Fix PR gdb/19858: GDB doesn't register the JIT libraries on attach
[binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2016 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfd_stdint.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31
32 /* This struct is used to pass information to routines called via
33 elf_link_hash_traverse which must return failure. */
34
35 struct elf_info_failed
36 {
37 struct bfd_link_info *info;
38 bfd_boolean failed;
39 };
40
41 /* This structure is used to pass information to
42 _bfd_elf_link_find_version_dependencies. */
43
44 struct elf_find_verdep_info
45 {
46 /* General link information. */
47 struct bfd_link_info *info;
48 /* The number of dependencies. */
49 unsigned int vers;
50 /* Whether we had a failure. */
51 bfd_boolean failed;
52 };
53
54 static bfd_boolean _bfd_elf_fix_symbol_flags
55 (struct elf_link_hash_entry *, struct elf_info_failed *);
56
57 asection *
58 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
59 unsigned long r_symndx,
60 bfd_boolean discard)
61 {
62 if (r_symndx >= cookie->locsymcount
63 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
64 {
65 struct elf_link_hash_entry *h;
66
67 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
68
69 while (h->root.type == bfd_link_hash_indirect
70 || h->root.type == bfd_link_hash_warning)
71 h = (struct elf_link_hash_entry *) h->root.u.i.link;
72
73 if ((h->root.type == bfd_link_hash_defined
74 || h->root.type == bfd_link_hash_defweak)
75 && discarded_section (h->root.u.def.section))
76 return h->root.u.def.section;
77 else
78 return NULL;
79 }
80 else
81 {
82 /* It's not a relocation against a global symbol,
83 but it could be a relocation against a local
84 symbol for a discarded section. */
85 asection *isec;
86 Elf_Internal_Sym *isym;
87
88 /* Need to: get the symbol; get the section. */
89 isym = &cookie->locsyms[r_symndx];
90 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
91 if (isec != NULL
92 && discard ? discarded_section (isec) : 1)
93 return isec;
94 }
95 return NULL;
96 }
97
98 /* Define a symbol in a dynamic linkage section. */
99
100 struct elf_link_hash_entry *
101 _bfd_elf_define_linkage_sym (bfd *abfd,
102 struct bfd_link_info *info,
103 asection *sec,
104 const char *name)
105 {
106 struct elf_link_hash_entry *h;
107 struct bfd_link_hash_entry *bh;
108 const struct elf_backend_data *bed;
109
110 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
111 if (h != NULL)
112 {
113 /* Zap symbol defined in an as-needed lib that wasn't linked.
114 This is a symptom of a larger problem: Absolute symbols
115 defined in shared libraries can't be overridden, because we
116 lose the link to the bfd which is via the symbol section. */
117 h->root.type = bfd_link_hash_new;
118 }
119
120 bh = &h->root;
121 bed = get_elf_backend_data (abfd);
122 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
123 sec, 0, NULL, FALSE, bed->collect,
124 &bh))
125 return NULL;
126 h = (struct elf_link_hash_entry *) bh;
127 h->def_regular = 1;
128 h->non_elf = 0;
129 h->root.linker_def = 1;
130 h->type = STT_OBJECT;
131 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
132 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
133
134 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
135 return h;
136 }
137
138 bfd_boolean
139 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
140 {
141 flagword flags;
142 asection *s;
143 struct elf_link_hash_entry *h;
144 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
145 struct elf_link_hash_table *htab = elf_hash_table (info);
146
147 /* This function may be called more than once. */
148 s = bfd_get_linker_section (abfd, ".got");
149 if (s != NULL)
150 return TRUE;
151
152 flags = bed->dynamic_sec_flags;
153
154 s = bfd_make_section_anyway_with_flags (abfd,
155 (bed->rela_plts_and_copies_p
156 ? ".rela.got" : ".rel.got"),
157 (bed->dynamic_sec_flags
158 | SEC_READONLY));
159 if (s == NULL
160 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
161 return FALSE;
162 htab->srelgot = s;
163
164 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
165 if (s == NULL
166 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
167 return FALSE;
168 htab->sgot = s;
169
170 if (bed->want_got_plt)
171 {
172 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
173 if (s == NULL
174 || !bfd_set_section_alignment (abfd, s,
175 bed->s->log_file_align))
176 return FALSE;
177 htab->sgotplt = s;
178 }
179
180 /* The first bit of the global offset table is the header. */
181 s->size += bed->got_header_size;
182
183 if (bed->want_got_sym)
184 {
185 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
186 (or .got.plt) section. We don't do this in the linker script
187 because we don't want to define the symbol if we are not creating
188 a global offset table. */
189 h = _bfd_elf_define_linkage_sym (abfd, info, s,
190 "_GLOBAL_OFFSET_TABLE_");
191 elf_hash_table (info)->hgot = h;
192 if (h == NULL)
193 return FALSE;
194 }
195
196 return TRUE;
197 }
198 \f
199 /* Create a strtab to hold the dynamic symbol names. */
200 static bfd_boolean
201 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
202 {
203 struct elf_link_hash_table *hash_table;
204
205 hash_table = elf_hash_table (info);
206 if (hash_table->dynobj == NULL)
207 hash_table->dynobj = abfd;
208
209 if (hash_table->dynstr == NULL)
210 {
211 hash_table->dynstr = _bfd_elf_strtab_init ();
212 if (hash_table->dynstr == NULL)
213 return FALSE;
214 }
215 return TRUE;
216 }
217
218 /* Create some sections which will be filled in with dynamic linking
219 information. ABFD is an input file which requires dynamic sections
220 to be created. The dynamic sections take up virtual memory space
221 when the final executable is run, so we need to create them before
222 addresses are assigned to the output sections. We work out the
223 actual contents and size of these sections later. */
224
225 bfd_boolean
226 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
227 {
228 flagword flags;
229 asection *s;
230 const struct elf_backend_data *bed;
231 struct elf_link_hash_entry *h;
232
233 if (! is_elf_hash_table (info->hash))
234 return FALSE;
235
236 if (elf_hash_table (info)->dynamic_sections_created)
237 return TRUE;
238
239 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
240 return FALSE;
241
242 abfd = elf_hash_table (info)->dynobj;
243 bed = get_elf_backend_data (abfd);
244
245 flags = bed->dynamic_sec_flags;
246
247 /* A dynamically linked executable has a .interp section, but a
248 shared library does not. */
249 if (bfd_link_executable (info) && !info->nointerp)
250 {
251 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
252 flags | SEC_READONLY);
253 if (s == NULL)
254 return FALSE;
255 }
256
257 /* Create sections to hold version informations. These are removed
258 if they are not needed. */
259 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
260 flags | SEC_READONLY);
261 if (s == NULL
262 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
263 return FALSE;
264
265 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
266 flags | SEC_READONLY);
267 if (s == NULL
268 || ! bfd_set_section_alignment (abfd, s, 1))
269 return FALSE;
270
271 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
272 flags | SEC_READONLY);
273 if (s == NULL
274 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
275 return FALSE;
276
277 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
278 flags | SEC_READONLY);
279 if (s == NULL
280 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
281 return FALSE;
282 elf_hash_table (info)->dynsym = s;
283
284 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
285 flags | SEC_READONLY);
286 if (s == NULL)
287 return FALSE;
288
289 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
290 if (s == NULL
291 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
292 return FALSE;
293
294 /* The special symbol _DYNAMIC is always set to the start of the
295 .dynamic section. We could set _DYNAMIC in a linker script, but we
296 only want to define it if we are, in fact, creating a .dynamic
297 section. We don't want to define it if there is no .dynamic
298 section, since on some ELF platforms the start up code examines it
299 to decide how to initialize the process. */
300 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
301 elf_hash_table (info)->hdynamic = h;
302 if (h == NULL)
303 return FALSE;
304
305 if (info->emit_hash)
306 {
307 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
308 flags | SEC_READONLY);
309 if (s == NULL
310 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
311 return FALSE;
312 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
313 }
314
315 if (info->emit_gnu_hash)
316 {
317 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
318 flags | SEC_READONLY);
319 if (s == NULL
320 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
321 return FALSE;
322 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
323 4 32-bit words followed by variable count of 64-bit words, then
324 variable count of 32-bit words. */
325 if (bed->s->arch_size == 64)
326 elf_section_data (s)->this_hdr.sh_entsize = 0;
327 else
328 elf_section_data (s)->this_hdr.sh_entsize = 4;
329 }
330
331 /* Let the backend create the rest of the sections. This lets the
332 backend set the right flags. The backend will normally create
333 the .got and .plt sections. */
334 if (bed->elf_backend_create_dynamic_sections == NULL
335 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
336 return FALSE;
337
338 elf_hash_table (info)->dynamic_sections_created = TRUE;
339
340 return TRUE;
341 }
342
343 /* Create dynamic sections when linking against a dynamic object. */
344
345 bfd_boolean
346 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
347 {
348 flagword flags, pltflags;
349 struct elf_link_hash_entry *h;
350 asection *s;
351 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
352 struct elf_link_hash_table *htab = elf_hash_table (info);
353
354 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
355 .rel[a].bss sections. */
356 flags = bed->dynamic_sec_flags;
357
358 pltflags = flags;
359 if (bed->plt_not_loaded)
360 /* We do not clear SEC_ALLOC here because we still want the OS to
361 allocate space for the section; it's just that there's nothing
362 to read in from the object file. */
363 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
364 else
365 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
366 if (bed->plt_readonly)
367 pltflags |= SEC_READONLY;
368
369 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
370 if (s == NULL
371 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
372 return FALSE;
373 htab->splt = s;
374
375 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
376 .plt section. */
377 if (bed->want_plt_sym)
378 {
379 h = _bfd_elf_define_linkage_sym (abfd, info, s,
380 "_PROCEDURE_LINKAGE_TABLE_");
381 elf_hash_table (info)->hplt = h;
382 if (h == NULL)
383 return FALSE;
384 }
385
386 s = bfd_make_section_anyway_with_flags (abfd,
387 (bed->rela_plts_and_copies_p
388 ? ".rela.plt" : ".rel.plt"),
389 flags | SEC_READONLY);
390 if (s == NULL
391 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
392 return FALSE;
393 htab->srelplt = s;
394
395 if (! _bfd_elf_create_got_section (abfd, info))
396 return FALSE;
397
398 if (bed->want_dynbss)
399 {
400 /* The .dynbss section is a place to put symbols which are defined
401 by dynamic objects, are referenced by regular objects, and are
402 not functions. We must allocate space for them in the process
403 image and use a R_*_COPY reloc to tell the dynamic linker to
404 initialize them at run time. The linker script puts the .dynbss
405 section into the .bss section of the final image. */
406 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
407 (SEC_ALLOC | SEC_LINKER_CREATED));
408 if (s == NULL)
409 return FALSE;
410
411 /* The .rel[a].bss section holds copy relocs. This section is not
412 normally needed. We need to create it here, though, so that the
413 linker will map it to an output section. We can't just create it
414 only if we need it, because we will not know whether we need it
415 until we have seen all the input files, and the first time the
416 main linker code calls BFD after examining all the input files
417 (size_dynamic_sections) the input sections have already been
418 mapped to the output sections. If the section turns out not to
419 be needed, we can discard it later. We will never need this
420 section when generating a shared object, since they do not use
421 copy relocs. */
422 if (! bfd_link_pic (info))
423 {
424 s = bfd_make_section_anyway_with_flags (abfd,
425 (bed->rela_plts_and_copies_p
426 ? ".rela.bss" : ".rel.bss"),
427 flags | SEC_READONLY);
428 if (s == NULL
429 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
430 return FALSE;
431 }
432 }
433
434 return TRUE;
435 }
436 \f
437 /* Record a new dynamic symbol. We record the dynamic symbols as we
438 read the input files, since we need to have a list of all of them
439 before we can determine the final sizes of the output sections.
440 Note that we may actually call this function even though we are not
441 going to output any dynamic symbols; in some cases we know that a
442 symbol should be in the dynamic symbol table, but only if there is
443 one. */
444
445 bfd_boolean
446 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
447 struct elf_link_hash_entry *h)
448 {
449 if (h->dynindx == -1)
450 {
451 struct elf_strtab_hash *dynstr;
452 char *p;
453 const char *name;
454 bfd_size_type indx;
455
456 /* XXX: The ABI draft says the linker must turn hidden and
457 internal symbols into STB_LOCAL symbols when producing the
458 DSO. However, if ld.so honors st_other in the dynamic table,
459 this would not be necessary. */
460 switch (ELF_ST_VISIBILITY (h->other))
461 {
462 case STV_INTERNAL:
463 case STV_HIDDEN:
464 if (h->root.type != bfd_link_hash_undefined
465 && h->root.type != bfd_link_hash_undefweak)
466 {
467 h->forced_local = 1;
468 if (!elf_hash_table (info)->is_relocatable_executable)
469 return TRUE;
470 }
471
472 default:
473 break;
474 }
475
476 h->dynindx = elf_hash_table (info)->dynsymcount;
477 ++elf_hash_table (info)->dynsymcount;
478
479 dynstr = elf_hash_table (info)->dynstr;
480 if (dynstr == NULL)
481 {
482 /* Create a strtab to hold the dynamic symbol names. */
483 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
484 if (dynstr == NULL)
485 return FALSE;
486 }
487
488 /* We don't put any version information in the dynamic string
489 table. */
490 name = h->root.root.string;
491 p = strchr (name, ELF_VER_CHR);
492 if (p != NULL)
493 /* We know that the p points into writable memory. In fact,
494 there are only a few symbols that have read-only names, being
495 those like _GLOBAL_OFFSET_TABLE_ that are created specially
496 by the backends. Most symbols will have names pointing into
497 an ELF string table read from a file, or to objalloc memory. */
498 *p = 0;
499
500 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
501
502 if (p != NULL)
503 *p = ELF_VER_CHR;
504
505 if (indx == (bfd_size_type) -1)
506 return FALSE;
507 h->dynstr_index = indx;
508 }
509
510 return TRUE;
511 }
512 \f
513 /* Mark a symbol dynamic. */
514
515 static void
516 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
517 struct elf_link_hash_entry *h,
518 Elf_Internal_Sym *sym)
519 {
520 struct bfd_elf_dynamic_list *d = info->dynamic_list;
521
522 /* It may be called more than once on the same H. */
523 if(h->dynamic || bfd_link_relocatable (info))
524 return;
525
526 if ((info->dynamic_data
527 && (h->type == STT_OBJECT
528 || h->type == STT_COMMON
529 || (sym != NULL
530 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
531 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
532 || (d != NULL
533 && h->root.type == bfd_link_hash_new
534 && (*d->match) (&d->head, NULL, h->root.root.string)))
535 h->dynamic = 1;
536 }
537
538 /* Record an assignment to a symbol made by a linker script. We need
539 this in case some dynamic object refers to this symbol. */
540
541 bfd_boolean
542 bfd_elf_record_link_assignment (bfd *output_bfd,
543 struct bfd_link_info *info,
544 const char *name,
545 bfd_boolean provide,
546 bfd_boolean hidden)
547 {
548 struct elf_link_hash_entry *h, *hv;
549 struct elf_link_hash_table *htab;
550 const struct elf_backend_data *bed;
551
552 if (!is_elf_hash_table (info->hash))
553 return TRUE;
554
555 htab = elf_hash_table (info);
556 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
557 if (h == NULL)
558 return provide;
559
560 if (h->versioned == unknown)
561 {
562 /* Set versioned if symbol version is unknown. */
563 char *version = strrchr (name, ELF_VER_CHR);
564 if (version)
565 {
566 if (version > name && version[-1] != ELF_VER_CHR)
567 h->versioned = versioned_hidden;
568 else
569 h->versioned = versioned;
570 }
571 }
572
573 switch (h->root.type)
574 {
575 case bfd_link_hash_defined:
576 case bfd_link_hash_defweak:
577 case bfd_link_hash_common:
578 break;
579 case bfd_link_hash_undefweak:
580 case bfd_link_hash_undefined:
581 /* Since we're defining the symbol, don't let it seem to have not
582 been defined. record_dynamic_symbol and size_dynamic_sections
583 may depend on this. */
584 h->root.type = bfd_link_hash_new;
585 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
586 bfd_link_repair_undef_list (&htab->root);
587 break;
588 case bfd_link_hash_new:
589 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
590 h->non_elf = 0;
591 break;
592 case bfd_link_hash_indirect:
593 /* We had a versioned symbol in a dynamic library. We make the
594 the versioned symbol point to this one. */
595 bed = get_elf_backend_data (output_bfd);
596 hv = h;
597 while (hv->root.type == bfd_link_hash_indirect
598 || hv->root.type == bfd_link_hash_warning)
599 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
600 /* We don't need to update h->root.u since linker will set them
601 later. */
602 h->root.type = bfd_link_hash_undefined;
603 hv->root.type = bfd_link_hash_indirect;
604 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
605 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
606 break;
607 case bfd_link_hash_warning:
608 abort ();
609 break;
610 }
611
612 /* If this symbol is being provided by the linker script, and it is
613 currently defined by a dynamic object, but not by a regular
614 object, then mark it as undefined so that the generic linker will
615 force the correct value. */
616 if (provide
617 && h->def_dynamic
618 && !h->def_regular)
619 h->root.type = bfd_link_hash_undefined;
620
621 /* If this symbol is not being provided by the linker script, and it is
622 currently defined by a dynamic object, but not by a regular object,
623 then clear out any version information because the symbol will not be
624 associated with the dynamic object any more. */
625 if (!provide
626 && h->def_dynamic
627 && !h->def_regular)
628 h->verinfo.verdef = NULL;
629
630 h->def_regular = 1;
631
632 if (hidden)
633 {
634 bed = get_elf_backend_data (output_bfd);
635 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
636 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
637 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
638 }
639
640 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
641 and executables. */
642 if (!bfd_link_relocatable (info)
643 && h->dynindx != -1
644 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
645 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
646 h->forced_local = 1;
647
648 if ((h->def_dynamic
649 || h->ref_dynamic
650 || bfd_link_dll (info)
651 || elf_hash_table (info)->is_relocatable_executable)
652 && h->dynindx == -1)
653 {
654 if (! bfd_elf_link_record_dynamic_symbol (info, h))
655 return FALSE;
656
657 /* If this is a weak defined symbol, and we know a corresponding
658 real symbol from the same dynamic object, make sure the real
659 symbol is also made into a dynamic symbol. */
660 if (h->u.weakdef != NULL
661 && h->u.weakdef->dynindx == -1)
662 {
663 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
664 return FALSE;
665 }
666 }
667
668 return TRUE;
669 }
670
671 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
672 success, and 2 on a failure caused by attempting to record a symbol
673 in a discarded section, eg. a discarded link-once section symbol. */
674
675 int
676 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
677 bfd *input_bfd,
678 long input_indx)
679 {
680 bfd_size_type amt;
681 struct elf_link_local_dynamic_entry *entry;
682 struct elf_link_hash_table *eht;
683 struct elf_strtab_hash *dynstr;
684 unsigned long dynstr_index;
685 char *name;
686 Elf_External_Sym_Shndx eshndx;
687 char esym[sizeof (Elf64_External_Sym)];
688
689 if (! is_elf_hash_table (info->hash))
690 return 0;
691
692 /* See if the entry exists already. */
693 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
694 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
695 return 1;
696
697 amt = sizeof (*entry);
698 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
699 if (entry == NULL)
700 return 0;
701
702 /* Go find the symbol, so that we can find it's name. */
703 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
704 1, input_indx, &entry->isym, esym, &eshndx))
705 {
706 bfd_release (input_bfd, entry);
707 return 0;
708 }
709
710 if (entry->isym.st_shndx != SHN_UNDEF
711 && entry->isym.st_shndx < SHN_LORESERVE)
712 {
713 asection *s;
714
715 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
716 if (s == NULL || bfd_is_abs_section (s->output_section))
717 {
718 /* We can still bfd_release here as nothing has done another
719 bfd_alloc. We can't do this later in this function. */
720 bfd_release (input_bfd, entry);
721 return 2;
722 }
723 }
724
725 name = (bfd_elf_string_from_elf_section
726 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
727 entry->isym.st_name));
728
729 dynstr = elf_hash_table (info)->dynstr;
730 if (dynstr == NULL)
731 {
732 /* Create a strtab to hold the dynamic symbol names. */
733 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
734 if (dynstr == NULL)
735 return 0;
736 }
737
738 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
739 if (dynstr_index == (unsigned long) -1)
740 return 0;
741 entry->isym.st_name = dynstr_index;
742
743 eht = elf_hash_table (info);
744
745 entry->next = eht->dynlocal;
746 eht->dynlocal = entry;
747 entry->input_bfd = input_bfd;
748 entry->input_indx = input_indx;
749 eht->dynsymcount++;
750
751 /* Whatever binding the symbol had before, it's now local. */
752 entry->isym.st_info
753 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
754
755 /* The dynindx will be set at the end of size_dynamic_sections. */
756
757 return 1;
758 }
759
760 /* Return the dynindex of a local dynamic symbol. */
761
762 long
763 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
764 bfd *input_bfd,
765 long input_indx)
766 {
767 struct elf_link_local_dynamic_entry *e;
768
769 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
770 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
771 return e->dynindx;
772 return -1;
773 }
774
775 /* This function is used to renumber the dynamic symbols, if some of
776 them are removed because they are marked as local. This is called
777 via elf_link_hash_traverse. */
778
779 static bfd_boolean
780 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
781 void *data)
782 {
783 size_t *count = (size_t *) data;
784
785 if (h->forced_local)
786 return TRUE;
787
788 if (h->dynindx != -1)
789 h->dynindx = ++(*count);
790
791 return TRUE;
792 }
793
794
795 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
796 STB_LOCAL binding. */
797
798 static bfd_boolean
799 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
800 void *data)
801 {
802 size_t *count = (size_t *) data;
803
804 if (!h->forced_local)
805 return TRUE;
806
807 if (h->dynindx != -1)
808 h->dynindx = ++(*count);
809
810 return TRUE;
811 }
812
813 /* Return true if the dynamic symbol for a given section should be
814 omitted when creating a shared library. */
815 bfd_boolean
816 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
817 struct bfd_link_info *info,
818 asection *p)
819 {
820 struct elf_link_hash_table *htab;
821 asection *ip;
822
823 switch (elf_section_data (p)->this_hdr.sh_type)
824 {
825 case SHT_PROGBITS:
826 case SHT_NOBITS:
827 /* If sh_type is yet undecided, assume it could be
828 SHT_PROGBITS/SHT_NOBITS. */
829 case SHT_NULL:
830 htab = elf_hash_table (info);
831 if (p == htab->tls_sec)
832 return FALSE;
833
834 if (htab->text_index_section != NULL)
835 return p != htab->text_index_section && p != htab->data_index_section;
836
837 return (htab->dynobj != NULL
838 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
839 && ip->output_section == p);
840
841 /* There shouldn't be section relative relocations
842 against any other section. */
843 default:
844 return TRUE;
845 }
846 }
847
848 /* Assign dynsym indices. In a shared library we generate a section
849 symbol for each output section, which come first. Next come symbols
850 which have been forced to local binding. Then all of the back-end
851 allocated local dynamic syms, followed by the rest of the global
852 symbols. */
853
854 static unsigned long
855 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
856 struct bfd_link_info *info,
857 unsigned long *section_sym_count)
858 {
859 unsigned long dynsymcount = 0;
860
861 if (bfd_link_pic (info)
862 || elf_hash_table (info)->is_relocatable_executable)
863 {
864 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
865 asection *p;
866 for (p = output_bfd->sections; p ; p = p->next)
867 if ((p->flags & SEC_EXCLUDE) == 0
868 && (p->flags & SEC_ALLOC) != 0
869 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
870 elf_section_data (p)->dynindx = ++dynsymcount;
871 else
872 elf_section_data (p)->dynindx = 0;
873 }
874 *section_sym_count = dynsymcount;
875
876 elf_link_hash_traverse (elf_hash_table (info),
877 elf_link_renumber_local_hash_table_dynsyms,
878 &dynsymcount);
879
880 if (elf_hash_table (info)->dynlocal)
881 {
882 struct elf_link_local_dynamic_entry *p;
883 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
884 p->dynindx = ++dynsymcount;
885 }
886
887 elf_link_hash_traverse (elf_hash_table (info),
888 elf_link_renumber_hash_table_dynsyms,
889 &dynsymcount);
890
891 /* There is an unused NULL entry at the head of the table which
892 we must account for in our count. We always create the dynsym
893 section, even if it is empty, with dynamic sections. */
894 if (elf_hash_table (info)->dynamic_sections_created)
895 ++dynsymcount;
896
897 elf_hash_table (info)->dynsymcount = dynsymcount;
898 return dynsymcount;
899 }
900
901 /* Merge st_other field. */
902
903 static void
904 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
905 const Elf_Internal_Sym *isym, asection *sec,
906 bfd_boolean definition, bfd_boolean dynamic)
907 {
908 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
909
910 /* If st_other has a processor-specific meaning, specific
911 code might be needed here. */
912 if (bed->elf_backend_merge_symbol_attribute)
913 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
914 dynamic);
915
916 if (!dynamic)
917 {
918 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
919 unsigned hvis = ELF_ST_VISIBILITY (h->other);
920
921 /* Keep the most constraining visibility. Leave the remainder
922 of the st_other field to elf_backend_merge_symbol_attribute. */
923 if (symvis - 1 < hvis - 1)
924 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
925 }
926 else if (definition
927 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
928 && (sec->flags & SEC_READONLY) == 0)
929 h->protected_def = 1;
930 }
931
932 /* This function is called when we want to merge a new symbol with an
933 existing symbol. It handles the various cases which arise when we
934 find a definition in a dynamic object, or when there is already a
935 definition in a dynamic object. The new symbol is described by
936 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
937 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
938 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
939 of an old common symbol. We set OVERRIDE if the old symbol is
940 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
941 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
942 to change. By OK to change, we mean that we shouldn't warn if the
943 type or size does change. */
944
945 static bfd_boolean
946 _bfd_elf_merge_symbol (bfd *abfd,
947 struct bfd_link_info *info,
948 const char *name,
949 Elf_Internal_Sym *sym,
950 asection **psec,
951 bfd_vma *pvalue,
952 struct elf_link_hash_entry **sym_hash,
953 bfd **poldbfd,
954 bfd_boolean *pold_weak,
955 unsigned int *pold_alignment,
956 bfd_boolean *skip,
957 bfd_boolean *override,
958 bfd_boolean *type_change_ok,
959 bfd_boolean *size_change_ok,
960 bfd_boolean *matched)
961 {
962 asection *sec, *oldsec;
963 struct elf_link_hash_entry *h;
964 struct elf_link_hash_entry *hi;
965 struct elf_link_hash_entry *flip;
966 int bind;
967 bfd *oldbfd;
968 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
969 bfd_boolean newweak, oldweak, newfunc, oldfunc;
970 const struct elf_backend_data *bed;
971 char *new_version;
972
973 *skip = FALSE;
974 *override = FALSE;
975
976 sec = *psec;
977 bind = ELF_ST_BIND (sym->st_info);
978
979 if (! bfd_is_und_section (sec))
980 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
981 else
982 h = ((struct elf_link_hash_entry *)
983 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
984 if (h == NULL)
985 return FALSE;
986 *sym_hash = h;
987
988 bed = get_elf_backend_data (abfd);
989
990 /* NEW_VERSION is the symbol version of the new symbol. */
991 if (h->versioned != unversioned)
992 {
993 /* Symbol version is unknown or versioned. */
994 new_version = strrchr (name, ELF_VER_CHR);
995 if (new_version)
996 {
997 if (h->versioned == unknown)
998 {
999 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1000 h->versioned = versioned_hidden;
1001 else
1002 h->versioned = versioned;
1003 }
1004 new_version += 1;
1005 if (new_version[0] == '\0')
1006 new_version = NULL;
1007 }
1008 else
1009 h->versioned = unversioned;
1010 }
1011 else
1012 new_version = NULL;
1013
1014 /* For merging, we only care about real symbols. But we need to make
1015 sure that indirect symbol dynamic flags are updated. */
1016 hi = h;
1017 while (h->root.type == bfd_link_hash_indirect
1018 || h->root.type == bfd_link_hash_warning)
1019 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1020
1021 if (!*matched)
1022 {
1023 if (hi == h || h->root.type == bfd_link_hash_new)
1024 *matched = TRUE;
1025 else
1026 {
1027 /* OLD_HIDDEN is true if the existing symbol is only visible
1028 to the symbol with the same symbol version. NEW_HIDDEN is
1029 true if the new symbol is only visible to the symbol with
1030 the same symbol version. */
1031 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1032 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1033 if (!old_hidden && !new_hidden)
1034 /* The new symbol matches the existing symbol if both
1035 aren't hidden. */
1036 *matched = TRUE;
1037 else
1038 {
1039 /* OLD_VERSION is the symbol version of the existing
1040 symbol. */
1041 char *old_version;
1042
1043 if (h->versioned >= versioned)
1044 old_version = strrchr (h->root.root.string,
1045 ELF_VER_CHR) + 1;
1046 else
1047 old_version = NULL;
1048
1049 /* The new symbol matches the existing symbol if they
1050 have the same symbol version. */
1051 *matched = (old_version == new_version
1052 || (old_version != NULL
1053 && new_version != NULL
1054 && strcmp (old_version, new_version) == 0));
1055 }
1056 }
1057 }
1058
1059 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1060 existing symbol. */
1061
1062 oldbfd = NULL;
1063 oldsec = NULL;
1064 switch (h->root.type)
1065 {
1066 default:
1067 break;
1068
1069 case bfd_link_hash_undefined:
1070 case bfd_link_hash_undefweak:
1071 oldbfd = h->root.u.undef.abfd;
1072 break;
1073
1074 case bfd_link_hash_defined:
1075 case bfd_link_hash_defweak:
1076 oldbfd = h->root.u.def.section->owner;
1077 oldsec = h->root.u.def.section;
1078 break;
1079
1080 case bfd_link_hash_common:
1081 oldbfd = h->root.u.c.p->section->owner;
1082 oldsec = h->root.u.c.p->section;
1083 if (pold_alignment)
1084 *pold_alignment = h->root.u.c.p->alignment_power;
1085 break;
1086 }
1087 if (poldbfd && *poldbfd == NULL)
1088 *poldbfd = oldbfd;
1089
1090 /* Differentiate strong and weak symbols. */
1091 newweak = bind == STB_WEAK;
1092 oldweak = (h->root.type == bfd_link_hash_defweak
1093 || h->root.type == bfd_link_hash_undefweak);
1094 if (pold_weak)
1095 *pold_weak = oldweak;
1096
1097 /* This code is for coping with dynamic objects, and is only useful
1098 if we are doing an ELF link. */
1099 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
1100 return TRUE;
1101
1102 /* We have to check it for every instance since the first few may be
1103 references and not all compilers emit symbol type for undefined
1104 symbols. */
1105 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1106
1107 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1108 respectively, is from a dynamic object. */
1109
1110 newdyn = (abfd->flags & DYNAMIC) != 0;
1111
1112 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1113 syms and defined syms in dynamic libraries respectively.
1114 ref_dynamic on the other hand can be set for a symbol defined in
1115 a dynamic library, and def_dynamic may not be set; When the
1116 definition in a dynamic lib is overridden by a definition in the
1117 executable use of the symbol in the dynamic lib becomes a
1118 reference to the executable symbol. */
1119 if (newdyn)
1120 {
1121 if (bfd_is_und_section (sec))
1122 {
1123 if (bind != STB_WEAK)
1124 {
1125 h->ref_dynamic_nonweak = 1;
1126 hi->ref_dynamic_nonweak = 1;
1127 }
1128 }
1129 else
1130 {
1131 /* Update the existing symbol only if they match. */
1132 if (*matched)
1133 h->dynamic_def = 1;
1134 hi->dynamic_def = 1;
1135 }
1136 }
1137
1138 /* If we just created the symbol, mark it as being an ELF symbol.
1139 Other than that, there is nothing to do--there is no merge issue
1140 with a newly defined symbol--so we just return. */
1141
1142 if (h->root.type == bfd_link_hash_new)
1143 {
1144 h->non_elf = 0;
1145 return TRUE;
1146 }
1147
1148 /* In cases involving weak versioned symbols, we may wind up trying
1149 to merge a symbol with itself. Catch that here, to avoid the
1150 confusion that results if we try to override a symbol with
1151 itself. The additional tests catch cases like
1152 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1153 dynamic object, which we do want to handle here. */
1154 if (abfd == oldbfd
1155 && (newweak || oldweak)
1156 && ((abfd->flags & DYNAMIC) == 0
1157 || !h->def_regular))
1158 return TRUE;
1159
1160 olddyn = FALSE;
1161 if (oldbfd != NULL)
1162 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1163 else if (oldsec != NULL)
1164 {
1165 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1166 indices used by MIPS ELF. */
1167 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1168 }
1169
1170 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1171 respectively, appear to be a definition rather than reference. */
1172
1173 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1174
1175 olddef = (h->root.type != bfd_link_hash_undefined
1176 && h->root.type != bfd_link_hash_undefweak
1177 && h->root.type != bfd_link_hash_common);
1178
1179 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1180 respectively, appear to be a function. */
1181
1182 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1183 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1184
1185 oldfunc = (h->type != STT_NOTYPE
1186 && bed->is_function_type (h->type));
1187
1188 /* When we try to create a default indirect symbol from the dynamic
1189 definition with the default version, we skip it if its type and
1190 the type of existing regular definition mismatch. */
1191 if (pold_alignment == NULL
1192 && newdyn
1193 && newdef
1194 && !olddyn
1195 && (((olddef || h->root.type == bfd_link_hash_common)
1196 && ELF_ST_TYPE (sym->st_info) != h->type
1197 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1198 && h->type != STT_NOTYPE
1199 && !(newfunc && oldfunc))
1200 || (olddef
1201 && ((h->type == STT_GNU_IFUNC)
1202 != (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))))
1203 {
1204 *skip = TRUE;
1205 return TRUE;
1206 }
1207
1208 /* Check TLS symbols. We don't check undefined symbols introduced
1209 by "ld -u" which have no type (and oldbfd NULL), and we don't
1210 check symbols from plugins because they also have no type. */
1211 if (oldbfd != NULL
1212 && (oldbfd->flags & BFD_PLUGIN) == 0
1213 && (abfd->flags & BFD_PLUGIN) == 0
1214 && ELF_ST_TYPE (sym->st_info) != h->type
1215 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1216 {
1217 bfd *ntbfd, *tbfd;
1218 bfd_boolean ntdef, tdef;
1219 asection *ntsec, *tsec;
1220
1221 if (h->type == STT_TLS)
1222 {
1223 ntbfd = abfd;
1224 ntsec = sec;
1225 ntdef = newdef;
1226 tbfd = oldbfd;
1227 tsec = oldsec;
1228 tdef = olddef;
1229 }
1230 else
1231 {
1232 ntbfd = oldbfd;
1233 ntsec = oldsec;
1234 ntdef = olddef;
1235 tbfd = abfd;
1236 tsec = sec;
1237 tdef = newdef;
1238 }
1239
1240 if (tdef && ntdef)
1241 (*_bfd_error_handler)
1242 (_("%s: TLS definition in %B section %A "
1243 "mismatches non-TLS definition in %B section %A"),
1244 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1245 else if (!tdef && !ntdef)
1246 (*_bfd_error_handler)
1247 (_("%s: TLS reference in %B "
1248 "mismatches non-TLS reference in %B"),
1249 tbfd, ntbfd, h->root.root.string);
1250 else if (tdef)
1251 (*_bfd_error_handler)
1252 (_("%s: TLS definition in %B section %A "
1253 "mismatches non-TLS reference in %B"),
1254 tbfd, tsec, ntbfd, h->root.root.string);
1255 else
1256 (*_bfd_error_handler)
1257 (_("%s: TLS reference in %B "
1258 "mismatches non-TLS definition in %B section %A"),
1259 tbfd, ntbfd, ntsec, h->root.root.string);
1260
1261 bfd_set_error (bfd_error_bad_value);
1262 return FALSE;
1263 }
1264
1265 /* If the old symbol has non-default visibility, we ignore the new
1266 definition from a dynamic object. */
1267 if (newdyn
1268 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1269 && !bfd_is_und_section (sec))
1270 {
1271 *skip = TRUE;
1272 /* Make sure this symbol is dynamic. */
1273 h->ref_dynamic = 1;
1274 hi->ref_dynamic = 1;
1275 /* A protected symbol has external availability. Make sure it is
1276 recorded as dynamic.
1277
1278 FIXME: Should we check type and size for protected symbol? */
1279 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1280 return bfd_elf_link_record_dynamic_symbol (info, h);
1281 else
1282 return TRUE;
1283 }
1284 else if (!newdyn
1285 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1286 && h->def_dynamic)
1287 {
1288 /* If the new symbol with non-default visibility comes from a
1289 relocatable file and the old definition comes from a dynamic
1290 object, we remove the old definition. */
1291 if (hi->root.type == bfd_link_hash_indirect)
1292 {
1293 /* Handle the case where the old dynamic definition is
1294 default versioned. We need to copy the symbol info from
1295 the symbol with default version to the normal one if it
1296 was referenced before. */
1297 if (h->ref_regular)
1298 {
1299 hi->root.type = h->root.type;
1300 h->root.type = bfd_link_hash_indirect;
1301 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1302
1303 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1304 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1305 {
1306 /* If the new symbol is hidden or internal, completely undo
1307 any dynamic link state. */
1308 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1309 h->forced_local = 0;
1310 h->ref_dynamic = 0;
1311 }
1312 else
1313 h->ref_dynamic = 1;
1314
1315 h->def_dynamic = 0;
1316 /* FIXME: Should we check type and size for protected symbol? */
1317 h->size = 0;
1318 h->type = 0;
1319
1320 h = hi;
1321 }
1322 else
1323 h = hi;
1324 }
1325
1326 /* If the old symbol was undefined before, then it will still be
1327 on the undefs list. If the new symbol is undefined or
1328 common, we can't make it bfd_link_hash_new here, because new
1329 undefined or common symbols will be added to the undefs list
1330 by _bfd_generic_link_add_one_symbol. Symbols may not be
1331 added twice to the undefs list. Also, if the new symbol is
1332 undefweak then we don't want to lose the strong undef. */
1333 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1334 {
1335 h->root.type = bfd_link_hash_undefined;
1336 h->root.u.undef.abfd = abfd;
1337 }
1338 else
1339 {
1340 h->root.type = bfd_link_hash_new;
1341 h->root.u.undef.abfd = NULL;
1342 }
1343
1344 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1345 {
1346 /* If the new symbol is hidden or internal, completely undo
1347 any dynamic link state. */
1348 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1349 h->forced_local = 0;
1350 h->ref_dynamic = 0;
1351 }
1352 else
1353 h->ref_dynamic = 1;
1354 h->def_dynamic = 0;
1355 /* FIXME: Should we check type and size for protected symbol? */
1356 h->size = 0;
1357 h->type = 0;
1358 return TRUE;
1359 }
1360
1361 /* If a new weak symbol definition comes from a regular file and the
1362 old symbol comes from a dynamic library, we treat the new one as
1363 strong. Similarly, an old weak symbol definition from a regular
1364 file is treated as strong when the new symbol comes from a dynamic
1365 library. Further, an old weak symbol from a dynamic library is
1366 treated as strong if the new symbol is from a dynamic library.
1367 This reflects the way glibc's ld.so works.
1368
1369 Do this before setting *type_change_ok or *size_change_ok so that
1370 we warn properly when dynamic library symbols are overridden. */
1371
1372 if (newdef && !newdyn && olddyn)
1373 newweak = FALSE;
1374 if (olddef && newdyn)
1375 oldweak = FALSE;
1376
1377 /* Allow changes between different types of function symbol. */
1378 if (newfunc && oldfunc)
1379 *type_change_ok = TRUE;
1380
1381 /* It's OK to change the type if either the existing symbol or the
1382 new symbol is weak. A type change is also OK if the old symbol
1383 is undefined and the new symbol is defined. */
1384
1385 if (oldweak
1386 || newweak
1387 || (newdef
1388 && h->root.type == bfd_link_hash_undefined))
1389 *type_change_ok = TRUE;
1390
1391 /* It's OK to change the size if either the existing symbol or the
1392 new symbol is weak, or if the old symbol is undefined. */
1393
1394 if (*type_change_ok
1395 || h->root.type == bfd_link_hash_undefined)
1396 *size_change_ok = TRUE;
1397
1398 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1399 symbol, respectively, appears to be a common symbol in a dynamic
1400 object. If a symbol appears in an uninitialized section, and is
1401 not weak, and is not a function, then it may be a common symbol
1402 which was resolved when the dynamic object was created. We want
1403 to treat such symbols specially, because they raise special
1404 considerations when setting the symbol size: if the symbol
1405 appears as a common symbol in a regular object, and the size in
1406 the regular object is larger, we must make sure that we use the
1407 larger size. This problematic case can always be avoided in C,
1408 but it must be handled correctly when using Fortran shared
1409 libraries.
1410
1411 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1412 likewise for OLDDYNCOMMON and OLDDEF.
1413
1414 Note that this test is just a heuristic, and that it is quite
1415 possible to have an uninitialized symbol in a shared object which
1416 is really a definition, rather than a common symbol. This could
1417 lead to some minor confusion when the symbol really is a common
1418 symbol in some regular object. However, I think it will be
1419 harmless. */
1420
1421 if (newdyn
1422 && newdef
1423 && !newweak
1424 && (sec->flags & SEC_ALLOC) != 0
1425 && (sec->flags & SEC_LOAD) == 0
1426 && sym->st_size > 0
1427 && !newfunc)
1428 newdyncommon = TRUE;
1429 else
1430 newdyncommon = FALSE;
1431
1432 if (olddyn
1433 && olddef
1434 && h->root.type == bfd_link_hash_defined
1435 && h->def_dynamic
1436 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1437 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1438 && h->size > 0
1439 && !oldfunc)
1440 olddyncommon = TRUE;
1441 else
1442 olddyncommon = FALSE;
1443
1444 /* We now know everything about the old and new symbols. We ask the
1445 backend to check if we can merge them. */
1446 if (bed->merge_symbol != NULL)
1447 {
1448 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1449 return FALSE;
1450 sec = *psec;
1451 }
1452
1453 /* If both the old and the new symbols look like common symbols in a
1454 dynamic object, set the size of the symbol to the larger of the
1455 two. */
1456
1457 if (olddyncommon
1458 && newdyncommon
1459 && sym->st_size != h->size)
1460 {
1461 /* Since we think we have two common symbols, issue a multiple
1462 common warning if desired. Note that we only warn if the
1463 size is different. If the size is the same, we simply let
1464 the old symbol override the new one as normally happens with
1465 symbols defined in dynamic objects. */
1466
1467 if (! ((*info->callbacks->multiple_common)
1468 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1469 return FALSE;
1470
1471 if (sym->st_size > h->size)
1472 h->size = sym->st_size;
1473
1474 *size_change_ok = TRUE;
1475 }
1476
1477 /* If we are looking at a dynamic object, and we have found a
1478 definition, we need to see if the symbol was already defined by
1479 some other object. If so, we want to use the existing
1480 definition, and we do not want to report a multiple symbol
1481 definition error; we do this by clobbering *PSEC to be
1482 bfd_und_section_ptr.
1483
1484 We treat a common symbol as a definition if the symbol in the
1485 shared library is a function, since common symbols always
1486 represent variables; this can cause confusion in principle, but
1487 any such confusion would seem to indicate an erroneous program or
1488 shared library. We also permit a common symbol in a regular
1489 object to override a weak symbol in a shared object. A common
1490 symbol in executable also overrides a symbol in a shared object. */
1491
1492 if (newdyn
1493 && newdef
1494 && (olddef
1495 || (h->root.type == bfd_link_hash_common
1496 && (newweak
1497 || newfunc
1498 || (!olddyn && bfd_link_executable (info))))))
1499 {
1500 *override = TRUE;
1501 newdef = FALSE;
1502 newdyncommon = FALSE;
1503
1504 *psec = sec = bfd_und_section_ptr;
1505 *size_change_ok = TRUE;
1506
1507 /* If we get here when the old symbol is a common symbol, then
1508 we are explicitly letting it override a weak symbol or
1509 function in a dynamic object, and we don't want to warn about
1510 a type change. If the old symbol is a defined symbol, a type
1511 change warning may still be appropriate. */
1512
1513 if (h->root.type == bfd_link_hash_common)
1514 *type_change_ok = TRUE;
1515 }
1516
1517 /* Handle the special case of an old common symbol merging with a
1518 new symbol which looks like a common symbol in a shared object.
1519 We change *PSEC and *PVALUE to make the new symbol look like a
1520 common symbol, and let _bfd_generic_link_add_one_symbol do the
1521 right thing. */
1522
1523 if (newdyncommon
1524 && h->root.type == bfd_link_hash_common)
1525 {
1526 *override = TRUE;
1527 newdef = FALSE;
1528 newdyncommon = FALSE;
1529 *pvalue = sym->st_size;
1530 *psec = sec = bed->common_section (oldsec);
1531 *size_change_ok = TRUE;
1532 }
1533
1534 /* Skip weak definitions of symbols that are already defined. */
1535 if (newdef && olddef && newweak)
1536 {
1537 /* Don't skip new non-IR weak syms. */
1538 if (!(oldbfd != NULL
1539 && (oldbfd->flags & BFD_PLUGIN) != 0
1540 && (abfd->flags & BFD_PLUGIN) == 0))
1541 {
1542 newdef = FALSE;
1543 *skip = TRUE;
1544 }
1545
1546 /* Merge st_other. If the symbol already has a dynamic index,
1547 but visibility says it should not be visible, turn it into a
1548 local symbol. */
1549 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1550 if (h->dynindx != -1)
1551 switch (ELF_ST_VISIBILITY (h->other))
1552 {
1553 case STV_INTERNAL:
1554 case STV_HIDDEN:
1555 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1556 break;
1557 }
1558 }
1559
1560 /* If the old symbol is from a dynamic object, and the new symbol is
1561 a definition which is not from a dynamic object, then the new
1562 symbol overrides the old symbol. Symbols from regular files
1563 always take precedence over symbols from dynamic objects, even if
1564 they are defined after the dynamic object in the link.
1565
1566 As above, we again permit a common symbol in a regular object to
1567 override a definition in a shared object if the shared object
1568 symbol is a function or is weak. */
1569
1570 flip = NULL;
1571 if (!newdyn
1572 && (newdef
1573 || (bfd_is_com_section (sec)
1574 && (oldweak || oldfunc)))
1575 && olddyn
1576 && olddef
1577 && h->def_dynamic)
1578 {
1579 /* Change the hash table entry to undefined, and let
1580 _bfd_generic_link_add_one_symbol do the right thing with the
1581 new definition. */
1582
1583 h->root.type = bfd_link_hash_undefined;
1584 h->root.u.undef.abfd = h->root.u.def.section->owner;
1585 *size_change_ok = TRUE;
1586
1587 olddef = FALSE;
1588 olddyncommon = FALSE;
1589
1590 /* We again permit a type change when a common symbol may be
1591 overriding a function. */
1592
1593 if (bfd_is_com_section (sec))
1594 {
1595 if (oldfunc)
1596 {
1597 /* If a common symbol overrides a function, make sure
1598 that it isn't defined dynamically nor has type
1599 function. */
1600 h->def_dynamic = 0;
1601 h->type = STT_NOTYPE;
1602 }
1603 *type_change_ok = TRUE;
1604 }
1605
1606 if (hi->root.type == bfd_link_hash_indirect)
1607 flip = hi;
1608 else
1609 /* This union may have been set to be non-NULL when this symbol
1610 was seen in a dynamic object. We must force the union to be
1611 NULL, so that it is correct for a regular symbol. */
1612 h->verinfo.vertree = NULL;
1613 }
1614
1615 /* Handle the special case of a new common symbol merging with an
1616 old symbol that looks like it might be a common symbol defined in
1617 a shared object. Note that we have already handled the case in
1618 which a new common symbol should simply override the definition
1619 in the shared library. */
1620
1621 if (! newdyn
1622 && bfd_is_com_section (sec)
1623 && olddyncommon)
1624 {
1625 /* It would be best if we could set the hash table entry to a
1626 common symbol, but we don't know what to use for the section
1627 or the alignment. */
1628 if (! ((*info->callbacks->multiple_common)
1629 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1630 return FALSE;
1631
1632 /* If the presumed common symbol in the dynamic object is
1633 larger, pretend that the new symbol has its size. */
1634
1635 if (h->size > *pvalue)
1636 *pvalue = h->size;
1637
1638 /* We need to remember the alignment required by the symbol
1639 in the dynamic object. */
1640 BFD_ASSERT (pold_alignment);
1641 *pold_alignment = h->root.u.def.section->alignment_power;
1642
1643 olddef = FALSE;
1644 olddyncommon = FALSE;
1645
1646 h->root.type = bfd_link_hash_undefined;
1647 h->root.u.undef.abfd = h->root.u.def.section->owner;
1648
1649 *size_change_ok = TRUE;
1650 *type_change_ok = TRUE;
1651
1652 if (hi->root.type == bfd_link_hash_indirect)
1653 flip = hi;
1654 else
1655 h->verinfo.vertree = NULL;
1656 }
1657
1658 if (flip != NULL)
1659 {
1660 /* Handle the case where we had a versioned symbol in a dynamic
1661 library and now find a definition in a normal object. In this
1662 case, we make the versioned symbol point to the normal one. */
1663 flip->root.type = h->root.type;
1664 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1665 h->root.type = bfd_link_hash_indirect;
1666 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1667 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1668 if (h->def_dynamic)
1669 {
1670 h->def_dynamic = 0;
1671 flip->ref_dynamic = 1;
1672 }
1673 }
1674
1675 return TRUE;
1676 }
1677
1678 /* This function is called to create an indirect symbol from the
1679 default for the symbol with the default version if needed. The
1680 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1681 set DYNSYM if the new indirect symbol is dynamic. */
1682
1683 static bfd_boolean
1684 _bfd_elf_add_default_symbol (bfd *abfd,
1685 struct bfd_link_info *info,
1686 struct elf_link_hash_entry *h,
1687 const char *name,
1688 Elf_Internal_Sym *sym,
1689 asection *sec,
1690 bfd_vma value,
1691 bfd **poldbfd,
1692 bfd_boolean *dynsym)
1693 {
1694 bfd_boolean type_change_ok;
1695 bfd_boolean size_change_ok;
1696 bfd_boolean skip;
1697 char *shortname;
1698 struct elf_link_hash_entry *hi;
1699 struct bfd_link_hash_entry *bh;
1700 const struct elf_backend_data *bed;
1701 bfd_boolean collect;
1702 bfd_boolean dynamic;
1703 bfd_boolean override;
1704 char *p;
1705 size_t len, shortlen;
1706 asection *tmp_sec;
1707 bfd_boolean matched;
1708
1709 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1710 return TRUE;
1711
1712 /* If this symbol has a version, and it is the default version, we
1713 create an indirect symbol from the default name to the fully
1714 decorated name. This will cause external references which do not
1715 specify a version to be bound to this version of the symbol. */
1716 p = strchr (name, ELF_VER_CHR);
1717 if (h->versioned == unknown)
1718 {
1719 if (p == NULL)
1720 {
1721 h->versioned = unversioned;
1722 return TRUE;
1723 }
1724 else
1725 {
1726 if (p[1] != ELF_VER_CHR)
1727 {
1728 h->versioned = versioned_hidden;
1729 return TRUE;
1730 }
1731 else
1732 h->versioned = versioned;
1733 }
1734 }
1735 else
1736 {
1737 /* PR ld/19073: We may see an unversioned definition after the
1738 default version. */
1739 if (p == NULL)
1740 return TRUE;
1741 }
1742
1743 bed = get_elf_backend_data (abfd);
1744 collect = bed->collect;
1745 dynamic = (abfd->flags & DYNAMIC) != 0;
1746
1747 shortlen = p - name;
1748 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1749 if (shortname == NULL)
1750 return FALSE;
1751 memcpy (shortname, name, shortlen);
1752 shortname[shortlen] = '\0';
1753
1754 /* We are going to create a new symbol. Merge it with any existing
1755 symbol with this name. For the purposes of the merge, act as
1756 though we were defining the symbol we just defined, although we
1757 actually going to define an indirect symbol. */
1758 type_change_ok = FALSE;
1759 size_change_ok = FALSE;
1760 matched = TRUE;
1761 tmp_sec = sec;
1762 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1763 &hi, poldbfd, NULL, NULL, &skip, &override,
1764 &type_change_ok, &size_change_ok, &matched))
1765 return FALSE;
1766
1767 if (skip)
1768 goto nondefault;
1769
1770 if (! override)
1771 {
1772 /* Add the default symbol if not performing a relocatable link. */
1773 if (! bfd_link_relocatable (info))
1774 {
1775 bh = &hi->root;
1776 if (! (_bfd_generic_link_add_one_symbol
1777 (info, abfd, shortname, BSF_INDIRECT,
1778 bfd_ind_section_ptr,
1779 0, name, FALSE, collect, &bh)))
1780 return FALSE;
1781 hi = (struct elf_link_hash_entry *) bh;
1782 }
1783 }
1784 else
1785 {
1786 /* In this case the symbol named SHORTNAME is overriding the
1787 indirect symbol we want to add. We were planning on making
1788 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1789 is the name without a version. NAME is the fully versioned
1790 name, and it is the default version.
1791
1792 Overriding means that we already saw a definition for the
1793 symbol SHORTNAME in a regular object, and it is overriding
1794 the symbol defined in the dynamic object.
1795
1796 When this happens, we actually want to change NAME, the
1797 symbol we just added, to refer to SHORTNAME. This will cause
1798 references to NAME in the shared object to become references
1799 to SHORTNAME in the regular object. This is what we expect
1800 when we override a function in a shared object: that the
1801 references in the shared object will be mapped to the
1802 definition in the regular object. */
1803
1804 while (hi->root.type == bfd_link_hash_indirect
1805 || hi->root.type == bfd_link_hash_warning)
1806 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1807
1808 h->root.type = bfd_link_hash_indirect;
1809 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1810 if (h->def_dynamic)
1811 {
1812 h->def_dynamic = 0;
1813 hi->ref_dynamic = 1;
1814 if (hi->ref_regular
1815 || hi->def_regular)
1816 {
1817 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1818 return FALSE;
1819 }
1820 }
1821
1822 /* Now set HI to H, so that the following code will set the
1823 other fields correctly. */
1824 hi = h;
1825 }
1826
1827 /* Check if HI is a warning symbol. */
1828 if (hi->root.type == bfd_link_hash_warning)
1829 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1830
1831 /* If there is a duplicate definition somewhere, then HI may not
1832 point to an indirect symbol. We will have reported an error to
1833 the user in that case. */
1834
1835 if (hi->root.type == bfd_link_hash_indirect)
1836 {
1837 struct elf_link_hash_entry *ht;
1838
1839 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1840 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1841
1842 /* A reference to the SHORTNAME symbol from a dynamic library
1843 will be satisfied by the versioned symbol at runtime. In
1844 effect, we have a reference to the versioned symbol. */
1845 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1846 hi->dynamic_def |= ht->dynamic_def;
1847
1848 /* See if the new flags lead us to realize that the symbol must
1849 be dynamic. */
1850 if (! *dynsym)
1851 {
1852 if (! dynamic)
1853 {
1854 if (! bfd_link_executable (info)
1855 || hi->def_dynamic
1856 || hi->ref_dynamic)
1857 *dynsym = TRUE;
1858 }
1859 else
1860 {
1861 if (hi->ref_regular)
1862 *dynsym = TRUE;
1863 }
1864 }
1865 }
1866
1867 /* We also need to define an indirection from the nondefault version
1868 of the symbol. */
1869
1870 nondefault:
1871 len = strlen (name);
1872 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1873 if (shortname == NULL)
1874 return FALSE;
1875 memcpy (shortname, name, shortlen);
1876 memcpy (shortname + shortlen, p + 1, len - shortlen);
1877
1878 /* Once again, merge with any existing symbol. */
1879 type_change_ok = FALSE;
1880 size_change_ok = FALSE;
1881 tmp_sec = sec;
1882 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1883 &hi, poldbfd, NULL, NULL, &skip, &override,
1884 &type_change_ok, &size_change_ok, &matched))
1885 return FALSE;
1886
1887 if (skip)
1888 return TRUE;
1889
1890 if (override)
1891 {
1892 /* Here SHORTNAME is a versioned name, so we don't expect to see
1893 the type of override we do in the case above unless it is
1894 overridden by a versioned definition. */
1895 if (hi->root.type != bfd_link_hash_defined
1896 && hi->root.type != bfd_link_hash_defweak)
1897 (*_bfd_error_handler)
1898 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1899 abfd, shortname);
1900 }
1901 else
1902 {
1903 bh = &hi->root;
1904 if (! (_bfd_generic_link_add_one_symbol
1905 (info, abfd, shortname, BSF_INDIRECT,
1906 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1907 return FALSE;
1908 hi = (struct elf_link_hash_entry *) bh;
1909
1910 /* If there is a duplicate definition somewhere, then HI may not
1911 point to an indirect symbol. We will have reported an error
1912 to the user in that case. */
1913
1914 if (hi->root.type == bfd_link_hash_indirect)
1915 {
1916 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1917 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1918 hi->dynamic_def |= h->dynamic_def;
1919
1920 /* See if the new flags lead us to realize that the symbol
1921 must be dynamic. */
1922 if (! *dynsym)
1923 {
1924 if (! dynamic)
1925 {
1926 if (! bfd_link_executable (info)
1927 || hi->ref_dynamic)
1928 *dynsym = TRUE;
1929 }
1930 else
1931 {
1932 if (hi->ref_regular)
1933 *dynsym = TRUE;
1934 }
1935 }
1936 }
1937 }
1938
1939 return TRUE;
1940 }
1941 \f
1942 /* This routine is used to export all defined symbols into the dynamic
1943 symbol table. It is called via elf_link_hash_traverse. */
1944
1945 static bfd_boolean
1946 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1947 {
1948 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1949
1950 /* Ignore indirect symbols. These are added by the versioning code. */
1951 if (h->root.type == bfd_link_hash_indirect)
1952 return TRUE;
1953
1954 /* Ignore this if we won't export it. */
1955 if (!eif->info->export_dynamic && !h->dynamic)
1956 return TRUE;
1957
1958 if (h->dynindx == -1
1959 && (h->def_regular || h->ref_regular)
1960 && ! bfd_hide_sym_by_version (eif->info->version_info,
1961 h->root.root.string))
1962 {
1963 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1964 {
1965 eif->failed = TRUE;
1966 return FALSE;
1967 }
1968 }
1969
1970 return TRUE;
1971 }
1972 \f
1973 /* Look through the symbols which are defined in other shared
1974 libraries and referenced here. Update the list of version
1975 dependencies. This will be put into the .gnu.version_r section.
1976 This function is called via elf_link_hash_traverse. */
1977
1978 static bfd_boolean
1979 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1980 void *data)
1981 {
1982 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1983 Elf_Internal_Verneed *t;
1984 Elf_Internal_Vernaux *a;
1985 bfd_size_type amt;
1986
1987 /* We only care about symbols defined in shared objects with version
1988 information. */
1989 if (!h->def_dynamic
1990 || h->def_regular
1991 || h->dynindx == -1
1992 || h->verinfo.verdef == NULL
1993 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
1994 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
1995 return TRUE;
1996
1997 /* See if we already know about this version. */
1998 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1999 t != NULL;
2000 t = t->vn_nextref)
2001 {
2002 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2003 continue;
2004
2005 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2006 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2007 return TRUE;
2008
2009 break;
2010 }
2011
2012 /* This is a new version. Add it to tree we are building. */
2013
2014 if (t == NULL)
2015 {
2016 amt = sizeof *t;
2017 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2018 if (t == NULL)
2019 {
2020 rinfo->failed = TRUE;
2021 return FALSE;
2022 }
2023
2024 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2025 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2026 elf_tdata (rinfo->info->output_bfd)->verref = t;
2027 }
2028
2029 amt = sizeof *a;
2030 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2031 if (a == NULL)
2032 {
2033 rinfo->failed = TRUE;
2034 return FALSE;
2035 }
2036
2037 /* Note that we are copying a string pointer here, and testing it
2038 above. If bfd_elf_string_from_elf_section is ever changed to
2039 discard the string data when low in memory, this will have to be
2040 fixed. */
2041 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2042
2043 a->vna_flags = h->verinfo.verdef->vd_flags;
2044 a->vna_nextptr = t->vn_auxptr;
2045
2046 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2047 ++rinfo->vers;
2048
2049 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2050
2051 t->vn_auxptr = a;
2052
2053 return TRUE;
2054 }
2055
2056 /* Figure out appropriate versions for all the symbols. We may not
2057 have the version number script until we have read all of the input
2058 files, so until that point we don't know which symbols should be
2059 local. This function is called via elf_link_hash_traverse. */
2060
2061 static bfd_boolean
2062 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2063 {
2064 struct elf_info_failed *sinfo;
2065 struct bfd_link_info *info;
2066 const struct elf_backend_data *bed;
2067 struct elf_info_failed eif;
2068 char *p;
2069 bfd_size_type amt;
2070
2071 sinfo = (struct elf_info_failed *) data;
2072 info = sinfo->info;
2073
2074 /* Fix the symbol flags. */
2075 eif.failed = FALSE;
2076 eif.info = info;
2077 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2078 {
2079 if (eif.failed)
2080 sinfo->failed = TRUE;
2081 return FALSE;
2082 }
2083
2084 /* We only need version numbers for symbols defined in regular
2085 objects. */
2086 if (!h->def_regular)
2087 return TRUE;
2088
2089 bed = get_elf_backend_data (info->output_bfd);
2090 p = strchr (h->root.root.string, ELF_VER_CHR);
2091 if (p != NULL && h->verinfo.vertree == NULL)
2092 {
2093 struct bfd_elf_version_tree *t;
2094
2095 ++p;
2096 if (*p == ELF_VER_CHR)
2097 ++p;
2098
2099 /* If there is no version string, we can just return out. */
2100 if (*p == '\0')
2101 return TRUE;
2102
2103 /* Look for the version. If we find it, it is no longer weak. */
2104 for (t = sinfo->info->version_info; t != NULL; t = t->next)
2105 {
2106 if (strcmp (t->name, p) == 0)
2107 {
2108 size_t len;
2109 char *alc;
2110 struct bfd_elf_version_expr *d;
2111
2112 len = p - h->root.root.string;
2113 alc = (char *) bfd_malloc (len);
2114 if (alc == NULL)
2115 {
2116 sinfo->failed = TRUE;
2117 return FALSE;
2118 }
2119 memcpy (alc, h->root.root.string, len - 1);
2120 alc[len - 1] = '\0';
2121 if (alc[len - 2] == ELF_VER_CHR)
2122 alc[len - 2] = '\0';
2123
2124 h->verinfo.vertree = t;
2125 t->used = TRUE;
2126 d = NULL;
2127
2128 if (t->globals.list != NULL)
2129 d = (*t->match) (&t->globals, NULL, alc);
2130
2131 /* See if there is anything to force this symbol to
2132 local scope. */
2133 if (d == NULL && t->locals.list != NULL)
2134 {
2135 d = (*t->match) (&t->locals, NULL, alc);
2136 if (d != NULL
2137 && h->dynindx != -1
2138 && ! info->export_dynamic)
2139 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2140 }
2141
2142 free (alc);
2143 break;
2144 }
2145 }
2146
2147 /* If we are building an application, we need to create a
2148 version node for this version. */
2149 if (t == NULL && bfd_link_executable (info))
2150 {
2151 struct bfd_elf_version_tree **pp;
2152 int version_index;
2153
2154 /* If we aren't going to export this symbol, we don't need
2155 to worry about it. */
2156 if (h->dynindx == -1)
2157 return TRUE;
2158
2159 amt = sizeof *t;
2160 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2161 if (t == NULL)
2162 {
2163 sinfo->failed = TRUE;
2164 return FALSE;
2165 }
2166
2167 t->name = p;
2168 t->name_indx = (unsigned int) -1;
2169 t->used = TRUE;
2170
2171 version_index = 1;
2172 /* Don't count anonymous version tag. */
2173 if (sinfo->info->version_info != NULL
2174 && sinfo->info->version_info->vernum == 0)
2175 version_index = 0;
2176 for (pp = &sinfo->info->version_info;
2177 *pp != NULL;
2178 pp = &(*pp)->next)
2179 ++version_index;
2180 t->vernum = version_index;
2181
2182 *pp = t;
2183
2184 h->verinfo.vertree = t;
2185 }
2186 else if (t == NULL)
2187 {
2188 /* We could not find the version for a symbol when
2189 generating a shared archive. Return an error. */
2190 (*_bfd_error_handler)
2191 (_("%B: version node not found for symbol %s"),
2192 info->output_bfd, h->root.root.string);
2193 bfd_set_error (bfd_error_bad_value);
2194 sinfo->failed = TRUE;
2195 return FALSE;
2196 }
2197 }
2198
2199 /* If we don't have a version for this symbol, see if we can find
2200 something. */
2201 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2202 {
2203 bfd_boolean hide;
2204
2205 h->verinfo.vertree
2206 = bfd_find_version_for_sym (sinfo->info->version_info,
2207 h->root.root.string, &hide);
2208 if (h->verinfo.vertree != NULL && hide)
2209 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2210 }
2211
2212 return TRUE;
2213 }
2214 \f
2215 /* Read and swap the relocs from the section indicated by SHDR. This
2216 may be either a REL or a RELA section. The relocations are
2217 translated into RELA relocations and stored in INTERNAL_RELOCS,
2218 which should have already been allocated to contain enough space.
2219 The EXTERNAL_RELOCS are a buffer where the external form of the
2220 relocations should be stored.
2221
2222 Returns FALSE if something goes wrong. */
2223
2224 static bfd_boolean
2225 elf_link_read_relocs_from_section (bfd *abfd,
2226 asection *sec,
2227 Elf_Internal_Shdr *shdr,
2228 void *external_relocs,
2229 Elf_Internal_Rela *internal_relocs)
2230 {
2231 const struct elf_backend_data *bed;
2232 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2233 const bfd_byte *erela;
2234 const bfd_byte *erelaend;
2235 Elf_Internal_Rela *irela;
2236 Elf_Internal_Shdr *symtab_hdr;
2237 size_t nsyms;
2238
2239 /* Position ourselves at the start of the section. */
2240 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2241 return FALSE;
2242
2243 /* Read the relocations. */
2244 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2245 return FALSE;
2246
2247 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2248 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2249
2250 bed = get_elf_backend_data (abfd);
2251
2252 /* Convert the external relocations to the internal format. */
2253 if (shdr->sh_entsize == bed->s->sizeof_rel)
2254 swap_in = bed->s->swap_reloc_in;
2255 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2256 swap_in = bed->s->swap_reloca_in;
2257 else
2258 {
2259 bfd_set_error (bfd_error_wrong_format);
2260 return FALSE;
2261 }
2262
2263 erela = (const bfd_byte *) external_relocs;
2264 erelaend = erela + shdr->sh_size;
2265 irela = internal_relocs;
2266 while (erela < erelaend)
2267 {
2268 bfd_vma r_symndx;
2269
2270 (*swap_in) (abfd, erela, irela);
2271 r_symndx = ELF32_R_SYM (irela->r_info);
2272 if (bed->s->arch_size == 64)
2273 r_symndx >>= 24;
2274 if (nsyms > 0)
2275 {
2276 if ((size_t) r_symndx >= nsyms)
2277 {
2278 (*_bfd_error_handler)
2279 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2280 " for offset 0x%lx in section `%A'"),
2281 abfd, sec,
2282 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2283 bfd_set_error (bfd_error_bad_value);
2284 return FALSE;
2285 }
2286 }
2287 else if (r_symndx != STN_UNDEF)
2288 {
2289 (*_bfd_error_handler)
2290 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2291 " when the object file has no symbol table"),
2292 abfd, sec,
2293 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2294 bfd_set_error (bfd_error_bad_value);
2295 return FALSE;
2296 }
2297 irela += bed->s->int_rels_per_ext_rel;
2298 erela += shdr->sh_entsize;
2299 }
2300
2301 return TRUE;
2302 }
2303
2304 /* Read and swap the relocs for a section O. They may have been
2305 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2306 not NULL, they are used as buffers to read into. They are known to
2307 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2308 the return value is allocated using either malloc or bfd_alloc,
2309 according to the KEEP_MEMORY argument. If O has two relocation
2310 sections (both REL and RELA relocations), then the REL_HDR
2311 relocations will appear first in INTERNAL_RELOCS, followed by the
2312 RELA_HDR relocations. */
2313
2314 Elf_Internal_Rela *
2315 _bfd_elf_link_read_relocs (bfd *abfd,
2316 asection *o,
2317 void *external_relocs,
2318 Elf_Internal_Rela *internal_relocs,
2319 bfd_boolean keep_memory)
2320 {
2321 void *alloc1 = NULL;
2322 Elf_Internal_Rela *alloc2 = NULL;
2323 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2324 struct bfd_elf_section_data *esdo = elf_section_data (o);
2325 Elf_Internal_Rela *internal_rela_relocs;
2326
2327 if (esdo->relocs != NULL)
2328 return esdo->relocs;
2329
2330 if (o->reloc_count == 0)
2331 return NULL;
2332
2333 if (internal_relocs == NULL)
2334 {
2335 bfd_size_type size;
2336
2337 size = o->reloc_count;
2338 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2339 if (keep_memory)
2340 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2341 else
2342 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2343 if (internal_relocs == NULL)
2344 goto error_return;
2345 }
2346
2347 if (external_relocs == NULL)
2348 {
2349 bfd_size_type size = 0;
2350
2351 if (esdo->rel.hdr)
2352 size += esdo->rel.hdr->sh_size;
2353 if (esdo->rela.hdr)
2354 size += esdo->rela.hdr->sh_size;
2355
2356 alloc1 = bfd_malloc (size);
2357 if (alloc1 == NULL)
2358 goto error_return;
2359 external_relocs = alloc1;
2360 }
2361
2362 internal_rela_relocs = internal_relocs;
2363 if (esdo->rel.hdr)
2364 {
2365 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2366 external_relocs,
2367 internal_relocs))
2368 goto error_return;
2369 external_relocs = (((bfd_byte *) external_relocs)
2370 + esdo->rel.hdr->sh_size);
2371 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2372 * bed->s->int_rels_per_ext_rel);
2373 }
2374
2375 if (esdo->rela.hdr
2376 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2377 external_relocs,
2378 internal_rela_relocs)))
2379 goto error_return;
2380
2381 /* Cache the results for next time, if we can. */
2382 if (keep_memory)
2383 esdo->relocs = internal_relocs;
2384
2385 if (alloc1 != NULL)
2386 free (alloc1);
2387
2388 /* Don't free alloc2, since if it was allocated we are passing it
2389 back (under the name of internal_relocs). */
2390
2391 return internal_relocs;
2392
2393 error_return:
2394 if (alloc1 != NULL)
2395 free (alloc1);
2396 if (alloc2 != NULL)
2397 {
2398 if (keep_memory)
2399 bfd_release (abfd, alloc2);
2400 else
2401 free (alloc2);
2402 }
2403 return NULL;
2404 }
2405
2406 /* Compute the size of, and allocate space for, REL_HDR which is the
2407 section header for a section containing relocations for O. */
2408
2409 static bfd_boolean
2410 _bfd_elf_link_size_reloc_section (bfd *abfd,
2411 struct bfd_elf_section_reloc_data *reldata)
2412 {
2413 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2414
2415 /* That allows us to calculate the size of the section. */
2416 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2417
2418 /* The contents field must last into write_object_contents, so we
2419 allocate it with bfd_alloc rather than malloc. Also since we
2420 cannot be sure that the contents will actually be filled in,
2421 we zero the allocated space. */
2422 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2423 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2424 return FALSE;
2425
2426 if (reldata->hashes == NULL && reldata->count)
2427 {
2428 struct elf_link_hash_entry **p;
2429
2430 p = ((struct elf_link_hash_entry **)
2431 bfd_zmalloc (reldata->count * sizeof (*p)));
2432 if (p == NULL)
2433 return FALSE;
2434
2435 reldata->hashes = p;
2436 }
2437
2438 return TRUE;
2439 }
2440
2441 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2442 originated from the section given by INPUT_REL_HDR) to the
2443 OUTPUT_BFD. */
2444
2445 bfd_boolean
2446 _bfd_elf_link_output_relocs (bfd *output_bfd,
2447 asection *input_section,
2448 Elf_Internal_Shdr *input_rel_hdr,
2449 Elf_Internal_Rela *internal_relocs,
2450 struct elf_link_hash_entry **rel_hash
2451 ATTRIBUTE_UNUSED)
2452 {
2453 Elf_Internal_Rela *irela;
2454 Elf_Internal_Rela *irelaend;
2455 bfd_byte *erel;
2456 struct bfd_elf_section_reloc_data *output_reldata;
2457 asection *output_section;
2458 const struct elf_backend_data *bed;
2459 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2460 struct bfd_elf_section_data *esdo;
2461
2462 output_section = input_section->output_section;
2463
2464 bed = get_elf_backend_data (output_bfd);
2465 esdo = elf_section_data (output_section);
2466 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2467 {
2468 output_reldata = &esdo->rel;
2469 swap_out = bed->s->swap_reloc_out;
2470 }
2471 else if (esdo->rela.hdr
2472 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2473 {
2474 output_reldata = &esdo->rela;
2475 swap_out = bed->s->swap_reloca_out;
2476 }
2477 else
2478 {
2479 (*_bfd_error_handler)
2480 (_("%B: relocation size mismatch in %B section %A"),
2481 output_bfd, input_section->owner, input_section);
2482 bfd_set_error (bfd_error_wrong_format);
2483 return FALSE;
2484 }
2485
2486 erel = output_reldata->hdr->contents;
2487 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2488 irela = internal_relocs;
2489 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2490 * bed->s->int_rels_per_ext_rel);
2491 while (irela < irelaend)
2492 {
2493 (*swap_out) (output_bfd, irela, erel);
2494 irela += bed->s->int_rels_per_ext_rel;
2495 erel += input_rel_hdr->sh_entsize;
2496 }
2497
2498 /* Bump the counter, so that we know where to add the next set of
2499 relocations. */
2500 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2501
2502 return TRUE;
2503 }
2504 \f
2505 /* Make weak undefined symbols in PIE dynamic. */
2506
2507 bfd_boolean
2508 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2509 struct elf_link_hash_entry *h)
2510 {
2511 if (bfd_link_pie (info)
2512 && h->dynindx == -1
2513 && h->root.type == bfd_link_hash_undefweak)
2514 return bfd_elf_link_record_dynamic_symbol (info, h);
2515
2516 return TRUE;
2517 }
2518
2519 /* Fix up the flags for a symbol. This handles various cases which
2520 can only be fixed after all the input files are seen. This is
2521 currently called by both adjust_dynamic_symbol and
2522 assign_sym_version, which is unnecessary but perhaps more robust in
2523 the face of future changes. */
2524
2525 static bfd_boolean
2526 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2527 struct elf_info_failed *eif)
2528 {
2529 const struct elf_backend_data *bed;
2530
2531 /* If this symbol was mentioned in a non-ELF file, try to set
2532 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2533 permit a non-ELF file to correctly refer to a symbol defined in
2534 an ELF dynamic object. */
2535 if (h->non_elf)
2536 {
2537 while (h->root.type == bfd_link_hash_indirect)
2538 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2539
2540 if (h->root.type != bfd_link_hash_defined
2541 && h->root.type != bfd_link_hash_defweak)
2542 {
2543 h->ref_regular = 1;
2544 h->ref_regular_nonweak = 1;
2545 }
2546 else
2547 {
2548 if (h->root.u.def.section->owner != NULL
2549 && (bfd_get_flavour (h->root.u.def.section->owner)
2550 == bfd_target_elf_flavour))
2551 {
2552 h->ref_regular = 1;
2553 h->ref_regular_nonweak = 1;
2554 }
2555 else
2556 h->def_regular = 1;
2557 }
2558
2559 if (h->dynindx == -1
2560 && (h->def_dynamic
2561 || h->ref_dynamic))
2562 {
2563 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2564 {
2565 eif->failed = TRUE;
2566 return FALSE;
2567 }
2568 }
2569 }
2570 else
2571 {
2572 /* Unfortunately, NON_ELF is only correct if the symbol
2573 was first seen in a non-ELF file. Fortunately, if the symbol
2574 was first seen in an ELF file, we're probably OK unless the
2575 symbol was defined in a non-ELF file. Catch that case here.
2576 FIXME: We're still in trouble if the symbol was first seen in
2577 a dynamic object, and then later in a non-ELF regular object. */
2578 if ((h->root.type == bfd_link_hash_defined
2579 || h->root.type == bfd_link_hash_defweak)
2580 && !h->def_regular
2581 && (h->root.u.def.section->owner != NULL
2582 ? (bfd_get_flavour (h->root.u.def.section->owner)
2583 != bfd_target_elf_flavour)
2584 : (bfd_is_abs_section (h->root.u.def.section)
2585 && !h->def_dynamic)))
2586 h->def_regular = 1;
2587 }
2588
2589 /* Backend specific symbol fixup. */
2590 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2591 if (bed->elf_backend_fixup_symbol
2592 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2593 return FALSE;
2594
2595 /* If this is a final link, and the symbol was defined as a common
2596 symbol in a regular object file, and there was no definition in
2597 any dynamic object, then the linker will have allocated space for
2598 the symbol in a common section but the DEF_REGULAR
2599 flag will not have been set. */
2600 if (h->root.type == bfd_link_hash_defined
2601 && !h->def_regular
2602 && h->ref_regular
2603 && !h->def_dynamic
2604 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2605 h->def_regular = 1;
2606
2607 /* If -Bsymbolic was used (which means to bind references to global
2608 symbols to the definition within the shared object), and this
2609 symbol was defined in a regular object, then it actually doesn't
2610 need a PLT entry. Likewise, if the symbol has non-default
2611 visibility. If the symbol has hidden or internal visibility, we
2612 will force it local. */
2613 if (h->needs_plt
2614 && bfd_link_pic (eif->info)
2615 && is_elf_hash_table (eif->info->hash)
2616 && (SYMBOLIC_BIND (eif->info, h)
2617 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2618 && h->def_regular)
2619 {
2620 bfd_boolean force_local;
2621
2622 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2623 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2624 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2625 }
2626
2627 /* If a weak undefined symbol has non-default visibility, we also
2628 hide it from the dynamic linker. */
2629 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2630 && h->root.type == bfd_link_hash_undefweak)
2631 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2632
2633 /* If this is a weak defined symbol in a dynamic object, and we know
2634 the real definition in the dynamic object, copy interesting flags
2635 over to the real definition. */
2636 if (h->u.weakdef != NULL)
2637 {
2638 /* If the real definition is defined by a regular object file,
2639 don't do anything special. See the longer description in
2640 _bfd_elf_adjust_dynamic_symbol, below. */
2641 if (h->u.weakdef->def_regular)
2642 h->u.weakdef = NULL;
2643 else
2644 {
2645 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2646
2647 while (h->root.type == bfd_link_hash_indirect)
2648 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2649
2650 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2651 || h->root.type == bfd_link_hash_defweak);
2652 BFD_ASSERT (weakdef->def_dynamic);
2653 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2654 || weakdef->root.type == bfd_link_hash_defweak);
2655 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2656 }
2657 }
2658
2659 return TRUE;
2660 }
2661
2662 /* Make the backend pick a good value for a dynamic symbol. This is
2663 called via elf_link_hash_traverse, and also calls itself
2664 recursively. */
2665
2666 static bfd_boolean
2667 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2668 {
2669 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2670 bfd *dynobj;
2671 const struct elf_backend_data *bed;
2672
2673 if (! is_elf_hash_table (eif->info->hash))
2674 return FALSE;
2675
2676 /* Ignore indirect symbols. These are added by the versioning code. */
2677 if (h->root.type == bfd_link_hash_indirect)
2678 return TRUE;
2679
2680 /* Fix the symbol flags. */
2681 if (! _bfd_elf_fix_symbol_flags (h, eif))
2682 return FALSE;
2683
2684 /* If this symbol does not require a PLT entry, and it is not
2685 defined by a dynamic object, or is not referenced by a regular
2686 object, ignore it. We do have to handle a weak defined symbol,
2687 even if no regular object refers to it, if we decided to add it
2688 to the dynamic symbol table. FIXME: Do we normally need to worry
2689 about symbols which are defined by one dynamic object and
2690 referenced by another one? */
2691 if (!h->needs_plt
2692 && h->type != STT_GNU_IFUNC
2693 && (h->def_regular
2694 || !h->def_dynamic
2695 || (!h->ref_regular
2696 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2697 {
2698 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2699 return TRUE;
2700 }
2701
2702 /* If we've already adjusted this symbol, don't do it again. This
2703 can happen via a recursive call. */
2704 if (h->dynamic_adjusted)
2705 return TRUE;
2706
2707 /* Don't look at this symbol again. Note that we must set this
2708 after checking the above conditions, because we may look at a
2709 symbol once, decide not to do anything, and then get called
2710 recursively later after REF_REGULAR is set below. */
2711 h->dynamic_adjusted = 1;
2712
2713 /* If this is a weak definition, and we know a real definition, and
2714 the real symbol is not itself defined by a regular object file,
2715 then get a good value for the real definition. We handle the
2716 real symbol first, for the convenience of the backend routine.
2717
2718 Note that there is a confusing case here. If the real definition
2719 is defined by a regular object file, we don't get the real symbol
2720 from the dynamic object, but we do get the weak symbol. If the
2721 processor backend uses a COPY reloc, then if some routine in the
2722 dynamic object changes the real symbol, we will not see that
2723 change in the corresponding weak symbol. This is the way other
2724 ELF linkers work as well, and seems to be a result of the shared
2725 library model.
2726
2727 I will clarify this issue. Most SVR4 shared libraries define the
2728 variable _timezone and define timezone as a weak synonym. The
2729 tzset call changes _timezone. If you write
2730 extern int timezone;
2731 int _timezone = 5;
2732 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2733 you might expect that, since timezone is a synonym for _timezone,
2734 the same number will print both times. However, if the processor
2735 backend uses a COPY reloc, then actually timezone will be copied
2736 into your process image, and, since you define _timezone
2737 yourself, _timezone will not. Thus timezone and _timezone will
2738 wind up at different memory locations. The tzset call will set
2739 _timezone, leaving timezone unchanged. */
2740
2741 if (h->u.weakdef != NULL)
2742 {
2743 /* If we get to this point, there is an implicit reference to
2744 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2745 h->u.weakdef->ref_regular = 1;
2746
2747 /* Ensure that the backend adjust_dynamic_symbol function sees
2748 H->U.WEAKDEF before H by recursively calling ourselves. */
2749 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2750 return FALSE;
2751 }
2752
2753 /* If a symbol has no type and no size and does not require a PLT
2754 entry, then we are probably about to do the wrong thing here: we
2755 are probably going to create a COPY reloc for an empty object.
2756 This case can arise when a shared object is built with assembly
2757 code, and the assembly code fails to set the symbol type. */
2758 if (h->size == 0
2759 && h->type == STT_NOTYPE
2760 && !h->needs_plt)
2761 (*_bfd_error_handler)
2762 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2763 h->root.root.string);
2764
2765 dynobj = elf_hash_table (eif->info)->dynobj;
2766 bed = get_elf_backend_data (dynobj);
2767
2768 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2769 {
2770 eif->failed = TRUE;
2771 return FALSE;
2772 }
2773
2774 return TRUE;
2775 }
2776
2777 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2778 DYNBSS. */
2779
2780 bfd_boolean
2781 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2782 struct elf_link_hash_entry *h,
2783 asection *dynbss)
2784 {
2785 unsigned int power_of_two;
2786 bfd_vma mask;
2787 asection *sec = h->root.u.def.section;
2788
2789 /* The section aligment of definition is the maximum alignment
2790 requirement of symbols defined in the section. Since we don't
2791 know the symbol alignment requirement, we start with the
2792 maximum alignment and check low bits of the symbol address
2793 for the minimum alignment. */
2794 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2795 mask = ((bfd_vma) 1 << power_of_two) - 1;
2796 while ((h->root.u.def.value & mask) != 0)
2797 {
2798 mask >>= 1;
2799 --power_of_two;
2800 }
2801
2802 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2803 dynbss))
2804 {
2805 /* Adjust the section alignment if needed. */
2806 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2807 power_of_two))
2808 return FALSE;
2809 }
2810
2811 /* We make sure that the symbol will be aligned properly. */
2812 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2813
2814 /* Define the symbol as being at this point in DYNBSS. */
2815 h->root.u.def.section = dynbss;
2816 h->root.u.def.value = dynbss->size;
2817
2818 /* Increment the size of DYNBSS to make room for the symbol. */
2819 dynbss->size += h->size;
2820
2821 /* No error if extern_protected_data is true. */
2822 if (h->protected_def
2823 && (!info->extern_protected_data
2824 || (info->extern_protected_data < 0
2825 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
2826 info->callbacks->einfo
2827 (_("%P: copy reloc against protected `%T' is dangerous\n"),
2828 h->root.root.string);
2829
2830 return TRUE;
2831 }
2832
2833 /* Adjust all external symbols pointing into SEC_MERGE sections
2834 to reflect the object merging within the sections. */
2835
2836 static bfd_boolean
2837 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2838 {
2839 asection *sec;
2840
2841 if ((h->root.type == bfd_link_hash_defined
2842 || h->root.type == bfd_link_hash_defweak)
2843 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2844 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2845 {
2846 bfd *output_bfd = (bfd *) data;
2847
2848 h->root.u.def.value =
2849 _bfd_merged_section_offset (output_bfd,
2850 &h->root.u.def.section,
2851 elf_section_data (sec)->sec_info,
2852 h->root.u.def.value);
2853 }
2854
2855 return TRUE;
2856 }
2857
2858 /* Returns false if the symbol referred to by H should be considered
2859 to resolve local to the current module, and true if it should be
2860 considered to bind dynamically. */
2861
2862 bfd_boolean
2863 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2864 struct bfd_link_info *info,
2865 bfd_boolean not_local_protected)
2866 {
2867 bfd_boolean binding_stays_local_p;
2868 const struct elf_backend_data *bed;
2869 struct elf_link_hash_table *hash_table;
2870
2871 if (h == NULL)
2872 return FALSE;
2873
2874 while (h->root.type == bfd_link_hash_indirect
2875 || h->root.type == bfd_link_hash_warning)
2876 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2877
2878 /* If it was forced local, then clearly it's not dynamic. */
2879 if (h->dynindx == -1)
2880 return FALSE;
2881 if (h->forced_local)
2882 return FALSE;
2883
2884 /* Identify the cases where name binding rules say that a
2885 visible symbol resolves locally. */
2886 binding_stays_local_p = (bfd_link_executable (info)
2887 || SYMBOLIC_BIND (info, h));
2888
2889 switch (ELF_ST_VISIBILITY (h->other))
2890 {
2891 case STV_INTERNAL:
2892 case STV_HIDDEN:
2893 return FALSE;
2894
2895 case STV_PROTECTED:
2896 hash_table = elf_hash_table (info);
2897 if (!is_elf_hash_table (hash_table))
2898 return FALSE;
2899
2900 bed = get_elf_backend_data (hash_table->dynobj);
2901
2902 /* Proper resolution for function pointer equality may require
2903 that these symbols perhaps be resolved dynamically, even though
2904 we should be resolving them to the current module. */
2905 if (!not_local_protected || !bed->is_function_type (h->type))
2906 binding_stays_local_p = TRUE;
2907 break;
2908
2909 default:
2910 break;
2911 }
2912
2913 /* If it isn't defined locally, then clearly it's dynamic. */
2914 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2915 return TRUE;
2916
2917 /* Otherwise, the symbol is dynamic if binding rules don't tell
2918 us that it remains local. */
2919 return !binding_stays_local_p;
2920 }
2921
2922 /* Return true if the symbol referred to by H should be considered
2923 to resolve local to the current module, and false otherwise. Differs
2924 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2925 undefined symbols. The two functions are virtually identical except
2926 for the place where forced_local and dynindx == -1 are tested. If
2927 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2928 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2929 the symbol is local only for defined symbols.
2930 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2931 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2932 treatment of undefined weak symbols. For those that do not make
2933 undefined weak symbols dynamic, both functions may return false. */
2934
2935 bfd_boolean
2936 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2937 struct bfd_link_info *info,
2938 bfd_boolean local_protected)
2939 {
2940 const struct elf_backend_data *bed;
2941 struct elf_link_hash_table *hash_table;
2942
2943 /* If it's a local sym, of course we resolve locally. */
2944 if (h == NULL)
2945 return TRUE;
2946
2947 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2948 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2949 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2950 return TRUE;
2951
2952 /* Common symbols that become definitions don't get the DEF_REGULAR
2953 flag set, so test it first, and don't bail out. */
2954 if (ELF_COMMON_DEF_P (h))
2955 /* Do nothing. */;
2956 /* If we don't have a definition in a regular file, then we can't
2957 resolve locally. The sym is either undefined or dynamic. */
2958 else if (!h->def_regular)
2959 return FALSE;
2960
2961 /* Forced local symbols resolve locally. */
2962 if (h->forced_local)
2963 return TRUE;
2964
2965 /* As do non-dynamic symbols. */
2966 if (h->dynindx == -1)
2967 return TRUE;
2968
2969 /* At this point, we know the symbol is defined and dynamic. In an
2970 executable it must resolve locally, likewise when building symbolic
2971 shared libraries. */
2972 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
2973 return TRUE;
2974
2975 /* Now deal with defined dynamic symbols in shared libraries. Ones
2976 with default visibility might not resolve locally. */
2977 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2978 return FALSE;
2979
2980 hash_table = elf_hash_table (info);
2981 if (!is_elf_hash_table (hash_table))
2982 return TRUE;
2983
2984 bed = get_elf_backend_data (hash_table->dynobj);
2985
2986 /* If extern_protected_data is false, STV_PROTECTED non-function
2987 symbols are local. */
2988 if ((!info->extern_protected_data
2989 || (info->extern_protected_data < 0
2990 && !bed->extern_protected_data))
2991 && !bed->is_function_type (h->type))
2992 return TRUE;
2993
2994 /* Function pointer equality tests may require that STV_PROTECTED
2995 symbols be treated as dynamic symbols. If the address of a
2996 function not defined in an executable is set to that function's
2997 plt entry in the executable, then the address of the function in
2998 a shared library must also be the plt entry in the executable. */
2999 return local_protected;
3000 }
3001
3002 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3003 aligned. Returns the first TLS output section. */
3004
3005 struct bfd_section *
3006 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3007 {
3008 struct bfd_section *sec, *tls;
3009 unsigned int align = 0;
3010
3011 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3012 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3013 break;
3014 tls = sec;
3015
3016 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3017 if (sec->alignment_power > align)
3018 align = sec->alignment_power;
3019
3020 elf_hash_table (info)->tls_sec = tls;
3021
3022 /* Ensure the alignment of the first section is the largest alignment,
3023 so that the tls segment starts aligned. */
3024 if (tls != NULL)
3025 tls->alignment_power = align;
3026
3027 return tls;
3028 }
3029
3030 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3031 static bfd_boolean
3032 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3033 Elf_Internal_Sym *sym)
3034 {
3035 const struct elf_backend_data *bed;
3036
3037 /* Local symbols do not count, but target specific ones might. */
3038 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3039 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3040 return FALSE;
3041
3042 bed = get_elf_backend_data (abfd);
3043 /* Function symbols do not count. */
3044 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3045 return FALSE;
3046
3047 /* If the section is undefined, then so is the symbol. */
3048 if (sym->st_shndx == SHN_UNDEF)
3049 return FALSE;
3050
3051 /* If the symbol is defined in the common section, then
3052 it is a common definition and so does not count. */
3053 if (bed->common_definition (sym))
3054 return FALSE;
3055
3056 /* If the symbol is in a target specific section then we
3057 must rely upon the backend to tell us what it is. */
3058 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3059 /* FIXME - this function is not coded yet:
3060
3061 return _bfd_is_global_symbol_definition (abfd, sym);
3062
3063 Instead for now assume that the definition is not global,
3064 Even if this is wrong, at least the linker will behave
3065 in the same way that it used to do. */
3066 return FALSE;
3067
3068 return TRUE;
3069 }
3070
3071 /* Search the symbol table of the archive element of the archive ABFD
3072 whose archive map contains a mention of SYMDEF, and determine if
3073 the symbol is defined in this element. */
3074 static bfd_boolean
3075 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3076 {
3077 Elf_Internal_Shdr * hdr;
3078 bfd_size_type symcount;
3079 bfd_size_type extsymcount;
3080 bfd_size_type extsymoff;
3081 Elf_Internal_Sym *isymbuf;
3082 Elf_Internal_Sym *isym;
3083 Elf_Internal_Sym *isymend;
3084 bfd_boolean result;
3085
3086 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3087 if (abfd == NULL)
3088 return FALSE;
3089
3090 /* Return FALSE if the object has been claimed by plugin. */
3091 if (abfd->plugin_format == bfd_plugin_yes)
3092 return FALSE;
3093
3094 if (! bfd_check_format (abfd, bfd_object))
3095 return FALSE;
3096
3097 /* Select the appropriate symbol table. */
3098 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3099 hdr = &elf_tdata (abfd)->symtab_hdr;
3100 else
3101 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3102
3103 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3104
3105 /* The sh_info field of the symtab header tells us where the
3106 external symbols start. We don't care about the local symbols. */
3107 if (elf_bad_symtab (abfd))
3108 {
3109 extsymcount = symcount;
3110 extsymoff = 0;
3111 }
3112 else
3113 {
3114 extsymcount = symcount - hdr->sh_info;
3115 extsymoff = hdr->sh_info;
3116 }
3117
3118 if (extsymcount == 0)
3119 return FALSE;
3120
3121 /* Read in the symbol table. */
3122 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3123 NULL, NULL, NULL);
3124 if (isymbuf == NULL)
3125 return FALSE;
3126
3127 /* Scan the symbol table looking for SYMDEF. */
3128 result = FALSE;
3129 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3130 {
3131 const char *name;
3132
3133 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3134 isym->st_name);
3135 if (name == NULL)
3136 break;
3137
3138 if (strcmp (name, symdef->name) == 0)
3139 {
3140 result = is_global_data_symbol_definition (abfd, isym);
3141 break;
3142 }
3143 }
3144
3145 free (isymbuf);
3146
3147 return result;
3148 }
3149 \f
3150 /* Add an entry to the .dynamic table. */
3151
3152 bfd_boolean
3153 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3154 bfd_vma tag,
3155 bfd_vma val)
3156 {
3157 struct elf_link_hash_table *hash_table;
3158 const struct elf_backend_data *bed;
3159 asection *s;
3160 bfd_size_type newsize;
3161 bfd_byte *newcontents;
3162 Elf_Internal_Dyn dyn;
3163
3164 hash_table = elf_hash_table (info);
3165 if (! is_elf_hash_table (hash_table))
3166 return FALSE;
3167
3168 bed = get_elf_backend_data (hash_table->dynobj);
3169 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3170 BFD_ASSERT (s != NULL);
3171
3172 newsize = s->size + bed->s->sizeof_dyn;
3173 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3174 if (newcontents == NULL)
3175 return FALSE;
3176
3177 dyn.d_tag = tag;
3178 dyn.d_un.d_val = val;
3179 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3180
3181 s->size = newsize;
3182 s->contents = newcontents;
3183
3184 return TRUE;
3185 }
3186
3187 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3188 otherwise just check whether one already exists. Returns -1 on error,
3189 1 if a DT_NEEDED tag already exists, and 0 on success. */
3190
3191 static int
3192 elf_add_dt_needed_tag (bfd *abfd,
3193 struct bfd_link_info *info,
3194 const char *soname,
3195 bfd_boolean do_it)
3196 {
3197 struct elf_link_hash_table *hash_table;
3198 bfd_size_type strindex;
3199
3200 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3201 return -1;
3202
3203 hash_table = elf_hash_table (info);
3204 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3205 if (strindex == (bfd_size_type) -1)
3206 return -1;
3207
3208 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3209 {
3210 asection *sdyn;
3211 const struct elf_backend_data *bed;
3212 bfd_byte *extdyn;
3213
3214 bed = get_elf_backend_data (hash_table->dynobj);
3215 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3216 if (sdyn != NULL)
3217 for (extdyn = sdyn->contents;
3218 extdyn < sdyn->contents + sdyn->size;
3219 extdyn += bed->s->sizeof_dyn)
3220 {
3221 Elf_Internal_Dyn dyn;
3222
3223 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3224 if (dyn.d_tag == DT_NEEDED
3225 && dyn.d_un.d_val == strindex)
3226 {
3227 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3228 return 1;
3229 }
3230 }
3231 }
3232
3233 if (do_it)
3234 {
3235 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3236 return -1;
3237
3238 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3239 return -1;
3240 }
3241 else
3242 /* We were just checking for existence of the tag. */
3243 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3244
3245 return 0;
3246 }
3247
3248 static bfd_boolean
3249 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3250 {
3251 for (; needed != NULL; needed = needed->next)
3252 if ((elf_dyn_lib_class (needed->by) & DYN_AS_NEEDED) == 0
3253 && strcmp (soname, needed->name) == 0)
3254 return TRUE;
3255
3256 return FALSE;
3257 }
3258
3259 /* Sort symbol by value, section, and size. */
3260 static int
3261 elf_sort_symbol (const void *arg1, const void *arg2)
3262 {
3263 const struct elf_link_hash_entry *h1;
3264 const struct elf_link_hash_entry *h2;
3265 bfd_signed_vma vdiff;
3266
3267 h1 = *(const struct elf_link_hash_entry **) arg1;
3268 h2 = *(const struct elf_link_hash_entry **) arg2;
3269 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3270 if (vdiff != 0)
3271 return vdiff > 0 ? 1 : -1;
3272 else
3273 {
3274 int sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3275 if (sdiff != 0)
3276 return sdiff > 0 ? 1 : -1;
3277 }
3278 vdiff = h1->size - h2->size;
3279 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3280 }
3281
3282 /* This function is used to adjust offsets into .dynstr for
3283 dynamic symbols. This is called via elf_link_hash_traverse. */
3284
3285 static bfd_boolean
3286 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3287 {
3288 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3289
3290 if (h->dynindx != -1)
3291 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3292 return TRUE;
3293 }
3294
3295 /* Assign string offsets in .dynstr, update all structures referencing
3296 them. */
3297
3298 static bfd_boolean
3299 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3300 {
3301 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3302 struct elf_link_local_dynamic_entry *entry;
3303 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3304 bfd *dynobj = hash_table->dynobj;
3305 asection *sdyn;
3306 bfd_size_type size;
3307 const struct elf_backend_data *bed;
3308 bfd_byte *extdyn;
3309
3310 _bfd_elf_strtab_finalize (dynstr);
3311 size = _bfd_elf_strtab_size (dynstr);
3312
3313 bed = get_elf_backend_data (dynobj);
3314 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3315 BFD_ASSERT (sdyn != NULL);
3316
3317 /* Update all .dynamic entries referencing .dynstr strings. */
3318 for (extdyn = sdyn->contents;
3319 extdyn < sdyn->contents + sdyn->size;
3320 extdyn += bed->s->sizeof_dyn)
3321 {
3322 Elf_Internal_Dyn dyn;
3323
3324 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3325 switch (dyn.d_tag)
3326 {
3327 case DT_STRSZ:
3328 dyn.d_un.d_val = size;
3329 break;
3330 case DT_NEEDED:
3331 case DT_SONAME:
3332 case DT_RPATH:
3333 case DT_RUNPATH:
3334 case DT_FILTER:
3335 case DT_AUXILIARY:
3336 case DT_AUDIT:
3337 case DT_DEPAUDIT:
3338 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3339 break;
3340 default:
3341 continue;
3342 }
3343 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3344 }
3345
3346 /* Now update local dynamic symbols. */
3347 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3348 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3349 entry->isym.st_name);
3350
3351 /* And the rest of dynamic symbols. */
3352 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3353
3354 /* Adjust version definitions. */
3355 if (elf_tdata (output_bfd)->cverdefs)
3356 {
3357 asection *s;
3358 bfd_byte *p;
3359 bfd_size_type i;
3360 Elf_Internal_Verdef def;
3361 Elf_Internal_Verdaux defaux;
3362
3363 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3364 p = s->contents;
3365 do
3366 {
3367 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3368 &def);
3369 p += sizeof (Elf_External_Verdef);
3370 if (def.vd_aux != sizeof (Elf_External_Verdef))
3371 continue;
3372 for (i = 0; i < def.vd_cnt; ++i)
3373 {
3374 _bfd_elf_swap_verdaux_in (output_bfd,
3375 (Elf_External_Verdaux *) p, &defaux);
3376 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3377 defaux.vda_name);
3378 _bfd_elf_swap_verdaux_out (output_bfd,
3379 &defaux, (Elf_External_Verdaux *) p);
3380 p += sizeof (Elf_External_Verdaux);
3381 }
3382 }
3383 while (def.vd_next);
3384 }
3385
3386 /* Adjust version references. */
3387 if (elf_tdata (output_bfd)->verref)
3388 {
3389 asection *s;
3390 bfd_byte *p;
3391 bfd_size_type i;
3392 Elf_Internal_Verneed need;
3393 Elf_Internal_Vernaux needaux;
3394
3395 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3396 p = s->contents;
3397 do
3398 {
3399 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3400 &need);
3401 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3402 _bfd_elf_swap_verneed_out (output_bfd, &need,
3403 (Elf_External_Verneed *) p);
3404 p += sizeof (Elf_External_Verneed);
3405 for (i = 0; i < need.vn_cnt; ++i)
3406 {
3407 _bfd_elf_swap_vernaux_in (output_bfd,
3408 (Elf_External_Vernaux *) p, &needaux);
3409 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3410 needaux.vna_name);
3411 _bfd_elf_swap_vernaux_out (output_bfd,
3412 &needaux,
3413 (Elf_External_Vernaux *) p);
3414 p += sizeof (Elf_External_Vernaux);
3415 }
3416 }
3417 while (need.vn_next);
3418 }
3419
3420 return TRUE;
3421 }
3422 \f
3423 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3424 The default is to only match when the INPUT and OUTPUT are exactly
3425 the same target. */
3426
3427 bfd_boolean
3428 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3429 const bfd_target *output)
3430 {
3431 return input == output;
3432 }
3433
3434 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3435 This version is used when different targets for the same architecture
3436 are virtually identical. */
3437
3438 bfd_boolean
3439 _bfd_elf_relocs_compatible (const bfd_target *input,
3440 const bfd_target *output)
3441 {
3442 const struct elf_backend_data *obed, *ibed;
3443
3444 if (input == output)
3445 return TRUE;
3446
3447 ibed = xvec_get_elf_backend_data (input);
3448 obed = xvec_get_elf_backend_data (output);
3449
3450 if (ibed->arch != obed->arch)
3451 return FALSE;
3452
3453 /* If both backends are using this function, deem them compatible. */
3454 return ibed->relocs_compatible == obed->relocs_compatible;
3455 }
3456
3457 /* Make a special call to the linker "notice" function to tell it that
3458 we are about to handle an as-needed lib, or have finished
3459 processing the lib. */
3460
3461 bfd_boolean
3462 _bfd_elf_notice_as_needed (bfd *ibfd,
3463 struct bfd_link_info *info,
3464 enum notice_asneeded_action act)
3465 {
3466 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3467 }
3468
3469 /* Add symbols from an ELF object file to the linker hash table. */
3470
3471 static bfd_boolean
3472 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3473 {
3474 Elf_Internal_Ehdr *ehdr;
3475 Elf_Internal_Shdr *hdr;
3476 bfd_size_type symcount;
3477 bfd_size_type extsymcount;
3478 bfd_size_type extsymoff;
3479 struct elf_link_hash_entry **sym_hash;
3480 bfd_boolean dynamic;
3481 Elf_External_Versym *extversym = NULL;
3482 Elf_External_Versym *ever;
3483 struct elf_link_hash_entry *weaks;
3484 struct elf_link_hash_entry **nondeflt_vers = NULL;
3485 bfd_size_type nondeflt_vers_cnt = 0;
3486 Elf_Internal_Sym *isymbuf = NULL;
3487 Elf_Internal_Sym *isym;
3488 Elf_Internal_Sym *isymend;
3489 const struct elf_backend_data *bed;
3490 bfd_boolean add_needed;
3491 struct elf_link_hash_table *htab;
3492 bfd_size_type amt;
3493 void *alloc_mark = NULL;
3494 struct bfd_hash_entry **old_table = NULL;
3495 unsigned int old_size = 0;
3496 unsigned int old_count = 0;
3497 void *old_tab = NULL;
3498 void *old_ent;
3499 struct bfd_link_hash_entry *old_undefs = NULL;
3500 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3501 long old_dynsymcount = 0;
3502 bfd_size_type old_dynstr_size = 0;
3503 size_t tabsize = 0;
3504 asection *s;
3505 bfd_boolean just_syms;
3506
3507 htab = elf_hash_table (info);
3508 bed = get_elf_backend_data (abfd);
3509
3510 if ((abfd->flags & DYNAMIC) == 0)
3511 dynamic = FALSE;
3512 else
3513 {
3514 dynamic = TRUE;
3515
3516 /* You can't use -r against a dynamic object. Also, there's no
3517 hope of using a dynamic object which does not exactly match
3518 the format of the output file. */
3519 if (bfd_link_relocatable (info)
3520 || !is_elf_hash_table (htab)
3521 || info->output_bfd->xvec != abfd->xvec)
3522 {
3523 if (bfd_link_relocatable (info))
3524 bfd_set_error (bfd_error_invalid_operation);
3525 else
3526 bfd_set_error (bfd_error_wrong_format);
3527 goto error_return;
3528 }
3529 }
3530
3531 ehdr = elf_elfheader (abfd);
3532 if (info->warn_alternate_em
3533 && bed->elf_machine_code != ehdr->e_machine
3534 && ((bed->elf_machine_alt1 != 0
3535 && ehdr->e_machine == bed->elf_machine_alt1)
3536 || (bed->elf_machine_alt2 != 0
3537 && ehdr->e_machine == bed->elf_machine_alt2)))
3538 info->callbacks->einfo
3539 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3540 ehdr->e_machine, abfd, bed->elf_machine_code);
3541
3542 /* As a GNU extension, any input sections which are named
3543 .gnu.warning.SYMBOL are treated as warning symbols for the given
3544 symbol. This differs from .gnu.warning sections, which generate
3545 warnings when they are included in an output file. */
3546 /* PR 12761: Also generate this warning when building shared libraries. */
3547 for (s = abfd->sections; s != NULL; s = s->next)
3548 {
3549 const char *name;
3550
3551 name = bfd_get_section_name (abfd, s);
3552 if (CONST_STRNEQ (name, ".gnu.warning."))
3553 {
3554 char *msg;
3555 bfd_size_type sz;
3556
3557 name += sizeof ".gnu.warning." - 1;
3558
3559 /* If this is a shared object, then look up the symbol
3560 in the hash table. If it is there, and it is already
3561 been defined, then we will not be using the entry
3562 from this shared object, so we don't need to warn.
3563 FIXME: If we see the definition in a regular object
3564 later on, we will warn, but we shouldn't. The only
3565 fix is to keep track of what warnings we are supposed
3566 to emit, and then handle them all at the end of the
3567 link. */
3568 if (dynamic)
3569 {
3570 struct elf_link_hash_entry *h;
3571
3572 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3573
3574 /* FIXME: What about bfd_link_hash_common? */
3575 if (h != NULL
3576 && (h->root.type == bfd_link_hash_defined
3577 || h->root.type == bfd_link_hash_defweak))
3578 continue;
3579 }
3580
3581 sz = s->size;
3582 msg = (char *) bfd_alloc (abfd, sz + 1);
3583 if (msg == NULL)
3584 goto error_return;
3585
3586 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3587 goto error_return;
3588
3589 msg[sz] = '\0';
3590
3591 if (! (_bfd_generic_link_add_one_symbol
3592 (info, abfd, name, BSF_WARNING, s, 0, msg,
3593 FALSE, bed->collect, NULL)))
3594 goto error_return;
3595
3596 if (bfd_link_executable (info))
3597 {
3598 /* Clobber the section size so that the warning does
3599 not get copied into the output file. */
3600 s->size = 0;
3601
3602 /* Also set SEC_EXCLUDE, so that symbols defined in
3603 the warning section don't get copied to the output. */
3604 s->flags |= SEC_EXCLUDE;
3605 }
3606 }
3607 }
3608
3609 just_syms = ((s = abfd->sections) != NULL
3610 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3611
3612 add_needed = TRUE;
3613 if (! dynamic)
3614 {
3615 /* If we are creating a shared library, create all the dynamic
3616 sections immediately. We need to attach them to something,
3617 so we attach them to this BFD, provided it is the right
3618 format and is not from ld --just-symbols. Always create the
3619 dynamic sections for -E/--dynamic-list. FIXME: If there
3620 are no input BFD's of the same format as the output, we can't
3621 make a shared library. */
3622 if (!just_syms
3623 && (bfd_link_pic (info)
3624 || (!bfd_link_relocatable (info)
3625 && (info->export_dynamic || info->dynamic)))
3626 && is_elf_hash_table (htab)
3627 && info->output_bfd->xvec == abfd->xvec
3628 && !htab->dynamic_sections_created)
3629 {
3630 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3631 goto error_return;
3632 }
3633 }
3634 else if (!is_elf_hash_table (htab))
3635 goto error_return;
3636 else
3637 {
3638 const char *soname = NULL;
3639 char *audit = NULL;
3640 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3641 int ret;
3642
3643 /* ld --just-symbols and dynamic objects don't mix very well.
3644 ld shouldn't allow it. */
3645 if (just_syms)
3646 abort ();
3647
3648 /* If this dynamic lib was specified on the command line with
3649 --as-needed in effect, then we don't want to add a DT_NEEDED
3650 tag unless the lib is actually used. Similary for libs brought
3651 in by another lib's DT_NEEDED. When --no-add-needed is used
3652 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3653 any dynamic library in DT_NEEDED tags in the dynamic lib at
3654 all. */
3655 add_needed = (elf_dyn_lib_class (abfd)
3656 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3657 | DYN_NO_NEEDED)) == 0;
3658
3659 s = bfd_get_section_by_name (abfd, ".dynamic");
3660 if (s != NULL)
3661 {
3662 bfd_byte *dynbuf;
3663 bfd_byte *extdyn;
3664 unsigned int elfsec;
3665 unsigned long shlink;
3666
3667 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3668 {
3669 error_free_dyn:
3670 free (dynbuf);
3671 goto error_return;
3672 }
3673
3674 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3675 if (elfsec == SHN_BAD)
3676 goto error_free_dyn;
3677 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3678
3679 for (extdyn = dynbuf;
3680 extdyn < dynbuf + s->size;
3681 extdyn += bed->s->sizeof_dyn)
3682 {
3683 Elf_Internal_Dyn dyn;
3684
3685 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3686 if (dyn.d_tag == DT_SONAME)
3687 {
3688 unsigned int tagv = dyn.d_un.d_val;
3689 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3690 if (soname == NULL)
3691 goto error_free_dyn;
3692 }
3693 if (dyn.d_tag == DT_NEEDED)
3694 {
3695 struct bfd_link_needed_list *n, **pn;
3696 char *fnm, *anm;
3697 unsigned int tagv = dyn.d_un.d_val;
3698
3699 amt = sizeof (struct bfd_link_needed_list);
3700 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3701 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3702 if (n == NULL || fnm == NULL)
3703 goto error_free_dyn;
3704 amt = strlen (fnm) + 1;
3705 anm = (char *) bfd_alloc (abfd, amt);
3706 if (anm == NULL)
3707 goto error_free_dyn;
3708 memcpy (anm, fnm, amt);
3709 n->name = anm;
3710 n->by = abfd;
3711 n->next = NULL;
3712 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3713 ;
3714 *pn = n;
3715 }
3716 if (dyn.d_tag == DT_RUNPATH)
3717 {
3718 struct bfd_link_needed_list *n, **pn;
3719 char *fnm, *anm;
3720 unsigned int tagv = dyn.d_un.d_val;
3721
3722 amt = sizeof (struct bfd_link_needed_list);
3723 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3724 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3725 if (n == NULL || fnm == NULL)
3726 goto error_free_dyn;
3727 amt = strlen (fnm) + 1;
3728 anm = (char *) bfd_alloc (abfd, amt);
3729 if (anm == NULL)
3730 goto error_free_dyn;
3731 memcpy (anm, fnm, amt);
3732 n->name = anm;
3733 n->by = abfd;
3734 n->next = NULL;
3735 for (pn = & runpath;
3736 *pn != NULL;
3737 pn = &(*pn)->next)
3738 ;
3739 *pn = n;
3740 }
3741 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3742 if (!runpath && dyn.d_tag == DT_RPATH)
3743 {
3744 struct bfd_link_needed_list *n, **pn;
3745 char *fnm, *anm;
3746 unsigned int tagv = dyn.d_un.d_val;
3747
3748 amt = sizeof (struct bfd_link_needed_list);
3749 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3750 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3751 if (n == NULL || fnm == NULL)
3752 goto error_free_dyn;
3753 amt = strlen (fnm) + 1;
3754 anm = (char *) bfd_alloc (abfd, amt);
3755 if (anm == NULL)
3756 goto error_free_dyn;
3757 memcpy (anm, fnm, amt);
3758 n->name = anm;
3759 n->by = abfd;
3760 n->next = NULL;
3761 for (pn = & rpath;
3762 *pn != NULL;
3763 pn = &(*pn)->next)
3764 ;
3765 *pn = n;
3766 }
3767 if (dyn.d_tag == DT_AUDIT)
3768 {
3769 unsigned int tagv = dyn.d_un.d_val;
3770 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3771 }
3772 }
3773
3774 free (dynbuf);
3775 }
3776
3777 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3778 frees all more recently bfd_alloc'd blocks as well. */
3779 if (runpath)
3780 rpath = runpath;
3781
3782 if (rpath)
3783 {
3784 struct bfd_link_needed_list **pn;
3785 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3786 ;
3787 *pn = rpath;
3788 }
3789
3790 /* We do not want to include any of the sections in a dynamic
3791 object in the output file. We hack by simply clobbering the
3792 list of sections in the BFD. This could be handled more
3793 cleanly by, say, a new section flag; the existing
3794 SEC_NEVER_LOAD flag is not the one we want, because that one
3795 still implies that the section takes up space in the output
3796 file. */
3797 bfd_section_list_clear (abfd);
3798
3799 /* Find the name to use in a DT_NEEDED entry that refers to this
3800 object. If the object has a DT_SONAME entry, we use it.
3801 Otherwise, if the generic linker stuck something in
3802 elf_dt_name, we use that. Otherwise, we just use the file
3803 name. */
3804 if (soname == NULL || *soname == '\0')
3805 {
3806 soname = elf_dt_name (abfd);
3807 if (soname == NULL || *soname == '\0')
3808 soname = bfd_get_filename (abfd);
3809 }
3810
3811 /* Save the SONAME because sometimes the linker emulation code
3812 will need to know it. */
3813 elf_dt_name (abfd) = soname;
3814
3815 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3816 if (ret < 0)
3817 goto error_return;
3818
3819 /* If we have already included this dynamic object in the
3820 link, just ignore it. There is no reason to include a
3821 particular dynamic object more than once. */
3822 if (ret > 0)
3823 return TRUE;
3824
3825 /* Save the DT_AUDIT entry for the linker emulation code. */
3826 elf_dt_audit (abfd) = audit;
3827 }
3828
3829 /* If this is a dynamic object, we always link against the .dynsym
3830 symbol table, not the .symtab symbol table. The dynamic linker
3831 will only see the .dynsym symbol table, so there is no reason to
3832 look at .symtab for a dynamic object. */
3833
3834 if (! dynamic || elf_dynsymtab (abfd) == 0)
3835 hdr = &elf_tdata (abfd)->symtab_hdr;
3836 else
3837 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3838
3839 symcount = hdr->sh_size / bed->s->sizeof_sym;
3840
3841 /* The sh_info field of the symtab header tells us where the
3842 external symbols start. We don't care about the local symbols at
3843 this point. */
3844 if (elf_bad_symtab (abfd))
3845 {
3846 extsymcount = symcount;
3847 extsymoff = 0;
3848 }
3849 else
3850 {
3851 extsymcount = symcount - hdr->sh_info;
3852 extsymoff = hdr->sh_info;
3853 }
3854
3855 sym_hash = elf_sym_hashes (abfd);
3856 if (extsymcount != 0)
3857 {
3858 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3859 NULL, NULL, NULL);
3860 if (isymbuf == NULL)
3861 goto error_return;
3862
3863 if (sym_hash == NULL)
3864 {
3865 /* We store a pointer to the hash table entry for each
3866 external symbol. */
3867 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3868 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
3869 if (sym_hash == NULL)
3870 goto error_free_sym;
3871 elf_sym_hashes (abfd) = sym_hash;
3872 }
3873 }
3874
3875 if (dynamic)
3876 {
3877 /* Read in any version definitions. */
3878 if (!_bfd_elf_slurp_version_tables (abfd,
3879 info->default_imported_symver))
3880 goto error_free_sym;
3881
3882 /* Read in the symbol versions, but don't bother to convert them
3883 to internal format. */
3884 if (elf_dynversym (abfd) != 0)
3885 {
3886 Elf_Internal_Shdr *versymhdr;
3887
3888 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3889 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3890 if (extversym == NULL)
3891 goto error_free_sym;
3892 amt = versymhdr->sh_size;
3893 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3894 || bfd_bread (extversym, amt, abfd) != amt)
3895 goto error_free_vers;
3896 }
3897 }
3898
3899 /* If we are loading an as-needed shared lib, save the symbol table
3900 state before we start adding symbols. If the lib turns out
3901 to be unneeded, restore the state. */
3902 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3903 {
3904 unsigned int i;
3905 size_t entsize;
3906
3907 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3908 {
3909 struct bfd_hash_entry *p;
3910 struct elf_link_hash_entry *h;
3911
3912 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3913 {
3914 h = (struct elf_link_hash_entry *) p;
3915 entsize += htab->root.table.entsize;
3916 if (h->root.type == bfd_link_hash_warning)
3917 entsize += htab->root.table.entsize;
3918 }
3919 }
3920
3921 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3922 old_tab = bfd_malloc (tabsize + entsize);
3923 if (old_tab == NULL)
3924 goto error_free_vers;
3925
3926 /* Remember the current objalloc pointer, so that all mem for
3927 symbols added can later be reclaimed. */
3928 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3929 if (alloc_mark == NULL)
3930 goto error_free_vers;
3931
3932 /* Make a special call to the linker "notice" function to
3933 tell it that we are about to handle an as-needed lib. */
3934 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
3935 goto error_free_vers;
3936
3937 /* Clone the symbol table. Remember some pointers into the
3938 symbol table, and dynamic symbol count. */
3939 old_ent = (char *) old_tab + tabsize;
3940 memcpy (old_tab, htab->root.table.table, tabsize);
3941 old_undefs = htab->root.undefs;
3942 old_undefs_tail = htab->root.undefs_tail;
3943 old_table = htab->root.table.table;
3944 old_size = htab->root.table.size;
3945 old_count = htab->root.table.count;
3946 old_dynsymcount = htab->dynsymcount;
3947 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3948
3949 for (i = 0; i < htab->root.table.size; i++)
3950 {
3951 struct bfd_hash_entry *p;
3952 struct elf_link_hash_entry *h;
3953
3954 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3955 {
3956 memcpy (old_ent, p, htab->root.table.entsize);
3957 old_ent = (char *) old_ent + htab->root.table.entsize;
3958 h = (struct elf_link_hash_entry *) p;
3959 if (h->root.type == bfd_link_hash_warning)
3960 {
3961 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3962 old_ent = (char *) old_ent + htab->root.table.entsize;
3963 }
3964 }
3965 }
3966 }
3967
3968 weaks = NULL;
3969 ever = extversym != NULL ? extversym + extsymoff : NULL;
3970 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3971 isym < isymend;
3972 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3973 {
3974 int bind;
3975 bfd_vma value;
3976 asection *sec, *new_sec;
3977 flagword flags;
3978 const char *name;
3979 struct elf_link_hash_entry *h;
3980 struct elf_link_hash_entry *hi;
3981 bfd_boolean definition;
3982 bfd_boolean size_change_ok;
3983 bfd_boolean type_change_ok;
3984 bfd_boolean new_weakdef;
3985 bfd_boolean new_weak;
3986 bfd_boolean old_weak;
3987 bfd_boolean override;
3988 bfd_boolean common;
3989 unsigned int old_alignment;
3990 bfd *old_bfd;
3991 bfd_boolean matched;
3992
3993 override = FALSE;
3994
3995 flags = BSF_NO_FLAGS;
3996 sec = NULL;
3997 value = isym->st_value;
3998 common = bed->common_definition (isym);
3999
4000 bind = ELF_ST_BIND (isym->st_info);
4001 switch (bind)
4002 {
4003 case STB_LOCAL:
4004 /* This should be impossible, since ELF requires that all
4005 global symbols follow all local symbols, and that sh_info
4006 point to the first global symbol. Unfortunately, Irix 5
4007 screws this up. */
4008 continue;
4009
4010 case STB_GLOBAL:
4011 if (isym->st_shndx != SHN_UNDEF && !common)
4012 flags = BSF_GLOBAL;
4013 break;
4014
4015 case STB_WEAK:
4016 flags = BSF_WEAK;
4017 break;
4018
4019 case STB_GNU_UNIQUE:
4020 flags = BSF_GNU_UNIQUE;
4021 break;
4022
4023 default:
4024 /* Leave it up to the processor backend. */
4025 break;
4026 }
4027
4028 if (isym->st_shndx == SHN_UNDEF)
4029 sec = bfd_und_section_ptr;
4030 else if (isym->st_shndx == SHN_ABS)
4031 sec = bfd_abs_section_ptr;
4032 else if (isym->st_shndx == SHN_COMMON)
4033 {
4034 sec = bfd_com_section_ptr;
4035 /* What ELF calls the size we call the value. What ELF
4036 calls the value we call the alignment. */
4037 value = isym->st_size;
4038 }
4039 else
4040 {
4041 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4042 if (sec == NULL)
4043 sec = bfd_abs_section_ptr;
4044 else if (discarded_section (sec))
4045 {
4046 /* Symbols from discarded section are undefined. We keep
4047 its visibility. */
4048 sec = bfd_und_section_ptr;
4049 isym->st_shndx = SHN_UNDEF;
4050 }
4051 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4052 value -= sec->vma;
4053 }
4054
4055 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4056 isym->st_name);
4057 if (name == NULL)
4058 goto error_free_vers;
4059
4060 if (isym->st_shndx == SHN_COMMON
4061 && (abfd->flags & BFD_PLUGIN) != 0)
4062 {
4063 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4064
4065 if (xc == NULL)
4066 {
4067 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4068 | SEC_EXCLUDE);
4069 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4070 if (xc == NULL)
4071 goto error_free_vers;
4072 }
4073 sec = xc;
4074 }
4075 else if (isym->st_shndx == SHN_COMMON
4076 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4077 && !bfd_link_relocatable (info))
4078 {
4079 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4080
4081 if (tcomm == NULL)
4082 {
4083 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4084 | SEC_LINKER_CREATED);
4085 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4086 if (tcomm == NULL)
4087 goto error_free_vers;
4088 }
4089 sec = tcomm;
4090 }
4091 else if (bed->elf_add_symbol_hook)
4092 {
4093 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4094 &sec, &value))
4095 goto error_free_vers;
4096
4097 /* The hook function sets the name to NULL if this symbol
4098 should be skipped for some reason. */
4099 if (name == NULL)
4100 continue;
4101 }
4102
4103 /* Sanity check that all possibilities were handled. */
4104 if (sec == NULL)
4105 {
4106 bfd_set_error (bfd_error_bad_value);
4107 goto error_free_vers;
4108 }
4109
4110 /* Silently discard TLS symbols from --just-syms. There's
4111 no way to combine a static TLS block with a new TLS block
4112 for this executable. */
4113 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4114 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4115 continue;
4116
4117 if (bfd_is_und_section (sec)
4118 || bfd_is_com_section (sec))
4119 definition = FALSE;
4120 else
4121 definition = TRUE;
4122
4123 size_change_ok = FALSE;
4124 type_change_ok = bed->type_change_ok;
4125 old_weak = FALSE;
4126 matched = FALSE;
4127 old_alignment = 0;
4128 old_bfd = NULL;
4129 new_sec = sec;
4130
4131 if (is_elf_hash_table (htab))
4132 {
4133 Elf_Internal_Versym iver;
4134 unsigned int vernum = 0;
4135 bfd_boolean skip;
4136
4137 if (ever == NULL)
4138 {
4139 if (info->default_imported_symver)
4140 /* Use the default symbol version created earlier. */
4141 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4142 else
4143 iver.vs_vers = 0;
4144 }
4145 else
4146 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4147
4148 vernum = iver.vs_vers & VERSYM_VERSION;
4149
4150 /* If this is a hidden symbol, or if it is not version
4151 1, we append the version name to the symbol name.
4152 However, we do not modify a non-hidden absolute symbol
4153 if it is not a function, because it might be the version
4154 symbol itself. FIXME: What if it isn't? */
4155 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4156 || (vernum > 1
4157 && (!bfd_is_abs_section (sec)
4158 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4159 {
4160 const char *verstr;
4161 size_t namelen, verlen, newlen;
4162 char *newname, *p;
4163
4164 if (isym->st_shndx != SHN_UNDEF)
4165 {
4166 if (vernum > elf_tdata (abfd)->cverdefs)
4167 verstr = NULL;
4168 else if (vernum > 1)
4169 verstr =
4170 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4171 else
4172 verstr = "";
4173
4174 if (verstr == NULL)
4175 {
4176 (*_bfd_error_handler)
4177 (_("%B: %s: invalid version %u (max %d)"),
4178 abfd, name, vernum,
4179 elf_tdata (abfd)->cverdefs);
4180 bfd_set_error (bfd_error_bad_value);
4181 goto error_free_vers;
4182 }
4183 }
4184 else
4185 {
4186 /* We cannot simply test for the number of
4187 entries in the VERNEED section since the
4188 numbers for the needed versions do not start
4189 at 0. */
4190 Elf_Internal_Verneed *t;
4191
4192 verstr = NULL;
4193 for (t = elf_tdata (abfd)->verref;
4194 t != NULL;
4195 t = t->vn_nextref)
4196 {
4197 Elf_Internal_Vernaux *a;
4198
4199 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4200 {
4201 if (a->vna_other == vernum)
4202 {
4203 verstr = a->vna_nodename;
4204 break;
4205 }
4206 }
4207 if (a != NULL)
4208 break;
4209 }
4210 if (verstr == NULL)
4211 {
4212 (*_bfd_error_handler)
4213 (_("%B: %s: invalid needed version %d"),
4214 abfd, name, vernum);
4215 bfd_set_error (bfd_error_bad_value);
4216 goto error_free_vers;
4217 }
4218 }
4219
4220 namelen = strlen (name);
4221 verlen = strlen (verstr);
4222 newlen = namelen + verlen + 2;
4223 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4224 && isym->st_shndx != SHN_UNDEF)
4225 ++newlen;
4226
4227 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4228 if (newname == NULL)
4229 goto error_free_vers;
4230 memcpy (newname, name, namelen);
4231 p = newname + namelen;
4232 *p++ = ELF_VER_CHR;
4233 /* If this is a defined non-hidden version symbol,
4234 we add another @ to the name. This indicates the
4235 default version of the symbol. */
4236 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4237 && isym->st_shndx != SHN_UNDEF)
4238 *p++ = ELF_VER_CHR;
4239 memcpy (p, verstr, verlen + 1);
4240
4241 name = newname;
4242 }
4243
4244 /* If this symbol has default visibility and the user has
4245 requested we not re-export it, then mark it as hidden. */
4246 if (!bfd_is_und_section (sec)
4247 && !dynamic
4248 && abfd->no_export
4249 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4250 isym->st_other = (STV_HIDDEN
4251 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4252
4253 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4254 sym_hash, &old_bfd, &old_weak,
4255 &old_alignment, &skip, &override,
4256 &type_change_ok, &size_change_ok,
4257 &matched))
4258 goto error_free_vers;
4259
4260 if (skip)
4261 continue;
4262
4263 /* Override a definition only if the new symbol matches the
4264 existing one. */
4265 if (override && matched)
4266 definition = FALSE;
4267
4268 h = *sym_hash;
4269 while (h->root.type == bfd_link_hash_indirect
4270 || h->root.type == bfd_link_hash_warning)
4271 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4272
4273 if (elf_tdata (abfd)->verdef != NULL
4274 && vernum > 1
4275 && definition)
4276 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4277 }
4278
4279 if (! (_bfd_generic_link_add_one_symbol
4280 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4281 (struct bfd_link_hash_entry **) sym_hash)))
4282 goto error_free_vers;
4283
4284 h = *sym_hash;
4285 /* We need to make sure that indirect symbol dynamic flags are
4286 updated. */
4287 hi = h;
4288 while (h->root.type == bfd_link_hash_indirect
4289 || h->root.type == bfd_link_hash_warning)
4290 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4291
4292 *sym_hash = h;
4293
4294 new_weak = (flags & BSF_WEAK) != 0;
4295 new_weakdef = FALSE;
4296 if (dynamic
4297 && definition
4298 && new_weak
4299 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4300 && is_elf_hash_table (htab)
4301 && h->u.weakdef == NULL)
4302 {
4303 /* Keep a list of all weak defined non function symbols from
4304 a dynamic object, using the weakdef field. Later in this
4305 function we will set the weakdef field to the correct
4306 value. We only put non-function symbols from dynamic
4307 objects on this list, because that happens to be the only
4308 time we need to know the normal symbol corresponding to a
4309 weak symbol, and the information is time consuming to
4310 figure out. If the weakdef field is not already NULL,
4311 then this symbol was already defined by some previous
4312 dynamic object, and we will be using that previous
4313 definition anyhow. */
4314
4315 h->u.weakdef = weaks;
4316 weaks = h;
4317 new_weakdef = TRUE;
4318 }
4319
4320 /* Set the alignment of a common symbol. */
4321 if ((common || bfd_is_com_section (sec))
4322 && h->root.type == bfd_link_hash_common)
4323 {
4324 unsigned int align;
4325
4326 if (common)
4327 align = bfd_log2 (isym->st_value);
4328 else
4329 {
4330 /* The new symbol is a common symbol in a shared object.
4331 We need to get the alignment from the section. */
4332 align = new_sec->alignment_power;
4333 }
4334 if (align > old_alignment)
4335 h->root.u.c.p->alignment_power = align;
4336 else
4337 h->root.u.c.p->alignment_power = old_alignment;
4338 }
4339
4340 if (is_elf_hash_table (htab))
4341 {
4342 /* Set a flag in the hash table entry indicating the type of
4343 reference or definition we just found. A dynamic symbol
4344 is one which is referenced or defined by both a regular
4345 object and a shared object. */
4346 bfd_boolean dynsym = FALSE;
4347
4348 /* Plugin symbols aren't normal. Don't set def_regular or
4349 ref_regular for them, or make them dynamic. */
4350 if ((abfd->flags & BFD_PLUGIN) != 0)
4351 ;
4352 else if (! dynamic)
4353 {
4354 if (! definition)
4355 {
4356 h->ref_regular = 1;
4357 if (bind != STB_WEAK)
4358 h->ref_regular_nonweak = 1;
4359 }
4360 else
4361 {
4362 h->def_regular = 1;
4363 if (h->def_dynamic)
4364 {
4365 h->def_dynamic = 0;
4366 h->ref_dynamic = 1;
4367 }
4368 }
4369
4370 /* If the indirect symbol has been forced local, don't
4371 make the real symbol dynamic. */
4372 if ((h == hi || !hi->forced_local)
4373 && (bfd_link_dll (info)
4374 || h->def_dynamic
4375 || h->ref_dynamic))
4376 dynsym = TRUE;
4377 }
4378 else
4379 {
4380 if (! definition)
4381 {
4382 h->ref_dynamic = 1;
4383 hi->ref_dynamic = 1;
4384 }
4385 else
4386 {
4387 h->def_dynamic = 1;
4388 hi->def_dynamic = 1;
4389 }
4390
4391 /* If the indirect symbol has been forced local, don't
4392 make the real symbol dynamic. */
4393 if ((h == hi || !hi->forced_local)
4394 && (h->def_regular
4395 || h->ref_regular
4396 || (h->u.weakdef != NULL
4397 && ! new_weakdef
4398 && h->u.weakdef->dynindx != -1)))
4399 dynsym = TRUE;
4400 }
4401
4402 /* Check to see if we need to add an indirect symbol for
4403 the default name. */
4404 if (definition
4405 || (!override && h->root.type == bfd_link_hash_common))
4406 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4407 sec, value, &old_bfd, &dynsym))
4408 goto error_free_vers;
4409
4410 /* Check the alignment when a common symbol is involved. This
4411 can change when a common symbol is overridden by a normal
4412 definition or a common symbol is ignored due to the old
4413 normal definition. We need to make sure the maximum
4414 alignment is maintained. */
4415 if ((old_alignment || common)
4416 && h->root.type != bfd_link_hash_common)
4417 {
4418 unsigned int common_align;
4419 unsigned int normal_align;
4420 unsigned int symbol_align;
4421 bfd *normal_bfd;
4422 bfd *common_bfd;
4423
4424 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4425 || h->root.type == bfd_link_hash_defweak);
4426
4427 symbol_align = ffs (h->root.u.def.value) - 1;
4428 if (h->root.u.def.section->owner != NULL
4429 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4430 {
4431 normal_align = h->root.u.def.section->alignment_power;
4432 if (normal_align > symbol_align)
4433 normal_align = symbol_align;
4434 }
4435 else
4436 normal_align = symbol_align;
4437
4438 if (old_alignment)
4439 {
4440 common_align = old_alignment;
4441 common_bfd = old_bfd;
4442 normal_bfd = abfd;
4443 }
4444 else
4445 {
4446 common_align = bfd_log2 (isym->st_value);
4447 common_bfd = abfd;
4448 normal_bfd = old_bfd;
4449 }
4450
4451 if (normal_align < common_align)
4452 {
4453 /* PR binutils/2735 */
4454 if (normal_bfd == NULL)
4455 (*_bfd_error_handler)
4456 (_("Warning: alignment %u of common symbol `%s' in %B is"
4457 " greater than the alignment (%u) of its section %A"),
4458 common_bfd, h->root.u.def.section,
4459 1 << common_align, name, 1 << normal_align);
4460 else
4461 (*_bfd_error_handler)
4462 (_("Warning: alignment %u of symbol `%s' in %B"
4463 " is smaller than %u in %B"),
4464 normal_bfd, common_bfd,
4465 1 << normal_align, name, 1 << common_align);
4466 }
4467 }
4468
4469 /* Remember the symbol size if it isn't undefined. */
4470 if (isym->st_size != 0
4471 && isym->st_shndx != SHN_UNDEF
4472 && (definition || h->size == 0))
4473 {
4474 if (h->size != 0
4475 && h->size != isym->st_size
4476 && ! size_change_ok)
4477 (*_bfd_error_handler)
4478 (_("Warning: size of symbol `%s' changed"
4479 " from %lu in %B to %lu in %B"),
4480 old_bfd, abfd,
4481 name, (unsigned long) h->size,
4482 (unsigned long) isym->st_size);
4483
4484 h->size = isym->st_size;
4485 }
4486
4487 /* If this is a common symbol, then we always want H->SIZE
4488 to be the size of the common symbol. The code just above
4489 won't fix the size if a common symbol becomes larger. We
4490 don't warn about a size change here, because that is
4491 covered by --warn-common. Allow changes between different
4492 function types. */
4493 if (h->root.type == bfd_link_hash_common)
4494 h->size = h->root.u.c.size;
4495
4496 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4497 && ((definition && !new_weak)
4498 || (old_weak && h->root.type == bfd_link_hash_common)
4499 || h->type == STT_NOTYPE))
4500 {
4501 unsigned int type = ELF_ST_TYPE (isym->st_info);
4502
4503 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4504 symbol. */
4505 if (type == STT_GNU_IFUNC
4506 && (abfd->flags & DYNAMIC) != 0)
4507 type = STT_FUNC;
4508
4509 if (h->type != type)
4510 {
4511 if (h->type != STT_NOTYPE && ! type_change_ok)
4512 (*_bfd_error_handler)
4513 (_("Warning: type of symbol `%s' changed"
4514 " from %d to %d in %B"),
4515 abfd, name, h->type, type);
4516
4517 h->type = type;
4518 }
4519 }
4520
4521 /* Merge st_other field. */
4522 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4523
4524 /* We don't want to make debug symbol dynamic. */
4525 if (definition
4526 && (sec->flags & SEC_DEBUGGING)
4527 && !bfd_link_relocatable (info))
4528 dynsym = FALSE;
4529
4530 /* Nor should we make plugin symbols dynamic. */
4531 if ((abfd->flags & BFD_PLUGIN) != 0)
4532 dynsym = FALSE;
4533
4534 if (definition)
4535 {
4536 h->target_internal = isym->st_target_internal;
4537 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4538 }
4539
4540 if (definition && !dynamic)
4541 {
4542 char *p = strchr (name, ELF_VER_CHR);
4543 if (p != NULL && p[1] != ELF_VER_CHR)
4544 {
4545 /* Queue non-default versions so that .symver x, x@FOO
4546 aliases can be checked. */
4547 if (!nondeflt_vers)
4548 {
4549 amt = ((isymend - isym + 1)
4550 * sizeof (struct elf_link_hash_entry *));
4551 nondeflt_vers
4552 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4553 if (!nondeflt_vers)
4554 goto error_free_vers;
4555 }
4556 nondeflt_vers[nondeflt_vers_cnt++] = h;
4557 }
4558 }
4559
4560 if (dynsym && h->dynindx == -1)
4561 {
4562 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4563 goto error_free_vers;
4564 if (h->u.weakdef != NULL
4565 && ! new_weakdef
4566 && h->u.weakdef->dynindx == -1)
4567 {
4568 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4569 goto error_free_vers;
4570 }
4571 }
4572 else if (dynsym && h->dynindx != -1)
4573 /* If the symbol already has a dynamic index, but
4574 visibility says it should not be visible, turn it into
4575 a local symbol. */
4576 switch (ELF_ST_VISIBILITY (h->other))
4577 {
4578 case STV_INTERNAL:
4579 case STV_HIDDEN:
4580 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4581 dynsym = FALSE;
4582 break;
4583 }
4584
4585 /* Don't add DT_NEEDED for references from the dummy bfd nor
4586 for unmatched symbol. */
4587 if (!add_needed
4588 && matched
4589 && definition
4590 && ((dynsym
4591 && h->ref_regular_nonweak
4592 && (old_bfd == NULL
4593 || (old_bfd->flags & BFD_PLUGIN) == 0))
4594 || (h->ref_dynamic_nonweak
4595 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4596 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4597 {
4598 int ret;
4599 const char *soname = elf_dt_name (abfd);
4600
4601 info->callbacks->minfo ("%!", soname, old_bfd,
4602 h->root.root.string);
4603
4604 /* A symbol from a library loaded via DT_NEEDED of some
4605 other library is referenced by a regular object.
4606 Add a DT_NEEDED entry for it. Issue an error if
4607 --no-add-needed is used and the reference was not
4608 a weak one. */
4609 if (old_bfd != NULL
4610 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4611 {
4612 (*_bfd_error_handler)
4613 (_("%B: undefined reference to symbol '%s'"),
4614 old_bfd, name);
4615 bfd_set_error (bfd_error_missing_dso);
4616 goto error_free_vers;
4617 }
4618
4619 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4620 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4621
4622 add_needed = TRUE;
4623 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4624 if (ret < 0)
4625 goto error_free_vers;
4626
4627 BFD_ASSERT (ret == 0);
4628 }
4629 }
4630 }
4631
4632 if (extversym != NULL)
4633 {
4634 free (extversym);
4635 extversym = NULL;
4636 }
4637
4638 if (isymbuf != NULL)
4639 {
4640 free (isymbuf);
4641 isymbuf = NULL;
4642 }
4643
4644 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4645 {
4646 unsigned int i;
4647
4648 /* Restore the symbol table. */
4649 old_ent = (char *) old_tab + tabsize;
4650 memset (elf_sym_hashes (abfd), 0,
4651 extsymcount * sizeof (struct elf_link_hash_entry *));
4652 htab->root.table.table = old_table;
4653 htab->root.table.size = old_size;
4654 htab->root.table.count = old_count;
4655 memcpy (htab->root.table.table, old_tab, tabsize);
4656 htab->root.undefs = old_undefs;
4657 htab->root.undefs_tail = old_undefs_tail;
4658 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4659 for (i = 0; i < htab->root.table.size; i++)
4660 {
4661 struct bfd_hash_entry *p;
4662 struct elf_link_hash_entry *h;
4663 bfd_size_type size;
4664 unsigned int alignment_power;
4665
4666 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4667 {
4668 h = (struct elf_link_hash_entry *) p;
4669 if (h->root.type == bfd_link_hash_warning)
4670 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4671 if (h->dynindx >= old_dynsymcount
4672 && h->dynstr_index < old_dynstr_size)
4673 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4674
4675 /* Preserve the maximum alignment and size for common
4676 symbols even if this dynamic lib isn't on DT_NEEDED
4677 since it can still be loaded at run time by another
4678 dynamic lib. */
4679 if (h->root.type == bfd_link_hash_common)
4680 {
4681 size = h->root.u.c.size;
4682 alignment_power = h->root.u.c.p->alignment_power;
4683 }
4684 else
4685 {
4686 size = 0;
4687 alignment_power = 0;
4688 }
4689 memcpy (p, old_ent, htab->root.table.entsize);
4690 old_ent = (char *) old_ent + htab->root.table.entsize;
4691 h = (struct elf_link_hash_entry *) p;
4692 if (h->root.type == bfd_link_hash_warning)
4693 {
4694 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4695 old_ent = (char *) old_ent + htab->root.table.entsize;
4696 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4697 }
4698 if (h->root.type == bfd_link_hash_common)
4699 {
4700 if (size > h->root.u.c.size)
4701 h->root.u.c.size = size;
4702 if (alignment_power > h->root.u.c.p->alignment_power)
4703 h->root.u.c.p->alignment_power = alignment_power;
4704 }
4705 }
4706 }
4707
4708 /* Make a special call to the linker "notice" function to
4709 tell it that symbols added for crefs may need to be removed. */
4710 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4711 goto error_free_vers;
4712
4713 free (old_tab);
4714 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4715 alloc_mark);
4716 if (nondeflt_vers != NULL)
4717 free (nondeflt_vers);
4718 return TRUE;
4719 }
4720
4721 if (old_tab != NULL)
4722 {
4723 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4724 goto error_free_vers;
4725 free (old_tab);
4726 old_tab = NULL;
4727 }
4728
4729 /* Now that all the symbols from this input file are created, if
4730 not performing a relocatable link, handle .symver foo, foo@BAR
4731 such that any relocs against foo become foo@BAR. */
4732 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
4733 {
4734 bfd_size_type cnt, symidx;
4735
4736 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4737 {
4738 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4739 char *shortname, *p;
4740
4741 p = strchr (h->root.root.string, ELF_VER_CHR);
4742 if (p == NULL
4743 || (h->root.type != bfd_link_hash_defined
4744 && h->root.type != bfd_link_hash_defweak))
4745 continue;
4746
4747 amt = p - h->root.root.string;
4748 shortname = (char *) bfd_malloc (amt + 1);
4749 if (!shortname)
4750 goto error_free_vers;
4751 memcpy (shortname, h->root.root.string, amt);
4752 shortname[amt] = '\0';
4753
4754 hi = (struct elf_link_hash_entry *)
4755 bfd_link_hash_lookup (&htab->root, shortname,
4756 FALSE, FALSE, FALSE);
4757 if (hi != NULL
4758 && hi->root.type == h->root.type
4759 && hi->root.u.def.value == h->root.u.def.value
4760 && hi->root.u.def.section == h->root.u.def.section)
4761 {
4762 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4763 hi->root.type = bfd_link_hash_indirect;
4764 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4765 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4766 sym_hash = elf_sym_hashes (abfd);
4767 if (sym_hash)
4768 for (symidx = 0; symidx < extsymcount; ++symidx)
4769 if (sym_hash[symidx] == hi)
4770 {
4771 sym_hash[symidx] = h;
4772 break;
4773 }
4774 }
4775 free (shortname);
4776 }
4777 free (nondeflt_vers);
4778 nondeflt_vers = NULL;
4779 }
4780
4781 /* Now set the weakdefs field correctly for all the weak defined
4782 symbols we found. The only way to do this is to search all the
4783 symbols. Since we only need the information for non functions in
4784 dynamic objects, that's the only time we actually put anything on
4785 the list WEAKS. We need this information so that if a regular
4786 object refers to a symbol defined weakly in a dynamic object, the
4787 real symbol in the dynamic object is also put in the dynamic
4788 symbols; we also must arrange for both symbols to point to the
4789 same memory location. We could handle the general case of symbol
4790 aliasing, but a general symbol alias can only be generated in
4791 assembler code, handling it correctly would be very time
4792 consuming, and other ELF linkers don't handle general aliasing
4793 either. */
4794 if (weaks != NULL)
4795 {
4796 struct elf_link_hash_entry **hpp;
4797 struct elf_link_hash_entry **hppend;
4798 struct elf_link_hash_entry **sorted_sym_hash;
4799 struct elf_link_hash_entry *h;
4800 size_t sym_count;
4801
4802 /* Since we have to search the whole symbol list for each weak
4803 defined symbol, search time for N weak defined symbols will be
4804 O(N^2). Binary search will cut it down to O(NlogN). */
4805 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4806 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4807 if (sorted_sym_hash == NULL)
4808 goto error_return;
4809 sym_hash = sorted_sym_hash;
4810 hpp = elf_sym_hashes (abfd);
4811 hppend = hpp + extsymcount;
4812 sym_count = 0;
4813 for (; hpp < hppend; hpp++)
4814 {
4815 h = *hpp;
4816 if (h != NULL
4817 && h->root.type == bfd_link_hash_defined
4818 && !bed->is_function_type (h->type))
4819 {
4820 *sym_hash = h;
4821 sym_hash++;
4822 sym_count++;
4823 }
4824 }
4825
4826 qsort (sorted_sym_hash, sym_count,
4827 sizeof (struct elf_link_hash_entry *),
4828 elf_sort_symbol);
4829
4830 while (weaks != NULL)
4831 {
4832 struct elf_link_hash_entry *hlook;
4833 asection *slook;
4834 bfd_vma vlook;
4835 size_t i, j, idx = 0;
4836
4837 hlook = weaks;
4838 weaks = hlook->u.weakdef;
4839 hlook->u.weakdef = NULL;
4840
4841 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4842 || hlook->root.type == bfd_link_hash_defweak
4843 || hlook->root.type == bfd_link_hash_common
4844 || hlook->root.type == bfd_link_hash_indirect);
4845 slook = hlook->root.u.def.section;
4846 vlook = hlook->root.u.def.value;
4847
4848 i = 0;
4849 j = sym_count;
4850 while (i != j)
4851 {
4852 bfd_signed_vma vdiff;
4853 idx = (i + j) / 2;
4854 h = sorted_sym_hash[idx];
4855 vdiff = vlook - h->root.u.def.value;
4856 if (vdiff < 0)
4857 j = idx;
4858 else if (vdiff > 0)
4859 i = idx + 1;
4860 else
4861 {
4862 int sdiff = slook->id - h->root.u.def.section->id;
4863 if (sdiff < 0)
4864 j = idx;
4865 else if (sdiff > 0)
4866 i = idx + 1;
4867 else
4868 break;
4869 }
4870 }
4871
4872 /* We didn't find a value/section match. */
4873 if (i == j)
4874 continue;
4875
4876 /* With multiple aliases, or when the weak symbol is already
4877 strongly defined, we have multiple matching symbols and
4878 the binary search above may land on any of them. Step
4879 one past the matching symbol(s). */
4880 while (++idx != j)
4881 {
4882 h = sorted_sym_hash[idx];
4883 if (h->root.u.def.section != slook
4884 || h->root.u.def.value != vlook)
4885 break;
4886 }
4887
4888 /* Now look back over the aliases. Since we sorted by size
4889 as well as value and section, we'll choose the one with
4890 the largest size. */
4891 while (idx-- != i)
4892 {
4893 h = sorted_sym_hash[idx];
4894
4895 /* Stop if value or section doesn't match. */
4896 if (h->root.u.def.section != slook
4897 || h->root.u.def.value != vlook)
4898 break;
4899 else if (h != hlook)
4900 {
4901 hlook->u.weakdef = h;
4902
4903 /* If the weak definition is in the list of dynamic
4904 symbols, make sure the real definition is put
4905 there as well. */
4906 if (hlook->dynindx != -1 && h->dynindx == -1)
4907 {
4908 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4909 {
4910 err_free_sym_hash:
4911 free (sorted_sym_hash);
4912 goto error_return;
4913 }
4914 }
4915
4916 /* If the real definition is in the list of dynamic
4917 symbols, make sure the weak definition is put
4918 there as well. If we don't do this, then the
4919 dynamic loader might not merge the entries for the
4920 real definition and the weak definition. */
4921 if (h->dynindx != -1 && hlook->dynindx == -1)
4922 {
4923 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4924 goto err_free_sym_hash;
4925 }
4926 break;
4927 }
4928 }
4929 }
4930
4931 free (sorted_sym_hash);
4932 }
4933
4934 if (bed->check_directives
4935 && !(*bed->check_directives) (abfd, info))
4936 return FALSE;
4937
4938 /* If this object is the same format as the output object, and it is
4939 not a shared library, then let the backend look through the
4940 relocs.
4941
4942 This is required to build global offset table entries and to
4943 arrange for dynamic relocs. It is not required for the
4944 particular common case of linking non PIC code, even when linking
4945 against shared libraries, but unfortunately there is no way of
4946 knowing whether an object file has been compiled PIC or not.
4947 Looking through the relocs is not particularly time consuming.
4948 The problem is that we must either (1) keep the relocs in memory,
4949 which causes the linker to require additional runtime memory or
4950 (2) read the relocs twice from the input file, which wastes time.
4951 This would be a good case for using mmap.
4952
4953 I have no idea how to handle linking PIC code into a file of a
4954 different format. It probably can't be done. */
4955 if (! dynamic
4956 && is_elf_hash_table (htab)
4957 && bed->check_relocs != NULL
4958 && elf_object_id (abfd) == elf_hash_table_id (htab)
4959 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4960 {
4961 asection *o;
4962
4963 for (o = abfd->sections; o != NULL; o = o->next)
4964 {
4965 Elf_Internal_Rela *internal_relocs;
4966 bfd_boolean ok;
4967
4968 if ((o->flags & SEC_RELOC) == 0
4969 || o->reloc_count == 0
4970 || ((info->strip == strip_all || info->strip == strip_debugger)
4971 && (o->flags & SEC_DEBUGGING) != 0)
4972 || bfd_is_abs_section (o->output_section))
4973 continue;
4974
4975 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4976 info->keep_memory);
4977 if (internal_relocs == NULL)
4978 goto error_return;
4979
4980 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4981
4982 if (elf_section_data (o)->relocs != internal_relocs)
4983 free (internal_relocs);
4984
4985 if (! ok)
4986 goto error_return;
4987 }
4988 }
4989
4990 /* If this is a non-traditional link, try to optimize the handling
4991 of the .stab/.stabstr sections. */
4992 if (! dynamic
4993 && ! info->traditional_format
4994 && is_elf_hash_table (htab)
4995 && (info->strip != strip_all && info->strip != strip_debugger))
4996 {
4997 asection *stabstr;
4998
4999 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5000 if (stabstr != NULL)
5001 {
5002 bfd_size_type string_offset = 0;
5003 asection *stab;
5004
5005 for (stab = abfd->sections; stab; stab = stab->next)
5006 if (CONST_STRNEQ (stab->name, ".stab")
5007 && (!stab->name[5] ||
5008 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5009 && (stab->flags & SEC_MERGE) == 0
5010 && !bfd_is_abs_section (stab->output_section))
5011 {
5012 struct bfd_elf_section_data *secdata;
5013
5014 secdata = elf_section_data (stab);
5015 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5016 stabstr, &secdata->sec_info,
5017 &string_offset))
5018 goto error_return;
5019 if (secdata->sec_info)
5020 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5021 }
5022 }
5023 }
5024
5025 if (is_elf_hash_table (htab) && add_needed)
5026 {
5027 /* Add this bfd to the loaded list. */
5028 struct elf_link_loaded_list *n;
5029
5030 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5031 if (n == NULL)
5032 goto error_return;
5033 n->abfd = abfd;
5034 n->next = htab->loaded;
5035 htab->loaded = n;
5036 }
5037
5038 return TRUE;
5039
5040 error_free_vers:
5041 if (old_tab != NULL)
5042 free (old_tab);
5043 if (nondeflt_vers != NULL)
5044 free (nondeflt_vers);
5045 if (extversym != NULL)
5046 free (extversym);
5047 error_free_sym:
5048 if (isymbuf != NULL)
5049 free (isymbuf);
5050 error_return:
5051 return FALSE;
5052 }
5053
5054 /* Return the linker hash table entry of a symbol that might be
5055 satisfied by an archive symbol. Return -1 on error. */
5056
5057 struct elf_link_hash_entry *
5058 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5059 struct bfd_link_info *info,
5060 const char *name)
5061 {
5062 struct elf_link_hash_entry *h;
5063 char *p, *copy;
5064 size_t len, first;
5065
5066 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5067 if (h != NULL)
5068 return h;
5069
5070 /* If this is a default version (the name contains @@), look up the
5071 symbol again with only one `@' as well as without the version.
5072 The effect is that references to the symbol with and without the
5073 version will be matched by the default symbol in the archive. */
5074
5075 p = strchr (name, ELF_VER_CHR);
5076 if (p == NULL || p[1] != ELF_VER_CHR)
5077 return h;
5078
5079 /* First check with only one `@'. */
5080 len = strlen (name);
5081 copy = (char *) bfd_alloc (abfd, len);
5082 if (copy == NULL)
5083 return (struct elf_link_hash_entry *) 0 - 1;
5084
5085 first = p - name + 1;
5086 memcpy (copy, name, first);
5087 memcpy (copy + first, name + first + 1, len - first);
5088
5089 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5090 if (h == NULL)
5091 {
5092 /* We also need to check references to the symbol without the
5093 version. */
5094 copy[first - 1] = '\0';
5095 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5096 FALSE, FALSE, TRUE);
5097 }
5098
5099 bfd_release (abfd, copy);
5100 return h;
5101 }
5102
5103 /* Add symbols from an ELF archive file to the linker hash table. We
5104 don't use _bfd_generic_link_add_archive_symbols because we need to
5105 handle versioned symbols.
5106
5107 Fortunately, ELF archive handling is simpler than that done by
5108 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5109 oddities. In ELF, if we find a symbol in the archive map, and the
5110 symbol is currently undefined, we know that we must pull in that
5111 object file.
5112
5113 Unfortunately, we do have to make multiple passes over the symbol
5114 table until nothing further is resolved. */
5115
5116 static bfd_boolean
5117 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5118 {
5119 symindex c;
5120 unsigned char *included = NULL;
5121 carsym *symdefs;
5122 bfd_boolean loop;
5123 bfd_size_type amt;
5124 const struct elf_backend_data *bed;
5125 struct elf_link_hash_entry * (*archive_symbol_lookup)
5126 (bfd *, struct bfd_link_info *, const char *);
5127
5128 if (! bfd_has_map (abfd))
5129 {
5130 /* An empty archive is a special case. */
5131 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5132 return TRUE;
5133 bfd_set_error (bfd_error_no_armap);
5134 return FALSE;
5135 }
5136
5137 /* Keep track of all symbols we know to be already defined, and all
5138 files we know to be already included. This is to speed up the
5139 second and subsequent passes. */
5140 c = bfd_ardata (abfd)->symdef_count;
5141 if (c == 0)
5142 return TRUE;
5143 amt = c;
5144 amt *= sizeof (*included);
5145 included = (unsigned char *) bfd_zmalloc (amt);
5146 if (included == NULL)
5147 return FALSE;
5148
5149 symdefs = bfd_ardata (abfd)->symdefs;
5150 bed = get_elf_backend_data (abfd);
5151 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5152
5153 do
5154 {
5155 file_ptr last;
5156 symindex i;
5157 carsym *symdef;
5158 carsym *symdefend;
5159
5160 loop = FALSE;
5161 last = -1;
5162
5163 symdef = symdefs;
5164 symdefend = symdef + c;
5165 for (i = 0; symdef < symdefend; symdef++, i++)
5166 {
5167 struct elf_link_hash_entry *h;
5168 bfd *element;
5169 struct bfd_link_hash_entry *undefs_tail;
5170 symindex mark;
5171
5172 if (included[i])
5173 continue;
5174 if (symdef->file_offset == last)
5175 {
5176 included[i] = TRUE;
5177 continue;
5178 }
5179
5180 h = archive_symbol_lookup (abfd, info, symdef->name);
5181 if (h == (struct elf_link_hash_entry *) 0 - 1)
5182 goto error_return;
5183
5184 if (h == NULL)
5185 continue;
5186
5187 if (h->root.type == bfd_link_hash_common)
5188 {
5189 /* We currently have a common symbol. The archive map contains
5190 a reference to this symbol, so we may want to include it. We
5191 only want to include it however, if this archive element
5192 contains a definition of the symbol, not just another common
5193 declaration of it.
5194
5195 Unfortunately some archivers (including GNU ar) will put
5196 declarations of common symbols into their archive maps, as
5197 well as real definitions, so we cannot just go by the archive
5198 map alone. Instead we must read in the element's symbol
5199 table and check that to see what kind of symbol definition
5200 this is. */
5201 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5202 continue;
5203 }
5204 else if (h->root.type != bfd_link_hash_undefined)
5205 {
5206 if (h->root.type != bfd_link_hash_undefweak)
5207 /* Symbol must be defined. Don't check it again. */
5208 included[i] = TRUE;
5209 continue;
5210 }
5211
5212 /* We need to include this archive member. */
5213 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5214 if (element == NULL)
5215 goto error_return;
5216
5217 if (! bfd_check_format (element, bfd_object))
5218 goto error_return;
5219
5220 undefs_tail = info->hash->undefs_tail;
5221
5222 if (!(*info->callbacks
5223 ->add_archive_element) (info, element, symdef->name, &element))
5224 goto error_return;
5225 if (!bfd_link_add_symbols (element, info))
5226 goto error_return;
5227
5228 /* If there are any new undefined symbols, we need to make
5229 another pass through the archive in order to see whether
5230 they can be defined. FIXME: This isn't perfect, because
5231 common symbols wind up on undefs_tail and because an
5232 undefined symbol which is defined later on in this pass
5233 does not require another pass. This isn't a bug, but it
5234 does make the code less efficient than it could be. */
5235 if (undefs_tail != info->hash->undefs_tail)
5236 loop = TRUE;
5237
5238 /* Look backward to mark all symbols from this object file
5239 which we have already seen in this pass. */
5240 mark = i;
5241 do
5242 {
5243 included[mark] = TRUE;
5244 if (mark == 0)
5245 break;
5246 --mark;
5247 }
5248 while (symdefs[mark].file_offset == symdef->file_offset);
5249
5250 /* We mark subsequent symbols from this object file as we go
5251 on through the loop. */
5252 last = symdef->file_offset;
5253 }
5254 }
5255 while (loop);
5256
5257 free (included);
5258
5259 return TRUE;
5260
5261 error_return:
5262 if (included != NULL)
5263 free (included);
5264 return FALSE;
5265 }
5266
5267 /* Given an ELF BFD, add symbols to the global hash table as
5268 appropriate. */
5269
5270 bfd_boolean
5271 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5272 {
5273 switch (bfd_get_format (abfd))
5274 {
5275 case bfd_object:
5276 return elf_link_add_object_symbols (abfd, info);
5277 case bfd_archive:
5278 return elf_link_add_archive_symbols (abfd, info);
5279 default:
5280 bfd_set_error (bfd_error_wrong_format);
5281 return FALSE;
5282 }
5283 }
5284 \f
5285 struct hash_codes_info
5286 {
5287 unsigned long *hashcodes;
5288 bfd_boolean error;
5289 };
5290
5291 /* This function will be called though elf_link_hash_traverse to store
5292 all hash value of the exported symbols in an array. */
5293
5294 static bfd_boolean
5295 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5296 {
5297 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5298 const char *name;
5299 unsigned long ha;
5300 char *alc = NULL;
5301
5302 /* Ignore indirect symbols. These are added by the versioning code. */
5303 if (h->dynindx == -1)
5304 return TRUE;
5305
5306 name = h->root.root.string;
5307 if (h->versioned >= versioned)
5308 {
5309 char *p = strchr (name, ELF_VER_CHR);
5310 if (p != NULL)
5311 {
5312 alc = (char *) bfd_malloc (p - name + 1);
5313 if (alc == NULL)
5314 {
5315 inf->error = TRUE;
5316 return FALSE;
5317 }
5318 memcpy (alc, name, p - name);
5319 alc[p - name] = '\0';
5320 name = alc;
5321 }
5322 }
5323
5324 /* Compute the hash value. */
5325 ha = bfd_elf_hash (name);
5326
5327 /* Store the found hash value in the array given as the argument. */
5328 *(inf->hashcodes)++ = ha;
5329
5330 /* And store it in the struct so that we can put it in the hash table
5331 later. */
5332 h->u.elf_hash_value = ha;
5333
5334 if (alc != NULL)
5335 free (alc);
5336
5337 return TRUE;
5338 }
5339
5340 struct collect_gnu_hash_codes
5341 {
5342 bfd *output_bfd;
5343 const struct elf_backend_data *bed;
5344 unsigned long int nsyms;
5345 unsigned long int maskbits;
5346 unsigned long int *hashcodes;
5347 unsigned long int *hashval;
5348 unsigned long int *indx;
5349 unsigned long int *counts;
5350 bfd_vma *bitmask;
5351 bfd_byte *contents;
5352 long int min_dynindx;
5353 unsigned long int bucketcount;
5354 unsigned long int symindx;
5355 long int local_indx;
5356 long int shift1, shift2;
5357 unsigned long int mask;
5358 bfd_boolean error;
5359 };
5360
5361 /* This function will be called though elf_link_hash_traverse to store
5362 all hash value of the exported symbols in an array. */
5363
5364 static bfd_boolean
5365 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5366 {
5367 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5368 const char *name;
5369 unsigned long ha;
5370 char *alc = NULL;
5371
5372 /* Ignore indirect symbols. These are added by the versioning code. */
5373 if (h->dynindx == -1)
5374 return TRUE;
5375
5376 /* Ignore also local symbols and undefined symbols. */
5377 if (! (*s->bed->elf_hash_symbol) (h))
5378 return TRUE;
5379
5380 name = h->root.root.string;
5381 if (h->versioned >= versioned)
5382 {
5383 char *p = strchr (name, ELF_VER_CHR);
5384 if (p != NULL)
5385 {
5386 alc = (char *) bfd_malloc (p - name + 1);
5387 if (alc == NULL)
5388 {
5389 s->error = TRUE;
5390 return FALSE;
5391 }
5392 memcpy (alc, name, p - name);
5393 alc[p - name] = '\0';
5394 name = alc;
5395 }
5396 }
5397
5398 /* Compute the hash value. */
5399 ha = bfd_elf_gnu_hash (name);
5400
5401 /* Store the found hash value in the array for compute_bucket_count,
5402 and also for .dynsym reordering purposes. */
5403 s->hashcodes[s->nsyms] = ha;
5404 s->hashval[h->dynindx] = ha;
5405 ++s->nsyms;
5406 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5407 s->min_dynindx = h->dynindx;
5408
5409 if (alc != NULL)
5410 free (alc);
5411
5412 return TRUE;
5413 }
5414
5415 /* This function will be called though elf_link_hash_traverse to do
5416 final dynaminc symbol renumbering. */
5417
5418 static bfd_boolean
5419 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5420 {
5421 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5422 unsigned long int bucket;
5423 unsigned long int val;
5424
5425 /* Ignore indirect symbols. */
5426 if (h->dynindx == -1)
5427 return TRUE;
5428
5429 /* Ignore also local symbols and undefined symbols. */
5430 if (! (*s->bed->elf_hash_symbol) (h))
5431 {
5432 if (h->dynindx >= s->min_dynindx)
5433 h->dynindx = s->local_indx++;
5434 return TRUE;
5435 }
5436
5437 bucket = s->hashval[h->dynindx] % s->bucketcount;
5438 val = (s->hashval[h->dynindx] >> s->shift1)
5439 & ((s->maskbits >> s->shift1) - 1);
5440 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5441 s->bitmask[val]
5442 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5443 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5444 if (s->counts[bucket] == 1)
5445 /* Last element terminates the chain. */
5446 val |= 1;
5447 bfd_put_32 (s->output_bfd, val,
5448 s->contents + (s->indx[bucket] - s->symindx) * 4);
5449 --s->counts[bucket];
5450 h->dynindx = s->indx[bucket]++;
5451 return TRUE;
5452 }
5453
5454 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5455
5456 bfd_boolean
5457 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5458 {
5459 return !(h->forced_local
5460 || h->root.type == bfd_link_hash_undefined
5461 || h->root.type == bfd_link_hash_undefweak
5462 || ((h->root.type == bfd_link_hash_defined
5463 || h->root.type == bfd_link_hash_defweak)
5464 && h->root.u.def.section->output_section == NULL));
5465 }
5466
5467 /* Array used to determine the number of hash table buckets to use
5468 based on the number of symbols there are. If there are fewer than
5469 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5470 fewer than 37 we use 17 buckets, and so forth. We never use more
5471 than 32771 buckets. */
5472
5473 static const size_t elf_buckets[] =
5474 {
5475 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5476 16411, 32771, 0
5477 };
5478
5479 /* Compute bucket count for hashing table. We do not use a static set
5480 of possible tables sizes anymore. Instead we determine for all
5481 possible reasonable sizes of the table the outcome (i.e., the
5482 number of collisions etc) and choose the best solution. The
5483 weighting functions are not too simple to allow the table to grow
5484 without bounds. Instead one of the weighting factors is the size.
5485 Therefore the result is always a good payoff between few collisions
5486 (= short chain lengths) and table size. */
5487 static size_t
5488 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5489 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5490 unsigned long int nsyms,
5491 int gnu_hash)
5492 {
5493 size_t best_size = 0;
5494 unsigned long int i;
5495
5496 /* We have a problem here. The following code to optimize the table
5497 size requires an integer type with more the 32 bits. If
5498 BFD_HOST_U_64_BIT is set we know about such a type. */
5499 #ifdef BFD_HOST_U_64_BIT
5500 if (info->optimize)
5501 {
5502 size_t minsize;
5503 size_t maxsize;
5504 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5505 bfd *dynobj = elf_hash_table (info)->dynobj;
5506 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5507 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5508 unsigned long int *counts;
5509 bfd_size_type amt;
5510 unsigned int no_improvement_count = 0;
5511
5512 /* Possible optimization parameters: if we have NSYMS symbols we say
5513 that the hashing table must at least have NSYMS/4 and at most
5514 2*NSYMS buckets. */
5515 minsize = nsyms / 4;
5516 if (minsize == 0)
5517 minsize = 1;
5518 best_size = maxsize = nsyms * 2;
5519 if (gnu_hash)
5520 {
5521 if (minsize < 2)
5522 minsize = 2;
5523 if ((best_size & 31) == 0)
5524 ++best_size;
5525 }
5526
5527 /* Create array where we count the collisions in. We must use bfd_malloc
5528 since the size could be large. */
5529 amt = maxsize;
5530 amt *= sizeof (unsigned long int);
5531 counts = (unsigned long int *) bfd_malloc (amt);
5532 if (counts == NULL)
5533 return 0;
5534
5535 /* Compute the "optimal" size for the hash table. The criteria is a
5536 minimal chain length. The minor criteria is (of course) the size
5537 of the table. */
5538 for (i = minsize; i < maxsize; ++i)
5539 {
5540 /* Walk through the array of hashcodes and count the collisions. */
5541 BFD_HOST_U_64_BIT max;
5542 unsigned long int j;
5543 unsigned long int fact;
5544
5545 if (gnu_hash && (i & 31) == 0)
5546 continue;
5547
5548 memset (counts, '\0', i * sizeof (unsigned long int));
5549
5550 /* Determine how often each hash bucket is used. */
5551 for (j = 0; j < nsyms; ++j)
5552 ++counts[hashcodes[j] % i];
5553
5554 /* For the weight function we need some information about the
5555 pagesize on the target. This is information need not be 100%
5556 accurate. Since this information is not available (so far) we
5557 define it here to a reasonable default value. If it is crucial
5558 to have a better value some day simply define this value. */
5559 # ifndef BFD_TARGET_PAGESIZE
5560 # define BFD_TARGET_PAGESIZE (4096)
5561 # endif
5562
5563 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5564 and the chains. */
5565 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5566
5567 # if 1
5568 /* Variant 1: optimize for short chains. We add the squares
5569 of all the chain lengths (which favors many small chain
5570 over a few long chains). */
5571 for (j = 0; j < i; ++j)
5572 max += counts[j] * counts[j];
5573
5574 /* This adds penalties for the overall size of the table. */
5575 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5576 max *= fact * fact;
5577 # else
5578 /* Variant 2: Optimize a lot more for small table. Here we
5579 also add squares of the size but we also add penalties for
5580 empty slots (the +1 term). */
5581 for (j = 0; j < i; ++j)
5582 max += (1 + counts[j]) * (1 + counts[j]);
5583
5584 /* The overall size of the table is considered, but not as
5585 strong as in variant 1, where it is squared. */
5586 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5587 max *= fact;
5588 # endif
5589
5590 /* Compare with current best results. */
5591 if (max < best_chlen)
5592 {
5593 best_chlen = max;
5594 best_size = i;
5595 no_improvement_count = 0;
5596 }
5597 /* PR 11843: Avoid futile long searches for the best bucket size
5598 when there are a large number of symbols. */
5599 else if (++no_improvement_count == 100)
5600 break;
5601 }
5602
5603 free (counts);
5604 }
5605 else
5606 #endif /* defined (BFD_HOST_U_64_BIT) */
5607 {
5608 /* This is the fallback solution if no 64bit type is available or if we
5609 are not supposed to spend much time on optimizations. We select the
5610 bucket count using a fixed set of numbers. */
5611 for (i = 0; elf_buckets[i] != 0; i++)
5612 {
5613 best_size = elf_buckets[i];
5614 if (nsyms < elf_buckets[i + 1])
5615 break;
5616 }
5617 if (gnu_hash && best_size < 2)
5618 best_size = 2;
5619 }
5620
5621 return best_size;
5622 }
5623
5624 /* Size any SHT_GROUP section for ld -r. */
5625
5626 bfd_boolean
5627 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5628 {
5629 bfd *ibfd;
5630
5631 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5632 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5633 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5634 return FALSE;
5635 return TRUE;
5636 }
5637
5638 /* Set a default stack segment size. The value in INFO wins. If it
5639 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5640 undefined it is initialized. */
5641
5642 bfd_boolean
5643 bfd_elf_stack_segment_size (bfd *output_bfd,
5644 struct bfd_link_info *info,
5645 const char *legacy_symbol,
5646 bfd_vma default_size)
5647 {
5648 struct elf_link_hash_entry *h = NULL;
5649
5650 /* Look for legacy symbol. */
5651 if (legacy_symbol)
5652 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5653 FALSE, FALSE, FALSE);
5654 if (h && (h->root.type == bfd_link_hash_defined
5655 || h->root.type == bfd_link_hash_defweak)
5656 && h->def_regular
5657 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5658 {
5659 /* The symbol has no type if specified on the command line. */
5660 h->type = STT_OBJECT;
5661 if (info->stacksize)
5662 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5663 output_bfd, legacy_symbol);
5664 else if (h->root.u.def.section != bfd_abs_section_ptr)
5665 (*_bfd_error_handler) (_("%B: %s not absolute"),
5666 output_bfd, legacy_symbol);
5667 else
5668 info->stacksize = h->root.u.def.value;
5669 }
5670
5671 if (!info->stacksize)
5672 /* If the user didn't set a size, or explicitly inhibit the
5673 size, set it now. */
5674 info->stacksize = default_size;
5675
5676 /* Provide the legacy symbol, if it is referenced. */
5677 if (h && (h->root.type == bfd_link_hash_undefined
5678 || h->root.type == bfd_link_hash_undefweak))
5679 {
5680 struct bfd_link_hash_entry *bh = NULL;
5681
5682 if (!(_bfd_generic_link_add_one_symbol
5683 (info, output_bfd, legacy_symbol,
5684 BSF_GLOBAL, bfd_abs_section_ptr,
5685 info->stacksize >= 0 ? info->stacksize : 0,
5686 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5687 return FALSE;
5688
5689 h = (struct elf_link_hash_entry *) bh;
5690 h->def_regular = 1;
5691 h->type = STT_OBJECT;
5692 }
5693
5694 return TRUE;
5695 }
5696
5697 /* Set up the sizes and contents of the ELF dynamic sections. This is
5698 called by the ELF linker emulation before_allocation routine. We
5699 must set the sizes of the sections before the linker sets the
5700 addresses of the various sections. */
5701
5702 bfd_boolean
5703 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5704 const char *soname,
5705 const char *rpath,
5706 const char *filter_shlib,
5707 const char *audit,
5708 const char *depaudit,
5709 const char * const *auxiliary_filters,
5710 struct bfd_link_info *info,
5711 asection **sinterpptr)
5712 {
5713 bfd_size_type soname_indx;
5714 bfd *dynobj;
5715 const struct elf_backend_data *bed;
5716 struct elf_info_failed asvinfo;
5717
5718 *sinterpptr = NULL;
5719
5720 soname_indx = (bfd_size_type) -1;
5721
5722 if (!is_elf_hash_table (info->hash))
5723 return TRUE;
5724
5725 bed = get_elf_backend_data (output_bfd);
5726
5727 /* Any syms created from now on start with -1 in
5728 got.refcount/offset and plt.refcount/offset. */
5729 elf_hash_table (info)->init_got_refcount
5730 = elf_hash_table (info)->init_got_offset;
5731 elf_hash_table (info)->init_plt_refcount
5732 = elf_hash_table (info)->init_plt_offset;
5733
5734 if (bfd_link_relocatable (info)
5735 && !_bfd_elf_size_group_sections (info))
5736 return FALSE;
5737
5738 /* The backend may have to create some sections regardless of whether
5739 we're dynamic or not. */
5740 if (bed->elf_backend_always_size_sections
5741 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5742 return FALSE;
5743
5744 /* Determine any GNU_STACK segment requirements, after the backend
5745 has had a chance to set a default segment size. */
5746 if (info->execstack)
5747 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5748 else if (info->noexecstack)
5749 elf_stack_flags (output_bfd) = PF_R | PF_W;
5750 else
5751 {
5752 bfd *inputobj;
5753 asection *notesec = NULL;
5754 int exec = 0;
5755
5756 for (inputobj = info->input_bfds;
5757 inputobj;
5758 inputobj = inputobj->link.next)
5759 {
5760 asection *s;
5761
5762 if (inputobj->flags
5763 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5764 continue;
5765 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5766 if (s)
5767 {
5768 if (s->flags & SEC_CODE)
5769 exec = PF_X;
5770 notesec = s;
5771 }
5772 else if (bed->default_execstack)
5773 exec = PF_X;
5774 }
5775 if (notesec || info->stacksize > 0)
5776 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5777 if (notesec && exec && bfd_link_relocatable (info)
5778 && notesec->output_section != bfd_abs_section_ptr)
5779 notesec->output_section->flags |= SEC_CODE;
5780 }
5781
5782 dynobj = elf_hash_table (info)->dynobj;
5783
5784 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5785 {
5786 struct elf_info_failed eif;
5787 struct elf_link_hash_entry *h;
5788 asection *dynstr;
5789 struct bfd_elf_version_tree *t;
5790 struct bfd_elf_version_expr *d;
5791 asection *s;
5792 bfd_boolean all_defined;
5793
5794 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5795 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
5796
5797 if (soname != NULL)
5798 {
5799 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5800 soname, TRUE);
5801 if (soname_indx == (bfd_size_type) -1
5802 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5803 return FALSE;
5804 }
5805
5806 if (info->symbolic)
5807 {
5808 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5809 return FALSE;
5810 info->flags |= DF_SYMBOLIC;
5811 }
5812
5813 if (rpath != NULL)
5814 {
5815 bfd_size_type indx;
5816 bfd_vma tag;
5817
5818 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5819 TRUE);
5820 if (indx == (bfd_size_type) -1)
5821 return FALSE;
5822
5823 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5824 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5825 return FALSE;
5826 }
5827
5828 if (filter_shlib != NULL)
5829 {
5830 bfd_size_type indx;
5831
5832 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5833 filter_shlib, TRUE);
5834 if (indx == (bfd_size_type) -1
5835 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5836 return FALSE;
5837 }
5838
5839 if (auxiliary_filters != NULL)
5840 {
5841 const char * const *p;
5842
5843 for (p = auxiliary_filters; *p != NULL; p++)
5844 {
5845 bfd_size_type indx;
5846
5847 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5848 *p, TRUE);
5849 if (indx == (bfd_size_type) -1
5850 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5851 return FALSE;
5852 }
5853 }
5854
5855 if (audit != NULL)
5856 {
5857 bfd_size_type indx;
5858
5859 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5860 TRUE);
5861 if (indx == (bfd_size_type) -1
5862 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5863 return FALSE;
5864 }
5865
5866 if (depaudit != NULL)
5867 {
5868 bfd_size_type indx;
5869
5870 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5871 TRUE);
5872 if (indx == (bfd_size_type) -1
5873 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5874 return FALSE;
5875 }
5876
5877 eif.info = info;
5878 eif.failed = FALSE;
5879
5880 /* If we are supposed to export all symbols into the dynamic symbol
5881 table (this is not the normal case), then do so. */
5882 if (info->export_dynamic
5883 || (bfd_link_executable (info) && info->dynamic))
5884 {
5885 elf_link_hash_traverse (elf_hash_table (info),
5886 _bfd_elf_export_symbol,
5887 &eif);
5888 if (eif.failed)
5889 return FALSE;
5890 }
5891
5892 /* Make all global versions with definition. */
5893 for (t = info->version_info; t != NULL; t = t->next)
5894 for (d = t->globals.list; d != NULL; d = d->next)
5895 if (!d->symver && d->literal)
5896 {
5897 const char *verstr, *name;
5898 size_t namelen, verlen, newlen;
5899 char *newname, *p, leading_char;
5900 struct elf_link_hash_entry *newh;
5901
5902 leading_char = bfd_get_symbol_leading_char (output_bfd);
5903 name = d->pattern;
5904 namelen = strlen (name) + (leading_char != '\0');
5905 verstr = t->name;
5906 verlen = strlen (verstr);
5907 newlen = namelen + verlen + 3;
5908
5909 newname = (char *) bfd_malloc (newlen);
5910 if (newname == NULL)
5911 return FALSE;
5912 newname[0] = leading_char;
5913 memcpy (newname + (leading_char != '\0'), name, namelen);
5914
5915 /* Check the hidden versioned definition. */
5916 p = newname + namelen;
5917 *p++ = ELF_VER_CHR;
5918 memcpy (p, verstr, verlen + 1);
5919 newh = elf_link_hash_lookup (elf_hash_table (info),
5920 newname, FALSE, FALSE,
5921 FALSE);
5922 if (newh == NULL
5923 || (newh->root.type != bfd_link_hash_defined
5924 && newh->root.type != bfd_link_hash_defweak))
5925 {
5926 /* Check the default versioned definition. */
5927 *p++ = ELF_VER_CHR;
5928 memcpy (p, verstr, verlen + 1);
5929 newh = elf_link_hash_lookup (elf_hash_table (info),
5930 newname, FALSE, FALSE,
5931 FALSE);
5932 }
5933 free (newname);
5934
5935 /* Mark this version if there is a definition and it is
5936 not defined in a shared object. */
5937 if (newh != NULL
5938 && !newh->def_dynamic
5939 && (newh->root.type == bfd_link_hash_defined
5940 || newh->root.type == bfd_link_hash_defweak))
5941 d->symver = 1;
5942 }
5943
5944 /* Attach all the symbols to their version information. */
5945 asvinfo.info = info;
5946 asvinfo.failed = FALSE;
5947
5948 elf_link_hash_traverse (elf_hash_table (info),
5949 _bfd_elf_link_assign_sym_version,
5950 &asvinfo);
5951 if (asvinfo.failed)
5952 return FALSE;
5953
5954 if (!info->allow_undefined_version)
5955 {
5956 /* Check if all global versions have a definition. */
5957 all_defined = TRUE;
5958 for (t = info->version_info; t != NULL; t = t->next)
5959 for (d = t->globals.list; d != NULL; d = d->next)
5960 if (d->literal && !d->symver && !d->script)
5961 {
5962 (*_bfd_error_handler)
5963 (_("%s: undefined version: %s"),
5964 d->pattern, t->name);
5965 all_defined = FALSE;
5966 }
5967
5968 if (!all_defined)
5969 {
5970 bfd_set_error (bfd_error_bad_value);
5971 return FALSE;
5972 }
5973 }
5974
5975 /* Find all symbols which were defined in a dynamic object and make
5976 the backend pick a reasonable value for them. */
5977 elf_link_hash_traverse (elf_hash_table (info),
5978 _bfd_elf_adjust_dynamic_symbol,
5979 &eif);
5980 if (eif.failed)
5981 return FALSE;
5982
5983 /* Add some entries to the .dynamic section. We fill in some of the
5984 values later, in bfd_elf_final_link, but we must add the entries
5985 now so that we know the final size of the .dynamic section. */
5986
5987 /* If there are initialization and/or finalization functions to
5988 call then add the corresponding DT_INIT/DT_FINI entries. */
5989 h = (info->init_function
5990 ? elf_link_hash_lookup (elf_hash_table (info),
5991 info->init_function, FALSE,
5992 FALSE, FALSE)
5993 : NULL);
5994 if (h != NULL
5995 && (h->ref_regular
5996 || h->def_regular))
5997 {
5998 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5999 return FALSE;
6000 }
6001 h = (info->fini_function
6002 ? elf_link_hash_lookup (elf_hash_table (info),
6003 info->fini_function, FALSE,
6004 FALSE, FALSE)
6005 : NULL);
6006 if (h != NULL
6007 && (h->ref_regular
6008 || h->def_regular))
6009 {
6010 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
6011 return FALSE;
6012 }
6013
6014 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
6015 if (s != NULL && s->linker_has_input)
6016 {
6017 /* DT_PREINIT_ARRAY is not allowed in shared library. */
6018 if (! bfd_link_executable (info))
6019 {
6020 bfd *sub;
6021 asection *o;
6022
6023 for (sub = info->input_bfds; sub != NULL;
6024 sub = sub->link.next)
6025 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
6026 for (o = sub->sections; o != NULL; o = o->next)
6027 if (elf_section_data (o)->this_hdr.sh_type
6028 == SHT_PREINIT_ARRAY)
6029 {
6030 (*_bfd_error_handler)
6031 (_("%B: .preinit_array section is not allowed in DSO"),
6032 sub);
6033 break;
6034 }
6035
6036 bfd_set_error (bfd_error_nonrepresentable_section);
6037 return FALSE;
6038 }
6039
6040 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6041 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
6042 return FALSE;
6043 }
6044 s = bfd_get_section_by_name (output_bfd, ".init_array");
6045 if (s != NULL && s->linker_has_input)
6046 {
6047 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
6048 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
6049 return FALSE;
6050 }
6051 s = bfd_get_section_by_name (output_bfd, ".fini_array");
6052 if (s != NULL && s->linker_has_input)
6053 {
6054 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
6055 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
6056 return FALSE;
6057 }
6058
6059 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6060 /* If .dynstr is excluded from the link, we don't want any of
6061 these tags. Strictly, we should be checking each section
6062 individually; This quick check covers for the case where
6063 someone does a /DISCARD/ : { *(*) }. */
6064 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6065 {
6066 bfd_size_type strsize;
6067
6068 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6069 if ((info->emit_hash
6070 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6071 || (info->emit_gnu_hash
6072 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6073 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6074 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6075 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6076 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6077 bed->s->sizeof_sym))
6078 return FALSE;
6079 }
6080 }
6081
6082 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6083 return FALSE;
6084
6085 /* The backend must work out the sizes of all the other dynamic
6086 sections. */
6087 if (dynobj != NULL
6088 && bed->elf_backend_size_dynamic_sections != NULL
6089 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6090 return FALSE;
6091
6092 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6093 {
6094 unsigned long section_sym_count;
6095 struct bfd_elf_version_tree *verdefs;
6096 asection *s;
6097
6098 /* Set up the version definition section. */
6099 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6100 BFD_ASSERT (s != NULL);
6101
6102 /* We may have created additional version definitions if we are
6103 just linking a regular application. */
6104 verdefs = info->version_info;
6105
6106 /* Skip anonymous version tag. */
6107 if (verdefs != NULL && verdefs->vernum == 0)
6108 verdefs = verdefs->next;
6109
6110 if (verdefs == NULL && !info->create_default_symver)
6111 s->flags |= SEC_EXCLUDE;
6112 else
6113 {
6114 unsigned int cdefs;
6115 bfd_size_type size;
6116 struct bfd_elf_version_tree *t;
6117 bfd_byte *p;
6118 Elf_Internal_Verdef def;
6119 Elf_Internal_Verdaux defaux;
6120 struct bfd_link_hash_entry *bh;
6121 struct elf_link_hash_entry *h;
6122 const char *name;
6123
6124 cdefs = 0;
6125 size = 0;
6126
6127 /* Make space for the base version. */
6128 size += sizeof (Elf_External_Verdef);
6129 size += sizeof (Elf_External_Verdaux);
6130 ++cdefs;
6131
6132 /* Make space for the default version. */
6133 if (info->create_default_symver)
6134 {
6135 size += sizeof (Elf_External_Verdef);
6136 ++cdefs;
6137 }
6138
6139 for (t = verdefs; t != NULL; t = t->next)
6140 {
6141 struct bfd_elf_version_deps *n;
6142
6143 /* Don't emit base version twice. */
6144 if (t->vernum == 0)
6145 continue;
6146
6147 size += sizeof (Elf_External_Verdef);
6148 size += sizeof (Elf_External_Verdaux);
6149 ++cdefs;
6150
6151 for (n = t->deps; n != NULL; n = n->next)
6152 size += sizeof (Elf_External_Verdaux);
6153 }
6154
6155 s->size = size;
6156 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6157 if (s->contents == NULL && s->size != 0)
6158 return FALSE;
6159
6160 /* Fill in the version definition section. */
6161
6162 p = s->contents;
6163
6164 def.vd_version = VER_DEF_CURRENT;
6165 def.vd_flags = VER_FLG_BASE;
6166 def.vd_ndx = 1;
6167 def.vd_cnt = 1;
6168 if (info->create_default_symver)
6169 {
6170 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6171 def.vd_next = sizeof (Elf_External_Verdef);
6172 }
6173 else
6174 {
6175 def.vd_aux = sizeof (Elf_External_Verdef);
6176 def.vd_next = (sizeof (Elf_External_Verdef)
6177 + sizeof (Elf_External_Verdaux));
6178 }
6179
6180 if (soname_indx != (bfd_size_type) -1)
6181 {
6182 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6183 soname_indx);
6184 def.vd_hash = bfd_elf_hash (soname);
6185 defaux.vda_name = soname_indx;
6186 name = soname;
6187 }
6188 else
6189 {
6190 bfd_size_type indx;
6191
6192 name = lbasename (output_bfd->filename);
6193 def.vd_hash = bfd_elf_hash (name);
6194 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6195 name, FALSE);
6196 if (indx == (bfd_size_type) -1)
6197 return FALSE;
6198 defaux.vda_name = indx;
6199 }
6200 defaux.vda_next = 0;
6201
6202 _bfd_elf_swap_verdef_out (output_bfd, &def,
6203 (Elf_External_Verdef *) p);
6204 p += sizeof (Elf_External_Verdef);
6205 if (info->create_default_symver)
6206 {
6207 /* Add a symbol representing this version. */
6208 bh = NULL;
6209 if (! (_bfd_generic_link_add_one_symbol
6210 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6211 0, NULL, FALSE,
6212 get_elf_backend_data (dynobj)->collect, &bh)))
6213 return FALSE;
6214 h = (struct elf_link_hash_entry *) bh;
6215 h->non_elf = 0;
6216 h->def_regular = 1;
6217 h->type = STT_OBJECT;
6218 h->verinfo.vertree = NULL;
6219
6220 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6221 return FALSE;
6222
6223 /* Create a duplicate of the base version with the same
6224 aux block, but different flags. */
6225 def.vd_flags = 0;
6226 def.vd_ndx = 2;
6227 def.vd_aux = sizeof (Elf_External_Verdef);
6228 if (verdefs)
6229 def.vd_next = (sizeof (Elf_External_Verdef)
6230 + sizeof (Elf_External_Verdaux));
6231 else
6232 def.vd_next = 0;
6233 _bfd_elf_swap_verdef_out (output_bfd, &def,
6234 (Elf_External_Verdef *) p);
6235 p += sizeof (Elf_External_Verdef);
6236 }
6237 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6238 (Elf_External_Verdaux *) p);
6239 p += sizeof (Elf_External_Verdaux);
6240
6241 for (t = verdefs; t != NULL; t = t->next)
6242 {
6243 unsigned int cdeps;
6244 struct bfd_elf_version_deps *n;
6245
6246 /* Don't emit the base version twice. */
6247 if (t->vernum == 0)
6248 continue;
6249
6250 cdeps = 0;
6251 for (n = t->deps; n != NULL; n = n->next)
6252 ++cdeps;
6253
6254 /* Add a symbol representing this version. */
6255 bh = NULL;
6256 if (! (_bfd_generic_link_add_one_symbol
6257 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6258 0, NULL, FALSE,
6259 get_elf_backend_data (dynobj)->collect, &bh)))
6260 return FALSE;
6261 h = (struct elf_link_hash_entry *) bh;
6262 h->non_elf = 0;
6263 h->def_regular = 1;
6264 h->type = STT_OBJECT;
6265 h->verinfo.vertree = t;
6266
6267 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6268 return FALSE;
6269
6270 def.vd_version = VER_DEF_CURRENT;
6271 def.vd_flags = 0;
6272 if (t->globals.list == NULL
6273 && t->locals.list == NULL
6274 && ! t->used)
6275 def.vd_flags |= VER_FLG_WEAK;
6276 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6277 def.vd_cnt = cdeps + 1;
6278 def.vd_hash = bfd_elf_hash (t->name);
6279 def.vd_aux = sizeof (Elf_External_Verdef);
6280 def.vd_next = 0;
6281
6282 /* If a basever node is next, it *must* be the last node in
6283 the chain, otherwise Verdef construction breaks. */
6284 if (t->next != NULL && t->next->vernum == 0)
6285 BFD_ASSERT (t->next->next == NULL);
6286
6287 if (t->next != NULL && t->next->vernum != 0)
6288 def.vd_next = (sizeof (Elf_External_Verdef)
6289 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6290
6291 _bfd_elf_swap_verdef_out (output_bfd, &def,
6292 (Elf_External_Verdef *) p);
6293 p += sizeof (Elf_External_Verdef);
6294
6295 defaux.vda_name = h->dynstr_index;
6296 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6297 h->dynstr_index);
6298 defaux.vda_next = 0;
6299 if (t->deps != NULL)
6300 defaux.vda_next = sizeof (Elf_External_Verdaux);
6301 t->name_indx = defaux.vda_name;
6302
6303 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6304 (Elf_External_Verdaux *) p);
6305 p += sizeof (Elf_External_Verdaux);
6306
6307 for (n = t->deps; n != NULL; n = n->next)
6308 {
6309 if (n->version_needed == NULL)
6310 {
6311 /* This can happen if there was an error in the
6312 version script. */
6313 defaux.vda_name = 0;
6314 }
6315 else
6316 {
6317 defaux.vda_name = n->version_needed->name_indx;
6318 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6319 defaux.vda_name);
6320 }
6321 if (n->next == NULL)
6322 defaux.vda_next = 0;
6323 else
6324 defaux.vda_next = sizeof (Elf_External_Verdaux);
6325
6326 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6327 (Elf_External_Verdaux *) p);
6328 p += sizeof (Elf_External_Verdaux);
6329 }
6330 }
6331
6332 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6333 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6334 return FALSE;
6335
6336 elf_tdata (output_bfd)->cverdefs = cdefs;
6337 }
6338
6339 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6340 {
6341 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6342 return FALSE;
6343 }
6344 else if (info->flags & DF_BIND_NOW)
6345 {
6346 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6347 return FALSE;
6348 }
6349
6350 if (info->flags_1)
6351 {
6352 if (bfd_link_executable (info))
6353 info->flags_1 &= ~ (DF_1_INITFIRST
6354 | DF_1_NODELETE
6355 | DF_1_NOOPEN);
6356 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6357 return FALSE;
6358 }
6359
6360 /* Work out the size of the version reference section. */
6361
6362 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6363 BFD_ASSERT (s != NULL);
6364 {
6365 struct elf_find_verdep_info sinfo;
6366
6367 sinfo.info = info;
6368 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6369 if (sinfo.vers == 0)
6370 sinfo.vers = 1;
6371 sinfo.failed = FALSE;
6372
6373 elf_link_hash_traverse (elf_hash_table (info),
6374 _bfd_elf_link_find_version_dependencies,
6375 &sinfo);
6376 if (sinfo.failed)
6377 return FALSE;
6378
6379 if (elf_tdata (output_bfd)->verref == NULL)
6380 s->flags |= SEC_EXCLUDE;
6381 else
6382 {
6383 Elf_Internal_Verneed *t;
6384 unsigned int size;
6385 unsigned int crefs;
6386 bfd_byte *p;
6387
6388 /* Build the version dependency section. */
6389 size = 0;
6390 crefs = 0;
6391 for (t = elf_tdata (output_bfd)->verref;
6392 t != NULL;
6393 t = t->vn_nextref)
6394 {
6395 Elf_Internal_Vernaux *a;
6396
6397 size += sizeof (Elf_External_Verneed);
6398 ++crefs;
6399 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6400 size += sizeof (Elf_External_Vernaux);
6401 }
6402
6403 s->size = size;
6404 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6405 if (s->contents == NULL)
6406 return FALSE;
6407
6408 p = s->contents;
6409 for (t = elf_tdata (output_bfd)->verref;
6410 t != NULL;
6411 t = t->vn_nextref)
6412 {
6413 unsigned int caux;
6414 Elf_Internal_Vernaux *a;
6415 bfd_size_type indx;
6416
6417 caux = 0;
6418 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6419 ++caux;
6420
6421 t->vn_version = VER_NEED_CURRENT;
6422 t->vn_cnt = caux;
6423 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6424 elf_dt_name (t->vn_bfd) != NULL
6425 ? elf_dt_name (t->vn_bfd)
6426 : lbasename (t->vn_bfd->filename),
6427 FALSE);
6428 if (indx == (bfd_size_type) -1)
6429 return FALSE;
6430 t->vn_file = indx;
6431 t->vn_aux = sizeof (Elf_External_Verneed);
6432 if (t->vn_nextref == NULL)
6433 t->vn_next = 0;
6434 else
6435 t->vn_next = (sizeof (Elf_External_Verneed)
6436 + caux * sizeof (Elf_External_Vernaux));
6437
6438 _bfd_elf_swap_verneed_out (output_bfd, t,
6439 (Elf_External_Verneed *) p);
6440 p += sizeof (Elf_External_Verneed);
6441
6442 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6443 {
6444 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6445 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6446 a->vna_nodename, FALSE);
6447 if (indx == (bfd_size_type) -1)
6448 return FALSE;
6449 a->vna_name = indx;
6450 if (a->vna_nextptr == NULL)
6451 a->vna_next = 0;
6452 else
6453 a->vna_next = sizeof (Elf_External_Vernaux);
6454
6455 _bfd_elf_swap_vernaux_out (output_bfd, a,
6456 (Elf_External_Vernaux *) p);
6457 p += sizeof (Elf_External_Vernaux);
6458 }
6459 }
6460
6461 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6462 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6463 return FALSE;
6464
6465 elf_tdata (output_bfd)->cverrefs = crefs;
6466 }
6467 }
6468
6469 if ((elf_tdata (output_bfd)->cverrefs == 0
6470 && elf_tdata (output_bfd)->cverdefs == 0)
6471 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6472 &section_sym_count) == 0)
6473 {
6474 s = bfd_get_linker_section (dynobj, ".gnu.version");
6475 s->flags |= SEC_EXCLUDE;
6476 }
6477 }
6478 return TRUE;
6479 }
6480
6481 /* Find the first non-excluded output section. We'll use its
6482 section symbol for some emitted relocs. */
6483 void
6484 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6485 {
6486 asection *s;
6487
6488 for (s = output_bfd->sections; s != NULL; s = s->next)
6489 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6490 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6491 {
6492 elf_hash_table (info)->text_index_section = s;
6493 break;
6494 }
6495 }
6496
6497 /* Find two non-excluded output sections, one for code, one for data.
6498 We'll use their section symbols for some emitted relocs. */
6499 void
6500 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6501 {
6502 asection *s;
6503
6504 /* Data first, since setting text_index_section changes
6505 _bfd_elf_link_omit_section_dynsym. */
6506 for (s = output_bfd->sections; s != NULL; s = s->next)
6507 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6508 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6509 {
6510 elf_hash_table (info)->data_index_section = s;
6511 break;
6512 }
6513
6514 for (s = output_bfd->sections; s != NULL; s = s->next)
6515 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6516 == (SEC_ALLOC | SEC_READONLY))
6517 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6518 {
6519 elf_hash_table (info)->text_index_section = s;
6520 break;
6521 }
6522
6523 if (elf_hash_table (info)->text_index_section == NULL)
6524 elf_hash_table (info)->text_index_section
6525 = elf_hash_table (info)->data_index_section;
6526 }
6527
6528 bfd_boolean
6529 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6530 {
6531 const struct elf_backend_data *bed;
6532
6533 if (!is_elf_hash_table (info->hash))
6534 return TRUE;
6535
6536 bed = get_elf_backend_data (output_bfd);
6537 (*bed->elf_backend_init_index_section) (output_bfd, info);
6538
6539 if (elf_hash_table (info)->dynamic_sections_created)
6540 {
6541 bfd *dynobj;
6542 asection *s;
6543 bfd_size_type dynsymcount;
6544 unsigned long section_sym_count;
6545 unsigned int dtagcount;
6546
6547 dynobj = elf_hash_table (info)->dynobj;
6548
6549 /* Assign dynsym indicies. In a shared library we generate a
6550 section symbol for each output section, which come first.
6551 Next come all of the back-end allocated local dynamic syms,
6552 followed by the rest of the global symbols. */
6553
6554 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6555 &section_sym_count);
6556
6557 /* Work out the size of the symbol version section. */
6558 s = bfd_get_linker_section (dynobj, ".gnu.version");
6559 BFD_ASSERT (s != NULL);
6560 if (dynsymcount != 0
6561 && (s->flags & SEC_EXCLUDE) == 0)
6562 {
6563 s->size = dynsymcount * sizeof (Elf_External_Versym);
6564 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6565 if (s->contents == NULL)
6566 return FALSE;
6567
6568 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6569 return FALSE;
6570 }
6571
6572 /* Set the size of the .dynsym and .hash sections. We counted
6573 the number of dynamic symbols in elf_link_add_object_symbols.
6574 We will build the contents of .dynsym and .hash when we build
6575 the final symbol table, because until then we do not know the
6576 correct value to give the symbols. We built the .dynstr
6577 section as we went along in elf_link_add_object_symbols. */
6578 s = elf_hash_table (info)->dynsym;
6579 BFD_ASSERT (s != NULL);
6580 s->size = dynsymcount * bed->s->sizeof_sym;
6581
6582 if (dynsymcount != 0)
6583 {
6584 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6585 if (s->contents == NULL)
6586 return FALSE;
6587
6588 /* The first entry in .dynsym is a dummy symbol.
6589 Clear all the section syms, in case we don't output them all. */
6590 ++section_sym_count;
6591 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6592 }
6593
6594 elf_hash_table (info)->bucketcount = 0;
6595
6596 /* Compute the size of the hashing table. As a side effect this
6597 computes the hash values for all the names we export. */
6598 if (info->emit_hash)
6599 {
6600 unsigned long int *hashcodes;
6601 struct hash_codes_info hashinf;
6602 bfd_size_type amt;
6603 unsigned long int nsyms;
6604 size_t bucketcount;
6605 size_t hash_entry_size;
6606
6607 /* Compute the hash values for all exported symbols. At the same
6608 time store the values in an array so that we could use them for
6609 optimizations. */
6610 amt = dynsymcount * sizeof (unsigned long int);
6611 hashcodes = (unsigned long int *) bfd_malloc (amt);
6612 if (hashcodes == NULL)
6613 return FALSE;
6614 hashinf.hashcodes = hashcodes;
6615 hashinf.error = FALSE;
6616
6617 /* Put all hash values in HASHCODES. */
6618 elf_link_hash_traverse (elf_hash_table (info),
6619 elf_collect_hash_codes, &hashinf);
6620 if (hashinf.error)
6621 {
6622 free (hashcodes);
6623 return FALSE;
6624 }
6625
6626 nsyms = hashinf.hashcodes - hashcodes;
6627 bucketcount
6628 = compute_bucket_count (info, hashcodes, nsyms, 0);
6629 free (hashcodes);
6630
6631 if (bucketcount == 0)
6632 return FALSE;
6633
6634 elf_hash_table (info)->bucketcount = bucketcount;
6635
6636 s = bfd_get_linker_section (dynobj, ".hash");
6637 BFD_ASSERT (s != NULL);
6638 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6639 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6640 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6641 if (s->contents == NULL)
6642 return FALSE;
6643
6644 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6645 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6646 s->contents + hash_entry_size);
6647 }
6648
6649 if (info->emit_gnu_hash)
6650 {
6651 size_t i, cnt;
6652 unsigned char *contents;
6653 struct collect_gnu_hash_codes cinfo;
6654 bfd_size_type amt;
6655 size_t bucketcount;
6656
6657 memset (&cinfo, 0, sizeof (cinfo));
6658
6659 /* Compute the hash values for all exported symbols. At the same
6660 time store the values in an array so that we could use them for
6661 optimizations. */
6662 amt = dynsymcount * 2 * sizeof (unsigned long int);
6663 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6664 if (cinfo.hashcodes == NULL)
6665 return FALSE;
6666
6667 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6668 cinfo.min_dynindx = -1;
6669 cinfo.output_bfd = output_bfd;
6670 cinfo.bed = bed;
6671
6672 /* Put all hash values in HASHCODES. */
6673 elf_link_hash_traverse (elf_hash_table (info),
6674 elf_collect_gnu_hash_codes, &cinfo);
6675 if (cinfo.error)
6676 {
6677 free (cinfo.hashcodes);
6678 return FALSE;
6679 }
6680
6681 bucketcount
6682 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6683
6684 if (bucketcount == 0)
6685 {
6686 free (cinfo.hashcodes);
6687 return FALSE;
6688 }
6689
6690 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6691 BFD_ASSERT (s != NULL);
6692
6693 if (cinfo.nsyms == 0)
6694 {
6695 /* Empty .gnu.hash section is special. */
6696 BFD_ASSERT (cinfo.min_dynindx == -1);
6697 free (cinfo.hashcodes);
6698 s->size = 5 * 4 + bed->s->arch_size / 8;
6699 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6700 if (contents == NULL)
6701 return FALSE;
6702 s->contents = contents;
6703 /* 1 empty bucket. */
6704 bfd_put_32 (output_bfd, 1, contents);
6705 /* SYMIDX above the special symbol 0. */
6706 bfd_put_32 (output_bfd, 1, contents + 4);
6707 /* Just one word for bitmask. */
6708 bfd_put_32 (output_bfd, 1, contents + 8);
6709 /* Only hash fn bloom filter. */
6710 bfd_put_32 (output_bfd, 0, contents + 12);
6711 /* No hashes are valid - empty bitmask. */
6712 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6713 /* No hashes in the only bucket. */
6714 bfd_put_32 (output_bfd, 0,
6715 contents + 16 + bed->s->arch_size / 8);
6716 }
6717 else
6718 {
6719 unsigned long int maskwords, maskbitslog2, x;
6720 BFD_ASSERT (cinfo.min_dynindx != -1);
6721
6722 x = cinfo.nsyms;
6723 maskbitslog2 = 1;
6724 while ((x >>= 1) != 0)
6725 ++maskbitslog2;
6726 if (maskbitslog2 < 3)
6727 maskbitslog2 = 5;
6728 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6729 maskbitslog2 = maskbitslog2 + 3;
6730 else
6731 maskbitslog2 = maskbitslog2 + 2;
6732 if (bed->s->arch_size == 64)
6733 {
6734 if (maskbitslog2 == 5)
6735 maskbitslog2 = 6;
6736 cinfo.shift1 = 6;
6737 }
6738 else
6739 cinfo.shift1 = 5;
6740 cinfo.mask = (1 << cinfo.shift1) - 1;
6741 cinfo.shift2 = maskbitslog2;
6742 cinfo.maskbits = 1 << maskbitslog2;
6743 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6744 amt = bucketcount * sizeof (unsigned long int) * 2;
6745 amt += maskwords * sizeof (bfd_vma);
6746 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6747 if (cinfo.bitmask == NULL)
6748 {
6749 free (cinfo.hashcodes);
6750 return FALSE;
6751 }
6752
6753 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6754 cinfo.indx = cinfo.counts + bucketcount;
6755 cinfo.symindx = dynsymcount - cinfo.nsyms;
6756 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6757
6758 /* Determine how often each hash bucket is used. */
6759 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6760 for (i = 0; i < cinfo.nsyms; ++i)
6761 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6762
6763 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6764 if (cinfo.counts[i] != 0)
6765 {
6766 cinfo.indx[i] = cnt;
6767 cnt += cinfo.counts[i];
6768 }
6769 BFD_ASSERT (cnt == dynsymcount);
6770 cinfo.bucketcount = bucketcount;
6771 cinfo.local_indx = cinfo.min_dynindx;
6772
6773 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6774 s->size += cinfo.maskbits / 8;
6775 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6776 if (contents == NULL)
6777 {
6778 free (cinfo.bitmask);
6779 free (cinfo.hashcodes);
6780 return FALSE;
6781 }
6782
6783 s->contents = contents;
6784 bfd_put_32 (output_bfd, bucketcount, contents);
6785 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6786 bfd_put_32 (output_bfd, maskwords, contents + 8);
6787 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6788 contents += 16 + cinfo.maskbits / 8;
6789
6790 for (i = 0; i < bucketcount; ++i)
6791 {
6792 if (cinfo.counts[i] == 0)
6793 bfd_put_32 (output_bfd, 0, contents);
6794 else
6795 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6796 contents += 4;
6797 }
6798
6799 cinfo.contents = contents;
6800
6801 /* Renumber dynamic symbols, populate .gnu.hash section. */
6802 elf_link_hash_traverse (elf_hash_table (info),
6803 elf_renumber_gnu_hash_syms, &cinfo);
6804
6805 contents = s->contents + 16;
6806 for (i = 0; i < maskwords; ++i)
6807 {
6808 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6809 contents);
6810 contents += bed->s->arch_size / 8;
6811 }
6812
6813 free (cinfo.bitmask);
6814 free (cinfo.hashcodes);
6815 }
6816 }
6817
6818 s = bfd_get_linker_section (dynobj, ".dynstr");
6819 BFD_ASSERT (s != NULL);
6820
6821 elf_finalize_dynstr (output_bfd, info);
6822
6823 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6824
6825 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6826 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6827 return FALSE;
6828 }
6829
6830 return TRUE;
6831 }
6832 \f
6833 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6834
6835 static void
6836 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6837 asection *sec)
6838 {
6839 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6840 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6841 }
6842
6843 /* Finish SHF_MERGE section merging. */
6844
6845 bfd_boolean
6846 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
6847 {
6848 bfd *ibfd;
6849 asection *sec;
6850
6851 if (!is_elf_hash_table (info->hash))
6852 return FALSE;
6853
6854 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6855 if ((ibfd->flags & DYNAMIC) == 0
6856 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
6857 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
6858 == get_elf_backend_data (obfd)->s->elfclass))
6859 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6860 if ((sec->flags & SEC_MERGE) != 0
6861 && !bfd_is_abs_section (sec->output_section))
6862 {
6863 struct bfd_elf_section_data *secdata;
6864
6865 secdata = elf_section_data (sec);
6866 if (! _bfd_add_merge_section (obfd,
6867 &elf_hash_table (info)->merge_info,
6868 sec, &secdata->sec_info))
6869 return FALSE;
6870 else if (secdata->sec_info)
6871 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6872 }
6873
6874 if (elf_hash_table (info)->merge_info != NULL)
6875 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
6876 merge_sections_remove_hook);
6877 return TRUE;
6878 }
6879
6880 /* Create an entry in an ELF linker hash table. */
6881
6882 struct bfd_hash_entry *
6883 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6884 struct bfd_hash_table *table,
6885 const char *string)
6886 {
6887 /* Allocate the structure if it has not already been allocated by a
6888 subclass. */
6889 if (entry == NULL)
6890 {
6891 entry = (struct bfd_hash_entry *)
6892 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6893 if (entry == NULL)
6894 return entry;
6895 }
6896
6897 /* Call the allocation method of the superclass. */
6898 entry = _bfd_link_hash_newfunc (entry, table, string);
6899 if (entry != NULL)
6900 {
6901 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6902 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6903
6904 /* Set local fields. */
6905 ret->indx = -1;
6906 ret->dynindx = -1;
6907 ret->got = htab->init_got_refcount;
6908 ret->plt = htab->init_plt_refcount;
6909 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6910 - offsetof (struct elf_link_hash_entry, size)));
6911 /* Assume that we have been called by a non-ELF symbol reader.
6912 This flag is then reset by the code which reads an ELF input
6913 file. This ensures that a symbol created by a non-ELF symbol
6914 reader will have the flag set correctly. */
6915 ret->non_elf = 1;
6916 }
6917
6918 return entry;
6919 }
6920
6921 /* Copy data from an indirect symbol to its direct symbol, hiding the
6922 old indirect symbol. Also used for copying flags to a weakdef. */
6923
6924 void
6925 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6926 struct elf_link_hash_entry *dir,
6927 struct elf_link_hash_entry *ind)
6928 {
6929 struct elf_link_hash_table *htab;
6930
6931 /* Copy down any references that we may have already seen to the
6932 symbol which just became indirect if DIR isn't a hidden versioned
6933 symbol. */
6934
6935 if (dir->versioned != versioned_hidden)
6936 {
6937 dir->ref_dynamic |= ind->ref_dynamic;
6938 dir->ref_regular |= ind->ref_regular;
6939 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6940 dir->non_got_ref |= ind->non_got_ref;
6941 dir->needs_plt |= ind->needs_plt;
6942 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6943 }
6944
6945 if (ind->root.type != bfd_link_hash_indirect)
6946 return;
6947
6948 /* Copy over the global and procedure linkage table refcount entries.
6949 These may have been already set up by a check_relocs routine. */
6950 htab = elf_hash_table (info);
6951 if (ind->got.refcount > htab->init_got_refcount.refcount)
6952 {
6953 if (dir->got.refcount < 0)
6954 dir->got.refcount = 0;
6955 dir->got.refcount += ind->got.refcount;
6956 ind->got.refcount = htab->init_got_refcount.refcount;
6957 }
6958
6959 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6960 {
6961 if (dir->plt.refcount < 0)
6962 dir->plt.refcount = 0;
6963 dir->plt.refcount += ind->plt.refcount;
6964 ind->plt.refcount = htab->init_plt_refcount.refcount;
6965 }
6966
6967 if (ind->dynindx != -1)
6968 {
6969 if (dir->dynindx != -1)
6970 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6971 dir->dynindx = ind->dynindx;
6972 dir->dynstr_index = ind->dynstr_index;
6973 ind->dynindx = -1;
6974 ind->dynstr_index = 0;
6975 }
6976 }
6977
6978 void
6979 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6980 struct elf_link_hash_entry *h,
6981 bfd_boolean force_local)
6982 {
6983 /* STT_GNU_IFUNC symbol must go through PLT. */
6984 if (h->type != STT_GNU_IFUNC)
6985 {
6986 h->plt = elf_hash_table (info)->init_plt_offset;
6987 h->needs_plt = 0;
6988 }
6989 if (force_local)
6990 {
6991 h->forced_local = 1;
6992 if (h->dynindx != -1)
6993 {
6994 h->dynindx = -1;
6995 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6996 h->dynstr_index);
6997 }
6998 }
6999 }
7000
7001 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7002 caller. */
7003
7004 bfd_boolean
7005 _bfd_elf_link_hash_table_init
7006 (struct elf_link_hash_table *table,
7007 bfd *abfd,
7008 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7009 struct bfd_hash_table *,
7010 const char *),
7011 unsigned int entsize,
7012 enum elf_target_id target_id)
7013 {
7014 bfd_boolean ret;
7015 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7016
7017 table->init_got_refcount.refcount = can_refcount - 1;
7018 table->init_plt_refcount.refcount = can_refcount - 1;
7019 table->init_got_offset.offset = -(bfd_vma) 1;
7020 table->init_plt_offset.offset = -(bfd_vma) 1;
7021 /* The first dynamic symbol is a dummy. */
7022 table->dynsymcount = 1;
7023
7024 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7025
7026 table->root.type = bfd_link_elf_hash_table;
7027 table->hash_table_id = target_id;
7028
7029 return ret;
7030 }
7031
7032 /* Create an ELF linker hash table. */
7033
7034 struct bfd_link_hash_table *
7035 _bfd_elf_link_hash_table_create (bfd *abfd)
7036 {
7037 struct elf_link_hash_table *ret;
7038 bfd_size_type amt = sizeof (struct elf_link_hash_table);
7039
7040 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7041 if (ret == NULL)
7042 return NULL;
7043
7044 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7045 sizeof (struct elf_link_hash_entry),
7046 GENERIC_ELF_DATA))
7047 {
7048 free (ret);
7049 return NULL;
7050 }
7051 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7052
7053 return &ret->root;
7054 }
7055
7056 /* Destroy an ELF linker hash table. */
7057
7058 void
7059 _bfd_elf_link_hash_table_free (bfd *obfd)
7060 {
7061 struct elf_link_hash_table *htab;
7062
7063 htab = (struct elf_link_hash_table *) obfd->link.hash;
7064 if (htab->dynstr != NULL)
7065 _bfd_elf_strtab_free (htab->dynstr);
7066 _bfd_merge_sections_free (htab->merge_info);
7067 _bfd_generic_link_hash_table_free (obfd);
7068 }
7069
7070 /* This is a hook for the ELF emulation code in the generic linker to
7071 tell the backend linker what file name to use for the DT_NEEDED
7072 entry for a dynamic object. */
7073
7074 void
7075 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7076 {
7077 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7078 && bfd_get_format (abfd) == bfd_object)
7079 elf_dt_name (abfd) = name;
7080 }
7081
7082 int
7083 bfd_elf_get_dyn_lib_class (bfd *abfd)
7084 {
7085 int lib_class;
7086 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7087 && bfd_get_format (abfd) == bfd_object)
7088 lib_class = elf_dyn_lib_class (abfd);
7089 else
7090 lib_class = 0;
7091 return lib_class;
7092 }
7093
7094 void
7095 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7096 {
7097 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7098 && bfd_get_format (abfd) == bfd_object)
7099 elf_dyn_lib_class (abfd) = lib_class;
7100 }
7101
7102 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7103 the linker ELF emulation code. */
7104
7105 struct bfd_link_needed_list *
7106 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7107 struct bfd_link_info *info)
7108 {
7109 if (! is_elf_hash_table (info->hash))
7110 return NULL;
7111 return elf_hash_table (info)->needed;
7112 }
7113
7114 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7115 hook for the linker ELF emulation code. */
7116
7117 struct bfd_link_needed_list *
7118 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7119 struct bfd_link_info *info)
7120 {
7121 if (! is_elf_hash_table (info->hash))
7122 return NULL;
7123 return elf_hash_table (info)->runpath;
7124 }
7125
7126 /* Get the name actually used for a dynamic object for a link. This
7127 is the SONAME entry if there is one. Otherwise, it is the string
7128 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7129
7130 const char *
7131 bfd_elf_get_dt_soname (bfd *abfd)
7132 {
7133 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7134 && bfd_get_format (abfd) == bfd_object)
7135 return elf_dt_name (abfd);
7136 return NULL;
7137 }
7138
7139 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7140 the ELF linker emulation code. */
7141
7142 bfd_boolean
7143 bfd_elf_get_bfd_needed_list (bfd *abfd,
7144 struct bfd_link_needed_list **pneeded)
7145 {
7146 asection *s;
7147 bfd_byte *dynbuf = NULL;
7148 unsigned int elfsec;
7149 unsigned long shlink;
7150 bfd_byte *extdyn, *extdynend;
7151 size_t extdynsize;
7152 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7153
7154 *pneeded = NULL;
7155
7156 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7157 || bfd_get_format (abfd) != bfd_object)
7158 return TRUE;
7159
7160 s = bfd_get_section_by_name (abfd, ".dynamic");
7161 if (s == NULL || s->size == 0)
7162 return TRUE;
7163
7164 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7165 goto error_return;
7166
7167 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7168 if (elfsec == SHN_BAD)
7169 goto error_return;
7170
7171 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7172
7173 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7174 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7175
7176 extdyn = dynbuf;
7177 extdynend = extdyn + s->size;
7178 for (; extdyn < extdynend; extdyn += extdynsize)
7179 {
7180 Elf_Internal_Dyn dyn;
7181
7182 (*swap_dyn_in) (abfd, extdyn, &dyn);
7183
7184 if (dyn.d_tag == DT_NULL)
7185 break;
7186
7187 if (dyn.d_tag == DT_NEEDED)
7188 {
7189 const char *string;
7190 struct bfd_link_needed_list *l;
7191 unsigned int tagv = dyn.d_un.d_val;
7192 bfd_size_type amt;
7193
7194 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7195 if (string == NULL)
7196 goto error_return;
7197
7198 amt = sizeof *l;
7199 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7200 if (l == NULL)
7201 goto error_return;
7202
7203 l->by = abfd;
7204 l->name = string;
7205 l->next = *pneeded;
7206 *pneeded = l;
7207 }
7208 }
7209
7210 free (dynbuf);
7211
7212 return TRUE;
7213
7214 error_return:
7215 if (dynbuf != NULL)
7216 free (dynbuf);
7217 return FALSE;
7218 }
7219
7220 struct elf_symbuf_symbol
7221 {
7222 unsigned long st_name; /* Symbol name, index in string tbl */
7223 unsigned char st_info; /* Type and binding attributes */
7224 unsigned char st_other; /* Visibilty, and target specific */
7225 };
7226
7227 struct elf_symbuf_head
7228 {
7229 struct elf_symbuf_symbol *ssym;
7230 bfd_size_type count;
7231 unsigned int st_shndx;
7232 };
7233
7234 struct elf_symbol
7235 {
7236 union
7237 {
7238 Elf_Internal_Sym *isym;
7239 struct elf_symbuf_symbol *ssym;
7240 } u;
7241 const char *name;
7242 };
7243
7244 /* Sort references to symbols by ascending section number. */
7245
7246 static int
7247 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7248 {
7249 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7250 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7251
7252 return s1->st_shndx - s2->st_shndx;
7253 }
7254
7255 static int
7256 elf_sym_name_compare (const void *arg1, const void *arg2)
7257 {
7258 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7259 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7260 return strcmp (s1->name, s2->name);
7261 }
7262
7263 static struct elf_symbuf_head *
7264 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7265 {
7266 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7267 struct elf_symbuf_symbol *ssym;
7268 struct elf_symbuf_head *ssymbuf, *ssymhead;
7269 bfd_size_type i, shndx_count, total_size;
7270
7271 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7272 if (indbuf == NULL)
7273 return NULL;
7274
7275 for (ind = indbuf, i = 0; i < symcount; i++)
7276 if (isymbuf[i].st_shndx != SHN_UNDEF)
7277 *ind++ = &isymbuf[i];
7278 indbufend = ind;
7279
7280 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7281 elf_sort_elf_symbol);
7282
7283 shndx_count = 0;
7284 if (indbufend > indbuf)
7285 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7286 if (ind[0]->st_shndx != ind[1]->st_shndx)
7287 shndx_count++;
7288
7289 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7290 + (indbufend - indbuf) * sizeof (*ssym));
7291 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7292 if (ssymbuf == NULL)
7293 {
7294 free (indbuf);
7295 return NULL;
7296 }
7297
7298 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7299 ssymbuf->ssym = NULL;
7300 ssymbuf->count = shndx_count;
7301 ssymbuf->st_shndx = 0;
7302 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7303 {
7304 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7305 {
7306 ssymhead++;
7307 ssymhead->ssym = ssym;
7308 ssymhead->count = 0;
7309 ssymhead->st_shndx = (*ind)->st_shndx;
7310 }
7311 ssym->st_name = (*ind)->st_name;
7312 ssym->st_info = (*ind)->st_info;
7313 ssym->st_other = (*ind)->st_other;
7314 ssymhead->count++;
7315 }
7316 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7317 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7318 == total_size));
7319
7320 free (indbuf);
7321 return ssymbuf;
7322 }
7323
7324 /* Check if 2 sections define the same set of local and global
7325 symbols. */
7326
7327 static bfd_boolean
7328 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7329 struct bfd_link_info *info)
7330 {
7331 bfd *bfd1, *bfd2;
7332 const struct elf_backend_data *bed1, *bed2;
7333 Elf_Internal_Shdr *hdr1, *hdr2;
7334 bfd_size_type symcount1, symcount2;
7335 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7336 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7337 Elf_Internal_Sym *isym, *isymend;
7338 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7339 bfd_size_type count1, count2, i;
7340 unsigned int shndx1, shndx2;
7341 bfd_boolean result;
7342
7343 bfd1 = sec1->owner;
7344 bfd2 = sec2->owner;
7345
7346 /* Both sections have to be in ELF. */
7347 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7348 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7349 return FALSE;
7350
7351 if (elf_section_type (sec1) != elf_section_type (sec2))
7352 return FALSE;
7353
7354 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7355 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7356 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7357 return FALSE;
7358
7359 bed1 = get_elf_backend_data (bfd1);
7360 bed2 = get_elf_backend_data (bfd2);
7361 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7362 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7363 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7364 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7365
7366 if (symcount1 == 0 || symcount2 == 0)
7367 return FALSE;
7368
7369 result = FALSE;
7370 isymbuf1 = NULL;
7371 isymbuf2 = NULL;
7372 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7373 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7374
7375 if (ssymbuf1 == NULL)
7376 {
7377 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7378 NULL, NULL, NULL);
7379 if (isymbuf1 == NULL)
7380 goto done;
7381
7382 if (!info->reduce_memory_overheads)
7383 elf_tdata (bfd1)->symbuf = ssymbuf1
7384 = elf_create_symbuf (symcount1, isymbuf1);
7385 }
7386
7387 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7388 {
7389 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7390 NULL, NULL, NULL);
7391 if (isymbuf2 == NULL)
7392 goto done;
7393
7394 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7395 elf_tdata (bfd2)->symbuf = ssymbuf2
7396 = elf_create_symbuf (symcount2, isymbuf2);
7397 }
7398
7399 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7400 {
7401 /* Optimized faster version. */
7402 bfd_size_type lo, hi, mid;
7403 struct elf_symbol *symp;
7404 struct elf_symbuf_symbol *ssym, *ssymend;
7405
7406 lo = 0;
7407 hi = ssymbuf1->count;
7408 ssymbuf1++;
7409 count1 = 0;
7410 while (lo < hi)
7411 {
7412 mid = (lo + hi) / 2;
7413 if (shndx1 < ssymbuf1[mid].st_shndx)
7414 hi = mid;
7415 else if (shndx1 > ssymbuf1[mid].st_shndx)
7416 lo = mid + 1;
7417 else
7418 {
7419 count1 = ssymbuf1[mid].count;
7420 ssymbuf1 += mid;
7421 break;
7422 }
7423 }
7424
7425 lo = 0;
7426 hi = ssymbuf2->count;
7427 ssymbuf2++;
7428 count2 = 0;
7429 while (lo < hi)
7430 {
7431 mid = (lo + hi) / 2;
7432 if (shndx2 < ssymbuf2[mid].st_shndx)
7433 hi = mid;
7434 else if (shndx2 > ssymbuf2[mid].st_shndx)
7435 lo = mid + 1;
7436 else
7437 {
7438 count2 = ssymbuf2[mid].count;
7439 ssymbuf2 += mid;
7440 break;
7441 }
7442 }
7443
7444 if (count1 == 0 || count2 == 0 || count1 != count2)
7445 goto done;
7446
7447 symtable1
7448 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7449 symtable2
7450 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7451 if (symtable1 == NULL || symtable2 == NULL)
7452 goto done;
7453
7454 symp = symtable1;
7455 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7456 ssym < ssymend; ssym++, symp++)
7457 {
7458 symp->u.ssym = ssym;
7459 symp->name = bfd_elf_string_from_elf_section (bfd1,
7460 hdr1->sh_link,
7461 ssym->st_name);
7462 }
7463
7464 symp = symtable2;
7465 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7466 ssym < ssymend; ssym++, symp++)
7467 {
7468 symp->u.ssym = ssym;
7469 symp->name = bfd_elf_string_from_elf_section (bfd2,
7470 hdr2->sh_link,
7471 ssym->st_name);
7472 }
7473
7474 /* Sort symbol by name. */
7475 qsort (symtable1, count1, sizeof (struct elf_symbol),
7476 elf_sym_name_compare);
7477 qsort (symtable2, count1, sizeof (struct elf_symbol),
7478 elf_sym_name_compare);
7479
7480 for (i = 0; i < count1; i++)
7481 /* Two symbols must have the same binding, type and name. */
7482 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7483 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7484 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7485 goto done;
7486
7487 result = TRUE;
7488 goto done;
7489 }
7490
7491 symtable1 = (struct elf_symbol *)
7492 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7493 symtable2 = (struct elf_symbol *)
7494 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7495 if (symtable1 == NULL || symtable2 == NULL)
7496 goto done;
7497
7498 /* Count definitions in the section. */
7499 count1 = 0;
7500 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7501 if (isym->st_shndx == shndx1)
7502 symtable1[count1++].u.isym = isym;
7503
7504 count2 = 0;
7505 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7506 if (isym->st_shndx == shndx2)
7507 symtable2[count2++].u.isym = isym;
7508
7509 if (count1 == 0 || count2 == 0 || count1 != count2)
7510 goto done;
7511
7512 for (i = 0; i < count1; i++)
7513 symtable1[i].name
7514 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7515 symtable1[i].u.isym->st_name);
7516
7517 for (i = 0; i < count2; i++)
7518 symtable2[i].name
7519 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7520 symtable2[i].u.isym->st_name);
7521
7522 /* Sort symbol by name. */
7523 qsort (symtable1, count1, sizeof (struct elf_symbol),
7524 elf_sym_name_compare);
7525 qsort (symtable2, count1, sizeof (struct elf_symbol),
7526 elf_sym_name_compare);
7527
7528 for (i = 0; i < count1; i++)
7529 /* Two symbols must have the same binding, type and name. */
7530 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7531 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7532 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7533 goto done;
7534
7535 result = TRUE;
7536
7537 done:
7538 if (symtable1)
7539 free (symtable1);
7540 if (symtable2)
7541 free (symtable2);
7542 if (isymbuf1)
7543 free (isymbuf1);
7544 if (isymbuf2)
7545 free (isymbuf2);
7546
7547 return result;
7548 }
7549
7550 /* Return TRUE if 2 section types are compatible. */
7551
7552 bfd_boolean
7553 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7554 bfd *bbfd, const asection *bsec)
7555 {
7556 if (asec == NULL
7557 || bsec == NULL
7558 || abfd->xvec->flavour != bfd_target_elf_flavour
7559 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7560 return TRUE;
7561
7562 return elf_section_type (asec) == elf_section_type (bsec);
7563 }
7564 \f
7565 /* Final phase of ELF linker. */
7566
7567 /* A structure we use to avoid passing large numbers of arguments. */
7568
7569 struct elf_final_link_info
7570 {
7571 /* General link information. */
7572 struct bfd_link_info *info;
7573 /* Output BFD. */
7574 bfd *output_bfd;
7575 /* Symbol string table. */
7576 struct elf_strtab_hash *symstrtab;
7577 /* .hash section. */
7578 asection *hash_sec;
7579 /* symbol version section (.gnu.version). */
7580 asection *symver_sec;
7581 /* Buffer large enough to hold contents of any section. */
7582 bfd_byte *contents;
7583 /* Buffer large enough to hold external relocs of any section. */
7584 void *external_relocs;
7585 /* Buffer large enough to hold internal relocs of any section. */
7586 Elf_Internal_Rela *internal_relocs;
7587 /* Buffer large enough to hold external local symbols of any input
7588 BFD. */
7589 bfd_byte *external_syms;
7590 /* And a buffer for symbol section indices. */
7591 Elf_External_Sym_Shndx *locsym_shndx;
7592 /* Buffer large enough to hold internal local symbols of any input
7593 BFD. */
7594 Elf_Internal_Sym *internal_syms;
7595 /* Array large enough to hold a symbol index for each local symbol
7596 of any input BFD. */
7597 long *indices;
7598 /* Array large enough to hold a section pointer for each local
7599 symbol of any input BFD. */
7600 asection **sections;
7601 /* Buffer for SHT_SYMTAB_SHNDX section. */
7602 Elf_External_Sym_Shndx *symshndxbuf;
7603 /* Number of STT_FILE syms seen. */
7604 size_t filesym_count;
7605 };
7606
7607 /* This struct is used to pass information to elf_link_output_extsym. */
7608
7609 struct elf_outext_info
7610 {
7611 bfd_boolean failed;
7612 bfd_boolean localsyms;
7613 bfd_boolean file_sym_done;
7614 struct elf_final_link_info *flinfo;
7615 };
7616
7617
7618 /* Support for evaluating a complex relocation.
7619
7620 Complex relocations are generalized, self-describing relocations. The
7621 implementation of them consists of two parts: complex symbols, and the
7622 relocations themselves.
7623
7624 The relocations are use a reserved elf-wide relocation type code (R_RELC
7625 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7626 information (start bit, end bit, word width, etc) into the addend. This
7627 information is extracted from CGEN-generated operand tables within gas.
7628
7629 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7630 internal) representing prefix-notation expressions, including but not
7631 limited to those sorts of expressions normally encoded as addends in the
7632 addend field. The symbol mangling format is:
7633
7634 <node> := <literal>
7635 | <unary-operator> ':' <node>
7636 | <binary-operator> ':' <node> ':' <node>
7637 ;
7638
7639 <literal> := 's' <digits=N> ':' <N character symbol name>
7640 | 'S' <digits=N> ':' <N character section name>
7641 | '#' <hexdigits>
7642 ;
7643
7644 <binary-operator> := as in C
7645 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7646
7647 static void
7648 set_symbol_value (bfd *bfd_with_globals,
7649 Elf_Internal_Sym *isymbuf,
7650 size_t locsymcount,
7651 size_t symidx,
7652 bfd_vma val)
7653 {
7654 struct elf_link_hash_entry **sym_hashes;
7655 struct elf_link_hash_entry *h;
7656 size_t extsymoff = locsymcount;
7657
7658 if (symidx < locsymcount)
7659 {
7660 Elf_Internal_Sym *sym;
7661
7662 sym = isymbuf + symidx;
7663 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7664 {
7665 /* It is a local symbol: move it to the
7666 "absolute" section and give it a value. */
7667 sym->st_shndx = SHN_ABS;
7668 sym->st_value = val;
7669 return;
7670 }
7671 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7672 extsymoff = 0;
7673 }
7674
7675 /* It is a global symbol: set its link type
7676 to "defined" and give it a value. */
7677
7678 sym_hashes = elf_sym_hashes (bfd_with_globals);
7679 h = sym_hashes [symidx - extsymoff];
7680 while (h->root.type == bfd_link_hash_indirect
7681 || h->root.type == bfd_link_hash_warning)
7682 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7683 h->root.type = bfd_link_hash_defined;
7684 h->root.u.def.value = val;
7685 h->root.u.def.section = bfd_abs_section_ptr;
7686 }
7687
7688 static bfd_boolean
7689 resolve_symbol (const char *name,
7690 bfd *input_bfd,
7691 struct elf_final_link_info *flinfo,
7692 bfd_vma *result,
7693 Elf_Internal_Sym *isymbuf,
7694 size_t locsymcount)
7695 {
7696 Elf_Internal_Sym *sym;
7697 struct bfd_link_hash_entry *global_entry;
7698 const char *candidate = NULL;
7699 Elf_Internal_Shdr *symtab_hdr;
7700 size_t i;
7701
7702 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7703
7704 for (i = 0; i < locsymcount; ++ i)
7705 {
7706 sym = isymbuf + i;
7707
7708 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7709 continue;
7710
7711 candidate = bfd_elf_string_from_elf_section (input_bfd,
7712 symtab_hdr->sh_link,
7713 sym->st_name);
7714 #ifdef DEBUG
7715 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7716 name, candidate, (unsigned long) sym->st_value);
7717 #endif
7718 if (candidate && strcmp (candidate, name) == 0)
7719 {
7720 asection *sec = flinfo->sections [i];
7721
7722 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7723 *result += sec->output_offset + sec->output_section->vma;
7724 #ifdef DEBUG
7725 printf ("Found symbol with value %8.8lx\n",
7726 (unsigned long) *result);
7727 #endif
7728 return TRUE;
7729 }
7730 }
7731
7732 /* Hmm, haven't found it yet. perhaps it is a global. */
7733 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7734 FALSE, FALSE, TRUE);
7735 if (!global_entry)
7736 return FALSE;
7737
7738 if (global_entry->type == bfd_link_hash_defined
7739 || global_entry->type == bfd_link_hash_defweak)
7740 {
7741 *result = (global_entry->u.def.value
7742 + global_entry->u.def.section->output_section->vma
7743 + global_entry->u.def.section->output_offset);
7744 #ifdef DEBUG
7745 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7746 global_entry->root.string, (unsigned long) *result);
7747 #endif
7748 return TRUE;
7749 }
7750
7751 return FALSE;
7752 }
7753
7754 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
7755 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
7756 names like "foo.end" which is the end address of section "foo". */
7757
7758 static bfd_boolean
7759 resolve_section (const char *name,
7760 asection *sections,
7761 bfd_vma *result,
7762 bfd * abfd)
7763 {
7764 asection *curr;
7765 unsigned int len;
7766
7767 for (curr = sections; curr; curr = curr->next)
7768 if (strcmp (curr->name, name) == 0)
7769 {
7770 *result = curr->vma;
7771 return TRUE;
7772 }
7773
7774 /* Hmm. still haven't found it. try pseudo-section names. */
7775 /* FIXME: This could be coded more efficiently... */
7776 for (curr = sections; curr; curr = curr->next)
7777 {
7778 len = strlen (curr->name);
7779 if (len > strlen (name))
7780 continue;
7781
7782 if (strncmp (curr->name, name, len) == 0)
7783 {
7784 if (strncmp (".end", name + len, 4) == 0)
7785 {
7786 *result = curr->vma + curr->size / bfd_octets_per_byte (abfd);
7787 return TRUE;
7788 }
7789
7790 /* Insert more pseudo-section names here, if you like. */
7791 }
7792 }
7793
7794 return FALSE;
7795 }
7796
7797 static void
7798 undefined_reference (const char *reftype, const char *name)
7799 {
7800 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7801 reftype, name);
7802 }
7803
7804 static bfd_boolean
7805 eval_symbol (bfd_vma *result,
7806 const char **symp,
7807 bfd *input_bfd,
7808 struct elf_final_link_info *flinfo,
7809 bfd_vma dot,
7810 Elf_Internal_Sym *isymbuf,
7811 size_t locsymcount,
7812 int signed_p)
7813 {
7814 size_t len;
7815 size_t symlen;
7816 bfd_vma a;
7817 bfd_vma b;
7818 char symbuf[4096];
7819 const char *sym = *symp;
7820 const char *symend;
7821 bfd_boolean symbol_is_section = FALSE;
7822
7823 len = strlen (sym);
7824 symend = sym + len;
7825
7826 if (len < 1 || len > sizeof (symbuf))
7827 {
7828 bfd_set_error (bfd_error_invalid_operation);
7829 return FALSE;
7830 }
7831
7832 switch (* sym)
7833 {
7834 case '.':
7835 *result = dot;
7836 *symp = sym + 1;
7837 return TRUE;
7838
7839 case '#':
7840 ++sym;
7841 *result = strtoul (sym, (char **) symp, 16);
7842 return TRUE;
7843
7844 case 'S':
7845 symbol_is_section = TRUE;
7846 case 's':
7847 ++sym;
7848 symlen = strtol (sym, (char **) symp, 10);
7849 sym = *symp + 1; /* Skip the trailing ':'. */
7850
7851 if (symend < sym || symlen + 1 > sizeof (symbuf))
7852 {
7853 bfd_set_error (bfd_error_invalid_operation);
7854 return FALSE;
7855 }
7856
7857 memcpy (symbuf, sym, symlen);
7858 symbuf[symlen] = '\0';
7859 *symp = sym + symlen;
7860
7861 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7862 the symbol as a section, or vice-versa. so we're pretty liberal in our
7863 interpretation here; section means "try section first", not "must be a
7864 section", and likewise with symbol. */
7865
7866 if (symbol_is_section)
7867 {
7868 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
7869 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7870 isymbuf, locsymcount))
7871 {
7872 undefined_reference ("section", symbuf);
7873 return FALSE;
7874 }
7875 }
7876 else
7877 {
7878 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7879 isymbuf, locsymcount)
7880 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7881 result, input_bfd))
7882 {
7883 undefined_reference ("symbol", symbuf);
7884 return FALSE;
7885 }
7886 }
7887
7888 return TRUE;
7889
7890 /* All that remains are operators. */
7891
7892 #define UNARY_OP(op) \
7893 if (strncmp (sym, #op, strlen (#op)) == 0) \
7894 { \
7895 sym += strlen (#op); \
7896 if (*sym == ':') \
7897 ++sym; \
7898 *symp = sym; \
7899 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7900 isymbuf, locsymcount, signed_p)) \
7901 return FALSE; \
7902 if (signed_p) \
7903 *result = op ((bfd_signed_vma) a); \
7904 else \
7905 *result = op a; \
7906 return TRUE; \
7907 }
7908
7909 #define BINARY_OP(op) \
7910 if (strncmp (sym, #op, strlen (#op)) == 0) \
7911 { \
7912 sym += strlen (#op); \
7913 if (*sym == ':') \
7914 ++sym; \
7915 *symp = sym; \
7916 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7917 isymbuf, locsymcount, signed_p)) \
7918 return FALSE; \
7919 ++*symp; \
7920 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7921 isymbuf, locsymcount, signed_p)) \
7922 return FALSE; \
7923 if (signed_p) \
7924 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7925 else \
7926 *result = a op b; \
7927 return TRUE; \
7928 }
7929
7930 default:
7931 UNARY_OP (0-);
7932 BINARY_OP (<<);
7933 BINARY_OP (>>);
7934 BINARY_OP (==);
7935 BINARY_OP (!=);
7936 BINARY_OP (<=);
7937 BINARY_OP (>=);
7938 BINARY_OP (&&);
7939 BINARY_OP (||);
7940 UNARY_OP (~);
7941 UNARY_OP (!);
7942 BINARY_OP (*);
7943 BINARY_OP (/);
7944 BINARY_OP (%);
7945 BINARY_OP (^);
7946 BINARY_OP (|);
7947 BINARY_OP (&);
7948 BINARY_OP (+);
7949 BINARY_OP (-);
7950 BINARY_OP (<);
7951 BINARY_OP (>);
7952 #undef UNARY_OP
7953 #undef BINARY_OP
7954 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7955 bfd_set_error (bfd_error_invalid_operation);
7956 return FALSE;
7957 }
7958 }
7959
7960 static void
7961 put_value (bfd_vma size,
7962 unsigned long chunksz,
7963 bfd *input_bfd,
7964 bfd_vma x,
7965 bfd_byte *location)
7966 {
7967 location += (size - chunksz);
7968
7969 for (; size; size -= chunksz, location -= chunksz)
7970 {
7971 switch (chunksz)
7972 {
7973 case 1:
7974 bfd_put_8 (input_bfd, x, location);
7975 x >>= 8;
7976 break;
7977 case 2:
7978 bfd_put_16 (input_bfd, x, location);
7979 x >>= 16;
7980 break;
7981 case 4:
7982 bfd_put_32 (input_bfd, x, location);
7983 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
7984 x >>= 16;
7985 x >>= 16;
7986 break;
7987 #ifdef BFD64
7988 case 8:
7989 bfd_put_64 (input_bfd, x, location);
7990 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
7991 x >>= 32;
7992 x >>= 32;
7993 break;
7994 #endif
7995 default:
7996 abort ();
7997 break;
7998 }
7999 }
8000 }
8001
8002 static bfd_vma
8003 get_value (bfd_vma size,
8004 unsigned long chunksz,
8005 bfd *input_bfd,
8006 bfd_byte *location)
8007 {
8008 int shift;
8009 bfd_vma x = 0;
8010
8011 /* Sanity checks. */
8012 BFD_ASSERT (chunksz <= sizeof (x)
8013 && size >= chunksz
8014 && chunksz != 0
8015 && (size % chunksz) == 0
8016 && input_bfd != NULL
8017 && location != NULL);
8018
8019 if (chunksz == sizeof (x))
8020 {
8021 BFD_ASSERT (size == chunksz);
8022
8023 /* Make sure that we do not perform an undefined shift operation.
8024 We know that size == chunksz so there will only be one iteration
8025 of the loop below. */
8026 shift = 0;
8027 }
8028 else
8029 shift = 8 * chunksz;
8030
8031 for (; size; size -= chunksz, location += chunksz)
8032 {
8033 switch (chunksz)
8034 {
8035 case 1:
8036 x = (x << shift) | bfd_get_8 (input_bfd, location);
8037 break;
8038 case 2:
8039 x = (x << shift) | bfd_get_16 (input_bfd, location);
8040 break;
8041 case 4:
8042 x = (x << shift) | bfd_get_32 (input_bfd, location);
8043 break;
8044 #ifdef BFD64
8045 case 8:
8046 x = (x << shift) | bfd_get_64 (input_bfd, location);
8047 break;
8048 #endif
8049 default:
8050 abort ();
8051 }
8052 }
8053 return x;
8054 }
8055
8056 static void
8057 decode_complex_addend (unsigned long *start, /* in bits */
8058 unsigned long *oplen, /* in bits */
8059 unsigned long *len, /* in bits */
8060 unsigned long *wordsz, /* in bytes */
8061 unsigned long *chunksz, /* in bytes */
8062 unsigned long *lsb0_p,
8063 unsigned long *signed_p,
8064 unsigned long *trunc_p,
8065 unsigned long encoded)
8066 {
8067 * start = encoded & 0x3F;
8068 * len = (encoded >> 6) & 0x3F;
8069 * oplen = (encoded >> 12) & 0x3F;
8070 * wordsz = (encoded >> 18) & 0xF;
8071 * chunksz = (encoded >> 22) & 0xF;
8072 * lsb0_p = (encoded >> 27) & 1;
8073 * signed_p = (encoded >> 28) & 1;
8074 * trunc_p = (encoded >> 29) & 1;
8075 }
8076
8077 bfd_reloc_status_type
8078 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8079 asection *input_section ATTRIBUTE_UNUSED,
8080 bfd_byte *contents,
8081 Elf_Internal_Rela *rel,
8082 bfd_vma relocation)
8083 {
8084 bfd_vma shift, x, mask;
8085 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8086 bfd_reloc_status_type r;
8087
8088 /* Perform this reloc, since it is complex.
8089 (this is not to say that it necessarily refers to a complex
8090 symbol; merely that it is a self-describing CGEN based reloc.
8091 i.e. the addend has the complete reloc information (bit start, end,
8092 word size, etc) encoded within it.). */
8093
8094 decode_complex_addend (&start, &oplen, &len, &wordsz,
8095 &chunksz, &lsb0_p, &signed_p,
8096 &trunc_p, rel->r_addend);
8097
8098 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8099
8100 if (lsb0_p)
8101 shift = (start + 1) - len;
8102 else
8103 shift = (8 * wordsz) - (start + len);
8104
8105 x = get_value (wordsz, chunksz, input_bfd,
8106 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8107
8108 #ifdef DEBUG
8109 printf ("Doing complex reloc: "
8110 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8111 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8112 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8113 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8114 oplen, (unsigned long) x, (unsigned long) mask,
8115 (unsigned long) relocation);
8116 #endif
8117
8118 r = bfd_reloc_ok;
8119 if (! trunc_p)
8120 /* Now do an overflow check. */
8121 r = bfd_check_overflow ((signed_p
8122 ? complain_overflow_signed
8123 : complain_overflow_unsigned),
8124 len, 0, (8 * wordsz),
8125 relocation);
8126
8127 /* Do the deed. */
8128 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8129
8130 #ifdef DEBUG
8131 printf (" relocation: %8.8lx\n"
8132 " shifted mask: %8.8lx\n"
8133 " shifted/masked reloc: %8.8lx\n"
8134 " result: %8.8lx\n",
8135 (unsigned long) relocation, (unsigned long) (mask << shift),
8136 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8137 #endif
8138 put_value (wordsz, chunksz, input_bfd, x,
8139 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8140 return r;
8141 }
8142
8143 /* Functions to read r_offset from external (target order) reloc
8144 entry. Faster than bfd_getl32 et al, because we let the compiler
8145 know the value is aligned. */
8146
8147 static bfd_vma
8148 ext32l_r_offset (const void *p)
8149 {
8150 union aligned32
8151 {
8152 uint32_t v;
8153 unsigned char c[4];
8154 };
8155 const union aligned32 *a
8156 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8157
8158 uint32_t aval = ( (uint32_t) a->c[0]
8159 | (uint32_t) a->c[1] << 8
8160 | (uint32_t) a->c[2] << 16
8161 | (uint32_t) a->c[3] << 24);
8162 return aval;
8163 }
8164
8165 static bfd_vma
8166 ext32b_r_offset (const void *p)
8167 {
8168 union aligned32
8169 {
8170 uint32_t v;
8171 unsigned char c[4];
8172 };
8173 const union aligned32 *a
8174 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8175
8176 uint32_t aval = ( (uint32_t) a->c[0] << 24
8177 | (uint32_t) a->c[1] << 16
8178 | (uint32_t) a->c[2] << 8
8179 | (uint32_t) a->c[3]);
8180 return aval;
8181 }
8182
8183 #ifdef BFD_HOST_64_BIT
8184 static bfd_vma
8185 ext64l_r_offset (const void *p)
8186 {
8187 union aligned64
8188 {
8189 uint64_t v;
8190 unsigned char c[8];
8191 };
8192 const union aligned64 *a
8193 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8194
8195 uint64_t aval = ( (uint64_t) a->c[0]
8196 | (uint64_t) a->c[1] << 8
8197 | (uint64_t) a->c[2] << 16
8198 | (uint64_t) a->c[3] << 24
8199 | (uint64_t) a->c[4] << 32
8200 | (uint64_t) a->c[5] << 40
8201 | (uint64_t) a->c[6] << 48
8202 | (uint64_t) a->c[7] << 56);
8203 return aval;
8204 }
8205
8206 static bfd_vma
8207 ext64b_r_offset (const void *p)
8208 {
8209 union aligned64
8210 {
8211 uint64_t v;
8212 unsigned char c[8];
8213 };
8214 const union aligned64 *a
8215 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8216
8217 uint64_t aval = ( (uint64_t) a->c[0] << 56
8218 | (uint64_t) a->c[1] << 48
8219 | (uint64_t) a->c[2] << 40
8220 | (uint64_t) a->c[3] << 32
8221 | (uint64_t) a->c[4] << 24
8222 | (uint64_t) a->c[5] << 16
8223 | (uint64_t) a->c[6] << 8
8224 | (uint64_t) a->c[7]);
8225 return aval;
8226 }
8227 #endif
8228
8229 /* When performing a relocatable link, the input relocations are
8230 preserved. But, if they reference global symbols, the indices
8231 referenced must be updated. Update all the relocations found in
8232 RELDATA. */
8233
8234 static bfd_boolean
8235 elf_link_adjust_relocs (bfd *abfd,
8236 struct bfd_elf_section_reloc_data *reldata,
8237 bfd_boolean sort)
8238 {
8239 unsigned int i;
8240 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8241 bfd_byte *erela;
8242 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8243 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8244 bfd_vma r_type_mask;
8245 int r_sym_shift;
8246 unsigned int count = reldata->count;
8247 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8248
8249 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8250 {
8251 swap_in = bed->s->swap_reloc_in;
8252 swap_out = bed->s->swap_reloc_out;
8253 }
8254 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8255 {
8256 swap_in = bed->s->swap_reloca_in;
8257 swap_out = bed->s->swap_reloca_out;
8258 }
8259 else
8260 abort ();
8261
8262 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8263 abort ();
8264
8265 if (bed->s->arch_size == 32)
8266 {
8267 r_type_mask = 0xff;
8268 r_sym_shift = 8;
8269 }
8270 else
8271 {
8272 r_type_mask = 0xffffffff;
8273 r_sym_shift = 32;
8274 }
8275
8276 erela = reldata->hdr->contents;
8277 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8278 {
8279 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8280 unsigned int j;
8281
8282 if (*rel_hash == NULL)
8283 continue;
8284
8285 BFD_ASSERT ((*rel_hash)->indx >= 0);
8286
8287 (*swap_in) (abfd, erela, irela);
8288 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8289 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8290 | (irela[j].r_info & r_type_mask));
8291 (*swap_out) (abfd, irela, erela);
8292 }
8293
8294 if (sort && count != 0)
8295 {
8296 bfd_vma (*ext_r_off) (const void *);
8297 bfd_vma r_off;
8298 size_t elt_size;
8299 bfd_byte *base, *end, *p, *loc;
8300 bfd_byte *buf = NULL;
8301
8302 if (bed->s->arch_size == 32)
8303 {
8304 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8305 ext_r_off = ext32l_r_offset;
8306 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8307 ext_r_off = ext32b_r_offset;
8308 else
8309 abort ();
8310 }
8311 else
8312 {
8313 #ifdef BFD_HOST_64_BIT
8314 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8315 ext_r_off = ext64l_r_offset;
8316 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8317 ext_r_off = ext64b_r_offset;
8318 else
8319 #endif
8320 abort ();
8321 }
8322
8323 /* Must use a stable sort here. A modified insertion sort,
8324 since the relocs are mostly sorted already. */
8325 elt_size = reldata->hdr->sh_entsize;
8326 base = reldata->hdr->contents;
8327 end = base + count * elt_size;
8328 if (elt_size > sizeof (Elf64_External_Rela))
8329 abort ();
8330
8331 /* Ensure the first element is lowest. This acts as a sentinel,
8332 speeding the main loop below. */
8333 r_off = (*ext_r_off) (base);
8334 for (p = loc = base; (p += elt_size) < end; )
8335 {
8336 bfd_vma r_off2 = (*ext_r_off) (p);
8337 if (r_off > r_off2)
8338 {
8339 r_off = r_off2;
8340 loc = p;
8341 }
8342 }
8343 if (loc != base)
8344 {
8345 /* Don't just swap *base and *loc as that changes the order
8346 of the original base[0] and base[1] if they happen to
8347 have the same r_offset. */
8348 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
8349 memcpy (onebuf, loc, elt_size);
8350 memmove (base + elt_size, base, loc - base);
8351 memcpy (base, onebuf, elt_size);
8352 }
8353
8354 for (p = base + elt_size; (p += elt_size) < end; )
8355 {
8356 /* base to p is sorted, *p is next to insert. */
8357 r_off = (*ext_r_off) (p);
8358 /* Search the sorted region for location to insert. */
8359 loc = p - elt_size;
8360 while (r_off < (*ext_r_off) (loc))
8361 loc -= elt_size;
8362 loc += elt_size;
8363 if (loc != p)
8364 {
8365 /* Chances are there is a run of relocs to insert here,
8366 from one of more input files. Files are not always
8367 linked in order due to the way elf_link_input_bfd is
8368 called. See pr17666. */
8369 size_t sortlen = p - loc;
8370 bfd_vma r_off2 = (*ext_r_off) (loc);
8371 size_t runlen = elt_size;
8372 size_t buf_size = 96 * 1024;
8373 while (p + runlen < end
8374 && (sortlen <= buf_size
8375 || runlen + elt_size <= buf_size)
8376 && r_off2 > (*ext_r_off) (p + runlen))
8377 runlen += elt_size;
8378 if (buf == NULL)
8379 {
8380 buf = bfd_malloc (buf_size);
8381 if (buf == NULL)
8382 return FALSE;
8383 }
8384 if (runlen < sortlen)
8385 {
8386 memcpy (buf, p, runlen);
8387 memmove (loc + runlen, loc, sortlen);
8388 memcpy (loc, buf, runlen);
8389 }
8390 else
8391 {
8392 memcpy (buf, loc, sortlen);
8393 memmove (loc, p, runlen);
8394 memcpy (loc + runlen, buf, sortlen);
8395 }
8396 p += runlen - elt_size;
8397 }
8398 }
8399 /* Hashes are no longer valid. */
8400 free (reldata->hashes);
8401 reldata->hashes = NULL;
8402 free (buf);
8403 }
8404 return TRUE;
8405 }
8406
8407 struct elf_link_sort_rela
8408 {
8409 union {
8410 bfd_vma offset;
8411 bfd_vma sym_mask;
8412 } u;
8413 enum elf_reloc_type_class type;
8414 /* We use this as an array of size int_rels_per_ext_rel. */
8415 Elf_Internal_Rela rela[1];
8416 };
8417
8418 static int
8419 elf_link_sort_cmp1 (const void *A, const void *B)
8420 {
8421 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8422 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8423 int relativea, relativeb;
8424
8425 relativea = a->type == reloc_class_relative;
8426 relativeb = b->type == reloc_class_relative;
8427
8428 if (relativea < relativeb)
8429 return 1;
8430 if (relativea > relativeb)
8431 return -1;
8432 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8433 return -1;
8434 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8435 return 1;
8436 if (a->rela->r_offset < b->rela->r_offset)
8437 return -1;
8438 if (a->rela->r_offset > b->rela->r_offset)
8439 return 1;
8440 return 0;
8441 }
8442
8443 static int
8444 elf_link_sort_cmp2 (const void *A, const void *B)
8445 {
8446 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8447 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8448
8449 if (a->type < b->type)
8450 return -1;
8451 if (a->type > b->type)
8452 return 1;
8453 if (a->u.offset < b->u.offset)
8454 return -1;
8455 if (a->u.offset > b->u.offset)
8456 return 1;
8457 if (a->rela->r_offset < b->rela->r_offset)
8458 return -1;
8459 if (a->rela->r_offset > b->rela->r_offset)
8460 return 1;
8461 return 0;
8462 }
8463
8464 static size_t
8465 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8466 {
8467 asection *dynamic_relocs;
8468 asection *rela_dyn;
8469 asection *rel_dyn;
8470 bfd_size_type count, size;
8471 size_t i, ret, sort_elt, ext_size;
8472 bfd_byte *sort, *s_non_relative, *p;
8473 struct elf_link_sort_rela *sq;
8474 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8475 int i2e = bed->s->int_rels_per_ext_rel;
8476 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8477 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8478 struct bfd_link_order *lo;
8479 bfd_vma r_sym_mask;
8480 bfd_boolean use_rela;
8481
8482 /* Find a dynamic reloc section. */
8483 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8484 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8485 if (rela_dyn != NULL && rela_dyn->size > 0
8486 && rel_dyn != NULL && rel_dyn->size > 0)
8487 {
8488 bfd_boolean use_rela_initialised = FALSE;
8489
8490 /* This is just here to stop gcc from complaining.
8491 It's initialization checking code is not perfect. */
8492 use_rela = TRUE;
8493
8494 /* Both sections are present. Examine the sizes
8495 of the indirect sections to help us choose. */
8496 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8497 if (lo->type == bfd_indirect_link_order)
8498 {
8499 asection *o = lo->u.indirect.section;
8500
8501 if ((o->size % bed->s->sizeof_rela) == 0)
8502 {
8503 if ((o->size % bed->s->sizeof_rel) == 0)
8504 /* Section size is divisible by both rel and rela sizes.
8505 It is of no help to us. */
8506 ;
8507 else
8508 {
8509 /* Section size is only divisible by rela. */
8510 if (use_rela_initialised && (use_rela == FALSE))
8511 {
8512 _bfd_error_handler
8513 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8514 bfd_set_error (bfd_error_invalid_operation);
8515 return 0;
8516 }
8517 else
8518 {
8519 use_rela = TRUE;
8520 use_rela_initialised = TRUE;
8521 }
8522 }
8523 }
8524 else if ((o->size % bed->s->sizeof_rel) == 0)
8525 {
8526 /* Section size is only divisible by rel. */
8527 if (use_rela_initialised && (use_rela == TRUE))
8528 {
8529 _bfd_error_handler
8530 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8531 bfd_set_error (bfd_error_invalid_operation);
8532 return 0;
8533 }
8534 else
8535 {
8536 use_rela = FALSE;
8537 use_rela_initialised = TRUE;
8538 }
8539 }
8540 else
8541 {
8542 /* The section size is not divisible by either - something is wrong. */
8543 _bfd_error_handler
8544 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8545 bfd_set_error (bfd_error_invalid_operation);
8546 return 0;
8547 }
8548 }
8549
8550 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8551 if (lo->type == bfd_indirect_link_order)
8552 {
8553 asection *o = lo->u.indirect.section;
8554
8555 if ((o->size % bed->s->sizeof_rela) == 0)
8556 {
8557 if ((o->size % bed->s->sizeof_rel) == 0)
8558 /* Section size is divisible by both rel and rela sizes.
8559 It is of no help to us. */
8560 ;
8561 else
8562 {
8563 /* Section size is only divisible by rela. */
8564 if (use_rela_initialised && (use_rela == FALSE))
8565 {
8566 _bfd_error_handler
8567 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8568 bfd_set_error (bfd_error_invalid_operation);
8569 return 0;
8570 }
8571 else
8572 {
8573 use_rela = TRUE;
8574 use_rela_initialised = TRUE;
8575 }
8576 }
8577 }
8578 else if ((o->size % bed->s->sizeof_rel) == 0)
8579 {
8580 /* Section size is only divisible by rel. */
8581 if (use_rela_initialised && (use_rela == TRUE))
8582 {
8583 _bfd_error_handler
8584 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8585 bfd_set_error (bfd_error_invalid_operation);
8586 return 0;
8587 }
8588 else
8589 {
8590 use_rela = FALSE;
8591 use_rela_initialised = TRUE;
8592 }
8593 }
8594 else
8595 {
8596 /* The section size is not divisible by either - something is wrong. */
8597 _bfd_error_handler
8598 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8599 bfd_set_error (bfd_error_invalid_operation);
8600 return 0;
8601 }
8602 }
8603
8604 if (! use_rela_initialised)
8605 /* Make a guess. */
8606 use_rela = TRUE;
8607 }
8608 else if (rela_dyn != NULL && rela_dyn->size > 0)
8609 use_rela = TRUE;
8610 else if (rel_dyn != NULL && rel_dyn->size > 0)
8611 use_rela = FALSE;
8612 else
8613 return 0;
8614
8615 if (use_rela)
8616 {
8617 dynamic_relocs = rela_dyn;
8618 ext_size = bed->s->sizeof_rela;
8619 swap_in = bed->s->swap_reloca_in;
8620 swap_out = bed->s->swap_reloca_out;
8621 }
8622 else
8623 {
8624 dynamic_relocs = rel_dyn;
8625 ext_size = bed->s->sizeof_rel;
8626 swap_in = bed->s->swap_reloc_in;
8627 swap_out = bed->s->swap_reloc_out;
8628 }
8629
8630 size = 0;
8631 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8632 if (lo->type == bfd_indirect_link_order)
8633 size += lo->u.indirect.section->size;
8634
8635 if (size != dynamic_relocs->size)
8636 return 0;
8637
8638 sort_elt = (sizeof (struct elf_link_sort_rela)
8639 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8640
8641 count = dynamic_relocs->size / ext_size;
8642 if (count == 0)
8643 return 0;
8644 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8645
8646 if (sort == NULL)
8647 {
8648 (*info->callbacks->warning)
8649 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8650 return 0;
8651 }
8652
8653 if (bed->s->arch_size == 32)
8654 r_sym_mask = ~(bfd_vma) 0xff;
8655 else
8656 r_sym_mask = ~(bfd_vma) 0xffffffff;
8657
8658 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8659 if (lo->type == bfd_indirect_link_order)
8660 {
8661 bfd_byte *erel, *erelend;
8662 asection *o = lo->u.indirect.section;
8663
8664 if (o->contents == NULL && o->size != 0)
8665 {
8666 /* This is a reloc section that is being handled as a normal
8667 section. See bfd_section_from_shdr. We can't combine
8668 relocs in this case. */
8669 free (sort);
8670 return 0;
8671 }
8672 erel = o->contents;
8673 erelend = o->contents + o->size;
8674 /* FIXME: octets_per_byte. */
8675 p = sort + o->output_offset / ext_size * sort_elt;
8676
8677 while (erel < erelend)
8678 {
8679 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8680
8681 (*swap_in) (abfd, erel, s->rela);
8682 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8683 s->u.sym_mask = r_sym_mask;
8684 p += sort_elt;
8685 erel += ext_size;
8686 }
8687 }
8688
8689 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8690
8691 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8692 {
8693 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8694 if (s->type != reloc_class_relative)
8695 break;
8696 }
8697 ret = i;
8698 s_non_relative = p;
8699
8700 sq = (struct elf_link_sort_rela *) s_non_relative;
8701 for (; i < count; i++, p += sort_elt)
8702 {
8703 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8704 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8705 sq = sp;
8706 sp->u.offset = sq->rela->r_offset;
8707 }
8708
8709 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8710
8711 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8712 if (lo->type == bfd_indirect_link_order)
8713 {
8714 bfd_byte *erel, *erelend;
8715 asection *o = lo->u.indirect.section;
8716
8717 erel = o->contents;
8718 erelend = o->contents + o->size;
8719 /* FIXME: octets_per_byte. */
8720 p = sort + o->output_offset / ext_size * sort_elt;
8721 while (erel < erelend)
8722 {
8723 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8724 (*swap_out) (abfd, s->rela, erel);
8725 p += sort_elt;
8726 erel += ext_size;
8727 }
8728 }
8729
8730 free (sort);
8731 *psec = dynamic_relocs;
8732 return ret;
8733 }
8734
8735 /* Add a symbol to the output symbol string table. */
8736
8737 static int
8738 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
8739 const char *name,
8740 Elf_Internal_Sym *elfsym,
8741 asection *input_sec,
8742 struct elf_link_hash_entry *h)
8743 {
8744 int (*output_symbol_hook)
8745 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8746 struct elf_link_hash_entry *);
8747 struct elf_link_hash_table *hash_table;
8748 const struct elf_backend_data *bed;
8749 bfd_size_type strtabsize;
8750
8751 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8752
8753 bed = get_elf_backend_data (flinfo->output_bfd);
8754 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8755 if (output_symbol_hook != NULL)
8756 {
8757 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8758 if (ret != 1)
8759 return ret;
8760 }
8761
8762 if (name == NULL
8763 || *name == '\0'
8764 || (input_sec->flags & SEC_EXCLUDE))
8765 elfsym->st_name = (unsigned long) -1;
8766 else
8767 {
8768 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
8769 to get the final offset for st_name. */
8770 elfsym->st_name
8771 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
8772 name, FALSE);
8773 if (elfsym->st_name == (unsigned long) -1)
8774 return 0;
8775 }
8776
8777 hash_table = elf_hash_table (flinfo->info);
8778 strtabsize = hash_table->strtabsize;
8779 if (strtabsize <= hash_table->strtabcount)
8780 {
8781 strtabsize += strtabsize;
8782 hash_table->strtabsize = strtabsize;
8783 strtabsize *= sizeof (*hash_table->strtab);
8784 hash_table->strtab
8785 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
8786 strtabsize);
8787 if (hash_table->strtab == NULL)
8788 return 0;
8789 }
8790 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
8791 hash_table->strtab[hash_table->strtabcount].dest_index
8792 = hash_table->strtabcount;
8793 hash_table->strtab[hash_table->strtabcount].destshndx_index
8794 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
8795
8796 bfd_get_symcount (flinfo->output_bfd) += 1;
8797 hash_table->strtabcount += 1;
8798
8799 return 1;
8800 }
8801
8802 /* Swap symbols out to the symbol table and flush the output symbols to
8803 the file. */
8804
8805 static bfd_boolean
8806 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
8807 {
8808 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
8809 bfd_size_type amt, i;
8810 const struct elf_backend_data *bed;
8811 bfd_byte *symbuf;
8812 Elf_Internal_Shdr *hdr;
8813 file_ptr pos;
8814 bfd_boolean ret;
8815
8816 if (!hash_table->strtabcount)
8817 return TRUE;
8818
8819 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8820
8821 bed = get_elf_backend_data (flinfo->output_bfd);
8822
8823 amt = bed->s->sizeof_sym * hash_table->strtabcount;
8824 symbuf = (bfd_byte *) bfd_malloc (amt);
8825 if (symbuf == NULL)
8826 return FALSE;
8827
8828 if (flinfo->symshndxbuf)
8829 {
8830 amt = (sizeof (Elf_External_Sym_Shndx)
8831 * (bfd_get_symcount (flinfo->output_bfd)));
8832 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
8833 if (flinfo->symshndxbuf == NULL)
8834 {
8835 free (symbuf);
8836 return FALSE;
8837 }
8838 }
8839
8840 for (i = 0; i < hash_table->strtabcount; i++)
8841 {
8842 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
8843 if (elfsym->sym.st_name == (unsigned long) -1)
8844 elfsym->sym.st_name = 0;
8845 else
8846 elfsym->sym.st_name
8847 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
8848 elfsym->sym.st_name);
8849 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
8850 ((bfd_byte *) symbuf
8851 + (elfsym->dest_index
8852 * bed->s->sizeof_sym)),
8853 (flinfo->symshndxbuf
8854 + elfsym->destshndx_index));
8855 }
8856
8857 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8858 pos = hdr->sh_offset + hdr->sh_size;
8859 amt = hash_table->strtabcount * bed->s->sizeof_sym;
8860 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
8861 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
8862 {
8863 hdr->sh_size += amt;
8864 ret = TRUE;
8865 }
8866 else
8867 ret = FALSE;
8868
8869 free (symbuf);
8870
8871 free (hash_table->strtab);
8872 hash_table->strtab = NULL;
8873
8874 return ret;
8875 }
8876
8877 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8878
8879 static bfd_boolean
8880 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8881 {
8882 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8883 && sym->st_shndx < SHN_LORESERVE)
8884 {
8885 /* The gABI doesn't support dynamic symbols in output sections
8886 beyond 64k. */
8887 (*_bfd_error_handler)
8888 (_("%B: Too many sections: %d (>= %d)"),
8889 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8890 bfd_set_error (bfd_error_nonrepresentable_section);
8891 return FALSE;
8892 }
8893 return TRUE;
8894 }
8895
8896 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8897 allowing an unsatisfied unversioned symbol in the DSO to match a
8898 versioned symbol that would normally require an explicit version.
8899 We also handle the case that a DSO references a hidden symbol
8900 which may be satisfied by a versioned symbol in another DSO. */
8901
8902 static bfd_boolean
8903 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8904 const struct elf_backend_data *bed,
8905 struct elf_link_hash_entry *h)
8906 {
8907 bfd *abfd;
8908 struct elf_link_loaded_list *loaded;
8909
8910 if (!is_elf_hash_table (info->hash))
8911 return FALSE;
8912
8913 /* Check indirect symbol. */
8914 while (h->root.type == bfd_link_hash_indirect)
8915 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8916
8917 switch (h->root.type)
8918 {
8919 default:
8920 abfd = NULL;
8921 break;
8922
8923 case bfd_link_hash_undefined:
8924 case bfd_link_hash_undefweak:
8925 abfd = h->root.u.undef.abfd;
8926 if ((abfd->flags & DYNAMIC) == 0
8927 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8928 return FALSE;
8929 break;
8930
8931 case bfd_link_hash_defined:
8932 case bfd_link_hash_defweak:
8933 abfd = h->root.u.def.section->owner;
8934 break;
8935
8936 case bfd_link_hash_common:
8937 abfd = h->root.u.c.p->section->owner;
8938 break;
8939 }
8940 BFD_ASSERT (abfd != NULL);
8941
8942 for (loaded = elf_hash_table (info)->loaded;
8943 loaded != NULL;
8944 loaded = loaded->next)
8945 {
8946 bfd *input;
8947 Elf_Internal_Shdr *hdr;
8948 bfd_size_type symcount;
8949 bfd_size_type extsymcount;
8950 bfd_size_type extsymoff;
8951 Elf_Internal_Shdr *versymhdr;
8952 Elf_Internal_Sym *isym;
8953 Elf_Internal_Sym *isymend;
8954 Elf_Internal_Sym *isymbuf;
8955 Elf_External_Versym *ever;
8956 Elf_External_Versym *extversym;
8957
8958 input = loaded->abfd;
8959
8960 /* We check each DSO for a possible hidden versioned definition. */
8961 if (input == abfd
8962 || (input->flags & DYNAMIC) == 0
8963 || elf_dynversym (input) == 0)
8964 continue;
8965
8966 hdr = &elf_tdata (input)->dynsymtab_hdr;
8967
8968 symcount = hdr->sh_size / bed->s->sizeof_sym;
8969 if (elf_bad_symtab (input))
8970 {
8971 extsymcount = symcount;
8972 extsymoff = 0;
8973 }
8974 else
8975 {
8976 extsymcount = symcount - hdr->sh_info;
8977 extsymoff = hdr->sh_info;
8978 }
8979
8980 if (extsymcount == 0)
8981 continue;
8982
8983 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8984 NULL, NULL, NULL);
8985 if (isymbuf == NULL)
8986 return FALSE;
8987
8988 /* Read in any version definitions. */
8989 versymhdr = &elf_tdata (input)->dynversym_hdr;
8990 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8991 if (extversym == NULL)
8992 goto error_ret;
8993
8994 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8995 || (bfd_bread (extversym, versymhdr->sh_size, input)
8996 != versymhdr->sh_size))
8997 {
8998 free (extversym);
8999 error_ret:
9000 free (isymbuf);
9001 return FALSE;
9002 }
9003
9004 ever = extversym + extsymoff;
9005 isymend = isymbuf + extsymcount;
9006 for (isym = isymbuf; isym < isymend; isym++, ever++)
9007 {
9008 const char *name;
9009 Elf_Internal_Versym iver;
9010 unsigned short version_index;
9011
9012 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9013 || isym->st_shndx == SHN_UNDEF)
9014 continue;
9015
9016 name = bfd_elf_string_from_elf_section (input,
9017 hdr->sh_link,
9018 isym->st_name);
9019 if (strcmp (name, h->root.root.string) != 0)
9020 continue;
9021
9022 _bfd_elf_swap_versym_in (input, ever, &iver);
9023
9024 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9025 && !(h->def_regular
9026 && h->forced_local))
9027 {
9028 /* If we have a non-hidden versioned sym, then it should
9029 have provided a definition for the undefined sym unless
9030 it is defined in a non-shared object and forced local.
9031 */
9032 abort ();
9033 }
9034
9035 version_index = iver.vs_vers & VERSYM_VERSION;
9036 if (version_index == 1 || version_index == 2)
9037 {
9038 /* This is the base or first version. We can use it. */
9039 free (extversym);
9040 free (isymbuf);
9041 return TRUE;
9042 }
9043 }
9044
9045 free (extversym);
9046 free (isymbuf);
9047 }
9048
9049 return FALSE;
9050 }
9051
9052 /* Convert ELF common symbol TYPE. */
9053
9054 static int
9055 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9056 {
9057 /* Commom symbol can only appear in relocatable link. */
9058 if (!bfd_link_relocatable (info))
9059 abort ();
9060 switch (info->elf_stt_common)
9061 {
9062 case unchanged:
9063 break;
9064 case elf_stt_common:
9065 type = STT_COMMON;
9066 break;
9067 case no_elf_stt_common:
9068 type = STT_OBJECT;
9069 break;
9070 }
9071 return type;
9072 }
9073
9074 /* Add an external symbol to the symbol table. This is called from
9075 the hash table traversal routine. When generating a shared object,
9076 we go through the symbol table twice. The first time we output
9077 anything that might have been forced to local scope in a version
9078 script. The second time we output the symbols that are still
9079 global symbols. */
9080
9081 static bfd_boolean
9082 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9083 {
9084 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9085 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9086 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9087 bfd_boolean strip;
9088 Elf_Internal_Sym sym;
9089 asection *input_sec;
9090 const struct elf_backend_data *bed;
9091 long indx;
9092 int ret;
9093 unsigned int type;
9094 /* A symbol is bound locally if it is forced local or it is locally
9095 defined, hidden versioned, not referenced by shared library and
9096 not exported when linking executable. */
9097 bfd_boolean local_bind = (h->forced_local
9098 || (bfd_link_executable (flinfo->info)
9099 && !flinfo->info->export_dynamic
9100 && !h->dynamic
9101 && !h->ref_dynamic
9102 && h->def_regular
9103 && h->versioned == versioned_hidden));
9104
9105 if (h->root.type == bfd_link_hash_warning)
9106 {
9107 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9108 if (h->root.type == bfd_link_hash_new)
9109 return TRUE;
9110 }
9111
9112 /* Decide whether to output this symbol in this pass. */
9113 if (eoinfo->localsyms)
9114 {
9115 if (!local_bind)
9116 return TRUE;
9117 }
9118 else
9119 {
9120 if (local_bind)
9121 return TRUE;
9122 }
9123
9124 bed = get_elf_backend_data (flinfo->output_bfd);
9125
9126 if (h->root.type == bfd_link_hash_undefined)
9127 {
9128 /* If we have an undefined symbol reference here then it must have
9129 come from a shared library that is being linked in. (Undefined
9130 references in regular files have already been handled unless
9131 they are in unreferenced sections which are removed by garbage
9132 collection). */
9133 bfd_boolean ignore_undef = FALSE;
9134
9135 /* Some symbols may be special in that the fact that they're
9136 undefined can be safely ignored - let backend determine that. */
9137 if (bed->elf_backend_ignore_undef_symbol)
9138 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9139
9140 /* If we are reporting errors for this situation then do so now. */
9141 if (!ignore_undef
9142 && h->ref_dynamic
9143 && (!h->ref_regular || flinfo->info->gc_sections)
9144 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9145 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9146 {
9147 if (!(flinfo->info->callbacks->undefined_symbol
9148 (flinfo->info, h->root.root.string,
9149 h->ref_regular ? NULL : h->root.u.undef.abfd,
9150 NULL, 0,
9151 (flinfo->info->unresolved_syms_in_shared_libs
9152 == RM_GENERATE_ERROR))))
9153 {
9154 bfd_set_error (bfd_error_bad_value);
9155 eoinfo->failed = TRUE;
9156 return FALSE;
9157 }
9158 }
9159 }
9160
9161 /* We should also warn if a forced local symbol is referenced from
9162 shared libraries. */
9163 if (bfd_link_executable (flinfo->info)
9164 && h->forced_local
9165 && h->ref_dynamic
9166 && h->def_regular
9167 && !h->dynamic_def
9168 && h->ref_dynamic_nonweak
9169 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9170 {
9171 bfd *def_bfd;
9172 const char *msg;
9173 struct elf_link_hash_entry *hi = h;
9174
9175 /* Check indirect symbol. */
9176 while (hi->root.type == bfd_link_hash_indirect)
9177 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9178
9179 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9180 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
9181 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9182 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
9183 else
9184 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
9185 def_bfd = flinfo->output_bfd;
9186 if (hi->root.u.def.section != bfd_abs_section_ptr)
9187 def_bfd = hi->root.u.def.section->owner;
9188 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
9189 h->root.root.string);
9190 bfd_set_error (bfd_error_bad_value);
9191 eoinfo->failed = TRUE;
9192 return FALSE;
9193 }
9194
9195 /* We don't want to output symbols that have never been mentioned by
9196 a regular file, or that we have been told to strip. However, if
9197 h->indx is set to -2, the symbol is used by a reloc and we must
9198 output it. */
9199 strip = FALSE;
9200 if (h->indx == -2)
9201 ;
9202 else if ((h->def_dynamic
9203 || h->ref_dynamic
9204 || h->root.type == bfd_link_hash_new)
9205 && !h->def_regular
9206 && !h->ref_regular)
9207 strip = TRUE;
9208 else if (flinfo->info->strip == strip_all)
9209 strip = TRUE;
9210 else if (flinfo->info->strip == strip_some
9211 && bfd_hash_lookup (flinfo->info->keep_hash,
9212 h->root.root.string, FALSE, FALSE) == NULL)
9213 strip = TRUE;
9214 else if ((h->root.type == bfd_link_hash_defined
9215 || h->root.type == bfd_link_hash_defweak)
9216 && ((flinfo->info->strip_discarded
9217 && discarded_section (h->root.u.def.section))
9218 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9219 && h->root.u.def.section->owner != NULL
9220 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9221 strip = TRUE;
9222 else if ((h->root.type == bfd_link_hash_undefined
9223 || h->root.type == bfd_link_hash_undefweak)
9224 && h->root.u.undef.abfd != NULL
9225 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9226 strip = TRUE;
9227
9228 type = h->type;
9229
9230 /* If we're stripping it, and it's not a dynamic symbol, there's
9231 nothing else to do. However, if it is a forced local symbol or
9232 an ifunc symbol we need to give the backend finish_dynamic_symbol
9233 function a chance to make it dynamic. */
9234 if (strip
9235 && h->dynindx == -1
9236 && type != STT_GNU_IFUNC
9237 && !h->forced_local)
9238 return TRUE;
9239
9240 sym.st_value = 0;
9241 sym.st_size = h->size;
9242 sym.st_other = h->other;
9243 switch (h->root.type)
9244 {
9245 default:
9246 case bfd_link_hash_new:
9247 case bfd_link_hash_warning:
9248 abort ();
9249 return FALSE;
9250
9251 case bfd_link_hash_undefined:
9252 case bfd_link_hash_undefweak:
9253 input_sec = bfd_und_section_ptr;
9254 sym.st_shndx = SHN_UNDEF;
9255 break;
9256
9257 case bfd_link_hash_defined:
9258 case bfd_link_hash_defweak:
9259 {
9260 input_sec = h->root.u.def.section;
9261 if (input_sec->output_section != NULL)
9262 {
9263 sym.st_shndx =
9264 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9265 input_sec->output_section);
9266 if (sym.st_shndx == SHN_BAD)
9267 {
9268 (*_bfd_error_handler)
9269 (_("%B: could not find output section %A for input section %A"),
9270 flinfo->output_bfd, input_sec->output_section, input_sec);
9271 bfd_set_error (bfd_error_nonrepresentable_section);
9272 eoinfo->failed = TRUE;
9273 return FALSE;
9274 }
9275
9276 /* ELF symbols in relocatable files are section relative,
9277 but in nonrelocatable files they are virtual
9278 addresses. */
9279 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9280 if (!bfd_link_relocatable (flinfo->info))
9281 {
9282 sym.st_value += input_sec->output_section->vma;
9283 if (h->type == STT_TLS)
9284 {
9285 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9286 if (tls_sec != NULL)
9287 sym.st_value -= tls_sec->vma;
9288 }
9289 }
9290 }
9291 else
9292 {
9293 BFD_ASSERT (input_sec->owner == NULL
9294 || (input_sec->owner->flags & DYNAMIC) != 0);
9295 sym.st_shndx = SHN_UNDEF;
9296 input_sec = bfd_und_section_ptr;
9297 }
9298 }
9299 break;
9300
9301 case bfd_link_hash_common:
9302 input_sec = h->root.u.c.p->section;
9303 sym.st_shndx = bed->common_section_index (input_sec);
9304 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9305 break;
9306
9307 case bfd_link_hash_indirect:
9308 /* These symbols are created by symbol versioning. They point
9309 to the decorated version of the name. For example, if the
9310 symbol foo@@GNU_1.2 is the default, which should be used when
9311 foo is used with no version, then we add an indirect symbol
9312 foo which points to foo@@GNU_1.2. We ignore these symbols,
9313 since the indirected symbol is already in the hash table. */
9314 return TRUE;
9315 }
9316
9317 if (type == STT_COMMON || type == STT_OBJECT)
9318 switch (h->root.type)
9319 {
9320 case bfd_link_hash_common:
9321 type = elf_link_convert_common_type (flinfo->info, type);
9322 break;
9323 case bfd_link_hash_defined:
9324 case bfd_link_hash_defweak:
9325 if (bed->common_definition (&sym))
9326 type = elf_link_convert_common_type (flinfo->info, type);
9327 else
9328 type = STT_OBJECT;
9329 break;
9330 case bfd_link_hash_undefined:
9331 case bfd_link_hash_undefweak:
9332 break;
9333 default:
9334 abort ();
9335 }
9336
9337 if (local_bind)
9338 {
9339 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
9340 /* Turn off visibility on local symbol. */
9341 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
9342 }
9343 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
9344 else if (h->unique_global && h->def_regular)
9345 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
9346 else if (h->root.type == bfd_link_hash_undefweak
9347 || h->root.type == bfd_link_hash_defweak)
9348 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
9349 else
9350 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
9351 sym.st_target_internal = h->target_internal;
9352
9353 /* Give the processor backend a chance to tweak the symbol value,
9354 and also to finish up anything that needs to be done for this
9355 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9356 forced local syms when non-shared is due to a historical quirk.
9357 STT_GNU_IFUNC symbol must go through PLT. */
9358 if ((h->type == STT_GNU_IFUNC
9359 && h->def_regular
9360 && !bfd_link_relocatable (flinfo->info))
9361 || ((h->dynindx != -1
9362 || h->forced_local)
9363 && ((bfd_link_pic (flinfo->info)
9364 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9365 || h->root.type != bfd_link_hash_undefweak))
9366 || !h->forced_local)
9367 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9368 {
9369 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9370 (flinfo->output_bfd, flinfo->info, h, &sym)))
9371 {
9372 eoinfo->failed = TRUE;
9373 return FALSE;
9374 }
9375 }
9376
9377 /* If we are marking the symbol as undefined, and there are no
9378 non-weak references to this symbol from a regular object, then
9379 mark the symbol as weak undefined; if there are non-weak
9380 references, mark the symbol as strong. We can't do this earlier,
9381 because it might not be marked as undefined until the
9382 finish_dynamic_symbol routine gets through with it. */
9383 if (sym.st_shndx == SHN_UNDEF
9384 && h->ref_regular
9385 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9386 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9387 {
9388 int bindtype;
9389 type = ELF_ST_TYPE (sym.st_info);
9390
9391 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9392 if (type == STT_GNU_IFUNC)
9393 type = STT_FUNC;
9394
9395 if (h->ref_regular_nonweak)
9396 bindtype = STB_GLOBAL;
9397 else
9398 bindtype = STB_WEAK;
9399 sym.st_info = ELF_ST_INFO (bindtype, type);
9400 }
9401
9402 /* If this is a symbol defined in a dynamic library, don't use the
9403 symbol size from the dynamic library. Relinking an executable
9404 against a new library may introduce gratuitous changes in the
9405 executable's symbols if we keep the size. */
9406 if (sym.st_shndx == SHN_UNDEF
9407 && !h->def_regular
9408 && h->def_dynamic)
9409 sym.st_size = 0;
9410
9411 /* If a non-weak symbol with non-default visibility is not defined
9412 locally, it is a fatal error. */
9413 if (!bfd_link_relocatable (flinfo->info)
9414 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9415 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9416 && h->root.type == bfd_link_hash_undefined
9417 && !h->def_regular)
9418 {
9419 const char *msg;
9420
9421 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9422 msg = _("%B: protected symbol `%s' isn't defined");
9423 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9424 msg = _("%B: internal symbol `%s' isn't defined");
9425 else
9426 msg = _("%B: hidden symbol `%s' isn't defined");
9427 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9428 bfd_set_error (bfd_error_bad_value);
9429 eoinfo->failed = TRUE;
9430 return FALSE;
9431 }
9432
9433 /* If this symbol should be put in the .dynsym section, then put it
9434 there now. We already know the symbol index. We also fill in
9435 the entry in the .hash section. */
9436 if (elf_hash_table (flinfo->info)->dynsym != NULL
9437 && h->dynindx != -1
9438 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9439 {
9440 bfd_byte *esym;
9441
9442 /* Since there is no version information in the dynamic string,
9443 if there is no version info in symbol version section, we will
9444 have a run-time problem if not linking executable, referenced
9445 by shared library, not locally defined, or not bound locally.
9446 */
9447 if (h->verinfo.verdef == NULL
9448 && !local_bind
9449 && (!bfd_link_executable (flinfo->info)
9450 || h->ref_dynamic
9451 || !h->def_regular))
9452 {
9453 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9454
9455 if (p && p [1] != '\0')
9456 {
9457 (*_bfd_error_handler)
9458 (_("%B: No symbol version section for versioned symbol `%s'"),
9459 flinfo->output_bfd, h->root.root.string);
9460 eoinfo->failed = TRUE;
9461 return FALSE;
9462 }
9463 }
9464
9465 sym.st_name = h->dynstr_index;
9466 esym = (elf_hash_table (flinfo->info)->dynsym->contents
9467 + h->dynindx * bed->s->sizeof_sym);
9468 if (!check_dynsym (flinfo->output_bfd, &sym))
9469 {
9470 eoinfo->failed = TRUE;
9471 return FALSE;
9472 }
9473 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9474
9475 if (flinfo->hash_sec != NULL)
9476 {
9477 size_t hash_entry_size;
9478 bfd_byte *bucketpos;
9479 bfd_vma chain;
9480 size_t bucketcount;
9481 size_t bucket;
9482
9483 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9484 bucket = h->u.elf_hash_value % bucketcount;
9485
9486 hash_entry_size
9487 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9488 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9489 + (bucket + 2) * hash_entry_size);
9490 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9491 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9492 bucketpos);
9493 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9494 ((bfd_byte *) flinfo->hash_sec->contents
9495 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9496 }
9497
9498 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9499 {
9500 Elf_Internal_Versym iversym;
9501 Elf_External_Versym *eversym;
9502
9503 if (!h->def_regular)
9504 {
9505 if (h->verinfo.verdef == NULL
9506 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9507 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9508 iversym.vs_vers = 0;
9509 else
9510 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9511 }
9512 else
9513 {
9514 if (h->verinfo.vertree == NULL)
9515 iversym.vs_vers = 1;
9516 else
9517 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9518 if (flinfo->info->create_default_symver)
9519 iversym.vs_vers++;
9520 }
9521
9522 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
9523 defined locally. */
9524 if (h->versioned == versioned_hidden && h->def_regular)
9525 iversym.vs_vers |= VERSYM_HIDDEN;
9526
9527 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9528 eversym += h->dynindx;
9529 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9530 }
9531 }
9532
9533 /* If the symbol is undefined, and we didn't output it to .dynsym,
9534 strip it from .symtab too. Obviously we can't do this for
9535 relocatable output or when needed for --emit-relocs. */
9536 else if (input_sec == bfd_und_section_ptr
9537 && h->indx != -2
9538 && !bfd_link_relocatable (flinfo->info))
9539 return TRUE;
9540 /* Also strip others that we couldn't earlier due to dynamic symbol
9541 processing. */
9542 if (strip)
9543 return TRUE;
9544 if ((input_sec->flags & SEC_EXCLUDE) != 0)
9545 return TRUE;
9546
9547 /* Output a FILE symbol so that following locals are not associated
9548 with the wrong input file. We need one for forced local symbols
9549 if we've seen more than one FILE symbol or when we have exactly
9550 one FILE symbol but global symbols are present in a file other
9551 than the one with the FILE symbol. We also need one if linker
9552 defined symbols are present. In practice these conditions are
9553 always met, so just emit the FILE symbol unconditionally. */
9554 if (eoinfo->localsyms
9555 && !eoinfo->file_sym_done
9556 && eoinfo->flinfo->filesym_count != 0)
9557 {
9558 Elf_Internal_Sym fsym;
9559
9560 memset (&fsym, 0, sizeof (fsym));
9561 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9562 fsym.st_shndx = SHN_ABS;
9563 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
9564 bfd_und_section_ptr, NULL))
9565 return FALSE;
9566
9567 eoinfo->file_sym_done = TRUE;
9568 }
9569
9570 indx = bfd_get_symcount (flinfo->output_bfd);
9571 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
9572 input_sec, h);
9573 if (ret == 0)
9574 {
9575 eoinfo->failed = TRUE;
9576 return FALSE;
9577 }
9578 else if (ret == 1)
9579 h->indx = indx;
9580 else if (h->indx == -2)
9581 abort();
9582
9583 return TRUE;
9584 }
9585
9586 /* Return TRUE if special handling is done for relocs in SEC against
9587 symbols defined in discarded sections. */
9588
9589 static bfd_boolean
9590 elf_section_ignore_discarded_relocs (asection *sec)
9591 {
9592 const struct elf_backend_data *bed;
9593
9594 switch (sec->sec_info_type)
9595 {
9596 case SEC_INFO_TYPE_STABS:
9597 case SEC_INFO_TYPE_EH_FRAME:
9598 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
9599 return TRUE;
9600 default:
9601 break;
9602 }
9603
9604 bed = get_elf_backend_data (sec->owner);
9605 if (bed->elf_backend_ignore_discarded_relocs != NULL
9606 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9607 return TRUE;
9608
9609 return FALSE;
9610 }
9611
9612 /* Return a mask saying how ld should treat relocations in SEC against
9613 symbols defined in discarded sections. If this function returns
9614 COMPLAIN set, ld will issue a warning message. If this function
9615 returns PRETEND set, and the discarded section was link-once and the
9616 same size as the kept link-once section, ld will pretend that the
9617 symbol was actually defined in the kept section. Otherwise ld will
9618 zero the reloc (at least that is the intent, but some cooperation by
9619 the target dependent code is needed, particularly for REL targets). */
9620
9621 unsigned int
9622 _bfd_elf_default_action_discarded (asection *sec)
9623 {
9624 if (sec->flags & SEC_DEBUGGING)
9625 return PRETEND;
9626
9627 if (strcmp (".eh_frame", sec->name) == 0)
9628 return 0;
9629
9630 if (strcmp (".gcc_except_table", sec->name) == 0)
9631 return 0;
9632
9633 return COMPLAIN | PRETEND;
9634 }
9635
9636 /* Find a match between a section and a member of a section group. */
9637
9638 static asection *
9639 match_group_member (asection *sec, asection *group,
9640 struct bfd_link_info *info)
9641 {
9642 asection *first = elf_next_in_group (group);
9643 asection *s = first;
9644
9645 while (s != NULL)
9646 {
9647 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9648 return s;
9649
9650 s = elf_next_in_group (s);
9651 if (s == first)
9652 break;
9653 }
9654
9655 return NULL;
9656 }
9657
9658 /* Check if the kept section of a discarded section SEC can be used
9659 to replace it. Return the replacement if it is OK. Otherwise return
9660 NULL. */
9661
9662 asection *
9663 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9664 {
9665 asection *kept;
9666
9667 kept = sec->kept_section;
9668 if (kept != NULL)
9669 {
9670 if ((kept->flags & SEC_GROUP) != 0)
9671 kept = match_group_member (sec, kept, info);
9672 if (kept != NULL
9673 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9674 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9675 kept = NULL;
9676 sec->kept_section = kept;
9677 }
9678 return kept;
9679 }
9680
9681 /* Link an input file into the linker output file. This function
9682 handles all the sections and relocations of the input file at once.
9683 This is so that we only have to read the local symbols once, and
9684 don't have to keep them in memory. */
9685
9686 static bfd_boolean
9687 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9688 {
9689 int (*relocate_section)
9690 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9691 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9692 bfd *output_bfd;
9693 Elf_Internal_Shdr *symtab_hdr;
9694 size_t locsymcount;
9695 size_t extsymoff;
9696 Elf_Internal_Sym *isymbuf;
9697 Elf_Internal_Sym *isym;
9698 Elf_Internal_Sym *isymend;
9699 long *pindex;
9700 asection **ppsection;
9701 asection *o;
9702 const struct elf_backend_data *bed;
9703 struct elf_link_hash_entry **sym_hashes;
9704 bfd_size_type address_size;
9705 bfd_vma r_type_mask;
9706 int r_sym_shift;
9707 bfd_boolean have_file_sym = FALSE;
9708
9709 output_bfd = flinfo->output_bfd;
9710 bed = get_elf_backend_data (output_bfd);
9711 relocate_section = bed->elf_backend_relocate_section;
9712
9713 /* If this is a dynamic object, we don't want to do anything here:
9714 we don't want the local symbols, and we don't want the section
9715 contents. */
9716 if ((input_bfd->flags & DYNAMIC) != 0)
9717 return TRUE;
9718
9719 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9720 if (elf_bad_symtab (input_bfd))
9721 {
9722 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9723 extsymoff = 0;
9724 }
9725 else
9726 {
9727 locsymcount = symtab_hdr->sh_info;
9728 extsymoff = symtab_hdr->sh_info;
9729 }
9730
9731 /* Read the local symbols. */
9732 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9733 if (isymbuf == NULL && locsymcount != 0)
9734 {
9735 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9736 flinfo->internal_syms,
9737 flinfo->external_syms,
9738 flinfo->locsym_shndx);
9739 if (isymbuf == NULL)
9740 return FALSE;
9741 }
9742
9743 /* Find local symbol sections and adjust values of symbols in
9744 SEC_MERGE sections. Write out those local symbols we know are
9745 going into the output file. */
9746 isymend = isymbuf + locsymcount;
9747 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9748 isym < isymend;
9749 isym++, pindex++, ppsection++)
9750 {
9751 asection *isec;
9752 const char *name;
9753 Elf_Internal_Sym osym;
9754 long indx;
9755 int ret;
9756
9757 *pindex = -1;
9758
9759 if (elf_bad_symtab (input_bfd))
9760 {
9761 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9762 {
9763 *ppsection = NULL;
9764 continue;
9765 }
9766 }
9767
9768 if (isym->st_shndx == SHN_UNDEF)
9769 isec = bfd_und_section_ptr;
9770 else if (isym->st_shndx == SHN_ABS)
9771 isec = bfd_abs_section_ptr;
9772 else if (isym->st_shndx == SHN_COMMON)
9773 isec = bfd_com_section_ptr;
9774 else
9775 {
9776 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9777 if (isec == NULL)
9778 {
9779 /* Don't attempt to output symbols with st_shnx in the
9780 reserved range other than SHN_ABS and SHN_COMMON. */
9781 *ppsection = NULL;
9782 continue;
9783 }
9784 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9785 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9786 isym->st_value =
9787 _bfd_merged_section_offset (output_bfd, &isec,
9788 elf_section_data (isec)->sec_info,
9789 isym->st_value);
9790 }
9791
9792 *ppsection = isec;
9793
9794 /* Don't output the first, undefined, symbol. In fact, don't
9795 output any undefined local symbol. */
9796 if (isec == bfd_und_section_ptr)
9797 continue;
9798
9799 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9800 {
9801 /* We never output section symbols. Instead, we use the
9802 section symbol of the corresponding section in the output
9803 file. */
9804 continue;
9805 }
9806
9807 /* If we are stripping all symbols, we don't want to output this
9808 one. */
9809 if (flinfo->info->strip == strip_all)
9810 continue;
9811
9812 /* If we are discarding all local symbols, we don't want to
9813 output this one. If we are generating a relocatable output
9814 file, then some of the local symbols may be required by
9815 relocs; we output them below as we discover that they are
9816 needed. */
9817 if (flinfo->info->discard == discard_all)
9818 continue;
9819
9820 /* If this symbol is defined in a section which we are
9821 discarding, we don't need to keep it. */
9822 if (isym->st_shndx != SHN_UNDEF
9823 && isym->st_shndx < SHN_LORESERVE
9824 && bfd_section_removed_from_list (output_bfd,
9825 isec->output_section))
9826 continue;
9827
9828 /* Get the name of the symbol. */
9829 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9830 isym->st_name);
9831 if (name == NULL)
9832 return FALSE;
9833
9834 /* See if we are discarding symbols with this name. */
9835 if ((flinfo->info->strip == strip_some
9836 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9837 == NULL))
9838 || (((flinfo->info->discard == discard_sec_merge
9839 && (isec->flags & SEC_MERGE)
9840 && !bfd_link_relocatable (flinfo->info))
9841 || flinfo->info->discard == discard_l)
9842 && bfd_is_local_label_name (input_bfd, name)))
9843 continue;
9844
9845 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9846 {
9847 if (input_bfd->lto_output)
9848 /* -flto puts a temp file name here. This means builds
9849 are not reproducible. Discard the symbol. */
9850 continue;
9851 have_file_sym = TRUE;
9852 flinfo->filesym_count += 1;
9853 }
9854 if (!have_file_sym)
9855 {
9856 /* In the absence of debug info, bfd_find_nearest_line uses
9857 FILE symbols to determine the source file for local
9858 function symbols. Provide a FILE symbol here if input
9859 files lack such, so that their symbols won't be
9860 associated with a previous input file. It's not the
9861 source file, but the best we can do. */
9862 have_file_sym = TRUE;
9863 flinfo->filesym_count += 1;
9864 memset (&osym, 0, sizeof (osym));
9865 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9866 osym.st_shndx = SHN_ABS;
9867 if (!elf_link_output_symstrtab (flinfo,
9868 (input_bfd->lto_output ? NULL
9869 : input_bfd->filename),
9870 &osym, bfd_abs_section_ptr,
9871 NULL))
9872 return FALSE;
9873 }
9874
9875 osym = *isym;
9876
9877 /* Adjust the section index for the output file. */
9878 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9879 isec->output_section);
9880 if (osym.st_shndx == SHN_BAD)
9881 return FALSE;
9882
9883 /* ELF symbols in relocatable files are section relative, but
9884 in executable files they are virtual addresses. Note that
9885 this code assumes that all ELF sections have an associated
9886 BFD section with a reasonable value for output_offset; below
9887 we assume that they also have a reasonable value for
9888 output_section. Any special sections must be set up to meet
9889 these requirements. */
9890 osym.st_value += isec->output_offset;
9891 if (!bfd_link_relocatable (flinfo->info))
9892 {
9893 osym.st_value += isec->output_section->vma;
9894 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9895 {
9896 /* STT_TLS symbols are relative to PT_TLS segment base. */
9897 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9898 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9899 }
9900 }
9901
9902 indx = bfd_get_symcount (output_bfd);
9903 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
9904 if (ret == 0)
9905 return FALSE;
9906 else if (ret == 1)
9907 *pindex = indx;
9908 }
9909
9910 if (bed->s->arch_size == 32)
9911 {
9912 r_type_mask = 0xff;
9913 r_sym_shift = 8;
9914 address_size = 4;
9915 }
9916 else
9917 {
9918 r_type_mask = 0xffffffff;
9919 r_sym_shift = 32;
9920 address_size = 8;
9921 }
9922
9923 /* Relocate the contents of each section. */
9924 sym_hashes = elf_sym_hashes (input_bfd);
9925 for (o = input_bfd->sections; o != NULL; o = o->next)
9926 {
9927 bfd_byte *contents;
9928
9929 if (! o->linker_mark)
9930 {
9931 /* This section was omitted from the link. */
9932 continue;
9933 }
9934
9935 if (bfd_link_relocatable (flinfo->info)
9936 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9937 {
9938 /* Deal with the group signature symbol. */
9939 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9940 unsigned long symndx = sec_data->this_hdr.sh_info;
9941 asection *osec = o->output_section;
9942
9943 if (symndx >= locsymcount
9944 || (elf_bad_symtab (input_bfd)
9945 && flinfo->sections[symndx] == NULL))
9946 {
9947 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9948 while (h->root.type == bfd_link_hash_indirect
9949 || h->root.type == bfd_link_hash_warning)
9950 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9951 /* Arrange for symbol to be output. */
9952 h->indx = -2;
9953 elf_section_data (osec)->this_hdr.sh_info = -2;
9954 }
9955 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9956 {
9957 /* We'll use the output section target_index. */
9958 asection *sec = flinfo->sections[symndx]->output_section;
9959 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9960 }
9961 else
9962 {
9963 if (flinfo->indices[symndx] == -1)
9964 {
9965 /* Otherwise output the local symbol now. */
9966 Elf_Internal_Sym sym = isymbuf[symndx];
9967 asection *sec = flinfo->sections[symndx]->output_section;
9968 const char *name;
9969 long indx;
9970 int ret;
9971
9972 name = bfd_elf_string_from_elf_section (input_bfd,
9973 symtab_hdr->sh_link,
9974 sym.st_name);
9975 if (name == NULL)
9976 return FALSE;
9977
9978 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9979 sec);
9980 if (sym.st_shndx == SHN_BAD)
9981 return FALSE;
9982
9983 sym.st_value += o->output_offset;
9984
9985 indx = bfd_get_symcount (output_bfd);
9986 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
9987 NULL);
9988 if (ret == 0)
9989 return FALSE;
9990 else if (ret == 1)
9991 flinfo->indices[symndx] = indx;
9992 else
9993 abort ();
9994 }
9995 elf_section_data (osec)->this_hdr.sh_info
9996 = flinfo->indices[symndx];
9997 }
9998 }
9999
10000 if ((o->flags & SEC_HAS_CONTENTS) == 0
10001 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10002 continue;
10003
10004 if ((o->flags & SEC_LINKER_CREATED) != 0)
10005 {
10006 /* Section was created by _bfd_elf_link_create_dynamic_sections
10007 or somesuch. */
10008 continue;
10009 }
10010
10011 /* Get the contents of the section. They have been cached by a
10012 relaxation routine. Note that o is a section in an input
10013 file, so the contents field will not have been set by any of
10014 the routines which work on output files. */
10015 if (elf_section_data (o)->this_hdr.contents != NULL)
10016 {
10017 contents = elf_section_data (o)->this_hdr.contents;
10018 if (bed->caches_rawsize
10019 && o->rawsize != 0
10020 && o->rawsize < o->size)
10021 {
10022 memcpy (flinfo->contents, contents, o->rawsize);
10023 contents = flinfo->contents;
10024 }
10025 }
10026 else
10027 {
10028 contents = flinfo->contents;
10029 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10030 return FALSE;
10031 }
10032
10033 if ((o->flags & SEC_RELOC) != 0)
10034 {
10035 Elf_Internal_Rela *internal_relocs;
10036 Elf_Internal_Rela *rel, *relend;
10037 int action_discarded;
10038 int ret;
10039
10040 /* Get the swapped relocs. */
10041 internal_relocs
10042 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10043 flinfo->internal_relocs, FALSE);
10044 if (internal_relocs == NULL
10045 && o->reloc_count > 0)
10046 return FALSE;
10047
10048 /* We need to reverse-copy input .ctors/.dtors sections if
10049 they are placed in .init_array/.finit_array for output. */
10050 if (o->size > address_size
10051 && ((strncmp (o->name, ".ctors", 6) == 0
10052 && strcmp (o->output_section->name,
10053 ".init_array") == 0)
10054 || (strncmp (o->name, ".dtors", 6) == 0
10055 && strcmp (o->output_section->name,
10056 ".fini_array") == 0))
10057 && (o->name[6] == 0 || o->name[6] == '.'))
10058 {
10059 if (o->size != o->reloc_count * address_size)
10060 {
10061 (*_bfd_error_handler)
10062 (_("error: %B: size of section %A is not "
10063 "multiple of address size"),
10064 input_bfd, o);
10065 bfd_set_error (bfd_error_on_input);
10066 return FALSE;
10067 }
10068 o->flags |= SEC_ELF_REVERSE_COPY;
10069 }
10070
10071 action_discarded = -1;
10072 if (!elf_section_ignore_discarded_relocs (o))
10073 action_discarded = (*bed->action_discarded) (o);
10074
10075 /* Run through the relocs evaluating complex reloc symbols and
10076 looking for relocs against symbols from discarded sections
10077 or section symbols from removed link-once sections.
10078 Complain about relocs against discarded sections. Zero
10079 relocs against removed link-once sections. */
10080
10081 rel = internal_relocs;
10082 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
10083 for ( ; rel < relend; rel++)
10084 {
10085 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10086 unsigned int s_type;
10087 asection **ps, *sec;
10088 struct elf_link_hash_entry *h = NULL;
10089 const char *sym_name;
10090
10091 if (r_symndx == STN_UNDEF)
10092 continue;
10093
10094 if (r_symndx >= locsymcount
10095 || (elf_bad_symtab (input_bfd)
10096 && flinfo->sections[r_symndx] == NULL))
10097 {
10098 h = sym_hashes[r_symndx - extsymoff];
10099
10100 /* Badly formatted input files can contain relocs that
10101 reference non-existant symbols. Check here so that
10102 we do not seg fault. */
10103 if (h == NULL)
10104 {
10105 char buffer [32];
10106
10107 sprintf_vma (buffer, rel->r_info);
10108 (*_bfd_error_handler)
10109 (_("error: %B contains a reloc (0x%s) for section %A "
10110 "that references a non-existent global symbol"),
10111 input_bfd, o, buffer);
10112 bfd_set_error (bfd_error_bad_value);
10113 return FALSE;
10114 }
10115
10116 while (h->root.type == bfd_link_hash_indirect
10117 || h->root.type == bfd_link_hash_warning)
10118 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10119
10120 s_type = h->type;
10121
10122 /* If a plugin symbol is referenced from a non-IR file,
10123 mark the symbol as undefined. Note that the
10124 linker may attach linker created dynamic sections
10125 to the plugin bfd. Symbols defined in linker
10126 created sections are not plugin symbols. */
10127 if (h->root.non_ir_ref
10128 && (h->root.type == bfd_link_hash_defined
10129 || h->root.type == bfd_link_hash_defweak)
10130 && (h->root.u.def.section->flags
10131 & SEC_LINKER_CREATED) == 0
10132 && h->root.u.def.section->owner != NULL
10133 && (h->root.u.def.section->owner->flags
10134 & BFD_PLUGIN) != 0)
10135 {
10136 h->root.type = bfd_link_hash_undefined;
10137 h->root.u.undef.abfd = h->root.u.def.section->owner;
10138 }
10139
10140 ps = NULL;
10141 if (h->root.type == bfd_link_hash_defined
10142 || h->root.type == bfd_link_hash_defweak)
10143 ps = &h->root.u.def.section;
10144
10145 sym_name = h->root.root.string;
10146 }
10147 else
10148 {
10149 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10150
10151 s_type = ELF_ST_TYPE (sym->st_info);
10152 ps = &flinfo->sections[r_symndx];
10153 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10154 sym, *ps);
10155 }
10156
10157 if ((s_type == STT_RELC || s_type == STT_SRELC)
10158 && !bfd_link_relocatable (flinfo->info))
10159 {
10160 bfd_vma val;
10161 bfd_vma dot = (rel->r_offset
10162 + o->output_offset + o->output_section->vma);
10163 #ifdef DEBUG
10164 printf ("Encountered a complex symbol!");
10165 printf (" (input_bfd %s, section %s, reloc %ld\n",
10166 input_bfd->filename, o->name,
10167 (long) (rel - internal_relocs));
10168 printf (" symbol: idx %8.8lx, name %s\n",
10169 r_symndx, sym_name);
10170 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10171 (unsigned long) rel->r_info,
10172 (unsigned long) rel->r_offset);
10173 #endif
10174 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10175 isymbuf, locsymcount, s_type == STT_SRELC))
10176 return FALSE;
10177
10178 /* Symbol evaluated OK. Update to absolute value. */
10179 set_symbol_value (input_bfd, isymbuf, locsymcount,
10180 r_symndx, val);
10181 continue;
10182 }
10183
10184 if (action_discarded != -1 && ps != NULL)
10185 {
10186 /* Complain if the definition comes from a
10187 discarded section. */
10188 if ((sec = *ps) != NULL && discarded_section (sec))
10189 {
10190 BFD_ASSERT (r_symndx != STN_UNDEF);
10191 if (action_discarded & COMPLAIN)
10192 (*flinfo->info->callbacks->einfo)
10193 (_("%X`%s' referenced in section `%A' of %B: "
10194 "defined in discarded section `%A' of %B\n"),
10195 sym_name, o, input_bfd, sec, sec->owner);
10196
10197 /* Try to do the best we can to support buggy old
10198 versions of gcc. Pretend that the symbol is
10199 really defined in the kept linkonce section.
10200 FIXME: This is quite broken. Modifying the
10201 symbol here means we will be changing all later
10202 uses of the symbol, not just in this section. */
10203 if (action_discarded & PRETEND)
10204 {
10205 asection *kept;
10206
10207 kept = _bfd_elf_check_kept_section (sec,
10208 flinfo->info);
10209 if (kept != NULL)
10210 {
10211 *ps = kept;
10212 continue;
10213 }
10214 }
10215 }
10216 }
10217 }
10218
10219 /* Relocate the section by invoking a back end routine.
10220
10221 The back end routine is responsible for adjusting the
10222 section contents as necessary, and (if using Rela relocs
10223 and generating a relocatable output file) adjusting the
10224 reloc addend as necessary.
10225
10226 The back end routine does not have to worry about setting
10227 the reloc address or the reloc symbol index.
10228
10229 The back end routine is given a pointer to the swapped in
10230 internal symbols, and can access the hash table entries
10231 for the external symbols via elf_sym_hashes (input_bfd).
10232
10233 When generating relocatable output, the back end routine
10234 must handle STB_LOCAL/STT_SECTION symbols specially. The
10235 output symbol is going to be a section symbol
10236 corresponding to the output section, which will require
10237 the addend to be adjusted. */
10238
10239 ret = (*relocate_section) (output_bfd, flinfo->info,
10240 input_bfd, o, contents,
10241 internal_relocs,
10242 isymbuf,
10243 flinfo->sections);
10244 if (!ret)
10245 return FALSE;
10246
10247 if (ret == 2
10248 || bfd_link_relocatable (flinfo->info)
10249 || flinfo->info->emitrelocations)
10250 {
10251 Elf_Internal_Rela *irela;
10252 Elf_Internal_Rela *irelaend, *irelamid;
10253 bfd_vma last_offset;
10254 struct elf_link_hash_entry **rel_hash;
10255 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10256 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10257 unsigned int next_erel;
10258 bfd_boolean rela_normal;
10259 struct bfd_elf_section_data *esdi, *esdo;
10260
10261 esdi = elf_section_data (o);
10262 esdo = elf_section_data (o->output_section);
10263 rela_normal = FALSE;
10264
10265 /* Adjust the reloc addresses and symbol indices. */
10266
10267 irela = internal_relocs;
10268 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
10269 rel_hash = esdo->rel.hashes + esdo->rel.count;
10270 /* We start processing the REL relocs, if any. When we reach
10271 IRELAMID in the loop, we switch to the RELA relocs. */
10272 irelamid = irela;
10273 if (esdi->rel.hdr != NULL)
10274 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10275 * bed->s->int_rels_per_ext_rel);
10276 rel_hash_list = rel_hash;
10277 rela_hash_list = NULL;
10278 last_offset = o->output_offset;
10279 if (!bfd_link_relocatable (flinfo->info))
10280 last_offset += o->output_section->vma;
10281 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10282 {
10283 unsigned long r_symndx;
10284 asection *sec;
10285 Elf_Internal_Sym sym;
10286
10287 if (next_erel == bed->s->int_rels_per_ext_rel)
10288 {
10289 rel_hash++;
10290 next_erel = 0;
10291 }
10292
10293 if (irela == irelamid)
10294 {
10295 rel_hash = esdo->rela.hashes + esdo->rela.count;
10296 rela_hash_list = rel_hash;
10297 rela_normal = bed->rela_normal;
10298 }
10299
10300 irela->r_offset = _bfd_elf_section_offset (output_bfd,
10301 flinfo->info, o,
10302 irela->r_offset);
10303 if (irela->r_offset >= (bfd_vma) -2)
10304 {
10305 /* This is a reloc for a deleted entry or somesuch.
10306 Turn it into an R_*_NONE reloc, at the same
10307 offset as the last reloc. elf_eh_frame.c and
10308 bfd_elf_discard_info rely on reloc offsets
10309 being ordered. */
10310 irela->r_offset = last_offset;
10311 irela->r_info = 0;
10312 irela->r_addend = 0;
10313 continue;
10314 }
10315
10316 irela->r_offset += o->output_offset;
10317
10318 /* Relocs in an executable have to be virtual addresses. */
10319 if (!bfd_link_relocatable (flinfo->info))
10320 irela->r_offset += o->output_section->vma;
10321
10322 last_offset = irela->r_offset;
10323
10324 r_symndx = irela->r_info >> r_sym_shift;
10325 if (r_symndx == STN_UNDEF)
10326 continue;
10327
10328 if (r_symndx >= locsymcount
10329 || (elf_bad_symtab (input_bfd)
10330 && flinfo->sections[r_symndx] == NULL))
10331 {
10332 struct elf_link_hash_entry *rh;
10333 unsigned long indx;
10334
10335 /* This is a reloc against a global symbol. We
10336 have not yet output all the local symbols, so
10337 we do not know the symbol index of any global
10338 symbol. We set the rel_hash entry for this
10339 reloc to point to the global hash table entry
10340 for this symbol. The symbol index is then
10341 set at the end of bfd_elf_final_link. */
10342 indx = r_symndx - extsymoff;
10343 rh = elf_sym_hashes (input_bfd)[indx];
10344 while (rh->root.type == bfd_link_hash_indirect
10345 || rh->root.type == bfd_link_hash_warning)
10346 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10347
10348 /* Setting the index to -2 tells
10349 elf_link_output_extsym that this symbol is
10350 used by a reloc. */
10351 BFD_ASSERT (rh->indx < 0);
10352 rh->indx = -2;
10353
10354 *rel_hash = rh;
10355
10356 continue;
10357 }
10358
10359 /* This is a reloc against a local symbol. */
10360
10361 *rel_hash = NULL;
10362 sym = isymbuf[r_symndx];
10363 sec = flinfo->sections[r_symndx];
10364 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10365 {
10366 /* I suppose the backend ought to fill in the
10367 section of any STT_SECTION symbol against a
10368 processor specific section. */
10369 r_symndx = STN_UNDEF;
10370 if (bfd_is_abs_section (sec))
10371 ;
10372 else if (sec == NULL || sec->owner == NULL)
10373 {
10374 bfd_set_error (bfd_error_bad_value);
10375 return FALSE;
10376 }
10377 else
10378 {
10379 asection *osec = sec->output_section;
10380
10381 /* If we have discarded a section, the output
10382 section will be the absolute section. In
10383 case of discarded SEC_MERGE sections, use
10384 the kept section. relocate_section should
10385 have already handled discarded linkonce
10386 sections. */
10387 if (bfd_is_abs_section (osec)
10388 && sec->kept_section != NULL
10389 && sec->kept_section->output_section != NULL)
10390 {
10391 osec = sec->kept_section->output_section;
10392 irela->r_addend -= osec->vma;
10393 }
10394
10395 if (!bfd_is_abs_section (osec))
10396 {
10397 r_symndx = osec->target_index;
10398 if (r_symndx == STN_UNDEF)
10399 {
10400 irela->r_addend += osec->vma;
10401 osec = _bfd_nearby_section (output_bfd, osec,
10402 osec->vma);
10403 irela->r_addend -= osec->vma;
10404 r_symndx = osec->target_index;
10405 }
10406 }
10407 }
10408
10409 /* Adjust the addend according to where the
10410 section winds up in the output section. */
10411 if (rela_normal)
10412 irela->r_addend += sec->output_offset;
10413 }
10414 else
10415 {
10416 if (flinfo->indices[r_symndx] == -1)
10417 {
10418 unsigned long shlink;
10419 const char *name;
10420 asection *osec;
10421 long indx;
10422
10423 if (flinfo->info->strip == strip_all)
10424 {
10425 /* You can't do ld -r -s. */
10426 bfd_set_error (bfd_error_invalid_operation);
10427 return FALSE;
10428 }
10429
10430 /* This symbol was skipped earlier, but
10431 since it is needed by a reloc, we
10432 must output it now. */
10433 shlink = symtab_hdr->sh_link;
10434 name = (bfd_elf_string_from_elf_section
10435 (input_bfd, shlink, sym.st_name));
10436 if (name == NULL)
10437 return FALSE;
10438
10439 osec = sec->output_section;
10440 sym.st_shndx =
10441 _bfd_elf_section_from_bfd_section (output_bfd,
10442 osec);
10443 if (sym.st_shndx == SHN_BAD)
10444 return FALSE;
10445
10446 sym.st_value += sec->output_offset;
10447 if (!bfd_link_relocatable (flinfo->info))
10448 {
10449 sym.st_value += osec->vma;
10450 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10451 {
10452 /* STT_TLS symbols are relative to PT_TLS
10453 segment base. */
10454 BFD_ASSERT (elf_hash_table (flinfo->info)
10455 ->tls_sec != NULL);
10456 sym.st_value -= (elf_hash_table (flinfo->info)
10457 ->tls_sec->vma);
10458 }
10459 }
10460
10461 indx = bfd_get_symcount (output_bfd);
10462 ret = elf_link_output_symstrtab (flinfo, name,
10463 &sym, sec,
10464 NULL);
10465 if (ret == 0)
10466 return FALSE;
10467 else if (ret == 1)
10468 flinfo->indices[r_symndx] = indx;
10469 else
10470 abort ();
10471 }
10472
10473 r_symndx = flinfo->indices[r_symndx];
10474 }
10475
10476 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10477 | (irela->r_info & r_type_mask));
10478 }
10479
10480 /* Swap out the relocs. */
10481 input_rel_hdr = esdi->rel.hdr;
10482 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10483 {
10484 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10485 input_rel_hdr,
10486 internal_relocs,
10487 rel_hash_list))
10488 return FALSE;
10489 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10490 * bed->s->int_rels_per_ext_rel);
10491 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10492 }
10493
10494 input_rela_hdr = esdi->rela.hdr;
10495 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10496 {
10497 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10498 input_rela_hdr,
10499 internal_relocs,
10500 rela_hash_list))
10501 return FALSE;
10502 }
10503 }
10504 }
10505
10506 /* Write out the modified section contents. */
10507 if (bed->elf_backend_write_section
10508 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10509 contents))
10510 {
10511 /* Section written out. */
10512 }
10513 else switch (o->sec_info_type)
10514 {
10515 case SEC_INFO_TYPE_STABS:
10516 if (! (_bfd_write_section_stabs
10517 (output_bfd,
10518 &elf_hash_table (flinfo->info)->stab_info,
10519 o, &elf_section_data (o)->sec_info, contents)))
10520 return FALSE;
10521 break;
10522 case SEC_INFO_TYPE_MERGE:
10523 if (! _bfd_write_merged_section (output_bfd, o,
10524 elf_section_data (o)->sec_info))
10525 return FALSE;
10526 break;
10527 case SEC_INFO_TYPE_EH_FRAME:
10528 {
10529 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10530 o, contents))
10531 return FALSE;
10532 }
10533 break;
10534 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10535 {
10536 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
10537 flinfo->info,
10538 o, contents))
10539 return FALSE;
10540 }
10541 break;
10542 default:
10543 {
10544 if (! (o->flags & SEC_EXCLUDE))
10545 {
10546 file_ptr offset = (file_ptr) o->output_offset;
10547 bfd_size_type todo = o->size;
10548
10549 offset *= bfd_octets_per_byte (output_bfd);
10550
10551 if ((o->flags & SEC_ELF_REVERSE_COPY))
10552 {
10553 /* Reverse-copy input section to output. */
10554 do
10555 {
10556 todo -= address_size;
10557 if (! bfd_set_section_contents (output_bfd,
10558 o->output_section,
10559 contents + todo,
10560 offset,
10561 address_size))
10562 return FALSE;
10563 if (todo == 0)
10564 break;
10565 offset += address_size;
10566 }
10567 while (1);
10568 }
10569 else if (! bfd_set_section_contents (output_bfd,
10570 o->output_section,
10571 contents,
10572 offset, todo))
10573 return FALSE;
10574 }
10575 }
10576 break;
10577 }
10578 }
10579
10580 return TRUE;
10581 }
10582
10583 /* Generate a reloc when linking an ELF file. This is a reloc
10584 requested by the linker, and does not come from any input file. This
10585 is used to build constructor and destructor tables when linking
10586 with -Ur. */
10587
10588 static bfd_boolean
10589 elf_reloc_link_order (bfd *output_bfd,
10590 struct bfd_link_info *info,
10591 asection *output_section,
10592 struct bfd_link_order *link_order)
10593 {
10594 reloc_howto_type *howto;
10595 long indx;
10596 bfd_vma offset;
10597 bfd_vma addend;
10598 struct bfd_elf_section_reloc_data *reldata;
10599 struct elf_link_hash_entry **rel_hash_ptr;
10600 Elf_Internal_Shdr *rel_hdr;
10601 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10602 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10603 bfd_byte *erel;
10604 unsigned int i;
10605 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10606
10607 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10608 if (howto == NULL)
10609 {
10610 bfd_set_error (bfd_error_bad_value);
10611 return FALSE;
10612 }
10613
10614 addend = link_order->u.reloc.p->addend;
10615
10616 if (esdo->rel.hdr)
10617 reldata = &esdo->rel;
10618 else if (esdo->rela.hdr)
10619 reldata = &esdo->rela;
10620 else
10621 {
10622 reldata = NULL;
10623 BFD_ASSERT (0);
10624 }
10625
10626 /* Figure out the symbol index. */
10627 rel_hash_ptr = reldata->hashes + reldata->count;
10628 if (link_order->type == bfd_section_reloc_link_order)
10629 {
10630 indx = link_order->u.reloc.p->u.section->target_index;
10631 BFD_ASSERT (indx != 0);
10632 *rel_hash_ptr = NULL;
10633 }
10634 else
10635 {
10636 struct elf_link_hash_entry *h;
10637
10638 /* Treat a reloc against a defined symbol as though it were
10639 actually against the section. */
10640 h = ((struct elf_link_hash_entry *)
10641 bfd_wrapped_link_hash_lookup (output_bfd, info,
10642 link_order->u.reloc.p->u.name,
10643 FALSE, FALSE, TRUE));
10644 if (h != NULL
10645 && (h->root.type == bfd_link_hash_defined
10646 || h->root.type == bfd_link_hash_defweak))
10647 {
10648 asection *section;
10649
10650 section = h->root.u.def.section;
10651 indx = section->output_section->target_index;
10652 *rel_hash_ptr = NULL;
10653 /* It seems that we ought to add the symbol value to the
10654 addend here, but in practice it has already been added
10655 because it was passed to constructor_callback. */
10656 addend += section->output_section->vma + section->output_offset;
10657 }
10658 else if (h != NULL)
10659 {
10660 /* Setting the index to -2 tells elf_link_output_extsym that
10661 this symbol is used by a reloc. */
10662 h->indx = -2;
10663 *rel_hash_ptr = h;
10664 indx = 0;
10665 }
10666 else
10667 {
10668 if (! ((*info->callbacks->unattached_reloc)
10669 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10670 return FALSE;
10671 indx = 0;
10672 }
10673 }
10674
10675 /* If this is an inplace reloc, we must write the addend into the
10676 object file. */
10677 if (howto->partial_inplace && addend != 0)
10678 {
10679 bfd_size_type size;
10680 bfd_reloc_status_type rstat;
10681 bfd_byte *buf;
10682 bfd_boolean ok;
10683 const char *sym_name;
10684
10685 size = (bfd_size_type) bfd_get_reloc_size (howto);
10686 buf = (bfd_byte *) bfd_zmalloc (size);
10687 if (buf == NULL && size != 0)
10688 return FALSE;
10689 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10690 switch (rstat)
10691 {
10692 case bfd_reloc_ok:
10693 break;
10694
10695 default:
10696 case bfd_reloc_outofrange:
10697 abort ();
10698
10699 case bfd_reloc_overflow:
10700 if (link_order->type == bfd_section_reloc_link_order)
10701 sym_name = bfd_section_name (output_bfd,
10702 link_order->u.reloc.p->u.section);
10703 else
10704 sym_name = link_order->u.reloc.p->u.name;
10705 if (! ((*info->callbacks->reloc_overflow)
10706 (info, NULL, sym_name, howto->name, addend, NULL,
10707 NULL, (bfd_vma) 0)))
10708 {
10709 free (buf);
10710 return FALSE;
10711 }
10712 break;
10713 }
10714
10715 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10716 link_order->offset
10717 * bfd_octets_per_byte (output_bfd),
10718 size);
10719 free (buf);
10720 if (! ok)
10721 return FALSE;
10722 }
10723
10724 /* The address of a reloc is relative to the section in a
10725 relocatable file, and is a virtual address in an executable
10726 file. */
10727 offset = link_order->offset;
10728 if (! bfd_link_relocatable (info))
10729 offset += output_section->vma;
10730
10731 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10732 {
10733 irel[i].r_offset = offset;
10734 irel[i].r_info = 0;
10735 irel[i].r_addend = 0;
10736 }
10737 if (bed->s->arch_size == 32)
10738 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10739 else
10740 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10741
10742 rel_hdr = reldata->hdr;
10743 erel = rel_hdr->contents;
10744 if (rel_hdr->sh_type == SHT_REL)
10745 {
10746 erel += reldata->count * bed->s->sizeof_rel;
10747 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10748 }
10749 else
10750 {
10751 irel[0].r_addend = addend;
10752 erel += reldata->count * bed->s->sizeof_rela;
10753 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10754 }
10755
10756 ++reldata->count;
10757
10758 return TRUE;
10759 }
10760
10761
10762 /* Get the output vma of the section pointed to by the sh_link field. */
10763
10764 static bfd_vma
10765 elf_get_linked_section_vma (struct bfd_link_order *p)
10766 {
10767 Elf_Internal_Shdr **elf_shdrp;
10768 asection *s;
10769 int elfsec;
10770
10771 s = p->u.indirect.section;
10772 elf_shdrp = elf_elfsections (s->owner);
10773 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10774 elfsec = elf_shdrp[elfsec]->sh_link;
10775 /* PR 290:
10776 The Intel C compiler generates SHT_IA_64_UNWIND with
10777 SHF_LINK_ORDER. But it doesn't set the sh_link or
10778 sh_info fields. Hence we could get the situation
10779 where elfsec is 0. */
10780 if (elfsec == 0)
10781 {
10782 const struct elf_backend_data *bed
10783 = get_elf_backend_data (s->owner);
10784 if (bed->link_order_error_handler)
10785 bed->link_order_error_handler
10786 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10787 return 0;
10788 }
10789 else
10790 {
10791 s = elf_shdrp[elfsec]->bfd_section;
10792 return s->output_section->vma + s->output_offset;
10793 }
10794 }
10795
10796
10797 /* Compare two sections based on the locations of the sections they are
10798 linked to. Used by elf_fixup_link_order. */
10799
10800 static int
10801 compare_link_order (const void * a, const void * b)
10802 {
10803 bfd_vma apos;
10804 bfd_vma bpos;
10805
10806 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10807 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10808 if (apos < bpos)
10809 return -1;
10810 return apos > bpos;
10811 }
10812
10813
10814 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10815 order as their linked sections. Returns false if this could not be done
10816 because an output section includes both ordered and unordered
10817 sections. Ideally we'd do this in the linker proper. */
10818
10819 static bfd_boolean
10820 elf_fixup_link_order (bfd *abfd, asection *o)
10821 {
10822 int seen_linkorder;
10823 int seen_other;
10824 int n;
10825 struct bfd_link_order *p;
10826 bfd *sub;
10827 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10828 unsigned elfsec;
10829 struct bfd_link_order **sections;
10830 asection *s, *other_sec, *linkorder_sec;
10831 bfd_vma offset;
10832
10833 other_sec = NULL;
10834 linkorder_sec = NULL;
10835 seen_other = 0;
10836 seen_linkorder = 0;
10837 for (p = o->map_head.link_order; p != NULL; p = p->next)
10838 {
10839 if (p->type == bfd_indirect_link_order)
10840 {
10841 s = p->u.indirect.section;
10842 sub = s->owner;
10843 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10844 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10845 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10846 && elfsec < elf_numsections (sub)
10847 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10848 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10849 {
10850 seen_linkorder++;
10851 linkorder_sec = s;
10852 }
10853 else
10854 {
10855 seen_other++;
10856 other_sec = s;
10857 }
10858 }
10859 else
10860 seen_other++;
10861
10862 if (seen_other && seen_linkorder)
10863 {
10864 if (other_sec && linkorder_sec)
10865 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10866 o, linkorder_sec,
10867 linkorder_sec->owner, other_sec,
10868 other_sec->owner);
10869 else
10870 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10871 o);
10872 bfd_set_error (bfd_error_bad_value);
10873 return FALSE;
10874 }
10875 }
10876
10877 if (!seen_linkorder)
10878 return TRUE;
10879
10880 sections = (struct bfd_link_order **)
10881 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10882 if (sections == NULL)
10883 return FALSE;
10884 seen_linkorder = 0;
10885
10886 for (p = o->map_head.link_order; p != NULL; p = p->next)
10887 {
10888 sections[seen_linkorder++] = p;
10889 }
10890 /* Sort the input sections in the order of their linked section. */
10891 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10892 compare_link_order);
10893
10894 /* Change the offsets of the sections. */
10895 offset = 0;
10896 for (n = 0; n < seen_linkorder; n++)
10897 {
10898 s = sections[n]->u.indirect.section;
10899 offset &= ~(bfd_vma) 0 << s->alignment_power;
10900 s->output_offset = offset / bfd_octets_per_byte (abfd);
10901 sections[n]->offset = offset;
10902 offset += sections[n]->size;
10903 }
10904
10905 free (sections);
10906 return TRUE;
10907 }
10908
10909 static void
10910 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10911 {
10912 asection *o;
10913
10914 if (flinfo->symstrtab != NULL)
10915 _bfd_elf_strtab_free (flinfo->symstrtab);
10916 if (flinfo->contents != NULL)
10917 free (flinfo->contents);
10918 if (flinfo->external_relocs != NULL)
10919 free (flinfo->external_relocs);
10920 if (flinfo->internal_relocs != NULL)
10921 free (flinfo->internal_relocs);
10922 if (flinfo->external_syms != NULL)
10923 free (flinfo->external_syms);
10924 if (flinfo->locsym_shndx != NULL)
10925 free (flinfo->locsym_shndx);
10926 if (flinfo->internal_syms != NULL)
10927 free (flinfo->internal_syms);
10928 if (flinfo->indices != NULL)
10929 free (flinfo->indices);
10930 if (flinfo->sections != NULL)
10931 free (flinfo->sections);
10932 if (flinfo->symshndxbuf != NULL)
10933 free (flinfo->symshndxbuf);
10934 for (o = obfd->sections; o != NULL; o = o->next)
10935 {
10936 struct bfd_elf_section_data *esdo = elf_section_data (o);
10937 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10938 free (esdo->rel.hashes);
10939 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10940 free (esdo->rela.hashes);
10941 }
10942 }
10943
10944 /* Do the final step of an ELF link. */
10945
10946 bfd_boolean
10947 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10948 {
10949 bfd_boolean dynamic;
10950 bfd_boolean emit_relocs;
10951 bfd *dynobj;
10952 struct elf_final_link_info flinfo;
10953 asection *o;
10954 struct bfd_link_order *p;
10955 bfd *sub;
10956 bfd_size_type max_contents_size;
10957 bfd_size_type max_external_reloc_size;
10958 bfd_size_type max_internal_reloc_count;
10959 bfd_size_type max_sym_count;
10960 bfd_size_type max_sym_shndx_count;
10961 Elf_Internal_Sym elfsym;
10962 unsigned int i;
10963 Elf_Internal_Shdr *symtab_hdr;
10964 Elf_Internal_Shdr *symtab_shndx_hdr;
10965 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10966 struct elf_outext_info eoinfo;
10967 bfd_boolean merged;
10968 size_t relativecount = 0;
10969 asection *reldyn = 0;
10970 bfd_size_type amt;
10971 asection *attr_section = NULL;
10972 bfd_vma attr_size = 0;
10973 const char *std_attrs_section;
10974
10975 if (! is_elf_hash_table (info->hash))
10976 return FALSE;
10977
10978 if (bfd_link_pic (info))
10979 abfd->flags |= DYNAMIC;
10980
10981 dynamic = elf_hash_table (info)->dynamic_sections_created;
10982 dynobj = elf_hash_table (info)->dynobj;
10983
10984 emit_relocs = (bfd_link_relocatable (info)
10985 || info->emitrelocations);
10986
10987 flinfo.info = info;
10988 flinfo.output_bfd = abfd;
10989 flinfo.symstrtab = _bfd_elf_strtab_init ();
10990 if (flinfo.symstrtab == NULL)
10991 return FALSE;
10992
10993 if (! dynamic)
10994 {
10995 flinfo.hash_sec = NULL;
10996 flinfo.symver_sec = NULL;
10997 }
10998 else
10999 {
11000 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11001 /* Note that dynsym_sec can be NULL (on VMS). */
11002 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11003 /* Note that it is OK if symver_sec is NULL. */
11004 }
11005
11006 flinfo.contents = NULL;
11007 flinfo.external_relocs = NULL;
11008 flinfo.internal_relocs = NULL;
11009 flinfo.external_syms = NULL;
11010 flinfo.locsym_shndx = NULL;
11011 flinfo.internal_syms = NULL;
11012 flinfo.indices = NULL;
11013 flinfo.sections = NULL;
11014 flinfo.symshndxbuf = NULL;
11015 flinfo.filesym_count = 0;
11016
11017 /* The object attributes have been merged. Remove the input
11018 sections from the link, and set the contents of the output
11019 secton. */
11020 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11021 for (o = abfd->sections; o != NULL; o = o->next)
11022 {
11023 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11024 || strcmp (o->name, ".gnu.attributes") == 0)
11025 {
11026 for (p = o->map_head.link_order; p != NULL; p = p->next)
11027 {
11028 asection *input_section;
11029
11030 if (p->type != bfd_indirect_link_order)
11031 continue;
11032 input_section = p->u.indirect.section;
11033 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11034 elf_link_input_bfd ignores this section. */
11035 input_section->flags &= ~SEC_HAS_CONTENTS;
11036 }
11037
11038 attr_size = bfd_elf_obj_attr_size (abfd);
11039 if (attr_size)
11040 {
11041 bfd_set_section_size (abfd, o, attr_size);
11042 attr_section = o;
11043 /* Skip this section later on. */
11044 o->map_head.link_order = NULL;
11045 }
11046 else
11047 o->flags |= SEC_EXCLUDE;
11048 }
11049 }
11050
11051 /* Count up the number of relocations we will output for each output
11052 section, so that we know the sizes of the reloc sections. We
11053 also figure out some maximum sizes. */
11054 max_contents_size = 0;
11055 max_external_reloc_size = 0;
11056 max_internal_reloc_count = 0;
11057 max_sym_count = 0;
11058 max_sym_shndx_count = 0;
11059 merged = FALSE;
11060 for (o = abfd->sections; o != NULL; o = o->next)
11061 {
11062 struct bfd_elf_section_data *esdo = elf_section_data (o);
11063 o->reloc_count = 0;
11064
11065 for (p = o->map_head.link_order; p != NULL; p = p->next)
11066 {
11067 unsigned int reloc_count = 0;
11068 unsigned int additional_reloc_count = 0;
11069 struct bfd_elf_section_data *esdi = NULL;
11070
11071 if (p->type == bfd_section_reloc_link_order
11072 || p->type == bfd_symbol_reloc_link_order)
11073 reloc_count = 1;
11074 else if (p->type == bfd_indirect_link_order)
11075 {
11076 asection *sec;
11077
11078 sec = p->u.indirect.section;
11079 esdi = elf_section_data (sec);
11080
11081 /* Mark all sections which are to be included in the
11082 link. This will normally be every section. We need
11083 to do this so that we can identify any sections which
11084 the linker has decided to not include. */
11085 sec->linker_mark = TRUE;
11086
11087 if (sec->flags & SEC_MERGE)
11088 merged = TRUE;
11089
11090 if (esdo->this_hdr.sh_type == SHT_REL
11091 || esdo->this_hdr.sh_type == SHT_RELA)
11092 /* Some backends use reloc_count in relocation sections
11093 to count particular types of relocs. Of course,
11094 reloc sections themselves can't have relocations. */
11095 reloc_count = 0;
11096 else if (emit_relocs)
11097 {
11098 reloc_count = sec->reloc_count;
11099 if (bed->elf_backend_count_additional_relocs)
11100 {
11101 int c;
11102 c = (*bed->elf_backend_count_additional_relocs) (sec);
11103 additional_reloc_count += c;
11104 }
11105 }
11106 else if (bed->elf_backend_count_relocs)
11107 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11108
11109 if (sec->rawsize > max_contents_size)
11110 max_contents_size = sec->rawsize;
11111 if (sec->size > max_contents_size)
11112 max_contents_size = sec->size;
11113
11114 /* We are interested in just local symbols, not all
11115 symbols. */
11116 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11117 && (sec->owner->flags & DYNAMIC) == 0)
11118 {
11119 size_t sym_count;
11120
11121 if (elf_bad_symtab (sec->owner))
11122 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11123 / bed->s->sizeof_sym);
11124 else
11125 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11126
11127 if (sym_count > max_sym_count)
11128 max_sym_count = sym_count;
11129
11130 if (sym_count > max_sym_shndx_count
11131 && elf_symtab_shndx_list (sec->owner) != NULL)
11132 max_sym_shndx_count = sym_count;
11133
11134 if ((sec->flags & SEC_RELOC) != 0)
11135 {
11136 size_t ext_size = 0;
11137
11138 if (esdi->rel.hdr != NULL)
11139 ext_size = esdi->rel.hdr->sh_size;
11140 if (esdi->rela.hdr != NULL)
11141 ext_size += esdi->rela.hdr->sh_size;
11142
11143 if (ext_size > max_external_reloc_size)
11144 max_external_reloc_size = ext_size;
11145 if (sec->reloc_count > max_internal_reloc_count)
11146 max_internal_reloc_count = sec->reloc_count;
11147 }
11148 }
11149 }
11150
11151 if (reloc_count == 0)
11152 continue;
11153
11154 reloc_count += additional_reloc_count;
11155 o->reloc_count += reloc_count;
11156
11157 if (p->type == bfd_indirect_link_order && emit_relocs)
11158 {
11159 if (esdi->rel.hdr)
11160 {
11161 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
11162 esdo->rel.count += additional_reloc_count;
11163 }
11164 if (esdi->rela.hdr)
11165 {
11166 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
11167 esdo->rela.count += additional_reloc_count;
11168 }
11169 }
11170 else
11171 {
11172 if (o->use_rela_p)
11173 esdo->rela.count += reloc_count;
11174 else
11175 esdo->rel.count += reloc_count;
11176 }
11177 }
11178
11179 if (o->reloc_count > 0)
11180 o->flags |= SEC_RELOC;
11181 else
11182 {
11183 /* Explicitly clear the SEC_RELOC flag. The linker tends to
11184 set it (this is probably a bug) and if it is set
11185 assign_section_numbers will create a reloc section. */
11186 o->flags &=~ SEC_RELOC;
11187 }
11188
11189 /* If the SEC_ALLOC flag is not set, force the section VMA to
11190 zero. This is done in elf_fake_sections as well, but forcing
11191 the VMA to 0 here will ensure that relocs against these
11192 sections are handled correctly. */
11193 if ((o->flags & SEC_ALLOC) == 0
11194 && ! o->user_set_vma)
11195 o->vma = 0;
11196 }
11197
11198 if (! bfd_link_relocatable (info) && merged)
11199 elf_link_hash_traverse (elf_hash_table (info),
11200 _bfd_elf_link_sec_merge_syms, abfd);
11201
11202 /* Figure out the file positions for everything but the symbol table
11203 and the relocs. We set symcount to force assign_section_numbers
11204 to create a symbol table. */
11205 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
11206 BFD_ASSERT (! abfd->output_has_begun);
11207 if (! _bfd_elf_compute_section_file_positions (abfd, info))
11208 goto error_return;
11209
11210 /* Set sizes, and assign file positions for reloc sections. */
11211 for (o = abfd->sections; o != NULL; o = o->next)
11212 {
11213 struct bfd_elf_section_data *esdo = elf_section_data (o);
11214 if ((o->flags & SEC_RELOC) != 0)
11215 {
11216 if (esdo->rel.hdr
11217 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
11218 goto error_return;
11219
11220 if (esdo->rela.hdr
11221 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
11222 goto error_return;
11223 }
11224
11225 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
11226 to count upwards while actually outputting the relocations. */
11227 esdo->rel.count = 0;
11228 esdo->rela.count = 0;
11229
11230 if (esdo->this_hdr.sh_offset == (file_ptr) -1)
11231 {
11232 /* Cache the section contents so that they can be compressed
11233 later. Use bfd_malloc since it will be freed by
11234 bfd_compress_section_contents. */
11235 unsigned char *contents = esdo->this_hdr.contents;
11236 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
11237 abort ();
11238 contents
11239 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
11240 if (contents == NULL)
11241 goto error_return;
11242 esdo->this_hdr.contents = contents;
11243 }
11244 }
11245
11246 /* We have now assigned file positions for all the sections except
11247 .symtab, .strtab, and non-loaded reloc sections. We start the
11248 .symtab section at the current file position, and write directly
11249 to it. We build the .strtab section in memory. */
11250 bfd_get_symcount (abfd) = 0;
11251 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11252 /* sh_name is set in prep_headers. */
11253 symtab_hdr->sh_type = SHT_SYMTAB;
11254 /* sh_flags, sh_addr and sh_size all start off zero. */
11255 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
11256 /* sh_link is set in assign_section_numbers. */
11257 /* sh_info is set below. */
11258 /* sh_offset is set just below. */
11259 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
11260
11261 if (max_sym_count < 20)
11262 max_sym_count = 20;
11263 elf_hash_table (info)->strtabsize = max_sym_count;
11264 amt = max_sym_count * sizeof (struct elf_sym_strtab);
11265 elf_hash_table (info)->strtab
11266 = (struct elf_sym_strtab *) bfd_malloc (amt);
11267 if (elf_hash_table (info)->strtab == NULL)
11268 goto error_return;
11269 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
11270 flinfo.symshndxbuf
11271 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
11272 ? (Elf_External_Sym_Shndx *) -1 : NULL);
11273
11274 if (info->strip != strip_all || emit_relocs)
11275 {
11276 file_ptr off = elf_next_file_pos (abfd);
11277
11278 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
11279
11280 /* Note that at this point elf_next_file_pos (abfd) is
11281 incorrect. We do not yet know the size of the .symtab section.
11282 We correct next_file_pos below, after we do know the size. */
11283
11284 /* Start writing out the symbol table. The first symbol is always a
11285 dummy symbol. */
11286 elfsym.st_value = 0;
11287 elfsym.st_size = 0;
11288 elfsym.st_info = 0;
11289 elfsym.st_other = 0;
11290 elfsym.st_shndx = SHN_UNDEF;
11291 elfsym.st_target_internal = 0;
11292 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
11293 bfd_und_section_ptr, NULL) != 1)
11294 goto error_return;
11295
11296 /* Output a symbol for each section. We output these even if we are
11297 discarding local symbols, since they are used for relocs. These
11298 symbols have no names. We store the index of each one in the
11299 index field of the section, so that we can find it again when
11300 outputting relocs. */
11301
11302 elfsym.st_size = 0;
11303 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11304 elfsym.st_other = 0;
11305 elfsym.st_value = 0;
11306 elfsym.st_target_internal = 0;
11307 for (i = 1; i < elf_numsections (abfd); i++)
11308 {
11309 o = bfd_section_from_elf_index (abfd, i);
11310 if (o != NULL)
11311 {
11312 o->target_index = bfd_get_symcount (abfd);
11313 elfsym.st_shndx = i;
11314 if (!bfd_link_relocatable (info))
11315 elfsym.st_value = o->vma;
11316 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
11317 NULL) != 1)
11318 goto error_return;
11319 }
11320 }
11321 }
11322
11323 /* Allocate some memory to hold information read in from the input
11324 files. */
11325 if (max_contents_size != 0)
11326 {
11327 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
11328 if (flinfo.contents == NULL)
11329 goto error_return;
11330 }
11331
11332 if (max_external_reloc_size != 0)
11333 {
11334 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
11335 if (flinfo.external_relocs == NULL)
11336 goto error_return;
11337 }
11338
11339 if (max_internal_reloc_count != 0)
11340 {
11341 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
11342 amt *= sizeof (Elf_Internal_Rela);
11343 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
11344 if (flinfo.internal_relocs == NULL)
11345 goto error_return;
11346 }
11347
11348 if (max_sym_count != 0)
11349 {
11350 amt = max_sym_count * bed->s->sizeof_sym;
11351 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
11352 if (flinfo.external_syms == NULL)
11353 goto error_return;
11354
11355 amt = max_sym_count * sizeof (Elf_Internal_Sym);
11356 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
11357 if (flinfo.internal_syms == NULL)
11358 goto error_return;
11359
11360 amt = max_sym_count * sizeof (long);
11361 flinfo.indices = (long int *) bfd_malloc (amt);
11362 if (flinfo.indices == NULL)
11363 goto error_return;
11364
11365 amt = max_sym_count * sizeof (asection *);
11366 flinfo.sections = (asection **) bfd_malloc (amt);
11367 if (flinfo.sections == NULL)
11368 goto error_return;
11369 }
11370
11371 if (max_sym_shndx_count != 0)
11372 {
11373 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11374 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11375 if (flinfo.locsym_shndx == NULL)
11376 goto error_return;
11377 }
11378
11379 if (elf_hash_table (info)->tls_sec)
11380 {
11381 bfd_vma base, end = 0;
11382 asection *sec;
11383
11384 for (sec = elf_hash_table (info)->tls_sec;
11385 sec && (sec->flags & SEC_THREAD_LOCAL);
11386 sec = sec->next)
11387 {
11388 bfd_size_type size = sec->size;
11389
11390 if (size == 0
11391 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11392 {
11393 struct bfd_link_order *ord = sec->map_tail.link_order;
11394
11395 if (ord != NULL)
11396 size = ord->offset + ord->size;
11397 }
11398 end = sec->vma + size;
11399 }
11400 base = elf_hash_table (info)->tls_sec->vma;
11401 /* Only align end of TLS section if static TLS doesn't have special
11402 alignment requirements. */
11403 if (bed->static_tls_alignment == 1)
11404 end = align_power (end,
11405 elf_hash_table (info)->tls_sec->alignment_power);
11406 elf_hash_table (info)->tls_size = end - base;
11407 }
11408
11409 /* Reorder SHF_LINK_ORDER sections. */
11410 for (o = abfd->sections; o != NULL; o = o->next)
11411 {
11412 if (!elf_fixup_link_order (abfd, o))
11413 return FALSE;
11414 }
11415
11416 if (!_bfd_elf_fixup_eh_frame_hdr (info))
11417 return FALSE;
11418
11419 /* Since ELF permits relocations to be against local symbols, we
11420 must have the local symbols available when we do the relocations.
11421 Since we would rather only read the local symbols once, and we
11422 would rather not keep them in memory, we handle all the
11423 relocations for a single input file at the same time.
11424
11425 Unfortunately, there is no way to know the total number of local
11426 symbols until we have seen all of them, and the local symbol
11427 indices precede the global symbol indices. This means that when
11428 we are generating relocatable output, and we see a reloc against
11429 a global symbol, we can not know the symbol index until we have
11430 finished examining all the local symbols to see which ones we are
11431 going to output. To deal with this, we keep the relocations in
11432 memory, and don't output them until the end of the link. This is
11433 an unfortunate waste of memory, but I don't see a good way around
11434 it. Fortunately, it only happens when performing a relocatable
11435 link, which is not the common case. FIXME: If keep_memory is set
11436 we could write the relocs out and then read them again; I don't
11437 know how bad the memory loss will be. */
11438
11439 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11440 sub->output_has_begun = FALSE;
11441 for (o = abfd->sections; o != NULL; o = o->next)
11442 {
11443 for (p = o->map_head.link_order; p != NULL; p = p->next)
11444 {
11445 if (p->type == bfd_indirect_link_order
11446 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11447 == bfd_target_elf_flavour)
11448 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11449 {
11450 if (! sub->output_has_begun)
11451 {
11452 if (! elf_link_input_bfd (&flinfo, sub))
11453 goto error_return;
11454 sub->output_has_begun = TRUE;
11455 }
11456 }
11457 else if (p->type == bfd_section_reloc_link_order
11458 || p->type == bfd_symbol_reloc_link_order)
11459 {
11460 if (! elf_reloc_link_order (abfd, info, o, p))
11461 goto error_return;
11462 }
11463 else
11464 {
11465 if (! _bfd_default_link_order (abfd, info, o, p))
11466 {
11467 if (p->type == bfd_indirect_link_order
11468 && (bfd_get_flavour (sub)
11469 == bfd_target_elf_flavour)
11470 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11471 != bed->s->elfclass))
11472 {
11473 const char *iclass, *oclass;
11474
11475 switch (bed->s->elfclass)
11476 {
11477 case ELFCLASS64: oclass = "ELFCLASS64"; break;
11478 case ELFCLASS32: oclass = "ELFCLASS32"; break;
11479 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
11480 default: abort ();
11481 }
11482
11483 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
11484 {
11485 case ELFCLASS64: iclass = "ELFCLASS64"; break;
11486 case ELFCLASS32: iclass = "ELFCLASS32"; break;
11487 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
11488 default: abort ();
11489 }
11490
11491 bfd_set_error (bfd_error_wrong_format);
11492 (*_bfd_error_handler)
11493 (_("%B: file class %s incompatible with %s"),
11494 sub, iclass, oclass);
11495 }
11496
11497 goto error_return;
11498 }
11499 }
11500 }
11501 }
11502
11503 /* Free symbol buffer if needed. */
11504 if (!info->reduce_memory_overheads)
11505 {
11506 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11507 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11508 && elf_tdata (sub)->symbuf)
11509 {
11510 free (elf_tdata (sub)->symbuf);
11511 elf_tdata (sub)->symbuf = NULL;
11512 }
11513 }
11514
11515 /* Output any global symbols that got converted to local in a
11516 version script or due to symbol visibility. We do this in a
11517 separate step since ELF requires all local symbols to appear
11518 prior to any global symbols. FIXME: We should only do this if
11519 some global symbols were, in fact, converted to become local.
11520 FIXME: Will this work correctly with the Irix 5 linker? */
11521 eoinfo.failed = FALSE;
11522 eoinfo.flinfo = &flinfo;
11523 eoinfo.localsyms = TRUE;
11524 eoinfo.file_sym_done = FALSE;
11525 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11526 if (eoinfo.failed)
11527 return FALSE;
11528
11529 /* If backend needs to output some local symbols not present in the hash
11530 table, do it now. */
11531 if (bed->elf_backend_output_arch_local_syms
11532 && (info->strip != strip_all || emit_relocs))
11533 {
11534 typedef int (*out_sym_func)
11535 (void *, const char *, Elf_Internal_Sym *, asection *,
11536 struct elf_link_hash_entry *);
11537
11538 if (! ((*bed->elf_backend_output_arch_local_syms)
11539 (abfd, info, &flinfo,
11540 (out_sym_func) elf_link_output_symstrtab)))
11541 return FALSE;
11542 }
11543
11544 /* That wrote out all the local symbols. Finish up the symbol table
11545 with the global symbols. Even if we want to strip everything we
11546 can, we still need to deal with those global symbols that got
11547 converted to local in a version script. */
11548
11549 /* The sh_info field records the index of the first non local symbol. */
11550 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11551
11552 if (dynamic
11553 && elf_hash_table (info)->dynsym != NULL
11554 && (elf_hash_table (info)->dynsym->output_section
11555 != bfd_abs_section_ptr))
11556 {
11557 Elf_Internal_Sym sym;
11558 bfd_byte *dynsym = elf_hash_table (info)->dynsym->contents;
11559 long last_local = 0;
11560
11561 /* Write out the section symbols for the output sections. */
11562 if (bfd_link_pic (info)
11563 || elf_hash_table (info)->is_relocatable_executable)
11564 {
11565 asection *s;
11566
11567 sym.st_size = 0;
11568 sym.st_name = 0;
11569 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11570 sym.st_other = 0;
11571 sym.st_target_internal = 0;
11572
11573 for (s = abfd->sections; s != NULL; s = s->next)
11574 {
11575 int indx;
11576 bfd_byte *dest;
11577 long dynindx;
11578
11579 dynindx = elf_section_data (s)->dynindx;
11580 if (dynindx <= 0)
11581 continue;
11582 indx = elf_section_data (s)->this_idx;
11583 BFD_ASSERT (indx > 0);
11584 sym.st_shndx = indx;
11585 if (! check_dynsym (abfd, &sym))
11586 return FALSE;
11587 sym.st_value = s->vma;
11588 dest = dynsym + dynindx * bed->s->sizeof_sym;
11589 if (last_local < dynindx)
11590 last_local = dynindx;
11591 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11592 }
11593 }
11594
11595 /* Write out the local dynsyms. */
11596 if (elf_hash_table (info)->dynlocal)
11597 {
11598 struct elf_link_local_dynamic_entry *e;
11599 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11600 {
11601 asection *s;
11602 bfd_byte *dest;
11603
11604 /* Copy the internal symbol and turn off visibility.
11605 Note that we saved a word of storage and overwrote
11606 the original st_name with the dynstr_index. */
11607 sym = e->isym;
11608 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11609
11610 s = bfd_section_from_elf_index (e->input_bfd,
11611 e->isym.st_shndx);
11612 if (s != NULL)
11613 {
11614 sym.st_shndx =
11615 elf_section_data (s->output_section)->this_idx;
11616 if (! check_dynsym (abfd, &sym))
11617 return FALSE;
11618 sym.st_value = (s->output_section->vma
11619 + s->output_offset
11620 + e->isym.st_value);
11621 }
11622
11623 if (last_local < e->dynindx)
11624 last_local = e->dynindx;
11625
11626 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11627 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11628 }
11629 }
11630
11631 elf_section_data (elf_hash_table (info)->dynsym->output_section)->this_hdr.sh_info =
11632 last_local + 1;
11633 }
11634
11635 /* We get the global symbols from the hash table. */
11636 eoinfo.failed = FALSE;
11637 eoinfo.localsyms = FALSE;
11638 eoinfo.flinfo = &flinfo;
11639 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11640 if (eoinfo.failed)
11641 return FALSE;
11642
11643 /* If backend needs to output some symbols not present in the hash
11644 table, do it now. */
11645 if (bed->elf_backend_output_arch_syms
11646 && (info->strip != strip_all || emit_relocs))
11647 {
11648 typedef int (*out_sym_func)
11649 (void *, const char *, Elf_Internal_Sym *, asection *,
11650 struct elf_link_hash_entry *);
11651
11652 if (! ((*bed->elf_backend_output_arch_syms)
11653 (abfd, info, &flinfo,
11654 (out_sym_func) elf_link_output_symstrtab)))
11655 return FALSE;
11656 }
11657
11658 /* Finalize the .strtab section. */
11659 _bfd_elf_strtab_finalize (flinfo.symstrtab);
11660
11661 /* Swap out the .strtab section. */
11662 if (!elf_link_swap_symbols_out (&flinfo))
11663 return FALSE;
11664
11665 /* Now we know the size of the symtab section. */
11666 if (bfd_get_symcount (abfd) > 0)
11667 {
11668 /* Finish up and write out the symbol string table (.strtab)
11669 section. */
11670 Elf_Internal_Shdr *symstrtab_hdr;
11671 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
11672
11673 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
11674 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
11675 {
11676 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11677 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11678 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11679 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11680 symtab_shndx_hdr->sh_size = amt;
11681
11682 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11683 off, TRUE);
11684
11685 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11686 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11687 return FALSE;
11688 }
11689
11690 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11691 /* sh_name was set in prep_headers. */
11692 symstrtab_hdr->sh_type = SHT_STRTAB;
11693 symstrtab_hdr->sh_flags = 0;
11694 symstrtab_hdr->sh_addr = 0;
11695 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
11696 symstrtab_hdr->sh_entsize = 0;
11697 symstrtab_hdr->sh_link = 0;
11698 symstrtab_hdr->sh_info = 0;
11699 /* sh_offset is set just below. */
11700 symstrtab_hdr->sh_addralign = 1;
11701
11702 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
11703 off, TRUE);
11704 elf_next_file_pos (abfd) = off;
11705
11706 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11707 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
11708 return FALSE;
11709 }
11710
11711 /* Adjust the relocs to have the correct symbol indices. */
11712 for (o = abfd->sections; o != NULL; o = o->next)
11713 {
11714 struct bfd_elf_section_data *esdo = elf_section_data (o);
11715 bfd_boolean sort;
11716 if ((o->flags & SEC_RELOC) == 0)
11717 continue;
11718
11719 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
11720 if (esdo->rel.hdr != NULL
11721 && !elf_link_adjust_relocs (abfd, &esdo->rel, sort))
11722 return FALSE;
11723 if (esdo->rela.hdr != NULL
11724 && !elf_link_adjust_relocs (abfd, &esdo->rela, sort))
11725 return FALSE;
11726
11727 /* Set the reloc_count field to 0 to prevent write_relocs from
11728 trying to swap the relocs out itself. */
11729 o->reloc_count = 0;
11730 }
11731
11732 if (dynamic && info->combreloc && dynobj != NULL)
11733 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11734
11735 /* If we are linking against a dynamic object, or generating a
11736 shared library, finish up the dynamic linking information. */
11737 if (dynamic)
11738 {
11739 bfd_byte *dyncon, *dynconend;
11740
11741 /* Fix up .dynamic entries. */
11742 o = bfd_get_linker_section (dynobj, ".dynamic");
11743 BFD_ASSERT (o != NULL);
11744
11745 dyncon = o->contents;
11746 dynconend = o->contents + o->size;
11747 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11748 {
11749 Elf_Internal_Dyn dyn;
11750 const char *name;
11751 unsigned int type;
11752
11753 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11754
11755 switch (dyn.d_tag)
11756 {
11757 default:
11758 continue;
11759 case DT_NULL:
11760 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11761 {
11762 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11763 {
11764 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11765 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11766 default: continue;
11767 }
11768 dyn.d_un.d_val = relativecount;
11769 relativecount = 0;
11770 break;
11771 }
11772 continue;
11773
11774 case DT_INIT:
11775 name = info->init_function;
11776 goto get_sym;
11777 case DT_FINI:
11778 name = info->fini_function;
11779 get_sym:
11780 {
11781 struct elf_link_hash_entry *h;
11782
11783 h = elf_link_hash_lookup (elf_hash_table (info), name,
11784 FALSE, FALSE, TRUE);
11785 if (h != NULL
11786 && (h->root.type == bfd_link_hash_defined
11787 || h->root.type == bfd_link_hash_defweak))
11788 {
11789 dyn.d_un.d_ptr = h->root.u.def.value;
11790 o = h->root.u.def.section;
11791 if (o->output_section != NULL)
11792 dyn.d_un.d_ptr += (o->output_section->vma
11793 + o->output_offset);
11794 else
11795 {
11796 /* The symbol is imported from another shared
11797 library and does not apply to this one. */
11798 dyn.d_un.d_ptr = 0;
11799 }
11800 break;
11801 }
11802 }
11803 continue;
11804
11805 case DT_PREINIT_ARRAYSZ:
11806 name = ".preinit_array";
11807 goto get_size;
11808 case DT_INIT_ARRAYSZ:
11809 name = ".init_array";
11810 goto get_size;
11811 case DT_FINI_ARRAYSZ:
11812 name = ".fini_array";
11813 get_size:
11814 o = bfd_get_section_by_name (abfd, name);
11815 if (o == NULL)
11816 {
11817 (*_bfd_error_handler)
11818 (_("%B: could not find output section %s"), abfd, name);
11819 goto error_return;
11820 }
11821 if (o->size == 0)
11822 (*_bfd_error_handler)
11823 (_("warning: %s section has zero size"), name);
11824 dyn.d_un.d_val = o->size;
11825 break;
11826
11827 case DT_PREINIT_ARRAY:
11828 name = ".preinit_array";
11829 goto get_vma;
11830 case DT_INIT_ARRAY:
11831 name = ".init_array";
11832 goto get_vma;
11833 case DT_FINI_ARRAY:
11834 name = ".fini_array";
11835 goto get_vma;
11836
11837 case DT_HASH:
11838 name = ".hash";
11839 goto get_vma;
11840 case DT_GNU_HASH:
11841 name = ".gnu.hash";
11842 goto get_vma;
11843 case DT_STRTAB:
11844 name = ".dynstr";
11845 goto get_vma;
11846 case DT_SYMTAB:
11847 name = ".dynsym";
11848 goto get_vma;
11849 case DT_VERDEF:
11850 name = ".gnu.version_d";
11851 goto get_vma;
11852 case DT_VERNEED:
11853 name = ".gnu.version_r";
11854 goto get_vma;
11855 case DT_VERSYM:
11856 name = ".gnu.version";
11857 get_vma:
11858 o = bfd_get_section_by_name (abfd, name);
11859 if (o == NULL)
11860 {
11861 (*_bfd_error_handler)
11862 (_("%B: could not find output section %s"), abfd, name);
11863 goto error_return;
11864 }
11865 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11866 {
11867 (*_bfd_error_handler)
11868 (_("warning: section '%s' is being made into a note"), name);
11869 bfd_set_error (bfd_error_nonrepresentable_section);
11870 goto error_return;
11871 }
11872 dyn.d_un.d_ptr = o->vma;
11873 break;
11874
11875 case DT_REL:
11876 case DT_RELA:
11877 case DT_RELSZ:
11878 case DT_RELASZ:
11879 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11880 type = SHT_REL;
11881 else
11882 type = SHT_RELA;
11883 dyn.d_un.d_val = 0;
11884 dyn.d_un.d_ptr = 0;
11885 for (i = 1; i < elf_numsections (abfd); i++)
11886 {
11887 Elf_Internal_Shdr *hdr;
11888
11889 hdr = elf_elfsections (abfd)[i];
11890 if (hdr->sh_type == type
11891 && (hdr->sh_flags & SHF_ALLOC) != 0)
11892 {
11893 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11894 dyn.d_un.d_val += hdr->sh_size;
11895 else
11896 {
11897 if (dyn.d_un.d_ptr == 0
11898 || hdr->sh_addr < dyn.d_un.d_ptr)
11899 dyn.d_un.d_ptr = hdr->sh_addr;
11900 }
11901 }
11902 }
11903 break;
11904 }
11905 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11906 }
11907 }
11908
11909 /* If we have created any dynamic sections, then output them. */
11910 if (dynobj != NULL)
11911 {
11912 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11913 goto error_return;
11914
11915 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11916 if (((info->warn_shared_textrel && bfd_link_pic (info))
11917 || info->error_textrel)
11918 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11919 {
11920 bfd_byte *dyncon, *dynconend;
11921
11922 dyncon = o->contents;
11923 dynconend = o->contents + o->size;
11924 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11925 {
11926 Elf_Internal_Dyn dyn;
11927
11928 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11929
11930 if (dyn.d_tag == DT_TEXTREL)
11931 {
11932 if (info->error_textrel)
11933 info->callbacks->einfo
11934 (_("%P%X: read-only segment has dynamic relocations.\n"));
11935 else
11936 info->callbacks->einfo
11937 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11938 break;
11939 }
11940 }
11941 }
11942
11943 for (o = dynobj->sections; o != NULL; o = o->next)
11944 {
11945 if ((o->flags & SEC_HAS_CONTENTS) == 0
11946 || o->size == 0
11947 || o->output_section == bfd_abs_section_ptr)
11948 continue;
11949 if ((o->flags & SEC_LINKER_CREATED) == 0)
11950 {
11951 /* At this point, we are only interested in sections
11952 created by _bfd_elf_link_create_dynamic_sections. */
11953 continue;
11954 }
11955 if (elf_hash_table (info)->stab_info.stabstr == o)
11956 continue;
11957 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11958 continue;
11959 if (strcmp (o->name, ".dynstr") != 0)
11960 {
11961 if (! bfd_set_section_contents (abfd, o->output_section,
11962 o->contents,
11963 (file_ptr) o->output_offset
11964 * bfd_octets_per_byte (abfd),
11965 o->size))
11966 goto error_return;
11967 }
11968 else
11969 {
11970 /* The contents of the .dynstr section are actually in a
11971 stringtab. */
11972 file_ptr off;
11973
11974 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11975 if (bfd_seek (abfd, off, SEEK_SET) != 0
11976 || ! _bfd_elf_strtab_emit (abfd,
11977 elf_hash_table (info)->dynstr))
11978 goto error_return;
11979 }
11980 }
11981 }
11982
11983 if (bfd_link_relocatable (info))
11984 {
11985 bfd_boolean failed = FALSE;
11986
11987 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11988 if (failed)
11989 goto error_return;
11990 }
11991
11992 /* If we have optimized stabs strings, output them. */
11993 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11994 {
11995 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11996 goto error_return;
11997 }
11998
11999 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
12000 goto error_return;
12001
12002 elf_final_link_free (abfd, &flinfo);
12003
12004 elf_linker (abfd) = TRUE;
12005
12006 if (attr_section)
12007 {
12008 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
12009 if (contents == NULL)
12010 return FALSE; /* Bail out and fail. */
12011 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
12012 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
12013 free (contents);
12014 }
12015
12016 return TRUE;
12017
12018 error_return:
12019 elf_final_link_free (abfd, &flinfo);
12020 return FALSE;
12021 }
12022 \f
12023 /* Initialize COOKIE for input bfd ABFD. */
12024
12025 static bfd_boolean
12026 init_reloc_cookie (struct elf_reloc_cookie *cookie,
12027 struct bfd_link_info *info, bfd *abfd)
12028 {
12029 Elf_Internal_Shdr *symtab_hdr;
12030 const struct elf_backend_data *bed;
12031
12032 bed = get_elf_backend_data (abfd);
12033 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12034
12035 cookie->abfd = abfd;
12036 cookie->sym_hashes = elf_sym_hashes (abfd);
12037 cookie->bad_symtab = elf_bad_symtab (abfd);
12038 if (cookie->bad_symtab)
12039 {
12040 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12041 cookie->extsymoff = 0;
12042 }
12043 else
12044 {
12045 cookie->locsymcount = symtab_hdr->sh_info;
12046 cookie->extsymoff = symtab_hdr->sh_info;
12047 }
12048
12049 if (bed->s->arch_size == 32)
12050 cookie->r_sym_shift = 8;
12051 else
12052 cookie->r_sym_shift = 32;
12053
12054 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12055 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
12056 {
12057 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12058 cookie->locsymcount, 0,
12059 NULL, NULL, NULL);
12060 if (cookie->locsyms == NULL)
12061 {
12062 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12063 return FALSE;
12064 }
12065 if (info->keep_memory)
12066 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
12067 }
12068 return TRUE;
12069 }
12070
12071 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
12072
12073 static void
12074 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
12075 {
12076 Elf_Internal_Shdr *symtab_hdr;
12077
12078 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12079 if (cookie->locsyms != NULL
12080 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
12081 free (cookie->locsyms);
12082 }
12083
12084 /* Initialize the relocation information in COOKIE for input section SEC
12085 of input bfd ABFD. */
12086
12087 static bfd_boolean
12088 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12089 struct bfd_link_info *info, bfd *abfd,
12090 asection *sec)
12091 {
12092 const struct elf_backend_data *bed;
12093
12094 if (sec->reloc_count == 0)
12095 {
12096 cookie->rels = NULL;
12097 cookie->relend = NULL;
12098 }
12099 else
12100 {
12101 bed = get_elf_backend_data (abfd);
12102
12103 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
12104 info->keep_memory);
12105 if (cookie->rels == NULL)
12106 return FALSE;
12107 cookie->rel = cookie->rels;
12108 cookie->relend = (cookie->rels
12109 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
12110 }
12111 cookie->rel = cookie->rels;
12112 return TRUE;
12113 }
12114
12115 /* Free the memory allocated by init_reloc_cookie_rels,
12116 if appropriate. */
12117
12118 static void
12119 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12120 asection *sec)
12121 {
12122 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
12123 free (cookie->rels);
12124 }
12125
12126 /* Initialize the whole of COOKIE for input section SEC. */
12127
12128 static bfd_boolean
12129 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12130 struct bfd_link_info *info,
12131 asection *sec)
12132 {
12133 if (!init_reloc_cookie (cookie, info, sec->owner))
12134 goto error1;
12135 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
12136 goto error2;
12137 return TRUE;
12138
12139 error2:
12140 fini_reloc_cookie (cookie, sec->owner);
12141 error1:
12142 return FALSE;
12143 }
12144
12145 /* Free the memory allocated by init_reloc_cookie_for_section,
12146 if appropriate. */
12147
12148 static void
12149 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12150 asection *sec)
12151 {
12152 fini_reloc_cookie_rels (cookie, sec);
12153 fini_reloc_cookie (cookie, sec->owner);
12154 }
12155 \f
12156 /* Garbage collect unused sections. */
12157
12158 /* Default gc_mark_hook. */
12159
12160 asection *
12161 _bfd_elf_gc_mark_hook (asection *sec,
12162 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12163 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12164 struct elf_link_hash_entry *h,
12165 Elf_Internal_Sym *sym)
12166 {
12167 if (h != NULL)
12168 {
12169 switch (h->root.type)
12170 {
12171 case bfd_link_hash_defined:
12172 case bfd_link_hash_defweak:
12173 return h->root.u.def.section;
12174
12175 case bfd_link_hash_common:
12176 return h->root.u.c.p->section;
12177
12178 default:
12179 break;
12180 }
12181 }
12182 else
12183 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
12184
12185 return NULL;
12186 }
12187
12188 /* COOKIE->rel describes a relocation against section SEC, which is
12189 a section we've decided to keep. Return the section that contains
12190 the relocation symbol, or NULL if no section contains it. */
12191
12192 asection *
12193 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
12194 elf_gc_mark_hook_fn gc_mark_hook,
12195 struct elf_reloc_cookie *cookie,
12196 bfd_boolean *start_stop)
12197 {
12198 unsigned long r_symndx;
12199 struct elf_link_hash_entry *h;
12200
12201 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
12202 if (r_symndx == STN_UNDEF)
12203 return NULL;
12204
12205 if (r_symndx >= cookie->locsymcount
12206 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12207 {
12208 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
12209 if (h == NULL)
12210 {
12211 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
12212 sec->owner);
12213 return NULL;
12214 }
12215 while (h->root.type == bfd_link_hash_indirect
12216 || h->root.type == bfd_link_hash_warning)
12217 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12218 h->mark = 1;
12219 /* If this symbol is weak and there is a non-weak definition, we
12220 keep the non-weak definition because many backends put
12221 dynamic reloc info on the non-weak definition for code
12222 handling copy relocs. */
12223 if (h->u.weakdef != NULL)
12224 h->u.weakdef->mark = 1;
12225
12226 if (start_stop != NULL
12227 && (h->root.type == bfd_link_hash_undefined
12228 || h->root.type == bfd_link_hash_undefweak))
12229 {
12230 /* To work around a glibc bug, mark all XXX input sections
12231 when there is an as yet undefined reference to __start_XXX
12232 or __stop_XXX symbols. The linker will later define such
12233 symbols for orphan input sections that have a name
12234 representable as a C identifier. */
12235 const char *sec_name = NULL;
12236 if (strncmp (h->root.root.string, "__start_", 8) == 0)
12237 sec_name = h->root.root.string + 8;
12238 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
12239 sec_name = h->root.root.string + 7;
12240
12241 if (sec_name != NULL && *sec_name != '\0')
12242 {
12243 bfd *i;
12244
12245 for (i = info->input_bfds; i != NULL; i = i->link.next)
12246 {
12247 asection *s = bfd_get_section_by_name (i, sec_name);
12248 if (s != NULL && !s->gc_mark)
12249 {
12250 *start_stop = TRUE;
12251 return s;
12252 }
12253 }
12254 }
12255 }
12256
12257 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
12258 }
12259
12260 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
12261 &cookie->locsyms[r_symndx]);
12262 }
12263
12264 /* COOKIE->rel describes a relocation against section SEC, which is
12265 a section we've decided to keep. Mark the section that contains
12266 the relocation symbol. */
12267
12268 bfd_boolean
12269 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
12270 asection *sec,
12271 elf_gc_mark_hook_fn gc_mark_hook,
12272 struct elf_reloc_cookie *cookie)
12273 {
12274 asection *rsec;
12275 bfd_boolean start_stop = FALSE;
12276
12277 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
12278 while (rsec != NULL)
12279 {
12280 if (!rsec->gc_mark)
12281 {
12282 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
12283 || (rsec->owner->flags & DYNAMIC) != 0)
12284 rsec->gc_mark = 1;
12285 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
12286 return FALSE;
12287 }
12288 if (!start_stop)
12289 break;
12290 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
12291 }
12292 return TRUE;
12293 }
12294
12295 /* The mark phase of garbage collection. For a given section, mark
12296 it and any sections in this section's group, and all the sections
12297 which define symbols to which it refers. */
12298
12299 bfd_boolean
12300 _bfd_elf_gc_mark (struct bfd_link_info *info,
12301 asection *sec,
12302 elf_gc_mark_hook_fn gc_mark_hook)
12303 {
12304 bfd_boolean ret;
12305 asection *group_sec, *eh_frame;
12306
12307 sec->gc_mark = 1;
12308
12309 /* Mark all the sections in the group. */
12310 group_sec = elf_section_data (sec)->next_in_group;
12311 if (group_sec && !group_sec->gc_mark)
12312 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
12313 return FALSE;
12314
12315 /* Look through the section relocs. */
12316 ret = TRUE;
12317 eh_frame = elf_eh_frame_section (sec->owner);
12318 if ((sec->flags & SEC_RELOC) != 0
12319 && sec->reloc_count > 0
12320 && sec != eh_frame)
12321 {
12322 struct elf_reloc_cookie cookie;
12323
12324 if (!init_reloc_cookie_for_section (&cookie, info, sec))
12325 ret = FALSE;
12326 else
12327 {
12328 for (; cookie.rel < cookie.relend; cookie.rel++)
12329 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
12330 {
12331 ret = FALSE;
12332 break;
12333 }
12334 fini_reloc_cookie_for_section (&cookie, sec);
12335 }
12336 }
12337
12338 if (ret && eh_frame && elf_fde_list (sec))
12339 {
12340 struct elf_reloc_cookie cookie;
12341
12342 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
12343 ret = FALSE;
12344 else
12345 {
12346 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
12347 gc_mark_hook, &cookie))
12348 ret = FALSE;
12349 fini_reloc_cookie_for_section (&cookie, eh_frame);
12350 }
12351 }
12352
12353 eh_frame = elf_section_eh_frame_entry (sec);
12354 if (ret && eh_frame && !eh_frame->gc_mark)
12355 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
12356 ret = FALSE;
12357
12358 return ret;
12359 }
12360
12361 /* Scan and mark sections in a special or debug section group. */
12362
12363 static void
12364 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
12365 {
12366 /* Point to first section of section group. */
12367 asection *ssec;
12368 /* Used to iterate the section group. */
12369 asection *msec;
12370
12371 bfd_boolean is_special_grp = TRUE;
12372 bfd_boolean is_debug_grp = TRUE;
12373
12374 /* First scan to see if group contains any section other than debug
12375 and special section. */
12376 ssec = msec = elf_next_in_group (grp);
12377 do
12378 {
12379 if ((msec->flags & SEC_DEBUGGING) == 0)
12380 is_debug_grp = FALSE;
12381
12382 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
12383 is_special_grp = FALSE;
12384
12385 msec = elf_next_in_group (msec);
12386 }
12387 while (msec != ssec);
12388
12389 /* If this is a pure debug section group or pure special section group,
12390 keep all sections in this group. */
12391 if (is_debug_grp || is_special_grp)
12392 {
12393 do
12394 {
12395 msec->gc_mark = 1;
12396 msec = elf_next_in_group (msec);
12397 }
12398 while (msec != ssec);
12399 }
12400 }
12401
12402 /* Keep debug and special sections. */
12403
12404 bfd_boolean
12405 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12406 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12407 {
12408 bfd *ibfd;
12409
12410 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12411 {
12412 asection *isec;
12413 bfd_boolean some_kept;
12414 bfd_boolean debug_frag_seen;
12415
12416 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12417 continue;
12418
12419 /* Ensure all linker created sections are kept,
12420 see if any other section is already marked,
12421 and note if we have any fragmented debug sections. */
12422 debug_frag_seen = some_kept = FALSE;
12423 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12424 {
12425 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12426 isec->gc_mark = 1;
12427 else if (isec->gc_mark)
12428 some_kept = TRUE;
12429
12430 if (debug_frag_seen == FALSE
12431 && (isec->flags & SEC_DEBUGGING)
12432 && CONST_STRNEQ (isec->name, ".debug_line."))
12433 debug_frag_seen = TRUE;
12434 }
12435
12436 /* If no section in this file will be kept, then we can
12437 toss out the debug and special sections. */
12438 if (!some_kept)
12439 continue;
12440
12441 /* Keep debug and special sections like .comment when they are
12442 not part of a group. Also keep section groups that contain
12443 just debug sections or special sections. */
12444 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12445 {
12446 if ((isec->flags & SEC_GROUP) != 0)
12447 _bfd_elf_gc_mark_debug_special_section_group (isec);
12448 else if (((isec->flags & SEC_DEBUGGING) != 0
12449 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12450 && elf_next_in_group (isec) == NULL)
12451 isec->gc_mark = 1;
12452 }
12453
12454 if (! debug_frag_seen)
12455 continue;
12456
12457 /* Look for CODE sections which are going to be discarded,
12458 and find and discard any fragmented debug sections which
12459 are associated with that code section. */
12460 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12461 if ((isec->flags & SEC_CODE) != 0
12462 && isec->gc_mark == 0)
12463 {
12464 unsigned int ilen;
12465 asection *dsec;
12466
12467 ilen = strlen (isec->name);
12468
12469 /* Association is determined by the name of the debug section
12470 containing the name of the code section as a suffix. For
12471 example .debug_line.text.foo is a debug section associated
12472 with .text.foo. */
12473 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12474 {
12475 unsigned int dlen;
12476
12477 if (dsec->gc_mark == 0
12478 || (dsec->flags & SEC_DEBUGGING) == 0)
12479 continue;
12480
12481 dlen = strlen (dsec->name);
12482
12483 if (dlen > ilen
12484 && strncmp (dsec->name + (dlen - ilen),
12485 isec->name, ilen) == 0)
12486 {
12487 dsec->gc_mark = 0;
12488 }
12489 }
12490 }
12491 }
12492 return TRUE;
12493 }
12494
12495 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
12496
12497 struct elf_gc_sweep_symbol_info
12498 {
12499 struct bfd_link_info *info;
12500 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
12501 bfd_boolean);
12502 };
12503
12504 static bfd_boolean
12505 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
12506 {
12507 if (!h->mark
12508 && (((h->root.type == bfd_link_hash_defined
12509 || h->root.type == bfd_link_hash_defweak)
12510 && !((h->def_regular || ELF_COMMON_DEF_P (h))
12511 && h->root.u.def.section->gc_mark))
12512 || h->root.type == bfd_link_hash_undefined
12513 || h->root.type == bfd_link_hash_undefweak))
12514 {
12515 struct elf_gc_sweep_symbol_info *inf;
12516
12517 inf = (struct elf_gc_sweep_symbol_info *) data;
12518 (*inf->hide_symbol) (inf->info, h, TRUE);
12519 h->def_regular = 0;
12520 h->ref_regular = 0;
12521 h->ref_regular_nonweak = 0;
12522 }
12523
12524 return TRUE;
12525 }
12526
12527 /* The sweep phase of garbage collection. Remove all garbage sections. */
12528
12529 typedef bfd_boolean (*gc_sweep_hook_fn)
12530 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
12531
12532 static bfd_boolean
12533 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
12534 {
12535 bfd *sub;
12536 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12537 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
12538 unsigned long section_sym_count;
12539 struct elf_gc_sweep_symbol_info sweep_info;
12540
12541 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12542 {
12543 asection *o;
12544
12545 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12546 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12547 continue;
12548
12549 for (o = sub->sections; o != NULL; o = o->next)
12550 {
12551 /* When any section in a section group is kept, we keep all
12552 sections in the section group. If the first member of
12553 the section group is excluded, we will also exclude the
12554 group section. */
12555 if (o->flags & SEC_GROUP)
12556 {
12557 asection *first = elf_next_in_group (o);
12558 o->gc_mark = first->gc_mark;
12559 }
12560
12561 if (o->gc_mark)
12562 continue;
12563
12564 /* Skip sweeping sections already excluded. */
12565 if (o->flags & SEC_EXCLUDE)
12566 continue;
12567
12568 /* Since this is early in the link process, it is simple
12569 to remove a section from the output. */
12570 o->flags |= SEC_EXCLUDE;
12571
12572 if (info->print_gc_sections && o->size != 0)
12573 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
12574
12575 /* But we also have to update some of the relocation
12576 info we collected before. */
12577 if (gc_sweep_hook
12578 && (o->flags & SEC_RELOC) != 0
12579 && o->reloc_count != 0
12580 && !((info->strip == strip_all || info->strip == strip_debugger)
12581 && (o->flags & SEC_DEBUGGING) != 0)
12582 && !bfd_is_abs_section (o->output_section))
12583 {
12584 Elf_Internal_Rela *internal_relocs;
12585 bfd_boolean r;
12586
12587 internal_relocs
12588 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12589 info->keep_memory);
12590 if (internal_relocs == NULL)
12591 return FALSE;
12592
12593 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12594
12595 if (elf_section_data (o)->relocs != internal_relocs)
12596 free (internal_relocs);
12597
12598 if (!r)
12599 return FALSE;
12600 }
12601 }
12602 }
12603
12604 /* Remove the symbols that were in the swept sections from the dynamic
12605 symbol table. GCFIXME: Anyone know how to get them out of the
12606 static symbol table as well? */
12607 sweep_info.info = info;
12608 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12609 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12610 &sweep_info);
12611
12612 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12613 return TRUE;
12614 }
12615
12616 /* Propagate collected vtable information. This is called through
12617 elf_link_hash_traverse. */
12618
12619 static bfd_boolean
12620 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12621 {
12622 /* Those that are not vtables. */
12623 if (h->vtable == NULL || h->vtable->parent == NULL)
12624 return TRUE;
12625
12626 /* Those vtables that do not have parents, we cannot merge. */
12627 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12628 return TRUE;
12629
12630 /* If we've already been done, exit. */
12631 if (h->vtable->used && h->vtable->used[-1])
12632 return TRUE;
12633
12634 /* Make sure the parent's table is up to date. */
12635 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12636
12637 if (h->vtable->used == NULL)
12638 {
12639 /* None of this table's entries were referenced. Re-use the
12640 parent's table. */
12641 h->vtable->used = h->vtable->parent->vtable->used;
12642 h->vtable->size = h->vtable->parent->vtable->size;
12643 }
12644 else
12645 {
12646 size_t n;
12647 bfd_boolean *cu, *pu;
12648
12649 /* Or the parent's entries into ours. */
12650 cu = h->vtable->used;
12651 cu[-1] = TRUE;
12652 pu = h->vtable->parent->vtable->used;
12653 if (pu != NULL)
12654 {
12655 const struct elf_backend_data *bed;
12656 unsigned int log_file_align;
12657
12658 bed = get_elf_backend_data (h->root.u.def.section->owner);
12659 log_file_align = bed->s->log_file_align;
12660 n = h->vtable->parent->vtable->size >> log_file_align;
12661 while (n--)
12662 {
12663 if (*pu)
12664 *cu = TRUE;
12665 pu++;
12666 cu++;
12667 }
12668 }
12669 }
12670
12671 return TRUE;
12672 }
12673
12674 static bfd_boolean
12675 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12676 {
12677 asection *sec;
12678 bfd_vma hstart, hend;
12679 Elf_Internal_Rela *relstart, *relend, *rel;
12680 const struct elf_backend_data *bed;
12681 unsigned int log_file_align;
12682
12683 /* Take care of both those symbols that do not describe vtables as
12684 well as those that are not loaded. */
12685 if (h->vtable == NULL || h->vtable->parent == NULL)
12686 return TRUE;
12687
12688 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12689 || h->root.type == bfd_link_hash_defweak);
12690
12691 sec = h->root.u.def.section;
12692 hstart = h->root.u.def.value;
12693 hend = hstart + h->size;
12694
12695 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12696 if (!relstart)
12697 return *(bfd_boolean *) okp = FALSE;
12698 bed = get_elf_backend_data (sec->owner);
12699 log_file_align = bed->s->log_file_align;
12700
12701 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12702
12703 for (rel = relstart; rel < relend; ++rel)
12704 if (rel->r_offset >= hstart && rel->r_offset < hend)
12705 {
12706 /* If the entry is in use, do nothing. */
12707 if (h->vtable->used
12708 && (rel->r_offset - hstart) < h->vtable->size)
12709 {
12710 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12711 if (h->vtable->used[entry])
12712 continue;
12713 }
12714 /* Otherwise, kill it. */
12715 rel->r_offset = rel->r_info = rel->r_addend = 0;
12716 }
12717
12718 return TRUE;
12719 }
12720
12721 /* Mark sections containing dynamically referenced symbols. When
12722 building shared libraries, we must assume that any visible symbol is
12723 referenced. */
12724
12725 bfd_boolean
12726 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12727 {
12728 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12729 struct bfd_elf_dynamic_list *d = info->dynamic_list;
12730
12731 if ((h->root.type == bfd_link_hash_defined
12732 || h->root.type == bfd_link_hash_defweak)
12733 && (h->ref_dynamic
12734 || ((h->def_regular || ELF_COMMON_DEF_P (h))
12735 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12736 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12737 && (!bfd_link_executable (info)
12738 || info->export_dynamic
12739 || (h->dynamic
12740 && d != NULL
12741 && (*d->match) (&d->head, NULL, h->root.root.string)))
12742 && (h->versioned >= versioned
12743 || !bfd_hide_sym_by_version (info->version_info,
12744 h->root.root.string)))))
12745 h->root.u.def.section->flags |= SEC_KEEP;
12746
12747 return TRUE;
12748 }
12749
12750 /* Keep all sections containing symbols undefined on the command-line,
12751 and the section containing the entry symbol. */
12752
12753 void
12754 _bfd_elf_gc_keep (struct bfd_link_info *info)
12755 {
12756 struct bfd_sym_chain *sym;
12757
12758 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12759 {
12760 struct elf_link_hash_entry *h;
12761
12762 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12763 FALSE, FALSE, FALSE);
12764
12765 if (h != NULL
12766 && (h->root.type == bfd_link_hash_defined
12767 || h->root.type == bfd_link_hash_defweak)
12768 && !bfd_is_abs_section (h->root.u.def.section))
12769 h->root.u.def.section->flags |= SEC_KEEP;
12770 }
12771 }
12772
12773 bfd_boolean
12774 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
12775 struct bfd_link_info *info)
12776 {
12777 bfd *ibfd = info->input_bfds;
12778
12779 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12780 {
12781 asection *sec;
12782 struct elf_reloc_cookie cookie;
12783
12784 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12785 continue;
12786
12787 if (!init_reloc_cookie (&cookie, info, ibfd))
12788 return FALSE;
12789
12790 for (sec = ibfd->sections; sec; sec = sec->next)
12791 {
12792 if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
12793 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
12794 {
12795 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
12796 fini_reloc_cookie_rels (&cookie, sec);
12797 }
12798 }
12799 }
12800 return TRUE;
12801 }
12802
12803 /* Do mark and sweep of unused sections. */
12804
12805 bfd_boolean
12806 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12807 {
12808 bfd_boolean ok = TRUE;
12809 bfd *sub;
12810 elf_gc_mark_hook_fn gc_mark_hook;
12811 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12812 struct elf_link_hash_table *htab;
12813
12814 if (!bed->can_gc_sections
12815 || !is_elf_hash_table (info->hash))
12816 {
12817 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12818 return TRUE;
12819 }
12820
12821 bed->gc_keep (info);
12822 htab = elf_hash_table (info);
12823
12824 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12825 at the .eh_frame section if we can mark the FDEs individually. */
12826 for (sub = info->input_bfds;
12827 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
12828 sub = sub->link.next)
12829 {
12830 asection *sec;
12831 struct elf_reloc_cookie cookie;
12832
12833 sec = bfd_get_section_by_name (sub, ".eh_frame");
12834 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12835 {
12836 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12837 if (elf_section_data (sec)->sec_info
12838 && (sec->flags & SEC_LINKER_CREATED) == 0)
12839 elf_eh_frame_section (sub) = sec;
12840 fini_reloc_cookie_for_section (&cookie, sec);
12841 sec = bfd_get_next_section_by_name (NULL, sec);
12842 }
12843 }
12844
12845 /* Apply transitive closure to the vtable entry usage info. */
12846 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
12847 if (!ok)
12848 return FALSE;
12849
12850 /* Kill the vtable relocations that were not used. */
12851 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
12852 if (!ok)
12853 return FALSE;
12854
12855 /* Mark dynamically referenced symbols. */
12856 if (htab->dynamic_sections_created)
12857 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
12858
12859 /* Grovel through relocs to find out who stays ... */
12860 gc_mark_hook = bed->gc_mark_hook;
12861 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12862 {
12863 asection *o;
12864
12865 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12866 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12867 continue;
12868
12869 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12870 Also treat note sections as a root, if the section is not part
12871 of a group. */
12872 for (o = sub->sections; o != NULL; o = o->next)
12873 if (!o->gc_mark
12874 && (o->flags & SEC_EXCLUDE) == 0
12875 && ((o->flags & SEC_KEEP) != 0
12876 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12877 && elf_next_in_group (o) == NULL )))
12878 {
12879 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12880 return FALSE;
12881 }
12882 }
12883
12884 /* Allow the backend to mark additional target specific sections. */
12885 bed->gc_mark_extra_sections (info, gc_mark_hook);
12886
12887 /* ... and mark SEC_EXCLUDE for those that go. */
12888 return elf_gc_sweep (abfd, info);
12889 }
12890 \f
12891 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12892
12893 bfd_boolean
12894 bfd_elf_gc_record_vtinherit (bfd *abfd,
12895 asection *sec,
12896 struct elf_link_hash_entry *h,
12897 bfd_vma offset)
12898 {
12899 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12900 struct elf_link_hash_entry **search, *child;
12901 bfd_size_type extsymcount;
12902 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12903
12904 /* The sh_info field of the symtab header tells us where the
12905 external symbols start. We don't care about the local symbols at
12906 this point. */
12907 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12908 if (!elf_bad_symtab (abfd))
12909 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12910
12911 sym_hashes = elf_sym_hashes (abfd);
12912 sym_hashes_end = sym_hashes + extsymcount;
12913
12914 /* Hunt down the child symbol, which is in this section at the same
12915 offset as the relocation. */
12916 for (search = sym_hashes; search != sym_hashes_end; ++search)
12917 {
12918 if ((child = *search) != NULL
12919 && (child->root.type == bfd_link_hash_defined
12920 || child->root.type == bfd_link_hash_defweak)
12921 && child->root.u.def.section == sec
12922 && child->root.u.def.value == offset)
12923 goto win;
12924 }
12925
12926 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12927 abfd, sec, (unsigned long) offset);
12928 bfd_set_error (bfd_error_invalid_operation);
12929 return FALSE;
12930
12931 win:
12932 if (!child->vtable)
12933 {
12934 child->vtable = ((struct elf_link_virtual_table_entry *)
12935 bfd_zalloc (abfd, sizeof (*child->vtable)));
12936 if (!child->vtable)
12937 return FALSE;
12938 }
12939 if (!h)
12940 {
12941 /* This *should* only be the absolute section. It could potentially
12942 be that someone has defined a non-global vtable though, which
12943 would be bad. It isn't worth paging in the local symbols to be
12944 sure though; that case should simply be handled by the assembler. */
12945
12946 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12947 }
12948 else
12949 child->vtable->parent = h;
12950
12951 return TRUE;
12952 }
12953
12954 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12955
12956 bfd_boolean
12957 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12958 asection *sec ATTRIBUTE_UNUSED,
12959 struct elf_link_hash_entry *h,
12960 bfd_vma addend)
12961 {
12962 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12963 unsigned int log_file_align = bed->s->log_file_align;
12964
12965 if (!h->vtable)
12966 {
12967 h->vtable = ((struct elf_link_virtual_table_entry *)
12968 bfd_zalloc (abfd, sizeof (*h->vtable)));
12969 if (!h->vtable)
12970 return FALSE;
12971 }
12972
12973 if (addend >= h->vtable->size)
12974 {
12975 size_t size, bytes, file_align;
12976 bfd_boolean *ptr = h->vtable->used;
12977
12978 /* While the symbol is undefined, we have to be prepared to handle
12979 a zero size. */
12980 file_align = 1 << log_file_align;
12981 if (h->root.type == bfd_link_hash_undefined)
12982 size = addend + file_align;
12983 else
12984 {
12985 size = h->size;
12986 if (addend >= size)
12987 {
12988 /* Oops! We've got a reference past the defined end of
12989 the table. This is probably a bug -- shall we warn? */
12990 size = addend + file_align;
12991 }
12992 }
12993 size = (size + file_align - 1) & -file_align;
12994
12995 /* Allocate one extra entry for use as a "done" flag for the
12996 consolidation pass. */
12997 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12998
12999 if (ptr)
13000 {
13001 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
13002
13003 if (ptr != NULL)
13004 {
13005 size_t oldbytes;
13006
13007 oldbytes = (((h->vtable->size >> log_file_align) + 1)
13008 * sizeof (bfd_boolean));
13009 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
13010 }
13011 }
13012 else
13013 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
13014
13015 if (ptr == NULL)
13016 return FALSE;
13017
13018 /* And arrange for that done flag to be at index -1. */
13019 h->vtable->used = ptr + 1;
13020 h->vtable->size = size;
13021 }
13022
13023 h->vtable->used[addend >> log_file_align] = TRUE;
13024
13025 return TRUE;
13026 }
13027
13028 /* Map an ELF section header flag to its corresponding string. */
13029 typedef struct
13030 {
13031 char *flag_name;
13032 flagword flag_value;
13033 } elf_flags_to_name_table;
13034
13035 static elf_flags_to_name_table elf_flags_to_names [] =
13036 {
13037 { "SHF_WRITE", SHF_WRITE },
13038 { "SHF_ALLOC", SHF_ALLOC },
13039 { "SHF_EXECINSTR", SHF_EXECINSTR },
13040 { "SHF_MERGE", SHF_MERGE },
13041 { "SHF_STRINGS", SHF_STRINGS },
13042 { "SHF_INFO_LINK", SHF_INFO_LINK},
13043 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
13044 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
13045 { "SHF_GROUP", SHF_GROUP },
13046 { "SHF_TLS", SHF_TLS },
13047 { "SHF_MASKOS", SHF_MASKOS },
13048 { "SHF_EXCLUDE", SHF_EXCLUDE },
13049 };
13050
13051 /* Returns TRUE if the section is to be included, otherwise FALSE. */
13052 bfd_boolean
13053 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
13054 struct flag_info *flaginfo,
13055 asection *section)
13056 {
13057 const bfd_vma sh_flags = elf_section_flags (section);
13058
13059 if (!flaginfo->flags_initialized)
13060 {
13061 bfd *obfd = info->output_bfd;
13062 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13063 struct flag_info_list *tf = flaginfo->flag_list;
13064 int with_hex = 0;
13065 int without_hex = 0;
13066
13067 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
13068 {
13069 unsigned i;
13070 flagword (*lookup) (char *);
13071
13072 lookup = bed->elf_backend_lookup_section_flags_hook;
13073 if (lookup != NULL)
13074 {
13075 flagword hexval = (*lookup) ((char *) tf->name);
13076
13077 if (hexval != 0)
13078 {
13079 if (tf->with == with_flags)
13080 with_hex |= hexval;
13081 else if (tf->with == without_flags)
13082 without_hex |= hexval;
13083 tf->valid = TRUE;
13084 continue;
13085 }
13086 }
13087 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
13088 {
13089 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
13090 {
13091 if (tf->with == with_flags)
13092 with_hex |= elf_flags_to_names[i].flag_value;
13093 else if (tf->with == without_flags)
13094 without_hex |= elf_flags_to_names[i].flag_value;
13095 tf->valid = TRUE;
13096 break;
13097 }
13098 }
13099 if (!tf->valid)
13100 {
13101 info->callbacks->einfo
13102 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
13103 return FALSE;
13104 }
13105 }
13106 flaginfo->flags_initialized = TRUE;
13107 flaginfo->only_with_flags |= with_hex;
13108 flaginfo->not_with_flags |= without_hex;
13109 }
13110
13111 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
13112 return FALSE;
13113
13114 if ((flaginfo->not_with_flags & sh_flags) != 0)
13115 return FALSE;
13116
13117 return TRUE;
13118 }
13119
13120 struct alloc_got_off_arg {
13121 bfd_vma gotoff;
13122 struct bfd_link_info *info;
13123 };
13124
13125 /* We need a special top-level link routine to convert got reference counts
13126 to real got offsets. */
13127
13128 static bfd_boolean
13129 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
13130 {
13131 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
13132 bfd *obfd = gofarg->info->output_bfd;
13133 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13134
13135 if (h->got.refcount > 0)
13136 {
13137 h->got.offset = gofarg->gotoff;
13138 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
13139 }
13140 else
13141 h->got.offset = (bfd_vma) -1;
13142
13143 return TRUE;
13144 }
13145
13146 /* And an accompanying bit to work out final got entry offsets once
13147 we're done. Should be called from final_link. */
13148
13149 bfd_boolean
13150 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
13151 struct bfd_link_info *info)
13152 {
13153 bfd *i;
13154 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13155 bfd_vma gotoff;
13156 struct alloc_got_off_arg gofarg;
13157
13158 BFD_ASSERT (abfd == info->output_bfd);
13159
13160 if (! is_elf_hash_table (info->hash))
13161 return FALSE;
13162
13163 /* The GOT offset is relative to the .got section, but the GOT header is
13164 put into the .got.plt section, if the backend uses it. */
13165 if (bed->want_got_plt)
13166 gotoff = 0;
13167 else
13168 gotoff = bed->got_header_size;
13169
13170 /* Do the local .got entries first. */
13171 for (i = info->input_bfds; i; i = i->link.next)
13172 {
13173 bfd_signed_vma *local_got;
13174 bfd_size_type j, locsymcount;
13175 Elf_Internal_Shdr *symtab_hdr;
13176
13177 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
13178 continue;
13179
13180 local_got = elf_local_got_refcounts (i);
13181 if (!local_got)
13182 continue;
13183
13184 symtab_hdr = &elf_tdata (i)->symtab_hdr;
13185 if (elf_bad_symtab (i))
13186 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13187 else
13188 locsymcount = symtab_hdr->sh_info;
13189
13190 for (j = 0; j < locsymcount; ++j)
13191 {
13192 if (local_got[j] > 0)
13193 {
13194 local_got[j] = gotoff;
13195 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
13196 }
13197 else
13198 local_got[j] = (bfd_vma) -1;
13199 }
13200 }
13201
13202 /* Then the global .got entries. .plt refcounts are handled by
13203 adjust_dynamic_symbol */
13204 gofarg.gotoff = gotoff;
13205 gofarg.info = info;
13206 elf_link_hash_traverse (elf_hash_table (info),
13207 elf_gc_allocate_got_offsets,
13208 &gofarg);
13209 return TRUE;
13210 }
13211
13212 /* Many folk need no more in the way of final link than this, once
13213 got entry reference counting is enabled. */
13214
13215 bfd_boolean
13216 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
13217 {
13218 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
13219 return FALSE;
13220
13221 /* Invoke the regular ELF backend linker to do all the work. */
13222 return bfd_elf_final_link (abfd, info);
13223 }
13224
13225 bfd_boolean
13226 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
13227 {
13228 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
13229
13230 if (rcookie->bad_symtab)
13231 rcookie->rel = rcookie->rels;
13232
13233 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
13234 {
13235 unsigned long r_symndx;
13236
13237 if (! rcookie->bad_symtab)
13238 if (rcookie->rel->r_offset > offset)
13239 return FALSE;
13240 if (rcookie->rel->r_offset != offset)
13241 continue;
13242
13243 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
13244 if (r_symndx == STN_UNDEF)
13245 return TRUE;
13246
13247 if (r_symndx >= rcookie->locsymcount
13248 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13249 {
13250 struct elf_link_hash_entry *h;
13251
13252 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
13253
13254 while (h->root.type == bfd_link_hash_indirect
13255 || h->root.type == bfd_link_hash_warning)
13256 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13257
13258 if ((h->root.type == bfd_link_hash_defined
13259 || h->root.type == bfd_link_hash_defweak)
13260 && (h->root.u.def.section->owner != rcookie->abfd
13261 || h->root.u.def.section->kept_section != NULL
13262 || discarded_section (h->root.u.def.section)))
13263 return TRUE;
13264 }
13265 else
13266 {
13267 /* It's not a relocation against a global symbol,
13268 but it could be a relocation against a local
13269 symbol for a discarded section. */
13270 asection *isec;
13271 Elf_Internal_Sym *isym;
13272
13273 /* Need to: get the symbol; get the section. */
13274 isym = &rcookie->locsyms[r_symndx];
13275 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
13276 if (isec != NULL
13277 && (isec->kept_section != NULL
13278 || discarded_section (isec)))
13279 return TRUE;
13280 }
13281 return FALSE;
13282 }
13283 return FALSE;
13284 }
13285
13286 /* Discard unneeded references to discarded sections.
13287 Returns -1 on error, 1 if any section's size was changed, 0 if
13288 nothing changed. This function assumes that the relocations are in
13289 sorted order, which is true for all known assemblers. */
13290
13291 int
13292 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
13293 {
13294 struct elf_reloc_cookie cookie;
13295 asection *o;
13296 bfd *abfd;
13297 int changed = 0;
13298
13299 if (info->traditional_format
13300 || !is_elf_hash_table (info->hash))
13301 return 0;
13302
13303 o = bfd_get_section_by_name (output_bfd, ".stab");
13304 if (o != NULL)
13305 {
13306 asection *i;
13307
13308 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13309 {
13310 if (i->size == 0
13311 || i->reloc_count == 0
13312 || i->sec_info_type != SEC_INFO_TYPE_STABS)
13313 continue;
13314
13315 abfd = i->owner;
13316 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13317 continue;
13318
13319 if (!init_reloc_cookie_for_section (&cookie, info, i))
13320 return -1;
13321
13322 if (_bfd_discard_section_stabs (abfd, i,
13323 elf_section_data (i)->sec_info,
13324 bfd_elf_reloc_symbol_deleted_p,
13325 &cookie))
13326 changed = 1;
13327
13328 fini_reloc_cookie_for_section (&cookie, i);
13329 }
13330 }
13331
13332 o = NULL;
13333 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
13334 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
13335 if (o != NULL)
13336 {
13337 asection *i;
13338
13339 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13340 {
13341 if (i->size == 0)
13342 continue;
13343
13344 abfd = i->owner;
13345 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13346 continue;
13347
13348 if (!init_reloc_cookie_for_section (&cookie, info, i))
13349 return -1;
13350
13351 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
13352 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
13353 bfd_elf_reloc_symbol_deleted_p,
13354 &cookie))
13355 changed = 1;
13356
13357 fini_reloc_cookie_for_section (&cookie, i);
13358 }
13359 }
13360
13361 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
13362 {
13363 const struct elf_backend_data *bed;
13364
13365 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13366 continue;
13367
13368 bed = get_elf_backend_data (abfd);
13369
13370 if (bed->elf_backend_discard_info != NULL)
13371 {
13372 if (!init_reloc_cookie (&cookie, info, abfd))
13373 return -1;
13374
13375 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
13376 changed = 1;
13377
13378 fini_reloc_cookie (&cookie, abfd);
13379 }
13380 }
13381
13382 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
13383 _bfd_elf_end_eh_frame_parsing (info);
13384
13385 if (info->eh_frame_hdr_type
13386 && !bfd_link_relocatable (info)
13387 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
13388 changed = 1;
13389
13390 return changed;
13391 }
13392
13393 bfd_boolean
13394 _bfd_elf_section_already_linked (bfd *abfd,
13395 asection *sec,
13396 struct bfd_link_info *info)
13397 {
13398 flagword flags;
13399 const char *name, *key;
13400 struct bfd_section_already_linked *l;
13401 struct bfd_section_already_linked_hash_entry *already_linked_list;
13402
13403 if (sec->output_section == bfd_abs_section_ptr)
13404 return FALSE;
13405
13406 flags = sec->flags;
13407
13408 /* Return if it isn't a linkonce section. A comdat group section
13409 also has SEC_LINK_ONCE set. */
13410 if ((flags & SEC_LINK_ONCE) == 0)
13411 return FALSE;
13412
13413 /* Don't put group member sections on our list of already linked
13414 sections. They are handled as a group via their group section. */
13415 if (elf_sec_group (sec) != NULL)
13416 return FALSE;
13417
13418 /* For a SHT_GROUP section, use the group signature as the key. */
13419 name = sec->name;
13420 if ((flags & SEC_GROUP) != 0
13421 && elf_next_in_group (sec) != NULL
13422 && elf_group_name (elf_next_in_group (sec)) != NULL)
13423 key = elf_group_name (elf_next_in_group (sec));
13424 else
13425 {
13426 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
13427 if (CONST_STRNEQ (name, ".gnu.linkonce.")
13428 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
13429 key++;
13430 else
13431 /* Must be a user linkonce section that doesn't follow gcc's
13432 naming convention. In this case we won't be matching
13433 single member groups. */
13434 key = name;
13435 }
13436
13437 already_linked_list = bfd_section_already_linked_table_lookup (key);
13438
13439 for (l = already_linked_list->entry; l != NULL; l = l->next)
13440 {
13441 /* We may have 2 different types of sections on the list: group
13442 sections with a signature of <key> (<key> is some string),
13443 and linkonce sections named .gnu.linkonce.<type>.<key>.
13444 Match like sections. LTO plugin sections are an exception.
13445 They are always named .gnu.linkonce.t.<key> and match either
13446 type of section. */
13447 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13448 && ((flags & SEC_GROUP) != 0
13449 || strcmp (name, l->sec->name) == 0))
13450 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13451 {
13452 /* The section has already been linked. See if we should
13453 issue a warning. */
13454 if (!_bfd_handle_already_linked (sec, l, info))
13455 return FALSE;
13456
13457 if (flags & SEC_GROUP)
13458 {
13459 asection *first = elf_next_in_group (sec);
13460 asection *s = first;
13461
13462 while (s != NULL)
13463 {
13464 s->output_section = bfd_abs_section_ptr;
13465 /* Record which group discards it. */
13466 s->kept_section = l->sec;
13467 s = elf_next_in_group (s);
13468 /* These lists are circular. */
13469 if (s == first)
13470 break;
13471 }
13472 }
13473
13474 return TRUE;
13475 }
13476 }
13477
13478 /* A single member comdat group section may be discarded by a
13479 linkonce section and vice versa. */
13480 if ((flags & SEC_GROUP) != 0)
13481 {
13482 asection *first = elf_next_in_group (sec);
13483
13484 if (first != NULL && elf_next_in_group (first) == first)
13485 /* Check this single member group against linkonce sections. */
13486 for (l = already_linked_list->entry; l != NULL; l = l->next)
13487 if ((l->sec->flags & SEC_GROUP) == 0
13488 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
13489 {
13490 first->output_section = bfd_abs_section_ptr;
13491 first->kept_section = l->sec;
13492 sec->output_section = bfd_abs_section_ptr;
13493 break;
13494 }
13495 }
13496 else
13497 /* Check this linkonce section against single member groups. */
13498 for (l = already_linked_list->entry; l != NULL; l = l->next)
13499 if (l->sec->flags & SEC_GROUP)
13500 {
13501 asection *first = elf_next_in_group (l->sec);
13502
13503 if (first != NULL
13504 && elf_next_in_group (first) == first
13505 && bfd_elf_match_symbols_in_sections (first, sec, info))
13506 {
13507 sec->output_section = bfd_abs_section_ptr;
13508 sec->kept_section = first;
13509 break;
13510 }
13511 }
13512
13513 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
13514 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
13515 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
13516 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
13517 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
13518 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
13519 `.gnu.linkonce.t.F' section from a different bfd not requiring any
13520 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
13521 The reverse order cannot happen as there is never a bfd with only the
13522 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
13523 matter as here were are looking only for cross-bfd sections. */
13524
13525 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
13526 for (l = already_linked_list->entry; l != NULL; l = l->next)
13527 if ((l->sec->flags & SEC_GROUP) == 0
13528 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
13529 {
13530 if (abfd != l->sec->owner)
13531 sec->output_section = bfd_abs_section_ptr;
13532 break;
13533 }
13534
13535 /* This is the first section with this name. Record it. */
13536 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
13537 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
13538 return sec->output_section == bfd_abs_section_ptr;
13539 }
13540
13541 bfd_boolean
13542 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
13543 {
13544 return sym->st_shndx == SHN_COMMON;
13545 }
13546
13547 unsigned int
13548 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
13549 {
13550 return SHN_COMMON;
13551 }
13552
13553 asection *
13554 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
13555 {
13556 return bfd_com_section_ptr;
13557 }
13558
13559 bfd_vma
13560 _bfd_elf_default_got_elt_size (bfd *abfd,
13561 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13562 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
13563 bfd *ibfd ATTRIBUTE_UNUSED,
13564 unsigned long symndx ATTRIBUTE_UNUSED)
13565 {
13566 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13567 return bed->s->arch_size / 8;
13568 }
13569
13570 /* Routines to support the creation of dynamic relocs. */
13571
13572 /* Returns the name of the dynamic reloc section associated with SEC. */
13573
13574 static const char *
13575 get_dynamic_reloc_section_name (bfd * abfd,
13576 asection * sec,
13577 bfd_boolean is_rela)
13578 {
13579 char *name;
13580 const char *old_name = bfd_get_section_name (NULL, sec);
13581 const char *prefix = is_rela ? ".rela" : ".rel";
13582
13583 if (old_name == NULL)
13584 return NULL;
13585
13586 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
13587 sprintf (name, "%s%s", prefix, old_name);
13588
13589 return name;
13590 }
13591
13592 /* Returns the dynamic reloc section associated with SEC.
13593 If necessary compute the name of the dynamic reloc section based
13594 on SEC's name (looked up in ABFD's string table) and the setting
13595 of IS_RELA. */
13596
13597 asection *
13598 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
13599 asection * sec,
13600 bfd_boolean is_rela)
13601 {
13602 asection * reloc_sec = elf_section_data (sec)->sreloc;
13603
13604 if (reloc_sec == NULL)
13605 {
13606 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13607
13608 if (name != NULL)
13609 {
13610 reloc_sec = bfd_get_linker_section (abfd, name);
13611
13612 if (reloc_sec != NULL)
13613 elf_section_data (sec)->sreloc = reloc_sec;
13614 }
13615 }
13616
13617 return reloc_sec;
13618 }
13619
13620 /* Returns the dynamic reloc section associated with SEC. If the
13621 section does not exist it is created and attached to the DYNOBJ
13622 bfd and stored in the SRELOC field of SEC's elf_section_data
13623 structure.
13624
13625 ALIGNMENT is the alignment for the newly created section and
13626 IS_RELA defines whether the name should be .rela.<SEC's name>
13627 or .rel.<SEC's name>. The section name is looked up in the
13628 string table associated with ABFD. */
13629
13630 asection *
13631 _bfd_elf_make_dynamic_reloc_section (asection *sec,
13632 bfd *dynobj,
13633 unsigned int alignment,
13634 bfd *abfd,
13635 bfd_boolean is_rela)
13636 {
13637 asection * reloc_sec = elf_section_data (sec)->sreloc;
13638
13639 if (reloc_sec == NULL)
13640 {
13641 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13642
13643 if (name == NULL)
13644 return NULL;
13645
13646 reloc_sec = bfd_get_linker_section (dynobj, name);
13647
13648 if (reloc_sec == NULL)
13649 {
13650 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13651 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13652 if ((sec->flags & SEC_ALLOC) != 0)
13653 flags |= SEC_ALLOC | SEC_LOAD;
13654
13655 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13656 if (reloc_sec != NULL)
13657 {
13658 /* _bfd_elf_get_sec_type_attr chooses a section type by
13659 name. Override as it may be wrong, eg. for a user
13660 section named "auto" we'll get ".relauto" which is
13661 seen to be a .rela section. */
13662 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13663 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13664 reloc_sec = NULL;
13665 }
13666 }
13667
13668 elf_section_data (sec)->sreloc = reloc_sec;
13669 }
13670
13671 return reloc_sec;
13672 }
13673
13674 /* Copy the ELF symbol type and other attributes for a linker script
13675 assignment from HSRC to HDEST. Generally this should be treated as
13676 if we found a strong non-dynamic definition for HDEST (except that
13677 ld ignores multiple definition errors). */
13678 void
13679 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
13680 struct bfd_link_hash_entry *hdest,
13681 struct bfd_link_hash_entry *hsrc)
13682 {
13683 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
13684 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
13685 Elf_Internal_Sym isym;
13686
13687 ehdest->type = ehsrc->type;
13688 ehdest->target_internal = ehsrc->target_internal;
13689
13690 isym.st_other = ehsrc->other;
13691 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
13692 }
13693
13694 /* Append a RELA relocation REL to section S in BFD. */
13695
13696 void
13697 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13698 {
13699 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13700 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13701 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13702 bed->s->swap_reloca_out (abfd, rel, loc);
13703 }
13704
13705 /* Append a REL relocation REL to section S in BFD. */
13706
13707 void
13708 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13709 {
13710 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13711 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13712 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13713 bed->s->swap_reloc_out (abfd, rel, loc);
13714 }