* elflink.c (_bfd_elf_define_linkage_sym): Don't set STV_INTERNAL
[binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995-2013 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
29 #include "objalloc.h"
30
31 /* This struct is used to pass information to routines called via
32 elf_link_hash_traverse which must return failure. */
33
34 struct elf_info_failed
35 {
36 struct bfd_link_info *info;
37 bfd_boolean failed;
38 };
39
40 /* This structure is used to pass information to
41 _bfd_elf_link_find_version_dependencies. */
42
43 struct elf_find_verdep_info
44 {
45 /* General link information. */
46 struct bfd_link_info *info;
47 /* The number of dependencies. */
48 unsigned int vers;
49 /* Whether we had a failure. */
50 bfd_boolean failed;
51 };
52
53 static bfd_boolean _bfd_elf_fix_symbol_flags
54 (struct elf_link_hash_entry *, struct elf_info_failed *);
55
56 /* Define a symbol in a dynamic linkage section. */
57
58 struct elf_link_hash_entry *
59 _bfd_elf_define_linkage_sym (bfd *abfd,
60 struct bfd_link_info *info,
61 asection *sec,
62 const char *name)
63 {
64 struct elf_link_hash_entry *h;
65 struct bfd_link_hash_entry *bh;
66 const struct elf_backend_data *bed;
67
68 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
69 if (h != NULL)
70 {
71 /* Zap symbol defined in an as-needed lib that wasn't linked.
72 This is a symptom of a larger problem: Absolute symbols
73 defined in shared libraries can't be overridden, because we
74 lose the link to the bfd which is via the symbol section. */
75 h->root.type = bfd_link_hash_new;
76 }
77
78 bh = &h->root;
79 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
80 sec, 0, NULL, FALSE,
81 get_elf_backend_data (abfd)->collect,
82 &bh))
83 return NULL;
84 h = (struct elf_link_hash_entry *) bh;
85 h->def_regular = 1;
86 h->non_elf = 0;
87 h->type = STT_OBJECT;
88 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
89 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
90
91 bed = get_elf_backend_data (abfd);
92 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
93 return h;
94 }
95
96 bfd_boolean
97 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
98 {
99 flagword flags;
100 asection *s;
101 struct elf_link_hash_entry *h;
102 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
103 struct elf_link_hash_table *htab = elf_hash_table (info);
104
105 /* This function may be called more than once. */
106 s = bfd_get_linker_section (abfd, ".got");
107 if (s != NULL)
108 return TRUE;
109
110 flags = bed->dynamic_sec_flags;
111
112 s = bfd_make_section_anyway_with_flags (abfd,
113 (bed->rela_plts_and_copies_p
114 ? ".rela.got" : ".rel.got"),
115 (bed->dynamic_sec_flags
116 | SEC_READONLY));
117 if (s == NULL
118 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
119 return FALSE;
120 htab->srelgot = s;
121
122 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
123 if (s == NULL
124 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
125 return FALSE;
126 htab->sgot = s;
127
128 if (bed->want_got_plt)
129 {
130 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
131 if (s == NULL
132 || !bfd_set_section_alignment (abfd, s,
133 bed->s->log_file_align))
134 return FALSE;
135 htab->sgotplt = s;
136 }
137
138 /* The first bit of the global offset table is the header. */
139 s->size += bed->got_header_size;
140
141 if (bed->want_got_sym)
142 {
143 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
144 (or .got.plt) section. We don't do this in the linker script
145 because we don't want to define the symbol if we are not creating
146 a global offset table. */
147 h = _bfd_elf_define_linkage_sym (abfd, info, s,
148 "_GLOBAL_OFFSET_TABLE_");
149 elf_hash_table (info)->hgot = h;
150 if (h == NULL)
151 return FALSE;
152 }
153
154 return TRUE;
155 }
156 \f
157 /* Create a strtab to hold the dynamic symbol names. */
158 static bfd_boolean
159 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
160 {
161 struct elf_link_hash_table *hash_table;
162
163 hash_table = elf_hash_table (info);
164 if (hash_table->dynobj == NULL)
165 hash_table->dynobj = abfd;
166
167 if (hash_table->dynstr == NULL)
168 {
169 hash_table->dynstr = _bfd_elf_strtab_init ();
170 if (hash_table->dynstr == NULL)
171 return FALSE;
172 }
173 return TRUE;
174 }
175
176 /* Create some sections which will be filled in with dynamic linking
177 information. ABFD is an input file which requires dynamic sections
178 to be created. The dynamic sections take up virtual memory space
179 when the final executable is run, so we need to create them before
180 addresses are assigned to the output sections. We work out the
181 actual contents and size of these sections later. */
182
183 bfd_boolean
184 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
185 {
186 flagword flags;
187 asection *s;
188 const struct elf_backend_data *bed;
189 struct elf_link_hash_entry *h;
190
191 if (! is_elf_hash_table (info->hash))
192 return FALSE;
193
194 if (elf_hash_table (info)->dynamic_sections_created)
195 return TRUE;
196
197 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
198 return FALSE;
199
200 abfd = elf_hash_table (info)->dynobj;
201 bed = get_elf_backend_data (abfd);
202
203 flags = bed->dynamic_sec_flags;
204
205 /* A dynamically linked executable has a .interp section, but a
206 shared library does not. */
207 if (info->executable)
208 {
209 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
210 flags | SEC_READONLY);
211 if (s == NULL)
212 return FALSE;
213 }
214
215 /* Create sections to hold version informations. These are removed
216 if they are not needed. */
217 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
218 flags | SEC_READONLY);
219 if (s == NULL
220 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
221 return FALSE;
222
223 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
224 flags | SEC_READONLY);
225 if (s == NULL
226 || ! bfd_set_section_alignment (abfd, s, 1))
227 return FALSE;
228
229 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
230 flags | SEC_READONLY);
231 if (s == NULL
232 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
233 return FALSE;
234
235 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
236 flags | SEC_READONLY);
237 if (s == NULL
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239 return FALSE;
240
241 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
242 flags | SEC_READONLY);
243 if (s == NULL)
244 return FALSE;
245
246 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
247 if (s == NULL
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249 return FALSE;
250
251 /* The special symbol _DYNAMIC is always set to the start of the
252 .dynamic section. We could set _DYNAMIC in a linker script, but we
253 only want to define it if we are, in fact, creating a .dynamic
254 section. We don't want to define it if there is no .dynamic
255 section, since on some ELF platforms the start up code examines it
256 to decide how to initialize the process. */
257 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
258 elf_hash_table (info)->hdynamic = h;
259 if (h == NULL)
260 return FALSE;
261
262 if (info->emit_hash)
263 {
264 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
265 flags | SEC_READONLY);
266 if (s == NULL
267 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
268 return FALSE;
269 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
270 }
271
272 if (info->emit_gnu_hash)
273 {
274 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
275 flags | SEC_READONLY);
276 if (s == NULL
277 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
278 return FALSE;
279 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
280 4 32-bit words followed by variable count of 64-bit words, then
281 variable count of 32-bit words. */
282 if (bed->s->arch_size == 64)
283 elf_section_data (s)->this_hdr.sh_entsize = 0;
284 else
285 elf_section_data (s)->this_hdr.sh_entsize = 4;
286 }
287
288 /* Let the backend create the rest of the sections. This lets the
289 backend set the right flags. The backend will normally create
290 the .got and .plt sections. */
291 if (bed->elf_backend_create_dynamic_sections == NULL
292 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
293 return FALSE;
294
295 elf_hash_table (info)->dynamic_sections_created = TRUE;
296
297 return TRUE;
298 }
299
300 /* Create dynamic sections when linking against a dynamic object. */
301
302 bfd_boolean
303 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
304 {
305 flagword flags, pltflags;
306 struct elf_link_hash_entry *h;
307 asection *s;
308 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
309 struct elf_link_hash_table *htab = elf_hash_table (info);
310
311 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
312 .rel[a].bss sections. */
313 flags = bed->dynamic_sec_flags;
314
315 pltflags = flags;
316 if (bed->plt_not_loaded)
317 /* We do not clear SEC_ALLOC here because we still want the OS to
318 allocate space for the section; it's just that there's nothing
319 to read in from the object file. */
320 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
321 else
322 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
323 if (bed->plt_readonly)
324 pltflags |= SEC_READONLY;
325
326 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
327 if (s == NULL
328 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
329 return FALSE;
330 htab->splt = s;
331
332 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
333 .plt section. */
334 if (bed->want_plt_sym)
335 {
336 h = _bfd_elf_define_linkage_sym (abfd, info, s,
337 "_PROCEDURE_LINKAGE_TABLE_");
338 elf_hash_table (info)->hplt = h;
339 if (h == NULL)
340 return FALSE;
341 }
342
343 s = bfd_make_section_anyway_with_flags (abfd,
344 (bed->rela_plts_and_copies_p
345 ? ".rela.plt" : ".rel.plt"),
346 flags | SEC_READONLY);
347 if (s == NULL
348 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
349 return FALSE;
350 htab->srelplt = s;
351
352 if (! _bfd_elf_create_got_section (abfd, info))
353 return FALSE;
354
355 if (bed->want_dynbss)
356 {
357 /* The .dynbss section is a place to put symbols which are defined
358 by dynamic objects, are referenced by regular objects, and are
359 not functions. We must allocate space for them in the process
360 image and use a R_*_COPY reloc to tell the dynamic linker to
361 initialize them at run time. The linker script puts the .dynbss
362 section into the .bss section of the final image. */
363 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
364 (SEC_ALLOC | SEC_LINKER_CREATED));
365 if (s == NULL)
366 return FALSE;
367
368 /* The .rel[a].bss section holds copy relocs. This section is not
369 normally needed. We need to create it here, though, so that the
370 linker will map it to an output section. We can't just create it
371 only if we need it, because we will not know whether we need it
372 until we have seen all the input files, and the first time the
373 main linker code calls BFD after examining all the input files
374 (size_dynamic_sections) the input sections have already been
375 mapped to the output sections. If the section turns out not to
376 be needed, we can discard it later. We will never need this
377 section when generating a shared object, since they do not use
378 copy relocs. */
379 if (! info->shared)
380 {
381 s = bfd_make_section_anyway_with_flags (abfd,
382 (bed->rela_plts_and_copies_p
383 ? ".rela.bss" : ".rel.bss"),
384 flags | SEC_READONLY);
385 if (s == NULL
386 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
387 return FALSE;
388 }
389 }
390
391 return TRUE;
392 }
393 \f
394 /* Record a new dynamic symbol. We record the dynamic symbols as we
395 read the input files, since we need to have a list of all of them
396 before we can determine the final sizes of the output sections.
397 Note that we may actually call this function even though we are not
398 going to output any dynamic symbols; in some cases we know that a
399 symbol should be in the dynamic symbol table, but only if there is
400 one. */
401
402 bfd_boolean
403 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
404 struct elf_link_hash_entry *h)
405 {
406 if (h->dynindx == -1)
407 {
408 struct elf_strtab_hash *dynstr;
409 char *p;
410 const char *name;
411 bfd_size_type indx;
412
413 /* XXX: The ABI draft says the linker must turn hidden and
414 internal symbols into STB_LOCAL symbols when producing the
415 DSO. However, if ld.so honors st_other in the dynamic table,
416 this would not be necessary. */
417 switch (ELF_ST_VISIBILITY (h->other))
418 {
419 case STV_INTERNAL:
420 case STV_HIDDEN:
421 if (h->root.type != bfd_link_hash_undefined
422 && h->root.type != bfd_link_hash_undefweak)
423 {
424 h->forced_local = 1;
425 if (!elf_hash_table (info)->is_relocatable_executable)
426 return TRUE;
427 }
428
429 default:
430 break;
431 }
432
433 h->dynindx = elf_hash_table (info)->dynsymcount;
434 ++elf_hash_table (info)->dynsymcount;
435
436 dynstr = elf_hash_table (info)->dynstr;
437 if (dynstr == NULL)
438 {
439 /* Create a strtab to hold the dynamic symbol names. */
440 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
441 if (dynstr == NULL)
442 return FALSE;
443 }
444
445 /* We don't put any version information in the dynamic string
446 table. */
447 name = h->root.root.string;
448 p = strchr (name, ELF_VER_CHR);
449 if (p != NULL)
450 /* We know that the p points into writable memory. In fact,
451 there are only a few symbols that have read-only names, being
452 those like _GLOBAL_OFFSET_TABLE_ that are created specially
453 by the backends. Most symbols will have names pointing into
454 an ELF string table read from a file, or to objalloc memory. */
455 *p = 0;
456
457 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
458
459 if (p != NULL)
460 *p = ELF_VER_CHR;
461
462 if (indx == (bfd_size_type) -1)
463 return FALSE;
464 h->dynstr_index = indx;
465 }
466
467 return TRUE;
468 }
469 \f
470 /* Mark a symbol dynamic. */
471
472 static void
473 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
474 struct elf_link_hash_entry *h,
475 Elf_Internal_Sym *sym)
476 {
477 struct bfd_elf_dynamic_list *d = info->dynamic_list;
478
479 /* It may be called more than once on the same H. */
480 if(h->dynamic || info->relocatable)
481 return;
482
483 if ((info->dynamic_data
484 && (h->type == STT_OBJECT
485 || (sym != NULL
486 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
487 || (d != NULL
488 && h->root.type == bfd_link_hash_new
489 && (*d->match) (&d->head, NULL, h->root.root.string)))
490 h->dynamic = 1;
491 }
492
493 /* Record an assignment to a symbol made by a linker script. We need
494 this in case some dynamic object refers to this symbol. */
495
496 bfd_boolean
497 bfd_elf_record_link_assignment (bfd *output_bfd,
498 struct bfd_link_info *info,
499 const char *name,
500 bfd_boolean provide,
501 bfd_boolean hidden)
502 {
503 struct elf_link_hash_entry *h, *hv;
504 struct elf_link_hash_table *htab;
505 const struct elf_backend_data *bed;
506
507 if (!is_elf_hash_table (info->hash))
508 return TRUE;
509
510 htab = elf_hash_table (info);
511 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
512 if (h == NULL)
513 return provide;
514
515 switch (h->root.type)
516 {
517 case bfd_link_hash_defined:
518 case bfd_link_hash_defweak:
519 case bfd_link_hash_common:
520 break;
521 case bfd_link_hash_undefweak:
522 case bfd_link_hash_undefined:
523 /* Since we're defining the symbol, don't let it seem to have not
524 been defined. record_dynamic_symbol and size_dynamic_sections
525 may depend on this. */
526 h->root.type = bfd_link_hash_new;
527 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
528 bfd_link_repair_undef_list (&htab->root);
529 break;
530 case bfd_link_hash_new:
531 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
532 h->non_elf = 0;
533 break;
534 case bfd_link_hash_indirect:
535 /* We had a versioned symbol in a dynamic library. We make the
536 the versioned symbol point to this one. */
537 bed = get_elf_backend_data (output_bfd);
538 hv = h;
539 while (hv->root.type == bfd_link_hash_indirect
540 || hv->root.type == bfd_link_hash_warning)
541 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
542 /* We don't need to update h->root.u since linker will set them
543 later. */
544 h->root.type = bfd_link_hash_undefined;
545 hv->root.type = bfd_link_hash_indirect;
546 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
547 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
548 break;
549 case bfd_link_hash_warning:
550 abort ();
551 break;
552 }
553
554 /* If this symbol is being provided by the linker script, and it is
555 currently defined by a dynamic object, but not by a regular
556 object, then mark it as undefined so that the generic linker will
557 force the correct value. */
558 if (provide
559 && h->def_dynamic
560 && !h->def_regular)
561 h->root.type = bfd_link_hash_undefined;
562
563 /* If this symbol is not being provided by the linker script, and it is
564 currently defined by a dynamic object, but not by a regular object,
565 then clear out any version information because the symbol will not be
566 associated with the dynamic object any more. */
567 if (!provide
568 && h->def_dynamic
569 && !h->def_regular)
570 h->verinfo.verdef = NULL;
571
572 h->def_regular = 1;
573
574 if (hidden)
575 {
576 bed = get_elf_backend_data (output_bfd);
577 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
578 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
579 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
580 }
581
582 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
583 and executables. */
584 if (!info->relocatable
585 && h->dynindx != -1
586 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
587 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
588 h->forced_local = 1;
589
590 if ((h->def_dynamic
591 || h->ref_dynamic
592 || info->shared
593 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
594 && h->dynindx == -1)
595 {
596 if (! bfd_elf_link_record_dynamic_symbol (info, h))
597 return FALSE;
598
599 /* If this is a weak defined symbol, and we know a corresponding
600 real symbol from the same dynamic object, make sure the real
601 symbol is also made into a dynamic symbol. */
602 if (h->u.weakdef != NULL
603 && h->u.weakdef->dynindx == -1)
604 {
605 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
606 return FALSE;
607 }
608 }
609
610 return TRUE;
611 }
612
613 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
614 success, and 2 on a failure caused by attempting to record a symbol
615 in a discarded section, eg. a discarded link-once section symbol. */
616
617 int
618 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
619 bfd *input_bfd,
620 long input_indx)
621 {
622 bfd_size_type amt;
623 struct elf_link_local_dynamic_entry *entry;
624 struct elf_link_hash_table *eht;
625 struct elf_strtab_hash *dynstr;
626 unsigned long dynstr_index;
627 char *name;
628 Elf_External_Sym_Shndx eshndx;
629 char esym[sizeof (Elf64_External_Sym)];
630
631 if (! is_elf_hash_table (info->hash))
632 return 0;
633
634 /* See if the entry exists already. */
635 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
636 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
637 return 1;
638
639 amt = sizeof (*entry);
640 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
641 if (entry == NULL)
642 return 0;
643
644 /* Go find the symbol, so that we can find it's name. */
645 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
646 1, input_indx, &entry->isym, esym, &eshndx))
647 {
648 bfd_release (input_bfd, entry);
649 return 0;
650 }
651
652 if (entry->isym.st_shndx != SHN_UNDEF
653 && entry->isym.st_shndx < SHN_LORESERVE)
654 {
655 asection *s;
656
657 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
658 if (s == NULL || bfd_is_abs_section (s->output_section))
659 {
660 /* We can still bfd_release here as nothing has done another
661 bfd_alloc. We can't do this later in this function. */
662 bfd_release (input_bfd, entry);
663 return 2;
664 }
665 }
666
667 name = (bfd_elf_string_from_elf_section
668 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
669 entry->isym.st_name));
670
671 dynstr = elf_hash_table (info)->dynstr;
672 if (dynstr == NULL)
673 {
674 /* Create a strtab to hold the dynamic symbol names. */
675 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
676 if (dynstr == NULL)
677 return 0;
678 }
679
680 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
681 if (dynstr_index == (unsigned long) -1)
682 return 0;
683 entry->isym.st_name = dynstr_index;
684
685 eht = elf_hash_table (info);
686
687 entry->next = eht->dynlocal;
688 eht->dynlocal = entry;
689 entry->input_bfd = input_bfd;
690 entry->input_indx = input_indx;
691 eht->dynsymcount++;
692
693 /* Whatever binding the symbol had before, it's now local. */
694 entry->isym.st_info
695 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
696
697 /* The dynindx will be set at the end of size_dynamic_sections. */
698
699 return 1;
700 }
701
702 /* Return the dynindex of a local dynamic symbol. */
703
704 long
705 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
706 bfd *input_bfd,
707 long input_indx)
708 {
709 struct elf_link_local_dynamic_entry *e;
710
711 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
712 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
713 return e->dynindx;
714 return -1;
715 }
716
717 /* This function is used to renumber the dynamic symbols, if some of
718 them are removed because they are marked as local. This is called
719 via elf_link_hash_traverse. */
720
721 static bfd_boolean
722 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
723 void *data)
724 {
725 size_t *count = (size_t *) data;
726
727 if (h->forced_local)
728 return TRUE;
729
730 if (h->dynindx != -1)
731 h->dynindx = ++(*count);
732
733 return TRUE;
734 }
735
736
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
739
740 static bfd_boolean
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
742 void *data)
743 {
744 size_t *count = (size_t *) data;
745
746 if (!h->forced_local)
747 return TRUE;
748
749 if (h->dynindx != -1)
750 h->dynindx = ++(*count);
751
752 return TRUE;
753 }
754
755 /* Return true if the dynamic symbol for a given section should be
756 omitted when creating a shared library. */
757 bfd_boolean
758 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
759 struct bfd_link_info *info,
760 asection *p)
761 {
762 struct elf_link_hash_table *htab;
763
764 switch (elf_section_data (p)->this_hdr.sh_type)
765 {
766 case SHT_PROGBITS:
767 case SHT_NOBITS:
768 /* If sh_type is yet undecided, assume it could be
769 SHT_PROGBITS/SHT_NOBITS. */
770 case SHT_NULL:
771 htab = elf_hash_table (info);
772 if (p == htab->tls_sec)
773 return FALSE;
774
775 if (htab->text_index_section != NULL)
776 return p != htab->text_index_section && p != htab->data_index_section;
777
778 if (strcmp (p->name, ".got") == 0
779 || strcmp (p->name, ".got.plt") == 0
780 || strcmp (p->name, ".plt") == 0)
781 {
782 asection *ip;
783
784 if (htab->dynobj != NULL
785 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
786 && ip->output_section == p)
787 return TRUE;
788 }
789 return FALSE;
790
791 /* There shouldn't be section relative relocations
792 against any other section. */
793 default:
794 return TRUE;
795 }
796 }
797
798 /* Assign dynsym indices. In a shared library we generate a section
799 symbol for each output section, which come first. Next come symbols
800 which have been forced to local binding. Then all of the back-end
801 allocated local dynamic syms, followed by the rest of the global
802 symbols. */
803
804 static unsigned long
805 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
806 struct bfd_link_info *info,
807 unsigned long *section_sym_count)
808 {
809 unsigned long dynsymcount = 0;
810
811 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
812 {
813 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
814 asection *p;
815 for (p = output_bfd->sections; p ; p = p->next)
816 if ((p->flags & SEC_EXCLUDE) == 0
817 && (p->flags & SEC_ALLOC) != 0
818 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
819 elf_section_data (p)->dynindx = ++dynsymcount;
820 else
821 elf_section_data (p)->dynindx = 0;
822 }
823 *section_sym_count = dynsymcount;
824
825 elf_link_hash_traverse (elf_hash_table (info),
826 elf_link_renumber_local_hash_table_dynsyms,
827 &dynsymcount);
828
829 if (elf_hash_table (info)->dynlocal)
830 {
831 struct elf_link_local_dynamic_entry *p;
832 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
833 p->dynindx = ++dynsymcount;
834 }
835
836 elf_link_hash_traverse (elf_hash_table (info),
837 elf_link_renumber_hash_table_dynsyms,
838 &dynsymcount);
839
840 /* There is an unused NULL entry at the head of the table which
841 we must account for in our count. Unless there weren't any
842 symbols, which means we'll have no table at all. */
843 if (dynsymcount != 0)
844 ++dynsymcount;
845
846 elf_hash_table (info)->dynsymcount = dynsymcount;
847 return dynsymcount;
848 }
849
850 /* Merge st_other field. */
851
852 static void
853 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
854 Elf_Internal_Sym *isym, bfd_boolean definition,
855 bfd_boolean dynamic)
856 {
857 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
858
859 /* If st_other has a processor-specific meaning, specific
860 code might be needed here. We never merge the visibility
861 attribute with the one from a dynamic object. */
862 if (bed->elf_backend_merge_symbol_attribute)
863 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
864 dynamic);
865
866 /* If this symbol has default visibility and the user has requested
867 we not re-export it, then mark it as hidden. */
868 if (definition
869 && !dynamic
870 && (abfd->no_export
871 || (abfd->my_archive && abfd->my_archive->no_export))
872 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
873 isym->st_other = (STV_HIDDEN
874 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
875
876 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
877 {
878 unsigned char hvis, symvis, other, nvis;
879
880 /* Only merge the visibility. Leave the remainder of the
881 st_other field to elf_backend_merge_symbol_attribute. */
882 other = h->other & ~ELF_ST_VISIBILITY (-1);
883
884 /* Combine visibilities, using the most constraining one. */
885 hvis = ELF_ST_VISIBILITY (h->other);
886 symvis = ELF_ST_VISIBILITY (isym->st_other);
887 if (! hvis)
888 nvis = symvis;
889 else if (! symvis)
890 nvis = hvis;
891 else
892 nvis = hvis < symvis ? hvis : symvis;
893
894 h->other = other | nvis;
895 }
896 }
897
898 /* This function is called when we want to merge a new symbol with an
899 existing symbol. It handles the various cases which arise when we
900 find a definition in a dynamic object, or when there is already a
901 definition in a dynamic object. The new symbol is described by
902 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
903 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
904 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
905 of an old common symbol. We set OVERRIDE if the old symbol is
906 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
907 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
908 to change. By OK to change, we mean that we shouldn't warn if the
909 type or size does change. */
910
911 static bfd_boolean
912 _bfd_elf_merge_symbol (bfd *abfd,
913 struct bfd_link_info *info,
914 const char *name,
915 Elf_Internal_Sym *sym,
916 asection **psec,
917 bfd_vma *pvalue,
918 struct elf_link_hash_entry **sym_hash,
919 bfd **poldbfd,
920 bfd_boolean *pold_weak,
921 unsigned int *pold_alignment,
922 bfd_boolean *skip,
923 bfd_boolean *override,
924 bfd_boolean *type_change_ok,
925 bfd_boolean *size_change_ok)
926 {
927 asection *sec, *oldsec;
928 struct elf_link_hash_entry *h;
929 struct elf_link_hash_entry *hi;
930 struct elf_link_hash_entry *flip;
931 int bind;
932 bfd *oldbfd;
933 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
934 bfd_boolean newweak, oldweak, newfunc, oldfunc;
935 const struct elf_backend_data *bed;
936
937 *skip = FALSE;
938 *override = FALSE;
939
940 sec = *psec;
941 bind = ELF_ST_BIND (sym->st_info);
942
943 if (! bfd_is_und_section (sec))
944 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
945 else
946 h = ((struct elf_link_hash_entry *)
947 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
948 if (h == NULL)
949 return FALSE;
950 *sym_hash = h;
951
952 bed = get_elf_backend_data (abfd);
953
954 /* This code is for coping with dynamic objects, and is only useful
955 if we are doing an ELF link. */
956 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
957 return TRUE;
958
959 /* For merging, we only care about real symbols. But we need to make
960 sure that indirect symbol dynamic flags are updated. */
961 hi = h;
962 while (h->root.type == bfd_link_hash_indirect
963 || h->root.type == bfd_link_hash_warning)
964 h = (struct elf_link_hash_entry *) h->root.u.i.link;
965
966 /* We have to check it for every instance since the first few may be
967 references and not all compilers emit symbol type for undefined
968 symbols. */
969 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
970
971 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
972 respectively, is from a dynamic object. */
973
974 newdyn = (abfd->flags & DYNAMIC) != 0;
975
976 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
977 syms and defined syms in dynamic libraries respectively.
978 ref_dynamic on the other hand can be set for a symbol defined in
979 a dynamic library, and def_dynamic may not be set; When the
980 definition in a dynamic lib is overridden by a definition in the
981 executable use of the symbol in the dynamic lib becomes a
982 reference to the executable symbol. */
983 if (newdyn)
984 {
985 if (bfd_is_und_section (sec))
986 {
987 if (bind != STB_WEAK)
988 {
989 h->ref_dynamic_nonweak = 1;
990 hi->ref_dynamic_nonweak = 1;
991 }
992 }
993 else
994 {
995 h->dynamic_def = 1;
996 hi->dynamic_def = 1;
997 }
998 }
999
1000 /* If we just created the symbol, mark it as being an ELF symbol.
1001 Other than that, there is nothing to do--there is no merge issue
1002 with a newly defined symbol--so we just return. */
1003
1004 if (h->root.type == bfd_link_hash_new)
1005 {
1006 h->non_elf = 0;
1007 return TRUE;
1008 }
1009
1010 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1011 existing symbol. */
1012
1013 switch (h->root.type)
1014 {
1015 default:
1016 oldbfd = NULL;
1017 oldsec = NULL;
1018 break;
1019
1020 case bfd_link_hash_undefined:
1021 case bfd_link_hash_undefweak:
1022 oldbfd = h->root.u.undef.abfd;
1023 oldsec = NULL;
1024 break;
1025
1026 case bfd_link_hash_defined:
1027 case bfd_link_hash_defweak:
1028 oldbfd = h->root.u.def.section->owner;
1029 oldsec = h->root.u.def.section;
1030 break;
1031
1032 case bfd_link_hash_common:
1033 oldbfd = h->root.u.c.p->section->owner;
1034 oldsec = h->root.u.c.p->section;
1035 if (pold_alignment)
1036 *pold_alignment = h->root.u.c.p->alignment_power;
1037 break;
1038 }
1039 if (poldbfd && *poldbfd == NULL)
1040 *poldbfd = oldbfd;
1041
1042 /* Differentiate strong and weak symbols. */
1043 newweak = bind == STB_WEAK;
1044 oldweak = (h->root.type == bfd_link_hash_defweak
1045 || h->root.type == bfd_link_hash_undefweak);
1046 if (pold_weak)
1047 *pold_weak = oldweak;
1048
1049 /* In cases involving weak versioned symbols, we may wind up trying
1050 to merge a symbol with itself. Catch that here, to avoid the
1051 confusion that results if we try to override a symbol with
1052 itself. The additional tests catch cases like
1053 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1054 dynamic object, which we do want to handle here. */
1055 if (abfd == oldbfd
1056 && (newweak || oldweak)
1057 && ((abfd->flags & DYNAMIC) == 0
1058 || !h->def_regular))
1059 return TRUE;
1060
1061 olddyn = FALSE;
1062 if (oldbfd != NULL)
1063 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1064 else if (oldsec != NULL)
1065 {
1066 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1067 indices used by MIPS ELF. */
1068 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1069 }
1070
1071 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1072 respectively, appear to be a definition rather than reference. */
1073
1074 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1075
1076 olddef = (h->root.type != bfd_link_hash_undefined
1077 && h->root.type != bfd_link_hash_undefweak
1078 && h->root.type != bfd_link_hash_common);
1079
1080 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1081 respectively, appear to be a function. */
1082
1083 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1084 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1085
1086 oldfunc = (h->type != STT_NOTYPE
1087 && bed->is_function_type (h->type));
1088
1089 /* When we try to create a default indirect symbol from the dynamic
1090 definition with the default version, we skip it if its type and
1091 the type of existing regular definition mismatch. We only do it
1092 if the existing regular definition won't be dynamic. */
1093 if (pold_alignment == NULL
1094 && !info->shared
1095 && !info->export_dynamic
1096 && !h->ref_dynamic
1097 && newdyn
1098 && newdef
1099 && !olddyn
1100 && (olddef || h->root.type == bfd_link_hash_common)
1101 && ELF_ST_TYPE (sym->st_info) != h->type
1102 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1103 && h->type != STT_NOTYPE
1104 && !(newfunc && oldfunc))
1105 {
1106 *skip = TRUE;
1107 return TRUE;
1108 }
1109
1110 /* Plugin symbol type isn't currently set. Stop bogus errors. */
1111 if (oldbfd != NULL && (oldbfd->flags & BFD_PLUGIN) != 0)
1112 *type_change_ok = TRUE;
1113
1114 /* Check TLS symbol. We don't check undefined symbol introduced by
1115 "ld -u". */
1116 else if (oldbfd != NULL
1117 && ELF_ST_TYPE (sym->st_info) != h->type
1118 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1119 {
1120 bfd *ntbfd, *tbfd;
1121 bfd_boolean ntdef, tdef;
1122 asection *ntsec, *tsec;
1123
1124 if (h->type == STT_TLS)
1125 {
1126 ntbfd = abfd;
1127 ntsec = sec;
1128 ntdef = newdef;
1129 tbfd = oldbfd;
1130 tsec = oldsec;
1131 tdef = olddef;
1132 }
1133 else
1134 {
1135 ntbfd = oldbfd;
1136 ntsec = oldsec;
1137 ntdef = olddef;
1138 tbfd = abfd;
1139 tsec = sec;
1140 tdef = newdef;
1141 }
1142
1143 if (tdef && ntdef)
1144 (*_bfd_error_handler)
1145 (_("%s: TLS definition in %B section %A "
1146 "mismatches non-TLS definition in %B section %A"),
1147 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1148 else if (!tdef && !ntdef)
1149 (*_bfd_error_handler)
1150 (_("%s: TLS reference in %B "
1151 "mismatches non-TLS reference in %B"),
1152 tbfd, ntbfd, h->root.root.string);
1153 else if (tdef)
1154 (*_bfd_error_handler)
1155 (_("%s: TLS definition in %B section %A "
1156 "mismatches non-TLS reference in %B"),
1157 tbfd, tsec, ntbfd, h->root.root.string);
1158 else
1159 (*_bfd_error_handler)
1160 (_("%s: TLS reference in %B "
1161 "mismatches non-TLS definition in %B section %A"),
1162 tbfd, ntbfd, ntsec, h->root.root.string);
1163
1164 bfd_set_error (bfd_error_bad_value);
1165 return FALSE;
1166 }
1167
1168 /* If the old symbol has non-default visibility, we ignore the new
1169 definition from a dynamic object. */
1170 if (newdyn
1171 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1172 && !bfd_is_und_section (sec))
1173 {
1174 *skip = TRUE;
1175 /* Make sure this symbol is dynamic. */
1176 h->ref_dynamic = 1;
1177 hi->ref_dynamic = 1;
1178 /* A protected symbol has external availability. Make sure it is
1179 recorded as dynamic.
1180
1181 FIXME: Should we check type and size for protected symbol? */
1182 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1183 return bfd_elf_link_record_dynamic_symbol (info, h);
1184 else
1185 return TRUE;
1186 }
1187 else if (!newdyn
1188 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1189 && h->def_dynamic)
1190 {
1191 /* If the new symbol with non-default visibility comes from a
1192 relocatable file and the old definition comes from a dynamic
1193 object, we remove the old definition. */
1194 if (hi->root.type == bfd_link_hash_indirect)
1195 {
1196 /* Handle the case where the old dynamic definition is
1197 default versioned. We need to copy the symbol info from
1198 the symbol with default version to the normal one if it
1199 was referenced before. */
1200 if (h->ref_regular)
1201 {
1202 hi->root.type = h->root.type;
1203 h->root.type = bfd_link_hash_indirect;
1204 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1205
1206 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1207 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1208 {
1209 /* If the new symbol is hidden or internal, completely undo
1210 any dynamic link state. */
1211 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1212 h->forced_local = 0;
1213 h->ref_dynamic = 0;
1214 }
1215 else
1216 h->ref_dynamic = 1;
1217
1218 h->def_dynamic = 0;
1219 /* FIXME: Should we check type and size for protected symbol? */
1220 h->size = 0;
1221 h->type = 0;
1222
1223 h = hi;
1224 }
1225 else
1226 h = hi;
1227 }
1228
1229 /* If the old symbol was undefined before, then it will still be
1230 on the undefs list. If the new symbol is undefined or
1231 common, we can't make it bfd_link_hash_new here, because new
1232 undefined or common symbols will be added to the undefs list
1233 by _bfd_generic_link_add_one_symbol. Symbols may not be
1234 added twice to the undefs list. Also, if the new symbol is
1235 undefweak then we don't want to lose the strong undef. */
1236 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1237 {
1238 h->root.type = bfd_link_hash_undefined;
1239 h->root.u.undef.abfd = abfd;
1240 }
1241 else
1242 {
1243 h->root.type = bfd_link_hash_new;
1244 h->root.u.undef.abfd = NULL;
1245 }
1246
1247 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1248 {
1249 /* If the new symbol is hidden or internal, completely undo
1250 any dynamic link state. */
1251 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1252 h->forced_local = 0;
1253 h->ref_dynamic = 0;
1254 }
1255 else
1256 h->ref_dynamic = 1;
1257 h->def_dynamic = 0;
1258 /* FIXME: Should we check type and size for protected symbol? */
1259 h->size = 0;
1260 h->type = 0;
1261 return TRUE;
1262 }
1263
1264 /* If a new weak symbol definition comes from a regular file and the
1265 old symbol comes from a dynamic library, we treat the new one as
1266 strong. Similarly, an old weak symbol definition from a regular
1267 file is treated as strong when the new symbol comes from a dynamic
1268 library. Further, an old weak symbol from a dynamic library is
1269 treated as strong if the new symbol is from a dynamic library.
1270 This reflects the way glibc's ld.so works.
1271
1272 Do this before setting *type_change_ok or *size_change_ok so that
1273 we warn properly when dynamic library symbols are overridden. */
1274
1275 if (newdef && !newdyn && olddyn)
1276 newweak = FALSE;
1277 if (olddef && newdyn)
1278 oldweak = FALSE;
1279
1280 /* Allow changes between different types of function symbol. */
1281 if (newfunc && oldfunc)
1282 *type_change_ok = TRUE;
1283
1284 /* It's OK to change the type if either the existing symbol or the
1285 new symbol is weak. A type change is also OK if the old symbol
1286 is undefined and the new symbol is defined. */
1287
1288 if (oldweak
1289 || newweak
1290 || (newdef
1291 && h->root.type == bfd_link_hash_undefined))
1292 *type_change_ok = TRUE;
1293
1294 /* It's OK to change the size if either the existing symbol or the
1295 new symbol is weak, or if the old symbol is undefined. */
1296
1297 if (*type_change_ok
1298 || h->root.type == bfd_link_hash_undefined)
1299 *size_change_ok = TRUE;
1300
1301 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1302 symbol, respectively, appears to be a common symbol in a dynamic
1303 object. If a symbol appears in an uninitialized section, and is
1304 not weak, and is not a function, then it may be a common symbol
1305 which was resolved when the dynamic object was created. We want
1306 to treat such symbols specially, because they raise special
1307 considerations when setting the symbol size: if the symbol
1308 appears as a common symbol in a regular object, and the size in
1309 the regular object is larger, we must make sure that we use the
1310 larger size. This problematic case can always be avoided in C,
1311 but it must be handled correctly when using Fortran shared
1312 libraries.
1313
1314 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1315 likewise for OLDDYNCOMMON and OLDDEF.
1316
1317 Note that this test is just a heuristic, and that it is quite
1318 possible to have an uninitialized symbol in a shared object which
1319 is really a definition, rather than a common symbol. This could
1320 lead to some minor confusion when the symbol really is a common
1321 symbol in some regular object. However, I think it will be
1322 harmless. */
1323
1324 if (newdyn
1325 && newdef
1326 && !newweak
1327 && (sec->flags & SEC_ALLOC) != 0
1328 && (sec->flags & SEC_LOAD) == 0
1329 && sym->st_size > 0
1330 && !newfunc)
1331 newdyncommon = TRUE;
1332 else
1333 newdyncommon = FALSE;
1334
1335 if (olddyn
1336 && olddef
1337 && h->root.type == bfd_link_hash_defined
1338 && h->def_dynamic
1339 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1340 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1341 && h->size > 0
1342 && !oldfunc)
1343 olddyncommon = TRUE;
1344 else
1345 olddyncommon = FALSE;
1346
1347 /* We now know everything about the old and new symbols. We ask the
1348 backend to check if we can merge them. */
1349 if (bed->merge_symbol != NULL)
1350 {
1351 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1352 return FALSE;
1353 sec = *psec;
1354 }
1355
1356 /* If both the old and the new symbols look like common symbols in a
1357 dynamic object, set the size of the symbol to the larger of the
1358 two. */
1359
1360 if (olddyncommon
1361 && newdyncommon
1362 && sym->st_size != h->size)
1363 {
1364 /* Since we think we have two common symbols, issue a multiple
1365 common warning if desired. Note that we only warn if the
1366 size is different. If the size is the same, we simply let
1367 the old symbol override the new one as normally happens with
1368 symbols defined in dynamic objects. */
1369
1370 if (! ((*info->callbacks->multiple_common)
1371 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1372 return FALSE;
1373
1374 if (sym->st_size > h->size)
1375 h->size = sym->st_size;
1376
1377 *size_change_ok = TRUE;
1378 }
1379
1380 /* If we are looking at a dynamic object, and we have found a
1381 definition, we need to see if the symbol was already defined by
1382 some other object. If so, we want to use the existing
1383 definition, and we do not want to report a multiple symbol
1384 definition error; we do this by clobbering *PSEC to be
1385 bfd_und_section_ptr.
1386
1387 We treat a common symbol as a definition if the symbol in the
1388 shared library is a function, since common symbols always
1389 represent variables; this can cause confusion in principle, but
1390 any such confusion would seem to indicate an erroneous program or
1391 shared library. We also permit a common symbol in a regular
1392 object to override a weak symbol in a shared object. */
1393
1394 if (newdyn
1395 && newdef
1396 && (olddef
1397 || (h->root.type == bfd_link_hash_common
1398 && (newweak || newfunc))))
1399 {
1400 *override = TRUE;
1401 newdef = FALSE;
1402 newdyncommon = FALSE;
1403
1404 *psec = sec = bfd_und_section_ptr;
1405 *size_change_ok = TRUE;
1406
1407 /* If we get here when the old symbol is a common symbol, then
1408 we are explicitly letting it override a weak symbol or
1409 function in a dynamic object, and we don't want to warn about
1410 a type change. If the old symbol is a defined symbol, a type
1411 change warning may still be appropriate. */
1412
1413 if (h->root.type == bfd_link_hash_common)
1414 *type_change_ok = TRUE;
1415 }
1416
1417 /* Handle the special case of an old common symbol merging with a
1418 new symbol which looks like a common symbol in a shared object.
1419 We change *PSEC and *PVALUE to make the new symbol look like a
1420 common symbol, and let _bfd_generic_link_add_one_symbol do the
1421 right thing. */
1422
1423 if (newdyncommon
1424 && h->root.type == bfd_link_hash_common)
1425 {
1426 *override = TRUE;
1427 newdef = FALSE;
1428 newdyncommon = FALSE;
1429 *pvalue = sym->st_size;
1430 *psec = sec = bed->common_section (oldsec);
1431 *size_change_ok = TRUE;
1432 }
1433
1434 /* Skip weak definitions of symbols that are already defined. */
1435 if (newdef && olddef && newweak)
1436 {
1437 /* Don't skip new non-IR weak syms. */
1438 if (!(oldbfd != NULL
1439 && (oldbfd->flags & BFD_PLUGIN) != 0
1440 && (abfd->flags & BFD_PLUGIN) == 0))
1441 *skip = TRUE;
1442
1443 /* Merge st_other. If the symbol already has a dynamic index,
1444 but visibility says it should not be visible, turn it into a
1445 local symbol. */
1446 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1447 if (h->dynindx != -1)
1448 switch (ELF_ST_VISIBILITY (h->other))
1449 {
1450 case STV_INTERNAL:
1451 case STV_HIDDEN:
1452 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1453 break;
1454 }
1455 }
1456
1457 /* If the old symbol is from a dynamic object, and the new symbol is
1458 a definition which is not from a dynamic object, then the new
1459 symbol overrides the old symbol. Symbols from regular files
1460 always take precedence over symbols from dynamic objects, even if
1461 they are defined after the dynamic object in the link.
1462
1463 As above, we again permit a common symbol in a regular object to
1464 override a definition in a shared object if the shared object
1465 symbol is a function or is weak. */
1466
1467 flip = NULL;
1468 if (!newdyn
1469 && (newdef
1470 || (bfd_is_com_section (sec)
1471 && (oldweak || oldfunc)))
1472 && olddyn
1473 && olddef
1474 && h->def_dynamic)
1475 {
1476 /* Change the hash table entry to undefined, and let
1477 _bfd_generic_link_add_one_symbol do the right thing with the
1478 new definition. */
1479
1480 h->root.type = bfd_link_hash_undefined;
1481 h->root.u.undef.abfd = h->root.u.def.section->owner;
1482 *size_change_ok = TRUE;
1483
1484 olddef = FALSE;
1485 olddyncommon = FALSE;
1486
1487 /* We again permit a type change when a common symbol may be
1488 overriding a function. */
1489
1490 if (bfd_is_com_section (sec))
1491 {
1492 if (oldfunc)
1493 {
1494 /* If a common symbol overrides a function, make sure
1495 that it isn't defined dynamically nor has type
1496 function. */
1497 h->def_dynamic = 0;
1498 h->type = STT_NOTYPE;
1499 }
1500 *type_change_ok = TRUE;
1501 }
1502
1503 if (hi->root.type == bfd_link_hash_indirect)
1504 flip = hi;
1505 else
1506 /* This union may have been set to be non-NULL when this symbol
1507 was seen in a dynamic object. We must force the union to be
1508 NULL, so that it is correct for a regular symbol. */
1509 h->verinfo.vertree = NULL;
1510 }
1511
1512 /* Handle the special case of a new common symbol merging with an
1513 old symbol that looks like it might be a common symbol defined in
1514 a shared object. Note that we have already handled the case in
1515 which a new common symbol should simply override the definition
1516 in the shared library. */
1517
1518 if (! newdyn
1519 && bfd_is_com_section (sec)
1520 && olddyncommon)
1521 {
1522 /* It would be best if we could set the hash table entry to a
1523 common symbol, but we don't know what to use for the section
1524 or the alignment. */
1525 if (! ((*info->callbacks->multiple_common)
1526 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1527 return FALSE;
1528
1529 /* If the presumed common symbol in the dynamic object is
1530 larger, pretend that the new symbol has its size. */
1531
1532 if (h->size > *pvalue)
1533 *pvalue = h->size;
1534
1535 /* We need to remember the alignment required by the symbol
1536 in the dynamic object. */
1537 BFD_ASSERT (pold_alignment);
1538 *pold_alignment = h->root.u.def.section->alignment_power;
1539
1540 olddef = FALSE;
1541 olddyncommon = FALSE;
1542
1543 h->root.type = bfd_link_hash_undefined;
1544 h->root.u.undef.abfd = h->root.u.def.section->owner;
1545
1546 *size_change_ok = TRUE;
1547 *type_change_ok = TRUE;
1548
1549 if (hi->root.type == bfd_link_hash_indirect)
1550 flip = hi;
1551 else
1552 h->verinfo.vertree = NULL;
1553 }
1554
1555 if (flip != NULL)
1556 {
1557 /* Handle the case where we had a versioned symbol in a dynamic
1558 library and now find a definition in a normal object. In this
1559 case, we make the versioned symbol point to the normal one. */
1560 flip->root.type = h->root.type;
1561 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1562 h->root.type = bfd_link_hash_indirect;
1563 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1564 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1565 if (h->def_dynamic)
1566 {
1567 h->def_dynamic = 0;
1568 flip->ref_dynamic = 1;
1569 }
1570 }
1571
1572 return TRUE;
1573 }
1574
1575 /* This function is called to create an indirect symbol from the
1576 default for the symbol with the default version if needed. The
1577 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1578 set DYNSYM if the new indirect symbol is dynamic. */
1579
1580 static bfd_boolean
1581 _bfd_elf_add_default_symbol (bfd *abfd,
1582 struct bfd_link_info *info,
1583 struct elf_link_hash_entry *h,
1584 const char *name,
1585 Elf_Internal_Sym *sym,
1586 asection *sec,
1587 bfd_vma value,
1588 bfd **poldbfd,
1589 bfd_boolean *dynsym)
1590 {
1591 bfd_boolean type_change_ok;
1592 bfd_boolean size_change_ok;
1593 bfd_boolean skip;
1594 char *shortname;
1595 struct elf_link_hash_entry *hi;
1596 struct bfd_link_hash_entry *bh;
1597 const struct elf_backend_data *bed;
1598 bfd_boolean collect;
1599 bfd_boolean dynamic;
1600 bfd_boolean override;
1601 char *p;
1602 size_t len, shortlen;
1603 asection *tmp_sec;
1604
1605 /* If this symbol has a version, and it is the default version, we
1606 create an indirect symbol from the default name to the fully
1607 decorated name. This will cause external references which do not
1608 specify a version to be bound to this version of the symbol. */
1609 p = strchr (name, ELF_VER_CHR);
1610 if (p == NULL || p[1] != ELF_VER_CHR)
1611 return TRUE;
1612
1613 bed = get_elf_backend_data (abfd);
1614 collect = bed->collect;
1615 dynamic = (abfd->flags & DYNAMIC) != 0;
1616
1617 shortlen = p - name;
1618 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1619 if (shortname == NULL)
1620 return FALSE;
1621 memcpy (shortname, name, shortlen);
1622 shortname[shortlen] = '\0';
1623
1624 /* We are going to create a new symbol. Merge it with any existing
1625 symbol with this name. For the purposes of the merge, act as
1626 though we were defining the symbol we just defined, although we
1627 actually going to define an indirect symbol. */
1628 type_change_ok = FALSE;
1629 size_change_ok = FALSE;
1630 tmp_sec = sec;
1631 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1632 &hi, poldbfd, NULL, NULL, &skip, &override,
1633 &type_change_ok, &size_change_ok))
1634 return FALSE;
1635
1636 if (skip)
1637 goto nondefault;
1638
1639 if (! override)
1640 {
1641 bh = &hi->root;
1642 if (! (_bfd_generic_link_add_one_symbol
1643 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1644 0, name, FALSE, collect, &bh)))
1645 return FALSE;
1646 hi = (struct elf_link_hash_entry *) bh;
1647 }
1648 else
1649 {
1650 /* In this case the symbol named SHORTNAME is overriding the
1651 indirect symbol we want to add. We were planning on making
1652 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1653 is the name without a version. NAME is the fully versioned
1654 name, and it is the default version.
1655
1656 Overriding means that we already saw a definition for the
1657 symbol SHORTNAME in a regular object, and it is overriding
1658 the symbol defined in the dynamic object.
1659
1660 When this happens, we actually want to change NAME, the
1661 symbol we just added, to refer to SHORTNAME. This will cause
1662 references to NAME in the shared object to become references
1663 to SHORTNAME in the regular object. This is what we expect
1664 when we override a function in a shared object: that the
1665 references in the shared object will be mapped to the
1666 definition in the regular object. */
1667
1668 while (hi->root.type == bfd_link_hash_indirect
1669 || hi->root.type == bfd_link_hash_warning)
1670 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1671
1672 h->root.type = bfd_link_hash_indirect;
1673 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1674 if (h->def_dynamic)
1675 {
1676 h->def_dynamic = 0;
1677 hi->ref_dynamic = 1;
1678 if (hi->ref_regular
1679 || hi->def_regular)
1680 {
1681 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1682 return FALSE;
1683 }
1684 }
1685
1686 /* Now set HI to H, so that the following code will set the
1687 other fields correctly. */
1688 hi = h;
1689 }
1690
1691 /* Check if HI is a warning symbol. */
1692 if (hi->root.type == bfd_link_hash_warning)
1693 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1694
1695 /* If there is a duplicate definition somewhere, then HI may not
1696 point to an indirect symbol. We will have reported an error to
1697 the user in that case. */
1698
1699 if (hi->root.type == bfd_link_hash_indirect)
1700 {
1701 struct elf_link_hash_entry *ht;
1702
1703 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1704 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1705
1706 /* See if the new flags lead us to realize that the symbol must
1707 be dynamic. */
1708 if (! *dynsym)
1709 {
1710 if (! dynamic)
1711 {
1712 if (! info->executable
1713 || hi->def_dynamic
1714 || hi->ref_dynamic)
1715 *dynsym = TRUE;
1716 }
1717 else
1718 {
1719 if (hi->ref_regular)
1720 *dynsym = TRUE;
1721 }
1722 }
1723 }
1724
1725 /* We also need to define an indirection from the nondefault version
1726 of the symbol. */
1727
1728 nondefault:
1729 len = strlen (name);
1730 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1731 if (shortname == NULL)
1732 return FALSE;
1733 memcpy (shortname, name, shortlen);
1734 memcpy (shortname + shortlen, p + 1, len - shortlen);
1735
1736 /* Once again, merge with any existing symbol. */
1737 type_change_ok = FALSE;
1738 size_change_ok = FALSE;
1739 tmp_sec = sec;
1740 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1741 &hi, NULL, NULL, NULL, &skip, &override,
1742 &type_change_ok, &size_change_ok))
1743 return FALSE;
1744
1745 if (skip)
1746 return TRUE;
1747
1748 if (override)
1749 {
1750 /* Here SHORTNAME is a versioned name, so we don't expect to see
1751 the type of override we do in the case above unless it is
1752 overridden by a versioned definition. */
1753 if (hi->root.type != bfd_link_hash_defined
1754 && hi->root.type != bfd_link_hash_defweak)
1755 (*_bfd_error_handler)
1756 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1757 abfd, shortname);
1758 }
1759 else
1760 {
1761 bh = &hi->root;
1762 if (! (_bfd_generic_link_add_one_symbol
1763 (info, abfd, shortname, BSF_INDIRECT,
1764 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1765 return FALSE;
1766 hi = (struct elf_link_hash_entry *) bh;
1767
1768 /* If there is a duplicate definition somewhere, then HI may not
1769 point to an indirect symbol. We will have reported an error
1770 to the user in that case. */
1771
1772 if (hi->root.type == bfd_link_hash_indirect)
1773 {
1774 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1775
1776 /* See if the new flags lead us to realize that the symbol
1777 must be dynamic. */
1778 if (! *dynsym)
1779 {
1780 if (! dynamic)
1781 {
1782 if (! info->executable
1783 || hi->ref_dynamic)
1784 *dynsym = TRUE;
1785 }
1786 else
1787 {
1788 if (hi->ref_regular)
1789 *dynsym = TRUE;
1790 }
1791 }
1792 }
1793 }
1794
1795 return TRUE;
1796 }
1797 \f
1798 /* This routine is used to export all defined symbols into the dynamic
1799 symbol table. It is called via elf_link_hash_traverse. */
1800
1801 static bfd_boolean
1802 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1803 {
1804 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1805
1806 /* Ignore indirect symbols. These are added by the versioning code. */
1807 if (h->root.type == bfd_link_hash_indirect)
1808 return TRUE;
1809
1810 /* Ignore this if we won't export it. */
1811 if (!eif->info->export_dynamic && !h->dynamic)
1812 return TRUE;
1813
1814 if (h->dynindx == -1
1815 && (h->def_regular || h->ref_regular)
1816 && ! bfd_hide_sym_by_version (eif->info->version_info,
1817 h->root.root.string))
1818 {
1819 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1820 {
1821 eif->failed = TRUE;
1822 return FALSE;
1823 }
1824 }
1825
1826 return TRUE;
1827 }
1828 \f
1829 /* Look through the symbols which are defined in other shared
1830 libraries and referenced here. Update the list of version
1831 dependencies. This will be put into the .gnu.version_r section.
1832 This function is called via elf_link_hash_traverse. */
1833
1834 static bfd_boolean
1835 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1836 void *data)
1837 {
1838 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1839 Elf_Internal_Verneed *t;
1840 Elf_Internal_Vernaux *a;
1841 bfd_size_type amt;
1842
1843 /* We only care about symbols defined in shared objects with version
1844 information. */
1845 if (!h->def_dynamic
1846 || h->def_regular
1847 || h->dynindx == -1
1848 || h->verinfo.verdef == NULL)
1849 return TRUE;
1850
1851 /* See if we already know about this version. */
1852 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1853 t != NULL;
1854 t = t->vn_nextref)
1855 {
1856 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1857 continue;
1858
1859 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1860 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1861 return TRUE;
1862
1863 break;
1864 }
1865
1866 /* This is a new version. Add it to tree we are building. */
1867
1868 if (t == NULL)
1869 {
1870 amt = sizeof *t;
1871 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1872 if (t == NULL)
1873 {
1874 rinfo->failed = TRUE;
1875 return FALSE;
1876 }
1877
1878 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1879 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1880 elf_tdata (rinfo->info->output_bfd)->verref = t;
1881 }
1882
1883 amt = sizeof *a;
1884 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1885 if (a == NULL)
1886 {
1887 rinfo->failed = TRUE;
1888 return FALSE;
1889 }
1890
1891 /* Note that we are copying a string pointer here, and testing it
1892 above. If bfd_elf_string_from_elf_section is ever changed to
1893 discard the string data when low in memory, this will have to be
1894 fixed. */
1895 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1896
1897 a->vna_flags = h->verinfo.verdef->vd_flags;
1898 a->vna_nextptr = t->vn_auxptr;
1899
1900 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1901 ++rinfo->vers;
1902
1903 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1904
1905 t->vn_auxptr = a;
1906
1907 return TRUE;
1908 }
1909
1910 /* Figure out appropriate versions for all the symbols. We may not
1911 have the version number script until we have read all of the input
1912 files, so until that point we don't know which symbols should be
1913 local. This function is called via elf_link_hash_traverse. */
1914
1915 static bfd_boolean
1916 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1917 {
1918 struct elf_info_failed *sinfo;
1919 struct bfd_link_info *info;
1920 const struct elf_backend_data *bed;
1921 struct elf_info_failed eif;
1922 char *p;
1923 bfd_size_type amt;
1924
1925 sinfo = (struct elf_info_failed *) data;
1926 info = sinfo->info;
1927
1928 /* Fix the symbol flags. */
1929 eif.failed = FALSE;
1930 eif.info = info;
1931 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1932 {
1933 if (eif.failed)
1934 sinfo->failed = TRUE;
1935 return FALSE;
1936 }
1937
1938 /* We only need version numbers for symbols defined in regular
1939 objects. */
1940 if (!h->def_regular)
1941 return TRUE;
1942
1943 bed = get_elf_backend_data (info->output_bfd);
1944 p = strchr (h->root.root.string, ELF_VER_CHR);
1945 if (p != NULL && h->verinfo.vertree == NULL)
1946 {
1947 struct bfd_elf_version_tree *t;
1948 bfd_boolean hidden;
1949
1950 hidden = TRUE;
1951
1952 /* There are two consecutive ELF_VER_CHR characters if this is
1953 not a hidden symbol. */
1954 ++p;
1955 if (*p == ELF_VER_CHR)
1956 {
1957 hidden = FALSE;
1958 ++p;
1959 }
1960
1961 /* If there is no version string, we can just return out. */
1962 if (*p == '\0')
1963 {
1964 if (hidden)
1965 h->hidden = 1;
1966 return TRUE;
1967 }
1968
1969 /* Look for the version. If we find it, it is no longer weak. */
1970 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1971 {
1972 if (strcmp (t->name, p) == 0)
1973 {
1974 size_t len;
1975 char *alc;
1976 struct bfd_elf_version_expr *d;
1977
1978 len = p - h->root.root.string;
1979 alc = (char *) bfd_malloc (len);
1980 if (alc == NULL)
1981 {
1982 sinfo->failed = TRUE;
1983 return FALSE;
1984 }
1985 memcpy (alc, h->root.root.string, len - 1);
1986 alc[len - 1] = '\0';
1987 if (alc[len - 2] == ELF_VER_CHR)
1988 alc[len - 2] = '\0';
1989
1990 h->verinfo.vertree = t;
1991 t->used = TRUE;
1992 d = NULL;
1993
1994 if (t->globals.list != NULL)
1995 d = (*t->match) (&t->globals, NULL, alc);
1996
1997 /* See if there is anything to force this symbol to
1998 local scope. */
1999 if (d == NULL && t->locals.list != NULL)
2000 {
2001 d = (*t->match) (&t->locals, NULL, alc);
2002 if (d != NULL
2003 && h->dynindx != -1
2004 && ! info->export_dynamic)
2005 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2006 }
2007
2008 free (alc);
2009 break;
2010 }
2011 }
2012
2013 /* If we are building an application, we need to create a
2014 version node for this version. */
2015 if (t == NULL && info->executable)
2016 {
2017 struct bfd_elf_version_tree **pp;
2018 int version_index;
2019
2020 /* If we aren't going to export this symbol, we don't need
2021 to worry about it. */
2022 if (h->dynindx == -1)
2023 return TRUE;
2024
2025 amt = sizeof *t;
2026 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2027 if (t == NULL)
2028 {
2029 sinfo->failed = TRUE;
2030 return FALSE;
2031 }
2032
2033 t->name = p;
2034 t->name_indx = (unsigned int) -1;
2035 t->used = TRUE;
2036
2037 version_index = 1;
2038 /* Don't count anonymous version tag. */
2039 if (sinfo->info->version_info != NULL
2040 && sinfo->info->version_info->vernum == 0)
2041 version_index = 0;
2042 for (pp = &sinfo->info->version_info;
2043 *pp != NULL;
2044 pp = &(*pp)->next)
2045 ++version_index;
2046 t->vernum = version_index;
2047
2048 *pp = t;
2049
2050 h->verinfo.vertree = t;
2051 }
2052 else if (t == NULL)
2053 {
2054 /* We could not find the version for a symbol when
2055 generating a shared archive. Return an error. */
2056 (*_bfd_error_handler)
2057 (_("%B: version node not found for symbol %s"),
2058 info->output_bfd, h->root.root.string);
2059 bfd_set_error (bfd_error_bad_value);
2060 sinfo->failed = TRUE;
2061 return FALSE;
2062 }
2063
2064 if (hidden)
2065 h->hidden = 1;
2066 }
2067
2068 /* If we don't have a version for this symbol, see if we can find
2069 something. */
2070 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2071 {
2072 bfd_boolean hide;
2073
2074 h->verinfo.vertree
2075 = bfd_find_version_for_sym (sinfo->info->version_info,
2076 h->root.root.string, &hide);
2077 if (h->verinfo.vertree != NULL && hide)
2078 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2079 }
2080
2081 return TRUE;
2082 }
2083 \f
2084 /* Read and swap the relocs from the section indicated by SHDR. This
2085 may be either a REL or a RELA section. The relocations are
2086 translated into RELA relocations and stored in INTERNAL_RELOCS,
2087 which should have already been allocated to contain enough space.
2088 The EXTERNAL_RELOCS are a buffer where the external form of the
2089 relocations should be stored.
2090
2091 Returns FALSE if something goes wrong. */
2092
2093 static bfd_boolean
2094 elf_link_read_relocs_from_section (bfd *abfd,
2095 asection *sec,
2096 Elf_Internal_Shdr *shdr,
2097 void *external_relocs,
2098 Elf_Internal_Rela *internal_relocs)
2099 {
2100 const struct elf_backend_data *bed;
2101 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2102 const bfd_byte *erela;
2103 const bfd_byte *erelaend;
2104 Elf_Internal_Rela *irela;
2105 Elf_Internal_Shdr *symtab_hdr;
2106 size_t nsyms;
2107
2108 /* Position ourselves at the start of the section. */
2109 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2110 return FALSE;
2111
2112 /* Read the relocations. */
2113 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2114 return FALSE;
2115
2116 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2117 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2118
2119 bed = get_elf_backend_data (abfd);
2120
2121 /* Convert the external relocations to the internal format. */
2122 if (shdr->sh_entsize == bed->s->sizeof_rel)
2123 swap_in = bed->s->swap_reloc_in;
2124 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2125 swap_in = bed->s->swap_reloca_in;
2126 else
2127 {
2128 bfd_set_error (bfd_error_wrong_format);
2129 return FALSE;
2130 }
2131
2132 erela = (const bfd_byte *) external_relocs;
2133 erelaend = erela + shdr->sh_size;
2134 irela = internal_relocs;
2135 while (erela < erelaend)
2136 {
2137 bfd_vma r_symndx;
2138
2139 (*swap_in) (abfd, erela, irela);
2140 r_symndx = ELF32_R_SYM (irela->r_info);
2141 if (bed->s->arch_size == 64)
2142 r_symndx >>= 24;
2143 if (nsyms > 0)
2144 {
2145 if ((size_t) r_symndx >= nsyms)
2146 {
2147 (*_bfd_error_handler)
2148 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2149 " for offset 0x%lx in section `%A'"),
2150 abfd, sec,
2151 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2152 bfd_set_error (bfd_error_bad_value);
2153 return FALSE;
2154 }
2155 }
2156 else if (r_symndx != STN_UNDEF)
2157 {
2158 (*_bfd_error_handler)
2159 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2160 " when the object file has no symbol table"),
2161 abfd, sec,
2162 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2163 bfd_set_error (bfd_error_bad_value);
2164 return FALSE;
2165 }
2166 irela += bed->s->int_rels_per_ext_rel;
2167 erela += shdr->sh_entsize;
2168 }
2169
2170 return TRUE;
2171 }
2172
2173 /* Read and swap the relocs for a section O. They may have been
2174 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2175 not NULL, they are used as buffers to read into. They are known to
2176 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2177 the return value is allocated using either malloc or bfd_alloc,
2178 according to the KEEP_MEMORY argument. If O has two relocation
2179 sections (both REL and RELA relocations), then the REL_HDR
2180 relocations will appear first in INTERNAL_RELOCS, followed by the
2181 RELA_HDR relocations. */
2182
2183 Elf_Internal_Rela *
2184 _bfd_elf_link_read_relocs (bfd *abfd,
2185 asection *o,
2186 void *external_relocs,
2187 Elf_Internal_Rela *internal_relocs,
2188 bfd_boolean keep_memory)
2189 {
2190 void *alloc1 = NULL;
2191 Elf_Internal_Rela *alloc2 = NULL;
2192 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2193 struct bfd_elf_section_data *esdo = elf_section_data (o);
2194 Elf_Internal_Rela *internal_rela_relocs;
2195
2196 if (esdo->relocs != NULL)
2197 return esdo->relocs;
2198
2199 if (o->reloc_count == 0)
2200 return NULL;
2201
2202 if (internal_relocs == NULL)
2203 {
2204 bfd_size_type size;
2205
2206 size = o->reloc_count;
2207 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2208 if (keep_memory)
2209 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2210 else
2211 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2212 if (internal_relocs == NULL)
2213 goto error_return;
2214 }
2215
2216 if (external_relocs == NULL)
2217 {
2218 bfd_size_type size = 0;
2219
2220 if (esdo->rel.hdr)
2221 size += esdo->rel.hdr->sh_size;
2222 if (esdo->rela.hdr)
2223 size += esdo->rela.hdr->sh_size;
2224
2225 alloc1 = bfd_malloc (size);
2226 if (alloc1 == NULL)
2227 goto error_return;
2228 external_relocs = alloc1;
2229 }
2230
2231 internal_rela_relocs = internal_relocs;
2232 if (esdo->rel.hdr)
2233 {
2234 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2235 external_relocs,
2236 internal_relocs))
2237 goto error_return;
2238 external_relocs = (((bfd_byte *) external_relocs)
2239 + esdo->rel.hdr->sh_size);
2240 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2241 * bed->s->int_rels_per_ext_rel);
2242 }
2243
2244 if (esdo->rela.hdr
2245 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2246 external_relocs,
2247 internal_rela_relocs)))
2248 goto error_return;
2249
2250 /* Cache the results for next time, if we can. */
2251 if (keep_memory)
2252 esdo->relocs = internal_relocs;
2253
2254 if (alloc1 != NULL)
2255 free (alloc1);
2256
2257 /* Don't free alloc2, since if it was allocated we are passing it
2258 back (under the name of internal_relocs). */
2259
2260 return internal_relocs;
2261
2262 error_return:
2263 if (alloc1 != NULL)
2264 free (alloc1);
2265 if (alloc2 != NULL)
2266 {
2267 if (keep_memory)
2268 bfd_release (abfd, alloc2);
2269 else
2270 free (alloc2);
2271 }
2272 return NULL;
2273 }
2274
2275 /* Compute the size of, and allocate space for, REL_HDR which is the
2276 section header for a section containing relocations for O. */
2277
2278 static bfd_boolean
2279 _bfd_elf_link_size_reloc_section (bfd *abfd,
2280 struct bfd_elf_section_reloc_data *reldata)
2281 {
2282 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2283
2284 /* That allows us to calculate the size of the section. */
2285 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2286
2287 /* The contents field must last into write_object_contents, so we
2288 allocate it with bfd_alloc rather than malloc. Also since we
2289 cannot be sure that the contents will actually be filled in,
2290 we zero the allocated space. */
2291 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2292 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2293 return FALSE;
2294
2295 if (reldata->hashes == NULL && reldata->count)
2296 {
2297 struct elf_link_hash_entry **p;
2298
2299 p = (struct elf_link_hash_entry **)
2300 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2301 if (p == NULL)
2302 return FALSE;
2303
2304 reldata->hashes = p;
2305 }
2306
2307 return TRUE;
2308 }
2309
2310 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2311 originated from the section given by INPUT_REL_HDR) to the
2312 OUTPUT_BFD. */
2313
2314 bfd_boolean
2315 _bfd_elf_link_output_relocs (bfd *output_bfd,
2316 asection *input_section,
2317 Elf_Internal_Shdr *input_rel_hdr,
2318 Elf_Internal_Rela *internal_relocs,
2319 struct elf_link_hash_entry **rel_hash
2320 ATTRIBUTE_UNUSED)
2321 {
2322 Elf_Internal_Rela *irela;
2323 Elf_Internal_Rela *irelaend;
2324 bfd_byte *erel;
2325 struct bfd_elf_section_reloc_data *output_reldata;
2326 asection *output_section;
2327 const struct elf_backend_data *bed;
2328 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2329 struct bfd_elf_section_data *esdo;
2330
2331 output_section = input_section->output_section;
2332
2333 bed = get_elf_backend_data (output_bfd);
2334 esdo = elf_section_data (output_section);
2335 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2336 {
2337 output_reldata = &esdo->rel;
2338 swap_out = bed->s->swap_reloc_out;
2339 }
2340 else if (esdo->rela.hdr
2341 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2342 {
2343 output_reldata = &esdo->rela;
2344 swap_out = bed->s->swap_reloca_out;
2345 }
2346 else
2347 {
2348 (*_bfd_error_handler)
2349 (_("%B: relocation size mismatch in %B section %A"),
2350 output_bfd, input_section->owner, input_section);
2351 bfd_set_error (bfd_error_wrong_format);
2352 return FALSE;
2353 }
2354
2355 erel = output_reldata->hdr->contents;
2356 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2357 irela = internal_relocs;
2358 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2359 * bed->s->int_rels_per_ext_rel);
2360 while (irela < irelaend)
2361 {
2362 (*swap_out) (output_bfd, irela, erel);
2363 irela += bed->s->int_rels_per_ext_rel;
2364 erel += input_rel_hdr->sh_entsize;
2365 }
2366
2367 /* Bump the counter, so that we know where to add the next set of
2368 relocations. */
2369 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2370
2371 return TRUE;
2372 }
2373 \f
2374 /* Make weak undefined symbols in PIE dynamic. */
2375
2376 bfd_boolean
2377 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2378 struct elf_link_hash_entry *h)
2379 {
2380 if (info->pie
2381 && h->dynindx == -1
2382 && h->root.type == bfd_link_hash_undefweak)
2383 return bfd_elf_link_record_dynamic_symbol (info, h);
2384
2385 return TRUE;
2386 }
2387
2388 /* Fix up the flags for a symbol. This handles various cases which
2389 can only be fixed after all the input files are seen. This is
2390 currently called by both adjust_dynamic_symbol and
2391 assign_sym_version, which is unnecessary but perhaps more robust in
2392 the face of future changes. */
2393
2394 static bfd_boolean
2395 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2396 struct elf_info_failed *eif)
2397 {
2398 const struct elf_backend_data *bed;
2399
2400 /* If this symbol was mentioned in a non-ELF file, try to set
2401 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2402 permit a non-ELF file to correctly refer to a symbol defined in
2403 an ELF dynamic object. */
2404 if (h->non_elf)
2405 {
2406 while (h->root.type == bfd_link_hash_indirect)
2407 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2408
2409 if (h->root.type != bfd_link_hash_defined
2410 && h->root.type != bfd_link_hash_defweak)
2411 {
2412 h->ref_regular = 1;
2413 h->ref_regular_nonweak = 1;
2414 }
2415 else
2416 {
2417 if (h->root.u.def.section->owner != NULL
2418 && (bfd_get_flavour (h->root.u.def.section->owner)
2419 == bfd_target_elf_flavour))
2420 {
2421 h->ref_regular = 1;
2422 h->ref_regular_nonweak = 1;
2423 }
2424 else
2425 h->def_regular = 1;
2426 }
2427
2428 if (h->dynindx == -1
2429 && (h->def_dynamic
2430 || h->ref_dynamic))
2431 {
2432 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2433 {
2434 eif->failed = TRUE;
2435 return FALSE;
2436 }
2437 }
2438 }
2439 else
2440 {
2441 /* Unfortunately, NON_ELF is only correct if the symbol
2442 was first seen in a non-ELF file. Fortunately, if the symbol
2443 was first seen in an ELF file, we're probably OK unless the
2444 symbol was defined in a non-ELF file. Catch that case here.
2445 FIXME: We're still in trouble if the symbol was first seen in
2446 a dynamic object, and then later in a non-ELF regular object. */
2447 if ((h->root.type == bfd_link_hash_defined
2448 || h->root.type == bfd_link_hash_defweak)
2449 && !h->def_regular
2450 && (h->root.u.def.section->owner != NULL
2451 ? (bfd_get_flavour (h->root.u.def.section->owner)
2452 != bfd_target_elf_flavour)
2453 : (bfd_is_abs_section (h->root.u.def.section)
2454 && !h->def_dynamic)))
2455 h->def_regular = 1;
2456 }
2457
2458 /* Backend specific symbol fixup. */
2459 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2460 if (bed->elf_backend_fixup_symbol
2461 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2462 return FALSE;
2463
2464 /* If this is a final link, and the symbol was defined as a common
2465 symbol in a regular object file, and there was no definition in
2466 any dynamic object, then the linker will have allocated space for
2467 the symbol in a common section but the DEF_REGULAR
2468 flag will not have been set. */
2469 if (h->root.type == bfd_link_hash_defined
2470 && !h->def_regular
2471 && h->ref_regular
2472 && !h->def_dynamic
2473 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2474 h->def_regular = 1;
2475
2476 /* If -Bsymbolic was used (which means to bind references to global
2477 symbols to the definition within the shared object), and this
2478 symbol was defined in a regular object, then it actually doesn't
2479 need a PLT entry. Likewise, if the symbol has non-default
2480 visibility. If the symbol has hidden or internal visibility, we
2481 will force it local. */
2482 if (h->needs_plt
2483 && eif->info->shared
2484 && is_elf_hash_table (eif->info->hash)
2485 && (SYMBOLIC_BIND (eif->info, h)
2486 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2487 && h->def_regular)
2488 {
2489 bfd_boolean force_local;
2490
2491 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2492 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2493 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2494 }
2495
2496 /* If a weak undefined symbol has non-default visibility, we also
2497 hide it from the dynamic linker. */
2498 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2499 && h->root.type == bfd_link_hash_undefweak)
2500 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2501
2502 /* If this is a weak defined symbol in a dynamic object, and we know
2503 the real definition in the dynamic object, copy interesting flags
2504 over to the real definition. */
2505 if (h->u.weakdef != NULL)
2506 {
2507 /* If the real definition is defined by a regular object file,
2508 don't do anything special. See the longer description in
2509 _bfd_elf_adjust_dynamic_symbol, below. */
2510 if (h->u.weakdef->def_regular)
2511 h->u.weakdef = NULL;
2512 else
2513 {
2514 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2515
2516 while (h->root.type == bfd_link_hash_indirect)
2517 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2518
2519 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2520 || h->root.type == bfd_link_hash_defweak);
2521 BFD_ASSERT (weakdef->def_dynamic);
2522 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2523 || weakdef->root.type == bfd_link_hash_defweak);
2524 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2525 }
2526 }
2527
2528 return TRUE;
2529 }
2530
2531 /* Make the backend pick a good value for a dynamic symbol. This is
2532 called via elf_link_hash_traverse, and also calls itself
2533 recursively. */
2534
2535 static bfd_boolean
2536 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2537 {
2538 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2539 bfd *dynobj;
2540 const struct elf_backend_data *bed;
2541
2542 if (! is_elf_hash_table (eif->info->hash))
2543 return FALSE;
2544
2545 /* Ignore indirect symbols. These are added by the versioning code. */
2546 if (h->root.type == bfd_link_hash_indirect)
2547 return TRUE;
2548
2549 /* Fix the symbol flags. */
2550 if (! _bfd_elf_fix_symbol_flags (h, eif))
2551 return FALSE;
2552
2553 /* If this symbol does not require a PLT entry, and it is not
2554 defined by a dynamic object, or is not referenced by a regular
2555 object, ignore it. We do have to handle a weak defined symbol,
2556 even if no regular object refers to it, if we decided to add it
2557 to the dynamic symbol table. FIXME: Do we normally need to worry
2558 about symbols which are defined by one dynamic object and
2559 referenced by another one? */
2560 if (!h->needs_plt
2561 && h->type != STT_GNU_IFUNC
2562 && (h->def_regular
2563 || !h->def_dynamic
2564 || (!h->ref_regular
2565 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2566 {
2567 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2568 return TRUE;
2569 }
2570
2571 /* If we've already adjusted this symbol, don't do it again. This
2572 can happen via a recursive call. */
2573 if (h->dynamic_adjusted)
2574 return TRUE;
2575
2576 /* Don't look at this symbol again. Note that we must set this
2577 after checking the above conditions, because we may look at a
2578 symbol once, decide not to do anything, and then get called
2579 recursively later after REF_REGULAR is set below. */
2580 h->dynamic_adjusted = 1;
2581
2582 /* If this is a weak definition, and we know a real definition, and
2583 the real symbol is not itself defined by a regular object file,
2584 then get a good value for the real definition. We handle the
2585 real symbol first, for the convenience of the backend routine.
2586
2587 Note that there is a confusing case here. If the real definition
2588 is defined by a regular object file, we don't get the real symbol
2589 from the dynamic object, but we do get the weak symbol. If the
2590 processor backend uses a COPY reloc, then if some routine in the
2591 dynamic object changes the real symbol, we will not see that
2592 change in the corresponding weak symbol. This is the way other
2593 ELF linkers work as well, and seems to be a result of the shared
2594 library model.
2595
2596 I will clarify this issue. Most SVR4 shared libraries define the
2597 variable _timezone and define timezone as a weak synonym. The
2598 tzset call changes _timezone. If you write
2599 extern int timezone;
2600 int _timezone = 5;
2601 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2602 you might expect that, since timezone is a synonym for _timezone,
2603 the same number will print both times. However, if the processor
2604 backend uses a COPY reloc, then actually timezone will be copied
2605 into your process image, and, since you define _timezone
2606 yourself, _timezone will not. Thus timezone and _timezone will
2607 wind up at different memory locations. The tzset call will set
2608 _timezone, leaving timezone unchanged. */
2609
2610 if (h->u.weakdef != NULL)
2611 {
2612 /* If we get to this point, there is an implicit reference to
2613 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2614 h->u.weakdef->ref_regular = 1;
2615
2616 /* Ensure that the backend adjust_dynamic_symbol function sees
2617 H->U.WEAKDEF before H by recursively calling ourselves. */
2618 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2619 return FALSE;
2620 }
2621
2622 /* If a symbol has no type and no size and does not require a PLT
2623 entry, then we are probably about to do the wrong thing here: we
2624 are probably going to create a COPY reloc for an empty object.
2625 This case can arise when a shared object is built with assembly
2626 code, and the assembly code fails to set the symbol type. */
2627 if (h->size == 0
2628 && h->type == STT_NOTYPE
2629 && !h->needs_plt)
2630 (*_bfd_error_handler)
2631 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2632 h->root.root.string);
2633
2634 dynobj = elf_hash_table (eif->info)->dynobj;
2635 bed = get_elf_backend_data (dynobj);
2636
2637 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2638 {
2639 eif->failed = TRUE;
2640 return FALSE;
2641 }
2642
2643 return TRUE;
2644 }
2645
2646 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2647 DYNBSS. */
2648
2649 bfd_boolean
2650 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2651 asection *dynbss)
2652 {
2653 unsigned int power_of_two;
2654 bfd_vma mask;
2655 asection *sec = h->root.u.def.section;
2656
2657 /* The section aligment of definition is the maximum alignment
2658 requirement of symbols defined in the section. Since we don't
2659 know the symbol alignment requirement, we start with the
2660 maximum alignment and check low bits of the symbol address
2661 for the minimum alignment. */
2662 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2663 mask = ((bfd_vma) 1 << power_of_two) - 1;
2664 while ((h->root.u.def.value & mask) != 0)
2665 {
2666 mask >>= 1;
2667 --power_of_two;
2668 }
2669
2670 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2671 dynbss))
2672 {
2673 /* Adjust the section alignment if needed. */
2674 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2675 power_of_two))
2676 return FALSE;
2677 }
2678
2679 /* We make sure that the symbol will be aligned properly. */
2680 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2681
2682 /* Define the symbol as being at this point in DYNBSS. */
2683 h->root.u.def.section = dynbss;
2684 h->root.u.def.value = dynbss->size;
2685
2686 /* Increment the size of DYNBSS to make room for the symbol. */
2687 dynbss->size += h->size;
2688
2689 return TRUE;
2690 }
2691
2692 /* Adjust all external symbols pointing into SEC_MERGE sections
2693 to reflect the object merging within the sections. */
2694
2695 static bfd_boolean
2696 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2697 {
2698 asection *sec;
2699
2700 if ((h->root.type == bfd_link_hash_defined
2701 || h->root.type == bfd_link_hash_defweak)
2702 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2703 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2704 {
2705 bfd *output_bfd = (bfd *) data;
2706
2707 h->root.u.def.value =
2708 _bfd_merged_section_offset (output_bfd,
2709 &h->root.u.def.section,
2710 elf_section_data (sec)->sec_info,
2711 h->root.u.def.value);
2712 }
2713
2714 return TRUE;
2715 }
2716
2717 /* Returns false if the symbol referred to by H should be considered
2718 to resolve local to the current module, and true if it should be
2719 considered to bind dynamically. */
2720
2721 bfd_boolean
2722 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2723 struct bfd_link_info *info,
2724 bfd_boolean not_local_protected)
2725 {
2726 bfd_boolean binding_stays_local_p;
2727 const struct elf_backend_data *bed;
2728 struct elf_link_hash_table *hash_table;
2729
2730 if (h == NULL)
2731 return FALSE;
2732
2733 while (h->root.type == bfd_link_hash_indirect
2734 || h->root.type == bfd_link_hash_warning)
2735 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2736
2737 /* If it was forced local, then clearly it's not dynamic. */
2738 if (h->dynindx == -1)
2739 return FALSE;
2740 if (h->forced_local)
2741 return FALSE;
2742
2743 /* Identify the cases where name binding rules say that a
2744 visible symbol resolves locally. */
2745 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2746
2747 switch (ELF_ST_VISIBILITY (h->other))
2748 {
2749 case STV_INTERNAL:
2750 case STV_HIDDEN:
2751 return FALSE;
2752
2753 case STV_PROTECTED:
2754 hash_table = elf_hash_table (info);
2755 if (!is_elf_hash_table (hash_table))
2756 return FALSE;
2757
2758 bed = get_elf_backend_data (hash_table->dynobj);
2759
2760 /* Proper resolution for function pointer equality may require
2761 that these symbols perhaps be resolved dynamically, even though
2762 we should be resolving them to the current module. */
2763 if (!not_local_protected || !bed->is_function_type (h->type))
2764 binding_stays_local_p = TRUE;
2765 break;
2766
2767 default:
2768 break;
2769 }
2770
2771 /* If it isn't defined locally, then clearly it's dynamic. */
2772 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2773 return TRUE;
2774
2775 /* Otherwise, the symbol is dynamic if binding rules don't tell
2776 us that it remains local. */
2777 return !binding_stays_local_p;
2778 }
2779
2780 /* Return true if the symbol referred to by H should be considered
2781 to resolve local to the current module, and false otherwise. Differs
2782 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2783 undefined symbols. The two functions are virtually identical except
2784 for the place where forced_local and dynindx == -1 are tested. If
2785 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2786 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2787 the symbol is local only for defined symbols.
2788 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2789 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2790 treatment of undefined weak symbols. For those that do not make
2791 undefined weak symbols dynamic, both functions may return false. */
2792
2793 bfd_boolean
2794 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2795 struct bfd_link_info *info,
2796 bfd_boolean local_protected)
2797 {
2798 const struct elf_backend_data *bed;
2799 struct elf_link_hash_table *hash_table;
2800
2801 /* If it's a local sym, of course we resolve locally. */
2802 if (h == NULL)
2803 return TRUE;
2804
2805 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2806 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2807 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2808 return TRUE;
2809
2810 /* Common symbols that become definitions don't get the DEF_REGULAR
2811 flag set, so test it first, and don't bail out. */
2812 if (ELF_COMMON_DEF_P (h))
2813 /* Do nothing. */;
2814 /* If we don't have a definition in a regular file, then we can't
2815 resolve locally. The sym is either undefined or dynamic. */
2816 else if (!h->def_regular)
2817 return FALSE;
2818
2819 /* Forced local symbols resolve locally. */
2820 if (h->forced_local)
2821 return TRUE;
2822
2823 /* As do non-dynamic symbols. */
2824 if (h->dynindx == -1)
2825 return TRUE;
2826
2827 /* At this point, we know the symbol is defined and dynamic. In an
2828 executable it must resolve locally, likewise when building symbolic
2829 shared libraries. */
2830 if (info->executable || SYMBOLIC_BIND (info, h))
2831 return TRUE;
2832
2833 /* Now deal with defined dynamic symbols in shared libraries. Ones
2834 with default visibility might not resolve locally. */
2835 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2836 return FALSE;
2837
2838 hash_table = elf_hash_table (info);
2839 if (!is_elf_hash_table (hash_table))
2840 return TRUE;
2841
2842 bed = get_elf_backend_data (hash_table->dynobj);
2843
2844 /* STV_PROTECTED non-function symbols are local. */
2845 if (!bed->is_function_type (h->type))
2846 return TRUE;
2847
2848 /* Function pointer equality tests may require that STV_PROTECTED
2849 symbols be treated as dynamic symbols. If the address of a
2850 function not defined in an executable is set to that function's
2851 plt entry in the executable, then the address of the function in
2852 a shared library must also be the plt entry in the executable. */
2853 return local_protected;
2854 }
2855
2856 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2857 aligned. Returns the first TLS output section. */
2858
2859 struct bfd_section *
2860 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2861 {
2862 struct bfd_section *sec, *tls;
2863 unsigned int align = 0;
2864
2865 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2866 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2867 break;
2868 tls = sec;
2869
2870 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2871 if (sec->alignment_power > align)
2872 align = sec->alignment_power;
2873
2874 elf_hash_table (info)->tls_sec = tls;
2875
2876 /* Ensure the alignment of the first section is the largest alignment,
2877 so that the tls segment starts aligned. */
2878 if (tls != NULL)
2879 tls->alignment_power = align;
2880
2881 return tls;
2882 }
2883
2884 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2885 static bfd_boolean
2886 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2887 Elf_Internal_Sym *sym)
2888 {
2889 const struct elf_backend_data *bed;
2890
2891 /* Local symbols do not count, but target specific ones might. */
2892 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2893 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2894 return FALSE;
2895
2896 bed = get_elf_backend_data (abfd);
2897 /* Function symbols do not count. */
2898 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2899 return FALSE;
2900
2901 /* If the section is undefined, then so is the symbol. */
2902 if (sym->st_shndx == SHN_UNDEF)
2903 return FALSE;
2904
2905 /* If the symbol is defined in the common section, then
2906 it is a common definition and so does not count. */
2907 if (bed->common_definition (sym))
2908 return FALSE;
2909
2910 /* If the symbol is in a target specific section then we
2911 must rely upon the backend to tell us what it is. */
2912 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2913 /* FIXME - this function is not coded yet:
2914
2915 return _bfd_is_global_symbol_definition (abfd, sym);
2916
2917 Instead for now assume that the definition is not global,
2918 Even if this is wrong, at least the linker will behave
2919 in the same way that it used to do. */
2920 return FALSE;
2921
2922 return TRUE;
2923 }
2924
2925 /* Search the symbol table of the archive element of the archive ABFD
2926 whose archive map contains a mention of SYMDEF, and determine if
2927 the symbol is defined in this element. */
2928 static bfd_boolean
2929 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2930 {
2931 Elf_Internal_Shdr * hdr;
2932 bfd_size_type symcount;
2933 bfd_size_type extsymcount;
2934 bfd_size_type extsymoff;
2935 Elf_Internal_Sym *isymbuf;
2936 Elf_Internal_Sym *isym;
2937 Elf_Internal_Sym *isymend;
2938 bfd_boolean result;
2939
2940 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2941 if (abfd == NULL)
2942 return FALSE;
2943
2944 if (! bfd_check_format (abfd, bfd_object))
2945 return FALSE;
2946
2947 /* If we have already included the element containing this symbol in the
2948 link then we do not need to include it again. Just claim that any symbol
2949 it contains is not a definition, so that our caller will not decide to
2950 (re)include this element. */
2951 if (abfd->archive_pass)
2952 return FALSE;
2953
2954 /* Select the appropriate symbol table. */
2955 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2956 hdr = &elf_tdata (abfd)->symtab_hdr;
2957 else
2958 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2959
2960 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2961
2962 /* The sh_info field of the symtab header tells us where the
2963 external symbols start. We don't care about the local symbols. */
2964 if (elf_bad_symtab (abfd))
2965 {
2966 extsymcount = symcount;
2967 extsymoff = 0;
2968 }
2969 else
2970 {
2971 extsymcount = symcount - hdr->sh_info;
2972 extsymoff = hdr->sh_info;
2973 }
2974
2975 if (extsymcount == 0)
2976 return FALSE;
2977
2978 /* Read in the symbol table. */
2979 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2980 NULL, NULL, NULL);
2981 if (isymbuf == NULL)
2982 return FALSE;
2983
2984 /* Scan the symbol table looking for SYMDEF. */
2985 result = FALSE;
2986 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2987 {
2988 const char *name;
2989
2990 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2991 isym->st_name);
2992 if (name == NULL)
2993 break;
2994
2995 if (strcmp (name, symdef->name) == 0)
2996 {
2997 result = is_global_data_symbol_definition (abfd, isym);
2998 break;
2999 }
3000 }
3001
3002 free (isymbuf);
3003
3004 return result;
3005 }
3006 \f
3007 /* Add an entry to the .dynamic table. */
3008
3009 bfd_boolean
3010 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3011 bfd_vma tag,
3012 bfd_vma val)
3013 {
3014 struct elf_link_hash_table *hash_table;
3015 const struct elf_backend_data *bed;
3016 asection *s;
3017 bfd_size_type newsize;
3018 bfd_byte *newcontents;
3019 Elf_Internal_Dyn dyn;
3020
3021 hash_table = elf_hash_table (info);
3022 if (! is_elf_hash_table (hash_table))
3023 return FALSE;
3024
3025 bed = get_elf_backend_data (hash_table->dynobj);
3026 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3027 BFD_ASSERT (s != NULL);
3028
3029 newsize = s->size + bed->s->sizeof_dyn;
3030 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3031 if (newcontents == NULL)
3032 return FALSE;
3033
3034 dyn.d_tag = tag;
3035 dyn.d_un.d_val = val;
3036 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3037
3038 s->size = newsize;
3039 s->contents = newcontents;
3040
3041 return TRUE;
3042 }
3043
3044 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3045 otherwise just check whether one already exists. Returns -1 on error,
3046 1 if a DT_NEEDED tag already exists, and 0 on success. */
3047
3048 static int
3049 elf_add_dt_needed_tag (bfd *abfd,
3050 struct bfd_link_info *info,
3051 const char *soname,
3052 bfd_boolean do_it)
3053 {
3054 struct elf_link_hash_table *hash_table;
3055 bfd_size_type strindex;
3056
3057 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3058 return -1;
3059
3060 hash_table = elf_hash_table (info);
3061 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3062 if (strindex == (bfd_size_type) -1)
3063 return -1;
3064
3065 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3066 {
3067 asection *sdyn;
3068 const struct elf_backend_data *bed;
3069 bfd_byte *extdyn;
3070
3071 bed = get_elf_backend_data (hash_table->dynobj);
3072 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3073 if (sdyn != NULL)
3074 for (extdyn = sdyn->contents;
3075 extdyn < sdyn->contents + sdyn->size;
3076 extdyn += bed->s->sizeof_dyn)
3077 {
3078 Elf_Internal_Dyn dyn;
3079
3080 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3081 if (dyn.d_tag == DT_NEEDED
3082 && dyn.d_un.d_val == strindex)
3083 {
3084 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3085 return 1;
3086 }
3087 }
3088 }
3089
3090 if (do_it)
3091 {
3092 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3093 return -1;
3094
3095 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3096 return -1;
3097 }
3098 else
3099 /* We were just checking for existence of the tag. */
3100 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3101
3102 return 0;
3103 }
3104
3105 static bfd_boolean
3106 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3107 {
3108 for (; needed != NULL; needed = needed->next)
3109 if (strcmp (soname, needed->name) == 0)
3110 return TRUE;
3111
3112 return FALSE;
3113 }
3114
3115 /* Sort symbol by value, section, and size. */
3116 static int
3117 elf_sort_symbol (const void *arg1, const void *arg2)
3118 {
3119 const struct elf_link_hash_entry *h1;
3120 const struct elf_link_hash_entry *h2;
3121 bfd_signed_vma vdiff;
3122
3123 h1 = *(const struct elf_link_hash_entry **) arg1;
3124 h2 = *(const struct elf_link_hash_entry **) arg2;
3125 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3126 if (vdiff != 0)
3127 return vdiff > 0 ? 1 : -1;
3128 else
3129 {
3130 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3131 if (sdiff != 0)
3132 return sdiff > 0 ? 1 : -1;
3133 }
3134 vdiff = h1->size - h2->size;
3135 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3136 }
3137
3138 /* This function is used to adjust offsets into .dynstr for
3139 dynamic symbols. This is called via elf_link_hash_traverse. */
3140
3141 static bfd_boolean
3142 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3143 {
3144 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3145
3146 if (h->dynindx != -1)
3147 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3148 return TRUE;
3149 }
3150
3151 /* Assign string offsets in .dynstr, update all structures referencing
3152 them. */
3153
3154 static bfd_boolean
3155 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3156 {
3157 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3158 struct elf_link_local_dynamic_entry *entry;
3159 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3160 bfd *dynobj = hash_table->dynobj;
3161 asection *sdyn;
3162 bfd_size_type size;
3163 const struct elf_backend_data *bed;
3164 bfd_byte *extdyn;
3165
3166 _bfd_elf_strtab_finalize (dynstr);
3167 size = _bfd_elf_strtab_size (dynstr);
3168
3169 bed = get_elf_backend_data (dynobj);
3170 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3171 BFD_ASSERT (sdyn != NULL);
3172
3173 /* Update all .dynamic entries referencing .dynstr strings. */
3174 for (extdyn = sdyn->contents;
3175 extdyn < sdyn->contents + sdyn->size;
3176 extdyn += bed->s->sizeof_dyn)
3177 {
3178 Elf_Internal_Dyn dyn;
3179
3180 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3181 switch (dyn.d_tag)
3182 {
3183 case DT_STRSZ:
3184 dyn.d_un.d_val = size;
3185 break;
3186 case DT_NEEDED:
3187 case DT_SONAME:
3188 case DT_RPATH:
3189 case DT_RUNPATH:
3190 case DT_FILTER:
3191 case DT_AUXILIARY:
3192 case DT_AUDIT:
3193 case DT_DEPAUDIT:
3194 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3195 break;
3196 default:
3197 continue;
3198 }
3199 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3200 }
3201
3202 /* Now update local dynamic symbols. */
3203 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3204 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3205 entry->isym.st_name);
3206
3207 /* And the rest of dynamic symbols. */
3208 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3209
3210 /* Adjust version definitions. */
3211 if (elf_tdata (output_bfd)->cverdefs)
3212 {
3213 asection *s;
3214 bfd_byte *p;
3215 bfd_size_type i;
3216 Elf_Internal_Verdef def;
3217 Elf_Internal_Verdaux defaux;
3218
3219 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3220 p = s->contents;
3221 do
3222 {
3223 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3224 &def);
3225 p += sizeof (Elf_External_Verdef);
3226 if (def.vd_aux != sizeof (Elf_External_Verdef))
3227 continue;
3228 for (i = 0; i < def.vd_cnt; ++i)
3229 {
3230 _bfd_elf_swap_verdaux_in (output_bfd,
3231 (Elf_External_Verdaux *) p, &defaux);
3232 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3233 defaux.vda_name);
3234 _bfd_elf_swap_verdaux_out (output_bfd,
3235 &defaux, (Elf_External_Verdaux *) p);
3236 p += sizeof (Elf_External_Verdaux);
3237 }
3238 }
3239 while (def.vd_next);
3240 }
3241
3242 /* Adjust version references. */
3243 if (elf_tdata (output_bfd)->verref)
3244 {
3245 asection *s;
3246 bfd_byte *p;
3247 bfd_size_type i;
3248 Elf_Internal_Verneed need;
3249 Elf_Internal_Vernaux needaux;
3250
3251 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3252 p = s->contents;
3253 do
3254 {
3255 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3256 &need);
3257 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3258 _bfd_elf_swap_verneed_out (output_bfd, &need,
3259 (Elf_External_Verneed *) p);
3260 p += sizeof (Elf_External_Verneed);
3261 for (i = 0; i < need.vn_cnt; ++i)
3262 {
3263 _bfd_elf_swap_vernaux_in (output_bfd,
3264 (Elf_External_Vernaux *) p, &needaux);
3265 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3266 needaux.vna_name);
3267 _bfd_elf_swap_vernaux_out (output_bfd,
3268 &needaux,
3269 (Elf_External_Vernaux *) p);
3270 p += sizeof (Elf_External_Vernaux);
3271 }
3272 }
3273 while (need.vn_next);
3274 }
3275
3276 return TRUE;
3277 }
3278 \f
3279 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3280 The default is to only match when the INPUT and OUTPUT are exactly
3281 the same target. */
3282
3283 bfd_boolean
3284 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3285 const bfd_target *output)
3286 {
3287 return input == output;
3288 }
3289
3290 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3291 This version is used when different targets for the same architecture
3292 are virtually identical. */
3293
3294 bfd_boolean
3295 _bfd_elf_relocs_compatible (const bfd_target *input,
3296 const bfd_target *output)
3297 {
3298 const struct elf_backend_data *obed, *ibed;
3299
3300 if (input == output)
3301 return TRUE;
3302
3303 ibed = xvec_get_elf_backend_data (input);
3304 obed = xvec_get_elf_backend_data (output);
3305
3306 if (ibed->arch != obed->arch)
3307 return FALSE;
3308
3309 /* If both backends are using this function, deem them compatible. */
3310 return ibed->relocs_compatible == obed->relocs_compatible;
3311 }
3312
3313 /* Add symbols from an ELF object file to the linker hash table. */
3314
3315 static bfd_boolean
3316 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3317 {
3318 Elf_Internal_Ehdr *ehdr;
3319 Elf_Internal_Shdr *hdr;
3320 bfd_size_type symcount;
3321 bfd_size_type extsymcount;
3322 bfd_size_type extsymoff;
3323 struct elf_link_hash_entry **sym_hash;
3324 bfd_boolean dynamic;
3325 Elf_External_Versym *extversym = NULL;
3326 Elf_External_Versym *ever;
3327 struct elf_link_hash_entry *weaks;
3328 struct elf_link_hash_entry **nondeflt_vers = NULL;
3329 bfd_size_type nondeflt_vers_cnt = 0;
3330 Elf_Internal_Sym *isymbuf = NULL;
3331 Elf_Internal_Sym *isym;
3332 Elf_Internal_Sym *isymend;
3333 const struct elf_backend_data *bed;
3334 bfd_boolean add_needed;
3335 struct elf_link_hash_table *htab;
3336 bfd_size_type amt;
3337 void *alloc_mark = NULL;
3338 struct bfd_hash_entry **old_table = NULL;
3339 unsigned int old_size = 0;
3340 unsigned int old_count = 0;
3341 void *old_tab = NULL;
3342 void *old_ent;
3343 struct bfd_link_hash_entry *old_undefs = NULL;
3344 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3345 long old_dynsymcount = 0;
3346 bfd_size_type old_dynstr_size = 0;
3347 size_t tabsize = 0;
3348 asection *s;
3349
3350 htab = elf_hash_table (info);
3351 bed = get_elf_backend_data (abfd);
3352
3353 if ((abfd->flags & DYNAMIC) == 0)
3354 dynamic = FALSE;
3355 else
3356 {
3357 dynamic = TRUE;
3358
3359 /* You can't use -r against a dynamic object. Also, there's no
3360 hope of using a dynamic object which does not exactly match
3361 the format of the output file. */
3362 if (info->relocatable
3363 || !is_elf_hash_table (htab)
3364 || info->output_bfd->xvec != abfd->xvec)
3365 {
3366 if (info->relocatable)
3367 bfd_set_error (bfd_error_invalid_operation);
3368 else
3369 bfd_set_error (bfd_error_wrong_format);
3370 goto error_return;
3371 }
3372 }
3373
3374 ehdr = elf_elfheader (abfd);
3375 if (info->warn_alternate_em
3376 && bed->elf_machine_code != ehdr->e_machine
3377 && ((bed->elf_machine_alt1 != 0
3378 && ehdr->e_machine == bed->elf_machine_alt1)
3379 || (bed->elf_machine_alt2 != 0
3380 && ehdr->e_machine == bed->elf_machine_alt2)))
3381 info->callbacks->einfo
3382 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3383 ehdr->e_machine, abfd, bed->elf_machine_code);
3384
3385 /* As a GNU extension, any input sections which are named
3386 .gnu.warning.SYMBOL are treated as warning symbols for the given
3387 symbol. This differs from .gnu.warning sections, which generate
3388 warnings when they are included in an output file. */
3389 /* PR 12761: Also generate this warning when building shared libraries. */
3390 for (s = abfd->sections; s != NULL; s = s->next)
3391 {
3392 const char *name;
3393
3394 name = bfd_get_section_name (abfd, s);
3395 if (CONST_STRNEQ (name, ".gnu.warning."))
3396 {
3397 char *msg;
3398 bfd_size_type sz;
3399
3400 name += sizeof ".gnu.warning." - 1;
3401
3402 /* If this is a shared object, then look up the symbol
3403 in the hash table. If it is there, and it is already
3404 been defined, then we will not be using the entry
3405 from this shared object, so we don't need to warn.
3406 FIXME: If we see the definition in a regular object
3407 later on, we will warn, but we shouldn't. The only
3408 fix is to keep track of what warnings we are supposed
3409 to emit, and then handle them all at the end of the
3410 link. */
3411 if (dynamic)
3412 {
3413 struct elf_link_hash_entry *h;
3414
3415 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3416
3417 /* FIXME: What about bfd_link_hash_common? */
3418 if (h != NULL
3419 && (h->root.type == bfd_link_hash_defined
3420 || h->root.type == bfd_link_hash_defweak))
3421 continue;
3422 }
3423
3424 sz = s->size;
3425 msg = (char *) bfd_alloc (abfd, sz + 1);
3426 if (msg == NULL)
3427 goto error_return;
3428
3429 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3430 goto error_return;
3431
3432 msg[sz] = '\0';
3433
3434 if (! (_bfd_generic_link_add_one_symbol
3435 (info, abfd, name, BSF_WARNING, s, 0, msg,
3436 FALSE, bed->collect, NULL)))
3437 goto error_return;
3438
3439 if (!info->relocatable && info->executable)
3440 {
3441 /* Clobber the section size so that the warning does
3442 not get copied into the output file. */
3443 s->size = 0;
3444
3445 /* Also set SEC_EXCLUDE, so that symbols defined in
3446 the warning section don't get copied to the output. */
3447 s->flags |= SEC_EXCLUDE;
3448 }
3449 }
3450 }
3451
3452 add_needed = TRUE;
3453 if (! dynamic)
3454 {
3455 /* If we are creating a shared library, create all the dynamic
3456 sections immediately. We need to attach them to something,
3457 so we attach them to this BFD, provided it is the right
3458 format. FIXME: If there are no input BFD's of the same
3459 format as the output, we can't make a shared library. */
3460 if (info->shared
3461 && is_elf_hash_table (htab)
3462 && info->output_bfd->xvec == abfd->xvec
3463 && !htab->dynamic_sections_created)
3464 {
3465 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3466 goto error_return;
3467 }
3468 }
3469 else if (!is_elf_hash_table (htab))
3470 goto error_return;
3471 else
3472 {
3473 const char *soname = NULL;
3474 char *audit = NULL;
3475 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3476 int ret;
3477
3478 /* ld --just-symbols and dynamic objects don't mix very well.
3479 ld shouldn't allow it. */
3480 if ((s = abfd->sections) != NULL
3481 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3482 abort ();
3483
3484 /* If this dynamic lib was specified on the command line with
3485 --as-needed in effect, then we don't want to add a DT_NEEDED
3486 tag unless the lib is actually used. Similary for libs brought
3487 in by another lib's DT_NEEDED. When --no-add-needed is used
3488 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3489 any dynamic library in DT_NEEDED tags in the dynamic lib at
3490 all. */
3491 add_needed = (elf_dyn_lib_class (abfd)
3492 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3493 | DYN_NO_NEEDED)) == 0;
3494
3495 s = bfd_get_section_by_name (abfd, ".dynamic");
3496 if (s != NULL)
3497 {
3498 bfd_byte *dynbuf;
3499 bfd_byte *extdyn;
3500 unsigned int elfsec;
3501 unsigned long shlink;
3502
3503 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3504 {
3505 error_free_dyn:
3506 free (dynbuf);
3507 goto error_return;
3508 }
3509
3510 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3511 if (elfsec == SHN_BAD)
3512 goto error_free_dyn;
3513 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3514
3515 for (extdyn = dynbuf;
3516 extdyn < dynbuf + s->size;
3517 extdyn += bed->s->sizeof_dyn)
3518 {
3519 Elf_Internal_Dyn dyn;
3520
3521 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3522 if (dyn.d_tag == DT_SONAME)
3523 {
3524 unsigned int tagv = dyn.d_un.d_val;
3525 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3526 if (soname == NULL)
3527 goto error_free_dyn;
3528 }
3529 if (dyn.d_tag == DT_NEEDED)
3530 {
3531 struct bfd_link_needed_list *n, **pn;
3532 char *fnm, *anm;
3533 unsigned int tagv = dyn.d_un.d_val;
3534
3535 amt = sizeof (struct bfd_link_needed_list);
3536 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3537 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3538 if (n == NULL || fnm == NULL)
3539 goto error_free_dyn;
3540 amt = strlen (fnm) + 1;
3541 anm = (char *) bfd_alloc (abfd, amt);
3542 if (anm == NULL)
3543 goto error_free_dyn;
3544 memcpy (anm, fnm, amt);
3545 n->name = anm;
3546 n->by = abfd;
3547 n->next = NULL;
3548 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3549 ;
3550 *pn = n;
3551 }
3552 if (dyn.d_tag == DT_RUNPATH)
3553 {
3554 struct bfd_link_needed_list *n, **pn;
3555 char *fnm, *anm;
3556 unsigned int tagv = dyn.d_un.d_val;
3557
3558 amt = sizeof (struct bfd_link_needed_list);
3559 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3560 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3561 if (n == NULL || fnm == NULL)
3562 goto error_free_dyn;
3563 amt = strlen (fnm) + 1;
3564 anm = (char *) bfd_alloc (abfd, amt);
3565 if (anm == NULL)
3566 goto error_free_dyn;
3567 memcpy (anm, fnm, amt);
3568 n->name = anm;
3569 n->by = abfd;
3570 n->next = NULL;
3571 for (pn = & runpath;
3572 *pn != NULL;
3573 pn = &(*pn)->next)
3574 ;
3575 *pn = n;
3576 }
3577 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3578 if (!runpath && dyn.d_tag == DT_RPATH)
3579 {
3580 struct bfd_link_needed_list *n, **pn;
3581 char *fnm, *anm;
3582 unsigned int tagv = dyn.d_un.d_val;
3583
3584 amt = sizeof (struct bfd_link_needed_list);
3585 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3586 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3587 if (n == NULL || fnm == NULL)
3588 goto error_free_dyn;
3589 amt = strlen (fnm) + 1;
3590 anm = (char *) bfd_alloc (abfd, amt);
3591 if (anm == NULL)
3592 goto error_free_dyn;
3593 memcpy (anm, fnm, amt);
3594 n->name = anm;
3595 n->by = abfd;
3596 n->next = NULL;
3597 for (pn = & rpath;
3598 *pn != NULL;
3599 pn = &(*pn)->next)
3600 ;
3601 *pn = n;
3602 }
3603 if (dyn.d_tag == DT_AUDIT)
3604 {
3605 unsigned int tagv = dyn.d_un.d_val;
3606 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3607 }
3608 }
3609
3610 free (dynbuf);
3611 }
3612
3613 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3614 frees all more recently bfd_alloc'd blocks as well. */
3615 if (runpath)
3616 rpath = runpath;
3617
3618 if (rpath)
3619 {
3620 struct bfd_link_needed_list **pn;
3621 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3622 ;
3623 *pn = rpath;
3624 }
3625
3626 /* We do not want to include any of the sections in a dynamic
3627 object in the output file. We hack by simply clobbering the
3628 list of sections in the BFD. This could be handled more
3629 cleanly by, say, a new section flag; the existing
3630 SEC_NEVER_LOAD flag is not the one we want, because that one
3631 still implies that the section takes up space in the output
3632 file. */
3633 bfd_section_list_clear (abfd);
3634
3635 /* Find the name to use in a DT_NEEDED entry that refers to this
3636 object. If the object has a DT_SONAME entry, we use it.
3637 Otherwise, if the generic linker stuck something in
3638 elf_dt_name, we use that. Otherwise, we just use the file
3639 name. */
3640 if (soname == NULL || *soname == '\0')
3641 {
3642 soname = elf_dt_name (abfd);
3643 if (soname == NULL || *soname == '\0')
3644 soname = bfd_get_filename (abfd);
3645 }
3646
3647 /* Save the SONAME because sometimes the linker emulation code
3648 will need to know it. */
3649 elf_dt_name (abfd) = soname;
3650
3651 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3652 if (ret < 0)
3653 goto error_return;
3654
3655 /* If we have already included this dynamic object in the
3656 link, just ignore it. There is no reason to include a
3657 particular dynamic object more than once. */
3658 if (ret > 0)
3659 return TRUE;
3660
3661 /* Save the DT_AUDIT entry for the linker emulation code. */
3662 elf_dt_audit (abfd) = audit;
3663 }
3664
3665 /* If this is a dynamic object, we always link against the .dynsym
3666 symbol table, not the .symtab symbol table. The dynamic linker
3667 will only see the .dynsym symbol table, so there is no reason to
3668 look at .symtab for a dynamic object. */
3669
3670 if (! dynamic || elf_dynsymtab (abfd) == 0)
3671 hdr = &elf_tdata (abfd)->symtab_hdr;
3672 else
3673 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3674
3675 symcount = hdr->sh_size / bed->s->sizeof_sym;
3676
3677 /* The sh_info field of the symtab header tells us where the
3678 external symbols start. We don't care about the local symbols at
3679 this point. */
3680 if (elf_bad_symtab (abfd))
3681 {
3682 extsymcount = symcount;
3683 extsymoff = 0;
3684 }
3685 else
3686 {
3687 extsymcount = symcount - hdr->sh_info;
3688 extsymoff = hdr->sh_info;
3689 }
3690
3691 sym_hash = elf_sym_hashes (abfd);
3692 if (extsymcount != 0)
3693 {
3694 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3695 NULL, NULL, NULL);
3696 if (isymbuf == NULL)
3697 goto error_return;
3698
3699 if (sym_hash == NULL)
3700 {
3701 /* We store a pointer to the hash table entry for each
3702 external symbol. */
3703 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3704 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
3705 if (sym_hash == NULL)
3706 goto error_free_sym;
3707 elf_sym_hashes (abfd) = sym_hash;
3708 }
3709 }
3710
3711 if (dynamic)
3712 {
3713 /* Read in any version definitions. */
3714 if (!_bfd_elf_slurp_version_tables (abfd,
3715 info->default_imported_symver))
3716 goto error_free_sym;
3717
3718 /* Read in the symbol versions, but don't bother to convert them
3719 to internal format. */
3720 if (elf_dynversym (abfd) != 0)
3721 {
3722 Elf_Internal_Shdr *versymhdr;
3723
3724 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3725 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3726 if (extversym == NULL)
3727 goto error_free_sym;
3728 amt = versymhdr->sh_size;
3729 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3730 || bfd_bread (extversym, amt, abfd) != amt)
3731 goto error_free_vers;
3732 }
3733 }
3734
3735 /* If we are loading an as-needed shared lib, save the symbol table
3736 state before we start adding symbols. If the lib turns out
3737 to be unneeded, restore the state. */
3738 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3739 {
3740 unsigned int i;
3741 size_t entsize;
3742
3743 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3744 {
3745 struct bfd_hash_entry *p;
3746 struct elf_link_hash_entry *h;
3747
3748 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3749 {
3750 h = (struct elf_link_hash_entry *) p;
3751 entsize += htab->root.table.entsize;
3752 if (h->root.type == bfd_link_hash_warning)
3753 entsize += htab->root.table.entsize;
3754 }
3755 }
3756
3757 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3758 old_tab = bfd_malloc (tabsize + entsize);
3759 if (old_tab == NULL)
3760 goto error_free_vers;
3761
3762 /* Remember the current objalloc pointer, so that all mem for
3763 symbols added can later be reclaimed. */
3764 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3765 if (alloc_mark == NULL)
3766 goto error_free_vers;
3767
3768 /* Make a special call to the linker "notice" function to
3769 tell it that we are about to handle an as-needed lib. */
3770 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3771 notice_as_needed, 0, NULL))
3772 goto error_free_vers;
3773
3774 /* Clone the symbol table. Remember some pointers into the
3775 symbol table, and dynamic symbol count. */
3776 old_ent = (char *) old_tab + tabsize;
3777 memcpy (old_tab, htab->root.table.table, tabsize);
3778 old_undefs = htab->root.undefs;
3779 old_undefs_tail = htab->root.undefs_tail;
3780 old_table = htab->root.table.table;
3781 old_size = htab->root.table.size;
3782 old_count = htab->root.table.count;
3783 old_dynsymcount = htab->dynsymcount;
3784 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3785
3786 for (i = 0; i < htab->root.table.size; i++)
3787 {
3788 struct bfd_hash_entry *p;
3789 struct elf_link_hash_entry *h;
3790
3791 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3792 {
3793 memcpy (old_ent, p, htab->root.table.entsize);
3794 old_ent = (char *) old_ent + htab->root.table.entsize;
3795 h = (struct elf_link_hash_entry *) p;
3796 if (h->root.type == bfd_link_hash_warning)
3797 {
3798 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3799 old_ent = (char *) old_ent + htab->root.table.entsize;
3800 }
3801 }
3802 }
3803 }
3804
3805 weaks = NULL;
3806 ever = extversym != NULL ? extversym + extsymoff : NULL;
3807 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3808 isym < isymend;
3809 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3810 {
3811 int bind;
3812 bfd_vma value;
3813 asection *sec, *new_sec;
3814 flagword flags;
3815 const char *name;
3816 struct elf_link_hash_entry *h;
3817 struct elf_link_hash_entry *hi;
3818 bfd_boolean definition;
3819 bfd_boolean size_change_ok;
3820 bfd_boolean type_change_ok;
3821 bfd_boolean new_weakdef;
3822 bfd_boolean new_weak;
3823 bfd_boolean old_weak;
3824 bfd_boolean override;
3825 bfd_boolean common;
3826 unsigned int old_alignment;
3827 bfd *old_bfd;
3828
3829 override = FALSE;
3830
3831 flags = BSF_NO_FLAGS;
3832 sec = NULL;
3833 value = isym->st_value;
3834 common = bed->common_definition (isym);
3835
3836 bind = ELF_ST_BIND (isym->st_info);
3837 switch (bind)
3838 {
3839 case STB_LOCAL:
3840 /* This should be impossible, since ELF requires that all
3841 global symbols follow all local symbols, and that sh_info
3842 point to the first global symbol. Unfortunately, Irix 5
3843 screws this up. */
3844 continue;
3845
3846 case STB_GLOBAL:
3847 if (isym->st_shndx != SHN_UNDEF && !common)
3848 flags = BSF_GLOBAL;
3849 break;
3850
3851 case STB_WEAK:
3852 flags = BSF_WEAK;
3853 break;
3854
3855 case STB_GNU_UNIQUE:
3856 flags = BSF_GNU_UNIQUE;
3857 break;
3858
3859 default:
3860 /* Leave it up to the processor backend. */
3861 break;
3862 }
3863
3864 if (isym->st_shndx == SHN_UNDEF)
3865 sec = bfd_und_section_ptr;
3866 else if (isym->st_shndx == SHN_ABS)
3867 sec = bfd_abs_section_ptr;
3868 else if (isym->st_shndx == SHN_COMMON)
3869 {
3870 sec = bfd_com_section_ptr;
3871 /* What ELF calls the size we call the value. What ELF
3872 calls the value we call the alignment. */
3873 value = isym->st_size;
3874 }
3875 else
3876 {
3877 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3878 if (sec == NULL)
3879 sec = bfd_abs_section_ptr;
3880 else if (discarded_section (sec))
3881 {
3882 /* Symbols from discarded section are undefined. We keep
3883 its visibility. */
3884 sec = bfd_und_section_ptr;
3885 isym->st_shndx = SHN_UNDEF;
3886 }
3887 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3888 value -= sec->vma;
3889 }
3890
3891 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3892 isym->st_name);
3893 if (name == NULL)
3894 goto error_free_vers;
3895
3896 if (isym->st_shndx == SHN_COMMON
3897 && (abfd->flags & BFD_PLUGIN) != 0)
3898 {
3899 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3900
3901 if (xc == NULL)
3902 {
3903 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3904 | SEC_EXCLUDE);
3905 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3906 if (xc == NULL)
3907 goto error_free_vers;
3908 }
3909 sec = xc;
3910 }
3911 else if (isym->st_shndx == SHN_COMMON
3912 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3913 && !info->relocatable)
3914 {
3915 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3916
3917 if (tcomm == NULL)
3918 {
3919 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3920 | SEC_LINKER_CREATED);
3921 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3922 if (tcomm == NULL)
3923 goto error_free_vers;
3924 }
3925 sec = tcomm;
3926 }
3927 else if (bed->elf_add_symbol_hook)
3928 {
3929 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3930 &sec, &value))
3931 goto error_free_vers;
3932
3933 /* The hook function sets the name to NULL if this symbol
3934 should be skipped for some reason. */
3935 if (name == NULL)
3936 continue;
3937 }
3938
3939 /* Sanity check that all possibilities were handled. */
3940 if (sec == NULL)
3941 {
3942 bfd_set_error (bfd_error_bad_value);
3943 goto error_free_vers;
3944 }
3945
3946 /* Silently discard TLS symbols from --just-syms. There's
3947 no way to combine a static TLS block with a new TLS block
3948 for this executable. */
3949 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
3950 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3951 continue;
3952
3953 if (bfd_is_und_section (sec)
3954 || bfd_is_com_section (sec))
3955 definition = FALSE;
3956 else
3957 definition = TRUE;
3958
3959 size_change_ok = FALSE;
3960 type_change_ok = bed->type_change_ok;
3961 old_weak = FALSE;
3962 old_alignment = 0;
3963 old_bfd = NULL;
3964 new_sec = sec;
3965
3966 if (is_elf_hash_table (htab))
3967 {
3968 Elf_Internal_Versym iver;
3969 unsigned int vernum = 0;
3970 bfd_boolean skip;
3971
3972 if (ever == NULL)
3973 {
3974 if (info->default_imported_symver)
3975 /* Use the default symbol version created earlier. */
3976 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3977 else
3978 iver.vs_vers = 0;
3979 }
3980 else
3981 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3982
3983 vernum = iver.vs_vers & VERSYM_VERSION;
3984
3985 /* If this is a hidden symbol, or if it is not version
3986 1, we append the version name to the symbol name.
3987 However, we do not modify a non-hidden absolute symbol
3988 if it is not a function, because it might be the version
3989 symbol itself. FIXME: What if it isn't? */
3990 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3991 || (vernum > 1
3992 && (!bfd_is_abs_section (sec)
3993 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
3994 {
3995 const char *verstr;
3996 size_t namelen, verlen, newlen;
3997 char *newname, *p;
3998
3999 if (isym->st_shndx != SHN_UNDEF)
4000 {
4001 if (vernum > elf_tdata (abfd)->cverdefs)
4002 verstr = NULL;
4003 else if (vernum > 1)
4004 verstr =
4005 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4006 else
4007 verstr = "";
4008
4009 if (verstr == NULL)
4010 {
4011 (*_bfd_error_handler)
4012 (_("%B: %s: invalid version %u (max %d)"),
4013 abfd, name, vernum,
4014 elf_tdata (abfd)->cverdefs);
4015 bfd_set_error (bfd_error_bad_value);
4016 goto error_free_vers;
4017 }
4018 }
4019 else
4020 {
4021 /* We cannot simply test for the number of
4022 entries in the VERNEED section since the
4023 numbers for the needed versions do not start
4024 at 0. */
4025 Elf_Internal_Verneed *t;
4026
4027 verstr = NULL;
4028 for (t = elf_tdata (abfd)->verref;
4029 t != NULL;
4030 t = t->vn_nextref)
4031 {
4032 Elf_Internal_Vernaux *a;
4033
4034 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4035 {
4036 if (a->vna_other == vernum)
4037 {
4038 verstr = a->vna_nodename;
4039 break;
4040 }
4041 }
4042 if (a != NULL)
4043 break;
4044 }
4045 if (verstr == NULL)
4046 {
4047 (*_bfd_error_handler)
4048 (_("%B: %s: invalid needed version %d"),
4049 abfd, name, vernum);
4050 bfd_set_error (bfd_error_bad_value);
4051 goto error_free_vers;
4052 }
4053 }
4054
4055 namelen = strlen (name);
4056 verlen = strlen (verstr);
4057 newlen = namelen + verlen + 2;
4058 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4059 && isym->st_shndx != SHN_UNDEF)
4060 ++newlen;
4061
4062 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4063 if (newname == NULL)
4064 goto error_free_vers;
4065 memcpy (newname, name, namelen);
4066 p = newname + namelen;
4067 *p++ = ELF_VER_CHR;
4068 /* If this is a defined non-hidden version symbol,
4069 we add another @ to the name. This indicates the
4070 default version of the symbol. */
4071 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4072 && isym->st_shndx != SHN_UNDEF)
4073 *p++ = ELF_VER_CHR;
4074 memcpy (p, verstr, verlen + 1);
4075
4076 name = newname;
4077 }
4078
4079 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4080 sym_hash, &old_bfd, &old_weak,
4081 &old_alignment, &skip, &override,
4082 &type_change_ok, &size_change_ok))
4083 goto error_free_vers;
4084
4085 if (skip)
4086 continue;
4087
4088 if (override)
4089 definition = FALSE;
4090
4091 h = *sym_hash;
4092 while (h->root.type == bfd_link_hash_indirect
4093 || h->root.type == bfd_link_hash_warning)
4094 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4095
4096 if (elf_tdata (abfd)->verdef != NULL
4097 && vernum > 1
4098 && definition)
4099 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4100 }
4101
4102 if (! (_bfd_generic_link_add_one_symbol
4103 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4104 (struct bfd_link_hash_entry **) sym_hash)))
4105 goto error_free_vers;
4106
4107 h = *sym_hash;
4108 /* We need to make sure that indirect symbol dynamic flags are
4109 updated. */
4110 hi = h;
4111 while (h->root.type == bfd_link_hash_indirect
4112 || h->root.type == bfd_link_hash_warning)
4113 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4114
4115 *sym_hash = h;
4116
4117 new_weak = (flags & BSF_WEAK) != 0;
4118 new_weakdef = FALSE;
4119 if (dynamic
4120 && definition
4121 && new_weak
4122 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4123 && is_elf_hash_table (htab)
4124 && h->u.weakdef == NULL)
4125 {
4126 /* Keep a list of all weak defined non function symbols from
4127 a dynamic object, using the weakdef field. Later in this
4128 function we will set the weakdef field to the correct
4129 value. We only put non-function symbols from dynamic
4130 objects on this list, because that happens to be the only
4131 time we need to know the normal symbol corresponding to a
4132 weak symbol, and the information is time consuming to
4133 figure out. If the weakdef field is not already NULL,
4134 then this symbol was already defined by some previous
4135 dynamic object, and we will be using that previous
4136 definition anyhow. */
4137
4138 h->u.weakdef = weaks;
4139 weaks = h;
4140 new_weakdef = TRUE;
4141 }
4142
4143 /* Set the alignment of a common symbol. */
4144 if ((common || bfd_is_com_section (sec))
4145 && h->root.type == bfd_link_hash_common)
4146 {
4147 unsigned int align;
4148
4149 if (common)
4150 align = bfd_log2 (isym->st_value);
4151 else
4152 {
4153 /* The new symbol is a common symbol in a shared object.
4154 We need to get the alignment from the section. */
4155 align = new_sec->alignment_power;
4156 }
4157 if (align > old_alignment)
4158 h->root.u.c.p->alignment_power = align;
4159 else
4160 h->root.u.c.p->alignment_power = old_alignment;
4161 }
4162
4163 if (is_elf_hash_table (htab))
4164 {
4165 /* Set a flag in the hash table entry indicating the type of
4166 reference or definition we just found. A dynamic symbol
4167 is one which is referenced or defined by both a regular
4168 object and a shared object. */
4169 bfd_boolean dynsym = FALSE;
4170
4171 /* Plugin symbols aren't normal. Don't set def_regular or
4172 ref_regular for them, or make them dynamic. */
4173 if ((abfd->flags & BFD_PLUGIN) != 0)
4174 ;
4175 else if (! dynamic)
4176 {
4177 if (! definition)
4178 {
4179 h->ref_regular = 1;
4180 if (bind != STB_WEAK)
4181 h->ref_regular_nonweak = 1;
4182 }
4183 else
4184 {
4185 h->def_regular = 1;
4186 if (h->def_dynamic)
4187 {
4188 h->def_dynamic = 0;
4189 h->ref_dynamic = 1;
4190 }
4191 }
4192
4193 /* If the indirect symbol has been forced local, don't
4194 make the real symbol dynamic. */
4195 if ((h == hi || !hi->forced_local)
4196 && (! info->executable
4197 || h->def_dynamic
4198 || h->ref_dynamic))
4199 dynsym = TRUE;
4200 }
4201 else
4202 {
4203 if (! definition)
4204 {
4205 h->ref_dynamic = 1;
4206 hi->ref_dynamic = 1;
4207 }
4208 else
4209 {
4210 h->def_dynamic = 1;
4211 hi->def_dynamic = 1;
4212 }
4213
4214 /* If the indirect symbol has been forced local, don't
4215 make the real symbol dynamic. */
4216 if ((h == hi || !hi->forced_local)
4217 && (h->def_regular
4218 || h->ref_regular
4219 || (h->u.weakdef != NULL
4220 && ! new_weakdef
4221 && h->u.weakdef->dynindx != -1)))
4222 dynsym = TRUE;
4223 }
4224
4225 /* Check to see if we need to add an indirect symbol for
4226 the default name. */
4227 if (definition
4228 || (!override && h->root.type == bfd_link_hash_common))
4229 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4230 sec, value, &old_bfd, &dynsym))
4231 goto error_free_vers;
4232
4233 /* Check the alignment when a common symbol is involved. This
4234 can change when a common symbol is overridden by a normal
4235 definition or a common symbol is ignored due to the old
4236 normal definition. We need to make sure the maximum
4237 alignment is maintained. */
4238 if ((old_alignment || common)
4239 && h->root.type != bfd_link_hash_common)
4240 {
4241 unsigned int common_align;
4242 unsigned int normal_align;
4243 unsigned int symbol_align;
4244 bfd *normal_bfd;
4245 bfd *common_bfd;
4246
4247 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4248 || h->root.type == bfd_link_hash_defweak);
4249
4250 symbol_align = ffs (h->root.u.def.value) - 1;
4251 if (h->root.u.def.section->owner != NULL
4252 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4253 {
4254 normal_align = h->root.u.def.section->alignment_power;
4255 if (normal_align > symbol_align)
4256 normal_align = symbol_align;
4257 }
4258 else
4259 normal_align = symbol_align;
4260
4261 if (old_alignment)
4262 {
4263 common_align = old_alignment;
4264 common_bfd = old_bfd;
4265 normal_bfd = abfd;
4266 }
4267 else
4268 {
4269 common_align = bfd_log2 (isym->st_value);
4270 common_bfd = abfd;
4271 normal_bfd = old_bfd;
4272 }
4273
4274 if (normal_align < common_align)
4275 {
4276 /* PR binutils/2735 */
4277 if (normal_bfd == NULL)
4278 (*_bfd_error_handler)
4279 (_("Warning: alignment %u of common symbol `%s' in %B is"
4280 " greater than the alignment (%u) of its section %A"),
4281 common_bfd, h->root.u.def.section,
4282 1 << common_align, name, 1 << normal_align);
4283 else
4284 (*_bfd_error_handler)
4285 (_("Warning: alignment %u of symbol `%s' in %B"
4286 " is smaller than %u in %B"),
4287 normal_bfd, common_bfd,
4288 1 << normal_align, name, 1 << common_align);
4289 }
4290 }
4291
4292 /* Remember the symbol size if it isn't undefined. */
4293 if (isym->st_size != 0
4294 && isym->st_shndx != SHN_UNDEF
4295 && (definition || h->size == 0))
4296 {
4297 if (h->size != 0
4298 && h->size != isym->st_size
4299 && ! size_change_ok)
4300 (*_bfd_error_handler)
4301 (_("Warning: size of symbol `%s' changed"
4302 " from %lu in %B to %lu in %B"),
4303 old_bfd, abfd,
4304 name, (unsigned long) h->size,
4305 (unsigned long) isym->st_size);
4306
4307 h->size = isym->st_size;
4308 }
4309
4310 /* If this is a common symbol, then we always want H->SIZE
4311 to be the size of the common symbol. The code just above
4312 won't fix the size if a common symbol becomes larger. We
4313 don't warn about a size change here, because that is
4314 covered by --warn-common. Allow changes between different
4315 function types. */
4316 if (h->root.type == bfd_link_hash_common)
4317 h->size = h->root.u.c.size;
4318
4319 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4320 && ((definition && !new_weak)
4321 || (old_weak && h->root.type == bfd_link_hash_common)
4322 || h->type == STT_NOTYPE))
4323 {
4324 unsigned int type = ELF_ST_TYPE (isym->st_info);
4325
4326 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4327 symbol. */
4328 if (type == STT_GNU_IFUNC
4329 && (abfd->flags & DYNAMIC) != 0)
4330 type = STT_FUNC;
4331
4332 if (h->type != type)
4333 {
4334 if (h->type != STT_NOTYPE && ! type_change_ok)
4335 (*_bfd_error_handler)
4336 (_("Warning: type of symbol `%s' changed"
4337 " from %d to %d in %B"),
4338 abfd, name, h->type, type);
4339
4340 h->type = type;
4341 }
4342 }
4343
4344 /* Merge st_other field. */
4345 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4346
4347 /* We don't want to make debug symbol dynamic. */
4348 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4349 dynsym = FALSE;
4350
4351 /* Nor should we make plugin symbols dynamic. */
4352 if ((abfd->flags & BFD_PLUGIN) != 0)
4353 dynsym = FALSE;
4354
4355 if (definition)
4356 {
4357 h->target_internal = isym->st_target_internal;
4358 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4359 }
4360
4361 if (definition && !dynamic)
4362 {
4363 char *p = strchr (name, ELF_VER_CHR);
4364 if (p != NULL && p[1] != ELF_VER_CHR)
4365 {
4366 /* Queue non-default versions so that .symver x, x@FOO
4367 aliases can be checked. */
4368 if (!nondeflt_vers)
4369 {
4370 amt = ((isymend - isym + 1)
4371 * sizeof (struct elf_link_hash_entry *));
4372 nondeflt_vers =
4373 (struct elf_link_hash_entry **) bfd_malloc (amt);
4374 if (!nondeflt_vers)
4375 goto error_free_vers;
4376 }
4377 nondeflt_vers[nondeflt_vers_cnt++] = h;
4378 }
4379 }
4380
4381 if (dynsym && h->dynindx == -1)
4382 {
4383 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4384 goto error_free_vers;
4385 if (h->u.weakdef != NULL
4386 && ! new_weakdef
4387 && h->u.weakdef->dynindx == -1)
4388 {
4389 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4390 goto error_free_vers;
4391 }
4392 }
4393 else if (dynsym && h->dynindx != -1)
4394 /* If the symbol already has a dynamic index, but
4395 visibility says it should not be visible, turn it into
4396 a local symbol. */
4397 switch (ELF_ST_VISIBILITY (h->other))
4398 {
4399 case STV_INTERNAL:
4400 case STV_HIDDEN:
4401 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4402 dynsym = FALSE;
4403 break;
4404 }
4405
4406 /* Don't add DT_NEEDED for references from the dummy bfd. */
4407 if (!add_needed
4408 && definition
4409 && ((dynsym
4410 && h->ref_regular_nonweak
4411 && (old_bfd == NULL
4412 || (old_bfd->flags & BFD_PLUGIN) == 0))
4413 || (h->ref_dynamic_nonweak
4414 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4415 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4416 {
4417 int ret;
4418 const char *soname = elf_dt_name (abfd);
4419
4420 /* A symbol from a library loaded via DT_NEEDED of some
4421 other library is referenced by a regular object.
4422 Add a DT_NEEDED entry for it. Issue an error if
4423 --no-add-needed is used and the reference was not
4424 a weak one. */
4425 if (old_bfd != NULL
4426 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4427 {
4428 (*_bfd_error_handler)
4429 (_("%B: undefined reference to symbol '%s'"),
4430 old_bfd, name);
4431 bfd_set_error (bfd_error_missing_dso);
4432 goto error_free_vers;
4433 }
4434
4435 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4436 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4437
4438 add_needed = TRUE;
4439 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4440 if (ret < 0)
4441 goto error_free_vers;
4442
4443 BFD_ASSERT (ret == 0);
4444 }
4445 }
4446 }
4447
4448 if (extversym != NULL)
4449 {
4450 free (extversym);
4451 extversym = NULL;
4452 }
4453
4454 if (isymbuf != NULL)
4455 {
4456 free (isymbuf);
4457 isymbuf = NULL;
4458 }
4459
4460 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4461 {
4462 unsigned int i;
4463
4464 /* Restore the symbol table. */
4465 if (bed->as_needed_cleanup)
4466 (*bed->as_needed_cleanup) (abfd, info);
4467 old_ent = (char *) old_tab + tabsize;
4468 memset (elf_sym_hashes (abfd), 0,
4469 extsymcount * sizeof (struct elf_link_hash_entry *));
4470 htab->root.table.table = old_table;
4471 htab->root.table.size = old_size;
4472 htab->root.table.count = old_count;
4473 memcpy (htab->root.table.table, old_tab, tabsize);
4474 htab->root.undefs = old_undefs;
4475 htab->root.undefs_tail = old_undefs_tail;
4476 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4477 for (i = 0; i < htab->root.table.size; i++)
4478 {
4479 struct bfd_hash_entry *p;
4480 struct elf_link_hash_entry *h;
4481 bfd_size_type size;
4482 unsigned int alignment_power;
4483
4484 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4485 {
4486 h = (struct elf_link_hash_entry *) p;
4487 if (h->root.type == bfd_link_hash_warning)
4488 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4489 if (h->dynindx >= old_dynsymcount
4490 && h->dynstr_index < old_dynstr_size)
4491 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4492
4493 /* Preserve the maximum alignment and size for common
4494 symbols even if this dynamic lib isn't on DT_NEEDED
4495 since it can still be loaded at run time by another
4496 dynamic lib. */
4497 if (h->root.type == bfd_link_hash_common)
4498 {
4499 size = h->root.u.c.size;
4500 alignment_power = h->root.u.c.p->alignment_power;
4501 }
4502 else
4503 {
4504 size = 0;
4505 alignment_power = 0;
4506 }
4507 memcpy (p, old_ent, htab->root.table.entsize);
4508 old_ent = (char *) old_ent + htab->root.table.entsize;
4509 h = (struct elf_link_hash_entry *) p;
4510 if (h->root.type == bfd_link_hash_warning)
4511 {
4512 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4513 old_ent = (char *) old_ent + htab->root.table.entsize;
4514 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4515 }
4516 if (h->root.type == bfd_link_hash_common)
4517 {
4518 if (size > h->root.u.c.size)
4519 h->root.u.c.size = size;
4520 if (alignment_power > h->root.u.c.p->alignment_power)
4521 h->root.u.c.p->alignment_power = alignment_power;
4522 }
4523 }
4524 }
4525
4526 /* Make a special call to the linker "notice" function to
4527 tell it that symbols added for crefs may need to be removed. */
4528 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4529 notice_not_needed, 0, NULL))
4530 goto error_free_vers;
4531
4532 free (old_tab);
4533 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4534 alloc_mark);
4535 if (nondeflt_vers != NULL)
4536 free (nondeflt_vers);
4537 return TRUE;
4538 }
4539
4540 if (old_tab != NULL)
4541 {
4542 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4543 notice_needed, 0, NULL))
4544 goto error_free_vers;
4545 free (old_tab);
4546 old_tab = NULL;
4547 }
4548
4549 /* Now that all the symbols from this input file are created, handle
4550 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4551 if (nondeflt_vers != NULL)
4552 {
4553 bfd_size_type cnt, symidx;
4554
4555 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4556 {
4557 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4558 char *shortname, *p;
4559
4560 p = strchr (h->root.root.string, ELF_VER_CHR);
4561 if (p == NULL
4562 || (h->root.type != bfd_link_hash_defined
4563 && h->root.type != bfd_link_hash_defweak))
4564 continue;
4565
4566 amt = p - h->root.root.string;
4567 shortname = (char *) bfd_malloc (amt + 1);
4568 if (!shortname)
4569 goto error_free_vers;
4570 memcpy (shortname, h->root.root.string, amt);
4571 shortname[amt] = '\0';
4572
4573 hi = (struct elf_link_hash_entry *)
4574 bfd_link_hash_lookup (&htab->root, shortname,
4575 FALSE, FALSE, FALSE);
4576 if (hi != NULL
4577 && hi->root.type == h->root.type
4578 && hi->root.u.def.value == h->root.u.def.value
4579 && hi->root.u.def.section == h->root.u.def.section)
4580 {
4581 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4582 hi->root.type = bfd_link_hash_indirect;
4583 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4584 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4585 sym_hash = elf_sym_hashes (abfd);
4586 if (sym_hash)
4587 for (symidx = 0; symidx < extsymcount; ++symidx)
4588 if (sym_hash[symidx] == hi)
4589 {
4590 sym_hash[symidx] = h;
4591 break;
4592 }
4593 }
4594 free (shortname);
4595 }
4596 free (nondeflt_vers);
4597 nondeflt_vers = NULL;
4598 }
4599
4600 /* Now set the weakdefs field correctly for all the weak defined
4601 symbols we found. The only way to do this is to search all the
4602 symbols. Since we only need the information for non functions in
4603 dynamic objects, that's the only time we actually put anything on
4604 the list WEAKS. We need this information so that if a regular
4605 object refers to a symbol defined weakly in a dynamic object, the
4606 real symbol in the dynamic object is also put in the dynamic
4607 symbols; we also must arrange for both symbols to point to the
4608 same memory location. We could handle the general case of symbol
4609 aliasing, but a general symbol alias can only be generated in
4610 assembler code, handling it correctly would be very time
4611 consuming, and other ELF linkers don't handle general aliasing
4612 either. */
4613 if (weaks != NULL)
4614 {
4615 struct elf_link_hash_entry **hpp;
4616 struct elf_link_hash_entry **hppend;
4617 struct elf_link_hash_entry **sorted_sym_hash;
4618 struct elf_link_hash_entry *h;
4619 size_t sym_count;
4620
4621 /* Since we have to search the whole symbol list for each weak
4622 defined symbol, search time for N weak defined symbols will be
4623 O(N^2). Binary search will cut it down to O(NlogN). */
4624 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4625 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4626 if (sorted_sym_hash == NULL)
4627 goto error_return;
4628 sym_hash = sorted_sym_hash;
4629 hpp = elf_sym_hashes (abfd);
4630 hppend = hpp + extsymcount;
4631 sym_count = 0;
4632 for (; hpp < hppend; hpp++)
4633 {
4634 h = *hpp;
4635 if (h != NULL
4636 && h->root.type == bfd_link_hash_defined
4637 && !bed->is_function_type (h->type))
4638 {
4639 *sym_hash = h;
4640 sym_hash++;
4641 sym_count++;
4642 }
4643 }
4644
4645 qsort (sorted_sym_hash, sym_count,
4646 sizeof (struct elf_link_hash_entry *),
4647 elf_sort_symbol);
4648
4649 while (weaks != NULL)
4650 {
4651 struct elf_link_hash_entry *hlook;
4652 asection *slook;
4653 bfd_vma vlook;
4654 size_t i, j, idx = 0;
4655
4656 hlook = weaks;
4657 weaks = hlook->u.weakdef;
4658 hlook->u.weakdef = NULL;
4659
4660 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4661 || hlook->root.type == bfd_link_hash_defweak
4662 || hlook->root.type == bfd_link_hash_common
4663 || hlook->root.type == bfd_link_hash_indirect);
4664 slook = hlook->root.u.def.section;
4665 vlook = hlook->root.u.def.value;
4666
4667 i = 0;
4668 j = sym_count;
4669 while (i != j)
4670 {
4671 bfd_signed_vma vdiff;
4672 idx = (i + j) / 2;
4673 h = sorted_sym_hash[idx];
4674 vdiff = vlook - h->root.u.def.value;
4675 if (vdiff < 0)
4676 j = idx;
4677 else if (vdiff > 0)
4678 i = idx + 1;
4679 else
4680 {
4681 long sdiff = slook->id - h->root.u.def.section->id;
4682 if (sdiff < 0)
4683 j = idx;
4684 else if (sdiff > 0)
4685 i = idx + 1;
4686 else
4687 break;
4688 }
4689 }
4690
4691 /* We didn't find a value/section match. */
4692 if (i == j)
4693 continue;
4694
4695 /* With multiple aliases, or when the weak symbol is already
4696 strongly defined, we have multiple matching symbols and
4697 the binary search above may land on any of them. Step
4698 one past the matching symbol(s). */
4699 while (++idx != j)
4700 {
4701 h = sorted_sym_hash[idx];
4702 if (h->root.u.def.section != slook
4703 || h->root.u.def.value != vlook)
4704 break;
4705 }
4706
4707 /* Now look back over the aliases. Since we sorted by size
4708 as well as value and section, we'll choose the one with
4709 the largest size. */
4710 while (idx-- != i)
4711 {
4712 h = sorted_sym_hash[idx];
4713
4714 /* Stop if value or section doesn't match. */
4715 if (h->root.u.def.section != slook
4716 || h->root.u.def.value != vlook)
4717 break;
4718 else if (h != hlook)
4719 {
4720 hlook->u.weakdef = h;
4721
4722 /* If the weak definition is in the list of dynamic
4723 symbols, make sure the real definition is put
4724 there as well. */
4725 if (hlook->dynindx != -1 && h->dynindx == -1)
4726 {
4727 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4728 {
4729 err_free_sym_hash:
4730 free (sorted_sym_hash);
4731 goto error_return;
4732 }
4733 }
4734
4735 /* If the real definition is in the list of dynamic
4736 symbols, make sure the weak definition is put
4737 there as well. If we don't do this, then the
4738 dynamic loader might not merge the entries for the
4739 real definition and the weak definition. */
4740 if (h->dynindx != -1 && hlook->dynindx == -1)
4741 {
4742 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4743 goto err_free_sym_hash;
4744 }
4745 break;
4746 }
4747 }
4748 }
4749
4750 free (sorted_sym_hash);
4751 }
4752
4753 if (bed->check_directives
4754 && !(*bed->check_directives) (abfd, info))
4755 return FALSE;
4756
4757 /* If this object is the same format as the output object, and it is
4758 not a shared library, then let the backend look through the
4759 relocs.
4760
4761 This is required to build global offset table entries and to
4762 arrange for dynamic relocs. It is not required for the
4763 particular common case of linking non PIC code, even when linking
4764 against shared libraries, but unfortunately there is no way of
4765 knowing whether an object file has been compiled PIC or not.
4766 Looking through the relocs is not particularly time consuming.
4767 The problem is that we must either (1) keep the relocs in memory,
4768 which causes the linker to require additional runtime memory or
4769 (2) read the relocs twice from the input file, which wastes time.
4770 This would be a good case for using mmap.
4771
4772 I have no idea how to handle linking PIC code into a file of a
4773 different format. It probably can't be done. */
4774 if (! dynamic
4775 && is_elf_hash_table (htab)
4776 && bed->check_relocs != NULL
4777 && elf_object_id (abfd) == elf_hash_table_id (htab)
4778 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4779 {
4780 asection *o;
4781
4782 for (o = abfd->sections; o != NULL; o = o->next)
4783 {
4784 Elf_Internal_Rela *internal_relocs;
4785 bfd_boolean ok;
4786
4787 if ((o->flags & SEC_RELOC) == 0
4788 || o->reloc_count == 0
4789 || ((info->strip == strip_all || info->strip == strip_debugger)
4790 && (o->flags & SEC_DEBUGGING) != 0)
4791 || bfd_is_abs_section (o->output_section))
4792 continue;
4793
4794 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4795 info->keep_memory);
4796 if (internal_relocs == NULL)
4797 goto error_return;
4798
4799 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4800
4801 if (elf_section_data (o)->relocs != internal_relocs)
4802 free (internal_relocs);
4803
4804 if (! ok)
4805 goto error_return;
4806 }
4807 }
4808
4809 /* If this is a non-traditional link, try to optimize the handling
4810 of the .stab/.stabstr sections. */
4811 if (! dynamic
4812 && ! info->traditional_format
4813 && is_elf_hash_table (htab)
4814 && (info->strip != strip_all && info->strip != strip_debugger))
4815 {
4816 asection *stabstr;
4817
4818 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4819 if (stabstr != NULL)
4820 {
4821 bfd_size_type string_offset = 0;
4822 asection *stab;
4823
4824 for (stab = abfd->sections; stab; stab = stab->next)
4825 if (CONST_STRNEQ (stab->name, ".stab")
4826 && (!stab->name[5] ||
4827 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4828 && (stab->flags & SEC_MERGE) == 0
4829 && !bfd_is_abs_section (stab->output_section))
4830 {
4831 struct bfd_elf_section_data *secdata;
4832
4833 secdata = elf_section_data (stab);
4834 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4835 stabstr, &secdata->sec_info,
4836 &string_offset))
4837 goto error_return;
4838 if (secdata->sec_info)
4839 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4840 }
4841 }
4842 }
4843
4844 if (is_elf_hash_table (htab) && add_needed)
4845 {
4846 /* Add this bfd to the loaded list. */
4847 struct elf_link_loaded_list *n;
4848
4849 n = (struct elf_link_loaded_list *)
4850 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4851 if (n == NULL)
4852 goto error_return;
4853 n->abfd = abfd;
4854 n->next = htab->loaded;
4855 htab->loaded = n;
4856 }
4857
4858 return TRUE;
4859
4860 error_free_vers:
4861 if (old_tab != NULL)
4862 free (old_tab);
4863 if (nondeflt_vers != NULL)
4864 free (nondeflt_vers);
4865 if (extversym != NULL)
4866 free (extversym);
4867 error_free_sym:
4868 if (isymbuf != NULL)
4869 free (isymbuf);
4870 error_return:
4871 return FALSE;
4872 }
4873
4874 /* Return the linker hash table entry of a symbol that might be
4875 satisfied by an archive symbol. Return -1 on error. */
4876
4877 struct elf_link_hash_entry *
4878 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4879 struct bfd_link_info *info,
4880 const char *name)
4881 {
4882 struct elf_link_hash_entry *h;
4883 char *p, *copy;
4884 size_t len, first;
4885
4886 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4887 if (h != NULL)
4888 return h;
4889
4890 /* If this is a default version (the name contains @@), look up the
4891 symbol again with only one `@' as well as without the version.
4892 The effect is that references to the symbol with and without the
4893 version will be matched by the default symbol in the archive. */
4894
4895 p = strchr (name, ELF_VER_CHR);
4896 if (p == NULL || p[1] != ELF_VER_CHR)
4897 return h;
4898
4899 /* First check with only one `@'. */
4900 len = strlen (name);
4901 copy = (char *) bfd_alloc (abfd, len);
4902 if (copy == NULL)
4903 return (struct elf_link_hash_entry *) 0 - 1;
4904
4905 first = p - name + 1;
4906 memcpy (copy, name, first);
4907 memcpy (copy + first, name + first + 1, len - first);
4908
4909 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4910 if (h == NULL)
4911 {
4912 /* We also need to check references to the symbol without the
4913 version. */
4914 copy[first - 1] = '\0';
4915 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4916 FALSE, FALSE, TRUE);
4917 }
4918
4919 bfd_release (abfd, copy);
4920 return h;
4921 }
4922
4923 /* Add symbols from an ELF archive file to the linker hash table. We
4924 don't use _bfd_generic_link_add_archive_symbols because of a
4925 problem which arises on UnixWare. The UnixWare libc.so is an
4926 archive which includes an entry libc.so.1 which defines a bunch of
4927 symbols. The libc.so archive also includes a number of other
4928 object files, which also define symbols, some of which are the same
4929 as those defined in libc.so.1. Correct linking requires that we
4930 consider each object file in turn, and include it if it defines any
4931 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4932 this; it looks through the list of undefined symbols, and includes
4933 any object file which defines them. When this algorithm is used on
4934 UnixWare, it winds up pulling in libc.so.1 early and defining a
4935 bunch of symbols. This means that some of the other objects in the
4936 archive are not included in the link, which is incorrect since they
4937 precede libc.so.1 in the archive.
4938
4939 Fortunately, ELF archive handling is simpler than that done by
4940 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4941 oddities. In ELF, if we find a symbol in the archive map, and the
4942 symbol is currently undefined, we know that we must pull in that
4943 object file.
4944
4945 Unfortunately, we do have to make multiple passes over the symbol
4946 table until nothing further is resolved. */
4947
4948 static bfd_boolean
4949 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4950 {
4951 symindex c;
4952 bfd_boolean *defined = NULL;
4953 bfd_boolean *included = NULL;
4954 carsym *symdefs;
4955 bfd_boolean loop;
4956 bfd_size_type amt;
4957 const struct elf_backend_data *bed;
4958 struct elf_link_hash_entry * (*archive_symbol_lookup)
4959 (bfd *, struct bfd_link_info *, const char *);
4960
4961 if (! bfd_has_map (abfd))
4962 {
4963 /* An empty archive is a special case. */
4964 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4965 return TRUE;
4966 bfd_set_error (bfd_error_no_armap);
4967 return FALSE;
4968 }
4969
4970 /* Keep track of all symbols we know to be already defined, and all
4971 files we know to be already included. This is to speed up the
4972 second and subsequent passes. */
4973 c = bfd_ardata (abfd)->symdef_count;
4974 if (c == 0)
4975 return TRUE;
4976 amt = c;
4977 amt *= sizeof (bfd_boolean);
4978 defined = (bfd_boolean *) bfd_zmalloc (amt);
4979 included = (bfd_boolean *) bfd_zmalloc (amt);
4980 if (defined == NULL || included == NULL)
4981 goto error_return;
4982
4983 symdefs = bfd_ardata (abfd)->symdefs;
4984 bed = get_elf_backend_data (abfd);
4985 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4986
4987 do
4988 {
4989 file_ptr last;
4990 symindex i;
4991 carsym *symdef;
4992 carsym *symdefend;
4993
4994 loop = FALSE;
4995 last = -1;
4996
4997 symdef = symdefs;
4998 symdefend = symdef + c;
4999 for (i = 0; symdef < symdefend; symdef++, i++)
5000 {
5001 struct elf_link_hash_entry *h;
5002 bfd *element;
5003 struct bfd_link_hash_entry *undefs_tail;
5004 symindex mark;
5005
5006 if (defined[i] || included[i])
5007 continue;
5008 if (symdef->file_offset == last)
5009 {
5010 included[i] = TRUE;
5011 continue;
5012 }
5013
5014 h = archive_symbol_lookup (abfd, info, symdef->name);
5015 if (h == (struct elf_link_hash_entry *) 0 - 1)
5016 goto error_return;
5017
5018 if (h == NULL)
5019 continue;
5020
5021 if (h->root.type == bfd_link_hash_common)
5022 {
5023 /* We currently have a common symbol. The archive map contains
5024 a reference to this symbol, so we may want to include it. We
5025 only want to include it however, if this archive element
5026 contains a definition of the symbol, not just another common
5027 declaration of it.
5028
5029 Unfortunately some archivers (including GNU ar) will put
5030 declarations of common symbols into their archive maps, as
5031 well as real definitions, so we cannot just go by the archive
5032 map alone. Instead we must read in the element's symbol
5033 table and check that to see what kind of symbol definition
5034 this is. */
5035 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5036 continue;
5037 }
5038 else if (h->root.type != bfd_link_hash_undefined)
5039 {
5040 if (h->root.type != bfd_link_hash_undefweak)
5041 defined[i] = TRUE;
5042 continue;
5043 }
5044
5045 /* We need to include this archive member. */
5046 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5047 if (element == NULL)
5048 goto error_return;
5049
5050 if (! bfd_check_format (element, bfd_object))
5051 goto error_return;
5052
5053 /* Doublecheck that we have not included this object
5054 already--it should be impossible, but there may be
5055 something wrong with the archive. */
5056 if (element->archive_pass != 0)
5057 {
5058 bfd_set_error (bfd_error_bad_value);
5059 goto error_return;
5060 }
5061 element->archive_pass = 1;
5062
5063 undefs_tail = info->hash->undefs_tail;
5064
5065 if (!(*info->callbacks
5066 ->add_archive_element) (info, element, symdef->name, &element))
5067 goto error_return;
5068 if (!bfd_link_add_symbols (element, info))
5069 goto error_return;
5070
5071 /* If there are any new undefined symbols, we need to make
5072 another pass through the archive in order to see whether
5073 they can be defined. FIXME: This isn't perfect, because
5074 common symbols wind up on undefs_tail and because an
5075 undefined symbol which is defined later on in this pass
5076 does not require another pass. This isn't a bug, but it
5077 does make the code less efficient than it could be. */
5078 if (undefs_tail != info->hash->undefs_tail)
5079 loop = TRUE;
5080
5081 /* Look backward to mark all symbols from this object file
5082 which we have already seen in this pass. */
5083 mark = i;
5084 do
5085 {
5086 included[mark] = TRUE;
5087 if (mark == 0)
5088 break;
5089 --mark;
5090 }
5091 while (symdefs[mark].file_offset == symdef->file_offset);
5092
5093 /* We mark subsequent symbols from this object file as we go
5094 on through the loop. */
5095 last = symdef->file_offset;
5096 }
5097 }
5098 while (loop);
5099
5100 free (defined);
5101 free (included);
5102
5103 return TRUE;
5104
5105 error_return:
5106 if (defined != NULL)
5107 free (defined);
5108 if (included != NULL)
5109 free (included);
5110 return FALSE;
5111 }
5112
5113 /* Given an ELF BFD, add symbols to the global hash table as
5114 appropriate. */
5115
5116 bfd_boolean
5117 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5118 {
5119 switch (bfd_get_format (abfd))
5120 {
5121 case bfd_object:
5122 return elf_link_add_object_symbols (abfd, info);
5123 case bfd_archive:
5124 return elf_link_add_archive_symbols (abfd, info);
5125 default:
5126 bfd_set_error (bfd_error_wrong_format);
5127 return FALSE;
5128 }
5129 }
5130 \f
5131 struct hash_codes_info
5132 {
5133 unsigned long *hashcodes;
5134 bfd_boolean error;
5135 };
5136
5137 /* This function will be called though elf_link_hash_traverse to store
5138 all hash value of the exported symbols in an array. */
5139
5140 static bfd_boolean
5141 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5142 {
5143 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5144 const char *name;
5145 char *p;
5146 unsigned long ha;
5147 char *alc = NULL;
5148
5149 /* Ignore indirect symbols. These are added by the versioning code. */
5150 if (h->dynindx == -1)
5151 return TRUE;
5152
5153 name = h->root.root.string;
5154 p = strchr (name, ELF_VER_CHR);
5155 if (p != NULL)
5156 {
5157 alc = (char *) bfd_malloc (p - name + 1);
5158 if (alc == NULL)
5159 {
5160 inf->error = TRUE;
5161 return FALSE;
5162 }
5163 memcpy (alc, name, p - name);
5164 alc[p - name] = '\0';
5165 name = alc;
5166 }
5167
5168 /* Compute the hash value. */
5169 ha = bfd_elf_hash (name);
5170
5171 /* Store the found hash value in the array given as the argument. */
5172 *(inf->hashcodes)++ = ha;
5173
5174 /* And store it in the struct so that we can put it in the hash table
5175 later. */
5176 h->u.elf_hash_value = ha;
5177
5178 if (alc != NULL)
5179 free (alc);
5180
5181 return TRUE;
5182 }
5183
5184 struct collect_gnu_hash_codes
5185 {
5186 bfd *output_bfd;
5187 const struct elf_backend_data *bed;
5188 unsigned long int nsyms;
5189 unsigned long int maskbits;
5190 unsigned long int *hashcodes;
5191 unsigned long int *hashval;
5192 unsigned long int *indx;
5193 unsigned long int *counts;
5194 bfd_vma *bitmask;
5195 bfd_byte *contents;
5196 long int min_dynindx;
5197 unsigned long int bucketcount;
5198 unsigned long int symindx;
5199 long int local_indx;
5200 long int shift1, shift2;
5201 unsigned long int mask;
5202 bfd_boolean error;
5203 };
5204
5205 /* This function will be called though elf_link_hash_traverse to store
5206 all hash value of the exported symbols in an array. */
5207
5208 static bfd_boolean
5209 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5210 {
5211 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5212 const char *name;
5213 char *p;
5214 unsigned long ha;
5215 char *alc = NULL;
5216
5217 /* Ignore indirect symbols. These are added by the versioning code. */
5218 if (h->dynindx == -1)
5219 return TRUE;
5220
5221 /* Ignore also local symbols and undefined symbols. */
5222 if (! (*s->bed->elf_hash_symbol) (h))
5223 return TRUE;
5224
5225 name = h->root.root.string;
5226 p = strchr (name, ELF_VER_CHR);
5227 if (p != NULL)
5228 {
5229 alc = (char *) bfd_malloc (p - name + 1);
5230 if (alc == NULL)
5231 {
5232 s->error = TRUE;
5233 return FALSE;
5234 }
5235 memcpy (alc, name, p - name);
5236 alc[p - name] = '\0';
5237 name = alc;
5238 }
5239
5240 /* Compute the hash value. */
5241 ha = bfd_elf_gnu_hash (name);
5242
5243 /* Store the found hash value in the array for compute_bucket_count,
5244 and also for .dynsym reordering purposes. */
5245 s->hashcodes[s->nsyms] = ha;
5246 s->hashval[h->dynindx] = ha;
5247 ++s->nsyms;
5248 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5249 s->min_dynindx = h->dynindx;
5250
5251 if (alc != NULL)
5252 free (alc);
5253
5254 return TRUE;
5255 }
5256
5257 /* This function will be called though elf_link_hash_traverse to do
5258 final dynaminc symbol renumbering. */
5259
5260 static bfd_boolean
5261 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5262 {
5263 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5264 unsigned long int bucket;
5265 unsigned long int val;
5266
5267 /* Ignore indirect symbols. */
5268 if (h->dynindx == -1)
5269 return TRUE;
5270
5271 /* Ignore also local symbols and undefined symbols. */
5272 if (! (*s->bed->elf_hash_symbol) (h))
5273 {
5274 if (h->dynindx >= s->min_dynindx)
5275 h->dynindx = s->local_indx++;
5276 return TRUE;
5277 }
5278
5279 bucket = s->hashval[h->dynindx] % s->bucketcount;
5280 val = (s->hashval[h->dynindx] >> s->shift1)
5281 & ((s->maskbits >> s->shift1) - 1);
5282 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5283 s->bitmask[val]
5284 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5285 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5286 if (s->counts[bucket] == 1)
5287 /* Last element terminates the chain. */
5288 val |= 1;
5289 bfd_put_32 (s->output_bfd, val,
5290 s->contents + (s->indx[bucket] - s->symindx) * 4);
5291 --s->counts[bucket];
5292 h->dynindx = s->indx[bucket]++;
5293 return TRUE;
5294 }
5295
5296 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5297
5298 bfd_boolean
5299 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5300 {
5301 return !(h->forced_local
5302 || h->root.type == bfd_link_hash_undefined
5303 || h->root.type == bfd_link_hash_undefweak
5304 || ((h->root.type == bfd_link_hash_defined
5305 || h->root.type == bfd_link_hash_defweak)
5306 && h->root.u.def.section->output_section == NULL));
5307 }
5308
5309 /* Array used to determine the number of hash table buckets to use
5310 based on the number of symbols there are. If there are fewer than
5311 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5312 fewer than 37 we use 17 buckets, and so forth. We never use more
5313 than 32771 buckets. */
5314
5315 static const size_t elf_buckets[] =
5316 {
5317 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5318 16411, 32771, 0
5319 };
5320
5321 /* Compute bucket count for hashing table. We do not use a static set
5322 of possible tables sizes anymore. Instead we determine for all
5323 possible reasonable sizes of the table the outcome (i.e., the
5324 number of collisions etc) and choose the best solution. The
5325 weighting functions are not too simple to allow the table to grow
5326 without bounds. Instead one of the weighting factors is the size.
5327 Therefore the result is always a good payoff between few collisions
5328 (= short chain lengths) and table size. */
5329 static size_t
5330 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5331 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5332 unsigned long int nsyms,
5333 int gnu_hash)
5334 {
5335 size_t best_size = 0;
5336 unsigned long int i;
5337
5338 /* We have a problem here. The following code to optimize the table
5339 size requires an integer type with more the 32 bits. If
5340 BFD_HOST_U_64_BIT is set we know about such a type. */
5341 #ifdef BFD_HOST_U_64_BIT
5342 if (info->optimize)
5343 {
5344 size_t minsize;
5345 size_t maxsize;
5346 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5347 bfd *dynobj = elf_hash_table (info)->dynobj;
5348 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5349 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5350 unsigned long int *counts;
5351 bfd_size_type amt;
5352 unsigned int no_improvement_count = 0;
5353
5354 /* Possible optimization parameters: if we have NSYMS symbols we say
5355 that the hashing table must at least have NSYMS/4 and at most
5356 2*NSYMS buckets. */
5357 minsize = nsyms / 4;
5358 if (minsize == 0)
5359 minsize = 1;
5360 best_size = maxsize = nsyms * 2;
5361 if (gnu_hash)
5362 {
5363 if (minsize < 2)
5364 minsize = 2;
5365 if ((best_size & 31) == 0)
5366 ++best_size;
5367 }
5368
5369 /* Create array where we count the collisions in. We must use bfd_malloc
5370 since the size could be large. */
5371 amt = maxsize;
5372 amt *= sizeof (unsigned long int);
5373 counts = (unsigned long int *) bfd_malloc (amt);
5374 if (counts == NULL)
5375 return 0;
5376
5377 /* Compute the "optimal" size for the hash table. The criteria is a
5378 minimal chain length. The minor criteria is (of course) the size
5379 of the table. */
5380 for (i = minsize; i < maxsize; ++i)
5381 {
5382 /* Walk through the array of hashcodes and count the collisions. */
5383 BFD_HOST_U_64_BIT max;
5384 unsigned long int j;
5385 unsigned long int fact;
5386
5387 if (gnu_hash && (i & 31) == 0)
5388 continue;
5389
5390 memset (counts, '\0', i * sizeof (unsigned long int));
5391
5392 /* Determine how often each hash bucket is used. */
5393 for (j = 0; j < nsyms; ++j)
5394 ++counts[hashcodes[j] % i];
5395
5396 /* For the weight function we need some information about the
5397 pagesize on the target. This is information need not be 100%
5398 accurate. Since this information is not available (so far) we
5399 define it here to a reasonable default value. If it is crucial
5400 to have a better value some day simply define this value. */
5401 # ifndef BFD_TARGET_PAGESIZE
5402 # define BFD_TARGET_PAGESIZE (4096)
5403 # endif
5404
5405 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5406 and the chains. */
5407 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5408
5409 # if 1
5410 /* Variant 1: optimize for short chains. We add the squares
5411 of all the chain lengths (which favors many small chain
5412 over a few long chains). */
5413 for (j = 0; j < i; ++j)
5414 max += counts[j] * counts[j];
5415
5416 /* This adds penalties for the overall size of the table. */
5417 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5418 max *= fact * fact;
5419 # else
5420 /* Variant 2: Optimize a lot more for small table. Here we
5421 also add squares of the size but we also add penalties for
5422 empty slots (the +1 term). */
5423 for (j = 0; j < i; ++j)
5424 max += (1 + counts[j]) * (1 + counts[j]);
5425
5426 /* The overall size of the table is considered, but not as
5427 strong as in variant 1, where it is squared. */
5428 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5429 max *= fact;
5430 # endif
5431
5432 /* Compare with current best results. */
5433 if (max < best_chlen)
5434 {
5435 best_chlen = max;
5436 best_size = i;
5437 no_improvement_count = 0;
5438 }
5439 /* PR 11843: Avoid futile long searches for the best bucket size
5440 when there are a large number of symbols. */
5441 else if (++no_improvement_count == 100)
5442 break;
5443 }
5444
5445 free (counts);
5446 }
5447 else
5448 #endif /* defined (BFD_HOST_U_64_BIT) */
5449 {
5450 /* This is the fallback solution if no 64bit type is available or if we
5451 are not supposed to spend much time on optimizations. We select the
5452 bucket count using a fixed set of numbers. */
5453 for (i = 0; elf_buckets[i] != 0; i++)
5454 {
5455 best_size = elf_buckets[i];
5456 if (nsyms < elf_buckets[i + 1])
5457 break;
5458 }
5459 if (gnu_hash && best_size < 2)
5460 best_size = 2;
5461 }
5462
5463 return best_size;
5464 }
5465
5466 /* Size any SHT_GROUP section for ld -r. */
5467
5468 bfd_boolean
5469 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5470 {
5471 bfd *ibfd;
5472
5473 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5474 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5475 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5476 return FALSE;
5477 return TRUE;
5478 }
5479
5480 /* Set a default stack segment size. The value in INFO wins. If it
5481 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5482 undefined it is initialized. */
5483
5484 bfd_boolean
5485 bfd_elf_stack_segment_size (bfd *output_bfd,
5486 struct bfd_link_info *info,
5487 const char *legacy_symbol,
5488 bfd_vma default_size)
5489 {
5490 struct elf_link_hash_entry *h = NULL;
5491
5492 /* Look for legacy symbol. */
5493 if (legacy_symbol)
5494 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5495 FALSE, FALSE, FALSE);
5496 if (h && (h->root.type == bfd_link_hash_defined
5497 || h->root.type == bfd_link_hash_defweak)
5498 && h->def_regular
5499 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5500 {
5501 /* The symbol has no type if specified on the command line. */
5502 h->type = STT_OBJECT;
5503 if (info->stacksize)
5504 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5505 output_bfd, legacy_symbol);
5506 else if (h->root.u.def.section != bfd_abs_section_ptr)
5507 (*_bfd_error_handler) (_("%B: %s not absolute"),
5508 output_bfd, legacy_symbol);
5509 else
5510 info->stacksize = h->root.u.def.value;
5511 }
5512
5513 if (!info->stacksize)
5514 /* If the user didn't set a size, or explicitly inhibit the
5515 size, set it now. */
5516 info->stacksize = default_size;
5517
5518 /* Provide the legacy symbol, if it is referenced. */
5519 if (h && (h->root.type == bfd_link_hash_undefined
5520 || h->root.type == bfd_link_hash_undefweak))
5521 {
5522 struct bfd_link_hash_entry *bh = NULL;
5523
5524 if (!(_bfd_generic_link_add_one_symbol
5525 (info, output_bfd, legacy_symbol,
5526 BSF_GLOBAL, bfd_abs_section_ptr,
5527 info->stacksize >= 0 ? info->stacksize : 0,
5528 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5529 return FALSE;
5530
5531 h = (struct elf_link_hash_entry *) bh;
5532 h->def_regular = 1;
5533 h->type = STT_OBJECT;
5534 }
5535
5536 return TRUE;
5537 }
5538
5539 /* Set up the sizes and contents of the ELF dynamic sections. This is
5540 called by the ELF linker emulation before_allocation routine. We
5541 must set the sizes of the sections before the linker sets the
5542 addresses of the various sections. */
5543
5544 bfd_boolean
5545 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5546 const char *soname,
5547 const char *rpath,
5548 const char *filter_shlib,
5549 const char *audit,
5550 const char *depaudit,
5551 const char * const *auxiliary_filters,
5552 struct bfd_link_info *info,
5553 asection **sinterpptr)
5554 {
5555 bfd_size_type soname_indx;
5556 bfd *dynobj;
5557 const struct elf_backend_data *bed;
5558 struct elf_info_failed asvinfo;
5559
5560 *sinterpptr = NULL;
5561
5562 soname_indx = (bfd_size_type) -1;
5563
5564 if (!is_elf_hash_table (info->hash))
5565 return TRUE;
5566
5567 bed = get_elf_backend_data (output_bfd);
5568
5569 /* Any syms created from now on start with -1 in
5570 got.refcount/offset and plt.refcount/offset. */
5571 elf_hash_table (info)->init_got_refcount
5572 = elf_hash_table (info)->init_got_offset;
5573 elf_hash_table (info)->init_plt_refcount
5574 = elf_hash_table (info)->init_plt_offset;
5575
5576 if (info->relocatable
5577 && !_bfd_elf_size_group_sections (info))
5578 return FALSE;
5579
5580 /* The backend may have to create some sections regardless of whether
5581 we're dynamic or not. */
5582 if (bed->elf_backend_always_size_sections
5583 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5584 return FALSE;
5585
5586 /* Determine any GNU_STACK segment requirements, after the backend
5587 has had a chance to set a default segment size. */
5588 if (info->execstack)
5589 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5590 else if (info->noexecstack)
5591 elf_stack_flags (output_bfd) = PF_R | PF_W;
5592 else
5593 {
5594 bfd *inputobj;
5595 asection *notesec = NULL;
5596 int exec = 0;
5597
5598 for (inputobj = info->input_bfds;
5599 inputobj;
5600 inputobj = inputobj->link_next)
5601 {
5602 asection *s;
5603
5604 if (inputobj->flags
5605 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5606 continue;
5607 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5608 if (s)
5609 {
5610 if (s->flags & SEC_CODE)
5611 exec = PF_X;
5612 notesec = s;
5613 }
5614 else if (bed->default_execstack)
5615 exec = PF_X;
5616 }
5617 if (notesec || info->stacksize > 0)
5618 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5619 if (notesec && exec && info->relocatable
5620 && notesec->output_section != bfd_abs_section_ptr)
5621 notesec->output_section->flags |= SEC_CODE;
5622 }
5623
5624 dynobj = elf_hash_table (info)->dynobj;
5625
5626 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5627 {
5628 struct elf_info_failed eif;
5629 struct elf_link_hash_entry *h;
5630 asection *dynstr;
5631 struct bfd_elf_version_tree *t;
5632 struct bfd_elf_version_expr *d;
5633 asection *s;
5634 bfd_boolean all_defined;
5635
5636 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5637 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5638
5639 if (soname != NULL)
5640 {
5641 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5642 soname, TRUE);
5643 if (soname_indx == (bfd_size_type) -1
5644 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5645 return FALSE;
5646 }
5647
5648 if (info->symbolic)
5649 {
5650 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5651 return FALSE;
5652 info->flags |= DF_SYMBOLIC;
5653 }
5654
5655 if (rpath != NULL)
5656 {
5657 bfd_size_type indx;
5658 bfd_vma tag;
5659
5660 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5661 TRUE);
5662 if (indx == (bfd_size_type) -1)
5663 return FALSE;
5664
5665 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5666 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5667 return FALSE;
5668 }
5669
5670 if (filter_shlib != NULL)
5671 {
5672 bfd_size_type indx;
5673
5674 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5675 filter_shlib, TRUE);
5676 if (indx == (bfd_size_type) -1
5677 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5678 return FALSE;
5679 }
5680
5681 if (auxiliary_filters != NULL)
5682 {
5683 const char * const *p;
5684
5685 for (p = auxiliary_filters; *p != NULL; p++)
5686 {
5687 bfd_size_type indx;
5688
5689 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5690 *p, TRUE);
5691 if (indx == (bfd_size_type) -1
5692 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5693 return FALSE;
5694 }
5695 }
5696
5697 if (audit != NULL)
5698 {
5699 bfd_size_type indx;
5700
5701 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5702 TRUE);
5703 if (indx == (bfd_size_type) -1
5704 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5705 return FALSE;
5706 }
5707
5708 if (depaudit != NULL)
5709 {
5710 bfd_size_type indx;
5711
5712 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5713 TRUE);
5714 if (indx == (bfd_size_type) -1
5715 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5716 return FALSE;
5717 }
5718
5719 eif.info = info;
5720 eif.failed = FALSE;
5721
5722 /* If we are supposed to export all symbols into the dynamic symbol
5723 table (this is not the normal case), then do so. */
5724 if (info->export_dynamic
5725 || (info->executable && info->dynamic))
5726 {
5727 elf_link_hash_traverse (elf_hash_table (info),
5728 _bfd_elf_export_symbol,
5729 &eif);
5730 if (eif.failed)
5731 return FALSE;
5732 }
5733
5734 /* Make all global versions with definition. */
5735 for (t = info->version_info; t != NULL; t = t->next)
5736 for (d = t->globals.list; d != NULL; d = d->next)
5737 if (!d->symver && d->literal)
5738 {
5739 const char *verstr, *name;
5740 size_t namelen, verlen, newlen;
5741 char *newname, *p, leading_char;
5742 struct elf_link_hash_entry *newh;
5743
5744 leading_char = bfd_get_symbol_leading_char (output_bfd);
5745 name = d->pattern;
5746 namelen = strlen (name) + (leading_char != '\0');
5747 verstr = t->name;
5748 verlen = strlen (verstr);
5749 newlen = namelen + verlen + 3;
5750
5751 newname = (char *) bfd_malloc (newlen);
5752 if (newname == NULL)
5753 return FALSE;
5754 newname[0] = leading_char;
5755 memcpy (newname + (leading_char != '\0'), name, namelen);
5756
5757 /* Check the hidden versioned definition. */
5758 p = newname + namelen;
5759 *p++ = ELF_VER_CHR;
5760 memcpy (p, verstr, verlen + 1);
5761 newh = elf_link_hash_lookup (elf_hash_table (info),
5762 newname, FALSE, FALSE,
5763 FALSE);
5764 if (newh == NULL
5765 || (newh->root.type != bfd_link_hash_defined
5766 && newh->root.type != bfd_link_hash_defweak))
5767 {
5768 /* Check the default versioned definition. */
5769 *p++ = ELF_VER_CHR;
5770 memcpy (p, verstr, verlen + 1);
5771 newh = elf_link_hash_lookup (elf_hash_table (info),
5772 newname, FALSE, FALSE,
5773 FALSE);
5774 }
5775 free (newname);
5776
5777 /* Mark this version if there is a definition and it is
5778 not defined in a shared object. */
5779 if (newh != NULL
5780 && !newh->def_dynamic
5781 && (newh->root.type == bfd_link_hash_defined
5782 || newh->root.type == bfd_link_hash_defweak))
5783 d->symver = 1;
5784 }
5785
5786 /* Attach all the symbols to their version information. */
5787 asvinfo.info = info;
5788 asvinfo.failed = FALSE;
5789
5790 elf_link_hash_traverse (elf_hash_table (info),
5791 _bfd_elf_link_assign_sym_version,
5792 &asvinfo);
5793 if (asvinfo.failed)
5794 return FALSE;
5795
5796 if (!info->allow_undefined_version)
5797 {
5798 /* Check if all global versions have a definition. */
5799 all_defined = TRUE;
5800 for (t = info->version_info; t != NULL; t = t->next)
5801 for (d = t->globals.list; d != NULL; d = d->next)
5802 if (d->literal && !d->symver && !d->script)
5803 {
5804 (*_bfd_error_handler)
5805 (_("%s: undefined version: %s"),
5806 d->pattern, t->name);
5807 all_defined = FALSE;
5808 }
5809
5810 if (!all_defined)
5811 {
5812 bfd_set_error (bfd_error_bad_value);
5813 return FALSE;
5814 }
5815 }
5816
5817 /* Find all symbols which were defined in a dynamic object and make
5818 the backend pick a reasonable value for them. */
5819 elf_link_hash_traverse (elf_hash_table (info),
5820 _bfd_elf_adjust_dynamic_symbol,
5821 &eif);
5822 if (eif.failed)
5823 return FALSE;
5824
5825 /* Add some entries to the .dynamic section. We fill in some of the
5826 values later, in bfd_elf_final_link, but we must add the entries
5827 now so that we know the final size of the .dynamic section. */
5828
5829 /* If there are initialization and/or finalization functions to
5830 call then add the corresponding DT_INIT/DT_FINI entries. */
5831 h = (info->init_function
5832 ? elf_link_hash_lookup (elf_hash_table (info),
5833 info->init_function, FALSE,
5834 FALSE, FALSE)
5835 : NULL);
5836 if (h != NULL
5837 && (h->ref_regular
5838 || h->def_regular))
5839 {
5840 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5841 return FALSE;
5842 }
5843 h = (info->fini_function
5844 ? elf_link_hash_lookup (elf_hash_table (info),
5845 info->fini_function, FALSE,
5846 FALSE, FALSE)
5847 : NULL);
5848 if (h != NULL
5849 && (h->ref_regular
5850 || h->def_regular))
5851 {
5852 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5853 return FALSE;
5854 }
5855
5856 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5857 if (s != NULL && s->linker_has_input)
5858 {
5859 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5860 if (! info->executable)
5861 {
5862 bfd *sub;
5863 asection *o;
5864
5865 for (sub = info->input_bfds; sub != NULL;
5866 sub = sub->link_next)
5867 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5868 for (o = sub->sections; o != NULL; o = o->next)
5869 if (elf_section_data (o)->this_hdr.sh_type
5870 == SHT_PREINIT_ARRAY)
5871 {
5872 (*_bfd_error_handler)
5873 (_("%B: .preinit_array section is not allowed in DSO"),
5874 sub);
5875 break;
5876 }
5877
5878 bfd_set_error (bfd_error_nonrepresentable_section);
5879 return FALSE;
5880 }
5881
5882 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5883 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5884 return FALSE;
5885 }
5886 s = bfd_get_section_by_name (output_bfd, ".init_array");
5887 if (s != NULL && s->linker_has_input)
5888 {
5889 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5890 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5891 return FALSE;
5892 }
5893 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5894 if (s != NULL && s->linker_has_input)
5895 {
5896 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5897 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5898 return FALSE;
5899 }
5900
5901 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5902 /* If .dynstr is excluded from the link, we don't want any of
5903 these tags. Strictly, we should be checking each section
5904 individually; This quick check covers for the case where
5905 someone does a /DISCARD/ : { *(*) }. */
5906 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5907 {
5908 bfd_size_type strsize;
5909
5910 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5911 if ((info->emit_hash
5912 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5913 || (info->emit_gnu_hash
5914 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5915 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5916 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5917 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5918 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5919 bed->s->sizeof_sym))
5920 return FALSE;
5921 }
5922 }
5923
5924 /* The backend must work out the sizes of all the other dynamic
5925 sections. */
5926 if (dynobj != NULL
5927 && bed->elf_backend_size_dynamic_sections != NULL
5928 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5929 return FALSE;
5930
5931 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5932 return FALSE;
5933
5934 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5935 {
5936 unsigned long section_sym_count;
5937 struct bfd_elf_version_tree *verdefs;
5938 asection *s;
5939
5940 /* Set up the version definition section. */
5941 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
5942 BFD_ASSERT (s != NULL);
5943
5944 /* We may have created additional version definitions if we are
5945 just linking a regular application. */
5946 verdefs = info->version_info;
5947
5948 /* Skip anonymous version tag. */
5949 if (verdefs != NULL && verdefs->vernum == 0)
5950 verdefs = verdefs->next;
5951
5952 if (verdefs == NULL && !info->create_default_symver)
5953 s->flags |= SEC_EXCLUDE;
5954 else
5955 {
5956 unsigned int cdefs;
5957 bfd_size_type size;
5958 struct bfd_elf_version_tree *t;
5959 bfd_byte *p;
5960 Elf_Internal_Verdef def;
5961 Elf_Internal_Verdaux defaux;
5962 struct bfd_link_hash_entry *bh;
5963 struct elf_link_hash_entry *h;
5964 const char *name;
5965
5966 cdefs = 0;
5967 size = 0;
5968
5969 /* Make space for the base version. */
5970 size += sizeof (Elf_External_Verdef);
5971 size += sizeof (Elf_External_Verdaux);
5972 ++cdefs;
5973
5974 /* Make space for the default version. */
5975 if (info->create_default_symver)
5976 {
5977 size += sizeof (Elf_External_Verdef);
5978 ++cdefs;
5979 }
5980
5981 for (t = verdefs; t != NULL; t = t->next)
5982 {
5983 struct bfd_elf_version_deps *n;
5984
5985 /* Don't emit base version twice. */
5986 if (t->vernum == 0)
5987 continue;
5988
5989 size += sizeof (Elf_External_Verdef);
5990 size += sizeof (Elf_External_Verdaux);
5991 ++cdefs;
5992
5993 for (n = t->deps; n != NULL; n = n->next)
5994 size += sizeof (Elf_External_Verdaux);
5995 }
5996
5997 s->size = size;
5998 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5999 if (s->contents == NULL && s->size != 0)
6000 return FALSE;
6001
6002 /* Fill in the version definition section. */
6003
6004 p = s->contents;
6005
6006 def.vd_version = VER_DEF_CURRENT;
6007 def.vd_flags = VER_FLG_BASE;
6008 def.vd_ndx = 1;
6009 def.vd_cnt = 1;
6010 if (info->create_default_symver)
6011 {
6012 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6013 def.vd_next = sizeof (Elf_External_Verdef);
6014 }
6015 else
6016 {
6017 def.vd_aux = sizeof (Elf_External_Verdef);
6018 def.vd_next = (sizeof (Elf_External_Verdef)
6019 + sizeof (Elf_External_Verdaux));
6020 }
6021
6022 if (soname_indx != (bfd_size_type) -1)
6023 {
6024 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6025 soname_indx);
6026 def.vd_hash = bfd_elf_hash (soname);
6027 defaux.vda_name = soname_indx;
6028 name = soname;
6029 }
6030 else
6031 {
6032 bfd_size_type indx;
6033
6034 name = lbasename (output_bfd->filename);
6035 def.vd_hash = bfd_elf_hash (name);
6036 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6037 name, FALSE);
6038 if (indx == (bfd_size_type) -1)
6039 return FALSE;
6040 defaux.vda_name = indx;
6041 }
6042 defaux.vda_next = 0;
6043
6044 _bfd_elf_swap_verdef_out (output_bfd, &def,
6045 (Elf_External_Verdef *) p);
6046 p += sizeof (Elf_External_Verdef);
6047 if (info->create_default_symver)
6048 {
6049 /* Add a symbol representing this version. */
6050 bh = NULL;
6051 if (! (_bfd_generic_link_add_one_symbol
6052 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6053 0, NULL, FALSE,
6054 get_elf_backend_data (dynobj)->collect, &bh)))
6055 return FALSE;
6056 h = (struct elf_link_hash_entry *) bh;
6057 h->non_elf = 0;
6058 h->def_regular = 1;
6059 h->type = STT_OBJECT;
6060 h->verinfo.vertree = NULL;
6061
6062 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6063 return FALSE;
6064
6065 /* Create a duplicate of the base version with the same
6066 aux block, but different flags. */
6067 def.vd_flags = 0;
6068 def.vd_ndx = 2;
6069 def.vd_aux = sizeof (Elf_External_Verdef);
6070 if (verdefs)
6071 def.vd_next = (sizeof (Elf_External_Verdef)
6072 + sizeof (Elf_External_Verdaux));
6073 else
6074 def.vd_next = 0;
6075 _bfd_elf_swap_verdef_out (output_bfd, &def,
6076 (Elf_External_Verdef *) p);
6077 p += sizeof (Elf_External_Verdef);
6078 }
6079 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6080 (Elf_External_Verdaux *) p);
6081 p += sizeof (Elf_External_Verdaux);
6082
6083 for (t = verdefs; t != NULL; t = t->next)
6084 {
6085 unsigned int cdeps;
6086 struct bfd_elf_version_deps *n;
6087
6088 /* Don't emit the base version twice. */
6089 if (t->vernum == 0)
6090 continue;
6091
6092 cdeps = 0;
6093 for (n = t->deps; n != NULL; n = n->next)
6094 ++cdeps;
6095
6096 /* Add a symbol representing this version. */
6097 bh = NULL;
6098 if (! (_bfd_generic_link_add_one_symbol
6099 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6100 0, NULL, FALSE,
6101 get_elf_backend_data (dynobj)->collect, &bh)))
6102 return FALSE;
6103 h = (struct elf_link_hash_entry *) bh;
6104 h->non_elf = 0;
6105 h->def_regular = 1;
6106 h->type = STT_OBJECT;
6107 h->verinfo.vertree = t;
6108
6109 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6110 return FALSE;
6111
6112 def.vd_version = VER_DEF_CURRENT;
6113 def.vd_flags = 0;
6114 if (t->globals.list == NULL
6115 && t->locals.list == NULL
6116 && ! t->used)
6117 def.vd_flags |= VER_FLG_WEAK;
6118 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6119 def.vd_cnt = cdeps + 1;
6120 def.vd_hash = bfd_elf_hash (t->name);
6121 def.vd_aux = sizeof (Elf_External_Verdef);
6122 def.vd_next = 0;
6123
6124 /* If a basever node is next, it *must* be the last node in
6125 the chain, otherwise Verdef construction breaks. */
6126 if (t->next != NULL && t->next->vernum == 0)
6127 BFD_ASSERT (t->next->next == NULL);
6128
6129 if (t->next != NULL && t->next->vernum != 0)
6130 def.vd_next = (sizeof (Elf_External_Verdef)
6131 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6132
6133 _bfd_elf_swap_verdef_out (output_bfd, &def,
6134 (Elf_External_Verdef *) p);
6135 p += sizeof (Elf_External_Verdef);
6136
6137 defaux.vda_name = h->dynstr_index;
6138 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6139 h->dynstr_index);
6140 defaux.vda_next = 0;
6141 if (t->deps != NULL)
6142 defaux.vda_next = sizeof (Elf_External_Verdaux);
6143 t->name_indx = defaux.vda_name;
6144
6145 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6146 (Elf_External_Verdaux *) p);
6147 p += sizeof (Elf_External_Verdaux);
6148
6149 for (n = t->deps; n != NULL; n = n->next)
6150 {
6151 if (n->version_needed == NULL)
6152 {
6153 /* This can happen if there was an error in the
6154 version script. */
6155 defaux.vda_name = 0;
6156 }
6157 else
6158 {
6159 defaux.vda_name = n->version_needed->name_indx;
6160 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6161 defaux.vda_name);
6162 }
6163 if (n->next == NULL)
6164 defaux.vda_next = 0;
6165 else
6166 defaux.vda_next = sizeof (Elf_External_Verdaux);
6167
6168 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6169 (Elf_External_Verdaux *) p);
6170 p += sizeof (Elf_External_Verdaux);
6171 }
6172 }
6173
6174 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6175 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6176 return FALSE;
6177
6178 elf_tdata (output_bfd)->cverdefs = cdefs;
6179 }
6180
6181 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6182 {
6183 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6184 return FALSE;
6185 }
6186 else if (info->flags & DF_BIND_NOW)
6187 {
6188 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6189 return FALSE;
6190 }
6191
6192 if (info->flags_1)
6193 {
6194 if (info->executable)
6195 info->flags_1 &= ~ (DF_1_INITFIRST
6196 | DF_1_NODELETE
6197 | DF_1_NOOPEN);
6198 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6199 return FALSE;
6200 }
6201
6202 /* Work out the size of the version reference section. */
6203
6204 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6205 BFD_ASSERT (s != NULL);
6206 {
6207 struct elf_find_verdep_info sinfo;
6208
6209 sinfo.info = info;
6210 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6211 if (sinfo.vers == 0)
6212 sinfo.vers = 1;
6213 sinfo.failed = FALSE;
6214
6215 elf_link_hash_traverse (elf_hash_table (info),
6216 _bfd_elf_link_find_version_dependencies,
6217 &sinfo);
6218 if (sinfo.failed)
6219 return FALSE;
6220
6221 if (elf_tdata (output_bfd)->verref == NULL)
6222 s->flags |= SEC_EXCLUDE;
6223 else
6224 {
6225 Elf_Internal_Verneed *t;
6226 unsigned int size;
6227 unsigned int crefs;
6228 bfd_byte *p;
6229
6230 /* Build the version dependency section. */
6231 size = 0;
6232 crefs = 0;
6233 for (t = elf_tdata (output_bfd)->verref;
6234 t != NULL;
6235 t = t->vn_nextref)
6236 {
6237 Elf_Internal_Vernaux *a;
6238
6239 size += sizeof (Elf_External_Verneed);
6240 ++crefs;
6241 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6242 size += sizeof (Elf_External_Vernaux);
6243 }
6244
6245 s->size = size;
6246 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6247 if (s->contents == NULL)
6248 return FALSE;
6249
6250 p = s->contents;
6251 for (t = elf_tdata (output_bfd)->verref;
6252 t != NULL;
6253 t = t->vn_nextref)
6254 {
6255 unsigned int caux;
6256 Elf_Internal_Vernaux *a;
6257 bfd_size_type indx;
6258
6259 caux = 0;
6260 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6261 ++caux;
6262
6263 t->vn_version = VER_NEED_CURRENT;
6264 t->vn_cnt = caux;
6265 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6266 elf_dt_name (t->vn_bfd) != NULL
6267 ? elf_dt_name (t->vn_bfd)
6268 : lbasename (t->vn_bfd->filename),
6269 FALSE);
6270 if (indx == (bfd_size_type) -1)
6271 return FALSE;
6272 t->vn_file = indx;
6273 t->vn_aux = sizeof (Elf_External_Verneed);
6274 if (t->vn_nextref == NULL)
6275 t->vn_next = 0;
6276 else
6277 t->vn_next = (sizeof (Elf_External_Verneed)
6278 + caux * sizeof (Elf_External_Vernaux));
6279
6280 _bfd_elf_swap_verneed_out (output_bfd, t,
6281 (Elf_External_Verneed *) p);
6282 p += sizeof (Elf_External_Verneed);
6283
6284 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6285 {
6286 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6287 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6288 a->vna_nodename, FALSE);
6289 if (indx == (bfd_size_type) -1)
6290 return FALSE;
6291 a->vna_name = indx;
6292 if (a->vna_nextptr == NULL)
6293 a->vna_next = 0;
6294 else
6295 a->vna_next = sizeof (Elf_External_Vernaux);
6296
6297 _bfd_elf_swap_vernaux_out (output_bfd, a,
6298 (Elf_External_Vernaux *) p);
6299 p += sizeof (Elf_External_Vernaux);
6300 }
6301 }
6302
6303 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6304 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6305 return FALSE;
6306
6307 elf_tdata (output_bfd)->cverrefs = crefs;
6308 }
6309 }
6310
6311 if ((elf_tdata (output_bfd)->cverrefs == 0
6312 && elf_tdata (output_bfd)->cverdefs == 0)
6313 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6314 &section_sym_count) == 0)
6315 {
6316 s = bfd_get_linker_section (dynobj, ".gnu.version");
6317 s->flags |= SEC_EXCLUDE;
6318 }
6319 }
6320 return TRUE;
6321 }
6322
6323 /* Find the first non-excluded output section. We'll use its
6324 section symbol for some emitted relocs. */
6325 void
6326 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6327 {
6328 asection *s;
6329
6330 for (s = output_bfd->sections; s != NULL; s = s->next)
6331 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6332 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6333 {
6334 elf_hash_table (info)->text_index_section = s;
6335 break;
6336 }
6337 }
6338
6339 /* Find two non-excluded output sections, one for code, one for data.
6340 We'll use their section symbols for some emitted relocs. */
6341 void
6342 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6343 {
6344 asection *s;
6345
6346 /* Data first, since setting text_index_section changes
6347 _bfd_elf_link_omit_section_dynsym. */
6348 for (s = output_bfd->sections; s != NULL; s = s->next)
6349 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6350 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6351 {
6352 elf_hash_table (info)->data_index_section = s;
6353 break;
6354 }
6355
6356 for (s = output_bfd->sections; s != NULL; s = s->next)
6357 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6358 == (SEC_ALLOC | SEC_READONLY))
6359 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6360 {
6361 elf_hash_table (info)->text_index_section = s;
6362 break;
6363 }
6364
6365 if (elf_hash_table (info)->text_index_section == NULL)
6366 elf_hash_table (info)->text_index_section
6367 = elf_hash_table (info)->data_index_section;
6368 }
6369
6370 bfd_boolean
6371 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6372 {
6373 const struct elf_backend_data *bed;
6374
6375 if (!is_elf_hash_table (info->hash))
6376 return TRUE;
6377
6378 bed = get_elf_backend_data (output_bfd);
6379 (*bed->elf_backend_init_index_section) (output_bfd, info);
6380
6381 if (elf_hash_table (info)->dynamic_sections_created)
6382 {
6383 bfd *dynobj;
6384 asection *s;
6385 bfd_size_type dynsymcount;
6386 unsigned long section_sym_count;
6387 unsigned int dtagcount;
6388
6389 dynobj = elf_hash_table (info)->dynobj;
6390
6391 /* Assign dynsym indicies. In a shared library we generate a
6392 section symbol for each output section, which come first.
6393 Next come all of the back-end allocated local dynamic syms,
6394 followed by the rest of the global symbols. */
6395
6396 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6397 &section_sym_count);
6398
6399 /* Work out the size of the symbol version section. */
6400 s = bfd_get_linker_section (dynobj, ".gnu.version");
6401 BFD_ASSERT (s != NULL);
6402 if (dynsymcount != 0
6403 && (s->flags & SEC_EXCLUDE) == 0)
6404 {
6405 s->size = dynsymcount * sizeof (Elf_External_Versym);
6406 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6407 if (s->contents == NULL)
6408 return FALSE;
6409
6410 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6411 return FALSE;
6412 }
6413
6414 /* Set the size of the .dynsym and .hash sections. We counted
6415 the number of dynamic symbols in elf_link_add_object_symbols.
6416 We will build the contents of .dynsym and .hash when we build
6417 the final symbol table, because until then we do not know the
6418 correct value to give the symbols. We built the .dynstr
6419 section as we went along in elf_link_add_object_symbols. */
6420 s = bfd_get_linker_section (dynobj, ".dynsym");
6421 BFD_ASSERT (s != NULL);
6422 s->size = dynsymcount * bed->s->sizeof_sym;
6423
6424 if (dynsymcount != 0)
6425 {
6426 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6427 if (s->contents == NULL)
6428 return FALSE;
6429
6430 /* The first entry in .dynsym is a dummy symbol.
6431 Clear all the section syms, in case we don't output them all. */
6432 ++section_sym_count;
6433 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6434 }
6435
6436 elf_hash_table (info)->bucketcount = 0;
6437
6438 /* Compute the size of the hashing table. As a side effect this
6439 computes the hash values for all the names we export. */
6440 if (info->emit_hash)
6441 {
6442 unsigned long int *hashcodes;
6443 struct hash_codes_info hashinf;
6444 bfd_size_type amt;
6445 unsigned long int nsyms;
6446 size_t bucketcount;
6447 size_t hash_entry_size;
6448
6449 /* Compute the hash values for all exported symbols. At the same
6450 time store the values in an array so that we could use them for
6451 optimizations. */
6452 amt = dynsymcount * sizeof (unsigned long int);
6453 hashcodes = (unsigned long int *) bfd_malloc (amt);
6454 if (hashcodes == NULL)
6455 return FALSE;
6456 hashinf.hashcodes = hashcodes;
6457 hashinf.error = FALSE;
6458
6459 /* Put all hash values in HASHCODES. */
6460 elf_link_hash_traverse (elf_hash_table (info),
6461 elf_collect_hash_codes, &hashinf);
6462 if (hashinf.error)
6463 {
6464 free (hashcodes);
6465 return FALSE;
6466 }
6467
6468 nsyms = hashinf.hashcodes - hashcodes;
6469 bucketcount
6470 = compute_bucket_count (info, hashcodes, nsyms, 0);
6471 free (hashcodes);
6472
6473 if (bucketcount == 0)
6474 return FALSE;
6475
6476 elf_hash_table (info)->bucketcount = bucketcount;
6477
6478 s = bfd_get_linker_section (dynobj, ".hash");
6479 BFD_ASSERT (s != NULL);
6480 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6481 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6482 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6483 if (s->contents == NULL)
6484 return FALSE;
6485
6486 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6487 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6488 s->contents + hash_entry_size);
6489 }
6490
6491 if (info->emit_gnu_hash)
6492 {
6493 size_t i, cnt;
6494 unsigned char *contents;
6495 struct collect_gnu_hash_codes cinfo;
6496 bfd_size_type amt;
6497 size_t bucketcount;
6498
6499 memset (&cinfo, 0, sizeof (cinfo));
6500
6501 /* Compute the hash values for all exported symbols. At the same
6502 time store the values in an array so that we could use them for
6503 optimizations. */
6504 amt = dynsymcount * 2 * sizeof (unsigned long int);
6505 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6506 if (cinfo.hashcodes == NULL)
6507 return FALSE;
6508
6509 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6510 cinfo.min_dynindx = -1;
6511 cinfo.output_bfd = output_bfd;
6512 cinfo.bed = bed;
6513
6514 /* Put all hash values in HASHCODES. */
6515 elf_link_hash_traverse (elf_hash_table (info),
6516 elf_collect_gnu_hash_codes, &cinfo);
6517 if (cinfo.error)
6518 {
6519 free (cinfo.hashcodes);
6520 return FALSE;
6521 }
6522
6523 bucketcount
6524 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6525
6526 if (bucketcount == 0)
6527 {
6528 free (cinfo.hashcodes);
6529 return FALSE;
6530 }
6531
6532 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6533 BFD_ASSERT (s != NULL);
6534
6535 if (cinfo.nsyms == 0)
6536 {
6537 /* Empty .gnu.hash section is special. */
6538 BFD_ASSERT (cinfo.min_dynindx == -1);
6539 free (cinfo.hashcodes);
6540 s->size = 5 * 4 + bed->s->arch_size / 8;
6541 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6542 if (contents == NULL)
6543 return FALSE;
6544 s->contents = contents;
6545 /* 1 empty bucket. */
6546 bfd_put_32 (output_bfd, 1, contents);
6547 /* SYMIDX above the special symbol 0. */
6548 bfd_put_32 (output_bfd, 1, contents + 4);
6549 /* Just one word for bitmask. */
6550 bfd_put_32 (output_bfd, 1, contents + 8);
6551 /* Only hash fn bloom filter. */
6552 bfd_put_32 (output_bfd, 0, contents + 12);
6553 /* No hashes are valid - empty bitmask. */
6554 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6555 /* No hashes in the only bucket. */
6556 bfd_put_32 (output_bfd, 0,
6557 contents + 16 + bed->s->arch_size / 8);
6558 }
6559 else
6560 {
6561 unsigned long int maskwords, maskbitslog2, x;
6562 BFD_ASSERT (cinfo.min_dynindx != -1);
6563
6564 x = cinfo.nsyms;
6565 maskbitslog2 = 1;
6566 while ((x >>= 1) != 0)
6567 ++maskbitslog2;
6568 if (maskbitslog2 < 3)
6569 maskbitslog2 = 5;
6570 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6571 maskbitslog2 = maskbitslog2 + 3;
6572 else
6573 maskbitslog2 = maskbitslog2 + 2;
6574 if (bed->s->arch_size == 64)
6575 {
6576 if (maskbitslog2 == 5)
6577 maskbitslog2 = 6;
6578 cinfo.shift1 = 6;
6579 }
6580 else
6581 cinfo.shift1 = 5;
6582 cinfo.mask = (1 << cinfo.shift1) - 1;
6583 cinfo.shift2 = maskbitslog2;
6584 cinfo.maskbits = 1 << maskbitslog2;
6585 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6586 amt = bucketcount * sizeof (unsigned long int) * 2;
6587 amt += maskwords * sizeof (bfd_vma);
6588 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6589 if (cinfo.bitmask == NULL)
6590 {
6591 free (cinfo.hashcodes);
6592 return FALSE;
6593 }
6594
6595 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6596 cinfo.indx = cinfo.counts + bucketcount;
6597 cinfo.symindx = dynsymcount - cinfo.nsyms;
6598 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6599
6600 /* Determine how often each hash bucket is used. */
6601 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6602 for (i = 0; i < cinfo.nsyms; ++i)
6603 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6604
6605 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6606 if (cinfo.counts[i] != 0)
6607 {
6608 cinfo.indx[i] = cnt;
6609 cnt += cinfo.counts[i];
6610 }
6611 BFD_ASSERT (cnt == dynsymcount);
6612 cinfo.bucketcount = bucketcount;
6613 cinfo.local_indx = cinfo.min_dynindx;
6614
6615 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6616 s->size += cinfo.maskbits / 8;
6617 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6618 if (contents == NULL)
6619 {
6620 free (cinfo.bitmask);
6621 free (cinfo.hashcodes);
6622 return FALSE;
6623 }
6624
6625 s->contents = contents;
6626 bfd_put_32 (output_bfd, bucketcount, contents);
6627 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6628 bfd_put_32 (output_bfd, maskwords, contents + 8);
6629 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6630 contents += 16 + cinfo.maskbits / 8;
6631
6632 for (i = 0; i < bucketcount; ++i)
6633 {
6634 if (cinfo.counts[i] == 0)
6635 bfd_put_32 (output_bfd, 0, contents);
6636 else
6637 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6638 contents += 4;
6639 }
6640
6641 cinfo.contents = contents;
6642
6643 /* Renumber dynamic symbols, populate .gnu.hash section. */
6644 elf_link_hash_traverse (elf_hash_table (info),
6645 elf_renumber_gnu_hash_syms, &cinfo);
6646
6647 contents = s->contents + 16;
6648 for (i = 0; i < maskwords; ++i)
6649 {
6650 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6651 contents);
6652 contents += bed->s->arch_size / 8;
6653 }
6654
6655 free (cinfo.bitmask);
6656 free (cinfo.hashcodes);
6657 }
6658 }
6659
6660 s = bfd_get_linker_section (dynobj, ".dynstr");
6661 BFD_ASSERT (s != NULL);
6662
6663 elf_finalize_dynstr (output_bfd, info);
6664
6665 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6666
6667 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6668 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6669 return FALSE;
6670 }
6671
6672 return TRUE;
6673 }
6674 \f
6675 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6676
6677 static void
6678 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6679 asection *sec)
6680 {
6681 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6682 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6683 }
6684
6685 /* Finish SHF_MERGE section merging. */
6686
6687 bfd_boolean
6688 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6689 {
6690 bfd *ibfd;
6691 asection *sec;
6692
6693 if (!is_elf_hash_table (info->hash))
6694 return FALSE;
6695
6696 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6697 if ((ibfd->flags & DYNAMIC) == 0)
6698 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6699 if ((sec->flags & SEC_MERGE) != 0
6700 && !bfd_is_abs_section (sec->output_section))
6701 {
6702 struct bfd_elf_section_data *secdata;
6703
6704 secdata = elf_section_data (sec);
6705 if (! _bfd_add_merge_section (abfd,
6706 &elf_hash_table (info)->merge_info,
6707 sec, &secdata->sec_info))
6708 return FALSE;
6709 else if (secdata->sec_info)
6710 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6711 }
6712
6713 if (elf_hash_table (info)->merge_info != NULL)
6714 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6715 merge_sections_remove_hook);
6716 return TRUE;
6717 }
6718
6719 /* Create an entry in an ELF linker hash table. */
6720
6721 struct bfd_hash_entry *
6722 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6723 struct bfd_hash_table *table,
6724 const char *string)
6725 {
6726 /* Allocate the structure if it has not already been allocated by a
6727 subclass. */
6728 if (entry == NULL)
6729 {
6730 entry = (struct bfd_hash_entry *)
6731 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6732 if (entry == NULL)
6733 return entry;
6734 }
6735
6736 /* Call the allocation method of the superclass. */
6737 entry = _bfd_link_hash_newfunc (entry, table, string);
6738 if (entry != NULL)
6739 {
6740 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6741 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6742
6743 /* Set local fields. */
6744 ret->indx = -1;
6745 ret->dynindx = -1;
6746 ret->got = htab->init_got_refcount;
6747 ret->plt = htab->init_plt_refcount;
6748 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6749 - offsetof (struct elf_link_hash_entry, size)));
6750 /* Assume that we have been called by a non-ELF symbol reader.
6751 This flag is then reset by the code which reads an ELF input
6752 file. This ensures that a symbol created by a non-ELF symbol
6753 reader will have the flag set correctly. */
6754 ret->non_elf = 1;
6755 }
6756
6757 return entry;
6758 }
6759
6760 /* Copy data from an indirect symbol to its direct symbol, hiding the
6761 old indirect symbol. Also used for copying flags to a weakdef. */
6762
6763 void
6764 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6765 struct elf_link_hash_entry *dir,
6766 struct elf_link_hash_entry *ind)
6767 {
6768 struct elf_link_hash_table *htab;
6769
6770 /* Copy down any references that we may have already seen to the
6771 symbol which just became indirect. */
6772
6773 dir->ref_dynamic |= ind->ref_dynamic;
6774 dir->ref_regular |= ind->ref_regular;
6775 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6776 dir->non_got_ref |= ind->non_got_ref;
6777 dir->needs_plt |= ind->needs_plt;
6778 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6779
6780 if (ind->root.type != bfd_link_hash_indirect)
6781 return;
6782
6783 /* Copy over the global and procedure linkage table refcount entries.
6784 These may have been already set up by a check_relocs routine. */
6785 htab = elf_hash_table (info);
6786 if (ind->got.refcount > htab->init_got_refcount.refcount)
6787 {
6788 if (dir->got.refcount < 0)
6789 dir->got.refcount = 0;
6790 dir->got.refcount += ind->got.refcount;
6791 ind->got.refcount = htab->init_got_refcount.refcount;
6792 }
6793
6794 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6795 {
6796 if (dir->plt.refcount < 0)
6797 dir->plt.refcount = 0;
6798 dir->plt.refcount += ind->plt.refcount;
6799 ind->plt.refcount = htab->init_plt_refcount.refcount;
6800 }
6801
6802 if (ind->dynindx != -1)
6803 {
6804 if (dir->dynindx != -1)
6805 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6806 dir->dynindx = ind->dynindx;
6807 dir->dynstr_index = ind->dynstr_index;
6808 ind->dynindx = -1;
6809 ind->dynstr_index = 0;
6810 }
6811 }
6812
6813 void
6814 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6815 struct elf_link_hash_entry *h,
6816 bfd_boolean force_local)
6817 {
6818 /* STT_GNU_IFUNC symbol must go through PLT. */
6819 if (h->type != STT_GNU_IFUNC)
6820 {
6821 h->plt = elf_hash_table (info)->init_plt_offset;
6822 h->needs_plt = 0;
6823 }
6824 if (force_local)
6825 {
6826 h->forced_local = 1;
6827 if (h->dynindx != -1)
6828 {
6829 h->dynindx = -1;
6830 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6831 h->dynstr_index);
6832 }
6833 }
6834 }
6835
6836 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6837 caller. */
6838
6839 bfd_boolean
6840 _bfd_elf_link_hash_table_init
6841 (struct elf_link_hash_table *table,
6842 bfd *abfd,
6843 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6844 struct bfd_hash_table *,
6845 const char *),
6846 unsigned int entsize,
6847 enum elf_target_id target_id)
6848 {
6849 bfd_boolean ret;
6850 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6851
6852 table->init_got_refcount.refcount = can_refcount - 1;
6853 table->init_plt_refcount.refcount = can_refcount - 1;
6854 table->init_got_offset.offset = -(bfd_vma) 1;
6855 table->init_plt_offset.offset = -(bfd_vma) 1;
6856 /* The first dynamic symbol is a dummy. */
6857 table->dynsymcount = 1;
6858
6859 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6860
6861 table->root.type = bfd_link_elf_hash_table;
6862 table->hash_table_id = target_id;
6863
6864 return ret;
6865 }
6866
6867 /* Create an ELF linker hash table. */
6868
6869 struct bfd_link_hash_table *
6870 _bfd_elf_link_hash_table_create (bfd *abfd)
6871 {
6872 struct elf_link_hash_table *ret;
6873 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6874
6875 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
6876 if (ret == NULL)
6877 return NULL;
6878
6879 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6880 sizeof (struct elf_link_hash_entry),
6881 GENERIC_ELF_DATA))
6882 {
6883 free (ret);
6884 return NULL;
6885 }
6886
6887 return &ret->root;
6888 }
6889
6890 /* Destroy an ELF linker hash table. */
6891
6892 void
6893 _bfd_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
6894 {
6895 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) hash;
6896 if (htab->dynstr != NULL)
6897 _bfd_elf_strtab_free (htab->dynstr);
6898 _bfd_merge_sections_free (htab->merge_info);
6899 _bfd_generic_link_hash_table_free (hash);
6900 }
6901
6902 /* This is a hook for the ELF emulation code in the generic linker to
6903 tell the backend linker what file name to use for the DT_NEEDED
6904 entry for a dynamic object. */
6905
6906 void
6907 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6908 {
6909 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6910 && bfd_get_format (abfd) == bfd_object)
6911 elf_dt_name (abfd) = name;
6912 }
6913
6914 int
6915 bfd_elf_get_dyn_lib_class (bfd *abfd)
6916 {
6917 int lib_class;
6918 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6919 && bfd_get_format (abfd) == bfd_object)
6920 lib_class = elf_dyn_lib_class (abfd);
6921 else
6922 lib_class = 0;
6923 return lib_class;
6924 }
6925
6926 void
6927 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6928 {
6929 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6930 && bfd_get_format (abfd) == bfd_object)
6931 elf_dyn_lib_class (abfd) = lib_class;
6932 }
6933
6934 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6935 the linker ELF emulation code. */
6936
6937 struct bfd_link_needed_list *
6938 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6939 struct bfd_link_info *info)
6940 {
6941 if (! is_elf_hash_table (info->hash))
6942 return NULL;
6943 return elf_hash_table (info)->needed;
6944 }
6945
6946 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6947 hook for the linker ELF emulation code. */
6948
6949 struct bfd_link_needed_list *
6950 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6951 struct bfd_link_info *info)
6952 {
6953 if (! is_elf_hash_table (info->hash))
6954 return NULL;
6955 return elf_hash_table (info)->runpath;
6956 }
6957
6958 /* Get the name actually used for a dynamic object for a link. This
6959 is the SONAME entry if there is one. Otherwise, it is the string
6960 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6961
6962 const char *
6963 bfd_elf_get_dt_soname (bfd *abfd)
6964 {
6965 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6966 && bfd_get_format (abfd) == bfd_object)
6967 return elf_dt_name (abfd);
6968 return NULL;
6969 }
6970
6971 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6972 the ELF linker emulation code. */
6973
6974 bfd_boolean
6975 bfd_elf_get_bfd_needed_list (bfd *abfd,
6976 struct bfd_link_needed_list **pneeded)
6977 {
6978 asection *s;
6979 bfd_byte *dynbuf = NULL;
6980 unsigned int elfsec;
6981 unsigned long shlink;
6982 bfd_byte *extdyn, *extdynend;
6983 size_t extdynsize;
6984 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6985
6986 *pneeded = NULL;
6987
6988 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6989 || bfd_get_format (abfd) != bfd_object)
6990 return TRUE;
6991
6992 s = bfd_get_section_by_name (abfd, ".dynamic");
6993 if (s == NULL || s->size == 0)
6994 return TRUE;
6995
6996 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6997 goto error_return;
6998
6999 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7000 if (elfsec == SHN_BAD)
7001 goto error_return;
7002
7003 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7004
7005 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7006 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7007
7008 extdyn = dynbuf;
7009 extdynend = extdyn + s->size;
7010 for (; extdyn < extdynend; extdyn += extdynsize)
7011 {
7012 Elf_Internal_Dyn dyn;
7013
7014 (*swap_dyn_in) (abfd, extdyn, &dyn);
7015
7016 if (dyn.d_tag == DT_NULL)
7017 break;
7018
7019 if (dyn.d_tag == DT_NEEDED)
7020 {
7021 const char *string;
7022 struct bfd_link_needed_list *l;
7023 unsigned int tagv = dyn.d_un.d_val;
7024 bfd_size_type amt;
7025
7026 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7027 if (string == NULL)
7028 goto error_return;
7029
7030 amt = sizeof *l;
7031 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7032 if (l == NULL)
7033 goto error_return;
7034
7035 l->by = abfd;
7036 l->name = string;
7037 l->next = *pneeded;
7038 *pneeded = l;
7039 }
7040 }
7041
7042 free (dynbuf);
7043
7044 return TRUE;
7045
7046 error_return:
7047 if (dynbuf != NULL)
7048 free (dynbuf);
7049 return FALSE;
7050 }
7051
7052 struct elf_symbuf_symbol
7053 {
7054 unsigned long st_name; /* Symbol name, index in string tbl */
7055 unsigned char st_info; /* Type and binding attributes */
7056 unsigned char st_other; /* Visibilty, and target specific */
7057 };
7058
7059 struct elf_symbuf_head
7060 {
7061 struct elf_symbuf_symbol *ssym;
7062 bfd_size_type count;
7063 unsigned int st_shndx;
7064 };
7065
7066 struct elf_symbol
7067 {
7068 union
7069 {
7070 Elf_Internal_Sym *isym;
7071 struct elf_symbuf_symbol *ssym;
7072 } u;
7073 const char *name;
7074 };
7075
7076 /* Sort references to symbols by ascending section number. */
7077
7078 static int
7079 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7080 {
7081 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7082 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7083
7084 return s1->st_shndx - s2->st_shndx;
7085 }
7086
7087 static int
7088 elf_sym_name_compare (const void *arg1, const void *arg2)
7089 {
7090 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7091 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7092 return strcmp (s1->name, s2->name);
7093 }
7094
7095 static struct elf_symbuf_head *
7096 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7097 {
7098 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7099 struct elf_symbuf_symbol *ssym;
7100 struct elf_symbuf_head *ssymbuf, *ssymhead;
7101 bfd_size_type i, shndx_count, total_size;
7102
7103 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7104 if (indbuf == NULL)
7105 return NULL;
7106
7107 for (ind = indbuf, i = 0; i < symcount; i++)
7108 if (isymbuf[i].st_shndx != SHN_UNDEF)
7109 *ind++ = &isymbuf[i];
7110 indbufend = ind;
7111
7112 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7113 elf_sort_elf_symbol);
7114
7115 shndx_count = 0;
7116 if (indbufend > indbuf)
7117 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7118 if (ind[0]->st_shndx != ind[1]->st_shndx)
7119 shndx_count++;
7120
7121 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7122 + (indbufend - indbuf) * sizeof (*ssym));
7123 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7124 if (ssymbuf == NULL)
7125 {
7126 free (indbuf);
7127 return NULL;
7128 }
7129
7130 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7131 ssymbuf->ssym = NULL;
7132 ssymbuf->count = shndx_count;
7133 ssymbuf->st_shndx = 0;
7134 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7135 {
7136 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7137 {
7138 ssymhead++;
7139 ssymhead->ssym = ssym;
7140 ssymhead->count = 0;
7141 ssymhead->st_shndx = (*ind)->st_shndx;
7142 }
7143 ssym->st_name = (*ind)->st_name;
7144 ssym->st_info = (*ind)->st_info;
7145 ssym->st_other = (*ind)->st_other;
7146 ssymhead->count++;
7147 }
7148 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7149 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7150 == total_size));
7151
7152 free (indbuf);
7153 return ssymbuf;
7154 }
7155
7156 /* Check if 2 sections define the same set of local and global
7157 symbols. */
7158
7159 static bfd_boolean
7160 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7161 struct bfd_link_info *info)
7162 {
7163 bfd *bfd1, *bfd2;
7164 const struct elf_backend_data *bed1, *bed2;
7165 Elf_Internal_Shdr *hdr1, *hdr2;
7166 bfd_size_type symcount1, symcount2;
7167 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7168 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7169 Elf_Internal_Sym *isym, *isymend;
7170 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7171 bfd_size_type count1, count2, i;
7172 unsigned int shndx1, shndx2;
7173 bfd_boolean result;
7174
7175 bfd1 = sec1->owner;
7176 bfd2 = sec2->owner;
7177
7178 /* Both sections have to be in ELF. */
7179 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7180 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7181 return FALSE;
7182
7183 if (elf_section_type (sec1) != elf_section_type (sec2))
7184 return FALSE;
7185
7186 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7187 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7188 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7189 return FALSE;
7190
7191 bed1 = get_elf_backend_data (bfd1);
7192 bed2 = get_elf_backend_data (bfd2);
7193 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7194 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7195 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7196 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7197
7198 if (symcount1 == 0 || symcount2 == 0)
7199 return FALSE;
7200
7201 result = FALSE;
7202 isymbuf1 = NULL;
7203 isymbuf2 = NULL;
7204 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7205 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7206
7207 if (ssymbuf1 == NULL)
7208 {
7209 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7210 NULL, NULL, NULL);
7211 if (isymbuf1 == NULL)
7212 goto done;
7213
7214 if (!info->reduce_memory_overheads)
7215 elf_tdata (bfd1)->symbuf = ssymbuf1
7216 = elf_create_symbuf (symcount1, isymbuf1);
7217 }
7218
7219 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7220 {
7221 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7222 NULL, NULL, NULL);
7223 if (isymbuf2 == NULL)
7224 goto done;
7225
7226 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7227 elf_tdata (bfd2)->symbuf = ssymbuf2
7228 = elf_create_symbuf (symcount2, isymbuf2);
7229 }
7230
7231 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7232 {
7233 /* Optimized faster version. */
7234 bfd_size_type lo, hi, mid;
7235 struct elf_symbol *symp;
7236 struct elf_symbuf_symbol *ssym, *ssymend;
7237
7238 lo = 0;
7239 hi = ssymbuf1->count;
7240 ssymbuf1++;
7241 count1 = 0;
7242 while (lo < hi)
7243 {
7244 mid = (lo + hi) / 2;
7245 if (shndx1 < ssymbuf1[mid].st_shndx)
7246 hi = mid;
7247 else if (shndx1 > ssymbuf1[mid].st_shndx)
7248 lo = mid + 1;
7249 else
7250 {
7251 count1 = ssymbuf1[mid].count;
7252 ssymbuf1 += mid;
7253 break;
7254 }
7255 }
7256
7257 lo = 0;
7258 hi = ssymbuf2->count;
7259 ssymbuf2++;
7260 count2 = 0;
7261 while (lo < hi)
7262 {
7263 mid = (lo + hi) / 2;
7264 if (shndx2 < ssymbuf2[mid].st_shndx)
7265 hi = mid;
7266 else if (shndx2 > ssymbuf2[mid].st_shndx)
7267 lo = mid + 1;
7268 else
7269 {
7270 count2 = ssymbuf2[mid].count;
7271 ssymbuf2 += mid;
7272 break;
7273 }
7274 }
7275
7276 if (count1 == 0 || count2 == 0 || count1 != count2)
7277 goto done;
7278
7279 symtable1 = (struct elf_symbol *)
7280 bfd_malloc (count1 * sizeof (struct elf_symbol));
7281 symtable2 = (struct elf_symbol *)
7282 bfd_malloc (count2 * sizeof (struct elf_symbol));
7283 if (symtable1 == NULL || symtable2 == NULL)
7284 goto done;
7285
7286 symp = symtable1;
7287 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7288 ssym < ssymend; ssym++, symp++)
7289 {
7290 symp->u.ssym = ssym;
7291 symp->name = bfd_elf_string_from_elf_section (bfd1,
7292 hdr1->sh_link,
7293 ssym->st_name);
7294 }
7295
7296 symp = symtable2;
7297 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7298 ssym < ssymend; ssym++, symp++)
7299 {
7300 symp->u.ssym = ssym;
7301 symp->name = bfd_elf_string_from_elf_section (bfd2,
7302 hdr2->sh_link,
7303 ssym->st_name);
7304 }
7305
7306 /* Sort symbol by name. */
7307 qsort (symtable1, count1, sizeof (struct elf_symbol),
7308 elf_sym_name_compare);
7309 qsort (symtable2, count1, sizeof (struct elf_symbol),
7310 elf_sym_name_compare);
7311
7312 for (i = 0; i < count1; i++)
7313 /* Two symbols must have the same binding, type and name. */
7314 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7315 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7316 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7317 goto done;
7318
7319 result = TRUE;
7320 goto done;
7321 }
7322
7323 symtable1 = (struct elf_symbol *)
7324 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7325 symtable2 = (struct elf_symbol *)
7326 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7327 if (symtable1 == NULL || symtable2 == NULL)
7328 goto done;
7329
7330 /* Count definitions in the section. */
7331 count1 = 0;
7332 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7333 if (isym->st_shndx == shndx1)
7334 symtable1[count1++].u.isym = isym;
7335
7336 count2 = 0;
7337 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7338 if (isym->st_shndx == shndx2)
7339 symtable2[count2++].u.isym = isym;
7340
7341 if (count1 == 0 || count2 == 0 || count1 != count2)
7342 goto done;
7343
7344 for (i = 0; i < count1; i++)
7345 symtable1[i].name
7346 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7347 symtable1[i].u.isym->st_name);
7348
7349 for (i = 0; i < count2; i++)
7350 symtable2[i].name
7351 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7352 symtable2[i].u.isym->st_name);
7353
7354 /* Sort symbol by name. */
7355 qsort (symtable1, count1, sizeof (struct elf_symbol),
7356 elf_sym_name_compare);
7357 qsort (symtable2, count1, sizeof (struct elf_symbol),
7358 elf_sym_name_compare);
7359
7360 for (i = 0; i < count1; i++)
7361 /* Two symbols must have the same binding, type and name. */
7362 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7363 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7364 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7365 goto done;
7366
7367 result = TRUE;
7368
7369 done:
7370 if (symtable1)
7371 free (symtable1);
7372 if (symtable2)
7373 free (symtable2);
7374 if (isymbuf1)
7375 free (isymbuf1);
7376 if (isymbuf2)
7377 free (isymbuf2);
7378
7379 return result;
7380 }
7381
7382 /* Return TRUE if 2 section types are compatible. */
7383
7384 bfd_boolean
7385 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7386 bfd *bbfd, const asection *bsec)
7387 {
7388 if (asec == NULL
7389 || bsec == NULL
7390 || abfd->xvec->flavour != bfd_target_elf_flavour
7391 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7392 return TRUE;
7393
7394 return elf_section_type (asec) == elf_section_type (bsec);
7395 }
7396 \f
7397 /* Final phase of ELF linker. */
7398
7399 /* A structure we use to avoid passing large numbers of arguments. */
7400
7401 struct elf_final_link_info
7402 {
7403 /* General link information. */
7404 struct bfd_link_info *info;
7405 /* Output BFD. */
7406 bfd *output_bfd;
7407 /* Symbol string table. */
7408 struct bfd_strtab_hash *symstrtab;
7409 /* .dynsym section. */
7410 asection *dynsym_sec;
7411 /* .hash section. */
7412 asection *hash_sec;
7413 /* symbol version section (.gnu.version). */
7414 asection *symver_sec;
7415 /* Buffer large enough to hold contents of any section. */
7416 bfd_byte *contents;
7417 /* Buffer large enough to hold external relocs of any section. */
7418 void *external_relocs;
7419 /* Buffer large enough to hold internal relocs of any section. */
7420 Elf_Internal_Rela *internal_relocs;
7421 /* Buffer large enough to hold external local symbols of any input
7422 BFD. */
7423 bfd_byte *external_syms;
7424 /* And a buffer for symbol section indices. */
7425 Elf_External_Sym_Shndx *locsym_shndx;
7426 /* Buffer large enough to hold internal local symbols of any input
7427 BFD. */
7428 Elf_Internal_Sym *internal_syms;
7429 /* Array large enough to hold a symbol index for each local symbol
7430 of any input BFD. */
7431 long *indices;
7432 /* Array large enough to hold a section pointer for each local
7433 symbol of any input BFD. */
7434 asection **sections;
7435 /* Buffer to hold swapped out symbols. */
7436 bfd_byte *symbuf;
7437 /* And one for symbol section indices. */
7438 Elf_External_Sym_Shndx *symshndxbuf;
7439 /* Number of swapped out symbols in buffer. */
7440 size_t symbuf_count;
7441 /* Number of symbols which fit in symbuf. */
7442 size_t symbuf_size;
7443 /* And same for symshndxbuf. */
7444 size_t shndxbuf_size;
7445 /* Number of STT_FILE syms seen. */
7446 size_t filesym_count;
7447 };
7448
7449 /* This struct is used to pass information to elf_link_output_extsym. */
7450
7451 struct elf_outext_info
7452 {
7453 bfd_boolean failed;
7454 bfd_boolean localsyms;
7455 bfd_boolean need_second_pass;
7456 bfd_boolean second_pass;
7457 struct elf_final_link_info *flinfo;
7458 };
7459
7460
7461 /* Support for evaluating a complex relocation.
7462
7463 Complex relocations are generalized, self-describing relocations. The
7464 implementation of them consists of two parts: complex symbols, and the
7465 relocations themselves.
7466
7467 The relocations are use a reserved elf-wide relocation type code (R_RELC
7468 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7469 information (start bit, end bit, word width, etc) into the addend. This
7470 information is extracted from CGEN-generated operand tables within gas.
7471
7472 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7473 internal) representing prefix-notation expressions, including but not
7474 limited to those sorts of expressions normally encoded as addends in the
7475 addend field. The symbol mangling format is:
7476
7477 <node> := <literal>
7478 | <unary-operator> ':' <node>
7479 | <binary-operator> ':' <node> ':' <node>
7480 ;
7481
7482 <literal> := 's' <digits=N> ':' <N character symbol name>
7483 | 'S' <digits=N> ':' <N character section name>
7484 | '#' <hexdigits>
7485 ;
7486
7487 <binary-operator> := as in C
7488 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7489
7490 static void
7491 set_symbol_value (bfd *bfd_with_globals,
7492 Elf_Internal_Sym *isymbuf,
7493 size_t locsymcount,
7494 size_t symidx,
7495 bfd_vma val)
7496 {
7497 struct elf_link_hash_entry **sym_hashes;
7498 struct elf_link_hash_entry *h;
7499 size_t extsymoff = locsymcount;
7500
7501 if (symidx < locsymcount)
7502 {
7503 Elf_Internal_Sym *sym;
7504
7505 sym = isymbuf + symidx;
7506 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7507 {
7508 /* It is a local symbol: move it to the
7509 "absolute" section and give it a value. */
7510 sym->st_shndx = SHN_ABS;
7511 sym->st_value = val;
7512 return;
7513 }
7514 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7515 extsymoff = 0;
7516 }
7517
7518 /* It is a global symbol: set its link type
7519 to "defined" and give it a value. */
7520
7521 sym_hashes = elf_sym_hashes (bfd_with_globals);
7522 h = sym_hashes [symidx - extsymoff];
7523 while (h->root.type == bfd_link_hash_indirect
7524 || h->root.type == bfd_link_hash_warning)
7525 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7526 h->root.type = bfd_link_hash_defined;
7527 h->root.u.def.value = val;
7528 h->root.u.def.section = bfd_abs_section_ptr;
7529 }
7530
7531 static bfd_boolean
7532 resolve_symbol (const char *name,
7533 bfd *input_bfd,
7534 struct elf_final_link_info *flinfo,
7535 bfd_vma *result,
7536 Elf_Internal_Sym *isymbuf,
7537 size_t locsymcount)
7538 {
7539 Elf_Internal_Sym *sym;
7540 struct bfd_link_hash_entry *global_entry;
7541 const char *candidate = NULL;
7542 Elf_Internal_Shdr *symtab_hdr;
7543 size_t i;
7544
7545 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7546
7547 for (i = 0; i < locsymcount; ++ i)
7548 {
7549 sym = isymbuf + i;
7550
7551 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7552 continue;
7553
7554 candidate = bfd_elf_string_from_elf_section (input_bfd,
7555 symtab_hdr->sh_link,
7556 sym->st_name);
7557 #ifdef DEBUG
7558 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7559 name, candidate, (unsigned long) sym->st_value);
7560 #endif
7561 if (candidate && strcmp (candidate, name) == 0)
7562 {
7563 asection *sec = flinfo->sections [i];
7564
7565 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7566 *result += sec->output_offset + sec->output_section->vma;
7567 #ifdef DEBUG
7568 printf ("Found symbol with value %8.8lx\n",
7569 (unsigned long) *result);
7570 #endif
7571 return TRUE;
7572 }
7573 }
7574
7575 /* Hmm, haven't found it yet. perhaps it is a global. */
7576 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7577 FALSE, FALSE, TRUE);
7578 if (!global_entry)
7579 return FALSE;
7580
7581 if (global_entry->type == bfd_link_hash_defined
7582 || global_entry->type == bfd_link_hash_defweak)
7583 {
7584 *result = (global_entry->u.def.value
7585 + global_entry->u.def.section->output_section->vma
7586 + global_entry->u.def.section->output_offset);
7587 #ifdef DEBUG
7588 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7589 global_entry->root.string, (unsigned long) *result);
7590 #endif
7591 return TRUE;
7592 }
7593
7594 return FALSE;
7595 }
7596
7597 static bfd_boolean
7598 resolve_section (const char *name,
7599 asection *sections,
7600 bfd_vma *result)
7601 {
7602 asection *curr;
7603 unsigned int len;
7604
7605 for (curr = sections; curr; curr = curr->next)
7606 if (strcmp (curr->name, name) == 0)
7607 {
7608 *result = curr->vma;
7609 return TRUE;
7610 }
7611
7612 /* Hmm. still haven't found it. try pseudo-section names. */
7613 for (curr = sections; curr; curr = curr->next)
7614 {
7615 len = strlen (curr->name);
7616 if (len > strlen (name))
7617 continue;
7618
7619 if (strncmp (curr->name, name, len) == 0)
7620 {
7621 if (strncmp (".end", name + len, 4) == 0)
7622 {
7623 *result = curr->vma + curr->size;
7624 return TRUE;
7625 }
7626
7627 /* Insert more pseudo-section names here, if you like. */
7628 }
7629 }
7630
7631 return FALSE;
7632 }
7633
7634 static void
7635 undefined_reference (const char *reftype, const char *name)
7636 {
7637 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7638 reftype, name);
7639 }
7640
7641 static bfd_boolean
7642 eval_symbol (bfd_vma *result,
7643 const char **symp,
7644 bfd *input_bfd,
7645 struct elf_final_link_info *flinfo,
7646 bfd_vma dot,
7647 Elf_Internal_Sym *isymbuf,
7648 size_t locsymcount,
7649 int signed_p)
7650 {
7651 size_t len;
7652 size_t symlen;
7653 bfd_vma a;
7654 bfd_vma b;
7655 char symbuf[4096];
7656 const char *sym = *symp;
7657 const char *symend;
7658 bfd_boolean symbol_is_section = FALSE;
7659
7660 len = strlen (sym);
7661 symend = sym + len;
7662
7663 if (len < 1 || len > sizeof (symbuf))
7664 {
7665 bfd_set_error (bfd_error_invalid_operation);
7666 return FALSE;
7667 }
7668
7669 switch (* sym)
7670 {
7671 case '.':
7672 *result = dot;
7673 *symp = sym + 1;
7674 return TRUE;
7675
7676 case '#':
7677 ++sym;
7678 *result = strtoul (sym, (char **) symp, 16);
7679 return TRUE;
7680
7681 case 'S':
7682 symbol_is_section = TRUE;
7683 case 's':
7684 ++sym;
7685 symlen = strtol (sym, (char **) symp, 10);
7686 sym = *symp + 1; /* Skip the trailing ':'. */
7687
7688 if (symend < sym || symlen + 1 > sizeof (symbuf))
7689 {
7690 bfd_set_error (bfd_error_invalid_operation);
7691 return FALSE;
7692 }
7693
7694 memcpy (symbuf, sym, symlen);
7695 symbuf[symlen] = '\0';
7696 *symp = sym + symlen;
7697
7698 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7699 the symbol as a section, or vice-versa. so we're pretty liberal in our
7700 interpretation here; section means "try section first", not "must be a
7701 section", and likewise with symbol. */
7702
7703 if (symbol_is_section)
7704 {
7705 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7706 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7707 isymbuf, locsymcount))
7708 {
7709 undefined_reference ("section", symbuf);
7710 return FALSE;
7711 }
7712 }
7713 else
7714 {
7715 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7716 isymbuf, locsymcount)
7717 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7718 result))
7719 {
7720 undefined_reference ("symbol", symbuf);
7721 return FALSE;
7722 }
7723 }
7724
7725 return TRUE;
7726
7727 /* All that remains are operators. */
7728
7729 #define UNARY_OP(op) \
7730 if (strncmp (sym, #op, strlen (#op)) == 0) \
7731 { \
7732 sym += strlen (#op); \
7733 if (*sym == ':') \
7734 ++sym; \
7735 *symp = sym; \
7736 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7737 isymbuf, locsymcount, signed_p)) \
7738 return FALSE; \
7739 if (signed_p) \
7740 *result = op ((bfd_signed_vma) a); \
7741 else \
7742 *result = op a; \
7743 return TRUE; \
7744 }
7745
7746 #define BINARY_OP(op) \
7747 if (strncmp (sym, #op, strlen (#op)) == 0) \
7748 { \
7749 sym += strlen (#op); \
7750 if (*sym == ':') \
7751 ++sym; \
7752 *symp = sym; \
7753 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7754 isymbuf, locsymcount, signed_p)) \
7755 return FALSE; \
7756 ++*symp; \
7757 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7758 isymbuf, locsymcount, signed_p)) \
7759 return FALSE; \
7760 if (signed_p) \
7761 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7762 else \
7763 *result = a op b; \
7764 return TRUE; \
7765 }
7766
7767 default:
7768 UNARY_OP (0-);
7769 BINARY_OP (<<);
7770 BINARY_OP (>>);
7771 BINARY_OP (==);
7772 BINARY_OP (!=);
7773 BINARY_OP (<=);
7774 BINARY_OP (>=);
7775 BINARY_OP (&&);
7776 BINARY_OP (||);
7777 UNARY_OP (~);
7778 UNARY_OP (!);
7779 BINARY_OP (*);
7780 BINARY_OP (/);
7781 BINARY_OP (%);
7782 BINARY_OP (^);
7783 BINARY_OP (|);
7784 BINARY_OP (&);
7785 BINARY_OP (+);
7786 BINARY_OP (-);
7787 BINARY_OP (<);
7788 BINARY_OP (>);
7789 #undef UNARY_OP
7790 #undef BINARY_OP
7791 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7792 bfd_set_error (bfd_error_invalid_operation);
7793 return FALSE;
7794 }
7795 }
7796
7797 static void
7798 put_value (bfd_vma size,
7799 unsigned long chunksz,
7800 bfd *input_bfd,
7801 bfd_vma x,
7802 bfd_byte *location)
7803 {
7804 location += (size - chunksz);
7805
7806 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7807 {
7808 switch (chunksz)
7809 {
7810 default:
7811 case 0:
7812 abort ();
7813 case 1:
7814 bfd_put_8 (input_bfd, x, location);
7815 break;
7816 case 2:
7817 bfd_put_16 (input_bfd, x, location);
7818 break;
7819 case 4:
7820 bfd_put_32 (input_bfd, x, location);
7821 break;
7822 case 8:
7823 #ifdef BFD64
7824 bfd_put_64 (input_bfd, x, location);
7825 #else
7826 abort ();
7827 #endif
7828 break;
7829 }
7830 }
7831 }
7832
7833 static bfd_vma
7834 get_value (bfd_vma size,
7835 unsigned long chunksz,
7836 bfd *input_bfd,
7837 bfd_byte *location)
7838 {
7839 int shift;
7840 bfd_vma x = 0;
7841
7842 /* Sanity checks. */
7843 BFD_ASSERT (chunksz <= sizeof (x)
7844 && size >= chunksz
7845 && chunksz != 0
7846 && (size % chunksz) == 0
7847 && input_bfd != NULL
7848 && location != NULL);
7849
7850 if (chunksz == sizeof (x))
7851 {
7852 BFD_ASSERT (size == chunksz);
7853
7854 /* Make sure that we do not perform an undefined shift operation.
7855 We know that size == chunksz so there will only be one iteration
7856 of the loop below. */
7857 shift = 0;
7858 }
7859 else
7860 shift = 8 * chunksz;
7861
7862 for (; size; size -= chunksz, location += chunksz)
7863 {
7864 switch (chunksz)
7865 {
7866 case 1:
7867 x = (x << shift) | bfd_get_8 (input_bfd, location);
7868 break;
7869 case 2:
7870 x = (x << shift) | bfd_get_16 (input_bfd, location);
7871 break;
7872 case 4:
7873 x = (x << shift) | bfd_get_32 (input_bfd, location);
7874 break;
7875 #ifdef BFD64
7876 case 8:
7877 x = (x << shift) | bfd_get_64 (input_bfd, location);
7878 break;
7879 #endif
7880 default:
7881 abort ();
7882 }
7883 }
7884 return x;
7885 }
7886
7887 static void
7888 decode_complex_addend (unsigned long *start, /* in bits */
7889 unsigned long *oplen, /* in bits */
7890 unsigned long *len, /* in bits */
7891 unsigned long *wordsz, /* in bytes */
7892 unsigned long *chunksz, /* in bytes */
7893 unsigned long *lsb0_p,
7894 unsigned long *signed_p,
7895 unsigned long *trunc_p,
7896 unsigned long encoded)
7897 {
7898 * start = encoded & 0x3F;
7899 * len = (encoded >> 6) & 0x3F;
7900 * oplen = (encoded >> 12) & 0x3F;
7901 * wordsz = (encoded >> 18) & 0xF;
7902 * chunksz = (encoded >> 22) & 0xF;
7903 * lsb0_p = (encoded >> 27) & 1;
7904 * signed_p = (encoded >> 28) & 1;
7905 * trunc_p = (encoded >> 29) & 1;
7906 }
7907
7908 bfd_reloc_status_type
7909 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7910 asection *input_section ATTRIBUTE_UNUSED,
7911 bfd_byte *contents,
7912 Elf_Internal_Rela *rel,
7913 bfd_vma relocation)
7914 {
7915 bfd_vma shift, x, mask;
7916 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7917 bfd_reloc_status_type r;
7918
7919 /* Perform this reloc, since it is complex.
7920 (this is not to say that it necessarily refers to a complex
7921 symbol; merely that it is a self-describing CGEN based reloc.
7922 i.e. the addend has the complete reloc information (bit start, end,
7923 word size, etc) encoded within it.). */
7924
7925 decode_complex_addend (&start, &oplen, &len, &wordsz,
7926 &chunksz, &lsb0_p, &signed_p,
7927 &trunc_p, rel->r_addend);
7928
7929 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7930
7931 if (lsb0_p)
7932 shift = (start + 1) - len;
7933 else
7934 shift = (8 * wordsz) - (start + len);
7935
7936 /* FIXME: octets_per_byte. */
7937 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7938
7939 #ifdef DEBUG
7940 printf ("Doing complex reloc: "
7941 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7942 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7943 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7944 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7945 oplen, (unsigned long) x, (unsigned long) mask,
7946 (unsigned long) relocation);
7947 #endif
7948
7949 r = bfd_reloc_ok;
7950 if (! trunc_p)
7951 /* Now do an overflow check. */
7952 r = bfd_check_overflow ((signed_p
7953 ? complain_overflow_signed
7954 : complain_overflow_unsigned),
7955 len, 0, (8 * wordsz),
7956 relocation);
7957
7958 /* Do the deed. */
7959 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7960
7961 #ifdef DEBUG
7962 printf (" relocation: %8.8lx\n"
7963 " shifted mask: %8.8lx\n"
7964 " shifted/masked reloc: %8.8lx\n"
7965 " result: %8.8lx\n",
7966 (unsigned long) relocation, (unsigned long) (mask << shift),
7967 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7968 #endif
7969 /* FIXME: octets_per_byte. */
7970 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7971 return r;
7972 }
7973
7974 /* When performing a relocatable link, the input relocations are
7975 preserved. But, if they reference global symbols, the indices
7976 referenced must be updated. Update all the relocations found in
7977 RELDATA. */
7978
7979 static void
7980 elf_link_adjust_relocs (bfd *abfd,
7981 struct bfd_elf_section_reloc_data *reldata)
7982 {
7983 unsigned int i;
7984 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7985 bfd_byte *erela;
7986 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7987 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7988 bfd_vma r_type_mask;
7989 int r_sym_shift;
7990 unsigned int count = reldata->count;
7991 struct elf_link_hash_entry **rel_hash = reldata->hashes;
7992
7993 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
7994 {
7995 swap_in = bed->s->swap_reloc_in;
7996 swap_out = bed->s->swap_reloc_out;
7997 }
7998 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
7999 {
8000 swap_in = bed->s->swap_reloca_in;
8001 swap_out = bed->s->swap_reloca_out;
8002 }
8003 else
8004 abort ();
8005
8006 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8007 abort ();
8008
8009 if (bed->s->arch_size == 32)
8010 {
8011 r_type_mask = 0xff;
8012 r_sym_shift = 8;
8013 }
8014 else
8015 {
8016 r_type_mask = 0xffffffff;
8017 r_sym_shift = 32;
8018 }
8019
8020 erela = reldata->hdr->contents;
8021 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8022 {
8023 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8024 unsigned int j;
8025
8026 if (*rel_hash == NULL)
8027 continue;
8028
8029 BFD_ASSERT ((*rel_hash)->indx >= 0);
8030
8031 (*swap_in) (abfd, erela, irela);
8032 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8033 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8034 | (irela[j].r_info & r_type_mask));
8035 (*swap_out) (abfd, irela, erela);
8036 }
8037 }
8038
8039 struct elf_link_sort_rela
8040 {
8041 union {
8042 bfd_vma offset;
8043 bfd_vma sym_mask;
8044 } u;
8045 enum elf_reloc_type_class type;
8046 /* We use this as an array of size int_rels_per_ext_rel. */
8047 Elf_Internal_Rela rela[1];
8048 };
8049
8050 static int
8051 elf_link_sort_cmp1 (const void *A, const void *B)
8052 {
8053 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8054 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8055 int relativea, relativeb;
8056
8057 relativea = a->type == reloc_class_relative;
8058 relativeb = b->type == reloc_class_relative;
8059
8060 if (relativea < relativeb)
8061 return 1;
8062 if (relativea > relativeb)
8063 return -1;
8064 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8065 return -1;
8066 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8067 return 1;
8068 if (a->rela->r_offset < b->rela->r_offset)
8069 return -1;
8070 if (a->rela->r_offset > b->rela->r_offset)
8071 return 1;
8072 return 0;
8073 }
8074
8075 static int
8076 elf_link_sort_cmp2 (const void *A, const void *B)
8077 {
8078 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8079 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8080
8081 if (a->type < b->type)
8082 return -1;
8083 if (a->type > b->type)
8084 return 1;
8085 if (a->u.offset < b->u.offset)
8086 return -1;
8087 if (a->u.offset > b->u.offset)
8088 return 1;
8089 if (a->rela->r_offset < b->rela->r_offset)
8090 return -1;
8091 if (a->rela->r_offset > b->rela->r_offset)
8092 return 1;
8093 return 0;
8094 }
8095
8096 static size_t
8097 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8098 {
8099 asection *dynamic_relocs;
8100 asection *rela_dyn;
8101 asection *rel_dyn;
8102 bfd_size_type count, size;
8103 size_t i, ret, sort_elt, ext_size;
8104 bfd_byte *sort, *s_non_relative, *p;
8105 struct elf_link_sort_rela *sq;
8106 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8107 int i2e = bed->s->int_rels_per_ext_rel;
8108 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8109 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8110 struct bfd_link_order *lo;
8111 bfd_vma r_sym_mask;
8112 bfd_boolean use_rela;
8113
8114 /* Find a dynamic reloc section. */
8115 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8116 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8117 if (rela_dyn != NULL && rela_dyn->size > 0
8118 && rel_dyn != NULL && rel_dyn->size > 0)
8119 {
8120 bfd_boolean use_rela_initialised = FALSE;
8121
8122 /* This is just here to stop gcc from complaining.
8123 It's initialization checking code is not perfect. */
8124 use_rela = TRUE;
8125
8126 /* Both sections are present. Examine the sizes
8127 of the indirect sections to help us choose. */
8128 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8129 if (lo->type == bfd_indirect_link_order)
8130 {
8131 asection *o = lo->u.indirect.section;
8132
8133 if ((o->size % bed->s->sizeof_rela) == 0)
8134 {
8135 if ((o->size % bed->s->sizeof_rel) == 0)
8136 /* Section size is divisible by both rel and rela sizes.
8137 It is of no help to us. */
8138 ;
8139 else
8140 {
8141 /* Section size is only divisible by rela. */
8142 if (use_rela_initialised && (use_rela == FALSE))
8143 {
8144 _bfd_error_handler
8145 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8146 bfd_set_error (bfd_error_invalid_operation);
8147 return 0;
8148 }
8149 else
8150 {
8151 use_rela = TRUE;
8152 use_rela_initialised = TRUE;
8153 }
8154 }
8155 }
8156 else if ((o->size % bed->s->sizeof_rel) == 0)
8157 {
8158 /* Section size is only divisible by rel. */
8159 if (use_rela_initialised && (use_rela == TRUE))
8160 {
8161 _bfd_error_handler
8162 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8163 bfd_set_error (bfd_error_invalid_operation);
8164 return 0;
8165 }
8166 else
8167 {
8168 use_rela = FALSE;
8169 use_rela_initialised = TRUE;
8170 }
8171 }
8172 else
8173 {
8174 /* The section size is not divisible by either - something is wrong. */
8175 _bfd_error_handler
8176 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8177 bfd_set_error (bfd_error_invalid_operation);
8178 return 0;
8179 }
8180 }
8181
8182 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8183 if (lo->type == bfd_indirect_link_order)
8184 {
8185 asection *o = lo->u.indirect.section;
8186
8187 if ((o->size % bed->s->sizeof_rela) == 0)
8188 {
8189 if ((o->size % bed->s->sizeof_rel) == 0)
8190 /* Section size is divisible by both rel and rela sizes.
8191 It is of no help to us. */
8192 ;
8193 else
8194 {
8195 /* Section size is only divisible by rela. */
8196 if (use_rela_initialised && (use_rela == FALSE))
8197 {
8198 _bfd_error_handler
8199 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8200 bfd_set_error (bfd_error_invalid_operation);
8201 return 0;
8202 }
8203 else
8204 {
8205 use_rela = TRUE;
8206 use_rela_initialised = TRUE;
8207 }
8208 }
8209 }
8210 else if ((o->size % bed->s->sizeof_rel) == 0)
8211 {
8212 /* Section size is only divisible by rel. */
8213 if (use_rela_initialised && (use_rela == TRUE))
8214 {
8215 _bfd_error_handler
8216 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8217 bfd_set_error (bfd_error_invalid_operation);
8218 return 0;
8219 }
8220 else
8221 {
8222 use_rela = FALSE;
8223 use_rela_initialised = TRUE;
8224 }
8225 }
8226 else
8227 {
8228 /* The section size is not divisible by either - something is wrong. */
8229 _bfd_error_handler
8230 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8231 bfd_set_error (bfd_error_invalid_operation);
8232 return 0;
8233 }
8234 }
8235
8236 if (! use_rela_initialised)
8237 /* Make a guess. */
8238 use_rela = TRUE;
8239 }
8240 else if (rela_dyn != NULL && rela_dyn->size > 0)
8241 use_rela = TRUE;
8242 else if (rel_dyn != NULL && rel_dyn->size > 0)
8243 use_rela = FALSE;
8244 else
8245 return 0;
8246
8247 if (use_rela)
8248 {
8249 dynamic_relocs = rela_dyn;
8250 ext_size = bed->s->sizeof_rela;
8251 swap_in = bed->s->swap_reloca_in;
8252 swap_out = bed->s->swap_reloca_out;
8253 }
8254 else
8255 {
8256 dynamic_relocs = rel_dyn;
8257 ext_size = bed->s->sizeof_rel;
8258 swap_in = bed->s->swap_reloc_in;
8259 swap_out = bed->s->swap_reloc_out;
8260 }
8261
8262 size = 0;
8263 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8264 if (lo->type == bfd_indirect_link_order)
8265 size += lo->u.indirect.section->size;
8266
8267 if (size != dynamic_relocs->size)
8268 return 0;
8269
8270 sort_elt = (sizeof (struct elf_link_sort_rela)
8271 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8272
8273 count = dynamic_relocs->size / ext_size;
8274 if (count == 0)
8275 return 0;
8276 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8277
8278 if (sort == NULL)
8279 {
8280 (*info->callbacks->warning)
8281 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8282 return 0;
8283 }
8284
8285 if (bed->s->arch_size == 32)
8286 r_sym_mask = ~(bfd_vma) 0xff;
8287 else
8288 r_sym_mask = ~(bfd_vma) 0xffffffff;
8289
8290 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8291 if (lo->type == bfd_indirect_link_order)
8292 {
8293 bfd_byte *erel, *erelend;
8294 asection *o = lo->u.indirect.section;
8295
8296 if (o->contents == NULL && o->size != 0)
8297 {
8298 /* This is a reloc section that is being handled as a normal
8299 section. See bfd_section_from_shdr. We can't combine
8300 relocs in this case. */
8301 free (sort);
8302 return 0;
8303 }
8304 erel = o->contents;
8305 erelend = o->contents + o->size;
8306 /* FIXME: octets_per_byte. */
8307 p = sort + o->output_offset / ext_size * sort_elt;
8308
8309 while (erel < erelend)
8310 {
8311 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8312
8313 (*swap_in) (abfd, erel, s->rela);
8314 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8315 s->u.sym_mask = r_sym_mask;
8316 p += sort_elt;
8317 erel += ext_size;
8318 }
8319 }
8320
8321 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8322
8323 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8324 {
8325 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8326 if (s->type != reloc_class_relative)
8327 break;
8328 }
8329 ret = i;
8330 s_non_relative = p;
8331
8332 sq = (struct elf_link_sort_rela *) s_non_relative;
8333 for (; i < count; i++, p += sort_elt)
8334 {
8335 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8336 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8337 sq = sp;
8338 sp->u.offset = sq->rela->r_offset;
8339 }
8340
8341 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8342
8343 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8344 if (lo->type == bfd_indirect_link_order)
8345 {
8346 bfd_byte *erel, *erelend;
8347 asection *o = lo->u.indirect.section;
8348
8349 erel = o->contents;
8350 erelend = o->contents + o->size;
8351 /* FIXME: octets_per_byte. */
8352 p = sort + o->output_offset / ext_size * sort_elt;
8353 while (erel < erelend)
8354 {
8355 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8356 (*swap_out) (abfd, s->rela, erel);
8357 p += sort_elt;
8358 erel += ext_size;
8359 }
8360 }
8361
8362 free (sort);
8363 *psec = dynamic_relocs;
8364 return ret;
8365 }
8366
8367 /* Flush the output symbols to the file. */
8368
8369 static bfd_boolean
8370 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8371 const struct elf_backend_data *bed)
8372 {
8373 if (flinfo->symbuf_count > 0)
8374 {
8375 Elf_Internal_Shdr *hdr;
8376 file_ptr pos;
8377 bfd_size_type amt;
8378
8379 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8380 pos = hdr->sh_offset + hdr->sh_size;
8381 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8382 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8383 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8384 return FALSE;
8385
8386 hdr->sh_size += amt;
8387 flinfo->symbuf_count = 0;
8388 }
8389
8390 return TRUE;
8391 }
8392
8393 /* Add a symbol to the output symbol table. */
8394
8395 static int
8396 elf_link_output_sym (struct elf_final_link_info *flinfo,
8397 const char *name,
8398 Elf_Internal_Sym *elfsym,
8399 asection *input_sec,
8400 struct elf_link_hash_entry *h)
8401 {
8402 bfd_byte *dest;
8403 Elf_External_Sym_Shndx *destshndx;
8404 int (*output_symbol_hook)
8405 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8406 struct elf_link_hash_entry *);
8407 const struct elf_backend_data *bed;
8408
8409 bed = get_elf_backend_data (flinfo->output_bfd);
8410 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8411 if (output_symbol_hook != NULL)
8412 {
8413 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8414 if (ret != 1)
8415 return ret;
8416 }
8417
8418 if (name == NULL || *name == '\0')
8419 elfsym->st_name = 0;
8420 else if (input_sec->flags & SEC_EXCLUDE)
8421 elfsym->st_name = 0;
8422 else
8423 {
8424 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8425 name, TRUE, FALSE);
8426 if (elfsym->st_name == (unsigned long) -1)
8427 return 0;
8428 }
8429
8430 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8431 {
8432 if (! elf_link_flush_output_syms (flinfo, bed))
8433 return 0;
8434 }
8435
8436 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8437 destshndx = flinfo->symshndxbuf;
8438 if (destshndx != NULL)
8439 {
8440 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8441 {
8442 bfd_size_type amt;
8443
8444 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8445 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8446 amt * 2);
8447 if (destshndx == NULL)
8448 return 0;
8449 flinfo->symshndxbuf = destshndx;
8450 memset ((char *) destshndx + amt, 0, amt);
8451 flinfo->shndxbuf_size *= 2;
8452 }
8453 destshndx += bfd_get_symcount (flinfo->output_bfd);
8454 }
8455
8456 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8457 flinfo->symbuf_count += 1;
8458 bfd_get_symcount (flinfo->output_bfd) += 1;
8459
8460 return 1;
8461 }
8462
8463 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8464
8465 static bfd_boolean
8466 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8467 {
8468 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8469 && sym->st_shndx < SHN_LORESERVE)
8470 {
8471 /* The gABI doesn't support dynamic symbols in output sections
8472 beyond 64k. */
8473 (*_bfd_error_handler)
8474 (_("%B: Too many sections: %d (>= %d)"),
8475 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8476 bfd_set_error (bfd_error_nonrepresentable_section);
8477 return FALSE;
8478 }
8479 return TRUE;
8480 }
8481
8482 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8483 allowing an unsatisfied unversioned symbol in the DSO to match a
8484 versioned symbol that would normally require an explicit version.
8485 We also handle the case that a DSO references a hidden symbol
8486 which may be satisfied by a versioned symbol in another DSO. */
8487
8488 static bfd_boolean
8489 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8490 const struct elf_backend_data *bed,
8491 struct elf_link_hash_entry *h)
8492 {
8493 bfd *abfd;
8494 struct elf_link_loaded_list *loaded;
8495
8496 if (!is_elf_hash_table (info->hash))
8497 return FALSE;
8498
8499 /* Check indirect symbol. */
8500 while (h->root.type == bfd_link_hash_indirect)
8501 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8502
8503 switch (h->root.type)
8504 {
8505 default:
8506 abfd = NULL;
8507 break;
8508
8509 case bfd_link_hash_undefined:
8510 case bfd_link_hash_undefweak:
8511 abfd = h->root.u.undef.abfd;
8512 if ((abfd->flags & DYNAMIC) == 0
8513 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8514 return FALSE;
8515 break;
8516
8517 case bfd_link_hash_defined:
8518 case bfd_link_hash_defweak:
8519 abfd = h->root.u.def.section->owner;
8520 break;
8521
8522 case bfd_link_hash_common:
8523 abfd = h->root.u.c.p->section->owner;
8524 break;
8525 }
8526 BFD_ASSERT (abfd != NULL);
8527
8528 for (loaded = elf_hash_table (info)->loaded;
8529 loaded != NULL;
8530 loaded = loaded->next)
8531 {
8532 bfd *input;
8533 Elf_Internal_Shdr *hdr;
8534 bfd_size_type symcount;
8535 bfd_size_type extsymcount;
8536 bfd_size_type extsymoff;
8537 Elf_Internal_Shdr *versymhdr;
8538 Elf_Internal_Sym *isym;
8539 Elf_Internal_Sym *isymend;
8540 Elf_Internal_Sym *isymbuf;
8541 Elf_External_Versym *ever;
8542 Elf_External_Versym *extversym;
8543
8544 input = loaded->abfd;
8545
8546 /* We check each DSO for a possible hidden versioned definition. */
8547 if (input == abfd
8548 || (input->flags & DYNAMIC) == 0
8549 || elf_dynversym (input) == 0)
8550 continue;
8551
8552 hdr = &elf_tdata (input)->dynsymtab_hdr;
8553
8554 symcount = hdr->sh_size / bed->s->sizeof_sym;
8555 if (elf_bad_symtab (input))
8556 {
8557 extsymcount = symcount;
8558 extsymoff = 0;
8559 }
8560 else
8561 {
8562 extsymcount = symcount - hdr->sh_info;
8563 extsymoff = hdr->sh_info;
8564 }
8565
8566 if (extsymcount == 0)
8567 continue;
8568
8569 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8570 NULL, NULL, NULL);
8571 if (isymbuf == NULL)
8572 return FALSE;
8573
8574 /* Read in any version definitions. */
8575 versymhdr = &elf_tdata (input)->dynversym_hdr;
8576 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8577 if (extversym == NULL)
8578 goto error_ret;
8579
8580 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8581 || (bfd_bread (extversym, versymhdr->sh_size, input)
8582 != versymhdr->sh_size))
8583 {
8584 free (extversym);
8585 error_ret:
8586 free (isymbuf);
8587 return FALSE;
8588 }
8589
8590 ever = extversym + extsymoff;
8591 isymend = isymbuf + extsymcount;
8592 for (isym = isymbuf; isym < isymend; isym++, ever++)
8593 {
8594 const char *name;
8595 Elf_Internal_Versym iver;
8596 unsigned short version_index;
8597
8598 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8599 || isym->st_shndx == SHN_UNDEF)
8600 continue;
8601
8602 name = bfd_elf_string_from_elf_section (input,
8603 hdr->sh_link,
8604 isym->st_name);
8605 if (strcmp (name, h->root.root.string) != 0)
8606 continue;
8607
8608 _bfd_elf_swap_versym_in (input, ever, &iver);
8609
8610 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8611 && !(h->def_regular
8612 && h->forced_local))
8613 {
8614 /* If we have a non-hidden versioned sym, then it should
8615 have provided a definition for the undefined sym unless
8616 it is defined in a non-shared object and forced local.
8617 */
8618 abort ();
8619 }
8620
8621 version_index = iver.vs_vers & VERSYM_VERSION;
8622 if (version_index == 1 || version_index == 2)
8623 {
8624 /* This is the base or first version. We can use it. */
8625 free (extversym);
8626 free (isymbuf);
8627 return TRUE;
8628 }
8629 }
8630
8631 free (extversym);
8632 free (isymbuf);
8633 }
8634
8635 return FALSE;
8636 }
8637
8638 /* Add an external symbol to the symbol table. This is called from
8639 the hash table traversal routine. When generating a shared object,
8640 we go through the symbol table twice. The first time we output
8641 anything that might have been forced to local scope in a version
8642 script. The second time we output the symbols that are still
8643 global symbols. */
8644
8645 static bfd_boolean
8646 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8647 {
8648 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8649 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8650 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8651 bfd_boolean strip;
8652 Elf_Internal_Sym sym;
8653 asection *input_sec;
8654 const struct elf_backend_data *bed;
8655 long indx;
8656 int ret;
8657
8658 if (h->root.type == bfd_link_hash_warning)
8659 {
8660 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8661 if (h->root.type == bfd_link_hash_new)
8662 return TRUE;
8663 }
8664
8665 /* Decide whether to output this symbol in this pass. */
8666 if (eoinfo->localsyms)
8667 {
8668 if (!h->forced_local)
8669 return TRUE;
8670 if (eoinfo->second_pass
8671 && !((h->root.type == bfd_link_hash_defined
8672 || h->root.type == bfd_link_hash_defweak)
8673 && h->root.u.def.section->output_section != NULL))
8674 return TRUE;
8675 }
8676 else
8677 {
8678 if (h->forced_local)
8679 return TRUE;
8680 }
8681
8682 bed = get_elf_backend_data (flinfo->output_bfd);
8683
8684 if (h->root.type == bfd_link_hash_undefined)
8685 {
8686 /* If we have an undefined symbol reference here then it must have
8687 come from a shared library that is being linked in. (Undefined
8688 references in regular files have already been handled unless
8689 they are in unreferenced sections which are removed by garbage
8690 collection). */
8691 bfd_boolean ignore_undef = FALSE;
8692
8693 /* Some symbols may be special in that the fact that they're
8694 undefined can be safely ignored - let backend determine that. */
8695 if (bed->elf_backend_ignore_undef_symbol)
8696 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8697
8698 /* If we are reporting errors for this situation then do so now. */
8699 if (!ignore_undef
8700 && h->ref_dynamic
8701 && (!h->ref_regular || flinfo->info->gc_sections)
8702 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8703 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8704 {
8705 if (!(flinfo->info->callbacks->undefined_symbol
8706 (flinfo->info, h->root.root.string,
8707 h->ref_regular ? NULL : h->root.u.undef.abfd,
8708 NULL, 0,
8709 (flinfo->info->unresolved_syms_in_shared_libs
8710 == RM_GENERATE_ERROR))))
8711 {
8712 bfd_set_error (bfd_error_bad_value);
8713 eoinfo->failed = TRUE;
8714 return FALSE;
8715 }
8716 }
8717 }
8718
8719 /* We should also warn if a forced local symbol is referenced from
8720 shared libraries. */
8721 if (!flinfo->info->relocatable
8722 && flinfo->info->executable
8723 && h->forced_local
8724 && h->ref_dynamic
8725 && h->def_regular
8726 && !h->dynamic_def
8727 && h->ref_dynamic_nonweak
8728 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8729 {
8730 bfd *def_bfd;
8731 const char *msg;
8732 struct elf_link_hash_entry *hi = h;
8733
8734 /* Check indirect symbol. */
8735 while (hi->root.type == bfd_link_hash_indirect)
8736 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8737
8738 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8739 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8740 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8741 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8742 else
8743 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8744 def_bfd = flinfo->output_bfd;
8745 if (hi->root.u.def.section != bfd_abs_section_ptr)
8746 def_bfd = hi->root.u.def.section->owner;
8747 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8748 h->root.root.string);
8749 bfd_set_error (bfd_error_bad_value);
8750 eoinfo->failed = TRUE;
8751 return FALSE;
8752 }
8753
8754 /* We don't want to output symbols that have never been mentioned by
8755 a regular file, or that we have been told to strip. However, if
8756 h->indx is set to -2, the symbol is used by a reloc and we must
8757 output it. */
8758 if (h->indx == -2)
8759 strip = FALSE;
8760 else if ((h->def_dynamic
8761 || h->ref_dynamic
8762 || h->root.type == bfd_link_hash_new)
8763 && !h->def_regular
8764 && !h->ref_regular)
8765 strip = TRUE;
8766 else if (flinfo->info->strip == strip_all)
8767 strip = TRUE;
8768 else if (flinfo->info->strip == strip_some
8769 && bfd_hash_lookup (flinfo->info->keep_hash,
8770 h->root.root.string, FALSE, FALSE) == NULL)
8771 strip = TRUE;
8772 else if ((h->root.type == bfd_link_hash_defined
8773 || h->root.type == bfd_link_hash_defweak)
8774 && ((flinfo->info->strip_discarded
8775 && discarded_section (h->root.u.def.section))
8776 || (h->root.u.def.section->owner != NULL
8777 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8778 strip = TRUE;
8779 else if ((h->root.type == bfd_link_hash_undefined
8780 || h->root.type == bfd_link_hash_undefweak)
8781 && h->root.u.undef.abfd != NULL
8782 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8783 strip = TRUE;
8784 else
8785 strip = FALSE;
8786
8787 /* If we're stripping it, and it's not a dynamic symbol, there's
8788 nothing else to do unless it is a forced local symbol or a
8789 STT_GNU_IFUNC symbol. */
8790 if (strip
8791 && h->dynindx == -1
8792 && h->type != STT_GNU_IFUNC
8793 && !h->forced_local)
8794 return TRUE;
8795
8796 sym.st_value = 0;
8797 sym.st_size = h->size;
8798 sym.st_other = h->other;
8799 if (h->forced_local)
8800 {
8801 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8802 /* Turn off visibility on local symbol. */
8803 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8804 }
8805 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
8806 else if (h->unique_global && h->def_regular)
8807 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8808 else if (h->root.type == bfd_link_hash_undefweak
8809 || h->root.type == bfd_link_hash_defweak)
8810 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8811 else
8812 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8813 sym.st_target_internal = h->target_internal;
8814
8815 switch (h->root.type)
8816 {
8817 default:
8818 case bfd_link_hash_new:
8819 case bfd_link_hash_warning:
8820 abort ();
8821 return FALSE;
8822
8823 case bfd_link_hash_undefined:
8824 case bfd_link_hash_undefweak:
8825 input_sec = bfd_und_section_ptr;
8826 sym.st_shndx = SHN_UNDEF;
8827 break;
8828
8829 case bfd_link_hash_defined:
8830 case bfd_link_hash_defweak:
8831 {
8832 input_sec = h->root.u.def.section;
8833 if (input_sec->output_section != NULL)
8834 {
8835 if (eoinfo->localsyms && flinfo->filesym_count == 1)
8836 {
8837 bfd_boolean second_pass_sym
8838 = (input_sec->owner == flinfo->output_bfd
8839 || input_sec->owner == NULL
8840 || (input_sec->flags & SEC_LINKER_CREATED) != 0
8841 || (input_sec->owner->flags & BFD_LINKER_CREATED) != 0);
8842
8843 eoinfo->need_second_pass |= second_pass_sym;
8844 if (eoinfo->second_pass != second_pass_sym)
8845 return TRUE;
8846 }
8847
8848 sym.st_shndx =
8849 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
8850 input_sec->output_section);
8851 if (sym.st_shndx == SHN_BAD)
8852 {
8853 (*_bfd_error_handler)
8854 (_("%B: could not find output section %A for input section %A"),
8855 flinfo->output_bfd, input_sec->output_section, input_sec);
8856 bfd_set_error (bfd_error_nonrepresentable_section);
8857 eoinfo->failed = TRUE;
8858 return FALSE;
8859 }
8860
8861 /* ELF symbols in relocatable files are section relative,
8862 but in nonrelocatable files they are virtual
8863 addresses. */
8864 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8865 if (!flinfo->info->relocatable)
8866 {
8867 sym.st_value += input_sec->output_section->vma;
8868 if (h->type == STT_TLS)
8869 {
8870 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
8871 if (tls_sec != NULL)
8872 sym.st_value -= tls_sec->vma;
8873 else
8874 {
8875 /* The TLS section may have been garbage collected. */
8876 BFD_ASSERT (flinfo->info->gc_sections
8877 && !input_sec->gc_mark);
8878 }
8879 }
8880 }
8881 }
8882 else
8883 {
8884 BFD_ASSERT (input_sec->owner == NULL
8885 || (input_sec->owner->flags & DYNAMIC) != 0);
8886 sym.st_shndx = SHN_UNDEF;
8887 input_sec = bfd_und_section_ptr;
8888 }
8889 }
8890 break;
8891
8892 case bfd_link_hash_common:
8893 input_sec = h->root.u.c.p->section;
8894 sym.st_shndx = bed->common_section_index (input_sec);
8895 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8896 break;
8897
8898 case bfd_link_hash_indirect:
8899 /* These symbols are created by symbol versioning. They point
8900 to the decorated version of the name. For example, if the
8901 symbol foo@@GNU_1.2 is the default, which should be used when
8902 foo is used with no version, then we add an indirect symbol
8903 foo which points to foo@@GNU_1.2. We ignore these symbols,
8904 since the indirected symbol is already in the hash table. */
8905 return TRUE;
8906 }
8907
8908 /* Give the processor backend a chance to tweak the symbol value,
8909 and also to finish up anything that needs to be done for this
8910 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8911 forced local syms when non-shared is due to a historical quirk.
8912 STT_GNU_IFUNC symbol must go through PLT. */
8913 if ((h->type == STT_GNU_IFUNC
8914 && h->def_regular
8915 && !flinfo->info->relocatable)
8916 || ((h->dynindx != -1
8917 || h->forced_local)
8918 && ((flinfo->info->shared
8919 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8920 || h->root.type != bfd_link_hash_undefweak))
8921 || !h->forced_local)
8922 && elf_hash_table (flinfo->info)->dynamic_sections_created))
8923 {
8924 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8925 (flinfo->output_bfd, flinfo->info, h, &sym)))
8926 {
8927 eoinfo->failed = TRUE;
8928 return FALSE;
8929 }
8930 }
8931
8932 /* If we are marking the symbol as undefined, and there are no
8933 non-weak references to this symbol from a regular object, then
8934 mark the symbol as weak undefined; if there are non-weak
8935 references, mark the symbol as strong. We can't do this earlier,
8936 because it might not be marked as undefined until the
8937 finish_dynamic_symbol routine gets through with it. */
8938 if (sym.st_shndx == SHN_UNDEF
8939 && h->ref_regular
8940 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8941 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8942 {
8943 int bindtype;
8944 unsigned int type = ELF_ST_TYPE (sym.st_info);
8945
8946 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8947 if (type == STT_GNU_IFUNC)
8948 type = STT_FUNC;
8949
8950 if (h->ref_regular_nonweak)
8951 bindtype = STB_GLOBAL;
8952 else
8953 bindtype = STB_WEAK;
8954 sym.st_info = ELF_ST_INFO (bindtype, type);
8955 }
8956
8957 /* If this is a symbol defined in a dynamic library, don't use the
8958 symbol size from the dynamic library. Relinking an executable
8959 against a new library may introduce gratuitous changes in the
8960 executable's symbols if we keep the size. */
8961 if (sym.st_shndx == SHN_UNDEF
8962 && !h->def_regular
8963 && h->def_dynamic)
8964 sym.st_size = 0;
8965
8966 /* If a non-weak symbol with non-default visibility is not defined
8967 locally, it is a fatal error. */
8968 if (!flinfo->info->relocatable
8969 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8970 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8971 && h->root.type == bfd_link_hash_undefined
8972 && !h->def_regular)
8973 {
8974 const char *msg;
8975
8976 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
8977 msg = _("%B: protected symbol `%s' isn't defined");
8978 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
8979 msg = _("%B: internal symbol `%s' isn't defined");
8980 else
8981 msg = _("%B: hidden symbol `%s' isn't defined");
8982 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
8983 bfd_set_error (bfd_error_bad_value);
8984 eoinfo->failed = TRUE;
8985 return FALSE;
8986 }
8987
8988 /* If this symbol should be put in the .dynsym section, then put it
8989 there now. We already know the symbol index. We also fill in
8990 the entry in the .hash section. */
8991 if (flinfo->dynsym_sec != NULL
8992 && h->dynindx != -1
8993 && elf_hash_table (flinfo->info)->dynamic_sections_created)
8994 {
8995 bfd_byte *esym;
8996
8997 /* Since there is no version information in the dynamic string,
8998 if there is no version info in symbol version section, we will
8999 have a run-time problem. */
9000 if (h->verinfo.verdef == NULL)
9001 {
9002 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9003
9004 if (p && p [1] != '\0')
9005 {
9006 (*_bfd_error_handler)
9007 (_("%B: No symbol version section for versioned symbol `%s'"),
9008 flinfo->output_bfd, h->root.root.string);
9009 eoinfo->failed = TRUE;
9010 return FALSE;
9011 }
9012 }
9013
9014 sym.st_name = h->dynstr_index;
9015 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9016 if (!check_dynsym (flinfo->output_bfd, &sym))
9017 {
9018 eoinfo->failed = TRUE;
9019 return FALSE;
9020 }
9021 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9022
9023 if (flinfo->hash_sec != NULL)
9024 {
9025 size_t hash_entry_size;
9026 bfd_byte *bucketpos;
9027 bfd_vma chain;
9028 size_t bucketcount;
9029 size_t bucket;
9030
9031 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9032 bucket = h->u.elf_hash_value % bucketcount;
9033
9034 hash_entry_size
9035 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9036 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9037 + (bucket + 2) * hash_entry_size);
9038 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9039 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9040 bucketpos);
9041 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9042 ((bfd_byte *) flinfo->hash_sec->contents
9043 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9044 }
9045
9046 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9047 {
9048 Elf_Internal_Versym iversym;
9049 Elf_External_Versym *eversym;
9050
9051 if (!h->def_regular)
9052 {
9053 if (h->verinfo.verdef == NULL)
9054 iversym.vs_vers = 0;
9055 else
9056 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9057 }
9058 else
9059 {
9060 if (h->verinfo.vertree == NULL)
9061 iversym.vs_vers = 1;
9062 else
9063 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9064 if (flinfo->info->create_default_symver)
9065 iversym.vs_vers++;
9066 }
9067
9068 if (h->hidden)
9069 iversym.vs_vers |= VERSYM_HIDDEN;
9070
9071 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9072 eversym += h->dynindx;
9073 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9074 }
9075 }
9076
9077 /* If we're stripping it, then it was just a dynamic symbol, and
9078 there's nothing else to do. */
9079 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
9080 return TRUE;
9081
9082 indx = bfd_get_symcount (flinfo->output_bfd);
9083 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9084 if (ret == 0)
9085 {
9086 eoinfo->failed = TRUE;
9087 return FALSE;
9088 }
9089 else if (ret == 1)
9090 h->indx = indx;
9091 else if (h->indx == -2)
9092 abort();
9093
9094 return TRUE;
9095 }
9096
9097 /* Return TRUE if special handling is done for relocs in SEC against
9098 symbols defined in discarded sections. */
9099
9100 static bfd_boolean
9101 elf_section_ignore_discarded_relocs (asection *sec)
9102 {
9103 const struct elf_backend_data *bed;
9104
9105 switch (sec->sec_info_type)
9106 {
9107 case SEC_INFO_TYPE_STABS:
9108 case SEC_INFO_TYPE_EH_FRAME:
9109 return TRUE;
9110 default:
9111 break;
9112 }
9113
9114 bed = get_elf_backend_data (sec->owner);
9115 if (bed->elf_backend_ignore_discarded_relocs != NULL
9116 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9117 return TRUE;
9118
9119 return FALSE;
9120 }
9121
9122 /* Return a mask saying how ld should treat relocations in SEC against
9123 symbols defined in discarded sections. If this function returns
9124 COMPLAIN set, ld will issue a warning message. If this function
9125 returns PRETEND set, and the discarded section was link-once and the
9126 same size as the kept link-once section, ld will pretend that the
9127 symbol was actually defined in the kept section. Otherwise ld will
9128 zero the reloc (at least that is the intent, but some cooperation by
9129 the target dependent code is needed, particularly for REL targets). */
9130
9131 unsigned int
9132 _bfd_elf_default_action_discarded (asection *sec)
9133 {
9134 if (sec->flags & SEC_DEBUGGING)
9135 return PRETEND;
9136
9137 if (strcmp (".eh_frame", sec->name) == 0)
9138 return 0;
9139
9140 if (strcmp (".gcc_except_table", sec->name) == 0)
9141 return 0;
9142
9143 return COMPLAIN | PRETEND;
9144 }
9145
9146 /* Find a match between a section and a member of a section group. */
9147
9148 static asection *
9149 match_group_member (asection *sec, asection *group,
9150 struct bfd_link_info *info)
9151 {
9152 asection *first = elf_next_in_group (group);
9153 asection *s = first;
9154
9155 while (s != NULL)
9156 {
9157 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9158 return s;
9159
9160 s = elf_next_in_group (s);
9161 if (s == first)
9162 break;
9163 }
9164
9165 return NULL;
9166 }
9167
9168 /* Check if the kept section of a discarded section SEC can be used
9169 to replace it. Return the replacement if it is OK. Otherwise return
9170 NULL. */
9171
9172 asection *
9173 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9174 {
9175 asection *kept;
9176
9177 kept = sec->kept_section;
9178 if (kept != NULL)
9179 {
9180 if ((kept->flags & SEC_GROUP) != 0)
9181 kept = match_group_member (sec, kept, info);
9182 if (kept != NULL
9183 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9184 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9185 kept = NULL;
9186 sec->kept_section = kept;
9187 }
9188 return kept;
9189 }
9190
9191 /* Link an input file into the linker output file. This function
9192 handles all the sections and relocations of the input file at once.
9193 This is so that we only have to read the local symbols once, and
9194 don't have to keep them in memory. */
9195
9196 static bfd_boolean
9197 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9198 {
9199 int (*relocate_section)
9200 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9201 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9202 bfd *output_bfd;
9203 Elf_Internal_Shdr *symtab_hdr;
9204 size_t locsymcount;
9205 size_t extsymoff;
9206 Elf_Internal_Sym *isymbuf;
9207 Elf_Internal_Sym *isym;
9208 Elf_Internal_Sym *isymend;
9209 long *pindex;
9210 asection **ppsection;
9211 asection *o;
9212 const struct elf_backend_data *bed;
9213 struct elf_link_hash_entry **sym_hashes;
9214 bfd_size_type address_size;
9215 bfd_vma r_type_mask;
9216 int r_sym_shift;
9217 bfd_boolean have_file_sym = FALSE;
9218
9219 output_bfd = flinfo->output_bfd;
9220 bed = get_elf_backend_data (output_bfd);
9221 relocate_section = bed->elf_backend_relocate_section;
9222
9223 /* If this is a dynamic object, we don't want to do anything here:
9224 we don't want the local symbols, and we don't want the section
9225 contents. */
9226 if ((input_bfd->flags & DYNAMIC) != 0)
9227 return TRUE;
9228
9229 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9230 if (elf_bad_symtab (input_bfd))
9231 {
9232 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9233 extsymoff = 0;
9234 }
9235 else
9236 {
9237 locsymcount = symtab_hdr->sh_info;
9238 extsymoff = symtab_hdr->sh_info;
9239 }
9240
9241 /* Read the local symbols. */
9242 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9243 if (isymbuf == NULL && locsymcount != 0)
9244 {
9245 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9246 flinfo->internal_syms,
9247 flinfo->external_syms,
9248 flinfo->locsym_shndx);
9249 if (isymbuf == NULL)
9250 return FALSE;
9251 }
9252
9253 /* Find local symbol sections and adjust values of symbols in
9254 SEC_MERGE sections. Write out those local symbols we know are
9255 going into the output file. */
9256 isymend = isymbuf + locsymcount;
9257 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9258 isym < isymend;
9259 isym++, pindex++, ppsection++)
9260 {
9261 asection *isec;
9262 const char *name;
9263 Elf_Internal_Sym osym;
9264 long indx;
9265 int ret;
9266
9267 *pindex = -1;
9268
9269 if (elf_bad_symtab (input_bfd))
9270 {
9271 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9272 {
9273 *ppsection = NULL;
9274 continue;
9275 }
9276 }
9277
9278 if (isym->st_shndx == SHN_UNDEF)
9279 isec = bfd_und_section_ptr;
9280 else if (isym->st_shndx == SHN_ABS)
9281 isec = bfd_abs_section_ptr;
9282 else if (isym->st_shndx == SHN_COMMON)
9283 isec = bfd_com_section_ptr;
9284 else
9285 {
9286 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9287 if (isec == NULL)
9288 {
9289 /* Don't attempt to output symbols with st_shnx in the
9290 reserved range other than SHN_ABS and SHN_COMMON. */
9291 *ppsection = NULL;
9292 continue;
9293 }
9294 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9295 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9296 isym->st_value =
9297 _bfd_merged_section_offset (output_bfd, &isec,
9298 elf_section_data (isec)->sec_info,
9299 isym->st_value);
9300 }
9301
9302 *ppsection = isec;
9303
9304 /* Don't output the first, undefined, symbol. */
9305 if (ppsection == flinfo->sections)
9306 continue;
9307
9308 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9309 {
9310 /* We never output section symbols. Instead, we use the
9311 section symbol of the corresponding section in the output
9312 file. */
9313 continue;
9314 }
9315
9316 /* If we are stripping all symbols, we don't want to output this
9317 one. */
9318 if (flinfo->info->strip == strip_all)
9319 continue;
9320
9321 /* If we are discarding all local symbols, we don't want to
9322 output this one. If we are generating a relocatable output
9323 file, then some of the local symbols may be required by
9324 relocs; we output them below as we discover that they are
9325 needed. */
9326 if (flinfo->info->discard == discard_all)
9327 continue;
9328
9329 /* If this symbol is defined in a section which we are
9330 discarding, we don't need to keep it. */
9331 if (isym->st_shndx != SHN_UNDEF
9332 && isym->st_shndx < SHN_LORESERVE
9333 && bfd_section_removed_from_list (output_bfd,
9334 isec->output_section))
9335 continue;
9336
9337 /* Get the name of the symbol. */
9338 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9339 isym->st_name);
9340 if (name == NULL)
9341 return FALSE;
9342
9343 /* See if we are discarding symbols with this name. */
9344 if ((flinfo->info->strip == strip_some
9345 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9346 == NULL))
9347 || (((flinfo->info->discard == discard_sec_merge
9348 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9349 || flinfo->info->discard == discard_l)
9350 && bfd_is_local_label_name (input_bfd, name)))
9351 continue;
9352
9353 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9354 {
9355 have_file_sym = TRUE;
9356 flinfo->filesym_count += 1;
9357 }
9358 if (!have_file_sym)
9359 {
9360 /* In the absence of debug info, bfd_find_nearest_line uses
9361 FILE symbols to determine the source file for local
9362 function symbols. Provide a FILE symbol here if input
9363 files lack such, so that their symbols won't be
9364 associated with a previous input file. It's not the
9365 source file, but the best we can do. */
9366 have_file_sym = TRUE;
9367 flinfo->filesym_count += 1;
9368 memset (&osym, 0, sizeof (osym));
9369 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9370 osym.st_shndx = SHN_ABS;
9371 if (!elf_link_output_sym (flinfo, input_bfd->filename, &osym,
9372 bfd_abs_section_ptr, NULL))
9373 return FALSE;
9374 }
9375
9376 osym = *isym;
9377
9378 /* Adjust the section index for the output file. */
9379 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9380 isec->output_section);
9381 if (osym.st_shndx == SHN_BAD)
9382 return FALSE;
9383
9384 /* ELF symbols in relocatable files are section relative, but
9385 in executable files they are virtual addresses. Note that
9386 this code assumes that all ELF sections have an associated
9387 BFD section with a reasonable value for output_offset; below
9388 we assume that they also have a reasonable value for
9389 output_section. Any special sections must be set up to meet
9390 these requirements. */
9391 osym.st_value += isec->output_offset;
9392 if (!flinfo->info->relocatable)
9393 {
9394 osym.st_value += isec->output_section->vma;
9395 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9396 {
9397 /* STT_TLS symbols are relative to PT_TLS segment base. */
9398 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9399 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9400 }
9401 }
9402
9403 indx = bfd_get_symcount (output_bfd);
9404 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9405 if (ret == 0)
9406 return FALSE;
9407 else if (ret == 1)
9408 *pindex = indx;
9409 }
9410
9411 if (bed->s->arch_size == 32)
9412 {
9413 r_type_mask = 0xff;
9414 r_sym_shift = 8;
9415 address_size = 4;
9416 }
9417 else
9418 {
9419 r_type_mask = 0xffffffff;
9420 r_sym_shift = 32;
9421 address_size = 8;
9422 }
9423
9424 /* Relocate the contents of each section. */
9425 sym_hashes = elf_sym_hashes (input_bfd);
9426 for (o = input_bfd->sections; o != NULL; o = o->next)
9427 {
9428 bfd_byte *contents;
9429
9430 if (! o->linker_mark)
9431 {
9432 /* This section was omitted from the link. */
9433 continue;
9434 }
9435
9436 if (flinfo->info->relocatable
9437 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9438 {
9439 /* Deal with the group signature symbol. */
9440 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9441 unsigned long symndx = sec_data->this_hdr.sh_info;
9442 asection *osec = o->output_section;
9443
9444 if (symndx >= locsymcount
9445 || (elf_bad_symtab (input_bfd)
9446 && flinfo->sections[symndx] == NULL))
9447 {
9448 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9449 while (h->root.type == bfd_link_hash_indirect
9450 || h->root.type == bfd_link_hash_warning)
9451 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9452 /* Arrange for symbol to be output. */
9453 h->indx = -2;
9454 elf_section_data (osec)->this_hdr.sh_info = -2;
9455 }
9456 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9457 {
9458 /* We'll use the output section target_index. */
9459 asection *sec = flinfo->sections[symndx]->output_section;
9460 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9461 }
9462 else
9463 {
9464 if (flinfo->indices[symndx] == -1)
9465 {
9466 /* Otherwise output the local symbol now. */
9467 Elf_Internal_Sym sym = isymbuf[symndx];
9468 asection *sec = flinfo->sections[symndx]->output_section;
9469 const char *name;
9470 long indx;
9471 int ret;
9472
9473 name = bfd_elf_string_from_elf_section (input_bfd,
9474 symtab_hdr->sh_link,
9475 sym.st_name);
9476 if (name == NULL)
9477 return FALSE;
9478
9479 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9480 sec);
9481 if (sym.st_shndx == SHN_BAD)
9482 return FALSE;
9483
9484 sym.st_value += o->output_offset;
9485
9486 indx = bfd_get_symcount (output_bfd);
9487 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9488 if (ret == 0)
9489 return FALSE;
9490 else if (ret == 1)
9491 flinfo->indices[symndx] = indx;
9492 else
9493 abort ();
9494 }
9495 elf_section_data (osec)->this_hdr.sh_info
9496 = flinfo->indices[symndx];
9497 }
9498 }
9499
9500 if ((o->flags & SEC_HAS_CONTENTS) == 0
9501 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9502 continue;
9503
9504 if ((o->flags & SEC_LINKER_CREATED) != 0)
9505 {
9506 /* Section was created by _bfd_elf_link_create_dynamic_sections
9507 or somesuch. */
9508 continue;
9509 }
9510
9511 /* Get the contents of the section. They have been cached by a
9512 relaxation routine. Note that o is a section in an input
9513 file, so the contents field will not have been set by any of
9514 the routines which work on output files. */
9515 if (elf_section_data (o)->this_hdr.contents != NULL)
9516 contents = elf_section_data (o)->this_hdr.contents;
9517 else
9518 {
9519 contents = flinfo->contents;
9520 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9521 return FALSE;
9522 }
9523
9524 if ((o->flags & SEC_RELOC) != 0)
9525 {
9526 Elf_Internal_Rela *internal_relocs;
9527 Elf_Internal_Rela *rel, *relend;
9528 int action_discarded;
9529 int ret;
9530
9531 /* Get the swapped relocs. */
9532 internal_relocs
9533 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9534 flinfo->internal_relocs, FALSE);
9535 if (internal_relocs == NULL
9536 && o->reloc_count > 0)
9537 return FALSE;
9538
9539 /* We need to reverse-copy input .ctors/.dtors sections if
9540 they are placed in .init_array/.finit_array for output. */
9541 if (o->size > address_size
9542 && ((strncmp (o->name, ".ctors", 6) == 0
9543 && strcmp (o->output_section->name,
9544 ".init_array") == 0)
9545 || (strncmp (o->name, ".dtors", 6) == 0
9546 && strcmp (o->output_section->name,
9547 ".fini_array") == 0))
9548 && (o->name[6] == 0 || o->name[6] == '.'))
9549 {
9550 if (o->size != o->reloc_count * address_size)
9551 {
9552 (*_bfd_error_handler)
9553 (_("error: %B: size of section %A is not "
9554 "multiple of address size"),
9555 input_bfd, o);
9556 bfd_set_error (bfd_error_on_input);
9557 return FALSE;
9558 }
9559 o->flags |= SEC_ELF_REVERSE_COPY;
9560 }
9561
9562 action_discarded = -1;
9563 if (!elf_section_ignore_discarded_relocs (o))
9564 action_discarded = (*bed->action_discarded) (o);
9565
9566 /* Run through the relocs evaluating complex reloc symbols and
9567 looking for relocs against symbols from discarded sections
9568 or section symbols from removed link-once sections.
9569 Complain about relocs against discarded sections. Zero
9570 relocs against removed link-once sections. */
9571
9572 rel = internal_relocs;
9573 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9574 for ( ; rel < relend; rel++)
9575 {
9576 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9577 unsigned int s_type;
9578 asection **ps, *sec;
9579 struct elf_link_hash_entry *h = NULL;
9580 const char *sym_name;
9581
9582 if (r_symndx == STN_UNDEF)
9583 continue;
9584
9585 if (r_symndx >= locsymcount
9586 || (elf_bad_symtab (input_bfd)
9587 && flinfo->sections[r_symndx] == NULL))
9588 {
9589 h = sym_hashes[r_symndx - extsymoff];
9590
9591 /* Badly formatted input files can contain relocs that
9592 reference non-existant symbols. Check here so that
9593 we do not seg fault. */
9594 if (h == NULL)
9595 {
9596 char buffer [32];
9597
9598 sprintf_vma (buffer, rel->r_info);
9599 (*_bfd_error_handler)
9600 (_("error: %B contains a reloc (0x%s) for section %A "
9601 "that references a non-existent global symbol"),
9602 input_bfd, o, buffer);
9603 bfd_set_error (bfd_error_bad_value);
9604 return FALSE;
9605 }
9606
9607 while (h->root.type == bfd_link_hash_indirect
9608 || h->root.type == bfd_link_hash_warning)
9609 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9610
9611 s_type = h->type;
9612
9613 ps = NULL;
9614 if (h->root.type == bfd_link_hash_defined
9615 || h->root.type == bfd_link_hash_defweak)
9616 ps = &h->root.u.def.section;
9617
9618 sym_name = h->root.root.string;
9619 }
9620 else
9621 {
9622 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9623
9624 s_type = ELF_ST_TYPE (sym->st_info);
9625 ps = &flinfo->sections[r_symndx];
9626 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9627 sym, *ps);
9628 }
9629
9630 if ((s_type == STT_RELC || s_type == STT_SRELC)
9631 && !flinfo->info->relocatable)
9632 {
9633 bfd_vma val;
9634 bfd_vma dot = (rel->r_offset
9635 + o->output_offset + o->output_section->vma);
9636 #ifdef DEBUG
9637 printf ("Encountered a complex symbol!");
9638 printf (" (input_bfd %s, section %s, reloc %ld\n",
9639 input_bfd->filename, o->name,
9640 (long) (rel - internal_relocs));
9641 printf (" symbol: idx %8.8lx, name %s\n",
9642 r_symndx, sym_name);
9643 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9644 (unsigned long) rel->r_info,
9645 (unsigned long) rel->r_offset);
9646 #endif
9647 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9648 isymbuf, locsymcount, s_type == STT_SRELC))
9649 return FALSE;
9650
9651 /* Symbol evaluated OK. Update to absolute value. */
9652 set_symbol_value (input_bfd, isymbuf, locsymcount,
9653 r_symndx, val);
9654 continue;
9655 }
9656
9657 if (action_discarded != -1 && ps != NULL)
9658 {
9659 /* Complain if the definition comes from a
9660 discarded section. */
9661 if ((sec = *ps) != NULL && discarded_section (sec))
9662 {
9663 BFD_ASSERT (r_symndx != STN_UNDEF);
9664 if (action_discarded & COMPLAIN)
9665 (*flinfo->info->callbacks->einfo)
9666 (_("%X`%s' referenced in section `%A' of %B: "
9667 "defined in discarded section `%A' of %B\n"),
9668 sym_name, o, input_bfd, sec, sec->owner);
9669
9670 /* Try to do the best we can to support buggy old
9671 versions of gcc. Pretend that the symbol is
9672 really defined in the kept linkonce section.
9673 FIXME: This is quite broken. Modifying the
9674 symbol here means we will be changing all later
9675 uses of the symbol, not just in this section. */
9676 if (action_discarded & PRETEND)
9677 {
9678 asection *kept;
9679
9680 kept = _bfd_elf_check_kept_section (sec,
9681 flinfo->info);
9682 if (kept != NULL)
9683 {
9684 *ps = kept;
9685 continue;
9686 }
9687 }
9688 }
9689 }
9690 }
9691
9692 /* Relocate the section by invoking a back end routine.
9693
9694 The back end routine is responsible for adjusting the
9695 section contents as necessary, and (if using Rela relocs
9696 and generating a relocatable output file) adjusting the
9697 reloc addend as necessary.
9698
9699 The back end routine does not have to worry about setting
9700 the reloc address or the reloc symbol index.
9701
9702 The back end routine is given a pointer to the swapped in
9703 internal symbols, and can access the hash table entries
9704 for the external symbols via elf_sym_hashes (input_bfd).
9705
9706 When generating relocatable output, the back end routine
9707 must handle STB_LOCAL/STT_SECTION symbols specially. The
9708 output symbol is going to be a section symbol
9709 corresponding to the output section, which will require
9710 the addend to be adjusted. */
9711
9712 ret = (*relocate_section) (output_bfd, flinfo->info,
9713 input_bfd, o, contents,
9714 internal_relocs,
9715 isymbuf,
9716 flinfo->sections);
9717 if (!ret)
9718 return FALSE;
9719
9720 if (ret == 2
9721 || flinfo->info->relocatable
9722 || flinfo->info->emitrelocations)
9723 {
9724 Elf_Internal_Rela *irela;
9725 Elf_Internal_Rela *irelaend, *irelamid;
9726 bfd_vma last_offset;
9727 struct elf_link_hash_entry **rel_hash;
9728 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9729 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9730 unsigned int next_erel;
9731 bfd_boolean rela_normal;
9732 struct bfd_elf_section_data *esdi, *esdo;
9733
9734 esdi = elf_section_data (o);
9735 esdo = elf_section_data (o->output_section);
9736 rela_normal = FALSE;
9737
9738 /* Adjust the reloc addresses and symbol indices. */
9739
9740 irela = internal_relocs;
9741 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9742 rel_hash = esdo->rel.hashes + esdo->rel.count;
9743 /* We start processing the REL relocs, if any. When we reach
9744 IRELAMID in the loop, we switch to the RELA relocs. */
9745 irelamid = irela;
9746 if (esdi->rel.hdr != NULL)
9747 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9748 * bed->s->int_rels_per_ext_rel);
9749 rel_hash_list = rel_hash;
9750 rela_hash_list = NULL;
9751 last_offset = o->output_offset;
9752 if (!flinfo->info->relocatable)
9753 last_offset += o->output_section->vma;
9754 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9755 {
9756 unsigned long r_symndx;
9757 asection *sec;
9758 Elf_Internal_Sym sym;
9759
9760 if (next_erel == bed->s->int_rels_per_ext_rel)
9761 {
9762 rel_hash++;
9763 next_erel = 0;
9764 }
9765
9766 if (irela == irelamid)
9767 {
9768 rel_hash = esdo->rela.hashes + esdo->rela.count;
9769 rela_hash_list = rel_hash;
9770 rela_normal = bed->rela_normal;
9771 }
9772
9773 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9774 flinfo->info, o,
9775 irela->r_offset);
9776 if (irela->r_offset >= (bfd_vma) -2)
9777 {
9778 /* This is a reloc for a deleted entry or somesuch.
9779 Turn it into an R_*_NONE reloc, at the same
9780 offset as the last reloc. elf_eh_frame.c and
9781 bfd_elf_discard_info rely on reloc offsets
9782 being ordered. */
9783 irela->r_offset = last_offset;
9784 irela->r_info = 0;
9785 irela->r_addend = 0;
9786 continue;
9787 }
9788
9789 irela->r_offset += o->output_offset;
9790
9791 /* Relocs in an executable have to be virtual addresses. */
9792 if (!flinfo->info->relocatable)
9793 irela->r_offset += o->output_section->vma;
9794
9795 last_offset = irela->r_offset;
9796
9797 r_symndx = irela->r_info >> r_sym_shift;
9798 if (r_symndx == STN_UNDEF)
9799 continue;
9800
9801 if (r_symndx >= locsymcount
9802 || (elf_bad_symtab (input_bfd)
9803 && flinfo->sections[r_symndx] == NULL))
9804 {
9805 struct elf_link_hash_entry *rh;
9806 unsigned long indx;
9807
9808 /* This is a reloc against a global symbol. We
9809 have not yet output all the local symbols, so
9810 we do not know the symbol index of any global
9811 symbol. We set the rel_hash entry for this
9812 reloc to point to the global hash table entry
9813 for this symbol. The symbol index is then
9814 set at the end of bfd_elf_final_link. */
9815 indx = r_symndx - extsymoff;
9816 rh = elf_sym_hashes (input_bfd)[indx];
9817 while (rh->root.type == bfd_link_hash_indirect
9818 || rh->root.type == bfd_link_hash_warning)
9819 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9820
9821 /* Setting the index to -2 tells
9822 elf_link_output_extsym that this symbol is
9823 used by a reloc. */
9824 BFD_ASSERT (rh->indx < 0);
9825 rh->indx = -2;
9826
9827 *rel_hash = rh;
9828
9829 continue;
9830 }
9831
9832 /* This is a reloc against a local symbol. */
9833
9834 *rel_hash = NULL;
9835 sym = isymbuf[r_symndx];
9836 sec = flinfo->sections[r_symndx];
9837 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9838 {
9839 /* I suppose the backend ought to fill in the
9840 section of any STT_SECTION symbol against a
9841 processor specific section. */
9842 r_symndx = STN_UNDEF;
9843 if (bfd_is_abs_section (sec))
9844 ;
9845 else if (sec == NULL || sec->owner == NULL)
9846 {
9847 bfd_set_error (bfd_error_bad_value);
9848 return FALSE;
9849 }
9850 else
9851 {
9852 asection *osec = sec->output_section;
9853
9854 /* If we have discarded a section, the output
9855 section will be the absolute section. In
9856 case of discarded SEC_MERGE sections, use
9857 the kept section. relocate_section should
9858 have already handled discarded linkonce
9859 sections. */
9860 if (bfd_is_abs_section (osec)
9861 && sec->kept_section != NULL
9862 && sec->kept_section->output_section != NULL)
9863 {
9864 osec = sec->kept_section->output_section;
9865 irela->r_addend -= osec->vma;
9866 }
9867
9868 if (!bfd_is_abs_section (osec))
9869 {
9870 r_symndx = osec->target_index;
9871 if (r_symndx == STN_UNDEF)
9872 {
9873 irela->r_addend += osec->vma;
9874 osec = _bfd_nearby_section (output_bfd, osec,
9875 osec->vma);
9876 irela->r_addend -= osec->vma;
9877 r_symndx = osec->target_index;
9878 }
9879 }
9880 }
9881
9882 /* Adjust the addend according to where the
9883 section winds up in the output section. */
9884 if (rela_normal)
9885 irela->r_addend += sec->output_offset;
9886 }
9887 else
9888 {
9889 if (flinfo->indices[r_symndx] == -1)
9890 {
9891 unsigned long shlink;
9892 const char *name;
9893 asection *osec;
9894 long indx;
9895
9896 if (flinfo->info->strip == strip_all)
9897 {
9898 /* You can't do ld -r -s. */
9899 bfd_set_error (bfd_error_invalid_operation);
9900 return FALSE;
9901 }
9902
9903 /* This symbol was skipped earlier, but
9904 since it is needed by a reloc, we
9905 must output it now. */
9906 shlink = symtab_hdr->sh_link;
9907 name = (bfd_elf_string_from_elf_section
9908 (input_bfd, shlink, sym.st_name));
9909 if (name == NULL)
9910 return FALSE;
9911
9912 osec = sec->output_section;
9913 sym.st_shndx =
9914 _bfd_elf_section_from_bfd_section (output_bfd,
9915 osec);
9916 if (sym.st_shndx == SHN_BAD)
9917 return FALSE;
9918
9919 sym.st_value += sec->output_offset;
9920 if (!flinfo->info->relocatable)
9921 {
9922 sym.st_value += osec->vma;
9923 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9924 {
9925 /* STT_TLS symbols are relative to PT_TLS
9926 segment base. */
9927 BFD_ASSERT (elf_hash_table (flinfo->info)
9928 ->tls_sec != NULL);
9929 sym.st_value -= (elf_hash_table (flinfo->info)
9930 ->tls_sec->vma);
9931 }
9932 }
9933
9934 indx = bfd_get_symcount (output_bfd);
9935 ret = elf_link_output_sym (flinfo, name, &sym, sec,
9936 NULL);
9937 if (ret == 0)
9938 return FALSE;
9939 else if (ret == 1)
9940 flinfo->indices[r_symndx] = indx;
9941 else
9942 abort ();
9943 }
9944
9945 r_symndx = flinfo->indices[r_symndx];
9946 }
9947
9948 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9949 | (irela->r_info & r_type_mask));
9950 }
9951
9952 /* Swap out the relocs. */
9953 input_rel_hdr = esdi->rel.hdr;
9954 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
9955 {
9956 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9957 input_rel_hdr,
9958 internal_relocs,
9959 rel_hash_list))
9960 return FALSE;
9961 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9962 * bed->s->int_rels_per_ext_rel);
9963 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9964 }
9965
9966 input_rela_hdr = esdi->rela.hdr;
9967 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
9968 {
9969 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9970 input_rela_hdr,
9971 internal_relocs,
9972 rela_hash_list))
9973 return FALSE;
9974 }
9975 }
9976 }
9977
9978 /* Write out the modified section contents. */
9979 if (bed->elf_backend_write_section
9980 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
9981 contents))
9982 {
9983 /* Section written out. */
9984 }
9985 else switch (o->sec_info_type)
9986 {
9987 case SEC_INFO_TYPE_STABS:
9988 if (! (_bfd_write_section_stabs
9989 (output_bfd,
9990 &elf_hash_table (flinfo->info)->stab_info,
9991 o, &elf_section_data (o)->sec_info, contents)))
9992 return FALSE;
9993 break;
9994 case SEC_INFO_TYPE_MERGE:
9995 if (! _bfd_write_merged_section (output_bfd, o,
9996 elf_section_data (o)->sec_info))
9997 return FALSE;
9998 break;
9999 case SEC_INFO_TYPE_EH_FRAME:
10000 {
10001 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10002 o, contents))
10003 return FALSE;
10004 }
10005 break;
10006 default:
10007 {
10008 /* FIXME: octets_per_byte. */
10009 if (! (o->flags & SEC_EXCLUDE))
10010 {
10011 file_ptr offset = (file_ptr) o->output_offset;
10012 bfd_size_type todo = o->size;
10013 if ((o->flags & SEC_ELF_REVERSE_COPY))
10014 {
10015 /* Reverse-copy input section to output. */
10016 do
10017 {
10018 todo -= address_size;
10019 if (! bfd_set_section_contents (output_bfd,
10020 o->output_section,
10021 contents + todo,
10022 offset,
10023 address_size))
10024 return FALSE;
10025 if (todo == 0)
10026 break;
10027 offset += address_size;
10028 }
10029 while (1);
10030 }
10031 else if (! bfd_set_section_contents (output_bfd,
10032 o->output_section,
10033 contents,
10034 offset, todo))
10035 return FALSE;
10036 }
10037 }
10038 break;
10039 }
10040 }
10041
10042 return TRUE;
10043 }
10044
10045 /* Generate a reloc when linking an ELF file. This is a reloc
10046 requested by the linker, and does not come from any input file. This
10047 is used to build constructor and destructor tables when linking
10048 with -Ur. */
10049
10050 static bfd_boolean
10051 elf_reloc_link_order (bfd *output_bfd,
10052 struct bfd_link_info *info,
10053 asection *output_section,
10054 struct bfd_link_order *link_order)
10055 {
10056 reloc_howto_type *howto;
10057 long indx;
10058 bfd_vma offset;
10059 bfd_vma addend;
10060 struct bfd_elf_section_reloc_data *reldata;
10061 struct elf_link_hash_entry **rel_hash_ptr;
10062 Elf_Internal_Shdr *rel_hdr;
10063 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10064 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10065 bfd_byte *erel;
10066 unsigned int i;
10067 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10068
10069 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10070 if (howto == NULL)
10071 {
10072 bfd_set_error (bfd_error_bad_value);
10073 return FALSE;
10074 }
10075
10076 addend = link_order->u.reloc.p->addend;
10077
10078 if (esdo->rel.hdr)
10079 reldata = &esdo->rel;
10080 else if (esdo->rela.hdr)
10081 reldata = &esdo->rela;
10082 else
10083 {
10084 reldata = NULL;
10085 BFD_ASSERT (0);
10086 }
10087
10088 /* Figure out the symbol index. */
10089 rel_hash_ptr = reldata->hashes + reldata->count;
10090 if (link_order->type == bfd_section_reloc_link_order)
10091 {
10092 indx = link_order->u.reloc.p->u.section->target_index;
10093 BFD_ASSERT (indx != 0);
10094 *rel_hash_ptr = NULL;
10095 }
10096 else
10097 {
10098 struct elf_link_hash_entry *h;
10099
10100 /* Treat a reloc against a defined symbol as though it were
10101 actually against the section. */
10102 h = ((struct elf_link_hash_entry *)
10103 bfd_wrapped_link_hash_lookup (output_bfd, info,
10104 link_order->u.reloc.p->u.name,
10105 FALSE, FALSE, TRUE));
10106 if (h != NULL
10107 && (h->root.type == bfd_link_hash_defined
10108 || h->root.type == bfd_link_hash_defweak))
10109 {
10110 asection *section;
10111
10112 section = h->root.u.def.section;
10113 indx = section->output_section->target_index;
10114 *rel_hash_ptr = NULL;
10115 /* It seems that we ought to add the symbol value to the
10116 addend here, but in practice it has already been added
10117 because it was passed to constructor_callback. */
10118 addend += section->output_section->vma + section->output_offset;
10119 }
10120 else if (h != NULL)
10121 {
10122 /* Setting the index to -2 tells elf_link_output_extsym that
10123 this symbol is used by a reloc. */
10124 h->indx = -2;
10125 *rel_hash_ptr = h;
10126 indx = 0;
10127 }
10128 else
10129 {
10130 if (! ((*info->callbacks->unattached_reloc)
10131 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10132 return FALSE;
10133 indx = 0;
10134 }
10135 }
10136
10137 /* If this is an inplace reloc, we must write the addend into the
10138 object file. */
10139 if (howto->partial_inplace && addend != 0)
10140 {
10141 bfd_size_type size;
10142 bfd_reloc_status_type rstat;
10143 bfd_byte *buf;
10144 bfd_boolean ok;
10145 const char *sym_name;
10146
10147 size = (bfd_size_type) bfd_get_reloc_size (howto);
10148 buf = (bfd_byte *) bfd_zmalloc (size);
10149 if (buf == NULL)
10150 return FALSE;
10151 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10152 switch (rstat)
10153 {
10154 case bfd_reloc_ok:
10155 break;
10156
10157 default:
10158 case bfd_reloc_outofrange:
10159 abort ();
10160
10161 case bfd_reloc_overflow:
10162 if (link_order->type == bfd_section_reloc_link_order)
10163 sym_name = bfd_section_name (output_bfd,
10164 link_order->u.reloc.p->u.section);
10165 else
10166 sym_name = link_order->u.reloc.p->u.name;
10167 if (! ((*info->callbacks->reloc_overflow)
10168 (info, NULL, sym_name, howto->name, addend, NULL,
10169 NULL, (bfd_vma) 0)))
10170 {
10171 free (buf);
10172 return FALSE;
10173 }
10174 break;
10175 }
10176 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10177 link_order->offset, size);
10178 free (buf);
10179 if (! ok)
10180 return FALSE;
10181 }
10182
10183 /* The address of a reloc is relative to the section in a
10184 relocatable file, and is a virtual address in an executable
10185 file. */
10186 offset = link_order->offset;
10187 if (! info->relocatable)
10188 offset += output_section->vma;
10189
10190 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10191 {
10192 irel[i].r_offset = offset;
10193 irel[i].r_info = 0;
10194 irel[i].r_addend = 0;
10195 }
10196 if (bed->s->arch_size == 32)
10197 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10198 else
10199 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10200
10201 rel_hdr = reldata->hdr;
10202 erel = rel_hdr->contents;
10203 if (rel_hdr->sh_type == SHT_REL)
10204 {
10205 erel += reldata->count * bed->s->sizeof_rel;
10206 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10207 }
10208 else
10209 {
10210 irel[0].r_addend = addend;
10211 erel += reldata->count * bed->s->sizeof_rela;
10212 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10213 }
10214
10215 ++reldata->count;
10216
10217 return TRUE;
10218 }
10219
10220
10221 /* Get the output vma of the section pointed to by the sh_link field. */
10222
10223 static bfd_vma
10224 elf_get_linked_section_vma (struct bfd_link_order *p)
10225 {
10226 Elf_Internal_Shdr **elf_shdrp;
10227 asection *s;
10228 int elfsec;
10229
10230 s = p->u.indirect.section;
10231 elf_shdrp = elf_elfsections (s->owner);
10232 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10233 elfsec = elf_shdrp[elfsec]->sh_link;
10234 /* PR 290:
10235 The Intel C compiler generates SHT_IA_64_UNWIND with
10236 SHF_LINK_ORDER. But it doesn't set the sh_link or
10237 sh_info fields. Hence we could get the situation
10238 where elfsec is 0. */
10239 if (elfsec == 0)
10240 {
10241 const struct elf_backend_data *bed
10242 = get_elf_backend_data (s->owner);
10243 if (bed->link_order_error_handler)
10244 bed->link_order_error_handler
10245 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10246 return 0;
10247 }
10248 else
10249 {
10250 s = elf_shdrp[elfsec]->bfd_section;
10251 return s->output_section->vma + s->output_offset;
10252 }
10253 }
10254
10255
10256 /* Compare two sections based on the locations of the sections they are
10257 linked to. Used by elf_fixup_link_order. */
10258
10259 static int
10260 compare_link_order (const void * a, const void * b)
10261 {
10262 bfd_vma apos;
10263 bfd_vma bpos;
10264
10265 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10266 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10267 if (apos < bpos)
10268 return -1;
10269 return apos > bpos;
10270 }
10271
10272
10273 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10274 order as their linked sections. Returns false if this could not be done
10275 because an output section includes both ordered and unordered
10276 sections. Ideally we'd do this in the linker proper. */
10277
10278 static bfd_boolean
10279 elf_fixup_link_order (bfd *abfd, asection *o)
10280 {
10281 int seen_linkorder;
10282 int seen_other;
10283 int n;
10284 struct bfd_link_order *p;
10285 bfd *sub;
10286 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10287 unsigned elfsec;
10288 struct bfd_link_order **sections;
10289 asection *s, *other_sec, *linkorder_sec;
10290 bfd_vma offset;
10291
10292 other_sec = NULL;
10293 linkorder_sec = NULL;
10294 seen_other = 0;
10295 seen_linkorder = 0;
10296 for (p = o->map_head.link_order; p != NULL; p = p->next)
10297 {
10298 if (p->type == bfd_indirect_link_order)
10299 {
10300 s = p->u.indirect.section;
10301 sub = s->owner;
10302 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10303 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10304 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10305 && elfsec < elf_numsections (sub)
10306 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10307 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10308 {
10309 seen_linkorder++;
10310 linkorder_sec = s;
10311 }
10312 else
10313 {
10314 seen_other++;
10315 other_sec = s;
10316 }
10317 }
10318 else
10319 seen_other++;
10320
10321 if (seen_other && seen_linkorder)
10322 {
10323 if (other_sec && linkorder_sec)
10324 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10325 o, linkorder_sec,
10326 linkorder_sec->owner, other_sec,
10327 other_sec->owner);
10328 else
10329 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10330 o);
10331 bfd_set_error (bfd_error_bad_value);
10332 return FALSE;
10333 }
10334 }
10335
10336 if (!seen_linkorder)
10337 return TRUE;
10338
10339 sections = (struct bfd_link_order **)
10340 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10341 if (sections == NULL)
10342 return FALSE;
10343 seen_linkorder = 0;
10344
10345 for (p = o->map_head.link_order; p != NULL; p = p->next)
10346 {
10347 sections[seen_linkorder++] = p;
10348 }
10349 /* Sort the input sections in the order of their linked section. */
10350 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10351 compare_link_order);
10352
10353 /* Change the offsets of the sections. */
10354 offset = 0;
10355 for (n = 0; n < seen_linkorder; n++)
10356 {
10357 s = sections[n]->u.indirect.section;
10358 offset &= ~(bfd_vma) 0 << s->alignment_power;
10359 s->output_offset = offset;
10360 sections[n]->offset = offset;
10361 /* FIXME: octets_per_byte. */
10362 offset += sections[n]->size;
10363 }
10364
10365 free (sections);
10366 return TRUE;
10367 }
10368
10369 static void
10370 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10371 {
10372 asection *o;
10373
10374 if (flinfo->symstrtab != NULL)
10375 _bfd_stringtab_free (flinfo->symstrtab);
10376 if (flinfo->contents != NULL)
10377 free (flinfo->contents);
10378 if (flinfo->external_relocs != NULL)
10379 free (flinfo->external_relocs);
10380 if (flinfo->internal_relocs != NULL)
10381 free (flinfo->internal_relocs);
10382 if (flinfo->external_syms != NULL)
10383 free (flinfo->external_syms);
10384 if (flinfo->locsym_shndx != NULL)
10385 free (flinfo->locsym_shndx);
10386 if (flinfo->internal_syms != NULL)
10387 free (flinfo->internal_syms);
10388 if (flinfo->indices != NULL)
10389 free (flinfo->indices);
10390 if (flinfo->sections != NULL)
10391 free (flinfo->sections);
10392 if (flinfo->symbuf != NULL)
10393 free (flinfo->symbuf);
10394 if (flinfo->symshndxbuf != NULL)
10395 free (flinfo->symshndxbuf);
10396 for (o = obfd->sections; o != NULL; o = o->next)
10397 {
10398 struct bfd_elf_section_data *esdo = elf_section_data (o);
10399 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10400 free (esdo->rel.hashes);
10401 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10402 free (esdo->rela.hashes);
10403 }
10404 }
10405
10406 /* Do the final step of an ELF link. */
10407
10408 bfd_boolean
10409 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10410 {
10411 bfd_boolean dynamic;
10412 bfd_boolean emit_relocs;
10413 bfd *dynobj;
10414 struct elf_final_link_info flinfo;
10415 asection *o;
10416 struct bfd_link_order *p;
10417 bfd *sub;
10418 bfd_size_type max_contents_size;
10419 bfd_size_type max_external_reloc_size;
10420 bfd_size_type max_internal_reloc_count;
10421 bfd_size_type max_sym_count;
10422 bfd_size_type max_sym_shndx_count;
10423 file_ptr off;
10424 Elf_Internal_Sym elfsym;
10425 unsigned int i;
10426 Elf_Internal_Shdr *symtab_hdr;
10427 Elf_Internal_Shdr *symtab_shndx_hdr;
10428 Elf_Internal_Shdr *symstrtab_hdr;
10429 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10430 struct elf_outext_info eoinfo;
10431 bfd_boolean merged;
10432 size_t relativecount = 0;
10433 asection *reldyn = 0;
10434 bfd_size_type amt;
10435 asection *attr_section = NULL;
10436 bfd_vma attr_size = 0;
10437 const char *std_attrs_section;
10438
10439 if (! is_elf_hash_table (info->hash))
10440 return FALSE;
10441
10442 if (info->shared)
10443 abfd->flags |= DYNAMIC;
10444
10445 dynamic = elf_hash_table (info)->dynamic_sections_created;
10446 dynobj = elf_hash_table (info)->dynobj;
10447
10448 emit_relocs = (info->relocatable
10449 || info->emitrelocations);
10450
10451 flinfo.info = info;
10452 flinfo.output_bfd = abfd;
10453 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10454 if (flinfo.symstrtab == NULL)
10455 return FALSE;
10456
10457 if (! dynamic)
10458 {
10459 flinfo.dynsym_sec = NULL;
10460 flinfo.hash_sec = NULL;
10461 flinfo.symver_sec = NULL;
10462 }
10463 else
10464 {
10465 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10466 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10467 /* Note that dynsym_sec can be NULL (on VMS). */
10468 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10469 /* Note that it is OK if symver_sec is NULL. */
10470 }
10471
10472 flinfo.contents = NULL;
10473 flinfo.external_relocs = NULL;
10474 flinfo.internal_relocs = NULL;
10475 flinfo.external_syms = NULL;
10476 flinfo.locsym_shndx = NULL;
10477 flinfo.internal_syms = NULL;
10478 flinfo.indices = NULL;
10479 flinfo.sections = NULL;
10480 flinfo.symbuf = NULL;
10481 flinfo.symshndxbuf = NULL;
10482 flinfo.symbuf_count = 0;
10483 flinfo.shndxbuf_size = 0;
10484 flinfo.filesym_count = 0;
10485
10486 /* The object attributes have been merged. Remove the input
10487 sections from the link, and set the contents of the output
10488 secton. */
10489 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10490 for (o = abfd->sections; o != NULL; o = o->next)
10491 {
10492 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10493 || strcmp (o->name, ".gnu.attributes") == 0)
10494 {
10495 for (p = o->map_head.link_order; p != NULL; p = p->next)
10496 {
10497 asection *input_section;
10498
10499 if (p->type != bfd_indirect_link_order)
10500 continue;
10501 input_section = p->u.indirect.section;
10502 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10503 elf_link_input_bfd ignores this section. */
10504 input_section->flags &= ~SEC_HAS_CONTENTS;
10505 }
10506
10507 attr_size = bfd_elf_obj_attr_size (abfd);
10508 if (attr_size)
10509 {
10510 bfd_set_section_size (abfd, o, attr_size);
10511 attr_section = o;
10512 /* Skip this section later on. */
10513 o->map_head.link_order = NULL;
10514 }
10515 else
10516 o->flags |= SEC_EXCLUDE;
10517 }
10518 }
10519
10520 /* Count up the number of relocations we will output for each output
10521 section, so that we know the sizes of the reloc sections. We
10522 also figure out some maximum sizes. */
10523 max_contents_size = 0;
10524 max_external_reloc_size = 0;
10525 max_internal_reloc_count = 0;
10526 max_sym_count = 0;
10527 max_sym_shndx_count = 0;
10528 merged = FALSE;
10529 for (o = abfd->sections; o != NULL; o = o->next)
10530 {
10531 struct bfd_elf_section_data *esdo = elf_section_data (o);
10532 o->reloc_count = 0;
10533
10534 for (p = o->map_head.link_order; p != NULL; p = p->next)
10535 {
10536 unsigned int reloc_count = 0;
10537 struct bfd_elf_section_data *esdi = NULL;
10538
10539 if (p->type == bfd_section_reloc_link_order
10540 || p->type == bfd_symbol_reloc_link_order)
10541 reloc_count = 1;
10542 else if (p->type == bfd_indirect_link_order)
10543 {
10544 asection *sec;
10545
10546 sec = p->u.indirect.section;
10547 esdi = elf_section_data (sec);
10548
10549 /* Mark all sections which are to be included in the
10550 link. This will normally be every section. We need
10551 to do this so that we can identify any sections which
10552 the linker has decided to not include. */
10553 sec->linker_mark = TRUE;
10554
10555 if (sec->flags & SEC_MERGE)
10556 merged = TRUE;
10557
10558 if (esdo->this_hdr.sh_type == SHT_REL
10559 || esdo->this_hdr.sh_type == SHT_RELA)
10560 /* Some backends use reloc_count in relocation sections
10561 to count particular types of relocs. Of course,
10562 reloc sections themselves can't have relocations. */
10563 reloc_count = 0;
10564 else if (info->relocatable || info->emitrelocations)
10565 reloc_count = sec->reloc_count;
10566 else if (bed->elf_backend_count_relocs)
10567 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10568
10569 if (sec->rawsize > max_contents_size)
10570 max_contents_size = sec->rawsize;
10571 if (sec->size > max_contents_size)
10572 max_contents_size = sec->size;
10573
10574 /* We are interested in just local symbols, not all
10575 symbols. */
10576 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10577 && (sec->owner->flags & DYNAMIC) == 0)
10578 {
10579 size_t sym_count;
10580
10581 if (elf_bad_symtab (sec->owner))
10582 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10583 / bed->s->sizeof_sym);
10584 else
10585 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10586
10587 if (sym_count > max_sym_count)
10588 max_sym_count = sym_count;
10589
10590 if (sym_count > max_sym_shndx_count
10591 && elf_symtab_shndx (sec->owner) != 0)
10592 max_sym_shndx_count = sym_count;
10593
10594 if ((sec->flags & SEC_RELOC) != 0)
10595 {
10596 size_t ext_size = 0;
10597
10598 if (esdi->rel.hdr != NULL)
10599 ext_size = esdi->rel.hdr->sh_size;
10600 if (esdi->rela.hdr != NULL)
10601 ext_size += esdi->rela.hdr->sh_size;
10602
10603 if (ext_size > max_external_reloc_size)
10604 max_external_reloc_size = ext_size;
10605 if (sec->reloc_count > max_internal_reloc_count)
10606 max_internal_reloc_count = sec->reloc_count;
10607 }
10608 }
10609 }
10610
10611 if (reloc_count == 0)
10612 continue;
10613
10614 o->reloc_count += reloc_count;
10615
10616 if (p->type == bfd_indirect_link_order
10617 && (info->relocatable || info->emitrelocations))
10618 {
10619 if (esdi->rel.hdr)
10620 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10621 if (esdi->rela.hdr)
10622 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10623 }
10624 else
10625 {
10626 if (o->use_rela_p)
10627 esdo->rela.count += reloc_count;
10628 else
10629 esdo->rel.count += reloc_count;
10630 }
10631 }
10632
10633 if (o->reloc_count > 0)
10634 o->flags |= SEC_RELOC;
10635 else
10636 {
10637 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10638 set it (this is probably a bug) and if it is set
10639 assign_section_numbers will create a reloc section. */
10640 o->flags &=~ SEC_RELOC;
10641 }
10642
10643 /* If the SEC_ALLOC flag is not set, force the section VMA to
10644 zero. This is done in elf_fake_sections as well, but forcing
10645 the VMA to 0 here will ensure that relocs against these
10646 sections are handled correctly. */
10647 if ((o->flags & SEC_ALLOC) == 0
10648 && ! o->user_set_vma)
10649 o->vma = 0;
10650 }
10651
10652 if (! info->relocatable && merged)
10653 elf_link_hash_traverse (elf_hash_table (info),
10654 _bfd_elf_link_sec_merge_syms, abfd);
10655
10656 /* Figure out the file positions for everything but the symbol table
10657 and the relocs. We set symcount to force assign_section_numbers
10658 to create a symbol table. */
10659 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10660 BFD_ASSERT (! abfd->output_has_begun);
10661 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10662 goto error_return;
10663
10664 /* Set sizes, and assign file positions for reloc sections. */
10665 for (o = abfd->sections; o != NULL; o = o->next)
10666 {
10667 struct bfd_elf_section_data *esdo = elf_section_data (o);
10668 if ((o->flags & SEC_RELOC) != 0)
10669 {
10670 if (esdo->rel.hdr
10671 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10672 goto error_return;
10673
10674 if (esdo->rela.hdr
10675 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10676 goto error_return;
10677 }
10678
10679 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10680 to count upwards while actually outputting the relocations. */
10681 esdo->rel.count = 0;
10682 esdo->rela.count = 0;
10683 }
10684
10685 _bfd_elf_assign_file_positions_for_relocs (abfd);
10686
10687 /* We have now assigned file positions for all the sections except
10688 .symtab and .strtab. We start the .symtab section at the current
10689 file position, and write directly to it. We build the .strtab
10690 section in memory. */
10691 bfd_get_symcount (abfd) = 0;
10692 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10693 /* sh_name is set in prep_headers. */
10694 symtab_hdr->sh_type = SHT_SYMTAB;
10695 /* sh_flags, sh_addr and sh_size all start off zero. */
10696 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10697 /* sh_link is set in assign_section_numbers. */
10698 /* sh_info is set below. */
10699 /* sh_offset is set just below. */
10700 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10701
10702 off = elf_next_file_pos (abfd);
10703 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10704
10705 /* Note that at this point elf_next_file_pos (abfd) is
10706 incorrect. We do not yet know the size of the .symtab section.
10707 We correct next_file_pos below, after we do know the size. */
10708
10709 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10710 continuously seeking to the right position in the file. */
10711 if (! info->keep_memory || max_sym_count < 20)
10712 flinfo.symbuf_size = 20;
10713 else
10714 flinfo.symbuf_size = max_sym_count;
10715 amt = flinfo.symbuf_size;
10716 amt *= bed->s->sizeof_sym;
10717 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10718 if (flinfo.symbuf == NULL)
10719 goto error_return;
10720 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10721 {
10722 /* Wild guess at number of output symbols. realloc'd as needed. */
10723 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10724 flinfo.shndxbuf_size = amt;
10725 amt *= sizeof (Elf_External_Sym_Shndx);
10726 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10727 if (flinfo.symshndxbuf == NULL)
10728 goto error_return;
10729 }
10730
10731 /* Start writing out the symbol table. The first symbol is always a
10732 dummy symbol. */
10733 if (info->strip != strip_all
10734 || emit_relocs)
10735 {
10736 elfsym.st_value = 0;
10737 elfsym.st_size = 0;
10738 elfsym.st_info = 0;
10739 elfsym.st_other = 0;
10740 elfsym.st_shndx = SHN_UNDEF;
10741 elfsym.st_target_internal = 0;
10742 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10743 NULL) != 1)
10744 goto error_return;
10745 }
10746
10747 /* Output a symbol for each section. We output these even if we are
10748 discarding local symbols, since they are used for relocs. These
10749 symbols have no names. We store the index of each one in the
10750 index field of the section, so that we can find it again when
10751 outputting relocs. */
10752 if (info->strip != strip_all
10753 || emit_relocs)
10754 {
10755 elfsym.st_size = 0;
10756 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10757 elfsym.st_other = 0;
10758 elfsym.st_value = 0;
10759 elfsym.st_target_internal = 0;
10760 for (i = 1; i < elf_numsections (abfd); i++)
10761 {
10762 o = bfd_section_from_elf_index (abfd, i);
10763 if (o != NULL)
10764 {
10765 o->target_index = bfd_get_symcount (abfd);
10766 elfsym.st_shndx = i;
10767 if (!info->relocatable)
10768 elfsym.st_value = o->vma;
10769 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10770 goto error_return;
10771 }
10772 }
10773 }
10774
10775 /* Allocate some memory to hold information read in from the input
10776 files. */
10777 if (max_contents_size != 0)
10778 {
10779 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10780 if (flinfo.contents == NULL)
10781 goto error_return;
10782 }
10783
10784 if (max_external_reloc_size != 0)
10785 {
10786 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10787 if (flinfo.external_relocs == NULL)
10788 goto error_return;
10789 }
10790
10791 if (max_internal_reloc_count != 0)
10792 {
10793 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10794 amt *= sizeof (Elf_Internal_Rela);
10795 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10796 if (flinfo.internal_relocs == NULL)
10797 goto error_return;
10798 }
10799
10800 if (max_sym_count != 0)
10801 {
10802 amt = max_sym_count * bed->s->sizeof_sym;
10803 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10804 if (flinfo.external_syms == NULL)
10805 goto error_return;
10806
10807 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10808 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10809 if (flinfo.internal_syms == NULL)
10810 goto error_return;
10811
10812 amt = max_sym_count * sizeof (long);
10813 flinfo.indices = (long int *) bfd_malloc (amt);
10814 if (flinfo.indices == NULL)
10815 goto error_return;
10816
10817 amt = max_sym_count * sizeof (asection *);
10818 flinfo.sections = (asection **) bfd_malloc (amt);
10819 if (flinfo.sections == NULL)
10820 goto error_return;
10821 }
10822
10823 if (max_sym_shndx_count != 0)
10824 {
10825 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10826 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10827 if (flinfo.locsym_shndx == NULL)
10828 goto error_return;
10829 }
10830
10831 if (elf_hash_table (info)->tls_sec)
10832 {
10833 bfd_vma base, end = 0;
10834 asection *sec;
10835
10836 for (sec = elf_hash_table (info)->tls_sec;
10837 sec && (sec->flags & SEC_THREAD_LOCAL);
10838 sec = sec->next)
10839 {
10840 bfd_size_type size = sec->size;
10841
10842 if (size == 0
10843 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10844 {
10845 struct bfd_link_order *ord = sec->map_tail.link_order;
10846
10847 if (ord != NULL)
10848 size = ord->offset + ord->size;
10849 }
10850 end = sec->vma + size;
10851 }
10852 base = elf_hash_table (info)->tls_sec->vma;
10853 /* Only align end of TLS section if static TLS doesn't have special
10854 alignment requirements. */
10855 if (bed->static_tls_alignment == 1)
10856 end = align_power (end,
10857 elf_hash_table (info)->tls_sec->alignment_power);
10858 elf_hash_table (info)->tls_size = end - base;
10859 }
10860
10861 /* Reorder SHF_LINK_ORDER sections. */
10862 for (o = abfd->sections; o != NULL; o = o->next)
10863 {
10864 if (!elf_fixup_link_order (abfd, o))
10865 return FALSE;
10866 }
10867
10868 /* Since ELF permits relocations to be against local symbols, we
10869 must have the local symbols available when we do the relocations.
10870 Since we would rather only read the local symbols once, and we
10871 would rather not keep them in memory, we handle all the
10872 relocations for a single input file at the same time.
10873
10874 Unfortunately, there is no way to know the total number of local
10875 symbols until we have seen all of them, and the local symbol
10876 indices precede the global symbol indices. This means that when
10877 we are generating relocatable output, and we see a reloc against
10878 a global symbol, we can not know the symbol index until we have
10879 finished examining all the local symbols to see which ones we are
10880 going to output. To deal with this, we keep the relocations in
10881 memory, and don't output them until the end of the link. This is
10882 an unfortunate waste of memory, but I don't see a good way around
10883 it. Fortunately, it only happens when performing a relocatable
10884 link, which is not the common case. FIXME: If keep_memory is set
10885 we could write the relocs out and then read them again; I don't
10886 know how bad the memory loss will be. */
10887
10888 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10889 sub->output_has_begun = FALSE;
10890 for (o = abfd->sections; o != NULL; o = o->next)
10891 {
10892 for (p = o->map_head.link_order; p != NULL; p = p->next)
10893 {
10894 if (p->type == bfd_indirect_link_order
10895 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10896 == bfd_target_elf_flavour)
10897 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10898 {
10899 if (! sub->output_has_begun)
10900 {
10901 if (! elf_link_input_bfd (&flinfo, sub))
10902 goto error_return;
10903 sub->output_has_begun = TRUE;
10904 }
10905 }
10906 else if (p->type == bfd_section_reloc_link_order
10907 || p->type == bfd_symbol_reloc_link_order)
10908 {
10909 if (! elf_reloc_link_order (abfd, info, o, p))
10910 goto error_return;
10911 }
10912 else
10913 {
10914 if (! _bfd_default_link_order (abfd, info, o, p))
10915 {
10916 if (p->type == bfd_indirect_link_order
10917 && (bfd_get_flavour (sub)
10918 == bfd_target_elf_flavour)
10919 && (elf_elfheader (sub)->e_ident[EI_CLASS]
10920 != bed->s->elfclass))
10921 {
10922 const char *iclass, *oclass;
10923
10924 if (bed->s->elfclass == ELFCLASS64)
10925 {
10926 iclass = "ELFCLASS32";
10927 oclass = "ELFCLASS64";
10928 }
10929 else
10930 {
10931 iclass = "ELFCLASS64";
10932 oclass = "ELFCLASS32";
10933 }
10934
10935 bfd_set_error (bfd_error_wrong_format);
10936 (*_bfd_error_handler)
10937 (_("%B: file class %s incompatible with %s"),
10938 sub, iclass, oclass);
10939 }
10940
10941 goto error_return;
10942 }
10943 }
10944 }
10945 }
10946
10947 /* Free symbol buffer if needed. */
10948 if (!info->reduce_memory_overheads)
10949 {
10950 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10951 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10952 && elf_tdata (sub)->symbuf)
10953 {
10954 free (elf_tdata (sub)->symbuf);
10955 elf_tdata (sub)->symbuf = NULL;
10956 }
10957 }
10958
10959 /* Output a FILE symbol so that following locals are not associated
10960 with the wrong input file. */
10961 memset (&elfsym, 0, sizeof (elfsym));
10962 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10963 elfsym.st_shndx = SHN_ABS;
10964
10965 if (flinfo.filesym_count > 1
10966 && !elf_link_output_sym (&flinfo, NULL, &elfsym,
10967 bfd_und_section_ptr, NULL))
10968 return FALSE;
10969
10970 /* Output any global symbols that got converted to local in a
10971 version script or due to symbol visibility. We do this in a
10972 separate step since ELF requires all local symbols to appear
10973 prior to any global symbols. FIXME: We should only do this if
10974 some global symbols were, in fact, converted to become local.
10975 FIXME: Will this work correctly with the Irix 5 linker? */
10976 eoinfo.failed = FALSE;
10977 eoinfo.flinfo = &flinfo;
10978 eoinfo.localsyms = TRUE;
10979 eoinfo.need_second_pass = FALSE;
10980 eoinfo.second_pass = FALSE;
10981 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
10982 if (eoinfo.failed)
10983 return FALSE;
10984
10985 if (flinfo.filesym_count == 1
10986 && !elf_link_output_sym (&flinfo, NULL, &elfsym,
10987 bfd_und_section_ptr, NULL))
10988 return FALSE;
10989
10990 if (eoinfo.need_second_pass)
10991 {
10992 eoinfo.second_pass = TRUE;
10993 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
10994 if (eoinfo.failed)
10995 return FALSE;
10996 }
10997
10998 /* If backend needs to output some local symbols not present in the hash
10999 table, do it now. */
11000 if (bed->elf_backend_output_arch_local_syms)
11001 {
11002 typedef int (*out_sym_func)
11003 (void *, const char *, Elf_Internal_Sym *, asection *,
11004 struct elf_link_hash_entry *);
11005
11006 if (! ((*bed->elf_backend_output_arch_local_syms)
11007 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11008 return FALSE;
11009 }
11010
11011 /* That wrote out all the local symbols. Finish up the symbol table
11012 with the global symbols. Even if we want to strip everything we
11013 can, we still need to deal with those global symbols that got
11014 converted to local in a version script. */
11015
11016 /* The sh_info field records the index of the first non local symbol. */
11017 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11018
11019 if (dynamic
11020 && flinfo.dynsym_sec != NULL
11021 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11022 {
11023 Elf_Internal_Sym sym;
11024 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11025 long last_local = 0;
11026
11027 /* Write out the section symbols for the output sections. */
11028 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11029 {
11030 asection *s;
11031
11032 sym.st_size = 0;
11033 sym.st_name = 0;
11034 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11035 sym.st_other = 0;
11036 sym.st_target_internal = 0;
11037
11038 for (s = abfd->sections; s != NULL; s = s->next)
11039 {
11040 int indx;
11041 bfd_byte *dest;
11042 long dynindx;
11043
11044 dynindx = elf_section_data (s)->dynindx;
11045 if (dynindx <= 0)
11046 continue;
11047 indx = elf_section_data (s)->this_idx;
11048 BFD_ASSERT (indx > 0);
11049 sym.st_shndx = indx;
11050 if (! check_dynsym (abfd, &sym))
11051 return FALSE;
11052 sym.st_value = s->vma;
11053 dest = dynsym + dynindx * bed->s->sizeof_sym;
11054 if (last_local < dynindx)
11055 last_local = dynindx;
11056 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11057 }
11058 }
11059
11060 /* Write out the local dynsyms. */
11061 if (elf_hash_table (info)->dynlocal)
11062 {
11063 struct elf_link_local_dynamic_entry *e;
11064 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11065 {
11066 asection *s;
11067 bfd_byte *dest;
11068
11069 /* Copy the internal symbol and turn off visibility.
11070 Note that we saved a word of storage and overwrote
11071 the original st_name with the dynstr_index. */
11072 sym = e->isym;
11073 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11074
11075 s = bfd_section_from_elf_index (e->input_bfd,
11076 e->isym.st_shndx);
11077 if (s != NULL)
11078 {
11079 sym.st_shndx =
11080 elf_section_data (s->output_section)->this_idx;
11081 if (! check_dynsym (abfd, &sym))
11082 return FALSE;
11083 sym.st_value = (s->output_section->vma
11084 + s->output_offset
11085 + e->isym.st_value);
11086 }
11087
11088 if (last_local < e->dynindx)
11089 last_local = e->dynindx;
11090
11091 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11092 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11093 }
11094 }
11095
11096 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11097 last_local + 1;
11098 }
11099
11100 /* We get the global symbols from the hash table. */
11101 eoinfo.failed = FALSE;
11102 eoinfo.localsyms = FALSE;
11103 eoinfo.flinfo = &flinfo;
11104 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11105 if (eoinfo.failed)
11106 return FALSE;
11107
11108 /* If backend needs to output some symbols not present in the hash
11109 table, do it now. */
11110 if (bed->elf_backend_output_arch_syms)
11111 {
11112 typedef int (*out_sym_func)
11113 (void *, const char *, Elf_Internal_Sym *, asection *,
11114 struct elf_link_hash_entry *);
11115
11116 if (! ((*bed->elf_backend_output_arch_syms)
11117 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11118 return FALSE;
11119 }
11120
11121 /* Flush all symbols to the file. */
11122 if (! elf_link_flush_output_syms (&flinfo, bed))
11123 return FALSE;
11124
11125 /* Now we know the size of the symtab section. */
11126 off += symtab_hdr->sh_size;
11127
11128 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11129 if (symtab_shndx_hdr->sh_name != 0)
11130 {
11131 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11132 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11133 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11134 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11135 symtab_shndx_hdr->sh_size = amt;
11136
11137 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11138 off, TRUE);
11139
11140 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11141 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11142 return FALSE;
11143 }
11144
11145
11146 /* Finish up and write out the symbol string table (.strtab)
11147 section. */
11148 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11149 /* sh_name was set in prep_headers. */
11150 symstrtab_hdr->sh_type = SHT_STRTAB;
11151 symstrtab_hdr->sh_flags = 0;
11152 symstrtab_hdr->sh_addr = 0;
11153 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11154 symstrtab_hdr->sh_entsize = 0;
11155 symstrtab_hdr->sh_link = 0;
11156 symstrtab_hdr->sh_info = 0;
11157 /* sh_offset is set just below. */
11158 symstrtab_hdr->sh_addralign = 1;
11159
11160 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
11161 elf_next_file_pos (abfd) = off;
11162
11163 if (bfd_get_symcount (abfd) > 0)
11164 {
11165 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11166 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11167 return FALSE;
11168 }
11169
11170 /* Adjust the relocs to have the correct symbol indices. */
11171 for (o = abfd->sections; o != NULL; o = o->next)
11172 {
11173 struct bfd_elf_section_data *esdo = elf_section_data (o);
11174 if ((o->flags & SEC_RELOC) == 0)
11175 continue;
11176
11177 if (esdo->rel.hdr != NULL)
11178 elf_link_adjust_relocs (abfd, &esdo->rel);
11179 if (esdo->rela.hdr != NULL)
11180 elf_link_adjust_relocs (abfd, &esdo->rela);
11181
11182 /* Set the reloc_count field to 0 to prevent write_relocs from
11183 trying to swap the relocs out itself. */
11184 o->reloc_count = 0;
11185 }
11186
11187 if (dynamic && info->combreloc && dynobj != NULL)
11188 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11189
11190 /* If we are linking against a dynamic object, or generating a
11191 shared library, finish up the dynamic linking information. */
11192 if (dynamic)
11193 {
11194 bfd_byte *dyncon, *dynconend;
11195
11196 /* Fix up .dynamic entries. */
11197 o = bfd_get_linker_section (dynobj, ".dynamic");
11198 BFD_ASSERT (o != NULL);
11199
11200 dyncon = o->contents;
11201 dynconend = o->contents + o->size;
11202 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11203 {
11204 Elf_Internal_Dyn dyn;
11205 const char *name;
11206 unsigned int type;
11207
11208 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11209
11210 switch (dyn.d_tag)
11211 {
11212 default:
11213 continue;
11214 case DT_NULL:
11215 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11216 {
11217 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11218 {
11219 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11220 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11221 default: continue;
11222 }
11223 dyn.d_un.d_val = relativecount;
11224 relativecount = 0;
11225 break;
11226 }
11227 continue;
11228
11229 case DT_INIT:
11230 name = info->init_function;
11231 goto get_sym;
11232 case DT_FINI:
11233 name = info->fini_function;
11234 get_sym:
11235 {
11236 struct elf_link_hash_entry *h;
11237
11238 h = elf_link_hash_lookup (elf_hash_table (info), name,
11239 FALSE, FALSE, TRUE);
11240 if (h != NULL
11241 && (h->root.type == bfd_link_hash_defined
11242 || h->root.type == bfd_link_hash_defweak))
11243 {
11244 dyn.d_un.d_ptr = h->root.u.def.value;
11245 o = h->root.u.def.section;
11246 if (o->output_section != NULL)
11247 dyn.d_un.d_ptr += (o->output_section->vma
11248 + o->output_offset);
11249 else
11250 {
11251 /* The symbol is imported from another shared
11252 library and does not apply to this one. */
11253 dyn.d_un.d_ptr = 0;
11254 }
11255 break;
11256 }
11257 }
11258 continue;
11259
11260 case DT_PREINIT_ARRAYSZ:
11261 name = ".preinit_array";
11262 goto get_size;
11263 case DT_INIT_ARRAYSZ:
11264 name = ".init_array";
11265 goto get_size;
11266 case DT_FINI_ARRAYSZ:
11267 name = ".fini_array";
11268 get_size:
11269 o = bfd_get_section_by_name (abfd, name);
11270 if (o == NULL)
11271 {
11272 (*_bfd_error_handler)
11273 (_("%B: could not find output section %s"), abfd, name);
11274 goto error_return;
11275 }
11276 if (o->size == 0)
11277 (*_bfd_error_handler)
11278 (_("warning: %s section has zero size"), name);
11279 dyn.d_un.d_val = o->size;
11280 break;
11281
11282 case DT_PREINIT_ARRAY:
11283 name = ".preinit_array";
11284 goto get_vma;
11285 case DT_INIT_ARRAY:
11286 name = ".init_array";
11287 goto get_vma;
11288 case DT_FINI_ARRAY:
11289 name = ".fini_array";
11290 goto get_vma;
11291
11292 case DT_HASH:
11293 name = ".hash";
11294 goto get_vma;
11295 case DT_GNU_HASH:
11296 name = ".gnu.hash";
11297 goto get_vma;
11298 case DT_STRTAB:
11299 name = ".dynstr";
11300 goto get_vma;
11301 case DT_SYMTAB:
11302 name = ".dynsym";
11303 goto get_vma;
11304 case DT_VERDEF:
11305 name = ".gnu.version_d";
11306 goto get_vma;
11307 case DT_VERNEED:
11308 name = ".gnu.version_r";
11309 goto get_vma;
11310 case DT_VERSYM:
11311 name = ".gnu.version";
11312 get_vma:
11313 o = bfd_get_section_by_name (abfd, name);
11314 if (o == NULL)
11315 {
11316 (*_bfd_error_handler)
11317 (_("%B: could not find output section %s"), abfd, name);
11318 goto error_return;
11319 }
11320 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11321 {
11322 (*_bfd_error_handler)
11323 (_("warning: section '%s' is being made into a note"), name);
11324 bfd_set_error (bfd_error_nonrepresentable_section);
11325 goto error_return;
11326 }
11327 dyn.d_un.d_ptr = o->vma;
11328 break;
11329
11330 case DT_REL:
11331 case DT_RELA:
11332 case DT_RELSZ:
11333 case DT_RELASZ:
11334 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11335 type = SHT_REL;
11336 else
11337 type = SHT_RELA;
11338 dyn.d_un.d_val = 0;
11339 dyn.d_un.d_ptr = 0;
11340 for (i = 1; i < elf_numsections (abfd); i++)
11341 {
11342 Elf_Internal_Shdr *hdr;
11343
11344 hdr = elf_elfsections (abfd)[i];
11345 if (hdr->sh_type == type
11346 && (hdr->sh_flags & SHF_ALLOC) != 0)
11347 {
11348 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11349 dyn.d_un.d_val += hdr->sh_size;
11350 else
11351 {
11352 if (dyn.d_un.d_ptr == 0
11353 || hdr->sh_addr < dyn.d_un.d_ptr)
11354 dyn.d_un.d_ptr = hdr->sh_addr;
11355 }
11356 }
11357 }
11358 break;
11359 }
11360 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11361 }
11362 }
11363
11364 /* If we have created any dynamic sections, then output them. */
11365 if (dynobj != NULL)
11366 {
11367 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11368 goto error_return;
11369
11370 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11371 if (((info->warn_shared_textrel && info->shared)
11372 || info->error_textrel)
11373 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11374 {
11375 bfd_byte *dyncon, *dynconend;
11376
11377 dyncon = o->contents;
11378 dynconend = o->contents + o->size;
11379 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11380 {
11381 Elf_Internal_Dyn dyn;
11382
11383 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11384
11385 if (dyn.d_tag == DT_TEXTREL)
11386 {
11387 if (info->error_textrel)
11388 info->callbacks->einfo
11389 (_("%P%X: read-only segment has dynamic relocations.\n"));
11390 else
11391 info->callbacks->einfo
11392 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11393 break;
11394 }
11395 }
11396 }
11397
11398 for (o = dynobj->sections; o != NULL; o = o->next)
11399 {
11400 if ((o->flags & SEC_HAS_CONTENTS) == 0
11401 || o->size == 0
11402 || o->output_section == bfd_abs_section_ptr)
11403 continue;
11404 if ((o->flags & SEC_LINKER_CREATED) == 0)
11405 {
11406 /* At this point, we are only interested in sections
11407 created by _bfd_elf_link_create_dynamic_sections. */
11408 continue;
11409 }
11410 if (elf_hash_table (info)->stab_info.stabstr == o)
11411 continue;
11412 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11413 continue;
11414 if (strcmp (o->name, ".dynstr") != 0)
11415 {
11416 /* FIXME: octets_per_byte. */
11417 if (! bfd_set_section_contents (abfd, o->output_section,
11418 o->contents,
11419 (file_ptr) o->output_offset,
11420 o->size))
11421 goto error_return;
11422 }
11423 else
11424 {
11425 /* The contents of the .dynstr section are actually in a
11426 stringtab. */
11427 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11428 if (bfd_seek (abfd, off, SEEK_SET) != 0
11429 || ! _bfd_elf_strtab_emit (abfd,
11430 elf_hash_table (info)->dynstr))
11431 goto error_return;
11432 }
11433 }
11434 }
11435
11436 if (info->relocatable)
11437 {
11438 bfd_boolean failed = FALSE;
11439
11440 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11441 if (failed)
11442 goto error_return;
11443 }
11444
11445 /* If we have optimized stabs strings, output them. */
11446 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11447 {
11448 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11449 goto error_return;
11450 }
11451
11452 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11453 goto error_return;
11454
11455 elf_final_link_free (abfd, &flinfo);
11456
11457 elf_linker (abfd) = TRUE;
11458
11459 if (attr_section)
11460 {
11461 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11462 if (contents == NULL)
11463 return FALSE; /* Bail out and fail. */
11464 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11465 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11466 free (contents);
11467 }
11468
11469 return TRUE;
11470
11471 error_return:
11472 elf_final_link_free (abfd, &flinfo);
11473 return FALSE;
11474 }
11475 \f
11476 /* Initialize COOKIE for input bfd ABFD. */
11477
11478 static bfd_boolean
11479 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11480 struct bfd_link_info *info, bfd *abfd)
11481 {
11482 Elf_Internal_Shdr *symtab_hdr;
11483 const struct elf_backend_data *bed;
11484
11485 bed = get_elf_backend_data (abfd);
11486 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11487
11488 cookie->abfd = abfd;
11489 cookie->sym_hashes = elf_sym_hashes (abfd);
11490 cookie->bad_symtab = elf_bad_symtab (abfd);
11491 if (cookie->bad_symtab)
11492 {
11493 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11494 cookie->extsymoff = 0;
11495 }
11496 else
11497 {
11498 cookie->locsymcount = symtab_hdr->sh_info;
11499 cookie->extsymoff = symtab_hdr->sh_info;
11500 }
11501
11502 if (bed->s->arch_size == 32)
11503 cookie->r_sym_shift = 8;
11504 else
11505 cookie->r_sym_shift = 32;
11506
11507 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11508 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11509 {
11510 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11511 cookie->locsymcount, 0,
11512 NULL, NULL, NULL);
11513 if (cookie->locsyms == NULL)
11514 {
11515 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11516 return FALSE;
11517 }
11518 if (info->keep_memory)
11519 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11520 }
11521 return TRUE;
11522 }
11523
11524 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11525
11526 static void
11527 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11528 {
11529 Elf_Internal_Shdr *symtab_hdr;
11530
11531 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11532 if (cookie->locsyms != NULL
11533 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11534 free (cookie->locsyms);
11535 }
11536
11537 /* Initialize the relocation information in COOKIE for input section SEC
11538 of input bfd ABFD. */
11539
11540 static bfd_boolean
11541 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11542 struct bfd_link_info *info, bfd *abfd,
11543 asection *sec)
11544 {
11545 const struct elf_backend_data *bed;
11546
11547 if (sec->reloc_count == 0)
11548 {
11549 cookie->rels = NULL;
11550 cookie->relend = NULL;
11551 }
11552 else
11553 {
11554 bed = get_elf_backend_data (abfd);
11555
11556 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11557 info->keep_memory);
11558 if (cookie->rels == NULL)
11559 return FALSE;
11560 cookie->rel = cookie->rels;
11561 cookie->relend = (cookie->rels
11562 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11563 }
11564 cookie->rel = cookie->rels;
11565 return TRUE;
11566 }
11567
11568 /* Free the memory allocated by init_reloc_cookie_rels,
11569 if appropriate. */
11570
11571 static void
11572 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11573 asection *sec)
11574 {
11575 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11576 free (cookie->rels);
11577 }
11578
11579 /* Initialize the whole of COOKIE for input section SEC. */
11580
11581 static bfd_boolean
11582 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11583 struct bfd_link_info *info,
11584 asection *sec)
11585 {
11586 if (!init_reloc_cookie (cookie, info, sec->owner))
11587 goto error1;
11588 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11589 goto error2;
11590 return TRUE;
11591
11592 error2:
11593 fini_reloc_cookie (cookie, sec->owner);
11594 error1:
11595 return FALSE;
11596 }
11597
11598 /* Free the memory allocated by init_reloc_cookie_for_section,
11599 if appropriate. */
11600
11601 static void
11602 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11603 asection *sec)
11604 {
11605 fini_reloc_cookie_rels (cookie, sec);
11606 fini_reloc_cookie (cookie, sec->owner);
11607 }
11608 \f
11609 /* Garbage collect unused sections. */
11610
11611 /* Default gc_mark_hook. */
11612
11613 asection *
11614 _bfd_elf_gc_mark_hook (asection *sec,
11615 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11616 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11617 struct elf_link_hash_entry *h,
11618 Elf_Internal_Sym *sym)
11619 {
11620 const char *sec_name;
11621
11622 if (h != NULL)
11623 {
11624 switch (h->root.type)
11625 {
11626 case bfd_link_hash_defined:
11627 case bfd_link_hash_defweak:
11628 return h->root.u.def.section;
11629
11630 case bfd_link_hash_common:
11631 return h->root.u.c.p->section;
11632
11633 case bfd_link_hash_undefined:
11634 case bfd_link_hash_undefweak:
11635 /* To work around a glibc bug, keep all XXX input sections
11636 when there is an as yet undefined reference to __start_XXX
11637 or __stop_XXX symbols. The linker will later define such
11638 symbols for orphan input sections that have a name
11639 representable as a C identifier. */
11640 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11641 sec_name = h->root.root.string + 8;
11642 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11643 sec_name = h->root.root.string + 7;
11644 else
11645 sec_name = NULL;
11646
11647 if (sec_name && *sec_name != '\0')
11648 {
11649 bfd *i;
11650
11651 for (i = info->input_bfds; i; i = i->link_next)
11652 {
11653 sec = bfd_get_section_by_name (i, sec_name);
11654 if (sec)
11655 sec->flags |= SEC_KEEP;
11656 }
11657 }
11658 break;
11659
11660 default:
11661 break;
11662 }
11663 }
11664 else
11665 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11666
11667 return NULL;
11668 }
11669
11670 /* COOKIE->rel describes a relocation against section SEC, which is
11671 a section we've decided to keep. Return the section that contains
11672 the relocation symbol, or NULL if no section contains it. */
11673
11674 asection *
11675 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11676 elf_gc_mark_hook_fn gc_mark_hook,
11677 struct elf_reloc_cookie *cookie)
11678 {
11679 unsigned long r_symndx;
11680 struct elf_link_hash_entry *h;
11681
11682 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11683 if (r_symndx == STN_UNDEF)
11684 return NULL;
11685
11686 if (r_symndx >= cookie->locsymcount
11687 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11688 {
11689 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11690 while (h->root.type == bfd_link_hash_indirect
11691 || h->root.type == bfd_link_hash_warning)
11692 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11693 h->mark = 1;
11694 /* If this symbol is weak and there is a non-weak definition, we
11695 keep the non-weak definition because many backends put
11696 dynamic reloc info on the non-weak definition for code
11697 handling copy relocs. */
11698 if (h->u.weakdef != NULL)
11699 h->u.weakdef->mark = 1;
11700 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11701 }
11702
11703 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11704 &cookie->locsyms[r_symndx]);
11705 }
11706
11707 /* COOKIE->rel describes a relocation against section SEC, which is
11708 a section we've decided to keep. Mark the section that contains
11709 the relocation symbol. */
11710
11711 bfd_boolean
11712 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11713 asection *sec,
11714 elf_gc_mark_hook_fn gc_mark_hook,
11715 struct elf_reloc_cookie *cookie)
11716 {
11717 asection *rsec;
11718
11719 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11720 if (rsec && !rsec->gc_mark)
11721 {
11722 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11723 || (rsec->owner->flags & DYNAMIC) != 0)
11724 rsec->gc_mark = 1;
11725 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11726 return FALSE;
11727 }
11728 return TRUE;
11729 }
11730
11731 /* The mark phase of garbage collection. For a given section, mark
11732 it and any sections in this section's group, and all the sections
11733 which define symbols to which it refers. */
11734
11735 bfd_boolean
11736 _bfd_elf_gc_mark (struct bfd_link_info *info,
11737 asection *sec,
11738 elf_gc_mark_hook_fn gc_mark_hook)
11739 {
11740 bfd_boolean ret;
11741 asection *group_sec, *eh_frame;
11742
11743 sec->gc_mark = 1;
11744
11745 /* Mark all the sections in the group. */
11746 group_sec = elf_section_data (sec)->next_in_group;
11747 if (group_sec && !group_sec->gc_mark)
11748 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11749 return FALSE;
11750
11751 /* Look through the section relocs. */
11752 ret = TRUE;
11753 eh_frame = elf_eh_frame_section (sec->owner);
11754 if ((sec->flags & SEC_RELOC) != 0
11755 && sec->reloc_count > 0
11756 && sec != eh_frame)
11757 {
11758 struct elf_reloc_cookie cookie;
11759
11760 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11761 ret = FALSE;
11762 else
11763 {
11764 for (; cookie.rel < cookie.relend; cookie.rel++)
11765 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11766 {
11767 ret = FALSE;
11768 break;
11769 }
11770 fini_reloc_cookie_for_section (&cookie, sec);
11771 }
11772 }
11773
11774 if (ret && eh_frame && elf_fde_list (sec))
11775 {
11776 struct elf_reloc_cookie cookie;
11777
11778 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11779 ret = FALSE;
11780 else
11781 {
11782 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11783 gc_mark_hook, &cookie))
11784 ret = FALSE;
11785 fini_reloc_cookie_for_section (&cookie, eh_frame);
11786 }
11787 }
11788
11789 return ret;
11790 }
11791
11792 /* Keep debug and special sections. */
11793
11794 bfd_boolean
11795 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11796 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11797 {
11798 bfd *ibfd;
11799
11800 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11801 {
11802 asection *isec;
11803 bfd_boolean some_kept;
11804 bfd_boolean debug_frag_seen;
11805
11806 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11807 continue;
11808
11809 /* Ensure all linker created sections are kept,
11810 see if any other section is already marked,
11811 and note if we have any fragmented debug sections. */
11812 debug_frag_seen = some_kept = FALSE;
11813 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11814 {
11815 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11816 isec->gc_mark = 1;
11817 else if (isec->gc_mark)
11818 some_kept = TRUE;
11819
11820 if (debug_frag_seen == FALSE
11821 && (isec->flags & SEC_DEBUGGING)
11822 && CONST_STRNEQ (isec->name, ".debug_line."))
11823 debug_frag_seen = TRUE;
11824 }
11825
11826 /* If no section in this file will be kept, then we can
11827 toss out the debug and special sections. */
11828 if (!some_kept)
11829 continue;
11830
11831 /* Keep debug and special sections like .comment when they are
11832 not part of a group, or when we have single-member groups. */
11833 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11834 if ((elf_next_in_group (isec) == NULL
11835 || elf_next_in_group (isec) == isec)
11836 && ((isec->flags & SEC_DEBUGGING) != 0
11837 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
11838 isec->gc_mark = 1;
11839
11840 if (! debug_frag_seen)
11841 continue;
11842
11843 /* Look for CODE sections which are going to be discarded,
11844 and find and discard any fragmented debug sections which
11845 are associated with that code section. */
11846 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11847 if ((isec->flags & SEC_CODE) != 0
11848 && isec->gc_mark == 0)
11849 {
11850 unsigned int ilen;
11851 asection *dsec;
11852
11853 ilen = strlen (isec->name);
11854
11855 /* Association is determined by the name of the debug section
11856 containing the name of the code section as a suffix. For
11857 example .debug_line.text.foo is a debug section associated
11858 with .text.foo. */
11859 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
11860 {
11861 unsigned int dlen;
11862
11863 if (dsec->gc_mark == 0
11864 || (dsec->flags & SEC_DEBUGGING) == 0)
11865 continue;
11866
11867 dlen = strlen (dsec->name);
11868
11869 if (dlen > ilen
11870 && strncmp (dsec->name + (dlen - ilen),
11871 isec->name, ilen) == 0)
11872 {
11873 dsec->gc_mark = 0;
11874 break;
11875 }
11876 }
11877 }
11878 }
11879 return TRUE;
11880 }
11881
11882 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11883
11884 struct elf_gc_sweep_symbol_info
11885 {
11886 struct bfd_link_info *info;
11887 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11888 bfd_boolean);
11889 };
11890
11891 static bfd_boolean
11892 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11893 {
11894 if (!h->mark
11895 && (((h->root.type == bfd_link_hash_defined
11896 || h->root.type == bfd_link_hash_defweak)
11897 && !(h->def_regular
11898 && h->root.u.def.section->gc_mark))
11899 || h->root.type == bfd_link_hash_undefined
11900 || h->root.type == bfd_link_hash_undefweak))
11901 {
11902 struct elf_gc_sweep_symbol_info *inf;
11903
11904 inf = (struct elf_gc_sweep_symbol_info *) data;
11905 (*inf->hide_symbol) (inf->info, h, TRUE);
11906 h->def_regular = 0;
11907 h->ref_regular = 0;
11908 h->ref_regular_nonweak = 0;
11909 }
11910
11911 return TRUE;
11912 }
11913
11914 /* The sweep phase of garbage collection. Remove all garbage sections. */
11915
11916 typedef bfd_boolean (*gc_sweep_hook_fn)
11917 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11918
11919 static bfd_boolean
11920 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11921 {
11922 bfd *sub;
11923 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11924 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11925 unsigned long section_sym_count;
11926 struct elf_gc_sweep_symbol_info sweep_info;
11927
11928 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11929 {
11930 asection *o;
11931
11932 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11933 continue;
11934
11935 for (o = sub->sections; o != NULL; o = o->next)
11936 {
11937 /* When any section in a section group is kept, we keep all
11938 sections in the section group. If the first member of
11939 the section group is excluded, we will also exclude the
11940 group section. */
11941 if (o->flags & SEC_GROUP)
11942 {
11943 asection *first = elf_next_in_group (o);
11944 o->gc_mark = first->gc_mark;
11945 }
11946
11947 if (o->gc_mark)
11948 continue;
11949
11950 /* Skip sweeping sections already excluded. */
11951 if (o->flags & SEC_EXCLUDE)
11952 continue;
11953
11954 /* Since this is early in the link process, it is simple
11955 to remove a section from the output. */
11956 o->flags |= SEC_EXCLUDE;
11957
11958 if (info->print_gc_sections && o->size != 0)
11959 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11960
11961 /* But we also have to update some of the relocation
11962 info we collected before. */
11963 if (gc_sweep_hook
11964 && (o->flags & SEC_RELOC) != 0
11965 && o->reloc_count > 0
11966 && !bfd_is_abs_section (o->output_section))
11967 {
11968 Elf_Internal_Rela *internal_relocs;
11969 bfd_boolean r;
11970
11971 internal_relocs
11972 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11973 info->keep_memory);
11974 if (internal_relocs == NULL)
11975 return FALSE;
11976
11977 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11978
11979 if (elf_section_data (o)->relocs != internal_relocs)
11980 free (internal_relocs);
11981
11982 if (!r)
11983 return FALSE;
11984 }
11985 }
11986 }
11987
11988 /* Remove the symbols that were in the swept sections from the dynamic
11989 symbol table. GCFIXME: Anyone know how to get them out of the
11990 static symbol table as well? */
11991 sweep_info.info = info;
11992 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11993 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11994 &sweep_info);
11995
11996 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11997 return TRUE;
11998 }
11999
12000 /* Propagate collected vtable information. This is called through
12001 elf_link_hash_traverse. */
12002
12003 static bfd_boolean
12004 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12005 {
12006 /* Those that are not vtables. */
12007 if (h->vtable == NULL || h->vtable->parent == NULL)
12008 return TRUE;
12009
12010 /* Those vtables that do not have parents, we cannot merge. */
12011 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12012 return TRUE;
12013
12014 /* If we've already been done, exit. */
12015 if (h->vtable->used && h->vtable->used[-1])
12016 return TRUE;
12017
12018 /* Make sure the parent's table is up to date. */
12019 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12020
12021 if (h->vtable->used == NULL)
12022 {
12023 /* None of this table's entries were referenced. Re-use the
12024 parent's table. */
12025 h->vtable->used = h->vtable->parent->vtable->used;
12026 h->vtable->size = h->vtable->parent->vtable->size;
12027 }
12028 else
12029 {
12030 size_t n;
12031 bfd_boolean *cu, *pu;
12032
12033 /* Or the parent's entries into ours. */
12034 cu = h->vtable->used;
12035 cu[-1] = TRUE;
12036 pu = h->vtable->parent->vtable->used;
12037 if (pu != NULL)
12038 {
12039 const struct elf_backend_data *bed;
12040 unsigned int log_file_align;
12041
12042 bed = get_elf_backend_data (h->root.u.def.section->owner);
12043 log_file_align = bed->s->log_file_align;
12044 n = h->vtable->parent->vtable->size >> log_file_align;
12045 while (n--)
12046 {
12047 if (*pu)
12048 *cu = TRUE;
12049 pu++;
12050 cu++;
12051 }
12052 }
12053 }
12054
12055 return TRUE;
12056 }
12057
12058 static bfd_boolean
12059 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12060 {
12061 asection *sec;
12062 bfd_vma hstart, hend;
12063 Elf_Internal_Rela *relstart, *relend, *rel;
12064 const struct elf_backend_data *bed;
12065 unsigned int log_file_align;
12066
12067 /* Take care of both those symbols that do not describe vtables as
12068 well as those that are not loaded. */
12069 if (h->vtable == NULL || h->vtable->parent == NULL)
12070 return TRUE;
12071
12072 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12073 || h->root.type == bfd_link_hash_defweak);
12074
12075 sec = h->root.u.def.section;
12076 hstart = h->root.u.def.value;
12077 hend = hstart + h->size;
12078
12079 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12080 if (!relstart)
12081 return *(bfd_boolean *) okp = FALSE;
12082 bed = get_elf_backend_data (sec->owner);
12083 log_file_align = bed->s->log_file_align;
12084
12085 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12086
12087 for (rel = relstart; rel < relend; ++rel)
12088 if (rel->r_offset >= hstart && rel->r_offset < hend)
12089 {
12090 /* If the entry is in use, do nothing. */
12091 if (h->vtable->used
12092 && (rel->r_offset - hstart) < h->vtable->size)
12093 {
12094 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12095 if (h->vtable->used[entry])
12096 continue;
12097 }
12098 /* Otherwise, kill it. */
12099 rel->r_offset = rel->r_info = rel->r_addend = 0;
12100 }
12101
12102 return TRUE;
12103 }
12104
12105 /* Mark sections containing dynamically referenced symbols. When
12106 building shared libraries, we must assume that any visible symbol is
12107 referenced. */
12108
12109 bfd_boolean
12110 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12111 {
12112 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12113
12114 if ((h->root.type == bfd_link_hash_defined
12115 || h->root.type == bfd_link_hash_defweak)
12116 && (h->ref_dynamic
12117 || ((!info->executable || info->export_dynamic)
12118 && h->def_regular
12119 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12120 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12121 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12122 || !bfd_hide_sym_by_version (info->version_info,
12123 h->root.root.string)))))
12124 h->root.u.def.section->flags |= SEC_KEEP;
12125
12126 return TRUE;
12127 }
12128
12129 /* Keep all sections containing symbols undefined on the command-line,
12130 and the section containing the entry symbol. */
12131
12132 void
12133 _bfd_elf_gc_keep (struct bfd_link_info *info)
12134 {
12135 struct bfd_sym_chain *sym;
12136
12137 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12138 {
12139 struct elf_link_hash_entry *h;
12140
12141 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12142 FALSE, FALSE, FALSE);
12143
12144 if (h != NULL
12145 && (h->root.type == bfd_link_hash_defined
12146 || h->root.type == bfd_link_hash_defweak)
12147 && !bfd_is_abs_section (h->root.u.def.section))
12148 h->root.u.def.section->flags |= SEC_KEEP;
12149 }
12150 }
12151
12152 /* Do mark and sweep of unused sections. */
12153
12154 bfd_boolean
12155 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12156 {
12157 bfd_boolean ok = TRUE;
12158 bfd *sub;
12159 elf_gc_mark_hook_fn gc_mark_hook;
12160 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12161
12162 if (!bed->can_gc_sections
12163 || !is_elf_hash_table (info->hash))
12164 {
12165 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12166 return TRUE;
12167 }
12168
12169 bed->gc_keep (info);
12170
12171 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12172 at the .eh_frame section if we can mark the FDEs individually. */
12173 _bfd_elf_begin_eh_frame_parsing (info);
12174 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12175 {
12176 asection *sec;
12177 struct elf_reloc_cookie cookie;
12178
12179 sec = bfd_get_section_by_name (sub, ".eh_frame");
12180 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12181 {
12182 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12183 if (elf_section_data (sec)->sec_info
12184 && (sec->flags & SEC_LINKER_CREATED) == 0)
12185 elf_eh_frame_section (sub) = sec;
12186 fini_reloc_cookie_for_section (&cookie, sec);
12187 sec = bfd_get_next_section_by_name (sec);
12188 }
12189 }
12190 _bfd_elf_end_eh_frame_parsing (info);
12191
12192 /* Apply transitive closure to the vtable entry usage info. */
12193 elf_link_hash_traverse (elf_hash_table (info),
12194 elf_gc_propagate_vtable_entries_used,
12195 &ok);
12196 if (!ok)
12197 return FALSE;
12198
12199 /* Kill the vtable relocations that were not used. */
12200 elf_link_hash_traverse (elf_hash_table (info),
12201 elf_gc_smash_unused_vtentry_relocs,
12202 &ok);
12203 if (!ok)
12204 return FALSE;
12205
12206 /* Mark dynamically referenced symbols. */
12207 if (elf_hash_table (info)->dynamic_sections_created)
12208 elf_link_hash_traverse (elf_hash_table (info),
12209 bed->gc_mark_dynamic_ref,
12210 info);
12211
12212 /* Grovel through relocs to find out who stays ... */
12213 gc_mark_hook = bed->gc_mark_hook;
12214 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12215 {
12216 asection *o;
12217
12218 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12219 continue;
12220
12221 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12222 Also treat note sections as a root, if the section is not part
12223 of a group. */
12224 for (o = sub->sections; o != NULL; o = o->next)
12225 if (!o->gc_mark
12226 && (o->flags & SEC_EXCLUDE) == 0
12227 && ((o->flags & SEC_KEEP) != 0
12228 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12229 && elf_next_in_group (o) == NULL )))
12230 {
12231 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12232 return FALSE;
12233 }
12234 }
12235
12236 /* Allow the backend to mark additional target specific sections. */
12237 bed->gc_mark_extra_sections (info, gc_mark_hook);
12238
12239 /* ... and mark SEC_EXCLUDE for those that go. */
12240 return elf_gc_sweep (abfd, info);
12241 }
12242 \f
12243 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12244
12245 bfd_boolean
12246 bfd_elf_gc_record_vtinherit (bfd *abfd,
12247 asection *sec,
12248 struct elf_link_hash_entry *h,
12249 bfd_vma offset)
12250 {
12251 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12252 struct elf_link_hash_entry **search, *child;
12253 bfd_size_type extsymcount;
12254 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12255
12256 /* The sh_info field of the symtab header tells us where the
12257 external symbols start. We don't care about the local symbols at
12258 this point. */
12259 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12260 if (!elf_bad_symtab (abfd))
12261 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12262
12263 sym_hashes = elf_sym_hashes (abfd);
12264 sym_hashes_end = sym_hashes + extsymcount;
12265
12266 /* Hunt down the child symbol, which is in this section at the same
12267 offset as the relocation. */
12268 for (search = sym_hashes; search != sym_hashes_end; ++search)
12269 {
12270 if ((child = *search) != NULL
12271 && (child->root.type == bfd_link_hash_defined
12272 || child->root.type == bfd_link_hash_defweak)
12273 && child->root.u.def.section == sec
12274 && child->root.u.def.value == offset)
12275 goto win;
12276 }
12277
12278 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12279 abfd, sec, (unsigned long) offset);
12280 bfd_set_error (bfd_error_invalid_operation);
12281 return FALSE;
12282
12283 win:
12284 if (!child->vtable)
12285 {
12286 child->vtable = (struct elf_link_virtual_table_entry *)
12287 bfd_zalloc (abfd, sizeof (*child->vtable));
12288 if (!child->vtable)
12289 return FALSE;
12290 }
12291 if (!h)
12292 {
12293 /* This *should* only be the absolute section. It could potentially
12294 be that someone has defined a non-global vtable though, which
12295 would be bad. It isn't worth paging in the local symbols to be
12296 sure though; that case should simply be handled by the assembler. */
12297
12298 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12299 }
12300 else
12301 child->vtable->parent = h;
12302
12303 return TRUE;
12304 }
12305
12306 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12307
12308 bfd_boolean
12309 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12310 asection *sec ATTRIBUTE_UNUSED,
12311 struct elf_link_hash_entry *h,
12312 bfd_vma addend)
12313 {
12314 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12315 unsigned int log_file_align = bed->s->log_file_align;
12316
12317 if (!h->vtable)
12318 {
12319 h->vtable = (struct elf_link_virtual_table_entry *)
12320 bfd_zalloc (abfd, sizeof (*h->vtable));
12321 if (!h->vtable)
12322 return FALSE;
12323 }
12324
12325 if (addend >= h->vtable->size)
12326 {
12327 size_t size, bytes, file_align;
12328 bfd_boolean *ptr = h->vtable->used;
12329
12330 /* While the symbol is undefined, we have to be prepared to handle
12331 a zero size. */
12332 file_align = 1 << log_file_align;
12333 if (h->root.type == bfd_link_hash_undefined)
12334 size = addend + file_align;
12335 else
12336 {
12337 size = h->size;
12338 if (addend >= size)
12339 {
12340 /* Oops! We've got a reference past the defined end of
12341 the table. This is probably a bug -- shall we warn? */
12342 size = addend + file_align;
12343 }
12344 }
12345 size = (size + file_align - 1) & -file_align;
12346
12347 /* Allocate one extra entry for use as a "done" flag for the
12348 consolidation pass. */
12349 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12350
12351 if (ptr)
12352 {
12353 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12354
12355 if (ptr != NULL)
12356 {
12357 size_t oldbytes;
12358
12359 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12360 * sizeof (bfd_boolean));
12361 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12362 }
12363 }
12364 else
12365 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12366
12367 if (ptr == NULL)
12368 return FALSE;
12369
12370 /* And arrange for that done flag to be at index -1. */
12371 h->vtable->used = ptr + 1;
12372 h->vtable->size = size;
12373 }
12374
12375 h->vtable->used[addend >> log_file_align] = TRUE;
12376
12377 return TRUE;
12378 }
12379
12380 /* Map an ELF section header flag to its corresponding string. */
12381 typedef struct
12382 {
12383 char *flag_name;
12384 flagword flag_value;
12385 } elf_flags_to_name_table;
12386
12387 static elf_flags_to_name_table elf_flags_to_names [] =
12388 {
12389 { "SHF_WRITE", SHF_WRITE },
12390 { "SHF_ALLOC", SHF_ALLOC },
12391 { "SHF_EXECINSTR", SHF_EXECINSTR },
12392 { "SHF_MERGE", SHF_MERGE },
12393 { "SHF_STRINGS", SHF_STRINGS },
12394 { "SHF_INFO_LINK", SHF_INFO_LINK},
12395 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12396 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12397 { "SHF_GROUP", SHF_GROUP },
12398 { "SHF_TLS", SHF_TLS },
12399 { "SHF_MASKOS", SHF_MASKOS },
12400 { "SHF_EXCLUDE", SHF_EXCLUDE },
12401 };
12402
12403 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12404 bfd_boolean
12405 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12406 struct flag_info *flaginfo,
12407 asection *section)
12408 {
12409 const bfd_vma sh_flags = elf_section_flags (section);
12410
12411 if (!flaginfo->flags_initialized)
12412 {
12413 bfd *obfd = info->output_bfd;
12414 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12415 struct flag_info_list *tf = flaginfo->flag_list;
12416 int with_hex = 0;
12417 int without_hex = 0;
12418
12419 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12420 {
12421 unsigned i;
12422 flagword (*lookup) (char *);
12423
12424 lookup = bed->elf_backend_lookup_section_flags_hook;
12425 if (lookup != NULL)
12426 {
12427 flagword hexval = (*lookup) ((char *) tf->name);
12428
12429 if (hexval != 0)
12430 {
12431 if (tf->with == with_flags)
12432 with_hex |= hexval;
12433 else if (tf->with == without_flags)
12434 without_hex |= hexval;
12435 tf->valid = TRUE;
12436 continue;
12437 }
12438 }
12439 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12440 {
12441 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12442 {
12443 if (tf->with == with_flags)
12444 with_hex |= elf_flags_to_names[i].flag_value;
12445 else if (tf->with == without_flags)
12446 without_hex |= elf_flags_to_names[i].flag_value;
12447 tf->valid = TRUE;
12448 break;
12449 }
12450 }
12451 if (!tf->valid)
12452 {
12453 info->callbacks->einfo
12454 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12455 return FALSE;
12456 }
12457 }
12458 flaginfo->flags_initialized = TRUE;
12459 flaginfo->only_with_flags |= with_hex;
12460 flaginfo->not_with_flags |= without_hex;
12461 }
12462
12463 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12464 return FALSE;
12465
12466 if ((flaginfo->not_with_flags & sh_flags) != 0)
12467 return FALSE;
12468
12469 return TRUE;
12470 }
12471
12472 struct alloc_got_off_arg {
12473 bfd_vma gotoff;
12474 struct bfd_link_info *info;
12475 };
12476
12477 /* We need a special top-level link routine to convert got reference counts
12478 to real got offsets. */
12479
12480 static bfd_boolean
12481 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12482 {
12483 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12484 bfd *obfd = gofarg->info->output_bfd;
12485 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12486
12487 if (h->got.refcount > 0)
12488 {
12489 h->got.offset = gofarg->gotoff;
12490 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12491 }
12492 else
12493 h->got.offset = (bfd_vma) -1;
12494
12495 return TRUE;
12496 }
12497
12498 /* And an accompanying bit to work out final got entry offsets once
12499 we're done. Should be called from final_link. */
12500
12501 bfd_boolean
12502 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12503 struct bfd_link_info *info)
12504 {
12505 bfd *i;
12506 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12507 bfd_vma gotoff;
12508 struct alloc_got_off_arg gofarg;
12509
12510 BFD_ASSERT (abfd == info->output_bfd);
12511
12512 if (! is_elf_hash_table (info->hash))
12513 return FALSE;
12514
12515 /* The GOT offset is relative to the .got section, but the GOT header is
12516 put into the .got.plt section, if the backend uses it. */
12517 if (bed->want_got_plt)
12518 gotoff = 0;
12519 else
12520 gotoff = bed->got_header_size;
12521
12522 /* Do the local .got entries first. */
12523 for (i = info->input_bfds; i; i = i->link_next)
12524 {
12525 bfd_signed_vma *local_got;
12526 bfd_size_type j, locsymcount;
12527 Elf_Internal_Shdr *symtab_hdr;
12528
12529 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12530 continue;
12531
12532 local_got = elf_local_got_refcounts (i);
12533 if (!local_got)
12534 continue;
12535
12536 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12537 if (elf_bad_symtab (i))
12538 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12539 else
12540 locsymcount = symtab_hdr->sh_info;
12541
12542 for (j = 0; j < locsymcount; ++j)
12543 {
12544 if (local_got[j] > 0)
12545 {
12546 local_got[j] = gotoff;
12547 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12548 }
12549 else
12550 local_got[j] = (bfd_vma) -1;
12551 }
12552 }
12553
12554 /* Then the global .got entries. .plt refcounts are handled by
12555 adjust_dynamic_symbol */
12556 gofarg.gotoff = gotoff;
12557 gofarg.info = info;
12558 elf_link_hash_traverse (elf_hash_table (info),
12559 elf_gc_allocate_got_offsets,
12560 &gofarg);
12561 return TRUE;
12562 }
12563
12564 /* Many folk need no more in the way of final link than this, once
12565 got entry reference counting is enabled. */
12566
12567 bfd_boolean
12568 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12569 {
12570 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12571 return FALSE;
12572
12573 /* Invoke the regular ELF backend linker to do all the work. */
12574 return bfd_elf_final_link (abfd, info);
12575 }
12576
12577 bfd_boolean
12578 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12579 {
12580 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12581
12582 if (rcookie->bad_symtab)
12583 rcookie->rel = rcookie->rels;
12584
12585 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12586 {
12587 unsigned long r_symndx;
12588
12589 if (! rcookie->bad_symtab)
12590 if (rcookie->rel->r_offset > offset)
12591 return FALSE;
12592 if (rcookie->rel->r_offset != offset)
12593 continue;
12594
12595 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12596 if (r_symndx == STN_UNDEF)
12597 return TRUE;
12598
12599 if (r_symndx >= rcookie->locsymcount
12600 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12601 {
12602 struct elf_link_hash_entry *h;
12603
12604 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12605
12606 while (h->root.type == bfd_link_hash_indirect
12607 || h->root.type == bfd_link_hash_warning)
12608 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12609
12610 if ((h->root.type == bfd_link_hash_defined
12611 || h->root.type == bfd_link_hash_defweak)
12612 && discarded_section (h->root.u.def.section))
12613 return TRUE;
12614 else
12615 return FALSE;
12616 }
12617 else
12618 {
12619 /* It's not a relocation against a global symbol,
12620 but it could be a relocation against a local
12621 symbol for a discarded section. */
12622 asection *isec;
12623 Elf_Internal_Sym *isym;
12624
12625 /* Need to: get the symbol; get the section. */
12626 isym = &rcookie->locsyms[r_symndx];
12627 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12628 if (isec != NULL && discarded_section (isec))
12629 return TRUE;
12630 }
12631 return FALSE;
12632 }
12633 return FALSE;
12634 }
12635
12636 /* Discard unneeded references to discarded sections.
12637 Returns TRUE if any section's size was changed. */
12638 /* This function assumes that the relocations are in sorted order,
12639 which is true for all known assemblers. */
12640
12641 bfd_boolean
12642 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12643 {
12644 struct elf_reloc_cookie cookie;
12645 asection *stab, *eh;
12646 const struct elf_backend_data *bed;
12647 bfd *abfd;
12648 bfd_boolean ret = FALSE;
12649
12650 if (info->traditional_format
12651 || !is_elf_hash_table (info->hash))
12652 return FALSE;
12653
12654 _bfd_elf_begin_eh_frame_parsing (info);
12655 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12656 {
12657 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12658 continue;
12659
12660 bed = get_elf_backend_data (abfd);
12661
12662 eh = NULL;
12663 if (!info->relocatable)
12664 {
12665 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12666 while (eh != NULL
12667 && (eh->size == 0
12668 || bfd_is_abs_section (eh->output_section)))
12669 eh = bfd_get_next_section_by_name (eh);
12670 }
12671
12672 stab = bfd_get_section_by_name (abfd, ".stab");
12673 if (stab != NULL
12674 && (stab->size == 0
12675 || bfd_is_abs_section (stab->output_section)
12676 || stab->sec_info_type != SEC_INFO_TYPE_STABS))
12677 stab = NULL;
12678
12679 if (stab == NULL
12680 && eh == NULL
12681 && bed->elf_backend_discard_info == NULL)
12682 continue;
12683
12684 if (!init_reloc_cookie (&cookie, info, abfd))
12685 return FALSE;
12686
12687 if (stab != NULL
12688 && stab->reloc_count > 0
12689 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12690 {
12691 if (_bfd_discard_section_stabs (abfd, stab,
12692 elf_section_data (stab)->sec_info,
12693 bfd_elf_reloc_symbol_deleted_p,
12694 &cookie))
12695 ret = TRUE;
12696 fini_reloc_cookie_rels (&cookie, stab);
12697 }
12698
12699 while (eh != NULL
12700 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12701 {
12702 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12703 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12704 bfd_elf_reloc_symbol_deleted_p,
12705 &cookie))
12706 ret = TRUE;
12707 fini_reloc_cookie_rels (&cookie, eh);
12708 eh = bfd_get_next_section_by_name (eh);
12709 }
12710
12711 if (bed->elf_backend_discard_info != NULL
12712 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12713 ret = TRUE;
12714
12715 fini_reloc_cookie (&cookie, abfd);
12716 }
12717 _bfd_elf_end_eh_frame_parsing (info);
12718
12719 if (info->eh_frame_hdr
12720 && !info->relocatable
12721 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12722 ret = TRUE;
12723
12724 return ret;
12725 }
12726
12727 bfd_boolean
12728 _bfd_elf_section_already_linked (bfd *abfd,
12729 asection *sec,
12730 struct bfd_link_info *info)
12731 {
12732 flagword flags;
12733 const char *name, *key;
12734 struct bfd_section_already_linked *l;
12735 struct bfd_section_already_linked_hash_entry *already_linked_list;
12736
12737 if (sec->output_section == bfd_abs_section_ptr)
12738 return FALSE;
12739
12740 flags = sec->flags;
12741
12742 /* Return if it isn't a linkonce section. A comdat group section
12743 also has SEC_LINK_ONCE set. */
12744 if ((flags & SEC_LINK_ONCE) == 0)
12745 return FALSE;
12746
12747 /* Don't put group member sections on our list of already linked
12748 sections. They are handled as a group via their group section. */
12749 if (elf_sec_group (sec) != NULL)
12750 return FALSE;
12751
12752 /* For a SHT_GROUP section, use the group signature as the key. */
12753 name = sec->name;
12754 if ((flags & SEC_GROUP) != 0
12755 && elf_next_in_group (sec) != NULL
12756 && elf_group_name (elf_next_in_group (sec)) != NULL)
12757 key = elf_group_name (elf_next_in_group (sec));
12758 else
12759 {
12760 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12761 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12762 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12763 key++;
12764 else
12765 /* Must be a user linkonce section that doesn't follow gcc's
12766 naming convention. In this case we won't be matching
12767 single member groups. */
12768 key = name;
12769 }
12770
12771 already_linked_list = bfd_section_already_linked_table_lookup (key);
12772
12773 for (l = already_linked_list->entry; l != NULL; l = l->next)
12774 {
12775 /* We may have 2 different types of sections on the list: group
12776 sections with a signature of <key> (<key> is some string),
12777 and linkonce sections named .gnu.linkonce.<type>.<key>.
12778 Match like sections. LTO plugin sections are an exception.
12779 They are always named .gnu.linkonce.t.<key> and match either
12780 type of section. */
12781 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12782 && ((flags & SEC_GROUP) != 0
12783 || strcmp (name, l->sec->name) == 0))
12784 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
12785 {
12786 /* The section has already been linked. See if we should
12787 issue a warning. */
12788 if (!_bfd_handle_already_linked (sec, l, info))
12789 return FALSE;
12790
12791 if (flags & SEC_GROUP)
12792 {
12793 asection *first = elf_next_in_group (sec);
12794 asection *s = first;
12795
12796 while (s != NULL)
12797 {
12798 s->output_section = bfd_abs_section_ptr;
12799 /* Record which group discards it. */
12800 s->kept_section = l->sec;
12801 s = elf_next_in_group (s);
12802 /* These lists are circular. */
12803 if (s == first)
12804 break;
12805 }
12806 }
12807
12808 return TRUE;
12809 }
12810 }
12811
12812 /* A single member comdat group section may be discarded by a
12813 linkonce section and vice versa. */
12814 if ((flags & SEC_GROUP) != 0)
12815 {
12816 asection *first = elf_next_in_group (sec);
12817
12818 if (first != NULL && elf_next_in_group (first) == first)
12819 /* Check this single member group against linkonce sections. */
12820 for (l = already_linked_list->entry; l != NULL; l = l->next)
12821 if ((l->sec->flags & SEC_GROUP) == 0
12822 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12823 {
12824 first->output_section = bfd_abs_section_ptr;
12825 first->kept_section = l->sec;
12826 sec->output_section = bfd_abs_section_ptr;
12827 break;
12828 }
12829 }
12830 else
12831 /* Check this linkonce section against single member groups. */
12832 for (l = already_linked_list->entry; l != NULL; l = l->next)
12833 if (l->sec->flags & SEC_GROUP)
12834 {
12835 asection *first = elf_next_in_group (l->sec);
12836
12837 if (first != NULL
12838 && elf_next_in_group (first) == first
12839 && bfd_elf_match_symbols_in_sections (first, sec, info))
12840 {
12841 sec->output_section = bfd_abs_section_ptr;
12842 sec->kept_section = first;
12843 break;
12844 }
12845 }
12846
12847 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12848 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12849 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12850 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12851 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12852 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12853 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12854 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12855 The reverse order cannot happen as there is never a bfd with only the
12856 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12857 matter as here were are looking only for cross-bfd sections. */
12858
12859 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12860 for (l = already_linked_list->entry; l != NULL; l = l->next)
12861 if ((l->sec->flags & SEC_GROUP) == 0
12862 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12863 {
12864 if (abfd != l->sec->owner)
12865 sec->output_section = bfd_abs_section_ptr;
12866 break;
12867 }
12868
12869 /* This is the first section with this name. Record it. */
12870 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
12871 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12872 return sec->output_section == bfd_abs_section_ptr;
12873 }
12874
12875 bfd_boolean
12876 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12877 {
12878 return sym->st_shndx == SHN_COMMON;
12879 }
12880
12881 unsigned int
12882 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12883 {
12884 return SHN_COMMON;
12885 }
12886
12887 asection *
12888 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12889 {
12890 return bfd_com_section_ptr;
12891 }
12892
12893 bfd_vma
12894 _bfd_elf_default_got_elt_size (bfd *abfd,
12895 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12896 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12897 bfd *ibfd ATTRIBUTE_UNUSED,
12898 unsigned long symndx ATTRIBUTE_UNUSED)
12899 {
12900 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12901 return bed->s->arch_size / 8;
12902 }
12903
12904 /* Routines to support the creation of dynamic relocs. */
12905
12906 /* Returns the name of the dynamic reloc section associated with SEC. */
12907
12908 static const char *
12909 get_dynamic_reloc_section_name (bfd * abfd,
12910 asection * sec,
12911 bfd_boolean is_rela)
12912 {
12913 char *name;
12914 const char *old_name = bfd_get_section_name (NULL, sec);
12915 const char *prefix = is_rela ? ".rela" : ".rel";
12916
12917 if (old_name == NULL)
12918 return NULL;
12919
12920 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12921 sprintf (name, "%s%s", prefix, old_name);
12922
12923 return name;
12924 }
12925
12926 /* Returns the dynamic reloc section associated with SEC.
12927 If necessary compute the name of the dynamic reloc section based
12928 on SEC's name (looked up in ABFD's string table) and the setting
12929 of IS_RELA. */
12930
12931 asection *
12932 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12933 asection * sec,
12934 bfd_boolean is_rela)
12935 {
12936 asection * reloc_sec = elf_section_data (sec)->sreloc;
12937
12938 if (reloc_sec == NULL)
12939 {
12940 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12941
12942 if (name != NULL)
12943 {
12944 reloc_sec = bfd_get_linker_section (abfd, name);
12945
12946 if (reloc_sec != NULL)
12947 elf_section_data (sec)->sreloc = reloc_sec;
12948 }
12949 }
12950
12951 return reloc_sec;
12952 }
12953
12954 /* Returns the dynamic reloc section associated with SEC. If the
12955 section does not exist it is created and attached to the DYNOBJ
12956 bfd and stored in the SRELOC field of SEC's elf_section_data
12957 structure.
12958
12959 ALIGNMENT is the alignment for the newly created section and
12960 IS_RELA defines whether the name should be .rela.<SEC's name>
12961 or .rel.<SEC's name>. The section name is looked up in the
12962 string table associated with ABFD. */
12963
12964 asection *
12965 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12966 bfd * dynobj,
12967 unsigned int alignment,
12968 bfd * abfd,
12969 bfd_boolean is_rela)
12970 {
12971 asection * reloc_sec = elf_section_data (sec)->sreloc;
12972
12973 if (reloc_sec == NULL)
12974 {
12975 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12976
12977 if (name == NULL)
12978 return NULL;
12979
12980 reloc_sec = bfd_get_linker_section (dynobj, name);
12981
12982 if (reloc_sec == NULL)
12983 {
12984 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
12985 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12986 if ((sec->flags & SEC_ALLOC) != 0)
12987 flags |= SEC_ALLOC | SEC_LOAD;
12988
12989 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
12990 if (reloc_sec != NULL)
12991 {
12992 /* _bfd_elf_get_sec_type_attr chooses a section type by
12993 name. Override as it may be wrong, eg. for a user
12994 section named "auto" we'll get ".relauto" which is
12995 seen to be a .rela section. */
12996 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
12997 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12998 reloc_sec = NULL;
12999 }
13000 }
13001
13002 elf_section_data (sec)->sreloc = reloc_sec;
13003 }
13004
13005 return reloc_sec;
13006 }
13007
13008 /* Copy the ELF symbol type associated with a linker hash entry. */
13009 void
13010 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
13011 struct bfd_link_hash_entry * hdest,
13012 struct bfd_link_hash_entry * hsrc)
13013 {
13014 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
13015 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
13016
13017 ehdest->type = ehsrc->type;
13018 ehdest->target_internal = ehsrc->target_internal;
13019 }
13020
13021 /* Append a RELA relocation REL to section S in BFD. */
13022
13023 void
13024 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13025 {
13026 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13027 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13028 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13029 bed->s->swap_reloca_out (abfd, rel, loc);
13030 }
13031
13032 /* Append a REL relocation REL to section S in BFD. */
13033
13034 void
13035 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13036 {
13037 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13038 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13039 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13040 bed->s->swap_reloc_out (abfd, rel, loc);
13041 }