Don't sort ld -r relocs for mips
[binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2014 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfd_stdint.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31
32 /* This struct is used to pass information to routines called via
33 elf_link_hash_traverse which must return failure. */
34
35 struct elf_info_failed
36 {
37 struct bfd_link_info *info;
38 bfd_boolean failed;
39 };
40
41 /* This structure is used to pass information to
42 _bfd_elf_link_find_version_dependencies. */
43
44 struct elf_find_verdep_info
45 {
46 /* General link information. */
47 struct bfd_link_info *info;
48 /* The number of dependencies. */
49 unsigned int vers;
50 /* Whether we had a failure. */
51 bfd_boolean failed;
52 };
53
54 static bfd_boolean _bfd_elf_fix_symbol_flags
55 (struct elf_link_hash_entry *, struct elf_info_failed *);
56
57 /* Define a symbol in a dynamic linkage section. */
58
59 struct elf_link_hash_entry *
60 _bfd_elf_define_linkage_sym (bfd *abfd,
61 struct bfd_link_info *info,
62 asection *sec,
63 const char *name)
64 {
65 struct elf_link_hash_entry *h;
66 struct bfd_link_hash_entry *bh;
67 const struct elf_backend_data *bed;
68
69 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
70 if (h != NULL)
71 {
72 /* Zap symbol defined in an as-needed lib that wasn't linked.
73 This is a symptom of a larger problem: Absolute symbols
74 defined in shared libraries can't be overridden, because we
75 lose the link to the bfd which is via the symbol section. */
76 h->root.type = bfd_link_hash_new;
77 }
78
79 bh = &h->root;
80 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
81 sec, 0, NULL, FALSE,
82 get_elf_backend_data (abfd)->collect,
83 &bh))
84 return NULL;
85 h = (struct elf_link_hash_entry *) bh;
86 h->def_regular = 1;
87 h->non_elf = 0;
88 h->type = STT_OBJECT;
89 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
91
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94 return h;
95 }
96
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
99 {
100 flagword flags;
101 asection *s;
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
105
106 /* This function may be called more than once. */
107 s = bfd_get_linker_section (abfd, ".got");
108 if (s != NULL)
109 return TRUE;
110
111 flags = bed->dynamic_sec_flags;
112
113 s = bfd_make_section_anyway_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
117 | SEC_READONLY));
118 if (s == NULL
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
120 return FALSE;
121 htab->srelgot = s;
122
123 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
124 if (s == NULL
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
126 return FALSE;
127 htab->sgot = s;
128
129 if (bed->want_got_plt)
130 {
131 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
132 if (s == NULL
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
135 return FALSE;
136 htab->sgotplt = s;
137 }
138
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
141
142 if (bed->want_got_sym)
143 {
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
151 if (h == NULL)
152 return FALSE;
153 }
154
155 return TRUE;
156 }
157 \f
158 /* Create a strtab to hold the dynamic symbol names. */
159 static bfd_boolean
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
161 {
162 struct elf_link_hash_table *hash_table;
163
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
167
168 if (hash_table->dynstr == NULL)
169 {
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
172 return FALSE;
173 }
174 return TRUE;
175 }
176
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
183
184 bfd_boolean
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
186 {
187 flagword flags;
188 asection *s;
189 const struct elf_backend_data *bed;
190 struct elf_link_hash_entry *h;
191
192 if (! is_elf_hash_table (info->hash))
193 return FALSE;
194
195 if (elf_hash_table (info)->dynamic_sections_created)
196 return TRUE;
197
198 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
199 return FALSE;
200
201 abfd = elf_hash_table (info)->dynobj;
202 bed = get_elf_backend_data (abfd);
203
204 flags = bed->dynamic_sec_flags;
205
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
208 if (info->executable)
209 {
210 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
211 flags | SEC_READONLY);
212 if (s == NULL)
213 return FALSE;
214 }
215
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
218 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
219 flags | SEC_READONLY);
220 if (s == NULL
221 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
222 return FALSE;
223
224 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
225 flags | SEC_READONLY);
226 if (s == NULL
227 || ! bfd_set_section_alignment (abfd, s, 1))
228 return FALSE;
229
230 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
231 flags | SEC_READONLY);
232 if (s == NULL
233 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
234 return FALSE;
235
236 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
237 flags | SEC_READONLY);
238 if (s == NULL
239 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
240 return FALSE;
241
242 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
243 flags | SEC_READONLY);
244 if (s == NULL)
245 return FALSE;
246
247 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
248 if (s == NULL
249 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
250 return FALSE;
251
252 /* The special symbol _DYNAMIC is always set to the start of the
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
258 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
259 elf_hash_table (info)->hdynamic = h;
260 if (h == NULL)
261 return FALSE;
262
263 if (info->emit_hash)
264 {
265 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
266 flags | SEC_READONLY);
267 if (s == NULL
268 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
269 return FALSE;
270 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
271 }
272
273 if (info->emit_gnu_hash)
274 {
275 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
276 flags | SEC_READONLY);
277 if (s == NULL
278 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
279 return FALSE;
280 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
281 4 32-bit words followed by variable count of 64-bit words, then
282 variable count of 32-bit words. */
283 if (bed->s->arch_size == 64)
284 elf_section_data (s)->this_hdr.sh_entsize = 0;
285 else
286 elf_section_data (s)->this_hdr.sh_entsize = 4;
287 }
288
289 /* Let the backend create the rest of the sections. This lets the
290 backend set the right flags. The backend will normally create
291 the .got and .plt sections. */
292 if (bed->elf_backend_create_dynamic_sections == NULL
293 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
294 return FALSE;
295
296 elf_hash_table (info)->dynamic_sections_created = TRUE;
297
298 return TRUE;
299 }
300
301 /* Create dynamic sections when linking against a dynamic object. */
302
303 bfd_boolean
304 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
305 {
306 flagword flags, pltflags;
307 struct elf_link_hash_entry *h;
308 asection *s;
309 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
310 struct elf_link_hash_table *htab = elf_hash_table (info);
311
312 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
313 .rel[a].bss sections. */
314 flags = bed->dynamic_sec_flags;
315
316 pltflags = flags;
317 if (bed->plt_not_loaded)
318 /* We do not clear SEC_ALLOC here because we still want the OS to
319 allocate space for the section; it's just that there's nothing
320 to read in from the object file. */
321 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
322 else
323 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
324 if (bed->plt_readonly)
325 pltflags |= SEC_READONLY;
326
327 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
328 if (s == NULL
329 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
330 return FALSE;
331 htab->splt = s;
332
333 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
334 .plt section. */
335 if (bed->want_plt_sym)
336 {
337 h = _bfd_elf_define_linkage_sym (abfd, info, s,
338 "_PROCEDURE_LINKAGE_TABLE_");
339 elf_hash_table (info)->hplt = h;
340 if (h == NULL)
341 return FALSE;
342 }
343
344 s = bfd_make_section_anyway_with_flags (abfd,
345 (bed->rela_plts_and_copies_p
346 ? ".rela.plt" : ".rel.plt"),
347 flags | SEC_READONLY);
348 if (s == NULL
349 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
350 return FALSE;
351 htab->srelplt = s;
352
353 if (! _bfd_elf_create_got_section (abfd, info))
354 return FALSE;
355
356 if (bed->want_dynbss)
357 {
358 /* The .dynbss section is a place to put symbols which are defined
359 by dynamic objects, are referenced by regular objects, and are
360 not functions. We must allocate space for them in the process
361 image and use a R_*_COPY reloc to tell the dynamic linker to
362 initialize them at run time. The linker script puts the .dynbss
363 section into the .bss section of the final image. */
364 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
365 (SEC_ALLOC | SEC_LINKER_CREATED));
366 if (s == NULL)
367 return FALSE;
368
369 /* The .rel[a].bss section holds copy relocs. This section is not
370 normally needed. We need to create it here, though, so that the
371 linker will map it to an output section. We can't just create it
372 only if we need it, because we will not know whether we need it
373 until we have seen all the input files, and the first time the
374 main linker code calls BFD after examining all the input files
375 (size_dynamic_sections) the input sections have already been
376 mapped to the output sections. If the section turns out not to
377 be needed, we can discard it later. We will never need this
378 section when generating a shared object, since they do not use
379 copy relocs. */
380 if (! info->shared)
381 {
382 s = bfd_make_section_anyway_with_flags (abfd,
383 (bed->rela_plts_and_copies_p
384 ? ".rela.bss" : ".rel.bss"),
385 flags | SEC_READONLY);
386 if (s == NULL
387 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
388 return FALSE;
389 }
390 }
391
392 return TRUE;
393 }
394 \f
395 /* Record a new dynamic symbol. We record the dynamic symbols as we
396 read the input files, since we need to have a list of all of them
397 before we can determine the final sizes of the output sections.
398 Note that we may actually call this function even though we are not
399 going to output any dynamic symbols; in some cases we know that a
400 symbol should be in the dynamic symbol table, but only if there is
401 one. */
402
403 bfd_boolean
404 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
405 struct elf_link_hash_entry *h)
406 {
407 if (h->dynindx == -1)
408 {
409 struct elf_strtab_hash *dynstr;
410 char *p;
411 const char *name;
412 bfd_size_type indx;
413
414 /* XXX: The ABI draft says the linker must turn hidden and
415 internal symbols into STB_LOCAL symbols when producing the
416 DSO. However, if ld.so honors st_other in the dynamic table,
417 this would not be necessary. */
418 switch (ELF_ST_VISIBILITY (h->other))
419 {
420 case STV_INTERNAL:
421 case STV_HIDDEN:
422 if (h->root.type != bfd_link_hash_undefined
423 && h->root.type != bfd_link_hash_undefweak)
424 {
425 h->forced_local = 1;
426 if (!elf_hash_table (info)->is_relocatable_executable)
427 return TRUE;
428 }
429
430 default:
431 break;
432 }
433
434 h->dynindx = elf_hash_table (info)->dynsymcount;
435 ++elf_hash_table (info)->dynsymcount;
436
437 dynstr = elf_hash_table (info)->dynstr;
438 if (dynstr == NULL)
439 {
440 /* Create a strtab to hold the dynamic symbol names. */
441 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
442 if (dynstr == NULL)
443 return FALSE;
444 }
445
446 /* We don't put any version information in the dynamic string
447 table. */
448 name = h->root.root.string;
449 p = strchr (name, ELF_VER_CHR);
450 if (p != NULL)
451 /* We know that the p points into writable memory. In fact,
452 there are only a few symbols that have read-only names, being
453 those like _GLOBAL_OFFSET_TABLE_ that are created specially
454 by the backends. Most symbols will have names pointing into
455 an ELF string table read from a file, or to objalloc memory. */
456 *p = 0;
457
458 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
459
460 if (p != NULL)
461 *p = ELF_VER_CHR;
462
463 if (indx == (bfd_size_type) -1)
464 return FALSE;
465 h->dynstr_index = indx;
466 }
467
468 return TRUE;
469 }
470 \f
471 /* Mark a symbol dynamic. */
472
473 static void
474 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
475 struct elf_link_hash_entry *h,
476 Elf_Internal_Sym *sym)
477 {
478 struct bfd_elf_dynamic_list *d = info->dynamic_list;
479
480 /* It may be called more than once on the same H. */
481 if(h->dynamic || info->relocatable)
482 return;
483
484 if ((info->dynamic_data
485 && (h->type == STT_OBJECT
486 || (sym != NULL
487 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
488 || (d != NULL
489 && h->root.type == bfd_link_hash_new
490 && (*d->match) (&d->head, NULL, h->root.root.string)))
491 h->dynamic = 1;
492 }
493
494 /* Record an assignment to a symbol made by a linker script. We need
495 this in case some dynamic object refers to this symbol. */
496
497 bfd_boolean
498 bfd_elf_record_link_assignment (bfd *output_bfd,
499 struct bfd_link_info *info,
500 const char *name,
501 bfd_boolean provide,
502 bfd_boolean hidden)
503 {
504 struct elf_link_hash_entry *h, *hv;
505 struct elf_link_hash_table *htab;
506 const struct elf_backend_data *bed;
507
508 if (!is_elf_hash_table (info->hash))
509 return TRUE;
510
511 htab = elf_hash_table (info);
512 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
513 if (h == NULL)
514 return provide;
515
516 switch (h->root.type)
517 {
518 case bfd_link_hash_defined:
519 case bfd_link_hash_defweak:
520 case bfd_link_hash_common:
521 break;
522 case bfd_link_hash_undefweak:
523 case bfd_link_hash_undefined:
524 /* Since we're defining the symbol, don't let it seem to have not
525 been defined. record_dynamic_symbol and size_dynamic_sections
526 may depend on this. */
527 h->root.type = bfd_link_hash_new;
528 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
529 bfd_link_repair_undef_list (&htab->root);
530 break;
531 case bfd_link_hash_new:
532 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
533 h->non_elf = 0;
534 break;
535 case bfd_link_hash_indirect:
536 /* We had a versioned symbol in a dynamic library. We make the
537 the versioned symbol point to this one. */
538 bed = get_elf_backend_data (output_bfd);
539 hv = h;
540 while (hv->root.type == bfd_link_hash_indirect
541 || hv->root.type == bfd_link_hash_warning)
542 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
543 /* We don't need to update h->root.u since linker will set them
544 later. */
545 h->root.type = bfd_link_hash_undefined;
546 hv->root.type = bfd_link_hash_indirect;
547 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
548 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
549 break;
550 case bfd_link_hash_warning:
551 abort ();
552 break;
553 }
554
555 /* If this symbol is being provided by the linker script, and it is
556 currently defined by a dynamic object, but not by a regular
557 object, then mark it as undefined so that the generic linker will
558 force the correct value. */
559 if (provide
560 && h->def_dynamic
561 && !h->def_regular)
562 h->root.type = bfd_link_hash_undefined;
563
564 /* If this symbol is not being provided by the linker script, and it is
565 currently defined by a dynamic object, but not by a regular object,
566 then clear out any version information because the symbol will not be
567 associated with the dynamic object any more. */
568 if (!provide
569 && h->def_dynamic
570 && !h->def_regular)
571 h->verinfo.verdef = NULL;
572
573 h->def_regular = 1;
574
575 if (hidden)
576 {
577 bed = get_elf_backend_data (output_bfd);
578 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
579 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
580 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
581 }
582
583 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
584 and executables. */
585 if (!info->relocatable
586 && h->dynindx != -1
587 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
588 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
589 h->forced_local = 1;
590
591 if ((h->def_dynamic
592 || h->ref_dynamic
593 || info->shared
594 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
595 && h->dynindx == -1)
596 {
597 if (! bfd_elf_link_record_dynamic_symbol (info, h))
598 return FALSE;
599
600 /* If this is a weak defined symbol, and we know a corresponding
601 real symbol from the same dynamic object, make sure the real
602 symbol is also made into a dynamic symbol. */
603 if (h->u.weakdef != NULL
604 && h->u.weakdef->dynindx == -1)
605 {
606 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
607 return FALSE;
608 }
609 }
610
611 return TRUE;
612 }
613
614 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
615 success, and 2 on a failure caused by attempting to record a symbol
616 in a discarded section, eg. a discarded link-once section symbol. */
617
618 int
619 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
620 bfd *input_bfd,
621 long input_indx)
622 {
623 bfd_size_type amt;
624 struct elf_link_local_dynamic_entry *entry;
625 struct elf_link_hash_table *eht;
626 struct elf_strtab_hash *dynstr;
627 unsigned long dynstr_index;
628 char *name;
629 Elf_External_Sym_Shndx eshndx;
630 char esym[sizeof (Elf64_External_Sym)];
631
632 if (! is_elf_hash_table (info->hash))
633 return 0;
634
635 /* See if the entry exists already. */
636 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
637 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
638 return 1;
639
640 amt = sizeof (*entry);
641 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
642 if (entry == NULL)
643 return 0;
644
645 /* Go find the symbol, so that we can find it's name. */
646 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
647 1, input_indx, &entry->isym, esym, &eshndx))
648 {
649 bfd_release (input_bfd, entry);
650 return 0;
651 }
652
653 if (entry->isym.st_shndx != SHN_UNDEF
654 && entry->isym.st_shndx < SHN_LORESERVE)
655 {
656 asection *s;
657
658 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
659 if (s == NULL || bfd_is_abs_section (s->output_section))
660 {
661 /* We can still bfd_release here as nothing has done another
662 bfd_alloc. We can't do this later in this function. */
663 bfd_release (input_bfd, entry);
664 return 2;
665 }
666 }
667
668 name = (bfd_elf_string_from_elf_section
669 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
670 entry->isym.st_name));
671
672 dynstr = elf_hash_table (info)->dynstr;
673 if (dynstr == NULL)
674 {
675 /* Create a strtab to hold the dynamic symbol names. */
676 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
677 if (dynstr == NULL)
678 return 0;
679 }
680
681 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
682 if (dynstr_index == (unsigned long) -1)
683 return 0;
684 entry->isym.st_name = dynstr_index;
685
686 eht = elf_hash_table (info);
687
688 entry->next = eht->dynlocal;
689 eht->dynlocal = entry;
690 entry->input_bfd = input_bfd;
691 entry->input_indx = input_indx;
692 eht->dynsymcount++;
693
694 /* Whatever binding the symbol had before, it's now local. */
695 entry->isym.st_info
696 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
697
698 /* The dynindx will be set at the end of size_dynamic_sections. */
699
700 return 1;
701 }
702
703 /* Return the dynindex of a local dynamic symbol. */
704
705 long
706 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
707 bfd *input_bfd,
708 long input_indx)
709 {
710 struct elf_link_local_dynamic_entry *e;
711
712 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
713 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
714 return e->dynindx;
715 return -1;
716 }
717
718 /* This function is used to renumber the dynamic symbols, if some of
719 them are removed because they are marked as local. This is called
720 via elf_link_hash_traverse. */
721
722 static bfd_boolean
723 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
724 void *data)
725 {
726 size_t *count = (size_t *) data;
727
728 if (h->forced_local)
729 return TRUE;
730
731 if (h->dynindx != -1)
732 h->dynindx = ++(*count);
733
734 return TRUE;
735 }
736
737
738 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
739 STB_LOCAL binding. */
740
741 static bfd_boolean
742 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
743 void *data)
744 {
745 size_t *count = (size_t *) data;
746
747 if (!h->forced_local)
748 return TRUE;
749
750 if (h->dynindx != -1)
751 h->dynindx = ++(*count);
752
753 return TRUE;
754 }
755
756 /* Return true if the dynamic symbol for a given section should be
757 omitted when creating a shared library. */
758 bfd_boolean
759 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
760 struct bfd_link_info *info,
761 asection *p)
762 {
763 struct elf_link_hash_table *htab;
764
765 switch (elf_section_data (p)->this_hdr.sh_type)
766 {
767 case SHT_PROGBITS:
768 case SHT_NOBITS:
769 /* If sh_type is yet undecided, assume it could be
770 SHT_PROGBITS/SHT_NOBITS. */
771 case SHT_NULL:
772 htab = elf_hash_table (info);
773 if (p == htab->tls_sec)
774 return FALSE;
775
776 if (htab->text_index_section != NULL)
777 return p != htab->text_index_section && p != htab->data_index_section;
778
779 if (strcmp (p->name, ".got") == 0
780 || strcmp (p->name, ".got.plt") == 0
781 || strcmp (p->name, ".plt") == 0)
782 {
783 asection *ip;
784
785 if (htab->dynobj != NULL
786 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
787 && ip->output_section == p)
788 return TRUE;
789 }
790 return FALSE;
791
792 /* There shouldn't be section relative relocations
793 against any other section. */
794 default:
795 return TRUE;
796 }
797 }
798
799 /* Assign dynsym indices. In a shared library we generate a section
800 symbol for each output section, which come first. Next come symbols
801 which have been forced to local binding. Then all of the back-end
802 allocated local dynamic syms, followed by the rest of the global
803 symbols. */
804
805 static unsigned long
806 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
807 struct bfd_link_info *info,
808 unsigned long *section_sym_count)
809 {
810 unsigned long dynsymcount = 0;
811
812 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
813 {
814 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
815 asection *p;
816 for (p = output_bfd->sections; p ; p = p->next)
817 if ((p->flags & SEC_EXCLUDE) == 0
818 && (p->flags & SEC_ALLOC) != 0
819 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
820 elf_section_data (p)->dynindx = ++dynsymcount;
821 else
822 elf_section_data (p)->dynindx = 0;
823 }
824 *section_sym_count = dynsymcount;
825
826 elf_link_hash_traverse (elf_hash_table (info),
827 elf_link_renumber_local_hash_table_dynsyms,
828 &dynsymcount);
829
830 if (elf_hash_table (info)->dynlocal)
831 {
832 struct elf_link_local_dynamic_entry *p;
833 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
834 p->dynindx = ++dynsymcount;
835 }
836
837 elf_link_hash_traverse (elf_hash_table (info),
838 elf_link_renumber_hash_table_dynsyms,
839 &dynsymcount);
840
841 /* There is an unused NULL entry at the head of the table which
842 we must account for in our count. Unless there weren't any
843 symbols, which means we'll have no table at all. */
844 if (dynsymcount != 0)
845 ++dynsymcount;
846
847 elf_hash_table (info)->dynsymcount = dynsymcount;
848 return dynsymcount;
849 }
850
851 /* Merge st_other field. */
852
853 static void
854 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
855 const Elf_Internal_Sym *isym,
856 bfd_boolean definition, bfd_boolean dynamic)
857 {
858 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
859
860 /* If st_other has a processor-specific meaning, specific
861 code might be needed here. */
862 if (bed->elf_backend_merge_symbol_attribute)
863 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
864 dynamic);
865
866 if (!dynamic)
867 {
868 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
869 unsigned hvis = ELF_ST_VISIBILITY (h->other);
870
871 /* Keep the most constraining visibility. Leave the remainder
872 of the st_other field to elf_backend_merge_symbol_attribute. */
873 if (symvis - 1 < hvis - 1)
874 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
875 }
876 }
877
878 /* This function is called when we want to merge a new symbol with an
879 existing symbol. It handles the various cases which arise when we
880 find a definition in a dynamic object, or when there is already a
881 definition in a dynamic object. The new symbol is described by
882 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
883 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
884 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
885 of an old common symbol. We set OVERRIDE if the old symbol is
886 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
887 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
888 to change. By OK to change, we mean that we shouldn't warn if the
889 type or size does change. */
890
891 static bfd_boolean
892 _bfd_elf_merge_symbol (bfd *abfd,
893 struct bfd_link_info *info,
894 const char *name,
895 Elf_Internal_Sym *sym,
896 asection **psec,
897 bfd_vma *pvalue,
898 struct elf_link_hash_entry **sym_hash,
899 bfd **poldbfd,
900 bfd_boolean *pold_weak,
901 unsigned int *pold_alignment,
902 bfd_boolean *skip,
903 bfd_boolean *override,
904 bfd_boolean *type_change_ok,
905 bfd_boolean *size_change_ok)
906 {
907 asection *sec, *oldsec;
908 struct elf_link_hash_entry *h;
909 struct elf_link_hash_entry *hi;
910 struct elf_link_hash_entry *flip;
911 int bind;
912 bfd *oldbfd;
913 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
914 bfd_boolean newweak, oldweak, newfunc, oldfunc;
915 const struct elf_backend_data *bed;
916
917 *skip = FALSE;
918 *override = FALSE;
919
920 sec = *psec;
921 bind = ELF_ST_BIND (sym->st_info);
922
923 if (! bfd_is_und_section (sec))
924 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
925 else
926 h = ((struct elf_link_hash_entry *)
927 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
928 if (h == NULL)
929 return FALSE;
930 *sym_hash = h;
931
932 bed = get_elf_backend_data (abfd);
933
934 /* For merging, we only care about real symbols. But we need to make
935 sure that indirect symbol dynamic flags are updated. */
936 hi = h;
937 while (h->root.type == bfd_link_hash_indirect
938 || h->root.type == bfd_link_hash_warning)
939 h = (struct elf_link_hash_entry *) h->root.u.i.link;
940
941 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
942 existing symbol. */
943
944 oldbfd = NULL;
945 oldsec = NULL;
946 switch (h->root.type)
947 {
948 default:
949 break;
950
951 case bfd_link_hash_undefined:
952 case bfd_link_hash_undefweak:
953 oldbfd = h->root.u.undef.abfd;
954 break;
955
956 case bfd_link_hash_defined:
957 case bfd_link_hash_defweak:
958 oldbfd = h->root.u.def.section->owner;
959 oldsec = h->root.u.def.section;
960 break;
961
962 case bfd_link_hash_common:
963 oldbfd = h->root.u.c.p->section->owner;
964 oldsec = h->root.u.c.p->section;
965 if (pold_alignment)
966 *pold_alignment = h->root.u.c.p->alignment_power;
967 break;
968 }
969 if (poldbfd && *poldbfd == NULL)
970 *poldbfd = oldbfd;
971
972 /* Differentiate strong and weak symbols. */
973 newweak = bind == STB_WEAK;
974 oldweak = (h->root.type == bfd_link_hash_defweak
975 || h->root.type == bfd_link_hash_undefweak);
976 if (pold_weak)
977 *pold_weak = oldweak;
978
979 /* This code is for coping with dynamic objects, and is only useful
980 if we are doing an ELF link. */
981 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
982 return TRUE;
983
984 /* We have to check it for every instance since the first few may be
985 references and not all compilers emit symbol type for undefined
986 symbols. */
987 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
988
989 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
990 respectively, is from a dynamic object. */
991
992 newdyn = (abfd->flags & DYNAMIC) != 0;
993
994 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
995 syms and defined syms in dynamic libraries respectively.
996 ref_dynamic on the other hand can be set for a symbol defined in
997 a dynamic library, and def_dynamic may not be set; When the
998 definition in a dynamic lib is overridden by a definition in the
999 executable use of the symbol in the dynamic lib becomes a
1000 reference to the executable symbol. */
1001 if (newdyn)
1002 {
1003 if (bfd_is_und_section (sec))
1004 {
1005 if (bind != STB_WEAK)
1006 {
1007 h->ref_dynamic_nonweak = 1;
1008 hi->ref_dynamic_nonweak = 1;
1009 }
1010 }
1011 else
1012 {
1013 h->dynamic_def = 1;
1014 hi->dynamic_def = 1;
1015 }
1016 }
1017
1018 /* If we just created the symbol, mark it as being an ELF symbol.
1019 Other than that, there is nothing to do--there is no merge issue
1020 with a newly defined symbol--so we just return. */
1021
1022 if (h->root.type == bfd_link_hash_new)
1023 {
1024 h->non_elf = 0;
1025 return TRUE;
1026 }
1027
1028 /* In cases involving weak versioned symbols, we may wind up trying
1029 to merge a symbol with itself. Catch that here, to avoid the
1030 confusion that results if we try to override a symbol with
1031 itself. The additional tests catch cases like
1032 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1033 dynamic object, which we do want to handle here. */
1034 if (abfd == oldbfd
1035 && (newweak || oldweak)
1036 && ((abfd->flags & DYNAMIC) == 0
1037 || !h->def_regular))
1038 return TRUE;
1039
1040 olddyn = FALSE;
1041 if (oldbfd != NULL)
1042 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1043 else if (oldsec != NULL)
1044 {
1045 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1046 indices used by MIPS ELF. */
1047 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1048 }
1049
1050 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1051 respectively, appear to be a definition rather than reference. */
1052
1053 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1054
1055 olddef = (h->root.type != bfd_link_hash_undefined
1056 && h->root.type != bfd_link_hash_undefweak
1057 && h->root.type != bfd_link_hash_common);
1058
1059 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1060 respectively, appear to be a function. */
1061
1062 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1063 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1064
1065 oldfunc = (h->type != STT_NOTYPE
1066 && bed->is_function_type (h->type));
1067
1068 /* When we try to create a default indirect symbol from the dynamic
1069 definition with the default version, we skip it if its type and
1070 the type of existing regular definition mismatch. */
1071 if (pold_alignment == NULL
1072 && newdyn
1073 && newdef
1074 && !olddyn
1075 && (((olddef || h->root.type == bfd_link_hash_common)
1076 && ELF_ST_TYPE (sym->st_info) != h->type
1077 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1078 && h->type != STT_NOTYPE
1079 && !(newfunc && oldfunc))
1080 || (olddef
1081 && ((h->type == STT_GNU_IFUNC)
1082 != (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))))
1083 {
1084 *skip = TRUE;
1085 return TRUE;
1086 }
1087
1088 /* Check TLS symbols. We don't check undefined symbols introduced
1089 by "ld -u" which have no type (and oldbfd NULL), and we don't
1090 check symbols from plugins because they also have no type. */
1091 if (oldbfd != NULL
1092 && (oldbfd->flags & BFD_PLUGIN) == 0
1093 && (abfd->flags & BFD_PLUGIN) == 0
1094 && ELF_ST_TYPE (sym->st_info) != h->type
1095 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1096 {
1097 bfd *ntbfd, *tbfd;
1098 bfd_boolean ntdef, tdef;
1099 asection *ntsec, *tsec;
1100
1101 if (h->type == STT_TLS)
1102 {
1103 ntbfd = abfd;
1104 ntsec = sec;
1105 ntdef = newdef;
1106 tbfd = oldbfd;
1107 tsec = oldsec;
1108 tdef = olddef;
1109 }
1110 else
1111 {
1112 ntbfd = oldbfd;
1113 ntsec = oldsec;
1114 ntdef = olddef;
1115 tbfd = abfd;
1116 tsec = sec;
1117 tdef = newdef;
1118 }
1119
1120 if (tdef && ntdef)
1121 (*_bfd_error_handler)
1122 (_("%s: TLS definition in %B section %A "
1123 "mismatches non-TLS definition in %B section %A"),
1124 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1125 else if (!tdef && !ntdef)
1126 (*_bfd_error_handler)
1127 (_("%s: TLS reference in %B "
1128 "mismatches non-TLS reference in %B"),
1129 tbfd, ntbfd, h->root.root.string);
1130 else if (tdef)
1131 (*_bfd_error_handler)
1132 (_("%s: TLS definition in %B section %A "
1133 "mismatches non-TLS reference in %B"),
1134 tbfd, tsec, ntbfd, h->root.root.string);
1135 else
1136 (*_bfd_error_handler)
1137 (_("%s: TLS reference in %B "
1138 "mismatches non-TLS definition in %B section %A"),
1139 tbfd, ntbfd, ntsec, h->root.root.string);
1140
1141 bfd_set_error (bfd_error_bad_value);
1142 return FALSE;
1143 }
1144
1145 /* If the old symbol has non-default visibility, we ignore the new
1146 definition from a dynamic object. */
1147 if (newdyn
1148 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1149 && !bfd_is_und_section (sec))
1150 {
1151 *skip = TRUE;
1152 /* Make sure this symbol is dynamic. */
1153 h->ref_dynamic = 1;
1154 hi->ref_dynamic = 1;
1155 /* A protected symbol has external availability. Make sure it is
1156 recorded as dynamic.
1157
1158 FIXME: Should we check type and size for protected symbol? */
1159 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1160 return bfd_elf_link_record_dynamic_symbol (info, h);
1161 else
1162 return TRUE;
1163 }
1164 else if (!newdyn
1165 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1166 && h->def_dynamic)
1167 {
1168 /* If the new symbol with non-default visibility comes from a
1169 relocatable file and the old definition comes from a dynamic
1170 object, we remove the old definition. */
1171 if (hi->root.type == bfd_link_hash_indirect)
1172 {
1173 /* Handle the case where the old dynamic definition is
1174 default versioned. We need to copy the symbol info from
1175 the symbol with default version to the normal one if it
1176 was referenced before. */
1177 if (h->ref_regular)
1178 {
1179 hi->root.type = h->root.type;
1180 h->root.type = bfd_link_hash_indirect;
1181 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1182
1183 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1184 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1185 {
1186 /* If the new symbol is hidden or internal, completely undo
1187 any dynamic link state. */
1188 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1189 h->forced_local = 0;
1190 h->ref_dynamic = 0;
1191 }
1192 else
1193 h->ref_dynamic = 1;
1194
1195 h->def_dynamic = 0;
1196 /* FIXME: Should we check type and size for protected symbol? */
1197 h->size = 0;
1198 h->type = 0;
1199
1200 h = hi;
1201 }
1202 else
1203 h = hi;
1204 }
1205
1206 /* If the old symbol was undefined before, then it will still be
1207 on the undefs list. If the new symbol is undefined or
1208 common, we can't make it bfd_link_hash_new here, because new
1209 undefined or common symbols will be added to the undefs list
1210 by _bfd_generic_link_add_one_symbol. Symbols may not be
1211 added twice to the undefs list. Also, if the new symbol is
1212 undefweak then we don't want to lose the strong undef. */
1213 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1214 {
1215 h->root.type = bfd_link_hash_undefined;
1216 h->root.u.undef.abfd = abfd;
1217 }
1218 else
1219 {
1220 h->root.type = bfd_link_hash_new;
1221 h->root.u.undef.abfd = NULL;
1222 }
1223
1224 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1225 {
1226 /* If the new symbol is hidden or internal, completely undo
1227 any dynamic link state. */
1228 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1229 h->forced_local = 0;
1230 h->ref_dynamic = 0;
1231 }
1232 else
1233 h->ref_dynamic = 1;
1234 h->def_dynamic = 0;
1235 /* FIXME: Should we check type and size for protected symbol? */
1236 h->size = 0;
1237 h->type = 0;
1238 return TRUE;
1239 }
1240
1241 /* If a new weak symbol definition comes from a regular file and the
1242 old symbol comes from a dynamic library, we treat the new one as
1243 strong. Similarly, an old weak symbol definition from a regular
1244 file is treated as strong when the new symbol comes from a dynamic
1245 library. Further, an old weak symbol from a dynamic library is
1246 treated as strong if the new symbol is from a dynamic library.
1247 This reflects the way glibc's ld.so works.
1248
1249 Do this before setting *type_change_ok or *size_change_ok so that
1250 we warn properly when dynamic library symbols are overridden. */
1251
1252 if (newdef && !newdyn && olddyn)
1253 newweak = FALSE;
1254 if (olddef && newdyn)
1255 oldweak = FALSE;
1256
1257 /* Allow changes between different types of function symbol. */
1258 if (newfunc && oldfunc)
1259 *type_change_ok = TRUE;
1260
1261 /* It's OK to change the type if either the existing symbol or the
1262 new symbol is weak. A type change is also OK if the old symbol
1263 is undefined and the new symbol is defined. */
1264
1265 if (oldweak
1266 || newweak
1267 || (newdef
1268 && h->root.type == bfd_link_hash_undefined))
1269 *type_change_ok = TRUE;
1270
1271 /* It's OK to change the size if either the existing symbol or the
1272 new symbol is weak, or if the old symbol is undefined. */
1273
1274 if (*type_change_ok
1275 || h->root.type == bfd_link_hash_undefined)
1276 *size_change_ok = TRUE;
1277
1278 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1279 symbol, respectively, appears to be a common symbol in a dynamic
1280 object. If a symbol appears in an uninitialized section, and is
1281 not weak, and is not a function, then it may be a common symbol
1282 which was resolved when the dynamic object was created. We want
1283 to treat such symbols specially, because they raise special
1284 considerations when setting the symbol size: if the symbol
1285 appears as a common symbol in a regular object, and the size in
1286 the regular object is larger, we must make sure that we use the
1287 larger size. This problematic case can always be avoided in C,
1288 but it must be handled correctly when using Fortran shared
1289 libraries.
1290
1291 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1292 likewise for OLDDYNCOMMON and OLDDEF.
1293
1294 Note that this test is just a heuristic, and that it is quite
1295 possible to have an uninitialized symbol in a shared object which
1296 is really a definition, rather than a common symbol. This could
1297 lead to some minor confusion when the symbol really is a common
1298 symbol in some regular object. However, I think it will be
1299 harmless. */
1300
1301 if (newdyn
1302 && newdef
1303 && !newweak
1304 && (sec->flags & SEC_ALLOC) != 0
1305 && (sec->flags & SEC_LOAD) == 0
1306 && sym->st_size > 0
1307 && !newfunc)
1308 newdyncommon = TRUE;
1309 else
1310 newdyncommon = FALSE;
1311
1312 if (olddyn
1313 && olddef
1314 && h->root.type == bfd_link_hash_defined
1315 && h->def_dynamic
1316 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1317 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1318 && h->size > 0
1319 && !oldfunc)
1320 olddyncommon = TRUE;
1321 else
1322 olddyncommon = FALSE;
1323
1324 /* We now know everything about the old and new symbols. We ask the
1325 backend to check if we can merge them. */
1326 if (bed->merge_symbol != NULL)
1327 {
1328 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1329 return FALSE;
1330 sec = *psec;
1331 }
1332
1333 /* If both the old and the new symbols look like common symbols in a
1334 dynamic object, set the size of the symbol to the larger of the
1335 two. */
1336
1337 if (olddyncommon
1338 && newdyncommon
1339 && sym->st_size != h->size)
1340 {
1341 /* Since we think we have two common symbols, issue a multiple
1342 common warning if desired. Note that we only warn if the
1343 size is different. If the size is the same, we simply let
1344 the old symbol override the new one as normally happens with
1345 symbols defined in dynamic objects. */
1346
1347 if (! ((*info->callbacks->multiple_common)
1348 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1349 return FALSE;
1350
1351 if (sym->st_size > h->size)
1352 h->size = sym->st_size;
1353
1354 *size_change_ok = TRUE;
1355 }
1356
1357 /* If we are looking at a dynamic object, and we have found a
1358 definition, we need to see if the symbol was already defined by
1359 some other object. If so, we want to use the existing
1360 definition, and we do not want to report a multiple symbol
1361 definition error; we do this by clobbering *PSEC to be
1362 bfd_und_section_ptr.
1363
1364 We treat a common symbol as a definition if the symbol in the
1365 shared library is a function, since common symbols always
1366 represent variables; this can cause confusion in principle, but
1367 any such confusion would seem to indicate an erroneous program or
1368 shared library. We also permit a common symbol in a regular
1369 object to override a weak symbol in a shared object. */
1370
1371 if (newdyn
1372 && newdef
1373 && (olddef
1374 || (h->root.type == bfd_link_hash_common
1375 && (newweak || newfunc))))
1376 {
1377 *override = TRUE;
1378 newdef = FALSE;
1379 newdyncommon = FALSE;
1380
1381 *psec = sec = bfd_und_section_ptr;
1382 *size_change_ok = TRUE;
1383
1384 /* If we get here when the old symbol is a common symbol, then
1385 we are explicitly letting it override a weak symbol or
1386 function in a dynamic object, and we don't want to warn about
1387 a type change. If the old symbol is a defined symbol, a type
1388 change warning may still be appropriate. */
1389
1390 if (h->root.type == bfd_link_hash_common)
1391 *type_change_ok = TRUE;
1392 }
1393
1394 /* Handle the special case of an old common symbol merging with a
1395 new symbol which looks like a common symbol in a shared object.
1396 We change *PSEC and *PVALUE to make the new symbol look like a
1397 common symbol, and let _bfd_generic_link_add_one_symbol do the
1398 right thing. */
1399
1400 if (newdyncommon
1401 && h->root.type == bfd_link_hash_common)
1402 {
1403 *override = TRUE;
1404 newdef = FALSE;
1405 newdyncommon = FALSE;
1406 *pvalue = sym->st_size;
1407 *psec = sec = bed->common_section (oldsec);
1408 *size_change_ok = TRUE;
1409 }
1410
1411 /* Skip weak definitions of symbols that are already defined. */
1412 if (newdef && olddef && newweak)
1413 {
1414 /* Don't skip new non-IR weak syms. */
1415 if (!(oldbfd != NULL
1416 && (oldbfd->flags & BFD_PLUGIN) != 0
1417 && (abfd->flags & BFD_PLUGIN) == 0))
1418 {
1419 newdef = FALSE;
1420 *skip = TRUE;
1421 }
1422
1423 /* Merge st_other. If the symbol already has a dynamic index,
1424 but visibility says it should not be visible, turn it into a
1425 local symbol. */
1426 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1427 if (h->dynindx != -1)
1428 switch (ELF_ST_VISIBILITY (h->other))
1429 {
1430 case STV_INTERNAL:
1431 case STV_HIDDEN:
1432 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1433 break;
1434 }
1435 }
1436
1437 /* If the old symbol is from a dynamic object, and the new symbol is
1438 a definition which is not from a dynamic object, then the new
1439 symbol overrides the old symbol. Symbols from regular files
1440 always take precedence over symbols from dynamic objects, even if
1441 they are defined after the dynamic object in the link.
1442
1443 As above, we again permit a common symbol in a regular object to
1444 override a definition in a shared object if the shared object
1445 symbol is a function or is weak. */
1446
1447 flip = NULL;
1448 if (!newdyn
1449 && (newdef
1450 || (bfd_is_com_section (sec)
1451 && (oldweak || oldfunc)))
1452 && olddyn
1453 && olddef
1454 && h->def_dynamic)
1455 {
1456 /* Change the hash table entry to undefined, and let
1457 _bfd_generic_link_add_one_symbol do the right thing with the
1458 new definition. */
1459
1460 h->root.type = bfd_link_hash_undefined;
1461 h->root.u.undef.abfd = h->root.u.def.section->owner;
1462 *size_change_ok = TRUE;
1463
1464 olddef = FALSE;
1465 olddyncommon = FALSE;
1466
1467 /* We again permit a type change when a common symbol may be
1468 overriding a function. */
1469
1470 if (bfd_is_com_section (sec))
1471 {
1472 if (oldfunc)
1473 {
1474 /* If a common symbol overrides a function, make sure
1475 that it isn't defined dynamically nor has type
1476 function. */
1477 h->def_dynamic = 0;
1478 h->type = STT_NOTYPE;
1479 }
1480 *type_change_ok = TRUE;
1481 }
1482
1483 if (hi->root.type == bfd_link_hash_indirect)
1484 flip = hi;
1485 else
1486 /* This union may have been set to be non-NULL when this symbol
1487 was seen in a dynamic object. We must force the union to be
1488 NULL, so that it is correct for a regular symbol. */
1489 h->verinfo.vertree = NULL;
1490 }
1491
1492 /* Handle the special case of a new common symbol merging with an
1493 old symbol that looks like it might be a common symbol defined in
1494 a shared object. Note that we have already handled the case in
1495 which a new common symbol should simply override the definition
1496 in the shared library. */
1497
1498 if (! newdyn
1499 && bfd_is_com_section (sec)
1500 && olddyncommon)
1501 {
1502 /* It would be best if we could set the hash table entry to a
1503 common symbol, but we don't know what to use for the section
1504 or the alignment. */
1505 if (! ((*info->callbacks->multiple_common)
1506 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1507 return FALSE;
1508
1509 /* If the presumed common symbol in the dynamic object is
1510 larger, pretend that the new symbol has its size. */
1511
1512 if (h->size > *pvalue)
1513 *pvalue = h->size;
1514
1515 /* We need to remember the alignment required by the symbol
1516 in the dynamic object. */
1517 BFD_ASSERT (pold_alignment);
1518 *pold_alignment = h->root.u.def.section->alignment_power;
1519
1520 olddef = FALSE;
1521 olddyncommon = FALSE;
1522
1523 h->root.type = bfd_link_hash_undefined;
1524 h->root.u.undef.abfd = h->root.u.def.section->owner;
1525
1526 *size_change_ok = TRUE;
1527 *type_change_ok = TRUE;
1528
1529 if (hi->root.type == bfd_link_hash_indirect)
1530 flip = hi;
1531 else
1532 h->verinfo.vertree = NULL;
1533 }
1534
1535 if (flip != NULL)
1536 {
1537 /* Handle the case where we had a versioned symbol in a dynamic
1538 library and now find a definition in a normal object. In this
1539 case, we make the versioned symbol point to the normal one. */
1540 flip->root.type = h->root.type;
1541 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1542 h->root.type = bfd_link_hash_indirect;
1543 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1544 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1545 if (h->def_dynamic)
1546 {
1547 h->def_dynamic = 0;
1548 flip->ref_dynamic = 1;
1549 }
1550 }
1551
1552 return TRUE;
1553 }
1554
1555 /* This function is called to create an indirect symbol from the
1556 default for the symbol with the default version if needed. The
1557 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1558 set DYNSYM if the new indirect symbol is dynamic. */
1559
1560 static bfd_boolean
1561 _bfd_elf_add_default_symbol (bfd *abfd,
1562 struct bfd_link_info *info,
1563 struct elf_link_hash_entry *h,
1564 const char *name,
1565 Elf_Internal_Sym *sym,
1566 asection *sec,
1567 bfd_vma value,
1568 bfd **poldbfd,
1569 bfd_boolean *dynsym)
1570 {
1571 bfd_boolean type_change_ok;
1572 bfd_boolean size_change_ok;
1573 bfd_boolean skip;
1574 char *shortname;
1575 struct elf_link_hash_entry *hi;
1576 struct bfd_link_hash_entry *bh;
1577 const struct elf_backend_data *bed;
1578 bfd_boolean collect;
1579 bfd_boolean dynamic;
1580 bfd_boolean override;
1581 char *p;
1582 size_t len, shortlen;
1583 asection *tmp_sec;
1584
1585 /* If this symbol has a version, and it is the default version, we
1586 create an indirect symbol from the default name to the fully
1587 decorated name. This will cause external references which do not
1588 specify a version to be bound to this version of the symbol. */
1589 p = strchr (name, ELF_VER_CHR);
1590 if (p == NULL || p[1] != ELF_VER_CHR)
1591 return TRUE;
1592
1593 bed = get_elf_backend_data (abfd);
1594 collect = bed->collect;
1595 dynamic = (abfd->flags & DYNAMIC) != 0;
1596
1597 shortlen = p - name;
1598 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1599 if (shortname == NULL)
1600 return FALSE;
1601 memcpy (shortname, name, shortlen);
1602 shortname[shortlen] = '\0';
1603
1604 /* We are going to create a new symbol. Merge it with any existing
1605 symbol with this name. For the purposes of the merge, act as
1606 though we were defining the symbol we just defined, although we
1607 actually going to define an indirect symbol. */
1608 type_change_ok = FALSE;
1609 size_change_ok = FALSE;
1610 tmp_sec = sec;
1611 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1612 &hi, poldbfd, NULL, NULL, &skip, &override,
1613 &type_change_ok, &size_change_ok))
1614 return FALSE;
1615
1616 if (skip)
1617 goto nondefault;
1618
1619 if (! override)
1620 {
1621 bh = &hi->root;
1622 if (! (_bfd_generic_link_add_one_symbol
1623 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1624 0, name, FALSE, collect, &bh)))
1625 return FALSE;
1626 hi = (struct elf_link_hash_entry *) bh;
1627 }
1628 else
1629 {
1630 /* In this case the symbol named SHORTNAME is overriding the
1631 indirect symbol we want to add. We were planning on making
1632 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1633 is the name without a version. NAME is the fully versioned
1634 name, and it is the default version.
1635
1636 Overriding means that we already saw a definition for the
1637 symbol SHORTNAME in a regular object, and it is overriding
1638 the symbol defined in the dynamic object.
1639
1640 When this happens, we actually want to change NAME, the
1641 symbol we just added, to refer to SHORTNAME. This will cause
1642 references to NAME in the shared object to become references
1643 to SHORTNAME in the regular object. This is what we expect
1644 when we override a function in a shared object: that the
1645 references in the shared object will be mapped to the
1646 definition in the regular object. */
1647
1648 while (hi->root.type == bfd_link_hash_indirect
1649 || hi->root.type == bfd_link_hash_warning)
1650 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1651
1652 h->root.type = bfd_link_hash_indirect;
1653 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1654 if (h->def_dynamic)
1655 {
1656 h->def_dynamic = 0;
1657 hi->ref_dynamic = 1;
1658 if (hi->ref_regular
1659 || hi->def_regular)
1660 {
1661 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1662 return FALSE;
1663 }
1664 }
1665
1666 /* Now set HI to H, so that the following code will set the
1667 other fields correctly. */
1668 hi = h;
1669 }
1670
1671 /* Check if HI is a warning symbol. */
1672 if (hi->root.type == bfd_link_hash_warning)
1673 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1674
1675 /* If there is a duplicate definition somewhere, then HI may not
1676 point to an indirect symbol. We will have reported an error to
1677 the user in that case. */
1678
1679 if (hi->root.type == bfd_link_hash_indirect)
1680 {
1681 struct elf_link_hash_entry *ht;
1682
1683 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1684 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1685
1686 /* A reference to the SHORTNAME symbol from a dynamic library
1687 will be satisfied by the versioned symbol at runtime. In
1688 effect, we have a reference to the versioned symbol. */
1689 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1690 hi->dynamic_def |= ht->dynamic_def;
1691
1692 /* See if the new flags lead us to realize that the symbol must
1693 be dynamic. */
1694 if (! *dynsym)
1695 {
1696 if (! dynamic)
1697 {
1698 if (! info->executable
1699 || hi->def_dynamic
1700 || hi->ref_dynamic)
1701 *dynsym = TRUE;
1702 }
1703 else
1704 {
1705 if (hi->ref_regular)
1706 *dynsym = TRUE;
1707 }
1708 }
1709 }
1710
1711 /* We also need to define an indirection from the nondefault version
1712 of the symbol. */
1713
1714 nondefault:
1715 len = strlen (name);
1716 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1717 if (shortname == NULL)
1718 return FALSE;
1719 memcpy (shortname, name, shortlen);
1720 memcpy (shortname + shortlen, p + 1, len - shortlen);
1721
1722 /* Once again, merge with any existing symbol. */
1723 type_change_ok = FALSE;
1724 size_change_ok = FALSE;
1725 tmp_sec = sec;
1726 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1727 &hi, poldbfd, NULL, NULL, &skip, &override,
1728 &type_change_ok, &size_change_ok))
1729 return FALSE;
1730
1731 if (skip)
1732 return TRUE;
1733
1734 if (override)
1735 {
1736 /* Here SHORTNAME is a versioned name, so we don't expect to see
1737 the type of override we do in the case above unless it is
1738 overridden by a versioned definition. */
1739 if (hi->root.type != bfd_link_hash_defined
1740 && hi->root.type != bfd_link_hash_defweak)
1741 (*_bfd_error_handler)
1742 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1743 abfd, shortname);
1744 }
1745 else
1746 {
1747 bh = &hi->root;
1748 if (! (_bfd_generic_link_add_one_symbol
1749 (info, abfd, shortname, BSF_INDIRECT,
1750 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1751 return FALSE;
1752 hi = (struct elf_link_hash_entry *) bh;
1753
1754 /* If there is a duplicate definition somewhere, then HI may not
1755 point to an indirect symbol. We will have reported an error
1756 to the user in that case. */
1757
1758 if (hi->root.type == bfd_link_hash_indirect)
1759 {
1760 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1761 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1762 hi->dynamic_def |= h->dynamic_def;
1763
1764 /* See if the new flags lead us to realize that the symbol
1765 must be dynamic. */
1766 if (! *dynsym)
1767 {
1768 if (! dynamic)
1769 {
1770 if (! info->executable
1771 || hi->ref_dynamic)
1772 *dynsym = TRUE;
1773 }
1774 else
1775 {
1776 if (hi->ref_regular)
1777 *dynsym = TRUE;
1778 }
1779 }
1780 }
1781 }
1782
1783 return TRUE;
1784 }
1785 \f
1786 /* This routine is used to export all defined symbols into the dynamic
1787 symbol table. It is called via elf_link_hash_traverse. */
1788
1789 static bfd_boolean
1790 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1791 {
1792 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1793
1794 /* Ignore indirect symbols. These are added by the versioning code. */
1795 if (h->root.type == bfd_link_hash_indirect)
1796 return TRUE;
1797
1798 /* Ignore this if we won't export it. */
1799 if (!eif->info->export_dynamic && !h->dynamic)
1800 return TRUE;
1801
1802 if (h->dynindx == -1
1803 && (h->def_regular || h->ref_regular)
1804 && ! bfd_hide_sym_by_version (eif->info->version_info,
1805 h->root.root.string))
1806 {
1807 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1808 {
1809 eif->failed = TRUE;
1810 return FALSE;
1811 }
1812 }
1813
1814 return TRUE;
1815 }
1816 \f
1817 /* Look through the symbols which are defined in other shared
1818 libraries and referenced here. Update the list of version
1819 dependencies. This will be put into the .gnu.version_r section.
1820 This function is called via elf_link_hash_traverse. */
1821
1822 static bfd_boolean
1823 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1824 void *data)
1825 {
1826 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1827 Elf_Internal_Verneed *t;
1828 Elf_Internal_Vernaux *a;
1829 bfd_size_type amt;
1830
1831 /* We only care about symbols defined in shared objects with version
1832 information. */
1833 if (!h->def_dynamic
1834 || h->def_regular
1835 || h->dynindx == -1
1836 || h->verinfo.verdef == NULL
1837 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
1838 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
1839 return TRUE;
1840
1841 /* See if we already know about this version. */
1842 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1843 t != NULL;
1844 t = t->vn_nextref)
1845 {
1846 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1847 continue;
1848
1849 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1850 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1851 return TRUE;
1852
1853 break;
1854 }
1855
1856 /* This is a new version. Add it to tree we are building. */
1857
1858 if (t == NULL)
1859 {
1860 amt = sizeof *t;
1861 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1862 if (t == NULL)
1863 {
1864 rinfo->failed = TRUE;
1865 return FALSE;
1866 }
1867
1868 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1869 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1870 elf_tdata (rinfo->info->output_bfd)->verref = t;
1871 }
1872
1873 amt = sizeof *a;
1874 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1875 if (a == NULL)
1876 {
1877 rinfo->failed = TRUE;
1878 return FALSE;
1879 }
1880
1881 /* Note that we are copying a string pointer here, and testing it
1882 above. If bfd_elf_string_from_elf_section is ever changed to
1883 discard the string data when low in memory, this will have to be
1884 fixed. */
1885 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1886
1887 a->vna_flags = h->verinfo.verdef->vd_flags;
1888 a->vna_nextptr = t->vn_auxptr;
1889
1890 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1891 ++rinfo->vers;
1892
1893 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1894
1895 t->vn_auxptr = a;
1896
1897 return TRUE;
1898 }
1899
1900 /* Figure out appropriate versions for all the symbols. We may not
1901 have the version number script until we have read all of the input
1902 files, so until that point we don't know which symbols should be
1903 local. This function is called via elf_link_hash_traverse. */
1904
1905 static bfd_boolean
1906 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1907 {
1908 struct elf_info_failed *sinfo;
1909 struct bfd_link_info *info;
1910 const struct elf_backend_data *bed;
1911 struct elf_info_failed eif;
1912 char *p;
1913 bfd_size_type amt;
1914
1915 sinfo = (struct elf_info_failed *) data;
1916 info = sinfo->info;
1917
1918 /* Fix the symbol flags. */
1919 eif.failed = FALSE;
1920 eif.info = info;
1921 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1922 {
1923 if (eif.failed)
1924 sinfo->failed = TRUE;
1925 return FALSE;
1926 }
1927
1928 /* We only need version numbers for symbols defined in regular
1929 objects. */
1930 if (!h->def_regular)
1931 return TRUE;
1932
1933 bed = get_elf_backend_data (info->output_bfd);
1934 p = strchr (h->root.root.string, ELF_VER_CHR);
1935 if (p != NULL && h->verinfo.vertree == NULL)
1936 {
1937 struct bfd_elf_version_tree *t;
1938 bfd_boolean hidden;
1939
1940 hidden = TRUE;
1941
1942 /* There are two consecutive ELF_VER_CHR characters if this is
1943 not a hidden symbol. */
1944 ++p;
1945 if (*p == ELF_VER_CHR)
1946 {
1947 hidden = FALSE;
1948 ++p;
1949 }
1950
1951 /* If there is no version string, we can just return out. */
1952 if (*p == '\0')
1953 {
1954 if (hidden)
1955 h->hidden = 1;
1956 return TRUE;
1957 }
1958
1959 /* Look for the version. If we find it, it is no longer weak. */
1960 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1961 {
1962 if (strcmp (t->name, p) == 0)
1963 {
1964 size_t len;
1965 char *alc;
1966 struct bfd_elf_version_expr *d;
1967
1968 len = p - h->root.root.string;
1969 alc = (char *) bfd_malloc (len);
1970 if (alc == NULL)
1971 {
1972 sinfo->failed = TRUE;
1973 return FALSE;
1974 }
1975 memcpy (alc, h->root.root.string, len - 1);
1976 alc[len - 1] = '\0';
1977 if (alc[len - 2] == ELF_VER_CHR)
1978 alc[len - 2] = '\0';
1979
1980 h->verinfo.vertree = t;
1981 t->used = TRUE;
1982 d = NULL;
1983
1984 if (t->globals.list != NULL)
1985 d = (*t->match) (&t->globals, NULL, alc);
1986
1987 /* See if there is anything to force this symbol to
1988 local scope. */
1989 if (d == NULL && t->locals.list != NULL)
1990 {
1991 d = (*t->match) (&t->locals, NULL, alc);
1992 if (d != NULL
1993 && h->dynindx != -1
1994 && ! info->export_dynamic)
1995 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1996 }
1997
1998 free (alc);
1999 break;
2000 }
2001 }
2002
2003 /* If we are building an application, we need to create a
2004 version node for this version. */
2005 if (t == NULL && info->executable)
2006 {
2007 struct bfd_elf_version_tree **pp;
2008 int version_index;
2009
2010 /* If we aren't going to export this symbol, we don't need
2011 to worry about it. */
2012 if (h->dynindx == -1)
2013 return TRUE;
2014
2015 amt = sizeof *t;
2016 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2017 if (t == NULL)
2018 {
2019 sinfo->failed = TRUE;
2020 return FALSE;
2021 }
2022
2023 t->name = p;
2024 t->name_indx = (unsigned int) -1;
2025 t->used = TRUE;
2026
2027 version_index = 1;
2028 /* Don't count anonymous version tag. */
2029 if (sinfo->info->version_info != NULL
2030 && sinfo->info->version_info->vernum == 0)
2031 version_index = 0;
2032 for (pp = &sinfo->info->version_info;
2033 *pp != NULL;
2034 pp = &(*pp)->next)
2035 ++version_index;
2036 t->vernum = version_index;
2037
2038 *pp = t;
2039
2040 h->verinfo.vertree = t;
2041 }
2042 else if (t == NULL)
2043 {
2044 /* We could not find the version for a symbol when
2045 generating a shared archive. Return an error. */
2046 (*_bfd_error_handler)
2047 (_("%B: version node not found for symbol %s"),
2048 info->output_bfd, h->root.root.string);
2049 bfd_set_error (bfd_error_bad_value);
2050 sinfo->failed = TRUE;
2051 return FALSE;
2052 }
2053
2054 if (hidden)
2055 h->hidden = 1;
2056 }
2057
2058 /* If we don't have a version for this symbol, see if we can find
2059 something. */
2060 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2061 {
2062 bfd_boolean hide;
2063
2064 h->verinfo.vertree
2065 = bfd_find_version_for_sym (sinfo->info->version_info,
2066 h->root.root.string, &hide);
2067 if (h->verinfo.vertree != NULL && hide)
2068 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2069 }
2070
2071 return TRUE;
2072 }
2073 \f
2074 /* Read and swap the relocs from the section indicated by SHDR. This
2075 may be either a REL or a RELA section. The relocations are
2076 translated into RELA relocations and stored in INTERNAL_RELOCS,
2077 which should have already been allocated to contain enough space.
2078 The EXTERNAL_RELOCS are a buffer where the external form of the
2079 relocations should be stored.
2080
2081 Returns FALSE if something goes wrong. */
2082
2083 static bfd_boolean
2084 elf_link_read_relocs_from_section (bfd *abfd,
2085 asection *sec,
2086 Elf_Internal_Shdr *shdr,
2087 void *external_relocs,
2088 Elf_Internal_Rela *internal_relocs)
2089 {
2090 const struct elf_backend_data *bed;
2091 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2092 const bfd_byte *erela;
2093 const bfd_byte *erelaend;
2094 Elf_Internal_Rela *irela;
2095 Elf_Internal_Shdr *symtab_hdr;
2096 size_t nsyms;
2097
2098 /* Position ourselves at the start of the section. */
2099 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2100 return FALSE;
2101
2102 /* Read the relocations. */
2103 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2104 return FALSE;
2105
2106 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2107 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2108
2109 bed = get_elf_backend_data (abfd);
2110
2111 /* Convert the external relocations to the internal format. */
2112 if (shdr->sh_entsize == bed->s->sizeof_rel)
2113 swap_in = bed->s->swap_reloc_in;
2114 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2115 swap_in = bed->s->swap_reloca_in;
2116 else
2117 {
2118 bfd_set_error (bfd_error_wrong_format);
2119 return FALSE;
2120 }
2121
2122 erela = (const bfd_byte *) external_relocs;
2123 erelaend = erela + shdr->sh_size;
2124 irela = internal_relocs;
2125 while (erela < erelaend)
2126 {
2127 bfd_vma r_symndx;
2128
2129 (*swap_in) (abfd, erela, irela);
2130 r_symndx = ELF32_R_SYM (irela->r_info);
2131 if (bed->s->arch_size == 64)
2132 r_symndx >>= 24;
2133 if (nsyms > 0)
2134 {
2135 if ((size_t) r_symndx >= nsyms)
2136 {
2137 (*_bfd_error_handler)
2138 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2139 " for offset 0x%lx in section `%A'"),
2140 abfd, sec,
2141 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2142 bfd_set_error (bfd_error_bad_value);
2143 return FALSE;
2144 }
2145 }
2146 else if (r_symndx != STN_UNDEF)
2147 {
2148 (*_bfd_error_handler)
2149 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2150 " when the object file has no symbol table"),
2151 abfd, sec,
2152 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2153 bfd_set_error (bfd_error_bad_value);
2154 return FALSE;
2155 }
2156 irela += bed->s->int_rels_per_ext_rel;
2157 erela += shdr->sh_entsize;
2158 }
2159
2160 return TRUE;
2161 }
2162
2163 /* Read and swap the relocs for a section O. They may have been
2164 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2165 not NULL, they are used as buffers to read into. They are known to
2166 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2167 the return value is allocated using either malloc or bfd_alloc,
2168 according to the KEEP_MEMORY argument. If O has two relocation
2169 sections (both REL and RELA relocations), then the REL_HDR
2170 relocations will appear first in INTERNAL_RELOCS, followed by the
2171 RELA_HDR relocations. */
2172
2173 Elf_Internal_Rela *
2174 _bfd_elf_link_read_relocs (bfd *abfd,
2175 asection *o,
2176 void *external_relocs,
2177 Elf_Internal_Rela *internal_relocs,
2178 bfd_boolean keep_memory)
2179 {
2180 void *alloc1 = NULL;
2181 Elf_Internal_Rela *alloc2 = NULL;
2182 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2183 struct bfd_elf_section_data *esdo = elf_section_data (o);
2184 Elf_Internal_Rela *internal_rela_relocs;
2185
2186 if (esdo->relocs != NULL)
2187 return esdo->relocs;
2188
2189 if (o->reloc_count == 0)
2190 return NULL;
2191
2192 if (internal_relocs == NULL)
2193 {
2194 bfd_size_type size;
2195
2196 size = o->reloc_count;
2197 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2198 if (keep_memory)
2199 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2200 else
2201 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2202 if (internal_relocs == NULL)
2203 goto error_return;
2204 }
2205
2206 if (external_relocs == NULL)
2207 {
2208 bfd_size_type size = 0;
2209
2210 if (esdo->rel.hdr)
2211 size += esdo->rel.hdr->sh_size;
2212 if (esdo->rela.hdr)
2213 size += esdo->rela.hdr->sh_size;
2214
2215 alloc1 = bfd_malloc (size);
2216 if (alloc1 == NULL)
2217 goto error_return;
2218 external_relocs = alloc1;
2219 }
2220
2221 internal_rela_relocs = internal_relocs;
2222 if (esdo->rel.hdr)
2223 {
2224 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2225 external_relocs,
2226 internal_relocs))
2227 goto error_return;
2228 external_relocs = (((bfd_byte *) external_relocs)
2229 + esdo->rel.hdr->sh_size);
2230 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2231 * bed->s->int_rels_per_ext_rel);
2232 }
2233
2234 if (esdo->rela.hdr
2235 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2236 external_relocs,
2237 internal_rela_relocs)))
2238 goto error_return;
2239
2240 /* Cache the results for next time, if we can. */
2241 if (keep_memory)
2242 esdo->relocs = internal_relocs;
2243
2244 if (alloc1 != NULL)
2245 free (alloc1);
2246
2247 /* Don't free alloc2, since if it was allocated we are passing it
2248 back (under the name of internal_relocs). */
2249
2250 return internal_relocs;
2251
2252 error_return:
2253 if (alloc1 != NULL)
2254 free (alloc1);
2255 if (alloc2 != NULL)
2256 {
2257 if (keep_memory)
2258 bfd_release (abfd, alloc2);
2259 else
2260 free (alloc2);
2261 }
2262 return NULL;
2263 }
2264
2265 /* Compute the size of, and allocate space for, REL_HDR which is the
2266 section header for a section containing relocations for O. */
2267
2268 static bfd_boolean
2269 _bfd_elf_link_size_reloc_section (bfd *abfd,
2270 struct bfd_elf_section_reloc_data *reldata)
2271 {
2272 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2273
2274 /* That allows us to calculate the size of the section. */
2275 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2276
2277 /* The contents field must last into write_object_contents, so we
2278 allocate it with bfd_alloc rather than malloc. Also since we
2279 cannot be sure that the contents will actually be filled in,
2280 we zero the allocated space. */
2281 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2282 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2283 return FALSE;
2284
2285 if (reldata->hashes == NULL && reldata->count)
2286 {
2287 struct elf_link_hash_entry **p;
2288
2289 p = (struct elf_link_hash_entry **)
2290 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2291 if (p == NULL)
2292 return FALSE;
2293
2294 reldata->hashes = p;
2295 }
2296
2297 return TRUE;
2298 }
2299
2300 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2301 originated from the section given by INPUT_REL_HDR) to the
2302 OUTPUT_BFD. */
2303
2304 bfd_boolean
2305 _bfd_elf_link_output_relocs (bfd *output_bfd,
2306 asection *input_section,
2307 Elf_Internal_Shdr *input_rel_hdr,
2308 Elf_Internal_Rela *internal_relocs,
2309 struct elf_link_hash_entry **rel_hash
2310 ATTRIBUTE_UNUSED)
2311 {
2312 Elf_Internal_Rela *irela;
2313 Elf_Internal_Rela *irelaend;
2314 bfd_byte *erel;
2315 struct bfd_elf_section_reloc_data *output_reldata;
2316 asection *output_section;
2317 const struct elf_backend_data *bed;
2318 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2319 struct bfd_elf_section_data *esdo;
2320
2321 output_section = input_section->output_section;
2322
2323 bed = get_elf_backend_data (output_bfd);
2324 esdo = elf_section_data (output_section);
2325 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2326 {
2327 output_reldata = &esdo->rel;
2328 swap_out = bed->s->swap_reloc_out;
2329 }
2330 else if (esdo->rela.hdr
2331 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2332 {
2333 output_reldata = &esdo->rela;
2334 swap_out = bed->s->swap_reloca_out;
2335 }
2336 else
2337 {
2338 (*_bfd_error_handler)
2339 (_("%B: relocation size mismatch in %B section %A"),
2340 output_bfd, input_section->owner, input_section);
2341 bfd_set_error (bfd_error_wrong_format);
2342 return FALSE;
2343 }
2344
2345 erel = output_reldata->hdr->contents;
2346 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2347 irela = internal_relocs;
2348 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2349 * bed->s->int_rels_per_ext_rel);
2350 while (irela < irelaend)
2351 {
2352 (*swap_out) (output_bfd, irela, erel);
2353 irela += bed->s->int_rels_per_ext_rel;
2354 erel += input_rel_hdr->sh_entsize;
2355 }
2356
2357 /* Bump the counter, so that we know where to add the next set of
2358 relocations. */
2359 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2360
2361 return TRUE;
2362 }
2363 \f
2364 /* Make weak undefined symbols in PIE dynamic. */
2365
2366 bfd_boolean
2367 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2368 struct elf_link_hash_entry *h)
2369 {
2370 if (info->pie
2371 && h->dynindx == -1
2372 && h->root.type == bfd_link_hash_undefweak)
2373 return bfd_elf_link_record_dynamic_symbol (info, h);
2374
2375 return TRUE;
2376 }
2377
2378 /* Fix up the flags for a symbol. This handles various cases which
2379 can only be fixed after all the input files are seen. This is
2380 currently called by both adjust_dynamic_symbol and
2381 assign_sym_version, which is unnecessary but perhaps more robust in
2382 the face of future changes. */
2383
2384 static bfd_boolean
2385 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2386 struct elf_info_failed *eif)
2387 {
2388 const struct elf_backend_data *bed;
2389
2390 /* If this symbol was mentioned in a non-ELF file, try to set
2391 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2392 permit a non-ELF file to correctly refer to a symbol defined in
2393 an ELF dynamic object. */
2394 if (h->non_elf)
2395 {
2396 while (h->root.type == bfd_link_hash_indirect)
2397 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2398
2399 if (h->root.type != bfd_link_hash_defined
2400 && h->root.type != bfd_link_hash_defweak)
2401 {
2402 h->ref_regular = 1;
2403 h->ref_regular_nonweak = 1;
2404 }
2405 else
2406 {
2407 if (h->root.u.def.section->owner != NULL
2408 && (bfd_get_flavour (h->root.u.def.section->owner)
2409 == bfd_target_elf_flavour))
2410 {
2411 h->ref_regular = 1;
2412 h->ref_regular_nonweak = 1;
2413 }
2414 else
2415 h->def_regular = 1;
2416 }
2417
2418 if (h->dynindx == -1
2419 && (h->def_dynamic
2420 || h->ref_dynamic))
2421 {
2422 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2423 {
2424 eif->failed = TRUE;
2425 return FALSE;
2426 }
2427 }
2428 }
2429 else
2430 {
2431 /* Unfortunately, NON_ELF is only correct if the symbol
2432 was first seen in a non-ELF file. Fortunately, if the symbol
2433 was first seen in an ELF file, we're probably OK unless the
2434 symbol was defined in a non-ELF file. Catch that case here.
2435 FIXME: We're still in trouble if the symbol was first seen in
2436 a dynamic object, and then later in a non-ELF regular object. */
2437 if ((h->root.type == bfd_link_hash_defined
2438 || h->root.type == bfd_link_hash_defweak)
2439 && !h->def_regular
2440 && (h->root.u.def.section->owner != NULL
2441 ? (bfd_get_flavour (h->root.u.def.section->owner)
2442 != bfd_target_elf_flavour)
2443 : (bfd_is_abs_section (h->root.u.def.section)
2444 && !h->def_dynamic)))
2445 h->def_regular = 1;
2446 }
2447
2448 /* Backend specific symbol fixup. */
2449 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2450 if (bed->elf_backend_fixup_symbol
2451 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2452 return FALSE;
2453
2454 /* If this is a final link, and the symbol was defined as a common
2455 symbol in a regular object file, and there was no definition in
2456 any dynamic object, then the linker will have allocated space for
2457 the symbol in a common section but the DEF_REGULAR
2458 flag will not have been set. */
2459 if (h->root.type == bfd_link_hash_defined
2460 && !h->def_regular
2461 && h->ref_regular
2462 && !h->def_dynamic
2463 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2464 h->def_regular = 1;
2465
2466 /* If -Bsymbolic was used (which means to bind references to global
2467 symbols to the definition within the shared object), and this
2468 symbol was defined in a regular object, then it actually doesn't
2469 need a PLT entry. Likewise, if the symbol has non-default
2470 visibility. If the symbol has hidden or internal visibility, we
2471 will force it local. */
2472 if (h->needs_plt
2473 && eif->info->shared
2474 && is_elf_hash_table (eif->info->hash)
2475 && (SYMBOLIC_BIND (eif->info, h)
2476 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2477 && h->def_regular)
2478 {
2479 bfd_boolean force_local;
2480
2481 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2482 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2483 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2484 }
2485
2486 /* If a weak undefined symbol has non-default visibility, we also
2487 hide it from the dynamic linker. */
2488 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2489 && h->root.type == bfd_link_hash_undefweak)
2490 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2491
2492 /* If this is a weak defined symbol in a dynamic object, and we know
2493 the real definition in the dynamic object, copy interesting flags
2494 over to the real definition. */
2495 if (h->u.weakdef != NULL)
2496 {
2497 /* If the real definition is defined by a regular object file,
2498 don't do anything special. See the longer description in
2499 _bfd_elf_adjust_dynamic_symbol, below. */
2500 if (h->u.weakdef->def_regular)
2501 h->u.weakdef = NULL;
2502 else
2503 {
2504 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2505
2506 while (h->root.type == bfd_link_hash_indirect)
2507 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2508
2509 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2510 || h->root.type == bfd_link_hash_defweak);
2511 BFD_ASSERT (weakdef->def_dynamic);
2512 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2513 || weakdef->root.type == bfd_link_hash_defweak);
2514 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2515 }
2516 }
2517
2518 return TRUE;
2519 }
2520
2521 /* Make the backend pick a good value for a dynamic symbol. This is
2522 called via elf_link_hash_traverse, and also calls itself
2523 recursively. */
2524
2525 static bfd_boolean
2526 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2527 {
2528 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2529 bfd *dynobj;
2530 const struct elf_backend_data *bed;
2531
2532 if (! is_elf_hash_table (eif->info->hash))
2533 return FALSE;
2534
2535 /* Ignore indirect symbols. These are added by the versioning code. */
2536 if (h->root.type == bfd_link_hash_indirect)
2537 return TRUE;
2538
2539 /* Fix the symbol flags. */
2540 if (! _bfd_elf_fix_symbol_flags (h, eif))
2541 return FALSE;
2542
2543 /* If this symbol does not require a PLT entry, and it is not
2544 defined by a dynamic object, or is not referenced by a regular
2545 object, ignore it. We do have to handle a weak defined symbol,
2546 even if no regular object refers to it, if we decided to add it
2547 to the dynamic symbol table. FIXME: Do we normally need to worry
2548 about symbols which are defined by one dynamic object and
2549 referenced by another one? */
2550 if (!h->needs_plt
2551 && h->type != STT_GNU_IFUNC
2552 && (h->def_regular
2553 || !h->def_dynamic
2554 || (!h->ref_regular
2555 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2556 {
2557 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2558 return TRUE;
2559 }
2560
2561 /* If we've already adjusted this symbol, don't do it again. This
2562 can happen via a recursive call. */
2563 if (h->dynamic_adjusted)
2564 return TRUE;
2565
2566 /* Don't look at this symbol again. Note that we must set this
2567 after checking the above conditions, because we may look at a
2568 symbol once, decide not to do anything, and then get called
2569 recursively later after REF_REGULAR is set below. */
2570 h->dynamic_adjusted = 1;
2571
2572 /* If this is a weak definition, and we know a real definition, and
2573 the real symbol is not itself defined by a regular object file,
2574 then get a good value for the real definition. We handle the
2575 real symbol first, for the convenience of the backend routine.
2576
2577 Note that there is a confusing case here. If the real definition
2578 is defined by a regular object file, we don't get the real symbol
2579 from the dynamic object, but we do get the weak symbol. If the
2580 processor backend uses a COPY reloc, then if some routine in the
2581 dynamic object changes the real symbol, we will not see that
2582 change in the corresponding weak symbol. This is the way other
2583 ELF linkers work as well, and seems to be a result of the shared
2584 library model.
2585
2586 I will clarify this issue. Most SVR4 shared libraries define the
2587 variable _timezone and define timezone as a weak synonym. The
2588 tzset call changes _timezone. If you write
2589 extern int timezone;
2590 int _timezone = 5;
2591 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2592 you might expect that, since timezone is a synonym for _timezone,
2593 the same number will print both times. However, if the processor
2594 backend uses a COPY reloc, then actually timezone will be copied
2595 into your process image, and, since you define _timezone
2596 yourself, _timezone will not. Thus timezone and _timezone will
2597 wind up at different memory locations. The tzset call will set
2598 _timezone, leaving timezone unchanged. */
2599
2600 if (h->u.weakdef != NULL)
2601 {
2602 /* If we get to this point, there is an implicit reference to
2603 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2604 h->u.weakdef->ref_regular = 1;
2605
2606 /* Ensure that the backend adjust_dynamic_symbol function sees
2607 H->U.WEAKDEF before H by recursively calling ourselves. */
2608 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2609 return FALSE;
2610 }
2611
2612 /* If a symbol has no type and no size and does not require a PLT
2613 entry, then we are probably about to do the wrong thing here: we
2614 are probably going to create a COPY reloc for an empty object.
2615 This case can arise when a shared object is built with assembly
2616 code, and the assembly code fails to set the symbol type. */
2617 if (h->size == 0
2618 && h->type == STT_NOTYPE
2619 && !h->needs_plt)
2620 (*_bfd_error_handler)
2621 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2622 h->root.root.string);
2623
2624 dynobj = elf_hash_table (eif->info)->dynobj;
2625 bed = get_elf_backend_data (dynobj);
2626
2627 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2628 {
2629 eif->failed = TRUE;
2630 return FALSE;
2631 }
2632
2633 return TRUE;
2634 }
2635
2636 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2637 DYNBSS. */
2638
2639 bfd_boolean
2640 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2641 asection *dynbss)
2642 {
2643 unsigned int power_of_two;
2644 bfd_vma mask;
2645 asection *sec = h->root.u.def.section;
2646
2647 /* The section aligment of definition is the maximum alignment
2648 requirement of symbols defined in the section. Since we don't
2649 know the symbol alignment requirement, we start with the
2650 maximum alignment and check low bits of the symbol address
2651 for the minimum alignment. */
2652 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2653 mask = ((bfd_vma) 1 << power_of_two) - 1;
2654 while ((h->root.u.def.value & mask) != 0)
2655 {
2656 mask >>= 1;
2657 --power_of_two;
2658 }
2659
2660 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2661 dynbss))
2662 {
2663 /* Adjust the section alignment if needed. */
2664 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2665 power_of_two))
2666 return FALSE;
2667 }
2668
2669 /* We make sure that the symbol will be aligned properly. */
2670 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2671
2672 /* Define the symbol as being at this point in DYNBSS. */
2673 h->root.u.def.section = dynbss;
2674 h->root.u.def.value = dynbss->size;
2675
2676 /* Increment the size of DYNBSS to make room for the symbol. */
2677 dynbss->size += h->size;
2678
2679 return TRUE;
2680 }
2681
2682 /* Adjust all external symbols pointing into SEC_MERGE sections
2683 to reflect the object merging within the sections. */
2684
2685 static bfd_boolean
2686 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2687 {
2688 asection *sec;
2689
2690 if ((h->root.type == bfd_link_hash_defined
2691 || h->root.type == bfd_link_hash_defweak)
2692 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2693 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2694 {
2695 bfd *output_bfd = (bfd *) data;
2696
2697 h->root.u.def.value =
2698 _bfd_merged_section_offset (output_bfd,
2699 &h->root.u.def.section,
2700 elf_section_data (sec)->sec_info,
2701 h->root.u.def.value);
2702 }
2703
2704 return TRUE;
2705 }
2706
2707 /* Returns false if the symbol referred to by H should be considered
2708 to resolve local to the current module, and true if it should be
2709 considered to bind dynamically. */
2710
2711 bfd_boolean
2712 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2713 struct bfd_link_info *info,
2714 bfd_boolean not_local_protected)
2715 {
2716 bfd_boolean binding_stays_local_p;
2717 const struct elf_backend_data *bed;
2718 struct elf_link_hash_table *hash_table;
2719
2720 if (h == NULL)
2721 return FALSE;
2722
2723 while (h->root.type == bfd_link_hash_indirect
2724 || h->root.type == bfd_link_hash_warning)
2725 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2726
2727 /* If it was forced local, then clearly it's not dynamic. */
2728 if (h->dynindx == -1)
2729 return FALSE;
2730 if (h->forced_local)
2731 return FALSE;
2732
2733 /* Identify the cases where name binding rules say that a
2734 visible symbol resolves locally. */
2735 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2736
2737 switch (ELF_ST_VISIBILITY (h->other))
2738 {
2739 case STV_INTERNAL:
2740 case STV_HIDDEN:
2741 return FALSE;
2742
2743 case STV_PROTECTED:
2744 hash_table = elf_hash_table (info);
2745 if (!is_elf_hash_table (hash_table))
2746 return FALSE;
2747
2748 bed = get_elf_backend_data (hash_table->dynobj);
2749
2750 /* Proper resolution for function pointer equality may require
2751 that these symbols perhaps be resolved dynamically, even though
2752 we should be resolving them to the current module. */
2753 if (!not_local_protected || !bed->is_function_type (h->type))
2754 binding_stays_local_p = TRUE;
2755 break;
2756
2757 default:
2758 break;
2759 }
2760
2761 /* If it isn't defined locally, then clearly it's dynamic. */
2762 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2763 return TRUE;
2764
2765 /* Otherwise, the symbol is dynamic if binding rules don't tell
2766 us that it remains local. */
2767 return !binding_stays_local_p;
2768 }
2769
2770 /* Return true if the symbol referred to by H should be considered
2771 to resolve local to the current module, and false otherwise. Differs
2772 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2773 undefined symbols. The two functions are virtually identical except
2774 for the place where forced_local and dynindx == -1 are tested. If
2775 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2776 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2777 the symbol is local only for defined symbols.
2778 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2779 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2780 treatment of undefined weak symbols. For those that do not make
2781 undefined weak symbols dynamic, both functions may return false. */
2782
2783 bfd_boolean
2784 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2785 struct bfd_link_info *info,
2786 bfd_boolean local_protected)
2787 {
2788 const struct elf_backend_data *bed;
2789 struct elf_link_hash_table *hash_table;
2790
2791 /* If it's a local sym, of course we resolve locally. */
2792 if (h == NULL)
2793 return TRUE;
2794
2795 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2796 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2797 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2798 return TRUE;
2799
2800 /* Common symbols that become definitions don't get the DEF_REGULAR
2801 flag set, so test it first, and don't bail out. */
2802 if (ELF_COMMON_DEF_P (h))
2803 /* Do nothing. */;
2804 /* If we don't have a definition in a regular file, then we can't
2805 resolve locally. The sym is either undefined or dynamic. */
2806 else if (!h->def_regular)
2807 return FALSE;
2808
2809 /* Forced local symbols resolve locally. */
2810 if (h->forced_local)
2811 return TRUE;
2812
2813 /* As do non-dynamic symbols. */
2814 if (h->dynindx == -1)
2815 return TRUE;
2816
2817 /* At this point, we know the symbol is defined and dynamic. In an
2818 executable it must resolve locally, likewise when building symbolic
2819 shared libraries. */
2820 if (info->executable || SYMBOLIC_BIND (info, h))
2821 return TRUE;
2822
2823 /* Now deal with defined dynamic symbols in shared libraries. Ones
2824 with default visibility might not resolve locally. */
2825 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2826 return FALSE;
2827
2828 hash_table = elf_hash_table (info);
2829 if (!is_elf_hash_table (hash_table))
2830 return TRUE;
2831
2832 bed = get_elf_backend_data (hash_table->dynobj);
2833
2834 /* STV_PROTECTED non-function symbols are local. */
2835 if (!bed->is_function_type (h->type))
2836 return TRUE;
2837
2838 /* Function pointer equality tests may require that STV_PROTECTED
2839 symbols be treated as dynamic symbols. If the address of a
2840 function not defined in an executable is set to that function's
2841 plt entry in the executable, then the address of the function in
2842 a shared library must also be the plt entry in the executable. */
2843 return local_protected;
2844 }
2845
2846 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2847 aligned. Returns the first TLS output section. */
2848
2849 struct bfd_section *
2850 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2851 {
2852 struct bfd_section *sec, *tls;
2853 unsigned int align = 0;
2854
2855 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2856 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2857 break;
2858 tls = sec;
2859
2860 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2861 if (sec->alignment_power > align)
2862 align = sec->alignment_power;
2863
2864 elf_hash_table (info)->tls_sec = tls;
2865
2866 /* Ensure the alignment of the first section is the largest alignment,
2867 so that the tls segment starts aligned. */
2868 if (tls != NULL)
2869 tls->alignment_power = align;
2870
2871 return tls;
2872 }
2873
2874 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2875 static bfd_boolean
2876 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2877 Elf_Internal_Sym *sym)
2878 {
2879 const struct elf_backend_data *bed;
2880
2881 /* Local symbols do not count, but target specific ones might. */
2882 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2883 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2884 return FALSE;
2885
2886 bed = get_elf_backend_data (abfd);
2887 /* Function symbols do not count. */
2888 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2889 return FALSE;
2890
2891 /* If the section is undefined, then so is the symbol. */
2892 if (sym->st_shndx == SHN_UNDEF)
2893 return FALSE;
2894
2895 /* If the symbol is defined in the common section, then
2896 it is a common definition and so does not count. */
2897 if (bed->common_definition (sym))
2898 return FALSE;
2899
2900 /* If the symbol is in a target specific section then we
2901 must rely upon the backend to tell us what it is. */
2902 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2903 /* FIXME - this function is not coded yet:
2904
2905 return _bfd_is_global_symbol_definition (abfd, sym);
2906
2907 Instead for now assume that the definition is not global,
2908 Even if this is wrong, at least the linker will behave
2909 in the same way that it used to do. */
2910 return FALSE;
2911
2912 return TRUE;
2913 }
2914
2915 /* Search the symbol table of the archive element of the archive ABFD
2916 whose archive map contains a mention of SYMDEF, and determine if
2917 the symbol is defined in this element. */
2918 static bfd_boolean
2919 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2920 {
2921 Elf_Internal_Shdr * hdr;
2922 bfd_size_type symcount;
2923 bfd_size_type extsymcount;
2924 bfd_size_type extsymoff;
2925 Elf_Internal_Sym *isymbuf;
2926 Elf_Internal_Sym *isym;
2927 Elf_Internal_Sym *isymend;
2928 bfd_boolean result;
2929
2930 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2931 if (abfd == NULL)
2932 return FALSE;
2933
2934 if (! bfd_check_format (abfd, bfd_object))
2935 return FALSE;
2936
2937 /* Select the appropriate symbol table. */
2938 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2939 hdr = &elf_tdata (abfd)->symtab_hdr;
2940 else
2941 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2942
2943 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2944
2945 /* The sh_info field of the symtab header tells us where the
2946 external symbols start. We don't care about the local symbols. */
2947 if (elf_bad_symtab (abfd))
2948 {
2949 extsymcount = symcount;
2950 extsymoff = 0;
2951 }
2952 else
2953 {
2954 extsymcount = symcount - hdr->sh_info;
2955 extsymoff = hdr->sh_info;
2956 }
2957
2958 if (extsymcount == 0)
2959 return FALSE;
2960
2961 /* Read in the symbol table. */
2962 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2963 NULL, NULL, NULL);
2964 if (isymbuf == NULL)
2965 return FALSE;
2966
2967 /* Scan the symbol table looking for SYMDEF. */
2968 result = FALSE;
2969 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2970 {
2971 const char *name;
2972
2973 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2974 isym->st_name);
2975 if (name == NULL)
2976 break;
2977
2978 if (strcmp (name, symdef->name) == 0)
2979 {
2980 result = is_global_data_symbol_definition (abfd, isym);
2981 break;
2982 }
2983 }
2984
2985 free (isymbuf);
2986
2987 return result;
2988 }
2989 \f
2990 /* Add an entry to the .dynamic table. */
2991
2992 bfd_boolean
2993 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
2994 bfd_vma tag,
2995 bfd_vma val)
2996 {
2997 struct elf_link_hash_table *hash_table;
2998 const struct elf_backend_data *bed;
2999 asection *s;
3000 bfd_size_type newsize;
3001 bfd_byte *newcontents;
3002 Elf_Internal_Dyn dyn;
3003
3004 hash_table = elf_hash_table (info);
3005 if (! is_elf_hash_table (hash_table))
3006 return FALSE;
3007
3008 bed = get_elf_backend_data (hash_table->dynobj);
3009 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3010 BFD_ASSERT (s != NULL);
3011
3012 newsize = s->size + bed->s->sizeof_dyn;
3013 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3014 if (newcontents == NULL)
3015 return FALSE;
3016
3017 dyn.d_tag = tag;
3018 dyn.d_un.d_val = val;
3019 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3020
3021 s->size = newsize;
3022 s->contents = newcontents;
3023
3024 return TRUE;
3025 }
3026
3027 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3028 otherwise just check whether one already exists. Returns -1 on error,
3029 1 if a DT_NEEDED tag already exists, and 0 on success. */
3030
3031 static int
3032 elf_add_dt_needed_tag (bfd *abfd,
3033 struct bfd_link_info *info,
3034 const char *soname,
3035 bfd_boolean do_it)
3036 {
3037 struct elf_link_hash_table *hash_table;
3038 bfd_size_type strindex;
3039
3040 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3041 return -1;
3042
3043 hash_table = elf_hash_table (info);
3044 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3045 if (strindex == (bfd_size_type) -1)
3046 return -1;
3047
3048 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3049 {
3050 asection *sdyn;
3051 const struct elf_backend_data *bed;
3052 bfd_byte *extdyn;
3053
3054 bed = get_elf_backend_data (hash_table->dynobj);
3055 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3056 if (sdyn != NULL)
3057 for (extdyn = sdyn->contents;
3058 extdyn < sdyn->contents + sdyn->size;
3059 extdyn += bed->s->sizeof_dyn)
3060 {
3061 Elf_Internal_Dyn dyn;
3062
3063 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3064 if (dyn.d_tag == DT_NEEDED
3065 && dyn.d_un.d_val == strindex)
3066 {
3067 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3068 return 1;
3069 }
3070 }
3071 }
3072
3073 if (do_it)
3074 {
3075 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3076 return -1;
3077
3078 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3079 return -1;
3080 }
3081 else
3082 /* We were just checking for existence of the tag. */
3083 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3084
3085 return 0;
3086 }
3087
3088 static bfd_boolean
3089 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3090 {
3091 for (; needed != NULL; needed = needed->next)
3092 if ((elf_dyn_lib_class (needed->by) & DYN_AS_NEEDED) == 0
3093 && strcmp (soname, needed->name) == 0)
3094 return TRUE;
3095
3096 return FALSE;
3097 }
3098
3099 /* Sort symbol by value, section, and size. */
3100 static int
3101 elf_sort_symbol (const void *arg1, const void *arg2)
3102 {
3103 const struct elf_link_hash_entry *h1;
3104 const struct elf_link_hash_entry *h2;
3105 bfd_signed_vma vdiff;
3106
3107 h1 = *(const struct elf_link_hash_entry **) arg1;
3108 h2 = *(const struct elf_link_hash_entry **) arg2;
3109 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3110 if (vdiff != 0)
3111 return vdiff > 0 ? 1 : -1;
3112 else
3113 {
3114 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3115 if (sdiff != 0)
3116 return sdiff > 0 ? 1 : -1;
3117 }
3118 vdiff = h1->size - h2->size;
3119 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3120 }
3121
3122 /* This function is used to adjust offsets into .dynstr for
3123 dynamic symbols. This is called via elf_link_hash_traverse. */
3124
3125 static bfd_boolean
3126 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3127 {
3128 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3129
3130 if (h->dynindx != -1)
3131 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3132 return TRUE;
3133 }
3134
3135 /* Assign string offsets in .dynstr, update all structures referencing
3136 them. */
3137
3138 static bfd_boolean
3139 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3140 {
3141 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3142 struct elf_link_local_dynamic_entry *entry;
3143 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3144 bfd *dynobj = hash_table->dynobj;
3145 asection *sdyn;
3146 bfd_size_type size;
3147 const struct elf_backend_data *bed;
3148 bfd_byte *extdyn;
3149
3150 _bfd_elf_strtab_finalize (dynstr);
3151 size = _bfd_elf_strtab_size (dynstr);
3152
3153 bed = get_elf_backend_data (dynobj);
3154 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3155 BFD_ASSERT (sdyn != NULL);
3156
3157 /* Update all .dynamic entries referencing .dynstr strings. */
3158 for (extdyn = sdyn->contents;
3159 extdyn < sdyn->contents + sdyn->size;
3160 extdyn += bed->s->sizeof_dyn)
3161 {
3162 Elf_Internal_Dyn dyn;
3163
3164 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3165 switch (dyn.d_tag)
3166 {
3167 case DT_STRSZ:
3168 dyn.d_un.d_val = size;
3169 break;
3170 case DT_NEEDED:
3171 case DT_SONAME:
3172 case DT_RPATH:
3173 case DT_RUNPATH:
3174 case DT_FILTER:
3175 case DT_AUXILIARY:
3176 case DT_AUDIT:
3177 case DT_DEPAUDIT:
3178 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3179 break;
3180 default:
3181 continue;
3182 }
3183 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3184 }
3185
3186 /* Now update local dynamic symbols. */
3187 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3188 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3189 entry->isym.st_name);
3190
3191 /* And the rest of dynamic symbols. */
3192 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3193
3194 /* Adjust version definitions. */
3195 if (elf_tdata (output_bfd)->cverdefs)
3196 {
3197 asection *s;
3198 bfd_byte *p;
3199 bfd_size_type i;
3200 Elf_Internal_Verdef def;
3201 Elf_Internal_Verdaux defaux;
3202
3203 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3204 p = s->contents;
3205 do
3206 {
3207 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3208 &def);
3209 p += sizeof (Elf_External_Verdef);
3210 if (def.vd_aux != sizeof (Elf_External_Verdef))
3211 continue;
3212 for (i = 0; i < def.vd_cnt; ++i)
3213 {
3214 _bfd_elf_swap_verdaux_in (output_bfd,
3215 (Elf_External_Verdaux *) p, &defaux);
3216 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3217 defaux.vda_name);
3218 _bfd_elf_swap_verdaux_out (output_bfd,
3219 &defaux, (Elf_External_Verdaux *) p);
3220 p += sizeof (Elf_External_Verdaux);
3221 }
3222 }
3223 while (def.vd_next);
3224 }
3225
3226 /* Adjust version references. */
3227 if (elf_tdata (output_bfd)->verref)
3228 {
3229 asection *s;
3230 bfd_byte *p;
3231 bfd_size_type i;
3232 Elf_Internal_Verneed need;
3233 Elf_Internal_Vernaux needaux;
3234
3235 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3236 p = s->contents;
3237 do
3238 {
3239 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3240 &need);
3241 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3242 _bfd_elf_swap_verneed_out (output_bfd, &need,
3243 (Elf_External_Verneed *) p);
3244 p += sizeof (Elf_External_Verneed);
3245 for (i = 0; i < need.vn_cnt; ++i)
3246 {
3247 _bfd_elf_swap_vernaux_in (output_bfd,
3248 (Elf_External_Vernaux *) p, &needaux);
3249 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3250 needaux.vna_name);
3251 _bfd_elf_swap_vernaux_out (output_bfd,
3252 &needaux,
3253 (Elf_External_Vernaux *) p);
3254 p += sizeof (Elf_External_Vernaux);
3255 }
3256 }
3257 while (need.vn_next);
3258 }
3259
3260 return TRUE;
3261 }
3262 \f
3263 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3264 The default is to only match when the INPUT and OUTPUT are exactly
3265 the same target. */
3266
3267 bfd_boolean
3268 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3269 const bfd_target *output)
3270 {
3271 return input == output;
3272 }
3273
3274 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3275 This version is used when different targets for the same architecture
3276 are virtually identical. */
3277
3278 bfd_boolean
3279 _bfd_elf_relocs_compatible (const bfd_target *input,
3280 const bfd_target *output)
3281 {
3282 const struct elf_backend_data *obed, *ibed;
3283
3284 if (input == output)
3285 return TRUE;
3286
3287 ibed = xvec_get_elf_backend_data (input);
3288 obed = xvec_get_elf_backend_data (output);
3289
3290 if (ibed->arch != obed->arch)
3291 return FALSE;
3292
3293 /* If both backends are using this function, deem them compatible. */
3294 return ibed->relocs_compatible == obed->relocs_compatible;
3295 }
3296
3297 /* Make a special call to the linker "notice" function to tell it that
3298 we are about to handle an as-needed lib, or have finished
3299 processing the lib. */
3300
3301 bfd_boolean
3302 _bfd_elf_notice_as_needed (bfd *ibfd,
3303 struct bfd_link_info *info,
3304 enum notice_asneeded_action act)
3305 {
3306 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3307 }
3308
3309 /* Add symbols from an ELF object file to the linker hash table. */
3310
3311 static bfd_boolean
3312 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3313 {
3314 Elf_Internal_Ehdr *ehdr;
3315 Elf_Internal_Shdr *hdr;
3316 bfd_size_type symcount;
3317 bfd_size_type extsymcount;
3318 bfd_size_type extsymoff;
3319 struct elf_link_hash_entry **sym_hash;
3320 bfd_boolean dynamic;
3321 Elf_External_Versym *extversym = NULL;
3322 Elf_External_Versym *ever;
3323 struct elf_link_hash_entry *weaks;
3324 struct elf_link_hash_entry **nondeflt_vers = NULL;
3325 bfd_size_type nondeflt_vers_cnt = 0;
3326 Elf_Internal_Sym *isymbuf = NULL;
3327 Elf_Internal_Sym *isym;
3328 Elf_Internal_Sym *isymend;
3329 const struct elf_backend_data *bed;
3330 bfd_boolean add_needed;
3331 struct elf_link_hash_table *htab;
3332 bfd_size_type amt;
3333 void *alloc_mark = NULL;
3334 struct bfd_hash_entry **old_table = NULL;
3335 unsigned int old_size = 0;
3336 unsigned int old_count = 0;
3337 void *old_tab = NULL;
3338 void *old_ent;
3339 struct bfd_link_hash_entry *old_undefs = NULL;
3340 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3341 long old_dynsymcount = 0;
3342 bfd_size_type old_dynstr_size = 0;
3343 size_t tabsize = 0;
3344 asection *s;
3345 bfd_boolean just_syms;
3346
3347 htab = elf_hash_table (info);
3348 bed = get_elf_backend_data (abfd);
3349
3350 if ((abfd->flags & DYNAMIC) == 0)
3351 dynamic = FALSE;
3352 else
3353 {
3354 dynamic = TRUE;
3355
3356 /* You can't use -r against a dynamic object. Also, there's no
3357 hope of using a dynamic object which does not exactly match
3358 the format of the output file. */
3359 if (info->relocatable
3360 || !is_elf_hash_table (htab)
3361 || info->output_bfd->xvec != abfd->xvec)
3362 {
3363 if (info->relocatable)
3364 bfd_set_error (bfd_error_invalid_operation);
3365 else
3366 bfd_set_error (bfd_error_wrong_format);
3367 goto error_return;
3368 }
3369 }
3370
3371 ehdr = elf_elfheader (abfd);
3372 if (info->warn_alternate_em
3373 && bed->elf_machine_code != ehdr->e_machine
3374 && ((bed->elf_machine_alt1 != 0
3375 && ehdr->e_machine == bed->elf_machine_alt1)
3376 || (bed->elf_machine_alt2 != 0
3377 && ehdr->e_machine == bed->elf_machine_alt2)))
3378 info->callbacks->einfo
3379 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3380 ehdr->e_machine, abfd, bed->elf_machine_code);
3381
3382 /* As a GNU extension, any input sections which are named
3383 .gnu.warning.SYMBOL are treated as warning symbols for the given
3384 symbol. This differs from .gnu.warning sections, which generate
3385 warnings when they are included in an output file. */
3386 /* PR 12761: Also generate this warning when building shared libraries. */
3387 for (s = abfd->sections; s != NULL; s = s->next)
3388 {
3389 const char *name;
3390
3391 name = bfd_get_section_name (abfd, s);
3392 if (CONST_STRNEQ (name, ".gnu.warning."))
3393 {
3394 char *msg;
3395 bfd_size_type sz;
3396
3397 name += sizeof ".gnu.warning." - 1;
3398
3399 /* If this is a shared object, then look up the symbol
3400 in the hash table. If it is there, and it is already
3401 been defined, then we will not be using the entry
3402 from this shared object, so we don't need to warn.
3403 FIXME: If we see the definition in a regular object
3404 later on, we will warn, but we shouldn't. The only
3405 fix is to keep track of what warnings we are supposed
3406 to emit, and then handle them all at the end of the
3407 link. */
3408 if (dynamic)
3409 {
3410 struct elf_link_hash_entry *h;
3411
3412 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3413
3414 /* FIXME: What about bfd_link_hash_common? */
3415 if (h != NULL
3416 && (h->root.type == bfd_link_hash_defined
3417 || h->root.type == bfd_link_hash_defweak))
3418 continue;
3419 }
3420
3421 sz = s->size;
3422 msg = (char *) bfd_alloc (abfd, sz + 1);
3423 if (msg == NULL)
3424 goto error_return;
3425
3426 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3427 goto error_return;
3428
3429 msg[sz] = '\0';
3430
3431 if (! (_bfd_generic_link_add_one_symbol
3432 (info, abfd, name, BSF_WARNING, s, 0, msg,
3433 FALSE, bed->collect, NULL)))
3434 goto error_return;
3435
3436 if (!info->relocatable && info->executable)
3437 {
3438 /* Clobber the section size so that the warning does
3439 not get copied into the output file. */
3440 s->size = 0;
3441
3442 /* Also set SEC_EXCLUDE, so that symbols defined in
3443 the warning section don't get copied to the output. */
3444 s->flags |= SEC_EXCLUDE;
3445 }
3446 }
3447 }
3448
3449 just_syms = ((s = abfd->sections) != NULL
3450 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3451
3452 add_needed = TRUE;
3453 if (! dynamic)
3454 {
3455 /* If we are creating a shared library, create all the dynamic
3456 sections immediately. We need to attach them to something,
3457 so we attach them to this BFD, provided it is the right
3458 format and is not from ld --just-symbols. FIXME: If there
3459 are no input BFD's of the same format as the output, we can't
3460 make a shared library. */
3461 if (!just_syms
3462 && info->shared
3463 && is_elf_hash_table (htab)
3464 && info->output_bfd->xvec == abfd->xvec
3465 && !htab->dynamic_sections_created)
3466 {
3467 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3468 goto error_return;
3469 }
3470 }
3471 else if (!is_elf_hash_table (htab))
3472 goto error_return;
3473 else
3474 {
3475 const char *soname = NULL;
3476 char *audit = NULL;
3477 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3478 int ret;
3479
3480 /* ld --just-symbols and dynamic objects don't mix very well.
3481 ld shouldn't allow it. */
3482 if (just_syms)
3483 abort ();
3484
3485 /* If this dynamic lib was specified on the command line with
3486 --as-needed in effect, then we don't want to add a DT_NEEDED
3487 tag unless the lib is actually used. Similary for libs brought
3488 in by another lib's DT_NEEDED. When --no-add-needed is used
3489 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3490 any dynamic library in DT_NEEDED tags in the dynamic lib at
3491 all. */
3492 add_needed = (elf_dyn_lib_class (abfd)
3493 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3494 | DYN_NO_NEEDED)) == 0;
3495
3496 s = bfd_get_section_by_name (abfd, ".dynamic");
3497 if (s != NULL)
3498 {
3499 bfd_byte *dynbuf;
3500 bfd_byte *extdyn;
3501 unsigned int elfsec;
3502 unsigned long shlink;
3503
3504 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3505 {
3506 error_free_dyn:
3507 free (dynbuf);
3508 goto error_return;
3509 }
3510
3511 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3512 if (elfsec == SHN_BAD)
3513 goto error_free_dyn;
3514 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3515
3516 for (extdyn = dynbuf;
3517 extdyn < dynbuf + s->size;
3518 extdyn += bed->s->sizeof_dyn)
3519 {
3520 Elf_Internal_Dyn dyn;
3521
3522 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3523 if (dyn.d_tag == DT_SONAME)
3524 {
3525 unsigned int tagv = dyn.d_un.d_val;
3526 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3527 if (soname == NULL)
3528 goto error_free_dyn;
3529 }
3530 if (dyn.d_tag == DT_NEEDED)
3531 {
3532 struct bfd_link_needed_list *n, **pn;
3533 char *fnm, *anm;
3534 unsigned int tagv = dyn.d_un.d_val;
3535
3536 amt = sizeof (struct bfd_link_needed_list);
3537 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3538 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3539 if (n == NULL || fnm == NULL)
3540 goto error_free_dyn;
3541 amt = strlen (fnm) + 1;
3542 anm = (char *) bfd_alloc (abfd, amt);
3543 if (anm == NULL)
3544 goto error_free_dyn;
3545 memcpy (anm, fnm, amt);
3546 n->name = anm;
3547 n->by = abfd;
3548 n->next = NULL;
3549 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3550 ;
3551 *pn = n;
3552 }
3553 if (dyn.d_tag == DT_RUNPATH)
3554 {
3555 struct bfd_link_needed_list *n, **pn;
3556 char *fnm, *anm;
3557 unsigned int tagv = dyn.d_un.d_val;
3558
3559 amt = sizeof (struct bfd_link_needed_list);
3560 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3561 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3562 if (n == NULL || fnm == NULL)
3563 goto error_free_dyn;
3564 amt = strlen (fnm) + 1;
3565 anm = (char *) bfd_alloc (abfd, amt);
3566 if (anm == NULL)
3567 goto error_free_dyn;
3568 memcpy (anm, fnm, amt);
3569 n->name = anm;
3570 n->by = abfd;
3571 n->next = NULL;
3572 for (pn = & runpath;
3573 *pn != NULL;
3574 pn = &(*pn)->next)
3575 ;
3576 *pn = n;
3577 }
3578 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3579 if (!runpath && dyn.d_tag == DT_RPATH)
3580 {
3581 struct bfd_link_needed_list *n, **pn;
3582 char *fnm, *anm;
3583 unsigned int tagv = dyn.d_un.d_val;
3584
3585 amt = sizeof (struct bfd_link_needed_list);
3586 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3587 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3588 if (n == NULL || fnm == NULL)
3589 goto error_free_dyn;
3590 amt = strlen (fnm) + 1;
3591 anm = (char *) bfd_alloc (abfd, amt);
3592 if (anm == NULL)
3593 goto error_free_dyn;
3594 memcpy (anm, fnm, amt);
3595 n->name = anm;
3596 n->by = abfd;
3597 n->next = NULL;
3598 for (pn = & rpath;
3599 *pn != NULL;
3600 pn = &(*pn)->next)
3601 ;
3602 *pn = n;
3603 }
3604 if (dyn.d_tag == DT_AUDIT)
3605 {
3606 unsigned int tagv = dyn.d_un.d_val;
3607 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3608 }
3609 }
3610
3611 free (dynbuf);
3612 }
3613
3614 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3615 frees all more recently bfd_alloc'd blocks as well. */
3616 if (runpath)
3617 rpath = runpath;
3618
3619 if (rpath)
3620 {
3621 struct bfd_link_needed_list **pn;
3622 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3623 ;
3624 *pn = rpath;
3625 }
3626
3627 /* We do not want to include any of the sections in a dynamic
3628 object in the output file. We hack by simply clobbering the
3629 list of sections in the BFD. This could be handled more
3630 cleanly by, say, a new section flag; the existing
3631 SEC_NEVER_LOAD flag is not the one we want, because that one
3632 still implies that the section takes up space in the output
3633 file. */
3634 bfd_section_list_clear (abfd);
3635
3636 /* Find the name to use in a DT_NEEDED entry that refers to this
3637 object. If the object has a DT_SONAME entry, we use it.
3638 Otherwise, if the generic linker stuck something in
3639 elf_dt_name, we use that. Otherwise, we just use the file
3640 name. */
3641 if (soname == NULL || *soname == '\0')
3642 {
3643 soname = elf_dt_name (abfd);
3644 if (soname == NULL || *soname == '\0')
3645 soname = bfd_get_filename (abfd);
3646 }
3647
3648 /* Save the SONAME because sometimes the linker emulation code
3649 will need to know it. */
3650 elf_dt_name (abfd) = soname;
3651
3652 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3653 if (ret < 0)
3654 goto error_return;
3655
3656 /* If we have already included this dynamic object in the
3657 link, just ignore it. There is no reason to include a
3658 particular dynamic object more than once. */
3659 if (ret > 0)
3660 return TRUE;
3661
3662 /* Save the DT_AUDIT entry for the linker emulation code. */
3663 elf_dt_audit (abfd) = audit;
3664 }
3665
3666 /* If this is a dynamic object, we always link against the .dynsym
3667 symbol table, not the .symtab symbol table. The dynamic linker
3668 will only see the .dynsym symbol table, so there is no reason to
3669 look at .symtab for a dynamic object. */
3670
3671 if (! dynamic || elf_dynsymtab (abfd) == 0)
3672 hdr = &elf_tdata (abfd)->symtab_hdr;
3673 else
3674 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3675
3676 symcount = hdr->sh_size / bed->s->sizeof_sym;
3677
3678 /* The sh_info field of the symtab header tells us where the
3679 external symbols start. We don't care about the local symbols at
3680 this point. */
3681 if (elf_bad_symtab (abfd))
3682 {
3683 extsymcount = symcount;
3684 extsymoff = 0;
3685 }
3686 else
3687 {
3688 extsymcount = symcount - hdr->sh_info;
3689 extsymoff = hdr->sh_info;
3690 }
3691
3692 sym_hash = elf_sym_hashes (abfd);
3693 if (extsymcount != 0)
3694 {
3695 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3696 NULL, NULL, NULL);
3697 if (isymbuf == NULL)
3698 goto error_return;
3699
3700 if (sym_hash == NULL)
3701 {
3702 /* We store a pointer to the hash table entry for each
3703 external symbol. */
3704 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3705 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
3706 if (sym_hash == NULL)
3707 goto error_free_sym;
3708 elf_sym_hashes (abfd) = sym_hash;
3709 }
3710 }
3711
3712 if (dynamic)
3713 {
3714 /* Read in any version definitions. */
3715 if (!_bfd_elf_slurp_version_tables (abfd,
3716 info->default_imported_symver))
3717 goto error_free_sym;
3718
3719 /* Read in the symbol versions, but don't bother to convert them
3720 to internal format. */
3721 if (elf_dynversym (abfd) != 0)
3722 {
3723 Elf_Internal_Shdr *versymhdr;
3724
3725 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3726 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3727 if (extversym == NULL)
3728 goto error_free_sym;
3729 amt = versymhdr->sh_size;
3730 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3731 || bfd_bread (extversym, amt, abfd) != amt)
3732 goto error_free_vers;
3733 }
3734 }
3735
3736 /* If we are loading an as-needed shared lib, save the symbol table
3737 state before we start adding symbols. If the lib turns out
3738 to be unneeded, restore the state. */
3739 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3740 {
3741 unsigned int i;
3742 size_t entsize;
3743
3744 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3745 {
3746 struct bfd_hash_entry *p;
3747 struct elf_link_hash_entry *h;
3748
3749 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3750 {
3751 h = (struct elf_link_hash_entry *) p;
3752 entsize += htab->root.table.entsize;
3753 if (h->root.type == bfd_link_hash_warning)
3754 entsize += htab->root.table.entsize;
3755 }
3756 }
3757
3758 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3759 old_tab = bfd_malloc (tabsize + entsize);
3760 if (old_tab == NULL)
3761 goto error_free_vers;
3762
3763 /* Remember the current objalloc pointer, so that all mem for
3764 symbols added can later be reclaimed. */
3765 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3766 if (alloc_mark == NULL)
3767 goto error_free_vers;
3768
3769 /* Make a special call to the linker "notice" function to
3770 tell it that we are about to handle an as-needed lib. */
3771 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
3772 goto error_free_vers;
3773
3774 /* Clone the symbol table. Remember some pointers into the
3775 symbol table, and dynamic symbol count. */
3776 old_ent = (char *) old_tab + tabsize;
3777 memcpy (old_tab, htab->root.table.table, tabsize);
3778 old_undefs = htab->root.undefs;
3779 old_undefs_tail = htab->root.undefs_tail;
3780 old_table = htab->root.table.table;
3781 old_size = htab->root.table.size;
3782 old_count = htab->root.table.count;
3783 old_dynsymcount = htab->dynsymcount;
3784 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3785
3786 for (i = 0; i < htab->root.table.size; i++)
3787 {
3788 struct bfd_hash_entry *p;
3789 struct elf_link_hash_entry *h;
3790
3791 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3792 {
3793 memcpy (old_ent, p, htab->root.table.entsize);
3794 old_ent = (char *) old_ent + htab->root.table.entsize;
3795 h = (struct elf_link_hash_entry *) p;
3796 if (h->root.type == bfd_link_hash_warning)
3797 {
3798 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3799 old_ent = (char *) old_ent + htab->root.table.entsize;
3800 }
3801 }
3802 }
3803 }
3804
3805 weaks = NULL;
3806 ever = extversym != NULL ? extversym + extsymoff : NULL;
3807 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3808 isym < isymend;
3809 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3810 {
3811 int bind;
3812 bfd_vma value;
3813 asection *sec, *new_sec;
3814 flagword flags;
3815 const char *name;
3816 struct elf_link_hash_entry *h;
3817 struct elf_link_hash_entry *hi;
3818 bfd_boolean definition;
3819 bfd_boolean size_change_ok;
3820 bfd_boolean type_change_ok;
3821 bfd_boolean new_weakdef;
3822 bfd_boolean new_weak;
3823 bfd_boolean old_weak;
3824 bfd_boolean override;
3825 bfd_boolean common;
3826 unsigned int old_alignment;
3827 bfd *old_bfd;
3828
3829 override = FALSE;
3830
3831 flags = BSF_NO_FLAGS;
3832 sec = NULL;
3833 value = isym->st_value;
3834 common = bed->common_definition (isym);
3835
3836 bind = ELF_ST_BIND (isym->st_info);
3837 switch (bind)
3838 {
3839 case STB_LOCAL:
3840 /* This should be impossible, since ELF requires that all
3841 global symbols follow all local symbols, and that sh_info
3842 point to the first global symbol. Unfortunately, Irix 5
3843 screws this up. */
3844 continue;
3845
3846 case STB_GLOBAL:
3847 if (isym->st_shndx != SHN_UNDEF && !common)
3848 flags = BSF_GLOBAL;
3849 break;
3850
3851 case STB_WEAK:
3852 flags = BSF_WEAK;
3853 break;
3854
3855 case STB_GNU_UNIQUE:
3856 flags = BSF_GNU_UNIQUE;
3857 break;
3858
3859 default:
3860 /* Leave it up to the processor backend. */
3861 break;
3862 }
3863
3864 if (isym->st_shndx == SHN_UNDEF)
3865 sec = bfd_und_section_ptr;
3866 else if (isym->st_shndx == SHN_ABS)
3867 sec = bfd_abs_section_ptr;
3868 else if (isym->st_shndx == SHN_COMMON)
3869 {
3870 sec = bfd_com_section_ptr;
3871 /* What ELF calls the size we call the value. What ELF
3872 calls the value we call the alignment. */
3873 value = isym->st_size;
3874 }
3875 else
3876 {
3877 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3878 if (sec == NULL)
3879 sec = bfd_abs_section_ptr;
3880 else if (discarded_section (sec))
3881 {
3882 /* Symbols from discarded section are undefined. We keep
3883 its visibility. */
3884 sec = bfd_und_section_ptr;
3885 isym->st_shndx = SHN_UNDEF;
3886 }
3887 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3888 value -= sec->vma;
3889 }
3890
3891 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3892 isym->st_name);
3893 if (name == NULL)
3894 goto error_free_vers;
3895
3896 if (isym->st_shndx == SHN_COMMON
3897 && (abfd->flags & BFD_PLUGIN) != 0)
3898 {
3899 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3900
3901 if (xc == NULL)
3902 {
3903 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3904 | SEC_EXCLUDE);
3905 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3906 if (xc == NULL)
3907 goto error_free_vers;
3908 }
3909 sec = xc;
3910 }
3911 else if (isym->st_shndx == SHN_COMMON
3912 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3913 && !info->relocatable)
3914 {
3915 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3916
3917 if (tcomm == NULL)
3918 {
3919 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3920 | SEC_LINKER_CREATED);
3921 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3922 if (tcomm == NULL)
3923 goto error_free_vers;
3924 }
3925 sec = tcomm;
3926 }
3927 else if (bed->elf_add_symbol_hook)
3928 {
3929 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3930 &sec, &value))
3931 goto error_free_vers;
3932
3933 /* The hook function sets the name to NULL if this symbol
3934 should be skipped for some reason. */
3935 if (name == NULL)
3936 continue;
3937 }
3938
3939 /* Sanity check that all possibilities were handled. */
3940 if (sec == NULL)
3941 {
3942 bfd_set_error (bfd_error_bad_value);
3943 goto error_free_vers;
3944 }
3945
3946 /* Silently discard TLS symbols from --just-syms. There's
3947 no way to combine a static TLS block with a new TLS block
3948 for this executable. */
3949 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
3950 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3951 continue;
3952
3953 if (bfd_is_und_section (sec)
3954 || bfd_is_com_section (sec))
3955 definition = FALSE;
3956 else
3957 definition = TRUE;
3958
3959 size_change_ok = FALSE;
3960 type_change_ok = bed->type_change_ok;
3961 old_weak = FALSE;
3962 old_alignment = 0;
3963 old_bfd = NULL;
3964 new_sec = sec;
3965
3966 if (is_elf_hash_table (htab))
3967 {
3968 Elf_Internal_Versym iver;
3969 unsigned int vernum = 0;
3970 bfd_boolean skip;
3971
3972 if (ever == NULL)
3973 {
3974 if (info->default_imported_symver)
3975 /* Use the default symbol version created earlier. */
3976 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3977 else
3978 iver.vs_vers = 0;
3979 }
3980 else
3981 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3982
3983 vernum = iver.vs_vers & VERSYM_VERSION;
3984
3985 /* If this is a hidden symbol, or if it is not version
3986 1, we append the version name to the symbol name.
3987 However, we do not modify a non-hidden absolute symbol
3988 if it is not a function, because it might be the version
3989 symbol itself. FIXME: What if it isn't? */
3990 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3991 || (vernum > 1
3992 && (!bfd_is_abs_section (sec)
3993 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
3994 {
3995 const char *verstr;
3996 size_t namelen, verlen, newlen;
3997 char *newname, *p;
3998
3999 if (isym->st_shndx != SHN_UNDEF)
4000 {
4001 if (vernum > elf_tdata (abfd)->cverdefs)
4002 verstr = NULL;
4003 else if (vernum > 1)
4004 verstr =
4005 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4006 else
4007 verstr = "";
4008
4009 if (verstr == NULL)
4010 {
4011 (*_bfd_error_handler)
4012 (_("%B: %s: invalid version %u (max %d)"),
4013 abfd, name, vernum,
4014 elf_tdata (abfd)->cverdefs);
4015 bfd_set_error (bfd_error_bad_value);
4016 goto error_free_vers;
4017 }
4018 }
4019 else
4020 {
4021 /* We cannot simply test for the number of
4022 entries in the VERNEED section since the
4023 numbers for the needed versions do not start
4024 at 0. */
4025 Elf_Internal_Verneed *t;
4026
4027 verstr = NULL;
4028 for (t = elf_tdata (abfd)->verref;
4029 t != NULL;
4030 t = t->vn_nextref)
4031 {
4032 Elf_Internal_Vernaux *a;
4033
4034 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4035 {
4036 if (a->vna_other == vernum)
4037 {
4038 verstr = a->vna_nodename;
4039 break;
4040 }
4041 }
4042 if (a != NULL)
4043 break;
4044 }
4045 if (verstr == NULL)
4046 {
4047 (*_bfd_error_handler)
4048 (_("%B: %s: invalid needed version %d"),
4049 abfd, name, vernum);
4050 bfd_set_error (bfd_error_bad_value);
4051 goto error_free_vers;
4052 }
4053 }
4054
4055 namelen = strlen (name);
4056 verlen = strlen (verstr);
4057 newlen = namelen + verlen + 2;
4058 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4059 && isym->st_shndx != SHN_UNDEF)
4060 ++newlen;
4061
4062 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4063 if (newname == NULL)
4064 goto error_free_vers;
4065 memcpy (newname, name, namelen);
4066 p = newname + namelen;
4067 *p++ = ELF_VER_CHR;
4068 /* If this is a defined non-hidden version symbol,
4069 we add another @ to the name. This indicates the
4070 default version of the symbol. */
4071 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4072 && isym->st_shndx != SHN_UNDEF)
4073 *p++ = ELF_VER_CHR;
4074 memcpy (p, verstr, verlen + 1);
4075
4076 name = newname;
4077 }
4078
4079 /* If this symbol has default visibility and the user has
4080 requested we not re-export it, then mark it as hidden. */
4081 if (definition
4082 && !dynamic
4083 && (abfd->no_export
4084 || (abfd->my_archive && abfd->my_archive->no_export))
4085 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4086 isym->st_other = (STV_HIDDEN
4087 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4088
4089 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4090 sym_hash, &old_bfd, &old_weak,
4091 &old_alignment, &skip, &override,
4092 &type_change_ok, &size_change_ok))
4093 goto error_free_vers;
4094
4095 if (skip)
4096 continue;
4097
4098 if (override)
4099 definition = FALSE;
4100
4101 h = *sym_hash;
4102 while (h->root.type == bfd_link_hash_indirect
4103 || h->root.type == bfd_link_hash_warning)
4104 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4105
4106 if (elf_tdata (abfd)->verdef != NULL
4107 && vernum > 1
4108 && definition)
4109 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4110 }
4111
4112 if (! (_bfd_generic_link_add_one_symbol
4113 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4114 (struct bfd_link_hash_entry **) sym_hash)))
4115 goto error_free_vers;
4116
4117 h = *sym_hash;
4118 /* We need to make sure that indirect symbol dynamic flags are
4119 updated. */
4120 hi = h;
4121 while (h->root.type == bfd_link_hash_indirect
4122 || h->root.type == bfd_link_hash_warning)
4123 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4124
4125 *sym_hash = h;
4126
4127 new_weak = (flags & BSF_WEAK) != 0;
4128 new_weakdef = FALSE;
4129 if (dynamic
4130 && definition
4131 && new_weak
4132 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4133 && is_elf_hash_table (htab)
4134 && h->u.weakdef == NULL)
4135 {
4136 /* Keep a list of all weak defined non function symbols from
4137 a dynamic object, using the weakdef field. Later in this
4138 function we will set the weakdef field to the correct
4139 value. We only put non-function symbols from dynamic
4140 objects on this list, because that happens to be the only
4141 time we need to know the normal symbol corresponding to a
4142 weak symbol, and the information is time consuming to
4143 figure out. If the weakdef field is not already NULL,
4144 then this symbol was already defined by some previous
4145 dynamic object, and we will be using that previous
4146 definition anyhow. */
4147
4148 h->u.weakdef = weaks;
4149 weaks = h;
4150 new_weakdef = TRUE;
4151 }
4152
4153 /* Set the alignment of a common symbol. */
4154 if ((common || bfd_is_com_section (sec))
4155 && h->root.type == bfd_link_hash_common)
4156 {
4157 unsigned int align;
4158
4159 if (common)
4160 align = bfd_log2 (isym->st_value);
4161 else
4162 {
4163 /* The new symbol is a common symbol in a shared object.
4164 We need to get the alignment from the section. */
4165 align = new_sec->alignment_power;
4166 }
4167 if (align > old_alignment)
4168 h->root.u.c.p->alignment_power = align;
4169 else
4170 h->root.u.c.p->alignment_power = old_alignment;
4171 }
4172
4173 if (is_elf_hash_table (htab))
4174 {
4175 /* Set a flag in the hash table entry indicating the type of
4176 reference or definition we just found. A dynamic symbol
4177 is one which is referenced or defined by both a regular
4178 object and a shared object. */
4179 bfd_boolean dynsym = FALSE;
4180
4181 /* Plugin symbols aren't normal. Don't set def_regular or
4182 ref_regular for them, or make them dynamic. */
4183 if ((abfd->flags & BFD_PLUGIN) != 0)
4184 ;
4185 else if (! dynamic)
4186 {
4187 if (! definition)
4188 {
4189 h->ref_regular = 1;
4190 if (bind != STB_WEAK)
4191 h->ref_regular_nonweak = 1;
4192 }
4193 else
4194 {
4195 h->def_regular = 1;
4196 if (h->def_dynamic)
4197 {
4198 h->def_dynamic = 0;
4199 h->ref_dynamic = 1;
4200 }
4201 }
4202
4203 /* If the indirect symbol has been forced local, don't
4204 make the real symbol dynamic. */
4205 if ((h == hi || !hi->forced_local)
4206 && (! info->executable
4207 || h->def_dynamic
4208 || h->ref_dynamic))
4209 dynsym = TRUE;
4210 }
4211 else
4212 {
4213 if (! definition)
4214 {
4215 h->ref_dynamic = 1;
4216 hi->ref_dynamic = 1;
4217 }
4218 else
4219 {
4220 h->def_dynamic = 1;
4221 hi->def_dynamic = 1;
4222 }
4223
4224 /* If the indirect symbol has been forced local, don't
4225 make the real symbol dynamic. */
4226 if ((h == hi || !hi->forced_local)
4227 && (h->def_regular
4228 || h->ref_regular
4229 || (h->u.weakdef != NULL
4230 && ! new_weakdef
4231 && h->u.weakdef->dynindx != -1)))
4232 dynsym = TRUE;
4233 }
4234
4235 /* Check to see if we need to add an indirect symbol for
4236 the default name. */
4237 if (definition
4238 || (!override && h->root.type == bfd_link_hash_common))
4239 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4240 sec, value, &old_bfd, &dynsym))
4241 goto error_free_vers;
4242
4243 /* Check the alignment when a common symbol is involved. This
4244 can change when a common symbol is overridden by a normal
4245 definition or a common symbol is ignored due to the old
4246 normal definition. We need to make sure the maximum
4247 alignment is maintained. */
4248 if ((old_alignment || common)
4249 && h->root.type != bfd_link_hash_common)
4250 {
4251 unsigned int common_align;
4252 unsigned int normal_align;
4253 unsigned int symbol_align;
4254 bfd *normal_bfd;
4255 bfd *common_bfd;
4256
4257 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4258 || h->root.type == bfd_link_hash_defweak);
4259
4260 symbol_align = ffs (h->root.u.def.value) - 1;
4261 if (h->root.u.def.section->owner != NULL
4262 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4263 {
4264 normal_align = h->root.u.def.section->alignment_power;
4265 if (normal_align > symbol_align)
4266 normal_align = symbol_align;
4267 }
4268 else
4269 normal_align = symbol_align;
4270
4271 if (old_alignment)
4272 {
4273 common_align = old_alignment;
4274 common_bfd = old_bfd;
4275 normal_bfd = abfd;
4276 }
4277 else
4278 {
4279 common_align = bfd_log2 (isym->st_value);
4280 common_bfd = abfd;
4281 normal_bfd = old_bfd;
4282 }
4283
4284 if (normal_align < common_align)
4285 {
4286 /* PR binutils/2735 */
4287 if (normal_bfd == NULL)
4288 (*_bfd_error_handler)
4289 (_("Warning: alignment %u of common symbol `%s' in %B is"
4290 " greater than the alignment (%u) of its section %A"),
4291 common_bfd, h->root.u.def.section,
4292 1 << common_align, name, 1 << normal_align);
4293 else
4294 (*_bfd_error_handler)
4295 (_("Warning: alignment %u of symbol `%s' in %B"
4296 " is smaller than %u in %B"),
4297 normal_bfd, common_bfd,
4298 1 << normal_align, name, 1 << common_align);
4299 }
4300 }
4301
4302 /* Remember the symbol size if it isn't undefined. */
4303 if (isym->st_size != 0
4304 && isym->st_shndx != SHN_UNDEF
4305 && (definition || h->size == 0))
4306 {
4307 if (h->size != 0
4308 && h->size != isym->st_size
4309 && ! size_change_ok)
4310 (*_bfd_error_handler)
4311 (_("Warning: size of symbol `%s' changed"
4312 " from %lu in %B to %lu in %B"),
4313 old_bfd, abfd,
4314 name, (unsigned long) h->size,
4315 (unsigned long) isym->st_size);
4316
4317 h->size = isym->st_size;
4318 }
4319
4320 /* If this is a common symbol, then we always want H->SIZE
4321 to be the size of the common symbol. The code just above
4322 won't fix the size if a common symbol becomes larger. We
4323 don't warn about a size change here, because that is
4324 covered by --warn-common. Allow changes between different
4325 function types. */
4326 if (h->root.type == bfd_link_hash_common)
4327 h->size = h->root.u.c.size;
4328
4329 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4330 && ((definition && !new_weak)
4331 || (old_weak && h->root.type == bfd_link_hash_common)
4332 || h->type == STT_NOTYPE))
4333 {
4334 unsigned int type = ELF_ST_TYPE (isym->st_info);
4335
4336 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4337 symbol. */
4338 if (type == STT_GNU_IFUNC
4339 && (abfd->flags & DYNAMIC) != 0)
4340 type = STT_FUNC;
4341
4342 if (h->type != type)
4343 {
4344 if (h->type != STT_NOTYPE && ! type_change_ok)
4345 (*_bfd_error_handler)
4346 (_("Warning: type of symbol `%s' changed"
4347 " from %d to %d in %B"),
4348 abfd, name, h->type, type);
4349
4350 h->type = type;
4351 }
4352 }
4353
4354 /* Merge st_other field. */
4355 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4356
4357 /* We don't want to make debug symbol dynamic. */
4358 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4359 dynsym = FALSE;
4360
4361 /* Nor should we make plugin symbols dynamic. */
4362 if ((abfd->flags & BFD_PLUGIN) != 0)
4363 dynsym = FALSE;
4364
4365 if (definition)
4366 {
4367 h->target_internal = isym->st_target_internal;
4368 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4369 }
4370
4371 if (definition && !dynamic)
4372 {
4373 char *p = strchr (name, ELF_VER_CHR);
4374 if (p != NULL && p[1] != ELF_VER_CHR)
4375 {
4376 /* Queue non-default versions so that .symver x, x@FOO
4377 aliases can be checked. */
4378 if (!nondeflt_vers)
4379 {
4380 amt = ((isymend - isym + 1)
4381 * sizeof (struct elf_link_hash_entry *));
4382 nondeflt_vers =
4383 (struct elf_link_hash_entry **) bfd_malloc (amt);
4384 if (!nondeflt_vers)
4385 goto error_free_vers;
4386 }
4387 nondeflt_vers[nondeflt_vers_cnt++] = h;
4388 }
4389 }
4390
4391 if (dynsym && h->dynindx == -1)
4392 {
4393 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4394 goto error_free_vers;
4395 if (h->u.weakdef != NULL
4396 && ! new_weakdef
4397 && h->u.weakdef->dynindx == -1)
4398 {
4399 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4400 goto error_free_vers;
4401 }
4402 }
4403 else if (dynsym && h->dynindx != -1)
4404 /* If the symbol already has a dynamic index, but
4405 visibility says it should not be visible, turn it into
4406 a local symbol. */
4407 switch (ELF_ST_VISIBILITY (h->other))
4408 {
4409 case STV_INTERNAL:
4410 case STV_HIDDEN:
4411 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4412 dynsym = FALSE;
4413 break;
4414 }
4415
4416 /* Don't add DT_NEEDED for references from the dummy bfd. */
4417 if (!add_needed
4418 && definition
4419 && ((dynsym
4420 && h->ref_regular_nonweak
4421 && (old_bfd == NULL
4422 || (old_bfd->flags & BFD_PLUGIN) == 0))
4423 || (h->ref_dynamic_nonweak
4424 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4425 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4426 {
4427 int ret;
4428 const char *soname = elf_dt_name (abfd);
4429
4430 info->callbacks->minfo ("%!", soname, old_bfd,
4431 h->root.root.string);
4432
4433 /* A symbol from a library loaded via DT_NEEDED of some
4434 other library is referenced by a regular object.
4435 Add a DT_NEEDED entry for it. Issue an error if
4436 --no-add-needed is used and the reference was not
4437 a weak one. */
4438 if (old_bfd != NULL
4439 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4440 {
4441 (*_bfd_error_handler)
4442 (_("%B: undefined reference to symbol '%s'"),
4443 old_bfd, name);
4444 bfd_set_error (bfd_error_missing_dso);
4445 goto error_free_vers;
4446 }
4447
4448 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4449 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4450
4451 add_needed = TRUE;
4452 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4453 if (ret < 0)
4454 goto error_free_vers;
4455
4456 BFD_ASSERT (ret == 0);
4457 }
4458 }
4459 }
4460
4461 if (extversym != NULL)
4462 {
4463 free (extversym);
4464 extversym = NULL;
4465 }
4466
4467 if (isymbuf != NULL)
4468 {
4469 free (isymbuf);
4470 isymbuf = NULL;
4471 }
4472
4473 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4474 {
4475 unsigned int i;
4476
4477 /* Restore the symbol table. */
4478 old_ent = (char *) old_tab + tabsize;
4479 memset (elf_sym_hashes (abfd), 0,
4480 extsymcount * sizeof (struct elf_link_hash_entry *));
4481 htab->root.table.table = old_table;
4482 htab->root.table.size = old_size;
4483 htab->root.table.count = old_count;
4484 memcpy (htab->root.table.table, old_tab, tabsize);
4485 htab->root.undefs = old_undefs;
4486 htab->root.undefs_tail = old_undefs_tail;
4487 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4488 for (i = 0; i < htab->root.table.size; i++)
4489 {
4490 struct bfd_hash_entry *p;
4491 struct elf_link_hash_entry *h;
4492 bfd_size_type size;
4493 unsigned int alignment_power;
4494
4495 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4496 {
4497 h = (struct elf_link_hash_entry *) p;
4498 if (h->root.type == bfd_link_hash_warning)
4499 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4500 if (h->dynindx >= old_dynsymcount
4501 && h->dynstr_index < old_dynstr_size)
4502 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4503
4504 /* Preserve the maximum alignment and size for common
4505 symbols even if this dynamic lib isn't on DT_NEEDED
4506 since it can still be loaded at run time by another
4507 dynamic lib. */
4508 if (h->root.type == bfd_link_hash_common)
4509 {
4510 size = h->root.u.c.size;
4511 alignment_power = h->root.u.c.p->alignment_power;
4512 }
4513 else
4514 {
4515 size = 0;
4516 alignment_power = 0;
4517 }
4518 memcpy (p, old_ent, htab->root.table.entsize);
4519 old_ent = (char *) old_ent + htab->root.table.entsize;
4520 h = (struct elf_link_hash_entry *) p;
4521 if (h->root.type == bfd_link_hash_warning)
4522 {
4523 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4524 old_ent = (char *) old_ent + htab->root.table.entsize;
4525 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4526 }
4527 if (h->root.type == bfd_link_hash_common)
4528 {
4529 if (size > h->root.u.c.size)
4530 h->root.u.c.size = size;
4531 if (alignment_power > h->root.u.c.p->alignment_power)
4532 h->root.u.c.p->alignment_power = alignment_power;
4533 }
4534 }
4535 }
4536
4537 /* Make a special call to the linker "notice" function to
4538 tell it that symbols added for crefs may need to be removed. */
4539 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4540 goto error_free_vers;
4541
4542 free (old_tab);
4543 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4544 alloc_mark);
4545 if (nondeflt_vers != NULL)
4546 free (nondeflt_vers);
4547 return TRUE;
4548 }
4549
4550 if (old_tab != NULL)
4551 {
4552 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4553 goto error_free_vers;
4554 free (old_tab);
4555 old_tab = NULL;
4556 }
4557
4558 /* Now that all the symbols from this input file are created, handle
4559 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4560 if (nondeflt_vers != NULL)
4561 {
4562 bfd_size_type cnt, symidx;
4563
4564 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4565 {
4566 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4567 char *shortname, *p;
4568
4569 p = strchr (h->root.root.string, ELF_VER_CHR);
4570 if (p == NULL
4571 || (h->root.type != bfd_link_hash_defined
4572 && h->root.type != bfd_link_hash_defweak))
4573 continue;
4574
4575 amt = p - h->root.root.string;
4576 shortname = (char *) bfd_malloc (amt + 1);
4577 if (!shortname)
4578 goto error_free_vers;
4579 memcpy (shortname, h->root.root.string, amt);
4580 shortname[amt] = '\0';
4581
4582 hi = (struct elf_link_hash_entry *)
4583 bfd_link_hash_lookup (&htab->root, shortname,
4584 FALSE, FALSE, FALSE);
4585 if (hi != NULL
4586 && hi->root.type == h->root.type
4587 && hi->root.u.def.value == h->root.u.def.value
4588 && hi->root.u.def.section == h->root.u.def.section)
4589 {
4590 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4591 hi->root.type = bfd_link_hash_indirect;
4592 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4593 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4594 sym_hash = elf_sym_hashes (abfd);
4595 if (sym_hash)
4596 for (symidx = 0; symidx < extsymcount; ++symidx)
4597 if (sym_hash[symidx] == hi)
4598 {
4599 sym_hash[symidx] = h;
4600 break;
4601 }
4602 }
4603 free (shortname);
4604 }
4605 free (nondeflt_vers);
4606 nondeflt_vers = NULL;
4607 }
4608
4609 /* Now set the weakdefs field correctly for all the weak defined
4610 symbols we found. The only way to do this is to search all the
4611 symbols. Since we only need the information for non functions in
4612 dynamic objects, that's the only time we actually put anything on
4613 the list WEAKS. We need this information so that if a regular
4614 object refers to a symbol defined weakly in a dynamic object, the
4615 real symbol in the dynamic object is also put in the dynamic
4616 symbols; we also must arrange for both symbols to point to the
4617 same memory location. We could handle the general case of symbol
4618 aliasing, but a general symbol alias can only be generated in
4619 assembler code, handling it correctly would be very time
4620 consuming, and other ELF linkers don't handle general aliasing
4621 either. */
4622 if (weaks != NULL)
4623 {
4624 struct elf_link_hash_entry **hpp;
4625 struct elf_link_hash_entry **hppend;
4626 struct elf_link_hash_entry **sorted_sym_hash;
4627 struct elf_link_hash_entry *h;
4628 size_t sym_count;
4629
4630 /* Since we have to search the whole symbol list for each weak
4631 defined symbol, search time for N weak defined symbols will be
4632 O(N^2). Binary search will cut it down to O(NlogN). */
4633 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4634 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4635 if (sorted_sym_hash == NULL)
4636 goto error_return;
4637 sym_hash = sorted_sym_hash;
4638 hpp = elf_sym_hashes (abfd);
4639 hppend = hpp + extsymcount;
4640 sym_count = 0;
4641 for (; hpp < hppend; hpp++)
4642 {
4643 h = *hpp;
4644 if (h != NULL
4645 && h->root.type == bfd_link_hash_defined
4646 && !bed->is_function_type (h->type))
4647 {
4648 *sym_hash = h;
4649 sym_hash++;
4650 sym_count++;
4651 }
4652 }
4653
4654 qsort (sorted_sym_hash, sym_count,
4655 sizeof (struct elf_link_hash_entry *),
4656 elf_sort_symbol);
4657
4658 while (weaks != NULL)
4659 {
4660 struct elf_link_hash_entry *hlook;
4661 asection *slook;
4662 bfd_vma vlook;
4663 size_t i, j, idx = 0;
4664
4665 hlook = weaks;
4666 weaks = hlook->u.weakdef;
4667 hlook->u.weakdef = NULL;
4668
4669 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4670 || hlook->root.type == bfd_link_hash_defweak
4671 || hlook->root.type == bfd_link_hash_common
4672 || hlook->root.type == bfd_link_hash_indirect);
4673 slook = hlook->root.u.def.section;
4674 vlook = hlook->root.u.def.value;
4675
4676 i = 0;
4677 j = sym_count;
4678 while (i != j)
4679 {
4680 bfd_signed_vma vdiff;
4681 idx = (i + j) / 2;
4682 h = sorted_sym_hash[idx];
4683 vdiff = vlook - h->root.u.def.value;
4684 if (vdiff < 0)
4685 j = idx;
4686 else if (vdiff > 0)
4687 i = idx + 1;
4688 else
4689 {
4690 long sdiff = slook->id - h->root.u.def.section->id;
4691 if (sdiff < 0)
4692 j = idx;
4693 else if (sdiff > 0)
4694 i = idx + 1;
4695 else
4696 break;
4697 }
4698 }
4699
4700 /* We didn't find a value/section match. */
4701 if (i == j)
4702 continue;
4703
4704 /* With multiple aliases, or when the weak symbol is already
4705 strongly defined, we have multiple matching symbols and
4706 the binary search above may land on any of them. Step
4707 one past the matching symbol(s). */
4708 while (++idx != j)
4709 {
4710 h = sorted_sym_hash[idx];
4711 if (h->root.u.def.section != slook
4712 || h->root.u.def.value != vlook)
4713 break;
4714 }
4715
4716 /* Now look back over the aliases. Since we sorted by size
4717 as well as value and section, we'll choose the one with
4718 the largest size. */
4719 while (idx-- != i)
4720 {
4721 h = sorted_sym_hash[idx];
4722
4723 /* Stop if value or section doesn't match. */
4724 if (h->root.u.def.section != slook
4725 || h->root.u.def.value != vlook)
4726 break;
4727 else if (h != hlook)
4728 {
4729 hlook->u.weakdef = h;
4730
4731 /* If the weak definition is in the list of dynamic
4732 symbols, make sure the real definition is put
4733 there as well. */
4734 if (hlook->dynindx != -1 && h->dynindx == -1)
4735 {
4736 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4737 {
4738 err_free_sym_hash:
4739 free (sorted_sym_hash);
4740 goto error_return;
4741 }
4742 }
4743
4744 /* If the real definition is in the list of dynamic
4745 symbols, make sure the weak definition is put
4746 there as well. If we don't do this, then the
4747 dynamic loader might not merge the entries for the
4748 real definition and the weak definition. */
4749 if (h->dynindx != -1 && hlook->dynindx == -1)
4750 {
4751 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4752 goto err_free_sym_hash;
4753 }
4754 break;
4755 }
4756 }
4757 }
4758
4759 free (sorted_sym_hash);
4760 }
4761
4762 if (bed->check_directives
4763 && !(*bed->check_directives) (abfd, info))
4764 return FALSE;
4765
4766 /* If this object is the same format as the output object, and it is
4767 not a shared library, then let the backend look through the
4768 relocs.
4769
4770 This is required to build global offset table entries and to
4771 arrange for dynamic relocs. It is not required for the
4772 particular common case of linking non PIC code, even when linking
4773 against shared libraries, but unfortunately there is no way of
4774 knowing whether an object file has been compiled PIC or not.
4775 Looking through the relocs is not particularly time consuming.
4776 The problem is that we must either (1) keep the relocs in memory,
4777 which causes the linker to require additional runtime memory or
4778 (2) read the relocs twice from the input file, which wastes time.
4779 This would be a good case for using mmap.
4780
4781 I have no idea how to handle linking PIC code into a file of a
4782 different format. It probably can't be done. */
4783 if (! dynamic
4784 && is_elf_hash_table (htab)
4785 && bed->check_relocs != NULL
4786 && elf_object_id (abfd) == elf_hash_table_id (htab)
4787 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4788 {
4789 asection *o;
4790
4791 for (o = abfd->sections; o != NULL; o = o->next)
4792 {
4793 Elf_Internal_Rela *internal_relocs;
4794 bfd_boolean ok;
4795
4796 if ((o->flags & SEC_RELOC) == 0
4797 || o->reloc_count == 0
4798 || ((info->strip == strip_all || info->strip == strip_debugger)
4799 && (o->flags & SEC_DEBUGGING) != 0)
4800 || bfd_is_abs_section (o->output_section))
4801 continue;
4802
4803 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4804 info->keep_memory);
4805 if (internal_relocs == NULL)
4806 goto error_return;
4807
4808 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4809
4810 if (elf_section_data (o)->relocs != internal_relocs)
4811 free (internal_relocs);
4812
4813 if (! ok)
4814 goto error_return;
4815 }
4816 }
4817
4818 /* If this is a non-traditional link, try to optimize the handling
4819 of the .stab/.stabstr sections. */
4820 if (! dynamic
4821 && ! info->traditional_format
4822 && is_elf_hash_table (htab)
4823 && (info->strip != strip_all && info->strip != strip_debugger))
4824 {
4825 asection *stabstr;
4826
4827 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4828 if (stabstr != NULL)
4829 {
4830 bfd_size_type string_offset = 0;
4831 asection *stab;
4832
4833 for (stab = abfd->sections; stab; stab = stab->next)
4834 if (CONST_STRNEQ (stab->name, ".stab")
4835 && (!stab->name[5] ||
4836 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4837 && (stab->flags & SEC_MERGE) == 0
4838 && !bfd_is_abs_section (stab->output_section))
4839 {
4840 struct bfd_elf_section_data *secdata;
4841
4842 secdata = elf_section_data (stab);
4843 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4844 stabstr, &secdata->sec_info,
4845 &string_offset))
4846 goto error_return;
4847 if (secdata->sec_info)
4848 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4849 }
4850 }
4851 }
4852
4853 if (is_elf_hash_table (htab) && add_needed)
4854 {
4855 /* Add this bfd to the loaded list. */
4856 struct elf_link_loaded_list *n;
4857
4858 n = (struct elf_link_loaded_list *)
4859 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4860 if (n == NULL)
4861 goto error_return;
4862 n->abfd = abfd;
4863 n->next = htab->loaded;
4864 htab->loaded = n;
4865 }
4866
4867 return TRUE;
4868
4869 error_free_vers:
4870 if (old_tab != NULL)
4871 free (old_tab);
4872 if (nondeflt_vers != NULL)
4873 free (nondeflt_vers);
4874 if (extversym != NULL)
4875 free (extversym);
4876 error_free_sym:
4877 if (isymbuf != NULL)
4878 free (isymbuf);
4879 error_return:
4880 return FALSE;
4881 }
4882
4883 /* Return the linker hash table entry of a symbol that might be
4884 satisfied by an archive symbol. Return -1 on error. */
4885
4886 struct elf_link_hash_entry *
4887 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4888 struct bfd_link_info *info,
4889 const char *name)
4890 {
4891 struct elf_link_hash_entry *h;
4892 char *p, *copy;
4893 size_t len, first;
4894
4895 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4896 if (h != NULL)
4897 return h;
4898
4899 /* If this is a default version (the name contains @@), look up the
4900 symbol again with only one `@' as well as without the version.
4901 The effect is that references to the symbol with and without the
4902 version will be matched by the default symbol in the archive. */
4903
4904 p = strchr (name, ELF_VER_CHR);
4905 if (p == NULL || p[1] != ELF_VER_CHR)
4906 return h;
4907
4908 /* First check with only one `@'. */
4909 len = strlen (name);
4910 copy = (char *) bfd_alloc (abfd, len);
4911 if (copy == NULL)
4912 return (struct elf_link_hash_entry *) 0 - 1;
4913
4914 first = p - name + 1;
4915 memcpy (copy, name, first);
4916 memcpy (copy + first, name + first + 1, len - first);
4917
4918 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4919 if (h == NULL)
4920 {
4921 /* We also need to check references to the symbol without the
4922 version. */
4923 copy[first - 1] = '\0';
4924 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4925 FALSE, FALSE, TRUE);
4926 }
4927
4928 bfd_release (abfd, copy);
4929 return h;
4930 }
4931
4932 /* Add symbols from an ELF archive file to the linker hash table. We
4933 don't use _bfd_generic_link_add_archive_symbols because we need to
4934 handle versioned symbols.
4935
4936 Fortunately, ELF archive handling is simpler than that done by
4937 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4938 oddities. In ELF, if we find a symbol in the archive map, and the
4939 symbol is currently undefined, we know that we must pull in that
4940 object file.
4941
4942 Unfortunately, we do have to make multiple passes over the symbol
4943 table until nothing further is resolved. */
4944
4945 static bfd_boolean
4946 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4947 {
4948 symindex c;
4949 unsigned char *included = NULL;
4950 carsym *symdefs;
4951 bfd_boolean loop;
4952 bfd_size_type amt;
4953 const struct elf_backend_data *bed;
4954 struct elf_link_hash_entry * (*archive_symbol_lookup)
4955 (bfd *, struct bfd_link_info *, const char *);
4956
4957 if (! bfd_has_map (abfd))
4958 {
4959 /* An empty archive is a special case. */
4960 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4961 return TRUE;
4962 bfd_set_error (bfd_error_no_armap);
4963 return FALSE;
4964 }
4965
4966 /* Keep track of all symbols we know to be already defined, and all
4967 files we know to be already included. This is to speed up the
4968 second and subsequent passes. */
4969 c = bfd_ardata (abfd)->symdef_count;
4970 if (c == 0)
4971 return TRUE;
4972 amt = c;
4973 amt *= sizeof (*included);
4974 included = (unsigned char *) bfd_zmalloc (amt);
4975 if (included == NULL)
4976 return FALSE;
4977
4978 symdefs = bfd_ardata (abfd)->symdefs;
4979 bed = get_elf_backend_data (abfd);
4980 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4981
4982 do
4983 {
4984 file_ptr last;
4985 symindex i;
4986 carsym *symdef;
4987 carsym *symdefend;
4988
4989 loop = FALSE;
4990 last = -1;
4991
4992 symdef = symdefs;
4993 symdefend = symdef + c;
4994 for (i = 0; symdef < symdefend; symdef++, i++)
4995 {
4996 struct elf_link_hash_entry *h;
4997 bfd *element;
4998 struct bfd_link_hash_entry *undefs_tail;
4999 symindex mark;
5000
5001 if (included[i])
5002 continue;
5003 if (symdef->file_offset == last)
5004 {
5005 included[i] = TRUE;
5006 continue;
5007 }
5008
5009 h = archive_symbol_lookup (abfd, info, symdef->name);
5010 if (h == (struct elf_link_hash_entry *) 0 - 1)
5011 goto error_return;
5012
5013 if (h == NULL)
5014 continue;
5015
5016 if (h->root.type == bfd_link_hash_common)
5017 {
5018 /* We currently have a common symbol. The archive map contains
5019 a reference to this symbol, so we may want to include it. We
5020 only want to include it however, if this archive element
5021 contains a definition of the symbol, not just another common
5022 declaration of it.
5023
5024 Unfortunately some archivers (including GNU ar) will put
5025 declarations of common symbols into their archive maps, as
5026 well as real definitions, so we cannot just go by the archive
5027 map alone. Instead we must read in the element's symbol
5028 table and check that to see what kind of symbol definition
5029 this is. */
5030 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5031 continue;
5032 }
5033 else if (h->root.type != bfd_link_hash_undefined)
5034 {
5035 if (h->root.type != bfd_link_hash_undefweak)
5036 /* Symbol must be defined. Don't check it again. */
5037 included[i] = TRUE;
5038 continue;
5039 }
5040
5041 /* We need to include this archive member. */
5042 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5043 if (element == NULL)
5044 goto error_return;
5045
5046 if (! bfd_check_format (element, bfd_object))
5047 goto error_return;
5048
5049 undefs_tail = info->hash->undefs_tail;
5050
5051 if (!(*info->callbacks
5052 ->add_archive_element) (info, element, symdef->name, &element))
5053 goto error_return;
5054 if (!bfd_link_add_symbols (element, info))
5055 goto error_return;
5056
5057 /* If there are any new undefined symbols, we need to make
5058 another pass through the archive in order to see whether
5059 they can be defined. FIXME: This isn't perfect, because
5060 common symbols wind up on undefs_tail and because an
5061 undefined symbol which is defined later on in this pass
5062 does not require another pass. This isn't a bug, but it
5063 does make the code less efficient than it could be. */
5064 if (undefs_tail != info->hash->undefs_tail)
5065 loop = TRUE;
5066
5067 /* Look backward to mark all symbols from this object file
5068 which we have already seen in this pass. */
5069 mark = i;
5070 do
5071 {
5072 included[mark] = TRUE;
5073 if (mark == 0)
5074 break;
5075 --mark;
5076 }
5077 while (symdefs[mark].file_offset == symdef->file_offset);
5078
5079 /* We mark subsequent symbols from this object file as we go
5080 on through the loop. */
5081 last = symdef->file_offset;
5082 }
5083 }
5084 while (loop);
5085
5086 free (included);
5087
5088 return TRUE;
5089
5090 error_return:
5091 if (included != NULL)
5092 free (included);
5093 return FALSE;
5094 }
5095
5096 /* Given an ELF BFD, add symbols to the global hash table as
5097 appropriate. */
5098
5099 bfd_boolean
5100 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5101 {
5102 switch (bfd_get_format (abfd))
5103 {
5104 case bfd_object:
5105 return elf_link_add_object_symbols (abfd, info);
5106 case bfd_archive:
5107 return elf_link_add_archive_symbols (abfd, info);
5108 default:
5109 bfd_set_error (bfd_error_wrong_format);
5110 return FALSE;
5111 }
5112 }
5113 \f
5114 struct hash_codes_info
5115 {
5116 unsigned long *hashcodes;
5117 bfd_boolean error;
5118 };
5119
5120 /* This function will be called though elf_link_hash_traverse to store
5121 all hash value of the exported symbols in an array. */
5122
5123 static bfd_boolean
5124 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5125 {
5126 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5127 const char *name;
5128 char *p;
5129 unsigned long ha;
5130 char *alc = NULL;
5131
5132 /* Ignore indirect symbols. These are added by the versioning code. */
5133 if (h->dynindx == -1)
5134 return TRUE;
5135
5136 name = h->root.root.string;
5137 p = strchr (name, ELF_VER_CHR);
5138 if (p != NULL)
5139 {
5140 alc = (char *) bfd_malloc (p - name + 1);
5141 if (alc == NULL)
5142 {
5143 inf->error = TRUE;
5144 return FALSE;
5145 }
5146 memcpy (alc, name, p - name);
5147 alc[p - name] = '\0';
5148 name = alc;
5149 }
5150
5151 /* Compute the hash value. */
5152 ha = bfd_elf_hash (name);
5153
5154 /* Store the found hash value in the array given as the argument. */
5155 *(inf->hashcodes)++ = ha;
5156
5157 /* And store it in the struct so that we can put it in the hash table
5158 later. */
5159 h->u.elf_hash_value = ha;
5160
5161 if (alc != NULL)
5162 free (alc);
5163
5164 return TRUE;
5165 }
5166
5167 struct collect_gnu_hash_codes
5168 {
5169 bfd *output_bfd;
5170 const struct elf_backend_data *bed;
5171 unsigned long int nsyms;
5172 unsigned long int maskbits;
5173 unsigned long int *hashcodes;
5174 unsigned long int *hashval;
5175 unsigned long int *indx;
5176 unsigned long int *counts;
5177 bfd_vma *bitmask;
5178 bfd_byte *contents;
5179 long int min_dynindx;
5180 unsigned long int bucketcount;
5181 unsigned long int symindx;
5182 long int local_indx;
5183 long int shift1, shift2;
5184 unsigned long int mask;
5185 bfd_boolean error;
5186 };
5187
5188 /* This function will be called though elf_link_hash_traverse to store
5189 all hash value of the exported symbols in an array. */
5190
5191 static bfd_boolean
5192 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5193 {
5194 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5195 const char *name;
5196 char *p;
5197 unsigned long ha;
5198 char *alc = NULL;
5199
5200 /* Ignore indirect symbols. These are added by the versioning code. */
5201 if (h->dynindx == -1)
5202 return TRUE;
5203
5204 /* Ignore also local symbols and undefined symbols. */
5205 if (! (*s->bed->elf_hash_symbol) (h))
5206 return TRUE;
5207
5208 name = h->root.root.string;
5209 p = strchr (name, ELF_VER_CHR);
5210 if (p != NULL)
5211 {
5212 alc = (char *) bfd_malloc (p - name + 1);
5213 if (alc == NULL)
5214 {
5215 s->error = TRUE;
5216 return FALSE;
5217 }
5218 memcpy (alc, name, p - name);
5219 alc[p - name] = '\0';
5220 name = alc;
5221 }
5222
5223 /* Compute the hash value. */
5224 ha = bfd_elf_gnu_hash (name);
5225
5226 /* Store the found hash value in the array for compute_bucket_count,
5227 and also for .dynsym reordering purposes. */
5228 s->hashcodes[s->nsyms] = ha;
5229 s->hashval[h->dynindx] = ha;
5230 ++s->nsyms;
5231 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5232 s->min_dynindx = h->dynindx;
5233
5234 if (alc != NULL)
5235 free (alc);
5236
5237 return TRUE;
5238 }
5239
5240 /* This function will be called though elf_link_hash_traverse to do
5241 final dynaminc symbol renumbering. */
5242
5243 static bfd_boolean
5244 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5245 {
5246 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5247 unsigned long int bucket;
5248 unsigned long int val;
5249
5250 /* Ignore indirect symbols. */
5251 if (h->dynindx == -1)
5252 return TRUE;
5253
5254 /* Ignore also local symbols and undefined symbols. */
5255 if (! (*s->bed->elf_hash_symbol) (h))
5256 {
5257 if (h->dynindx >= s->min_dynindx)
5258 h->dynindx = s->local_indx++;
5259 return TRUE;
5260 }
5261
5262 bucket = s->hashval[h->dynindx] % s->bucketcount;
5263 val = (s->hashval[h->dynindx] >> s->shift1)
5264 & ((s->maskbits >> s->shift1) - 1);
5265 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5266 s->bitmask[val]
5267 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5268 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5269 if (s->counts[bucket] == 1)
5270 /* Last element terminates the chain. */
5271 val |= 1;
5272 bfd_put_32 (s->output_bfd, val,
5273 s->contents + (s->indx[bucket] - s->symindx) * 4);
5274 --s->counts[bucket];
5275 h->dynindx = s->indx[bucket]++;
5276 return TRUE;
5277 }
5278
5279 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5280
5281 bfd_boolean
5282 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5283 {
5284 return !(h->forced_local
5285 || h->root.type == bfd_link_hash_undefined
5286 || h->root.type == bfd_link_hash_undefweak
5287 || ((h->root.type == bfd_link_hash_defined
5288 || h->root.type == bfd_link_hash_defweak)
5289 && h->root.u.def.section->output_section == NULL));
5290 }
5291
5292 /* Array used to determine the number of hash table buckets to use
5293 based on the number of symbols there are. If there are fewer than
5294 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5295 fewer than 37 we use 17 buckets, and so forth. We never use more
5296 than 32771 buckets. */
5297
5298 static const size_t elf_buckets[] =
5299 {
5300 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5301 16411, 32771, 0
5302 };
5303
5304 /* Compute bucket count for hashing table. We do not use a static set
5305 of possible tables sizes anymore. Instead we determine for all
5306 possible reasonable sizes of the table the outcome (i.e., the
5307 number of collisions etc) and choose the best solution. The
5308 weighting functions are not too simple to allow the table to grow
5309 without bounds. Instead one of the weighting factors is the size.
5310 Therefore the result is always a good payoff between few collisions
5311 (= short chain lengths) and table size. */
5312 static size_t
5313 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5314 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5315 unsigned long int nsyms,
5316 int gnu_hash)
5317 {
5318 size_t best_size = 0;
5319 unsigned long int i;
5320
5321 /* We have a problem here. The following code to optimize the table
5322 size requires an integer type with more the 32 bits. If
5323 BFD_HOST_U_64_BIT is set we know about such a type. */
5324 #ifdef BFD_HOST_U_64_BIT
5325 if (info->optimize)
5326 {
5327 size_t minsize;
5328 size_t maxsize;
5329 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5330 bfd *dynobj = elf_hash_table (info)->dynobj;
5331 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5332 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5333 unsigned long int *counts;
5334 bfd_size_type amt;
5335 unsigned int no_improvement_count = 0;
5336
5337 /* Possible optimization parameters: if we have NSYMS symbols we say
5338 that the hashing table must at least have NSYMS/4 and at most
5339 2*NSYMS buckets. */
5340 minsize = nsyms / 4;
5341 if (minsize == 0)
5342 minsize = 1;
5343 best_size = maxsize = nsyms * 2;
5344 if (gnu_hash)
5345 {
5346 if (minsize < 2)
5347 minsize = 2;
5348 if ((best_size & 31) == 0)
5349 ++best_size;
5350 }
5351
5352 /* Create array where we count the collisions in. We must use bfd_malloc
5353 since the size could be large. */
5354 amt = maxsize;
5355 amt *= sizeof (unsigned long int);
5356 counts = (unsigned long int *) bfd_malloc (amt);
5357 if (counts == NULL)
5358 return 0;
5359
5360 /* Compute the "optimal" size for the hash table. The criteria is a
5361 minimal chain length. The minor criteria is (of course) the size
5362 of the table. */
5363 for (i = minsize; i < maxsize; ++i)
5364 {
5365 /* Walk through the array of hashcodes and count the collisions. */
5366 BFD_HOST_U_64_BIT max;
5367 unsigned long int j;
5368 unsigned long int fact;
5369
5370 if (gnu_hash && (i & 31) == 0)
5371 continue;
5372
5373 memset (counts, '\0', i * sizeof (unsigned long int));
5374
5375 /* Determine how often each hash bucket is used. */
5376 for (j = 0; j < nsyms; ++j)
5377 ++counts[hashcodes[j] % i];
5378
5379 /* For the weight function we need some information about the
5380 pagesize on the target. This is information need not be 100%
5381 accurate. Since this information is not available (so far) we
5382 define it here to a reasonable default value. If it is crucial
5383 to have a better value some day simply define this value. */
5384 # ifndef BFD_TARGET_PAGESIZE
5385 # define BFD_TARGET_PAGESIZE (4096)
5386 # endif
5387
5388 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5389 and the chains. */
5390 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5391
5392 # if 1
5393 /* Variant 1: optimize for short chains. We add the squares
5394 of all the chain lengths (which favors many small chain
5395 over a few long chains). */
5396 for (j = 0; j < i; ++j)
5397 max += counts[j] * counts[j];
5398
5399 /* This adds penalties for the overall size of the table. */
5400 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5401 max *= fact * fact;
5402 # else
5403 /* Variant 2: Optimize a lot more for small table. Here we
5404 also add squares of the size but we also add penalties for
5405 empty slots (the +1 term). */
5406 for (j = 0; j < i; ++j)
5407 max += (1 + counts[j]) * (1 + counts[j]);
5408
5409 /* The overall size of the table is considered, but not as
5410 strong as in variant 1, where it is squared. */
5411 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5412 max *= fact;
5413 # endif
5414
5415 /* Compare with current best results. */
5416 if (max < best_chlen)
5417 {
5418 best_chlen = max;
5419 best_size = i;
5420 no_improvement_count = 0;
5421 }
5422 /* PR 11843: Avoid futile long searches for the best bucket size
5423 when there are a large number of symbols. */
5424 else if (++no_improvement_count == 100)
5425 break;
5426 }
5427
5428 free (counts);
5429 }
5430 else
5431 #endif /* defined (BFD_HOST_U_64_BIT) */
5432 {
5433 /* This is the fallback solution if no 64bit type is available or if we
5434 are not supposed to spend much time on optimizations. We select the
5435 bucket count using a fixed set of numbers. */
5436 for (i = 0; elf_buckets[i] != 0; i++)
5437 {
5438 best_size = elf_buckets[i];
5439 if (nsyms < elf_buckets[i + 1])
5440 break;
5441 }
5442 if (gnu_hash && best_size < 2)
5443 best_size = 2;
5444 }
5445
5446 return best_size;
5447 }
5448
5449 /* Size any SHT_GROUP section for ld -r. */
5450
5451 bfd_boolean
5452 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5453 {
5454 bfd *ibfd;
5455
5456 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5457 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5458 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5459 return FALSE;
5460 return TRUE;
5461 }
5462
5463 /* Set a default stack segment size. The value in INFO wins. If it
5464 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5465 undefined it is initialized. */
5466
5467 bfd_boolean
5468 bfd_elf_stack_segment_size (bfd *output_bfd,
5469 struct bfd_link_info *info,
5470 const char *legacy_symbol,
5471 bfd_vma default_size)
5472 {
5473 struct elf_link_hash_entry *h = NULL;
5474
5475 /* Look for legacy symbol. */
5476 if (legacy_symbol)
5477 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5478 FALSE, FALSE, FALSE);
5479 if (h && (h->root.type == bfd_link_hash_defined
5480 || h->root.type == bfd_link_hash_defweak)
5481 && h->def_regular
5482 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5483 {
5484 /* The symbol has no type if specified on the command line. */
5485 h->type = STT_OBJECT;
5486 if (info->stacksize)
5487 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5488 output_bfd, legacy_symbol);
5489 else if (h->root.u.def.section != bfd_abs_section_ptr)
5490 (*_bfd_error_handler) (_("%B: %s not absolute"),
5491 output_bfd, legacy_symbol);
5492 else
5493 info->stacksize = h->root.u.def.value;
5494 }
5495
5496 if (!info->stacksize)
5497 /* If the user didn't set a size, or explicitly inhibit the
5498 size, set it now. */
5499 info->stacksize = default_size;
5500
5501 /* Provide the legacy symbol, if it is referenced. */
5502 if (h && (h->root.type == bfd_link_hash_undefined
5503 || h->root.type == bfd_link_hash_undefweak))
5504 {
5505 struct bfd_link_hash_entry *bh = NULL;
5506
5507 if (!(_bfd_generic_link_add_one_symbol
5508 (info, output_bfd, legacy_symbol,
5509 BSF_GLOBAL, bfd_abs_section_ptr,
5510 info->stacksize >= 0 ? info->stacksize : 0,
5511 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5512 return FALSE;
5513
5514 h = (struct elf_link_hash_entry *) bh;
5515 h->def_regular = 1;
5516 h->type = STT_OBJECT;
5517 }
5518
5519 return TRUE;
5520 }
5521
5522 /* Set up the sizes and contents of the ELF dynamic sections. This is
5523 called by the ELF linker emulation before_allocation routine. We
5524 must set the sizes of the sections before the linker sets the
5525 addresses of the various sections. */
5526
5527 bfd_boolean
5528 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5529 const char *soname,
5530 const char *rpath,
5531 const char *filter_shlib,
5532 const char *audit,
5533 const char *depaudit,
5534 const char * const *auxiliary_filters,
5535 struct bfd_link_info *info,
5536 asection **sinterpptr)
5537 {
5538 bfd_size_type soname_indx;
5539 bfd *dynobj;
5540 const struct elf_backend_data *bed;
5541 struct elf_info_failed asvinfo;
5542
5543 *sinterpptr = NULL;
5544
5545 soname_indx = (bfd_size_type) -1;
5546
5547 if (!is_elf_hash_table (info->hash))
5548 return TRUE;
5549
5550 bed = get_elf_backend_data (output_bfd);
5551
5552 /* Any syms created from now on start with -1 in
5553 got.refcount/offset and plt.refcount/offset. */
5554 elf_hash_table (info)->init_got_refcount
5555 = elf_hash_table (info)->init_got_offset;
5556 elf_hash_table (info)->init_plt_refcount
5557 = elf_hash_table (info)->init_plt_offset;
5558
5559 if (info->relocatable
5560 && !_bfd_elf_size_group_sections (info))
5561 return FALSE;
5562
5563 /* The backend may have to create some sections regardless of whether
5564 we're dynamic or not. */
5565 if (bed->elf_backend_always_size_sections
5566 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5567 return FALSE;
5568
5569 /* Determine any GNU_STACK segment requirements, after the backend
5570 has had a chance to set a default segment size. */
5571 if (info->execstack)
5572 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5573 else if (info->noexecstack)
5574 elf_stack_flags (output_bfd) = PF_R | PF_W;
5575 else
5576 {
5577 bfd *inputobj;
5578 asection *notesec = NULL;
5579 int exec = 0;
5580
5581 for (inputobj = info->input_bfds;
5582 inputobj;
5583 inputobj = inputobj->link.next)
5584 {
5585 asection *s;
5586
5587 if (inputobj->flags
5588 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5589 continue;
5590 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5591 if (s)
5592 {
5593 if (s->flags & SEC_CODE)
5594 exec = PF_X;
5595 notesec = s;
5596 }
5597 else if (bed->default_execstack)
5598 exec = PF_X;
5599 }
5600 if (notesec || info->stacksize > 0)
5601 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5602 if (notesec && exec && info->relocatable
5603 && notesec->output_section != bfd_abs_section_ptr)
5604 notesec->output_section->flags |= SEC_CODE;
5605 }
5606
5607 dynobj = elf_hash_table (info)->dynobj;
5608
5609 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5610 {
5611 struct elf_info_failed eif;
5612 struct elf_link_hash_entry *h;
5613 asection *dynstr;
5614 struct bfd_elf_version_tree *t;
5615 struct bfd_elf_version_expr *d;
5616 asection *s;
5617 bfd_boolean all_defined;
5618
5619 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5620 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5621
5622 if (soname != NULL)
5623 {
5624 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5625 soname, TRUE);
5626 if (soname_indx == (bfd_size_type) -1
5627 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5628 return FALSE;
5629 }
5630
5631 if (info->symbolic)
5632 {
5633 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5634 return FALSE;
5635 info->flags |= DF_SYMBOLIC;
5636 }
5637
5638 if (rpath != NULL)
5639 {
5640 bfd_size_type indx;
5641 bfd_vma tag;
5642
5643 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5644 TRUE);
5645 if (indx == (bfd_size_type) -1)
5646 return FALSE;
5647
5648 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5649 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5650 return FALSE;
5651 }
5652
5653 if (filter_shlib != NULL)
5654 {
5655 bfd_size_type indx;
5656
5657 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5658 filter_shlib, TRUE);
5659 if (indx == (bfd_size_type) -1
5660 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5661 return FALSE;
5662 }
5663
5664 if (auxiliary_filters != NULL)
5665 {
5666 const char * const *p;
5667
5668 for (p = auxiliary_filters; *p != NULL; p++)
5669 {
5670 bfd_size_type indx;
5671
5672 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5673 *p, TRUE);
5674 if (indx == (bfd_size_type) -1
5675 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5676 return FALSE;
5677 }
5678 }
5679
5680 if (audit != NULL)
5681 {
5682 bfd_size_type indx;
5683
5684 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5685 TRUE);
5686 if (indx == (bfd_size_type) -1
5687 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5688 return FALSE;
5689 }
5690
5691 if (depaudit != NULL)
5692 {
5693 bfd_size_type indx;
5694
5695 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5696 TRUE);
5697 if (indx == (bfd_size_type) -1
5698 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5699 return FALSE;
5700 }
5701
5702 eif.info = info;
5703 eif.failed = FALSE;
5704
5705 /* If we are supposed to export all symbols into the dynamic symbol
5706 table (this is not the normal case), then do so. */
5707 if (info->export_dynamic
5708 || (info->executable && info->dynamic))
5709 {
5710 elf_link_hash_traverse (elf_hash_table (info),
5711 _bfd_elf_export_symbol,
5712 &eif);
5713 if (eif.failed)
5714 return FALSE;
5715 }
5716
5717 /* Make all global versions with definition. */
5718 for (t = info->version_info; t != NULL; t = t->next)
5719 for (d = t->globals.list; d != NULL; d = d->next)
5720 if (!d->symver && d->literal)
5721 {
5722 const char *verstr, *name;
5723 size_t namelen, verlen, newlen;
5724 char *newname, *p, leading_char;
5725 struct elf_link_hash_entry *newh;
5726
5727 leading_char = bfd_get_symbol_leading_char (output_bfd);
5728 name = d->pattern;
5729 namelen = strlen (name) + (leading_char != '\0');
5730 verstr = t->name;
5731 verlen = strlen (verstr);
5732 newlen = namelen + verlen + 3;
5733
5734 newname = (char *) bfd_malloc (newlen);
5735 if (newname == NULL)
5736 return FALSE;
5737 newname[0] = leading_char;
5738 memcpy (newname + (leading_char != '\0'), name, namelen);
5739
5740 /* Check the hidden versioned definition. */
5741 p = newname + namelen;
5742 *p++ = ELF_VER_CHR;
5743 memcpy (p, verstr, verlen + 1);
5744 newh = elf_link_hash_lookup (elf_hash_table (info),
5745 newname, FALSE, FALSE,
5746 FALSE);
5747 if (newh == NULL
5748 || (newh->root.type != bfd_link_hash_defined
5749 && newh->root.type != bfd_link_hash_defweak))
5750 {
5751 /* Check the default versioned definition. */
5752 *p++ = ELF_VER_CHR;
5753 memcpy (p, verstr, verlen + 1);
5754 newh = elf_link_hash_lookup (elf_hash_table (info),
5755 newname, FALSE, FALSE,
5756 FALSE);
5757 }
5758 free (newname);
5759
5760 /* Mark this version if there is a definition and it is
5761 not defined in a shared object. */
5762 if (newh != NULL
5763 && !newh->def_dynamic
5764 && (newh->root.type == bfd_link_hash_defined
5765 || newh->root.type == bfd_link_hash_defweak))
5766 d->symver = 1;
5767 }
5768
5769 /* Attach all the symbols to their version information. */
5770 asvinfo.info = info;
5771 asvinfo.failed = FALSE;
5772
5773 elf_link_hash_traverse (elf_hash_table (info),
5774 _bfd_elf_link_assign_sym_version,
5775 &asvinfo);
5776 if (asvinfo.failed)
5777 return FALSE;
5778
5779 if (!info->allow_undefined_version)
5780 {
5781 /* Check if all global versions have a definition. */
5782 all_defined = TRUE;
5783 for (t = info->version_info; t != NULL; t = t->next)
5784 for (d = t->globals.list; d != NULL; d = d->next)
5785 if (d->literal && !d->symver && !d->script)
5786 {
5787 (*_bfd_error_handler)
5788 (_("%s: undefined version: %s"),
5789 d->pattern, t->name);
5790 all_defined = FALSE;
5791 }
5792
5793 if (!all_defined)
5794 {
5795 bfd_set_error (bfd_error_bad_value);
5796 return FALSE;
5797 }
5798 }
5799
5800 /* Find all symbols which were defined in a dynamic object and make
5801 the backend pick a reasonable value for them. */
5802 elf_link_hash_traverse (elf_hash_table (info),
5803 _bfd_elf_adjust_dynamic_symbol,
5804 &eif);
5805 if (eif.failed)
5806 return FALSE;
5807
5808 /* Add some entries to the .dynamic section. We fill in some of the
5809 values later, in bfd_elf_final_link, but we must add the entries
5810 now so that we know the final size of the .dynamic section. */
5811
5812 /* If there are initialization and/or finalization functions to
5813 call then add the corresponding DT_INIT/DT_FINI entries. */
5814 h = (info->init_function
5815 ? elf_link_hash_lookup (elf_hash_table (info),
5816 info->init_function, FALSE,
5817 FALSE, FALSE)
5818 : NULL);
5819 if (h != NULL
5820 && (h->ref_regular
5821 || h->def_regular))
5822 {
5823 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5824 return FALSE;
5825 }
5826 h = (info->fini_function
5827 ? elf_link_hash_lookup (elf_hash_table (info),
5828 info->fini_function, FALSE,
5829 FALSE, FALSE)
5830 : NULL);
5831 if (h != NULL
5832 && (h->ref_regular
5833 || h->def_regular))
5834 {
5835 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5836 return FALSE;
5837 }
5838
5839 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5840 if (s != NULL && s->linker_has_input)
5841 {
5842 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5843 if (! info->executable)
5844 {
5845 bfd *sub;
5846 asection *o;
5847
5848 for (sub = info->input_bfds; sub != NULL;
5849 sub = sub->link.next)
5850 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5851 for (o = sub->sections; o != NULL; o = o->next)
5852 if (elf_section_data (o)->this_hdr.sh_type
5853 == SHT_PREINIT_ARRAY)
5854 {
5855 (*_bfd_error_handler)
5856 (_("%B: .preinit_array section is not allowed in DSO"),
5857 sub);
5858 break;
5859 }
5860
5861 bfd_set_error (bfd_error_nonrepresentable_section);
5862 return FALSE;
5863 }
5864
5865 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5866 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5867 return FALSE;
5868 }
5869 s = bfd_get_section_by_name (output_bfd, ".init_array");
5870 if (s != NULL && s->linker_has_input)
5871 {
5872 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5873 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5874 return FALSE;
5875 }
5876 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5877 if (s != NULL && s->linker_has_input)
5878 {
5879 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5880 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5881 return FALSE;
5882 }
5883
5884 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5885 /* If .dynstr is excluded from the link, we don't want any of
5886 these tags. Strictly, we should be checking each section
5887 individually; This quick check covers for the case where
5888 someone does a /DISCARD/ : { *(*) }. */
5889 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5890 {
5891 bfd_size_type strsize;
5892
5893 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5894 if ((info->emit_hash
5895 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5896 || (info->emit_gnu_hash
5897 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5898 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5899 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5900 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5901 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5902 bed->s->sizeof_sym))
5903 return FALSE;
5904 }
5905 }
5906
5907 /* The backend must work out the sizes of all the other dynamic
5908 sections. */
5909 if (dynobj != NULL
5910 && bed->elf_backend_size_dynamic_sections != NULL
5911 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5912 return FALSE;
5913
5914 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5915 return FALSE;
5916
5917 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5918 {
5919 unsigned long section_sym_count;
5920 struct bfd_elf_version_tree *verdefs;
5921 asection *s;
5922
5923 /* Set up the version definition section. */
5924 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
5925 BFD_ASSERT (s != NULL);
5926
5927 /* We may have created additional version definitions if we are
5928 just linking a regular application. */
5929 verdefs = info->version_info;
5930
5931 /* Skip anonymous version tag. */
5932 if (verdefs != NULL && verdefs->vernum == 0)
5933 verdefs = verdefs->next;
5934
5935 if (verdefs == NULL && !info->create_default_symver)
5936 s->flags |= SEC_EXCLUDE;
5937 else
5938 {
5939 unsigned int cdefs;
5940 bfd_size_type size;
5941 struct bfd_elf_version_tree *t;
5942 bfd_byte *p;
5943 Elf_Internal_Verdef def;
5944 Elf_Internal_Verdaux defaux;
5945 struct bfd_link_hash_entry *bh;
5946 struct elf_link_hash_entry *h;
5947 const char *name;
5948
5949 cdefs = 0;
5950 size = 0;
5951
5952 /* Make space for the base version. */
5953 size += sizeof (Elf_External_Verdef);
5954 size += sizeof (Elf_External_Verdaux);
5955 ++cdefs;
5956
5957 /* Make space for the default version. */
5958 if (info->create_default_symver)
5959 {
5960 size += sizeof (Elf_External_Verdef);
5961 ++cdefs;
5962 }
5963
5964 for (t = verdefs; t != NULL; t = t->next)
5965 {
5966 struct bfd_elf_version_deps *n;
5967
5968 /* Don't emit base version twice. */
5969 if (t->vernum == 0)
5970 continue;
5971
5972 size += sizeof (Elf_External_Verdef);
5973 size += sizeof (Elf_External_Verdaux);
5974 ++cdefs;
5975
5976 for (n = t->deps; n != NULL; n = n->next)
5977 size += sizeof (Elf_External_Verdaux);
5978 }
5979
5980 s->size = size;
5981 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5982 if (s->contents == NULL && s->size != 0)
5983 return FALSE;
5984
5985 /* Fill in the version definition section. */
5986
5987 p = s->contents;
5988
5989 def.vd_version = VER_DEF_CURRENT;
5990 def.vd_flags = VER_FLG_BASE;
5991 def.vd_ndx = 1;
5992 def.vd_cnt = 1;
5993 if (info->create_default_symver)
5994 {
5995 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5996 def.vd_next = sizeof (Elf_External_Verdef);
5997 }
5998 else
5999 {
6000 def.vd_aux = sizeof (Elf_External_Verdef);
6001 def.vd_next = (sizeof (Elf_External_Verdef)
6002 + sizeof (Elf_External_Verdaux));
6003 }
6004
6005 if (soname_indx != (bfd_size_type) -1)
6006 {
6007 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6008 soname_indx);
6009 def.vd_hash = bfd_elf_hash (soname);
6010 defaux.vda_name = soname_indx;
6011 name = soname;
6012 }
6013 else
6014 {
6015 bfd_size_type indx;
6016
6017 name = lbasename (output_bfd->filename);
6018 def.vd_hash = bfd_elf_hash (name);
6019 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6020 name, FALSE);
6021 if (indx == (bfd_size_type) -1)
6022 return FALSE;
6023 defaux.vda_name = indx;
6024 }
6025 defaux.vda_next = 0;
6026
6027 _bfd_elf_swap_verdef_out (output_bfd, &def,
6028 (Elf_External_Verdef *) p);
6029 p += sizeof (Elf_External_Verdef);
6030 if (info->create_default_symver)
6031 {
6032 /* Add a symbol representing this version. */
6033 bh = NULL;
6034 if (! (_bfd_generic_link_add_one_symbol
6035 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6036 0, NULL, FALSE,
6037 get_elf_backend_data (dynobj)->collect, &bh)))
6038 return FALSE;
6039 h = (struct elf_link_hash_entry *) bh;
6040 h->non_elf = 0;
6041 h->def_regular = 1;
6042 h->type = STT_OBJECT;
6043 h->verinfo.vertree = NULL;
6044
6045 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6046 return FALSE;
6047
6048 /* Create a duplicate of the base version with the same
6049 aux block, but different flags. */
6050 def.vd_flags = 0;
6051 def.vd_ndx = 2;
6052 def.vd_aux = sizeof (Elf_External_Verdef);
6053 if (verdefs)
6054 def.vd_next = (sizeof (Elf_External_Verdef)
6055 + sizeof (Elf_External_Verdaux));
6056 else
6057 def.vd_next = 0;
6058 _bfd_elf_swap_verdef_out (output_bfd, &def,
6059 (Elf_External_Verdef *) p);
6060 p += sizeof (Elf_External_Verdef);
6061 }
6062 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6063 (Elf_External_Verdaux *) p);
6064 p += sizeof (Elf_External_Verdaux);
6065
6066 for (t = verdefs; t != NULL; t = t->next)
6067 {
6068 unsigned int cdeps;
6069 struct bfd_elf_version_deps *n;
6070
6071 /* Don't emit the base version twice. */
6072 if (t->vernum == 0)
6073 continue;
6074
6075 cdeps = 0;
6076 for (n = t->deps; n != NULL; n = n->next)
6077 ++cdeps;
6078
6079 /* Add a symbol representing this version. */
6080 bh = NULL;
6081 if (! (_bfd_generic_link_add_one_symbol
6082 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6083 0, NULL, FALSE,
6084 get_elf_backend_data (dynobj)->collect, &bh)))
6085 return FALSE;
6086 h = (struct elf_link_hash_entry *) bh;
6087 h->non_elf = 0;
6088 h->def_regular = 1;
6089 h->type = STT_OBJECT;
6090 h->verinfo.vertree = t;
6091
6092 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6093 return FALSE;
6094
6095 def.vd_version = VER_DEF_CURRENT;
6096 def.vd_flags = 0;
6097 if (t->globals.list == NULL
6098 && t->locals.list == NULL
6099 && ! t->used)
6100 def.vd_flags |= VER_FLG_WEAK;
6101 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6102 def.vd_cnt = cdeps + 1;
6103 def.vd_hash = bfd_elf_hash (t->name);
6104 def.vd_aux = sizeof (Elf_External_Verdef);
6105 def.vd_next = 0;
6106
6107 /* If a basever node is next, it *must* be the last node in
6108 the chain, otherwise Verdef construction breaks. */
6109 if (t->next != NULL && t->next->vernum == 0)
6110 BFD_ASSERT (t->next->next == NULL);
6111
6112 if (t->next != NULL && t->next->vernum != 0)
6113 def.vd_next = (sizeof (Elf_External_Verdef)
6114 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6115
6116 _bfd_elf_swap_verdef_out (output_bfd, &def,
6117 (Elf_External_Verdef *) p);
6118 p += sizeof (Elf_External_Verdef);
6119
6120 defaux.vda_name = h->dynstr_index;
6121 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6122 h->dynstr_index);
6123 defaux.vda_next = 0;
6124 if (t->deps != NULL)
6125 defaux.vda_next = sizeof (Elf_External_Verdaux);
6126 t->name_indx = defaux.vda_name;
6127
6128 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6129 (Elf_External_Verdaux *) p);
6130 p += sizeof (Elf_External_Verdaux);
6131
6132 for (n = t->deps; n != NULL; n = n->next)
6133 {
6134 if (n->version_needed == NULL)
6135 {
6136 /* This can happen if there was an error in the
6137 version script. */
6138 defaux.vda_name = 0;
6139 }
6140 else
6141 {
6142 defaux.vda_name = n->version_needed->name_indx;
6143 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6144 defaux.vda_name);
6145 }
6146 if (n->next == NULL)
6147 defaux.vda_next = 0;
6148 else
6149 defaux.vda_next = sizeof (Elf_External_Verdaux);
6150
6151 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6152 (Elf_External_Verdaux *) p);
6153 p += sizeof (Elf_External_Verdaux);
6154 }
6155 }
6156
6157 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6158 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6159 return FALSE;
6160
6161 elf_tdata (output_bfd)->cverdefs = cdefs;
6162 }
6163
6164 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6165 {
6166 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6167 return FALSE;
6168 }
6169 else if (info->flags & DF_BIND_NOW)
6170 {
6171 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6172 return FALSE;
6173 }
6174
6175 if (info->flags_1)
6176 {
6177 if (info->executable)
6178 info->flags_1 &= ~ (DF_1_INITFIRST
6179 | DF_1_NODELETE
6180 | DF_1_NOOPEN);
6181 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6182 return FALSE;
6183 }
6184
6185 /* Work out the size of the version reference section. */
6186
6187 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6188 BFD_ASSERT (s != NULL);
6189 {
6190 struct elf_find_verdep_info sinfo;
6191
6192 sinfo.info = info;
6193 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6194 if (sinfo.vers == 0)
6195 sinfo.vers = 1;
6196 sinfo.failed = FALSE;
6197
6198 elf_link_hash_traverse (elf_hash_table (info),
6199 _bfd_elf_link_find_version_dependencies,
6200 &sinfo);
6201 if (sinfo.failed)
6202 return FALSE;
6203
6204 if (elf_tdata (output_bfd)->verref == NULL)
6205 s->flags |= SEC_EXCLUDE;
6206 else
6207 {
6208 Elf_Internal_Verneed *t;
6209 unsigned int size;
6210 unsigned int crefs;
6211 bfd_byte *p;
6212
6213 /* Build the version dependency section. */
6214 size = 0;
6215 crefs = 0;
6216 for (t = elf_tdata (output_bfd)->verref;
6217 t != NULL;
6218 t = t->vn_nextref)
6219 {
6220 Elf_Internal_Vernaux *a;
6221
6222 size += sizeof (Elf_External_Verneed);
6223 ++crefs;
6224 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6225 size += sizeof (Elf_External_Vernaux);
6226 }
6227
6228 s->size = size;
6229 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6230 if (s->contents == NULL)
6231 return FALSE;
6232
6233 p = s->contents;
6234 for (t = elf_tdata (output_bfd)->verref;
6235 t != NULL;
6236 t = t->vn_nextref)
6237 {
6238 unsigned int caux;
6239 Elf_Internal_Vernaux *a;
6240 bfd_size_type indx;
6241
6242 caux = 0;
6243 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6244 ++caux;
6245
6246 t->vn_version = VER_NEED_CURRENT;
6247 t->vn_cnt = caux;
6248 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6249 elf_dt_name (t->vn_bfd) != NULL
6250 ? elf_dt_name (t->vn_bfd)
6251 : lbasename (t->vn_bfd->filename),
6252 FALSE);
6253 if (indx == (bfd_size_type) -1)
6254 return FALSE;
6255 t->vn_file = indx;
6256 t->vn_aux = sizeof (Elf_External_Verneed);
6257 if (t->vn_nextref == NULL)
6258 t->vn_next = 0;
6259 else
6260 t->vn_next = (sizeof (Elf_External_Verneed)
6261 + caux * sizeof (Elf_External_Vernaux));
6262
6263 _bfd_elf_swap_verneed_out (output_bfd, t,
6264 (Elf_External_Verneed *) p);
6265 p += sizeof (Elf_External_Verneed);
6266
6267 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6268 {
6269 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6270 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6271 a->vna_nodename, FALSE);
6272 if (indx == (bfd_size_type) -1)
6273 return FALSE;
6274 a->vna_name = indx;
6275 if (a->vna_nextptr == NULL)
6276 a->vna_next = 0;
6277 else
6278 a->vna_next = sizeof (Elf_External_Vernaux);
6279
6280 _bfd_elf_swap_vernaux_out (output_bfd, a,
6281 (Elf_External_Vernaux *) p);
6282 p += sizeof (Elf_External_Vernaux);
6283 }
6284 }
6285
6286 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6287 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6288 return FALSE;
6289
6290 elf_tdata (output_bfd)->cverrefs = crefs;
6291 }
6292 }
6293
6294 if ((elf_tdata (output_bfd)->cverrefs == 0
6295 && elf_tdata (output_bfd)->cverdefs == 0)
6296 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6297 &section_sym_count) == 0)
6298 {
6299 s = bfd_get_linker_section (dynobj, ".gnu.version");
6300 s->flags |= SEC_EXCLUDE;
6301 }
6302 }
6303 return TRUE;
6304 }
6305
6306 /* Find the first non-excluded output section. We'll use its
6307 section symbol for some emitted relocs. */
6308 void
6309 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6310 {
6311 asection *s;
6312
6313 for (s = output_bfd->sections; s != NULL; s = s->next)
6314 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6315 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6316 {
6317 elf_hash_table (info)->text_index_section = s;
6318 break;
6319 }
6320 }
6321
6322 /* Find two non-excluded output sections, one for code, one for data.
6323 We'll use their section symbols for some emitted relocs. */
6324 void
6325 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6326 {
6327 asection *s;
6328
6329 /* Data first, since setting text_index_section changes
6330 _bfd_elf_link_omit_section_dynsym. */
6331 for (s = output_bfd->sections; s != NULL; s = s->next)
6332 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6333 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6334 {
6335 elf_hash_table (info)->data_index_section = s;
6336 break;
6337 }
6338
6339 for (s = output_bfd->sections; s != NULL; s = s->next)
6340 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6341 == (SEC_ALLOC | SEC_READONLY))
6342 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6343 {
6344 elf_hash_table (info)->text_index_section = s;
6345 break;
6346 }
6347
6348 if (elf_hash_table (info)->text_index_section == NULL)
6349 elf_hash_table (info)->text_index_section
6350 = elf_hash_table (info)->data_index_section;
6351 }
6352
6353 bfd_boolean
6354 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6355 {
6356 const struct elf_backend_data *bed;
6357
6358 if (!is_elf_hash_table (info->hash))
6359 return TRUE;
6360
6361 bed = get_elf_backend_data (output_bfd);
6362 (*bed->elf_backend_init_index_section) (output_bfd, info);
6363
6364 if (elf_hash_table (info)->dynamic_sections_created)
6365 {
6366 bfd *dynobj;
6367 asection *s;
6368 bfd_size_type dynsymcount;
6369 unsigned long section_sym_count;
6370 unsigned int dtagcount;
6371
6372 dynobj = elf_hash_table (info)->dynobj;
6373
6374 /* Assign dynsym indicies. In a shared library we generate a
6375 section symbol for each output section, which come first.
6376 Next come all of the back-end allocated local dynamic syms,
6377 followed by the rest of the global symbols. */
6378
6379 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6380 &section_sym_count);
6381
6382 /* Work out the size of the symbol version section. */
6383 s = bfd_get_linker_section (dynobj, ".gnu.version");
6384 BFD_ASSERT (s != NULL);
6385 if (dynsymcount != 0
6386 && (s->flags & SEC_EXCLUDE) == 0)
6387 {
6388 s->size = dynsymcount * sizeof (Elf_External_Versym);
6389 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6390 if (s->contents == NULL)
6391 return FALSE;
6392
6393 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6394 return FALSE;
6395 }
6396
6397 /* Set the size of the .dynsym and .hash sections. We counted
6398 the number of dynamic symbols in elf_link_add_object_symbols.
6399 We will build the contents of .dynsym and .hash when we build
6400 the final symbol table, because until then we do not know the
6401 correct value to give the symbols. We built the .dynstr
6402 section as we went along in elf_link_add_object_symbols. */
6403 s = bfd_get_linker_section (dynobj, ".dynsym");
6404 BFD_ASSERT (s != NULL);
6405 s->size = dynsymcount * bed->s->sizeof_sym;
6406
6407 if (dynsymcount != 0)
6408 {
6409 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6410 if (s->contents == NULL)
6411 return FALSE;
6412
6413 /* The first entry in .dynsym is a dummy symbol.
6414 Clear all the section syms, in case we don't output them all. */
6415 ++section_sym_count;
6416 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6417 }
6418
6419 elf_hash_table (info)->bucketcount = 0;
6420
6421 /* Compute the size of the hashing table. As a side effect this
6422 computes the hash values for all the names we export. */
6423 if (info->emit_hash)
6424 {
6425 unsigned long int *hashcodes;
6426 struct hash_codes_info hashinf;
6427 bfd_size_type amt;
6428 unsigned long int nsyms;
6429 size_t bucketcount;
6430 size_t hash_entry_size;
6431
6432 /* Compute the hash values for all exported symbols. At the same
6433 time store the values in an array so that we could use them for
6434 optimizations. */
6435 amt = dynsymcount * sizeof (unsigned long int);
6436 hashcodes = (unsigned long int *) bfd_malloc (amt);
6437 if (hashcodes == NULL)
6438 return FALSE;
6439 hashinf.hashcodes = hashcodes;
6440 hashinf.error = FALSE;
6441
6442 /* Put all hash values in HASHCODES. */
6443 elf_link_hash_traverse (elf_hash_table (info),
6444 elf_collect_hash_codes, &hashinf);
6445 if (hashinf.error)
6446 {
6447 free (hashcodes);
6448 return FALSE;
6449 }
6450
6451 nsyms = hashinf.hashcodes - hashcodes;
6452 bucketcount
6453 = compute_bucket_count (info, hashcodes, nsyms, 0);
6454 free (hashcodes);
6455
6456 if (bucketcount == 0)
6457 return FALSE;
6458
6459 elf_hash_table (info)->bucketcount = bucketcount;
6460
6461 s = bfd_get_linker_section (dynobj, ".hash");
6462 BFD_ASSERT (s != NULL);
6463 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6464 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6465 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6466 if (s->contents == NULL)
6467 return FALSE;
6468
6469 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6470 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6471 s->contents + hash_entry_size);
6472 }
6473
6474 if (info->emit_gnu_hash)
6475 {
6476 size_t i, cnt;
6477 unsigned char *contents;
6478 struct collect_gnu_hash_codes cinfo;
6479 bfd_size_type amt;
6480 size_t bucketcount;
6481
6482 memset (&cinfo, 0, sizeof (cinfo));
6483
6484 /* Compute the hash values for all exported symbols. At the same
6485 time store the values in an array so that we could use them for
6486 optimizations. */
6487 amt = dynsymcount * 2 * sizeof (unsigned long int);
6488 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6489 if (cinfo.hashcodes == NULL)
6490 return FALSE;
6491
6492 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6493 cinfo.min_dynindx = -1;
6494 cinfo.output_bfd = output_bfd;
6495 cinfo.bed = bed;
6496
6497 /* Put all hash values in HASHCODES. */
6498 elf_link_hash_traverse (elf_hash_table (info),
6499 elf_collect_gnu_hash_codes, &cinfo);
6500 if (cinfo.error)
6501 {
6502 free (cinfo.hashcodes);
6503 return FALSE;
6504 }
6505
6506 bucketcount
6507 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6508
6509 if (bucketcount == 0)
6510 {
6511 free (cinfo.hashcodes);
6512 return FALSE;
6513 }
6514
6515 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6516 BFD_ASSERT (s != NULL);
6517
6518 if (cinfo.nsyms == 0)
6519 {
6520 /* Empty .gnu.hash section is special. */
6521 BFD_ASSERT (cinfo.min_dynindx == -1);
6522 free (cinfo.hashcodes);
6523 s->size = 5 * 4 + bed->s->arch_size / 8;
6524 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6525 if (contents == NULL)
6526 return FALSE;
6527 s->contents = contents;
6528 /* 1 empty bucket. */
6529 bfd_put_32 (output_bfd, 1, contents);
6530 /* SYMIDX above the special symbol 0. */
6531 bfd_put_32 (output_bfd, 1, contents + 4);
6532 /* Just one word for bitmask. */
6533 bfd_put_32 (output_bfd, 1, contents + 8);
6534 /* Only hash fn bloom filter. */
6535 bfd_put_32 (output_bfd, 0, contents + 12);
6536 /* No hashes are valid - empty bitmask. */
6537 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6538 /* No hashes in the only bucket. */
6539 bfd_put_32 (output_bfd, 0,
6540 contents + 16 + bed->s->arch_size / 8);
6541 }
6542 else
6543 {
6544 unsigned long int maskwords, maskbitslog2, x;
6545 BFD_ASSERT (cinfo.min_dynindx != -1);
6546
6547 x = cinfo.nsyms;
6548 maskbitslog2 = 1;
6549 while ((x >>= 1) != 0)
6550 ++maskbitslog2;
6551 if (maskbitslog2 < 3)
6552 maskbitslog2 = 5;
6553 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6554 maskbitslog2 = maskbitslog2 + 3;
6555 else
6556 maskbitslog2 = maskbitslog2 + 2;
6557 if (bed->s->arch_size == 64)
6558 {
6559 if (maskbitslog2 == 5)
6560 maskbitslog2 = 6;
6561 cinfo.shift1 = 6;
6562 }
6563 else
6564 cinfo.shift1 = 5;
6565 cinfo.mask = (1 << cinfo.shift1) - 1;
6566 cinfo.shift2 = maskbitslog2;
6567 cinfo.maskbits = 1 << maskbitslog2;
6568 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6569 amt = bucketcount * sizeof (unsigned long int) * 2;
6570 amt += maskwords * sizeof (bfd_vma);
6571 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6572 if (cinfo.bitmask == NULL)
6573 {
6574 free (cinfo.hashcodes);
6575 return FALSE;
6576 }
6577
6578 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6579 cinfo.indx = cinfo.counts + bucketcount;
6580 cinfo.symindx = dynsymcount - cinfo.nsyms;
6581 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6582
6583 /* Determine how often each hash bucket is used. */
6584 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6585 for (i = 0; i < cinfo.nsyms; ++i)
6586 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6587
6588 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6589 if (cinfo.counts[i] != 0)
6590 {
6591 cinfo.indx[i] = cnt;
6592 cnt += cinfo.counts[i];
6593 }
6594 BFD_ASSERT (cnt == dynsymcount);
6595 cinfo.bucketcount = bucketcount;
6596 cinfo.local_indx = cinfo.min_dynindx;
6597
6598 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6599 s->size += cinfo.maskbits / 8;
6600 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6601 if (contents == NULL)
6602 {
6603 free (cinfo.bitmask);
6604 free (cinfo.hashcodes);
6605 return FALSE;
6606 }
6607
6608 s->contents = contents;
6609 bfd_put_32 (output_bfd, bucketcount, contents);
6610 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6611 bfd_put_32 (output_bfd, maskwords, contents + 8);
6612 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6613 contents += 16 + cinfo.maskbits / 8;
6614
6615 for (i = 0; i < bucketcount; ++i)
6616 {
6617 if (cinfo.counts[i] == 0)
6618 bfd_put_32 (output_bfd, 0, contents);
6619 else
6620 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6621 contents += 4;
6622 }
6623
6624 cinfo.contents = contents;
6625
6626 /* Renumber dynamic symbols, populate .gnu.hash section. */
6627 elf_link_hash_traverse (elf_hash_table (info),
6628 elf_renumber_gnu_hash_syms, &cinfo);
6629
6630 contents = s->contents + 16;
6631 for (i = 0; i < maskwords; ++i)
6632 {
6633 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6634 contents);
6635 contents += bed->s->arch_size / 8;
6636 }
6637
6638 free (cinfo.bitmask);
6639 free (cinfo.hashcodes);
6640 }
6641 }
6642
6643 s = bfd_get_linker_section (dynobj, ".dynstr");
6644 BFD_ASSERT (s != NULL);
6645
6646 elf_finalize_dynstr (output_bfd, info);
6647
6648 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6649
6650 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6651 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6652 return FALSE;
6653 }
6654
6655 return TRUE;
6656 }
6657 \f
6658 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6659
6660 static void
6661 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6662 asection *sec)
6663 {
6664 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6665 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6666 }
6667
6668 /* Finish SHF_MERGE section merging. */
6669
6670 bfd_boolean
6671 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6672 {
6673 bfd *ibfd;
6674 asection *sec;
6675
6676 if (!is_elf_hash_table (info->hash))
6677 return FALSE;
6678
6679 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6680 if ((ibfd->flags & DYNAMIC) == 0)
6681 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6682 if ((sec->flags & SEC_MERGE) != 0
6683 && !bfd_is_abs_section (sec->output_section))
6684 {
6685 struct bfd_elf_section_data *secdata;
6686
6687 secdata = elf_section_data (sec);
6688 if (! _bfd_add_merge_section (abfd,
6689 &elf_hash_table (info)->merge_info,
6690 sec, &secdata->sec_info))
6691 return FALSE;
6692 else if (secdata->sec_info)
6693 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6694 }
6695
6696 if (elf_hash_table (info)->merge_info != NULL)
6697 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6698 merge_sections_remove_hook);
6699 return TRUE;
6700 }
6701
6702 /* Create an entry in an ELF linker hash table. */
6703
6704 struct bfd_hash_entry *
6705 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6706 struct bfd_hash_table *table,
6707 const char *string)
6708 {
6709 /* Allocate the structure if it has not already been allocated by a
6710 subclass. */
6711 if (entry == NULL)
6712 {
6713 entry = (struct bfd_hash_entry *)
6714 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6715 if (entry == NULL)
6716 return entry;
6717 }
6718
6719 /* Call the allocation method of the superclass. */
6720 entry = _bfd_link_hash_newfunc (entry, table, string);
6721 if (entry != NULL)
6722 {
6723 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6724 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6725
6726 /* Set local fields. */
6727 ret->indx = -1;
6728 ret->dynindx = -1;
6729 ret->got = htab->init_got_refcount;
6730 ret->plt = htab->init_plt_refcount;
6731 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6732 - offsetof (struct elf_link_hash_entry, size)));
6733 /* Assume that we have been called by a non-ELF symbol reader.
6734 This flag is then reset by the code which reads an ELF input
6735 file. This ensures that a symbol created by a non-ELF symbol
6736 reader will have the flag set correctly. */
6737 ret->non_elf = 1;
6738 }
6739
6740 return entry;
6741 }
6742
6743 /* Copy data from an indirect symbol to its direct symbol, hiding the
6744 old indirect symbol. Also used for copying flags to a weakdef. */
6745
6746 void
6747 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6748 struct elf_link_hash_entry *dir,
6749 struct elf_link_hash_entry *ind)
6750 {
6751 struct elf_link_hash_table *htab;
6752
6753 /* Copy down any references that we may have already seen to the
6754 symbol which just became indirect. */
6755
6756 dir->ref_dynamic |= ind->ref_dynamic;
6757 dir->ref_regular |= ind->ref_regular;
6758 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6759 dir->non_got_ref |= ind->non_got_ref;
6760 dir->needs_plt |= ind->needs_plt;
6761 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6762
6763 if (ind->root.type != bfd_link_hash_indirect)
6764 return;
6765
6766 /* Copy over the global and procedure linkage table refcount entries.
6767 These may have been already set up by a check_relocs routine. */
6768 htab = elf_hash_table (info);
6769 if (ind->got.refcount > htab->init_got_refcount.refcount)
6770 {
6771 if (dir->got.refcount < 0)
6772 dir->got.refcount = 0;
6773 dir->got.refcount += ind->got.refcount;
6774 ind->got.refcount = htab->init_got_refcount.refcount;
6775 }
6776
6777 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6778 {
6779 if (dir->plt.refcount < 0)
6780 dir->plt.refcount = 0;
6781 dir->plt.refcount += ind->plt.refcount;
6782 ind->plt.refcount = htab->init_plt_refcount.refcount;
6783 }
6784
6785 if (ind->dynindx != -1)
6786 {
6787 if (dir->dynindx != -1)
6788 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6789 dir->dynindx = ind->dynindx;
6790 dir->dynstr_index = ind->dynstr_index;
6791 ind->dynindx = -1;
6792 ind->dynstr_index = 0;
6793 }
6794 }
6795
6796 void
6797 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6798 struct elf_link_hash_entry *h,
6799 bfd_boolean force_local)
6800 {
6801 /* STT_GNU_IFUNC symbol must go through PLT. */
6802 if (h->type != STT_GNU_IFUNC)
6803 {
6804 h->plt = elf_hash_table (info)->init_plt_offset;
6805 h->needs_plt = 0;
6806 }
6807 if (force_local)
6808 {
6809 h->forced_local = 1;
6810 if (h->dynindx != -1)
6811 {
6812 h->dynindx = -1;
6813 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6814 h->dynstr_index);
6815 }
6816 }
6817 }
6818
6819 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6820 caller. */
6821
6822 bfd_boolean
6823 _bfd_elf_link_hash_table_init
6824 (struct elf_link_hash_table *table,
6825 bfd *abfd,
6826 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6827 struct bfd_hash_table *,
6828 const char *),
6829 unsigned int entsize,
6830 enum elf_target_id target_id)
6831 {
6832 bfd_boolean ret;
6833 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6834
6835 table->init_got_refcount.refcount = can_refcount - 1;
6836 table->init_plt_refcount.refcount = can_refcount - 1;
6837 table->init_got_offset.offset = -(bfd_vma) 1;
6838 table->init_plt_offset.offset = -(bfd_vma) 1;
6839 /* The first dynamic symbol is a dummy. */
6840 table->dynsymcount = 1;
6841
6842 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6843
6844 table->root.type = bfd_link_elf_hash_table;
6845 table->hash_table_id = target_id;
6846
6847 return ret;
6848 }
6849
6850 /* Create an ELF linker hash table. */
6851
6852 struct bfd_link_hash_table *
6853 _bfd_elf_link_hash_table_create (bfd *abfd)
6854 {
6855 struct elf_link_hash_table *ret;
6856 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6857
6858 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
6859 if (ret == NULL)
6860 return NULL;
6861
6862 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6863 sizeof (struct elf_link_hash_entry),
6864 GENERIC_ELF_DATA))
6865 {
6866 free (ret);
6867 return NULL;
6868 }
6869 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
6870
6871 return &ret->root;
6872 }
6873
6874 /* Destroy an ELF linker hash table. */
6875
6876 void
6877 _bfd_elf_link_hash_table_free (bfd *obfd)
6878 {
6879 struct elf_link_hash_table *htab;
6880
6881 htab = (struct elf_link_hash_table *) obfd->link.hash;
6882 if (htab->dynstr != NULL)
6883 _bfd_elf_strtab_free (htab->dynstr);
6884 _bfd_merge_sections_free (htab->merge_info);
6885 _bfd_generic_link_hash_table_free (obfd);
6886 }
6887
6888 /* This is a hook for the ELF emulation code in the generic linker to
6889 tell the backend linker what file name to use for the DT_NEEDED
6890 entry for a dynamic object. */
6891
6892 void
6893 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6894 {
6895 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6896 && bfd_get_format (abfd) == bfd_object)
6897 elf_dt_name (abfd) = name;
6898 }
6899
6900 int
6901 bfd_elf_get_dyn_lib_class (bfd *abfd)
6902 {
6903 int lib_class;
6904 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6905 && bfd_get_format (abfd) == bfd_object)
6906 lib_class = elf_dyn_lib_class (abfd);
6907 else
6908 lib_class = 0;
6909 return lib_class;
6910 }
6911
6912 void
6913 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6914 {
6915 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6916 && bfd_get_format (abfd) == bfd_object)
6917 elf_dyn_lib_class (abfd) = lib_class;
6918 }
6919
6920 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6921 the linker ELF emulation code. */
6922
6923 struct bfd_link_needed_list *
6924 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6925 struct bfd_link_info *info)
6926 {
6927 if (! is_elf_hash_table (info->hash))
6928 return NULL;
6929 return elf_hash_table (info)->needed;
6930 }
6931
6932 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6933 hook for the linker ELF emulation code. */
6934
6935 struct bfd_link_needed_list *
6936 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6937 struct bfd_link_info *info)
6938 {
6939 if (! is_elf_hash_table (info->hash))
6940 return NULL;
6941 return elf_hash_table (info)->runpath;
6942 }
6943
6944 /* Get the name actually used for a dynamic object for a link. This
6945 is the SONAME entry if there is one. Otherwise, it is the string
6946 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6947
6948 const char *
6949 bfd_elf_get_dt_soname (bfd *abfd)
6950 {
6951 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6952 && bfd_get_format (abfd) == bfd_object)
6953 return elf_dt_name (abfd);
6954 return NULL;
6955 }
6956
6957 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6958 the ELF linker emulation code. */
6959
6960 bfd_boolean
6961 bfd_elf_get_bfd_needed_list (bfd *abfd,
6962 struct bfd_link_needed_list **pneeded)
6963 {
6964 asection *s;
6965 bfd_byte *dynbuf = NULL;
6966 unsigned int elfsec;
6967 unsigned long shlink;
6968 bfd_byte *extdyn, *extdynend;
6969 size_t extdynsize;
6970 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6971
6972 *pneeded = NULL;
6973
6974 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6975 || bfd_get_format (abfd) != bfd_object)
6976 return TRUE;
6977
6978 s = bfd_get_section_by_name (abfd, ".dynamic");
6979 if (s == NULL || s->size == 0)
6980 return TRUE;
6981
6982 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6983 goto error_return;
6984
6985 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6986 if (elfsec == SHN_BAD)
6987 goto error_return;
6988
6989 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6990
6991 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6992 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6993
6994 extdyn = dynbuf;
6995 extdynend = extdyn + s->size;
6996 for (; extdyn < extdynend; extdyn += extdynsize)
6997 {
6998 Elf_Internal_Dyn dyn;
6999
7000 (*swap_dyn_in) (abfd, extdyn, &dyn);
7001
7002 if (dyn.d_tag == DT_NULL)
7003 break;
7004
7005 if (dyn.d_tag == DT_NEEDED)
7006 {
7007 const char *string;
7008 struct bfd_link_needed_list *l;
7009 unsigned int tagv = dyn.d_un.d_val;
7010 bfd_size_type amt;
7011
7012 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7013 if (string == NULL)
7014 goto error_return;
7015
7016 amt = sizeof *l;
7017 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7018 if (l == NULL)
7019 goto error_return;
7020
7021 l->by = abfd;
7022 l->name = string;
7023 l->next = *pneeded;
7024 *pneeded = l;
7025 }
7026 }
7027
7028 free (dynbuf);
7029
7030 return TRUE;
7031
7032 error_return:
7033 if (dynbuf != NULL)
7034 free (dynbuf);
7035 return FALSE;
7036 }
7037
7038 struct elf_symbuf_symbol
7039 {
7040 unsigned long st_name; /* Symbol name, index in string tbl */
7041 unsigned char st_info; /* Type and binding attributes */
7042 unsigned char st_other; /* Visibilty, and target specific */
7043 };
7044
7045 struct elf_symbuf_head
7046 {
7047 struct elf_symbuf_symbol *ssym;
7048 bfd_size_type count;
7049 unsigned int st_shndx;
7050 };
7051
7052 struct elf_symbol
7053 {
7054 union
7055 {
7056 Elf_Internal_Sym *isym;
7057 struct elf_symbuf_symbol *ssym;
7058 } u;
7059 const char *name;
7060 };
7061
7062 /* Sort references to symbols by ascending section number. */
7063
7064 static int
7065 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7066 {
7067 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7068 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7069
7070 return s1->st_shndx - s2->st_shndx;
7071 }
7072
7073 static int
7074 elf_sym_name_compare (const void *arg1, const void *arg2)
7075 {
7076 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7077 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7078 return strcmp (s1->name, s2->name);
7079 }
7080
7081 static struct elf_symbuf_head *
7082 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7083 {
7084 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7085 struct elf_symbuf_symbol *ssym;
7086 struct elf_symbuf_head *ssymbuf, *ssymhead;
7087 bfd_size_type i, shndx_count, total_size;
7088
7089 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7090 if (indbuf == NULL)
7091 return NULL;
7092
7093 for (ind = indbuf, i = 0; i < symcount; i++)
7094 if (isymbuf[i].st_shndx != SHN_UNDEF)
7095 *ind++ = &isymbuf[i];
7096 indbufend = ind;
7097
7098 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7099 elf_sort_elf_symbol);
7100
7101 shndx_count = 0;
7102 if (indbufend > indbuf)
7103 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7104 if (ind[0]->st_shndx != ind[1]->st_shndx)
7105 shndx_count++;
7106
7107 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7108 + (indbufend - indbuf) * sizeof (*ssym));
7109 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7110 if (ssymbuf == NULL)
7111 {
7112 free (indbuf);
7113 return NULL;
7114 }
7115
7116 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7117 ssymbuf->ssym = NULL;
7118 ssymbuf->count = shndx_count;
7119 ssymbuf->st_shndx = 0;
7120 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7121 {
7122 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7123 {
7124 ssymhead++;
7125 ssymhead->ssym = ssym;
7126 ssymhead->count = 0;
7127 ssymhead->st_shndx = (*ind)->st_shndx;
7128 }
7129 ssym->st_name = (*ind)->st_name;
7130 ssym->st_info = (*ind)->st_info;
7131 ssym->st_other = (*ind)->st_other;
7132 ssymhead->count++;
7133 }
7134 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7135 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7136 == total_size));
7137
7138 free (indbuf);
7139 return ssymbuf;
7140 }
7141
7142 /* Check if 2 sections define the same set of local and global
7143 symbols. */
7144
7145 static bfd_boolean
7146 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7147 struct bfd_link_info *info)
7148 {
7149 bfd *bfd1, *bfd2;
7150 const struct elf_backend_data *bed1, *bed2;
7151 Elf_Internal_Shdr *hdr1, *hdr2;
7152 bfd_size_type symcount1, symcount2;
7153 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7154 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7155 Elf_Internal_Sym *isym, *isymend;
7156 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7157 bfd_size_type count1, count2, i;
7158 unsigned int shndx1, shndx2;
7159 bfd_boolean result;
7160
7161 bfd1 = sec1->owner;
7162 bfd2 = sec2->owner;
7163
7164 /* Both sections have to be in ELF. */
7165 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7166 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7167 return FALSE;
7168
7169 if (elf_section_type (sec1) != elf_section_type (sec2))
7170 return FALSE;
7171
7172 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7173 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7174 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7175 return FALSE;
7176
7177 bed1 = get_elf_backend_data (bfd1);
7178 bed2 = get_elf_backend_data (bfd2);
7179 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7180 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7181 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7182 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7183
7184 if (symcount1 == 0 || symcount2 == 0)
7185 return FALSE;
7186
7187 result = FALSE;
7188 isymbuf1 = NULL;
7189 isymbuf2 = NULL;
7190 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7191 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7192
7193 if (ssymbuf1 == NULL)
7194 {
7195 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7196 NULL, NULL, NULL);
7197 if (isymbuf1 == NULL)
7198 goto done;
7199
7200 if (!info->reduce_memory_overheads)
7201 elf_tdata (bfd1)->symbuf = ssymbuf1
7202 = elf_create_symbuf (symcount1, isymbuf1);
7203 }
7204
7205 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7206 {
7207 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7208 NULL, NULL, NULL);
7209 if (isymbuf2 == NULL)
7210 goto done;
7211
7212 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7213 elf_tdata (bfd2)->symbuf = ssymbuf2
7214 = elf_create_symbuf (symcount2, isymbuf2);
7215 }
7216
7217 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7218 {
7219 /* Optimized faster version. */
7220 bfd_size_type lo, hi, mid;
7221 struct elf_symbol *symp;
7222 struct elf_symbuf_symbol *ssym, *ssymend;
7223
7224 lo = 0;
7225 hi = ssymbuf1->count;
7226 ssymbuf1++;
7227 count1 = 0;
7228 while (lo < hi)
7229 {
7230 mid = (lo + hi) / 2;
7231 if (shndx1 < ssymbuf1[mid].st_shndx)
7232 hi = mid;
7233 else if (shndx1 > ssymbuf1[mid].st_shndx)
7234 lo = mid + 1;
7235 else
7236 {
7237 count1 = ssymbuf1[mid].count;
7238 ssymbuf1 += mid;
7239 break;
7240 }
7241 }
7242
7243 lo = 0;
7244 hi = ssymbuf2->count;
7245 ssymbuf2++;
7246 count2 = 0;
7247 while (lo < hi)
7248 {
7249 mid = (lo + hi) / 2;
7250 if (shndx2 < ssymbuf2[mid].st_shndx)
7251 hi = mid;
7252 else if (shndx2 > ssymbuf2[mid].st_shndx)
7253 lo = mid + 1;
7254 else
7255 {
7256 count2 = ssymbuf2[mid].count;
7257 ssymbuf2 += mid;
7258 break;
7259 }
7260 }
7261
7262 if (count1 == 0 || count2 == 0 || count1 != count2)
7263 goto done;
7264
7265 symtable1 = (struct elf_symbol *)
7266 bfd_malloc (count1 * sizeof (struct elf_symbol));
7267 symtable2 = (struct elf_symbol *)
7268 bfd_malloc (count2 * sizeof (struct elf_symbol));
7269 if (symtable1 == NULL || symtable2 == NULL)
7270 goto done;
7271
7272 symp = symtable1;
7273 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7274 ssym < ssymend; ssym++, symp++)
7275 {
7276 symp->u.ssym = ssym;
7277 symp->name = bfd_elf_string_from_elf_section (bfd1,
7278 hdr1->sh_link,
7279 ssym->st_name);
7280 }
7281
7282 symp = symtable2;
7283 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7284 ssym < ssymend; ssym++, symp++)
7285 {
7286 symp->u.ssym = ssym;
7287 symp->name = bfd_elf_string_from_elf_section (bfd2,
7288 hdr2->sh_link,
7289 ssym->st_name);
7290 }
7291
7292 /* Sort symbol by name. */
7293 qsort (symtable1, count1, sizeof (struct elf_symbol),
7294 elf_sym_name_compare);
7295 qsort (symtable2, count1, sizeof (struct elf_symbol),
7296 elf_sym_name_compare);
7297
7298 for (i = 0; i < count1; i++)
7299 /* Two symbols must have the same binding, type and name. */
7300 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7301 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7302 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7303 goto done;
7304
7305 result = TRUE;
7306 goto done;
7307 }
7308
7309 symtable1 = (struct elf_symbol *)
7310 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7311 symtable2 = (struct elf_symbol *)
7312 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7313 if (symtable1 == NULL || symtable2 == NULL)
7314 goto done;
7315
7316 /* Count definitions in the section. */
7317 count1 = 0;
7318 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7319 if (isym->st_shndx == shndx1)
7320 symtable1[count1++].u.isym = isym;
7321
7322 count2 = 0;
7323 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7324 if (isym->st_shndx == shndx2)
7325 symtable2[count2++].u.isym = isym;
7326
7327 if (count1 == 0 || count2 == 0 || count1 != count2)
7328 goto done;
7329
7330 for (i = 0; i < count1; i++)
7331 symtable1[i].name
7332 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7333 symtable1[i].u.isym->st_name);
7334
7335 for (i = 0; i < count2; i++)
7336 symtable2[i].name
7337 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7338 symtable2[i].u.isym->st_name);
7339
7340 /* Sort symbol by name. */
7341 qsort (symtable1, count1, sizeof (struct elf_symbol),
7342 elf_sym_name_compare);
7343 qsort (symtable2, count1, sizeof (struct elf_symbol),
7344 elf_sym_name_compare);
7345
7346 for (i = 0; i < count1; i++)
7347 /* Two symbols must have the same binding, type and name. */
7348 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7349 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7350 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7351 goto done;
7352
7353 result = TRUE;
7354
7355 done:
7356 if (symtable1)
7357 free (symtable1);
7358 if (symtable2)
7359 free (symtable2);
7360 if (isymbuf1)
7361 free (isymbuf1);
7362 if (isymbuf2)
7363 free (isymbuf2);
7364
7365 return result;
7366 }
7367
7368 /* Return TRUE if 2 section types are compatible. */
7369
7370 bfd_boolean
7371 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7372 bfd *bbfd, const asection *bsec)
7373 {
7374 if (asec == NULL
7375 || bsec == NULL
7376 || abfd->xvec->flavour != bfd_target_elf_flavour
7377 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7378 return TRUE;
7379
7380 return elf_section_type (asec) == elf_section_type (bsec);
7381 }
7382 \f
7383 /* Final phase of ELF linker. */
7384
7385 /* A structure we use to avoid passing large numbers of arguments. */
7386
7387 struct elf_final_link_info
7388 {
7389 /* General link information. */
7390 struct bfd_link_info *info;
7391 /* Output BFD. */
7392 bfd *output_bfd;
7393 /* Symbol string table. */
7394 struct bfd_strtab_hash *symstrtab;
7395 /* .dynsym section. */
7396 asection *dynsym_sec;
7397 /* .hash section. */
7398 asection *hash_sec;
7399 /* symbol version section (.gnu.version). */
7400 asection *symver_sec;
7401 /* Buffer large enough to hold contents of any section. */
7402 bfd_byte *contents;
7403 /* Buffer large enough to hold external relocs of any section. */
7404 void *external_relocs;
7405 /* Buffer large enough to hold internal relocs of any section. */
7406 Elf_Internal_Rela *internal_relocs;
7407 /* Buffer large enough to hold external local symbols of any input
7408 BFD. */
7409 bfd_byte *external_syms;
7410 /* And a buffer for symbol section indices. */
7411 Elf_External_Sym_Shndx *locsym_shndx;
7412 /* Buffer large enough to hold internal local symbols of any input
7413 BFD. */
7414 Elf_Internal_Sym *internal_syms;
7415 /* Array large enough to hold a symbol index for each local symbol
7416 of any input BFD. */
7417 long *indices;
7418 /* Array large enough to hold a section pointer for each local
7419 symbol of any input BFD. */
7420 asection **sections;
7421 /* Buffer to hold swapped out symbols. */
7422 bfd_byte *symbuf;
7423 /* And one for symbol section indices. */
7424 Elf_External_Sym_Shndx *symshndxbuf;
7425 /* Number of swapped out symbols in buffer. */
7426 size_t symbuf_count;
7427 /* Number of symbols which fit in symbuf. */
7428 size_t symbuf_size;
7429 /* And same for symshndxbuf. */
7430 size_t shndxbuf_size;
7431 /* Number of STT_FILE syms seen. */
7432 size_t filesym_count;
7433 };
7434
7435 /* This struct is used to pass information to elf_link_output_extsym. */
7436
7437 struct elf_outext_info
7438 {
7439 bfd_boolean failed;
7440 bfd_boolean localsyms;
7441 bfd_boolean need_second_pass;
7442 bfd_boolean second_pass;
7443 bfd_boolean file_sym_done;
7444 struct elf_final_link_info *flinfo;
7445 };
7446
7447
7448 /* Support for evaluating a complex relocation.
7449
7450 Complex relocations are generalized, self-describing relocations. The
7451 implementation of them consists of two parts: complex symbols, and the
7452 relocations themselves.
7453
7454 The relocations are use a reserved elf-wide relocation type code (R_RELC
7455 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7456 information (start bit, end bit, word width, etc) into the addend. This
7457 information is extracted from CGEN-generated operand tables within gas.
7458
7459 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7460 internal) representing prefix-notation expressions, including but not
7461 limited to those sorts of expressions normally encoded as addends in the
7462 addend field. The symbol mangling format is:
7463
7464 <node> := <literal>
7465 | <unary-operator> ':' <node>
7466 | <binary-operator> ':' <node> ':' <node>
7467 ;
7468
7469 <literal> := 's' <digits=N> ':' <N character symbol name>
7470 | 'S' <digits=N> ':' <N character section name>
7471 | '#' <hexdigits>
7472 ;
7473
7474 <binary-operator> := as in C
7475 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7476
7477 static void
7478 set_symbol_value (bfd *bfd_with_globals,
7479 Elf_Internal_Sym *isymbuf,
7480 size_t locsymcount,
7481 size_t symidx,
7482 bfd_vma val)
7483 {
7484 struct elf_link_hash_entry **sym_hashes;
7485 struct elf_link_hash_entry *h;
7486 size_t extsymoff = locsymcount;
7487
7488 if (symidx < locsymcount)
7489 {
7490 Elf_Internal_Sym *sym;
7491
7492 sym = isymbuf + symidx;
7493 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7494 {
7495 /* It is a local symbol: move it to the
7496 "absolute" section and give it a value. */
7497 sym->st_shndx = SHN_ABS;
7498 sym->st_value = val;
7499 return;
7500 }
7501 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7502 extsymoff = 0;
7503 }
7504
7505 /* It is a global symbol: set its link type
7506 to "defined" and give it a value. */
7507
7508 sym_hashes = elf_sym_hashes (bfd_with_globals);
7509 h = sym_hashes [symidx - extsymoff];
7510 while (h->root.type == bfd_link_hash_indirect
7511 || h->root.type == bfd_link_hash_warning)
7512 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7513 h->root.type = bfd_link_hash_defined;
7514 h->root.u.def.value = val;
7515 h->root.u.def.section = bfd_abs_section_ptr;
7516 }
7517
7518 static bfd_boolean
7519 resolve_symbol (const char *name,
7520 bfd *input_bfd,
7521 struct elf_final_link_info *flinfo,
7522 bfd_vma *result,
7523 Elf_Internal_Sym *isymbuf,
7524 size_t locsymcount)
7525 {
7526 Elf_Internal_Sym *sym;
7527 struct bfd_link_hash_entry *global_entry;
7528 const char *candidate = NULL;
7529 Elf_Internal_Shdr *symtab_hdr;
7530 size_t i;
7531
7532 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7533
7534 for (i = 0; i < locsymcount; ++ i)
7535 {
7536 sym = isymbuf + i;
7537
7538 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7539 continue;
7540
7541 candidate = bfd_elf_string_from_elf_section (input_bfd,
7542 symtab_hdr->sh_link,
7543 sym->st_name);
7544 #ifdef DEBUG
7545 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7546 name, candidate, (unsigned long) sym->st_value);
7547 #endif
7548 if (candidate && strcmp (candidate, name) == 0)
7549 {
7550 asection *sec = flinfo->sections [i];
7551
7552 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7553 *result += sec->output_offset + sec->output_section->vma;
7554 #ifdef DEBUG
7555 printf ("Found symbol with value %8.8lx\n",
7556 (unsigned long) *result);
7557 #endif
7558 return TRUE;
7559 }
7560 }
7561
7562 /* Hmm, haven't found it yet. perhaps it is a global. */
7563 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7564 FALSE, FALSE, TRUE);
7565 if (!global_entry)
7566 return FALSE;
7567
7568 if (global_entry->type == bfd_link_hash_defined
7569 || global_entry->type == bfd_link_hash_defweak)
7570 {
7571 *result = (global_entry->u.def.value
7572 + global_entry->u.def.section->output_section->vma
7573 + global_entry->u.def.section->output_offset);
7574 #ifdef DEBUG
7575 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7576 global_entry->root.string, (unsigned long) *result);
7577 #endif
7578 return TRUE;
7579 }
7580
7581 return FALSE;
7582 }
7583
7584 static bfd_boolean
7585 resolve_section (const char *name,
7586 asection *sections,
7587 bfd_vma *result)
7588 {
7589 asection *curr;
7590 unsigned int len;
7591
7592 for (curr = sections; curr; curr = curr->next)
7593 if (strcmp (curr->name, name) == 0)
7594 {
7595 *result = curr->vma;
7596 return TRUE;
7597 }
7598
7599 /* Hmm. still haven't found it. try pseudo-section names. */
7600 for (curr = sections; curr; curr = curr->next)
7601 {
7602 len = strlen (curr->name);
7603 if (len > strlen (name))
7604 continue;
7605
7606 if (strncmp (curr->name, name, len) == 0)
7607 {
7608 if (strncmp (".end", name + len, 4) == 0)
7609 {
7610 *result = curr->vma + curr->size;
7611 return TRUE;
7612 }
7613
7614 /* Insert more pseudo-section names here, if you like. */
7615 }
7616 }
7617
7618 return FALSE;
7619 }
7620
7621 static void
7622 undefined_reference (const char *reftype, const char *name)
7623 {
7624 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7625 reftype, name);
7626 }
7627
7628 static bfd_boolean
7629 eval_symbol (bfd_vma *result,
7630 const char **symp,
7631 bfd *input_bfd,
7632 struct elf_final_link_info *flinfo,
7633 bfd_vma dot,
7634 Elf_Internal_Sym *isymbuf,
7635 size_t locsymcount,
7636 int signed_p)
7637 {
7638 size_t len;
7639 size_t symlen;
7640 bfd_vma a;
7641 bfd_vma b;
7642 char symbuf[4096];
7643 const char *sym = *symp;
7644 const char *symend;
7645 bfd_boolean symbol_is_section = FALSE;
7646
7647 len = strlen (sym);
7648 symend = sym + len;
7649
7650 if (len < 1 || len > sizeof (symbuf))
7651 {
7652 bfd_set_error (bfd_error_invalid_operation);
7653 return FALSE;
7654 }
7655
7656 switch (* sym)
7657 {
7658 case '.':
7659 *result = dot;
7660 *symp = sym + 1;
7661 return TRUE;
7662
7663 case '#':
7664 ++sym;
7665 *result = strtoul (sym, (char **) symp, 16);
7666 return TRUE;
7667
7668 case 'S':
7669 symbol_is_section = TRUE;
7670 case 's':
7671 ++sym;
7672 symlen = strtol (sym, (char **) symp, 10);
7673 sym = *symp + 1; /* Skip the trailing ':'. */
7674
7675 if (symend < sym || symlen + 1 > sizeof (symbuf))
7676 {
7677 bfd_set_error (bfd_error_invalid_operation);
7678 return FALSE;
7679 }
7680
7681 memcpy (symbuf, sym, symlen);
7682 symbuf[symlen] = '\0';
7683 *symp = sym + symlen;
7684
7685 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7686 the symbol as a section, or vice-versa. so we're pretty liberal in our
7687 interpretation here; section means "try section first", not "must be a
7688 section", and likewise with symbol. */
7689
7690 if (symbol_is_section)
7691 {
7692 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7693 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7694 isymbuf, locsymcount))
7695 {
7696 undefined_reference ("section", symbuf);
7697 return FALSE;
7698 }
7699 }
7700 else
7701 {
7702 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7703 isymbuf, locsymcount)
7704 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7705 result))
7706 {
7707 undefined_reference ("symbol", symbuf);
7708 return FALSE;
7709 }
7710 }
7711
7712 return TRUE;
7713
7714 /* All that remains are operators. */
7715
7716 #define UNARY_OP(op) \
7717 if (strncmp (sym, #op, strlen (#op)) == 0) \
7718 { \
7719 sym += strlen (#op); \
7720 if (*sym == ':') \
7721 ++sym; \
7722 *symp = sym; \
7723 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7724 isymbuf, locsymcount, signed_p)) \
7725 return FALSE; \
7726 if (signed_p) \
7727 *result = op ((bfd_signed_vma) a); \
7728 else \
7729 *result = op a; \
7730 return TRUE; \
7731 }
7732
7733 #define BINARY_OP(op) \
7734 if (strncmp (sym, #op, strlen (#op)) == 0) \
7735 { \
7736 sym += strlen (#op); \
7737 if (*sym == ':') \
7738 ++sym; \
7739 *symp = sym; \
7740 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7741 isymbuf, locsymcount, signed_p)) \
7742 return FALSE; \
7743 ++*symp; \
7744 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7745 isymbuf, locsymcount, signed_p)) \
7746 return FALSE; \
7747 if (signed_p) \
7748 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7749 else \
7750 *result = a op b; \
7751 return TRUE; \
7752 }
7753
7754 default:
7755 UNARY_OP (0-);
7756 BINARY_OP (<<);
7757 BINARY_OP (>>);
7758 BINARY_OP (==);
7759 BINARY_OP (!=);
7760 BINARY_OP (<=);
7761 BINARY_OP (>=);
7762 BINARY_OP (&&);
7763 BINARY_OP (||);
7764 UNARY_OP (~);
7765 UNARY_OP (!);
7766 BINARY_OP (*);
7767 BINARY_OP (/);
7768 BINARY_OP (%);
7769 BINARY_OP (^);
7770 BINARY_OP (|);
7771 BINARY_OP (&);
7772 BINARY_OP (+);
7773 BINARY_OP (-);
7774 BINARY_OP (<);
7775 BINARY_OP (>);
7776 #undef UNARY_OP
7777 #undef BINARY_OP
7778 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7779 bfd_set_error (bfd_error_invalid_operation);
7780 return FALSE;
7781 }
7782 }
7783
7784 static void
7785 put_value (bfd_vma size,
7786 unsigned long chunksz,
7787 bfd *input_bfd,
7788 bfd_vma x,
7789 bfd_byte *location)
7790 {
7791 location += (size - chunksz);
7792
7793 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7794 {
7795 switch (chunksz)
7796 {
7797 default:
7798 case 0:
7799 abort ();
7800 case 1:
7801 bfd_put_8 (input_bfd, x, location);
7802 break;
7803 case 2:
7804 bfd_put_16 (input_bfd, x, location);
7805 break;
7806 case 4:
7807 bfd_put_32 (input_bfd, x, location);
7808 break;
7809 case 8:
7810 #ifdef BFD64
7811 bfd_put_64 (input_bfd, x, location);
7812 #else
7813 abort ();
7814 #endif
7815 break;
7816 }
7817 }
7818 }
7819
7820 static bfd_vma
7821 get_value (bfd_vma size,
7822 unsigned long chunksz,
7823 bfd *input_bfd,
7824 bfd_byte *location)
7825 {
7826 int shift;
7827 bfd_vma x = 0;
7828
7829 /* Sanity checks. */
7830 BFD_ASSERT (chunksz <= sizeof (x)
7831 && size >= chunksz
7832 && chunksz != 0
7833 && (size % chunksz) == 0
7834 && input_bfd != NULL
7835 && location != NULL);
7836
7837 if (chunksz == sizeof (x))
7838 {
7839 BFD_ASSERT (size == chunksz);
7840
7841 /* Make sure that we do not perform an undefined shift operation.
7842 We know that size == chunksz so there will only be one iteration
7843 of the loop below. */
7844 shift = 0;
7845 }
7846 else
7847 shift = 8 * chunksz;
7848
7849 for (; size; size -= chunksz, location += chunksz)
7850 {
7851 switch (chunksz)
7852 {
7853 case 1:
7854 x = (x << shift) | bfd_get_8 (input_bfd, location);
7855 break;
7856 case 2:
7857 x = (x << shift) | bfd_get_16 (input_bfd, location);
7858 break;
7859 case 4:
7860 x = (x << shift) | bfd_get_32 (input_bfd, location);
7861 break;
7862 #ifdef BFD64
7863 case 8:
7864 x = (x << shift) | bfd_get_64 (input_bfd, location);
7865 break;
7866 #endif
7867 default:
7868 abort ();
7869 }
7870 }
7871 return x;
7872 }
7873
7874 static void
7875 decode_complex_addend (unsigned long *start, /* in bits */
7876 unsigned long *oplen, /* in bits */
7877 unsigned long *len, /* in bits */
7878 unsigned long *wordsz, /* in bytes */
7879 unsigned long *chunksz, /* in bytes */
7880 unsigned long *lsb0_p,
7881 unsigned long *signed_p,
7882 unsigned long *trunc_p,
7883 unsigned long encoded)
7884 {
7885 * start = encoded & 0x3F;
7886 * len = (encoded >> 6) & 0x3F;
7887 * oplen = (encoded >> 12) & 0x3F;
7888 * wordsz = (encoded >> 18) & 0xF;
7889 * chunksz = (encoded >> 22) & 0xF;
7890 * lsb0_p = (encoded >> 27) & 1;
7891 * signed_p = (encoded >> 28) & 1;
7892 * trunc_p = (encoded >> 29) & 1;
7893 }
7894
7895 bfd_reloc_status_type
7896 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7897 asection *input_section ATTRIBUTE_UNUSED,
7898 bfd_byte *contents,
7899 Elf_Internal_Rela *rel,
7900 bfd_vma relocation)
7901 {
7902 bfd_vma shift, x, mask;
7903 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7904 bfd_reloc_status_type r;
7905
7906 /* Perform this reloc, since it is complex.
7907 (this is not to say that it necessarily refers to a complex
7908 symbol; merely that it is a self-describing CGEN based reloc.
7909 i.e. the addend has the complete reloc information (bit start, end,
7910 word size, etc) encoded within it.). */
7911
7912 decode_complex_addend (&start, &oplen, &len, &wordsz,
7913 &chunksz, &lsb0_p, &signed_p,
7914 &trunc_p, rel->r_addend);
7915
7916 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7917
7918 if (lsb0_p)
7919 shift = (start + 1) - len;
7920 else
7921 shift = (8 * wordsz) - (start + len);
7922
7923 /* FIXME: octets_per_byte. */
7924 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7925
7926 #ifdef DEBUG
7927 printf ("Doing complex reloc: "
7928 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7929 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7930 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7931 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7932 oplen, (unsigned long) x, (unsigned long) mask,
7933 (unsigned long) relocation);
7934 #endif
7935
7936 r = bfd_reloc_ok;
7937 if (! trunc_p)
7938 /* Now do an overflow check. */
7939 r = bfd_check_overflow ((signed_p
7940 ? complain_overflow_signed
7941 : complain_overflow_unsigned),
7942 len, 0, (8 * wordsz),
7943 relocation);
7944
7945 /* Do the deed. */
7946 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7947
7948 #ifdef DEBUG
7949 printf (" relocation: %8.8lx\n"
7950 " shifted mask: %8.8lx\n"
7951 " shifted/masked reloc: %8.8lx\n"
7952 " result: %8.8lx\n",
7953 (unsigned long) relocation, (unsigned long) (mask << shift),
7954 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7955 #endif
7956 /* FIXME: octets_per_byte. */
7957 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7958 return r;
7959 }
7960
7961 /* qsort comparison functions sorting external relocs by r_offset. */
7962
7963 static int
7964 cmp_ext32l_r_offset (const void *p, const void *q)
7965 {
7966 union aligned32
7967 {
7968 uint32_t v;
7969 unsigned char c[4];
7970 };
7971 const union aligned32 *a
7972 = (const union aligned32 *) ((const Elf32_External_Rel *) p)->r_offset;
7973 const union aligned32 *b
7974 = (const union aligned32 *) ((const Elf32_External_Rel *) q)->r_offset;
7975
7976 uint32_t aval = ( (uint32_t) a->c[0]
7977 | (uint32_t) a->c[1] << 8
7978 | (uint32_t) a->c[2] << 16
7979 | (uint32_t) a->c[3] << 24);
7980 uint32_t bval = ( (uint32_t) b->c[0]
7981 | (uint32_t) b->c[1] << 8
7982 | (uint32_t) b->c[2] << 16
7983 | (uint32_t) b->c[3] << 24);
7984 if (aval < bval)
7985 return -1;
7986 else if (aval > bval)
7987 return 1;
7988 return 0;
7989 }
7990
7991 static int
7992 cmp_ext32b_r_offset (const void *p, const void *q)
7993 {
7994 union aligned32
7995 {
7996 uint32_t v;
7997 unsigned char c[4];
7998 };
7999 const union aligned32 *a
8000 = (const union aligned32 *) ((const Elf32_External_Rel *) p)->r_offset;
8001 const union aligned32 *b
8002 = (const union aligned32 *) ((const Elf32_External_Rel *) q)->r_offset;
8003
8004 uint32_t aval = ( (uint32_t) a->c[0] << 24
8005 | (uint32_t) a->c[1] << 16
8006 | (uint32_t) a->c[2] << 8
8007 | (uint32_t) a->c[3]);
8008 uint32_t bval = ( (uint32_t) b->c[0] << 24
8009 | (uint32_t) b->c[1] << 16
8010 | (uint32_t) b->c[2] << 8
8011 | (uint32_t) b->c[3]);
8012 if (aval < bval)
8013 return -1;
8014 else if (aval > bval)
8015 return 1;
8016 return 0;
8017 }
8018
8019 #ifdef BFD_HOST_64_BIT
8020 static int
8021 cmp_ext64l_r_offset (const void *p, const void *q)
8022 {
8023 union aligned64
8024 {
8025 uint64_t v;
8026 unsigned char c[8];
8027 };
8028 const union aligned64 *a
8029 = (const union aligned64 *) ((const Elf64_External_Rel *) p)->r_offset;
8030 const union aligned64 *b
8031 = (const union aligned64 *) ((const Elf64_External_Rel *) q)->r_offset;
8032
8033 uint64_t aval = ( (uint64_t) a->c[0]
8034 | (uint64_t) a->c[1] << 8
8035 | (uint64_t) a->c[2] << 16
8036 | (uint64_t) a->c[3] << 24
8037 | (uint64_t) a->c[4] << 32
8038 | (uint64_t) a->c[5] << 40
8039 | (uint64_t) a->c[6] << 48
8040 | (uint64_t) a->c[7] << 56);
8041 uint64_t bval = ( (uint64_t) b->c[0]
8042 | (uint64_t) b->c[1] << 8
8043 | (uint64_t) b->c[2] << 16
8044 | (uint64_t) b->c[3] << 24
8045 | (uint64_t) b->c[4] << 32
8046 | (uint64_t) b->c[5] << 40
8047 | (uint64_t) b->c[6] << 48
8048 | (uint64_t) b->c[7] << 56);
8049 if (aval < bval)
8050 return -1;
8051 else if (aval > bval)
8052 return 1;
8053 return 0;
8054 }
8055
8056 static int
8057 cmp_ext64b_r_offset (const void *p, const void *q)
8058 {
8059 union aligned64
8060 {
8061 uint64_t v;
8062 unsigned char c[8];
8063 };
8064 const union aligned64 *a
8065 = (const union aligned64 *) ((const Elf64_External_Rel *) p)->r_offset;
8066 const union aligned64 *b
8067 = (const union aligned64 *) ((const Elf64_External_Rel *) q)->r_offset;
8068
8069 uint64_t aval = ( (uint64_t) a->c[0] << 56
8070 | (uint64_t) a->c[1] << 48
8071 | (uint64_t) a->c[2] << 40
8072 | (uint64_t) a->c[3] << 32
8073 | (uint64_t) a->c[4] << 24
8074 | (uint64_t) a->c[5] << 16
8075 | (uint64_t) a->c[6] << 8
8076 | (uint64_t) a->c[7]);
8077 uint64_t bval = ( (uint64_t) b->c[0] << 56
8078 | (uint64_t) b->c[1] << 48
8079 | (uint64_t) b->c[2] << 40
8080 | (uint64_t) b->c[3] << 32
8081 | (uint64_t) b->c[4] << 24
8082 | (uint64_t) b->c[5] << 16
8083 | (uint64_t) b->c[6] << 8
8084 | (uint64_t) b->c[7]);
8085 if (aval < bval)
8086 return -1;
8087 else if (aval > bval)
8088 return 1;
8089 return 0;
8090 }
8091 #endif
8092
8093 /* When performing a relocatable link, the input relocations are
8094 preserved. But, if they reference global symbols, the indices
8095 referenced must be updated. Update all the relocations found in
8096 RELDATA. */
8097
8098 static void
8099 elf_link_adjust_relocs (bfd *abfd,
8100 struct bfd_elf_section_reloc_data *reldata,
8101 bfd_boolean sort)
8102 {
8103 unsigned int i;
8104 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8105 bfd_byte *erela;
8106 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8107 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8108 bfd_vma r_type_mask;
8109 int r_sym_shift;
8110 unsigned int count = reldata->count;
8111 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8112
8113 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8114 {
8115 swap_in = bed->s->swap_reloc_in;
8116 swap_out = bed->s->swap_reloc_out;
8117 }
8118 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8119 {
8120 swap_in = bed->s->swap_reloca_in;
8121 swap_out = bed->s->swap_reloca_out;
8122 }
8123 else
8124 abort ();
8125
8126 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8127 abort ();
8128
8129 if (bed->s->arch_size == 32)
8130 {
8131 r_type_mask = 0xff;
8132 r_sym_shift = 8;
8133 }
8134 else
8135 {
8136 r_type_mask = 0xffffffff;
8137 r_sym_shift = 32;
8138 }
8139
8140 erela = reldata->hdr->contents;
8141 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8142 {
8143 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8144 unsigned int j;
8145
8146 if (*rel_hash == NULL)
8147 continue;
8148
8149 BFD_ASSERT ((*rel_hash)->indx >= 0);
8150
8151 (*swap_in) (abfd, erela, irela);
8152 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8153 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8154 | (irela[j].r_info & r_type_mask));
8155 (*swap_out) (abfd, irela, erela);
8156 }
8157
8158 if (sort)
8159 {
8160 int (*compare) (const void *, const void *);
8161
8162 if (bed->s->arch_size == 32)
8163 {
8164 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8165 compare = cmp_ext32l_r_offset;
8166 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8167 compare = cmp_ext32b_r_offset;
8168 else
8169 abort ();
8170 }
8171 else
8172 {
8173 #ifdef BFD_HOST_64_BIT
8174 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8175 compare = cmp_ext64l_r_offset;
8176 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8177 compare = cmp_ext64b_r_offset;
8178 else
8179 #endif
8180 abort ();
8181 }
8182 qsort (reldata->hdr->contents, count, reldata->hdr->sh_entsize, compare);
8183 free (reldata->hashes);
8184 reldata->hashes = NULL;
8185 }
8186 }
8187
8188 struct elf_link_sort_rela
8189 {
8190 union {
8191 bfd_vma offset;
8192 bfd_vma sym_mask;
8193 } u;
8194 enum elf_reloc_type_class type;
8195 /* We use this as an array of size int_rels_per_ext_rel. */
8196 Elf_Internal_Rela rela[1];
8197 };
8198
8199 static int
8200 elf_link_sort_cmp1 (const void *A, const void *B)
8201 {
8202 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8203 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8204 int relativea, relativeb;
8205
8206 relativea = a->type == reloc_class_relative;
8207 relativeb = b->type == reloc_class_relative;
8208
8209 if (relativea < relativeb)
8210 return 1;
8211 if (relativea > relativeb)
8212 return -1;
8213 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8214 return -1;
8215 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8216 return 1;
8217 if (a->rela->r_offset < b->rela->r_offset)
8218 return -1;
8219 if (a->rela->r_offset > b->rela->r_offset)
8220 return 1;
8221 return 0;
8222 }
8223
8224 static int
8225 elf_link_sort_cmp2 (const void *A, const void *B)
8226 {
8227 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8228 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8229
8230 if (a->type < b->type)
8231 return -1;
8232 if (a->type > b->type)
8233 return 1;
8234 if (a->u.offset < b->u.offset)
8235 return -1;
8236 if (a->u.offset > b->u.offset)
8237 return 1;
8238 if (a->rela->r_offset < b->rela->r_offset)
8239 return -1;
8240 if (a->rela->r_offset > b->rela->r_offset)
8241 return 1;
8242 return 0;
8243 }
8244
8245 static size_t
8246 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8247 {
8248 asection *dynamic_relocs;
8249 asection *rela_dyn;
8250 asection *rel_dyn;
8251 bfd_size_type count, size;
8252 size_t i, ret, sort_elt, ext_size;
8253 bfd_byte *sort, *s_non_relative, *p;
8254 struct elf_link_sort_rela *sq;
8255 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8256 int i2e = bed->s->int_rels_per_ext_rel;
8257 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8258 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8259 struct bfd_link_order *lo;
8260 bfd_vma r_sym_mask;
8261 bfd_boolean use_rela;
8262
8263 /* Find a dynamic reloc section. */
8264 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8265 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8266 if (rela_dyn != NULL && rela_dyn->size > 0
8267 && rel_dyn != NULL && rel_dyn->size > 0)
8268 {
8269 bfd_boolean use_rela_initialised = FALSE;
8270
8271 /* This is just here to stop gcc from complaining.
8272 It's initialization checking code is not perfect. */
8273 use_rela = TRUE;
8274
8275 /* Both sections are present. Examine the sizes
8276 of the indirect sections to help us choose. */
8277 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8278 if (lo->type == bfd_indirect_link_order)
8279 {
8280 asection *o = lo->u.indirect.section;
8281
8282 if ((o->size % bed->s->sizeof_rela) == 0)
8283 {
8284 if ((o->size % bed->s->sizeof_rel) == 0)
8285 /* Section size is divisible by both rel and rela sizes.
8286 It is of no help to us. */
8287 ;
8288 else
8289 {
8290 /* Section size is only divisible by rela. */
8291 if (use_rela_initialised && (use_rela == FALSE))
8292 {
8293 _bfd_error_handler
8294 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8295 bfd_set_error (bfd_error_invalid_operation);
8296 return 0;
8297 }
8298 else
8299 {
8300 use_rela = TRUE;
8301 use_rela_initialised = TRUE;
8302 }
8303 }
8304 }
8305 else if ((o->size % bed->s->sizeof_rel) == 0)
8306 {
8307 /* Section size is only divisible by rel. */
8308 if (use_rela_initialised && (use_rela == TRUE))
8309 {
8310 _bfd_error_handler
8311 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8312 bfd_set_error (bfd_error_invalid_operation);
8313 return 0;
8314 }
8315 else
8316 {
8317 use_rela = FALSE;
8318 use_rela_initialised = TRUE;
8319 }
8320 }
8321 else
8322 {
8323 /* The section size is not divisible by either - something is wrong. */
8324 _bfd_error_handler
8325 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8326 bfd_set_error (bfd_error_invalid_operation);
8327 return 0;
8328 }
8329 }
8330
8331 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8332 if (lo->type == bfd_indirect_link_order)
8333 {
8334 asection *o = lo->u.indirect.section;
8335
8336 if ((o->size % bed->s->sizeof_rela) == 0)
8337 {
8338 if ((o->size % bed->s->sizeof_rel) == 0)
8339 /* Section size is divisible by both rel and rela sizes.
8340 It is of no help to us. */
8341 ;
8342 else
8343 {
8344 /* Section size is only divisible by rela. */
8345 if (use_rela_initialised && (use_rela == FALSE))
8346 {
8347 _bfd_error_handler
8348 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8349 bfd_set_error (bfd_error_invalid_operation);
8350 return 0;
8351 }
8352 else
8353 {
8354 use_rela = TRUE;
8355 use_rela_initialised = TRUE;
8356 }
8357 }
8358 }
8359 else if ((o->size % bed->s->sizeof_rel) == 0)
8360 {
8361 /* Section size is only divisible by rel. */
8362 if (use_rela_initialised && (use_rela == TRUE))
8363 {
8364 _bfd_error_handler
8365 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8366 bfd_set_error (bfd_error_invalid_operation);
8367 return 0;
8368 }
8369 else
8370 {
8371 use_rela = FALSE;
8372 use_rela_initialised = TRUE;
8373 }
8374 }
8375 else
8376 {
8377 /* The section size is not divisible by either - something is wrong. */
8378 _bfd_error_handler
8379 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8380 bfd_set_error (bfd_error_invalid_operation);
8381 return 0;
8382 }
8383 }
8384
8385 if (! use_rela_initialised)
8386 /* Make a guess. */
8387 use_rela = TRUE;
8388 }
8389 else if (rela_dyn != NULL && rela_dyn->size > 0)
8390 use_rela = TRUE;
8391 else if (rel_dyn != NULL && rel_dyn->size > 0)
8392 use_rela = FALSE;
8393 else
8394 return 0;
8395
8396 if (use_rela)
8397 {
8398 dynamic_relocs = rela_dyn;
8399 ext_size = bed->s->sizeof_rela;
8400 swap_in = bed->s->swap_reloca_in;
8401 swap_out = bed->s->swap_reloca_out;
8402 }
8403 else
8404 {
8405 dynamic_relocs = rel_dyn;
8406 ext_size = bed->s->sizeof_rel;
8407 swap_in = bed->s->swap_reloc_in;
8408 swap_out = bed->s->swap_reloc_out;
8409 }
8410
8411 size = 0;
8412 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8413 if (lo->type == bfd_indirect_link_order)
8414 size += lo->u.indirect.section->size;
8415
8416 if (size != dynamic_relocs->size)
8417 return 0;
8418
8419 sort_elt = (sizeof (struct elf_link_sort_rela)
8420 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8421
8422 count = dynamic_relocs->size / ext_size;
8423 if (count == 0)
8424 return 0;
8425 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8426
8427 if (sort == NULL)
8428 {
8429 (*info->callbacks->warning)
8430 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8431 return 0;
8432 }
8433
8434 if (bed->s->arch_size == 32)
8435 r_sym_mask = ~(bfd_vma) 0xff;
8436 else
8437 r_sym_mask = ~(bfd_vma) 0xffffffff;
8438
8439 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8440 if (lo->type == bfd_indirect_link_order)
8441 {
8442 bfd_byte *erel, *erelend;
8443 asection *o = lo->u.indirect.section;
8444
8445 if (o->contents == NULL && o->size != 0)
8446 {
8447 /* This is a reloc section that is being handled as a normal
8448 section. See bfd_section_from_shdr. We can't combine
8449 relocs in this case. */
8450 free (sort);
8451 return 0;
8452 }
8453 erel = o->contents;
8454 erelend = o->contents + o->size;
8455 /* FIXME: octets_per_byte. */
8456 p = sort + o->output_offset / ext_size * sort_elt;
8457
8458 while (erel < erelend)
8459 {
8460 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8461
8462 (*swap_in) (abfd, erel, s->rela);
8463 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8464 s->u.sym_mask = r_sym_mask;
8465 p += sort_elt;
8466 erel += ext_size;
8467 }
8468 }
8469
8470 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8471
8472 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8473 {
8474 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8475 if (s->type != reloc_class_relative)
8476 break;
8477 }
8478 ret = i;
8479 s_non_relative = p;
8480
8481 sq = (struct elf_link_sort_rela *) s_non_relative;
8482 for (; i < count; i++, p += sort_elt)
8483 {
8484 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8485 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8486 sq = sp;
8487 sp->u.offset = sq->rela->r_offset;
8488 }
8489
8490 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8491
8492 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8493 if (lo->type == bfd_indirect_link_order)
8494 {
8495 bfd_byte *erel, *erelend;
8496 asection *o = lo->u.indirect.section;
8497
8498 erel = o->contents;
8499 erelend = o->contents + o->size;
8500 /* FIXME: octets_per_byte. */
8501 p = sort + o->output_offset / ext_size * sort_elt;
8502 while (erel < erelend)
8503 {
8504 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8505 (*swap_out) (abfd, s->rela, erel);
8506 p += sort_elt;
8507 erel += ext_size;
8508 }
8509 }
8510
8511 free (sort);
8512 *psec = dynamic_relocs;
8513 return ret;
8514 }
8515
8516 /* Flush the output symbols to the file. */
8517
8518 static bfd_boolean
8519 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8520 const struct elf_backend_data *bed)
8521 {
8522 if (flinfo->symbuf_count > 0)
8523 {
8524 Elf_Internal_Shdr *hdr;
8525 file_ptr pos;
8526 bfd_size_type amt;
8527
8528 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8529 pos = hdr->sh_offset + hdr->sh_size;
8530 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8531 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8532 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8533 return FALSE;
8534
8535 hdr->sh_size += amt;
8536 flinfo->symbuf_count = 0;
8537 }
8538
8539 return TRUE;
8540 }
8541
8542 /* Add a symbol to the output symbol table. */
8543
8544 static int
8545 elf_link_output_sym (struct elf_final_link_info *flinfo,
8546 const char *name,
8547 Elf_Internal_Sym *elfsym,
8548 asection *input_sec,
8549 struct elf_link_hash_entry *h)
8550 {
8551 bfd_byte *dest;
8552 Elf_External_Sym_Shndx *destshndx;
8553 int (*output_symbol_hook)
8554 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8555 struct elf_link_hash_entry *);
8556 const struct elf_backend_data *bed;
8557
8558 bed = get_elf_backend_data (flinfo->output_bfd);
8559 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8560 if (output_symbol_hook != NULL)
8561 {
8562 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8563 if (ret != 1)
8564 return ret;
8565 }
8566
8567 if (name == NULL || *name == '\0')
8568 elfsym->st_name = 0;
8569 else if (input_sec->flags & SEC_EXCLUDE)
8570 elfsym->st_name = 0;
8571 else
8572 {
8573 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8574 name, TRUE, FALSE);
8575 if (elfsym->st_name == (unsigned long) -1)
8576 return 0;
8577 }
8578
8579 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8580 {
8581 if (! elf_link_flush_output_syms (flinfo, bed))
8582 return 0;
8583 }
8584
8585 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8586 destshndx = flinfo->symshndxbuf;
8587 if (destshndx != NULL)
8588 {
8589 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8590 {
8591 bfd_size_type amt;
8592
8593 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8594 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8595 amt * 2);
8596 if (destshndx == NULL)
8597 return 0;
8598 flinfo->symshndxbuf = destshndx;
8599 memset ((char *) destshndx + amt, 0, amt);
8600 flinfo->shndxbuf_size *= 2;
8601 }
8602 destshndx += bfd_get_symcount (flinfo->output_bfd);
8603 }
8604
8605 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8606 flinfo->symbuf_count += 1;
8607 bfd_get_symcount (flinfo->output_bfd) += 1;
8608
8609 return 1;
8610 }
8611
8612 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8613
8614 static bfd_boolean
8615 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8616 {
8617 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8618 && sym->st_shndx < SHN_LORESERVE)
8619 {
8620 /* The gABI doesn't support dynamic symbols in output sections
8621 beyond 64k. */
8622 (*_bfd_error_handler)
8623 (_("%B: Too many sections: %d (>= %d)"),
8624 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8625 bfd_set_error (bfd_error_nonrepresentable_section);
8626 return FALSE;
8627 }
8628 return TRUE;
8629 }
8630
8631 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8632 allowing an unsatisfied unversioned symbol in the DSO to match a
8633 versioned symbol that would normally require an explicit version.
8634 We also handle the case that a DSO references a hidden symbol
8635 which may be satisfied by a versioned symbol in another DSO. */
8636
8637 static bfd_boolean
8638 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8639 const struct elf_backend_data *bed,
8640 struct elf_link_hash_entry *h)
8641 {
8642 bfd *abfd;
8643 struct elf_link_loaded_list *loaded;
8644
8645 if (!is_elf_hash_table (info->hash))
8646 return FALSE;
8647
8648 /* Check indirect symbol. */
8649 while (h->root.type == bfd_link_hash_indirect)
8650 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8651
8652 switch (h->root.type)
8653 {
8654 default:
8655 abfd = NULL;
8656 break;
8657
8658 case bfd_link_hash_undefined:
8659 case bfd_link_hash_undefweak:
8660 abfd = h->root.u.undef.abfd;
8661 if ((abfd->flags & DYNAMIC) == 0
8662 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8663 return FALSE;
8664 break;
8665
8666 case bfd_link_hash_defined:
8667 case bfd_link_hash_defweak:
8668 abfd = h->root.u.def.section->owner;
8669 break;
8670
8671 case bfd_link_hash_common:
8672 abfd = h->root.u.c.p->section->owner;
8673 break;
8674 }
8675 BFD_ASSERT (abfd != NULL);
8676
8677 for (loaded = elf_hash_table (info)->loaded;
8678 loaded != NULL;
8679 loaded = loaded->next)
8680 {
8681 bfd *input;
8682 Elf_Internal_Shdr *hdr;
8683 bfd_size_type symcount;
8684 bfd_size_type extsymcount;
8685 bfd_size_type extsymoff;
8686 Elf_Internal_Shdr *versymhdr;
8687 Elf_Internal_Sym *isym;
8688 Elf_Internal_Sym *isymend;
8689 Elf_Internal_Sym *isymbuf;
8690 Elf_External_Versym *ever;
8691 Elf_External_Versym *extversym;
8692
8693 input = loaded->abfd;
8694
8695 /* We check each DSO for a possible hidden versioned definition. */
8696 if (input == abfd
8697 || (input->flags & DYNAMIC) == 0
8698 || elf_dynversym (input) == 0)
8699 continue;
8700
8701 hdr = &elf_tdata (input)->dynsymtab_hdr;
8702
8703 symcount = hdr->sh_size / bed->s->sizeof_sym;
8704 if (elf_bad_symtab (input))
8705 {
8706 extsymcount = symcount;
8707 extsymoff = 0;
8708 }
8709 else
8710 {
8711 extsymcount = symcount - hdr->sh_info;
8712 extsymoff = hdr->sh_info;
8713 }
8714
8715 if (extsymcount == 0)
8716 continue;
8717
8718 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8719 NULL, NULL, NULL);
8720 if (isymbuf == NULL)
8721 return FALSE;
8722
8723 /* Read in any version definitions. */
8724 versymhdr = &elf_tdata (input)->dynversym_hdr;
8725 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8726 if (extversym == NULL)
8727 goto error_ret;
8728
8729 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8730 || (bfd_bread (extversym, versymhdr->sh_size, input)
8731 != versymhdr->sh_size))
8732 {
8733 free (extversym);
8734 error_ret:
8735 free (isymbuf);
8736 return FALSE;
8737 }
8738
8739 ever = extversym + extsymoff;
8740 isymend = isymbuf + extsymcount;
8741 for (isym = isymbuf; isym < isymend; isym++, ever++)
8742 {
8743 const char *name;
8744 Elf_Internal_Versym iver;
8745 unsigned short version_index;
8746
8747 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8748 || isym->st_shndx == SHN_UNDEF)
8749 continue;
8750
8751 name = bfd_elf_string_from_elf_section (input,
8752 hdr->sh_link,
8753 isym->st_name);
8754 if (strcmp (name, h->root.root.string) != 0)
8755 continue;
8756
8757 _bfd_elf_swap_versym_in (input, ever, &iver);
8758
8759 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8760 && !(h->def_regular
8761 && h->forced_local))
8762 {
8763 /* If we have a non-hidden versioned sym, then it should
8764 have provided a definition for the undefined sym unless
8765 it is defined in a non-shared object and forced local.
8766 */
8767 abort ();
8768 }
8769
8770 version_index = iver.vs_vers & VERSYM_VERSION;
8771 if (version_index == 1 || version_index == 2)
8772 {
8773 /* This is the base or first version. We can use it. */
8774 free (extversym);
8775 free (isymbuf);
8776 return TRUE;
8777 }
8778 }
8779
8780 free (extversym);
8781 free (isymbuf);
8782 }
8783
8784 return FALSE;
8785 }
8786
8787 /* Add an external symbol to the symbol table. This is called from
8788 the hash table traversal routine. When generating a shared object,
8789 we go through the symbol table twice. The first time we output
8790 anything that might have been forced to local scope in a version
8791 script. The second time we output the symbols that are still
8792 global symbols. */
8793
8794 static bfd_boolean
8795 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8796 {
8797 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8798 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8799 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8800 bfd_boolean strip;
8801 Elf_Internal_Sym sym;
8802 asection *input_sec;
8803 const struct elf_backend_data *bed;
8804 long indx;
8805 int ret;
8806
8807 if (h->root.type == bfd_link_hash_warning)
8808 {
8809 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8810 if (h->root.type == bfd_link_hash_new)
8811 return TRUE;
8812 }
8813
8814 /* Decide whether to output this symbol in this pass. */
8815 if (eoinfo->localsyms)
8816 {
8817 if (!h->forced_local)
8818 return TRUE;
8819 if (eoinfo->second_pass
8820 && !((h->root.type == bfd_link_hash_defined
8821 || h->root.type == bfd_link_hash_defweak)
8822 && h->root.u.def.section->output_section != NULL))
8823 return TRUE;
8824
8825 if (!eoinfo->file_sym_done
8826 && (eoinfo->second_pass ? eoinfo->flinfo->filesym_count == 1
8827 : eoinfo->flinfo->filesym_count > 1))
8828 {
8829 /* Output a FILE symbol so that following locals are not associated
8830 with the wrong input file. */
8831 memset (&sym, 0, sizeof (sym));
8832 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8833 sym.st_shndx = SHN_ABS;
8834 if (!elf_link_output_sym (eoinfo->flinfo, NULL, &sym,
8835 bfd_und_section_ptr, NULL))
8836 return FALSE;
8837
8838 eoinfo->file_sym_done = TRUE;
8839 }
8840 }
8841 else
8842 {
8843 if (h->forced_local)
8844 return TRUE;
8845 }
8846
8847 bed = get_elf_backend_data (flinfo->output_bfd);
8848
8849 if (h->root.type == bfd_link_hash_undefined)
8850 {
8851 /* If we have an undefined symbol reference here then it must have
8852 come from a shared library that is being linked in. (Undefined
8853 references in regular files have already been handled unless
8854 they are in unreferenced sections which are removed by garbage
8855 collection). */
8856 bfd_boolean ignore_undef = FALSE;
8857
8858 /* Some symbols may be special in that the fact that they're
8859 undefined can be safely ignored - let backend determine that. */
8860 if (bed->elf_backend_ignore_undef_symbol)
8861 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8862
8863 /* If we are reporting errors for this situation then do so now. */
8864 if (!ignore_undef
8865 && h->ref_dynamic
8866 && (!h->ref_regular || flinfo->info->gc_sections)
8867 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8868 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8869 {
8870 if (!(flinfo->info->callbacks->undefined_symbol
8871 (flinfo->info, h->root.root.string,
8872 h->ref_regular ? NULL : h->root.u.undef.abfd,
8873 NULL, 0,
8874 (flinfo->info->unresolved_syms_in_shared_libs
8875 == RM_GENERATE_ERROR))))
8876 {
8877 bfd_set_error (bfd_error_bad_value);
8878 eoinfo->failed = TRUE;
8879 return FALSE;
8880 }
8881 }
8882 }
8883
8884 /* We should also warn if a forced local symbol is referenced from
8885 shared libraries. */
8886 if (!flinfo->info->relocatable
8887 && flinfo->info->executable
8888 && h->forced_local
8889 && h->ref_dynamic
8890 && h->def_regular
8891 && !h->dynamic_def
8892 && h->ref_dynamic_nonweak
8893 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8894 {
8895 bfd *def_bfd;
8896 const char *msg;
8897 struct elf_link_hash_entry *hi = h;
8898
8899 /* Check indirect symbol. */
8900 while (hi->root.type == bfd_link_hash_indirect)
8901 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8902
8903 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8904 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8905 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8906 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8907 else
8908 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8909 def_bfd = flinfo->output_bfd;
8910 if (hi->root.u.def.section != bfd_abs_section_ptr)
8911 def_bfd = hi->root.u.def.section->owner;
8912 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8913 h->root.root.string);
8914 bfd_set_error (bfd_error_bad_value);
8915 eoinfo->failed = TRUE;
8916 return FALSE;
8917 }
8918
8919 /* We don't want to output symbols that have never been mentioned by
8920 a regular file, or that we have been told to strip. However, if
8921 h->indx is set to -2, the symbol is used by a reloc and we must
8922 output it. */
8923 if (h->indx == -2)
8924 strip = FALSE;
8925 else if ((h->def_dynamic
8926 || h->ref_dynamic
8927 || h->root.type == bfd_link_hash_new)
8928 && !h->def_regular
8929 && !h->ref_regular)
8930 strip = TRUE;
8931 else if (flinfo->info->strip == strip_all)
8932 strip = TRUE;
8933 else if (flinfo->info->strip == strip_some
8934 && bfd_hash_lookup (flinfo->info->keep_hash,
8935 h->root.root.string, FALSE, FALSE) == NULL)
8936 strip = TRUE;
8937 else if ((h->root.type == bfd_link_hash_defined
8938 || h->root.type == bfd_link_hash_defweak)
8939 && ((flinfo->info->strip_discarded
8940 && discarded_section (h->root.u.def.section))
8941 || (h->root.u.def.section->owner != NULL
8942 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8943 strip = TRUE;
8944 else if ((h->root.type == bfd_link_hash_undefined
8945 || h->root.type == bfd_link_hash_undefweak)
8946 && h->root.u.undef.abfd != NULL
8947 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8948 strip = TRUE;
8949 else
8950 strip = FALSE;
8951
8952 /* If we're stripping it, and it's not a dynamic symbol, there's
8953 nothing else to do unless it is a forced local symbol or a
8954 STT_GNU_IFUNC symbol. */
8955 if (strip
8956 && h->dynindx == -1
8957 && h->type != STT_GNU_IFUNC
8958 && !h->forced_local)
8959 return TRUE;
8960
8961 sym.st_value = 0;
8962 sym.st_size = h->size;
8963 sym.st_other = h->other;
8964 if (h->forced_local)
8965 {
8966 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8967 /* Turn off visibility on local symbol. */
8968 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8969 }
8970 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
8971 else if (h->unique_global && h->def_regular)
8972 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8973 else if (h->root.type == bfd_link_hash_undefweak
8974 || h->root.type == bfd_link_hash_defweak)
8975 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8976 else
8977 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8978 sym.st_target_internal = h->target_internal;
8979
8980 switch (h->root.type)
8981 {
8982 default:
8983 case bfd_link_hash_new:
8984 case bfd_link_hash_warning:
8985 abort ();
8986 return FALSE;
8987
8988 case bfd_link_hash_undefined:
8989 case bfd_link_hash_undefweak:
8990 input_sec = bfd_und_section_ptr;
8991 sym.st_shndx = SHN_UNDEF;
8992 break;
8993
8994 case bfd_link_hash_defined:
8995 case bfd_link_hash_defweak:
8996 {
8997 input_sec = h->root.u.def.section;
8998 if (input_sec->output_section != NULL)
8999 {
9000 if (eoinfo->localsyms && flinfo->filesym_count == 1)
9001 {
9002 bfd_boolean second_pass_sym
9003 = (input_sec->owner == flinfo->output_bfd
9004 || input_sec->owner == NULL
9005 || (input_sec->flags & SEC_LINKER_CREATED) != 0
9006 || (input_sec->owner->flags & BFD_LINKER_CREATED) != 0);
9007
9008 eoinfo->need_second_pass |= second_pass_sym;
9009 if (eoinfo->second_pass != second_pass_sym)
9010 return TRUE;
9011 }
9012
9013 sym.st_shndx =
9014 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9015 input_sec->output_section);
9016 if (sym.st_shndx == SHN_BAD)
9017 {
9018 (*_bfd_error_handler)
9019 (_("%B: could not find output section %A for input section %A"),
9020 flinfo->output_bfd, input_sec->output_section, input_sec);
9021 bfd_set_error (bfd_error_nonrepresentable_section);
9022 eoinfo->failed = TRUE;
9023 return FALSE;
9024 }
9025
9026 /* ELF symbols in relocatable files are section relative,
9027 but in nonrelocatable files they are virtual
9028 addresses. */
9029 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9030 if (!flinfo->info->relocatable)
9031 {
9032 sym.st_value += input_sec->output_section->vma;
9033 if (h->type == STT_TLS)
9034 {
9035 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9036 if (tls_sec != NULL)
9037 sym.st_value -= tls_sec->vma;
9038 else
9039 {
9040 /* The TLS section may have been garbage collected. */
9041 BFD_ASSERT (flinfo->info->gc_sections
9042 && !input_sec->gc_mark);
9043 }
9044 }
9045 }
9046 }
9047 else
9048 {
9049 BFD_ASSERT (input_sec->owner == NULL
9050 || (input_sec->owner->flags & DYNAMIC) != 0);
9051 sym.st_shndx = SHN_UNDEF;
9052 input_sec = bfd_und_section_ptr;
9053 }
9054 }
9055 break;
9056
9057 case bfd_link_hash_common:
9058 input_sec = h->root.u.c.p->section;
9059 sym.st_shndx = bed->common_section_index (input_sec);
9060 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9061 break;
9062
9063 case bfd_link_hash_indirect:
9064 /* These symbols are created by symbol versioning. They point
9065 to the decorated version of the name. For example, if the
9066 symbol foo@@GNU_1.2 is the default, which should be used when
9067 foo is used with no version, then we add an indirect symbol
9068 foo which points to foo@@GNU_1.2. We ignore these symbols,
9069 since the indirected symbol is already in the hash table. */
9070 return TRUE;
9071 }
9072
9073 /* Give the processor backend a chance to tweak the symbol value,
9074 and also to finish up anything that needs to be done for this
9075 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9076 forced local syms when non-shared is due to a historical quirk.
9077 STT_GNU_IFUNC symbol must go through PLT. */
9078 if ((h->type == STT_GNU_IFUNC
9079 && h->def_regular
9080 && !flinfo->info->relocatable)
9081 || ((h->dynindx != -1
9082 || h->forced_local)
9083 && ((flinfo->info->shared
9084 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9085 || h->root.type != bfd_link_hash_undefweak))
9086 || !h->forced_local)
9087 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9088 {
9089 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9090 (flinfo->output_bfd, flinfo->info, h, &sym)))
9091 {
9092 eoinfo->failed = TRUE;
9093 return FALSE;
9094 }
9095 }
9096
9097 /* If we are marking the symbol as undefined, and there are no
9098 non-weak references to this symbol from a regular object, then
9099 mark the symbol as weak undefined; if there are non-weak
9100 references, mark the symbol as strong. We can't do this earlier,
9101 because it might not be marked as undefined until the
9102 finish_dynamic_symbol routine gets through with it. */
9103 if (sym.st_shndx == SHN_UNDEF
9104 && h->ref_regular
9105 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9106 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9107 {
9108 int bindtype;
9109 unsigned int type = ELF_ST_TYPE (sym.st_info);
9110
9111 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9112 if (type == STT_GNU_IFUNC)
9113 type = STT_FUNC;
9114
9115 if (h->ref_regular_nonweak)
9116 bindtype = STB_GLOBAL;
9117 else
9118 bindtype = STB_WEAK;
9119 sym.st_info = ELF_ST_INFO (bindtype, type);
9120 }
9121
9122 /* If this is a symbol defined in a dynamic library, don't use the
9123 symbol size from the dynamic library. Relinking an executable
9124 against a new library may introduce gratuitous changes in the
9125 executable's symbols if we keep the size. */
9126 if (sym.st_shndx == SHN_UNDEF
9127 && !h->def_regular
9128 && h->def_dynamic)
9129 sym.st_size = 0;
9130
9131 /* If a non-weak symbol with non-default visibility is not defined
9132 locally, it is a fatal error. */
9133 if (!flinfo->info->relocatable
9134 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9135 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9136 && h->root.type == bfd_link_hash_undefined
9137 && !h->def_regular)
9138 {
9139 const char *msg;
9140
9141 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9142 msg = _("%B: protected symbol `%s' isn't defined");
9143 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9144 msg = _("%B: internal symbol `%s' isn't defined");
9145 else
9146 msg = _("%B: hidden symbol `%s' isn't defined");
9147 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9148 bfd_set_error (bfd_error_bad_value);
9149 eoinfo->failed = TRUE;
9150 return FALSE;
9151 }
9152
9153 /* If this symbol should be put in the .dynsym section, then put it
9154 there now. We already know the symbol index. We also fill in
9155 the entry in the .hash section. */
9156 if (flinfo->dynsym_sec != NULL
9157 && h->dynindx != -1
9158 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9159 {
9160 bfd_byte *esym;
9161
9162 /* Since there is no version information in the dynamic string,
9163 if there is no version info in symbol version section, we will
9164 have a run-time problem. */
9165 if (h->verinfo.verdef == NULL)
9166 {
9167 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9168
9169 if (p && p [1] != '\0')
9170 {
9171 (*_bfd_error_handler)
9172 (_("%B: No symbol version section for versioned symbol `%s'"),
9173 flinfo->output_bfd, h->root.root.string);
9174 eoinfo->failed = TRUE;
9175 return FALSE;
9176 }
9177 }
9178
9179 sym.st_name = h->dynstr_index;
9180 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9181 if (!check_dynsym (flinfo->output_bfd, &sym))
9182 {
9183 eoinfo->failed = TRUE;
9184 return FALSE;
9185 }
9186 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9187
9188 if (flinfo->hash_sec != NULL)
9189 {
9190 size_t hash_entry_size;
9191 bfd_byte *bucketpos;
9192 bfd_vma chain;
9193 size_t bucketcount;
9194 size_t bucket;
9195
9196 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9197 bucket = h->u.elf_hash_value % bucketcount;
9198
9199 hash_entry_size
9200 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9201 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9202 + (bucket + 2) * hash_entry_size);
9203 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9204 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9205 bucketpos);
9206 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9207 ((bfd_byte *) flinfo->hash_sec->contents
9208 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9209 }
9210
9211 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9212 {
9213 Elf_Internal_Versym iversym;
9214 Elf_External_Versym *eversym;
9215
9216 if (!h->def_regular)
9217 {
9218 if (h->verinfo.verdef == NULL
9219 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9220 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9221 iversym.vs_vers = 0;
9222 else
9223 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9224 }
9225 else
9226 {
9227 if (h->verinfo.vertree == NULL)
9228 iversym.vs_vers = 1;
9229 else
9230 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9231 if (flinfo->info->create_default_symver)
9232 iversym.vs_vers++;
9233 }
9234
9235 if (h->hidden)
9236 iversym.vs_vers |= VERSYM_HIDDEN;
9237
9238 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9239 eversym += h->dynindx;
9240 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9241 }
9242 }
9243
9244 /* If we're stripping it, then it was just a dynamic symbol, and
9245 there's nothing else to do. */
9246 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
9247 return TRUE;
9248
9249 indx = bfd_get_symcount (flinfo->output_bfd);
9250 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9251 if (ret == 0)
9252 {
9253 eoinfo->failed = TRUE;
9254 return FALSE;
9255 }
9256 else if (ret == 1)
9257 h->indx = indx;
9258 else if (h->indx == -2)
9259 abort();
9260
9261 return TRUE;
9262 }
9263
9264 /* Return TRUE if special handling is done for relocs in SEC against
9265 symbols defined in discarded sections. */
9266
9267 static bfd_boolean
9268 elf_section_ignore_discarded_relocs (asection *sec)
9269 {
9270 const struct elf_backend_data *bed;
9271
9272 switch (sec->sec_info_type)
9273 {
9274 case SEC_INFO_TYPE_STABS:
9275 case SEC_INFO_TYPE_EH_FRAME:
9276 return TRUE;
9277 default:
9278 break;
9279 }
9280
9281 bed = get_elf_backend_data (sec->owner);
9282 if (bed->elf_backend_ignore_discarded_relocs != NULL
9283 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9284 return TRUE;
9285
9286 return FALSE;
9287 }
9288
9289 /* Return a mask saying how ld should treat relocations in SEC against
9290 symbols defined in discarded sections. If this function returns
9291 COMPLAIN set, ld will issue a warning message. If this function
9292 returns PRETEND set, and the discarded section was link-once and the
9293 same size as the kept link-once section, ld will pretend that the
9294 symbol was actually defined in the kept section. Otherwise ld will
9295 zero the reloc (at least that is the intent, but some cooperation by
9296 the target dependent code is needed, particularly for REL targets). */
9297
9298 unsigned int
9299 _bfd_elf_default_action_discarded (asection *sec)
9300 {
9301 if (sec->flags & SEC_DEBUGGING)
9302 return PRETEND;
9303
9304 if (strcmp (".eh_frame", sec->name) == 0)
9305 return 0;
9306
9307 if (strcmp (".gcc_except_table", sec->name) == 0)
9308 return 0;
9309
9310 return COMPLAIN | PRETEND;
9311 }
9312
9313 /* Find a match between a section and a member of a section group. */
9314
9315 static asection *
9316 match_group_member (asection *sec, asection *group,
9317 struct bfd_link_info *info)
9318 {
9319 asection *first = elf_next_in_group (group);
9320 asection *s = first;
9321
9322 while (s != NULL)
9323 {
9324 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9325 return s;
9326
9327 s = elf_next_in_group (s);
9328 if (s == first)
9329 break;
9330 }
9331
9332 return NULL;
9333 }
9334
9335 /* Check if the kept section of a discarded section SEC can be used
9336 to replace it. Return the replacement if it is OK. Otherwise return
9337 NULL. */
9338
9339 asection *
9340 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9341 {
9342 asection *kept;
9343
9344 kept = sec->kept_section;
9345 if (kept != NULL)
9346 {
9347 if ((kept->flags & SEC_GROUP) != 0)
9348 kept = match_group_member (sec, kept, info);
9349 if (kept != NULL
9350 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9351 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9352 kept = NULL;
9353 sec->kept_section = kept;
9354 }
9355 return kept;
9356 }
9357
9358 /* Link an input file into the linker output file. This function
9359 handles all the sections and relocations of the input file at once.
9360 This is so that we only have to read the local symbols once, and
9361 don't have to keep them in memory. */
9362
9363 static bfd_boolean
9364 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9365 {
9366 int (*relocate_section)
9367 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9368 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9369 bfd *output_bfd;
9370 Elf_Internal_Shdr *symtab_hdr;
9371 size_t locsymcount;
9372 size_t extsymoff;
9373 Elf_Internal_Sym *isymbuf;
9374 Elf_Internal_Sym *isym;
9375 Elf_Internal_Sym *isymend;
9376 long *pindex;
9377 asection **ppsection;
9378 asection *o;
9379 const struct elf_backend_data *bed;
9380 struct elf_link_hash_entry **sym_hashes;
9381 bfd_size_type address_size;
9382 bfd_vma r_type_mask;
9383 int r_sym_shift;
9384 bfd_boolean have_file_sym = FALSE;
9385
9386 output_bfd = flinfo->output_bfd;
9387 bed = get_elf_backend_data (output_bfd);
9388 relocate_section = bed->elf_backend_relocate_section;
9389
9390 /* If this is a dynamic object, we don't want to do anything here:
9391 we don't want the local symbols, and we don't want the section
9392 contents. */
9393 if ((input_bfd->flags & DYNAMIC) != 0)
9394 return TRUE;
9395
9396 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9397 if (elf_bad_symtab (input_bfd))
9398 {
9399 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9400 extsymoff = 0;
9401 }
9402 else
9403 {
9404 locsymcount = symtab_hdr->sh_info;
9405 extsymoff = symtab_hdr->sh_info;
9406 }
9407
9408 /* Read the local symbols. */
9409 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9410 if (isymbuf == NULL && locsymcount != 0)
9411 {
9412 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9413 flinfo->internal_syms,
9414 flinfo->external_syms,
9415 flinfo->locsym_shndx);
9416 if (isymbuf == NULL)
9417 return FALSE;
9418 }
9419
9420 /* Find local symbol sections and adjust values of symbols in
9421 SEC_MERGE sections. Write out those local symbols we know are
9422 going into the output file. */
9423 isymend = isymbuf + locsymcount;
9424 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9425 isym < isymend;
9426 isym++, pindex++, ppsection++)
9427 {
9428 asection *isec;
9429 const char *name;
9430 Elf_Internal_Sym osym;
9431 long indx;
9432 int ret;
9433
9434 *pindex = -1;
9435
9436 if (elf_bad_symtab (input_bfd))
9437 {
9438 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9439 {
9440 *ppsection = NULL;
9441 continue;
9442 }
9443 }
9444
9445 if (isym->st_shndx == SHN_UNDEF)
9446 isec = bfd_und_section_ptr;
9447 else if (isym->st_shndx == SHN_ABS)
9448 isec = bfd_abs_section_ptr;
9449 else if (isym->st_shndx == SHN_COMMON)
9450 isec = bfd_com_section_ptr;
9451 else
9452 {
9453 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9454 if (isec == NULL)
9455 {
9456 /* Don't attempt to output symbols with st_shnx in the
9457 reserved range other than SHN_ABS and SHN_COMMON. */
9458 *ppsection = NULL;
9459 continue;
9460 }
9461 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9462 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9463 isym->st_value =
9464 _bfd_merged_section_offset (output_bfd, &isec,
9465 elf_section_data (isec)->sec_info,
9466 isym->st_value);
9467 }
9468
9469 *ppsection = isec;
9470
9471 /* Don't output the first, undefined, symbol. */
9472 if (ppsection == flinfo->sections)
9473 continue;
9474
9475 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9476 {
9477 /* We never output section symbols. Instead, we use the
9478 section symbol of the corresponding section in the output
9479 file. */
9480 continue;
9481 }
9482
9483 /* If we are stripping all symbols, we don't want to output this
9484 one. */
9485 if (flinfo->info->strip == strip_all)
9486 continue;
9487
9488 /* If we are discarding all local symbols, we don't want to
9489 output this one. If we are generating a relocatable output
9490 file, then some of the local symbols may be required by
9491 relocs; we output them below as we discover that they are
9492 needed. */
9493 if (flinfo->info->discard == discard_all)
9494 continue;
9495
9496 /* If this symbol is defined in a section which we are
9497 discarding, we don't need to keep it. */
9498 if (isym->st_shndx != SHN_UNDEF
9499 && isym->st_shndx < SHN_LORESERVE
9500 && bfd_section_removed_from_list (output_bfd,
9501 isec->output_section))
9502 continue;
9503
9504 /* Get the name of the symbol. */
9505 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9506 isym->st_name);
9507 if (name == NULL)
9508 return FALSE;
9509
9510 /* See if we are discarding symbols with this name. */
9511 if ((flinfo->info->strip == strip_some
9512 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9513 == NULL))
9514 || (((flinfo->info->discard == discard_sec_merge
9515 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9516 || flinfo->info->discard == discard_l)
9517 && bfd_is_local_label_name (input_bfd, name)))
9518 continue;
9519
9520 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9521 {
9522 have_file_sym = TRUE;
9523 flinfo->filesym_count += 1;
9524 }
9525 if (!have_file_sym)
9526 {
9527 /* In the absence of debug info, bfd_find_nearest_line uses
9528 FILE symbols to determine the source file for local
9529 function symbols. Provide a FILE symbol here if input
9530 files lack such, so that their symbols won't be
9531 associated with a previous input file. It's not the
9532 source file, but the best we can do. */
9533 have_file_sym = TRUE;
9534 flinfo->filesym_count += 1;
9535 memset (&osym, 0, sizeof (osym));
9536 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9537 osym.st_shndx = SHN_ABS;
9538 if (!elf_link_output_sym (flinfo, input_bfd->filename, &osym,
9539 bfd_abs_section_ptr, NULL))
9540 return FALSE;
9541 }
9542
9543 osym = *isym;
9544
9545 /* Adjust the section index for the output file. */
9546 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9547 isec->output_section);
9548 if (osym.st_shndx == SHN_BAD)
9549 return FALSE;
9550
9551 /* ELF symbols in relocatable files are section relative, but
9552 in executable files they are virtual addresses. Note that
9553 this code assumes that all ELF sections have an associated
9554 BFD section with a reasonable value for output_offset; below
9555 we assume that they also have a reasonable value for
9556 output_section. Any special sections must be set up to meet
9557 these requirements. */
9558 osym.st_value += isec->output_offset;
9559 if (!flinfo->info->relocatable)
9560 {
9561 osym.st_value += isec->output_section->vma;
9562 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9563 {
9564 /* STT_TLS symbols are relative to PT_TLS segment base. */
9565 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9566 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9567 }
9568 }
9569
9570 indx = bfd_get_symcount (output_bfd);
9571 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9572 if (ret == 0)
9573 return FALSE;
9574 else if (ret == 1)
9575 *pindex = indx;
9576 }
9577
9578 if (bed->s->arch_size == 32)
9579 {
9580 r_type_mask = 0xff;
9581 r_sym_shift = 8;
9582 address_size = 4;
9583 }
9584 else
9585 {
9586 r_type_mask = 0xffffffff;
9587 r_sym_shift = 32;
9588 address_size = 8;
9589 }
9590
9591 /* Relocate the contents of each section. */
9592 sym_hashes = elf_sym_hashes (input_bfd);
9593 for (o = input_bfd->sections; o != NULL; o = o->next)
9594 {
9595 bfd_byte *contents;
9596
9597 if (! o->linker_mark)
9598 {
9599 /* This section was omitted from the link. */
9600 continue;
9601 }
9602
9603 if (flinfo->info->relocatable
9604 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9605 {
9606 /* Deal with the group signature symbol. */
9607 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9608 unsigned long symndx = sec_data->this_hdr.sh_info;
9609 asection *osec = o->output_section;
9610
9611 if (symndx >= locsymcount
9612 || (elf_bad_symtab (input_bfd)
9613 && flinfo->sections[symndx] == NULL))
9614 {
9615 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9616 while (h->root.type == bfd_link_hash_indirect
9617 || h->root.type == bfd_link_hash_warning)
9618 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9619 /* Arrange for symbol to be output. */
9620 h->indx = -2;
9621 elf_section_data (osec)->this_hdr.sh_info = -2;
9622 }
9623 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9624 {
9625 /* We'll use the output section target_index. */
9626 asection *sec = flinfo->sections[symndx]->output_section;
9627 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9628 }
9629 else
9630 {
9631 if (flinfo->indices[symndx] == -1)
9632 {
9633 /* Otherwise output the local symbol now. */
9634 Elf_Internal_Sym sym = isymbuf[symndx];
9635 asection *sec = flinfo->sections[symndx]->output_section;
9636 const char *name;
9637 long indx;
9638 int ret;
9639
9640 name = bfd_elf_string_from_elf_section (input_bfd,
9641 symtab_hdr->sh_link,
9642 sym.st_name);
9643 if (name == NULL)
9644 return FALSE;
9645
9646 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9647 sec);
9648 if (sym.st_shndx == SHN_BAD)
9649 return FALSE;
9650
9651 sym.st_value += o->output_offset;
9652
9653 indx = bfd_get_symcount (output_bfd);
9654 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9655 if (ret == 0)
9656 return FALSE;
9657 else if (ret == 1)
9658 flinfo->indices[symndx] = indx;
9659 else
9660 abort ();
9661 }
9662 elf_section_data (osec)->this_hdr.sh_info
9663 = flinfo->indices[symndx];
9664 }
9665 }
9666
9667 if ((o->flags & SEC_HAS_CONTENTS) == 0
9668 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9669 continue;
9670
9671 if ((o->flags & SEC_LINKER_CREATED) != 0)
9672 {
9673 /* Section was created by _bfd_elf_link_create_dynamic_sections
9674 or somesuch. */
9675 continue;
9676 }
9677
9678 /* Get the contents of the section. They have been cached by a
9679 relaxation routine. Note that o is a section in an input
9680 file, so the contents field will not have been set by any of
9681 the routines which work on output files. */
9682 if (elf_section_data (o)->this_hdr.contents != NULL)
9683 {
9684 contents = elf_section_data (o)->this_hdr.contents;
9685 if (bed->caches_rawsize
9686 && o->rawsize != 0
9687 && o->rawsize < o->size)
9688 {
9689 memcpy (flinfo->contents, contents, o->rawsize);
9690 contents = flinfo->contents;
9691 }
9692 }
9693 else
9694 {
9695 contents = flinfo->contents;
9696 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9697 return FALSE;
9698 }
9699
9700 if ((o->flags & SEC_RELOC) != 0)
9701 {
9702 Elf_Internal_Rela *internal_relocs;
9703 Elf_Internal_Rela *rel, *relend;
9704 int action_discarded;
9705 int ret;
9706
9707 /* Get the swapped relocs. */
9708 internal_relocs
9709 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9710 flinfo->internal_relocs, FALSE);
9711 if (internal_relocs == NULL
9712 && o->reloc_count > 0)
9713 return FALSE;
9714
9715 /* We need to reverse-copy input .ctors/.dtors sections if
9716 they are placed in .init_array/.finit_array for output. */
9717 if (o->size > address_size
9718 && ((strncmp (o->name, ".ctors", 6) == 0
9719 && strcmp (o->output_section->name,
9720 ".init_array") == 0)
9721 || (strncmp (o->name, ".dtors", 6) == 0
9722 && strcmp (o->output_section->name,
9723 ".fini_array") == 0))
9724 && (o->name[6] == 0 || o->name[6] == '.'))
9725 {
9726 if (o->size != o->reloc_count * address_size)
9727 {
9728 (*_bfd_error_handler)
9729 (_("error: %B: size of section %A is not "
9730 "multiple of address size"),
9731 input_bfd, o);
9732 bfd_set_error (bfd_error_on_input);
9733 return FALSE;
9734 }
9735 o->flags |= SEC_ELF_REVERSE_COPY;
9736 }
9737
9738 action_discarded = -1;
9739 if (!elf_section_ignore_discarded_relocs (o))
9740 action_discarded = (*bed->action_discarded) (o);
9741
9742 /* Run through the relocs evaluating complex reloc symbols and
9743 looking for relocs against symbols from discarded sections
9744 or section symbols from removed link-once sections.
9745 Complain about relocs against discarded sections. Zero
9746 relocs against removed link-once sections. */
9747
9748 rel = internal_relocs;
9749 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9750 for ( ; rel < relend; rel++)
9751 {
9752 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9753 unsigned int s_type;
9754 asection **ps, *sec;
9755 struct elf_link_hash_entry *h = NULL;
9756 const char *sym_name;
9757
9758 if (r_symndx == STN_UNDEF)
9759 continue;
9760
9761 if (r_symndx >= locsymcount
9762 || (elf_bad_symtab (input_bfd)
9763 && flinfo->sections[r_symndx] == NULL))
9764 {
9765 h = sym_hashes[r_symndx - extsymoff];
9766
9767 /* Badly formatted input files can contain relocs that
9768 reference non-existant symbols. Check here so that
9769 we do not seg fault. */
9770 if (h == NULL)
9771 {
9772 char buffer [32];
9773
9774 sprintf_vma (buffer, rel->r_info);
9775 (*_bfd_error_handler)
9776 (_("error: %B contains a reloc (0x%s) for section %A "
9777 "that references a non-existent global symbol"),
9778 input_bfd, o, buffer);
9779 bfd_set_error (bfd_error_bad_value);
9780 return FALSE;
9781 }
9782
9783 while (h->root.type == bfd_link_hash_indirect
9784 || h->root.type == bfd_link_hash_warning)
9785 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9786
9787 s_type = h->type;
9788
9789 ps = NULL;
9790 if (h->root.type == bfd_link_hash_defined
9791 || h->root.type == bfd_link_hash_defweak)
9792 ps = &h->root.u.def.section;
9793
9794 sym_name = h->root.root.string;
9795 }
9796 else
9797 {
9798 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9799
9800 s_type = ELF_ST_TYPE (sym->st_info);
9801 ps = &flinfo->sections[r_symndx];
9802 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9803 sym, *ps);
9804 }
9805
9806 if ((s_type == STT_RELC || s_type == STT_SRELC)
9807 && !flinfo->info->relocatable)
9808 {
9809 bfd_vma val;
9810 bfd_vma dot = (rel->r_offset
9811 + o->output_offset + o->output_section->vma);
9812 #ifdef DEBUG
9813 printf ("Encountered a complex symbol!");
9814 printf (" (input_bfd %s, section %s, reloc %ld\n",
9815 input_bfd->filename, o->name,
9816 (long) (rel - internal_relocs));
9817 printf (" symbol: idx %8.8lx, name %s\n",
9818 r_symndx, sym_name);
9819 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9820 (unsigned long) rel->r_info,
9821 (unsigned long) rel->r_offset);
9822 #endif
9823 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9824 isymbuf, locsymcount, s_type == STT_SRELC))
9825 return FALSE;
9826
9827 /* Symbol evaluated OK. Update to absolute value. */
9828 set_symbol_value (input_bfd, isymbuf, locsymcount,
9829 r_symndx, val);
9830 continue;
9831 }
9832
9833 if (action_discarded != -1 && ps != NULL)
9834 {
9835 /* Complain if the definition comes from a
9836 discarded section. */
9837 if ((sec = *ps) != NULL && discarded_section (sec))
9838 {
9839 BFD_ASSERT (r_symndx != STN_UNDEF);
9840 if (action_discarded & COMPLAIN)
9841 (*flinfo->info->callbacks->einfo)
9842 (_("%X`%s' referenced in section `%A' of %B: "
9843 "defined in discarded section `%A' of %B\n"),
9844 sym_name, o, input_bfd, sec, sec->owner);
9845
9846 /* Try to do the best we can to support buggy old
9847 versions of gcc. Pretend that the symbol is
9848 really defined in the kept linkonce section.
9849 FIXME: This is quite broken. Modifying the
9850 symbol here means we will be changing all later
9851 uses of the symbol, not just in this section. */
9852 if (action_discarded & PRETEND)
9853 {
9854 asection *kept;
9855
9856 kept = _bfd_elf_check_kept_section (sec,
9857 flinfo->info);
9858 if (kept != NULL)
9859 {
9860 *ps = kept;
9861 continue;
9862 }
9863 }
9864 }
9865 }
9866 }
9867
9868 /* Relocate the section by invoking a back end routine.
9869
9870 The back end routine is responsible for adjusting the
9871 section contents as necessary, and (if using Rela relocs
9872 and generating a relocatable output file) adjusting the
9873 reloc addend as necessary.
9874
9875 The back end routine does not have to worry about setting
9876 the reloc address or the reloc symbol index.
9877
9878 The back end routine is given a pointer to the swapped in
9879 internal symbols, and can access the hash table entries
9880 for the external symbols via elf_sym_hashes (input_bfd).
9881
9882 When generating relocatable output, the back end routine
9883 must handle STB_LOCAL/STT_SECTION symbols specially. The
9884 output symbol is going to be a section symbol
9885 corresponding to the output section, which will require
9886 the addend to be adjusted. */
9887
9888 ret = (*relocate_section) (output_bfd, flinfo->info,
9889 input_bfd, o, contents,
9890 internal_relocs,
9891 isymbuf,
9892 flinfo->sections);
9893 if (!ret)
9894 return FALSE;
9895
9896 if (ret == 2
9897 || flinfo->info->relocatable
9898 || flinfo->info->emitrelocations)
9899 {
9900 Elf_Internal_Rela *irela;
9901 Elf_Internal_Rela *irelaend, *irelamid;
9902 bfd_vma last_offset;
9903 struct elf_link_hash_entry **rel_hash;
9904 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9905 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9906 unsigned int next_erel;
9907 bfd_boolean rela_normal;
9908 struct bfd_elf_section_data *esdi, *esdo;
9909
9910 esdi = elf_section_data (o);
9911 esdo = elf_section_data (o->output_section);
9912 rela_normal = FALSE;
9913
9914 /* Adjust the reloc addresses and symbol indices. */
9915
9916 irela = internal_relocs;
9917 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9918 rel_hash = esdo->rel.hashes + esdo->rel.count;
9919 /* We start processing the REL relocs, if any. When we reach
9920 IRELAMID in the loop, we switch to the RELA relocs. */
9921 irelamid = irela;
9922 if (esdi->rel.hdr != NULL)
9923 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9924 * bed->s->int_rels_per_ext_rel);
9925 rel_hash_list = rel_hash;
9926 rela_hash_list = NULL;
9927 last_offset = o->output_offset;
9928 if (!flinfo->info->relocatable)
9929 last_offset += o->output_section->vma;
9930 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9931 {
9932 unsigned long r_symndx;
9933 asection *sec;
9934 Elf_Internal_Sym sym;
9935
9936 if (next_erel == bed->s->int_rels_per_ext_rel)
9937 {
9938 rel_hash++;
9939 next_erel = 0;
9940 }
9941
9942 if (irela == irelamid)
9943 {
9944 rel_hash = esdo->rela.hashes + esdo->rela.count;
9945 rela_hash_list = rel_hash;
9946 rela_normal = bed->rela_normal;
9947 }
9948
9949 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9950 flinfo->info, o,
9951 irela->r_offset);
9952 if (irela->r_offset >= (bfd_vma) -2)
9953 {
9954 /* This is a reloc for a deleted entry or somesuch.
9955 Turn it into an R_*_NONE reloc, at the same
9956 offset as the last reloc. elf_eh_frame.c and
9957 bfd_elf_discard_info rely on reloc offsets
9958 being ordered. */
9959 irela->r_offset = last_offset;
9960 irela->r_info = 0;
9961 irela->r_addend = 0;
9962 continue;
9963 }
9964
9965 irela->r_offset += o->output_offset;
9966
9967 /* Relocs in an executable have to be virtual addresses. */
9968 if (!flinfo->info->relocatable)
9969 irela->r_offset += o->output_section->vma;
9970
9971 last_offset = irela->r_offset;
9972
9973 r_symndx = irela->r_info >> r_sym_shift;
9974 if (r_symndx == STN_UNDEF)
9975 continue;
9976
9977 if (r_symndx >= locsymcount
9978 || (elf_bad_symtab (input_bfd)
9979 && flinfo->sections[r_symndx] == NULL))
9980 {
9981 struct elf_link_hash_entry *rh;
9982 unsigned long indx;
9983
9984 /* This is a reloc against a global symbol. We
9985 have not yet output all the local symbols, so
9986 we do not know the symbol index of any global
9987 symbol. We set the rel_hash entry for this
9988 reloc to point to the global hash table entry
9989 for this symbol. The symbol index is then
9990 set at the end of bfd_elf_final_link. */
9991 indx = r_symndx - extsymoff;
9992 rh = elf_sym_hashes (input_bfd)[indx];
9993 while (rh->root.type == bfd_link_hash_indirect
9994 || rh->root.type == bfd_link_hash_warning)
9995 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9996
9997 /* Setting the index to -2 tells
9998 elf_link_output_extsym that this symbol is
9999 used by a reloc. */
10000 BFD_ASSERT (rh->indx < 0);
10001 rh->indx = -2;
10002
10003 *rel_hash = rh;
10004
10005 continue;
10006 }
10007
10008 /* This is a reloc against a local symbol. */
10009
10010 *rel_hash = NULL;
10011 sym = isymbuf[r_symndx];
10012 sec = flinfo->sections[r_symndx];
10013 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10014 {
10015 /* I suppose the backend ought to fill in the
10016 section of any STT_SECTION symbol against a
10017 processor specific section. */
10018 r_symndx = STN_UNDEF;
10019 if (bfd_is_abs_section (sec))
10020 ;
10021 else if (sec == NULL || sec->owner == NULL)
10022 {
10023 bfd_set_error (bfd_error_bad_value);
10024 return FALSE;
10025 }
10026 else
10027 {
10028 asection *osec = sec->output_section;
10029
10030 /* If we have discarded a section, the output
10031 section will be the absolute section. In
10032 case of discarded SEC_MERGE sections, use
10033 the kept section. relocate_section should
10034 have already handled discarded linkonce
10035 sections. */
10036 if (bfd_is_abs_section (osec)
10037 && sec->kept_section != NULL
10038 && sec->kept_section->output_section != NULL)
10039 {
10040 osec = sec->kept_section->output_section;
10041 irela->r_addend -= osec->vma;
10042 }
10043
10044 if (!bfd_is_abs_section (osec))
10045 {
10046 r_symndx = osec->target_index;
10047 if (r_symndx == STN_UNDEF)
10048 {
10049 irela->r_addend += osec->vma;
10050 osec = _bfd_nearby_section (output_bfd, osec,
10051 osec->vma);
10052 irela->r_addend -= osec->vma;
10053 r_symndx = osec->target_index;
10054 }
10055 }
10056 }
10057
10058 /* Adjust the addend according to where the
10059 section winds up in the output section. */
10060 if (rela_normal)
10061 irela->r_addend += sec->output_offset;
10062 }
10063 else
10064 {
10065 if (flinfo->indices[r_symndx] == -1)
10066 {
10067 unsigned long shlink;
10068 const char *name;
10069 asection *osec;
10070 long indx;
10071
10072 if (flinfo->info->strip == strip_all)
10073 {
10074 /* You can't do ld -r -s. */
10075 bfd_set_error (bfd_error_invalid_operation);
10076 return FALSE;
10077 }
10078
10079 /* This symbol was skipped earlier, but
10080 since it is needed by a reloc, we
10081 must output it now. */
10082 shlink = symtab_hdr->sh_link;
10083 name = (bfd_elf_string_from_elf_section
10084 (input_bfd, shlink, sym.st_name));
10085 if (name == NULL)
10086 return FALSE;
10087
10088 osec = sec->output_section;
10089 sym.st_shndx =
10090 _bfd_elf_section_from_bfd_section (output_bfd,
10091 osec);
10092 if (sym.st_shndx == SHN_BAD)
10093 return FALSE;
10094
10095 sym.st_value += sec->output_offset;
10096 if (!flinfo->info->relocatable)
10097 {
10098 sym.st_value += osec->vma;
10099 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10100 {
10101 /* STT_TLS symbols are relative to PT_TLS
10102 segment base. */
10103 BFD_ASSERT (elf_hash_table (flinfo->info)
10104 ->tls_sec != NULL);
10105 sym.st_value -= (elf_hash_table (flinfo->info)
10106 ->tls_sec->vma);
10107 }
10108 }
10109
10110 indx = bfd_get_symcount (output_bfd);
10111 ret = elf_link_output_sym (flinfo, name, &sym, sec,
10112 NULL);
10113 if (ret == 0)
10114 return FALSE;
10115 else if (ret == 1)
10116 flinfo->indices[r_symndx] = indx;
10117 else
10118 abort ();
10119 }
10120
10121 r_symndx = flinfo->indices[r_symndx];
10122 }
10123
10124 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10125 | (irela->r_info & r_type_mask));
10126 }
10127
10128 /* Swap out the relocs. */
10129 input_rel_hdr = esdi->rel.hdr;
10130 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10131 {
10132 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10133 input_rel_hdr,
10134 internal_relocs,
10135 rel_hash_list))
10136 return FALSE;
10137 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10138 * bed->s->int_rels_per_ext_rel);
10139 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10140 }
10141
10142 input_rela_hdr = esdi->rela.hdr;
10143 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10144 {
10145 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10146 input_rela_hdr,
10147 internal_relocs,
10148 rela_hash_list))
10149 return FALSE;
10150 }
10151 }
10152 }
10153
10154 /* Write out the modified section contents. */
10155 if (bed->elf_backend_write_section
10156 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10157 contents))
10158 {
10159 /* Section written out. */
10160 }
10161 else switch (o->sec_info_type)
10162 {
10163 case SEC_INFO_TYPE_STABS:
10164 if (! (_bfd_write_section_stabs
10165 (output_bfd,
10166 &elf_hash_table (flinfo->info)->stab_info,
10167 o, &elf_section_data (o)->sec_info, contents)))
10168 return FALSE;
10169 break;
10170 case SEC_INFO_TYPE_MERGE:
10171 if (! _bfd_write_merged_section (output_bfd, o,
10172 elf_section_data (o)->sec_info))
10173 return FALSE;
10174 break;
10175 case SEC_INFO_TYPE_EH_FRAME:
10176 {
10177 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10178 o, contents))
10179 return FALSE;
10180 }
10181 break;
10182 default:
10183 {
10184 /* FIXME: octets_per_byte. */
10185 if (! (o->flags & SEC_EXCLUDE))
10186 {
10187 file_ptr offset = (file_ptr) o->output_offset;
10188 bfd_size_type todo = o->size;
10189 if ((o->flags & SEC_ELF_REVERSE_COPY))
10190 {
10191 /* Reverse-copy input section to output. */
10192 do
10193 {
10194 todo -= address_size;
10195 if (! bfd_set_section_contents (output_bfd,
10196 o->output_section,
10197 contents + todo,
10198 offset,
10199 address_size))
10200 return FALSE;
10201 if (todo == 0)
10202 break;
10203 offset += address_size;
10204 }
10205 while (1);
10206 }
10207 else if (! bfd_set_section_contents (output_bfd,
10208 o->output_section,
10209 contents,
10210 offset, todo))
10211 return FALSE;
10212 }
10213 }
10214 break;
10215 }
10216 }
10217
10218 return TRUE;
10219 }
10220
10221 /* Generate a reloc when linking an ELF file. This is a reloc
10222 requested by the linker, and does not come from any input file. This
10223 is used to build constructor and destructor tables when linking
10224 with -Ur. */
10225
10226 static bfd_boolean
10227 elf_reloc_link_order (bfd *output_bfd,
10228 struct bfd_link_info *info,
10229 asection *output_section,
10230 struct bfd_link_order *link_order)
10231 {
10232 reloc_howto_type *howto;
10233 long indx;
10234 bfd_vma offset;
10235 bfd_vma addend;
10236 struct bfd_elf_section_reloc_data *reldata;
10237 struct elf_link_hash_entry **rel_hash_ptr;
10238 Elf_Internal_Shdr *rel_hdr;
10239 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10240 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10241 bfd_byte *erel;
10242 unsigned int i;
10243 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10244
10245 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10246 if (howto == NULL)
10247 {
10248 bfd_set_error (bfd_error_bad_value);
10249 return FALSE;
10250 }
10251
10252 addend = link_order->u.reloc.p->addend;
10253
10254 if (esdo->rel.hdr)
10255 reldata = &esdo->rel;
10256 else if (esdo->rela.hdr)
10257 reldata = &esdo->rela;
10258 else
10259 {
10260 reldata = NULL;
10261 BFD_ASSERT (0);
10262 }
10263
10264 /* Figure out the symbol index. */
10265 rel_hash_ptr = reldata->hashes + reldata->count;
10266 if (link_order->type == bfd_section_reloc_link_order)
10267 {
10268 indx = link_order->u.reloc.p->u.section->target_index;
10269 BFD_ASSERT (indx != 0);
10270 *rel_hash_ptr = NULL;
10271 }
10272 else
10273 {
10274 struct elf_link_hash_entry *h;
10275
10276 /* Treat a reloc against a defined symbol as though it were
10277 actually against the section. */
10278 h = ((struct elf_link_hash_entry *)
10279 bfd_wrapped_link_hash_lookup (output_bfd, info,
10280 link_order->u.reloc.p->u.name,
10281 FALSE, FALSE, TRUE));
10282 if (h != NULL
10283 && (h->root.type == bfd_link_hash_defined
10284 || h->root.type == bfd_link_hash_defweak))
10285 {
10286 asection *section;
10287
10288 section = h->root.u.def.section;
10289 indx = section->output_section->target_index;
10290 *rel_hash_ptr = NULL;
10291 /* It seems that we ought to add the symbol value to the
10292 addend here, but in practice it has already been added
10293 because it was passed to constructor_callback. */
10294 addend += section->output_section->vma + section->output_offset;
10295 }
10296 else if (h != NULL)
10297 {
10298 /* Setting the index to -2 tells elf_link_output_extsym that
10299 this symbol is used by a reloc. */
10300 h->indx = -2;
10301 *rel_hash_ptr = h;
10302 indx = 0;
10303 }
10304 else
10305 {
10306 if (! ((*info->callbacks->unattached_reloc)
10307 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10308 return FALSE;
10309 indx = 0;
10310 }
10311 }
10312
10313 /* If this is an inplace reloc, we must write the addend into the
10314 object file. */
10315 if (howto->partial_inplace && addend != 0)
10316 {
10317 bfd_size_type size;
10318 bfd_reloc_status_type rstat;
10319 bfd_byte *buf;
10320 bfd_boolean ok;
10321 const char *sym_name;
10322
10323 size = (bfd_size_type) bfd_get_reloc_size (howto);
10324 buf = (bfd_byte *) bfd_zmalloc (size);
10325 if (buf == NULL)
10326 return FALSE;
10327 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10328 switch (rstat)
10329 {
10330 case bfd_reloc_ok:
10331 break;
10332
10333 default:
10334 case bfd_reloc_outofrange:
10335 abort ();
10336
10337 case bfd_reloc_overflow:
10338 if (link_order->type == bfd_section_reloc_link_order)
10339 sym_name = bfd_section_name (output_bfd,
10340 link_order->u.reloc.p->u.section);
10341 else
10342 sym_name = link_order->u.reloc.p->u.name;
10343 if (! ((*info->callbacks->reloc_overflow)
10344 (info, NULL, sym_name, howto->name, addend, NULL,
10345 NULL, (bfd_vma) 0)))
10346 {
10347 free (buf);
10348 return FALSE;
10349 }
10350 break;
10351 }
10352 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10353 link_order->offset, size);
10354 free (buf);
10355 if (! ok)
10356 return FALSE;
10357 }
10358
10359 /* The address of a reloc is relative to the section in a
10360 relocatable file, and is a virtual address in an executable
10361 file. */
10362 offset = link_order->offset;
10363 if (! info->relocatable)
10364 offset += output_section->vma;
10365
10366 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10367 {
10368 irel[i].r_offset = offset;
10369 irel[i].r_info = 0;
10370 irel[i].r_addend = 0;
10371 }
10372 if (bed->s->arch_size == 32)
10373 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10374 else
10375 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10376
10377 rel_hdr = reldata->hdr;
10378 erel = rel_hdr->contents;
10379 if (rel_hdr->sh_type == SHT_REL)
10380 {
10381 erel += reldata->count * bed->s->sizeof_rel;
10382 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10383 }
10384 else
10385 {
10386 irel[0].r_addend = addend;
10387 erel += reldata->count * bed->s->sizeof_rela;
10388 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10389 }
10390
10391 ++reldata->count;
10392
10393 return TRUE;
10394 }
10395
10396
10397 /* Get the output vma of the section pointed to by the sh_link field. */
10398
10399 static bfd_vma
10400 elf_get_linked_section_vma (struct bfd_link_order *p)
10401 {
10402 Elf_Internal_Shdr **elf_shdrp;
10403 asection *s;
10404 int elfsec;
10405
10406 s = p->u.indirect.section;
10407 elf_shdrp = elf_elfsections (s->owner);
10408 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10409 elfsec = elf_shdrp[elfsec]->sh_link;
10410 /* PR 290:
10411 The Intel C compiler generates SHT_IA_64_UNWIND with
10412 SHF_LINK_ORDER. But it doesn't set the sh_link or
10413 sh_info fields. Hence we could get the situation
10414 where elfsec is 0. */
10415 if (elfsec == 0)
10416 {
10417 const struct elf_backend_data *bed
10418 = get_elf_backend_data (s->owner);
10419 if (bed->link_order_error_handler)
10420 bed->link_order_error_handler
10421 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10422 return 0;
10423 }
10424 else
10425 {
10426 s = elf_shdrp[elfsec]->bfd_section;
10427 return s->output_section->vma + s->output_offset;
10428 }
10429 }
10430
10431
10432 /* Compare two sections based on the locations of the sections they are
10433 linked to. Used by elf_fixup_link_order. */
10434
10435 static int
10436 compare_link_order (const void * a, const void * b)
10437 {
10438 bfd_vma apos;
10439 bfd_vma bpos;
10440
10441 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10442 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10443 if (apos < bpos)
10444 return -1;
10445 return apos > bpos;
10446 }
10447
10448
10449 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10450 order as their linked sections. Returns false if this could not be done
10451 because an output section includes both ordered and unordered
10452 sections. Ideally we'd do this in the linker proper. */
10453
10454 static bfd_boolean
10455 elf_fixup_link_order (bfd *abfd, asection *o)
10456 {
10457 int seen_linkorder;
10458 int seen_other;
10459 int n;
10460 struct bfd_link_order *p;
10461 bfd *sub;
10462 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10463 unsigned elfsec;
10464 struct bfd_link_order **sections;
10465 asection *s, *other_sec, *linkorder_sec;
10466 bfd_vma offset;
10467
10468 other_sec = NULL;
10469 linkorder_sec = NULL;
10470 seen_other = 0;
10471 seen_linkorder = 0;
10472 for (p = o->map_head.link_order; p != NULL; p = p->next)
10473 {
10474 if (p->type == bfd_indirect_link_order)
10475 {
10476 s = p->u.indirect.section;
10477 sub = s->owner;
10478 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10479 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10480 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10481 && elfsec < elf_numsections (sub)
10482 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10483 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10484 {
10485 seen_linkorder++;
10486 linkorder_sec = s;
10487 }
10488 else
10489 {
10490 seen_other++;
10491 other_sec = s;
10492 }
10493 }
10494 else
10495 seen_other++;
10496
10497 if (seen_other && seen_linkorder)
10498 {
10499 if (other_sec && linkorder_sec)
10500 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10501 o, linkorder_sec,
10502 linkorder_sec->owner, other_sec,
10503 other_sec->owner);
10504 else
10505 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10506 o);
10507 bfd_set_error (bfd_error_bad_value);
10508 return FALSE;
10509 }
10510 }
10511
10512 if (!seen_linkorder)
10513 return TRUE;
10514
10515 sections = (struct bfd_link_order **)
10516 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10517 if (sections == NULL)
10518 return FALSE;
10519 seen_linkorder = 0;
10520
10521 for (p = o->map_head.link_order; p != NULL; p = p->next)
10522 {
10523 sections[seen_linkorder++] = p;
10524 }
10525 /* Sort the input sections in the order of their linked section. */
10526 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10527 compare_link_order);
10528
10529 /* Change the offsets of the sections. */
10530 offset = 0;
10531 for (n = 0; n < seen_linkorder; n++)
10532 {
10533 s = sections[n]->u.indirect.section;
10534 offset &= ~(bfd_vma) 0 << s->alignment_power;
10535 s->output_offset = offset;
10536 sections[n]->offset = offset;
10537 /* FIXME: octets_per_byte. */
10538 offset += sections[n]->size;
10539 }
10540
10541 free (sections);
10542 return TRUE;
10543 }
10544
10545 static void
10546 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10547 {
10548 asection *o;
10549
10550 if (flinfo->symstrtab != NULL)
10551 _bfd_stringtab_free (flinfo->symstrtab);
10552 if (flinfo->contents != NULL)
10553 free (flinfo->contents);
10554 if (flinfo->external_relocs != NULL)
10555 free (flinfo->external_relocs);
10556 if (flinfo->internal_relocs != NULL)
10557 free (flinfo->internal_relocs);
10558 if (flinfo->external_syms != NULL)
10559 free (flinfo->external_syms);
10560 if (flinfo->locsym_shndx != NULL)
10561 free (flinfo->locsym_shndx);
10562 if (flinfo->internal_syms != NULL)
10563 free (flinfo->internal_syms);
10564 if (flinfo->indices != NULL)
10565 free (flinfo->indices);
10566 if (flinfo->sections != NULL)
10567 free (flinfo->sections);
10568 if (flinfo->symbuf != NULL)
10569 free (flinfo->symbuf);
10570 if (flinfo->symshndxbuf != NULL)
10571 free (flinfo->symshndxbuf);
10572 for (o = obfd->sections; o != NULL; o = o->next)
10573 {
10574 struct bfd_elf_section_data *esdo = elf_section_data (o);
10575 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10576 free (esdo->rel.hashes);
10577 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10578 free (esdo->rela.hashes);
10579 }
10580 }
10581
10582 /* Do the final step of an ELF link. */
10583
10584 bfd_boolean
10585 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10586 {
10587 bfd_boolean dynamic;
10588 bfd_boolean emit_relocs;
10589 bfd *dynobj;
10590 struct elf_final_link_info flinfo;
10591 asection *o;
10592 struct bfd_link_order *p;
10593 bfd *sub;
10594 bfd_size_type max_contents_size;
10595 bfd_size_type max_external_reloc_size;
10596 bfd_size_type max_internal_reloc_count;
10597 bfd_size_type max_sym_count;
10598 bfd_size_type max_sym_shndx_count;
10599 file_ptr off;
10600 Elf_Internal_Sym elfsym;
10601 unsigned int i;
10602 Elf_Internal_Shdr *symtab_hdr;
10603 Elf_Internal_Shdr *symtab_shndx_hdr;
10604 Elf_Internal_Shdr *symstrtab_hdr;
10605 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10606 struct elf_outext_info eoinfo;
10607 bfd_boolean merged;
10608 size_t relativecount = 0;
10609 asection *reldyn = 0;
10610 bfd_size_type amt;
10611 asection *attr_section = NULL;
10612 bfd_vma attr_size = 0;
10613 const char *std_attrs_section;
10614
10615 if (! is_elf_hash_table (info->hash))
10616 return FALSE;
10617
10618 if (info->shared)
10619 abfd->flags |= DYNAMIC;
10620
10621 dynamic = elf_hash_table (info)->dynamic_sections_created;
10622 dynobj = elf_hash_table (info)->dynobj;
10623
10624 emit_relocs = (info->relocatable
10625 || info->emitrelocations);
10626
10627 flinfo.info = info;
10628 flinfo.output_bfd = abfd;
10629 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10630 if (flinfo.symstrtab == NULL)
10631 return FALSE;
10632
10633 if (! dynamic)
10634 {
10635 flinfo.dynsym_sec = NULL;
10636 flinfo.hash_sec = NULL;
10637 flinfo.symver_sec = NULL;
10638 }
10639 else
10640 {
10641 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10642 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10643 /* Note that dynsym_sec can be NULL (on VMS). */
10644 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10645 /* Note that it is OK if symver_sec is NULL. */
10646 }
10647
10648 flinfo.contents = NULL;
10649 flinfo.external_relocs = NULL;
10650 flinfo.internal_relocs = NULL;
10651 flinfo.external_syms = NULL;
10652 flinfo.locsym_shndx = NULL;
10653 flinfo.internal_syms = NULL;
10654 flinfo.indices = NULL;
10655 flinfo.sections = NULL;
10656 flinfo.symbuf = NULL;
10657 flinfo.symshndxbuf = NULL;
10658 flinfo.symbuf_count = 0;
10659 flinfo.shndxbuf_size = 0;
10660 flinfo.filesym_count = 0;
10661
10662 /* The object attributes have been merged. Remove the input
10663 sections from the link, and set the contents of the output
10664 secton. */
10665 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10666 for (o = abfd->sections; o != NULL; o = o->next)
10667 {
10668 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10669 || strcmp (o->name, ".gnu.attributes") == 0)
10670 {
10671 for (p = o->map_head.link_order; p != NULL; p = p->next)
10672 {
10673 asection *input_section;
10674
10675 if (p->type != bfd_indirect_link_order)
10676 continue;
10677 input_section = p->u.indirect.section;
10678 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10679 elf_link_input_bfd ignores this section. */
10680 input_section->flags &= ~SEC_HAS_CONTENTS;
10681 }
10682
10683 attr_size = bfd_elf_obj_attr_size (abfd);
10684 if (attr_size)
10685 {
10686 bfd_set_section_size (abfd, o, attr_size);
10687 attr_section = o;
10688 /* Skip this section later on. */
10689 o->map_head.link_order = NULL;
10690 }
10691 else
10692 o->flags |= SEC_EXCLUDE;
10693 }
10694 }
10695
10696 /* Count up the number of relocations we will output for each output
10697 section, so that we know the sizes of the reloc sections. We
10698 also figure out some maximum sizes. */
10699 max_contents_size = 0;
10700 max_external_reloc_size = 0;
10701 max_internal_reloc_count = 0;
10702 max_sym_count = 0;
10703 max_sym_shndx_count = 0;
10704 merged = FALSE;
10705 for (o = abfd->sections; o != NULL; o = o->next)
10706 {
10707 struct bfd_elf_section_data *esdo = elf_section_data (o);
10708 o->reloc_count = 0;
10709
10710 for (p = o->map_head.link_order; p != NULL; p = p->next)
10711 {
10712 unsigned int reloc_count = 0;
10713 struct bfd_elf_section_data *esdi = NULL;
10714
10715 if (p->type == bfd_section_reloc_link_order
10716 || p->type == bfd_symbol_reloc_link_order)
10717 reloc_count = 1;
10718 else if (p->type == bfd_indirect_link_order)
10719 {
10720 asection *sec;
10721
10722 sec = p->u.indirect.section;
10723 esdi = elf_section_data (sec);
10724
10725 /* Mark all sections which are to be included in the
10726 link. This will normally be every section. We need
10727 to do this so that we can identify any sections which
10728 the linker has decided to not include. */
10729 sec->linker_mark = TRUE;
10730
10731 if (sec->flags & SEC_MERGE)
10732 merged = TRUE;
10733
10734 if (esdo->this_hdr.sh_type == SHT_REL
10735 || esdo->this_hdr.sh_type == SHT_RELA)
10736 /* Some backends use reloc_count in relocation sections
10737 to count particular types of relocs. Of course,
10738 reloc sections themselves can't have relocations. */
10739 reloc_count = 0;
10740 else if (info->relocatable || info->emitrelocations)
10741 reloc_count = sec->reloc_count;
10742 else if (bed->elf_backend_count_relocs)
10743 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10744
10745 if (sec->rawsize > max_contents_size)
10746 max_contents_size = sec->rawsize;
10747 if (sec->size > max_contents_size)
10748 max_contents_size = sec->size;
10749
10750 /* We are interested in just local symbols, not all
10751 symbols. */
10752 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10753 && (sec->owner->flags & DYNAMIC) == 0)
10754 {
10755 size_t sym_count;
10756
10757 if (elf_bad_symtab (sec->owner))
10758 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10759 / bed->s->sizeof_sym);
10760 else
10761 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10762
10763 if (sym_count > max_sym_count)
10764 max_sym_count = sym_count;
10765
10766 if (sym_count > max_sym_shndx_count
10767 && elf_symtab_shndx (sec->owner) != 0)
10768 max_sym_shndx_count = sym_count;
10769
10770 if ((sec->flags & SEC_RELOC) != 0)
10771 {
10772 size_t ext_size = 0;
10773
10774 if (esdi->rel.hdr != NULL)
10775 ext_size = esdi->rel.hdr->sh_size;
10776 if (esdi->rela.hdr != NULL)
10777 ext_size += esdi->rela.hdr->sh_size;
10778
10779 if (ext_size > max_external_reloc_size)
10780 max_external_reloc_size = ext_size;
10781 if (sec->reloc_count > max_internal_reloc_count)
10782 max_internal_reloc_count = sec->reloc_count;
10783 }
10784 }
10785 }
10786
10787 if (reloc_count == 0)
10788 continue;
10789
10790 o->reloc_count += reloc_count;
10791
10792 if (p->type == bfd_indirect_link_order
10793 && (info->relocatable || info->emitrelocations))
10794 {
10795 if (esdi->rel.hdr)
10796 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10797 if (esdi->rela.hdr)
10798 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10799 }
10800 else
10801 {
10802 if (o->use_rela_p)
10803 esdo->rela.count += reloc_count;
10804 else
10805 esdo->rel.count += reloc_count;
10806 }
10807 }
10808
10809 if (o->reloc_count > 0)
10810 o->flags |= SEC_RELOC;
10811 else
10812 {
10813 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10814 set it (this is probably a bug) and if it is set
10815 assign_section_numbers will create a reloc section. */
10816 o->flags &=~ SEC_RELOC;
10817 }
10818
10819 /* If the SEC_ALLOC flag is not set, force the section VMA to
10820 zero. This is done in elf_fake_sections as well, but forcing
10821 the VMA to 0 here will ensure that relocs against these
10822 sections are handled correctly. */
10823 if ((o->flags & SEC_ALLOC) == 0
10824 && ! o->user_set_vma)
10825 o->vma = 0;
10826 }
10827
10828 if (! info->relocatable && merged)
10829 elf_link_hash_traverse (elf_hash_table (info),
10830 _bfd_elf_link_sec_merge_syms, abfd);
10831
10832 /* Figure out the file positions for everything but the symbol table
10833 and the relocs. We set symcount to force assign_section_numbers
10834 to create a symbol table. */
10835 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10836 BFD_ASSERT (! abfd->output_has_begun);
10837 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10838 goto error_return;
10839
10840 /* Set sizes, and assign file positions for reloc sections. */
10841 for (o = abfd->sections; o != NULL; o = o->next)
10842 {
10843 struct bfd_elf_section_data *esdo = elf_section_data (o);
10844 if ((o->flags & SEC_RELOC) != 0)
10845 {
10846 if (esdo->rel.hdr
10847 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10848 goto error_return;
10849
10850 if (esdo->rela.hdr
10851 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10852 goto error_return;
10853 }
10854
10855 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10856 to count upwards while actually outputting the relocations. */
10857 esdo->rel.count = 0;
10858 esdo->rela.count = 0;
10859 }
10860
10861 /* We have now assigned file positions for all the sections except
10862 .symtab, .strtab, and non-loaded reloc sections. We start the
10863 .symtab section at the current file position, and write directly
10864 to it. We build the .strtab section in memory. */
10865 bfd_get_symcount (abfd) = 0;
10866 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10867 /* sh_name is set in prep_headers. */
10868 symtab_hdr->sh_type = SHT_SYMTAB;
10869 /* sh_flags, sh_addr and sh_size all start off zero. */
10870 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10871 /* sh_link is set in assign_section_numbers. */
10872 /* sh_info is set below. */
10873 /* sh_offset is set just below. */
10874 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10875
10876 off = elf_next_file_pos (abfd);
10877 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10878
10879 /* Note that at this point elf_next_file_pos (abfd) is
10880 incorrect. We do not yet know the size of the .symtab section.
10881 We correct next_file_pos below, after we do know the size. */
10882
10883 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10884 continuously seeking to the right position in the file. */
10885 if (! info->keep_memory || max_sym_count < 20)
10886 flinfo.symbuf_size = 20;
10887 else
10888 flinfo.symbuf_size = max_sym_count;
10889 amt = flinfo.symbuf_size;
10890 amt *= bed->s->sizeof_sym;
10891 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10892 if (flinfo.symbuf == NULL)
10893 goto error_return;
10894 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10895 {
10896 /* Wild guess at number of output symbols. realloc'd as needed. */
10897 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10898 flinfo.shndxbuf_size = amt;
10899 amt *= sizeof (Elf_External_Sym_Shndx);
10900 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10901 if (flinfo.symshndxbuf == NULL)
10902 goto error_return;
10903 }
10904
10905 /* Start writing out the symbol table. The first symbol is always a
10906 dummy symbol. */
10907 if (info->strip != strip_all
10908 || emit_relocs)
10909 {
10910 elfsym.st_value = 0;
10911 elfsym.st_size = 0;
10912 elfsym.st_info = 0;
10913 elfsym.st_other = 0;
10914 elfsym.st_shndx = SHN_UNDEF;
10915 elfsym.st_target_internal = 0;
10916 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10917 NULL) != 1)
10918 goto error_return;
10919 }
10920
10921 /* Output a symbol for each section. We output these even if we are
10922 discarding local symbols, since they are used for relocs. These
10923 symbols have no names. We store the index of each one in the
10924 index field of the section, so that we can find it again when
10925 outputting relocs. */
10926 if (info->strip != strip_all
10927 || emit_relocs)
10928 {
10929 elfsym.st_size = 0;
10930 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10931 elfsym.st_other = 0;
10932 elfsym.st_value = 0;
10933 elfsym.st_target_internal = 0;
10934 for (i = 1; i < elf_numsections (abfd); i++)
10935 {
10936 o = bfd_section_from_elf_index (abfd, i);
10937 if (o != NULL)
10938 {
10939 o->target_index = bfd_get_symcount (abfd);
10940 elfsym.st_shndx = i;
10941 if (!info->relocatable)
10942 elfsym.st_value = o->vma;
10943 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10944 goto error_return;
10945 }
10946 }
10947 }
10948
10949 /* Allocate some memory to hold information read in from the input
10950 files. */
10951 if (max_contents_size != 0)
10952 {
10953 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10954 if (flinfo.contents == NULL)
10955 goto error_return;
10956 }
10957
10958 if (max_external_reloc_size != 0)
10959 {
10960 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10961 if (flinfo.external_relocs == NULL)
10962 goto error_return;
10963 }
10964
10965 if (max_internal_reloc_count != 0)
10966 {
10967 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10968 amt *= sizeof (Elf_Internal_Rela);
10969 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10970 if (flinfo.internal_relocs == NULL)
10971 goto error_return;
10972 }
10973
10974 if (max_sym_count != 0)
10975 {
10976 amt = max_sym_count * bed->s->sizeof_sym;
10977 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10978 if (flinfo.external_syms == NULL)
10979 goto error_return;
10980
10981 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10982 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10983 if (flinfo.internal_syms == NULL)
10984 goto error_return;
10985
10986 amt = max_sym_count * sizeof (long);
10987 flinfo.indices = (long int *) bfd_malloc (amt);
10988 if (flinfo.indices == NULL)
10989 goto error_return;
10990
10991 amt = max_sym_count * sizeof (asection *);
10992 flinfo.sections = (asection **) bfd_malloc (amt);
10993 if (flinfo.sections == NULL)
10994 goto error_return;
10995 }
10996
10997 if (max_sym_shndx_count != 0)
10998 {
10999 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11000 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11001 if (flinfo.locsym_shndx == NULL)
11002 goto error_return;
11003 }
11004
11005 if (elf_hash_table (info)->tls_sec)
11006 {
11007 bfd_vma base, end = 0;
11008 asection *sec;
11009
11010 for (sec = elf_hash_table (info)->tls_sec;
11011 sec && (sec->flags & SEC_THREAD_LOCAL);
11012 sec = sec->next)
11013 {
11014 bfd_size_type size = sec->size;
11015
11016 if (size == 0
11017 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11018 {
11019 struct bfd_link_order *ord = sec->map_tail.link_order;
11020
11021 if (ord != NULL)
11022 size = ord->offset + ord->size;
11023 }
11024 end = sec->vma + size;
11025 }
11026 base = elf_hash_table (info)->tls_sec->vma;
11027 /* Only align end of TLS section if static TLS doesn't have special
11028 alignment requirements. */
11029 if (bed->static_tls_alignment == 1)
11030 end = align_power (end,
11031 elf_hash_table (info)->tls_sec->alignment_power);
11032 elf_hash_table (info)->tls_size = end - base;
11033 }
11034
11035 /* Reorder SHF_LINK_ORDER sections. */
11036 for (o = abfd->sections; o != NULL; o = o->next)
11037 {
11038 if (!elf_fixup_link_order (abfd, o))
11039 return FALSE;
11040 }
11041
11042 /* Since ELF permits relocations to be against local symbols, we
11043 must have the local symbols available when we do the relocations.
11044 Since we would rather only read the local symbols once, and we
11045 would rather not keep them in memory, we handle all the
11046 relocations for a single input file at the same time.
11047
11048 Unfortunately, there is no way to know the total number of local
11049 symbols until we have seen all of them, and the local symbol
11050 indices precede the global symbol indices. This means that when
11051 we are generating relocatable output, and we see a reloc against
11052 a global symbol, we can not know the symbol index until we have
11053 finished examining all the local symbols to see which ones we are
11054 going to output. To deal with this, we keep the relocations in
11055 memory, and don't output them until the end of the link. This is
11056 an unfortunate waste of memory, but I don't see a good way around
11057 it. Fortunately, it only happens when performing a relocatable
11058 link, which is not the common case. FIXME: If keep_memory is set
11059 we could write the relocs out and then read them again; I don't
11060 know how bad the memory loss will be. */
11061
11062 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11063 sub->output_has_begun = FALSE;
11064 for (o = abfd->sections; o != NULL; o = o->next)
11065 {
11066 for (p = o->map_head.link_order; p != NULL; p = p->next)
11067 {
11068 if (p->type == bfd_indirect_link_order
11069 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11070 == bfd_target_elf_flavour)
11071 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11072 {
11073 if (! sub->output_has_begun)
11074 {
11075 if (! elf_link_input_bfd (&flinfo, sub))
11076 goto error_return;
11077 sub->output_has_begun = TRUE;
11078 }
11079 }
11080 else if (p->type == bfd_section_reloc_link_order
11081 || p->type == bfd_symbol_reloc_link_order)
11082 {
11083 if (! elf_reloc_link_order (abfd, info, o, p))
11084 goto error_return;
11085 }
11086 else
11087 {
11088 if (! _bfd_default_link_order (abfd, info, o, p))
11089 {
11090 if (p->type == bfd_indirect_link_order
11091 && (bfd_get_flavour (sub)
11092 == bfd_target_elf_flavour)
11093 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11094 != bed->s->elfclass))
11095 {
11096 const char *iclass, *oclass;
11097
11098 if (bed->s->elfclass == ELFCLASS64)
11099 {
11100 iclass = "ELFCLASS32";
11101 oclass = "ELFCLASS64";
11102 }
11103 else
11104 {
11105 iclass = "ELFCLASS64";
11106 oclass = "ELFCLASS32";
11107 }
11108
11109 bfd_set_error (bfd_error_wrong_format);
11110 (*_bfd_error_handler)
11111 (_("%B: file class %s incompatible with %s"),
11112 sub, iclass, oclass);
11113 }
11114
11115 goto error_return;
11116 }
11117 }
11118 }
11119 }
11120
11121 /* Free symbol buffer if needed. */
11122 if (!info->reduce_memory_overheads)
11123 {
11124 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11125 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11126 && elf_tdata (sub)->symbuf)
11127 {
11128 free (elf_tdata (sub)->symbuf);
11129 elf_tdata (sub)->symbuf = NULL;
11130 }
11131 }
11132
11133 /* Output any global symbols that got converted to local in a
11134 version script or due to symbol visibility. We do this in a
11135 separate step since ELF requires all local symbols to appear
11136 prior to any global symbols. FIXME: We should only do this if
11137 some global symbols were, in fact, converted to become local.
11138 FIXME: Will this work correctly with the Irix 5 linker? */
11139 eoinfo.failed = FALSE;
11140 eoinfo.flinfo = &flinfo;
11141 eoinfo.localsyms = TRUE;
11142 eoinfo.need_second_pass = FALSE;
11143 eoinfo.second_pass = FALSE;
11144 eoinfo.file_sym_done = FALSE;
11145 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11146 if (eoinfo.failed)
11147 return FALSE;
11148
11149 if (eoinfo.need_second_pass)
11150 {
11151 eoinfo.second_pass = TRUE;
11152 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11153 if (eoinfo.failed)
11154 return FALSE;
11155 }
11156
11157 /* If backend needs to output some local symbols not present in the hash
11158 table, do it now. */
11159 if (bed->elf_backend_output_arch_local_syms)
11160 {
11161 typedef int (*out_sym_func)
11162 (void *, const char *, Elf_Internal_Sym *, asection *,
11163 struct elf_link_hash_entry *);
11164
11165 if (! ((*bed->elf_backend_output_arch_local_syms)
11166 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11167 return FALSE;
11168 }
11169
11170 /* That wrote out all the local symbols. Finish up the symbol table
11171 with the global symbols. Even if we want to strip everything we
11172 can, we still need to deal with those global symbols that got
11173 converted to local in a version script. */
11174
11175 /* The sh_info field records the index of the first non local symbol. */
11176 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11177
11178 if (dynamic
11179 && flinfo.dynsym_sec != NULL
11180 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11181 {
11182 Elf_Internal_Sym sym;
11183 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11184 long last_local = 0;
11185
11186 /* Write out the section symbols for the output sections. */
11187 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11188 {
11189 asection *s;
11190
11191 sym.st_size = 0;
11192 sym.st_name = 0;
11193 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11194 sym.st_other = 0;
11195 sym.st_target_internal = 0;
11196
11197 for (s = abfd->sections; s != NULL; s = s->next)
11198 {
11199 int indx;
11200 bfd_byte *dest;
11201 long dynindx;
11202
11203 dynindx = elf_section_data (s)->dynindx;
11204 if (dynindx <= 0)
11205 continue;
11206 indx = elf_section_data (s)->this_idx;
11207 BFD_ASSERT (indx > 0);
11208 sym.st_shndx = indx;
11209 if (! check_dynsym (abfd, &sym))
11210 return FALSE;
11211 sym.st_value = s->vma;
11212 dest = dynsym + dynindx * bed->s->sizeof_sym;
11213 if (last_local < dynindx)
11214 last_local = dynindx;
11215 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11216 }
11217 }
11218
11219 /* Write out the local dynsyms. */
11220 if (elf_hash_table (info)->dynlocal)
11221 {
11222 struct elf_link_local_dynamic_entry *e;
11223 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11224 {
11225 asection *s;
11226 bfd_byte *dest;
11227
11228 /* Copy the internal symbol and turn off visibility.
11229 Note that we saved a word of storage and overwrote
11230 the original st_name with the dynstr_index. */
11231 sym = e->isym;
11232 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11233
11234 s = bfd_section_from_elf_index (e->input_bfd,
11235 e->isym.st_shndx);
11236 if (s != NULL)
11237 {
11238 sym.st_shndx =
11239 elf_section_data (s->output_section)->this_idx;
11240 if (! check_dynsym (abfd, &sym))
11241 return FALSE;
11242 sym.st_value = (s->output_section->vma
11243 + s->output_offset
11244 + e->isym.st_value);
11245 }
11246
11247 if (last_local < e->dynindx)
11248 last_local = e->dynindx;
11249
11250 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11251 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11252 }
11253 }
11254
11255 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11256 last_local + 1;
11257 }
11258
11259 /* We get the global symbols from the hash table. */
11260 eoinfo.failed = FALSE;
11261 eoinfo.localsyms = FALSE;
11262 eoinfo.flinfo = &flinfo;
11263 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11264 if (eoinfo.failed)
11265 return FALSE;
11266
11267 /* If backend needs to output some symbols not present in the hash
11268 table, do it now. */
11269 if (bed->elf_backend_output_arch_syms)
11270 {
11271 typedef int (*out_sym_func)
11272 (void *, const char *, Elf_Internal_Sym *, asection *,
11273 struct elf_link_hash_entry *);
11274
11275 if (! ((*bed->elf_backend_output_arch_syms)
11276 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11277 return FALSE;
11278 }
11279
11280 /* Flush all symbols to the file. */
11281 if (! elf_link_flush_output_syms (&flinfo, bed))
11282 return FALSE;
11283
11284 /* Now we know the size of the symtab section. */
11285 off += symtab_hdr->sh_size;
11286
11287 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11288 if (symtab_shndx_hdr->sh_name != 0)
11289 {
11290 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11291 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11292 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11293 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11294 symtab_shndx_hdr->sh_size = amt;
11295
11296 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11297 off, TRUE);
11298
11299 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11300 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11301 return FALSE;
11302 }
11303
11304
11305 /* Finish up and write out the symbol string table (.strtab)
11306 section. */
11307 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11308 /* sh_name was set in prep_headers. */
11309 symstrtab_hdr->sh_type = SHT_STRTAB;
11310 symstrtab_hdr->sh_flags = 0;
11311 symstrtab_hdr->sh_addr = 0;
11312 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11313 symstrtab_hdr->sh_entsize = 0;
11314 symstrtab_hdr->sh_link = 0;
11315 symstrtab_hdr->sh_info = 0;
11316 /* sh_offset is set just below. */
11317 symstrtab_hdr->sh_addralign = 1;
11318
11319 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
11320 elf_next_file_pos (abfd) = off;
11321
11322 if (bfd_get_symcount (abfd) > 0)
11323 {
11324 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11325 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11326 return FALSE;
11327 }
11328
11329 /* Adjust the relocs to have the correct symbol indices. */
11330 for (o = abfd->sections; o != NULL; o = o->next)
11331 {
11332 struct bfd_elf_section_data *esdo = elf_section_data (o);
11333 bfd_boolean sort;
11334 if ((o->flags & SEC_RELOC) == 0)
11335 continue;
11336
11337 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
11338 if (esdo->rel.hdr != NULL)
11339 elf_link_adjust_relocs (abfd, &esdo->rel, sort);
11340 if (esdo->rela.hdr != NULL)
11341 elf_link_adjust_relocs (abfd, &esdo->rela, sort);
11342
11343 /* Set the reloc_count field to 0 to prevent write_relocs from
11344 trying to swap the relocs out itself. */
11345 o->reloc_count = 0;
11346 }
11347
11348 if (dynamic && info->combreloc && dynobj != NULL)
11349 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11350
11351 /* If we are linking against a dynamic object, or generating a
11352 shared library, finish up the dynamic linking information. */
11353 if (dynamic)
11354 {
11355 bfd_byte *dyncon, *dynconend;
11356
11357 /* Fix up .dynamic entries. */
11358 o = bfd_get_linker_section (dynobj, ".dynamic");
11359 BFD_ASSERT (o != NULL);
11360
11361 dyncon = o->contents;
11362 dynconend = o->contents + o->size;
11363 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11364 {
11365 Elf_Internal_Dyn dyn;
11366 const char *name;
11367 unsigned int type;
11368
11369 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11370
11371 switch (dyn.d_tag)
11372 {
11373 default:
11374 continue;
11375 case DT_NULL:
11376 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11377 {
11378 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11379 {
11380 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11381 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11382 default: continue;
11383 }
11384 dyn.d_un.d_val = relativecount;
11385 relativecount = 0;
11386 break;
11387 }
11388 continue;
11389
11390 case DT_INIT:
11391 name = info->init_function;
11392 goto get_sym;
11393 case DT_FINI:
11394 name = info->fini_function;
11395 get_sym:
11396 {
11397 struct elf_link_hash_entry *h;
11398
11399 h = elf_link_hash_lookup (elf_hash_table (info), name,
11400 FALSE, FALSE, TRUE);
11401 if (h != NULL
11402 && (h->root.type == bfd_link_hash_defined
11403 || h->root.type == bfd_link_hash_defweak))
11404 {
11405 dyn.d_un.d_ptr = h->root.u.def.value;
11406 o = h->root.u.def.section;
11407 if (o->output_section != NULL)
11408 dyn.d_un.d_ptr += (o->output_section->vma
11409 + o->output_offset);
11410 else
11411 {
11412 /* The symbol is imported from another shared
11413 library and does not apply to this one. */
11414 dyn.d_un.d_ptr = 0;
11415 }
11416 break;
11417 }
11418 }
11419 continue;
11420
11421 case DT_PREINIT_ARRAYSZ:
11422 name = ".preinit_array";
11423 goto get_size;
11424 case DT_INIT_ARRAYSZ:
11425 name = ".init_array";
11426 goto get_size;
11427 case DT_FINI_ARRAYSZ:
11428 name = ".fini_array";
11429 get_size:
11430 o = bfd_get_section_by_name (abfd, name);
11431 if (o == NULL)
11432 {
11433 (*_bfd_error_handler)
11434 (_("%B: could not find output section %s"), abfd, name);
11435 goto error_return;
11436 }
11437 if (o->size == 0)
11438 (*_bfd_error_handler)
11439 (_("warning: %s section has zero size"), name);
11440 dyn.d_un.d_val = o->size;
11441 break;
11442
11443 case DT_PREINIT_ARRAY:
11444 name = ".preinit_array";
11445 goto get_vma;
11446 case DT_INIT_ARRAY:
11447 name = ".init_array";
11448 goto get_vma;
11449 case DT_FINI_ARRAY:
11450 name = ".fini_array";
11451 goto get_vma;
11452
11453 case DT_HASH:
11454 name = ".hash";
11455 goto get_vma;
11456 case DT_GNU_HASH:
11457 name = ".gnu.hash";
11458 goto get_vma;
11459 case DT_STRTAB:
11460 name = ".dynstr";
11461 goto get_vma;
11462 case DT_SYMTAB:
11463 name = ".dynsym";
11464 goto get_vma;
11465 case DT_VERDEF:
11466 name = ".gnu.version_d";
11467 goto get_vma;
11468 case DT_VERNEED:
11469 name = ".gnu.version_r";
11470 goto get_vma;
11471 case DT_VERSYM:
11472 name = ".gnu.version";
11473 get_vma:
11474 o = bfd_get_section_by_name (abfd, name);
11475 if (o == NULL)
11476 {
11477 (*_bfd_error_handler)
11478 (_("%B: could not find output section %s"), abfd, name);
11479 goto error_return;
11480 }
11481 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11482 {
11483 (*_bfd_error_handler)
11484 (_("warning: section '%s' is being made into a note"), name);
11485 bfd_set_error (bfd_error_nonrepresentable_section);
11486 goto error_return;
11487 }
11488 dyn.d_un.d_ptr = o->vma;
11489 break;
11490
11491 case DT_REL:
11492 case DT_RELA:
11493 case DT_RELSZ:
11494 case DT_RELASZ:
11495 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11496 type = SHT_REL;
11497 else
11498 type = SHT_RELA;
11499 dyn.d_un.d_val = 0;
11500 dyn.d_un.d_ptr = 0;
11501 for (i = 1; i < elf_numsections (abfd); i++)
11502 {
11503 Elf_Internal_Shdr *hdr;
11504
11505 hdr = elf_elfsections (abfd)[i];
11506 if (hdr->sh_type == type
11507 && (hdr->sh_flags & SHF_ALLOC) != 0)
11508 {
11509 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11510 dyn.d_un.d_val += hdr->sh_size;
11511 else
11512 {
11513 if (dyn.d_un.d_ptr == 0
11514 || hdr->sh_addr < dyn.d_un.d_ptr)
11515 dyn.d_un.d_ptr = hdr->sh_addr;
11516 }
11517 }
11518 }
11519 break;
11520 }
11521 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11522 }
11523 }
11524
11525 /* If we have created any dynamic sections, then output them. */
11526 if (dynobj != NULL)
11527 {
11528 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11529 goto error_return;
11530
11531 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11532 if (((info->warn_shared_textrel && info->shared)
11533 || info->error_textrel)
11534 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11535 {
11536 bfd_byte *dyncon, *dynconend;
11537
11538 dyncon = o->contents;
11539 dynconend = o->contents + o->size;
11540 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11541 {
11542 Elf_Internal_Dyn dyn;
11543
11544 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11545
11546 if (dyn.d_tag == DT_TEXTREL)
11547 {
11548 if (info->error_textrel)
11549 info->callbacks->einfo
11550 (_("%P%X: read-only segment has dynamic relocations.\n"));
11551 else
11552 info->callbacks->einfo
11553 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11554 break;
11555 }
11556 }
11557 }
11558
11559 for (o = dynobj->sections; o != NULL; o = o->next)
11560 {
11561 if ((o->flags & SEC_HAS_CONTENTS) == 0
11562 || o->size == 0
11563 || o->output_section == bfd_abs_section_ptr)
11564 continue;
11565 if ((o->flags & SEC_LINKER_CREATED) == 0)
11566 {
11567 /* At this point, we are only interested in sections
11568 created by _bfd_elf_link_create_dynamic_sections. */
11569 continue;
11570 }
11571 if (elf_hash_table (info)->stab_info.stabstr == o)
11572 continue;
11573 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11574 continue;
11575 if (strcmp (o->name, ".dynstr") != 0)
11576 {
11577 /* FIXME: octets_per_byte. */
11578 if (! bfd_set_section_contents (abfd, o->output_section,
11579 o->contents,
11580 (file_ptr) o->output_offset,
11581 o->size))
11582 goto error_return;
11583 }
11584 else
11585 {
11586 /* The contents of the .dynstr section are actually in a
11587 stringtab. */
11588 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11589 if (bfd_seek (abfd, off, SEEK_SET) != 0
11590 || ! _bfd_elf_strtab_emit (abfd,
11591 elf_hash_table (info)->dynstr))
11592 goto error_return;
11593 }
11594 }
11595 }
11596
11597 if (info->relocatable)
11598 {
11599 bfd_boolean failed = FALSE;
11600
11601 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11602 if (failed)
11603 goto error_return;
11604 }
11605
11606 /* If we have optimized stabs strings, output them. */
11607 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11608 {
11609 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11610 goto error_return;
11611 }
11612
11613 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11614 goto error_return;
11615
11616 elf_final_link_free (abfd, &flinfo);
11617
11618 elf_linker (abfd) = TRUE;
11619
11620 if (attr_section)
11621 {
11622 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11623 if (contents == NULL)
11624 return FALSE; /* Bail out and fail. */
11625 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11626 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11627 free (contents);
11628 }
11629
11630 return TRUE;
11631
11632 error_return:
11633 elf_final_link_free (abfd, &flinfo);
11634 return FALSE;
11635 }
11636 \f
11637 /* Initialize COOKIE for input bfd ABFD. */
11638
11639 static bfd_boolean
11640 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11641 struct bfd_link_info *info, bfd *abfd)
11642 {
11643 Elf_Internal_Shdr *symtab_hdr;
11644 const struct elf_backend_data *bed;
11645
11646 bed = get_elf_backend_data (abfd);
11647 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11648
11649 cookie->abfd = abfd;
11650 cookie->sym_hashes = elf_sym_hashes (abfd);
11651 cookie->bad_symtab = elf_bad_symtab (abfd);
11652 if (cookie->bad_symtab)
11653 {
11654 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11655 cookie->extsymoff = 0;
11656 }
11657 else
11658 {
11659 cookie->locsymcount = symtab_hdr->sh_info;
11660 cookie->extsymoff = symtab_hdr->sh_info;
11661 }
11662
11663 if (bed->s->arch_size == 32)
11664 cookie->r_sym_shift = 8;
11665 else
11666 cookie->r_sym_shift = 32;
11667
11668 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11669 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11670 {
11671 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11672 cookie->locsymcount, 0,
11673 NULL, NULL, NULL);
11674 if (cookie->locsyms == NULL)
11675 {
11676 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11677 return FALSE;
11678 }
11679 if (info->keep_memory)
11680 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11681 }
11682 return TRUE;
11683 }
11684
11685 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11686
11687 static void
11688 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11689 {
11690 Elf_Internal_Shdr *symtab_hdr;
11691
11692 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11693 if (cookie->locsyms != NULL
11694 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11695 free (cookie->locsyms);
11696 }
11697
11698 /* Initialize the relocation information in COOKIE for input section SEC
11699 of input bfd ABFD. */
11700
11701 static bfd_boolean
11702 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11703 struct bfd_link_info *info, bfd *abfd,
11704 asection *sec)
11705 {
11706 const struct elf_backend_data *bed;
11707
11708 if (sec->reloc_count == 0)
11709 {
11710 cookie->rels = NULL;
11711 cookie->relend = NULL;
11712 }
11713 else
11714 {
11715 bed = get_elf_backend_data (abfd);
11716
11717 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11718 info->keep_memory);
11719 if (cookie->rels == NULL)
11720 return FALSE;
11721 cookie->rel = cookie->rels;
11722 cookie->relend = (cookie->rels
11723 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11724 }
11725 cookie->rel = cookie->rels;
11726 return TRUE;
11727 }
11728
11729 /* Free the memory allocated by init_reloc_cookie_rels,
11730 if appropriate. */
11731
11732 static void
11733 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11734 asection *sec)
11735 {
11736 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11737 free (cookie->rels);
11738 }
11739
11740 /* Initialize the whole of COOKIE for input section SEC. */
11741
11742 static bfd_boolean
11743 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11744 struct bfd_link_info *info,
11745 asection *sec)
11746 {
11747 if (!init_reloc_cookie (cookie, info, sec->owner))
11748 goto error1;
11749 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11750 goto error2;
11751 return TRUE;
11752
11753 error2:
11754 fini_reloc_cookie (cookie, sec->owner);
11755 error1:
11756 return FALSE;
11757 }
11758
11759 /* Free the memory allocated by init_reloc_cookie_for_section,
11760 if appropriate. */
11761
11762 static void
11763 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11764 asection *sec)
11765 {
11766 fini_reloc_cookie_rels (cookie, sec);
11767 fini_reloc_cookie (cookie, sec->owner);
11768 }
11769 \f
11770 /* Garbage collect unused sections. */
11771
11772 /* Default gc_mark_hook. */
11773
11774 asection *
11775 _bfd_elf_gc_mark_hook (asection *sec,
11776 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11777 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11778 struct elf_link_hash_entry *h,
11779 Elf_Internal_Sym *sym)
11780 {
11781 const char *sec_name;
11782
11783 if (h != NULL)
11784 {
11785 switch (h->root.type)
11786 {
11787 case bfd_link_hash_defined:
11788 case bfd_link_hash_defweak:
11789 return h->root.u.def.section;
11790
11791 case bfd_link_hash_common:
11792 return h->root.u.c.p->section;
11793
11794 case bfd_link_hash_undefined:
11795 case bfd_link_hash_undefweak:
11796 /* To work around a glibc bug, keep all XXX input sections
11797 when there is an as yet undefined reference to __start_XXX
11798 or __stop_XXX symbols. The linker will later define such
11799 symbols for orphan input sections that have a name
11800 representable as a C identifier. */
11801 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11802 sec_name = h->root.root.string + 8;
11803 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11804 sec_name = h->root.root.string + 7;
11805 else
11806 sec_name = NULL;
11807
11808 if (sec_name && *sec_name != '\0')
11809 {
11810 bfd *i;
11811
11812 for (i = info->input_bfds; i; i = i->link.next)
11813 {
11814 sec = bfd_get_section_by_name (i, sec_name);
11815 if (sec)
11816 sec->flags |= SEC_KEEP;
11817 }
11818 }
11819 break;
11820
11821 default:
11822 break;
11823 }
11824 }
11825 else
11826 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11827
11828 return NULL;
11829 }
11830
11831 /* COOKIE->rel describes a relocation against section SEC, which is
11832 a section we've decided to keep. Return the section that contains
11833 the relocation symbol, or NULL if no section contains it. */
11834
11835 asection *
11836 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11837 elf_gc_mark_hook_fn gc_mark_hook,
11838 struct elf_reloc_cookie *cookie)
11839 {
11840 unsigned long r_symndx;
11841 struct elf_link_hash_entry *h;
11842
11843 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11844 if (r_symndx == STN_UNDEF)
11845 return NULL;
11846
11847 if (r_symndx >= cookie->locsymcount
11848 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11849 {
11850 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11851 while (h->root.type == bfd_link_hash_indirect
11852 || h->root.type == bfd_link_hash_warning)
11853 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11854 h->mark = 1;
11855 /* If this symbol is weak and there is a non-weak definition, we
11856 keep the non-weak definition because many backends put
11857 dynamic reloc info on the non-weak definition for code
11858 handling copy relocs. */
11859 if (h->u.weakdef != NULL)
11860 h->u.weakdef->mark = 1;
11861 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11862 }
11863
11864 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11865 &cookie->locsyms[r_symndx]);
11866 }
11867
11868 /* COOKIE->rel describes a relocation against section SEC, which is
11869 a section we've decided to keep. Mark the section that contains
11870 the relocation symbol. */
11871
11872 bfd_boolean
11873 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11874 asection *sec,
11875 elf_gc_mark_hook_fn gc_mark_hook,
11876 struct elf_reloc_cookie *cookie)
11877 {
11878 asection *rsec;
11879
11880 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11881 if (rsec && !rsec->gc_mark)
11882 {
11883 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11884 || (rsec->owner->flags & DYNAMIC) != 0)
11885 rsec->gc_mark = 1;
11886 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11887 return FALSE;
11888 }
11889 return TRUE;
11890 }
11891
11892 /* The mark phase of garbage collection. For a given section, mark
11893 it and any sections in this section's group, and all the sections
11894 which define symbols to which it refers. */
11895
11896 bfd_boolean
11897 _bfd_elf_gc_mark (struct bfd_link_info *info,
11898 asection *sec,
11899 elf_gc_mark_hook_fn gc_mark_hook)
11900 {
11901 bfd_boolean ret;
11902 asection *group_sec, *eh_frame;
11903
11904 sec->gc_mark = 1;
11905
11906 /* Mark all the sections in the group. */
11907 group_sec = elf_section_data (sec)->next_in_group;
11908 if (group_sec && !group_sec->gc_mark)
11909 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11910 return FALSE;
11911
11912 /* Look through the section relocs. */
11913 ret = TRUE;
11914 eh_frame = elf_eh_frame_section (sec->owner);
11915 if ((sec->flags & SEC_RELOC) != 0
11916 && sec->reloc_count > 0
11917 && sec != eh_frame)
11918 {
11919 struct elf_reloc_cookie cookie;
11920
11921 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11922 ret = FALSE;
11923 else
11924 {
11925 for (; cookie.rel < cookie.relend; cookie.rel++)
11926 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11927 {
11928 ret = FALSE;
11929 break;
11930 }
11931 fini_reloc_cookie_for_section (&cookie, sec);
11932 }
11933 }
11934
11935 if (ret && eh_frame && elf_fde_list (sec))
11936 {
11937 struct elf_reloc_cookie cookie;
11938
11939 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11940 ret = FALSE;
11941 else
11942 {
11943 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11944 gc_mark_hook, &cookie))
11945 ret = FALSE;
11946 fini_reloc_cookie_for_section (&cookie, eh_frame);
11947 }
11948 }
11949
11950 return ret;
11951 }
11952
11953 /* Keep debug and special sections. */
11954
11955 bfd_boolean
11956 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11957 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11958 {
11959 bfd *ibfd;
11960
11961 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11962 {
11963 asection *isec;
11964 bfd_boolean some_kept;
11965 bfd_boolean debug_frag_seen;
11966
11967 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11968 continue;
11969
11970 /* Ensure all linker created sections are kept,
11971 see if any other section is already marked,
11972 and note if we have any fragmented debug sections. */
11973 debug_frag_seen = some_kept = FALSE;
11974 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11975 {
11976 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11977 isec->gc_mark = 1;
11978 else if (isec->gc_mark)
11979 some_kept = TRUE;
11980
11981 if (debug_frag_seen == FALSE
11982 && (isec->flags & SEC_DEBUGGING)
11983 && CONST_STRNEQ (isec->name, ".debug_line."))
11984 debug_frag_seen = TRUE;
11985 }
11986
11987 /* If no section in this file will be kept, then we can
11988 toss out the debug and special sections. */
11989 if (!some_kept)
11990 continue;
11991
11992 /* Keep debug and special sections like .comment when they are
11993 not part of a group, or when we have single-member groups. */
11994 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11995 if ((elf_next_in_group (isec) == NULL
11996 || elf_next_in_group (isec) == isec)
11997 && ((isec->flags & SEC_DEBUGGING) != 0
11998 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
11999 isec->gc_mark = 1;
12000
12001 if (! debug_frag_seen)
12002 continue;
12003
12004 /* Look for CODE sections which are going to be discarded,
12005 and find and discard any fragmented debug sections which
12006 are associated with that code section. */
12007 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12008 if ((isec->flags & SEC_CODE) != 0
12009 && isec->gc_mark == 0)
12010 {
12011 unsigned int ilen;
12012 asection *dsec;
12013
12014 ilen = strlen (isec->name);
12015
12016 /* Association is determined by the name of the debug section
12017 containing the name of the code section as a suffix. For
12018 example .debug_line.text.foo is a debug section associated
12019 with .text.foo. */
12020 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12021 {
12022 unsigned int dlen;
12023
12024 if (dsec->gc_mark == 0
12025 || (dsec->flags & SEC_DEBUGGING) == 0)
12026 continue;
12027
12028 dlen = strlen (dsec->name);
12029
12030 if (dlen > ilen
12031 && strncmp (dsec->name + (dlen - ilen),
12032 isec->name, ilen) == 0)
12033 {
12034 dsec->gc_mark = 0;
12035 break;
12036 }
12037 }
12038 }
12039 }
12040 return TRUE;
12041 }
12042
12043 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
12044
12045 struct elf_gc_sweep_symbol_info
12046 {
12047 struct bfd_link_info *info;
12048 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
12049 bfd_boolean);
12050 };
12051
12052 static bfd_boolean
12053 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
12054 {
12055 if (!h->mark
12056 && (((h->root.type == bfd_link_hash_defined
12057 || h->root.type == bfd_link_hash_defweak)
12058 && !(h->def_regular
12059 && h->root.u.def.section->gc_mark))
12060 || h->root.type == bfd_link_hash_undefined
12061 || h->root.type == bfd_link_hash_undefweak))
12062 {
12063 struct elf_gc_sweep_symbol_info *inf;
12064
12065 inf = (struct elf_gc_sweep_symbol_info *) data;
12066 (*inf->hide_symbol) (inf->info, h, TRUE);
12067 h->def_regular = 0;
12068 h->ref_regular = 0;
12069 h->ref_regular_nonweak = 0;
12070 }
12071
12072 return TRUE;
12073 }
12074
12075 /* The sweep phase of garbage collection. Remove all garbage sections. */
12076
12077 typedef bfd_boolean (*gc_sweep_hook_fn)
12078 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
12079
12080 static bfd_boolean
12081 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
12082 {
12083 bfd *sub;
12084 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12085 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
12086 unsigned long section_sym_count;
12087 struct elf_gc_sweep_symbol_info sweep_info;
12088
12089 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12090 {
12091 asection *o;
12092
12093 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12094 continue;
12095
12096 for (o = sub->sections; o != NULL; o = o->next)
12097 {
12098 /* When any section in a section group is kept, we keep all
12099 sections in the section group. If the first member of
12100 the section group is excluded, we will also exclude the
12101 group section. */
12102 if (o->flags & SEC_GROUP)
12103 {
12104 asection *first = elf_next_in_group (o);
12105 o->gc_mark = first->gc_mark;
12106 }
12107
12108 if (o->gc_mark)
12109 continue;
12110
12111 /* Skip sweeping sections already excluded. */
12112 if (o->flags & SEC_EXCLUDE)
12113 continue;
12114
12115 /* Since this is early in the link process, it is simple
12116 to remove a section from the output. */
12117 o->flags |= SEC_EXCLUDE;
12118
12119 if (info->print_gc_sections && o->size != 0)
12120 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
12121
12122 /* But we also have to update some of the relocation
12123 info we collected before. */
12124 if (gc_sweep_hook
12125 && (o->flags & SEC_RELOC) != 0
12126 && o->reloc_count != 0
12127 && !((info->strip == strip_all || info->strip == strip_debugger)
12128 && (o->flags & SEC_DEBUGGING) != 0)
12129 && !bfd_is_abs_section (o->output_section))
12130 {
12131 Elf_Internal_Rela *internal_relocs;
12132 bfd_boolean r;
12133
12134 internal_relocs
12135 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12136 info->keep_memory);
12137 if (internal_relocs == NULL)
12138 return FALSE;
12139
12140 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12141
12142 if (elf_section_data (o)->relocs != internal_relocs)
12143 free (internal_relocs);
12144
12145 if (!r)
12146 return FALSE;
12147 }
12148 }
12149 }
12150
12151 /* Remove the symbols that were in the swept sections from the dynamic
12152 symbol table. GCFIXME: Anyone know how to get them out of the
12153 static symbol table as well? */
12154 sweep_info.info = info;
12155 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12156 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12157 &sweep_info);
12158
12159 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12160 return TRUE;
12161 }
12162
12163 /* Propagate collected vtable information. This is called through
12164 elf_link_hash_traverse. */
12165
12166 static bfd_boolean
12167 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12168 {
12169 /* Those that are not vtables. */
12170 if (h->vtable == NULL || h->vtable->parent == NULL)
12171 return TRUE;
12172
12173 /* Those vtables that do not have parents, we cannot merge. */
12174 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12175 return TRUE;
12176
12177 /* If we've already been done, exit. */
12178 if (h->vtable->used && h->vtable->used[-1])
12179 return TRUE;
12180
12181 /* Make sure the parent's table is up to date. */
12182 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12183
12184 if (h->vtable->used == NULL)
12185 {
12186 /* None of this table's entries were referenced. Re-use the
12187 parent's table. */
12188 h->vtable->used = h->vtable->parent->vtable->used;
12189 h->vtable->size = h->vtable->parent->vtable->size;
12190 }
12191 else
12192 {
12193 size_t n;
12194 bfd_boolean *cu, *pu;
12195
12196 /* Or the parent's entries into ours. */
12197 cu = h->vtable->used;
12198 cu[-1] = TRUE;
12199 pu = h->vtable->parent->vtable->used;
12200 if (pu != NULL)
12201 {
12202 const struct elf_backend_data *bed;
12203 unsigned int log_file_align;
12204
12205 bed = get_elf_backend_data (h->root.u.def.section->owner);
12206 log_file_align = bed->s->log_file_align;
12207 n = h->vtable->parent->vtable->size >> log_file_align;
12208 while (n--)
12209 {
12210 if (*pu)
12211 *cu = TRUE;
12212 pu++;
12213 cu++;
12214 }
12215 }
12216 }
12217
12218 return TRUE;
12219 }
12220
12221 static bfd_boolean
12222 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12223 {
12224 asection *sec;
12225 bfd_vma hstart, hend;
12226 Elf_Internal_Rela *relstart, *relend, *rel;
12227 const struct elf_backend_data *bed;
12228 unsigned int log_file_align;
12229
12230 /* Take care of both those symbols that do not describe vtables as
12231 well as those that are not loaded. */
12232 if (h->vtable == NULL || h->vtable->parent == NULL)
12233 return TRUE;
12234
12235 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12236 || h->root.type == bfd_link_hash_defweak);
12237
12238 sec = h->root.u.def.section;
12239 hstart = h->root.u.def.value;
12240 hend = hstart + h->size;
12241
12242 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12243 if (!relstart)
12244 return *(bfd_boolean *) okp = FALSE;
12245 bed = get_elf_backend_data (sec->owner);
12246 log_file_align = bed->s->log_file_align;
12247
12248 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12249
12250 for (rel = relstart; rel < relend; ++rel)
12251 if (rel->r_offset >= hstart && rel->r_offset < hend)
12252 {
12253 /* If the entry is in use, do nothing. */
12254 if (h->vtable->used
12255 && (rel->r_offset - hstart) < h->vtable->size)
12256 {
12257 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12258 if (h->vtable->used[entry])
12259 continue;
12260 }
12261 /* Otherwise, kill it. */
12262 rel->r_offset = rel->r_info = rel->r_addend = 0;
12263 }
12264
12265 return TRUE;
12266 }
12267
12268 /* Mark sections containing dynamically referenced symbols. When
12269 building shared libraries, we must assume that any visible symbol is
12270 referenced. */
12271
12272 bfd_boolean
12273 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12274 {
12275 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12276 struct bfd_elf_dynamic_list *d = info->dynamic_list;
12277
12278 if ((h->root.type == bfd_link_hash_defined
12279 || h->root.type == bfd_link_hash_defweak)
12280 && (h->ref_dynamic
12281 || (h->def_regular
12282 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12283 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12284 && (!info->executable
12285 || info->export_dynamic
12286 || (h->dynamic
12287 && d != NULL
12288 && (*d->match) (&d->head, NULL, h->root.root.string)))
12289 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12290 || !bfd_hide_sym_by_version (info->version_info,
12291 h->root.root.string)))))
12292 h->root.u.def.section->flags |= SEC_KEEP;
12293
12294 return TRUE;
12295 }
12296
12297 /* Keep all sections containing symbols undefined on the command-line,
12298 and the section containing the entry symbol. */
12299
12300 void
12301 _bfd_elf_gc_keep (struct bfd_link_info *info)
12302 {
12303 struct bfd_sym_chain *sym;
12304
12305 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12306 {
12307 struct elf_link_hash_entry *h;
12308
12309 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12310 FALSE, FALSE, FALSE);
12311
12312 if (h != NULL
12313 && (h->root.type == bfd_link_hash_defined
12314 || h->root.type == bfd_link_hash_defweak)
12315 && !bfd_is_abs_section (h->root.u.def.section))
12316 h->root.u.def.section->flags |= SEC_KEEP;
12317 }
12318 }
12319
12320 /* Do mark and sweep of unused sections. */
12321
12322 bfd_boolean
12323 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12324 {
12325 bfd_boolean ok = TRUE;
12326 bfd *sub;
12327 elf_gc_mark_hook_fn gc_mark_hook;
12328 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12329 struct elf_link_hash_table *htab;
12330
12331 if (!bed->can_gc_sections
12332 || !is_elf_hash_table (info->hash))
12333 {
12334 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12335 return TRUE;
12336 }
12337
12338 bed->gc_keep (info);
12339 htab = elf_hash_table (info);
12340
12341 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12342 at the .eh_frame section if we can mark the FDEs individually. */
12343 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12344 {
12345 asection *sec;
12346 struct elf_reloc_cookie cookie;
12347
12348 sec = bfd_get_section_by_name (sub, ".eh_frame");
12349 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12350 {
12351 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12352 if (elf_section_data (sec)->sec_info
12353 && (sec->flags & SEC_LINKER_CREATED) == 0)
12354 elf_eh_frame_section (sub) = sec;
12355 fini_reloc_cookie_for_section (&cookie, sec);
12356 sec = bfd_get_next_section_by_name (sec);
12357 }
12358 }
12359
12360 /* Apply transitive closure to the vtable entry usage info. */
12361 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
12362 if (!ok)
12363 return FALSE;
12364
12365 /* Kill the vtable relocations that were not used. */
12366 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
12367 if (!ok)
12368 return FALSE;
12369
12370 /* Mark dynamically referenced symbols. */
12371 if (htab->dynamic_sections_created)
12372 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
12373
12374 /* Grovel through relocs to find out who stays ... */
12375 gc_mark_hook = bed->gc_mark_hook;
12376 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12377 {
12378 asection *o;
12379
12380 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12381 continue;
12382
12383 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12384 Also treat note sections as a root, if the section is not part
12385 of a group. */
12386 for (o = sub->sections; o != NULL; o = o->next)
12387 if (!o->gc_mark
12388 && (o->flags & SEC_EXCLUDE) == 0
12389 && ((o->flags & SEC_KEEP) != 0
12390 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12391 && elf_next_in_group (o) == NULL )))
12392 {
12393 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12394 return FALSE;
12395 }
12396 }
12397
12398 /* Allow the backend to mark additional target specific sections. */
12399 bed->gc_mark_extra_sections (info, gc_mark_hook);
12400
12401 /* ... and mark SEC_EXCLUDE for those that go. */
12402 return elf_gc_sweep (abfd, info);
12403 }
12404 \f
12405 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12406
12407 bfd_boolean
12408 bfd_elf_gc_record_vtinherit (bfd *abfd,
12409 asection *sec,
12410 struct elf_link_hash_entry *h,
12411 bfd_vma offset)
12412 {
12413 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12414 struct elf_link_hash_entry **search, *child;
12415 bfd_size_type extsymcount;
12416 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12417
12418 /* The sh_info field of the symtab header tells us where the
12419 external symbols start. We don't care about the local symbols at
12420 this point. */
12421 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12422 if (!elf_bad_symtab (abfd))
12423 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12424
12425 sym_hashes = elf_sym_hashes (abfd);
12426 sym_hashes_end = sym_hashes + extsymcount;
12427
12428 /* Hunt down the child symbol, which is in this section at the same
12429 offset as the relocation. */
12430 for (search = sym_hashes; search != sym_hashes_end; ++search)
12431 {
12432 if ((child = *search) != NULL
12433 && (child->root.type == bfd_link_hash_defined
12434 || child->root.type == bfd_link_hash_defweak)
12435 && child->root.u.def.section == sec
12436 && child->root.u.def.value == offset)
12437 goto win;
12438 }
12439
12440 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12441 abfd, sec, (unsigned long) offset);
12442 bfd_set_error (bfd_error_invalid_operation);
12443 return FALSE;
12444
12445 win:
12446 if (!child->vtable)
12447 {
12448 child->vtable = (struct elf_link_virtual_table_entry *)
12449 bfd_zalloc (abfd, sizeof (*child->vtable));
12450 if (!child->vtable)
12451 return FALSE;
12452 }
12453 if (!h)
12454 {
12455 /* This *should* only be the absolute section. It could potentially
12456 be that someone has defined a non-global vtable though, which
12457 would be bad. It isn't worth paging in the local symbols to be
12458 sure though; that case should simply be handled by the assembler. */
12459
12460 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12461 }
12462 else
12463 child->vtable->parent = h;
12464
12465 return TRUE;
12466 }
12467
12468 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12469
12470 bfd_boolean
12471 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12472 asection *sec ATTRIBUTE_UNUSED,
12473 struct elf_link_hash_entry *h,
12474 bfd_vma addend)
12475 {
12476 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12477 unsigned int log_file_align = bed->s->log_file_align;
12478
12479 if (!h->vtable)
12480 {
12481 h->vtable = (struct elf_link_virtual_table_entry *)
12482 bfd_zalloc (abfd, sizeof (*h->vtable));
12483 if (!h->vtable)
12484 return FALSE;
12485 }
12486
12487 if (addend >= h->vtable->size)
12488 {
12489 size_t size, bytes, file_align;
12490 bfd_boolean *ptr = h->vtable->used;
12491
12492 /* While the symbol is undefined, we have to be prepared to handle
12493 a zero size. */
12494 file_align = 1 << log_file_align;
12495 if (h->root.type == bfd_link_hash_undefined)
12496 size = addend + file_align;
12497 else
12498 {
12499 size = h->size;
12500 if (addend >= size)
12501 {
12502 /* Oops! We've got a reference past the defined end of
12503 the table. This is probably a bug -- shall we warn? */
12504 size = addend + file_align;
12505 }
12506 }
12507 size = (size + file_align - 1) & -file_align;
12508
12509 /* Allocate one extra entry for use as a "done" flag for the
12510 consolidation pass. */
12511 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12512
12513 if (ptr)
12514 {
12515 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12516
12517 if (ptr != NULL)
12518 {
12519 size_t oldbytes;
12520
12521 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12522 * sizeof (bfd_boolean));
12523 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12524 }
12525 }
12526 else
12527 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12528
12529 if (ptr == NULL)
12530 return FALSE;
12531
12532 /* And arrange for that done flag to be at index -1. */
12533 h->vtable->used = ptr + 1;
12534 h->vtable->size = size;
12535 }
12536
12537 h->vtable->used[addend >> log_file_align] = TRUE;
12538
12539 return TRUE;
12540 }
12541
12542 /* Map an ELF section header flag to its corresponding string. */
12543 typedef struct
12544 {
12545 char *flag_name;
12546 flagword flag_value;
12547 } elf_flags_to_name_table;
12548
12549 static elf_flags_to_name_table elf_flags_to_names [] =
12550 {
12551 { "SHF_WRITE", SHF_WRITE },
12552 { "SHF_ALLOC", SHF_ALLOC },
12553 { "SHF_EXECINSTR", SHF_EXECINSTR },
12554 { "SHF_MERGE", SHF_MERGE },
12555 { "SHF_STRINGS", SHF_STRINGS },
12556 { "SHF_INFO_LINK", SHF_INFO_LINK},
12557 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12558 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12559 { "SHF_GROUP", SHF_GROUP },
12560 { "SHF_TLS", SHF_TLS },
12561 { "SHF_MASKOS", SHF_MASKOS },
12562 { "SHF_EXCLUDE", SHF_EXCLUDE },
12563 };
12564
12565 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12566 bfd_boolean
12567 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12568 struct flag_info *flaginfo,
12569 asection *section)
12570 {
12571 const bfd_vma sh_flags = elf_section_flags (section);
12572
12573 if (!flaginfo->flags_initialized)
12574 {
12575 bfd *obfd = info->output_bfd;
12576 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12577 struct flag_info_list *tf = flaginfo->flag_list;
12578 int with_hex = 0;
12579 int without_hex = 0;
12580
12581 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12582 {
12583 unsigned i;
12584 flagword (*lookup) (char *);
12585
12586 lookup = bed->elf_backend_lookup_section_flags_hook;
12587 if (lookup != NULL)
12588 {
12589 flagword hexval = (*lookup) ((char *) tf->name);
12590
12591 if (hexval != 0)
12592 {
12593 if (tf->with == with_flags)
12594 with_hex |= hexval;
12595 else if (tf->with == without_flags)
12596 without_hex |= hexval;
12597 tf->valid = TRUE;
12598 continue;
12599 }
12600 }
12601 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12602 {
12603 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12604 {
12605 if (tf->with == with_flags)
12606 with_hex |= elf_flags_to_names[i].flag_value;
12607 else if (tf->with == without_flags)
12608 without_hex |= elf_flags_to_names[i].flag_value;
12609 tf->valid = TRUE;
12610 break;
12611 }
12612 }
12613 if (!tf->valid)
12614 {
12615 info->callbacks->einfo
12616 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12617 return FALSE;
12618 }
12619 }
12620 flaginfo->flags_initialized = TRUE;
12621 flaginfo->only_with_flags |= with_hex;
12622 flaginfo->not_with_flags |= without_hex;
12623 }
12624
12625 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12626 return FALSE;
12627
12628 if ((flaginfo->not_with_flags & sh_flags) != 0)
12629 return FALSE;
12630
12631 return TRUE;
12632 }
12633
12634 struct alloc_got_off_arg {
12635 bfd_vma gotoff;
12636 struct bfd_link_info *info;
12637 };
12638
12639 /* We need a special top-level link routine to convert got reference counts
12640 to real got offsets. */
12641
12642 static bfd_boolean
12643 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12644 {
12645 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12646 bfd *obfd = gofarg->info->output_bfd;
12647 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12648
12649 if (h->got.refcount > 0)
12650 {
12651 h->got.offset = gofarg->gotoff;
12652 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12653 }
12654 else
12655 h->got.offset = (bfd_vma) -1;
12656
12657 return TRUE;
12658 }
12659
12660 /* And an accompanying bit to work out final got entry offsets once
12661 we're done. Should be called from final_link. */
12662
12663 bfd_boolean
12664 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12665 struct bfd_link_info *info)
12666 {
12667 bfd *i;
12668 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12669 bfd_vma gotoff;
12670 struct alloc_got_off_arg gofarg;
12671
12672 BFD_ASSERT (abfd == info->output_bfd);
12673
12674 if (! is_elf_hash_table (info->hash))
12675 return FALSE;
12676
12677 /* The GOT offset is relative to the .got section, but the GOT header is
12678 put into the .got.plt section, if the backend uses it. */
12679 if (bed->want_got_plt)
12680 gotoff = 0;
12681 else
12682 gotoff = bed->got_header_size;
12683
12684 /* Do the local .got entries first. */
12685 for (i = info->input_bfds; i; i = i->link.next)
12686 {
12687 bfd_signed_vma *local_got;
12688 bfd_size_type j, locsymcount;
12689 Elf_Internal_Shdr *symtab_hdr;
12690
12691 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12692 continue;
12693
12694 local_got = elf_local_got_refcounts (i);
12695 if (!local_got)
12696 continue;
12697
12698 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12699 if (elf_bad_symtab (i))
12700 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12701 else
12702 locsymcount = symtab_hdr->sh_info;
12703
12704 for (j = 0; j < locsymcount; ++j)
12705 {
12706 if (local_got[j] > 0)
12707 {
12708 local_got[j] = gotoff;
12709 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12710 }
12711 else
12712 local_got[j] = (bfd_vma) -1;
12713 }
12714 }
12715
12716 /* Then the global .got entries. .plt refcounts are handled by
12717 adjust_dynamic_symbol */
12718 gofarg.gotoff = gotoff;
12719 gofarg.info = info;
12720 elf_link_hash_traverse (elf_hash_table (info),
12721 elf_gc_allocate_got_offsets,
12722 &gofarg);
12723 return TRUE;
12724 }
12725
12726 /* Many folk need no more in the way of final link than this, once
12727 got entry reference counting is enabled. */
12728
12729 bfd_boolean
12730 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12731 {
12732 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12733 return FALSE;
12734
12735 /* Invoke the regular ELF backend linker to do all the work. */
12736 return bfd_elf_final_link (abfd, info);
12737 }
12738
12739 bfd_boolean
12740 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12741 {
12742 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12743
12744 if (rcookie->bad_symtab)
12745 rcookie->rel = rcookie->rels;
12746
12747 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12748 {
12749 unsigned long r_symndx;
12750
12751 if (! rcookie->bad_symtab)
12752 if (rcookie->rel->r_offset > offset)
12753 return FALSE;
12754 if (rcookie->rel->r_offset != offset)
12755 continue;
12756
12757 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12758 if (r_symndx == STN_UNDEF)
12759 return TRUE;
12760
12761 if (r_symndx >= rcookie->locsymcount
12762 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12763 {
12764 struct elf_link_hash_entry *h;
12765
12766 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12767
12768 while (h->root.type == bfd_link_hash_indirect
12769 || h->root.type == bfd_link_hash_warning)
12770 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12771
12772 if ((h->root.type == bfd_link_hash_defined
12773 || h->root.type == bfd_link_hash_defweak)
12774 && (h->root.u.def.section->owner != rcookie->abfd
12775 || h->root.u.def.section->kept_section != NULL
12776 || discarded_section (h->root.u.def.section)))
12777 return TRUE;
12778 }
12779 else
12780 {
12781 /* It's not a relocation against a global symbol,
12782 but it could be a relocation against a local
12783 symbol for a discarded section. */
12784 asection *isec;
12785 Elf_Internal_Sym *isym;
12786
12787 /* Need to: get the symbol; get the section. */
12788 isym = &rcookie->locsyms[r_symndx];
12789 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12790 if (isec != NULL
12791 && (isec->kept_section != NULL
12792 || discarded_section (isec)))
12793 return TRUE;
12794 }
12795 return FALSE;
12796 }
12797 return FALSE;
12798 }
12799
12800 /* Discard unneeded references to discarded sections.
12801 Returns -1 on error, 1 if any section's size was changed, 0 if
12802 nothing changed. This function assumes that the relocations are in
12803 sorted order, which is true for all known assemblers. */
12804
12805 int
12806 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12807 {
12808 struct elf_reloc_cookie cookie;
12809 asection *o;
12810 bfd *abfd;
12811 int changed = 0;
12812
12813 if (info->traditional_format
12814 || !is_elf_hash_table (info->hash))
12815 return 0;
12816
12817 o = bfd_get_section_by_name (output_bfd, ".stab");
12818 if (o != NULL)
12819 {
12820 asection *i;
12821
12822 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12823 {
12824 if (i->size == 0
12825 || i->reloc_count == 0
12826 || i->sec_info_type != SEC_INFO_TYPE_STABS)
12827 continue;
12828
12829 abfd = i->owner;
12830 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12831 continue;
12832
12833 if (!init_reloc_cookie_for_section (&cookie, info, i))
12834 return -1;
12835
12836 if (_bfd_discard_section_stabs (abfd, i,
12837 elf_section_data (i)->sec_info,
12838 bfd_elf_reloc_symbol_deleted_p,
12839 &cookie))
12840 changed = 1;
12841
12842 fini_reloc_cookie_for_section (&cookie, i);
12843 }
12844 }
12845
12846 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
12847 if (o != NULL)
12848 {
12849 asection *i;
12850
12851 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12852 {
12853 if (i->size == 0)
12854 continue;
12855
12856 abfd = i->owner;
12857 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12858 continue;
12859
12860 if (!init_reloc_cookie_for_section (&cookie, info, i))
12861 return -1;
12862
12863 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
12864 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
12865 bfd_elf_reloc_symbol_deleted_p,
12866 &cookie))
12867 changed = 1;
12868
12869 fini_reloc_cookie_for_section (&cookie, i);
12870 }
12871 }
12872
12873 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
12874 {
12875 const struct elf_backend_data *bed;
12876
12877 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12878 continue;
12879
12880 bed = get_elf_backend_data (abfd);
12881
12882 if (bed->elf_backend_discard_info != NULL)
12883 {
12884 if (!init_reloc_cookie (&cookie, info, abfd))
12885 return -1;
12886
12887 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
12888 changed = 1;
12889
12890 fini_reloc_cookie (&cookie, abfd);
12891 }
12892 }
12893
12894 if (info->eh_frame_hdr
12895 && !info->relocatable
12896 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12897 changed = 1;
12898
12899 return changed;
12900 }
12901
12902 bfd_boolean
12903 _bfd_elf_section_already_linked (bfd *abfd,
12904 asection *sec,
12905 struct bfd_link_info *info)
12906 {
12907 flagword flags;
12908 const char *name, *key;
12909 struct bfd_section_already_linked *l;
12910 struct bfd_section_already_linked_hash_entry *already_linked_list;
12911
12912 if (sec->output_section == bfd_abs_section_ptr)
12913 return FALSE;
12914
12915 flags = sec->flags;
12916
12917 /* Return if it isn't a linkonce section. A comdat group section
12918 also has SEC_LINK_ONCE set. */
12919 if ((flags & SEC_LINK_ONCE) == 0)
12920 return FALSE;
12921
12922 /* Don't put group member sections on our list of already linked
12923 sections. They are handled as a group via their group section. */
12924 if (elf_sec_group (sec) != NULL)
12925 return FALSE;
12926
12927 /* For a SHT_GROUP section, use the group signature as the key. */
12928 name = sec->name;
12929 if ((flags & SEC_GROUP) != 0
12930 && elf_next_in_group (sec) != NULL
12931 && elf_group_name (elf_next_in_group (sec)) != NULL)
12932 key = elf_group_name (elf_next_in_group (sec));
12933 else
12934 {
12935 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12936 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12937 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12938 key++;
12939 else
12940 /* Must be a user linkonce section that doesn't follow gcc's
12941 naming convention. In this case we won't be matching
12942 single member groups. */
12943 key = name;
12944 }
12945
12946 already_linked_list = bfd_section_already_linked_table_lookup (key);
12947
12948 for (l = already_linked_list->entry; l != NULL; l = l->next)
12949 {
12950 /* We may have 2 different types of sections on the list: group
12951 sections with a signature of <key> (<key> is some string),
12952 and linkonce sections named .gnu.linkonce.<type>.<key>.
12953 Match like sections. LTO plugin sections are an exception.
12954 They are always named .gnu.linkonce.t.<key> and match either
12955 type of section. */
12956 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12957 && ((flags & SEC_GROUP) != 0
12958 || strcmp (name, l->sec->name) == 0))
12959 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
12960 {
12961 /* The section has already been linked. See if we should
12962 issue a warning. */
12963 if (!_bfd_handle_already_linked (sec, l, info))
12964 return FALSE;
12965
12966 if (flags & SEC_GROUP)
12967 {
12968 asection *first = elf_next_in_group (sec);
12969 asection *s = first;
12970
12971 while (s != NULL)
12972 {
12973 s->output_section = bfd_abs_section_ptr;
12974 /* Record which group discards it. */
12975 s->kept_section = l->sec;
12976 s = elf_next_in_group (s);
12977 /* These lists are circular. */
12978 if (s == first)
12979 break;
12980 }
12981 }
12982
12983 return TRUE;
12984 }
12985 }
12986
12987 /* A single member comdat group section may be discarded by a
12988 linkonce section and vice versa. */
12989 if ((flags & SEC_GROUP) != 0)
12990 {
12991 asection *first = elf_next_in_group (sec);
12992
12993 if (first != NULL && elf_next_in_group (first) == first)
12994 /* Check this single member group against linkonce sections. */
12995 for (l = already_linked_list->entry; l != NULL; l = l->next)
12996 if ((l->sec->flags & SEC_GROUP) == 0
12997 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12998 {
12999 first->output_section = bfd_abs_section_ptr;
13000 first->kept_section = l->sec;
13001 sec->output_section = bfd_abs_section_ptr;
13002 break;
13003 }
13004 }
13005 else
13006 /* Check this linkonce section against single member groups. */
13007 for (l = already_linked_list->entry; l != NULL; l = l->next)
13008 if (l->sec->flags & SEC_GROUP)
13009 {
13010 asection *first = elf_next_in_group (l->sec);
13011
13012 if (first != NULL
13013 && elf_next_in_group (first) == first
13014 && bfd_elf_match_symbols_in_sections (first, sec, info))
13015 {
13016 sec->output_section = bfd_abs_section_ptr;
13017 sec->kept_section = first;
13018 break;
13019 }
13020 }
13021
13022 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
13023 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
13024 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
13025 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
13026 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
13027 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
13028 `.gnu.linkonce.t.F' section from a different bfd not requiring any
13029 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
13030 The reverse order cannot happen as there is never a bfd with only the
13031 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
13032 matter as here were are looking only for cross-bfd sections. */
13033
13034 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
13035 for (l = already_linked_list->entry; l != NULL; l = l->next)
13036 if ((l->sec->flags & SEC_GROUP) == 0
13037 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
13038 {
13039 if (abfd != l->sec->owner)
13040 sec->output_section = bfd_abs_section_ptr;
13041 break;
13042 }
13043
13044 /* This is the first section with this name. Record it. */
13045 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
13046 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
13047 return sec->output_section == bfd_abs_section_ptr;
13048 }
13049
13050 bfd_boolean
13051 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
13052 {
13053 return sym->st_shndx == SHN_COMMON;
13054 }
13055
13056 unsigned int
13057 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
13058 {
13059 return SHN_COMMON;
13060 }
13061
13062 asection *
13063 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
13064 {
13065 return bfd_com_section_ptr;
13066 }
13067
13068 bfd_vma
13069 _bfd_elf_default_got_elt_size (bfd *abfd,
13070 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13071 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
13072 bfd *ibfd ATTRIBUTE_UNUSED,
13073 unsigned long symndx ATTRIBUTE_UNUSED)
13074 {
13075 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13076 return bed->s->arch_size / 8;
13077 }
13078
13079 /* Routines to support the creation of dynamic relocs. */
13080
13081 /* Returns the name of the dynamic reloc section associated with SEC. */
13082
13083 static const char *
13084 get_dynamic_reloc_section_name (bfd * abfd,
13085 asection * sec,
13086 bfd_boolean is_rela)
13087 {
13088 char *name;
13089 const char *old_name = bfd_get_section_name (NULL, sec);
13090 const char *prefix = is_rela ? ".rela" : ".rel";
13091
13092 if (old_name == NULL)
13093 return NULL;
13094
13095 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
13096 sprintf (name, "%s%s", prefix, old_name);
13097
13098 return name;
13099 }
13100
13101 /* Returns the dynamic reloc section associated with SEC.
13102 If necessary compute the name of the dynamic reloc section based
13103 on SEC's name (looked up in ABFD's string table) and the setting
13104 of IS_RELA. */
13105
13106 asection *
13107 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
13108 asection * sec,
13109 bfd_boolean is_rela)
13110 {
13111 asection * reloc_sec = elf_section_data (sec)->sreloc;
13112
13113 if (reloc_sec == NULL)
13114 {
13115 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13116
13117 if (name != NULL)
13118 {
13119 reloc_sec = bfd_get_linker_section (abfd, name);
13120
13121 if (reloc_sec != NULL)
13122 elf_section_data (sec)->sreloc = reloc_sec;
13123 }
13124 }
13125
13126 return reloc_sec;
13127 }
13128
13129 /* Returns the dynamic reloc section associated with SEC. If the
13130 section does not exist it is created and attached to the DYNOBJ
13131 bfd and stored in the SRELOC field of SEC's elf_section_data
13132 structure.
13133
13134 ALIGNMENT is the alignment for the newly created section and
13135 IS_RELA defines whether the name should be .rela.<SEC's name>
13136 or .rel.<SEC's name>. The section name is looked up in the
13137 string table associated with ABFD. */
13138
13139 asection *
13140 _bfd_elf_make_dynamic_reloc_section (asection * sec,
13141 bfd * dynobj,
13142 unsigned int alignment,
13143 bfd * abfd,
13144 bfd_boolean is_rela)
13145 {
13146 asection * reloc_sec = elf_section_data (sec)->sreloc;
13147
13148 if (reloc_sec == NULL)
13149 {
13150 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13151
13152 if (name == NULL)
13153 return NULL;
13154
13155 reloc_sec = bfd_get_linker_section (dynobj, name);
13156
13157 if (reloc_sec == NULL)
13158 {
13159 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13160 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13161 if ((sec->flags & SEC_ALLOC) != 0)
13162 flags |= SEC_ALLOC | SEC_LOAD;
13163
13164 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13165 if (reloc_sec != NULL)
13166 {
13167 /* _bfd_elf_get_sec_type_attr chooses a section type by
13168 name. Override as it may be wrong, eg. for a user
13169 section named "auto" we'll get ".relauto" which is
13170 seen to be a .rela section. */
13171 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13172 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13173 reloc_sec = NULL;
13174 }
13175 }
13176
13177 elf_section_data (sec)->sreloc = reloc_sec;
13178 }
13179
13180 return reloc_sec;
13181 }
13182
13183 /* Copy the ELF symbol type and other attributes for a linker script
13184 assignment from HSRC to HDEST. Generally this should be treated as
13185 if we found a strong non-dynamic definition for HDEST (except that
13186 ld ignores multiple definition errors). */
13187 void
13188 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
13189 struct bfd_link_hash_entry *hdest,
13190 struct bfd_link_hash_entry *hsrc)
13191 {
13192 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
13193 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
13194 Elf_Internal_Sym isym;
13195
13196 ehdest->type = ehsrc->type;
13197 ehdest->target_internal = ehsrc->target_internal;
13198
13199 isym.st_other = ehsrc->other;
13200 elf_merge_st_other (abfd, ehdest, &isym, TRUE, FALSE);
13201 }
13202
13203 /* Append a RELA relocation REL to section S in BFD. */
13204
13205 void
13206 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13207 {
13208 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13209 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13210 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13211 bed->s->swap_reloca_out (abfd, rel, loc);
13212 }
13213
13214 /* Append a REL relocation REL to section S in BFD. */
13215
13216 void
13217 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13218 {
13219 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13220 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13221 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13222 bed->s->swap_reloc_out (abfd, rel, loc);
13223 }