flinfo;
11267 eoinfo.localsyms = TRUE;
11268 eoinfo.file_sym_done = FALSE;
11269 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11270 if (eoinfo.failed)
11271 return FALSE;
11272
11273 /* If backend needs to output some local symbols not present in the hash
11274 table, do it now. */
11275 if (bed->elf_backend_output_arch_local_syms
11276 && (info->strip != strip_all || emit_relocs))
11277 {
11278 typedef int (*out_sym_func)
11279 (void *, const char *, Elf_Internal_Sym *, asection *,
11280 struct elf_link_hash_entry *);
11281
11282 if (! ((*bed->elf_backend_output_arch_local_syms)
11283 (abfd, info, &flinfo,
11284 (out_sym_func) elf_link_output_symstrtab)))
11285 return FALSE;
11286 }
11287
11288 /* That wrote out all the local symbols. Finish up the symbol table
11289 with the global symbols. Even if we want to strip everything we
11290 can, we still need to deal with those global symbols that got
11291 converted to local in a version script. */
11292
11293 /* The sh_info field records the index of the first non local symbol. */
11294 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11295
11296 if (dynamic
11297 && flinfo.dynsym_sec != NULL
11298 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11299 {
11300 Elf_Internal_Sym sym;
11301 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11302 long last_local = 0;
11303
11304 /* Write out the section symbols for the output sections. */
11305 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11306 {
11307 asection *s;
11308
11309 sym.st_size = 0;
11310 sym.st_name = 0;
11311 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11312 sym.st_other = 0;
11313 sym.st_target_internal = 0;
11314
11315 for (s = abfd->sections; s != NULL; s = s->next)
11316 {
11317 int indx;
11318 bfd_byte *dest;
11319 long dynindx;
11320
11321 dynindx = elf_section_data (s)->dynindx;
11322 if (dynindx <= 0)
11323 continue;
11324 indx = elf_section_data (s)->this_idx;
11325 BFD_ASSERT (indx > 0);
11326 sym.st_shndx = indx;
11327 if (! check_dynsym (abfd, &sym))
11328 return FALSE;
11329 sym.st_value = s->vma;
11330 dest = dynsym + dynindx * bed->s->sizeof_sym;
11331 if (last_local < dynindx)
11332 last_local = dynindx;
11333 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11334 }
11335 }
11336
11337 /* Write out the local dynsyms. */
11338 if (elf_hash_table (info)->dynlocal)
11339 {
11340 struct elf_link_local_dynamic_entry *e;
11341 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11342 {
11343 asection *s;
11344 bfd_byte *dest;
11345
11346 /* Copy the internal symbol and turn off visibility.
11347 Note that we saved a word of storage and overwrote
11348 the original st_name with the dynstr_index. */
11349 sym = e->isym;
11350 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11351
11352 s = bfd_section_from_elf_index (e->input_bfd,
11353 e->isym.st_shndx);
11354 if (s != NULL)
11355 {
11356 sym.st_shndx =
11357 elf_section_data (s->output_section)->this_idx;
11358 if (! check_dynsym (abfd, &sym))
11359 return FALSE;
11360 sym.st_value = (s->output_section->vma
11361 + s->output_offset
11362 + e->isym.st_value);
11363 }
11364
11365 if (last_local < e->dynindx)
11366 last_local = e->dynindx;
11367
11368 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11369 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11370 }
11371 }
11372
11373 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11374 last_local + 1;
11375 }
11376
11377 /* We get the global symbols from the hash table. */
11378 eoinfo.failed = FALSE;
11379 eoinfo.localsyms = FALSE;
11380 eoinfo.flinfo = &flinfo;
11381 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11382 if (eoinfo.failed)
11383 return FALSE;
11384
11385 /* If backend needs to output some symbols not present in the hash
11386 table, do it now. */
11387 if (bed->elf_backend_output_arch_syms
11388 && (info->strip != strip_all || emit_relocs))
11389 {
11390 typedef int (*out_sym_func)
11391 (void *, const char *, Elf_Internal_Sym *, asection *,
11392 struct elf_link_hash_entry *);
11393
11394 if (! ((*bed->elf_backend_output_arch_syms)
11395 (abfd, info, &flinfo,
11396 (out_sym_func) elf_link_output_symstrtab)))
11397 return FALSE;
11398 }
11399
11400 /* Finalize the .strtab section. */
11401 _bfd_elf_strtab_finalize (flinfo.symstrtab);
11402
11403 /* Swap out the .strtab section. */
11404 if (!elf_link_swap_symbols_out (&flinfo))
11405 return FALSE;
11406
11407 /* Now we know the size of the symtab section. */
11408 if (bfd_get_symcount (abfd) > 0)
11409 {
11410 /* Finish up and write out the symbol string table (.strtab)
11411 section. */
11412 Elf_Internal_Shdr *symstrtab_hdr;
11413 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
11414
11415 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11416 if (symtab_shndx_hdr->sh_name != 0)
11417 {
11418 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11419 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11420 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11421 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11422 symtab_shndx_hdr->sh_size = amt;
11423
11424 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11425 off, TRUE);
11426
11427 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11428 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11429 return FALSE;
11430 }
11431
11432 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11433 /* sh_name was set in prep_headers. */
11434 symstrtab_hdr->sh_type = SHT_STRTAB;
11435 symstrtab_hdr->sh_flags = 0;
11436 symstrtab_hdr->sh_addr = 0;
11437 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
11438 symstrtab_hdr->sh_entsize = 0;
11439 symstrtab_hdr->sh_link = 0;
11440 symstrtab_hdr->sh_info = 0;
11441 /* sh_offset is set just below. */
11442 symstrtab_hdr->sh_addralign = 1;
11443
11444 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
11445 off, TRUE);
11446 elf_next_file_pos (abfd) = off;
11447
11448 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11449 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
11450 return FALSE;
11451 }
11452
11453 /* Adjust the relocs to have the correct symbol indices. */
11454 for (o = abfd->sections; o != NULL; o = o->next)
11455 {
11456 struct bfd_elf_section_data *esdo = elf_section_data (o);
11457 bfd_boolean sort;
11458 if ((o->flags & SEC_RELOC) == 0)
11459 continue;
11460
11461 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
11462 if (esdo->rel.hdr != NULL)
11463 elf_link_adjust_relocs (abfd, &esdo->rel, sort);
11464 if (esdo->rela.hdr != NULL)
11465 elf_link_adjust_relocs (abfd, &esdo->rela, sort);
11466
11467 /* Set the reloc_count field to 0 to prevent write_relocs from
11468 trying to swap the relocs out itself. */
11469 o->reloc_count = 0;
11470 }
11471
11472 if (dynamic && info->combreloc && dynobj != NULL)
11473 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11474
11475 /* If we are linking against a dynamic object, or generating a
11476 shared library, finish up the dynamic linking information. */
11477 if (dynamic)
11478 {
11479 bfd_byte *dyncon, *dynconend;
11480
11481 /* Fix up .dynamic entries. */
11482 o = bfd_get_linker_section (dynobj, ".dynamic");
11483 BFD_ASSERT (o != NULL);
11484
11485 dyncon = o->contents;
11486 dynconend = o->contents + o->size;
11487 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11488 {
11489 Elf_Internal_Dyn dyn;
11490 const char *name;
11491 unsigned int type;
11492
11493 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11494
11495 switch (dyn.d_tag)
11496 {
11497 default:
11498 continue;
11499 case DT_NULL:
11500 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11501 {
11502 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11503 {
11504 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11505 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11506 default: continue;
11507 }
11508 dyn.d_un.d_val = relativecount;
11509 relativecount = 0;
11510 break;
11511 }
11512 continue;
11513
11514 case DT_INIT:
11515 name = info->init_function;
11516 goto get_sym;
11517 case DT_FINI:
11518 name = info->fini_function;
11519 get_sym:
11520 {
11521 struct elf_link_hash_entry *h;
11522
11523 h = elf_link_hash_lookup (elf_hash_table (info), name,
11524 FALSE, FALSE, TRUE);
11525 if (h != NULL
11526 && (h->root.type == bfd_link_hash_defined
11527 || h->root.type == bfd_link_hash_defweak))
11528 {
11529 dyn.d_un.d_ptr = h->root.u.def.value;
11530 o = h->root.u.def.section;
11531 if (o->output_section != NULL)
11532 dyn.d_un.d_ptr += (o->output_section->vma
11533 + o->output_offset);
11534 else
11535 {
11536 /* The symbol is imported from another shared
11537 library and does not apply to this one. */
11538 dyn.d_un.d_ptr = 0;
11539 }
11540 break;
11541 }
11542 }
11543 continue;
11544
11545 case DT_PREINIT_ARRAYSZ:
11546 name = ".preinit_array";
11547 goto get_size;
11548 case DT_INIT_ARRAYSZ:
11549 name = ".init_array";
11550 goto get_size;
11551 case DT_FINI_ARRAYSZ:
11552 name = ".fini_array";
11553 get_size:
11554 o = bfd_get_section_by_name (abfd, name);
11555 if (o == NULL)
11556 {
11557 (*_bfd_error_handler)
11558 (_("%B: could not find output section %s"), abfd, name);
11559 goto error_return;
11560 }
11561 if (o->size == 0)
11562 (*_bfd_error_handler)
11563 (_("warning: %s section has zero size"), name);
11564 dyn.d_un.d_val = o->size;
11565 break;
11566
11567 case DT_PREINIT_ARRAY:
11568 name = ".preinit_array";
11569 goto get_vma;
11570 case DT_INIT_ARRAY:
11571 name = ".init_array";
11572 goto get_vma;
11573 case DT_FINI_ARRAY:
11574 name = ".fini_array";
11575 goto get_vma;
11576
11577 case DT_HASH:
11578 name = ".hash";
11579 goto get_vma;
11580 case DT_GNU_HASH:
11581 name = ".gnu.hash";
11582 goto get_vma;
11583 case DT_STRTAB:
11584 name = ".dynstr";
11585 goto get_vma;
11586 case DT_SYMTAB:
11587 name = ".dynsym";
11588 goto get_vma;
11589 case DT_VERDEF:
11590 name = ".gnu.version_d";
11591 goto get_vma;
11592 case DT_VERNEED:
11593 name = ".gnu.version_r";
11594 goto get_vma;
11595 case DT_VERSYM:
11596 name = ".gnu.version";
11597 get_vma:
11598 o = bfd_get_section_by_name (abfd, name);
11599 if (o == NULL)
11600 {
11601 (*_bfd_error_handler)
11602 (_("%B: could not find output section %s"), abfd, name);
11603 goto error_return;
11604 }
11605 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11606 {
11607 (*_bfd_error_handler)
11608 (_("warning: section '%s' is being made into a note"), name);
11609 bfd_set_error (bfd_error_nonrepresentable_section);
11610 goto error_return;
11611 }
11612 dyn.d_un.d_ptr = o->vma;
11613 break;
11614
11615 case DT_REL:
11616 case DT_RELA:
11617 case DT_RELSZ:
11618 case DT_RELASZ:
11619 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11620 type = SHT_REL;
11621 else
11622 type = SHT_RELA;
11623 dyn.d_un.d_val = 0;
11624 dyn.d_un.d_ptr = 0;
11625 for (i = 1; i < elf_numsections (abfd); i++)
11626 {
11627 Elf_Internal_Shdr *hdr;
11628
11629 hdr = elf_elfsections (abfd)[i];
11630 if (hdr->sh_type == type
11631 && (hdr->sh_flags & SHF_ALLOC) != 0)
11632 {
11633 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11634 dyn.d_un.d_val += hdr->sh_size;
11635 else
11636 {
11637 if (dyn.d_un.d_ptr == 0
11638 || hdr->sh_addr < dyn.d_un.d_ptr)
11639 dyn.d_un.d_ptr = hdr->sh_addr;
11640 }
11641 }
11642 }
11643 break;
11644 }
11645 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11646 }
11647 }
11648
11649 /* If we have created any dynamic sections, then output them. */
11650 if (dynobj != NULL)
11651 {
11652 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11653 goto error_return;
11654
11655 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11656 if (((info->warn_shared_textrel && info->shared)
11657 || info->error_textrel)
11658 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11659 {
11660 bfd_byte *dyncon, *dynconend;
11661
11662 dyncon = o->contents;
11663 dynconend = o->contents + o->size;
11664 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11665 {
11666 Elf_Internal_Dyn dyn;
11667
11668 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11669
11670 if (dyn.d_tag == DT_TEXTREL)
11671 {
11672 if (info->error_textrel)
11673 info->callbacks->einfo
11674 (_("%P%X: read-only segment has dynamic relocations.\n"));
11675 else
11676 info->callbacks->einfo
11677 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11678 break;
11679 }
11680 }
11681 }
11682
11683 for (o = dynobj->sections; o != NULL; o = o->next)
11684 {
11685 if ((o->flags & SEC_HAS_CONTENTS) == 0
11686 || o->size == 0
11687 || o->output_section == bfd_abs_section_ptr)
11688 continue;
11689 if ((o->flags & SEC_LINKER_CREATED) == 0)
11690 {
11691 /* At this point, we are only interested in sections
11692 created by _bfd_elf_link_create_dynamic_sections. */
11693 continue;
11694 }
11695 if (elf_hash_table (info)->stab_info.stabstr == o)
11696 continue;
11697 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11698 continue;
11699 if (strcmp (o->name, ".dynstr") != 0)
11700 {
11701 /* FIXME: octets_per_byte. */
11702 if (! bfd_set_section_contents (abfd, o->output_section,
11703 o->contents,
11704 (file_ptr) o->output_offset,
11705 o->size))
11706 goto error_return;
11707 }
11708 else
11709 {
11710 /* The contents of the .dynstr section are actually in a
11711 stringtab. */
11712 file_ptr off;
11713
11714 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11715 if (bfd_seek (abfd, off, SEEK_SET) != 0
11716 || ! _bfd_elf_strtab_emit (abfd,
11717 elf_hash_table (info)->dynstr))
11718 goto error_return;
11719 }
11720 }
11721 }
11722
11723 if (info->relocatable)
11724 {
11725 bfd_boolean failed = FALSE;
11726
11727 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11728 if (failed)
11729 goto error_return;
11730 }
11731
11732 /* If we have optimized stabs strings, output them. */
11733 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11734 {
11735 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11736 goto error_return;
11737 }
11738
11739 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11740 goto error_return;
11741
11742 elf_final_link_free (abfd, &flinfo);
11743
11744 elf_linker (abfd) = TRUE;
11745
11746 if (attr_section)
11747 {
11748 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11749 if (contents == NULL)
11750 return FALSE; /* Bail out and fail. */
11751 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11752 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11753 free (contents);
11754 }
11755
11756 return TRUE;
11757
11758 error_return:
11759 elf_final_link_free (abfd, &flinfo);
11760 return FALSE;
11761 }
11762 \f
11763 /* Initialize COOKIE for input bfd ABFD. */
11764
11765 static bfd_boolean
11766 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11767 struct bfd_link_info *info, bfd *abfd)
11768 {
11769 Elf_Internal_Shdr *symtab_hdr;
11770 const struct elf_backend_data *bed;
11771
11772 bed = get_elf_backend_data (abfd);
11773 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11774
11775 cookie->abfd = abfd;
11776 cookie->sym_hashes = elf_sym_hashes (abfd);
11777 cookie->bad_symtab = elf_bad_symtab (abfd);
11778 if (cookie->bad_symtab)
11779 {
11780 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11781 cookie->extsymoff = 0;
11782 }
11783 else
11784 {
11785 cookie->locsymcount = symtab_hdr->sh_info;
11786 cookie->extsymoff = symtab_hdr->sh_info;
11787 }
11788
11789 if (bed->s->arch_size == 32)
11790 cookie->r_sym_shift = 8;
11791 else
11792 cookie->r_sym_shift = 32;
11793
11794 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11795 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11796 {
11797 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11798 cookie->locsymcount, 0,
11799 NULL, NULL, NULL);
11800 if (cookie->locsyms == NULL)
11801 {
11802 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11803 return FALSE;
11804 }
11805 if (info->keep_memory)
11806 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11807 }
11808 return TRUE;
11809 }
11810
11811 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11812
11813 static void
11814 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11815 {
11816 Elf_Internal_Shdr *symtab_hdr;
11817
11818 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11819 if (cookie->locsyms != NULL
11820 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11821 free (cookie->locsyms);
11822 }
11823
11824 /* Initialize the relocation information in COOKIE for input section SEC
11825 of input bfd ABFD. */
11826
11827 static bfd_boolean
11828 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11829 struct bfd_link_info *info, bfd *abfd,
11830 asection *sec)
11831 {
11832 const struct elf_backend_data *bed;
11833
11834 if (sec->reloc_count == 0)
11835 {
11836 cookie->rels = NULL;
11837 cookie->relend = NULL;
11838 }
11839 else
11840 {
11841 bed = get_elf_backend_data (abfd);
11842
11843 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11844 info->keep_memory);
11845 if (cookie->rels == NULL)
11846 return FALSE;
11847 cookie->rel = cookie->rels;
11848 cookie->relend = (cookie->rels
11849 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11850 }
11851 cookie->rel = cookie->rels;
11852 return TRUE;
11853 }
11854
11855 /* Free the memory allocated by init_reloc_cookie_rels,
11856 if appropriate. */
11857
11858 static void
11859 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11860 asection *sec)
11861 {
11862 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11863 free (cookie->rels);
11864 }
11865
11866 /* Initialize the whole of COOKIE for input section SEC. */
11867
11868 static bfd_boolean
11869 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11870 struct bfd_link_info *info,
11871 asection *sec)
11872 {
11873 if (!init_reloc_cookie (cookie, info, sec->owner))
11874 goto error1;
11875 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11876 goto error2;
11877 return TRUE;
11878
11879 error2:
11880 fini_reloc_cookie (cookie, sec->owner);
11881 error1:
11882 return FALSE;
11883 }
11884
11885 /* Free the memory allocated by init_reloc_cookie_for_section,
11886 if appropriate. */
11887
11888 static void
11889 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11890 asection *sec)
11891 {
11892 fini_reloc_cookie_rels (cookie, sec);
11893 fini_reloc_cookie (cookie, sec->owner);
11894 }
11895 \f
11896 /* Garbage collect unused sections. */
11897
11898 /* Default gc_mark_hook. */
11899
11900 asection *
11901 _bfd_elf_gc_mark_hook (asection *sec,
11902 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11903 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11904 struct elf_link_hash_entry *h,
11905 Elf_Internal_Sym *sym)
11906 {
11907 const char *sec_name;
11908
11909 if (h != NULL)
11910 {
11911 switch (h->root.type)
11912 {
11913 case bfd_link_hash_defined:
11914 case bfd_link_hash_defweak:
11915 return h->root.u.def.section;
11916
11917 case bfd_link_hash_common:
11918 return h->root.u.c.p->section;
11919
11920 case bfd_link_hash_undefined:
11921 case bfd_link_hash_undefweak:
11922 /* To work around a glibc bug, keep all XXX input sections
11923 when there is an as yet undefined reference to __start_XXX
11924 or __stop_XXX symbols. The linker will later define such
11925 symbols for orphan input sections that have a name
11926 representable as a C identifier. */
11927 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11928 sec_name = h->root.root.string + 8;
11929 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11930 sec_name = h->root.root.string + 7;
11931 else
11932 sec_name = NULL;
11933
11934 if (sec_name && *sec_name != '\0')
11935 {
11936 bfd *i;
11937
11938 for (i = info->input_bfds; i; i = i->link.next)
11939 {
11940 sec = bfd_get_section_by_name (i, sec_name);
11941 if (sec)
11942 sec->flags |= SEC_KEEP;
11943 }
11944 }
11945 break;
11946
11947 default:
11948 break;
11949 }
11950 }
11951 else
11952 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11953
11954 return NULL;
11955 }
11956
11957 /* COOKIE->rel describes a relocation against section SEC, which is
11958 a section we've decided to keep. Return the section that contains
11959 the relocation symbol, or NULL if no section contains it. */
11960
11961 asection *
11962 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11963 elf_gc_mark_hook_fn gc_mark_hook,
11964 struct elf_reloc_cookie *cookie)
11965 {
11966 unsigned long r_symndx;
11967 struct elf_link_hash_entry *h;
11968
11969 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11970 if (r_symndx == STN_UNDEF)
11971 return NULL;
11972
11973 if (r_symndx >= cookie->locsymcount
11974 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11975 {
11976 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11977 if (h == NULL)
11978 {
11979 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
11980 sec->owner);
11981 return NULL;
11982 }
11983 while (h->root.type == bfd_link_hash_indirect
11984 || h->root.type == bfd_link_hash_warning)
11985 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11986 h->mark = 1;
11987 /* If this symbol is weak and there is a non-weak definition, we
11988 keep the non-weak definition because many backends put
11989 dynamic reloc info on the non-weak definition for code
11990 handling copy relocs. */
11991 if (h->u.weakdef != NULL)
11992 h->u.weakdef->mark = 1;
11993 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11994 }
11995
11996 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11997 &cookie->locsyms[r_symndx]);
11998 }
11999
12000 /* COOKIE->rel describes a relocation against section SEC, which is
12001 a section we've decided to keep. Mark the section that contains
12002 the relocation symbol. */
12003
12004 bfd_boolean
12005 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
12006 asection *sec,
12007 elf_gc_mark_hook_fn gc_mark_hook,
12008 struct elf_reloc_cookie *cookie)
12009 {
12010 asection *rsec;
12011
12012 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
12013 if (rsec && !rsec->gc_mark)
12014 {
12015 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
12016 || (rsec->owner->flags & DYNAMIC) != 0)
12017 rsec->gc_mark = 1;
12018 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
12019 return FALSE;
12020 }
12021 return TRUE;
12022 }
12023
12024 /* The mark phase of garbage collection. For a given section, mark
12025 it and any sections in this section's group, and all the sections
12026 which define symbols to which it refers. */
12027
12028 bfd_boolean
12029 _bfd_elf_gc_mark (struct bfd_link_info *info,
12030 asection *sec,
12031 elf_gc_mark_hook_fn gc_mark_hook)
12032 {
12033 bfd_boolean ret;
12034 asection *group_sec, *eh_frame;
12035
12036 sec->gc_mark = 1;
12037
12038 /* Mark all the sections in the group. */
12039 group_sec = elf_section_data (sec)->next_in_group;
12040 if (group_sec && !group_sec->gc_mark)
12041 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
12042 return FALSE;
12043
12044 /* Look through the section relocs. */
12045 ret = TRUE;
12046 eh_frame = elf_eh_frame_section (sec->owner);
12047 if ((sec->flags & SEC_RELOC) != 0
12048 && sec->reloc_count > 0
12049 && sec != eh_frame)
12050 {
12051 struct elf_reloc_cookie cookie;
12052
12053 if (!init_reloc_cookie_for_section (&cookie, info, sec))
12054 ret = FALSE;
12055 else
12056 {
12057 for (; cookie.rel < cookie.relend; cookie.rel++)
12058 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
12059 {
12060 ret = FALSE;
12061 break;
12062 }
12063 fini_reloc_cookie_for_section (&cookie, sec);
12064 }
12065 }
12066
12067 if (ret && eh_frame && elf_fde_list (sec))
12068 {
12069 struct elf_reloc_cookie cookie;
12070
12071 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
12072 ret = FALSE;
12073 else
12074 {
12075 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
12076 gc_mark_hook, &cookie))
12077 ret = FALSE;
12078 fini_reloc_cookie_for_section (&cookie, eh_frame);
12079 }
12080 }
12081
12082 eh_frame = elf_section_eh_frame_entry (sec);
12083 if (ret && eh_frame && !eh_frame->gc_mark)
12084 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
12085 ret = FALSE;
12086
12087 return ret;
12088 }
12089
12090 /* Scan and mark sections in a special or debug section group. */
12091
12092 static void
12093 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
12094 {
12095 /* Point to first section of section group. */
12096 asection *ssec;
12097 /* Used to iterate the section group. */
12098 asection *msec;
12099
12100 bfd_boolean is_special_grp = TRUE;
12101 bfd_boolean is_debug_grp = TRUE;
12102
12103 /* First scan to see if group contains any section other than debug
12104 and special section. */
12105 ssec = msec = elf_next_in_group (grp);
12106 do
12107 {
12108 if ((msec->flags & SEC_DEBUGGING) == 0)
12109 is_debug_grp = FALSE;
12110
12111 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
12112 is_special_grp = FALSE;
12113
12114 msec = elf_next_in_group (msec);
12115 }
12116 while (msec != ssec);
12117
12118 /* If this is a pure debug section group or pure special section group,
12119 keep all sections in this group. */
12120 if (is_debug_grp || is_special_grp)
12121 {
12122 do
12123 {
12124 msec->gc_mark = 1;
12125 msec = elf_next_in_group (msec);
12126 }
12127 while (msec != ssec);
12128 }
12129 }
12130
12131 /* Keep debug and special sections. */
12132
12133 bfd_boolean
12134 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12135 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12136 {
12137 bfd *ibfd;
12138
12139 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12140 {
12141 asection *isec;
12142 bfd_boolean some_kept;
12143 bfd_boolean debug_frag_seen;
12144
12145 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12146 continue;
12147
12148 /* Ensure all linker created sections are kept,
12149 see if any other section is already marked,
12150 and note if we have any fragmented debug sections. */
12151 debug_frag_seen = some_kept = FALSE;
12152 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12153 {
12154 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12155 isec->gc_mark = 1;
12156 else if (isec->gc_mark)
12157 some_kept = TRUE;
12158
12159 if (debug_frag_seen == FALSE
12160 && (isec->flags & SEC_DEBUGGING)
12161 && CONST_STRNEQ (isec->name, ".debug_line."))
12162 debug_frag_seen = TRUE;
12163 }
12164
12165 /* If no section in this file will be kept, then we can
12166 toss out the debug and special sections. */
12167 if (!some_kept)
12168 continue;
12169
12170 /* Keep debug and special sections like .comment when they are
12171 not part of a group. Also keep section groups that contain
12172 just debug sections or special sections. */
12173 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12174 {
12175 if ((isec->flags & SEC_GROUP) != 0)
12176 _bfd_elf_gc_mark_debug_special_section_group (isec);
12177 else if (((isec->flags & SEC_DEBUGGING) != 0
12178 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12179 && elf_next_in_group (isec) == NULL)
12180 isec->gc_mark = 1;
12181 }
12182
12183 if (! debug_frag_seen)
12184 continue;
12185
12186 /* Look for CODE sections which are going to be discarded,
12187 and find and discard any fragmented debug sections which
12188 are associated with that code section. */
12189 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12190 if ((isec->flags & SEC_CODE) != 0
12191 && isec->gc_mark == 0)
12192 {
12193 unsigned int ilen;
12194 asection *dsec;
12195
12196 ilen = strlen (isec->name);
12197
12198 /* Association is determined by the name of the debug section
12199 containing the name of the code section as a suffix. For
12200 example .debug_line.text.foo is a debug section associated
12201 with .text.foo. */
12202 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12203 {
12204 unsigned int dlen;
12205
12206 if (dsec->gc_mark == 0
12207 || (dsec->flags & SEC_DEBUGGING) == 0)
12208 continue;
12209
12210 dlen = strlen (dsec->name);
12211
12212 if (dlen > ilen
12213 && strncmp (dsec->name + (dlen - ilen),
12214 isec->name, ilen) == 0)
12215 {
12216 dsec->gc_mark = 0;
12217 }
12218 }
12219 }
12220 }
12221 return TRUE;
12222 }
12223
12224 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
12225
12226 struct elf_gc_sweep_symbol_info
12227 {
12228 struct bfd_link_info *info;
12229 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
12230 bfd_boolean);
12231 };
12232
12233 static bfd_boolean
12234 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
12235 {
12236 if (!h->mark
12237 && (((h->root.type == bfd_link_hash_defined
12238 || h->root.type == bfd_link_hash_defweak)
12239 && !((h->def_regular || ELF_COMMON_DEF_P (h))
12240 && h->root.u.def.section->gc_mark))
12241 || h->root.type == bfd_link_hash_undefined
12242 || h->root.type == bfd_link_hash_undefweak))
12243 {
12244 struct elf_gc_sweep_symbol_info *inf;
12245
12246 inf = (struct elf_gc_sweep_symbol_info *) data;
12247 (*inf->hide_symbol) (inf->info, h, TRUE);
12248 h->def_regular = 0;
12249 h->ref_regular = 0;
12250 h->ref_regular_nonweak = 0;
12251 }
12252
12253 return TRUE;
12254 }
12255
12256 /* The sweep phase of garbage collection. Remove all garbage sections. */
12257
12258 typedef bfd_boolean (*gc_sweep_hook_fn)
12259 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
12260
12261 static bfd_boolean
12262 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
12263 {
12264 bfd *sub;
12265 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12266 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
12267 unsigned long section_sym_count;
12268 struct elf_gc_sweep_symbol_info sweep_info;
12269
12270 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12271 {
12272 asection *o;
12273
12274 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12275 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12276 continue;
12277
12278 for (o = sub->sections; o != NULL; o = o->next)
12279 {
12280 /* When any section in a section group is kept, we keep all
12281 sections in the section group. If the first member of
12282 the section group is excluded, we will also exclude the
12283 group section. */
12284 if (o->flags & SEC_GROUP)
12285 {
12286 asection *first = elf_next_in_group (o);
12287 o->gc_mark = first->gc_mark;
12288 }
12289
12290 if (o->gc_mark)
12291 continue;
12292
12293 /* Skip sweeping sections already excluded. */
12294 if (o->flags & SEC_EXCLUDE)
12295 continue;
12296
12297 /* Since this is early in the link process, it is simple
12298 to remove a section from the output. */
12299 o->flags |= SEC_EXCLUDE;
12300
12301 if (info->print_gc_sections && o->size != 0)
12302 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
12303
12304 /* But we also have to update some of the relocation
12305 info we collected before. */
12306 if (gc_sweep_hook
12307 && (o->flags & SEC_RELOC) != 0
12308 && o->reloc_count != 0
12309 && !((info->strip == strip_all || info->strip == strip_debugger)
12310 && (o->flags & SEC_DEBUGGING) != 0)
12311 && !bfd_is_abs_section (o->output_section))
12312 {
12313 Elf_Internal_Rela *internal_relocs;
12314 bfd_boolean r;
12315
12316 internal_relocs
12317 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12318 info->keep_memory);
12319 if (internal_relocs == NULL)
12320 return FALSE;
12321
12322 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12323
12324 if (elf_section_data (o)->relocs != internal_relocs)
12325 free (internal_relocs);
12326
12327 if (!r)
12328 return FALSE;
12329 }
12330 }
12331 }
12332
12333 /* Remove the symbols that were in the swept sections from the dynamic
12334 symbol table. GCFIXME: Anyone know how to get them out of the
12335 static symbol table as well? */
12336 sweep_info.info = info;
12337 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12338 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12339 &sweep_info);
12340
12341 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12342 return TRUE;
12343 }
12344
12345 /* Propagate collected vtable information. This is called through
12346 elf_link_hash_traverse. */
12347
12348 static bfd_boolean
12349 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12350 {
12351 /* Those that are not vtables. */
12352 if (h->vtable == NULL || h->vtable->parent == NULL)
12353 return TRUE;
12354
12355 /* Those vtables that do not have parents, we cannot merge. */
12356 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12357 return TRUE;
12358
12359 /* If we've already been done, exit. */
12360 if (h->vtable->used && h->vtable->used[-1])
12361 return TRUE;
12362
12363 /* Make sure the parent's table is up to date. */
12364 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12365
12366 if (h->vtable->used == NULL)
12367 {
12368 /* None of this table's entries were referenced. Re-use the
12369 parent's table. */
12370 h->vtable->used = h->vtable->parent->vtable->used;
12371 h->vtable->size = h->vtable->parent->vtable->size;
12372 }
12373 else
12374 {
12375 size_t n;
12376 bfd_boolean *cu, *pu;
12377
12378 /* Or the parent's entries into ours. */
12379 cu = h->vtable->used;
12380 cu[-1] = TRUE;
12381 pu = h->vtable->parent->vtable->used;
12382 if (pu != NULL)
12383 {
12384 const struct elf_backend_data *bed;
12385 unsigned int log_file_align;
12386
12387 bed = get_elf_backend_data (h->root.u.def.section->owner);
12388 log_file_align = bed->s->log_file_align;
12389 n = h->vtable->parent->vtable->size >> log_file_align;
12390 while (n--)
12391 {
12392 if (*pu)
12393 *cu = TRUE;
12394 pu++;
12395 cu++;
12396 }
12397 }
12398 }
12399
12400 return TRUE;
12401 }
12402
12403 static bfd_boolean
12404 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12405 {
12406 asection *sec;
12407 bfd_vma hstart, hend;
12408 Elf_Internal_Rela *relstart, *relend, *rel;
12409 const struct elf_backend_data *bed;
12410 unsigned int log_file_align;
12411
12412 /* Take care of both those symbols that do not describe vtables as
12413 well as those that are not loaded. */
12414 if (h->vtable == NULL || h->vtable->parent == NULL)
12415 return TRUE;
12416
12417 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12418 || h->root.type == bfd_link_hash_defweak);
12419
12420 sec = h->root.u.def.section;
12421 hstart = h->root.u.def.value;
12422 hend = hstart + h->size;
12423
12424 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12425 if (!relstart)
12426 return *(bfd_boolean *) okp = FALSE;
12427 bed = get_elf_backend_data (sec->owner);
12428 log_file_align = bed->s->log_file_align;
12429
12430 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12431
12432 for (rel = relstart; rel < relend; ++rel)
12433 if (rel->r_offset >= hstart && rel->r_offset < hend)
12434 {
12435 /* If the entry is in use, do nothing. */
12436 if (h->vtable->used
12437 && (rel->r_offset - hstart) < h->vtable->size)
12438 {
12439 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12440 if (h->vtable->used[entry])
12441 continue;
12442 }
12443 /* Otherwise, kill it. */
12444 rel->r_offset = rel->r_info = rel->r_addend = 0;
12445 }
12446
12447 return TRUE;
12448 }
12449
12450 /* Mark sections containing dynamically referenced symbols. When
12451 building shared libraries, we must assume that any visible symbol is
12452 referenced. */
12453
12454 bfd_boolean
12455 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12456 {
12457 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12458 struct bfd_elf_dynamic_list *d = info->dynamic_list;
12459
12460 if ((h->root.type == bfd_link_hash_defined
12461 || h->root.type == bfd_link_hash_defweak)
12462 && (h->ref_dynamic
12463 || ((h->def_regular || ELF_COMMON_DEF_P (h))
12464 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12465 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12466 && (!info->executable
12467 || info->export_dynamic
12468 || (h->dynamic
12469 && d != NULL
12470 && (*d->match) (&d->head, NULL, h->root.root.string)))
12471 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12472 || !bfd_hide_sym_by_version (info->version_info,
12473 h->root.root.string)))))
12474 h->root.u.def.section->flags |= SEC_KEEP;
12475
12476 return TRUE;
12477 }
12478
12479 /* Keep all sections containing symbols undefined on the command-line,
12480 and the section containing the entry symbol. */
12481
12482 void
12483 _bfd_elf_gc_keep (struct bfd_link_info *info)
12484 {
12485 struct bfd_sym_chain *sym;
12486
12487 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12488 {
12489 struct elf_link_hash_entry *h;
12490
12491 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12492 FALSE, FALSE, FALSE);
12493
12494 if (h != NULL
12495 && (h->root.type == bfd_link_hash_defined
12496 || h->root.type == bfd_link_hash_defweak)
12497 && !bfd_is_abs_section (h->root.u.def.section))
12498 h->root.u.def.section->flags |= SEC_KEEP;
12499 }
12500 }
12501
12502 bfd_boolean
12503 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
12504 struct bfd_link_info *info)
12505 {
12506 bfd *ibfd = info->input_bfds;
12507
12508 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12509 {
12510 asection *sec;
12511 struct elf_reloc_cookie cookie;
12512
12513 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12514 continue;
12515
12516 if (!init_reloc_cookie (&cookie, info, ibfd))
12517 return FALSE;
12518
12519 for (sec = ibfd->sections; sec; sec = sec->next)
12520 {
12521 if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
12522 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
12523 {
12524 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
12525 fini_reloc_cookie_rels (&cookie, sec);
12526 }
12527 }
12528 }
12529 return TRUE;
12530 }
12531
12532 /* Do mark and sweep of unused sections. */
12533
12534 bfd_boolean
12535 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12536 {
12537 bfd_boolean ok = TRUE;
12538 bfd *sub;
12539 elf_gc_mark_hook_fn gc_mark_hook;
12540 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12541 struct elf_link_hash_table *htab;
12542
12543 if (!bed->can_gc_sections
12544 || !is_elf_hash_table (info->hash))
12545 {
12546 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12547 return TRUE;
12548 }
12549
12550 bed->gc_keep (info);
12551 htab = elf_hash_table (info);
12552
12553 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12554 at the .eh_frame section if we can mark the FDEs individually. */
12555 for (sub = info->input_bfds;
12556 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
12557 sub = sub->link.next)
12558 {
12559 asection *sec;
12560 struct elf_reloc_cookie cookie;
12561
12562 sec = bfd_get_section_by_name (sub, ".eh_frame");
12563 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12564 {
12565 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12566 if (elf_section_data (sec)->sec_info
12567 && (sec->flags & SEC_LINKER_CREATED) == 0)
12568 elf_eh_frame_section (sub) = sec;
12569 fini_reloc_cookie_for_section (&cookie, sec);
12570 sec = bfd_get_next_section_by_name (sec);
12571 }
12572 }
12573
12574 /* Apply transitive closure to the vtable entry usage info. */
12575 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
12576 if (!ok)
12577 return FALSE;
12578
12579 /* Kill the vtable relocations that were not used. */
12580 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
12581 if (!ok)
12582 return FALSE;
12583
12584 /* Mark dynamically referenced symbols. */
12585 if (htab->dynamic_sections_created)
12586 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
12587
12588 /* Grovel through relocs to find out who stays ... */
12589 gc_mark_hook = bed->gc_mark_hook;
12590 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12591 {
12592 asection *o;
12593
12594 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12595 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12596 continue;
12597
12598 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12599 Also treat note sections as a root, if the section is not part
12600 of a group. */
12601 for (o = sub->sections; o != NULL; o = o->next)
12602 if (!o->gc_mark
12603 && (o->flags & SEC_EXCLUDE) == 0
12604 && ((o->flags & SEC_KEEP) != 0
12605 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12606 && elf_next_in_group (o) == NULL )))
12607 {
12608 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12609 return FALSE;
12610 }
12611 }
12612
12613 /* Allow the backend to mark additional target specific sections. */
12614 bed->gc_mark_extra_sections (info, gc_mark_hook);
12615
12616 /* ... and mark SEC_EXCLUDE for those that go. */
12617 return elf_gc_sweep (abfd, info);
12618 }
12619 \f
12620 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12621
12622 bfd_boolean
12623 bfd_elf_gc_record_vtinherit (bfd *abfd,
12624 asection *sec,
12625 struct elf_link_hash_entry *h,
12626 bfd_vma offset)
12627 {
12628 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12629 struct elf_link_hash_entry **search, *child;
12630 bfd_size_type extsymcount;
12631 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12632
12633 /* The sh_info field of the symtab header tells us where the
12634 external symbols start. We don't care about the local symbols at
12635 this point. */
12636 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12637 if (!elf_bad_symtab (abfd))
12638 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12639
12640 sym_hashes = elf_sym_hashes (abfd);
12641 sym_hashes_end = sym_hashes + extsymcount;
12642
12643 /* Hunt down the child symbol, which is in this section at the same
12644 offset as the relocation. */
12645 for (search = sym_hashes; search != sym_hashes_end; ++search)
12646 {
12647 if ((child = *search) != NULL
12648 && (child->root.type == bfd_link_hash_defined
12649 || child->root.type == bfd_link_hash_defweak)
12650 && child->root.u.def.section == sec
12651 && child->root.u.def.value == offset)
12652 goto win;
12653 }
12654
12655 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12656 abfd, sec, (unsigned long) offset);
12657 bfd_set_error (bfd_error_invalid_operation);
12658 return FALSE;
12659
12660 win:
12661 if (!child->vtable)
12662 {
12663 child->vtable = ((struct elf_link_virtual_table_entry *)
12664 bfd_zalloc (abfd, sizeof (*child->vtable)));
12665 if (!child->vtable)
12666 return FALSE;
12667 }
12668 if (!h)
12669 {
12670 /* This *should* only be the absolute section. It could potentially
12671 be that someone has defined a non-global vtable though, which
12672 would be bad. It isn't worth paging in the local symbols to be
12673 sure though; that case should simply be handled by the assembler. */
12674
12675 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12676 }
12677 else
12678 child->vtable->parent = h;
12679
12680 return TRUE;
12681 }
12682
12683 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12684
12685 bfd_boolean
12686 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12687 asection *sec ATTRIBUTE_UNUSED,
12688 struct elf_link_hash_entry *h,
12689 bfd_vma addend)
12690 {
12691 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12692 unsigned int log_file_align = bed->s->log_file_align;
12693
12694 if (!h->vtable)
12695 {
12696 h->vtable = ((struct elf_link_virtual_table_entry *)
12697 bfd_zalloc (abfd, sizeof (*h->vtable)));
12698 if (!h->vtable)
12699 return FALSE;
12700 }
12701
12702 if (addend >= h->vtable->size)
12703 {
12704 size_t size, bytes, file_align;
12705 bfd_boolean *ptr = h->vtable->used;
12706
12707 /* While the symbol is undefined, we have to be prepared to handle
12708 a zero size. */
12709 file_align = 1 << log_file_align;
12710 if (h->root.type == bfd_link_hash_undefined)
12711 size = addend + file_align;
12712 else
12713 {
12714 size = h->size;
12715 if (addend >= size)
12716 {
12717 /* Oops! We've got a reference past the defined end of
12718 the table. This is probably a bug -- shall we warn? */
12719 size = addend + file_align;
12720 }
12721 }
12722 size = (size + file_align - 1) & -file_align;
12723
12724 /* Allocate one extra entry for use as a "done" flag for the
12725 consolidation pass. */
12726 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12727
12728 if (ptr)
12729 {
12730 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12731
12732 if (ptr != NULL)
12733 {
12734 size_t oldbytes;
12735
12736 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12737 * sizeof (bfd_boolean));
12738 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12739 }
12740 }
12741 else
12742 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12743
12744 if (ptr == NULL)
12745 return FALSE;
12746
12747 /* And arrange for that done flag to be at index -1. */
12748 h->vtable->used = ptr + 1;
12749 h->vtable->size = size;
12750 }
12751
12752 h->vtable->used[addend >> log_file_align] = TRUE;
12753
12754 return TRUE;
12755 }
12756
12757 /* Map an ELF section header flag to its corresponding string. */
12758 typedef struct
12759 {
12760 char *flag_name;
12761 flagword flag_value;
12762 } elf_flags_to_name_table;
12763
12764 static elf_flags_to_name_table elf_flags_to_names [] =
12765 {
12766 { "SHF_WRITE", SHF_WRITE },
12767 { "SHF_ALLOC", SHF_ALLOC },
12768 { "SHF_EXECINSTR", SHF_EXECINSTR },
12769 { "SHF_MERGE", SHF_MERGE },
12770 { "SHF_STRINGS", SHF_STRINGS },
12771 { "SHF_INFO_LINK", SHF_INFO_LINK},
12772 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12773 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12774 { "SHF_GROUP", SHF_GROUP },
12775 { "SHF_TLS", SHF_TLS },
12776 { "SHF_MASKOS", SHF_MASKOS },
12777 { "SHF_EXCLUDE", SHF_EXCLUDE },
12778 };
12779
12780 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12781 bfd_boolean
12782 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12783 struct flag_info *flaginfo,
12784 asection *section)
12785 {
12786 const bfd_vma sh_flags = elf_section_flags (section);
12787
12788 if (!flaginfo->flags_initialized)
12789 {
12790 bfd *obfd = info->output_bfd;
12791 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12792 struct flag_info_list *tf = flaginfo->flag_list;
12793 int with_hex = 0;
12794 int without_hex = 0;
12795
12796 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12797 {
12798 unsigned i;
12799 flagword (*lookup) (char *);
12800
12801 lookup = bed->elf_backend_lookup_section_flags_hook;
12802 if (lookup != NULL)
12803 {
12804 flagword hexval = (*lookup) ((char *) tf->name);
12805
12806 if (hexval != 0)
12807 {
12808 if (tf->with == with_flags)
12809 with_hex |= hexval;
12810 else if (tf->with == without_flags)
12811 without_hex |= hexval;
12812 tf->valid = TRUE;
12813 continue;
12814 }
12815 }
12816 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12817 {
12818 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12819 {
12820 if (tf->with == with_flags)
12821 with_hex |= elf_flags_to_names[i].flag_value;
12822 else if (tf->with == without_flags)
12823 without_hex |= elf_flags_to_names[i].flag_value;
12824 tf->valid = TRUE;
12825 break;
12826 }
12827 }
12828 if (!tf->valid)
12829 {
12830 info->callbacks->einfo
12831 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12832 return FALSE;
12833 }
12834 }
12835 flaginfo->flags_initialized = TRUE;
12836 flaginfo->only_with_flags |= with_hex;
12837 flaginfo->not_with_flags |= without_hex;
12838 }
12839
12840 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12841 return FALSE;
12842
12843 if ((flaginfo->not_with_flags & sh_flags) != 0)
12844 return FALSE;
12845
12846 return TRUE;
12847 }
12848
12849 struct alloc_got_off_arg {
12850 bfd_vma gotoff;
12851 struct bfd_link_info *info;
12852 };
12853
12854 /* We need a special top-level link routine to convert got reference counts
12855 to real got offsets. */
12856
12857 static bfd_boolean
12858 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12859 {
12860 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12861 bfd *obfd = gofarg->info->output_bfd;
12862 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12863
12864 if (h->got.refcount > 0)
12865 {
12866 h->got.offset = gofarg->gotoff;
12867 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12868 }
12869 else
12870 h->got.offset = (bfd_vma) -1;
12871
12872 return TRUE;
12873 }
12874
12875 /* And an accompanying bit to work out final got entry offsets once
12876 we're done. Should be called from final_link. */
12877
12878 bfd_boolean
12879 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12880 struct bfd_link_info *info)
12881 {
12882 bfd *i;
12883 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12884 bfd_vma gotoff;
12885 struct alloc_got_off_arg gofarg;
12886
12887 BFD_ASSERT (abfd == info->output_bfd);
12888
12889 if (! is_elf_hash_table (info->hash))
12890 return FALSE;
12891
12892 /* The GOT offset is relative to the .got section, but the GOT header is
12893 put into the .got.plt section, if the backend uses it. */
12894 if (bed->want_got_plt)
12895 gotoff = 0;
12896 else
12897 gotoff = bed->got_header_size;
12898
12899 /* Do the local .got entries first. */
12900 for (i = info->input_bfds; i; i = i->link.next)
12901 {
12902 bfd_signed_vma *local_got;
12903 bfd_size_type j, locsymcount;
12904 Elf_Internal_Shdr *symtab_hdr;
12905
12906 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12907 continue;
12908
12909 local_got = elf_local_got_refcounts (i);
12910 if (!local_got)
12911 continue;
12912
12913 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12914 if (elf_bad_symtab (i))
12915 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12916 else
12917 locsymcount = symtab_hdr->sh_info;
12918
12919 for (j = 0; j < locsymcount; ++j)
12920 {
12921 if (local_got[j] > 0)
12922 {
12923 local_got[j] = gotoff;
12924 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12925 }
12926 else
12927 local_got[j] = (bfd_vma) -1;
12928 }
12929 }
12930
12931 /* Then the global .got entries. .plt refcounts are handled by
12932 adjust_dynamic_symbol */
12933 gofarg.gotoff = gotoff;
12934 gofarg.info = info;
12935 elf_link_hash_traverse (elf_hash_table (info),
12936 elf_gc_allocate_got_offsets,
12937 &gofarg);
12938 return TRUE;
12939 }
12940
12941 /* Many folk need no more in the way of final link than this, once
12942 got entry reference counting is enabled. */
12943
12944 bfd_boolean
12945 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12946 {
12947 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12948 return FALSE;
12949
12950 /* Invoke the regular ELF backend linker to do all the work. */
12951 return bfd_elf_final_link (abfd, info);
12952 }
12953
12954 bfd_boolean
12955 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12956 {
12957 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12958
12959 if (rcookie->bad_symtab)
12960 rcookie->rel = rcookie->rels;
12961
12962 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12963 {
12964 unsigned long r_symndx;
12965
12966 if (! rcookie->bad_symtab)
12967 if (rcookie->rel->r_offset > offset)
12968 return FALSE;
12969 if (rcookie->rel->r_offset != offset)
12970 continue;
12971
12972 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12973 if (r_symndx == STN_UNDEF)
12974 return TRUE;
12975
12976 if (r_symndx >= rcookie->locsymcount
12977 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12978 {
12979 struct elf_link_hash_entry *h;
12980
12981 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12982
12983 while (h->root.type == bfd_link_hash_indirect
12984 || h->root.type == bfd_link_hash_warning)
12985 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12986
12987 if ((h->root.type == bfd_link_hash_defined
12988 || h->root.type == bfd_link_hash_defweak)
12989 && (h->root.u.def.section->owner != rcookie->abfd
12990 || h->root.u.def.section->kept_section != NULL
12991 || discarded_section (h->root.u.def.section)))
12992 return TRUE;
12993 }
12994 else
12995 {
12996 /* It's not a relocation against a global symbol,
12997 but it could be a relocation against a local
12998 symbol for a discarded section. */
12999 asection *isec;
13000 Elf_Internal_Sym *isym;
13001
13002 /* Need to: get the symbol; get the section. */
13003 isym = &rcookie->locsyms[r_symndx];
13004 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
13005 if (isec != NULL
13006 && (isec->kept_section != NULL
13007 || discarded_section (isec)))
13008 return TRUE;
13009 }
13010 return FALSE;
13011 }
13012 return FALSE;
13013 }
13014
13015 /* Discard unneeded references to discarded sections.
13016 Returns -1 on error, 1 if any section's size was changed, 0 if
13017 nothing changed. This function assumes that the relocations are in
13018 sorted order, which is true for all known assemblers. */
13019
13020 int
13021 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
13022 {
13023 struct elf_reloc_cookie cookie;
13024 asection *o;
13025 bfd *abfd;
13026 int changed = 0;
13027
13028 if (info->traditional_format
13029 || !is_elf_hash_table (info->hash))
13030 return 0;
13031
13032 o = bfd_get_section_by_name (output_bfd, ".stab");
13033 if (o != NULL)
13034 {
13035 asection *i;
13036
13037 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13038 {
13039 if (i->size == 0
13040 || i->reloc_count == 0
13041 || i->sec_info_type != SEC_INFO_TYPE_STABS)
13042 continue;
13043
13044 abfd = i->owner;
13045 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13046 continue;
13047
13048 if (!init_reloc_cookie_for_section (&cookie, info, i))
13049 return -1;
13050
13051 if (_bfd_discard_section_stabs (abfd, i,
13052 elf_section_data (i)->sec_info,
13053 bfd_elf_reloc_symbol_deleted_p,
13054 &cookie))
13055 changed = 1;
13056
13057 fini_reloc_cookie_for_section (&cookie, i);
13058 }
13059 }
13060
13061 o = NULL;
13062 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
13063 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
13064 if (o != NULL)
13065 {
13066 asection *i;
13067
13068 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13069 {
13070 if (i->size == 0)
13071 continue;
13072
13073 abfd = i->owner;
13074 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13075 continue;
13076
13077 if (!init_reloc_cookie_for_section (&cookie, info, i))
13078 return -1;
13079
13080 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
13081 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
13082 bfd_elf_reloc_symbol_deleted_p,
13083 &cookie))
13084 changed = 1;
13085
13086 fini_reloc_cookie_for_section (&cookie, i);
13087 }
13088 }
13089
13090 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
13091 {
13092 const struct elf_backend_data *bed;
13093
13094 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13095 continue;
13096
13097 bed = get_elf_backend_data (abfd);
13098
13099 if (bed->elf_backend_discard_info != NULL)
13100 {
13101 if (!init_reloc_cookie (&cookie, info, abfd))
13102 return -1;
13103
13104 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
13105 changed = 1;
13106
13107 fini_reloc_cookie (&cookie, abfd);
13108 }
13109 }
13110
13111 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
13112 _bfd_elf_end_eh_frame_parsing (info);
13113
13114 if (info->eh_frame_hdr_type
13115 && !info->relocatable
13116 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
13117 changed = 1;
13118
13119 return changed;
13120 }
13121
13122 bfd_boolean
13123 _bfd_elf_section_already_linked (bfd *abfd,
13124 asection *sec,
13125 struct bfd_link_info *info)
13126 {
13127 flagword flags;
13128 const char *name, *key;
13129 struct bfd_section_already_linked *l;
13130 struct bfd_section_already_linked_hash_entry *already_linked_list;
13131
13132 if (sec->output_section == bfd_abs_section_ptr)
13133 return FALSE;
13134
13135 flags = sec->flags;
13136
13137 /* Return if it isn't a linkonce section. A comdat group section
13138 also has SEC_LINK_ONCE set. */
13139 if ((flags & SEC_LINK_ONCE) == 0)
13140 return FALSE;
13141
13142 /* Don't put group member sections on our list of already linked
13143 sections. They are handled as a group via their group section. */
13144 if (elf_sec_group (sec) != NULL)
13145 return FALSE;
13146
13147 /* For a SHT_GROUP section, use the group signature as the key. */
13148 name = sec->name;
13149 if ((flags & SEC_GROUP) != 0
13150 && elf_next_in_group (sec) != NULL
13151 && elf_group_name (elf_next_in_group (sec)) != NULL)
13152 key = elf_group_name (elf_next_in_group (sec));
13153 else
13154 {
13155 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
13156 if (CONST_STRNEQ (name, ".gnu.linkonce.")
13157 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
13158 key++;
13159 else
13160 /* Must be a user linkonce section that doesn't follow gcc's
13161 naming convention. In this case we won't be matching
13162 single member groups. */
13163 key = name;
13164 }
13165
13166 already_linked_list = bfd_section_already_linked_table_lookup (key);
13167
13168 for (l = already_linked_list->entry; l != NULL; l = l->next)
13169 {
13170 /* We may have 2 different types of sections on the list: group
13171 sections with a signature of <key> (<key> is some string),
13172 and linkonce sections named .gnu.linkonce.<type>.<key>.
13173 Match like sections. LTO plugin sections are an exception.
13174 They are always named .gnu.linkonce.t.<key> and match either
13175 type of section. */
13176 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13177 && ((flags & SEC_GROUP) != 0
13178 || strcmp (name, l->sec->name) == 0))
13179 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13180 {
13181 /* The section has already been linked. See if we should
13182 issue a warning. */
13183 if (!_bfd_handle_already_linked (sec, l, info))
13184 return FALSE;
13185
13186 if (flags & SEC_GROUP)
13187 {
13188 asection *first = elf_next_in_group (sec);
13189 asection *s = first;
13190
13191 while (s != NULL)
13192 {
13193 s->output_section = bfd_abs_section_ptr;
13194 /* Record which group discards it. */
13195 s->kept_section = l->sec;
13196 s = elf_next_in_group (s);
13197 /* These lists are circular. */
13198 if (s == first)
13199 break;
13200 }
13201 }
13202
13203 return TRUE;
13204 }
13205 }
13206
13207 /* A single member comdat group section may be discarded by a
13208 linkonce section and vice versa. */
13209 if ((flags & SEC_GROUP) != 0)
13210 {
13211 asection *first = elf_next_in_group (sec);
13212
13213 if (first != NULL && elf_next_in_group (first) == first)
13214 /* Check this single member group against linkonce sections. */
13215 for (l = already_linked_list->entry; l != NULL; l = l->next)
13216 if ((l->sec->flags & SEC_GROUP) == 0
13217 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
13218 {
13219 first->output_section = bfd_abs_section_ptr;
13220 first->kept_section = l->sec;
13221 sec->output_section = bfd_abs_section_ptr;
13222 break;
13223 }
13224 }
13225 else
13226 /* Check this linkonce section against single member groups. */
13227 for (l = already_linked_list->entry; l != NULL; l = l->next)
13228 if (l->sec->flags & SEC_GROUP)
13229 {
13230 asection *first = elf_next_in_group (l->sec);
13231
13232 if (first != NULL
13233 && elf_next_in_group (first) == first
13234 && bfd_elf_match_symbols_in_sections (first, sec, info))
13235 {
13236 sec->output_section = bfd_abs_section_ptr;
13237 sec->kept_section = first;
13238 break;
13239 }
13240 }
13241
13242 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
13243 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
13244 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
13245 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
13246 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
13247 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
13248 `.gnu.linkonce.t.F' section from a different bfd not requiring any
13249 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
13250 The reverse order cannot happen as there is never a bfd with only the
13251 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
13252 matter as here were are looking only for cross-bfd sections. */
13253
13254 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
13255 for (l = already_linked_list->entry; l != NULL; l = l->next)
13256 if ((l->sec->flags & SEC_GROUP) == 0
13257 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
13258 {
13259 if (abfd != l->sec->owner)
13260 sec->output_section = bfd_abs_section_ptr;
13261 break;
13262 }
13263
13264 /* This is the first section with this name. Record it. */
13265 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
13266 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
13267 return sec->output_section == bfd_abs_section_ptr;
13268 }
13269
13270 bfd_boolean
13271 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
13272 {
13273 return sym->st_shndx == SHN_COMMON;
13274 }
13275
13276 unsigned int
13277 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
13278 {
13279 return SHN_COMMON;
13280 }
13281
13282 asection *
13283 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
13284 {
13285 return bfd_com_section_ptr;
13286 }
13287
13288 bfd_vma
13289 _bfd_elf_default_got_elt_size (bfd *abfd,
13290 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13291 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
13292 bfd *ibfd ATTRIBUTE_UNUSED,
13293 unsigned long symndx ATTRIBUTE_UNUSED)
13294 {
13295 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13296 return bed->s->arch_size / 8;
13297 }
13298
13299 /* Routines to support the creation of dynamic relocs. */
13300
13301 /* Returns the name of the dynamic reloc section associated with SEC. */
13302
13303 static const char *
13304 get_dynamic_reloc_section_name (bfd * abfd,
13305 asection * sec,
13306 bfd_boolean is_rela)
13307 {
13308 char *name;
13309 const char *old_name = bfd_get_section_name (NULL, sec);
13310 const char *prefix = is_rela ? ".rela" : ".rel";
13311
13312 if (old_name == NULL)
13313 return NULL;
13314
13315 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
13316 sprintf (name, "%s%s", prefix, old_name);
13317
13318 return name;
13319 }
13320
13321 /* Returns the dynamic reloc section associated with SEC.
13322 If necessary compute the name of the dynamic reloc section based
13323 on SEC's name (looked up in ABFD's string table) and the setting
13324 of IS_RELA. */
13325
13326 asection *
13327 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
13328 asection * sec,
13329 bfd_boolean is_rela)
13330 {
13331 asection * reloc_sec = elf_section_data (sec)->sreloc;
13332
13333 if (reloc_sec == NULL)
13334 {
13335 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13336
13337 if (name != NULL)
13338 {
13339 reloc_sec = bfd_get_linker_section (abfd, name);
13340
13341 if (reloc_sec != NULL)
13342 elf_section_data (sec)->sreloc = reloc_sec;
13343 }
13344 }
13345
13346 return reloc_sec;
13347 }
13348
13349 /* Returns the dynamic reloc section associated with SEC. If the
13350 section does not exist it is created and attached to the DYNOBJ
13351 bfd and stored in the SRELOC field of SEC's elf_section_data
13352 structure.
13353
13354 ALIGNMENT is the alignment for the newly created section and
13355 IS_RELA defines whether the name should be .rela.<SEC's name>
13356 or .rel.<SEC's name>. The section name is looked up in the
13357 string table associated with ABFD. */
13358
13359 asection *
13360 _bfd_elf_make_dynamic_reloc_section (asection *sec,
13361 bfd *dynobj,
13362 unsigned int alignment,
13363 bfd *abfd,
13364 bfd_boolean is_rela)
13365 {
13366 asection * reloc_sec = elf_section_data (sec)->sreloc;
13367
13368 if (reloc_sec == NULL)
13369 {
13370 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13371
13372 if (name == NULL)
13373 return NULL;
13374
13375 reloc_sec = bfd_get_linker_section (dynobj, name);
13376
13377 if (reloc_sec == NULL)
13378 {
13379 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13380 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13381 if ((sec->flags & SEC_ALLOC) != 0)
13382 flags |= SEC_ALLOC | SEC_LOAD;
13383
13384 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13385 if (reloc_sec != NULL)
13386 {
13387 /* _bfd_elf_get_sec_type_attr chooses a section type by
13388 name. Override as it may be wrong, eg. for a user
13389 section named "auto" we'll get ".relauto" which is
13390 seen to be a .rela section. */
13391 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13392 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13393 reloc_sec = NULL;
13394 }
13395 }
13396
13397 elf_section_data (sec)->sreloc = reloc_sec;
13398 }
13399
13400 return reloc_sec;
13401 }
13402
13403 /* Copy the ELF symbol type and other attributes for a linker script
13404 assignment from HSRC to HDEST. Generally this should be treated as
13405 if we found a strong non-dynamic definition for HDEST (except that
13406 ld ignores multiple definition errors). */
13407 void
13408 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
13409 struct bfd_link_hash_entry *hdest,
13410 struct bfd_link_hash_entry *hsrc)
13411 {
13412 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
13413 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
13414 Elf_Internal_Sym isym;
13415
13416 ehdest->type = ehsrc->type;
13417 ehdest->target_internal = ehsrc->target_internal;
13418
13419 isym.st_other = ehsrc->other;
13420 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
13421 }
13422
13423 /* Append a RELA relocation REL to section S in BFD. */
13424
13425 void
13426 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13427 {
13428 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13429 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13430 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13431 bed->s->swap_reloca_out (abfd, rel, loc);
13432 }
13433
13434 /* Append a REL relocation REL to section S in BFD. */
13435
13436 void
13437 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13438 {
13439 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13440 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13441 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13442 bed->s->swap_reloc_out (abfd, rel, loc);
13443 }