cda897ebd87d6fb736c433ef7722194462c36e95
[binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
32
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
35
36 struct elf_info_failed
37 {
38 struct bfd_link_info *info;
39 struct bfd_elf_version_tree *verdefs;
40 bfd_boolean failed;
41 };
42
43 /* This structure is used to pass information to
44 _bfd_elf_link_find_version_dependencies. */
45
46 struct elf_find_verdep_info
47 {
48 /* General link information. */
49 struct bfd_link_info *info;
50 /* The number of dependencies. */
51 unsigned int vers;
52 /* Whether we had a failure. */
53 bfd_boolean failed;
54 };
55
56 static bfd_boolean _bfd_elf_fix_symbol_flags
57 (struct elf_link_hash_entry *, struct elf_info_failed *);
58
59 /* Define a symbol in a dynamic linkage section. */
60
61 struct elf_link_hash_entry *
62 _bfd_elf_define_linkage_sym (bfd *abfd,
63 struct bfd_link_info *info,
64 asection *sec,
65 const char *name)
66 {
67 struct elf_link_hash_entry *h;
68 struct bfd_link_hash_entry *bh;
69 const struct elf_backend_data *bed;
70
71 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
72 if (h != NULL)
73 {
74 /* Zap symbol defined in an as-needed lib that wasn't linked.
75 This is a symptom of a larger problem: Absolute symbols
76 defined in shared libraries can't be overridden, because we
77 lose the link to the bfd which is via the symbol section. */
78 h->root.type = bfd_link_hash_new;
79 }
80
81 bh = &h->root;
82 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
83 sec, 0, NULL, FALSE,
84 get_elf_backend_data (abfd)->collect,
85 &bh))
86 return NULL;
87 h = (struct elf_link_hash_entry *) bh;
88 h->def_regular = 1;
89 h->non_elf = 0;
90 h->type = STT_OBJECT;
91 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
92
93 bed = get_elf_backend_data (abfd);
94 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
95 return h;
96 }
97
98 bfd_boolean
99 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
100 {
101 flagword flags;
102 asection *s;
103 struct elf_link_hash_entry *h;
104 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
105 struct elf_link_hash_table *htab = elf_hash_table (info);
106
107 /* This function may be called more than once. */
108 s = bfd_get_section_by_name (abfd, ".got");
109 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
110 return TRUE;
111
112 flags = bed->dynamic_sec_flags;
113
114 s = bfd_make_section_with_flags (abfd,
115 (bed->rela_plts_and_copies_p
116 ? ".rela.got" : ".rel.got"),
117 (bed->dynamic_sec_flags
118 | SEC_READONLY));
119 if (s == NULL
120 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
121 return FALSE;
122 htab->srelgot = s;
123
124 s = bfd_make_section_with_flags (abfd, ".got", flags);
125 if (s == NULL
126 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
127 return FALSE;
128 htab->sgot = s;
129
130 if (bed->want_got_plt)
131 {
132 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
133 if (s == NULL
134 || !bfd_set_section_alignment (abfd, s,
135 bed->s->log_file_align))
136 return FALSE;
137 htab->sgotplt = s;
138 }
139
140 /* The first bit of the global offset table is the header. */
141 s->size += bed->got_header_size;
142
143 if (bed->want_got_sym)
144 {
145 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
146 (or .got.plt) section. We don't do this in the linker script
147 because we don't want to define the symbol if we are not creating
148 a global offset table. */
149 h = _bfd_elf_define_linkage_sym (abfd, info, s,
150 "_GLOBAL_OFFSET_TABLE_");
151 elf_hash_table (info)->hgot = h;
152 if (h == NULL)
153 return FALSE;
154 }
155
156 return TRUE;
157 }
158 \f
159 /* Create a strtab to hold the dynamic symbol names. */
160 static bfd_boolean
161 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
162 {
163 struct elf_link_hash_table *hash_table;
164
165 hash_table = elf_hash_table (info);
166 if (hash_table->dynobj == NULL)
167 hash_table->dynobj = abfd;
168
169 if (hash_table->dynstr == NULL)
170 {
171 hash_table->dynstr = _bfd_elf_strtab_init ();
172 if (hash_table->dynstr == NULL)
173 return FALSE;
174 }
175 return TRUE;
176 }
177
178 /* Create some sections which will be filled in with dynamic linking
179 information. ABFD is an input file which requires dynamic sections
180 to be created. The dynamic sections take up virtual memory space
181 when the final executable is run, so we need to create them before
182 addresses are assigned to the output sections. We work out the
183 actual contents and size of these sections later. */
184
185 bfd_boolean
186 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
187 {
188 flagword flags;
189 asection *s;
190 const struct elf_backend_data *bed;
191
192 if (! is_elf_hash_table (info->hash))
193 return FALSE;
194
195 if (elf_hash_table (info)->dynamic_sections_created)
196 return TRUE;
197
198 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
199 return FALSE;
200
201 abfd = elf_hash_table (info)->dynobj;
202 bed = get_elf_backend_data (abfd);
203
204 flags = bed->dynamic_sec_flags;
205
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
208 if (info->executable)
209 {
210 s = bfd_make_section_with_flags (abfd, ".interp",
211 flags | SEC_READONLY);
212 if (s == NULL)
213 return FALSE;
214 }
215
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
218 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
219 flags | SEC_READONLY);
220 if (s == NULL
221 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
222 return FALSE;
223
224 s = bfd_make_section_with_flags (abfd, ".gnu.version",
225 flags | SEC_READONLY);
226 if (s == NULL
227 || ! bfd_set_section_alignment (abfd, s, 1))
228 return FALSE;
229
230 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
231 flags | SEC_READONLY);
232 if (s == NULL
233 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
234 return FALSE;
235
236 s = bfd_make_section_with_flags (abfd, ".dynsym",
237 flags | SEC_READONLY);
238 if (s == NULL
239 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
240 return FALSE;
241
242 s = bfd_make_section_with_flags (abfd, ".dynstr",
243 flags | SEC_READONLY);
244 if (s == NULL)
245 return FALSE;
246
247 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
248 if (s == NULL
249 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
250 return FALSE;
251
252 /* The special symbol _DYNAMIC is always set to the start of the
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
258 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
259 return FALSE;
260
261 if (info->emit_hash)
262 {
263 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
264 if (s == NULL
265 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
266 return FALSE;
267 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
268 }
269
270 if (info->emit_gnu_hash)
271 {
272 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
273 flags | SEC_READONLY);
274 if (s == NULL
275 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
276 return FALSE;
277 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
278 4 32-bit words followed by variable count of 64-bit words, then
279 variable count of 32-bit words. */
280 if (bed->s->arch_size == 64)
281 elf_section_data (s)->this_hdr.sh_entsize = 0;
282 else
283 elf_section_data (s)->this_hdr.sh_entsize = 4;
284 }
285
286 /* Let the backend create the rest of the sections. This lets the
287 backend set the right flags. The backend will normally create
288 the .got and .plt sections. */
289 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
290 return FALSE;
291
292 elf_hash_table (info)->dynamic_sections_created = TRUE;
293
294 return TRUE;
295 }
296
297 /* Create dynamic sections when linking against a dynamic object. */
298
299 bfd_boolean
300 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
301 {
302 flagword flags, pltflags;
303 struct elf_link_hash_entry *h;
304 asection *s;
305 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
306 struct elf_link_hash_table *htab = elf_hash_table (info);
307
308 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
309 .rel[a].bss sections. */
310 flags = bed->dynamic_sec_flags;
311
312 pltflags = flags;
313 if (bed->plt_not_loaded)
314 /* We do not clear SEC_ALLOC here because we still want the OS to
315 allocate space for the section; it's just that there's nothing
316 to read in from the object file. */
317 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
318 else
319 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
320 if (bed->plt_readonly)
321 pltflags |= SEC_READONLY;
322
323 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
324 if (s == NULL
325 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
326 return FALSE;
327 htab->splt = s;
328
329 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
330 .plt section. */
331 if (bed->want_plt_sym)
332 {
333 h = _bfd_elf_define_linkage_sym (abfd, info, s,
334 "_PROCEDURE_LINKAGE_TABLE_");
335 elf_hash_table (info)->hplt = h;
336 if (h == NULL)
337 return FALSE;
338 }
339
340 s = bfd_make_section_with_flags (abfd,
341 (bed->rela_plts_and_copies_p
342 ? ".rela.plt" : ".rel.plt"),
343 flags | SEC_READONLY);
344 if (s == NULL
345 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
346 return FALSE;
347 htab->srelplt = s;
348
349 if (! _bfd_elf_create_got_section (abfd, info))
350 return FALSE;
351
352 if (bed->want_dynbss)
353 {
354 /* The .dynbss section is a place to put symbols which are defined
355 by dynamic objects, are referenced by regular objects, and are
356 not functions. We must allocate space for them in the process
357 image and use a R_*_COPY reloc to tell the dynamic linker to
358 initialize them at run time. The linker script puts the .dynbss
359 section into the .bss section of the final image. */
360 s = bfd_make_section_with_flags (abfd, ".dynbss",
361 (SEC_ALLOC
362 | SEC_LINKER_CREATED));
363 if (s == NULL)
364 return FALSE;
365
366 /* The .rel[a].bss section holds copy relocs. This section is not
367 normally needed. We need to create it here, though, so that the
368 linker will map it to an output section. We can't just create it
369 only if we need it, because we will not know whether we need it
370 until we have seen all the input files, and the first time the
371 main linker code calls BFD after examining all the input files
372 (size_dynamic_sections) the input sections have already been
373 mapped to the output sections. If the section turns out not to
374 be needed, we can discard it later. We will never need this
375 section when generating a shared object, since they do not use
376 copy relocs. */
377 if (! info->shared)
378 {
379 s = bfd_make_section_with_flags (abfd,
380 (bed->rela_plts_and_copies_p
381 ? ".rela.bss" : ".rel.bss"),
382 flags | SEC_READONLY);
383 if (s == NULL
384 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
385 return FALSE;
386 }
387 }
388
389 return TRUE;
390 }
391 \f
392 /* Record a new dynamic symbol. We record the dynamic symbols as we
393 read the input files, since we need to have a list of all of them
394 before we can determine the final sizes of the output sections.
395 Note that we may actually call this function even though we are not
396 going to output any dynamic symbols; in some cases we know that a
397 symbol should be in the dynamic symbol table, but only if there is
398 one. */
399
400 bfd_boolean
401 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
402 struct elf_link_hash_entry *h)
403 {
404 if (h->dynindx == -1)
405 {
406 struct elf_strtab_hash *dynstr;
407 char *p;
408 const char *name;
409 bfd_size_type indx;
410
411 /* XXX: The ABI draft says the linker must turn hidden and
412 internal symbols into STB_LOCAL symbols when producing the
413 DSO. However, if ld.so honors st_other in the dynamic table,
414 this would not be necessary. */
415 switch (ELF_ST_VISIBILITY (h->other))
416 {
417 case STV_INTERNAL:
418 case STV_HIDDEN:
419 if (h->root.type != bfd_link_hash_undefined
420 && h->root.type != bfd_link_hash_undefweak)
421 {
422 h->forced_local = 1;
423 if (!elf_hash_table (info)->is_relocatable_executable)
424 return TRUE;
425 }
426
427 default:
428 break;
429 }
430
431 h->dynindx = elf_hash_table (info)->dynsymcount;
432 ++elf_hash_table (info)->dynsymcount;
433
434 dynstr = elf_hash_table (info)->dynstr;
435 if (dynstr == NULL)
436 {
437 /* Create a strtab to hold the dynamic symbol names. */
438 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
439 if (dynstr == NULL)
440 return FALSE;
441 }
442
443 /* We don't put any version information in the dynamic string
444 table. */
445 name = h->root.root.string;
446 p = strchr (name, ELF_VER_CHR);
447 if (p != NULL)
448 /* We know that the p points into writable memory. In fact,
449 there are only a few symbols that have read-only names, being
450 those like _GLOBAL_OFFSET_TABLE_ that are created specially
451 by the backends. Most symbols will have names pointing into
452 an ELF string table read from a file, or to objalloc memory. */
453 *p = 0;
454
455 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
456
457 if (p != NULL)
458 *p = ELF_VER_CHR;
459
460 if (indx == (bfd_size_type) -1)
461 return FALSE;
462 h->dynstr_index = indx;
463 }
464
465 return TRUE;
466 }
467 \f
468 /* Mark a symbol dynamic. */
469
470 static void
471 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
472 struct elf_link_hash_entry *h,
473 Elf_Internal_Sym *sym)
474 {
475 struct bfd_elf_dynamic_list *d = info->dynamic_list;
476
477 /* It may be called more than once on the same H. */
478 if(h->dynamic || info->relocatable)
479 return;
480
481 if ((info->dynamic_data
482 && (h->type == STT_OBJECT
483 || (sym != NULL
484 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
485 || (d != NULL
486 && h->root.type == bfd_link_hash_new
487 && (*d->match) (&d->head, NULL, h->root.root.string)))
488 h->dynamic = 1;
489 }
490
491 /* Record an assignment to a symbol made by a linker script. We need
492 this in case some dynamic object refers to this symbol. */
493
494 bfd_boolean
495 bfd_elf_record_link_assignment (bfd *output_bfd,
496 struct bfd_link_info *info,
497 const char *name,
498 bfd_boolean provide,
499 bfd_boolean hidden)
500 {
501 struct elf_link_hash_entry *h, *hv;
502 struct elf_link_hash_table *htab;
503 const struct elf_backend_data *bed;
504
505 if (!is_elf_hash_table (info->hash))
506 return TRUE;
507
508 htab = elf_hash_table (info);
509 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
510 if (h == NULL)
511 return provide;
512
513 switch (h->root.type)
514 {
515 case bfd_link_hash_defined:
516 case bfd_link_hash_defweak:
517 case bfd_link_hash_common:
518 break;
519 case bfd_link_hash_undefweak:
520 case bfd_link_hash_undefined:
521 /* Since we're defining the symbol, don't let it seem to have not
522 been defined. record_dynamic_symbol and size_dynamic_sections
523 may depend on this. */
524 h->root.type = bfd_link_hash_new;
525 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
526 bfd_link_repair_undef_list (&htab->root);
527 break;
528 case bfd_link_hash_new:
529 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
530 h->non_elf = 0;
531 break;
532 case bfd_link_hash_indirect:
533 /* We had a versioned symbol in a dynamic library. We make the
534 the versioned symbol point to this one. */
535 bed = get_elf_backend_data (output_bfd);
536 hv = h;
537 while (hv->root.type == bfd_link_hash_indirect
538 || hv->root.type == bfd_link_hash_warning)
539 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
540 /* We don't need to update h->root.u since linker will set them
541 later. */
542 h->root.type = bfd_link_hash_undefined;
543 hv->root.type = bfd_link_hash_indirect;
544 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
545 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
546 break;
547 case bfd_link_hash_warning:
548 abort ();
549 break;
550 }
551
552 /* If this symbol is being provided by the linker script, and it is
553 currently defined by a dynamic object, but not by a regular
554 object, then mark it as undefined so that the generic linker will
555 force the correct value. */
556 if (provide
557 && h->def_dynamic
558 && !h->def_regular)
559 h->root.type = bfd_link_hash_undefined;
560
561 /* If this symbol is not being provided by the linker script, and it is
562 currently defined by a dynamic object, but not by a regular object,
563 then clear out any version information because the symbol will not be
564 associated with the dynamic object any more. */
565 if (!provide
566 && h->def_dynamic
567 && !h->def_regular)
568 h->verinfo.verdef = NULL;
569
570 h->def_regular = 1;
571
572 if (provide && hidden)
573 {
574 bed = get_elf_backend_data (output_bfd);
575 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
576 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
577 }
578
579 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
580 and executables. */
581 if (!info->relocatable
582 && h->dynindx != -1
583 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
584 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
585 h->forced_local = 1;
586
587 if ((h->def_dynamic
588 || h->ref_dynamic
589 || info->shared
590 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
591 && h->dynindx == -1)
592 {
593 if (! bfd_elf_link_record_dynamic_symbol (info, h))
594 return FALSE;
595
596 /* If this is a weak defined symbol, and we know a corresponding
597 real symbol from the same dynamic object, make sure the real
598 symbol is also made into a dynamic symbol. */
599 if (h->u.weakdef != NULL
600 && h->u.weakdef->dynindx == -1)
601 {
602 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
603 return FALSE;
604 }
605 }
606
607 return TRUE;
608 }
609
610 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
611 success, and 2 on a failure caused by attempting to record a symbol
612 in a discarded section, eg. a discarded link-once section symbol. */
613
614 int
615 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
616 bfd *input_bfd,
617 long input_indx)
618 {
619 bfd_size_type amt;
620 struct elf_link_local_dynamic_entry *entry;
621 struct elf_link_hash_table *eht;
622 struct elf_strtab_hash *dynstr;
623 unsigned long dynstr_index;
624 char *name;
625 Elf_External_Sym_Shndx eshndx;
626 char esym[sizeof (Elf64_External_Sym)];
627
628 if (! is_elf_hash_table (info->hash))
629 return 0;
630
631 /* See if the entry exists already. */
632 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
633 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
634 return 1;
635
636 amt = sizeof (*entry);
637 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
638 if (entry == NULL)
639 return 0;
640
641 /* Go find the symbol, so that we can find it's name. */
642 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
643 1, input_indx, &entry->isym, esym, &eshndx))
644 {
645 bfd_release (input_bfd, entry);
646 return 0;
647 }
648
649 if (entry->isym.st_shndx != SHN_UNDEF
650 && entry->isym.st_shndx < SHN_LORESERVE)
651 {
652 asection *s;
653
654 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
655 if (s == NULL || bfd_is_abs_section (s->output_section))
656 {
657 /* We can still bfd_release here as nothing has done another
658 bfd_alloc. We can't do this later in this function. */
659 bfd_release (input_bfd, entry);
660 return 2;
661 }
662 }
663
664 name = (bfd_elf_string_from_elf_section
665 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
666 entry->isym.st_name));
667
668 dynstr = elf_hash_table (info)->dynstr;
669 if (dynstr == NULL)
670 {
671 /* Create a strtab to hold the dynamic symbol names. */
672 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
673 if (dynstr == NULL)
674 return 0;
675 }
676
677 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
678 if (dynstr_index == (unsigned long) -1)
679 return 0;
680 entry->isym.st_name = dynstr_index;
681
682 eht = elf_hash_table (info);
683
684 entry->next = eht->dynlocal;
685 eht->dynlocal = entry;
686 entry->input_bfd = input_bfd;
687 entry->input_indx = input_indx;
688 eht->dynsymcount++;
689
690 /* Whatever binding the symbol had before, it's now local. */
691 entry->isym.st_info
692 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
693
694 /* The dynindx will be set at the end of size_dynamic_sections. */
695
696 return 1;
697 }
698
699 /* Return the dynindex of a local dynamic symbol. */
700
701 long
702 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
703 bfd *input_bfd,
704 long input_indx)
705 {
706 struct elf_link_local_dynamic_entry *e;
707
708 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
709 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
710 return e->dynindx;
711 return -1;
712 }
713
714 /* This function is used to renumber the dynamic symbols, if some of
715 them are removed because they are marked as local. This is called
716 via elf_link_hash_traverse. */
717
718 static bfd_boolean
719 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
720 void *data)
721 {
722 size_t *count = (size_t *) data;
723
724 if (h->root.type == bfd_link_hash_warning)
725 h = (struct elf_link_hash_entry *) h->root.u.i.link;
726
727 if (h->forced_local)
728 return TRUE;
729
730 if (h->dynindx != -1)
731 h->dynindx = ++(*count);
732
733 return TRUE;
734 }
735
736
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
739
740 static bfd_boolean
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
742 void *data)
743 {
744 size_t *count = (size_t *) data;
745
746 if (h->root.type == bfd_link_hash_warning)
747 h = (struct elf_link_hash_entry *) h->root.u.i.link;
748
749 if (!h->forced_local)
750 return TRUE;
751
752 if (h->dynindx != -1)
753 h->dynindx = ++(*count);
754
755 return TRUE;
756 }
757
758 /* Return true if the dynamic symbol for a given section should be
759 omitted when creating a shared library. */
760 bfd_boolean
761 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
762 struct bfd_link_info *info,
763 asection *p)
764 {
765 struct elf_link_hash_table *htab;
766
767 switch (elf_section_data (p)->this_hdr.sh_type)
768 {
769 case SHT_PROGBITS:
770 case SHT_NOBITS:
771 /* If sh_type is yet undecided, assume it could be
772 SHT_PROGBITS/SHT_NOBITS. */
773 case SHT_NULL:
774 htab = elf_hash_table (info);
775 if (p == htab->tls_sec)
776 return FALSE;
777
778 if (htab->text_index_section != NULL)
779 return p != htab->text_index_section && p != htab->data_index_section;
780
781 if (strcmp (p->name, ".got") == 0
782 || strcmp (p->name, ".got.plt") == 0
783 || strcmp (p->name, ".plt") == 0)
784 {
785 asection *ip;
786
787 if (htab->dynobj != NULL
788 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
789 && (ip->flags & SEC_LINKER_CREATED)
790 && ip->output_section == p)
791 return TRUE;
792 }
793 return FALSE;
794
795 /* There shouldn't be section relative relocations
796 against any other section. */
797 default:
798 return TRUE;
799 }
800 }
801
802 /* Assign dynsym indices. In a shared library we generate a section
803 symbol for each output section, which come first. Next come symbols
804 which have been forced to local binding. Then all of the back-end
805 allocated local dynamic syms, followed by the rest of the global
806 symbols. */
807
808 static unsigned long
809 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
810 struct bfd_link_info *info,
811 unsigned long *section_sym_count)
812 {
813 unsigned long dynsymcount = 0;
814
815 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
816 {
817 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
818 asection *p;
819 for (p = output_bfd->sections; p ; p = p->next)
820 if ((p->flags & SEC_EXCLUDE) == 0
821 && (p->flags & SEC_ALLOC) != 0
822 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
823 elf_section_data (p)->dynindx = ++dynsymcount;
824 else
825 elf_section_data (p)->dynindx = 0;
826 }
827 *section_sym_count = dynsymcount;
828
829 elf_link_hash_traverse (elf_hash_table (info),
830 elf_link_renumber_local_hash_table_dynsyms,
831 &dynsymcount);
832
833 if (elf_hash_table (info)->dynlocal)
834 {
835 struct elf_link_local_dynamic_entry *p;
836 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
837 p->dynindx = ++dynsymcount;
838 }
839
840 elf_link_hash_traverse (elf_hash_table (info),
841 elf_link_renumber_hash_table_dynsyms,
842 &dynsymcount);
843
844 /* There is an unused NULL entry at the head of the table which
845 we must account for in our count. Unless there weren't any
846 symbols, which means we'll have no table at all. */
847 if (dynsymcount != 0)
848 ++dynsymcount;
849
850 elf_hash_table (info)->dynsymcount = dynsymcount;
851 return dynsymcount;
852 }
853
854 /* Merge st_other field. */
855
856 static void
857 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
858 Elf_Internal_Sym *isym, bfd_boolean definition,
859 bfd_boolean dynamic)
860 {
861 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
862
863 /* If st_other has a processor-specific meaning, specific
864 code might be needed here. We never merge the visibility
865 attribute with the one from a dynamic object. */
866 if (bed->elf_backend_merge_symbol_attribute)
867 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
868 dynamic);
869
870 /* If this symbol has default visibility and the user has requested
871 we not re-export it, then mark it as hidden. */
872 if (definition
873 && !dynamic
874 && (abfd->no_export
875 || (abfd->my_archive && abfd->my_archive->no_export))
876 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
877 isym->st_other = (STV_HIDDEN
878 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
879
880 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
881 {
882 unsigned char hvis, symvis, other, nvis;
883
884 /* Only merge the visibility. Leave the remainder of the
885 st_other field to elf_backend_merge_symbol_attribute. */
886 other = h->other & ~ELF_ST_VISIBILITY (-1);
887
888 /* Combine visibilities, using the most constraining one. */
889 hvis = ELF_ST_VISIBILITY (h->other);
890 symvis = ELF_ST_VISIBILITY (isym->st_other);
891 if (! hvis)
892 nvis = symvis;
893 else if (! symvis)
894 nvis = hvis;
895 else
896 nvis = hvis < symvis ? hvis : symvis;
897
898 h->other = other | nvis;
899 }
900 }
901
902 /* This function is called when we want to define a new symbol. It
903 handles the various cases which arise when we find a definition in
904 a dynamic object, or when there is already a definition in a
905 dynamic object. The new symbol is described by NAME, SYM, PSEC,
906 and PVALUE. We set SYM_HASH to the hash table entry. We set
907 OVERRIDE if the old symbol is overriding a new definition. We set
908 TYPE_CHANGE_OK if it is OK for the type to change. We set
909 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
910 change, we mean that we shouldn't warn if the type or size does
911 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
912 object is overridden by a regular object. */
913
914 bfd_boolean
915 _bfd_elf_merge_symbol (bfd *abfd,
916 struct bfd_link_info *info,
917 const char *name,
918 Elf_Internal_Sym *sym,
919 asection **psec,
920 bfd_vma *pvalue,
921 unsigned int *pold_alignment,
922 struct elf_link_hash_entry **sym_hash,
923 bfd_boolean *skip,
924 bfd_boolean *override,
925 bfd_boolean *type_change_ok,
926 bfd_boolean *size_change_ok)
927 {
928 asection *sec, *oldsec;
929 struct elf_link_hash_entry *h;
930 struct elf_link_hash_entry *flip;
931 int bind;
932 bfd *oldbfd;
933 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
934 bfd_boolean newweak, oldweak, newfunc, oldfunc;
935 const struct elf_backend_data *bed;
936
937 *skip = FALSE;
938 *override = FALSE;
939
940 sec = *psec;
941 bind = ELF_ST_BIND (sym->st_info);
942
943 /* Silently discard TLS symbols from --just-syms. There's no way to
944 combine a static TLS block with a new TLS block for this executable. */
945 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
946 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
947 {
948 *skip = TRUE;
949 return TRUE;
950 }
951
952 if (! bfd_is_und_section (sec))
953 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
954 else
955 h = ((struct elf_link_hash_entry *)
956 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
957 if (h == NULL)
958 return FALSE;
959 *sym_hash = h;
960
961 bed = get_elf_backend_data (abfd);
962
963 /* This code is for coping with dynamic objects, and is only useful
964 if we are doing an ELF link. */
965 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
966 return TRUE;
967
968 /* For merging, we only care about real symbols. */
969
970 while (h->root.type == bfd_link_hash_indirect
971 || h->root.type == bfd_link_hash_warning)
972 h = (struct elf_link_hash_entry *) h->root.u.i.link;
973
974 /* We have to check it for every instance since the first few may be
975 refereences and not all compilers emit symbol type for undefined
976 symbols. */
977 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
978
979 /* If we just created the symbol, mark it as being an ELF symbol.
980 Other than that, there is nothing to do--there is no merge issue
981 with a newly defined symbol--so we just return. */
982
983 if (h->root.type == bfd_link_hash_new)
984 {
985 h->non_elf = 0;
986 return TRUE;
987 }
988
989 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
990 existing symbol. */
991
992 switch (h->root.type)
993 {
994 default:
995 oldbfd = NULL;
996 oldsec = NULL;
997 break;
998
999 case bfd_link_hash_undefined:
1000 case bfd_link_hash_undefweak:
1001 oldbfd = h->root.u.undef.abfd;
1002 oldsec = NULL;
1003 break;
1004
1005 case bfd_link_hash_defined:
1006 case bfd_link_hash_defweak:
1007 oldbfd = h->root.u.def.section->owner;
1008 oldsec = h->root.u.def.section;
1009 break;
1010
1011 case bfd_link_hash_common:
1012 oldbfd = h->root.u.c.p->section->owner;
1013 oldsec = h->root.u.c.p->section;
1014 break;
1015 }
1016
1017 /* Differentiate strong and weak symbols. */
1018 newweak = bind == STB_WEAK;
1019 oldweak = (h->root.type == bfd_link_hash_defweak
1020 || h->root.type == bfd_link_hash_undefweak);
1021
1022 /* In cases involving weak versioned symbols, we may wind up trying
1023 to merge a symbol with itself. Catch that here, to avoid the
1024 confusion that results if we try to override a symbol with
1025 itself. The additional tests catch cases like
1026 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1027 dynamic object, which we do want to handle here. */
1028 if (abfd == oldbfd
1029 && (newweak || oldweak)
1030 && ((abfd->flags & DYNAMIC) == 0
1031 || !h->def_regular))
1032 return TRUE;
1033
1034 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1035 respectively, is from a dynamic object. */
1036
1037 newdyn = (abfd->flags & DYNAMIC) != 0;
1038
1039 olddyn = FALSE;
1040 if (oldbfd != NULL)
1041 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1042 else if (oldsec != NULL)
1043 {
1044 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1045 indices used by MIPS ELF. */
1046 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1047 }
1048
1049 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1050 respectively, appear to be a definition rather than reference. */
1051
1052 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1053
1054 olddef = (h->root.type != bfd_link_hash_undefined
1055 && h->root.type != bfd_link_hash_undefweak
1056 && h->root.type != bfd_link_hash_common);
1057
1058 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1059 respectively, appear to be a function. */
1060
1061 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1062 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1063
1064 oldfunc = (h->type != STT_NOTYPE
1065 && bed->is_function_type (h->type));
1066
1067 /* When we try to create a default indirect symbol from the dynamic
1068 definition with the default version, we skip it if its type and
1069 the type of existing regular definition mismatch. We only do it
1070 if the existing regular definition won't be dynamic. */
1071 if (pold_alignment == NULL
1072 && !info->shared
1073 && !info->export_dynamic
1074 && !h->ref_dynamic
1075 && newdyn
1076 && newdef
1077 && !olddyn
1078 && (olddef || h->root.type == bfd_link_hash_common)
1079 && ELF_ST_TYPE (sym->st_info) != h->type
1080 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1081 && h->type != STT_NOTYPE
1082 && !(newfunc && oldfunc))
1083 {
1084 *skip = TRUE;
1085 return TRUE;
1086 }
1087
1088 /* Check TLS symbol. We don't check undefined symbol introduced by
1089 "ld -u". */
1090 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
1091 && ELF_ST_TYPE (sym->st_info) != h->type
1092 && oldbfd != NULL)
1093 {
1094 bfd *ntbfd, *tbfd;
1095 bfd_boolean ntdef, tdef;
1096 asection *ntsec, *tsec;
1097
1098 if (h->type == STT_TLS)
1099 {
1100 ntbfd = abfd;
1101 ntsec = sec;
1102 ntdef = newdef;
1103 tbfd = oldbfd;
1104 tsec = oldsec;
1105 tdef = olddef;
1106 }
1107 else
1108 {
1109 ntbfd = oldbfd;
1110 ntsec = oldsec;
1111 ntdef = olddef;
1112 tbfd = abfd;
1113 tsec = sec;
1114 tdef = newdef;
1115 }
1116
1117 if (tdef && ntdef)
1118 (*_bfd_error_handler)
1119 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1120 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1121 else if (!tdef && !ntdef)
1122 (*_bfd_error_handler)
1123 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1124 tbfd, ntbfd, h->root.root.string);
1125 else if (tdef)
1126 (*_bfd_error_handler)
1127 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1128 tbfd, tsec, ntbfd, h->root.root.string);
1129 else
1130 (*_bfd_error_handler)
1131 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1132 tbfd, ntbfd, ntsec, h->root.root.string);
1133
1134 bfd_set_error (bfd_error_bad_value);
1135 return FALSE;
1136 }
1137
1138 /* We need to remember if a symbol has a definition in a dynamic
1139 object or is weak in all dynamic objects. Internal and hidden
1140 visibility will make it unavailable to dynamic objects. */
1141 if (newdyn && !h->dynamic_def)
1142 {
1143 if (!bfd_is_und_section (sec))
1144 h->dynamic_def = 1;
1145 else
1146 {
1147 /* Check if this symbol is weak in all dynamic objects. If it
1148 is the first time we see it in a dynamic object, we mark
1149 if it is weak. Otherwise, we clear it. */
1150 if (!h->ref_dynamic)
1151 {
1152 if (bind == STB_WEAK)
1153 h->dynamic_weak = 1;
1154 }
1155 else if (bind != STB_WEAK)
1156 h->dynamic_weak = 0;
1157 }
1158 }
1159
1160 /* If the old symbol has non-default visibility, we ignore the new
1161 definition from a dynamic object. */
1162 if (newdyn
1163 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1164 && !bfd_is_und_section (sec))
1165 {
1166 *skip = TRUE;
1167 /* Make sure this symbol is dynamic. */
1168 h->ref_dynamic = 1;
1169 /* A protected symbol has external availability. Make sure it is
1170 recorded as dynamic.
1171
1172 FIXME: Should we check type and size for protected symbol? */
1173 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1174 return bfd_elf_link_record_dynamic_symbol (info, h);
1175 else
1176 return TRUE;
1177 }
1178 else if (!newdyn
1179 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1180 && h->def_dynamic)
1181 {
1182 /* If the new symbol with non-default visibility comes from a
1183 relocatable file and the old definition comes from a dynamic
1184 object, we remove the old definition. */
1185 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1186 {
1187 /* Handle the case where the old dynamic definition is
1188 default versioned. We need to copy the symbol info from
1189 the symbol with default version to the normal one if it
1190 was referenced before. */
1191 if (h->ref_regular)
1192 {
1193 struct elf_link_hash_entry *vh = *sym_hash;
1194
1195 vh->root.type = h->root.type;
1196 h->root.type = bfd_link_hash_indirect;
1197 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1198 /* Protected symbols will override the dynamic definition
1199 with default version. */
1200 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1201 {
1202 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1203 vh->dynamic_def = 1;
1204 vh->ref_dynamic = 1;
1205 }
1206 else
1207 {
1208 h->root.type = vh->root.type;
1209 vh->ref_dynamic = 0;
1210 /* We have to hide it here since it was made dynamic
1211 global with extra bits when the symbol info was
1212 copied from the old dynamic definition. */
1213 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1214 }
1215 h = vh;
1216 }
1217 else
1218 h = *sym_hash;
1219 }
1220
1221 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1222 && bfd_is_und_section (sec))
1223 {
1224 /* If the new symbol is undefined and the old symbol was
1225 also undefined before, we need to make sure
1226 _bfd_generic_link_add_one_symbol doesn't mess
1227 up the linker hash table undefs list. Since the old
1228 definition came from a dynamic object, it is still on the
1229 undefs list. */
1230 h->root.type = bfd_link_hash_undefined;
1231 h->root.u.undef.abfd = abfd;
1232 }
1233 else
1234 {
1235 h->root.type = bfd_link_hash_new;
1236 h->root.u.undef.abfd = NULL;
1237 }
1238
1239 if (h->def_dynamic)
1240 {
1241 h->def_dynamic = 0;
1242 h->ref_dynamic = 1;
1243 h->dynamic_def = 1;
1244 }
1245 /* FIXME: Should we check type and size for protected symbol? */
1246 h->size = 0;
1247 h->type = 0;
1248 return TRUE;
1249 }
1250
1251 if (bind == STB_GNU_UNIQUE)
1252 h->unique_global = 1;
1253
1254 /* If a new weak symbol definition comes from a regular file and the
1255 old symbol comes from a dynamic library, we treat the new one as
1256 strong. Similarly, an old weak symbol definition from a regular
1257 file is treated as strong when the new symbol comes from a dynamic
1258 library. Further, an old weak symbol from a dynamic library is
1259 treated as strong if the new symbol is from a dynamic library.
1260 This reflects the way glibc's ld.so works.
1261
1262 Do this before setting *type_change_ok or *size_change_ok so that
1263 we warn properly when dynamic library symbols are overridden. */
1264
1265 if (newdef && !newdyn && olddyn)
1266 newweak = FALSE;
1267 if (olddef && newdyn)
1268 oldweak = FALSE;
1269
1270 /* Allow changes between different types of function symbol. */
1271 if (newfunc && oldfunc)
1272 *type_change_ok = TRUE;
1273
1274 /* It's OK to change the type if either the existing symbol or the
1275 new symbol is weak. A type change is also OK if the old symbol
1276 is undefined and the new symbol is defined. */
1277
1278 if (oldweak
1279 || newweak
1280 || (newdef
1281 && h->root.type == bfd_link_hash_undefined))
1282 *type_change_ok = TRUE;
1283
1284 /* It's OK to change the size if either the existing symbol or the
1285 new symbol is weak, or if the old symbol is undefined. */
1286
1287 if (*type_change_ok
1288 || h->root.type == bfd_link_hash_undefined)
1289 *size_change_ok = TRUE;
1290
1291 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1292 symbol, respectively, appears to be a common symbol in a dynamic
1293 object. If a symbol appears in an uninitialized section, and is
1294 not weak, and is not a function, then it may be a common symbol
1295 which was resolved when the dynamic object was created. We want
1296 to treat such symbols specially, because they raise special
1297 considerations when setting the symbol size: if the symbol
1298 appears as a common symbol in a regular object, and the size in
1299 the regular object is larger, we must make sure that we use the
1300 larger size. This problematic case can always be avoided in C,
1301 but it must be handled correctly when using Fortran shared
1302 libraries.
1303
1304 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1305 likewise for OLDDYNCOMMON and OLDDEF.
1306
1307 Note that this test is just a heuristic, and that it is quite
1308 possible to have an uninitialized symbol in a shared object which
1309 is really a definition, rather than a common symbol. This could
1310 lead to some minor confusion when the symbol really is a common
1311 symbol in some regular object. However, I think it will be
1312 harmless. */
1313
1314 if (newdyn
1315 && newdef
1316 && !newweak
1317 && (sec->flags & SEC_ALLOC) != 0
1318 && (sec->flags & SEC_LOAD) == 0
1319 && sym->st_size > 0
1320 && !newfunc)
1321 newdyncommon = TRUE;
1322 else
1323 newdyncommon = FALSE;
1324
1325 if (olddyn
1326 && olddef
1327 && h->root.type == bfd_link_hash_defined
1328 && h->def_dynamic
1329 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1330 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1331 && h->size > 0
1332 && !oldfunc)
1333 olddyncommon = TRUE;
1334 else
1335 olddyncommon = FALSE;
1336
1337 /* We now know everything about the old and new symbols. We ask the
1338 backend to check if we can merge them. */
1339 if (bed->merge_symbol
1340 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1341 pold_alignment, skip, override,
1342 type_change_ok, size_change_ok,
1343 &newdyn, &newdef, &newdyncommon, &newweak,
1344 abfd, &sec,
1345 &olddyn, &olddef, &olddyncommon, &oldweak,
1346 oldbfd, &oldsec))
1347 return FALSE;
1348
1349 /* If both the old and the new symbols look like common symbols in a
1350 dynamic object, set the size of the symbol to the larger of the
1351 two. */
1352
1353 if (olddyncommon
1354 && newdyncommon
1355 && sym->st_size != h->size)
1356 {
1357 /* Since we think we have two common symbols, issue a multiple
1358 common warning if desired. Note that we only warn if the
1359 size is different. If the size is the same, we simply let
1360 the old symbol override the new one as normally happens with
1361 symbols defined in dynamic objects. */
1362
1363 if (! ((*info->callbacks->multiple_common)
1364 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1365 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1366 return FALSE;
1367
1368 if (sym->st_size > h->size)
1369 h->size = sym->st_size;
1370
1371 *size_change_ok = TRUE;
1372 }
1373
1374 /* If we are looking at a dynamic object, and we have found a
1375 definition, we need to see if the symbol was already defined by
1376 some other object. If so, we want to use the existing
1377 definition, and we do not want to report a multiple symbol
1378 definition error; we do this by clobbering *PSEC to be
1379 bfd_und_section_ptr.
1380
1381 We treat a common symbol as a definition if the symbol in the
1382 shared library is a function, since common symbols always
1383 represent variables; this can cause confusion in principle, but
1384 any such confusion would seem to indicate an erroneous program or
1385 shared library. We also permit a common symbol in a regular
1386 object to override a weak symbol in a shared object. */
1387
1388 if (newdyn
1389 && newdef
1390 && (olddef
1391 || (h->root.type == bfd_link_hash_common
1392 && (newweak || newfunc))))
1393 {
1394 *override = TRUE;
1395 newdef = FALSE;
1396 newdyncommon = FALSE;
1397
1398 *psec = sec = bfd_und_section_ptr;
1399 *size_change_ok = TRUE;
1400
1401 /* If we get here when the old symbol is a common symbol, then
1402 we are explicitly letting it override a weak symbol or
1403 function in a dynamic object, and we don't want to warn about
1404 a type change. If the old symbol is a defined symbol, a type
1405 change warning may still be appropriate. */
1406
1407 if (h->root.type == bfd_link_hash_common)
1408 *type_change_ok = TRUE;
1409 }
1410
1411 /* Handle the special case of an old common symbol merging with a
1412 new symbol which looks like a common symbol in a shared object.
1413 We change *PSEC and *PVALUE to make the new symbol look like a
1414 common symbol, and let _bfd_generic_link_add_one_symbol do the
1415 right thing. */
1416
1417 if (newdyncommon
1418 && h->root.type == bfd_link_hash_common)
1419 {
1420 *override = TRUE;
1421 newdef = FALSE;
1422 newdyncommon = FALSE;
1423 *pvalue = sym->st_size;
1424 *psec = sec = bed->common_section (oldsec);
1425 *size_change_ok = TRUE;
1426 }
1427
1428 /* Skip weak definitions of symbols that are already defined. */
1429 if (newdef && olddef && newweak)
1430 {
1431 *skip = TRUE;
1432
1433 /* Merge st_other. If the symbol already has a dynamic index,
1434 but visibility says it should not be visible, turn it into a
1435 local symbol. */
1436 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1437 if (h->dynindx != -1)
1438 switch (ELF_ST_VISIBILITY (h->other))
1439 {
1440 case STV_INTERNAL:
1441 case STV_HIDDEN:
1442 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1443 break;
1444 }
1445 }
1446
1447 /* If the old symbol is from a dynamic object, and the new symbol is
1448 a definition which is not from a dynamic object, then the new
1449 symbol overrides the old symbol. Symbols from regular files
1450 always take precedence over symbols from dynamic objects, even if
1451 they are defined after the dynamic object in the link.
1452
1453 As above, we again permit a common symbol in a regular object to
1454 override a definition in a shared object if the shared object
1455 symbol is a function or is weak. */
1456
1457 flip = NULL;
1458 if (!newdyn
1459 && (newdef
1460 || (bfd_is_com_section (sec)
1461 && (oldweak || oldfunc)))
1462 && olddyn
1463 && olddef
1464 && h->def_dynamic)
1465 {
1466 /* Change the hash table entry to undefined, and let
1467 _bfd_generic_link_add_one_symbol do the right thing with the
1468 new definition. */
1469
1470 h->root.type = bfd_link_hash_undefined;
1471 h->root.u.undef.abfd = h->root.u.def.section->owner;
1472 *size_change_ok = TRUE;
1473
1474 olddef = FALSE;
1475 olddyncommon = FALSE;
1476
1477 /* We again permit a type change when a common symbol may be
1478 overriding a function. */
1479
1480 if (bfd_is_com_section (sec))
1481 {
1482 if (oldfunc)
1483 {
1484 /* If a common symbol overrides a function, make sure
1485 that it isn't defined dynamically nor has type
1486 function. */
1487 h->def_dynamic = 0;
1488 h->type = STT_NOTYPE;
1489 }
1490 *type_change_ok = TRUE;
1491 }
1492
1493 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1494 flip = *sym_hash;
1495 else
1496 /* This union may have been set to be non-NULL when this symbol
1497 was seen in a dynamic object. We must force the union to be
1498 NULL, so that it is correct for a regular symbol. */
1499 h->verinfo.vertree = NULL;
1500 }
1501
1502 /* Handle the special case of a new common symbol merging with an
1503 old symbol that looks like it might be a common symbol defined in
1504 a shared object. Note that we have already handled the case in
1505 which a new common symbol should simply override the definition
1506 in the shared library. */
1507
1508 if (! newdyn
1509 && bfd_is_com_section (sec)
1510 && olddyncommon)
1511 {
1512 /* It would be best if we could set the hash table entry to a
1513 common symbol, but we don't know what to use for the section
1514 or the alignment. */
1515 if (! ((*info->callbacks->multiple_common)
1516 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1517 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1518 return FALSE;
1519
1520 /* If the presumed common symbol in the dynamic object is
1521 larger, pretend that the new symbol has its size. */
1522
1523 if (h->size > *pvalue)
1524 *pvalue = h->size;
1525
1526 /* We need to remember the alignment required by the symbol
1527 in the dynamic object. */
1528 BFD_ASSERT (pold_alignment);
1529 *pold_alignment = h->root.u.def.section->alignment_power;
1530
1531 olddef = FALSE;
1532 olddyncommon = FALSE;
1533
1534 h->root.type = bfd_link_hash_undefined;
1535 h->root.u.undef.abfd = h->root.u.def.section->owner;
1536
1537 *size_change_ok = TRUE;
1538 *type_change_ok = TRUE;
1539
1540 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1541 flip = *sym_hash;
1542 else
1543 h->verinfo.vertree = NULL;
1544 }
1545
1546 if (flip != NULL)
1547 {
1548 /* Handle the case where we had a versioned symbol in a dynamic
1549 library and now find a definition in a normal object. In this
1550 case, we make the versioned symbol point to the normal one. */
1551 flip->root.type = h->root.type;
1552 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1553 h->root.type = bfd_link_hash_indirect;
1554 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1555 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1556 if (h->def_dynamic)
1557 {
1558 h->def_dynamic = 0;
1559 flip->ref_dynamic = 1;
1560 }
1561 }
1562
1563 return TRUE;
1564 }
1565
1566 /* This function is called to create an indirect symbol from the
1567 default for the symbol with the default version if needed. The
1568 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1569 set DYNSYM if the new indirect symbol is dynamic. */
1570
1571 static bfd_boolean
1572 _bfd_elf_add_default_symbol (bfd *abfd,
1573 struct bfd_link_info *info,
1574 struct elf_link_hash_entry *h,
1575 const char *name,
1576 Elf_Internal_Sym *sym,
1577 asection **psec,
1578 bfd_vma *value,
1579 bfd_boolean *dynsym,
1580 bfd_boolean override)
1581 {
1582 bfd_boolean type_change_ok;
1583 bfd_boolean size_change_ok;
1584 bfd_boolean skip;
1585 char *shortname;
1586 struct elf_link_hash_entry *hi;
1587 struct bfd_link_hash_entry *bh;
1588 const struct elf_backend_data *bed;
1589 bfd_boolean collect;
1590 bfd_boolean dynamic;
1591 char *p;
1592 size_t len, shortlen;
1593 asection *sec;
1594
1595 /* If this symbol has a version, and it is the default version, we
1596 create an indirect symbol from the default name to the fully
1597 decorated name. This will cause external references which do not
1598 specify a version to be bound to this version of the symbol. */
1599 p = strchr (name, ELF_VER_CHR);
1600 if (p == NULL || p[1] != ELF_VER_CHR)
1601 return TRUE;
1602
1603 if (override)
1604 {
1605 /* We are overridden by an old definition. We need to check if we
1606 need to create the indirect symbol from the default name. */
1607 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1608 FALSE, FALSE);
1609 BFD_ASSERT (hi != NULL);
1610 if (hi == h)
1611 return TRUE;
1612 while (hi->root.type == bfd_link_hash_indirect
1613 || hi->root.type == bfd_link_hash_warning)
1614 {
1615 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1616 if (hi == h)
1617 return TRUE;
1618 }
1619 }
1620
1621 bed = get_elf_backend_data (abfd);
1622 collect = bed->collect;
1623 dynamic = (abfd->flags & DYNAMIC) != 0;
1624
1625 shortlen = p - name;
1626 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1627 if (shortname == NULL)
1628 return FALSE;
1629 memcpy (shortname, name, shortlen);
1630 shortname[shortlen] = '\0';
1631
1632 /* We are going to create a new symbol. Merge it with any existing
1633 symbol with this name. For the purposes of the merge, act as
1634 though we were defining the symbol we just defined, although we
1635 actually going to define an indirect symbol. */
1636 type_change_ok = FALSE;
1637 size_change_ok = FALSE;
1638 sec = *psec;
1639 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1640 NULL, &hi, &skip, &override,
1641 &type_change_ok, &size_change_ok))
1642 return FALSE;
1643
1644 if (skip)
1645 goto nondefault;
1646
1647 if (! override)
1648 {
1649 bh = &hi->root;
1650 if (! (_bfd_generic_link_add_one_symbol
1651 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1652 0, name, FALSE, collect, &bh)))
1653 return FALSE;
1654 hi = (struct elf_link_hash_entry *) bh;
1655 }
1656 else
1657 {
1658 /* In this case the symbol named SHORTNAME is overriding the
1659 indirect symbol we want to add. We were planning on making
1660 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1661 is the name without a version. NAME is the fully versioned
1662 name, and it is the default version.
1663
1664 Overriding means that we already saw a definition for the
1665 symbol SHORTNAME in a regular object, and it is overriding
1666 the symbol defined in the dynamic object.
1667
1668 When this happens, we actually want to change NAME, the
1669 symbol we just added, to refer to SHORTNAME. This will cause
1670 references to NAME in the shared object to become references
1671 to SHORTNAME in the regular object. This is what we expect
1672 when we override a function in a shared object: that the
1673 references in the shared object will be mapped to the
1674 definition in the regular object. */
1675
1676 while (hi->root.type == bfd_link_hash_indirect
1677 || hi->root.type == bfd_link_hash_warning)
1678 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1679
1680 h->root.type = bfd_link_hash_indirect;
1681 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1682 if (h->def_dynamic)
1683 {
1684 h->def_dynamic = 0;
1685 hi->ref_dynamic = 1;
1686 if (hi->ref_regular
1687 || hi->def_regular)
1688 {
1689 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1690 return FALSE;
1691 }
1692 }
1693
1694 /* Now set HI to H, so that the following code will set the
1695 other fields correctly. */
1696 hi = h;
1697 }
1698
1699 /* Check if HI is a warning symbol. */
1700 if (hi->root.type == bfd_link_hash_warning)
1701 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1702
1703 /* If there is a duplicate definition somewhere, then HI may not
1704 point to an indirect symbol. We will have reported an error to
1705 the user in that case. */
1706
1707 if (hi->root.type == bfd_link_hash_indirect)
1708 {
1709 struct elf_link_hash_entry *ht;
1710
1711 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1712 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1713
1714 /* See if the new flags lead us to realize that the symbol must
1715 be dynamic. */
1716 if (! *dynsym)
1717 {
1718 if (! dynamic)
1719 {
1720 if (! info->executable
1721 || hi->ref_dynamic)
1722 *dynsym = TRUE;
1723 }
1724 else
1725 {
1726 if (hi->ref_regular)
1727 *dynsym = TRUE;
1728 }
1729 }
1730 }
1731
1732 /* We also need to define an indirection from the nondefault version
1733 of the symbol. */
1734
1735 nondefault:
1736 len = strlen (name);
1737 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1738 if (shortname == NULL)
1739 return FALSE;
1740 memcpy (shortname, name, shortlen);
1741 memcpy (shortname + shortlen, p + 1, len - shortlen);
1742
1743 /* Once again, merge with any existing symbol. */
1744 type_change_ok = FALSE;
1745 size_change_ok = FALSE;
1746 sec = *psec;
1747 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1748 NULL, &hi, &skip, &override,
1749 &type_change_ok, &size_change_ok))
1750 return FALSE;
1751
1752 if (skip)
1753 return TRUE;
1754
1755 if (override)
1756 {
1757 /* Here SHORTNAME is a versioned name, so we don't expect to see
1758 the type of override we do in the case above unless it is
1759 overridden by a versioned definition. */
1760 if (hi->root.type != bfd_link_hash_defined
1761 && hi->root.type != bfd_link_hash_defweak)
1762 (*_bfd_error_handler)
1763 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1764 abfd, shortname);
1765 }
1766 else
1767 {
1768 bh = &hi->root;
1769 if (! (_bfd_generic_link_add_one_symbol
1770 (info, abfd, shortname, BSF_INDIRECT,
1771 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1772 return FALSE;
1773 hi = (struct elf_link_hash_entry *) bh;
1774
1775 /* If there is a duplicate definition somewhere, then HI may not
1776 point to an indirect symbol. We will have reported an error
1777 to the user in that case. */
1778
1779 if (hi->root.type == bfd_link_hash_indirect)
1780 {
1781 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1782
1783 /* See if the new flags lead us to realize that the symbol
1784 must be dynamic. */
1785 if (! *dynsym)
1786 {
1787 if (! dynamic)
1788 {
1789 if (! info->executable
1790 || hi->ref_dynamic)
1791 *dynsym = TRUE;
1792 }
1793 else
1794 {
1795 if (hi->ref_regular)
1796 *dynsym = TRUE;
1797 }
1798 }
1799 }
1800 }
1801
1802 return TRUE;
1803 }
1804 \f
1805 /* This routine is used to export all defined symbols into the dynamic
1806 symbol table. It is called via elf_link_hash_traverse. */
1807
1808 static bfd_boolean
1809 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1810 {
1811 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1812
1813 /* Ignore this if we won't export it. */
1814 if (!eif->info->export_dynamic && !h->dynamic)
1815 return TRUE;
1816
1817 /* Ignore indirect symbols. These are added by the versioning code. */
1818 if (h->root.type == bfd_link_hash_indirect)
1819 return TRUE;
1820
1821 if (h->root.type == bfd_link_hash_warning)
1822 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1823
1824 if (h->dynindx == -1
1825 && (h->def_regular
1826 || h->ref_regular))
1827 {
1828 bfd_boolean hide;
1829
1830 if (eif->verdefs == NULL
1831 || (bfd_find_version_for_sym (eif->verdefs, h->root.root.string, &hide)
1832 && !hide))
1833 {
1834 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1835 {
1836 eif->failed = TRUE;
1837 return FALSE;
1838 }
1839 }
1840 }
1841
1842 return TRUE;
1843 }
1844 \f
1845 /* Look through the symbols which are defined in other shared
1846 libraries and referenced here. Update the list of version
1847 dependencies. This will be put into the .gnu.version_r section.
1848 This function is called via elf_link_hash_traverse. */
1849
1850 static bfd_boolean
1851 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1852 void *data)
1853 {
1854 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1855 Elf_Internal_Verneed *t;
1856 Elf_Internal_Vernaux *a;
1857 bfd_size_type amt;
1858
1859 if (h->root.type == bfd_link_hash_warning)
1860 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1861
1862 /* We only care about symbols defined in shared objects with version
1863 information. */
1864 if (!h->def_dynamic
1865 || h->def_regular
1866 || h->dynindx == -1
1867 || h->verinfo.verdef == NULL)
1868 return TRUE;
1869
1870 /* See if we already know about this version. */
1871 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1872 t != NULL;
1873 t = t->vn_nextref)
1874 {
1875 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1876 continue;
1877
1878 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1879 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1880 return TRUE;
1881
1882 break;
1883 }
1884
1885 /* This is a new version. Add it to tree we are building. */
1886
1887 if (t == NULL)
1888 {
1889 amt = sizeof *t;
1890 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1891 if (t == NULL)
1892 {
1893 rinfo->failed = TRUE;
1894 return FALSE;
1895 }
1896
1897 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1898 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1899 elf_tdata (rinfo->info->output_bfd)->verref = t;
1900 }
1901
1902 amt = sizeof *a;
1903 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1904 if (a == NULL)
1905 {
1906 rinfo->failed = TRUE;
1907 return FALSE;
1908 }
1909
1910 /* Note that we are copying a string pointer here, and testing it
1911 above. If bfd_elf_string_from_elf_section is ever changed to
1912 discard the string data when low in memory, this will have to be
1913 fixed. */
1914 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1915
1916 a->vna_flags = h->verinfo.verdef->vd_flags;
1917 a->vna_nextptr = t->vn_auxptr;
1918
1919 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1920 ++rinfo->vers;
1921
1922 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1923
1924 t->vn_auxptr = a;
1925
1926 return TRUE;
1927 }
1928
1929 /* Figure out appropriate versions for all the symbols. We may not
1930 have the version number script until we have read all of the input
1931 files, so until that point we don't know which symbols should be
1932 local. This function is called via elf_link_hash_traverse. */
1933
1934 static bfd_boolean
1935 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1936 {
1937 struct elf_info_failed *sinfo;
1938 struct bfd_link_info *info;
1939 const struct elf_backend_data *bed;
1940 struct elf_info_failed eif;
1941 char *p;
1942 bfd_size_type amt;
1943
1944 sinfo = (struct elf_info_failed *) data;
1945 info = sinfo->info;
1946
1947 if (h->root.type == bfd_link_hash_warning)
1948 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1949
1950 /* Fix the symbol flags. */
1951 eif.failed = FALSE;
1952 eif.info = info;
1953 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1954 {
1955 if (eif.failed)
1956 sinfo->failed = TRUE;
1957 return FALSE;
1958 }
1959
1960 /* We only need version numbers for symbols defined in regular
1961 objects. */
1962 if (!h->def_regular)
1963 return TRUE;
1964
1965 bed = get_elf_backend_data (info->output_bfd);
1966 p = strchr (h->root.root.string, ELF_VER_CHR);
1967 if (p != NULL && h->verinfo.vertree == NULL)
1968 {
1969 struct bfd_elf_version_tree *t;
1970 bfd_boolean hidden;
1971
1972 hidden = TRUE;
1973
1974 /* There are two consecutive ELF_VER_CHR characters if this is
1975 not a hidden symbol. */
1976 ++p;
1977 if (*p == ELF_VER_CHR)
1978 {
1979 hidden = FALSE;
1980 ++p;
1981 }
1982
1983 /* If there is no version string, we can just return out. */
1984 if (*p == '\0')
1985 {
1986 if (hidden)
1987 h->hidden = 1;
1988 return TRUE;
1989 }
1990
1991 /* Look for the version. If we find it, it is no longer weak. */
1992 for (t = sinfo->verdefs; t != NULL; t = t->next)
1993 {
1994 if (strcmp (t->name, p) == 0)
1995 {
1996 size_t len;
1997 char *alc;
1998 struct bfd_elf_version_expr *d;
1999
2000 len = p - h->root.root.string;
2001 alc = (char *) bfd_malloc (len);
2002 if (alc == NULL)
2003 {
2004 sinfo->failed = TRUE;
2005 return FALSE;
2006 }
2007 memcpy (alc, h->root.root.string, len - 1);
2008 alc[len - 1] = '\0';
2009 if (alc[len - 2] == ELF_VER_CHR)
2010 alc[len - 2] = '\0';
2011
2012 h->verinfo.vertree = t;
2013 t->used = TRUE;
2014 d = NULL;
2015
2016 if (t->globals.list != NULL)
2017 d = (*t->match) (&t->globals, NULL, alc);
2018
2019 /* See if there is anything to force this symbol to
2020 local scope. */
2021 if (d == NULL && t->locals.list != NULL)
2022 {
2023 d = (*t->match) (&t->locals, NULL, alc);
2024 if (d != NULL
2025 && h->dynindx != -1
2026 && ! info->export_dynamic)
2027 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2028 }
2029
2030 free (alc);
2031 break;
2032 }
2033 }
2034
2035 /* If we are building an application, we need to create a
2036 version node for this version. */
2037 if (t == NULL && info->executable)
2038 {
2039 struct bfd_elf_version_tree **pp;
2040 int version_index;
2041
2042 /* If we aren't going to export this symbol, we don't need
2043 to worry about it. */
2044 if (h->dynindx == -1)
2045 return TRUE;
2046
2047 amt = sizeof *t;
2048 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2049 if (t == NULL)
2050 {
2051 sinfo->failed = TRUE;
2052 return FALSE;
2053 }
2054
2055 t->name = p;
2056 t->name_indx = (unsigned int) -1;
2057 t->used = TRUE;
2058
2059 version_index = 1;
2060 /* Don't count anonymous version tag. */
2061 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
2062 version_index = 0;
2063 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
2064 ++version_index;
2065 t->vernum = version_index;
2066
2067 *pp = t;
2068
2069 h->verinfo.vertree = t;
2070 }
2071 else if (t == NULL)
2072 {
2073 /* We could not find the version for a symbol when
2074 generating a shared archive. Return an error. */
2075 (*_bfd_error_handler)
2076 (_("%B: version node not found for symbol %s"),
2077 info->output_bfd, h->root.root.string);
2078 bfd_set_error (bfd_error_bad_value);
2079 sinfo->failed = TRUE;
2080 return FALSE;
2081 }
2082
2083 if (hidden)
2084 h->hidden = 1;
2085 }
2086
2087 /* If we don't have a version for this symbol, see if we can find
2088 something. */
2089 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
2090 {
2091 bfd_boolean hide;
2092
2093 h->verinfo.vertree = bfd_find_version_for_sym (sinfo->verdefs,
2094 h->root.root.string, &hide);
2095 if (h->verinfo.vertree != NULL && hide)
2096 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2097 }
2098
2099 return TRUE;
2100 }
2101 \f
2102 /* Read and swap the relocs from the section indicated by SHDR. This
2103 may be either a REL or a RELA section. The relocations are
2104 translated into RELA relocations and stored in INTERNAL_RELOCS,
2105 which should have already been allocated to contain enough space.
2106 The EXTERNAL_RELOCS are a buffer where the external form of the
2107 relocations should be stored.
2108
2109 Returns FALSE if something goes wrong. */
2110
2111 static bfd_boolean
2112 elf_link_read_relocs_from_section (bfd *abfd,
2113 asection *sec,
2114 Elf_Internal_Shdr *shdr,
2115 void *external_relocs,
2116 Elf_Internal_Rela *internal_relocs)
2117 {
2118 const struct elf_backend_data *bed;
2119 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2120 const bfd_byte *erela;
2121 const bfd_byte *erelaend;
2122 Elf_Internal_Rela *irela;
2123 Elf_Internal_Shdr *symtab_hdr;
2124 size_t nsyms;
2125
2126 /* Position ourselves at the start of the section. */
2127 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2128 return FALSE;
2129
2130 /* Read the relocations. */
2131 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2132 return FALSE;
2133
2134 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2135 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2136
2137 bed = get_elf_backend_data (abfd);
2138
2139 /* Convert the external relocations to the internal format. */
2140 if (shdr->sh_entsize == bed->s->sizeof_rel)
2141 swap_in = bed->s->swap_reloc_in;
2142 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2143 swap_in = bed->s->swap_reloca_in;
2144 else
2145 {
2146 bfd_set_error (bfd_error_wrong_format);
2147 return FALSE;
2148 }
2149
2150 erela = (const bfd_byte *) external_relocs;
2151 erelaend = erela + shdr->sh_size;
2152 irela = internal_relocs;
2153 while (erela < erelaend)
2154 {
2155 bfd_vma r_symndx;
2156
2157 (*swap_in) (abfd, erela, irela);
2158 r_symndx = ELF32_R_SYM (irela->r_info);
2159 if (bed->s->arch_size == 64)
2160 r_symndx >>= 24;
2161 if (nsyms > 0)
2162 {
2163 if ((size_t) r_symndx >= nsyms)
2164 {
2165 (*_bfd_error_handler)
2166 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2167 " for offset 0x%lx in section `%A'"),
2168 abfd, sec,
2169 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2170 bfd_set_error (bfd_error_bad_value);
2171 return FALSE;
2172 }
2173 }
2174 else if (r_symndx != STN_UNDEF)
2175 {
2176 (*_bfd_error_handler)
2177 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2178 " when the object file has no symbol table"),
2179 abfd, sec,
2180 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2181 bfd_set_error (bfd_error_bad_value);
2182 return FALSE;
2183 }
2184 irela += bed->s->int_rels_per_ext_rel;
2185 erela += shdr->sh_entsize;
2186 }
2187
2188 return TRUE;
2189 }
2190
2191 /* Read and swap the relocs for a section O. They may have been
2192 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2193 not NULL, they are used as buffers to read into. They are known to
2194 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2195 the return value is allocated using either malloc or bfd_alloc,
2196 according to the KEEP_MEMORY argument. If O has two relocation
2197 sections (both REL and RELA relocations), then the REL_HDR
2198 relocations will appear first in INTERNAL_RELOCS, followed by the
2199 RELA_HDR relocations. */
2200
2201 Elf_Internal_Rela *
2202 _bfd_elf_link_read_relocs (bfd *abfd,
2203 asection *o,
2204 void *external_relocs,
2205 Elf_Internal_Rela *internal_relocs,
2206 bfd_boolean keep_memory)
2207 {
2208 void *alloc1 = NULL;
2209 Elf_Internal_Rela *alloc2 = NULL;
2210 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2211 struct bfd_elf_section_data *esdo = elf_section_data (o);
2212 Elf_Internal_Rela *internal_rela_relocs;
2213
2214 if (esdo->relocs != NULL)
2215 return esdo->relocs;
2216
2217 if (o->reloc_count == 0)
2218 return NULL;
2219
2220 if (internal_relocs == NULL)
2221 {
2222 bfd_size_type size;
2223
2224 size = o->reloc_count;
2225 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2226 if (keep_memory)
2227 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2228 else
2229 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2230 if (internal_relocs == NULL)
2231 goto error_return;
2232 }
2233
2234 if (external_relocs == NULL)
2235 {
2236 bfd_size_type size = 0;
2237
2238 if (esdo->rel.hdr)
2239 size += esdo->rel.hdr->sh_size;
2240 if (esdo->rela.hdr)
2241 size += esdo->rela.hdr->sh_size;
2242
2243 alloc1 = bfd_malloc (size);
2244 if (alloc1 == NULL)
2245 goto error_return;
2246 external_relocs = alloc1;
2247 }
2248
2249 internal_rela_relocs = internal_relocs;
2250 if (esdo->rel.hdr)
2251 {
2252 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2253 external_relocs,
2254 internal_relocs))
2255 goto error_return;
2256 external_relocs = (((bfd_byte *) external_relocs)
2257 + esdo->rel.hdr->sh_size);
2258 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2259 * bed->s->int_rels_per_ext_rel);
2260 }
2261
2262 if (esdo->rela.hdr
2263 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2264 external_relocs,
2265 internal_rela_relocs)))
2266 goto error_return;
2267
2268 /* Cache the results for next time, if we can. */
2269 if (keep_memory)
2270 esdo->relocs = internal_relocs;
2271
2272 if (alloc1 != NULL)
2273 free (alloc1);
2274
2275 /* Don't free alloc2, since if it was allocated we are passing it
2276 back (under the name of internal_relocs). */
2277
2278 return internal_relocs;
2279
2280 error_return:
2281 if (alloc1 != NULL)
2282 free (alloc1);
2283 if (alloc2 != NULL)
2284 {
2285 if (keep_memory)
2286 bfd_release (abfd, alloc2);
2287 else
2288 free (alloc2);
2289 }
2290 return NULL;
2291 }
2292
2293 /* Compute the size of, and allocate space for, REL_HDR which is the
2294 section header for a section containing relocations for O. */
2295
2296 static bfd_boolean
2297 _bfd_elf_link_size_reloc_section (bfd *abfd,
2298 struct bfd_elf_section_reloc_data *reldata)
2299 {
2300 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2301
2302 /* That allows us to calculate the size of the section. */
2303 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2304
2305 /* The contents field must last into write_object_contents, so we
2306 allocate it with bfd_alloc rather than malloc. Also since we
2307 cannot be sure that the contents will actually be filled in,
2308 we zero the allocated space. */
2309 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2310 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2311 return FALSE;
2312
2313 if (reldata->hashes == NULL && reldata->count)
2314 {
2315 struct elf_link_hash_entry **p;
2316
2317 p = (struct elf_link_hash_entry **)
2318 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2319 if (p == NULL)
2320 return FALSE;
2321
2322 reldata->hashes = p;
2323 }
2324
2325 return TRUE;
2326 }
2327
2328 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2329 originated from the section given by INPUT_REL_HDR) to the
2330 OUTPUT_BFD. */
2331
2332 bfd_boolean
2333 _bfd_elf_link_output_relocs (bfd *output_bfd,
2334 asection *input_section,
2335 Elf_Internal_Shdr *input_rel_hdr,
2336 Elf_Internal_Rela *internal_relocs,
2337 struct elf_link_hash_entry **rel_hash
2338 ATTRIBUTE_UNUSED)
2339 {
2340 Elf_Internal_Rela *irela;
2341 Elf_Internal_Rela *irelaend;
2342 bfd_byte *erel;
2343 struct bfd_elf_section_reloc_data *output_reldata;
2344 Elf_Internal_Shdr *output_rel_hdr;
2345 asection *output_section;
2346 const struct elf_backend_data *bed;
2347 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2348 struct bfd_elf_section_data *esdo;
2349
2350 output_section = input_section->output_section;
2351 output_rel_hdr = NULL;
2352
2353 bed = get_elf_backend_data (output_bfd);
2354 esdo = elf_section_data (output_section);
2355 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2356 {
2357 output_reldata = &esdo->rel;
2358 swap_out = bed->s->swap_reloc_out;
2359 }
2360 else if (esdo->rela.hdr
2361 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2362 {
2363 output_reldata = &esdo->rela;
2364 swap_out = bed->s->swap_reloca_out;
2365 }
2366 else
2367 {
2368 (*_bfd_error_handler)
2369 (_("%B: relocation size mismatch in %B section %A"),
2370 output_bfd, input_section->owner, input_section);
2371 bfd_set_error (bfd_error_wrong_format);
2372 return FALSE;
2373 }
2374
2375 erel = output_reldata->hdr->contents;
2376 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2377 irela = internal_relocs;
2378 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2379 * bed->s->int_rels_per_ext_rel);
2380 while (irela < irelaend)
2381 {
2382 (*swap_out) (output_bfd, irela, erel);
2383 irela += bed->s->int_rels_per_ext_rel;
2384 erel += input_rel_hdr->sh_entsize;
2385 }
2386
2387 /* Bump the counter, so that we know where to add the next set of
2388 relocations. */
2389 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2390
2391 return TRUE;
2392 }
2393 \f
2394 /* Make weak undefined symbols in PIE dynamic. */
2395
2396 bfd_boolean
2397 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2398 struct elf_link_hash_entry *h)
2399 {
2400 if (info->pie
2401 && h->dynindx == -1
2402 && h->root.type == bfd_link_hash_undefweak)
2403 return bfd_elf_link_record_dynamic_symbol (info, h);
2404
2405 return TRUE;
2406 }
2407
2408 /* Fix up the flags for a symbol. This handles various cases which
2409 can only be fixed after all the input files are seen. This is
2410 currently called by both adjust_dynamic_symbol and
2411 assign_sym_version, which is unnecessary but perhaps more robust in
2412 the face of future changes. */
2413
2414 static bfd_boolean
2415 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2416 struct elf_info_failed *eif)
2417 {
2418 const struct elf_backend_data *bed;
2419
2420 /* If this symbol was mentioned in a non-ELF file, try to set
2421 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2422 permit a non-ELF file to correctly refer to a symbol defined in
2423 an ELF dynamic object. */
2424 if (h->non_elf)
2425 {
2426 while (h->root.type == bfd_link_hash_indirect)
2427 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2428
2429 if (h->root.type != bfd_link_hash_defined
2430 && h->root.type != bfd_link_hash_defweak)
2431 {
2432 h->ref_regular = 1;
2433 h->ref_regular_nonweak = 1;
2434 }
2435 else
2436 {
2437 if (h->root.u.def.section->owner != NULL
2438 && (bfd_get_flavour (h->root.u.def.section->owner)
2439 == bfd_target_elf_flavour))
2440 {
2441 h->ref_regular = 1;
2442 h->ref_regular_nonweak = 1;
2443 }
2444 else
2445 h->def_regular = 1;
2446 }
2447
2448 if (h->dynindx == -1
2449 && (h->def_dynamic
2450 || h->ref_dynamic))
2451 {
2452 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2453 {
2454 eif->failed = TRUE;
2455 return FALSE;
2456 }
2457 }
2458 }
2459 else
2460 {
2461 /* Unfortunately, NON_ELF is only correct if the symbol
2462 was first seen in a non-ELF file. Fortunately, if the symbol
2463 was first seen in an ELF file, we're probably OK unless the
2464 symbol was defined in a non-ELF file. Catch that case here.
2465 FIXME: We're still in trouble if the symbol was first seen in
2466 a dynamic object, and then later in a non-ELF regular object. */
2467 if ((h->root.type == bfd_link_hash_defined
2468 || h->root.type == bfd_link_hash_defweak)
2469 && !h->def_regular
2470 && (h->root.u.def.section->owner != NULL
2471 ? (bfd_get_flavour (h->root.u.def.section->owner)
2472 != bfd_target_elf_flavour)
2473 : (bfd_is_abs_section (h->root.u.def.section)
2474 && !h->def_dynamic)))
2475 h->def_regular = 1;
2476 }
2477
2478 /* Backend specific symbol fixup. */
2479 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2480 if (bed->elf_backend_fixup_symbol
2481 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2482 return FALSE;
2483
2484 /* If this is a final link, and the symbol was defined as a common
2485 symbol in a regular object file, and there was no definition in
2486 any dynamic object, then the linker will have allocated space for
2487 the symbol in a common section but the DEF_REGULAR
2488 flag will not have been set. */
2489 if (h->root.type == bfd_link_hash_defined
2490 && !h->def_regular
2491 && h->ref_regular
2492 && !h->def_dynamic
2493 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2494 h->def_regular = 1;
2495
2496 /* If -Bsymbolic was used (which means to bind references to global
2497 symbols to the definition within the shared object), and this
2498 symbol was defined in a regular object, then it actually doesn't
2499 need a PLT entry. Likewise, if the symbol has non-default
2500 visibility. If the symbol has hidden or internal visibility, we
2501 will force it local. */
2502 if (h->needs_plt
2503 && eif->info->shared
2504 && is_elf_hash_table (eif->info->hash)
2505 && (SYMBOLIC_BIND (eif->info, h)
2506 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2507 && h->def_regular)
2508 {
2509 bfd_boolean force_local;
2510
2511 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2512 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2513 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2514 }
2515
2516 /* If a weak undefined symbol has non-default visibility, we also
2517 hide it from the dynamic linker. */
2518 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2519 && h->root.type == bfd_link_hash_undefweak)
2520 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2521
2522 /* If this is a weak defined symbol in a dynamic object, and we know
2523 the real definition in the dynamic object, copy interesting flags
2524 over to the real definition. */
2525 if (h->u.weakdef != NULL)
2526 {
2527 struct elf_link_hash_entry *weakdef;
2528
2529 weakdef = h->u.weakdef;
2530 if (h->root.type == bfd_link_hash_indirect)
2531 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2532
2533 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2534 || h->root.type == bfd_link_hash_defweak);
2535 BFD_ASSERT (weakdef->def_dynamic);
2536
2537 /* If the real definition is defined by a regular object file,
2538 don't do anything special. See the longer description in
2539 _bfd_elf_adjust_dynamic_symbol, below. */
2540 if (weakdef->def_regular)
2541 h->u.weakdef = NULL;
2542 else
2543 {
2544 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2545 || weakdef->root.type == bfd_link_hash_defweak);
2546 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2547 }
2548 }
2549
2550 return TRUE;
2551 }
2552
2553 /* Make the backend pick a good value for a dynamic symbol. This is
2554 called via elf_link_hash_traverse, and also calls itself
2555 recursively. */
2556
2557 static bfd_boolean
2558 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2559 {
2560 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2561 bfd *dynobj;
2562 const struct elf_backend_data *bed;
2563
2564 if (! is_elf_hash_table (eif->info->hash))
2565 return FALSE;
2566
2567 if (h->root.type == bfd_link_hash_warning)
2568 {
2569 h->got = elf_hash_table (eif->info)->init_got_offset;
2570 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2571
2572 /* When warning symbols are created, they **replace** the "real"
2573 entry in the hash table, thus we never get to see the real
2574 symbol in a hash traversal. So look at it now. */
2575 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2576 }
2577
2578 /* Ignore indirect symbols. These are added by the versioning code. */
2579 if (h->root.type == bfd_link_hash_indirect)
2580 return TRUE;
2581
2582 /* Fix the symbol flags. */
2583 if (! _bfd_elf_fix_symbol_flags (h, eif))
2584 return FALSE;
2585
2586 /* If this symbol does not require a PLT entry, and it is not
2587 defined by a dynamic object, or is not referenced by a regular
2588 object, ignore it. We do have to handle a weak defined symbol,
2589 even if no regular object refers to it, if we decided to add it
2590 to the dynamic symbol table. FIXME: Do we normally need to worry
2591 about symbols which are defined by one dynamic object and
2592 referenced by another one? */
2593 if (!h->needs_plt
2594 && h->type != STT_GNU_IFUNC
2595 && (h->def_regular
2596 || !h->def_dynamic
2597 || (!h->ref_regular
2598 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2599 {
2600 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2601 return TRUE;
2602 }
2603
2604 /* If we've already adjusted this symbol, don't do it again. This
2605 can happen via a recursive call. */
2606 if (h->dynamic_adjusted)
2607 return TRUE;
2608
2609 /* Don't look at this symbol again. Note that we must set this
2610 after checking the above conditions, because we may look at a
2611 symbol once, decide not to do anything, and then get called
2612 recursively later after REF_REGULAR is set below. */
2613 h->dynamic_adjusted = 1;
2614
2615 /* If this is a weak definition, and we know a real definition, and
2616 the real symbol is not itself defined by a regular object file,
2617 then get a good value for the real definition. We handle the
2618 real symbol first, for the convenience of the backend routine.
2619
2620 Note that there is a confusing case here. If the real definition
2621 is defined by a regular object file, we don't get the real symbol
2622 from the dynamic object, but we do get the weak symbol. If the
2623 processor backend uses a COPY reloc, then if some routine in the
2624 dynamic object changes the real symbol, we will not see that
2625 change in the corresponding weak symbol. This is the way other
2626 ELF linkers work as well, and seems to be a result of the shared
2627 library model.
2628
2629 I will clarify this issue. Most SVR4 shared libraries define the
2630 variable _timezone and define timezone as a weak synonym. The
2631 tzset call changes _timezone. If you write
2632 extern int timezone;
2633 int _timezone = 5;
2634 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2635 you might expect that, since timezone is a synonym for _timezone,
2636 the same number will print both times. However, if the processor
2637 backend uses a COPY reloc, then actually timezone will be copied
2638 into your process image, and, since you define _timezone
2639 yourself, _timezone will not. Thus timezone and _timezone will
2640 wind up at different memory locations. The tzset call will set
2641 _timezone, leaving timezone unchanged. */
2642
2643 if (h->u.weakdef != NULL)
2644 {
2645 /* If we get to this point, we know there is an implicit
2646 reference by a regular object file via the weak symbol H.
2647 FIXME: Is this really true? What if the traversal finds
2648 H->U.WEAKDEF before it finds H? */
2649 h->u.weakdef->ref_regular = 1;
2650
2651 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2652 return FALSE;
2653 }
2654
2655 /* If a symbol has no type and no size and does not require a PLT
2656 entry, then we are probably about to do the wrong thing here: we
2657 are probably going to create a COPY reloc for an empty object.
2658 This case can arise when a shared object is built with assembly
2659 code, and the assembly code fails to set the symbol type. */
2660 if (h->size == 0
2661 && h->type == STT_NOTYPE
2662 && !h->needs_plt)
2663 (*_bfd_error_handler)
2664 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2665 h->root.root.string);
2666
2667 dynobj = elf_hash_table (eif->info)->dynobj;
2668 bed = get_elf_backend_data (dynobj);
2669
2670 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2671 {
2672 eif->failed = TRUE;
2673 return FALSE;
2674 }
2675
2676 return TRUE;
2677 }
2678
2679 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2680 DYNBSS. */
2681
2682 bfd_boolean
2683 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2684 asection *dynbss)
2685 {
2686 unsigned int power_of_two;
2687 bfd_vma mask;
2688 asection *sec = h->root.u.def.section;
2689
2690 /* The section aligment of definition is the maximum alignment
2691 requirement of symbols defined in the section. Since we don't
2692 know the symbol alignment requirement, we start with the
2693 maximum alignment and check low bits of the symbol address
2694 for the minimum alignment. */
2695 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2696 mask = ((bfd_vma) 1 << power_of_two) - 1;
2697 while ((h->root.u.def.value & mask) != 0)
2698 {
2699 mask >>= 1;
2700 --power_of_two;
2701 }
2702
2703 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2704 dynbss))
2705 {
2706 /* Adjust the section alignment if needed. */
2707 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2708 power_of_two))
2709 return FALSE;
2710 }
2711
2712 /* We make sure that the symbol will be aligned properly. */
2713 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2714
2715 /* Define the symbol as being at this point in DYNBSS. */
2716 h->root.u.def.section = dynbss;
2717 h->root.u.def.value = dynbss->size;
2718
2719 /* Increment the size of DYNBSS to make room for the symbol. */
2720 dynbss->size += h->size;
2721
2722 return TRUE;
2723 }
2724
2725 /* Adjust all external symbols pointing into SEC_MERGE sections
2726 to reflect the object merging within the sections. */
2727
2728 static bfd_boolean
2729 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2730 {
2731 asection *sec;
2732
2733 if (h->root.type == bfd_link_hash_warning)
2734 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2735
2736 if ((h->root.type == bfd_link_hash_defined
2737 || h->root.type == bfd_link_hash_defweak)
2738 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2739 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2740 {
2741 bfd *output_bfd = (bfd *) data;
2742
2743 h->root.u.def.value =
2744 _bfd_merged_section_offset (output_bfd,
2745 &h->root.u.def.section,
2746 elf_section_data (sec)->sec_info,
2747 h->root.u.def.value);
2748 }
2749
2750 return TRUE;
2751 }
2752
2753 /* Returns false if the symbol referred to by H should be considered
2754 to resolve local to the current module, and true if it should be
2755 considered to bind dynamically. */
2756
2757 bfd_boolean
2758 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2759 struct bfd_link_info *info,
2760 bfd_boolean not_local_protected)
2761 {
2762 bfd_boolean binding_stays_local_p;
2763 const struct elf_backend_data *bed;
2764 struct elf_link_hash_table *hash_table;
2765
2766 if (h == NULL)
2767 return FALSE;
2768
2769 while (h->root.type == bfd_link_hash_indirect
2770 || h->root.type == bfd_link_hash_warning)
2771 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2772
2773 /* If it was forced local, then clearly it's not dynamic. */
2774 if (h->dynindx == -1)
2775 return FALSE;
2776 if (h->forced_local)
2777 return FALSE;
2778
2779 /* Identify the cases where name binding rules say that a
2780 visible symbol resolves locally. */
2781 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2782
2783 switch (ELF_ST_VISIBILITY (h->other))
2784 {
2785 case STV_INTERNAL:
2786 case STV_HIDDEN:
2787 return FALSE;
2788
2789 case STV_PROTECTED:
2790 hash_table = elf_hash_table (info);
2791 if (!is_elf_hash_table (hash_table))
2792 return FALSE;
2793
2794 bed = get_elf_backend_data (hash_table->dynobj);
2795
2796 /* Proper resolution for function pointer equality may require
2797 that these symbols perhaps be resolved dynamically, even though
2798 we should be resolving them to the current module. */
2799 if (!not_local_protected || !bed->is_function_type (h->type))
2800 binding_stays_local_p = TRUE;
2801 break;
2802
2803 default:
2804 break;
2805 }
2806
2807 /* If it isn't defined locally, then clearly it's dynamic. */
2808 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2809 return TRUE;
2810
2811 /* Otherwise, the symbol is dynamic if binding rules don't tell
2812 us that it remains local. */
2813 return !binding_stays_local_p;
2814 }
2815
2816 /* Return true if the symbol referred to by H should be considered
2817 to resolve local to the current module, and false otherwise. Differs
2818 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2819 undefined symbols. The two functions are virtually identical except
2820 for the place where forced_local and dynindx == -1 are tested. If
2821 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2822 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2823 the symbol is local only for defined symbols.
2824 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2825 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2826 treatment of undefined weak symbols. For those that do not make
2827 undefined weak symbols dynamic, both functions may return false. */
2828
2829 bfd_boolean
2830 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2831 struct bfd_link_info *info,
2832 bfd_boolean local_protected)
2833 {
2834 const struct elf_backend_data *bed;
2835 struct elf_link_hash_table *hash_table;
2836
2837 /* If it's a local sym, of course we resolve locally. */
2838 if (h == NULL)
2839 return TRUE;
2840
2841 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2842 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2843 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2844 return TRUE;
2845
2846 /* Common symbols that become definitions don't get the DEF_REGULAR
2847 flag set, so test it first, and don't bail out. */
2848 if (ELF_COMMON_DEF_P (h))
2849 /* Do nothing. */;
2850 /* If we don't have a definition in a regular file, then we can't
2851 resolve locally. The sym is either undefined or dynamic. */
2852 else if (!h->def_regular)
2853 return FALSE;
2854
2855 /* Forced local symbols resolve locally. */
2856 if (h->forced_local)
2857 return TRUE;
2858
2859 /* As do non-dynamic symbols. */
2860 if (h->dynindx == -1)
2861 return TRUE;
2862
2863 /* At this point, we know the symbol is defined and dynamic. In an
2864 executable it must resolve locally, likewise when building symbolic
2865 shared libraries. */
2866 if (info->executable || SYMBOLIC_BIND (info, h))
2867 return TRUE;
2868
2869 /* Now deal with defined dynamic symbols in shared libraries. Ones
2870 with default visibility might not resolve locally. */
2871 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2872 return FALSE;
2873
2874 hash_table = elf_hash_table (info);
2875 if (!is_elf_hash_table (hash_table))
2876 return TRUE;
2877
2878 bed = get_elf_backend_data (hash_table->dynobj);
2879
2880 /* STV_PROTECTED non-function symbols are local. */
2881 if (!bed->is_function_type (h->type))
2882 return TRUE;
2883
2884 /* Function pointer equality tests may require that STV_PROTECTED
2885 symbols be treated as dynamic symbols, even when we know that the
2886 dynamic linker will resolve them locally. */
2887 return local_protected;
2888 }
2889
2890 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2891 aligned. Returns the first TLS output section. */
2892
2893 struct bfd_section *
2894 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2895 {
2896 struct bfd_section *sec, *tls;
2897 unsigned int align = 0;
2898
2899 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2900 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2901 break;
2902 tls = sec;
2903
2904 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2905 if (sec->alignment_power > align)
2906 align = sec->alignment_power;
2907
2908 elf_hash_table (info)->tls_sec = tls;
2909
2910 /* Ensure the alignment of the first section is the largest alignment,
2911 so that the tls segment starts aligned. */
2912 if (tls != NULL)
2913 tls->alignment_power = align;
2914
2915 return tls;
2916 }
2917
2918 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2919 static bfd_boolean
2920 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2921 Elf_Internal_Sym *sym)
2922 {
2923 const struct elf_backend_data *bed;
2924
2925 /* Local symbols do not count, but target specific ones might. */
2926 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2927 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2928 return FALSE;
2929
2930 bed = get_elf_backend_data (abfd);
2931 /* Function symbols do not count. */
2932 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2933 return FALSE;
2934
2935 /* If the section is undefined, then so is the symbol. */
2936 if (sym->st_shndx == SHN_UNDEF)
2937 return FALSE;
2938
2939 /* If the symbol is defined in the common section, then
2940 it is a common definition and so does not count. */
2941 if (bed->common_definition (sym))
2942 return FALSE;
2943
2944 /* If the symbol is in a target specific section then we
2945 must rely upon the backend to tell us what it is. */
2946 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2947 /* FIXME - this function is not coded yet:
2948
2949 return _bfd_is_global_symbol_definition (abfd, sym);
2950
2951 Instead for now assume that the definition is not global,
2952 Even if this is wrong, at least the linker will behave
2953 in the same way that it used to do. */
2954 return FALSE;
2955
2956 return TRUE;
2957 }
2958
2959 /* Search the symbol table of the archive element of the archive ABFD
2960 whose archive map contains a mention of SYMDEF, and determine if
2961 the symbol is defined in this element. */
2962 static bfd_boolean
2963 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2964 {
2965 Elf_Internal_Shdr * hdr;
2966 bfd_size_type symcount;
2967 bfd_size_type extsymcount;
2968 bfd_size_type extsymoff;
2969 Elf_Internal_Sym *isymbuf;
2970 Elf_Internal_Sym *isym;
2971 Elf_Internal_Sym *isymend;
2972 bfd_boolean result;
2973
2974 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2975 if (abfd == NULL)
2976 return FALSE;
2977
2978 if (! bfd_check_format (abfd, bfd_object))
2979 return FALSE;
2980
2981 /* If we have already included the element containing this symbol in the
2982 link then we do not need to include it again. Just claim that any symbol
2983 it contains is not a definition, so that our caller will not decide to
2984 (re)include this element. */
2985 if (abfd->archive_pass)
2986 return FALSE;
2987
2988 /* Select the appropriate symbol table. */
2989 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2990 hdr = &elf_tdata (abfd)->symtab_hdr;
2991 else
2992 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2993
2994 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2995
2996 /* The sh_info field of the symtab header tells us where the
2997 external symbols start. We don't care about the local symbols. */
2998 if (elf_bad_symtab (abfd))
2999 {
3000 extsymcount = symcount;
3001 extsymoff = 0;
3002 }
3003 else
3004 {
3005 extsymcount = symcount - hdr->sh_info;
3006 extsymoff = hdr->sh_info;
3007 }
3008
3009 if (extsymcount == 0)
3010 return FALSE;
3011
3012 /* Read in the symbol table. */
3013 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3014 NULL, NULL, NULL);
3015 if (isymbuf == NULL)
3016 return FALSE;
3017
3018 /* Scan the symbol table looking for SYMDEF. */
3019 result = FALSE;
3020 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3021 {
3022 const char *name;
3023
3024 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3025 isym->st_name);
3026 if (name == NULL)
3027 break;
3028
3029 if (strcmp (name, symdef->name) == 0)
3030 {
3031 result = is_global_data_symbol_definition (abfd, isym);
3032 break;
3033 }
3034 }
3035
3036 free (isymbuf);
3037
3038 return result;
3039 }
3040 \f
3041 /* Add an entry to the .dynamic table. */
3042
3043 bfd_boolean
3044 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3045 bfd_vma tag,
3046 bfd_vma val)
3047 {
3048 struct elf_link_hash_table *hash_table;
3049 const struct elf_backend_data *bed;
3050 asection *s;
3051 bfd_size_type newsize;
3052 bfd_byte *newcontents;
3053 Elf_Internal_Dyn dyn;
3054
3055 hash_table = elf_hash_table (info);
3056 if (! is_elf_hash_table (hash_table))
3057 return FALSE;
3058
3059 bed = get_elf_backend_data (hash_table->dynobj);
3060 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3061 BFD_ASSERT (s != NULL);
3062
3063 newsize = s->size + bed->s->sizeof_dyn;
3064 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3065 if (newcontents == NULL)
3066 return FALSE;
3067
3068 dyn.d_tag = tag;
3069 dyn.d_un.d_val = val;
3070 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3071
3072 s->size = newsize;
3073 s->contents = newcontents;
3074
3075 return TRUE;
3076 }
3077
3078 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3079 otherwise just check whether one already exists. Returns -1 on error,
3080 1 if a DT_NEEDED tag already exists, and 0 on success. */
3081
3082 static int
3083 elf_add_dt_needed_tag (bfd *abfd,
3084 struct bfd_link_info *info,
3085 const char *soname,
3086 bfd_boolean do_it)
3087 {
3088 struct elf_link_hash_table *hash_table;
3089 bfd_size_type oldsize;
3090 bfd_size_type strindex;
3091
3092 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3093 return -1;
3094
3095 hash_table = elf_hash_table (info);
3096 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3097 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3098 if (strindex == (bfd_size_type) -1)
3099 return -1;
3100
3101 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3102 {
3103 asection *sdyn;
3104 const struct elf_backend_data *bed;
3105 bfd_byte *extdyn;
3106
3107 bed = get_elf_backend_data (hash_table->dynobj);
3108 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3109 if (sdyn != NULL)
3110 for (extdyn = sdyn->contents;
3111 extdyn < sdyn->contents + sdyn->size;
3112 extdyn += bed->s->sizeof_dyn)
3113 {
3114 Elf_Internal_Dyn dyn;
3115
3116 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3117 if (dyn.d_tag == DT_NEEDED
3118 && dyn.d_un.d_val == strindex)
3119 {
3120 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3121 return 1;
3122 }
3123 }
3124 }
3125
3126 if (do_it)
3127 {
3128 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3129 return -1;
3130
3131 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3132 return -1;
3133 }
3134 else
3135 /* We were just checking for existence of the tag. */
3136 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3137
3138 return 0;
3139 }
3140
3141 static bfd_boolean
3142 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3143 {
3144 for (; needed != NULL; needed = needed->next)
3145 if (strcmp (soname, needed->name) == 0)
3146 return TRUE;
3147
3148 return FALSE;
3149 }
3150
3151 /* Sort symbol by value and section. */
3152 static int
3153 elf_sort_symbol (const void *arg1, const void *arg2)
3154 {
3155 const struct elf_link_hash_entry *h1;
3156 const struct elf_link_hash_entry *h2;
3157 bfd_signed_vma vdiff;
3158
3159 h1 = *(const struct elf_link_hash_entry **) arg1;
3160 h2 = *(const struct elf_link_hash_entry **) arg2;
3161 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3162 if (vdiff != 0)
3163 return vdiff > 0 ? 1 : -1;
3164 else
3165 {
3166 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3167 if (sdiff != 0)
3168 return sdiff > 0 ? 1 : -1;
3169 }
3170 return 0;
3171 }
3172
3173 /* This function is used to adjust offsets into .dynstr for
3174 dynamic symbols. This is called via elf_link_hash_traverse. */
3175
3176 static bfd_boolean
3177 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3178 {
3179 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3180
3181 if (h->root.type == bfd_link_hash_warning)
3182 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3183
3184 if (h->dynindx != -1)
3185 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3186 return TRUE;
3187 }
3188
3189 /* Assign string offsets in .dynstr, update all structures referencing
3190 them. */
3191
3192 static bfd_boolean
3193 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3194 {
3195 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3196 struct elf_link_local_dynamic_entry *entry;
3197 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3198 bfd *dynobj = hash_table->dynobj;
3199 asection *sdyn;
3200 bfd_size_type size;
3201 const struct elf_backend_data *bed;
3202 bfd_byte *extdyn;
3203
3204 _bfd_elf_strtab_finalize (dynstr);
3205 size = _bfd_elf_strtab_size (dynstr);
3206
3207 bed = get_elf_backend_data (dynobj);
3208 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3209 BFD_ASSERT (sdyn != NULL);
3210
3211 /* Update all .dynamic entries referencing .dynstr strings. */
3212 for (extdyn = sdyn->contents;
3213 extdyn < sdyn->contents + sdyn->size;
3214 extdyn += bed->s->sizeof_dyn)
3215 {
3216 Elf_Internal_Dyn dyn;
3217
3218 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3219 switch (dyn.d_tag)
3220 {
3221 case DT_STRSZ:
3222 dyn.d_un.d_val = size;
3223 break;
3224 case DT_NEEDED:
3225 case DT_SONAME:
3226 case DT_RPATH:
3227 case DT_RUNPATH:
3228 case DT_FILTER:
3229 case DT_AUXILIARY:
3230 case DT_AUDIT:
3231 case DT_DEPAUDIT:
3232 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3233 break;
3234 default:
3235 continue;
3236 }
3237 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3238 }
3239
3240 /* Now update local dynamic symbols. */
3241 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3242 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3243 entry->isym.st_name);
3244
3245 /* And the rest of dynamic symbols. */
3246 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3247
3248 /* Adjust version definitions. */
3249 if (elf_tdata (output_bfd)->cverdefs)
3250 {
3251 asection *s;
3252 bfd_byte *p;
3253 bfd_size_type i;
3254 Elf_Internal_Verdef def;
3255 Elf_Internal_Verdaux defaux;
3256
3257 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3258 p = s->contents;
3259 do
3260 {
3261 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3262 &def);
3263 p += sizeof (Elf_External_Verdef);
3264 if (def.vd_aux != sizeof (Elf_External_Verdef))
3265 continue;
3266 for (i = 0; i < def.vd_cnt; ++i)
3267 {
3268 _bfd_elf_swap_verdaux_in (output_bfd,
3269 (Elf_External_Verdaux *) p, &defaux);
3270 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3271 defaux.vda_name);
3272 _bfd_elf_swap_verdaux_out (output_bfd,
3273 &defaux, (Elf_External_Verdaux *) p);
3274 p += sizeof (Elf_External_Verdaux);
3275 }
3276 }
3277 while (def.vd_next);
3278 }
3279
3280 /* Adjust version references. */
3281 if (elf_tdata (output_bfd)->verref)
3282 {
3283 asection *s;
3284 bfd_byte *p;
3285 bfd_size_type i;
3286 Elf_Internal_Verneed need;
3287 Elf_Internal_Vernaux needaux;
3288
3289 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3290 p = s->contents;
3291 do
3292 {
3293 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3294 &need);
3295 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3296 _bfd_elf_swap_verneed_out (output_bfd, &need,
3297 (Elf_External_Verneed *) p);
3298 p += sizeof (Elf_External_Verneed);
3299 for (i = 0; i < need.vn_cnt; ++i)
3300 {
3301 _bfd_elf_swap_vernaux_in (output_bfd,
3302 (Elf_External_Vernaux *) p, &needaux);
3303 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3304 needaux.vna_name);
3305 _bfd_elf_swap_vernaux_out (output_bfd,
3306 &needaux,
3307 (Elf_External_Vernaux *) p);
3308 p += sizeof (Elf_External_Vernaux);
3309 }
3310 }
3311 while (need.vn_next);
3312 }
3313
3314 return TRUE;
3315 }
3316 \f
3317 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3318 The default is to only match when the INPUT and OUTPUT are exactly
3319 the same target. */
3320
3321 bfd_boolean
3322 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3323 const bfd_target *output)
3324 {
3325 return input == output;
3326 }
3327
3328 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3329 This version is used when different targets for the same architecture
3330 are virtually identical. */
3331
3332 bfd_boolean
3333 _bfd_elf_relocs_compatible (const bfd_target *input,
3334 const bfd_target *output)
3335 {
3336 const struct elf_backend_data *obed, *ibed;
3337
3338 if (input == output)
3339 return TRUE;
3340
3341 ibed = xvec_get_elf_backend_data (input);
3342 obed = xvec_get_elf_backend_data (output);
3343
3344 if (ibed->arch != obed->arch)
3345 return FALSE;
3346
3347 /* If both backends are using this function, deem them compatible. */
3348 return ibed->relocs_compatible == obed->relocs_compatible;
3349 }
3350
3351 /* Add symbols from an ELF object file to the linker hash table. */
3352
3353 static bfd_boolean
3354 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3355 {
3356 Elf_Internal_Ehdr *ehdr;
3357 Elf_Internal_Shdr *hdr;
3358 bfd_size_type symcount;
3359 bfd_size_type extsymcount;
3360 bfd_size_type extsymoff;
3361 struct elf_link_hash_entry **sym_hash;
3362 bfd_boolean dynamic;
3363 Elf_External_Versym *extversym = NULL;
3364 Elf_External_Versym *ever;
3365 struct elf_link_hash_entry *weaks;
3366 struct elf_link_hash_entry **nondeflt_vers = NULL;
3367 bfd_size_type nondeflt_vers_cnt = 0;
3368 Elf_Internal_Sym *isymbuf = NULL;
3369 Elf_Internal_Sym *isym;
3370 Elf_Internal_Sym *isymend;
3371 const struct elf_backend_data *bed;
3372 bfd_boolean add_needed;
3373 struct elf_link_hash_table *htab;
3374 bfd_size_type amt;
3375 void *alloc_mark = NULL;
3376 struct bfd_hash_entry **old_table = NULL;
3377 unsigned int old_size = 0;
3378 unsigned int old_count = 0;
3379 void *old_tab = NULL;
3380 void *old_hash;
3381 void *old_ent;
3382 struct bfd_link_hash_entry *old_undefs = NULL;
3383 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3384 long old_dynsymcount = 0;
3385 size_t tabsize = 0;
3386 size_t hashsize = 0;
3387
3388 htab = elf_hash_table (info);
3389 bed = get_elf_backend_data (abfd);
3390
3391 if ((abfd->flags & DYNAMIC) == 0)
3392 dynamic = FALSE;
3393 else
3394 {
3395 dynamic = TRUE;
3396
3397 /* You can't use -r against a dynamic object. Also, there's no
3398 hope of using a dynamic object which does not exactly match
3399 the format of the output file. */
3400 if (info->relocatable
3401 || !is_elf_hash_table (htab)
3402 || info->output_bfd->xvec != abfd->xvec)
3403 {
3404 if (info->relocatable)
3405 bfd_set_error (bfd_error_invalid_operation);
3406 else
3407 bfd_set_error (bfd_error_wrong_format);
3408 goto error_return;
3409 }
3410 }
3411
3412 ehdr = elf_elfheader (abfd);
3413 if (info->warn_alternate_em
3414 && bed->elf_machine_code != ehdr->e_machine
3415 && ((bed->elf_machine_alt1 != 0
3416 && ehdr->e_machine == bed->elf_machine_alt1)
3417 || (bed->elf_machine_alt2 != 0
3418 && ehdr->e_machine == bed->elf_machine_alt2)))
3419 info->callbacks->einfo
3420 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3421 ehdr->e_machine, abfd, bed->elf_machine_code);
3422
3423 /* As a GNU extension, any input sections which are named
3424 .gnu.warning.SYMBOL are treated as warning symbols for the given
3425 symbol. This differs from .gnu.warning sections, which generate
3426 warnings when they are included in an output file. */
3427 if (info->executable)
3428 {
3429 asection *s;
3430
3431 for (s = abfd->sections; s != NULL; s = s->next)
3432 {
3433 const char *name;
3434
3435 name = bfd_get_section_name (abfd, s);
3436 if (CONST_STRNEQ (name, ".gnu.warning."))
3437 {
3438 char *msg;
3439 bfd_size_type sz;
3440
3441 name += sizeof ".gnu.warning." - 1;
3442
3443 /* If this is a shared object, then look up the symbol
3444 in the hash table. If it is there, and it is already
3445 been defined, then we will not be using the entry
3446 from this shared object, so we don't need to warn.
3447 FIXME: If we see the definition in a regular object
3448 later on, we will warn, but we shouldn't. The only
3449 fix is to keep track of what warnings we are supposed
3450 to emit, and then handle them all at the end of the
3451 link. */
3452 if (dynamic)
3453 {
3454 struct elf_link_hash_entry *h;
3455
3456 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3457
3458 /* FIXME: What about bfd_link_hash_common? */
3459 if (h != NULL
3460 && (h->root.type == bfd_link_hash_defined
3461 || h->root.type == bfd_link_hash_defweak))
3462 {
3463 /* We don't want to issue this warning. Clobber
3464 the section size so that the warning does not
3465 get copied into the output file. */
3466 s->size = 0;
3467 continue;
3468 }
3469 }
3470
3471 sz = s->size;
3472 msg = (char *) bfd_alloc (abfd, sz + 1);
3473 if (msg == NULL)
3474 goto error_return;
3475
3476 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3477 goto error_return;
3478
3479 msg[sz] = '\0';
3480
3481 if (! (_bfd_generic_link_add_one_symbol
3482 (info, abfd, name, BSF_WARNING, s, 0, msg,
3483 FALSE, bed->collect, NULL)))
3484 goto error_return;
3485
3486 if (! info->relocatable)
3487 {
3488 /* Clobber the section size so that the warning does
3489 not get copied into the output file. */
3490 s->size = 0;
3491
3492 /* Also set SEC_EXCLUDE, so that symbols defined in
3493 the warning section don't get copied to the output. */
3494 s->flags |= SEC_EXCLUDE;
3495 }
3496 }
3497 }
3498 }
3499
3500 add_needed = TRUE;
3501 if (! dynamic)
3502 {
3503 /* If we are creating a shared library, create all the dynamic
3504 sections immediately. We need to attach them to something,
3505 so we attach them to this BFD, provided it is the right
3506 format. FIXME: If there are no input BFD's of the same
3507 format as the output, we can't make a shared library. */
3508 if (info->shared
3509 && is_elf_hash_table (htab)
3510 && info->output_bfd->xvec == abfd->xvec
3511 && !htab->dynamic_sections_created)
3512 {
3513 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3514 goto error_return;
3515 }
3516 }
3517 else if (!is_elf_hash_table (htab))
3518 goto error_return;
3519 else
3520 {
3521 asection *s;
3522 const char *soname = NULL;
3523 char *audit = NULL;
3524 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3525 int ret;
3526
3527 /* ld --just-symbols and dynamic objects don't mix very well.
3528 ld shouldn't allow it. */
3529 if ((s = abfd->sections) != NULL
3530 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3531 abort ();
3532
3533 /* If this dynamic lib was specified on the command line with
3534 --as-needed in effect, then we don't want to add a DT_NEEDED
3535 tag unless the lib is actually used. Similary for libs brought
3536 in by another lib's DT_NEEDED. When --no-add-needed is used
3537 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3538 any dynamic library in DT_NEEDED tags in the dynamic lib at
3539 all. */
3540 add_needed = (elf_dyn_lib_class (abfd)
3541 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3542 | DYN_NO_NEEDED)) == 0;
3543
3544 s = bfd_get_section_by_name (abfd, ".dynamic");
3545 if (s != NULL)
3546 {
3547 bfd_byte *dynbuf;
3548 bfd_byte *extdyn;
3549 unsigned int elfsec;
3550 unsigned long shlink;
3551
3552 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3553 {
3554 error_free_dyn:
3555 free (dynbuf);
3556 goto error_return;
3557 }
3558
3559 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3560 if (elfsec == SHN_BAD)
3561 goto error_free_dyn;
3562 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3563
3564 for (extdyn = dynbuf;
3565 extdyn < dynbuf + s->size;
3566 extdyn += bed->s->sizeof_dyn)
3567 {
3568 Elf_Internal_Dyn dyn;
3569
3570 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3571 if (dyn.d_tag == DT_SONAME)
3572 {
3573 unsigned int tagv = dyn.d_un.d_val;
3574 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3575 if (soname == NULL)
3576 goto error_free_dyn;
3577 }
3578 if (dyn.d_tag == DT_NEEDED)
3579 {
3580 struct bfd_link_needed_list *n, **pn;
3581 char *fnm, *anm;
3582 unsigned int tagv = dyn.d_un.d_val;
3583
3584 amt = sizeof (struct bfd_link_needed_list);
3585 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3586 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3587 if (n == NULL || fnm == NULL)
3588 goto error_free_dyn;
3589 amt = strlen (fnm) + 1;
3590 anm = (char *) bfd_alloc (abfd, amt);
3591 if (anm == NULL)
3592 goto error_free_dyn;
3593 memcpy (anm, fnm, amt);
3594 n->name = anm;
3595 n->by = abfd;
3596 n->next = NULL;
3597 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3598 ;
3599 *pn = n;
3600 }
3601 if (dyn.d_tag == DT_RUNPATH)
3602 {
3603 struct bfd_link_needed_list *n, **pn;
3604 char *fnm, *anm;
3605 unsigned int tagv = dyn.d_un.d_val;
3606
3607 amt = sizeof (struct bfd_link_needed_list);
3608 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3609 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3610 if (n == NULL || fnm == NULL)
3611 goto error_free_dyn;
3612 amt = strlen (fnm) + 1;
3613 anm = (char *) bfd_alloc (abfd, amt);
3614 if (anm == NULL)
3615 goto error_free_dyn;
3616 memcpy (anm, fnm, amt);
3617 n->name = anm;
3618 n->by = abfd;
3619 n->next = NULL;
3620 for (pn = & runpath;
3621 *pn != NULL;
3622 pn = &(*pn)->next)
3623 ;
3624 *pn = n;
3625 }
3626 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3627 if (!runpath && dyn.d_tag == DT_RPATH)
3628 {
3629 struct bfd_link_needed_list *n, **pn;
3630 char *fnm, *anm;
3631 unsigned int tagv = dyn.d_un.d_val;
3632
3633 amt = sizeof (struct bfd_link_needed_list);
3634 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3635 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3636 if (n == NULL || fnm == NULL)
3637 goto error_free_dyn;
3638 amt = strlen (fnm) + 1;
3639 anm = (char *) bfd_alloc (abfd, amt);
3640 if (anm == NULL)
3641 goto error_free_dyn;
3642 memcpy (anm, fnm, amt);
3643 n->name = anm;
3644 n->by = abfd;
3645 n->next = NULL;
3646 for (pn = & rpath;
3647 *pn != NULL;
3648 pn = &(*pn)->next)
3649 ;
3650 *pn = n;
3651 }
3652 if (dyn.d_tag == DT_AUDIT)
3653 {
3654 unsigned int tagv = dyn.d_un.d_val;
3655 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3656 }
3657 }
3658
3659 free (dynbuf);
3660 }
3661
3662 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3663 frees all more recently bfd_alloc'd blocks as well. */
3664 if (runpath)
3665 rpath = runpath;
3666
3667 if (rpath)
3668 {
3669 struct bfd_link_needed_list **pn;
3670 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3671 ;
3672 *pn = rpath;
3673 }
3674
3675 /* We do not want to include any of the sections in a dynamic
3676 object in the output file. We hack by simply clobbering the
3677 list of sections in the BFD. This could be handled more
3678 cleanly by, say, a new section flag; the existing
3679 SEC_NEVER_LOAD flag is not the one we want, because that one
3680 still implies that the section takes up space in the output
3681 file. */
3682 bfd_section_list_clear (abfd);
3683
3684 /* Find the name to use in a DT_NEEDED entry that refers to this
3685 object. If the object has a DT_SONAME entry, we use it.
3686 Otherwise, if the generic linker stuck something in
3687 elf_dt_name, we use that. Otherwise, we just use the file
3688 name. */
3689 if (soname == NULL || *soname == '\0')
3690 {
3691 soname = elf_dt_name (abfd);
3692 if (soname == NULL || *soname == '\0')
3693 soname = bfd_get_filename (abfd);
3694 }
3695
3696 /* Save the SONAME because sometimes the linker emulation code
3697 will need to know it. */
3698 elf_dt_name (abfd) = soname;
3699
3700 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3701 if (ret < 0)
3702 goto error_return;
3703
3704 /* If we have already included this dynamic object in the
3705 link, just ignore it. There is no reason to include a
3706 particular dynamic object more than once. */
3707 if (ret > 0)
3708 return TRUE;
3709
3710 /* Save the DT_AUDIT entry for the linker emulation code. */
3711 elf_dt_audit (abfd) = audit;
3712 }
3713
3714 /* If this is a dynamic object, we always link against the .dynsym
3715 symbol table, not the .symtab symbol table. The dynamic linker
3716 will only see the .dynsym symbol table, so there is no reason to
3717 look at .symtab for a dynamic object. */
3718
3719 if (! dynamic || elf_dynsymtab (abfd) == 0)
3720 hdr = &elf_tdata (abfd)->symtab_hdr;
3721 else
3722 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3723
3724 symcount = hdr->sh_size / bed->s->sizeof_sym;
3725
3726 /* The sh_info field of the symtab header tells us where the
3727 external symbols start. We don't care about the local symbols at
3728 this point. */
3729 if (elf_bad_symtab (abfd))
3730 {
3731 extsymcount = symcount;
3732 extsymoff = 0;
3733 }
3734 else
3735 {
3736 extsymcount = symcount - hdr->sh_info;
3737 extsymoff = hdr->sh_info;
3738 }
3739
3740 sym_hash = NULL;
3741 if (extsymcount != 0)
3742 {
3743 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3744 NULL, NULL, NULL);
3745 if (isymbuf == NULL)
3746 goto error_return;
3747
3748 /* We store a pointer to the hash table entry for each external
3749 symbol. */
3750 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3751 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3752 if (sym_hash == NULL)
3753 goto error_free_sym;
3754 elf_sym_hashes (abfd) = sym_hash;
3755 }
3756
3757 if (dynamic)
3758 {
3759 /* Read in any version definitions. */
3760 if (!_bfd_elf_slurp_version_tables (abfd,
3761 info->default_imported_symver))
3762 goto error_free_sym;
3763
3764 /* Read in the symbol versions, but don't bother to convert them
3765 to internal format. */
3766 if (elf_dynversym (abfd) != 0)
3767 {
3768 Elf_Internal_Shdr *versymhdr;
3769
3770 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3771 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3772 if (extversym == NULL)
3773 goto error_free_sym;
3774 amt = versymhdr->sh_size;
3775 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3776 || bfd_bread (extversym, amt, abfd) != amt)
3777 goto error_free_vers;
3778 }
3779 }
3780
3781 /* If we are loading an as-needed shared lib, save the symbol table
3782 state before we start adding symbols. If the lib turns out
3783 to be unneeded, restore the state. */
3784 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3785 {
3786 unsigned int i;
3787 size_t entsize;
3788
3789 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3790 {
3791 struct bfd_hash_entry *p;
3792 struct elf_link_hash_entry *h;
3793
3794 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3795 {
3796 h = (struct elf_link_hash_entry *) p;
3797 entsize += htab->root.table.entsize;
3798 if (h->root.type == bfd_link_hash_warning)
3799 entsize += htab->root.table.entsize;
3800 }
3801 }
3802
3803 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3804 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3805 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3806 if (old_tab == NULL)
3807 goto error_free_vers;
3808
3809 /* Remember the current objalloc pointer, so that all mem for
3810 symbols added can later be reclaimed. */
3811 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3812 if (alloc_mark == NULL)
3813 goto error_free_vers;
3814
3815 /* Make a special call to the linker "notice" function to
3816 tell it that we are about to handle an as-needed lib. */
3817 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3818 notice_as_needed))
3819 goto error_free_vers;
3820
3821 /* Clone the symbol table and sym hashes. Remember some
3822 pointers into the symbol table, and dynamic symbol count. */
3823 old_hash = (char *) old_tab + tabsize;
3824 old_ent = (char *) old_hash + hashsize;
3825 memcpy (old_tab, htab->root.table.table, tabsize);
3826 memcpy (old_hash, sym_hash, hashsize);
3827 old_undefs = htab->root.undefs;
3828 old_undefs_tail = htab->root.undefs_tail;
3829 old_table = htab->root.table.table;
3830 old_size = htab->root.table.size;
3831 old_count = htab->root.table.count;
3832 old_dynsymcount = htab->dynsymcount;
3833
3834 for (i = 0; i < htab->root.table.size; i++)
3835 {
3836 struct bfd_hash_entry *p;
3837 struct elf_link_hash_entry *h;
3838
3839 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3840 {
3841 memcpy (old_ent, p, htab->root.table.entsize);
3842 old_ent = (char *) old_ent + htab->root.table.entsize;
3843 h = (struct elf_link_hash_entry *) p;
3844 if (h->root.type == bfd_link_hash_warning)
3845 {
3846 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3847 old_ent = (char *) old_ent + htab->root.table.entsize;
3848 }
3849 }
3850 }
3851 }
3852
3853 weaks = NULL;
3854 ever = extversym != NULL ? extversym + extsymoff : NULL;
3855 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3856 isym < isymend;
3857 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3858 {
3859 int bind;
3860 bfd_vma value;
3861 asection *sec, *new_sec;
3862 flagword flags;
3863 const char *name;
3864 struct elf_link_hash_entry *h;
3865 bfd_boolean definition;
3866 bfd_boolean size_change_ok;
3867 bfd_boolean type_change_ok;
3868 bfd_boolean new_weakdef;
3869 bfd_boolean override;
3870 bfd_boolean common;
3871 unsigned int old_alignment;
3872 bfd *old_bfd;
3873 bfd * undef_bfd = NULL;
3874
3875 override = FALSE;
3876
3877 flags = BSF_NO_FLAGS;
3878 sec = NULL;
3879 value = isym->st_value;
3880 *sym_hash = NULL;
3881 common = bed->common_definition (isym);
3882
3883 bind = ELF_ST_BIND (isym->st_info);
3884 switch (bind)
3885 {
3886 case STB_LOCAL:
3887 /* This should be impossible, since ELF requires that all
3888 global symbols follow all local symbols, and that sh_info
3889 point to the first global symbol. Unfortunately, Irix 5
3890 screws this up. */
3891 continue;
3892
3893 case STB_GLOBAL:
3894 if (isym->st_shndx != SHN_UNDEF && !common)
3895 flags = BSF_GLOBAL;
3896 break;
3897
3898 case STB_WEAK:
3899 flags = BSF_WEAK;
3900 break;
3901
3902 case STB_GNU_UNIQUE:
3903 flags = BSF_GNU_UNIQUE;
3904 break;
3905
3906 default:
3907 /* Leave it up to the processor backend. */
3908 break;
3909 }
3910
3911 if (isym->st_shndx == SHN_UNDEF)
3912 sec = bfd_und_section_ptr;
3913 else if (isym->st_shndx == SHN_ABS)
3914 sec = bfd_abs_section_ptr;
3915 else if (isym->st_shndx == SHN_COMMON)
3916 {
3917 sec = bfd_com_section_ptr;
3918 /* What ELF calls the size we call the value. What ELF
3919 calls the value we call the alignment. */
3920 value = isym->st_size;
3921 }
3922 else
3923 {
3924 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3925 if (sec == NULL)
3926 sec = bfd_abs_section_ptr;
3927 else if (sec->kept_section)
3928 {
3929 /* Symbols from discarded section are undefined. We keep
3930 its visibility. */
3931 sec = bfd_und_section_ptr;
3932 isym->st_shndx = SHN_UNDEF;
3933 }
3934 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3935 value -= sec->vma;
3936 }
3937
3938 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3939 isym->st_name);
3940 if (name == NULL)
3941 goto error_free_vers;
3942
3943 if (isym->st_shndx == SHN_COMMON
3944 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3945 && !info->relocatable)
3946 {
3947 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3948
3949 if (tcomm == NULL)
3950 {
3951 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3952 (SEC_ALLOC
3953 | SEC_IS_COMMON
3954 | SEC_LINKER_CREATED
3955 | SEC_THREAD_LOCAL));
3956 if (tcomm == NULL)
3957 goto error_free_vers;
3958 }
3959 sec = tcomm;
3960 }
3961 else if (bed->elf_add_symbol_hook)
3962 {
3963 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3964 &sec, &value))
3965 goto error_free_vers;
3966
3967 /* The hook function sets the name to NULL if this symbol
3968 should be skipped for some reason. */
3969 if (name == NULL)
3970 continue;
3971 }
3972
3973 /* Sanity check that all possibilities were handled. */
3974 if (sec == NULL)
3975 {
3976 bfd_set_error (bfd_error_bad_value);
3977 goto error_free_vers;
3978 }
3979
3980 if (bfd_is_und_section (sec)
3981 || bfd_is_com_section (sec))
3982 definition = FALSE;
3983 else
3984 definition = TRUE;
3985
3986 size_change_ok = FALSE;
3987 type_change_ok = bed->type_change_ok;
3988 old_alignment = 0;
3989 old_bfd = NULL;
3990 new_sec = sec;
3991
3992 if (is_elf_hash_table (htab))
3993 {
3994 Elf_Internal_Versym iver;
3995 unsigned int vernum = 0;
3996 bfd_boolean skip;
3997
3998 /* If this is a definition of a symbol which was previously
3999 referenced in a non-weak manner then make a note of the bfd
4000 that contained the reference. This is used if we need to
4001 refer to the source of the reference later on. */
4002 if (! bfd_is_und_section (sec))
4003 {
4004 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4005
4006 if (h != NULL
4007 && h->root.type == bfd_link_hash_undefined
4008 && h->root.u.undef.abfd)
4009 undef_bfd = h->root.u.undef.abfd;
4010 }
4011
4012 if (ever == NULL)
4013 {
4014 if (info->default_imported_symver)
4015 /* Use the default symbol version created earlier. */
4016 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4017 else
4018 iver.vs_vers = 0;
4019 }
4020 else
4021 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4022
4023 vernum = iver.vs_vers & VERSYM_VERSION;
4024
4025 /* If this is a hidden symbol, or if it is not version
4026 1, we append the version name to the symbol name.
4027 However, we do not modify a non-hidden absolute symbol
4028 if it is not a function, because it might be the version
4029 symbol itself. FIXME: What if it isn't? */
4030 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4031 || (vernum > 1
4032 && (!bfd_is_abs_section (sec)
4033 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4034 {
4035 const char *verstr;
4036 size_t namelen, verlen, newlen;
4037 char *newname, *p;
4038
4039 if (isym->st_shndx != SHN_UNDEF)
4040 {
4041 if (vernum > elf_tdata (abfd)->cverdefs)
4042 verstr = NULL;
4043 else if (vernum > 1)
4044 verstr =
4045 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4046 else
4047 verstr = "";
4048
4049 if (verstr == NULL)
4050 {
4051 (*_bfd_error_handler)
4052 (_("%B: %s: invalid version %u (max %d)"),
4053 abfd, name, vernum,
4054 elf_tdata (abfd)->cverdefs);
4055 bfd_set_error (bfd_error_bad_value);
4056 goto error_free_vers;
4057 }
4058 }
4059 else
4060 {
4061 /* We cannot simply test for the number of
4062 entries in the VERNEED section since the
4063 numbers for the needed versions do not start
4064 at 0. */
4065 Elf_Internal_Verneed *t;
4066
4067 verstr = NULL;
4068 for (t = elf_tdata (abfd)->verref;
4069 t != NULL;
4070 t = t->vn_nextref)
4071 {
4072 Elf_Internal_Vernaux *a;
4073
4074 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4075 {
4076 if (a->vna_other == vernum)
4077 {
4078 verstr = a->vna_nodename;
4079 break;
4080 }
4081 }
4082 if (a != NULL)
4083 break;
4084 }
4085 if (verstr == NULL)
4086 {
4087 (*_bfd_error_handler)
4088 (_("%B: %s: invalid needed version %d"),
4089 abfd, name, vernum);
4090 bfd_set_error (bfd_error_bad_value);
4091 goto error_free_vers;
4092 }
4093 }
4094
4095 namelen = strlen (name);
4096 verlen = strlen (verstr);
4097 newlen = namelen + verlen + 2;
4098 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4099 && isym->st_shndx != SHN_UNDEF)
4100 ++newlen;
4101
4102 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4103 if (newname == NULL)
4104 goto error_free_vers;
4105 memcpy (newname, name, namelen);
4106 p = newname + namelen;
4107 *p++ = ELF_VER_CHR;
4108 /* If this is a defined non-hidden version symbol,
4109 we add another @ to the name. This indicates the
4110 default version of the symbol. */
4111 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4112 && isym->st_shndx != SHN_UNDEF)
4113 *p++ = ELF_VER_CHR;
4114 memcpy (p, verstr, verlen + 1);
4115
4116 name = newname;
4117 }
4118
4119 /* If necessary, make a second attempt to locate the bfd
4120 containing an unresolved, non-weak reference to the
4121 current symbol. */
4122 if (! bfd_is_und_section (sec) && undef_bfd == NULL)
4123 {
4124 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4125
4126 if (h != NULL
4127 && h->root.type == bfd_link_hash_undefined
4128 && h->root.u.undef.abfd)
4129 undef_bfd = h->root.u.undef.abfd;
4130 }
4131
4132 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4133 &value, &old_alignment,
4134 sym_hash, &skip, &override,
4135 &type_change_ok, &size_change_ok))
4136 goto error_free_vers;
4137
4138 if (skip)
4139 continue;
4140
4141 if (override)
4142 definition = FALSE;
4143
4144 h = *sym_hash;
4145 while (h->root.type == bfd_link_hash_indirect
4146 || h->root.type == bfd_link_hash_warning)
4147 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4148
4149 /* Remember the old alignment if this is a common symbol, so
4150 that we don't reduce the alignment later on. We can't
4151 check later, because _bfd_generic_link_add_one_symbol
4152 will set a default for the alignment which we want to
4153 override. We also remember the old bfd where the existing
4154 definition comes from. */
4155 switch (h->root.type)
4156 {
4157 default:
4158 break;
4159
4160 case bfd_link_hash_defined:
4161 case bfd_link_hash_defweak:
4162 old_bfd = h->root.u.def.section->owner;
4163 break;
4164
4165 case bfd_link_hash_common:
4166 old_bfd = h->root.u.c.p->section->owner;
4167 old_alignment = h->root.u.c.p->alignment_power;
4168 break;
4169 }
4170
4171 if (elf_tdata (abfd)->verdef != NULL
4172 && ! override
4173 && vernum > 1
4174 && definition)
4175 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4176 }
4177
4178 if (! (_bfd_generic_link_add_one_symbol
4179 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4180 (struct bfd_link_hash_entry **) sym_hash)))
4181 goto error_free_vers;
4182
4183 h = *sym_hash;
4184 while (h->root.type == bfd_link_hash_indirect
4185 || h->root.type == bfd_link_hash_warning)
4186 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4187
4188 *sym_hash = h;
4189 if (is_elf_hash_table (htab))
4190 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4191
4192 new_weakdef = FALSE;
4193 if (dynamic
4194 && definition
4195 && (flags & BSF_WEAK) != 0
4196 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4197 && is_elf_hash_table (htab)
4198 && h->u.weakdef == NULL)
4199 {
4200 /* Keep a list of all weak defined non function symbols from
4201 a dynamic object, using the weakdef field. Later in this
4202 function we will set the weakdef field to the correct
4203 value. We only put non-function symbols from dynamic
4204 objects on this list, because that happens to be the only
4205 time we need to know the normal symbol corresponding to a
4206 weak symbol, and the information is time consuming to
4207 figure out. If the weakdef field is not already NULL,
4208 then this symbol was already defined by some previous
4209 dynamic object, and we will be using that previous
4210 definition anyhow. */
4211
4212 h->u.weakdef = weaks;
4213 weaks = h;
4214 new_weakdef = TRUE;
4215 }
4216
4217 /* Set the alignment of a common symbol. */
4218 if ((common || bfd_is_com_section (sec))
4219 && h->root.type == bfd_link_hash_common)
4220 {
4221 unsigned int align;
4222
4223 if (common)
4224 align = bfd_log2 (isym->st_value);
4225 else
4226 {
4227 /* The new symbol is a common symbol in a shared object.
4228 We need to get the alignment from the section. */
4229 align = new_sec->alignment_power;
4230 }
4231 if (align > old_alignment
4232 /* Permit an alignment power of zero if an alignment of one
4233 is specified and no other alignments have been specified. */
4234 || (isym->st_value == 1 && old_alignment == 0))
4235 h->root.u.c.p->alignment_power = align;
4236 else
4237 h->root.u.c.p->alignment_power = old_alignment;
4238 }
4239
4240 if (is_elf_hash_table (htab))
4241 {
4242 bfd_boolean dynsym;
4243
4244 /* Check the alignment when a common symbol is involved. This
4245 can change when a common symbol is overridden by a normal
4246 definition or a common symbol is ignored due to the old
4247 normal definition. We need to make sure the maximum
4248 alignment is maintained. */
4249 if ((old_alignment || common)
4250 && h->root.type != bfd_link_hash_common)
4251 {
4252 unsigned int common_align;
4253 unsigned int normal_align;
4254 unsigned int symbol_align;
4255 bfd *normal_bfd;
4256 bfd *common_bfd;
4257
4258 symbol_align = ffs (h->root.u.def.value) - 1;
4259 if (h->root.u.def.section->owner != NULL
4260 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4261 {
4262 normal_align = h->root.u.def.section->alignment_power;
4263 if (normal_align > symbol_align)
4264 normal_align = symbol_align;
4265 }
4266 else
4267 normal_align = symbol_align;
4268
4269 if (old_alignment)
4270 {
4271 common_align = old_alignment;
4272 common_bfd = old_bfd;
4273 normal_bfd = abfd;
4274 }
4275 else
4276 {
4277 common_align = bfd_log2 (isym->st_value);
4278 common_bfd = abfd;
4279 normal_bfd = old_bfd;
4280 }
4281
4282 if (normal_align < common_align)
4283 {
4284 /* PR binutils/2735 */
4285 if (normal_bfd == NULL)
4286 (*_bfd_error_handler)
4287 (_("Warning: alignment %u of common symbol `%s' in %B"
4288 " is greater than the alignment (%u) of its section %A"),
4289 common_bfd, h->root.u.def.section,
4290 1 << common_align, name, 1 << normal_align);
4291 else
4292 (*_bfd_error_handler)
4293 (_("Warning: alignment %u of symbol `%s' in %B"
4294 " is smaller than %u in %B"),
4295 normal_bfd, common_bfd,
4296 1 << normal_align, name, 1 << common_align);
4297 }
4298 }
4299
4300 /* Remember the symbol size if it isn't undefined. */
4301 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4302 && (definition || h->size == 0))
4303 {
4304 if (h->size != 0
4305 && h->size != isym->st_size
4306 && ! size_change_ok)
4307 (*_bfd_error_handler)
4308 (_("Warning: size of symbol `%s' changed"
4309 " from %lu in %B to %lu in %B"),
4310 old_bfd, abfd,
4311 name, (unsigned long) h->size,
4312 (unsigned long) isym->st_size);
4313
4314 h->size = isym->st_size;
4315 }
4316
4317 /* If this is a common symbol, then we always want H->SIZE
4318 to be the size of the common symbol. The code just above
4319 won't fix the size if a common symbol becomes larger. We
4320 don't warn about a size change here, because that is
4321 covered by --warn-common. Allow changed between different
4322 function types. */
4323 if (h->root.type == bfd_link_hash_common)
4324 h->size = h->root.u.c.size;
4325
4326 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4327 && (definition || h->type == STT_NOTYPE))
4328 {
4329 unsigned int type = ELF_ST_TYPE (isym->st_info);
4330
4331 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4332 symbol. */
4333 if (type == STT_GNU_IFUNC
4334 && (abfd->flags & DYNAMIC) != 0)
4335 type = STT_FUNC;
4336
4337 if (h->type != type)
4338 {
4339 if (h->type != STT_NOTYPE && ! type_change_ok)
4340 (*_bfd_error_handler)
4341 (_("Warning: type of symbol `%s' changed"
4342 " from %d to %d in %B"),
4343 abfd, name, h->type, type);
4344
4345 h->type = type;
4346 }
4347 }
4348
4349 /* Merge st_other field. */
4350 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4351
4352 /* Set a flag in the hash table entry indicating the type of
4353 reference or definition we just found. Keep a count of
4354 the number of dynamic symbols we find. A dynamic symbol
4355 is one which is referenced or defined by both a regular
4356 object and a shared object. */
4357 dynsym = FALSE;
4358 if (! dynamic)
4359 {
4360 if (! definition)
4361 {
4362 h->ref_regular = 1;
4363 if (bind != STB_WEAK)
4364 h->ref_regular_nonweak = 1;
4365 }
4366 else
4367 {
4368 h->def_regular = 1;
4369 if (h->def_dynamic)
4370 {
4371 h->def_dynamic = 0;
4372 h->ref_dynamic = 1;
4373 h->dynamic_def = 1;
4374 }
4375 }
4376 if (! info->executable
4377 || h->def_dynamic
4378 || h->ref_dynamic)
4379 dynsym = TRUE;
4380 }
4381 else
4382 {
4383 if (! definition)
4384 h->ref_dynamic = 1;
4385 else
4386 h->def_dynamic = 1;
4387 if (h->def_regular
4388 || h->ref_regular
4389 || (h->u.weakdef != NULL
4390 && ! new_weakdef
4391 && h->u.weakdef->dynindx != -1))
4392 dynsym = TRUE;
4393 }
4394
4395 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4396 {
4397 /* We don't want to make debug symbol dynamic. */
4398 dynsym = FALSE;
4399 }
4400
4401 /* Check to see if we need to add an indirect symbol for
4402 the default name. */
4403 if (definition || h->root.type == bfd_link_hash_common)
4404 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4405 &sec, &value, &dynsym,
4406 override))
4407 goto error_free_vers;
4408
4409 if (definition && !dynamic)
4410 {
4411 char *p = strchr (name, ELF_VER_CHR);
4412 if (p != NULL && p[1] != ELF_VER_CHR)
4413 {
4414 /* Queue non-default versions so that .symver x, x@FOO
4415 aliases can be checked. */
4416 if (!nondeflt_vers)
4417 {
4418 amt = ((isymend - isym + 1)
4419 * sizeof (struct elf_link_hash_entry *));
4420 nondeflt_vers =
4421 (struct elf_link_hash_entry **) bfd_malloc (amt);
4422 if (!nondeflt_vers)
4423 goto error_free_vers;
4424 }
4425 nondeflt_vers[nondeflt_vers_cnt++] = h;
4426 }
4427 }
4428
4429 if (dynsym && h->dynindx == -1)
4430 {
4431 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4432 goto error_free_vers;
4433 if (h->u.weakdef != NULL
4434 && ! new_weakdef
4435 && h->u.weakdef->dynindx == -1)
4436 {
4437 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4438 goto error_free_vers;
4439 }
4440 }
4441 else if (dynsym && h->dynindx != -1)
4442 /* If the symbol already has a dynamic index, but
4443 visibility says it should not be visible, turn it into
4444 a local symbol. */
4445 switch (ELF_ST_VISIBILITY (h->other))
4446 {
4447 case STV_INTERNAL:
4448 case STV_HIDDEN:
4449 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4450 dynsym = FALSE;
4451 break;
4452 }
4453
4454 if (!add_needed
4455 && definition
4456 && ((dynsym
4457 && h->ref_regular)
4458 || (h->ref_dynamic
4459 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4460 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4461 {
4462 int ret;
4463 const char *soname = elf_dt_name (abfd);
4464
4465 /* A symbol from a library loaded via DT_NEEDED of some
4466 other library is referenced by a regular object.
4467 Add a DT_NEEDED entry for it. Issue an error if
4468 --no-add-needed is used and the reference was not
4469 a weak one. */
4470 if (undef_bfd != NULL
4471 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4472 {
4473 (*_bfd_error_handler)
4474 (_("%B: undefined reference to symbol '%s'"),
4475 undef_bfd, name);
4476 (*_bfd_error_handler)
4477 (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4478 abfd, name);
4479 bfd_set_error (bfd_error_invalid_operation);
4480 goto error_free_vers;
4481 }
4482
4483 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4484 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4485
4486 add_needed = TRUE;
4487 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4488 if (ret < 0)
4489 goto error_free_vers;
4490
4491 BFD_ASSERT (ret == 0);
4492 }
4493 }
4494 }
4495
4496 if (extversym != NULL)
4497 {
4498 free (extversym);
4499 extversym = NULL;
4500 }
4501
4502 if (isymbuf != NULL)
4503 {
4504 free (isymbuf);
4505 isymbuf = NULL;
4506 }
4507
4508 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4509 {
4510 unsigned int i;
4511
4512 /* Restore the symbol table. */
4513 if (bed->as_needed_cleanup)
4514 (*bed->as_needed_cleanup) (abfd, info);
4515 old_hash = (char *) old_tab + tabsize;
4516 old_ent = (char *) old_hash + hashsize;
4517 sym_hash = elf_sym_hashes (abfd);
4518 htab->root.table.table = old_table;
4519 htab->root.table.size = old_size;
4520 htab->root.table.count = old_count;
4521 memcpy (htab->root.table.table, old_tab, tabsize);
4522 memcpy (sym_hash, old_hash, hashsize);
4523 htab->root.undefs = old_undefs;
4524 htab->root.undefs_tail = old_undefs_tail;
4525 for (i = 0; i < htab->root.table.size; i++)
4526 {
4527 struct bfd_hash_entry *p;
4528 struct elf_link_hash_entry *h;
4529
4530 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4531 {
4532 h = (struct elf_link_hash_entry *) p;
4533 if (h->root.type == bfd_link_hash_warning)
4534 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4535 if (h->dynindx >= old_dynsymcount)
4536 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4537
4538 memcpy (p, old_ent, htab->root.table.entsize);
4539 old_ent = (char *) old_ent + htab->root.table.entsize;
4540 h = (struct elf_link_hash_entry *) p;
4541 if (h->root.type == bfd_link_hash_warning)
4542 {
4543 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4544 old_ent = (char *) old_ent + htab->root.table.entsize;
4545 }
4546 }
4547 }
4548
4549 /* Make a special call to the linker "notice" function to
4550 tell it that symbols added for crefs may need to be removed. */
4551 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4552 notice_not_needed))
4553 goto error_free_vers;
4554
4555 free (old_tab);
4556 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4557 alloc_mark);
4558 if (nondeflt_vers != NULL)
4559 free (nondeflt_vers);
4560 return TRUE;
4561 }
4562
4563 if (old_tab != NULL)
4564 {
4565 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4566 notice_needed))
4567 goto error_free_vers;
4568 free (old_tab);
4569 old_tab = NULL;
4570 }
4571
4572 /* Now that all the symbols from this input file are created, handle
4573 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4574 if (nondeflt_vers != NULL)
4575 {
4576 bfd_size_type cnt, symidx;
4577
4578 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4579 {
4580 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4581 char *shortname, *p;
4582
4583 p = strchr (h->root.root.string, ELF_VER_CHR);
4584 if (p == NULL
4585 || (h->root.type != bfd_link_hash_defined
4586 && h->root.type != bfd_link_hash_defweak))
4587 continue;
4588
4589 amt = p - h->root.root.string;
4590 shortname = (char *) bfd_malloc (amt + 1);
4591 if (!shortname)
4592 goto error_free_vers;
4593 memcpy (shortname, h->root.root.string, amt);
4594 shortname[amt] = '\0';
4595
4596 hi = (struct elf_link_hash_entry *)
4597 bfd_link_hash_lookup (&htab->root, shortname,
4598 FALSE, FALSE, FALSE);
4599 if (hi != NULL
4600 && hi->root.type == h->root.type
4601 && hi->root.u.def.value == h->root.u.def.value
4602 && hi->root.u.def.section == h->root.u.def.section)
4603 {
4604 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4605 hi->root.type = bfd_link_hash_indirect;
4606 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4607 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4608 sym_hash = elf_sym_hashes (abfd);
4609 if (sym_hash)
4610 for (symidx = 0; symidx < extsymcount; ++symidx)
4611 if (sym_hash[symidx] == hi)
4612 {
4613 sym_hash[symidx] = h;
4614 break;
4615 }
4616 }
4617 free (shortname);
4618 }
4619 free (nondeflt_vers);
4620 nondeflt_vers = NULL;
4621 }
4622
4623 /* Now set the weakdefs field correctly for all the weak defined
4624 symbols we found. The only way to do this is to search all the
4625 symbols. Since we only need the information for non functions in
4626 dynamic objects, that's the only time we actually put anything on
4627 the list WEAKS. We need this information so that if a regular
4628 object refers to a symbol defined weakly in a dynamic object, the
4629 real symbol in the dynamic object is also put in the dynamic
4630 symbols; we also must arrange for both symbols to point to the
4631 same memory location. We could handle the general case of symbol
4632 aliasing, but a general symbol alias can only be generated in
4633 assembler code, handling it correctly would be very time
4634 consuming, and other ELF linkers don't handle general aliasing
4635 either. */
4636 if (weaks != NULL)
4637 {
4638 struct elf_link_hash_entry **hpp;
4639 struct elf_link_hash_entry **hppend;
4640 struct elf_link_hash_entry **sorted_sym_hash;
4641 struct elf_link_hash_entry *h;
4642 size_t sym_count;
4643
4644 /* Since we have to search the whole symbol list for each weak
4645 defined symbol, search time for N weak defined symbols will be
4646 O(N^2). Binary search will cut it down to O(NlogN). */
4647 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4648 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4649 if (sorted_sym_hash == NULL)
4650 goto error_return;
4651 sym_hash = sorted_sym_hash;
4652 hpp = elf_sym_hashes (abfd);
4653 hppend = hpp + extsymcount;
4654 sym_count = 0;
4655 for (; hpp < hppend; hpp++)
4656 {
4657 h = *hpp;
4658 if (h != NULL
4659 && h->root.type == bfd_link_hash_defined
4660 && !bed->is_function_type (h->type))
4661 {
4662 *sym_hash = h;
4663 sym_hash++;
4664 sym_count++;
4665 }
4666 }
4667
4668 qsort (sorted_sym_hash, sym_count,
4669 sizeof (struct elf_link_hash_entry *),
4670 elf_sort_symbol);
4671
4672 while (weaks != NULL)
4673 {
4674 struct elf_link_hash_entry *hlook;
4675 asection *slook;
4676 bfd_vma vlook;
4677 long ilook;
4678 size_t i, j, idx;
4679
4680 hlook = weaks;
4681 weaks = hlook->u.weakdef;
4682 hlook->u.weakdef = NULL;
4683
4684 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4685 || hlook->root.type == bfd_link_hash_defweak
4686 || hlook->root.type == bfd_link_hash_common
4687 || hlook->root.type == bfd_link_hash_indirect);
4688 slook = hlook->root.u.def.section;
4689 vlook = hlook->root.u.def.value;
4690
4691 ilook = -1;
4692 i = 0;
4693 j = sym_count;
4694 while (i < j)
4695 {
4696 bfd_signed_vma vdiff;
4697 idx = (i + j) / 2;
4698 h = sorted_sym_hash [idx];
4699 vdiff = vlook - h->root.u.def.value;
4700 if (vdiff < 0)
4701 j = idx;
4702 else if (vdiff > 0)
4703 i = idx + 1;
4704 else
4705 {
4706 long sdiff = slook->id - h->root.u.def.section->id;
4707 if (sdiff < 0)
4708 j = idx;
4709 else if (sdiff > 0)
4710 i = idx + 1;
4711 else
4712 {
4713 ilook = idx;
4714 break;
4715 }
4716 }
4717 }
4718
4719 /* We didn't find a value/section match. */
4720 if (ilook == -1)
4721 continue;
4722
4723 for (i = ilook; i < sym_count; i++)
4724 {
4725 h = sorted_sym_hash [i];
4726
4727 /* Stop if value or section doesn't match. */
4728 if (h->root.u.def.value != vlook
4729 || h->root.u.def.section != slook)
4730 break;
4731 else if (h != hlook)
4732 {
4733 hlook->u.weakdef = h;
4734
4735 /* If the weak definition is in the list of dynamic
4736 symbols, make sure the real definition is put
4737 there as well. */
4738 if (hlook->dynindx != -1 && h->dynindx == -1)
4739 {
4740 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4741 {
4742 err_free_sym_hash:
4743 free (sorted_sym_hash);
4744 goto error_return;
4745 }
4746 }
4747
4748 /* If the real definition is in the list of dynamic
4749 symbols, make sure the weak definition is put
4750 there as well. If we don't do this, then the
4751 dynamic loader might not merge the entries for the
4752 real definition and the weak definition. */
4753 if (h->dynindx != -1 && hlook->dynindx == -1)
4754 {
4755 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4756 goto err_free_sym_hash;
4757 }
4758 break;
4759 }
4760 }
4761 }
4762
4763 free (sorted_sym_hash);
4764 }
4765
4766 if (bed->check_directives
4767 && !(*bed->check_directives) (abfd, info))
4768 return FALSE;
4769
4770 /* If this object is the same format as the output object, and it is
4771 not a shared library, then let the backend look through the
4772 relocs.
4773
4774 This is required to build global offset table entries and to
4775 arrange for dynamic relocs. It is not required for the
4776 particular common case of linking non PIC code, even when linking
4777 against shared libraries, but unfortunately there is no way of
4778 knowing whether an object file has been compiled PIC or not.
4779 Looking through the relocs is not particularly time consuming.
4780 The problem is that we must either (1) keep the relocs in memory,
4781 which causes the linker to require additional runtime memory or
4782 (2) read the relocs twice from the input file, which wastes time.
4783 This would be a good case for using mmap.
4784
4785 I have no idea how to handle linking PIC code into a file of a
4786 different format. It probably can't be done. */
4787 if (! dynamic
4788 && is_elf_hash_table (htab)
4789 && bed->check_relocs != NULL
4790 && elf_object_id (abfd) == elf_hash_table_id (htab)
4791 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4792 {
4793 asection *o;
4794
4795 for (o = abfd->sections; o != NULL; o = o->next)
4796 {
4797 Elf_Internal_Rela *internal_relocs;
4798 bfd_boolean ok;
4799
4800 if ((o->flags & SEC_RELOC) == 0
4801 || o->reloc_count == 0
4802 || ((info->strip == strip_all || info->strip == strip_debugger)
4803 && (o->flags & SEC_DEBUGGING) != 0)
4804 || bfd_is_abs_section (o->output_section))
4805 continue;
4806
4807 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4808 info->keep_memory);
4809 if (internal_relocs == NULL)
4810 goto error_return;
4811
4812 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4813
4814 if (elf_section_data (o)->relocs != internal_relocs)
4815 free (internal_relocs);
4816
4817 if (! ok)
4818 goto error_return;
4819 }
4820 }
4821
4822 /* If this is a non-traditional link, try to optimize the handling
4823 of the .stab/.stabstr sections. */
4824 if (! dynamic
4825 && ! info->traditional_format
4826 && is_elf_hash_table (htab)
4827 && (info->strip != strip_all && info->strip != strip_debugger))
4828 {
4829 asection *stabstr;
4830
4831 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4832 if (stabstr != NULL)
4833 {
4834 bfd_size_type string_offset = 0;
4835 asection *stab;
4836
4837 for (stab = abfd->sections; stab; stab = stab->next)
4838 if (CONST_STRNEQ (stab->name, ".stab")
4839 && (!stab->name[5] ||
4840 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4841 && (stab->flags & SEC_MERGE) == 0
4842 && !bfd_is_abs_section (stab->output_section))
4843 {
4844 struct bfd_elf_section_data *secdata;
4845
4846 secdata = elf_section_data (stab);
4847 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4848 stabstr, &secdata->sec_info,
4849 &string_offset))
4850 goto error_return;
4851 if (secdata->sec_info)
4852 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4853 }
4854 }
4855 }
4856
4857 if (is_elf_hash_table (htab) && add_needed)
4858 {
4859 /* Add this bfd to the loaded list. */
4860 struct elf_link_loaded_list *n;
4861
4862 n = (struct elf_link_loaded_list *)
4863 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4864 if (n == NULL)
4865 goto error_return;
4866 n->abfd = abfd;
4867 n->next = htab->loaded;
4868 htab->loaded = n;
4869 }
4870
4871 return TRUE;
4872
4873 error_free_vers:
4874 if (old_tab != NULL)
4875 free (old_tab);
4876 if (nondeflt_vers != NULL)
4877 free (nondeflt_vers);
4878 if (extversym != NULL)
4879 free (extversym);
4880 error_free_sym:
4881 if (isymbuf != NULL)
4882 free (isymbuf);
4883 error_return:
4884 return FALSE;
4885 }
4886
4887 /* Return the linker hash table entry of a symbol that might be
4888 satisfied by an archive symbol. Return -1 on error. */
4889
4890 struct elf_link_hash_entry *
4891 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4892 struct bfd_link_info *info,
4893 const char *name)
4894 {
4895 struct elf_link_hash_entry *h;
4896 char *p, *copy;
4897 size_t len, first;
4898
4899 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4900 if (h != NULL)
4901 return h;
4902
4903 /* If this is a default version (the name contains @@), look up the
4904 symbol again with only one `@' as well as without the version.
4905 The effect is that references to the symbol with and without the
4906 version will be matched by the default symbol in the archive. */
4907
4908 p = strchr (name, ELF_VER_CHR);
4909 if (p == NULL || p[1] != ELF_VER_CHR)
4910 return h;
4911
4912 /* First check with only one `@'. */
4913 len = strlen (name);
4914 copy = (char *) bfd_alloc (abfd, len);
4915 if (copy == NULL)
4916 return (struct elf_link_hash_entry *) 0 - 1;
4917
4918 first = p - name + 1;
4919 memcpy (copy, name, first);
4920 memcpy (copy + first, name + first + 1, len - first);
4921
4922 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4923 if (h == NULL)
4924 {
4925 /* We also need to check references to the symbol without the
4926 version. */
4927 copy[first - 1] = '\0';
4928 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4929 FALSE, FALSE, FALSE);
4930 }
4931
4932 bfd_release (abfd, copy);
4933 return h;
4934 }
4935
4936 /* Add symbols from an ELF archive file to the linker hash table. We
4937 don't use _bfd_generic_link_add_archive_symbols because of a
4938 problem which arises on UnixWare. The UnixWare libc.so is an
4939 archive which includes an entry libc.so.1 which defines a bunch of
4940 symbols. The libc.so archive also includes a number of other
4941 object files, which also define symbols, some of which are the same
4942 as those defined in libc.so.1. Correct linking requires that we
4943 consider each object file in turn, and include it if it defines any
4944 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4945 this; it looks through the list of undefined symbols, and includes
4946 any object file which defines them. When this algorithm is used on
4947 UnixWare, it winds up pulling in libc.so.1 early and defining a
4948 bunch of symbols. This means that some of the other objects in the
4949 archive are not included in the link, which is incorrect since they
4950 precede libc.so.1 in the archive.
4951
4952 Fortunately, ELF archive handling is simpler than that done by
4953 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4954 oddities. In ELF, if we find a symbol in the archive map, and the
4955 symbol is currently undefined, we know that we must pull in that
4956 object file.
4957
4958 Unfortunately, we do have to make multiple passes over the symbol
4959 table until nothing further is resolved. */
4960
4961 static bfd_boolean
4962 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4963 {
4964 symindex c;
4965 bfd_boolean *defined = NULL;
4966 bfd_boolean *included = NULL;
4967 carsym *symdefs;
4968 bfd_boolean loop;
4969 bfd_size_type amt;
4970 const struct elf_backend_data *bed;
4971 struct elf_link_hash_entry * (*archive_symbol_lookup)
4972 (bfd *, struct bfd_link_info *, const char *);
4973
4974 if (! bfd_has_map (abfd))
4975 {
4976 /* An empty archive is a special case. */
4977 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4978 return TRUE;
4979 bfd_set_error (bfd_error_no_armap);
4980 return FALSE;
4981 }
4982
4983 /* Keep track of all symbols we know to be already defined, and all
4984 files we know to be already included. This is to speed up the
4985 second and subsequent passes. */
4986 c = bfd_ardata (abfd)->symdef_count;
4987 if (c == 0)
4988 return TRUE;
4989 amt = c;
4990 amt *= sizeof (bfd_boolean);
4991 defined = (bfd_boolean *) bfd_zmalloc (amt);
4992 included = (bfd_boolean *) bfd_zmalloc (amt);
4993 if (defined == NULL || included == NULL)
4994 goto error_return;
4995
4996 symdefs = bfd_ardata (abfd)->symdefs;
4997 bed = get_elf_backend_data (abfd);
4998 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4999
5000 do
5001 {
5002 file_ptr last;
5003 symindex i;
5004 carsym *symdef;
5005 carsym *symdefend;
5006
5007 loop = FALSE;
5008 last = -1;
5009
5010 symdef = symdefs;
5011 symdefend = symdef + c;
5012 for (i = 0; symdef < symdefend; symdef++, i++)
5013 {
5014 struct elf_link_hash_entry *h;
5015 bfd *element;
5016 struct bfd_link_hash_entry *undefs_tail;
5017 symindex mark;
5018
5019 if (defined[i] || included[i])
5020 continue;
5021 if (symdef->file_offset == last)
5022 {
5023 included[i] = TRUE;
5024 continue;
5025 }
5026
5027 h = archive_symbol_lookup (abfd, info, symdef->name);
5028 if (h == (struct elf_link_hash_entry *) 0 - 1)
5029 goto error_return;
5030
5031 if (h == NULL)
5032 continue;
5033
5034 if (h->root.type == bfd_link_hash_common)
5035 {
5036 /* We currently have a common symbol. The archive map contains
5037 a reference to this symbol, so we may want to include it. We
5038 only want to include it however, if this archive element
5039 contains a definition of the symbol, not just another common
5040 declaration of it.
5041
5042 Unfortunately some archivers (including GNU ar) will put
5043 declarations of common symbols into their archive maps, as
5044 well as real definitions, so we cannot just go by the archive
5045 map alone. Instead we must read in the element's symbol
5046 table and check that to see what kind of symbol definition
5047 this is. */
5048 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5049 continue;
5050 }
5051 else if (h->root.type != bfd_link_hash_undefined)
5052 {
5053 if (h->root.type != bfd_link_hash_undefweak)
5054 defined[i] = TRUE;
5055 continue;
5056 }
5057
5058 /* We need to include this archive member. */
5059 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5060 if (element == NULL)
5061 goto error_return;
5062
5063 if (! bfd_check_format (element, bfd_object))
5064 goto error_return;
5065
5066 /* Doublecheck that we have not included this object
5067 already--it should be impossible, but there may be
5068 something wrong with the archive. */
5069 if (element->archive_pass != 0)
5070 {
5071 bfd_set_error (bfd_error_bad_value);
5072 goto error_return;
5073 }
5074 element->archive_pass = 1;
5075
5076 undefs_tail = info->hash->undefs_tail;
5077
5078 if (! (*info->callbacks->add_archive_element) (info, element,
5079 symdef->name))
5080 goto error_return;
5081 if (! bfd_link_add_symbols (element, info))
5082 goto error_return;
5083
5084 /* If there are any new undefined symbols, we need to make
5085 another pass through the archive in order to see whether
5086 they can be defined. FIXME: This isn't perfect, because
5087 common symbols wind up on undefs_tail and because an
5088 undefined symbol which is defined later on in this pass
5089 does not require another pass. This isn't a bug, but it
5090 does make the code less efficient than it could be. */
5091 if (undefs_tail != info->hash->undefs_tail)
5092 loop = TRUE;
5093
5094 /* Look backward to mark all symbols from this object file
5095 which we have already seen in this pass. */
5096 mark = i;
5097 do
5098 {
5099 included[mark] = TRUE;
5100 if (mark == 0)
5101 break;
5102 --mark;
5103 }
5104 while (symdefs[mark].file_offset == symdef->file_offset);
5105
5106 /* We mark subsequent symbols from this object file as we go
5107 on through the loop. */
5108 last = symdef->file_offset;
5109 }
5110 }
5111 while (loop);
5112
5113 free (defined);
5114 free (included);
5115
5116 return TRUE;
5117
5118 error_return:
5119 if (defined != NULL)
5120 free (defined);
5121 if (included != NULL)
5122 free (included);
5123 return FALSE;
5124 }
5125
5126 /* Given an ELF BFD, add symbols to the global hash table as
5127 appropriate. */
5128
5129 bfd_boolean
5130 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5131 {
5132 switch (bfd_get_format (abfd))
5133 {
5134 case bfd_object:
5135 return elf_link_add_object_symbols (abfd, info);
5136 case bfd_archive:
5137 return elf_link_add_archive_symbols (abfd, info);
5138 default:
5139 bfd_set_error (bfd_error_wrong_format);
5140 return FALSE;
5141 }
5142 }
5143 \f
5144 struct hash_codes_info
5145 {
5146 unsigned long *hashcodes;
5147 bfd_boolean error;
5148 };
5149
5150 /* This function will be called though elf_link_hash_traverse to store
5151 all hash value of the exported symbols in an array. */
5152
5153 static bfd_boolean
5154 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5155 {
5156 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5157 const char *name;
5158 char *p;
5159 unsigned long ha;
5160 char *alc = NULL;
5161
5162 if (h->root.type == bfd_link_hash_warning)
5163 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5164
5165 /* Ignore indirect symbols. These are added by the versioning code. */
5166 if (h->dynindx == -1)
5167 return TRUE;
5168
5169 name = h->root.root.string;
5170 p = strchr (name, ELF_VER_CHR);
5171 if (p != NULL)
5172 {
5173 alc = (char *) bfd_malloc (p - name + 1);
5174 if (alc == NULL)
5175 {
5176 inf->error = TRUE;
5177 return FALSE;
5178 }
5179 memcpy (alc, name, p - name);
5180 alc[p - name] = '\0';
5181 name = alc;
5182 }
5183
5184 /* Compute the hash value. */
5185 ha = bfd_elf_hash (name);
5186
5187 /* Store the found hash value in the array given as the argument. */
5188 *(inf->hashcodes)++ = ha;
5189
5190 /* And store it in the struct so that we can put it in the hash table
5191 later. */
5192 h->u.elf_hash_value = ha;
5193
5194 if (alc != NULL)
5195 free (alc);
5196
5197 return TRUE;
5198 }
5199
5200 struct collect_gnu_hash_codes
5201 {
5202 bfd *output_bfd;
5203 const struct elf_backend_data *bed;
5204 unsigned long int nsyms;
5205 unsigned long int maskbits;
5206 unsigned long int *hashcodes;
5207 unsigned long int *hashval;
5208 unsigned long int *indx;
5209 unsigned long int *counts;
5210 bfd_vma *bitmask;
5211 bfd_byte *contents;
5212 long int min_dynindx;
5213 unsigned long int bucketcount;
5214 unsigned long int symindx;
5215 long int local_indx;
5216 long int shift1, shift2;
5217 unsigned long int mask;
5218 bfd_boolean error;
5219 };
5220
5221 /* This function will be called though elf_link_hash_traverse to store
5222 all hash value of the exported symbols in an array. */
5223
5224 static bfd_boolean
5225 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5226 {
5227 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5228 const char *name;
5229 char *p;
5230 unsigned long ha;
5231 char *alc = NULL;
5232
5233 if (h->root.type == bfd_link_hash_warning)
5234 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5235
5236 /* Ignore indirect symbols. These are added by the versioning code. */
5237 if (h->dynindx == -1)
5238 return TRUE;
5239
5240 /* Ignore also local symbols and undefined symbols. */
5241 if (! (*s->bed->elf_hash_symbol) (h))
5242 return TRUE;
5243
5244 name = h->root.root.string;
5245 p = strchr (name, ELF_VER_CHR);
5246 if (p != NULL)
5247 {
5248 alc = (char *) bfd_malloc (p - name + 1);
5249 if (alc == NULL)
5250 {
5251 s->error = TRUE;
5252 return FALSE;
5253 }
5254 memcpy (alc, name, p - name);
5255 alc[p - name] = '\0';
5256 name = alc;
5257 }
5258
5259 /* Compute the hash value. */
5260 ha = bfd_elf_gnu_hash (name);
5261
5262 /* Store the found hash value in the array for compute_bucket_count,
5263 and also for .dynsym reordering purposes. */
5264 s->hashcodes[s->nsyms] = ha;
5265 s->hashval[h->dynindx] = ha;
5266 ++s->nsyms;
5267 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5268 s->min_dynindx = h->dynindx;
5269
5270 if (alc != NULL)
5271 free (alc);
5272
5273 return TRUE;
5274 }
5275
5276 /* This function will be called though elf_link_hash_traverse to do
5277 final dynaminc symbol renumbering. */
5278
5279 static bfd_boolean
5280 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5281 {
5282 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5283 unsigned long int bucket;
5284 unsigned long int val;
5285
5286 if (h->root.type == bfd_link_hash_warning)
5287 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5288
5289 /* Ignore indirect symbols. */
5290 if (h->dynindx == -1)
5291 return TRUE;
5292
5293 /* Ignore also local symbols and undefined symbols. */
5294 if (! (*s->bed->elf_hash_symbol) (h))
5295 {
5296 if (h->dynindx >= s->min_dynindx)
5297 h->dynindx = s->local_indx++;
5298 return TRUE;
5299 }
5300
5301 bucket = s->hashval[h->dynindx] % s->bucketcount;
5302 val = (s->hashval[h->dynindx] >> s->shift1)
5303 & ((s->maskbits >> s->shift1) - 1);
5304 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5305 s->bitmask[val]
5306 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5307 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5308 if (s->counts[bucket] == 1)
5309 /* Last element terminates the chain. */
5310 val |= 1;
5311 bfd_put_32 (s->output_bfd, val,
5312 s->contents + (s->indx[bucket] - s->symindx) * 4);
5313 --s->counts[bucket];
5314 h->dynindx = s->indx[bucket]++;
5315 return TRUE;
5316 }
5317
5318 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5319
5320 bfd_boolean
5321 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5322 {
5323 return !(h->forced_local
5324 || h->root.type == bfd_link_hash_undefined
5325 || h->root.type == bfd_link_hash_undefweak
5326 || ((h->root.type == bfd_link_hash_defined
5327 || h->root.type == bfd_link_hash_defweak)
5328 && h->root.u.def.section->output_section == NULL));
5329 }
5330
5331 /* Array used to determine the number of hash table buckets to use
5332 based on the number of symbols there are. If there are fewer than
5333 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5334 fewer than 37 we use 17 buckets, and so forth. We never use more
5335 than 32771 buckets. */
5336
5337 static const size_t elf_buckets[] =
5338 {
5339 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5340 16411, 32771, 0
5341 };
5342
5343 /* Compute bucket count for hashing table. We do not use a static set
5344 of possible tables sizes anymore. Instead we determine for all
5345 possible reasonable sizes of the table the outcome (i.e., the
5346 number of collisions etc) and choose the best solution. The
5347 weighting functions are not too simple to allow the table to grow
5348 without bounds. Instead one of the weighting factors is the size.
5349 Therefore the result is always a good payoff between few collisions
5350 (= short chain lengths) and table size. */
5351 static size_t
5352 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5353 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5354 unsigned long int nsyms,
5355 int gnu_hash)
5356 {
5357 size_t best_size = 0;
5358 unsigned long int i;
5359
5360 /* We have a problem here. The following code to optimize the table
5361 size requires an integer type with more the 32 bits. If
5362 BFD_HOST_U_64_BIT is set we know about such a type. */
5363 #ifdef BFD_HOST_U_64_BIT
5364 if (info->optimize)
5365 {
5366 size_t minsize;
5367 size_t maxsize;
5368 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5369 bfd *dynobj = elf_hash_table (info)->dynobj;
5370 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5371 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5372 unsigned long int *counts;
5373 bfd_size_type amt;
5374 unsigned int no_improvement_count = 0;
5375
5376 /* Possible optimization parameters: if we have NSYMS symbols we say
5377 that the hashing table must at least have NSYMS/4 and at most
5378 2*NSYMS buckets. */
5379 minsize = nsyms / 4;
5380 if (minsize == 0)
5381 minsize = 1;
5382 best_size = maxsize = nsyms * 2;
5383 if (gnu_hash)
5384 {
5385 if (minsize < 2)
5386 minsize = 2;
5387 if ((best_size & 31) == 0)
5388 ++best_size;
5389 }
5390
5391 /* Create array where we count the collisions in. We must use bfd_malloc
5392 since the size could be large. */
5393 amt = maxsize;
5394 amt *= sizeof (unsigned long int);
5395 counts = (unsigned long int *) bfd_malloc (amt);
5396 if (counts == NULL)
5397 return 0;
5398
5399 /* Compute the "optimal" size for the hash table. The criteria is a
5400 minimal chain length. The minor criteria is (of course) the size
5401 of the table. */
5402 for (i = minsize; i < maxsize; ++i)
5403 {
5404 /* Walk through the array of hashcodes and count the collisions. */
5405 BFD_HOST_U_64_BIT max;
5406 unsigned long int j;
5407 unsigned long int fact;
5408
5409 if (gnu_hash && (i & 31) == 0)
5410 continue;
5411
5412 memset (counts, '\0', i * sizeof (unsigned long int));
5413
5414 /* Determine how often each hash bucket is used. */
5415 for (j = 0; j < nsyms; ++j)
5416 ++counts[hashcodes[j] % i];
5417
5418 /* For the weight function we need some information about the
5419 pagesize on the target. This is information need not be 100%
5420 accurate. Since this information is not available (so far) we
5421 define it here to a reasonable default value. If it is crucial
5422 to have a better value some day simply define this value. */
5423 # ifndef BFD_TARGET_PAGESIZE
5424 # define BFD_TARGET_PAGESIZE (4096)
5425 # endif
5426
5427 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5428 and the chains. */
5429 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5430
5431 # if 1
5432 /* Variant 1: optimize for short chains. We add the squares
5433 of all the chain lengths (which favors many small chain
5434 over a few long chains). */
5435 for (j = 0; j < i; ++j)
5436 max += counts[j] * counts[j];
5437
5438 /* This adds penalties for the overall size of the table. */
5439 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5440 max *= fact * fact;
5441 # else
5442 /* Variant 2: Optimize a lot more for small table. Here we
5443 also add squares of the size but we also add penalties for
5444 empty slots (the +1 term). */
5445 for (j = 0; j < i; ++j)
5446 max += (1 + counts[j]) * (1 + counts[j]);
5447
5448 /* The overall size of the table is considered, but not as
5449 strong as in variant 1, where it is squared. */
5450 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5451 max *= fact;
5452 # endif
5453
5454 /* Compare with current best results. */
5455 if (max < best_chlen)
5456 {
5457 best_chlen = max;
5458 best_size = i;
5459 no_improvement_count = 0;
5460 }
5461 /* PR 11843: Avoid futile long searches for the best bucket size
5462 when there are a large number of symbols. */
5463 else if (++no_improvement_count == 100)
5464 break;
5465 }
5466
5467 free (counts);
5468 }
5469 else
5470 #endif /* defined (BFD_HOST_U_64_BIT) */
5471 {
5472 /* This is the fallback solution if no 64bit type is available or if we
5473 are not supposed to spend much time on optimizations. We select the
5474 bucket count using a fixed set of numbers. */
5475 for (i = 0; elf_buckets[i] != 0; i++)
5476 {
5477 best_size = elf_buckets[i];
5478 if (nsyms < elf_buckets[i + 1])
5479 break;
5480 }
5481 if (gnu_hash && best_size < 2)
5482 best_size = 2;
5483 }
5484
5485 return best_size;
5486 }
5487
5488 /* Size any SHT_GROUP section for ld -r. */
5489
5490 bfd_boolean
5491 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5492 {
5493 bfd *ibfd;
5494
5495 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5496 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5497 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5498 return FALSE;
5499 return TRUE;
5500 }
5501
5502 /* Set up the sizes and contents of the ELF dynamic sections. This is
5503 called by the ELF linker emulation before_allocation routine. We
5504 must set the sizes of the sections before the linker sets the
5505 addresses of the various sections. */
5506
5507 bfd_boolean
5508 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5509 const char *soname,
5510 const char *rpath,
5511 const char *filter_shlib,
5512 const char *audit,
5513 const char *depaudit,
5514 const char * const *auxiliary_filters,
5515 struct bfd_link_info *info,
5516 asection **sinterpptr,
5517 struct bfd_elf_version_tree *verdefs)
5518 {
5519 bfd_size_type soname_indx;
5520 bfd *dynobj;
5521 const struct elf_backend_data *bed;
5522 struct elf_info_failed asvinfo;
5523
5524 *sinterpptr = NULL;
5525
5526 soname_indx = (bfd_size_type) -1;
5527
5528 if (!is_elf_hash_table (info->hash))
5529 return TRUE;
5530
5531 bed = get_elf_backend_data (output_bfd);
5532 if (info->execstack)
5533 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5534 else if (info->noexecstack)
5535 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5536 else
5537 {
5538 bfd *inputobj;
5539 asection *notesec = NULL;
5540 int exec = 0;
5541
5542 for (inputobj = info->input_bfds;
5543 inputobj;
5544 inputobj = inputobj->link_next)
5545 {
5546 asection *s;
5547
5548 if (inputobj->flags & (DYNAMIC | EXEC_P | BFD_LINKER_CREATED))
5549 continue;
5550 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5551 if (s)
5552 {
5553 if (s->flags & SEC_CODE)
5554 exec = PF_X;
5555 notesec = s;
5556 }
5557 else if (bed->default_execstack)
5558 exec = PF_X;
5559 }
5560 if (notesec)
5561 {
5562 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5563 if (exec && info->relocatable
5564 && notesec->output_section != bfd_abs_section_ptr)
5565 notesec->output_section->flags |= SEC_CODE;
5566 }
5567 }
5568
5569 /* Any syms created from now on start with -1 in
5570 got.refcount/offset and plt.refcount/offset. */
5571 elf_hash_table (info)->init_got_refcount
5572 = elf_hash_table (info)->init_got_offset;
5573 elf_hash_table (info)->init_plt_refcount
5574 = elf_hash_table (info)->init_plt_offset;
5575
5576 if (info->relocatable
5577 && !_bfd_elf_size_group_sections (info))
5578 return FALSE;
5579
5580 /* The backend may have to create some sections regardless of whether
5581 we're dynamic or not. */
5582 if (bed->elf_backend_always_size_sections
5583 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5584 return FALSE;
5585
5586 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5587 return FALSE;
5588
5589 dynobj = elf_hash_table (info)->dynobj;
5590
5591 /* If there were no dynamic objects in the link, there is nothing to
5592 do here. */
5593 if (dynobj == NULL)
5594 return TRUE;
5595
5596 if (elf_hash_table (info)->dynamic_sections_created)
5597 {
5598 struct elf_info_failed eif;
5599 struct elf_link_hash_entry *h;
5600 asection *dynstr;
5601 struct bfd_elf_version_tree *t;
5602 struct bfd_elf_version_expr *d;
5603 asection *s;
5604 bfd_boolean all_defined;
5605
5606 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5607 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5608
5609 if (soname != NULL)
5610 {
5611 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5612 soname, TRUE);
5613 if (soname_indx == (bfd_size_type) -1
5614 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5615 return FALSE;
5616 }
5617
5618 if (info->symbolic)
5619 {
5620 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5621 return FALSE;
5622 info->flags |= DF_SYMBOLIC;
5623 }
5624
5625 if (rpath != NULL)
5626 {
5627 bfd_size_type indx;
5628
5629 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5630 TRUE);
5631 if (indx == (bfd_size_type) -1
5632 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5633 return FALSE;
5634
5635 if (info->new_dtags)
5636 {
5637 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5638 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5639 return FALSE;
5640 }
5641 }
5642
5643 if (filter_shlib != NULL)
5644 {
5645 bfd_size_type indx;
5646
5647 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5648 filter_shlib, TRUE);
5649 if (indx == (bfd_size_type) -1
5650 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5651 return FALSE;
5652 }
5653
5654 if (auxiliary_filters != NULL)
5655 {
5656 const char * const *p;
5657
5658 for (p = auxiliary_filters; *p != NULL; p++)
5659 {
5660 bfd_size_type indx;
5661
5662 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5663 *p, TRUE);
5664 if (indx == (bfd_size_type) -1
5665 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5666 return FALSE;
5667 }
5668 }
5669
5670 if (audit != NULL)
5671 {
5672 bfd_size_type indx;
5673
5674 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5675 TRUE);
5676 if (indx == (bfd_size_type) -1
5677 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5678 return FALSE;
5679 }
5680
5681 if (depaudit != NULL)
5682 {
5683 bfd_size_type indx;
5684
5685 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5686 TRUE);
5687 if (indx == (bfd_size_type) -1
5688 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5689 return FALSE;
5690 }
5691
5692 eif.info = info;
5693 eif.verdefs = verdefs;
5694 eif.failed = FALSE;
5695
5696 /* If we are supposed to export all symbols into the dynamic symbol
5697 table (this is not the normal case), then do so. */
5698 if (info->export_dynamic
5699 || (info->executable && info->dynamic))
5700 {
5701 elf_link_hash_traverse (elf_hash_table (info),
5702 _bfd_elf_export_symbol,
5703 &eif);
5704 if (eif.failed)
5705 return FALSE;
5706 }
5707
5708 /* Make all global versions with definition. */
5709 for (t = verdefs; t != NULL; t = t->next)
5710 for (d = t->globals.list; d != NULL; d = d->next)
5711 if (!d->symver && d->literal)
5712 {
5713 const char *verstr, *name;
5714 size_t namelen, verlen, newlen;
5715 char *newname, *p;
5716 struct elf_link_hash_entry *newh;
5717
5718 name = d->pattern;
5719 namelen = strlen (name);
5720 verstr = t->name;
5721 verlen = strlen (verstr);
5722 newlen = namelen + verlen + 3;
5723
5724 newname = (char *) bfd_malloc (newlen);
5725 if (newname == NULL)
5726 return FALSE;
5727 memcpy (newname, name, namelen);
5728
5729 /* Check the hidden versioned definition. */
5730 p = newname + namelen;
5731 *p++ = ELF_VER_CHR;
5732 memcpy (p, verstr, verlen + 1);
5733 newh = elf_link_hash_lookup (elf_hash_table (info),
5734 newname, FALSE, FALSE,
5735 FALSE);
5736 if (newh == NULL
5737 || (newh->root.type != bfd_link_hash_defined
5738 && newh->root.type != bfd_link_hash_defweak))
5739 {
5740 /* Check the default versioned definition. */
5741 *p++ = ELF_VER_CHR;
5742 memcpy (p, verstr, verlen + 1);
5743 newh = elf_link_hash_lookup (elf_hash_table (info),
5744 newname, FALSE, FALSE,
5745 FALSE);
5746 }
5747 free (newname);
5748
5749 /* Mark this version if there is a definition and it is
5750 not defined in a shared object. */
5751 if (newh != NULL
5752 && !newh->def_dynamic
5753 && (newh->root.type == bfd_link_hash_defined
5754 || newh->root.type == bfd_link_hash_defweak))
5755 d->symver = 1;
5756 }
5757
5758 /* Attach all the symbols to their version information. */
5759 asvinfo.info = info;
5760 asvinfo.verdefs = verdefs;
5761 asvinfo.failed = FALSE;
5762
5763 elf_link_hash_traverse (elf_hash_table (info),
5764 _bfd_elf_link_assign_sym_version,
5765 &asvinfo);
5766 if (asvinfo.failed)
5767 return FALSE;
5768
5769 if (!info->allow_undefined_version)
5770 {
5771 /* Check if all global versions have a definition. */
5772 all_defined = TRUE;
5773 for (t = verdefs; t != NULL; t = t->next)
5774 for (d = t->globals.list; d != NULL; d = d->next)
5775 if (d->literal && !d->symver && !d->script)
5776 {
5777 (*_bfd_error_handler)
5778 (_("%s: undefined version: %s"),
5779 d->pattern, t->name);
5780 all_defined = FALSE;
5781 }
5782
5783 if (!all_defined)
5784 {
5785 bfd_set_error (bfd_error_bad_value);
5786 return FALSE;
5787 }
5788 }
5789
5790 /* Find all symbols which were defined in a dynamic object and make
5791 the backend pick a reasonable value for them. */
5792 elf_link_hash_traverse (elf_hash_table (info),
5793 _bfd_elf_adjust_dynamic_symbol,
5794 &eif);
5795 if (eif.failed)
5796 return FALSE;
5797
5798 /* Add some entries to the .dynamic section. We fill in some of the
5799 values later, in bfd_elf_final_link, but we must add the entries
5800 now so that we know the final size of the .dynamic section. */
5801
5802 /* If there are initialization and/or finalization functions to
5803 call then add the corresponding DT_INIT/DT_FINI entries. */
5804 h = (info->init_function
5805 ? elf_link_hash_lookup (elf_hash_table (info),
5806 info->init_function, FALSE,
5807 FALSE, FALSE)
5808 : NULL);
5809 if (h != NULL
5810 && (h->ref_regular
5811 || h->def_regular))
5812 {
5813 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5814 return FALSE;
5815 }
5816 h = (info->fini_function
5817 ? elf_link_hash_lookup (elf_hash_table (info),
5818 info->fini_function, FALSE,
5819 FALSE, FALSE)
5820 : NULL);
5821 if (h != NULL
5822 && (h->ref_regular
5823 || h->def_regular))
5824 {
5825 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5826 return FALSE;
5827 }
5828
5829 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5830 if (s != NULL && s->linker_has_input)
5831 {
5832 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5833 if (! info->executable)
5834 {
5835 bfd *sub;
5836 asection *o;
5837
5838 for (sub = info->input_bfds; sub != NULL;
5839 sub = sub->link_next)
5840 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5841 for (o = sub->sections; o != NULL; o = o->next)
5842 if (elf_section_data (o)->this_hdr.sh_type
5843 == SHT_PREINIT_ARRAY)
5844 {
5845 (*_bfd_error_handler)
5846 (_("%B: .preinit_array section is not allowed in DSO"),
5847 sub);
5848 break;
5849 }
5850
5851 bfd_set_error (bfd_error_nonrepresentable_section);
5852 return FALSE;
5853 }
5854
5855 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5856 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5857 return FALSE;
5858 }
5859 s = bfd_get_section_by_name (output_bfd, ".init_array");
5860 if (s != NULL && s->linker_has_input)
5861 {
5862 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5863 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5864 return FALSE;
5865 }
5866 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5867 if (s != NULL && s->linker_has_input)
5868 {
5869 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5870 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5871 return FALSE;
5872 }
5873
5874 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5875 /* If .dynstr is excluded from the link, we don't want any of
5876 these tags. Strictly, we should be checking each section
5877 individually; This quick check covers for the case where
5878 someone does a /DISCARD/ : { *(*) }. */
5879 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5880 {
5881 bfd_size_type strsize;
5882
5883 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5884 if ((info->emit_hash
5885 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5886 || (info->emit_gnu_hash
5887 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5888 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5889 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5890 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5891 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5892 bed->s->sizeof_sym))
5893 return FALSE;
5894 }
5895 }
5896
5897 /* The backend must work out the sizes of all the other dynamic
5898 sections. */
5899 if (bed->elf_backend_size_dynamic_sections
5900 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5901 return FALSE;
5902
5903 if (elf_hash_table (info)->dynamic_sections_created)
5904 {
5905 unsigned long section_sym_count;
5906 asection *s;
5907
5908 /* Set up the version definition section. */
5909 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5910 BFD_ASSERT (s != NULL);
5911
5912 /* We may have created additional version definitions if we are
5913 just linking a regular application. */
5914 verdefs = asvinfo.verdefs;
5915
5916 /* Skip anonymous version tag. */
5917 if (verdefs != NULL && verdefs->vernum == 0)
5918 verdefs = verdefs->next;
5919
5920 if (verdefs == NULL && !info->create_default_symver)
5921 s->flags |= SEC_EXCLUDE;
5922 else
5923 {
5924 unsigned int cdefs;
5925 bfd_size_type size;
5926 struct bfd_elf_version_tree *t;
5927 bfd_byte *p;
5928 Elf_Internal_Verdef def;
5929 Elf_Internal_Verdaux defaux;
5930 struct bfd_link_hash_entry *bh;
5931 struct elf_link_hash_entry *h;
5932 const char *name;
5933
5934 cdefs = 0;
5935 size = 0;
5936
5937 /* Make space for the base version. */
5938 size += sizeof (Elf_External_Verdef);
5939 size += sizeof (Elf_External_Verdaux);
5940 ++cdefs;
5941
5942 /* Make space for the default version. */
5943 if (info->create_default_symver)
5944 {
5945 size += sizeof (Elf_External_Verdef);
5946 ++cdefs;
5947 }
5948
5949 for (t = verdefs; t != NULL; t = t->next)
5950 {
5951 struct bfd_elf_version_deps *n;
5952
5953 /* Don't emit base version twice. */
5954 if (t->vernum == 0)
5955 continue;
5956
5957 size += sizeof (Elf_External_Verdef);
5958 size += sizeof (Elf_External_Verdaux);
5959 ++cdefs;
5960
5961 for (n = t->deps; n != NULL; n = n->next)
5962 size += sizeof (Elf_External_Verdaux);
5963 }
5964
5965 s->size = size;
5966 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5967 if (s->contents == NULL && s->size != 0)
5968 return FALSE;
5969
5970 /* Fill in the version definition section. */
5971
5972 p = s->contents;
5973
5974 def.vd_version = VER_DEF_CURRENT;
5975 def.vd_flags = VER_FLG_BASE;
5976 def.vd_ndx = 1;
5977 def.vd_cnt = 1;
5978 if (info->create_default_symver)
5979 {
5980 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5981 def.vd_next = sizeof (Elf_External_Verdef);
5982 }
5983 else
5984 {
5985 def.vd_aux = sizeof (Elf_External_Verdef);
5986 def.vd_next = (sizeof (Elf_External_Verdef)
5987 + sizeof (Elf_External_Verdaux));
5988 }
5989
5990 if (soname_indx != (bfd_size_type) -1)
5991 {
5992 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5993 soname_indx);
5994 def.vd_hash = bfd_elf_hash (soname);
5995 defaux.vda_name = soname_indx;
5996 name = soname;
5997 }
5998 else
5999 {
6000 bfd_size_type indx;
6001
6002 name = lbasename (output_bfd->filename);
6003 def.vd_hash = bfd_elf_hash (name);
6004 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6005 name, FALSE);
6006 if (indx == (bfd_size_type) -1)
6007 return FALSE;
6008 defaux.vda_name = indx;
6009 }
6010 defaux.vda_next = 0;
6011
6012 _bfd_elf_swap_verdef_out (output_bfd, &def,
6013 (Elf_External_Verdef *) p);
6014 p += sizeof (Elf_External_Verdef);
6015 if (info->create_default_symver)
6016 {
6017 /* Add a symbol representing this version. */
6018 bh = NULL;
6019 if (! (_bfd_generic_link_add_one_symbol
6020 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6021 0, NULL, FALSE,
6022 get_elf_backend_data (dynobj)->collect, &bh)))
6023 return FALSE;
6024 h = (struct elf_link_hash_entry *) bh;
6025 h->non_elf = 0;
6026 h->def_regular = 1;
6027 h->type = STT_OBJECT;
6028 h->verinfo.vertree = NULL;
6029
6030 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6031 return FALSE;
6032
6033 /* Create a duplicate of the base version with the same
6034 aux block, but different flags. */
6035 def.vd_flags = 0;
6036 def.vd_ndx = 2;
6037 def.vd_aux = sizeof (Elf_External_Verdef);
6038 if (verdefs)
6039 def.vd_next = (sizeof (Elf_External_Verdef)
6040 + sizeof (Elf_External_Verdaux));
6041 else
6042 def.vd_next = 0;
6043 _bfd_elf_swap_verdef_out (output_bfd, &def,
6044 (Elf_External_Verdef *) p);
6045 p += sizeof (Elf_External_Verdef);
6046 }
6047 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6048 (Elf_External_Verdaux *) p);
6049 p += sizeof (Elf_External_Verdaux);
6050
6051 for (t = verdefs; t != NULL; t = t->next)
6052 {
6053 unsigned int cdeps;
6054 struct bfd_elf_version_deps *n;
6055
6056 /* Don't emit the base version twice. */
6057 if (t->vernum == 0)
6058 continue;
6059
6060 cdeps = 0;
6061 for (n = t->deps; n != NULL; n = n->next)
6062 ++cdeps;
6063
6064 /* Add a symbol representing this version. */
6065 bh = NULL;
6066 if (! (_bfd_generic_link_add_one_symbol
6067 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6068 0, NULL, FALSE,
6069 get_elf_backend_data (dynobj)->collect, &bh)))
6070 return FALSE;
6071 h = (struct elf_link_hash_entry *) bh;
6072 h->non_elf = 0;
6073 h->def_regular = 1;
6074 h->type = STT_OBJECT;
6075 h->verinfo.vertree = t;
6076
6077 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6078 return FALSE;
6079
6080 def.vd_version = VER_DEF_CURRENT;
6081 def.vd_flags = 0;
6082 if (t->globals.list == NULL
6083 && t->locals.list == NULL
6084 && ! t->used)
6085 def.vd_flags |= VER_FLG_WEAK;
6086 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6087 def.vd_cnt = cdeps + 1;
6088 def.vd_hash = bfd_elf_hash (t->name);
6089 def.vd_aux = sizeof (Elf_External_Verdef);
6090 def.vd_next = 0;
6091
6092 /* If a basever node is next, it *must* be the last node in
6093 the chain, otherwise Verdef construction breaks. */
6094 if (t->next != NULL && t->next->vernum == 0)
6095 BFD_ASSERT (t->next->next == NULL);
6096
6097 if (t->next != NULL && t->next->vernum != 0)
6098 def.vd_next = (sizeof (Elf_External_Verdef)
6099 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6100
6101 _bfd_elf_swap_verdef_out (output_bfd, &def,
6102 (Elf_External_Verdef *) p);
6103 p += sizeof (Elf_External_Verdef);
6104
6105 defaux.vda_name = h->dynstr_index;
6106 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6107 h->dynstr_index);
6108 defaux.vda_next = 0;
6109 if (t->deps != NULL)
6110 defaux.vda_next = sizeof (Elf_External_Verdaux);
6111 t->name_indx = defaux.vda_name;
6112
6113 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6114 (Elf_External_Verdaux *) p);
6115 p += sizeof (Elf_External_Verdaux);
6116
6117 for (n = t->deps; n != NULL; n = n->next)
6118 {
6119 if (n->version_needed == NULL)
6120 {
6121 /* This can happen if there was an error in the
6122 version script. */
6123 defaux.vda_name = 0;
6124 }
6125 else
6126 {
6127 defaux.vda_name = n->version_needed->name_indx;
6128 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6129 defaux.vda_name);
6130 }
6131 if (n->next == NULL)
6132 defaux.vda_next = 0;
6133 else
6134 defaux.vda_next = sizeof (Elf_External_Verdaux);
6135
6136 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6137 (Elf_External_Verdaux *) p);
6138 p += sizeof (Elf_External_Verdaux);
6139 }
6140 }
6141
6142 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6143 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6144 return FALSE;
6145
6146 elf_tdata (output_bfd)->cverdefs = cdefs;
6147 }
6148
6149 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6150 {
6151 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6152 return FALSE;
6153 }
6154 else if (info->flags & DF_BIND_NOW)
6155 {
6156 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6157 return FALSE;
6158 }
6159
6160 if (info->flags_1)
6161 {
6162 if (info->executable)
6163 info->flags_1 &= ~ (DF_1_INITFIRST
6164 | DF_1_NODELETE
6165 | DF_1_NOOPEN);
6166 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6167 return FALSE;
6168 }
6169
6170 /* Work out the size of the version reference section. */
6171
6172 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
6173 BFD_ASSERT (s != NULL);
6174 {
6175 struct elf_find_verdep_info sinfo;
6176
6177 sinfo.info = info;
6178 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6179 if (sinfo.vers == 0)
6180 sinfo.vers = 1;
6181 sinfo.failed = FALSE;
6182
6183 elf_link_hash_traverse (elf_hash_table (info),
6184 _bfd_elf_link_find_version_dependencies,
6185 &sinfo);
6186 if (sinfo.failed)
6187 return FALSE;
6188
6189 if (elf_tdata (output_bfd)->verref == NULL)
6190 s->flags |= SEC_EXCLUDE;
6191 else
6192 {
6193 Elf_Internal_Verneed *t;
6194 unsigned int size;
6195 unsigned int crefs;
6196 bfd_byte *p;
6197
6198 /* Build the version dependency section. */
6199 size = 0;
6200 crefs = 0;
6201 for (t = elf_tdata (output_bfd)->verref;
6202 t != NULL;
6203 t = t->vn_nextref)
6204 {
6205 Elf_Internal_Vernaux *a;
6206
6207 size += sizeof (Elf_External_Verneed);
6208 ++crefs;
6209 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6210 size += sizeof (Elf_External_Vernaux);
6211 }
6212
6213 s->size = size;
6214 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6215 if (s->contents == NULL)
6216 return FALSE;
6217
6218 p = s->contents;
6219 for (t = elf_tdata (output_bfd)->verref;
6220 t != NULL;
6221 t = t->vn_nextref)
6222 {
6223 unsigned int caux;
6224 Elf_Internal_Vernaux *a;
6225 bfd_size_type indx;
6226
6227 caux = 0;
6228 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6229 ++caux;
6230
6231 t->vn_version = VER_NEED_CURRENT;
6232 t->vn_cnt = caux;
6233 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6234 elf_dt_name (t->vn_bfd) != NULL
6235 ? elf_dt_name (t->vn_bfd)
6236 : lbasename (t->vn_bfd->filename),
6237 FALSE);
6238 if (indx == (bfd_size_type) -1)
6239 return FALSE;
6240 t->vn_file = indx;
6241 t->vn_aux = sizeof (Elf_External_Verneed);
6242 if (t->vn_nextref == NULL)
6243 t->vn_next = 0;
6244 else
6245 t->vn_next = (sizeof (Elf_External_Verneed)
6246 + caux * sizeof (Elf_External_Vernaux));
6247
6248 _bfd_elf_swap_verneed_out (output_bfd, t,
6249 (Elf_External_Verneed *) p);
6250 p += sizeof (Elf_External_Verneed);
6251
6252 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6253 {
6254 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6255 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6256 a->vna_nodename, FALSE);
6257 if (indx == (bfd_size_type) -1)
6258 return FALSE;
6259 a->vna_name = indx;
6260 if (a->vna_nextptr == NULL)
6261 a->vna_next = 0;
6262 else
6263 a->vna_next = sizeof (Elf_External_Vernaux);
6264
6265 _bfd_elf_swap_vernaux_out (output_bfd, a,
6266 (Elf_External_Vernaux *) p);
6267 p += sizeof (Elf_External_Vernaux);
6268 }
6269 }
6270
6271 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6272 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6273 return FALSE;
6274
6275 elf_tdata (output_bfd)->cverrefs = crefs;
6276 }
6277 }
6278
6279 if ((elf_tdata (output_bfd)->cverrefs == 0
6280 && elf_tdata (output_bfd)->cverdefs == 0)
6281 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6282 &section_sym_count) == 0)
6283 {
6284 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6285 s->flags |= SEC_EXCLUDE;
6286 }
6287 }
6288 return TRUE;
6289 }
6290
6291 /* Find the first non-excluded output section. We'll use its
6292 section symbol for some emitted relocs. */
6293 void
6294 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6295 {
6296 asection *s;
6297
6298 for (s = output_bfd->sections; s != NULL; s = s->next)
6299 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6300 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6301 {
6302 elf_hash_table (info)->text_index_section = s;
6303 break;
6304 }
6305 }
6306
6307 /* Find two non-excluded output sections, one for code, one for data.
6308 We'll use their section symbols for some emitted relocs. */
6309 void
6310 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6311 {
6312 asection *s;
6313
6314 /* Data first, since setting text_index_section changes
6315 _bfd_elf_link_omit_section_dynsym. */
6316 for (s = output_bfd->sections; s != NULL; s = s->next)
6317 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6318 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6319 {
6320 elf_hash_table (info)->data_index_section = s;
6321 break;
6322 }
6323
6324 for (s = output_bfd->sections; s != NULL; s = s->next)
6325 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6326 == (SEC_ALLOC | SEC_READONLY))
6327 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6328 {
6329 elf_hash_table (info)->text_index_section = s;
6330 break;
6331 }
6332
6333 if (elf_hash_table (info)->text_index_section == NULL)
6334 elf_hash_table (info)->text_index_section
6335 = elf_hash_table (info)->data_index_section;
6336 }
6337
6338 bfd_boolean
6339 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6340 {
6341 const struct elf_backend_data *bed;
6342
6343 if (!is_elf_hash_table (info->hash))
6344 return TRUE;
6345
6346 bed = get_elf_backend_data (output_bfd);
6347 (*bed->elf_backend_init_index_section) (output_bfd, info);
6348
6349 if (elf_hash_table (info)->dynamic_sections_created)
6350 {
6351 bfd *dynobj;
6352 asection *s;
6353 bfd_size_type dynsymcount;
6354 unsigned long section_sym_count;
6355 unsigned int dtagcount;
6356
6357 dynobj = elf_hash_table (info)->dynobj;
6358
6359 /* Assign dynsym indicies. In a shared library we generate a
6360 section symbol for each output section, which come first.
6361 Next come all of the back-end allocated local dynamic syms,
6362 followed by the rest of the global symbols. */
6363
6364 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6365 &section_sym_count);
6366
6367 /* Work out the size of the symbol version section. */
6368 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6369 BFD_ASSERT (s != NULL);
6370 if (dynsymcount != 0
6371 && (s->flags & SEC_EXCLUDE) == 0)
6372 {
6373 s->size = dynsymcount * sizeof (Elf_External_Versym);
6374 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6375 if (s->contents == NULL)
6376 return FALSE;
6377
6378 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6379 return FALSE;
6380 }
6381
6382 /* Set the size of the .dynsym and .hash sections. We counted
6383 the number of dynamic symbols in elf_link_add_object_symbols.
6384 We will build the contents of .dynsym and .hash when we build
6385 the final symbol table, because until then we do not know the
6386 correct value to give the symbols. We built the .dynstr
6387 section as we went along in elf_link_add_object_symbols. */
6388 s = bfd_get_section_by_name (dynobj, ".dynsym");
6389 BFD_ASSERT (s != NULL);
6390 s->size = dynsymcount * bed->s->sizeof_sym;
6391
6392 if (dynsymcount != 0)
6393 {
6394 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6395 if (s->contents == NULL)
6396 return FALSE;
6397
6398 /* The first entry in .dynsym is a dummy symbol.
6399 Clear all the section syms, in case we don't output them all. */
6400 ++section_sym_count;
6401 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6402 }
6403
6404 elf_hash_table (info)->bucketcount = 0;
6405
6406 /* Compute the size of the hashing table. As a side effect this
6407 computes the hash values for all the names we export. */
6408 if (info->emit_hash)
6409 {
6410 unsigned long int *hashcodes;
6411 struct hash_codes_info hashinf;
6412 bfd_size_type amt;
6413 unsigned long int nsyms;
6414 size_t bucketcount;
6415 size_t hash_entry_size;
6416
6417 /* Compute the hash values for all exported symbols. At the same
6418 time store the values in an array so that we could use them for
6419 optimizations. */
6420 amt = dynsymcount * sizeof (unsigned long int);
6421 hashcodes = (unsigned long int *) bfd_malloc (amt);
6422 if (hashcodes == NULL)
6423 return FALSE;
6424 hashinf.hashcodes = hashcodes;
6425 hashinf.error = FALSE;
6426
6427 /* Put all hash values in HASHCODES. */
6428 elf_link_hash_traverse (elf_hash_table (info),
6429 elf_collect_hash_codes, &hashinf);
6430 if (hashinf.error)
6431 {
6432 free (hashcodes);
6433 return FALSE;
6434 }
6435
6436 nsyms = hashinf.hashcodes - hashcodes;
6437 bucketcount
6438 = compute_bucket_count (info, hashcodes, nsyms, 0);
6439 free (hashcodes);
6440
6441 if (bucketcount == 0)
6442 return FALSE;
6443
6444 elf_hash_table (info)->bucketcount = bucketcount;
6445
6446 s = bfd_get_section_by_name (dynobj, ".hash");
6447 BFD_ASSERT (s != NULL);
6448 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6449 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6450 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6451 if (s->contents == NULL)
6452 return FALSE;
6453
6454 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6455 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6456 s->contents + hash_entry_size);
6457 }
6458
6459 if (info->emit_gnu_hash)
6460 {
6461 size_t i, cnt;
6462 unsigned char *contents;
6463 struct collect_gnu_hash_codes cinfo;
6464 bfd_size_type amt;
6465 size_t bucketcount;
6466
6467 memset (&cinfo, 0, sizeof (cinfo));
6468
6469 /* Compute the hash values for all exported symbols. At the same
6470 time store the values in an array so that we could use them for
6471 optimizations. */
6472 amt = dynsymcount * 2 * sizeof (unsigned long int);
6473 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6474 if (cinfo.hashcodes == NULL)
6475 return FALSE;
6476
6477 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6478 cinfo.min_dynindx = -1;
6479 cinfo.output_bfd = output_bfd;
6480 cinfo.bed = bed;
6481
6482 /* Put all hash values in HASHCODES. */
6483 elf_link_hash_traverse (elf_hash_table (info),
6484 elf_collect_gnu_hash_codes, &cinfo);
6485 if (cinfo.error)
6486 {
6487 free (cinfo.hashcodes);
6488 return FALSE;
6489 }
6490
6491 bucketcount
6492 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6493
6494 if (bucketcount == 0)
6495 {
6496 free (cinfo.hashcodes);
6497 return FALSE;
6498 }
6499
6500 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6501 BFD_ASSERT (s != NULL);
6502
6503 if (cinfo.nsyms == 0)
6504 {
6505 /* Empty .gnu.hash section is special. */
6506 BFD_ASSERT (cinfo.min_dynindx == -1);
6507 free (cinfo.hashcodes);
6508 s->size = 5 * 4 + bed->s->arch_size / 8;
6509 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6510 if (contents == NULL)
6511 return FALSE;
6512 s->contents = contents;
6513 /* 1 empty bucket. */
6514 bfd_put_32 (output_bfd, 1, contents);
6515 /* SYMIDX above the special symbol 0. */
6516 bfd_put_32 (output_bfd, 1, contents + 4);
6517 /* Just one word for bitmask. */
6518 bfd_put_32 (output_bfd, 1, contents + 8);
6519 /* Only hash fn bloom filter. */
6520 bfd_put_32 (output_bfd, 0, contents + 12);
6521 /* No hashes are valid - empty bitmask. */
6522 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6523 /* No hashes in the only bucket. */
6524 bfd_put_32 (output_bfd, 0,
6525 contents + 16 + bed->s->arch_size / 8);
6526 }
6527 else
6528 {
6529 unsigned long int maskwords, maskbitslog2;
6530 BFD_ASSERT (cinfo.min_dynindx != -1);
6531
6532 maskbitslog2 = bfd_log2 (cinfo.nsyms) + 1;
6533 if (maskbitslog2 < 3)
6534 maskbitslog2 = 5;
6535 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6536 maskbitslog2 = maskbitslog2 + 3;
6537 else
6538 maskbitslog2 = maskbitslog2 + 2;
6539 if (bed->s->arch_size == 64)
6540 {
6541 if (maskbitslog2 == 5)
6542 maskbitslog2 = 6;
6543 cinfo.shift1 = 6;
6544 }
6545 else
6546 cinfo.shift1 = 5;
6547 cinfo.mask = (1 << cinfo.shift1) - 1;
6548 cinfo.shift2 = maskbitslog2;
6549 cinfo.maskbits = 1 << maskbitslog2;
6550 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6551 amt = bucketcount * sizeof (unsigned long int) * 2;
6552 amt += maskwords * sizeof (bfd_vma);
6553 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6554 if (cinfo.bitmask == NULL)
6555 {
6556 free (cinfo.hashcodes);
6557 return FALSE;
6558 }
6559
6560 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6561 cinfo.indx = cinfo.counts + bucketcount;
6562 cinfo.symindx = dynsymcount - cinfo.nsyms;
6563 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6564
6565 /* Determine how often each hash bucket is used. */
6566 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6567 for (i = 0; i < cinfo.nsyms; ++i)
6568 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6569
6570 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6571 if (cinfo.counts[i] != 0)
6572 {
6573 cinfo.indx[i] = cnt;
6574 cnt += cinfo.counts[i];
6575 }
6576 BFD_ASSERT (cnt == dynsymcount);
6577 cinfo.bucketcount = bucketcount;
6578 cinfo.local_indx = cinfo.min_dynindx;
6579
6580 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6581 s->size += cinfo.maskbits / 8;
6582 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6583 if (contents == NULL)
6584 {
6585 free (cinfo.bitmask);
6586 free (cinfo.hashcodes);
6587 return FALSE;
6588 }
6589
6590 s->contents = contents;
6591 bfd_put_32 (output_bfd, bucketcount, contents);
6592 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6593 bfd_put_32 (output_bfd, maskwords, contents + 8);
6594 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6595 contents += 16 + cinfo.maskbits / 8;
6596
6597 for (i = 0; i < bucketcount; ++i)
6598 {
6599 if (cinfo.counts[i] == 0)
6600 bfd_put_32 (output_bfd, 0, contents);
6601 else
6602 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6603 contents += 4;
6604 }
6605
6606 cinfo.contents = contents;
6607
6608 /* Renumber dynamic symbols, populate .gnu.hash section. */
6609 elf_link_hash_traverse (elf_hash_table (info),
6610 elf_renumber_gnu_hash_syms, &cinfo);
6611
6612 contents = s->contents + 16;
6613 for (i = 0; i < maskwords; ++i)
6614 {
6615 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6616 contents);
6617 contents += bed->s->arch_size / 8;
6618 }
6619
6620 free (cinfo.bitmask);
6621 free (cinfo.hashcodes);
6622 }
6623 }
6624
6625 s = bfd_get_section_by_name (dynobj, ".dynstr");
6626 BFD_ASSERT (s != NULL);
6627
6628 elf_finalize_dynstr (output_bfd, info);
6629
6630 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6631
6632 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6633 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6634 return FALSE;
6635 }
6636
6637 return TRUE;
6638 }
6639 \f
6640 /* Indicate that we are only retrieving symbol values from this
6641 section. */
6642
6643 void
6644 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6645 {
6646 if (is_elf_hash_table (info->hash))
6647 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6648 _bfd_generic_link_just_syms (sec, info);
6649 }
6650
6651 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6652
6653 static void
6654 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6655 asection *sec)
6656 {
6657 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6658 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6659 }
6660
6661 /* Finish SHF_MERGE section merging. */
6662
6663 bfd_boolean
6664 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6665 {
6666 bfd *ibfd;
6667 asection *sec;
6668
6669 if (!is_elf_hash_table (info->hash))
6670 return FALSE;
6671
6672 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6673 if ((ibfd->flags & DYNAMIC) == 0)
6674 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6675 if ((sec->flags & SEC_MERGE) != 0
6676 && !bfd_is_abs_section (sec->output_section))
6677 {
6678 struct bfd_elf_section_data *secdata;
6679
6680 secdata = elf_section_data (sec);
6681 if (! _bfd_add_merge_section (abfd,
6682 &elf_hash_table (info)->merge_info,
6683 sec, &secdata->sec_info))
6684 return FALSE;
6685 else if (secdata->sec_info)
6686 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6687 }
6688
6689 if (elf_hash_table (info)->merge_info != NULL)
6690 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6691 merge_sections_remove_hook);
6692 return TRUE;
6693 }
6694
6695 /* Create an entry in an ELF linker hash table. */
6696
6697 struct bfd_hash_entry *
6698 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6699 struct bfd_hash_table *table,
6700 const char *string)
6701 {
6702 /* Allocate the structure if it has not already been allocated by a
6703 subclass. */
6704 if (entry == NULL)
6705 {
6706 entry = (struct bfd_hash_entry *)
6707 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6708 if (entry == NULL)
6709 return entry;
6710 }
6711
6712 /* Call the allocation method of the superclass. */
6713 entry = _bfd_link_hash_newfunc (entry, table, string);
6714 if (entry != NULL)
6715 {
6716 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6717 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6718
6719 /* Set local fields. */
6720 ret->indx = -1;
6721 ret->dynindx = -1;
6722 ret->got = htab->init_got_refcount;
6723 ret->plt = htab->init_plt_refcount;
6724 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6725 - offsetof (struct elf_link_hash_entry, size)));
6726 /* Assume that we have been called by a non-ELF symbol reader.
6727 This flag is then reset by the code which reads an ELF input
6728 file. This ensures that a symbol created by a non-ELF symbol
6729 reader will have the flag set correctly. */
6730 ret->non_elf = 1;
6731 }
6732
6733 return entry;
6734 }
6735
6736 /* Copy data from an indirect symbol to its direct symbol, hiding the
6737 old indirect symbol. Also used for copying flags to a weakdef. */
6738
6739 void
6740 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6741 struct elf_link_hash_entry *dir,
6742 struct elf_link_hash_entry *ind)
6743 {
6744 struct elf_link_hash_table *htab;
6745
6746 /* Copy down any references that we may have already seen to the
6747 symbol which just became indirect. */
6748
6749 dir->ref_dynamic |= ind->ref_dynamic;
6750 dir->ref_regular |= ind->ref_regular;
6751 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6752 dir->non_got_ref |= ind->non_got_ref;
6753 dir->needs_plt |= ind->needs_plt;
6754 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6755
6756 if (ind->root.type != bfd_link_hash_indirect)
6757 return;
6758
6759 /* Copy over the global and procedure linkage table refcount entries.
6760 These may have been already set up by a check_relocs routine. */
6761 htab = elf_hash_table (info);
6762 if (ind->got.refcount > htab->init_got_refcount.refcount)
6763 {
6764 if (dir->got.refcount < 0)
6765 dir->got.refcount = 0;
6766 dir->got.refcount += ind->got.refcount;
6767 ind->got.refcount = htab->init_got_refcount.refcount;
6768 }
6769
6770 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6771 {
6772 if (dir->plt.refcount < 0)
6773 dir->plt.refcount = 0;
6774 dir->plt.refcount += ind->plt.refcount;
6775 ind->plt.refcount = htab->init_plt_refcount.refcount;
6776 }
6777
6778 if (ind->dynindx != -1)
6779 {
6780 if (dir->dynindx != -1)
6781 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6782 dir->dynindx = ind->dynindx;
6783 dir->dynstr_index = ind->dynstr_index;
6784 ind->dynindx = -1;
6785 ind->dynstr_index = 0;
6786 }
6787 }
6788
6789 void
6790 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6791 struct elf_link_hash_entry *h,
6792 bfd_boolean force_local)
6793 {
6794 /* STT_GNU_IFUNC symbol must go through PLT. */
6795 if (h->type != STT_GNU_IFUNC)
6796 {
6797 h->plt = elf_hash_table (info)->init_plt_offset;
6798 h->needs_plt = 0;
6799 }
6800 if (force_local)
6801 {
6802 h->forced_local = 1;
6803 if (h->dynindx != -1)
6804 {
6805 h->dynindx = -1;
6806 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6807 h->dynstr_index);
6808 }
6809 }
6810 }
6811
6812 /* Initialize an ELF linker hash table. */
6813
6814 bfd_boolean
6815 _bfd_elf_link_hash_table_init
6816 (struct elf_link_hash_table *table,
6817 bfd *abfd,
6818 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6819 struct bfd_hash_table *,
6820 const char *),
6821 unsigned int entsize,
6822 enum elf_target_id target_id)
6823 {
6824 bfd_boolean ret;
6825 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6826
6827 memset (table, 0, sizeof * table);
6828 table->init_got_refcount.refcount = can_refcount - 1;
6829 table->init_plt_refcount.refcount = can_refcount - 1;
6830 table->init_got_offset.offset = -(bfd_vma) 1;
6831 table->init_plt_offset.offset = -(bfd_vma) 1;
6832 /* The first dynamic symbol is a dummy. */
6833 table->dynsymcount = 1;
6834
6835 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6836
6837 table->root.type = bfd_link_elf_hash_table;
6838 table->hash_table_id = target_id;
6839
6840 return ret;
6841 }
6842
6843 /* Create an ELF linker hash table. */
6844
6845 struct bfd_link_hash_table *
6846 _bfd_elf_link_hash_table_create (bfd *abfd)
6847 {
6848 struct elf_link_hash_table *ret;
6849 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6850
6851 ret = (struct elf_link_hash_table *) bfd_malloc (amt);
6852 if (ret == NULL)
6853 return NULL;
6854
6855 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6856 sizeof (struct elf_link_hash_entry),
6857 GENERIC_ELF_DATA))
6858 {
6859 free (ret);
6860 return NULL;
6861 }
6862
6863 return &ret->root;
6864 }
6865
6866 /* This is a hook for the ELF emulation code in the generic linker to
6867 tell the backend linker what file name to use for the DT_NEEDED
6868 entry for a dynamic object. */
6869
6870 void
6871 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6872 {
6873 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6874 && bfd_get_format (abfd) == bfd_object)
6875 elf_dt_name (abfd) = name;
6876 }
6877
6878 int
6879 bfd_elf_get_dyn_lib_class (bfd *abfd)
6880 {
6881 int lib_class;
6882 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6883 && bfd_get_format (abfd) == bfd_object)
6884 lib_class = elf_dyn_lib_class (abfd);
6885 else
6886 lib_class = 0;
6887 return lib_class;
6888 }
6889
6890 void
6891 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6892 {
6893 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6894 && bfd_get_format (abfd) == bfd_object)
6895 elf_dyn_lib_class (abfd) = lib_class;
6896 }
6897
6898 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6899 the linker ELF emulation code. */
6900
6901 struct bfd_link_needed_list *
6902 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6903 struct bfd_link_info *info)
6904 {
6905 if (! is_elf_hash_table (info->hash))
6906 return NULL;
6907 return elf_hash_table (info)->needed;
6908 }
6909
6910 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6911 hook for the linker ELF emulation code. */
6912
6913 struct bfd_link_needed_list *
6914 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6915 struct bfd_link_info *info)
6916 {
6917 if (! is_elf_hash_table (info->hash))
6918 return NULL;
6919 return elf_hash_table (info)->runpath;
6920 }
6921
6922 /* Get the name actually used for a dynamic object for a link. This
6923 is the SONAME entry if there is one. Otherwise, it is the string
6924 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6925
6926 const char *
6927 bfd_elf_get_dt_soname (bfd *abfd)
6928 {
6929 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6930 && bfd_get_format (abfd) == bfd_object)
6931 return elf_dt_name (abfd);
6932 return NULL;
6933 }
6934
6935 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6936 the ELF linker emulation code. */
6937
6938 bfd_boolean
6939 bfd_elf_get_bfd_needed_list (bfd *abfd,
6940 struct bfd_link_needed_list **pneeded)
6941 {
6942 asection *s;
6943 bfd_byte *dynbuf = NULL;
6944 unsigned int elfsec;
6945 unsigned long shlink;
6946 bfd_byte *extdyn, *extdynend;
6947 size_t extdynsize;
6948 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6949
6950 *pneeded = NULL;
6951
6952 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6953 || bfd_get_format (abfd) != bfd_object)
6954 return TRUE;
6955
6956 s = bfd_get_section_by_name (abfd, ".dynamic");
6957 if (s == NULL || s->size == 0)
6958 return TRUE;
6959
6960 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6961 goto error_return;
6962
6963 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6964 if (elfsec == SHN_BAD)
6965 goto error_return;
6966
6967 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6968
6969 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6970 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6971
6972 extdyn = dynbuf;
6973 extdynend = extdyn + s->size;
6974 for (; extdyn < extdynend; extdyn += extdynsize)
6975 {
6976 Elf_Internal_Dyn dyn;
6977
6978 (*swap_dyn_in) (abfd, extdyn, &dyn);
6979
6980 if (dyn.d_tag == DT_NULL)
6981 break;
6982
6983 if (dyn.d_tag == DT_NEEDED)
6984 {
6985 const char *string;
6986 struct bfd_link_needed_list *l;
6987 unsigned int tagv = dyn.d_un.d_val;
6988 bfd_size_type amt;
6989
6990 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6991 if (string == NULL)
6992 goto error_return;
6993
6994 amt = sizeof *l;
6995 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
6996 if (l == NULL)
6997 goto error_return;
6998
6999 l->by = abfd;
7000 l->name = string;
7001 l->next = *pneeded;
7002 *pneeded = l;
7003 }
7004 }
7005
7006 free (dynbuf);
7007
7008 return TRUE;
7009
7010 error_return:
7011 if (dynbuf != NULL)
7012 free (dynbuf);
7013 return FALSE;
7014 }
7015
7016 struct elf_symbuf_symbol
7017 {
7018 unsigned long st_name; /* Symbol name, index in string tbl */
7019 unsigned char st_info; /* Type and binding attributes */
7020 unsigned char st_other; /* Visibilty, and target specific */
7021 };
7022
7023 struct elf_symbuf_head
7024 {
7025 struct elf_symbuf_symbol *ssym;
7026 bfd_size_type count;
7027 unsigned int st_shndx;
7028 };
7029
7030 struct elf_symbol
7031 {
7032 union
7033 {
7034 Elf_Internal_Sym *isym;
7035 struct elf_symbuf_symbol *ssym;
7036 } u;
7037 const char *name;
7038 };
7039
7040 /* Sort references to symbols by ascending section number. */
7041
7042 static int
7043 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7044 {
7045 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7046 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7047
7048 return s1->st_shndx - s2->st_shndx;
7049 }
7050
7051 static int
7052 elf_sym_name_compare (const void *arg1, const void *arg2)
7053 {
7054 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7055 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7056 return strcmp (s1->name, s2->name);
7057 }
7058
7059 static struct elf_symbuf_head *
7060 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7061 {
7062 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7063 struct elf_symbuf_symbol *ssym;
7064 struct elf_symbuf_head *ssymbuf, *ssymhead;
7065 bfd_size_type i, shndx_count, total_size;
7066
7067 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7068 if (indbuf == NULL)
7069 return NULL;
7070
7071 for (ind = indbuf, i = 0; i < symcount; i++)
7072 if (isymbuf[i].st_shndx != SHN_UNDEF)
7073 *ind++ = &isymbuf[i];
7074 indbufend = ind;
7075
7076 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7077 elf_sort_elf_symbol);
7078
7079 shndx_count = 0;
7080 if (indbufend > indbuf)
7081 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7082 if (ind[0]->st_shndx != ind[1]->st_shndx)
7083 shndx_count++;
7084
7085 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7086 + (indbufend - indbuf) * sizeof (*ssym));
7087 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7088 if (ssymbuf == NULL)
7089 {
7090 free (indbuf);
7091 return NULL;
7092 }
7093
7094 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7095 ssymbuf->ssym = NULL;
7096 ssymbuf->count = shndx_count;
7097 ssymbuf->st_shndx = 0;
7098 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7099 {
7100 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7101 {
7102 ssymhead++;
7103 ssymhead->ssym = ssym;
7104 ssymhead->count = 0;
7105 ssymhead->st_shndx = (*ind)->st_shndx;
7106 }
7107 ssym->st_name = (*ind)->st_name;
7108 ssym->st_info = (*ind)->st_info;
7109 ssym->st_other = (*ind)->st_other;
7110 ssymhead->count++;
7111 }
7112 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7113 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7114 == total_size));
7115
7116 free (indbuf);
7117 return ssymbuf;
7118 }
7119
7120 /* Check if 2 sections define the same set of local and global
7121 symbols. */
7122
7123 static bfd_boolean
7124 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7125 struct bfd_link_info *info)
7126 {
7127 bfd *bfd1, *bfd2;
7128 const struct elf_backend_data *bed1, *bed2;
7129 Elf_Internal_Shdr *hdr1, *hdr2;
7130 bfd_size_type symcount1, symcount2;
7131 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7132 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7133 Elf_Internal_Sym *isym, *isymend;
7134 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7135 bfd_size_type count1, count2, i;
7136 unsigned int shndx1, shndx2;
7137 bfd_boolean result;
7138
7139 bfd1 = sec1->owner;
7140 bfd2 = sec2->owner;
7141
7142 /* Both sections have to be in ELF. */
7143 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7144 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7145 return FALSE;
7146
7147 if (elf_section_type (sec1) != elf_section_type (sec2))
7148 return FALSE;
7149
7150 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7151 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7152 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7153 return FALSE;
7154
7155 bed1 = get_elf_backend_data (bfd1);
7156 bed2 = get_elf_backend_data (bfd2);
7157 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7158 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7159 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7160 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7161
7162 if (symcount1 == 0 || symcount2 == 0)
7163 return FALSE;
7164
7165 result = FALSE;
7166 isymbuf1 = NULL;
7167 isymbuf2 = NULL;
7168 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7169 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7170
7171 if (ssymbuf1 == NULL)
7172 {
7173 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7174 NULL, NULL, NULL);
7175 if (isymbuf1 == NULL)
7176 goto done;
7177
7178 if (!info->reduce_memory_overheads)
7179 elf_tdata (bfd1)->symbuf = ssymbuf1
7180 = elf_create_symbuf (symcount1, isymbuf1);
7181 }
7182
7183 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7184 {
7185 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7186 NULL, NULL, NULL);
7187 if (isymbuf2 == NULL)
7188 goto done;
7189
7190 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7191 elf_tdata (bfd2)->symbuf = ssymbuf2
7192 = elf_create_symbuf (symcount2, isymbuf2);
7193 }
7194
7195 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7196 {
7197 /* Optimized faster version. */
7198 bfd_size_type lo, hi, mid;
7199 struct elf_symbol *symp;
7200 struct elf_symbuf_symbol *ssym, *ssymend;
7201
7202 lo = 0;
7203 hi = ssymbuf1->count;
7204 ssymbuf1++;
7205 count1 = 0;
7206 while (lo < hi)
7207 {
7208 mid = (lo + hi) / 2;
7209 if (shndx1 < ssymbuf1[mid].st_shndx)
7210 hi = mid;
7211 else if (shndx1 > ssymbuf1[mid].st_shndx)
7212 lo = mid + 1;
7213 else
7214 {
7215 count1 = ssymbuf1[mid].count;
7216 ssymbuf1 += mid;
7217 break;
7218 }
7219 }
7220
7221 lo = 0;
7222 hi = ssymbuf2->count;
7223 ssymbuf2++;
7224 count2 = 0;
7225 while (lo < hi)
7226 {
7227 mid = (lo + hi) / 2;
7228 if (shndx2 < ssymbuf2[mid].st_shndx)
7229 hi = mid;
7230 else if (shndx2 > ssymbuf2[mid].st_shndx)
7231 lo = mid + 1;
7232 else
7233 {
7234 count2 = ssymbuf2[mid].count;
7235 ssymbuf2 += mid;
7236 break;
7237 }
7238 }
7239
7240 if (count1 == 0 || count2 == 0 || count1 != count2)
7241 goto done;
7242
7243 symtable1 = (struct elf_symbol *)
7244 bfd_malloc (count1 * sizeof (struct elf_symbol));
7245 symtable2 = (struct elf_symbol *)
7246 bfd_malloc (count2 * sizeof (struct elf_symbol));
7247 if (symtable1 == NULL || symtable2 == NULL)
7248 goto done;
7249
7250 symp = symtable1;
7251 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7252 ssym < ssymend; ssym++, symp++)
7253 {
7254 symp->u.ssym = ssym;
7255 symp->name = bfd_elf_string_from_elf_section (bfd1,
7256 hdr1->sh_link,
7257 ssym->st_name);
7258 }
7259
7260 symp = symtable2;
7261 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7262 ssym < ssymend; ssym++, symp++)
7263 {
7264 symp->u.ssym = ssym;
7265 symp->name = bfd_elf_string_from_elf_section (bfd2,
7266 hdr2->sh_link,
7267 ssym->st_name);
7268 }
7269
7270 /* Sort symbol by name. */
7271 qsort (symtable1, count1, sizeof (struct elf_symbol),
7272 elf_sym_name_compare);
7273 qsort (symtable2, count1, sizeof (struct elf_symbol),
7274 elf_sym_name_compare);
7275
7276 for (i = 0; i < count1; i++)
7277 /* Two symbols must have the same binding, type and name. */
7278 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7279 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7280 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7281 goto done;
7282
7283 result = TRUE;
7284 goto done;
7285 }
7286
7287 symtable1 = (struct elf_symbol *)
7288 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7289 symtable2 = (struct elf_symbol *)
7290 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7291 if (symtable1 == NULL || symtable2 == NULL)
7292 goto done;
7293
7294 /* Count definitions in the section. */
7295 count1 = 0;
7296 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7297 if (isym->st_shndx == shndx1)
7298 symtable1[count1++].u.isym = isym;
7299
7300 count2 = 0;
7301 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7302 if (isym->st_shndx == shndx2)
7303 symtable2[count2++].u.isym = isym;
7304
7305 if (count1 == 0 || count2 == 0 || count1 != count2)
7306 goto done;
7307
7308 for (i = 0; i < count1; i++)
7309 symtable1[i].name
7310 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7311 symtable1[i].u.isym->st_name);
7312
7313 for (i = 0; i < count2; i++)
7314 symtable2[i].name
7315 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7316 symtable2[i].u.isym->st_name);
7317
7318 /* Sort symbol by name. */
7319 qsort (symtable1, count1, sizeof (struct elf_symbol),
7320 elf_sym_name_compare);
7321 qsort (symtable2, count1, sizeof (struct elf_symbol),
7322 elf_sym_name_compare);
7323
7324 for (i = 0; i < count1; i++)
7325 /* Two symbols must have the same binding, type and name. */
7326 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7327 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7328 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7329 goto done;
7330
7331 result = TRUE;
7332
7333 done:
7334 if (symtable1)
7335 free (symtable1);
7336 if (symtable2)
7337 free (symtable2);
7338 if (isymbuf1)
7339 free (isymbuf1);
7340 if (isymbuf2)
7341 free (isymbuf2);
7342
7343 return result;
7344 }
7345
7346 /* Return TRUE if 2 section types are compatible. */
7347
7348 bfd_boolean
7349 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7350 bfd *bbfd, const asection *bsec)
7351 {
7352 if (asec == NULL
7353 || bsec == NULL
7354 || abfd->xvec->flavour != bfd_target_elf_flavour
7355 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7356 return TRUE;
7357
7358 return elf_section_type (asec) == elf_section_type (bsec);
7359 }
7360 \f
7361 /* Final phase of ELF linker. */
7362
7363 /* A structure we use to avoid passing large numbers of arguments. */
7364
7365 struct elf_final_link_info
7366 {
7367 /* General link information. */
7368 struct bfd_link_info *info;
7369 /* Output BFD. */
7370 bfd *output_bfd;
7371 /* Symbol string table. */
7372 struct bfd_strtab_hash *symstrtab;
7373 /* .dynsym section. */
7374 asection *dynsym_sec;
7375 /* .hash section. */
7376 asection *hash_sec;
7377 /* symbol version section (.gnu.version). */
7378 asection *symver_sec;
7379 /* Buffer large enough to hold contents of any section. */
7380 bfd_byte *contents;
7381 /* Buffer large enough to hold external relocs of any section. */
7382 void *external_relocs;
7383 /* Buffer large enough to hold internal relocs of any section. */
7384 Elf_Internal_Rela *internal_relocs;
7385 /* Buffer large enough to hold external local symbols of any input
7386 BFD. */
7387 bfd_byte *external_syms;
7388 /* And a buffer for symbol section indices. */
7389 Elf_External_Sym_Shndx *locsym_shndx;
7390 /* Buffer large enough to hold internal local symbols of any input
7391 BFD. */
7392 Elf_Internal_Sym *internal_syms;
7393 /* Array large enough to hold a symbol index for each local symbol
7394 of any input BFD. */
7395 long *indices;
7396 /* Array large enough to hold a section pointer for each local
7397 symbol of any input BFD. */
7398 asection **sections;
7399 /* Buffer to hold swapped out symbols. */
7400 bfd_byte *symbuf;
7401 /* And one for symbol section indices. */
7402 Elf_External_Sym_Shndx *symshndxbuf;
7403 /* Number of swapped out symbols in buffer. */
7404 size_t symbuf_count;
7405 /* Number of symbols which fit in symbuf. */
7406 size_t symbuf_size;
7407 /* And same for symshndxbuf. */
7408 size_t shndxbuf_size;
7409 };
7410
7411 /* This struct is used to pass information to elf_link_output_extsym. */
7412
7413 struct elf_outext_info
7414 {
7415 bfd_boolean failed;
7416 bfd_boolean localsyms;
7417 struct elf_final_link_info *finfo;
7418 };
7419
7420
7421 /* Support for evaluating a complex relocation.
7422
7423 Complex relocations are generalized, self-describing relocations. The
7424 implementation of them consists of two parts: complex symbols, and the
7425 relocations themselves.
7426
7427 The relocations are use a reserved elf-wide relocation type code (R_RELC
7428 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7429 information (start bit, end bit, word width, etc) into the addend. This
7430 information is extracted from CGEN-generated operand tables within gas.
7431
7432 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7433 internal) representing prefix-notation expressions, including but not
7434 limited to those sorts of expressions normally encoded as addends in the
7435 addend field. The symbol mangling format is:
7436
7437 <node> := <literal>
7438 | <unary-operator> ':' <node>
7439 | <binary-operator> ':' <node> ':' <node>
7440 ;
7441
7442 <literal> := 's' <digits=N> ':' <N character symbol name>
7443 | 'S' <digits=N> ':' <N character section name>
7444 | '#' <hexdigits>
7445 ;
7446
7447 <binary-operator> := as in C
7448 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7449
7450 static void
7451 set_symbol_value (bfd *bfd_with_globals,
7452 Elf_Internal_Sym *isymbuf,
7453 size_t locsymcount,
7454 size_t symidx,
7455 bfd_vma val)
7456 {
7457 struct elf_link_hash_entry **sym_hashes;
7458 struct elf_link_hash_entry *h;
7459 size_t extsymoff = locsymcount;
7460
7461 if (symidx < locsymcount)
7462 {
7463 Elf_Internal_Sym *sym;
7464
7465 sym = isymbuf + symidx;
7466 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7467 {
7468 /* It is a local symbol: move it to the
7469 "absolute" section and give it a value. */
7470 sym->st_shndx = SHN_ABS;
7471 sym->st_value = val;
7472 return;
7473 }
7474 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7475 extsymoff = 0;
7476 }
7477
7478 /* It is a global symbol: set its link type
7479 to "defined" and give it a value. */
7480
7481 sym_hashes = elf_sym_hashes (bfd_with_globals);
7482 h = sym_hashes [symidx - extsymoff];
7483 while (h->root.type == bfd_link_hash_indirect
7484 || h->root.type == bfd_link_hash_warning)
7485 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7486 h->root.type = bfd_link_hash_defined;
7487 h->root.u.def.value = val;
7488 h->root.u.def.section = bfd_abs_section_ptr;
7489 }
7490
7491 static bfd_boolean
7492 resolve_symbol (const char *name,
7493 bfd *input_bfd,
7494 struct elf_final_link_info *finfo,
7495 bfd_vma *result,
7496 Elf_Internal_Sym *isymbuf,
7497 size_t locsymcount)
7498 {
7499 Elf_Internal_Sym *sym;
7500 struct bfd_link_hash_entry *global_entry;
7501 const char *candidate = NULL;
7502 Elf_Internal_Shdr *symtab_hdr;
7503 size_t i;
7504
7505 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7506
7507 for (i = 0; i < locsymcount; ++ i)
7508 {
7509 sym = isymbuf + i;
7510
7511 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7512 continue;
7513
7514 candidate = bfd_elf_string_from_elf_section (input_bfd,
7515 symtab_hdr->sh_link,
7516 sym->st_name);
7517 #ifdef DEBUG
7518 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7519 name, candidate, (unsigned long) sym->st_value);
7520 #endif
7521 if (candidate && strcmp (candidate, name) == 0)
7522 {
7523 asection *sec = finfo->sections [i];
7524
7525 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7526 *result += sec->output_offset + sec->output_section->vma;
7527 #ifdef DEBUG
7528 printf ("Found symbol with value %8.8lx\n",
7529 (unsigned long) *result);
7530 #endif
7531 return TRUE;
7532 }
7533 }
7534
7535 /* Hmm, haven't found it yet. perhaps it is a global. */
7536 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7537 FALSE, FALSE, TRUE);
7538 if (!global_entry)
7539 return FALSE;
7540
7541 if (global_entry->type == bfd_link_hash_defined
7542 || global_entry->type == bfd_link_hash_defweak)
7543 {
7544 *result = (global_entry->u.def.value
7545 + global_entry->u.def.section->output_section->vma
7546 + global_entry->u.def.section->output_offset);
7547 #ifdef DEBUG
7548 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7549 global_entry->root.string, (unsigned long) *result);
7550 #endif
7551 return TRUE;
7552 }
7553
7554 return FALSE;
7555 }
7556
7557 static bfd_boolean
7558 resolve_section (const char *name,
7559 asection *sections,
7560 bfd_vma *result)
7561 {
7562 asection *curr;
7563 unsigned int len;
7564
7565 for (curr = sections; curr; curr = curr->next)
7566 if (strcmp (curr->name, name) == 0)
7567 {
7568 *result = curr->vma;
7569 return TRUE;
7570 }
7571
7572 /* Hmm. still haven't found it. try pseudo-section names. */
7573 for (curr = sections; curr; curr = curr->next)
7574 {
7575 len = strlen (curr->name);
7576 if (len > strlen (name))
7577 continue;
7578
7579 if (strncmp (curr->name, name, len) == 0)
7580 {
7581 if (strncmp (".end", name + len, 4) == 0)
7582 {
7583 *result = curr->vma + curr->size;
7584 return TRUE;
7585 }
7586
7587 /* Insert more pseudo-section names here, if you like. */
7588 }
7589 }
7590
7591 return FALSE;
7592 }
7593
7594 static void
7595 undefined_reference (const char *reftype, const char *name)
7596 {
7597 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7598 reftype, name);
7599 }
7600
7601 static bfd_boolean
7602 eval_symbol (bfd_vma *result,
7603 const char **symp,
7604 bfd *input_bfd,
7605 struct elf_final_link_info *finfo,
7606 bfd_vma dot,
7607 Elf_Internal_Sym *isymbuf,
7608 size_t locsymcount,
7609 int signed_p)
7610 {
7611 size_t len;
7612 size_t symlen;
7613 bfd_vma a;
7614 bfd_vma b;
7615 char symbuf[4096];
7616 const char *sym = *symp;
7617 const char *symend;
7618 bfd_boolean symbol_is_section = FALSE;
7619
7620 len = strlen (sym);
7621 symend = sym + len;
7622
7623 if (len < 1 || len > sizeof (symbuf))
7624 {
7625 bfd_set_error (bfd_error_invalid_operation);
7626 return FALSE;
7627 }
7628
7629 switch (* sym)
7630 {
7631 case '.':
7632 *result = dot;
7633 *symp = sym + 1;
7634 return TRUE;
7635
7636 case '#':
7637 ++sym;
7638 *result = strtoul (sym, (char **) symp, 16);
7639 return TRUE;
7640
7641 case 'S':
7642 symbol_is_section = TRUE;
7643 case 's':
7644 ++sym;
7645 symlen = strtol (sym, (char **) symp, 10);
7646 sym = *symp + 1; /* Skip the trailing ':'. */
7647
7648 if (symend < sym || symlen + 1 > sizeof (symbuf))
7649 {
7650 bfd_set_error (bfd_error_invalid_operation);
7651 return FALSE;
7652 }
7653
7654 memcpy (symbuf, sym, symlen);
7655 symbuf[symlen] = '\0';
7656 *symp = sym + symlen;
7657
7658 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7659 the symbol as a section, or vice-versa. so we're pretty liberal in our
7660 interpretation here; section means "try section first", not "must be a
7661 section", and likewise with symbol. */
7662
7663 if (symbol_is_section)
7664 {
7665 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7666 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7667 isymbuf, locsymcount))
7668 {
7669 undefined_reference ("section", symbuf);
7670 return FALSE;
7671 }
7672 }
7673 else
7674 {
7675 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7676 isymbuf, locsymcount)
7677 && !resolve_section (symbuf, finfo->output_bfd->sections,
7678 result))
7679 {
7680 undefined_reference ("symbol", symbuf);
7681 return FALSE;
7682 }
7683 }
7684
7685 return TRUE;
7686
7687 /* All that remains are operators. */
7688
7689 #define UNARY_OP(op) \
7690 if (strncmp (sym, #op, strlen (#op)) == 0) \
7691 { \
7692 sym += strlen (#op); \
7693 if (*sym == ':') \
7694 ++sym; \
7695 *symp = sym; \
7696 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7697 isymbuf, locsymcount, signed_p)) \
7698 return FALSE; \
7699 if (signed_p) \
7700 *result = op ((bfd_signed_vma) a); \
7701 else \
7702 *result = op a; \
7703 return TRUE; \
7704 }
7705
7706 #define BINARY_OP(op) \
7707 if (strncmp (sym, #op, strlen (#op)) == 0) \
7708 { \
7709 sym += strlen (#op); \
7710 if (*sym == ':') \
7711 ++sym; \
7712 *symp = sym; \
7713 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7714 isymbuf, locsymcount, signed_p)) \
7715 return FALSE; \
7716 ++*symp; \
7717 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7718 isymbuf, locsymcount, signed_p)) \
7719 return FALSE; \
7720 if (signed_p) \
7721 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7722 else \
7723 *result = a op b; \
7724 return TRUE; \
7725 }
7726
7727 default:
7728 UNARY_OP (0-);
7729 BINARY_OP (<<);
7730 BINARY_OP (>>);
7731 BINARY_OP (==);
7732 BINARY_OP (!=);
7733 BINARY_OP (<=);
7734 BINARY_OP (>=);
7735 BINARY_OP (&&);
7736 BINARY_OP (||);
7737 UNARY_OP (~);
7738 UNARY_OP (!);
7739 BINARY_OP (*);
7740 BINARY_OP (/);
7741 BINARY_OP (%);
7742 BINARY_OP (^);
7743 BINARY_OP (|);
7744 BINARY_OP (&);
7745 BINARY_OP (+);
7746 BINARY_OP (-);
7747 BINARY_OP (<);
7748 BINARY_OP (>);
7749 #undef UNARY_OP
7750 #undef BINARY_OP
7751 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7752 bfd_set_error (bfd_error_invalid_operation);
7753 return FALSE;
7754 }
7755 }
7756
7757 static void
7758 put_value (bfd_vma size,
7759 unsigned long chunksz,
7760 bfd *input_bfd,
7761 bfd_vma x,
7762 bfd_byte *location)
7763 {
7764 location += (size - chunksz);
7765
7766 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7767 {
7768 switch (chunksz)
7769 {
7770 default:
7771 case 0:
7772 abort ();
7773 case 1:
7774 bfd_put_8 (input_bfd, x, location);
7775 break;
7776 case 2:
7777 bfd_put_16 (input_bfd, x, location);
7778 break;
7779 case 4:
7780 bfd_put_32 (input_bfd, x, location);
7781 break;
7782 case 8:
7783 #ifdef BFD64
7784 bfd_put_64 (input_bfd, x, location);
7785 #else
7786 abort ();
7787 #endif
7788 break;
7789 }
7790 }
7791 }
7792
7793 static bfd_vma
7794 get_value (bfd_vma size,
7795 unsigned long chunksz,
7796 bfd *input_bfd,
7797 bfd_byte *location)
7798 {
7799 bfd_vma x = 0;
7800
7801 for (; size; size -= chunksz, location += chunksz)
7802 {
7803 switch (chunksz)
7804 {
7805 default:
7806 case 0:
7807 abort ();
7808 case 1:
7809 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7810 break;
7811 case 2:
7812 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7813 break;
7814 case 4:
7815 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7816 break;
7817 case 8:
7818 #ifdef BFD64
7819 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7820 #else
7821 abort ();
7822 #endif
7823 break;
7824 }
7825 }
7826 return x;
7827 }
7828
7829 static void
7830 decode_complex_addend (unsigned long *start, /* in bits */
7831 unsigned long *oplen, /* in bits */
7832 unsigned long *len, /* in bits */
7833 unsigned long *wordsz, /* in bytes */
7834 unsigned long *chunksz, /* in bytes */
7835 unsigned long *lsb0_p,
7836 unsigned long *signed_p,
7837 unsigned long *trunc_p,
7838 unsigned long encoded)
7839 {
7840 * start = encoded & 0x3F;
7841 * len = (encoded >> 6) & 0x3F;
7842 * oplen = (encoded >> 12) & 0x3F;
7843 * wordsz = (encoded >> 18) & 0xF;
7844 * chunksz = (encoded >> 22) & 0xF;
7845 * lsb0_p = (encoded >> 27) & 1;
7846 * signed_p = (encoded >> 28) & 1;
7847 * trunc_p = (encoded >> 29) & 1;
7848 }
7849
7850 bfd_reloc_status_type
7851 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7852 asection *input_section ATTRIBUTE_UNUSED,
7853 bfd_byte *contents,
7854 Elf_Internal_Rela *rel,
7855 bfd_vma relocation)
7856 {
7857 bfd_vma shift, x, mask;
7858 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7859 bfd_reloc_status_type r;
7860
7861 /* Perform this reloc, since it is complex.
7862 (this is not to say that it necessarily refers to a complex
7863 symbol; merely that it is a self-describing CGEN based reloc.
7864 i.e. the addend has the complete reloc information (bit start, end,
7865 word size, etc) encoded within it.). */
7866
7867 decode_complex_addend (&start, &oplen, &len, &wordsz,
7868 &chunksz, &lsb0_p, &signed_p,
7869 &trunc_p, rel->r_addend);
7870
7871 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7872
7873 if (lsb0_p)
7874 shift = (start + 1) - len;
7875 else
7876 shift = (8 * wordsz) - (start + len);
7877
7878 /* FIXME: octets_per_byte. */
7879 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7880
7881 #ifdef DEBUG
7882 printf ("Doing complex reloc: "
7883 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7884 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7885 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7886 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7887 oplen, (unsigned long) x, (unsigned long) mask,
7888 (unsigned long) relocation);
7889 #endif
7890
7891 r = bfd_reloc_ok;
7892 if (! trunc_p)
7893 /* Now do an overflow check. */
7894 r = bfd_check_overflow ((signed_p
7895 ? complain_overflow_signed
7896 : complain_overflow_unsigned),
7897 len, 0, (8 * wordsz),
7898 relocation);
7899
7900 /* Do the deed. */
7901 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7902
7903 #ifdef DEBUG
7904 printf (" relocation: %8.8lx\n"
7905 " shifted mask: %8.8lx\n"
7906 " shifted/masked reloc: %8.8lx\n"
7907 " result: %8.8lx\n",
7908 (unsigned long) relocation, (unsigned long) (mask << shift),
7909 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7910 #endif
7911 /* FIXME: octets_per_byte. */
7912 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7913 return r;
7914 }
7915
7916 /* When performing a relocatable link, the input relocations are
7917 preserved. But, if they reference global symbols, the indices
7918 referenced must be updated. Update all the relocations found in
7919 RELDATA. */
7920
7921 static void
7922 elf_link_adjust_relocs (bfd *abfd,
7923 struct bfd_elf_section_reloc_data *reldata)
7924 {
7925 unsigned int i;
7926 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7927 bfd_byte *erela;
7928 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7929 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7930 bfd_vma r_type_mask;
7931 int r_sym_shift;
7932 unsigned int count = reldata->count;
7933 struct elf_link_hash_entry **rel_hash = reldata->hashes;
7934
7935 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
7936 {
7937 swap_in = bed->s->swap_reloc_in;
7938 swap_out = bed->s->swap_reloc_out;
7939 }
7940 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
7941 {
7942 swap_in = bed->s->swap_reloca_in;
7943 swap_out = bed->s->swap_reloca_out;
7944 }
7945 else
7946 abort ();
7947
7948 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7949 abort ();
7950
7951 if (bed->s->arch_size == 32)
7952 {
7953 r_type_mask = 0xff;
7954 r_sym_shift = 8;
7955 }
7956 else
7957 {
7958 r_type_mask = 0xffffffff;
7959 r_sym_shift = 32;
7960 }
7961
7962 erela = reldata->hdr->contents;
7963 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
7964 {
7965 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7966 unsigned int j;
7967
7968 if (*rel_hash == NULL)
7969 continue;
7970
7971 BFD_ASSERT ((*rel_hash)->indx >= 0);
7972
7973 (*swap_in) (abfd, erela, irela);
7974 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7975 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7976 | (irela[j].r_info & r_type_mask));
7977 (*swap_out) (abfd, irela, erela);
7978 }
7979 }
7980
7981 struct elf_link_sort_rela
7982 {
7983 union {
7984 bfd_vma offset;
7985 bfd_vma sym_mask;
7986 } u;
7987 enum elf_reloc_type_class type;
7988 /* We use this as an array of size int_rels_per_ext_rel. */
7989 Elf_Internal_Rela rela[1];
7990 };
7991
7992 static int
7993 elf_link_sort_cmp1 (const void *A, const void *B)
7994 {
7995 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
7996 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
7997 int relativea, relativeb;
7998
7999 relativea = a->type == reloc_class_relative;
8000 relativeb = b->type == reloc_class_relative;
8001
8002 if (relativea < relativeb)
8003 return 1;
8004 if (relativea > relativeb)
8005 return -1;
8006 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8007 return -1;
8008 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8009 return 1;
8010 if (a->rela->r_offset < b->rela->r_offset)
8011 return -1;
8012 if (a->rela->r_offset > b->rela->r_offset)
8013 return 1;
8014 return 0;
8015 }
8016
8017 static int
8018 elf_link_sort_cmp2 (const void *A, const void *B)
8019 {
8020 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8021 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8022 int copya, copyb;
8023
8024 if (a->u.offset < b->u.offset)
8025 return -1;
8026 if (a->u.offset > b->u.offset)
8027 return 1;
8028 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
8029 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
8030 if (copya < copyb)
8031 return -1;
8032 if (copya > copyb)
8033 return 1;
8034 if (a->rela->r_offset < b->rela->r_offset)
8035 return -1;
8036 if (a->rela->r_offset > b->rela->r_offset)
8037 return 1;
8038 return 0;
8039 }
8040
8041 static size_t
8042 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8043 {
8044 asection *dynamic_relocs;
8045 asection *rela_dyn;
8046 asection *rel_dyn;
8047 bfd_size_type count, size;
8048 size_t i, ret, sort_elt, ext_size;
8049 bfd_byte *sort, *s_non_relative, *p;
8050 struct elf_link_sort_rela *sq;
8051 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8052 int i2e = bed->s->int_rels_per_ext_rel;
8053 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8054 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8055 struct bfd_link_order *lo;
8056 bfd_vma r_sym_mask;
8057 bfd_boolean use_rela;
8058
8059 /* Find a dynamic reloc section. */
8060 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8061 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8062 if (rela_dyn != NULL && rela_dyn->size > 0
8063 && rel_dyn != NULL && rel_dyn->size > 0)
8064 {
8065 bfd_boolean use_rela_initialised = FALSE;
8066
8067 /* This is just here to stop gcc from complaining.
8068 It's initialization checking code is not perfect. */
8069 use_rela = TRUE;
8070
8071 /* Both sections are present. Examine the sizes
8072 of the indirect sections to help us choose. */
8073 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8074 if (lo->type == bfd_indirect_link_order)
8075 {
8076 asection *o = lo->u.indirect.section;
8077
8078 if ((o->size % bed->s->sizeof_rela) == 0)
8079 {
8080 if ((o->size % bed->s->sizeof_rel) == 0)
8081 /* Section size is divisible by both rel and rela sizes.
8082 It is of no help to us. */
8083 ;
8084 else
8085 {
8086 /* Section size is only divisible by rela. */
8087 if (use_rela_initialised && (use_rela == FALSE))
8088 {
8089 _bfd_error_handler
8090 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8091 bfd_set_error (bfd_error_invalid_operation);
8092 return 0;
8093 }
8094 else
8095 {
8096 use_rela = TRUE;
8097 use_rela_initialised = TRUE;
8098 }
8099 }
8100 }
8101 else if ((o->size % bed->s->sizeof_rel) == 0)
8102 {
8103 /* Section size is only divisible by rel. */
8104 if (use_rela_initialised && (use_rela == TRUE))
8105 {
8106 _bfd_error_handler
8107 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8108 bfd_set_error (bfd_error_invalid_operation);
8109 return 0;
8110 }
8111 else
8112 {
8113 use_rela = FALSE;
8114 use_rela_initialised = TRUE;
8115 }
8116 }
8117 else
8118 {
8119 /* The section size is not divisible by either - something is wrong. */
8120 _bfd_error_handler
8121 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8122 bfd_set_error (bfd_error_invalid_operation);
8123 return 0;
8124 }
8125 }
8126
8127 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8128 if (lo->type == bfd_indirect_link_order)
8129 {
8130 asection *o = lo->u.indirect.section;
8131
8132 if ((o->size % bed->s->sizeof_rela) == 0)
8133 {
8134 if ((o->size % bed->s->sizeof_rel) == 0)
8135 /* Section size is divisible by both rel and rela sizes.
8136 It is of no help to us. */
8137 ;
8138 else
8139 {
8140 /* Section size is only divisible by rela. */
8141 if (use_rela_initialised && (use_rela == FALSE))
8142 {
8143 _bfd_error_handler
8144 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8145 bfd_set_error (bfd_error_invalid_operation);
8146 return 0;
8147 }
8148 else
8149 {
8150 use_rela = TRUE;
8151 use_rela_initialised = TRUE;
8152 }
8153 }
8154 }
8155 else if ((o->size % bed->s->sizeof_rel) == 0)
8156 {
8157 /* Section size is only divisible by rel. */
8158 if (use_rela_initialised && (use_rela == TRUE))
8159 {
8160 _bfd_error_handler
8161 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8162 bfd_set_error (bfd_error_invalid_operation);
8163 return 0;
8164 }
8165 else
8166 {
8167 use_rela = FALSE;
8168 use_rela_initialised = TRUE;
8169 }
8170 }
8171 else
8172 {
8173 /* The section size is not divisible by either - something is wrong. */
8174 _bfd_error_handler
8175 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8176 bfd_set_error (bfd_error_invalid_operation);
8177 return 0;
8178 }
8179 }
8180
8181 if (! use_rela_initialised)
8182 /* Make a guess. */
8183 use_rela = TRUE;
8184 }
8185 else if (rela_dyn != NULL && rela_dyn->size > 0)
8186 use_rela = TRUE;
8187 else if (rel_dyn != NULL && rel_dyn->size > 0)
8188 use_rela = FALSE;
8189 else
8190 return 0;
8191
8192 if (use_rela)
8193 {
8194 dynamic_relocs = rela_dyn;
8195 ext_size = bed->s->sizeof_rela;
8196 swap_in = bed->s->swap_reloca_in;
8197 swap_out = bed->s->swap_reloca_out;
8198 }
8199 else
8200 {
8201 dynamic_relocs = rel_dyn;
8202 ext_size = bed->s->sizeof_rel;
8203 swap_in = bed->s->swap_reloc_in;
8204 swap_out = bed->s->swap_reloc_out;
8205 }
8206
8207 size = 0;
8208 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8209 if (lo->type == bfd_indirect_link_order)
8210 size += lo->u.indirect.section->size;
8211
8212 if (size != dynamic_relocs->size)
8213 return 0;
8214
8215 sort_elt = (sizeof (struct elf_link_sort_rela)
8216 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8217
8218 count = dynamic_relocs->size / ext_size;
8219 if (count == 0)
8220 return 0;
8221 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8222
8223 if (sort == NULL)
8224 {
8225 (*info->callbacks->warning)
8226 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8227 return 0;
8228 }
8229
8230 if (bed->s->arch_size == 32)
8231 r_sym_mask = ~(bfd_vma) 0xff;
8232 else
8233 r_sym_mask = ~(bfd_vma) 0xffffffff;
8234
8235 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8236 if (lo->type == bfd_indirect_link_order)
8237 {
8238 bfd_byte *erel, *erelend;
8239 asection *o = lo->u.indirect.section;
8240
8241 if (o->contents == NULL && o->size != 0)
8242 {
8243 /* This is a reloc section that is being handled as a normal
8244 section. See bfd_section_from_shdr. We can't combine
8245 relocs in this case. */
8246 free (sort);
8247 return 0;
8248 }
8249 erel = o->contents;
8250 erelend = o->contents + o->size;
8251 /* FIXME: octets_per_byte. */
8252 p = sort + o->output_offset / ext_size * sort_elt;
8253
8254 while (erel < erelend)
8255 {
8256 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8257
8258 (*swap_in) (abfd, erel, s->rela);
8259 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8260 s->u.sym_mask = r_sym_mask;
8261 p += sort_elt;
8262 erel += ext_size;
8263 }
8264 }
8265
8266 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8267
8268 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8269 {
8270 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8271 if (s->type != reloc_class_relative)
8272 break;
8273 }
8274 ret = i;
8275 s_non_relative = p;
8276
8277 sq = (struct elf_link_sort_rela *) s_non_relative;
8278 for (; i < count; i++, p += sort_elt)
8279 {
8280 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8281 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8282 sq = sp;
8283 sp->u.offset = sq->rela->r_offset;
8284 }
8285
8286 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8287
8288 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8289 if (lo->type == bfd_indirect_link_order)
8290 {
8291 bfd_byte *erel, *erelend;
8292 asection *o = lo->u.indirect.section;
8293
8294 erel = o->contents;
8295 erelend = o->contents + o->size;
8296 /* FIXME: octets_per_byte. */
8297 p = sort + o->output_offset / ext_size * sort_elt;
8298 while (erel < erelend)
8299 {
8300 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8301 (*swap_out) (abfd, s->rela, erel);
8302 p += sort_elt;
8303 erel += ext_size;
8304 }
8305 }
8306
8307 free (sort);
8308 *psec = dynamic_relocs;
8309 return ret;
8310 }
8311
8312 /* Flush the output symbols to the file. */
8313
8314 static bfd_boolean
8315 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8316 const struct elf_backend_data *bed)
8317 {
8318 if (finfo->symbuf_count > 0)
8319 {
8320 Elf_Internal_Shdr *hdr;
8321 file_ptr pos;
8322 bfd_size_type amt;
8323
8324 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8325 pos = hdr->sh_offset + hdr->sh_size;
8326 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8327 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8328 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8329 return FALSE;
8330
8331 hdr->sh_size += amt;
8332 finfo->symbuf_count = 0;
8333 }
8334
8335 return TRUE;
8336 }
8337
8338 /* Add a symbol to the output symbol table. */
8339
8340 static int
8341 elf_link_output_sym (struct elf_final_link_info *finfo,
8342 const char *name,
8343 Elf_Internal_Sym *elfsym,
8344 asection *input_sec,
8345 struct elf_link_hash_entry *h)
8346 {
8347 bfd_byte *dest;
8348 Elf_External_Sym_Shndx *destshndx;
8349 int (*output_symbol_hook)
8350 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8351 struct elf_link_hash_entry *);
8352 const struct elf_backend_data *bed;
8353
8354 bed = get_elf_backend_data (finfo->output_bfd);
8355 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8356 if (output_symbol_hook != NULL)
8357 {
8358 int ret = (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h);
8359 if (ret != 1)
8360 return ret;
8361 }
8362
8363 if (name == NULL || *name == '\0')
8364 elfsym->st_name = 0;
8365 else if (input_sec->flags & SEC_EXCLUDE)
8366 elfsym->st_name = 0;
8367 else
8368 {
8369 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8370 name, TRUE, FALSE);
8371 if (elfsym->st_name == (unsigned long) -1)
8372 return 0;
8373 }
8374
8375 if (finfo->symbuf_count >= finfo->symbuf_size)
8376 {
8377 if (! elf_link_flush_output_syms (finfo, bed))
8378 return 0;
8379 }
8380
8381 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8382 destshndx = finfo->symshndxbuf;
8383 if (destshndx != NULL)
8384 {
8385 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8386 {
8387 bfd_size_type amt;
8388
8389 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8390 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8391 amt * 2);
8392 if (destshndx == NULL)
8393 return 0;
8394 finfo->symshndxbuf = destshndx;
8395 memset ((char *) destshndx + amt, 0, amt);
8396 finfo->shndxbuf_size *= 2;
8397 }
8398 destshndx += bfd_get_symcount (finfo->output_bfd);
8399 }
8400
8401 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8402 finfo->symbuf_count += 1;
8403 bfd_get_symcount (finfo->output_bfd) += 1;
8404
8405 return 1;
8406 }
8407
8408 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8409
8410 static bfd_boolean
8411 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8412 {
8413 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8414 && sym->st_shndx < SHN_LORESERVE)
8415 {
8416 /* The gABI doesn't support dynamic symbols in output sections
8417 beyond 64k. */
8418 (*_bfd_error_handler)
8419 (_("%B: Too many sections: %d (>= %d)"),
8420 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8421 bfd_set_error (bfd_error_nonrepresentable_section);
8422 return FALSE;
8423 }
8424 return TRUE;
8425 }
8426
8427 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8428 allowing an unsatisfied unversioned symbol in the DSO to match a
8429 versioned symbol that would normally require an explicit version.
8430 We also handle the case that a DSO references a hidden symbol
8431 which may be satisfied by a versioned symbol in another DSO. */
8432
8433 static bfd_boolean
8434 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8435 const struct elf_backend_data *bed,
8436 struct elf_link_hash_entry *h)
8437 {
8438 bfd *abfd;
8439 struct elf_link_loaded_list *loaded;
8440
8441 if (!is_elf_hash_table (info->hash))
8442 return FALSE;
8443
8444 switch (h->root.type)
8445 {
8446 default:
8447 abfd = NULL;
8448 break;
8449
8450 case bfd_link_hash_undefined:
8451 case bfd_link_hash_undefweak:
8452 abfd = h->root.u.undef.abfd;
8453 if ((abfd->flags & DYNAMIC) == 0
8454 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8455 return FALSE;
8456 break;
8457
8458 case bfd_link_hash_defined:
8459 case bfd_link_hash_defweak:
8460 abfd = h->root.u.def.section->owner;
8461 break;
8462
8463 case bfd_link_hash_common:
8464 abfd = h->root.u.c.p->section->owner;
8465 break;
8466 }
8467 BFD_ASSERT (abfd != NULL);
8468
8469 for (loaded = elf_hash_table (info)->loaded;
8470 loaded != NULL;
8471 loaded = loaded->next)
8472 {
8473 bfd *input;
8474 Elf_Internal_Shdr *hdr;
8475 bfd_size_type symcount;
8476 bfd_size_type extsymcount;
8477 bfd_size_type extsymoff;
8478 Elf_Internal_Shdr *versymhdr;
8479 Elf_Internal_Sym *isym;
8480 Elf_Internal_Sym *isymend;
8481 Elf_Internal_Sym *isymbuf;
8482 Elf_External_Versym *ever;
8483 Elf_External_Versym *extversym;
8484
8485 input = loaded->abfd;
8486
8487 /* We check each DSO for a possible hidden versioned definition. */
8488 if (input == abfd
8489 || (input->flags & DYNAMIC) == 0
8490 || elf_dynversym (input) == 0)
8491 continue;
8492
8493 hdr = &elf_tdata (input)->dynsymtab_hdr;
8494
8495 symcount = hdr->sh_size / bed->s->sizeof_sym;
8496 if (elf_bad_symtab (input))
8497 {
8498 extsymcount = symcount;
8499 extsymoff = 0;
8500 }
8501 else
8502 {
8503 extsymcount = symcount - hdr->sh_info;
8504 extsymoff = hdr->sh_info;
8505 }
8506
8507 if (extsymcount == 0)
8508 continue;
8509
8510 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8511 NULL, NULL, NULL);
8512 if (isymbuf == NULL)
8513 return FALSE;
8514
8515 /* Read in any version definitions. */
8516 versymhdr = &elf_tdata (input)->dynversym_hdr;
8517 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8518 if (extversym == NULL)
8519 goto error_ret;
8520
8521 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8522 || (bfd_bread (extversym, versymhdr->sh_size, input)
8523 != versymhdr->sh_size))
8524 {
8525 free (extversym);
8526 error_ret:
8527 free (isymbuf);
8528 return FALSE;
8529 }
8530
8531 ever = extversym + extsymoff;
8532 isymend = isymbuf + extsymcount;
8533 for (isym = isymbuf; isym < isymend; isym++, ever++)
8534 {
8535 const char *name;
8536 Elf_Internal_Versym iver;
8537 unsigned short version_index;
8538
8539 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8540 || isym->st_shndx == SHN_UNDEF)
8541 continue;
8542
8543 name = bfd_elf_string_from_elf_section (input,
8544 hdr->sh_link,
8545 isym->st_name);
8546 if (strcmp (name, h->root.root.string) != 0)
8547 continue;
8548
8549 _bfd_elf_swap_versym_in (input, ever, &iver);
8550
8551 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8552 && !(h->def_regular
8553 && h->forced_local))
8554 {
8555 /* If we have a non-hidden versioned sym, then it should
8556 have provided a definition for the undefined sym unless
8557 it is defined in a non-shared object and forced local.
8558 */
8559 abort ();
8560 }
8561
8562 version_index = iver.vs_vers & VERSYM_VERSION;
8563 if (version_index == 1 || version_index == 2)
8564 {
8565 /* This is the base or first version. We can use it. */
8566 free (extversym);
8567 free (isymbuf);
8568 return TRUE;
8569 }
8570 }
8571
8572 free (extversym);
8573 free (isymbuf);
8574 }
8575
8576 return FALSE;
8577 }
8578
8579 /* Add an external symbol to the symbol table. This is called from
8580 the hash table traversal routine. When generating a shared object,
8581 we go through the symbol table twice. The first time we output
8582 anything that might have been forced to local scope in a version
8583 script. The second time we output the symbols that are still
8584 global symbols. */
8585
8586 static bfd_boolean
8587 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
8588 {
8589 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8590 struct elf_final_link_info *finfo = eoinfo->finfo;
8591 bfd_boolean strip;
8592 Elf_Internal_Sym sym;
8593 asection *input_sec;
8594 const struct elf_backend_data *bed;
8595 long indx;
8596 int ret;
8597
8598 if (h->root.type == bfd_link_hash_warning)
8599 {
8600 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8601 if (h->root.type == bfd_link_hash_new)
8602 return TRUE;
8603 }
8604
8605 /* Decide whether to output this symbol in this pass. */
8606 if (eoinfo->localsyms)
8607 {
8608 if (!h->forced_local)
8609 return TRUE;
8610 }
8611 else
8612 {
8613 if (h->forced_local)
8614 return TRUE;
8615 }
8616
8617 bed = get_elf_backend_data (finfo->output_bfd);
8618
8619 if (h->root.type == bfd_link_hash_undefined)
8620 {
8621 /* If we have an undefined symbol reference here then it must have
8622 come from a shared library that is being linked in. (Undefined
8623 references in regular files have already been handled unless
8624 they are in unreferenced sections which are removed by garbage
8625 collection). */
8626 bfd_boolean ignore_undef = FALSE;
8627
8628 /* Some symbols may be special in that the fact that they're
8629 undefined can be safely ignored - let backend determine that. */
8630 if (bed->elf_backend_ignore_undef_symbol)
8631 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8632
8633 /* If we are reporting errors for this situation then do so now. */
8634 if (!ignore_undef
8635 && h->ref_dynamic
8636 && (!h->ref_regular || finfo->info->gc_sections)
8637 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8638 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8639 {
8640 if (! (finfo->info->callbacks->undefined_symbol
8641 (finfo->info, h->root.root.string,
8642 h->ref_regular ? NULL : h->root.u.undef.abfd,
8643 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8644 {
8645 eoinfo->failed = TRUE;
8646 return FALSE;
8647 }
8648 }
8649 }
8650
8651 /* We should also warn if a forced local symbol is referenced from
8652 shared libraries. */
8653 if (! finfo->info->relocatable
8654 && (! finfo->info->shared)
8655 && h->forced_local
8656 && h->ref_dynamic
8657 && !h->dynamic_def
8658 && !h->dynamic_weak
8659 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8660 {
8661 (*_bfd_error_handler)
8662 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
8663 finfo->output_bfd,
8664 h->root.u.def.section == bfd_abs_section_ptr
8665 ? finfo->output_bfd : h->root.u.def.section->owner,
8666 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
8667 ? "internal"
8668 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
8669 ? "hidden" : "local",
8670 h->root.root.string);
8671 eoinfo->failed = TRUE;
8672 return FALSE;
8673 }
8674
8675 /* We don't want to output symbols that have never been mentioned by
8676 a regular file, or that we have been told to strip. However, if
8677 h->indx is set to -2, the symbol is used by a reloc and we must
8678 output it. */
8679 if (h->indx == -2)
8680 strip = FALSE;
8681 else if ((h->def_dynamic
8682 || h->ref_dynamic
8683 || h->root.type == bfd_link_hash_new)
8684 && !h->def_regular
8685 && !h->ref_regular)
8686 strip = TRUE;
8687 else if (finfo->info->strip == strip_all)
8688 strip = TRUE;
8689 else if (finfo->info->strip == strip_some
8690 && bfd_hash_lookup (finfo->info->keep_hash,
8691 h->root.root.string, FALSE, FALSE) == NULL)
8692 strip = TRUE;
8693 else if (finfo->info->strip_discarded
8694 && (h->root.type == bfd_link_hash_defined
8695 || h->root.type == bfd_link_hash_defweak)
8696 && elf_discarded_section (h->root.u.def.section))
8697 strip = TRUE;
8698 else
8699 strip = FALSE;
8700
8701 /* If we're stripping it, and it's not a dynamic symbol, there's
8702 nothing else to do unless it is a forced local symbol or a
8703 STT_GNU_IFUNC symbol. */
8704 if (strip
8705 && h->dynindx == -1
8706 && h->type != STT_GNU_IFUNC
8707 && !h->forced_local)
8708 return TRUE;
8709
8710 sym.st_value = 0;
8711 sym.st_size = h->size;
8712 sym.st_other = h->other;
8713 if (h->forced_local)
8714 {
8715 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8716 /* Turn off visibility on local symbol. */
8717 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8718 }
8719 else if (h->unique_global)
8720 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8721 else if (h->root.type == bfd_link_hash_undefweak
8722 || h->root.type == bfd_link_hash_defweak)
8723 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8724 else
8725 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8726
8727 switch (h->root.type)
8728 {
8729 default:
8730 case bfd_link_hash_new:
8731 case bfd_link_hash_warning:
8732 abort ();
8733 return FALSE;
8734
8735 case bfd_link_hash_undefined:
8736 case bfd_link_hash_undefweak:
8737 input_sec = bfd_und_section_ptr;
8738 sym.st_shndx = SHN_UNDEF;
8739 break;
8740
8741 case bfd_link_hash_defined:
8742 case bfd_link_hash_defweak:
8743 {
8744 input_sec = h->root.u.def.section;
8745 if (input_sec->output_section != NULL)
8746 {
8747 sym.st_shndx =
8748 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8749 input_sec->output_section);
8750 if (sym.st_shndx == SHN_BAD)
8751 {
8752 (*_bfd_error_handler)
8753 (_("%B: could not find output section %A for input section %A"),
8754 finfo->output_bfd, input_sec->output_section, input_sec);
8755 eoinfo->failed = TRUE;
8756 return FALSE;
8757 }
8758
8759 /* ELF symbols in relocatable files are section relative,
8760 but in nonrelocatable files they are virtual
8761 addresses. */
8762 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8763 if (! finfo->info->relocatable)
8764 {
8765 sym.st_value += input_sec->output_section->vma;
8766 if (h->type == STT_TLS)
8767 {
8768 asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8769 if (tls_sec != NULL)
8770 sym.st_value -= tls_sec->vma;
8771 else
8772 {
8773 /* The TLS section may have been garbage collected. */
8774 BFD_ASSERT (finfo->info->gc_sections
8775 && !input_sec->gc_mark);
8776 }
8777 }
8778 }
8779 }
8780 else
8781 {
8782 BFD_ASSERT (input_sec->owner == NULL
8783 || (input_sec->owner->flags & DYNAMIC) != 0);
8784 sym.st_shndx = SHN_UNDEF;
8785 input_sec = bfd_und_section_ptr;
8786 }
8787 }
8788 break;
8789
8790 case bfd_link_hash_common:
8791 input_sec = h->root.u.c.p->section;
8792 sym.st_shndx = bed->common_section_index (input_sec);
8793 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8794 break;
8795
8796 case bfd_link_hash_indirect:
8797 /* These symbols are created by symbol versioning. They point
8798 to the decorated version of the name. For example, if the
8799 symbol foo@@GNU_1.2 is the default, which should be used when
8800 foo is used with no version, then we add an indirect symbol
8801 foo which points to foo@@GNU_1.2. We ignore these symbols,
8802 since the indirected symbol is already in the hash table. */
8803 return TRUE;
8804 }
8805
8806 /* Give the processor backend a chance to tweak the symbol value,
8807 and also to finish up anything that needs to be done for this
8808 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8809 forced local syms when non-shared is due to a historical quirk.
8810 STT_GNU_IFUNC symbol must go through PLT. */
8811 if ((h->type == STT_GNU_IFUNC
8812 && h->def_regular
8813 && !finfo->info->relocatable)
8814 || ((h->dynindx != -1
8815 || h->forced_local)
8816 && ((finfo->info->shared
8817 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8818 || h->root.type != bfd_link_hash_undefweak))
8819 || !h->forced_local)
8820 && elf_hash_table (finfo->info)->dynamic_sections_created))
8821 {
8822 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8823 (finfo->output_bfd, finfo->info, h, &sym)))
8824 {
8825 eoinfo->failed = TRUE;
8826 return FALSE;
8827 }
8828 }
8829
8830 /* If we are marking the symbol as undefined, and there are no
8831 non-weak references to this symbol from a regular object, then
8832 mark the symbol as weak undefined; if there are non-weak
8833 references, mark the symbol as strong. We can't do this earlier,
8834 because it might not be marked as undefined until the
8835 finish_dynamic_symbol routine gets through with it. */
8836 if (sym.st_shndx == SHN_UNDEF
8837 && h->ref_regular
8838 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8839 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8840 {
8841 int bindtype;
8842 unsigned int type = ELF_ST_TYPE (sym.st_info);
8843
8844 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8845 if (type == STT_GNU_IFUNC)
8846 type = STT_FUNC;
8847
8848 if (h->ref_regular_nonweak)
8849 bindtype = STB_GLOBAL;
8850 else
8851 bindtype = STB_WEAK;
8852 sym.st_info = ELF_ST_INFO (bindtype, type);
8853 }
8854
8855 /* If this is a symbol defined in a dynamic library, don't use the
8856 symbol size from the dynamic library. Relinking an executable
8857 against a new library may introduce gratuitous changes in the
8858 executable's symbols if we keep the size. */
8859 if (sym.st_shndx == SHN_UNDEF
8860 && !h->def_regular
8861 && h->def_dynamic)
8862 sym.st_size = 0;
8863
8864 /* If a non-weak symbol with non-default visibility is not defined
8865 locally, it is a fatal error. */
8866 if (! finfo->info->relocatable
8867 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8868 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8869 && h->root.type == bfd_link_hash_undefined
8870 && !h->def_regular)
8871 {
8872 (*_bfd_error_handler)
8873 (_("%B: %s symbol `%s' isn't defined"),
8874 finfo->output_bfd,
8875 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
8876 ? "protected"
8877 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
8878 ? "internal" : "hidden",
8879 h->root.root.string);
8880 eoinfo->failed = TRUE;
8881 return FALSE;
8882 }
8883
8884 /* If this symbol should be put in the .dynsym section, then put it
8885 there now. We already know the symbol index. We also fill in
8886 the entry in the .hash section. */
8887 if (h->dynindx != -1
8888 && elf_hash_table (finfo->info)->dynamic_sections_created)
8889 {
8890 bfd_byte *esym;
8891
8892 sym.st_name = h->dynstr_index;
8893 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8894 if (! check_dynsym (finfo->output_bfd, &sym))
8895 {
8896 eoinfo->failed = TRUE;
8897 return FALSE;
8898 }
8899 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8900
8901 if (finfo->hash_sec != NULL)
8902 {
8903 size_t hash_entry_size;
8904 bfd_byte *bucketpos;
8905 bfd_vma chain;
8906 size_t bucketcount;
8907 size_t bucket;
8908
8909 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8910 bucket = h->u.elf_hash_value % bucketcount;
8911
8912 hash_entry_size
8913 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8914 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8915 + (bucket + 2) * hash_entry_size);
8916 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8917 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8918 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8919 ((bfd_byte *) finfo->hash_sec->contents
8920 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8921 }
8922
8923 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8924 {
8925 Elf_Internal_Versym iversym;
8926 Elf_External_Versym *eversym;
8927
8928 if (!h->def_regular)
8929 {
8930 if (h->verinfo.verdef == NULL)
8931 iversym.vs_vers = 0;
8932 else
8933 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8934 }
8935 else
8936 {
8937 if (h->verinfo.vertree == NULL)
8938 iversym.vs_vers = 1;
8939 else
8940 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8941 if (finfo->info->create_default_symver)
8942 iversym.vs_vers++;
8943 }
8944
8945 if (h->hidden)
8946 iversym.vs_vers |= VERSYM_HIDDEN;
8947
8948 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8949 eversym += h->dynindx;
8950 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8951 }
8952 }
8953
8954 /* If we're stripping it, then it was just a dynamic symbol, and
8955 there's nothing else to do. */
8956 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8957 return TRUE;
8958
8959 indx = bfd_get_symcount (finfo->output_bfd);
8960 ret = elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h);
8961 if (ret == 0)
8962 {
8963 eoinfo->failed = TRUE;
8964 return FALSE;
8965 }
8966 else if (ret == 1)
8967 h->indx = indx;
8968 else if (h->indx == -2)
8969 abort();
8970
8971 return TRUE;
8972 }
8973
8974 /* Return TRUE if special handling is done for relocs in SEC against
8975 symbols defined in discarded sections. */
8976
8977 static bfd_boolean
8978 elf_section_ignore_discarded_relocs (asection *sec)
8979 {
8980 const struct elf_backend_data *bed;
8981
8982 switch (sec->sec_info_type)
8983 {
8984 case ELF_INFO_TYPE_STABS:
8985 case ELF_INFO_TYPE_EH_FRAME:
8986 return TRUE;
8987 default:
8988 break;
8989 }
8990
8991 bed = get_elf_backend_data (sec->owner);
8992 if (bed->elf_backend_ignore_discarded_relocs != NULL
8993 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8994 return TRUE;
8995
8996 return FALSE;
8997 }
8998
8999 /* Return a mask saying how ld should treat relocations in SEC against
9000 symbols defined in discarded sections. If this function returns
9001 COMPLAIN set, ld will issue a warning message. If this function
9002 returns PRETEND set, and the discarded section was link-once and the
9003 same size as the kept link-once section, ld will pretend that the
9004 symbol was actually defined in the kept section. Otherwise ld will
9005 zero the reloc (at least that is the intent, but some cooperation by
9006 the target dependent code is needed, particularly for REL targets). */
9007
9008 unsigned int
9009 _bfd_elf_default_action_discarded (asection *sec)
9010 {
9011 if (sec->flags & SEC_DEBUGGING)
9012 return PRETEND;
9013
9014 if (strcmp (".eh_frame", sec->name) == 0)
9015 return 0;
9016
9017 if (strcmp (".gcc_except_table", sec->name) == 0)
9018 return 0;
9019
9020 return COMPLAIN | PRETEND;
9021 }
9022
9023 /* Find a match between a section and a member of a section group. */
9024
9025 static asection *
9026 match_group_member (asection *sec, asection *group,
9027 struct bfd_link_info *info)
9028 {
9029 asection *first = elf_next_in_group (group);
9030 asection *s = first;
9031
9032 while (s != NULL)
9033 {
9034 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9035 return s;
9036
9037 s = elf_next_in_group (s);
9038 if (s == first)
9039 break;
9040 }
9041
9042 return NULL;
9043 }
9044
9045 /* Check if the kept section of a discarded section SEC can be used
9046 to replace it. Return the replacement if it is OK. Otherwise return
9047 NULL. */
9048
9049 asection *
9050 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9051 {
9052 asection *kept;
9053
9054 kept = sec->kept_section;
9055 if (kept != NULL)
9056 {
9057 if ((kept->flags & SEC_GROUP) != 0)
9058 kept = match_group_member (sec, kept, info);
9059 if (kept != NULL
9060 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9061 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9062 kept = NULL;
9063 sec->kept_section = kept;
9064 }
9065 return kept;
9066 }
9067
9068 /* Link an input file into the linker output file. This function
9069 handles all the sections and relocations of the input file at once.
9070 This is so that we only have to read the local symbols once, and
9071 don't have to keep them in memory. */
9072
9073 static bfd_boolean
9074 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
9075 {
9076 int (*relocate_section)
9077 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9078 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9079 bfd *output_bfd;
9080 Elf_Internal_Shdr *symtab_hdr;
9081 size_t locsymcount;
9082 size_t extsymoff;
9083 Elf_Internal_Sym *isymbuf;
9084 Elf_Internal_Sym *isym;
9085 Elf_Internal_Sym *isymend;
9086 long *pindex;
9087 asection **ppsection;
9088 asection *o;
9089 const struct elf_backend_data *bed;
9090 struct elf_link_hash_entry **sym_hashes;
9091
9092 output_bfd = finfo->output_bfd;
9093 bed = get_elf_backend_data (output_bfd);
9094 relocate_section = bed->elf_backend_relocate_section;
9095
9096 /* If this is a dynamic object, we don't want to do anything here:
9097 we don't want the local symbols, and we don't want the section
9098 contents. */
9099 if ((input_bfd->flags & DYNAMIC) != 0)
9100 return TRUE;
9101
9102 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9103 if (elf_bad_symtab (input_bfd))
9104 {
9105 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9106 extsymoff = 0;
9107 }
9108 else
9109 {
9110 locsymcount = symtab_hdr->sh_info;
9111 extsymoff = symtab_hdr->sh_info;
9112 }
9113
9114 /* Read the local symbols. */
9115 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9116 if (isymbuf == NULL && locsymcount != 0)
9117 {
9118 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9119 finfo->internal_syms,
9120 finfo->external_syms,
9121 finfo->locsym_shndx);
9122 if (isymbuf == NULL)
9123 return FALSE;
9124 }
9125
9126 /* Find local symbol sections and adjust values of symbols in
9127 SEC_MERGE sections. Write out those local symbols we know are
9128 going into the output file. */
9129 isymend = isymbuf + locsymcount;
9130 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
9131 isym < isymend;
9132 isym++, pindex++, ppsection++)
9133 {
9134 asection *isec;
9135 const char *name;
9136 Elf_Internal_Sym osym;
9137 long indx;
9138 int ret;
9139
9140 *pindex = -1;
9141
9142 if (elf_bad_symtab (input_bfd))
9143 {
9144 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9145 {
9146 *ppsection = NULL;
9147 continue;
9148 }
9149 }
9150
9151 if (isym->st_shndx == SHN_UNDEF)
9152 isec = bfd_und_section_ptr;
9153 else if (isym->st_shndx == SHN_ABS)
9154 isec = bfd_abs_section_ptr;
9155 else if (isym->st_shndx == SHN_COMMON)
9156 isec = bfd_com_section_ptr;
9157 else
9158 {
9159 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9160 if (isec == NULL)
9161 {
9162 /* Don't attempt to output symbols with st_shnx in the
9163 reserved range other than SHN_ABS and SHN_COMMON. */
9164 *ppsection = NULL;
9165 continue;
9166 }
9167 else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
9168 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9169 isym->st_value =
9170 _bfd_merged_section_offset (output_bfd, &isec,
9171 elf_section_data (isec)->sec_info,
9172 isym->st_value);
9173 }
9174
9175 *ppsection = isec;
9176
9177 /* Don't output the first, undefined, symbol. */
9178 if (ppsection == finfo->sections)
9179 continue;
9180
9181 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9182 {
9183 /* We never output section symbols. Instead, we use the
9184 section symbol of the corresponding section in the output
9185 file. */
9186 continue;
9187 }
9188
9189 /* If we are stripping all symbols, we don't want to output this
9190 one. */
9191 if (finfo->info->strip == strip_all)
9192 continue;
9193
9194 /* If we are discarding all local symbols, we don't want to
9195 output this one. If we are generating a relocatable output
9196 file, then some of the local symbols may be required by
9197 relocs; we output them below as we discover that they are
9198 needed. */
9199 if (finfo->info->discard == discard_all)
9200 continue;
9201
9202 /* If this symbol is defined in a section which we are
9203 discarding, we don't need to keep it. */
9204 if (isym->st_shndx != SHN_UNDEF
9205 && isym->st_shndx < SHN_LORESERVE
9206 && bfd_section_removed_from_list (output_bfd,
9207 isec->output_section))
9208 continue;
9209
9210 /* Get the name of the symbol. */
9211 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9212 isym->st_name);
9213 if (name == NULL)
9214 return FALSE;
9215
9216 /* See if we are discarding symbols with this name. */
9217 if ((finfo->info->strip == strip_some
9218 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
9219 == NULL))
9220 || (((finfo->info->discard == discard_sec_merge
9221 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
9222 || finfo->info->discard == discard_l)
9223 && bfd_is_local_label_name (input_bfd, name)))
9224 continue;
9225
9226 osym = *isym;
9227
9228 /* Adjust the section index for the output file. */
9229 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9230 isec->output_section);
9231 if (osym.st_shndx == SHN_BAD)
9232 return FALSE;
9233
9234 /* ELF symbols in relocatable files are section relative, but
9235 in executable files they are virtual addresses. Note that
9236 this code assumes that all ELF sections have an associated
9237 BFD section with a reasonable value for output_offset; below
9238 we assume that they also have a reasonable value for
9239 output_section. Any special sections must be set up to meet
9240 these requirements. */
9241 osym.st_value += isec->output_offset;
9242 if (! finfo->info->relocatable)
9243 {
9244 osym.st_value += isec->output_section->vma;
9245 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9246 {
9247 /* STT_TLS symbols are relative to PT_TLS segment base. */
9248 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9249 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9250 }
9251 }
9252
9253 indx = bfd_get_symcount (output_bfd);
9254 ret = elf_link_output_sym (finfo, name, &osym, isec, NULL);
9255 if (ret == 0)
9256 return FALSE;
9257 else if (ret == 1)
9258 *pindex = indx;
9259 }
9260
9261 /* Relocate the contents of each section. */
9262 sym_hashes = elf_sym_hashes (input_bfd);
9263 for (o = input_bfd->sections; o != NULL; o = o->next)
9264 {
9265 bfd_byte *contents;
9266
9267 if (! o->linker_mark)
9268 {
9269 /* This section was omitted from the link. */
9270 continue;
9271 }
9272
9273 if (finfo->info->relocatable
9274 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9275 {
9276 /* Deal with the group signature symbol. */
9277 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9278 unsigned long symndx = sec_data->this_hdr.sh_info;
9279 asection *osec = o->output_section;
9280
9281 if (symndx >= locsymcount
9282 || (elf_bad_symtab (input_bfd)
9283 && finfo->sections[symndx] == NULL))
9284 {
9285 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9286 while (h->root.type == bfd_link_hash_indirect
9287 || h->root.type == bfd_link_hash_warning)
9288 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9289 /* Arrange for symbol to be output. */
9290 h->indx = -2;
9291 elf_section_data (osec)->this_hdr.sh_info = -2;
9292 }
9293 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9294 {
9295 /* We'll use the output section target_index. */
9296 asection *sec = finfo->sections[symndx]->output_section;
9297 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9298 }
9299 else
9300 {
9301 if (finfo->indices[symndx] == -1)
9302 {
9303 /* Otherwise output the local symbol now. */
9304 Elf_Internal_Sym sym = isymbuf[symndx];
9305 asection *sec = finfo->sections[symndx]->output_section;
9306 const char *name;
9307 long indx;
9308 int ret;
9309
9310 name = bfd_elf_string_from_elf_section (input_bfd,
9311 symtab_hdr->sh_link,
9312 sym.st_name);
9313 if (name == NULL)
9314 return FALSE;
9315
9316 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9317 sec);
9318 if (sym.st_shndx == SHN_BAD)
9319 return FALSE;
9320
9321 sym.st_value += o->output_offset;
9322
9323 indx = bfd_get_symcount (output_bfd);
9324 ret = elf_link_output_sym (finfo, name, &sym, o, NULL);
9325 if (ret == 0)
9326 return FALSE;
9327 else if (ret == 1)
9328 finfo->indices[symndx] = indx;
9329 else
9330 abort ();
9331 }
9332 elf_section_data (osec)->this_hdr.sh_info
9333 = finfo->indices[symndx];
9334 }
9335 }
9336
9337 if ((o->flags & SEC_HAS_CONTENTS) == 0
9338 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9339 continue;
9340
9341 if ((o->flags & SEC_LINKER_CREATED) != 0)
9342 {
9343 /* Section was created by _bfd_elf_link_create_dynamic_sections
9344 or somesuch. */
9345 continue;
9346 }
9347
9348 /* Get the contents of the section. They have been cached by a
9349 relaxation routine. Note that o is a section in an input
9350 file, so the contents field will not have been set by any of
9351 the routines which work on output files. */
9352 if (elf_section_data (o)->this_hdr.contents != NULL)
9353 contents = elf_section_data (o)->this_hdr.contents;
9354 else
9355 {
9356 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
9357
9358 contents = finfo->contents;
9359 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
9360 return FALSE;
9361 }
9362
9363 if ((o->flags & SEC_RELOC) != 0)
9364 {
9365 Elf_Internal_Rela *internal_relocs;
9366 Elf_Internal_Rela *rel, *relend;
9367 bfd_vma r_type_mask;
9368 int r_sym_shift;
9369 int action_discarded;
9370 int ret;
9371
9372 /* Get the swapped relocs. */
9373 internal_relocs
9374 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9375 finfo->internal_relocs, FALSE);
9376 if (internal_relocs == NULL
9377 && o->reloc_count > 0)
9378 return FALSE;
9379
9380 if (bed->s->arch_size == 32)
9381 {
9382 r_type_mask = 0xff;
9383 r_sym_shift = 8;
9384 }
9385 else
9386 {
9387 r_type_mask = 0xffffffff;
9388 r_sym_shift = 32;
9389 }
9390
9391 action_discarded = -1;
9392 if (!elf_section_ignore_discarded_relocs (o))
9393 action_discarded = (*bed->action_discarded) (o);
9394
9395 /* Run through the relocs evaluating complex reloc symbols and
9396 looking for relocs against symbols from discarded sections
9397 or section symbols from removed link-once sections.
9398 Complain about relocs against discarded sections. Zero
9399 relocs against removed link-once sections. */
9400
9401 rel = internal_relocs;
9402 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9403 for ( ; rel < relend; rel++)
9404 {
9405 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9406 unsigned int s_type;
9407 asection **ps, *sec;
9408 struct elf_link_hash_entry *h = NULL;
9409 const char *sym_name;
9410
9411 if (r_symndx == STN_UNDEF)
9412 continue;
9413
9414 if (r_symndx >= locsymcount
9415 || (elf_bad_symtab (input_bfd)
9416 && finfo->sections[r_symndx] == NULL))
9417 {
9418 h = sym_hashes[r_symndx - extsymoff];
9419
9420 /* Badly formatted input files can contain relocs that
9421 reference non-existant symbols. Check here so that
9422 we do not seg fault. */
9423 if (h == NULL)
9424 {
9425 char buffer [32];
9426
9427 sprintf_vma (buffer, rel->r_info);
9428 (*_bfd_error_handler)
9429 (_("error: %B contains a reloc (0x%s) for section %A "
9430 "that references a non-existent global symbol"),
9431 input_bfd, o, buffer);
9432 bfd_set_error (bfd_error_bad_value);
9433 return FALSE;
9434 }
9435
9436 while (h->root.type == bfd_link_hash_indirect
9437 || h->root.type == bfd_link_hash_warning)
9438 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9439
9440 s_type = h->type;
9441
9442 ps = NULL;
9443 if (h->root.type == bfd_link_hash_defined
9444 || h->root.type == bfd_link_hash_defweak)
9445 ps = &h->root.u.def.section;
9446
9447 sym_name = h->root.root.string;
9448 }
9449 else
9450 {
9451 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9452
9453 s_type = ELF_ST_TYPE (sym->st_info);
9454 ps = &finfo->sections[r_symndx];
9455 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9456 sym, *ps);
9457 }
9458
9459 if ((s_type == STT_RELC || s_type == STT_SRELC)
9460 && !finfo->info->relocatable)
9461 {
9462 bfd_vma val;
9463 bfd_vma dot = (rel->r_offset
9464 + o->output_offset + o->output_section->vma);
9465 #ifdef DEBUG
9466 printf ("Encountered a complex symbol!");
9467 printf (" (input_bfd %s, section %s, reloc %ld\n",
9468 input_bfd->filename, o->name,
9469 (long) (rel - internal_relocs));
9470 printf (" symbol: idx %8.8lx, name %s\n",
9471 r_symndx, sym_name);
9472 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9473 (unsigned long) rel->r_info,
9474 (unsigned long) rel->r_offset);
9475 #endif
9476 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9477 isymbuf, locsymcount, s_type == STT_SRELC))
9478 return FALSE;
9479
9480 /* Symbol evaluated OK. Update to absolute value. */
9481 set_symbol_value (input_bfd, isymbuf, locsymcount,
9482 r_symndx, val);
9483 continue;
9484 }
9485
9486 if (action_discarded != -1 && ps != NULL)
9487 {
9488 /* Complain if the definition comes from a
9489 discarded section. */
9490 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9491 {
9492 BFD_ASSERT (r_symndx != STN_UNDEF);
9493 if (action_discarded & COMPLAIN)
9494 (*finfo->info->callbacks->einfo)
9495 (_("%X`%s' referenced in section `%A' of %B: "
9496 "defined in discarded section `%A' of %B\n"),
9497 sym_name, o, input_bfd, sec, sec->owner);
9498
9499 /* Try to do the best we can to support buggy old
9500 versions of gcc. Pretend that the symbol is
9501 really defined in the kept linkonce section.
9502 FIXME: This is quite broken. Modifying the
9503 symbol here means we will be changing all later
9504 uses of the symbol, not just in this section. */
9505 if (action_discarded & PRETEND)
9506 {
9507 asection *kept;
9508
9509 kept = _bfd_elf_check_kept_section (sec,
9510 finfo->info);
9511 if (kept != NULL)
9512 {
9513 *ps = kept;
9514 continue;
9515 }
9516 }
9517 }
9518 }
9519 }
9520
9521 /* Relocate the section by invoking a back end routine.
9522
9523 The back end routine is responsible for adjusting the
9524 section contents as necessary, and (if using Rela relocs
9525 and generating a relocatable output file) adjusting the
9526 reloc addend as necessary.
9527
9528 The back end routine does not have to worry about setting
9529 the reloc address or the reloc symbol index.
9530
9531 The back end routine is given a pointer to the swapped in
9532 internal symbols, and can access the hash table entries
9533 for the external symbols via elf_sym_hashes (input_bfd).
9534
9535 When generating relocatable output, the back end routine
9536 must handle STB_LOCAL/STT_SECTION symbols specially. The
9537 output symbol is going to be a section symbol
9538 corresponding to the output section, which will require
9539 the addend to be adjusted. */
9540
9541 ret = (*relocate_section) (output_bfd, finfo->info,
9542 input_bfd, o, contents,
9543 internal_relocs,
9544 isymbuf,
9545 finfo->sections);
9546 if (!ret)
9547 return FALSE;
9548
9549 if (ret == 2
9550 || finfo->info->relocatable
9551 || finfo->info->emitrelocations)
9552 {
9553 Elf_Internal_Rela *irela;
9554 Elf_Internal_Rela *irelaend, *irelamid;
9555 bfd_vma last_offset;
9556 struct elf_link_hash_entry **rel_hash;
9557 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9558 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9559 unsigned int next_erel;
9560 bfd_boolean rela_normal;
9561 struct bfd_elf_section_data *esdi, *esdo;
9562
9563 esdi = elf_section_data (o);
9564 esdo = elf_section_data (o->output_section);
9565 rela_normal = FALSE;
9566
9567 /* Adjust the reloc addresses and symbol indices. */
9568
9569 irela = internal_relocs;
9570 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9571 rel_hash = esdo->rel.hashes + esdo->rel.count;
9572 /* We start processing the REL relocs, if any. When we reach
9573 IRELAMID in the loop, we switch to the RELA relocs. */
9574 irelamid = irela;
9575 if (esdi->rel.hdr != NULL)
9576 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9577 * bed->s->int_rels_per_ext_rel);
9578 rel_hash_list = rel_hash;
9579 rela_hash_list = NULL;
9580 last_offset = o->output_offset;
9581 if (!finfo->info->relocatable)
9582 last_offset += o->output_section->vma;
9583 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9584 {
9585 unsigned long r_symndx;
9586 asection *sec;
9587 Elf_Internal_Sym sym;
9588
9589 if (next_erel == bed->s->int_rels_per_ext_rel)
9590 {
9591 rel_hash++;
9592 next_erel = 0;
9593 }
9594
9595 if (irela == irelamid)
9596 {
9597 rel_hash = esdo->rela.hashes + esdo->rela.count;
9598 rela_hash_list = rel_hash;
9599 rela_normal = bed->rela_normal;
9600 }
9601
9602 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9603 finfo->info, o,
9604 irela->r_offset);
9605 if (irela->r_offset >= (bfd_vma) -2)
9606 {
9607 /* This is a reloc for a deleted entry or somesuch.
9608 Turn it into an R_*_NONE reloc, at the same
9609 offset as the last reloc. elf_eh_frame.c and
9610 bfd_elf_discard_info rely on reloc offsets
9611 being ordered. */
9612 irela->r_offset = last_offset;
9613 irela->r_info = 0;
9614 irela->r_addend = 0;
9615 continue;
9616 }
9617
9618 irela->r_offset += o->output_offset;
9619
9620 /* Relocs in an executable have to be virtual addresses. */
9621 if (!finfo->info->relocatable)
9622 irela->r_offset += o->output_section->vma;
9623
9624 last_offset = irela->r_offset;
9625
9626 r_symndx = irela->r_info >> r_sym_shift;
9627 if (r_symndx == STN_UNDEF)
9628 continue;
9629
9630 if (r_symndx >= locsymcount
9631 || (elf_bad_symtab (input_bfd)
9632 && finfo->sections[r_symndx] == NULL))
9633 {
9634 struct elf_link_hash_entry *rh;
9635 unsigned long indx;
9636
9637 /* This is a reloc against a global symbol. We
9638 have not yet output all the local symbols, so
9639 we do not know the symbol index of any global
9640 symbol. We set the rel_hash entry for this
9641 reloc to point to the global hash table entry
9642 for this symbol. The symbol index is then
9643 set at the end of bfd_elf_final_link. */
9644 indx = r_symndx - extsymoff;
9645 rh = elf_sym_hashes (input_bfd)[indx];
9646 while (rh->root.type == bfd_link_hash_indirect
9647 || rh->root.type == bfd_link_hash_warning)
9648 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9649
9650 /* Setting the index to -2 tells
9651 elf_link_output_extsym that this symbol is
9652 used by a reloc. */
9653 BFD_ASSERT (rh->indx < 0);
9654 rh->indx = -2;
9655
9656 *rel_hash = rh;
9657
9658 continue;
9659 }
9660
9661 /* This is a reloc against a local symbol. */
9662
9663 *rel_hash = NULL;
9664 sym = isymbuf[r_symndx];
9665 sec = finfo->sections[r_symndx];
9666 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9667 {
9668 /* I suppose the backend ought to fill in the
9669 section of any STT_SECTION symbol against a
9670 processor specific section. */
9671 r_symndx = STN_UNDEF;
9672 if (bfd_is_abs_section (sec))
9673 ;
9674 else if (sec == NULL || sec->owner == NULL)
9675 {
9676 bfd_set_error (bfd_error_bad_value);
9677 return FALSE;
9678 }
9679 else
9680 {
9681 asection *osec = sec->output_section;
9682
9683 /* If we have discarded a section, the output
9684 section will be the absolute section. In
9685 case of discarded SEC_MERGE sections, use
9686 the kept section. relocate_section should
9687 have already handled discarded linkonce
9688 sections. */
9689 if (bfd_is_abs_section (osec)
9690 && sec->kept_section != NULL
9691 && sec->kept_section->output_section != NULL)
9692 {
9693 osec = sec->kept_section->output_section;
9694 irela->r_addend -= osec->vma;
9695 }
9696
9697 if (!bfd_is_abs_section (osec))
9698 {
9699 r_symndx = osec->target_index;
9700 if (r_symndx == STN_UNDEF)
9701 {
9702 struct elf_link_hash_table *htab;
9703 asection *oi;
9704
9705 htab = elf_hash_table (finfo->info);
9706 oi = htab->text_index_section;
9707 if ((osec->flags & SEC_READONLY) == 0
9708 && htab->data_index_section != NULL)
9709 oi = htab->data_index_section;
9710
9711 if (oi != NULL)
9712 {
9713 irela->r_addend += osec->vma - oi->vma;
9714 r_symndx = oi->target_index;
9715 }
9716 }
9717
9718 BFD_ASSERT (r_symndx != STN_UNDEF);
9719 }
9720 }
9721
9722 /* Adjust the addend according to where the
9723 section winds up in the output section. */
9724 if (rela_normal)
9725 irela->r_addend += sec->output_offset;
9726 }
9727 else
9728 {
9729 if (finfo->indices[r_symndx] == -1)
9730 {
9731 unsigned long shlink;
9732 const char *name;
9733 asection *osec;
9734 long indx;
9735
9736 if (finfo->info->strip == strip_all)
9737 {
9738 /* You can't do ld -r -s. */
9739 bfd_set_error (bfd_error_invalid_operation);
9740 return FALSE;
9741 }
9742
9743 /* This symbol was skipped earlier, but
9744 since it is needed by a reloc, we
9745 must output it now. */
9746 shlink = symtab_hdr->sh_link;
9747 name = (bfd_elf_string_from_elf_section
9748 (input_bfd, shlink, sym.st_name));
9749 if (name == NULL)
9750 return FALSE;
9751
9752 osec = sec->output_section;
9753 sym.st_shndx =
9754 _bfd_elf_section_from_bfd_section (output_bfd,
9755 osec);
9756 if (sym.st_shndx == SHN_BAD)
9757 return FALSE;
9758
9759 sym.st_value += sec->output_offset;
9760 if (! finfo->info->relocatable)
9761 {
9762 sym.st_value += osec->vma;
9763 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9764 {
9765 /* STT_TLS symbols are relative to PT_TLS
9766 segment base. */
9767 BFD_ASSERT (elf_hash_table (finfo->info)
9768 ->tls_sec != NULL);
9769 sym.st_value -= (elf_hash_table (finfo->info)
9770 ->tls_sec->vma);
9771 }
9772 }
9773
9774 indx = bfd_get_symcount (output_bfd);
9775 ret = elf_link_output_sym (finfo, name, &sym, sec,
9776 NULL);
9777 if (ret == 0)
9778 return FALSE;
9779 else if (ret == 1)
9780 finfo->indices[r_symndx] = indx;
9781 else
9782 abort ();
9783 }
9784
9785 r_symndx = finfo->indices[r_symndx];
9786 }
9787
9788 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9789 | (irela->r_info & r_type_mask));
9790 }
9791
9792 /* Swap out the relocs. */
9793 input_rel_hdr = esdi->rel.hdr;
9794 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
9795 {
9796 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9797 input_rel_hdr,
9798 internal_relocs,
9799 rel_hash_list))
9800 return FALSE;
9801 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9802 * bed->s->int_rels_per_ext_rel);
9803 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9804 }
9805
9806 input_rela_hdr = esdi->rela.hdr;
9807 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
9808 {
9809 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9810 input_rela_hdr,
9811 internal_relocs,
9812 rela_hash_list))
9813 return FALSE;
9814 }
9815 }
9816 }
9817
9818 /* Write out the modified section contents. */
9819 if (bed->elf_backend_write_section
9820 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9821 contents))
9822 {
9823 /* Section written out. */
9824 }
9825 else switch (o->sec_info_type)
9826 {
9827 case ELF_INFO_TYPE_STABS:
9828 if (! (_bfd_write_section_stabs
9829 (output_bfd,
9830 &elf_hash_table (finfo->info)->stab_info,
9831 o, &elf_section_data (o)->sec_info, contents)))
9832 return FALSE;
9833 break;
9834 case ELF_INFO_TYPE_MERGE:
9835 if (! _bfd_write_merged_section (output_bfd, o,
9836 elf_section_data (o)->sec_info))
9837 return FALSE;
9838 break;
9839 case ELF_INFO_TYPE_EH_FRAME:
9840 {
9841 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9842 o, contents))
9843 return FALSE;
9844 }
9845 break;
9846 default:
9847 {
9848 /* FIXME: octets_per_byte. */
9849 if (! (o->flags & SEC_EXCLUDE)
9850 && ! bfd_set_section_contents (output_bfd, o->output_section,
9851 contents,
9852 (file_ptr) o->output_offset,
9853 o->size))
9854 return FALSE;
9855 }
9856 break;
9857 }
9858 }
9859
9860 return TRUE;
9861 }
9862
9863 /* Generate a reloc when linking an ELF file. This is a reloc
9864 requested by the linker, and does not come from any input file. This
9865 is used to build constructor and destructor tables when linking
9866 with -Ur. */
9867
9868 static bfd_boolean
9869 elf_reloc_link_order (bfd *output_bfd,
9870 struct bfd_link_info *info,
9871 asection *output_section,
9872 struct bfd_link_order *link_order)
9873 {
9874 reloc_howto_type *howto;
9875 long indx;
9876 bfd_vma offset;
9877 bfd_vma addend;
9878 struct bfd_elf_section_reloc_data *reldata;
9879 struct elf_link_hash_entry **rel_hash_ptr;
9880 Elf_Internal_Shdr *rel_hdr;
9881 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9882 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9883 bfd_byte *erel;
9884 unsigned int i;
9885 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
9886
9887 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9888 if (howto == NULL)
9889 {
9890 bfd_set_error (bfd_error_bad_value);
9891 return FALSE;
9892 }
9893
9894 addend = link_order->u.reloc.p->addend;
9895
9896 if (esdo->rel.hdr)
9897 reldata = &esdo->rel;
9898 else if (esdo->rela.hdr)
9899 reldata = &esdo->rela;
9900 else
9901 {
9902 reldata = NULL;
9903 BFD_ASSERT (0);
9904 }
9905
9906 /* Figure out the symbol index. */
9907 rel_hash_ptr = reldata->hashes + reldata->count;
9908 if (link_order->type == bfd_section_reloc_link_order)
9909 {
9910 indx = link_order->u.reloc.p->u.section->target_index;
9911 BFD_ASSERT (indx != 0);
9912 *rel_hash_ptr = NULL;
9913 }
9914 else
9915 {
9916 struct elf_link_hash_entry *h;
9917
9918 /* Treat a reloc against a defined symbol as though it were
9919 actually against the section. */
9920 h = ((struct elf_link_hash_entry *)
9921 bfd_wrapped_link_hash_lookup (output_bfd, info,
9922 link_order->u.reloc.p->u.name,
9923 FALSE, FALSE, TRUE));
9924 if (h != NULL
9925 && (h->root.type == bfd_link_hash_defined
9926 || h->root.type == bfd_link_hash_defweak))
9927 {
9928 asection *section;
9929
9930 section = h->root.u.def.section;
9931 indx = section->output_section->target_index;
9932 *rel_hash_ptr = NULL;
9933 /* It seems that we ought to add the symbol value to the
9934 addend here, but in practice it has already been added
9935 because it was passed to constructor_callback. */
9936 addend += section->output_section->vma + section->output_offset;
9937 }
9938 else if (h != NULL)
9939 {
9940 /* Setting the index to -2 tells elf_link_output_extsym that
9941 this symbol is used by a reloc. */
9942 h->indx = -2;
9943 *rel_hash_ptr = h;
9944 indx = 0;
9945 }
9946 else
9947 {
9948 if (! ((*info->callbacks->unattached_reloc)
9949 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9950 return FALSE;
9951 indx = 0;
9952 }
9953 }
9954
9955 /* If this is an inplace reloc, we must write the addend into the
9956 object file. */
9957 if (howto->partial_inplace && addend != 0)
9958 {
9959 bfd_size_type size;
9960 bfd_reloc_status_type rstat;
9961 bfd_byte *buf;
9962 bfd_boolean ok;
9963 const char *sym_name;
9964
9965 size = (bfd_size_type) bfd_get_reloc_size (howto);
9966 buf = (bfd_byte *) bfd_zmalloc (size);
9967 if (buf == NULL)
9968 return FALSE;
9969 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
9970 switch (rstat)
9971 {
9972 case bfd_reloc_ok:
9973 break;
9974
9975 default:
9976 case bfd_reloc_outofrange:
9977 abort ();
9978
9979 case bfd_reloc_overflow:
9980 if (link_order->type == bfd_section_reloc_link_order)
9981 sym_name = bfd_section_name (output_bfd,
9982 link_order->u.reloc.p->u.section);
9983 else
9984 sym_name = link_order->u.reloc.p->u.name;
9985 if (! ((*info->callbacks->reloc_overflow)
9986 (info, NULL, sym_name, howto->name, addend, NULL,
9987 NULL, (bfd_vma) 0)))
9988 {
9989 free (buf);
9990 return FALSE;
9991 }
9992 break;
9993 }
9994 ok = bfd_set_section_contents (output_bfd, output_section, buf,
9995 link_order->offset, size);
9996 free (buf);
9997 if (! ok)
9998 return FALSE;
9999 }
10000
10001 /* The address of a reloc is relative to the section in a
10002 relocatable file, and is a virtual address in an executable
10003 file. */
10004 offset = link_order->offset;
10005 if (! info->relocatable)
10006 offset += output_section->vma;
10007
10008 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10009 {
10010 irel[i].r_offset = offset;
10011 irel[i].r_info = 0;
10012 irel[i].r_addend = 0;
10013 }
10014 if (bed->s->arch_size == 32)
10015 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10016 else
10017 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10018
10019 rel_hdr = reldata->hdr;
10020 erel = rel_hdr->contents;
10021 if (rel_hdr->sh_type == SHT_REL)
10022 {
10023 erel += reldata->count * bed->s->sizeof_rel;
10024 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10025 }
10026 else
10027 {
10028 irel[0].r_addend = addend;
10029 erel += reldata->count * bed->s->sizeof_rela;
10030 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10031 }
10032
10033 ++reldata->count;
10034
10035 return TRUE;
10036 }
10037
10038
10039 /* Get the output vma of the section pointed to by the sh_link field. */
10040
10041 static bfd_vma
10042 elf_get_linked_section_vma (struct bfd_link_order *p)
10043 {
10044 Elf_Internal_Shdr **elf_shdrp;
10045 asection *s;
10046 int elfsec;
10047
10048 s = p->u.indirect.section;
10049 elf_shdrp = elf_elfsections (s->owner);
10050 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10051 elfsec = elf_shdrp[elfsec]->sh_link;
10052 /* PR 290:
10053 The Intel C compiler generates SHT_IA_64_UNWIND with
10054 SHF_LINK_ORDER. But it doesn't set the sh_link or
10055 sh_info fields. Hence we could get the situation
10056 where elfsec is 0. */
10057 if (elfsec == 0)
10058 {
10059 const struct elf_backend_data *bed
10060 = get_elf_backend_data (s->owner);
10061 if (bed->link_order_error_handler)
10062 bed->link_order_error_handler
10063 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10064 return 0;
10065 }
10066 else
10067 {
10068 s = elf_shdrp[elfsec]->bfd_section;
10069 return s->output_section->vma + s->output_offset;
10070 }
10071 }
10072
10073
10074 /* Compare two sections based on the locations of the sections they are
10075 linked to. Used by elf_fixup_link_order. */
10076
10077 static int
10078 compare_link_order (const void * a, const void * b)
10079 {
10080 bfd_vma apos;
10081 bfd_vma bpos;
10082
10083 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10084 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10085 if (apos < bpos)
10086 return -1;
10087 return apos > bpos;
10088 }
10089
10090
10091 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10092 order as their linked sections. Returns false if this could not be done
10093 because an output section includes both ordered and unordered
10094 sections. Ideally we'd do this in the linker proper. */
10095
10096 static bfd_boolean
10097 elf_fixup_link_order (bfd *abfd, asection *o)
10098 {
10099 int seen_linkorder;
10100 int seen_other;
10101 int n;
10102 struct bfd_link_order *p;
10103 bfd *sub;
10104 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10105 unsigned elfsec;
10106 struct bfd_link_order **sections;
10107 asection *s, *other_sec, *linkorder_sec;
10108 bfd_vma offset;
10109
10110 other_sec = NULL;
10111 linkorder_sec = NULL;
10112 seen_other = 0;
10113 seen_linkorder = 0;
10114 for (p = o->map_head.link_order; p != NULL; p = p->next)
10115 {
10116 if (p->type == bfd_indirect_link_order)
10117 {
10118 s = p->u.indirect.section;
10119 sub = s->owner;
10120 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10121 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10122 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10123 && elfsec < elf_numsections (sub)
10124 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10125 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10126 {
10127 seen_linkorder++;
10128 linkorder_sec = s;
10129 }
10130 else
10131 {
10132 seen_other++;
10133 other_sec = s;
10134 }
10135 }
10136 else
10137 seen_other++;
10138
10139 if (seen_other && seen_linkorder)
10140 {
10141 if (other_sec && linkorder_sec)
10142 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10143 o, linkorder_sec,
10144 linkorder_sec->owner, other_sec,
10145 other_sec->owner);
10146 else
10147 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10148 o);
10149 bfd_set_error (bfd_error_bad_value);
10150 return FALSE;
10151 }
10152 }
10153
10154 if (!seen_linkorder)
10155 return TRUE;
10156
10157 sections = (struct bfd_link_order **)
10158 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10159 if (sections == NULL)
10160 return FALSE;
10161 seen_linkorder = 0;
10162
10163 for (p = o->map_head.link_order; p != NULL; p = p->next)
10164 {
10165 sections[seen_linkorder++] = p;
10166 }
10167 /* Sort the input sections in the order of their linked section. */
10168 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10169 compare_link_order);
10170
10171 /* Change the offsets of the sections. */
10172 offset = 0;
10173 for (n = 0; n < seen_linkorder; n++)
10174 {
10175 s = sections[n]->u.indirect.section;
10176 offset &= ~(bfd_vma) 0 << s->alignment_power;
10177 s->output_offset = offset;
10178 sections[n]->offset = offset;
10179 /* FIXME: octets_per_byte. */
10180 offset += sections[n]->size;
10181 }
10182
10183 free (sections);
10184 return TRUE;
10185 }
10186
10187
10188 /* Do the final step of an ELF link. */
10189
10190 bfd_boolean
10191 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10192 {
10193 bfd_boolean dynamic;
10194 bfd_boolean emit_relocs;
10195 bfd *dynobj;
10196 struct elf_final_link_info finfo;
10197 asection *o;
10198 struct bfd_link_order *p;
10199 bfd *sub;
10200 bfd_size_type max_contents_size;
10201 bfd_size_type max_external_reloc_size;
10202 bfd_size_type max_internal_reloc_count;
10203 bfd_size_type max_sym_count;
10204 bfd_size_type max_sym_shndx_count;
10205 file_ptr off;
10206 Elf_Internal_Sym elfsym;
10207 unsigned int i;
10208 Elf_Internal_Shdr *symtab_hdr;
10209 Elf_Internal_Shdr *symtab_shndx_hdr;
10210 Elf_Internal_Shdr *symstrtab_hdr;
10211 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10212 struct elf_outext_info eoinfo;
10213 bfd_boolean merged;
10214 size_t relativecount = 0;
10215 asection *reldyn = 0;
10216 bfd_size_type amt;
10217 asection *attr_section = NULL;
10218 bfd_vma attr_size = 0;
10219 const char *std_attrs_section;
10220
10221 if (! is_elf_hash_table (info->hash))
10222 return FALSE;
10223
10224 if (info->shared)
10225 abfd->flags |= DYNAMIC;
10226
10227 dynamic = elf_hash_table (info)->dynamic_sections_created;
10228 dynobj = elf_hash_table (info)->dynobj;
10229
10230 emit_relocs = (info->relocatable
10231 || info->emitrelocations);
10232
10233 finfo.info = info;
10234 finfo.output_bfd = abfd;
10235 finfo.symstrtab = _bfd_elf_stringtab_init ();
10236 if (finfo.symstrtab == NULL)
10237 return FALSE;
10238
10239 if (! dynamic)
10240 {
10241 finfo.dynsym_sec = NULL;
10242 finfo.hash_sec = NULL;
10243 finfo.symver_sec = NULL;
10244 }
10245 else
10246 {
10247 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10248 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
10249 BFD_ASSERT (finfo.dynsym_sec != NULL);
10250 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10251 /* Note that it is OK if symver_sec is NULL. */
10252 }
10253
10254 finfo.contents = NULL;
10255 finfo.external_relocs = NULL;
10256 finfo.internal_relocs = NULL;
10257 finfo.external_syms = NULL;
10258 finfo.locsym_shndx = NULL;
10259 finfo.internal_syms = NULL;
10260 finfo.indices = NULL;
10261 finfo.sections = NULL;
10262 finfo.symbuf = NULL;
10263 finfo.symshndxbuf = NULL;
10264 finfo.symbuf_count = 0;
10265 finfo.shndxbuf_size = 0;
10266
10267 /* The object attributes have been merged. Remove the input
10268 sections from the link, and set the contents of the output
10269 secton. */
10270 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10271 for (o = abfd->sections; o != NULL; o = o->next)
10272 {
10273 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10274 || strcmp (o->name, ".gnu.attributes") == 0)
10275 {
10276 for (p = o->map_head.link_order; p != NULL; p = p->next)
10277 {
10278 asection *input_section;
10279
10280 if (p->type != bfd_indirect_link_order)
10281 continue;
10282 input_section = p->u.indirect.section;
10283 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10284 elf_link_input_bfd ignores this section. */
10285 input_section->flags &= ~SEC_HAS_CONTENTS;
10286 }
10287
10288 attr_size = bfd_elf_obj_attr_size (abfd);
10289 if (attr_size)
10290 {
10291 bfd_set_section_size (abfd, o, attr_size);
10292 attr_section = o;
10293 /* Skip this section later on. */
10294 o->map_head.link_order = NULL;
10295 }
10296 else
10297 o->flags |= SEC_EXCLUDE;
10298 }
10299 }
10300
10301 /* Count up the number of relocations we will output for each output
10302 section, so that we know the sizes of the reloc sections. We
10303 also figure out some maximum sizes. */
10304 max_contents_size = 0;
10305 max_external_reloc_size = 0;
10306 max_internal_reloc_count = 0;
10307 max_sym_count = 0;
10308 max_sym_shndx_count = 0;
10309 merged = FALSE;
10310 for (o = abfd->sections; o != NULL; o = o->next)
10311 {
10312 struct bfd_elf_section_data *esdo = elf_section_data (o);
10313 o->reloc_count = 0;
10314
10315 for (p = o->map_head.link_order; p != NULL; p = p->next)
10316 {
10317 unsigned int reloc_count = 0;
10318 struct bfd_elf_section_data *esdi = NULL;
10319
10320 if (p->type == bfd_section_reloc_link_order
10321 || p->type == bfd_symbol_reloc_link_order)
10322 reloc_count = 1;
10323 else if (p->type == bfd_indirect_link_order)
10324 {
10325 asection *sec;
10326
10327 sec = p->u.indirect.section;
10328 esdi = elf_section_data (sec);
10329
10330 /* Mark all sections which are to be included in the
10331 link. This will normally be every section. We need
10332 to do this so that we can identify any sections which
10333 the linker has decided to not include. */
10334 sec->linker_mark = TRUE;
10335
10336 if (sec->flags & SEC_MERGE)
10337 merged = TRUE;
10338
10339 if (info->relocatable || info->emitrelocations)
10340 reloc_count = sec->reloc_count;
10341 else if (bed->elf_backend_count_relocs)
10342 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10343
10344 if (sec->rawsize > max_contents_size)
10345 max_contents_size = sec->rawsize;
10346 if (sec->size > max_contents_size)
10347 max_contents_size = sec->size;
10348
10349 /* We are interested in just local symbols, not all
10350 symbols. */
10351 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10352 && (sec->owner->flags & DYNAMIC) == 0)
10353 {
10354 size_t sym_count;
10355
10356 if (elf_bad_symtab (sec->owner))
10357 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10358 / bed->s->sizeof_sym);
10359 else
10360 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10361
10362 if (sym_count > max_sym_count)
10363 max_sym_count = sym_count;
10364
10365 if (sym_count > max_sym_shndx_count
10366 && elf_symtab_shndx (sec->owner) != 0)
10367 max_sym_shndx_count = sym_count;
10368
10369 if ((sec->flags & SEC_RELOC) != 0)
10370 {
10371 size_t ext_size = 0;
10372
10373 if (esdi->rel.hdr != NULL)
10374 ext_size = esdi->rel.hdr->sh_size;
10375 if (esdi->rela.hdr != NULL)
10376 ext_size += esdi->rela.hdr->sh_size;
10377
10378 if (ext_size > max_external_reloc_size)
10379 max_external_reloc_size = ext_size;
10380 if (sec->reloc_count > max_internal_reloc_count)
10381 max_internal_reloc_count = sec->reloc_count;
10382 }
10383 }
10384 }
10385
10386 if (reloc_count == 0)
10387 continue;
10388
10389 o->reloc_count += reloc_count;
10390
10391 if (p->type == bfd_indirect_link_order
10392 && (info->relocatable || info->emitrelocations))
10393 {
10394 if (esdi->rel.hdr)
10395 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10396 if (esdi->rela.hdr)
10397 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10398 }
10399 else
10400 {
10401 if (o->use_rela_p)
10402 esdo->rela.count += reloc_count;
10403 else
10404 esdo->rel.count += reloc_count;
10405 }
10406 }
10407
10408 if (o->reloc_count > 0)
10409 o->flags |= SEC_RELOC;
10410 else
10411 {
10412 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10413 set it (this is probably a bug) and if it is set
10414 assign_section_numbers will create a reloc section. */
10415 o->flags &=~ SEC_RELOC;
10416 }
10417
10418 /* If the SEC_ALLOC flag is not set, force the section VMA to
10419 zero. This is done in elf_fake_sections as well, but forcing
10420 the VMA to 0 here will ensure that relocs against these
10421 sections are handled correctly. */
10422 if ((o->flags & SEC_ALLOC) == 0
10423 && ! o->user_set_vma)
10424 o->vma = 0;
10425 }
10426
10427 if (! info->relocatable && merged)
10428 elf_link_hash_traverse (elf_hash_table (info),
10429 _bfd_elf_link_sec_merge_syms, abfd);
10430
10431 /* Figure out the file positions for everything but the symbol table
10432 and the relocs. We set symcount to force assign_section_numbers
10433 to create a symbol table. */
10434 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10435 BFD_ASSERT (! abfd->output_has_begun);
10436 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10437 goto error_return;
10438
10439 /* Set sizes, and assign file positions for reloc sections. */
10440 for (o = abfd->sections; o != NULL; o = o->next)
10441 {
10442 struct bfd_elf_section_data *esdo = elf_section_data (o);
10443 if ((o->flags & SEC_RELOC) != 0)
10444 {
10445 if (esdo->rel.hdr
10446 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10447 goto error_return;
10448
10449 if (esdo->rela.hdr
10450 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10451 goto error_return;
10452 }
10453
10454 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10455 to count upwards while actually outputting the relocations. */
10456 esdo->rel.count = 0;
10457 esdo->rela.count = 0;
10458 }
10459
10460 _bfd_elf_assign_file_positions_for_relocs (abfd);
10461
10462 /* We have now assigned file positions for all the sections except
10463 .symtab and .strtab. We start the .symtab section at the current
10464 file position, and write directly to it. We build the .strtab
10465 section in memory. */
10466 bfd_get_symcount (abfd) = 0;
10467 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10468 /* sh_name is set in prep_headers. */
10469 symtab_hdr->sh_type = SHT_SYMTAB;
10470 /* sh_flags, sh_addr and sh_size all start off zero. */
10471 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10472 /* sh_link is set in assign_section_numbers. */
10473 /* sh_info is set below. */
10474 /* sh_offset is set just below. */
10475 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10476
10477 off = elf_tdata (abfd)->next_file_pos;
10478 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10479
10480 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10481 incorrect. We do not yet know the size of the .symtab section.
10482 We correct next_file_pos below, after we do know the size. */
10483
10484 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10485 continuously seeking to the right position in the file. */
10486 if (! info->keep_memory || max_sym_count < 20)
10487 finfo.symbuf_size = 20;
10488 else
10489 finfo.symbuf_size = max_sym_count;
10490 amt = finfo.symbuf_size;
10491 amt *= bed->s->sizeof_sym;
10492 finfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10493 if (finfo.symbuf == NULL)
10494 goto error_return;
10495 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10496 {
10497 /* Wild guess at number of output symbols. realloc'd as needed. */
10498 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10499 finfo.shndxbuf_size = amt;
10500 amt *= sizeof (Elf_External_Sym_Shndx);
10501 finfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10502 if (finfo.symshndxbuf == NULL)
10503 goto error_return;
10504 }
10505
10506 /* Start writing out the symbol table. The first symbol is always a
10507 dummy symbol. */
10508 if (info->strip != strip_all
10509 || emit_relocs)
10510 {
10511 elfsym.st_value = 0;
10512 elfsym.st_size = 0;
10513 elfsym.st_info = 0;
10514 elfsym.st_other = 0;
10515 elfsym.st_shndx = SHN_UNDEF;
10516 if (elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10517 NULL) != 1)
10518 goto error_return;
10519 }
10520
10521 /* Output a symbol for each section. We output these even if we are
10522 discarding local symbols, since they are used for relocs. These
10523 symbols have no names. We store the index of each one in the
10524 index field of the section, so that we can find it again when
10525 outputting relocs. */
10526 if (info->strip != strip_all
10527 || emit_relocs)
10528 {
10529 elfsym.st_size = 0;
10530 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10531 elfsym.st_other = 0;
10532 elfsym.st_value = 0;
10533 for (i = 1; i < elf_numsections (abfd); i++)
10534 {
10535 o = bfd_section_from_elf_index (abfd, i);
10536 if (o != NULL)
10537 {
10538 o->target_index = bfd_get_symcount (abfd);
10539 elfsym.st_shndx = i;
10540 if (!info->relocatable)
10541 elfsym.st_value = o->vma;
10542 if (elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL) != 1)
10543 goto error_return;
10544 }
10545 }
10546 }
10547
10548 /* Allocate some memory to hold information read in from the input
10549 files. */
10550 if (max_contents_size != 0)
10551 {
10552 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10553 if (finfo.contents == NULL)
10554 goto error_return;
10555 }
10556
10557 if (max_external_reloc_size != 0)
10558 {
10559 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10560 if (finfo.external_relocs == NULL)
10561 goto error_return;
10562 }
10563
10564 if (max_internal_reloc_count != 0)
10565 {
10566 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10567 amt *= sizeof (Elf_Internal_Rela);
10568 finfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10569 if (finfo.internal_relocs == NULL)
10570 goto error_return;
10571 }
10572
10573 if (max_sym_count != 0)
10574 {
10575 amt = max_sym_count * bed->s->sizeof_sym;
10576 finfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10577 if (finfo.external_syms == NULL)
10578 goto error_return;
10579
10580 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10581 finfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10582 if (finfo.internal_syms == NULL)
10583 goto error_return;
10584
10585 amt = max_sym_count * sizeof (long);
10586 finfo.indices = (long int *) bfd_malloc (amt);
10587 if (finfo.indices == NULL)
10588 goto error_return;
10589
10590 amt = max_sym_count * sizeof (asection *);
10591 finfo.sections = (asection **) bfd_malloc (amt);
10592 if (finfo.sections == NULL)
10593 goto error_return;
10594 }
10595
10596 if (max_sym_shndx_count != 0)
10597 {
10598 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10599 finfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10600 if (finfo.locsym_shndx == NULL)
10601 goto error_return;
10602 }
10603
10604 if (elf_hash_table (info)->tls_sec)
10605 {
10606 bfd_vma base, end = 0;
10607 asection *sec;
10608
10609 for (sec = elf_hash_table (info)->tls_sec;
10610 sec && (sec->flags & SEC_THREAD_LOCAL);
10611 sec = sec->next)
10612 {
10613 bfd_size_type size = sec->size;
10614
10615 if (size == 0
10616 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10617 {
10618 struct bfd_link_order *ord = sec->map_tail.link_order;
10619
10620 if (ord != NULL)
10621 size = ord->offset + ord->size;
10622 }
10623 end = sec->vma + size;
10624 }
10625 base = elf_hash_table (info)->tls_sec->vma;
10626 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
10627 elf_hash_table (info)->tls_size = end - base;
10628 }
10629
10630 /* Reorder SHF_LINK_ORDER sections. */
10631 for (o = abfd->sections; o != NULL; o = o->next)
10632 {
10633 if (!elf_fixup_link_order (abfd, o))
10634 return FALSE;
10635 }
10636
10637 /* Since ELF permits relocations to be against local symbols, we
10638 must have the local symbols available when we do the relocations.
10639 Since we would rather only read the local symbols once, and we
10640 would rather not keep them in memory, we handle all the
10641 relocations for a single input file at the same time.
10642
10643 Unfortunately, there is no way to know the total number of local
10644 symbols until we have seen all of them, and the local symbol
10645 indices precede the global symbol indices. This means that when
10646 we are generating relocatable output, and we see a reloc against
10647 a global symbol, we can not know the symbol index until we have
10648 finished examining all the local symbols to see which ones we are
10649 going to output. To deal with this, we keep the relocations in
10650 memory, and don't output them until the end of the link. This is
10651 an unfortunate waste of memory, but I don't see a good way around
10652 it. Fortunately, it only happens when performing a relocatable
10653 link, which is not the common case. FIXME: If keep_memory is set
10654 we could write the relocs out and then read them again; I don't
10655 know how bad the memory loss will be. */
10656
10657 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10658 sub->output_has_begun = FALSE;
10659 for (o = abfd->sections; o != NULL; o = o->next)
10660 {
10661 for (p = o->map_head.link_order; p != NULL; p = p->next)
10662 {
10663 if (p->type == bfd_indirect_link_order
10664 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10665 == bfd_target_elf_flavour)
10666 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10667 {
10668 if (! sub->output_has_begun)
10669 {
10670 if (! elf_link_input_bfd (&finfo, sub))
10671 goto error_return;
10672 sub->output_has_begun = TRUE;
10673 }
10674 }
10675 else if (p->type == bfd_section_reloc_link_order
10676 || p->type == bfd_symbol_reloc_link_order)
10677 {
10678 if (! elf_reloc_link_order (abfd, info, o, p))
10679 goto error_return;
10680 }
10681 else
10682 {
10683 if (! _bfd_default_link_order (abfd, info, o, p))
10684 goto error_return;
10685 }
10686 }
10687 }
10688
10689 /* Free symbol buffer if needed. */
10690 if (!info->reduce_memory_overheads)
10691 {
10692 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10693 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10694 && elf_tdata (sub)->symbuf)
10695 {
10696 free (elf_tdata (sub)->symbuf);
10697 elf_tdata (sub)->symbuf = NULL;
10698 }
10699 }
10700
10701 /* Output any global symbols that got converted to local in a
10702 version script or due to symbol visibility. We do this in a
10703 separate step since ELF requires all local symbols to appear
10704 prior to any global symbols. FIXME: We should only do this if
10705 some global symbols were, in fact, converted to become local.
10706 FIXME: Will this work correctly with the Irix 5 linker? */
10707 eoinfo.failed = FALSE;
10708 eoinfo.finfo = &finfo;
10709 eoinfo.localsyms = TRUE;
10710 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10711 &eoinfo);
10712 if (eoinfo.failed)
10713 return FALSE;
10714
10715 /* If backend needs to output some local symbols not present in the hash
10716 table, do it now. */
10717 if (bed->elf_backend_output_arch_local_syms)
10718 {
10719 typedef int (*out_sym_func)
10720 (void *, const char *, Elf_Internal_Sym *, asection *,
10721 struct elf_link_hash_entry *);
10722
10723 if (! ((*bed->elf_backend_output_arch_local_syms)
10724 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10725 return FALSE;
10726 }
10727
10728 /* That wrote out all the local symbols. Finish up the symbol table
10729 with the global symbols. Even if we want to strip everything we
10730 can, we still need to deal with those global symbols that got
10731 converted to local in a version script. */
10732
10733 /* The sh_info field records the index of the first non local symbol. */
10734 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10735
10736 if (dynamic
10737 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10738 {
10739 Elf_Internal_Sym sym;
10740 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10741 long last_local = 0;
10742
10743 /* Write out the section symbols for the output sections. */
10744 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10745 {
10746 asection *s;
10747
10748 sym.st_size = 0;
10749 sym.st_name = 0;
10750 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10751 sym.st_other = 0;
10752
10753 for (s = abfd->sections; s != NULL; s = s->next)
10754 {
10755 int indx;
10756 bfd_byte *dest;
10757 long dynindx;
10758
10759 dynindx = elf_section_data (s)->dynindx;
10760 if (dynindx <= 0)
10761 continue;
10762 indx = elf_section_data (s)->this_idx;
10763 BFD_ASSERT (indx > 0);
10764 sym.st_shndx = indx;
10765 if (! check_dynsym (abfd, &sym))
10766 return FALSE;
10767 sym.st_value = s->vma;
10768 dest = dynsym + dynindx * bed->s->sizeof_sym;
10769 if (last_local < dynindx)
10770 last_local = dynindx;
10771 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10772 }
10773 }
10774
10775 /* Write out the local dynsyms. */
10776 if (elf_hash_table (info)->dynlocal)
10777 {
10778 struct elf_link_local_dynamic_entry *e;
10779 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10780 {
10781 asection *s;
10782 bfd_byte *dest;
10783
10784 /* Copy the internal symbol and turn off visibility.
10785 Note that we saved a word of storage and overwrote
10786 the original st_name with the dynstr_index. */
10787 sym = e->isym;
10788 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10789
10790 s = bfd_section_from_elf_index (e->input_bfd,
10791 e->isym.st_shndx);
10792 if (s != NULL)
10793 {
10794 sym.st_shndx =
10795 elf_section_data (s->output_section)->this_idx;
10796 if (! check_dynsym (abfd, &sym))
10797 return FALSE;
10798 sym.st_value = (s->output_section->vma
10799 + s->output_offset
10800 + e->isym.st_value);
10801 }
10802
10803 if (last_local < e->dynindx)
10804 last_local = e->dynindx;
10805
10806 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10807 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10808 }
10809 }
10810
10811 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10812 last_local + 1;
10813 }
10814
10815 /* We get the global symbols from the hash table. */
10816 eoinfo.failed = FALSE;
10817 eoinfo.localsyms = FALSE;
10818 eoinfo.finfo = &finfo;
10819 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10820 &eoinfo);
10821 if (eoinfo.failed)
10822 return FALSE;
10823
10824 /* If backend needs to output some symbols not present in the hash
10825 table, do it now. */
10826 if (bed->elf_backend_output_arch_syms)
10827 {
10828 typedef int (*out_sym_func)
10829 (void *, const char *, Elf_Internal_Sym *, asection *,
10830 struct elf_link_hash_entry *);
10831
10832 if (! ((*bed->elf_backend_output_arch_syms)
10833 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10834 return FALSE;
10835 }
10836
10837 /* Flush all symbols to the file. */
10838 if (! elf_link_flush_output_syms (&finfo, bed))
10839 return FALSE;
10840
10841 /* Now we know the size of the symtab section. */
10842 off += symtab_hdr->sh_size;
10843
10844 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10845 if (symtab_shndx_hdr->sh_name != 0)
10846 {
10847 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10848 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10849 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10850 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10851 symtab_shndx_hdr->sh_size = amt;
10852
10853 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10854 off, TRUE);
10855
10856 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10857 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10858 return FALSE;
10859 }
10860
10861
10862 /* Finish up and write out the symbol string table (.strtab)
10863 section. */
10864 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10865 /* sh_name was set in prep_headers. */
10866 symstrtab_hdr->sh_type = SHT_STRTAB;
10867 symstrtab_hdr->sh_flags = 0;
10868 symstrtab_hdr->sh_addr = 0;
10869 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10870 symstrtab_hdr->sh_entsize = 0;
10871 symstrtab_hdr->sh_link = 0;
10872 symstrtab_hdr->sh_info = 0;
10873 /* sh_offset is set just below. */
10874 symstrtab_hdr->sh_addralign = 1;
10875
10876 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10877 elf_tdata (abfd)->next_file_pos = off;
10878
10879 if (bfd_get_symcount (abfd) > 0)
10880 {
10881 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10882 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10883 return FALSE;
10884 }
10885
10886 /* Adjust the relocs to have the correct symbol indices. */
10887 for (o = abfd->sections; o != NULL; o = o->next)
10888 {
10889 struct bfd_elf_section_data *esdo = elf_section_data (o);
10890 if ((o->flags & SEC_RELOC) == 0)
10891 continue;
10892
10893 if (esdo->rel.hdr != NULL)
10894 elf_link_adjust_relocs (abfd, &esdo->rel);
10895 if (esdo->rela.hdr != NULL)
10896 elf_link_adjust_relocs (abfd, &esdo->rela);
10897
10898 /* Set the reloc_count field to 0 to prevent write_relocs from
10899 trying to swap the relocs out itself. */
10900 o->reloc_count = 0;
10901 }
10902
10903 if (dynamic && info->combreloc && dynobj != NULL)
10904 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10905
10906 /* If we are linking against a dynamic object, or generating a
10907 shared library, finish up the dynamic linking information. */
10908 if (dynamic)
10909 {
10910 bfd_byte *dyncon, *dynconend;
10911
10912 /* Fix up .dynamic entries. */
10913 o = bfd_get_section_by_name (dynobj, ".dynamic");
10914 BFD_ASSERT (o != NULL);
10915
10916 dyncon = o->contents;
10917 dynconend = o->contents + o->size;
10918 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10919 {
10920 Elf_Internal_Dyn dyn;
10921 const char *name;
10922 unsigned int type;
10923
10924 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10925
10926 switch (dyn.d_tag)
10927 {
10928 default:
10929 continue;
10930 case DT_NULL:
10931 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
10932 {
10933 switch (elf_section_data (reldyn)->this_hdr.sh_type)
10934 {
10935 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
10936 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
10937 default: continue;
10938 }
10939 dyn.d_un.d_val = relativecount;
10940 relativecount = 0;
10941 break;
10942 }
10943 continue;
10944
10945 case DT_INIT:
10946 name = info->init_function;
10947 goto get_sym;
10948 case DT_FINI:
10949 name = info->fini_function;
10950 get_sym:
10951 {
10952 struct elf_link_hash_entry *h;
10953
10954 h = elf_link_hash_lookup (elf_hash_table (info), name,
10955 FALSE, FALSE, TRUE);
10956 if (h != NULL
10957 && (h->root.type == bfd_link_hash_defined
10958 || h->root.type == bfd_link_hash_defweak))
10959 {
10960 dyn.d_un.d_ptr = h->root.u.def.value;
10961 o = h->root.u.def.section;
10962 if (o->output_section != NULL)
10963 dyn.d_un.d_ptr += (o->output_section->vma
10964 + o->output_offset);
10965 else
10966 {
10967 /* The symbol is imported from another shared
10968 library and does not apply to this one. */
10969 dyn.d_un.d_ptr = 0;
10970 }
10971 break;
10972 }
10973 }
10974 continue;
10975
10976 case DT_PREINIT_ARRAYSZ:
10977 name = ".preinit_array";
10978 goto get_size;
10979 case DT_INIT_ARRAYSZ:
10980 name = ".init_array";
10981 goto get_size;
10982 case DT_FINI_ARRAYSZ:
10983 name = ".fini_array";
10984 get_size:
10985 o = bfd_get_section_by_name (abfd, name);
10986 if (o == NULL)
10987 {
10988 (*_bfd_error_handler)
10989 (_("%B: could not find output section %s"), abfd, name);
10990 goto error_return;
10991 }
10992 if (o->size == 0)
10993 (*_bfd_error_handler)
10994 (_("warning: %s section has zero size"), name);
10995 dyn.d_un.d_val = o->size;
10996 break;
10997
10998 case DT_PREINIT_ARRAY:
10999 name = ".preinit_array";
11000 goto get_vma;
11001 case DT_INIT_ARRAY:
11002 name = ".init_array";
11003 goto get_vma;
11004 case DT_FINI_ARRAY:
11005 name = ".fini_array";
11006 goto get_vma;
11007
11008 case DT_HASH:
11009 name = ".hash";
11010 goto get_vma;
11011 case DT_GNU_HASH:
11012 name = ".gnu.hash";
11013 goto get_vma;
11014 case DT_STRTAB:
11015 name = ".dynstr";
11016 goto get_vma;
11017 case DT_SYMTAB:
11018 name = ".dynsym";
11019 goto get_vma;
11020 case DT_VERDEF:
11021 name = ".gnu.version_d";
11022 goto get_vma;
11023 case DT_VERNEED:
11024 name = ".gnu.version_r";
11025 goto get_vma;
11026 case DT_VERSYM:
11027 name = ".gnu.version";
11028 get_vma:
11029 o = bfd_get_section_by_name (abfd, name);
11030 if (o == NULL)
11031 {
11032 (*_bfd_error_handler)
11033 (_("%B: could not find output section %s"), abfd, name);
11034 goto error_return;
11035 }
11036 dyn.d_un.d_ptr = o->vma;
11037 break;
11038
11039 case DT_REL:
11040 case DT_RELA:
11041 case DT_RELSZ:
11042 case DT_RELASZ:
11043 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11044 type = SHT_REL;
11045 else
11046 type = SHT_RELA;
11047 dyn.d_un.d_val = 0;
11048 dyn.d_un.d_ptr = 0;
11049 for (i = 1; i < elf_numsections (abfd); i++)
11050 {
11051 Elf_Internal_Shdr *hdr;
11052
11053 hdr = elf_elfsections (abfd)[i];
11054 if (hdr->sh_type == type
11055 && (hdr->sh_flags & SHF_ALLOC) != 0)
11056 {
11057 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11058 dyn.d_un.d_val += hdr->sh_size;
11059 else
11060 {
11061 if (dyn.d_un.d_ptr == 0
11062 || hdr->sh_addr < dyn.d_un.d_ptr)
11063 dyn.d_un.d_ptr = hdr->sh_addr;
11064 }
11065 }
11066 }
11067 break;
11068 }
11069 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11070 }
11071 }
11072
11073 /* If we have created any dynamic sections, then output them. */
11074 if (dynobj != NULL)
11075 {
11076 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11077 goto error_return;
11078
11079 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11080 if (info->warn_shared_textrel && info->shared)
11081 {
11082 bfd_byte *dyncon, *dynconend;
11083
11084 /* Fix up .dynamic entries. */
11085 o = bfd_get_section_by_name (dynobj, ".dynamic");
11086 BFD_ASSERT (o != NULL);
11087
11088 dyncon = o->contents;
11089 dynconend = o->contents + o->size;
11090 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11091 {
11092 Elf_Internal_Dyn dyn;
11093
11094 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11095
11096 if (dyn.d_tag == DT_TEXTREL)
11097 {
11098 info->callbacks->einfo
11099 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11100 break;
11101 }
11102 }
11103 }
11104
11105 for (o = dynobj->sections; o != NULL; o = o->next)
11106 {
11107 if ((o->flags & SEC_HAS_CONTENTS) == 0
11108 || o->size == 0
11109 || o->output_section == bfd_abs_section_ptr)
11110 continue;
11111 if ((o->flags & SEC_LINKER_CREATED) == 0)
11112 {
11113 /* At this point, we are only interested in sections
11114 created by _bfd_elf_link_create_dynamic_sections. */
11115 continue;
11116 }
11117 if (elf_hash_table (info)->stab_info.stabstr == o)
11118 continue;
11119 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11120 continue;
11121 if ((elf_section_data (o->output_section)->this_hdr.sh_type
11122 != SHT_STRTAB)
11123 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
11124 {
11125 /* FIXME: octets_per_byte. */
11126 if (! bfd_set_section_contents (abfd, o->output_section,
11127 o->contents,
11128 (file_ptr) o->output_offset,
11129 o->size))
11130 goto error_return;
11131 }
11132 else
11133 {
11134 /* The contents of the .dynstr section are actually in a
11135 stringtab. */
11136 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11137 if (bfd_seek (abfd, off, SEEK_SET) != 0
11138 || ! _bfd_elf_strtab_emit (abfd,
11139 elf_hash_table (info)->dynstr))
11140 goto error_return;
11141 }
11142 }
11143 }
11144
11145 if (info->relocatable)
11146 {
11147 bfd_boolean failed = FALSE;
11148
11149 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11150 if (failed)
11151 goto error_return;
11152 }
11153
11154 /* If we have optimized stabs strings, output them. */
11155 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11156 {
11157 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11158 goto error_return;
11159 }
11160
11161 if (info->eh_frame_hdr)
11162 {
11163 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11164 goto error_return;
11165 }
11166
11167 if (finfo.symstrtab != NULL)
11168 _bfd_stringtab_free (finfo.symstrtab);
11169 if (finfo.contents != NULL)
11170 free (finfo.contents);
11171 if (finfo.external_relocs != NULL)
11172 free (finfo.external_relocs);
11173 if (finfo.internal_relocs != NULL)
11174 free (finfo.internal_relocs);
11175 if (finfo.external_syms != NULL)
11176 free (finfo.external_syms);
11177 if (finfo.locsym_shndx != NULL)
11178 free (finfo.locsym_shndx);
11179 if (finfo.internal_syms != NULL)
11180 free (finfo.internal_syms);
11181 if (finfo.indices != NULL)
11182 free (finfo.indices);
11183 if (finfo.sections != NULL)
11184 free (finfo.sections);
11185 if (finfo.symbuf != NULL)
11186 free (finfo.symbuf);
11187 if (finfo.symshndxbuf != NULL)
11188 free (finfo.symshndxbuf);
11189 for (o = abfd->sections; o != NULL; o = o->next)
11190 {
11191 struct bfd_elf_section_data *esdo = elf_section_data (o);
11192 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11193 free (esdo->rel.hashes);
11194 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11195 free (esdo->rela.hashes);
11196 }
11197
11198 elf_tdata (abfd)->linker = TRUE;
11199
11200 if (attr_section)
11201 {
11202 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11203 if (contents == NULL)
11204 return FALSE; /* Bail out and fail. */
11205 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11206 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11207 free (contents);
11208 }
11209
11210 return TRUE;
11211
11212 error_return:
11213 if (finfo.symstrtab != NULL)
11214 _bfd_stringtab_free (finfo.symstrtab);
11215 if (finfo.contents != NULL)
11216 free (finfo.contents);
11217 if (finfo.external_relocs != NULL)
11218 free (finfo.external_relocs);
11219 if (finfo.internal_relocs != NULL)
11220 free (finfo.internal_relocs);
11221 if (finfo.external_syms != NULL)
11222 free (finfo.external_syms);
11223 if (finfo.locsym_shndx != NULL)
11224 free (finfo.locsym_shndx);
11225 if (finfo.internal_syms != NULL)
11226 free (finfo.internal_syms);
11227 if (finfo.indices != NULL)
11228 free (finfo.indices);
11229 if (finfo.sections != NULL)
11230 free (finfo.sections);
11231 if (finfo.symbuf != NULL)
11232 free (finfo.symbuf);
11233 if (finfo.symshndxbuf != NULL)
11234 free (finfo.symshndxbuf);
11235 for (o = abfd->sections; o != NULL; o = o->next)
11236 {
11237 struct bfd_elf_section_data *esdo = elf_section_data (o);
11238 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11239 free (esdo->rel.hashes);
11240 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11241 free (esdo->rela.hashes);
11242 }
11243
11244 return FALSE;
11245 }
11246 \f
11247 /* Initialize COOKIE for input bfd ABFD. */
11248
11249 static bfd_boolean
11250 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11251 struct bfd_link_info *info, bfd *abfd)
11252 {
11253 Elf_Internal_Shdr *symtab_hdr;
11254 const struct elf_backend_data *bed;
11255
11256 bed = get_elf_backend_data (abfd);
11257 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11258
11259 cookie->abfd = abfd;
11260 cookie->sym_hashes = elf_sym_hashes (abfd);
11261 cookie->bad_symtab = elf_bad_symtab (abfd);
11262 if (cookie->bad_symtab)
11263 {
11264 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11265 cookie->extsymoff = 0;
11266 }
11267 else
11268 {
11269 cookie->locsymcount = symtab_hdr->sh_info;
11270 cookie->extsymoff = symtab_hdr->sh_info;
11271 }
11272
11273 if (bed->s->arch_size == 32)
11274 cookie->r_sym_shift = 8;
11275 else
11276 cookie->r_sym_shift = 32;
11277
11278 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11279 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11280 {
11281 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11282 cookie->locsymcount, 0,
11283 NULL, NULL, NULL);
11284 if (cookie->locsyms == NULL)
11285 {
11286 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11287 return FALSE;
11288 }
11289 if (info->keep_memory)
11290 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11291 }
11292 return TRUE;
11293 }
11294
11295 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11296
11297 static void
11298 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11299 {
11300 Elf_Internal_Shdr *symtab_hdr;
11301
11302 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11303 if (cookie->locsyms != NULL
11304 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11305 free (cookie->locsyms);
11306 }
11307
11308 /* Initialize the relocation information in COOKIE for input section SEC
11309 of input bfd ABFD. */
11310
11311 static bfd_boolean
11312 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11313 struct bfd_link_info *info, bfd *abfd,
11314 asection *sec)
11315 {
11316 const struct elf_backend_data *bed;
11317
11318 if (sec->reloc_count == 0)
11319 {
11320 cookie->rels = NULL;
11321 cookie->relend = NULL;
11322 }
11323 else
11324 {
11325 bed = get_elf_backend_data (abfd);
11326
11327 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11328 info->keep_memory);
11329 if (cookie->rels == NULL)
11330 return FALSE;
11331 cookie->rel = cookie->rels;
11332 cookie->relend = (cookie->rels
11333 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11334 }
11335 cookie->rel = cookie->rels;
11336 return TRUE;
11337 }
11338
11339 /* Free the memory allocated by init_reloc_cookie_rels,
11340 if appropriate. */
11341
11342 static void
11343 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11344 asection *sec)
11345 {
11346 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11347 free (cookie->rels);
11348 }
11349
11350 /* Initialize the whole of COOKIE for input section SEC. */
11351
11352 static bfd_boolean
11353 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11354 struct bfd_link_info *info,
11355 asection *sec)
11356 {
11357 if (!init_reloc_cookie (cookie, info, sec->owner))
11358 goto error1;
11359 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11360 goto error2;
11361 return TRUE;
11362
11363 error2:
11364 fini_reloc_cookie (cookie, sec->owner);
11365 error1:
11366 return FALSE;
11367 }
11368
11369 /* Free the memory allocated by init_reloc_cookie_for_section,
11370 if appropriate. */
11371
11372 static void
11373 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11374 asection *sec)
11375 {
11376 fini_reloc_cookie_rels (cookie, sec);
11377 fini_reloc_cookie (cookie, sec->owner);
11378 }
11379 \f
11380 /* Garbage collect unused sections. */
11381
11382 /* Default gc_mark_hook. */
11383
11384 asection *
11385 _bfd_elf_gc_mark_hook (asection *sec,
11386 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11387 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11388 struct elf_link_hash_entry *h,
11389 Elf_Internal_Sym *sym)
11390 {
11391 const char *sec_name;
11392
11393 if (h != NULL)
11394 {
11395 switch (h->root.type)
11396 {
11397 case bfd_link_hash_defined:
11398 case bfd_link_hash_defweak:
11399 return h->root.u.def.section;
11400
11401 case bfd_link_hash_common:
11402 return h->root.u.c.p->section;
11403
11404 case bfd_link_hash_undefined:
11405 case bfd_link_hash_undefweak:
11406 /* To work around a glibc bug, keep all XXX input sections
11407 when there is an as yet undefined reference to __start_XXX
11408 or __stop_XXX symbols. The linker will later define such
11409 symbols for orphan input sections that have a name
11410 representable as a C identifier. */
11411 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11412 sec_name = h->root.root.string + 8;
11413 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11414 sec_name = h->root.root.string + 7;
11415 else
11416 sec_name = NULL;
11417
11418 if (sec_name && *sec_name != '\0')
11419 {
11420 bfd *i;
11421
11422 for (i = info->input_bfds; i; i = i->link_next)
11423 {
11424 sec = bfd_get_section_by_name (i, sec_name);
11425 if (sec)
11426 sec->flags |= SEC_KEEP;
11427 }
11428 }
11429 break;
11430
11431 default:
11432 break;
11433 }
11434 }
11435 else
11436 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11437
11438 return NULL;
11439 }
11440
11441 /* COOKIE->rel describes a relocation against section SEC, which is
11442 a section we've decided to keep. Return the section that contains
11443 the relocation symbol, or NULL if no section contains it. */
11444
11445 asection *
11446 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11447 elf_gc_mark_hook_fn gc_mark_hook,
11448 struct elf_reloc_cookie *cookie)
11449 {
11450 unsigned long r_symndx;
11451 struct elf_link_hash_entry *h;
11452
11453 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11454 if (r_symndx == STN_UNDEF)
11455 return NULL;
11456
11457 if (r_symndx >= cookie->locsymcount
11458 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11459 {
11460 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11461 while (h->root.type == bfd_link_hash_indirect
11462 || h->root.type == bfd_link_hash_warning)
11463 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11464 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11465 }
11466
11467 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11468 &cookie->locsyms[r_symndx]);
11469 }
11470
11471 /* COOKIE->rel describes a relocation against section SEC, which is
11472 a section we've decided to keep. Mark the section that contains
11473 the relocation symbol. */
11474
11475 bfd_boolean
11476 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11477 asection *sec,
11478 elf_gc_mark_hook_fn gc_mark_hook,
11479 struct elf_reloc_cookie *cookie)
11480 {
11481 asection *rsec;
11482
11483 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11484 if (rsec && !rsec->gc_mark)
11485 {
11486 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11487 rsec->gc_mark = 1;
11488 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11489 return FALSE;
11490 }
11491 return TRUE;
11492 }
11493
11494 /* The mark phase of garbage collection. For a given section, mark
11495 it and any sections in this section's group, and all the sections
11496 which define symbols to which it refers. */
11497
11498 bfd_boolean
11499 _bfd_elf_gc_mark (struct bfd_link_info *info,
11500 asection *sec,
11501 elf_gc_mark_hook_fn gc_mark_hook)
11502 {
11503 bfd_boolean ret;
11504 asection *group_sec, *eh_frame;
11505
11506 sec->gc_mark = 1;
11507
11508 /* Mark all the sections in the group. */
11509 group_sec = elf_section_data (sec)->next_in_group;
11510 if (group_sec && !group_sec->gc_mark)
11511 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11512 return FALSE;
11513
11514 /* Look through the section relocs. */
11515 ret = TRUE;
11516 eh_frame = elf_eh_frame_section (sec->owner);
11517 if ((sec->flags & SEC_RELOC) != 0
11518 && sec->reloc_count > 0
11519 && sec != eh_frame)
11520 {
11521 struct elf_reloc_cookie cookie;
11522
11523 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11524 ret = FALSE;
11525 else
11526 {
11527 for (; cookie.rel < cookie.relend; cookie.rel++)
11528 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11529 {
11530 ret = FALSE;
11531 break;
11532 }
11533 fini_reloc_cookie_for_section (&cookie, sec);
11534 }
11535 }
11536
11537 if (ret && eh_frame && elf_fde_list (sec))
11538 {
11539 struct elf_reloc_cookie cookie;
11540
11541 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11542 ret = FALSE;
11543 else
11544 {
11545 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11546 gc_mark_hook, &cookie))
11547 ret = FALSE;
11548 fini_reloc_cookie_for_section (&cookie, eh_frame);
11549 }
11550 }
11551
11552 return ret;
11553 }
11554
11555 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11556
11557 struct elf_gc_sweep_symbol_info
11558 {
11559 struct bfd_link_info *info;
11560 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11561 bfd_boolean);
11562 };
11563
11564 static bfd_boolean
11565 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11566 {
11567 if (h->root.type == bfd_link_hash_warning)
11568 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11569
11570 if ((h->root.type == bfd_link_hash_defined
11571 || h->root.type == bfd_link_hash_defweak)
11572 && !h->root.u.def.section->gc_mark
11573 && !(h->root.u.def.section->owner->flags & DYNAMIC))
11574 {
11575 struct elf_gc_sweep_symbol_info *inf =
11576 (struct elf_gc_sweep_symbol_info *) data;
11577 (*inf->hide_symbol) (inf->info, h, TRUE);
11578 }
11579
11580 return TRUE;
11581 }
11582
11583 /* The sweep phase of garbage collection. Remove all garbage sections. */
11584
11585 typedef bfd_boolean (*gc_sweep_hook_fn)
11586 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11587
11588 static bfd_boolean
11589 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11590 {
11591 bfd *sub;
11592 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11593 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11594 unsigned long section_sym_count;
11595 struct elf_gc_sweep_symbol_info sweep_info;
11596
11597 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11598 {
11599 asection *o;
11600
11601 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11602 continue;
11603
11604 for (o = sub->sections; o != NULL; o = o->next)
11605 {
11606 /* When any section in a section group is kept, we keep all
11607 sections in the section group. If the first member of
11608 the section group is excluded, we will also exclude the
11609 group section. */
11610 if (o->flags & SEC_GROUP)
11611 {
11612 asection *first = elf_next_in_group (o);
11613 o->gc_mark = first->gc_mark;
11614 }
11615 else if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
11616 || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0
11617 || elf_section_data (o)->this_hdr.sh_type == SHT_NOTE)
11618 {
11619 /* Keep debug, special and SHT_NOTE sections. */
11620 o->gc_mark = 1;
11621 }
11622
11623 if (o->gc_mark)
11624 continue;
11625
11626 /* Skip sweeping sections already excluded. */
11627 if (o->flags & SEC_EXCLUDE)
11628 continue;
11629
11630 /* Since this is early in the link process, it is simple
11631 to remove a section from the output. */
11632 o->flags |= SEC_EXCLUDE;
11633
11634 if (info->print_gc_sections && o->size != 0)
11635 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11636
11637 /* But we also have to update some of the relocation
11638 info we collected before. */
11639 if (gc_sweep_hook
11640 && (o->flags & SEC_RELOC) != 0
11641 && o->reloc_count > 0
11642 && !bfd_is_abs_section (o->output_section))
11643 {
11644 Elf_Internal_Rela *internal_relocs;
11645 bfd_boolean r;
11646
11647 internal_relocs
11648 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11649 info->keep_memory);
11650 if (internal_relocs == NULL)
11651 return FALSE;
11652
11653 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11654
11655 if (elf_section_data (o)->relocs != internal_relocs)
11656 free (internal_relocs);
11657
11658 if (!r)
11659 return FALSE;
11660 }
11661 }
11662 }
11663
11664 /* Remove the symbols that were in the swept sections from the dynamic
11665 symbol table. GCFIXME: Anyone know how to get them out of the
11666 static symbol table as well? */
11667 sweep_info.info = info;
11668 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11669 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11670 &sweep_info);
11671
11672 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11673 return TRUE;
11674 }
11675
11676 /* Propagate collected vtable information. This is called through
11677 elf_link_hash_traverse. */
11678
11679 static bfd_boolean
11680 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11681 {
11682 if (h->root.type == bfd_link_hash_warning)
11683 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11684
11685 /* Those that are not vtables. */
11686 if (h->vtable == NULL || h->vtable->parent == NULL)
11687 return TRUE;
11688
11689 /* Those vtables that do not have parents, we cannot merge. */
11690 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11691 return TRUE;
11692
11693 /* If we've already been done, exit. */
11694 if (h->vtable->used && h->vtable->used[-1])
11695 return TRUE;
11696
11697 /* Make sure the parent's table is up to date. */
11698 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11699
11700 if (h->vtable->used == NULL)
11701 {
11702 /* None of this table's entries were referenced. Re-use the
11703 parent's table. */
11704 h->vtable->used = h->vtable->parent->vtable->used;
11705 h->vtable->size = h->vtable->parent->vtable->size;
11706 }
11707 else
11708 {
11709 size_t n;
11710 bfd_boolean *cu, *pu;
11711
11712 /* Or the parent's entries into ours. */
11713 cu = h->vtable->used;
11714 cu[-1] = TRUE;
11715 pu = h->vtable->parent->vtable->used;
11716 if (pu != NULL)
11717 {
11718 const struct elf_backend_data *bed;
11719 unsigned int log_file_align;
11720
11721 bed = get_elf_backend_data (h->root.u.def.section->owner);
11722 log_file_align = bed->s->log_file_align;
11723 n = h->vtable->parent->vtable->size >> log_file_align;
11724 while (n--)
11725 {
11726 if (*pu)
11727 *cu = TRUE;
11728 pu++;
11729 cu++;
11730 }
11731 }
11732 }
11733
11734 return TRUE;
11735 }
11736
11737 static bfd_boolean
11738 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11739 {
11740 asection *sec;
11741 bfd_vma hstart, hend;
11742 Elf_Internal_Rela *relstart, *relend, *rel;
11743 const struct elf_backend_data *bed;
11744 unsigned int log_file_align;
11745
11746 if (h->root.type == bfd_link_hash_warning)
11747 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11748
11749 /* Take care of both those symbols that do not describe vtables as
11750 well as those that are not loaded. */
11751 if (h->vtable == NULL || h->vtable->parent == NULL)
11752 return TRUE;
11753
11754 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11755 || h->root.type == bfd_link_hash_defweak);
11756
11757 sec = h->root.u.def.section;
11758 hstart = h->root.u.def.value;
11759 hend = hstart + h->size;
11760
11761 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11762 if (!relstart)
11763 return *(bfd_boolean *) okp = FALSE;
11764 bed = get_elf_backend_data (sec->owner);
11765 log_file_align = bed->s->log_file_align;
11766
11767 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11768
11769 for (rel = relstart; rel < relend; ++rel)
11770 if (rel->r_offset >= hstart && rel->r_offset < hend)
11771 {
11772 /* If the entry is in use, do nothing. */
11773 if (h->vtable->used
11774 && (rel->r_offset - hstart) < h->vtable->size)
11775 {
11776 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11777 if (h->vtable->used[entry])
11778 continue;
11779 }
11780 /* Otherwise, kill it. */
11781 rel->r_offset = rel->r_info = rel->r_addend = 0;
11782 }
11783
11784 return TRUE;
11785 }
11786
11787 /* Mark sections containing dynamically referenced symbols. When
11788 building shared libraries, we must assume that any visible symbol is
11789 referenced. */
11790
11791 bfd_boolean
11792 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11793 {
11794 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11795
11796 if (h->root.type == bfd_link_hash_warning)
11797 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11798
11799 if ((h->root.type == bfd_link_hash_defined
11800 || h->root.type == bfd_link_hash_defweak)
11801 && (h->ref_dynamic
11802 || (!info->executable
11803 && h->def_regular
11804 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11805 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
11806 h->root.u.def.section->flags |= SEC_KEEP;
11807
11808 return TRUE;
11809 }
11810
11811 /* Keep all sections containing symbols undefined on the command-line,
11812 and the section containing the entry symbol. */
11813
11814 void
11815 _bfd_elf_gc_keep (struct bfd_link_info *info)
11816 {
11817 struct bfd_sym_chain *sym;
11818
11819 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11820 {
11821 struct elf_link_hash_entry *h;
11822
11823 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11824 FALSE, FALSE, FALSE);
11825
11826 if (h != NULL
11827 && (h->root.type == bfd_link_hash_defined
11828 || h->root.type == bfd_link_hash_defweak)
11829 && !bfd_is_abs_section (h->root.u.def.section))
11830 h->root.u.def.section->flags |= SEC_KEEP;
11831 }
11832 }
11833
11834 /* Do mark and sweep of unused sections. */
11835
11836 bfd_boolean
11837 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11838 {
11839 bfd_boolean ok = TRUE;
11840 bfd *sub;
11841 elf_gc_mark_hook_fn gc_mark_hook;
11842 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11843
11844 if (!bed->can_gc_sections
11845 || !is_elf_hash_table (info->hash))
11846 {
11847 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11848 return TRUE;
11849 }
11850
11851 bed->gc_keep (info);
11852
11853 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11854 at the .eh_frame section if we can mark the FDEs individually. */
11855 _bfd_elf_begin_eh_frame_parsing (info);
11856 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11857 {
11858 asection *sec;
11859 struct elf_reloc_cookie cookie;
11860
11861 sec = bfd_get_section_by_name (sub, ".eh_frame");
11862 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
11863 {
11864 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
11865 if (elf_section_data (sec)->sec_info)
11866 elf_eh_frame_section (sub) = sec;
11867 fini_reloc_cookie_for_section (&cookie, sec);
11868 }
11869 }
11870 _bfd_elf_end_eh_frame_parsing (info);
11871
11872 /* Apply transitive closure to the vtable entry usage info. */
11873 elf_link_hash_traverse (elf_hash_table (info),
11874 elf_gc_propagate_vtable_entries_used,
11875 &ok);
11876 if (!ok)
11877 return FALSE;
11878
11879 /* Kill the vtable relocations that were not used. */
11880 elf_link_hash_traverse (elf_hash_table (info),
11881 elf_gc_smash_unused_vtentry_relocs,
11882 &ok);
11883 if (!ok)
11884 return FALSE;
11885
11886 /* Mark dynamically referenced symbols. */
11887 if (elf_hash_table (info)->dynamic_sections_created)
11888 elf_link_hash_traverse (elf_hash_table (info),
11889 bed->gc_mark_dynamic_ref,
11890 info);
11891
11892 /* Grovel through relocs to find out who stays ... */
11893 gc_mark_hook = bed->gc_mark_hook;
11894 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11895 {
11896 asection *o;
11897
11898 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11899 continue;
11900
11901 for (o = sub->sections; o != NULL; o = o->next)
11902 if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark)
11903 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11904 return FALSE;
11905 }
11906
11907 /* Allow the backend to mark additional target specific sections. */
11908 if (bed->gc_mark_extra_sections)
11909 bed->gc_mark_extra_sections (info, gc_mark_hook);
11910
11911 /* ... and mark SEC_EXCLUDE for those that go. */
11912 return elf_gc_sweep (abfd, info);
11913 }
11914 \f
11915 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11916
11917 bfd_boolean
11918 bfd_elf_gc_record_vtinherit (bfd *abfd,
11919 asection *sec,
11920 struct elf_link_hash_entry *h,
11921 bfd_vma offset)
11922 {
11923 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
11924 struct elf_link_hash_entry **search, *child;
11925 bfd_size_type extsymcount;
11926 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11927
11928 /* The sh_info field of the symtab header tells us where the
11929 external symbols start. We don't care about the local symbols at
11930 this point. */
11931 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
11932 if (!elf_bad_symtab (abfd))
11933 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
11934
11935 sym_hashes = elf_sym_hashes (abfd);
11936 sym_hashes_end = sym_hashes + extsymcount;
11937
11938 /* Hunt down the child symbol, which is in this section at the same
11939 offset as the relocation. */
11940 for (search = sym_hashes; search != sym_hashes_end; ++search)
11941 {
11942 if ((child = *search) != NULL
11943 && (child->root.type == bfd_link_hash_defined
11944 || child->root.type == bfd_link_hash_defweak)
11945 && child->root.u.def.section == sec
11946 && child->root.u.def.value == offset)
11947 goto win;
11948 }
11949
11950 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
11951 abfd, sec, (unsigned long) offset);
11952 bfd_set_error (bfd_error_invalid_operation);
11953 return FALSE;
11954
11955 win:
11956 if (!child->vtable)
11957 {
11958 child->vtable = (struct elf_link_virtual_table_entry *)
11959 bfd_zalloc (abfd, sizeof (*child->vtable));
11960 if (!child->vtable)
11961 return FALSE;
11962 }
11963 if (!h)
11964 {
11965 /* This *should* only be the absolute section. It could potentially
11966 be that someone has defined a non-global vtable though, which
11967 would be bad. It isn't worth paging in the local symbols to be
11968 sure though; that case should simply be handled by the assembler. */
11969
11970 child->vtable->parent = (struct elf_link_hash_entry *) -1;
11971 }
11972 else
11973 child->vtable->parent = h;
11974
11975 return TRUE;
11976 }
11977
11978 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
11979
11980 bfd_boolean
11981 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
11982 asection *sec ATTRIBUTE_UNUSED,
11983 struct elf_link_hash_entry *h,
11984 bfd_vma addend)
11985 {
11986 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11987 unsigned int log_file_align = bed->s->log_file_align;
11988
11989 if (!h->vtable)
11990 {
11991 h->vtable = (struct elf_link_virtual_table_entry *)
11992 bfd_zalloc (abfd, sizeof (*h->vtable));
11993 if (!h->vtable)
11994 return FALSE;
11995 }
11996
11997 if (addend >= h->vtable->size)
11998 {
11999 size_t size, bytes, file_align;
12000 bfd_boolean *ptr = h->vtable->used;
12001
12002 /* While the symbol is undefined, we have to be prepared to handle
12003 a zero size. */
12004 file_align = 1 << log_file_align;
12005 if (h->root.type == bfd_link_hash_undefined)
12006 size = addend + file_align;
12007 else
12008 {
12009 size = h->size;
12010 if (addend >= size)
12011 {
12012 /* Oops! We've got a reference past the defined end of
12013 the table. This is probably a bug -- shall we warn? */
12014 size = addend + file_align;
12015 }
12016 }
12017 size = (size + file_align - 1) & -file_align;
12018
12019 /* Allocate one extra entry for use as a "done" flag for the
12020 consolidation pass. */
12021 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12022
12023 if (ptr)
12024 {
12025 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12026
12027 if (ptr != NULL)
12028 {
12029 size_t oldbytes;
12030
12031 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12032 * sizeof (bfd_boolean));
12033 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12034 }
12035 }
12036 else
12037 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12038
12039 if (ptr == NULL)
12040 return FALSE;
12041
12042 /* And arrange for that done flag to be at index -1. */
12043 h->vtable->used = ptr + 1;
12044 h->vtable->size = size;
12045 }
12046
12047 h->vtable->used[addend >> log_file_align] = TRUE;
12048
12049 return TRUE;
12050 }
12051
12052 struct alloc_got_off_arg {
12053 bfd_vma gotoff;
12054 struct bfd_link_info *info;
12055 };
12056
12057 /* We need a special top-level link routine to convert got reference counts
12058 to real got offsets. */
12059
12060 static bfd_boolean
12061 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12062 {
12063 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12064 bfd *obfd = gofarg->info->output_bfd;
12065 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12066
12067 if (h->root.type == bfd_link_hash_warning)
12068 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12069
12070 if (h->got.refcount > 0)
12071 {
12072 h->got.offset = gofarg->gotoff;
12073 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12074 }
12075 else
12076 h->got.offset = (bfd_vma) -1;
12077
12078 return TRUE;
12079 }
12080
12081 /* And an accompanying bit to work out final got entry offsets once
12082 we're done. Should be called from final_link. */
12083
12084 bfd_boolean
12085 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12086 struct bfd_link_info *info)
12087 {
12088 bfd *i;
12089 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12090 bfd_vma gotoff;
12091 struct alloc_got_off_arg gofarg;
12092
12093 BFD_ASSERT (abfd == info->output_bfd);
12094
12095 if (! is_elf_hash_table (info->hash))
12096 return FALSE;
12097
12098 /* The GOT offset is relative to the .got section, but the GOT header is
12099 put into the .got.plt section, if the backend uses it. */
12100 if (bed->want_got_plt)
12101 gotoff = 0;
12102 else
12103 gotoff = bed->got_header_size;
12104
12105 /* Do the local .got entries first. */
12106 for (i = info->input_bfds; i; i = i->link_next)
12107 {
12108 bfd_signed_vma *local_got;
12109 bfd_size_type j, locsymcount;
12110 Elf_Internal_Shdr *symtab_hdr;
12111
12112 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12113 continue;
12114
12115 local_got = elf_local_got_refcounts (i);
12116 if (!local_got)
12117 continue;
12118
12119 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12120 if (elf_bad_symtab (i))
12121 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12122 else
12123 locsymcount = symtab_hdr->sh_info;
12124
12125 for (j = 0; j < locsymcount; ++j)
12126 {
12127 if (local_got[j] > 0)
12128 {
12129 local_got[j] = gotoff;
12130 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12131 }
12132 else
12133 local_got[j] = (bfd_vma) -1;
12134 }
12135 }
12136
12137 /* Then the global .got entries. .plt refcounts are handled by
12138 adjust_dynamic_symbol */
12139 gofarg.gotoff = gotoff;
12140 gofarg.info = info;
12141 elf_link_hash_traverse (elf_hash_table (info),
12142 elf_gc_allocate_got_offsets,
12143 &gofarg);
12144 return TRUE;
12145 }
12146
12147 /* Many folk need no more in the way of final link than this, once
12148 got entry reference counting is enabled. */
12149
12150 bfd_boolean
12151 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12152 {
12153 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12154 return FALSE;
12155
12156 /* Invoke the regular ELF backend linker to do all the work. */
12157 return bfd_elf_final_link (abfd, info);
12158 }
12159
12160 bfd_boolean
12161 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12162 {
12163 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12164
12165 if (rcookie->bad_symtab)
12166 rcookie->rel = rcookie->rels;
12167
12168 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12169 {
12170 unsigned long r_symndx;
12171
12172 if (! rcookie->bad_symtab)
12173 if (rcookie->rel->r_offset > offset)
12174 return FALSE;
12175 if (rcookie->rel->r_offset != offset)
12176 continue;
12177
12178 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12179 if (r_symndx == STN_UNDEF)
12180 return TRUE;
12181
12182 if (r_symndx >= rcookie->locsymcount
12183 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12184 {
12185 struct elf_link_hash_entry *h;
12186
12187 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12188
12189 while (h->root.type == bfd_link_hash_indirect
12190 || h->root.type == bfd_link_hash_warning)
12191 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12192
12193 if ((h->root.type == bfd_link_hash_defined
12194 || h->root.type == bfd_link_hash_defweak)
12195 && elf_discarded_section (h->root.u.def.section))
12196 return TRUE;
12197 else
12198 return FALSE;
12199 }
12200 else
12201 {
12202 /* It's not a relocation against a global symbol,
12203 but it could be a relocation against a local
12204 symbol for a discarded section. */
12205 asection *isec;
12206 Elf_Internal_Sym *isym;
12207
12208 /* Need to: get the symbol; get the section. */
12209 isym = &rcookie->locsyms[r_symndx];
12210 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12211 if (isec != NULL && elf_discarded_section (isec))
12212 return TRUE;
12213 }
12214 return FALSE;
12215 }
12216 return FALSE;
12217 }
12218
12219 /* Discard unneeded references to discarded sections.
12220 Returns TRUE if any section's size was changed. */
12221 /* This function assumes that the relocations are in sorted order,
12222 which is true for all known assemblers. */
12223
12224 bfd_boolean
12225 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12226 {
12227 struct elf_reloc_cookie cookie;
12228 asection *stab, *eh;
12229 const struct elf_backend_data *bed;
12230 bfd *abfd;
12231 bfd_boolean ret = FALSE;
12232
12233 if (info->traditional_format
12234 || !is_elf_hash_table (info->hash))
12235 return FALSE;
12236
12237 _bfd_elf_begin_eh_frame_parsing (info);
12238 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12239 {
12240 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12241 continue;
12242
12243 bed = get_elf_backend_data (abfd);
12244
12245 if ((abfd->flags & DYNAMIC) != 0)
12246 continue;
12247
12248 eh = NULL;
12249 if (!info->relocatable)
12250 {
12251 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12252 if (eh != NULL
12253 && (eh->size == 0
12254 || bfd_is_abs_section (eh->output_section)))
12255 eh = NULL;
12256 }
12257
12258 stab = bfd_get_section_by_name (abfd, ".stab");
12259 if (stab != NULL
12260 && (stab->size == 0
12261 || bfd_is_abs_section (stab->output_section)
12262 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
12263 stab = NULL;
12264
12265 if (stab == NULL
12266 && eh == NULL
12267 && bed->elf_backend_discard_info == NULL)
12268 continue;
12269
12270 if (!init_reloc_cookie (&cookie, info, abfd))
12271 return FALSE;
12272
12273 if (stab != NULL
12274 && stab->reloc_count > 0
12275 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12276 {
12277 if (_bfd_discard_section_stabs (abfd, stab,
12278 elf_section_data (stab)->sec_info,
12279 bfd_elf_reloc_symbol_deleted_p,
12280 &cookie))
12281 ret = TRUE;
12282 fini_reloc_cookie_rels (&cookie, stab);
12283 }
12284
12285 if (eh != NULL
12286 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12287 {
12288 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12289 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12290 bfd_elf_reloc_symbol_deleted_p,
12291 &cookie))
12292 ret = TRUE;
12293 fini_reloc_cookie_rels (&cookie, eh);
12294 }
12295
12296 if (bed->elf_backend_discard_info != NULL
12297 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12298 ret = TRUE;
12299
12300 fini_reloc_cookie (&cookie, abfd);
12301 }
12302 _bfd_elf_end_eh_frame_parsing (info);
12303
12304 if (info->eh_frame_hdr
12305 && !info->relocatable
12306 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12307 ret = TRUE;
12308
12309 return ret;
12310 }
12311
12312 /* For a SHT_GROUP section, return the group signature. For other
12313 sections, return the normal section name. */
12314
12315 static const char *
12316 section_signature (asection *sec)
12317 {
12318 if ((sec->flags & SEC_GROUP) != 0
12319 && elf_next_in_group (sec) != NULL
12320 && elf_group_name (elf_next_in_group (sec)) != NULL)
12321 return elf_group_name (elf_next_in_group (sec));
12322 return sec->name;
12323 }
12324
12325 void
12326 _bfd_elf_section_already_linked (bfd *abfd, asection *sec,
12327 struct bfd_link_info *info)
12328 {
12329 flagword flags;
12330 const char *name, *p;
12331 struct bfd_section_already_linked *l;
12332 struct bfd_section_already_linked_hash_entry *already_linked_list;
12333
12334 if (sec->output_section == bfd_abs_section_ptr)
12335 return;
12336
12337 flags = sec->flags;
12338
12339 /* Return if it isn't a linkonce section. A comdat group section
12340 also has SEC_LINK_ONCE set. */
12341 if ((flags & SEC_LINK_ONCE) == 0)
12342 return;
12343
12344 /* Don't put group member sections on our list of already linked
12345 sections. They are handled as a group via their group section. */
12346 if (elf_sec_group (sec) != NULL)
12347 return;
12348
12349 /* FIXME: When doing a relocatable link, we may have trouble
12350 copying relocations in other sections that refer to local symbols
12351 in the section being discarded. Those relocations will have to
12352 be converted somehow; as of this writing I'm not sure that any of
12353 the backends handle that correctly.
12354
12355 It is tempting to instead not discard link once sections when
12356 doing a relocatable link (technically, they should be discarded
12357 whenever we are building constructors). However, that fails,
12358 because the linker winds up combining all the link once sections
12359 into a single large link once section, which defeats the purpose
12360 of having link once sections in the first place.
12361
12362 Also, not merging link once sections in a relocatable link
12363 causes trouble for MIPS ELF, which relies on link once semantics
12364 to handle the .reginfo section correctly. */
12365
12366 name = section_signature (sec);
12367
12368 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12369 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12370 p++;
12371 else
12372 p = name;
12373
12374 already_linked_list = bfd_section_already_linked_table_lookup (p);
12375
12376 for (l = already_linked_list->entry; l != NULL; l = l->next)
12377 {
12378 /* We may have 2 different types of sections on the list: group
12379 sections and linkonce sections. Match like sections. */
12380 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12381 && strcmp (name, section_signature (l->sec)) == 0
12382 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
12383 {
12384 /* The section has already been linked. See if we should
12385 issue a warning. */
12386 switch (flags & SEC_LINK_DUPLICATES)
12387 {
12388 default:
12389 abort ();
12390
12391 case SEC_LINK_DUPLICATES_DISCARD:
12392 break;
12393
12394 case SEC_LINK_DUPLICATES_ONE_ONLY:
12395 (*_bfd_error_handler)
12396 (_("%B: ignoring duplicate section `%A'"),
12397 abfd, sec);
12398 break;
12399
12400 case SEC_LINK_DUPLICATES_SAME_SIZE:
12401 if (sec->size != l->sec->size)
12402 (*_bfd_error_handler)
12403 (_("%B: duplicate section `%A' has different size"),
12404 abfd, sec);
12405 break;
12406
12407 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
12408 if (sec->size != l->sec->size)
12409 (*_bfd_error_handler)
12410 (_("%B: duplicate section `%A' has different size"),
12411 abfd, sec);
12412 else if (sec->size != 0)
12413 {
12414 bfd_byte *sec_contents, *l_sec_contents;
12415
12416 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
12417 (*_bfd_error_handler)
12418 (_("%B: warning: could not read contents of section `%A'"),
12419 abfd, sec);
12420 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
12421 &l_sec_contents))
12422 (*_bfd_error_handler)
12423 (_("%B: warning: could not read contents of section `%A'"),
12424 l->sec->owner, l->sec);
12425 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
12426 (*_bfd_error_handler)
12427 (_("%B: warning: duplicate section `%A' has different contents"),
12428 abfd, sec);
12429
12430 if (sec_contents)
12431 free (sec_contents);
12432 if (l_sec_contents)
12433 free (l_sec_contents);
12434 }
12435 break;
12436 }
12437
12438 /* Set the output_section field so that lang_add_section
12439 does not create a lang_input_section structure for this
12440 section. Since there might be a symbol in the section
12441 being discarded, we must retain a pointer to the section
12442 which we are really going to use. */
12443 sec->output_section = bfd_abs_section_ptr;
12444 sec->kept_section = l->sec;
12445
12446 if (flags & SEC_GROUP)
12447 {
12448 asection *first = elf_next_in_group (sec);
12449 asection *s = first;
12450
12451 while (s != NULL)
12452 {
12453 s->output_section = bfd_abs_section_ptr;
12454 /* Record which group discards it. */
12455 s->kept_section = l->sec;
12456 s = elf_next_in_group (s);
12457 /* These lists are circular. */
12458 if (s == first)
12459 break;
12460 }
12461 }
12462
12463 return;
12464 }
12465 }
12466
12467 /* A single member comdat group section may be discarded by a
12468 linkonce section and vice versa. */
12469
12470 if ((flags & SEC_GROUP) != 0)
12471 {
12472 asection *first = elf_next_in_group (sec);
12473
12474 if (first != NULL && elf_next_in_group (first) == first)
12475 /* Check this single member group against linkonce sections. */
12476 for (l = already_linked_list->entry; l != NULL; l = l->next)
12477 if ((l->sec->flags & SEC_GROUP) == 0
12478 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
12479 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12480 {
12481 first->output_section = bfd_abs_section_ptr;
12482 first->kept_section = l->sec;
12483 sec->output_section = bfd_abs_section_ptr;
12484 break;
12485 }
12486 }
12487 else
12488 /* Check this linkonce section against single member groups. */
12489 for (l = already_linked_list->entry; l != NULL; l = l->next)
12490 if (l->sec->flags & SEC_GROUP)
12491 {
12492 asection *first = elf_next_in_group (l->sec);
12493
12494 if (first != NULL
12495 && elf_next_in_group (first) == first
12496 && bfd_elf_match_symbols_in_sections (first, sec, info))
12497 {
12498 sec->output_section = bfd_abs_section_ptr;
12499 sec->kept_section = first;
12500 break;
12501 }
12502 }
12503
12504 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12505 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12506 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12507 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12508 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12509 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12510 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12511 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12512 The reverse order cannot happen as there is never a bfd with only the
12513 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12514 matter as here were are looking only for cross-bfd sections. */
12515
12516 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12517 for (l = already_linked_list->entry; l != NULL; l = l->next)
12518 if ((l->sec->flags & SEC_GROUP) == 0
12519 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12520 {
12521 if (abfd != l->sec->owner)
12522 sec->output_section = bfd_abs_section_ptr;
12523 break;
12524 }
12525
12526 /* This is the first section with this name. Record it. */
12527 if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
12528 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12529 }
12530
12531 bfd_boolean
12532 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12533 {
12534 return sym->st_shndx == SHN_COMMON;
12535 }
12536
12537 unsigned int
12538 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12539 {
12540 return SHN_COMMON;
12541 }
12542
12543 asection *
12544 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12545 {
12546 return bfd_com_section_ptr;
12547 }
12548
12549 bfd_vma
12550 _bfd_elf_default_got_elt_size (bfd *abfd,
12551 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12552 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12553 bfd *ibfd ATTRIBUTE_UNUSED,
12554 unsigned long symndx ATTRIBUTE_UNUSED)
12555 {
12556 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12557 return bed->s->arch_size / 8;
12558 }
12559
12560 /* Routines to support the creation of dynamic relocs. */
12561
12562 /* Return true if NAME is a name of a relocation
12563 section associated with section S. */
12564
12565 static bfd_boolean
12566 is_reloc_section (bfd_boolean rela, const char * name, asection * s)
12567 {
12568 if (rela)
12569 return CONST_STRNEQ (name, ".rela")
12570 && strcmp (bfd_get_section_name (NULL, s), name + 5) == 0;
12571
12572 return CONST_STRNEQ (name, ".rel")
12573 && strcmp (bfd_get_section_name (NULL, s), name + 4) == 0;
12574 }
12575
12576 /* Returns the name of the dynamic reloc section associated with SEC. */
12577
12578 static const char *
12579 get_dynamic_reloc_section_name (bfd * abfd,
12580 asection * sec,
12581 bfd_boolean is_rela)
12582 {
12583 const char * name;
12584 unsigned int strndx = elf_elfheader (abfd)->e_shstrndx;
12585 unsigned int shnam = _bfd_elf_single_rel_hdr (sec)->sh_name;
12586
12587 name = bfd_elf_string_from_elf_section (abfd, strndx, shnam);
12588 if (name == NULL)
12589 return NULL;
12590
12591 if (! is_reloc_section (is_rela, name, sec))
12592 {
12593 static bfd_boolean complained = FALSE;
12594
12595 if (! complained)
12596 {
12597 (*_bfd_error_handler)
12598 (_("%B: bad relocation section name `%s\'"), abfd, name);
12599 complained = TRUE;
12600 }
12601 name = NULL;
12602 }
12603
12604 return name;
12605 }
12606
12607 /* Returns the dynamic reloc section associated with SEC.
12608 If necessary compute the name of the dynamic reloc section based
12609 on SEC's name (looked up in ABFD's string table) and the setting
12610 of IS_RELA. */
12611
12612 asection *
12613 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12614 asection * sec,
12615 bfd_boolean is_rela)
12616 {
12617 asection * reloc_sec = elf_section_data (sec)->sreloc;
12618
12619 if (reloc_sec == NULL)
12620 {
12621 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12622
12623 if (name != NULL)
12624 {
12625 reloc_sec = bfd_get_section_by_name (abfd, name);
12626
12627 if (reloc_sec != NULL)
12628 elf_section_data (sec)->sreloc = reloc_sec;
12629 }
12630 }
12631
12632 return reloc_sec;
12633 }
12634
12635 /* Returns the dynamic reloc section associated with SEC. If the
12636 section does not exist it is created and attached to the DYNOBJ
12637 bfd and stored in the SRELOC field of SEC's elf_section_data
12638 structure.
12639
12640 ALIGNMENT is the alignment for the newly created section and
12641 IS_RELA defines whether the name should be .rela.<SEC's name>
12642 or .rel.<SEC's name>. The section name is looked up in the
12643 string table associated with ABFD. */
12644
12645 asection *
12646 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12647 bfd * dynobj,
12648 unsigned int alignment,
12649 bfd * abfd,
12650 bfd_boolean is_rela)
12651 {
12652 asection * reloc_sec = elf_section_data (sec)->sreloc;
12653
12654 if (reloc_sec == NULL)
12655 {
12656 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12657
12658 if (name == NULL)
12659 return NULL;
12660
12661 reloc_sec = bfd_get_section_by_name (dynobj, name);
12662
12663 if (reloc_sec == NULL)
12664 {
12665 flagword flags;
12666
12667 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12668 if ((sec->flags & SEC_ALLOC) != 0)
12669 flags |= SEC_ALLOC | SEC_LOAD;
12670
12671 reloc_sec = bfd_make_section_with_flags (dynobj, name, flags);
12672 if (reloc_sec != NULL)
12673 {
12674 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12675 reloc_sec = NULL;
12676 }
12677 }
12678
12679 elf_section_data (sec)->sreloc = reloc_sec;
12680 }
12681
12682 return reloc_sec;
12683 }
12684
12685 /* Copy the ELF symbol type associated with a linker hash entry. */
12686 void
12687 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
12688 struct bfd_link_hash_entry * hdest,
12689 struct bfd_link_hash_entry * hsrc)
12690 {
12691 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
12692 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
12693
12694 ehdest->type = ehsrc->type;
12695 }