ld/ELF: refine fake STT_FILE symbol emission
[binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995-2013 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
29 #include "objalloc.h"
30
31 /* This struct is used to pass information to routines called via
32 elf_link_hash_traverse which must return failure. */
33
34 struct elf_info_failed
35 {
36 struct bfd_link_info *info;
37 bfd_boolean failed;
38 };
39
40 /* This structure is used to pass information to
41 _bfd_elf_link_find_version_dependencies. */
42
43 struct elf_find_verdep_info
44 {
45 /* General link information. */
46 struct bfd_link_info *info;
47 /* The number of dependencies. */
48 unsigned int vers;
49 /* Whether we had a failure. */
50 bfd_boolean failed;
51 };
52
53 static bfd_boolean _bfd_elf_fix_symbol_flags
54 (struct elf_link_hash_entry *, struct elf_info_failed *);
55
56 /* Define a symbol in a dynamic linkage section. */
57
58 struct elf_link_hash_entry *
59 _bfd_elf_define_linkage_sym (bfd *abfd,
60 struct bfd_link_info *info,
61 asection *sec,
62 const char *name)
63 {
64 struct elf_link_hash_entry *h;
65 struct bfd_link_hash_entry *bh;
66 const struct elf_backend_data *bed;
67
68 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
69 if (h != NULL)
70 {
71 /* Zap symbol defined in an as-needed lib that wasn't linked.
72 This is a symptom of a larger problem: Absolute symbols
73 defined in shared libraries can't be overridden, because we
74 lose the link to the bfd which is via the symbol section. */
75 h->root.type = bfd_link_hash_new;
76 }
77
78 bh = &h->root;
79 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
80 sec, 0, NULL, FALSE,
81 get_elf_backend_data (abfd)->collect,
82 &bh))
83 return NULL;
84 h = (struct elf_link_hash_entry *) bh;
85 h->def_regular = 1;
86 h->non_elf = 0;
87 h->type = STT_OBJECT;
88 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
89 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
90
91 bed = get_elf_backend_data (abfd);
92 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
93 return h;
94 }
95
96 bfd_boolean
97 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
98 {
99 flagword flags;
100 asection *s;
101 struct elf_link_hash_entry *h;
102 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
103 struct elf_link_hash_table *htab = elf_hash_table (info);
104
105 /* This function may be called more than once. */
106 s = bfd_get_linker_section (abfd, ".got");
107 if (s != NULL)
108 return TRUE;
109
110 flags = bed->dynamic_sec_flags;
111
112 s = bfd_make_section_anyway_with_flags (abfd,
113 (bed->rela_plts_and_copies_p
114 ? ".rela.got" : ".rel.got"),
115 (bed->dynamic_sec_flags
116 | SEC_READONLY));
117 if (s == NULL
118 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
119 return FALSE;
120 htab->srelgot = s;
121
122 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
123 if (s == NULL
124 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
125 return FALSE;
126 htab->sgot = s;
127
128 if (bed->want_got_plt)
129 {
130 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
131 if (s == NULL
132 || !bfd_set_section_alignment (abfd, s,
133 bed->s->log_file_align))
134 return FALSE;
135 htab->sgotplt = s;
136 }
137
138 /* The first bit of the global offset table is the header. */
139 s->size += bed->got_header_size;
140
141 if (bed->want_got_sym)
142 {
143 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
144 (or .got.plt) section. We don't do this in the linker script
145 because we don't want to define the symbol if we are not creating
146 a global offset table. */
147 h = _bfd_elf_define_linkage_sym (abfd, info, s,
148 "_GLOBAL_OFFSET_TABLE_");
149 elf_hash_table (info)->hgot = h;
150 if (h == NULL)
151 return FALSE;
152 }
153
154 return TRUE;
155 }
156 \f
157 /* Create a strtab to hold the dynamic symbol names. */
158 static bfd_boolean
159 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
160 {
161 struct elf_link_hash_table *hash_table;
162
163 hash_table = elf_hash_table (info);
164 if (hash_table->dynobj == NULL)
165 hash_table->dynobj = abfd;
166
167 if (hash_table->dynstr == NULL)
168 {
169 hash_table->dynstr = _bfd_elf_strtab_init ();
170 if (hash_table->dynstr == NULL)
171 return FALSE;
172 }
173 return TRUE;
174 }
175
176 /* Create some sections which will be filled in with dynamic linking
177 information. ABFD is an input file which requires dynamic sections
178 to be created. The dynamic sections take up virtual memory space
179 when the final executable is run, so we need to create them before
180 addresses are assigned to the output sections. We work out the
181 actual contents and size of these sections later. */
182
183 bfd_boolean
184 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
185 {
186 flagword flags;
187 asection *s;
188 const struct elf_backend_data *bed;
189 struct elf_link_hash_entry *h;
190
191 if (! is_elf_hash_table (info->hash))
192 return FALSE;
193
194 if (elf_hash_table (info)->dynamic_sections_created)
195 return TRUE;
196
197 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
198 return FALSE;
199
200 abfd = elf_hash_table (info)->dynobj;
201 bed = get_elf_backend_data (abfd);
202
203 flags = bed->dynamic_sec_flags;
204
205 /* A dynamically linked executable has a .interp section, but a
206 shared library does not. */
207 if (info->executable)
208 {
209 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
210 flags | SEC_READONLY);
211 if (s == NULL)
212 return FALSE;
213 }
214
215 /* Create sections to hold version informations. These are removed
216 if they are not needed. */
217 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
218 flags | SEC_READONLY);
219 if (s == NULL
220 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
221 return FALSE;
222
223 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
224 flags | SEC_READONLY);
225 if (s == NULL
226 || ! bfd_set_section_alignment (abfd, s, 1))
227 return FALSE;
228
229 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
230 flags | SEC_READONLY);
231 if (s == NULL
232 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
233 return FALSE;
234
235 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
236 flags | SEC_READONLY);
237 if (s == NULL
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239 return FALSE;
240
241 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
242 flags | SEC_READONLY);
243 if (s == NULL)
244 return FALSE;
245
246 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
247 if (s == NULL
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249 return FALSE;
250
251 /* The special symbol _DYNAMIC is always set to the start of the
252 .dynamic section. We could set _DYNAMIC in a linker script, but we
253 only want to define it if we are, in fact, creating a .dynamic
254 section. We don't want to define it if there is no .dynamic
255 section, since on some ELF platforms the start up code examines it
256 to decide how to initialize the process. */
257 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
258 elf_hash_table (info)->hdynamic = h;
259 if (h == NULL)
260 return FALSE;
261
262 if (info->emit_hash)
263 {
264 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
265 flags | SEC_READONLY);
266 if (s == NULL
267 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
268 return FALSE;
269 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
270 }
271
272 if (info->emit_gnu_hash)
273 {
274 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
275 flags | SEC_READONLY);
276 if (s == NULL
277 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
278 return FALSE;
279 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
280 4 32-bit words followed by variable count of 64-bit words, then
281 variable count of 32-bit words. */
282 if (bed->s->arch_size == 64)
283 elf_section_data (s)->this_hdr.sh_entsize = 0;
284 else
285 elf_section_data (s)->this_hdr.sh_entsize = 4;
286 }
287
288 /* Let the backend create the rest of the sections. This lets the
289 backend set the right flags. The backend will normally create
290 the .got and .plt sections. */
291 if (bed->elf_backend_create_dynamic_sections == NULL
292 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
293 return FALSE;
294
295 elf_hash_table (info)->dynamic_sections_created = TRUE;
296
297 return TRUE;
298 }
299
300 /* Create dynamic sections when linking against a dynamic object. */
301
302 bfd_boolean
303 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
304 {
305 flagword flags, pltflags;
306 struct elf_link_hash_entry *h;
307 asection *s;
308 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
309 struct elf_link_hash_table *htab = elf_hash_table (info);
310
311 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
312 .rel[a].bss sections. */
313 flags = bed->dynamic_sec_flags;
314
315 pltflags = flags;
316 if (bed->plt_not_loaded)
317 /* We do not clear SEC_ALLOC here because we still want the OS to
318 allocate space for the section; it's just that there's nothing
319 to read in from the object file. */
320 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
321 else
322 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
323 if (bed->plt_readonly)
324 pltflags |= SEC_READONLY;
325
326 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
327 if (s == NULL
328 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
329 return FALSE;
330 htab->splt = s;
331
332 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
333 .plt section. */
334 if (bed->want_plt_sym)
335 {
336 h = _bfd_elf_define_linkage_sym (abfd, info, s,
337 "_PROCEDURE_LINKAGE_TABLE_");
338 elf_hash_table (info)->hplt = h;
339 if (h == NULL)
340 return FALSE;
341 }
342
343 s = bfd_make_section_anyway_with_flags (abfd,
344 (bed->rela_plts_and_copies_p
345 ? ".rela.plt" : ".rel.plt"),
346 flags | SEC_READONLY);
347 if (s == NULL
348 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
349 return FALSE;
350 htab->srelplt = s;
351
352 if (! _bfd_elf_create_got_section (abfd, info))
353 return FALSE;
354
355 if (bed->want_dynbss)
356 {
357 /* The .dynbss section is a place to put symbols which are defined
358 by dynamic objects, are referenced by regular objects, and are
359 not functions. We must allocate space for them in the process
360 image and use a R_*_COPY reloc to tell the dynamic linker to
361 initialize them at run time. The linker script puts the .dynbss
362 section into the .bss section of the final image. */
363 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
364 (SEC_ALLOC | SEC_LINKER_CREATED));
365 if (s == NULL)
366 return FALSE;
367
368 /* The .rel[a].bss section holds copy relocs. This section is not
369 normally needed. We need to create it here, though, so that the
370 linker will map it to an output section. We can't just create it
371 only if we need it, because we will not know whether we need it
372 until we have seen all the input files, and the first time the
373 main linker code calls BFD after examining all the input files
374 (size_dynamic_sections) the input sections have already been
375 mapped to the output sections. If the section turns out not to
376 be needed, we can discard it later. We will never need this
377 section when generating a shared object, since they do not use
378 copy relocs. */
379 if (! info->shared)
380 {
381 s = bfd_make_section_anyway_with_flags (abfd,
382 (bed->rela_plts_and_copies_p
383 ? ".rela.bss" : ".rel.bss"),
384 flags | SEC_READONLY);
385 if (s == NULL
386 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
387 return FALSE;
388 }
389 }
390
391 return TRUE;
392 }
393 \f
394 /* Record a new dynamic symbol. We record the dynamic symbols as we
395 read the input files, since we need to have a list of all of them
396 before we can determine the final sizes of the output sections.
397 Note that we may actually call this function even though we are not
398 going to output any dynamic symbols; in some cases we know that a
399 symbol should be in the dynamic symbol table, but only if there is
400 one. */
401
402 bfd_boolean
403 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
404 struct elf_link_hash_entry *h)
405 {
406 if (h->dynindx == -1)
407 {
408 struct elf_strtab_hash *dynstr;
409 char *p;
410 const char *name;
411 bfd_size_type indx;
412
413 /* XXX: The ABI draft says the linker must turn hidden and
414 internal symbols into STB_LOCAL symbols when producing the
415 DSO. However, if ld.so honors st_other in the dynamic table,
416 this would not be necessary. */
417 switch (ELF_ST_VISIBILITY (h->other))
418 {
419 case STV_INTERNAL:
420 case STV_HIDDEN:
421 if (h->root.type != bfd_link_hash_undefined
422 && h->root.type != bfd_link_hash_undefweak)
423 {
424 h->forced_local = 1;
425 if (!elf_hash_table (info)->is_relocatable_executable)
426 return TRUE;
427 }
428
429 default:
430 break;
431 }
432
433 h->dynindx = elf_hash_table (info)->dynsymcount;
434 ++elf_hash_table (info)->dynsymcount;
435
436 dynstr = elf_hash_table (info)->dynstr;
437 if (dynstr == NULL)
438 {
439 /* Create a strtab to hold the dynamic symbol names. */
440 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
441 if (dynstr == NULL)
442 return FALSE;
443 }
444
445 /* We don't put any version information in the dynamic string
446 table. */
447 name = h->root.root.string;
448 p = strchr (name, ELF_VER_CHR);
449 if (p != NULL)
450 /* We know that the p points into writable memory. In fact,
451 there are only a few symbols that have read-only names, being
452 those like _GLOBAL_OFFSET_TABLE_ that are created specially
453 by the backends. Most symbols will have names pointing into
454 an ELF string table read from a file, or to objalloc memory. */
455 *p = 0;
456
457 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
458
459 if (p != NULL)
460 *p = ELF_VER_CHR;
461
462 if (indx == (bfd_size_type) -1)
463 return FALSE;
464 h->dynstr_index = indx;
465 }
466
467 return TRUE;
468 }
469 \f
470 /* Mark a symbol dynamic. */
471
472 static void
473 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
474 struct elf_link_hash_entry *h,
475 Elf_Internal_Sym *sym)
476 {
477 struct bfd_elf_dynamic_list *d = info->dynamic_list;
478
479 /* It may be called more than once on the same H. */
480 if(h->dynamic || info->relocatable)
481 return;
482
483 if ((info->dynamic_data
484 && (h->type == STT_OBJECT
485 || (sym != NULL
486 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
487 || (d != NULL
488 && h->root.type == bfd_link_hash_new
489 && (*d->match) (&d->head, NULL, h->root.root.string)))
490 h->dynamic = 1;
491 }
492
493 /* Record an assignment to a symbol made by a linker script. We need
494 this in case some dynamic object refers to this symbol. */
495
496 bfd_boolean
497 bfd_elf_record_link_assignment (bfd *output_bfd,
498 struct bfd_link_info *info,
499 const char *name,
500 bfd_boolean provide,
501 bfd_boolean hidden)
502 {
503 struct elf_link_hash_entry *h, *hv;
504 struct elf_link_hash_table *htab;
505 const struct elf_backend_data *bed;
506
507 if (!is_elf_hash_table (info->hash))
508 return TRUE;
509
510 htab = elf_hash_table (info);
511 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
512 if (h == NULL)
513 return provide;
514
515 switch (h->root.type)
516 {
517 case bfd_link_hash_defined:
518 case bfd_link_hash_defweak:
519 case bfd_link_hash_common:
520 break;
521 case bfd_link_hash_undefweak:
522 case bfd_link_hash_undefined:
523 /* Since we're defining the symbol, don't let it seem to have not
524 been defined. record_dynamic_symbol and size_dynamic_sections
525 may depend on this. */
526 h->root.type = bfd_link_hash_new;
527 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
528 bfd_link_repair_undef_list (&htab->root);
529 break;
530 case bfd_link_hash_new:
531 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
532 h->non_elf = 0;
533 break;
534 case bfd_link_hash_indirect:
535 /* We had a versioned symbol in a dynamic library. We make the
536 the versioned symbol point to this one. */
537 bed = get_elf_backend_data (output_bfd);
538 hv = h;
539 while (hv->root.type == bfd_link_hash_indirect
540 || hv->root.type == bfd_link_hash_warning)
541 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
542 /* We don't need to update h->root.u since linker will set them
543 later. */
544 h->root.type = bfd_link_hash_undefined;
545 hv->root.type = bfd_link_hash_indirect;
546 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
547 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
548 break;
549 case bfd_link_hash_warning:
550 abort ();
551 break;
552 }
553
554 /* If this symbol is being provided by the linker script, and it is
555 currently defined by a dynamic object, but not by a regular
556 object, then mark it as undefined so that the generic linker will
557 force the correct value. */
558 if (provide
559 && h->def_dynamic
560 && !h->def_regular)
561 h->root.type = bfd_link_hash_undefined;
562
563 /* If this symbol is not being provided by the linker script, and it is
564 currently defined by a dynamic object, but not by a regular object,
565 then clear out any version information because the symbol will not be
566 associated with the dynamic object any more. */
567 if (!provide
568 && h->def_dynamic
569 && !h->def_regular)
570 h->verinfo.verdef = NULL;
571
572 h->def_regular = 1;
573
574 if (hidden)
575 {
576 bed = get_elf_backend_data (output_bfd);
577 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
578 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
579 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
580 }
581
582 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
583 and executables. */
584 if (!info->relocatable
585 && h->dynindx != -1
586 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
587 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
588 h->forced_local = 1;
589
590 if ((h->def_dynamic
591 || h->ref_dynamic
592 || info->shared
593 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
594 && h->dynindx == -1)
595 {
596 if (! bfd_elf_link_record_dynamic_symbol (info, h))
597 return FALSE;
598
599 /* If this is a weak defined symbol, and we know a corresponding
600 real symbol from the same dynamic object, make sure the real
601 symbol is also made into a dynamic symbol. */
602 if (h->u.weakdef != NULL
603 && h->u.weakdef->dynindx == -1)
604 {
605 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
606 return FALSE;
607 }
608 }
609
610 return TRUE;
611 }
612
613 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
614 success, and 2 on a failure caused by attempting to record a symbol
615 in a discarded section, eg. a discarded link-once section symbol. */
616
617 int
618 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
619 bfd *input_bfd,
620 long input_indx)
621 {
622 bfd_size_type amt;
623 struct elf_link_local_dynamic_entry *entry;
624 struct elf_link_hash_table *eht;
625 struct elf_strtab_hash *dynstr;
626 unsigned long dynstr_index;
627 char *name;
628 Elf_External_Sym_Shndx eshndx;
629 char esym[sizeof (Elf64_External_Sym)];
630
631 if (! is_elf_hash_table (info->hash))
632 return 0;
633
634 /* See if the entry exists already. */
635 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
636 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
637 return 1;
638
639 amt = sizeof (*entry);
640 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
641 if (entry == NULL)
642 return 0;
643
644 /* Go find the symbol, so that we can find it's name. */
645 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
646 1, input_indx, &entry->isym, esym, &eshndx))
647 {
648 bfd_release (input_bfd, entry);
649 return 0;
650 }
651
652 if (entry->isym.st_shndx != SHN_UNDEF
653 && entry->isym.st_shndx < SHN_LORESERVE)
654 {
655 asection *s;
656
657 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
658 if (s == NULL || bfd_is_abs_section (s->output_section))
659 {
660 /* We can still bfd_release here as nothing has done another
661 bfd_alloc. We can't do this later in this function. */
662 bfd_release (input_bfd, entry);
663 return 2;
664 }
665 }
666
667 name = (bfd_elf_string_from_elf_section
668 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
669 entry->isym.st_name));
670
671 dynstr = elf_hash_table (info)->dynstr;
672 if (dynstr == NULL)
673 {
674 /* Create a strtab to hold the dynamic symbol names. */
675 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
676 if (dynstr == NULL)
677 return 0;
678 }
679
680 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
681 if (dynstr_index == (unsigned long) -1)
682 return 0;
683 entry->isym.st_name = dynstr_index;
684
685 eht = elf_hash_table (info);
686
687 entry->next = eht->dynlocal;
688 eht->dynlocal = entry;
689 entry->input_bfd = input_bfd;
690 entry->input_indx = input_indx;
691 eht->dynsymcount++;
692
693 /* Whatever binding the symbol had before, it's now local. */
694 entry->isym.st_info
695 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
696
697 /* The dynindx will be set at the end of size_dynamic_sections. */
698
699 return 1;
700 }
701
702 /* Return the dynindex of a local dynamic symbol. */
703
704 long
705 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
706 bfd *input_bfd,
707 long input_indx)
708 {
709 struct elf_link_local_dynamic_entry *e;
710
711 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
712 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
713 return e->dynindx;
714 return -1;
715 }
716
717 /* This function is used to renumber the dynamic symbols, if some of
718 them are removed because they are marked as local. This is called
719 via elf_link_hash_traverse. */
720
721 static bfd_boolean
722 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
723 void *data)
724 {
725 size_t *count = (size_t *) data;
726
727 if (h->forced_local)
728 return TRUE;
729
730 if (h->dynindx != -1)
731 h->dynindx = ++(*count);
732
733 return TRUE;
734 }
735
736
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
739
740 static bfd_boolean
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
742 void *data)
743 {
744 size_t *count = (size_t *) data;
745
746 if (!h->forced_local)
747 return TRUE;
748
749 if (h->dynindx != -1)
750 h->dynindx = ++(*count);
751
752 return TRUE;
753 }
754
755 /* Return true if the dynamic symbol for a given section should be
756 omitted when creating a shared library. */
757 bfd_boolean
758 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
759 struct bfd_link_info *info,
760 asection *p)
761 {
762 struct elf_link_hash_table *htab;
763
764 switch (elf_section_data (p)->this_hdr.sh_type)
765 {
766 case SHT_PROGBITS:
767 case SHT_NOBITS:
768 /* If sh_type is yet undecided, assume it could be
769 SHT_PROGBITS/SHT_NOBITS. */
770 case SHT_NULL:
771 htab = elf_hash_table (info);
772 if (p == htab->tls_sec)
773 return FALSE;
774
775 if (htab->text_index_section != NULL)
776 return p != htab->text_index_section && p != htab->data_index_section;
777
778 if (strcmp (p->name, ".got") == 0
779 || strcmp (p->name, ".got.plt") == 0
780 || strcmp (p->name, ".plt") == 0)
781 {
782 asection *ip;
783
784 if (htab->dynobj != NULL
785 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
786 && ip->output_section == p)
787 return TRUE;
788 }
789 return FALSE;
790
791 /* There shouldn't be section relative relocations
792 against any other section. */
793 default:
794 return TRUE;
795 }
796 }
797
798 /* Assign dynsym indices. In a shared library we generate a section
799 symbol for each output section, which come first. Next come symbols
800 which have been forced to local binding. Then all of the back-end
801 allocated local dynamic syms, followed by the rest of the global
802 symbols. */
803
804 static unsigned long
805 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
806 struct bfd_link_info *info,
807 unsigned long *section_sym_count)
808 {
809 unsigned long dynsymcount = 0;
810
811 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
812 {
813 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
814 asection *p;
815 for (p = output_bfd->sections; p ; p = p->next)
816 if ((p->flags & SEC_EXCLUDE) == 0
817 && (p->flags & SEC_ALLOC) != 0
818 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
819 elf_section_data (p)->dynindx = ++dynsymcount;
820 else
821 elf_section_data (p)->dynindx = 0;
822 }
823 *section_sym_count = dynsymcount;
824
825 elf_link_hash_traverse (elf_hash_table (info),
826 elf_link_renumber_local_hash_table_dynsyms,
827 &dynsymcount);
828
829 if (elf_hash_table (info)->dynlocal)
830 {
831 struct elf_link_local_dynamic_entry *p;
832 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
833 p->dynindx = ++dynsymcount;
834 }
835
836 elf_link_hash_traverse (elf_hash_table (info),
837 elf_link_renumber_hash_table_dynsyms,
838 &dynsymcount);
839
840 /* There is an unused NULL entry at the head of the table which
841 we must account for in our count. Unless there weren't any
842 symbols, which means we'll have no table at all. */
843 if (dynsymcount != 0)
844 ++dynsymcount;
845
846 elf_hash_table (info)->dynsymcount = dynsymcount;
847 return dynsymcount;
848 }
849
850 /* Merge st_other field. */
851
852 static void
853 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
854 Elf_Internal_Sym *isym, bfd_boolean definition,
855 bfd_boolean dynamic)
856 {
857 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
858
859 /* If st_other has a processor-specific meaning, specific
860 code might be needed here. We never merge the visibility
861 attribute with the one from a dynamic object. */
862 if (bed->elf_backend_merge_symbol_attribute)
863 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
864 dynamic);
865
866 /* If this symbol has default visibility and the user has requested
867 we not re-export it, then mark it as hidden. */
868 if (definition
869 && !dynamic
870 && (abfd->no_export
871 || (abfd->my_archive && abfd->my_archive->no_export))
872 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
873 isym->st_other = (STV_HIDDEN
874 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
875
876 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
877 {
878 unsigned char hvis, symvis, other, nvis;
879
880 /* Only merge the visibility. Leave the remainder of the
881 st_other field to elf_backend_merge_symbol_attribute. */
882 other = h->other & ~ELF_ST_VISIBILITY (-1);
883
884 /* Combine visibilities, using the most constraining one. */
885 hvis = ELF_ST_VISIBILITY (h->other);
886 symvis = ELF_ST_VISIBILITY (isym->st_other);
887 if (! hvis)
888 nvis = symvis;
889 else if (! symvis)
890 nvis = hvis;
891 else
892 nvis = hvis < symvis ? hvis : symvis;
893
894 h->other = other | nvis;
895 }
896 }
897
898 /* This function is called when we want to merge a new symbol with an
899 existing symbol. It handles the various cases which arise when we
900 find a definition in a dynamic object, or when there is already a
901 definition in a dynamic object. The new symbol is described by
902 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
903 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
904 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
905 of an old common symbol. We set OVERRIDE if the old symbol is
906 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
907 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
908 to change. By OK to change, we mean that we shouldn't warn if the
909 type or size does change. */
910
911 static bfd_boolean
912 _bfd_elf_merge_symbol (bfd *abfd,
913 struct bfd_link_info *info,
914 const char *name,
915 Elf_Internal_Sym *sym,
916 asection **psec,
917 bfd_vma *pvalue,
918 struct elf_link_hash_entry **sym_hash,
919 bfd **poldbfd,
920 bfd_boolean *pold_weak,
921 unsigned int *pold_alignment,
922 bfd_boolean *skip,
923 bfd_boolean *override,
924 bfd_boolean *type_change_ok,
925 bfd_boolean *size_change_ok)
926 {
927 asection *sec, *oldsec;
928 struct elf_link_hash_entry *h;
929 struct elf_link_hash_entry *hi;
930 struct elf_link_hash_entry *flip;
931 int bind;
932 bfd *oldbfd;
933 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
934 bfd_boolean newweak, oldweak, newfunc, oldfunc;
935 const struct elf_backend_data *bed;
936
937 *skip = FALSE;
938 *override = FALSE;
939
940 sec = *psec;
941 bind = ELF_ST_BIND (sym->st_info);
942
943 if (! bfd_is_und_section (sec))
944 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
945 else
946 h = ((struct elf_link_hash_entry *)
947 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
948 if (h == NULL)
949 return FALSE;
950 *sym_hash = h;
951
952 bed = get_elf_backend_data (abfd);
953
954 /* For merging, we only care about real symbols. But we need to make
955 sure that indirect symbol dynamic flags are updated. */
956 hi = h;
957 while (h->root.type == bfd_link_hash_indirect
958 || h->root.type == bfd_link_hash_warning)
959 h = (struct elf_link_hash_entry *) h->root.u.i.link;
960
961 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
962 existing symbol. */
963
964 oldbfd = NULL;
965 oldsec = NULL;
966 switch (h->root.type)
967 {
968 default:
969 break;
970
971 case bfd_link_hash_undefined:
972 case bfd_link_hash_undefweak:
973 oldbfd = h->root.u.undef.abfd;
974 break;
975
976 case bfd_link_hash_defined:
977 case bfd_link_hash_defweak:
978 oldbfd = h->root.u.def.section->owner;
979 oldsec = h->root.u.def.section;
980 break;
981
982 case bfd_link_hash_common:
983 oldbfd = h->root.u.c.p->section->owner;
984 oldsec = h->root.u.c.p->section;
985 if (pold_alignment)
986 *pold_alignment = h->root.u.c.p->alignment_power;
987 break;
988 }
989 if (poldbfd && *poldbfd == NULL)
990 *poldbfd = oldbfd;
991
992 /* Differentiate strong and weak symbols. */
993 newweak = bind == STB_WEAK;
994 oldweak = (h->root.type == bfd_link_hash_defweak
995 || h->root.type == bfd_link_hash_undefweak);
996 if (pold_weak)
997 *pold_weak = oldweak;
998
999 /* This code is for coping with dynamic objects, and is only useful
1000 if we are doing an ELF link. */
1001 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
1002 return TRUE;
1003
1004 /* We have to check it for every instance since the first few may be
1005 references and not all compilers emit symbol type for undefined
1006 symbols. */
1007 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1008
1009 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1010 respectively, is from a dynamic object. */
1011
1012 newdyn = (abfd->flags & DYNAMIC) != 0;
1013
1014 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1015 syms and defined syms in dynamic libraries respectively.
1016 ref_dynamic on the other hand can be set for a symbol defined in
1017 a dynamic library, and def_dynamic may not be set; When the
1018 definition in a dynamic lib is overridden by a definition in the
1019 executable use of the symbol in the dynamic lib becomes a
1020 reference to the executable symbol. */
1021 if (newdyn)
1022 {
1023 if (bfd_is_und_section (sec))
1024 {
1025 if (bind != STB_WEAK)
1026 {
1027 h->ref_dynamic_nonweak = 1;
1028 hi->ref_dynamic_nonweak = 1;
1029 }
1030 }
1031 else
1032 {
1033 h->dynamic_def = 1;
1034 hi->dynamic_def = 1;
1035 }
1036 }
1037
1038 /* If we just created the symbol, mark it as being an ELF symbol.
1039 Other than that, there is nothing to do--there is no merge issue
1040 with a newly defined symbol--so we just return. */
1041
1042 if (h->root.type == bfd_link_hash_new)
1043 {
1044 h->non_elf = 0;
1045 return TRUE;
1046 }
1047
1048 /* In cases involving weak versioned symbols, we may wind up trying
1049 to merge a symbol with itself. Catch that here, to avoid the
1050 confusion that results if we try to override a symbol with
1051 itself. The additional tests catch cases like
1052 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1053 dynamic object, which we do want to handle here. */
1054 if (abfd == oldbfd
1055 && (newweak || oldweak)
1056 && ((abfd->flags & DYNAMIC) == 0
1057 || !h->def_regular))
1058 return TRUE;
1059
1060 olddyn = FALSE;
1061 if (oldbfd != NULL)
1062 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1063 else if (oldsec != NULL)
1064 {
1065 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1066 indices used by MIPS ELF. */
1067 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1068 }
1069
1070 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1071 respectively, appear to be a definition rather than reference. */
1072
1073 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1074
1075 olddef = (h->root.type != bfd_link_hash_undefined
1076 && h->root.type != bfd_link_hash_undefweak
1077 && h->root.type != bfd_link_hash_common);
1078
1079 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1080 respectively, appear to be a function. */
1081
1082 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1083 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1084
1085 oldfunc = (h->type != STT_NOTYPE
1086 && bed->is_function_type (h->type));
1087
1088 /* When we try to create a default indirect symbol from the dynamic
1089 definition with the default version, we skip it if its type and
1090 the type of existing regular definition mismatch. We only do it
1091 if the existing regular definition won't be dynamic. */
1092 if (pold_alignment == NULL
1093 && !info->shared
1094 && !info->export_dynamic
1095 && !h->ref_dynamic
1096 && newdyn
1097 && newdef
1098 && !olddyn
1099 && (olddef || h->root.type == bfd_link_hash_common)
1100 && ELF_ST_TYPE (sym->st_info) != h->type
1101 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1102 && h->type != STT_NOTYPE
1103 && !(newfunc && oldfunc))
1104 {
1105 *skip = TRUE;
1106 return TRUE;
1107 }
1108
1109 /* Plugin symbol type isn't currently set. Stop bogus errors. */
1110 if (oldbfd != NULL && (oldbfd->flags & BFD_PLUGIN) != 0)
1111 *type_change_ok = TRUE;
1112
1113 /* Check TLS symbol. We don't check undefined symbol introduced by
1114 "ld -u". */
1115 else if (oldbfd != NULL
1116 && ELF_ST_TYPE (sym->st_info) != h->type
1117 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1118 {
1119 bfd *ntbfd, *tbfd;
1120 bfd_boolean ntdef, tdef;
1121 asection *ntsec, *tsec;
1122
1123 if (h->type == STT_TLS)
1124 {
1125 ntbfd = abfd;
1126 ntsec = sec;
1127 ntdef = newdef;
1128 tbfd = oldbfd;
1129 tsec = oldsec;
1130 tdef = olddef;
1131 }
1132 else
1133 {
1134 ntbfd = oldbfd;
1135 ntsec = oldsec;
1136 ntdef = olddef;
1137 tbfd = abfd;
1138 tsec = sec;
1139 tdef = newdef;
1140 }
1141
1142 if (tdef && ntdef)
1143 (*_bfd_error_handler)
1144 (_("%s: TLS definition in %B section %A "
1145 "mismatches non-TLS definition in %B section %A"),
1146 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1147 else if (!tdef && !ntdef)
1148 (*_bfd_error_handler)
1149 (_("%s: TLS reference in %B "
1150 "mismatches non-TLS reference in %B"),
1151 tbfd, ntbfd, h->root.root.string);
1152 else if (tdef)
1153 (*_bfd_error_handler)
1154 (_("%s: TLS definition in %B section %A "
1155 "mismatches non-TLS reference in %B"),
1156 tbfd, tsec, ntbfd, h->root.root.string);
1157 else
1158 (*_bfd_error_handler)
1159 (_("%s: TLS reference in %B "
1160 "mismatches non-TLS definition in %B section %A"),
1161 tbfd, ntbfd, ntsec, h->root.root.string);
1162
1163 bfd_set_error (bfd_error_bad_value);
1164 return FALSE;
1165 }
1166
1167 /* If the old symbol has non-default visibility, we ignore the new
1168 definition from a dynamic object. */
1169 if (newdyn
1170 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1171 && !bfd_is_und_section (sec))
1172 {
1173 *skip = TRUE;
1174 /* Make sure this symbol is dynamic. */
1175 h->ref_dynamic = 1;
1176 hi->ref_dynamic = 1;
1177 /* A protected symbol has external availability. Make sure it is
1178 recorded as dynamic.
1179
1180 FIXME: Should we check type and size for protected symbol? */
1181 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1182 return bfd_elf_link_record_dynamic_symbol (info, h);
1183 else
1184 return TRUE;
1185 }
1186 else if (!newdyn
1187 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1188 && h->def_dynamic)
1189 {
1190 /* If the new symbol with non-default visibility comes from a
1191 relocatable file and the old definition comes from a dynamic
1192 object, we remove the old definition. */
1193 if (hi->root.type == bfd_link_hash_indirect)
1194 {
1195 /* Handle the case where the old dynamic definition is
1196 default versioned. We need to copy the symbol info from
1197 the symbol with default version to the normal one if it
1198 was referenced before. */
1199 if (h->ref_regular)
1200 {
1201 hi->root.type = h->root.type;
1202 h->root.type = bfd_link_hash_indirect;
1203 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1204
1205 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1206 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1207 {
1208 /* If the new symbol is hidden or internal, completely undo
1209 any dynamic link state. */
1210 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1211 h->forced_local = 0;
1212 h->ref_dynamic = 0;
1213 }
1214 else
1215 h->ref_dynamic = 1;
1216
1217 h->def_dynamic = 0;
1218 /* FIXME: Should we check type and size for protected symbol? */
1219 h->size = 0;
1220 h->type = 0;
1221
1222 h = hi;
1223 }
1224 else
1225 h = hi;
1226 }
1227
1228 /* If the old symbol was undefined before, then it will still be
1229 on the undefs list. If the new symbol is undefined or
1230 common, we can't make it bfd_link_hash_new here, because new
1231 undefined or common symbols will be added to the undefs list
1232 by _bfd_generic_link_add_one_symbol. Symbols may not be
1233 added twice to the undefs list. Also, if the new symbol is
1234 undefweak then we don't want to lose the strong undef. */
1235 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1236 {
1237 h->root.type = bfd_link_hash_undefined;
1238 h->root.u.undef.abfd = abfd;
1239 }
1240 else
1241 {
1242 h->root.type = bfd_link_hash_new;
1243 h->root.u.undef.abfd = NULL;
1244 }
1245
1246 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1247 {
1248 /* If the new symbol is hidden or internal, completely undo
1249 any dynamic link state. */
1250 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1251 h->forced_local = 0;
1252 h->ref_dynamic = 0;
1253 }
1254 else
1255 h->ref_dynamic = 1;
1256 h->def_dynamic = 0;
1257 /* FIXME: Should we check type and size for protected symbol? */
1258 h->size = 0;
1259 h->type = 0;
1260 return TRUE;
1261 }
1262
1263 /* If a new weak symbol definition comes from a regular file and the
1264 old symbol comes from a dynamic library, we treat the new one as
1265 strong. Similarly, an old weak symbol definition from a regular
1266 file is treated as strong when the new symbol comes from a dynamic
1267 library. Further, an old weak symbol from a dynamic library is
1268 treated as strong if the new symbol is from a dynamic library.
1269 This reflects the way glibc's ld.so works.
1270
1271 Do this before setting *type_change_ok or *size_change_ok so that
1272 we warn properly when dynamic library symbols are overridden. */
1273
1274 if (newdef && !newdyn && olddyn)
1275 newweak = FALSE;
1276 if (olddef && newdyn)
1277 oldweak = FALSE;
1278
1279 /* Allow changes between different types of function symbol. */
1280 if (newfunc && oldfunc)
1281 *type_change_ok = TRUE;
1282
1283 /* It's OK to change the type if either the existing symbol or the
1284 new symbol is weak. A type change is also OK if the old symbol
1285 is undefined and the new symbol is defined. */
1286
1287 if (oldweak
1288 || newweak
1289 || (newdef
1290 && h->root.type == bfd_link_hash_undefined))
1291 *type_change_ok = TRUE;
1292
1293 /* It's OK to change the size if either the existing symbol or the
1294 new symbol is weak, or if the old symbol is undefined. */
1295
1296 if (*type_change_ok
1297 || h->root.type == bfd_link_hash_undefined)
1298 *size_change_ok = TRUE;
1299
1300 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1301 symbol, respectively, appears to be a common symbol in a dynamic
1302 object. If a symbol appears in an uninitialized section, and is
1303 not weak, and is not a function, then it may be a common symbol
1304 which was resolved when the dynamic object was created. We want
1305 to treat such symbols specially, because they raise special
1306 considerations when setting the symbol size: if the symbol
1307 appears as a common symbol in a regular object, and the size in
1308 the regular object is larger, we must make sure that we use the
1309 larger size. This problematic case can always be avoided in C,
1310 but it must be handled correctly when using Fortran shared
1311 libraries.
1312
1313 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1314 likewise for OLDDYNCOMMON and OLDDEF.
1315
1316 Note that this test is just a heuristic, and that it is quite
1317 possible to have an uninitialized symbol in a shared object which
1318 is really a definition, rather than a common symbol. This could
1319 lead to some minor confusion when the symbol really is a common
1320 symbol in some regular object. However, I think it will be
1321 harmless. */
1322
1323 if (newdyn
1324 && newdef
1325 && !newweak
1326 && (sec->flags & SEC_ALLOC) != 0
1327 && (sec->flags & SEC_LOAD) == 0
1328 && sym->st_size > 0
1329 && !newfunc)
1330 newdyncommon = TRUE;
1331 else
1332 newdyncommon = FALSE;
1333
1334 if (olddyn
1335 && olddef
1336 && h->root.type == bfd_link_hash_defined
1337 && h->def_dynamic
1338 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1339 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1340 && h->size > 0
1341 && !oldfunc)
1342 olddyncommon = TRUE;
1343 else
1344 olddyncommon = FALSE;
1345
1346 /* We now know everything about the old and new symbols. We ask the
1347 backend to check if we can merge them. */
1348 if (bed->merge_symbol != NULL)
1349 {
1350 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1351 return FALSE;
1352 sec = *psec;
1353 }
1354
1355 /* If both the old and the new symbols look like common symbols in a
1356 dynamic object, set the size of the symbol to the larger of the
1357 two. */
1358
1359 if (olddyncommon
1360 && newdyncommon
1361 && sym->st_size != h->size)
1362 {
1363 /* Since we think we have two common symbols, issue a multiple
1364 common warning if desired. Note that we only warn if the
1365 size is different. If the size is the same, we simply let
1366 the old symbol override the new one as normally happens with
1367 symbols defined in dynamic objects. */
1368
1369 if (! ((*info->callbacks->multiple_common)
1370 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1371 return FALSE;
1372
1373 if (sym->st_size > h->size)
1374 h->size = sym->st_size;
1375
1376 *size_change_ok = TRUE;
1377 }
1378
1379 /* If we are looking at a dynamic object, and we have found a
1380 definition, we need to see if the symbol was already defined by
1381 some other object. If so, we want to use the existing
1382 definition, and we do not want to report a multiple symbol
1383 definition error; we do this by clobbering *PSEC to be
1384 bfd_und_section_ptr.
1385
1386 We treat a common symbol as a definition if the symbol in the
1387 shared library is a function, since common symbols always
1388 represent variables; this can cause confusion in principle, but
1389 any such confusion would seem to indicate an erroneous program or
1390 shared library. We also permit a common symbol in a regular
1391 object to override a weak symbol in a shared object. */
1392
1393 if (newdyn
1394 && newdef
1395 && (olddef
1396 || (h->root.type == bfd_link_hash_common
1397 && (newweak || newfunc))))
1398 {
1399 *override = TRUE;
1400 newdef = FALSE;
1401 newdyncommon = FALSE;
1402
1403 *psec = sec = bfd_und_section_ptr;
1404 *size_change_ok = TRUE;
1405
1406 /* If we get here when the old symbol is a common symbol, then
1407 we are explicitly letting it override a weak symbol or
1408 function in a dynamic object, and we don't want to warn about
1409 a type change. If the old symbol is a defined symbol, a type
1410 change warning may still be appropriate. */
1411
1412 if (h->root.type == bfd_link_hash_common)
1413 *type_change_ok = TRUE;
1414 }
1415
1416 /* Handle the special case of an old common symbol merging with a
1417 new symbol which looks like a common symbol in a shared object.
1418 We change *PSEC and *PVALUE to make the new symbol look like a
1419 common symbol, and let _bfd_generic_link_add_one_symbol do the
1420 right thing. */
1421
1422 if (newdyncommon
1423 && h->root.type == bfd_link_hash_common)
1424 {
1425 *override = TRUE;
1426 newdef = FALSE;
1427 newdyncommon = FALSE;
1428 *pvalue = sym->st_size;
1429 *psec = sec = bed->common_section (oldsec);
1430 *size_change_ok = TRUE;
1431 }
1432
1433 /* Skip weak definitions of symbols that are already defined. */
1434 if (newdef && olddef && newweak)
1435 {
1436 /* Don't skip new non-IR weak syms. */
1437 if (!(oldbfd != NULL
1438 && (oldbfd->flags & BFD_PLUGIN) != 0
1439 && (abfd->flags & BFD_PLUGIN) == 0))
1440 *skip = TRUE;
1441
1442 /* Merge st_other. If the symbol already has a dynamic index,
1443 but visibility says it should not be visible, turn it into a
1444 local symbol. */
1445 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1446 if (h->dynindx != -1)
1447 switch (ELF_ST_VISIBILITY (h->other))
1448 {
1449 case STV_INTERNAL:
1450 case STV_HIDDEN:
1451 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1452 break;
1453 }
1454 }
1455
1456 /* If the old symbol is from a dynamic object, and the new symbol is
1457 a definition which is not from a dynamic object, then the new
1458 symbol overrides the old symbol. Symbols from regular files
1459 always take precedence over symbols from dynamic objects, even if
1460 they are defined after the dynamic object in the link.
1461
1462 As above, we again permit a common symbol in a regular object to
1463 override a definition in a shared object if the shared object
1464 symbol is a function or is weak. */
1465
1466 flip = NULL;
1467 if (!newdyn
1468 && (newdef
1469 || (bfd_is_com_section (sec)
1470 && (oldweak || oldfunc)))
1471 && olddyn
1472 && olddef
1473 && h->def_dynamic)
1474 {
1475 /* Change the hash table entry to undefined, and let
1476 _bfd_generic_link_add_one_symbol do the right thing with the
1477 new definition. */
1478
1479 h->root.type = bfd_link_hash_undefined;
1480 h->root.u.undef.abfd = h->root.u.def.section->owner;
1481 *size_change_ok = TRUE;
1482
1483 olddef = FALSE;
1484 olddyncommon = FALSE;
1485
1486 /* We again permit a type change when a common symbol may be
1487 overriding a function. */
1488
1489 if (bfd_is_com_section (sec))
1490 {
1491 if (oldfunc)
1492 {
1493 /* If a common symbol overrides a function, make sure
1494 that it isn't defined dynamically nor has type
1495 function. */
1496 h->def_dynamic = 0;
1497 h->type = STT_NOTYPE;
1498 }
1499 *type_change_ok = TRUE;
1500 }
1501
1502 if (hi->root.type == bfd_link_hash_indirect)
1503 flip = hi;
1504 else
1505 /* This union may have been set to be non-NULL when this symbol
1506 was seen in a dynamic object. We must force the union to be
1507 NULL, so that it is correct for a regular symbol. */
1508 h->verinfo.vertree = NULL;
1509 }
1510
1511 /* Handle the special case of a new common symbol merging with an
1512 old symbol that looks like it might be a common symbol defined in
1513 a shared object. Note that we have already handled the case in
1514 which a new common symbol should simply override the definition
1515 in the shared library. */
1516
1517 if (! newdyn
1518 && bfd_is_com_section (sec)
1519 && olddyncommon)
1520 {
1521 /* It would be best if we could set the hash table entry to a
1522 common symbol, but we don't know what to use for the section
1523 or the alignment. */
1524 if (! ((*info->callbacks->multiple_common)
1525 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1526 return FALSE;
1527
1528 /* If the presumed common symbol in the dynamic object is
1529 larger, pretend that the new symbol has its size. */
1530
1531 if (h->size > *pvalue)
1532 *pvalue = h->size;
1533
1534 /* We need to remember the alignment required by the symbol
1535 in the dynamic object. */
1536 BFD_ASSERT (pold_alignment);
1537 *pold_alignment = h->root.u.def.section->alignment_power;
1538
1539 olddef = FALSE;
1540 olddyncommon = FALSE;
1541
1542 h->root.type = bfd_link_hash_undefined;
1543 h->root.u.undef.abfd = h->root.u.def.section->owner;
1544
1545 *size_change_ok = TRUE;
1546 *type_change_ok = TRUE;
1547
1548 if (hi->root.type == bfd_link_hash_indirect)
1549 flip = hi;
1550 else
1551 h->verinfo.vertree = NULL;
1552 }
1553
1554 if (flip != NULL)
1555 {
1556 /* Handle the case where we had a versioned symbol in a dynamic
1557 library and now find a definition in a normal object. In this
1558 case, we make the versioned symbol point to the normal one. */
1559 flip->root.type = h->root.type;
1560 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1561 h->root.type = bfd_link_hash_indirect;
1562 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1563 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1564 if (h->def_dynamic)
1565 {
1566 h->def_dynamic = 0;
1567 flip->ref_dynamic = 1;
1568 }
1569 }
1570
1571 return TRUE;
1572 }
1573
1574 /* This function is called to create an indirect symbol from the
1575 default for the symbol with the default version if needed. The
1576 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1577 set DYNSYM if the new indirect symbol is dynamic. */
1578
1579 static bfd_boolean
1580 _bfd_elf_add_default_symbol (bfd *abfd,
1581 struct bfd_link_info *info,
1582 struct elf_link_hash_entry *h,
1583 const char *name,
1584 Elf_Internal_Sym *sym,
1585 asection *sec,
1586 bfd_vma value,
1587 bfd **poldbfd,
1588 bfd_boolean *dynsym)
1589 {
1590 bfd_boolean type_change_ok;
1591 bfd_boolean size_change_ok;
1592 bfd_boolean skip;
1593 char *shortname;
1594 struct elf_link_hash_entry *hi;
1595 struct bfd_link_hash_entry *bh;
1596 const struct elf_backend_data *bed;
1597 bfd_boolean collect;
1598 bfd_boolean dynamic;
1599 bfd_boolean override;
1600 char *p;
1601 size_t len, shortlen;
1602 asection *tmp_sec;
1603
1604 /* If this symbol has a version, and it is the default version, we
1605 create an indirect symbol from the default name to the fully
1606 decorated name. This will cause external references which do not
1607 specify a version to be bound to this version of the symbol. */
1608 p = strchr (name, ELF_VER_CHR);
1609 if (p == NULL || p[1] != ELF_VER_CHR)
1610 return TRUE;
1611
1612 bed = get_elf_backend_data (abfd);
1613 collect = bed->collect;
1614 dynamic = (abfd->flags & DYNAMIC) != 0;
1615
1616 shortlen = p - name;
1617 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1618 if (shortname == NULL)
1619 return FALSE;
1620 memcpy (shortname, name, shortlen);
1621 shortname[shortlen] = '\0';
1622
1623 /* We are going to create a new symbol. Merge it with any existing
1624 symbol with this name. For the purposes of the merge, act as
1625 though we were defining the symbol we just defined, although we
1626 actually going to define an indirect symbol. */
1627 type_change_ok = FALSE;
1628 size_change_ok = FALSE;
1629 tmp_sec = sec;
1630 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1631 &hi, poldbfd, NULL, NULL, &skip, &override,
1632 &type_change_ok, &size_change_ok))
1633 return FALSE;
1634
1635 if (skip)
1636 goto nondefault;
1637
1638 if (! override)
1639 {
1640 bh = &hi->root;
1641 if (! (_bfd_generic_link_add_one_symbol
1642 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1643 0, name, FALSE, collect, &bh)))
1644 return FALSE;
1645 hi = (struct elf_link_hash_entry *) bh;
1646 }
1647 else
1648 {
1649 /* In this case the symbol named SHORTNAME is overriding the
1650 indirect symbol we want to add. We were planning on making
1651 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1652 is the name without a version. NAME is the fully versioned
1653 name, and it is the default version.
1654
1655 Overriding means that we already saw a definition for the
1656 symbol SHORTNAME in a regular object, and it is overriding
1657 the symbol defined in the dynamic object.
1658
1659 When this happens, we actually want to change NAME, the
1660 symbol we just added, to refer to SHORTNAME. This will cause
1661 references to NAME in the shared object to become references
1662 to SHORTNAME in the regular object. This is what we expect
1663 when we override a function in a shared object: that the
1664 references in the shared object will be mapped to the
1665 definition in the regular object. */
1666
1667 while (hi->root.type == bfd_link_hash_indirect
1668 || hi->root.type == bfd_link_hash_warning)
1669 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1670
1671 h->root.type = bfd_link_hash_indirect;
1672 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1673 if (h->def_dynamic)
1674 {
1675 h->def_dynamic = 0;
1676 hi->ref_dynamic = 1;
1677 if (hi->ref_regular
1678 || hi->def_regular)
1679 {
1680 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1681 return FALSE;
1682 }
1683 }
1684
1685 /* Now set HI to H, so that the following code will set the
1686 other fields correctly. */
1687 hi = h;
1688 }
1689
1690 /* Check if HI is a warning symbol. */
1691 if (hi->root.type == bfd_link_hash_warning)
1692 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1693
1694 /* If there is a duplicate definition somewhere, then HI may not
1695 point to an indirect symbol. We will have reported an error to
1696 the user in that case. */
1697
1698 if (hi->root.type == bfd_link_hash_indirect)
1699 {
1700 struct elf_link_hash_entry *ht;
1701
1702 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1703 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1704
1705 /* See if the new flags lead us to realize that the symbol must
1706 be dynamic. */
1707 if (! *dynsym)
1708 {
1709 if (! dynamic)
1710 {
1711 if (! info->executable
1712 || hi->def_dynamic
1713 || hi->ref_dynamic)
1714 *dynsym = TRUE;
1715 }
1716 else
1717 {
1718 if (hi->ref_regular)
1719 *dynsym = TRUE;
1720 }
1721 }
1722 }
1723
1724 /* We also need to define an indirection from the nondefault version
1725 of the symbol. */
1726
1727 nondefault:
1728 len = strlen (name);
1729 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1730 if (shortname == NULL)
1731 return FALSE;
1732 memcpy (shortname, name, shortlen);
1733 memcpy (shortname + shortlen, p + 1, len - shortlen);
1734
1735 /* Once again, merge with any existing symbol. */
1736 type_change_ok = FALSE;
1737 size_change_ok = FALSE;
1738 tmp_sec = sec;
1739 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1740 &hi, NULL, NULL, NULL, &skip, &override,
1741 &type_change_ok, &size_change_ok))
1742 return FALSE;
1743
1744 if (skip)
1745 return TRUE;
1746
1747 if (override)
1748 {
1749 /* Here SHORTNAME is a versioned name, so we don't expect to see
1750 the type of override we do in the case above unless it is
1751 overridden by a versioned definition. */
1752 if (hi->root.type != bfd_link_hash_defined
1753 && hi->root.type != bfd_link_hash_defweak)
1754 (*_bfd_error_handler)
1755 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1756 abfd, shortname);
1757 }
1758 else
1759 {
1760 bh = &hi->root;
1761 if (! (_bfd_generic_link_add_one_symbol
1762 (info, abfd, shortname, BSF_INDIRECT,
1763 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1764 return FALSE;
1765 hi = (struct elf_link_hash_entry *) bh;
1766
1767 /* If there is a duplicate definition somewhere, then HI may not
1768 point to an indirect symbol. We will have reported an error
1769 to the user in that case. */
1770
1771 if (hi->root.type == bfd_link_hash_indirect)
1772 {
1773 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1774
1775 /* See if the new flags lead us to realize that the symbol
1776 must be dynamic. */
1777 if (! *dynsym)
1778 {
1779 if (! dynamic)
1780 {
1781 if (! info->executable
1782 || hi->ref_dynamic)
1783 *dynsym = TRUE;
1784 }
1785 else
1786 {
1787 if (hi->ref_regular)
1788 *dynsym = TRUE;
1789 }
1790 }
1791 }
1792 }
1793
1794 return TRUE;
1795 }
1796 \f
1797 /* This routine is used to export all defined symbols into the dynamic
1798 symbol table. It is called via elf_link_hash_traverse. */
1799
1800 static bfd_boolean
1801 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1802 {
1803 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1804
1805 /* Ignore indirect symbols. These are added by the versioning code. */
1806 if (h->root.type == bfd_link_hash_indirect)
1807 return TRUE;
1808
1809 /* Ignore this if we won't export it. */
1810 if (!eif->info->export_dynamic && !h->dynamic)
1811 return TRUE;
1812
1813 if (h->dynindx == -1
1814 && (h->def_regular || h->ref_regular)
1815 && ! bfd_hide_sym_by_version (eif->info->version_info,
1816 h->root.root.string))
1817 {
1818 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1819 {
1820 eif->failed = TRUE;
1821 return FALSE;
1822 }
1823 }
1824
1825 return TRUE;
1826 }
1827 \f
1828 /* Look through the symbols which are defined in other shared
1829 libraries and referenced here. Update the list of version
1830 dependencies. This will be put into the .gnu.version_r section.
1831 This function is called via elf_link_hash_traverse. */
1832
1833 static bfd_boolean
1834 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1835 void *data)
1836 {
1837 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1838 Elf_Internal_Verneed *t;
1839 Elf_Internal_Vernaux *a;
1840 bfd_size_type amt;
1841
1842 /* We only care about symbols defined in shared objects with version
1843 information. */
1844 if (!h->def_dynamic
1845 || h->def_regular
1846 || h->dynindx == -1
1847 || h->verinfo.verdef == NULL)
1848 return TRUE;
1849
1850 /* See if we already know about this version. */
1851 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1852 t != NULL;
1853 t = t->vn_nextref)
1854 {
1855 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1856 continue;
1857
1858 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1859 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1860 return TRUE;
1861
1862 break;
1863 }
1864
1865 /* This is a new version. Add it to tree we are building. */
1866
1867 if (t == NULL)
1868 {
1869 amt = sizeof *t;
1870 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1871 if (t == NULL)
1872 {
1873 rinfo->failed = TRUE;
1874 return FALSE;
1875 }
1876
1877 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1878 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1879 elf_tdata (rinfo->info->output_bfd)->verref = t;
1880 }
1881
1882 amt = sizeof *a;
1883 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1884 if (a == NULL)
1885 {
1886 rinfo->failed = TRUE;
1887 return FALSE;
1888 }
1889
1890 /* Note that we are copying a string pointer here, and testing it
1891 above. If bfd_elf_string_from_elf_section is ever changed to
1892 discard the string data when low in memory, this will have to be
1893 fixed. */
1894 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1895
1896 a->vna_flags = h->verinfo.verdef->vd_flags;
1897 a->vna_nextptr = t->vn_auxptr;
1898
1899 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1900 ++rinfo->vers;
1901
1902 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1903
1904 t->vn_auxptr = a;
1905
1906 return TRUE;
1907 }
1908
1909 /* Figure out appropriate versions for all the symbols. We may not
1910 have the version number script until we have read all of the input
1911 files, so until that point we don't know which symbols should be
1912 local. This function is called via elf_link_hash_traverse. */
1913
1914 static bfd_boolean
1915 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1916 {
1917 struct elf_info_failed *sinfo;
1918 struct bfd_link_info *info;
1919 const struct elf_backend_data *bed;
1920 struct elf_info_failed eif;
1921 char *p;
1922 bfd_size_type amt;
1923
1924 sinfo = (struct elf_info_failed *) data;
1925 info = sinfo->info;
1926
1927 /* Fix the symbol flags. */
1928 eif.failed = FALSE;
1929 eif.info = info;
1930 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1931 {
1932 if (eif.failed)
1933 sinfo->failed = TRUE;
1934 return FALSE;
1935 }
1936
1937 /* We only need version numbers for symbols defined in regular
1938 objects. */
1939 if (!h->def_regular)
1940 return TRUE;
1941
1942 bed = get_elf_backend_data (info->output_bfd);
1943 p = strchr (h->root.root.string, ELF_VER_CHR);
1944 if (p != NULL && h->verinfo.vertree == NULL)
1945 {
1946 struct bfd_elf_version_tree *t;
1947 bfd_boolean hidden;
1948
1949 hidden = TRUE;
1950
1951 /* There are two consecutive ELF_VER_CHR characters if this is
1952 not a hidden symbol. */
1953 ++p;
1954 if (*p == ELF_VER_CHR)
1955 {
1956 hidden = FALSE;
1957 ++p;
1958 }
1959
1960 /* If there is no version string, we can just return out. */
1961 if (*p == '\0')
1962 {
1963 if (hidden)
1964 h->hidden = 1;
1965 return TRUE;
1966 }
1967
1968 /* Look for the version. If we find it, it is no longer weak. */
1969 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1970 {
1971 if (strcmp (t->name, p) == 0)
1972 {
1973 size_t len;
1974 char *alc;
1975 struct bfd_elf_version_expr *d;
1976
1977 len = p - h->root.root.string;
1978 alc = (char *) bfd_malloc (len);
1979 if (alc == NULL)
1980 {
1981 sinfo->failed = TRUE;
1982 return FALSE;
1983 }
1984 memcpy (alc, h->root.root.string, len - 1);
1985 alc[len - 1] = '\0';
1986 if (alc[len - 2] == ELF_VER_CHR)
1987 alc[len - 2] = '\0';
1988
1989 h->verinfo.vertree = t;
1990 t->used = TRUE;
1991 d = NULL;
1992
1993 if (t->globals.list != NULL)
1994 d = (*t->match) (&t->globals, NULL, alc);
1995
1996 /* See if there is anything to force this symbol to
1997 local scope. */
1998 if (d == NULL && t->locals.list != NULL)
1999 {
2000 d = (*t->match) (&t->locals, NULL, alc);
2001 if (d != NULL
2002 && h->dynindx != -1
2003 && ! info->export_dynamic)
2004 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2005 }
2006
2007 free (alc);
2008 break;
2009 }
2010 }
2011
2012 /* If we are building an application, we need to create a
2013 version node for this version. */
2014 if (t == NULL && info->executable)
2015 {
2016 struct bfd_elf_version_tree **pp;
2017 int version_index;
2018
2019 /* If we aren't going to export this symbol, we don't need
2020 to worry about it. */
2021 if (h->dynindx == -1)
2022 return TRUE;
2023
2024 amt = sizeof *t;
2025 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2026 if (t == NULL)
2027 {
2028 sinfo->failed = TRUE;
2029 return FALSE;
2030 }
2031
2032 t->name = p;
2033 t->name_indx = (unsigned int) -1;
2034 t->used = TRUE;
2035
2036 version_index = 1;
2037 /* Don't count anonymous version tag. */
2038 if (sinfo->info->version_info != NULL
2039 && sinfo->info->version_info->vernum == 0)
2040 version_index = 0;
2041 for (pp = &sinfo->info->version_info;
2042 *pp != NULL;
2043 pp = &(*pp)->next)
2044 ++version_index;
2045 t->vernum = version_index;
2046
2047 *pp = t;
2048
2049 h->verinfo.vertree = t;
2050 }
2051 else if (t == NULL)
2052 {
2053 /* We could not find the version for a symbol when
2054 generating a shared archive. Return an error. */
2055 (*_bfd_error_handler)
2056 (_("%B: version node not found for symbol %s"),
2057 info->output_bfd, h->root.root.string);
2058 bfd_set_error (bfd_error_bad_value);
2059 sinfo->failed = TRUE;
2060 return FALSE;
2061 }
2062
2063 if (hidden)
2064 h->hidden = 1;
2065 }
2066
2067 /* If we don't have a version for this symbol, see if we can find
2068 something. */
2069 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2070 {
2071 bfd_boolean hide;
2072
2073 h->verinfo.vertree
2074 = bfd_find_version_for_sym (sinfo->info->version_info,
2075 h->root.root.string, &hide);
2076 if (h->verinfo.vertree != NULL && hide)
2077 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2078 }
2079
2080 return TRUE;
2081 }
2082 \f
2083 /* Read and swap the relocs from the section indicated by SHDR. This
2084 may be either a REL or a RELA section. The relocations are
2085 translated into RELA relocations and stored in INTERNAL_RELOCS,
2086 which should have already been allocated to contain enough space.
2087 The EXTERNAL_RELOCS are a buffer where the external form of the
2088 relocations should be stored.
2089
2090 Returns FALSE if something goes wrong. */
2091
2092 static bfd_boolean
2093 elf_link_read_relocs_from_section (bfd *abfd,
2094 asection *sec,
2095 Elf_Internal_Shdr *shdr,
2096 void *external_relocs,
2097 Elf_Internal_Rela *internal_relocs)
2098 {
2099 const struct elf_backend_data *bed;
2100 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2101 const bfd_byte *erela;
2102 const bfd_byte *erelaend;
2103 Elf_Internal_Rela *irela;
2104 Elf_Internal_Shdr *symtab_hdr;
2105 size_t nsyms;
2106
2107 /* Position ourselves at the start of the section. */
2108 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2109 return FALSE;
2110
2111 /* Read the relocations. */
2112 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2113 return FALSE;
2114
2115 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2116 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2117
2118 bed = get_elf_backend_data (abfd);
2119
2120 /* Convert the external relocations to the internal format. */
2121 if (shdr->sh_entsize == bed->s->sizeof_rel)
2122 swap_in = bed->s->swap_reloc_in;
2123 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2124 swap_in = bed->s->swap_reloca_in;
2125 else
2126 {
2127 bfd_set_error (bfd_error_wrong_format);
2128 return FALSE;
2129 }
2130
2131 erela = (const bfd_byte *) external_relocs;
2132 erelaend = erela + shdr->sh_size;
2133 irela = internal_relocs;
2134 while (erela < erelaend)
2135 {
2136 bfd_vma r_symndx;
2137
2138 (*swap_in) (abfd, erela, irela);
2139 r_symndx = ELF32_R_SYM (irela->r_info);
2140 if (bed->s->arch_size == 64)
2141 r_symndx >>= 24;
2142 if (nsyms > 0)
2143 {
2144 if ((size_t) r_symndx >= nsyms)
2145 {
2146 (*_bfd_error_handler)
2147 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2148 " for offset 0x%lx in section `%A'"),
2149 abfd, sec,
2150 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2151 bfd_set_error (bfd_error_bad_value);
2152 return FALSE;
2153 }
2154 }
2155 else if (r_symndx != STN_UNDEF)
2156 {
2157 (*_bfd_error_handler)
2158 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2159 " when the object file has no symbol table"),
2160 abfd, sec,
2161 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2162 bfd_set_error (bfd_error_bad_value);
2163 return FALSE;
2164 }
2165 irela += bed->s->int_rels_per_ext_rel;
2166 erela += shdr->sh_entsize;
2167 }
2168
2169 return TRUE;
2170 }
2171
2172 /* Read and swap the relocs for a section O. They may have been
2173 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2174 not NULL, they are used as buffers to read into. They are known to
2175 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2176 the return value is allocated using either malloc or bfd_alloc,
2177 according to the KEEP_MEMORY argument. If O has two relocation
2178 sections (both REL and RELA relocations), then the REL_HDR
2179 relocations will appear first in INTERNAL_RELOCS, followed by the
2180 RELA_HDR relocations. */
2181
2182 Elf_Internal_Rela *
2183 _bfd_elf_link_read_relocs (bfd *abfd,
2184 asection *o,
2185 void *external_relocs,
2186 Elf_Internal_Rela *internal_relocs,
2187 bfd_boolean keep_memory)
2188 {
2189 void *alloc1 = NULL;
2190 Elf_Internal_Rela *alloc2 = NULL;
2191 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2192 struct bfd_elf_section_data *esdo = elf_section_data (o);
2193 Elf_Internal_Rela *internal_rela_relocs;
2194
2195 if (esdo->relocs != NULL)
2196 return esdo->relocs;
2197
2198 if (o->reloc_count == 0)
2199 return NULL;
2200
2201 if (internal_relocs == NULL)
2202 {
2203 bfd_size_type size;
2204
2205 size = o->reloc_count;
2206 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2207 if (keep_memory)
2208 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2209 else
2210 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2211 if (internal_relocs == NULL)
2212 goto error_return;
2213 }
2214
2215 if (external_relocs == NULL)
2216 {
2217 bfd_size_type size = 0;
2218
2219 if (esdo->rel.hdr)
2220 size += esdo->rel.hdr->sh_size;
2221 if (esdo->rela.hdr)
2222 size += esdo->rela.hdr->sh_size;
2223
2224 alloc1 = bfd_malloc (size);
2225 if (alloc1 == NULL)
2226 goto error_return;
2227 external_relocs = alloc1;
2228 }
2229
2230 internal_rela_relocs = internal_relocs;
2231 if (esdo->rel.hdr)
2232 {
2233 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2234 external_relocs,
2235 internal_relocs))
2236 goto error_return;
2237 external_relocs = (((bfd_byte *) external_relocs)
2238 + esdo->rel.hdr->sh_size);
2239 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2240 * bed->s->int_rels_per_ext_rel);
2241 }
2242
2243 if (esdo->rela.hdr
2244 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2245 external_relocs,
2246 internal_rela_relocs)))
2247 goto error_return;
2248
2249 /* Cache the results for next time, if we can. */
2250 if (keep_memory)
2251 esdo->relocs = internal_relocs;
2252
2253 if (alloc1 != NULL)
2254 free (alloc1);
2255
2256 /* Don't free alloc2, since if it was allocated we are passing it
2257 back (under the name of internal_relocs). */
2258
2259 return internal_relocs;
2260
2261 error_return:
2262 if (alloc1 != NULL)
2263 free (alloc1);
2264 if (alloc2 != NULL)
2265 {
2266 if (keep_memory)
2267 bfd_release (abfd, alloc2);
2268 else
2269 free (alloc2);
2270 }
2271 return NULL;
2272 }
2273
2274 /* Compute the size of, and allocate space for, REL_HDR which is the
2275 section header for a section containing relocations for O. */
2276
2277 static bfd_boolean
2278 _bfd_elf_link_size_reloc_section (bfd *abfd,
2279 struct bfd_elf_section_reloc_data *reldata)
2280 {
2281 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2282
2283 /* That allows us to calculate the size of the section. */
2284 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2285
2286 /* The contents field must last into write_object_contents, so we
2287 allocate it with bfd_alloc rather than malloc. Also since we
2288 cannot be sure that the contents will actually be filled in,
2289 we zero the allocated space. */
2290 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2291 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2292 return FALSE;
2293
2294 if (reldata->hashes == NULL && reldata->count)
2295 {
2296 struct elf_link_hash_entry **p;
2297
2298 p = (struct elf_link_hash_entry **)
2299 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2300 if (p == NULL)
2301 return FALSE;
2302
2303 reldata->hashes = p;
2304 }
2305
2306 return TRUE;
2307 }
2308
2309 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2310 originated from the section given by INPUT_REL_HDR) to the
2311 OUTPUT_BFD. */
2312
2313 bfd_boolean
2314 _bfd_elf_link_output_relocs (bfd *output_bfd,
2315 asection *input_section,
2316 Elf_Internal_Shdr *input_rel_hdr,
2317 Elf_Internal_Rela *internal_relocs,
2318 struct elf_link_hash_entry **rel_hash
2319 ATTRIBUTE_UNUSED)
2320 {
2321 Elf_Internal_Rela *irela;
2322 Elf_Internal_Rela *irelaend;
2323 bfd_byte *erel;
2324 struct bfd_elf_section_reloc_data *output_reldata;
2325 asection *output_section;
2326 const struct elf_backend_data *bed;
2327 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2328 struct bfd_elf_section_data *esdo;
2329
2330 output_section = input_section->output_section;
2331
2332 bed = get_elf_backend_data (output_bfd);
2333 esdo = elf_section_data (output_section);
2334 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2335 {
2336 output_reldata = &esdo->rel;
2337 swap_out = bed->s->swap_reloc_out;
2338 }
2339 else if (esdo->rela.hdr
2340 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2341 {
2342 output_reldata = &esdo->rela;
2343 swap_out = bed->s->swap_reloca_out;
2344 }
2345 else
2346 {
2347 (*_bfd_error_handler)
2348 (_("%B: relocation size mismatch in %B section %A"),
2349 output_bfd, input_section->owner, input_section);
2350 bfd_set_error (bfd_error_wrong_format);
2351 return FALSE;
2352 }
2353
2354 erel = output_reldata->hdr->contents;
2355 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2356 irela = internal_relocs;
2357 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2358 * bed->s->int_rels_per_ext_rel);
2359 while (irela < irelaend)
2360 {
2361 (*swap_out) (output_bfd, irela, erel);
2362 irela += bed->s->int_rels_per_ext_rel;
2363 erel += input_rel_hdr->sh_entsize;
2364 }
2365
2366 /* Bump the counter, so that we know where to add the next set of
2367 relocations. */
2368 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2369
2370 return TRUE;
2371 }
2372 \f
2373 /* Make weak undefined symbols in PIE dynamic. */
2374
2375 bfd_boolean
2376 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2377 struct elf_link_hash_entry *h)
2378 {
2379 if (info->pie
2380 && h->dynindx == -1
2381 && h->root.type == bfd_link_hash_undefweak)
2382 return bfd_elf_link_record_dynamic_symbol (info, h);
2383
2384 return TRUE;
2385 }
2386
2387 /* Fix up the flags for a symbol. This handles various cases which
2388 can only be fixed after all the input files are seen. This is
2389 currently called by both adjust_dynamic_symbol and
2390 assign_sym_version, which is unnecessary but perhaps more robust in
2391 the face of future changes. */
2392
2393 static bfd_boolean
2394 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2395 struct elf_info_failed *eif)
2396 {
2397 const struct elf_backend_data *bed;
2398
2399 /* If this symbol was mentioned in a non-ELF file, try to set
2400 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2401 permit a non-ELF file to correctly refer to a symbol defined in
2402 an ELF dynamic object. */
2403 if (h->non_elf)
2404 {
2405 while (h->root.type == bfd_link_hash_indirect)
2406 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2407
2408 if (h->root.type != bfd_link_hash_defined
2409 && h->root.type != bfd_link_hash_defweak)
2410 {
2411 h->ref_regular = 1;
2412 h->ref_regular_nonweak = 1;
2413 }
2414 else
2415 {
2416 if (h->root.u.def.section->owner != NULL
2417 && (bfd_get_flavour (h->root.u.def.section->owner)
2418 == bfd_target_elf_flavour))
2419 {
2420 h->ref_regular = 1;
2421 h->ref_regular_nonweak = 1;
2422 }
2423 else
2424 h->def_regular = 1;
2425 }
2426
2427 if (h->dynindx == -1
2428 && (h->def_dynamic
2429 || h->ref_dynamic))
2430 {
2431 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2432 {
2433 eif->failed = TRUE;
2434 return FALSE;
2435 }
2436 }
2437 }
2438 else
2439 {
2440 /* Unfortunately, NON_ELF is only correct if the symbol
2441 was first seen in a non-ELF file. Fortunately, if the symbol
2442 was first seen in an ELF file, we're probably OK unless the
2443 symbol was defined in a non-ELF file. Catch that case here.
2444 FIXME: We're still in trouble if the symbol was first seen in
2445 a dynamic object, and then later in a non-ELF regular object. */
2446 if ((h->root.type == bfd_link_hash_defined
2447 || h->root.type == bfd_link_hash_defweak)
2448 && !h->def_regular
2449 && (h->root.u.def.section->owner != NULL
2450 ? (bfd_get_flavour (h->root.u.def.section->owner)
2451 != bfd_target_elf_flavour)
2452 : (bfd_is_abs_section (h->root.u.def.section)
2453 && !h->def_dynamic)))
2454 h->def_regular = 1;
2455 }
2456
2457 /* Backend specific symbol fixup. */
2458 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2459 if (bed->elf_backend_fixup_symbol
2460 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2461 return FALSE;
2462
2463 /* If this is a final link, and the symbol was defined as a common
2464 symbol in a regular object file, and there was no definition in
2465 any dynamic object, then the linker will have allocated space for
2466 the symbol in a common section but the DEF_REGULAR
2467 flag will not have been set. */
2468 if (h->root.type == bfd_link_hash_defined
2469 && !h->def_regular
2470 && h->ref_regular
2471 && !h->def_dynamic
2472 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2473 h->def_regular = 1;
2474
2475 /* If -Bsymbolic was used (which means to bind references to global
2476 symbols to the definition within the shared object), and this
2477 symbol was defined in a regular object, then it actually doesn't
2478 need a PLT entry. Likewise, if the symbol has non-default
2479 visibility. If the symbol has hidden or internal visibility, we
2480 will force it local. */
2481 if (h->needs_plt
2482 && eif->info->shared
2483 && is_elf_hash_table (eif->info->hash)
2484 && (SYMBOLIC_BIND (eif->info, h)
2485 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2486 && h->def_regular)
2487 {
2488 bfd_boolean force_local;
2489
2490 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2491 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2492 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2493 }
2494
2495 /* If a weak undefined symbol has non-default visibility, we also
2496 hide it from the dynamic linker. */
2497 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2498 && h->root.type == bfd_link_hash_undefweak)
2499 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2500
2501 /* If this is a weak defined symbol in a dynamic object, and we know
2502 the real definition in the dynamic object, copy interesting flags
2503 over to the real definition. */
2504 if (h->u.weakdef != NULL)
2505 {
2506 /* If the real definition is defined by a regular object file,
2507 don't do anything special. See the longer description in
2508 _bfd_elf_adjust_dynamic_symbol, below. */
2509 if (h->u.weakdef->def_regular)
2510 h->u.weakdef = NULL;
2511 else
2512 {
2513 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2514
2515 while (h->root.type == bfd_link_hash_indirect)
2516 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2517
2518 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2519 || h->root.type == bfd_link_hash_defweak);
2520 BFD_ASSERT (weakdef->def_dynamic);
2521 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2522 || weakdef->root.type == bfd_link_hash_defweak);
2523 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2524 }
2525 }
2526
2527 return TRUE;
2528 }
2529
2530 /* Make the backend pick a good value for a dynamic symbol. This is
2531 called via elf_link_hash_traverse, and also calls itself
2532 recursively. */
2533
2534 static bfd_boolean
2535 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2536 {
2537 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2538 bfd *dynobj;
2539 const struct elf_backend_data *bed;
2540
2541 if (! is_elf_hash_table (eif->info->hash))
2542 return FALSE;
2543
2544 /* Ignore indirect symbols. These are added by the versioning code. */
2545 if (h->root.type == bfd_link_hash_indirect)
2546 return TRUE;
2547
2548 /* Fix the symbol flags. */
2549 if (! _bfd_elf_fix_symbol_flags (h, eif))
2550 return FALSE;
2551
2552 /* If this symbol does not require a PLT entry, and it is not
2553 defined by a dynamic object, or is not referenced by a regular
2554 object, ignore it. We do have to handle a weak defined symbol,
2555 even if no regular object refers to it, if we decided to add it
2556 to the dynamic symbol table. FIXME: Do we normally need to worry
2557 about symbols which are defined by one dynamic object and
2558 referenced by another one? */
2559 if (!h->needs_plt
2560 && h->type != STT_GNU_IFUNC
2561 && (h->def_regular
2562 || !h->def_dynamic
2563 || (!h->ref_regular
2564 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2565 {
2566 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2567 return TRUE;
2568 }
2569
2570 /* If we've already adjusted this symbol, don't do it again. This
2571 can happen via a recursive call. */
2572 if (h->dynamic_adjusted)
2573 return TRUE;
2574
2575 /* Don't look at this symbol again. Note that we must set this
2576 after checking the above conditions, because we may look at a
2577 symbol once, decide not to do anything, and then get called
2578 recursively later after REF_REGULAR is set below. */
2579 h->dynamic_adjusted = 1;
2580
2581 /* If this is a weak definition, and we know a real definition, and
2582 the real symbol is not itself defined by a regular object file,
2583 then get a good value for the real definition. We handle the
2584 real symbol first, for the convenience of the backend routine.
2585
2586 Note that there is a confusing case here. If the real definition
2587 is defined by a regular object file, we don't get the real symbol
2588 from the dynamic object, but we do get the weak symbol. If the
2589 processor backend uses a COPY reloc, then if some routine in the
2590 dynamic object changes the real symbol, we will not see that
2591 change in the corresponding weak symbol. This is the way other
2592 ELF linkers work as well, and seems to be a result of the shared
2593 library model.
2594
2595 I will clarify this issue. Most SVR4 shared libraries define the
2596 variable _timezone and define timezone as a weak synonym. The
2597 tzset call changes _timezone. If you write
2598 extern int timezone;
2599 int _timezone = 5;
2600 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2601 you might expect that, since timezone is a synonym for _timezone,
2602 the same number will print both times. However, if the processor
2603 backend uses a COPY reloc, then actually timezone will be copied
2604 into your process image, and, since you define _timezone
2605 yourself, _timezone will not. Thus timezone and _timezone will
2606 wind up at different memory locations. The tzset call will set
2607 _timezone, leaving timezone unchanged. */
2608
2609 if (h->u.weakdef != NULL)
2610 {
2611 /* If we get to this point, there is an implicit reference to
2612 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2613 h->u.weakdef->ref_regular = 1;
2614
2615 /* Ensure that the backend adjust_dynamic_symbol function sees
2616 H->U.WEAKDEF before H by recursively calling ourselves. */
2617 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2618 return FALSE;
2619 }
2620
2621 /* If a symbol has no type and no size and does not require a PLT
2622 entry, then we are probably about to do the wrong thing here: we
2623 are probably going to create a COPY reloc for an empty object.
2624 This case can arise when a shared object is built with assembly
2625 code, and the assembly code fails to set the symbol type. */
2626 if (h->size == 0
2627 && h->type == STT_NOTYPE
2628 && !h->needs_plt)
2629 (*_bfd_error_handler)
2630 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2631 h->root.root.string);
2632
2633 dynobj = elf_hash_table (eif->info)->dynobj;
2634 bed = get_elf_backend_data (dynobj);
2635
2636 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2637 {
2638 eif->failed = TRUE;
2639 return FALSE;
2640 }
2641
2642 return TRUE;
2643 }
2644
2645 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2646 DYNBSS. */
2647
2648 bfd_boolean
2649 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2650 asection *dynbss)
2651 {
2652 unsigned int power_of_two;
2653 bfd_vma mask;
2654 asection *sec = h->root.u.def.section;
2655
2656 /* The section aligment of definition is the maximum alignment
2657 requirement of symbols defined in the section. Since we don't
2658 know the symbol alignment requirement, we start with the
2659 maximum alignment and check low bits of the symbol address
2660 for the minimum alignment. */
2661 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2662 mask = ((bfd_vma) 1 << power_of_two) - 1;
2663 while ((h->root.u.def.value & mask) != 0)
2664 {
2665 mask >>= 1;
2666 --power_of_two;
2667 }
2668
2669 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2670 dynbss))
2671 {
2672 /* Adjust the section alignment if needed. */
2673 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2674 power_of_two))
2675 return FALSE;
2676 }
2677
2678 /* We make sure that the symbol will be aligned properly. */
2679 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2680
2681 /* Define the symbol as being at this point in DYNBSS. */
2682 h->root.u.def.section = dynbss;
2683 h->root.u.def.value = dynbss->size;
2684
2685 /* Increment the size of DYNBSS to make room for the symbol. */
2686 dynbss->size += h->size;
2687
2688 return TRUE;
2689 }
2690
2691 /* Adjust all external symbols pointing into SEC_MERGE sections
2692 to reflect the object merging within the sections. */
2693
2694 static bfd_boolean
2695 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2696 {
2697 asection *sec;
2698
2699 if ((h->root.type == bfd_link_hash_defined
2700 || h->root.type == bfd_link_hash_defweak)
2701 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2702 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2703 {
2704 bfd *output_bfd = (bfd *) data;
2705
2706 h->root.u.def.value =
2707 _bfd_merged_section_offset (output_bfd,
2708 &h->root.u.def.section,
2709 elf_section_data (sec)->sec_info,
2710 h->root.u.def.value);
2711 }
2712
2713 return TRUE;
2714 }
2715
2716 /* Returns false if the symbol referred to by H should be considered
2717 to resolve local to the current module, and true if it should be
2718 considered to bind dynamically. */
2719
2720 bfd_boolean
2721 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2722 struct bfd_link_info *info,
2723 bfd_boolean not_local_protected)
2724 {
2725 bfd_boolean binding_stays_local_p;
2726 const struct elf_backend_data *bed;
2727 struct elf_link_hash_table *hash_table;
2728
2729 if (h == NULL)
2730 return FALSE;
2731
2732 while (h->root.type == bfd_link_hash_indirect
2733 || h->root.type == bfd_link_hash_warning)
2734 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2735
2736 /* If it was forced local, then clearly it's not dynamic. */
2737 if (h->dynindx == -1)
2738 return FALSE;
2739 if (h->forced_local)
2740 return FALSE;
2741
2742 /* Identify the cases where name binding rules say that a
2743 visible symbol resolves locally. */
2744 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2745
2746 switch (ELF_ST_VISIBILITY (h->other))
2747 {
2748 case STV_INTERNAL:
2749 case STV_HIDDEN:
2750 return FALSE;
2751
2752 case STV_PROTECTED:
2753 hash_table = elf_hash_table (info);
2754 if (!is_elf_hash_table (hash_table))
2755 return FALSE;
2756
2757 bed = get_elf_backend_data (hash_table->dynobj);
2758
2759 /* Proper resolution for function pointer equality may require
2760 that these symbols perhaps be resolved dynamically, even though
2761 we should be resolving them to the current module. */
2762 if (!not_local_protected || !bed->is_function_type (h->type))
2763 binding_stays_local_p = TRUE;
2764 break;
2765
2766 default:
2767 break;
2768 }
2769
2770 /* If it isn't defined locally, then clearly it's dynamic. */
2771 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2772 return TRUE;
2773
2774 /* Otherwise, the symbol is dynamic if binding rules don't tell
2775 us that it remains local. */
2776 return !binding_stays_local_p;
2777 }
2778
2779 /* Return true if the symbol referred to by H should be considered
2780 to resolve local to the current module, and false otherwise. Differs
2781 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2782 undefined symbols. The two functions are virtually identical except
2783 for the place where forced_local and dynindx == -1 are tested. If
2784 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2785 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2786 the symbol is local only for defined symbols.
2787 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2788 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2789 treatment of undefined weak symbols. For those that do not make
2790 undefined weak symbols dynamic, both functions may return false. */
2791
2792 bfd_boolean
2793 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2794 struct bfd_link_info *info,
2795 bfd_boolean local_protected)
2796 {
2797 const struct elf_backend_data *bed;
2798 struct elf_link_hash_table *hash_table;
2799
2800 /* If it's a local sym, of course we resolve locally. */
2801 if (h == NULL)
2802 return TRUE;
2803
2804 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2805 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2806 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2807 return TRUE;
2808
2809 /* Common symbols that become definitions don't get the DEF_REGULAR
2810 flag set, so test it first, and don't bail out. */
2811 if (ELF_COMMON_DEF_P (h))
2812 /* Do nothing. */;
2813 /* If we don't have a definition in a regular file, then we can't
2814 resolve locally. The sym is either undefined or dynamic. */
2815 else if (!h->def_regular)
2816 return FALSE;
2817
2818 /* Forced local symbols resolve locally. */
2819 if (h->forced_local)
2820 return TRUE;
2821
2822 /* As do non-dynamic symbols. */
2823 if (h->dynindx == -1)
2824 return TRUE;
2825
2826 /* At this point, we know the symbol is defined and dynamic. In an
2827 executable it must resolve locally, likewise when building symbolic
2828 shared libraries. */
2829 if (info->executable || SYMBOLIC_BIND (info, h))
2830 return TRUE;
2831
2832 /* Now deal with defined dynamic symbols in shared libraries. Ones
2833 with default visibility might not resolve locally. */
2834 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2835 return FALSE;
2836
2837 hash_table = elf_hash_table (info);
2838 if (!is_elf_hash_table (hash_table))
2839 return TRUE;
2840
2841 bed = get_elf_backend_data (hash_table->dynobj);
2842
2843 /* STV_PROTECTED non-function symbols are local. */
2844 if (!bed->is_function_type (h->type))
2845 return TRUE;
2846
2847 /* Function pointer equality tests may require that STV_PROTECTED
2848 symbols be treated as dynamic symbols. If the address of a
2849 function not defined in an executable is set to that function's
2850 plt entry in the executable, then the address of the function in
2851 a shared library must also be the plt entry in the executable. */
2852 return local_protected;
2853 }
2854
2855 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2856 aligned. Returns the first TLS output section. */
2857
2858 struct bfd_section *
2859 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2860 {
2861 struct bfd_section *sec, *tls;
2862 unsigned int align = 0;
2863
2864 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2865 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2866 break;
2867 tls = sec;
2868
2869 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2870 if (sec->alignment_power > align)
2871 align = sec->alignment_power;
2872
2873 elf_hash_table (info)->tls_sec = tls;
2874
2875 /* Ensure the alignment of the first section is the largest alignment,
2876 so that the tls segment starts aligned. */
2877 if (tls != NULL)
2878 tls->alignment_power = align;
2879
2880 return tls;
2881 }
2882
2883 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2884 static bfd_boolean
2885 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2886 Elf_Internal_Sym *sym)
2887 {
2888 const struct elf_backend_data *bed;
2889
2890 /* Local symbols do not count, but target specific ones might. */
2891 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2892 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2893 return FALSE;
2894
2895 bed = get_elf_backend_data (abfd);
2896 /* Function symbols do not count. */
2897 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2898 return FALSE;
2899
2900 /* If the section is undefined, then so is the symbol. */
2901 if (sym->st_shndx == SHN_UNDEF)
2902 return FALSE;
2903
2904 /* If the symbol is defined in the common section, then
2905 it is a common definition and so does not count. */
2906 if (bed->common_definition (sym))
2907 return FALSE;
2908
2909 /* If the symbol is in a target specific section then we
2910 must rely upon the backend to tell us what it is. */
2911 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2912 /* FIXME - this function is not coded yet:
2913
2914 return _bfd_is_global_symbol_definition (abfd, sym);
2915
2916 Instead for now assume that the definition is not global,
2917 Even if this is wrong, at least the linker will behave
2918 in the same way that it used to do. */
2919 return FALSE;
2920
2921 return TRUE;
2922 }
2923
2924 /* Search the symbol table of the archive element of the archive ABFD
2925 whose archive map contains a mention of SYMDEF, and determine if
2926 the symbol is defined in this element. */
2927 static bfd_boolean
2928 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2929 {
2930 Elf_Internal_Shdr * hdr;
2931 bfd_size_type symcount;
2932 bfd_size_type extsymcount;
2933 bfd_size_type extsymoff;
2934 Elf_Internal_Sym *isymbuf;
2935 Elf_Internal_Sym *isym;
2936 Elf_Internal_Sym *isymend;
2937 bfd_boolean result;
2938
2939 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2940 if (abfd == NULL)
2941 return FALSE;
2942
2943 if (! bfd_check_format (abfd, bfd_object))
2944 return FALSE;
2945
2946 /* If we have already included the element containing this symbol in the
2947 link then we do not need to include it again. Just claim that any symbol
2948 it contains is not a definition, so that our caller will not decide to
2949 (re)include this element. */
2950 if (abfd->archive_pass)
2951 return FALSE;
2952
2953 /* Select the appropriate symbol table. */
2954 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2955 hdr = &elf_tdata (abfd)->symtab_hdr;
2956 else
2957 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2958
2959 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2960
2961 /* The sh_info field of the symtab header tells us where the
2962 external symbols start. We don't care about the local symbols. */
2963 if (elf_bad_symtab (abfd))
2964 {
2965 extsymcount = symcount;
2966 extsymoff = 0;
2967 }
2968 else
2969 {
2970 extsymcount = symcount - hdr->sh_info;
2971 extsymoff = hdr->sh_info;
2972 }
2973
2974 if (extsymcount == 0)
2975 return FALSE;
2976
2977 /* Read in the symbol table. */
2978 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2979 NULL, NULL, NULL);
2980 if (isymbuf == NULL)
2981 return FALSE;
2982
2983 /* Scan the symbol table looking for SYMDEF. */
2984 result = FALSE;
2985 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2986 {
2987 const char *name;
2988
2989 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2990 isym->st_name);
2991 if (name == NULL)
2992 break;
2993
2994 if (strcmp (name, symdef->name) == 0)
2995 {
2996 result = is_global_data_symbol_definition (abfd, isym);
2997 break;
2998 }
2999 }
3000
3001 free (isymbuf);
3002
3003 return result;
3004 }
3005 \f
3006 /* Add an entry to the .dynamic table. */
3007
3008 bfd_boolean
3009 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3010 bfd_vma tag,
3011 bfd_vma val)
3012 {
3013 struct elf_link_hash_table *hash_table;
3014 const struct elf_backend_data *bed;
3015 asection *s;
3016 bfd_size_type newsize;
3017 bfd_byte *newcontents;
3018 Elf_Internal_Dyn dyn;
3019
3020 hash_table = elf_hash_table (info);
3021 if (! is_elf_hash_table (hash_table))
3022 return FALSE;
3023
3024 bed = get_elf_backend_data (hash_table->dynobj);
3025 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3026 BFD_ASSERT (s != NULL);
3027
3028 newsize = s->size + bed->s->sizeof_dyn;
3029 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3030 if (newcontents == NULL)
3031 return FALSE;
3032
3033 dyn.d_tag = tag;
3034 dyn.d_un.d_val = val;
3035 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3036
3037 s->size = newsize;
3038 s->contents = newcontents;
3039
3040 return TRUE;
3041 }
3042
3043 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3044 otherwise just check whether one already exists. Returns -1 on error,
3045 1 if a DT_NEEDED tag already exists, and 0 on success. */
3046
3047 static int
3048 elf_add_dt_needed_tag (bfd *abfd,
3049 struct bfd_link_info *info,
3050 const char *soname,
3051 bfd_boolean do_it)
3052 {
3053 struct elf_link_hash_table *hash_table;
3054 bfd_size_type strindex;
3055
3056 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3057 return -1;
3058
3059 hash_table = elf_hash_table (info);
3060 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3061 if (strindex == (bfd_size_type) -1)
3062 return -1;
3063
3064 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3065 {
3066 asection *sdyn;
3067 const struct elf_backend_data *bed;
3068 bfd_byte *extdyn;
3069
3070 bed = get_elf_backend_data (hash_table->dynobj);
3071 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3072 if (sdyn != NULL)
3073 for (extdyn = sdyn->contents;
3074 extdyn < sdyn->contents + sdyn->size;
3075 extdyn += bed->s->sizeof_dyn)
3076 {
3077 Elf_Internal_Dyn dyn;
3078
3079 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3080 if (dyn.d_tag == DT_NEEDED
3081 && dyn.d_un.d_val == strindex)
3082 {
3083 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3084 return 1;
3085 }
3086 }
3087 }
3088
3089 if (do_it)
3090 {
3091 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3092 return -1;
3093
3094 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3095 return -1;
3096 }
3097 else
3098 /* We were just checking for existence of the tag. */
3099 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3100
3101 return 0;
3102 }
3103
3104 static bfd_boolean
3105 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3106 {
3107 for (; needed != NULL; needed = needed->next)
3108 if (strcmp (soname, needed->name) == 0)
3109 return TRUE;
3110
3111 return FALSE;
3112 }
3113
3114 /* Sort symbol by value, section, and size. */
3115 static int
3116 elf_sort_symbol (const void *arg1, const void *arg2)
3117 {
3118 const struct elf_link_hash_entry *h1;
3119 const struct elf_link_hash_entry *h2;
3120 bfd_signed_vma vdiff;
3121
3122 h1 = *(const struct elf_link_hash_entry **) arg1;
3123 h2 = *(const struct elf_link_hash_entry **) arg2;
3124 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3125 if (vdiff != 0)
3126 return vdiff > 0 ? 1 : -1;
3127 else
3128 {
3129 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3130 if (sdiff != 0)
3131 return sdiff > 0 ? 1 : -1;
3132 }
3133 vdiff = h1->size - h2->size;
3134 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3135 }
3136
3137 /* This function is used to adjust offsets into .dynstr for
3138 dynamic symbols. This is called via elf_link_hash_traverse. */
3139
3140 static bfd_boolean
3141 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3142 {
3143 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3144
3145 if (h->dynindx != -1)
3146 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3147 return TRUE;
3148 }
3149
3150 /* Assign string offsets in .dynstr, update all structures referencing
3151 them. */
3152
3153 static bfd_boolean
3154 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3155 {
3156 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3157 struct elf_link_local_dynamic_entry *entry;
3158 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3159 bfd *dynobj = hash_table->dynobj;
3160 asection *sdyn;
3161 bfd_size_type size;
3162 const struct elf_backend_data *bed;
3163 bfd_byte *extdyn;
3164
3165 _bfd_elf_strtab_finalize (dynstr);
3166 size = _bfd_elf_strtab_size (dynstr);
3167
3168 bed = get_elf_backend_data (dynobj);
3169 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3170 BFD_ASSERT (sdyn != NULL);
3171
3172 /* Update all .dynamic entries referencing .dynstr strings. */
3173 for (extdyn = sdyn->contents;
3174 extdyn < sdyn->contents + sdyn->size;
3175 extdyn += bed->s->sizeof_dyn)
3176 {
3177 Elf_Internal_Dyn dyn;
3178
3179 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3180 switch (dyn.d_tag)
3181 {
3182 case DT_STRSZ:
3183 dyn.d_un.d_val = size;
3184 break;
3185 case DT_NEEDED:
3186 case DT_SONAME:
3187 case DT_RPATH:
3188 case DT_RUNPATH:
3189 case DT_FILTER:
3190 case DT_AUXILIARY:
3191 case DT_AUDIT:
3192 case DT_DEPAUDIT:
3193 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3194 break;
3195 default:
3196 continue;
3197 }
3198 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3199 }
3200
3201 /* Now update local dynamic symbols. */
3202 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3203 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3204 entry->isym.st_name);
3205
3206 /* And the rest of dynamic symbols. */
3207 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3208
3209 /* Adjust version definitions. */
3210 if (elf_tdata (output_bfd)->cverdefs)
3211 {
3212 asection *s;
3213 bfd_byte *p;
3214 bfd_size_type i;
3215 Elf_Internal_Verdef def;
3216 Elf_Internal_Verdaux defaux;
3217
3218 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3219 p = s->contents;
3220 do
3221 {
3222 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3223 &def);
3224 p += sizeof (Elf_External_Verdef);
3225 if (def.vd_aux != sizeof (Elf_External_Verdef))
3226 continue;
3227 for (i = 0; i < def.vd_cnt; ++i)
3228 {
3229 _bfd_elf_swap_verdaux_in (output_bfd,
3230 (Elf_External_Verdaux *) p, &defaux);
3231 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3232 defaux.vda_name);
3233 _bfd_elf_swap_verdaux_out (output_bfd,
3234 &defaux, (Elf_External_Verdaux *) p);
3235 p += sizeof (Elf_External_Verdaux);
3236 }
3237 }
3238 while (def.vd_next);
3239 }
3240
3241 /* Adjust version references. */
3242 if (elf_tdata (output_bfd)->verref)
3243 {
3244 asection *s;
3245 bfd_byte *p;
3246 bfd_size_type i;
3247 Elf_Internal_Verneed need;
3248 Elf_Internal_Vernaux needaux;
3249
3250 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3251 p = s->contents;
3252 do
3253 {
3254 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3255 &need);
3256 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3257 _bfd_elf_swap_verneed_out (output_bfd, &need,
3258 (Elf_External_Verneed *) p);
3259 p += sizeof (Elf_External_Verneed);
3260 for (i = 0; i < need.vn_cnt; ++i)
3261 {
3262 _bfd_elf_swap_vernaux_in (output_bfd,
3263 (Elf_External_Vernaux *) p, &needaux);
3264 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3265 needaux.vna_name);
3266 _bfd_elf_swap_vernaux_out (output_bfd,
3267 &needaux,
3268 (Elf_External_Vernaux *) p);
3269 p += sizeof (Elf_External_Vernaux);
3270 }
3271 }
3272 while (need.vn_next);
3273 }
3274
3275 return TRUE;
3276 }
3277 \f
3278 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3279 The default is to only match when the INPUT and OUTPUT are exactly
3280 the same target. */
3281
3282 bfd_boolean
3283 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3284 const bfd_target *output)
3285 {
3286 return input == output;
3287 }
3288
3289 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3290 This version is used when different targets for the same architecture
3291 are virtually identical. */
3292
3293 bfd_boolean
3294 _bfd_elf_relocs_compatible (const bfd_target *input,
3295 const bfd_target *output)
3296 {
3297 const struct elf_backend_data *obed, *ibed;
3298
3299 if (input == output)
3300 return TRUE;
3301
3302 ibed = xvec_get_elf_backend_data (input);
3303 obed = xvec_get_elf_backend_data (output);
3304
3305 if (ibed->arch != obed->arch)
3306 return FALSE;
3307
3308 /* If both backends are using this function, deem them compatible. */
3309 return ibed->relocs_compatible == obed->relocs_compatible;
3310 }
3311
3312 /* Make a special call to the linker "notice" function to tell it that
3313 we are about to handle an as-needed lib, or have finished
3314 processing the lib. */
3315
3316 bfd_boolean
3317 _bfd_elf_notice_as_needed (bfd *ibfd,
3318 struct bfd_link_info *info,
3319 enum notice_asneeded_action act)
3320 {
3321 return (*info->callbacks->notice) (info, NULL, ibfd, NULL, act, 0, NULL);
3322 }
3323
3324 /* Add symbols from an ELF object file to the linker hash table. */
3325
3326 static bfd_boolean
3327 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3328 {
3329 Elf_Internal_Ehdr *ehdr;
3330 Elf_Internal_Shdr *hdr;
3331 bfd_size_type symcount;
3332 bfd_size_type extsymcount;
3333 bfd_size_type extsymoff;
3334 struct elf_link_hash_entry **sym_hash;
3335 bfd_boolean dynamic;
3336 Elf_External_Versym *extversym = NULL;
3337 Elf_External_Versym *ever;
3338 struct elf_link_hash_entry *weaks;
3339 struct elf_link_hash_entry **nondeflt_vers = NULL;
3340 bfd_size_type nondeflt_vers_cnt = 0;
3341 Elf_Internal_Sym *isymbuf = NULL;
3342 Elf_Internal_Sym *isym;
3343 Elf_Internal_Sym *isymend;
3344 const struct elf_backend_data *bed;
3345 bfd_boolean add_needed;
3346 struct elf_link_hash_table *htab;
3347 bfd_size_type amt;
3348 void *alloc_mark = NULL;
3349 struct bfd_hash_entry **old_table = NULL;
3350 unsigned int old_size = 0;
3351 unsigned int old_count = 0;
3352 void *old_tab = NULL;
3353 void *old_ent;
3354 struct bfd_link_hash_entry *old_undefs = NULL;
3355 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3356 long old_dynsymcount = 0;
3357 bfd_size_type old_dynstr_size = 0;
3358 size_t tabsize = 0;
3359 asection *s;
3360
3361 htab = elf_hash_table (info);
3362 bed = get_elf_backend_data (abfd);
3363
3364 if ((abfd->flags & DYNAMIC) == 0)
3365 dynamic = FALSE;
3366 else
3367 {
3368 dynamic = TRUE;
3369
3370 /* You can't use -r against a dynamic object. Also, there's no
3371 hope of using a dynamic object which does not exactly match
3372 the format of the output file. */
3373 if (info->relocatable
3374 || !is_elf_hash_table (htab)
3375 || info->output_bfd->xvec != abfd->xvec)
3376 {
3377 if (info->relocatable)
3378 bfd_set_error (bfd_error_invalid_operation);
3379 else
3380 bfd_set_error (bfd_error_wrong_format);
3381 goto error_return;
3382 }
3383 }
3384
3385 ehdr = elf_elfheader (abfd);
3386 if (info->warn_alternate_em
3387 && bed->elf_machine_code != ehdr->e_machine
3388 && ((bed->elf_machine_alt1 != 0
3389 && ehdr->e_machine == bed->elf_machine_alt1)
3390 || (bed->elf_machine_alt2 != 0
3391 && ehdr->e_machine == bed->elf_machine_alt2)))
3392 info->callbacks->einfo
3393 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3394 ehdr->e_machine, abfd, bed->elf_machine_code);
3395
3396 /* As a GNU extension, any input sections which are named
3397 .gnu.warning.SYMBOL are treated as warning symbols for the given
3398 symbol. This differs from .gnu.warning sections, which generate
3399 warnings when they are included in an output file. */
3400 /* PR 12761: Also generate this warning when building shared libraries. */
3401 for (s = abfd->sections; s != NULL; s = s->next)
3402 {
3403 const char *name;
3404
3405 name = bfd_get_section_name (abfd, s);
3406 if (CONST_STRNEQ (name, ".gnu.warning."))
3407 {
3408 char *msg;
3409 bfd_size_type sz;
3410
3411 name += sizeof ".gnu.warning." - 1;
3412
3413 /* If this is a shared object, then look up the symbol
3414 in the hash table. If it is there, and it is already
3415 been defined, then we will not be using the entry
3416 from this shared object, so we don't need to warn.
3417 FIXME: If we see the definition in a regular object
3418 later on, we will warn, but we shouldn't. The only
3419 fix is to keep track of what warnings we are supposed
3420 to emit, and then handle them all at the end of the
3421 link. */
3422 if (dynamic)
3423 {
3424 struct elf_link_hash_entry *h;
3425
3426 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3427
3428 /* FIXME: What about bfd_link_hash_common? */
3429 if (h != NULL
3430 && (h->root.type == bfd_link_hash_defined
3431 || h->root.type == bfd_link_hash_defweak))
3432 continue;
3433 }
3434
3435 sz = s->size;
3436 msg = (char *) bfd_alloc (abfd, sz + 1);
3437 if (msg == NULL)
3438 goto error_return;
3439
3440 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3441 goto error_return;
3442
3443 msg[sz] = '\0';
3444
3445 if (! (_bfd_generic_link_add_one_symbol
3446 (info, abfd, name, BSF_WARNING, s, 0, msg,
3447 FALSE, bed->collect, NULL)))
3448 goto error_return;
3449
3450 if (!info->relocatable && info->executable)
3451 {
3452 /* Clobber the section size so that the warning does
3453 not get copied into the output file. */
3454 s->size = 0;
3455
3456 /* Also set SEC_EXCLUDE, so that symbols defined in
3457 the warning section don't get copied to the output. */
3458 s->flags |= SEC_EXCLUDE;
3459 }
3460 }
3461 }
3462
3463 add_needed = TRUE;
3464 if (! dynamic)
3465 {
3466 /* If we are creating a shared library, create all the dynamic
3467 sections immediately. We need to attach them to something,
3468 so we attach them to this BFD, provided it is the right
3469 format. FIXME: If there are no input BFD's of the same
3470 format as the output, we can't make a shared library. */
3471 if (info->shared
3472 && is_elf_hash_table (htab)
3473 && info->output_bfd->xvec == abfd->xvec
3474 && !htab->dynamic_sections_created)
3475 {
3476 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3477 goto error_return;
3478 }
3479 }
3480 else if (!is_elf_hash_table (htab))
3481 goto error_return;
3482 else
3483 {
3484 const char *soname = NULL;
3485 char *audit = NULL;
3486 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3487 int ret;
3488
3489 /* ld --just-symbols and dynamic objects don't mix very well.
3490 ld shouldn't allow it. */
3491 if ((s = abfd->sections) != NULL
3492 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3493 abort ();
3494
3495 /* If this dynamic lib was specified on the command line with
3496 --as-needed in effect, then we don't want to add a DT_NEEDED
3497 tag unless the lib is actually used. Similary for libs brought
3498 in by another lib's DT_NEEDED. When --no-add-needed is used
3499 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3500 any dynamic library in DT_NEEDED tags in the dynamic lib at
3501 all. */
3502 add_needed = (elf_dyn_lib_class (abfd)
3503 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3504 | DYN_NO_NEEDED)) == 0;
3505
3506 s = bfd_get_section_by_name (abfd, ".dynamic");
3507 if (s != NULL)
3508 {
3509 bfd_byte *dynbuf;
3510 bfd_byte *extdyn;
3511 unsigned int elfsec;
3512 unsigned long shlink;
3513
3514 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3515 {
3516 error_free_dyn:
3517 free (dynbuf);
3518 goto error_return;
3519 }
3520
3521 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3522 if (elfsec == SHN_BAD)
3523 goto error_free_dyn;
3524 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3525
3526 for (extdyn = dynbuf;
3527 extdyn < dynbuf + s->size;
3528 extdyn += bed->s->sizeof_dyn)
3529 {
3530 Elf_Internal_Dyn dyn;
3531
3532 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3533 if (dyn.d_tag == DT_SONAME)
3534 {
3535 unsigned int tagv = dyn.d_un.d_val;
3536 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3537 if (soname == NULL)
3538 goto error_free_dyn;
3539 }
3540 if (dyn.d_tag == DT_NEEDED)
3541 {
3542 struct bfd_link_needed_list *n, **pn;
3543 char *fnm, *anm;
3544 unsigned int tagv = dyn.d_un.d_val;
3545
3546 amt = sizeof (struct bfd_link_needed_list);
3547 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3548 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3549 if (n == NULL || fnm == NULL)
3550 goto error_free_dyn;
3551 amt = strlen (fnm) + 1;
3552 anm = (char *) bfd_alloc (abfd, amt);
3553 if (anm == NULL)
3554 goto error_free_dyn;
3555 memcpy (anm, fnm, amt);
3556 n->name = anm;
3557 n->by = abfd;
3558 n->next = NULL;
3559 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3560 ;
3561 *pn = n;
3562 }
3563 if (dyn.d_tag == DT_RUNPATH)
3564 {
3565 struct bfd_link_needed_list *n, **pn;
3566 char *fnm, *anm;
3567 unsigned int tagv = dyn.d_un.d_val;
3568
3569 amt = sizeof (struct bfd_link_needed_list);
3570 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3571 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3572 if (n == NULL || fnm == NULL)
3573 goto error_free_dyn;
3574 amt = strlen (fnm) + 1;
3575 anm = (char *) bfd_alloc (abfd, amt);
3576 if (anm == NULL)
3577 goto error_free_dyn;
3578 memcpy (anm, fnm, amt);
3579 n->name = anm;
3580 n->by = abfd;
3581 n->next = NULL;
3582 for (pn = & runpath;
3583 *pn != NULL;
3584 pn = &(*pn)->next)
3585 ;
3586 *pn = n;
3587 }
3588 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3589 if (!runpath && dyn.d_tag == DT_RPATH)
3590 {
3591 struct bfd_link_needed_list *n, **pn;
3592 char *fnm, *anm;
3593 unsigned int tagv = dyn.d_un.d_val;
3594
3595 amt = sizeof (struct bfd_link_needed_list);
3596 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3597 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3598 if (n == NULL || fnm == NULL)
3599 goto error_free_dyn;
3600 amt = strlen (fnm) + 1;
3601 anm = (char *) bfd_alloc (abfd, amt);
3602 if (anm == NULL)
3603 goto error_free_dyn;
3604 memcpy (anm, fnm, amt);
3605 n->name = anm;
3606 n->by = abfd;
3607 n->next = NULL;
3608 for (pn = & rpath;
3609 *pn != NULL;
3610 pn = &(*pn)->next)
3611 ;
3612 *pn = n;
3613 }
3614 if (dyn.d_tag == DT_AUDIT)
3615 {
3616 unsigned int tagv = dyn.d_un.d_val;
3617 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3618 }
3619 }
3620
3621 free (dynbuf);
3622 }
3623
3624 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3625 frees all more recently bfd_alloc'd blocks as well. */
3626 if (runpath)
3627 rpath = runpath;
3628
3629 if (rpath)
3630 {
3631 struct bfd_link_needed_list **pn;
3632 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3633 ;
3634 *pn = rpath;
3635 }
3636
3637 /* We do not want to include any of the sections in a dynamic
3638 object in the output file. We hack by simply clobbering the
3639 list of sections in the BFD. This could be handled more
3640 cleanly by, say, a new section flag; the existing
3641 SEC_NEVER_LOAD flag is not the one we want, because that one
3642 still implies that the section takes up space in the output
3643 file. */
3644 bfd_section_list_clear (abfd);
3645
3646 /* Find the name to use in a DT_NEEDED entry that refers to this
3647 object. If the object has a DT_SONAME entry, we use it.
3648 Otherwise, if the generic linker stuck something in
3649 elf_dt_name, we use that. Otherwise, we just use the file
3650 name. */
3651 if (soname == NULL || *soname == '\0')
3652 {
3653 soname = elf_dt_name (abfd);
3654 if (soname == NULL || *soname == '\0')
3655 soname = bfd_get_filename (abfd);
3656 }
3657
3658 /* Save the SONAME because sometimes the linker emulation code
3659 will need to know it. */
3660 elf_dt_name (abfd) = soname;
3661
3662 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3663 if (ret < 0)
3664 goto error_return;
3665
3666 /* If we have already included this dynamic object in the
3667 link, just ignore it. There is no reason to include a
3668 particular dynamic object more than once. */
3669 if (ret > 0)
3670 return TRUE;
3671
3672 /* Save the DT_AUDIT entry for the linker emulation code. */
3673 elf_dt_audit (abfd) = audit;
3674 }
3675
3676 /* If this is a dynamic object, we always link against the .dynsym
3677 symbol table, not the .symtab symbol table. The dynamic linker
3678 will only see the .dynsym symbol table, so there is no reason to
3679 look at .symtab for a dynamic object. */
3680
3681 if (! dynamic || elf_dynsymtab (abfd) == 0)
3682 hdr = &elf_tdata (abfd)->symtab_hdr;
3683 else
3684 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3685
3686 symcount = hdr->sh_size / bed->s->sizeof_sym;
3687
3688 /* The sh_info field of the symtab header tells us where the
3689 external symbols start. We don't care about the local symbols at
3690 this point. */
3691 if (elf_bad_symtab (abfd))
3692 {
3693 extsymcount = symcount;
3694 extsymoff = 0;
3695 }
3696 else
3697 {
3698 extsymcount = symcount - hdr->sh_info;
3699 extsymoff = hdr->sh_info;
3700 }
3701
3702 sym_hash = elf_sym_hashes (abfd);
3703 if (extsymcount != 0)
3704 {
3705 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3706 NULL, NULL, NULL);
3707 if (isymbuf == NULL)
3708 goto error_return;
3709
3710 if (sym_hash == NULL)
3711 {
3712 /* We store a pointer to the hash table entry for each
3713 external symbol. */
3714 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3715 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
3716 if (sym_hash == NULL)
3717 goto error_free_sym;
3718 elf_sym_hashes (abfd) = sym_hash;
3719 }
3720 }
3721
3722 if (dynamic)
3723 {
3724 /* Read in any version definitions. */
3725 if (!_bfd_elf_slurp_version_tables (abfd,
3726 info->default_imported_symver))
3727 goto error_free_sym;
3728
3729 /* Read in the symbol versions, but don't bother to convert them
3730 to internal format. */
3731 if (elf_dynversym (abfd) != 0)
3732 {
3733 Elf_Internal_Shdr *versymhdr;
3734
3735 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3736 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3737 if (extversym == NULL)
3738 goto error_free_sym;
3739 amt = versymhdr->sh_size;
3740 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3741 || bfd_bread (extversym, amt, abfd) != amt)
3742 goto error_free_vers;
3743 }
3744 }
3745
3746 /* If we are loading an as-needed shared lib, save the symbol table
3747 state before we start adding symbols. If the lib turns out
3748 to be unneeded, restore the state. */
3749 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3750 {
3751 unsigned int i;
3752 size_t entsize;
3753
3754 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3755 {
3756 struct bfd_hash_entry *p;
3757 struct elf_link_hash_entry *h;
3758
3759 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3760 {
3761 h = (struct elf_link_hash_entry *) p;
3762 entsize += htab->root.table.entsize;
3763 if (h->root.type == bfd_link_hash_warning)
3764 entsize += htab->root.table.entsize;
3765 }
3766 }
3767
3768 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3769 old_tab = bfd_malloc (tabsize + entsize);
3770 if (old_tab == NULL)
3771 goto error_free_vers;
3772
3773 /* Remember the current objalloc pointer, so that all mem for
3774 symbols added can later be reclaimed. */
3775 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3776 if (alloc_mark == NULL)
3777 goto error_free_vers;
3778
3779 /* Make a special call to the linker "notice" function to
3780 tell it that we are about to handle an as-needed lib. */
3781 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
3782 goto error_free_vers;
3783
3784 /* Clone the symbol table. Remember some pointers into the
3785 symbol table, and dynamic symbol count. */
3786 old_ent = (char *) old_tab + tabsize;
3787 memcpy (old_tab, htab->root.table.table, tabsize);
3788 old_undefs = htab->root.undefs;
3789 old_undefs_tail = htab->root.undefs_tail;
3790 old_table = htab->root.table.table;
3791 old_size = htab->root.table.size;
3792 old_count = htab->root.table.count;
3793 old_dynsymcount = htab->dynsymcount;
3794 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3795
3796 for (i = 0; i < htab->root.table.size; i++)
3797 {
3798 struct bfd_hash_entry *p;
3799 struct elf_link_hash_entry *h;
3800
3801 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3802 {
3803 memcpy (old_ent, p, htab->root.table.entsize);
3804 old_ent = (char *) old_ent + htab->root.table.entsize;
3805 h = (struct elf_link_hash_entry *) p;
3806 if (h->root.type == bfd_link_hash_warning)
3807 {
3808 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3809 old_ent = (char *) old_ent + htab->root.table.entsize;
3810 }
3811 }
3812 }
3813 }
3814
3815 weaks = NULL;
3816 ever = extversym != NULL ? extversym + extsymoff : NULL;
3817 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3818 isym < isymend;
3819 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3820 {
3821 int bind;
3822 bfd_vma value;
3823 asection *sec, *new_sec;
3824 flagword flags;
3825 const char *name;
3826 struct elf_link_hash_entry *h;
3827 struct elf_link_hash_entry *hi;
3828 bfd_boolean definition;
3829 bfd_boolean size_change_ok;
3830 bfd_boolean type_change_ok;
3831 bfd_boolean new_weakdef;
3832 bfd_boolean new_weak;
3833 bfd_boolean old_weak;
3834 bfd_boolean override;
3835 bfd_boolean common;
3836 unsigned int old_alignment;
3837 bfd *old_bfd;
3838
3839 override = FALSE;
3840
3841 flags = BSF_NO_FLAGS;
3842 sec = NULL;
3843 value = isym->st_value;
3844 common = bed->common_definition (isym);
3845
3846 bind = ELF_ST_BIND (isym->st_info);
3847 switch (bind)
3848 {
3849 case STB_LOCAL:
3850 /* This should be impossible, since ELF requires that all
3851 global symbols follow all local symbols, and that sh_info
3852 point to the first global symbol. Unfortunately, Irix 5
3853 screws this up. */
3854 continue;
3855
3856 case STB_GLOBAL:
3857 if (isym->st_shndx != SHN_UNDEF && !common)
3858 flags = BSF_GLOBAL;
3859 break;
3860
3861 case STB_WEAK:
3862 flags = BSF_WEAK;
3863 break;
3864
3865 case STB_GNU_UNIQUE:
3866 flags = BSF_GNU_UNIQUE;
3867 break;
3868
3869 default:
3870 /* Leave it up to the processor backend. */
3871 break;
3872 }
3873
3874 if (isym->st_shndx == SHN_UNDEF)
3875 sec = bfd_und_section_ptr;
3876 else if (isym->st_shndx == SHN_ABS)
3877 sec = bfd_abs_section_ptr;
3878 else if (isym->st_shndx == SHN_COMMON)
3879 {
3880 sec = bfd_com_section_ptr;
3881 /* What ELF calls the size we call the value. What ELF
3882 calls the value we call the alignment. */
3883 value = isym->st_size;
3884 }
3885 else
3886 {
3887 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3888 if (sec == NULL)
3889 sec = bfd_abs_section_ptr;
3890 else if (discarded_section (sec))
3891 {
3892 /* Symbols from discarded section are undefined. We keep
3893 its visibility. */
3894 sec = bfd_und_section_ptr;
3895 isym->st_shndx = SHN_UNDEF;
3896 }
3897 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3898 value -= sec->vma;
3899 }
3900
3901 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3902 isym->st_name);
3903 if (name == NULL)
3904 goto error_free_vers;
3905
3906 if (isym->st_shndx == SHN_COMMON
3907 && (abfd->flags & BFD_PLUGIN) != 0)
3908 {
3909 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3910
3911 if (xc == NULL)
3912 {
3913 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3914 | SEC_EXCLUDE);
3915 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3916 if (xc == NULL)
3917 goto error_free_vers;
3918 }
3919 sec = xc;
3920 }
3921 else if (isym->st_shndx == SHN_COMMON
3922 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3923 && !info->relocatable)
3924 {
3925 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3926
3927 if (tcomm == NULL)
3928 {
3929 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3930 | SEC_LINKER_CREATED);
3931 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3932 if (tcomm == NULL)
3933 goto error_free_vers;
3934 }
3935 sec = tcomm;
3936 }
3937 else if (bed->elf_add_symbol_hook)
3938 {
3939 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3940 &sec, &value))
3941 goto error_free_vers;
3942
3943 /* The hook function sets the name to NULL if this symbol
3944 should be skipped for some reason. */
3945 if (name == NULL)
3946 continue;
3947 }
3948
3949 /* Sanity check that all possibilities were handled. */
3950 if (sec == NULL)
3951 {
3952 bfd_set_error (bfd_error_bad_value);
3953 goto error_free_vers;
3954 }
3955
3956 /* Silently discard TLS symbols from --just-syms. There's
3957 no way to combine a static TLS block with a new TLS block
3958 for this executable. */
3959 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
3960 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3961 continue;
3962
3963 if (bfd_is_und_section (sec)
3964 || bfd_is_com_section (sec))
3965 definition = FALSE;
3966 else
3967 definition = TRUE;
3968
3969 size_change_ok = FALSE;
3970 type_change_ok = bed->type_change_ok;
3971 old_weak = FALSE;
3972 old_alignment = 0;
3973 old_bfd = NULL;
3974 new_sec = sec;
3975
3976 if (is_elf_hash_table (htab))
3977 {
3978 Elf_Internal_Versym iver;
3979 unsigned int vernum = 0;
3980 bfd_boolean skip;
3981
3982 if (ever == NULL)
3983 {
3984 if (info->default_imported_symver)
3985 /* Use the default symbol version created earlier. */
3986 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3987 else
3988 iver.vs_vers = 0;
3989 }
3990 else
3991 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3992
3993 vernum = iver.vs_vers & VERSYM_VERSION;
3994
3995 /* If this is a hidden symbol, or if it is not version
3996 1, we append the version name to the symbol name.
3997 However, we do not modify a non-hidden absolute symbol
3998 if it is not a function, because it might be the version
3999 symbol itself. FIXME: What if it isn't? */
4000 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4001 || (vernum > 1
4002 && (!bfd_is_abs_section (sec)
4003 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4004 {
4005 const char *verstr;
4006 size_t namelen, verlen, newlen;
4007 char *newname, *p;
4008
4009 if (isym->st_shndx != SHN_UNDEF)
4010 {
4011 if (vernum > elf_tdata (abfd)->cverdefs)
4012 verstr = NULL;
4013 else if (vernum > 1)
4014 verstr =
4015 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4016 else
4017 verstr = "";
4018
4019 if (verstr == NULL)
4020 {
4021 (*_bfd_error_handler)
4022 (_("%B: %s: invalid version %u (max %d)"),
4023 abfd, name, vernum,
4024 elf_tdata (abfd)->cverdefs);
4025 bfd_set_error (bfd_error_bad_value);
4026 goto error_free_vers;
4027 }
4028 }
4029 else
4030 {
4031 /* We cannot simply test for the number of
4032 entries in the VERNEED section since the
4033 numbers for the needed versions do not start
4034 at 0. */
4035 Elf_Internal_Verneed *t;
4036
4037 verstr = NULL;
4038 for (t = elf_tdata (abfd)->verref;
4039 t != NULL;
4040 t = t->vn_nextref)
4041 {
4042 Elf_Internal_Vernaux *a;
4043
4044 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4045 {
4046 if (a->vna_other == vernum)
4047 {
4048 verstr = a->vna_nodename;
4049 break;
4050 }
4051 }
4052 if (a != NULL)
4053 break;
4054 }
4055 if (verstr == NULL)
4056 {
4057 (*_bfd_error_handler)
4058 (_("%B: %s: invalid needed version %d"),
4059 abfd, name, vernum);
4060 bfd_set_error (bfd_error_bad_value);
4061 goto error_free_vers;
4062 }
4063 }
4064
4065 namelen = strlen (name);
4066 verlen = strlen (verstr);
4067 newlen = namelen + verlen + 2;
4068 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4069 && isym->st_shndx != SHN_UNDEF)
4070 ++newlen;
4071
4072 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4073 if (newname == NULL)
4074 goto error_free_vers;
4075 memcpy (newname, name, namelen);
4076 p = newname + namelen;
4077 *p++ = ELF_VER_CHR;
4078 /* If this is a defined non-hidden version symbol,
4079 we add another @ to the name. This indicates the
4080 default version of the symbol. */
4081 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4082 && isym->st_shndx != SHN_UNDEF)
4083 *p++ = ELF_VER_CHR;
4084 memcpy (p, verstr, verlen + 1);
4085
4086 name = newname;
4087 }
4088
4089 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4090 sym_hash, &old_bfd, &old_weak,
4091 &old_alignment, &skip, &override,
4092 &type_change_ok, &size_change_ok))
4093 goto error_free_vers;
4094
4095 if (skip)
4096 continue;
4097
4098 if (override)
4099 definition = FALSE;
4100
4101 h = *sym_hash;
4102 while (h->root.type == bfd_link_hash_indirect
4103 || h->root.type == bfd_link_hash_warning)
4104 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4105
4106 if (elf_tdata (abfd)->verdef != NULL
4107 && vernum > 1
4108 && definition)
4109 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4110 }
4111
4112 if (! (_bfd_generic_link_add_one_symbol
4113 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4114 (struct bfd_link_hash_entry **) sym_hash)))
4115 goto error_free_vers;
4116
4117 h = *sym_hash;
4118 /* We need to make sure that indirect symbol dynamic flags are
4119 updated. */
4120 hi = h;
4121 while (h->root.type == bfd_link_hash_indirect
4122 || h->root.type == bfd_link_hash_warning)
4123 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4124
4125 *sym_hash = h;
4126
4127 new_weak = (flags & BSF_WEAK) != 0;
4128 new_weakdef = FALSE;
4129 if (dynamic
4130 && definition
4131 && new_weak
4132 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4133 && is_elf_hash_table (htab)
4134 && h->u.weakdef == NULL)
4135 {
4136 /* Keep a list of all weak defined non function symbols from
4137 a dynamic object, using the weakdef field. Later in this
4138 function we will set the weakdef field to the correct
4139 value. We only put non-function symbols from dynamic
4140 objects on this list, because that happens to be the only
4141 time we need to know the normal symbol corresponding to a
4142 weak symbol, and the information is time consuming to
4143 figure out. If the weakdef field is not already NULL,
4144 then this symbol was already defined by some previous
4145 dynamic object, and we will be using that previous
4146 definition anyhow. */
4147
4148 h->u.weakdef = weaks;
4149 weaks = h;
4150 new_weakdef = TRUE;
4151 }
4152
4153 /* Set the alignment of a common symbol. */
4154 if ((common || bfd_is_com_section (sec))
4155 && h->root.type == bfd_link_hash_common)
4156 {
4157 unsigned int align;
4158
4159 if (common)
4160 align = bfd_log2 (isym->st_value);
4161 else
4162 {
4163 /* The new symbol is a common symbol in a shared object.
4164 We need to get the alignment from the section. */
4165 align = new_sec->alignment_power;
4166 }
4167 if (align > old_alignment)
4168 h->root.u.c.p->alignment_power = align;
4169 else
4170 h->root.u.c.p->alignment_power = old_alignment;
4171 }
4172
4173 if (is_elf_hash_table (htab))
4174 {
4175 /* Set a flag in the hash table entry indicating the type of
4176 reference or definition we just found. A dynamic symbol
4177 is one which is referenced or defined by both a regular
4178 object and a shared object. */
4179 bfd_boolean dynsym = FALSE;
4180
4181 /* Plugin symbols aren't normal. Don't set def_regular or
4182 ref_regular for them, or make them dynamic. */
4183 if ((abfd->flags & BFD_PLUGIN) != 0)
4184 ;
4185 else if (! dynamic)
4186 {
4187 if (! definition)
4188 {
4189 h->ref_regular = 1;
4190 if (bind != STB_WEAK)
4191 h->ref_regular_nonweak = 1;
4192 }
4193 else
4194 {
4195 h->def_regular = 1;
4196 if (h->def_dynamic)
4197 {
4198 h->def_dynamic = 0;
4199 h->ref_dynamic = 1;
4200 }
4201 }
4202
4203 /* If the indirect symbol has been forced local, don't
4204 make the real symbol dynamic. */
4205 if ((h == hi || !hi->forced_local)
4206 && (! info->executable
4207 || h->def_dynamic
4208 || h->ref_dynamic))
4209 dynsym = TRUE;
4210 }
4211 else
4212 {
4213 if (! definition)
4214 {
4215 h->ref_dynamic = 1;
4216 hi->ref_dynamic = 1;
4217 }
4218 else
4219 {
4220 h->def_dynamic = 1;
4221 hi->def_dynamic = 1;
4222 }
4223
4224 /* If the indirect symbol has been forced local, don't
4225 make the real symbol dynamic. */
4226 if ((h == hi || !hi->forced_local)
4227 && (h->def_regular
4228 || h->ref_regular
4229 || (h->u.weakdef != NULL
4230 && ! new_weakdef
4231 && h->u.weakdef->dynindx != -1)))
4232 dynsym = TRUE;
4233 }
4234
4235 /* Check to see if we need to add an indirect symbol for
4236 the default name. */
4237 if (definition
4238 || (!override && h->root.type == bfd_link_hash_common))
4239 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4240 sec, value, &old_bfd, &dynsym))
4241 goto error_free_vers;
4242
4243 /* Check the alignment when a common symbol is involved. This
4244 can change when a common symbol is overridden by a normal
4245 definition or a common symbol is ignored due to the old
4246 normal definition. We need to make sure the maximum
4247 alignment is maintained. */
4248 if ((old_alignment || common)
4249 && h->root.type != bfd_link_hash_common)
4250 {
4251 unsigned int common_align;
4252 unsigned int normal_align;
4253 unsigned int symbol_align;
4254 bfd *normal_bfd;
4255 bfd *common_bfd;
4256
4257 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4258 || h->root.type == bfd_link_hash_defweak);
4259
4260 symbol_align = ffs (h->root.u.def.value) - 1;
4261 if (h->root.u.def.section->owner != NULL
4262 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4263 {
4264 normal_align = h->root.u.def.section->alignment_power;
4265 if (normal_align > symbol_align)
4266 normal_align = symbol_align;
4267 }
4268 else
4269 normal_align = symbol_align;
4270
4271 if (old_alignment)
4272 {
4273 common_align = old_alignment;
4274 common_bfd = old_bfd;
4275 normal_bfd = abfd;
4276 }
4277 else
4278 {
4279 common_align = bfd_log2 (isym->st_value);
4280 common_bfd = abfd;
4281 normal_bfd = old_bfd;
4282 }
4283
4284 if (normal_align < common_align)
4285 {
4286 /* PR binutils/2735 */
4287 if (normal_bfd == NULL)
4288 (*_bfd_error_handler)
4289 (_("Warning: alignment %u of common symbol `%s' in %B is"
4290 " greater than the alignment (%u) of its section %A"),
4291 common_bfd, h->root.u.def.section,
4292 1 << common_align, name, 1 << normal_align);
4293 else
4294 (*_bfd_error_handler)
4295 (_("Warning: alignment %u of symbol `%s' in %B"
4296 " is smaller than %u in %B"),
4297 normal_bfd, common_bfd,
4298 1 << normal_align, name, 1 << common_align);
4299 }
4300 }
4301
4302 /* Remember the symbol size if it isn't undefined. */
4303 if (isym->st_size != 0
4304 && isym->st_shndx != SHN_UNDEF
4305 && (definition || h->size == 0))
4306 {
4307 if (h->size != 0
4308 && h->size != isym->st_size
4309 && ! size_change_ok)
4310 (*_bfd_error_handler)
4311 (_("Warning: size of symbol `%s' changed"
4312 " from %lu in %B to %lu in %B"),
4313 old_bfd, abfd,
4314 name, (unsigned long) h->size,
4315 (unsigned long) isym->st_size);
4316
4317 h->size = isym->st_size;
4318 }
4319
4320 /* If this is a common symbol, then we always want H->SIZE
4321 to be the size of the common symbol. The code just above
4322 won't fix the size if a common symbol becomes larger. We
4323 don't warn about a size change here, because that is
4324 covered by --warn-common. Allow changes between different
4325 function types. */
4326 if (h->root.type == bfd_link_hash_common)
4327 h->size = h->root.u.c.size;
4328
4329 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4330 && ((definition && !new_weak)
4331 || (old_weak && h->root.type == bfd_link_hash_common)
4332 || h->type == STT_NOTYPE))
4333 {
4334 unsigned int type = ELF_ST_TYPE (isym->st_info);
4335
4336 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4337 symbol. */
4338 if (type == STT_GNU_IFUNC
4339 && (abfd->flags & DYNAMIC) != 0)
4340 type = STT_FUNC;
4341
4342 if (h->type != type)
4343 {
4344 if (h->type != STT_NOTYPE && ! type_change_ok)
4345 (*_bfd_error_handler)
4346 (_("Warning: type of symbol `%s' changed"
4347 " from %d to %d in %B"),
4348 abfd, name, h->type, type);
4349
4350 h->type = type;
4351 }
4352 }
4353
4354 /* Merge st_other field. */
4355 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4356
4357 /* We don't want to make debug symbol dynamic. */
4358 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4359 dynsym = FALSE;
4360
4361 /* Nor should we make plugin symbols dynamic. */
4362 if ((abfd->flags & BFD_PLUGIN) != 0)
4363 dynsym = FALSE;
4364
4365 if (definition)
4366 {
4367 h->target_internal = isym->st_target_internal;
4368 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4369 }
4370
4371 if (definition && !dynamic)
4372 {
4373 char *p = strchr (name, ELF_VER_CHR);
4374 if (p != NULL && p[1] != ELF_VER_CHR)
4375 {
4376 /* Queue non-default versions so that .symver x, x@FOO
4377 aliases can be checked. */
4378 if (!nondeflt_vers)
4379 {
4380 amt = ((isymend - isym + 1)
4381 * sizeof (struct elf_link_hash_entry *));
4382 nondeflt_vers =
4383 (struct elf_link_hash_entry **) bfd_malloc (amt);
4384 if (!nondeflt_vers)
4385 goto error_free_vers;
4386 }
4387 nondeflt_vers[nondeflt_vers_cnt++] = h;
4388 }
4389 }
4390
4391 if (dynsym && h->dynindx == -1)
4392 {
4393 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4394 goto error_free_vers;
4395 if (h->u.weakdef != NULL
4396 && ! new_weakdef
4397 && h->u.weakdef->dynindx == -1)
4398 {
4399 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4400 goto error_free_vers;
4401 }
4402 }
4403 else if (dynsym && h->dynindx != -1)
4404 /* If the symbol already has a dynamic index, but
4405 visibility says it should not be visible, turn it into
4406 a local symbol. */
4407 switch (ELF_ST_VISIBILITY (h->other))
4408 {
4409 case STV_INTERNAL:
4410 case STV_HIDDEN:
4411 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4412 dynsym = FALSE;
4413 break;
4414 }
4415
4416 /* Don't add DT_NEEDED for references from the dummy bfd. */
4417 if (!add_needed
4418 && definition
4419 && ((dynsym
4420 && h->ref_regular_nonweak
4421 && (old_bfd == NULL
4422 || (old_bfd->flags & BFD_PLUGIN) == 0))
4423 || (h->ref_dynamic_nonweak
4424 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4425 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4426 {
4427 int ret;
4428 const char *soname = elf_dt_name (abfd);
4429
4430 /* A symbol from a library loaded via DT_NEEDED of some
4431 other library is referenced by a regular object.
4432 Add a DT_NEEDED entry for it. Issue an error if
4433 --no-add-needed is used and the reference was not
4434 a weak one. */
4435 if (old_bfd != NULL
4436 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4437 {
4438 (*_bfd_error_handler)
4439 (_("%B: undefined reference to symbol '%s'"),
4440 old_bfd, name);
4441 bfd_set_error (bfd_error_missing_dso);
4442 goto error_free_vers;
4443 }
4444
4445 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4446 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4447
4448 add_needed = TRUE;
4449 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4450 if (ret < 0)
4451 goto error_free_vers;
4452
4453 BFD_ASSERT (ret == 0);
4454 }
4455 }
4456 }
4457
4458 if (extversym != NULL)
4459 {
4460 free (extversym);
4461 extversym = NULL;
4462 }
4463
4464 if (isymbuf != NULL)
4465 {
4466 free (isymbuf);
4467 isymbuf = NULL;
4468 }
4469
4470 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4471 {
4472 unsigned int i;
4473
4474 /* Restore the symbol table. */
4475 old_ent = (char *) old_tab + tabsize;
4476 memset (elf_sym_hashes (abfd), 0,
4477 extsymcount * sizeof (struct elf_link_hash_entry *));
4478 htab->root.table.table = old_table;
4479 htab->root.table.size = old_size;
4480 htab->root.table.count = old_count;
4481 memcpy (htab->root.table.table, old_tab, tabsize);
4482 htab->root.undefs = old_undefs;
4483 htab->root.undefs_tail = old_undefs_tail;
4484 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4485 for (i = 0; i < htab->root.table.size; i++)
4486 {
4487 struct bfd_hash_entry *p;
4488 struct elf_link_hash_entry *h;
4489 bfd_size_type size;
4490 unsigned int alignment_power;
4491
4492 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4493 {
4494 h = (struct elf_link_hash_entry *) p;
4495 if (h->root.type == bfd_link_hash_warning)
4496 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4497 if (h->dynindx >= old_dynsymcount
4498 && h->dynstr_index < old_dynstr_size)
4499 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4500
4501 /* Preserve the maximum alignment and size for common
4502 symbols even if this dynamic lib isn't on DT_NEEDED
4503 since it can still be loaded at run time by another
4504 dynamic lib. */
4505 if (h->root.type == bfd_link_hash_common)
4506 {
4507 size = h->root.u.c.size;
4508 alignment_power = h->root.u.c.p->alignment_power;
4509 }
4510 else
4511 {
4512 size = 0;
4513 alignment_power = 0;
4514 }
4515 memcpy (p, old_ent, htab->root.table.entsize);
4516 old_ent = (char *) old_ent + htab->root.table.entsize;
4517 h = (struct elf_link_hash_entry *) p;
4518 if (h->root.type == bfd_link_hash_warning)
4519 {
4520 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4521 old_ent = (char *) old_ent + htab->root.table.entsize;
4522 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4523 }
4524 if (h->root.type == bfd_link_hash_common)
4525 {
4526 if (size > h->root.u.c.size)
4527 h->root.u.c.size = size;
4528 if (alignment_power > h->root.u.c.p->alignment_power)
4529 h->root.u.c.p->alignment_power = alignment_power;
4530 }
4531 }
4532 }
4533
4534 /* Make a special call to the linker "notice" function to
4535 tell it that symbols added for crefs may need to be removed. */
4536 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4537 goto error_free_vers;
4538
4539 free (old_tab);
4540 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4541 alloc_mark);
4542 if (nondeflt_vers != NULL)
4543 free (nondeflt_vers);
4544 return TRUE;
4545 }
4546
4547 if (old_tab != NULL)
4548 {
4549 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4550 goto error_free_vers;
4551 free (old_tab);
4552 old_tab = NULL;
4553 }
4554
4555 /* Now that all the symbols from this input file are created, handle
4556 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4557 if (nondeflt_vers != NULL)
4558 {
4559 bfd_size_type cnt, symidx;
4560
4561 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4562 {
4563 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4564 char *shortname, *p;
4565
4566 p = strchr (h->root.root.string, ELF_VER_CHR);
4567 if (p == NULL
4568 || (h->root.type != bfd_link_hash_defined
4569 && h->root.type != bfd_link_hash_defweak))
4570 continue;
4571
4572 amt = p - h->root.root.string;
4573 shortname = (char *) bfd_malloc (amt + 1);
4574 if (!shortname)
4575 goto error_free_vers;
4576 memcpy (shortname, h->root.root.string, amt);
4577 shortname[amt] = '\0';
4578
4579 hi = (struct elf_link_hash_entry *)
4580 bfd_link_hash_lookup (&htab->root, shortname,
4581 FALSE, FALSE, FALSE);
4582 if (hi != NULL
4583 && hi->root.type == h->root.type
4584 && hi->root.u.def.value == h->root.u.def.value
4585 && hi->root.u.def.section == h->root.u.def.section)
4586 {
4587 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4588 hi->root.type = bfd_link_hash_indirect;
4589 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4590 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4591 sym_hash = elf_sym_hashes (abfd);
4592 if (sym_hash)
4593 for (symidx = 0; symidx < extsymcount; ++symidx)
4594 if (sym_hash[symidx] == hi)
4595 {
4596 sym_hash[symidx] = h;
4597 break;
4598 }
4599 }
4600 free (shortname);
4601 }
4602 free (nondeflt_vers);
4603 nondeflt_vers = NULL;
4604 }
4605
4606 /* Now set the weakdefs field correctly for all the weak defined
4607 symbols we found. The only way to do this is to search all the
4608 symbols. Since we only need the information for non functions in
4609 dynamic objects, that's the only time we actually put anything on
4610 the list WEAKS. We need this information so that if a regular
4611 object refers to a symbol defined weakly in a dynamic object, the
4612 real symbol in the dynamic object is also put in the dynamic
4613 symbols; we also must arrange for both symbols to point to the
4614 same memory location. We could handle the general case of symbol
4615 aliasing, but a general symbol alias can only be generated in
4616 assembler code, handling it correctly would be very time
4617 consuming, and other ELF linkers don't handle general aliasing
4618 either. */
4619 if (weaks != NULL)
4620 {
4621 struct elf_link_hash_entry **hpp;
4622 struct elf_link_hash_entry **hppend;
4623 struct elf_link_hash_entry **sorted_sym_hash;
4624 struct elf_link_hash_entry *h;
4625 size_t sym_count;
4626
4627 /* Since we have to search the whole symbol list for each weak
4628 defined symbol, search time for N weak defined symbols will be
4629 O(N^2). Binary search will cut it down to O(NlogN). */
4630 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4631 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4632 if (sorted_sym_hash == NULL)
4633 goto error_return;
4634 sym_hash = sorted_sym_hash;
4635 hpp = elf_sym_hashes (abfd);
4636 hppend = hpp + extsymcount;
4637 sym_count = 0;
4638 for (; hpp < hppend; hpp++)
4639 {
4640 h = *hpp;
4641 if (h != NULL
4642 && h->root.type == bfd_link_hash_defined
4643 && !bed->is_function_type (h->type))
4644 {
4645 *sym_hash = h;
4646 sym_hash++;
4647 sym_count++;
4648 }
4649 }
4650
4651 qsort (sorted_sym_hash, sym_count,
4652 sizeof (struct elf_link_hash_entry *),
4653 elf_sort_symbol);
4654
4655 while (weaks != NULL)
4656 {
4657 struct elf_link_hash_entry *hlook;
4658 asection *slook;
4659 bfd_vma vlook;
4660 size_t i, j, idx = 0;
4661
4662 hlook = weaks;
4663 weaks = hlook->u.weakdef;
4664 hlook->u.weakdef = NULL;
4665
4666 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4667 || hlook->root.type == bfd_link_hash_defweak
4668 || hlook->root.type == bfd_link_hash_common
4669 || hlook->root.type == bfd_link_hash_indirect);
4670 slook = hlook->root.u.def.section;
4671 vlook = hlook->root.u.def.value;
4672
4673 i = 0;
4674 j = sym_count;
4675 while (i != j)
4676 {
4677 bfd_signed_vma vdiff;
4678 idx = (i + j) / 2;
4679 h = sorted_sym_hash[idx];
4680 vdiff = vlook - h->root.u.def.value;
4681 if (vdiff < 0)
4682 j = idx;
4683 else if (vdiff > 0)
4684 i = idx + 1;
4685 else
4686 {
4687 long sdiff = slook->id - h->root.u.def.section->id;
4688 if (sdiff < 0)
4689 j = idx;
4690 else if (sdiff > 0)
4691 i = idx + 1;
4692 else
4693 break;
4694 }
4695 }
4696
4697 /* We didn't find a value/section match. */
4698 if (i == j)
4699 continue;
4700
4701 /* With multiple aliases, or when the weak symbol is already
4702 strongly defined, we have multiple matching symbols and
4703 the binary search above may land on any of them. Step
4704 one past the matching symbol(s). */
4705 while (++idx != j)
4706 {
4707 h = sorted_sym_hash[idx];
4708 if (h->root.u.def.section != slook
4709 || h->root.u.def.value != vlook)
4710 break;
4711 }
4712
4713 /* Now look back over the aliases. Since we sorted by size
4714 as well as value and section, we'll choose the one with
4715 the largest size. */
4716 while (idx-- != i)
4717 {
4718 h = sorted_sym_hash[idx];
4719
4720 /* Stop if value or section doesn't match. */
4721 if (h->root.u.def.section != slook
4722 || h->root.u.def.value != vlook)
4723 break;
4724 else if (h != hlook)
4725 {
4726 hlook->u.weakdef = h;
4727
4728 /* If the weak definition is in the list of dynamic
4729 symbols, make sure the real definition is put
4730 there as well. */
4731 if (hlook->dynindx != -1 && h->dynindx == -1)
4732 {
4733 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4734 {
4735 err_free_sym_hash:
4736 free (sorted_sym_hash);
4737 goto error_return;
4738 }
4739 }
4740
4741 /* If the real definition is in the list of dynamic
4742 symbols, make sure the weak definition is put
4743 there as well. If we don't do this, then the
4744 dynamic loader might not merge the entries for the
4745 real definition and the weak definition. */
4746 if (h->dynindx != -1 && hlook->dynindx == -1)
4747 {
4748 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4749 goto err_free_sym_hash;
4750 }
4751 break;
4752 }
4753 }
4754 }
4755
4756 free (sorted_sym_hash);
4757 }
4758
4759 if (bed->check_directives
4760 && !(*bed->check_directives) (abfd, info))
4761 return FALSE;
4762
4763 /* If this object is the same format as the output object, and it is
4764 not a shared library, then let the backend look through the
4765 relocs.
4766
4767 This is required to build global offset table entries and to
4768 arrange for dynamic relocs. It is not required for the
4769 particular common case of linking non PIC code, even when linking
4770 against shared libraries, but unfortunately there is no way of
4771 knowing whether an object file has been compiled PIC or not.
4772 Looking through the relocs is not particularly time consuming.
4773 The problem is that we must either (1) keep the relocs in memory,
4774 which causes the linker to require additional runtime memory or
4775 (2) read the relocs twice from the input file, which wastes time.
4776 This would be a good case for using mmap.
4777
4778 I have no idea how to handle linking PIC code into a file of a
4779 different format. It probably can't be done. */
4780 if (! dynamic
4781 && is_elf_hash_table (htab)
4782 && bed->check_relocs != NULL
4783 && elf_object_id (abfd) == elf_hash_table_id (htab)
4784 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4785 {
4786 asection *o;
4787
4788 for (o = abfd->sections; o != NULL; o = o->next)
4789 {
4790 Elf_Internal_Rela *internal_relocs;
4791 bfd_boolean ok;
4792
4793 if ((o->flags & SEC_RELOC) == 0
4794 || o->reloc_count == 0
4795 || ((info->strip == strip_all || info->strip == strip_debugger)
4796 && (o->flags & SEC_DEBUGGING) != 0)
4797 || bfd_is_abs_section (o->output_section))
4798 continue;
4799
4800 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4801 info->keep_memory);
4802 if (internal_relocs == NULL)
4803 goto error_return;
4804
4805 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4806
4807 if (elf_section_data (o)->relocs != internal_relocs)
4808 free (internal_relocs);
4809
4810 if (! ok)
4811 goto error_return;
4812 }
4813 }
4814
4815 /* If this is a non-traditional link, try to optimize the handling
4816 of the .stab/.stabstr sections. */
4817 if (! dynamic
4818 && ! info->traditional_format
4819 && is_elf_hash_table (htab)
4820 && (info->strip != strip_all && info->strip != strip_debugger))
4821 {
4822 asection *stabstr;
4823
4824 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4825 if (stabstr != NULL)
4826 {
4827 bfd_size_type string_offset = 0;
4828 asection *stab;
4829
4830 for (stab = abfd->sections; stab; stab = stab->next)
4831 if (CONST_STRNEQ (stab->name, ".stab")
4832 && (!stab->name[5] ||
4833 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4834 && (stab->flags & SEC_MERGE) == 0
4835 && !bfd_is_abs_section (stab->output_section))
4836 {
4837 struct bfd_elf_section_data *secdata;
4838
4839 secdata = elf_section_data (stab);
4840 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4841 stabstr, &secdata->sec_info,
4842 &string_offset))
4843 goto error_return;
4844 if (secdata->sec_info)
4845 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4846 }
4847 }
4848 }
4849
4850 if (is_elf_hash_table (htab) && add_needed)
4851 {
4852 /* Add this bfd to the loaded list. */
4853 struct elf_link_loaded_list *n;
4854
4855 n = (struct elf_link_loaded_list *)
4856 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4857 if (n == NULL)
4858 goto error_return;
4859 n->abfd = abfd;
4860 n->next = htab->loaded;
4861 htab->loaded = n;
4862 }
4863
4864 return TRUE;
4865
4866 error_free_vers:
4867 if (old_tab != NULL)
4868 free (old_tab);
4869 if (nondeflt_vers != NULL)
4870 free (nondeflt_vers);
4871 if (extversym != NULL)
4872 free (extversym);
4873 error_free_sym:
4874 if (isymbuf != NULL)
4875 free (isymbuf);
4876 error_return:
4877 return FALSE;
4878 }
4879
4880 /* Return the linker hash table entry of a symbol that might be
4881 satisfied by an archive symbol. Return -1 on error. */
4882
4883 struct elf_link_hash_entry *
4884 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4885 struct bfd_link_info *info,
4886 const char *name)
4887 {
4888 struct elf_link_hash_entry *h;
4889 char *p, *copy;
4890 size_t len, first;
4891
4892 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4893 if (h != NULL)
4894 return h;
4895
4896 /* If this is a default version (the name contains @@), look up the
4897 symbol again with only one `@' as well as without the version.
4898 The effect is that references to the symbol with and without the
4899 version will be matched by the default symbol in the archive. */
4900
4901 p = strchr (name, ELF_VER_CHR);
4902 if (p == NULL || p[1] != ELF_VER_CHR)
4903 return h;
4904
4905 /* First check with only one `@'. */
4906 len = strlen (name);
4907 copy = (char *) bfd_alloc (abfd, len);
4908 if (copy == NULL)
4909 return (struct elf_link_hash_entry *) 0 - 1;
4910
4911 first = p - name + 1;
4912 memcpy (copy, name, first);
4913 memcpy (copy + first, name + first + 1, len - first);
4914
4915 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4916 if (h == NULL)
4917 {
4918 /* We also need to check references to the symbol without the
4919 version. */
4920 copy[first - 1] = '\0';
4921 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4922 FALSE, FALSE, TRUE);
4923 }
4924
4925 bfd_release (abfd, copy);
4926 return h;
4927 }
4928
4929 /* Add symbols from an ELF archive file to the linker hash table. We
4930 don't use _bfd_generic_link_add_archive_symbols because of a
4931 problem which arises on UnixWare. The UnixWare libc.so is an
4932 archive which includes an entry libc.so.1 which defines a bunch of
4933 symbols. The libc.so archive also includes a number of other
4934 object files, which also define symbols, some of which are the same
4935 as those defined in libc.so.1. Correct linking requires that we
4936 consider each object file in turn, and include it if it defines any
4937 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4938 this; it looks through the list of undefined symbols, and includes
4939 any object file which defines them. When this algorithm is used on
4940 UnixWare, it winds up pulling in libc.so.1 early and defining a
4941 bunch of symbols. This means that some of the other objects in the
4942 archive are not included in the link, which is incorrect since they
4943 precede libc.so.1 in the archive.
4944
4945 Fortunately, ELF archive handling is simpler than that done by
4946 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4947 oddities. In ELF, if we find a symbol in the archive map, and the
4948 symbol is currently undefined, we know that we must pull in that
4949 object file.
4950
4951 Unfortunately, we do have to make multiple passes over the symbol
4952 table until nothing further is resolved. */
4953
4954 static bfd_boolean
4955 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4956 {
4957 symindex c;
4958 bfd_boolean *defined = NULL;
4959 bfd_boolean *included = NULL;
4960 carsym *symdefs;
4961 bfd_boolean loop;
4962 bfd_size_type amt;
4963 const struct elf_backend_data *bed;
4964 struct elf_link_hash_entry * (*archive_symbol_lookup)
4965 (bfd *, struct bfd_link_info *, const char *);
4966
4967 if (! bfd_has_map (abfd))
4968 {
4969 /* An empty archive is a special case. */
4970 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4971 return TRUE;
4972 bfd_set_error (bfd_error_no_armap);
4973 return FALSE;
4974 }
4975
4976 /* Keep track of all symbols we know to be already defined, and all
4977 files we know to be already included. This is to speed up the
4978 second and subsequent passes. */
4979 c = bfd_ardata (abfd)->symdef_count;
4980 if (c == 0)
4981 return TRUE;
4982 amt = c;
4983 amt *= sizeof (bfd_boolean);
4984 defined = (bfd_boolean *) bfd_zmalloc (amt);
4985 included = (bfd_boolean *) bfd_zmalloc (amt);
4986 if (defined == NULL || included == NULL)
4987 goto error_return;
4988
4989 symdefs = bfd_ardata (abfd)->symdefs;
4990 bed = get_elf_backend_data (abfd);
4991 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4992
4993 do
4994 {
4995 file_ptr last;
4996 symindex i;
4997 carsym *symdef;
4998 carsym *symdefend;
4999
5000 loop = FALSE;
5001 last = -1;
5002
5003 symdef = symdefs;
5004 symdefend = symdef + c;
5005 for (i = 0; symdef < symdefend; symdef++, i++)
5006 {
5007 struct elf_link_hash_entry *h;
5008 bfd *element;
5009 struct bfd_link_hash_entry *undefs_tail;
5010 symindex mark;
5011
5012 if (defined[i] || included[i])
5013 continue;
5014 if (symdef->file_offset == last)
5015 {
5016 included[i] = TRUE;
5017 continue;
5018 }
5019
5020 h = archive_symbol_lookup (abfd, info, symdef->name);
5021 if (h == (struct elf_link_hash_entry *) 0 - 1)
5022 goto error_return;
5023
5024 if (h == NULL)
5025 continue;
5026
5027 if (h->root.type == bfd_link_hash_common)
5028 {
5029 /* We currently have a common symbol. The archive map contains
5030 a reference to this symbol, so we may want to include it. We
5031 only want to include it however, if this archive element
5032 contains a definition of the symbol, not just another common
5033 declaration of it.
5034
5035 Unfortunately some archivers (including GNU ar) will put
5036 declarations of common symbols into their archive maps, as
5037 well as real definitions, so we cannot just go by the archive
5038 map alone. Instead we must read in the element's symbol
5039 table and check that to see what kind of symbol definition
5040 this is. */
5041 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5042 continue;
5043 }
5044 else if (h->root.type != bfd_link_hash_undefined)
5045 {
5046 if (h->root.type != bfd_link_hash_undefweak)
5047 defined[i] = TRUE;
5048 continue;
5049 }
5050
5051 /* We need to include this archive member. */
5052 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5053 if (element == NULL)
5054 goto error_return;
5055
5056 if (! bfd_check_format (element, bfd_object))
5057 goto error_return;
5058
5059 /* Doublecheck that we have not included this object
5060 already--it should be impossible, but there may be
5061 something wrong with the archive. */
5062 if (element->archive_pass != 0)
5063 {
5064 bfd_set_error (bfd_error_bad_value);
5065 goto error_return;
5066 }
5067 element->archive_pass = 1;
5068
5069 undefs_tail = info->hash->undefs_tail;
5070
5071 if (!(*info->callbacks
5072 ->add_archive_element) (info, element, symdef->name, &element))
5073 goto error_return;
5074 if (!bfd_link_add_symbols (element, info))
5075 goto error_return;
5076
5077 /* If there are any new undefined symbols, we need to make
5078 another pass through the archive in order to see whether
5079 they can be defined. FIXME: This isn't perfect, because
5080 common symbols wind up on undefs_tail and because an
5081 undefined symbol which is defined later on in this pass
5082 does not require another pass. This isn't a bug, but it
5083 does make the code less efficient than it could be. */
5084 if (undefs_tail != info->hash->undefs_tail)
5085 loop = TRUE;
5086
5087 /* Look backward to mark all symbols from this object file
5088 which we have already seen in this pass. */
5089 mark = i;
5090 do
5091 {
5092 included[mark] = TRUE;
5093 if (mark == 0)
5094 break;
5095 --mark;
5096 }
5097 while (symdefs[mark].file_offset == symdef->file_offset);
5098
5099 /* We mark subsequent symbols from this object file as we go
5100 on through the loop. */
5101 last = symdef->file_offset;
5102 }
5103 }
5104 while (loop);
5105
5106 free (defined);
5107 free (included);
5108
5109 return TRUE;
5110
5111 error_return:
5112 if (defined != NULL)
5113 free (defined);
5114 if (included != NULL)
5115 free (included);
5116 return FALSE;
5117 }
5118
5119 /* Given an ELF BFD, add symbols to the global hash table as
5120 appropriate. */
5121
5122 bfd_boolean
5123 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5124 {
5125 switch (bfd_get_format (abfd))
5126 {
5127 case bfd_object:
5128 return elf_link_add_object_symbols (abfd, info);
5129 case bfd_archive:
5130 return elf_link_add_archive_symbols (abfd, info);
5131 default:
5132 bfd_set_error (bfd_error_wrong_format);
5133 return FALSE;
5134 }
5135 }
5136 \f
5137 struct hash_codes_info
5138 {
5139 unsigned long *hashcodes;
5140 bfd_boolean error;
5141 };
5142
5143 /* This function will be called though elf_link_hash_traverse to store
5144 all hash value of the exported symbols in an array. */
5145
5146 static bfd_boolean
5147 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5148 {
5149 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5150 const char *name;
5151 char *p;
5152 unsigned long ha;
5153 char *alc = NULL;
5154
5155 /* Ignore indirect symbols. These are added by the versioning code. */
5156 if (h->dynindx == -1)
5157 return TRUE;
5158
5159 name = h->root.root.string;
5160 p = strchr (name, ELF_VER_CHR);
5161 if (p != NULL)
5162 {
5163 alc = (char *) bfd_malloc (p - name + 1);
5164 if (alc == NULL)
5165 {
5166 inf->error = TRUE;
5167 return FALSE;
5168 }
5169 memcpy (alc, name, p - name);
5170 alc[p - name] = '\0';
5171 name = alc;
5172 }
5173
5174 /* Compute the hash value. */
5175 ha = bfd_elf_hash (name);
5176
5177 /* Store the found hash value in the array given as the argument. */
5178 *(inf->hashcodes)++ = ha;
5179
5180 /* And store it in the struct so that we can put it in the hash table
5181 later. */
5182 h->u.elf_hash_value = ha;
5183
5184 if (alc != NULL)
5185 free (alc);
5186
5187 return TRUE;
5188 }
5189
5190 struct collect_gnu_hash_codes
5191 {
5192 bfd *output_bfd;
5193 const struct elf_backend_data *bed;
5194 unsigned long int nsyms;
5195 unsigned long int maskbits;
5196 unsigned long int *hashcodes;
5197 unsigned long int *hashval;
5198 unsigned long int *indx;
5199 unsigned long int *counts;
5200 bfd_vma *bitmask;
5201 bfd_byte *contents;
5202 long int min_dynindx;
5203 unsigned long int bucketcount;
5204 unsigned long int symindx;
5205 long int local_indx;
5206 long int shift1, shift2;
5207 unsigned long int mask;
5208 bfd_boolean error;
5209 };
5210
5211 /* This function will be called though elf_link_hash_traverse to store
5212 all hash value of the exported symbols in an array. */
5213
5214 static bfd_boolean
5215 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5216 {
5217 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5218 const char *name;
5219 char *p;
5220 unsigned long ha;
5221 char *alc = NULL;
5222
5223 /* Ignore indirect symbols. These are added by the versioning code. */
5224 if (h->dynindx == -1)
5225 return TRUE;
5226
5227 /* Ignore also local symbols and undefined symbols. */
5228 if (! (*s->bed->elf_hash_symbol) (h))
5229 return TRUE;
5230
5231 name = h->root.root.string;
5232 p = strchr (name, ELF_VER_CHR);
5233 if (p != NULL)
5234 {
5235 alc = (char *) bfd_malloc (p - name + 1);
5236 if (alc == NULL)
5237 {
5238 s->error = TRUE;
5239 return FALSE;
5240 }
5241 memcpy (alc, name, p - name);
5242 alc[p - name] = '\0';
5243 name = alc;
5244 }
5245
5246 /* Compute the hash value. */
5247 ha = bfd_elf_gnu_hash (name);
5248
5249 /* Store the found hash value in the array for compute_bucket_count,
5250 and also for .dynsym reordering purposes. */
5251 s->hashcodes[s->nsyms] = ha;
5252 s->hashval[h->dynindx] = ha;
5253 ++s->nsyms;
5254 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5255 s->min_dynindx = h->dynindx;
5256
5257 if (alc != NULL)
5258 free (alc);
5259
5260 return TRUE;
5261 }
5262
5263 /* This function will be called though elf_link_hash_traverse to do
5264 final dynaminc symbol renumbering. */
5265
5266 static bfd_boolean
5267 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5268 {
5269 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5270 unsigned long int bucket;
5271 unsigned long int val;
5272
5273 /* Ignore indirect symbols. */
5274 if (h->dynindx == -1)
5275 return TRUE;
5276
5277 /* Ignore also local symbols and undefined symbols. */
5278 if (! (*s->bed->elf_hash_symbol) (h))
5279 {
5280 if (h->dynindx >= s->min_dynindx)
5281 h->dynindx = s->local_indx++;
5282 return TRUE;
5283 }
5284
5285 bucket = s->hashval[h->dynindx] % s->bucketcount;
5286 val = (s->hashval[h->dynindx] >> s->shift1)
5287 & ((s->maskbits >> s->shift1) - 1);
5288 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5289 s->bitmask[val]
5290 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5291 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5292 if (s->counts[bucket] == 1)
5293 /* Last element terminates the chain. */
5294 val |= 1;
5295 bfd_put_32 (s->output_bfd, val,
5296 s->contents + (s->indx[bucket] - s->symindx) * 4);
5297 --s->counts[bucket];
5298 h->dynindx = s->indx[bucket]++;
5299 return TRUE;
5300 }
5301
5302 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5303
5304 bfd_boolean
5305 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5306 {
5307 return !(h->forced_local
5308 || h->root.type == bfd_link_hash_undefined
5309 || h->root.type == bfd_link_hash_undefweak
5310 || ((h->root.type == bfd_link_hash_defined
5311 || h->root.type == bfd_link_hash_defweak)
5312 && h->root.u.def.section->output_section == NULL));
5313 }
5314
5315 /* Array used to determine the number of hash table buckets to use
5316 based on the number of symbols there are. If there are fewer than
5317 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5318 fewer than 37 we use 17 buckets, and so forth. We never use more
5319 than 32771 buckets. */
5320
5321 static const size_t elf_buckets[] =
5322 {
5323 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5324 16411, 32771, 0
5325 };
5326
5327 /* Compute bucket count for hashing table. We do not use a static set
5328 of possible tables sizes anymore. Instead we determine for all
5329 possible reasonable sizes of the table the outcome (i.e., the
5330 number of collisions etc) and choose the best solution. The
5331 weighting functions are not too simple to allow the table to grow
5332 without bounds. Instead one of the weighting factors is the size.
5333 Therefore the result is always a good payoff between few collisions
5334 (= short chain lengths) and table size. */
5335 static size_t
5336 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5337 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5338 unsigned long int nsyms,
5339 int gnu_hash)
5340 {
5341 size_t best_size = 0;
5342 unsigned long int i;
5343
5344 /* We have a problem here. The following code to optimize the table
5345 size requires an integer type with more the 32 bits. If
5346 BFD_HOST_U_64_BIT is set we know about such a type. */
5347 #ifdef BFD_HOST_U_64_BIT
5348 if (info->optimize)
5349 {
5350 size_t minsize;
5351 size_t maxsize;
5352 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5353 bfd *dynobj = elf_hash_table (info)->dynobj;
5354 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5355 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5356 unsigned long int *counts;
5357 bfd_size_type amt;
5358 unsigned int no_improvement_count = 0;
5359
5360 /* Possible optimization parameters: if we have NSYMS symbols we say
5361 that the hashing table must at least have NSYMS/4 and at most
5362 2*NSYMS buckets. */
5363 minsize = nsyms / 4;
5364 if (minsize == 0)
5365 minsize = 1;
5366 best_size = maxsize = nsyms * 2;
5367 if (gnu_hash)
5368 {
5369 if (minsize < 2)
5370 minsize = 2;
5371 if ((best_size & 31) == 0)
5372 ++best_size;
5373 }
5374
5375 /* Create array where we count the collisions in. We must use bfd_malloc
5376 since the size could be large. */
5377 amt = maxsize;
5378 amt *= sizeof (unsigned long int);
5379 counts = (unsigned long int *) bfd_malloc (amt);
5380 if (counts == NULL)
5381 return 0;
5382
5383 /* Compute the "optimal" size for the hash table. The criteria is a
5384 minimal chain length. The minor criteria is (of course) the size
5385 of the table. */
5386 for (i = minsize; i < maxsize; ++i)
5387 {
5388 /* Walk through the array of hashcodes and count the collisions. */
5389 BFD_HOST_U_64_BIT max;
5390 unsigned long int j;
5391 unsigned long int fact;
5392
5393 if (gnu_hash && (i & 31) == 0)
5394 continue;
5395
5396 memset (counts, '\0', i * sizeof (unsigned long int));
5397
5398 /* Determine how often each hash bucket is used. */
5399 for (j = 0; j < nsyms; ++j)
5400 ++counts[hashcodes[j] % i];
5401
5402 /* For the weight function we need some information about the
5403 pagesize on the target. This is information need not be 100%
5404 accurate. Since this information is not available (so far) we
5405 define it here to a reasonable default value. If it is crucial
5406 to have a better value some day simply define this value. */
5407 # ifndef BFD_TARGET_PAGESIZE
5408 # define BFD_TARGET_PAGESIZE (4096)
5409 # endif
5410
5411 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5412 and the chains. */
5413 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5414
5415 # if 1
5416 /* Variant 1: optimize for short chains. We add the squares
5417 of all the chain lengths (which favors many small chain
5418 over a few long chains). */
5419 for (j = 0; j < i; ++j)
5420 max += counts[j] * counts[j];
5421
5422 /* This adds penalties for the overall size of the table. */
5423 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5424 max *= fact * fact;
5425 # else
5426 /* Variant 2: Optimize a lot more for small table. Here we
5427 also add squares of the size but we also add penalties for
5428 empty slots (the +1 term). */
5429 for (j = 0; j < i; ++j)
5430 max += (1 + counts[j]) * (1 + counts[j]);
5431
5432 /* The overall size of the table is considered, but not as
5433 strong as in variant 1, where it is squared. */
5434 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5435 max *= fact;
5436 # endif
5437
5438 /* Compare with current best results. */
5439 if (max < best_chlen)
5440 {
5441 best_chlen = max;
5442 best_size = i;
5443 no_improvement_count = 0;
5444 }
5445 /* PR 11843: Avoid futile long searches for the best bucket size
5446 when there are a large number of symbols. */
5447 else if (++no_improvement_count == 100)
5448 break;
5449 }
5450
5451 free (counts);
5452 }
5453 else
5454 #endif /* defined (BFD_HOST_U_64_BIT) */
5455 {
5456 /* This is the fallback solution if no 64bit type is available or if we
5457 are not supposed to spend much time on optimizations. We select the
5458 bucket count using a fixed set of numbers. */
5459 for (i = 0; elf_buckets[i] != 0; i++)
5460 {
5461 best_size = elf_buckets[i];
5462 if (nsyms < elf_buckets[i + 1])
5463 break;
5464 }
5465 if (gnu_hash && best_size < 2)
5466 best_size = 2;
5467 }
5468
5469 return best_size;
5470 }
5471
5472 /* Size any SHT_GROUP section for ld -r. */
5473
5474 bfd_boolean
5475 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5476 {
5477 bfd *ibfd;
5478
5479 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5480 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5481 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5482 return FALSE;
5483 return TRUE;
5484 }
5485
5486 /* Set a default stack segment size. The value in INFO wins. If it
5487 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5488 undefined it is initialized. */
5489
5490 bfd_boolean
5491 bfd_elf_stack_segment_size (bfd *output_bfd,
5492 struct bfd_link_info *info,
5493 const char *legacy_symbol,
5494 bfd_vma default_size)
5495 {
5496 struct elf_link_hash_entry *h = NULL;
5497
5498 /* Look for legacy symbol. */
5499 if (legacy_symbol)
5500 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5501 FALSE, FALSE, FALSE);
5502 if (h && (h->root.type == bfd_link_hash_defined
5503 || h->root.type == bfd_link_hash_defweak)
5504 && h->def_regular
5505 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5506 {
5507 /* The symbol has no type if specified on the command line. */
5508 h->type = STT_OBJECT;
5509 if (info->stacksize)
5510 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5511 output_bfd, legacy_symbol);
5512 else if (h->root.u.def.section != bfd_abs_section_ptr)
5513 (*_bfd_error_handler) (_("%B: %s not absolute"),
5514 output_bfd, legacy_symbol);
5515 else
5516 info->stacksize = h->root.u.def.value;
5517 }
5518
5519 if (!info->stacksize)
5520 /* If the user didn't set a size, or explicitly inhibit the
5521 size, set it now. */
5522 info->stacksize = default_size;
5523
5524 /* Provide the legacy symbol, if it is referenced. */
5525 if (h && (h->root.type == bfd_link_hash_undefined
5526 || h->root.type == bfd_link_hash_undefweak))
5527 {
5528 struct bfd_link_hash_entry *bh = NULL;
5529
5530 if (!(_bfd_generic_link_add_one_symbol
5531 (info, output_bfd, legacy_symbol,
5532 BSF_GLOBAL, bfd_abs_section_ptr,
5533 info->stacksize >= 0 ? info->stacksize : 0,
5534 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5535 return FALSE;
5536
5537 h = (struct elf_link_hash_entry *) bh;
5538 h->def_regular = 1;
5539 h->type = STT_OBJECT;
5540 }
5541
5542 return TRUE;
5543 }
5544
5545 /* Set up the sizes and contents of the ELF dynamic sections. This is
5546 called by the ELF linker emulation before_allocation routine. We
5547 must set the sizes of the sections before the linker sets the
5548 addresses of the various sections. */
5549
5550 bfd_boolean
5551 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5552 const char *soname,
5553 const char *rpath,
5554 const char *filter_shlib,
5555 const char *audit,
5556 const char *depaudit,
5557 const char * const *auxiliary_filters,
5558 struct bfd_link_info *info,
5559 asection **sinterpptr)
5560 {
5561 bfd_size_type soname_indx;
5562 bfd *dynobj;
5563 const struct elf_backend_data *bed;
5564 struct elf_info_failed asvinfo;
5565
5566 *sinterpptr = NULL;
5567
5568 soname_indx = (bfd_size_type) -1;
5569
5570 if (!is_elf_hash_table (info->hash))
5571 return TRUE;
5572
5573 bed = get_elf_backend_data (output_bfd);
5574
5575 /* Any syms created from now on start with -1 in
5576 got.refcount/offset and plt.refcount/offset. */
5577 elf_hash_table (info)->init_got_refcount
5578 = elf_hash_table (info)->init_got_offset;
5579 elf_hash_table (info)->init_plt_refcount
5580 = elf_hash_table (info)->init_plt_offset;
5581
5582 if (info->relocatable
5583 && !_bfd_elf_size_group_sections (info))
5584 return FALSE;
5585
5586 /* The backend may have to create some sections regardless of whether
5587 we're dynamic or not. */
5588 if (bed->elf_backend_always_size_sections
5589 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5590 return FALSE;
5591
5592 /* Determine any GNU_STACK segment requirements, after the backend
5593 has had a chance to set a default segment size. */
5594 if (info->execstack)
5595 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5596 else if (info->noexecstack)
5597 elf_stack_flags (output_bfd) = PF_R | PF_W;
5598 else
5599 {
5600 bfd *inputobj;
5601 asection *notesec = NULL;
5602 int exec = 0;
5603
5604 for (inputobj = info->input_bfds;
5605 inputobj;
5606 inputobj = inputobj->link_next)
5607 {
5608 asection *s;
5609
5610 if (inputobj->flags
5611 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5612 continue;
5613 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5614 if (s)
5615 {
5616 if (s->flags & SEC_CODE)
5617 exec = PF_X;
5618 notesec = s;
5619 }
5620 else if (bed->default_execstack)
5621 exec = PF_X;
5622 }
5623 if (notesec || info->stacksize > 0)
5624 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5625 if (notesec && exec && info->relocatable
5626 && notesec->output_section != bfd_abs_section_ptr)
5627 notesec->output_section->flags |= SEC_CODE;
5628 }
5629
5630 dynobj = elf_hash_table (info)->dynobj;
5631
5632 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5633 {
5634 struct elf_info_failed eif;
5635 struct elf_link_hash_entry *h;
5636 asection *dynstr;
5637 struct bfd_elf_version_tree *t;
5638 struct bfd_elf_version_expr *d;
5639 asection *s;
5640 bfd_boolean all_defined;
5641
5642 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5643 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5644
5645 if (soname != NULL)
5646 {
5647 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5648 soname, TRUE);
5649 if (soname_indx == (bfd_size_type) -1
5650 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5651 return FALSE;
5652 }
5653
5654 if (info->symbolic)
5655 {
5656 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5657 return FALSE;
5658 info->flags |= DF_SYMBOLIC;
5659 }
5660
5661 if (rpath != NULL)
5662 {
5663 bfd_size_type indx;
5664 bfd_vma tag;
5665
5666 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5667 TRUE);
5668 if (indx == (bfd_size_type) -1)
5669 return FALSE;
5670
5671 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5672 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5673 return FALSE;
5674 }
5675
5676 if (filter_shlib != NULL)
5677 {
5678 bfd_size_type indx;
5679
5680 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5681 filter_shlib, TRUE);
5682 if (indx == (bfd_size_type) -1
5683 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5684 return FALSE;
5685 }
5686
5687 if (auxiliary_filters != NULL)
5688 {
5689 const char * const *p;
5690
5691 for (p = auxiliary_filters; *p != NULL; p++)
5692 {
5693 bfd_size_type indx;
5694
5695 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5696 *p, TRUE);
5697 if (indx == (bfd_size_type) -1
5698 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5699 return FALSE;
5700 }
5701 }
5702
5703 if (audit != NULL)
5704 {
5705 bfd_size_type indx;
5706
5707 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5708 TRUE);
5709 if (indx == (bfd_size_type) -1
5710 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5711 return FALSE;
5712 }
5713
5714 if (depaudit != NULL)
5715 {
5716 bfd_size_type indx;
5717
5718 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5719 TRUE);
5720 if (indx == (bfd_size_type) -1
5721 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5722 return FALSE;
5723 }
5724
5725 eif.info = info;
5726 eif.failed = FALSE;
5727
5728 /* If we are supposed to export all symbols into the dynamic symbol
5729 table (this is not the normal case), then do so. */
5730 if (info->export_dynamic
5731 || (info->executable && info->dynamic))
5732 {
5733 elf_link_hash_traverse (elf_hash_table (info),
5734 _bfd_elf_export_symbol,
5735 &eif);
5736 if (eif.failed)
5737 return FALSE;
5738 }
5739
5740 /* Make all global versions with definition. */
5741 for (t = info->version_info; t != NULL; t = t->next)
5742 for (d = t->globals.list; d != NULL; d = d->next)
5743 if (!d->symver && d->literal)
5744 {
5745 const char *verstr, *name;
5746 size_t namelen, verlen, newlen;
5747 char *newname, *p, leading_char;
5748 struct elf_link_hash_entry *newh;
5749
5750 leading_char = bfd_get_symbol_leading_char (output_bfd);
5751 name = d->pattern;
5752 namelen = strlen (name) + (leading_char != '\0');
5753 verstr = t->name;
5754 verlen = strlen (verstr);
5755 newlen = namelen + verlen + 3;
5756
5757 newname = (char *) bfd_malloc (newlen);
5758 if (newname == NULL)
5759 return FALSE;
5760 newname[0] = leading_char;
5761 memcpy (newname + (leading_char != '\0'), name, namelen);
5762
5763 /* Check the hidden versioned definition. */
5764 p = newname + namelen;
5765 *p++ = ELF_VER_CHR;
5766 memcpy (p, verstr, verlen + 1);
5767 newh = elf_link_hash_lookup (elf_hash_table (info),
5768 newname, FALSE, FALSE,
5769 FALSE);
5770 if (newh == NULL
5771 || (newh->root.type != bfd_link_hash_defined
5772 && newh->root.type != bfd_link_hash_defweak))
5773 {
5774 /* Check the default versioned definition. */
5775 *p++ = ELF_VER_CHR;
5776 memcpy (p, verstr, verlen + 1);
5777 newh = elf_link_hash_lookup (elf_hash_table (info),
5778 newname, FALSE, FALSE,
5779 FALSE);
5780 }
5781 free (newname);
5782
5783 /* Mark this version if there is a definition and it is
5784 not defined in a shared object. */
5785 if (newh != NULL
5786 && !newh->def_dynamic
5787 && (newh->root.type == bfd_link_hash_defined
5788 || newh->root.type == bfd_link_hash_defweak))
5789 d->symver = 1;
5790 }
5791
5792 /* Attach all the symbols to their version information. */
5793 asvinfo.info = info;
5794 asvinfo.failed = FALSE;
5795
5796 elf_link_hash_traverse (elf_hash_table (info),
5797 _bfd_elf_link_assign_sym_version,
5798 &asvinfo);
5799 if (asvinfo.failed)
5800 return FALSE;
5801
5802 if (!info->allow_undefined_version)
5803 {
5804 /* Check if all global versions have a definition. */
5805 all_defined = TRUE;
5806 for (t = info->version_info; t != NULL; t = t->next)
5807 for (d = t->globals.list; d != NULL; d = d->next)
5808 if (d->literal && !d->symver && !d->script)
5809 {
5810 (*_bfd_error_handler)
5811 (_("%s: undefined version: %s"),
5812 d->pattern, t->name);
5813 all_defined = FALSE;
5814 }
5815
5816 if (!all_defined)
5817 {
5818 bfd_set_error (bfd_error_bad_value);
5819 return FALSE;
5820 }
5821 }
5822
5823 /* Find all symbols which were defined in a dynamic object and make
5824 the backend pick a reasonable value for them. */
5825 elf_link_hash_traverse (elf_hash_table (info),
5826 _bfd_elf_adjust_dynamic_symbol,
5827 &eif);
5828 if (eif.failed)
5829 return FALSE;
5830
5831 /* Add some entries to the .dynamic section. We fill in some of the
5832 values later, in bfd_elf_final_link, but we must add the entries
5833 now so that we know the final size of the .dynamic section. */
5834
5835 /* If there are initialization and/or finalization functions to
5836 call then add the corresponding DT_INIT/DT_FINI entries. */
5837 h = (info->init_function
5838 ? elf_link_hash_lookup (elf_hash_table (info),
5839 info->init_function, FALSE,
5840 FALSE, FALSE)
5841 : NULL);
5842 if (h != NULL
5843 && (h->ref_regular
5844 || h->def_regular))
5845 {
5846 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5847 return FALSE;
5848 }
5849 h = (info->fini_function
5850 ? elf_link_hash_lookup (elf_hash_table (info),
5851 info->fini_function, FALSE,
5852 FALSE, FALSE)
5853 : NULL);
5854 if (h != NULL
5855 && (h->ref_regular
5856 || h->def_regular))
5857 {
5858 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5859 return FALSE;
5860 }
5861
5862 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5863 if (s != NULL && s->linker_has_input)
5864 {
5865 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5866 if (! info->executable)
5867 {
5868 bfd *sub;
5869 asection *o;
5870
5871 for (sub = info->input_bfds; sub != NULL;
5872 sub = sub->link_next)
5873 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5874 for (o = sub->sections; o != NULL; o = o->next)
5875 if (elf_section_data (o)->this_hdr.sh_type
5876 == SHT_PREINIT_ARRAY)
5877 {
5878 (*_bfd_error_handler)
5879 (_("%B: .preinit_array section is not allowed in DSO"),
5880 sub);
5881 break;
5882 }
5883
5884 bfd_set_error (bfd_error_nonrepresentable_section);
5885 return FALSE;
5886 }
5887
5888 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5889 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5890 return FALSE;
5891 }
5892 s = bfd_get_section_by_name (output_bfd, ".init_array");
5893 if (s != NULL && s->linker_has_input)
5894 {
5895 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5896 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5897 return FALSE;
5898 }
5899 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5900 if (s != NULL && s->linker_has_input)
5901 {
5902 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5903 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5904 return FALSE;
5905 }
5906
5907 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5908 /* If .dynstr is excluded from the link, we don't want any of
5909 these tags. Strictly, we should be checking each section
5910 individually; This quick check covers for the case where
5911 someone does a /DISCARD/ : { *(*) }. */
5912 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5913 {
5914 bfd_size_type strsize;
5915
5916 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5917 if ((info->emit_hash
5918 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5919 || (info->emit_gnu_hash
5920 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5921 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5922 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5923 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5924 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5925 bed->s->sizeof_sym))
5926 return FALSE;
5927 }
5928 }
5929
5930 /* The backend must work out the sizes of all the other dynamic
5931 sections. */
5932 if (dynobj != NULL
5933 && bed->elf_backend_size_dynamic_sections != NULL
5934 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5935 return FALSE;
5936
5937 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5938 return FALSE;
5939
5940 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5941 {
5942 unsigned long section_sym_count;
5943 struct bfd_elf_version_tree *verdefs;
5944 asection *s;
5945
5946 /* Set up the version definition section. */
5947 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
5948 BFD_ASSERT (s != NULL);
5949
5950 /* We may have created additional version definitions if we are
5951 just linking a regular application. */
5952 verdefs = info->version_info;
5953
5954 /* Skip anonymous version tag. */
5955 if (verdefs != NULL && verdefs->vernum == 0)
5956 verdefs = verdefs->next;
5957
5958 if (verdefs == NULL && !info->create_default_symver)
5959 s->flags |= SEC_EXCLUDE;
5960 else
5961 {
5962 unsigned int cdefs;
5963 bfd_size_type size;
5964 struct bfd_elf_version_tree *t;
5965 bfd_byte *p;
5966 Elf_Internal_Verdef def;
5967 Elf_Internal_Verdaux defaux;
5968 struct bfd_link_hash_entry *bh;
5969 struct elf_link_hash_entry *h;
5970 const char *name;
5971
5972 cdefs = 0;
5973 size = 0;
5974
5975 /* Make space for the base version. */
5976 size += sizeof (Elf_External_Verdef);
5977 size += sizeof (Elf_External_Verdaux);
5978 ++cdefs;
5979
5980 /* Make space for the default version. */
5981 if (info->create_default_symver)
5982 {
5983 size += sizeof (Elf_External_Verdef);
5984 ++cdefs;
5985 }
5986
5987 for (t = verdefs; t != NULL; t = t->next)
5988 {
5989 struct bfd_elf_version_deps *n;
5990
5991 /* Don't emit base version twice. */
5992 if (t->vernum == 0)
5993 continue;
5994
5995 size += sizeof (Elf_External_Verdef);
5996 size += sizeof (Elf_External_Verdaux);
5997 ++cdefs;
5998
5999 for (n = t->deps; n != NULL; n = n->next)
6000 size += sizeof (Elf_External_Verdaux);
6001 }
6002
6003 s->size = size;
6004 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6005 if (s->contents == NULL && s->size != 0)
6006 return FALSE;
6007
6008 /* Fill in the version definition section. */
6009
6010 p = s->contents;
6011
6012 def.vd_version = VER_DEF_CURRENT;
6013 def.vd_flags = VER_FLG_BASE;
6014 def.vd_ndx = 1;
6015 def.vd_cnt = 1;
6016 if (info->create_default_symver)
6017 {
6018 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6019 def.vd_next = sizeof (Elf_External_Verdef);
6020 }
6021 else
6022 {
6023 def.vd_aux = sizeof (Elf_External_Verdef);
6024 def.vd_next = (sizeof (Elf_External_Verdef)
6025 + sizeof (Elf_External_Verdaux));
6026 }
6027
6028 if (soname_indx != (bfd_size_type) -1)
6029 {
6030 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6031 soname_indx);
6032 def.vd_hash = bfd_elf_hash (soname);
6033 defaux.vda_name = soname_indx;
6034 name = soname;
6035 }
6036 else
6037 {
6038 bfd_size_type indx;
6039
6040 name = lbasename (output_bfd->filename);
6041 def.vd_hash = bfd_elf_hash (name);
6042 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6043 name, FALSE);
6044 if (indx == (bfd_size_type) -1)
6045 return FALSE;
6046 defaux.vda_name = indx;
6047 }
6048 defaux.vda_next = 0;
6049
6050 _bfd_elf_swap_verdef_out (output_bfd, &def,
6051 (Elf_External_Verdef *) p);
6052 p += sizeof (Elf_External_Verdef);
6053 if (info->create_default_symver)
6054 {
6055 /* Add a symbol representing this version. */
6056 bh = NULL;
6057 if (! (_bfd_generic_link_add_one_symbol
6058 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6059 0, NULL, FALSE,
6060 get_elf_backend_data (dynobj)->collect, &bh)))
6061 return FALSE;
6062 h = (struct elf_link_hash_entry *) bh;
6063 h->non_elf = 0;
6064 h->def_regular = 1;
6065 h->type = STT_OBJECT;
6066 h->verinfo.vertree = NULL;
6067
6068 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6069 return FALSE;
6070
6071 /* Create a duplicate of the base version with the same
6072 aux block, but different flags. */
6073 def.vd_flags = 0;
6074 def.vd_ndx = 2;
6075 def.vd_aux = sizeof (Elf_External_Verdef);
6076 if (verdefs)
6077 def.vd_next = (sizeof (Elf_External_Verdef)
6078 + sizeof (Elf_External_Verdaux));
6079 else
6080 def.vd_next = 0;
6081 _bfd_elf_swap_verdef_out (output_bfd, &def,
6082 (Elf_External_Verdef *) p);
6083 p += sizeof (Elf_External_Verdef);
6084 }
6085 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6086 (Elf_External_Verdaux *) p);
6087 p += sizeof (Elf_External_Verdaux);
6088
6089 for (t = verdefs; t != NULL; t = t->next)
6090 {
6091 unsigned int cdeps;
6092 struct bfd_elf_version_deps *n;
6093
6094 /* Don't emit the base version twice. */
6095 if (t->vernum == 0)
6096 continue;
6097
6098 cdeps = 0;
6099 for (n = t->deps; n != NULL; n = n->next)
6100 ++cdeps;
6101
6102 /* Add a symbol representing this version. */
6103 bh = NULL;
6104 if (! (_bfd_generic_link_add_one_symbol
6105 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6106 0, NULL, FALSE,
6107 get_elf_backend_data (dynobj)->collect, &bh)))
6108 return FALSE;
6109 h = (struct elf_link_hash_entry *) bh;
6110 h->non_elf = 0;
6111 h->def_regular = 1;
6112 h->type = STT_OBJECT;
6113 h->verinfo.vertree = t;
6114
6115 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6116 return FALSE;
6117
6118 def.vd_version = VER_DEF_CURRENT;
6119 def.vd_flags = 0;
6120 if (t->globals.list == NULL
6121 && t->locals.list == NULL
6122 && ! t->used)
6123 def.vd_flags |= VER_FLG_WEAK;
6124 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6125 def.vd_cnt = cdeps + 1;
6126 def.vd_hash = bfd_elf_hash (t->name);
6127 def.vd_aux = sizeof (Elf_External_Verdef);
6128 def.vd_next = 0;
6129
6130 /* If a basever node is next, it *must* be the last node in
6131 the chain, otherwise Verdef construction breaks. */
6132 if (t->next != NULL && t->next->vernum == 0)
6133 BFD_ASSERT (t->next->next == NULL);
6134
6135 if (t->next != NULL && t->next->vernum != 0)
6136 def.vd_next = (sizeof (Elf_External_Verdef)
6137 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6138
6139 _bfd_elf_swap_verdef_out (output_bfd, &def,
6140 (Elf_External_Verdef *) p);
6141 p += sizeof (Elf_External_Verdef);
6142
6143 defaux.vda_name = h->dynstr_index;
6144 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6145 h->dynstr_index);
6146 defaux.vda_next = 0;
6147 if (t->deps != NULL)
6148 defaux.vda_next = sizeof (Elf_External_Verdaux);
6149 t->name_indx = defaux.vda_name;
6150
6151 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6152 (Elf_External_Verdaux *) p);
6153 p += sizeof (Elf_External_Verdaux);
6154
6155 for (n = t->deps; n != NULL; n = n->next)
6156 {
6157 if (n->version_needed == NULL)
6158 {
6159 /* This can happen if there was an error in the
6160 version script. */
6161 defaux.vda_name = 0;
6162 }
6163 else
6164 {
6165 defaux.vda_name = n->version_needed->name_indx;
6166 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6167 defaux.vda_name);
6168 }
6169 if (n->next == NULL)
6170 defaux.vda_next = 0;
6171 else
6172 defaux.vda_next = sizeof (Elf_External_Verdaux);
6173
6174 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6175 (Elf_External_Verdaux *) p);
6176 p += sizeof (Elf_External_Verdaux);
6177 }
6178 }
6179
6180 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6181 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6182 return FALSE;
6183
6184 elf_tdata (output_bfd)->cverdefs = cdefs;
6185 }
6186
6187 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6188 {
6189 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6190 return FALSE;
6191 }
6192 else if (info->flags & DF_BIND_NOW)
6193 {
6194 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6195 return FALSE;
6196 }
6197
6198 if (info->flags_1)
6199 {
6200 if (info->executable)
6201 info->flags_1 &= ~ (DF_1_INITFIRST
6202 | DF_1_NODELETE
6203 | DF_1_NOOPEN);
6204 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6205 return FALSE;
6206 }
6207
6208 /* Work out the size of the version reference section. */
6209
6210 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6211 BFD_ASSERT (s != NULL);
6212 {
6213 struct elf_find_verdep_info sinfo;
6214
6215 sinfo.info = info;
6216 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6217 if (sinfo.vers == 0)
6218 sinfo.vers = 1;
6219 sinfo.failed = FALSE;
6220
6221 elf_link_hash_traverse (elf_hash_table (info),
6222 _bfd_elf_link_find_version_dependencies,
6223 &sinfo);
6224 if (sinfo.failed)
6225 return FALSE;
6226
6227 if (elf_tdata (output_bfd)->verref == NULL)
6228 s->flags |= SEC_EXCLUDE;
6229 else
6230 {
6231 Elf_Internal_Verneed *t;
6232 unsigned int size;
6233 unsigned int crefs;
6234 bfd_byte *p;
6235
6236 /* Build the version dependency section. */
6237 size = 0;
6238 crefs = 0;
6239 for (t = elf_tdata (output_bfd)->verref;
6240 t != NULL;
6241 t = t->vn_nextref)
6242 {
6243 Elf_Internal_Vernaux *a;
6244
6245 size += sizeof (Elf_External_Verneed);
6246 ++crefs;
6247 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6248 size += sizeof (Elf_External_Vernaux);
6249 }
6250
6251 s->size = size;
6252 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6253 if (s->contents == NULL)
6254 return FALSE;
6255
6256 p = s->contents;
6257 for (t = elf_tdata (output_bfd)->verref;
6258 t != NULL;
6259 t = t->vn_nextref)
6260 {
6261 unsigned int caux;
6262 Elf_Internal_Vernaux *a;
6263 bfd_size_type indx;
6264
6265 caux = 0;
6266 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6267 ++caux;
6268
6269 t->vn_version = VER_NEED_CURRENT;
6270 t->vn_cnt = caux;
6271 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6272 elf_dt_name (t->vn_bfd) != NULL
6273 ? elf_dt_name (t->vn_bfd)
6274 : lbasename (t->vn_bfd->filename),
6275 FALSE);
6276 if (indx == (bfd_size_type) -1)
6277 return FALSE;
6278 t->vn_file = indx;
6279 t->vn_aux = sizeof (Elf_External_Verneed);
6280 if (t->vn_nextref == NULL)
6281 t->vn_next = 0;
6282 else
6283 t->vn_next = (sizeof (Elf_External_Verneed)
6284 + caux * sizeof (Elf_External_Vernaux));
6285
6286 _bfd_elf_swap_verneed_out (output_bfd, t,
6287 (Elf_External_Verneed *) p);
6288 p += sizeof (Elf_External_Verneed);
6289
6290 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6291 {
6292 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6293 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6294 a->vna_nodename, FALSE);
6295 if (indx == (bfd_size_type) -1)
6296 return FALSE;
6297 a->vna_name = indx;
6298 if (a->vna_nextptr == NULL)
6299 a->vna_next = 0;
6300 else
6301 a->vna_next = sizeof (Elf_External_Vernaux);
6302
6303 _bfd_elf_swap_vernaux_out (output_bfd, a,
6304 (Elf_External_Vernaux *) p);
6305 p += sizeof (Elf_External_Vernaux);
6306 }
6307 }
6308
6309 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6310 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6311 return FALSE;
6312
6313 elf_tdata (output_bfd)->cverrefs = crefs;
6314 }
6315 }
6316
6317 if ((elf_tdata (output_bfd)->cverrefs == 0
6318 && elf_tdata (output_bfd)->cverdefs == 0)
6319 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6320 &section_sym_count) == 0)
6321 {
6322 s = bfd_get_linker_section (dynobj, ".gnu.version");
6323 s->flags |= SEC_EXCLUDE;
6324 }
6325 }
6326 return TRUE;
6327 }
6328
6329 /* Find the first non-excluded output section. We'll use its
6330 section symbol for some emitted relocs. */
6331 void
6332 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6333 {
6334 asection *s;
6335
6336 for (s = output_bfd->sections; s != NULL; s = s->next)
6337 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6338 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6339 {
6340 elf_hash_table (info)->text_index_section = s;
6341 break;
6342 }
6343 }
6344
6345 /* Find two non-excluded output sections, one for code, one for data.
6346 We'll use their section symbols for some emitted relocs. */
6347 void
6348 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6349 {
6350 asection *s;
6351
6352 /* Data first, since setting text_index_section changes
6353 _bfd_elf_link_omit_section_dynsym. */
6354 for (s = output_bfd->sections; s != NULL; s = s->next)
6355 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6356 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6357 {
6358 elf_hash_table (info)->data_index_section = s;
6359 break;
6360 }
6361
6362 for (s = output_bfd->sections; s != NULL; s = s->next)
6363 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6364 == (SEC_ALLOC | SEC_READONLY))
6365 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6366 {
6367 elf_hash_table (info)->text_index_section = s;
6368 break;
6369 }
6370
6371 if (elf_hash_table (info)->text_index_section == NULL)
6372 elf_hash_table (info)->text_index_section
6373 = elf_hash_table (info)->data_index_section;
6374 }
6375
6376 bfd_boolean
6377 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6378 {
6379 const struct elf_backend_data *bed;
6380
6381 if (!is_elf_hash_table (info->hash))
6382 return TRUE;
6383
6384 bed = get_elf_backend_data (output_bfd);
6385 (*bed->elf_backend_init_index_section) (output_bfd, info);
6386
6387 if (elf_hash_table (info)->dynamic_sections_created)
6388 {
6389 bfd *dynobj;
6390 asection *s;
6391 bfd_size_type dynsymcount;
6392 unsigned long section_sym_count;
6393 unsigned int dtagcount;
6394
6395 dynobj = elf_hash_table (info)->dynobj;
6396
6397 /* Assign dynsym indicies. In a shared library we generate a
6398 section symbol for each output section, which come first.
6399 Next come all of the back-end allocated local dynamic syms,
6400 followed by the rest of the global symbols. */
6401
6402 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6403 &section_sym_count);
6404
6405 /* Work out the size of the symbol version section. */
6406 s = bfd_get_linker_section (dynobj, ".gnu.version");
6407 BFD_ASSERT (s != NULL);
6408 if (dynsymcount != 0
6409 && (s->flags & SEC_EXCLUDE) == 0)
6410 {
6411 s->size = dynsymcount * sizeof (Elf_External_Versym);
6412 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6413 if (s->contents == NULL)
6414 return FALSE;
6415
6416 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6417 return FALSE;
6418 }
6419
6420 /* Set the size of the .dynsym and .hash sections. We counted
6421 the number of dynamic symbols in elf_link_add_object_symbols.
6422 We will build the contents of .dynsym and .hash when we build
6423 the final symbol table, because until then we do not know the
6424 correct value to give the symbols. We built the .dynstr
6425 section as we went along in elf_link_add_object_symbols. */
6426 s = bfd_get_linker_section (dynobj, ".dynsym");
6427 BFD_ASSERT (s != NULL);
6428 s->size = dynsymcount * bed->s->sizeof_sym;
6429
6430 if (dynsymcount != 0)
6431 {
6432 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6433 if (s->contents == NULL)
6434 return FALSE;
6435
6436 /* The first entry in .dynsym is a dummy symbol.
6437 Clear all the section syms, in case we don't output them all. */
6438 ++section_sym_count;
6439 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6440 }
6441
6442 elf_hash_table (info)->bucketcount = 0;
6443
6444 /* Compute the size of the hashing table. As a side effect this
6445 computes the hash values for all the names we export. */
6446 if (info->emit_hash)
6447 {
6448 unsigned long int *hashcodes;
6449 struct hash_codes_info hashinf;
6450 bfd_size_type amt;
6451 unsigned long int nsyms;
6452 size_t bucketcount;
6453 size_t hash_entry_size;
6454
6455 /* Compute the hash values for all exported symbols. At the same
6456 time store the values in an array so that we could use them for
6457 optimizations. */
6458 amt = dynsymcount * sizeof (unsigned long int);
6459 hashcodes = (unsigned long int *) bfd_malloc (amt);
6460 if (hashcodes == NULL)
6461 return FALSE;
6462 hashinf.hashcodes = hashcodes;
6463 hashinf.error = FALSE;
6464
6465 /* Put all hash values in HASHCODES. */
6466 elf_link_hash_traverse (elf_hash_table (info),
6467 elf_collect_hash_codes, &hashinf);
6468 if (hashinf.error)
6469 {
6470 free (hashcodes);
6471 return FALSE;
6472 }
6473
6474 nsyms = hashinf.hashcodes - hashcodes;
6475 bucketcount
6476 = compute_bucket_count (info, hashcodes, nsyms, 0);
6477 free (hashcodes);
6478
6479 if (bucketcount == 0)
6480 return FALSE;
6481
6482 elf_hash_table (info)->bucketcount = bucketcount;
6483
6484 s = bfd_get_linker_section (dynobj, ".hash");
6485 BFD_ASSERT (s != NULL);
6486 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6487 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6488 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6489 if (s->contents == NULL)
6490 return FALSE;
6491
6492 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6493 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6494 s->contents + hash_entry_size);
6495 }
6496
6497 if (info->emit_gnu_hash)
6498 {
6499 size_t i, cnt;
6500 unsigned char *contents;
6501 struct collect_gnu_hash_codes cinfo;
6502 bfd_size_type amt;
6503 size_t bucketcount;
6504
6505 memset (&cinfo, 0, sizeof (cinfo));
6506
6507 /* Compute the hash values for all exported symbols. At the same
6508 time store the values in an array so that we could use them for
6509 optimizations. */
6510 amt = dynsymcount * 2 * sizeof (unsigned long int);
6511 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6512 if (cinfo.hashcodes == NULL)
6513 return FALSE;
6514
6515 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6516 cinfo.min_dynindx = -1;
6517 cinfo.output_bfd = output_bfd;
6518 cinfo.bed = bed;
6519
6520 /* Put all hash values in HASHCODES. */
6521 elf_link_hash_traverse (elf_hash_table (info),
6522 elf_collect_gnu_hash_codes, &cinfo);
6523 if (cinfo.error)
6524 {
6525 free (cinfo.hashcodes);
6526 return FALSE;
6527 }
6528
6529 bucketcount
6530 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6531
6532 if (bucketcount == 0)
6533 {
6534 free (cinfo.hashcodes);
6535 return FALSE;
6536 }
6537
6538 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6539 BFD_ASSERT (s != NULL);
6540
6541 if (cinfo.nsyms == 0)
6542 {
6543 /* Empty .gnu.hash section is special. */
6544 BFD_ASSERT (cinfo.min_dynindx == -1);
6545 free (cinfo.hashcodes);
6546 s->size = 5 * 4 + bed->s->arch_size / 8;
6547 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6548 if (contents == NULL)
6549 return FALSE;
6550 s->contents = contents;
6551 /* 1 empty bucket. */
6552 bfd_put_32 (output_bfd, 1, contents);
6553 /* SYMIDX above the special symbol 0. */
6554 bfd_put_32 (output_bfd, 1, contents + 4);
6555 /* Just one word for bitmask. */
6556 bfd_put_32 (output_bfd, 1, contents + 8);
6557 /* Only hash fn bloom filter. */
6558 bfd_put_32 (output_bfd, 0, contents + 12);
6559 /* No hashes are valid - empty bitmask. */
6560 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6561 /* No hashes in the only bucket. */
6562 bfd_put_32 (output_bfd, 0,
6563 contents + 16 + bed->s->arch_size / 8);
6564 }
6565 else
6566 {
6567 unsigned long int maskwords, maskbitslog2, x;
6568 BFD_ASSERT (cinfo.min_dynindx != -1);
6569
6570 x = cinfo.nsyms;
6571 maskbitslog2 = 1;
6572 while ((x >>= 1) != 0)
6573 ++maskbitslog2;
6574 if (maskbitslog2 < 3)
6575 maskbitslog2 = 5;
6576 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6577 maskbitslog2 = maskbitslog2 + 3;
6578 else
6579 maskbitslog2 = maskbitslog2 + 2;
6580 if (bed->s->arch_size == 64)
6581 {
6582 if (maskbitslog2 == 5)
6583 maskbitslog2 = 6;
6584 cinfo.shift1 = 6;
6585 }
6586 else
6587 cinfo.shift1 = 5;
6588 cinfo.mask = (1 << cinfo.shift1) - 1;
6589 cinfo.shift2 = maskbitslog2;
6590 cinfo.maskbits = 1 << maskbitslog2;
6591 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6592 amt = bucketcount * sizeof (unsigned long int) * 2;
6593 amt += maskwords * sizeof (bfd_vma);
6594 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6595 if (cinfo.bitmask == NULL)
6596 {
6597 free (cinfo.hashcodes);
6598 return FALSE;
6599 }
6600
6601 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6602 cinfo.indx = cinfo.counts + bucketcount;
6603 cinfo.symindx = dynsymcount - cinfo.nsyms;
6604 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6605
6606 /* Determine how often each hash bucket is used. */
6607 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6608 for (i = 0; i < cinfo.nsyms; ++i)
6609 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6610
6611 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6612 if (cinfo.counts[i] != 0)
6613 {
6614 cinfo.indx[i] = cnt;
6615 cnt += cinfo.counts[i];
6616 }
6617 BFD_ASSERT (cnt == dynsymcount);
6618 cinfo.bucketcount = bucketcount;
6619 cinfo.local_indx = cinfo.min_dynindx;
6620
6621 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6622 s->size += cinfo.maskbits / 8;
6623 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6624 if (contents == NULL)
6625 {
6626 free (cinfo.bitmask);
6627 free (cinfo.hashcodes);
6628 return FALSE;
6629 }
6630
6631 s->contents = contents;
6632 bfd_put_32 (output_bfd, bucketcount, contents);
6633 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6634 bfd_put_32 (output_bfd, maskwords, contents + 8);
6635 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6636 contents += 16 + cinfo.maskbits / 8;
6637
6638 for (i = 0; i < bucketcount; ++i)
6639 {
6640 if (cinfo.counts[i] == 0)
6641 bfd_put_32 (output_bfd, 0, contents);
6642 else
6643 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6644 contents += 4;
6645 }
6646
6647 cinfo.contents = contents;
6648
6649 /* Renumber dynamic symbols, populate .gnu.hash section. */
6650 elf_link_hash_traverse (elf_hash_table (info),
6651 elf_renumber_gnu_hash_syms, &cinfo);
6652
6653 contents = s->contents + 16;
6654 for (i = 0; i < maskwords; ++i)
6655 {
6656 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6657 contents);
6658 contents += bed->s->arch_size / 8;
6659 }
6660
6661 free (cinfo.bitmask);
6662 free (cinfo.hashcodes);
6663 }
6664 }
6665
6666 s = bfd_get_linker_section (dynobj, ".dynstr");
6667 BFD_ASSERT (s != NULL);
6668
6669 elf_finalize_dynstr (output_bfd, info);
6670
6671 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6672
6673 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6674 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6675 return FALSE;
6676 }
6677
6678 return TRUE;
6679 }
6680 \f
6681 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6682
6683 static void
6684 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6685 asection *sec)
6686 {
6687 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6688 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6689 }
6690
6691 /* Finish SHF_MERGE section merging. */
6692
6693 bfd_boolean
6694 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6695 {
6696 bfd *ibfd;
6697 asection *sec;
6698
6699 if (!is_elf_hash_table (info->hash))
6700 return FALSE;
6701
6702 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6703 if ((ibfd->flags & DYNAMIC) == 0)
6704 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6705 if ((sec->flags & SEC_MERGE) != 0
6706 && !bfd_is_abs_section (sec->output_section))
6707 {
6708 struct bfd_elf_section_data *secdata;
6709
6710 secdata = elf_section_data (sec);
6711 if (! _bfd_add_merge_section (abfd,
6712 &elf_hash_table (info)->merge_info,
6713 sec, &secdata->sec_info))
6714 return FALSE;
6715 else if (secdata->sec_info)
6716 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6717 }
6718
6719 if (elf_hash_table (info)->merge_info != NULL)
6720 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6721 merge_sections_remove_hook);
6722 return TRUE;
6723 }
6724
6725 /* Create an entry in an ELF linker hash table. */
6726
6727 struct bfd_hash_entry *
6728 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6729 struct bfd_hash_table *table,
6730 const char *string)
6731 {
6732 /* Allocate the structure if it has not already been allocated by a
6733 subclass. */
6734 if (entry == NULL)
6735 {
6736 entry = (struct bfd_hash_entry *)
6737 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6738 if (entry == NULL)
6739 return entry;
6740 }
6741
6742 /* Call the allocation method of the superclass. */
6743 entry = _bfd_link_hash_newfunc (entry, table, string);
6744 if (entry != NULL)
6745 {
6746 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6747 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6748
6749 /* Set local fields. */
6750 ret->indx = -1;
6751 ret->dynindx = -1;
6752 ret->got = htab->init_got_refcount;
6753 ret->plt = htab->init_plt_refcount;
6754 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6755 - offsetof (struct elf_link_hash_entry, size)));
6756 /* Assume that we have been called by a non-ELF symbol reader.
6757 This flag is then reset by the code which reads an ELF input
6758 file. This ensures that a symbol created by a non-ELF symbol
6759 reader will have the flag set correctly. */
6760 ret->non_elf = 1;
6761 }
6762
6763 return entry;
6764 }
6765
6766 /* Copy data from an indirect symbol to its direct symbol, hiding the
6767 old indirect symbol. Also used for copying flags to a weakdef. */
6768
6769 void
6770 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6771 struct elf_link_hash_entry *dir,
6772 struct elf_link_hash_entry *ind)
6773 {
6774 struct elf_link_hash_table *htab;
6775
6776 /* Copy down any references that we may have already seen to the
6777 symbol which just became indirect. */
6778
6779 dir->ref_dynamic |= ind->ref_dynamic;
6780 dir->ref_regular |= ind->ref_regular;
6781 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6782 dir->non_got_ref |= ind->non_got_ref;
6783 dir->needs_plt |= ind->needs_plt;
6784 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6785
6786 if (ind->root.type != bfd_link_hash_indirect)
6787 return;
6788
6789 /* Copy over the global and procedure linkage table refcount entries.
6790 These may have been already set up by a check_relocs routine. */
6791 htab = elf_hash_table (info);
6792 if (ind->got.refcount > htab->init_got_refcount.refcount)
6793 {
6794 if (dir->got.refcount < 0)
6795 dir->got.refcount = 0;
6796 dir->got.refcount += ind->got.refcount;
6797 ind->got.refcount = htab->init_got_refcount.refcount;
6798 }
6799
6800 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6801 {
6802 if (dir->plt.refcount < 0)
6803 dir->plt.refcount = 0;
6804 dir->plt.refcount += ind->plt.refcount;
6805 ind->plt.refcount = htab->init_plt_refcount.refcount;
6806 }
6807
6808 if (ind->dynindx != -1)
6809 {
6810 if (dir->dynindx != -1)
6811 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6812 dir->dynindx = ind->dynindx;
6813 dir->dynstr_index = ind->dynstr_index;
6814 ind->dynindx = -1;
6815 ind->dynstr_index = 0;
6816 }
6817 }
6818
6819 void
6820 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6821 struct elf_link_hash_entry *h,
6822 bfd_boolean force_local)
6823 {
6824 /* STT_GNU_IFUNC symbol must go through PLT. */
6825 if (h->type != STT_GNU_IFUNC)
6826 {
6827 h->plt = elf_hash_table (info)->init_plt_offset;
6828 h->needs_plt = 0;
6829 }
6830 if (force_local)
6831 {
6832 h->forced_local = 1;
6833 if (h->dynindx != -1)
6834 {
6835 h->dynindx = -1;
6836 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6837 h->dynstr_index);
6838 }
6839 }
6840 }
6841
6842 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6843 caller. */
6844
6845 bfd_boolean
6846 _bfd_elf_link_hash_table_init
6847 (struct elf_link_hash_table *table,
6848 bfd *abfd,
6849 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6850 struct bfd_hash_table *,
6851 const char *),
6852 unsigned int entsize,
6853 enum elf_target_id target_id)
6854 {
6855 bfd_boolean ret;
6856 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6857
6858 table->init_got_refcount.refcount = can_refcount - 1;
6859 table->init_plt_refcount.refcount = can_refcount - 1;
6860 table->init_got_offset.offset = -(bfd_vma) 1;
6861 table->init_plt_offset.offset = -(bfd_vma) 1;
6862 /* The first dynamic symbol is a dummy. */
6863 table->dynsymcount = 1;
6864
6865 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6866
6867 table->root.type = bfd_link_elf_hash_table;
6868 table->hash_table_id = target_id;
6869
6870 return ret;
6871 }
6872
6873 /* Create an ELF linker hash table. */
6874
6875 struct bfd_link_hash_table *
6876 _bfd_elf_link_hash_table_create (bfd *abfd)
6877 {
6878 struct elf_link_hash_table *ret;
6879 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6880
6881 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
6882 if (ret == NULL)
6883 return NULL;
6884
6885 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6886 sizeof (struct elf_link_hash_entry),
6887 GENERIC_ELF_DATA))
6888 {
6889 free (ret);
6890 return NULL;
6891 }
6892
6893 return &ret->root;
6894 }
6895
6896 /* Destroy an ELF linker hash table. */
6897
6898 void
6899 _bfd_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
6900 {
6901 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) hash;
6902 if (htab->dynstr != NULL)
6903 _bfd_elf_strtab_free (htab->dynstr);
6904 _bfd_merge_sections_free (htab->merge_info);
6905 _bfd_generic_link_hash_table_free (hash);
6906 }
6907
6908 /* This is a hook for the ELF emulation code in the generic linker to
6909 tell the backend linker what file name to use for the DT_NEEDED
6910 entry for a dynamic object. */
6911
6912 void
6913 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6914 {
6915 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6916 && bfd_get_format (abfd) == bfd_object)
6917 elf_dt_name (abfd) = name;
6918 }
6919
6920 int
6921 bfd_elf_get_dyn_lib_class (bfd *abfd)
6922 {
6923 int lib_class;
6924 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6925 && bfd_get_format (abfd) == bfd_object)
6926 lib_class = elf_dyn_lib_class (abfd);
6927 else
6928 lib_class = 0;
6929 return lib_class;
6930 }
6931
6932 void
6933 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6934 {
6935 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6936 && bfd_get_format (abfd) == bfd_object)
6937 elf_dyn_lib_class (abfd) = lib_class;
6938 }
6939
6940 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6941 the linker ELF emulation code. */
6942
6943 struct bfd_link_needed_list *
6944 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6945 struct bfd_link_info *info)
6946 {
6947 if (! is_elf_hash_table (info->hash))
6948 return NULL;
6949 return elf_hash_table (info)->needed;
6950 }
6951
6952 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6953 hook for the linker ELF emulation code. */
6954
6955 struct bfd_link_needed_list *
6956 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6957 struct bfd_link_info *info)
6958 {
6959 if (! is_elf_hash_table (info->hash))
6960 return NULL;
6961 return elf_hash_table (info)->runpath;
6962 }
6963
6964 /* Get the name actually used for a dynamic object for a link. This
6965 is the SONAME entry if there is one. Otherwise, it is the string
6966 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6967
6968 const char *
6969 bfd_elf_get_dt_soname (bfd *abfd)
6970 {
6971 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6972 && bfd_get_format (abfd) == bfd_object)
6973 return elf_dt_name (abfd);
6974 return NULL;
6975 }
6976
6977 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6978 the ELF linker emulation code. */
6979
6980 bfd_boolean
6981 bfd_elf_get_bfd_needed_list (bfd *abfd,
6982 struct bfd_link_needed_list **pneeded)
6983 {
6984 asection *s;
6985 bfd_byte *dynbuf = NULL;
6986 unsigned int elfsec;
6987 unsigned long shlink;
6988 bfd_byte *extdyn, *extdynend;
6989 size_t extdynsize;
6990 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6991
6992 *pneeded = NULL;
6993
6994 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6995 || bfd_get_format (abfd) != bfd_object)
6996 return TRUE;
6997
6998 s = bfd_get_section_by_name (abfd, ".dynamic");
6999 if (s == NULL || s->size == 0)
7000 return TRUE;
7001
7002 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7003 goto error_return;
7004
7005 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7006 if (elfsec == SHN_BAD)
7007 goto error_return;
7008
7009 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7010
7011 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7012 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7013
7014 extdyn = dynbuf;
7015 extdynend = extdyn + s->size;
7016 for (; extdyn < extdynend; extdyn += extdynsize)
7017 {
7018 Elf_Internal_Dyn dyn;
7019
7020 (*swap_dyn_in) (abfd, extdyn, &dyn);
7021
7022 if (dyn.d_tag == DT_NULL)
7023 break;
7024
7025 if (dyn.d_tag == DT_NEEDED)
7026 {
7027 const char *string;
7028 struct bfd_link_needed_list *l;
7029 unsigned int tagv = dyn.d_un.d_val;
7030 bfd_size_type amt;
7031
7032 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7033 if (string == NULL)
7034 goto error_return;
7035
7036 amt = sizeof *l;
7037 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7038 if (l == NULL)
7039 goto error_return;
7040
7041 l->by = abfd;
7042 l->name = string;
7043 l->next = *pneeded;
7044 *pneeded = l;
7045 }
7046 }
7047
7048 free (dynbuf);
7049
7050 return TRUE;
7051
7052 error_return:
7053 if (dynbuf != NULL)
7054 free (dynbuf);
7055 return FALSE;
7056 }
7057
7058 struct elf_symbuf_symbol
7059 {
7060 unsigned long st_name; /* Symbol name, index in string tbl */
7061 unsigned char st_info; /* Type and binding attributes */
7062 unsigned char st_other; /* Visibilty, and target specific */
7063 };
7064
7065 struct elf_symbuf_head
7066 {
7067 struct elf_symbuf_symbol *ssym;
7068 bfd_size_type count;
7069 unsigned int st_shndx;
7070 };
7071
7072 struct elf_symbol
7073 {
7074 union
7075 {
7076 Elf_Internal_Sym *isym;
7077 struct elf_symbuf_symbol *ssym;
7078 } u;
7079 const char *name;
7080 };
7081
7082 /* Sort references to symbols by ascending section number. */
7083
7084 static int
7085 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7086 {
7087 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7088 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7089
7090 return s1->st_shndx - s2->st_shndx;
7091 }
7092
7093 static int
7094 elf_sym_name_compare (const void *arg1, const void *arg2)
7095 {
7096 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7097 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7098 return strcmp (s1->name, s2->name);
7099 }
7100
7101 static struct elf_symbuf_head *
7102 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7103 {
7104 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7105 struct elf_symbuf_symbol *ssym;
7106 struct elf_symbuf_head *ssymbuf, *ssymhead;
7107 bfd_size_type i, shndx_count, total_size;
7108
7109 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7110 if (indbuf == NULL)
7111 return NULL;
7112
7113 for (ind = indbuf, i = 0; i < symcount; i++)
7114 if (isymbuf[i].st_shndx != SHN_UNDEF)
7115 *ind++ = &isymbuf[i];
7116 indbufend = ind;
7117
7118 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7119 elf_sort_elf_symbol);
7120
7121 shndx_count = 0;
7122 if (indbufend > indbuf)
7123 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7124 if (ind[0]->st_shndx != ind[1]->st_shndx)
7125 shndx_count++;
7126
7127 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7128 + (indbufend - indbuf) * sizeof (*ssym));
7129 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7130 if (ssymbuf == NULL)
7131 {
7132 free (indbuf);
7133 return NULL;
7134 }
7135
7136 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7137 ssymbuf->ssym = NULL;
7138 ssymbuf->count = shndx_count;
7139 ssymbuf->st_shndx = 0;
7140 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7141 {
7142 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7143 {
7144 ssymhead++;
7145 ssymhead->ssym = ssym;
7146 ssymhead->count = 0;
7147 ssymhead->st_shndx = (*ind)->st_shndx;
7148 }
7149 ssym->st_name = (*ind)->st_name;
7150 ssym->st_info = (*ind)->st_info;
7151 ssym->st_other = (*ind)->st_other;
7152 ssymhead->count++;
7153 }
7154 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7155 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7156 == total_size));
7157
7158 free (indbuf);
7159 return ssymbuf;
7160 }
7161
7162 /* Check if 2 sections define the same set of local and global
7163 symbols. */
7164
7165 static bfd_boolean
7166 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7167 struct bfd_link_info *info)
7168 {
7169 bfd *bfd1, *bfd2;
7170 const struct elf_backend_data *bed1, *bed2;
7171 Elf_Internal_Shdr *hdr1, *hdr2;
7172 bfd_size_type symcount1, symcount2;
7173 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7174 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7175 Elf_Internal_Sym *isym, *isymend;
7176 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7177 bfd_size_type count1, count2, i;
7178 unsigned int shndx1, shndx2;
7179 bfd_boolean result;
7180
7181 bfd1 = sec1->owner;
7182 bfd2 = sec2->owner;
7183
7184 /* Both sections have to be in ELF. */
7185 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7186 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7187 return FALSE;
7188
7189 if (elf_section_type (sec1) != elf_section_type (sec2))
7190 return FALSE;
7191
7192 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7193 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7194 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7195 return FALSE;
7196
7197 bed1 = get_elf_backend_data (bfd1);
7198 bed2 = get_elf_backend_data (bfd2);
7199 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7200 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7201 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7202 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7203
7204 if (symcount1 == 0 || symcount2 == 0)
7205 return FALSE;
7206
7207 result = FALSE;
7208 isymbuf1 = NULL;
7209 isymbuf2 = NULL;
7210 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7211 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7212
7213 if (ssymbuf1 == NULL)
7214 {
7215 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7216 NULL, NULL, NULL);
7217 if (isymbuf1 == NULL)
7218 goto done;
7219
7220 if (!info->reduce_memory_overheads)
7221 elf_tdata (bfd1)->symbuf = ssymbuf1
7222 = elf_create_symbuf (symcount1, isymbuf1);
7223 }
7224
7225 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7226 {
7227 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7228 NULL, NULL, NULL);
7229 if (isymbuf2 == NULL)
7230 goto done;
7231
7232 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7233 elf_tdata (bfd2)->symbuf = ssymbuf2
7234 = elf_create_symbuf (symcount2, isymbuf2);
7235 }
7236
7237 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7238 {
7239 /* Optimized faster version. */
7240 bfd_size_type lo, hi, mid;
7241 struct elf_symbol *symp;
7242 struct elf_symbuf_symbol *ssym, *ssymend;
7243
7244 lo = 0;
7245 hi = ssymbuf1->count;
7246 ssymbuf1++;
7247 count1 = 0;
7248 while (lo < hi)
7249 {
7250 mid = (lo + hi) / 2;
7251 if (shndx1 < ssymbuf1[mid].st_shndx)
7252 hi = mid;
7253 else if (shndx1 > ssymbuf1[mid].st_shndx)
7254 lo = mid + 1;
7255 else
7256 {
7257 count1 = ssymbuf1[mid].count;
7258 ssymbuf1 += mid;
7259 break;
7260 }
7261 }
7262
7263 lo = 0;
7264 hi = ssymbuf2->count;
7265 ssymbuf2++;
7266 count2 = 0;
7267 while (lo < hi)
7268 {
7269 mid = (lo + hi) / 2;
7270 if (shndx2 < ssymbuf2[mid].st_shndx)
7271 hi = mid;
7272 else if (shndx2 > ssymbuf2[mid].st_shndx)
7273 lo = mid + 1;
7274 else
7275 {
7276 count2 = ssymbuf2[mid].count;
7277 ssymbuf2 += mid;
7278 break;
7279 }
7280 }
7281
7282 if (count1 == 0 || count2 == 0 || count1 != count2)
7283 goto done;
7284
7285 symtable1 = (struct elf_symbol *)
7286 bfd_malloc (count1 * sizeof (struct elf_symbol));
7287 symtable2 = (struct elf_symbol *)
7288 bfd_malloc (count2 * sizeof (struct elf_symbol));
7289 if (symtable1 == NULL || symtable2 == NULL)
7290 goto done;
7291
7292 symp = symtable1;
7293 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7294 ssym < ssymend; ssym++, symp++)
7295 {
7296 symp->u.ssym = ssym;
7297 symp->name = bfd_elf_string_from_elf_section (bfd1,
7298 hdr1->sh_link,
7299 ssym->st_name);
7300 }
7301
7302 symp = symtable2;
7303 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7304 ssym < ssymend; ssym++, symp++)
7305 {
7306 symp->u.ssym = ssym;
7307 symp->name = bfd_elf_string_from_elf_section (bfd2,
7308 hdr2->sh_link,
7309 ssym->st_name);
7310 }
7311
7312 /* Sort symbol by name. */
7313 qsort (symtable1, count1, sizeof (struct elf_symbol),
7314 elf_sym_name_compare);
7315 qsort (symtable2, count1, sizeof (struct elf_symbol),
7316 elf_sym_name_compare);
7317
7318 for (i = 0; i < count1; i++)
7319 /* Two symbols must have the same binding, type and name. */
7320 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7321 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7322 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7323 goto done;
7324
7325 result = TRUE;
7326 goto done;
7327 }
7328
7329 symtable1 = (struct elf_symbol *)
7330 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7331 symtable2 = (struct elf_symbol *)
7332 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7333 if (symtable1 == NULL || symtable2 == NULL)
7334 goto done;
7335
7336 /* Count definitions in the section. */
7337 count1 = 0;
7338 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7339 if (isym->st_shndx == shndx1)
7340 symtable1[count1++].u.isym = isym;
7341
7342 count2 = 0;
7343 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7344 if (isym->st_shndx == shndx2)
7345 symtable2[count2++].u.isym = isym;
7346
7347 if (count1 == 0 || count2 == 0 || count1 != count2)
7348 goto done;
7349
7350 for (i = 0; i < count1; i++)
7351 symtable1[i].name
7352 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7353 symtable1[i].u.isym->st_name);
7354
7355 for (i = 0; i < count2; i++)
7356 symtable2[i].name
7357 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7358 symtable2[i].u.isym->st_name);
7359
7360 /* Sort symbol by name. */
7361 qsort (symtable1, count1, sizeof (struct elf_symbol),
7362 elf_sym_name_compare);
7363 qsort (symtable2, count1, sizeof (struct elf_symbol),
7364 elf_sym_name_compare);
7365
7366 for (i = 0; i < count1; i++)
7367 /* Two symbols must have the same binding, type and name. */
7368 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7369 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7370 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7371 goto done;
7372
7373 result = TRUE;
7374
7375 done:
7376 if (symtable1)
7377 free (symtable1);
7378 if (symtable2)
7379 free (symtable2);
7380 if (isymbuf1)
7381 free (isymbuf1);
7382 if (isymbuf2)
7383 free (isymbuf2);
7384
7385 return result;
7386 }
7387
7388 /* Return TRUE if 2 section types are compatible. */
7389
7390 bfd_boolean
7391 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7392 bfd *bbfd, const asection *bsec)
7393 {
7394 if (asec == NULL
7395 || bsec == NULL
7396 || abfd->xvec->flavour != bfd_target_elf_flavour
7397 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7398 return TRUE;
7399
7400 return elf_section_type (asec) == elf_section_type (bsec);
7401 }
7402 \f
7403 /* Final phase of ELF linker. */
7404
7405 /* A structure we use to avoid passing large numbers of arguments. */
7406
7407 struct elf_final_link_info
7408 {
7409 /* General link information. */
7410 struct bfd_link_info *info;
7411 /* Output BFD. */
7412 bfd *output_bfd;
7413 /* Symbol string table. */
7414 struct bfd_strtab_hash *symstrtab;
7415 /* .dynsym section. */
7416 asection *dynsym_sec;
7417 /* .hash section. */
7418 asection *hash_sec;
7419 /* symbol version section (.gnu.version). */
7420 asection *symver_sec;
7421 /* Buffer large enough to hold contents of any section. */
7422 bfd_byte *contents;
7423 /* Buffer large enough to hold external relocs of any section. */
7424 void *external_relocs;
7425 /* Buffer large enough to hold internal relocs of any section. */
7426 Elf_Internal_Rela *internal_relocs;
7427 /* Buffer large enough to hold external local symbols of any input
7428 BFD. */
7429 bfd_byte *external_syms;
7430 /* And a buffer for symbol section indices. */
7431 Elf_External_Sym_Shndx *locsym_shndx;
7432 /* Buffer large enough to hold internal local symbols of any input
7433 BFD. */
7434 Elf_Internal_Sym *internal_syms;
7435 /* Array large enough to hold a symbol index for each local symbol
7436 of any input BFD. */
7437 long *indices;
7438 /* Array large enough to hold a section pointer for each local
7439 symbol of any input BFD. */
7440 asection **sections;
7441 /* Buffer to hold swapped out symbols. */
7442 bfd_byte *symbuf;
7443 /* And one for symbol section indices. */
7444 Elf_External_Sym_Shndx *symshndxbuf;
7445 /* Number of swapped out symbols in buffer. */
7446 size_t symbuf_count;
7447 /* Number of symbols which fit in symbuf. */
7448 size_t symbuf_size;
7449 /* And same for symshndxbuf. */
7450 size_t shndxbuf_size;
7451 /* Number of STT_FILE syms seen. */
7452 size_t filesym_count;
7453 };
7454
7455 /* This struct is used to pass information to elf_link_output_extsym. */
7456
7457 struct elf_outext_info
7458 {
7459 bfd_boolean failed;
7460 bfd_boolean localsyms;
7461 bfd_boolean need_second_pass;
7462 bfd_boolean second_pass;
7463 bfd_boolean file_sym_done;
7464 struct elf_final_link_info *flinfo;
7465 };
7466
7467
7468 /* Support for evaluating a complex relocation.
7469
7470 Complex relocations are generalized, self-describing relocations. The
7471 implementation of them consists of two parts: complex symbols, and the
7472 relocations themselves.
7473
7474 The relocations are use a reserved elf-wide relocation type code (R_RELC
7475 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7476 information (start bit, end bit, word width, etc) into the addend. This
7477 information is extracted from CGEN-generated operand tables within gas.
7478
7479 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7480 internal) representing prefix-notation expressions, including but not
7481 limited to those sorts of expressions normally encoded as addends in the
7482 addend field. The symbol mangling format is:
7483
7484 <node> := <literal>
7485 | <unary-operator> ':' <node>
7486 | <binary-operator> ':' <node> ':' <node>
7487 ;
7488
7489 <literal> := 's' <digits=N> ':' <N character symbol name>
7490 | 'S' <digits=N> ':' <N character section name>
7491 | '#' <hexdigits>
7492 ;
7493
7494 <binary-operator> := as in C
7495 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7496
7497 static void
7498 set_symbol_value (bfd *bfd_with_globals,
7499 Elf_Internal_Sym *isymbuf,
7500 size_t locsymcount,
7501 size_t symidx,
7502 bfd_vma val)
7503 {
7504 struct elf_link_hash_entry **sym_hashes;
7505 struct elf_link_hash_entry *h;
7506 size_t extsymoff = locsymcount;
7507
7508 if (symidx < locsymcount)
7509 {
7510 Elf_Internal_Sym *sym;
7511
7512 sym = isymbuf + symidx;
7513 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7514 {
7515 /* It is a local symbol: move it to the
7516 "absolute" section and give it a value. */
7517 sym->st_shndx = SHN_ABS;
7518 sym->st_value = val;
7519 return;
7520 }
7521 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7522 extsymoff = 0;
7523 }
7524
7525 /* It is a global symbol: set its link type
7526 to "defined" and give it a value. */
7527
7528 sym_hashes = elf_sym_hashes (bfd_with_globals);
7529 h = sym_hashes [symidx - extsymoff];
7530 while (h->root.type == bfd_link_hash_indirect
7531 || h->root.type == bfd_link_hash_warning)
7532 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7533 h->root.type = bfd_link_hash_defined;
7534 h->root.u.def.value = val;
7535 h->root.u.def.section = bfd_abs_section_ptr;
7536 }
7537
7538 static bfd_boolean
7539 resolve_symbol (const char *name,
7540 bfd *input_bfd,
7541 struct elf_final_link_info *flinfo,
7542 bfd_vma *result,
7543 Elf_Internal_Sym *isymbuf,
7544 size_t locsymcount)
7545 {
7546 Elf_Internal_Sym *sym;
7547 struct bfd_link_hash_entry *global_entry;
7548 const char *candidate = NULL;
7549 Elf_Internal_Shdr *symtab_hdr;
7550 size_t i;
7551
7552 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7553
7554 for (i = 0; i < locsymcount; ++ i)
7555 {
7556 sym = isymbuf + i;
7557
7558 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7559 continue;
7560
7561 candidate = bfd_elf_string_from_elf_section (input_bfd,
7562 symtab_hdr->sh_link,
7563 sym->st_name);
7564 #ifdef DEBUG
7565 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7566 name, candidate, (unsigned long) sym->st_value);
7567 #endif
7568 if (candidate && strcmp (candidate, name) == 0)
7569 {
7570 asection *sec = flinfo->sections [i];
7571
7572 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7573 *result += sec->output_offset + sec->output_section->vma;
7574 #ifdef DEBUG
7575 printf ("Found symbol with value %8.8lx\n",
7576 (unsigned long) *result);
7577 #endif
7578 return TRUE;
7579 }
7580 }
7581
7582 /* Hmm, haven't found it yet. perhaps it is a global. */
7583 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7584 FALSE, FALSE, TRUE);
7585 if (!global_entry)
7586 return FALSE;
7587
7588 if (global_entry->type == bfd_link_hash_defined
7589 || global_entry->type == bfd_link_hash_defweak)
7590 {
7591 *result = (global_entry->u.def.value
7592 + global_entry->u.def.section->output_section->vma
7593 + global_entry->u.def.section->output_offset);
7594 #ifdef DEBUG
7595 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7596 global_entry->root.string, (unsigned long) *result);
7597 #endif
7598 return TRUE;
7599 }
7600
7601 return FALSE;
7602 }
7603
7604 static bfd_boolean
7605 resolve_section (const char *name,
7606 asection *sections,
7607 bfd_vma *result)
7608 {
7609 asection *curr;
7610 unsigned int len;
7611
7612 for (curr = sections; curr; curr = curr->next)
7613 if (strcmp (curr->name, name) == 0)
7614 {
7615 *result = curr->vma;
7616 return TRUE;
7617 }
7618
7619 /* Hmm. still haven't found it. try pseudo-section names. */
7620 for (curr = sections; curr; curr = curr->next)
7621 {
7622 len = strlen (curr->name);
7623 if (len > strlen (name))
7624 continue;
7625
7626 if (strncmp (curr->name, name, len) == 0)
7627 {
7628 if (strncmp (".end", name + len, 4) == 0)
7629 {
7630 *result = curr->vma + curr->size;
7631 return TRUE;
7632 }
7633
7634 /* Insert more pseudo-section names here, if you like. */
7635 }
7636 }
7637
7638 return FALSE;
7639 }
7640
7641 static void
7642 undefined_reference (const char *reftype, const char *name)
7643 {
7644 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7645 reftype, name);
7646 }
7647
7648 static bfd_boolean
7649 eval_symbol (bfd_vma *result,
7650 const char **symp,
7651 bfd *input_bfd,
7652 struct elf_final_link_info *flinfo,
7653 bfd_vma dot,
7654 Elf_Internal_Sym *isymbuf,
7655 size_t locsymcount,
7656 int signed_p)
7657 {
7658 size_t len;
7659 size_t symlen;
7660 bfd_vma a;
7661 bfd_vma b;
7662 char symbuf[4096];
7663 const char *sym = *symp;
7664 const char *symend;
7665 bfd_boolean symbol_is_section = FALSE;
7666
7667 len = strlen (sym);
7668 symend = sym + len;
7669
7670 if (len < 1 || len > sizeof (symbuf))
7671 {
7672 bfd_set_error (bfd_error_invalid_operation);
7673 return FALSE;
7674 }
7675
7676 switch (* sym)
7677 {
7678 case '.':
7679 *result = dot;
7680 *symp = sym + 1;
7681 return TRUE;
7682
7683 case '#':
7684 ++sym;
7685 *result = strtoul (sym, (char **) symp, 16);
7686 return TRUE;
7687
7688 case 'S':
7689 symbol_is_section = TRUE;
7690 case 's':
7691 ++sym;
7692 symlen = strtol (sym, (char **) symp, 10);
7693 sym = *symp + 1; /* Skip the trailing ':'. */
7694
7695 if (symend < sym || symlen + 1 > sizeof (symbuf))
7696 {
7697 bfd_set_error (bfd_error_invalid_operation);
7698 return FALSE;
7699 }
7700
7701 memcpy (symbuf, sym, symlen);
7702 symbuf[symlen] = '\0';
7703 *symp = sym + symlen;
7704
7705 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7706 the symbol as a section, or vice-versa. so we're pretty liberal in our
7707 interpretation here; section means "try section first", not "must be a
7708 section", and likewise with symbol. */
7709
7710 if (symbol_is_section)
7711 {
7712 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7713 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7714 isymbuf, locsymcount))
7715 {
7716 undefined_reference ("section", symbuf);
7717 return FALSE;
7718 }
7719 }
7720 else
7721 {
7722 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7723 isymbuf, locsymcount)
7724 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7725 result))
7726 {
7727 undefined_reference ("symbol", symbuf);
7728 return FALSE;
7729 }
7730 }
7731
7732 return TRUE;
7733
7734 /* All that remains are operators. */
7735
7736 #define UNARY_OP(op) \
7737 if (strncmp (sym, #op, strlen (#op)) == 0) \
7738 { \
7739 sym += strlen (#op); \
7740 if (*sym == ':') \
7741 ++sym; \
7742 *symp = sym; \
7743 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7744 isymbuf, locsymcount, signed_p)) \
7745 return FALSE; \
7746 if (signed_p) \
7747 *result = op ((bfd_signed_vma) a); \
7748 else \
7749 *result = op a; \
7750 return TRUE; \
7751 }
7752
7753 #define BINARY_OP(op) \
7754 if (strncmp (sym, #op, strlen (#op)) == 0) \
7755 { \
7756 sym += strlen (#op); \
7757 if (*sym == ':') \
7758 ++sym; \
7759 *symp = sym; \
7760 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7761 isymbuf, locsymcount, signed_p)) \
7762 return FALSE; \
7763 ++*symp; \
7764 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7765 isymbuf, locsymcount, signed_p)) \
7766 return FALSE; \
7767 if (signed_p) \
7768 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7769 else \
7770 *result = a op b; \
7771 return TRUE; \
7772 }
7773
7774 default:
7775 UNARY_OP (0-);
7776 BINARY_OP (<<);
7777 BINARY_OP (>>);
7778 BINARY_OP (==);
7779 BINARY_OP (!=);
7780 BINARY_OP (<=);
7781 BINARY_OP (>=);
7782 BINARY_OP (&&);
7783 BINARY_OP (||);
7784 UNARY_OP (~);
7785 UNARY_OP (!);
7786 BINARY_OP (*);
7787 BINARY_OP (/);
7788 BINARY_OP (%);
7789 BINARY_OP (^);
7790 BINARY_OP (|);
7791 BINARY_OP (&);
7792 BINARY_OP (+);
7793 BINARY_OP (-);
7794 BINARY_OP (<);
7795 BINARY_OP (>);
7796 #undef UNARY_OP
7797 #undef BINARY_OP
7798 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7799 bfd_set_error (bfd_error_invalid_operation);
7800 return FALSE;
7801 }
7802 }
7803
7804 static void
7805 put_value (bfd_vma size,
7806 unsigned long chunksz,
7807 bfd *input_bfd,
7808 bfd_vma x,
7809 bfd_byte *location)
7810 {
7811 location += (size - chunksz);
7812
7813 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7814 {
7815 switch (chunksz)
7816 {
7817 default:
7818 case 0:
7819 abort ();
7820 case 1:
7821 bfd_put_8 (input_bfd, x, location);
7822 break;
7823 case 2:
7824 bfd_put_16 (input_bfd, x, location);
7825 break;
7826 case 4:
7827 bfd_put_32 (input_bfd, x, location);
7828 break;
7829 case 8:
7830 #ifdef BFD64
7831 bfd_put_64 (input_bfd, x, location);
7832 #else
7833 abort ();
7834 #endif
7835 break;
7836 }
7837 }
7838 }
7839
7840 static bfd_vma
7841 get_value (bfd_vma size,
7842 unsigned long chunksz,
7843 bfd *input_bfd,
7844 bfd_byte *location)
7845 {
7846 int shift;
7847 bfd_vma x = 0;
7848
7849 /* Sanity checks. */
7850 BFD_ASSERT (chunksz <= sizeof (x)
7851 && size >= chunksz
7852 && chunksz != 0
7853 && (size % chunksz) == 0
7854 && input_bfd != NULL
7855 && location != NULL);
7856
7857 if (chunksz == sizeof (x))
7858 {
7859 BFD_ASSERT (size == chunksz);
7860
7861 /* Make sure that we do not perform an undefined shift operation.
7862 We know that size == chunksz so there will only be one iteration
7863 of the loop below. */
7864 shift = 0;
7865 }
7866 else
7867 shift = 8 * chunksz;
7868
7869 for (; size; size -= chunksz, location += chunksz)
7870 {
7871 switch (chunksz)
7872 {
7873 case 1:
7874 x = (x << shift) | bfd_get_8 (input_bfd, location);
7875 break;
7876 case 2:
7877 x = (x << shift) | bfd_get_16 (input_bfd, location);
7878 break;
7879 case 4:
7880 x = (x << shift) | bfd_get_32 (input_bfd, location);
7881 break;
7882 #ifdef BFD64
7883 case 8:
7884 x = (x << shift) | bfd_get_64 (input_bfd, location);
7885 break;
7886 #endif
7887 default:
7888 abort ();
7889 }
7890 }
7891 return x;
7892 }
7893
7894 static void
7895 decode_complex_addend (unsigned long *start, /* in bits */
7896 unsigned long *oplen, /* in bits */
7897 unsigned long *len, /* in bits */
7898 unsigned long *wordsz, /* in bytes */
7899 unsigned long *chunksz, /* in bytes */
7900 unsigned long *lsb0_p,
7901 unsigned long *signed_p,
7902 unsigned long *trunc_p,
7903 unsigned long encoded)
7904 {
7905 * start = encoded & 0x3F;
7906 * len = (encoded >> 6) & 0x3F;
7907 * oplen = (encoded >> 12) & 0x3F;
7908 * wordsz = (encoded >> 18) & 0xF;
7909 * chunksz = (encoded >> 22) & 0xF;
7910 * lsb0_p = (encoded >> 27) & 1;
7911 * signed_p = (encoded >> 28) & 1;
7912 * trunc_p = (encoded >> 29) & 1;
7913 }
7914
7915 bfd_reloc_status_type
7916 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7917 asection *input_section ATTRIBUTE_UNUSED,
7918 bfd_byte *contents,
7919 Elf_Internal_Rela *rel,
7920 bfd_vma relocation)
7921 {
7922 bfd_vma shift, x, mask;
7923 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7924 bfd_reloc_status_type r;
7925
7926 /* Perform this reloc, since it is complex.
7927 (this is not to say that it necessarily refers to a complex
7928 symbol; merely that it is a self-describing CGEN based reloc.
7929 i.e. the addend has the complete reloc information (bit start, end,
7930 word size, etc) encoded within it.). */
7931
7932 decode_complex_addend (&start, &oplen, &len, &wordsz,
7933 &chunksz, &lsb0_p, &signed_p,
7934 &trunc_p, rel->r_addend);
7935
7936 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7937
7938 if (lsb0_p)
7939 shift = (start + 1) - len;
7940 else
7941 shift = (8 * wordsz) - (start + len);
7942
7943 /* FIXME: octets_per_byte. */
7944 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7945
7946 #ifdef DEBUG
7947 printf ("Doing complex reloc: "
7948 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7949 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7950 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7951 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7952 oplen, (unsigned long) x, (unsigned long) mask,
7953 (unsigned long) relocation);
7954 #endif
7955
7956 r = bfd_reloc_ok;
7957 if (! trunc_p)
7958 /* Now do an overflow check. */
7959 r = bfd_check_overflow ((signed_p
7960 ? complain_overflow_signed
7961 : complain_overflow_unsigned),
7962 len, 0, (8 * wordsz),
7963 relocation);
7964
7965 /* Do the deed. */
7966 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7967
7968 #ifdef DEBUG
7969 printf (" relocation: %8.8lx\n"
7970 " shifted mask: %8.8lx\n"
7971 " shifted/masked reloc: %8.8lx\n"
7972 " result: %8.8lx\n",
7973 (unsigned long) relocation, (unsigned long) (mask << shift),
7974 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7975 #endif
7976 /* FIXME: octets_per_byte. */
7977 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7978 return r;
7979 }
7980
7981 /* When performing a relocatable link, the input relocations are
7982 preserved. But, if they reference global symbols, the indices
7983 referenced must be updated. Update all the relocations found in
7984 RELDATA. */
7985
7986 static void
7987 elf_link_adjust_relocs (bfd *abfd,
7988 struct bfd_elf_section_reloc_data *reldata)
7989 {
7990 unsigned int i;
7991 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7992 bfd_byte *erela;
7993 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7994 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7995 bfd_vma r_type_mask;
7996 int r_sym_shift;
7997 unsigned int count = reldata->count;
7998 struct elf_link_hash_entry **rel_hash = reldata->hashes;
7999
8000 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8001 {
8002 swap_in = bed->s->swap_reloc_in;
8003 swap_out = bed->s->swap_reloc_out;
8004 }
8005 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8006 {
8007 swap_in = bed->s->swap_reloca_in;
8008 swap_out = bed->s->swap_reloca_out;
8009 }
8010 else
8011 abort ();
8012
8013 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8014 abort ();
8015
8016 if (bed->s->arch_size == 32)
8017 {
8018 r_type_mask = 0xff;
8019 r_sym_shift = 8;
8020 }
8021 else
8022 {
8023 r_type_mask = 0xffffffff;
8024 r_sym_shift = 32;
8025 }
8026
8027 erela = reldata->hdr->contents;
8028 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8029 {
8030 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8031 unsigned int j;
8032
8033 if (*rel_hash == NULL)
8034 continue;
8035
8036 BFD_ASSERT ((*rel_hash)->indx >= 0);
8037
8038 (*swap_in) (abfd, erela, irela);
8039 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8040 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8041 | (irela[j].r_info & r_type_mask));
8042 (*swap_out) (abfd, irela, erela);
8043 }
8044 }
8045
8046 struct elf_link_sort_rela
8047 {
8048 union {
8049 bfd_vma offset;
8050 bfd_vma sym_mask;
8051 } u;
8052 enum elf_reloc_type_class type;
8053 /* We use this as an array of size int_rels_per_ext_rel. */
8054 Elf_Internal_Rela rela[1];
8055 };
8056
8057 static int
8058 elf_link_sort_cmp1 (const void *A, const void *B)
8059 {
8060 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8061 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8062 int relativea, relativeb;
8063
8064 relativea = a->type == reloc_class_relative;
8065 relativeb = b->type == reloc_class_relative;
8066
8067 if (relativea < relativeb)
8068 return 1;
8069 if (relativea > relativeb)
8070 return -1;
8071 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8072 return -1;
8073 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8074 return 1;
8075 if (a->rela->r_offset < b->rela->r_offset)
8076 return -1;
8077 if (a->rela->r_offset > b->rela->r_offset)
8078 return 1;
8079 return 0;
8080 }
8081
8082 static int
8083 elf_link_sort_cmp2 (const void *A, const void *B)
8084 {
8085 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8086 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8087
8088 if (a->type < b->type)
8089 return -1;
8090 if (a->type > b->type)
8091 return 1;
8092 if (a->u.offset < b->u.offset)
8093 return -1;
8094 if (a->u.offset > b->u.offset)
8095 return 1;
8096 if (a->rela->r_offset < b->rela->r_offset)
8097 return -1;
8098 if (a->rela->r_offset > b->rela->r_offset)
8099 return 1;
8100 return 0;
8101 }
8102
8103 static size_t
8104 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8105 {
8106 asection *dynamic_relocs;
8107 asection *rela_dyn;
8108 asection *rel_dyn;
8109 bfd_size_type count, size;
8110 size_t i, ret, sort_elt, ext_size;
8111 bfd_byte *sort, *s_non_relative, *p;
8112 struct elf_link_sort_rela *sq;
8113 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8114 int i2e = bed->s->int_rels_per_ext_rel;
8115 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8116 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8117 struct bfd_link_order *lo;
8118 bfd_vma r_sym_mask;
8119 bfd_boolean use_rela;
8120
8121 /* Find a dynamic reloc section. */
8122 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8123 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8124 if (rela_dyn != NULL && rela_dyn->size > 0
8125 && rel_dyn != NULL && rel_dyn->size > 0)
8126 {
8127 bfd_boolean use_rela_initialised = FALSE;
8128
8129 /* This is just here to stop gcc from complaining.
8130 It's initialization checking code is not perfect. */
8131 use_rela = TRUE;
8132
8133 /* Both sections are present. Examine the sizes
8134 of the indirect sections to help us choose. */
8135 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8136 if (lo->type == bfd_indirect_link_order)
8137 {
8138 asection *o = lo->u.indirect.section;
8139
8140 if ((o->size % bed->s->sizeof_rela) == 0)
8141 {
8142 if ((o->size % bed->s->sizeof_rel) == 0)
8143 /* Section size is divisible by both rel and rela sizes.
8144 It is of no help to us. */
8145 ;
8146 else
8147 {
8148 /* Section size is only divisible by rela. */
8149 if (use_rela_initialised && (use_rela == FALSE))
8150 {
8151 _bfd_error_handler
8152 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8153 bfd_set_error (bfd_error_invalid_operation);
8154 return 0;
8155 }
8156 else
8157 {
8158 use_rela = TRUE;
8159 use_rela_initialised = TRUE;
8160 }
8161 }
8162 }
8163 else if ((o->size % bed->s->sizeof_rel) == 0)
8164 {
8165 /* Section size is only divisible by rel. */
8166 if (use_rela_initialised && (use_rela == TRUE))
8167 {
8168 _bfd_error_handler
8169 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8170 bfd_set_error (bfd_error_invalid_operation);
8171 return 0;
8172 }
8173 else
8174 {
8175 use_rela = FALSE;
8176 use_rela_initialised = TRUE;
8177 }
8178 }
8179 else
8180 {
8181 /* The section size is not divisible by either - something is wrong. */
8182 _bfd_error_handler
8183 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8184 bfd_set_error (bfd_error_invalid_operation);
8185 return 0;
8186 }
8187 }
8188
8189 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8190 if (lo->type == bfd_indirect_link_order)
8191 {
8192 asection *o = lo->u.indirect.section;
8193
8194 if ((o->size % bed->s->sizeof_rela) == 0)
8195 {
8196 if ((o->size % bed->s->sizeof_rel) == 0)
8197 /* Section size is divisible by both rel and rela sizes.
8198 It is of no help to us. */
8199 ;
8200 else
8201 {
8202 /* Section size is only divisible by rela. */
8203 if (use_rela_initialised && (use_rela == FALSE))
8204 {
8205 _bfd_error_handler
8206 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8207 bfd_set_error (bfd_error_invalid_operation);
8208 return 0;
8209 }
8210 else
8211 {
8212 use_rela = TRUE;
8213 use_rela_initialised = TRUE;
8214 }
8215 }
8216 }
8217 else if ((o->size % bed->s->sizeof_rel) == 0)
8218 {
8219 /* Section size is only divisible by rel. */
8220 if (use_rela_initialised && (use_rela == TRUE))
8221 {
8222 _bfd_error_handler
8223 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8224 bfd_set_error (bfd_error_invalid_operation);
8225 return 0;
8226 }
8227 else
8228 {
8229 use_rela = FALSE;
8230 use_rela_initialised = TRUE;
8231 }
8232 }
8233 else
8234 {
8235 /* The section size is not divisible by either - something is wrong. */
8236 _bfd_error_handler
8237 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8238 bfd_set_error (bfd_error_invalid_operation);
8239 return 0;
8240 }
8241 }
8242
8243 if (! use_rela_initialised)
8244 /* Make a guess. */
8245 use_rela = TRUE;
8246 }
8247 else if (rela_dyn != NULL && rela_dyn->size > 0)
8248 use_rela = TRUE;
8249 else if (rel_dyn != NULL && rel_dyn->size > 0)
8250 use_rela = FALSE;
8251 else
8252 return 0;
8253
8254 if (use_rela)
8255 {
8256 dynamic_relocs = rela_dyn;
8257 ext_size = bed->s->sizeof_rela;
8258 swap_in = bed->s->swap_reloca_in;
8259 swap_out = bed->s->swap_reloca_out;
8260 }
8261 else
8262 {
8263 dynamic_relocs = rel_dyn;
8264 ext_size = bed->s->sizeof_rel;
8265 swap_in = bed->s->swap_reloc_in;
8266 swap_out = bed->s->swap_reloc_out;
8267 }
8268
8269 size = 0;
8270 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8271 if (lo->type == bfd_indirect_link_order)
8272 size += lo->u.indirect.section->size;
8273
8274 if (size != dynamic_relocs->size)
8275 return 0;
8276
8277 sort_elt = (sizeof (struct elf_link_sort_rela)
8278 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8279
8280 count = dynamic_relocs->size / ext_size;
8281 if (count == 0)
8282 return 0;
8283 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8284
8285 if (sort == NULL)
8286 {
8287 (*info->callbacks->warning)
8288 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8289 return 0;
8290 }
8291
8292 if (bed->s->arch_size == 32)
8293 r_sym_mask = ~(bfd_vma) 0xff;
8294 else
8295 r_sym_mask = ~(bfd_vma) 0xffffffff;
8296
8297 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8298 if (lo->type == bfd_indirect_link_order)
8299 {
8300 bfd_byte *erel, *erelend;
8301 asection *o = lo->u.indirect.section;
8302
8303 if (o->contents == NULL && o->size != 0)
8304 {
8305 /* This is a reloc section that is being handled as a normal
8306 section. See bfd_section_from_shdr. We can't combine
8307 relocs in this case. */
8308 free (sort);
8309 return 0;
8310 }
8311 erel = o->contents;
8312 erelend = o->contents + o->size;
8313 /* FIXME: octets_per_byte. */
8314 p = sort + o->output_offset / ext_size * sort_elt;
8315
8316 while (erel < erelend)
8317 {
8318 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8319
8320 (*swap_in) (abfd, erel, s->rela);
8321 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8322 s->u.sym_mask = r_sym_mask;
8323 p += sort_elt;
8324 erel += ext_size;
8325 }
8326 }
8327
8328 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8329
8330 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8331 {
8332 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8333 if (s->type != reloc_class_relative)
8334 break;
8335 }
8336 ret = i;
8337 s_non_relative = p;
8338
8339 sq = (struct elf_link_sort_rela *) s_non_relative;
8340 for (; i < count; i++, p += sort_elt)
8341 {
8342 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8343 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8344 sq = sp;
8345 sp->u.offset = sq->rela->r_offset;
8346 }
8347
8348 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8349
8350 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8351 if (lo->type == bfd_indirect_link_order)
8352 {
8353 bfd_byte *erel, *erelend;
8354 asection *o = lo->u.indirect.section;
8355
8356 erel = o->contents;
8357 erelend = o->contents + o->size;
8358 /* FIXME: octets_per_byte. */
8359 p = sort + o->output_offset / ext_size * sort_elt;
8360 while (erel < erelend)
8361 {
8362 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8363 (*swap_out) (abfd, s->rela, erel);
8364 p += sort_elt;
8365 erel += ext_size;
8366 }
8367 }
8368
8369 free (sort);
8370 *psec = dynamic_relocs;
8371 return ret;
8372 }
8373
8374 /* Flush the output symbols to the file. */
8375
8376 static bfd_boolean
8377 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8378 const struct elf_backend_data *bed)
8379 {
8380 if (flinfo->symbuf_count > 0)
8381 {
8382 Elf_Internal_Shdr *hdr;
8383 file_ptr pos;
8384 bfd_size_type amt;
8385
8386 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8387 pos = hdr->sh_offset + hdr->sh_size;
8388 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8389 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8390 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8391 return FALSE;
8392
8393 hdr->sh_size += amt;
8394 flinfo->symbuf_count = 0;
8395 }
8396
8397 return TRUE;
8398 }
8399
8400 /* Add a symbol to the output symbol table. */
8401
8402 static int
8403 elf_link_output_sym (struct elf_final_link_info *flinfo,
8404 const char *name,
8405 Elf_Internal_Sym *elfsym,
8406 asection *input_sec,
8407 struct elf_link_hash_entry *h)
8408 {
8409 bfd_byte *dest;
8410 Elf_External_Sym_Shndx *destshndx;
8411 int (*output_symbol_hook)
8412 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8413 struct elf_link_hash_entry *);
8414 const struct elf_backend_data *bed;
8415
8416 bed = get_elf_backend_data (flinfo->output_bfd);
8417 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8418 if (output_symbol_hook != NULL)
8419 {
8420 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8421 if (ret != 1)
8422 return ret;
8423 }
8424
8425 if (name == NULL || *name == '\0')
8426 elfsym->st_name = 0;
8427 else if (input_sec->flags & SEC_EXCLUDE)
8428 elfsym->st_name = 0;
8429 else
8430 {
8431 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8432 name, TRUE, FALSE);
8433 if (elfsym->st_name == (unsigned long) -1)
8434 return 0;
8435 }
8436
8437 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8438 {
8439 if (! elf_link_flush_output_syms (flinfo, bed))
8440 return 0;
8441 }
8442
8443 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8444 destshndx = flinfo->symshndxbuf;
8445 if (destshndx != NULL)
8446 {
8447 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8448 {
8449 bfd_size_type amt;
8450
8451 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8452 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8453 amt * 2);
8454 if (destshndx == NULL)
8455 return 0;
8456 flinfo->symshndxbuf = destshndx;
8457 memset ((char *) destshndx + amt, 0, amt);
8458 flinfo->shndxbuf_size *= 2;
8459 }
8460 destshndx += bfd_get_symcount (flinfo->output_bfd);
8461 }
8462
8463 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8464 flinfo->symbuf_count += 1;
8465 bfd_get_symcount (flinfo->output_bfd) += 1;
8466
8467 return 1;
8468 }
8469
8470 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8471
8472 static bfd_boolean
8473 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8474 {
8475 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8476 && sym->st_shndx < SHN_LORESERVE)
8477 {
8478 /* The gABI doesn't support dynamic symbols in output sections
8479 beyond 64k. */
8480 (*_bfd_error_handler)
8481 (_("%B: Too many sections: %d (>= %d)"),
8482 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8483 bfd_set_error (bfd_error_nonrepresentable_section);
8484 return FALSE;
8485 }
8486 return TRUE;
8487 }
8488
8489 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8490 allowing an unsatisfied unversioned symbol in the DSO to match a
8491 versioned symbol that would normally require an explicit version.
8492 We also handle the case that a DSO references a hidden symbol
8493 which may be satisfied by a versioned symbol in another DSO. */
8494
8495 static bfd_boolean
8496 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8497 const struct elf_backend_data *bed,
8498 struct elf_link_hash_entry *h)
8499 {
8500 bfd *abfd;
8501 struct elf_link_loaded_list *loaded;
8502
8503 if (!is_elf_hash_table (info->hash))
8504 return FALSE;
8505
8506 /* Check indirect symbol. */
8507 while (h->root.type == bfd_link_hash_indirect)
8508 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8509
8510 switch (h->root.type)
8511 {
8512 default:
8513 abfd = NULL;
8514 break;
8515
8516 case bfd_link_hash_undefined:
8517 case bfd_link_hash_undefweak:
8518 abfd = h->root.u.undef.abfd;
8519 if ((abfd->flags & DYNAMIC) == 0
8520 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8521 return FALSE;
8522 break;
8523
8524 case bfd_link_hash_defined:
8525 case bfd_link_hash_defweak:
8526 abfd = h->root.u.def.section->owner;
8527 break;
8528
8529 case bfd_link_hash_common:
8530 abfd = h->root.u.c.p->section->owner;
8531 break;
8532 }
8533 BFD_ASSERT (abfd != NULL);
8534
8535 for (loaded = elf_hash_table (info)->loaded;
8536 loaded != NULL;
8537 loaded = loaded->next)
8538 {
8539 bfd *input;
8540 Elf_Internal_Shdr *hdr;
8541 bfd_size_type symcount;
8542 bfd_size_type extsymcount;
8543 bfd_size_type extsymoff;
8544 Elf_Internal_Shdr *versymhdr;
8545 Elf_Internal_Sym *isym;
8546 Elf_Internal_Sym *isymend;
8547 Elf_Internal_Sym *isymbuf;
8548 Elf_External_Versym *ever;
8549 Elf_External_Versym *extversym;
8550
8551 input = loaded->abfd;
8552
8553 /* We check each DSO for a possible hidden versioned definition. */
8554 if (input == abfd
8555 || (input->flags & DYNAMIC) == 0
8556 || elf_dynversym (input) == 0)
8557 continue;
8558
8559 hdr = &elf_tdata (input)->dynsymtab_hdr;
8560
8561 symcount = hdr->sh_size / bed->s->sizeof_sym;
8562 if (elf_bad_symtab (input))
8563 {
8564 extsymcount = symcount;
8565 extsymoff = 0;
8566 }
8567 else
8568 {
8569 extsymcount = symcount - hdr->sh_info;
8570 extsymoff = hdr->sh_info;
8571 }
8572
8573 if (extsymcount == 0)
8574 continue;
8575
8576 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8577 NULL, NULL, NULL);
8578 if (isymbuf == NULL)
8579 return FALSE;
8580
8581 /* Read in any version definitions. */
8582 versymhdr = &elf_tdata (input)->dynversym_hdr;
8583 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8584 if (extversym == NULL)
8585 goto error_ret;
8586
8587 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8588 || (bfd_bread (extversym, versymhdr->sh_size, input)
8589 != versymhdr->sh_size))
8590 {
8591 free (extversym);
8592 error_ret:
8593 free (isymbuf);
8594 return FALSE;
8595 }
8596
8597 ever = extversym + extsymoff;
8598 isymend = isymbuf + extsymcount;
8599 for (isym = isymbuf; isym < isymend; isym++, ever++)
8600 {
8601 const char *name;
8602 Elf_Internal_Versym iver;
8603 unsigned short version_index;
8604
8605 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8606 || isym->st_shndx == SHN_UNDEF)
8607 continue;
8608
8609 name = bfd_elf_string_from_elf_section (input,
8610 hdr->sh_link,
8611 isym->st_name);
8612 if (strcmp (name, h->root.root.string) != 0)
8613 continue;
8614
8615 _bfd_elf_swap_versym_in (input, ever, &iver);
8616
8617 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8618 && !(h->def_regular
8619 && h->forced_local))
8620 {
8621 /* If we have a non-hidden versioned sym, then it should
8622 have provided a definition for the undefined sym unless
8623 it is defined in a non-shared object and forced local.
8624 */
8625 abort ();
8626 }
8627
8628 version_index = iver.vs_vers & VERSYM_VERSION;
8629 if (version_index == 1 || version_index == 2)
8630 {
8631 /* This is the base or first version. We can use it. */
8632 free (extversym);
8633 free (isymbuf);
8634 return TRUE;
8635 }
8636 }
8637
8638 free (extversym);
8639 free (isymbuf);
8640 }
8641
8642 return FALSE;
8643 }
8644
8645 /* Add an external symbol to the symbol table. This is called from
8646 the hash table traversal routine. When generating a shared object,
8647 we go through the symbol table twice. The first time we output
8648 anything that might have been forced to local scope in a version
8649 script. The second time we output the symbols that are still
8650 global symbols. */
8651
8652 static bfd_boolean
8653 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8654 {
8655 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8656 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8657 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8658 bfd_boolean strip;
8659 Elf_Internal_Sym sym;
8660 asection *input_sec;
8661 const struct elf_backend_data *bed;
8662 long indx;
8663 int ret;
8664
8665 if (h->root.type == bfd_link_hash_warning)
8666 {
8667 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8668 if (h->root.type == bfd_link_hash_new)
8669 return TRUE;
8670 }
8671
8672 /* Decide whether to output this symbol in this pass. */
8673 if (eoinfo->localsyms)
8674 {
8675 if (!h->forced_local)
8676 return TRUE;
8677 if (eoinfo->second_pass
8678 && !((h->root.type == bfd_link_hash_defined
8679 || h->root.type == bfd_link_hash_defweak)
8680 && h->root.u.def.section->output_section != NULL))
8681 return TRUE;
8682
8683 if (!eoinfo->file_sym_done
8684 && (eoinfo->second_pass ? eoinfo->flinfo->filesym_count == 1
8685 : eoinfo->flinfo->filesym_count > 1))
8686 {
8687 /* Output a FILE symbol so that following locals are not associated
8688 with the wrong input file. */
8689 memset (&sym, 0, sizeof (sym));
8690 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8691 sym.st_shndx = SHN_ABS;
8692 if (!elf_link_output_sym (eoinfo->flinfo, NULL, &sym,
8693 bfd_und_section_ptr, NULL))
8694 return FALSE;
8695
8696 eoinfo->file_sym_done = TRUE;
8697 }
8698 }
8699 else
8700 {
8701 if (h->forced_local)
8702 return TRUE;
8703 }
8704
8705 bed = get_elf_backend_data (flinfo->output_bfd);
8706
8707 if (h->root.type == bfd_link_hash_undefined)
8708 {
8709 /* If we have an undefined symbol reference here then it must have
8710 come from a shared library that is being linked in. (Undefined
8711 references in regular files have already been handled unless
8712 they are in unreferenced sections which are removed by garbage
8713 collection). */
8714 bfd_boolean ignore_undef = FALSE;
8715
8716 /* Some symbols may be special in that the fact that they're
8717 undefined can be safely ignored - let backend determine that. */
8718 if (bed->elf_backend_ignore_undef_symbol)
8719 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8720
8721 /* If we are reporting errors for this situation then do so now. */
8722 if (!ignore_undef
8723 && h->ref_dynamic
8724 && (!h->ref_regular || flinfo->info->gc_sections)
8725 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8726 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8727 {
8728 if (!(flinfo->info->callbacks->undefined_symbol
8729 (flinfo->info, h->root.root.string,
8730 h->ref_regular ? NULL : h->root.u.undef.abfd,
8731 NULL, 0,
8732 (flinfo->info->unresolved_syms_in_shared_libs
8733 == RM_GENERATE_ERROR))))
8734 {
8735 bfd_set_error (bfd_error_bad_value);
8736 eoinfo->failed = TRUE;
8737 return FALSE;
8738 }
8739 }
8740 }
8741
8742 /* We should also warn if a forced local symbol is referenced from
8743 shared libraries. */
8744 if (!flinfo->info->relocatable
8745 && flinfo->info->executable
8746 && h->forced_local
8747 && h->ref_dynamic
8748 && h->def_regular
8749 && !h->dynamic_def
8750 && h->ref_dynamic_nonweak
8751 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8752 {
8753 bfd *def_bfd;
8754 const char *msg;
8755 struct elf_link_hash_entry *hi = h;
8756
8757 /* Check indirect symbol. */
8758 while (hi->root.type == bfd_link_hash_indirect)
8759 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8760
8761 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8762 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8763 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8764 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8765 else
8766 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8767 def_bfd = flinfo->output_bfd;
8768 if (hi->root.u.def.section != bfd_abs_section_ptr)
8769 def_bfd = hi->root.u.def.section->owner;
8770 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8771 h->root.root.string);
8772 bfd_set_error (bfd_error_bad_value);
8773 eoinfo->failed = TRUE;
8774 return FALSE;
8775 }
8776
8777 /* We don't want to output symbols that have never been mentioned by
8778 a regular file, or that we have been told to strip. However, if
8779 h->indx is set to -2, the symbol is used by a reloc and we must
8780 output it. */
8781 if (h->indx == -2)
8782 strip = FALSE;
8783 else if ((h->def_dynamic
8784 || h->ref_dynamic
8785 || h->root.type == bfd_link_hash_new)
8786 && !h->def_regular
8787 && !h->ref_regular)
8788 strip = TRUE;
8789 else if (flinfo->info->strip == strip_all)
8790 strip = TRUE;
8791 else if (flinfo->info->strip == strip_some
8792 && bfd_hash_lookup (flinfo->info->keep_hash,
8793 h->root.root.string, FALSE, FALSE) == NULL)
8794 strip = TRUE;
8795 else if ((h->root.type == bfd_link_hash_defined
8796 || h->root.type == bfd_link_hash_defweak)
8797 && ((flinfo->info->strip_discarded
8798 && discarded_section (h->root.u.def.section))
8799 || (h->root.u.def.section->owner != NULL
8800 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8801 strip = TRUE;
8802 else if ((h->root.type == bfd_link_hash_undefined
8803 || h->root.type == bfd_link_hash_undefweak)
8804 && h->root.u.undef.abfd != NULL
8805 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8806 strip = TRUE;
8807 else
8808 strip = FALSE;
8809
8810 /* If we're stripping it, and it's not a dynamic symbol, there's
8811 nothing else to do unless it is a forced local symbol or a
8812 STT_GNU_IFUNC symbol. */
8813 if (strip
8814 && h->dynindx == -1
8815 && h->type != STT_GNU_IFUNC
8816 && !h->forced_local)
8817 return TRUE;
8818
8819 sym.st_value = 0;
8820 sym.st_size = h->size;
8821 sym.st_other = h->other;
8822 if (h->forced_local)
8823 {
8824 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8825 /* Turn off visibility on local symbol. */
8826 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8827 }
8828 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
8829 else if (h->unique_global && h->def_regular)
8830 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8831 else if (h->root.type == bfd_link_hash_undefweak
8832 || h->root.type == bfd_link_hash_defweak)
8833 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8834 else
8835 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8836 sym.st_target_internal = h->target_internal;
8837
8838 switch (h->root.type)
8839 {
8840 default:
8841 case bfd_link_hash_new:
8842 case bfd_link_hash_warning:
8843 abort ();
8844 return FALSE;
8845
8846 case bfd_link_hash_undefined:
8847 case bfd_link_hash_undefweak:
8848 input_sec = bfd_und_section_ptr;
8849 sym.st_shndx = SHN_UNDEF;
8850 break;
8851
8852 case bfd_link_hash_defined:
8853 case bfd_link_hash_defweak:
8854 {
8855 input_sec = h->root.u.def.section;
8856 if (input_sec->output_section != NULL)
8857 {
8858 if (eoinfo->localsyms && flinfo->filesym_count == 1)
8859 {
8860 bfd_boolean second_pass_sym
8861 = (input_sec->owner == flinfo->output_bfd
8862 || input_sec->owner == NULL
8863 || (input_sec->flags & SEC_LINKER_CREATED) != 0
8864 || (input_sec->owner->flags & BFD_LINKER_CREATED) != 0);
8865
8866 eoinfo->need_second_pass |= second_pass_sym;
8867 if (eoinfo->second_pass != second_pass_sym)
8868 return TRUE;
8869 }
8870
8871 sym.st_shndx =
8872 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
8873 input_sec->output_section);
8874 if (sym.st_shndx == SHN_BAD)
8875 {
8876 (*_bfd_error_handler)
8877 (_("%B: could not find output section %A for input section %A"),
8878 flinfo->output_bfd, input_sec->output_section, input_sec);
8879 bfd_set_error (bfd_error_nonrepresentable_section);
8880 eoinfo->failed = TRUE;
8881 return FALSE;
8882 }
8883
8884 /* ELF symbols in relocatable files are section relative,
8885 but in nonrelocatable files they are virtual
8886 addresses. */
8887 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8888 if (!flinfo->info->relocatable)
8889 {
8890 sym.st_value += input_sec->output_section->vma;
8891 if (h->type == STT_TLS)
8892 {
8893 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
8894 if (tls_sec != NULL)
8895 sym.st_value -= tls_sec->vma;
8896 else
8897 {
8898 /* The TLS section may have been garbage collected. */
8899 BFD_ASSERT (flinfo->info->gc_sections
8900 && !input_sec->gc_mark);
8901 }
8902 }
8903 }
8904 }
8905 else
8906 {
8907 BFD_ASSERT (input_sec->owner == NULL
8908 || (input_sec->owner->flags & DYNAMIC) != 0);
8909 sym.st_shndx = SHN_UNDEF;
8910 input_sec = bfd_und_section_ptr;
8911 }
8912 }
8913 break;
8914
8915 case bfd_link_hash_common:
8916 input_sec = h->root.u.c.p->section;
8917 sym.st_shndx = bed->common_section_index (input_sec);
8918 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8919 break;
8920
8921 case bfd_link_hash_indirect:
8922 /* These symbols are created by symbol versioning. They point
8923 to the decorated version of the name. For example, if the
8924 symbol foo@@GNU_1.2 is the default, which should be used when
8925 foo is used with no version, then we add an indirect symbol
8926 foo which points to foo@@GNU_1.2. We ignore these symbols,
8927 since the indirected symbol is already in the hash table. */
8928 return TRUE;
8929 }
8930
8931 /* Give the processor backend a chance to tweak the symbol value,
8932 and also to finish up anything that needs to be done for this
8933 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8934 forced local syms when non-shared is due to a historical quirk.
8935 STT_GNU_IFUNC symbol must go through PLT. */
8936 if ((h->type == STT_GNU_IFUNC
8937 && h->def_regular
8938 && !flinfo->info->relocatable)
8939 || ((h->dynindx != -1
8940 || h->forced_local)
8941 && ((flinfo->info->shared
8942 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8943 || h->root.type != bfd_link_hash_undefweak))
8944 || !h->forced_local)
8945 && elf_hash_table (flinfo->info)->dynamic_sections_created))
8946 {
8947 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8948 (flinfo->output_bfd, flinfo->info, h, &sym)))
8949 {
8950 eoinfo->failed = TRUE;
8951 return FALSE;
8952 }
8953 }
8954
8955 /* If we are marking the symbol as undefined, and there are no
8956 non-weak references to this symbol from a regular object, then
8957 mark the symbol as weak undefined; if there are non-weak
8958 references, mark the symbol as strong. We can't do this earlier,
8959 because it might not be marked as undefined until the
8960 finish_dynamic_symbol routine gets through with it. */
8961 if (sym.st_shndx == SHN_UNDEF
8962 && h->ref_regular
8963 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8964 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8965 {
8966 int bindtype;
8967 unsigned int type = ELF_ST_TYPE (sym.st_info);
8968
8969 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8970 if (type == STT_GNU_IFUNC)
8971 type = STT_FUNC;
8972
8973 if (h->ref_regular_nonweak)
8974 bindtype = STB_GLOBAL;
8975 else
8976 bindtype = STB_WEAK;
8977 sym.st_info = ELF_ST_INFO (bindtype, type);
8978 }
8979
8980 /* If this is a symbol defined in a dynamic library, don't use the
8981 symbol size from the dynamic library. Relinking an executable
8982 against a new library may introduce gratuitous changes in the
8983 executable's symbols if we keep the size. */
8984 if (sym.st_shndx == SHN_UNDEF
8985 && !h->def_regular
8986 && h->def_dynamic)
8987 sym.st_size = 0;
8988
8989 /* If a non-weak symbol with non-default visibility is not defined
8990 locally, it is a fatal error. */
8991 if (!flinfo->info->relocatable
8992 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8993 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8994 && h->root.type == bfd_link_hash_undefined
8995 && !h->def_regular)
8996 {
8997 const char *msg;
8998
8999 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9000 msg = _("%B: protected symbol `%s' isn't defined");
9001 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9002 msg = _("%B: internal symbol `%s' isn't defined");
9003 else
9004 msg = _("%B: hidden symbol `%s' isn't defined");
9005 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9006 bfd_set_error (bfd_error_bad_value);
9007 eoinfo->failed = TRUE;
9008 return FALSE;
9009 }
9010
9011 /* If this symbol should be put in the .dynsym section, then put it
9012 there now. We already know the symbol index. We also fill in
9013 the entry in the .hash section. */
9014 if (flinfo->dynsym_sec != NULL
9015 && h->dynindx != -1
9016 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9017 {
9018 bfd_byte *esym;
9019
9020 /* Since there is no version information in the dynamic string,
9021 if there is no version info in symbol version section, we will
9022 have a run-time problem. */
9023 if (h->verinfo.verdef == NULL)
9024 {
9025 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9026
9027 if (p && p [1] != '\0')
9028 {
9029 (*_bfd_error_handler)
9030 (_("%B: No symbol version section for versioned symbol `%s'"),
9031 flinfo->output_bfd, h->root.root.string);
9032 eoinfo->failed = TRUE;
9033 return FALSE;
9034 }
9035 }
9036
9037 sym.st_name = h->dynstr_index;
9038 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9039 if (!check_dynsym (flinfo->output_bfd, &sym))
9040 {
9041 eoinfo->failed = TRUE;
9042 return FALSE;
9043 }
9044 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9045
9046 if (flinfo->hash_sec != NULL)
9047 {
9048 size_t hash_entry_size;
9049 bfd_byte *bucketpos;
9050 bfd_vma chain;
9051 size_t bucketcount;
9052 size_t bucket;
9053
9054 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9055 bucket = h->u.elf_hash_value % bucketcount;
9056
9057 hash_entry_size
9058 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9059 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9060 + (bucket + 2) * hash_entry_size);
9061 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9062 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9063 bucketpos);
9064 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9065 ((bfd_byte *) flinfo->hash_sec->contents
9066 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9067 }
9068
9069 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9070 {
9071 Elf_Internal_Versym iversym;
9072 Elf_External_Versym *eversym;
9073
9074 if (!h->def_regular)
9075 {
9076 if (h->verinfo.verdef == NULL)
9077 iversym.vs_vers = 0;
9078 else
9079 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9080 }
9081 else
9082 {
9083 if (h->verinfo.vertree == NULL)
9084 iversym.vs_vers = 1;
9085 else
9086 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9087 if (flinfo->info->create_default_symver)
9088 iversym.vs_vers++;
9089 }
9090
9091 if (h->hidden)
9092 iversym.vs_vers |= VERSYM_HIDDEN;
9093
9094 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9095 eversym += h->dynindx;
9096 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9097 }
9098 }
9099
9100 /* If we're stripping it, then it was just a dynamic symbol, and
9101 there's nothing else to do. */
9102 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
9103 return TRUE;
9104
9105 indx = bfd_get_symcount (flinfo->output_bfd);
9106 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9107 if (ret == 0)
9108 {
9109 eoinfo->failed = TRUE;
9110 return FALSE;
9111 }
9112 else if (ret == 1)
9113 h->indx = indx;
9114 else if (h->indx == -2)
9115 abort();
9116
9117 return TRUE;
9118 }
9119
9120 /* Return TRUE if special handling is done for relocs in SEC against
9121 symbols defined in discarded sections. */
9122
9123 static bfd_boolean
9124 elf_section_ignore_discarded_relocs (asection *sec)
9125 {
9126 const struct elf_backend_data *bed;
9127
9128 switch (sec->sec_info_type)
9129 {
9130 case SEC_INFO_TYPE_STABS:
9131 case SEC_INFO_TYPE_EH_FRAME:
9132 return TRUE;
9133 default:
9134 break;
9135 }
9136
9137 bed = get_elf_backend_data (sec->owner);
9138 if (bed->elf_backend_ignore_discarded_relocs != NULL
9139 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9140 return TRUE;
9141
9142 return FALSE;
9143 }
9144
9145 /* Return a mask saying how ld should treat relocations in SEC against
9146 symbols defined in discarded sections. If this function returns
9147 COMPLAIN set, ld will issue a warning message. If this function
9148 returns PRETEND set, and the discarded section was link-once and the
9149 same size as the kept link-once section, ld will pretend that the
9150 symbol was actually defined in the kept section. Otherwise ld will
9151 zero the reloc (at least that is the intent, but some cooperation by
9152 the target dependent code is needed, particularly for REL targets). */
9153
9154 unsigned int
9155 _bfd_elf_default_action_discarded (asection *sec)
9156 {
9157 if (sec->flags & SEC_DEBUGGING)
9158 return PRETEND;
9159
9160 if (strcmp (".eh_frame", sec->name) == 0)
9161 return 0;
9162
9163 if (strcmp (".gcc_except_table", sec->name) == 0)
9164 return 0;
9165
9166 return COMPLAIN | PRETEND;
9167 }
9168
9169 /* Find a match between a section and a member of a section group. */
9170
9171 static asection *
9172 match_group_member (asection *sec, asection *group,
9173 struct bfd_link_info *info)
9174 {
9175 asection *first = elf_next_in_group (group);
9176 asection *s = first;
9177
9178 while (s != NULL)
9179 {
9180 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9181 return s;
9182
9183 s = elf_next_in_group (s);
9184 if (s == first)
9185 break;
9186 }
9187
9188 return NULL;
9189 }
9190
9191 /* Check if the kept section of a discarded section SEC can be used
9192 to replace it. Return the replacement if it is OK. Otherwise return
9193 NULL. */
9194
9195 asection *
9196 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9197 {
9198 asection *kept;
9199
9200 kept = sec->kept_section;
9201 if (kept != NULL)
9202 {
9203 if ((kept->flags & SEC_GROUP) != 0)
9204 kept = match_group_member (sec, kept, info);
9205 if (kept != NULL
9206 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9207 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9208 kept = NULL;
9209 sec->kept_section = kept;
9210 }
9211 return kept;
9212 }
9213
9214 /* Link an input file into the linker output file. This function
9215 handles all the sections and relocations of the input file at once.
9216 This is so that we only have to read the local symbols once, and
9217 don't have to keep them in memory. */
9218
9219 static bfd_boolean
9220 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9221 {
9222 int (*relocate_section)
9223 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9224 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9225 bfd *output_bfd;
9226 Elf_Internal_Shdr *symtab_hdr;
9227 size_t locsymcount;
9228 size_t extsymoff;
9229 Elf_Internal_Sym *isymbuf;
9230 Elf_Internal_Sym *isym;
9231 Elf_Internal_Sym *isymend;
9232 long *pindex;
9233 asection **ppsection;
9234 asection *o;
9235 const struct elf_backend_data *bed;
9236 struct elf_link_hash_entry **sym_hashes;
9237 bfd_size_type address_size;
9238 bfd_vma r_type_mask;
9239 int r_sym_shift;
9240 bfd_boolean have_file_sym = FALSE;
9241
9242 output_bfd = flinfo->output_bfd;
9243 bed = get_elf_backend_data (output_bfd);
9244 relocate_section = bed->elf_backend_relocate_section;
9245
9246 /* If this is a dynamic object, we don't want to do anything here:
9247 we don't want the local symbols, and we don't want the section
9248 contents. */
9249 if ((input_bfd->flags & DYNAMIC) != 0)
9250 return TRUE;
9251
9252 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9253 if (elf_bad_symtab (input_bfd))
9254 {
9255 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9256 extsymoff = 0;
9257 }
9258 else
9259 {
9260 locsymcount = symtab_hdr->sh_info;
9261 extsymoff = symtab_hdr->sh_info;
9262 }
9263
9264 /* Read the local symbols. */
9265 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9266 if (isymbuf == NULL && locsymcount != 0)
9267 {
9268 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9269 flinfo->internal_syms,
9270 flinfo->external_syms,
9271 flinfo->locsym_shndx);
9272 if (isymbuf == NULL)
9273 return FALSE;
9274 }
9275
9276 /* Find local symbol sections and adjust values of symbols in
9277 SEC_MERGE sections. Write out those local symbols we know are
9278 going into the output file. */
9279 isymend = isymbuf + locsymcount;
9280 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9281 isym < isymend;
9282 isym++, pindex++, ppsection++)
9283 {
9284 asection *isec;
9285 const char *name;
9286 Elf_Internal_Sym osym;
9287 long indx;
9288 int ret;
9289
9290 *pindex = -1;
9291
9292 if (elf_bad_symtab (input_bfd))
9293 {
9294 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9295 {
9296 *ppsection = NULL;
9297 continue;
9298 }
9299 }
9300
9301 if (isym->st_shndx == SHN_UNDEF)
9302 isec = bfd_und_section_ptr;
9303 else if (isym->st_shndx == SHN_ABS)
9304 isec = bfd_abs_section_ptr;
9305 else if (isym->st_shndx == SHN_COMMON)
9306 isec = bfd_com_section_ptr;
9307 else
9308 {
9309 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9310 if (isec == NULL)
9311 {
9312 /* Don't attempt to output symbols with st_shnx in the
9313 reserved range other than SHN_ABS and SHN_COMMON. */
9314 *ppsection = NULL;
9315 continue;
9316 }
9317 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9318 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9319 isym->st_value =
9320 _bfd_merged_section_offset (output_bfd, &isec,
9321 elf_section_data (isec)->sec_info,
9322 isym->st_value);
9323 }
9324
9325 *ppsection = isec;
9326
9327 /* Don't output the first, undefined, symbol. */
9328 if (ppsection == flinfo->sections)
9329 continue;
9330
9331 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9332 {
9333 /* We never output section symbols. Instead, we use the
9334 section symbol of the corresponding section in the output
9335 file. */
9336 continue;
9337 }
9338
9339 /* If we are stripping all symbols, we don't want to output this
9340 one. */
9341 if (flinfo->info->strip == strip_all)
9342 continue;
9343
9344 /* If we are discarding all local symbols, we don't want to
9345 output this one. If we are generating a relocatable output
9346 file, then some of the local symbols may be required by
9347 relocs; we output them below as we discover that they are
9348 needed. */
9349 if (flinfo->info->discard == discard_all)
9350 continue;
9351
9352 /* If this symbol is defined in a section which we are
9353 discarding, we don't need to keep it. */
9354 if (isym->st_shndx != SHN_UNDEF
9355 && isym->st_shndx < SHN_LORESERVE
9356 && bfd_section_removed_from_list (output_bfd,
9357 isec->output_section))
9358 continue;
9359
9360 /* Get the name of the symbol. */
9361 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9362 isym->st_name);
9363 if (name == NULL)
9364 return FALSE;
9365
9366 /* See if we are discarding symbols with this name. */
9367 if ((flinfo->info->strip == strip_some
9368 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9369 == NULL))
9370 || (((flinfo->info->discard == discard_sec_merge
9371 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9372 || flinfo->info->discard == discard_l)
9373 && bfd_is_local_label_name (input_bfd, name)))
9374 continue;
9375
9376 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9377 {
9378 have_file_sym = TRUE;
9379 flinfo->filesym_count += 1;
9380 }
9381 if (!have_file_sym)
9382 {
9383 /* In the absence of debug info, bfd_find_nearest_line uses
9384 FILE symbols to determine the source file for local
9385 function symbols. Provide a FILE symbol here if input
9386 files lack such, so that their symbols won't be
9387 associated with a previous input file. It's not the
9388 source file, but the best we can do. */
9389 have_file_sym = TRUE;
9390 flinfo->filesym_count += 1;
9391 memset (&osym, 0, sizeof (osym));
9392 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9393 osym.st_shndx = SHN_ABS;
9394 if (!elf_link_output_sym (flinfo, input_bfd->filename, &osym,
9395 bfd_abs_section_ptr, NULL))
9396 return FALSE;
9397 }
9398
9399 osym = *isym;
9400
9401 /* Adjust the section index for the output file. */
9402 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9403 isec->output_section);
9404 if (osym.st_shndx == SHN_BAD)
9405 return FALSE;
9406
9407 /* ELF symbols in relocatable files are section relative, but
9408 in executable files they are virtual addresses. Note that
9409 this code assumes that all ELF sections have an associated
9410 BFD section with a reasonable value for output_offset; below
9411 we assume that they also have a reasonable value for
9412 output_section. Any special sections must be set up to meet
9413 these requirements. */
9414 osym.st_value += isec->output_offset;
9415 if (!flinfo->info->relocatable)
9416 {
9417 osym.st_value += isec->output_section->vma;
9418 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9419 {
9420 /* STT_TLS symbols are relative to PT_TLS segment base. */
9421 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9422 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9423 }
9424 }
9425
9426 indx = bfd_get_symcount (output_bfd);
9427 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9428 if (ret == 0)
9429 return FALSE;
9430 else if (ret == 1)
9431 *pindex = indx;
9432 }
9433
9434 if (bed->s->arch_size == 32)
9435 {
9436 r_type_mask = 0xff;
9437 r_sym_shift = 8;
9438 address_size = 4;
9439 }
9440 else
9441 {
9442 r_type_mask = 0xffffffff;
9443 r_sym_shift = 32;
9444 address_size = 8;
9445 }
9446
9447 /* Relocate the contents of each section. */
9448 sym_hashes = elf_sym_hashes (input_bfd);
9449 for (o = input_bfd->sections; o != NULL; o = o->next)
9450 {
9451 bfd_byte *contents;
9452
9453 if (! o->linker_mark)
9454 {
9455 /* This section was omitted from the link. */
9456 continue;
9457 }
9458
9459 if (flinfo->info->relocatable
9460 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9461 {
9462 /* Deal with the group signature symbol. */
9463 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9464 unsigned long symndx = sec_data->this_hdr.sh_info;
9465 asection *osec = o->output_section;
9466
9467 if (symndx >= locsymcount
9468 || (elf_bad_symtab (input_bfd)
9469 && flinfo->sections[symndx] == NULL))
9470 {
9471 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9472 while (h->root.type == bfd_link_hash_indirect
9473 || h->root.type == bfd_link_hash_warning)
9474 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9475 /* Arrange for symbol to be output. */
9476 h->indx = -2;
9477 elf_section_data (osec)->this_hdr.sh_info = -2;
9478 }
9479 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9480 {
9481 /* We'll use the output section target_index. */
9482 asection *sec = flinfo->sections[symndx]->output_section;
9483 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9484 }
9485 else
9486 {
9487 if (flinfo->indices[symndx] == -1)
9488 {
9489 /* Otherwise output the local symbol now. */
9490 Elf_Internal_Sym sym = isymbuf[symndx];
9491 asection *sec = flinfo->sections[symndx]->output_section;
9492 const char *name;
9493 long indx;
9494 int ret;
9495
9496 name = bfd_elf_string_from_elf_section (input_bfd,
9497 symtab_hdr->sh_link,
9498 sym.st_name);
9499 if (name == NULL)
9500 return FALSE;
9501
9502 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9503 sec);
9504 if (sym.st_shndx == SHN_BAD)
9505 return FALSE;
9506
9507 sym.st_value += o->output_offset;
9508
9509 indx = bfd_get_symcount (output_bfd);
9510 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9511 if (ret == 0)
9512 return FALSE;
9513 else if (ret == 1)
9514 flinfo->indices[symndx] = indx;
9515 else
9516 abort ();
9517 }
9518 elf_section_data (osec)->this_hdr.sh_info
9519 = flinfo->indices[symndx];
9520 }
9521 }
9522
9523 if ((o->flags & SEC_HAS_CONTENTS) == 0
9524 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9525 continue;
9526
9527 if ((o->flags & SEC_LINKER_CREATED) != 0)
9528 {
9529 /* Section was created by _bfd_elf_link_create_dynamic_sections
9530 or somesuch. */
9531 continue;
9532 }
9533
9534 /* Get the contents of the section. They have been cached by a
9535 relaxation routine. Note that o is a section in an input
9536 file, so the contents field will not have been set by any of
9537 the routines which work on output files. */
9538 if (elf_section_data (o)->this_hdr.contents != NULL)
9539 contents = elf_section_data (o)->this_hdr.contents;
9540 else
9541 {
9542 contents = flinfo->contents;
9543 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9544 return FALSE;
9545 }
9546
9547 if ((o->flags & SEC_RELOC) != 0)
9548 {
9549 Elf_Internal_Rela *internal_relocs;
9550 Elf_Internal_Rela *rel, *relend;
9551 int action_discarded;
9552 int ret;
9553
9554 /* Get the swapped relocs. */
9555 internal_relocs
9556 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9557 flinfo->internal_relocs, FALSE);
9558 if (internal_relocs == NULL
9559 && o->reloc_count > 0)
9560 return FALSE;
9561
9562 /* We need to reverse-copy input .ctors/.dtors sections if
9563 they are placed in .init_array/.finit_array for output. */
9564 if (o->size > address_size
9565 && ((strncmp (o->name, ".ctors", 6) == 0
9566 && strcmp (o->output_section->name,
9567 ".init_array") == 0)
9568 || (strncmp (o->name, ".dtors", 6) == 0
9569 && strcmp (o->output_section->name,
9570 ".fini_array") == 0))
9571 && (o->name[6] == 0 || o->name[6] == '.'))
9572 {
9573 if (o->size != o->reloc_count * address_size)
9574 {
9575 (*_bfd_error_handler)
9576 (_("error: %B: size of section %A is not "
9577 "multiple of address size"),
9578 input_bfd, o);
9579 bfd_set_error (bfd_error_on_input);
9580 return FALSE;
9581 }
9582 o->flags |= SEC_ELF_REVERSE_COPY;
9583 }
9584
9585 action_discarded = -1;
9586 if (!elf_section_ignore_discarded_relocs (o))
9587 action_discarded = (*bed->action_discarded) (o);
9588
9589 /* Run through the relocs evaluating complex reloc symbols and
9590 looking for relocs against symbols from discarded sections
9591 or section symbols from removed link-once sections.
9592 Complain about relocs against discarded sections. Zero
9593 relocs against removed link-once sections. */
9594
9595 rel = internal_relocs;
9596 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9597 for ( ; rel < relend; rel++)
9598 {
9599 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9600 unsigned int s_type;
9601 asection **ps, *sec;
9602 struct elf_link_hash_entry *h = NULL;
9603 const char *sym_name;
9604
9605 if (r_symndx == STN_UNDEF)
9606 continue;
9607
9608 if (r_symndx >= locsymcount
9609 || (elf_bad_symtab (input_bfd)
9610 && flinfo->sections[r_symndx] == NULL))
9611 {
9612 h = sym_hashes[r_symndx - extsymoff];
9613
9614 /* Badly formatted input files can contain relocs that
9615 reference non-existant symbols. Check here so that
9616 we do not seg fault. */
9617 if (h == NULL)
9618 {
9619 char buffer [32];
9620
9621 sprintf_vma (buffer, rel->r_info);
9622 (*_bfd_error_handler)
9623 (_("error: %B contains a reloc (0x%s) for section %A "
9624 "that references a non-existent global symbol"),
9625 input_bfd, o, buffer);
9626 bfd_set_error (bfd_error_bad_value);
9627 return FALSE;
9628 }
9629
9630 while (h->root.type == bfd_link_hash_indirect
9631 || h->root.type == bfd_link_hash_warning)
9632 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9633
9634 s_type = h->type;
9635
9636 ps = NULL;
9637 if (h->root.type == bfd_link_hash_defined
9638 || h->root.type == bfd_link_hash_defweak)
9639 ps = &h->root.u.def.section;
9640
9641 sym_name = h->root.root.string;
9642 }
9643 else
9644 {
9645 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9646
9647 s_type = ELF_ST_TYPE (sym->st_info);
9648 ps = &flinfo->sections[r_symndx];
9649 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9650 sym, *ps);
9651 }
9652
9653 if ((s_type == STT_RELC || s_type == STT_SRELC)
9654 && !flinfo->info->relocatable)
9655 {
9656 bfd_vma val;
9657 bfd_vma dot = (rel->r_offset
9658 + o->output_offset + o->output_section->vma);
9659 #ifdef DEBUG
9660 printf ("Encountered a complex symbol!");
9661 printf (" (input_bfd %s, section %s, reloc %ld\n",
9662 input_bfd->filename, o->name,
9663 (long) (rel - internal_relocs));
9664 printf (" symbol: idx %8.8lx, name %s\n",
9665 r_symndx, sym_name);
9666 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9667 (unsigned long) rel->r_info,
9668 (unsigned long) rel->r_offset);
9669 #endif
9670 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9671 isymbuf, locsymcount, s_type == STT_SRELC))
9672 return FALSE;
9673
9674 /* Symbol evaluated OK. Update to absolute value. */
9675 set_symbol_value (input_bfd, isymbuf, locsymcount,
9676 r_symndx, val);
9677 continue;
9678 }
9679
9680 if (action_discarded != -1 && ps != NULL)
9681 {
9682 /* Complain if the definition comes from a
9683 discarded section. */
9684 if ((sec = *ps) != NULL && discarded_section (sec))
9685 {
9686 BFD_ASSERT (r_symndx != STN_UNDEF);
9687 if (action_discarded & COMPLAIN)
9688 (*flinfo->info->callbacks->einfo)
9689 (_("%X`%s' referenced in section `%A' of %B: "
9690 "defined in discarded section `%A' of %B\n"),
9691 sym_name, o, input_bfd, sec, sec->owner);
9692
9693 /* Try to do the best we can to support buggy old
9694 versions of gcc. Pretend that the symbol is
9695 really defined in the kept linkonce section.
9696 FIXME: This is quite broken. Modifying the
9697 symbol here means we will be changing all later
9698 uses of the symbol, not just in this section. */
9699 if (action_discarded & PRETEND)
9700 {
9701 asection *kept;
9702
9703 kept = _bfd_elf_check_kept_section (sec,
9704 flinfo->info);
9705 if (kept != NULL)
9706 {
9707 *ps = kept;
9708 continue;
9709 }
9710 }
9711 }
9712 }
9713 }
9714
9715 /* Relocate the section by invoking a back end routine.
9716
9717 The back end routine is responsible for adjusting the
9718 section contents as necessary, and (if using Rela relocs
9719 and generating a relocatable output file) adjusting the
9720 reloc addend as necessary.
9721
9722 The back end routine does not have to worry about setting
9723 the reloc address or the reloc symbol index.
9724
9725 The back end routine is given a pointer to the swapped in
9726 internal symbols, and can access the hash table entries
9727 for the external symbols via elf_sym_hashes (input_bfd).
9728
9729 When generating relocatable output, the back end routine
9730 must handle STB_LOCAL/STT_SECTION symbols specially. The
9731 output symbol is going to be a section symbol
9732 corresponding to the output section, which will require
9733 the addend to be adjusted. */
9734
9735 ret = (*relocate_section) (output_bfd, flinfo->info,
9736 input_bfd, o, contents,
9737 internal_relocs,
9738 isymbuf,
9739 flinfo->sections);
9740 if (!ret)
9741 return FALSE;
9742
9743 if (ret == 2
9744 || flinfo->info->relocatable
9745 || flinfo->info->emitrelocations)
9746 {
9747 Elf_Internal_Rela *irela;
9748 Elf_Internal_Rela *irelaend, *irelamid;
9749 bfd_vma last_offset;
9750 struct elf_link_hash_entry **rel_hash;
9751 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9752 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9753 unsigned int next_erel;
9754 bfd_boolean rela_normal;
9755 struct bfd_elf_section_data *esdi, *esdo;
9756
9757 esdi = elf_section_data (o);
9758 esdo = elf_section_data (o->output_section);
9759 rela_normal = FALSE;
9760
9761 /* Adjust the reloc addresses and symbol indices. */
9762
9763 irela = internal_relocs;
9764 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9765 rel_hash = esdo->rel.hashes + esdo->rel.count;
9766 /* We start processing the REL relocs, if any. When we reach
9767 IRELAMID in the loop, we switch to the RELA relocs. */
9768 irelamid = irela;
9769 if (esdi->rel.hdr != NULL)
9770 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9771 * bed->s->int_rels_per_ext_rel);
9772 rel_hash_list = rel_hash;
9773 rela_hash_list = NULL;
9774 last_offset = o->output_offset;
9775 if (!flinfo->info->relocatable)
9776 last_offset += o->output_section->vma;
9777 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9778 {
9779 unsigned long r_symndx;
9780 asection *sec;
9781 Elf_Internal_Sym sym;
9782
9783 if (next_erel == bed->s->int_rels_per_ext_rel)
9784 {
9785 rel_hash++;
9786 next_erel = 0;
9787 }
9788
9789 if (irela == irelamid)
9790 {
9791 rel_hash = esdo->rela.hashes + esdo->rela.count;
9792 rela_hash_list = rel_hash;
9793 rela_normal = bed->rela_normal;
9794 }
9795
9796 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9797 flinfo->info, o,
9798 irela->r_offset);
9799 if (irela->r_offset >= (bfd_vma) -2)
9800 {
9801 /* This is a reloc for a deleted entry or somesuch.
9802 Turn it into an R_*_NONE reloc, at the same
9803 offset as the last reloc. elf_eh_frame.c and
9804 bfd_elf_discard_info rely on reloc offsets
9805 being ordered. */
9806 irela->r_offset = last_offset;
9807 irela->r_info = 0;
9808 irela->r_addend = 0;
9809 continue;
9810 }
9811
9812 irela->r_offset += o->output_offset;
9813
9814 /* Relocs in an executable have to be virtual addresses. */
9815 if (!flinfo->info->relocatable)
9816 irela->r_offset += o->output_section->vma;
9817
9818 last_offset = irela->r_offset;
9819
9820 r_symndx = irela->r_info >> r_sym_shift;
9821 if (r_symndx == STN_UNDEF)
9822 continue;
9823
9824 if (r_symndx >= locsymcount
9825 || (elf_bad_symtab (input_bfd)
9826 && flinfo->sections[r_symndx] == NULL))
9827 {
9828 struct elf_link_hash_entry *rh;
9829 unsigned long indx;
9830
9831 /* This is a reloc against a global symbol. We
9832 have not yet output all the local symbols, so
9833 we do not know the symbol index of any global
9834 symbol. We set the rel_hash entry for this
9835 reloc to point to the global hash table entry
9836 for this symbol. The symbol index is then
9837 set at the end of bfd_elf_final_link. */
9838 indx = r_symndx - extsymoff;
9839 rh = elf_sym_hashes (input_bfd)[indx];
9840 while (rh->root.type == bfd_link_hash_indirect
9841 || rh->root.type == bfd_link_hash_warning)
9842 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9843
9844 /* Setting the index to -2 tells
9845 elf_link_output_extsym that this symbol is
9846 used by a reloc. */
9847 BFD_ASSERT (rh->indx < 0);
9848 rh->indx = -2;
9849
9850 *rel_hash = rh;
9851
9852 continue;
9853 }
9854
9855 /* This is a reloc against a local symbol. */
9856
9857 *rel_hash = NULL;
9858 sym = isymbuf[r_symndx];
9859 sec = flinfo->sections[r_symndx];
9860 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9861 {
9862 /* I suppose the backend ought to fill in the
9863 section of any STT_SECTION symbol against a
9864 processor specific section. */
9865 r_symndx = STN_UNDEF;
9866 if (bfd_is_abs_section (sec))
9867 ;
9868 else if (sec == NULL || sec->owner == NULL)
9869 {
9870 bfd_set_error (bfd_error_bad_value);
9871 return FALSE;
9872 }
9873 else
9874 {
9875 asection *osec = sec->output_section;
9876
9877 /* If we have discarded a section, the output
9878 section will be the absolute section. In
9879 case of discarded SEC_MERGE sections, use
9880 the kept section. relocate_section should
9881 have already handled discarded linkonce
9882 sections. */
9883 if (bfd_is_abs_section (osec)
9884 && sec->kept_section != NULL
9885 && sec->kept_section->output_section != NULL)
9886 {
9887 osec = sec->kept_section->output_section;
9888 irela->r_addend -= osec->vma;
9889 }
9890
9891 if (!bfd_is_abs_section (osec))
9892 {
9893 r_symndx = osec->target_index;
9894 if (r_symndx == STN_UNDEF)
9895 {
9896 irela->r_addend += osec->vma;
9897 osec = _bfd_nearby_section (output_bfd, osec,
9898 osec->vma);
9899 irela->r_addend -= osec->vma;
9900 r_symndx = osec->target_index;
9901 }
9902 }
9903 }
9904
9905 /* Adjust the addend according to where the
9906 section winds up in the output section. */
9907 if (rela_normal)
9908 irela->r_addend += sec->output_offset;
9909 }
9910 else
9911 {
9912 if (flinfo->indices[r_symndx] == -1)
9913 {
9914 unsigned long shlink;
9915 const char *name;
9916 asection *osec;
9917 long indx;
9918
9919 if (flinfo->info->strip == strip_all)
9920 {
9921 /* You can't do ld -r -s. */
9922 bfd_set_error (bfd_error_invalid_operation);
9923 return FALSE;
9924 }
9925
9926 /* This symbol was skipped earlier, but
9927 since it is needed by a reloc, we
9928 must output it now. */
9929 shlink = symtab_hdr->sh_link;
9930 name = (bfd_elf_string_from_elf_section
9931 (input_bfd, shlink, sym.st_name));
9932 if (name == NULL)
9933 return FALSE;
9934
9935 osec = sec->output_section;
9936 sym.st_shndx =
9937 _bfd_elf_section_from_bfd_section (output_bfd,
9938 osec);
9939 if (sym.st_shndx == SHN_BAD)
9940 return FALSE;
9941
9942 sym.st_value += sec->output_offset;
9943 if (!flinfo->info->relocatable)
9944 {
9945 sym.st_value += osec->vma;
9946 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9947 {
9948 /* STT_TLS symbols are relative to PT_TLS
9949 segment base. */
9950 BFD_ASSERT (elf_hash_table (flinfo->info)
9951 ->tls_sec != NULL);
9952 sym.st_value -= (elf_hash_table (flinfo->info)
9953 ->tls_sec->vma);
9954 }
9955 }
9956
9957 indx = bfd_get_symcount (output_bfd);
9958 ret = elf_link_output_sym (flinfo, name, &sym, sec,
9959 NULL);
9960 if (ret == 0)
9961 return FALSE;
9962 else if (ret == 1)
9963 flinfo->indices[r_symndx] = indx;
9964 else
9965 abort ();
9966 }
9967
9968 r_symndx = flinfo->indices[r_symndx];
9969 }
9970
9971 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9972 | (irela->r_info & r_type_mask));
9973 }
9974
9975 /* Swap out the relocs. */
9976 input_rel_hdr = esdi->rel.hdr;
9977 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
9978 {
9979 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9980 input_rel_hdr,
9981 internal_relocs,
9982 rel_hash_list))
9983 return FALSE;
9984 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9985 * bed->s->int_rels_per_ext_rel);
9986 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9987 }
9988
9989 input_rela_hdr = esdi->rela.hdr;
9990 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
9991 {
9992 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9993 input_rela_hdr,
9994 internal_relocs,
9995 rela_hash_list))
9996 return FALSE;
9997 }
9998 }
9999 }
10000
10001 /* Write out the modified section contents. */
10002 if (bed->elf_backend_write_section
10003 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10004 contents))
10005 {
10006 /* Section written out. */
10007 }
10008 else switch (o->sec_info_type)
10009 {
10010 case SEC_INFO_TYPE_STABS:
10011 if (! (_bfd_write_section_stabs
10012 (output_bfd,
10013 &elf_hash_table (flinfo->info)->stab_info,
10014 o, &elf_section_data (o)->sec_info, contents)))
10015 return FALSE;
10016 break;
10017 case SEC_INFO_TYPE_MERGE:
10018 if (! _bfd_write_merged_section (output_bfd, o,
10019 elf_section_data (o)->sec_info))
10020 return FALSE;
10021 break;
10022 case SEC_INFO_TYPE_EH_FRAME:
10023 {
10024 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10025 o, contents))
10026 return FALSE;
10027 }
10028 break;
10029 default:
10030 {
10031 /* FIXME: octets_per_byte. */
10032 if (! (o->flags & SEC_EXCLUDE))
10033 {
10034 file_ptr offset = (file_ptr) o->output_offset;
10035 bfd_size_type todo = o->size;
10036 if ((o->flags & SEC_ELF_REVERSE_COPY))
10037 {
10038 /* Reverse-copy input section to output. */
10039 do
10040 {
10041 todo -= address_size;
10042 if (! bfd_set_section_contents (output_bfd,
10043 o->output_section,
10044 contents + todo,
10045 offset,
10046 address_size))
10047 return FALSE;
10048 if (todo == 0)
10049 break;
10050 offset += address_size;
10051 }
10052 while (1);
10053 }
10054 else if (! bfd_set_section_contents (output_bfd,
10055 o->output_section,
10056 contents,
10057 offset, todo))
10058 return FALSE;
10059 }
10060 }
10061 break;
10062 }
10063 }
10064
10065 return TRUE;
10066 }
10067
10068 /* Generate a reloc when linking an ELF file. This is a reloc
10069 requested by the linker, and does not come from any input file. This
10070 is used to build constructor and destructor tables when linking
10071 with -Ur. */
10072
10073 static bfd_boolean
10074 elf_reloc_link_order (bfd *output_bfd,
10075 struct bfd_link_info *info,
10076 asection *output_section,
10077 struct bfd_link_order *link_order)
10078 {
10079 reloc_howto_type *howto;
10080 long indx;
10081 bfd_vma offset;
10082 bfd_vma addend;
10083 struct bfd_elf_section_reloc_data *reldata;
10084 struct elf_link_hash_entry **rel_hash_ptr;
10085 Elf_Internal_Shdr *rel_hdr;
10086 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10087 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10088 bfd_byte *erel;
10089 unsigned int i;
10090 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10091
10092 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10093 if (howto == NULL)
10094 {
10095 bfd_set_error (bfd_error_bad_value);
10096 return FALSE;
10097 }
10098
10099 addend = link_order->u.reloc.p->addend;
10100
10101 if (esdo->rel.hdr)
10102 reldata = &esdo->rel;
10103 else if (esdo->rela.hdr)
10104 reldata = &esdo->rela;
10105 else
10106 {
10107 reldata = NULL;
10108 BFD_ASSERT (0);
10109 }
10110
10111 /* Figure out the symbol index. */
10112 rel_hash_ptr = reldata->hashes + reldata->count;
10113 if (link_order->type == bfd_section_reloc_link_order)
10114 {
10115 indx = link_order->u.reloc.p->u.section->target_index;
10116 BFD_ASSERT (indx != 0);
10117 *rel_hash_ptr = NULL;
10118 }
10119 else
10120 {
10121 struct elf_link_hash_entry *h;
10122
10123 /* Treat a reloc against a defined symbol as though it were
10124 actually against the section. */
10125 h = ((struct elf_link_hash_entry *)
10126 bfd_wrapped_link_hash_lookup (output_bfd, info,
10127 link_order->u.reloc.p->u.name,
10128 FALSE, FALSE, TRUE));
10129 if (h != NULL
10130 && (h->root.type == bfd_link_hash_defined
10131 || h->root.type == bfd_link_hash_defweak))
10132 {
10133 asection *section;
10134
10135 section = h->root.u.def.section;
10136 indx = section->output_section->target_index;
10137 *rel_hash_ptr = NULL;
10138 /* It seems that we ought to add the symbol value to the
10139 addend here, but in practice it has already been added
10140 because it was passed to constructor_callback. */
10141 addend += section->output_section->vma + section->output_offset;
10142 }
10143 else if (h != NULL)
10144 {
10145 /* Setting the index to -2 tells elf_link_output_extsym that
10146 this symbol is used by a reloc. */
10147 h->indx = -2;
10148 *rel_hash_ptr = h;
10149 indx = 0;
10150 }
10151 else
10152 {
10153 if (! ((*info->callbacks->unattached_reloc)
10154 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10155 return FALSE;
10156 indx = 0;
10157 }
10158 }
10159
10160 /* If this is an inplace reloc, we must write the addend into the
10161 object file. */
10162 if (howto->partial_inplace && addend != 0)
10163 {
10164 bfd_size_type size;
10165 bfd_reloc_status_type rstat;
10166 bfd_byte *buf;
10167 bfd_boolean ok;
10168 const char *sym_name;
10169
10170 size = (bfd_size_type) bfd_get_reloc_size (howto);
10171 buf = (bfd_byte *) bfd_zmalloc (size);
10172 if (buf == NULL)
10173 return FALSE;
10174 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10175 switch (rstat)
10176 {
10177 case bfd_reloc_ok:
10178 break;
10179
10180 default:
10181 case bfd_reloc_outofrange:
10182 abort ();
10183
10184 case bfd_reloc_overflow:
10185 if (link_order->type == bfd_section_reloc_link_order)
10186 sym_name = bfd_section_name (output_bfd,
10187 link_order->u.reloc.p->u.section);
10188 else
10189 sym_name = link_order->u.reloc.p->u.name;
10190 if (! ((*info->callbacks->reloc_overflow)
10191 (info, NULL, sym_name, howto->name, addend, NULL,
10192 NULL, (bfd_vma) 0)))
10193 {
10194 free (buf);
10195 return FALSE;
10196 }
10197 break;
10198 }
10199 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10200 link_order->offset, size);
10201 free (buf);
10202 if (! ok)
10203 return FALSE;
10204 }
10205
10206 /* The address of a reloc is relative to the section in a
10207 relocatable file, and is a virtual address in an executable
10208 file. */
10209 offset = link_order->offset;
10210 if (! info->relocatable)
10211 offset += output_section->vma;
10212
10213 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10214 {
10215 irel[i].r_offset = offset;
10216 irel[i].r_info = 0;
10217 irel[i].r_addend = 0;
10218 }
10219 if (bed->s->arch_size == 32)
10220 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10221 else
10222 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10223
10224 rel_hdr = reldata->hdr;
10225 erel = rel_hdr->contents;
10226 if (rel_hdr->sh_type == SHT_REL)
10227 {
10228 erel += reldata->count * bed->s->sizeof_rel;
10229 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10230 }
10231 else
10232 {
10233 irel[0].r_addend = addend;
10234 erel += reldata->count * bed->s->sizeof_rela;
10235 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10236 }
10237
10238 ++reldata->count;
10239
10240 return TRUE;
10241 }
10242
10243
10244 /* Get the output vma of the section pointed to by the sh_link field. */
10245
10246 static bfd_vma
10247 elf_get_linked_section_vma (struct bfd_link_order *p)
10248 {
10249 Elf_Internal_Shdr **elf_shdrp;
10250 asection *s;
10251 int elfsec;
10252
10253 s = p->u.indirect.section;
10254 elf_shdrp = elf_elfsections (s->owner);
10255 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10256 elfsec = elf_shdrp[elfsec]->sh_link;
10257 /* PR 290:
10258 The Intel C compiler generates SHT_IA_64_UNWIND with
10259 SHF_LINK_ORDER. But it doesn't set the sh_link or
10260 sh_info fields. Hence we could get the situation
10261 where elfsec is 0. */
10262 if (elfsec == 0)
10263 {
10264 const struct elf_backend_data *bed
10265 = get_elf_backend_data (s->owner);
10266 if (bed->link_order_error_handler)
10267 bed->link_order_error_handler
10268 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10269 return 0;
10270 }
10271 else
10272 {
10273 s = elf_shdrp[elfsec]->bfd_section;
10274 return s->output_section->vma + s->output_offset;
10275 }
10276 }
10277
10278
10279 /* Compare two sections based on the locations of the sections they are
10280 linked to. Used by elf_fixup_link_order. */
10281
10282 static int
10283 compare_link_order (const void * a, const void * b)
10284 {
10285 bfd_vma apos;
10286 bfd_vma bpos;
10287
10288 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10289 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10290 if (apos < bpos)
10291 return -1;
10292 return apos > bpos;
10293 }
10294
10295
10296 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10297 order as their linked sections. Returns false if this could not be done
10298 because an output section includes both ordered and unordered
10299 sections. Ideally we'd do this in the linker proper. */
10300
10301 static bfd_boolean
10302 elf_fixup_link_order (bfd *abfd, asection *o)
10303 {
10304 int seen_linkorder;
10305 int seen_other;
10306 int n;
10307 struct bfd_link_order *p;
10308 bfd *sub;
10309 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10310 unsigned elfsec;
10311 struct bfd_link_order **sections;
10312 asection *s, *other_sec, *linkorder_sec;
10313 bfd_vma offset;
10314
10315 other_sec = NULL;
10316 linkorder_sec = NULL;
10317 seen_other = 0;
10318 seen_linkorder = 0;
10319 for (p = o->map_head.link_order; p != NULL; p = p->next)
10320 {
10321 if (p->type == bfd_indirect_link_order)
10322 {
10323 s = p->u.indirect.section;
10324 sub = s->owner;
10325 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10326 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10327 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10328 && elfsec < elf_numsections (sub)
10329 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10330 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10331 {
10332 seen_linkorder++;
10333 linkorder_sec = s;
10334 }
10335 else
10336 {
10337 seen_other++;
10338 other_sec = s;
10339 }
10340 }
10341 else
10342 seen_other++;
10343
10344 if (seen_other && seen_linkorder)
10345 {
10346 if (other_sec && linkorder_sec)
10347 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10348 o, linkorder_sec,
10349 linkorder_sec->owner, other_sec,
10350 other_sec->owner);
10351 else
10352 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10353 o);
10354 bfd_set_error (bfd_error_bad_value);
10355 return FALSE;
10356 }
10357 }
10358
10359 if (!seen_linkorder)
10360 return TRUE;
10361
10362 sections = (struct bfd_link_order **)
10363 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10364 if (sections == NULL)
10365 return FALSE;
10366 seen_linkorder = 0;
10367
10368 for (p = o->map_head.link_order; p != NULL; p = p->next)
10369 {
10370 sections[seen_linkorder++] = p;
10371 }
10372 /* Sort the input sections in the order of their linked section. */
10373 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10374 compare_link_order);
10375
10376 /* Change the offsets of the sections. */
10377 offset = 0;
10378 for (n = 0; n < seen_linkorder; n++)
10379 {
10380 s = sections[n]->u.indirect.section;
10381 offset &= ~(bfd_vma) 0 << s->alignment_power;
10382 s->output_offset = offset;
10383 sections[n]->offset = offset;
10384 /* FIXME: octets_per_byte. */
10385 offset += sections[n]->size;
10386 }
10387
10388 free (sections);
10389 return TRUE;
10390 }
10391
10392 static void
10393 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10394 {
10395 asection *o;
10396
10397 if (flinfo->symstrtab != NULL)
10398 _bfd_stringtab_free (flinfo->symstrtab);
10399 if (flinfo->contents != NULL)
10400 free (flinfo->contents);
10401 if (flinfo->external_relocs != NULL)
10402 free (flinfo->external_relocs);
10403 if (flinfo->internal_relocs != NULL)
10404 free (flinfo->internal_relocs);
10405 if (flinfo->external_syms != NULL)
10406 free (flinfo->external_syms);
10407 if (flinfo->locsym_shndx != NULL)
10408 free (flinfo->locsym_shndx);
10409 if (flinfo->internal_syms != NULL)
10410 free (flinfo->internal_syms);
10411 if (flinfo->indices != NULL)
10412 free (flinfo->indices);
10413 if (flinfo->sections != NULL)
10414 free (flinfo->sections);
10415 if (flinfo->symbuf != NULL)
10416 free (flinfo->symbuf);
10417 if (flinfo->symshndxbuf != NULL)
10418 free (flinfo->symshndxbuf);
10419 for (o = obfd->sections; o != NULL; o = o->next)
10420 {
10421 struct bfd_elf_section_data *esdo = elf_section_data (o);
10422 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10423 free (esdo->rel.hashes);
10424 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10425 free (esdo->rela.hashes);
10426 }
10427 }
10428
10429 /* Do the final step of an ELF link. */
10430
10431 bfd_boolean
10432 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10433 {
10434 bfd_boolean dynamic;
10435 bfd_boolean emit_relocs;
10436 bfd *dynobj;
10437 struct elf_final_link_info flinfo;
10438 asection *o;
10439 struct bfd_link_order *p;
10440 bfd *sub;
10441 bfd_size_type max_contents_size;
10442 bfd_size_type max_external_reloc_size;
10443 bfd_size_type max_internal_reloc_count;
10444 bfd_size_type max_sym_count;
10445 bfd_size_type max_sym_shndx_count;
10446 file_ptr off;
10447 Elf_Internal_Sym elfsym;
10448 unsigned int i;
10449 Elf_Internal_Shdr *symtab_hdr;
10450 Elf_Internal_Shdr *symtab_shndx_hdr;
10451 Elf_Internal_Shdr *symstrtab_hdr;
10452 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10453 struct elf_outext_info eoinfo;
10454 bfd_boolean merged;
10455 size_t relativecount = 0;
10456 asection *reldyn = 0;
10457 bfd_size_type amt;
10458 asection *attr_section = NULL;
10459 bfd_vma attr_size = 0;
10460 const char *std_attrs_section;
10461
10462 if (! is_elf_hash_table (info->hash))
10463 return FALSE;
10464
10465 if (info->shared)
10466 abfd->flags |= DYNAMIC;
10467
10468 dynamic = elf_hash_table (info)->dynamic_sections_created;
10469 dynobj = elf_hash_table (info)->dynobj;
10470
10471 emit_relocs = (info->relocatable
10472 || info->emitrelocations);
10473
10474 flinfo.info = info;
10475 flinfo.output_bfd = abfd;
10476 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10477 if (flinfo.symstrtab == NULL)
10478 return FALSE;
10479
10480 if (! dynamic)
10481 {
10482 flinfo.dynsym_sec = NULL;
10483 flinfo.hash_sec = NULL;
10484 flinfo.symver_sec = NULL;
10485 }
10486 else
10487 {
10488 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10489 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10490 /* Note that dynsym_sec can be NULL (on VMS). */
10491 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10492 /* Note that it is OK if symver_sec is NULL. */
10493 }
10494
10495 flinfo.contents = NULL;
10496 flinfo.external_relocs = NULL;
10497 flinfo.internal_relocs = NULL;
10498 flinfo.external_syms = NULL;
10499 flinfo.locsym_shndx = NULL;
10500 flinfo.internal_syms = NULL;
10501 flinfo.indices = NULL;
10502 flinfo.sections = NULL;
10503 flinfo.symbuf = NULL;
10504 flinfo.symshndxbuf = NULL;
10505 flinfo.symbuf_count = 0;
10506 flinfo.shndxbuf_size = 0;
10507 flinfo.filesym_count = 0;
10508
10509 /* The object attributes have been merged. Remove the input
10510 sections from the link, and set the contents of the output
10511 secton. */
10512 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10513 for (o = abfd->sections; o != NULL; o = o->next)
10514 {
10515 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10516 || strcmp (o->name, ".gnu.attributes") == 0)
10517 {
10518 for (p = o->map_head.link_order; p != NULL; p = p->next)
10519 {
10520 asection *input_section;
10521
10522 if (p->type != bfd_indirect_link_order)
10523 continue;
10524 input_section = p->u.indirect.section;
10525 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10526 elf_link_input_bfd ignores this section. */
10527 input_section->flags &= ~SEC_HAS_CONTENTS;
10528 }
10529
10530 attr_size = bfd_elf_obj_attr_size (abfd);
10531 if (attr_size)
10532 {
10533 bfd_set_section_size (abfd, o, attr_size);
10534 attr_section = o;
10535 /* Skip this section later on. */
10536 o->map_head.link_order = NULL;
10537 }
10538 else
10539 o->flags |= SEC_EXCLUDE;
10540 }
10541 }
10542
10543 /* Count up the number of relocations we will output for each output
10544 section, so that we know the sizes of the reloc sections. We
10545 also figure out some maximum sizes. */
10546 max_contents_size = 0;
10547 max_external_reloc_size = 0;
10548 max_internal_reloc_count = 0;
10549 max_sym_count = 0;
10550 max_sym_shndx_count = 0;
10551 merged = FALSE;
10552 for (o = abfd->sections; o != NULL; o = o->next)
10553 {
10554 struct bfd_elf_section_data *esdo = elf_section_data (o);
10555 o->reloc_count = 0;
10556
10557 for (p = o->map_head.link_order; p != NULL; p = p->next)
10558 {
10559 unsigned int reloc_count = 0;
10560 struct bfd_elf_section_data *esdi = NULL;
10561
10562 if (p->type == bfd_section_reloc_link_order
10563 || p->type == bfd_symbol_reloc_link_order)
10564 reloc_count = 1;
10565 else if (p->type == bfd_indirect_link_order)
10566 {
10567 asection *sec;
10568
10569 sec = p->u.indirect.section;
10570 esdi = elf_section_data (sec);
10571
10572 /* Mark all sections which are to be included in the
10573 link. This will normally be every section. We need
10574 to do this so that we can identify any sections which
10575 the linker has decided to not include. */
10576 sec->linker_mark = TRUE;
10577
10578 if (sec->flags & SEC_MERGE)
10579 merged = TRUE;
10580
10581 if (esdo->this_hdr.sh_type == SHT_REL
10582 || esdo->this_hdr.sh_type == SHT_RELA)
10583 /* Some backends use reloc_count in relocation sections
10584 to count particular types of relocs. Of course,
10585 reloc sections themselves can't have relocations. */
10586 reloc_count = 0;
10587 else if (info->relocatable || info->emitrelocations)
10588 reloc_count = sec->reloc_count;
10589 else if (bed->elf_backend_count_relocs)
10590 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10591
10592 if (sec->rawsize > max_contents_size)
10593 max_contents_size = sec->rawsize;
10594 if (sec->size > max_contents_size)
10595 max_contents_size = sec->size;
10596
10597 /* We are interested in just local symbols, not all
10598 symbols. */
10599 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10600 && (sec->owner->flags & DYNAMIC) == 0)
10601 {
10602 size_t sym_count;
10603
10604 if (elf_bad_symtab (sec->owner))
10605 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10606 / bed->s->sizeof_sym);
10607 else
10608 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10609
10610 if (sym_count > max_sym_count)
10611 max_sym_count = sym_count;
10612
10613 if (sym_count > max_sym_shndx_count
10614 && elf_symtab_shndx (sec->owner) != 0)
10615 max_sym_shndx_count = sym_count;
10616
10617 if ((sec->flags & SEC_RELOC) != 0)
10618 {
10619 size_t ext_size = 0;
10620
10621 if (esdi->rel.hdr != NULL)
10622 ext_size = esdi->rel.hdr->sh_size;
10623 if (esdi->rela.hdr != NULL)
10624 ext_size += esdi->rela.hdr->sh_size;
10625
10626 if (ext_size > max_external_reloc_size)
10627 max_external_reloc_size = ext_size;
10628 if (sec->reloc_count > max_internal_reloc_count)
10629 max_internal_reloc_count = sec->reloc_count;
10630 }
10631 }
10632 }
10633
10634 if (reloc_count == 0)
10635 continue;
10636
10637 o->reloc_count += reloc_count;
10638
10639 if (p->type == bfd_indirect_link_order
10640 && (info->relocatable || info->emitrelocations))
10641 {
10642 if (esdi->rel.hdr)
10643 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10644 if (esdi->rela.hdr)
10645 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10646 }
10647 else
10648 {
10649 if (o->use_rela_p)
10650 esdo->rela.count += reloc_count;
10651 else
10652 esdo->rel.count += reloc_count;
10653 }
10654 }
10655
10656 if (o->reloc_count > 0)
10657 o->flags |= SEC_RELOC;
10658 else
10659 {
10660 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10661 set it (this is probably a bug) and if it is set
10662 assign_section_numbers will create a reloc section. */
10663 o->flags &=~ SEC_RELOC;
10664 }
10665
10666 /* If the SEC_ALLOC flag is not set, force the section VMA to
10667 zero. This is done in elf_fake_sections as well, but forcing
10668 the VMA to 0 here will ensure that relocs against these
10669 sections are handled correctly. */
10670 if ((o->flags & SEC_ALLOC) == 0
10671 && ! o->user_set_vma)
10672 o->vma = 0;
10673 }
10674
10675 if (! info->relocatable && merged)
10676 elf_link_hash_traverse (elf_hash_table (info),
10677 _bfd_elf_link_sec_merge_syms, abfd);
10678
10679 /* Figure out the file positions for everything but the symbol table
10680 and the relocs. We set symcount to force assign_section_numbers
10681 to create a symbol table. */
10682 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10683 BFD_ASSERT (! abfd->output_has_begun);
10684 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10685 goto error_return;
10686
10687 /* Set sizes, and assign file positions for reloc sections. */
10688 for (o = abfd->sections; o != NULL; o = o->next)
10689 {
10690 struct bfd_elf_section_data *esdo = elf_section_data (o);
10691 if ((o->flags & SEC_RELOC) != 0)
10692 {
10693 if (esdo->rel.hdr
10694 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10695 goto error_return;
10696
10697 if (esdo->rela.hdr
10698 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10699 goto error_return;
10700 }
10701
10702 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10703 to count upwards while actually outputting the relocations. */
10704 esdo->rel.count = 0;
10705 esdo->rela.count = 0;
10706 }
10707
10708 _bfd_elf_assign_file_positions_for_relocs (abfd);
10709
10710 /* We have now assigned file positions for all the sections except
10711 .symtab and .strtab. We start the .symtab section at the current
10712 file position, and write directly to it. We build the .strtab
10713 section in memory. */
10714 bfd_get_symcount (abfd) = 0;
10715 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10716 /* sh_name is set in prep_headers. */
10717 symtab_hdr->sh_type = SHT_SYMTAB;
10718 /* sh_flags, sh_addr and sh_size all start off zero. */
10719 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10720 /* sh_link is set in assign_section_numbers. */
10721 /* sh_info is set below. */
10722 /* sh_offset is set just below. */
10723 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10724
10725 off = elf_next_file_pos (abfd);
10726 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10727
10728 /* Note that at this point elf_next_file_pos (abfd) is
10729 incorrect. We do not yet know the size of the .symtab section.
10730 We correct next_file_pos below, after we do know the size. */
10731
10732 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10733 continuously seeking to the right position in the file. */
10734 if (! info->keep_memory || max_sym_count < 20)
10735 flinfo.symbuf_size = 20;
10736 else
10737 flinfo.symbuf_size = max_sym_count;
10738 amt = flinfo.symbuf_size;
10739 amt *= bed->s->sizeof_sym;
10740 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10741 if (flinfo.symbuf == NULL)
10742 goto error_return;
10743 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10744 {
10745 /* Wild guess at number of output symbols. realloc'd as needed. */
10746 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10747 flinfo.shndxbuf_size = amt;
10748 amt *= sizeof (Elf_External_Sym_Shndx);
10749 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10750 if (flinfo.symshndxbuf == NULL)
10751 goto error_return;
10752 }
10753
10754 /* Start writing out the symbol table. The first symbol is always a
10755 dummy symbol. */
10756 if (info->strip != strip_all
10757 || emit_relocs)
10758 {
10759 elfsym.st_value = 0;
10760 elfsym.st_size = 0;
10761 elfsym.st_info = 0;
10762 elfsym.st_other = 0;
10763 elfsym.st_shndx = SHN_UNDEF;
10764 elfsym.st_target_internal = 0;
10765 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10766 NULL) != 1)
10767 goto error_return;
10768 }
10769
10770 /* Output a symbol for each section. We output these even if we are
10771 discarding local symbols, since they are used for relocs. These
10772 symbols have no names. We store the index of each one in the
10773 index field of the section, so that we can find it again when
10774 outputting relocs. */
10775 if (info->strip != strip_all
10776 || emit_relocs)
10777 {
10778 elfsym.st_size = 0;
10779 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10780 elfsym.st_other = 0;
10781 elfsym.st_value = 0;
10782 elfsym.st_target_internal = 0;
10783 for (i = 1; i < elf_numsections (abfd); i++)
10784 {
10785 o = bfd_section_from_elf_index (abfd, i);
10786 if (o != NULL)
10787 {
10788 o->target_index = bfd_get_symcount (abfd);
10789 elfsym.st_shndx = i;
10790 if (!info->relocatable)
10791 elfsym.st_value = o->vma;
10792 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10793 goto error_return;
10794 }
10795 }
10796 }
10797
10798 /* Allocate some memory to hold information read in from the input
10799 files. */
10800 if (max_contents_size != 0)
10801 {
10802 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10803 if (flinfo.contents == NULL)
10804 goto error_return;
10805 }
10806
10807 if (max_external_reloc_size != 0)
10808 {
10809 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10810 if (flinfo.external_relocs == NULL)
10811 goto error_return;
10812 }
10813
10814 if (max_internal_reloc_count != 0)
10815 {
10816 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10817 amt *= sizeof (Elf_Internal_Rela);
10818 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10819 if (flinfo.internal_relocs == NULL)
10820 goto error_return;
10821 }
10822
10823 if (max_sym_count != 0)
10824 {
10825 amt = max_sym_count * bed->s->sizeof_sym;
10826 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10827 if (flinfo.external_syms == NULL)
10828 goto error_return;
10829
10830 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10831 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10832 if (flinfo.internal_syms == NULL)
10833 goto error_return;
10834
10835 amt = max_sym_count * sizeof (long);
10836 flinfo.indices = (long int *) bfd_malloc (amt);
10837 if (flinfo.indices == NULL)
10838 goto error_return;
10839
10840 amt = max_sym_count * sizeof (asection *);
10841 flinfo.sections = (asection **) bfd_malloc (amt);
10842 if (flinfo.sections == NULL)
10843 goto error_return;
10844 }
10845
10846 if (max_sym_shndx_count != 0)
10847 {
10848 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10849 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10850 if (flinfo.locsym_shndx == NULL)
10851 goto error_return;
10852 }
10853
10854 if (elf_hash_table (info)->tls_sec)
10855 {
10856 bfd_vma base, end = 0;
10857 asection *sec;
10858
10859 for (sec = elf_hash_table (info)->tls_sec;
10860 sec && (sec->flags & SEC_THREAD_LOCAL);
10861 sec = sec->next)
10862 {
10863 bfd_size_type size = sec->size;
10864
10865 if (size == 0
10866 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10867 {
10868 struct bfd_link_order *ord = sec->map_tail.link_order;
10869
10870 if (ord != NULL)
10871 size = ord->offset + ord->size;
10872 }
10873 end = sec->vma + size;
10874 }
10875 base = elf_hash_table (info)->tls_sec->vma;
10876 /* Only align end of TLS section if static TLS doesn't have special
10877 alignment requirements. */
10878 if (bed->static_tls_alignment == 1)
10879 end = align_power (end,
10880 elf_hash_table (info)->tls_sec->alignment_power);
10881 elf_hash_table (info)->tls_size = end - base;
10882 }
10883
10884 /* Reorder SHF_LINK_ORDER sections. */
10885 for (o = abfd->sections; o != NULL; o = o->next)
10886 {
10887 if (!elf_fixup_link_order (abfd, o))
10888 return FALSE;
10889 }
10890
10891 /* Since ELF permits relocations to be against local symbols, we
10892 must have the local symbols available when we do the relocations.
10893 Since we would rather only read the local symbols once, and we
10894 would rather not keep them in memory, we handle all the
10895 relocations for a single input file at the same time.
10896
10897 Unfortunately, there is no way to know the total number of local
10898 symbols until we have seen all of them, and the local symbol
10899 indices precede the global symbol indices. This means that when
10900 we are generating relocatable output, and we see a reloc against
10901 a global symbol, we can not know the symbol index until we have
10902 finished examining all the local symbols to see which ones we are
10903 going to output. To deal with this, we keep the relocations in
10904 memory, and don't output them until the end of the link. This is
10905 an unfortunate waste of memory, but I don't see a good way around
10906 it. Fortunately, it only happens when performing a relocatable
10907 link, which is not the common case. FIXME: If keep_memory is set
10908 we could write the relocs out and then read them again; I don't
10909 know how bad the memory loss will be. */
10910
10911 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10912 sub->output_has_begun = FALSE;
10913 for (o = abfd->sections; o != NULL; o = o->next)
10914 {
10915 for (p = o->map_head.link_order; p != NULL; p = p->next)
10916 {
10917 if (p->type == bfd_indirect_link_order
10918 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10919 == bfd_target_elf_flavour)
10920 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10921 {
10922 if (! sub->output_has_begun)
10923 {
10924 if (! elf_link_input_bfd (&flinfo, sub))
10925 goto error_return;
10926 sub->output_has_begun = TRUE;
10927 }
10928 }
10929 else if (p->type == bfd_section_reloc_link_order
10930 || p->type == bfd_symbol_reloc_link_order)
10931 {
10932 if (! elf_reloc_link_order (abfd, info, o, p))
10933 goto error_return;
10934 }
10935 else
10936 {
10937 if (! _bfd_default_link_order (abfd, info, o, p))
10938 {
10939 if (p->type == bfd_indirect_link_order
10940 && (bfd_get_flavour (sub)
10941 == bfd_target_elf_flavour)
10942 && (elf_elfheader (sub)->e_ident[EI_CLASS]
10943 != bed->s->elfclass))
10944 {
10945 const char *iclass, *oclass;
10946
10947 if (bed->s->elfclass == ELFCLASS64)
10948 {
10949 iclass = "ELFCLASS32";
10950 oclass = "ELFCLASS64";
10951 }
10952 else
10953 {
10954 iclass = "ELFCLASS64";
10955 oclass = "ELFCLASS32";
10956 }
10957
10958 bfd_set_error (bfd_error_wrong_format);
10959 (*_bfd_error_handler)
10960 (_("%B: file class %s incompatible with %s"),
10961 sub, iclass, oclass);
10962 }
10963
10964 goto error_return;
10965 }
10966 }
10967 }
10968 }
10969
10970 /* Free symbol buffer if needed. */
10971 if (!info->reduce_memory_overheads)
10972 {
10973 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10974 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10975 && elf_tdata (sub)->symbuf)
10976 {
10977 free (elf_tdata (sub)->symbuf);
10978 elf_tdata (sub)->symbuf = NULL;
10979 }
10980 }
10981
10982 /* Output any global symbols that got converted to local in a
10983 version script or due to symbol visibility. We do this in a
10984 separate step since ELF requires all local symbols to appear
10985 prior to any global symbols. FIXME: We should only do this if
10986 some global symbols were, in fact, converted to become local.
10987 FIXME: Will this work correctly with the Irix 5 linker? */
10988 eoinfo.failed = FALSE;
10989 eoinfo.flinfo = &flinfo;
10990 eoinfo.localsyms = TRUE;
10991 eoinfo.need_second_pass = FALSE;
10992 eoinfo.second_pass = FALSE;
10993 eoinfo.file_sym_done = FALSE;
10994 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
10995 if (eoinfo.failed)
10996 return FALSE;
10997
10998 if (eoinfo.need_second_pass)
10999 {
11000 eoinfo.second_pass = TRUE;
11001 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11002 if (eoinfo.failed)
11003 return FALSE;
11004 }
11005
11006 /* If backend needs to output some local symbols not present in the hash
11007 table, do it now. */
11008 if (bed->elf_backend_output_arch_local_syms)
11009 {
11010 typedef int (*out_sym_func)
11011 (void *, const char *, Elf_Internal_Sym *, asection *,
11012 struct elf_link_hash_entry *);
11013
11014 if (! ((*bed->elf_backend_output_arch_local_syms)
11015 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11016 return FALSE;
11017 }
11018
11019 /* That wrote out all the local symbols. Finish up the symbol table
11020 with the global symbols. Even if we want to strip everything we
11021 can, we still need to deal with those global symbols that got
11022 converted to local in a version script. */
11023
11024 /* The sh_info field records the index of the first non local symbol. */
11025 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11026
11027 if (dynamic
11028 && flinfo.dynsym_sec != NULL
11029 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11030 {
11031 Elf_Internal_Sym sym;
11032 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11033 long last_local = 0;
11034
11035 /* Write out the section symbols for the output sections. */
11036 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11037 {
11038 asection *s;
11039
11040 sym.st_size = 0;
11041 sym.st_name = 0;
11042 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11043 sym.st_other = 0;
11044 sym.st_target_internal = 0;
11045
11046 for (s = abfd->sections; s != NULL; s = s->next)
11047 {
11048 int indx;
11049 bfd_byte *dest;
11050 long dynindx;
11051
11052 dynindx = elf_section_data (s)->dynindx;
11053 if (dynindx <= 0)
11054 continue;
11055 indx = elf_section_data (s)->this_idx;
11056 BFD_ASSERT (indx > 0);
11057 sym.st_shndx = indx;
11058 if (! check_dynsym (abfd, &sym))
11059 return FALSE;
11060 sym.st_value = s->vma;
11061 dest = dynsym + dynindx * bed->s->sizeof_sym;
11062 if (last_local < dynindx)
11063 last_local = dynindx;
11064 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11065 }
11066 }
11067
11068 /* Write out the local dynsyms. */
11069 if (elf_hash_table (info)->dynlocal)
11070 {
11071 struct elf_link_local_dynamic_entry *e;
11072 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11073 {
11074 asection *s;
11075 bfd_byte *dest;
11076
11077 /* Copy the internal symbol and turn off visibility.
11078 Note that we saved a word of storage and overwrote
11079 the original st_name with the dynstr_index. */
11080 sym = e->isym;
11081 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11082
11083 s = bfd_section_from_elf_index (e->input_bfd,
11084 e->isym.st_shndx);
11085 if (s != NULL)
11086 {
11087 sym.st_shndx =
11088 elf_section_data (s->output_section)->this_idx;
11089 if (! check_dynsym (abfd, &sym))
11090 return FALSE;
11091 sym.st_value = (s->output_section->vma
11092 + s->output_offset
11093 + e->isym.st_value);
11094 }
11095
11096 if (last_local < e->dynindx)
11097 last_local = e->dynindx;
11098
11099 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11100 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11101 }
11102 }
11103
11104 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11105 last_local + 1;
11106 }
11107
11108 /* We get the global symbols from the hash table. */
11109 eoinfo.failed = FALSE;
11110 eoinfo.localsyms = FALSE;
11111 eoinfo.flinfo = &flinfo;
11112 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11113 if (eoinfo.failed)
11114 return FALSE;
11115
11116 /* If backend needs to output some symbols not present in the hash
11117 table, do it now. */
11118 if (bed->elf_backend_output_arch_syms)
11119 {
11120 typedef int (*out_sym_func)
11121 (void *, const char *, Elf_Internal_Sym *, asection *,
11122 struct elf_link_hash_entry *);
11123
11124 if (! ((*bed->elf_backend_output_arch_syms)
11125 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11126 return FALSE;
11127 }
11128
11129 /* Flush all symbols to the file. */
11130 if (! elf_link_flush_output_syms (&flinfo, bed))
11131 return FALSE;
11132
11133 /* Now we know the size of the symtab section. */
11134 off += symtab_hdr->sh_size;
11135
11136 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11137 if (symtab_shndx_hdr->sh_name != 0)
11138 {
11139 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11140 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11141 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11142 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11143 symtab_shndx_hdr->sh_size = amt;
11144
11145 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11146 off, TRUE);
11147
11148 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11149 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11150 return FALSE;
11151 }
11152
11153
11154 /* Finish up and write out the symbol string table (.strtab)
11155 section. */
11156 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11157 /* sh_name was set in prep_headers. */
11158 symstrtab_hdr->sh_type = SHT_STRTAB;
11159 symstrtab_hdr->sh_flags = 0;
11160 symstrtab_hdr->sh_addr = 0;
11161 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11162 symstrtab_hdr->sh_entsize = 0;
11163 symstrtab_hdr->sh_link = 0;
11164 symstrtab_hdr->sh_info = 0;
11165 /* sh_offset is set just below. */
11166 symstrtab_hdr->sh_addralign = 1;
11167
11168 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
11169 elf_next_file_pos (abfd) = off;
11170
11171 if (bfd_get_symcount (abfd) > 0)
11172 {
11173 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11174 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11175 return FALSE;
11176 }
11177
11178 /* Adjust the relocs to have the correct symbol indices. */
11179 for (o = abfd->sections; o != NULL; o = o->next)
11180 {
11181 struct bfd_elf_section_data *esdo = elf_section_data (o);
11182 if ((o->flags & SEC_RELOC) == 0)
11183 continue;
11184
11185 if (esdo->rel.hdr != NULL)
11186 elf_link_adjust_relocs (abfd, &esdo->rel);
11187 if (esdo->rela.hdr != NULL)
11188 elf_link_adjust_relocs (abfd, &esdo->rela);
11189
11190 /* Set the reloc_count field to 0 to prevent write_relocs from
11191 trying to swap the relocs out itself. */
11192 o->reloc_count = 0;
11193 }
11194
11195 if (dynamic && info->combreloc && dynobj != NULL)
11196 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11197
11198 /* If we are linking against a dynamic object, or generating a
11199 shared library, finish up the dynamic linking information. */
11200 if (dynamic)
11201 {
11202 bfd_byte *dyncon, *dynconend;
11203
11204 /* Fix up .dynamic entries. */
11205 o = bfd_get_linker_section (dynobj, ".dynamic");
11206 BFD_ASSERT (o != NULL);
11207
11208 dyncon = o->contents;
11209 dynconend = o->contents + o->size;
11210 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11211 {
11212 Elf_Internal_Dyn dyn;
11213 const char *name;
11214 unsigned int type;
11215
11216 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11217
11218 switch (dyn.d_tag)
11219 {
11220 default:
11221 continue;
11222 case DT_NULL:
11223 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11224 {
11225 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11226 {
11227 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11228 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11229 default: continue;
11230 }
11231 dyn.d_un.d_val = relativecount;
11232 relativecount = 0;
11233 break;
11234 }
11235 continue;
11236
11237 case DT_INIT:
11238 name = info->init_function;
11239 goto get_sym;
11240 case DT_FINI:
11241 name = info->fini_function;
11242 get_sym:
11243 {
11244 struct elf_link_hash_entry *h;
11245
11246 h = elf_link_hash_lookup (elf_hash_table (info), name,
11247 FALSE, FALSE, TRUE);
11248 if (h != NULL
11249 && (h->root.type == bfd_link_hash_defined
11250 || h->root.type == bfd_link_hash_defweak))
11251 {
11252 dyn.d_un.d_ptr = h->root.u.def.value;
11253 o = h->root.u.def.section;
11254 if (o->output_section != NULL)
11255 dyn.d_un.d_ptr += (o->output_section->vma
11256 + o->output_offset);
11257 else
11258 {
11259 /* The symbol is imported from another shared
11260 library and does not apply to this one. */
11261 dyn.d_un.d_ptr = 0;
11262 }
11263 break;
11264 }
11265 }
11266 continue;
11267
11268 case DT_PREINIT_ARRAYSZ:
11269 name = ".preinit_array";
11270 goto get_size;
11271 case DT_INIT_ARRAYSZ:
11272 name = ".init_array";
11273 goto get_size;
11274 case DT_FINI_ARRAYSZ:
11275 name = ".fini_array";
11276 get_size:
11277 o = bfd_get_section_by_name (abfd, name);
11278 if (o == NULL)
11279 {
11280 (*_bfd_error_handler)
11281 (_("%B: could not find output section %s"), abfd, name);
11282 goto error_return;
11283 }
11284 if (o->size == 0)
11285 (*_bfd_error_handler)
11286 (_("warning: %s section has zero size"), name);
11287 dyn.d_un.d_val = o->size;
11288 break;
11289
11290 case DT_PREINIT_ARRAY:
11291 name = ".preinit_array";
11292 goto get_vma;
11293 case DT_INIT_ARRAY:
11294 name = ".init_array";
11295 goto get_vma;
11296 case DT_FINI_ARRAY:
11297 name = ".fini_array";
11298 goto get_vma;
11299
11300 case DT_HASH:
11301 name = ".hash";
11302 goto get_vma;
11303 case DT_GNU_HASH:
11304 name = ".gnu.hash";
11305 goto get_vma;
11306 case DT_STRTAB:
11307 name = ".dynstr";
11308 goto get_vma;
11309 case DT_SYMTAB:
11310 name = ".dynsym";
11311 goto get_vma;
11312 case DT_VERDEF:
11313 name = ".gnu.version_d";
11314 goto get_vma;
11315 case DT_VERNEED:
11316 name = ".gnu.version_r";
11317 goto get_vma;
11318 case DT_VERSYM:
11319 name = ".gnu.version";
11320 get_vma:
11321 o = bfd_get_section_by_name (abfd, name);
11322 if (o == NULL)
11323 {
11324 (*_bfd_error_handler)
11325 (_("%B: could not find output section %s"), abfd, name);
11326 goto error_return;
11327 }
11328 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11329 {
11330 (*_bfd_error_handler)
11331 (_("warning: section '%s' is being made into a note"), name);
11332 bfd_set_error (bfd_error_nonrepresentable_section);
11333 goto error_return;
11334 }
11335 dyn.d_un.d_ptr = o->vma;
11336 break;
11337
11338 case DT_REL:
11339 case DT_RELA:
11340 case DT_RELSZ:
11341 case DT_RELASZ:
11342 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11343 type = SHT_REL;
11344 else
11345 type = SHT_RELA;
11346 dyn.d_un.d_val = 0;
11347 dyn.d_un.d_ptr = 0;
11348 for (i = 1; i < elf_numsections (abfd); i++)
11349 {
11350 Elf_Internal_Shdr *hdr;
11351
11352 hdr = elf_elfsections (abfd)[i];
11353 if (hdr->sh_type == type
11354 && (hdr->sh_flags & SHF_ALLOC) != 0)
11355 {
11356 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11357 dyn.d_un.d_val += hdr->sh_size;
11358 else
11359 {
11360 if (dyn.d_un.d_ptr == 0
11361 || hdr->sh_addr < dyn.d_un.d_ptr)
11362 dyn.d_un.d_ptr = hdr->sh_addr;
11363 }
11364 }
11365 }
11366 break;
11367 }
11368 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11369 }
11370 }
11371
11372 /* If we have created any dynamic sections, then output them. */
11373 if (dynobj != NULL)
11374 {
11375 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11376 goto error_return;
11377
11378 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11379 if (((info->warn_shared_textrel && info->shared)
11380 || info->error_textrel)
11381 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11382 {
11383 bfd_byte *dyncon, *dynconend;
11384
11385 dyncon = o->contents;
11386 dynconend = o->contents + o->size;
11387 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11388 {
11389 Elf_Internal_Dyn dyn;
11390
11391 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11392
11393 if (dyn.d_tag == DT_TEXTREL)
11394 {
11395 if (info->error_textrel)
11396 info->callbacks->einfo
11397 (_("%P%X: read-only segment has dynamic relocations.\n"));
11398 else
11399 info->callbacks->einfo
11400 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11401 break;
11402 }
11403 }
11404 }
11405
11406 for (o = dynobj->sections; o != NULL; o = o->next)
11407 {
11408 if ((o->flags & SEC_HAS_CONTENTS) == 0
11409 || o->size == 0
11410 || o->output_section == bfd_abs_section_ptr)
11411 continue;
11412 if ((o->flags & SEC_LINKER_CREATED) == 0)
11413 {
11414 /* At this point, we are only interested in sections
11415 created by _bfd_elf_link_create_dynamic_sections. */
11416 continue;
11417 }
11418 if (elf_hash_table (info)->stab_info.stabstr == o)
11419 continue;
11420 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11421 continue;
11422 if (strcmp (o->name, ".dynstr") != 0)
11423 {
11424 /* FIXME: octets_per_byte. */
11425 if (! bfd_set_section_contents (abfd, o->output_section,
11426 o->contents,
11427 (file_ptr) o->output_offset,
11428 o->size))
11429 goto error_return;
11430 }
11431 else
11432 {
11433 /* The contents of the .dynstr section are actually in a
11434 stringtab. */
11435 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11436 if (bfd_seek (abfd, off, SEEK_SET) != 0
11437 || ! _bfd_elf_strtab_emit (abfd,
11438 elf_hash_table (info)->dynstr))
11439 goto error_return;
11440 }
11441 }
11442 }
11443
11444 if (info->relocatable)
11445 {
11446 bfd_boolean failed = FALSE;
11447
11448 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11449 if (failed)
11450 goto error_return;
11451 }
11452
11453 /* If we have optimized stabs strings, output them. */
11454 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11455 {
11456 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11457 goto error_return;
11458 }
11459
11460 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11461 goto error_return;
11462
11463 elf_final_link_free (abfd, &flinfo);
11464
11465 elf_linker (abfd) = TRUE;
11466
11467 if (attr_section)
11468 {
11469 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11470 if (contents == NULL)
11471 return FALSE; /* Bail out and fail. */
11472 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11473 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11474 free (contents);
11475 }
11476
11477 return TRUE;
11478
11479 error_return:
11480 elf_final_link_free (abfd, &flinfo);
11481 return FALSE;
11482 }
11483 \f
11484 /* Initialize COOKIE for input bfd ABFD. */
11485
11486 static bfd_boolean
11487 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11488 struct bfd_link_info *info, bfd *abfd)
11489 {
11490 Elf_Internal_Shdr *symtab_hdr;
11491 const struct elf_backend_data *bed;
11492
11493 bed = get_elf_backend_data (abfd);
11494 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11495
11496 cookie->abfd = abfd;
11497 cookie->sym_hashes = elf_sym_hashes (abfd);
11498 cookie->bad_symtab = elf_bad_symtab (abfd);
11499 if (cookie->bad_symtab)
11500 {
11501 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11502 cookie->extsymoff = 0;
11503 }
11504 else
11505 {
11506 cookie->locsymcount = symtab_hdr->sh_info;
11507 cookie->extsymoff = symtab_hdr->sh_info;
11508 }
11509
11510 if (bed->s->arch_size == 32)
11511 cookie->r_sym_shift = 8;
11512 else
11513 cookie->r_sym_shift = 32;
11514
11515 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11516 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11517 {
11518 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11519 cookie->locsymcount, 0,
11520 NULL, NULL, NULL);
11521 if (cookie->locsyms == NULL)
11522 {
11523 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11524 return FALSE;
11525 }
11526 if (info->keep_memory)
11527 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11528 }
11529 return TRUE;
11530 }
11531
11532 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11533
11534 static void
11535 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11536 {
11537 Elf_Internal_Shdr *symtab_hdr;
11538
11539 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11540 if (cookie->locsyms != NULL
11541 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11542 free (cookie->locsyms);
11543 }
11544
11545 /* Initialize the relocation information in COOKIE for input section SEC
11546 of input bfd ABFD. */
11547
11548 static bfd_boolean
11549 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11550 struct bfd_link_info *info, bfd *abfd,
11551 asection *sec)
11552 {
11553 const struct elf_backend_data *bed;
11554
11555 if (sec->reloc_count == 0)
11556 {
11557 cookie->rels = NULL;
11558 cookie->relend = NULL;
11559 }
11560 else
11561 {
11562 bed = get_elf_backend_data (abfd);
11563
11564 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11565 info->keep_memory);
11566 if (cookie->rels == NULL)
11567 return FALSE;
11568 cookie->rel = cookie->rels;
11569 cookie->relend = (cookie->rels
11570 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11571 }
11572 cookie->rel = cookie->rels;
11573 return TRUE;
11574 }
11575
11576 /* Free the memory allocated by init_reloc_cookie_rels,
11577 if appropriate. */
11578
11579 static void
11580 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11581 asection *sec)
11582 {
11583 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11584 free (cookie->rels);
11585 }
11586
11587 /* Initialize the whole of COOKIE for input section SEC. */
11588
11589 static bfd_boolean
11590 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11591 struct bfd_link_info *info,
11592 asection *sec)
11593 {
11594 if (!init_reloc_cookie (cookie, info, sec->owner))
11595 goto error1;
11596 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11597 goto error2;
11598 return TRUE;
11599
11600 error2:
11601 fini_reloc_cookie (cookie, sec->owner);
11602 error1:
11603 return FALSE;
11604 }
11605
11606 /* Free the memory allocated by init_reloc_cookie_for_section,
11607 if appropriate. */
11608
11609 static void
11610 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11611 asection *sec)
11612 {
11613 fini_reloc_cookie_rels (cookie, sec);
11614 fini_reloc_cookie (cookie, sec->owner);
11615 }
11616 \f
11617 /* Garbage collect unused sections. */
11618
11619 /* Default gc_mark_hook. */
11620
11621 asection *
11622 _bfd_elf_gc_mark_hook (asection *sec,
11623 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11624 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11625 struct elf_link_hash_entry *h,
11626 Elf_Internal_Sym *sym)
11627 {
11628 const char *sec_name;
11629
11630 if (h != NULL)
11631 {
11632 switch (h->root.type)
11633 {
11634 case bfd_link_hash_defined:
11635 case bfd_link_hash_defweak:
11636 return h->root.u.def.section;
11637
11638 case bfd_link_hash_common:
11639 return h->root.u.c.p->section;
11640
11641 case bfd_link_hash_undefined:
11642 case bfd_link_hash_undefweak:
11643 /* To work around a glibc bug, keep all XXX input sections
11644 when there is an as yet undefined reference to __start_XXX
11645 or __stop_XXX symbols. The linker will later define such
11646 symbols for orphan input sections that have a name
11647 representable as a C identifier. */
11648 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11649 sec_name = h->root.root.string + 8;
11650 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11651 sec_name = h->root.root.string + 7;
11652 else
11653 sec_name = NULL;
11654
11655 if (sec_name && *sec_name != '\0')
11656 {
11657 bfd *i;
11658
11659 for (i = info->input_bfds; i; i = i->link_next)
11660 {
11661 sec = bfd_get_section_by_name (i, sec_name);
11662 if (sec)
11663 sec->flags |= SEC_KEEP;
11664 }
11665 }
11666 break;
11667
11668 default:
11669 break;
11670 }
11671 }
11672 else
11673 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11674
11675 return NULL;
11676 }
11677
11678 /* COOKIE->rel describes a relocation against section SEC, which is
11679 a section we've decided to keep. Return the section that contains
11680 the relocation symbol, or NULL if no section contains it. */
11681
11682 asection *
11683 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11684 elf_gc_mark_hook_fn gc_mark_hook,
11685 struct elf_reloc_cookie *cookie)
11686 {
11687 unsigned long r_symndx;
11688 struct elf_link_hash_entry *h;
11689
11690 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11691 if (r_symndx == STN_UNDEF)
11692 return NULL;
11693
11694 if (r_symndx >= cookie->locsymcount
11695 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11696 {
11697 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11698 while (h->root.type == bfd_link_hash_indirect
11699 || h->root.type == bfd_link_hash_warning)
11700 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11701 h->mark = 1;
11702 /* If this symbol is weak and there is a non-weak definition, we
11703 keep the non-weak definition because many backends put
11704 dynamic reloc info on the non-weak definition for code
11705 handling copy relocs. */
11706 if (h->u.weakdef != NULL)
11707 h->u.weakdef->mark = 1;
11708 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11709 }
11710
11711 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11712 &cookie->locsyms[r_symndx]);
11713 }
11714
11715 /* COOKIE->rel describes a relocation against section SEC, which is
11716 a section we've decided to keep. Mark the section that contains
11717 the relocation symbol. */
11718
11719 bfd_boolean
11720 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11721 asection *sec,
11722 elf_gc_mark_hook_fn gc_mark_hook,
11723 struct elf_reloc_cookie *cookie)
11724 {
11725 asection *rsec;
11726
11727 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11728 if (rsec && !rsec->gc_mark)
11729 {
11730 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11731 || (rsec->owner->flags & DYNAMIC) != 0)
11732 rsec->gc_mark = 1;
11733 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11734 return FALSE;
11735 }
11736 return TRUE;
11737 }
11738
11739 /* The mark phase of garbage collection. For a given section, mark
11740 it and any sections in this section's group, and all the sections
11741 which define symbols to which it refers. */
11742
11743 bfd_boolean
11744 _bfd_elf_gc_mark (struct bfd_link_info *info,
11745 asection *sec,
11746 elf_gc_mark_hook_fn gc_mark_hook)
11747 {
11748 bfd_boolean ret;
11749 asection *group_sec, *eh_frame;
11750
11751 sec->gc_mark = 1;
11752
11753 /* Mark all the sections in the group. */
11754 group_sec = elf_section_data (sec)->next_in_group;
11755 if (group_sec && !group_sec->gc_mark)
11756 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11757 return FALSE;
11758
11759 /* Look through the section relocs. */
11760 ret = TRUE;
11761 eh_frame = elf_eh_frame_section (sec->owner);
11762 if ((sec->flags & SEC_RELOC) != 0
11763 && sec->reloc_count > 0
11764 && sec != eh_frame)
11765 {
11766 struct elf_reloc_cookie cookie;
11767
11768 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11769 ret = FALSE;
11770 else
11771 {
11772 for (; cookie.rel < cookie.relend; cookie.rel++)
11773 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11774 {
11775 ret = FALSE;
11776 break;
11777 }
11778 fini_reloc_cookie_for_section (&cookie, sec);
11779 }
11780 }
11781
11782 if (ret && eh_frame && elf_fde_list (sec))
11783 {
11784 struct elf_reloc_cookie cookie;
11785
11786 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11787 ret = FALSE;
11788 else
11789 {
11790 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11791 gc_mark_hook, &cookie))
11792 ret = FALSE;
11793 fini_reloc_cookie_for_section (&cookie, eh_frame);
11794 }
11795 }
11796
11797 return ret;
11798 }
11799
11800 /* Keep debug and special sections. */
11801
11802 bfd_boolean
11803 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11804 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11805 {
11806 bfd *ibfd;
11807
11808 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11809 {
11810 asection *isec;
11811 bfd_boolean some_kept;
11812 bfd_boolean debug_frag_seen;
11813
11814 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11815 continue;
11816
11817 /* Ensure all linker created sections are kept,
11818 see if any other section is already marked,
11819 and note if we have any fragmented debug sections. */
11820 debug_frag_seen = some_kept = FALSE;
11821 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11822 {
11823 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11824 isec->gc_mark = 1;
11825 else if (isec->gc_mark)
11826 some_kept = TRUE;
11827
11828 if (debug_frag_seen == FALSE
11829 && (isec->flags & SEC_DEBUGGING)
11830 && CONST_STRNEQ (isec->name, ".debug_line."))
11831 debug_frag_seen = TRUE;
11832 }
11833
11834 /* If no section in this file will be kept, then we can
11835 toss out the debug and special sections. */
11836 if (!some_kept)
11837 continue;
11838
11839 /* Keep debug and special sections like .comment when they are
11840 not part of a group, or when we have single-member groups. */
11841 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11842 if ((elf_next_in_group (isec) == NULL
11843 || elf_next_in_group (isec) == isec)
11844 && ((isec->flags & SEC_DEBUGGING) != 0
11845 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
11846 isec->gc_mark = 1;
11847
11848 if (! debug_frag_seen)
11849 continue;
11850
11851 /* Look for CODE sections which are going to be discarded,
11852 and find and discard any fragmented debug sections which
11853 are associated with that code section. */
11854 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11855 if ((isec->flags & SEC_CODE) != 0
11856 && isec->gc_mark == 0)
11857 {
11858 unsigned int ilen;
11859 asection *dsec;
11860
11861 ilen = strlen (isec->name);
11862
11863 /* Association is determined by the name of the debug section
11864 containing the name of the code section as a suffix. For
11865 example .debug_line.text.foo is a debug section associated
11866 with .text.foo. */
11867 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
11868 {
11869 unsigned int dlen;
11870
11871 if (dsec->gc_mark == 0
11872 || (dsec->flags & SEC_DEBUGGING) == 0)
11873 continue;
11874
11875 dlen = strlen (dsec->name);
11876
11877 if (dlen > ilen
11878 && strncmp (dsec->name + (dlen - ilen),
11879 isec->name, ilen) == 0)
11880 {
11881 dsec->gc_mark = 0;
11882 break;
11883 }
11884 }
11885 }
11886 }
11887 return TRUE;
11888 }
11889
11890 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11891
11892 struct elf_gc_sweep_symbol_info
11893 {
11894 struct bfd_link_info *info;
11895 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11896 bfd_boolean);
11897 };
11898
11899 static bfd_boolean
11900 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11901 {
11902 if (!h->mark
11903 && (((h->root.type == bfd_link_hash_defined
11904 || h->root.type == bfd_link_hash_defweak)
11905 && !(h->def_regular
11906 && h->root.u.def.section->gc_mark))
11907 || h->root.type == bfd_link_hash_undefined
11908 || h->root.type == bfd_link_hash_undefweak))
11909 {
11910 struct elf_gc_sweep_symbol_info *inf;
11911
11912 inf = (struct elf_gc_sweep_symbol_info *) data;
11913 (*inf->hide_symbol) (inf->info, h, TRUE);
11914 h->def_regular = 0;
11915 h->ref_regular = 0;
11916 h->ref_regular_nonweak = 0;
11917 }
11918
11919 return TRUE;
11920 }
11921
11922 /* The sweep phase of garbage collection. Remove all garbage sections. */
11923
11924 typedef bfd_boolean (*gc_sweep_hook_fn)
11925 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11926
11927 static bfd_boolean
11928 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11929 {
11930 bfd *sub;
11931 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11932 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11933 unsigned long section_sym_count;
11934 struct elf_gc_sweep_symbol_info sweep_info;
11935
11936 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11937 {
11938 asection *o;
11939
11940 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11941 continue;
11942
11943 for (o = sub->sections; o != NULL; o = o->next)
11944 {
11945 /* When any section in a section group is kept, we keep all
11946 sections in the section group. If the first member of
11947 the section group is excluded, we will also exclude the
11948 group section. */
11949 if (o->flags & SEC_GROUP)
11950 {
11951 asection *first = elf_next_in_group (o);
11952 o->gc_mark = first->gc_mark;
11953 }
11954
11955 if (o->gc_mark)
11956 continue;
11957
11958 /* Skip sweeping sections already excluded. */
11959 if (o->flags & SEC_EXCLUDE)
11960 continue;
11961
11962 /* Since this is early in the link process, it is simple
11963 to remove a section from the output. */
11964 o->flags |= SEC_EXCLUDE;
11965
11966 if (info->print_gc_sections && o->size != 0)
11967 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11968
11969 /* But we also have to update some of the relocation
11970 info we collected before. */
11971 if (gc_sweep_hook
11972 && (o->flags & SEC_RELOC) != 0
11973 && o->reloc_count > 0
11974 && !bfd_is_abs_section (o->output_section))
11975 {
11976 Elf_Internal_Rela *internal_relocs;
11977 bfd_boolean r;
11978
11979 internal_relocs
11980 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11981 info->keep_memory);
11982 if (internal_relocs == NULL)
11983 return FALSE;
11984
11985 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11986
11987 if (elf_section_data (o)->relocs != internal_relocs)
11988 free (internal_relocs);
11989
11990 if (!r)
11991 return FALSE;
11992 }
11993 }
11994 }
11995
11996 /* Remove the symbols that were in the swept sections from the dynamic
11997 symbol table. GCFIXME: Anyone know how to get them out of the
11998 static symbol table as well? */
11999 sweep_info.info = info;
12000 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12001 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12002 &sweep_info);
12003
12004 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12005 return TRUE;
12006 }
12007
12008 /* Propagate collected vtable information. This is called through
12009 elf_link_hash_traverse. */
12010
12011 static bfd_boolean
12012 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12013 {
12014 /* Those that are not vtables. */
12015 if (h->vtable == NULL || h->vtable->parent == NULL)
12016 return TRUE;
12017
12018 /* Those vtables that do not have parents, we cannot merge. */
12019 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12020 return TRUE;
12021
12022 /* If we've already been done, exit. */
12023 if (h->vtable->used && h->vtable->used[-1])
12024 return TRUE;
12025
12026 /* Make sure the parent's table is up to date. */
12027 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12028
12029 if (h->vtable->used == NULL)
12030 {
12031 /* None of this table's entries were referenced. Re-use the
12032 parent's table. */
12033 h->vtable->used = h->vtable->parent->vtable->used;
12034 h->vtable->size = h->vtable->parent->vtable->size;
12035 }
12036 else
12037 {
12038 size_t n;
12039 bfd_boolean *cu, *pu;
12040
12041 /* Or the parent's entries into ours. */
12042 cu = h->vtable->used;
12043 cu[-1] = TRUE;
12044 pu = h->vtable->parent->vtable->used;
12045 if (pu != NULL)
12046 {
12047 const struct elf_backend_data *bed;
12048 unsigned int log_file_align;
12049
12050 bed = get_elf_backend_data (h->root.u.def.section->owner);
12051 log_file_align = bed->s->log_file_align;
12052 n = h->vtable->parent->vtable->size >> log_file_align;
12053 while (n--)
12054 {
12055 if (*pu)
12056 *cu = TRUE;
12057 pu++;
12058 cu++;
12059 }
12060 }
12061 }
12062
12063 return TRUE;
12064 }
12065
12066 static bfd_boolean
12067 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12068 {
12069 asection *sec;
12070 bfd_vma hstart, hend;
12071 Elf_Internal_Rela *relstart, *relend, *rel;
12072 const struct elf_backend_data *bed;
12073 unsigned int log_file_align;
12074
12075 /* Take care of both those symbols that do not describe vtables as
12076 well as those that are not loaded. */
12077 if (h->vtable == NULL || h->vtable->parent == NULL)
12078 return TRUE;
12079
12080 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12081 || h->root.type == bfd_link_hash_defweak);
12082
12083 sec = h->root.u.def.section;
12084 hstart = h->root.u.def.value;
12085 hend = hstart + h->size;
12086
12087 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12088 if (!relstart)
12089 return *(bfd_boolean *) okp = FALSE;
12090 bed = get_elf_backend_data (sec->owner);
12091 log_file_align = bed->s->log_file_align;
12092
12093 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12094
12095 for (rel = relstart; rel < relend; ++rel)
12096 if (rel->r_offset >= hstart && rel->r_offset < hend)
12097 {
12098 /* If the entry is in use, do nothing. */
12099 if (h->vtable->used
12100 && (rel->r_offset - hstart) < h->vtable->size)
12101 {
12102 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12103 if (h->vtable->used[entry])
12104 continue;
12105 }
12106 /* Otherwise, kill it. */
12107 rel->r_offset = rel->r_info = rel->r_addend = 0;
12108 }
12109
12110 return TRUE;
12111 }
12112
12113 /* Mark sections containing dynamically referenced symbols. When
12114 building shared libraries, we must assume that any visible symbol is
12115 referenced. */
12116
12117 bfd_boolean
12118 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12119 {
12120 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12121
12122 if ((h->root.type == bfd_link_hash_defined
12123 || h->root.type == bfd_link_hash_defweak)
12124 && (h->ref_dynamic
12125 || ((!info->executable || info->export_dynamic)
12126 && h->def_regular
12127 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12128 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12129 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12130 || !bfd_hide_sym_by_version (info->version_info,
12131 h->root.root.string)))))
12132 h->root.u.def.section->flags |= SEC_KEEP;
12133
12134 return TRUE;
12135 }
12136
12137 /* Keep all sections containing symbols undefined on the command-line,
12138 and the section containing the entry symbol. */
12139
12140 void
12141 _bfd_elf_gc_keep (struct bfd_link_info *info)
12142 {
12143 struct bfd_sym_chain *sym;
12144
12145 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12146 {
12147 struct elf_link_hash_entry *h;
12148
12149 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12150 FALSE, FALSE, FALSE);
12151
12152 if (h != NULL
12153 && (h->root.type == bfd_link_hash_defined
12154 || h->root.type == bfd_link_hash_defweak)
12155 && !bfd_is_abs_section (h->root.u.def.section))
12156 h->root.u.def.section->flags |= SEC_KEEP;
12157 }
12158 }
12159
12160 /* Do mark and sweep of unused sections. */
12161
12162 bfd_boolean
12163 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12164 {
12165 bfd_boolean ok = TRUE;
12166 bfd *sub;
12167 elf_gc_mark_hook_fn gc_mark_hook;
12168 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12169
12170 if (!bed->can_gc_sections
12171 || !is_elf_hash_table (info->hash))
12172 {
12173 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12174 return TRUE;
12175 }
12176
12177 bed->gc_keep (info);
12178
12179 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12180 at the .eh_frame section if we can mark the FDEs individually. */
12181 _bfd_elf_begin_eh_frame_parsing (info);
12182 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12183 {
12184 asection *sec;
12185 struct elf_reloc_cookie cookie;
12186
12187 sec = bfd_get_section_by_name (sub, ".eh_frame");
12188 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12189 {
12190 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12191 if (elf_section_data (sec)->sec_info
12192 && (sec->flags & SEC_LINKER_CREATED) == 0)
12193 elf_eh_frame_section (sub) = sec;
12194 fini_reloc_cookie_for_section (&cookie, sec);
12195 sec = bfd_get_next_section_by_name (sec);
12196 }
12197 }
12198 _bfd_elf_end_eh_frame_parsing (info);
12199
12200 /* Apply transitive closure to the vtable entry usage info. */
12201 elf_link_hash_traverse (elf_hash_table (info),
12202 elf_gc_propagate_vtable_entries_used,
12203 &ok);
12204 if (!ok)
12205 return FALSE;
12206
12207 /* Kill the vtable relocations that were not used. */
12208 elf_link_hash_traverse (elf_hash_table (info),
12209 elf_gc_smash_unused_vtentry_relocs,
12210 &ok);
12211 if (!ok)
12212 return FALSE;
12213
12214 /* Mark dynamically referenced symbols. */
12215 if (elf_hash_table (info)->dynamic_sections_created)
12216 elf_link_hash_traverse (elf_hash_table (info),
12217 bed->gc_mark_dynamic_ref,
12218 info);
12219
12220 /* Grovel through relocs to find out who stays ... */
12221 gc_mark_hook = bed->gc_mark_hook;
12222 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12223 {
12224 asection *o;
12225
12226 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12227 continue;
12228
12229 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12230 Also treat note sections as a root, if the section is not part
12231 of a group. */
12232 for (o = sub->sections; o != NULL; o = o->next)
12233 if (!o->gc_mark
12234 && (o->flags & SEC_EXCLUDE) == 0
12235 && ((o->flags & SEC_KEEP) != 0
12236 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12237 && elf_next_in_group (o) == NULL )))
12238 {
12239 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12240 return FALSE;
12241 }
12242 }
12243
12244 /* Allow the backend to mark additional target specific sections. */
12245 bed->gc_mark_extra_sections (info, gc_mark_hook);
12246
12247 /* ... and mark SEC_EXCLUDE for those that go. */
12248 return elf_gc_sweep (abfd, info);
12249 }
12250 \f
12251 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12252
12253 bfd_boolean
12254 bfd_elf_gc_record_vtinherit (bfd *abfd,
12255 asection *sec,
12256 struct elf_link_hash_entry *h,
12257 bfd_vma offset)
12258 {
12259 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12260 struct elf_link_hash_entry **search, *child;
12261 bfd_size_type extsymcount;
12262 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12263
12264 /* The sh_info field of the symtab header tells us where the
12265 external symbols start. We don't care about the local symbols at
12266 this point. */
12267 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12268 if (!elf_bad_symtab (abfd))
12269 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12270
12271 sym_hashes = elf_sym_hashes (abfd);
12272 sym_hashes_end = sym_hashes + extsymcount;
12273
12274 /* Hunt down the child symbol, which is in this section at the same
12275 offset as the relocation. */
12276 for (search = sym_hashes; search != sym_hashes_end; ++search)
12277 {
12278 if ((child = *search) != NULL
12279 && (child->root.type == bfd_link_hash_defined
12280 || child->root.type == bfd_link_hash_defweak)
12281 && child->root.u.def.section == sec
12282 && child->root.u.def.value == offset)
12283 goto win;
12284 }
12285
12286 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12287 abfd, sec, (unsigned long) offset);
12288 bfd_set_error (bfd_error_invalid_operation);
12289 return FALSE;
12290
12291 win:
12292 if (!child->vtable)
12293 {
12294 child->vtable = (struct elf_link_virtual_table_entry *)
12295 bfd_zalloc (abfd, sizeof (*child->vtable));
12296 if (!child->vtable)
12297 return FALSE;
12298 }
12299 if (!h)
12300 {
12301 /* This *should* only be the absolute section. It could potentially
12302 be that someone has defined a non-global vtable though, which
12303 would be bad. It isn't worth paging in the local symbols to be
12304 sure though; that case should simply be handled by the assembler. */
12305
12306 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12307 }
12308 else
12309 child->vtable->parent = h;
12310
12311 return TRUE;
12312 }
12313
12314 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12315
12316 bfd_boolean
12317 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12318 asection *sec ATTRIBUTE_UNUSED,
12319 struct elf_link_hash_entry *h,
12320 bfd_vma addend)
12321 {
12322 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12323 unsigned int log_file_align = bed->s->log_file_align;
12324
12325 if (!h->vtable)
12326 {
12327 h->vtable = (struct elf_link_virtual_table_entry *)
12328 bfd_zalloc (abfd, sizeof (*h->vtable));
12329 if (!h->vtable)
12330 return FALSE;
12331 }
12332
12333 if (addend >= h->vtable->size)
12334 {
12335 size_t size, bytes, file_align;
12336 bfd_boolean *ptr = h->vtable->used;
12337
12338 /* While the symbol is undefined, we have to be prepared to handle
12339 a zero size. */
12340 file_align = 1 << log_file_align;
12341 if (h->root.type == bfd_link_hash_undefined)
12342 size = addend + file_align;
12343 else
12344 {
12345 size = h->size;
12346 if (addend >= size)
12347 {
12348 /* Oops! We've got a reference past the defined end of
12349 the table. This is probably a bug -- shall we warn? */
12350 size = addend + file_align;
12351 }
12352 }
12353 size = (size + file_align - 1) & -file_align;
12354
12355 /* Allocate one extra entry for use as a "done" flag for the
12356 consolidation pass. */
12357 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12358
12359 if (ptr)
12360 {
12361 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12362
12363 if (ptr != NULL)
12364 {
12365 size_t oldbytes;
12366
12367 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12368 * sizeof (bfd_boolean));
12369 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12370 }
12371 }
12372 else
12373 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12374
12375 if (ptr == NULL)
12376 return FALSE;
12377
12378 /* And arrange for that done flag to be at index -1. */
12379 h->vtable->used = ptr + 1;
12380 h->vtable->size = size;
12381 }
12382
12383 h->vtable->used[addend >> log_file_align] = TRUE;
12384
12385 return TRUE;
12386 }
12387
12388 /* Map an ELF section header flag to its corresponding string. */
12389 typedef struct
12390 {
12391 char *flag_name;
12392 flagword flag_value;
12393 } elf_flags_to_name_table;
12394
12395 static elf_flags_to_name_table elf_flags_to_names [] =
12396 {
12397 { "SHF_WRITE", SHF_WRITE },
12398 { "SHF_ALLOC", SHF_ALLOC },
12399 { "SHF_EXECINSTR", SHF_EXECINSTR },
12400 { "SHF_MERGE", SHF_MERGE },
12401 { "SHF_STRINGS", SHF_STRINGS },
12402 { "SHF_INFO_LINK", SHF_INFO_LINK},
12403 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12404 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12405 { "SHF_GROUP", SHF_GROUP },
12406 { "SHF_TLS", SHF_TLS },
12407 { "SHF_MASKOS", SHF_MASKOS },
12408 { "SHF_EXCLUDE", SHF_EXCLUDE },
12409 };
12410
12411 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12412 bfd_boolean
12413 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12414 struct flag_info *flaginfo,
12415 asection *section)
12416 {
12417 const bfd_vma sh_flags = elf_section_flags (section);
12418
12419 if (!flaginfo->flags_initialized)
12420 {
12421 bfd *obfd = info->output_bfd;
12422 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12423 struct flag_info_list *tf = flaginfo->flag_list;
12424 int with_hex = 0;
12425 int without_hex = 0;
12426
12427 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12428 {
12429 unsigned i;
12430 flagword (*lookup) (char *);
12431
12432 lookup = bed->elf_backend_lookup_section_flags_hook;
12433 if (lookup != NULL)
12434 {
12435 flagword hexval = (*lookup) ((char *) tf->name);
12436
12437 if (hexval != 0)
12438 {
12439 if (tf->with == with_flags)
12440 with_hex |= hexval;
12441 else if (tf->with == without_flags)
12442 without_hex |= hexval;
12443 tf->valid = TRUE;
12444 continue;
12445 }
12446 }
12447 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12448 {
12449 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12450 {
12451 if (tf->with == with_flags)
12452 with_hex |= elf_flags_to_names[i].flag_value;
12453 else if (tf->with == without_flags)
12454 without_hex |= elf_flags_to_names[i].flag_value;
12455 tf->valid = TRUE;
12456 break;
12457 }
12458 }
12459 if (!tf->valid)
12460 {
12461 info->callbacks->einfo
12462 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12463 return FALSE;
12464 }
12465 }
12466 flaginfo->flags_initialized = TRUE;
12467 flaginfo->only_with_flags |= with_hex;
12468 flaginfo->not_with_flags |= without_hex;
12469 }
12470
12471 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12472 return FALSE;
12473
12474 if ((flaginfo->not_with_flags & sh_flags) != 0)
12475 return FALSE;
12476
12477 return TRUE;
12478 }
12479
12480 struct alloc_got_off_arg {
12481 bfd_vma gotoff;
12482 struct bfd_link_info *info;
12483 };
12484
12485 /* We need a special top-level link routine to convert got reference counts
12486 to real got offsets. */
12487
12488 static bfd_boolean
12489 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12490 {
12491 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12492 bfd *obfd = gofarg->info->output_bfd;
12493 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12494
12495 if (h->got.refcount > 0)
12496 {
12497 h->got.offset = gofarg->gotoff;
12498 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12499 }
12500 else
12501 h->got.offset = (bfd_vma) -1;
12502
12503 return TRUE;
12504 }
12505
12506 /* And an accompanying bit to work out final got entry offsets once
12507 we're done. Should be called from final_link. */
12508
12509 bfd_boolean
12510 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12511 struct bfd_link_info *info)
12512 {
12513 bfd *i;
12514 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12515 bfd_vma gotoff;
12516 struct alloc_got_off_arg gofarg;
12517
12518 BFD_ASSERT (abfd == info->output_bfd);
12519
12520 if (! is_elf_hash_table (info->hash))
12521 return FALSE;
12522
12523 /* The GOT offset is relative to the .got section, but the GOT header is
12524 put into the .got.plt section, if the backend uses it. */
12525 if (bed->want_got_plt)
12526 gotoff = 0;
12527 else
12528 gotoff = bed->got_header_size;
12529
12530 /* Do the local .got entries first. */
12531 for (i = info->input_bfds; i; i = i->link_next)
12532 {
12533 bfd_signed_vma *local_got;
12534 bfd_size_type j, locsymcount;
12535 Elf_Internal_Shdr *symtab_hdr;
12536
12537 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12538 continue;
12539
12540 local_got = elf_local_got_refcounts (i);
12541 if (!local_got)
12542 continue;
12543
12544 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12545 if (elf_bad_symtab (i))
12546 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12547 else
12548 locsymcount = symtab_hdr->sh_info;
12549
12550 for (j = 0; j < locsymcount; ++j)
12551 {
12552 if (local_got[j] > 0)
12553 {
12554 local_got[j] = gotoff;
12555 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12556 }
12557 else
12558 local_got[j] = (bfd_vma) -1;
12559 }
12560 }
12561
12562 /* Then the global .got entries. .plt refcounts are handled by
12563 adjust_dynamic_symbol */
12564 gofarg.gotoff = gotoff;
12565 gofarg.info = info;
12566 elf_link_hash_traverse (elf_hash_table (info),
12567 elf_gc_allocate_got_offsets,
12568 &gofarg);
12569 return TRUE;
12570 }
12571
12572 /* Many folk need no more in the way of final link than this, once
12573 got entry reference counting is enabled. */
12574
12575 bfd_boolean
12576 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12577 {
12578 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12579 return FALSE;
12580
12581 /* Invoke the regular ELF backend linker to do all the work. */
12582 return bfd_elf_final_link (abfd, info);
12583 }
12584
12585 bfd_boolean
12586 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12587 {
12588 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12589
12590 if (rcookie->bad_symtab)
12591 rcookie->rel = rcookie->rels;
12592
12593 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12594 {
12595 unsigned long r_symndx;
12596
12597 if (! rcookie->bad_symtab)
12598 if (rcookie->rel->r_offset > offset)
12599 return FALSE;
12600 if (rcookie->rel->r_offset != offset)
12601 continue;
12602
12603 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12604 if (r_symndx == STN_UNDEF)
12605 return TRUE;
12606
12607 if (r_symndx >= rcookie->locsymcount
12608 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12609 {
12610 struct elf_link_hash_entry *h;
12611
12612 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12613
12614 while (h->root.type == bfd_link_hash_indirect
12615 || h->root.type == bfd_link_hash_warning)
12616 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12617
12618 if ((h->root.type == bfd_link_hash_defined
12619 || h->root.type == bfd_link_hash_defweak)
12620 && discarded_section (h->root.u.def.section))
12621 return TRUE;
12622 else
12623 return FALSE;
12624 }
12625 else
12626 {
12627 /* It's not a relocation against a global symbol,
12628 but it could be a relocation against a local
12629 symbol for a discarded section. */
12630 asection *isec;
12631 Elf_Internal_Sym *isym;
12632
12633 /* Need to: get the symbol; get the section. */
12634 isym = &rcookie->locsyms[r_symndx];
12635 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12636 if (isec != NULL && discarded_section (isec))
12637 return TRUE;
12638 }
12639 return FALSE;
12640 }
12641 return FALSE;
12642 }
12643
12644 /* Discard unneeded references to discarded sections.
12645 Returns TRUE if any section's size was changed. */
12646 /* This function assumes that the relocations are in sorted order,
12647 which is true for all known assemblers. */
12648
12649 bfd_boolean
12650 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12651 {
12652 struct elf_reloc_cookie cookie;
12653 asection *stab, *eh;
12654 const struct elf_backend_data *bed;
12655 bfd *abfd;
12656 bfd_boolean ret = FALSE;
12657
12658 if (info->traditional_format
12659 || !is_elf_hash_table (info->hash))
12660 return FALSE;
12661
12662 _bfd_elf_begin_eh_frame_parsing (info);
12663 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12664 {
12665 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12666 continue;
12667
12668 bed = get_elf_backend_data (abfd);
12669
12670 eh = NULL;
12671 if (!info->relocatable)
12672 {
12673 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12674 while (eh != NULL
12675 && (eh->size == 0
12676 || bfd_is_abs_section (eh->output_section)))
12677 eh = bfd_get_next_section_by_name (eh);
12678 }
12679
12680 stab = bfd_get_section_by_name (abfd, ".stab");
12681 if (stab != NULL
12682 && (stab->size == 0
12683 || bfd_is_abs_section (stab->output_section)
12684 || stab->sec_info_type != SEC_INFO_TYPE_STABS))
12685 stab = NULL;
12686
12687 if (stab == NULL
12688 && eh == NULL
12689 && bed->elf_backend_discard_info == NULL)
12690 continue;
12691
12692 if (!init_reloc_cookie (&cookie, info, abfd))
12693 return FALSE;
12694
12695 if (stab != NULL
12696 && stab->reloc_count > 0
12697 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12698 {
12699 if (_bfd_discard_section_stabs (abfd, stab,
12700 elf_section_data (stab)->sec_info,
12701 bfd_elf_reloc_symbol_deleted_p,
12702 &cookie))
12703 ret = TRUE;
12704 fini_reloc_cookie_rels (&cookie, stab);
12705 }
12706
12707 while (eh != NULL
12708 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12709 {
12710 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12711 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12712 bfd_elf_reloc_symbol_deleted_p,
12713 &cookie))
12714 ret = TRUE;
12715 fini_reloc_cookie_rels (&cookie, eh);
12716 eh = bfd_get_next_section_by_name (eh);
12717 }
12718
12719 if (bed->elf_backend_discard_info != NULL
12720 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12721 ret = TRUE;
12722
12723 fini_reloc_cookie (&cookie, abfd);
12724 }
12725 _bfd_elf_end_eh_frame_parsing (info);
12726
12727 if (info->eh_frame_hdr
12728 && !info->relocatable
12729 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12730 ret = TRUE;
12731
12732 return ret;
12733 }
12734
12735 bfd_boolean
12736 _bfd_elf_section_already_linked (bfd *abfd,
12737 asection *sec,
12738 struct bfd_link_info *info)
12739 {
12740 flagword flags;
12741 const char *name, *key;
12742 struct bfd_section_already_linked *l;
12743 struct bfd_section_already_linked_hash_entry *already_linked_list;
12744
12745 if (sec->output_section == bfd_abs_section_ptr)
12746 return FALSE;
12747
12748 flags = sec->flags;
12749
12750 /* Return if it isn't a linkonce section. A comdat group section
12751 also has SEC_LINK_ONCE set. */
12752 if ((flags & SEC_LINK_ONCE) == 0)
12753 return FALSE;
12754
12755 /* Don't put group member sections on our list of already linked
12756 sections. They are handled as a group via their group section. */
12757 if (elf_sec_group (sec) != NULL)
12758 return FALSE;
12759
12760 /* For a SHT_GROUP section, use the group signature as the key. */
12761 name = sec->name;
12762 if ((flags & SEC_GROUP) != 0
12763 && elf_next_in_group (sec) != NULL
12764 && elf_group_name (elf_next_in_group (sec)) != NULL)
12765 key = elf_group_name (elf_next_in_group (sec));
12766 else
12767 {
12768 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12769 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12770 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12771 key++;
12772 else
12773 /* Must be a user linkonce section that doesn't follow gcc's
12774 naming convention. In this case we won't be matching
12775 single member groups. */
12776 key = name;
12777 }
12778
12779 already_linked_list = bfd_section_already_linked_table_lookup (key);
12780
12781 for (l = already_linked_list->entry; l != NULL; l = l->next)
12782 {
12783 /* We may have 2 different types of sections on the list: group
12784 sections with a signature of <key> (<key> is some string),
12785 and linkonce sections named .gnu.linkonce.<type>.<key>.
12786 Match like sections. LTO plugin sections are an exception.
12787 They are always named .gnu.linkonce.t.<key> and match either
12788 type of section. */
12789 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12790 && ((flags & SEC_GROUP) != 0
12791 || strcmp (name, l->sec->name) == 0))
12792 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
12793 {
12794 /* The section has already been linked. See if we should
12795 issue a warning. */
12796 if (!_bfd_handle_already_linked (sec, l, info))
12797 return FALSE;
12798
12799 if (flags & SEC_GROUP)
12800 {
12801 asection *first = elf_next_in_group (sec);
12802 asection *s = first;
12803
12804 while (s != NULL)
12805 {
12806 s->output_section = bfd_abs_section_ptr;
12807 /* Record which group discards it. */
12808 s->kept_section = l->sec;
12809 s = elf_next_in_group (s);
12810 /* These lists are circular. */
12811 if (s == first)
12812 break;
12813 }
12814 }
12815
12816 return TRUE;
12817 }
12818 }
12819
12820 /* A single member comdat group section may be discarded by a
12821 linkonce section and vice versa. */
12822 if ((flags & SEC_GROUP) != 0)
12823 {
12824 asection *first = elf_next_in_group (sec);
12825
12826 if (first != NULL && elf_next_in_group (first) == first)
12827 /* Check this single member group against linkonce sections. */
12828 for (l = already_linked_list->entry; l != NULL; l = l->next)
12829 if ((l->sec->flags & SEC_GROUP) == 0
12830 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12831 {
12832 first->output_section = bfd_abs_section_ptr;
12833 first->kept_section = l->sec;
12834 sec->output_section = bfd_abs_section_ptr;
12835 break;
12836 }
12837 }
12838 else
12839 /* Check this linkonce section against single member groups. */
12840 for (l = already_linked_list->entry; l != NULL; l = l->next)
12841 if (l->sec->flags & SEC_GROUP)
12842 {
12843 asection *first = elf_next_in_group (l->sec);
12844
12845 if (first != NULL
12846 && elf_next_in_group (first) == first
12847 && bfd_elf_match_symbols_in_sections (first, sec, info))
12848 {
12849 sec->output_section = bfd_abs_section_ptr;
12850 sec->kept_section = first;
12851 break;
12852 }
12853 }
12854
12855 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12856 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12857 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12858 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12859 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12860 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12861 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12862 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12863 The reverse order cannot happen as there is never a bfd with only the
12864 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12865 matter as here were are looking only for cross-bfd sections. */
12866
12867 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12868 for (l = already_linked_list->entry; l != NULL; l = l->next)
12869 if ((l->sec->flags & SEC_GROUP) == 0
12870 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12871 {
12872 if (abfd != l->sec->owner)
12873 sec->output_section = bfd_abs_section_ptr;
12874 break;
12875 }
12876
12877 /* This is the first section with this name. Record it. */
12878 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
12879 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12880 return sec->output_section == bfd_abs_section_ptr;
12881 }
12882
12883 bfd_boolean
12884 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12885 {
12886 return sym->st_shndx == SHN_COMMON;
12887 }
12888
12889 unsigned int
12890 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12891 {
12892 return SHN_COMMON;
12893 }
12894
12895 asection *
12896 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12897 {
12898 return bfd_com_section_ptr;
12899 }
12900
12901 bfd_vma
12902 _bfd_elf_default_got_elt_size (bfd *abfd,
12903 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12904 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12905 bfd *ibfd ATTRIBUTE_UNUSED,
12906 unsigned long symndx ATTRIBUTE_UNUSED)
12907 {
12908 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12909 return bed->s->arch_size / 8;
12910 }
12911
12912 /* Routines to support the creation of dynamic relocs. */
12913
12914 /* Returns the name of the dynamic reloc section associated with SEC. */
12915
12916 static const char *
12917 get_dynamic_reloc_section_name (bfd * abfd,
12918 asection * sec,
12919 bfd_boolean is_rela)
12920 {
12921 char *name;
12922 const char *old_name = bfd_get_section_name (NULL, sec);
12923 const char *prefix = is_rela ? ".rela" : ".rel";
12924
12925 if (old_name == NULL)
12926 return NULL;
12927
12928 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12929 sprintf (name, "%s%s", prefix, old_name);
12930
12931 return name;
12932 }
12933
12934 /* Returns the dynamic reloc section associated with SEC.
12935 If necessary compute the name of the dynamic reloc section based
12936 on SEC's name (looked up in ABFD's string table) and the setting
12937 of IS_RELA. */
12938
12939 asection *
12940 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12941 asection * sec,
12942 bfd_boolean is_rela)
12943 {
12944 asection * reloc_sec = elf_section_data (sec)->sreloc;
12945
12946 if (reloc_sec == NULL)
12947 {
12948 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12949
12950 if (name != NULL)
12951 {
12952 reloc_sec = bfd_get_linker_section (abfd, name);
12953
12954 if (reloc_sec != NULL)
12955 elf_section_data (sec)->sreloc = reloc_sec;
12956 }
12957 }
12958
12959 return reloc_sec;
12960 }
12961
12962 /* Returns the dynamic reloc section associated with SEC. If the
12963 section does not exist it is created and attached to the DYNOBJ
12964 bfd and stored in the SRELOC field of SEC's elf_section_data
12965 structure.
12966
12967 ALIGNMENT is the alignment for the newly created section and
12968 IS_RELA defines whether the name should be .rela.<SEC's name>
12969 or .rel.<SEC's name>. The section name is looked up in the
12970 string table associated with ABFD. */
12971
12972 asection *
12973 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12974 bfd * dynobj,
12975 unsigned int alignment,
12976 bfd * abfd,
12977 bfd_boolean is_rela)
12978 {
12979 asection * reloc_sec = elf_section_data (sec)->sreloc;
12980
12981 if (reloc_sec == NULL)
12982 {
12983 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12984
12985 if (name == NULL)
12986 return NULL;
12987
12988 reloc_sec = bfd_get_linker_section (dynobj, name);
12989
12990 if (reloc_sec == NULL)
12991 {
12992 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
12993 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12994 if ((sec->flags & SEC_ALLOC) != 0)
12995 flags |= SEC_ALLOC | SEC_LOAD;
12996
12997 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
12998 if (reloc_sec != NULL)
12999 {
13000 /* _bfd_elf_get_sec_type_attr chooses a section type by
13001 name. Override as it may be wrong, eg. for a user
13002 section named "auto" we'll get ".relauto" which is
13003 seen to be a .rela section. */
13004 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13005 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13006 reloc_sec = NULL;
13007 }
13008 }
13009
13010 elf_section_data (sec)->sreloc = reloc_sec;
13011 }
13012
13013 return reloc_sec;
13014 }
13015
13016 /* Copy the ELF symbol type associated with a linker hash entry. */
13017 void
13018 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
13019 struct bfd_link_hash_entry * hdest,
13020 struct bfd_link_hash_entry * hsrc)
13021 {
13022 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
13023 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
13024
13025 ehdest->type = ehsrc->type;
13026 ehdest->target_internal = ehsrc->target_internal;
13027 }
13028
13029 /* Append a RELA relocation REL to section S in BFD. */
13030
13031 void
13032 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13033 {
13034 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13035 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13036 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13037 bed->s->swap_reloca_out (abfd, rel, loc);
13038 }
13039
13040 /* Append a REL relocation REL to section S in BFD. */
13041
13042 void
13043 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13044 {
13045 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13046 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13047 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13048 bed->s->swap_reloc_out (abfd, rel, loc);
13049 }