bfd: Discard symbol regardless of warning flag
[binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2022 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
29 #include "objalloc.h"
30 #if BFD_SUPPORTS_PLUGINS
31 #include "plugin-api.h"
32 #include "plugin.h"
33 #endif
34
35 #include <limits.h>
36 #ifndef CHAR_BIT
37 #define CHAR_BIT 8
38 #endif
39
40 /* This struct is used to pass information to routines called via
41 elf_link_hash_traverse which must return failure. */
42
43 struct elf_info_failed
44 {
45 struct bfd_link_info *info;
46 bool failed;
47 };
48
49 /* This structure is used to pass information to
50 _bfd_elf_link_find_version_dependencies. */
51
52 struct elf_find_verdep_info
53 {
54 /* General link information. */
55 struct bfd_link_info *info;
56 /* The number of dependencies. */
57 unsigned int vers;
58 /* Whether we had a failure. */
59 bool failed;
60 };
61
62 static bool _bfd_elf_fix_symbol_flags
63 (struct elf_link_hash_entry *, struct elf_info_failed *);
64
65 asection *
66 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
67 unsigned long r_symndx,
68 bool discard)
69 {
70 if (r_symndx >= cookie->locsymcount
71 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
72 {
73 struct elf_link_hash_entry *h;
74
75 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
76
77 while (h->root.type == bfd_link_hash_indirect
78 || h->root.type == bfd_link_hash_warning)
79 h = (struct elf_link_hash_entry *) h->root.u.i.link;
80
81 if ((h->root.type == bfd_link_hash_defined
82 || h->root.type == bfd_link_hash_defweak)
83 && discarded_section (h->root.u.def.section))
84 return h->root.u.def.section;
85 else
86 return NULL;
87 }
88 else
89 {
90 /* It's not a relocation against a global symbol,
91 but it could be a relocation against a local
92 symbol for a discarded section. */
93 asection *isec;
94 Elf_Internal_Sym *isym;
95
96 /* Need to: get the symbol; get the section. */
97 isym = &cookie->locsyms[r_symndx];
98 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
99 if (isec != NULL
100 && discard ? discarded_section (isec) : 1)
101 return isec;
102 }
103 return NULL;
104 }
105
106 /* Define a symbol in a dynamic linkage section. */
107
108 struct elf_link_hash_entry *
109 _bfd_elf_define_linkage_sym (bfd *abfd,
110 struct bfd_link_info *info,
111 asection *sec,
112 const char *name)
113 {
114 struct elf_link_hash_entry *h;
115 struct bfd_link_hash_entry *bh;
116 const struct elf_backend_data *bed;
117
118 h = elf_link_hash_lookup (elf_hash_table (info), name, false, false, false);
119 if (h != NULL)
120 {
121 /* Zap symbol defined in an as-needed lib that wasn't linked.
122 This is a symptom of a larger problem: Absolute symbols
123 defined in shared libraries can't be overridden, because we
124 lose the link to the bfd which is via the symbol section. */
125 h->root.type = bfd_link_hash_new;
126 bh = &h->root;
127 }
128 else
129 bh = NULL;
130
131 bed = get_elf_backend_data (abfd);
132 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
133 sec, 0, NULL, false, bed->collect,
134 &bh))
135 return NULL;
136 h = (struct elf_link_hash_entry *) bh;
137 BFD_ASSERT (h != NULL);
138 h->def_regular = 1;
139 h->non_elf = 0;
140 h->root.linker_def = 1;
141 h->type = STT_OBJECT;
142 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
143 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
144
145 (*bed->elf_backend_hide_symbol) (info, h, true);
146 return h;
147 }
148
149 bool
150 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
151 {
152 flagword flags;
153 asection *s;
154 struct elf_link_hash_entry *h;
155 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
156 struct elf_link_hash_table *htab = elf_hash_table (info);
157
158 /* This function may be called more than once. */
159 if (htab->sgot != NULL)
160 return true;
161
162 flags = bed->dynamic_sec_flags;
163
164 s = bfd_make_section_anyway_with_flags (abfd,
165 (bed->rela_plts_and_copies_p
166 ? ".rela.got" : ".rel.got"),
167 (bed->dynamic_sec_flags
168 | SEC_READONLY));
169 if (s == NULL
170 || !bfd_set_section_alignment (s, bed->s->log_file_align))
171 return false;
172 htab->srelgot = s;
173
174 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
175 if (s == NULL
176 || !bfd_set_section_alignment (s, bed->s->log_file_align))
177 return false;
178 htab->sgot = s;
179
180 if (bed->want_got_plt)
181 {
182 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
183 if (s == NULL
184 || !bfd_set_section_alignment (s, bed->s->log_file_align))
185 return false;
186 htab->sgotplt = s;
187 }
188
189 /* The first bit of the global offset table is the header. */
190 s->size += bed->got_header_size;
191
192 if (bed->want_got_sym)
193 {
194 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
195 (or .got.plt) section. We don't do this in the linker script
196 because we don't want to define the symbol if we are not creating
197 a global offset table. */
198 h = _bfd_elf_define_linkage_sym (abfd, info, s,
199 "_GLOBAL_OFFSET_TABLE_");
200 elf_hash_table (info)->hgot = h;
201 if (h == NULL)
202 return false;
203 }
204
205 return true;
206 }
207 \f
208 /* Create a strtab to hold the dynamic symbol names. */
209 static bool
210 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
211 {
212 struct elf_link_hash_table *hash_table;
213
214 hash_table = elf_hash_table (info);
215 if (hash_table->dynobj == NULL)
216 {
217 /* We may not set dynobj, an input file holding linker created
218 dynamic sections to abfd, which may be a dynamic object with
219 its own dynamic sections. We need to find a normal input file
220 to hold linker created sections if possible. */
221 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
222 {
223 bfd *ibfd;
224 asection *s;
225 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
226 if ((ibfd->flags
227 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0
228 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
229 && elf_object_id (ibfd) == elf_hash_table_id (hash_table)
230 && !((s = ibfd->sections) != NULL
231 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS))
232 {
233 abfd = ibfd;
234 break;
235 }
236 }
237 hash_table->dynobj = abfd;
238 }
239
240 if (hash_table->dynstr == NULL)
241 {
242 hash_table->dynstr = _bfd_elf_strtab_init ();
243 if (hash_table->dynstr == NULL)
244 return false;
245 }
246 return true;
247 }
248
249 /* Create some sections which will be filled in with dynamic linking
250 information. ABFD is an input file which requires dynamic sections
251 to be created. The dynamic sections take up virtual memory space
252 when the final executable is run, so we need to create them before
253 addresses are assigned to the output sections. We work out the
254 actual contents and size of these sections later. */
255
256 bool
257 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
258 {
259 flagword flags;
260 asection *s;
261 const struct elf_backend_data *bed;
262 struct elf_link_hash_entry *h;
263
264 if (! is_elf_hash_table (info->hash))
265 return false;
266
267 if (elf_hash_table (info)->dynamic_sections_created)
268 return true;
269
270 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
271 return false;
272
273 abfd = elf_hash_table (info)->dynobj;
274 bed = get_elf_backend_data (abfd);
275
276 flags = bed->dynamic_sec_flags;
277
278 /* A dynamically linked executable has a .interp section, but a
279 shared library does not. */
280 if (bfd_link_executable (info) && !info->nointerp)
281 {
282 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
283 flags | SEC_READONLY);
284 if (s == NULL)
285 return false;
286 }
287
288 /* Create sections to hold version informations. These are removed
289 if they are not needed. */
290 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
291 flags | SEC_READONLY);
292 if (s == NULL
293 || !bfd_set_section_alignment (s, bed->s->log_file_align))
294 return false;
295
296 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
297 flags | SEC_READONLY);
298 if (s == NULL
299 || !bfd_set_section_alignment (s, 1))
300 return false;
301
302 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
303 flags | SEC_READONLY);
304 if (s == NULL
305 || !bfd_set_section_alignment (s, bed->s->log_file_align))
306 return false;
307
308 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
309 flags | SEC_READONLY);
310 if (s == NULL
311 || !bfd_set_section_alignment (s, bed->s->log_file_align))
312 return false;
313 elf_hash_table (info)->dynsym = s;
314
315 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
316 flags | SEC_READONLY);
317 if (s == NULL)
318 return false;
319
320 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
321 if (s == NULL
322 || !bfd_set_section_alignment (s, bed->s->log_file_align))
323 return false;
324
325 /* The special symbol _DYNAMIC is always set to the start of the
326 .dynamic section. We could set _DYNAMIC in a linker script, but we
327 only want to define it if we are, in fact, creating a .dynamic
328 section. We don't want to define it if there is no .dynamic
329 section, since on some ELF platforms the start up code examines it
330 to decide how to initialize the process. */
331 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
332 elf_hash_table (info)->hdynamic = h;
333 if (h == NULL)
334 return false;
335
336 if (info->emit_hash)
337 {
338 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
339 flags | SEC_READONLY);
340 if (s == NULL
341 || !bfd_set_section_alignment (s, bed->s->log_file_align))
342 return false;
343 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
344 }
345
346 if (info->emit_gnu_hash && bed->record_xhash_symbol == NULL)
347 {
348 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
349 flags | SEC_READONLY);
350 if (s == NULL
351 || !bfd_set_section_alignment (s, bed->s->log_file_align))
352 return false;
353 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
354 4 32-bit words followed by variable count of 64-bit words, then
355 variable count of 32-bit words. */
356 if (bed->s->arch_size == 64)
357 elf_section_data (s)->this_hdr.sh_entsize = 0;
358 else
359 elf_section_data (s)->this_hdr.sh_entsize = 4;
360 }
361
362 if (info->enable_dt_relr)
363 {
364 s = bfd_make_section_anyway_with_flags (abfd, ".relr.dyn",
365 (bed->dynamic_sec_flags
366 | SEC_READONLY));
367 if (s == NULL
368 || !bfd_set_section_alignment (s, bed->s->log_file_align))
369 return false;
370 elf_hash_table (info)->srelrdyn = s;
371 }
372
373 /* Let the backend create the rest of the sections. This lets the
374 backend set the right flags. The backend will normally create
375 the .got and .plt sections. */
376 if (bed->elf_backend_create_dynamic_sections == NULL
377 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
378 return false;
379
380 elf_hash_table (info)->dynamic_sections_created = true;
381
382 return true;
383 }
384
385 /* Create dynamic sections when linking against a dynamic object. */
386
387 bool
388 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
389 {
390 flagword flags, pltflags;
391 struct elf_link_hash_entry *h;
392 asection *s;
393 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
394 struct elf_link_hash_table *htab = elf_hash_table (info);
395
396 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
397 .rel[a].bss sections. */
398 flags = bed->dynamic_sec_flags;
399
400 pltflags = flags;
401 if (bed->plt_not_loaded)
402 /* We do not clear SEC_ALLOC here because we still want the OS to
403 allocate space for the section; it's just that there's nothing
404 to read in from the object file. */
405 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
406 else
407 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
408 if (bed->plt_readonly)
409 pltflags |= SEC_READONLY;
410
411 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
412 if (s == NULL
413 || !bfd_set_section_alignment (s, bed->plt_alignment))
414 return false;
415 htab->splt = s;
416
417 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
418 .plt section. */
419 if (bed->want_plt_sym)
420 {
421 h = _bfd_elf_define_linkage_sym (abfd, info, s,
422 "_PROCEDURE_LINKAGE_TABLE_");
423 elf_hash_table (info)->hplt = h;
424 if (h == NULL)
425 return false;
426 }
427
428 s = bfd_make_section_anyway_with_flags (abfd,
429 (bed->rela_plts_and_copies_p
430 ? ".rela.plt" : ".rel.plt"),
431 flags | SEC_READONLY);
432 if (s == NULL
433 || !bfd_set_section_alignment (s, bed->s->log_file_align))
434 return false;
435 htab->srelplt = s;
436
437 if (! _bfd_elf_create_got_section (abfd, info))
438 return false;
439
440 if (bed->want_dynbss)
441 {
442 /* The .dynbss section is a place to put symbols which are defined
443 by dynamic objects, are referenced by regular objects, and are
444 not functions. We must allocate space for them in the process
445 image and use a R_*_COPY reloc to tell the dynamic linker to
446 initialize them at run time. The linker script puts the .dynbss
447 section into the .bss section of the final image. */
448 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
449 SEC_ALLOC | SEC_LINKER_CREATED);
450 if (s == NULL)
451 return false;
452 htab->sdynbss = s;
453
454 if (bed->want_dynrelro)
455 {
456 /* Similarly, but for symbols that were originally in read-only
457 sections. This section doesn't really need to have contents,
458 but make it like other .data.rel.ro sections. */
459 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
460 flags);
461 if (s == NULL)
462 return false;
463 htab->sdynrelro = s;
464 }
465
466 /* The .rel[a].bss section holds copy relocs. This section is not
467 normally needed. We need to create it here, though, so that the
468 linker will map it to an output section. We can't just create it
469 only if we need it, because we will not know whether we need it
470 until we have seen all the input files, and the first time the
471 main linker code calls BFD after examining all the input files
472 (size_dynamic_sections) the input sections have already been
473 mapped to the output sections. If the section turns out not to
474 be needed, we can discard it later. We will never need this
475 section when generating a shared object, since they do not use
476 copy relocs. */
477 if (bfd_link_executable (info))
478 {
479 s = bfd_make_section_anyway_with_flags (abfd,
480 (bed->rela_plts_and_copies_p
481 ? ".rela.bss" : ".rel.bss"),
482 flags | SEC_READONLY);
483 if (s == NULL
484 || !bfd_set_section_alignment (s, bed->s->log_file_align))
485 return false;
486 htab->srelbss = s;
487
488 if (bed->want_dynrelro)
489 {
490 s = (bfd_make_section_anyway_with_flags
491 (abfd, (bed->rela_plts_and_copies_p
492 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
493 flags | SEC_READONLY));
494 if (s == NULL
495 || !bfd_set_section_alignment (s, bed->s->log_file_align))
496 return false;
497 htab->sreldynrelro = s;
498 }
499 }
500 }
501
502 return true;
503 }
504 \f
505 /* Record a new dynamic symbol. We record the dynamic symbols as we
506 read the input files, since we need to have a list of all of them
507 before we can determine the final sizes of the output sections.
508 Note that we may actually call this function even though we are not
509 going to output any dynamic symbols; in some cases we know that a
510 symbol should be in the dynamic symbol table, but only if there is
511 one. */
512
513 bool
514 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
515 struct elf_link_hash_entry *h)
516 {
517 if (h->dynindx == -1)
518 {
519 struct elf_strtab_hash *dynstr;
520 char *p;
521 const char *name;
522 size_t indx;
523
524 if (h->root.type == bfd_link_hash_defined
525 || h->root.type == bfd_link_hash_defweak)
526 {
527 /* An IR symbol should not be made dynamic. */
528 if (h->root.u.def.section != NULL
529 && h->root.u.def.section->owner != NULL
530 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)
531 return true;
532 }
533
534 /* XXX: The ABI draft says the linker must turn hidden and
535 internal symbols into STB_LOCAL symbols when producing the
536 DSO. However, if ld.so honors st_other in the dynamic table,
537 this would not be necessary. */
538 switch (ELF_ST_VISIBILITY (h->other))
539 {
540 case STV_INTERNAL:
541 case STV_HIDDEN:
542 if (h->root.type != bfd_link_hash_undefined
543 && h->root.type != bfd_link_hash_undefweak)
544 {
545 h->forced_local = 1;
546 if (!elf_hash_table (info)->is_relocatable_executable
547 || ((h->root.type == bfd_link_hash_defined
548 || h->root.type == bfd_link_hash_defweak)
549 && h->root.u.def.section->owner != NULL
550 && h->root.u.def.section->owner->no_export)
551 || (h->root.type == bfd_link_hash_common
552 && h->root.u.c.p->section->owner != NULL
553 && h->root.u.c.p->section->owner->no_export))
554 return true;
555 }
556
557 default:
558 break;
559 }
560
561 h->dynindx = elf_hash_table (info)->dynsymcount;
562 ++elf_hash_table (info)->dynsymcount;
563
564 dynstr = elf_hash_table (info)->dynstr;
565 if (dynstr == NULL)
566 {
567 /* Create a strtab to hold the dynamic symbol names. */
568 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
569 if (dynstr == NULL)
570 return false;
571 }
572
573 /* We don't put any version information in the dynamic string
574 table. */
575 name = h->root.root.string;
576 p = strchr (name, ELF_VER_CHR);
577 if (p != NULL)
578 /* We know that the p points into writable memory. In fact,
579 there are only a few symbols that have read-only names, being
580 those like _GLOBAL_OFFSET_TABLE_ that are created specially
581 by the backends. Most symbols will have names pointing into
582 an ELF string table read from a file, or to objalloc memory. */
583 *p = 0;
584
585 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
586
587 if (p != NULL)
588 *p = ELF_VER_CHR;
589
590 if (indx == (size_t) -1)
591 return false;
592 h->dynstr_index = indx;
593 }
594
595 return true;
596 }
597 \f
598 /* Mark a symbol dynamic. */
599
600 static void
601 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
602 struct elf_link_hash_entry *h,
603 Elf_Internal_Sym *sym)
604 {
605 struct bfd_elf_dynamic_list *d = info->dynamic_list;
606
607 /* It may be called more than once on the same H. */
608 if(h->dynamic || bfd_link_relocatable (info))
609 return;
610
611 if ((info->dynamic_data
612 && (h->type == STT_OBJECT
613 || h->type == STT_COMMON
614 || (sym != NULL
615 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
616 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
617 || (d != NULL
618 && h->non_elf
619 && (*d->match) (&d->head, NULL, h->root.root.string)))
620 {
621 h->dynamic = 1;
622 /* NB: If a symbol is made dynamic by --dynamic-list, it has
623 non-IR reference. */
624 h->root.non_ir_ref_dynamic = 1;
625 }
626 }
627
628 /* Record an assignment to a symbol made by a linker script. We need
629 this in case some dynamic object refers to this symbol. */
630
631 bool
632 bfd_elf_record_link_assignment (bfd *output_bfd,
633 struct bfd_link_info *info,
634 const char *name,
635 bool provide,
636 bool hidden)
637 {
638 struct elf_link_hash_entry *h, *hv;
639 struct elf_link_hash_table *htab;
640 const struct elf_backend_data *bed;
641
642 if (!is_elf_hash_table (info->hash))
643 return true;
644
645 htab = elf_hash_table (info);
646 h = elf_link_hash_lookup (htab, name, !provide, true, false);
647 if (h == NULL)
648 return provide;
649
650 if (h->root.type == bfd_link_hash_warning)
651 h = (struct elf_link_hash_entry *) h->root.u.i.link;
652
653 if (h->versioned == unknown)
654 {
655 /* Set versioned if symbol version is unknown. */
656 char *version = strrchr (name, ELF_VER_CHR);
657 if (version)
658 {
659 if (version > name && version[-1] != ELF_VER_CHR)
660 h->versioned = versioned_hidden;
661 else
662 h->versioned = versioned;
663 }
664 }
665
666 /* Symbols defined in a linker script but not referenced anywhere
667 else will have non_elf set. */
668 if (h->non_elf)
669 {
670 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
671 h->non_elf = 0;
672 }
673
674 switch (h->root.type)
675 {
676 case bfd_link_hash_defined:
677 case bfd_link_hash_defweak:
678 case bfd_link_hash_common:
679 break;
680 case bfd_link_hash_undefweak:
681 case bfd_link_hash_undefined:
682 /* Since we're defining the symbol, don't let it seem to have not
683 been defined. record_dynamic_symbol and size_dynamic_sections
684 may depend on this. */
685 h->root.type = bfd_link_hash_new;
686 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
687 bfd_link_repair_undef_list (&htab->root);
688 break;
689 case bfd_link_hash_new:
690 break;
691 case bfd_link_hash_indirect:
692 /* We had a versioned symbol in a dynamic library. We make the
693 the versioned symbol point to this one. */
694 bed = get_elf_backend_data (output_bfd);
695 hv = h;
696 while (hv->root.type == bfd_link_hash_indirect
697 || hv->root.type == bfd_link_hash_warning)
698 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
699 /* We don't need to update h->root.u since linker will set them
700 later. */
701 h->root.type = bfd_link_hash_undefined;
702 hv->root.type = bfd_link_hash_indirect;
703 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
704 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
705 break;
706 default:
707 BFD_FAIL ();
708 return false;
709 }
710
711 /* If this symbol is being provided by the linker script, and it is
712 currently defined by a dynamic object, but not by a regular
713 object, then mark it as undefined so that the generic linker will
714 force the correct value. */
715 if (provide
716 && h->def_dynamic
717 && !h->def_regular)
718 h->root.type = bfd_link_hash_undefined;
719
720 /* If this symbol is currently defined by a dynamic object, but not
721 by a regular object, then clear out any version information because
722 the symbol will not be associated with the dynamic object any
723 more. */
724 if (h->def_dynamic && !h->def_regular)
725 h->verinfo.verdef = NULL;
726
727 /* Make sure this symbol is not garbage collected. */
728 h->mark = 1;
729
730 h->def_regular = 1;
731
732 if (hidden)
733 {
734 bed = get_elf_backend_data (output_bfd);
735 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
736 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
737 (*bed->elf_backend_hide_symbol) (info, h, true);
738 }
739
740 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
741 and executables. */
742 if (!bfd_link_relocatable (info)
743 && h->dynindx != -1
744 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
745 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
746 h->forced_local = 1;
747
748 if ((h->def_dynamic
749 || h->ref_dynamic
750 || bfd_link_dll (info)
751 || elf_hash_table (info)->is_relocatable_executable)
752 && !h->forced_local
753 && h->dynindx == -1)
754 {
755 if (! bfd_elf_link_record_dynamic_symbol (info, h))
756 return false;
757
758 /* If this is a weak defined symbol, and we know a corresponding
759 real symbol from the same dynamic object, make sure the real
760 symbol is also made into a dynamic symbol. */
761 if (h->is_weakalias)
762 {
763 struct elf_link_hash_entry *def = weakdef (h);
764
765 if (def->dynindx == -1
766 && !bfd_elf_link_record_dynamic_symbol (info, def))
767 return false;
768 }
769 }
770
771 return true;
772 }
773
774 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
775 success, and 2 on a failure caused by attempting to record a symbol
776 in a discarded section, eg. a discarded link-once section symbol. */
777
778 int
779 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
780 bfd *input_bfd,
781 long input_indx)
782 {
783 size_t amt;
784 struct elf_link_local_dynamic_entry *entry;
785 struct elf_link_hash_table *eht;
786 struct elf_strtab_hash *dynstr;
787 size_t dynstr_index;
788 char *name;
789 Elf_External_Sym_Shndx eshndx;
790 char esym[sizeof (Elf64_External_Sym)];
791
792 if (! is_elf_hash_table (info->hash))
793 return 0;
794
795 /* See if the entry exists already. */
796 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
797 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
798 return 1;
799
800 amt = sizeof (*entry);
801 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
802 if (entry == NULL)
803 return 0;
804
805 /* Go find the symbol, so that we can find it's name. */
806 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
807 1, input_indx, &entry->isym, esym, &eshndx))
808 {
809 bfd_release (input_bfd, entry);
810 return 0;
811 }
812
813 if (entry->isym.st_shndx != SHN_UNDEF
814 && entry->isym.st_shndx < SHN_LORESERVE)
815 {
816 asection *s;
817
818 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
819 if (s == NULL || bfd_is_abs_section (s->output_section))
820 {
821 /* We can still bfd_release here as nothing has done another
822 bfd_alloc. We can't do this later in this function. */
823 bfd_release (input_bfd, entry);
824 return 2;
825 }
826 }
827
828 name = (bfd_elf_string_from_elf_section
829 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
830 entry->isym.st_name));
831
832 dynstr = elf_hash_table (info)->dynstr;
833 if (dynstr == NULL)
834 {
835 /* Create a strtab to hold the dynamic symbol names. */
836 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
837 if (dynstr == NULL)
838 return 0;
839 }
840
841 dynstr_index = _bfd_elf_strtab_add (dynstr, name, false);
842 if (dynstr_index == (size_t) -1)
843 return 0;
844 entry->isym.st_name = dynstr_index;
845
846 eht = elf_hash_table (info);
847
848 entry->next = eht->dynlocal;
849 eht->dynlocal = entry;
850 entry->input_bfd = input_bfd;
851 entry->input_indx = input_indx;
852 eht->dynsymcount++;
853
854 /* Whatever binding the symbol had before, it's now local. */
855 entry->isym.st_info
856 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
857
858 /* The dynindx will be set at the end of size_dynamic_sections. */
859
860 return 1;
861 }
862
863 /* Return the dynindex of a local dynamic symbol. */
864
865 long
866 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
867 bfd *input_bfd,
868 long input_indx)
869 {
870 struct elf_link_local_dynamic_entry *e;
871
872 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
873 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
874 return e->dynindx;
875 return -1;
876 }
877
878 /* This function is used to renumber the dynamic symbols, if some of
879 them are removed because they are marked as local. This is called
880 via elf_link_hash_traverse. */
881
882 static bool
883 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
884 void *data)
885 {
886 size_t *count = (size_t *) data;
887
888 if (h->forced_local)
889 return true;
890
891 if (h->dynindx != -1)
892 h->dynindx = ++(*count);
893
894 return true;
895 }
896
897
898 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
899 STB_LOCAL binding. */
900
901 static bool
902 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
903 void *data)
904 {
905 size_t *count = (size_t *) data;
906
907 if (!h->forced_local)
908 return true;
909
910 if (h->dynindx != -1)
911 h->dynindx = ++(*count);
912
913 return true;
914 }
915
916 /* Return true if the dynamic symbol for a given section should be
917 omitted when creating a shared library. */
918 bool
919 _bfd_elf_omit_section_dynsym_default (bfd *output_bfd ATTRIBUTE_UNUSED,
920 struct bfd_link_info *info,
921 asection *p)
922 {
923 struct elf_link_hash_table *htab;
924 asection *ip;
925
926 switch (elf_section_data (p)->this_hdr.sh_type)
927 {
928 case SHT_PROGBITS:
929 case SHT_NOBITS:
930 /* If sh_type is yet undecided, assume it could be
931 SHT_PROGBITS/SHT_NOBITS. */
932 case SHT_NULL:
933 htab = elf_hash_table (info);
934 if (htab->text_index_section != NULL)
935 return p != htab->text_index_section && p != htab->data_index_section;
936
937 return (htab->dynobj != NULL
938 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
939 && ip->output_section == p);
940
941 /* There shouldn't be section relative relocations
942 against any other section. */
943 default:
944 return true;
945 }
946 }
947
948 bool
949 _bfd_elf_omit_section_dynsym_all
950 (bfd *output_bfd ATTRIBUTE_UNUSED,
951 struct bfd_link_info *info ATTRIBUTE_UNUSED,
952 asection *p ATTRIBUTE_UNUSED)
953 {
954 return true;
955 }
956
957 /* Assign dynsym indices. In a shared library we generate a section
958 symbol for each output section, which come first. Next come symbols
959 which have been forced to local binding. Then all of the back-end
960 allocated local dynamic syms, followed by the rest of the global
961 symbols. If SECTION_SYM_COUNT is NULL, section dynindx is not set.
962 (This prevents the early call before elf_backend_init_index_section
963 and strip_excluded_output_sections setting dynindx for sections
964 that are stripped.) */
965
966 static unsigned long
967 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
968 struct bfd_link_info *info,
969 unsigned long *section_sym_count)
970 {
971 unsigned long dynsymcount = 0;
972 bool do_sec = section_sym_count != NULL;
973
974 if (bfd_link_pic (info)
975 || elf_hash_table (info)->is_relocatable_executable)
976 {
977 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
978 asection *p;
979 for (p = output_bfd->sections; p ; p = p->next)
980 if ((p->flags & SEC_EXCLUDE) == 0
981 && (p->flags & SEC_ALLOC) != 0
982 && elf_hash_table (info)->dynamic_relocs
983 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
984 {
985 ++dynsymcount;
986 if (do_sec)
987 elf_section_data (p)->dynindx = dynsymcount;
988 }
989 else if (do_sec)
990 elf_section_data (p)->dynindx = 0;
991 }
992 if (do_sec)
993 *section_sym_count = dynsymcount;
994
995 elf_link_hash_traverse (elf_hash_table (info),
996 elf_link_renumber_local_hash_table_dynsyms,
997 &dynsymcount);
998
999 if (elf_hash_table (info)->dynlocal)
1000 {
1001 struct elf_link_local_dynamic_entry *p;
1002 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
1003 p->dynindx = ++dynsymcount;
1004 }
1005 elf_hash_table (info)->local_dynsymcount = dynsymcount;
1006
1007 elf_link_hash_traverse (elf_hash_table (info),
1008 elf_link_renumber_hash_table_dynsyms,
1009 &dynsymcount);
1010
1011 /* There is an unused NULL entry at the head of the table which we
1012 must account for in our count even if the table is empty since it
1013 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
1014 .dynamic section. */
1015 dynsymcount++;
1016
1017 elf_hash_table (info)->dynsymcount = dynsymcount;
1018 return dynsymcount;
1019 }
1020
1021 /* Merge st_other field. */
1022
1023 static void
1024 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
1025 unsigned int st_other, asection *sec,
1026 bool definition, bool dynamic)
1027 {
1028 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1029
1030 /* If st_other has a processor-specific meaning, specific
1031 code might be needed here. */
1032 if (bed->elf_backend_merge_symbol_attribute)
1033 (*bed->elf_backend_merge_symbol_attribute) (h, st_other, definition,
1034 dynamic);
1035
1036 if (!dynamic)
1037 {
1038 unsigned symvis = ELF_ST_VISIBILITY (st_other);
1039 unsigned hvis = ELF_ST_VISIBILITY (h->other);
1040
1041 /* Keep the most constraining visibility. Leave the remainder
1042 of the st_other field to elf_backend_merge_symbol_attribute. */
1043 if (symvis - 1 < hvis - 1)
1044 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
1045 }
1046 else if (definition
1047 && ELF_ST_VISIBILITY (st_other) != STV_DEFAULT
1048 && (sec->flags & SEC_READONLY) == 0)
1049 h->protected_def = 1;
1050 }
1051
1052 /* This function is called when we want to merge a new symbol with an
1053 existing symbol. It handles the various cases which arise when we
1054 find a definition in a dynamic object, or when there is already a
1055 definition in a dynamic object. The new symbol is described by
1056 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
1057 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
1058 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
1059 of an old common symbol. We set OVERRIDE if the old symbol is
1060 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
1061 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
1062 to change. By OK to change, we mean that we shouldn't warn if the
1063 type or size does change. */
1064
1065 static bool
1066 _bfd_elf_merge_symbol (bfd *abfd,
1067 struct bfd_link_info *info,
1068 const char *name,
1069 Elf_Internal_Sym *sym,
1070 asection **psec,
1071 bfd_vma *pvalue,
1072 struct elf_link_hash_entry **sym_hash,
1073 bfd **poldbfd,
1074 bool *pold_weak,
1075 unsigned int *pold_alignment,
1076 bool *skip,
1077 bfd **override,
1078 bool *type_change_ok,
1079 bool *size_change_ok,
1080 bool *matched)
1081 {
1082 asection *sec, *oldsec;
1083 struct elf_link_hash_entry *h;
1084 struct elf_link_hash_entry *hi;
1085 struct elf_link_hash_entry *flip;
1086 int bind;
1087 bfd *oldbfd;
1088 bool newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1089 bool newweak, oldweak, newfunc, oldfunc;
1090 const struct elf_backend_data *bed;
1091 char *new_version;
1092 bool default_sym = *matched;
1093 struct elf_link_hash_table *htab;
1094
1095 *skip = false;
1096 *override = NULL;
1097
1098 sec = *psec;
1099 bind = ELF_ST_BIND (sym->st_info);
1100
1101 if (! bfd_is_und_section (sec))
1102 h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
1103 else
1104 h = ((struct elf_link_hash_entry *)
1105 bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
1106 if (h == NULL)
1107 return false;
1108 *sym_hash = h;
1109
1110 bed = get_elf_backend_data (abfd);
1111
1112 /* NEW_VERSION is the symbol version of the new symbol. */
1113 if (h->versioned != unversioned)
1114 {
1115 /* Symbol version is unknown or versioned. */
1116 new_version = strrchr (name, ELF_VER_CHR);
1117 if (new_version)
1118 {
1119 if (h->versioned == unknown)
1120 {
1121 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1122 h->versioned = versioned_hidden;
1123 else
1124 h->versioned = versioned;
1125 }
1126 new_version += 1;
1127 if (new_version[0] == '\0')
1128 new_version = NULL;
1129 }
1130 else
1131 h->versioned = unversioned;
1132 }
1133 else
1134 new_version = NULL;
1135
1136 /* For merging, we only care about real symbols. But we need to make
1137 sure that indirect symbol dynamic flags are updated. */
1138 hi = h;
1139 while (h->root.type == bfd_link_hash_indirect
1140 || h->root.type == bfd_link_hash_warning)
1141 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1142
1143 if (!*matched)
1144 {
1145 if (hi == h || h->root.type == bfd_link_hash_new)
1146 *matched = true;
1147 else
1148 {
1149 /* OLD_HIDDEN is true if the existing symbol is only visible
1150 to the symbol with the same symbol version. NEW_HIDDEN is
1151 true if the new symbol is only visible to the symbol with
1152 the same symbol version. */
1153 bool old_hidden = h->versioned == versioned_hidden;
1154 bool new_hidden = hi->versioned == versioned_hidden;
1155 if (!old_hidden && !new_hidden)
1156 /* The new symbol matches the existing symbol if both
1157 aren't hidden. */
1158 *matched = true;
1159 else
1160 {
1161 /* OLD_VERSION is the symbol version of the existing
1162 symbol. */
1163 char *old_version;
1164
1165 if (h->versioned >= versioned)
1166 old_version = strrchr (h->root.root.string,
1167 ELF_VER_CHR) + 1;
1168 else
1169 old_version = NULL;
1170
1171 /* The new symbol matches the existing symbol if they
1172 have the same symbol version. */
1173 *matched = (old_version == new_version
1174 || (old_version != NULL
1175 && new_version != NULL
1176 && strcmp (old_version, new_version) == 0));
1177 }
1178 }
1179 }
1180
1181 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1182 existing symbol. */
1183
1184 oldbfd = NULL;
1185 oldsec = NULL;
1186 switch (h->root.type)
1187 {
1188 default:
1189 break;
1190
1191 case bfd_link_hash_undefined:
1192 case bfd_link_hash_undefweak:
1193 oldbfd = h->root.u.undef.abfd;
1194 break;
1195
1196 case bfd_link_hash_defined:
1197 case bfd_link_hash_defweak:
1198 oldbfd = h->root.u.def.section->owner;
1199 oldsec = h->root.u.def.section;
1200 break;
1201
1202 case bfd_link_hash_common:
1203 oldbfd = h->root.u.c.p->section->owner;
1204 oldsec = h->root.u.c.p->section;
1205 if (pold_alignment)
1206 *pold_alignment = h->root.u.c.p->alignment_power;
1207 break;
1208 }
1209 if (poldbfd && *poldbfd == NULL)
1210 *poldbfd = oldbfd;
1211
1212 /* Differentiate strong and weak symbols. */
1213 newweak = bind == STB_WEAK;
1214 oldweak = (h->root.type == bfd_link_hash_defweak
1215 || h->root.type == bfd_link_hash_undefweak);
1216 if (pold_weak)
1217 *pold_weak = oldweak;
1218
1219 /* We have to check it for every instance since the first few may be
1220 references and not all compilers emit symbol type for undefined
1221 symbols. */
1222 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1223
1224 htab = elf_hash_table (info);
1225
1226 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1227 respectively, is from a dynamic object. */
1228
1229 newdyn = (abfd->flags & DYNAMIC) != 0;
1230
1231 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1232 syms and defined syms in dynamic libraries respectively.
1233 ref_dynamic on the other hand can be set for a symbol defined in
1234 a dynamic library, and def_dynamic may not be set; When the
1235 definition in a dynamic lib is overridden by a definition in the
1236 executable use of the symbol in the dynamic lib becomes a
1237 reference to the executable symbol. */
1238 if (newdyn)
1239 {
1240 if (bfd_is_und_section (sec))
1241 {
1242 if (bind != STB_WEAK)
1243 {
1244 h->ref_dynamic_nonweak = 1;
1245 hi->ref_dynamic_nonweak = 1;
1246 }
1247 }
1248 else
1249 {
1250 /* Update the existing symbol only if they match. */
1251 if (*matched)
1252 h->dynamic_def = 1;
1253 hi->dynamic_def = 1;
1254 }
1255 }
1256
1257 /* If we just created the symbol, mark it as being an ELF symbol.
1258 Other than that, there is nothing to do--there is no merge issue
1259 with a newly defined symbol--so we just return. */
1260
1261 if (h->root.type == bfd_link_hash_new)
1262 {
1263 h->non_elf = 0;
1264 return true;
1265 }
1266
1267 /* In cases involving weak versioned symbols, we may wind up trying
1268 to merge a symbol with itself. Catch that here, to avoid the
1269 confusion that results if we try to override a symbol with
1270 itself. The additional tests catch cases like
1271 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1272 dynamic object, which we do want to handle here. */
1273 if (abfd == oldbfd
1274 && (newweak || oldweak)
1275 && ((abfd->flags & DYNAMIC) == 0
1276 || !h->def_regular))
1277 return true;
1278
1279 olddyn = false;
1280 if (oldbfd != NULL)
1281 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1282 else if (oldsec != NULL)
1283 {
1284 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1285 indices used by MIPS ELF. */
1286 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1287 }
1288
1289 /* Set non_ir_ref_dynamic only when not handling DT_NEEDED entries. */
1290 if (!htab->handling_dt_needed
1291 && oldbfd != NULL
1292 && (oldbfd->flags & BFD_PLUGIN) != (abfd->flags & BFD_PLUGIN))
1293 {
1294 if (newdyn != olddyn)
1295 {
1296 /* Handle a case where plugin_notice won't be called and thus
1297 won't set the non_ir_ref flags on the first pass over
1298 symbols. */
1299 h->root.non_ir_ref_dynamic = true;
1300 hi->root.non_ir_ref_dynamic = true;
1301 }
1302 else if ((oldbfd->flags & BFD_PLUGIN) != 0
1303 && hi->root.type == bfd_link_hash_indirect)
1304 {
1305 /* Change indirect symbol from IR to undefined. */
1306 hi->root.type = bfd_link_hash_undefined;
1307 hi->root.u.undef.abfd = oldbfd;
1308 }
1309 }
1310
1311 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1312 respectively, appear to be a definition rather than reference. */
1313
1314 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1315
1316 olddef = (h->root.type != bfd_link_hash_undefined
1317 && h->root.type != bfd_link_hash_undefweak
1318 && h->root.type != bfd_link_hash_common);
1319
1320 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1321 respectively, appear to be a function. */
1322
1323 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1324 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1325
1326 oldfunc = (h->type != STT_NOTYPE
1327 && bed->is_function_type (h->type));
1328
1329 if (!(newfunc && oldfunc)
1330 && ELF_ST_TYPE (sym->st_info) != h->type
1331 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1332 && h->type != STT_NOTYPE
1333 && (newdef || bfd_is_com_section (sec))
1334 && (olddef || h->root.type == bfd_link_hash_common))
1335 {
1336 /* If creating a default indirect symbol ("foo" or "foo@") from
1337 a dynamic versioned definition ("foo@@") skip doing so if
1338 there is an existing regular definition with a different
1339 type. We don't want, for example, a "time" variable in the
1340 executable overriding a "time" function in a shared library. */
1341 if (newdyn
1342 && !olddyn)
1343 {
1344 *skip = true;
1345 return true;
1346 }
1347
1348 /* When adding a symbol from a regular object file after we have
1349 created indirect symbols, undo the indirection and any
1350 dynamic state. */
1351 if (hi != h
1352 && !newdyn
1353 && olddyn)
1354 {
1355 h = hi;
1356 (*bed->elf_backend_hide_symbol) (info, h, true);
1357 h->forced_local = 0;
1358 h->ref_dynamic = 0;
1359 h->def_dynamic = 0;
1360 h->dynamic_def = 0;
1361 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1362 {
1363 h->root.type = bfd_link_hash_undefined;
1364 h->root.u.undef.abfd = abfd;
1365 }
1366 else
1367 {
1368 h->root.type = bfd_link_hash_new;
1369 h->root.u.undef.abfd = NULL;
1370 }
1371 return true;
1372 }
1373 }
1374
1375 /* Check TLS symbols. We don't check undefined symbols introduced
1376 by "ld -u" which have no type (and oldbfd NULL), and we don't
1377 check symbols from plugins because they also have no type. */
1378 if (oldbfd != NULL
1379 && (oldbfd->flags & BFD_PLUGIN) == 0
1380 && (abfd->flags & BFD_PLUGIN) == 0
1381 && ELF_ST_TYPE (sym->st_info) != h->type
1382 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1383 {
1384 bfd *ntbfd, *tbfd;
1385 bool ntdef, tdef;
1386 asection *ntsec, *tsec;
1387
1388 if (h->type == STT_TLS)
1389 {
1390 ntbfd = abfd;
1391 ntsec = sec;
1392 ntdef = newdef;
1393 tbfd = oldbfd;
1394 tsec = oldsec;
1395 tdef = olddef;
1396 }
1397 else
1398 {
1399 ntbfd = oldbfd;
1400 ntsec = oldsec;
1401 ntdef = olddef;
1402 tbfd = abfd;
1403 tsec = sec;
1404 tdef = newdef;
1405 }
1406
1407 if (tdef && ntdef)
1408 _bfd_error_handler
1409 /* xgettext:c-format */
1410 (_("%s: TLS definition in %pB section %pA "
1411 "mismatches non-TLS definition in %pB section %pA"),
1412 h->root.root.string, tbfd, tsec, ntbfd, ntsec);
1413 else if (!tdef && !ntdef)
1414 _bfd_error_handler
1415 /* xgettext:c-format */
1416 (_("%s: TLS reference in %pB "
1417 "mismatches non-TLS reference in %pB"),
1418 h->root.root.string, tbfd, ntbfd);
1419 else if (tdef)
1420 _bfd_error_handler
1421 /* xgettext:c-format */
1422 (_("%s: TLS definition in %pB section %pA "
1423 "mismatches non-TLS reference in %pB"),
1424 h->root.root.string, tbfd, tsec, ntbfd);
1425 else
1426 _bfd_error_handler
1427 /* xgettext:c-format */
1428 (_("%s: TLS reference in %pB "
1429 "mismatches non-TLS definition in %pB section %pA"),
1430 h->root.root.string, tbfd, ntbfd, ntsec);
1431
1432 bfd_set_error (bfd_error_bad_value);
1433 return false;
1434 }
1435
1436 /* If the old symbol has non-default visibility, we ignore the new
1437 definition from a dynamic object. */
1438 if (newdyn
1439 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1440 && !bfd_is_und_section (sec))
1441 {
1442 *skip = true;
1443 /* Make sure this symbol is dynamic. */
1444 h->ref_dynamic = 1;
1445 hi->ref_dynamic = 1;
1446 /* A protected symbol has external availability. Make sure it is
1447 recorded as dynamic.
1448
1449 FIXME: Should we check type and size for protected symbol? */
1450 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1451 return bfd_elf_link_record_dynamic_symbol (info, h);
1452 else
1453 return true;
1454 }
1455 else if (!newdyn
1456 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1457 && h->def_dynamic)
1458 {
1459 /* If the new symbol with non-default visibility comes from a
1460 relocatable file and the old definition comes from a dynamic
1461 object, we remove the old definition. */
1462 if (hi->root.type == bfd_link_hash_indirect)
1463 {
1464 /* Handle the case where the old dynamic definition is
1465 default versioned. We need to copy the symbol info from
1466 the symbol with default version to the normal one if it
1467 was referenced before. */
1468 if (h->ref_regular)
1469 {
1470 hi->root.type = h->root.type;
1471 h->root.type = bfd_link_hash_indirect;
1472 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1473
1474 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1475 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1476 {
1477 /* If the new symbol is hidden or internal, completely undo
1478 any dynamic link state. */
1479 (*bed->elf_backend_hide_symbol) (info, h, true);
1480 h->forced_local = 0;
1481 h->ref_dynamic = 0;
1482 }
1483 else
1484 h->ref_dynamic = 1;
1485
1486 h->def_dynamic = 0;
1487 /* FIXME: Should we check type and size for protected symbol? */
1488 h->size = 0;
1489 h->type = 0;
1490
1491 h = hi;
1492 }
1493 else
1494 h = hi;
1495 }
1496
1497 /* If the old symbol was undefined before, then it will still be
1498 on the undefs list. If the new symbol is undefined or
1499 common, we can't make it bfd_link_hash_new here, because new
1500 undefined or common symbols will be added to the undefs list
1501 by _bfd_generic_link_add_one_symbol. Symbols may not be
1502 added twice to the undefs list. Also, if the new symbol is
1503 undefweak then we don't want to lose the strong undef. */
1504 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1505 {
1506 h->root.type = bfd_link_hash_undefined;
1507 h->root.u.undef.abfd = abfd;
1508 }
1509 else
1510 {
1511 h->root.type = bfd_link_hash_new;
1512 h->root.u.undef.abfd = NULL;
1513 }
1514
1515 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1516 {
1517 /* If the new symbol is hidden or internal, completely undo
1518 any dynamic link state. */
1519 (*bed->elf_backend_hide_symbol) (info, h, true);
1520 h->forced_local = 0;
1521 h->ref_dynamic = 0;
1522 }
1523 else
1524 h->ref_dynamic = 1;
1525 h->def_dynamic = 0;
1526 /* FIXME: Should we check type and size for protected symbol? */
1527 h->size = 0;
1528 h->type = 0;
1529 return true;
1530 }
1531
1532 /* If a new weak symbol definition comes from a regular file and the
1533 old symbol comes from a dynamic library, we treat the new one as
1534 strong. Similarly, an old weak symbol definition from a regular
1535 file is treated as strong when the new symbol comes from a dynamic
1536 library. Further, an old weak symbol from a dynamic library is
1537 treated as strong if the new symbol is from a dynamic library.
1538 This reflects the way glibc's ld.so works.
1539
1540 Also allow a weak symbol to override a linker script symbol
1541 defined by an early pass over the script. This is done so the
1542 linker knows the symbol is defined in an object file, for the
1543 DEFINED script function.
1544
1545 Do this before setting *type_change_ok or *size_change_ok so that
1546 we warn properly when dynamic library symbols are overridden. */
1547
1548 if (newdef && !newdyn && (olddyn || h->root.ldscript_def))
1549 newweak = false;
1550 if (olddef && newdyn)
1551 oldweak = false;
1552
1553 /* Allow changes between different types of function symbol. */
1554 if (newfunc && oldfunc)
1555 *type_change_ok = true;
1556
1557 /* It's OK to change the type if either the existing symbol or the
1558 new symbol is weak. A type change is also OK if the old symbol
1559 is undefined and the new symbol is defined. */
1560
1561 if (oldweak
1562 || newweak
1563 || (newdef
1564 && h->root.type == bfd_link_hash_undefined))
1565 *type_change_ok = true;
1566
1567 /* It's OK to change the size if either the existing symbol or the
1568 new symbol is weak, or if the old symbol is undefined. */
1569
1570 if (*type_change_ok
1571 || h->root.type == bfd_link_hash_undefined)
1572 *size_change_ok = true;
1573
1574 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1575 symbol, respectively, appears to be a common symbol in a dynamic
1576 object. If a symbol appears in an uninitialized section, and is
1577 not weak, and is not a function, then it may be a common symbol
1578 which was resolved when the dynamic object was created. We want
1579 to treat such symbols specially, because they raise special
1580 considerations when setting the symbol size: if the symbol
1581 appears as a common symbol in a regular object, and the size in
1582 the regular object is larger, we must make sure that we use the
1583 larger size. This problematic case can always be avoided in C,
1584 but it must be handled correctly when using Fortran shared
1585 libraries.
1586
1587 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1588 likewise for OLDDYNCOMMON and OLDDEF.
1589
1590 Note that this test is just a heuristic, and that it is quite
1591 possible to have an uninitialized symbol in a shared object which
1592 is really a definition, rather than a common symbol. This could
1593 lead to some minor confusion when the symbol really is a common
1594 symbol in some regular object. However, I think it will be
1595 harmless. */
1596
1597 if (newdyn
1598 && newdef
1599 && !newweak
1600 && (sec->flags & SEC_ALLOC) != 0
1601 && (sec->flags & SEC_LOAD) == 0
1602 && sym->st_size > 0
1603 && !newfunc)
1604 newdyncommon = true;
1605 else
1606 newdyncommon = false;
1607
1608 if (olddyn
1609 && olddef
1610 && h->root.type == bfd_link_hash_defined
1611 && h->def_dynamic
1612 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1613 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1614 && h->size > 0
1615 && !oldfunc)
1616 olddyncommon = true;
1617 else
1618 olddyncommon = false;
1619
1620 /* We now know everything about the old and new symbols. We ask the
1621 backend to check if we can merge them. */
1622 if (bed->merge_symbol != NULL)
1623 {
1624 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1625 return false;
1626 sec = *psec;
1627 }
1628
1629 /* There are multiple definitions of a normal symbol. Skip the
1630 default symbol as well as definition from an IR object. */
1631 if (olddef && !olddyn && !oldweak && newdef && !newdyn && !newweak
1632 && !default_sym && h->def_regular
1633 && !(oldbfd != NULL
1634 && (oldbfd->flags & BFD_PLUGIN) != 0
1635 && (abfd->flags & BFD_PLUGIN) == 0))
1636 {
1637 /* Handle a multiple definition. */
1638 (*info->callbacks->multiple_definition) (info, &h->root,
1639 abfd, sec, *pvalue);
1640 *skip = true;
1641 return true;
1642 }
1643
1644 /* If both the old and the new symbols look like common symbols in a
1645 dynamic object, set the size of the symbol to the larger of the
1646 two. */
1647
1648 if (olddyncommon
1649 && newdyncommon
1650 && sym->st_size != h->size)
1651 {
1652 /* Since we think we have two common symbols, issue a multiple
1653 common warning if desired. Note that we only warn if the
1654 size is different. If the size is the same, we simply let
1655 the old symbol override the new one as normally happens with
1656 symbols defined in dynamic objects. */
1657
1658 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1659 bfd_link_hash_common, sym->st_size);
1660 if (sym->st_size > h->size)
1661 h->size = sym->st_size;
1662
1663 *size_change_ok = true;
1664 }
1665
1666 /* If we are looking at a dynamic object, and we have found a
1667 definition, we need to see if the symbol was already defined by
1668 some other object. If so, we want to use the existing
1669 definition, and we do not want to report a multiple symbol
1670 definition error; we do this by clobbering *PSEC to be
1671 bfd_und_section_ptr.
1672
1673 We treat a common symbol as a definition if the symbol in the
1674 shared library is a function, since common symbols always
1675 represent variables; this can cause confusion in principle, but
1676 any such confusion would seem to indicate an erroneous program or
1677 shared library. We also permit a common symbol in a regular
1678 object to override a weak symbol in a shared object. */
1679
1680 if (newdyn
1681 && newdef
1682 && (olddef
1683 || (h->root.type == bfd_link_hash_common
1684 && (newweak || newfunc))))
1685 {
1686 *override = abfd;
1687 newdef = false;
1688 newdyncommon = false;
1689
1690 *psec = sec = bfd_und_section_ptr;
1691 *size_change_ok = true;
1692
1693 /* If we get here when the old symbol is a common symbol, then
1694 we are explicitly letting it override a weak symbol or
1695 function in a dynamic object, and we don't want to warn about
1696 a type change. If the old symbol is a defined symbol, a type
1697 change warning may still be appropriate. */
1698
1699 if (h->root.type == bfd_link_hash_common)
1700 *type_change_ok = true;
1701 }
1702
1703 /* Handle the special case of an old common symbol merging with a
1704 new symbol which looks like a common symbol in a shared object.
1705 We change *PSEC and *PVALUE to make the new symbol look like a
1706 common symbol, and let _bfd_generic_link_add_one_symbol do the
1707 right thing. */
1708
1709 if (newdyncommon
1710 && h->root.type == bfd_link_hash_common)
1711 {
1712 *override = oldbfd;
1713 newdef = false;
1714 newdyncommon = false;
1715 *pvalue = sym->st_size;
1716 *psec = sec = bed->common_section (oldsec);
1717 *size_change_ok = true;
1718 }
1719
1720 /* Skip weak definitions of symbols that are already defined. */
1721 if (newdef && olddef && newweak)
1722 {
1723 /* Don't skip new non-IR weak syms. */
1724 if (!(oldbfd != NULL
1725 && (oldbfd->flags & BFD_PLUGIN) != 0
1726 && (abfd->flags & BFD_PLUGIN) == 0))
1727 {
1728 newdef = false;
1729 *skip = true;
1730 }
1731
1732 /* Merge st_other. If the symbol already has a dynamic index,
1733 but visibility says it should not be visible, turn it into a
1734 local symbol. */
1735 elf_merge_st_other (abfd, h, sym->st_other, sec, newdef, newdyn);
1736 if (h->dynindx != -1)
1737 switch (ELF_ST_VISIBILITY (h->other))
1738 {
1739 case STV_INTERNAL:
1740 case STV_HIDDEN:
1741 (*bed->elf_backend_hide_symbol) (info, h, true);
1742 break;
1743 }
1744 }
1745
1746 /* If the old symbol is from a dynamic object, and the new symbol is
1747 a definition which is not from a dynamic object, then the new
1748 symbol overrides the old symbol. Symbols from regular files
1749 always take precedence over symbols from dynamic objects, even if
1750 they are defined after the dynamic object in the link.
1751
1752 As above, we again permit a common symbol in a regular object to
1753 override a definition in a shared object if the shared object
1754 symbol is a function or is weak. */
1755
1756 flip = NULL;
1757 if (!newdyn
1758 && (newdef
1759 || (bfd_is_com_section (sec)
1760 && (oldweak || oldfunc)))
1761 && olddyn
1762 && olddef
1763 && h->def_dynamic)
1764 {
1765 /* Change the hash table entry to undefined, and let
1766 _bfd_generic_link_add_one_symbol do the right thing with the
1767 new definition. */
1768
1769 h->root.type = bfd_link_hash_undefined;
1770 h->root.u.undef.abfd = h->root.u.def.section->owner;
1771 *size_change_ok = true;
1772
1773 olddef = false;
1774 olddyncommon = false;
1775
1776 /* We again permit a type change when a common symbol may be
1777 overriding a function. */
1778
1779 if (bfd_is_com_section (sec))
1780 {
1781 if (oldfunc)
1782 {
1783 /* If a common symbol overrides a function, make sure
1784 that it isn't defined dynamically nor has type
1785 function. */
1786 h->def_dynamic = 0;
1787 h->type = STT_NOTYPE;
1788 }
1789 *type_change_ok = true;
1790 }
1791
1792 if (hi->root.type == bfd_link_hash_indirect)
1793 flip = hi;
1794 else
1795 /* This union may have been set to be non-NULL when this symbol
1796 was seen in a dynamic object. We must force the union to be
1797 NULL, so that it is correct for a regular symbol. */
1798 h->verinfo.vertree = NULL;
1799 }
1800
1801 /* Handle the special case of a new common symbol merging with an
1802 old symbol that looks like it might be a common symbol defined in
1803 a shared object. Note that we have already handled the case in
1804 which a new common symbol should simply override the definition
1805 in the shared library. */
1806
1807 if (! newdyn
1808 && bfd_is_com_section (sec)
1809 && olddyncommon)
1810 {
1811 /* It would be best if we could set the hash table entry to a
1812 common symbol, but we don't know what to use for the section
1813 or the alignment. */
1814 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1815 bfd_link_hash_common, sym->st_size);
1816
1817 /* If the presumed common symbol in the dynamic object is
1818 larger, pretend that the new symbol has its size. */
1819
1820 if (h->size > *pvalue)
1821 *pvalue = h->size;
1822
1823 /* We need to remember the alignment required by the symbol
1824 in the dynamic object. */
1825 BFD_ASSERT (pold_alignment);
1826 *pold_alignment = h->root.u.def.section->alignment_power;
1827
1828 olddef = false;
1829 olddyncommon = false;
1830
1831 h->root.type = bfd_link_hash_undefined;
1832 h->root.u.undef.abfd = h->root.u.def.section->owner;
1833
1834 *size_change_ok = true;
1835 *type_change_ok = true;
1836
1837 if (hi->root.type == bfd_link_hash_indirect)
1838 flip = hi;
1839 else
1840 h->verinfo.vertree = NULL;
1841 }
1842
1843 if (flip != NULL)
1844 {
1845 /* Handle the case where we had a versioned symbol in a dynamic
1846 library and now find a definition in a normal object. In this
1847 case, we make the versioned symbol point to the normal one. */
1848 flip->root.type = h->root.type;
1849 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1850 h->root.type = bfd_link_hash_indirect;
1851 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1852 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1853 if (h->def_dynamic)
1854 {
1855 h->def_dynamic = 0;
1856 flip->ref_dynamic = 1;
1857 }
1858 }
1859
1860 return true;
1861 }
1862
1863 /* This function is called to create an indirect symbol from the
1864 default for the symbol with the default version if needed. The
1865 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1866 set DYNSYM if the new indirect symbol is dynamic. */
1867
1868 static bool
1869 _bfd_elf_add_default_symbol (bfd *abfd,
1870 struct bfd_link_info *info,
1871 struct elf_link_hash_entry *h,
1872 const char *name,
1873 Elf_Internal_Sym *sym,
1874 asection *sec,
1875 bfd_vma value,
1876 bfd **poldbfd,
1877 bool *dynsym)
1878 {
1879 bool type_change_ok;
1880 bool size_change_ok;
1881 bool skip;
1882 char *shortname;
1883 struct elf_link_hash_entry *hi;
1884 struct bfd_link_hash_entry *bh;
1885 const struct elf_backend_data *bed;
1886 bool collect;
1887 bool dynamic;
1888 bfd *override;
1889 char *p;
1890 size_t len, shortlen;
1891 asection *tmp_sec;
1892 bool matched;
1893
1894 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1895 return true;
1896
1897 /* If this symbol has a version, and it is the default version, we
1898 create an indirect symbol from the default name to the fully
1899 decorated name. This will cause external references which do not
1900 specify a version to be bound to this version of the symbol. */
1901 p = strchr (name, ELF_VER_CHR);
1902 if (h->versioned == unknown)
1903 {
1904 if (p == NULL)
1905 {
1906 h->versioned = unversioned;
1907 return true;
1908 }
1909 else
1910 {
1911 if (p[1] != ELF_VER_CHR)
1912 {
1913 h->versioned = versioned_hidden;
1914 return true;
1915 }
1916 else
1917 h->versioned = versioned;
1918 }
1919 }
1920 else
1921 {
1922 /* PR ld/19073: We may see an unversioned definition after the
1923 default version. */
1924 if (p == NULL)
1925 return true;
1926 }
1927
1928 bed = get_elf_backend_data (abfd);
1929 collect = bed->collect;
1930 dynamic = (abfd->flags & DYNAMIC) != 0;
1931
1932 shortlen = p - name;
1933 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1934 if (shortname == NULL)
1935 return false;
1936 memcpy (shortname, name, shortlen);
1937 shortname[shortlen] = '\0';
1938
1939 /* We are going to create a new symbol. Merge it with any existing
1940 symbol with this name. For the purposes of the merge, act as
1941 though we were defining the symbol we just defined, although we
1942 actually going to define an indirect symbol. */
1943 type_change_ok = false;
1944 size_change_ok = false;
1945 matched = true;
1946 tmp_sec = sec;
1947 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1948 &hi, poldbfd, NULL, NULL, &skip, &override,
1949 &type_change_ok, &size_change_ok, &matched))
1950 return false;
1951
1952 if (skip)
1953 goto nondefault;
1954
1955 if (hi->def_regular || ELF_COMMON_DEF_P (hi))
1956 {
1957 /* If the undecorated symbol will have a version added by a
1958 script different to H, then don't indirect to/from the
1959 undecorated symbol. This isn't ideal because we may not yet
1960 have seen symbol versions, if given by a script on the
1961 command line rather than via --version-script. */
1962 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1963 {
1964 bool hide;
1965
1966 hi->verinfo.vertree
1967 = bfd_find_version_for_sym (info->version_info,
1968 hi->root.root.string, &hide);
1969 if (hi->verinfo.vertree != NULL && hide)
1970 {
1971 (*bed->elf_backend_hide_symbol) (info, hi, true);
1972 goto nondefault;
1973 }
1974 }
1975 if (hi->verinfo.vertree != NULL
1976 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1977 goto nondefault;
1978 }
1979
1980 if (! override)
1981 {
1982 /* Add the default symbol if not performing a relocatable link. */
1983 if (! bfd_link_relocatable (info))
1984 {
1985 bh = &hi->root;
1986 if (bh->type == bfd_link_hash_defined
1987 && bh->u.def.section->owner != NULL
1988 && (bh->u.def.section->owner->flags & BFD_PLUGIN) != 0)
1989 {
1990 /* Mark the previous definition from IR object as
1991 undefined so that the generic linker will override
1992 it. */
1993 bh->type = bfd_link_hash_undefined;
1994 bh->u.undef.abfd = bh->u.def.section->owner;
1995 }
1996 if (! (_bfd_generic_link_add_one_symbol
1997 (info, abfd, shortname, BSF_INDIRECT,
1998 bfd_ind_section_ptr,
1999 0, name, false, collect, &bh)))
2000 return false;
2001 hi = (struct elf_link_hash_entry *) bh;
2002 }
2003 }
2004 else
2005 {
2006 /* In this case the symbol named SHORTNAME is overriding the
2007 indirect symbol we want to add. We were planning on making
2008 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
2009 is the name without a version. NAME is the fully versioned
2010 name, and it is the default version.
2011
2012 Overriding means that we already saw a definition for the
2013 symbol SHORTNAME in a regular object, and it is overriding
2014 the symbol defined in the dynamic object.
2015
2016 When this happens, we actually want to change NAME, the
2017 symbol we just added, to refer to SHORTNAME. This will cause
2018 references to NAME in the shared object to become references
2019 to SHORTNAME in the regular object. This is what we expect
2020 when we override a function in a shared object: that the
2021 references in the shared object will be mapped to the
2022 definition in the regular object. */
2023
2024 while (hi->root.type == bfd_link_hash_indirect
2025 || hi->root.type == bfd_link_hash_warning)
2026 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
2027
2028 h->root.type = bfd_link_hash_indirect;
2029 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
2030 if (h->def_dynamic)
2031 {
2032 h->def_dynamic = 0;
2033 hi->ref_dynamic = 1;
2034 if (hi->ref_regular
2035 || hi->def_regular)
2036 {
2037 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
2038 return false;
2039 }
2040 }
2041
2042 /* Now set HI to H, so that the following code will set the
2043 other fields correctly. */
2044 hi = h;
2045 }
2046
2047 /* Check if HI is a warning symbol. */
2048 if (hi->root.type == bfd_link_hash_warning)
2049 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
2050
2051 /* If there is a duplicate definition somewhere, then HI may not
2052 point to an indirect symbol. We will have reported an error to
2053 the user in that case. */
2054
2055 if (hi->root.type == bfd_link_hash_indirect)
2056 {
2057 struct elf_link_hash_entry *ht;
2058
2059 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
2060 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
2061
2062 /* If we first saw a reference to SHORTNAME with non-default
2063 visibility, merge that visibility to the @@VER symbol. */
2064 elf_merge_st_other (abfd, ht, hi->other, sec, true, dynamic);
2065
2066 /* A reference to the SHORTNAME symbol from a dynamic library
2067 will be satisfied by the versioned symbol at runtime. In
2068 effect, we have a reference to the versioned symbol. */
2069 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2070 hi->dynamic_def |= ht->dynamic_def;
2071
2072 /* See if the new flags lead us to realize that the symbol must
2073 be dynamic. */
2074 if (! *dynsym)
2075 {
2076 if (! dynamic)
2077 {
2078 if (! bfd_link_executable (info)
2079 || hi->def_dynamic
2080 || hi->ref_dynamic)
2081 *dynsym = true;
2082 }
2083 else
2084 {
2085 if (hi->ref_regular)
2086 *dynsym = true;
2087 }
2088 }
2089 }
2090
2091 /* We also need to define an indirection from the nondefault version
2092 of the symbol. */
2093
2094 nondefault:
2095 len = strlen (name);
2096 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
2097 if (shortname == NULL)
2098 return false;
2099 memcpy (shortname, name, shortlen);
2100 memcpy (shortname + shortlen, p + 1, len - shortlen);
2101
2102 /* Once again, merge with any existing symbol. */
2103 type_change_ok = false;
2104 size_change_ok = false;
2105 tmp_sec = sec;
2106 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
2107 &hi, poldbfd, NULL, NULL, &skip, &override,
2108 &type_change_ok, &size_change_ok, &matched))
2109 return false;
2110
2111 if (skip)
2112 {
2113 if (!dynamic
2114 && h->root.type == bfd_link_hash_defweak
2115 && hi->root.type == bfd_link_hash_defined)
2116 {
2117 /* We are handling a weak sym@@ver and attempting to define
2118 a weak sym@ver, but _bfd_elf_merge_symbol said to skip the
2119 new weak sym@ver because there is already a strong sym@ver.
2120 However, sym@ver and sym@@ver are really the same symbol.
2121 The existing strong sym@ver ought to override sym@@ver. */
2122 h->root.type = bfd_link_hash_defined;
2123 h->root.u.def.section = hi->root.u.def.section;
2124 h->root.u.def.value = hi->root.u.def.value;
2125 hi->root.type = bfd_link_hash_indirect;
2126 hi->root.u.i.link = &h->root;
2127 }
2128 else
2129 return true;
2130 }
2131 else if (override)
2132 {
2133 /* Here SHORTNAME is a versioned name, so we don't expect to see
2134 the type of override we do in the case above unless it is
2135 overridden by a versioned definition. */
2136 if (hi->root.type != bfd_link_hash_defined
2137 && hi->root.type != bfd_link_hash_defweak)
2138 _bfd_error_handler
2139 /* xgettext:c-format */
2140 (_("%pB: unexpected redefinition of indirect versioned symbol `%s'"),
2141 abfd, shortname);
2142 return true;
2143 }
2144 else
2145 {
2146 bh = &hi->root;
2147 if (! (_bfd_generic_link_add_one_symbol
2148 (info, abfd, shortname, BSF_INDIRECT,
2149 bfd_ind_section_ptr, 0, name, false, collect, &bh)))
2150 return false;
2151 hi = (struct elf_link_hash_entry *) bh;
2152 }
2153
2154 /* If there is a duplicate definition somewhere, then HI may not
2155 point to an indirect symbol. We will have reported an error
2156 to the user in that case. */
2157 if (hi->root.type == bfd_link_hash_indirect)
2158 {
2159 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
2160 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2161 hi->dynamic_def |= h->dynamic_def;
2162
2163 /* If we first saw a reference to @VER symbol with
2164 non-default visibility, merge that visibility to the
2165 @@VER symbol. */
2166 elf_merge_st_other (abfd, h, hi->other, sec, true, dynamic);
2167
2168 /* See if the new flags lead us to realize that the symbol
2169 must be dynamic. */
2170 if (! *dynsym)
2171 {
2172 if (! dynamic)
2173 {
2174 if (! bfd_link_executable (info)
2175 || hi->ref_dynamic)
2176 *dynsym = true;
2177 }
2178 else
2179 {
2180 if (hi->ref_regular)
2181 *dynsym = true;
2182 }
2183 }
2184 }
2185
2186 return true;
2187 }
2188 \f
2189 /* This routine is used to export all defined symbols into the dynamic
2190 symbol table. It is called via elf_link_hash_traverse. */
2191
2192 static bool
2193 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2194 {
2195 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2196
2197 /* Ignore indirect symbols. These are added by the versioning code. */
2198 if (h->root.type == bfd_link_hash_indirect)
2199 return true;
2200
2201 /* Ignore this if we won't export it. */
2202 if (!eif->info->export_dynamic && !h->dynamic)
2203 return true;
2204
2205 if (h->dynindx == -1
2206 && (h->def_regular || h->ref_regular)
2207 && ! bfd_hide_sym_by_version (eif->info->version_info,
2208 h->root.root.string))
2209 {
2210 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2211 {
2212 eif->failed = true;
2213 return false;
2214 }
2215 }
2216
2217 return true;
2218 }
2219 \f
2220 /* Return true if GLIBC_ABI_DT_RELR is added to the list of version
2221 dependencies successfully. GLIBC_ABI_DT_RELR will be put into the
2222 .gnu.version_r section. */
2223
2224 static bool
2225 elf_link_add_dt_relr_dependency (struct elf_find_verdep_info *rinfo)
2226 {
2227 bfd *glibc_bfd = NULL;
2228 Elf_Internal_Verneed *t;
2229 Elf_Internal_Vernaux *a;
2230 size_t amt;
2231 const char *relr = "GLIBC_ABI_DT_RELR";
2232
2233 /* See if we already know about GLIBC_PRIVATE_DT_RELR. */
2234 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2235 t != NULL;
2236 t = t->vn_nextref)
2237 {
2238 const char *soname = bfd_elf_get_dt_soname (t->vn_bfd);
2239 /* Skip the shared library if it isn't libc.so. */
2240 if (!soname || !startswith (soname, "libc.so."))
2241 continue;
2242
2243 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2244 {
2245 /* Return if GLIBC_PRIVATE_DT_RELR dependency has been
2246 added. */
2247 if (a->vna_nodename == relr
2248 || strcmp (a->vna_nodename, relr) == 0)
2249 return true;
2250
2251 /* Check if libc.so provides GLIBC_2.XX version. */
2252 if (!glibc_bfd && startswith (a->vna_nodename, "GLIBC_2."))
2253 glibc_bfd = t->vn_bfd;
2254 }
2255
2256 break;
2257 }
2258
2259 /* Skip if it isn't linked against glibc. */
2260 if (glibc_bfd == NULL)
2261 return true;
2262
2263 /* This is a new version. Add it to tree we are building. */
2264 if (t == NULL)
2265 {
2266 amt = sizeof *t;
2267 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd,
2268 amt);
2269 if (t == NULL)
2270 {
2271 rinfo->failed = true;
2272 return false;
2273 }
2274
2275 t->vn_bfd = glibc_bfd;
2276 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2277 elf_tdata (rinfo->info->output_bfd)->verref = t;
2278 }
2279
2280 amt = sizeof *a;
2281 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2282 if (a == NULL)
2283 {
2284 rinfo->failed = true;
2285 return false;
2286 }
2287
2288 a->vna_nodename = relr;
2289 a->vna_flags = 0;
2290 a->vna_nextptr = t->vn_auxptr;
2291 a->vna_other = rinfo->vers + 1;
2292 ++rinfo->vers;
2293
2294 t->vn_auxptr = a;
2295
2296 return true;
2297 }
2298
2299 /* Look through the symbols which are defined in other shared
2300 libraries and referenced here. Update the list of version
2301 dependencies. This will be put into the .gnu.version_r section.
2302 This function is called via elf_link_hash_traverse. */
2303
2304 static bool
2305 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2306 void *data)
2307 {
2308 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2309 Elf_Internal_Verneed *t;
2310 Elf_Internal_Vernaux *a;
2311 size_t amt;
2312
2313 /* We only care about symbols defined in shared objects with version
2314 information. */
2315 if (!h->def_dynamic
2316 || h->def_regular
2317 || h->dynindx == -1
2318 || h->verinfo.verdef == NULL
2319 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2320 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2321 return true;
2322
2323 /* See if we already know about this version. */
2324 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2325 t != NULL;
2326 t = t->vn_nextref)
2327 {
2328 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2329 continue;
2330
2331 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2332 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2333 return true;
2334
2335 break;
2336 }
2337
2338 /* This is a new version. Add it to tree we are building. */
2339
2340 if (t == NULL)
2341 {
2342 amt = sizeof *t;
2343 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2344 if (t == NULL)
2345 {
2346 rinfo->failed = true;
2347 return false;
2348 }
2349
2350 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2351 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2352 elf_tdata (rinfo->info->output_bfd)->verref = t;
2353 }
2354
2355 amt = sizeof *a;
2356 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2357 if (a == NULL)
2358 {
2359 rinfo->failed = true;
2360 return false;
2361 }
2362
2363 /* Note that we are copying a string pointer here, and testing it
2364 above. If bfd_elf_string_from_elf_section is ever changed to
2365 discard the string data when low in memory, this will have to be
2366 fixed. */
2367 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2368
2369 a->vna_flags = h->verinfo.verdef->vd_flags;
2370 a->vna_nextptr = t->vn_auxptr;
2371
2372 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2373 ++rinfo->vers;
2374
2375 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2376
2377 t->vn_auxptr = a;
2378
2379 return true;
2380 }
2381
2382 /* Return TRUE and set *HIDE to TRUE if the versioned symbol is
2383 hidden. Set *T_P to NULL if there is no match. */
2384
2385 static bool
2386 _bfd_elf_link_hide_versioned_symbol (struct bfd_link_info *info,
2387 struct elf_link_hash_entry *h,
2388 const char *version_p,
2389 struct bfd_elf_version_tree **t_p,
2390 bool *hide)
2391 {
2392 struct bfd_elf_version_tree *t;
2393
2394 /* Look for the version. If we find it, it is no longer weak. */
2395 for (t = info->version_info; t != NULL; t = t->next)
2396 {
2397 if (strcmp (t->name, version_p) == 0)
2398 {
2399 size_t len;
2400 char *alc;
2401 struct bfd_elf_version_expr *d;
2402
2403 len = version_p - h->root.root.string;
2404 alc = (char *) bfd_malloc (len);
2405 if (alc == NULL)
2406 return false;
2407 memcpy (alc, h->root.root.string, len - 1);
2408 alc[len - 1] = '\0';
2409 if (alc[len - 2] == ELF_VER_CHR)
2410 alc[len - 2] = '\0';
2411
2412 h->verinfo.vertree = t;
2413 t->used = true;
2414 d = NULL;
2415
2416 if (t->globals.list != NULL)
2417 d = (*t->match) (&t->globals, NULL, alc);
2418
2419 /* See if there is anything to force this symbol to
2420 local scope. */
2421 if (d == NULL && t->locals.list != NULL)
2422 {
2423 d = (*t->match) (&t->locals, NULL, alc);
2424 if (d != NULL
2425 && h->dynindx != -1
2426 && ! info->export_dynamic)
2427 *hide = true;
2428 }
2429
2430 free (alc);
2431 break;
2432 }
2433 }
2434
2435 *t_p = t;
2436
2437 return true;
2438 }
2439
2440 /* Return TRUE if the symbol H is hidden by version script. */
2441
2442 bool
2443 _bfd_elf_link_hide_sym_by_version (struct bfd_link_info *info,
2444 struct elf_link_hash_entry *h)
2445 {
2446 const char *p;
2447 bool hide = false;
2448 const struct elf_backend_data *bed
2449 = get_elf_backend_data (info->output_bfd);
2450
2451 /* Version script only hides symbols defined in regular objects. */
2452 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2453 return true;
2454
2455 p = strchr (h->root.root.string, ELF_VER_CHR);
2456 if (p != NULL && h->verinfo.vertree == NULL)
2457 {
2458 struct bfd_elf_version_tree *t;
2459
2460 ++p;
2461 if (*p == ELF_VER_CHR)
2462 ++p;
2463
2464 if (*p != '\0'
2465 && _bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide)
2466 && hide)
2467 {
2468 if (hide)
2469 (*bed->elf_backend_hide_symbol) (info, h, true);
2470 return true;
2471 }
2472 }
2473
2474 /* If we don't have a version for this symbol, see if we can find
2475 something. */
2476 if (h->verinfo.vertree == NULL && info->version_info != NULL)
2477 {
2478 h->verinfo.vertree
2479 = bfd_find_version_for_sym (info->version_info,
2480 h->root.root.string, &hide);
2481 if (h->verinfo.vertree != NULL && hide)
2482 {
2483 (*bed->elf_backend_hide_symbol) (info, h, true);
2484 return true;
2485 }
2486 }
2487
2488 return false;
2489 }
2490
2491 /* Figure out appropriate versions for all the symbols. We may not
2492 have the version number script until we have read all of the input
2493 files, so until that point we don't know which symbols should be
2494 local. This function is called via elf_link_hash_traverse. */
2495
2496 static bool
2497 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2498 {
2499 struct elf_info_failed *sinfo;
2500 struct bfd_link_info *info;
2501 const struct elf_backend_data *bed;
2502 struct elf_info_failed eif;
2503 char *p;
2504 bool hide;
2505
2506 sinfo = (struct elf_info_failed *) data;
2507 info = sinfo->info;
2508
2509 /* Fix the symbol flags. */
2510 eif.failed = false;
2511 eif.info = info;
2512 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2513 {
2514 if (eif.failed)
2515 sinfo->failed = true;
2516 return false;
2517 }
2518
2519 bed = get_elf_backend_data (info->output_bfd);
2520
2521 /* We only need version numbers for symbols defined in regular
2522 objects. */
2523 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2524 {
2525 /* Hide symbols defined in discarded input sections. */
2526 if ((h->root.type == bfd_link_hash_defined
2527 || h->root.type == bfd_link_hash_defweak)
2528 && discarded_section (h->root.u.def.section))
2529 (*bed->elf_backend_hide_symbol) (info, h, true);
2530 return true;
2531 }
2532
2533 hide = false;
2534 p = strchr (h->root.root.string, ELF_VER_CHR);
2535 if (p != NULL && h->verinfo.vertree == NULL)
2536 {
2537 struct bfd_elf_version_tree *t;
2538
2539 ++p;
2540 if (*p == ELF_VER_CHR)
2541 ++p;
2542
2543 /* If there is no version string, we can just return out. */
2544 if (*p == '\0')
2545 return true;
2546
2547 if (!_bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide))
2548 {
2549 sinfo->failed = true;
2550 return false;
2551 }
2552
2553 if (hide)
2554 (*bed->elf_backend_hide_symbol) (info, h, true);
2555
2556 /* If we are building an application, we need to create a
2557 version node for this version. */
2558 if (t == NULL && bfd_link_executable (info))
2559 {
2560 struct bfd_elf_version_tree **pp;
2561 int version_index;
2562
2563 /* If we aren't going to export this symbol, we don't need
2564 to worry about it. */
2565 if (h->dynindx == -1)
2566 return true;
2567
2568 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2569 sizeof *t);
2570 if (t == NULL)
2571 {
2572 sinfo->failed = true;
2573 return false;
2574 }
2575
2576 t->name = p;
2577 t->name_indx = (unsigned int) -1;
2578 t->used = true;
2579
2580 version_index = 1;
2581 /* Don't count anonymous version tag. */
2582 if (sinfo->info->version_info != NULL
2583 && sinfo->info->version_info->vernum == 0)
2584 version_index = 0;
2585 for (pp = &sinfo->info->version_info;
2586 *pp != NULL;
2587 pp = &(*pp)->next)
2588 ++version_index;
2589 t->vernum = version_index;
2590
2591 *pp = t;
2592
2593 h->verinfo.vertree = t;
2594 }
2595 else if (t == NULL)
2596 {
2597 /* We could not find the version for a symbol when
2598 generating a shared archive. Return an error. */
2599 _bfd_error_handler
2600 /* xgettext:c-format */
2601 (_("%pB: version node not found for symbol %s"),
2602 info->output_bfd, h->root.root.string);
2603 bfd_set_error (bfd_error_bad_value);
2604 sinfo->failed = true;
2605 return false;
2606 }
2607 }
2608
2609 /* If we don't have a version for this symbol, see if we can find
2610 something. */
2611 if (!hide
2612 && h->verinfo.vertree == NULL
2613 && sinfo->info->version_info != NULL)
2614 {
2615 h->verinfo.vertree
2616 = bfd_find_version_for_sym (sinfo->info->version_info,
2617 h->root.root.string, &hide);
2618 if (h->verinfo.vertree != NULL && hide)
2619 (*bed->elf_backend_hide_symbol) (info, h, true);
2620 }
2621
2622 return true;
2623 }
2624 \f
2625 /* Read and swap the relocs from the section indicated by SHDR. This
2626 may be either a REL or a RELA section. The relocations are
2627 translated into RELA relocations and stored in INTERNAL_RELOCS,
2628 which should have already been allocated to contain enough space.
2629 The EXTERNAL_RELOCS are a buffer where the external form of the
2630 relocations should be stored.
2631
2632 Returns FALSE if something goes wrong. */
2633
2634 static bool
2635 elf_link_read_relocs_from_section (bfd *abfd,
2636 asection *sec,
2637 Elf_Internal_Shdr *shdr,
2638 void *external_relocs,
2639 Elf_Internal_Rela *internal_relocs)
2640 {
2641 const struct elf_backend_data *bed;
2642 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2643 const bfd_byte *erela;
2644 const bfd_byte *erelaend;
2645 Elf_Internal_Rela *irela;
2646 Elf_Internal_Shdr *symtab_hdr;
2647 size_t nsyms;
2648
2649 /* Position ourselves at the start of the section. */
2650 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2651 return false;
2652
2653 /* Read the relocations. */
2654 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2655 return false;
2656
2657 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2658 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2659
2660 bed = get_elf_backend_data (abfd);
2661
2662 /* Convert the external relocations to the internal format. */
2663 if (shdr->sh_entsize == bed->s->sizeof_rel)
2664 swap_in = bed->s->swap_reloc_in;
2665 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2666 swap_in = bed->s->swap_reloca_in;
2667 else
2668 {
2669 bfd_set_error (bfd_error_wrong_format);
2670 return false;
2671 }
2672
2673 erela = (const bfd_byte *) external_relocs;
2674 /* Setting erelaend like this and comparing with <= handles case of
2675 a fuzzed object with sh_size not a multiple of sh_entsize. */
2676 erelaend = erela + shdr->sh_size - shdr->sh_entsize;
2677 irela = internal_relocs;
2678 while (erela <= erelaend)
2679 {
2680 bfd_vma r_symndx;
2681
2682 (*swap_in) (abfd, erela, irela);
2683 r_symndx = ELF32_R_SYM (irela->r_info);
2684 if (bed->s->arch_size == 64)
2685 r_symndx >>= 24;
2686 if (nsyms > 0)
2687 {
2688 if ((size_t) r_symndx >= nsyms)
2689 {
2690 _bfd_error_handler
2691 /* xgettext:c-format */
2692 (_("%pB: bad reloc symbol index (%#" PRIx64 " >= %#lx)"
2693 " for offset %#" PRIx64 " in section `%pA'"),
2694 abfd, (uint64_t) r_symndx, (unsigned long) nsyms,
2695 (uint64_t) irela->r_offset, sec);
2696 bfd_set_error (bfd_error_bad_value);
2697 return false;
2698 }
2699 }
2700 else if (r_symndx != STN_UNDEF)
2701 {
2702 _bfd_error_handler
2703 /* xgettext:c-format */
2704 (_("%pB: non-zero symbol index (%#" PRIx64 ")"
2705 " for offset %#" PRIx64 " in section `%pA'"
2706 " when the object file has no symbol table"),
2707 abfd, (uint64_t) r_symndx,
2708 (uint64_t) irela->r_offset, sec);
2709 bfd_set_error (bfd_error_bad_value);
2710 return false;
2711 }
2712 irela += bed->s->int_rels_per_ext_rel;
2713 erela += shdr->sh_entsize;
2714 }
2715
2716 return true;
2717 }
2718
2719 /* Read and swap the relocs for a section O. They may have been
2720 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2721 not NULL, they are used as buffers to read into. They are known to
2722 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2723 the return value is allocated using either malloc or bfd_alloc,
2724 according to the KEEP_MEMORY argument. If O has two relocation
2725 sections (both REL and RELA relocations), then the REL_HDR
2726 relocations will appear first in INTERNAL_RELOCS, followed by the
2727 RELA_HDR relocations. If INFO isn't NULL and KEEP_MEMORY is true,
2728 update cache_size. */
2729
2730 Elf_Internal_Rela *
2731 _bfd_elf_link_info_read_relocs (bfd *abfd,
2732 struct bfd_link_info *info,
2733 asection *o,
2734 void *external_relocs,
2735 Elf_Internal_Rela *internal_relocs,
2736 bool keep_memory)
2737 {
2738 void *alloc1 = NULL;
2739 Elf_Internal_Rela *alloc2 = NULL;
2740 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2741 struct bfd_elf_section_data *esdo = elf_section_data (o);
2742 Elf_Internal_Rela *internal_rela_relocs;
2743
2744 if (esdo->relocs != NULL)
2745 return esdo->relocs;
2746
2747 if (o->reloc_count == 0)
2748 return NULL;
2749
2750 if (internal_relocs == NULL)
2751 {
2752 bfd_size_type size;
2753
2754 size = (bfd_size_type) o->reloc_count * sizeof (Elf_Internal_Rela);
2755 if (keep_memory)
2756 {
2757 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2758 if (info)
2759 info->cache_size += size;
2760 }
2761 else
2762 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2763 if (internal_relocs == NULL)
2764 goto error_return;
2765 }
2766
2767 if (external_relocs == NULL)
2768 {
2769 bfd_size_type size = 0;
2770
2771 if (esdo->rel.hdr)
2772 size += esdo->rel.hdr->sh_size;
2773 if (esdo->rela.hdr)
2774 size += esdo->rela.hdr->sh_size;
2775
2776 alloc1 = bfd_malloc (size);
2777 if (alloc1 == NULL)
2778 goto error_return;
2779 external_relocs = alloc1;
2780 }
2781
2782 internal_rela_relocs = internal_relocs;
2783 if (esdo->rel.hdr)
2784 {
2785 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2786 external_relocs,
2787 internal_relocs))
2788 goto error_return;
2789 external_relocs = (((bfd_byte *) external_relocs)
2790 + esdo->rel.hdr->sh_size);
2791 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2792 * bed->s->int_rels_per_ext_rel);
2793 }
2794
2795 if (esdo->rela.hdr
2796 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2797 external_relocs,
2798 internal_rela_relocs)))
2799 goto error_return;
2800
2801 /* Cache the results for next time, if we can. */
2802 if (keep_memory)
2803 esdo->relocs = internal_relocs;
2804
2805 free (alloc1);
2806
2807 /* Don't free alloc2, since if it was allocated we are passing it
2808 back (under the name of internal_relocs). */
2809
2810 return internal_relocs;
2811
2812 error_return:
2813 free (alloc1);
2814 if (alloc2 != NULL)
2815 {
2816 if (keep_memory)
2817 bfd_release (abfd, alloc2);
2818 else
2819 free (alloc2);
2820 }
2821 return NULL;
2822 }
2823
2824 /* This is similar to _bfd_elf_link_info_read_relocs, except for that
2825 NULL is passed to _bfd_elf_link_info_read_relocs for pointer to
2826 struct bfd_link_info. */
2827
2828 Elf_Internal_Rela *
2829 _bfd_elf_link_read_relocs (bfd *abfd,
2830 asection *o,
2831 void *external_relocs,
2832 Elf_Internal_Rela *internal_relocs,
2833 bool keep_memory)
2834 {
2835 return _bfd_elf_link_info_read_relocs (abfd, NULL, o, external_relocs,
2836 internal_relocs, keep_memory);
2837
2838 }
2839
2840 /* Compute the size of, and allocate space for, REL_HDR which is the
2841 section header for a section containing relocations for O. */
2842
2843 static bool
2844 _bfd_elf_link_size_reloc_section (bfd *abfd,
2845 struct bfd_elf_section_reloc_data *reldata)
2846 {
2847 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2848
2849 /* That allows us to calculate the size of the section. */
2850 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2851
2852 /* The contents field must last into write_object_contents, so we
2853 allocate it with bfd_alloc rather than malloc. Also since we
2854 cannot be sure that the contents will actually be filled in,
2855 we zero the allocated space. */
2856 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2857 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2858 return false;
2859
2860 if (reldata->hashes == NULL && reldata->count)
2861 {
2862 struct elf_link_hash_entry **p;
2863
2864 p = ((struct elf_link_hash_entry **)
2865 bfd_zmalloc (reldata->count * sizeof (*p)));
2866 if (p == NULL)
2867 return false;
2868
2869 reldata->hashes = p;
2870 }
2871
2872 return true;
2873 }
2874
2875 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2876 originated from the section given by INPUT_REL_HDR) to the
2877 OUTPUT_BFD. */
2878
2879 bool
2880 _bfd_elf_link_output_relocs (bfd *output_bfd,
2881 asection *input_section,
2882 Elf_Internal_Shdr *input_rel_hdr,
2883 Elf_Internal_Rela *internal_relocs,
2884 struct elf_link_hash_entry **rel_hash
2885 ATTRIBUTE_UNUSED)
2886 {
2887 Elf_Internal_Rela *irela;
2888 Elf_Internal_Rela *irelaend;
2889 bfd_byte *erel;
2890 struct bfd_elf_section_reloc_data *output_reldata;
2891 asection *output_section;
2892 const struct elf_backend_data *bed;
2893 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2894 struct bfd_elf_section_data *esdo;
2895
2896 output_section = input_section->output_section;
2897
2898 bed = get_elf_backend_data (output_bfd);
2899 esdo = elf_section_data (output_section);
2900 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2901 {
2902 output_reldata = &esdo->rel;
2903 swap_out = bed->s->swap_reloc_out;
2904 }
2905 else if (esdo->rela.hdr
2906 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2907 {
2908 output_reldata = &esdo->rela;
2909 swap_out = bed->s->swap_reloca_out;
2910 }
2911 else
2912 {
2913 _bfd_error_handler
2914 /* xgettext:c-format */
2915 (_("%pB: relocation size mismatch in %pB section %pA"),
2916 output_bfd, input_section->owner, input_section);
2917 bfd_set_error (bfd_error_wrong_format);
2918 return false;
2919 }
2920
2921 erel = output_reldata->hdr->contents;
2922 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2923 irela = internal_relocs;
2924 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2925 * bed->s->int_rels_per_ext_rel);
2926 while (irela < irelaend)
2927 {
2928 (*swap_out) (output_bfd, irela, erel);
2929 irela += bed->s->int_rels_per_ext_rel;
2930 erel += input_rel_hdr->sh_entsize;
2931 }
2932
2933 /* Bump the counter, so that we know where to add the next set of
2934 relocations. */
2935 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2936
2937 return true;
2938 }
2939 \f
2940 /* Make weak undefined symbols in PIE dynamic. */
2941
2942 bool
2943 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2944 struct elf_link_hash_entry *h)
2945 {
2946 if (bfd_link_pie (info)
2947 && h->dynindx == -1
2948 && h->root.type == bfd_link_hash_undefweak)
2949 return bfd_elf_link_record_dynamic_symbol (info, h);
2950
2951 return true;
2952 }
2953
2954 /* Fix up the flags for a symbol. This handles various cases which
2955 can only be fixed after all the input files are seen. This is
2956 currently called by both adjust_dynamic_symbol and
2957 assign_sym_version, which is unnecessary but perhaps more robust in
2958 the face of future changes. */
2959
2960 static bool
2961 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2962 struct elf_info_failed *eif)
2963 {
2964 const struct elf_backend_data *bed;
2965
2966 /* If this symbol was mentioned in a non-ELF file, try to set
2967 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2968 permit a non-ELF file to correctly refer to a symbol defined in
2969 an ELF dynamic object. */
2970 if (h->non_elf)
2971 {
2972 while (h->root.type == bfd_link_hash_indirect)
2973 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2974
2975 if (h->root.type != bfd_link_hash_defined
2976 && h->root.type != bfd_link_hash_defweak)
2977 {
2978 h->ref_regular = 1;
2979 h->ref_regular_nonweak = 1;
2980 }
2981 else
2982 {
2983 if (h->root.u.def.section->owner != NULL
2984 && (bfd_get_flavour (h->root.u.def.section->owner)
2985 == bfd_target_elf_flavour))
2986 {
2987 h->ref_regular = 1;
2988 h->ref_regular_nonweak = 1;
2989 }
2990 else
2991 h->def_regular = 1;
2992 }
2993
2994 if (h->dynindx == -1
2995 && (h->def_dynamic
2996 || h->ref_dynamic))
2997 {
2998 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2999 {
3000 eif->failed = true;
3001 return false;
3002 }
3003 }
3004 }
3005 else
3006 {
3007 /* Unfortunately, NON_ELF is only correct if the symbol
3008 was first seen in a non-ELF file. Fortunately, if the symbol
3009 was first seen in an ELF file, we're probably OK unless the
3010 symbol was defined in a non-ELF file. Catch that case here.
3011 FIXME: We're still in trouble if the symbol was first seen in
3012 a dynamic object, and then later in a non-ELF regular object. */
3013 if ((h->root.type == bfd_link_hash_defined
3014 || h->root.type == bfd_link_hash_defweak)
3015 && !h->def_regular
3016 && (h->root.u.def.section->owner != NULL
3017 ? (bfd_get_flavour (h->root.u.def.section->owner)
3018 != bfd_target_elf_flavour)
3019 : (bfd_is_abs_section (h->root.u.def.section)
3020 && !h->def_dynamic)))
3021 h->def_regular = 1;
3022 }
3023
3024 /* Backend specific symbol fixup. */
3025 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
3026 if (bed->elf_backend_fixup_symbol
3027 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
3028 return false;
3029
3030 /* If this is a final link, and the symbol was defined as a common
3031 symbol in a regular object file, and there was no definition in
3032 any dynamic object, then the linker will have allocated space for
3033 the symbol in a common section but the DEF_REGULAR
3034 flag will not have been set. */
3035 if (h->root.type == bfd_link_hash_defined
3036 && !h->def_regular
3037 && h->ref_regular
3038 && !h->def_dynamic
3039 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
3040 h->def_regular = 1;
3041
3042 /* Symbols defined in discarded sections shouldn't be dynamic. */
3043 if (h->root.type == bfd_link_hash_undefined && h->indx == -3)
3044 (*bed->elf_backend_hide_symbol) (eif->info, h, true);
3045
3046 /* If a weak undefined symbol has non-default visibility, we also
3047 hide it from the dynamic linker. */
3048 else if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
3049 && h->root.type == bfd_link_hash_undefweak)
3050 (*bed->elf_backend_hide_symbol) (eif->info, h, true);
3051
3052 /* A hidden versioned symbol in executable should be forced local if
3053 it is is locally defined, not referenced by shared library and not
3054 exported. */
3055 else if (bfd_link_executable (eif->info)
3056 && h->versioned == versioned_hidden
3057 && !eif->info->export_dynamic
3058 && !h->dynamic
3059 && !h->ref_dynamic
3060 && h->def_regular)
3061 (*bed->elf_backend_hide_symbol) (eif->info, h, true);
3062
3063 /* If -Bsymbolic was used (which means to bind references to global
3064 symbols to the definition within the shared object), and this
3065 symbol was defined in a regular object, then it actually doesn't
3066 need a PLT entry. Likewise, if the symbol has non-default
3067 visibility. If the symbol has hidden or internal visibility, we
3068 will force it local. */
3069 else if (h->needs_plt
3070 && bfd_link_pic (eif->info)
3071 && is_elf_hash_table (eif->info->hash)
3072 && (SYMBOLIC_BIND (eif->info, h)
3073 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
3074 && h->def_regular)
3075 {
3076 bool force_local;
3077
3078 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
3079 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
3080 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
3081 }
3082
3083 /* If this is a weak defined symbol in a dynamic object, and we know
3084 the real definition in the dynamic object, copy interesting flags
3085 over to the real definition. */
3086 if (h->is_weakalias)
3087 {
3088 struct elf_link_hash_entry *def = weakdef (h);
3089
3090 /* If the real definition is defined by a regular object file,
3091 don't do anything special. See the longer description in
3092 _bfd_elf_adjust_dynamic_symbol, below. If the def is not
3093 bfd_link_hash_defined as it was when put on the alias list
3094 then it must have originally been a versioned symbol (for
3095 which a non-versioned indirect symbol is created) and later
3096 a definition for the non-versioned symbol is found. In that
3097 case the indirection is flipped with the versioned symbol
3098 becoming an indirect pointing at the non-versioned symbol.
3099 Thus, not an alias any more. */
3100 if (def->def_regular
3101 || def->root.type != bfd_link_hash_defined)
3102 {
3103 h = def;
3104 while ((h = h->u.alias) != def)
3105 h->is_weakalias = 0;
3106 }
3107 else
3108 {
3109 while (h->root.type == bfd_link_hash_indirect)
3110 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3111 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3112 || h->root.type == bfd_link_hash_defweak);
3113 BFD_ASSERT (def->def_dynamic);
3114 (*bed->elf_backend_copy_indirect_symbol) (eif->info, def, h);
3115 }
3116 }
3117
3118 return true;
3119 }
3120
3121 /* Make the backend pick a good value for a dynamic symbol. This is
3122 called via elf_link_hash_traverse, and also calls itself
3123 recursively. */
3124
3125 static bool
3126 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
3127 {
3128 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3129 struct elf_link_hash_table *htab;
3130 const struct elf_backend_data *bed;
3131
3132 if (! is_elf_hash_table (eif->info->hash))
3133 return false;
3134
3135 /* Ignore indirect symbols. These are added by the versioning code. */
3136 if (h->root.type == bfd_link_hash_indirect)
3137 return true;
3138
3139 /* Fix the symbol flags. */
3140 if (! _bfd_elf_fix_symbol_flags (h, eif))
3141 return false;
3142
3143 htab = elf_hash_table (eif->info);
3144 bed = get_elf_backend_data (htab->dynobj);
3145
3146 if (h->root.type == bfd_link_hash_undefweak)
3147 {
3148 if (eif->info->dynamic_undefined_weak == 0)
3149 (*bed->elf_backend_hide_symbol) (eif->info, h, true);
3150 else if (eif->info->dynamic_undefined_weak > 0
3151 && h->ref_regular
3152 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3153 && !bfd_hide_sym_by_version (eif->info->version_info,
3154 h->root.root.string))
3155 {
3156 if (!bfd_elf_link_record_dynamic_symbol (eif->info, h))
3157 {
3158 eif->failed = true;
3159 return false;
3160 }
3161 }
3162 }
3163
3164 /* If this symbol does not require a PLT entry, and it is not
3165 defined by a dynamic object, or is not referenced by a regular
3166 object, ignore it. We do have to handle a weak defined symbol,
3167 even if no regular object refers to it, if we decided to add it
3168 to the dynamic symbol table. FIXME: Do we normally need to worry
3169 about symbols which are defined by one dynamic object and
3170 referenced by another one? */
3171 if (!h->needs_plt
3172 && h->type != STT_GNU_IFUNC
3173 && (h->def_regular
3174 || !h->def_dynamic
3175 || (!h->ref_regular
3176 && (!h->is_weakalias || weakdef (h)->dynindx == -1))))
3177 {
3178 h->plt = elf_hash_table (eif->info)->init_plt_offset;
3179 return true;
3180 }
3181
3182 /* If we've already adjusted this symbol, don't do it again. This
3183 can happen via a recursive call. */
3184 if (h->dynamic_adjusted)
3185 return true;
3186
3187 /* Don't look at this symbol again. Note that we must set this
3188 after checking the above conditions, because we may look at a
3189 symbol once, decide not to do anything, and then get called
3190 recursively later after REF_REGULAR is set below. */
3191 h->dynamic_adjusted = 1;
3192
3193 /* If this is a weak definition, and we know a real definition, and
3194 the real symbol is not itself defined by a regular object file,
3195 then get a good value for the real definition. We handle the
3196 real symbol first, for the convenience of the backend routine.
3197
3198 Note that there is a confusing case here. If the real definition
3199 is defined by a regular object file, we don't get the real symbol
3200 from the dynamic object, but we do get the weak symbol. If the
3201 processor backend uses a COPY reloc, then if some routine in the
3202 dynamic object changes the real symbol, we will not see that
3203 change in the corresponding weak symbol. This is the way other
3204 ELF linkers work as well, and seems to be a result of the shared
3205 library model.
3206
3207 I will clarify this issue. Most SVR4 shared libraries define the
3208 variable _timezone and define timezone as a weak synonym. The
3209 tzset call changes _timezone. If you write
3210 extern int timezone;
3211 int _timezone = 5;
3212 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3213 you might expect that, since timezone is a synonym for _timezone,
3214 the same number will print both times. However, if the processor
3215 backend uses a COPY reloc, then actually timezone will be copied
3216 into your process image, and, since you define _timezone
3217 yourself, _timezone will not. Thus timezone and _timezone will
3218 wind up at different memory locations. The tzset call will set
3219 _timezone, leaving timezone unchanged. */
3220
3221 if (h->is_weakalias)
3222 {
3223 struct elf_link_hash_entry *def = weakdef (h);
3224
3225 /* If we get to this point, there is an implicit reference to
3226 the alias by a regular object file via the weak symbol H. */
3227 def->ref_regular = 1;
3228
3229 /* Ensure that the backend adjust_dynamic_symbol function sees
3230 the strong alias before H by recursively calling ourselves. */
3231 if (!_bfd_elf_adjust_dynamic_symbol (def, eif))
3232 return false;
3233 }
3234
3235 /* If a symbol has no type and no size and does not require a PLT
3236 entry, then we are probably about to do the wrong thing here: we
3237 are probably going to create a COPY reloc for an empty object.
3238 This case can arise when a shared object is built with assembly
3239 code, and the assembly code fails to set the symbol type. */
3240 if (h->size == 0
3241 && h->type == STT_NOTYPE
3242 && !h->needs_plt)
3243 _bfd_error_handler
3244 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3245 h->root.root.string);
3246
3247 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3248 {
3249 eif->failed = true;
3250 return false;
3251 }
3252
3253 return true;
3254 }
3255
3256 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
3257 DYNBSS. */
3258
3259 bool
3260 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
3261 struct elf_link_hash_entry *h,
3262 asection *dynbss)
3263 {
3264 unsigned int power_of_two;
3265 bfd_vma mask;
3266 asection *sec = h->root.u.def.section;
3267
3268 /* The section alignment of the definition is the maximum alignment
3269 requirement of symbols defined in the section. Since we don't
3270 know the symbol alignment requirement, we start with the
3271 maximum alignment and check low bits of the symbol address
3272 for the minimum alignment. */
3273 power_of_two = bfd_section_alignment (sec);
3274 mask = ((bfd_vma) 1 << power_of_two) - 1;
3275 while ((h->root.u.def.value & mask) != 0)
3276 {
3277 mask >>= 1;
3278 --power_of_two;
3279 }
3280
3281 if (power_of_two > bfd_section_alignment (dynbss))
3282 {
3283 /* Adjust the section alignment if needed. */
3284 if (!bfd_set_section_alignment (dynbss, power_of_two))
3285 return false;
3286 }
3287
3288 /* We make sure that the symbol will be aligned properly. */
3289 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
3290
3291 /* Define the symbol as being at this point in DYNBSS. */
3292 h->root.u.def.section = dynbss;
3293 h->root.u.def.value = dynbss->size;
3294
3295 /* Increment the size of DYNBSS to make room for the symbol. */
3296 dynbss->size += h->size;
3297
3298 /* No error if extern_protected_data is true. */
3299 if (h->protected_def
3300 && (!info->extern_protected_data
3301 || (info->extern_protected_data < 0
3302 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
3303 info->callbacks->einfo
3304 (_("%P: copy reloc against protected `%pT' is dangerous\n"),
3305 h->root.root.string);
3306
3307 return true;
3308 }
3309
3310 /* Adjust all external symbols pointing into SEC_MERGE sections
3311 to reflect the object merging within the sections. */
3312
3313 static bool
3314 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
3315 {
3316 asection *sec;
3317
3318 if ((h->root.type == bfd_link_hash_defined
3319 || h->root.type == bfd_link_hash_defweak)
3320 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
3321 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
3322 {
3323 bfd *output_bfd = (bfd *) data;
3324
3325 h->root.u.def.value =
3326 _bfd_merged_section_offset (output_bfd,
3327 &h->root.u.def.section,
3328 elf_section_data (sec)->sec_info,
3329 h->root.u.def.value);
3330 }
3331
3332 return true;
3333 }
3334
3335 /* Returns false if the symbol referred to by H should be considered
3336 to resolve local to the current module, and true if it should be
3337 considered to bind dynamically. */
3338
3339 bool
3340 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
3341 struct bfd_link_info *info,
3342 bool not_local_protected)
3343 {
3344 bool binding_stays_local_p;
3345 const struct elf_backend_data *bed;
3346 struct elf_link_hash_table *hash_table;
3347
3348 if (h == NULL)
3349 return false;
3350
3351 while (h->root.type == bfd_link_hash_indirect
3352 || h->root.type == bfd_link_hash_warning)
3353 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3354
3355 /* If it was forced local, then clearly it's not dynamic. */
3356 if (h->dynindx == -1)
3357 return false;
3358 if (h->forced_local)
3359 return false;
3360
3361 /* Identify the cases where name binding rules say that a
3362 visible symbol resolves locally. */
3363 binding_stays_local_p = (bfd_link_executable (info)
3364 || SYMBOLIC_BIND (info, h));
3365
3366 switch (ELF_ST_VISIBILITY (h->other))
3367 {
3368 case STV_INTERNAL:
3369 case STV_HIDDEN:
3370 return false;
3371
3372 case STV_PROTECTED:
3373 hash_table = elf_hash_table (info);
3374 if (!is_elf_hash_table (&hash_table->root))
3375 return false;
3376
3377 bed = get_elf_backend_data (hash_table->dynobj);
3378
3379 /* Proper resolution for function pointer equality may require
3380 that these symbols perhaps be resolved dynamically, even though
3381 we should be resolving them to the current module. */
3382 if (!not_local_protected || !bed->is_function_type (h->type))
3383 binding_stays_local_p = true;
3384 break;
3385
3386 default:
3387 break;
3388 }
3389
3390 /* If it isn't defined locally, then clearly it's dynamic. */
3391 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3392 return true;
3393
3394 /* Otherwise, the symbol is dynamic if binding rules don't tell
3395 us that it remains local. */
3396 return !binding_stays_local_p;
3397 }
3398
3399 /* Return true if the symbol referred to by H should be considered
3400 to resolve local to the current module, and false otherwise. Differs
3401 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3402 undefined symbols. The two functions are virtually identical except
3403 for the place where dynindx == -1 is tested. If that test is true,
3404 _bfd_elf_dynamic_symbol_p will say the symbol is local, while
3405 _bfd_elf_symbol_refs_local_p will say the symbol is local only for
3406 defined symbols.
3407 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3408 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3409 treatment of undefined weak symbols. For those that do not make
3410 undefined weak symbols dynamic, both functions may return false. */
3411
3412 bool
3413 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3414 struct bfd_link_info *info,
3415 bool local_protected)
3416 {
3417 const struct elf_backend_data *bed;
3418 struct elf_link_hash_table *hash_table;
3419
3420 /* If it's a local sym, of course we resolve locally. */
3421 if (h == NULL)
3422 return true;
3423
3424 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3425 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3426 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3427 return true;
3428
3429 /* Forced local symbols resolve locally. */
3430 if (h->forced_local)
3431 return true;
3432
3433 /* Common symbols that become definitions don't get the DEF_REGULAR
3434 flag set, so test it first, and don't bail out. */
3435 if (ELF_COMMON_DEF_P (h))
3436 /* Do nothing. */;
3437 /* If we don't have a definition in a regular file, then we can't
3438 resolve locally. The sym is either undefined or dynamic. */
3439 else if (!h->def_regular)
3440 return false;
3441
3442 /* Non-dynamic symbols resolve locally. */
3443 if (h->dynindx == -1)
3444 return true;
3445
3446 /* At this point, we know the symbol is defined and dynamic. In an
3447 executable it must resolve locally, likewise when building symbolic
3448 shared libraries. */
3449 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3450 return true;
3451
3452 /* Now deal with defined dynamic symbols in shared libraries. Ones
3453 with default visibility might not resolve locally. */
3454 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3455 return false;
3456
3457 hash_table = elf_hash_table (info);
3458 if (!is_elf_hash_table (&hash_table->root))
3459 return true;
3460
3461 /* STV_PROTECTED symbols with indirect external access are local. */
3462 if (info->indirect_extern_access > 0)
3463 return true;
3464
3465 bed = get_elf_backend_data (hash_table->dynobj);
3466
3467 /* If extern_protected_data is false, STV_PROTECTED non-function
3468 symbols are local. */
3469 if ((!info->extern_protected_data
3470 || (info->extern_protected_data < 0
3471 && !bed->extern_protected_data))
3472 && !bed->is_function_type (h->type))
3473 return true;
3474
3475 /* Function pointer equality tests may require that STV_PROTECTED
3476 symbols be treated as dynamic symbols. If the address of a
3477 function not defined in an executable is set to that function's
3478 plt entry in the executable, then the address of the function in
3479 a shared library must also be the plt entry in the executable. */
3480 return local_protected;
3481 }
3482
3483 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3484 aligned. Returns the first TLS output section. */
3485
3486 struct bfd_section *
3487 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3488 {
3489 struct bfd_section *sec, *tls;
3490 unsigned int align = 0;
3491
3492 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3493 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3494 break;
3495 tls = sec;
3496
3497 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3498 if (sec->alignment_power > align)
3499 align = sec->alignment_power;
3500
3501 elf_hash_table (info)->tls_sec = tls;
3502
3503 /* Ensure the alignment of the first section (usually .tdata) is the largest
3504 alignment, so that the tls segment starts aligned. */
3505 if (tls != NULL)
3506 tls->alignment_power = align;
3507
3508 return tls;
3509 }
3510
3511 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3512 static bool
3513 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3514 Elf_Internal_Sym *sym)
3515 {
3516 const struct elf_backend_data *bed;
3517
3518 /* Local symbols do not count, but target specific ones might. */
3519 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3520 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3521 return false;
3522
3523 bed = get_elf_backend_data (abfd);
3524 /* Function symbols do not count. */
3525 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3526 return false;
3527
3528 /* If the section is undefined, then so is the symbol. */
3529 if (sym->st_shndx == SHN_UNDEF)
3530 return false;
3531
3532 /* If the symbol is defined in the common section, then
3533 it is a common definition and so does not count. */
3534 if (bed->common_definition (sym))
3535 return false;
3536
3537 /* If the symbol is in a target specific section then we
3538 must rely upon the backend to tell us what it is. */
3539 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3540 /* FIXME - this function is not coded yet:
3541
3542 return _bfd_is_global_symbol_definition (abfd, sym);
3543
3544 Instead for now assume that the definition is not global,
3545 Even if this is wrong, at least the linker will behave
3546 in the same way that it used to do. */
3547 return false;
3548
3549 return true;
3550 }
3551
3552 /* Search the symbol table of the archive element of the archive ABFD
3553 whose archive map contains a mention of SYMDEF, and determine if
3554 the symbol is defined in this element. */
3555 static bool
3556 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3557 {
3558 Elf_Internal_Shdr * hdr;
3559 size_t symcount;
3560 size_t extsymcount;
3561 size_t extsymoff;
3562 Elf_Internal_Sym *isymbuf;
3563 Elf_Internal_Sym *isym;
3564 Elf_Internal_Sym *isymend;
3565 bool result;
3566
3567 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset, NULL);
3568 if (abfd == NULL)
3569 return false;
3570
3571 if (! bfd_check_format (abfd, bfd_object))
3572 return false;
3573
3574 /* Select the appropriate symbol table. If we don't know if the
3575 object file is an IR object, give linker LTO plugin a chance to
3576 get the correct symbol table. */
3577 if (abfd->plugin_format == bfd_plugin_yes
3578 #if BFD_SUPPORTS_PLUGINS
3579 || (abfd->plugin_format == bfd_plugin_unknown
3580 && bfd_link_plugin_object_p (abfd))
3581 #endif
3582 )
3583 {
3584 /* Use the IR symbol table if the object has been claimed by
3585 plugin. */
3586 abfd = abfd->plugin_dummy_bfd;
3587 hdr = &elf_tdata (abfd)->symtab_hdr;
3588 }
3589 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3590 hdr = &elf_tdata (abfd)->symtab_hdr;
3591 else
3592 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3593
3594 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3595
3596 /* The sh_info field of the symtab header tells us where the
3597 external symbols start. We don't care about the local symbols. */
3598 if (elf_bad_symtab (abfd))
3599 {
3600 extsymcount = symcount;
3601 extsymoff = 0;
3602 }
3603 else
3604 {
3605 extsymcount = symcount - hdr->sh_info;
3606 extsymoff = hdr->sh_info;
3607 }
3608
3609 if (extsymcount == 0)
3610 return false;
3611
3612 /* Read in the symbol table. */
3613 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3614 NULL, NULL, NULL);
3615 if (isymbuf == NULL)
3616 return false;
3617
3618 /* Scan the symbol table looking for SYMDEF. */
3619 result = false;
3620 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3621 {
3622 const char *name;
3623
3624 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3625 isym->st_name);
3626 if (name == NULL)
3627 break;
3628
3629 if (strcmp (name, symdef->name) == 0)
3630 {
3631 result = is_global_data_symbol_definition (abfd, isym);
3632 break;
3633 }
3634 }
3635
3636 free (isymbuf);
3637
3638 return result;
3639 }
3640 \f
3641 /* Add an entry to the .dynamic table. */
3642
3643 bool
3644 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3645 bfd_vma tag,
3646 bfd_vma val)
3647 {
3648 struct elf_link_hash_table *hash_table;
3649 const struct elf_backend_data *bed;
3650 asection *s;
3651 bfd_size_type newsize;
3652 bfd_byte *newcontents;
3653 Elf_Internal_Dyn dyn;
3654
3655 hash_table = elf_hash_table (info);
3656 if (! is_elf_hash_table (&hash_table->root))
3657 return false;
3658
3659 if (tag == DT_RELA || tag == DT_REL)
3660 hash_table->dynamic_relocs = true;
3661
3662 bed = get_elf_backend_data (hash_table->dynobj);
3663 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3664 BFD_ASSERT (s != NULL);
3665
3666 newsize = s->size + bed->s->sizeof_dyn;
3667 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3668 if (newcontents == NULL)
3669 return false;
3670
3671 dyn.d_tag = tag;
3672 dyn.d_un.d_val = val;
3673 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3674
3675 s->size = newsize;
3676 s->contents = newcontents;
3677
3678 return true;
3679 }
3680
3681 /* Strip zero-sized dynamic sections. */
3682
3683 bool
3684 _bfd_elf_strip_zero_sized_dynamic_sections (struct bfd_link_info *info)
3685 {
3686 struct elf_link_hash_table *hash_table;
3687 const struct elf_backend_data *bed;
3688 asection *s, *sdynamic, **pp;
3689 asection *rela_dyn, *rel_dyn;
3690 Elf_Internal_Dyn dyn;
3691 bfd_byte *extdyn, *next;
3692 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
3693 bool strip_zero_sized;
3694 bool strip_zero_sized_plt;
3695
3696 if (bfd_link_relocatable (info))
3697 return true;
3698
3699 hash_table = elf_hash_table (info);
3700 if (!is_elf_hash_table (&hash_table->root))
3701 return false;
3702
3703 if (!hash_table->dynobj)
3704 return true;
3705
3706 sdynamic= bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3707 if (!sdynamic)
3708 return true;
3709
3710 bed = get_elf_backend_data (hash_table->dynobj);
3711 swap_dyn_in = bed->s->swap_dyn_in;
3712
3713 strip_zero_sized = false;
3714 strip_zero_sized_plt = false;
3715
3716 /* Strip zero-sized dynamic sections. */
3717 rela_dyn = bfd_get_section_by_name (info->output_bfd, ".rela.dyn");
3718 rel_dyn = bfd_get_section_by_name (info->output_bfd, ".rel.dyn");
3719 for (pp = &info->output_bfd->sections; (s = *pp) != NULL;)
3720 if (s->size == 0
3721 && (s == rela_dyn
3722 || s == rel_dyn
3723 || s == hash_table->srelplt->output_section
3724 || s == hash_table->splt->output_section))
3725 {
3726 *pp = s->next;
3727 info->output_bfd->section_count--;
3728 strip_zero_sized = true;
3729 if (s == rela_dyn)
3730 s = rela_dyn;
3731 if (s == rel_dyn)
3732 s = rel_dyn;
3733 else if (s == hash_table->splt->output_section)
3734 {
3735 s = hash_table->splt;
3736 strip_zero_sized_plt = true;
3737 }
3738 else
3739 s = hash_table->srelplt;
3740 s->flags |= SEC_EXCLUDE;
3741 s->output_section = bfd_abs_section_ptr;
3742 }
3743 else
3744 pp = &s->next;
3745
3746 if (strip_zero_sized_plt && sdynamic->size != 0)
3747 for (extdyn = sdynamic->contents;
3748 extdyn < sdynamic->contents + sdynamic->size;
3749 extdyn = next)
3750 {
3751 next = extdyn + bed->s->sizeof_dyn;
3752 swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3753 switch (dyn.d_tag)
3754 {
3755 default:
3756 break;
3757 case DT_JMPREL:
3758 case DT_PLTRELSZ:
3759 case DT_PLTREL:
3760 /* Strip DT_PLTRELSZ, DT_JMPREL and DT_PLTREL entries if
3761 the procedure linkage table (the .plt section) has been
3762 removed. */
3763 memmove (extdyn, next,
3764 sdynamic->size - (next - sdynamic->contents));
3765 next = extdyn;
3766 }
3767 }
3768
3769 if (strip_zero_sized)
3770 {
3771 /* Regenerate program headers. */
3772 elf_seg_map (info->output_bfd) = NULL;
3773 return _bfd_elf_map_sections_to_segments (info->output_bfd, info,
3774 NULL);
3775 }
3776
3777 return true;
3778 }
3779
3780 /* Add a DT_NEEDED entry for this dynamic object. Returns -1 on error,
3781 1 if a DT_NEEDED tag already exists, and 0 on success. */
3782
3783 int
3784 bfd_elf_add_dt_needed_tag (bfd *abfd, struct bfd_link_info *info)
3785 {
3786 struct elf_link_hash_table *hash_table;
3787 size_t strindex;
3788 const char *soname;
3789
3790 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3791 return -1;
3792
3793 hash_table = elf_hash_table (info);
3794 soname = elf_dt_name (abfd);
3795 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, false);
3796 if (strindex == (size_t) -1)
3797 return -1;
3798
3799 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3800 {
3801 asection *sdyn;
3802 const struct elf_backend_data *bed;
3803 bfd_byte *extdyn;
3804
3805 bed = get_elf_backend_data (hash_table->dynobj);
3806 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3807 if (sdyn != NULL && sdyn->size != 0)
3808 for (extdyn = sdyn->contents;
3809 extdyn < sdyn->contents + sdyn->size;
3810 extdyn += bed->s->sizeof_dyn)
3811 {
3812 Elf_Internal_Dyn dyn;
3813
3814 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3815 if (dyn.d_tag == DT_NEEDED
3816 && dyn.d_un.d_val == strindex)
3817 {
3818 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3819 return 1;
3820 }
3821 }
3822 }
3823
3824 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3825 return -1;
3826
3827 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3828 return -1;
3829
3830 return 0;
3831 }
3832
3833 /* Return true if SONAME is on the needed list between NEEDED and STOP
3834 (or the end of list if STOP is NULL), and needed by a library that
3835 will be loaded. */
3836
3837 static bool
3838 on_needed_list (const char *soname,
3839 struct bfd_link_needed_list *needed,
3840 struct bfd_link_needed_list *stop)
3841 {
3842 struct bfd_link_needed_list *look;
3843 for (look = needed; look != stop; look = look->next)
3844 if (strcmp (soname, look->name) == 0
3845 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3846 /* If needed by a library that itself is not directly
3847 needed, recursively check whether that library is
3848 indirectly needed. Since we add DT_NEEDED entries to
3849 the end of the list, library dependencies appear after
3850 the library. Therefore search prior to the current
3851 LOOK, preventing possible infinite recursion. */
3852 || on_needed_list (elf_dt_name (look->by), needed, look)))
3853 return true;
3854
3855 return false;
3856 }
3857
3858 /* Sort symbol by value, section, size, and type. */
3859 static int
3860 elf_sort_symbol (const void *arg1, const void *arg2)
3861 {
3862 const struct elf_link_hash_entry *h1;
3863 const struct elf_link_hash_entry *h2;
3864 bfd_signed_vma vdiff;
3865 int sdiff;
3866 const char *n1;
3867 const char *n2;
3868
3869 h1 = *(const struct elf_link_hash_entry **) arg1;
3870 h2 = *(const struct elf_link_hash_entry **) arg2;
3871 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3872 if (vdiff != 0)
3873 return vdiff > 0 ? 1 : -1;
3874
3875 sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3876 if (sdiff != 0)
3877 return sdiff;
3878
3879 /* Sort so that sized symbols are selected over zero size symbols. */
3880 vdiff = h1->size - h2->size;
3881 if (vdiff != 0)
3882 return vdiff > 0 ? 1 : -1;
3883
3884 /* Sort so that STT_OBJECT is selected over STT_NOTYPE. */
3885 if (h1->type != h2->type)
3886 return h1->type - h2->type;
3887
3888 /* If symbols are properly sized and typed, and multiple strong
3889 aliases are not defined in a shared library by the user we
3890 shouldn't get here. Unfortunately linker script symbols like
3891 __bss_start sometimes match a user symbol defined at the start of
3892 .bss without proper size and type. We'd like to preference the
3893 user symbol over reserved system symbols. Sort on leading
3894 underscores. */
3895 n1 = h1->root.root.string;
3896 n2 = h2->root.root.string;
3897 while (*n1 == *n2)
3898 {
3899 if (*n1 == 0)
3900 break;
3901 ++n1;
3902 ++n2;
3903 }
3904 if (*n1 == '_')
3905 return -1;
3906 if (*n2 == '_')
3907 return 1;
3908
3909 /* Final sort on name selects user symbols like '_u' over reserved
3910 system symbols like '_Z' and also will avoid qsort instability. */
3911 return *n1 - *n2;
3912 }
3913
3914 /* This function is used to adjust offsets into .dynstr for
3915 dynamic symbols. This is called via elf_link_hash_traverse. */
3916
3917 static bool
3918 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3919 {
3920 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3921
3922 if (h->dynindx != -1)
3923 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3924 return true;
3925 }
3926
3927 /* Assign string offsets in .dynstr, update all structures referencing
3928 them. */
3929
3930 static bool
3931 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3932 {
3933 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3934 struct elf_link_local_dynamic_entry *entry;
3935 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3936 bfd *dynobj = hash_table->dynobj;
3937 asection *sdyn;
3938 bfd_size_type size;
3939 const struct elf_backend_data *bed;
3940 bfd_byte *extdyn;
3941
3942 _bfd_elf_strtab_finalize (dynstr);
3943 size = _bfd_elf_strtab_size (dynstr);
3944
3945 /* Allow the linker to examine the dynsymtab now it's fully populated. */
3946
3947 if (info->callbacks->examine_strtab)
3948 info->callbacks->examine_strtab (dynstr);
3949
3950 bed = get_elf_backend_data (dynobj);
3951 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3952 BFD_ASSERT (sdyn != NULL);
3953
3954 /* Update all .dynamic entries referencing .dynstr strings. */
3955 for (extdyn = sdyn->contents;
3956 extdyn < PTR_ADD (sdyn->contents, sdyn->size);
3957 extdyn += bed->s->sizeof_dyn)
3958 {
3959 Elf_Internal_Dyn dyn;
3960
3961 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3962 switch (dyn.d_tag)
3963 {
3964 case DT_STRSZ:
3965 dyn.d_un.d_val = size;
3966 break;
3967 case DT_NEEDED:
3968 case DT_SONAME:
3969 case DT_RPATH:
3970 case DT_RUNPATH:
3971 case DT_FILTER:
3972 case DT_AUXILIARY:
3973 case DT_AUDIT:
3974 case DT_DEPAUDIT:
3975 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3976 break;
3977 default:
3978 continue;
3979 }
3980 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3981 }
3982
3983 /* Now update local dynamic symbols. */
3984 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3985 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3986 entry->isym.st_name);
3987
3988 /* And the rest of dynamic symbols. */
3989 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3990
3991 /* Adjust version definitions. */
3992 if (elf_tdata (output_bfd)->cverdefs)
3993 {
3994 asection *s;
3995 bfd_byte *p;
3996 size_t i;
3997 Elf_Internal_Verdef def;
3998 Elf_Internal_Verdaux defaux;
3999
4000 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
4001 p = s->contents;
4002 do
4003 {
4004 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
4005 &def);
4006 p += sizeof (Elf_External_Verdef);
4007 if (def.vd_aux != sizeof (Elf_External_Verdef))
4008 continue;
4009 for (i = 0; i < def.vd_cnt; ++i)
4010 {
4011 _bfd_elf_swap_verdaux_in (output_bfd,
4012 (Elf_External_Verdaux *) p, &defaux);
4013 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
4014 defaux.vda_name);
4015 _bfd_elf_swap_verdaux_out (output_bfd,
4016 &defaux, (Elf_External_Verdaux *) p);
4017 p += sizeof (Elf_External_Verdaux);
4018 }
4019 }
4020 while (def.vd_next);
4021 }
4022
4023 /* Adjust version references. */
4024 if (elf_tdata (output_bfd)->verref)
4025 {
4026 asection *s;
4027 bfd_byte *p;
4028 size_t i;
4029 Elf_Internal_Verneed need;
4030 Elf_Internal_Vernaux needaux;
4031
4032 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
4033 p = s->contents;
4034 do
4035 {
4036 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
4037 &need);
4038 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
4039 _bfd_elf_swap_verneed_out (output_bfd, &need,
4040 (Elf_External_Verneed *) p);
4041 p += sizeof (Elf_External_Verneed);
4042 for (i = 0; i < need.vn_cnt; ++i)
4043 {
4044 _bfd_elf_swap_vernaux_in (output_bfd,
4045 (Elf_External_Vernaux *) p, &needaux);
4046 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
4047 needaux.vna_name);
4048 _bfd_elf_swap_vernaux_out (output_bfd,
4049 &needaux,
4050 (Elf_External_Vernaux *) p);
4051 p += sizeof (Elf_External_Vernaux);
4052 }
4053 }
4054 while (need.vn_next);
4055 }
4056
4057 return true;
4058 }
4059 \f
4060 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
4061 The default is to only match when the INPUT and OUTPUT are exactly
4062 the same target. */
4063
4064 bool
4065 _bfd_elf_default_relocs_compatible (const bfd_target *input,
4066 const bfd_target *output)
4067 {
4068 return input == output;
4069 }
4070
4071 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
4072 This version is used when different targets for the same architecture
4073 are virtually identical. */
4074
4075 bool
4076 _bfd_elf_relocs_compatible (const bfd_target *input,
4077 const bfd_target *output)
4078 {
4079 const struct elf_backend_data *obed, *ibed;
4080
4081 if (input == output)
4082 return true;
4083
4084 ibed = xvec_get_elf_backend_data (input);
4085 obed = xvec_get_elf_backend_data (output);
4086
4087 if (ibed->arch != obed->arch)
4088 return false;
4089
4090 /* If both backends are using this function, deem them compatible. */
4091 return ibed->relocs_compatible == obed->relocs_compatible;
4092 }
4093
4094 /* Make a special call to the linker "notice" function to tell it that
4095 we are about to handle an as-needed lib, or have finished
4096 processing the lib. */
4097
4098 bool
4099 _bfd_elf_notice_as_needed (bfd *ibfd,
4100 struct bfd_link_info *info,
4101 enum notice_asneeded_action act)
4102 {
4103 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
4104 }
4105
4106 /* Call ACTION on each relocation in an ELF object file. */
4107
4108 bool
4109 _bfd_elf_link_iterate_on_relocs
4110 (bfd *abfd, struct bfd_link_info *info,
4111 bool (*action) (bfd *, struct bfd_link_info *, asection *,
4112 const Elf_Internal_Rela *))
4113 {
4114 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4115 struct elf_link_hash_table *htab = elf_hash_table (info);
4116
4117 /* If this object is the same format as the output object, and it is
4118 not a shared library, then let the backend look through the
4119 relocs.
4120
4121 This is required to build global offset table entries and to
4122 arrange for dynamic relocs. It is not required for the
4123 particular common case of linking non PIC code, even when linking
4124 against shared libraries, but unfortunately there is no way of
4125 knowing whether an object file has been compiled PIC or not.
4126 Looking through the relocs is not particularly time consuming.
4127 The problem is that we must either (1) keep the relocs in memory,
4128 which causes the linker to require additional runtime memory or
4129 (2) read the relocs twice from the input file, which wastes time.
4130 This would be a good case for using mmap.
4131
4132 I have no idea how to handle linking PIC code into a file of a
4133 different format. It probably can't be done. */
4134 if ((abfd->flags & DYNAMIC) == 0
4135 && is_elf_hash_table (&htab->root)
4136 && elf_object_id (abfd) == elf_hash_table_id (htab)
4137 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4138 {
4139 asection *o;
4140
4141 for (o = abfd->sections; o != NULL; o = o->next)
4142 {
4143 Elf_Internal_Rela *internal_relocs;
4144 bool ok;
4145
4146 /* Don't check relocations in excluded sections. Don't do
4147 anything special with non-loaded, non-alloced sections.
4148 In particular, any relocs in such sections should not
4149 affect GOT and PLT reference counting (ie. we don't
4150 allow them to create GOT or PLT entries), there's no
4151 possibility or desire to optimize TLS relocs, and
4152 there's not much point in propagating relocs to shared
4153 libs that the dynamic linker won't relocate. */
4154 if ((o->flags & SEC_ALLOC) == 0
4155 || (o->flags & SEC_RELOC) == 0
4156 || (o->flags & SEC_EXCLUDE) != 0
4157 || o->reloc_count == 0
4158 || ((info->strip == strip_all || info->strip == strip_debugger)
4159 && (o->flags & SEC_DEBUGGING) != 0)
4160 || bfd_is_abs_section (o->output_section))
4161 continue;
4162
4163 internal_relocs = _bfd_elf_link_info_read_relocs (abfd, info,
4164 o, NULL,
4165 NULL,
4166 _bfd_link_keep_memory (info));
4167 if (internal_relocs == NULL)
4168 return false;
4169
4170 ok = action (abfd, info, o, internal_relocs);
4171
4172 if (elf_section_data (o)->relocs != internal_relocs)
4173 free (internal_relocs);
4174
4175 if (! ok)
4176 return false;
4177 }
4178 }
4179
4180 return true;
4181 }
4182
4183 /* Check relocations in an ELF object file. This is called after
4184 all input files have been opened. */
4185
4186 bool
4187 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
4188 {
4189 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4190 if (bed->check_relocs != NULL)
4191 return _bfd_elf_link_iterate_on_relocs (abfd, info,
4192 bed->check_relocs);
4193 return true;
4194 }
4195
4196 /* Add symbols from an ELF object file to the linker hash table. */
4197
4198 static bool
4199 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
4200 {
4201 Elf_Internal_Ehdr *ehdr;
4202 Elf_Internal_Shdr *hdr;
4203 size_t symcount;
4204 size_t extsymcount;
4205 size_t extsymoff;
4206 struct elf_link_hash_entry **sym_hash;
4207 bool dynamic;
4208 Elf_External_Versym *extversym = NULL;
4209 Elf_External_Versym *extversym_end = NULL;
4210 Elf_External_Versym *ever;
4211 struct elf_link_hash_entry *weaks;
4212 struct elf_link_hash_entry **nondeflt_vers = NULL;
4213 size_t nondeflt_vers_cnt = 0;
4214 Elf_Internal_Sym *isymbuf = NULL;
4215 Elf_Internal_Sym *isym;
4216 Elf_Internal_Sym *isymend;
4217 const struct elf_backend_data *bed;
4218 bool add_needed;
4219 struct elf_link_hash_table *htab;
4220 void *alloc_mark = NULL;
4221 struct bfd_hash_entry **old_table = NULL;
4222 unsigned int old_size = 0;
4223 unsigned int old_count = 0;
4224 void *old_tab = NULL;
4225 void *old_ent;
4226 struct bfd_link_hash_entry *old_undefs = NULL;
4227 struct bfd_link_hash_entry *old_undefs_tail = NULL;
4228 void *old_strtab = NULL;
4229 size_t tabsize = 0;
4230 asection *s;
4231 bool just_syms;
4232
4233 htab = elf_hash_table (info);
4234 bed = get_elf_backend_data (abfd);
4235
4236 if ((abfd->flags & DYNAMIC) == 0)
4237 dynamic = false;
4238 else
4239 {
4240 dynamic = true;
4241
4242 /* You can't use -r against a dynamic object. Also, there's no
4243 hope of using a dynamic object which does not exactly match
4244 the format of the output file. */
4245 if (bfd_link_relocatable (info)
4246 || !is_elf_hash_table (&htab->root)
4247 || info->output_bfd->xvec != abfd->xvec)
4248 {
4249 if (bfd_link_relocatable (info))
4250 bfd_set_error (bfd_error_invalid_operation);
4251 else
4252 bfd_set_error (bfd_error_wrong_format);
4253 goto error_return;
4254 }
4255 }
4256
4257 ehdr = elf_elfheader (abfd);
4258 if (info->warn_alternate_em
4259 && bed->elf_machine_code != ehdr->e_machine
4260 && ((bed->elf_machine_alt1 != 0
4261 && ehdr->e_machine == bed->elf_machine_alt1)
4262 || (bed->elf_machine_alt2 != 0
4263 && ehdr->e_machine == bed->elf_machine_alt2)))
4264 _bfd_error_handler
4265 /* xgettext:c-format */
4266 (_("alternate ELF machine code found (%d) in %pB, expecting %d"),
4267 ehdr->e_machine, abfd, bed->elf_machine_code);
4268
4269 /* As a GNU extension, any input sections which are named
4270 .gnu.warning.SYMBOL are treated as warning symbols for the given
4271 symbol. This differs from .gnu.warning sections, which generate
4272 warnings when they are included in an output file. */
4273 /* PR 12761: Also generate this warning when building shared libraries. */
4274 for (s = abfd->sections; s != NULL; s = s->next)
4275 {
4276 const char *name;
4277
4278 name = bfd_section_name (s);
4279 if (startswith (name, ".gnu.warning."))
4280 {
4281 char *msg;
4282 bfd_size_type sz;
4283
4284 name += sizeof ".gnu.warning." - 1;
4285
4286 /* If this is a shared object, then look up the symbol
4287 in the hash table. If it is there, and it is already
4288 been defined, then we will not be using the entry
4289 from this shared object, so we don't need to warn.
4290 FIXME: If we see the definition in a regular object
4291 later on, we will warn, but we shouldn't. The only
4292 fix is to keep track of what warnings we are supposed
4293 to emit, and then handle them all at the end of the
4294 link. */
4295 if (dynamic)
4296 {
4297 struct elf_link_hash_entry *h;
4298
4299 h = elf_link_hash_lookup (htab, name, false, false, true);
4300
4301 /* FIXME: What about bfd_link_hash_common? */
4302 if (h != NULL
4303 && (h->root.type == bfd_link_hash_defined
4304 || h->root.type == bfd_link_hash_defweak))
4305 continue;
4306 }
4307
4308 sz = s->size;
4309 msg = (char *) bfd_alloc (abfd, sz + 1);
4310 if (msg == NULL)
4311 goto error_return;
4312
4313 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
4314 goto error_return;
4315
4316 msg[sz] = '\0';
4317
4318 if (! (_bfd_generic_link_add_one_symbol
4319 (info, abfd, name, BSF_WARNING, s, 0, msg,
4320 false, bed->collect, NULL)))
4321 goto error_return;
4322
4323 if (bfd_link_executable (info))
4324 {
4325 /* Clobber the section size so that the warning does
4326 not get copied into the output file. */
4327 s->size = 0;
4328
4329 /* Also set SEC_EXCLUDE, so that symbols defined in
4330 the warning section don't get copied to the output. */
4331 s->flags |= SEC_EXCLUDE;
4332 }
4333 }
4334 }
4335
4336 just_syms = ((s = abfd->sections) != NULL
4337 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
4338
4339 add_needed = true;
4340 if (! dynamic)
4341 {
4342 /* If we are creating a shared library, create all the dynamic
4343 sections immediately. We need to attach them to something,
4344 so we attach them to this BFD, provided it is the right
4345 format and is not from ld --just-symbols. Always create the
4346 dynamic sections for -E/--dynamic-list. FIXME: If there
4347 are no input BFD's of the same format as the output, we can't
4348 make a shared library. */
4349 if (!just_syms
4350 && (bfd_link_pic (info)
4351 || (!bfd_link_relocatable (info)
4352 && info->nointerp
4353 && (info->export_dynamic || info->dynamic)))
4354 && is_elf_hash_table (&htab->root)
4355 && info->output_bfd->xvec == abfd->xvec
4356 && !htab->dynamic_sections_created)
4357 {
4358 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
4359 goto error_return;
4360 }
4361 }
4362 else if (!is_elf_hash_table (&htab->root))
4363 goto error_return;
4364 else
4365 {
4366 const char *soname = NULL;
4367 char *audit = NULL;
4368 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
4369 const Elf_Internal_Phdr *phdr;
4370 struct elf_link_loaded_list *loaded_lib;
4371
4372 /* ld --just-symbols and dynamic objects don't mix very well.
4373 ld shouldn't allow it. */
4374 if (just_syms)
4375 abort ();
4376
4377 /* If this dynamic lib was specified on the command line with
4378 --as-needed in effect, then we don't want to add a DT_NEEDED
4379 tag unless the lib is actually used. Similary for libs brought
4380 in by another lib's DT_NEEDED. When --no-add-needed is used
4381 on a dynamic lib, we don't want to add a DT_NEEDED entry for
4382 any dynamic library in DT_NEEDED tags in the dynamic lib at
4383 all. */
4384 add_needed = (elf_dyn_lib_class (abfd)
4385 & (DYN_AS_NEEDED | DYN_DT_NEEDED
4386 | DYN_NO_NEEDED)) == 0;
4387
4388 s = bfd_get_section_by_name (abfd, ".dynamic");
4389 if (s != NULL && s->size != 0)
4390 {
4391 bfd_byte *dynbuf;
4392 bfd_byte *extdyn;
4393 unsigned int elfsec;
4394 unsigned long shlink;
4395
4396 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
4397 {
4398 error_free_dyn:
4399 free (dynbuf);
4400 goto error_return;
4401 }
4402
4403 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
4404 if (elfsec == SHN_BAD)
4405 goto error_free_dyn;
4406 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
4407
4408 for (extdyn = dynbuf;
4409 (size_t) (dynbuf + s->size - extdyn) >= bed->s->sizeof_dyn;
4410 extdyn += bed->s->sizeof_dyn)
4411 {
4412 Elf_Internal_Dyn dyn;
4413
4414 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
4415 if (dyn.d_tag == DT_SONAME)
4416 {
4417 unsigned int tagv = dyn.d_un.d_val;
4418 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4419 if (soname == NULL)
4420 goto error_free_dyn;
4421 }
4422 if (dyn.d_tag == DT_NEEDED)
4423 {
4424 struct bfd_link_needed_list *n, **pn;
4425 char *fnm, *anm;
4426 unsigned int tagv = dyn.d_un.d_val;
4427 size_t amt = sizeof (struct bfd_link_needed_list);
4428
4429 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4430 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4431 if (n == NULL || fnm == NULL)
4432 goto error_free_dyn;
4433 amt = strlen (fnm) + 1;
4434 anm = (char *) bfd_alloc (abfd, amt);
4435 if (anm == NULL)
4436 goto error_free_dyn;
4437 memcpy (anm, fnm, amt);
4438 n->name = anm;
4439 n->by = abfd;
4440 n->next = NULL;
4441 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
4442 ;
4443 *pn = n;
4444 }
4445 if (dyn.d_tag == DT_RUNPATH)
4446 {
4447 struct bfd_link_needed_list *n, **pn;
4448 char *fnm, *anm;
4449 unsigned int tagv = dyn.d_un.d_val;
4450 size_t amt = sizeof (struct bfd_link_needed_list);
4451
4452 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4453 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4454 if (n == NULL || fnm == NULL)
4455 goto error_free_dyn;
4456 amt = strlen (fnm) + 1;
4457 anm = (char *) bfd_alloc (abfd, amt);
4458 if (anm == NULL)
4459 goto error_free_dyn;
4460 memcpy (anm, fnm, amt);
4461 n->name = anm;
4462 n->by = abfd;
4463 n->next = NULL;
4464 for (pn = & runpath;
4465 *pn != NULL;
4466 pn = &(*pn)->next)
4467 ;
4468 *pn = n;
4469 }
4470 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
4471 if (!runpath && dyn.d_tag == DT_RPATH)
4472 {
4473 struct bfd_link_needed_list *n, **pn;
4474 char *fnm, *anm;
4475 unsigned int tagv = dyn.d_un.d_val;
4476 size_t amt = sizeof (struct bfd_link_needed_list);
4477
4478 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4479 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4480 if (n == NULL || fnm == NULL)
4481 goto error_free_dyn;
4482 amt = strlen (fnm) + 1;
4483 anm = (char *) bfd_alloc (abfd, amt);
4484 if (anm == NULL)
4485 goto error_free_dyn;
4486 memcpy (anm, fnm, amt);
4487 n->name = anm;
4488 n->by = abfd;
4489 n->next = NULL;
4490 for (pn = & rpath;
4491 *pn != NULL;
4492 pn = &(*pn)->next)
4493 ;
4494 *pn = n;
4495 }
4496 if (dyn.d_tag == DT_AUDIT)
4497 {
4498 unsigned int tagv = dyn.d_un.d_val;
4499 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4500 }
4501 if (dyn.d_tag == DT_FLAGS_1)
4502 elf_tdata (abfd)->is_pie = (dyn.d_un.d_val & DF_1_PIE) != 0;
4503 }
4504
4505 free (dynbuf);
4506 }
4507
4508 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
4509 frees all more recently bfd_alloc'd blocks as well. */
4510 if (runpath)
4511 rpath = runpath;
4512
4513 if (rpath)
4514 {
4515 struct bfd_link_needed_list **pn;
4516 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4517 ;
4518 *pn = rpath;
4519 }
4520
4521 /* If we have a PT_GNU_RELRO program header, mark as read-only
4522 all sections contained fully therein. This makes relro
4523 shared library sections appear as they will at run-time. */
4524 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
4525 while (phdr-- > elf_tdata (abfd)->phdr)
4526 if (phdr->p_type == PT_GNU_RELRO)
4527 {
4528 for (s = abfd->sections; s != NULL; s = s->next)
4529 {
4530 unsigned int opb = bfd_octets_per_byte (abfd, s);
4531
4532 if ((s->flags & SEC_ALLOC) != 0
4533 && s->vma * opb >= phdr->p_vaddr
4534 && s->vma * opb + s->size <= phdr->p_vaddr + phdr->p_memsz)
4535 s->flags |= SEC_READONLY;
4536 }
4537 break;
4538 }
4539
4540 /* We do not want to include any of the sections in a dynamic
4541 object in the output file. We hack by simply clobbering the
4542 list of sections in the BFD. This could be handled more
4543 cleanly by, say, a new section flag; the existing
4544 SEC_NEVER_LOAD flag is not the one we want, because that one
4545 still implies that the section takes up space in the output
4546 file. */
4547 bfd_section_list_clear (abfd);
4548
4549 /* Find the name to use in a DT_NEEDED entry that refers to this
4550 object. If the object has a DT_SONAME entry, we use it.
4551 Otherwise, if the generic linker stuck something in
4552 elf_dt_name, we use that. Otherwise, we just use the file
4553 name. */
4554 if (soname == NULL || *soname == '\0')
4555 {
4556 soname = elf_dt_name (abfd);
4557 if (soname == NULL || *soname == '\0')
4558 soname = bfd_get_filename (abfd);
4559 }
4560
4561 /* Save the SONAME because sometimes the linker emulation code
4562 will need to know it. */
4563 elf_dt_name (abfd) = soname;
4564
4565 /* If we have already included this dynamic object in the
4566 link, just ignore it. There is no reason to include a
4567 particular dynamic object more than once. */
4568 for (loaded_lib = htab->dyn_loaded;
4569 loaded_lib != NULL;
4570 loaded_lib = loaded_lib->next)
4571 {
4572 if (strcmp (elf_dt_name (loaded_lib->abfd), soname) == 0)
4573 return true;
4574 }
4575
4576 /* Create dynamic sections for backends that require that be done
4577 before setup_gnu_properties. */
4578 if (add_needed
4579 && !_bfd_elf_link_create_dynamic_sections (abfd, info))
4580 return false;
4581
4582 /* Save the DT_AUDIT entry for the linker emulation code. */
4583 elf_dt_audit (abfd) = audit;
4584 }
4585
4586 /* If this is a dynamic object, we always link against the .dynsym
4587 symbol table, not the .symtab symbol table. The dynamic linker
4588 will only see the .dynsym symbol table, so there is no reason to
4589 look at .symtab for a dynamic object. */
4590
4591 if (! dynamic || elf_dynsymtab (abfd) == 0)
4592 hdr = &elf_tdata (abfd)->symtab_hdr;
4593 else
4594 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4595
4596 symcount = hdr->sh_size / bed->s->sizeof_sym;
4597
4598 /* The sh_info field of the symtab header tells us where the
4599 external symbols start. We don't care about the local symbols at
4600 this point. */
4601 if (elf_bad_symtab (abfd))
4602 {
4603 extsymcount = symcount;
4604 extsymoff = 0;
4605 }
4606 else
4607 {
4608 extsymcount = symcount - hdr->sh_info;
4609 extsymoff = hdr->sh_info;
4610 }
4611
4612 sym_hash = elf_sym_hashes (abfd);
4613 if (extsymcount != 0)
4614 {
4615 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4616 NULL, NULL, NULL);
4617 if (isymbuf == NULL)
4618 goto error_return;
4619
4620 if (sym_hash == NULL)
4621 {
4622 /* We store a pointer to the hash table entry for each
4623 external symbol. */
4624 size_t amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4625 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4626 if (sym_hash == NULL)
4627 goto error_free_sym;
4628 elf_sym_hashes (abfd) = sym_hash;
4629 }
4630 }
4631
4632 if (dynamic)
4633 {
4634 /* Read in any version definitions. */
4635 if (!_bfd_elf_slurp_version_tables (abfd,
4636 info->default_imported_symver))
4637 goto error_free_sym;
4638
4639 /* Read in the symbol versions, but don't bother to convert them
4640 to internal format. */
4641 if (elf_dynversym (abfd) != 0)
4642 {
4643 Elf_Internal_Shdr *versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4644 bfd_size_type amt = versymhdr->sh_size;
4645
4646 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0)
4647 goto error_free_sym;
4648 extversym = (Elf_External_Versym *)
4649 _bfd_malloc_and_read (abfd, amt, amt);
4650 if (extversym == NULL)
4651 goto error_free_sym;
4652 extversym_end = extversym + amt / sizeof (*extversym);
4653 }
4654 }
4655
4656 /* If we are loading an as-needed shared lib, save the symbol table
4657 state before we start adding symbols. If the lib turns out
4658 to be unneeded, restore the state. */
4659 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4660 {
4661 unsigned int i;
4662 size_t entsize;
4663
4664 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4665 {
4666 struct bfd_hash_entry *p;
4667 struct elf_link_hash_entry *h;
4668
4669 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4670 {
4671 h = (struct elf_link_hash_entry *) p;
4672 entsize += htab->root.table.entsize;
4673 if (h->root.type == bfd_link_hash_warning)
4674 {
4675 entsize += htab->root.table.entsize;
4676 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4677 }
4678 if (h->root.type == bfd_link_hash_common)
4679 entsize += sizeof (*h->root.u.c.p);
4680 }
4681 }
4682
4683 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4684 old_tab = bfd_malloc (tabsize + entsize);
4685 if (old_tab == NULL)
4686 goto error_free_vers;
4687
4688 /* Remember the current objalloc pointer, so that all mem for
4689 symbols added can later be reclaimed. */
4690 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4691 if (alloc_mark == NULL)
4692 goto error_free_vers;
4693
4694 /* Make a special call to the linker "notice" function to
4695 tell it that we are about to handle an as-needed lib. */
4696 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4697 goto error_free_vers;
4698
4699 /* Clone the symbol table. Remember some pointers into the
4700 symbol table, and dynamic symbol count. */
4701 old_ent = (char *) old_tab + tabsize;
4702 memcpy (old_tab, htab->root.table.table, tabsize);
4703 old_undefs = htab->root.undefs;
4704 old_undefs_tail = htab->root.undefs_tail;
4705 old_table = htab->root.table.table;
4706 old_size = htab->root.table.size;
4707 old_count = htab->root.table.count;
4708 old_strtab = NULL;
4709 if (htab->dynstr != NULL)
4710 {
4711 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4712 if (old_strtab == NULL)
4713 goto error_free_vers;
4714 }
4715
4716 for (i = 0; i < htab->root.table.size; i++)
4717 {
4718 struct bfd_hash_entry *p;
4719 struct elf_link_hash_entry *h;
4720
4721 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4722 {
4723 h = (struct elf_link_hash_entry *) p;
4724 memcpy (old_ent, h, htab->root.table.entsize);
4725 old_ent = (char *) old_ent + htab->root.table.entsize;
4726 if (h->root.type == bfd_link_hash_warning)
4727 {
4728 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4729 memcpy (old_ent, h, htab->root.table.entsize);
4730 old_ent = (char *) old_ent + htab->root.table.entsize;
4731 }
4732 if (h->root.type == bfd_link_hash_common)
4733 {
4734 memcpy (old_ent, h->root.u.c.p, sizeof (*h->root.u.c.p));
4735 old_ent = (char *) old_ent + sizeof (*h->root.u.c.p);
4736 }
4737 }
4738 }
4739 }
4740
4741 weaks = NULL;
4742 if (extversym == NULL)
4743 ever = NULL;
4744 else if (extversym + extsymoff < extversym_end)
4745 ever = extversym + extsymoff;
4746 else
4747 {
4748 /* xgettext:c-format */
4749 _bfd_error_handler (_("%pB: invalid version offset %lx (max %lx)"),
4750 abfd, (long) extsymoff,
4751 (long) (extversym_end - extversym) / sizeof (* extversym));
4752 bfd_set_error (bfd_error_bad_value);
4753 goto error_free_vers;
4754 }
4755
4756 if (!bfd_link_relocatable (info)
4757 && abfd->lto_slim_object)
4758 {
4759 _bfd_error_handler
4760 (_("%pB: plugin needed to handle lto object"), abfd);
4761 }
4762
4763 for (isym = isymbuf, isymend = PTR_ADD (isymbuf, extsymcount);
4764 isym < isymend;
4765 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4766 {
4767 int bind;
4768 bfd_vma value;
4769 asection *sec, *new_sec;
4770 flagword flags;
4771 const char *name;
4772 struct elf_link_hash_entry *h;
4773 struct elf_link_hash_entry *hi;
4774 bool definition;
4775 bool size_change_ok;
4776 bool type_change_ok;
4777 bool new_weak;
4778 bool old_weak;
4779 bfd *override;
4780 bool common;
4781 bool discarded;
4782 unsigned int old_alignment;
4783 unsigned int shindex;
4784 bfd *old_bfd;
4785 bool matched;
4786
4787 override = NULL;
4788
4789 flags = BSF_NO_FLAGS;
4790 sec = NULL;
4791 value = isym->st_value;
4792 common = bed->common_definition (isym);
4793 if (common && info->inhibit_common_definition)
4794 {
4795 /* Treat common symbol as undefined for --no-define-common. */
4796 isym->st_shndx = SHN_UNDEF;
4797 common = false;
4798 }
4799 discarded = false;
4800
4801 bind = ELF_ST_BIND (isym->st_info);
4802 switch (bind)
4803 {
4804 case STB_LOCAL:
4805 /* This should be impossible, since ELF requires that all
4806 global symbols follow all local symbols, and that sh_info
4807 point to the first global symbol. Unfortunately, Irix 5
4808 screws this up. */
4809 if (elf_bad_symtab (abfd))
4810 continue;
4811
4812 /* If we aren't prepared to handle locals within the globals
4813 then we'll likely segfault on a NULL symbol hash if the
4814 symbol is ever referenced in relocations. */
4815 shindex = elf_elfheader (abfd)->e_shstrndx;
4816 name = bfd_elf_string_from_elf_section (abfd, shindex, hdr->sh_name);
4817 _bfd_error_handler (_("%pB: %s local symbol at index %lu"
4818 " (>= sh_info of %lu)"),
4819 abfd, name, (long) (isym - isymbuf + extsymoff),
4820 (long) extsymoff);
4821
4822 /* Dynamic object relocations are not processed by ld, so
4823 ld won't run into the problem mentioned above. */
4824 if (dynamic)
4825 continue;
4826 bfd_set_error (bfd_error_bad_value);
4827 goto error_free_vers;
4828
4829 case STB_GLOBAL:
4830 if (isym->st_shndx != SHN_UNDEF && !common)
4831 flags = BSF_GLOBAL;
4832 break;
4833
4834 case STB_WEAK:
4835 flags = BSF_WEAK;
4836 break;
4837
4838 case STB_GNU_UNIQUE:
4839 flags = BSF_GNU_UNIQUE;
4840 break;
4841
4842 default:
4843 /* Leave it up to the processor backend. */
4844 break;
4845 }
4846
4847 if (isym->st_shndx == SHN_UNDEF)
4848 sec = bfd_und_section_ptr;
4849 else if (isym->st_shndx == SHN_ABS)
4850 sec = bfd_abs_section_ptr;
4851 else if (isym->st_shndx == SHN_COMMON)
4852 {
4853 sec = bfd_com_section_ptr;
4854 /* What ELF calls the size we call the value. What ELF
4855 calls the value we call the alignment. */
4856 value = isym->st_size;
4857 }
4858 else
4859 {
4860 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4861 if (sec == NULL)
4862 sec = bfd_abs_section_ptr;
4863 else if (discarded_section (sec))
4864 {
4865 /* Symbols from discarded section are undefined. We keep
4866 its visibility. */
4867 sec = bfd_und_section_ptr;
4868 discarded = true;
4869 isym->st_shndx = SHN_UNDEF;
4870 }
4871 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4872 value -= sec->vma;
4873 }
4874
4875 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4876 isym->st_name);
4877 if (name == NULL)
4878 goto error_free_vers;
4879
4880 if (isym->st_shndx == SHN_COMMON
4881 && (abfd->flags & BFD_PLUGIN) != 0)
4882 {
4883 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4884
4885 if (xc == NULL)
4886 {
4887 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4888 | SEC_EXCLUDE);
4889 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4890 if (xc == NULL)
4891 goto error_free_vers;
4892 }
4893 sec = xc;
4894 }
4895 else if (isym->st_shndx == SHN_COMMON
4896 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4897 && !bfd_link_relocatable (info))
4898 {
4899 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4900
4901 if (tcomm == NULL)
4902 {
4903 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4904 | SEC_LINKER_CREATED);
4905 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4906 if (tcomm == NULL)
4907 goto error_free_vers;
4908 }
4909 sec = tcomm;
4910 }
4911 else if (bed->elf_add_symbol_hook)
4912 {
4913 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4914 &sec, &value))
4915 goto error_free_vers;
4916
4917 /* The hook function sets the name to NULL if this symbol
4918 should be skipped for some reason. */
4919 if (name == NULL)
4920 continue;
4921 }
4922
4923 /* Sanity check that all possibilities were handled. */
4924 if (sec == NULL)
4925 abort ();
4926
4927 /* Silently discard TLS symbols from --just-syms. There's
4928 no way to combine a static TLS block with a new TLS block
4929 for this executable. */
4930 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4931 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4932 continue;
4933
4934 if (bfd_is_und_section (sec)
4935 || bfd_is_com_section (sec))
4936 definition = false;
4937 else
4938 definition = true;
4939
4940 size_change_ok = false;
4941 type_change_ok = bed->type_change_ok;
4942 old_weak = false;
4943 matched = false;
4944 old_alignment = 0;
4945 old_bfd = NULL;
4946 new_sec = sec;
4947
4948 if (is_elf_hash_table (&htab->root))
4949 {
4950 Elf_Internal_Versym iver;
4951 unsigned int vernum = 0;
4952 bool skip;
4953
4954 if (ever == NULL)
4955 {
4956 if (info->default_imported_symver)
4957 /* Use the default symbol version created earlier. */
4958 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4959 else
4960 iver.vs_vers = 0;
4961 }
4962 else if (ever >= extversym_end)
4963 {
4964 /* xgettext:c-format */
4965 _bfd_error_handler (_("%pB: not enough version information"),
4966 abfd);
4967 bfd_set_error (bfd_error_bad_value);
4968 goto error_free_vers;
4969 }
4970 else
4971 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4972
4973 vernum = iver.vs_vers & VERSYM_VERSION;
4974
4975 /* If this is a hidden symbol, or if it is not version
4976 1, we append the version name to the symbol name.
4977 However, we do not modify a non-hidden absolute symbol
4978 if it is not a function, because it might be the version
4979 symbol itself. FIXME: What if it isn't? */
4980 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4981 || (vernum > 1
4982 && (!bfd_is_abs_section (sec)
4983 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4984 {
4985 const char *verstr;
4986 size_t namelen, verlen, newlen;
4987 char *newname, *p;
4988
4989 if (isym->st_shndx != SHN_UNDEF)
4990 {
4991 if (vernum > elf_tdata (abfd)->cverdefs)
4992 verstr = NULL;
4993 else if (vernum > 1)
4994 verstr =
4995 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4996 else
4997 verstr = "";
4998
4999 if (verstr == NULL)
5000 {
5001 _bfd_error_handler
5002 /* xgettext:c-format */
5003 (_("%pB: %s: invalid version %u (max %d)"),
5004 abfd, name, vernum,
5005 elf_tdata (abfd)->cverdefs);
5006 bfd_set_error (bfd_error_bad_value);
5007 goto error_free_vers;
5008 }
5009 }
5010 else
5011 {
5012 /* We cannot simply test for the number of
5013 entries in the VERNEED section since the
5014 numbers for the needed versions do not start
5015 at 0. */
5016 Elf_Internal_Verneed *t;
5017
5018 verstr = NULL;
5019 for (t = elf_tdata (abfd)->verref;
5020 t != NULL;
5021 t = t->vn_nextref)
5022 {
5023 Elf_Internal_Vernaux *a;
5024
5025 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5026 {
5027 if (a->vna_other == vernum)
5028 {
5029 verstr = a->vna_nodename;
5030 break;
5031 }
5032 }
5033 if (a != NULL)
5034 break;
5035 }
5036 if (verstr == NULL)
5037 {
5038 _bfd_error_handler
5039 /* xgettext:c-format */
5040 (_("%pB: %s: invalid needed version %d"),
5041 abfd, name, vernum);
5042 bfd_set_error (bfd_error_bad_value);
5043 goto error_free_vers;
5044 }
5045 }
5046
5047 namelen = strlen (name);
5048 verlen = strlen (verstr);
5049 newlen = namelen + verlen + 2;
5050 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
5051 && isym->st_shndx != SHN_UNDEF)
5052 ++newlen;
5053
5054 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
5055 if (newname == NULL)
5056 goto error_free_vers;
5057 memcpy (newname, name, namelen);
5058 p = newname + namelen;
5059 *p++ = ELF_VER_CHR;
5060 /* If this is a defined non-hidden version symbol,
5061 we add another @ to the name. This indicates the
5062 default version of the symbol. */
5063 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
5064 && isym->st_shndx != SHN_UNDEF)
5065 *p++ = ELF_VER_CHR;
5066 memcpy (p, verstr, verlen + 1);
5067
5068 name = newname;
5069 }
5070
5071 /* If this symbol has default visibility and the user has
5072 requested we not re-export it, then mark it as hidden. */
5073 if (!bfd_is_und_section (sec)
5074 && !dynamic
5075 && abfd->no_export
5076 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
5077 isym->st_other = (STV_HIDDEN
5078 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
5079
5080 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
5081 sym_hash, &old_bfd, &old_weak,
5082 &old_alignment, &skip, &override,
5083 &type_change_ok, &size_change_ok,
5084 &matched))
5085 goto error_free_vers;
5086
5087 if (skip)
5088 continue;
5089
5090 /* Override a definition only if the new symbol matches the
5091 existing one. */
5092 if (override && matched)
5093 definition = false;
5094
5095 h = *sym_hash;
5096 while (h->root.type == bfd_link_hash_indirect
5097 || h->root.type == bfd_link_hash_warning)
5098 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5099
5100 if (h->versioned != unversioned
5101 && elf_tdata (abfd)->verdef != NULL
5102 && vernum > 1
5103 && definition)
5104 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
5105 }
5106
5107 if (! (_bfd_generic_link_add_one_symbol
5108 (info, override ? override : abfd, name, flags, sec, value,
5109 NULL, false, bed->collect,
5110 (struct bfd_link_hash_entry **) sym_hash)))
5111 goto error_free_vers;
5112
5113 h = *sym_hash;
5114 /* We need to make sure that indirect symbol dynamic flags are
5115 updated. */
5116 hi = h;
5117 while (h->root.type == bfd_link_hash_indirect
5118 || h->root.type == bfd_link_hash_warning)
5119 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5120
5121 *sym_hash = h;
5122
5123 /* Setting the index to -3 tells elf_link_output_extsym that
5124 this symbol is defined in a discarded section. */
5125 if (discarded && is_elf_hash_table (&htab->root))
5126 h->indx = -3;
5127
5128 new_weak = (flags & BSF_WEAK) != 0;
5129 if (dynamic
5130 && definition
5131 && new_weak
5132 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
5133 && is_elf_hash_table (&htab->root)
5134 && h->u.alias == NULL)
5135 {
5136 /* Keep a list of all weak defined non function symbols from
5137 a dynamic object, using the alias field. Later in this
5138 function we will set the alias field to the correct
5139 value. We only put non-function symbols from dynamic
5140 objects on this list, because that happens to be the only
5141 time we need to know the normal symbol corresponding to a
5142 weak symbol, and the information is time consuming to
5143 figure out. If the alias field is not already NULL,
5144 then this symbol was already defined by some previous
5145 dynamic object, and we will be using that previous
5146 definition anyhow. */
5147
5148 h->u.alias = weaks;
5149 weaks = h;
5150 }
5151
5152 /* Set the alignment of a common symbol. */
5153 if ((common || bfd_is_com_section (sec))
5154 && h->root.type == bfd_link_hash_common)
5155 {
5156 unsigned int align;
5157
5158 if (common)
5159 align = bfd_log2 (isym->st_value);
5160 else
5161 {
5162 /* The new symbol is a common symbol in a shared object.
5163 We need to get the alignment from the section. */
5164 align = new_sec->alignment_power;
5165 }
5166 if (align > old_alignment)
5167 h->root.u.c.p->alignment_power = align;
5168 else
5169 h->root.u.c.p->alignment_power = old_alignment;
5170 }
5171
5172 if (is_elf_hash_table (&htab->root))
5173 {
5174 /* Set a flag in the hash table entry indicating the type of
5175 reference or definition we just found. A dynamic symbol
5176 is one which is referenced or defined by both a regular
5177 object and a shared object. */
5178 bool dynsym = false;
5179
5180 /* Plugin symbols aren't normal. Don't set def/ref flags. */
5181 if ((abfd->flags & BFD_PLUGIN) != 0)
5182 {
5183 /* Except for this flag to track nonweak references. */
5184 if (!definition
5185 && bind != STB_WEAK)
5186 h->ref_ir_nonweak = 1;
5187 }
5188 else if (!dynamic)
5189 {
5190 if (! definition)
5191 {
5192 h->ref_regular = 1;
5193 if (bind != STB_WEAK)
5194 h->ref_regular_nonweak = 1;
5195 }
5196 else
5197 {
5198 h->def_regular = 1;
5199 if (h->def_dynamic)
5200 {
5201 h->def_dynamic = 0;
5202 h->ref_dynamic = 1;
5203 }
5204 }
5205 }
5206 else
5207 {
5208 if (! definition)
5209 {
5210 h->ref_dynamic = 1;
5211 hi->ref_dynamic = 1;
5212 }
5213 else
5214 {
5215 h->def_dynamic = 1;
5216 hi->def_dynamic = 1;
5217 }
5218 }
5219
5220 /* If an indirect symbol has been forced local, don't
5221 make the real symbol dynamic. */
5222 if (h != hi && hi->forced_local)
5223 ;
5224 else if (!dynamic)
5225 {
5226 if (bfd_link_dll (info)
5227 || h->def_dynamic
5228 || h->ref_dynamic)
5229 dynsym = true;
5230 }
5231 else
5232 {
5233 if (h->def_regular
5234 || h->ref_regular
5235 || (h->is_weakalias
5236 && weakdef (h)->dynindx != -1))
5237 dynsym = true;
5238 }
5239
5240 /* Check to see if we need to add an indirect symbol for
5241 the default name. */
5242 if ((definition
5243 || (!override && h->root.type == bfd_link_hash_common))
5244 && !(hi != h
5245 && hi->versioned == versioned_hidden))
5246 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
5247 sec, value, &old_bfd, &dynsym))
5248 goto error_free_vers;
5249
5250 /* Check the alignment when a common symbol is involved. This
5251 can change when a common symbol is overridden by a normal
5252 definition or a common symbol is ignored due to the old
5253 normal definition. We need to make sure the maximum
5254 alignment is maintained. */
5255 if ((old_alignment || common)
5256 && h->root.type != bfd_link_hash_common)
5257 {
5258 unsigned int common_align;
5259 unsigned int normal_align;
5260 unsigned int symbol_align;
5261 bfd *normal_bfd;
5262 bfd *common_bfd;
5263
5264 BFD_ASSERT (h->root.type == bfd_link_hash_defined
5265 || h->root.type == bfd_link_hash_defweak);
5266
5267 symbol_align = ffs (h->root.u.def.value) - 1;
5268 if (h->root.u.def.section->owner != NULL
5269 && (h->root.u.def.section->owner->flags
5270 & (DYNAMIC | BFD_PLUGIN)) == 0)
5271 {
5272 normal_align = h->root.u.def.section->alignment_power;
5273 if (normal_align > symbol_align)
5274 normal_align = symbol_align;
5275 }
5276 else
5277 normal_align = symbol_align;
5278
5279 if (old_alignment)
5280 {
5281 common_align = old_alignment;
5282 common_bfd = old_bfd;
5283 normal_bfd = abfd;
5284 }
5285 else
5286 {
5287 common_align = bfd_log2 (isym->st_value);
5288 common_bfd = abfd;
5289 normal_bfd = old_bfd;
5290 }
5291
5292 if (normal_align < common_align)
5293 {
5294 /* PR binutils/2735 */
5295 if (normal_bfd == NULL)
5296 _bfd_error_handler
5297 /* xgettext:c-format */
5298 (_("warning: alignment %u of common symbol `%s' in %pB is"
5299 " greater than the alignment (%u) of its section %pA"),
5300 1 << common_align, name, common_bfd,
5301 1 << normal_align, h->root.u.def.section);
5302 else
5303 _bfd_error_handler
5304 /* xgettext:c-format */
5305 (_("warning: alignment %u of symbol `%s' in %pB"
5306 " is smaller than %u in %pB"),
5307 1 << normal_align, name, normal_bfd,
5308 1 << common_align, common_bfd);
5309 }
5310 }
5311
5312 /* Remember the symbol size if it isn't undefined. */
5313 if (isym->st_size != 0
5314 && isym->st_shndx != SHN_UNDEF
5315 && (definition || h->size == 0))
5316 {
5317 if (h->size != 0
5318 && h->size != isym->st_size
5319 && ! size_change_ok)
5320 _bfd_error_handler
5321 /* xgettext:c-format */
5322 (_("warning: size of symbol `%s' changed"
5323 " from %" PRIu64 " in %pB to %" PRIu64 " in %pB"),
5324 name, (uint64_t) h->size, old_bfd,
5325 (uint64_t) isym->st_size, abfd);
5326
5327 h->size = isym->st_size;
5328 }
5329
5330 /* If this is a common symbol, then we always want H->SIZE
5331 to be the size of the common symbol. The code just above
5332 won't fix the size if a common symbol becomes larger. We
5333 don't warn about a size change here, because that is
5334 covered by --warn-common. Allow changes between different
5335 function types. */
5336 if (h->root.type == bfd_link_hash_common)
5337 h->size = h->root.u.c.size;
5338
5339 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
5340 && ((definition && !new_weak)
5341 || (old_weak && h->root.type == bfd_link_hash_common)
5342 || h->type == STT_NOTYPE))
5343 {
5344 unsigned int type = ELF_ST_TYPE (isym->st_info);
5345
5346 /* Turn an IFUNC symbol from a DSO into a normal FUNC
5347 symbol. */
5348 if (type == STT_GNU_IFUNC
5349 && (abfd->flags & DYNAMIC) != 0)
5350 type = STT_FUNC;
5351
5352 if (h->type != type)
5353 {
5354 if (h->type != STT_NOTYPE && ! type_change_ok)
5355 /* xgettext:c-format */
5356 _bfd_error_handler
5357 (_("warning: type of symbol `%s' changed"
5358 " from %d to %d in %pB"),
5359 name, h->type, type, abfd);
5360
5361 h->type = type;
5362 }
5363 }
5364
5365 /* Merge st_other field. */
5366 elf_merge_st_other (abfd, h, isym->st_other, sec,
5367 definition, dynamic);
5368
5369 /* We don't want to make debug symbol dynamic. */
5370 if (definition
5371 && (sec->flags & SEC_DEBUGGING)
5372 && !bfd_link_relocatable (info))
5373 dynsym = false;
5374
5375 /* Nor should we make plugin symbols dynamic. */
5376 if ((abfd->flags & BFD_PLUGIN) != 0)
5377 dynsym = false;
5378
5379 if (definition)
5380 {
5381 h->target_internal = isym->st_target_internal;
5382 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
5383 }
5384
5385 if (definition && !dynamic)
5386 {
5387 char *p = strchr (name, ELF_VER_CHR);
5388 if (p != NULL && p[1] != ELF_VER_CHR)
5389 {
5390 /* Queue non-default versions so that .symver x, x@FOO
5391 aliases can be checked. */
5392 if (!nondeflt_vers)
5393 {
5394 size_t amt = ((isymend - isym + 1)
5395 * sizeof (struct elf_link_hash_entry *));
5396 nondeflt_vers
5397 = (struct elf_link_hash_entry **) bfd_malloc (amt);
5398 if (!nondeflt_vers)
5399 goto error_free_vers;
5400 }
5401 nondeflt_vers[nondeflt_vers_cnt++] = h;
5402 }
5403 }
5404
5405 if (dynsym && h->dynindx == -1)
5406 {
5407 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5408 goto error_free_vers;
5409 if (h->is_weakalias
5410 && weakdef (h)->dynindx == -1)
5411 {
5412 if (!bfd_elf_link_record_dynamic_symbol (info, weakdef (h)))
5413 goto error_free_vers;
5414 }
5415 }
5416 else if (h->dynindx != -1)
5417 /* If the symbol already has a dynamic index, but
5418 visibility says it should not be visible, turn it into
5419 a local symbol. */
5420 switch (ELF_ST_VISIBILITY (h->other))
5421 {
5422 case STV_INTERNAL:
5423 case STV_HIDDEN:
5424 (*bed->elf_backend_hide_symbol) (info, h, true);
5425 dynsym = false;
5426 break;
5427 }
5428
5429 if (!add_needed
5430 && matched
5431 && definition
5432 && h->root.type != bfd_link_hash_indirect
5433 && ((dynsym
5434 && h->ref_regular_nonweak)
5435 || (old_bfd != NULL
5436 && (old_bfd->flags & BFD_PLUGIN) != 0
5437 && h->ref_ir_nonweak
5438 && !info->lto_all_symbols_read)
5439 || (h->ref_dynamic_nonweak
5440 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
5441 && !on_needed_list (elf_dt_name (abfd),
5442 htab->needed, NULL))))
5443 {
5444 const char *soname = elf_dt_name (abfd);
5445
5446 info->callbacks->minfo ("%!", soname, old_bfd,
5447 h->root.root.string);
5448
5449 /* A symbol from a library loaded via DT_NEEDED of some
5450 other library is referenced by a regular object.
5451 Add a DT_NEEDED entry for it. Issue an error if
5452 --no-add-needed is used and the reference was not
5453 a weak one. */
5454 if (old_bfd != NULL
5455 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
5456 {
5457 _bfd_error_handler
5458 /* xgettext:c-format */
5459 (_("%pB: undefined reference to symbol '%s'"),
5460 old_bfd, name);
5461 bfd_set_error (bfd_error_missing_dso);
5462 goto error_free_vers;
5463 }
5464
5465 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
5466 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
5467
5468 /* Create dynamic sections for backends that require
5469 that be done before setup_gnu_properties. */
5470 if (!_bfd_elf_link_create_dynamic_sections (abfd, info))
5471 return false;
5472 add_needed = true;
5473 }
5474 }
5475 }
5476
5477 if (info->lto_plugin_active
5478 && !bfd_link_relocatable (info)
5479 && (abfd->flags & BFD_PLUGIN) == 0
5480 && !just_syms
5481 && extsymcount)
5482 {
5483 int r_sym_shift;
5484
5485 if (bed->s->arch_size == 32)
5486 r_sym_shift = 8;
5487 else
5488 r_sym_shift = 32;
5489
5490 /* If linker plugin is enabled, set non_ir_ref_regular on symbols
5491 referenced in regular objects so that linker plugin will get
5492 the correct symbol resolution. */
5493
5494 sym_hash = elf_sym_hashes (abfd);
5495 for (s = abfd->sections; s != NULL; s = s->next)
5496 {
5497 Elf_Internal_Rela *internal_relocs;
5498 Elf_Internal_Rela *rel, *relend;
5499
5500 /* Don't check relocations in excluded sections. */
5501 if ((s->flags & SEC_RELOC) == 0
5502 || s->reloc_count == 0
5503 || (s->flags & SEC_EXCLUDE) != 0
5504 || ((info->strip == strip_all
5505 || info->strip == strip_debugger)
5506 && (s->flags & SEC_DEBUGGING) != 0))
5507 continue;
5508
5509 internal_relocs = _bfd_elf_link_info_read_relocs (abfd, info,
5510 s, NULL,
5511 NULL,
5512 _bfd_link_keep_memory (info));
5513 if (internal_relocs == NULL)
5514 goto error_free_vers;
5515
5516 rel = internal_relocs;
5517 relend = rel + s->reloc_count;
5518 for ( ; rel < relend; rel++)
5519 {
5520 unsigned long r_symndx = rel->r_info >> r_sym_shift;
5521 struct elf_link_hash_entry *h;
5522
5523 /* Skip local symbols. */
5524 if (r_symndx < extsymoff)
5525 continue;
5526
5527 h = sym_hash[r_symndx - extsymoff];
5528 if (h != NULL)
5529 h->root.non_ir_ref_regular = 1;
5530 }
5531
5532 if (elf_section_data (s)->relocs != internal_relocs)
5533 free (internal_relocs);
5534 }
5535 }
5536
5537 free (extversym);
5538 extversym = NULL;
5539 free (isymbuf);
5540 isymbuf = NULL;
5541
5542 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
5543 {
5544 unsigned int i;
5545
5546 /* Restore the symbol table. */
5547 old_ent = (char *) old_tab + tabsize;
5548 memset (elf_sym_hashes (abfd), 0,
5549 extsymcount * sizeof (struct elf_link_hash_entry *));
5550 htab->root.table.table = old_table;
5551 htab->root.table.size = old_size;
5552 htab->root.table.count = old_count;
5553 memcpy (htab->root.table.table, old_tab, tabsize);
5554 htab->root.undefs = old_undefs;
5555 htab->root.undefs_tail = old_undefs_tail;
5556 if (htab->dynstr != NULL)
5557 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
5558 free (old_strtab);
5559 old_strtab = NULL;
5560 for (i = 0; i < htab->root.table.size; i++)
5561 {
5562 struct bfd_hash_entry *p;
5563 struct elf_link_hash_entry *h;
5564 unsigned int non_ir_ref_dynamic;
5565
5566 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
5567 {
5568 /* Preserve non_ir_ref_dynamic so that this symbol
5569 will be exported when the dynamic lib becomes needed
5570 in the second pass. */
5571 h = (struct elf_link_hash_entry *) p;
5572 if (h->root.type == bfd_link_hash_warning)
5573 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5574 non_ir_ref_dynamic = h->root.non_ir_ref_dynamic;
5575
5576 h = (struct elf_link_hash_entry *) p;
5577 memcpy (h, old_ent, htab->root.table.entsize);
5578 old_ent = (char *) old_ent + htab->root.table.entsize;
5579 if (h->root.type == bfd_link_hash_warning)
5580 {
5581 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5582 memcpy (h, old_ent, htab->root.table.entsize);
5583 old_ent = (char *) old_ent + htab->root.table.entsize;
5584 }
5585 if (h->root.type == bfd_link_hash_common)
5586 {
5587 memcpy (h->root.u.c.p, old_ent, sizeof (*h->root.u.c.p));
5588 old_ent = (char *) old_ent + sizeof (*h->root.u.c.p);
5589 }
5590 h->root.non_ir_ref_dynamic = non_ir_ref_dynamic;
5591 }
5592 }
5593
5594 /* Make a special call to the linker "notice" function to
5595 tell it that symbols added for crefs may need to be removed. */
5596 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
5597 goto error_free_vers;
5598
5599 free (old_tab);
5600 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
5601 alloc_mark);
5602 free (nondeflt_vers);
5603 return true;
5604 }
5605
5606 if (old_tab != NULL)
5607 {
5608 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
5609 goto error_free_vers;
5610 free (old_tab);
5611 old_tab = NULL;
5612 }
5613
5614 /* Now that all the symbols from this input file are created, if
5615 not performing a relocatable link, handle .symver foo, foo@BAR
5616 such that any relocs against foo become foo@BAR. */
5617 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
5618 {
5619 size_t cnt, symidx;
5620
5621 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
5622 {
5623 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
5624 char *shortname, *p;
5625 size_t amt;
5626
5627 p = strchr (h->root.root.string, ELF_VER_CHR);
5628 if (p == NULL
5629 || (h->root.type != bfd_link_hash_defined
5630 && h->root.type != bfd_link_hash_defweak))
5631 continue;
5632
5633 amt = p - h->root.root.string;
5634 shortname = (char *) bfd_malloc (amt + 1);
5635 if (!shortname)
5636 goto error_free_vers;
5637 memcpy (shortname, h->root.root.string, amt);
5638 shortname[amt] = '\0';
5639
5640 hi = (struct elf_link_hash_entry *)
5641 bfd_link_hash_lookup (&htab->root, shortname,
5642 false, false, false);
5643 if (hi != NULL
5644 && hi->root.type == h->root.type
5645 && hi->root.u.def.value == h->root.u.def.value
5646 && hi->root.u.def.section == h->root.u.def.section)
5647 {
5648 (*bed->elf_backend_hide_symbol) (info, hi, true);
5649 hi->root.type = bfd_link_hash_indirect;
5650 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
5651 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
5652 sym_hash = elf_sym_hashes (abfd);
5653 if (sym_hash)
5654 for (symidx = 0; symidx < extsymcount; ++symidx)
5655 if (sym_hash[symidx] == hi)
5656 {
5657 sym_hash[symidx] = h;
5658 break;
5659 }
5660 }
5661 free (shortname);
5662 }
5663 free (nondeflt_vers);
5664 nondeflt_vers = NULL;
5665 }
5666
5667 /* Now set the alias field correctly for all the weak defined
5668 symbols we found. The only way to do this is to search all the
5669 symbols. Since we only need the information for non functions in
5670 dynamic objects, that's the only time we actually put anything on
5671 the list WEAKS. We need this information so that if a regular
5672 object refers to a symbol defined weakly in a dynamic object, the
5673 real symbol in the dynamic object is also put in the dynamic
5674 symbols; we also must arrange for both symbols to point to the
5675 same memory location. We could handle the general case of symbol
5676 aliasing, but a general symbol alias can only be generated in
5677 assembler code, handling it correctly would be very time
5678 consuming, and other ELF linkers don't handle general aliasing
5679 either. */
5680 if (weaks != NULL)
5681 {
5682 struct elf_link_hash_entry **hpp;
5683 struct elf_link_hash_entry **hppend;
5684 struct elf_link_hash_entry **sorted_sym_hash;
5685 struct elf_link_hash_entry *h;
5686 size_t sym_count, amt;
5687
5688 /* Since we have to search the whole symbol list for each weak
5689 defined symbol, search time for N weak defined symbols will be
5690 O(N^2). Binary search will cut it down to O(NlogN). */
5691 amt = extsymcount * sizeof (*sorted_sym_hash);
5692 sorted_sym_hash = bfd_malloc (amt);
5693 if (sorted_sym_hash == NULL)
5694 goto error_return;
5695 sym_hash = sorted_sym_hash;
5696 hpp = elf_sym_hashes (abfd);
5697 hppend = hpp + extsymcount;
5698 sym_count = 0;
5699 for (; hpp < hppend; hpp++)
5700 {
5701 h = *hpp;
5702 if (h != NULL
5703 && h->root.type == bfd_link_hash_defined
5704 && !bed->is_function_type (h->type))
5705 {
5706 *sym_hash = h;
5707 sym_hash++;
5708 sym_count++;
5709 }
5710 }
5711
5712 qsort (sorted_sym_hash, sym_count, sizeof (*sorted_sym_hash),
5713 elf_sort_symbol);
5714
5715 while (weaks != NULL)
5716 {
5717 struct elf_link_hash_entry *hlook;
5718 asection *slook;
5719 bfd_vma vlook;
5720 size_t i, j, idx = 0;
5721
5722 hlook = weaks;
5723 weaks = hlook->u.alias;
5724 hlook->u.alias = NULL;
5725
5726 if (hlook->root.type != bfd_link_hash_defined
5727 && hlook->root.type != bfd_link_hash_defweak)
5728 continue;
5729
5730 slook = hlook->root.u.def.section;
5731 vlook = hlook->root.u.def.value;
5732
5733 i = 0;
5734 j = sym_count;
5735 while (i != j)
5736 {
5737 bfd_signed_vma vdiff;
5738 idx = (i + j) / 2;
5739 h = sorted_sym_hash[idx];
5740 vdiff = vlook - h->root.u.def.value;
5741 if (vdiff < 0)
5742 j = idx;
5743 else if (vdiff > 0)
5744 i = idx + 1;
5745 else
5746 {
5747 int sdiff = slook->id - h->root.u.def.section->id;
5748 if (sdiff < 0)
5749 j = idx;
5750 else if (sdiff > 0)
5751 i = idx + 1;
5752 else
5753 break;
5754 }
5755 }
5756
5757 /* We didn't find a value/section match. */
5758 if (i == j)
5759 continue;
5760
5761 /* With multiple aliases, or when the weak symbol is already
5762 strongly defined, we have multiple matching symbols and
5763 the binary search above may land on any of them. Step
5764 one past the matching symbol(s). */
5765 while (++idx != j)
5766 {
5767 h = sorted_sym_hash[idx];
5768 if (h->root.u.def.section != slook
5769 || h->root.u.def.value != vlook)
5770 break;
5771 }
5772
5773 /* Now look back over the aliases. Since we sorted by size
5774 as well as value and section, we'll choose the one with
5775 the largest size. */
5776 while (idx-- != i)
5777 {
5778 h = sorted_sym_hash[idx];
5779
5780 /* Stop if value or section doesn't match. */
5781 if (h->root.u.def.section != slook
5782 || h->root.u.def.value != vlook)
5783 break;
5784 else if (h != hlook)
5785 {
5786 struct elf_link_hash_entry *t;
5787
5788 hlook->u.alias = h;
5789 hlook->is_weakalias = 1;
5790 t = h;
5791 if (t->u.alias != NULL)
5792 while (t->u.alias != h)
5793 t = t->u.alias;
5794 t->u.alias = hlook;
5795
5796 /* If the weak definition is in the list of dynamic
5797 symbols, make sure the real definition is put
5798 there as well. */
5799 if (hlook->dynindx != -1 && h->dynindx == -1)
5800 {
5801 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5802 {
5803 err_free_sym_hash:
5804 free (sorted_sym_hash);
5805 goto error_return;
5806 }
5807 }
5808
5809 /* If the real definition is in the list of dynamic
5810 symbols, make sure the weak definition is put
5811 there as well. If we don't do this, then the
5812 dynamic loader might not merge the entries for the
5813 real definition and the weak definition. */
5814 if (h->dynindx != -1 && hlook->dynindx == -1)
5815 {
5816 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5817 goto err_free_sym_hash;
5818 }
5819 break;
5820 }
5821 }
5822 }
5823
5824 free (sorted_sym_hash);
5825 }
5826
5827 if (bed->check_directives
5828 && !(*bed->check_directives) (abfd, info))
5829 return false;
5830
5831 /* If this is a non-traditional link, try to optimize the handling
5832 of the .stab/.stabstr sections. */
5833 if (! dynamic
5834 && ! info->traditional_format
5835 && is_elf_hash_table (&htab->root)
5836 && (info->strip != strip_all && info->strip != strip_debugger))
5837 {
5838 asection *stabstr;
5839
5840 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5841 if (stabstr != NULL)
5842 {
5843 bfd_size_type string_offset = 0;
5844 asection *stab;
5845
5846 for (stab = abfd->sections; stab; stab = stab->next)
5847 if (startswith (stab->name, ".stab")
5848 && (!stab->name[5] ||
5849 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5850 && (stab->flags & SEC_MERGE) == 0
5851 && !bfd_is_abs_section (stab->output_section))
5852 {
5853 struct bfd_elf_section_data *secdata;
5854
5855 secdata = elf_section_data (stab);
5856 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5857 stabstr, &secdata->sec_info,
5858 &string_offset))
5859 goto error_return;
5860 if (secdata->sec_info)
5861 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5862 }
5863 }
5864 }
5865
5866 if (dynamic && add_needed)
5867 {
5868 /* Add this bfd to the loaded list. */
5869 struct elf_link_loaded_list *n;
5870
5871 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5872 if (n == NULL)
5873 goto error_return;
5874 n->abfd = abfd;
5875 n->next = htab->dyn_loaded;
5876 htab->dyn_loaded = n;
5877 }
5878 if (dynamic && !add_needed
5879 && (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) != 0)
5880 elf_dyn_lib_class (abfd) |= DYN_NO_NEEDED;
5881
5882 return true;
5883
5884 error_free_vers:
5885 free (old_tab);
5886 free (old_strtab);
5887 free (nondeflt_vers);
5888 free (extversym);
5889 error_free_sym:
5890 free (isymbuf);
5891 error_return:
5892 return false;
5893 }
5894
5895 /* Return the linker hash table entry of a symbol that might be
5896 satisfied by an archive symbol. Return -1 on error. */
5897
5898 struct bfd_link_hash_entry *
5899 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5900 struct bfd_link_info *info,
5901 const char *name)
5902 {
5903 struct bfd_link_hash_entry *h;
5904 char *p, *copy;
5905 size_t len, first;
5906
5907 h = bfd_link_hash_lookup (info->hash, name, false, false, true);
5908 if (h != NULL)
5909 return h;
5910
5911 /* If this is a default version (the name contains @@), look up the
5912 symbol again with only one `@' as well as without the version.
5913 The effect is that references to the symbol with and without the
5914 version will be matched by the default symbol in the archive. */
5915
5916 p = strchr (name, ELF_VER_CHR);
5917 if (p == NULL || p[1] != ELF_VER_CHR)
5918 return h;
5919
5920 /* First check with only one `@'. */
5921 len = strlen (name);
5922 copy = (char *) bfd_alloc (abfd, len);
5923 if (copy == NULL)
5924 return (struct bfd_link_hash_entry *) -1;
5925
5926 first = p - name + 1;
5927 memcpy (copy, name, first);
5928 memcpy (copy + first, name + first + 1, len - first);
5929
5930 h = bfd_link_hash_lookup (info->hash, copy, false, false, true);
5931 if (h == NULL)
5932 {
5933 /* We also need to check references to the symbol without the
5934 version. */
5935 copy[first - 1] = '\0';
5936 h = bfd_link_hash_lookup (info->hash, copy, false, false, true);
5937 }
5938
5939 bfd_release (abfd, copy);
5940 return h;
5941 }
5942
5943 /* Add symbols from an ELF archive file to the linker hash table. We
5944 don't use _bfd_generic_link_add_archive_symbols because we need to
5945 handle versioned symbols.
5946
5947 Fortunately, ELF archive handling is simpler than that done by
5948 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5949 oddities. In ELF, if we find a symbol in the archive map, and the
5950 symbol is currently undefined, we know that we must pull in that
5951 object file.
5952
5953 Unfortunately, we do have to make multiple passes over the symbol
5954 table until nothing further is resolved. */
5955
5956 static bool
5957 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5958 {
5959 symindex c;
5960 unsigned char *included = NULL;
5961 carsym *symdefs;
5962 bool loop;
5963 size_t amt;
5964 const struct elf_backend_data *bed;
5965 struct bfd_link_hash_entry * (*archive_symbol_lookup)
5966 (bfd *, struct bfd_link_info *, const char *);
5967
5968 if (! bfd_has_map (abfd))
5969 {
5970 /* An empty archive is a special case. */
5971 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5972 return true;
5973 bfd_set_error (bfd_error_no_armap);
5974 return false;
5975 }
5976
5977 /* Keep track of all symbols we know to be already defined, and all
5978 files we know to be already included. This is to speed up the
5979 second and subsequent passes. */
5980 c = bfd_ardata (abfd)->symdef_count;
5981 if (c == 0)
5982 return true;
5983 amt = c * sizeof (*included);
5984 included = (unsigned char *) bfd_zmalloc (amt);
5985 if (included == NULL)
5986 return false;
5987
5988 symdefs = bfd_ardata (abfd)->symdefs;
5989 bed = get_elf_backend_data (abfd);
5990 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5991
5992 do
5993 {
5994 file_ptr last;
5995 symindex i;
5996 carsym *symdef;
5997 carsym *symdefend;
5998
5999 loop = false;
6000 last = -1;
6001
6002 symdef = symdefs;
6003 symdefend = symdef + c;
6004 for (i = 0; symdef < symdefend; symdef++, i++)
6005 {
6006 struct bfd_link_hash_entry *h;
6007 bfd *element;
6008 struct bfd_link_hash_entry *undefs_tail;
6009 symindex mark;
6010
6011 if (included[i])
6012 continue;
6013 if (symdef->file_offset == last)
6014 {
6015 included[i] = true;
6016 continue;
6017 }
6018
6019 h = archive_symbol_lookup (abfd, info, symdef->name);
6020 if (h == (struct bfd_link_hash_entry *) -1)
6021 goto error_return;
6022
6023 if (h == NULL)
6024 continue;
6025
6026 if (h->type == bfd_link_hash_undefined)
6027 {
6028 /* If the archive element has already been loaded then one
6029 of the symbols defined by that element might have been
6030 made undefined due to being in a discarded section. */
6031 if (is_elf_hash_table (info->hash)
6032 && ((struct elf_link_hash_entry *) h)->indx == -3)
6033 continue;
6034 }
6035 else if (h->type == bfd_link_hash_common)
6036 {
6037 /* We currently have a common symbol. The archive map contains
6038 a reference to this symbol, so we may want to include it. We
6039 only want to include it however, if this archive element
6040 contains a definition of the symbol, not just another common
6041 declaration of it.
6042
6043 Unfortunately some archivers (including GNU ar) will put
6044 declarations of common symbols into their archive maps, as
6045 well as real definitions, so we cannot just go by the archive
6046 map alone. Instead we must read in the element's symbol
6047 table and check that to see what kind of symbol definition
6048 this is. */
6049 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
6050 continue;
6051 }
6052 else
6053 {
6054 if (h->type != bfd_link_hash_undefweak)
6055 /* Symbol must be defined. Don't check it again. */
6056 included[i] = true;
6057 continue;
6058 }
6059
6060 /* We need to include this archive member. */
6061 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset,
6062 info);
6063 if (element == NULL)
6064 goto error_return;
6065
6066 if (! bfd_check_format (element, bfd_object))
6067 goto error_return;
6068
6069 undefs_tail = info->hash->undefs_tail;
6070
6071 if (!(*info->callbacks
6072 ->add_archive_element) (info, element, symdef->name, &element))
6073 continue;
6074 if (!bfd_link_add_symbols (element, info))
6075 goto error_return;
6076
6077 /* If there are any new undefined symbols, we need to make
6078 another pass through the archive in order to see whether
6079 they can be defined. FIXME: This isn't perfect, because
6080 common symbols wind up on undefs_tail and because an
6081 undefined symbol which is defined later on in this pass
6082 does not require another pass. This isn't a bug, but it
6083 does make the code less efficient than it could be. */
6084 if (undefs_tail != info->hash->undefs_tail)
6085 loop = true;
6086
6087 /* Look backward to mark all symbols from this object file
6088 which we have already seen in this pass. */
6089 mark = i;
6090 do
6091 {
6092 included[mark] = true;
6093 if (mark == 0)
6094 break;
6095 --mark;
6096 }
6097 while (symdefs[mark].file_offset == symdef->file_offset);
6098
6099 /* We mark subsequent symbols from this object file as we go
6100 on through the loop. */
6101 last = symdef->file_offset;
6102 }
6103 }
6104 while (loop);
6105
6106 free (included);
6107 return true;
6108
6109 error_return:
6110 free (included);
6111 return false;
6112 }
6113
6114 /* Given an ELF BFD, add symbols to the global hash table as
6115 appropriate. */
6116
6117 bool
6118 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
6119 {
6120 switch (bfd_get_format (abfd))
6121 {
6122 case bfd_object:
6123 return elf_link_add_object_symbols (abfd, info);
6124 case bfd_archive:
6125 return elf_link_add_archive_symbols (abfd, info);
6126 default:
6127 bfd_set_error (bfd_error_wrong_format);
6128 return false;
6129 }
6130 }
6131 \f
6132 struct hash_codes_info
6133 {
6134 unsigned long *hashcodes;
6135 bool error;
6136 };
6137
6138 /* This function will be called though elf_link_hash_traverse to store
6139 all hash value of the exported symbols in an array. */
6140
6141 static bool
6142 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
6143 {
6144 struct hash_codes_info *inf = (struct hash_codes_info *) data;
6145 const char *name;
6146 unsigned long ha;
6147 char *alc = NULL;
6148
6149 /* Ignore indirect symbols. These are added by the versioning code. */
6150 if (h->dynindx == -1)
6151 return true;
6152
6153 name = h->root.root.string;
6154 if (h->versioned >= versioned)
6155 {
6156 char *p = strchr (name, ELF_VER_CHR);
6157 if (p != NULL)
6158 {
6159 alc = (char *) bfd_malloc (p - name + 1);
6160 if (alc == NULL)
6161 {
6162 inf->error = true;
6163 return false;
6164 }
6165 memcpy (alc, name, p - name);
6166 alc[p - name] = '\0';
6167 name = alc;
6168 }
6169 }
6170
6171 /* Compute the hash value. */
6172 ha = bfd_elf_hash (name);
6173
6174 /* Store the found hash value in the array given as the argument. */
6175 *(inf->hashcodes)++ = ha;
6176
6177 /* And store it in the struct so that we can put it in the hash table
6178 later. */
6179 h->u.elf_hash_value = ha;
6180
6181 free (alc);
6182 return true;
6183 }
6184
6185 struct collect_gnu_hash_codes
6186 {
6187 bfd *output_bfd;
6188 const struct elf_backend_data *bed;
6189 unsigned long int nsyms;
6190 unsigned long int maskbits;
6191 unsigned long int *hashcodes;
6192 unsigned long int *hashval;
6193 unsigned long int *indx;
6194 unsigned long int *counts;
6195 bfd_vma *bitmask;
6196 bfd_byte *contents;
6197 bfd_size_type xlat;
6198 long int min_dynindx;
6199 unsigned long int bucketcount;
6200 unsigned long int symindx;
6201 long int local_indx;
6202 long int shift1, shift2;
6203 unsigned long int mask;
6204 bool error;
6205 };
6206
6207 /* This function will be called though elf_link_hash_traverse to store
6208 all hash value of the exported symbols in an array. */
6209
6210 static bool
6211 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
6212 {
6213 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
6214 const char *name;
6215 unsigned long ha;
6216 char *alc = NULL;
6217
6218 /* Ignore indirect symbols. These are added by the versioning code. */
6219 if (h->dynindx == -1)
6220 return true;
6221
6222 /* Ignore also local symbols and undefined symbols. */
6223 if (! (*s->bed->elf_hash_symbol) (h))
6224 return true;
6225
6226 name = h->root.root.string;
6227 if (h->versioned >= versioned)
6228 {
6229 char *p = strchr (name, ELF_VER_CHR);
6230 if (p != NULL)
6231 {
6232 alc = (char *) bfd_malloc (p - name + 1);
6233 if (alc == NULL)
6234 {
6235 s->error = true;
6236 return false;
6237 }
6238 memcpy (alc, name, p - name);
6239 alc[p - name] = '\0';
6240 name = alc;
6241 }
6242 }
6243
6244 /* Compute the hash value. */
6245 ha = bfd_elf_gnu_hash (name);
6246
6247 /* Store the found hash value in the array for compute_bucket_count,
6248 and also for .dynsym reordering purposes. */
6249 s->hashcodes[s->nsyms] = ha;
6250 s->hashval[h->dynindx] = ha;
6251 ++s->nsyms;
6252 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
6253 s->min_dynindx = h->dynindx;
6254
6255 free (alc);
6256 return true;
6257 }
6258
6259 /* This function will be called though elf_link_hash_traverse to do
6260 final dynamic symbol renumbering in case of .gnu.hash.
6261 If using .MIPS.xhash, invoke record_xhash_symbol to add symbol index
6262 to the translation table. */
6263
6264 static bool
6265 elf_gnu_hash_process_symidx (struct elf_link_hash_entry *h, void *data)
6266 {
6267 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
6268 unsigned long int bucket;
6269 unsigned long int val;
6270
6271 /* Ignore indirect symbols. */
6272 if (h->dynindx == -1)
6273 return true;
6274
6275 /* Ignore also local symbols and undefined symbols. */
6276 if (! (*s->bed->elf_hash_symbol) (h))
6277 {
6278 if (h->dynindx >= s->min_dynindx)
6279 {
6280 if (s->bed->record_xhash_symbol != NULL)
6281 {
6282 (*s->bed->record_xhash_symbol) (h, 0);
6283 s->local_indx++;
6284 }
6285 else
6286 h->dynindx = s->local_indx++;
6287 }
6288 return true;
6289 }
6290
6291 bucket = s->hashval[h->dynindx] % s->bucketcount;
6292 val = (s->hashval[h->dynindx] >> s->shift1)
6293 & ((s->maskbits >> s->shift1) - 1);
6294 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
6295 s->bitmask[val]
6296 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
6297 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
6298 if (s->counts[bucket] == 1)
6299 /* Last element terminates the chain. */
6300 val |= 1;
6301 bfd_put_32 (s->output_bfd, val,
6302 s->contents + (s->indx[bucket] - s->symindx) * 4);
6303 --s->counts[bucket];
6304 if (s->bed->record_xhash_symbol != NULL)
6305 {
6306 bfd_vma xlat_loc = s->xlat + (s->indx[bucket]++ - s->symindx) * 4;
6307
6308 (*s->bed->record_xhash_symbol) (h, xlat_loc);
6309 }
6310 else
6311 h->dynindx = s->indx[bucket]++;
6312 return true;
6313 }
6314
6315 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
6316
6317 bool
6318 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
6319 {
6320 return !(h->forced_local
6321 || h->root.type == bfd_link_hash_undefined
6322 || h->root.type == bfd_link_hash_undefweak
6323 || ((h->root.type == bfd_link_hash_defined
6324 || h->root.type == bfd_link_hash_defweak)
6325 && h->root.u.def.section->output_section == NULL));
6326 }
6327
6328 /* Array used to determine the number of hash table buckets to use
6329 based on the number of symbols there are. If there are fewer than
6330 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
6331 fewer than 37 we use 17 buckets, and so forth. We never use more
6332 than 32771 buckets. */
6333
6334 static const size_t elf_buckets[] =
6335 {
6336 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
6337 16411, 32771, 0
6338 };
6339
6340 /* Compute bucket count for hashing table. We do not use a static set
6341 of possible tables sizes anymore. Instead we determine for all
6342 possible reasonable sizes of the table the outcome (i.e., the
6343 number of collisions etc) and choose the best solution. The
6344 weighting functions are not too simple to allow the table to grow
6345 without bounds. Instead one of the weighting factors is the size.
6346 Therefore the result is always a good payoff between few collisions
6347 (= short chain lengths) and table size. */
6348 static size_t
6349 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6350 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
6351 unsigned long int nsyms,
6352 int gnu_hash)
6353 {
6354 size_t best_size = 0;
6355 unsigned long int i;
6356
6357 if (info->optimize)
6358 {
6359 size_t minsize;
6360 size_t maxsize;
6361 uint64_t best_chlen = ~((uint64_t) 0);
6362 bfd *dynobj = elf_hash_table (info)->dynobj;
6363 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
6364 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
6365 unsigned long int *counts;
6366 bfd_size_type amt;
6367 unsigned int no_improvement_count = 0;
6368
6369 /* Possible optimization parameters: if we have NSYMS symbols we say
6370 that the hashing table must at least have NSYMS/4 and at most
6371 2*NSYMS buckets. */
6372 minsize = nsyms / 4;
6373 if (minsize == 0)
6374 minsize = 1;
6375 best_size = maxsize = nsyms * 2;
6376 if (gnu_hash)
6377 {
6378 if (minsize < 2)
6379 minsize = 2;
6380 if ((best_size & 31) == 0)
6381 ++best_size;
6382 }
6383
6384 /* Create array where we count the collisions in. We must use bfd_malloc
6385 since the size could be large. */
6386 amt = maxsize;
6387 amt *= sizeof (unsigned long int);
6388 counts = (unsigned long int *) bfd_malloc (amt);
6389 if (counts == NULL)
6390 return 0;
6391
6392 /* Compute the "optimal" size for the hash table. The criteria is a
6393 minimal chain length. The minor criteria is (of course) the size
6394 of the table. */
6395 for (i = minsize; i < maxsize; ++i)
6396 {
6397 /* Walk through the array of hashcodes and count the collisions. */
6398 uint64_t max;
6399 unsigned long int j;
6400 unsigned long int fact;
6401
6402 if (gnu_hash && (i & 31) == 0)
6403 continue;
6404
6405 memset (counts, '\0', i * sizeof (unsigned long int));
6406
6407 /* Determine how often each hash bucket is used. */
6408 for (j = 0; j < nsyms; ++j)
6409 ++counts[hashcodes[j] % i];
6410
6411 /* For the weight function we need some information about the
6412 pagesize on the target. This is information need not be 100%
6413 accurate. Since this information is not available (so far) we
6414 define it here to a reasonable default value. If it is crucial
6415 to have a better value some day simply define this value. */
6416 # ifndef BFD_TARGET_PAGESIZE
6417 # define BFD_TARGET_PAGESIZE (4096)
6418 # endif
6419
6420 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
6421 and the chains. */
6422 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
6423
6424 # if 1
6425 /* Variant 1: optimize for short chains. We add the squares
6426 of all the chain lengths (which favors many small chain
6427 over a few long chains). */
6428 for (j = 0; j < i; ++j)
6429 max += counts[j] * counts[j];
6430
6431 /* This adds penalties for the overall size of the table. */
6432 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6433 max *= fact * fact;
6434 # else
6435 /* Variant 2: Optimize a lot more for small table. Here we
6436 also add squares of the size but we also add penalties for
6437 empty slots (the +1 term). */
6438 for (j = 0; j < i; ++j)
6439 max += (1 + counts[j]) * (1 + counts[j]);
6440
6441 /* The overall size of the table is considered, but not as
6442 strong as in variant 1, where it is squared. */
6443 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6444 max *= fact;
6445 # endif
6446
6447 /* Compare with current best results. */
6448 if (max < best_chlen)
6449 {
6450 best_chlen = max;
6451 best_size = i;
6452 no_improvement_count = 0;
6453 }
6454 /* PR 11843: Avoid futile long searches for the best bucket size
6455 when there are a large number of symbols. */
6456 else if (++no_improvement_count == 100)
6457 break;
6458 }
6459
6460 free (counts);
6461 }
6462 else
6463 {
6464 for (i = 0; elf_buckets[i] != 0; i++)
6465 {
6466 best_size = elf_buckets[i];
6467 if (nsyms < elf_buckets[i + 1])
6468 break;
6469 }
6470 if (gnu_hash && best_size < 2)
6471 best_size = 2;
6472 }
6473
6474 return best_size;
6475 }
6476
6477 /* Size any SHT_GROUP section for ld -r. */
6478
6479 bool
6480 _bfd_elf_size_group_sections (struct bfd_link_info *info)
6481 {
6482 bfd *ibfd;
6483 asection *s;
6484
6485 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6486 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
6487 && (s = ibfd->sections) != NULL
6488 && s->sec_info_type != SEC_INFO_TYPE_JUST_SYMS
6489 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
6490 return false;
6491 return true;
6492 }
6493
6494 /* Set a default stack segment size. The value in INFO wins. If it
6495 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
6496 undefined it is initialized. */
6497
6498 bool
6499 bfd_elf_stack_segment_size (bfd *output_bfd,
6500 struct bfd_link_info *info,
6501 const char *legacy_symbol,
6502 bfd_vma default_size)
6503 {
6504 struct elf_link_hash_entry *h = NULL;
6505
6506 /* Look for legacy symbol. */
6507 if (legacy_symbol)
6508 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
6509 false, false, false);
6510 if (h && (h->root.type == bfd_link_hash_defined
6511 || h->root.type == bfd_link_hash_defweak)
6512 && h->def_regular
6513 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
6514 {
6515 /* The symbol has no type if specified on the command line. */
6516 h->type = STT_OBJECT;
6517 if (info->stacksize)
6518 /* xgettext:c-format */
6519 _bfd_error_handler (_("%pB: stack size specified and %s set"),
6520 output_bfd, legacy_symbol);
6521 else if (h->root.u.def.section != bfd_abs_section_ptr)
6522 /* xgettext:c-format */
6523 _bfd_error_handler (_("%pB: %s not absolute"),
6524 output_bfd, legacy_symbol);
6525 else
6526 info->stacksize = h->root.u.def.value;
6527 }
6528
6529 if (!info->stacksize)
6530 /* If the user didn't set a size, or explicitly inhibit the
6531 size, set it now. */
6532 info->stacksize = default_size;
6533
6534 /* Provide the legacy symbol, if it is referenced. */
6535 if (h && (h->root.type == bfd_link_hash_undefined
6536 || h->root.type == bfd_link_hash_undefweak))
6537 {
6538 struct bfd_link_hash_entry *bh = NULL;
6539
6540 if (!(_bfd_generic_link_add_one_symbol
6541 (info, output_bfd, legacy_symbol,
6542 BSF_GLOBAL, bfd_abs_section_ptr,
6543 info->stacksize >= 0 ? info->stacksize : 0,
6544 NULL, false, get_elf_backend_data (output_bfd)->collect, &bh)))
6545 return false;
6546
6547 h = (struct elf_link_hash_entry *) bh;
6548 h->def_regular = 1;
6549 h->type = STT_OBJECT;
6550 }
6551
6552 return true;
6553 }
6554
6555 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6556
6557 struct elf_gc_sweep_symbol_info
6558 {
6559 struct bfd_link_info *info;
6560 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
6561 bool);
6562 };
6563
6564 static bool
6565 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
6566 {
6567 if (!h->mark
6568 && (((h->root.type == bfd_link_hash_defined
6569 || h->root.type == bfd_link_hash_defweak)
6570 && !((h->def_regular || ELF_COMMON_DEF_P (h))
6571 && h->root.u.def.section->gc_mark))
6572 || h->root.type == bfd_link_hash_undefined
6573 || h->root.type == bfd_link_hash_undefweak))
6574 {
6575 struct elf_gc_sweep_symbol_info *inf;
6576
6577 inf = (struct elf_gc_sweep_symbol_info *) data;
6578 (*inf->hide_symbol) (inf->info, h, true);
6579 h->def_regular = 0;
6580 h->ref_regular = 0;
6581 h->ref_regular_nonweak = 0;
6582 }
6583
6584 return true;
6585 }
6586
6587 /* Set up the sizes and contents of the ELF dynamic sections. This is
6588 called by the ELF linker emulation before_allocation routine. We
6589 must set the sizes of the sections before the linker sets the
6590 addresses of the various sections. */
6591
6592 bool
6593 bfd_elf_size_dynamic_sections (bfd *output_bfd,
6594 const char *soname,
6595 const char *rpath,
6596 const char *filter_shlib,
6597 const char *audit,
6598 const char *depaudit,
6599 const char * const *auxiliary_filters,
6600 struct bfd_link_info *info,
6601 asection **sinterpptr)
6602 {
6603 bfd *dynobj;
6604 const struct elf_backend_data *bed;
6605
6606 *sinterpptr = NULL;
6607
6608 if (!is_elf_hash_table (info->hash))
6609 return true;
6610
6611 /* Any syms created from now on start with -1 in
6612 got.refcount/offset and plt.refcount/offset. */
6613 elf_hash_table (info)->init_got_refcount
6614 = elf_hash_table (info)->init_got_offset;
6615 elf_hash_table (info)->init_plt_refcount
6616 = elf_hash_table (info)->init_plt_offset;
6617
6618 bed = get_elf_backend_data (output_bfd);
6619
6620 /* The backend may have to create some sections regardless of whether
6621 we're dynamic or not. */
6622 if (bed->elf_backend_always_size_sections
6623 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
6624 return false;
6625
6626 dynobj = elf_hash_table (info)->dynobj;
6627
6628 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6629 {
6630 struct bfd_elf_version_tree *verdefs;
6631 struct elf_info_failed asvinfo;
6632 struct bfd_elf_version_tree *t;
6633 struct bfd_elf_version_expr *d;
6634 asection *s;
6635 size_t soname_indx;
6636
6637 /* If we are supposed to export all symbols into the dynamic symbol
6638 table (this is not the normal case), then do so. */
6639 if (info->export_dynamic
6640 || (bfd_link_executable (info) && info->dynamic))
6641 {
6642 struct elf_info_failed eif;
6643
6644 eif.info = info;
6645 eif.failed = false;
6646 elf_link_hash_traverse (elf_hash_table (info),
6647 _bfd_elf_export_symbol,
6648 &eif);
6649 if (eif.failed)
6650 return false;
6651 }
6652
6653 if (soname != NULL)
6654 {
6655 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6656 soname, true);
6657 if (soname_indx == (size_t) -1
6658 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
6659 return false;
6660 }
6661 else
6662 soname_indx = (size_t) -1;
6663
6664 /* Make all global versions with definition. */
6665 for (t = info->version_info; t != NULL; t = t->next)
6666 for (d = t->globals.list; d != NULL; d = d->next)
6667 if (!d->symver && d->literal)
6668 {
6669 const char *verstr, *name;
6670 size_t namelen, verlen, newlen;
6671 char *newname, *p, leading_char;
6672 struct elf_link_hash_entry *newh;
6673
6674 leading_char = bfd_get_symbol_leading_char (output_bfd);
6675 name = d->pattern;
6676 namelen = strlen (name) + (leading_char != '\0');
6677 verstr = t->name;
6678 verlen = strlen (verstr);
6679 newlen = namelen + verlen + 3;
6680
6681 newname = (char *) bfd_malloc (newlen);
6682 if (newname == NULL)
6683 return false;
6684 newname[0] = leading_char;
6685 memcpy (newname + (leading_char != '\0'), name, namelen);
6686
6687 /* Check the hidden versioned definition. */
6688 p = newname + namelen;
6689 *p++ = ELF_VER_CHR;
6690 memcpy (p, verstr, verlen + 1);
6691 newh = elf_link_hash_lookup (elf_hash_table (info),
6692 newname, false, false,
6693 false);
6694 if (newh == NULL
6695 || (newh->root.type != bfd_link_hash_defined
6696 && newh->root.type != bfd_link_hash_defweak))
6697 {
6698 /* Check the default versioned definition. */
6699 *p++ = ELF_VER_CHR;
6700 memcpy (p, verstr, verlen + 1);
6701 newh = elf_link_hash_lookup (elf_hash_table (info),
6702 newname, false, false,
6703 false);
6704 }
6705 free (newname);
6706
6707 /* Mark this version if there is a definition and it is
6708 not defined in a shared object. */
6709 if (newh != NULL
6710 && !newh->def_dynamic
6711 && (newh->root.type == bfd_link_hash_defined
6712 || newh->root.type == bfd_link_hash_defweak))
6713 d->symver = 1;
6714 }
6715
6716 /* Attach all the symbols to their version information. */
6717 asvinfo.info = info;
6718 asvinfo.failed = false;
6719
6720 elf_link_hash_traverse (elf_hash_table (info),
6721 _bfd_elf_link_assign_sym_version,
6722 &asvinfo);
6723 if (asvinfo.failed)
6724 return false;
6725
6726 if (!info->allow_undefined_version)
6727 {
6728 /* Check if all global versions have a definition. */
6729 bool all_defined = true;
6730 for (t = info->version_info; t != NULL; t = t->next)
6731 for (d = t->globals.list; d != NULL; d = d->next)
6732 if (d->literal && !d->symver && !d->script)
6733 {
6734 _bfd_error_handler
6735 (_("%s: undefined version: %s"),
6736 d->pattern, t->name);
6737 all_defined = false;
6738 }
6739
6740 if (!all_defined)
6741 {
6742 bfd_set_error (bfd_error_bad_value);
6743 return false;
6744 }
6745 }
6746
6747 /* Set up the version definition section. */
6748 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6749 BFD_ASSERT (s != NULL);
6750
6751 /* We may have created additional version definitions if we are
6752 just linking a regular application. */
6753 verdefs = info->version_info;
6754
6755 /* Skip anonymous version tag. */
6756 if (verdefs != NULL && verdefs->vernum == 0)
6757 verdefs = verdefs->next;
6758
6759 if (verdefs == NULL && !info->create_default_symver)
6760 s->flags |= SEC_EXCLUDE;
6761 else
6762 {
6763 unsigned int cdefs;
6764 bfd_size_type size;
6765 bfd_byte *p;
6766 Elf_Internal_Verdef def;
6767 Elf_Internal_Verdaux defaux;
6768 struct bfd_link_hash_entry *bh;
6769 struct elf_link_hash_entry *h;
6770 const char *name;
6771
6772 cdefs = 0;
6773 size = 0;
6774
6775 /* Make space for the base version. */
6776 size += sizeof (Elf_External_Verdef);
6777 size += sizeof (Elf_External_Verdaux);
6778 ++cdefs;
6779
6780 /* Make space for the default version. */
6781 if (info->create_default_symver)
6782 {
6783 size += sizeof (Elf_External_Verdef);
6784 ++cdefs;
6785 }
6786
6787 for (t = verdefs; t != NULL; t = t->next)
6788 {
6789 struct bfd_elf_version_deps *n;
6790
6791 /* Don't emit base version twice. */
6792 if (t->vernum == 0)
6793 continue;
6794
6795 size += sizeof (Elf_External_Verdef);
6796 size += sizeof (Elf_External_Verdaux);
6797 ++cdefs;
6798
6799 for (n = t->deps; n != NULL; n = n->next)
6800 size += sizeof (Elf_External_Verdaux);
6801 }
6802
6803 s->size = size;
6804 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6805 if (s->contents == NULL && s->size != 0)
6806 return false;
6807
6808 /* Fill in the version definition section. */
6809
6810 p = s->contents;
6811
6812 def.vd_version = VER_DEF_CURRENT;
6813 def.vd_flags = VER_FLG_BASE;
6814 def.vd_ndx = 1;
6815 def.vd_cnt = 1;
6816 if (info->create_default_symver)
6817 {
6818 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6819 def.vd_next = sizeof (Elf_External_Verdef);
6820 }
6821 else
6822 {
6823 def.vd_aux = sizeof (Elf_External_Verdef);
6824 def.vd_next = (sizeof (Elf_External_Verdef)
6825 + sizeof (Elf_External_Verdaux));
6826 }
6827
6828 if (soname_indx != (size_t) -1)
6829 {
6830 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6831 soname_indx);
6832 def.vd_hash = bfd_elf_hash (soname);
6833 defaux.vda_name = soname_indx;
6834 name = soname;
6835 }
6836 else
6837 {
6838 size_t indx;
6839
6840 name = lbasename (bfd_get_filename (output_bfd));
6841 def.vd_hash = bfd_elf_hash (name);
6842 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6843 name, false);
6844 if (indx == (size_t) -1)
6845 return false;
6846 defaux.vda_name = indx;
6847 }
6848 defaux.vda_next = 0;
6849
6850 _bfd_elf_swap_verdef_out (output_bfd, &def,
6851 (Elf_External_Verdef *) p);
6852 p += sizeof (Elf_External_Verdef);
6853 if (info->create_default_symver)
6854 {
6855 /* Add a symbol representing this version. */
6856 bh = NULL;
6857 if (! (_bfd_generic_link_add_one_symbol
6858 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6859 0, NULL, false,
6860 get_elf_backend_data (dynobj)->collect, &bh)))
6861 return false;
6862 h = (struct elf_link_hash_entry *) bh;
6863 h->non_elf = 0;
6864 h->def_regular = 1;
6865 h->type = STT_OBJECT;
6866 h->verinfo.vertree = NULL;
6867
6868 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6869 return false;
6870
6871 /* Create a duplicate of the base version with the same
6872 aux block, but different flags. */
6873 def.vd_flags = 0;
6874 def.vd_ndx = 2;
6875 def.vd_aux = sizeof (Elf_External_Verdef);
6876 if (verdefs)
6877 def.vd_next = (sizeof (Elf_External_Verdef)
6878 + sizeof (Elf_External_Verdaux));
6879 else
6880 def.vd_next = 0;
6881 _bfd_elf_swap_verdef_out (output_bfd, &def,
6882 (Elf_External_Verdef *) p);
6883 p += sizeof (Elf_External_Verdef);
6884 }
6885 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6886 (Elf_External_Verdaux *) p);
6887 p += sizeof (Elf_External_Verdaux);
6888
6889 for (t = verdefs; t != NULL; t = t->next)
6890 {
6891 unsigned int cdeps;
6892 struct bfd_elf_version_deps *n;
6893
6894 /* Don't emit the base version twice. */
6895 if (t->vernum == 0)
6896 continue;
6897
6898 cdeps = 0;
6899 for (n = t->deps; n != NULL; n = n->next)
6900 ++cdeps;
6901
6902 /* Add a symbol representing this version. */
6903 bh = NULL;
6904 if (! (_bfd_generic_link_add_one_symbol
6905 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6906 0, NULL, false,
6907 get_elf_backend_data (dynobj)->collect, &bh)))
6908 return false;
6909 h = (struct elf_link_hash_entry *) bh;
6910 h->non_elf = 0;
6911 h->def_regular = 1;
6912 h->type = STT_OBJECT;
6913 h->verinfo.vertree = t;
6914
6915 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6916 return false;
6917
6918 def.vd_version = VER_DEF_CURRENT;
6919 def.vd_flags = 0;
6920 if (t->globals.list == NULL
6921 && t->locals.list == NULL
6922 && ! t->used)
6923 def.vd_flags |= VER_FLG_WEAK;
6924 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6925 def.vd_cnt = cdeps + 1;
6926 def.vd_hash = bfd_elf_hash (t->name);
6927 def.vd_aux = sizeof (Elf_External_Verdef);
6928 def.vd_next = 0;
6929
6930 /* If a basever node is next, it *must* be the last node in
6931 the chain, otherwise Verdef construction breaks. */
6932 if (t->next != NULL && t->next->vernum == 0)
6933 BFD_ASSERT (t->next->next == NULL);
6934
6935 if (t->next != NULL && t->next->vernum != 0)
6936 def.vd_next = (sizeof (Elf_External_Verdef)
6937 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6938
6939 _bfd_elf_swap_verdef_out (output_bfd, &def,
6940 (Elf_External_Verdef *) p);
6941 p += sizeof (Elf_External_Verdef);
6942
6943 defaux.vda_name = h->dynstr_index;
6944 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6945 h->dynstr_index);
6946 defaux.vda_next = 0;
6947 if (t->deps != NULL)
6948 defaux.vda_next = sizeof (Elf_External_Verdaux);
6949 t->name_indx = defaux.vda_name;
6950
6951 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6952 (Elf_External_Verdaux *) p);
6953 p += sizeof (Elf_External_Verdaux);
6954
6955 for (n = t->deps; n != NULL; n = n->next)
6956 {
6957 if (n->version_needed == NULL)
6958 {
6959 /* This can happen if there was an error in the
6960 version script. */
6961 defaux.vda_name = 0;
6962 }
6963 else
6964 {
6965 defaux.vda_name = n->version_needed->name_indx;
6966 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6967 defaux.vda_name);
6968 }
6969 if (n->next == NULL)
6970 defaux.vda_next = 0;
6971 else
6972 defaux.vda_next = sizeof (Elf_External_Verdaux);
6973
6974 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6975 (Elf_External_Verdaux *) p);
6976 p += sizeof (Elf_External_Verdaux);
6977 }
6978 }
6979
6980 elf_tdata (output_bfd)->cverdefs = cdefs;
6981 }
6982 }
6983
6984 if (info->gc_sections && bed->can_gc_sections)
6985 {
6986 struct elf_gc_sweep_symbol_info sweep_info;
6987
6988 /* Remove the symbols that were in the swept sections from the
6989 dynamic symbol table. */
6990 sweep_info.info = info;
6991 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
6992 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
6993 &sweep_info);
6994 }
6995
6996 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6997 {
6998 asection *s;
6999 struct elf_find_verdep_info sinfo;
7000
7001 /* Work out the size of the version reference section. */
7002
7003 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
7004 BFD_ASSERT (s != NULL);
7005
7006 sinfo.info = info;
7007 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
7008 if (sinfo.vers == 0)
7009 sinfo.vers = 1;
7010 sinfo.failed = false;
7011
7012 elf_link_hash_traverse (elf_hash_table (info),
7013 _bfd_elf_link_find_version_dependencies,
7014 &sinfo);
7015 if (sinfo.failed)
7016 return false;
7017
7018 if (info->enable_dt_relr)
7019 {
7020 elf_link_add_dt_relr_dependency (&sinfo);
7021 if (sinfo.failed)
7022 return false;
7023 }
7024
7025 if (elf_tdata (output_bfd)->verref == NULL)
7026 s->flags |= SEC_EXCLUDE;
7027 else
7028 {
7029 Elf_Internal_Verneed *vn;
7030 unsigned int size;
7031 unsigned int crefs;
7032 bfd_byte *p;
7033
7034 /* Build the version dependency section. */
7035 size = 0;
7036 crefs = 0;
7037 for (vn = elf_tdata (output_bfd)->verref;
7038 vn != NULL;
7039 vn = vn->vn_nextref)
7040 {
7041 Elf_Internal_Vernaux *a;
7042
7043 size += sizeof (Elf_External_Verneed);
7044 ++crefs;
7045 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
7046 size += sizeof (Elf_External_Vernaux);
7047 }
7048
7049 s->size = size;
7050 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
7051 if (s->contents == NULL)
7052 return false;
7053
7054 p = s->contents;
7055 for (vn = elf_tdata (output_bfd)->verref;
7056 vn != NULL;
7057 vn = vn->vn_nextref)
7058 {
7059 unsigned int caux;
7060 Elf_Internal_Vernaux *a;
7061 size_t indx;
7062
7063 caux = 0;
7064 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
7065 ++caux;
7066
7067 vn->vn_version = VER_NEED_CURRENT;
7068 vn->vn_cnt = caux;
7069 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
7070 elf_dt_name (vn->vn_bfd) != NULL
7071 ? elf_dt_name (vn->vn_bfd)
7072 : lbasename (bfd_get_filename
7073 (vn->vn_bfd)),
7074 false);
7075 if (indx == (size_t) -1)
7076 return false;
7077 vn->vn_file = indx;
7078 vn->vn_aux = sizeof (Elf_External_Verneed);
7079 if (vn->vn_nextref == NULL)
7080 vn->vn_next = 0;
7081 else
7082 vn->vn_next = (sizeof (Elf_External_Verneed)
7083 + caux * sizeof (Elf_External_Vernaux));
7084
7085 _bfd_elf_swap_verneed_out (output_bfd, vn,
7086 (Elf_External_Verneed *) p);
7087 p += sizeof (Elf_External_Verneed);
7088
7089 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
7090 {
7091 a->vna_hash = bfd_elf_hash (a->vna_nodename);
7092 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
7093 a->vna_nodename, false);
7094 if (indx == (size_t) -1)
7095 return false;
7096 a->vna_name = indx;
7097 if (a->vna_nextptr == NULL)
7098 a->vna_next = 0;
7099 else
7100 a->vna_next = sizeof (Elf_External_Vernaux);
7101
7102 _bfd_elf_swap_vernaux_out (output_bfd, a,
7103 (Elf_External_Vernaux *) p);
7104 p += sizeof (Elf_External_Vernaux);
7105 }
7106 }
7107
7108 elf_tdata (output_bfd)->cverrefs = crefs;
7109 }
7110 }
7111
7112 if (bfd_link_relocatable (info)
7113 && !_bfd_elf_size_group_sections (info))
7114 return false;
7115
7116 /* Determine any GNU_STACK segment requirements, after the backend
7117 has had a chance to set a default segment size. */
7118 if (info->execstack)
7119 {
7120 /* If the user has explicitly requested warnings, then generate one even
7121 though the choice is the result of another command line option. */
7122 if (info->warn_execstack == 1)
7123 _bfd_error_handler
7124 (_("\
7125 warning: enabling an executable stack because of -z execstack command line option"));
7126 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
7127 }
7128 else if (info->noexecstack)
7129 elf_stack_flags (output_bfd) = PF_R | PF_W;
7130 else
7131 {
7132 bfd *inputobj;
7133 asection *notesec = NULL;
7134 bfd *noteobj = NULL;
7135 bfd *emptyobj = NULL;
7136 int exec = 0;
7137
7138 for (inputobj = info->input_bfds;
7139 inputobj;
7140 inputobj = inputobj->link.next)
7141 {
7142 asection *s;
7143
7144 if (inputobj->flags
7145 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
7146 continue;
7147 s = inputobj->sections;
7148 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
7149 continue;
7150
7151 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
7152 if (s)
7153 {
7154 notesec = s;
7155 if (s->flags & SEC_CODE)
7156 {
7157 noteobj = inputobj;
7158 exec = PF_X;
7159 /* There is no point in scanning the remaining bfds. */
7160 break;
7161 }
7162 }
7163 else if (bed->default_execstack && info->default_execstack)
7164 {
7165 exec = PF_X;
7166 emptyobj = inputobj;
7167 }
7168 }
7169
7170 if (notesec || info->stacksize > 0)
7171 {
7172 if (exec)
7173 {
7174 if (info->warn_execstack != 0)
7175 {
7176 /* PR 29072: Because an executable stack is a serious
7177 security risk, make sure that the user knows that it is
7178 being enabled despite the fact that it was not requested
7179 on the command line. */
7180 if (noteobj)
7181 _bfd_error_handler (_("\
7182 warning: %s: requires executable stack (because the .note.GNU-stack section is executable)"),
7183 bfd_get_filename (noteobj));
7184 else if (emptyobj)
7185 {
7186 _bfd_error_handler (_("\
7187 warning: %s: missing .note.GNU-stack section implies executable stack"),
7188 bfd_get_filename (emptyobj));
7189 _bfd_error_handler (_("\
7190 NOTE: This behaviour is deprecated and will be removed in a future version of the linker"));
7191 }
7192 }
7193 }
7194 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
7195 }
7196
7197 if (notesec && exec && bfd_link_relocatable (info)
7198 && notesec->output_section != bfd_abs_section_ptr)
7199 notesec->output_section->flags |= SEC_CODE;
7200 }
7201
7202 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
7203 {
7204 struct elf_info_failed eif;
7205 struct elf_link_hash_entry *h;
7206 asection *dynstr;
7207 asection *s;
7208
7209 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
7210 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
7211
7212 if (info->symbolic)
7213 {
7214 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
7215 return false;
7216 info->flags |= DF_SYMBOLIC;
7217 }
7218
7219 if (rpath != NULL)
7220 {
7221 size_t indx;
7222 bfd_vma tag;
7223
7224 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
7225 true);
7226 if (indx == (size_t) -1)
7227 return false;
7228
7229 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
7230 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
7231 return false;
7232 }
7233
7234 if (filter_shlib != NULL)
7235 {
7236 size_t indx;
7237
7238 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
7239 filter_shlib, true);
7240 if (indx == (size_t) -1
7241 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
7242 return false;
7243 }
7244
7245 if (auxiliary_filters != NULL)
7246 {
7247 const char * const *p;
7248
7249 for (p = auxiliary_filters; *p != NULL; p++)
7250 {
7251 size_t indx;
7252
7253 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
7254 *p, true);
7255 if (indx == (size_t) -1
7256 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
7257 return false;
7258 }
7259 }
7260
7261 if (audit != NULL)
7262 {
7263 size_t indx;
7264
7265 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
7266 true);
7267 if (indx == (size_t) -1
7268 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
7269 return false;
7270 }
7271
7272 if (depaudit != NULL)
7273 {
7274 size_t indx;
7275
7276 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
7277 true);
7278 if (indx == (size_t) -1
7279 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
7280 return false;
7281 }
7282
7283 eif.info = info;
7284 eif.failed = false;
7285
7286 /* Find all symbols which were defined in a dynamic object and make
7287 the backend pick a reasonable value for them. */
7288 elf_link_hash_traverse (elf_hash_table (info),
7289 _bfd_elf_adjust_dynamic_symbol,
7290 &eif);
7291 if (eif.failed)
7292 return false;
7293
7294 /* Add some entries to the .dynamic section. We fill in some of the
7295 values later, in bfd_elf_final_link, but we must add the entries
7296 now so that we know the final size of the .dynamic section. */
7297
7298 /* If there are initialization and/or finalization functions to
7299 call then add the corresponding DT_INIT/DT_FINI entries. */
7300 h = (info->init_function
7301 ? elf_link_hash_lookup (elf_hash_table (info),
7302 info->init_function, false,
7303 false, false)
7304 : NULL);
7305 if (h != NULL
7306 && (h->ref_regular
7307 || h->def_regular))
7308 {
7309 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
7310 return false;
7311 }
7312 h = (info->fini_function
7313 ? elf_link_hash_lookup (elf_hash_table (info),
7314 info->fini_function, false,
7315 false, false)
7316 : NULL);
7317 if (h != NULL
7318 && (h->ref_regular
7319 || h->def_regular))
7320 {
7321 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
7322 return false;
7323 }
7324
7325 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
7326 if (s != NULL && s->linker_has_input)
7327 {
7328 /* DT_PREINIT_ARRAY is not allowed in shared library. */
7329 if (! bfd_link_executable (info))
7330 {
7331 bfd *sub;
7332 asection *o;
7333
7334 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
7335 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
7336 && (o = sub->sections) != NULL
7337 && o->sec_info_type != SEC_INFO_TYPE_JUST_SYMS)
7338 for (o = sub->sections; o != NULL; o = o->next)
7339 if (elf_section_data (o)->this_hdr.sh_type
7340 == SHT_PREINIT_ARRAY)
7341 {
7342 _bfd_error_handler
7343 (_("%pB: .preinit_array section is not allowed in DSO"),
7344 sub);
7345 break;
7346 }
7347
7348 bfd_set_error (bfd_error_nonrepresentable_section);
7349 return false;
7350 }
7351
7352 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
7353 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
7354 return false;
7355 }
7356 s = bfd_get_section_by_name (output_bfd, ".init_array");
7357 if (s != NULL && s->linker_has_input)
7358 {
7359 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
7360 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
7361 return false;
7362 }
7363 s = bfd_get_section_by_name (output_bfd, ".fini_array");
7364 if (s != NULL && s->linker_has_input)
7365 {
7366 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
7367 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
7368 return false;
7369 }
7370
7371 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
7372 /* If .dynstr is excluded from the link, we don't want any of
7373 these tags. Strictly, we should be checking each section
7374 individually; This quick check covers for the case where
7375 someone does a /DISCARD/ : { *(*) }. */
7376 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
7377 {
7378 bfd_size_type strsize;
7379
7380 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7381 if ((info->emit_hash
7382 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
7383 || (info->emit_gnu_hash
7384 && (bed->record_xhash_symbol == NULL
7385 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0)))
7386 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
7387 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
7388 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
7389 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
7390 bed->s->sizeof_sym)
7391 || (info->gnu_flags_1
7392 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_FLAGS_1,
7393 info->gnu_flags_1)))
7394 return false;
7395 }
7396 }
7397
7398 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
7399 return false;
7400
7401 /* The backend must work out the sizes of all the other dynamic
7402 sections. */
7403 if (dynobj != NULL
7404 && bed->elf_backend_size_dynamic_sections != NULL
7405 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
7406 return false;
7407
7408 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
7409 {
7410 if (elf_tdata (output_bfd)->cverdefs)
7411 {
7412 unsigned int crefs = elf_tdata (output_bfd)->cverdefs;
7413
7414 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
7415 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs))
7416 return false;
7417 }
7418
7419 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
7420 {
7421 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
7422 return false;
7423 }
7424 else if (info->flags & DF_BIND_NOW)
7425 {
7426 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
7427 return false;
7428 }
7429
7430 if (info->flags_1)
7431 {
7432 if (bfd_link_executable (info))
7433 info->flags_1 &= ~ (DF_1_INITFIRST
7434 | DF_1_NODELETE
7435 | DF_1_NOOPEN);
7436 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
7437 return false;
7438 }
7439
7440 if (elf_tdata (output_bfd)->cverrefs)
7441 {
7442 unsigned int crefs = elf_tdata (output_bfd)->cverrefs;
7443
7444 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
7445 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
7446 return false;
7447 }
7448
7449 if ((elf_tdata (output_bfd)->cverrefs == 0
7450 && elf_tdata (output_bfd)->cverdefs == 0)
7451 || _bfd_elf_link_renumber_dynsyms (output_bfd, info, NULL) <= 1)
7452 {
7453 asection *s;
7454
7455 s = bfd_get_linker_section (dynobj, ".gnu.version");
7456 s->flags |= SEC_EXCLUDE;
7457 }
7458 }
7459 return true;
7460 }
7461
7462 /* Find the first non-excluded output section. We'll use its
7463 section symbol for some emitted relocs. */
7464 void
7465 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
7466 {
7467 asection *s;
7468 asection *found = NULL;
7469
7470 for (s = output_bfd->sections; s != NULL; s = s->next)
7471 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7472 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7473 {
7474 found = s;
7475 if ((s->flags & SEC_THREAD_LOCAL) == 0)
7476 break;
7477 }
7478 elf_hash_table (info)->text_index_section = found;
7479 }
7480
7481 /* Find two non-excluded output sections, one for code, one for data.
7482 We'll use their section symbols for some emitted relocs. */
7483 void
7484 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
7485 {
7486 asection *s;
7487 asection *found = NULL;
7488
7489 /* Data first, since setting text_index_section changes
7490 _bfd_elf_omit_section_dynsym_default. */
7491 for (s = output_bfd->sections; s != NULL; s = s->next)
7492 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7493 && !(s->flags & SEC_READONLY)
7494 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7495 {
7496 found = s;
7497 if ((s->flags & SEC_THREAD_LOCAL) == 0)
7498 break;
7499 }
7500 elf_hash_table (info)->data_index_section = found;
7501
7502 for (s = output_bfd->sections; s != NULL; s = s->next)
7503 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7504 && (s->flags & SEC_READONLY)
7505 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7506 {
7507 found = s;
7508 break;
7509 }
7510 elf_hash_table (info)->text_index_section = found;
7511 }
7512
7513 #define GNU_HASH_SECTION_NAME(bed) \
7514 (bed)->record_xhash_symbol != NULL ? ".MIPS.xhash" : ".gnu.hash"
7515
7516 bool
7517 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
7518 {
7519 const struct elf_backend_data *bed;
7520 unsigned long section_sym_count;
7521 bfd_size_type dynsymcount = 0;
7522
7523 if (!is_elf_hash_table (info->hash))
7524 return true;
7525
7526 bed = get_elf_backend_data (output_bfd);
7527 (*bed->elf_backend_init_index_section) (output_bfd, info);
7528
7529 /* Assign dynsym indices. In a shared library we generate a section
7530 symbol for each output section, which come first. Next come all
7531 of the back-end allocated local dynamic syms, followed by the rest
7532 of the global symbols.
7533
7534 This is usually not needed for static binaries, however backends
7535 can request to always do it, e.g. the MIPS backend uses dynamic
7536 symbol counts to lay out GOT, which will be produced in the
7537 presence of GOT relocations even in static binaries (holding fixed
7538 data in that case, to satisfy those relocations). */
7539
7540 if (elf_hash_table (info)->dynamic_sections_created
7541 || bed->always_renumber_dynsyms)
7542 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
7543 &section_sym_count);
7544
7545 if (elf_hash_table (info)->dynamic_sections_created)
7546 {
7547 bfd *dynobj;
7548 asection *s;
7549 unsigned int dtagcount;
7550
7551 dynobj = elf_hash_table (info)->dynobj;
7552
7553 /* Work out the size of the symbol version section. */
7554 s = bfd_get_linker_section (dynobj, ".gnu.version");
7555 BFD_ASSERT (s != NULL);
7556 if ((s->flags & SEC_EXCLUDE) == 0)
7557 {
7558 s->size = dynsymcount * sizeof (Elf_External_Versym);
7559 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7560 if (s->contents == NULL)
7561 return false;
7562
7563 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
7564 return false;
7565 }
7566
7567 /* Set the size of the .dynsym and .hash sections. We counted
7568 the number of dynamic symbols in elf_link_add_object_symbols.
7569 We will build the contents of .dynsym and .hash when we build
7570 the final symbol table, because until then we do not know the
7571 correct value to give the symbols. We built the .dynstr
7572 section as we went along in elf_link_add_object_symbols. */
7573 s = elf_hash_table (info)->dynsym;
7574 BFD_ASSERT (s != NULL);
7575 s->size = dynsymcount * bed->s->sizeof_sym;
7576
7577 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
7578 if (s->contents == NULL)
7579 return false;
7580
7581 /* The first entry in .dynsym is a dummy symbol. Clear all the
7582 section syms, in case we don't output them all. */
7583 ++section_sym_count;
7584 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
7585
7586 elf_hash_table (info)->bucketcount = 0;
7587
7588 /* Compute the size of the hashing table. As a side effect this
7589 computes the hash values for all the names we export. */
7590 if (info->emit_hash)
7591 {
7592 unsigned long int *hashcodes;
7593 struct hash_codes_info hashinf;
7594 bfd_size_type amt;
7595 unsigned long int nsyms;
7596 size_t bucketcount;
7597 size_t hash_entry_size;
7598
7599 /* Compute the hash values for all exported symbols. At the same
7600 time store the values in an array so that we could use them for
7601 optimizations. */
7602 amt = dynsymcount * sizeof (unsigned long int);
7603 hashcodes = (unsigned long int *) bfd_malloc (amt);
7604 if (hashcodes == NULL)
7605 return false;
7606 hashinf.hashcodes = hashcodes;
7607 hashinf.error = false;
7608
7609 /* Put all hash values in HASHCODES. */
7610 elf_link_hash_traverse (elf_hash_table (info),
7611 elf_collect_hash_codes, &hashinf);
7612 if (hashinf.error)
7613 {
7614 free (hashcodes);
7615 return false;
7616 }
7617
7618 nsyms = hashinf.hashcodes - hashcodes;
7619 bucketcount
7620 = compute_bucket_count (info, hashcodes, nsyms, 0);
7621 free (hashcodes);
7622
7623 if (bucketcount == 0 && nsyms > 0)
7624 return false;
7625
7626 elf_hash_table (info)->bucketcount = bucketcount;
7627
7628 s = bfd_get_linker_section (dynobj, ".hash");
7629 BFD_ASSERT (s != NULL);
7630 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
7631 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
7632 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7633 if (s->contents == NULL)
7634 return false;
7635
7636 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
7637 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
7638 s->contents + hash_entry_size);
7639 }
7640
7641 if (info->emit_gnu_hash)
7642 {
7643 size_t i, cnt;
7644 unsigned char *contents;
7645 struct collect_gnu_hash_codes cinfo;
7646 bfd_size_type amt;
7647 size_t bucketcount;
7648
7649 memset (&cinfo, 0, sizeof (cinfo));
7650
7651 /* Compute the hash values for all exported symbols. At the same
7652 time store the values in an array so that we could use them for
7653 optimizations. */
7654 amt = dynsymcount * 2 * sizeof (unsigned long int);
7655 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
7656 if (cinfo.hashcodes == NULL)
7657 return false;
7658
7659 cinfo.hashval = cinfo.hashcodes + dynsymcount;
7660 cinfo.min_dynindx = -1;
7661 cinfo.output_bfd = output_bfd;
7662 cinfo.bed = bed;
7663
7664 /* Put all hash values in HASHCODES. */
7665 elf_link_hash_traverse (elf_hash_table (info),
7666 elf_collect_gnu_hash_codes, &cinfo);
7667 if (cinfo.error)
7668 {
7669 free (cinfo.hashcodes);
7670 return false;
7671 }
7672
7673 bucketcount
7674 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
7675
7676 if (bucketcount == 0)
7677 {
7678 free (cinfo.hashcodes);
7679 return false;
7680 }
7681
7682 s = bfd_get_linker_section (dynobj, GNU_HASH_SECTION_NAME (bed));
7683 BFD_ASSERT (s != NULL);
7684
7685 if (cinfo.nsyms == 0)
7686 {
7687 /* Empty .gnu.hash or .MIPS.xhash section is special. */
7688 BFD_ASSERT (cinfo.min_dynindx == -1);
7689 free (cinfo.hashcodes);
7690 s->size = 5 * 4 + bed->s->arch_size / 8;
7691 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7692 if (contents == NULL)
7693 return false;
7694 s->contents = contents;
7695 /* 1 empty bucket. */
7696 bfd_put_32 (output_bfd, 1, contents);
7697 /* SYMIDX above the special symbol 0. */
7698 bfd_put_32 (output_bfd, 1, contents + 4);
7699 /* Just one word for bitmask. */
7700 bfd_put_32 (output_bfd, 1, contents + 8);
7701 /* Only hash fn bloom filter. */
7702 bfd_put_32 (output_bfd, 0, contents + 12);
7703 /* No hashes are valid - empty bitmask. */
7704 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
7705 /* No hashes in the only bucket. */
7706 bfd_put_32 (output_bfd, 0,
7707 contents + 16 + bed->s->arch_size / 8);
7708 }
7709 else
7710 {
7711 unsigned long int maskwords, maskbitslog2, x;
7712 BFD_ASSERT (cinfo.min_dynindx != -1);
7713
7714 x = cinfo.nsyms;
7715 maskbitslog2 = 1;
7716 while ((x >>= 1) != 0)
7717 ++maskbitslog2;
7718 if (maskbitslog2 < 3)
7719 maskbitslog2 = 5;
7720 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
7721 maskbitslog2 = maskbitslog2 + 3;
7722 else
7723 maskbitslog2 = maskbitslog2 + 2;
7724 if (bed->s->arch_size == 64)
7725 {
7726 if (maskbitslog2 == 5)
7727 maskbitslog2 = 6;
7728 cinfo.shift1 = 6;
7729 }
7730 else
7731 cinfo.shift1 = 5;
7732 cinfo.mask = (1 << cinfo.shift1) - 1;
7733 cinfo.shift2 = maskbitslog2;
7734 cinfo.maskbits = 1 << maskbitslog2;
7735 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
7736 amt = bucketcount * sizeof (unsigned long int) * 2;
7737 amt += maskwords * sizeof (bfd_vma);
7738 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
7739 if (cinfo.bitmask == NULL)
7740 {
7741 free (cinfo.hashcodes);
7742 return false;
7743 }
7744
7745 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
7746 cinfo.indx = cinfo.counts + bucketcount;
7747 cinfo.symindx = dynsymcount - cinfo.nsyms;
7748 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
7749
7750 /* Determine how often each hash bucket is used. */
7751 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
7752 for (i = 0; i < cinfo.nsyms; ++i)
7753 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
7754
7755 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
7756 if (cinfo.counts[i] != 0)
7757 {
7758 cinfo.indx[i] = cnt;
7759 cnt += cinfo.counts[i];
7760 }
7761 BFD_ASSERT (cnt == dynsymcount);
7762 cinfo.bucketcount = bucketcount;
7763 cinfo.local_indx = cinfo.min_dynindx;
7764
7765 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
7766 s->size += cinfo.maskbits / 8;
7767 if (bed->record_xhash_symbol != NULL)
7768 s->size += cinfo.nsyms * 4;
7769 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7770 if (contents == NULL)
7771 {
7772 free (cinfo.bitmask);
7773 free (cinfo.hashcodes);
7774 return false;
7775 }
7776
7777 s->contents = contents;
7778 bfd_put_32 (output_bfd, bucketcount, contents);
7779 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
7780 bfd_put_32 (output_bfd, maskwords, contents + 8);
7781 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
7782 contents += 16 + cinfo.maskbits / 8;
7783
7784 for (i = 0; i < bucketcount; ++i)
7785 {
7786 if (cinfo.counts[i] == 0)
7787 bfd_put_32 (output_bfd, 0, contents);
7788 else
7789 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
7790 contents += 4;
7791 }
7792
7793 cinfo.contents = contents;
7794
7795 cinfo.xlat = contents + cinfo.nsyms * 4 - s->contents;
7796 /* Renumber dynamic symbols, if populating .gnu.hash section.
7797 If using .MIPS.xhash, populate the translation table. */
7798 elf_link_hash_traverse (elf_hash_table (info),
7799 elf_gnu_hash_process_symidx, &cinfo);
7800
7801 contents = s->contents + 16;
7802 for (i = 0; i < maskwords; ++i)
7803 {
7804 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
7805 contents);
7806 contents += bed->s->arch_size / 8;
7807 }
7808
7809 free (cinfo.bitmask);
7810 free (cinfo.hashcodes);
7811 }
7812 }
7813
7814 s = bfd_get_linker_section (dynobj, ".dynstr");
7815 BFD_ASSERT (s != NULL);
7816
7817 elf_finalize_dynstr (output_bfd, info);
7818
7819 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7820
7821 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7822 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7823 return false;
7824 }
7825
7826 return true;
7827 }
7828 \f
7829 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
7830
7831 static void
7832 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7833 asection *sec)
7834 {
7835 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7836 sec->sec_info_type = SEC_INFO_TYPE_NONE;
7837 }
7838
7839 /* Finish SHF_MERGE section merging. */
7840
7841 bool
7842 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7843 {
7844 bfd *ibfd;
7845 asection *sec;
7846
7847 if (!is_elf_hash_table (info->hash))
7848 return false;
7849
7850 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7851 if ((ibfd->flags & DYNAMIC) == 0
7852 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7853 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7854 == get_elf_backend_data (obfd)->s->elfclass))
7855 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7856 if ((sec->flags & SEC_MERGE) != 0
7857 && !bfd_is_abs_section (sec->output_section))
7858 {
7859 struct bfd_elf_section_data *secdata;
7860
7861 secdata = elf_section_data (sec);
7862 if (! _bfd_add_merge_section (obfd,
7863 &elf_hash_table (info)->merge_info,
7864 sec, &secdata->sec_info))
7865 return false;
7866 else if (secdata->sec_info)
7867 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7868 }
7869
7870 if (elf_hash_table (info)->merge_info != NULL)
7871 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7872 merge_sections_remove_hook);
7873 return true;
7874 }
7875
7876 /* Create an entry in an ELF linker hash table. */
7877
7878 struct bfd_hash_entry *
7879 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7880 struct bfd_hash_table *table,
7881 const char *string)
7882 {
7883 /* Allocate the structure if it has not already been allocated by a
7884 subclass. */
7885 if (entry == NULL)
7886 {
7887 entry = (struct bfd_hash_entry *)
7888 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7889 if (entry == NULL)
7890 return entry;
7891 }
7892
7893 /* Call the allocation method of the superclass. */
7894 entry = _bfd_link_hash_newfunc (entry, table, string);
7895 if (entry != NULL)
7896 {
7897 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7898 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7899
7900 /* Set local fields. */
7901 ret->indx = -1;
7902 ret->dynindx = -1;
7903 ret->got = htab->init_got_refcount;
7904 ret->plt = htab->init_plt_refcount;
7905 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7906 - offsetof (struct elf_link_hash_entry, size)));
7907 /* Assume that we have been called by a non-ELF symbol reader.
7908 This flag is then reset by the code which reads an ELF input
7909 file. This ensures that a symbol created by a non-ELF symbol
7910 reader will have the flag set correctly. */
7911 ret->non_elf = 1;
7912 }
7913
7914 return entry;
7915 }
7916
7917 /* Copy data from an indirect symbol to its direct symbol, hiding the
7918 old indirect symbol. Also used for copying flags to a weakdef. */
7919
7920 void
7921 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7922 struct elf_link_hash_entry *dir,
7923 struct elf_link_hash_entry *ind)
7924 {
7925 struct elf_link_hash_table *htab;
7926
7927 if (ind->dyn_relocs != NULL)
7928 {
7929 if (dir->dyn_relocs != NULL)
7930 {
7931 struct elf_dyn_relocs **pp;
7932 struct elf_dyn_relocs *p;
7933
7934 /* Add reloc counts against the indirect sym to the direct sym
7935 list. Merge any entries against the same section. */
7936 for (pp = &ind->dyn_relocs; (p = *pp) != NULL; )
7937 {
7938 struct elf_dyn_relocs *q;
7939
7940 for (q = dir->dyn_relocs; q != NULL; q = q->next)
7941 if (q->sec == p->sec)
7942 {
7943 q->pc_count += p->pc_count;
7944 q->count += p->count;
7945 *pp = p->next;
7946 break;
7947 }
7948 if (q == NULL)
7949 pp = &p->next;
7950 }
7951 *pp = dir->dyn_relocs;
7952 }
7953
7954 dir->dyn_relocs = ind->dyn_relocs;
7955 ind->dyn_relocs = NULL;
7956 }
7957
7958 /* Copy down any references that we may have already seen to the
7959 symbol which just became indirect. */
7960
7961 if (dir->versioned != versioned_hidden)
7962 dir->ref_dynamic |= ind->ref_dynamic;
7963 dir->ref_regular |= ind->ref_regular;
7964 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7965 dir->non_got_ref |= ind->non_got_ref;
7966 dir->needs_plt |= ind->needs_plt;
7967 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7968
7969 if (ind->root.type != bfd_link_hash_indirect)
7970 return;
7971
7972 /* Copy over the global and procedure linkage table refcount entries.
7973 These may have been already set up by a check_relocs routine. */
7974 htab = elf_hash_table (info);
7975 if (ind->got.refcount > htab->init_got_refcount.refcount)
7976 {
7977 if (dir->got.refcount < 0)
7978 dir->got.refcount = 0;
7979 dir->got.refcount += ind->got.refcount;
7980 ind->got.refcount = htab->init_got_refcount.refcount;
7981 }
7982
7983 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7984 {
7985 if (dir->plt.refcount < 0)
7986 dir->plt.refcount = 0;
7987 dir->plt.refcount += ind->plt.refcount;
7988 ind->plt.refcount = htab->init_plt_refcount.refcount;
7989 }
7990
7991 if (ind->dynindx != -1)
7992 {
7993 if (dir->dynindx != -1)
7994 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7995 dir->dynindx = ind->dynindx;
7996 dir->dynstr_index = ind->dynstr_index;
7997 ind->dynindx = -1;
7998 ind->dynstr_index = 0;
7999 }
8000 }
8001
8002 void
8003 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
8004 struct elf_link_hash_entry *h,
8005 bool force_local)
8006 {
8007 /* STT_GNU_IFUNC symbol must go through PLT. */
8008 if (h->type != STT_GNU_IFUNC)
8009 {
8010 h->plt = elf_hash_table (info)->init_plt_offset;
8011 h->needs_plt = 0;
8012 }
8013 if (force_local)
8014 {
8015 h->forced_local = 1;
8016 if (h->dynindx != -1)
8017 {
8018 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
8019 h->dynstr_index);
8020 h->dynindx = -1;
8021 h->dynstr_index = 0;
8022 }
8023 }
8024 }
8025
8026 /* Hide a symbol. */
8027
8028 void
8029 _bfd_elf_link_hide_symbol (bfd *output_bfd,
8030 struct bfd_link_info *info,
8031 struct bfd_link_hash_entry *h)
8032 {
8033 if (is_elf_hash_table (info->hash))
8034 {
8035 const struct elf_backend_data *bed
8036 = get_elf_backend_data (output_bfd);
8037 struct elf_link_hash_entry *eh
8038 = (struct elf_link_hash_entry *) h;
8039 bed->elf_backend_hide_symbol (info, eh, true);
8040 eh->def_dynamic = 0;
8041 eh->ref_dynamic = 0;
8042 eh->dynamic_def = 0;
8043 }
8044 }
8045
8046 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
8047 caller. */
8048
8049 bool
8050 _bfd_elf_link_hash_table_init
8051 (struct elf_link_hash_table *table,
8052 bfd *abfd,
8053 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
8054 struct bfd_hash_table *,
8055 const char *),
8056 unsigned int entsize,
8057 enum elf_target_id target_id)
8058 {
8059 bool ret;
8060 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
8061
8062 table->init_got_refcount.refcount = can_refcount - 1;
8063 table->init_plt_refcount.refcount = can_refcount - 1;
8064 table->init_got_offset.offset = -(bfd_vma) 1;
8065 table->init_plt_offset.offset = -(bfd_vma) 1;
8066 /* The first dynamic symbol is a dummy. */
8067 table->dynsymcount = 1;
8068
8069 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
8070
8071 table->root.type = bfd_link_elf_hash_table;
8072 table->hash_table_id = target_id;
8073 table->target_os = get_elf_backend_data (abfd)->target_os;
8074
8075 return ret;
8076 }
8077
8078 /* Create an ELF linker hash table. */
8079
8080 struct bfd_link_hash_table *
8081 _bfd_elf_link_hash_table_create (bfd *abfd)
8082 {
8083 struct elf_link_hash_table *ret;
8084 size_t amt = sizeof (struct elf_link_hash_table);
8085
8086 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
8087 if (ret == NULL)
8088 return NULL;
8089
8090 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
8091 sizeof (struct elf_link_hash_entry),
8092 GENERIC_ELF_DATA))
8093 {
8094 free (ret);
8095 return NULL;
8096 }
8097 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
8098
8099 return &ret->root;
8100 }
8101
8102 /* Destroy an ELF linker hash table. */
8103
8104 void
8105 _bfd_elf_link_hash_table_free (bfd *obfd)
8106 {
8107 struct elf_link_hash_table *htab;
8108
8109 htab = (struct elf_link_hash_table *) obfd->link.hash;
8110 if (htab->dynstr != NULL)
8111 _bfd_elf_strtab_free (htab->dynstr);
8112 _bfd_merge_sections_free (htab->merge_info);
8113 _bfd_generic_link_hash_table_free (obfd);
8114 }
8115
8116 /* This is a hook for the ELF emulation code in the generic linker to
8117 tell the backend linker what file name to use for the DT_NEEDED
8118 entry for a dynamic object. */
8119
8120 void
8121 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
8122 {
8123 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
8124 && bfd_get_format (abfd) == bfd_object)
8125 elf_dt_name (abfd) = name;
8126 }
8127
8128 int
8129 bfd_elf_get_dyn_lib_class (bfd *abfd)
8130 {
8131 int lib_class;
8132 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
8133 && bfd_get_format (abfd) == bfd_object)
8134 lib_class = elf_dyn_lib_class (abfd);
8135 else
8136 lib_class = 0;
8137 return lib_class;
8138 }
8139
8140 void
8141 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
8142 {
8143 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
8144 && bfd_get_format (abfd) == bfd_object)
8145 elf_dyn_lib_class (abfd) = lib_class;
8146 }
8147
8148 /* Get the list of DT_NEEDED entries for a link. This is a hook for
8149 the linker ELF emulation code. */
8150
8151 struct bfd_link_needed_list *
8152 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
8153 struct bfd_link_info *info)
8154 {
8155 if (! is_elf_hash_table (info->hash))
8156 return NULL;
8157 return elf_hash_table (info)->needed;
8158 }
8159
8160 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
8161 hook for the linker ELF emulation code. */
8162
8163 struct bfd_link_needed_list *
8164 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
8165 struct bfd_link_info *info)
8166 {
8167 if (! is_elf_hash_table (info->hash))
8168 return NULL;
8169 return elf_hash_table (info)->runpath;
8170 }
8171
8172 /* Get the name actually used for a dynamic object for a link. This
8173 is the SONAME entry if there is one. Otherwise, it is the string
8174 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
8175
8176 const char *
8177 bfd_elf_get_dt_soname (bfd *abfd)
8178 {
8179 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
8180 && bfd_get_format (abfd) == bfd_object)
8181 return elf_dt_name (abfd);
8182 return NULL;
8183 }
8184
8185 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
8186 the ELF linker emulation code. */
8187
8188 bool
8189 bfd_elf_get_bfd_needed_list (bfd *abfd,
8190 struct bfd_link_needed_list **pneeded)
8191 {
8192 asection *s;
8193 bfd_byte *dynbuf = NULL;
8194 unsigned int elfsec;
8195 unsigned long shlink;
8196 bfd_byte *extdyn, *extdynend;
8197 size_t extdynsize;
8198 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
8199
8200 *pneeded = NULL;
8201
8202 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
8203 || bfd_get_format (abfd) != bfd_object)
8204 return true;
8205
8206 s = bfd_get_section_by_name (abfd, ".dynamic");
8207 if (s == NULL || s->size == 0)
8208 return true;
8209
8210 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
8211 goto error_return;
8212
8213 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
8214 if (elfsec == SHN_BAD)
8215 goto error_return;
8216
8217 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
8218
8219 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
8220 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
8221
8222 for (extdyn = dynbuf, extdynend = dynbuf + s->size;
8223 (size_t) (extdynend - extdyn) >= extdynsize;
8224 extdyn += extdynsize)
8225 {
8226 Elf_Internal_Dyn dyn;
8227
8228 (*swap_dyn_in) (abfd, extdyn, &dyn);
8229
8230 if (dyn.d_tag == DT_NULL)
8231 break;
8232
8233 if (dyn.d_tag == DT_NEEDED)
8234 {
8235 const char *string;
8236 struct bfd_link_needed_list *l;
8237 unsigned int tagv = dyn.d_un.d_val;
8238 size_t amt;
8239
8240 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
8241 if (string == NULL)
8242 goto error_return;
8243
8244 amt = sizeof *l;
8245 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
8246 if (l == NULL)
8247 goto error_return;
8248
8249 l->by = abfd;
8250 l->name = string;
8251 l->next = *pneeded;
8252 *pneeded = l;
8253 }
8254 }
8255
8256 free (dynbuf);
8257
8258 return true;
8259
8260 error_return:
8261 free (dynbuf);
8262 return false;
8263 }
8264
8265 struct elf_symbuf_symbol
8266 {
8267 unsigned long st_name; /* Symbol name, index in string tbl */
8268 unsigned char st_info; /* Type and binding attributes */
8269 unsigned char st_other; /* Visibilty, and target specific */
8270 };
8271
8272 struct elf_symbuf_head
8273 {
8274 struct elf_symbuf_symbol *ssym;
8275 size_t count;
8276 unsigned int st_shndx;
8277 };
8278
8279 struct elf_symbol
8280 {
8281 union
8282 {
8283 Elf_Internal_Sym *isym;
8284 struct elf_symbuf_symbol *ssym;
8285 void *p;
8286 } u;
8287 const char *name;
8288 };
8289
8290 /* Sort references to symbols by ascending section number. */
8291
8292 static int
8293 elf_sort_elf_symbol (const void *arg1, const void *arg2)
8294 {
8295 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
8296 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
8297
8298 if (s1->st_shndx != s2->st_shndx)
8299 return s1->st_shndx > s2->st_shndx ? 1 : -1;
8300 /* Final sort by the address of the sym in the symbuf ensures
8301 a stable sort. */
8302 if (s1 != s2)
8303 return s1 > s2 ? 1 : -1;
8304 return 0;
8305 }
8306
8307 static int
8308 elf_sym_name_compare (const void *arg1, const void *arg2)
8309 {
8310 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8311 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8312 int ret = strcmp (s1->name, s2->name);
8313 if (ret != 0)
8314 return ret;
8315 if (s1->u.p != s2->u.p)
8316 return s1->u.p > s2->u.p ? 1 : -1;
8317 return 0;
8318 }
8319
8320 static struct elf_symbuf_head *
8321 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
8322 {
8323 Elf_Internal_Sym **ind, **indbufend, **indbuf;
8324 struct elf_symbuf_symbol *ssym;
8325 struct elf_symbuf_head *ssymbuf, *ssymhead;
8326 size_t i, shndx_count, total_size, amt;
8327
8328 amt = symcount * sizeof (*indbuf);
8329 indbuf = (Elf_Internal_Sym **) bfd_malloc (amt);
8330 if (indbuf == NULL)
8331 return NULL;
8332
8333 for (ind = indbuf, i = 0; i < symcount; i++)
8334 if (isymbuf[i].st_shndx != SHN_UNDEF)
8335 *ind++ = &isymbuf[i];
8336 indbufend = ind;
8337
8338 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
8339 elf_sort_elf_symbol);
8340
8341 shndx_count = 0;
8342 if (indbufend > indbuf)
8343 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
8344 if (ind[0]->st_shndx != ind[1]->st_shndx)
8345 shndx_count++;
8346
8347 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
8348 + (indbufend - indbuf) * sizeof (*ssym));
8349 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
8350 if (ssymbuf == NULL)
8351 {
8352 free (indbuf);
8353 return NULL;
8354 }
8355
8356 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
8357 ssymbuf->ssym = NULL;
8358 ssymbuf->count = shndx_count;
8359 ssymbuf->st_shndx = 0;
8360 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
8361 {
8362 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
8363 {
8364 ssymhead++;
8365 ssymhead->ssym = ssym;
8366 ssymhead->count = 0;
8367 ssymhead->st_shndx = (*ind)->st_shndx;
8368 }
8369 ssym->st_name = (*ind)->st_name;
8370 ssym->st_info = (*ind)->st_info;
8371 ssym->st_other = (*ind)->st_other;
8372 ssymhead->count++;
8373 }
8374 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
8375 && (uintptr_t) ssym - (uintptr_t) ssymbuf == total_size);
8376
8377 free (indbuf);
8378 return ssymbuf;
8379 }
8380
8381 /* Check if 2 sections define the same set of local and global
8382 symbols. */
8383
8384 static bool
8385 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
8386 struct bfd_link_info *info)
8387 {
8388 bfd *bfd1, *bfd2;
8389 const struct elf_backend_data *bed1, *bed2;
8390 Elf_Internal_Shdr *hdr1, *hdr2;
8391 size_t symcount1, symcount2;
8392 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8393 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
8394 Elf_Internal_Sym *isym, *isymend;
8395 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
8396 size_t count1, count2, sec_count1, sec_count2, i;
8397 unsigned int shndx1, shndx2;
8398 bool result;
8399 bool ignore_section_symbol_p;
8400
8401 bfd1 = sec1->owner;
8402 bfd2 = sec2->owner;
8403
8404 /* Both sections have to be in ELF. */
8405 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8406 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8407 return false;
8408
8409 if (elf_section_type (sec1) != elf_section_type (sec2))
8410 return false;
8411
8412 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8413 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8414 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
8415 return false;
8416
8417 bed1 = get_elf_backend_data (bfd1);
8418 bed2 = get_elf_backend_data (bfd2);
8419 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8420 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8421 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8422 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8423
8424 if (symcount1 == 0 || symcount2 == 0)
8425 return false;
8426
8427 result = false;
8428 isymbuf1 = NULL;
8429 isymbuf2 = NULL;
8430 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
8431 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
8432
8433 /* Ignore section symbols only when matching non-debugging sections
8434 or linkonce section with comdat section. */
8435 ignore_section_symbol_p
8436 = ((sec1->flags & SEC_DEBUGGING) == 0
8437 || ((elf_section_flags (sec1) & SHF_GROUP)
8438 != (elf_section_flags (sec2) & SHF_GROUP)));
8439
8440 if (ssymbuf1 == NULL)
8441 {
8442 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8443 NULL, NULL, NULL);
8444 if (isymbuf1 == NULL)
8445 goto done;
8446
8447 if (info != NULL && !info->reduce_memory_overheads)
8448 {
8449 ssymbuf1 = elf_create_symbuf (symcount1, isymbuf1);
8450 elf_tdata (bfd1)->symbuf = ssymbuf1;
8451 }
8452 }
8453
8454 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
8455 {
8456 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8457 NULL, NULL, NULL);
8458 if (isymbuf2 == NULL)
8459 goto done;
8460
8461 if (ssymbuf1 != NULL && info != NULL && !info->reduce_memory_overheads)
8462 {
8463 ssymbuf2 = elf_create_symbuf (symcount2, isymbuf2);
8464 elf_tdata (bfd2)->symbuf = ssymbuf2;
8465 }
8466 }
8467
8468 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
8469 {
8470 /* Optimized faster version. */
8471 size_t lo, hi, mid;
8472 struct elf_symbol *symp;
8473 struct elf_symbuf_symbol *ssym, *ssymend;
8474
8475 lo = 0;
8476 hi = ssymbuf1->count;
8477 ssymbuf1++;
8478 count1 = 0;
8479 sec_count1 = 0;
8480 while (lo < hi)
8481 {
8482 mid = (lo + hi) / 2;
8483 if (shndx1 < ssymbuf1[mid].st_shndx)
8484 hi = mid;
8485 else if (shndx1 > ssymbuf1[mid].st_shndx)
8486 lo = mid + 1;
8487 else
8488 {
8489 count1 = ssymbuf1[mid].count;
8490 ssymbuf1 += mid;
8491 break;
8492 }
8493 }
8494 if (ignore_section_symbol_p)
8495 {
8496 for (i = 0; i < count1; i++)
8497 if (ELF_ST_TYPE (ssymbuf1->ssym[i].st_info) == STT_SECTION)
8498 sec_count1++;
8499 count1 -= sec_count1;
8500 }
8501
8502 lo = 0;
8503 hi = ssymbuf2->count;
8504 ssymbuf2++;
8505 count2 = 0;
8506 sec_count2 = 0;
8507 while (lo < hi)
8508 {
8509 mid = (lo + hi) / 2;
8510 if (shndx2 < ssymbuf2[mid].st_shndx)
8511 hi = mid;
8512 else if (shndx2 > ssymbuf2[mid].st_shndx)
8513 lo = mid + 1;
8514 else
8515 {
8516 count2 = ssymbuf2[mid].count;
8517 ssymbuf2 += mid;
8518 break;
8519 }
8520 }
8521 if (ignore_section_symbol_p)
8522 {
8523 for (i = 0; i < count2; i++)
8524 if (ELF_ST_TYPE (ssymbuf2->ssym[i].st_info) == STT_SECTION)
8525 sec_count2++;
8526 count2 -= sec_count2;
8527 }
8528
8529 if (count1 == 0 || count2 == 0 || count1 != count2)
8530 goto done;
8531
8532 symtable1
8533 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
8534 symtable2
8535 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
8536 if (symtable1 == NULL || symtable2 == NULL)
8537 goto done;
8538
8539 symp = symtable1;
8540 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1 + sec_count1;
8541 ssym < ssymend; ssym++)
8542 if (sec_count1 == 0
8543 || ELF_ST_TYPE (ssym->st_info) != STT_SECTION)
8544 {
8545 symp->u.ssym = ssym;
8546 symp->name = bfd_elf_string_from_elf_section (bfd1,
8547 hdr1->sh_link,
8548 ssym->st_name);
8549 symp++;
8550 }
8551
8552 symp = symtable2;
8553 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2 + sec_count2;
8554 ssym < ssymend; ssym++)
8555 if (sec_count2 == 0
8556 || ELF_ST_TYPE (ssym->st_info) != STT_SECTION)
8557 {
8558 symp->u.ssym = ssym;
8559 symp->name = bfd_elf_string_from_elf_section (bfd2,
8560 hdr2->sh_link,
8561 ssym->st_name);
8562 symp++;
8563 }
8564
8565 /* Sort symbol by name. */
8566 qsort (symtable1, count1, sizeof (struct elf_symbol),
8567 elf_sym_name_compare);
8568 qsort (symtable2, count1, sizeof (struct elf_symbol),
8569 elf_sym_name_compare);
8570
8571 for (i = 0; i < count1; i++)
8572 /* Two symbols must have the same binding, type and name. */
8573 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
8574 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
8575 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8576 goto done;
8577
8578 result = true;
8579 goto done;
8580 }
8581
8582 symtable1 = (struct elf_symbol *)
8583 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
8584 symtable2 = (struct elf_symbol *)
8585 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
8586 if (symtable1 == NULL || symtable2 == NULL)
8587 goto done;
8588
8589 /* Count definitions in the section. */
8590 count1 = 0;
8591 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
8592 if (isym->st_shndx == shndx1
8593 && (!ignore_section_symbol_p
8594 || ELF_ST_TYPE (isym->st_info) != STT_SECTION))
8595 symtable1[count1++].u.isym = isym;
8596
8597 count2 = 0;
8598 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
8599 if (isym->st_shndx == shndx2
8600 && (!ignore_section_symbol_p
8601 || ELF_ST_TYPE (isym->st_info) != STT_SECTION))
8602 symtable2[count2++].u.isym = isym;
8603
8604 if (count1 == 0 || count2 == 0 || count1 != count2)
8605 goto done;
8606
8607 for (i = 0; i < count1; i++)
8608 symtable1[i].name
8609 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
8610 symtable1[i].u.isym->st_name);
8611
8612 for (i = 0; i < count2; i++)
8613 symtable2[i].name
8614 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
8615 symtable2[i].u.isym->st_name);
8616
8617 /* Sort symbol by name. */
8618 qsort (symtable1, count1, sizeof (struct elf_symbol),
8619 elf_sym_name_compare);
8620 qsort (symtable2, count1, sizeof (struct elf_symbol),
8621 elf_sym_name_compare);
8622
8623 for (i = 0; i < count1; i++)
8624 /* Two symbols must have the same binding, type and name. */
8625 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
8626 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
8627 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8628 goto done;
8629
8630 result = true;
8631
8632 done:
8633 free (symtable1);
8634 free (symtable2);
8635 free (isymbuf1);
8636 free (isymbuf2);
8637
8638 return result;
8639 }
8640
8641 /* Return TRUE if 2 section types are compatible. */
8642
8643 bool
8644 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8645 bfd *bbfd, const asection *bsec)
8646 {
8647 if (asec == NULL
8648 || bsec == NULL
8649 || abfd->xvec->flavour != bfd_target_elf_flavour
8650 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8651 return true;
8652
8653 return elf_section_type (asec) == elf_section_type (bsec);
8654 }
8655 \f
8656 /* Final phase of ELF linker. */
8657
8658 /* A structure we use to avoid passing large numbers of arguments. */
8659
8660 struct elf_final_link_info
8661 {
8662 /* General link information. */
8663 struct bfd_link_info *info;
8664 /* Output BFD. */
8665 bfd *output_bfd;
8666 /* Symbol string table. */
8667 struct elf_strtab_hash *symstrtab;
8668 /* .hash section. */
8669 asection *hash_sec;
8670 /* symbol version section (.gnu.version). */
8671 asection *symver_sec;
8672 /* Buffer large enough to hold contents of any section. */
8673 bfd_byte *contents;
8674 /* Buffer large enough to hold external relocs of any section. */
8675 void *external_relocs;
8676 /* Buffer large enough to hold internal relocs of any section. */
8677 Elf_Internal_Rela *internal_relocs;
8678 /* Buffer large enough to hold external local symbols of any input
8679 BFD. */
8680 bfd_byte *external_syms;
8681 /* And a buffer for symbol section indices. */
8682 Elf_External_Sym_Shndx *locsym_shndx;
8683 /* Buffer large enough to hold internal local symbols of any input
8684 BFD. */
8685 Elf_Internal_Sym *internal_syms;
8686 /* Array large enough to hold a symbol index for each local symbol
8687 of any input BFD. */
8688 long *indices;
8689 /* Array large enough to hold a section pointer for each local
8690 symbol of any input BFD. */
8691 asection **sections;
8692 /* Buffer for SHT_SYMTAB_SHNDX section. */
8693 Elf_External_Sym_Shndx *symshndxbuf;
8694 /* Number of STT_FILE syms seen. */
8695 size_t filesym_count;
8696 /* Local symbol hash table. */
8697 struct bfd_hash_table local_hash_table;
8698 };
8699
8700 struct local_hash_entry
8701 {
8702 /* Base hash table entry structure. */
8703 struct bfd_hash_entry root;
8704 /* Size of the local symbol name. */
8705 size_t size;
8706 /* Number of the duplicated local symbol names. */
8707 long count;
8708 };
8709
8710 /* Create an entry in the local symbol hash table. */
8711
8712 static struct bfd_hash_entry *
8713 local_hash_newfunc (struct bfd_hash_entry *entry,
8714 struct bfd_hash_table *table,
8715 const char *string)
8716 {
8717
8718 /* Allocate the structure if it has not already been allocated by a
8719 subclass. */
8720 if (entry == NULL)
8721 {
8722 entry = bfd_hash_allocate (table,
8723 sizeof (struct local_hash_entry));
8724 if (entry == NULL)
8725 return entry;
8726 }
8727
8728 /* Call the allocation method of the superclass. */
8729 entry = bfd_hash_newfunc (entry, table, string);
8730 if (entry != NULL)
8731 {
8732 ((struct local_hash_entry *) entry)->count = 0;
8733 ((struct local_hash_entry *) entry)->size = 0;
8734 }
8735
8736 return entry;
8737 }
8738
8739 /* This struct is used to pass information to elf_link_output_extsym. */
8740
8741 struct elf_outext_info
8742 {
8743 bool failed;
8744 bool localsyms;
8745 bool file_sym_done;
8746 struct elf_final_link_info *flinfo;
8747 };
8748
8749
8750 /* Support for evaluating a complex relocation.
8751
8752 Complex relocations are generalized, self-describing relocations. The
8753 implementation of them consists of two parts: complex symbols, and the
8754 relocations themselves.
8755
8756 The relocations use a reserved elf-wide relocation type code (R_RELC
8757 external / BFD_RELOC_RELC internal) and an encoding of relocation field
8758 information (start bit, end bit, word width, etc) into the addend. This
8759 information is extracted from CGEN-generated operand tables within gas.
8760
8761 Complex symbols are mangled symbols (STT_RELC external / BSF_RELC
8762 internal) representing prefix-notation expressions, including but not
8763 limited to those sorts of expressions normally encoded as addends in the
8764 addend field. The symbol mangling format is:
8765
8766 <node> := <literal>
8767 | <unary-operator> ':' <node>
8768 | <binary-operator> ':' <node> ':' <node>
8769 ;
8770
8771 <literal> := 's' <digits=N> ':' <N character symbol name>
8772 | 'S' <digits=N> ':' <N character section name>
8773 | '#' <hexdigits>
8774 ;
8775
8776 <binary-operator> := as in C
8777 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
8778
8779 static void
8780 set_symbol_value (bfd *bfd_with_globals,
8781 Elf_Internal_Sym *isymbuf,
8782 size_t locsymcount,
8783 size_t symidx,
8784 bfd_vma val)
8785 {
8786 struct elf_link_hash_entry **sym_hashes;
8787 struct elf_link_hash_entry *h;
8788 size_t extsymoff = locsymcount;
8789
8790 if (symidx < locsymcount)
8791 {
8792 Elf_Internal_Sym *sym;
8793
8794 sym = isymbuf + symidx;
8795 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
8796 {
8797 /* It is a local symbol: move it to the
8798 "absolute" section and give it a value. */
8799 sym->st_shndx = SHN_ABS;
8800 sym->st_value = val;
8801 return;
8802 }
8803 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
8804 extsymoff = 0;
8805 }
8806
8807 /* It is a global symbol: set its link type
8808 to "defined" and give it a value. */
8809
8810 sym_hashes = elf_sym_hashes (bfd_with_globals);
8811 h = sym_hashes [symidx - extsymoff];
8812 while (h->root.type == bfd_link_hash_indirect
8813 || h->root.type == bfd_link_hash_warning)
8814 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8815 h->root.type = bfd_link_hash_defined;
8816 h->root.u.def.value = val;
8817 h->root.u.def.section = bfd_abs_section_ptr;
8818 }
8819
8820 static bool
8821 resolve_symbol (const char *name,
8822 bfd *input_bfd,
8823 struct elf_final_link_info *flinfo,
8824 bfd_vma *result,
8825 Elf_Internal_Sym *isymbuf,
8826 size_t locsymcount)
8827 {
8828 Elf_Internal_Sym *sym;
8829 struct bfd_link_hash_entry *global_entry;
8830 const char *candidate = NULL;
8831 Elf_Internal_Shdr *symtab_hdr;
8832 size_t i;
8833
8834 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
8835
8836 for (i = 0; i < locsymcount; ++ i)
8837 {
8838 sym = isymbuf + i;
8839
8840 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
8841 continue;
8842
8843 candidate = bfd_elf_string_from_elf_section (input_bfd,
8844 symtab_hdr->sh_link,
8845 sym->st_name);
8846 #ifdef DEBUG
8847 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
8848 name, candidate, (unsigned long) sym->st_value);
8849 #endif
8850 if (candidate && strcmp (candidate, name) == 0)
8851 {
8852 asection *sec = flinfo->sections [i];
8853
8854 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
8855 *result += sec->output_offset + sec->output_section->vma;
8856 #ifdef DEBUG
8857 printf ("Found symbol with value %8.8lx\n",
8858 (unsigned long) *result);
8859 #endif
8860 return true;
8861 }
8862 }
8863
8864 /* Hmm, haven't found it yet. perhaps it is a global. */
8865 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
8866 false, false, true);
8867 if (!global_entry)
8868 return false;
8869
8870 if (global_entry->type == bfd_link_hash_defined
8871 || global_entry->type == bfd_link_hash_defweak)
8872 {
8873 *result = (global_entry->u.def.value
8874 + global_entry->u.def.section->output_section->vma
8875 + global_entry->u.def.section->output_offset);
8876 #ifdef DEBUG
8877 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
8878 global_entry->root.string, (unsigned long) *result);
8879 #endif
8880 return true;
8881 }
8882
8883 return false;
8884 }
8885
8886 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
8887 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
8888 names like "foo.end" which is the end address of section "foo". */
8889
8890 static bool
8891 resolve_section (const char *name,
8892 asection *sections,
8893 bfd_vma *result,
8894 bfd * abfd)
8895 {
8896 asection *curr;
8897 unsigned int len;
8898
8899 for (curr = sections; curr; curr = curr->next)
8900 if (strcmp (curr->name, name) == 0)
8901 {
8902 *result = curr->vma;
8903 return true;
8904 }
8905
8906 /* Hmm. still haven't found it. try pseudo-section names. */
8907 /* FIXME: This could be coded more efficiently... */
8908 for (curr = sections; curr; curr = curr->next)
8909 {
8910 len = strlen (curr->name);
8911 if (len > strlen (name))
8912 continue;
8913
8914 if (strncmp (curr->name, name, len) == 0)
8915 {
8916 if (startswith (name + len, ".end"))
8917 {
8918 *result = (curr->vma
8919 + curr->size / bfd_octets_per_byte (abfd, curr));
8920 return true;
8921 }
8922
8923 /* Insert more pseudo-section names here, if you like. */
8924 }
8925 }
8926
8927 return false;
8928 }
8929
8930 static void
8931 undefined_reference (const char *reftype, const char *name)
8932 {
8933 /* xgettext:c-format */
8934 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8935 reftype, name);
8936 bfd_set_error (bfd_error_bad_value);
8937 }
8938
8939 static bool
8940 eval_symbol (bfd_vma *result,
8941 const char **symp,
8942 bfd *input_bfd,
8943 struct elf_final_link_info *flinfo,
8944 bfd_vma dot,
8945 Elf_Internal_Sym *isymbuf,
8946 size_t locsymcount,
8947 int signed_p)
8948 {
8949 size_t len;
8950 size_t symlen;
8951 bfd_vma a;
8952 bfd_vma b;
8953 char symbuf[4096];
8954 const char *sym = *symp;
8955 const char *symend;
8956 bool symbol_is_section = false;
8957
8958 len = strlen (sym);
8959 symend = sym + len;
8960
8961 if (len < 1 || len > sizeof (symbuf))
8962 {
8963 bfd_set_error (bfd_error_invalid_operation);
8964 return false;
8965 }
8966
8967 switch (* sym)
8968 {
8969 case '.':
8970 *result = dot;
8971 *symp = sym + 1;
8972 return true;
8973
8974 case '#':
8975 ++sym;
8976 *result = strtoul (sym, (char **) symp, 16);
8977 return true;
8978
8979 case 'S':
8980 symbol_is_section = true;
8981 /* Fall through. */
8982 case 's':
8983 ++sym;
8984 symlen = strtol (sym, (char **) symp, 10);
8985 sym = *symp + 1; /* Skip the trailing ':'. */
8986
8987 if (symend < sym || symlen + 1 > sizeof (symbuf))
8988 {
8989 bfd_set_error (bfd_error_invalid_operation);
8990 return false;
8991 }
8992
8993 memcpy (symbuf, sym, symlen);
8994 symbuf[symlen] = '\0';
8995 *symp = sym + symlen;
8996
8997 /* Is it always possible, with complex symbols, that gas "mis-guessed"
8998 the symbol as a section, or vice-versa. so we're pretty liberal in our
8999 interpretation here; section means "try section first", not "must be a
9000 section", and likewise with symbol. */
9001
9002 if (symbol_is_section)
9003 {
9004 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
9005 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
9006 isymbuf, locsymcount))
9007 {
9008 undefined_reference ("section", symbuf);
9009 return false;
9010 }
9011 }
9012 else
9013 {
9014 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
9015 isymbuf, locsymcount)
9016 && !resolve_section (symbuf, flinfo->output_bfd->sections,
9017 result, input_bfd))
9018 {
9019 undefined_reference ("symbol", symbuf);
9020 return false;
9021 }
9022 }
9023
9024 return true;
9025
9026 /* All that remains are operators. */
9027
9028 #define UNARY_OP(op) \
9029 if (startswith (sym, #op)) \
9030 { \
9031 sym += strlen (#op); \
9032 if (*sym == ':') \
9033 ++sym; \
9034 *symp = sym; \
9035 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
9036 isymbuf, locsymcount, signed_p)) \
9037 return false; \
9038 if (signed_p) \
9039 *result = op ((bfd_signed_vma) a); \
9040 else \
9041 *result = op a; \
9042 return true; \
9043 }
9044
9045 #define BINARY_OP_HEAD(op) \
9046 if (startswith (sym, #op)) \
9047 { \
9048 sym += strlen (#op); \
9049 if (*sym == ':') \
9050 ++sym; \
9051 *symp = sym; \
9052 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
9053 isymbuf, locsymcount, signed_p)) \
9054 return false; \
9055 ++*symp; \
9056 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
9057 isymbuf, locsymcount, signed_p)) \
9058 return false;
9059 #define BINARY_OP_TAIL(op) \
9060 if (signed_p) \
9061 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
9062 else \
9063 *result = a op b; \
9064 return true; \
9065 }
9066 #define BINARY_OP(op) BINARY_OP_HEAD(op) BINARY_OP_TAIL(op)
9067
9068 default:
9069 UNARY_OP (0-);
9070 BINARY_OP_HEAD (<<);
9071 if (b >= sizeof (a) * CHAR_BIT)
9072 {
9073 *result = 0;
9074 return true;
9075 }
9076 signed_p = 0;
9077 BINARY_OP_TAIL (<<);
9078 BINARY_OP_HEAD (>>);
9079 if (b >= sizeof (a) * CHAR_BIT)
9080 {
9081 *result = signed_p && (bfd_signed_vma) a < 0 ? -1 : 0;
9082 return true;
9083 }
9084 BINARY_OP_TAIL (>>);
9085 BINARY_OP (==);
9086 BINARY_OP (!=);
9087 BINARY_OP (<=);
9088 BINARY_OP (>=);
9089 BINARY_OP (&&);
9090 BINARY_OP (||);
9091 UNARY_OP (~);
9092 UNARY_OP (!);
9093 BINARY_OP (*);
9094 BINARY_OP_HEAD (/);
9095 if (b == 0)
9096 {
9097 _bfd_error_handler (_("division by zero"));
9098 bfd_set_error (bfd_error_bad_value);
9099 return false;
9100 }
9101 BINARY_OP_TAIL (/);
9102 BINARY_OP_HEAD (%);
9103 if (b == 0)
9104 {
9105 _bfd_error_handler (_("division by zero"));
9106 bfd_set_error (bfd_error_bad_value);
9107 return false;
9108 }
9109 BINARY_OP_TAIL (%);
9110 BINARY_OP (^);
9111 BINARY_OP (|);
9112 BINARY_OP (&);
9113 BINARY_OP (+);
9114 BINARY_OP (-);
9115 BINARY_OP (<);
9116 BINARY_OP (>);
9117 #undef UNARY_OP
9118 #undef BINARY_OP
9119 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
9120 bfd_set_error (bfd_error_invalid_operation);
9121 return false;
9122 }
9123 }
9124
9125 static void
9126 put_value (bfd_vma size,
9127 unsigned long chunksz,
9128 bfd *input_bfd,
9129 bfd_vma x,
9130 bfd_byte *location)
9131 {
9132 location += (size - chunksz);
9133
9134 for (; size; size -= chunksz, location -= chunksz)
9135 {
9136 switch (chunksz)
9137 {
9138 case 1:
9139 bfd_put_8 (input_bfd, x, location);
9140 x >>= 8;
9141 break;
9142 case 2:
9143 bfd_put_16 (input_bfd, x, location);
9144 x >>= 16;
9145 break;
9146 case 4:
9147 bfd_put_32 (input_bfd, x, location);
9148 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
9149 x >>= 16;
9150 x >>= 16;
9151 break;
9152 #ifdef BFD64
9153 case 8:
9154 bfd_put_64 (input_bfd, x, location);
9155 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
9156 x >>= 32;
9157 x >>= 32;
9158 break;
9159 #endif
9160 default:
9161 abort ();
9162 break;
9163 }
9164 }
9165 }
9166
9167 static bfd_vma
9168 get_value (bfd_vma size,
9169 unsigned long chunksz,
9170 bfd *input_bfd,
9171 bfd_byte *location)
9172 {
9173 int shift;
9174 bfd_vma x = 0;
9175
9176 /* Sanity checks. */
9177 BFD_ASSERT (chunksz <= sizeof (x)
9178 && size >= chunksz
9179 && chunksz != 0
9180 && (size % chunksz) == 0
9181 && input_bfd != NULL
9182 && location != NULL);
9183
9184 if (chunksz == sizeof (x))
9185 {
9186 BFD_ASSERT (size == chunksz);
9187
9188 /* Make sure that we do not perform an undefined shift operation.
9189 We know that size == chunksz so there will only be one iteration
9190 of the loop below. */
9191 shift = 0;
9192 }
9193 else
9194 shift = 8 * chunksz;
9195
9196 for (; size; size -= chunksz, location += chunksz)
9197 {
9198 switch (chunksz)
9199 {
9200 case 1:
9201 x = (x << shift) | bfd_get_8 (input_bfd, location);
9202 break;
9203 case 2:
9204 x = (x << shift) | bfd_get_16 (input_bfd, location);
9205 break;
9206 case 4:
9207 x = (x << shift) | bfd_get_32 (input_bfd, location);
9208 break;
9209 #ifdef BFD64
9210 case 8:
9211 x = (x << shift) | bfd_get_64 (input_bfd, location);
9212 break;
9213 #endif
9214 default:
9215 abort ();
9216 }
9217 }
9218 return x;
9219 }
9220
9221 static void
9222 decode_complex_addend (unsigned long *start, /* in bits */
9223 unsigned long *oplen, /* in bits */
9224 unsigned long *len, /* in bits */
9225 unsigned long *wordsz, /* in bytes */
9226 unsigned long *chunksz, /* in bytes */
9227 unsigned long *lsb0_p,
9228 unsigned long *signed_p,
9229 unsigned long *trunc_p,
9230 unsigned long encoded)
9231 {
9232 * start = encoded & 0x3F;
9233 * len = (encoded >> 6) & 0x3F;
9234 * oplen = (encoded >> 12) & 0x3F;
9235 * wordsz = (encoded >> 18) & 0xF;
9236 * chunksz = (encoded >> 22) & 0xF;
9237 * lsb0_p = (encoded >> 27) & 1;
9238 * signed_p = (encoded >> 28) & 1;
9239 * trunc_p = (encoded >> 29) & 1;
9240 }
9241
9242 bfd_reloc_status_type
9243 bfd_elf_perform_complex_relocation (bfd *input_bfd,
9244 asection *input_section,
9245 bfd_byte *contents,
9246 Elf_Internal_Rela *rel,
9247 bfd_vma relocation)
9248 {
9249 bfd_vma shift, x, mask;
9250 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
9251 bfd_reloc_status_type r;
9252 bfd_size_type octets;
9253
9254 /* Perform this reloc, since it is complex.
9255 (this is not to say that it necessarily refers to a complex
9256 symbol; merely that it is a self-describing CGEN based reloc.
9257 i.e. the addend has the complete reloc information (bit start, end,
9258 word size, etc) encoded within it.). */
9259
9260 decode_complex_addend (&start, &oplen, &len, &wordsz,
9261 &chunksz, &lsb0_p, &signed_p,
9262 &trunc_p, rel->r_addend);
9263
9264 mask = (((1L << (len - 1)) - 1) << 1) | 1;
9265
9266 if (lsb0_p)
9267 shift = (start + 1) - len;
9268 else
9269 shift = (8 * wordsz) - (start + len);
9270
9271 octets = rel->r_offset * bfd_octets_per_byte (input_bfd, input_section);
9272 x = get_value (wordsz, chunksz, input_bfd, contents + octets);
9273
9274 #ifdef DEBUG
9275 printf ("Doing complex reloc: "
9276 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
9277 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
9278 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
9279 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
9280 oplen, (unsigned long) x, (unsigned long) mask,
9281 (unsigned long) relocation);
9282 #endif
9283
9284 r = bfd_reloc_ok;
9285 if (! trunc_p)
9286 /* Now do an overflow check. */
9287 r = bfd_check_overflow ((signed_p
9288 ? complain_overflow_signed
9289 : complain_overflow_unsigned),
9290 len, 0, (8 * wordsz),
9291 relocation);
9292
9293 /* Do the deed. */
9294 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
9295
9296 #ifdef DEBUG
9297 printf (" relocation: %8.8lx\n"
9298 " shifted mask: %8.8lx\n"
9299 " shifted/masked reloc: %8.8lx\n"
9300 " result: %8.8lx\n",
9301 (unsigned long) relocation, (unsigned long) (mask << shift),
9302 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
9303 #endif
9304 put_value (wordsz, chunksz, input_bfd, x, contents + octets);
9305 return r;
9306 }
9307
9308 /* Functions to read r_offset from external (target order) reloc
9309 entry. Faster than bfd_getl32 et al, because we let the compiler
9310 know the value is aligned. */
9311
9312 static bfd_vma
9313 ext32l_r_offset (const void *p)
9314 {
9315 union aligned32
9316 {
9317 uint32_t v;
9318 unsigned char c[4];
9319 };
9320 const union aligned32 *a
9321 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
9322
9323 uint32_t aval = ( (uint32_t) a->c[0]
9324 | (uint32_t) a->c[1] << 8
9325 | (uint32_t) a->c[2] << 16
9326 | (uint32_t) a->c[3] << 24);
9327 return aval;
9328 }
9329
9330 static bfd_vma
9331 ext32b_r_offset (const void *p)
9332 {
9333 union aligned32
9334 {
9335 uint32_t v;
9336 unsigned char c[4];
9337 };
9338 const union aligned32 *a
9339 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
9340
9341 uint32_t aval = ( (uint32_t) a->c[0] << 24
9342 | (uint32_t) a->c[1] << 16
9343 | (uint32_t) a->c[2] << 8
9344 | (uint32_t) a->c[3]);
9345 return aval;
9346 }
9347
9348 static bfd_vma
9349 ext64l_r_offset (const void *p)
9350 {
9351 union aligned64
9352 {
9353 uint64_t v;
9354 unsigned char c[8];
9355 };
9356 const union aligned64 *a
9357 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
9358
9359 uint64_t aval = ( (uint64_t) a->c[0]
9360 | (uint64_t) a->c[1] << 8
9361 | (uint64_t) a->c[2] << 16
9362 | (uint64_t) a->c[3] << 24
9363 | (uint64_t) a->c[4] << 32
9364 | (uint64_t) a->c[5] << 40
9365 | (uint64_t) a->c[6] << 48
9366 | (uint64_t) a->c[7] << 56);
9367 return aval;
9368 }
9369
9370 static bfd_vma
9371 ext64b_r_offset (const void *p)
9372 {
9373 union aligned64
9374 {
9375 uint64_t v;
9376 unsigned char c[8];
9377 };
9378 const union aligned64 *a
9379 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
9380
9381 uint64_t aval = ( (uint64_t) a->c[0] << 56
9382 | (uint64_t) a->c[1] << 48
9383 | (uint64_t) a->c[2] << 40
9384 | (uint64_t) a->c[3] << 32
9385 | (uint64_t) a->c[4] << 24
9386 | (uint64_t) a->c[5] << 16
9387 | (uint64_t) a->c[6] << 8
9388 | (uint64_t) a->c[7]);
9389 return aval;
9390 }
9391
9392 /* When performing a relocatable link, the input relocations are
9393 preserved. But, if they reference global symbols, the indices
9394 referenced must be updated. Update all the relocations found in
9395 RELDATA. */
9396
9397 static bool
9398 elf_link_adjust_relocs (bfd *abfd,
9399 asection *sec,
9400 struct bfd_elf_section_reloc_data *reldata,
9401 bool sort,
9402 struct bfd_link_info *info)
9403 {
9404 unsigned int i;
9405 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9406 bfd_byte *erela;
9407 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
9408 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
9409 bfd_vma r_type_mask;
9410 int r_sym_shift;
9411 unsigned int count = reldata->count;
9412 struct elf_link_hash_entry **rel_hash = reldata->hashes;
9413
9414 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
9415 {
9416 swap_in = bed->s->swap_reloc_in;
9417 swap_out = bed->s->swap_reloc_out;
9418 }
9419 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
9420 {
9421 swap_in = bed->s->swap_reloca_in;
9422 swap_out = bed->s->swap_reloca_out;
9423 }
9424 else
9425 abort ();
9426
9427 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
9428 abort ();
9429
9430 if (bed->s->arch_size == 32)
9431 {
9432 r_type_mask = 0xff;
9433 r_sym_shift = 8;
9434 }
9435 else
9436 {
9437 r_type_mask = 0xffffffff;
9438 r_sym_shift = 32;
9439 }
9440
9441 erela = reldata->hdr->contents;
9442 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
9443 {
9444 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
9445 unsigned int j;
9446
9447 if (*rel_hash == NULL)
9448 continue;
9449
9450 if ((*rel_hash)->indx == -2
9451 && info->gc_sections
9452 && ! info->gc_keep_exported)
9453 {
9454 /* PR 21524: Let the user know if a symbol was removed by garbage collection. */
9455 _bfd_error_handler (_("%pB:%pA: error: relocation references symbol %s which was removed by garbage collection"),
9456 abfd, sec,
9457 (*rel_hash)->root.root.string);
9458 _bfd_error_handler (_("%pB:%pA: error: try relinking with --gc-keep-exported enabled"),
9459 abfd, sec);
9460 bfd_set_error (bfd_error_invalid_operation);
9461 return false;
9462 }
9463 BFD_ASSERT ((*rel_hash)->indx >= 0);
9464
9465 (*swap_in) (abfd, erela, irela);
9466 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
9467 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
9468 | (irela[j].r_info & r_type_mask));
9469 (*swap_out) (abfd, irela, erela);
9470 }
9471
9472 if (bed->elf_backend_update_relocs)
9473 (*bed->elf_backend_update_relocs) (sec, reldata);
9474
9475 if (sort && count != 0)
9476 {
9477 bfd_vma (*ext_r_off) (const void *);
9478 bfd_vma r_off;
9479 size_t elt_size;
9480 bfd_byte *base, *end, *p, *loc;
9481 bfd_byte *buf = NULL;
9482
9483 if (bed->s->arch_size == 32)
9484 {
9485 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
9486 ext_r_off = ext32l_r_offset;
9487 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
9488 ext_r_off = ext32b_r_offset;
9489 else
9490 abort ();
9491 }
9492 else
9493 {
9494 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
9495 ext_r_off = ext64l_r_offset;
9496 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
9497 ext_r_off = ext64b_r_offset;
9498 else
9499 abort ();
9500 }
9501
9502 /* Must use a stable sort here. A modified insertion sort,
9503 since the relocs are mostly sorted already. */
9504 elt_size = reldata->hdr->sh_entsize;
9505 base = reldata->hdr->contents;
9506 end = base + count * elt_size;
9507 if (elt_size > sizeof (Elf64_External_Rela))
9508 abort ();
9509
9510 /* Ensure the first element is lowest. This acts as a sentinel,
9511 speeding the main loop below. */
9512 r_off = (*ext_r_off) (base);
9513 for (p = loc = base; (p += elt_size) < end; )
9514 {
9515 bfd_vma r_off2 = (*ext_r_off) (p);
9516 if (r_off > r_off2)
9517 {
9518 r_off = r_off2;
9519 loc = p;
9520 }
9521 }
9522 if (loc != base)
9523 {
9524 /* Don't just swap *base and *loc as that changes the order
9525 of the original base[0] and base[1] if they happen to
9526 have the same r_offset. */
9527 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
9528 memcpy (onebuf, loc, elt_size);
9529 memmove (base + elt_size, base, loc - base);
9530 memcpy (base, onebuf, elt_size);
9531 }
9532
9533 for (p = base + elt_size; (p += elt_size) < end; )
9534 {
9535 /* base to p is sorted, *p is next to insert. */
9536 r_off = (*ext_r_off) (p);
9537 /* Search the sorted region for location to insert. */
9538 loc = p - elt_size;
9539 while (r_off < (*ext_r_off) (loc))
9540 loc -= elt_size;
9541 loc += elt_size;
9542 if (loc != p)
9543 {
9544 /* Chances are there is a run of relocs to insert here,
9545 from one of more input files. Files are not always
9546 linked in order due to the way elf_link_input_bfd is
9547 called. See pr17666. */
9548 size_t sortlen = p - loc;
9549 bfd_vma r_off2 = (*ext_r_off) (loc);
9550 size_t runlen = elt_size;
9551 bfd_vma r_off_runend = r_off;
9552 bfd_vma r_off_runend_next;
9553 size_t buf_size = 96 * 1024;
9554 while (p + runlen < end
9555 && (sortlen <= buf_size
9556 || runlen + elt_size <= buf_size)
9557 /* run must not break the ordering of base..loc+1 */
9558 && r_off2 > (r_off_runend_next = (*ext_r_off) (p + runlen))
9559 /* run must be already sorted */
9560 && r_off_runend_next >= r_off_runend)
9561 {
9562 runlen += elt_size;
9563 r_off_runend = r_off_runend_next;
9564 }
9565 if (buf == NULL)
9566 {
9567 buf = bfd_malloc (buf_size);
9568 if (buf == NULL)
9569 return false;
9570 }
9571 if (runlen < sortlen)
9572 {
9573 memcpy (buf, p, runlen);
9574 memmove (loc + runlen, loc, sortlen);
9575 memcpy (loc, buf, runlen);
9576 }
9577 else
9578 {
9579 memcpy (buf, loc, sortlen);
9580 memmove (loc, p, runlen);
9581 memcpy (loc + runlen, buf, sortlen);
9582 }
9583 p += runlen - elt_size;
9584 }
9585 }
9586 /* Hashes are no longer valid. */
9587 free (reldata->hashes);
9588 reldata->hashes = NULL;
9589 free (buf);
9590 }
9591 return true;
9592 }
9593
9594 struct elf_link_sort_rela
9595 {
9596 union {
9597 bfd_vma offset;
9598 bfd_vma sym_mask;
9599 } u;
9600 enum elf_reloc_type_class type;
9601 /* We use this as an array of size int_rels_per_ext_rel. */
9602 Elf_Internal_Rela rela[1];
9603 };
9604
9605 /* qsort stability here and for cmp2 is only an issue if multiple
9606 dynamic relocations are emitted at the same address. But targets
9607 that apply a series of dynamic relocations each operating on the
9608 result of the prior relocation can't use -z combreloc as
9609 implemented anyway. Such schemes tend to be broken by sorting on
9610 symbol index. That leaves dynamic NONE relocs as the only other
9611 case where ld might emit multiple relocs at the same address, and
9612 those are only emitted due to target bugs. */
9613
9614 static int
9615 elf_link_sort_cmp1 (const void *A, const void *B)
9616 {
9617 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9618 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9619 int relativea, relativeb;
9620
9621 relativea = a->type == reloc_class_relative;
9622 relativeb = b->type == reloc_class_relative;
9623
9624 if (relativea < relativeb)
9625 return 1;
9626 if (relativea > relativeb)
9627 return -1;
9628 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
9629 return -1;
9630 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
9631 return 1;
9632 if (a->rela->r_offset < b->rela->r_offset)
9633 return -1;
9634 if (a->rela->r_offset > b->rela->r_offset)
9635 return 1;
9636 return 0;
9637 }
9638
9639 static int
9640 elf_link_sort_cmp2 (const void *A, const void *B)
9641 {
9642 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9643 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9644
9645 if (a->type < b->type)
9646 return -1;
9647 if (a->type > b->type)
9648 return 1;
9649 if (a->u.offset < b->u.offset)
9650 return -1;
9651 if (a->u.offset > b->u.offset)
9652 return 1;
9653 if (a->rela->r_offset < b->rela->r_offset)
9654 return -1;
9655 if (a->rela->r_offset > b->rela->r_offset)
9656 return 1;
9657 return 0;
9658 }
9659
9660 static size_t
9661 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
9662 {
9663 asection *dynamic_relocs;
9664 asection *rela_dyn;
9665 asection *rel_dyn;
9666 bfd_size_type count, size;
9667 size_t i, ret, sort_elt, ext_size;
9668 bfd_byte *sort, *s_non_relative, *p;
9669 struct elf_link_sort_rela *sq;
9670 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9671 int i2e = bed->s->int_rels_per_ext_rel;
9672 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
9673 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
9674 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
9675 struct bfd_link_order *lo;
9676 bfd_vma r_sym_mask;
9677 bool use_rela;
9678
9679 /* Find a dynamic reloc section. */
9680 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
9681 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
9682 if (rela_dyn != NULL && rela_dyn->size > 0
9683 && rel_dyn != NULL && rel_dyn->size > 0)
9684 {
9685 bool use_rela_initialised = false;
9686
9687 /* This is just here to stop gcc from complaining.
9688 Its initialization checking code is not perfect. */
9689 use_rela = true;
9690
9691 /* Both sections are present. Examine the sizes
9692 of the indirect sections to help us choose. */
9693 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9694 if (lo->type == bfd_indirect_link_order)
9695 {
9696 asection *o = lo->u.indirect.section;
9697
9698 if ((o->size % bed->s->sizeof_rela) == 0)
9699 {
9700 if ((o->size % bed->s->sizeof_rel) == 0)
9701 /* Section size is divisible by both rel and rela sizes.
9702 It is of no help to us. */
9703 ;
9704 else
9705 {
9706 /* Section size is only divisible by rela. */
9707 if (use_rela_initialised && !use_rela)
9708 {
9709 _bfd_error_handler (_("%pB: unable to sort relocs - "
9710 "they are in more than one size"),
9711 abfd);
9712 bfd_set_error (bfd_error_invalid_operation);
9713 return 0;
9714 }
9715 else
9716 {
9717 use_rela = true;
9718 use_rela_initialised = true;
9719 }
9720 }
9721 }
9722 else if ((o->size % bed->s->sizeof_rel) == 0)
9723 {
9724 /* Section size is only divisible by rel. */
9725 if (use_rela_initialised && use_rela)
9726 {
9727 _bfd_error_handler (_("%pB: unable to sort relocs - "
9728 "they are in more than one size"),
9729 abfd);
9730 bfd_set_error (bfd_error_invalid_operation);
9731 return 0;
9732 }
9733 else
9734 {
9735 use_rela = false;
9736 use_rela_initialised = true;
9737 }
9738 }
9739 else
9740 {
9741 /* The section size is not divisible by either -
9742 something is wrong. */
9743 _bfd_error_handler (_("%pB: unable to sort relocs - "
9744 "they are of an unknown size"), abfd);
9745 bfd_set_error (bfd_error_invalid_operation);
9746 return 0;
9747 }
9748 }
9749
9750 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9751 if (lo->type == bfd_indirect_link_order)
9752 {
9753 asection *o = lo->u.indirect.section;
9754
9755 if ((o->size % bed->s->sizeof_rela) == 0)
9756 {
9757 if ((o->size % bed->s->sizeof_rel) == 0)
9758 /* Section size is divisible by both rel and rela sizes.
9759 It is of no help to us. */
9760 ;
9761 else
9762 {
9763 /* Section size is only divisible by rela. */
9764 if (use_rela_initialised && !use_rela)
9765 {
9766 _bfd_error_handler (_("%pB: unable to sort relocs - "
9767 "they are in more than one size"),
9768 abfd);
9769 bfd_set_error (bfd_error_invalid_operation);
9770 return 0;
9771 }
9772 else
9773 {
9774 use_rela = true;
9775 use_rela_initialised = true;
9776 }
9777 }
9778 }
9779 else if ((o->size % bed->s->sizeof_rel) == 0)
9780 {
9781 /* Section size is only divisible by rel. */
9782 if (use_rela_initialised && use_rela)
9783 {
9784 _bfd_error_handler (_("%pB: unable to sort relocs - "
9785 "they are in more than one size"),
9786 abfd);
9787 bfd_set_error (bfd_error_invalid_operation);
9788 return 0;
9789 }
9790 else
9791 {
9792 use_rela = false;
9793 use_rela_initialised = true;
9794 }
9795 }
9796 else
9797 {
9798 /* The section size is not divisible by either -
9799 something is wrong. */
9800 _bfd_error_handler (_("%pB: unable to sort relocs - "
9801 "they are of an unknown size"), abfd);
9802 bfd_set_error (bfd_error_invalid_operation);
9803 return 0;
9804 }
9805 }
9806
9807 if (! use_rela_initialised)
9808 /* Make a guess. */
9809 use_rela = true;
9810 }
9811 else if (rela_dyn != NULL && rela_dyn->size > 0)
9812 use_rela = true;
9813 else if (rel_dyn != NULL && rel_dyn->size > 0)
9814 use_rela = false;
9815 else
9816 return 0;
9817
9818 if (use_rela)
9819 {
9820 dynamic_relocs = rela_dyn;
9821 ext_size = bed->s->sizeof_rela;
9822 swap_in = bed->s->swap_reloca_in;
9823 swap_out = bed->s->swap_reloca_out;
9824 }
9825 else
9826 {
9827 dynamic_relocs = rel_dyn;
9828 ext_size = bed->s->sizeof_rel;
9829 swap_in = bed->s->swap_reloc_in;
9830 swap_out = bed->s->swap_reloc_out;
9831 }
9832
9833 size = 0;
9834 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9835 if (lo->type == bfd_indirect_link_order)
9836 size += lo->u.indirect.section->size;
9837
9838 if (size != dynamic_relocs->size)
9839 return 0;
9840
9841 sort_elt = (sizeof (struct elf_link_sort_rela)
9842 + (i2e - 1) * sizeof (Elf_Internal_Rela));
9843
9844 count = dynamic_relocs->size / ext_size;
9845 if (count == 0)
9846 return 0;
9847 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
9848
9849 if (sort == NULL)
9850 {
9851 (*info->callbacks->warning)
9852 (info, _("not enough memory to sort relocations"), 0, abfd, 0, 0);
9853 return 0;
9854 }
9855
9856 if (bed->s->arch_size == 32)
9857 r_sym_mask = ~(bfd_vma) 0xff;
9858 else
9859 r_sym_mask = ~(bfd_vma) 0xffffffff;
9860
9861 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9862 if (lo->type == bfd_indirect_link_order)
9863 {
9864 bfd_byte *erel, *erelend;
9865 asection *o = lo->u.indirect.section;
9866
9867 if (o->contents == NULL && o->size != 0)
9868 {
9869 /* This is a reloc section that is being handled as a normal
9870 section. See bfd_section_from_shdr. We can't combine
9871 relocs in this case. */
9872 free (sort);
9873 return 0;
9874 }
9875 erel = o->contents;
9876 erelend = o->contents + o->size;
9877 p = sort + o->output_offset * opb / ext_size * sort_elt;
9878
9879 while (erel < erelend)
9880 {
9881 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9882
9883 (*swap_in) (abfd, erel, s->rela);
9884 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
9885 s->u.sym_mask = r_sym_mask;
9886 p += sort_elt;
9887 erel += ext_size;
9888 }
9889 }
9890
9891 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
9892
9893 for (i = 0, p = sort; i < count; i++, p += sort_elt)
9894 {
9895 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9896 if (s->type != reloc_class_relative)
9897 break;
9898 }
9899 ret = i;
9900 s_non_relative = p;
9901
9902 sq = (struct elf_link_sort_rela *) s_non_relative;
9903 for (; i < count; i++, p += sort_elt)
9904 {
9905 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
9906 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
9907 sq = sp;
9908 sp->u.offset = sq->rela->r_offset;
9909 }
9910
9911 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
9912
9913 struct elf_link_hash_table *htab = elf_hash_table (info);
9914 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
9915 {
9916 /* We have plt relocs in .rela.dyn. */
9917 sq = (struct elf_link_sort_rela *) sort;
9918 for (i = 0; i < count; i++)
9919 if (sq[count - i - 1].type != reloc_class_plt)
9920 break;
9921 if (i != 0 && htab->srelplt->size == i * ext_size)
9922 {
9923 struct bfd_link_order **plo;
9924 /* Put srelplt link_order last. This is so the output_offset
9925 set in the next loop is correct for DT_JMPREL. */
9926 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
9927 if ((*plo)->type == bfd_indirect_link_order
9928 && (*plo)->u.indirect.section == htab->srelplt)
9929 {
9930 lo = *plo;
9931 *plo = lo->next;
9932 }
9933 else
9934 plo = &(*plo)->next;
9935 *plo = lo;
9936 lo->next = NULL;
9937 dynamic_relocs->map_tail.link_order = lo;
9938 }
9939 }
9940
9941 p = sort;
9942 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9943 if (lo->type == bfd_indirect_link_order)
9944 {
9945 bfd_byte *erel, *erelend;
9946 asection *o = lo->u.indirect.section;
9947
9948 erel = o->contents;
9949 erelend = o->contents + o->size;
9950 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
9951 while (erel < erelend)
9952 {
9953 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9954 (*swap_out) (abfd, s->rela, erel);
9955 p += sort_elt;
9956 erel += ext_size;
9957 }
9958 }
9959
9960 free (sort);
9961 *psec = dynamic_relocs;
9962 return ret;
9963 }
9964
9965 /* Add a symbol to the output symbol string table. */
9966
9967 static int
9968 elf_link_output_symstrtab (void *finf,
9969 const char *name,
9970 Elf_Internal_Sym *elfsym,
9971 asection *input_sec,
9972 struct elf_link_hash_entry *h)
9973 {
9974 struct elf_final_link_info *flinfo = finf;
9975 int (*output_symbol_hook)
9976 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
9977 struct elf_link_hash_entry *);
9978 struct elf_link_hash_table *hash_table;
9979 const struct elf_backend_data *bed;
9980 bfd_size_type strtabsize;
9981
9982 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9983
9984 bed = get_elf_backend_data (flinfo->output_bfd);
9985 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
9986 if (output_symbol_hook != NULL)
9987 {
9988 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
9989 if (ret != 1)
9990 return ret;
9991 }
9992
9993 if (ELF_ST_TYPE (elfsym->st_info) == STT_GNU_IFUNC)
9994 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_ifunc;
9995 if (ELF_ST_BIND (elfsym->st_info) == STB_GNU_UNIQUE)
9996 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_unique;
9997
9998 if (name == NULL || *name == '\0')
9999 elfsym->st_name = (unsigned long) -1;
10000 else
10001 {
10002 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
10003 to get the final offset for st_name. */
10004 char *versioned_name = (char *) name;
10005 if (h != NULL)
10006 {
10007 if (h->versioned == versioned && h->def_dynamic)
10008 {
10009 /* Keep only one '@' for versioned symbols defined in
10010 shared objects. */
10011 char *version = strrchr (name, ELF_VER_CHR);
10012 char *base_end = strchr (name, ELF_VER_CHR);
10013 if (version != base_end)
10014 {
10015 size_t base_len;
10016 size_t len = strlen (name);
10017 versioned_name = bfd_alloc (flinfo->output_bfd, len);
10018 if (versioned_name == NULL)
10019 return 0;
10020 base_len = base_end - name;
10021 memcpy (versioned_name, name, base_len);
10022 memcpy (versioned_name + base_len, version,
10023 len - base_len);
10024 }
10025 }
10026 }
10027 else if (flinfo->info->unique_symbol
10028 && ELF_ST_BIND (elfsym->st_info) == STB_LOCAL)
10029 {
10030 struct local_hash_entry *lh;
10031 size_t count_len;
10032 size_t base_len;
10033 char buf[30];
10034 switch (ELF_ST_TYPE (elfsym->st_info))
10035 {
10036 case STT_FILE:
10037 case STT_SECTION:
10038 break;
10039 default:
10040 lh = (struct local_hash_entry *) bfd_hash_lookup
10041 (&flinfo->local_hash_table, name, true, false);
10042 if (lh == NULL)
10043 return 0;
10044 /* Always append ".COUNT" to local symbols to avoid
10045 potential conflicts with local symbol "XXX.COUNT". */
10046 sprintf (buf, "%lx", lh->count);
10047 base_len = lh->size;
10048 if (!base_len)
10049 {
10050 base_len = strlen (name);
10051 lh->size = base_len;
10052 }
10053 count_len = strlen (buf);
10054 versioned_name = bfd_alloc (flinfo->output_bfd,
10055 base_len + count_len + 2);
10056 if (versioned_name == NULL)
10057 return 0;
10058 memcpy (versioned_name, name, base_len);
10059 versioned_name[base_len] = '.';
10060 memcpy (versioned_name + base_len + 1, buf,
10061 count_len + 1);
10062 lh->count++;
10063 break;
10064 }
10065 }
10066 elfsym->st_name
10067 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
10068 versioned_name, false);
10069 if (elfsym->st_name == (unsigned long) -1)
10070 return 0;
10071 }
10072
10073 hash_table = elf_hash_table (flinfo->info);
10074 strtabsize = hash_table->strtabsize;
10075 if (strtabsize <= flinfo->output_bfd->symcount)
10076 {
10077 strtabsize += strtabsize;
10078 hash_table->strtabsize = strtabsize;
10079 strtabsize *= sizeof (*hash_table->strtab);
10080 hash_table->strtab
10081 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
10082 strtabsize);
10083 if (hash_table->strtab == NULL)
10084 return 0;
10085 }
10086 hash_table->strtab[flinfo->output_bfd->symcount].sym = *elfsym;
10087 hash_table->strtab[flinfo->output_bfd->symcount].dest_index
10088 = flinfo->output_bfd->symcount;
10089 flinfo->output_bfd->symcount += 1;
10090
10091 return 1;
10092 }
10093
10094 /* Swap symbols out to the symbol table and flush the output symbols to
10095 the file. */
10096
10097 static bool
10098 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
10099 {
10100 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
10101 size_t amt;
10102 size_t i;
10103 const struct elf_backend_data *bed;
10104 bfd_byte *symbuf;
10105 Elf_Internal_Shdr *hdr;
10106 file_ptr pos;
10107 bool ret;
10108
10109 if (flinfo->output_bfd->symcount == 0)
10110 return true;
10111
10112 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
10113
10114 bed = get_elf_backend_data (flinfo->output_bfd);
10115
10116 amt = bed->s->sizeof_sym * flinfo->output_bfd->symcount;
10117 symbuf = (bfd_byte *) bfd_malloc (amt);
10118 if (symbuf == NULL)
10119 return false;
10120
10121 if (flinfo->symshndxbuf)
10122 {
10123 amt = sizeof (Elf_External_Sym_Shndx);
10124 amt *= bfd_get_symcount (flinfo->output_bfd);
10125 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10126 if (flinfo->symshndxbuf == NULL)
10127 {
10128 free (symbuf);
10129 return false;
10130 }
10131 }
10132
10133 /* Now swap out the symbols. */
10134 for (i = 0; i < flinfo->output_bfd->symcount; i++)
10135 {
10136 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
10137 if (elfsym->sym.st_name == (unsigned long) -1)
10138 elfsym->sym.st_name = 0;
10139 else
10140 elfsym->sym.st_name
10141 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
10142 elfsym->sym.st_name);
10143
10144 /* Inform the linker of the addition of this symbol. */
10145
10146 if (flinfo->info->callbacks->ctf_new_symbol)
10147 flinfo->info->callbacks->ctf_new_symbol (elfsym->dest_index,
10148 &elfsym->sym);
10149
10150 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
10151 ((bfd_byte *) symbuf
10152 + (elfsym->dest_index
10153 * bed->s->sizeof_sym)),
10154 NPTR_ADD (flinfo->symshndxbuf,
10155 elfsym->dest_index));
10156 }
10157
10158 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
10159 pos = hdr->sh_offset + hdr->sh_size;
10160 amt = bed->s->sizeof_sym * flinfo->output_bfd->symcount;
10161 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
10162 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
10163 {
10164 hdr->sh_size += amt;
10165 ret = true;
10166 }
10167 else
10168 ret = false;
10169
10170 free (symbuf);
10171
10172 free (hash_table->strtab);
10173 hash_table->strtab = NULL;
10174
10175 return ret;
10176 }
10177
10178 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
10179
10180 static bool
10181 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
10182 {
10183 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
10184 && sym->st_shndx < SHN_LORESERVE)
10185 {
10186 /* The gABI doesn't support dynamic symbols in output sections
10187 beyond 64k. */
10188 _bfd_error_handler
10189 /* xgettext:c-format */
10190 (_("%pB: too many sections: %d (>= %d)"),
10191 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
10192 bfd_set_error (bfd_error_nonrepresentable_section);
10193 return false;
10194 }
10195 return true;
10196 }
10197
10198 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
10199 allowing an unsatisfied unversioned symbol in the DSO to match a
10200 versioned symbol that would normally require an explicit version.
10201 We also handle the case that a DSO references a hidden symbol
10202 which may be satisfied by a versioned symbol in another DSO. */
10203
10204 static bool
10205 elf_link_check_versioned_symbol (struct bfd_link_info *info,
10206 const struct elf_backend_data *bed,
10207 struct elf_link_hash_entry *h)
10208 {
10209 bfd *abfd;
10210 struct elf_link_loaded_list *loaded;
10211
10212 if (!is_elf_hash_table (info->hash))
10213 return false;
10214
10215 /* Check indirect symbol. */
10216 while (h->root.type == bfd_link_hash_indirect)
10217 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10218
10219 switch (h->root.type)
10220 {
10221 default:
10222 abfd = NULL;
10223 break;
10224
10225 case bfd_link_hash_undefined:
10226 case bfd_link_hash_undefweak:
10227 abfd = h->root.u.undef.abfd;
10228 if (abfd == NULL
10229 || (abfd->flags & DYNAMIC) == 0
10230 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
10231 return false;
10232 break;
10233
10234 case bfd_link_hash_defined:
10235 case bfd_link_hash_defweak:
10236 abfd = h->root.u.def.section->owner;
10237 break;
10238
10239 case bfd_link_hash_common:
10240 abfd = h->root.u.c.p->section->owner;
10241 break;
10242 }
10243 BFD_ASSERT (abfd != NULL);
10244
10245 for (loaded = elf_hash_table (info)->dyn_loaded;
10246 loaded != NULL;
10247 loaded = loaded->next)
10248 {
10249 bfd *input;
10250 Elf_Internal_Shdr *hdr;
10251 size_t symcount;
10252 size_t extsymcount;
10253 size_t extsymoff;
10254 Elf_Internal_Shdr *versymhdr;
10255 Elf_Internal_Sym *isym;
10256 Elf_Internal_Sym *isymend;
10257 Elf_Internal_Sym *isymbuf;
10258 Elf_External_Versym *ever;
10259 Elf_External_Versym *extversym;
10260
10261 input = loaded->abfd;
10262
10263 /* We check each DSO for a possible hidden versioned definition. */
10264 if (input == abfd
10265 || elf_dynversym (input) == 0)
10266 continue;
10267
10268 hdr = &elf_tdata (input)->dynsymtab_hdr;
10269
10270 symcount = hdr->sh_size / bed->s->sizeof_sym;
10271 if (elf_bad_symtab (input))
10272 {
10273 extsymcount = symcount;
10274 extsymoff = 0;
10275 }
10276 else
10277 {
10278 extsymcount = symcount - hdr->sh_info;
10279 extsymoff = hdr->sh_info;
10280 }
10281
10282 if (extsymcount == 0)
10283 continue;
10284
10285 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
10286 NULL, NULL, NULL);
10287 if (isymbuf == NULL)
10288 return false;
10289
10290 /* Read in any version definitions. */
10291 versymhdr = &elf_tdata (input)->dynversym_hdr;
10292 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
10293 || (extversym = (Elf_External_Versym *)
10294 _bfd_malloc_and_read (input, versymhdr->sh_size,
10295 versymhdr->sh_size)) == NULL)
10296 {
10297 free (isymbuf);
10298 return false;
10299 }
10300
10301 ever = extversym + extsymoff;
10302 isymend = isymbuf + extsymcount;
10303 for (isym = isymbuf; isym < isymend; isym++, ever++)
10304 {
10305 const char *name;
10306 Elf_Internal_Versym iver;
10307 unsigned short version_index;
10308
10309 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
10310 || isym->st_shndx == SHN_UNDEF)
10311 continue;
10312
10313 name = bfd_elf_string_from_elf_section (input,
10314 hdr->sh_link,
10315 isym->st_name);
10316 if (strcmp (name, h->root.root.string) != 0)
10317 continue;
10318
10319 _bfd_elf_swap_versym_in (input, ever, &iver);
10320
10321 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
10322 && !(h->def_regular
10323 && h->forced_local))
10324 {
10325 /* If we have a non-hidden versioned sym, then it should
10326 have provided a definition for the undefined sym unless
10327 it is defined in a non-shared object and forced local.
10328 */
10329 abort ();
10330 }
10331
10332 version_index = iver.vs_vers & VERSYM_VERSION;
10333 if (version_index == 1 || version_index == 2)
10334 {
10335 /* This is the base or first version. We can use it. */
10336 free (extversym);
10337 free (isymbuf);
10338 return true;
10339 }
10340 }
10341
10342 free (extversym);
10343 free (isymbuf);
10344 }
10345
10346 return false;
10347 }
10348
10349 /* Convert ELF common symbol TYPE. */
10350
10351 static int
10352 elf_link_convert_common_type (struct bfd_link_info *info, int type)
10353 {
10354 /* Commom symbol can only appear in relocatable link. */
10355 if (!bfd_link_relocatable (info))
10356 abort ();
10357 switch (info->elf_stt_common)
10358 {
10359 case unchanged:
10360 break;
10361 case elf_stt_common:
10362 type = STT_COMMON;
10363 break;
10364 case no_elf_stt_common:
10365 type = STT_OBJECT;
10366 break;
10367 }
10368 return type;
10369 }
10370
10371 /* Add an external symbol to the symbol table. This is called from
10372 the hash table traversal routine. When generating a shared object,
10373 we go through the symbol table twice. The first time we output
10374 anything that might have been forced to local scope in a version
10375 script. The second time we output the symbols that are still
10376 global symbols. */
10377
10378 static bool
10379 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
10380 {
10381 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
10382 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
10383 struct elf_final_link_info *flinfo = eoinfo->flinfo;
10384 bool strip;
10385 Elf_Internal_Sym sym;
10386 asection *input_sec;
10387 const struct elf_backend_data *bed;
10388 long indx;
10389 int ret;
10390 unsigned int type;
10391
10392 if (h->root.type == bfd_link_hash_warning)
10393 {
10394 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10395 if (h->root.type == bfd_link_hash_new)
10396 return true;
10397 }
10398
10399 /* Decide whether to output this symbol in this pass. */
10400 if (eoinfo->localsyms)
10401 {
10402 if (!h->forced_local)
10403 return true;
10404 }
10405 else
10406 {
10407 if (h->forced_local)
10408 return true;
10409 }
10410
10411 bed = get_elf_backend_data (flinfo->output_bfd);
10412
10413 if (h->root.type == bfd_link_hash_undefined)
10414 {
10415 /* If we have an undefined symbol reference here then it must have
10416 come from a shared library that is being linked in. (Undefined
10417 references in regular files have already been handled unless
10418 they are in unreferenced sections which are removed by garbage
10419 collection). */
10420 bool ignore_undef = false;
10421
10422 /* Some symbols may be special in that the fact that they're
10423 undefined can be safely ignored - let backend determine that. */
10424 if (bed->elf_backend_ignore_undef_symbol)
10425 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
10426
10427 /* If we are reporting errors for this situation then do so now. */
10428 if (!ignore_undef
10429 && h->ref_dynamic_nonweak
10430 && (!h->ref_regular || flinfo->info->gc_sections)
10431 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
10432 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
10433 {
10434 flinfo->info->callbacks->undefined_symbol
10435 (flinfo->info, h->root.root.string,
10436 h->ref_regular ? NULL : h->root.u.undef.abfd, NULL, 0,
10437 flinfo->info->unresolved_syms_in_shared_libs == RM_DIAGNOSE
10438 && !flinfo->info->warn_unresolved_syms);
10439 }
10440
10441 /* Strip a global symbol defined in a discarded section. */
10442 if (h->indx == -3)
10443 return true;
10444 }
10445
10446 /* We should also warn if a forced local symbol is referenced from
10447 shared libraries. */
10448 if (bfd_link_executable (flinfo->info)
10449 && h->forced_local
10450 && h->ref_dynamic
10451 && h->def_regular
10452 && !h->dynamic_def
10453 && h->ref_dynamic_nonweak
10454 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
10455 {
10456 bfd *def_bfd;
10457 const char *msg;
10458 struct elf_link_hash_entry *hi = h;
10459
10460 /* Check indirect symbol. */
10461 while (hi->root.type == bfd_link_hash_indirect)
10462 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
10463
10464 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
10465 /* xgettext:c-format */
10466 msg = _("%pB: internal symbol `%s' in %pB is referenced by DSO");
10467 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
10468 /* xgettext:c-format */
10469 msg = _("%pB: hidden symbol `%s' in %pB is referenced by DSO");
10470 else
10471 /* xgettext:c-format */
10472 msg = _("%pB: local symbol `%s' in %pB is referenced by DSO");
10473 def_bfd = flinfo->output_bfd;
10474 if (hi->root.u.def.section != bfd_abs_section_ptr)
10475 def_bfd = hi->root.u.def.section->owner;
10476 _bfd_error_handler (msg, flinfo->output_bfd,
10477 h->root.root.string, def_bfd);
10478 bfd_set_error (bfd_error_bad_value);
10479 eoinfo->failed = true;
10480 return false;
10481 }
10482
10483 /* We don't want to output symbols that have never been mentioned by
10484 a regular file, or that we have been told to strip. However, if
10485 h->indx is set to -2, the symbol is used by a reloc and we must
10486 output it. */
10487 strip = false;
10488 if (h->indx == -2)
10489 ;
10490 else if ((h->def_dynamic
10491 || h->ref_dynamic
10492 || h->root.type == bfd_link_hash_new)
10493 && !h->def_regular
10494 && !h->ref_regular)
10495 strip = true;
10496 else if (flinfo->info->strip == strip_all)
10497 strip = true;
10498 else if (flinfo->info->strip == strip_some
10499 && bfd_hash_lookup (flinfo->info->keep_hash,
10500 h->root.root.string, false, false) == NULL)
10501 strip = true;
10502 else if ((h->root.type == bfd_link_hash_defined
10503 || h->root.type == bfd_link_hash_defweak)
10504 && ((flinfo->info->strip_discarded
10505 && discarded_section (h->root.u.def.section))
10506 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
10507 && h->root.u.def.section->owner != NULL
10508 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
10509 strip = true;
10510 else if ((h->root.type == bfd_link_hash_undefined
10511 || h->root.type == bfd_link_hash_undefweak)
10512 && h->root.u.undef.abfd != NULL
10513 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
10514 strip = true;
10515
10516 type = h->type;
10517
10518 /* If we're stripping it, and it's not a dynamic symbol, there's
10519 nothing else to do. However, if it is a forced local symbol or
10520 an ifunc symbol we need to give the backend finish_dynamic_symbol
10521 function a chance to make it dynamic. */
10522 if (strip
10523 && h->dynindx == -1
10524 && type != STT_GNU_IFUNC
10525 && !h->forced_local)
10526 return true;
10527
10528 sym.st_value = 0;
10529 sym.st_size = h->size;
10530 sym.st_other = h->other;
10531 switch (h->root.type)
10532 {
10533 default:
10534 case bfd_link_hash_new:
10535 case bfd_link_hash_warning:
10536 abort ();
10537 return false;
10538
10539 case bfd_link_hash_undefined:
10540 case bfd_link_hash_undefweak:
10541 input_sec = bfd_und_section_ptr;
10542 sym.st_shndx = SHN_UNDEF;
10543 break;
10544
10545 case bfd_link_hash_defined:
10546 case bfd_link_hash_defweak:
10547 {
10548 input_sec = h->root.u.def.section;
10549 if (input_sec->output_section != NULL)
10550 {
10551 sym.st_shndx =
10552 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
10553 input_sec->output_section);
10554 if (sym.st_shndx == SHN_BAD)
10555 {
10556 _bfd_error_handler
10557 /* xgettext:c-format */
10558 (_("%pB: could not find output section %pA for input section %pA"),
10559 flinfo->output_bfd, input_sec->output_section, input_sec);
10560 bfd_set_error (bfd_error_nonrepresentable_section);
10561 eoinfo->failed = true;
10562 return false;
10563 }
10564
10565 /* ELF symbols in relocatable files are section relative,
10566 but in nonrelocatable files they are virtual
10567 addresses. */
10568 sym.st_value = h->root.u.def.value + input_sec->output_offset;
10569 if (!bfd_link_relocatable (flinfo->info))
10570 {
10571 sym.st_value += input_sec->output_section->vma;
10572 if (h->type == STT_TLS)
10573 {
10574 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
10575 if (tls_sec != NULL)
10576 sym.st_value -= tls_sec->vma;
10577 }
10578 }
10579 }
10580 else
10581 {
10582 BFD_ASSERT (input_sec->owner == NULL
10583 || (input_sec->owner->flags & DYNAMIC) != 0);
10584 sym.st_shndx = SHN_UNDEF;
10585 input_sec = bfd_und_section_ptr;
10586 }
10587 }
10588 break;
10589
10590 case bfd_link_hash_common:
10591 input_sec = h->root.u.c.p->section;
10592 sym.st_shndx = bed->common_section_index (input_sec);
10593 sym.st_value = 1 << h->root.u.c.p->alignment_power;
10594 break;
10595
10596 case bfd_link_hash_indirect:
10597 /* These symbols are created by symbol versioning. They point
10598 to the decorated version of the name. For example, if the
10599 symbol foo@@GNU_1.2 is the default, which should be used when
10600 foo is used with no version, then we add an indirect symbol
10601 foo which points to foo@@GNU_1.2. We ignore these symbols,
10602 since the indirected symbol is already in the hash table. */
10603 return true;
10604 }
10605
10606 if (type == STT_COMMON || type == STT_OBJECT)
10607 switch (h->root.type)
10608 {
10609 case bfd_link_hash_common:
10610 type = elf_link_convert_common_type (flinfo->info, type);
10611 break;
10612 case bfd_link_hash_defined:
10613 case bfd_link_hash_defweak:
10614 if (bed->common_definition (&sym))
10615 type = elf_link_convert_common_type (flinfo->info, type);
10616 else
10617 type = STT_OBJECT;
10618 break;
10619 case bfd_link_hash_undefined:
10620 case bfd_link_hash_undefweak:
10621 break;
10622 default:
10623 abort ();
10624 }
10625
10626 if (h->forced_local)
10627 {
10628 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
10629 /* Turn off visibility on local symbol. */
10630 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10631 }
10632 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
10633 else if (h->unique_global && h->def_regular)
10634 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
10635 else if (h->root.type == bfd_link_hash_undefweak
10636 || h->root.type == bfd_link_hash_defweak)
10637 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
10638 else
10639 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
10640 sym.st_target_internal = h->target_internal;
10641
10642 /* Give the processor backend a chance to tweak the symbol value,
10643 and also to finish up anything that needs to be done for this
10644 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
10645 forced local syms when non-shared is due to a historical quirk.
10646 STT_GNU_IFUNC symbol must go through PLT. */
10647 if ((h->type == STT_GNU_IFUNC
10648 && h->def_regular
10649 && !bfd_link_relocatable (flinfo->info))
10650 || ((h->dynindx != -1
10651 || h->forced_local)
10652 && ((bfd_link_pic (flinfo->info)
10653 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10654 || h->root.type != bfd_link_hash_undefweak))
10655 || !h->forced_local)
10656 && elf_hash_table (flinfo->info)->dynamic_sections_created))
10657 {
10658 if (! ((*bed->elf_backend_finish_dynamic_symbol)
10659 (flinfo->output_bfd, flinfo->info, h, &sym)))
10660 {
10661 eoinfo->failed = true;
10662 return false;
10663 }
10664 }
10665
10666 /* If we are marking the symbol as undefined, and there are no
10667 non-weak references to this symbol from a regular object, then
10668 mark the symbol as weak undefined; if there are non-weak
10669 references, mark the symbol as strong. We can't do this earlier,
10670 because it might not be marked as undefined until the
10671 finish_dynamic_symbol routine gets through with it. */
10672 if (sym.st_shndx == SHN_UNDEF
10673 && h->ref_regular
10674 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
10675 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
10676 {
10677 int bindtype;
10678 type = ELF_ST_TYPE (sym.st_info);
10679
10680 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
10681 if (type == STT_GNU_IFUNC)
10682 type = STT_FUNC;
10683
10684 if (h->ref_regular_nonweak)
10685 bindtype = STB_GLOBAL;
10686 else
10687 bindtype = STB_WEAK;
10688 sym.st_info = ELF_ST_INFO (bindtype, type);
10689 }
10690
10691 /* If this is a symbol defined in a dynamic library, don't use the
10692 symbol size from the dynamic library. Relinking an executable
10693 against a new library may introduce gratuitous changes in the
10694 executable's symbols if we keep the size. */
10695 if (sym.st_shndx == SHN_UNDEF
10696 && !h->def_regular
10697 && h->def_dynamic)
10698 sym.st_size = 0;
10699
10700 /* If a non-weak symbol with non-default visibility is not defined
10701 locally, it is a fatal error. */
10702 if (!bfd_link_relocatable (flinfo->info)
10703 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
10704 && ELF_ST_BIND (sym.st_info) != STB_WEAK
10705 && h->root.type == bfd_link_hash_undefined
10706 && !h->def_regular)
10707 {
10708 const char *msg;
10709
10710 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
10711 /* xgettext:c-format */
10712 msg = _("%pB: protected symbol `%s' isn't defined");
10713 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
10714 /* xgettext:c-format */
10715 msg = _("%pB: internal symbol `%s' isn't defined");
10716 else
10717 /* xgettext:c-format */
10718 msg = _("%pB: hidden symbol `%s' isn't defined");
10719 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
10720 bfd_set_error (bfd_error_bad_value);
10721 eoinfo->failed = true;
10722 return false;
10723 }
10724
10725 /* If this symbol should be put in the .dynsym section, then put it
10726 there now. We already know the symbol index. We also fill in
10727 the entry in the .hash section. */
10728 if (h->dynindx != -1
10729 && elf_hash_table (flinfo->info)->dynamic_sections_created
10730 && elf_hash_table (flinfo->info)->dynsym != NULL
10731 && !discarded_section (elf_hash_table (flinfo->info)->dynsym))
10732 {
10733 bfd_byte *esym;
10734
10735 /* Since there is no version information in the dynamic string,
10736 if there is no version info in symbol version section, we will
10737 have a run-time problem if not linking executable, referenced
10738 by shared library, or not bound locally. */
10739 if (h->verinfo.verdef == NULL
10740 && (!bfd_link_executable (flinfo->info)
10741 || h->ref_dynamic
10742 || !h->def_regular))
10743 {
10744 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
10745
10746 if (p && p [1] != '\0')
10747 {
10748 _bfd_error_handler
10749 /* xgettext:c-format */
10750 (_("%pB: no symbol version section for versioned symbol `%s'"),
10751 flinfo->output_bfd, h->root.root.string);
10752 eoinfo->failed = true;
10753 return false;
10754 }
10755 }
10756
10757 sym.st_name = h->dynstr_index;
10758 esym = (elf_hash_table (flinfo->info)->dynsym->contents
10759 + h->dynindx * bed->s->sizeof_sym);
10760 if (!check_dynsym (flinfo->output_bfd, &sym))
10761 {
10762 eoinfo->failed = true;
10763 return false;
10764 }
10765
10766 /* Inform the linker of the addition of this symbol. */
10767
10768 if (flinfo->info->callbacks->ctf_new_dynsym)
10769 flinfo->info->callbacks->ctf_new_dynsym (h->dynindx, &sym);
10770
10771 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
10772
10773 if (flinfo->hash_sec != NULL)
10774 {
10775 size_t hash_entry_size;
10776 bfd_byte *bucketpos;
10777 bfd_vma chain;
10778 size_t bucketcount;
10779 size_t bucket;
10780
10781 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
10782 bucket = h->u.elf_hash_value % bucketcount;
10783
10784 hash_entry_size
10785 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
10786 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
10787 + (bucket + 2) * hash_entry_size);
10788 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
10789 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
10790 bucketpos);
10791 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
10792 ((bfd_byte *) flinfo->hash_sec->contents
10793 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
10794 }
10795
10796 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
10797 {
10798 Elf_Internal_Versym iversym;
10799 Elf_External_Versym *eversym;
10800
10801 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
10802 {
10803 if (h->verinfo.verdef == NULL
10804 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
10805 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
10806 iversym.vs_vers = 1;
10807 else
10808 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
10809 }
10810 else
10811 {
10812 if (h->verinfo.vertree == NULL)
10813 iversym.vs_vers = 1;
10814 else
10815 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
10816 if (flinfo->info->create_default_symver)
10817 iversym.vs_vers++;
10818 }
10819
10820 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
10821 defined locally. */
10822 if (h->versioned == versioned_hidden && h->def_regular)
10823 iversym.vs_vers |= VERSYM_HIDDEN;
10824
10825 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
10826 eversym += h->dynindx;
10827 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
10828 }
10829 }
10830
10831 /* If the symbol is undefined, and we didn't output it to .dynsym,
10832 strip it from .symtab too. Obviously we can't do this for
10833 relocatable output or when needed for --emit-relocs. */
10834 else if (input_sec == bfd_und_section_ptr
10835 && h->indx != -2
10836 /* PR 22319 Do not strip global undefined symbols marked as being needed. */
10837 && (h->mark != 1 || ELF_ST_BIND (sym.st_info) != STB_GLOBAL)
10838 && !bfd_link_relocatable (flinfo->info))
10839 return true;
10840
10841 /* Also strip others that we couldn't earlier due to dynamic symbol
10842 processing. */
10843 if (strip)
10844 return true;
10845 if ((input_sec->flags & SEC_EXCLUDE) != 0)
10846 return true;
10847
10848 /* Output a FILE symbol so that following locals are not associated
10849 with the wrong input file. We need one for forced local symbols
10850 if we've seen more than one FILE symbol or when we have exactly
10851 one FILE symbol but global symbols are present in a file other
10852 than the one with the FILE symbol. We also need one if linker
10853 defined symbols are present. In practice these conditions are
10854 always met, so just emit the FILE symbol unconditionally. */
10855 if (eoinfo->localsyms
10856 && !eoinfo->file_sym_done
10857 && eoinfo->flinfo->filesym_count != 0)
10858 {
10859 Elf_Internal_Sym fsym;
10860
10861 memset (&fsym, 0, sizeof (fsym));
10862 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10863 fsym.st_shndx = SHN_ABS;
10864 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
10865 bfd_und_section_ptr, NULL))
10866 return false;
10867
10868 eoinfo->file_sym_done = true;
10869 }
10870
10871 indx = bfd_get_symcount (flinfo->output_bfd);
10872 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
10873 input_sec, h);
10874 if (ret == 0)
10875 {
10876 eoinfo->failed = true;
10877 return false;
10878 }
10879 else if (ret == 1)
10880 h->indx = indx;
10881 else if (h->indx == -2)
10882 abort();
10883
10884 return true;
10885 }
10886
10887 /* Return TRUE if special handling is done for relocs in SEC against
10888 symbols defined in discarded sections. */
10889
10890 static bool
10891 elf_section_ignore_discarded_relocs (asection *sec)
10892 {
10893 const struct elf_backend_data *bed;
10894
10895 switch (sec->sec_info_type)
10896 {
10897 case SEC_INFO_TYPE_STABS:
10898 case SEC_INFO_TYPE_EH_FRAME:
10899 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10900 case SEC_INFO_TYPE_SFRAME:
10901 return true;
10902 default:
10903 break;
10904 }
10905
10906 bed = get_elf_backend_data (sec->owner);
10907 if (bed->elf_backend_ignore_discarded_relocs != NULL
10908 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
10909 return true;
10910
10911 return false;
10912 }
10913
10914 /* Return a mask saying how ld should treat relocations in SEC against
10915 symbols defined in discarded sections. If this function returns
10916 COMPLAIN set, ld will issue a warning message. If this function
10917 returns PRETEND set, and the discarded section was link-once and the
10918 same size as the kept link-once section, ld will pretend that the
10919 symbol was actually defined in the kept section. Otherwise ld will
10920 zero the reloc (at least that is the intent, but some cooperation by
10921 the target dependent code is needed, particularly for REL targets). */
10922
10923 unsigned int
10924 _bfd_elf_default_action_discarded (asection *sec)
10925 {
10926 const struct elf_backend_data *bed;
10927 bed = get_elf_backend_data (sec->owner);
10928
10929 if (sec->flags & SEC_DEBUGGING)
10930 return PRETEND;
10931
10932 if (strcmp (".eh_frame", sec->name) == 0)
10933 return 0;
10934
10935 if (bed->elf_backend_can_make_multiple_eh_frame
10936 && strncmp (sec->name, ".eh_frame.", 10) == 0)
10937 return 0;
10938
10939 if (strcmp (".sframe", sec->name) == 0)
10940 return 0;
10941
10942 if (strcmp (".gcc_except_table", sec->name) == 0)
10943 return 0;
10944
10945 return COMPLAIN | PRETEND;
10946 }
10947
10948 /* Find a match between a section and a member of a section group. */
10949
10950 static asection *
10951 match_group_member (asection *sec, asection *group,
10952 struct bfd_link_info *info)
10953 {
10954 asection *first = elf_next_in_group (group);
10955 asection *s = first;
10956
10957 while (s != NULL)
10958 {
10959 if (bfd_elf_match_symbols_in_sections (s, sec, info))
10960 return s;
10961
10962 s = elf_next_in_group (s);
10963 if (s == first)
10964 break;
10965 }
10966
10967 return NULL;
10968 }
10969
10970 /* Check if the kept section of a discarded section SEC can be used
10971 to replace it. Return the replacement if it is OK. Otherwise return
10972 NULL. */
10973
10974 asection *
10975 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
10976 {
10977 asection *kept;
10978
10979 kept = sec->kept_section;
10980 if (kept != NULL)
10981 {
10982 if ((kept->flags & SEC_GROUP) != 0)
10983 kept = match_group_member (sec, kept, info);
10984 if (kept != NULL)
10985 {
10986 if ((sec->rawsize != 0 ? sec->rawsize : sec->size)
10987 != (kept->rawsize != 0 ? kept->rawsize : kept->size))
10988 kept = NULL;
10989 else
10990 {
10991 /* Get the real kept section. */
10992 asection *next;
10993 for (next = kept->kept_section;
10994 next != NULL;
10995 next = next->kept_section)
10996 kept = next;
10997 }
10998 }
10999 sec->kept_section = kept;
11000 }
11001 return kept;
11002 }
11003
11004 /* Link an input file into the linker output file. This function
11005 handles all the sections and relocations of the input file at once.
11006 This is so that we only have to read the local symbols once, and
11007 don't have to keep them in memory. */
11008
11009 static bool
11010 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
11011 {
11012 int (*relocate_section)
11013 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
11014 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
11015 bfd *output_bfd;
11016 Elf_Internal_Shdr *symtab_hdr;
11017 size_t locsymcount;
11018 size_t extsymoff;
11019 Elf_Internal_Sym *isymbuf;
11020 Elf_Internal_Sym *isym;
11021 Elf_Internal_Sym *isymend;
11022 long *pindex;
11023 asection **ppsection;
11024 asection *o;
11025 const struct elf_backend_data *bed;
11026 struct elf_link_hash_entry **sym_hashes;
11027 bfd_size_type address_size;
11028 bfd_vma r_type_mask;
11029 int r_sym_shift;
11030 bool have_file_sym = false;
11031
11032 output_bfd = flinfo->output_bfd;
11033 bed = get_elf_backend_data (output_bfd);
11034 relocate_section = bed->elf_backend_relocate_section;
11035
11036 /* If this is a dynamic object, we don't want to do anything here:
11037 we don't want the local symbols, and we don't want the section
11038 contents. */
11039 if ((input_bfd->flags & DYNAMIC) != 0)
11040 return true;
11041
11042 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
11043 if (elf_bad_symtab (input_bfd))
11044 {
11045 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11046 extsymoff = 0;
11047 }
11048 else
11049 {
11050 locsymcount = symtab_hdr->sh_info;
11051 extsymoff = symtab_hdr->sh_info;
11052 }
11053
11054 /* Enable GNU OSABI features in the output BFD that are used in the input
11055 BFD. */
11056 if (bed->elf_osabi == ELFOSABI_NONE
11057 || bed->elf_osabi == ELFOSABI_GNU
11058 || bed->elf_osabi == ELFOSABI_FREEBSD)
11059 elf_tdata (output_bfd)->has_gnu_osabi
11060 |= (elf_tdata (input_bfd)->has_gnu_osabi
11061 & (bfd_link_relocatable (flinfo->info)
11062 ? -1 : ~elf_gnu_osabi_retain));
11063
11064 /* Read the local symbols. */
11065 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
11066 if (isymbuf == NULL && locsymcount != 0)
11067 {
11068 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
11069 flinfo->internal_syms,
11070 flinfo->external_syms,
11071 flinfo->locsym_shndx);
11072 if (isymbuf == NULL)
11073 return false;
11074 }
11075
11076 /* Find local symbol sections and adjust values of symbols in
11077 SEC_MERGE sections. Write out those local symbols we know are
11078 going into the output file. */
11079 isymend = PTR_ADD (isymbuf, locsymcount);
11080 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
11081 isym < isymend;
11082 isym++, pindex++, ppsection++)
11083 {
11084 asection *isec;
11085 const char *name;
11086 Elf_Internal_Sym osym;
11087 long indx;
11088 int ret;
11089
11090 *pindex = -1;
11091
11092 if (elf_bad_symtab (input_bfd))
11093 {
11094 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
11095 {
11096 *ppsection = NULL;
11097 continue;
11098 }
11099 }
11100
11101 if (isym->st_shndx == SHN_UNDEF)
11102 isec = bfd_und_section_ptr;
11103 else if (isym->st_shndx == SHN_ABS)
11104 isec = bfd_abs_section_ptr;
11105 else if (isym->st_shndx == SHN_COMMON)
11106 isec = bfd_com_section_ptr;
11107 else
11108 {
11109 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
11110 if (isec == NULL)
11111 {
11112 /* Don't attempt to output symbols with st_shnx in the
11113 reserved range other than SHN_ABS and SHN_COMMON. */
11114 isec = bfd_und_section_ptr;
11115 }
11116 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
11117 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
11118 isym->st_value =
11119 _bfd_merged_section_offset (output_bfd, &isec,
11120 elf_section_data (isec)->sec_info,
11121 isym->st_value);
11122 }
11123
11124 *ppsection = isec;
11125
11126 /* Don't output the first, undefined, symbol. In fact, don't
11127 output any undefined local symbol. */
11128 if (isec == bfd_und_section_ptr)
11129 continue;
11130
11131 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
11132 {
11133 /* We never output section symbols. Instead, we use the
11134 section symbol of the corresponding section in the output
11135 file. */
11136 continue;
11137 }
11138
11139 /* If we are stripping all symbols, we don't want to output this
11140 one. */
11141 if (flinfo->info->strip == strip_all)
11142 continue;
11143
11144 /* If we are discarding all local symbols, we don't want to
11145 output this one. If we are generating a relocatable output
11146 file, then some of the local symbols may be required by
11147 relocs; we output them below as we discover that they are
11148 needed. */
11149 if (flinfo->info->discard == discard_all)
11150 continue;
11151
11152 /* If this symbol is defined in a section which we are
11153 discarding, we don't need to keep it. */
11154 if (isym->st_shndx != SHN_UNDEF
11155 && isym->st_shndx < SHN_LORESERVE
11156 && isec->output_section == NULL
11157 && flinfo->info->non_contiguous_regions)
11158 {
11159 if (flinfo->info->non_contiguous_regions_warnings)
11160 _bfd_error_handler (_("warning: --enable-non-contiguous-regions "
11161 "discards section `%s' from '%s'\n"),
11162 isec->name, bfd_get_filename (isec->owner));
11163 continue;
11164 }
11165
11166 if (isym->st_shndx != SHN_UNDEF
11167 && isym->st_shndx < SHN_LORESERVE
11168 && bfd_section_removed_from_list (output_bfd,
11169 isec->output_section))
11170 continue;
11171
11172 /* Get the name of the symbol. */
11173 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
11174 isym->st_name);
11175 if (name == NULL)
11176 return false;
11177
11178 /* See if we are discarding symbols with this name. */
11179 if ((flinfo->info->strip == strip_some
11180 && (bfd_hash_lookup (flinfo->info->keep_hash, name, false, false)
11181 == NULL))
11182 || (((flinfo->info->discard == discard_sec_merge
11183 && (isec->flags & SEC_MERGE)
11184 && !bfd_link_relocatable (flinfo->info))
11185 || flinfo->info->discard == discard_l)
11186 && bfd_is_local_label_name (input_bfd, name)))
11187 continue;
11188
11189 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
11190 {
11191 if (input_bfd->lto_output)
11192 /* -flto puts a temp file name here. This means builds
11193 are not reproducible. Discard the symbol. */
11194 continue;
11195 have_file_sym = true;
11196 flinfo->filesym_count += 1;
11197 }
11198 if (!have_file_sym)
11199 {
11200 /* In the absence of debug info, bfd_find_nearest_line uses
11201 FILE symbols to determine the source file for local
11202 function symbols. Provide a FILE symbol here if input
11203 files lack such, so that their symbols won't be
11204 associated with a previous input file. It's not the
11205 source file, but the best we can do. */
11206 const char *filename;
11207 have_file_sym = true;
11208 flinfo->filesym_count += 1;
11209 memset (&osym, 0, sizeof (osym));
11210 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
11211 osym.st_shndx = SHN_ABS;
11212 if (input_bfd->lto_output)
11213 filename = NULL;
11214 else
11215 filename = lbasename (bfd_get_filename (input_bfd));
11216 if (!elf_link_output_symstrtab (flinfo, filename, &osym,
11217 bfd_abs_section_ptr, NULL))
11218 return false;
11219 }
11220
11221 osym = *isym;
11222
11223 /* Adjust the section index for the output file. */
11224 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
11225 isec->output_section);
11226 if (osym.st_shndx == SHN_BAD)
11227 return false;
11228
11229 /* ELF symbols in relocatable files are section relative, but
11230 in executable files they are virtual addresses. Note that
11231 this code assumes that all ELF sections have an associated
11232 BFD section with a reasonable value for output_offset; below
11233 we assume that they also have a reasonable value for
11234 output_section. Any special sections must be set up to meet
11235 these requirements. */
11236 osym.st_value += isec->output_offset;
11237 if (!bfd_link_relocatable (flinfo->info))
11238 {
11239 osym.st_value += isec->output_section->vma;
11240 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
11241 {
11242 /* STT_TLS symbols are relative to PT_TLS segment base. */
11243 if (elf_hash_table (flinfo->info)->tls_sec != NULL)
11244 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
11245 else
11246 osym.st_info = ELF_ST_INFO (ELF_ST_BIND (osym.st_info),
11247 STT_NOTYPE);
11248 }
11249 }
11250
11251 indx = bfd_get_symcount (output_bfd);
11252 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
11253 if (ret == 0)
11254 return false;
11255 else if (ret == 1)
11256 *pindex = indx;
11257 }
11258
11259 if (bed->s->arch_size == 32)
11260 {
11261 r_type_mask = 0xff;
11262 r_sym_shift = 8;
11263 address_size = 4;
11264 }
11265 else
11266 {
11267 r_type_mask = 0xffffffff;
11268 r_sym_shift = 32;
11269 address_size = 8;
11270 }
11271
11272 /* Relocate the contents of each section. */
11273 sym_hashes = elf_sym_hashes (input_bfd);
11274 for (o = input_bfd->sections; o != NULL; o = o->next)
11275 {
11276 bfd_byte *contents;
11277
11278 if (! o->linker_mark)
11279 {
11280 /* This section was omitted from the link. */
11281 continue;
11282 }
11283
11284 if (!flinfo->info->resolve_section_groups
11285 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
11286 {
11287 /* Deal with the group signature symbol. */
11288 struct bfd_elf_section_data *sec_data = elf_section_data (o);
11289 unsigned long symndx = sec_data->this_hdr.sh_info;
11290 asection *osec = o->output_section;
11291
11292 BFD_ASSERT (bfd_link_relocatable (flinfo->info));
11293 if (symndx >= locsymcount
11294 || (elf_bad_symtab (input_bfd)
11295 && flinfo->sections[symndx] == NULL))
11296 {
11297 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
11298 while (h->root.type == bfd_link_hash_indirect
11299 || h->root.type == bfd_link_hash_warning)
11300 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11301 /* Arrange for symbol to be output. */
11302 h->indx = -2;
11303 elf_section_data (osec)->this_hdr.sh_info = -2;
11304 }
11305 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
11306 {
11307 /* We'll use the output section target_index. */
11308 asection *sec = flinfo->sections[symndx]->output_section;
11309 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
11310 }
11311 else
11312 {
11313 if (flinfo->indices[symndx] == -1)
11314 {
11315 /* Otherwise output the local symbol now. */
11316 Elf_Internal_Sym sym = isymbuf[symndx];
11317 asection *sec = flinfo->sections[symndx]->output_section;
11318 const char *name;
11319 long indx;
11320 int ret;
11321
11322 name = bfd_elf_string_from_elf_section (input_bfd,
11323 symtab_hdr->sh_link,
11324 sym.st_name);
11325 if (name == NULL)
11326 return false;
11327
11328 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
11329 sec);
11330 if (sym.st_shndx == SHN_BAD)
11331 return false;
11332
11333 sym.st_value += o->output_offset;
11334
11335 indx = bfd_get_symcount (output_bfd);
11336 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
11337 NULL);
11338 if (ret == 0)
11339 return false;
11340 else if (ret == 1)
11341 flinfo->indices[symndx] = indx;
11342 else
11343 abort ();
11344 }
11345 elf_section_data (osec)->this_hdr.sh_info
11346 = flinfo->indices[symndx];
11347 }
11348 }
11349
11350 if ((o->flags & SEC_HAS_CONTENTS) == 0
11351 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
11352 continue;
11353
11354 if ((o->flags & SEC_LINKER_CREATED) != 0)
11355 {
11356 /* Section was created by _bfd_elf_link_create_dynamic_sections
11357 or somesuch. */
11358 continue;
11359 }
11360
11361 /* Get the contents of the section. They have been cached by a
11362 relaxation routine. Note that o is a section in an input
11363 file, so the contents field will not have been set by any of
11364 the routines which work on output files. */
11365 if (elf_section_data (o)->this_hdr.contents != NULL)
11366 {
11367 contents = elf_section_data (o)->this_hdr.contents;
11368 if (bed->caches_rawsize
11369 && o->rawsize != 0
11370 && o->rawsize < o->size)
11371 {
11372 memcpy (flinfo->contents, contents, o->rawsize);
11373 contents = flinfo->contents;
11374 }
11375 }
11376 else
11377 {
11378 contents = flinfo->contents;
11379 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
11380 return false;
11381 }
11382
11383 if ((o->flags & SEC_RELOC) != 0)
11384 {
11385 Elf_Internal_Rela *internal_relocs;
11386 Elf_Internal_Rela *rel, *relend;
11387 int action_discarded;
11388 int ret;
11389
11390 /* Get the swapped relocs. */
11391 internal_relocs
11392 = _bfd_elf_link_info_read_relocs (input_bfd, flinfo->info, o,
11393 flinfo->external_relocs,
11394 flinfo->internal_relocs,
11395 false);
11396 if (internal_relocs == NULL
11397 && o->reloc_count > 0)
11398 return false;
11399
11400 action_discarded = -1;
11401 if (!elf_section_ignore_discarded_relocs (o))
11402 action_discarded = (*bed->action_discarded) (o);
11403
11404 /* Run through the relocs evaluating complex reloc symbols and
11405 looking for relocs against symbols from discarded sections
11406 or section symbols from removed link-once sections.
11407 Complain about relocs against discarded sections. Zero
11408 relocs against removed link-once sections. */
11409
11410 rel = internal_relocs;
11411 relend = rel + o->reloc_count;
11412 for ( ; rel < relend; rel++)
11413 {
11414 unsigned long r_symndx = rel->r_info >> r_sym_shift;
11415 unsigned int s_type;
11416 asection **ps, *sec;
11417 struct elf_link_hash_entry *h = NULL;
11418 const char *sym_name;
11419
11420 if (r_symndx == STN_UNDEF)
11421 continue;
11422
11423 if (r_symndx >= locsymcount
11424 || (elf_bad_symtab (input_bfd)
11425 && flinfo->sections[r_symndx] == NULL))
11426 {
11427 h = sym_hashes[r_symndx - extsymoff];
11428
11429 /* Badly formatted input files can contain relocs that
11430 reference non-existant symbols. Check here so that
11431 we do not seg fault. */
11432 if (h == NULL)
11433 {
11434 _bfd_error_handler
11435 /* xgettext:c-format */
11436 (_("error: %pB contains a reloc (%#" PRIx64 ") for section %pA "
11437 "that references a non-existent global symbol"),
11438 input_bfd, (uint64_t) rel->r_info, o);
11439 bfd_set_error (bfd_error_bad_value);
11440 return false;
11441 }
11442
11443 while (h->root.type == bfd_link_hash_indirect
11444 || h->root.type == bfd_link_hash_warning)
11445 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11446
11447 s_type = h->type;
11448
11449 /* If a plugin symbol is referenced from a non-IR file,
11450 mark the symbol as undefined. Note that the
11451 linker may attach linker created dynamic sections
11452 to the plugin bfd. Symbols defined in linker
11453 created sections are not plugin symbols. */
11454 if ((h->root.non_ir_ref_regular
11455 || h->root.non_ir_ref_dynamic)
11456 && (h->root.type == bfd_link_hash_defined
11457 || h->root.type == bfd_link_hash_defweak)
11458 && (h->root.u.def.section->flags
11459 & SEC_LINKER_CREATED) == 0
11460 && h->root.u.def.section->owner != NULL
11461 && (h->root.u.def.section->owner->flags
11462 & BFD_PLUGIN) != 0)
11463 {
11464 h->root.type = bfd_link_hash_undefined;
11465 h->root.u.undef.abfd = h->root.u.def.section->owner;
11466 }
11467
11468 ps = NULL;
11469 if (h->root.type == bfd_link_hash_defined
11470 || h->root.type == bfd_link_hash_defweak)
11471 ps = &h->root.u.def.section;
11472
11473 sym_name = h->root.root.string;
11474 }
11475 else
11476 {
11477 Elf_Internal_Sym *sym = isymbuf + r_symndx;
11478
11479 s_type = ELF_ST_TYPE (sym->st_info);
11480 ps = &flinfo->sections[r_symndx];
11481 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
11482 sym, *ps);
11483 }
11484
11485 if ((s_type == STT_RELC || s_type == STT_SRELC)
11486 && !bfd_link_relocatable (flinfo->info))
11487 {
11488 bfd_vma val;
11489 bfd_vma dot = (rel->r_offset
11490 + o->output_offset + o->output_section->vma);
11491 #ifdef DEBUG
11492 printf ("Encountered a complex symbol!");
11493 printf (" (input_bfd %s, section %s, reloc %ld\n",
11494 bfd_get_filename (input_bfd), o->name,
11495 (long) (rel - internal_relocs));
11496 printf (" symbol: idx %8.8lx, name %s\n",
11497 r_symndx, sym_name);
11498 printf (" reloc : info %8.8lx, addr %8.8lx\n",
11499 (unsigned long) rel->r_info,
11500 (unsigned long) rel->r_offset);
11501 #endif
11502 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
11503 isymbuf, locsymcount, s_type == STT_SRELC))
11504 return false;
11505
11506 /* Symbol evaluated OK. Update to absolute value. */
11507 set_symbol_value (input_bfd, isymbuf, locsymcount,
11508 r_symndx, val);
11509 continue;
11510 }
11511
11512 if (action_discarded != -1 && ps != NULL)
11513 {
11514 /* Complain if the definition comes from a
11515 discarded section. */
11516 if ((sec = *ps) != NULL && discarded_section (sec))
11517 {
11518 BFD_ASSERT (r_symndx != STN_UNDEF);
11519 if (action_discarded & COMPLAIN)
11520 (*flinfo->info->callbacks->einfo)
11521 /* xgettext:c-format */
11522 (_("%X`%s' referenced in section `%pA' of %pB: "
11523 "defined in discarded section `%pA' of %pB\n"),
11524 sym_name, o, input_bfd, sec, sec->owner);
11525
11526 /* Try to do the best we can to support buggy old
11527 versions of gcc. Pretend that the symbol is
11528 really defined in the kept linkonce section.
11529 FIXME: This is quite broken. Modifying the
11530 symbol here means we will be changing all later
11531 uses of the symbol, not just in this section. */
11532 if (action_discarded & PRETEND)
11533 {
11534 asection *kept;
11535
11536 kept = _bfd_elf_check_kept_section (sec,
11537 flinfo->info);
11538 if (kept != NULL)
11539 {
11540 *ps = kept;
11541 continue;
11542 }
11543 }
11544 }
11545 }
11546 }
11547
11548 /* Relocate the section by invoking a back end routine.
11549
11550 The back end routine is responsible for adjusting the
11551 section contents as necessary, and (if using Rela relocs
11552 and generating a relocatable output file) adjusting the
11553 reloc addend as necessary.
11554
11555 The back end routine does not have to worry about setting
11556 the reloc address or the reloc symbol index.
11557
11558 The back end routine is given a pointer to the swapped in
11559 internal symbols, and can access the hash table entries
11560 for the external symbols via elf_sym_hashes (input_bfd).
11561
11562 When generating relocatable output, the back end routine
11563 must handle STB_LOCAL/STT_SECTION symbols specially. The
11564 output symbol is going to be a section symbol
11565 corresponding to the output section, which will require
11566 the addend to be adjusted. */
11567
11568 ret = (*relocate_section) (output_bfd, flinfo->info,
11569 input_bfd, o, contents,
11570 internal_relocs,
11571 isymbuf,
11572 flinfo->sections);
11573 if (!ret)
11574 return false;
11575
11576 if (ret == 2
11577 || bfd_link_relocatable (flinfo->info)
11578 || flinfo->info->emitrelocations)
11579 {
11580 Elf_Internal_Rela *irela;
11581 Elf_Internal_Rela *irelaend, *irelamid;
11582 bfd_vma last_offset;
11583 struct elf_link_hash_entry **rel_hash;
11584 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
11585 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
11586 unsigned int next_erel;
11587 bool rela_normal;
11588 struct bfd_elf_section_data *esdi, *esdo;
11589
11590 esdi = elf_section_data (o);
11591 esdo = elf_section_data (o->output_section);
11592 rela_normal = false;
11593
11594 /* Adjust the reloc addresses and symbol indices. */
11595
11596 irela = internal_relocs;
11597 irelaend = irela + o->reloc_count;
11598 rel_hash = PTR_ADD (esdo->rel.hashes, esdo->rel.count);
11599 /* We start processing the REL relocs, if any. When we reach
11600 IRELAMID in the loop, we switch to the RELA relocs. */
11601 irelamid = irela;
11602 if (esdi->rel.hdr != NULL)
11603 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
11604 * bed->s->int_rels_per_ext_rel);
11605 rel_hash_list = rel_hash;
11606 rela_hash_list = NULL;
11607 last_offset = o->output_offset;
11608 if (!bfd_link_relocatable (flinfo->info))
11609 last_offset += o->output_section->vma;
11610 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
11611 {
11612 unsigned long r_symndx;
11613 asection *sec;
11614 Elf_Internal_Sym sym;
11615
11616 if (next_erel == bed->s->int_rels_per_ext_rel)
11617 {
11618 rel_hash++;
11619 next_erel = 0;
11620 }
11621
11622 if (irela == irelamid)
11623 {
11624 rel_hash = PTR_ADD (esdo->rela.hashes, esdo->rela.count);
11625 rela_hash_list = rel_hash;
11626 rela_normal = bed->rela_normal;
11627 }
11628
11629 irela->r_offset = _bfd_elf_section_offset (output_bfd,
11630 flinfo->info, o,
11631 irela->r_offset);
11632 if (irela->r_offset >= (bfd_vma) -2)
11633 {
11634 /* This is a reloc for a deleted entry or somesuch.
11635 Turn it into an R_*_NONE reloc, at the same
11636 offset as the last reloc. elf_eh_frame.c and
11637 bfd_elf_discard_info rely on reloc offsets
11638 being ordered. */
11639 irela->r_offset = last_offset;
11640 irela->r_info = 0;
11641 irela->r_addend = 0;
11642 continue;
11643 }
11644
11645 irela->r_offset += o->output_offset;
11646
11647 /* Relocs in an executable have to be virtual addresses. */
11648 if (!bfd_link_relocatable (flinfo->info))
11649 irela->r_offset += o->output_section->vma;
11650
11651 last_offset = irela->r_offset;
11652
11653 r_symndx = irela->r_info >> r_sym_shift;
11654 if (r_symndx == STN_UNDEF)
11655 continue;
11656
11657 if (r_symndx >= locsymcount
11658 || (elf_bad_symtab (input_bfd)
11659 && flinfo->sections[r_symndx] == NULL))
11660 {
11661 struct elf_link_hash_entry *rh;
11662 unsigned long indx;
11663
11664 /* This is a reloc against a global symbol. We
11665 have not yet output all the local symbols, so
11666 we do not know the symbol index of any global
11667 symbol. We set the rel_hash entry for this
11668 reloc to point to the global hash table entry
11669 for this symbol. The symbol index is then
11670 set at the end of bfd_elf_final_link. */
11671 indx = r_symndx - extsymoff;
11672 rh = elf_sym_hashes (input_bfd)[indx];
11673 while (rh->root.type == bfd_link_hash_indirect
11674 || rh->root.type == bfd_link_hash_warning)
11675 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
11676
11677 /* Setting the index to -2 tells
11678 elf_link_output_extsym that this symbol is
11679 used by a reloc. */
11680 BFD_ASSERT (rh->indx < 0);
11681 rh->indx = -2;
11682 *rel_hash = rh;
11683
11684 continue;
11685 }
11686
11687 /* This is a reloc against a local symbol. */
11688
11689 *rel_hash = NULL;
11690 sym = isymbuf[r_symndx];
11691 sec = flinfo->sections[r_symndx];
11692 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
11693 {
11694 /* I suppose the backend ought to fill in the
11695 section of any STT_SECTION symbol against a
11696 processor specific section. */
11697 r_symndx = STN_UNDEF;
11698 if (bfd_is_abs_section (sec))
11699 ;
11700 else if (sec == NULL || sec->owner == NULL)
11701 {
11702 bfd_set_error (bfd_error_bad_value);
11703 return false;
11704 }
11705 else
11706 {
11707 asection *osec = sec->output_section;
11708
11709 /* If we have discarded a section, the output
11710 section will be the absolute section. In
11711 case of discarded SEC_MERGE sections, use
11712 the kept section. relocate_section should
11713 have already handled discarded linkonce
11714 sections. */
11715 if (bfd_is_abs_section (osec)
11716 && sec->kept_section != NULL
11717 && sec->kept_section->output_section != NULL)
11718 {
11719 osec = sec->kept_section->output_section;
11720 irela->r_addend -= osec->vma;
11721 }
11722
11723 if (!bfd_is_abs_section (osec))
11724 {
11725 r_symndx = osec->target_index;
11726 if (r_symndx == STN_UNDEF)
11727 {
11728 irela->r_addend += osec->vma;
11729 osec = _bfd_nearby_section (output_bfd, osec,
11730 osec->vma);
11731 irela->r_addend -= osec->vma;
11732 r_symndx = osec->target_index;
11733 }
11734 }
11735 }
11736
11737 /* Adjust the addend according to where the
11738 section winds up in the output section. */
11739 if (rela_normal)
11740 irela->r_addend += sec->output_offset;
11741 }
11742 else
11743 {
11744 if (flinfo->indices[r_symndx] == -1)
11745 {
11746 unsigned long shlink;
11747 const char *name;
11748 asection *osec;
11749 long indx;
11750
11751 if (flinfo->info->strip == strip_all)
11752 {
11753 /* You can't do ld -r -s. */
11754 bfd_set_error (bfd_error_invalid_operation);
11755 return false;
11756 }
11757
11758 /* This symbol was skipped earlier, but
11759 since it is needed by a reloc, we
11760 must output it now. */
11761 shlink = symtab_hdr->sh_link;
11762 name = (bfd_elf_string_from_elf_section
11763 (input_bfd, shlink, sym.st_name));
11764 if (name == NULL)
11765 return false;
11766
11767 osec = sec->output_section;
11768 sym.st_shndx =
11769 _bfd_elf_section_from_bfd_section (output_bfd,
11770 osec);
11771 if (sym.st_shndx == SHN_BAD)
11772 return false;
11773
11774 sym.st_value += sec->output_offset;
11775 if (!bfd_link_relocatable (flinfo->info))
11776 {
11777 sym.st_value += osec->vma;
11778 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
11779 {
11780 struct elf_link_hash_table *htab
11781 = elf_hash_table (flinfo->info);
11782
11783 /* STT_TLS symbols are relative to PT_TLS
11784 segment base. */
11785 if (htab->tls_sec != NULL)
11786 sym.st_value -= htab->tls_sec->vma;
11787 else
11788 sym.st_info
11789 = ELF_ST_INFO (ELF_ST_BIND (sym.st_info),
11790 STT_NOTYPE);
11791 }
11792 }
11793
11794 indx = bfd_get_symcount (output_bfd);
11795 ret = elf_link_output_symstrtab (flinfo, name,
11796 &sym, sec,
11797 NULL);
11798 if (ret == 0)
11799 return false;
11800 else if (ret == 1)
11801 flinfo->indices[r_symndx] = indx;
11802 else
11803 abort ();
11804 }
11805
11806 r_symndx = flinfo->indices[r_symndx];
11807 }
11808
11809 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
11810 | (irela->r_info & r_type_mask));
11811 }
11812
11813 /* Swap out the relocs. */
11814 input_rel_hdr = esdi->rel.hdr;
11815 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
11816 {
11817 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11818 input_rel_hdr,
11819 internal_relocs,
11820 rel_hash_list))
11821 return false;
11822 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
11823 * bed->s->int_rels_per_ext_rel);
11824 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
11825 }
11826
11827 input_rela_hdr = esdi->rela.hdr;
11828 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
11829 {
11830 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11831 input_rela_hdr,
11832 internal_relocs,
11833 rela_hash_list))
11834 return false;
11835 }
11836 }
11837 }
11838
11839 /* Write out the modified section contents. */
11840 if (bed->elf_backend_write_section
11841 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
11842 contents))
11843 {
11844 /* Section written out. */
11845 }
11846 else switch (o->sec_info_type)
11847 {
11848 case SEC_INFO_TYPE_STABS:
11849 if (! (_bfd_write_section_stabs
11850 (output_bfd,
11851 &elf_hash_table (flinfo->info)->stab_info,
11852 o, &elf_section_data (o)->sec_info, contents)))
11853 return false;
11854 break;
11855 case SEC_INFO_TYPE_MERGE:
11856 if (! _bfd_write_merged_section (output_bfd, o,
11857 elf_section_data (o)->sec_info))
11858 return false;
11859 break;
11860 case SEC_INFO_TYPE_EH_FRAME:
11861 {
11862 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
11863 o, contents))
11864 return false;
11865 }
11866 break;
11867 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
11868 {
11869 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
11870 flinfo->info,
11871 o, contents))
11872 return false;
11873 }
11874 break;
11875 case SEC_INFO_TYPE_SFRAME:
11876 {
11877 /* Merge .sframe sections into the ctf frame encoder
11878 context of the output_bfd's section. The final .sframe
11879 output section will be written out later. */
11880 if (!_bfd_elf_merge_section_sframe (output_bfd, flinfo->info,
11881 o, contents))
11882 return false;
11883 }
11884 break;
11885 default:
11886 {
11887 if (! (o->flags & SEC_EXCLUDE))
11888 {
11889 file_ptr offset = (file_ptr) o->output_offset;
11890 bfd_size_type todo = o->size;
11891
11892 offset *= bfd_octets_per_byte (output_bfd, o);
11893
11894 if ((o->flags & SEC_ELF_REVERSE_COPY)
11895 && o->size > address_size)
11896 {
11897 /* Reverse-copy input section to output. */
11898
11899 if ((o->size & (address_size - 1)) != 0
11900 || (o->reloc_count != 0
11901 && (o->size * bed->s->int_rels_per_ext_rel
11902 != o->reloc_count * address_size)))
11903 {
11904 _bfd_error_handler
11905 /* xgettext:c-format */
11906 (_("error: %pB: size of section %pA is not "
11907 "multiple of address size"),
11908 input_bfd, o);
11909 bfd_set_error (bfd_error_bad_value);
11910 return false;
11911 }
11912
11913 do
11914 {
11915 todo -= address_size;
11916 if (! bfd_set_section_contents (output_bfd,
11917 o->output_section,
11918 contents + todo,
11919 offset,
11920 address_size))
11921 return false;
11922 if (todo == 0)
11923 break;
11924 offset += address_size;
11925 }
11926 while (1);
11927 }
11928 else if (! bfd_set_section_contents (output_bfd,
11929 o->output_section,
11930 contents,
11931 offset, todo))
11932 return false;
11933 }
11934 }
11935 break;
11936 }
11937 }
11938
11939 return true;
11940 }
11941
11942 /* Generate a reloc when linking an ELF file. This is a reloc
11943 requested by the linker, and does not come from any input file. This
11944 is used to build constructor and destructor tables when linking
11945 with -Ur. */
11946
11947 static bool
11948 elf_reloc_link_order (bfd *output_bfd,
11949 struct bfd_link_info *info,
11950 asection *output_section,
11951 struct bfd_link_order *link_order)
11952 {
11953 reloc_howto_type *howto;
11954 long indx;
11955 bfd_vma offset;
11956 bfd_vma addend;
11957 struct bfd_elf_section_reloc_data *reldata;
11958 struct elf_link_hash_entry **rel_hash_ptr;
11959 Elf_Internal_Shdr *rel_hdr;
11960 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
11961 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
11962 bfd_byte *erel;
11963 unsigned int i;
11964 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
11965
11966 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
11967 if (howto == NULL)
11968 {
11969 bfd_set_error (bfd_error_bad_value);
11970 return false;
11971 }
11972
11973 addend = link_order->u.reloc.p->addend;
11974
11975 if (esdo->rel.hdr)
11976 reldata = &esdo->rel;
11977 else if (esdo->rela.hdr)
11978 reldata = &esdo->rela;
11979 else
11980 {
11981 reldata = NULL;
11982 BFD_ASSERT (0);
11983 }
11984
11985 /* Figure out the symbol index. */
11986 rel_hash_ptr = reldata->hashes + reldata->count;
11987 if (link_order->type == bfd_section_reloc_link_order)
11988 {
11989 indx = link_order->u.reloc.p->u.section->target_index;
11990 BFD_ASSERT (indx != 0);
11991 *rel_hash_ptr = NULL;
11992 }
11993 else
11994 {
11995 struct elf_link_hash_entry *h;
11996
11997 /* Treat a reloc against a defined symbol as though it were
11998 actually against the section. */
11999 h = ((struct elf_link_hash_entry *)
12000 bfd_wrapped_link_hash_lookup (output_bfd, info,
12001 link_order->u.reloc.p->u.name,
12002 false, false, true));
12003 if (h != NULL
12004 && (h->root.type == bfd_link_hash_defined
12005 || h->root.type == bfd_link_hash_defweak))
12006 {
12007 asection *section;
12008
12009 section = h->root.u.def.section;
12010 indx = section->output_section->target_index;
12011 *rel_hash_ptr = NULL;
12012 /* It seems that we ought to add the symbol value to the
12013 addend here, but in practice it has already been added
12014 because it was passed to constructor_callback. */
12015 addend += section->output_section->vma + section->output_offset;
12016 }
12017 else if (h != NULL)
12018 {
12019 /* Setting the index to -2 tells elf_link_output_extsym that
12020 this symbol is used by a reloc. */
12021 h->indx = -2;
12022 *rel_hash_ptr = h;
12023 indx = 0;
12024 }
12025 else
12026 {
12027 (*info->callbacks->unattached_reloc)
12028 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
12029 indx = 0;
12030 }
12031 }
12032
12033 /* If this is an inplace reloc, we must write the addend into the
12034 object file. */
12035 if (howto->partial_inplace && addend != 0)
12036 {
12037 bfd_size_type size;
12038 bfd_reloc_status_type rstat;
12039 bfd_byte *buf;
12040 bool ok;
12041 const char *sym_name;
12042 bfd_size_type octets;
12043
12044 size = (bfd_size_type) bfd_get_reloc_size (howto);
12045 buf = (bfd_byte *) bfd_zmalloc (size);
12046 if (buf == NULL && size != 0)
12047 return false;
12048 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
12049 switch (rstat)
12050 {
12051 case bfd_reloc_ok:
12052 break;
12053
12054 default:
12055 case bfd_reloc_outofrange:
12056 abort ();
12057
12058 case bfd_reloc_overflow:
12059 if (link_order->type == bfd_section_reloc_link_order)
12060 sym_name = bfd_section_name (link_order->u.reloc.p->u.section);
12061 else
12062 sym_name = link_order->u.reloc.p->u.name;
12063 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
12064 howto->name, addend, NULL, NULL,
12065 (bfd_vma) 0);
12066 break;
12067 }
12068
12069 octets = link_order->offset * bfd_octets_per_byte (output_bfd,
12070 output_section);
12071 ok = bfd_set_section_contents (output_bfd, output_section, buf,
12072 octets, size);
12073 free (buf);
12074 if (! ok)
12075 return false;
12076 }
12077
12078 /* The address of a reloc is relative to the section in a
12079 relocatable file, and is a virtual address in an executable
12080 file. */
12081 offset = link_order->offset;
12082 if (! bfd_link_relocatable (info))
12083 offset += output_section->vma;
12084
12085 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
12086 {
12087 irel[i].r_offset = offset;
12088 irel[i].r_info = 0;
12089 irel[i].r_addend = 0;
12090 }
12091 if (bed->s->arch_size == 32)
12092 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
12093 else
12094 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
12095
12096 rel_hdr = reldata->hdr;
12097 erel = rel_hdr->contents;
12098 if (rel_hdr->sh_type == SHT_REL)
12099 {
12100 erel += reldata->count * bed->s->sizeof_rel;
12101 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
12102 }
12103 else
12104 {
12105 irel[0].r_addend = addend;
12106 erel += reldata->count * bed->s->sizeof_rela;
12107 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
12108 }
12109
12110 ++reldata->count;
12111
12112 return true;
12113 }
12114
12115 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
12116 Returns TRUE upon success, FALSE otherwise. */
12117
12118 static bool
12119 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
12120 {
12121 bool ret = false;
12122 bfd *implib_bfd;
12123 const struct elf_backend_data *bed;
12124 flagword flags;
12125 enum bfd_architecture arch;
12126 unsigned int mach;
12127 asymbol **sympp = NULL;
12128 long symsize;
12129 long symcount;
12130 long src_count;
12131 elf_symbol_type *osymbuf;
12132 size_t amt;
12133
12134 implib_bfd = info->out_implib_bfd;
12135 bed = get_elf_backend_data (abfd);
12136
12137 if (!bfd_set_format (implib_bfd, bfd_object))
12138 return false;
12139
12140 /* Use flag from executable but make it a relocatable object. */
12141 flags = bfd_get_file_flags (abfd);
12142 flags &= ~HAS_RELOC;
12143 if (!bfd_set_start_address (implib_bfd, 0)
12144 || !bfd_set_file_flags (implib_bfd, flags & ~EXEC_P))
12145 return false;
12146
12147 /* Copy architecture of output file to import library file. */
12148 arch = bfd_get_arch (abfd);
12149 mach = bfd_get_mach (abfd);
12150 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
12151 && (abfd->target_defaulted
12152 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
12153 return false;
12154
12155 /* Get symbol table size. */
12156 symsize = bfd_get_symtab_upper_bound (abfd);
12157 if (symsize < 0)
12158 return false;
12159
12160 /* Read in the symbol table. */
12161 sympp = (asymbol **) bfd_malloc (symsize);
12162 if (sympp == NULL)
12163 return false;
12164
12165 symcount = bfd_canonicalize_symtab (abfd, sympp);
12166 if (symcount < 0)
12167 goto free_sym_buf;
12168
12169 /* Allow the BFD backend to copy any private header data it
12170 understands from the output BFD to the import library BFD. */
12171 if (! bfd_copy_private_header_data (abfd, implib_bfd))
12172 goto free_sym_buf;
12173
12174 /* Filter symbols to appear in the import library. */
12175 if (bed->elf_backend_filter_implib_symbols)
12176 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
12177 symcount);
12178 else
12179 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
12180 if (symcount == 0)
12181 {
12182 bfd_set_error (bfd_error_no_symbols);
12183 _bfd_error_handler (_("%pB: no symbol found for import library"),
12184 implib_bfd);
12185 goto free_sym_buf;
12186 }
12187
12188
12189 /* Make symbols absolute. */
12190 amt = symcount * sizeof (*osymbuf);
12191 osymbuf = (elf_symbol_type *) bfd_alloc (implib_bfd, amt);
12192 if (osymbuf == NULL)
12193 goto free_sym_buf;
12194
12195 for (src_count = 0; src_count < symcount; src_count++)
12196 {
12197 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
12198 sizeof (*osymbuf));
12199 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
12200 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
12201 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
12202 osymbuf[src_count].internal_elf_sym.st_value =
12203 osymbuf[src_count].symbol.value;
12204 sympp[src_count] = &osymbuf[src_count].symbol;
12205 }
12206
12207 bfd_set_symtab (implib_bfd, sympp, symcount);
12208
12209 /* Allow the BFD backend to copy any private data it understands
12210 from the output BFD to the import library BFD. This is done last
12211 to permit the routine to look at the filtered symbol table. */
12212 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
12213 goto free_sym_buf;
12214
12215 if (!bfd_close (implib_bfd))
12216 goto free_sym_buf;
12217
12218 ret = true;
12219
12220 free_sym_buf:
12221 free (sympp);
12222 return ret;
12223 }
12224
12225 static void
12226 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
12227 {
12228 asection *o;
12229
12230 if (flinfo->symstrtab != NULL)
12231 _bfd_elf_strtab_free (flinfo->symstrtab);
12232 free (flinfo->contents);
12233 free (flinfo->external_relocs);
12234 free (flinfo->internal_relocs);
12235 free (flinfo->external_syms);
12236 free (flinfo->locsym_shndx);
12237 free (flinfo->internal_syms);
12238 free (flinfo->indices);
12239 free (flinfo->sections);
12240 if (flinfo->symshndxbuf != (Elf_External_Sym_Shndx *) -1)
12241 free (flinfo->symshndxbuf);
12242 for (o = obfd->sections; o != NULL; o = o->next)
12243 {
12244 struct bfd_elf_section_data *esdo = elf_section_data (o);
12245 free (esdo->rel.hashes);
12246 free (esdo->rela.hashes);
12247 }
12248 }
12249
12250 /* Do the final step of an ELF link. */
12251
12252 bool
12253 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
12254 {
12255 bool dynamic;
12256 bool emit_relocs;
12257 bfd *dynobj;
12258 struct elf_final_link_info flinfo;
12259 asection *o;
12260 struct bfd_link_order *p;
12261 bfd *sub;
12262 bfd_size_type max_contents_size;
12263 bfd_size_type max_external_reloc_size;
12264 bfd_size_type max_internal_reloc_count;
12265 bfd_size_type max_sym_count;
12266 bfd_size_type max_sym_shndx_count;
12267 Elf_Internal_Sym elfsym;
12268 unsigned int i;
12269 Elf_Internal_Shdr *symtab_hdr;
12270 Elf_Internal_Shdr *symtab_shndx_hdr;
12271 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12272 struct elf_outext_info eoinfo;
12273 bool merged;
12274 size_t relativecount;
12275 size_t relr_entsize;
12276 asection *reldyn = 0;
12277 bfd_size_type amt;
12278 asection *attr_section = NULL;
12279 bfd_vma attr_size = 0;
12280 const char *std_attrs_section;
12281 struct elf_link_hash_table *htab = elf_hash_table (info);
12282 bool sections_removed;
12283 bool ret;
12284
12285 if (!is_elf_hash_table (&htab->root))
12286 return false;
12287
12288 if (bfd_link_pic (info))
12289 abfd->flags |= DYNAMIC;
12290
12291 dynamic = htab->dynamic_sections_created;
12292 dynobj = htab->dynobj;
12293
12294 emit_relocs = (bfd_link_relocatable (info)
12295 || info->emitrelocations);
12296
12297 memset (&flinfo, 0, sizeof (flinfo));
12298 flinfo.info = info;
12299 flinfo.output_bfd = abfd;
12300 flinfo.symstrtab = _bfd_elf_strtab_init ();
12301 if (flinfo.symstrtab == NULL)
12302 return false;
12303
12304 if (! dynamic)
12305 {
12306 flinfo.hash_sec = NULL;
12307 flinfo.symver_sec = NULL;
12308 }
12309 else
12310 {
12311 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
12312 /* Note that dynsym_sec can be NULL (on VMS). */
12313 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
12314 /* Note that it is OK if symver_sec is NULL. */
12315 }
12316
12317 if (info->unique_symbol
12318 && !bfd_hash_table_init (&flinfo.local_hash_table,
12319 local_hash_newfunc,
12320 sizeof (struct local_hash_entry)))
12321 return false;
12322
12323 /* The object attributes have been merged. Remove the input
12324 sections from the link, and set the contents of the output
12325 section. */
12326 sections_removed = false;
12327 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
12328 for (o = abfd->sections; o != NULL; o = o->next)
12329 {
12330 bool remove_section = false;
12331
12332 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
12333 || strcmp (o->name, ".gnu.attributes") == 0)
12334 {
12335 for (p = o->map_head.link_order; p != NULL; p = p->next)
12336 {
12337 asection *input_section;
12338
12339 if (p->type != bfd_indirect_link_order)
12340 continue;
12341 input_section = p->u.indirect.section;
12342 /* Hack: reset the SEC_HAS_CONTENTS flag so that
12343 elf_link_input_bfd ignores this section. */
12344 input_section->flags &= ~SEC_HAS_CONTENTS;
12345 }
12346
12347 attr_size = bfd_elf_obj_attr_size (abfd);
12348 bfd_set_section_size (o, attr_size);
12349 /* Skip this section later on. */
12350 o->map_head.link_order = NULL;
12351 if (attr_size)
12352 attr_section = o;
12353 else
12354 remove_section = true;
12355 }
12356 else if ((o->flags & SEC_GROUP) != 0 && o->size == 0)
12357 {
12358 /* Remove empty group section from linker output. */
12359 remove_section = true;
12360 }
12361 if (remove_section)
12362 {
12363 o->flags |= SEC_EXCLUDE;
12364 bfd_section_list_remove (abfd, o);
12365 abfd->section_count--;
12366 sections_removed = true;
12367 }
12368 }
12369 if (sections_removed)
12370 _bfd_fix_excluded_sec_syms (abfd, info);
12371
12372 /* Count up the number of relocations we will output for each output
12373 section, so that we know the sizes of the reloc sections. We
12374 also figure out some maximum sizes. */
12375 max_contents_size = 0;
12376 max_external_reloc_size = 0;
12377 max_internal_reloc_count = 0;
12378 max_sym_count = 0;
12379 max_sym_shndx_count = 0;
12380 merged = false;
12381 for (o = abfd->sections; o != NULL; o = o->next)
12382 {
12383 struct bfd_elf_section_data *esdo = elf_section_data (o);
12384 o->reloc_count = 0;
12385
12386 for (p = o->map_head.link_order; p != NULL; p = p->next)
12387 {
12388 unsigned int reloc_count = 0;
12389 unsigned int additional_reloc_count = 0;
12390 struct bfd_elf_section_data *esdi = NULL;
12391
12392 if (p->type == bfd_section_reloc_link_order
12393 || p->type == bfd_symbol_reloc_link_order)
12394 reloc_count = 1;
12395 else if (p->type == bfd_indirect_link_order)
12396 {
12397 asection *sec;
12398
12399 sec = p->u.indirect.section;
12400
12401 /* Mark all sections which are to be included in the
12402 link. This will normally be every section. We need
12403 to do this so that we can identify any sections which
12404 the linker has decided to not include. */
12405 sec->linker_mark = true;
12406
12407 if (sec->flags & SEC_MERGE)
12408 merged = true;
12409
12410 if (sec->rawsize > max_contents_size)
12411 max_contents_size = sec->rawsize;
12412 if (sec->size > max_contents_size)
12413 max_contents_size = sec->size;
12414
12415 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
12416 && (sec->owner->flags & DYNAMIC) == 0)
12417 {
12418 size_t sym_count;
12419
12420 /* We are interested in just local symbols, not all
12421 symbols. */
12422 if (elf_bad_symtab (sec->owner))
12423 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
12424 / bed->s->sizeof_sym);
12425 else
12426 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
12427
12428 if (sym_count > max_sym_count)
12429 max_sym_count = sym_count;
12430
12431 if (sym_count > max_sym_shndx_count
12432 && elf_symtab_shndx_list (sec->owner) != NULL)
12433 max_sym_shndx_count = sym_count;
12434
12435 esdi = elf_section_data (sec);
12436
12437 if (esdi->this_hdr.sh_type == SHT_REL
12438 || esdi->this_hdr.sh_type == SHT_RELA)
12439 /* Some backends use reloc_count in relocation sections
12440 to count particular types of relocs. Of course,
12441 reloc sections themselves can't have relocations. */
12442 ;
12443 else if (emit_relocs)
12444 {
12445 reloc_count = sec->reloc_count;
12446 if (bed->elf_backend_count_additional_relocs)
12447 {
12448 int c;
12449 c = (*bed->elf_backend_count_additional_relocs) (sec);
12450 additional_reloc_count += c;
12451 }
12452 }
12453 else if (bed->elf_backend_count_relocs)
12454 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
12455
12456 if ((sec->flags & SEC_RELOC) != 0)
12457 {
12458 size_t ext_size = 0;
12459
12460 if (esdi->rel.hdr != NULL)
12461 ext_size = esdi->rel.hdr->sh_size;
12462 if (esdi->rela.hdr != NULL)
12463 ext_size += esdi->rela.hdr->sh_size;
12464
12465 if (ext_size > max_external_reloc_size)
12466 max_external_reloc_size = ext_size;
12467 if (sec->reloc_count > max_internal_reloc_count)
12468 max_internal_reloc_count = sec->reloc_count;
12469 }
12470 }
12471 }
12472
12473 if (reloc_count == 0)
12474 continue;
12475
12476 reloc_count += additional_reloc_count;
12477 o->reloc_count += reloc_count;
12478
12479 if (p->type == bfd_indirect_link_order && emit_relocs)
12480 {
12481 if (esdi->rel.hdr)
12482 {
12483 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
12484 esdo->rel.count += additional_reloc_count;
12485 }
12486 if (esdi->rela.hdr)
12487 {
12488 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
12489 esdo->rela.count += additional_reloc_count;
12490 }
12491 }
12492 else
12493 {
12494 if (o->use_rela_p)
12495 esdo->rela.count += reloc_count;
12496 else
12497 esdo->rel.count += reloc_count;
12498 }
12499 }
12500
12501 if (o->reloc_count > 0)
12502 o->flags |= SEC_RELOC;
12503 else
12504 {
12505 /* Explicitly clear the SEC_RELOC flag. The linker tends to
12506 set it (this is probably a bug) and if it is set
12507 assign_section_numbers will create a reloc section. */
12508 o->flags &=~ SEC_RELOC;
12509 }
12510
12511 /* If the SEC_ALLOC flag is not set, force the section VMA to
12512 zero. This is done in elf_fake_sections as well, but forcing
12513 the VMA to 0 here will ensure that relocs against these
12514 sections are handled correctly. */
12515 if ((o->flags & SEC_ALLOC) == 0
12516 && ! o->user_set_vma)
12517 o->vma = 0;
12518 }
12519
12520 if (! bfd_link_relocatable (info) && merged)
12521 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
12522
12523 /* Figure out the file positions for everything but the symbol table
12524 and the relocs. We set symcount to force assign_section_numbers
12525 to create a symbol table. */
12526 abfd->symcount = info->strip != strip_all || emit_relocs;
12527 BFD_ASSERT (! abfd->output_has_begun);
12528 if (! _bfd_elf_compute_section_file_positions (abfd, info))
12529 goto error_return;
12530
12531 /* Set sizes, and assign file positions for reloc sections. */
12532 for (o = abfd->sections; o != NULL; o = o->next)
12533 {
12534 struct bfd_elf_section_data *esdo = elf_section_data (o);
12535 if ((o->flags & SEC_RELOC) != 0)
12536 {
12537 if (esdo->rel.hdr
12538 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
12539 goto error_return;
12540
12541 if (esdo->rela.hdr
12542 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
12543 goto error_return;
12544 }
12545
12546 /* _bfd_elf_compute_section_file_positions makes temporary use
12547 of target_index. Reset it. */
12548 o->target_index = 0;
12549
12550 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
12551 to count upwards while actually outputting the relocations. */
12552 esdo->rel.count = 0;
12553 esdo->rela.count = 0;
12554
12555 if ((esdo->this_hdr.sh_offset == (file_ptr) -1)
12556 && !bfd_section_is_ctf (o))
12557 {
12558 /* Cache the section contents so that they can be compressed
12559 later. Use bfd_malloc since it will be freed by
12560 bfd_compress_section_contents. */
12561 unsigned char *contents = esdo->this_hdr.contents;
12562 if (contents != NULL)
12563 abort ();
12564 contents
12565 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
12566 if (contents == NULL)
12567 goto error_return;
12568 esdo->this_hdr.contents = contents;
12569 }
12570 }
12571
12572 /* We have now assigned file positions for all the sections except .symtab,
12573 .strtab, and non-loaded reloc and compressed debugging sections. We start
12574 the .symtab section at the current file position, and write directly to it.
12575 We build the .strtab section in memory. */
12576 abfd->symcount = 0;
12577 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12578 /* sh_name is set in prep_headers. */
12579 symtab_hdr->sh_type = SHT_SYMTAB;
12580 /* sh_flags, sh_addr and sh_size all start off zero. */
12581 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
12582 /* sh_link is set in assign_section_numbers. */
12583 /* sh_info is set below. */
12584 /* sh_offset is set just below. */
12585 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
12586
12587 if (max_sym_count < 20)
12588 max_sym_count = 20;
12589 htab->strtabsize = max_sym_count;
12590 amt = max_sym_count * sizeof (struct elf_sym_strtab);
12591 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
12592 if (htab->strtab == NULL)
12593 goto error_return;
12594 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
12595 flinfo.symshndxbuf
12596 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
12597 ? (Elf_External_Sym_Shndx *) -1 : NULL);
12598
12599 if (info->strip != strip_all || emit_relocs)
12600 {
12601 file_ptr off = elf_next_file_pos (abfd);
12602
12603 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
12604
12605 /* Note that at this point elf_next_file_pos (abfd) is
12606 incorrect. We do not yet know the size of the .symtab section.
12607 We correct next_file_pos below, after we do know the size. */
12608
12609 /* Start writing out the symbol table. The first symbol is always a
12610 dummy symbol. */
12611 elfsym.st_value = 0;
12612 elfsym.st_size = 0;
12613 elfsym.st_info = 0;
12614 elfsym.st_other = 0;
12615 elfsym.st_shndx = SHN_UNDEF;
12616 elfsym.st_target_internal = 0;
12617 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
12618 bfd_und_section_ptr, NULL) != 1)
12619 goto error_return;
12620
12621 /* Output a symbol for each section if asked or they are used for
12622 relocs. These symbols usually have no names. We store the
12623 index of each one in the index field of the section, so that
12624 we can find it again when outputting relocs. */
12625
12626 if (bfd_keep_unused_section_symbols (abfd) || emit_relocs)
12627 {
12628 bool name_local_sections
12629 = (bed->elf_backend_name_local_section_symbols
12630 && bed->elf_backend_name_local_section_symbols (abfd));
12631 const char *name = NULL;
12632
12633 elfsym.st_size = 0;
12634 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12635 elfsym.st_other = 0;
12636 elfsym.st_value = 0;
12637 elfsym.st_target_internal = 0;
12638 for (i = 1; i < elf_numsections (abfd); i++)
12639 {
12640 o = bfd_section_from_elf_index (abfd, i);
12641 if (o != NULL)
12642 {
12643 o->target_index = bfd_get_symcount (abfd);
12644 elfsym.st_shndx = i;
12645 if (!bfd_link_relocatable (info))
12646 elfsym.st_value = o->vma;
12647 if (name_local_sections)
12648 name = o->name;
12649 if (elf_link_output_symstrtab (&flinfo, name, &elfsym, o,
12650 NULL) != 1)
12651 goto error_return;
12652 }
12653 }
12654 }
12655 }
12656
12657 /* On some targets like Irix 5 the symbol split between local and global
12658 ones recorded in the sh_info field needs to be done between section
12659 and all other symbols. */
12660 if (bed->elf_backend_elfsym_local_is_section
12661 && bed->elf_backend_elfsym_local_is_section (abfd))
12662 symtab_hdr->sh_info = bfd_get_symcount (abfd);
12663
12664 /* Allocate some memory to hold information read in from the input
12665 files. */
12666 if (max_contents_size != 0)
12667 {
12668 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
12669 if (flinfo.contents == NULL)
12670 goto error_return;
12671 }
12672
12673 if (max_external_reloc_size != 0)
12674 {
12675 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
12676 if (flinfo.external_relocs == NULL)
12677 goto error_return;
12678 }
12679
12680 if (max_internal_reloc_count != 0)
12681 {
12682 amt = max_internal_reloc_count * sizeof (Elf_Internal_Rela);
12683 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
12684 if (flinfo.internal_relocs == NULL)
12685 goto error_return;
12686 }
12687
12688 if (max_sym_count != 0)
12689 {
12690 amt = max_sym_count * bed->s->sizeof_sym;
12691 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
12692 if (flinfo.external_syms == NULL)
12693 goto error_return;
12694
12695 amt = max_sym_count * sizeof (Elf_Internal_Sym);
12696 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
12697 if (flinfo.internal_syms == NULL)
12698 goto error_return;
12699
12700 amt = max_sym_count * sizeof (long);
12701 flinfo.indices = (long int *) bfd_malloc (amt);
12702 if (flinfo.indices == NULL)
12703 goto error_return;
12704
12705 amt = max_sym_count * sizeof (asection *);
12706 flinfo.sections = (asection **) bfd_malloc (amt);
12707 if (flinfo.sections == NULL)
12708 goto error_return;
12709 }
12710
12711 if (max_sym_shndx_count != 0)
12712 {
12713 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
12714 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
12715 if (flinfo.locsym_shndx == NULL)
12716 goto error_return;
12717 }
12718
12719 if (htab->tls_sec)
12720 {
12721 bfd_vma base, end = 0; /* Both bytes. */
12722 asection *sec;
12723
12724 for (sec = htab->tls_sec;
12725 sec && (sec->flags & SEC_THREAD_LOCAL);
12726 sec = sec->next)
12727 {
12728 bfd_size_type size = sec->size;
12729 unsigned int opb = bfd_octets_per_byte (abfd, sec);
12730
12731 if (size == 0
12732 && (sec->flags & SEC_HAS_CONTENTS) == 0)
12733 {
12734 struct bfd_link_order *ord = sec->map_tail.link_order;
12735
12736 if (ord != NULL)
12737 size = ord->offset * opb + ord->size;
12738 }
12739 end = sec->vma + size / opb;
12740 }
12741 base = htab->tls_sec->vma;
12742 /* Only align end of TLS section if static TLS doesn't have special
12743 alignment requirements. */
12744 if (bed->static_tls_alignment == 1)
12745 end = align_power (end, htab->tls_sec->alignment_power);
12746 htab->tls_size = end - base;
12747 }
12748
12749 if (!_bfd_elf_fixup_eh_frame_hdr (info))
12750 return false;
12751
12752 /* Finish relative relocations here after regular symbol processing
12753 is finished if DT_RELR is enabled. */
12754 if (info->enable_dt_relr
12755 && bed->finish_relative_relocs
12756 && !bed->finish_relative_relocs (info))
12757 info->callbacks->einfo
12758 (_("%F%P: %pB: failed to finish relative relocations\n"), abfd);
12759
12760 /* Since ELF permits relocations to be against local symbols, we
12761 must have the local symbols available when we do the relocations.
12762 Since we would rather only read the local symbols once, and we
12763 would rather not keep them in memory, we handle all the
12764 relocations for a single input file at the same time.
12765
12766 Unfortunately, there is no way to know the total number of local
12767 symbols until we have seen all of them, and the local symbol
12768 indices precede the global symbol indices. This means that when
12769 we are generating relocatable output, and we see a reloc against
12770 a global symbol, we can not know the symbol index until we have
12771 finished examining all the local symbols to see which ones we are
12772 going to output. To deal with this, we keep the relocations in
12773 memory, and don't output them until the end of the link. This is
12774 an unfortunate waste of memory, but I don't see a good way around
12775 it. Fortunately, it only happens when performing a relocatable
12776 link, which is not the common case. FIXME: If keep_memory is set
12777 we could write the relocs out and then read them again; I don't
12778 know how bad the memory loss will be. */
12779
12780 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12781 sub->output_has_begun = false;
12782 for (o = abfd->sections; o != NULL; o = o->next)
12783 {
12784 for (p = o->map_head.link_order; p != NULL; p = p->next)
12785 {
12786 if (p->type == bfd_indirect_link_order
12787 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
12788 == bfd_target_elf_flavour)
12789 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
12790 {
12791 if (! sub->output_has_begun)
12792 {
12793 if (! elf_link_input_bfd (&flinfo, sub))
12794 goto error_return;
12795 sub->output_has_begun = true;
12796 }
12797 }
12798 else if (p->type == bfd_section_reloc_link_order
12799 || p->type == bfd_symbol_reloc_link_order)
12800 {
12801 if (! elf_reloc_link_order (abfd, info, o, p))
12802 goto error_return;
12803 }
12804 else
12805 {
12806 if (! _bfd_default_link_order (abfd, info, o, p))
12807 {
12808 if (p->type == bfd_indirect_link_order
12809 && (bfd_get_flavour (sub)
12810 == bfd_target_elf_flavour)
12811 && (elf_elfheader (sub)->e_ident[EI_CLASS]
12812 != bed->s->elfclass))
12813 {
12814 const char *iclass, *oclass;
12815
12816 switch (bed->s->elfclass)
12817 {
12818 case ELFCLASS64: oclass = "ELFCLASS64"; break;
12819 case ELFCLASS32: oclass = "ELFCLASS32"; break;
12820 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
12821 default: abort ();
12822 }
12823
12824 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
12825 {
12826 case ELFCLASS64: iclass = "ELFCLASS64"; break;
12827 case ELFCLASS32: iclass = "ELFCLASS32"; break;
12828 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
12829 default: abort ();
12830 }
12831
12832 bfd_set_error (bfd_error_wrong_format);
12833 _bfd_error_handler
12834 /* xgettext:c-format */
12835 (_("%pB: file class %s incompatible with %s"),
12836 sub, iclass, oclass);
12837 }
12838
12839 goto error_return;
12840 }
12841 }
12842 }
12843 }
12844
12845 /* Free symbol buffer if needed. */
12846 if (!info->reduce_memory_overheads)
12847 {
12848 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12849 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
12850 {
12851 free (elf_tdata (sub)->symbuf);
12852 elf_tdata (sub)->symbuf = NULL;
12853 }
12854 }
12855
12856 ret = true;
12857
12858 /* Output any global symbols that got converted to local in a
12859 version script or due to symbol visibility. We do this in a
12860 separate step since ELF requires all local symbols to appear
12861 prior to any global symbols. FIXME: We should only do this if
12862 some global symbols were, in fact, converted to become local.
12863 FIXME: Will this work correctly with the Irix 5 linker? */
12864 eoinfo.failed = false;
12865 eoinfo.flinfo = &flinfo;
12866 eoinfo.localsyms = true;
12867 eoinfo.file_sym_done = false;
12868 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12869 if (eoinfo.failed)
12870 {
12871 ret = false;
12872 goto return_local_hash_table;
12873 }
12874
12875 /* If backend needs to output some local symbols not present in the hash
12876 table, do it now. */
12877 if (bed->elf_backend_output_arch_local_syms)
12878 {
12879 if (! ((*bed->elf_backend_output_arch_local_syms)
12880 (abfd, info, &flinfo, elf_link_output_symstrtab)))
12881 {
12882 ret = false;
12883 goto return_local_hash_table;
12884 }
12885 }
12886
12887 /* That wrote out all the local symbols. Finish up the symbol table
12888 with the global symbols. Even if we want to strip everything we
12889 can, we still need to deal with those global symbols that got
12890 converted to local in a version script. */
12891
12892 /* The sh_info field records the index of the first non local symbol. */
12893 if (!symtab_hdr->sh_info)
12894 symtab_hdr->sh_info = bfd_get_symcount (abfd);
12895
12896 if (dynamic
12897 && htab->dynsym != NULL
12898 && htab->dynsym->output_section != bfd_abs_section_ptr)
12899 {
12900 Elf_Internal_Sym sym;
12901 bfd_byte *dynsym = htab->dynsym->contents;
12902
12903 o = htab->dynsym->output_section;
12904 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
12905
12906 /* Write out the section symbols for the output sections. */
12907 if (bfd_link_pic (info)
12908 || htab->is_relocatable_executable)
12909 {
12910 asection *s;
12911
12912 sym.st_size = 0;
12913 sym.st_name = 0;
12914 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12915 sym.st_other = 0;
12916 sym.st_target_internal = 0;
12917
12918 for (s = abfd->sections; s != NULL; s = s->next)
12919 {
12920 int indx;
12921 bfd_byte *dest;
12922 long dynindx;
12923
12924 dynindx = elf_section_data (s)->dynindx;
12925 if (dynindx <= 0)
12926 continue;
12927 indx = elf_section_data (s)->this_idx;
12928 BFD_ASSERT (indx > 0);
12929 sym.st_shndx = indx;
12930 if (! check_dynsym (abfd, &sym))
12931 {
12932 ret = false;
12933 goto return_local_hash_table;
12934 }
12935 sym.st_value = s->vma;
12936 dest = dynsym + dynindx * bed->s->sizeof_sym;
12937
12938 /* Inform the linker of the addition of this symbol. */
12939
12940 if (info->callbacks->ctf_new_dynsym)
12941 info->callbacks->ctf_new_dynsym (dynindx, &sym);
12942
12943 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12944 }
12945 }
12946
12947 /* Write out the local dynsyms. */
12948 if (htab->dynlocal)
12949 {
12950 struct elf_link_local_dynamic_entry *e;
12951 for (e = htab->dynlocal; e ; e = e->next)
12952 {
12953 asection *s;
12954 bfd_byte *dest;
12955
12956 /* Copy the internal symbol and turn off visibility.
12957 Note that we saved a word of storage and overwrote
12958 the original st_name with the dynstr_index. */
12959 sym = e->isym;
12960 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
12961 sym.st_shndx = SHN_UNDEF;
12962
12963 s = bfd_section_from_elf_index (e->input_bfd,
12964 e->isym.st_shndx);
12965 if (s != NULL
12966 && s->output_section != NULL
12967 && elf_section_data (s->output_section) != NULL)
12968 {
12969 sym.st_shndx =
12970 elf_section_data (s->output_section)->this_idx;
12971 if (! check_dynsym (abfd, &sym))
12972 {
12973 ret = false;
12974 goto return_local_hash_table;
12975 }
12976 sym.st_value = (s->output_section->vma
12977 + s->output_offset
12978 + e->isym.st_value);
12979 }
12980
12981 /* Inform the linker of the addition of this symbol. */
12982
12983 if (info->callbacks->ctf_new_dynsym)
12984 info->callbacks->ctf_new_dynsym (e->dynindx, &sym);
12985
12986 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
12987 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12988 }
12989 }
12990 }
12991
12992 /* We get the global symbols from the hash table. */
12993 eoinfo.failed = false;
12994 eoinfo.localsyms = false;
12995 eoinfo.flinfo = &flinfo;
12996 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12997 if (eoinfo.failed)
12998 {
12999 ret = false;
13000 goto return_local_hash_table;
13001 }
13002
13003 /* If backend needs to output some symbols not present in the hash
13004 table, do it now. */
13005 if (bed->elf_backend_output_arch_syms
13006 && (info->strip != strip_all || emit_relocs))
13007 {
13008 if (! ((*bed->elf_backend_output_arch_syms)
13009 (abfd, info, &flinfo, elf_link_output_symstrtab)))
13010 {
13011 ret = false;
13012 goto return_local_hash_table;
13013 }
13014 }
13015
13016 /* Finalize the .strtab section. */
13017 _bfd_elf_strtab_finalize (flinfo.symstrtab);
13018
13019 /* Swap out the .strtab section. */
13020 if (!elf_link_swap_symbols_out (&flinfo))
13021 {
13022 ret = false;
13023 goto return_local_hash_table;
13024 }
13025
13026 /* Now we know the size of the symtab section. */
13027 if (bfd_get_symcount (abfd) > 0)
13028 {
13029 /* Finish up and write out the symbol string table (.strtab)
13030 section. */
13031 Elf_Internal_Shdr *symstrtab_hdr = NULL;
13032 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
13033
13034 if (elf_symtab_shndx_list (abfd))
13035 {
13036 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
13037
13038 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
13039 {
13040 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
13041 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
13042 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
13043 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
13044 symtab_shndx_hdr->sh_size = amt;
13045
13046 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
13047 off, true);
13048
13049 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
13050 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
13051 {
13052 ret = false;
13053 goto return_local_hash_table;
13054 }
13055 }
13056 }
13057
13058 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
13059 /* sh_name was set in prep_headers. */
13060 symstrtab_hdr->sh_type = SHT_STRTAB;
13061 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
13062 symstrtab_hdr->sh_addr = 0;
13063 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
13064 symstrtab_hdr->sh_entsize = 0;
13065 symstrtab_hdr->sh_link = 0;
13066 symstrtab_hdr->sh_info = 0;
13067 /* sh_offset is set just below. */
13068 symstrtab_hdr->sh_addralign = 1;
13069
13070 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
13071 off, true);
13072 elf_next_file_pos (abfd) = off;
13073
13074 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
13075 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
13076 {
13077 ret = false;
13078 goto return_local_hash_table;
13079 }
13080 }
13081
13082 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
13083 {
13084 _bfd_error_handler (_("%pB: failed to generate import library"),
13085 info->out_implib_bfd);
13086 ret = false;
13087 goto return_local_hash_table;
13088 }
13089
13090 /* Adjust the relocs to have the correct symbol indices. */
13091 for (o = abfd->sections; o != NULL; o = o->next)
13092 {
13093 struct bfd_elf_section_data *esdo = elf_section_data (o);
13094 bool sort;
13095
13096 if ((o->flags & SEC_RELOC) == 0)
13097 continue;
13098
13099 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
13100 if (esdo->rel.hdr != NULL
13101 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort, info))
13102 {
13103 ret = false;
13104 goto return_local_hash_table;
13105 }
13106 if (esdo->rela.hdr != NULL
13107 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort, info))
13108 {
13109 ret = false;
13110 goto return_local_hash_table;
13111 }
13112
13113 /* Set the reloc_count field to 0 to prevent write_relocs from
13114 trying to swap the relocs out itself. */
13115 o->reloc_count = 0;
13116 }
13117
13118 relativecount = 0;
13119 if (dynamic && info->combreloc && dynobj != NULL)
13120 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
13121
13122 relr_entsize = 0;
13123 if (htab->srelrdyn != NULL
13124 && htab->srelrdyn->output_section != NULL
13125 && htab->srelrdyn->size != 0)
13126 {
13127 asection *s = htab->srelrdyn->output_section;
13128 relr_entsize = elf_section_data (s)->this_hdr.sh_entsize;
13129 if (relr_entsize == 0)
13130 {
13131 relr_entsize = bed->s->arch_size / 8;
13132 elf_section_data (s)->this_hdr.sh_entsize = relr_entsize;
13133 }
13134 }
13135
13136 /* If we are linking against a dynamic object, or generating a
13137 shared library, finish up the dynamic linking information. */
13138 if (dynamic)
13139 {
13140 bfd_byte *dyncon, *dynconend;
13141
13142 /* Fix up .dynamic entries. */
13143 o = bfd_get_linker_section (dynobj, ".dynamic");
13144 BFD_ASSERT (o != NULL);
13145
13146 dyncon = o->contents;
13147 dynconend = PTR_ADD (o->contents, o->size);
13148 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
13149 {
13150 Elf_Internal_Dyn dyn;
13151 const char *name;
13152 unsigned int type;
13153 bfd_size_type sh_size;
13154 bfd_vma sh_addr;
13155
13156 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
13157
13158 switch (dyn.d_tag)
13159 {
13160 default:
13161 continue;
13162 case DT_NULL:
13163 if (relativecount != 0)
13164 {
13165 switch (elf_section_data (reldyn)->this_hdr.sh_type)
13166 {
13167 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
13168 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
13169 }
13170 if (dyn.d_tag != DT_NULL
13171 && dynconend - dyncon >= bed->s->sizeof_dyn)
13172 {
13173 dyn.d_un.d_val = relativecount;
13174 relativecount = 0;
13175 break;
13176 }
13177 relativecount = 0;
13178 }
13179 if (relr_entsize != 0)
13180 {
13181 if (dynconend - dyncon >= 3 * bed->s->sizeof_dyn)
13182 {
13183 asection *s = htab->srelrdyn;
13184 dyn.d_tag = DT_RELR;
13185 dyn.d_un.d_ptr
13186 = s->output_section->vma + s->output_offset;
13187 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
13188 dyncon += bed->s->sizeof_dyn;
13189
13190 dyn.d_tag = DT_RELRSZ;
13191 dyn.d_un.d_val = s->size;
13192 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
13193 dyncon += bed->s->sizeof_dyn;
13194
13195 dyn.d_tag = DT_RELRENT;
13196 dyn.d_un.d_val = relr_entsize;
13197 relr_entsize = 0;
13198 break;
13199 }
13200 relr_entsize = 0;
13201 }
13202 continue;
13203
13204 case DT_INIT:
13205 name = info->init_function;
13206 goto get_sym;
13207 case DT_FINI:
13208 name = info->fini_function;
13209 get_sym:
13210 {
13211 struct elf_link_hash_entry *h;
13212
13213 h = elf_link_hash_lookup (htab, name, false, false, true);
13214 if (h != NULL
13215 && (h->root.type == bfd_link_hash_defined
13216 || h->root.type == bfd_link_hash_defweak))
13217 {
13218 dyn.d_un.d_ptr = h->root.u.def.value;
13219 o = h->root.u.def.section;
13220 if (o->output_section != NULL)
13221 dyn.d_un.d_ptr += (o->output_section->vma
13222 + o->output_offset);
13223 else
13224 {
13225 /* The symbol is imported from another shared
13226 library and does not apply to this one. */
13227 dyn.d_un.d_ptr = 0;
13228 }
13229 break;
13230 }
13231 }
13232 continue;
13233
13234 case DT_PREINIT_ARRAYSZ:
13235 name = ".preinit_array";
13236 goto get_out_size;
13237 case DT_INIT_ARRAYSZ:
13238 name = ".init_array";
13239 goto get_out_size;
13240 case DT_FINI_ARRAYSZ:
13241 name = ".fini_array";
13242 get_out_size:
13243 o = bfd_get_section_by_name (abfd, name);
13244 if (o == NULL)
13245 {
13246 _bfd_error_handler
13247 (_("could not find section %s"), name);
13248 goto error_return;
13249 }
13250 if (o->size == 0)
13251 _bfd_error_handler
13252 (_("warning: %s section has zero size"), name);
13253 dyn.d_un.d_val = o->size;
13254 break;
13255
13256 case DT_PREINIT_ARRAY:
13257 name = ".preinit_array";
13258 goto get_out_vma;
13259 case DT_INIT_ARRAY:
13260 name = ".init_array";
13261 goto get_out_vma;
13262 case DT_FINI_ARRAY:
13263 name = ".fini_array";
13264 get_out_vma:
13265 o = bfd_get_section_by_name (abfd, name);
13266 goto do_vma;
13267
13268 case DT_HASH:
13269 name = ".hash";
13270 goto get_vma;
13271 case DT_GNU_HASH:
13272 name = ".gnu.hash";
13273 goto get_vma;
13274 case DT_STRTAB:
13275 name = ".dynstr";
13276 goto get_vma;
13277 case DT_SYMTAB:
13278 name = ".dynsym";
13279 goto get_vma;
13280 case DT_VERDEF:
13281 name = ".gnu.version_d";
13282 goto get_vma;
13283 case DT_VERNEED:
13284 name = ".gnu.version_r";
13285 goto get_vma;
13286 case DT_VERSYM:
13287 name = ".gnu.version";
13288 get_vma:
13289 o = bfd_get_linker_section (dynobj, name);
13290 do_vma:
13291 if (o == NULL || bfd_is_abs_section (o->output_section))
13292 {
13293 _bfd_error_handler
13294 (_("could not find section %s"), name);
13295 goto error_return;
13296 }
13297 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
13298 {
13299 _bfd_error_handler
13300 (_("warning: section '%s' is being made into a note"), name);
13301 bfd_set_error (bfd_error_nonrepresentable_section);
13302 goto error_return;
13303 }
13304 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
13305 break;
13306
13307 case DT_REL:
13308 case DT_RELA:
13309 case DT_RELSZ:
13310 case DT_RELASZ:
13311 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
13312 type = SHT_REL;
13313 else
13314 type = SHT_RELA;
13315 sh_size = 0;
13316 sh_addr = 0;
13317 for (i = 1; i < elf_numsections (abfd); i++)
13318 {
13319 Elf_Internal_Shdr *hdr;
13320
13321 hdr = elf_elfsections (abfd)[i];
13322 if (hdr->sh_type == type
13323 && (hdr->sh_flags & SHF_ALLOC) != 0)
13324 {
13325 sh_size += hdr->sh_size;
13326 if (sh_addr == 0
13327 || sh_addr > hdr->sh_addr)
13328 sh_addr = hdr->sh_addr;
13329 }
13330 }
13331
13332 if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
13333 {
13334 unsigned int opb = bfd_octets_per_byte (abfd, o);
13335
13336 /* Don't count procedure linkage table relocs in the
13337 overall reloc count. */
13338 sh_size -= htab->srelplt->size;
13339 if (sh_size == 0)
13340 /* If the size is zero, make the address zero too.
13341 This is to avoid a glibc bug. If the backend
13342 emits DT_RELA/DT_RELASZ even when DT_RELASZ is
13343 zero, then we'll put DT_RELA at the end of
13344 DT_JMPREL. glibc will interpret the end of
13345 DT_RELA matching the end of DT_JMPREL as the
13346 case where DT_RELA includes DT_JMPREL, and for
13347 LD_BIND_NOW will decide that processing DT_RELA
13348 will process the PLT relocs too. Net result:
13349 No PLT relocs applied. */
13350 sh_addr = 0;
13351
13352 /* If .rela.plt is the first .rela section, exclude
13353 it from DT_RELA. */
13354 else if (sh_addr == (htab->srelplt->output_section->vma
13355 + htab->srelplt->output_offset) * opb)
13356 sh_addr += htab->srelplt->size;
13357 }
13358
13359 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
13360 dyn.d_un.d_val = sh_size;
13361 else
13362 dyn.d_un.d_ptr = sh_addr;
13363 break;
13364 }
13365 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
13366 }
13367 }
13368
13369 /* If we have created any dynamic sections, then output them. */
13370 if (dynobj != NULL)
13371 {
13372 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
13373 goto error_return;
13374
13375 /* Check for DT_TEXTREL (late, in case the backend removes it). */
13376 if (bfd_link_textrel_check (info)
13377 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL
13378 && o->size != 0)
13379 {
13380 bfd_byte *dyncon, *dynconend;
13381
13382 dyncon = o->contents;
13383 dynconend = o->contents + o->size;
13384 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
13385 {
13386 Elf_Internal_Dyn dyn;
13387
13388 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
13389
13390 if (dyn.d_tag == DT_TEXTREL)
13391 {
13392 if (info->textrel_check == textrel_check_error)
13393 info->callbacks->einfo
13394 (_("%P%X: read-only segment has dynamic relocations\n"));
13395 else if (bfd_link_dll (info))
13396 info->callbacks->einfo
13397 (_("%P: warning: creating DT_TEXTREL in a shared object\n"));
13398 else if (bfd_link_pde (info))
13399 info->callbacks->einfo
13400 (_("%P: warning: creating DT_TEXTREL in a PDE\n"));
13401 else
13402 info->callbacks->einfo
13403 (_("%P: warning: creating DT_TEXTREL in a PIE\n"));
13404 break;
13405 }
13406 }
13407 }
13408
13409 for (o = dynobj->sections; o != NULL; o = o->next)
13410 {
13411 if ((o->flags & SEC_HAS_CONTENTS) == 0
13412 || o->size == 0
13413 || o->output_section == bfd_abs_section_ptr)
13414 continue;
13415 if ((o->flags & SEC_LINKER_CREATED) == 0)
13416 {
13417 /* At this point, we are only interested in sections
13418 created by _bfd_elf_link_create_dynamic_sections. */
13419 continue;
13420 }
13421 if (htab->stab_info.stabstr == o)
13422 continue;
13423 if (htab->eh_info.hdr_sec == o)
13424 continue;
13425 if (strcmp (o->name, ".dynstr") != 0)
13426 {
13427 bfd_size_type octets = ((file_ptr) o->output_offset
13428 * bfd_octets_per_byte (abfd, o));
13429 if (!bfd_set_section_contents (abfd, o->output_section,
13430 o->contents, octets, o->size))
13431 goto error_return;
13432 }
13433 else
13434 {
13435 /* The contents of the .dynstr section are actually in a
13436 stringtab. */
13437 file_ptr off;
13438
13439 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
13440 if (bfd_seek (abfd, off, SEEK_SET) != 0
13441 || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
13442 goto error_return;
13443 }
13444 }
13445 }
13446
13447 if (!info->resolve_section_groups)
13448 {
13449 bool failed = false;
13450
13451 BFD_ASSERT (bfd_link_relocatable (info));
13452 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
13453 if (failed)
13454 goto error_return;
13455 }
13456
13457 /* If we have optimized stabs strings, output them. */
13458 if (htab->stab_info.stabstr != NULL)
13459 {
13460 if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
13461 goto error_return;
13462 }
13463
13464 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
13465 goto error_return;
13466
13467 if (! _bfd_elf_write_section_sframe (abfd, info))
13468 goto error_return;
13469
13470 if (info->callbacks->emit_ctf)
13471 info->callbacks->emit_ctf ();
13472
13473 elf_final_link_free (abfd, &flinfo);
13474
13475 if (attr_section)
13476 {
13477 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
13478 if (contents == NULL)
13479 {
13480 /* Bail out and fail. */
13481 ret = false;
13482 goto return_local_hash_table;
13483 }
13484 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
13485 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
13486 free (contents);
13487 }
13488
13489 return_local_hash_table:
13490 if (info->unique_symbol)
13491 bfd_hash_table_free (&flinfo.local_hash_table);
13492 return ret;
13493
13494 error_return:
13495 elf_final_link_free (abfd, &flinfo);
13496 ret = false;
13497 goto return_local_hash_table;
13498 }
13499 \f
13500 /* Initialize COOKIE for input bfd ABFD. */
13501
13502 static bool
13503 init_reloc_cookie (struct elf_reloc_cookie *cookie,
13504 struct bfd_link_info *info, bfd *abfd)
13505 {
13506 Elf_Internal_Shdr *symtab_hdr;
13507 const struct elf_backend_data *bed;
13508
13509 bed = get_elf_backend_data (abfd);
13510 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13511
13512 cookie->abfd = abfd;
13513 cookie->sym_hashes = elf_sym_hashes (abfd);
13514 cookie->bad_symtab = elf_bad_symtab (abfd);
13515 if (cookie->bad_symtab)
13516 {
13517 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13518 cookie->extsymoff = 0;
13519 }
13520 else
13521 {
13522 cookie->locsymcount = symtab_hdr->sh_info;
13523 cookie->extsymoff = symtab_hdr->sh_info;
13524 }
13525
13526 if (bed->s->arch_size == 32)
13527 cookie->r_sym_shift = 8;
13528 else
13529 cookie->r_sym_shift = 32;
13530
13531 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
13532 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
13533 {
13534 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13535 cookie->locsymcount, 0,
13536 NULL, NULL, NULL);
13537 if (cookie->locsyms == NULL)
13538 {
13539 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
13540 return false;
13541 }
13542 if (_bfd_link_keep_memory (info) )
13543 {
13544 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
13545 info->cache_size += (cookie->locsymcount
13546 * sizeof (Elf_External_Sym_Shndx));
13547 }
13548 }
13549 return true;
13550 }
13551
13552 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
13553
13554 static void
13555 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
13556 {
13557 Elf_Internal_Shdr *symtab_hdr;
13558
13559 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13560 if (symtab_hdr->contents != (unsigned char *) cookie->locsyms)
13561 free (cookie->locsyms);
13562 }
13563
13564 /* Initialize the relocation information in COOKIE for input section SEC
13565 of input bfd ABFD. */
13566
13567 static bool
13568 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
13569 struct bfd_link_info *info, bfd *abfd,
13570 asection *sec)
13571 {
13572 if (sec->reloc_count == 0)
13573 {
13574 cookie->rels = NULL;
13575 cookie->relend = NULL;
13576 }
13577 else
13578 {
13579 cookie->rels = _bfd_elf_link_info_read_relocs (abfd, info, sec,
13580 NULL, NULL,
13581 _bfd_link_keep_memory (info));
13582 if (cookie->rels == NULL)
13583 return false;
13584 cookie->rel = cookie->rels;
13585 cookie->relend = cookie->rels + sec->reloc_count;
13586 }
13587 cookie->rel = cookie->rels;
13588 return true;
13589 }
13590
13591 /* Free the memory allocated by init_reloc_cookie_rels,
13592 if appropriate. */
13593
13594 static void
13595 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
13596 asection *sec)
13597 {
13598 if (elf_section_data (sec)->relocs != cookie->rels)
13599 free (cookie->rels);
13600 }
13601
13602 /* Initialize the whole of COOKIE for input section SEC. */
13603
13604 static bool
13605 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
13606 struct bfd_link_info *info,
13607 asection *sec)
13608 {
13609 if (!init_reloc_cookie (cookie, info, sec->owner))
13610 goto error1;
13611 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
13612 goto error2;
13613 return true;
13614
13615 error2:
13616 fini_reloc_cookie (cookie, sec->owner);
13617 error1:
13618 return false;
13619 }
13620
13621 /* Free the memory allocated by init_reloc_cookie_for_section,
13622 if appropriate. */
13623
13624 static void
13625 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
13626 asection *sec)
13627 {
13628 fini_reloc_cookie_rels (cookie, sec);
13629 fini_reloc_cookie (cookie, sec->owner);
13630 }
13631 \f
13632 /* Garbage collect unused sections. */
13633
13634 /* Default gc_mark_hook. */
13635
13636 asection *
13637 _bfd_elf_gc_mark_hook (asection *sec,
13638 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13639 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
13640 struct elf_link_hash_entry *h,
13641 Elf_Internal_Sym *sym)
13642 {
13643 if (h != NULL)
13644 {
13645 switch (h->root.type)
13646 {
13647 case bfd_link_hash_defined:
13648 case bfd_link_hash_defweak:
13649 return h->root.u.def.section;
13650
13651 case bfd_link_hash_common:
13652 return h->root.u.c.p->section;
13653
13654 default:
13655 break;
13656 }
13657 }
13658 else
13659 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
13660
13661 return NULL;
13662 }
13663
13664 /* Return the debug definition section. */
13665
13666 static asection *
13667 elf_gc_mark_debug_section (asection *sec ATTRIBUTE_UNUSED,
13668 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13669 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
13670 struct elf_link_hash_entry *h,
13671 Elf_Internal_Sym *sym)
13672 {
13673 if (h != NULL)
13674 {
13675 /* Return the global debug definition section. */
13676 if ((h->root.type == bfd_link_hash_defined
13677 || h->root.type == bfd_link_hash_defweak)
13678 && (h->root.u.def.section->flags & SEC_DEBUGGING) != 0)
13679 return h->root.u.def.section;
13680 }
13681 else
13682 {
13683 /* Return the local debug definition section. */
13684 asection *isec = bfd_section_from_elf_index (sec->owner,
13685 sym->st_shndx);
13686 if ((isec->flags & SEC_DEBUGGING) != 0)
13687 return isec;
13688 }
13689
13690 return NULL;
13691 }
13692
13693 /* COOKIE->rel describes a relocation against section SEC, which is
13694 a section we've decided to keep. Return the section that contains
13695 the relocation symbol, or NULL if no section contains it. */
13696
13697 asection *
13698 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
13699 elf_gc_mark_hook_fn gc_mark_hook,
13700 struct elf_reloc_cookie *cookie,
13701 bool *start_stop)
13702 {
13703 unsigned long r_symndx;
13704 struct elf_link_hash_entry *h, *hw;
13705
13706 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
13707 if (r_symndx == STN_UNDEF)
13708 return NULL;
13709
13710 if (r_symndx >= cookie->locsymcount
13711 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13712 {
13713 bool was_marked;
13714
13715 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
13716 if (h == NULL)
13717 {
13718 info->callbacks->einfo (_("%F%P: corrupt input: %pB\n"),
13719 sec->owner);
13720 return NULL;
13721 }
13722 while (h->root.type == bfd_link_hash_indirect
13723 || h->root.type == bfd_link_hash_warning)
13724 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13725
13726 was_marked = h->mark;
13727 h->mark = 1;
13728 /* Keep all aliases of the symbol too. If an object symbol
13729 needs to be copied into .dynbss then all of its aliases
13730 should be present as dynamic symbols, not just the one used
13731 on the copy relocation. */
13732 hw = h;
13733 while (hw->is_weakalias)
13734 {
13735 hw = hw->u.alias;
13736 hw->mark = 1;
13737 }
13738
13739 if (!was_marked && h->start_stop && !h->root.ldscript_def)
13740 {
13741 if (info->start_stop_gc)
13742 return NULL;
13743
13744 /* To work around a glibc bug, mark XXX input sections
13745 when there is a reference to __start_XXX or __stop_XXX
13746 symbols. */
13747 else if (start_stop != NULL)
13748 {
13749 asection *s = h->u2.start_stop_section;
13750 *start_stop = true;
13751 return s;
13752 }
13753 }
13754
13755 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
13756 }
13757
13758 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
13759 &cookie->locsyms[r_symndx]);
13760 }
13761
13762 /* COOKIE->rel describes a relocation against section SEC, which is
13763 a section we've decided to keep. Mark the section that contains
13764 the relocation symbol. */
13765
13766 bool
13767 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
13768 asection *sec,
13769 elf_gc_mark_hook_fn gc_mark_hook,
13770 struct elf_reloc_cookie *cookie)
13771 {
13772 asection *rsec;
13773 bool start_stop = false;
13774
13775 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
13776 while (rsec != NULL)
13777 {
13778 if (!rsec->gc_mark)
13779 {
13780 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
13781 || (rsec->owner->flags & DYNAMIC) != 0)
13782 rsec->gc_mark = 1;
13783 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
13784 return false;
13785 }
13786 if (!start_stop)
13787 break;
13788 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
13789 }
13790 return true;
13791 }
13792
13793 /* The mark phase of garbage collection. For a given section, mark
13794 it and any sections in this section's group, and all the sections
13795 which define symbols to which it refers. */
13796
13797 bool
13798 _bfd_elf_gc_mark (struct bfd_link_info *info,
13799 asection *sec,
13800 elf_gc_mark_hook_fn gc_mark_hook)
13801 {
13802 bool ret;
13803 asection *group_sec, *eh_frame;
13804
13805 sec->gc_mark = 1;
13806
13807 /* Mark all the sections in the group. */
13808 group_sec = elf_section_data (sec)->next_in_group;
13809 if (group_sec && !group_sec->gc_mark)
13810 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
13811 return false;
13812
13813 /* Look through the section relocs. */
13814 ret = true;
13815 eh_frame = elf_eh_frame_section (sec->owner);
13816 if ((sec->flags & SEC_RELOC) != 0
13817 && sec->reloc_count > 0
13818 && sec != eh_frame)
13819 {
13820 struct elf_reloc_cookie cookie;
13821
13822 if (!init_reloc_cookie_for_section (&cookie, info, sec))
13823 ret = false;
13824 else
13825 {
13826 for (; cookie.rel < cookie.relend; cookie.rel++)
13827 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
13828 {
13829 ret = false;
13830 break;
13831 }
13832 fini_reloc_cookie_for_section (&cookie, sec);
13833 }
13834 }
13835
13836 if (ret && eh_frame && elf_fde_list (sec))
13837 {
13838 struct elf_reloc_cookie cookie;
13839
13840 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
13841 ret = false;
13842 else
13843 {
13844 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
13845 gc_mark_hook, &cookie))
13846 ret = false;
13847 fini_reloc_cookie_for_section (&cookie, eh_frame);
13848 }
13849 }
13850
13851 eh_frame = elf_section_eh_frame_entry (sec);
13852 if (ret && eh_frame && !eh_frame->gc_mark)
13853 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
13854 ret = false;
13855
13856 return ret;
13857 }
13858
13859 /* Scan and mark sections in a special or debug section group. */
13860
13861 static void
13862 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
13863 {
13864 /* Point to first section of section group. */
13865 asection *ssec;
13866 /* Used to iterate the section group. */
13867 asection *msec;
13868
13869 bool is_special_grp = true;
13870 bool is_debug_grp = true;
13871
13872 /* First scan to see if group contains any section other than debug
13873 and special section. */
13874 ssec = msec = elf_next_in_group (grp);
13875 do
13876 {
13877 if ((msec->flags & SEC_DEBUGGING) == 0)
13878 is_debug_grp = false;
13879
13880 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
13881 is_special_grp = false;
13882
13883 msec = elf_next_in_group (msec);
13884 }
13885 while (msec != ssec);
13886
13887 /* If this is a pure debug section group or pure special section group,
13888 keep all sections in this group. */
13889 if (is_debug_grp || is_special_grp)
13890 {
13891 do
13892 {
13893 msec->gc_mark = 1;
13894 msec = elf_next_in_group (msec);
13895 }
13896 while (msec != ssec);
13897 }
13898 }
13899
13900 /* Keep debug and special sections. */
13901
13902 bool
13903 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
13904 elf_gc_mark_hook_fn mark_hook)
13905 {
13906 bfd *ibfd;
13907
13908 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13909 {
13910 asection *isec;
13911 bool some_kept;
13912 bool debug_frag_seen;
13913 bool has_kept_debug_info;
13914
13915 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13916 continue;
13917 isec = ibfd->sections;
13918 if (isec == NULL || isec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13919 continue;
13920
13921 /* Ensure all linker created sections are kept,
13922 see if any other section is already marked,
13923 and note if we have any fragmented debug sections. */
13924 debug_frag_seen = some_kept = has_kept_debug_info = false;
13925 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13926 {
13927 if ((isec->flags & SEC_LINKER_CREATED) != 0)
13928 isec->gc_mark = 1;
13929 else if (isec->gc_mark
13930 && (isec->flags & SEC_ALLOC) != 0
13931 && elf_section_type (isec) != SHT_NOTE)
13932 some_kept = true;
13933 else
13934 {
13935 /* Since all sections, except for backend specific ones,
13936 have been garbage collected, call mark_hook on this
13937 section if any of its linked-to sections is marked. */
13938 asection *linked_to_sec;
13939 for (linked_to_sec = elf_linked_to_section (isec);
13940 linked_to_sec != NULL && !linked_to_sec->linker_mark;
13941 linked_to_sec = elf_linked_to_section (linked_to_sec))
13942 {
13943 if (linked_to_sec->gc_mark)
13944 {
13945 if (!_bfd_elf_gc_mark (info, isec, mark_hook))
13946 return false;
13947 break;
13948 }
13949 linked_to_sec->linker_mark = 1;
13950 }
13951 for (linked_to_sec = elf_linked_to_section (isec);
13952 linked_to_sec != NULL && linked_to_sec->linker_mark;
13953 linked_to_sec = elf_linked_to_section (linked_to_sec))
13954 linked_to_sec->linker_mark = 0;
13955 }
13956
13957 if (!debug_frag_seen
13958 && (isec->flags & SEC_DEBUGGING)
13959 && startswith (isec->name, ".debug_line."))
13960 debug_frag_seen = true;
13961 else if (strcmp (bfd_section_name (isec),
13962 "__patchable_function_entries") == 0
13963 && elf_linked_to_section (isec) == NULL)
13964 info->callbacks->einfo (_("%F%P: %pB(%pA): error: "
13965 "need linked-to section "
13966 "for --gc-sections\n"),
13967 isec->owner, isec);
13968 }
13969
13970 /* If no non-note alloc section in this file will be kept, then
13971 we can toss out the debug and special sections. */
13972 if (!some_kept)
13973 continue;
13974
13975 /* Keep debug and special sections like .comment when they are
13976 not part of a group. Also keep section groups that contain
13977 just debug sections or special sections. NB: Sections with
13978 linked-to section has been handled above. */
13979 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13980 {
13981 if ((isec->flags & SEC_GROUP) != 0)
13982 _bfd_elf_gc_mark_debug_special_section_group (isec);
13983 else if (((isec->flags & SEC_DEBUGGING) != 0
13984 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
13985 && elf_next_in_group (isec) == NULL
13986 && elf_linked_to_section (isec) == NULL)
13987 isec->gc_mark = 1;
13988 if (isec->gc_mark && (isec->flags & SEC_DEBUGGING) != 0)
13989 has_kept_debug_info = true;
13990 }
13991
13992 /* Look for CODE sections which are going to be discarded,
13993 and find and discard any fragmented debug sections which
13994 are associated with that code section. */
13995 if (debug_frag_seen)
13996 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13997 if ((isec->flags & SEC_CODE) != 0
13998 && isec->gc_mark == 0)
13999 {
14000 unsigned int ilen;
14001 asection *dsec;
14002
14003 ilen = strlen (isec->name);
14004
14005 /* Association is determined by the name of the debug
14006 section containing the name of the code section as
14007 a suffix. For example .debug_line.text.foo is a
14008 debug section associated with .text.foo. */
14009 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
14010 {
14011 unsigned int dlen;
14012
14013 if (dsec->gc_mark == 0
14014 || (dsec->flags & SEC_DEBUGGING) == 0)
14015 continue;
14016
14017 dlen = strlen (dsec->name);
14018
14019 if (dlen > ilen
14020 && strncmp (dsec->name + (dlen - ilen),
14021 isec->name, ilen) == 0)
14022 dsec->gc_mark = 0;
14023 }
14024 }
14025
14026 /* Mark debug sections referenced by kept debug sections. */
14027 if (has_kept_debug_info)
14028 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
14029 if (isec->gc_mark
14030 && (isec->flags & SEC_DEBUGGING) != 0)
14031 if (!_bfd_elf_gc_mark (info, isec,
14032 elf_gc_mark_debug_section))
14033 return false;
14034 }
14035 return true;
14036 }
14037
14038 static bool
14039 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
14040 {
14041 bfd *sub;
14042 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14043
14044 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
14045 {
14046 asection *o;
14047
14048 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
14049 || elf_object_id (sub) != elf_hash_table_id (elf_hash_table (info))
14050 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
14051 continue;
14052 o = sub->sections;
14053 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14054 continue;
14055
14056 for (o = sub->sections; o != NULL; o = o->next)
14057 {
14058 /* When any section in a section group is kept, we keep all
14059 sections in the section group. If the first member of
14060 the section group is excluded, we will also exclude the
14061 group section. */
14062 if (o->flags & SEC_GROUP)
14063 {
14064 asection *first = elf_next_in_group (o);
14065 o->gc_mark = first->gc_mark;
14066 }
14067
14068 if (o->gc_mark)
14069 continue;
14070
14071 /* Skip sweeping sections already excluded. */
14072 if (o->flags & SEC_EXCLUDE)
14073 continue;
14074
14075 /* Since this is early in the link process, it is simple
14076 to remove a section from the output. */
14077 o->flags |= SEC_EXCLUDE;
14078
14079 if (info->print_gc_sections && o->size != 0)
14080 /* xgettext:c-format */
14081 _bfd_error_handler (_("removing unused section '%pA' in file '%pB'"),
14082 o, sub);
14083 }
14084 }
14085
14086 return true;
14087 }
14088
14089 /* Propagate collected vtable information. This is called through
14090 elf_link_hash_traverse. */
14091
14092 static bool
14093 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
14094 {
14095 /* Those that are not vtables. */
14096 if (h->start_stop
14097 || h->u2.vtable == NULL
14098 || h->u2.vtable->parent == NULL)
14099 return true;
14100
14101 /* Those vtables that do not have parents, we cannot merge. */
14102 if (h->u2.vtable->parent == (struct elf_link_hash_entry *) -1)
14103 return true;
14104
14105 /* If we've already been done, exit. */
14106 if (h->u2.vtable->used && h->u2.vtable->used[-1])
14107 return true;
14108
14109 /* Make sure the parent's table is up to date. */
14110 elf_gc_propagate_vtable_entries_used (h->u2.vtable->parent, okp);
14111
14112 if (h->u2.vtable->used == NULL)
14113 {
14114 /* None of this table's entries were referenced. Re-use the
14115 parent's table. */
14116 h->u2.vtable->used = h->u2.vtable->parent->u2.vtable->used;
14117 h->u2.vtable->size = h->u2.vtable->parent->u2.vtable->size;
14118 }
14119 else
14120 {
14121 size_t n;
14122 bool *cu, *pu;
14123
14124 /* Or the parent's entries into ours. */
14125 cu = h->u2.vtable->used;
14126 cu[-1] = true;
14127 pu = h->u2.vtable->parent->u2.vtable->used;
14128 if (pu != NULL)
14129 {
14130 const struct elf_backend_data *bed;
14131 unsigned int log_file_align;
14132
14133 bed = get_elf_backend_data (h->root.u.def.section->owner);
14134 log_file_align = bed->s->log_file_align;
14135 n = h->u2.vtable->parent->u2.vtable->size >> log_file_align;
14136 while (n--)
14137 {
14138 if (*pu)
14139 *cu = true;
14140 pu++;
14141 cu++;
14142 }
14143 }
14144 }
14145
14146 return true;
14147 }
14148
14149 struct link_info_ok
14150 {
14151 struct bfd_link_info *info;
14152 bool ok;
14153 };
14154
14155 static bool
14156 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h,
14157 void *ptr)
14158 {
14159 asection *sec;
14160 bfd_vma hstart, hend;
14161 Elf_Internal_Rela *relstart, *relend, *rel;
14162 const struct elf_backend_data *bed;
14163 unsigned int log_file_align;
14164 struct link_info_ok *info = (struct link_info_ok *) ptr;
14165
14166 /* Take care of both those symbols that do not describe vtables as
14167 well as those that are not loaded. */
14168 if (h->start_stop
14169 || h->u2.vtable == NULL
14170 || h->u2.vtable->parent == NULL)
14171 return true;
14172
14173 BFD_ASSERT (h->root.type == bfd_link_hash_defined
14174 || h->root.type == bfd_link_hash_defweak);
14175
14176 sec = h->root.u.def.section;
14177 hstart = h->root.u.def.value;
14178 hend = hstart + h->size;
14179
14180 relstart = _bfd_elf_link_info_read_relocs (sec->owner, info->info,
14181 sec, NULL, NULL, true);
14182 if (!relstart)
14183 return info->ok = false;
14184 bed = get_elf_backend_data (sec->owner);
14185 log_file_align = bed->s->log_file_align;
14186
14187 relend = relstart + sec->reloc_count;
14188
14189 for (rel = relstart; rel < relend; ++rel)
14190 if (rel->r_offset >= hstart && rel->r_offset < hend)
14191 {
14192 /* If the entry is in use, do nothing. */
14193 if (h->u2.vtable->used
14194 && (rel->r_offset - hstart) < h->u2.vtable->size)
14195 {
14196 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
14197 if (h->u2.vtable->used[entry])
14198 continue;
14199 }
14200 /* Otherwise, kill it. */
14201 rel->r_offset = rel->r_info = rel->r_addend = 0;
14202 }
14203
14204 return true;
14205 }
14206
14207 /* Mark sections containing dynamically referenced symbols. When
14208 building shared libraries, we must assume that any visible symbol is
14209 referenced. */
14210
14211 bool
14212 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
14213 {
14214 struct bfd_link_info *info = (struct bfd_link_info *) inf;
14215 struct bfd_elf_dynamic_list *d = info->dynamic_list;
14216
14217 if ((h->root.type == bfd_link_hash_defined
14218 || h->root.type == bfd_link_hash_defweak)
14219 && (!h->start_stop
14220 || h->root.ldscript_def
14221 || !info->start_stop_gc)
14222 && ((h->ref_dynamic && !h->forced_local)
14223 || ((h->def_regular || ELF_COMMON_DEF_P (h))
14224 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
14225 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
14226 && (!bfd_link_executable (info)
14227 || info->gc_keep_exported
14228 || info->export_dynamic
14229 || (h->dynamic
14230 && d != NULL
14231 && (*d->match) (&d->head, NULL, h->root.root.string)))
14232 && (h->versioned >= versioned
14233 || !bfd_hide_sym_by_version (info->version_info,
14234 h->root.root.string)))))
14235 h->root.u.def.section->flags |= SEC_KEEP;
14236
14237 return true;
14238 }
14239
14240 /* Keep all sections containing symbols undefined on the command-line,
14241 and the section containing the entry symbol. */
14242
14243 void
14244 _bfd_elf_gc_keep (struct bfd_link_info *info)
14245 {
14246 struct bfd_sym_chain *sym;
14247
14248 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
14249 {
14250 struct elf_link_hash_entry *h;
14251
14252 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
14253 false, false, false);
14254
14255 if (h != NULL
14256 && (h->root.type == bfd_link_hash_defined
14257 || h->root.type == bfd_link_hash_defweak)
14258 && !bfd_is_const_section (h->root.u.def.section))
14259 h->root.u.def.section->flags |= SEC_KEEP;
14260 }
14261 }
14262
14263 bool
14264 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
14265 struct bfd_link_info *info)
14266 {
14267 bfd *ibfd = info->input_bfds;
14268
14269 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
14270 {
14271 asection *sec;
14272 struct elf_reloc_cookie cookie;
14273
14274 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
14275 continue;
14276 sec = ibfd->sections;
14277 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14278 continue;
14279
14280 if (!init_reloc_cookie (&cookie, info, ibfd))
14281 return false;
14282
14283 for (sec = ibfd->sections; sec; sec = sec->next)
14284 {
14285 if (startswith (bfd_section_name (sec), ".eh_frame_entry")
14286 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
14287 {
14288 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
14289 fini_reloc_cookie_rels (&cookie, sec);
14290 }
14291 }
14292 }
14293 return true;
14294 }
14295
14296 /* Do mark and sweep of unused sections. */
14297
14298 bool
14299 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
14300 {
14301 bool ok = true;
14302 bfd *sub;
14303 elf_gc_mark_hook_fn gc_mark_hook;
14304 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14305 struct elf_link_hash_table *htab;
14306 struct link_info_ok info_ok;
14307
14308 if (!bed->can_gc_sections
14309 || !is_elf_hash_table (info->hash))
14310 {
14311 _bfd_error_handler(_("warning: gc-sections option ignored"));
14312 return true;
14313 }
14314
14315 bed->gc_keep (info);
14316 htab = elf_hash_table (info);
14317
14318 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
14319 at the .eh_frame section if we can mark the FDEs individually. */
14320 for (sub = info->input_bfds;
14321 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
14322 sub = sub->link.next)
14323 {
14324 asection *sec;
14325 struct elf_reloc_cookie cookie;
14326
14327 sec = sub->sections;
14328 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14329 continue;
14330 sec = bfd_get_section_by_name (sub, ".eh_frame");
14331 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
14332 {
14333 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
14334 if (elf_section_data (sec)->sec_info
14335 && (sec->flags & SEC_LINKER_CREATED) == 0)
14336 elf_eh_frame_section (sub) = sec;
14337 fini_reloc_cookie_for_section (&cookie, sec);
14338 sec = bfd_get_next_section_by_name (NULL, sec);
14339 }
14340 }
14341
14342 /* Apply transitive closure to the vtable entry usage info. */
14343 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
14344 if (!ok)
14345 return false;
14346
14347 /* Kill the vtable relocations that were not used. */
14348 info_ok.info = info;
14349 info_ok.ok = true;
14350 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &info_ok);
14351 if (!info_ok.ok)
14352 return false;
14353
14354 /* Mark dynamically referenced symbols. */
14355 if (htab->dynamic_sections_created || info->gc_keep_exported)
14356 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
14357
14358 /* Grovel through relocs to find out who stays ... */
14359 gc_mark_hook = bed->gc_mark_hook;
14360 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
14361 {
14362 asection *o;
14363
14364 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
14365 || elf_object_id (sub) != elf_hash_table_id (htab)
14366 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
14367 continue;
14368
14369 o = sub->sections;
14370 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14371 continue;
14372
14373 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
14374 Also treat note sections as a root, if the section is not part
14375 of a group. We must keep all PREINIT_ARRAY, INIT_ARRAY as
14376 well as FINI_ARRAY sections for ld -r. */
14377 for (o = sub->sections; o != NULL; o = o->next)
14378 if (!o->gc_mark
14379 && (o->flags & SEC_EXCLUDE) == 0
14380 && ((o->flags & SEC_KEEP) != 0
14381 || (bfd_link_relocatable (info)
14382 && ((elf_section_data (o)->this_hdr.sh_type
14383 == SHT_PREINIT_ARRAY)
14384 || (elf_section_data (o)->this_hdr.sh_type
14385 == SHT_INIT_ARRAY)
14386 || (elf_section_data (o)->this_hdr.sh_type
14387 == SHT_FINI_ARRAY)))
14388 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
14389 && elf_next_in_group (o) == NULL
14390 && elf_linked_to_section (o) == NULL)
14391 || ((elf_tdata (sub)->has_gnu_osabi & elf_gnu_osabi_retain)
14392 && (elf_section_flags (o) & SHF_GNU_RETAIN))))
14393 {
14394 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
14395 return false;
14396 }
14397 }
14398
14399 /* Allow the backend to mark additional target specific sections. */
14400 bed->gc_mark_extra_sections (info, gc_mark_hook);
14401
14402 /* ... and mark SEC_EXCLUDE for those that go. */
14403 return elf_gc_sweep (abfd, info);
14404 }
14405 \f
14406 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
14407
14408 bool
14409 bfd_elf_gc_record_vtinherit (bfd *abfd,
14410 asection *sec,
14411 struct elf_link_hash_entry *h,
14412 bfd_vma offset)
14413 {
14414 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
14415 struct elf_link_hash_entry **search, *child;
14416 size_t extsymcount;
14417 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14418
14419 /* The sh_info field of the symtab header tells us where the
14420 external symbols start. We don't care about the local symbols at
14421 this point. */
14422 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
14423 if (!elf_bad_symtab (abfd))
14424 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
14425
14426 sym_hashes = elf_sym_hashes (abfd);
14427 sym_hashes_end = PTR_ADD (sym_hashes, extsymcount);
14428
14429 /* Hunt down the child symbol, which is in this section at the same
14430 offset as the relocation. */
14431 for (search = sym_hashes; search != sym_hashes_end; ++search)
14432 {
14433 if ((child = *search) != NULL
14434 && (child->root.type == bfd_link_hash_defined
14435 || child->root.type == bfd_link_hash_defweak)
14436 && child->root.u.def.section == sec
14437 && child->root.u.def.value == offset)
14438 goto win;
14439 }
14440
14441 /* xgettext:c-format */
14442 _bfd_error_handler (_("%pB: %pA+%#" PRIx64 ": no symbol found for INHERIT"),
14443 abfd, sec, (uint64_t) offset);
14444 bfd_set_error (bfd_error_invalid_operation);
14445 return false;
14446
14447 win:
14448 if (!child->u2.vtable)
14449 {
14450 child->u2.vtable = ((struct elf_link_virtual_table_entry *)
14451 bfd_zalloc (abfd, sizeof (*child->u2.vtable)));
14452 if (!child->u2.vtable)
14453 return false;
14454 }
14455 if (!h)
14456 {
14457 /* This *should* only be the absolute section. It could potentially
14458 be that someone has defined a non-global vtable though, which
14459 would be bad. It isn't worth paging in the local symbols to be
14460 sure though; that case should simply be handled by the assembler. */
14461
14462 child->u2.vtable->parent = (struct elf_link_hash_entry *) -1;
14463 }
14464 else
14465 child->u2.vtable->parent = h;
14466
14467 return true;
14468 }
14469
14470 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
14471
14472 bool
14473 bfd_elf_gc_record_vtentry (bfd *abfd, asection *sec,
14474 struct elf_link_hash_entry *h,
14475 bfd_vma addend)
14476 {
14477 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14478 unsigned int log_file_align = bed->s->log_file_align;
14479
14480 if (!h)
14481 {
14482 /* xgettext:c-format */
14483 _bfd_error_handler (_("%pB: section '%pA': corrupt VTENTRY entry"),
14484 abfd, sec);
14485 bfd_set_error (bfd_error_bad_value);
14486 return false;
14487 }
14488
14489 if (!h->u2.vtable)
14490 {
14491 h->u2.vtable = ((struct elf_link_virtual_table_entry *)
14492 bfd_zalloc (abfd, sizeof (*h->u2.vtable)));
14493 if (!h->u2.vtable)
14494 return false;
14495 }
14496
14497 if (addend >= h->u2.vtable->size)
14498 {
14499 size_t size, bytes, file_align;
14500 bool *ptr = h->u2.vtable->used;
14501
14502 /* While the symbol is undefined, we have to be prepared to handle
14503 a zero size. */
14504 file_align = 1 << log_file_align;
14505 if (h->root.type == bfd_link_hash_undefined)
14506 size = addend + file_align;
14507 else
14508 {
14509 size = h->size;
14510 if (addend >= size)
14511 {
14512 /* Oops! We've got a reference past the defined end of
14513 the table. This is probably a bug -- shall we warn? */
14514 size = addend + file_align;
14515 }
14516 }
14517 size = (size + file_align - 1) & -file_align;
14518
14519 /* Allocate one extra entry for use as a "done" flag for the
14520 consolidation pass. */
14521 bytes = ((size >> log_file_align) + 1) * sizeof (bool);
14522
14523 if (ptr)
14524 {
14525 ptr = (bool *) bfd_realloc (ptr - 1, bytes);
14526
14527 if (ptr != NULL)
14528 {
14529 size_t oldbytes;
14530
14531 oldbytes = (((h->u2.vtable->size >> log_file_align) + 1)
14532 * sizeof (bool));
14533 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
14534 }
14535 }
14536 else
14537 ptr = (bool *) bfd_zmalloc (bytes);
14538
14539 if (ptr == NULL)
14540 return false;
14541
14542 /* And arrange for that done flag to be at index -1. */
14543 h->u2.vtable->used = ptr + 1;
14544 h->u2.vtable->size = size;
14545 }
14546
14547 h->u2.vtable->used[addend >> log_file_align] = true;
14548
14549 return true;
14550 }
14551
14552 /* Map an ELF section header flag to its corresponding string. */
14553 typedef struct
14554 {
14555 char *flag_name;
14556 flagword flag_value;
14557 } elf_flags_to_name_table;
14558
14559 static const elf_flags_to_name_table elf_flags_to_names [] =
14560 {
14561 { "SHF_WRITE", SHF_WRITE },
14562 { "SHF_ALLOC", SHF_ALLOC },
14563 { "SHF_EXECINSTR", SHF_EXECINSTR },
14564 { "SHF_MERGE", SHF_MERGE },
14565 { "SHF_STRINGS", SHF_STRINGS },
14566 { "SHF_INFO_LINK", SHF_INFO_LINK},
14567 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
14568 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
14569 { "SHF_GROUP", SHF_GROUP },
14570 { "SHF_TLS", SHF_TLS },
14571 { "SHF_MASKOS", SHF_MASKOS },
14572 { "SHF_EXCLUDE", SHF_EXCLUDE },
14573 };
14574
14575 /* Returns TRUE if the section is to be included, otherwise FALSE. */
14576 bool
14577 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
14578 struct flag_info *flaginfo,
14579 asection *section)
14580 {
14581 const bfd_vma sh_flags = elf_section_flags (section);
14582
14583 if (!flaginfo->flags_initialized)
14584 {
14585 bfd *obfd = info->output_bfd;
14586 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
14587 struct flag_info_list *tf = flaginfo->flag_list;
14588 int with_hex = 0;
14589 int without_hex = 0;
14590
14591 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
14592 {
14593 unsigned i;
14594 flagword (*lookup) (char *);
14595
14596 lookup = bed->elf_backend_lookup_section_flags_hook;
14597 if (lookup != NULL)
14598 {
14599 flagword hexval = (*lookup) ((char *) tf->name);
14600
14601 if (hexval != 0)
14602 {
14603 if (tf->with == with_flags)
14604 with_hex |= hexval;
14605 else if (tf->with == without_flags)
14606 without_hex |= hexval;
14607 tf->valid = true;
14608 continue;
14609 }
14610 }
14611 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
14612 {
14613 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
14614 {
14615 if (tf->with == with_flags)
14616 with_hex |= elf_flags_to_names[i].flag_value;
14617 else if (tf->with == without_flags)
14618 without_hex |= elf_flags_to_names[i].flag_value;
14619 tf->valid = true;
14620 break;
14621 }
14622 }
14623 if (!tf->valid)
14624 {
14625 info->callbacks->einfo
14626 (_("unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
14627 return false;
14628 }
14629 }
14630 flaginfo->flags_initialized = true;
14631 flaginfo->only_with_flags |= with_hex;
14632 flaginfo->not_with_flags |= without_hex;
14633 }
14634
14635 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
14636 return false;
14637
14638 if ((flaginfo->not_with_flags & sh_flags) != 0)
14639 return false;
14640
14641 return true;
14642 }
14643
14644 struct alloc_got_off_arg {
14645 bfd_vma gotoff;
14646 struct bfd_link_info *info;
14647 };
14648
14649 /* We need a special top-level link routine to convert got reference counts
14650 to real got offsets. */
14651
14652 static bool
14653 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
14654 {
14655 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
14656 bfd *obfd = gofarg->info->output_bfd;
14657 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
14658
14659 if (h->got.refcount > 0)
14660 {
14661 h->got.offset = gofarg->gotoff;
14662 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
14663 }
14664 else
14665 h->got.offset = (bfd_vma) -1;
14666
14667 return true;
14668 }
14669
14670 /* And an accompanying bit to work out final got entry offsets once
14671 we're done. Should be called from final_link. */
14672
14673 bool
14674 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
14675 struct bfd_link_info *info)
14676 {
14677 bfd *i;
14678 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14679 bfd_vma gotoff;
14680 struct alloc_got_off_arg gofarg;
14681
14682 BFD_ASSERT (abfd == info->output_bfd);
14683
14684 if (! is_elf_hash_table (info->hash))
14685 return false;
14686
14687 /* The GOT offset is relative to the .got section, but the GOT header is
14688 put into the .got.plt section, if the backend uses it. */
14689 if (bed->want_got_plt)
14690 gotoff = 0;
14691 else
14692 gotoff = bed->got_header_size;
14693
14694 /* Do the local .got entries first. */
14695 for (i = info->input_bfds; i; i = i->link.next)
14696 {
14697 bfd_signed_vma *local_got;
14698 size_t j, locsymcount;
14699 Elf_Internal_Shdr *symtab_hdr;
14700
14701 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
14702 continue;
14703
14704 local_got = elf_local_got_refcounts (i);
14705 if (!local_got)
14706 continue;
14707
14708 symtab_hdr = &elf_tdata (i)->symtab_hdr;
14709 if (elf_bad_symtab (i))
14710 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
14711 else
14712 locsymcount = symtab_hdr->sh_info;
14713
14714 for (j = 0; j < locsymcount; ++j)
14715 {
14716 if (local_got[j] > 0)
14717 {
14718 local_got[j] = gotoff;
14719 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
14720 }
14721 else
14722 local_got[j] = (bfd_vma) -1;
14723 }
14724 }
14725
14726 /* Then the global .got entries. .plt refcounts are handled by
14727 adjust_dynamic_symbol */
14728 gofarg.gotoff = gotoff;
14729 gofarg.info = info;
14730 elf_link_hash_traverse (elf_hash_table (info),
14731 elf_gc_allocate_got_offsets,
14732 &gofarg);
14733 return true;
14734 }
14735
14736 /* Many folk need no more in the way of final link than this, once
14737 got entry reference counting is enabled. */
14738
14739 bool
14740 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
14741 {
14742 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
14743 return false;
14744
14745 /* Invoke the regular ELF backend linker to do all the work. */
14746 return bfd_elf_final_link (abfd, info);
14747 }
14748
14749 bool
14750 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
14751 {
14752 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
14753
14754 if (rcookie->bad_symtab)
14755 rcookie->rel = rcookie->rels;
14756
14757 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
14758 {
14759 unsigned long r_symndx;
14760
14761 if (! rcookie->bad_symtab)
14762 if (rcookie->rel->r_offset > offset)
14763 return false;
14764 if (rcookie->rel->r_offset != offset)
14765 continue;
14766
14767 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
14768 if (r_symndx == STN_UNDEF)
14769 return true;
14770
14771 if (r_symndx >= rcookie->locsymcount
14772 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
14773 {
14774 struct elf_link_hash_entry *h;
14775
14776 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
14777
14778 while (h->root.type == bfd_link_hash_indirect
14779 || h->root.type == bfd_link_hash_warning)
14780 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14781
14782 if ((h->root.type == bfd_link_hash_defined
14783 || h->root.type == bfd_link_hash_defweak)
14784 && (h->root.u.def.section->owner != rcookie->abfd
14785 || h->root.u.def.section->kept_section != NULL
14786 || discarded_section (h->root.u.def.section)))
14787 return true;
14788 }
14789 else
14790 {
14791 /* It's not a relocation against a global symbol,
14792 but it could be a relocation against a local
14793 symbol for a discarded section. */
14794 asection *isec;
14795 Elf_Internal_Sym *isym;
14796
14797 /* Need to: get the symbol; get the section. */
14798 isym = &rcookie->locsyms[r_symndx];
14799 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
14800 if (isec != NULL
14801 && (isec->kept_section != NULL
14802 || discarded_section (isec)))
14803 return true;
14804 }
14805 return false;
14806 }
14807 return false;
14808 }
14809
14810 /* Discard unneeded references to discarded sections.
14811 Returns -1 on error, 1 if any section's size was changed, 0 if
14812 nothing changed. This function assumes that the relocations are in
14813 sorted order, which is true for all known assemblers. */
14814
14815 int
14816 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
14817 {
14818 struct elf_reloc_cookie cookie;
14819 asection *o;
14820 bfd *abfd;
14821 int changed = 0;
14822
14823 if (info->traditional_format
14824 || !is_elf_hash_table (info->hash))
14825 return 0;
14826
14827 o = bfd_get_section_by_name (output_bfd, ".stab");
14828 if (o != NULL)
14829 {
14830 asection *i;
14831
14832 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14833 {
14834 if (i->size == 0
14835 || i->reloc_count == 0
14836 || i->sec_info_type != SEC_INFO_TYPE_STABS)
14837 continue;
14838
14839 abfd = i->owner;
14840 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14841 continue;
14842
14843 if (!init_reloc_cookie_for_section (&cookie, info, i))
14844 return -1;
14845
14846 if (_bfd_discard_section_stabs (abfd, i,
14847 elf_section_data (i)->sec_info,
14848 bfd_elf_reloc_symbol_deleted_p,
14849 &cookie))
14850 changed = 1;
14851
14852 fini_reloc_cookie_for_section (&cookie, i);
14853 }
14854 }
14855
14856 o = NULL;
14857 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
14858 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
14859 if (o != NULL)
14860 {
14861 asection *i;
14862 int eh_changed = 0;
14863 unsigned int eh_alignment; /* Octets. */
14864
14865 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14866 {
14867 if (i->size == 0)
14868 continue;
14869
14870 abfd = i->owner;
14871 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14872 continue;
14873
14874 if (!init_reloc_cookie_for_section (&cookie, info, i))
14875 return -1;
14876
14877 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
14878 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
14879 bfd_elf_reloc_symbol_deleted_p,
14880 &cookie))
14881 {
14882 eh_changed = 1;
14883 if (i->size != i->rawsize)
14884 changed = 1;
14885 }
14886
14887 fini_reloc_cookie_for_section (&cookie, i);
14888 }
14889
14890 eh_alignment = ((1 << o->alignment_power)
14891 * bfd_octets_per_byte (output_bfd, o));
14892 /* Skip over zero terminator, and prevent empty sections from
14893 adding alignment padding at the end. */
14894 for (i = o->map_tail.s; i != NULL; i = i->map_tail.s)
14895 if (i->size == 0)
14896 i->flags |= SEC_EXCLUDE;
14897 else if (i->size > 4)
14898 break;
14899 /* The last non-empty eh_frame section doesn't need padding. */
14900 if (i != NULL)
14901 i = i->map_tail.s;
14902 /* Any prior sections must pad the last FDE out to the output
14903 section alignment. Otherwise we might have zero padding
14904 between sections, which would be seen as a terminator. */
14905 for (; i != NULL; i = i->map_tail.s)
14906 if (i->size == 4)
14907 /* All but the last zero terminator should have been removed. */
14908 BFD_FAIL ();
14909 else
14910 {
14911 bfd_size_type size
14912 = (i->size + eh_alignment - 1) & -eh_alignment;
14913 if (i->size != size)
14914 {
14915 i->size = size;
14916 changed = 1;
14917 eh_changed = 1;
14918 }
14919 }
14920 if (eh_changed)
14921 elf_link_hash_traverse (elf_hash_table (info),
14922 _bfd_elf_adjust_eh_frame_global_symbol, NULL);
14923 }
14924
14925 o = bfd_get_section_by_name (output_bfd, ".sframe");
14926 if (o != NULL)
14927 {
14928 asection *i;
14929
14930 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14931 {
14932 if (i->size == 0)
14933 continue;
14934
14935 abfd = i->owner;
14936 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14937 continue;
14938
14939 if (!init_reloc_cookie_for_section (&cookie, info, i))
14940 return -1;
14941
14942 if (_bfd_elf_parse_sframe (abfd, info, i, &cookie))
14943 {
14944 if (_bfd_elf_discard_section_sframe (i,
14945 bfd_elf_reloc_symbol_deleted_p,
14946 &cookie))
14947 {
14948 if (i->size != i->rawsize)
14949 changed = 1;
14950 }
14951 }
14952 fini_reloc_cookie_for_section (&cookie, i);
14953 }
14954 /* Update the reference to the output .sframe section. Used to
14955 determine later if PT_GNU_SFRAME segment is to be generated. */
14956 if (!_bfd_elf_set_section_sframe (output_bfd, info))
14957 return -1;
14958 }
14959
14960 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
14961 {
14962 const struct elf_backend_data *bed;
14963 asection *s;
14964
14965 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14966 continue;
14967 s = abfd->sections;
14968 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14969 continue;
14970
14971 bed = get_elf_backend_data (abfd);
14972
14973 if (bed->elf_backend_discard_info != NULL)
14974 {
14975 if (!init_reloc_cookie (&cookie, info, abfd))
14976 return -1;
14977
14978 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
14979 changed = 1;
14980
14981 fini_reloc_cookie (&cookie, abfd);
14982 }
14983 }
14984
14985 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
14986 _bfd_elf_end_eh_frame_parsing (info);
14987
14988 if (info->eh_frame_hdr_type
14989 && !bfd_link_relocatable (info)
14990 && _bfd_elf_discard_section_eh_frame_hdr (info))
14991 changed = 1;
14992
14993 return changed;
14994 }
14995
14996 bool
14997 _bfd_elf_section_already_linked (bfd *abfd,
14998 asection *sec,
14999 struct bfd_link_info *info)
15000 {
15001 flagword flags;
15002 const char *name, *key;
15003 struct bfd_section_already_linked *l;
15004 struct bfd_section_already_linked_hash_entry *already_linked_list;
15005
15006 if (sec->output_section == bfd_abs_section_ptr)
15007 return false;
15008
15009 flags = sec->flags;
15010
15011 /* Return if it isn't a linkonce section. A comdat group section
15012 also has SEC_LINK_ONCE set. */
15013 if ((flags & SEC_LINK_ONCE) == 0)
15014 return false;
15015
15016 /* Don't put group member sections on our list of already linked
15017 sections. They are handled as a group via their group section. */
15018 if (elf_sec_group (sec) != NULL)
15019 return false;
15020
15021 /* For a SHT_GROUP section, use the group signature as the key. */
15022 name = sec->name;
15023 if ((flags & SEC_GROUP) != 0
15024 && elf_next_in_group (sec) != NULL
15025 && elf_group_name (elf_next_in_group (sec)) != NULL)
15026 key = elf_group_name (elf_next_in_group (sec));
15027 else
15028 {
15029 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
15030 if (startswith (name, ".gnu.linkonce.")
15031 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
15032 key++;
15033 else
15034 /* Must be a user linkonce section that doesn't follow gcc's
15035 naming convention. In this case we won't be matching
15036 single member groups. */
15037 key = name;
15038 }
15039
15040 already_linked_list = bfd_section_already_linked_table_lookup (key);
15041
15042 for (l = already_linked_list->entry; l != NULL; l = l->next)
15043 {
15044 /* We may have 2 different types of sections on the list: group
15045 sections with a signature of <key> (<key> is some string),
15046 and linkonce sections named .gnu.linkonce.<type>.<key>.
15047 Match like sections. LTO plugin sections are an exception.
15048 They are always named .gnu.linkonce.t.<key> and match either
15049 type of section. */
15050 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
15051 && ((flags & SEC_GROUP) != 0
15052 || strcmp (name, l->sec->name) == 0))
15053 || (l->sec->owner->flags & BFD_PLUGIN) != 0
15054 || (sec->owner->flags & BFD_PLUGIN) != 0)
15055 {
15056 /* The section has already been linked. See if we should
15057 issue a warning. */
15058 if (!_bfd_handle_already_linked (sec, l, info))
15059 return false;
15060
15061 if (flags & SEC_GROUP)
15062 {
15063 asection *first = elf_next_in_group (sec);
15064 asection *s = first;
15065
15066 while (s != NULL)
15067 {
15068 s->output_section = bfd_abs_section_ptr;
15069 /* Record which group discards it. */
15070 s->kept_section = l->sec;
15071 s = elf_next_in_group (s);
15072 /* These lists are circular. */
15073 if (s == first)
15074 break;
15075 }
15076 }
15077
15078 return true;
15079 }
15080 }
15081
15082 /* A single member comdat group section may be discarded by a
15083 linkonce section and vice versa. */
15084 if ((flags & SEC_GROUP) != 0)
15085 {
15086 asection *first = elf_next_in_group (sec);
15087
15088 if (first != NULL && elf_next_in_group (first) == first)
15089 /* Check this single member group against linkonce sections. */
15090 for (l = already_linked_list->entry; l != NULL; l = l->next)
15091 if ((l->sec->flags & SEC_GROUP) == 0
15092 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
15093 {
15094 first->output_section = bfd_abs_section_ptr;
15095 first->kept_section = l->sec;
15096 sec->output_section = bfd_abs_section_ptr;
15097 break;
15098 }
15099 }
15100 else
15101 /* Check this linkonce section against single member groups. */
15102 for (l = already_linked_list->entry; l != NULL; l = l->next)
15103 if (l->sec->flags & SEC_GROUP)
15104 {
15105 asection *first = elf_next_in_group (l->sec);
15106
15107 if (first != NULL
15108 && elf_next_in_group (first) == first
15109 && bfd_elf_match_symbols_in_sections (first, sec, info))
15110 {
15111 sec->output_section = bfd_abs_section_ptr;
15112 sec->kept_section = first;
15113 break;
15114 }
15115 }
15116
15117 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
15118 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
15119 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
15120 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
15121 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
15122 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
15123 `.gnu.linkonce.t.F' section from a different bfd not requiring any
15124 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
15125 The reverse order cannot happen as there is never a bfd with only the
15126 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
15127 matter as here were are looking only for cross-bfd sections. */
15128
15129 if ((flags & SEC_GROUP) == 0 && startswith (name, ".gnu.linkonce.r."))
15130 for (l = already_linked_list->entry; l != NULL; l = l->next)
15131 if ((l->sec->flags & SEC_GROUP) == 0
15132 && startswith (l->sec->name, ".gnu.linkonce.t."))
15133 {
15134 if (abfd != l->sec->owner)
15135 sec->output_section = bfd_abs_section_ptr;
15136 break;
15137 }
15138
15139 /* This is the first section with this name. Record it. */
15140 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
15141 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
15142 return sec->output_section == bfd_abs_section_ptr;
15143 }
15144
15145 bool
15146 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
15147 {
15148 return sym->st_shndx == SHN_COMMON;
15149 }
15150
15151 unsigned int
15152 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
15153 {
15154 return SHN_COMMON;
15155 }
15156
15157 asection *
15158 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
15159 {
15160 return bfd_com_section_ptr;
15161 }
15162
15163 bfd_vma
15164 _bfd_elf_default_got_elt_size (bfd *abfd,
15165 struct bfd_link_info *info ATTRIBUTE_UNUSED,
15166 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
15167 bfd *ibfd ATTRIBUTE_UNUSED,
15168 unsigned long symndx ATTRIBUTE_UNUSED)
15169 {
15170 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15171 return bed->s->arch_size / 8;
15172 }
15173
15174 /* Routines to support the creation of dynamic relocs. */
15175
15176 /* Returns the name of the dynamic reloc section associated with SEC. */
15177
15178 static const char *
15179 get_dynamic_reloc_section_name (bfd * abfd,
15180 asection * sec,
15181 bool is_rela)
15182 {
15183 char *name;
15184 const char *old_name = bfd_section_name (sec);
15185 const char *prefix = is_rela ? ".rela" : ".rel";
15186
15187 if (old_name == NULL)
15188 return NULL;
15189
15190 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
15191 sprintf (name, "%s%s", prefix, old_name);
15192
15193 return name;
15194 }
15195
15196 /* Returns the dynamic reloc section associated with SEC.
15197 If necessary compute the name of the dynamic reloc section based
15198 on SEC's name (looked up in ABFD's string table) and the setting
15199 of IS_RELA. */
15200
15201 asection *
15202 _bfd_elf_get_dynamic_reloc_section (bfd *abfd,
15203 asection *sec,
15204 bool is_rela)
15205 {
15206 asection *reloc_sec = elf_section_data (sec)->sreloc;
15207
15208 if (reloc_sec == NULL)
15209 {
15210 const char *name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
15211
15212 if (name != NULL)
15213 {
15214 reloc_sec = bfd_get_linker_section (abfd, name);
15215
15216 if (reloc_sec != NULL)
15217 elf_section_data (sec)->sreloc = reloc_sec;
15218 }
15219 }
15220
15221 return reloc_sec;
15222 }
15223
15224 /* Returns the dynamic reloc section associated with SEC. If the
15225 section does not exist it is created and attached to the DYNOBJ
15226 bfd and stored in the SRELOC field of SEC's elf_section_data
15227 structure.
15228
15229 ALIGNMENT is the alignment for the newly created section and
15230 IS_RELA defines whether the name should be .rela.<SEC's name>
15231 or .rel.<SEC's name>. The section name is looked up in the
15232 string table associated with ABFD. */
15233
15234 asection *
15235 _bfd_elf_make_dynamic_reloc_section (asection *sec,
15236 bfd *dynobj,
15237 unsigned int alignment,
15238 bfd *abfd,
15239 bool is_rela)
15240 {
15241 asection * reloc_sec = elf_section_data (sec)->sreloc;
15242
15243 if (reloc_sec == NULL)
15244 {
15245 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
15246
15247 if (name == NULL)
15248 return NULL;
15249
15250 reloc_sec = bfd_get_linker_section (dynobj, name);
15251
15252 if (reloc_sec == NULL)
15253 {
15254 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
15255 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
15256 if ((sec->flags & SEC_ALLOC) != 0)
15257 flags |= SEC_ALLOC | SEC_LOAD;
15258
15259 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
15260 if (reloc_sec != NULL)
15261 {
15262 /* _bfd_elf_get_sec_type_attr chooses a section type by
15263 name. Override as it may be wrong, eg. for a user
15264 section named "auto" we'll get ".relauto" which is
15265 seen to be a .rela section. */
15266 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
15267 if (!bfd_set_section_alignment (reloc_sec, alignment))
15268 reloc_sec = NULL;
15269 }
15270 }
15271
15272 elf_section_data (sec)->sreloc = reloc_sec;
15273 }
15274
15275 return reloc_sec;
15276 }
15277
15278 /* Copy the ELF symbol type and other attributes for a linker script
15279 assignment from HSRC to HDEST. Generally this should be treated as
15280 if we found a strong non-dynamic definition for HDEST (except that
15281 ld ignores multiple definition errors). */
15282 void
15283 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
15284 struct bfd_link_hash_entry *hdest,
15285 struct bfd_link_hash_entry *hsrc)
15286 {
15287 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
15288 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
15289 Elf_Internal_Sym isym;
15290
15291 ehdest->type = ehsrc->type;
15292 ehdest->target_internal = ehsrc->target_internal;
15293
15294 isym.st_other = ehsrc->other;
15295 elf_merge_st_other (abfd, ehdest, isym.st_other, NULL, true, false);
15296 }
15297
15298 /* Append a RELA relocation REL to section S in BFD. */
15299
15300 void
15301 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
15302 {
15303 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15304 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
15305 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
15306 bed->s->swap_reloca_out (abfd, rel, loc);
15307 }
15308
15309 /* Append a REL relocation REL to section S in BFD. */
15310
15311 void
15312 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
15313 {
15314 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15315 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
15316 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
15317 bed->s->swap_reloc_out (abfd, rel, loc);
15318 }
15319
15320 /* Define __start, __stop, .startof. or .sizeof. symbol. */
15321
15322 struct bfd_link_hash_entry *
15323 bfd_elf_define_start_stop (struct bfd_link_info *info,
15324 const char *symbol, asection *sec)
15325 {
15326 struct elf_link_hash_entry *h;
15327
15328 h = elf_link_hash_lookup (elf_hash_table (info), symbol,
15329 false, false, true);
15330 /* NB: Common symbols will be turned into definition later. */
15331 if (h != NULL
15332 && !h->root.ldscript_def
15333 && (h->root.type == bfd_link_hash_undefined
15334 || h->root.type == bfd_link_hash_undefweak
15335 || ((h->ref_regular || h->def_dynamic)
15336 && !h->def_regular
15337 && h->root.type != bfd_link_hash_common)))
15338 {
15339 bool was_dynamic = h->ref_dynamic || h->def_dynamic;
15340 h->verinfo.verdef = NULL;
15341 h->root.type = bfd_link_hash_defined;
15342 h->root.u.def.section = sec;
15343 h->root.u.def.value = 0;
15344 h->def_regular = 1;
15345 h->def_dynamic = 0;
15346 h->start_stop = 1;
15347 h->u2.start_stop_section = sec;
15348 if (symbol[0] == '.')
15349 {
15350 /* .startof. and .sizeof. symbols are local. */
15351 const struct elf_backend_data *bed;
15352 bed = get_elf_backend_data (info->output_bfd);
15353 (*bed->elf_backend_hide_symbol) (info, h, true);
15354 }
15355 else
15356 {
15357 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
15358 h->other = ((h->other & ~ELF_ST_VISIBILITY (-1))
15359 | info->start_stop_visibility);
15360 if (was_dynamic)
15361 bfd_elf_link_record_dynamic_symbol (info, h);
15362 }
15363 return &h->root;
15364 }
15365 return NULL;
15366 }
15367
15368 /* Find dynamic relocs for H that apply to read-only sections. */
15369
15370 asection *
15371 _bfd_elf_readonly_dynrelocs (struct elf_link_hash_entry *h)
15372 {
15373 struct elf_dyn_relocs *p;
15374
15375 for (p = h->dyn_relocs; p != NULL; p = p->next)
15376 {
15377 asection *s = p->sec->output_section;
15378
15379 if (s != NULL && (s->flags & SEC_READONLY) != 0)
15380 return p->sec;
15381 }
15382 return NULL;
15383 }
15384
15385 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
15386 read-only sections. */
15387
15388 bool
15389 _bfd_elf_maybe_set_textrel (struct elf_link_hash_entry *h, void *inf)
15390 {
15391 asection *sec;
15392
15393 if (h->root.type == bfd_link_hash_indirect)
15394 return true;
15395
15396 sec = _bfd_elf_readonly_dynrelocs (h);
15397 if (sec != NULL)
15398 {
15399 struct bfd_link_info *info = (struct bfd_link_info *) inf;
15400
15401 info->flags |= DF_TEXTREL;
15402 /* xgettext:c-format */
15403 info->callbacks->minfo (_("%pB: dynamic relocation against `%pT' "
15404 "in read-only section `%pA'\n"),
15405 sec->owner, h->root.root.string, sec);
15406
15407 if (bfd_link_textrel_check (info))
15408 /* xgettext:c-format */
15409 info->callbacks->einfo (_("%P: %pB: warning: relocation against `%s' "
15410 "in read-only section `%pA'\n"),
15411 sec->owner, h->root.root.string, sec);
15412
15413 /* Not an error, just cut short the traversal. */
15414 return false;
15415 }
15416 return true;
15417 }
15418
15419 /* Add dynamic tags. */
15420
15421 bool
15422 _bfd_elf_add_dynamic_tags (bfd *output_bfd, struct bfd_link_info *info,
15423 bool need_dynamic_reloc)
15424 {
15425 struct elf_link_hash_table *htab = elf_hash_table (info);
15426
15427 if (htab->dynamic_sections_created)
15428 {
15429 /* Add some entries to the .dynamic section. We fill in the
15430 values later, in finish_dynamic_sections, but we must add
15431 the entries now so that we get the correct size for the
15432 .dynamic section. The DT_DEBUG entry is filled in by the
15433 dynamic linker and used by the debugger. */
15434 #define add_dynamic_entry(TAG, VAL) \
15435 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
15436
15437 const struct elf_backend_data *bed
15438 = get_elf_backend_data (output_bfd);
15439
15440 if (bfd_link_executable (info))
15441 {
15442 if (!add_dynamic_entry (DT_DEBUG, 0))
15443 return false;
15444 }
15445
15446 if (htab->dt_pltgot_required || htab->splt->size != 0)
15447 {
15448 /* DT_PLTGOT is used by prelink even if there is no PLT
15449 relocation. */
15450 if (!add_dynamic_entry (DT_PLTGOT, 0))
15451 return false;
15452 }
15453
15454 if (htab->dt_jmprel_required || htab->srelplt->size != 0)
15455 {
15456 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
15457 || !add_dynamic_entry (DT_PLTREL,
15458 (bed->rela_plts_and_copies_p
15459 ? DT_RELA : DT_REL))
15460 || !add_dynamic_entry (DT_JMPREL, 0))
15461 return false;
15462 }
15463
15464 if (htab->tlsdesc_plt
15465 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
15466 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
15467 return false;
15468
15469 if (need_dynamic_reloc)
15470 {
15471 if (bed->rela_plts_and_copies_p)
15472 {
15473 if (!add_dynamic_entry (DT_RELA, 0)
15474 || !add_dynamic_entry (DT_RELASZ, 0)
15475 || !add_dynamic_entry (DT_RELAENT,
15476 bed->s->sizeof_rela))
15477 return false;
15478 }
15479 else
15480 {
15481 if (!add_dynamic_entry (DT_REL, 0)
15482 || !add_dynamic_entry (DT_RELSZ, 0)
15483 || !add_dynamic_entry (DT_RELENT,
15484 bed->s->sizeof_rel))
15485 return false;
15486 }
15487
15488 /* If any dynamic relocs apply to a read-only section,
15489 then we need a DT_TEXTREL entry. */
15490 if ((info->flags & DF_TEXTREL) == 0)
15491 elf_link_hash_traverse (htab, _bfd_elf_maybe_set_textrel,
15492 info);
15493
15494 if ((info->flags & DF_TEXTREL) != 0)
15495 {
15496 if (htab->ifunc_resolvers)
15497 info->callbacks->einfo
15498 (_("%P: warning: GNU indirect functions with DT_TEXTREL "
15499 "may result in a segfault at runtime; recompile with %s\n"),
15500 bfd_link_dll (info) ? "-fPIC" : "-fPIE");
15501
15502 if (!add_dynamic_entry (DT_TEXTREL, 0))
15503 return false;
15504 }
15505 }
15506 }
15507 #undef add_dynamic_entry
15508
15509 return true;
15510 }