Also track weak references
[binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
4 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
32
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
35
36 struct elf_info_failed
37 {
38 struct bfd_link_info *info;
39 bfd_boolean failed;
40 };
41
42 /* This structure is used to pass information to
43 _bfd_elf_link_find_version_dependencies. */
44
45 struct elf_find_verdep_info
46 {
47 /* General link information. */
48 struct bfd_link_info *info;
49 /* The number of dependencies. */
50 unsigned int vers;
51 /* Whether we had a failure. */
52 bfd_boolean failed;
53 };
54
55 static bfd_boolean _bfd_elf_fix_symbol_flags
56 (struct elf_link_hash_entry *, struct elf_info_failed *);
57
58 /* Define a symbol in a dynamic linkage section. */
59
60 struct elf_link_hash_entry *
61 _bfd_elf_define_linkage_sym (bfd *abfd,
62 struct bfd_link_info *info,
63 asection *sec,
64 const char *name)
65 {
66 struct elf_link_hash_entry *h;
67 struct bfd_link_hash_entry *bh;
68 const struct elf_backend_data *bed;
69
70 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
71 if (h != NULL)
72 {
73 /* Zap symbol defined in an as-needed lib that wasn't linked.
74 This is a symptom of a larger problem: Absolute symbols
75 defined in shared libraries can't be overridden, because we
76 lose the link to the bfd which is via the symbol section. */
77 h->root.type = bfd_link_hash_new;
78 }
79
80 bh = &h->root;
81 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
82 sec, 0, NULL, FALSE,
83 get_elf_backend_data (abfd)->collect,
84 &bh))
85 return NULL;
86 h = (struct elf_link_hash_entry *) bh;
87 h->def_regular = 1;
88 h->non_elf = 0;
89 h->type = STT_OBJECT;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
91
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94 return h;
95 }
96
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
99 {
100 flagword flags;
101 asection *s;
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
105
106 /* This function may be called more than once. */
107 s = bfd_get_linker_section (abfd, ".got");
108 if (s != NULL)
109 return TRUE;
110
111 flags = bed->dynamic_sec_flags;
112
113 s = bfd_make_section_anyway_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
117 | SEC_READONLY));
118 if (s == NULL
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
120 return FALSE;
121 htab->srelgot = s;
122
123 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
124 if (s == NULL
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
126 return FALSE;
127 htab->sgot = s;
128
129 if (bed->want_got_plt)
130 {
131 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
132 if (s == NULL
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
135 return FALSE;
136 htab->sgotplt = s;
137 }
138
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
141
142 if (bed->want_got_sym)
143 {
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
151 if (h == NULL)
152 return FALSE;
153 }
154
155 return TRUE;
156 }
157 \f
158 /* Create a strtab to hold the dynamic symbol names. */
159 static bfd_boolean
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
161 {
162 struct elf_link_hash_table *hash_table;
163
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
167
168 if (hash_table->dynstr == NULL)
169 {
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
172 return FALSE;
173 }
174 return TRUE;
175 }
176
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
183
184 bfd_boolean
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
186 {
187 flagword flags;
188 asection *s;
189 const struct elf_backend_data *bed;
190 struct elf_link_hash_entry *h;
191
192 if (! is_elf_hash_table (info->hash))
193 return FALSE;
194
195 if (elf_hash_table (info)->dynamic_sections_created)
196 return TRUE;
197
198 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
199 return FALSE;
200
201 abfd = elf_hash_table (info)->dynobj;
202 bed = get_elf_backend_data (abfd);
203
204 flags = bed->dynamic_sec_flags;
205
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
208 if (info->executable)
209 {
210 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
211 flags | SEC_READONLY);
212 if (s == NULL)
213 return FALSE;
214 }
215
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
218 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
219 flags | SEC_READONLY);
220 if (s == NULL
221 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
222 return FALSE;
223
224 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
225 flags | SEC_READONLY);
226 if (s == NULL
227 || ! bfd_set_section_alignment (abfd, s, 1))
228 return FALSE;
229
230 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
231 flags | SEC_READONLY);
232 if (s == NULL
233 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
234 return FALSE;
235
236 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
237 flags | SEC_READONLY);
238 if (s == NULL
239 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
240 return FALSE;
241
242 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
243 flags | SEC_READONLY);
244 if (s == NULL)
245 return FALSE;
246
247 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
248 if (s == NULL
249 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
250 return FALSE;
251
252 /* The special symbol _DYNAMIC is always set to the start of the
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
258 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
259 elf_hash_table (info)->hdynamic = h;
260 if (h == NULL)
261 return FALSE;
262
263 if (info->emit_hash)
264 {
265 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
266 flags | SEC_READONLY);
267 if (s == NULL
268 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
269 return FALSE;
270 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
271 }
272
273 if (info->emit_gnu_hash)
274 {
275 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
276 flags | SEC_READONLY);
277 if (s == NULL
278 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
279 return FALSE;
280 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
281 4 32-bit words followed by variable count of 64-bit words, then
282 variable count of 32-bit words. */
283 if (bed->s->arch_size == 64)
284 elf_section_data (s)->this_hdr.sh_entsize = 0;
285 else
286 elf_section_data (s)->this_hdr.sh_entsize = 4;
287 }
288
289 /* Let the backend create the rest of the sections. This lets the
290 backend set the right flags. The backend will normally create
291 the .got and .plt sections. */
292 if (bed->elf_backend_create_dynamic_sections == NULL
293 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
294 return FALSE;
295
296 elf_hash_table (info)->dynamic_sections_created = TRUE;
297
298 return TRUE;
299 }
300
301 /* Create dynamic sections when linking against a dynamic object. */
302
303 bfd_boolean
304 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
305 {
306 flagword flags, pltflags;
307 struct elf_link_hash_entry *h;
308 asection *s;
309 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
310 struct elf_link_hash_table *htab = elf_hash_table (info);
311
312 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
313 .rel[a].bss sections. */
314 flags = bed->dynamic_sec_flags;
315
316 pltflags = flags;
317 if (bed->plt_not_loaded)
318 /* We do not clear SEC_ALLOC here because we still want the OS to
319 allocate space for the section; it's just that there's nothing
320 to read in from the object file. */
321 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
322 else
323 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
324 if (bed->plt_readonly)
325 pltflags |= SEC_READONLY;
326
327 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
328 if (s == NULL
329 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
330 return FALSE;
331 htab->splt = s;
332
333 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
334 .plt section. */
335 if (bed->want_plt_sym)
336 {
337 h = _bfd_elf_define_linkage_sym (abfd, info, s,
338 "_PROCEDURE_LINKAGE_TABLE_");
339 elf_hash_table (info)->hplt = h;
340 if (h == NULL)
341 return FALSE;
342 }
343
344 s = bfd_make_section_anyway_with_flags (abfd,
345 (bed->rela_plts_and_copies_p
346 ? ".rela.plt" : ".rel.plt"),
347 flags | SEC_READONLY);
348 if (s == NULL
349 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
350 return FALSE;
351 htab->srelplt = s;
352
353 if (! _bfd_elf_create_got_section (abfd, info))
354 return FALSE;
355
356 if (bed->want_dynbss)
357 {
358 /* The .dynbss section is a place to put symbols which are defined
359 by dynamic objects, are referenced by regular objects, and are
360 not functions. We must allocate space for them in the process
361 image and use a R_*_COPY reloc to tell the dynamic linker to
362 initialize them at run time. The linker script puts the .dynbss
363 section into the .bss section of the final image. */
364 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
365 (SEC_ALLOC | SEC_LINKER_CREATED));
366 if (s == NULL)
367 return FALSE;
368
369 /* The .rel[a].bss section holds copy relocs. This section is not
370 normally needed. We need to create it here, though, so that the
371 linker will map it to an output section. We can't just create it
372 only if we need it, because we will not know whether we need it
373 until we have seen all the input files, and the first time the
374 main linker code calls BFD after examining all the input files
375 (size_dynamic_sections) the input sections have already been
376 mapped to the output sections. If the section turns out not to
377 be needed, we can discard it later. We will never need this
378 section when generating a shared object, since they do not use
379 copy relocs. */
380 if (! info->shared)
381 {
382 s = bfd_make_section_anyway_with_flags (abfd,
383 (bed->rela_plts_and_copies_p
384 ? ".rela.bss" : ".rel.bss"),
385 flags | SEC_READONLY);
386 if (s == NULL
387 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
388 return FALSE;
389 }
390 }
391
392 return TRUE;
393 }
394 \f
395 /* Record a new dynamic symbol. We record the dynamic symbols as we
396 read the input files, since we need to have a list of all of them
397 before we can determine the final sizes of the output sections.
398 Note that we may actually call this function even though we are not
399 going to output any dynamic symbols; in some cases we know that a
400 symbol should be in the dynamic symbol table, but only if there is
401 one. */
402
403 bfd_boolean
404 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
405 struct elf_link_hash_entry *h)
406 {
407 if (h->dynindx == -1)
408 {
409 struct elf_strtab_hash *dynstr;
410 char *p;
411 const char *name;
412 bfd_size_type indx;
413
414 /* XXX: The ABI draft says the linker must turn hidden and
415 internal symbols into STB_LOCAL symbols when producing the
416 DSO. However, if ld.so honors st_other in the dynamic table,
417 this would not be necessary. */
418 switch (ELF_ST_VISIBILITY (h->other))
419 {
420 case STV_INTERNAL:
421 case STV_HIDDEN:
422 if (h->root.type != bfd_link_hash_undefined
423 && h->root.type != bfd_link_hash_undefweak)
424 {
425 h->forced_local = 1;
426 if (!elf_hash_table (info)->is_relocatable_executable)
427 return TRUE;
428 }
429
430 default:
431 break;
432 }
433
434 h->dynindx = elf_hash_table (info)->dynsymcount;
435 ++elf_hash_table (info)->dynsymcount;
436
437 dynstr = elf_hash_table (info)->dynstr;
438 if (dynstr == NULL)
439 {
440 /* Create a strtab to hold the dynamic symbol names. */
441 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
442 if (dynstr == NULL)
443 return FALSE;
444 }
445
446 /* We don't put any version information in the dynamic string
447 table. */
448 name = h->root.root.string;
449 p = strchr (name, ELF_VER_CHR);
450 if (p != NULL)
451 /* We know that the p points into writable memory. In fact,
452 there are only a few symbols that have read-only names, being
453 those like _GLOBAL_OFFSET_TABLE_ that are created specially
454 by the backends. Most symbols will have names pointing into
455 an ELF string table read from a file, or to objalloc memory. */
456 *p = 0;
457
458 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
459
460 if (p != NULL)
461 *p = ELF_VER_CHR;
462
463 if (indx == (bfd_size_type) -1)
464 return FALSE;
465 h->dynstr_index = indx;
466 }
467
468 return TRUE;
469 }
470 \f
471 /* Mark a symbol dynamic. */
472
473 static void
474 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
475 struct elf_link_hash_entry *h,
476 Elf_Internal_Sym *sym)
477 {
478 struct bfd_elf_dynamic_list *d = info->dynamic_list;
479
480 /* It may be called more than once on the same H. */
481 if(h->dynamic || info->relocatable)
482 return;
483
484 if ((info->dynamic_data
485 && (h->type == STT_OBJECT
486 || (sym != NULL
487 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
488 || (d != NULL
489 && h->root.type == bfd_link_hash_new
490 && (*d->match) (&d->head, NULL, h->root.root.string)))
491 h->dynamic = 1;
492 }
493
494 /* Record an assignment to a symbol made by a linker script. We need
495 this in case some dynamic object refers to this symbol. */
496
497 bfd_boolean
498 bfd_elf_record_link_assignment (bfd *output_bfd,
499 struct bfd_link_info *info,
500 const char *name,
501 bfd_boolean provide,
502 bfd_boolean hidden)
503 {
504 struct elf_link_hash_entry *h, *hv;
505 struct elf_link_hash_table *htab;
506 const struct elf_backend_data *bed;
507
508 if (!is_elf_hash_table (info->hash))
509 return TRUE;
510
511 htab = elf_hash_table (info);
512 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
513 if (h == NULL)
514 return provide;
515
516 switch (h->root.type)
517 {
518 case bfd_link_hash_defined:
519 case bfd_link_hash_defweak:
520 case bfd_link_hash_common:
521 break;
522 case bfd_link_hash_undefweak:
523 case bfd_link_hash_undefined:
524 /* Since we're defining the symbol, don't let it seem to have not
525 been defined. record_dynamic_symbol and size_dynamic_sections
526 may depend on this. */
527 h->root.type = bfd_link_hash_new;
528 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
529 bfd_link_repair_undef_list (&htab->root);
530 break;
531 case bfd_link_hash_new:
532 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
533 h->non_elf = 0;
534 break;
535 case bfd_link_hash_indirect:
536 /* We had a versioned symbol in a dynamic library. We make the
537 the versioned symbol point to this one. */
538 bed = get_elf_backend_data (output_bfd);
539 hv = h;
540 while (hv->root.type == bfd_link_hash_indirect
541 || hv->root.type == bfd_link_hash_warning)
542 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
543 /* We don't need to update h->root.u since linker will set them
544 later. */
545 h->root.type = bfd_link_hash_undefined;
546 hv->root.type = bfd_link_hash_indirect;
547 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
548 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
549 break;
550 case bfd_link_hash_warning:
551 abort ();
552 break;
553 }
554
555 /* If this symbol is being provided by the linker script, and it is
556 currently defined by a dynamic object, but not by a regular
557 object, then mark it as undefined so that the generic linker will
558 force the correct value. */
559 if (provide
560 && h->def_dynamic
561 && !h->def_regular)
562 h->root.type = bfd_link_hash_undefined;
563
564 /* If this symbol is not being provided by the linker script, and it is
565 currently defined by a dynamic object, but not by a regular object,
566 then clear out any version information because the symbol will not be
567 associated with the dynamic object any more. */
568 if (!provide
569 && h->def_dynamic
570 && !h->def_regular)
571 h->verinfo.verdef = NULL;
572
573 h->def_regular = 1;
574
575 if (hidden)
576 {
577 bed = get_elf_backend_data (output_bfd);
578 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
579 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
580 }
581
582 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
583 and executables. */
584 if (!info->relocatable
585 && h->dynindx != -1
586 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
587 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
588 h->forced_local = 1;
589
590 if ((h->def_dynamic
591 || h->ref_dynamic
592 || info->shared
593 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
594 && h->dynindx == -1)
595 {
596 if (! bfd_elf_link_record_dynamic_symbol (info, h))
597 return FALSE;
598
599 /* If this is a weak defined symbol, and we know a corresponding
600 real symbol from the same dynamic object, make sure the real
601 symbol is also made into a dynamic symbol. */
602 if (h->u.weakdef != NULL
603 && h->u.weakdef->dynindx == -1)
604 {
605 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
606 return FALSE;
607 }
608 }
609
610 return TRUE;
611 }
612
613 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
614 success, and 2 on a failure caused by attempting to record a symbol
615 in a discarded section, eg. a discarded link-once section symbol. */
616
617 int
618 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
619 bfd *input_bfd,
620 long input_indx)
621 {
622 bfd_size_type amt;
623 struct elf_link_local_dynamic_entry *entry;
624 struct elf_link_hash_table *eht;
625 struct elf_strtab_hash *dynstr;
626 unsigned long dynstr_index;
627 char *name;
628 Elf_External_Sym_Shndx eshndx;
629 char esym[sizeof (Elf64_External_Sym)];
630
631 if (! is_elf_hash_table (info->hash))
632 return 0;
633
634 /* See if the entry exists already. */
635 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
636 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
637 return 1;
638
639 amt = sizeof (*entry);
640 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
641 if (entry == NULL)
642 return 0;
643
644 /* Go find the symbol, so that we can find it's name. */
645 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
646 1, input_indx, &entry->isym, esym, &eshndx))
647 {
648 bfd_release (input_bfd, entry);
649 return 0;
650 }
651
652 if (entry->isym.st_shndx != SHN_UNDEF
653 && entry->isym.st_shndx < SHN_LORESERVE)
654 {
655 asection *s;
656
657 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
658 if (s == NULL || bfd_is_abs_section (s->output_section))
659 {
660 /* We can still bfd_release here as nothing has done another
661 bfd_alloc. We can't do this later in this function. */
662 bfd_release (input_bfd, entry);
663 return 2;
664 }
665 }
666
667 name = (bfd_elf_string_from_elf_section
668 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
669 entry->isym.st_name));
670
671 dynstr = elf_hash_table (info)->dynstr;
672 if (dynstr == NULL)
673 {
674 /* Create a strtab to hold the dynamic symbol names. */
675 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
676 if (dynstr == NULL)
677 return 0;
678 }
679
680 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
681 if (dynstr_index == (unsigned long) -1)
682 return 0;
683 entry->isym.st_name = dynstr_index;
684
685 eht = elf_hash_table (info);
686
687 entry->next = eht->dynlocal;
688 eht->dynlocal = entry;
689 entry->input_bfd = input_bfd;
690 entry->input_indx = input_indx;
691 eht->dynsymcount++;
692
693 /* Whatever binding the symbol had before, it's now local. */
694 entry->isym.st_info
695 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
696
697 /* The dynindx will be set at the end of size_dynamic_sections. */
698
699 return 1;
700 }
701
702 /* Return the dynindex of a local dynamic symbol. */
703
704 long
705 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
706 bfd *input_bfd,
707 long input_indx)
708 {
709 struct elf_link_local_dynamic_entry *e;
710
711 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
712 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
713 return e->dynindx;
714 return -1;
715 }
716
717 /* This function is used to renumber the dynamic symbols, if some of
718 them are removed because they are marked as local. This is called
719 via elf_link_hash_traverse. */
720
721 static bfd_boolean
722 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
723 void *data)
724 {
725 size_t *count = (size_t *) data;
726
727 if (h->forced_local)
728 return TRUE;
729
730 if (h->dynindx != -1)
731 h->dynindx = ++(*count);
732
733 return TRUE;
734 }
735
736
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
739
740 static bfd_boolean
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
742 void *data)
743 {
744 size_t *count = (size_t *) data;
745
746 if (!h->forced_local)
747 return TRUE;
748
749 if (h->dynindx != -1)
750 h->dynindx = ++(*count);
751
752 return TRUE;
753 }
754
755 /* Return true if the dynamic symbol for a given section should be
756 omitted when creating a shared library. */
757 bfd_boolean
758 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
759 struct bfd_link_info *info,
760 asection *p)
761 {
762 struct elf_link_hash_table *htab;
763
764 switch (elf_section_data (p)->this_hdr.sh_type)
765 {
766 case SHT_PROGBITS:
767 case SHT_NOBITS:
768 /* If sh_type is yet undecided, assume it could be
769 SHT_PROGBITS/SHT_NOBITS. */
770 case SHT_NULL:
771 htab = elf_hash_table (info);
772 if (p == htab->tls_sec)
773 return FALSE;
774
775 if (htab->text_index_section != NULL)
776 return p != htab->text_index_section && p != htab->data_index_section;
777
778 if (strcmp (p->name, ".got") == 0
779 || strcmp (p->name, ".got.plt") == 0
780 || strcmp (p->name, ".plt") == 0)
781 {
782 asection *ip;
783
784 if (htab->dynobj != NULL
785 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
786 && ip->output_section == p)
787 return TRUE;
788 }
789 return FALSE;
790
791 /* There shouldn't be section relative relocations
792 against any other section. */
793 default:
794 return TRUE;
795 }
796 }
797
798 /* Assign dynsym indices. In a shared library we generate a section
799 symbol for each output section, which come first. Next come symbols
800 which have been forced to local binding. Then all of the back-end
801 allocated local dynamic syms, followed by the rest of the global
802 symbols. */
803
804 static unsigned long
805 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
806 struct bfd_link_info *info,
807 unsigned long *section_sym_count)
808 {
809 unsigned long dynsymcount = 0;
810
811 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
812 {
813 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
814 asection *p;
815 for (p = output_bfd->sections; p ; p = p->next)
816 if ((p->flags & SEC_EXCLUDE) == 0
817 && (p->flags & SEC_ALLOC) != 0
818 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
819 elf_section_data (p)->dynindx = ++dynsymcount;
820 else
821 elf_section_data (p)->dynindx = 0;
822 }
823 *section_sym_count = dynsymcount;
824
825 elf_link_hash_traverse (elf_hash_table (info),
826 elf_link_renumber_local_hash_table_dynsyms,
827 &dynsymcount);
828
829 if (elf_hash_table (info)->dynlocal)
830 {
831 struct elf_link_local_dynamic_entry *p;
832 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
833 p->dynindx = ++dynsymcount;
834 }
835
836 elf_link_hash_traverse (elf_hash_table (info),
837 elf_link_renumber_hash_table_dynsyms,
838 &dynsymcount);
839
840 /* There is an unused NULL entry at the head of the table which
841 we must account for in our count. Unless there weren't any
842 symbols, which means we'll have no table at all. */
843 if (dynsymcount != 0)
844 ++dynsymcount;
845
846 elf_hash_table (info)->dynsymcount = dynsymcount;
847 return dynsymcount;
848 }
849
850 /* Merge st_other field. */
851
852 static void
853 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
854 Elf_Internal_Sym *isym, bfd_boolean definition,
855 bfd_boolean dynamic)
856 {
857 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
858
859 /* If st_other has a processor-specific meaning, specific
860 code might be needed here. We never merge the visibility
861 attribute with the one from a dynamic object. */
862 if (bed->elf_backend_merge_symbol_attribute)
863 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
864 dynamic);
865
866 /* If this symbol has default visibility and the user has requested
867 we not re-export it, then mark it as hidden. */
868 if (definition
869 && !dynamic
870 && (abfd->no_export
871 || (abfd->my_archive && abfd->my_archive->no_export))
872 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
873 isym->st_other = (STV_HIDDEN
874 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
875
876 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
877 {
878 unsigned char hvis, symvis, other, nvis;
879
880 /* Only merge the visibility. Leave the remainder of the
881 st_other field to elf_backend_merge_symbol_attribute. */
882 other = h->other & ~ELF_ST_VISIBILITY (-1);
883
884 /* Combine visibilities, using the most constraining one. */
885 hvis = ELF_ST_VISIBILITY (h->other);
886 symvis = ELF_ST_VISIBILITY (isym->st_other);
887 if (! hvis)
888 nvis = symvis;
889 else if (! symvis)
890 nvis = hvis;
891 else
892 nvis = hvis < symvis ? hvis : symvis;
893
894 h->other = other | nvis;
895 }
896 }
897
898 /* This function is called when we want to define a new symbol. It
899 handles the various cases which arise when we find a definition in
900 a dynamic object, or when there is already a definition in a
901 dynamic object. The new symbol is described by NAME, SYM, PSEC,
902 and PVALUE. We set SYM_HASH to the hash table entry. We set
903 OVERRIDE if the old symbol is overriding a new definition. We set
904 TYPE_CHANGE_OK if it is OK for the type to change. We set
905 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
906 change, we mean that we shouldn't warn if the type or size does
907 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
908 object is overridden by a regular object. */
909
910 bfd_boolean
911 _bfd_elf_merge_symbol (bfd *abfd,
912 struct bfd_link_info *info,
913 const char *name,
914 Elf_Internal_Sym *sym,
915 asection **psec,
916 bfd_vma *pvalue,
917 bfd_boolean *pold_weak,
918 unsigned int *pold_alignment,
919 struct elf_link_hash_entry **sym_hash,
920 bfd_boolean *skip,
921 bfd_boolean *override,
922 bfd_boolean *type_change_ok,
923 bfd_boolean *size_change_ok)
924 {
925 asection *sec, *oldsec;
926 struct elf_link_hash_entry *h;
927 struct elf_link_hash_entry *hi;
928 struct elf_link_hash_entry *flip;
929 int bind;
930 bfd *oldbfd;
931 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
932 bfd_boolean newweak, oldweak, newfunc, oldfunc;
933 const struct elf_backend_data *bed;
934
935 *skip = FALSE;
936 *override = FALSE;
937
938 sec = *psec;
939 bind = ELF_ST_BIND (sym->st_info);
940
941 /* Silently discard TLS symbols from --just-syms. There's no way to
942 combine a static TLS block with a new TLS block for this executable. */
943 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
944 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
945 {
946 *skip = TRUE;
947 return TRUE;
948 }
949
950 if (! bfd_is_und_section (sec))
951 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
952 else
953 h = ((struct elf_link_hash_entry *)
954 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
955 if (h == NULL)
956 return FALSE;
957 *sym_hash = h;
958
959 bed = get_elf_backend_data (abfd);
960
961 /* This code is for coping with dynamic objects, and is only useful
962 if we are doing an ELF link. */
963 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
964 return TRUE;
965
966 /* For merging, we only care about real symbols. But we need to make
967 sure that indirect symbol dynamic flags are updated. */
968 hi = h;
969 while (h->root.type == bfd_link_hash_indirect
970 || h->root.type == bfd_link_hash_warning)
971 h = (struct elf_link_hash_entry *) h->root.u.i.link;
972
973 /* We have to check it for every instance since the first few may be
974 references and not all compilers emit symbol type for undefined
975 symbols. */
976 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
977
978 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
979 respectively, is from a dynamic object. */
980
981 newdyn = (abfd->flags & DYNAMIC) != 0;
982
983 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
984 syms and defined syms in dynamic libraries respectively.
985 ref_dynamic on the other hand can be set for a symbol defined in
986 a dynamic library, and def_dynamic may not be set; When the
987 definition in a dynamic lib is overridden by a definition in the
988 executable use of the symbol in the dynamic lib becomes a
989 reference to the executable symbol. */
990 if (newdyn)
991 {
992 if (bfd_is_und_section (sec))
993 {
994 if (bind != STB_WEAK)
995 {
996 h->ref_dynamic_nonweak = 1;
997 hi->ref_dynamic_nonweak = 1;
998 }
999 }
1000 else
1001 {
1002 h->dynamic_def = 1;
1003 hi->dynamic_def = 1;
1004 }
1005 }
1006
1007 /* If we just created the symbol, mark it as being an ELF symbol.
1008 Other than that, there is nothing to do--there is no merge issue
1009 with a newly defined symbol--so we just return. */
1010
1011 if (h->root.type == bfd_link_hash_new)
1012 {
1013 h->non_elf = 0;
1014 return TRUE;
1015 }
1016
1017 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1018 existing symbol. */
1019
1020 switch (h->root.type)
1021 {
1022 default:
1023 oldbfd = NULL;
1024 oldsec = NULL;
1025 break;
1026
1027 case bfd_link_hash_undefined:
1028 case bfd_link_hash_undefweak:
1029 oldbfd = h->root.u.undef.abfd;
1030 oldsec = NULL;
1031 break;
1032
1033 case bfd_link_hash_defined:
1034 case bfd_link_hash_defweak:
1035 oldbfd = h->root.u.def.section->owner;
1036 oldsec = h->root.u.def.section;
1037 break;
1038
1039 case bfd_link_hash_common:
1040 oldbfd = h->root.u.c.p->section->owner;
1041 oldsec = h->root.u.c.p->section;
1042 break;
1043 }
1044
1045 /* Differentiate strong and weak symbols. */
1046 newweak = bind == STB_WEAK;
1047 oldweak = (h->root.type == bfd_link_hash_defweak
1048 || h->root.type == bfd_link_hash_undefweak);
1049 if (pold_weak)
1050 *pold_weak = oldweak;
1051
1052 /* In cases involving weak versioned symbols, we may wind up trying
1053 to merge a symbol with itself. Catch that here, to avoid the
1054 confusion that results if we try to override a symbol with
1055 itself. The additional tests catch cases like
1056 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1057 dynamic object, which we do want to handle here. */
1058 if (abfd == oldbfd
1059 && (newweak || oldweak)
1060 && ((abfd->flags & DYNAMIC) == 0
1061 || !h->def_regular))
1062 return TRUE;
1063
1064 olddyn = FALSE;
1065 if (oldbfd != NULL)
1066 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1067 else if (oldsec != NULL)
1068 {
1069 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1070 indices used by MIPS ELF. */
1071 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1072 }
1073
1074 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1075 respectively, appear to be a definition rather than reference. */
1076
1077 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1078
1079 olddef = (h->root.type != bfd_link_hash_undefined
1080 && h->root.type != bfd_link_hash_undefweak
1081 && h->root.type != bfd_link_hash_common);
1082
1083 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1084 respectively, appear to be a function. */
1085
1086 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1087 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1088
1089 oldfunc = (h->type != STT_NOTYPE
1090 && bed->is_function_type (h->type));
1091
1092 /* When we try to create a default indirect symbol from the dynamic
1093 definition with the default version, we skip it if its type and
1094 the type of existing regular definition mismatch. We only do it
1095 if the existing regular definition won't be dynamic. */
1096 if (pold_alignment == NULL
1097 && !info->shared
1098 && !info->export_dynamic
1099 && !h->ref_dynamic
1100 && newdyn
1101 && newdef
1102 && !olddyn
1103 && (olddef || h->root.type == bfd_link_hash_common)
1104 && ELF_ST_TYPE (sym->st_info) != h->type
1105 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1106 && h->type != STT_NOTYPE
1107 && !(newfunc && oldfunc))
1108 {
1109 *skip = TRUE;
1110 return TRUE;
1111 }
1112
1113 /* Plugin symbol type isn't currently set. Stop bogus errors. */
1114 if (oldbfd != NULL && (oldbfd->flags & BFD_PLUGIN) != 0)
1115 *type_change_ok = TRUE;
1116
1117 /* Check TLS symbol. We don't check undefined symbol introduced by
1118 "ld -u". */
1119 else if (oldbfd != NULL
1120 && ELF_ST_TYPE (sym->st_info) != h->type
1121 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1122 {
1123 bfd *ntbfd, *tbfd;
1124 bfd_boolean ntdef, tdef;
1125 asection *ntsec, *tsec;
1126
1127 if (h->type == STT_TLS)
1128 {
1129 ntbfd = abfd;
1130 ntsec = sec;
1131 ntdef = newdef;
1132 tbfd = oldbfd;
1133 tsec = oldsec;
1134 tdef = olddef;
1135 }
1136 else
1137 {
1138 ntbfd = oldbfd;
1139 ntsec = oldsec;
1140 ntdef = olddef;
1141 tbfd = abfd;
1142 tsec = sec;
1143 tdef = newdef;
1144 }
1145
1146 if (tdef && ntdef)
1147 (*_bfd_error_handler)
1148 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1149 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1150 else if (!tdef && !ntdef)
1151 (*_bfd_error_handler)
1152 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1153 tbfd, ntbfd, h->root.root.string);
1154 else if (tdef)
1155 (*_bfd_error_handler)
1156 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1157 tbfd, tsec, ntbfd, h->root.root.string);
1158 else
1159 (*_bfd_error_handler)
1160 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1161 tbfd, ntbfd, ntsec, h->root.root.string);
1162
1163 bfd_set_error (bfd_error_bad_value);
1164 return FALSE;
1165 }
1166
1167 /* If the old symbol has non-default visibility, we ignore the new
1168 definition from a dynamic object. */
1169 if (newdyn
1170 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1171 && !bfd_is_und_section (sec))
1172 {
1173 *skip = TRUE;
1174 /* Make sure this symbol is dynamic. */
1175 h->ref_dynamic = 1;
1176 hi->ref_dynamic = 1;
1177 /* A protected symbol has external availability. Make sure it is
1178 recorded as dynamic.
1179
1180 FIXME: Should we check type and size for protected symbol? */
1181 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1182 return bfd_elf_link_record_dynamic_symbol (info, h);
1183 else
1184 return TRUE;
1185 }
1186 else if (!newdyn
1187 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1188 && h->def_dynamic)
1189 {
1190 /* If the new symbol with non-default visibility comes from a
1191 relocatable file and the old definition comes from a dynamic
1192 object, we remove the old definition. */
1193 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1194 {
1195 /* Handle the case where the old dynamic definition is
1196 default versioned. We need to copy the symbol info from
1197 the symbol with default version to the normal one if it
1198 was referenced before. */
1199 if (h->ref_regular)
1200 {
1201 struct elf_link_hash_entry *vh = *sym_hash;
1202
1203 vh->root.type = h->root.type;
1204 h->root.type = bfd_link_hash_indirect;
1205 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1206
1207 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1208 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1209 {
1210 /* If the new symbol is hidden or internal, completely undo
1211 any dynamic link state. */
1212 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1213 h->forced_local = 0;
1214 h->ref_dynamic = 0;
1215 }
1216 else
1217 h->ref_dynamic = 1;
1218
1219 h->def_dynamic = 0;
1220 /* FIXME: Should we check type and size for protected symbol? */
1221 h->size = 0;
1222 h->type = 0;
1223
1224 h = vh;
1225 }
1226 else
1227 h = *sym_hash;
1228 }
1229
1230 /* If the old symbol was undefined before, then it will still be
1231 on the undefs list. If the new symbol is undefined or
1232 common, we can't make it bfd_link_hash_new here, because new
1233 undefined or common symbols will be added to the undefs list
1234 by _bfd_generic_link_add_one_symbol. Symbols may not be
1235 added twice to the undefs list. Also, if the new symbol is
1236 undefweak then we don't want to lose the strong undef. */
1237 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1238 {
1239 h->root.type = bfd_link_hash_undefined;
1240 h->root.u.undef.abfd = abfd;
1241 }
1242 else
1243 {
1244 h->root.type = bfd_link_hash_new;
1245 h->root.u.undef.abfd = NULL;
1246 }
1247
1248 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1249 {
1250 /* If the new symbol is hidden or internal, completely undo
1251 any dynamic link state. */
1252 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1253 h->forced_local = 0;
1254 h->ref_dynamic = 0;
1255 }
1256 else
1257 h->ref_dynamic = 1;
1258 h->def_dynamic = 0;
1259 /* FIXME: Should we check type and size for protected symbol? */
1260 h->size = 0;
1261 h->type = 0;
1262 return TRUE;
1263 }
1264
1265 if (bind == STB_GNU_UNIQUE)
1266 h->unique_global = 1;
1267
1268 /* If a new weak symbol definition comes from a regular file and the
1269 old symbol comes from a dynamic library, we treat the new one as
1270 strong. Similarly, an old weak symbol definition from a regular
1271 file is treated as strong when the new symbol comes from a dynamic
1272 library. Further, an old weak symbol from a dynamic library is
1273 treated as strong if the new symbol is from a dynamic library.
1274 This reflects the way glibc's ld.so works.
1275
1276 Do this before setting *type_change_ok or *size_change_ok so that
1277 we warn properly when dynamic library symbols are overridden. */
1278
1279 if (newdef && !newdyn && olddyn)
1280 newweak = FALSE;
1281 if (olddef && newdyn)
1282 oldweak = FALSE;
1283
1284 /* Allow changes between different types of function symbol. */
1285 if (newfunc && oldfunc)
1286 *type_change_ok = TRUE;
1287
1288 /* It's OK to change the type if either the existing symbol or the
1289 new symbol is weak. A type change is also OK if the old symbol
1290 is undefined and the new symbol is defined. */
1291
1292 if (oldweak
1293 || newweak
1294 || (newdef
1295 && h->root.type == bfd_link_hash_undefined))
1296 *type_change_ok = TRUE;
1297
1298 /* It's OK to change the size if either the existing symbol or the
1299 new symbol is weak, or if the old symbol is undefined. */
1300
1301 if (*type_change_ok
1302 || h->root.type == bfd_link_hash_undefined)
1303 *size_change_ok = TRUE;
1304
1305 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1306 symbol, respectively, appears to be a common symbol in a dynamic
1307 object. If a symbol appears in an uninitialized section, and is
1308 not weak, and is not a function, then it may be a common symbol
1309 which was resolved when the dynamic object was created. We want
1310 to treat such symbols specially, because they raise special
1311 considerations when setting the symbol size: if the symbol
1312 appears as a common symbol in a regular object, and the size in
1313 the regular object is larger, we must make sure that we use the
1314 larger size. This problematic case can always be avoided in C,
1315 but it must be handled correctly when using Fortran shared
1316 libraries.
1317
1318 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1319 likewise for OLDDYNCOMMON and OLDDEF.
1320
1321 Note that this test is just a heuristic, and that it is quite
1322 possible to have an uninitialized symbol in a shared object which
1323 is really a definition, rather than a common symbol. This could
1324 lead to some minor confusion when the symbol really is a common
1325 symbol in some regular object. However, I think it will be
1326 harmless. */
1327
1328 if (newdyn
1329 && newdef
1330 && !newweak
1331 && (sec->flags & SEC_ALLOC) != 0
1332 && (sec->flags & SEC_LOAD) == 0
1333 && sym->st_size > 0
1334 && !newfunc)
1335 newdyncommon = TRUE;
1336 else
1337 newdyncommon = FALSE;
1338
1339 if (olddyn
1340 && olddef
1341 && h->root.type == bfd_link_hash_defined
1342 && h->def_dynamic
1343 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1344 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1345 && h->size > 0
1346 && !oldfunc)
1347 olddyncommon = TRUE;
1348 else
1349 olddyncommon = FALSE;
1350
1351 /* We now know everything about the old and new symbols. We ask the
1352 backend to check if we can merge them. */
1353 if (bed->merge_symbol
1354 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1355 pold_alignment, skip, override,
1356 type_change_ok, size_change_ok,
1357 &newdyn, &newdef, &newdyncommon, &newweak,
1358 abfd, &sec,
1359 &olddyn, &olddef, &olddyncommon, &oldweak,
1360 oldbfd, &oldsec))
1361 return FALSE;
1362
1363 /* If both the old and the new symbols look like common symbols in a
1364 dynamic object, set the size of the symbol to the larger of the
1365 two. */
1366
1367 if (olddyncommon
1368 && newdyncommon
1369 && sym->st_size != h->size)
1370 {
1371 /* Since we think we have two common symbols, issue a multiple
1372 common warning if desired. Note that we only warn if the
1373 size is different. If the size is the same, we simply let
1374 the old symbol override the new one as normally happens with
1375 symbols defined in dynamic objects. */
1376
1377 if (! ((*info->callbacks->multiple_common)
1378 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1379 return FALSE;
1380
1381 if (sym->st_size > h->size)
1382 h->size = sym->st_size;
1383
1384 *size_change_ok = TRUE;
1385 }
1386
1387 /* If we are looking at a dynamic object, and we have found a
1388 definition, we need to see if the symbol was already defined by
1389 some other object. If so, we want to use the existing
1390 definition, and we do not want to report a multiple symbol
1391 definition error; we do this by clobbering *PSEC to be
1392 bfd_und_section_ptr.
1393
1394 We treat a common symbol as a definition if the symbol in the
1395 shared library is a function, since common symbols always
1396 represent variables; this can cause confusion in principle, but
1397 any such confusion would seem to indicate an erroneous program or
1398 shared library. We also permit a common symbol in a regular
1399 object to override a weak symbol in a shared object. */
1400
1401 if (newdyn
1402 && newdef
1403 && (olddef
1404 || (h->root.type == bfd_link_hash_common
1405 && (newweak || newfunc))))
1406 {
1407 *override = TRUE;
1408 newdef = FALSE;
1409 newdyncommon = FALSE;
1410
1411 *psec = sec = bfd_und_section_ptr;
1412 *size_change_ok = TRUE;
1413
1414 /* If we get here when the old symbol is a common symbol, then
1415 we are explicitly letting it override a weak symbol or
1416 function in a dynamic object, and we don't want to warn about
1417 a type change. If the old symbol is a defined symbol, a type
1418 change warning may still be appropriate. */
1419
1420 if (h->root.type == bfd_link_hash_common)
1421 *type_change_ok = TRUE;
1422 }
1423
1424 /* Handle the special case of an old common symbol merging with a
1425 new symbol which looks like a common symbol in a shared object.
1426 We change *PSEC and *PVALUE to make the new symbol look like a
1427 common symbol, and let _bfd_generic_link_add_one_symbol do the
1428 right thing. */
1429
1430 if (newdyncommon
1431 && h->root.type == bfd_link_hash_common)
1432 {
1433 *override = TRUE;
1434 newdef = FALSE;
1435 newdyncommon = FALSE;
1436 *pvalue = sym->st_size;
1437 *psec = sec = bed->common_section (oldsec);
1438 *size_change_ok = TRUE;
1439 }
1440
1441 /* Skip weak definitions of symbols that are already defined. */
1442 if (newdef && olddef && newweak)
1443 {
1444 /* Don't skip new non-IR weak syms. */
1445 if (!(oldbfd != NULL
1446 && (oldbfd->flags & BFD_PLUGIN) != 0
1447 && (abfd->flags & BFD_PLUGIN) == 0))
1448 *skip = TRUE;
1449
1450 /* Merge st_other. If the symbol already has a dynamic index,
1451 but visibility says it should not be visible, turn it into a
1452 local symbol. */
1453 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1454 if (h->dynindx != -1)
1455 switch (ELF_ST_VISIBILITY (h->other))
1456 {
1457 case STV_INTERNAL:
1458 case STV_HIDDEN:
1459 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1460 break;
1461 }
1462 }
1463
1464 /* If the old symbol is from a dynamic object, and the new symbol is
1465 a definition which is not from a dynamic object, then the new
1466 symbol overrides the old symbol. Symbols from regular files
1467 always take precedence over symbols from dynamic objects, even if
1468 they are defined after the dynamic object in the link.
1469
1470 As above, we again permit a common symbol in a regular object to
1471 override a definition in a shared object if the shared object
1472 symbol is a function or is weak. */
1473
1474 flip = NULL;
1475 if (!newdyn
1476 && (newdef
1477 || (bfd_is_com_section (sec)
1478 && (oldweak || oldfunc)))
1479 && olddyn
1480 && olddef
1481 && h->def_dynamic)
1482 {
1483 /* Change the hash table entry to undefined, and let
1484 _bfd_generic_link_add_one_symbol do the right thing with the
1485 new definition. */
1486
1487 h->root.type = bfd_link_hash_undefined;
1488 h->root.u.undef.abfd = h->root.u.def.section->owner;
1489 *size_change_ok = TRUE;
1490
1491 olddef = FALSE;
1492 olddyncommon = FALSE;
1493
1494 /* We again permit a type change when a common symbol may be
1495 overriding a function. */
1496
1497 if (bfd_is_com_section (sec))
1498 {
1499 if (oldfunc)
1500 {
1501 /* If a common symbol overrides a function, make sure
1502 that it isn't defined dynamically nor has type
1503 function. */
1504 h->def_dynamic = 0;
1505 h->type = STT_NOTYPE;
1506 }
1507 *type_change_ok = TRUE;
1508 }
1509
1510 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1511 flip = *sym_hash;
1512 else
1513 /* This union may have been set to be non-NULL when this symbol
1514 was seen in a dynamic object. We must force the union to be
1515 NULL, so that it is correct for a regular symbol. */
1516 h->verinfo.vertree = NULL;
1517 }
1518
1519 /* Handle the special case of a new common symbol merging with an
1520 old symbol that looks like it might be a common symbol defined in
1521 a shared object. Note that we have already handled the case in
1522 which a new common symbol should simply override the definition
1523 in the shared library. */
1524
1525 if (! newdyn
1526 && bfd_is_com_section (sec)
1527 && olddyncommon)
1528 {
1529 /* It would be best if we could set the hash table entry to a
1530 common symbol, but we don't know what to use for the section
1531 or the alignment. */
1532 if (! ((*info->callbacks->multiple_common)
1533 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1534 return FALSE;
1535
1536 /* If the presumed common symbol in the dynamic object is
1537 larger, pretend that the new symbol has its size. */
1538
1539 if (h->size > *pvalue)
1540 *pvalue = h->size;
1541
1542 /* We need to remember the alignment required by the symbol
1543 in the dynamic object. */
1544 BFD_ASSERT (pold_alignment);
1545 *pold_alignment = h->root.u.def.section->alignment_power;
1546
1547 olddef = FALSE;
1548 olddyncommon = FALSE;
1549
1550 h->root.type = bfd_link_hash_undefined;
1551 h->root.u.undef.abfd = h->root.u.def.section->owner;
1552
1553 *size_change_ok = TRUE;
1554 *type_change_ok = TRUE;
1555
1556 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1557 flip = *sym_hash;
1558 else
1559 h->verinfo.vertree = NULL;
1560 }
1561
1562 if (flip != NULL)
1563 {
1564 /* Handle the case where we had a versioned symbol in a dynamic
1565 library and now find a definition in a normal object. In this
1566 case, we make the versioned symbol point to the normal one. */
1567 flip->root.type = h->root.type;
1568 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1569 h->root.type = bfd_link_hash_indirect;
1570 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1571 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1572 if (h->def_dynamic)
1573 {
1574 h->def_dynamic = 0;
1575 flip->ref_dynamic = 1;
1576 }
1577 }
1578
1579 return TRUE;
1580 }
1581
1582 /* This function is called to create an indirect symbol from the
1583 default for the symbol with the default version if needed. The
1584 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1585 set DYNSYM if the new indirect symbol is dynamic. */
1586
1587 static bfd_boolean
1588 _bfd_elf_add_default_symbol (bfd *abfd,
1589 struct bfd_link_info *info,
1590 struct elf_link_hash_entry *h,
1591 const char *name,
1592 Elf_Internal_Sym *sym,
1593 asection **psec,
1594 bfd_vma *value,
1595 bfd_boolean *dynsym,
1596 bfd_boolean override)
1597 {
1598 bfd_boolean type_change_ok;
1599 bfd_boolean size_change_ok;
1600 bfd_boolean skip;
1601 char *shortname;
1602 struct elf_link_hash_entry *hi;
1603 struct bfd_link_hash_entry *bh;
1604 const struct elf_backend_data *bed;
1605 bfd_boolean collect;
1606 bfd_boolean dynamic;
1607 char *p;
1608 size_t len, shortlen;
1609 asection *sec;
1610
1611 /* If this symbol has a version, and it is the default version, we
1612 create an indirect symbol from the default name to the fully
1613 decorated name. This will cause external references which do not
1614 specify a version to be bound to this version of the symbol. */
1615 p = strchr (name, ELF_VER_CHR);
1616 if (p == NULL || p[1] != ELF_VER_CHR)
1617 return TRUE;
1618
1619 if (override)
1620 {
1621 /* We are overridden by an old definition. We need to check if we
1622 need to create the indirect symbol from the default name. */
1623 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1624 FALSE, FALSE);
1625 BFD_ASSERT (hi != NULL);
1626 if (hi == h)
1627 return TRUE;
1628 while (hi->root.type == bfd_link_hash_indirect
1629 || hi->root.type == bfd_link_hash_warning)
1630 {
1631 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1632 if (hi == h)
1633 return TRUE;
1634 }
1635 }
1636
1637 bed = get_elf_backend_data (abfd);
1638 collect = bed->collect;
1639 dynamic = (abfd->flags & DYNAMIC) != 0;
1640
1641 shortlen = p - name;
1642 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1643 if (shortname == NULL)
1644 return FALSE;
1645 memcpy (shortname, name, shortlen);
1646 shortname[shortlen] = '\0';
1647
1648 /* We are going to create a new symbol. Merge it with any existing
1649 symbol with this name. For the purposes of the merge, act as
1650 though we were defining the symbol we just defined, although we
1651 actually going to define an indirect symbol. */
1652 type_change_ok = FALSE;
1653 size_change_ok = FALSE;
1654 sec = *psec;
1655 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1656 NULL, NULL, &hi, &skip, &override,
1657 &type_change_ok, &size_change_ok))
1658 return FALSE;
1659
1660 if (skip)
1661 goto nondefault;
1662
1663 if (! override)
1664 {
1665 bh = &hi->root;
1666 if (! (_bfd_generic_link_add_one_symbol
1667 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1668 0, name, FALSE, collect, &bh)))
1669 return FALSE;
1670 hi = (struct elf_link_hash_entry *) bh;
1671 }
1672 else
1673 {
1674 /* In this case the symbol named SHORTNAME is overriding the
1675 indirect symbol we want to add. We were planning on making
1676 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1677 is the name without a version. NAME is the fully versioned
1678 name, and it is the default version.
1679
1680 Overriding means that we already saw a definition for the
1681 symbol SHORTNAME in a regular object, and it is overriding
1682 the symbol defined in the dynamic object.
1683
1684 When this happens, we actually want to change NAME, the
1685 symbol we just added, to refer to SHORTNAME. This will cause
1686 references to NAME in the shared object to become references
1687 to SHORTNAME in the regular object. This is what we expect
1688 when we override a function in a shared object: that the
1689 references in the shared object will be mapped to the
1690 definition in the regular object. */
1691
1692 while (hi->root.type == bfd_link_hash_indirect
1693 || hi->root.type == bfd_link_hash_warning)
1694 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1695
1696 h->root.type = bfd_link_hash_indirect;
1697 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1698 if (h->def_dynamic)
1699 {
1700 h->def_dynamic = 0;
1701 hi->ref_dynamic = 1;
1702 if (hi->ref_regular
1703 || hi->def_regular)
1704 {
1705 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1706 return FALSE;
1707 }
1708 }
1709
1710 /* Now set HI to H, so that the following code will set the
1711 other fields correctly. */
1712 hi = h;
1713 }
1714
1715 /* Check if HI is a warning symbol. */
1716 if (hi->root.type == bfd_link_hash_warning)
1717 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1718
1719 /* If there is a duplicate definition somewhere, then HI may not
1720 point to an indirect symbol. We will have reported an error to
1721 the user in that case. */
1722
1723 if (hi->root.type == bfd_link_hash_indirect)
1724 {
1725 struct elf_link_hash_entry *ht;
1726
1727 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1728 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1729
1730 /* See if the new flags lead us to realize that the symbol must
1731 be dynamic. */
1732 if (! *dynsym)
1733 {
1734 if (! dynamic)
1735 {
1736 if (! info->executable
1737 || hi->def_dynamic
1738 || hi->ref_dynamic)
1739 *dynsym = TRUE;
1740 }
1741 else
1742 {
1743 if (hi->ref_regular)
1744 *dynsym = TRUE;
1745 }
1746 }
1747 }
1748
1749 /* We also need to define an indirection from the nondefault version
1750 of the symbol. */
1751
1752 nondefault:
1753 len = strlen (name);
1754 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1755 if (shortname == NULL)
1756 return FALSE;
1757 memcpy (shortname, name, shortlen);
1758 memcpy (shortname + shortlen, p + 1, len - shortlen);
1759
1760 /* Once again, merge with any existing symbol. */
1761 type_change_ok = FALSE;
1762 size_change_ok = FALSE;
1763 sec = *psec;
1764 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1765 NULL, NULL, &hi, &skip, &override,
1766 &type_change_ok, &size_change_ok))
1767 return FALSE;
1768
1769 if (skip)
1770 return TRUE;
1771
1772 if (override)
1773 {
1774 /* Here SHORTNAME is a versioned name, so we don't expect to see
1775 the type of override we do in the case above unless it is
1776 overridden by a versioned definition. */
1777 if (hi->root.type != bfd_link_hash_defined
1778 && hi->root.type != bfd_link_hash_defweak)
1779 (*_bfd_error_handler)
1780 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1781 abfd, shortname);
1782 }
1783 else
1784 {
1785 bh = &hi->root;
1786 if (! (_bfd_generic_link_add_one_symbol
1787 (info, abfd, shortname, BSF_INDIRECT,
1788 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1789 return FALSE;
1790 hi = (struct elf_link_hash_entry *) bh;
1791
1792 /* If there is a duplicate definition somewhere, then HI may not
1793 point to an indirect symbol. We will have reported an error
1794 to the user in that case. */
1795
1796 if (hi->root.type == bfd_link_hash_indirect)
1797 {
1798 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1799
1800 /* See if the new flags lead us to realize that the symbol
1801 must be dynamic. */
1802 if (! *dynsym)
1803 {
1804 if (! dynamic)
1805 {
1806 if (! info->executable
1807 || hi->ref_dynamic)
1808 *dynsym = TRUE;
1809 }
1810 else
1811 {
1812 if (hi->ref_regular)
1813 *dynsym = TRUE;
1814 }
1815 }
1816 }
1817 }
1818
1819 return TRUE;
1820 }
1821 \f
1822 /* This routine is used to export all defined symbols into the dynamic
1823 symbol table. It is called via elf_link_hash_traverse. */
1824
1825 static bfd_boolean
1826 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1827 {
1828 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1829
1830 /* Ignore indirect symbols. These are added by the versioning code. */
1831 if (h->root.type == bfd_link_hash_indirect)
1832 return TRUE;
1833
1834 /* Ignore this if we won't export it. */
1835 if (!eif->info->export_dynamic && !h->dynamic)
1836 return TRUE;
1837
1838 if (h->dynindx == -1
1839 && (h->def_regular || h->ref_regular)
1840 && ! bfd_hide_sym_by_version (eif->info->version_info,
1841 h->root.root.string))
1842 {
1843 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1844 {
1845 eif->failed = TRUE;
1846 return FALSE;
1847 }
1848 }
1849
1850 return TRUE;
1851 }
1852 \f
1853 /* Look through the symbols which are defined in other shared
1854 libraries and referenced here. Update the list of version
1855 dependencies. This will be put into the .gnu.version_r section.
1856 This function is called via elf_link_hash_traverse. */
1857
1858 static bfd_boolean
1859 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1860 void *data)
1861 {
1862 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1863 Elf_Internal_Verneed *t;
1864 Elf_Internal_Vernaux *a;
1865 bfd_size_type amt;
1866
1867 /* We only care about symbols defined in shared objects with version
1868 information. */
1869 if (!h->def_dynamic
1870 || h->def_regular
1871 || h->dynindx == -1
1872 || h->verinfo.verdef == NULL)
1873 return TRUE;
1874
1875 /* See if we already know about this version. */
1876 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1877 t != NULL;
1878 t = t->vn_nextref)
1879 {
1880 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1881 continue;
1882
1883 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1884 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1885 return TRUE;
1886
1887 break;
1888 }
1889
1890 /* This is a new version. Add it to tree we are building. */
1891
1892 if (t == NULL)
1893 {
1894 amt = sizeof *t;
1895 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1896 if (t == NULL)
1897 {
1898 rinfo->failed = TRUE;
1899 return FALSE;
1900 }
1901
1902 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1903 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1904 elf_tdata (rinfo->info->output_bfd)->verref = t;
1905 }
1906
1907 amt = sizeof *a;
1908 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1909 if (a == NULL)
1910 {
1911 rinfo->failed = TRUE;
1912 return FALSE;
1913 }
1914
1915 /* Note that we are copying a string pointer here, and testing it
1916 above. If bfd_elf_string_from_elf_section is ever changed to
1917 discard the string data when low in memory, this will have to be
1918 fixed. */
1919 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1920
1921 a->vna_flags = h->verinfo.verdef->vd_flags;
1922 a->vna_nextptr = t->vn_auxptr;
1923
1924 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1925 ++rinfo->vers;
1926
1927 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1928
1929 t->vn_auxptr = a;
1930
1931 return TRUE;
1932 }
1933
1934 /* Figure out appropriate versions for all the symbols. We may not
1935 have the version number script until we have read all of the input
1936 files, so until that point we don't know which symbols should be
1937 local. This function is called via elf_link_hash_traverse. */
1938
1939 static bfd_boolean
1940 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1941 {
1942 struct elf_info_failed *sinfo;
1943 struct bfd_link_info *info;
1944 const struct elf_backend_data *bed;
1945 struct elf_info_failed eif;
1946 char *p;
1947 bfd_size_type amt;
1948
1949 sinfo = (struct elf_info_failed *) data;
1950 info = sinfo->info;
1951
1952 /* Fix the symbol flags. */
1953 eif.failed = FALSE;
1954 eif.info = info;
1955 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1956 {
1957 if (eif.failed)
1958 sinfo->failed = TRUE;
1959 return FALSE;
1960 }
1961
1962 /* We only need version numbers for symbols defined in regular
1963 objects. */
1964 if (!h->def_regular)
1965 return TRUE;
1966
1967 bed = get_elf_backend_data (info->output_bfd);
1968 p = strchr (h->root.root.string, ELF_VER_CHR);
1969 if (p != NULL && h->verinfo.vertree == NULL)
1970 {
1971 struct bfd_elf_version_tree *t;
1972 bfd_boolean hidden;
1973
1974 hidden = TRUE;
1975
1976 /* There are two consecutive ELF_VER_CHR characters if this is
1977 not a hidden symbol. */
1978 ++p;
1979 if (*p == ELF_VER_CHR)
1980 {
1981 hidden = FALSE;
1982 ++p;
1983 }
1984
1985 /* If there is no version string, we can just return out. */
1986 if (*p == '\0')
1987 {
1988 if (hidden)
1989 h->hidden = 1;
1990 return TRUE;
1991 }
1992
1993 /* Look for the version. If we find it, it is no longer weak. */
1994 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1995 {
1996 if (strcmp (t->name, p) == 0)
1997 {
1998 size_t len;
1999 char *alc;
2000 struct bfd_elf_version_expr *d;
2001
2002 len = p - h->root.root.string;
2003 alc = (char *) bfd_malloc (len);
2004 if (alc == NULL)
2005 {
2006 sinfo->failed = TRUE;
2007 return FALSE;
2008 }
2009 memcpy (alc, h->root.root.string, len - 1);
2010 alc[len - 1] = '\0';
2011 if (alc[len - 2] == ELF_VER_CHR)
2012 alc[len - 2] = '\0';
2013
2014 h->verinfo.vertree = t;
2015 t->used = TRUE;
2016 d = NULL;
2017
2018 if (t->globals.list != NULL)
2019 d = (*t->match) (&t->globals, NULL, alc);
2020
2021 /* See if there is anything to force this symbol to
2022 local scope. */
2023 if (d == NULL && t->locals.list != NULL)
2024 {
2025 d = (*t->match) (&t->locals, NULL, alc);
2026 if (d != NULL
2027 && h->dynindx != -1
2028 && ! info->export_dynamic)
2029 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2030 }
2031
2032 free (alc);
2033 break;
2034 }
2035 }
2036
2037 /* If we are building an application, we need to create a
2038 version node for this version. */
2039 if (t == NULL && info->executable)
2040 {
2041 struct bfd_elf_version_tree **pp;
2042 int version_index;
2043
2044 /* If we aren't going to export this symbol, we don't need
2045 to worry about it. */
2046 if (h->dynindx == -1)
2047 return TRUE;
2048
2049 amt = sizeof *t;
2050 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2051 if (t == NULL)
2052 {
2053 sinfo->failed = TRUE;
2054 return FALSE;
2055 }
2056
2057 t->name = p;
2058 t->name_indx = (unsigned int) -1;
2059 t->used = TRUE;
2060
2061 version_index = 1;
2062 /* Don't count anonymous version tag. */
2063 if (sinfo->info->version_info != NULL
2064 && sinfo->info->version_info->vernum == 0)
2065 version_index = 0;
2066 for (pp = &sinfo->info->version_info;
2067 *pp != NULL;
2068 pp = &(*pp)->next)
2069 ++version_index;
2070 t->vernum = version_index;
2071
2072 *pp = t;
2073
2074 h->verinfo.vertree = t;
2075 }
2076 else if (t == NULL)
2077 {
2078 /* We could not find the version for a symbol when
2079 generating a shared archive. Return an error. */
2080 (*_bfd_error_handler)
2081 (_("%B: version node not found for symbol %s"),
2082 info->output_bfd, h->root.root.string);
2083 bfd_set_error (bfd_error_bad_value);
2084 sinfo->failed = TRUE;
2085 return FALSE;
2086 }
2087
2088 if (hidden)
2089 h->hidden = 1;
2090 }
2091
2092 /* If we don't have a version for this symbol, see if we can find
2093 something. */
2094 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2095 {
2096 bfd_boolean hide;
2097
2098 h->verinfo.vertree
2099 = bfd_find_version_for_sym (sinfo->info->version_info,
2100 h->root.root.string, &hide);
2101 if (h->verinfo.vertree != NULL && hide)
2102 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2103 }
2104
2105 return TRUE;
2106 }
2107 \f
2108 /* Read and swap the relocs from the section indicated by SHDR. This
2109 may be either a REL or a RELA section. The relocations are
2110 translated into RELA relocations and stored in INTERNAL_RELOCS,
2111 which should have already been allocated to contain enough space.
2112 The EXTERNAL_RELOCS are a buffer where the external form of the
2113 relocations should be stored.
2114
2115 Returns FALSE if something goes wrong. */
2116
2117 static bfd_boolean
2118 elf_link_read_relocs_from_section (bfd *abfd,
2119 asection *sec,
2120 Elf_Internal_Shdr *shdr,
2121 void *external_relocs,
2122 Elf_Internal_Rela *internal_relocs)
2123 {
2124 const struct elf_backend_data *bed;
2125 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2126 const bfd_byte *erela;
2127 const bfd_byte *erelaend;
2128 Elf_Internal_Rela *irela;
2129 Elf_Internal_Shdr *symtab_hdr;
2130 size_t nsyms;
2131
2132 /* Position ourselves at the start of the section. */
2133 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2134 return FALSE;
2135
2136 /* Read the relocations. */
2137 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2138 return FALSE;
2139
2140 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2141 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2142
2143 bed = get_elf_backend_data (abfd);
2144
2145 /* Convert the external relocations to the internal format. */
2146 if (shdr->sh_entsize == bed->s->sizeof_rel)
2147 swap_in = bed->s->swap_reloc_in;
2148 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2149 swap_in = bed->s->swap_reloca_in;
2150 else
2151 {
2152 bfd_set_error (bfd_error_wrong_format);
2153 return FALSE;
2154 }
2155
2156 erela = (const bfd_byte *) external_relocs;
2157 erelaend = erela + shdr->sh_size;
2158 irela = internal_relocs;
2159 while (erela < erelaend)
2160 {
2161 bfd_vma r_symndx;
2162
2163 (*swap_in) (abfd, erela, irela);
2164 r_symndx = ELF32_R_SYM (irela->r_info);
2165 if (bed->s->arch_size == 64)
2166 r_symndx >>= 24;
2167 if (nsyms > 0)
2168 {
2169 if ((size_t) r_symndx >= nsyms)
2170 {
2171 (*_bfd_error_handler)
2172 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2173 " for offset 0x%lx in section `%A'"),
2174 abfd, sec,
2175 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2176 bfd_set_error (bfd_error_bad_value);
2177 return FALSE;
2178 }
2179 }
2180 else if (r_symndx != STN_UNDEF)
2181 {
2182 (*_bfd_error_handler)
2183 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2184 " when the object file has no symbol table"),
2185 abfd, sec,
2186 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2187 bfd_set_error (bfd_error_bad_value);
2188 return FALSE;
2189 }
2190 irela += bed->s->int_rels_per_ext_rel;
2191 erela += shdr->sh_entsize;
2192 }
2193
2194 return TRUE;
2195 }
2196
2197 /* Read and swap the relocs for a section O. They may have been
2198 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2199 not NULL, they are used as buffers to read into. They are known to
2200 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2201 the return value is allocated using either malloc or bfd_alloc,
2202 according to the KEEP_MEMORY argument. If O has two relocation
2203 sections (both REL and RELA relocations), then the REL_HDR
2204 relocations will appear first in INTERNAL_RELOCS, followed by the
2205 RELA_HDR relocations. */
2206
2207 Elf_Internal_Rela *
2208 _bfd_elf_link_read_relocs (bfd *abfd,
2209 asection *o,
2210 void *external_relocs,
2211 Elf_Internal_Rela *internal_relocs,
2212 bfd_boolean keep_memory)
2213 {
2214 void *alloc1 = NULL;
2215 Elf_Internal_Rela *alloc2 = NULL;
2216 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2217 struct bfd_elf_section_data *esdo = elf_section_data (o);
2218 Elf_Internal_Rela *internal_rela_relocs;
2219
2220 if (esdo->relocs != NULL)
2221 return esdo->relocs;
2222
2223 if (o->reloc_count == 0)
2224 return NULL;
2225
2226 if (internal_relocs == NULL)
2227 {
2228 bfd_size_type size;
2229
2230 size = o->reloc_count;
2231 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2232 if (keep_memory)
2233 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2234 else
2235 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2236 if (internal_relocs == NULL)
2237 goto error_return;
2238 }
2239
2240 if (external_relocs == NULL)
2241 {
2242 bfd_size_type size = 0;
2243
2244 if (esdo->rel.hdr)
2245 size += esdo->rel.hdr->sh_size;
2246 if (esdo->rela.hdr)
2247 size += esdo->rela.hdr->sh_size;
2248
2249 alloc1 = bfd_malloc (size);
2250 if (alloc1 == NULL)
2251 goto error_return;
2252 external_relocs = alloc1;
2253 }
2254
2255 internal_rela_relocs = internal_relocs;
2256 if (esdo->rel.hdr)
2257 {
2258 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2259 external_relocs,
2260 internal_relocs))
2261 goto error_return;
2262 external_relocs = (((bfd_byte *) external_relocs)
2263 + esdo->rel.hdr->sh_size);
2264 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2265 * bed->s->int_rels_per_ext_rel);
2266 }
2267
2268 if (esdo->rela.hdr
2269 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2270 external_relocs,
2271 internal_rela_relocs)))
2272 goto error_return;
2273
2274 /* Cache the results for next time, if we can. */
2275 if (keep_memory)
2276 esdo->relocs = internal_relocs;
2277
2278 if (alloc1 != NULL)
2279 free (alloc1);
2280
2281 /* Don't free alloc2, since if it was allocated we are passing it
2282 back (under the name of internal_relocs). */
2283
2284 return internal_relocs;
2285
2286 error_return:
2287 if (alloc1 != NULL)
2288 free (alloc1);
2289 if (alloc2 != NULL)
2290 {
2291 if (keep_memory)
2292 bfd_release (abfd, alloc2);
2293 else
2294 free (alloc2);
2295 }
2296 return NULL;
2297 }
2298
2299 /* Compute the size of, and allocate space for, REL_HDR which is the
2300 section header for a section containing relocations for O. */
2301
2302 static bfd_boolean
2303 _bfd_elf_link_size_reloc_section (bfd *abfd,
2304 struct bfd_elf_section_reloc_data *reldata)
2305 {
2306 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2307
2308 /* That allows us to calculate the size of the section. */
2309 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2310
2311 /* The contents field must last into write_object_contents, so we
2312 allocate it with bfd_alloc rather than malloc. Also since we
2313 cannot be sure that the contents will actually be filled in,
2314 we zero the allocated space. */
2315 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2316 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2317 return FALSE;
2318
2319 if (reldata->hashes == NULL && reldata->count)
2320 {
2321 struct elf_link_hash_entry **p;
2322
2323 p = (struct elf_link_hash_entry **)
2324 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2325 if (p == NULL)
2326 return FALSE;
2327
2328 reldata->hashes = p;
2329 }
2330
2331 return TRUE;
2332 }
2333
2334 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2335 originated from the section given by INPUT_REL_HDR) to the
2336 OUTPUT_BFD. */
2337
2338 bfd_boolean
2339 _bfd_elf_link_output_relocs (bfd *output_bfd,
2340 asection *input_section,
2341 Elf_Internal_Shdr *input_rel_hdr,
2342 Elf_Internal_Rela *internal_relocs,
2343 struct elf_link_hash_entry **rel_hash
2344 ATTRIBUTE_UNUSED)
2345 {
2346 Elf_Internal_Rela *irela;
2347 Elf_Internal_Rela *irelaend;
2348 bfd_byte *erel;
2349 struct bfd_elf_section_reloc_data *output_reldata;
2350 asection *output_section;
2351 const struct elf_backend_data *bed;
2352 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2353 struct bfd_elf_section_data *esdo;
2354
2355 output_section = input_section->output_section;
2356
2357 bed = get_elf_backend_data (output_bfd);
2358 esdo = elf_section_data (output_section);
2359 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2360 {
2361 output_reldata = &esdo->rel;
2362 swap_out = bed->s->swap_reloc_out;
2363 }
2364 else if (esdo->rela.hdr
2365 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2366 {
2367 output_reldata = &esdo->rela;
2368 swap_out = bed->s->swap_reloca_out;
2369 }
2370 else
2371 {
2372 (*_bfd_error_handler)
2373 (_("%B: relocation size mismatch in %B section %A"),
2374 output_bfd, input_section->owner, input_section);
2375 bfd_set_error (bfd_error_wrong_format);
2376 return FALSE;
2377 }
2378
2379 erel = output_reldata->hdr->contents;
2380 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2381 irela = internal_relocs;
2382 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2383 * bed->s->int_rels_per_ext_rel);
2384 while (irela < irelaend)
2385 {
2386 (*swap_out) (output_bfd, irela, erel);
2387 irela += bed->s->int_rels_per_ext_rel;
2388 erel += input_rel_hdr->sh_entsize;
2389 }
2390
2391 /* Bump the counter, so that we know where to add the next set of
2392 relocations. */
2393 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2394
2395 return TRUE;
2396 }
2397 \f
2398 /* Make weak undefined symbols in PIE dynamic. */
2399
2400 bfd_boolean
2401 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2402 struct elf_link_hash_entry *h)
2403 {
2404 if (info->pie
2405 && h->dynindx == -1
2406 && h->root.type == bfd_link_hash_undefweak)
2407 return bfd_elf_link_record_dynamic_symbol (info, h);
2408
2409 return TRUE;
2410 }
2411
2412 /* Fix up the flags for a symbol. This handles various cases which
2413 can only be fixed after all the input files are seen. This is
2414 currently called by both adjust_dynamic_symbol and
2415 assign_sym_version, which is unnecessary but perhaps more robust in
2416 the face of future changes. */
2417
2418 static bfd_boolean
2419 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2420 struct elf_info_failed *eif)
2421 {
2422 const struct elf_backend_data *bed;
2423
2424 /* If this symbol was mentioned in a non-ELF file, try to set
2425 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2426 permit a non-ELF file to correctly refer to a symbol defined in
2427 an ELF dynamic object. */
2428 if (h->non_elf)
2429 {
2430 while (h->root.type == bfd_link_hash_indirect)
2431 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2432
2433 if (h->root.type != bfd_link_hash_defined
2434 && h->root.type != bfd_link_hash_defweak)
2435 {
2436 h->ref_regular = 1;
2437 h->ref_regular_nonweak = 1;
2438 }
2439 else
2440 {
2441 if (h->root.u.def.section->owner != NULL
2442 && (bfd_get_flavour (h->root.u.def.section->owner)
2443 == bfd_target_elf_flavour))
2444 {
2445 h->ref_regular = 1;
2446 h->ref_regular_nonweak = 1;
2447 }
2448 else
2449 h->def_regular = 1;
2450 }
2451
2452 if (h->dynindx == -1
2453 && (h->def_dynamic
2454 || h->ref_dynamic))
2455 {
2456 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2457 {
2458 eif->failed = TRUE;
2459 return FALSE;
2460 }
2461 }
2462 }
2463 else
2464 {
2465 /* Unfortunately, NON_ELF is only correct if the symbol
2466 was first seen in a non-ELF file. Fortunately, if the symbol
2467 was first seen in an ELF file, we're probably OK unless the
2468 symbol was defined in a non-ELF file. Catch that case here.
2469 FIXME: We're still in trouble if the symbol was first seen in
2470 a dynamic object, and then later in a non-ELF regular object. */
2471 if ((h->root.type == bfd_link_hash_defined
2472 || h->root.type == bfd_link_hash_defweak)
2473 && !h->def_regular
2474 && (h->root.u.def.section->owner != NULL
2475 ? (bfd_get_flavour (h->root.u.def.section->owner)
2476 != bfd_target_elf_flavour)
2477 : (bfd_is_abs_section (h->root.u.def.section)
2478 && !h->def_dynamic)))
2479 h->def_regular = 1;
2480 }
2481
2482 /* Backend specific symbol fixup. */
2483 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2484 if (bed->elf_backend_fixup_symbol
2485 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2486 return FALSE;
2487
2488 /* If this is a final link, and the symbol was defined as a common
2489 symbol in a regular object file, and there was no definition in
2490 any dynamic object, then the linker will have allocated space for
2491 the symbol in a common section but the DEF_REGULAR
2492 flag will not have been set. */
2493 if (h->root.type == bfd_link_hash_defined
2494 && !h->def_regular
2495 && h->ref_regular
2496 && !h->def_dynamic
2497 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2498 h->def_regular = 1;
2499
2500 /* If -Bsymbolic was used (which means to bind references to global
2501 symbols to the definition within the shared object), and this
2502 symbol was defined in a regular object, then it actually doesn't
2503 need a PLT entry. Likewise, if the symbol has non-default
2504 visibility. If the symbol has hidden or internal visibility, we
2505 will force it local. */
2506 if (h->needs_plt
2507 && eif->info->shared
2508 && is_elf_hash_table (eif->info->hash)
2509 && (SYMBOLIC_BIND (eif->info, h)
2510 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2511 && h->def_regular)
2512 {
2513 bfd_boolean force_local;
2514
2515 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2516 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2517 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2518 }
2519
2520 /* If a weak undefined symbol has non-default visibility, we also
2521 hide it from the dynamic linker. */
2522 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2523 && h->root.type == bfd_link_hash_undefweak)
2524 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2525
2526 /* If this is a weak defined symbol in a dynamic object, and we know
2527 the real definition in the dynamic object, copy interesting flags
2528 over to the real definition. */
2529 if (h->u.weakdef != NULL)
2530 {
2531 /* If the real definition is defined by a regular object file,
2532 don't do anything special. See the longer description in
2533 _bfd_elf_adjust_dynamic_symbol, below. */
2534 if (h->u.weakdef->def_regular)
2535 h->u.weakdef = NULL;
2536 else
2537 {
2538 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2539
2540 while (h->root.type == bfd_link_hash_indirect)
2541 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2542
2543 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2544 || h->root.type == bfd_link_hash_defweak);
2545 BFD_ASSERT (weakdef->def_dynamic);
2546 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2547 || weakdef->root.type == bfd_link_hash_defweak);
2548 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2549 }
2550 }
2551
2552 return TRUE;
2553 }
2554
2555 /* Make the backend pick a good value for a dynamic symbol. This is
2556 called via elf_link_hash_traverse, and also calls itself
2557 recursively. */
2558
2559 static bfd_boolean
2560 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2561 {
2562 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2563 bfd *dynobj;
2564 const struct elf_backend_data *bed;
2565
2566 if (! is_elf_hash_table (eif->info->hash))
2567 return FALSE;
2568
2569 /* Ignore indirect symbols. These are added by the versioning code. */
2570 if (h->root.type == bfd_link_hash_indirect)
2571 return TRUE;
2572
2573 /* Fix the symbol flags. */
2574 if (! _bfd_elf_fix_symbol_flags (h, eif))
2575 return FALSE;
2576
2577 /* If this symbol does not require a PLT entry, and it is not
2578 defined by a dynamic object, or is not referenced by a regular
2579 object, ignore it. We do have to handle a weak defined symbol,
2580 even if no regular object refers to it, if we decided to add it
2581 to the dynamic symbol table. FIXME: Do we normally need to worry
2582 about symbols which are defined by one dynamic object and
2583 referenced by another one? */
2584 if (!h->needs_plt
2585 && h->type != STT_GNU_IFUNC
2586 && (h->def_regular
2587 || !h->def_dynamic
2588 || (!h->ref_regular
2589 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2590 {
2591 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2592 return TRUE;
2593 }
2594
2595 /* If we've already adjusted this symbol, don't do it again. This
2596 can happen via a recursive call. */
2597 if (h->dynamic_adjusted)
2598 return TRUE;
2599
2600 /* Don't look at this symbol again. Note that we must set this
2601 after checking the above conditions, because we may look at a
2602 symbol once, decide not to do anything, and then get called
2603 recursively later after REF_REGULAR is set below. */
2604 h->dynamic_adjusted = 1;
2605
2606 /* If this is a weak definition, and we know a real definition, and
2607 the real symbol is not itself defined by a regular object file,
2608 then get a good value for the real definition. We handle the
2609 real symbol first, for the convenience of the backend routine.
2610
2611 Note that there is a confusing case here. If the real definition
2612 is defined by a regular object file, we don't get the real symbol
2613 from the dynamic object, but we do get the weak symbol. If the
2614 processor backend uses a COPY reloc, then if some routine in the
2615 dynamic object changes the real symbol, we will not see that
2616 change in the corresponding weak symbol. This is the way other
2617 ELF linkers work as well, and seems to be a result of the shared
2618 library model.
2619
2620 I will clarify this issue. Most SVR4 shared libraries define the
2621 variable _timezone and define timezone as a weak synonym. The
2622 tzset call changes _timezone. If you write
2623 extern int timezone;
2624 int _timezone = 5;
2625 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2626 you might expect that, since timezone is a synonym for _timezone,
2627 the same number will print both times. However, if the processor
2628 backend uses a COPY reloc, then actually timezone will be copied
2629 into your process image, and, since you define _timezone
2630 yourself, _timezone will not. Thus timezone and _timezone will
2631 wind up at different memory locations. The tzset call will set
2632 _timezone, leaving timezone unchanged. */
2633
2634 if (h->u.weakdef != NULL)
2635 {
2636 /* If we get to this point, there is an implicit reference to
2637 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2638 h->u.weakdef->ref_regular = 1;
2639
2640 /* Ensure that the backend adjust_dynamic_symbol function sees
2641 H->U.WEAKDEF before H by recursively calling ourselves. */
2642 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2643 return FALSE;
2644 }
2645
2646 /* If a symbol has no type and no size and does not require a PLT
2647 entry, then we are probably about to do the wrong thing here: we
2648 are probably going to create a COPY reloc for an empty object.
2649 This case can arise when a shared object is built with assembly
2650 code, and the assembly code fails to set the symbol type. */
2651 if (h->size == 0
2652 && h->type == STT_NOTYPE
2653 && !h->needs_plt)
2654 (*_bfd_error_handler)
2655 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2656 h->root.root.string);
2657
2658 dynobj = elf_hash_table (eif->info)->dynobj;
2659 bed = get_elf_backend_data (dynobj);
2660
2661 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2662 {
2663 eif->failed = TRUE;
2664 return FALSE;
2665 }
2666
2667 return TRUE;
2668 }
2669
2670 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2671 DYNBSS. */
2672
2673 bfd_boolean
2674 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2675 asection *dynbss)
2676 {
2677 unsigned int power_of_two;
2678 bfd_vma mask;
2679 asection *sec = h->root.u.def.section;
2680
2681 /* The section aligment of definition is the maximum alignment
2682 requirement of symbols defined in the section. Since we don't
2683 know the symbol alignment requirement, we start with the
2684 maximum alignment and check low bits of the symbol address
2685 for the minimum alignment. */
2686 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2687 mask = ((bfd_vma) 1 << power_of_two) - 1;
2688 while ((h->root.u.def.value & mask) != 0)
2689 {
2690 mask >>= 1;
2691 --power_of_two;
2692 }
2693
2694 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2695 dynbss))
2696 {
2697 /* Adjust the section alignment if needed. */
2698 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2699 power_of_two))
2700 return FALSE;
2701 }
2702
2703 /* We make sure that the symbol will be aligned properly. */
2704 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2705
2706 /* Define the symbol as being at this point in DYNBSS. */
2707 h->root.u.def.section = dynbss;
2708 h->root.u.def.value = dynbss->size;
2709
2710 /* Increment the size of DYNBSS to make room for the symbol. */
2711 dynbss->size += h->size;
2712
2713 return TRUE;
2714 }
2715
2716 /* Adjust all external symbols pointing into SEC_MERGE sections
2717 to reflect the object merging within the sections. */
2718
2719 static bfd_boolean
2720 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2721 {
2722 asection *sec;
2723
2724 if ((h->root.type == bfd_link_hash_defined
2725 || h->root.type == bfd_link_hash_defweak)
2726 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2727 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2728 {
2729 bfd *output_bfd = (bfd *) data;
2730
2731 h->root.u.def.value =
2732 _bfd_merged_section_offset (output_bfd,
2733 &h->root.u.def.section,
2734 elf_section_data (sec)->sec_info,
2735 h->root.u.def.value);
2736 }
2737
2738 return TRUE;
2739 }
2740
2741 /* Returns false if the symbol referred to by H should be considered
2742 to resolve local to the current module, and true if it should be
2743 considered to bind dynamically. */
2744
2745 bfd_boolean
2746 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2747 struct bfd_link_info *info,
2748 bfd_boolean not_local_protected)
2749 {
2750 bfd_boolean binding_stays_local_p;
2751 const struct elf_backend_data *bed;
2752 struct elf_link_hash_table *hash_table;
2753
2754 if (h == NULL)
2755 return FALSE;
2756
2757 while (h->root.type == bfd_link_hash_indirect
2758 || h->root.type == bfd_link_hash_warning)
2759 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2760
2761 /* If it was forced local, then clearly it's not dynamic. */
2762 if (h->dynindx == -1)
2763 return FALSE;
2764 if (h->forced_local)
2765 return FALSE;
2766
2767 /* Identify the cases where name binding rules say that a
2768 visible symbol resolves locally. */
2769 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2770
2771 switch (ELF_ST_VISIBILITY (h->other))
2772 {
2773 case STV_INTERNAL:
2774 case STV_HIDDEN:
2775 return FALSE;
2776
2777 case STV_PROTECTED:
2778 hash_table = elf_hash_table (info);
2779 if (!is_elf_hash_table (hash_table))
2780 return FALSE;
2781
2782 bed = get_elf_backend_data (hash_table->dynobj);
2783
2784 /* Proper resolution for function pointer equality may require
2785 that these symbols perhaps be resolved dynamically, even though
2786 we should be resolving them to the current module. */
2787 if (!not_local_protected || !bed->is_function_type (h->type))
2788 binding_stays_local_p = TRUE;
2789 break;
2790
2791 default:
2792 break;
2793 }
2794
2795 /* If it isn't defined locally, then clearly it's dynamic. */
2796 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2797 return TRUE;
2798
2799 /* Otherwise, the symbol is dynamic if binding rules don't tell
2800 us that it remains local. */
2801 return !binding_stays_local_p;
2802 }
2803
2804 /* Return true if the symbol referred to by H should be considered
2805 to resolve local to the current module, and false otherwise. Differs
2806 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2807 undefined symbols. The two functions are virtually identical except
2808 for the place where forced_local and dynindx == -1 are tested. If
2809 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2810 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2811 the symbol is local only for defined symbols.
2812 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2813 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2814 treatment of undefined weak symbols. For those that do not make
2815 undefined weak symbols dynamic, both functions may return false. */
2816
2817 bfd_boolean
2818 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2819 struct bfd_link_info *info,
2820 bfd_boolean local_protected)
2821 {
2822 const struct elf_backend_data *bed;
2823 struct elf_link_hash_table *hash_table;
2824
2825 /* If it's a local sym, of course we resolve locally. */
2826 if (h == NULL)
2827 return TRUE;
2828
2829 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2830 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2831 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2832 return TRUE;
2833
2834 /* Common symbols that become definitions don't get the DEF_REGULAR
2835 flag set, so test it first, and don't bail out. */
2836 if (ELF_COMMON_DEF_P (h))
2837 /* Do nothing. */;
2838 /* If we don't have a definition in a regular file, then we can't
2839 resolve locally. The sym is either undefined or dynamic. */
2840 else if (!h->def_regular)
2841 return FALSE;
2842
2843 /* Forced local symbols resolve locally. */
2844 if (h->forced_local)
2845 return TRUE;
2846
2847 /* As do non-dynamic symbols. */
2848 if (h->dynindx == -1)
2849 return TRUE;
2850
2851 /* At this point, we know the symbol is defined and dynamic. In an
2852 executable it must resolve locally, likewise when building symbolic
2853 shared libraries. */
2854 if (info->executable || SYMBOLIC_BIND (info, h))
2855 return TRUE;
2856
2857 /* Now deal with defined dynamic symbols in shared libraries. Ones
2858 with default visibility might not resolve locally. */
2859 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2860 return FALSE;
2861
2862 hash_table = elf_hash_table (info);
2863 if (!is_elf_hash_table (hash_table))
2864 return TRUE;
2865
2866 bed = get_elf_backend_data (hash_table->dynobj);
2867
2868 /* STV_PROTECTED non-function symbols are local. */
2869 if (!bed->is_function_type (h->type))
2870 return TRUE;
2871
2872 /* Function pointer equality tests may require that STV_PROTECTED
2873 symbols be treated as dynamic symbols. If the address of a
2874 function not defined in an executable is set to that function's
2875 plt entry in the executable, then the address of the function in
2876 a shared library must also be the plt entry in the executable. */
2877 return local_protected;
2878 }
2879
2880 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2881 aligned. Returns the first TLS output section. */
2882
2883 struct bfd_section *
2884 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2885 {
2886 struct bfd_section *sec, *tls;
2887 unsigned int align = 0;
2888
2889 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2890 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2891 break;
2892 tls = sec;
2893
2894 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2895 if (sec->alignment_power > align)
2896 align = sec->alignment_power;
2897
2898 elf_hash_table (info)->tls_sec = tls;
2899
2900 /* Ensure the alignment of the first section is the largest alignment,
2901 so that the tls segment starts aligned. */
2902 if (tls != NULL)
2903 tls->alignment_power = align;
2904
2905 return tls;
2906 }
2907
2908 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2909 static bfd_boolean
2910 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2911 Elf_Internal_Sym *sym)
2912 {
2913 const struct elf_backend_data *bed;
2914
2915 /* Local symbols do not count, but target specific ones might. */
2916 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2917 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2918 return FALSE;
2919
2920 bed = get_elf_backend_data (abfd);
2921 /* Function symbols do not count. */
2922 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2923 return FALSE;
2924
2925 /* If the section is undefined, then so is the symbol. */
2926 if (sym->st_shndx == SHN_UNDEF)
2927 return FALSE;
2928
2929 /* If the symbol is defined in the common section, then
2930 it is a common definition and so does not count. */
2931 if (bed->common_definition (sym))
2932 return FALSE;
2933
2934 /* If the symbol is in a target specific section then we
2935 must rely upon the backend to tell us what it is. */
2936 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2937 /* FIXME - this function is not coded yet:
2938
2939 return _bfd_is_global_symbol_definition (abfd, sym);
2940
2941 Instead for now assume that the definition is not global,
2942 Even if this is wrong, at least the linker will behave
2943 in the same way that it used to do. */
2944 return FALSE;
2945
2946 return TRUE;
2947 }
2948
2949 /* Search the symbol table of the archive element of the archive ABFD
2950 whose archive map contains a mention of SYMDEF, and determine if
2951 the symbol is defined in this element. */
2952 static bfd_boolean
2953 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2954 {
2955 Elf_Internal_Shdr * hdr;
2956 bfd_size_type symcount;
2957 bfd_size_type extsymcount;
2958 bfd_size_type extsymoff;
2959 Elf_Internal_Sym *isymbuf;
2960 Elf_Internal_Sym *isym;
2961 Elf_Internal_Sym *isymend;
2962 bfd_boolean result;
2963
2964 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2965 if (abfd == NULL)
2966 return FALSE;
2967
2968 if (! bfd_check_format (abfd, bfd_object))
2969 return FALSE;
2970
2971 /* If we have already included the element containing this symbol in the
2972 link then we do not need to include it again. Just claim that any symbol
2973 it contains is not a definition, so that our caller will not decide to
2974 (re)include this element. */
2975 if (abfd->archive_pass)
2976 return FALSE;
2977
2978 /* Select the appropriate symbol table. */
2979 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2980 hdr = &elf_tdata (abfd)->symtab_hdr;
2981 else
2982 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2983
2984 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2985
2986 /* The sh_info field of the symtab header tells us where the
2987 external symbols start. We don't care about the local symbols. */
2988 if (elf_bad_symtab (abfd))
2989 {
2990 extsymcount = symcount;
2991 extsymoff = 0;
2992 }
2993 else
2994 {
2995 extsymcount = symcount - hdr->sh_info;
2996 extsymoff = hdr->sh_info;
2997 }
2998
2999 if (extsymcount == 0)
3000 return FALSE;
3001
3002 /* Read in the symbol table. */
3003 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3004 NULL, NULL, NULL);
3005 if (isymbuf == NULL)
3006 return FALSE;
3007
3008 /* Scan the symbol table looking for SYMDEF. */
3009 result = FALSE;
3010 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3011 {
3012 const char *name;
3013
3014 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3015 isym->st_name);
3016 if (name == NULL)
3017 break;
3018
3019 if (strcmp (name, symdef->name) == 0)
3020 {
3021 result = is_global_data_symbol_definition (abfd, isym);
3022 break;
3023 }
3024 }
3025
3026 free (isymbuf);
3027
3028 return result;
3029 }
3030 \f
3031 /* Add an entry to the .dynamic table. */
3032
3033 bfd_boolean
3034 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3035 bfd_vma tag,
3036 bfd_vma val)
3037 {
3038 struct elf_link_hash_table *hash_table;
3039 const struct elf_backend_data *bed;
3040 asection *s;
3041 bfd_size_type newsize;
3042 bfd_byte *newcontents;
3043 Elf_Internal_Dyn dyn;
3044
3045 hash_table = elf_hash_table (info);
3046 if (! is_elf_hash_table (hash_table))
3047 return FALSE;
3048
3049 bed = get_elf_backend_data (hash_table->dynobj);
3050 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3051 BFD_ASSERT (s != NULL);
3052
3053 newsize = s->size + bed->s->sizeof_dyn;
3054 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3055 if (newcontents == NULL)
3056 return FALSE;
3057
3058 dyn.d_tag = tag;
3059 dyn.d_un.d_val = val;
3060 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3061
3062 s->size = newsize;
3063 s->contents = newcontents;
3064
3065 return TRUE;
3066 }
3067
3068 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3069 otherwise just check whether one already exists. Returns -1 on error,
3070 1 if a DT_NEEDED tag already exists, and 0 on success. */
3071
3072 static int
3073 elf_add_dt_needed_tag (bfd *abfd,
3074 struct bfd_link_info *info,
3075 const char *soname,
3076 bfd_boolean do_it)
3077 {
3078 struct elf_link_hash_table *hash_table;
3079 bfd_size_type strindex;
3080
3081 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3082 return -1;
3083
3084 hash_table = elf_hash_table (info);
3085 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3086 if (strindex == (bfd_size_type) -1)
3087 return -1;
3088
3089 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3090 {
3091 asection *sdyn;
3092 const struct elf_backend_data *bed;
3093 bfd_byte *extdyn;
3094
3095 bed = get_elf_backend_data (hash_table->dynobj);
3096 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3097 if (sdyn != NULL)
3098 for (extdyn = sdyn->contents;
3099 extdyn < sdyn->contents + sdyn->size;
3100 extdyn += bed->s->sizeof_dyn)
3101 {
3102 Elf_Internal_Dyn dyn;
3103
3104 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3105 if (dyn.d_tag == DT_NEEDED
3106 && dyn.d_un.d_val == strindex)
3107 {
3108 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3109 return 1;
3110 }
3111 }
3112 }
3113
3114 if (do_it)
3115 {
3116 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3117 return -1;
3118
3119 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3120 return -1;
3121 }
3122 else
3123 /* We were just checking for existence of the tag. */
3124 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3125
3126 return 0;
3127 }
3128
3129 static bfd_boolean
3130 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3131 {
3132 for (; needed != NULL; needed = needed->next)
3133 if (strcmp (soname, needed->name) == 0)
3134 return TRUE;
3135
3136 return FALSE;
3137 }
3138
3139 /* Sort symbol by value, section, and size. */
3140 static int
3141 elf_sort_symbol (const void *arg1, const void *arg2)
3142 {
3143 const struct elf_link_hash_entry *h1;
3144 const struct elf_link_hash_entry *h2;
3145 bfd_signed_vma vdiff;
3146
3147 h1 = *(const struct elf_link_hash_entry **) arg1;
3148 h2 = *(const struct elf_link_hash_entry **) arg2;
3149 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3150 if (vdiff != 0)
3151 return vdiff > 0 ? 1 : -1;
3152 else
3153 {
3154 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3155 if (sdiff != 0)
3156 return sdiff > 0 ? 1 : -1;
3157 }
3158 vdiff = h1->size - h2->size;
3159 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3160 }
3161
3162 /* This function is used to adjust offsets into .dynstr for
3163 dynamic symbols. This is called via elf_link_hash_traverse. */
3164
3165 static bfd_boolean
3166 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3167 {
3168 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3169
3170 if (h->dynindx != -1)
3171 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3172 return TRUE;
3173 }
3174
3175 /* Assign string offsets in .dynstr, update all structures referencing
3176 them. */
3177
3178 static bfd_boolean
3179 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3180 {
3181 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3182 struct elf_link_local_dynamic_entry *entry;
3183 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3184 bfd *dynobj = hash_table->dynobj;
3185 asection *sdyn;
3186 bfd_size_type size;
3187 const struct elf_backend_data *bed;
3188 bfd_byte *extdyn;
3189
3190 _bfd_elf_strtab_finalize (dynstr);
3191 size = _bfd_elf_strtab_size (dynstr);
3192
3193 bed = get_elf_backend_data (dynobj);
3194 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3195 BFD_ASSERT (sdyn != NULL);
3196
3197 /* Update all .dynamic entries referencing .dynstr strings. */
3198 for (extdyn = sdyn->contents;
3199 extdyn < sdyn->contents + sdyn->size;
3200 extdyn += bed->s->sizeof_dyn)
3201 {
3202 Elf_Internal_Dyn dyn;
3203
3204 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3205 switch (dyn.d_tag)
3206 {
3207 case DT_STRSZ:
3208 dyn.d_un.d_val = size;
3209 break;
3210 case DT_NEEDED:
3211 case DT_SONAME:
3212 case DT_RPATH:
3213 case DT_RUNPATH:
3214 case DT_FILTER:
3215 case DT_AUXILIARY:
3216 case DT_AUDIT:
3217 case DT_DEPAUDIT:
3218 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3219 break;
3220 default:
3221 continue;
3222 }
3223 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3224 }
3225
3226 /* Now update local dynamic symbols. */
3227 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3228 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3229 entry->isym.st_name);
3230
3231 /* And the rest of dynamic symbols. */
3232 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3233
3234 /* Adjust version definitions. */
3235 if (elf_tdata (output_bfd)->cverdefs)
3236 {
3237 asection *s;
3238 bfd_byte *p;
3239 bfd_size_type i;
3240 Elf_Internal_Verdef def;
3241 Elf_Internal_Verdaux defaux;
3242
3243 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3244 p = s->contents;
3245 do
3246 {
3247 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3248 &def);
3249 p += sizeof (Elf_External_Verdef);
3250 if (def.vd_aux != sizeof (Elf_External_Verdef))
3251 continue;
3252 for (i = 0; i < def.vd_cnt; ++i)
3253 {
3254 _bfd_elf_swap_verdaux_in (output_bfd,
3255 (Elf_External_Verdaux *) p, &defaux);
3256 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3257 defaux.vda_name);
3258 _bfd_elf_swap_verdaux_out (output_bfd,
3259 &defaux, (Elf_External_Verdaux *) p);
3260 p += sizeof (Elf_External_Verdaux);
3261 }
3262 }
3263 while (def.vd_next);
3264 }
3265
3266 /* Adjust version references. */
3267 if (elf_tdata (output_bfd)->verref)
3268 {
3269 asection *s;
3270 bfd_byte *p;
3271 bfd_size_type i;
3272 Elf_Internal_Verneed need;
3273 Elf_Internal_Vernaux needaux;
3274
3275 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3276 p = s->contents;
3277 do
3278 {
3279 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3280 &need);
3281 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3282 _bfd_elf_swap_verneed_out (output_bfd, &need,
3283 (Elf_External_Verneed *) p);
3284 p += sizeof (Elf_External_Verneed);
3285 for (i = 0; i < need.vn_cnt; ++i)
3286 {
3287 _bfd_elf_swap_vernaux_in (output_bfd,
3288 (Elf_External_Vernaux *) p, &needaux);
3289 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3290 needaux.vna_name);
3291 _bfd_elf_swap_vernaux_out (output_bfd,
3292 &needaux,
3293 (Elf_External_Vernaux *) p);
3294 p += sizeof (Elf_External_Vernaux);
3295 }
3296 }
3297 while (need.vn_next);
3298 }
3299
3300 return TRUE;
3301 }
3302 \f
3303 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3304 The default is to only match when the INPUT and OUTPUT are exactly
3305 the same target. */
3306
3307 bfd_boolean
3308 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3309 const bfd_target *output)
3310 {
3311 return input == output;
3312 }
3313
3314 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3315 This version is used when different targets for the same architecture
3316 are virtually identical. */
3317
3318 bfd_boolean
3319 _bfd_elf_relocs_compatible (const bfd_target *input,
3320 const bfd_target *output)
3321 {
3322 const struct elf_backend_data *obed, *ibed;
3323
3324 if (input == output)
3325 return TRUE;
3326
3327 ibed = xvec_get_elf_backend_data (input);
3328 obed = xvec_get_elf_backend_data (output);
3329
3330 if (ibed->arch != obed->arch)
3331 return FALSE;
3332
3333 /* If both backends are using this function, deem them compatible. */
3334 return ibed->relocs_compatible == obed->relocs_compatible;
3335 }
3336
3337 /* Add symbols from an ELF object file to the linker hash table. */
3338
3339 static bfd_boolean
3340 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3341 {
3342 Elf_Internal_Ehdr *ehdr;
3343 Elf_Internal_Shdr *hdr;
3344 bfd_size_type symcount;
3345 bfd_size_type extsymcount;
3346 bfd_size_type extsymoff;
3347 struct elf_link_hash_entry **sym_hash;
3348 bfd_boolean dynamic;
3349 Elf_External_Versym *extversym = NULL;
3350 Elf_External_Versym *ever;
3351 struct elf_link_hash_entry *weaks;
3352 struct elf_link_hash_entry **nondeflt_vers = NULL;
3353 bfd_size_type nondeflt_vers_cnt = 0;
3354 Elf_Internal_Sym *isymbuf = NULL;
3355 Elf_Internal_Sym *isym;
3356 Elf_Internal_Sym *isymend;
3357 const struct elf_backend_data *bed;
3358 bfd_boolean add_needed;
3359 struct elf_link_hash_table *htab;
3360 bfd_size_type amt;
3361 void *alloc_mark = NULL;
3362 struct bfd_hash_entry **old_table = NULL;
3363 unsigned int old_size = 0;
3364 unsigned int old_count = 0;
3365 void *old_tab = NULL;
3366 void *old_hash;
3367 void *old_ent;
3368 struct bfd_link_hash_entry *old_undefs = NULL;
3369 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3370 long old_dynsymcount = 0;
3371 bfd_size_type old_dynstr_size = 0;
3372 size_t tabsize = 0;
3373 size_t hashsize = 0;
3374
3375 htab = elf_hash_table (info);
3376 bed = get_elf_backend_data (abfd);
3377
3378 if ((abfd->flags & DYNAMIC) == 0)
3379 dynamic = FALSE;
3380 else
3381 {
3382 dynamic = TRUE;
3383
3384 /* You can't use -r against a dynamic object. Also, there's no
3385 hope of using a dynamic object which does not exactly match
3386 the format of the output file. */
3387 if (info->relocatable
3388 || !is_elf_hash_table (htab)
3389 || info->output_bfd->xvec != abfd->xvec)
3390 {
3391 if (info->relocatable)
3392 bfd_set_error (bfd_error_invalid_operation);
3393 else
3394 bfd_set_error (bfd_error_wrong_format);
3395 goto error_return;
3396 }
3397 }
3398
3399 ehdr = elf_elfheader (abfd);
3400 if (info->warn_alternate_em
3401 && bed->elf_machine_code != ehdr->e_machine
3402 && ((bed->elf_machine_alt1 != 0
3403 && ehdr->e_machine == bed->elf_machine_alt1)
3404 || (bed->elf_machine_alt2 != 0
3405 && ehdr->e_machine == bed->elf_machine_alt2)))
3406 info->callbacks->einfo
3407 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3408 ehdr->e_machine, abfd, bed->elf_machine_code);
3409
3410 /* As a GNU extension, any input sections which are named
3411 .gnu.warning.SYMBOL are treated as warning symbols for the given
3412 symbol. This differs from .gnu.warning sections, which generate
3413 warnings when they are included in an output file. */
3414 /* PR 12761: Also generate this warning when building shared libraries. */
3415 if (info->executable || info->shared)
3416 {
3417 asection *s;
3418
3419 for (s = abfd->sections; s != NULL; s = s->next)
3420 {
3421 const char *name;
3422
3423 name = bfd_get_section_name (abfd, s);
3424 if (CONST_STRNEQ (name, ".gnu.warning."))
3425 {
3426 char *msg;
3427 bfd_size_type sz;
3428
3429 name += sizeof ".gnu.warning." - 1;
3430
3431 /* If this is a shared object, then look up the symbol
3432 in the hash table. If it is there, and it is already
3433 been defined, then we will not be using the entry
3434 from this shared object, so we don't need to warn.
3435 FIXME: If we see the definition in a regular object
3436 later on, we will warn, but we shouldn't. The only
3437 fix is to keep track of what warnings we are supposed
3438 to emit, and then handle them all at the end of the
3439 link. */
3440 if (dynamic)
3441 {
3442 struct elf_link_hash_entry *h;
3443
3444 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3445
3446 /* FIXME: What about bfd_link_hash_common? */
3447 if (h != NULL
3448 && (h->root.type == bfd_link_hash_defined
3449 || h->root.type == bfd_link_hash_defweak))
3450 {
3451 /* We don't want to issue this warning. Clobber
3452 the section size so that the warning does not
3453 get copied into the output file. */
3454 s->size = 0;
3455 continue;
3456 }
3457 }
3458
3459 sz = s->size;
3460 msg = (char *) bfd_alloc (abfd, sz + 1);
3461 if (msg == NULL)
3462 goto error_return;
3463
3464 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3465 goto error_return;
3466
3467 msg[sz] = '\0';
3468
3469 if (! (_bfd_generic_link_add_one_symbol
3470 (info, abfd, name, BSF_WARNING, s, 0, msg,
3471 FALSE, bed->collect, NULL)))
3472 goto error_return;
3473
3474 if (! info->relocatable)
3475 {
3476 /* Clobber the section size so that the warning does
3477 not get copied into the output file. */
3478 s->size = 0;
3479
3480 /* Also set SEC_EXCLUDE, so that symbols defined in
3481 the warning section don't get copied to the output. */
3482 s->flags |= SEC_EXCLUDE;
3483 }
3484 }
3485 }
3486 }
3487
3488 add_needed = TRUE;
3489 if (! dynamic)
3490 {
3491 /* If we are creating a shared library, create all the dynamic
3492 sections immediately. We need to attach them to something,
3493 so we attach them to this BFD, provided it is the right
3494 format. FIXME: If there are no input BFD's of the same
3495 format as the output, we can't make a shared library. */
3496 if (info->shared
3497 && is_elf_hash_table (htab)
3498 && info->output_bfd->xvec == abfd->xvec
3499 && !htab->dynamic_sections_created)
3500 {
3501 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3502 goto error_return;
3503 }
3504 }
3505 else if (!is_elf_hash_table (htab))
3506 goto error_return;
3507 else
3508 {
3509 asection *s;
3510 const char *soname = NULL;
3511 char *audit = NULL;
3512 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3513 int ret;
3514
3515 /* ld --just-symbols and dynamic objects don't mix very well.
3516 ld shouldn't allow it. */
3517 if ((s = abfd->sections) != NULL
3518 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3519 abort ();
3520
3521 /* If this dynamic lib was specified on the command line with
3522 --as-needed in effect, then we don't want to add a DT_NEEDED
3523 tag unless the lib is actually used. Similary for libs brought
3524 in by another lib's DT_NEEDED. When --no-add-needed is used
3525 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3526 any dynamic library in DT_NEEDED tags in the dynamic lib at
3527 all. */
3528 add_needed = (elf_dyn_lib_class (abfd)
3529 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3530 | DYN_NO_NEEDED)) == 0;
3531
3532 s = bfd_get_section_by_name (abfd, ".dynamic");
3533 if (s != NULL)
3534 {
3535 bfd_byte *dynbuf;
3536 bfd_byte *extdyn;
3537 unsigned int elfsec;
3538 unsigned long shlink;
3539
3540 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3541 {
3542 error_free_dyn:
3543 free (dynbuf);
3544 goto error_return;
3545 }
3546
3547 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3548 if (elfsec == SHN_BAD)
3549 goto error_free_dyn;
3550 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3551
3552 for (extdyn = dynbuf;
3553 extdyn < dynbuf + s->size;
3554 extdyn += bed->s->sizeof_dyn)
3555 {
3556 Elf_Internal_Dyn dyn;
3557
3558 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3559 if (dyn.d_tag == DT_SONAME)
3560 {
3561 unsigned int tagv = dyn.d_un.d_val;
3562 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3563 if (soname == NULL)
3564 goto error_free_dyn;
3565 }
3566 if (dyn.d_tag == DT_NEEDED)
3567 {
3568 struct bfd_link_needed_list *n, **pn;
3569 char *fnm, *anm;
3570 unsigned int tagv = dyn.d_un.d_val;
3571
3572 amt = sizeof (struct bfd_link_needed_list);
3573 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3574 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3575 if (n == NULL || fnm == NULL)
3576 goto error_free_dyn;
3577 amt = strlen (fnm) + 1;
3578 anm = (char *) bfd_alloc (abfd, amt);
3579 if (anm == NULL)
3580 goto error_free_dyn;
3581 memcpy (anm, fnm, amt);
3582 n->name = anm;
3583 n->by = abfd;
3584 n->next = NULL;
3585 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3586 ;
3587 *pn = n;
3588 }
3589 if (dyn.d_tag == DT_RUNPATH)
3590 {
3591 struct bfd_link_needed_list *n, **pn;
3592 char *fnm, *anm;
3593 unsigned int tagv = dyn.d_un.d_val;
3594
3595 amt = sizeof (struct bfd_link_needed_list);
3596 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3597 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3598 if (n == NULL || fnm == NULL)
3599 goto error_free_dyn;
3600 amt = strlen (fnm) + 1;
3601 anm = (char *) bfd_alloc (abfd, amt);
3602 if (anm == NULL)
3603 goto error_free_dyn;
3604 memcpy (anm, fnm, amt);
3605 n->name = anm;
3606 n->by = abfd;
3607 n->next = NULL;
3608 for (pn = & runpath;
3609 *pn != NULL;
3610 pn = &(*pn)->next)
3611 ;
3612 *pn = n;
3613 }
3614 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3615 if (!runpath && dyn.d_tag == DT_RPATH)
3616 {
3617 struct bfd_link_needed_list *n, **pn;
3618 char *fnm, *anm;
3619 unsigned int tagv = dyn.d_un.d_val;
3620
3621 amt = sizeof (struct bfd_link_needed_list);
3622 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3623 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3624 if (n == NULL || fnm == NULL)
3625 goto error_free_dyn;
3626 amt = strlen (fnm) + 1;
3627 anm = (char *) bfd_alloc (abfd, amt);
3628 if (anm == NULL)
3629 goto error_free_dyn;
3630 memcpy (anm, fnm, amt);
3631 n->name = anm;
3632 n->by = abfd;
3633 n->next = NULL;
3634 for (pn = & rpath;
3635 *pn != NULL;
3636 pn = &(*pn)->next)
3637 ;
3638 *pn = n;
3639 }
3640 if (dyn.d_tag == DT_AUDIT)
3641 {
3642 unsigned int tagv = dyn.d_un.d_val;
3643 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3644 }
3645 }
3646
3647 free (dynbuf);
3648 }
3649
3650 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3651 frees all more recently bfd_alloc'd blocks as well. */
3652 if (runpath)
3653 rpath = runpath;
3654
3655 if (rpath)
3656 {
3657 struct bfd_link_needed_list **pn;
3658 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3659 ;
3660 *pn = rpath;
3661 }
3662
3663 /* We do not want to include any of the sections in a dynamic
3664 object in the output file. We hack by simply clobbering the
3665 list of sections in the BFD. This could be handled more
3666 cleanly by, say, a new section flag; the existing
3667 SEC_NEVER_LOAD flag is not the one we want, because that one
3668 still implies that the section takes up space in the output
3669 file. */
3670 bfd_section_list_clear (abfd);
3671
3672 /* Find the name to use in a DT_NEEDED entry that refers to this
3673 object. If the object has a DT_SONAME entry, we use it.
3674 Otherwise, if the generic linker stuck something in
3675 elf_dt_name, we use that. Otherwise, we just use the file
3676 name. */
3677 if (soname == NULL || *soname == '\0')
3678 {
3679 soname = elf_dt_name (abfd);
3680 if (soname == NULL || *soname == '\0')
3681 soname = bfd_get_filename (abfd);
3682 }
3683
3684 /* Save the SONAME because sometimes the linker emulation code
3685 will need to know it. */
3686 elf_dt_name (abfd) = soname;
3687
3688 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3689 if (ret < 0)
3690 goto error_return;
3691
3692 /* If we have already included this dynamic object in the
3693 link, just ignore it. There is no reason to include a
3694 particular dynamic object more than once. */
3695 if (ret > 0)
3696 return TRUE;
3697
3698 /* Save the DT_AUDIT entry for the linker emulation code. */
3699 elf_dt_audit (abfd) = audit;
3700 }
3701
3702 /* If this is a dynamic object, we always link against the .dynsym
3703 symbol table, not the .symtab symbol table. The dynamic linker
3704 will only see the .dynsym symbol table, so there is no reason to
3705 look at .symtab for a dynamic object. */
3706
3707 if (! dynamic || elf_dynsymtab (abfd) == 0)
3708 hdr = &elf_tdata (abfd)->symtab_hdr;
3709 else
3710 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3711
3712 symcount = hdr->sh_size / bed->s->sizeof_sym;
3713
3714 /* The sh_info field of the symtab header tells us where the
3715 external symbols start. We don't care about the local symbols at
3716 this point. */
3717 if (elf_bad_symtab (abfd))
3718 {
3719 extsymcount = symcount;
3720 extsymoff = 0;
3721 }
3722 else
3723 {
3724 extsymcount = symcount - hdr->sh_info;
3725 extsymoff = hdr->sh_info;
3726 }
3727
3728 sym_hash = NULL;
3729 if (extsymcount != 0)
3730 {
3731 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3732 NULL, NULL, NULL);
3733 if (isymbuf == NULL)
3734 goto error_return;
3735
3736 /* We store a pointer to the hash table entry for each external
3737 symbol. */
3738 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3739 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3740 if (sym_hash == NULL)
3741 goto error_free_sym;
3742 elf_sym_hashes (abfd) = sym_hash;
3743 }
3744
3745 if (dynamic)
3746 {
3747 /* Read in any version definitions. */
3748 if (!_bfd_elf_slurp_version_tables (abfd,
3749 info->default_imported_symver))
3750 goto error_free_sym;
3751
3752 /* Read in the symbol versions, but don't bother to convert them
3753 to internal format. */
3754 if (elf_dynversym (abfd) != 0)
3755 {
3756 Elf_Internal_Shdr *versymhdr;
3757
3758 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3759 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3760 if (extversym == NULL)
3761 goto error_free_sym;
3762 amt = versymhdr->sh_size;
3763 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3764 || bfd_bread (extversym, amt, abfd) != amt)
3765 goto error_free_vers;
3766 }
3767 }
3768
3769 /* If we are loading an as-needed shared lib, save the symbol table
3770 state before we start adding symbols. If the lib turns out
3771 to be unneeded, restore the state. */
3772 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3773 {
3774 unsigned int i;
3775 size_t entsize;
3776
3777 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3778 {
3779 struct bfd_hash_entry *p;
3780 struct elf_link_hash_entry *h;
3781
3782 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3783 {
3784 h = (struct elf_link_hash_entry *) p;
3785 entsize += htab->root.table.entsize;
3786 if (h->root.type == bfd_link_hash_warning)
3787 entsize += htab->root.table.entsize;
3788 }
3789 }
3790
3791 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3792 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3793 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3794 if (old_tab == NULL)
3795 goto error_free_vers;
3796
3797 /* Remember the current objalloc pointer, so that all mem for
3798 symbols added can later be reclaimed. */
3799 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3800 if (alloc_mark == NULL)
3801 goto error_free_vers;
3802
3803 /* Make a special call to the linker "notice" function to
3804 tell it that we are about to handle an as-needed lib. */
3805 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3806 notice_as_needed, 0, NULL))
3807 goto error_free_vers;
3808
3809 /* Clone the symbol table and sym hashes. Remember some
3810 pointers into the symbol table, and dynamic symbol count. */
3811 old_hash = (char *) old_tab + tabsize;
3812 old_ent = (char *) old_hash + hashsize;
3813 memcpy (old_tab, htab->root.table.table, tabsize);
3814 memcpy (old_hash, sym_hash, hashsize);
3815 old_undefs = htab->root.undefs;
3816 old_undefs_tail = htab->root.undefs_tail;
3817 old_table = htab->root.table.table;
3818 old_size = htab->root.table.size;
3819 old_count = htab->root.table.count;
3820 old_dynsymcount = htab->dynsymcount;
3821 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3822
3823 for (i = 0; i < htab->root.table.size; i++)
3824 {
3825 struct bfd_hash_entry *p;
3826 struct elf_link_hash_entry *h;
3827
3828 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3829 {
3830 memcpy (old_ent, p, htab->root.table.entsize);
3831 old_ent = (char *) old_ent + htab->root.table.entsize;
3832 h = (struct elf_link_hash_entry *) p;
3833 if (h->root.type == bfd_link_hash_warning)
3834 {
3835 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3836 old_ent = (char *) old_ent + htab->root.table.entsize;
3837 }
3838 }
3839 }
3840 }
3841
3842 weaks = NULL;
3843 ever = extversym != NULL ? extversym + extsymoff : NULL;
3844 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3845 isym < isymend;
3846 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3847 {
3848 int bind;
3849 bfd_vma value;
3850 asection *sec, *new_sec;
3851 flagword flags;
3852 const char *name;
3853 struct elf_link_hash_entry *h;
3854 struct elf_link_hash_entry *hi;
3855 bfd_boolean definition;
3856 bfd_boolean size_change_ok;
3857 bfd_boolean type_change_ok;
3858 bfd_boolean new_weakdef;
3859 bfd_boolean new_weak;
3860 bfd_boolean old_weak;
3861 bfd_boolean override;
3862 bfd_boolean common;
3863 unsigned int old_alignment;
3864 bfd *old_bfd;
3865 bfd * undef_bfd = NULL;
3866
3867 override = FALSE;
3868
3869 flags = BSF_NO_FLAGS;
3870 sec = NULL;
3871 value = isym->st_value;
3872 *sym_hash = NULL;
3873 common = bed->common_definition (isym);
3874
3875 bind = ELF_ST_BIND (isym->st_info);
3876 switch (bind)
3877 {
3878 case STB_LOCAL:
3879 /* This should be impossible, since ELF requires that all
3880 global symbols follow all local symbols, and that sh_info
3881 point to the first global symbol. Unfortunately, Irix 5
3882 screws this up. */
3883 continue;
3884
3885 case STB_GLOBAL:
3886 if (isym->st_shndx != SHN_UNDEF && !common)
3887 flags = BSF_GLOBAL;
3888 break;
3889
3890 case STB_WEAK:
3891 flags = BSF_WEAK;
3892 break;
3893
3894 case STB_GNU_UNIQUE:
3895 flags = BSF_GNU_UNIQUE;
3896 break;
3897
3898 default:
3899 /* Leave it up to the processor backend. */
3900 break;
3901 }
3902
3903 if (isym->st_shndx == SHN_UNDEF)
3904 sec = bfd_und_section_ptr;
3905 else if (isym->st_shndx == SHN_ABS)
3906 sec = bfd_abs_section_ptr;
3907 else if (isym->st_shndx == SHN_COMMON)
3908 {
3909 sec = bfd_com_section_ptr;
3910 /* What ELF calls the size we call the value. What ELF
3911 calls the value we call the alignment. */
3912 value = isym->st_size;
3913 }
3914 else
3915 {
3916 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3917 if (sec == NULL)
3918 sec = bfd_abs_section_ptr;
3919 else if (discarded_section (sec))
3920 {
3921 /* Symbols from discarded section are undefined. We keep
3922 its visibility. */
3923 sec = bfd_und_section_ptr;
3924 isym->st_shndx = SHN_UNDEF;
3925 }
3926 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3927 value -= sec->vma;
3928 }
3929
3930 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3931 isym->st_name);
3932 if (name == NULL)
3933 goto error_free_vers;
3934
3935 if (isym->st_shndx == SHN_COMMON
3936 && (abfd->flags & BFD_PLUGIN) != 0)
3937 {
3938 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3939
3940 if (xc == NULL)
3941 {
3942 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3943 | SEC_EXCLUDE);
3944 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3945 if (xc == NULL)
3946 goto error_free_vers;
3947 }
3948 sec = xc;
3949 }
3950 else if (isym->st_shndx == SHN_COMMON
3951 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3952 && !info->relocatable)
3953 {
3954 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3955
3956 if (tcomm == NULL)
3957 {
3958 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3959 | SEC_LINKER_CREATED);
3960 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3961 if (tcomm == NULL)
3962 goto error_free_vers;
3963 }
3964 sec = tcomm;
3965 }
3966 else if (bed->elf_add_symbol_hook)
3967 {
3968 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3969 &sec, &value))
3970 goto error_free_vers;
3971
3972 /* The hook function sets the name to NULL if this symbol
3973 should be skipped for some reason. */
3974 if (name == NULL)
3975 continue;
3976 }
3977
3978 /* Sanity check that all possibilities were handled. */
3979 if (sec == NULL)
3980 {
3981 bfd_set_error (bfd_error_bad_value);
3982 goto error_free_vers;
3983 }
3984
3985 if (bfd_is_und_section (sec)
3986 || bfd_is_com_section (sec))
3987 definition = FALSE;
3988 else
3989 definition = TRUE;
3990
3991 size_change_ok = FALSE;
3992 type_change_ok = bed->type_change_ok;
3993 old_weak = FALSE;
3994 old_alignment = 0;
3995 old_bfd = NULL;
3996 new_sec = sec;
3997
3998 if (is_elf_hash_table (htab))
3999 {
4000 Elf_Internal_Versym iver;
4001 unsigned int vernum = 0;
4002 bfd_boolean skip;
4003
4004 /* If this is a definition of a symbol which was previously
4005 referenced, then make a note of the bfd that contained the
4006 reference. This is used if we need to refer to the source
4007 of the reference later on. */
4008 if (! bfd_is_und_section (sec))
4009 {
4010 h = elf_link_hash_lookup (elf_hash_table (info), name,
4011 FALSE, FALSE, FALSE);
4012
4013 if (h != NULL
4014 && (h->root.type == bfd_link_hash_undefined
4015 || h->root.type == bfd_link_hash_undefweak)
4016 && h->root.u.undef.abfd)
4017 undef_bfd = h->root.u.undef.abfd;
4018 }
4019
4020 if (ever == NULL)
4021 {
4022 if (info->default_imported_symver)
4023 /* Use the default symbol version created earlier. */
4024 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4025 else
4026 iver.vs_vers = 0;
4027 }
4028 else
4029 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4030
4031 vernum = iver.vs_vers & VERSYM_VERSION;
4032
4033 /* If this is a hidden symbol, or if it is not version
4034 1, we append the version name to the symbol name.
4035 However, we do not modify a non-hidden absolute symbol
4036 if it is not a function, because it might be the version
4037 symbol itself. FIXME: What if it isn't? */
4038 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4039 || (vernum > 1
4040 && (!bfd_is_abs_section (sec)
4041 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4042 {
4043 const char *verstr;
4044 size_t namelen, verlen, newlen;
4045 char *newname, *p;
4046
4047 if (isym->st_shndx != SHN_UNDEF)
4048 {
4049 if (vernum > elf_tdata (abfd)->cverdefs)
4050 verstr = NULL;
4051 else if (vernum > 1)
4052 verstr =
4053 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4054 else
4055 verstr = "";
4056
4057 if (verstr == NULL)
4058 {
4059 (*_bfd_error_handler)
4060 (_("%B: %s: invalid version %u (max %d)"),
4061 abfd, name, vernum,
4062 elf_tdata (abfd)->cverdefs);
4063 bfd_set_error (bfd_error_bad_value);
4064 goto error_free_vers;
4065 }
4066 }
4067 else
4068 {
4069 /* We cannot simply test for the number of
4070 entries in the VERNEED section since the
4071 numbers for the needed versions do not start
4072 at 0. */
4073 Elf_Internal_Verneed *t;
4074
4075 verstr = NULL;
4076 for (t = elf_tdata (abfd)->verref;
4077 t != NULL;
4078 t = t->vn_nextref)
4079 {
4080 Elf_Internal_Vernaux *a;
4081
4082 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4083 {
4084 if (a->vna_other == vernum)
4085 {
4086 verstr = a->vna_nodename;
4087 break;
4088 }
4089 }
4090 if (a != NULL)
4091 break;
4092 }
4093 if (verstr == NULL)
4094 {
4095 (*_bfd_error_handler)
4096 (_("%B: %s: invalid needed version %d"),
4097 abfd, name, vernum);
4098 bfd_set_error (bfd_error_bad_value);
4099 goto error_free_vers;
4100 }
4101 }
4102
4103 namelen = strlen (name);
4104 verlen = strlen (verstr);
4105 newlen = namelen + verlen + 2;
4106 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4107 && isym->st_shndx != SHN_UNDEF)
4108 ++newlen;
4109
4110 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4111 if (newname == NULL)
4112 goto error_free_vers;
4113 memcpy (newname, name, namelen);
4114 p = newname + namelen;
4115 *p++ = ELF_VER_CHR;
4116 /* If this is a defined non-hidden version symbol,
4117 we add another @ to the name. This indicates the
4118 default version of the symbol. */
4119 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4120 && isym->st_shndx != SHN_UNDEF)
4121 *p++ = ELF_VER_CHR;
4122 memcpy (p, verstr, verlen + 1);
4123
4124 name = newname;
4125 }
4126
4127 /* If necessary, make a second attempt to locate the bfd
4128 containing an unresolved reference to the current symbol. */
4129 if (! bfd_is_und_section (sec) && undef_bfd == NULL)
4130 {
4131 h = elf_link_hash_lookup (elf_hash_table (info), name,
4132 FALSE, FALSE, FALSE);
4133
4134 if (h != NULL
4135 && (h->root.type == bfd_link_hash_undefined
4136 || h->root.type == bfd_link_hash_undefweak)
4137 && h->root.u.undef.abfd)
4138 undef_bfd = h->root.u.undef.abfd;
4139 }
4140
4141 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4142 &value, &old_weak, &old_alignment,
4143 sym_hash, &skip, &override,
4144 &type_change_ok, &size_change_ok))
4145 goto error_free_vers;
4146
4147 if (skip)
4148 continue;
4149
4150 if (override)
4151 definition = FALSE;
4152
4153 h = *sym_hash;
4154 while (h->root.type == bfd_link_hash_indirect
4155 || h->root.type == bfd_link_hash_warning)
4156 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4157
4158 /* Remember the old alignment if this is a common symbol, so
4159 that we don't reduce the alignment later on. We can't
4160 check later, because _bfd_generic_link_add_one_symbol
4161 will set a default for the alignment which we want to
4162 override. We also remember the old bfd where the existing
4163 definition comes from. */
4164 switch (h->root.type)
4165 {
4166 default:
4167 break;
4168
4169 case bfd_link_hash_defined:
4170 case bfd_link_hash_defweak:
4171 old_bfd = h->root.u.def.section->owner;
4172 break;
4173
4174 case bfd_link_hash_common:
4175 old_bfd = h->root.u.c.p->section->owner;
4176 old_alignment = h->root.u.c.p->alignment_power;
4177 break;
4178 }
4179
4180 if (elf_tdata (abfd)->verdef != NULL
4181 && vernum > 1
4182 && definition)
4183 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4184 }
4185
4186 if (! (_bfd_generic_link_add_one_symbol
4187 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4188 (struct bfd_link_hash_entry **) sym_hash)))
4189 goto error_free_vers;
4190
4191 h = *sym_hash;
4192 /* We need to make sure that indirect symbol dynamic flags are
4193 updated. */
4194 hi = h;
4195 while (h->root.type == bfd_link_hash_indirect
4196 || h->root.type == bfd_link_hash_warning)
4197 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4198
4199 *sym_hash = h;
4200 if (is_elf_hash_table (htab))
4201 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4202
4203 new_weak = (flags & BSF_WEAK) != 0;
4204 new_weakdef = FALSE;
4205 if (dynamic
4206 && definition
4207 && new_weak
4208 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4209 && is_elf_hash_table (htab)
4210 && h->u.weakdef == NULL)
4211 {
4212 /* Keep a list of all weak defined non function symbols from
4213 a dynamic object, using the weakdef field. Later in this
4214 function we will set the weakdef field to the correct
4215 value. We only put non-function symbols from dynamic
4216 objects on this list, because that happens to be the only
4217 time we need to know the normal symbol corresponding to a
4218 weak symbol, and the information is time consuming to
4219 figure out. If the weakdef field is not already NULL,
4220 then this symbol was already defined by some previous
4221 dynamic object, and we will be using that previous
4222 definition anyhow. */
4223
4224 h->u.weakdef = weaks;
4225 weaks = h;
4226 new_weakdef = TRUE;
4227 }
4228
4229 /* Set the alignment of a common symbol. */
4230 if ((common || bfd_is_com_section (sec))
4231 && h->root.type == bfd_link_hash_common)
4232 {
4233 unsigned int align;
4234
4235 if (common)
4236 align = bfd_log2 (isym->st_value);
4237 else
4238 {
4239 /* The new symbol is a common symbol in a shared object.
4240 We need to get the alignment from the section. */
4241 align = new_sec->alignment_power;
4242 }
4243 if (align > old_alignment)
4244 h->root.u.c.p->alignment_power = align;
4245 else
4246 h->root.u.c.p->alignment_power = old_alignment;
4247 }
4248
4249 if (is_elf_hash_table (htab))
4250 {
4251 bfd_boolean dynsym;
4252
4253 /* Check the alignment when a common symbol is involved. This
4254 can change when a common symbol is overridden by a normal
4255 definition or a common symbol is ignored due to the old
4256 normal definition. We need to make sure the maximum
4257 alignment is maintained. */
4258 if ((old_alignment || common)
4259 && h->root.type != bfd_link_hash_common)
4260 {
4261 unsigned int common_align;
4262 unsigned int normal_align;
4263 unsigned int symbol_align;
4264 bfd *normal_bfd;
4265 bfd *common_bfd;
4266
4267 symbol_align = ffs (h->root.u.def.value) - 1;
4268 if (h->root.u.def.section->owner != NULL
4269 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4270 {
4271 normal_align = h->root.u.def.section->alignment_power;
4272 if (normal_align > symbol_align)
4273 normal_align = symbol_align;
4274 }
4275 else
4276 normal_align = symbol_align;
4277
4278 if (old_alignment)
4279 {
4280 common_align = old_alignment;
4281 common_bfd = old_bfd;
4282 normal_bfd = abfd;
4283 }
4284 else
4285 {
4286 common_align = bfd_log2 (isym->st_value);
4287 common_bfd = abfd;
4288 normal_bfd = old_bfd;
4289 }
4290
4291 if (normal_align < common_align)
4292 {
4293 /* PR binutils/2735 */
4294 if (normal_bfd == NULL)
4295 (*_bfd_error_handler)
4296 (_("Warning: alignment %u of common symbol `%s' in %B"
4297 " is greater than the alignment (%u) of its section %A"),
4298 common_bfd, h->root.u.def.section,
4299 1 << common_align, name, 1 << normal_align);
4300 else
4301 (*_bfd_error_handler)
4302 (_("Warning: alignment %u of symbol `%s' in %B"
4303 " is smaller than %u in %B"),
4304 normal_bfd, common_bfd,
4305 1 << normal_align, name, 1 << common_align);
4306 }
4307 }
4308
4309 /* Remember the symbol size if it isn't undefined. */
4310 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4311 && (definition || h->size == 0))
4312 {
4313 if (h->size != 0
4314 && h->size != isym->st_size
4315 && ! size_change_ok)
4316 (*_bfd_error_handler)
4317 (_("Warning: size of symbol `%s' changed"
4318 " from %lu in %B to %lu in %B"),
4319 old_bfd, abfd,
4320 name, (unsigned long) h->size,
4321 (unsigned long) isym->st_size);
4322
4323 h->size = isym->st_size;
4324 }
4325
4326 /* If this is a common symbol, then we always want H->SIZE
4327 to be the size of the common symbol. The code just above
4328 won't fix the size if a common symbol becomes larger. We
4329 don't warn about a size change here, because that is
4330 covered by --warn-common. Allow changed between different
4331 function types. */
4332 if (h->root.type == bfd_link_hash_common)
4333 h->size = h->root.u.c.size;
4334
4335 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4336 && ((definition && !new_weak)
4337 || (old_weak && h->root.type == bfd_link_hash_common)
4338 || h->type == STT_NOTYPE))
4339 {
4340 unsigned int type = ELF_ST_TYPE (isym->st_info);
4341
4342 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4343 symbol. */
4344 if (type == STT_GNU_IFUNC
4345 && (abfd->flags & DYNAMIC) != 0)
4346 type = STT_FUNC;
4347
4348 if (h->type != type)
4349 {
4350 if (h->type != STT_NOTYPE && ! type_change_ok)
4351 (*_bfd_error_handler)
4352 (_("Warning: type of symbol `%s' changed"
4353 " from %d to %d in %B"),
4354 abfd, name, h->type, type);
4355
4356 h->type = type;
4357 }
4358 }
4359
4360 /* Merge st_other field. */
4361 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4362
4363 /* Set a flag in the hash table entry indicating the type of
4364 reference or definition we just found. Keep a count of
4365 the number of dynamic symbols we find. A dynamic symbol
4366 is one which is referenced or defined by both a regular
4367 object and a shared object. */
4368 dynsym = FALSE;
4369 if (! dynamic)
4370 {
4371 if (! definition)
4372 {
4373 h->ref_regular = 1;
4374 if (bind != STB_WEAK)
4375 h->ref_regular_nonweak = 1;
4376 }
4377 else
4378 {
4379 h->def_regular = 1;
4380 if (h->def_dynamic)
4381 {
4382 h->def_dynamic = 0;
4383 h->ref_dynamic = 1;
4384 }
4385 }
4386
4387 /* If the indirect symbol has been forced local, don't
4388 make the real symbol dynamic. */
4389 if ((h == hi || !hi->forced_local)
4390 && (! info->executable
4391 || h->def_dynamic
4392 || h->ref_dynamic))
4393 dynsym = TRUE;
4394 }
4395 else
4396 {
4397 if (! definition)
4398 {
4399 h->ref_dynamic = 1;
4400 hi->ref_dynamic = 1;
4401 }
4402 else
4403 {
4404 h->def_dynamic = 1;
4405 hi->def_dynamic = 1;
4406 }
4407
4408 /* If the indirect symbol has been forced local, don't
4409 make the real symbol dynamic. */
4410 if ((h == hi || !hi->forced_local)
4411 && (h->def_regular
4412 || h->ref_regular
4413 || (h->u.weakdef != NULL
4414 && ! new_weakdef
4415 && h->u.weakdef->dynindx != -1)))
4416 dynsym = TRUE;
4417 }
4418
4419 /* We don't want to make debug symbol dynamic. */
4420 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4421 dynsym = FALSE;
4422
4423 /* Nor should we make plugin symbols dynamic. */
4424 if ((abfd->flags & BFD_PLUGIN) != 0)
4425 dynsym = FALSE;
4426
4427 if (definition)
4428 h->target_internal = isym->st_target_internal;
4429
4430 /* Check to see if we need to add an indirect symbol for
4431 the default name. */
4432 if (definition || h->root.type == bfd_link_hash_common)
4433 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4434 &sec, &value, &dynsym,
4435 override))
4436 goto error_free_vers;
4437
4438 if (definition && !dynamic)
4439 {
4440 char *p = strchr (name, ELF_VER_CHR);
4441 if (p != NULL && p[1] != ELF_VER_CHR)
4442 {
4443 /* Queue non-default versions so that .symver x, x@FOO
4444 aliases can be checked. */
4445 if (!nondeflt_vers)
4446 {
4447 amt = ((isymend - isym + 1)
4448 * sizeof (struct elf_link_hash_entry *));
4449 nondeflt_vers =
4450 (struct elf_link_hash_entry **) bfd_malloc (amt);
4451 if (!nondeflt_vers)
4452 goto error_free_vers;
4453 }
4454 nondeflt_vers[nondeflt_vers_cnt++] = h;
4455 }
4456 }
4457
4458 if (dynsym && h->dynindx == -1)
4459 {
4460 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4461 goto error_free_vers;
4462 if (h->u.weakdef != NULL
4463 && ! new_weakdef
4464 && h->u.weakdef->dynindx == -1)
4465 {
4466 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4467 goto error_free_vers;
4468 }
4469 }
4470 else if (dynsym && h->dynindx != -1)
4471 /* If the symbol already has a dynamic index, but
4472 visibility says it should not be visible, turn it into
4473 a local symbol. */
4474 switch (ELF_ST_VISIBILITY (h->other))
4475 {
4476 case STV_INTERNAL:
4477 case STV_HIDDEN:
4478 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4479 dynsym = FALSE;
4480 break;
4481 }
4482
4483 if (!add_needed
4484 && definition
4485 && ((dynsym
4486 && h->ref_regular)
4487 || (h->ref_dynamic
4488 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4489 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4490 {
4491 int ret;
4492 const char *soname = elf_dt_name (abfd);
4493
4494 /* A symbol from a library loaded via DT_NEEDED of some
4495 other library is referenced by a regular object.
4496 Add a DT_NEEDED entry for it. Issue an error if
4497 --no-add-needed is used and the reference was not
4498 a weak one. */
4499 if (undef_bfd != NULL
4500 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4501 {
4502 (*_bfd_error_handler)
4503 (_("%B: undefined reference to symbol '%s'"),
4504 undef_bfd, name);
4505 (*_bfd_error_handler)
4506 (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4507 abfd, name);
4508 bfd_set_error (bfd_error_invalid_operation);
4509 goto error_free_vers;
4510 }
4511
4512 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4513 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4514
4515 add_needed = TRUE;
4516 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4517 if (ret < 0)
4518 goto error_free_vers;
4519
4520 BFD_ASSERT (ret == 0);
4521 }
4522 }
4523 }
4524
4525 if (extversym != NULL)
4526 {
4527 free (extversym);
4528 extversym = NULL;
4529 }
4530
4531 if (isymbuf != NULL)
4532 {
4533 free (isymbuf);
4534 isymbuf = NULL;
4535 }
4536
4537 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4538 {
4539 unsigned int i;
4540
4541 /* Restore the symbol table. */
4542 if (bed->as_needed_cleanup)
4543 (*bed->as_needed_cleanup) (abfd, info);
4544 old_hash = (char *) old_tab + tabsize;
4545 old_ent = (char *) old_hash + hashsize;
4546 sym_hash = elf_sym_hashes (abfd);
4547 htab->root.table.table = old_table;
4548 htab->root.table.size = old_size;
4549 htab->root.table.count = old_count;
4550 memcpy (htab->root.table.table, old_tab, tabsize);
4551 memcpy (sym_hash, old_hash, hashsize);
4552 htab->root.undefs = old_undefs;
4553 htab->root.undefs_tail = old_undefs_tail;
4554 _bfd_elf_strtab_clear_refs (htab->dynstr, old_dynstr_size);
4555 for (i = 0; i < htab->root.table.size; i++)
4556 {
4557 struct bfd_hash_entry *p;
4558 struct elf_link_hash_entry *h;
4559 bfd_size_type size;
4560 unsigned int alignment_power;
4561
4562 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4563 {
4564 h = (struct elf_link_hash_entry *) p;
4565 if (h->root.type == bfd_link_hash_warning)
4566 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4567 if (h->dynindx >= old_dynsymcount
4568 && h->dynstr_index < old_dynstr_size)
4569 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4570
4571 /* Preserve the maximum alignment and size for common
4572 symbols even if this dynamic lib isn't on DT_NEEDED
4573 since it can still be loaded at run time by another
4574 dynamic lib. */
4575 if (h->root.type == bfd_link_hash_common)
4576 {
4577 size = h->root.u.c.size;
4578 alignment_power = h->root.u.c.p->alignment_power;
4579 }
4580 else
4581 {
4582 size = 0;
4583 alignment_power = 0;
4584 }
4585 memcpy (p, old_ent, htab->root.table.entsize);
4586 old_ent = (char *) old_ent + htab->root.table.entsize;
4587 h = (struct elf_link_hash_entry *) p;
4588 if (h->root.type == bfd_link_hash_warning)
4589 {
4590 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4591 old_ent = (char *) old_ent + htab->root.table.entsize;
4592 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4593 }
4594 if (h->root.type == bfd_link_hash_common)
4595 {
4596 if (size > h->root.u.c.size)
4597 h->root.u.c.size = size;
4598 if (alignment_power > h->root.u.c.p->alignment_power)
4599 h->root.u.c.p->alignment_power = alignment_power;
4600 }
4601 }
4602 }
4603
4604 /* Make a special call to the linker "notice" function to
4605 tell it that symbols added for crefs may need to be removed. */
4606 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4607 notice_not_needed, 0, NULL))
4608 goto error_free_vers;
4609
4610 free (old_tab);
4611 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4612 alloc_mark);
4613 if (nondeflt_vers != NULL)
4614 free (nondeflt_vers);
4615 return TRUE;
4616 }
4617
4618 if (old_tab != NULL)
4619 {
4620 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4621 notice_needed, 0, NULL))
4622 goto error_free_vers;
4623 free (old_tab);
4624 old_tab = NULL;
4625 }
4626
4627 /* Now that all the symbols from this input file are created, handle
4628 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4629 if (nondeflt_vers != NULL)
4630 {
4631 bfd_size_type cnt, symidx;
4632
4633 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4634 {
4635 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4636 char *shortname, *p;
4637
4638 p = strchr (h->root.root.string, ELF_VER_CHR);
4639 if (p == NULL
4640 || (h->root.type != bfd_link_hash_defined
4641 && h->root.type != bfd_link_hash_defweak))
4642 continue;
4643
4644 amt = p - h->root.root.string;
4645 shortname = (char *) bfd_malloc (amt + 1);
4646 if (!shortname)
4647 goto error_free_vers;
4648 memcpy (shortname, h->root.root.string, amt);
4649 shortname[amt] = '\0';
4650
4651 hi = (struct elf_link_hash_entry *)
4652 bfd_link_hash_lookup (&htab->root, shortname,
4653 FALSE, FALSE, FALSE);
4654 if (hi != NULL
4655 && hi->root.type == h->root.type
4656 && hi->root.u.def.value == h->root.u.def.value
4657 && hi->root.u.def.section == h->root.u.def.section)
4658 {
4659 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4660 hi->root.type = bfd_link_hash_indirect;
4661 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4662 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4663 sym_hash = elf_sym_hashes (abfd);
4664 if (sym_hash)
4665 for (symidx = 0; symidx < extsymcount; ++symidx)
4666 if (sym_hash[symidx] == hi)
4667 {
4668 sym_hash[symidx] = h;
4669 break;
4670 }
4671 }
4672 free (shortname);
4673 }
4674 free (nondeflt_vers);
4675 nondeflt_vers = NULL;
4676 }
4677
4678 /* Now set the weakdefs field correctly for all the weak defined
4679 symbols we found. The only way to do this is to search all the
4680 symbols. Since we only need the information for non functions in
4681 dynamic objects, that's the only time we actually put anything on
4682 the list WEAKS. We need this information so that if a regular
4683 object refers to a symbol defined weakly in a dynamic object, the
4684 real symbol in the dynamic object is also put in the dynamic
4685 symbols; we also must arrange for both symbols to point to the
4686 same memory location. We could handle the general case of symbol
4687 aliasing, but a general symbol alias can only be generated in
4688 assembler code, handling it correctly would be very time
4689 consuming, and other ELF linkers don't handle general aliasing
4690 either. */
4691 if (weaks != NULL)
4692 {
4693 struct elf_link_hash_entry **hpp;
4694 struct elf_link_hash_entry **hppend;
4695 struct elf_link_hash_entry **sorted_sym_hash;
4696 struct elf_link_hash_entry *h;
4697 size_t sym_count;
4698
4699 /* Since we have to search the whole symbol list for each weak
4700 defined symbol, search time for N weak defined symbols will be
4701 O(N^2). Binary search will cut it down to O(NlogN). */
4702 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4703 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4704 if (sorted_sym_hash == NULL)
4705 goto error_return;
4706 sym_hash = sorted_sym_hash;
4707 hpp = elf_sym_hashes (abfd);
4708 hppend = hpp + extsymcount;
4709 sym_count = 0;
4710 for (; hpp < hppend; hpp++)
4711 {
4712 h = *hpp;
4713 if (h != NULL
4714 && h->root.type == bfd_link_hash_defined
4715 && !bed->is_function_type (h->type))
4716 {
4717 *sym_hash = h;
4718 sym_hash++;
4719 sym_count++;
4720 }
4721 }
4722
4723 qsort (sorted_sym_hash, sym_count,
4724 sizeof (struct elf_link_hash_entry *),
4725 elf_sort_symbol);
4726
4727 while (weaks != NULL)
4728 {
4729 struct elf_link_hash_entry *hlook;
4730 asection *slook;
4731 bfd_vma vlook;
4732 size_t i, j, idx;
4733
4734 hlook = weaks;
4735 weaks = hlook->u.weakdef;
4736 hlook->u.weakdef = NULL;
4737
4738 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4739 || hlook->root.type == bfd_link_hash_defweak
4740 || hlook->root.type == bfd_link_hash_common
4741 || hlook->root.type == bfd_link_hash_indirect);
4742 slook = hlook->root.u.def.section;
4743 vlook = hlook->root.u.def.value;
4744
4745 i = 0;
4746 j = sym_count;
4747 while (i != j)
4748 {
4749 bfd_signed_vma vdiff;
4750 idx = (i + j) / 2;
4751 h = sorted_sym_hash[idx];
4752 vdiff = vlook - h->root.u.def.value;
4753 if (vdiff < 0)
4754 j = idx;
4755 else if (vdiff > 0)
4756 i = idx + 1;
4757 else
4758 {
4759 long sdiff = slook->id - h->root.u.def.section->id;
4760 if (sdiff < 0)
4761 j = idx;
4762 else if (sdiff > 0)
4763 i = idx + 1;
4764 else
4765 break;
4766 }
4767 }
4768
4769 /* We didn't find a value/section match. */
4770 if (i == j)
4771 continue;
4772
4773 /* With multiple aliases, or when the weak symbol is already
4774 strongly defined, we have multiple matching symbols and
4775 the binary search above may land on any of them. Step
4776 one past the matching symbol(s). */
4777 while (++idx != j)
4778 {
4779 h = sorted_sym_hash[idx];
4780 if (h->root.u.def.section != slook
4781 || h->root.u.def.value != vlook)
4782 break;
4783 }
4784
4785 /* Now look back over the aliases. Since we sorted by size
4786 as well as value and section, we'll choose the one with
4787 the largest size. */
4788 while (idx-- != i)
4789 {
4790 h = sorted_sym_hash[idx];
4791
4792 /* Stop if value or section doesn't match. */
4793 if (h->root.u.def.section != slook
4794 || h->root.u.def.value != vlook)
4795 break;
4796 else if (h != hlook)
4797 {
4798 hlook->u.weakdef = h;
4799
4800 /* If the weak definition is in the list of dynamic
4801 symbols, make sure the real definition is put
4802 there as well. */
4803 if (hlook->dynindx != -1 && h->dynindx == -1)
4804 {
4805 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4806 {
4807 err_free_sym_hash:
4808 free (sorted_sym_hash);
4809 goto error_return;
4810 }
4811 }
4812
4813 /* If the real definition is in the list of dynamic
4814 symbols, make sure the weak definition is put
4815 there as well. If we don't do this, then the
4816 dynamic loader might not merge the entries for the
4817 real definition and the weak definition. */
4818 if (h->dynindx != -1 && hlook->dynindx == -1)
4819 {
4820 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4821 goto err_free_sym_hash;
4822 }
4823 break;
4824 }
4825 }
4826 }
4827
4828 free (sorted_sym_hash);
4829 }
4830
4831 if (bed->check_directives
4832 && !(*bed->check_directives) (abfd, info))
4833 return FALSE;
4834
4835 /* If this object is the same format as the output object, and it is
4836 not a shared library, then let the backend look through the
4837 relocs.
4838
4839 This is required to build global offset table entries and to
4840 arrange for dynamic relocs. It is not required for the
4841 particular common case of linking non PIC code, even when linking
4842 against shared libraries, but unfortunately there is no way of
4843 knowing whether an object file has been compiled PIC or not.
4844 Looking through the relocs is not particularly time consuming.
4845 The problem is that we must either (1) keep the relocs in memory,
4846 which causes the linker to require additional runtime memory or
4847 (2) read the relocs twice from the input file, which wastes time.
4848 This would be a good case for using mmap.
4849
4850 I have no idea how to handle linking PIC code into a file of a
4851 different format. It probably can't be done. */
4852 if (! dynamic
4853 && is_elf_hash_table (htab)
4854 && bed->check_relocs != NULL
4855 && elf_object_id (abfd) == elf_hash_table_id (htab)
4856 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4857 {
4858 asection *o;
4859
4860 for (o = abfd->sections; o != NULL; o = o->next)
4861 {
4862 Elf_Internal_Rela *internal_relocs;
4863 bfd_boolean ok;
4864
4865 if ((o->flags & SEC_RELOC) == 0
4866 || o->reloc_count == 0
4867 || ((info->strip == strip_all || info->strip == strip_debugger)
4868 && (o->flags & SEC_DEBUGGING) != 0)
4869 || bfd_is_abs_section (o->output_section))
4870 continue;
4871
4872 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4873 info->keep_memory);
4874 if (internal_relocs == NULL)
4875 goto error_return;
4876
4877 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4878
4879 if (elf_section_data (o)->relocs != internal_relocs)
4880 free (internal_relocs);
4881
4882 if (! ok)
4883 goto error_return;
4884 }
4885 }
4886
4887 /* If this is a non-traditional link, try to optimize the handling
4888 of the .stab/.stabstr sections. */
4889 if (! dynamic
4890 && ! info->traditional_format
4891 && is_elf_hash_table (htab)
4892 && (info->strip != strip_all && info->strip != strip_debugger))
4893 {
4894 asection *stabstr;
4895
4896 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4897 if (stabstr != NULL)
4898 {
4899 bfd_size_type string_offset = 0;
4900 asection *stab;
4901
4902 for (stab = abfd->sections; stab; stab = stab->next)
4903 if (CONST_STRNEQ (stab->name, ".stab")
4904 && (!stab->name[5] ||
4905 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4906 && (stab->flags & SEC_MERGE) == 0
4907 && !bfd_is_abs_section (stab->output_section))
4908 {
4909 struct bfd_elf_section_data *secdata;
4910
4911 secdata = elf_section_data (stab);
4912 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4913 stabstr, &secdata->sec_info,
4914 &string_offset))
4915 goto error_return;
4916 if (secdata->sec_info)
4917 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4918 }
4919 }
4920 }
4921
4922 if (is_elf_hash_table (htab) && add_needed)
4923 {
4924 /* Add this bfd to the loaded list. */
4925 struct elf_link_loaded_list *n;
4926
4927 n = (struct elf_link_loaded_list *)
4928 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4929 if (n == NULL)
4930 goto error_return;
4931 n->abfd = abfd;
4932 n->next = htab->loaded;
4933 htab->loaded = n;
4934 }
4935
4936 return TRUE;
4937
4938 error_free_vers:
4939 if (old_tab != NULL)
4940 free (old_tab);
4941 if (nondeflt_vers != NULL)
4942 free (nondeflt_vers);
4943 if (extversym != NULL)
4944 free (extversym);
4945 error_free_sym:
4946 if (isymbuf != NULL)
4947 free (isymbuf);
4948 error_return:
4949 return FALSE;
4950 }
4951
4952 /* Return the linker hash table entry of a symbol that might be
4953 satisfied by an archive symbol. Return -1 on error. */
4954
4955 struct elf_link_hash_entry *
4956 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4957 struct bfd_link_info *info,
4958 const char *name)
4959 {
4960 struct elf_link_hash_entry *h;
4961 char *p, *copy;
4962 size_t len, first;
4963
4964 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4965 if (h != NULL)
4966 return h;
4967
4968 /* If this is a default version (the name contains @@), look up the
4969 symbol again with only one `@' as well as without the version.
4970 The effect is that references to the symbol with and without the
4971 version will be matched by the default symbol in the archive. */
4972
4973 p = strchr (name, ELF_VER_CHR);
4974 if (p == NULL || p[1] != ELF_VER_CHR)
4975 return h;
4976
4977 /* First check with only one `@'. */
4978 len = strlen (name);
4979 copy = (char *) bfd_alloc (abfd, len);
4980 if (copy == NULL)
4981 return (struct elf_link_hash_entry *) 0 - 1;
4982
4983 first = p - name + 1;
4984 memcpy (copy, name, first);
4985 memcpy (copy + first, name + first + 1, len - first);
4986
4987 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4988 if (h == NULL)
4989 {
4990 /* We also need to check references to the symbol without the
4991 version. */
4992 copy[first - 1] = '\0';
4993 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4994 FALSE, FALSE, TRUE);
4995 }
4996
4997 bfd_release (abfd, copy);
4998 return h;
4999 }
5000
5001 /* Add symbols from an ELF archive file to the linker hash table. We
5002 don't use _bfd_generic_link_add_archive_symbols because of a
5003 problem which arises on UnixWare. The UnixWare libc.so is an
5004 archive which includes an entry libc.so.1 which defines a bunch of
5005 symbols. The libc.so archive also includes a number of other
5006 object files, which also define symbols, some of which are the same
5007 as those defined in libc.so.1. Correct linking requires that we
5008 consider each object file in turn, and include it if it defines any
5009 symbols we need. _bfd_generic_link_add_archive_symbols does not do
5010 this; it looks through the list of undefined symbols, and includes
5011 any object file which defines them. When this algorithm is used on
5012 UnixWare, it winds up pulling in libc.so.1 early and defining a
5013 bunch of symbols. This means that some of the other objects in the
5014 archive are not included in the link, which is incorrect since they
5015 precede libc.so.1 in the archive.
5016
5017 Fortunately, ELF archive handling is simpler than that done by
5018 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5019 oddities. In ELF, if we find a symbol in the archive map, and the
5020 symbol is currently undefined, we know that we must pull in that
5021 object file.
5022
5023 Unfortunately, we do have to make multiple passes over the symbol
5024 table until nothing further is resolved. */
5025
5026 static bfd_boolean
5027 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5028 {
5029 symindex c;
5030 bfd_boolean *defined = NULL;
5031 bfd_boolean *included = NULL;
5032 carsym *symdefs;
5033 bfd_boolean loop;
5034 bfd_size_type amt;
5035 const struct elf_backend_data *bed;
5036 struct elf_link_hash_entry * (*archive_symbol_lookup)
5037 (bfd *, struct bfd_link_info *, const char *);
5038
5039 if (! bfd_has_map (abfd))
5040 {
5041 /* An empty archive is a special case. */
5042 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5043 return TRUE;
5044 bfd_set_error (bfd_error_no_armap);
5045 return FALSE;
5046 }
5047
5048 /* Keep track of all symbols we know to be already defined, and all
5049 files we know to be already included. This is to speed up the
5050 second and subsequent passes. */
5051 c = bfd_ardata (abfd)->symdef_count;
5052 if (c == 0)
5053 return TRUE;
5054 amt = c;
5055 amt *= sizeof (bfd_boolean);
5056 defined = (bfd_boolean *) bfd_zmalloc (amt);
5057 included = (bfd_boolean *) bfd_zmalloc (amt);
5058 if (defined == NULL || included == NULL)
5059 goto error_return;
5060
5061 symdefs = bfd_ardata (abfd)->symdefs;
5062 bed = get_elf_backend_data (abfd);
5063 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5064
5065 do
5066 {
5067 file_ptr last;
5068 symindex i;
5069 carsym *symdef;
5070 carsym *symdefend;
5071
5072 loop = FALSE;
5073 last = -1;
5074
5075 symdef = symdefs;
5076 symdefend = symdef + c;
5077 for (i = 0; symdef < symdefend; symdef++, i++)
5078 {
5079 struct elf_link_hash_entry *h;
5080 bfd *element;
5081 struct bfd_link_hash_entry *undefs_tail;
5082 symindex mark;
5083
5084 if (defined[i] || included[i])
5085 continue;
5086 if (symdef->file_offset == last)
5087 {
5088 included[i] = TRUE;
5089 continue;
5090 }
5091
5092 h = archive_symbol_lookup (abfd, info, symdef->name);
5093 if (h == (struct elf_link_hash_entry *) 0 - 1)
5094 goto error_return;
5095
5096 if (h == NULL)
5097 continue;
5098
5099 if (h->root.type == bfd_link_hash_common)
5100 {
5101 /* We currently have a common symbol. The archive map contains
5102 a reference to this symbol, so we may want to include it. We
5103 only want to include it however, if this archive element
5104 contains a definition of the symbol, not just another common
5105 declaration of it.
5106
5107 Unfortunately some archivers (including GNU ar) will put
5108 declarations of common symbols into their archive maps, as
5109 well as real definitions, so we cannot just go by the archive
5110 map alone. Instead we must read in the element's symbol
5111 table and check that to see what kind of symbol definition
5112 this is. */
5113 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5114 continue;
5115 }
5116 else if (h->root.type != bfd_link_hash_undefined)
5117 {
5118 if (h->root.type != bfd_link_hash_undefweak)
5119 defined[i] = TRUE;
5120 continue;
5121 }
5122
5123 /* We need to include this archive member. */
5124 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5125 if (element == NULL)
5126 goto error_return;
5127
5128 if (! bfd_check_format (element, bfd_object))
5129 goto error_return;
5130
5131 /* Doublecheck that we have not included this object
5132 already--it should be impossible, but there may be
5133 something wrong with the archive. */
5134 if (element->archive_pass != 0)
5135 {
5136 bfd_set_error (bfd_error_bad_value);
5137 goto error_return;
5138 }
5139 element->archive_pass = 1;
5140
5141 undefs_tail = info->hash->undefs_tail;
5142
5143 if (!(*info->callbacks
5144 ->add_archive_element) (info, element, symdef->name, &element))
5145 goto error_return;
5146 if (!bfd_link_add_symbols (element, info))
5147 goto error_return;
5148
5149 /* If there are any new undefined symbols, we need to make
5150 another pass through the archive in order to see whether
5151 they can be defined. FIXME: This isn't perfect, because
5152 common symbols wind up on undefs_tail and because an
5153 undefined symbol which is defined later on in this pass
5154 does not require another pass. This isn't a bug, but it
5155 does make the code less efficient than it could be. */
5156 if (undefs_tail != info->hash->undefs_tail)
5157 loop = TRUE;
5158
5159 /* Look backward to mark all symbols from this object file
5160 which we have already seen in this pass. */
5161 mark = i;
5162 do
5163 {
5164 included[mark] = TRUE;
5165 if (mark == 0)
5166 break;
5167 --mark;
5168 }
5169 while (symdefs[mark].file_offset == symdef->file_offset);
5170
5171 /* We mark subsequent symbols from this object file as we go
5172 on through the loop. */
5173 last = symdef->file_offset;
5174 }
5175 }
5176 while (loop);
5177
5178 free (defined);
5179 free (included);
5180
5181 return TRUE;
5182
5183 error_return:
5184 if (defined != NULL)
5185 free (defined);
5186 if (included != NULL)
5187 free (included);
5188 return FALSE;
5189 }
5190
5191 /* Given an ELF BFD, add symbols to the global hash table as
5192 appropriate. */
5193
5194 bfd_boolean
5195 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5196 {
5197 switch (bfd_get_format (abfd))
5198 {
5199 case bfd_object:
5200 return elf_link_add_object_symbols (abfd, info);
5201 case bfd_archive:
5202 return elf_link_add_archive_symbols (abfd, info);
5203 default:
5204 bfd_set_error (bfd_error_wrong_format);
5205 return FALSE;
5206 }
5207 }
5208 \f
5209 struct hash_codes_info
5210 {
5211 unsigned long *hashcodes;
5212 bfd_boolean error;
5213 };
5214
5215 /* This function will be called though elf_link_hash_traverse to store
5216 all hash value of the exported symbols in an array. */
5217
5218 static bfd_boolean
5219 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5220 {
5221 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5222 const char *name;
5223 char *p;
5224 unsigned long ha;
5225 char *alc = NULL;
5226
5227 /* Ignore indirect symbols. These are added by the versioning code. */
5228 if (h->dynindx == -1)
5229 return TRUE;
5230
5231 name = h->root.root.string;
5232 p = strchr (name, ELF_VER_CHR);
5233 if (p != NULL)
5234 {
5235 alc = (char *) bfd_malloc (p - name + 1);
5236 if (alc == NULL)
5237 {
5238 inf->error = TRUE;
5239 return FALSE;
5240 }
5241 memcpy (alc, name, p - name);
5242 alc[p - name] = '\0';
5243 name = alc;
5244 }
5245
5246 /* Compute the hash value. */
5247 ha = bfd_elf_hash (name);
5248
5249 /* Store the found hash value in the array given as the argument. */
5250 *(inf->hashcodes)++ = ha;
5251
5252 /* And store it in the struct so that we can put it in the hash table
5253 later. */
5254 h->u.elf_hash_value = ha;
5255
5256 if (alc != NULL)
5257 free (alc);
5258
5259 return TRUE;
5260 }
5261
5262 struct collect_gnu_hash_codes
5263 {
5264 bfd *output_bfd;
5265 const struct elf_backend_data *bed;
5266 unsigned long int nsyms;
5267 unsigned long int maskbits;
5268 unsigned long int *hashcodes;
5269 unsigned long int *hashval;
5270 unsigned long int *indx;
5271 unsigned long int *counts;
5272 bfd_vma *bitmask;
5273 bfd_byte *contents;
5274 long int min_dynindx;
5275 unsigned long int bucketcount;
5276 unsigned long int symindx;
5277 long int local_indx;
5278 long int shift1, shift2;
5279 unsigned long int mask;
5280 bfd_boolean error;
5281 };
5282
5283 /* This function will be called though elf_link_hash_traverse to store
5284 all hash value of the exported symbols in an array. */
5285
5286 static bfd_boolean
5287 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5288 {
5289 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5290 const char *name;
5291 char *p;
5292 unsigned long ha;
5293 char *alc = NULL;
5294
5295 /* Ignore indirect symbols. These are added by the versioning code. */
5296 if (h->dynindx == -1)
5297 return TRUE;
5298
5299 /* Ignore also local symbols and undefined symbols. */
5300 if (! (*s->bed->elf_hash_symbol) (h))
5301 return TRUE;
5302
5303 name = h->root.root.string;
5304 p = strchr (name, ELF_VER_CHR);
5305 if (p != NULL)
5306 {
5307 alc = (char *) bfd_malloc (p - name + 1);
5308 if (alc == NULL)
5309 {
5310 s->error = TRUE;
5311 return FALSE;
5312 }
5313 memcpy (alc, name, p - name);
5314 alc[p - name] = '\0';
5315 name = alc;
5316 }
5317
5318 /* Compute the hash value. */
5319 ha = bfd_elf_gnu_hash (name);
5320
5321 /* Store the found hash value in the array for compute_bucket_count,
5322 and also for .dynsym reordering purposes. */
5323 s->hashcodes[s->nsyms] = ha;
5324 s->hashval[h->dynindx] = ha;
5325 ++s->nsyms;
5326 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5327 s->min_dynindx = h->dynindx;
5328
5329 if (alc != NULL)
5330 free (alc);
5331
5332 return TRUE;
5333 }
5334
5335 /* This function will be called though elf_link_hash_traverse to do
5336 final dynaminc symbol renumbering. */
5337
5338 static bfd_boolean
5339 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5340 {
5341 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5342 unsigned long int bucket;
5343 unsigned long int val;
5344
5345 /* Ignore indirect symbols. */
5346 if (h->dynindx == -1)
5347 return TRUE;
5348
5349 /* Ignore also local symbols and undefined symbols. */
5350 if (! (*s->bed->elf_hash_symbol) (h))
5351 {
5352 if (h->dynindx >= s->min_dynindx)
5353 h->dynindx = s->local_indx++;
5354 return TRUE;
5355 }
5356
5357 bucket = s->hashval[h->dynindx] % s->bucketcount;
5358 val = (s->hashval[h->dynindx] >> s->shift1)
5359 & ((s->maskbits >> s->shift1) - 1);
5360 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5361 s->bitmask[val]
5362 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5363 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5364 if (s->counts[bucket] == 1)
5365 /* Last element terminates the chain. */
5366 val |= 1;
5367 bfd_put_32 (s->output_bfd, val,
5368 s->contents + (s->indx[bucket] - s->symindx) * 4);
5369 --s->counts[bucket];
5370 h->dynindx = s->indx[bucket]++;
5371 return TRUE;
5372 }
5373
5374 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5375
5376 bfd_boolean
5377 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5378 {
5379 return !(h->forced_local
5380 || h->root.type == bfd_link_hash_undefined
5381 || h->root.type == bfd_link_hash_undefweak
5382 || ((h->root.type == bfd_link_hash_defined
5383 || h->root.type == bfd_link_hash_defweak)
5384 && h->root.u.def.section->output_section == NULL));
5385 }
5386
5387 /* Array used to determine the number of hash table buckets to use
5388 based on the number of symbols there are. If there are fewer than
5389 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5390 fewer than 37 we use 17 buckets, and so forth. We never use more
5391 than 32771 buckets. */
5392
5393 static const size_t elf_buckets[] =
5394 {
5395 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5396 16411, 32771, 0
5397 };
5398
5399 /* Compute bucket count for hashing table. We do not use a static set
5400 of possible tables sizes anymore. Instead we determine for all
5401 possible reasonable sizes of the table the outcome (i.e., the
5402 number of collisions etc) and choose the best solution. The
5403 weighting functions are not too simple to allow the table to grow
5404 without bounds. Instead one of the weighting factors is the size.
5405 Therefore the result is always a good payoff between few collisions
5406 (= short chain lengths) and table size. */
5407 static size_t
5408 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5409 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5410 unsigned long int nsyms,
5411 int gnu_hash)
5412 {
5413 size_t best_size = 0;
5414 unsigned long int i;
5415
5416 /* We have a problem here. The following code to optimize the table
5417 size requires an integer type with more the 32 bits. If
5418 BFD_HOST_U_64_BIT is set we know about such a type. */
5419 #ifdef BFD_HOST_U_64_BIT
5420 if (info->optimize)
5421 {
5422 size_t minsize;
5423 size_t maxsize;
5424 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5425 bfd *dynobj = elf_hash_table (info)->dynobj;
5426 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5427 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5428 unsigned long int *counts;
5429 bfd_size_type amt;
5430 unsigned int no_improvement_count = 0;
5431
5432 /* Possible optimization parameters: if we have NSYMS symbols we say
5433 that the hashing table must at least have NSYMS/4 and at most
5434 2*NSYMS buckets. */
5435 minsize = nsyms / 4;
5436 if (minsize == 0)
5437 minsize = 1;
5438 best_size = maxsize = nsyms * 2;
5439 if (gnu_hash)
5440 {
5441 if (minsize < 2)
5442 minsize = 2;
5443 if ((best_size & 31) == 0)
5444 ++best_size;
5445 }
5446
5447 /* Create array where we count the collisions in. We must use bfd_malloc
5448 since the size could be large. */
5449 amt = maxsize;
5450 amt *= sizeof (unsigned long int);
5451 counts = (unsigned long int *) bfd_malloc (amt);
5452 if (counts == NULL)
5453 return 0;
5454
5455 /* Compute the "optimal" size for the hash table. The criteria is a
5456 minimal chain length. The minor criteria is (of course) the size
5457 of the table. */
5458 for (i = minsize; i < maxsize; ++i)
5459 {
5460 /* Walk through the array of hashcodes and count the collisions. */
5461 BFD_HOST_U_64_BIT max;
5462 unsigned long int j;
5463 unsigned long int fact;
5464
5465 if (gnu_hash && (i & 31) == 0)
5466 continue;
5467
5468 memset (counts, '\0', i * sizeof (unsigned long int));
5469
5470 /* Determine how often each hash bucket is used. */
5471 for (j = 0; j < nsyms; ++j)
5472 ++counts[hashcodes[j] % i];
5473
5474 /* For the weight function we need some information about the
5475 pagesize on the target. This is information need not be 100%
5476 accurate. Since this information is not available (so far) we
5477 define it here to a reasonable default value. If it is crucial
5478 to have a better value some day simply define this value. */
5479 # ifndef BFD_TARGET_PAGESIZE
5480 # define BFD_TARGET_PAGESIZE (4096)
5481 # endif
5482
5483 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5484 and the chains. */
5485 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5486
5487 # if 1
5488 /* Variant 1: optimize for short chains. We add the squares
5489 of all the chain lengths (which favors many small chain
5490 over a few long chains). */
5491 for (j = 0; j < i; ++j)
5492 max += counts[j] * counts[j];
5493
5494 /* This adds penalties for the overall size of the table. */
5495 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5496 max *= fact * fact;
5497 # else
5498 /* Variant 2: Optimize a lot more for small table. Here we
5499 also add squares of the size but we also add penalties for
5500 empty slots (the +1 term). */
5501 for (j = 0; j < i; ++j)
5502 max += (1 + counts[j]) * (1 + counts[j]);
5503
5504 /* The overall size of the table is considered, but not as
5505 strong as in variant 1, where it is squared. */
5506 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5507 max *= fact;
5508 # endif
5509
5510 /* Compare with current best results. */
5511 if (max < best_chlen)
5512 {
5513 best_chlen = max;
5514 best_size = i;
5515 no_improvement_count = 0;
5516 }
5517 /* PR 11843: Avoid futile long searches for the best bucket size
5518 when there are a large number of symbols. */
5519 else if (++no_improvement_count == 100)
5520 break;
5521 }
5522
5523 free (counts);
5524 }
5525 else
5526 #endif /* defined (BFD_HOST_U_64_BIT) */
5527 {
5528 /* This is the fallback solution if no 64bit type is available or if we
5529 are not supposed to spend much time on optimizations. We select the
5530 bucket count using a fixed set of numbers. */
5531 for (i = 0; elf_buckets[i] != 0; i++)
5532 {
5533 best_size = elf_buckets[i];
5534 if (nsyms < elf_buckets[i + 1])
5535 break;
5536 }
5537 if (gnu_hash && best_size < 2)
5538 best_size = 2;
5539 }
5540
5541 return best_size;
5542 }
5543
5544 /* Size any SHT_GROUP section for ld -r. */
5545
5546 bfd_boolean
5547 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5548 {
5549 bfd *ibfd;
5550
5551 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5552 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5553 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5554 return FALSE;
5555 return TRUE;
5556 }
5557
5558 /* Set a default stack segment size. The value in INFO wins. If it
5559 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5560 undefined it is initialized. */
5561
5562 bfd_boolean
5563 bfd_elf_stack_segment_size (bfd *output_bfd,
5564 struct bfd_link_info *info,
5565 const char *legacy_symbol,
5566 bfd_vma default_size)
5567 {
5568 struct elf_link_hash_entry *h = NULL;
5569
5570 /* Look for legacy symbol. */
5571 if (legacy_symbol)
5572 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5573 FALSE, FALSE, FALSE);
5574 if (h && (h->root.type == bfd_link_hash_defined
5575 || h->root.type == bfd_link_hash_defweak)
5576 && h->def_regular
5577 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5578 {
5579 /* The symbol has no type if specified on the command line. */
5580 h->type = STT_OBJECT;
5581 if (info->stacksize)
5582 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5583 output_bfd, legacy_symbol);
5584 else if (h->root.u.def.section != bfd_abs_section_ptr)
5585 (*_bfd_error_handler) (_("%B: %s not absolute"),
5586 output_bfd, legacy_symbol);
5587 else
5588 info->stacksize = h->root.u.def.value;
5589 }
5590
5591 if (!info->stacksize)
5592 /* If the user didn't set a size, or explicitly inhibit the
5593 size, set it now. */
5594 info->stacksize = default_size;
5595
5596 /* Provide the legacy symbol, if it is referenced. */
5597 if (h && (h->root.type == bfd_link_hash_undefined
5598 || h->root.type == bfd_link_hash_undefweak))
5599 {
5600 struct bfd_link_hash_entry *bh = NULL;
5601
5602 if (!(_bfd_generic_link_add_one_symbol
5603 (info, output_bfd, legacy_symbol,
5604 BSF_GLOBAL, bfd_abs_section_ptr,
5605 info->stacksize >= 0 ? info->stacksize : 0,
5606 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5607 return FALSE;
5608
5609 h = (struct elf_link_hash_entry *) bh;
5610 h->def_regular = 1;
5611 h->type = STT_OBJECT;
5612 }
5613
5614 return TRUE;
5615 }
5616
5617 /* Set up the sizes and contents of the ELF dynamic sections. This is
5618 called by the ELF linker emulation before_allocation routine. We
5619 must set the sizes of the sections before the linker sets the
5620 addresses of the various sections. */
5621
5622 bfd_boolean
5623 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5624 const char *soname,
5625 const char *rpath,
5626 const char *filter_shlib,
5627 const char *audit,
5628 const char *depaudit,
5629 const char * const *auxiliary_filters,
5630 struct bfd_link_info *info,
5631 asection **sinterpptr)
5632 {
5633 bfd_size_type soname_indx;
5634 bfd *dynobj;
5635 const struct elf_backend_data *bed;
5636 struct elf_info_failed asvinfo;
5637
5638 *sinterpptr = NULL;
5639
5640 soname_indx = (bfd_size_type) -1;
5641
5642 if (!is_elf_hash_table (info->hash))
5643 return TRUE;
5644
5645 bed = get_elf_backend_data (output_bfd);
5646
5647 /* Any syms created from now on start with -1 in
5648 got.refcount/offset and plt.refcount/offset. */
5649 elf_hash_table (info)->init_got_refcount
5650 = elf_hash_table (info)->init_got_offset;
5651 elf_hash_table (info)->init_plt_refcount
5652 = elf_hash_table (info)->init_plt_offset;
5653
5654 if (info->relocatable
5655 && !_bfd_elf_size_group_sections (info))
5656 return FALSE;
5657
5658 /* The backend may have to create some sections regardless of whether
5659 we're dynamic or not. */
5660 if (bed->elf_backend_always_size_sections
5661 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5662 return FALSE;
5663
5664 /* Determine any GNU_STACK segment requirements, after the backend
5665 has had a chance to set a default segment size. */
5666 if (info->execstack)
5667 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5668 else if (info->noexecstack)
5669 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5670 else
5671 {
5672 bfd *inputobj;
5673 asection *notesec = NULL;
5674 int exec = 0;
5675
5676 for (inputobj = info->input_bfds;
5677 inputobj;
5678 inputobj = inputobj->link_next)
5679 {
5680 asection *s;
5681
5682 if (inputobj->flags
5683 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5684 continue;
5685 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5686 if (s)
5687 {
5688 if (s->flags & SEC_CODE)
5689 exec = PF_X;
5690 notesec = s;
5691 }
5692 else if (bed->default_execstack)
5693 exec = PF_X;
5694 }
5695 if (notesec || info->stacksize > 0)
5696 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5697 if (notesec && exec && info->relocatable
5698 && notesec->output_section != bfd_abs_section_ptr)
5699 notesec->output_section->flags |= SEC_CODE;
5700 }
5701
5702 dynobj = elf_hash_table (info)->dynobj;
5703
5704 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5705 {
5706 struct elf_info_failed eif;
5707 struct elf_link_hash_entry *h;
5708 asection *dynstr;
5709 struct bfd_elf_version_tree *t;
5710 struct bfd_elf_version_expr *d;
5711 asection *s;
5712 bfd_boolean all_defined;
5713
5714 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5715 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5716
5717 if (soname != NULL)
5718 {
5719 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5720 soname, TRUE);
5721 if (soname_indx == (bfd_size_type) -1
5722 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5723 return FALSE;
5724 }
5725
5726 if (info->symbolic)
5727 {
5728 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5729 return FALSE;
5730 info->flags |= DF_SYMBOLIC;
5731 }
5732
5733 if (rpath != NULL)
5734 {
5735 bfd_size_type indx;
5736 bfd_vma tag;
5737
5738 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5739 TRUE);
5740 if (indx == (bfd_size_type) -1)
5741 return FALSE;
5742
5743 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5744 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5745 return FALSE;
5746 }
5747
5748 if (filter_shlib != NULL)
5749 {
5750 bfd_size_type indx;
5751
5752 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5753 filter_shlib, TRUE);
5754 if (indx == (bfd_size_type) -1
5755 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5756 return FALSE;
5757 }
5758
5759 if (auxiliary_filters != NULL)
5760 {
5761 const char * const *p;
5762
5763 for (p = auxiliary_filters; *p != NULL; p++)
5764 {
5765 bfd_size_type indx;
5766
5767 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5768 *p, TRUE);
5769 if (indx == (bfd_size_type) -1
5770 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5771 return FALSE;
5772 }
5773 }
5774
5775 if (audit != NULL)
5776 {
5777 bfd_size_type indx;
5778
5779 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5780 TRUE);
5781 if (indx == (bfd_size_type) -1
5782 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5783 return FALSE;
5784 }
5785
5786 if (depaudit != NULL)
5787 {
5788 bfd_size_type indx;
5789
5790 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5791 TRUE);
5792 if (indx == (bfd_size_type) -1
5793 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5794 return FALSE;
5795 }
5796
5797 eif.info = info;
5798 eif.failed = FALSE;
5799
5800 /* If we are supposed to export all symbols into the dynamic symbol
5801 table (this is not the normal case), then do so. */
5802 if (info->export_dynamic
5803 || (info->executable && info->dynamic))
5804 {
5805 elf_link_hash_traverse (elf_hash_table (info),
5806 _bfd_elf_export_symbol,
5807 &eif);
5808 if (eif.failed)
5809 return FALSE;
5810 }
5811
5812 /* Make all global versions with definition. */
5813 for (t = info->version_info; t != NULL; t = t->next)
5814 for (d = t->globals.list; d != NULL; d = d->next)
5815 if (!d->symver && d->literal)
5816 {
5817 const char *verstr, *name;
5818 size_t namelen, verlen, newlen;
5819 char *newname, *p, leading_char;
5820 struct elf_link_hash_entry *newh;
5821
5822 leading_char = bfd_get_symbol_leading_char (output_bfd);
5823 name = d->pattern;
5824 namelen = strlen (name) + (leading_char != '\0');
5825 verstr = t->name;
5826 verlen = strlen (verstr);
5827 newlen = namelen + verlen + 3;
5828
5829 newname = (char *) bfd_malloc (newlen);
5830 if (newname == NULL)
5831 return FALSE;
5832 newname[0] = leading_char;
5833 memcpy (newname + (leading_char != '\0'), name, namelen);
5834
5835 /* Check the hidden versioned definition. */
5836 p = newname + namelen;
5837 *p++ = ELF_VER_CHR;
5838 memcpy (p, verstr, verlen + 1);
5839 newh = elf_link_hash_lookup (elf_hash_table (info),
5840 newname, FALSE, FALSE,
5841 FALSE);
5842 if (newh == NULL
5843 || (newh->root.type != bfd_link_hash_defined
5844 && newh->root.type != bfd_link_hash_defweak))
5845 {
5846 /* Check the default versioned definition. */
5847 *p++ = ELF_VER_CHR;
5848 memcpy (p, verstr, verlen + 1);
5849 newh = elf_link_hash_lookup (elf_hash_table (info),
5850 newname, FALSE, FALSE,
5851 FALSE);
5852 }
5853 free (newname);
5854
5855 /* Mark this version if there is a definition and it is
5856 not defined in a shared object. */
5857 if (newh != NULL
5858 && !newh->def_dynamic
5859 && (newh->root.type == bfd_link_hash_defined
5860 || newh->root.type == bfd_link_hash_defweak))
5861 d->symver = 1;
5862 }
5863
5864 /* Attach all the symbols to their version information. */
5865 asvinfo.info = info;
5866 asvinfo.failed = FALSE;
5867
5868 elf_link_hash_traverse (elf_hash_table (info),
5869 _bfd_elf_link_assign_sym_version,
5870 &asvinfo);
5871 if (asvinfo.failed)
5872 return FALSE;
5873
5874 if (!info->allow_undefined_version)
5875 {
5876 /* Check if all global versions have a definition. */
5877 all_defined = TRUE;
5878 for (t = info->version_info; t != NULL; t = t->next)
5879 for (d = t->globals.list; d != NULL; d = d->next)
5880 if (d->literal && !d->symver && !d->script)
5881 {
5882 (*_bfd_error_handler)
5883 (_("%s: undefined version: %s"),
5884 d->pattern, t->name);
5885 all_defined = FALSE;
5886 }
5887
5888 if (!all_defined)
5889 {
5890 bfd_set_error (bfd_error_bad_value);
5891 return FALSE;
5892 }
5893 }
5894
5895 /* Find all symbols which were defined in a dynamic object and make
5896 the backend pick a reasonable value for them. */
5897 elf_link_hash_traverse (elf_hash_table (info),
5898 _bfd_elf_adjust_dynamic_symbol,
5899 &eif);
5900 if (eif.failed)
5901 return FALSE;
5902
5903 /* Add some entries to the .dynamic section. We fill in some of the
5904 values later, in bfd_elf_final_link, but we must add the entries
5905 now so that we know the final size of the .dynamic section. */
5906
5907 /* If there are initialization and/or finalization functions to
5908 call then add the corresponding DT_INIT/DT_FINI entries. */
5909 h = (info->init_function
5910 ? elf_link_hash_lookup (elf_hash_table (info),
5911 info->init_function, FALSE,
5912 FALSE, FALSE)
5913 : NULL);
5914 if (h != NULL
5915 && (h->ref_regular
5916 || h->def_regular))
5917 {
5918 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5919 return FALSE;
5920 }
5921 h = (info->fini_function
5922 ? elf_link_hash_lookup (elf_hash_table (info),
5923 info->fini_function, FALSE,
5924 FALSE, FALSE)
5925 : NULL);
5926 if (h != NULL
5927 && (h->ref_regular
5928 || h->def_regular))
5929 {
5930 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5931 return FALSE;
5932 }
5933
5934 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5935 if (s != NULL && s->linker_has_input)
5936 {
5937 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5938 if (! info->executable)
5939 {
5940 bfd *sub;
5941 asection *o;
5942
5943 for (sub = info->input_bfds; sub != NULL;
5944 sub = sub->link_next)
5945 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5946 for (o = sub->sections; o != NULL; o = o->next)
5947 if (elf_section_data (o)->this_hdr.sh_type
5948 == SHT_PREINIT_ARRAY)
5949 {
5950 (*_bfd_error_handler)
5951 (_("%B: .preinit_array section is not allowed in DSO"),
5952 sub);
5953 break;
5954 }
5955
5956 bfd_set_error (bfd_error_nonrepresentable_section);
5957 return FALSE;
5958 }
5959
5960 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5961 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5962 return FALSE;
5963 }
5964 s = bfd_get_section_by_name (output_bfd, ".init_array");
5965 if (s != NULL && s->linker_has_input)
5966 {
5967 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5968 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5969 return FALSE;
5970 }
5971 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5972 if (s != NULL && s->linker_has_input)
5973 {
5974 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5975 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5976 return FALSE;
5977 }
5978
5979 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5980 /* If .dynstr is excluded from the link, we don't want any of
5981 these tags. Strictly, we should be checking each section
5982 individually; This quick check covers for the case where
5983 someone does a /DISCARD/ : { *(*) }. */
5984 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5985 {
5986 bfd_size_type strsize;
5987
5988 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5989 if ((info->emit_hash
5990 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5991 || (info->emit_gnu_hash
5992 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5993 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5994 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5995 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5996 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5997 bed->s->sizeof_sym))
5998 return FALSE;
5999 }
6000 }
6001
6002 /* The backend must work out the sizes of all the other dynamic
6003 sections. */
6004 if (dynobj != NULL
6005 && bed->elf_backend_size_dynamic_sections != NULL
6006 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6007 return FALSE;
6008
6009 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6010 return FALSE;
6011
6012 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6013 {
6014 unsigned long section_sym_count;
6015 struct bfd_elf_version_tree *verdefs;
6016 asection *s;
6017
6018 /* Set up the version definition section. */
6019 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6020 BFD_ASSERT (s != NULL);
6021
6022 /* We may have created additional version definitions if we are
6023 just linking a regular application. */
6024 verdefs = info->version_info;
6025
6026 /* Skip anonymous version tag. */
6027 if (verdefs != NULL && verdefs->vernum == 0)
6028 verdefs = verdefs->next;
6029
6030 if (verdefs == NULL && !info->create_default_symver)
6031 s->flags |= SEC_EXCLUDE;
6032 else
6033 {
6034 unsigned int cdefs;
6035 bfd_size_type size;
6036 struct bfd_elf_version_tree *t;
6037 bfd_byte *p;
6038 Elf_Internal_Verdef def;
6039 Elf_Internal_Verdaux defaux;
6040 struct bfd_link_hash_entry *bh;
6041 struct elf_link_hash_entry *h;
6042 const char *name;
6043
6044 cdefs = 0;
6045 size = 0;
6046
6047 /* Make space for the base version. */
6048 size += sizeof (Elf_External_Verdef);
6049 size += sizeof (Elf_External_Verdaux);
6050 ++cdefs;
6051
6052 /* Make space for the default version. */
6053 if (info->create_default_symver)
6054 {
6055 size += sizeof (Elf_External_Verdef);
6056 ++cdefs;
6057 }
6058
6059 for (t = verdefs; t != NULL; t = t->next)
6060 {
6061 struct bfd_elf_version_deps *n;
6062
6063 /* Don't emit base version twice. */
6064 if (t->vernum == 0)
6065 continue;
6066
6067 size += sizeof (Elf_External_Verdef);
6068 size += sizeof (Elf_External_Verdaux);
6069 ++cdefs;
6070
6071 for (n = t->deps; n != NULL; n = n->next)
6072 size += sizeof (Elf_External_Verdaux);
6073 }
6074
6075 s->size = size;
6076 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6077 if (s->contents == NULL && s->size != 0)
6078 return FALSE;
6079
6080 /* Fill in the version definition section. */
6081
6082 p = s->contents;
6083
6084 def.vd_version = VER_DEF_CURRENT;
6085 def.vd_flags = VER_FLG_BASE;
6086 def.vd_ndx = 1;
6087 def.vd_cnt = 1;
6088 if (info->create_default_symver)
6089 {
6090 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6091 def.vd_next = sizeof (Elf_External_Verdef);
6092 }
6093 else
6094 {
6095 def.vd_aux = sizeof (Elf_External_Verdef);
6096 def.vd_next = (sizeof (Elf_External_Verdef)
6097 + sizeof (Elf_External_Verdaux));
6098 }
6099
6100 if (soname_indx != (bfd_size_type) -1)
6101 {
6102 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6103 soname_indx);
6104 def.vd_hash = bfd_elf_hash (soname);
6105 defaux.vda_name = soname_indx;
6106 name = soname;
6107 }
6108 else
6109 {
6110 bfd_size_type indx;
6111
6112 name = lbasename (output_bfd->filename);
6113 def.vd_hash = bfd_elf_hash (name);
6114 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6115 name, FALSE);
6116 if (indx == (bfd_size_type) -1)
6117 return FALSE;
6118 defaux.vda_name = indx;
6119 }
6120 defaux.vda_next = 0;
6121
6122 _bfd_elf_swap_verdef_out (output_bfd, &def,
6123 (Elf_External_Verdef *) p);
6124 p += sizeof (Elf_External_Verdef);
6125 if (info->create_default_symver)
6126 {
6127 /* Add a symbol representing this version. */
6128 bh = NULL;
6129 if (! (_bfd_generic_link_add_one_symbol
6130 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6131 0, NULL, FALSE,
6132 get_elf_backend_data (dynobj)->collect, &bh)))
6133 return FALSE;
6134 h = (struct elf_link_hash_entry *) bh;
6135 h->non_elf = 0;
6136 h->def_regular = 1;
6137 h->type = STT_OBJECT;
6138 h->verinfo.vertree = NULL;
6139
6140 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6141 return FALSE;
6142
6143 /* Create a duplicate of the base version with the same
6144 aux block, but different flags. */
6145 def.vd_flags = 0;
6146 def.vd_ndx = 2;
6147 def.vd_aux = sizeof (Elf_External_Verdef);
6148 if (verdefs)
6149 def.vd_next = (sizeof (Elf_External_Verdef)
6150 + sizeof (Elf_External_Verdaux));
6151 else
6152 def.vd_next = 0;
6153 _bfd_elf_swap_verdef_out (output_bfd, &def,
6154 (Elf_External_Verdef *) p);
6155 p += sizeof (Elf_External_Verdef);
6156 }
6157 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6158 (Elf_External_Verdaux *) p);
6159 p += sizeof (Elf_External_Verdaux);
6160
6161 for (t = verdefs; t != NULL; t = t->next)
6162 {
6163 unsigned int cdeps;
6164 struct bfd_elf_version_deps *n;
6165
6166 /* Don't emit the base version twice. */
6167 if (t->vernum == 0)
6168 continue;
6169
6170 cdeps = 0;
6171 for (n = t->deps; n != NULL; n = n->next)
6172 ++cdeps;
6173
6174 /* Add a symbol representing this version. */
6175 bh = NULL;
6176 if (! (_bfd_generic_link_add_one_symbol
6177 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6178 0, NULL, FALSE,
6179 get_elf_backend_data (dynobj)->collect, &bh)))
6180 return FALSE;
6181 h = (struct elf_link_hash_entry *) bh;
6182 h->non_elf = 0;
6183 h->def_regular = 1;
6184 h->type = STT_OBJECT;
6185 h->verinfo.vertree = t;
6186
6187 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6188 return FALSE;
6189
6190 def.vd_version = VER_DEF_CURRENT;
6191 def.vd_flags = 0;
6192 if (t->globals.list == NULL
6193 && t->locals.list == NULL
6194 && ! t->used)
6195 def.vd_flags |= VER_FLG_WEAK;
6196 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6197 def.vd_cnt = cdeps + 1;
6198 def.vd_hash = bfd_elf_hash (t->name);
6199 def.vd_aux = sizeof (Elf_External_Verdef);
6200 def.vd_next = 0;
6201
6202 /* If a basever node is next, it *must* be the last node in
6203 the chain, otherwise Verdef construction breaks. */
6204 if (t->next != NULL && t->next->vernum == 0)
6205 BFD_ASSERT (t->next->next == NULL);
6206
6207 if (t->next != NULL && t->next->vernum != 0)
6208 def.vd_next = (sizeof (Elf_External_Verdef)
6209 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6210
6211 _bfd_elf_swap_verdef_out (output_bfd, &def,
6212 (Elf_External_Verdef *) p);
6213 p += sizeof (Elf_External_Verdef);
6214
6215 defaux.vda_name = h->dynstr_index;
6216 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6217 h->dynstr_index);
6218 defaux.vda_next = 0;
6219 if (t->deps != NULL)
6220 defaux.vda_next = sizeof (Elf_External_Verdaux);
6221 t->name_indx = defaux.vda_name;
6222
6223 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6224 (Elf_External_Verdaux *) p);
6225 p += sizeof (Elf_External_Verdaux);
6226
6227 for (n = t->deps; n != NULL; n = n->next)
6228 {
6229 if (n->version_needed == NULL)
6230 {
6231 /* This can happen if there was an error in the
6232 version script. */
6233 defaux.vda_name = 0;
6234 }
6235 else
6236 {
6237 defaux.vda_name = n->version_needed->name_indx;
6238 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6239 defaux.vda_name);
6240 }
6241 if (n->next == NULL)
6242 defaux.vda_next = 0;
6243 else
6244 defaux.vda_next = sizeof (Elf_External_Verdaux);
6245
6246 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6247 (Elf_External_Verdaux *) p);
6248 p += sizeof (Elf_External_Verdaux);
6249 }
6250 }
6251
6252 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6253 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6254 return FALSE;
6255
6256 elf_tdata (output_bfd)->cverdefs = cdefs;
6257 }
6258
6259 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6260 {
6261 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6262 return FALSE;
6263 }
6264 else if (info->flags & DF_BIND_NOW)
6265 {
6266 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6267 return FALSE;
6268 }
6269
6270 if (info->flags_1)
6271 {
6272 if (info->executable)
6273 info->flags_1 &= ~ (DF_1_INITFIRST
6274 | DF_1_NODELETE
6275 | DF_1_NOOPEN);
6276 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6277 return FALSE;
6278 }
6279
6280 /* Work out the size of the version reference section. */
6281
6282 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6283 BFD_ASSERT (s != NULL);
6284 {
6285 struct elf_find_verdep_info sinfo;
6286
6287 sinfo.info = info;
6288 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6289 if (sinfo.vers == 0)
6290 sinfo.vers = 1;
6291 sinfo.failed = FALSE;
6292
6293 elf_link_hash_traverse (elf_hash_table (info),
6294 _bfd_elf_link_find_version_dependencies,
6295 &sinfo);
6296 if (sinfo.failed)
6297 return FALSE;
6298
6299 if (elf_tdata (output_bfd)->verref == NULL)
6300 s->flags |= SEC_EXCLUDE;
6301 else
6302 {
6303 Elf_Internal_Verneed *t;
6304 unsigned int size;
6305 unsigned int crefs;
6306 bfd_byte *p;
6307
6308 /* Build the version dependency section. */
6309 size = 0;
6310 crefs = 0;
6311 for (t = elf_tdata (output_bfd)->verref;
6312 t != NULL;
6313 t = t->vn_nextref)
6314 {
6315 Elf_Internal_Vernaux *a;
6316
6317 size += sizeof (Elf_External_Verneed);
6318 ++crefs;
6319 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6320 size += sizeof (Elf_External_Vernaux);
6321 }
6322
6323 s->size = size;
6324 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6325 if (s->contents == NULL)
6326 return FALSE;
6327
6328 p = s->contents;
6329 for (t = elf_tdata (output_bfd)->verref;
6330 t != NULL;
6331 t = t->vn_nextref)
6332 {
6333 unsigned int caux;
6334 Elf_Internal_Vernaux *a;
6335 bfd_size_type indx;
6336
6337 caux = 0;
6338 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6339 ++caux;
6340
6341 t->vn_version = VER_NEED_CURRENT;
6342 t->vn_cnt = caux;
6343 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6344 elf_dt_name (t->vn_bfd) != NULL
6345 ? elf_dt_name (t->vn_bfd)
6346 : lbasename (t->vn_bfd->filename),
6347 FALSE);
6348 if (indx == (bfd_size_type) -1)
6349 return FALSE;
6350 t->vn_file = indx;
6351 t->vn_aux = sizeof (Elf_External_Verneed);
6352 if (t->vn_nextref == NULL)
6353 t->vn_next = 0;
6354 else
6355 t->vn_next = (sizeof (Elf_External_Verneed)
6356 + caux * sizeof (Elf_External_Vernaux));
6357
6358 _bfd_elf_swap_verneed_out (output_bfd, t,
6359 (Elf_External_Verneed *) p);
6360 p += sizeof (Elf_External_Verneed);
6361
6362 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6363 {
6364 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6365 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6366 a->vna_nodename, FALSE);
6367 if (indx == (bfd_size_type) -1)
6368 return FALSE;
6369 a->vna_name = indx;
6370 if (a->vna_nextptr == NULL)
6371 a->vna_next = 0;
6372 else
6373 a->vna_next = sizeof (Elf_External_Vernaux);
6374
6375 _bfd_elf_swap_vernaux_out (output_bfd, a,
6376 (Elf_External_Vernaux *) p);
6377 p += sizeof (Elf_External_Vernaux);
6378 }
6379 }
6380
6381 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6382 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6383 return FALSE;
6384
6385 elf_tdata (output_bfd)->cverrefs = crefs;
6386 }
6387 }
6388
6389 if ((elf_tdata (output_bfd)->cverrefs == 0
6390 && elf_tdata (output_bfd)->cverdefs == 0)
6391 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6392 &section_sym_count) == 0)
6393 {
6394 s = bfd_get_linker_section (dynobj, ".gnu.version");
6395 s->flags |= SEC_EXCLUDE;
6396 }
6397 }
6398 return TRUE;
6399 }
6400
6401 /* Find the first non-excluded output section. We'll use its
6402 section symbol for some emitted relocs. */
6403 void
6404 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6405 {
6406 asection *s;
6407
6408 for (s = output_bfd->sections; s != NULL; s = s->next)
6409 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6410 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6411 {
6412 elf_hash_table (info)->text_index_section = s;
6413 break;
6414 }
6415 }
6416
6417 /* Find two non-excluded output sections, one for code, one for data.
6418 We'll use their section symbols for some emitted relocs. */
6419 void
6420 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6421 {
6422 asection *s;
6423
6424 /* Data first, since setting text_index_section changes
6425 _bfd_elf_link_omit_section_dynsym. */
6426 for (s = output_bfd->sections; s != NULL; s = s->next)
6427 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6428 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6429 {
6430 elf_hash_table (info)->data_index_section = s;
6431 break;
6432 }
6433
6434 for (s = output_bfd->sections; s != NULL; s = s->next)
6435 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6436 == (SEC_ALLOC | SEC_READONLY))
6437 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6438 {
6439 elf_hash_table (info)->text_index_section = s;
6440 break;
6441 }
6442
6443 if (elf_hash_table (info)->text_index_section == NULL)
6444 elf_hash_table (info)->text_index_section
6445 = elf_hash_table (info)->data_index_section;
6446 }
6447
6448 bfd_boolean
6449 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6450 {
6451 const struct elf_backend_data *bed;
6452
6453 if (!is_elf_hash_table (info->hash))
6454 return TRUE;
6455
6456 bed = get_elf_backend_data (output_bfd);
6457 (*bed->elf_backend_init_index_section) (output_bfd, info);
6458
6459 if (elf_hash_table (info)->dynamic_sections_created)
6460 {
6461 bfd *dynobj;
6462 asection *s;
6463 bfd_size_type dynsymcount;
6464 unsigned long section_sym_count;
6465 unsigned int dtagcount;
6466
6467 dynobj = elf_hash_table (info)->dynobj;
6468
6469 /* Assign dynsym indicies. In a shared library we generate a
6470 section symbol for each output section, which come first.
6471 Next come all of the back-end allocated local dynamic syms,
6472 followed by the rest of the global symbols. */
6473
6474 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6475 &section_sym_count);
6476
6477 /* Work out the size of the symbol version section. */
6478 s = bfd_get_linker_section (dynobj, ".gnu.version");
6479 BFD_ASSERT (s != NULL);
6480 if (dynsymcount != 0
6481 && (s->flags & SEC_EXCLUDE) == 0)
6482 {
6483 s->size = dynsymcount * sizeof (Elf_External_Versym);
6484 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6485 if (s->contents == NULL)
6486 return FALSE;
6487
6488 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6489 return FALSE;
6490 }
6491
6492 /* Set the size of the .dynsym and .hash sections. We counted
6493 the number of dynamic symbols in elf_link_add_object_symbols.
6494 We will build the contents of .dynsym and .hash when we build
6495 the final symbol table, because until then we do not know the
6496 correct value to give the symbols. We built the .dynstr
6497 section as we went along in elf_link_add_object_symbols. */
6498 s = bfd_get_linker_section (dynobj, ".dynsym");
6499 BFD_ASSERT (s != NULL);
6500 s->size = dynsymcount * bed->s->sizeof_sym;
6501
6502 if (dynsymcount != 0)
6503 {
6504 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6505 if (s->contents == NULL)
6506 return FALSE;
6507
6508 /* The first entry in .dynsym is a dummy symbol.
6509 Clear all the section syms, in case we don't output them all. */
6510 ++section_sym_count;
6511 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6512 }
6513
6514 elf_hash_table (info)->bucketcount = 0;
6515
6516 /* Compute the size of the hashing table. As a side effect this
6517 computes the hash values for all the names we export. */
6518 if (info->emit_hash)
6519 {
6520 unsigned long int *hashcodes;
6521 struct hash_codes_info hashinf;
6522 bfd_size_type amt;
6523 unsigned long int nsyms;
6524 size_t bucketcount;
6525 size_t hash_entry_size;
6526
6527 /* Compute the hash values for all exported symbols. At the same
6528 time store the values in an array so that we could use them for
6529 optimizations. */
6530 amt = dynsymcount * sizeof (unsigned long int);
6531 hashcodes = (unsigned long int *) bfd_malloc (amt);
6532 if (hashcodes == NULL)
6533 return FALSE;
6534 hashinf.hashcodes = hashcodes;
6535 hashinf.error = FALSE;
6536
6537 /* Put all hash values in HASHCODES. */
6538 elf_link_hash_traverse (elf_hash_table (info),
6539 elf_collect_hash_codes, &hashinf);
6540 if (hashinf.error)
6541 {
6542 free (hashcodes);
6543 return FALSE;
6544 }
6545
6546 nsyms = hashinf.hashcodes - hashcodes;
6547 bucketcount
6548 = compute_bucket_count (info, hashcodes, nsyms, 0);
6549 free (hashcodes);
6550
6551 if (bucketcount == 0)
6552 return FALSE;
6553
6554 elf_hash_table (info)->bucketcount = bucketcount;
6555
6556 s = bfd_get_linker_section (dynobj, ".hash");
6557 BFD_ASSERT (s != NULL);
6558 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6559 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6560 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6561 if (s->contents == NULL)
6562 return FALSE;
6563
6564 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6565 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6566 s->contents + hash_entry_size);
6567 }
6568
6569 if (info->emit_gnu_hash)
6570 {
6571 size_t i, cnt;
6572 unsigned char *contents;
6573 struct collect_gnu_hash_codes cinfo;
6574 bfd_size_type amt;
6575 size_t bucketcount;
6576
6577 memset (&cinfo, 0, sizeof (cinfo));
6578
6579 /* Compute the hash values for all exported symbols. At the same
6580 time store the values in an array so that we could use them for
6581 optimizations. */
6582 amt = dynsymcount * 2 * sizeof (unsigned long int);
6583 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6584 if (cinfo.hashcodes == NULL)
6585 return FALSE;
6586
6587 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6588 cinfo.min_dynindx = -1;
6589 cinfo.output_bfd = output_bfd;
6590 cinfo.bed = bed;
6591
6592 /* Put all hash values in HASHCODES. */
6593 elf_link_hash_traverse (elf_hash_table (info),
6594 elf_collect_gnu_hash_codes, &cinfo);
6595 if (cinfo.error)
6596 {
6597 free (cinfo.hashcodes);
6598 return FALSE;
6599 }
6600
6601 bucketcount
6602 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6603
6604 if (bucketcount == 0)
6605 {
6606 free (cinfo.hashcodes);
6607 return FALSE;
6608 }
6609
6610 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6611 BFD_ASSERT (s != NULL);
6612
6613 if (cinfo.nsyms == 0)
6614 {
6615 /* Empty .gnu.hash section is special. */
6616 BFD_ASSERT (cinfo.min_dynindx == -1);
6617 free (cinfo.hashcodes);
6618 s->size = 5 * 4 + bed->s->arch_size / 8;
6619 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6620 if (contents == NULL)
6621 return FALSE;
6622 s->contents = contents;
6623 /* 1 empty bucket. */
6624 bfd_put_32 (output_bfd, 1, contents);
6625 /* SYMIDX above the special symbol 0. */
6626 bfd_put_32 (output_bfd, 1, contents + 4);
6627 /* Just one word for bitmask. */
6628 bfd_put_32 (output_bfd, 1, contents + 8);
6629 /* Only hash fn bloom filter. */
6630 bfd_put_32 (output_bfd, 0, contents + 12);
6631 /* No hashes are valid - empty bitmask. */
6632 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6633 /* No hashes in the only bucket. */
6634 bfd_put_32 (output_bfd, 0,
6635 contents + 16 + bed->s->arch_size / 8);
6636 }
6637 else
6638 {
6639 unsigned long int maskwords, maskbitslog2, x;
6640 BFD_ASSERT (cinfo.min_dynindx != -1);
6641
6642 x = cinfo.nsyms;
6643 maskbitslog2 = 1;
6644 while ((x >>= 1) != 0)
6645 ++maskbitslog2;
6646 if (maskbitslog2 < 3)
6647 maskbitslog2 = 5;
6648 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6649 maskbitslog2 = maskbitslog2 + 3;
6650 else
6651 maskbitslog2 = maskbitslog2 + 2;
6652 if (bed->s->arch_size == 64)
6653 {
6654 if (maskbitslog2 == 5)
6655 maskbitslog2 = 6;
6656 cinfo.shift1 = 6;
6657 }
6658 else
6659 cinfo.shift1 = 5;
6660 cinfo.mask = (1 << cinfo.shift1) - 1;
6661 cinfo.shift2 = maskbitslog2;
6662 cinfo.maskbits = 1 << maskbitslog2;
6663 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6664 amt = bucketcount * sizeof (unsigned long int) * 2;
6665 amt += maskwords * sizeof (bfd_vma);
6666 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6667 if (cinfo.bitmask == NULL)
6668 {
6669 free (cinfo.hashcodes);
6670 return FALSE;
6671 }
6672
6673 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6674 cinfo.indx = cinfo.counts + bucketcount;
6675 cinfo.symindx = dynsymcount - cinfo.nsyms;
6676 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6677
6678 /* Determine how often each hash bucket is used. */
6679 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6680 for (i = 0; i < cinfo.nsyms; ++i)
6681 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6682
6683 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6684 if (cinfo.counts[i] != 0)
6685 {
6686 cinfo.indx[i] = cnt;
6687 cnt += cinfo.counts[i];
6688 }
6689 BFD_ASSERT (cnt == dynsymcount);
6690 cinfo.bucketcount = bucketcount;
6691 cinfo.local_indx = cinfo.min_dynindx;
6692
6693 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6694 s->size += cinfo.maskbits / 8;
6695 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6696 if (contents == NULL)
6697 {
6698 free (cinfo.bitmask);
6699 free (cinfo.hashcodes);
6700 return FALSE;
6701 }
6702
6703 s->contents = contents;
6704 bfd_put_32 (output_bfd, bucketcount, contents);
6705 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6706 bfd_put_32 (output_bfd, maskwords, contents + 8);
6707 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6708 contents += 16 + cinfo.maskbits / 8;
6709
6710 for (i = 0; i < bucketcount; ++i)
6711 {
6712 if (cinfo.counts[i] == 0)
6713 bfd_put_32 (output_bfd, 0, contents);
6714 else
6715 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6716 contents += 4;
6717 }
6718
6719 cinfo.contents = contents;
6720
6721 /* Renumber dynamic symbols, populate .gnu.hash section. */
6722 elf_link_hash_traverse (elf_hash_table (info),
6723 elf_renumber_gnu_hash_syms, &cinfo);
6724
6725 contents = s->contents + 16;
6726 for (i = 0; i < maskwords; ++i)
6727 {
6728 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6729 contents);
6730 contents += bed->s->arch_size / 8;
6731 }
6732
6733 free (cinfo.bitmask);
6734 free (cinfo.hashcodes);
6735 }
6736 }
6737
6738 s = bfd_get_linker_section (dynobj, ".dynstr");
6739 BFD_ASSERT (s != NULL);
6740
6741 elf_finalize_dynstr (output_bfd, info);
6742
6743 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6744
6745 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6746 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6747 return FALSE;
6748 }
6749
6750 return TRUE;
6751 }
6752 \f
6753 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6754
6755 static void
6756 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6757 asection *sec)
6758 {
6759 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6760 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6761 }
6762
6763 /* Finish SHF_MERGE section merging. */
6764
6765 bfd_boolean
6766 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6767 {
6768 bfd *ibfd;
6769 asection *sec;
6770
6771 if (!is_elf_hash_table (info->hash))
6772 return FALSE;
6773
6774 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6775 if ((ibfd->flags & DYNAMIC) == 0)
6776 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6777 if ((sec->flags & SEC_MERGE) != 0
6778 && !bfd_is_abs_section (sec->output_section))
6779 {
6780 struct bfd_elf_section_data *secdata;
6781
6782 secdata = elf_section_data (sec);
6783 if (! _bfd_add_merge_section (abfd,
6784 &elf_hash_table (info)->merge_info,
6785 sec, &secdata->sec_info))
6786 return FALSE;
6787 else if (secdata->sec_info)
6788 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6789 }
6790
6791 if (elf_hash_table (info)->merge_info != NULL)
6792 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6793 merge_sections_remove_hook);
6794 return TRUE;
6795 }
6796
6797 /* Create an entry in an ELF linker hash table. */
6798
6799 struct bfd_hash_entry *
6800 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6801 struct bfd_hash_table *table,
6802 const char *string)
6803 {
6804 /* Allocate the structure if it has not already been allocated by a
6805 subclass. */
6806 if (entry == NULL)
6807 {
6808 entry = (struct bfd_hash_entry *)
6809 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6810 if (entry == NULL)
6811 return entry;
6812 }
6813
6814 /* Call the allocation method of the superclass. */
6815 entry = _bfd_link_hash_newfunc (entry, table, string);
6816 if (entry != NULL)
6817 {
6818 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6819 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6820
6821 /* Set local fields. */
6822 ret->indx = -1;
6823 ret->dynindx = -1;
6824 ret->got = htab->init_got_refcount;
6825 ret->plt = htab->init_plt_refcount;
6826 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6827 - offsetof (struct elf_link_hash_entry, size)));
6828 /* Assume that we have been called by a non-ELF symbol reader.
6829 This flag is then reset by the code which reads an ELF input
6830 file. This ensures that a symbol created by a non-ELF symbol
6831 reader will have the flag set correctly. */
6832 ret->non_elf = 1;
6833 }
6834
6835 return entry;
6836 }
6837
6838 /* Copy data from an indirect symbol to its direct symbol, hiding the
6839 old indirect symbol. Also used for copying flags to a weakdef. */
6840
6841 void
6842 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6843 struct elf_link_hash_entry *dir,
6844 struct elf_link_hash_entry *ind)
6845 {
6846 struct elf_link_hash_table *htab;
6847
6848 /* Copy down any references that we may have already seen to the
6849 symbol which just became indirect. */
6850
6851 dir->ref_dynamic |= ind->ref_dynamic;
6852 dir->ref_regular |= ind->ref_regular;
6853 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6854 dir->non_got_ref |= ind->non_got_ref;
6855 dir->needs_plt |= ind->needs_plt;
6856 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6857
6858 if (ind->root.type != bfd_link_hash_indirect)
6859 return;
6860
6861 /* Copy over the global and procedure linkage table refcount entries.
6862 These may have been already set up by a check_relocs routine. */
6863 htab = elf_hash_table (info);
6864 if (ind->got.refcount > htab->init_got_refcount.refcount)
6865 {
6866 if (dir->got.refcount < 0)
6867 dir->got.refcount = 0;
6868 dir->got.refcount += ind->got.refcount;
6869 ind->got.refcount = htab->init_got_refcount.refcount;
6870 }
6871
6872 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6873 {
6874 if (dir->plt.refcount < 0)
6875 dir->plt.refcount = 0;
6876 dir->plt.refcount += ind->plt.refcount;
6877 ind->plt.refcount = htab->init_plt_refcount.refcount;
6878 }
6879
6880 if (ind->dynindx != -1)
6881 {
6882 if (dir->dynindx != -1)
6883 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6884 dir->dynindx = ind->dynindx;
6885 dir->dynstr_index = ind->dynstr_index;
6886 ind->dynindx = -1;
6887 ind->dynstr_index = 0;
6888 }
6889 }
6890
6891 void
6892 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6893 struct elf_link_hash_entry *h,
6894 bfd_boolean force_local)
6895 {
6896 /* STT_GNU_IFUNC symbol must go through PLT. */
6897 if (h->type != STT_GNU_IFUNC)
6898 {
6899 h->plt = elf_hash_table (info)->init_plt_offset;
6900 h->needs_plt = 0;
6901 }
6902 if (force_local)
6903 {
6904 h->forced_local = 1;
6905 if (h->dynindx != -1)
6906 {
6907 h->dynindx = -1;
6908 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6909 h->dynstr_index);
6910 }
6911 }
6912 }
6913
6914 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6915 caller. */
6916
6917 bfd_boolean
6918 _bfd_elf_link_hash_table_init
6919 (struct elf_link_hash_table *table,
6920 bfd *abfd,
6921 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6922 struct bfd_hash_table *,
6923 const char *),
6924 unsigned int entsize,
6925 enum elf_target_id target_id)
6926 {
6927 bfd_boolean ret;
6928 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6929
6930 table->init_got_refcount.refcount = can_refcount - 1;
6931 table->init_plt_refcount.refcount = can_refcount - 1;
6932 table->init_got_offset.offset = -(bfd_vma) 1;
6933 table->init_plt_offset.offset = -(bfd_vma) 1;
6934 /* The first dynamic symbol is a dummy. */
6935 table->dynsymcount = 1;
6936
6937 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6938
6939 table->root.type = bfd_link_elf_hash_table;
6940 table->hash_table_id = target_id;
6941
6942 return ret;
6943 }
6944
6945 /* Create an ELF linker hash table. */
6946
6947 struct bfd_link_hash_table *
6948 _bfd_elf_link_hash_table_create (bfd *abfd)
6949 {
6950 struct elf_link_hash_table *ret;
6951 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6952
6953 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
6954 if (ret == NULL)
6955 return NULL;
6956
6957 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6958 sizeof (struct elf_link_hash_entry),
6959 GENERIC_ELF_DATA))
6960 {
6961 free (ret);
6962 return NULL;
6963 }
6964
6965 return &ret->root;
6966 }
6967
6968 /* Destroy an ELF linker hash table. */
6969
6970 void
6971 _bfd_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
6972 {
6973 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) hash;
6974 if (htab->dynstr != NULL)
6975 _bfd_elf_strtab_free (htab->dynstr);
6976 _bfd_merge_sections_free (htab->merge_info);
6977 _bfd_generic_link_hash_table_free (hash);
6978 }
6979
6980 /* This is a hook for the ELF emulation code in the generic linker to
6981 tell the backend linker what file name to use for the DT_NEEDED
6982 entry for a dynamic object. */
6983
6984 void
6985 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6986 {
6987 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6988 && bfd_get_format (abfd) == bfd_object)
6989 elf_dt_name (abfd) = name;
6990 }
6991
6992 int
6993 bfd_elf_get_dyn_lib_class (bfd *abfd)
6994 {
6995 int lib_class;
6996 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6997 && bfd_get_format (abfd) == bfd_object)
6998 lib_class = elf_dyn_lib_class (abfd);
6999 else
7000 lib_class = 0;
7001 return lib_class;
7002 }
7003
7004 void
7005 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7006 {
7007 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7008 && bfd_get_format (abfd) == bfd_object)
7009 elf_dyn_lib_class (abfd) = lib_class;
7010 }
7011
7012 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7013 the linker ELF emulation code. */
7014
7015 struct bfd_link_needed_list *
7016 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7017 struct bfd_link_info *info)
7018 {
7019 if (! is_elf_hash_table (info->hash))
7020 return NULL;
7021 return elf_hash_table (info)->needed;
7022 }
7023
7024 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7025 hook for the linker ELF emulation code. */
7026
7027 struct bfd_link_needed_list *
7028 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7029 struct bfd_link_info *info)
7030 {
7031 if (! is_elf_hash_table (info->hash))
7032 return NULL;
7033 return elf_hash_table (info)->runpath;
7034 }
7035
7036 /* Get the name actually used for a dynamic object for a link. This
7037 is the SONAME entry if there is one. Otherwise, it is the string
7038 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7039
7040 const char *
7041 bfd_elf_get_dt_soname (bfd *abfd)
7042 {
7043 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7044 && bfd_get_format (abfd) == bfd_object)
7045 return elf_dt_name (abfd);
7046 return NULL;
7047 }
7048
7049 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7050 the ELF linker emulation code. */
7051
7052 bfd_boolean
7053 bfd_elf_get_bfd_needed_list (bfd *abfd,
7054 struct bfd_link_needed_list **pneeded)
7055 {
7056 asection *s;
7057 bfd_byte *dynbuf = NULL;
7058 unsigned int elfsec;
7059 unsigned long shlink;
7060 bfd_byte *extdyn, *extdynend;
7061 size_t extdynsize;
7062 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7063
7064 *pneeded = NULL;
7065
7066 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7067 || bfd_get_format (abfd) != bfd_object)
7068 return TRUE;
7069
7070 s = bfd_get_section_by_name (abfd, ".dynamic");
7071 if (s == NULL || s->size == 0)
7072 return TRUE;
7073
7074 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7075 goto error_return;
7076
7077 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7078 if (elfsec == SHN_BAD)
7079 goto error_return;
7080
7081 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7082
7083 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7084 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7085
7086 extdyn = dynbuf;
7087 extdynend = extdyn + s->size;
7088 for (; extdyn < extdynend; extdyn += extdynsize)
7089 {
7090 Elf_Internal_Dyn dyn;
7091
7092 (*swap_dyn_in) (abfd, extdyn, &dyn);
7093
7094 if (dyn.d_tag == DT_NULL)
7095 break;
7096
7097 if (dyn.d_tag == DT_NEEDED)
7098 {
7099 const char *string;
7100 struct bfd_link_needed_list *l;
7101 unsigned int tagv = dyn.d_un.d_val;
7102 bfd_size_type amt;
7103
7104 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7105 if (string == NULL)
7106 goto error_return;
7107
7108 amt = sizeof *l;
7109 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7110 if (l == NULL)
7111 goto error_return;
7112
7113 l->by = abfd;
7114 l->name = string;
7115 l->next = *pneeded;
7116 *pneeded = l;
7117 }
7118 }
7119
7120 free (dynbuf);
7121
7122 return TRUE;
7123
7124 error_return:
7125 if (dynbuf != NULL)
7126 free (dynbuf);
7127 return FALSE;
7128 }
7129
7130 struct elf_symbuf_symbol
7131 {
7132 unsigned long st_name; /* Symbol name, index in string tbl */
7133 unsigned char st_info; /* Type and binding attributes */
7134 unsigned char st_other; /* Visibilty, and target specific */
7135 };
7136
7137 struct elf_symbuf_head
7138 {
7139 struct elf_symbuf_symbol *ssym;
7140 bfd_size_type count;
7141 unsigned int st_shndx;
7142 };
7143
7144 struct elf_symbol
7145 {
7146 union
7147 {
7148 Elf_Internal_Sym *isym;
7149 struct elf_symbuf_symbol *ssym;
7150 } u;
7151 const char *name;
7152 };
7153
7154 /* Sort references to symbols by ascending section number. */
7155
7156 static int
7157 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7158 {
7159 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7160 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7161
7162 return s1->st_shndx - s2->st_shndx;
7163 }
7164
7165 static int
7166 elf_sym_name_compare (const void *arg1, const void *arg2)
7167 {
7168 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7169 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7170 return strcmp (s1->name, s2->name);
7171 }
7172
7173 static struct elf_symbuf_head *
7174 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7175 {
7176 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7177 struct elf_symbuf_symbol *ssym;
7178 struct elf_symbuf_head *ssymbuf, *ssymhead;
7179 bfd_size_type i, shndx_count, total_size;
7180
7181 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7182 if (indbuf == NULL)
7183 return NULL;
7184
7185 for (ind = indbuf, i = 0; i < symcount; i++)
7186 if (isymbuf[i].st_shndx != SHN_UNDEF)
7187 *ind++ = &isymbuf[i];
7188 indbufend = ind;
7189
7190 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7191 elf_sort_elf_symbol);
7192
7193 shndx_count = 0;
7194 if (indbufend > indbuf)
7195 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7196 if (ind[0]->st_shndx != ind[1]->st_shndx)
7197 shndx_count++;
7198
7199 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7200 + (indbufend - indbuf) * sizeof (*ssym));
7201 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7202 if (ssymbuf == NULL)
7203 {
7204 free (indbuf);
7205 return NULL;
7206 }
7207
7208 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7209 ssymbuf->ssym = NULL;
7210 ssymbuf->count = shndx_count;
7211 ssymbuf->st_shndx = 0;
7212 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7213 {
7214 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7215 {
7216 ssymhead++;
7217 ssymhead->ssym = ssym;
7218 ssymhead->count = 0;
7219 ssymhead->st_shndx = (*ind)->st_shndx;
7220 }
7221 ssym->st_name = (*ind)->st_name;
7222 ssym->st_info = (*ind)->st_info;
7223 ssym->st_other = (*ind)->st_other;
7224 ssymhead->count++;
7225 }
7226 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7227 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7228 == total_size));
7229
7230 free (indbuf);
7231 return ssymbuf;
7232 }
7233
7234 /* Check if 2 sections define the same set of local and global
7235 symbols. */
7236
7237 static bfd_boolean
7238 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7239 struct bfd_link_info *info)
7240 {
7241 bfd *bfd1, *bfd2;
7242 const struct elf_backend_data *bed1, *bed2;
7243 Elf_Internal_Shdr *hdr1, *hdr2;
7244 bfd_size_type symcount1, symcount2;
7245 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7246 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7247 Elf_Internal_Sym *isym, *isymend;
7248 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7249 bfd_size_type count1, count2, i;
7250 unsigned int shndx1, shndx2;
7251 bfd_boolean result;
7252
7253 bfd1 = sec1->owner;
7254 bfd2 = sec2->owner;
7255
7256 /* Both sections have to be in ELF. */
7257 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7258 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7259 return FALSE;
7260
7261 if (elf_section_type (sec1) != elf_section_type (sec2))
7262 return FALSE;
7263
7264 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7265 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7266 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7267 return FALSE;
7268
7269 bed1 = get_elf_backend_data (bfd1);
7270 bed2 = get_elf_backend_data (bfd2);
7271 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7272 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7273 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7274 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7275
7276 if (symcount1 == 0 || symcount2 == 0)
7277 return FALSE;
7278
7279 result = FALSE;
7280 isymbuf1 = NULL;
7281 isymbuf2 = NULL;
7282 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7283 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7284
7285 if (ssymbuf1 == NULL)
7286 {
7287 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7288 NULL, NULL, NULL);
7289 if (isymbuf1 == NULL)
7290 goto done;
7291
7292 if (!info->reduce_memory_overheads)
7293 elf_tdata (bfd1)->symbuf = ssymbuf1
7294 = elf_create_symbuf (symcount1, isymbuf1);
7295 }
7296
7297 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7298 {
7299 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7300 NULL, NULL, NULL);
7301 if (isymbuf2 == NULL)
7302 goto done;
7303
7304 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7305 elf_tdata (bfd2)->symbuf = ssymbuf2
7306 = elf_create_symbuf (symcount2, isymbuf2);
7307 }
7308
7309 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7310 {
7311 /* Optimized faster version. */
7312 bfd_size_type lo, hi, mid;
7313 struct elf_symbol *symp;
7314 struct elf_symbuf_symbol *ssym, *ssymend;
7315
7316 lo = 0;
7317 hi = ssymbuf1->count;
7318 ssymbuf1++;
7319 count1 = 0;
7320 while (lo < hi)
7321 {
7322 mid = (lo + hi) / 2;
7323 if (shndx1 < ssymbuf1[mid].st_shndx)
7324 hi = mid;
7325 else if (shndx1 > ssymbuf1[mid].st_shndx)
7326 lo = mid + 1;
7327 else
7328 {
7329 count1 = ssymbuf1[mid].count;
7330 ssymbuf1 += mid;
7331 break;
7332 }
7333 }
7334
7335 lo = 0;
7336 hi = ssymbuf2->count;
7337 ssymbuf2++;
7338 count2 = 0;
7339 while (lo < hi)
7340 {
7341 mid = (lo + hi) / 2;
7342 if (shndx2 < ssymbuf2[mid].st_shndx)
7343 hi = mid;
7344 else if (shndx2 > ssymbuf2[mid].st_shndx)
7345 lo = mid + 1;
7346 else
7347 {
7348 count2 = ssymbuf2[mid].count;
7349 ssymbuf2 += mid;
7350 break;
7351 }
7352 }
7353
7354 if (count1 == 0 || count2 == 0 || count1 != count2)
7355 goto done;
7356
7357 symtable1 = (struct elf_symbol *)
7358 bfd_malloc (count1 * sizeof (struct elf_symbol));
7359 symtable2 = (struct elf_symbol *)
7360 bfd_malloc (count2 * sizeof (struct elf_symbol));
7361 if (symtable1 == NULL || symtable2 == NULL)
7362 goto done;
7363
7364 symp = symtable1;
7365 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7366 ssym < ssymend; ssym++, symp++)
7367 {
7368 symp->u.ssym = ssym;
7369 symp->name = bfd_elf_string_from_elf_section (bfd1,
7370 hdr1->sh_link,
7371 ssym->st_name);
7372 }
7373
7374 symp = symtable2;
7375 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7376 ssym < ssymend; ssym++, symp++)
7377 {
7378 symp->u.ssym = ssym;
7379 symp->name = bfd_elf_string_from_elf_section (bfd2,
7380 hdr2->sh_link,
7381 ssym->st_name);
7382 }
7383
7384 /* Sort symbol by name. */
7385 qsort (symtable1, count1, sizeof (struct elf_symbol),
7386 elf_sym_name_compare);
7387 qsort (symtable2, count1, sizeof (struct elf_symbol),
7388 elf_sym_name_compare);
7389
7390 for (i = 0; i < count1; i++)
7391 /* Two symbols must have the same binding, type and name. */
7392 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7393 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7394 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7395 goto done;
7396
7397 result = TRUE;
7398 goto done;
7399 }
7400
7401 symtable1 = (struct elf_symbol *)
7402 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7403 symtable2 = (struct elf_symbol *)
7404 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7405 if (symtable1 == NULL || symtable2 == NULL)
7406 goto done;
7407
7408 /* Count definitions in the section. */
7409 count1 = 0;
7410 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7411 if (isym->st_shndx == shndx1)
7412 symtable1[count1++].u.isym = isym;
7413
7414 count2 = 0;
7415 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7416 if (isym->st_shndx == shndx2)
7417 symtable2[count2++].u.isym = isym;
7418
7419 if (count1 == 0 || count2 == 0 || count1 != count2)
7420 goto done;
7421
7422 for (i = 0; i < count1; i++)
7423 symtable1[i].name
7424 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7425 symtable1[i].u.isym->st_name);
7426
7427 for (i = 0; i < count2; i++)
7428 symtable2[i].name
7429 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7430 symtable2[i].u.isym->st_name);
7431
7432 /* Sort symbol by name. */
7433 qsort (symtable1, count1, sizeof (struct elf_symbol),
7434 elf_sym_name_compare);
7435 qsort (symtable2, count1, sizeof (struct elf_symbol),
7436 elf_sym_name_compare);
7437
7438 for (i = 0; i < count1; i++)
7439 /* Two symbols must have the same binding, type and name. */
7440 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7441 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7442 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7443 goto done;
7444
7445 result = TRUE;
7446
7447 done:
7448 if (symtable1)
7449 free (symtable1);
7450 if (symtable2)
7451 free (symtable2);
7452 if (isymbuf1)
7453 free (isymbuf1);
7454 if (isymbuf2)
7455 free (isymbuf2);
7456
7457 return result;
7458 }
7459
7460 /* Return TRUE if 2 section types are compatible. */
7461
7462 bfd_boolean
7463 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7464 bfd *bbfd, const asection *bsec)
7465 {
7466 if (asec == NULL
7467 || bsec == NULL
7468 || abfd->xvec->flavour != bfd_target_elf_flavour
7469 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7470 return TRUE;
7471
7472 return elf_section_type (asec) == elf_section_type (bsec);
7473 }
7474 \f
7475 /* Final phase of ELF linker. */
7476
7477 /* A structure we use to avoid passing large numbers of arguments. */
7478
7479 struct elf_final_link_info
7480 {
7481 /* General link information. */
7482 struct bfd_link_info *info;
7483 /* Output BFD. */
7484 bfd *output_bfd;
7485 /* Symbol string table. */
7486 struct bfd_strtab_hash *symstrtab;
7487 /* .dynsym section. */
7488 asection *dynsym_sec;
7489 /* .hash section. */
7490 asection *hash_sec;
7491 /* symbol version section (.gnu.version). */
7492 asection *symver_sec;
7493 /* Buffer large enough to hold contents of any section. */
7494 bfd_byte *contents;
7495 /* Buffer large enough to hold external relocs of any section. */
7496 void *external_relocs;
7497 /* Buffer large enough to hold internal relocs of any section. */
7498 Elf_Internal_Rela *internal_relocs;
7499 /* Buffer large enough to hold external local symbols of any input
7500 BFD. */
7501 bfd_byte *external_syms;
7502 /* And a buffer for symbol section indices. */
7503 Elf_External_Sym_Shndx *locsym_shndx;
7504 /* Buffer large enough to hold internal local symbols of any input
7505 BFD. */
7506 Elf_Internal_Sym *internal_syms;
7507 /* Array large enough to hold a symbol index for each local symbol
7508 of any input BFD. */
7509 long *indices;
7510 /* Array large enough to hold a section pointer for each local
7511 symbol of any input BFD. */
7512 asection **sections;
7513 /* Buffer to hold swapped out symbols. */
7514 bfd_byte *symbuf;
7515 /* And one for symbol section indices. */
7516 Elf_External_Sym_Shndx *symshndxbuf;
7517 /* Number of swapped out symbols in buffer. */
7518 size_t symbuf_count;
7519 /* Number of symbols which fit in symbuf. */
7520 size_t symbuf_size;
7521 /* And same for symshndxbuf. */
7522 size_t shndxbuf_size;
7523 /* Number of STT_FILE syms seen. */
7524 size_t filesym_count;
7525 };
7526
7527 /* This struct is used to pass information to elf_link_output_extsym. */
7528
7529 struct elf_outext_info
7530 {
7531 bfd_boolean failed;
7532 bfd_boolean localsyms;
7533 bfd_boolean need_second_pass;
7534 bfd_boolean second_pass;
7535 struct elf_final_link_info *flinfo;
7536 };
7537
7538
7539 /* Support for evaluating a complex relocation.
7540
7541 Complex relocations are generalized, self-describing relocations. The
7542 implementation of them consists of two parts: complex symbols, and the
7543 relocations themselves.
7544
7545 The relocations are use a reserved elf-wide relocation type code (R_RELC
7546 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7547 information (start bit, end bit, word width, etc) into the addend. This
7548 information is extracted from CGEN-generated operand tables within gas.
7549
7550 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7551 internal) representing prefix-notation expressions, including but not
7552 limited to those sorts of expressions normally encoded as addends in the
7553 addend field. The symbol mangling format is:
7554
7555 <node> := <literal>
7556 | <unary-operator> ':' <node>
7557 | <binary-operator> ':' <node> ':' <node>
7558 ;
7559
7560 <literal> := 's' <digits=N> ':' <N character symbol name>
7561 | 'S' <digits=N> ':' <N character section name>
7562 | '#' <hexdigits>
7563 ;
7564
7565 <binary-operator> := as in C
7566 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7567
7568 static void
7569 set_symbol_value (bfd *bfd_with_globals,
7570 Elf_Internal_Sym *isymbuf,
7571 size_t locsymcount,
7572 size_t symidx,
7573 bfd_vma val)
7574 {
7575 struct elf_link_hash_entry **sym_hashes;
7576 struct elf_link_hash_entry *h;
7577 size_t extsymoff = locsymcount;
7578
7579 if (symidx < locsymcount)
7580 {
7581 Elf_Internal_Sym *sym;
7582
7583 sym = isymbuf + symidx;
7584 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7585 {
7586 /* It is a local symbol: move it to the
7587 "absolute" section and give it a value. */
7588 sym->st_shndx = SHN_ABS;
7589 sym->st_value = val;
7590 return;
7591 }
7592 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7593 extsymoff = 0;
7594 }
7595
7596 /* It is a global symbol: set its link type
7597 to "defined" and give it a value. */
7598
7599 sym_hashes = elf_sym_hashes (bfd_with_globals);
7600 h = sym_hashes [symidx - extsymoff];
7601 while (h->root.type == bfd_link_hash_indirect
7602 || h->root.type == bfd_link_hash_warning)
7603 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7604 h->root.type = bfd_link_hash_defined;
7605 h->root.u.def.value = val;
7606 h->root.u.def.section = bfd_abs_section_ptr;
7607 }
7608
7609 static bfd_boolean
7610 resolve_symbol (const char *name,
7611 bfd *input_bfd,
7612 struct elf_final_link_info *flinfo,
7613 bfd_vma *result,
7614 Elf_Internal_Sym *isymbuf,
7615 size_t locsymcount)
7616 {
7617 Elf_Internal_Sym *sym;
7618 struct bfd_link_hash_entry *global_entry;
7619 const char *candidate = NULL;
7620 Elf_Internal_Shdr *symtab_hdr;
7621 size_t i;
7622
7623 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7624
7625 for (i = 0; i < locsymcount; ++ i)
7626 {
7627 sym = isymbuf + i;
7628
7629 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7630 continue;
7631
7632 candidate = bfd_elf_string_from_elf_section (input_bfd,
7633 symtab_hdr->sh_link,
7634 sym->st_name);
7635 #ifdef DEBUG
7636 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7637 name, candidate, (unsigned long) sym->st_value);
7638 #endif
7639 if (candidate && strcmp (candidate, name) == 0)
7640 {
7641 asection *sec = flinfo->sections [i];
7642
7643 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7644 *result += sec->output_offset + sec->output_section->vma;
7645 #ifdef DEBUG
7646 printf ("Found symbol with value %8.8lx\n",
7647 (unsigned long) *result);
7648 #endif
7649 return TRUE;
7650 }
7651 }
7652
7653 /* Hmm, haven't found it yet. perhaps it is a global. */
7654 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7655 FALSE, FALSE, TRUE);
7656 if (!global_entry)
7657 return FALSE;
7658
7659 if (global_entry->type == bfd_link_hash_defined
7660 || global_entry->type == bfd_link_hash_defweak)
7661 {
7662 *result = (global_entry->u.def.value
7663 + global_entry->u.def.section->output_section->vma
7664 + global_entry->u.def.section->output_offset);
7665 #ifdef DEBUG
7666 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7667 global_entry->root.string, (unsigned long) *result);
7668 #endif
7669 return TRUE;
7670 }
7671
7672 return FALSE;
7673 }
7674
7675 static bfd_boolean
7676 resolve_section (const char *name,
7677 asection *sections,
7678 bfd_vma *result)
7679 {
7680 asection *curr;
7681 unsigned int len;
7682
7683 for (curr = sections; curr; curr = curr->next)
7684 if (strcmp (curr->name, name) == 0)
7685 {
7686 *result = curr->vma;
7687 return TRUE;
7688 }
7689
7690 /* Hmm. still haven't found it. try pseudo-section names. */
7691 for (curr = sections; curr; curr = curr->next)
7692 {
7693 len = strlen (curr->name);
7694 if (len > strlen (name))
7695 continue;
7696
7697 if (strncmp (curr->name, name, len) == 0)
7698 {
7699 if (strncmp (".end", name + len, 4) == 0)
7700 {
7701 *result = curr->vma + curr->size;
7702 return TRUE;
7703 }
7704
7705 /* Insert more pseudo-section names here, if you like. */
7706 }
7707 }
7708
7709 return FALSE;
7710 }
7711
7712 static void
7713 undefined_reference (const char *reftype, const char *name)
7714 {
7715 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7716 reftype, name);
7717 }
7718
7719 static bfd_boolean
7720 eval_symbol (bfd_vma *result,
7721 const char **symp,
7722 bfd *input_bfd,
7723 struct elf_final_link_info *flinfo,
7724 bfd_vma dot,
7725 Elf_Internal_Sym *isymbuf,
7726 size_t locsymcount,
7727 int signed_p)
7728 {
7729 size_t len;
7730 size_t symlen;
7731 bfd_vma a;
7732 bfd_vma b;
7733 char symbuf[4096];
7734 const char *sym = *symp;
7735 const char *symend;
7736 bfd_boolean symbol_is_section = FALSE;
7737
7738 len = strlen (sym);
7739 symend = sym + len;
7740
7741 if (len < 1 || len > sizeof (symbuf))
7742 {
7743 bfd_set_error (bfd_error_invalid_operation);
7744 return FALSE;
7745 }
7746
7747 switch (* sym)
7748 {
7749 case '.':
7750 *result = dot;
7751 *symp = sym + 1;
7752 return TRUE;
7753
7754 case '#':
7755 ++sym;
7756 *result = strtoul (sym, (char **) symp, 16);
7757 return TRUE;
7758
7759 case 'S':
7760 symbol_is_section = TRUE;
7761 case 's':
7762 ++sym;
7763 symlen = strtol (sym, (char **) symp, 10);
7764 sym = *symp + 1; /* Skip the trailing ':'. */
7765
7766 if (symend < sym || symlen + 1 > sizeof (symbuf))
7767 {
7768 bfd_set_error (bfd_error_invalid_operation);
7769 return FALSE;
7770 }
7771
7772 memcpy (symbuf, sym, symlen);
7773 symbuf[symlen] = '\0';
7774 *symp = sym + symlen;
7775
7776 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7777 the symbol as a section, or vice-versa. so we're pretty liberal in our
7778 interpretation here; section means "try section first", not "must be a
7779 section", and likewise with symbol. */
7780
7781 if (symbol_is_section)
7782 {
7783 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7784 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7785 isymbuf, locsymcount))
7786 {
7787 undefined_reference ("section", symbuf);
7788 return FALSE;
7789 }
7790 }
7791 else
7792 {
7793 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7794 isymbuf, locsymcount)
7795 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7796 result))
7797 {
7798 undefined_reference ("symbol", symbuf);
7799 return FALSE;
7800 }
7801 }
7802
7803 return TRUE;
7804
7805 /* All that remains are operators. */
7806
7807 #define UNARY_OP(op) \
7808 if (strncmp (sym, #op, strlen (#op)) == 0) \
7809 { \
7810 sym += strlen (#op); \
7811 if (*sym == ':') \
7812 ++sym; \
7813 *symp = sym; \
7814 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7815 isymbuf, locsymcount, signed_p)) \
7816 return FALSE; \
7817 if (signed_p) \
7818 *result = op ((bfd_signed_vma) a); \
7819 else \
7820 *result = op a; \
7821 return TRUE; \
7822 }
7823
7824 #define BINARY_OP(op) \
7825 if (strncmp (sym, #op, strlen (#op)) == 0) \
7826 { \
7827 sym += strlen (#op); \
7828 if (*sym == ':') \
7829 ++sym; \
7830 *symp = sym; \
7831 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7832 isymbuf, locsymcount, signed_p)) \
7833 return FALSE; \
7834 ++*symp; \
7835 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7836 isymbuf, locsymcount, signed_p)) \
7837 return FALSE; \
7838 if (signed_p) \
7839 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7840 else \
7841 *result = a op b; \
7842 return TRUE; \
7843 }
7844
7845 default:
7846 UNARY_OP (0-);
7847 BINARY_OP (<<);
7848 BINARY_OP (>>);
7849 BINARY_OP (==);
7850 BINARY_OP (!=);
7851 BINARY_OP (<=);
7852 BINARY_OP (>=);
7853 BINARY_OP (&&);
7854 BINARY_OP (||);
7855 UNARY_OP (~);
7856 UNARY_OP (!);
7857 BINARY_OP (*);
7858 BINARY_OP (/);
7859 BINARY_OP (%);
7860 BINARY_OP (^);
7861 BINARY_OP (|);
7862 BINARY_OP (&);
7863 BINARY_OP (+);
7864 BINARY_OP (-);
7865 BINARY_OP (<);
7866 BINARY_OP (>);
7867 #undef UNARY_OP
7868 #undef BINARY_OP
7869 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7870 bfd_set_error (bfd_error_invalid_operation);
7871 return FALSE;
7872 }
7873 }
7874
7875 static void
7876 put_value (bfd_vma size,
7877 unsigned long chunksz,
7878 bfd *input_bfd,
7879 bfd_vma x,
7880 bfd_byte *location)
7881 {
7882 location += (size - chunksz);
7883
7884 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7885 {
7886 switch (chunksz)
7887 {
7888 default:
7889 case 0:
7890 abort ();
7891 case 1:
7892 bfd_put_8 (input_bfd, x, location);
7893 break;
7894 case 2:
7895 bfd_put_16 (input_bfd, x, location);
7896 break;
7897 case 4:
7898 bfd_put_32 (input_bfd, x, location);
7899 break;
7900 case 8:
7901 #ifdef BFD64
7902 bfd_put_64 (input_bfd, x, location);
7903 #else
7904 abort ();
7905 #endif
7906 break;
7907 }
7908 }
7909 }
7910
7911 static bfd_vma
7912 get_value (bfd_vma size,
7913 unsigned long chunksz,
7914 bfd *input_bfd,
7915 bfd_byte *location)
7916 {
7917 int shift;
7918 bfd_vma x = 0;
7919
7920 /* Sanity checks. */
7921 BFD_ASSERT (chunksz <= sizeof (x)
7922 && size >= chunksz
7923 && chunksz != 0
7924 && (size % chunksz) == 0
7925 && input_bfd != NULL
7926 && location != NULL);
7927
7928 if (chunksz == sizeof (x))
7929 {
7930 BFD_ASSERT (size == chunksz);
7931
7932 /* Make sure that we do not perform an undefined shift operation.
7933 We know that size == chunksz so there will only be one iteration
7934 of the loop below. */
7935 shift = 0;
7936 }
7937 else
7938 shift = 8 * chunksz;
7939
7940 for (; size; size -= chunksz, location += chunksz)
7941 {
7942 switch (chunksz)
7943 {
7944 case 1:
7945 x = (x << shift) | bfd_get_8 (input_bfd, location);
7946 break;
7947 case 2:
7948 x = (x << shift) | bfd_get_16 (input_bfd, location);
7949 break;
7950 case 4:
7951 x = (x << shift) | bfd_get_32 (input_bfd, location);
7952 break;
7953 #ifdef BFD64
7954 case 8:
7955 x = (x << shift) | bfd_get_64 (input_bfd, location);
7956 break;
7957 #endif
7958 default:
7959 abort ();
7960 }
7961 }
7962 return x;
7963 }
7964
7965 static void
7966 decode_complex_addend (unsigned long *start, /* in bits */
7967 unsigned long *oplen, /* in bits */
7968 unsigned long *len, /* in bits */
7969 unsigned long *wordsz, /* in bytes */
7970 unsigned long *chunksz, /* in bytes */
7971 unsigned long *lsb0_p,
7972 unsigned long *signed_p,
7973 unsigned long *trunc_p,
7974 unsigned long encoded)
7975 {
7976 * start = encoded & 0x3F;
7977 * len = (encoded >> 6) & 0x3F;
7978 * oplen = (encoded >> 12) & 0x3F;
7979 * wordsz = (encoded >> 18) & 0xF;
7980 * chunksz = (encoded >> 22) & 0xF;
7981 * lsb0_p = (encoded >> 27) & 1;
7982 * signed_p = (encoded >> 28) & 1;
7983 * trunc_p = (encoded >> 29) & 1;
7984 }
7985
7986 bfd_reloc_status_type
7987 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7988 asection *input_section ATTRIBUTE_UNUSED,
7989 bfd_byte *contents,
7990 Elf_Internal_Rela *rel,
7991 bfd_vma relocation)
7992 {
7993 bfd_vma shift, x, mask;
7994 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7995 bfd_reloc_status_type r;
7996
7997 /* Perform this reloc, since it is complex.
7998 (this is not to say that it necessarily refers to a complex
7999 symbol; merely that it is a self-describing CGEN based reloc.
8000 i.e. the addend has the complete reloc information (bit start, end,
8001 word size, etc) encoded within it.). */
8002
8003 decode_complex_addend (&start, &oplen, &len, &wordsz,
8004 &chunksz, &lsb0_p, &signed_p,
8005 &trunc_p, rel->r_addend);
8006
8007 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8008
8009 if (lsb0_p)
8010 shift = (start + 1) - len;
8011 else
8012 shift = (8 * wordsz) - (start + len);
8013
8014 /* FIXME: octets_per_byte. */
8015 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
8016
8017 #ifdef DEBUG
8018 printf ("Doing complex reloc: "
8019 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8020 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8021 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8022 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8023 oplen, (unsigned long) x, (unsigned long) mask,
8024 (unsigned long) relocation);
8025 #endif
8026
8027 r = bfd_reloc_ok;
8028 if (! trunc_p)
8029 /* Now do an overflow check. */
8030 r = bfd_check_overflow ((signed_p
8031 ? complain_overflow_signed
8032 : complain_overflow_unsigned),
8033 len, 0, (8 * wordsz),
8034 relocation);
8035
8036 /* Do the deed. */
8037 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8038
8039 #ifdef DEBUG
8040 printf (" relocation: %8.8lx\n"
8041 " shifted mask: %8.8lx\n"
8042 " shifted/masked reloc: %8.8lx\n"
8043 " result: %8.8lx\n",
8044 (unsigned long) relocation, (unsigned long) (mask << shift),
8045 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8046 #endif
8047 /* FIXME: octets_per_byte. */
8048 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
8049 return r;
8050 }
8051
8052 /* When performing a relocatable link, the input relocations are
8053 preserved. But, if they reference global symbols, the indices
8054 referenced must be updated. Update all the relocations found in
8055 RELDATA. */
8056
8057 static void
8058 elf_link_adjust_relocs (bfd *abfd,
8059 struct bfd_elf_section_reloc_data *reldata)
8060 {
8061 unsigned int i;
8062 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8063 bfd_byte *erela;
8064 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8065 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8066 bfd_vma r_type_mask;
8067 int r_sym_shift;
8068 unsigned int count = reldata->count;
8069 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8070
8071 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8072 {
8073 swap_in = bed->s->swap_reloc_in;
8074 swap_out = bed->s->swap_reloc_out;
8075 }
8076 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8077 {
8078 swap_in = bed->s->swap_reloca_in;
8079 swap_out = bed->s->swap_reloca_out;
8080 }
8081 else
8082 abort ();
8083
8084 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8085 abort ();
8086
8087 if (bed->s->arch_size == 32)
8088 {
8089 r_type_mask = 0xff;
8090 r_sym_shift = 8;
8091 }
8092 else
8093 {
8094 r_type_mask = 0xffffffff;
8095 r_sym_shift = 32;
8096 }
8097
8098 erela = reldata->hdr->contents;
8099 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8100 {
8101 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8102 unsigned int j;
8103
8104 if (*rel_hash == NULL)
8105 continue;
8106
8107 BFD_ASSERT ((*rel_hash)->indx >= 0);
8108
8109 (*swap_in) (abfd, erela, irela);
8110 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8111 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8112 | (irela[j].r_info & r_type_mask));
8113 (*swap_out) (abfd, irela, erela);
8114 }
8115 }
8116
8117 struct elf_link_sort_rela
8118 {
8119 union {
8120 bfd_vma offset;
8121 bfd_vma sym_mask;
8122 } u;
8123 enum elf_reloc_type_class type;
8124 /* We use this as an array of size int_rels_per_ext_rel. */
8125 Elf_Internal_Rela rela[1];
8126 };
8127
8128 static int
8129 elf_link_sort_cmp1 (const void *A, const void *B)
8130 {
8131 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8132 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8133 int relativea, relativeb;
8134
8135 relativea = a->type == reloc_class_relative;
8136 relativeb = b->type == reloc_class_relative;
8137
8138 if (relativea < relativeb)
8139 return 1;
8140 if (relativea > relativeb)
8141 return -1;
8142 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8143 return -1;
8144 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8145 return 1;
8146 if (a->rela->r_offset < b->rela->r_offset)
8147 return -1;
8148 if (a->rela->r_offset > b->rela->r_offset)
8149 return 1;
8150 return 0;
8151 }
8152
8153 static int
8154 elf_link_sort_cmp2 (const void *A, const void *B)
8155 {
8156 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8157 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8158 int copya, copyb;
8159
8160 if (a->u.offset < b->u.offset)
8161 return -1;
8162 if (a->u.offset > b->u.offset)
8163 return 1;
8164 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
8165 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
8166 if (copya < copyb)
8167 return -1;
8168 if (copya > copyb)
8169 return 1;
8170 if (a->rela->r_offset < b->rela->r_offset)
8171 return -1;
8172 if (a->rela->r_offset > b->rela->r_offset)
8173 return 1;
8174 return 0;
8175 }
8176
8177 static size_t
8178 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8179 {
8180 asection *dynamic_relocs;
8181 asection *rela_dyn;
8182 asection *rel_dyn;
8183 bfd_size_type count, size;
8184 size_t i, ret, sort_elt, ext_size;
8185 bfd_byte *sort, *s_non_relative, *p;
8186 struct elf_link_sort_rela *sq;
8187 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8188 int i2e = bed->s->int_rels_per_ext_rel;
8189 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8190 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8191 struct bfd_link_order *lo;
8192 bfd_vma r_sym_mask;
8193 bfd_boolean use_rela;
8194
8195 /* Find a dynamic reloc section. */
8196 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8197 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8198 if (rela_dyn != NULL && rela_dyn->size > 0
8199 && rel_dyn != NULL && rel_dyn->size > 0)
8200 {
8201 bfd_boolean use_rela_initialised = FALSE;
8202
8203 /* This is just here to stop gcc from complaining.
8204 It's initialization checking code is not perfect. */
8205 use_rela = TRUE;
8206
8207 /* Both sections are present. Examine the sizes
8208 of the indirect sections to help us choose. */
8209 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8210 if (lo->type == bfd_indirect_link_order)
8211 {
8212 asection *o = lo->u.indirect.section;
8213
8214 if ((o->size % bed->s->sizeof_rela) == 0)
8215 {
8216 if ((o->size % bed->s->sizeof_rel) == 0)
8217 /* Section size is divisible by both rel and rela sizes.
8218 It is of no help to us. */
8219 ;
8220 else
8221 {
8222 /* Section size is only divisible by rela. */
8223 if (use_rela_initialised && (use_rela == FALSE))
8224 {
8225 _bfd_error_handler
8226 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8227 bfd_set_error (bfd_error_invalid_operation);
8228 return 0;
8229 }
8230 else
8231 {
8232 use_rela = TRUE;
8233 use_rela_initialised = TRUE;
8234 }
8235 }
8236 }
8237 else if ((o->size % bed->s->sizeof_rel) == 0)
8238 {
8239 /* Section size is only divisible by rel. */
8240 if (use_rela_initialised && (use_rela == TRUE))
8241 {
8242 _bfd_error_handler
8243 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8244 bfd_set_error (bfd_error_invalid_operation);
8245 return 0;
8246 }
8247 else
8248 {
8249 use_rela = FALSE;
8250 use_rela_initialised = TRUE;
8251 }
8252 }
8253 else
8254 {
8255 /* The section size is not divisible by either - something is wrong. */
8256 _bfd_error_handler
8257 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8258 bfd_set_error (bfd_error_invalid_operation);
8259 return 0;
8260 }
8261 }
8262
8263 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8264 if (lo->type == bfd_indirect_link_order)
8265 {
8266 asection *o = lo->u.indirect.section;
8267
8268 if ((o->size % bed->s->sizeof_rela) == 0)
8269 {
8270 if ((o->size % bed->s->sizeof_rel) == 0)
8271 /* Section size is divisible by both rel and rela sizes.
8272 It is of no help to us. */
8273 ;
8274 else
8275 {
8276 /* Section size is only divisible by rela. */
8277 if (use_rela_initialised && (use_rela == FALSE))
8278 {
8279 _bfd_error_handler
8280 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8281 bfd_set_error (bfd_error_invalid_operation);
8282 return 0;
8283 }
8284 else
8285 {
8286 use_rela = TRUE;
8287 use_rela_initialised = TRUE;
8288 }
8289 }
8290 }
8291 else if ((o->size % bed->s->sizeof_rel) == 0)
8292 {
8293 /* Section size is only divisible by rel. */
8294 if (use_rela_initialised && (use_rela == TRUE))
8295 {
8296 _bfd_error_handler
8297 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8298 bfd_set_error (bfd_error_invalid_operation);
8299 return 0;
8300 }
8301 else
8302 {
8303 use_rela = FALSE;
8304 use_rela_initialised = TRUE;
8305 }
8306 }
8307 else
8308 {
8309 /* The section size is not divisible by either - something is wrong. */
8310 _bfd_error_handler
8311 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8312 bfd_set_error (bfd_error_invalid_operation);
8313 return 0;
8314 }
8315 }
8316
8317 if (! use_rela_initialised)
8318 /* Make a guess. */
8319 use_rela = TRUE;
8320 }
8321 else if (rela_dyn != NULL && rela_dyn->size > 0)
8322 use_rela = TRUE;
8323 else if (rel_dyn != NULL && rel_dyn->size > 0)
8324 use_rela = FALSE;
8325 else
8326 return 0;
8327
8328 if (use_rela)
8329 {
8330 dynamic_relocs = rela_dyn;
8331 ext_size = bed->s->sizeof_rela;
8332 swap_in = bed->s->swap_reloca_in;
8333 swap_out = bed->s->swap_reloca_out;
8334 }
8335 else
8336 {
8337 dynamic_relocs = rel_dyn;
8338 ext_size = bed->s->sizeof_rel;
8339 swap_in = bed->s->swap_reloc_in;
8340 swap_out = bed->s->swap_reloc_out;
8341 }
8342
8343 size = 0;
8344 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8345 if (lo->type == bfd_indirect_link_order)
8346 size += lo->u.indirect.section->size;
8347
8348 if (size != dynamic_relocs->size)
8349 return 0;
8350
8351 sort_elt = (sizeof (struct elf_link_sort_rela)
8352 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8353
8354 count = dynamic_relocs->size / ext_size;
8355 if (count == 0)
8356 return 0;
8357 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8358
8359 if (sort == NULL)
8360 {
8361 (*info->callbacks->warning)
8362 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8363 return 0;
8364 }
8365
8366 if (bed->s->arch_size == 32)
8367 r_sym_mask = ~(bfd_vma) 0xff;
8368 else
8369 r_sym_mask = ~(bfd_vma) 0xffffffff;
8370
8371 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8372 if (lo->type == bfd_indirect_link_order)
8373 {
8374 bfd_byte *erel, *erelend;
8375 asection *o = lo->u.indirect.section;
8376
8377 if (o->contents == NULL && o->size != 0)
8378 {
8379 /* This is a reloc section that is being handled as a normal
8380 section. See bfd_section_from_shdr. We can't combine
8381 relocs in this case. */
8382 free (sort);
8383 return 0;
8384 }
8385 erel = o->contents;
8386 erelend = o->contents + o->size;
8387 /* FIXME: octets_per_byte. */
8388 p = sort + o->output_offset / ext_size * sort_elt;
8389
8390 while (erel < erelend)
8391 {
8392 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8393
8394 (*swap_in) (abfd, erel, s->rela);
8395 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8396 s->u.sym_mask = r_sym_mask;
8397 p += sort_elt;
8398 erel += ext_size;
8399 }
8400 }
8401
8402 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8403
8404 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8405 {
8406 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8407 if (s->type != reloc_class_relative)
8408 break;
8409 }
8410 ret = i;
8411 s_non_relative = p;
8412
8413 sq = (struct elf_link_sort_rela *) s_non_relative;
8414 for (; i < count; i++, p += sort_elt)
8415 {
8416 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8417 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8418 sq = sp;
8419 sp->u.offset = sq->rela->r_offset;
8420 }
8421
8422 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8423
8424 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8425 if (lo->type == bfd_indirect_link_order)
8426 {
8427 bfd_byte *erel, *erelend;
8428 asection *o = lo->u.indirect.section;
8429
8430 erel = o->contents;
8431 erelend = o->contents + o->size;
8432 /* FIXME: octets_per_byte. */
8433 p = sort + o->output_offset / ext_size * sort_elt;
8434 while (erel < erelend)
8435 {
8436 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8437 (*swap_out) (abfd, s->rela, erel);
8438 p += sort_elt;
8439 erel += ext_size;
8440 }
8441 }
8442
8443 free (sort);
8444 *psec = dynamic_relocs;
8445 return ret;
8446 }
8447
8448 /* Flush the output symbols to the file. */
8449
8450 static bfd_boolean
8451 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8452 const struct elf_backend_data *bed)
8453 {
8454 if (flinfo->symbuf_count > 0)
8455 {
8456 Elf_Internal_Shdr *hdr;
8457 file_ptr pos;
8458 bfd_size_type amt;
8459
8460 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8461 pos = hdr->sh_offset + hdr->sh_size;
8462 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8463 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8464 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8465 return FALSE;
8466
8467 hdr->sh_size += amt;
8468 flinfo->symbuf_count = 0;
8469 }
8470
8471 return TRUE;
8472 }
8473
8474 /* Add a symbol to the output symbol table. */
8475
8476 static int
8477 elf_link_output_sym (struct elf_final_link_info *flinfo,
8478 const char *name,
8479 Elf_Internal_Sym *elfsym,
8480 asection *input_sec,
8481 struct elf_link_hash_entry *h)
8482 {
8483 bfd_byte *dest;
8484 Elf_External_Sym_Shndx *destshndx;
8485 int (*output_symbol_hook)
8486 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8487 struct elf_link_hash_entry *);
8488 const struct elf_backend_data *bed;
8489
8490 bed = get_elf_backend_data (flinfo->output_bfd);
8491 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8492 if (output_symbol_hook != NULL)
8493 {
8494 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8495 if (ret != 1)
8496 return ret;
8497 }
8498
8499 if (name == NULL || *name == '\0')
8500 elfsym->st_name = 0;
8501 else if (input_sec->flags & SEC_EXCLUDE)
8502 elfsym->st_name = 0;
8503 else
8504 {
8505 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8506 name, TRUE, FALSE);
8507 if (elfsym->st_name == (unsigned long) -1)
8508 return 0;
8509 }
8510
8511 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8512 {
8513 if (! elf_link_flush_output_syms (flinfo, bed))
8514 return 0;
8515 }
8516
8517 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8518 destshndx = flinfo->symshndxbuf;
8519 if (destshndx != NULL)
8520 {
8521 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8522 {
8523 bfd_size_type amt;
8524
8525 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8526 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8527 amt * 2);
8528 if (destshndx == NULL)
8529 return 0;
8530 flinfo->symshndxbuf = destshndx;
8531 memset ((char *) destshndx + amt, 0, amt);
8532 flinfo->shndxbuf_size *= 2;
8533 }
8534 destshndx += bfd_get_symcount (flinfo->output_bfd);
8535 }
8536
8537 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8538 flinfo->symbuf_count += 1;
8539 bfd_get_symcount (flinfo->output_bfd) += 1;
8540
8541 return 1;
8542 }
8543
8544 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8545
8546 static bfd_boolean
8547 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8548 {
8549 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8550 && sym->st_shndx < SHN_LORESERVE)
8551 {
8552 /* The gABI doesn't support dynamic symbols in output sections
8553 beyond 64k. */
8554 (*_bfd_error_handler)
8555 (_("%B: Too many sections: %d (>= %d)"),
8556 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8557 bfd_set_error (bfd_error_nonrepresentable_section);
8558 return FALSE;
8559 }
8560 return TRUE;
8561 }
8562
8563 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8564 allowing an unsatisfied unversioned symbol in the DSO to match a
8565 versioned symbol that would normally require an explicit version.
8566 We also handle the case that a DSO references a hidden symbol
8567 which may be satisfied by a versioned symbol in another DSO. */
8568
8569 static bfd_boolean
8570 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8571 const struct elf_backend_data *bed,
8572 struct elf_link_hash_entry *h)
8573 {
8574 bfd *abfd;
8575 struct elf_link_loaded_list *loaded;
8576
8577 if (!is_elf_hash_table (info->hash))
8578 return FALSE;
8579
8580 /* Check indirect symbol. */
8581 while (h->root.type == bfd_link_hash_indirect)
8582 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8583
8584 switch (h->root.type)
8585 {
8586 default:
8587 abfd = NULL;
8588 break;
8589
8590 case bfd_link_hash_undefined:
8591 case bfd_link_hash_undefweak:
8592 abfd = h->root.u.undef.abfd;
8593 if ((abfd->flags & DYNAMIC) == 0
8594 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8595 return FALSE;
8596 break;
8597
8598 case bfd_link_hash_defined:
8599 case bfd_link_hash_defweak:
8600 abfd = h->root.u.def.section->owner;
8601 break;
8602
8603 case bfd_link_hash_common:
8604 abfd = h->root.u.c.p->section->owner;
8605 break;
8606 }
8607 BFD_ASSERT (abfd != NULL);
8608
8609 for (loaded = elf_hash_table (info)->loaded;
8610 loaded != NULL;
8611 loaded = loaded->next)
8612 {
8613 bfd *input;
8614 Elf_Internal_Shdr *hdr;
8615 bfd_size_type symcount;
8616 bfd_size_type extsymcount;
8617 bfd_size_type extsymoff;
8618 Elf_Internal_Shdr *versymhdr;
8619 Elf_Internal_Sym *isym;
8620 Elf_Internal_Sym *isymend;
8621 Elf_Internal_Sym *isymbuf;
8622 Elf_External_Versym *ever;
8623 Elf_External_Versym *extversym;
8624
8625 input = loaded->abfd;
8626
8627 /* We check each DSO for a possible hidden versioned definition. */
8628 if (input == abfd
8629 || (input->flags & DYNAMIC) == 0
8630 || elf_dynversym (input) == 0)
8631 continue;
8632
8633 hdr = &elf_tdata (input)->dynsymtab_hdr;
8634
8635 symcount = hdr->sh_size / bed->s->sizeof_sym;
8636 if (elf_bad_symtab (input))
8637 {
8638 extsymcount = symcount;
8639 extsymoff = 0;
8640 }
8641 else
8642 {
8643 extsymcount = symcount - hdr->sh_info;
8644 extsymoff = hdr->sh_info;
8645 }
8646
8647 if (extsymcount == 0)
8648 continue;
8649
8650 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8651 NULL, NULL, NULL);
8652 if (isymbuf == NULL)
8653 return FALSE;
8654
8655 /* Read in any version definitions. */
8656 versymhdr = &elf_tdata (input)->dynversym_hdr;
8657 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8658 if (extversym == NULL)
8659 goto error_ret;
8660
8661 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8662 || (bfd_bread (extversym, versymhdr->sh_size, input)
8663 != versymhdr->sh_size))
8664 {
8665 free (extversym);
8666 error_ret:
8667 free (isymbuf);
8668 return FALSE;
8669 }
8670
8671 ever = extversym + extsymoff;
8672 isymend = isymbuf + extsymcount;
8673 for (isym = isymbuf; isym < isymend; isym++, ever++)
8674 {
8675 const char *name;
8676 Elf_Internal_Versym iver;
8677 unsigned short version_index;
8678
8679 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8680 || isym->st_shndx == SHN_UNDEF)
8681 continue;
8682
8683 name = bfd_elf_string_from_elf_section (input,
8684 hdr->sh_link,
8685 isym->st_name);
8686 if (strcmp (name, h->root.root.string) != 0)
8687 continue;
8688
8689 _bfd_elf_swap_versym_in (input, ever, &iver);
8690
8691 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8692 && !(h->def_regular
8693 && h->forced_local))
8694 {
8695 /* If we have a non-hidden versioned sym, then it should
8696 have provided a definition for the undefined sym unless
8697 it is defined in a non-shared object and forced local.
8698 */
8699 abort ();
8700 }
8701
8702 version_index = iver.vs_vers & VERSYM_VERSION;
8703 if (version_index == 1 || version_index == 2)
8704 {
8705 /* This is the base or first version. We can use it. */
8706 free (extversym);
8707 free (isymbuf);
8708 return TRUE;
8709 }
8710 }
8711
8712 free (extversym);
8713 free (isymbuf);
8714 }
8715
8716 return FALSE;
8717 }
8718
8719 /* Add an external symbol to the symbol table. This is called from
8720 the hash table traversal routine. When generating a shared object,
8721 we go through the symbol table twice. The first time we output
8722 anything that might have been forced to local scope in a version
8723 script. The second time we output the symbols that are still
8724 global symbols. */
8725
8726 static bfd_boolean
8727 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8728 {
8729 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8730 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8731 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8732 bfd_boolean strip;
8733 Elf_Internal_Sym sym;
8734 asection *input_sec;
8735 const struct elf_backend_data *bed;
8736 long indx;
8737 int ret;
8738
8739 if (h->root.type == bfd_link_hash_warning)
8740 {
8741 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8742 if (h->root.type == bfd_link_hash_new)
8743 return TRUE;
8744 }
8745
8746 /* Decide whether to output this symbol in this pass. */
8747 if (eoinfo->localsyms)
8748 {
8749 if (!h->forced_local)
8750 return TRUE;
8751 if (eoinfo->second_pass
8752 && !((h->root.type == bfd_link_hash_defined
8753 || h->root.type == bfd_link_hash_defweak)
8754 && h->root.u.def.section->output_section != NULL))
8755 return TRUE;
8756 }
8757 else
8758 {
8759 if (h->forced_local)
8760 return TRUE;
8761 }
8762
8763 bed = get_elf_backend_data (flinfo->output_bfd);
8764
8765 if (h->root.type == bfd_link_hash_undefined)
8766 {
8767 /* If we have an undefined symbol reference here then it must have
8768 come from a shared library that is being linked in. (Undefined
8769 references in regular files have already been handled unless
8770 they are in unreferenced sections which are removed by garbage
8771 collection). */
8772 bfd_boolean ignore_undef = FALSE;
8773
8774 /* Some symbols may be special in that the fact that they're
8775 undefined can be safely ignored - let backend determine that. */
8776 if (bed->elf_backend_ignore_undef_symbol)
8777 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8778
8779 /* If we are reporting errors for this situation then do so now. */
8780 if (!ignore_undef
8781 && h->ref_dynamic
8782 && (!h->ref_regular || flinfo->info->gc_sections)
8783 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8784 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8785 {
8786 if (!(flinfo->info->callbacks->undefined_symbol
8787 (flinfo->info, h->root.root.string,
8788 h->ref_regular ? NULL : h->root.u.undef.abfd,
8789 NULL, 0,
8790 (flinfo->info->unresolved_syms_in_shared_libs
8791 == RM_GENERATE_ERROR))))
8792 {
8793 bfd_set_error (bfd_error_bad_value);
8794 eoinfo->failed = TRUE;
8795 return FALSE;
8796 }
8797 }
8798 }
8799
8800 /* We should also warn if a forced local symbol is referenced from
8801 shared libraries. */
8802 if (!flinfo->info->relocatable
8803 && flinfo->info->executable
8804 && h->forced_local
8805 && h->ref_dynamic
8806 && h->def_regular
8807 && !h->dynamic_def
8808 && h->ref_dynamic_nonweak
8809 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8810 {
8811 bfd *def_bfd;
8812 const char *msg;
8813 struct elf_link_hash_entry *hi = h;
8814
8815 /* Check indirect symbol. */
8816 while (hi->root.type == bfd_link_hash_indirect)
8817 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8818
8819 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8820 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8821 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8822 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8823 else
8824 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8825 def_bfd = flinfo->output_bfd;
8826 if (hi->root.u.def.section != bfd_abs_section_ptr)
8827 def_bfd = hi->root.u.def.section->owner;
8828 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8829 h->root.root.string);
8830 bfd_set_error (bfd_error_bad_value);
8831 eoinfo->failed = TRUE;
8832 return FALSE;
8833 }
8834
8835 /* We don't want to output symbols that have never been mentioned by
8836 a regular file, or that we have been told to strip. However, if
8837 h->indx is set to -2, the symbol is used by a reloc and we must
8838 output it. */
8839 if (h->indx == -2)
8840 strip = FALSE;
8841 else if ((h->def_dynamic
8842 || h->ref_dynamic
8843 || h->root.type == bfd_link_hash_new)
8844 && !h->def_regular
8845 && !h->ref_regular)
8846 strip = TRUE;
8847 else if (flinfo->info->strip == strip_all)
8848 strip = TRUE;
8849 else if (flinfo->info->strip == strip_some
8850 && bfd_hash_lookup (flinfo->info->keep_hash,
8851 h->root.root.string, FALSE, FALSE) == NULL)
8852 strip = TRUE;
8853 else if ((h->root.type == bfd_link_hash_defined
8854 || h->root.type == bfd_link_hash_defweak)
8855 && ((flinfo->info->strip_discarded
8856 && discarded_section (h->root.u.def.section))
8857 || (h->root.u.def.section->owner != NULL
8858 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8859 strip = TRUE;
8860 else if ((h->root.type == bfd_link_hash_undefined
8861 || h->root.type == bfd_link_hash_undefweak)
8862 && h->root.u.undef.abfd != NULL
8863 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8864 strip = TRUE;
8865 else
8866 strip = FALSE;
8867
8868 /* If we're stripping it, and it's not a dynamic symbol, there's
8869 nothing else to do unless it is a forced local symbol or a
8870 STT_GNU_IFUNC symbol. */
8871 if (strip
8872 && h->dynindx == -1
8873 && h->type != STT_GNU_IFUNC
8874 && !h->forced_local)
8875 return TRUE;
8876
8877 sym.st_value = 0;
8878 sym.st_size = h->size;
8879 sym.st_other = h->other;
8880 if (h->forced_local)
8881 {
8882 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8883 /* Turn off visibility on local symbol. */
8884 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8885 }
8886 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
8887 else if (h->unique_global && h->def_regular)
8888 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8889 else if (h->root.type == bfd_link_hash_undefweak
8890 || h->root.type == bfd_link_hash_defweak)
8891 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8892 else
8893 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8894 sym.st_target_internal = h->target_internal;
8895
8896 switch (h->root.type)
8897 {
8898 default:
8899 case bfd_link_hash_new:
8900 case bfd_link_hash_warning:
8901 abort ();
8902 return FALSE;
8903
8904 case bfd_link_hash_undefined:
8905 case bfd_link_hash_undefweak:
8906 input_sec = bfd_und_section_ptr;
8907 sym.st_shndx = SHN_UNDEF;
8908 break;
8909
8910 case bfd_link_hash_defined:
8911 case bfd_link_hash_defweak:
8912 {
8913 input_sec = h->root.u.def.section;
8914 if (input_sec->output_section != NULL)
8915 {
8916 if (eoinfo->localsyms && flinfo->filesym_count == 1)
8917 {
8918 bfd_boolean second_pass_sym
8919 = (input_sec->owner == flinfo->output_bfd
8920 || input_sec->owner == NULL
8921 || (input_sec->flags & SEC_LINKER_CREATED) != 0
8922 || (input_sec->owner->flags & BFD_LINKER_CREATED) != 0);
8923
8924 eoinfo->need_second_pass |= second_pass_sym;
8925 if (eoinfo->second_pass != second_pass_sym)
8926 return TRUE;
8927 }
8928
8929 sym.st_shndx =
8930 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
8931 input_sec->output_section);
8932 if (sym.st_shndx == SHN_BAD)
8933 {
8934 (*_bfd_error_handler)
8935 (_("%B: could not find output section %A for input section %A"),
8936 flinfo->output_bfd, input_sec->output_section, input_sec);
8937 bfd_set_error (bfd_error_nonrepresentable_section);
8938 eoinfo->failed = TRUE;
8939 return FALSE;
8940 }
8941
8942 /* ELF symbols in relocatable files are section relative,
8943 but in nonrelocatable files they are virtual
8944 addresses. */
8945 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8946 if (!flinfo->info->relocatable)
8947 {
8948 sym.st_value += input_sec->output_section->vma;
8949 if (h->type == STT_TLS)
8950 {
8951 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
8952 if (tls_sec != NULL)
8953 sym.st_value -= tls_sec->vma;
8954 else
8955 {
8956 /* The TLS section may have been garbage collected. */
8957 BFD_ASSERT (flinfo->info->gc_sections
8958 && !input_sec->gc_mark);
8959 }
8960 }
8961 }
8962 }
8963 else
8964 {
8965 BFD_ASSERT (input_sec->owner == NULL
8966 || (input_sec->owner->flags & DYNAMIC) != 0);
8967 sym.st_shndx = SHN_UNDEF;
8968 input_sec = bfd_und_section_ptr;
8969 }
8970 }
8971 break;
8972
8973 case bfd_link_hash_common:
8974 input_sec = h->root.u.c.p->section;
8975 sym.st_shndx = bed->common_section_index (input_sec);
8976 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8977 break;
8978
8979 case bfd_link_hash_indirect:
8980 /* These symbols are created by symbol versioning. They point
8981 to the decorated version of the name. For example, if the
8982 symbol foo@@GNU_1.2 is the default, which should be used when
8983 foo is used with no version, then we add an indirect symbol
8984 foo which points to foo@@GNU_1.2. We ignore these symbols,
8985 since the indirected symbol is already in the hash table. */
8986 return TRUE;
8987 }
8988
8989 /* Give the processor backend a chance to tweak the symbol value,
8990 and also to finish up anything that needs to be done for this
8991 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8992 forced local syms when non-shared is due to a historical quirk.
8993 STT_GNU_IFUNC symbol must go through PLT. */
8994 if ((h->type == STT_GNU_IFUNC
8995 && h->def_regular
8996 && !flinfo->info->relocatable)
8997 || ((h->dynindx != -1
8998 || h->forced_local)
8999 && ((flinfo->info->shared
9000 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9001 || h->root.type != bfd_link_hash_undefweak))
9002 || !h->forced_local)
9003 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9004 {
9005 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9006 (flinfo->output_bfd, flinfo->info, h, &sym)))
9007 {
9008 eoinfo->failed = TRUE;
9009 return FALSE;
9010 }
9011 }
9012
9013 /* If we are marking the symbol as undefined, and there are no
9014 non-weak references to this symbol from a regular object, then
9015 mark the symbol as weak undefined; if there are non-weak
9016 references, mark the symbol as strong. We can't do this earlier,
9017 because it might not be marked as undefined until the
9018 finish_dynamic_symbol routine gets through with it. */
9019 if (sym.st_shndx == SHN_UNDEF
9020 && h->ref_regular
9021 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9022 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9023 {
9024 int bindtype;
9025 unsigned int type = ELF_ST_TYPE (sym.st_info);
9026
9027 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9028 if (type == STT_GNU_IFUNC)
9029 type = STT_FUNC;
9030
9031 if (h->ref_regular_nonweak)
9032 bindtype = STB_GLOBAL;
9033 else
9034 bindtype = STB_WEAK;
9035 sym.st_info = ELF_ST_INFO (bindtype, type);
9036 }
9037
9038 /* If this is a symbol defined in a dynamic library, don't use the
9039 symbol size from the dynamic library. Relinking an executable
9040 against a new library may introduce gratuitous changes in the
9041 executable's symbols if we keep the size. */
9042 if (sym.st_shndx == SHN_UNDEF
9043 && !h->def_regular
9044 && h->def_dynamic)
9045 sym.st_size = 0;
9046
9047 /* If a non-weak symbol with non-default visibility is not defined
9048 locally, it is a fatal error. */
9049 if (!flinfo->info->relocatable
9050 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9051 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9052 && h->root.type == bfd_link_hash_undefined
9053 && !h->def_regular)
9054 {
9055 const char *msg;
9056
9057 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9058 msg = _("%B: protected symbol `%s' isn't defined");
9059 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9060 msg = _("%B: internal symbol `%s' isn't defined");
9061 else
9062 msg = _("%B: hidden symbol `%s' isn't defined");
9063 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9064 bfd_set_error (bfd_error_bad_value);
9065 eoinfo->failed = TRUE;
9066 return FALSE;
9067 }
9068
9069 /* If this symbol should be put in the .dynsym section, then put it
9070 there now. We already know the symbol index. We also fill in
9071 the entry in the .hash section. */
9072 if (flinfo->dynsym_sec != NULL
9073 && h->dynindx != -1
9074 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9075 {
9076 bfd_byte *esym;
9077
9078 /* Since there is no version information in the dynamic string,
9079 if there is no version info in symbol version section, we will
9080 have a run-time problem. */
9081 if (h->verinfo.verdef == NULL)
9082 {
9083 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9084
9085 if (p && p [1] != '\0')
9086 {
9087 (*_bfd_error_handler)
9088 (_("%B: No symbol version section for versioned symbol `%s'"),
9089 flinfo->output_bfd, h->root.root.string);
9090 eoinfo->failed = TRUE;
9091 return FALSE;
9092 }
9093 }
9094
9095 sym.st_name = h->dynstr_index;
9096 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9097 if (!check_dynsym (flinfo->output_bfd, &sym))
9098 {
9099 eoinfo->failed = TRUE;
9100 return FALSE;
9101 }
9102 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9103
9104 if (flinfo->hash_sec != NULL)
9105 {
9106 size_t hash_entry_size;
9107 bfd_byte *bucketpos;
9108 bfd_vma chain;
9109 size_t bucketcount;
9110 size_t bucket;
9111
9112 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9113 bucket = h->u.elf_hash_value % bucketcount;
9114
9115 hash_entry_size
9116 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9117 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9118 + (bucket + 2) * hash_entry_size);
9119 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9120 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9121 bucketpos);
9122 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9123 ((bfd_byte *) flinfo->hash_sec->contents
9124 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9125 }
9126
9127 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9128 {
9129 Elf_Internal_Versym iversym;
9130 Elf_External_Versym *eversym;
9131
9132 if (!h->def_regular)
9133 {
9134 if (h->verinfo.verdef == NULL)
9135 iversym.vs_vers = 0;
9136 else
9137 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9138 }
9139 else
9140 {
9141 if (h->verinfo.vertree == NULL)
9142 iversym.vs_vers = 1;
9143 else
9144 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9145 if (flinfo->info->create_default_symver)
9146 iversym.vs_vers++;
9147 }
9148
9149 if (h->hidden)
9150 iversym.vs_vers |= VERSYM_HIDDEN;
9151
9152 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9153 eversym += h->dynindx;
9154 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9155 }
9156 }
9157
9158 /* If we're stripping it, then it was just a dynamic symbol, and
9159 there's nothing else to do. */
9160 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
9161 return TRUE;
9162
9163 indx = bfd_get_symcount (flinfo->output_bfd);
9164 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9165 if (ret == 0)
9166 {
9167 eoinfo->failed = TRUE;
9168 return FALSE;
9169 }
9170 else if (ret == 1)
9171 h->indx = indx;
9172 else if (h->indx == -2)
9173 abort();
9174
9175 return TRUE;
9176 }
9177
9178 /* Return TRUE if special handling is done for relocs in SEC against
9179 symbols defined in discarded sections. */
9180
9181 static bfd_boolean
9182 elf_section_ignore_discarded_relocs (asection *sec)
9183 {
9184 const struct elf_backend_data *bed;
9185
9186 switch (sec->sec_info_type)
9187 {
9188 case SEC_INFO_TYPE_STABS:
9189 case SEC_INFO_TYPE_EH_FRAME:
9190 return TRUE;
9191 default:
9192 break;
9193 }
9194
9195 bed = get_elf_backend_data (sec->owner);
9196 if (bed->elf_backend_ignore_discarded_relocs != NULL
9197 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9198 return TRUE;
9199
9200 return FALSE;
9201 }
9202
9203 /* Return a mask saying how ld should treat relocations in SEC against
9204 symbols defined in discarded sections. If this function returns
9205 COMPLAIN set, ld will issue a warning message. If this function
9206 returns PRETEND set, and the discarded section was link-once and the
9207 same size as the kept link-once section, ld will pretend that the
9208 symbol was actually defined in the kept section. Otherwise ld will
9209 zero the reloc (at least that is the intent, but some cooperation by
9210 the target dependent code is needed, particularly for REL targets). */
9211
9212 unsigned int
9213 _bfd_elf_default_action_discarded (asection *sec)
9214 {
9215 if (sec->flags & SEC_DEBUGGING)
9216 return PRETEND;
9217
9218 if (strcmp (".eh_frame", sec->name) == 0)
9219 return 0;
9220
9221 if (strcmp (".gcc_except_table", sec->name) == 0)
9222 return 0;
9223
9224 return COMPLAIN | PRETEND;
9225 }
9226
9227 /* Find a match between a section and a member of a section group. */
9228
9229 static asection *
9230 match_group_member (asection *sec, asection *group,
9231 struct bfd_link_info *info)
9232 {
9233 asection *first = elf_next_in_group (group);
9234 asection *s = first;
9235
9236 while (s != NULL)
9237 {
9238 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9239 return s;
9240
9241 s = elf_next_in_group (s);
9242 if (s == first)
9243 break;
9244 }
9245
9246 return NULL;
9247 }
9248
9249 /* Check if the kept section of a discarded section SEC can be used
9250 to replace it. Return the replacement if it is OK. Otherwise return
9251 NULL. */
9252
9253 asection *
9254 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9255 {
9256 asection *kept;
9257
9258 kept = sec->kept_section;
9259 if (kept != NULL)
9260 {
9261 if ((kept->flags & SEC_GROUP) != 0)
9262 kept = match_group_member (sec, kept, info);
9263 if (kept != NULL
9264 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9265 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9266 kept = NULL;
9267 sec->kept_section = kept;
9268 }
9269 return kept;
9270 }
9271
9272 /* Link an input file into the linker output file. This function
9273 handles all the sections and relocations of the input file at once.
9274 This is so that we only have to read the local symbols once, and
9275 don't have to keep them in memory. */
9276
9277 static bfd_boolean
9278 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9279 {
9280 int (*relocate_section)
9281 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9282 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9283 bfd *output_bfd;
9284 Elf_Internal_Shdr *symtab_hdr;
9285 size_t locsymcount;
9286 size_t extsymoff;
9287 Elf_Internal_Sym *isymbuf;
9288 Elf_Internal_Sym *isym;
9289 Elf_Internal_Sym *isymend;
9290 long *pindex;
9291 asection **ppsection;
9292 asection *o;
9293 const struct elf_backend_data *bed;
9294 struct elf_link_hash_entry **sym_hashes;
9295 bfd_size_type address_size;
9296 bfd_vma r_type_mask;
9297 int r_sym_shift;
9298 bfd_boolean have_file_sym = FALSE;
9299
9300 output_bfd = flinfo->output_bfd;
9301 bed = get_elf_backend_data (output_bfd);
9302 relocate_section = bed->elf_backend_relocate_section;
9303
9304 /* If this is a dynamic object, we don't want to do anything here:
9305 we don't want the local symbols, and we don't want the section
9306 contents. */
9307 if ((input_bfd->flags & DYNAMIC) != 0)
9308 return TRUE;
9309
9310 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9311 if (elf_bad_symtab (input_bfd))
9312 {
9313 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9314 extsymoff = 0;
9315 }
9316 else
9317 {
9318 locsymcount = symtab_hdr->sh_info;
9319 extsymoff = symtab_hdr->sh_info;
9320 }
9321
9322 /* Read the local symbols. */
9323 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9324 if (isymbuf == NULL && locsymcount != 0)
9325 {
9326 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9327 flinfo->internal_syms,
9328 flinfo->external_syms,
9329 flinfo->locsym_shndx);
9330 if (isymbuf == NULL)
9331 return FALSE;
9332 }
9333
9334 /* Find local symbol sections and adjust values of symbols in
9335 SEC_MERGE sections. Write out those local symbols we know are
9336 going into the output file. */
9337 isymend = isymbuf + locsymcount;
9338 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9339 isym < isymend;
9340 isym++, pindex++, ppsection++)
9341 {
9342 asection *isec;
9343 const char *name;
9344 Elf_Internal_Sym osym;
9345 long indx;
9346 int ret;
9347
9348 *pindex = -1;
9349
9350 if (elf_bad_symtab (input_bfd))
9351 {
9352 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9353 {
9354 *ppsection = NULL;
9355 continue;
9356 }
9357 }
9358
9359 if (isym->st_shndx == SHN_UNDEF)
9360 isec = bfd_und_section_ptr;
9361 else if (isym->st_shndx == SHN_ABS)
9362 isec = bfd_abs_section_ptr;
9363 else if (isym->st_shndx == SHN_COMMON)
9364 isec = bfd_com_section_ptr;
9365 else
9366 {
9367 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9368 if (isec == NULL)
9369 {
9370 /* Don't attempt to output symbols with st_shnx in the
9371 reserved range other than SHN_ABS and SHN_COMMON. */
9372 *ppsection = NULL;
9373 continue;
9374 }
9375 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9376 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9377 isym->st_value =
9378 _bfd_merged_section_offset (output_bfd, &isec,
9379 elf_section_data (isec)->sec_info,
9380 isym->st_value);
9381 }
9382
9383 *ppsection = isec;
9384
9385 /* Don't output the first, undefined, symbol. */
9386 if (ppsection == flinfo->sections)
9387 continue;
9388
9389 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9390 {
9391 /* We never output section symbols. Instead, we use the
9392 section symbol of the corresponding section in the output
9393 file. */
9394 continue;
9395 }
9396
9397 /* If we are stripping all symbols, we don't want to output this
9398 one. */
9399 if (flinfo->info->strip == strip_all)
9400 continue;
9401
9402 /* If we are discarding all local symbols, we don't want to
9403 output this one. If we are generating a relocatable output
9404 file, then some of the local symbols may be required by
9405 relocs; we output them below as we discover that they are
9406 needed. */
9407 if (flinfo->info->discard == discard_all)
9408 continue;
9409
9410 /* If this symbol is defined in a section which we are
9411 discarding, we don't need to keep it. */
9412 if (isym->st_shndx != SHN_UNDEF
9413 && isym->st_shndx < SHN_LORESERVE
9414 && bfd_section_removed_from_list (output_bfd,
9415 isec->output_section))
9416 continue;
9417
9418 /* Get the name of the symbol. */
9419 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9420 isym->st_name);
9421 if (name == NULL)
9422 return FALSE;
9423
9424 /* See if we are discarding symbols with this name. */
9425 if ((flinfo->info->strip == strip_some
9426 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9427 == NULL))
9428 || (((flinfo->info->discard == discard_sec_merge
9429 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9430 || flinfo->info->discard == discard_l)
9431 && bfd_is_local_label_name (input_bfd, name)))
9432 continue;
9433
9434 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9435 {
9436 have_file_sym = TRUE;
9437 flinfo->filesym_count += 1;
9438 }
9439 if (!have_file_sym)
9440 {
9441 /* In the absence of debug info, bfd_find_nearest_line uses
9442 FILE symbols to determine the source file for local
9443 function symbols. Provide a FILE symbol here if input
9444 files lack such, so that their symbols won't be
9445 associated with a previous input file. It's not the
9446 source file, but the best we can do. */
9447 have_file_sym = TRUE;
9448 flinfo->filesym_count += 1;
9449 memset (&osym, 0, sizeof (osym));
9450 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9451 osym.st_shndx = SHN_ABS;
9452 if (!elf_link_output_sym (flinfo, input_bfd->filename, &osym,
9453 bfd_abs_section_ptr, NULL))
9454 return FALSE;
9455 }
9456
9457 osym = *isym;
9458
9459 /* Adjust the section index for the output file. */
9460 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9461 isec->output_section);
9462 if (osym.st_shndx == SHN_BAD)
9463 return FALSE;
9464
9465 /* ELF symbols in relocatable files are section relative, but
9466 in executable files they are virtual addresses. Note that
9467 this code assumes that all ELF sections have an associated
9468 BFD section with a reasonable value for output_offset; below
9469 we assume that they also have a reasonable value for
9470 output_section. Any special sections must be set up to meet
9471 these requirements. */
9472 osym.st_value += isec->output_offset;
9473 if (!flinfo->info->relocatable)
9474 {
9475 osym.st_value += isec->output_section->vma;
9476 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9477 {
9478 /* STT_TLS symbols are relative to PT_TLS segment base. */
9479 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9480 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9481 }
9482 }
9483
9484 indx = bfd_get_symcount (output_bfd);
9485 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9486 if (ret == 0)
9487 return FALSE;
9488 else if (ret == 1)
9489 *pindex = indx;
9490 }
9491
9492 if (bed->s->arch_size == 32)
9493 {
9494 r_type_mask = 0xff;
9495 r_sym_shift = 8;
9496 address_size = 4;
9497 }
9498 else
9499 {
9500 r_type_mask = 0xffffffff;
9501 r_sym_shift = 32;
9502 address_size = 8;
9503 }
9504
9505 /* Relocate the contents of each section. */
9506 sym_hashes = elf_sym_hashes (input_bfd);
9507 for (o = input_bfd->sections; o != NULL; o = o->next)
9508 {
9509 bfd_byte *contents;
9510
9511 if (! o->linker_mark)
9512 {
9513 /* This section was omitted from the link. */
9514 continue;
9515 }
9516
9517 if (flinfo->info->relocatable
9518 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9519 {
9520 /* Deal with the group signature symbol. */
9521 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9522 unsigned long symndx = sec_data->this_hdr.sh_info;
9523 asection *osec = o->output_section;
9524
9525 if (symndx >= locsymcount
9526 || (elf_bad_symtab (input_bfd)
9527 && flinfo->sections[symndx] == NULL))
9528 {
9529 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9530 while (h->root.type == bfd_link_hash_indirect
9531 || h->root.type == bfd_link_hash_warning)
9532 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9533 /* Arrange for symbol to be output. */
9534 h->indx = -2;
9535 elf_section_data (osec)->this_hdr.sh_info = -2;
9536 }
9537 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9538 {
9539 /* We'll use the output section target_index. */
9540 asection *sec = flinfo->sections[symndx]->output_section;
9541 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9542 }
9543 else
9544 {
9545 if (flinfo->indices[symndx] == -1)
9546 {
9547 /* Otherwise output the local symbol now. */
9548 Elf_Internal_Sym sym = isymbuf[symndx];
9549 asection *sec = flinfo->sections[symndx]->output_section;
9550 const char *name;
9551 long indx;
9552 int ret;
9553
9554 name = bfd_elf_string_from_elf_section (input_bfd,
9555 symtab_hdr->sh_link,
9556 sym.st_name);
9557 if (name == NULL)
9558 return FALSE;
9559
9560 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9561 sec);
9562 if (sym.st_shndx == SHN_BAD)
9563 return FALSE;
9564
9565 sym.st_value += o->output_offset;
9566
9567 indx = bfd_get_symcount (output_bfd);
9568 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9569 if (ret == 0)
9570 return FALSE;
9571 else if (ret == 1)
9572 flinfo->indices[symndx] = indx;
9573 else
9574 abort ();
9575 }
9576 elf_section_data (osec)->this_hdr.sh_info
9577 = flinfo->indices[symndx];
9578 }
9579 }
9580
9581 if ((o->flags & SEC_HAS_CONTENTS) == 0
9582 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9583 continue;
9584
9585 if ((o->flags & SEC_LINKER_CREATED) != 0)
9586 {
9587 /* Section was created by _bfd_elf_link_create_dynamic_sections
9588 or somesuch. */
9589 continue;
9590 }
9591
9592 /* Get the contents of the section. They have been cached by a
9593 relaxation routine. Note that o is a section in an input
9594 file, so the contents field will not have been set by any of
9595 the routines which work on output files. */
9596 if (elf_section_data (o)->this_hdr.contents != NULL)
9597 contents = elf_section_data (o)->this_hdr.contents;
9598 else
9599 {
9600 contents = flinfo->contents;
9601 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9602 return FALSE;
9603 }
9604
9605 if ((o->flags & SEC_RELOC) != 0)
9606 {
9607 Elf_Internal_Rela *internal_relocs;
9608 Elf_Internal_Rela *rel, *relend;
9609 int action_discarded;
9610 int ret;
9611
9612 /* Get the swapped relocs. */
9613 internal_relocs
9614 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9615 flinfo->internal_relocs, FALSE);
9616 if (internal_relocs == NULL
9617 && o->reloc_count > 0)
9618 return FALSE;
9619
9620 /* We need to reverse-copy input .ctors/.dtors sections if
9621 they are placed in .init_array/.finit_array for output. */
9622 if (o->size > address_size
9623 && ((strncmp (o->name, ".ctors", 6) == 0
9624 && strcmp (o->output_section->name,
9625 ".init_array") == 0)
9626 || (strncmp (o->name, ".dtors", 6) == 0
9627 && strcmp (o->output_section->name,
9628 ".fini_array") == 0))
9629 && (o->name[6] == 0 || o->name[6] == '.'))
9630 {
9631 if (o->size != o->reloc_count * address_size)
9632 {
9633 (*_bfd_error_handler)
9634 (_("error: %B: size of section %A is not "
9635 "multiple of address size"),
9636 input_bfd, o);
9637 bfd_set_error (bfd_error_on_input);
9638 return FALSE;
9639 }
9640 o->flags |= SEC_ELF_REVERSE_COPY;
9641 }
9642
9643 action_discarded = -1;
9644 if (!elf_section_ignore_discarded_relocs (o))
9645 action_discarded = (*bed->action_discarded) (o);
9646
9647 /* Run through the relocs evaluating complex reloc symbols and
9648 looking for relocs against symbols from discarded sections
9649 or section symbols from removed link-once sections.
9650 Complain about relocs against discarded sections. Zero
9651 relocs against removed link-once sections. */
9652
9653 rel = internal_relocs;
9654 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9655 for ( ; rel < relend; rel++)
9656 {
9657 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9658 unsigned int s_type;
9659 asection **ps, *sec;
9660 struct elf_link_hash_entry *h = NULL;
9661 const char *sym_name;
9662
9663 if (r_symndx == STN_UNDEF)
9664 continue;
9665
9666 if (r_symndx >= locsymcount
9667 || (elf_bad_symtab (input_bfd)
9668 && flinfo->sections[r_symndx] == NULL))
9669 {
9670 h = sym_hashes[r_symndx - extsymoff];
9671
9672 /* Badly formatted input files can contain relocs that
9673 reference non-existant symbols. Check here so that
9674 we do not seg fault. */
9675 if (h == NULL)
9676 {
9677 char buffer [32];
9678
9679 sprintf_vma (buffer, rel->r_info);
9680 (*_bfd_error_handler)
9681 (_("error: %B contains a reloc (0x%s) for section %A "
9682 "that references a non-existent global symbol"),
9683 input_bfd, o, buffer);
9684 bfd_set_error (bfd_error_bad_value);
9685 return FALSE;
9686 }
9687
9688 while (h->root.type == bfd_link_hash_indirect
9689 || h->root.type == bfd_link_hash_warning)
9690 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9691
9692 s_type = h->type;
9693
9694 ps = NULL;
9695 if (h->root.type == bfd_link_hash_defined
9696 || h->root.type == bfd_link_hash_defweak)
9697 ps = &h->root.u.def.section;
9698
9699 sym_name = h->root.root.string;
9700 }
9701 else
9702 {
9703 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9704
9705 s_type = ELF_ST_TYPE (sym->st_info);
9706 ps = &flinfo->sections[r_symndx];
9707 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9708 sym, *ps);
9709 }
9710
9711 if ((s_type == STT_RELC || s_type == STT_SRELC)
9712 && !flinfo->info->relocatable)
9713 {
9714 bfd_vma val;
9715 bfd_vma dot = (rel->r_offset
9716 + o->output_offset + o->output_section->vma);
9717 #ifdef DEBUG
9718 printf ("Encountered a complex symbol!");
9719 printf (" (input_bfd %s, section %s, reloc %ld\n",
9720 input_bfd->filename, o->name,
9721 (long) (rel - internal_relocs));
9722 printf (" symbol: idx %8.8lx, name %s\n",
9723 r_symndx, sym_name);
9724 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9725 (unsigned long) rel->r_info,
9726 (unsigned long) rel->r_offset);
9727 #endif
9728 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9729 isymbuf, locsymcount, s_type == STT_SRELC))
9730 return FALSE;
9731
9732 /* Symbol evaluated OK. Update to absolute value. */
9733 set_symbol_value (input_bfd, isymbuf, locsymcount,
9734 r_symndx, val);
9735 continue;
9736 }
9737
9738 if (action_discarded != -1 && ps != NULL)
9739 {
9740 /* Complain if the definition comes from a
9741 discarded section. */
9742 if ((sec = *ps) != NULL && discarded_section (sec))
9743 {
9744 BFD_ASSERT (r_symndx != STN_UNDEF);
9745 if (action_discarded & COMPLAIN)
9746 (*flinfo->info->callbacks->einfo)
9747 (_("%X`%s' referenced in section `%A' of %B: "
9748 "defined in discarded section `%A' of %B\n"),
9749 sym_name, o, input_bfd, sec, sec->owner);
9750
9751 /* Try to do the best we can to support buggy old
9752 versions of gcc. Pretend that the symbol is
9753 really defined in the kept linkonce section.
9754 FIXME: This is quite broken. Modifying the
9755 symbol here means we will be changing all later
9756 uses of the symbol, not just in this section. */
9757 if (action_discarded & PRETEND)
9758 {
9759 asection *kept;
9760
9761 kept = _bfd_elf_check_kept_section (sec,
9762 flinfo->info);
9763 if (kept != NULL)
9764 {
9765 *ps = kept;
9766 continue;
9767 }
9768 }
9769 }
9770 }
9771 }
9772
9773 /* Relocate the section by invoking a back end routine.
9774
9775 The back end routine is responsible for adjusting the
9776 section contents as necessary, and (if using Rela relocs
9777 and generating a relocatable output file) adjusting the
9778 reloc addend as necessary.
9779
9780 The back end routine does not have to worry about setting
9781 the reloc address or the reloc symbol index.
9782
9783 The back end routine is given a pointer to the swapped in
9784 internal symbols, and can access the hash table entries
9785 for the external symbols via elf_sym_hashes (input_bfd).
9786
9787 When generating relocatable output, the back end routine
9788 must handle STB_LOCAL/STT_SECTION symbols specially. The
9789 output symbol is going to be a section symbol
9790 corresponding to the output section, which will require
9791 the addend to be adjusted. */
9792
9793 ret = (*relocate_section) (output_bfd, flinfo->info,
9794 input_bfd, o, contents,
9795 internal_relocs,
9796 isymbuf,
9797 flinfo->sections);
9798 if (!ret)
9799 return FALSE;
9800
9801 if (ret == 2
9802 || flinfo->info->relocatable
9803 || flinfo->info->emitrelocations)
9804 {
9805 Elf_Internal_Rela *irela;
9806 Elf_Internal_Rela *irelaend, *irelamid;
9807 bfd_vma last_offset;
9808 struct elf_link_hash_entry **rel_hash;
9809 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9810 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9811 unsigned int next_erel;
9812 bfd_boolean rela_normal;
9813 struct bfd_elf_section_data *esdi, *esdo;
9814
9815 esdi = elf_section_data (o);
9816 esdo = elf_section_data (o->output_section);
9817 rela_normal = FALSE;
9818
9819 /* Adjust the reloc addresses and symbol indices. */
9820
9821 irela = internal_relocs;
9822 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9823 rel_hash = esdo->rel.hashes + esdo->rel.count;
9824 /* We start processing the REL relocs, if any. When we reach
9825 IRELAMID in the loop, we switch to the RELA relocs. */
9826 irelamid = irela;
9827 if (esdi->rel.hdr != NULL)
9828 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9829 * bed->s->int_rels_per_ext_rel);
9830 rel_hash_list = rel_hash;
9831 rela_hash_list = NULL;
9832 last_offset = o->output_offset;
9833 if (!flinfo->info->relocatable)
9834 last_offset += o->output_section->vma;
9835 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9836 {
9837 unsigned long r_symndx;
9838 asection *sec;
9839 Elf_Internal_Sym sym;
9840
9841 if (next_erel == bed->s->int_rels_per_ext_rel)
9842 {
9843 rel_hash++;
9844 next_erel = 0;
9845 }
9846
9847 if (irela == irelamid)
9848 {
9849 rel_hash = esdo->rela.hashes + esdo->rela.count;
9850 rela_hash_list = rel_hash;
9851 rela_normal = bed->rela_normal;
9852 }
9853
9854 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9855 flinfo->info, o,
9856 irela->r_offset);
9857 if (irela->r_offset >= (bfd_vma) -2)
9858 {
9859 /* This is a reloc for a deleted entry or somesuch.
9860 Turn it into an R_*_NONE reloc, at the same
9861 offset as the last reloc. elf_eh_frame.c and
9862 bfd_elf_discard_info rely on reloc offsets
9863 being ordered. */
9864 irela->r_offset = last_offset;
9865 irela->r_info = 0;
9866 irela->r_addend = 0;
9867 continue;
9868 }
9869
9870 irela->r_offset += o->output_offset;
9871
9872 /* Relocs in an executable have to be virtual addresses. */
9873 if (!flinfo->info->relocatable)
9874 irela->r_offset += o->output_section->vma;
9875
9876 last_offset = irela->r_offset;
9877
9878 r_symndx = irela->r_info >> r_sym_shift;
9879 if (r_symndx == STN_UNDEF)
9880 continue;
9881
9882 if (r_symndx >= locsymcount
9883 || (elf_bad_symtab (input_bfd)
9884 && flinfo->sections[r_symndx] == NULL))
9885 {
9886 struct elf_link_hash_entry *rh;
9887 unsigned long indx;
9888
9889 /* This is a reloc against a global symbol. We
9890 have not yet output all the local symbols, so
9891 we do not know the symbol index of any global
9892 symbol. We set the rel_hash entry for this
9893 reloc to point to the global hash table entry
9894 for this symbol. The symbol index is then
9895 set at the end of bfd_elf_final_link. */
9896 indx = r_symndx - extsymoff;
9897 rh = elf_sym_hashes (input_bfd)[indx];
9898 while (rh->root.type == bfd_link_hash_indirect
9899 || rh->root.type == bfd_link_hash_warning)
9900 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9901
9902 /* Setting the index to -2 tells
9903 elf_link_output_extsym that this symbol is
9904 used by a reloc. */
9905 BFD_ASSERT (rh->indx < 0);
9906 rh->indx = -2;
9907
9908 *rel_hash = rh;
9909
9910 continue;
9911 }
9912
9913 /* This is a reloc against a local symbol. */
9914
9915 *rel_hash = NULL;
9916 sym = isymbuf[r_symndx];
9917 sec = flinfo->sections[r_symndx];
9918 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9919 {
9920 /* I suppose the backend ought to fill in the
9921 section of any STT_SECTION symbol against a
9922 processor specific section. */
9923 r_symndx = STN_UNDEF;
9924 if (bfd_is_abs_section (sec))
9925 ;
9926 else if (sec == NULL || sec->owner == NULL)
9927 {
9928 bfd_set_error (bfd_error_bad_value);
9929 return FALSE;
9930 }
9931 else
9932 {
9933 asection *osec = sec->output_section;
9934
9935 /* If we have discarded a section, the output
9936 section will be the absolute section. In
9937 case of discarded SEC_MERGE sections, use
9938 the kept section. relocate_section should
9939 have already handled discarded linkonce
9940 sections. */
9941 if (bfd_is_abs_section (osec)
9942 && sec->kept_section != NULL
9943 && sec->kept_section->output_section != NULL)
9944 {
9945 osec = sec->kept_section->output_section;
9946 irela->r_addend -= osec->vma;
9947 }
9948
9949 if (!bfd_is_abs_section (osec))
9950 {
9951 r_symndx = osec->target_index;
9952 if (r_symndx == STN_UNDEF)
9953 {
9954 irela->r_addend += osec->vma;
9955 osec = _bfd_nearby_section (output_bfd, osec,
9956 osec->vma);
9957 irela->r_addend -= osec->vma;
9958 r_symndx = osec->target_index;
9959 }
9960 }
9961 }
9962
9963 /* Adjust the addend according to where the
9964 section winds up in the output section. */
9965 if (rela_normal)
9966 irela->r_addend += sec->output_offset;
9967 }
9968 else
9969 {
9970 if (flinfo->indices[r_symndx] == -1)
9971 {
9972 unsigned long shlink;
9973 const char *name;
9974 asection *osec;
9975 long indx;
9976
9977 if (flinfo->info->strip == strip_all)
9978 {
9979 /* You can't do ld -r -s. */
9980 bfd_set_error (bfd_error_invalid_operation);
9981 return FALSE;
9982 }
9983
9984 /* This symbol was skipped earlier, but
9985 since it is needed by a reloc, we
9986 must output it now. */
9987 shlink = symtab_hdr->sh_link;
9988 name = (bfd_elf_string_from_elf_section
9989 (input_bfd, shlink, sym.st_name));
9990 if (name == NULL)
9991 return FALSE;
9992
9993 osec = sec->output_section;
9994 sym.st_shndx =
9995 _bfd_elf_section_from_bfd_section (output_bfd,
9996 osec);
9997 if (sym.st_shndx == SHN_BAD)
9998 return FALSE;
9999
10000 sym.st_value += sec->output_offset;
10001 if (!flinfo->info->relocatable)
10002 {
10003 sym.st_value += osec->vma;
10004 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10005 {
10006 /* STT_TLS symbols are relative to PT_TLS
10007 segment base. */
10008 BFD_ASSERT (elf_hash_table (flinfo->info)
10009 ->tls_sec != NULL);
10010 sym.st_value -= (elf_hash_table (flinfo->info)
10011 ->tls_sec->vma);
10012 }
10013 }
10014
10015 indx = bfd_get_symcount (output_bfd);
10016 ret = elf_link_output_sym (flinfo, name, &sym, sec,
10017 NULL);
10018 if (ret == 0)
10019 return FALSE;
10020 else if (ret == 1)
10021 flinfo->indices[r_symndx] = indx;
10022 else
10023 abort ();
10024 }
10025
10026 r_symndx = flinfo->indices[r_symndx];
10027 }
10028
10029 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10030 | (irela->r_info & r_type_mask));
10031 }
10032
10033 /* Swap out the relocs. */
10034 input_rel_hdr = esdi->rel.hdr;
10035 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10036 {
10037 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10038 input_rel_hdr,
10039 internal_relocs,
10040 rel_hash_list))
10041 return FALSE;
10042 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10043 * bed->s->int_rels_per_ext_rel);
10044 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10045 }
10046
10047 input_rela_hdr = esdi->rela.hdr;
10048 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10049 {
10050 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10051 input_rela_hdr,
10052 internal_relocs,
10053 rela_hash_list))
10054 return FALSE;
10055 }
10056 }
10057 }
10058
10059 /* Write out the modified section contents. */
10060 if (bed->elf_backend_write_section
10061 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10062 contents))
10063 {
10064 /* Section written out. */
10065 }
10066 else switch (o->sec_info_type)
10067 {
10068 case SEC_INFO_TYPE_STABS:
10069 if (! (_bfd_write_section_stabs
10070 (output_bfd,
10071 &elf_hash_table (flinfo->info)->stab_info,
10072 o, &elf_section_data (o)->sec_info, contents)))
10073 return FALSE;
10074 break;
10075 case SEC_INFO_TYPE_MERGE:
10076 if (! _bfd_write_merged_section (output_bfd, o,
10077 elf_section_data (o)->sec_info))
10078 return FALSE;
10079 break;
10080 case SEC_INFO_TYPE_EH_FRAME:
10081 {
10082 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10083 o, contents))
10084 return FALSE;
10085 }
10086 break;
10087 default:
10088 {
10089 /* FIXME: octets_per_byte. */
10090 if (! (o->flags & SEC_EXCLUDE))
10091 {
10092 file_ptr offset = (file_ptr) o->output_offset;
10093 bfd_size_type todo = o->size;
10094 if ((o->flags & SEC_ELF_REVERSE_COPY))
10095 {
10096 /* Reverse-copy input section to output. */
10097 do
10098 {
10099 todo -= address_size;
10100 if (! bfd_set_section_contents (output_bfd,
10101 o->output_section,
10102 contents + todo,
10103 offset,
10104 address_size))
10105 return FALSE;
10106 if (todo == 0)
10107 break;
10108 offset += address_size;
10109 }
10110 while (1);
10111 }
10112 else if (! bfd_set_section_contents (output_bfd,
10113 o->output_section,
10114 contents,
10115 offset, todo))
10116 return FALSE;
10117 }
10118 }
10119 break;
10120 }
10121 }
10122
10123 return TRUE;
10124 }
10125
10126 /* Generate a reloc when linking an ELF file. This is a reloc
10127 requested by the linker, and does not come from any input file. This
10128 is used to build constructor and destructor tables when linking
10129 with -Ur. */
10130
10131 static bfd_boolean
10132 elf_reloc_link_order (bfd *output_bfd,
10133 struct bfd_link_info *info,
10134 asection *output_section,
10135 struct bfd_link_order *link_order)
10136 {
10137 reloc_howto_type *howto;
10138 long indx;
10139 bfd_vma offset;
10140 bfd_vma addend;
10141 struct bfd_elf_section_reloc_data *reldata;
10142 struct elf_link_hash_entry **rel_hash_ptr;
10143 Elf_Internal_Shdr *rel_hdr;
10144 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10145 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10146 bfd_byte *erel;
10147 unsigned int i;
10148 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10149
10150 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10151 if (howto == NULL)
10152 {
10153 bfd_set_error (bfd_error_bad_value);
10154 return FALSE;
10155 }
10156
10157 addend = link_order->u.reloc.p->addend;
10158
10159 if (esdo->rel.hdr)
10160 reldata = &esdo->rel;
10161 else if (esdo->rela.hdr)
10162 reldata = &esdo->rela;
10163 else
10164 {
10165 reldata = NULL;
10166 BFD_ASSERT (0);
10167 }
10168
10169 /* Figure out the symbol index. */
10170 rel_hash_ptr = reldata->hashes + reldata->count;
10171 if (link_order->type == bfd_section_reloc_link_order)
10172 {
10173 indx = link_order->u.reloc.p->u.section->target_index;
10174 BFD_ASSERT (indx != 0);
10175 *rel_hash_ptr = NULL;
10176 }
10177 else
10178 {
10179 struct elf_link_hash_entry *h;
10180
10181 /* Treat a reloc against a defined symbol as though it were
10182 actually against the section. */
10183 h = ((struct elf_link_hash_entry *)
10184 bfd_wrapped_link_hash_lookup (output_bfd, info,
10185 link_order->u.reloc.p->u.name,
10186 FALSE, FALSE, TRUE));
10187 if (h != NULL
10188 && (h->root.type == bfd_link_hash_defined
10189 || h->root.type == bfd_link_hash_defweak))
10190 {
10191 asection *section;
10192
10193 section = h->root.u.def.section;
10194 indx = section->output_section->target_index;
10195 *rel_hash_ptr = NULL;
10196 /* It seems that we ought to add the symbol value to the
10197 addend here, but in practice it has already been added
10198 because it was passed to constructor_callback. */
10199 addend += section->output_section->vma + section->output_offset;
10200 }
10201 else if (h != NULL)
10202 {
10203 /* Setting the index to -2 tells elf_link_output_extsym that
10204 this symbol is used by a reloc. */
10205 h->indx = -2;
10206 *rel_hash_ptr = h;
10207 indx = 0;
10208 }
10209 else
10210 {
10211 if (! ((*info->callbacks->unattached_reloc)
10212 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10213 return FALSE;
10214 indx = 0;
10215 }
10216 }
10217
10218 /* If this is an inplace reloc, we must write the addend into the
10219 object file. */
10220 if (howto->partial_inplace && addend != 0)
10221 {
10222 bfd_size_type size;
10223 bfd_reloc_status_type rstat;
10224 bfd_byte *buf;
10225 bfd_boolean ok;
10226 const char *sym_name;
10227
10228 size = (bfd_size_type) bfd_get_reloc_size (howto);
10229 buf = (bfd_byte *) bfd_zmalloc (size);
10230 if (buf == NULL)
10231 return FALSE;
10232 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10233 switch (rstat)
10234 {
10235 case bfd_reloc_ok:
10236 break;
10237
10238 default:
10239 case bfd_reloc_outofrange:
10240 abort ();
10241
10242 case bfd_reloc_overflow:
10243 if (link_order->type == bfd_section_reloc_link_order)
10244 sym_name = bfd_section_name (output_bfd,
10245 link_order->u.reloc.p->u.section);
10246 else
10247 sym_name = link_order->u.reloc.p->u.name;
10248 if (! ((*info->callbacks->reloc_overflow)
10249 (info, NULL, sym_name, howto->name, addend, NULL,
10250 NULL, (bfd_vma) 0)))
10251 {
10252 free (buf);
10253 return FALSE;
10254 }
10255 break;
10256 }
10257 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10258 link_order->offset, size);
10259 free (buf);
10260 if (! ok)
10261 return FALSE;
10262 }
10263
10264 /* The address of a reloc is relative to the section in a
10265 relocatable file, and is a virtual address in an executable
10266 file. */
10267 offset = link_order->offset;
10268 if (! info->relocatable)
10269 offset += output_section->vma;
10270
10271 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10272 {
10273 irel[i].r_offset = offset;
10274 irel[i].r_info = 0;
10275 irel[i].r_addend = 0;
10276 }
10277 if (bed->s->arch_size == 32)
10278 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10279 else
10280 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10281
10282 rel_hdr = reldata->hdr;
10283 erel = rel_hdr->contents;
10284 if (rel_hdr->sh_type == SHT_REL)
10285 {
10286 erel += reldata->count * bed->s->sizeof_rel;
10287 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10288 }
10289 else
10290 {
10291 irel[0].r_addend = addend;
10292 erel += reldata->count * bed->s->sizeof_rela;
10293 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10294 }
10295
10296 ++reldata->count;
10297
10298 return TRUE;
10299 }
10300
10301
10302 /* Get the output vma of the section pointed to by the sh_link field. */
10303
10304 static bfd_vma
10305 elf_get_linked_section_vma (struct bfd_link_order *p)
10306 {
10307 Elf_Internal_Shdr **elf_shdrp;
10308 asection *s;
10309 int elfsec;
10310
10311 s = p->u.indirect.section;
10312 elf_shdrp = elf_elfsections (s->owner);
10313 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10314 elfsec = elf_shdrp[elfsec]->sh_link;
10315 /* PR 290:
10316 The Intel C compiler generates SHT_IA_64_UNWIND with
10317 SHF_LINK_ORDER. But it doesn't set the sh_link or
10318 sh_info fields. Hence we could get the situation
10319 where elfsec is 0. */
10320 if (elfsec == 0)
10321 {
10322 const struct elf_backend_data *bed
10323 = get_elf_backend_data (s->owner);
10324 if (bed->link_order_error_handler)
10325 bed->link_order_error_handler
10326 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10327 return 0;
10328 }
10329 else
10330 {
10331 s = elf_shdrp[elfsec]->bfd_section;
10332 return s->output_section->vma + s->output_offset;
10333 }
10334 }
10335
10336
10337 /* Compare two sections based on the locations of the sections they are
10338 linked to. Used by elf_fixup_link_order. */
10339
10340 static int
10341 compare_link_order (const void * a, const void * b)
10342 {
10343 bfd_vma apos;
10344 bfd_vma bpos;
10345
10346 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10347 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10348 if (apos < bpos)
10349 return -1;
10350 return apos > bpos;
10351 }
10352
10353
10354 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10355 order as their linked sections. Returns false if this could not be done
10356 because an output section includes both ordered and unordered
10357 sections. Ideally we'd do this in the linker proper. */
10358
10359 static bfd_boolean
10360 elf_fixup_link_order (bfd *abfd, asection *o)
10361 {
10362 int seen_linkorder;
10363 int seen_other;
10364 int n;
10365 struct bfd_link_order *p;
10366 bfd *sub;
10367 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10368 unsigned elfsec;
10369 struct bfd_link_order **sections;
10370 asection *s, *other_sec, *linkorder_sec;
10371 bfd_vma offset;
10372
10373 other_sec = NULL;
10374 linkorder_sec = NULL;
10375 seen_other = 0;
10376 seen_linkorder = 0;
10377 for (p = o->map_head.link_order; p != NULL; p = p->next)
10378 {
10379 if (p->type == bfd_indirect_link_order)
10380 {
10381 s = p->u.indirect.section;
10382 sub = s->owner;
10383 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10384 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10385 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10386 && elfsec < elf_numsections (sub)
10387 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10388 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10389 {
10390 seen_linkorder++;
10391 linkorder_sec = s;
10392 }
10393 else
10394 {
10395 seen_other++;
10396 other_sec = s;
10397 }
10398 }
10399 else
10400 seen_other++;
10401
10402 if (seen_other && seen_linkorder)
10403 {
10404 if (other_sec && linkorder_sec)
10405 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10406 o, linkorder_sec,
10407 linkorder_sec->owner, other_sec,
10408 other_sec->owner);
10409 else
10410 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10411 o);
10412 bfd_set_error (bfd_error_bad_value);
10413 return FALSE;
10414 }
10415 }
10416
10417 if (!seen_linkorder)
10418 return TRUE;
10419
10420 sections = (struct bfd_link_order **)
10421 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10422 if (sections == NULL)
10423 return FALSE;
10424 seen_linkorder = 0;
10425
10426 for (p = o->map_head.link_order; p != NULL; p = p->next)
10427 {
10428 sections[seen_linkorder++] = p;
10429 }
10430 /* Sort the input sections in the order of their linked section. */
10431 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10432 compare_link_order);
10433
10434 /* Change the offsets of the sections. */
10435 offset = 0;
10436 for (n = 0; n < seen_linkorder; n++)
10437 {
10438 s = sections[n]->u.indirect.section;
10439 offset &= ~(bfd_vma) 0 << s->alignment_power;
10440 s->output_offset = offset;
10441 sections[n]->offset = offset;
10442 /* FIXME: octets_per_byte. */
10443 offset += sections[n]->size;
10444 }
10445
10446 free (sections);
10447 return TRUE;
10448 }
10449
10450 static void
10451 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10452 {
10453 asection *o;
10454
10455 if (flinfo->symstrtab != NULL)
10456 _bfd_stringtab_free (flinfo->symstrtab);
10457 if (flinfo->contents != NULL)
10458 free (flinfo->contents);
10459 if (flinfo->external_relocs != NULL)
10460 free (flinfo->external_relocs);
10461 if (flinfo->internal_relocs != NULL)
10462 free (flinfo->internal_relocs);
10463 if (flinfo->external_syms != NULL)
10464 free (flinfo->external_syms);
10465 if (flinfo->locsym_shndx != NULL)
10466 free (flinfo->locsym_shndx);
10467 if (flinfo->internal_syms != NULL)
10468 free (flinfo->internal_syms);
10469 if (flinfo->indices != NULL)
10470 free (flinfo->indices);
10471 if (flinfo->sections != NULL)
10472 free (flinfo->sections);
10473 if (flinfo->symbuf != NULL)
10474 free (flinfo->symbuf);
10475 if (flinfo->symshndxbuf != NULL)
10476 free (flinfo->symshndxbuf);
10477 for (o = obfd->sections; o != NULL; o = o->next)
10478 {
10479 struct bfd_elf_section_data *esdo = elf_section_data (o);
10480 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10481 free (esdo->rel.hashes);
10482 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10483 free (esdo->rela.hashes);
10484 }
10485 }
10486
10487 /* Do the final step of an ELF link. */
10488
10489 bfd_boolean
10490 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10491 {
10492 bfd_boolean dynamic;
10493 bfd_boolean emit_relocs;
10494 bfd *dynobj;
10495 struct elf_final_link_info flinfo;
10496 asection *o;
10497 struct bfd_link_order *p;
10498 bfd *sub;
10499 bfd_size_type max_contents_size;
10500 bfd_size_type max_external_reloc_size;
10501 bfd_size_type max_internal_reloc_count;
10502 bfd_size_type max_sym_count;
10503 bfd_size_type max_sym_shndx_count;
10504 file_ptr off;
10505 Elf_Internal_Sym elfsym;
10506 unsigned int i;
10507 Elf_Internal_Shdr *symtab_hdr;
10508 Elf_Internal_Shdr *symtab_shndx_hdr;
10509 Elf_Internal_Shdr *symstrtab_hdr;
10510 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10511 struct elf_outext_info eoinfo;
10512 bfd_boolean merged;
10513 size_t relativecount = 0;
10514 asection *reldyn = 0;
10515 bfd_size_type amt;
10516 asection *attr_section = NULL;
10517 bfd_vma attr_size = 0;
10518 const char *std_attrs_section;
10519
10520 if (! is_elf_hash_table (info->hash))
10521 return FALSE;
10522
10523 if (info->shared)
10524 abfd->flags |= DYNAMIC;
10525
10526 dynamic = elf_hash_table (info)->dynamic_sections_created;
10527 dynobj = elf_hash_table (info)->dynobj;
10528
10529 emit_relocs = (info->relocatable
10530 || info->emitrelocations);
10531
10532 flinfo.info = info;
10533 flinfo.output_bfd = abfd;
10534 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10535 if (flinfo.symstrtab == NULL)
10536 return FALSE;
10537
10538 if (! dynamic)
10539 {
10540 flinfo.dynsym_sec = NULL;
10541 flinfo.hash_sec = NULL;
10542 flinfo.symver_sec = NULL;
10543 }
10544 else
10545 {
10546 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10547 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10548 /* Note that dynsym_sec can be NULL (on VMS). */
10549 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10550 /* Note that it is OK if symver_sec is NULL. */
10551 }
10552
10553 flinfo.contents = NULL;
10554 flinfo.external_relocs = NULL;
10555 flinfo.internal_relocs = NULL;
10556 flinfo.external_syms = NULL;
10557 flinfo.locsym_shndx = NULL;
10558 flinfo.internal_syms = NULL;
10559 flinfo.indices = NULL;
10560 flinfo.sections = NULL;
10561 flinfo.symbuf = NULL;
10562 flinfo.symshndxbuf = NULL;
10563 flinfo.symbuf_count = 0;
10564 flinfo.shndxbuf_size = 0;
10565 flinfo.filesym_count = 0;
10566
10567 /* The object attributes have been merged. Remove the input
10568 sections from the link, and set the contents of the output
10569 secton. */
10570 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10571 for (o = abfd->sections; o != NULL; o = o->next)
10572 {
10573 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10574 || strcmp (o->name, ".gnu.attributes") == 0)
10575 {
10576 for (p = o->map_head.link_order; p != NULL; p = p->next)
10577 {
10578 asection *input_section;
10579
10580 if (p->type != bfd_indirect_link_order)
10581 continue;
10582 input_section = p->u.indirect.section;
10583 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10584 elf_link_input_bfd ignores this section. */
10585 input_section->flags &= ~SEC_HAS_CONTENTS;
10586 }
10587
10588 attr_size = bfd_elf_obj_attr_size (abfd);
10589 if (attr_size)
10590 {
10591 bfd_set_section_size (abfd, o, attr_size);
10592 attr_section = o;
10593 /* Skip this section later on. */
10594 o->map_head.link_order = NULL;
10595 }
10596 else
10597 o->flags |= SEC_EXCLUDE;
10598 }
10599 }
10600
10601 /* Count up the number of relocations we will output for each output
10602 section, so that we know the sizes of the reloc sections. We
10603 also figure out some maximum sizes. */
10604 max_contents_size = 0;
10605 max_external_reloc_size = 0;
10606 max_internal_reloc_count = 0;
10607 max_sym_count = 0;
10608 max_sym_shndx_count = 0;
10609 merged = FALSE;
10610 for (o = abfd->sections; o != NULL; o = o->next)
10611 {
10612 struct bfd_elf_section_data *esdo = elf_section_data (o);
10613 o->reloc_count = 0;
10614
10615 for (p = o->map_head.link_order; p != NULL; p = p->next)
10616 {
10617 unsigned int reloc_count = 0;
10618 struct bfd_elf_section_data *esdi = NULL;
10619
10620 if (p->type == bfd_section_reloc_link_order
10621 || p->type == bfd_symbol_reloc_link_order)
10622 reloc_count = 1;
10623 else if (p->type == bfd_indirect_link_order)
10624 {
10625 asection *sec;
10626
10627 sec = p->u.indirect.section;
10628 esdi = elf_section_data (sec);
10629
10630 /* Mark all sections which are to be included in the
10631 link. This will normally be every section. We need
10632 to do this so that we can identify any sections which
10633 the linker has decided to not include. */
10634 sec->linker_mark = TRUE;
10635
10636 if (sec->flags & SEC_MERGE)
10637 merged = TRUE;
10638
10639 if (esdo->this_hdr.sh_type == SHT_REL
10640 || esdo->this_hdr.sh_type == SHT_RELA)
10641 /* Some backends use reloc_count in relocation sections
10642 to count particular types of relocs. Of course,
10643 reloc sections themselves can't have relocations. */
10644 reloc_count = 0;
10645 else if (info->relocatable || info->emitrelocations)
10646 reloc_count = sec->reloc_count;
10647 else if (bed->elf_backend_count_relocs)
10648 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10649
10650 if (sec->rawsize > max_contents_size)
10651 max_contents_size = sec->rawsize;
10652 if (sec->size > max_contents_size)
10653 max_contents_size = sec->size;
10654
10655 /* We are interested in just local symbols, not all
10656 symbols. */
10657 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10658 && (sec->owner->flags & DYNAMIC) == 0)
10659 {
10660 size_t sym_count;
10661
10662 if (elf_bad_symtab (sec->owner))
10663 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10664 / bed->s->sizeof_sym);
10665 else
10666 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10667
10668 if (sym_count > max_sym_count)
10669 max_sym_count = sym_count;
10670
10671 if (sym_count > max_sym_shndx_count
10672 && elf_symtab_shndx (sec->owner) != 0)
10673 max_sym_shndx_count = sym_count;
10674
10675 if ((sec->flags & SEC_RELOC) != 0)
10676 {
10677 size_t ext_size = 0;
10678
10679 if (esdi->rel.hdr != NULL)
10680 ext_size = esdi->rel.hdr->sh_size;
10681 if (esdi->rela.hdr != NULL)
10682 ext_size += esdi->rela.hdr->sh_size;
10683
10684 if (ext_size > max_external_reloc_size)
10685 max_external_reloc_size = ext_size;
10686 if (sec->reloc_count > max_internal_reloc_count)
10687 max_internal_reloc_count = sec->reloc_count;
10688 }
10689 }
10690 }
10691
10692 if (reloc_count == 0)
10693 continue;
10694
10695 o->reloc_count += reloc_count;
10696
10697 if (p->type == bfd_indirect_link_order
10698 && (info->relocatable || info->emitrelocations))
10699 {
10700 if (esdi->rel.hdr)
10701 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10702 if (esdi->rela.hdr)
10703 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10704 }
10705 else
10706 {
10707 if (o->use_rela_p)
10708 esdo->rela.count += reloc_count;
10709 else
10710 esdo->rel.count += reloc_count;
10711 }
10712 }
10713
10714 if (o->reloc_count > 0)
10715 o->flags |= SEC_RELOC;
10716 else
10717 {
10718 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10719 set it (this is probably a bug) and if it is set
10720 assign_section_numbers will create a reloc section. */
10721 o->flags &=~ SEC_RELOC;
10722 }
10723
10724 /* If the SEC_ALLOC flag is not set, force the section VMA to
10725 zero. This is done in elf_fake_sections as well, but forcing
10726 the VMA to 0 here will ensure that relocs against these
10727 sections are handled correctly. */
10728 if ((o->flags & SEC_ALLOC) == 0
10729 && ! o->user_set_vma)
10730 o->vma = 0;
10731 }
10732
10733 if (! info->relocatable && merged)
10734 elf_link_hash_traverse (elf_hash_table (info),
10735 _bfd_elf_link_sec_merge_syms, abfd);
10736
10737 /* Figure out the file positions for everything but the symbol table
10738 and the relocs. We set symcount to force assign_section_numbers
10739 to create a symbol table. */
10740 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10741 BFD_ASSERT (! abfd->output_has_begun);
10742 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10743 goto error_return;
10744
10745 /* Set sizes, and assign file positions for reloc sections. */
10746 for (o = abfd->sections; o != NULL; o = o->next)
10747 {
10748 struct bfd_elf_section_data *esdo = elf_section_data (o);
10749 if ((o->flags & SEC_RELOC) != 0)
10750 {
10751 if (esdo->rel.hdr
10752 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10753 goto error_return;
10754
10755 if (esdo->rela.hdr
10756 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10757 goto error_return;
10758 }
10759
10760 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10761 to count upwards while actually outputting the relocations. */
10762 esdo->rel.count = 0;
10763 esdo->rela.count = 0;
10764 }
10765
10766 _bfd_elf_assign_file_positions_for_relocs (abfd);
10767
10768 /* We have now assigned file positions for all the sections except
10769 .symtab and .strtab. We start the .symtab section at the current
10770 file position, and write directly to it. We build the .strtab
10771 section in memory. */
10772 bfd_get_symcount (abfd) = 0;
10773 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10774 /* sh_name is set in prep_headers. */
10775 symtab_hdr->sh_type = SHT_SYMTAB;
10776 /* sh_flags, sh_addr and sh_size all start off zero. */
10777 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10778 /* sh_link is set in assign_section_numbers. */
10779 /* sh_info is set below. */
10780 /* sh_offset is set just below. */
10781 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10782
10783 off = elf_tdata (abfd)->next_file_pos;
10784 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10785
10786 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10787 incorrect. We do not yet know the size of the .symtab section.
10788 We correct next_file_pos below, after we do know the size. */
10789
10790 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10791 continuously seeking to the right position in the file. */
10792 if (! info->keep_memory || max_sym_count < 20)
10793 flinfo.symbuf_size = 20;
10794 else
10795 flinfo.symbuf_size = max_sym_count;
10796 amt = flinfo.symbuf_size;
10797 amt *= bed->s->sizeof_sym;
10798 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10799 if (flinfo.symbuf == NULL)
10800 goto error_return;
10801 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10802 {
10803 /* Wild guess at number of output symbols. realloc'd as needed. */
10804 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10805 flinfo.shndxbuf_size = amt;
10806 amt *= sizeof (Elf_External_Sym_Shndx);
10807 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10808 if (flinfo.symshndxbuf == NULL)
10809 goto error_return;
10810 }
10811
10812 /* Start writing out the symbol table. The first symbol is always a
10813 dummy symbol. */
10814 if (info->strip != strip_all
10815 || emit_relocs)
10816 {
10817 elfsym.st_value = 0;
10818 elfsym.st_size = 0;
10819 elfsym.st_info = 0;
10820 elfsym.st_other = 0;
10821 elfsym.st_shndx = SHN_UNDEF;
10822 elfsym.st_target_internal = 0;
10823 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10824 NULL) != 1)
10825 goto error_return;
10826 }
10827
10828 /* Output a symbol for each section. We output these even if we are
10829 discarding local symbols, since they are used for relocs. These
10830 symbols have no names. We store the index of each one in the
10831 index field of the section, so that we can find it again when
10832 outputting relocs. */
10833 if (info->strip != strip_all
10834 || emit_relocs)
10835 {
10836 elfsym.st_size = 0;
10837 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10838 elfsym.st_other = 0;
10839 elfsym.st_value = 0;
10840 elfsym.st_target_internal = 0;
10841 for (i = 1; i < elf_numsections (abfd); i++)
10842 {
10843 o = bfd_section_from_elf_index (abfd, i);
10844 if (o != NULL)
10845 {
10846 o->target_index = bfd_get_symcount (abfd);
10847 elfsym.st_shndx = i;
10848 if (!info->relocatable)
10849 elfsym.st_value = o->vma;
10850 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10851 goto error_return;
10852 }
10853 }
10854 }
10855
10856 /* Allocate some memory to hold information read in from the input
10857 files. */
10858 if (max_contents_size != 0)
10859 {
10860 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10861 if (flinfo.contents == NULL)
10862 goto error_return;
10863 }
10864
10865 if (max_external_reloc_size != 0)
10866 {
10867 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10868 if (flinfo.external_relocs == NULL)
10869 goto error_return;
10870 }
10871
10872 if (max_internal_reloc_count != 0)
10873 {
10874 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10875 amt *= sizeof (Elf_Internal_Rela);
10876 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10877 if (flinfo.internal_relocs == NULL)
10878 goto error_return;
10879 }
10880
10881 if (max_sym_count != 0)
10882 {
10883 amt = max_sym_count * bed->s->sizeof_sym;
10884 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10885 if (flinfo.external_syms == NULL)
10886 goto error_return;
10887
10888 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10889 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10890 if (flinfo.internal_syms == NULL)
10891 goto error_return;
10892
10893 amt = max_sym_count * sizeof (long);
10894 flinfo.indices = (long int *) bfd_malloc (amt);
10895 if (flinfo.indices == NULL)
10896 goto error_return;
10897
10898 amt = max_sym_count * sizeof (asection *);
10899 flinfo.sections = (asection **) bfd_malloc (amt);
10900 if (flinfo.sections == NULL)
10901 goto error_return;
10902 }
10903
10904 if (max_sym_shndx_count != 0)
10905 {
10906 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10907 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10908 if (flinfo.locsym_shndx == NULL)
10909 goto error_return;
10910 }
10911
10912 if (elf_hash_table (info)->tls_sec)
10913 {
10914 bfd_vma base, end = 0;
10915 asection *sec;
10916
10917 for (sec = elf_hash_table (info)->tls_sec;
10918 sec && (sec->flags & SEC_THREAD_LOCAL);
10919 sec = sec->next)
10920 {
10921 bfd_size_type size = sec->size;
10922
10923 if (size == 0
10924 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10925 {
10926 struct bfd_link_order *ord = sec->map_tail.link_order;
10927
10928 if (ord != NULL)
10929 size = ord->offset + ord->size;
10930 }
10931 end = sec->vma + size;
10932 }
10933 base = elf_hash_table (info)->tls_sec->vma;
10934 /* Only align end of TLS section if static TLS doesn't have special
10935 alignment requirements. */
10936 if (bed->static_tls_alignment == 1)
10937 end = align_power (end,
10938 elf_hash_table (info)->tls_sec->alignment_power);
10939 elf_hash_table (info)->tls_size = end - base;
10940 }
10941
10942 /* Reorder SHF_LINK_ORDER sections. */
10943 for (o = abfd->sections; o != NULL; o = o->next)
10944 {
10945 if (!elf_fixup_link_order (abfd, o))
10946 return FALSE;
10947 }
10948
10949 /* Since ELF permits relocations to be against local symbols, we
10950 must have the local symbols available when we do the relocations.
10951 Since we would rather only read the local symbols once, and we
10952 would rather not keep them in memory, we handle all the
10953 relocations for a single input file at the same time.
10954
10955 Unfortunately, there is no way to know the total number of local
10956 symbols until we have seen all of them, and the local symbol
10957 indices precede the global symbol indices. This means that when
10958 we are generating relocatable output, and we see a reloc against
10959 a global symbol, we can not know the symbol index until we have
10960 finished examining all the local symbols to see which ones we are
10961 going to output. To deal with this, we keep the relocations in
10962 memory, and don't output them until the end of the link. This is
10963 an unfortunate waste of memory, but I don't see a good way around
10964 it. Fortunately, it only happens when performing a relocatable
10965 link, which is not the common case. FIXME: If keep_memory is set
10966 we could write the relocs out and then read them again; I don't
10967 know how bad the memory loss will be. */
10968
10969 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10970 sub->output_has_begun = FALSE;
10971 for (o = abfd->sections; o != NULL; o = o->next)
10972 {
10973 for (p = o->map_head.link_order; p != NULL; p = p->next)
10974 {
10975 if (p->type == bfd_indirect_link_order
10976 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10977 == bfd_target_elf_flavour)
10978 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10979 {
10980 if (! sub->output_has_begun)
10981 {
10982 if (! elf_link_input_bfd (&flinfo, sub))
10983 goto error_return;
10984 sub->output_has_begun = TRUE;
10985 }
10986 }
10987 else if (p->type == bfd_section_reloc_link_order
10988 || p->type == bfd_symbol_reloc_link_order)
10989 {
10990 if (! elf_reloc_link_order (abfd, info, o, p))
10991 goto error_return;
10992 }
10993 else
10994 {
10995 if (! _bfd_default_link_order (abfd, info, o, p))
10996 {
10997 if (p->type == bfd_indirect_link_order
10998 && (bfd_get_flavour (sub)
10999 == bfd_target_elf_flavour)
11000 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11001 != bed->s->elfclass))
11002 {
11003 const char *iclass, *oclass;
11004
11005 if (bed->s->elfclass == ELFCLASS64)
11006 {
11007 iclass = "ELFCLASS32";
11008 oclass = "ELFCLASS64";
11009 }
11010 else
11011 {
11012 iclass = "ELFCLASS64";
11013 oclass = "ELFCLASS32";
11014 }
11015
11016 bfd_set_error (bfd_error_wrong_format);
11017 (*_bfd_error_handler)
11018 (_("%B: file class %s incompatible with %s"),
11019 sub, iclass, oclass);
11020 }
11021
11022 goto error_return;
11023 }
11024 }
11025 }
11026 }
11027
11028 /* Free symbol buffer if needed. */
11029 if (!info->reduce_memory_overheads)
11030 {
11031 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11032 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11033 && elf_tdata (sub)->symbuf)
11034 {
11035 free (elf_tdata (sub)->symbuf);
11036 elf_tdata (sub)->symbuf = NULL;
11037 }
11038 }
11039
11040 /* Output a FILE symbol so that following locals are not associated
11041 with the wrong input file. */
11042 memset (&elfsym, 0, sizeof (elfsym));
11043 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
11044 elfsym.st_shndx = SHN_ABS;
11045
11046 if (flinfo.filesym_count > 1
11047 && !elf_link_output_sym (&flinfo, NULL, &elfsym,
11048 bfd_und_section_ptr, NULL))
11049 return FALSE;
11050
11051 /* Output any global symbols that got converted to local in a
11052 version script or due to symbol visibility. We do this in a
11053 separate step since ELF requires all local symbols to appear
11054 prior to any global symbols. FIXME: We should only do this if
11055 some global symbols were, in fact, converted to become local.
11056 FIXME: Will this work correctly with the Irix 5 linker? */
11057 eoinfo.failed = FALSE;
11058 eoinfo.flinfo = &flinfo;
11059 eoinfo.localsyms = TRUE;
11060 eoinfo.need_second_pass = FALSE;
11061 eoinfo.second_pass = FALSE;
11062 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11063 if (eoinfo.failed)
11064 return FALSE;
11065
11066 if (flinfo.filesym_count == 1
11067 && !elf_link_output_sym (&flinfo, NULL, &elfsym,
11068 bfd_und_section_ptr, NULL))
11069 return FALSE;
11070
11071 if (eoinfo.need_second_pass)
11072 {
11073 eoinfo.second_pass = TRUE;
11074 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11075 if (eoinfo.failed)
11076 return FALSE;
11077 }
11078
11079 /* If backend needs to output some local symbols not present in the hash
11080 table, do it now. */
11081 if (bed->elf_backend_output_arch_local_syms)
11082 {
11083 typedef int (*out_sym_func)
11084 (void *, const char *, Elf_Internal_Sym *, asection *,
11085 struct elf_link_hash_entry *);
11086
11087 if (! ((*bed->elf_backend_output_arch_local_syms)
11088 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11089 return FALSE;
11090 }
11091
11092 /* That wrote out all the local symbols. Finish up the symbol table
11093 with the global symbols. Even if we want to strip everything we
11094 can, we still need to deal with those global symbols that got
11095 converted to local in a version script. */
11096
11097 /* The sh_info field records the index of the first non local symbol. */
11098 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11099
11100 if (dynamic
11101 && flinfo.dynsym_sec != NULL
11102 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11103 {
11104 Elf_Internal_Sym sym;
11105 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11106 long last_local = 0;
11107
11108 /* Write out the section symbols for the output sections. */
11109 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11110 {
11111 asection *s;
11112
11113 sym.st_size = 0;
11114 sym.st_name = 0;
11115 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11116 sym.st_other = 0;
11117 sym.st_target_internal = 0;
11118
11119 for (s = abfd->sections; s != NULL; s = s->next)
11120 {
11121 int indx;
11122 bfd_byte *dest;
11123 long dynindx;
11124
11125 dynindx = elf_section_data (s)->dynindx;
11126 if (dynindx <= 0)
11127 continue;
11128 indx = elf_section_data (s)->this_idx;
11129 BFD_ASSERT (indx > 0);
11130 sym.st_shndx = indx;
11131 if (! check_dynsym (abfd, &sym))
11132 return FALSE;
11133 sym.st_value = s->vma;
11134 dest = dynsym + dynindx * bed->s->sizeof_sym;
11135 if (last_local < dynindx)
11136 last_local = dynindx;
11137 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11138 }
11139 }
11140
11141 /* Write out the local dynsyms. */
11142 if (elf_hash_table (info)->dynlocal)
11143 {
11144 struct elf_link_local_dynamic_entry *e;
11145 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11146 {
11147 asection *s;
11148 bfd_byte *dest;
11149
11150 /* Copy the internal symbol and turn off visibility.
11151 Note that we saved a word of storage and overwrote
11152 the original st_name with the dynstr_index. */
11153 sym = e->isym;
11154 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11155
11156 s = bfd_section_from_elf_index (e->input_bfd,
11157 e->isym.st_shndx);
11158 if (s != NULL)
11159 {
11160 sym.st_shndx =
11161 elf_section_data (s->output_section)->this_idx;
11162 if (! check_dynsym (abfd, &sym))
11163 return FALSE;
11164 sym.st_value = (s->output_section->vma
11165 + s->output_offset
11166 + e->isym.st_value);
11167 }
11168
11169 if (last_local < e->dynindx)
11170 last_local = e->dynindx;
11171
11172 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11173 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11174 }
11175 }
11176
11177 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11178 last_local + 1;
11179 }
11180
11181 /* We get the global symbols from the hash table. */
11182 eoinfo.failed = FALSE;
11183 eoinfo.localsyms = FALSE;
11184 eoinfo.flinfo = &flinfo;
11185 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11186 if (eoinfo.failed)
11187 return FALSE;
11188
11189 /* If backend needs to output some symbols not present in the hash
11190 table, do it now. */
11191 if (bed->elf_backend_output_arch_syms)
11192 {
11193 typedef int (*out_sym_func)
11194 (void *, const char *, Elf_Internal_Sym *, asection *,
11195 struct elf_link_hash_entry *);
11196
11197 if (! ((*bed->elf_backend_output_arch_syms)
11198 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11199 return FALSE;
11200 }
11201
11202 /* Flush all symbols to the file. */
11203 if (! elf_link_flush_output_syms (&flinfo, bed))
11204 return FALSE;
11205
11206 /* Now we know the size of the symtab section. */
11207 off += symtab_hdr->sh_size;
11208
11209 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11210 if (symtab_shndx_hdr->sh_name != 0)
11211 {
11212 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11213 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11214 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11215 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11216 symtab_shndx_hdr->sh_size = amt;
11217
11218 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11219 off, TRUE);
11220
11221 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11222 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11223 return FALSE;
11224 }
11225
11226
11227 /* Finish up and write out the symbol string table (.strtab)
11228 section. */
11229 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11230 /* sh_name was set in prep_headers. */
11231 symstrtab_hdr->sh_type = SHT_STRTAB;
11232 symstrtab_hdr->sh_flags = 0;
11233 symstrtab_hdr->sh_addr = 0;
11234 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11235 symstrtab_hdr->sh_entsize = 0;
11236 symstrtab_hdr->sh_link = 0;
11237 symstrtab_hdr->sh_info = 0;
11238 /* sh_offset is set just below. */
11239 symstrtab_hdr->sh_addralign = 1;
11240
11241 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
11242 elf_tdata (abfd)->next_file_pos = off;
11243
11244 if (bfd_get_symcount (abfd) > 0)
11245 {
11246 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11247 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11248 return FALSE;
11249 }
11250
11251 /* Adjust the relocs to have the correct symbol indices. */
11252 for (o = abfd->sections; o != NULL; o = o->next)
11253 {
11254 struct bfd_elf_section_data *esdo = elf_section_data (o);
11255 if ((o->flags & SEC_RELOC) == 0)
11256 continue;
11257
11258 if (esdo->rel.hdr != NULL)
11259 elf_link_adjust_relocs (abfd, &esdo->rel);
11260 if (esdo->rela.hdr != NULL)
11261 elf_link_adjust_relocs (abfd, &esdo->rela);
11262
11263 /* Set the reloc_count field to 0 to prevent write_relocs from
11264 trying to swap the relocs out itself. */
11265 o->reloc_count = 0;
11266 }
11267
11268 if (dynamic && info->combreloc && dynobj != NULL)
11269 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11270
11271 /* If we are linking against a dynamic object, or generating a
11272 shared library, finish up the dynamic linking information. */
11273 if (dynamic)
11274 {
11275 bfd_byte *dyncon, *dynconend;
11276
11277 /* Fix up .dynamic entries. */
11278 o = bfd_get_linker_section (dynobj, ".dynamic");
11279 BFD_ASSERT (o != NULL);
11280
11281 dyncon = o->contents;
11282 dynconend = o->contents + o->size;
11283 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11284 {
11285 Elf_Internal_Dyn dyn;
11286 const char *name;
11287 unsigned int type;
11288
11289 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11290
11291 switch (dyn.d_tag)
11292 {
11293 default:
11294 continue;
11295 case DT_NULL:
11296 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11297 {
11298 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11299 {
11300 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11301 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11302 default: continue;
11303 }
11304 dyn.d_un.d_val = relativecount;
11305 relativecount = 0;
11306 break;
11307 }
11308 continue;
11309
11310 case DT_INIT:
11311 name = info->init_function;
11312 goto get_sym;
11313 case DT_FINI:
11314 name = info->fini_function;
11315 get_sym:
11316 {
11317 struct elf_link_hash_entry *h;
11318
11319 h = elf_link_hash_lookup (elf_hash_table (info), name,
11320 FALSE, FALSE, TRUE);
11321 if (h != NULL
11322 && (h->root.type == bfd_link_hash_defined
11323 || h->root.type == bfd_link_hash_defweak))
11324 {
11325 dyn.d_un.d_ptr = h->root.u.def.value;
11326 o = h->root.u.def.section;
11327 if (o->output_section != NULL)
11328 dyn.d_un.d_ptr += (o->output_section->vma
11329 + o->output_offset);
11330 else
11331 {
11332 /* The symbol is imported from another shared
11333 library and does not apply to this one. */
11334 dyn.d_un.d_ptr = 0;
11335 }
11336 break;
11337 }
11338 }
11339 continue;
11340
11341 case DT_PREINIT_ARRAYSZ:
11342 name = ".preinit_array";
11343 goto get_size;
11344 case DT_INIT_ARRAYSZ:
11345 name = ".init_array";
11346 goto get_size;
11347 case DT_FINI_ARRAYSZ:
11348 name = ".fini_array";
11349 get_size:
11350 o = bfd_get_section_by_name (abfd, name);
11351 if (o == NULL)
11352 {
11353 (*_bfd_error_handler)
11354 (_("%B: could not find output section %s"), abfd, name);
11355 goto error_return;
11356 }
11357 if (o->size == 0)
11358 (*_bfd_error_handler)
11359 (_("warning: %s section has zero size"), name);
11360 dyn.d_un.d_val = o->size;
11361 break;
11362
11363 case DT_PREINIT_ARRAY:
11364 name = ".preinit_array";
11365 goto get_vma;
11366 case DT_INIT_ARRAY:
11367 name = ".init_array";
11368 goto get_vma;
11369 case DT_FINI_ARRAY:
11370 name = ".fini_array";
11371 goto get_vma;
11372
11373 case DT_HASH:
11374 name = ".hash";
11375 goto get_vma;
11376 case DT_GNU_HASH:
11377 name = ".gnu.hash";
11378 goto get_vma;
11379 case DT_STRTAB:
11380 name = ".dynstr";
11381 goto get_vma;
11382 case DT_SYMTAB:
11383 name = ".dynsym";
11384 goto get_vma;
11385 case DT_VERDEF:
11386 name = ".gnu.version_d";
11387 goto get_vma;
11388 case DT_VERNEED:
11389 name = ".gnu.version_r";
11390 goto get_vma;
11391 case DT_VERSYM:
11392 name = ".gnu.version";
11393 get_vma:
11394 o = bfd_get_section_by_name (abfd, name);
11395 if (o == NULL)
11396 {
11397 (*_bfd_error_handler)
11398 (_("%B: could not find output section %s"), abfd, name);
11399 goto error_return;
11400 }
11401 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11402 {
11403 (*_bfd_error_handler)
11404 (_("warning: section '%s' is being made into a note"), name);
11405 bfd_set_error (bfd_error_nonrepresentable_section);
11406 goto error_return;
11407 }
11408 dyn.d_un.d_ptr = o->vma;
11409 break;
11410
11411 case DT_REL:
11412 case DT_RELA:
11413 case DT_RELSZ:
11414 case DT_RELASZ:
11415 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11416 type = SHT_REL;
11417 else
11418 type = SHT_RELA;
11419 dyn.d_un.d_val = 0;
11420 dyn.d_un.d_ptr = 0;
11421 for (i = 1; i < elf_numsections (abfd); i++)
11422 {
11423 Elf_Internal_Shdr *hdr;
11424
11425 hdr = elf_elfsections (abfd)[i];
11426 if (hdr->sh_type == type
11427 && (hdr->sh_flags & SHF_ALLOC) != 0)
11428 {
11429 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11430 dyn.d_un.d_val += hdr->sh_size;
11431 else
11432 {
11433 if (dyn.d_un.d_ptr == 0
11434 || hdr->sh_addr < dyn.d_un.d_ptr)
11435 dyn.d_un.d_ptr = hdr->sh_addr;
11436 }
11437 }
11438 }
11439 break;
11440 }
11441 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11442 }
11443 }
11444
11445 /* If we have created any dynamic sections, then output them. */
11446 if (dynobj != NULL)
11447 {
11448 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11449 goto error_return;
11450
11451 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11452 if (((info->warn_shared_textrel && info->shared)
11453 || info->error_textrel)
11454 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11455 {
11456 bfd_byte *dyncon, *dynconend;
11457
11458 dyncon = o->contents;
11459 dynconend = o->contents + o->size;
11460 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11461 {
11462 Elf_Internal_Dyn dyn;
11463
11464 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11465
11466 if (dyn.d_tag == DT_TEXTREL)
11467 {
11468 if (info->error_textrel)
11469 info->callbacks->einfo
11470 (_("%P%X: read-only segment has dynamic relocations.\n"));
11471 else
11472 info->callbacks->einfo
11473 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11474 break;
11475 }
11476 }
11477 }
11478
11479 for (o = dynobj->sections; o != NULL; o = o->next)
11480 {
11481 if ((o->flags & SEC_HAS_CONTENTS) == 0
11482 || o->size == 0
11483 || o->output_section == bfd_abs_section_ptr)
11484 continue;
11485 if ((o->flags & SEC_LINKER_CREATED) == 0)
11486 {
11487 /* At this point, we are only interested in sections
11488 created by _bfd_elf_link_create_dynamic_sections. */
11489 continue;
11490 }
11491 if (elf_hash_table (info)->stab_info.stabstr == o)
11492 continue;
11493 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11494 continue;
11495 if (strcmp (o->name, ".dynstr") != 0)
11496 {
11497 /* FIXME: octets_per_byte. */
11498 if (! bfd_set_section_contents (abfd, o->output_section,
11499 o->contents,
11500 (file_ptr) o->output_offset,
11501 o->size))
11502 goto error_return;
11503 }
11504 else
11505 {
11506 /* The contents of the .dynstr section are actually in a
11507 stringtab. */
11508 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11509 if (bfd_seek (abfd, off, SEEK_SET) != 0
11510 || ! _bfd_elf_strtab_emit (abfd,
11511 elf_hash_table (info)->dynstr))
11512 goto error_return;
11513 }
11514 }
11515 }
11516
11517 if (info->relocatable)
11518 {
11519 bfd_boolean failed = FALSE;
11520
11521 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11522 if (failed)
11523 goto error_return;
11524 }
11525
11526 /* If we have optimized stabs strings, output them. */
11527 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11528 {
11529 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11530 goto error_return;
11531 }
11532
11533 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11534 goto error_return;
11535
11536 elf_final_link_free (abfd, &flinfo);
11537
11538 elf_tdata (abfd)->linker = TRUE;
11539
11540 if (attr_section)
11541 {
11542 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11543 if (contents == NULL)
11544 return FALSE; /* Bail out and fail. */
11545 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11546 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11547 free (contents);
11548 }
11549
11550 return TRUE;
11551
11552 error_return:
11553 elf_final_link_free (abfd, &flinfo);
11554 return FALSE;
11555 }
11556 \f
11557 /* Initialize COOKIE for input bfd ABFD. */
11558
11559 static bfd_boolean
11560 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11561 struct bfd_link_info *info, bfd *abfd)
11562 {
11563 Elf_Internal_Shdr *symtab_hdr;
11564 const struct elf_backend_data *bed;
11565
11566 bed = get_elf_backend_data (abfd);
11567 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11568
11569 cookie->abfd = abfd;
11570 cookie->sym_hashes = elf_sym_hashes (abfd);
11571 cookie->bad_symtab = elf_bad_symtab (abfd);
11572 if (cookie->bad_symtab)
11573 {
11574 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11575 cookie->extsymoff = 0;
11576 }
11577 else
11578 {
11579 cookie->locsymcount = symtab_hdr->sh_info;
11580 cookie->extsymoff = symtab_hdr->sh_info;
11581 }
11582
11583 if (bed->s->arch_size == 32)
11584 cookie->r_sym_shift = 8;
11585 else
11586 cookie->r_sym_shift = 32;
11587
11588 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11589 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11590 {
11591 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11592 cookie->locsymcount, 0,
11593 NULL, NULL, NULL);
11594 if (cookie->locsyms == NULL)
11595 {
11596 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11597 return FALSE;
11598 }
11599 if (info->keep_memory)
11600 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11601 }
11602 return TRUE;
11603 }
11604
11605 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11606
11607 static void
11608 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11609 {
11610 Elf_Internal_Shdr *symtab_hdr;
11611
11612 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11613 if (cookie->locsyms != NULL
11614 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11615 free (cookie->locsyms);
11616 }
11617
11618 /* Initialize the relocation information in COOKIE for input section SEC
11619 of input bfd ABFD. */
11620
11621 static bfd_boolean
11622 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11623 struct bfd_link_info *info, bfd *abfd,
11624 asection *sec)
11625 {
11626 const struct elf_backend_data *bed;
11627
11628 if (sec->reloc_count == 0)
11629 {
11630 cookie->rels = NULL;
11631 cookie->relend = NULL;
11632 }
11633 else
11634 {
11635 bed = get_elf_backend_data (abfd);
11636
11637 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11638 info->keep_memory);
11639 if (cookie->rels == NULL)
11640 return FALSE;
11641 cookie->rel = cookie->rels;
11642 cookie->relend = (cookie->rels
11643 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11644 }
11645 cookie->rel = cookie->rels;
11646 return TRUE;
11647 }
11648
11649 /* Free the memory allocated by init_reloc_cookie_rels,
11650 if appropriate. */
11651
11652 static void
11653 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11654 asection *sec)
11655 {
11656 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11657 free (cookie->rels);
11658 }
11659
11660 /* Initialize the whole of COOKIE for input section SEC. */
11661
11662 static bfd_boolean
11663 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11664 struct bfd_link_info *info,
11665 asection *sec)
11666 {
11667 if (!init_reloc_cookie (cookie, info, sec->owner))
11668 goto error1;
11669 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11670 goto error2;
11671 return TRUE;
11672
11673 error2:
11674 fini_reloc_cookie (cookie, sec->owner);
11675 error1:
11676 return FALSE;
11677 }
11678
11679 /* Free the memory allocated by init_reloc_cookie_for_section,
11680 if appropriate. */
11681
11682 static void
11683 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11684 asection *sec)
11685 {
11686 fini_reloc_cookie_rels (cookie, sec);
11687 fini_reloc_cookie (cookie, sec->owner);
11688 }
11689 \f
11690 /* Garbage collect unused sections. */
11691
11692 /* Default gc_mark_hook. */
11693
11694 asection *
11695 _bfd_elf_gc_mark_hook (asection *sec,
11696 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11697 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11698 struct elf_link_hash_entry *h,
11699 Elf_Internal_Sym *sym)
11700 {
11701 const char *sec_name;
11702
11703 if (h != NULL)
11704 {
11705 switch (h->root.type)
11706 {
11707 case bfd_link_hash_defined:
11708 case bfd_link_hash_defweak:
11709 return h->root.u.def.section;
11710
11711 case bfd_link_hash_common:
11712 return h->root.u.c.p->section;
11713
11714 case bfd_link_hash_undefined:
11715 case bfd_link_hash_undefweak:
11716 /* To work around a glibc bug, keep all XXX input sections
11717 when there is an as yet undefined reference to __start_XXX
11718 or __stop_XXX symbols. The linker will later define such
11719 symbols for orphan input sections that have a name
11720 representable as a C identifier. */
11721 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11722 sec_name = h->root.root.string + 8;
11723 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11724 sec_name = h->root.root.string + 7;
11725 else
11726 sec_name = NULL;
11727
11728 if (sec_name && *sec_name != '\0')
11729 {
11730 bfd *i;
11731
11732 for (i = info->input_bfds; i; i = i->link_next)
11733 {
11734 sec = bfd_get_section_by_name (i, sec_name);
11735 if (sec)
11736 sec->flags |= SEC_KEEP;
11737 }
11738 }
11739 break;
11740
11741 default:
11742 break;
11743 }
11744 }
11745 else
11746 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11747
11748 return NULL;
11749 }
11750
11751 /* COOKIE->rel describes a relocation against section SEC, which is
11752 a section we've decided to keep. Return the section that contains
11753 the relocation symbol, or NULL if no section contains it. */
11754
11755 asection *
11756 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11757 elf_gc_mark_hook_fn gc_mark_hook,
11758 struct elf_reloc_cookie *cookie)
11759 {
11760 unsigned long r_symndx;
11761 struct elf_link_hash_entry *h;
11762
11763 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11764 if (r_symndx == STN_UNDEF)
11765 return NULL;
11766
11767 if (r_symndx >= cookie->locsymcount
11768 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11769 {
11770 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11771 while (h->root.type == bfd_link_hash_indirect
11772 || h->root.type == bfd_link_hash_warning)
11773 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11774 h->mark = 1;
11775 /* If this symbol is weak and there is a non-weak definition, we
11776 keep the non-weak definition because many backends put
11777 dynamic reloc info on the non-weak definition for code
11778 handling copy relocs. */
11779 if (h->u.weakdef != NULL)
11780 h->u.weakdef->mark = 1;
11781 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11782 }
11783
11784 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11785 &cookie->locsyms[r_symndx]);
11786 }
11787
11788 /* COOKIE->rel describes a relocation against section SEC, which is
11789 a section we've decided to keep. Mark the section that contains
11790 the relocation symbol. */
11791
11792 bfd_boolean
11793 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11794 asection *sec,
11795 elf_gc_mark_hook_fn gc_mark_hook,
11796 struct elf_reloc_cookie *cookie)
11797 {
11798 asection *rsec;
11799
11800 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11801 if (rsec && !rsec->gc_mark)
11802 {
11803 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11804 || (rsec->owner->flags & DYNAMIC) != 0)
11805 rsec->gc_mark = 1;
11806 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11807 return FALSE;
11808 }
11809 return TRUE;
11810 }
11811
11812 /* The mark phase of garbage collection. For a given section, mark
11813 it and any sections in this section's group, and all the sections
11814 which define symbols to which it refers. */
11815
11816 bfd_boolean
11817 _bfd_elf_gc_mark (struct bfd_link_info *info,
11818 asection *sec,
11819 elf_gc_mark_hook_fn gc_mark_hook)
11820 {
11821 bfd_boolean ret;
11822 asection *group_sec, *eh_frame;
11823
11824 sec->gc_mark = 1;
11825
11826 /* Mark all the sections in the group. */
11827 group_sec = elf_section_data (sec)->next_in_group;
11828 if (group_sec && !group_sec->gc_mark)
11829 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11830 return FALSE;
11831
11832 /* Look through the section relocs. */
11833 ret = TRUE;
11834 eh_frame = elf_eh_frame_section (sec->owner);
11835 if ((sec->flags & SEC_RELOC) != 0
11836 && sec->reloc_count > 0
11837 && sec != eh_frame)
11838 {
11839 struct elf_reloc_cookie cookie;
11840
11841 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11842 ret = FALSE;
11843 else
11844 {
11845 for (; cookie.rel < cookie.relend; cookie.rel++)
11846 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11847 {
11848 ret = FALSE;
11849 break;
11850 }
11851 fini_reloc_cookie_for_section (&cookie, sec);
11852 }
11853 }
11854
11855 if (ret && eh_frame && elf_fde_list (sec))
11856 {
11857 struct elf_reloc_cookie cookie;
11858
11859 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11860 ret = FALSE;
11861 else
11862 {
11863 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11864 gc_mark_hook, &cookie))
11865 ret = FALSE;
11866 fini_reloc_cookie_for_section (&cookie, eh_frame);
11867 }
11868 }
11869
11870 return ret;
11871 }
11872
11873 /* Keep debug and special sections. */
11874
11875 bfd_boolean
11876 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11877 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11878 {
11879 bfd *ibfd;
11880
11881 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11882 {
11883 asection *isec;
11884 bfd_boolean some_kept;
11885
11886 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11887 continue;
11888
11889 /* Ensure all linker created sections are kept, and see whether
11890 any other section is already marked. */
11891 some_kept = FALSE;
11892 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11893 {
11894 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11895 isec->gc_mark = 1;
11896 else if (isec->gc_mark)
11897 some_kept = TRUE;
11898 }
11899
11900 /* If no section in this file will be kept, then we can
11901 toss out debug sections. */
11902 if (!some_kept)
11903 continue;
11904
11905 /* Keep debug and special sections like .comment when they are
11906 not part of a group, or when we have single-member groups. */
11907 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11908 if ((elf_next_in_group (isec) == NULL
11909 || elf_next_in_group (isec) == isec)
11910 && ((isec->flags & SEC_DEBUGGING) != 0
11911 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
11912 isec->gc_mark = 1;
11913 }
11914 return TRUE;
11915 }
11916
11917 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11918
11919 struct elf_gc_sweep_symbol_info
11920 {
11921 struct bfd_link_info *info;
11922 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11923 bfd_boolean);
11924 };
11925
11926 static bfd_boolean
11927 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11928 {
11929 if (!h->mark
11930 && (((h->root.type == bfd_link_hash_defined
11931 || h->root.type == bfd_link_hash_defweak)
11932 && !(h->def_regular
11933 && h->root.u.def.section->gc_mark))
11934 || h->root.type == bfd_link_hash_undefined
11935 || h->root.type == bfd_link_hash_undefweak))
11936 {
11937 struct elf_gc_sweep_symbol_info *inf;
11938
11939 inf = (struct elf_gc_sweep_symbol_info *) data;
11940 (*inf->hide_symbol) (inf->info, h, TRUE);
11941 h->def_regular = 0;
11942 h->ref_regular = 0;
11943 h->ref_regular_nonweak = 0;
11944 }
11945
11946 return TRUE;
11947 }
11948
11949 /* The sweep phase of garbage collection. Remove all garbage sections. */
11950
11951 typedef bfd_boolean (*gc_sweep_hook_fn)
11952 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11953
11954 static bfd_boolean
11955 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11956 {
11957 bfd *sub;
11958 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11959 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11960 unsigned long section_sym_count;
11961 struct elf_gc_sweep_symbol_info sweep_info;
11962
11963 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11964 {
11965 asection *o;
11966
11967 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11968 continue;
11969
11970 for (o = sub->sections; o != NULL; o = o->next)
11971 {
11972 /* When any section in a section group is kept, we keep all
11973 sections in the section group. If the first member of
11974 the section group is excluded, we will also exclude the
11975 group section. */
11976 if (o->flags & SEC_GROUP)
11977 {
11978 asection *first = elf_next_in_group (o);
11979 o->gc_mark = first->gc_mark;
11980 }
11981
11982 if (o->gc_mark)
11983 continue;
11984
11985 /* Skip sweeping sections already excluded. */
11986 if (o->flags & SEC_EXCLUDE)
11987 continue;
11988
11989 /* Since this is early in the link process, it is simple
11990 to remove a section from the output. */
11991 o->flags |= SEC_EXCLUDE;
11992
11993 if (info->print_gc_sections && o->size != 0)
11994 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11995
11996 /* But we also have to update some of the relocation
11997 info we collected before. */
11998 if (gc_sweep_hook
11999 && (o->flags & SEC_RELOC) != 0
12000 && o->reloc_count > 0
12001 && !bfd_is_abs_section (o->output_section))
12002 {
12003 Elf_Internal_Rela *internal_relocs;
12004 bfd_boolean r;
12005
12006 internal_relocs
12007 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12008 info->keep_memory);
12009 if (internal_relocs == NULL)
12010 return FALSE;
12011
12012 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12013
12014 if (elf_section_data (o)->relocs != internal_relocs)
12015 free (internal_relocs);
12016
12017 if (!r)
12018 return FALSE;
12019 }
12020 }
12021 }
12022
12023 /* Remove the symbols that were in the swept sections from the dynamic
12024 symbol table. GCFIXME: Anyone know how to get them out of the
12025 static symbol table as well? */
12026 sweep_info.info = info;
12027 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12028 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12029 &sweep_info);
12030
12031 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12032 return TRUE;
12033 }
12034
12035 /* Propagate collected vtable information. This is called through
12036 elf_link_hash_traverse. */
12037
12038 static bfd_boolean
12039 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12040 {
12041 /* Those that are not vtables. */
12042 if (h->vtable == NULL || h->vtable->parent == NULL)
12043 return TRUE;
12044
12045 /* Those vtables that do not have parents, we cannot merge. */
12046 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12047 return TRUE;
12048
12049 /* If we've already been done, exit. */
12050 if (h->vtable->used && h->vtable->used[-1])
12051 return TRUE;
12052
12053 /* Make sure the parent's table is up to date. */
12054 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12055
12056 if (h->vtable->used == NULL)
12057 {
12058 /* None of this table's entries were referenced. Re-use the
12059 parent's table. */
12060 h->vtable->used = h->vtable->parent->vtable->used;
12061 h->vtable->size = h->vtable->parent->vtable->size;
12062 }
12063 else
12064 {
12065 size_t n;
12066 bfd_boolean *cu, *pu;
12067
12068 /* Or the parent's entries into ours. */
12069 cu = h->vtable->used;
12070 cu[-1] = TRUE;
12071 pu = h->vtable->parent->vtable->used;
12072 if (pu != NULL)
12073 {
12074 const struct elf_backend_data *bed;
12075 unsigned int log_file_align;
12076
12077 bed = get_elf_backend_data (h->root.u.def.section->owner);
12078 log_file_align = bed->s->log_file_align;
12079 n = h->vtable->parent->vtable->size >> log_file_align;
12080 while (n--)
12081 {
12082 if (*pu)
12083 *cu = TRUE;
12084 pu++;
12085 cu++;
12086 }
12087 }
12088 }
12089
12090 return TRUE;
12091 }
12092
12093 static bfd_boolean
12094 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12095 {
12096 asection *sec;
12097 bfd_vma hstart, hend;
12098 Elf_Internal_Rela *relstart, *relend, *rel;
12099 const struct elf_backend_data *bed;
12100 unsigned int log_file_align;
12101
12102 /* Take care of both those symbols that do not describe vtables as
12103 well as those that are not loaded. */
12104 if (h->vtable == NULL || h->vtable->parent == NULL)
12105 return TRUE;
12106
12107 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12108 || h->root.type == bfd_link_hash_defweak);
12109
12110 sec = h->root.u.def.section;
12111 hstart = h->root.u.def.value;
12112 hend = hstart + h->size;
12113
12114 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12115 if (!relstart)
12116 return *(bfd_boolean *) okp = FALSE;
12117 bed = get_elf_backend_data (sec->owner);
12118 log_file_align = bed->s->log_file_align;
12119
12120 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12121
12122 for (rel = relstart; rel < relend; ++rel)
12123 if (rel->r_offset >= hstart && rel->r_offset < hend)
12124 {
12125 /* If the entry is in use, do nothing. */
12126 if (h->vtable->used
12127 && (rel->r_offset - hstart) < h->vtable->size)
12128 {
12129 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12130 if (h->vtable->used[entry])
12131 continue;
12132 }
12133 /* Otherwise, kill it. */
12134 rel->r_offset = rel->r_info = rel->r_addend = 0;
12135 }
12136
12137 return TRUE;
12138 }
12139
12140 /* Mark sections containing dynamically referenced symbols. When
12141 building shared libraries, we must assume that any visible symbol is
12142 referenced. */
12143
12144 bfd_boolean
12145 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12146 {
12147 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12148
12149 if ((h->root.type == bfd_link_hash_defined
12150 || h->root.type == bfd_link_hash_defweak)
12151 && (h->ref_dynamic
12152 || ((!info->executable || info->export_dynamic)
12153 && h->def_regular
12154 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12155 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12156 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12157 || !bfd_hide_sym_by_version (info->version_info,
12158 h->root.root.string)))))
12159 h->root.u.def.section->flags |= SEC_KEEP;
12160
12161 return TRUE;
12162 }
12163
12164 /* Keep all sections containing symbols undefined on the command-line,
12165 and the section containing the entry symbol. */
12166
12167 void
12168 _bfd_elf_gc_keep (struct bfd_link_info *info)
12169 {
12170 struct bfd_sym_chain *sym;
12171
12172 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12173 {
12174 struct elf_link_hash_entry *h;
12175
12176 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12177 FALSE, FALSE, FALSE);
12178
12179 if (h != NULL
12180 && (h->root.type == bfd_link_hash_defined
12181 || h->root.type == bfd_link_hash_defweak)
12182 && !bfd_is_abs_section (h->root.u.def.section))
12183 h->root.u.def.section->flags |= SEC_KEEP;
12184 }
12185 }
12186
12187 /* Do mark and sweep of unused sections. */
12188
12189 bfd_boolean
12190 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12191 {
12192 bfd_boolean ok = TRUE;
12193 bfd *sub;
12194 elf_gc_mark_hook_fn gc_mark_hook;
12195 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12196
12197 if (!bed->can_gc_sections
12198 || !is_elf_hash_table (info->hash))
12199 {
12200 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12201 return TRUE;
12202 }
12203
12204 bed->gc_keep (info);
12205
12206 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12207 at the .eh_frame section if we can mark the FDEs individually. */
12208 _bfd_elf_begin_eh_frame_parsing (info);
12209 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12210 {
12211 asection *sec;
12212 struct elf_reloc_cookie cookie;
12213
12214 sec = bfd_get_section_by_name (sub, ".eh_frame");
12215 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12216 {
12217 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12218 if (elf_section_data (sec)->sec_info
12219 && (sec->flags & SEC_LINKER_CREATED) == 0)
12220 elf_eh_frame_section (sub) = sec;
12221 fini_reloc_cookie_for_section (&cookie, sec);
12222 sec = bfd_get_next_section_by_name (sec);
12223 }
12224 }
12225 _bfd_elf_end_eh_frame_parsing (info);
12226
12227 /* Apply transitive closure to the vtable entry usage info. */
12228 elf_link_hash_traverse (elf_hash_table (info),
12229 elf_gc_propagate_vtable_entries_used,
12230 &ok);
12231 if (!ok)
12232 return FALSE;
12233
12234 /* Kill the vtable relocations that were not used. */
12235 elf_link_hash_traverse (elf_hash_table (info),
12236 elf_gc_smash_unused_vtentry_relocs,
12237 &ok);
12238 if (!ok)
12239 return FALSE;
12240
12241 /* Mark dynamically referenced symbols. */
12242 if (elf_hash_table (info)->dynamic_sections_created)
12243 elf_link_hash_traverse (elf_hash_table (info),
12244 bed->gc_mark_dynamic_ref,
12245 info);
12246
12247 /* Grovel through relocs to find out who stays ... */
12248 gc_mark_hook = bed->gc_mark_hook;
12249 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12250 {
12251 asection *o;
12252
12253 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12254 continue;
12255
12256 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12257 Also treat note sections as a root, if the section is not part
12258 of a group. */
12259 for (o = sub->sections; o != NULL; o = o->next)
12260 if (!o->gc_mark
12261 && (o->flags & SEC_EXCLUDE) == 0
12262 && ((o->flags & SEC_KEEP) != 0
12263 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12264 && elf_next_in_group (o) == NULL )))
12265 {
12266 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12267 return FALSE;
12268 }
12269 }
12270
12271 /* Allow the backend to mark additional target specific sections. */
12272 bed->gc_mark_extra_sections (info, gc_mark_hook);
12273
12274 /* ... and mark SEC_EXCLUDE for those that go. */
12275 return elf_gc_sweep (abfd, info);
12276 }
12277 \f
12278 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12279
12280 bfd_boolean
12281 bfd_elf_gc_record_vtinherit (bfd *abfd,
12282 asection *sec,
12283 struct elf_link_hash_entry *h,
12284 bfd_vma offset)
12285 {
12286 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12287 struct elf_link_hash_entry **search, *child;
12288 bfd_size_type extsymcount;
12289 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12290
12291 /* The sh_info field of the symtab header tells us where the
12292 external symbols start. We don't care about the local symbols at
12293 this point. */
12294 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12295 if (!elf_bad_symtab (abfd))
12296 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12297
12298 sym_hashes = elf_sym_hashes (abfd);
12299 sym_hashes_end = sym_hashes + extsymcount;
12300
12301 /* Hunt down the child symbol, which is in this section at the same
12302 offset as the relocation. */
12303 for (search = sym_hashes; search != sym_hashes_end; ++search)
12304 {
12305 if ((child = *search) != NULL
12306 && (child->root.type == bfd_link_hash_defined
12307 || child->root.type == bfd_link_hash_defweak)
12308 && child->root.u.def.section == sec
12309 && child->root.u.def.value == offset)
12310 goto win;
12311 }
12312
12313 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12314 abfd, sec, (unsigned long) offset);
12315 bfd_set_error (bfd_error_invalid_operation);
12316 return FALSE;
12317
12318 win:
12319 if (!child->vtable)
12320 {
12321 child->vtable = (struct elf_link_virtual_table_entry *)
12322 bfd_zalloc (abfd, sizeof (*child->vtable));
12323 if (!child->vtable)
12324 return FALSE;
12325 }
12326 if (!h)
12327 {
12328 /* This *should* only be the absolute section. It could potentially
12329 be that someone has defined a non-global vtable though, which
12330 would be bad. It isn't worth paging in the local symbols to be
12331 sure though; that case should simply be handled by the assembler. */
12332
12333 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12334 }
12335 else
12336 child->vtable->parent = h;
12337
12338 return TRUE;
12339 }
12340
12341 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12342
12343 bfd_boolean
12344 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12345 asection *sec ATTRIBUTE_UNUSED,
12346 struct elf_link_hash_entry *h,
12347 bfd_vma addend)
12348 {
12349 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12350 unsigned int log_file_align = bed->s->log_file_align;
12351
12352 if (!h->vtable)
12353 {
12354 h->vtable = (struct elf_link_virtual_table_entry *)
12355 bfd_zalloc (abfd, sizeof (*h->vtable));
12356 if (!h->vtable)
12357 return FALSE;
12358 }
12359
12360 if (addend >= h->vtable->size)
12361 {
12362 size_t size, bytes, file_align;
12363 bfd_boolean *ptr = h->vtable->used;
12364
12365 /* While the symbol is undefined, we have to be prepared to handle
12366 a zero size. */
12367 file_align = 1 << log_file_align;
12368 if (h->root.type == bfd_link_hash_undefined)
12369 size = addend + file_align;
12370 else
12371 {
12372 size = h->size;
12373 if (addend >= size)
12374 {
12375 /* Oops! We've got a reference past the defined end of
12376 the table. This is probably a bug -- shall we warn? */
12377 size = addend + file_align;
12378 }
12379 }
12380 size = (size + file_align - 1) & -file_align;
12381
12382 /* Allocate one extra entry for use as a "done" flag for the
12383 consolidation pass. */
12384 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12385
12386 if (ptr)
12387 {
12388 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12389
12390 if (ptr != NULL)
12391 {
12392 size_t oldbytes;
12393
12394 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12395 * sizeof (bfd_boolean));
12396 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12397 }
12398 }
12399 else
12400 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12401
12402 if (ptr == NULL)
12403 return FALSE;
12404
12405 /* And arrange for that done flag to be at index -1. */
12406 h->vtable->used = ptr + 1;
12407 h->vtable->size = size;
12408 }
12409
12410 h->vtable->used[addend >> log_file_align] = TRUE;
12411
12412 return TRUE;
12413 }
12414
12415 /* Map an ELF section header flag to its corresponding string. */
12416 typedef struct
12417 {
12418 char *flag_name;
12419 flagword flag_value;
12420 } elf_flags_to_name_table;
12421
12422 static elf_flags_to_name_table elf_flags_to_names [] =
12423 {
12424 { "SHF_WRITE", SHF_WRITE },
12425 { "SHF_ALLOC", SHF_ALLOC },
12426 { "SHF_EXECINSTR", SHF_EXECINSTR },
12427 { "SHF_MERGE", SHF_MERGE },
12428 { "SHF_STRINGS", SHF_STRINGS },
12429 { "SHF_INFO_LINK", SHF_INFO_LINK},
12430 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12431 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12432 { "SHF_GROUP", SHF_GROUP },
12433 { "SHF_TLS", SHF_TLS },
12434 { "SHF_MASKOS", SHF_MASKOS },
12435 { "SHF_EXCLUDE", SHF_EXCLUDE },
12436 };
12437
12438 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12439 bfd_boolean
12440 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12441 struct flag_info *flaginfo,
12442 asection *section)
12443 {
12444 const bfd_vma sh_flags = elf_section_flags (section);
12445
12446 if (!flaginfo->flags_initialized)
12447 {
12448 bfd *obfd = info->output_bfd;
12449 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12450 struct flag_info_list *tf = flaginfo->flag_list;
12451 int with_hex = 0;
12452 int without_hex = 0;
12453
12454 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12455 {
12456 unsigned i;
12457 flagword (*lookup) (char *);
12458
12459 lookup = bed->elf_backend_lookup_section_flags_hook;
12460 if (lookup != NULL)
12461 {
12462 flagword hexval = (*lookup) ((char *) tf->name);
12463
12464 if (hexval != 0)
12465 {
12466 if (tf->with == with_flags)
12467 with_hex |= hexval;
12468 else if (tf->with == without_flags)
12469 without_hex |= hexval;
12470 tf->valid = TRUE;
12471 continue;
12472 }
12473 }
12474 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12475 {
12476 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12477 {
12478 if (tf->with == with_flags)
12479 with_hex |= elf_flags_to_names[i].flag_value;
12480 else if (tf->with == without_flags)
12481 without_hex |= elf_flags_to_names[i].flag_value;
12482 tf->valid = TRUE;
12483 break;
12484 }
12485 }
12486 if (!tf->valid)
12487 {
12488 info->callbacks->einfo
12489 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12490 return FALSE;
12491 }
12492 }
12493 flaginfo->flags_initialized = TRUE;
12494 flaginfo->only_with_flags |= with_hex;
12495 flaginfo->not_with_flags |= without_hex;
12496 }
12497
12498 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12499 return FALSE;
12500
12501 if ((flaginfo->not_with_flags & sh_flags) != 0)
12502 return FALSE;
12503
12504 return TRUE;
12505 }
12506
12507 struct alloc_got_off_arg {
12508 bfd_vma gotoff;
12509 struct bfd_link_info *info;
12510 };
12511
12512 /* We need a special top-level link routine to convert got reference counts
12513 to real got offsets. */
12514
12515 static bfd_boolean
12516 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12517 {
12518 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12519 bfd *obfd = gofarg->info->output_bfd;
12520 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12521
12522 if (h->got.refcount > 0)
12523 {
12524 h->got.offset = gofarg->gotoff;
12525 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12526 }
12527 else
12528 h->got.offset = (bfd_vma) -1;
12529
12530 return TRUE;
12531 }
12532
12533 /* And an accompanying bit to work out final got entry offsets once
12534 we're done. Should be called from final_link. */
12535
12536 bfd_boolean
12537 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12538 struct bfd_link_info *info)
12539 {
12540 bfd *i;
12541 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12542 bfd_vma gotoff;
12543 struct alloc_got_off_arg gofarg;
12544
12545 BFD_ASSERT (abfd == info->output_bfd);
12546
12547 if (! is_elf_hash_table (info->hash))
12548 return FALSE;
12549
12550 /* The GOT offset is relative to the .got section, but the GOT header is
12551 put into the .got.plt section, if the backend uses it. */
12552 if (bed->want_got_plt)
12553 gotoff = 0;
12554 else
12555 gotoff = bed->got_header_size;
12556
12557 /* Do the local .got entries first. */
12558 for (i = info->input_bfds; i; i = i->link_next)
12559 {
12560 bfd_signed_vma *local_got;
12561 bfd_size_type j, locsymcount;
12562 Elf_Internal_Shdr *symtab_hdr;
12563
12564 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12565 continue;
12566
12567 local_got = elf_local_got_refcounts (i);
12568 if (!local_got)
12569 continue;
12570
12571 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12572 if (elf_bad_symtab (i))
12573 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12574 else
12575 locsymcount = symtab_hdr->sh_info;
12576
12577 for (j = 0; j < locsymcount; ++j)
12578 {
12579 if (local_got[j] > 0)
12580 {
12581 local_got[j] = gotoff;
12582 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12583 }
12584 else
12585 local_got[j] = (bfd_vma) -1;
12586 }
12587 }
12588
12589 /* Then the global .got entries. .plt refcounts are handled by
12590 adjust_dynamic_symbol */
12591 gofarg.gotoff = gotoff;
12592 gofarg.info = info;
12593 elf_link_hash_traverse (elf_hash_table (info),
12594 elf_gc_allocate_got_offsets,
12595 &gofarg);
12596 return TRUE;
12597 }
12598
12599 /* Many folk need no more in the way of final link than this, once
12600 got entry reference counting is enabled. */
12601
12602 bfd_boolean
12603 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12604 {
12605 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12606 return FALSE;
12607
12608 /* Invoke the regular ELF backend linker to do all the work. */
12609 return bfd_elf_final_link (abfd, info);
12610 }
12611
12612 bfd_boolean
12613 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12614 {
12615 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12616
12617 if (rcookie->bad_symtab)
12618 rcookie->rel = rcookie->rels;
12619
12620 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12621 {
12622 unsigned long r_symndx;
12623
12624 if (! rcookie->bad_symtab)
12625 if (rcookie->rel->r_offset > offset)
12626 return FALSE;
12627 if (rcookie->rel->r_offset != offset)
12628 continue;
12629
12630 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12631 if (r_symndx == STN_UNDEF)
12632 return TRUE;
12633
12634 if (r_symndx >= rcookie->locsymcount
12635 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12636 {
12637 struct elf_link_hash_entry *h;
12638
12639 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12640
12641 while (h->root.type == bfd_link_hash_indirect
12642 || h->root.type == bfd_link_hash_warning)
12643 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12644
12645 if ((h->root.type == bfd_link_hash_defined
12646 || h->root.type == bfd_link_hash_defweak)
12647 && discarded_section (h->root.u.def.section))
12648 return TRUE;
12649 else
12650 return FALSE;
12651 }
12652 else
12653 {
12654 /* It's not a relocation against a global symbol,
12655 but it could be a relocation against a local
12656 symbol for a discarded section. */
12657 asection *isec;
12658 Elf_Internal_Sym *isym;
12659
12660 /* Need to: get the symbol; get the section. */
12661 isym = &rcookie->locsyms[r_symndx];
12662 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12663 if (isec != NULL && discarded_section (isec))
12664 return TRUE;
12665 }
12666 return FALSE;
12667 }
12668 return FALSE;
12669 }
12670
12671 /* Discard unneeded references to discarded sections.
12672 Returns TRUE if any section's size was changed. */
12673 /* This function assumes that the relocations are in sorted order,
12674 which is true for all known assemblers. */
12675
12676 bfd_boolean
12677 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12678 {
12679 struct elf_reloc_cookie cookie;
12680 asection *stab, *eh;
12681 const struct elf_backend_data *bed;
12682 bfd *abfd;
12683 bfd_boolean ret = FALSE;
12684
12685 if (info->traditional_format
12686 || !is_elf_hash_table (info->hash))
12687 return FALSE;
12688
12689 _bfd_elf_begin_eh_frame_parsing (info);
12690 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12691 {
12692 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12693 continue;
12694
12695 bed = get_elf_backend_data (abfd);
12696
12697 eh = NULL;
12698 if (!info->relocatable)
12699 {
12700 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12701 while (eh != NULL
12702 && (eh->size == 0
12703 || bfd_is_abs_section (eh->output_section)))
12704 eh = bfd_get_next_section_by_name (eh);
12705 }
12706
12707 stab = bfd_get_section_by_name (abfd, ".stab");
12708 if (stab != NULL
12709 && (stab->size == 0
12710 || bfd_is_abs_section (stab->output_section)
12711 || stab->sec_info_type != SEC_INFO_TYPE_STABS))
12712 stab = NULL;
12713
12714 if (stab == NULL
12715 && eh == NULL
12716 && bed->elf_backend_discard_info == NULL)
12717 continue;
12718
12719 if (!init_reloc_cookie (&cookie, info, abfd))
12720 return FALSE;
12721
12722 if (stab != NULL
12723 && stab->reloc_count > 0
12724 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12725 {
12726 if (_bfd_discard_section_stabs (abfd, stab,
12727 elf_section_data (stab)->sec_info,
12728 bfd_elf_reloc_symbol_deleted_p,
12729 &cookie))
12730 ret = TRUE;
12731 fini_reloc_cookie_rels (&cookie, stab);
12732 }
12733
12734 while (eh != NULL
12735 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12736 {
12737 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12738 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12739 bfd_elf_reloc_symbol_deleted_p,
12740 &cookie))
12741 ret = TRUE;
12742 fini_reloc_cookie_rels (&cookie, eh);
12743 eh = bfd_get_next_section_by_name (eh);
12744 }
12745
12746 if (bed->elf_backend_discard_info != NULL
12747 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12748 ret = TRUE;
12749
12750 fini_reloc_cookie (&cookie, abfd);
12751 }
12752 _bfd_elf_end_eh_frame_parsing (info);
12753
12754 if (info->eh_frame_hdr
12755 && !info->relocatable
12756 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12757 ret = TRUE;
12758
12759 return ret;
12760 }
12761
12762 bfd_boolean
12763 _bfd_elf_section_already_linked (bfd *abfd,
12764 asection *sec,
12765 struct bfd_link_info *info)
12766 {
12767 flagword flags;
12768 const char *name, *key;
12769 struct bfd_section_already_linked *l;
12770 struct bfd_section_already_linked_hash_entry *already_linked_list;
12771
12772 if (sec->output_section == bfd_abs_section_ptr)
12773 return FALSE;
12774
12775 flags = sec->flags;
12776
12777 /* Return if it isn't a linkonce section. A comdat group section
12778 also has SEC_LINK_ONCE set. */
12779 if ((flags & SEC_LINK_ONCE) == 0)
12780 return FALSE;
12781
12782 /* Don't put group member sections on our list of already linked
12783 sections. They are handled as a group via their group section. */
12784 if (elf_sec_group (sec) != NULL)
12785 return FALSE;
12786
12787 /* For a SHT_GROUP section, use the group signature as the key. */
12788 name = sec->name;
12789 if ((flags & SEC_GROUP) != 0
12790 && elf_next_in_group (sec) != NULL
12791 && elf_group_name (elf_next_in_group (sec)) != NULL)
12792 key = elf_group_name (elf_next_in_group (sec));
12793 else
12794 {
12795 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12796 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12797 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12798 key++;
12799 else
12800 /* Must be a user linkonce section that doesn't follow gcc's
12801 naming convention. In this case we won't be matching
12802 single member groups. */
12803 key = name;
12804 }
12805
12806 already_linked_list = bfd_section_already_linked_table_lookup (key);
12807
12808 for (l = already_linked_list->entry; l != NULL; l = l->next)
12809 {
12810 /* We may have 2 different types of sections on the list: group
12811 sections with a signature of <key> (<key> is some string),
12812 and linkonce sections named .gnu.linkonce.<type>.<key>.
12813 Match like sections. LTO plugin sections are an exception.
12814 They are always named .gnu.linkonce.t.<key> and match either
12815 type of section. */
12816 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12817 && ((flags & SEC_GROUP) != 0
12818 || strcmp (name, l->sec->name) == 0))
12819 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
12820 {
12821 /* The section has already been linked. See if we should
12822 issue a warning. */
12823 if (!_bfd_handle_already_linked (sec, l, info))
12824 return FALSE;
12825
12826 if (flags & SEC_GROUP)
12827 {
12828 asection *first = elf_next_in_group (sec);
12829 asection *s = first;
12830
12831 while (s != NULL)
12832 {
12833 s->output_section = bfd_abs_section_ptr;
12834 /* Record which group discards it. */
12835 s->kept_section = l->sec;
12836 s = elf_next_in_group (s);
12837 /* These lists are circular. */
12838 if (s == first)
12839 break;
12840 }
12841 }
12842
12843 return TRUE;
12844 }
12845 }
12846
12847 /* A single member comdat group section may be discarded by a
12848 linkonce section and vice versa. */
12849 if ((flags & SEC_GROUP) != 0)
12850 {
12851 asection *first = elf_next_in_group (sec);
12852
12853 if (first != NULL && elf_next_in_group (first) == first)
12854 /* Check this single member group against linkonce sections. */
12855 for (l = already_linked_list->entry; l != NULL; l = l->next)
12856 if ((l->sec->flags & SEC_GROUP) == 0
12857 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12858 {
12859 first->output_section = bfd_abs_section_ptr;
12860 first->kept_section = l->sec;
12861 sec->output_section = bfd_abs_section_ptr;
12862 break;
12863 }
12864 }
12865 else
12866 /* Check this linkonce section against single member groups. */
12867 for (l = already_linked_list->entry; l != NULL; l = l->next)
12868 if (l->sec->flags & SEC_GROUP)
12869 {
12870 asection *first = elf_next_in_group (l->sec);
12871
12872 if (first != NULL
12873 && elf_next_in_group (first) == first
12874 && bfd_elf_match_symbols_in_sections (first, sec, info))
12875 {
12876 sec->output_section = bfd_abs_section_ptr;
12877 sec->kept_section = first;
12878 break;
12879 }
12880 }
12881
12882 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12883 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12884 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12885 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12886 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12887 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12888 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12889 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12890 The reverse order cannot happen as there is never a bfd with only the
12891 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12892 matter as here were are looking only for cross-bfd sections. */
12893
12894 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12895 for (l = already_linked_list->entry; l != NULL; l = l->next)
12896 if ((l->sec->flags & SEC_GROUP) == 0
12897 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12898 {
12899 if (abfd != l->sec->owner)
12900 sec->output_section = bfd_abs_section_ptr;
12901 break;
12902 }
12903
12904 /* This is the first section with this name. Record it. */
12905 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
12906 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12907 return sec->output_section == bfd_abs_section_ptr;
12908 }
12909
12910 bfd_boolean
12911 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12912 {
12913 return sym->st_shndx == SHN_COMMON;
12914 }
12915
12916 unsigned int
12917 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12918 {
12919 return SHN_COMMON;
12920 }
12921
12922 asection *
12923 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12924 {
12925 return bfd_com_section_ptr;
12926 }
12927
12928 bfd_vma
12929 _bfd_elf_default_got_elt_size (bfd *abfd,
12930 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12931 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12932 bfd *ibfd ATTRIBUTE_UNUSED,
12933 unsigned long symndx ATTRIBUTE_UNUSED)
12934 {
12935 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12936 return bed->s->arch_size / 8;
12937 }
12938
12939 /* Routines to support the creation of dynamic relocs. */
12940
12941 /* Returns the name of the dynamic reloc section associated with SEC. */
12942
12943 static const char *
12944 get_dynamic_reloc_section_name (bfd * abfd,
12945 asection * sec,
12946 bfd_boolean is_rela)
12947 {
12948 char *name;
12949 const char *old_name = bfd_get_section_name (NULL, sec);
12950 const char *prefix = is_rela ? ".rela" : ".rel";
12951
12952 if (old_name == NULL)
12953 return NULL;
12954
12955 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12956 sprintf (name, "%s%s", prefix, old_name);
12957
12958 return name;
12959 }
12960
12961 /* Returns the dynamic reloc section associated with SEC.
12962 If necessary compute the name of the dynamic reloc section based
12963 on SEC's name (looked up in ABFD's string table) and the setting
12964 of IS_RELA. */
12965
12966 asection *
12967 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12968 asection * sec,
12969 bfd_boolean is_rela)
12970 {
12971 asection * reloc_sec = elf_section_data (sec)->sreloc;
12972
12973 if (reloc_sec == NULL)
12974 {
12975 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12976
12977 if (name != NULL)
12978 {
12979 reloc_sec = bfd_get_linker_section (abfd, name);
12980
12981 if (reloc_sec != NULL)
12982 elf_section_data (sec)->sreloc = reloc_sec;
12983 }
12984 }
12985
12986 return reloc_sec;
12987 }
12988
12989 /* Returns the dynamic reloc section associated with SEC. If the
12990 section does not exist it is created and attached to the DYNOBJ
12991 bfd and stored in the SRELOC field of SEC's elf_section_data
12992 structure.
12993
12994 ALIGNMENT is the alignment for the newly created section and
12995 IS_RELA defines whether the name should be .rela.<SEC's name>
12996 or .rel.<SEC's name>. The section name is looked up in the
12997 string table associated with ABFD. */
12998
12999 asection *
13000 _bfd_elf_make_dynamic_reloc_section (asection * sec,
13001 bfd * dynobj,
13002 unsigned int alignment,
13003 bfd * abfd,
13004 bfd_boolean is_rela)
13005 {
13006 asection * reloc_sec = elf_section_data (sec)->sreloc;
13007
13008 if (reloc_sec == NULL)
13009 {
13010 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13011
13012 if (name == NULL)
13013 return NULL;
13014
13015 reloc_sec = bfd_get_linker_section (dynobj, name);
13016
13017 if (reloc_sec == NULL)
13018 {
13019 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13020 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13021 if ((sec->flags & SEC_ALLOC) != 0)
13022 flags |= SEC_ALLOC | SEC_LOAD;
13023
13024 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13025 if (reloc_sec != NULL)
13026 {
13027 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13028 reloc_sec = NULL;
13029 }
13030 }
13031
13032 elf_section_data (sec)->sreloc = reloc_sec;
13033 }
13034
13035 return reloc_sec;
13036 }
13037
13038 /* Copy the ELF symbol type associated with a linker hash entry. */
13039 void
13040 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
13041 struct bfd_link_hash_entry * hdest,
13042 struct bfd_link_hash_entry * hsrc)
13043 {
13044 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
13045 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
13046
13047 ehdest->type = ehsrc->type;
13048 ehdest->target_internal = ehsrc->target_internal;
13049 }
13050
13051 /* Append a RELA relocation REL to section S in BFD. */
13052
13053 void
13054 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13055 {
13056 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13057 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13058 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13059 bed->s->swap_reloca_out (abfd, rel, loc);
13060 }
13061
13062 /* Append a REL relocation REL to section S in BFD. */
13063
13064 void
13065 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13066 {
13067 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13068 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13069 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13070 bed->s->swap_reloc_out (abfd, rel, loc);
13071 }