* elflink.c (elf_link_add_object_symbols): Add assertion for
[binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
4 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
32
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
35
36 struct elf_info_failed
37 {
38 struct bfd_link_info *info;
39 bfd_boolean failed;
40 };
41
42 /* This structure is used to pass information to
43 _bfd_elf_link_find_version_dependencies. */
44
45 struct elf_find_verdep_info
46 {
47 /* General link information. */
48 struct bfd_link_info *info;
49 /* The number of dependencies. */
50 unsigned int vers;
51 /* Whether we had a failure. */
52 bfd_boolean failed;
53 };
54
55 static bfd_boolean _bfd_elf_fix_symbol_flags
56 (struct elf_link_hash_entry *, struct elf_info_failed *);
57
58 /* Define a symbol in a dynamic linkage section. */
59
60 struct elf_link_hash_entry *
61 _bfd_elf_define_linkage_sym (bfd *abfd,
62 struct bfd_link_info *info,
63 asection *sec,
64 const char *name)
65 {
66 struct elf_link_hash_entry *h;
67 struct bfd_link_hash_entry *bh;
68 const struct elf_backend_data *bed;
69
70 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
71 if (h != NULL)
72 {
73 /* Zap symbol defined in an as-needed lib that wasn't linked.
74 This is a symptom of a larger problem: Absolute symbols
75 defined in shared libraries can't be overridden, because we
76 lose the link to the bfd which is via the symbol section. */
77 h->root.type = bfd_link_hash_new;
78 }
79
80 bh = &h->root;
81 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
82 sec, 0, NULL, FALSE,
83 get_elf_backend_data (abfd)->collect,
84 &bh))
85 return NULL;
86 h = (struct elf_link_hash_entry *) bh;
87 h->def_regular = 1;
88 h->non_elf = 0;
89 h->type = STT_OBJECT;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
91
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94 return h;
95 }
96
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
99 {
100 flagword flags;
101 asection *s;
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
105
106 /* This function may be called more than once. */
107 s = bfd_get_linker_section (abfd, ".got");
108 if (s != NULL)
109 return TRUE;
110
111 flags = bed->dynamic_sec_flags;
112
113 s = bfd_make_section_anyway_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
117 | SEC_READONLY));
118 if (s == NULL
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
120 return FALSE;
121 htab->srelgot = s;
122
123 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
124 if (s == NULL
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
126 return FALSE;
127 htab->sgot = s;
128
129 if (bed->want_got_plt)
130 {
131 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
132 if (s == NULL
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
135 return FALSE;
136 htab->sgotplt = s;
137 }
138
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
141
142 if (bed->want_got_sym)
143 {
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
151 if (h == NULL)
152 return FALSE;
153 }
154
155 return TRUE;
156 }
157 \f
158 /* Create a strtab to hold the dynamic symbol names. */
159 static bfd_boolean
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
161 {
162 struct elf_link_hash_table *hash_table;
163
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
167
168 if (hash_table->dynstr == NULL)
169 {
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
172 return FALSE;
173 }
174 return TRUE;
175 }
176
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
183
184 bfd_boolean
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
186 {
187 flagword flags;
188 asection *s;
189 const struct elf_backend_data *bed;
190 struct elf_link_hash_entry *h;
191
192 if (! is_elf_hash_table (info->hash))
193 return FALSE;
194
195 if (elf_hash_table (info)->dynamic_sections_created)
196 return TRUE;
197
198 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
199 return FALSE;
200
201 abfd = elf_hash_table (info)->dynobj;
202 bed = get_elf_backend_data (abfd);
203
204 flags = bed->dynamic_sec_flags;
205
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
208 if (info->executable)
209 {
210 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
211 flags | SEC_READONLY);
212 if (s == NULL)
213 return FALSE;
214 }
215
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
218 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
219 flags | SEC_READONLY);
220 if (s == NULL
221 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
222 return FALSE;
223
224 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
225 flags | SEC_READONLY);
226 if (s == NULL
227 || ! bfd_set_section_alignment (abfd, s, 1))
228 return FALSE;
229
230 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
231 flags | SEC_READONLY);
232 if (s == NULL
233 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
234 return FALSE;
235
236 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
237 flags | SEC_READONLY);
238 if (s == NULL
239 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
240 return FALSE;
241
242 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
243 flags | SEC_READONLY);
244 if (s == NULL)
245 return FALSE;
246
247 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
248 if (s == NULL
249 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
250 return FALSE;
251
252 /* The special symbol _DYNAMIC is always set to the start of the
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
258 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
259 elf_hash_table (info)->hdynamic = h;
260 if (h == NULL)
261 return FALSE;
262
263 if (info->emit_hash)
264 {
265 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
266 flags | SEC_READONLY);
267 if (s == NULL
268 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
269 return FALSE;
270 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
271 }
272
273 if (info->emit_gnu_hash)
274 {
275 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
276 flags | SEC_READONLY);
277 if (s == NULL
278 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
279 return FALSE;
280 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
281 4 32-bit words followed by variable count of 64-bit words, then
282 variable count of 32-bit words. */
283 if (bed->s->arch_size == 64)
284 elf_section_data (s)->this_hdr.sh_entsize = 0;
285 else
286 elf_section_data (s)->this_hdr.sh_entsize = 4;
287 }
288
289 /* Let the backend create the rest of the sections. This lets the
290 backend set the right flags. The backend will normally create
291 the .got and .plt sections. */
292 if (bed->elf_backend_create_dynamic_sections == NULL
293 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
294 return FALSE;
295
296 elf_hash_table (info)->dynamic_sections_created = TRUE;
297
298 return TRUE;
299 }
300
301 /* Create dynamic sections when linking against a dynamic object. */
302
303 bfd_boolean
304 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
305 {
306 flagword flags, pltflags;
307 struct elf_link_hash_entry *h;
308 asection *s;
309 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
310 struct elf_link_hash_table *htab = elf_hash_table (info);
311
312 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
313 .rel[a].bss sections. */
314 flags = bed->dynamic_sec_flags;
315
316 pltflags = flags;
317 if (bed->plt_not_loaded)
318 /* We do not clear SEC_ALLOC here because we still want the OS to
319 allocate space for the section; it's just that there's nothing
320 to read in from the object file. */
321 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
322 else
323 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
324 if (bed->plt_readonly)
325 pltflags |= SEC_READONLY;
326
327 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
328 if (s == NULL
329 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
330 return FALSE;
331 htab->splt = s;
332
333 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
334 .plt section. */
335 if (bed->want_plt_sym)
336 {
337 h = _bfd_elf_define_linkage_sym (abfd, info, s,
338 "_PROCEDURE_LINKAGE_TABLE_");
339 elf_hash_table (info)->hplt = h;
340 if (h == NULL)
341 return FALSE;
342 }
343
344 s = bfd_make_section_anyway_with_flags (abfd,
345 (bed->rela_plts_and_copies_p
346 ? ".rela.plt" : ".rel.plt"),
347 flags | SEC_READONLY);
348 if (s == NULL
349 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
350 return FALSE;
351 htab->srelplt = s;
352
353 if (! _bfd_elf_create_got_section (abfd, info))
354 return FALSE;
355
356 if (bed->want_dynbss)
357 {
358 /* The .dynbss section is a place to put symbols which are defined
359 by dynamic objects, are referenced by regular objects, and are
360 not functions. We must allocate space for them in the process
361 image and use a R_*_COPY reloc to tell the dynamic linker to
362 initialize them at run time. The linker script puts the .dynbss
363 section into the .bss section of the final image. */
364 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
365 (SEC_ALLOC | SEC_LINKER_CREATED));
366 if (s == NULL)
367 return FALSE;
368
369 /* The .rel[a].bss section holds copy relocs. This section is not
370 normally needed. We need to create it here, though, so that the
371 linker will map it to an output section. We can't just create it
372 only if we need it, because we will not know whether we need it
373 until we have seen all the input files, and the first time the
374 main linker code calls BFD after examining all the input files
375 (size_dynamic_sections) the input sections have already been
376 mapped to the output sections. If the section turns out not to
377 be needed, we can discard it later. We will never need this
378 section when generating a shared object, since they do not use
379 copy relocs. */
380 if (! info->shared)
381 {
382 s = bfd_make_section_anyway_with_flags (abfd,
383 (bed->rela_plts_and_copies_p
384 ? ".rela.bss" : ".rel.bss"),
385 flags | SEC_READONLY);
386 if (s == NULL
387 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
388 return FALSE;
389 }
390 }
391
392 return TRUE;
393 }
394 \f
395 /* Record a new dynamic symbol. We record the dynamic symbols as we
396 read the input files, since we need to have a list of all of them
397 before we can determine the final sizes of the output sections.
398 Note that we may actually call this function even though we are not
399 going to output any dynamic symbols; in some cases we know that a
400 symbol should be in the dynamic symbol table, but only if there is
401 one. */
402
403 bfd_boolean
404 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
405 struct elf_link_hash_entry *h)
406 {
407 if (h->dynindx == -1)
408 {
409 struct elf_strtab_hash *dynstr;
410 char *p;
411 const char *name;
412 bfd_size_type indx;
413
414 /* XXX: The ABI draft says the linker must turn hidden and
415 internal symbols into STB_LOCAL symbols when producing the
416 DSO. However, if ld.so honors st_other in the dynamic table,
417 this would not be necessary. */
418 switch (ELF_ST_VISIBILITY (h->other))
419 {
420 case STV_INTERNAL:
421 case STV_HIDDEN:
422 if (h->root.type != bfd_link_hash_undefined
423 && h->root.type != bfd_link_hash_undefweak)
424 {
425 h->forced_local = 1;
426 if (!elf_hash_table (info)->is_relocatable_executable)
427 return TRUE;
428 }
429
430 default:
431 break;
432 }
433
434 h->dynindx = elf_hash_table (info)->dynsymcount;
435 ++elf_hash_table (info)->dynsymcount;
436
437 dynstr = elf_hash_table (info)->dynstr;
438 if (dynstr == NULL)
439 {
440 /* Create a strtab to hold the dynamic symbol names. */
441 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
442 if (dynstr == NULL)
443 return FALSE;
444 }
445
446 /* We don't put any version information in the dynamic string
447 table. */
448 name = h->root.root.string;
449 p = strchr (name, ELF_VER_CHR);
450 if (p != NULL)
451 /* We know that the p points into writable memory. In fact,
452 there are only a few symbols that have read-only names, being
453 those like _GLOBAL_OFFSET_TABLE_ that are created specially
454 by the backends. Most symbols will have names pointing into
455 an ELF string table read from a file, or to objalloc memory. */
456 *p = 0;
457
458 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
459
460 if (p != NULL)
461 *p = ELF_VER_CHR;
462
463 if (indx == (bfd_size_type) -1)
464 return FALSE;
465 h->dynstr_index = indx;
466 }
467
468 return TRUE;
469 }
470 \f
471 /* Mark a symbol dynamic. */
472
473 static void
474 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
475 struct elf_link_hash_entry *h,
476 Elf_Internal_Sym *sym)
477 {
478 struct bfd_elf_dynamic_list *d = info->dynamic_list;
479
480 /* It may be called more than once on the same H. */
481 if(h->dynamic || info->relocatable)
482 return;
483
484 if ((info->dynamic_data
485 && (h->type == STT_OBJECT
486 || (sym != NULL
487 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
488 || (d != NULL
489 && h->root.type == bfd_link_hash_new
490 && (*d->match) (&d->head, NULL, h->root.root.string)))
491 h->dynamic = 1;
492 }
493
494 /* Record an assignment to a symbol made by a linker script. We need
495 this in case some dynamic object refers to this symbol. */
496
497 bfd_boolean
498 bfd_elf_record_link_assignment (bfd *output_bfd,
499 struct bfd_link_info *info,
500 const char *name,
501 bfd_boolean provide,
502 bfd_boolean hidden)
503 {
504 struct elf_link_hash_entry *h, *hv;
505 struct elf_link_hash_table *htab;
506 const struct elf_backend_data *bed;
507
508 if (!is_elf_hash_table (info->hash))
509 return TRUE;
510
511 htab = elf_hash_table (info);
512 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
513 if (h == NULL)
514 return provide;
515
516 switch (h->root.type)
517 {
518 case bfd_link_hash_defined:
519 case bfd_link_hash_defweak:
520 case bfd_link_hash_common:
521 break;
522 case bfd_link_hash_undefweak:
523 case bfd_link_hash_undefined:
524 /* Since we're defining the symbol, don't let it seem to have not
525 been defined. record_dynamic_symbol and size_dynamic_sections
526 may depend on this. */
527 h->root.type = bfd_link_hash_new;
528 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
529 bfd_link_repair_undef_list (&htab->root);
530 break;
531 case bfd_link_hash_new:
532 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
533 h->non_elf = 0;
534 break;
535 case bfd_link_hash_indirect:
536 /* We had a versioned symbol in a dynamic library. We make the
537 the versioned symbol point to this one. */
538 bed = get_elf_backend_data (output_bfd);
539 hv = h;
540 while (hv->root.type == bfd_link_hash_indirect
541 || hv->root.type == bfd_link_hash_warning)
542 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
543 /* We don't need to update h->root.u since linker will set them
544 later. */
545 h->root.type = bfd_link_hash_undefined;
546 hv->root.type = bfd_link_hash_indirect;
547 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
548 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
549 break;
550 case bfd_link_hash_warning:
551 abort ();
552 break;
553 }
554
555 /* If this symbol is being provided by the linker script, and it is
556 currently defined by a dynamic object, but not by a regular
557 object, then mark it as undefined so that the generic linker will
558 force the correct value. */
559 if (provide
560 && h->def_dynamic
561 && !h->def_regular)
562 h->root.type = bfd_link_hash_undefined;
563
564 /* If this symbol is not being provided by the linker script, and it is
565 currently defined by a dynamic object, but not by a regular object,
566 then clear out any version information because the symbol will not be
567 associated with the dynamic object any more. */
568 if (!provide
569 && h->def_dynamic
570 && !h->def_regular)
571 h->verinfo.verdef = NULL;
572
573 h->def_regular = 1;
574
575 if (hidden)
576 {
577 bed = get_elf_backend_data (output_bfd);
578 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
579 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
580 }
581
582 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
583 and executables. */
584 if (!info->relocatable
585 && h->dynindx != -1
586 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
587 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
588 h->forced_local = 1;
589
590 if ((h->def_dynamic
591 || h->ref_dynamic
592 || info->shared
593 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
594 && h->dynindx == -1)
595 {
596 if (! bfd_elf_link_record_dynamic_symbol (info, h))
597 return FALSE;
598
599 /* If this is a weak defined symbol, and we know a corresponding
600 real symbol from the same dynamic object, make sure the real
601 symbol is also made into a dynamic symbol. */
602 if (h->u.weakdef != NULL
603 && h->u.weakdef->dynindx == -1)
604 {
605 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
606 return FALSE;
607 }
608 }
609
610 return TRUE;
611 }
612
613 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
614 success, and 2 on a failure caused by attempting to record a symbol
615 in a discarded section, eg. a discarded link-once section symbol. */
616
617 int
618 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
619 bfd *input_bfd,
620 long input_indx)
621 {
622 bfd_size_type amt;
623 struct elf_link_local_dynamic_entry *entry;
624 struct elf_link_hash_table *eht;
625 struct elf_strtab_hash *dynstr;
626 unsigned long dynstr_index;
627 char *name;
628 Elf_External_Sym_Shndx eshndx;
629 char esym[sizeof (Elf64_External_Sym)];
630
631 if (! is_elf_hash_table (info->hash))
632 return 0;
633
634 /* See if the entry exists already. */
635 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
636 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
637 return 1;
638
639 amt = sizeof (*entry);
640 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
641 if (entry == NULL)
642 return 0;
643
644 /* Go find the symbol, so that we can find it's name. */
645 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
646 1, input_indx, &entry->isym, esym, &eshndx))
647 {
648 bfd_release (input_bfd, entry);
649 return 0;
650 }
651
652 if (entry->isym.st_shndx != SHN_UNDEF
653 && entry->isym.st_shndx < SHN_LORESERVE)
654 {
655 asection *s;
656
657 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
658 if (s == NULL || bfd_is_abs_section (s->output_section))
659 {
660 /* We can still bfd_release here as nothing has done another
661 bfd_alloc. We can't do this later in this function. */
662 bfd_release (input_bfd, entry);
663 return 2;
664 }
665 }
666
667 name = (bfd_elf_string_from_elf_section
668 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
669 entry->isym.st_name));
670
671 dynstr = elf_hash_table (info)->dynstr;
672 if (dynstr == NULL)
673 {
674 /* Create a strtab to hold the dynamic symbol names. */
675 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
676 if (dynstr == NULL)
677 return 0;
678 }
679
680 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
681 if (dynstr_index == (unsigned long) -1)
682 return 0;
683 entry->isym.st_name = dynstr_index;
684
685 eht = elf_hash_table (info);
686
687 entry->next = eht->dynlocal;
688 eht->dynlocal = entry;
689 entry->input_bfd = input_bfd;
690 entry->input_indx = input_indx;
691 eht->dynsymcount++;
692
693 /* Whatever binding the symbol had before, it's now local. */
694 entry->isym.st_info
695 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
696
697 /* The dynindx will be set at the end of size_dynamic_sections. */
698
699 return 1;
700 }
701
702 /* Return the dynindex of a local dynamic symbol. */
703
704 long
705 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
706 bfd *input_bfd,
707 long input_indx)
708 {
709 struct elf_link_local_dynamic_entry *e;
710
711 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
712 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
713 return e->dynindx;
714 return -1;
715 }
716
717 /* This function is used to renumber the dynamic symbols, if some of
718 them are removed because they are marked as local. This is called
719 via elf_link_hash_traverse. */
720
721 static bfd_boolean
722 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
723 void *data)
724 {
725 size_t *count = (size_t *) data;
726
727 if (h->forced_local)
728 return TRUE;
729
730 if (h->dynindx != -1)
731 h->dynindx = ++(*count);
732
733 return TRUE;
734 }
735
736
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
739
740 static bfd_boolean
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
742 void *data)
743 {
744 size_t *count = (size_t *) data;
745
746 if (!h->forced_local)
747 return TRUE;
748
749 if (h->dynindx != -1)
750 h->dynindx = ++(*count);
751
752 return TRUE;
753 }
754
755 /* Return true if the dynamic symbol for a given section should be
756 omitted when creating a shared library. */
757 bfd_boolean
758 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
759 struct bfd_link_info *info,
760 asection *p)
761 {
762 struct elf_link_hash_table *htab;
763
764 switch (elf_section_data (p)->this_hdr.sh_type)
765 {
766 case SHT_PROGBITS:
767 case SHT_NOBITS:
768 /* If sh_type is yet undecided, assume it could be
769 SHT_PROGBITS/SHT_NOBITS. */
770 case SHT_NULL:
771 htab = elf_hash_table (info);
772 if (p == htab->tls_sec)
773 return FALSE;
774
775 if (htab->text_index_section != NULL)
776 return p != htab->text_index_section && p != htab->data_index_section;
777
778 if (strcmp (p->name, ".got") == 0
779 || strcmp (p->name, ".got.plt") == 0
780 || strcmp (p->name, ".plt") == 0)
781 {
782 asection *ip;
783
784 if (htab->dynobj != NULL
785 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
786 && ip->output_section == p)
787 return TRUE;
788 }
789 return FALSE;
790
791 /* There shouldn't be section relative relocations
792 against any other section. */
793 default:
794 return TRUE;
795 }
796 }
797
798 /* Assign dynsym indices. In a shared library we generate a section
799 symbol for each output section, which come first. Next come symbols
800 which have been forced to local binding. Then all of the back-end
801 allocated local dynamic syms, followed by the rest of the global
802 symbols. */
803
804 static unsigned long
805 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
806 struct bfd_link_info *info,
807 unsigned long *section_sym_count)
808 {
809 unsigned long dynsymcount = 0;
810
811 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
812 {
813 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
814 asection *p;
815 for (p = output_bfd->sections; p ; p = p->next)
816 if ((p->flags & SEC_EXCLUDE) == 0
817 && (p->flags & SEC_ALLOC) != 0
818 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
819 elf_section_data (p)->dynindx = ++dynsymcount;
820 else
821 elf_section_data (p)->dynindx = 0;
822 }
823 *section_sym_count = dynsymcount;
824
825 elf_link_hash_traverse (elf_hash_table (info),
826 elf_link_renumber_local_hash_table_dynsyms,
827 &dynsymcount);
828
829 if (elf_hash_table (info)->dynlocal)
830 {
831 struct elf_link_local_dynamic_entry *p;
832 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
833 p->dynindx = ++dynsymcount;
834 }
835
836 elf_link_hash_traverse (elf_hash_table (info),
837 elf_link_renumber_hash_table_dynsyms,
838 &dynsymcount);
839
840 /* There is an unused NULL entry at the head of the table which
841 we must account for in our count. Unless there weren't any
842 symbols, which means we'll have no table at all. */
843 if (dynsymcount != 0)
844 ++dynsymcount;
845
846 elf_hash_table (info)->dynsymcount = dynsymcount;
847 return dynsymcount;
848 }
849
850 /* Merge st_other field. */
851
852 static void
853 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
854 Elf_Internal_Sym *isym, bfd_boolean definition,
855 bfd_boolean dynamic)
856 {
857 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
858
859 /* If st_other has a processor-specific meaning, specific
860 code might be needed here. We never merge the visibility
861 attribute with the one from a dynamic object. */
862 if (bed->elf_backend_merge_symbol_attribute)
863 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
864 dynamic);
865
866 /* If this symbol has default visibility and the user has requested
867 we not re-export it, then mark it as hidden. */
868 if (definition
869 && !dynamic
870 && (abfd->no_export
871 || (abfd->my_archive && abfd->my_archive->no_export))
872 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
873 isym->st_other = (STV_HIDDEN
874 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
875
876 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
877 {
878 unsigned char hvis, symvis, other, nvis;
879
880 /* Only merge the visibility. Leave the remainder of the
881 st_other field to elf_backend_merge_symbol_attribute. */
882 other = h->other & ~ELF_ST_VISIBILITY (-1);
883
884 /* Combine visibilities, using the most constraining one. */
885 hvis = ELF_ST_VISIBILITY (h->other);
886 symvis = ELF_ST_VISIBILITY (isym->st_other);
887 if (! hvis)
888 nvis = symvis;
889 else if (! symvis)
890 nvis = hvis;
891 else
892 nvis = hvis < symvis ? hvis : symvis;
893
894 h->other = other | nvis;
895 }
896 }
897
898 /* This function is called when we want to merge a new symbol with an
899 existing symbol. It handles the various cases which arise when we
900 find a definition in a dynamic object, or when there is already a
901 definition in a dynamic object. The new symbol is described by
902 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
903 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
904 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
905 of an old common symbol. We set OVERRIDE if the old symbol is
906 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
907 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
908 to change. By OK to change, we mean that we shouldn't warn if the
909 type or size does change. */
910
911 static bfd_boolean
912 _bfd_elf_merge_symbol (bfd *abfd,
913 struct bfd_link_info *info,
914 const char *name,
915 Elf_Internal_Sym *sym,
916 asection **psec,
917 bfd_vma *pvalue,
918 struct elf_link_hash_entry **sym_hash,
919 bfd **poldbfd,
920 bfd_boolean *pold_weak,
921 unsigned int *pold_alignment,
922 bfd_boolean *skip,
923 bfd_boolean *override,
924 bfd_boolean *type_change_ok,
925 bfd_boolean *size_change_ok)
926 {
927 asection *sec, *oldsec;
928 struct elf_link_hash_entry *h;
929 struct elf_link_hash_entry *hi;
930 struct elf_link_hash_entry *flip;
931 int bind;
932 bfd *oldbfd;
933 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
934 bfd_boolean newweak, oldweak, newfunc, oldfunc;
935 const struct elf_backend_data *bed;
936
937 *skip = FALSE;
938 *override = FALSE;
939
940 sec = *psec;
941 bind = ELF_ST_BIND (sym->st_info);
942
943 if (! bfd_is_und_section (sec))
944 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
945 else
946 h = ((struct elf_link_hash_entry *)
947 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
948 if (h == NULL)
949 return FALSE;
950 *sym_hash = h;
951
952 bed = get_elf_backend_data (abfd);
953
954 /* This code is for coping with dynamic objects, and is only useful
955 if we are doing an ELF link. */
956 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
957 return TRUE;
958
959 /* For merging, we only care about real symbols. But we need to make
960 sure that indirect symbol dynamic flags are updated. */
961 hi = h;
962 while (h->root.type == bfd_link_hash_indirect
963 || h->root.type == bfd_link_hash_warning)
964 h = (struct elf_link_hash_entry *) h->root.u.i.link;
965
966 /* We have to check it for every instance since the first few may be
967 references and not all compilers emit symbol type for undefined
968 symbols. */
969 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
970
971 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
972 respectively, is from a dynamic object. */
973
974 newdyn = (abfd->flags & DYNAMIC) != 0;
975
976 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
977 syms and defined syms in dynamic libraries respectively.
978 ref_dynamic on the other hand can be set for a symbol defined in
979 a dynamic library, and def_dynamic may not be set; When the
980 definition in a dynamic lib is overridden by a definition in the
981 executable use of the symbol in the dynamic lib becomes a
982 reference to the executable symbol. */
983 if (newdyn)
984 {
985 if (bfd_is_und_section (sec))
986 {
987 if (bind != STB_WEAK)
988 {
989 h->ref_dynamic_nonweak = 1;
990 hi->ref_dynamic_nonweak = 1;
991 }
992 }
993 else
994 {
995 h->dynamic_def = 1;
996 hi->dynamic_def = 1;
997 }
998 }
999
1000 /* If we just created the symbol, mark it as being an ELF symbol.
1001 Other than that, there is nothing to do--there is no merge issue
1002 with a newly defined symbol--so we just return. */
1003
1004 if (h->root.type == bfd_link_hash_new)
1005 {
1006 h->non_elf = 0;
1007 return TRUE;
1008 }
1009
1010 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1011 existing symbol. */
1012
1013 switch (h->root.type)
1014 {
1015 default:
1016 oldbfd = NULL;
1017 oldsec = NULL;
1018 break;
1019
1020 case bfd_link_hash_undefined:
1021 case bfd_link_hash_undefweak:
1022 oldbfd = h->root.u.undef.abfd;
1023 oldsec = NULL;
1024 break;
1025
1026 case bfd_link_hash_defined:
1027 case bfd_link_hash_defweak:
1028 oldbfd = h->root.u.def.section->owner;
1029 oldsec = h->root.u.def.section;
1030 break;
1031
1032 case bfd_link_hash_common:
1033 oldbfd = h->root.u.c.p->section->owner;
1034 oldsec = h->root.u.c.p->section;
1035 if (pold_alignment)
1036 *pold_alignment = h->root.u.c.p->alignment_power;
1037 break;
1038 }
1039 if (poldbfd && *poldbfd == NULL)
1040 *poldbfd = oldbfd;
1041
1042 /* Differentiate strong and weak symbols. */
1043 newweak = bind == STB_WEAK;
1044 oldweak = (h->root.type == bfd_link_hash_defweak
1045 || h->root.type == bfd_link_hash_undefweak);
1046 if (pold_weak)
1047 *pold_weak = oldweak;
1048
1049 /* In cases involving weak versioned symbols, we may wind up trying
1050 to merge a symbol with itself. Catch that here, to avoid the
1051 confusion that results if we try to override a symbol with
1052 itself. The additional tests catch cases like
1053 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1054 dynamic object, which we do want to handle here. */
1055 if (abfd == oldbfd
1056 && (newweak || oldweak)
1057 && ((abfd->flags & DYNAMIC) == 0
1058 || !h->def_regular))
1059 return TRUE;
1060
1061 olddyn = FALSE;
1062 if (oldbfd != NULL)
1063 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1064 else if (oldsec != NULL)
1065 {
1066 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1067 indices used by MIPS ELF. */
1068 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1069 }
1070
1071 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1072 respectively, appear to be a definition rather than reference. */
1073
1074 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1075
1076 olddef = (h->root.type != bfd_link_hash_undefined
1077 && h->root.type != bfd_link_hash_undefweak
1078 && h->root.type != bfd_link_hash_common);
1079
1080 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1081 respectively, appear to be a function. */
1082
1083 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1084 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1085
1086 oldfunc = (h->type != STT_NOTYPE
1087 && bed->is_function_type (h->type));
1088
1089 /* When we try to create a default indirect symbol from the dynamic
1090 definition with the default version, we skip it if its type and
1091 the type of existing regular definition mismatch. We only do it
1092 if the existing regular definition won't be dynamic. */
1093 if (pold_alignment == NULL
1094 && !info->shared
1095 && !info->export_dynamic
1096 && !h->ref_dynamic
1097 && newdyn
1098 && newdef
1099 && !olddyn
1100 && (olddef || h->root.type == bfd_link_hash_common)
1101 && ELF_ST_TYPE (sym->st_info) != h->type
1102 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1103 && h->type != STT_NOTYPE
1104 && !(newfunc && oldfunc))
1105 {
1106 *skip = TRUE;
1107 return TRUE;
1108 }
1109
1110 /* Plugin symbol type isn't currently set. Stop bogus errors. */
1111 if (oldbfd != NULL && (oldbfd->flags & BFD_PLUGIN) != 0)
1112 *type_change_ok = TRUE;
1113
1114 /* Check TLS symbol. We don't check undefined symbol introduced by
1115 "ld -u". */
1116 else if (oldbfd != NULL
1117 && ELF_ST_TYPE (sym->st_info) != h->type
1118 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1119 {
1120 bfd *ntbfd, *tbfd;
1121 bfd_boolean ntdef, tdef;
1122 asection *ntsec, *tsec;
1123
1124 if (h->type == STT_TLS)
1125 {
1126 ntbfd = abfd;
1127 ntsec = sec;
1128 ntdef = newdef;
1129 tbfd = oldbfd;
1130 tsec = oldsec;
1131 tdef = olddef;
1132 }
1133 else
1134 {
1135 ntbfd = oldbfd;
1136 ntsec = oldsec;
1137 ntdef = olddef;
1138 tbfd = abfd;
1139 tsec = sec;
1140 tdef = newdef;
1141 }
1142
1143 if (tdef && ntdef)
1144 (*_bfd_error_handler)
1145 (_("%s: TLS definition in %B section %A "
1146 "mismatches non-TLS definition in %B section %A"),
1147 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1148 else if (!tdef && !ntdef)
1149 (*_bfd_error_handler)
1150 (_("%s: TLS reference in %B "
1151 "mismatches non-TLS reference in %B"),
1152 tbfd, ntbfd, h->root.root.string);
1153 else if (tdef)
1154 (*_bfd_error_handler)
1155 (_("%s: TLS definition in %B section %A "
1156 "mismatches non-TLS reference in %B"),
1157 tbfd, tsec, ntbfd, h->root.root.string);
1158 else
1159 (*_bfd_error_handler)
1160 (_("%s: TLS reference in %B "
1161 "mismatches non-TLS definition in %B section %A"),
1162 tbfd, ntbfd, ntsec, h->root.root.string);
1163
1164 bfd_set_error (bfd_error_bad_value);
1165 return FALSE;
1166 }
1167
1168 /* If the old symbol has non-default visibility, we ignore the new
1169 definition from a dynamic object. */
1170 if (newdyn
1171 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1172 && !bfd_is_und_section (sec))
1173 {
1174 *skip = TRUE;
1175 /* Make sure this symbol is dynamic. */
1176 h->ref_dynamic = 1;
1177 hi->ref_dynamic = 1;
1178 /* A protected symbol has external availability. Make sure it is
1179 recorded as dynamic.
1180
1181 FIXME: Should we check type and size for protected symbol? */
1182 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1183 return bfd_elf_link_record_dynamic_symbol (info, h);
1184 else
1185 return TRUE;
1186 }
1187 else if (!newdyn
1188 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1189 && h->def_dynamic)
1190 {
1191 /* If the new symbol with non-default visibility comes from a
1192 relocatable file and the old definition comes from a dynamic
1193 object, we remove the old definition. */
1194 if (hi->root.type == bfd_link_hash_indirect)
1195 {
1196 /* Handle the case where the old dynamic definition is
1197 default versioned. We need to copy the symbol info from
1198 the symbol with default version to the normal one if it
1199 was referenced before. */
1200 if (h->ref_regular)
1201 {
1202 hi->root.type = h->root.type;
1203 h->root.type = bfd_link_hash_indirect;
1204 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1205
1206 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1207 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1208 {
1209 /* If the new symbol is hidden or internal, completely undo
1210 any dynamic link state. */
1211 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1212 h->forced_local = 0;
1213 h->ref_dynamic = 0;
1214 }
1215 else
1216 h->ref_dynamic = 1;
1217
1218 h->def_dynamic = 0;
1219 /* FIXME: Should we check type and size for protected symbol? */
1220 h->size = 0;
1221 h->type = 0;
1222
1223 h = hi;
1224 }
1225 else
1226 h = hi;
1227 }
1228
1229 /* If the old symbol was undefined before, then it will still be
1230 on the undefs list. If the new symbol is undefined or
1231 common, we can't make it bfd_link_hash_new here, because new
1232 undefined or common symbols will be added to the undefs list
1233 by _bfd_generic_link_add_one_symbol. Symbols may not be
1234 added twice to the undefs list. Also, if the new symbol is
1235 undefweak then we don't want to lose the strong undef. */
1236 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1237 {
1238 h->root.type = bfd_link_hash_undefined;
1239 h->root.u.undef.abfd = abfd;
1240 }
1241 else
1242 {
1243 h->root.type = bfd_link_hash_new;
1244 h->root.u.undef.abfd = NULL;
1245 }
1246
1247 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1248 {
1249 /* If the new symbol is hidden or internal, completely undo
1250 any dynamic link state. */
1251 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1252 h->forced_local = 0;
1253 h->ref_dynamic = 0;
1254 }
1255 else
1256 h->ref_dynamic = 1;
1257 h->def_dynamic = 0;
1258 /* FIXME: Should we check type and size for protected symbol? */
1259 h->size = 0;
1260 h->type = 0;
1261 return TRUE;
1262 }
1263
1264 /* If a new weak symbol definition comes from a regular file and the
1265 old symbol comes from a dynamic library, we treat the new one as
1266 strong. Similarly, an old weak symbol definition from a regular
1267 file is treated as strong when the new symbol comes from a dynamic
1268 library. Further, an old weak symbol from a dynamic library is
1269 treated as strong if the new symbol is from a dynamic library.
1270 This reflects the way glibc's ld.so works.
1271
1272 Do this before setting *type_change_ok or *size_change_ok so that
1273 we warn properly when dynamic library symbols are overridden. */
1274
1275 if (newdef && !newdyn && olddyn)
1276 newweak = FALSE;
1277 if (olddef && newdyn)
1278 oldweak = FALSE;
1279
1280 /* Allow changes between different types of function symbol. */
1281 if (newfunc && oldfunc)
1282 *type_change_ok = TRUE;
1283
1284 /* It's OK to change the type if either the existing symbol or the
1285 new symbol is weak. A type change is also OK if the old symbol
1286 is undefined and the new symbol is defined. */
1287
1288 if (oldweak
1289 || newweak
1290 || (newdef
1291 && h->root.type == bfd_link_hash_undefined))
1292 *type_change_ok = TRUE;
1293
1294 /* It's OK to change the size if either the existing symbol or the
1295 new symbol is weak, or if the old symbol is undefined. */
1296
1297 if (*type_change_ok
1298 || h->root.type == bfd_link_hash_undefined)
1299 *size_change_ok = TRUE;
1300
1301 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1302 symbol, respectively, appears to be a common symbol in a dynamic
1303 object. If a symbol appears in an uninitialized section, and is
1304 not weak, and is not a function, then it may be a common symbol
1305 which was resolved when the dynamic object was created. We want
1306 to treat such symbols specially, because they raise special
1307 considerations when setting the symbol size: if the symbol
1308 appears as a common symbol in a regular object, and the size in
1309 the regular object is larger, we must make sure that we use the
1310 larger size. This problematic case can always be avoided in C,
1311 but it must be handled correctly when using Fortran shared
1312 libraries.
1313
1314 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1315 likewise for OLDDYNCOMMON and OLDDEF.
1316
1317 Note that this test is just a heuristic, and that it is quite
1318 possible to have an uninitialized symbol in a shared object which
1319 is really a definition, rather than a common symbol. This could
1320 lead to some minor confusion when the symbol really is a common
1321 symbol in some regular object. However, I think it will be
1322 harmless. */
1323
1324 if (newdyn
1325 && newdef
1326 && !newweak
1327 && (sec->flags & SEC_ALLOC) != 0
1328 && (sec->flags & SEC_LOAD) == 0
1329 && sym->st_size > 0
1330 && !newfunc)
1331 newdyncommon = TRUE;
1332 else
1333 newdyncommon = FALSE;
1334
1335 if (olddyn
1336 && olddef
1337 && h->root.type == bfd_link_hash_defined
1338 && h->def_dynamic
1339 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1340 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1341 && h->size > 0
1342 && !oldfunc)
1343 olddyncommon = TRUE;
1344 else
1345 olddyncommon = FALSE;
1346
1347 /* We now know everything about the old and new symbols. We ask the
1348 backend to check if we can merge them. */
1349 if (bed->merge_symbol != NULL)
1350 {
1351 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1352 return FALSE;
1353 sec = *psec;
1354 }
1355
1356 /* If both the old and the new symbols look like common symbols in a
1357 dynamic object, set the size of the symbol to the larger of the
1358 two. */
1359
1360 if (olddyncommon
1361 && newdyncommon
1362 && sym->st_size != h->size)
1363 {
1364 /* Since we think we have two common symbols, issue a multiple
1365 common warning if desired. Note that we only warn if the
1366 size is different. If the size is the same, we simply let
1367 the old symbol override the new one as normally happens with
1368 symbols defined in dynamic objects. */
1369
1370 if (! ((*info->callbacks->multiple_common)
1371 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1372 return FALSE;
1373
1374 if (sym->st_size > h->size)
1375 h->size = sym->st_size;
1376
1377 *size_change_ok = TRUE;
1378 }
1379
1380 /* If we are looking at a dynamic object, and we have found a
1381 definition, we need to see if the symbol was already defined by
1382 some other object. If so, we want to use the existing
1383 definition, and we do not want to report a multiple symbol
1384 definition error; we do this by clobbering *PSEC to be
1385 bfd_und_section_ptr.
1386
1387 We treat a common symbol as a definition if the symbol in the
1388 shared library is a function, since common symbols always
1389 represent variables; this can cause confusion in principle, but
1390 any such confusion would seem to indicate an erroneous program or
1391 shared library. We also permit a common symbol in a regular
1392 object to override a weak symbol in a shared object. */
1393
1394 if (newdyn
1395 && newdef
1396 && (olddef
1397 || (h->root.type == bfd_link_hash_common
1398 && (newweak || newfunc))))
1399 {
1400 *override = TRUE;
1401 newdef = FALSE;
1402 newdyncommon = FALSE;
1403
1404 *psec = sec = bfd_und_section_ptr;
1405 *size_change_ok = TRUE;
1406
1407 /* If we get here when the old symbol is a common symbol, then
1408 we are explicitly letting it override a weak symbol or
1409 function in a dynamic object, and we don't want to warn about
1410 a type change. If the old symbol is a defined symbol, a type
1411 change warning may still be appropriate. */
1412
1413 if (h->root.type == bfd_link_hash_common)
1414 *type_change_ok = TRUE;
1415 }
1416
1417 /* Handle the special case of an old common symbol merging with a
1418 new symbol which looks like a common symbol in a shared object.
1419 We change *PSEC and *PVALUE to make the new symbol look like a
1420 common symbol, and let _bfd_generic_link_add_one_symbol do the
1421 right thing. */
1422
1423 if (newdyncommon
1424 && h->root.type == bfd_link_hash_common)
1425 {
1426 *override = TRUE;
1427 newdef = FALSE;
1428 newdyncommon = FALSE;
1429 *pvalue = sym->st_size;
1430 *psec = sec = bed->common_section (oldsec);
1431 *size_change_ok = TRUE;
1432 }
1433
1434 /* Skip weak definitions of symbols that are already defined. */
1435 if (newdef && olddef && newweak)
1436 {
1437 /* Don't skip new non-IR weak syms. */
1438 if (!(oldbfd != NULL
1439 && (oldbfd->flags & BFD_PLUGIN) != 0
1440 && (abfd->flags & BFD_PLUGIN) == 0))
1441 *skip = TRUE;
1442
1443 /* Merge st_other. If the symbol already has a dynamic index,
1444 but visibility says it should not be visible, turn it into a
1445 local symbol. */
1446 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1447 if (h->dynindx != -1)
1448 switch (ELF_ST_VISIBILITY (h->other))
1449 {
1450 case STV_INTERNAL:
1451 case STV_HIDDEN:
1452 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1453 break;
1454 }
1455 }
1456
1457 /* If the old symbol is from a dynamic object, and the new symbol is
1458 a definition which is not from a dynamic object, then the new
1459 symbol overrides the old symbol. Symbols from regular files
1460 always take precedence over symbols from dynamic objects, even if
1461 they are defined after the dynamic object in the link.
1462
1463 As above, we again permit a common symbol in a regular object to
1464 override a definition in a shared object if the shared object
1465 symbol is a function or is weak. */
1466
1467 flip = NULL;
1468 if (!newdyn
1469 && (newdef
1470 || (bfd_is_com_section (sec)
1471 && (oldweak || oldfunc)))
1472 && olddyn
1473 && olddef
1474 && h->def_dynamic)
1475 {
1476 /* Change the hash table entry to undefined, and let
1477 _bfd_generic_link_add_one_symbol do the right thing with the
1478 new definition. */
1479
1480 h->root.type = bfd_link_hash_undefined;
1481 h->root.u.undef.abfd = h->root.u.def.section->owner;
1482 *size_change_ok = TRUE;
1483
1484 olddef = FALSE;
1485 olddyncommon = FALSE;
1486
1487 /* We again permit a type change when a common symbol may be
1488 overriding a function. */
1489
1490 if (bfd_is_com_section (sec))
1491 {
1492 if (oldfunc)
1493 {
1494 /* If a common symbol overrides a function, make sure
1495 that it isn't defined dynamically nor has type
1496 function. */
1497 h->def_dynamic = 0;
1498 h->type = STT_NOTYPE;
1499 }
1500 *type_change_ok = TRUE;
1501 }
1502
1503 if (hi->root.type == bfd_link_hash_indirect)
1504 flip = hi;
1505 else
1506 /* This union may have been set to be non-NULL when this symbol
1507 was seen in a dynamic object. We must force the union to be
1508 NULL, so that it is correct for a regular symbol. */
1509 h->verinfo.vertree = NULL;
1510 }
1511
1512 /* Handle the special case of a new common symbol merging with an
1513 old symbol that looks like it might be a common symbol defined in
1514 a shared object. Note that we have already handled the case in
1515 which a new common symbol should simply override the definition
1516 in the shared library. */
1517
1518 if (! newdyn
1519 && bfd_is_com_section (sec)
1520 && olddyncommon)
1521 {
1522 /* It would be best if we could set the hash table entry to a
1523 common symbol, but we don't know what to use for the section
1524 or the alignment. */
1525 if (! ((*info->callbacks->multiple_common)
1526 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1527 return FALSE;
1528
1529 /* If the presumed common symbol in the dynamic object is
1530 larger, pretend that the new symbol has its size. */
1531
1532 if (h->size > *pvalue)
1533 *pvalue = h->size;
1534
1535 /* We need to remember the alignment required by the symbol
1536 in the dynamic object. */
1537 BFD_ASSERT (pold_alignment);
1538 *pold_alignment = h->root.u.def.section->alignment_power;
1539
1540 olddef = FALSE;
1541 olddyncommon = FALSE;
1542
1543 h->root.type = bfd_link_hash_undefined;
1544 h->root.u.undef.abfd = h->root.u.def.section->owner;
1545
1546 *size_change_ok = TRUE;
1547 *type_change_ok = TRUE;
1548
1549 if (hi->root.type == bfd_link_hash_indirect)
1550 flip = hi;
1551 else
1552 h->verinfo.vertree = NULL;
1553 }
1554
1555 if (flip != NULL)
1556 {
1557 /* Handle the case where we had a versioned symbol in a dynamic
1558 library and now find a definition in a normal object. In this
1559 case, we make the versioned symbol point to the normal one. */
1560 flip->root.type = h->root.type;
1561 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1562 h->root.type = bfd_link_hash_indirect;
1563 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1564 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1565 if (h->def_dynamic)
1566 {
1567 h->def_dynamic = 0;
1568 flip->ref_dynamic = 1;
1569 }
1570 }
1571
1572 return TRUE;
1573 }
1574
1575 /* This function is called to create an indirect symbol from the
1576 default for the symbol with the default version if needed. The
1577 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1578 set DYNSYM if the new indirect symbol is dynamic. */
1579
1580 static bfd_boolean
1581 _bfd_elf_add_default_symbol (bfd *abfd,
1582 struct bfd_link_info *info,
1583 struct elf_link_hash_entry *h,
1584 const char *name,
1585 Elf_Internal_Sym *sym,
1586 asection *sec,
1587 bfd_vma value,
1588 bfd **poldbfd,
1589 bfd_boolean *dynsym)
1590 {
1591 bfd_boolean type_change_ok;
1592 bfd_boolean size_change_ok;
1593 bfd_boolean skip;
1594 char *shortname;
1595 struct elf_link_hash_entry *hi;
1596 struct bfd_link_hash_entry *bh;
1597 const struct elf_backend_data *bed;
1598 bfd_boolean collect;
1599 bfd_boolean dynamic;
1600 bfd_boolean override;
1601 char *p;
1602 size_t len, shortlen;
1603
1604 /* If this symbol has a version, and it is the default version, we
1605 create an indirect symbol from the default name to the fully
1606 decorated name. This will cause external references which do not
1607 specify a version to be bound to this version of the symbol. */
1608 p = strchr (name, ELF_VER_CHR);
1609 if (p == NULL || p[1] != ELF_VER_CHR)
1610 return TRUE;
1611
1612 bed = get_elf_backend_data (abfd);
1613 collect = bed->collect;
1614 dynamic = (abfd->flags & DYNAMIC) != 0;
1615
1616 shortlen = p - name;
1617 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1618 if (shortname == NULL)
1619 return FALSE;
1620 memcpy (shortname, name, shortlen);
1621 shortname[shortlen] = '\0';
1622
1623 /* We are going to create a new symbol. Merge it with any existing
1624 symbol with this name. For the purposes of the merge, act as
1625 though we were defining the symbol we just defined, although we
1626 actually going to define an indirect symbol. */
1627 type_change_ok = FALSE;
1628 size_change_ok = FALSE;
1629 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, &value,
1630 &hi, poldbfd, NULL, NULL, &skip, &override,
1631 &type_change_ok, &size_change_ok))
1632 return FALSE;
1633
1634 if (skip)
1635 goto nondefault;
1636
1637 if (! override)
1638 {
1639 bh = &hi->root;
1640 if (! (_bfd_generic_link_add_one_symbol
1641 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1642 0, name, FALSE, collect, &bh)))
1643 return FALSE;
1644 hi = (struct elf_link_hash_entry *) bh;
1645 }
1646 else
1647 {
1648 /* In this case the symbol named SHORTNAME is overriding the
1649 indirect symbol we want to add. We were planning on making
1650 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1651 is the name without a version. NAME is the fully versioned
1652 name, and it is the default version.
1653
1654 Overriding means that we already saw a definition for the
1655 symbol SHORTNAME in a regular object, and it is overriding
1656 the symbol defined in the dynamic object.
1657
1658 When this happens, we actually want to change NAME, the
1659 symbol we just added, to refer to SHORTNAME. This will cause
1660 references to NAME in the shared object to become references
1661 to SHORTNAME in the regular object. This is what we expect
1662 when we override a function in a shared object: that the
1663 references in the shared object will be mapped to the
1664 definition in the regular object. */
1665
1666 while (hi->root.type == bfd_link_hash_indirect
1667 || hi->root.type == bfd_link_hash_warning)
1668 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1669
1670 h->root.type = bfd_link_hash_indirect;
1671 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1672 if (h->def_dynamic)
1673 {
1674 h->def_dynamic = 0;
1675 hi->ref_dynamic = 1;
1676 if (hi->ref_regular
1677 || hi->def_regular)
1678 {
1679 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1680 return FALSE;
1681 }
1682 }
1683
1684 /* Now set HI to H, so that the following code will set the
1685 other fields correctly. */
1686 hi = h;
1687 }
1688
1689 /* Check if HI is a warning symbol. */
1690 if (hi->root.type == bfd_link_hash_warning)
1691 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1692
1693 /* If there is a duplicate definition somewhere, then HI may not
1694 point to an indirect symbol. We will have reported an error to
1695 the user in that case. */
1696
1697 if (hi->root.type == bfd_link_hash_indirect)
1698 {
1699 struct elf_link_hash_entry *ht;
1700
1701 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1702 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1703
1704 /* See if the new flags lead us to realize that the symbol must
1705 be dynamic. */
1706 if (! *dynsym)
1707 {
1708 if (! dynamic)
1709 {
1710 if (! info->executable
1711 || hi->def_dynamic
1712 || hi->ref_dynamic)
1713 *dynsym = TRUE;
1714 }
1715 else
1716 {
1717 if (hi->ref_regular)
1718 *dynsym = TRUE;
1719 }
1720 }
1721 }
1722
1723 /* We also need to define an indirection from the nondefault version
1724 of the symbol. */
1725
1726 nondefault:
1727 len = strlen (name);
1728 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1729 if (shortname == NULL)
1730 return FALSE;
1731 memcpy (shortname, name, shortlen);
1732 memcpy (shortname + shortlen, p + 1, len - shortlen);
1733
1734 /* Once again, merge with any existing symbol. */
1735 type_change_ok = FALSE;
1736 size_change_ok = FALSE;
1737 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, &value,
1738 &hi, NULL, NULL, NULL, &skip, &override,
1739 &type_change_ok, &size_change_ok))
1740 return FALSE;
1741
1742 if (skip)
1743 return TRUE;
1744
1745 if (override)
1746 {
1747 /* Here SHORTNAME is a versioned name, so we don't expect to see
1748 the type of override we do in the case above unless it is
1749 overridden by a versioned definition. */
1750 if (hi->root.type != bfd_link_hash_defined
1751 && hi->root.type != bfd_link_hash_defweak)
1752 (*_bfd_error_handler)
1753 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1754 abfd, shortname);
1755 }
1756 else
1757 {
1758 bh = &hi->root;
1759 if (! (_bfd_generic_link_add_one_symbol
1760 (info, abfd, shortname, BSF_INDIRECT,
1761 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1762 return FALSE;
1763 hi = (struct elf_link_hash_entry *) bh;
1764
1765 /* If there is a duplicate definition somewhere, then HI may not
1766 point to an indirect symbol. We will have reported an error
1767 to the user in that case. */
1768
1769 if (hi->root.type == bfd_link_hash_indirect)
1770 {
1771 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1772
1773 /* See if the new flags lead us to realize that the symbol
1774 must be dynamic. */
1775 if (! *dynsym)
1776 {
1777 if (! dynamic)
1778 {
1779 if (! info->executable
1780 || hi->ref_dynamic)
1781 *dynsym = TRUE;
1782 }
1783 else
1784 {
1785 if (hi->ref_regular)
1786 *dynsym = TRUE;
1787 }
1788 }
1789 }
1790 }
1791
1792 return TRUE;
1793 }
1794 \f
1795 /* This routine is used to export all defined symbols into the dynamic
1796 symbol table. It is called via elf_link_hash_traverse. */
1797
1798 static bfd_boolean
1799 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1800 {
1801 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1802
1803 /* Ignore indirect symbols. These are added by the versioning code. */
1804 if (h->root.type == bfd_link_hash_indirect)
1805 return TRUE;
1806
1807 /* Ignore this if we won't export it. */
1808 if (!eif->info->export_dynamic && !h->dynamic)
1809 return TRUE;
1810
1811 if (h->dynindx == -1
1812 && (h->def_regular || h->ref_regular)
1813 && ! bfd_hide_sym_by_version (eif->info->version_info,
1814 h->root.root.string))
1815 {
1816 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1817 {
1818 eif->failed = TRUE;
1819 return FALSE;
1820 }
1821 }
1822
1823 return TRUE;
1824 }
1825 \f
1826 /* Look through the symbols which are defined in other shared
1827 libraries and referenced here. Update the list of version
1828 dependencies. This will be put into the .gnu.version_r section.
1829 This function is called via elf_link_hash_traverse. */
1830
1831 static bfd_boolean
1832 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1833 void *data)
1834 {
1835 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1836 Elf_Internal_Verneed *t;
1837 Elf_Internal_Vernaux *a;
1838 bfd_size_type amt;
1839
1840 /* We only care about symbols defined in shared objects with version
1841 information. */
1842 if (!h->def_dynamic
1843 || h->def_regular
1844 || h->dynindx == -1
1845 || h->verinfo.verdef == NULL)
1846 return TRUE;
1847
1848 /* See if we already know about this version. */
1849 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1850 t != NULL;
1851 t = t->vn_nextref)
1852 {
1853 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1854 continue;
1855
1856 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1857 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1858 return TRUE;
1859
1860 break;
1861 }
1862
1863 /* This is a new version. Add it to tree we are building. */
1864
1865 if (t == NULL)
1866 {
1867 amt = sizeof *t;
1868 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1869 if (t == NULL)
1870 {
1871 rinfo->failed = TRUE;
1872 return FALSE;
1873 }
1874
1875 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1876 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1877 elf_tdata (rinfo->info->output_bfd)->verref = t;
1878 }
1879
1880 amt = sizeof *a;
1881 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1882 if (a == NULL)
1883 {
1884 rinfo->failed = TRUE;
1885 return FALSE;
1886 }
1887
1888 /* Note that we are copying a string pointer here, and testing it
1889 above. If bfd_elf_string_from_elf_section is ever changed to
1890 discard the string data when low in memory, this will have to be
1891 fixed. */
1892 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1893
1894 a->vna_flags = h->verinfo.verdef->vd_flags;
1895 a->vna_nextptr = t->vn_auxptr;
1896
1897 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1898 ++rinfo->vers;
1899
1900 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1901
1902 t->vn_auxptr = a;
1903
1904 return TRUE;
1905 }
1906
1907 /* Figure out appropriate versions for all the symbols. We may not
1908 have the version number script until we have read all of the input
1909 files, so until that point we don't know which symbols should be
1910 local. This function is called via elf_link_hash_traverse. */
1911
1912 static bfd_boolean
1913 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1914 {
1915 struct elf_info_failed *sinfo;
1916 struct bfd_link_info *info;
1917 const struct elf_backend_data *bed;
1918 struct elf_info_failed eif;
1919 char *p;
1920 bfd_size_type amt;
1921
1922 sinfo = (struct elf_info_failed *) data;
1923 info = sinfo->info;
1924
1925 /* Fix the symbol flags. */
1926 eif.failed = FALSE;
1927 eif.info = info;
1928 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1929 {
1930 if (eif.failed)
1931 sinfo->failed = TRUE;
1932 return FALSE;
1933 }
1934
1935 /* We only need version numbers for symbols defined in regular
1936 objects. */
1937 if (!h->def_regular)
1938 return TRUE;
1939
1940 bed = get_elf_backend_data (info->output_bfd);
1941 p = strchr (h->root.root.string, ELF_VER_CHR);
1942 if (p != NULL && h->verinfo.vertree == NULL)
1943 {
1944 struct bfd_elf_version_tree *t;
1945 bfd_boolean hidden;
1946
1947 hidden = TRUE;
1948
1949 /* There are two consecutive ELF_VER_CHR characters if this is
1950 not a hidden symbol. */
1951 ++p;
1952 if (*p == ELF_VER_CHR)
1953 {
1954 hidden = FALSE;
1955 ++p;
1956 }
1957
1958 /* If there is no version string, we can just return out. */
1959 if (*p == '\0')
1960 {
1961 if (hidden)
1962 h->hidden = 1;
1963 return TRUE;
1964 }
1965
1966 /* Look for the version. If we find it, it is no longer weak. */
1967 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1968 {
1969 if (strcmp (t->name, p) == 0)
1970 {
1971 size_t len;
1972 char *alc;
1973 struct bfd_elf_version_expr *d;
1974
1975 len = p - h->root.root.string;
1976 alc = (char *) bfd_malloc (len);
1977 if (alc == NULL)
1978 {
1979 sinfo->failed = TRUE;
1980 return FALSE;
1981 }
1982 memcpy (alc, h->root.root.string, len - 1);
1983 alc[len - 1] = '\0';
1984 if (alc[len - 2] == ELF_VER_CHR)
1985 alc[len - 2] = '\0';
1986
1987 h->verinfo.vertree = t;
1988 t->used = TRUE;
1989 d = NULL;
1990
1991 if (t->globals.list != NULL)
1992 d = (*t->match) (&t->globals, NULL, alc);
1993
1994 /* See if there is anything to force this symbol to
1995 local scope. */
1996 if (d == NULL && t->locals.list != NULL)
1997 {
1998 d = (*t->match) (&t->locals, NULL, alc);
1999 if (d != NULL
2000 && h->dynindx != -1
2001 && ! info->export_dynamic)
2002 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2003 }
2004
2005 free (alc);
2006 break;
2007 }
2008 }
2009
2010 /* If we are building an application, we need to create a
2011 version node for this version. */
2012 if (t == NULL && info->executable)
2013 {
2014 struct bfd_elf_version_tree **pp;
2015 int version_index;
2016
2017 /* If we aren't going to export this symbol, we don't need
2018 to worry about it. */
2019 if (h->dynindx == -1)
2020 return TRUE;
2021
2022 amt = sizeof *t;
2023 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2024 if (t == NULL)
2025 {
2026 sinfo->failed = TRUE;
2027 return FALSE;
2028 }
2029
2030 t->name = p;
2031 t->name_indx = (unsigned int) -1;
2032 t->used = TRUE;
2033
2034 version_index = 1;
2035 /* Don't count anonymous version tag. */
2036 if (sinfo->info->version_info != NULL
2037 && sinfo->info->version_info->vernum == 0)
2038 version_index = 0;
2039 for (pp = &sinfo->info->version_info;
2040 *pp != NULL;
2041 pp = &(*pp)->next)
2042 ++version_index;
2043 t->vernum = version_index;
2044
2045 *pp = t;
2046
2047 h->verinfo.vertree = t;
2048 }
2049 else if (t == NULL)
2050 {
2051 /* We could not find the version for a symbol when
2052 generating a shared archive. Return an error. */
2053 (*_bfd_error_handler)
2054 (_("%B: version node not found for symbol %s"),
2055 info->output_bfd, h->root.root.string);
2056 bfd_set_error (bfd_error_bad_value);
2057 sinfo->failed = TRUE;
2058 return FALSE;
2059 }
2060
2061 if (hidden)
2062 h->hidden = 1;
2063 }
2064
2065 /* If we don't have a version for this symbol, see if we can find
2066 something. */
2067 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2068 {
2069 bfd_boolean hide;
2070
2071 h->verinfo.vertree
2072 = bfd_find_version_for_sym (sinfo->info->version_info,
2073 h->root.root.string, &hide);
2074 if (h->verinfo.vertree != NULL && hide)
2075 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2076 }
2077
2078 return TRUE;
2079 }
2080 \f
2081 /* Read and swap the relocs from the section indicated by SHDR. This
2082 may be either a REL or a RELA section. The relocations are
2083 translated into RELA relocations and stored in INTERNAL_RELOCS,
2084 which should have already been allocated to contain enough space.
2085 The EXTERNAL_RELOCS are a buffer where the external form of the
2086 relocations should be stored.
2087
2088 Returns FALSE if something goes wrong. */
2089
2090 static bfd_boolean
2091 elf_link_read_relocs_from_section (bfd *abfd,
2092 asection *sec,
2093 Elf_Internal_Shdr *shdr,
2094 void *external_relocs,
2095 Elf_Internal_Rela *internal_relocs)
2096 {
2097 const struct elf_backend_data *bed;
2098 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2099 const bfd_byte *erela;
2100 const bfd_byte *erelaend;
2101 Elf_Internal_Rela *irela;
2102 Elf_Internal_Shdr *symtab_hdr;
2103 size_t nsyms;
2104
2105 /* Position ourselves at the start of the section. */
2106 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2107 return FALSE;
2108
2109 /* Read the relocations. */
2110 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2111 return FALSE;
2112
2113 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2114 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2115
2116 bed = get_elf_backend_data (abfd);
2117
2118 /* Convert the external relocations to the internal format. */
2119 if (shdr->sh_entsize == bed->s->sizeof_rel)
2120 swap_in = bed->s->swap_reloc_in;
2121 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2122 swap_in = bed->s->swap_reloca_in;
2123 else
2124 {
2125 bfd_set_error (bfd_error_wrong_format);
2126 return FALSE;
2127 }
2128
2129 erela = (const bfd_byte *) external_relocs;
2130 erelaend = erela + shdr->sh_size;
2131 irela = internal_relocs;
2132 while (erela < erelaend)
2133 {
2134 bfd_vma r_symndx;
2135
2136 (*swap_in) (abfd, erela, irela);
2137 r_symndx = ELF32_R_SYM (irela->r_info);
2138 if (bed->s->arch_size == 64)
2139 r_symndx >>= 24;
2140 if (nsyms > 0)
2141 {
2142 if ((size_t) r_symndx >= nsyms)
2143 {
2144 (*_bfd_error_handler)
2145 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2146 " for offset 0x%lx in section `%A'"),
2147 abfd, sec,
2148 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2149 bfd_set_error (bfd_error_bad_value);
2150 return FALSE;
2151 }
2152 }
2153 else if (r_symndx != STN_UNDEF)
2154 {
2155 (*_bfd_error_handler)
2156 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2157 " when the object file has no symbol table"),
2158 abfd, sec,
2159 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2160 bfd_set_error (bfd_error_bad_value);
2161 return FALSE;
2162 }
2163 irela += bed->s->int_rels_per_ext_rel;
2164 erela += shdr->sh_entsize;
2165 }
2166
2167 return TRUE;
2168 }
2169
2170 /* Read and swap the relocs for a section O. They may have been
2171 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2172 not NULL, they are used as buffers to read into. They are known to
2173 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2174 the return value is allocated using either malloc or bfd_alloc,
2175 according to the KEEP_MEMORY argument. If O has two relocation
2176 sections (both REL and RELA relocations), then the REL_HDR
2177 relocations will appear first in INTERNAL_RELOCS, followed by the
2178 RELA_HDR relocations. */
2179
2180 Elf_Internal_Rela *
2181 _bfd_elf_link_read_relocs (bfd *abfd,
2182 asection *o,
2183 void *external_relocs,
2184 Elf_Internal_Rela *internal_relocs,
2185 bfd_boolean keep_memory)
2186 {
2187 void *alloc1 = NULL;
2188 Elf_Internal_Rela *alloc2 = NULL;
2189 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2190 struct bfd_elf_section_data *esdo = elf_section_data (o);
2191 Elf_Internal_Rela *internal_rela_relocs;
2192
2193 if (esdo->relocs != NULL)
2194 return esdo->relocs;
2195
2196 if (o->reloc_count == 0)
2197 return NULL;
2198
2199 if (internal_relocs == NULL)
2200 {
2201 bfd_size_type size;
2202
2203 size = o->reloc_count;
2204 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2205 if (keep_memory)
2206 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2207 else
2208 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2209 if (internal_relocs == NULL)
2210 goto error_return;
2211 }
2212
2213 if (external_relocs == NULL)
2214 {
2215 bfd_size_type size = 0;
2216
2217 if (esdo->rel.hdr)
2218 size += esdo->rel.hdr->sh_size;
2219 if (esdo->rela.hdr)
2220 size += esdo->rela.hdr->sh_size;
2221
2222 alloc1 = bfd_malloc (size);
2223 if (alloc1 == NULL)
2224 goto error_return;
2225 external_relocs = alloc1;
2226 }
2227
2228 internal_rela_relocs = internal_relocs;
2229 if (esdo->rel.hdr)
2230 {
2231 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2232 external_relocs,
2233 internal_relocs))
2234 goto error_return;
2235 external_relocs = (((bfd_byte *) external_relocs)
2236 + esdo->rel.hdr->sh_size);
2237 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2238 * bed->s->int_rels_per_ext_rel);
2239 }
2240
2241 if (esdo->rela.hdr
2242 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2243 external_relocs,
2244 internal_rela_relocs)))
2245 goto error_return;
2246
2247 /* Cache the results for next time, if we can. */
2248 if (keep_memory)
2249 esdo->relocs = internal_relocs;
2250
2251 if (alloc1 != NULL)
2252 free (alloc1);
2253
2254 /* Don't free alloc2, since if it was allocated we are passing it
2255 back (under the name of internal_relocs). */
2256
2257 return internal_relocs;
2258
2259 error_return:
2260 if (alloc1 != NULL)
2261 free (alloc1);
2262 if (alloc2 != NULL)
2263 {
2264 if (keep_memory)
2265 bfd_release (abfd, alloc2);
2266 else
2267 free (alloc2);
2268 }
2269 return NULL;
2270 }
2271
2272 /* Compute the size of, and allocate space for, REL_HDR which is the
2273 section header for a section containing relocations for O. */
2274
2275 static bfd_boolean
2276 _bfd_elf_link_size_reloc_section (bfd *abfd,
2277 struct bfd_elf_section_reloc_data *reldata)
2278 {
2279 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2280
2281 /* That allows us to calculate the size of the section. */
2282 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2283
2284 /* The contents field must last into write_object_contents, so we
2285 allocate it with bfd_alloc rather than malloc. Also since we
2286 cannot be sure that the contents will actually be filled in,
2287 we zero the allocated space. */
2288 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2289 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2290 return FALSE;
2291
2292 if (reldata->hashes == NULL && reldata->count)
2293 {
2294 struct elf_link_hash_entry **p;
2295
2296 p = (struct elf_link_hash_entry **)
2297 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2298 if (p == NULL)
2299 return FALSE;
2300
2301 reldata->hashes = p;
2302 }
2303
2304 return TRUE;
2305 }
2306
2307 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2308 originated from the section given by INPUT_REL_HDR) to the
2309 OUTPUT_BFD. */
2310
2311 bfd_boolean
2312 _bfd_elf_link_output_relocs (bfd *output_bfd,
2313 asection *input_section,
2314 Elf_Internal_Shdr *input_rel_hdr,
2315 Elf_Internal_Rela *internal_relocs,
2316 struct elf_link_hash_entry **rel_hash
2317 ATTRIBUTE_UNUSED)
2318 {
2319 Elf_Internal_Rela *irela;
2320 Elf_Internal_Rela *irelaend;
2321 bfd_byte *erel;
2322 struct bfd_elf_section_reloc_data *output_reldata;
2323 asection *output_section;
2324 const struct elf_backend_data *bed;
2325 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2326 struct bfd_elf_section_data *esdo;
2327
2328 output_section = input_section->output_section;
2329
2330 bed = get_elf_backend_data (output_bfd);
2331 esdo = elf_section_data (output_section);
2332 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2333 {
2334 output_reldata = &esdo->rel;
2335 swap_out = bed->s->swap_reloc_out;
2336 }
2337 else if (esdo->rela.hdr
2338 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2339 {
2340 output_reldata = &esdo->rela;
2341 swap_out = bed->s->swap_reloca_out;
2342 }
2343 else
2344 {
2345 (*_bfd_error_handler)
2346 (_("%B: relocation size mismatch in %B section %A"),
2347 output_bfd, input_section->owner, input_section);
2348 bfd_set_error (bfd_error_wrong_format);
2349 return FALSE;
2350 }
2351
2352 erel = output_reldata->hdr->contents;
2353 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2354 irela = internal_relocs;
2355 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2356 * bed->s->int_rels_per_ext_rel);
2357 while (irela < irelaend)
2358 {
2359 (*swap_out) (output_bfd, irela, erel);
2360 irela += bed->s->int_rels_per_ext_rel;
2361 erel += input_rel_hdr->sh_entsize;
2362 }
2363
2364 /* Bump the counter, so that we know where to add the next set of
2365 relocations. */
2366 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2367
2368 return TRUE;
2369 }
2370 \f
2371 /* Make weak undefined symbols in PIE dynamic. */
2372
2373 bfd_boolean
2374 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2375 struct elf_link_hash_entry *h)
2376 {
2377 if (info->pie
2378 && h->dynindx == -1
2379 && h->root.type == bfd_link_hash_undefweak)
2380 return bfd_elf_link_record_dynamic_symbol (info, h);
2381
2382 return TRUE;
2383 }
2384
2385 /* Fix up the flags for a symbol. This handles various cases which
2386 can only be fixed after all the input files are seen. This is
2387 currently called by both adjust_dynamic_symbol and
2388 assign_sym_version, which is unnecessary but perhaps more robust in
2389 the face of future changes. */
2390
2391 static bfd_boolean
2392 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2393 struct elf_info_failed *eif)
2394 {
2395 const struct elf_backend_data *bed;
2396
2397 /* If this symbol was mentioned in a non-ELF file, try to set
2398 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2399 permit a non-ELF file to correctly refer to a symbol defined in
2400 an ELF dynamic object. */
2401 if (h->non_elf)
2402 {
2403 while (h->root.type == bfd_link_hash_indirect)
2404 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2405
2406 if (h->root.type != bfd_link_hash_defined
2407 && h->root.type != bfd_link_hash_defweak)
2408 {
2409 h->ref_regular = 1;
2410 h->ref_regular_nonweak = 1;
2411 }
2412 else
2413 {
2414 if (h->root.u.def.section->owner != NULL
2415 && (bfd_get_flavour (h->root.u.def.section->owner)
2416 == bfd_target_elf_flavour))
2417 {
2418 h->ref_regular = 1;
2419 h->ref_regular_nonweak = 1;
2420 }
2421 else
2422 h->def_regular = 1;
2423 }
2424
2425 if (h->dynindx == -1
2426 && (h->def_dynamic
2427 || h->ref_dynamic))
2428 {
2429 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2430 {
2431 eif->failed = TRUE;
2432 return FALSE;
2433 }
2434 }
2435 }
2436 else
2437 {
2438 /* Unfortunately, NON_ELF is only correct if the symbol
2439 was first seen in a non-ELF file. Fortunately, if the symbol
2440 was first seen in an ELF file, we're probably OK unless the
2441 symbol was defined in a non-ELF file. Catch that case here.
2442 FIXME: We're still in trouble if the symbol was first seen in
2443 a dynamic object, and then later in a non-ELF regular object. */
2444 if ((h->root.type == bfd_link_hash_defined
2445 || h->root.type == bfd_link_hash_defweak)
2446 && !h->def_regular
2447 && (h->root.u.def.section->owner != NULL
2448 ? (bfd_get_flavour (h->root.u.def.section->owner)
2449 != bfd_target_elf_flavour)
2450 : (bfd_is_abs_section (h->root.u.def.section)
2451 && !h->def_dynamic)))
2452 h->def_regular = 1;
2453 }
2454
2455 /* Backend specific symbol fixup. */
2456 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2457 if (bed->elf_backend_fixup_symbol
2458 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2459 return FALSE;
2460
2461 /* If this is a final link, and the symbol was defined as a common
2462 symbol in a regular object file, and there was no definition in
2463 any dynamic object, then the linker will have allocated space for
2464 the symbol in a common section but the DEF_REGULAR
2465 flag will not have been set. */
2466 if (h->root.type == bfd_link_hash_defined
2467 && !h->def_regular
2468 && h->ref_regular
2469 && !h->def_dynamic
2470 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2471 h->def_regular = 1;
2472
2473 /* If -Bsymbolic was used (which means to bind references to global
2474 symbols to the definition within the shared object), and this
2475 symbol was defined in a regular object, then it actually doesn't
2476 need a PLT entry. Likewise, if the symbol has non-default
2477 visibility. If the symbol has hidden or internal visibility, we
2478 will force it local. */
2479 if (h->needs_plt
2480 && eif->info->shared
2481 && is_elf_hash_table (eif->info->hash)
2482 && (SYMBOLIC_BIND (eif->info, h)
2483 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2484 && h->def_regular)
2485 {
2486 bfd_boolean force_local;
2487
2488 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2489 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2490 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2491 }
2492
2493 /* If a weak undefined symbol has non-default visibility, we also
2494 hide it from the dynamic linker. */
2495 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2496 && h->root.type == bfd_link_hash_undefweak)
2497 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2498
2499 /* If this is a weak defined symbol in a dynamic object, and we know
2500 the real definition in the dynamic object, copy interesting flags
2501 over to the real definition. */
2502 if (h->u.weakdef != NULL)
2503 {
2504 /* If the real definition is defined by a regular object file,
2505 don't do anything special. See the longer description in
2506 _bfd_elf_adjust_dynamic_symbol, below. */
2507 if (h->u.weakdef->def_regular)
2508 h->u.weakdef = NULL;
2509 else
2510 {
2511 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2512
2513 while (h->root.type == bfd_link_hash_indirect)
2514 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2515
2516 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2517 || h->root.type == bfd_link_hash_defweak);
2518 BFD_ASSERT (weakdef->def_dynamic);
2519 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2520 || weakdef->root.type == bfd_link_hash_defweak);
2521 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2522 }
2523 }
2524
2525 return TRUE;
2526 }
2527
2528 /* Make the backend pick a good value for a dynamic symbol. This is
2529 called via elf_link_hash_traverse, and also calls itself
2530 recursively. */
2531
2532 static bfd_boolean
2533 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2534 {
2535 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2536 bfd *dynobj;
2537 const struct elf_backend_data *bed;
2538
2539 if (! is_elf_hash_table (eif->info->hash))
2540 return FALSE;
2541
2542 /* Ignore indirect symbols. These are added by the versioning code. */
2543 if (h->root.type == bfd_link_hash_indirect)
2544 return TRUE;
2545
2546 /* Fix the symbol flags. */
2547 if (! _bfd_elf_fix_symbol_flags (h, eif))
2548 return FALSE;
2549
2550 /* If this symbol does not require a PLT entry, and it is not
2551 defined by a dynamic object, or is not referenced by a regular
2552 object, ignore it. We do have to handle a weak defined symbol,
2553 even if no regular object refers to it, if we decided to add it
2554 to the dynamic symbol table. FIXME: Do we normally need to worry
2555 about symbols which are defined by one dynamic object and
2556 referenced by another one? */
2557 if (!h->needs_plt
2558 && h->type != STT_GNU_IFUNC
2559 && (h->def_regular
2560 || !h->def_dynamic
2561 || (!h->ref_regular
2562 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2563 {
2564 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2565 return TRUE;
2566 }
2567
2568 /* If we've already adjusted this symbol, don't do it again. This
2569 can happen via a recursive call. */
2570 if (h->dynamic_adjusted)
2571 return TRUE;
2572
2573 /* Don't look at this symbol again. Note that we must set this
2574 after checking the above conditions, because we may look at a
2575 symbol once, decide not to do anything, and then get called
2576 recursively later after REF_REGULAR is set below. */
2577 h->dynamic_adjusted = 1;
2578
2579 /* If this is a weak definition, and we know a real definition, and
2580 the real symbol is not itself defined by a regular object file,
2581 then get a good value for the real definition. We handle the
2582 real symbol first, for the convenience of the backend routine.
2583
2584 Note that there is a confusing case here. If the real definition
2585 is defined by a regular object file, we don't get the real symbol
2586 from the dynamic object, but we do get the weak symbol. If the
2587 processor backend uses a COPY reloc, then if some routine in the
2588 dynamic object changes the real symbol, we will not see that
2589 change in the corresponding weak symbol. This is the way other
2590 ELF linkers work as well, and seems to be a result of the shared
2591 library model.
2592
2593 I will clarify this issue. Most SVR4 shared libraries define the
2594 variable _timezone and define timezone as a weak synonym. The
2595 tzset call changes _timezone. If you write
2596 extern int timezone;
2597 int _timezone = 5;
2598 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2599 you might expect that, since timezone is a synonym for _timezone,
2600 the same number will print both times. However, if the processor
2601 backend uses a COPY reloc, then actually timezone will be copied
2602 into your process image, and, since you define _timezone
2603 yourself, _timezone will not. Thus timezone and _timezone will
2604 wind up at different memory locations. The tzset call will set
2605 _timezone, leaving timezone unchanged. */
2606
2607 if (h->u.weakdef != NULL)
2608 {
2609 /* If we get to this point, there is an implicit reference to
2610 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2611 h->u.weakdef->ref_regular = 1;
2612
2613 /* Ensure that the backend adjust_dynamic_symbol function sees
2614 H->U.WEAKDEF before H by recursively calling ourselves. */
2615 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2616 return FALSE;
2617 }
2618
2619 /* If a symbol has no type and no size and does not require a PLT
2620 entry, then we are probably about to do the wrong thing here: we
2621 are probably going to create a COPY reloc for an empty object.
2622 This case can arise when a shared object is built with assembly
2623 code, and the assembly code fails to set the symbol type. */
2624 if (h->size == 0
2625 && h->type == STT_NOTYPE
2626 && !h->needs_plt)
2627 (*_bfd_error_handler)
2628 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2629 h->root.root.string);
2630
2631 dynobj = elf_hash_table (eif->info)->dynobj;
2632 bed = get_elf_backend_data (dynobj);
2633
2634 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2635 {
2636 eif->failed = TRUE;
2637 return FALSE;
2638 }
2639
2640 return TRUE;
2641 }
2642
2643 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2644 DYNBSS. */
2645
2646 bfd_boolean
2647 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2648 asection *dynbss)
2649 {
2650 unsigned int power_of_two;
2651 bfd_vma mask;
2652 asection *sec = h->root.u.def.section;
2653
2654 /* The section aligment of definition is the maximum alignment
2655 requirement of symbols defined in the section. Since we don't
2656 know the symbol alignment requirement, we start with the
2657 maximum alignment and check low bits of the symbol address
2658 for the minimum alignment. */
2659 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2660 mask = ((bfd_vma) 1 << power_of_two) - 1;
2661 while ((h->root.u.def.value & mask) != 0)
2662 {
2663 mask >>= 1;
2664 --power_of_two;
2665 }
2666
2667 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2668 dynbss))
2669 {
2670 /* Adjust the section alignment if needed. */
2671 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2672 power_of_two))
2673 return FALSE;
2674 }
2675
2676 /* We make sure that the symbol will be aligned properly. */
2677 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2678
2679 /* Define the symbol as being at this point in DYNBSS. */
2680 h->root.u.def.section = dynbss;
2681 h->root.u.def.value = dynbss->size;
2682
2683 /* Increment the size of DYNBSS to make room for the symbol. */
2684 dynbss->size += h->size;
2685
2686 return TRUE;
2687 }
2688
2689 /* Adjust all external symbols pointing into SEC_MERGE sections
2690 to reflect the object merging within the sections. */
2691
2692 static bfd_boolean
2693 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2694 {
2695 asection *sec;
2696
2697 if ((h->root.type == bfd_link_hash_defined
2698 || h->root.type == bfd_link_hash_defweak)
2699 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2700 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2701 {
2702 bfd *output_bfd = (bfd *) data;
2703
2704 h->root.u.def.value =
2705 _bfd_merged_section_offset (output_bfd,
2706 &h->root.u.def.section,
2707 elf_section_data (sec)->sec_info,
2708 h->root.u.def.value);
2709 }
2710
2711 return TRUE;
2712 }
2713
2714 /* Returns false if the symbol referred to by H should be considered
2715 to resolve local to the current module, and true if it should be
2716 considered to bind dynamically. */
2717
2718 bfd_boolean
2719 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2720 struct bfd_link_info *info,
2721 bfd_boolean not_local_protected)
2722 {
2723 bfd_boolean binding_stays_local_p;
2724 const struct elf_backend_data *bed;
2725 struct elf_link_hash_table *hash_table;
2726
2727 if (h == NULL)
2728 return FALSE;
2729
2730 while (h->root.type == bfd_link_hash_indirect
2731 || h->root.type == bfd_link_hash_warning)
2732 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2733
2734 /* If it was forced local, then clearly it's not dynamic. */
2735 if (h->dynindx == -1)
2736 return FALSE;
2737 if (h->forced_local)
2738 return FALSE;
2739
2740 /* Identify the cases where name binding rules say that a
2741 visible symbol resolves locally. */
2742 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2743
2744 switch (ELF_ST_VISIBILITY (h->other))
2745 {
2746 case STV_INTERNAL:
2747 case STV_HIDDEN:
2748 return FALSE;
2749
2750 case STV_PROTECTED:
2751 hash_table = elf_hash_table (info);
2752 if (!is_elf_hash_table (hash_table))
2753 return FALSE;
2754
2755 bed = get_elf_backend_data (hash_table->dynobj);
2756
2757 /* Proper resolution for function pointer equality may require
2758 that these symbols perhaps be resolved dynamically, even though
2759 we should be resolving them to the current module. */
2760 if (!not_local_protected || !bed->is_function_type (h->type))
2761 binding_stays_local_p = TRUE;
2762 break;
2763
2764 default:
2765 break;
2766 }
2767
2768 /* If it isn't defined locally, then clearly it's dynamic. */
2769 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2770 return TRUE;
2771
2772 /* Otherwise, the symbol is dynamic if binding rules don't tell
2773 us that it remains local. */
2774 return !binding_stays_local_p;
2775 }
2776
2777 /* Return true if the symbol referred to by H should be considered
2778 to resolve local to the current module, and false otherwise. Differs
2779 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2780 undefined symbols. The two functions are virtually identical except
2781 for the place where forced_local and dynindx == -1 are tested. If
2782 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2783 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2784 the symbol is local only for defined symbols.
2785 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2786 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2787 treatment of undefined weak symbols. For those that do not make
2788 undefined weak symbols dynamic, both functions may return false. */
2789
2790 bfd_boolean
2791 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2792 struct bfd_link_info *info,
2793 bfd_boolean local_protected)
2794 {
2795 const struct elf_backend_data *bed;
2796 struct elf_link_hash_table *hash_table;
2797
2798 /* If it's a local sym, of course we resolve locally. */
2799 if (h == NULL)
2800 return TRUE;
2801
2802 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2803 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2804 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2805 return TRUE;
2806
2807 /* Common symbols that become definitions don't get the DEF_REGULAR
2808 flag set, so test it first, and don't bail out. */
2809 if (ELF_COMMON_DEF_P (h))
2810 /* Do nothing. */;
2811 /* If we don't have a definition in a regular file, then we can't
2812 resolve locally. The sym is either undefined or dynamic. */
2813 else if (!h->def_regular)
2814 return FALSE;
2815
2816 /* Forced local symbols resolve locally. */
2817 if (h->forced_local)
2818 return TRUE;
2819
2820 /* As do non-dynamic symbols. */
2821 if (h->dynindx == -1)
2822 return TRUE;
2823
2824 /* At this point, we know the symbol is defined and dynamic. In an
2825 executable it must resolve locally, likewise when building symbolic
2826 shared libraries. */
2827 if (info->executable || SYMBOLIC_BIND (info, h))
2828 return TRUE;
2829
2830 /* Now deal with defined dynamic symbols in shared libraries. Ones
2831 with default visibility might not resolve locally. */
2832 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2833 return FALSE;
2834
2835 hash_table = elf_hash_table (info);
2836 if (!is_elf_hash_table (hash_table))
2837 return TRUE;
2838
2839 bed = get_elf_backend_data (hash_table->dynobj);
2840
2841 /* STV_PROTECTED non-function symbols are local. */
2842 if (!bed->is_function_type (h->type))
2843 return TRUE;
2844
2845 /* Function pointer equality tests may require that STV_PROTECTED
2846 symbols be treated as dynamic symbols. If the address of a
2847 function not defined in an executable is set to that function's
2848 plt entry in the executable, then the address of the function in
2849 a shared library must also be the plt entry in the executable. */
2850 return local_protected;
2851 }
2852
2853 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2854 aligned. Returns the first TLS output section. */
2855
2856 struct bfd_section *
2857 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2858 {
2859 struct bfd_section *sec, *tls;
2860 unsigned int align = 0;
2861
2862 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2863 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2864 break;
2865 tls = sec;
2866
2867 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2868 if (sec->alignment_power > align)
2869 align = sec->alignment_power;
2870
2871 elf_hash_table (info)->tls_sec = tls;
2872
2873 /* Ensure the alignment of the first section is the largest alignment,
2874 so that the tls segment starts aligned. */
2875 if (tls != NULL)
2876 tls->alignment_power = align;
2877
2878 return tls;
2879 }
2880
2881 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2882 static bfd_boolean
2883 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2884 Elf_Internal_Sym *sym)
2885 {
2886 const struct elf_backend_data *bed;
2887
2888 /* Local symbols do not count, but target specific ones might. */
2889 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2890 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2891 return FALSE;
2892
2893 bed = get_elf_backend_data (abfd);
2894 /* Function symbols do not count. */
2895 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2896 return FALSE;
2897
2898 /* If the section is undefined, then so is the symbol. */
2899 if (sym->st_shndx == SHN_UNDEF)
2900 return FALSE;
2901
2902 /* If the symbol is defined in the common section, then
2903 it is a common definition and so does not count. */
2904 if (bed->common_definition (sym))
2905 return FALSE;
2906
2907 /* If the symbol is in a target specific section then we
2908 must rely upon the backend to tell us what it is. */
2909 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2910 /* FIXME - this function is not coded yet:
2911
2912 return _bfd_is_global_symbol_definition (abfd, sym);
2913
2914 Instead for now assume that the definition is not global,
2915 Even if this is wrong, at least the linker will behave
2916 in the same way that it used to do. */
2917 return FALSE;
2918
2919 return TRUE;
2920 }
2921
2922 /* Search the symbol table of the archive element of the archive ABFD
2923 whose archive map contains a mention of SYMDEF, and determine if
2924 the symbol is defined in this element. */
2925 static bfd_boolean
2926 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2927 {
2928 Elf_Internal_Shdr * hdr;
2929 bfd_size_type symcount;
2930 bfd_size_type extsymcount;
2931 bfd_size_type extsymoff;
2932 Elf_Internal_Sym *isymbuf;
2933 Elf_Internal_Sym *isym;
2934 Elf_Internal_Sym *isymend;
2935 bfd_boolean result;
2936
2937 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2938 if (abfd == NULL)
2939 return FALSE;
2940
2941 if (! bfd_check_format (abfd, bfd_object))
2942 return FALSE;
2943
2944 /* If we have already included the element containing this symbol in the
2945 link then we do not need to include it again. Just claim that any symbol
2946 it contains is not a definition, so that our caller will not decide to
2947 (re)include this element. */
2948 if (abfd->archive_pass)
2949 return FALSE;
2950
2951 /* Select the appropriate symbol table. */
2952 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2953 hdr = &elf_tdata (abfd)->symtab_hdr;
2954 else
2955 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2956
2957 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2958
2959 /* The sh_info field of the symtab header tells us where the
2960 external symbols start. We don't care about the local symbols. */
2961 if (elf_bad_symtab (abfd))
2962 {
2963 extsymcount = symcount;
2964 extsymoff = 0;
2965 }
2966 else
2967 {
2968 extsymcount = symcount - hdr->sh_info;
2969 extsymoff = hdr->sh_info;
2970 }
2971
2972 if (extsymcount == 0)
2973 return FALSE;
2974
2975 /* Read in the symbol table. */
2976 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2977 NULL, NULL, NULL);
2978 if (isymbuf == NULL)
2979 return FALSE;
2980
2981 /* Scan the symbol table looking for SYMDEF. */
2982 result = FALSE;
2983 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2984 {
2985 const char *name;
2986
2987 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2988 isym->st_name);
2989 if (name == NULL)
2990 break;
2991
2992 if (strcmp (name, symdef->name) == 0)
2993 {
2994 result = is_global_data_symbol_definition (abfd, isym);
2995 break;
2996 }
2997 }
2998
2999 free (isymbuf);
3000
3001 return result;
3002 }
3003 \f
3004 /* Add an entry to the .dynamic table. */
3005
3006 bfd_boolean
3007 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3008 bfd_vma tag,
3009 bfd_vma val)
3010 {
3011 struct elf_link_hash_table *hash_table;
3012 const struct elf_backend_data *bed;
3013 asection *s;
3014 bfd_size_type newsize;
3015 bfd_byte *newcontents;
3016 Elf_Internal_Dyn dyn;
3017
3018 hash_table = elf_hash_table (info);
3019 if (! is_elf_hash_table (hash_table))
3020 return FALSE;
3021
3022 bed = get_elf_backend_data (hash_table->dynobj);
3023 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3024 BFD_ASSERT (s != NULL);
3025
3026 newsize = s->size + bed->s->sizeof_dyn;
3027 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3028 if (newcontents == NULL)
3029 return FALSE;
3030
3031 dyn.d_tag = tag;
3032 dyn.d_un.d_val = val;
3033 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3034
3035 s->size = newsize;
3036 s->contents = newcontents;
3037
3038 return TRUE;
3039 }
3040
3041 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3042 otherwise just check whether one already exists. Returns -1 on error,
3043 1 if a DT_NEEDED tag already exists, and 0 on success. */
3044
3045 static int
3046 elf_add_dt_needed_tag (bfd *abfd,
3047 struct bfd_link_info *info,
3048 const char *soname,
3049 bfd_boolean do_it)
3050 {
3051 struct elf_link_hash_table *hash_table;
3052 bfd_size_type strindex;
3053
3054 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3055 return -1;
3056
3057 hash_table = elf_hash_table (info);
3058 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3059 if (strindex == (bfd_size_type) -1)
3060 return -1;
3061
3062 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3063 {
3064 asection *sdyn;
3065 const struct elf_backend_data *bed;
3066 bfd_byte *extdyn;
3067
3068 bed = get_elf_backend_data (hash_table->dynobj);
3069 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3070 if (sdyn != NULL)
3071 for (extdyn = sdyn->contents;
3072 extdyn < sdyn->contents + sdyn->size;
3073 extdyn += bed->s->sizeof_dyn)
3074 {
3075 Elf_Internal_Dyn dyn;
3076
3077 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3078 if (dyn.d_tag == DT_NEEDED
3079 && dyn.d_un.d_val == strindex)
3080 {
3081 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3082 return 1;
3083 }
3084 }
3085 }
3086
3087 if (do_it)
3088 {
3089 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3090 return -1;
3091
3092 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3093 return -1;
3094 }
3095 else
3096 /* We were just checking for existence of the tag. */
3097 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3098
3099 return 0;
3100 }
3101
3102 static bfd_boolean
3103 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3104 {
3105 for (; needed != NULL; needed = needed->next)
3106 if (strcmp (soname, needed->name) == 0)
3107 return TRUE;
3108
3109 return FALSE;
3110 }
3111
3112 /* Sort symbol by value, section, and size. */
3113 static int
3114 elf_sort_symbol (const void *arg1, const void *arg2)
3115 {
3116 const struct elf_link_hash_entry *h1;
3117 const struct elf_link_hash_entry *h2;
3118 bfd_signed_vma vdiff;
3119
3120 h1 = *(const struct elf_link_hash_entry **) arg1;
3121 h2 = *(const struct elf_link_hash_entry **) arg2;
3122 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3123 if (vdiff != 0)
3124 return vdiff > 0 ? 1 : -1;
3125 else
3126 {
3127 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3128 if (sdiff != 0)
3129 return sdiff > 0 ? 1 : -1;
3130 }
3131 vdiff = h1->size - h2->size;
3132 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3133 }
3134
3135 /* This function is used to adjust offsets into .dynstr for
3136 dynamic symbols. This is called via elf_link_hash_traverse. */
3137
3138 static bfd_boolean
3139 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3140 {
3141 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3142
3143 if (h->dynindx != -1)
3144 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3145 return TRUE;
3146 }
3147
3148 /* Assign string offsets in .dynstr, update all structures referencing
3149 them. */
3150
3151 static bfd_boolean
3152 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3153 {
3154 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3155 struct elf_link_local_dynamic_entry *entry;
3156 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3157 bfd *dynobj = hash_table->dynobj;
3158 asection *sdyn;
3159 bfd_size_type size;
3160 const struct elf_backend_data *bed;
3161 bfd_byte *extdyn;
3162
3163 _bfd_elf_strtab_finalize (dynstr);
3164 size = _bfd_elf_strtab_size (dynstr);
3165
3166 bed = get_elf_backend_data (dynobj);
3167 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3168 BFD_ASSERT (sdyn != NULL);
3169
3170 /* Update all .dynamic entries referencing .dynstr strings. */
3171 for (extdyn = sdyn->contents;
3172 extdyn < sdyn->contents + sdyn->size;
3173 extdyn += bed->s->sizeof_dyn)
3174 {
3175 Elf_Internal_Dyn dyn;
3176
3177 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3178 switch (dyn.d_tag)
3179 {
3180 case DT_STRSZ:
3181 dyn.d_un.d_val = size;
3182 break;
3183 case DT_NEEDED:
3184 case DT_SONAME:
3185 case DT_RPATH:
3186 case DT_RUNPATH:
3187 case DT_FILTER:
3188 case DT_AUXILIARY:
3189 case DT_AUDIT:
3190 case DT_DEPAUDIT:
3191 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3192 break;
3193 default:
3194 continue;
3195 }
3196 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3197 }
3198
3199 /* Now update local dynamic symbols. */
3200 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3201 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3202 entry->isym.st_name);
3203
3204 /* And the rest of dynamic symbols. */
3205 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3206
3207 /* Adjust version definitions. */
3208 if (elf_tdata (output_bfd)->cverdefs)
3209 {
3210 asection *s;
3211 bfd_byte *p;
3212 bfd_size_type i;
3213 Elf_Internal_Verdef def;
3214 Elf_Internal_Verdaux defaux;
3215
3216 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3217 p = s->contents;
3218 do
3219 {
3220 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3221 &def);
3222 p += sizeof (Elf_External_Verdef);
3223 if (def.vd_aux != sizeof (Elf_External_Verdef))
3224 continue;
3225 for (i = 0; i < def.vd_cnt; ++i)
3226 {
3227 _bfd_elf_swap_verdaux_in (output_bfd,
3228 (Elf_External_Verdaux *) p, &defaux);
3229 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3230 defaux.vda_name);
3231 _bfd_elf_swap_verdaux_out (output_bfd,
3232 &defaux, (Elf_External_Verdaux *) p);
3233 p += sizeof (Elf_External_Verdaux);
3234 }
3235 }
3236 while (def.vd_next);
3237 }
3238
3239 /* Adjust version references. */
3240 if (elf_tdata (output_bfd)->verref)
3241 {
3242 asection *s;
3243 bfd_byte *p;
3244 bfd_size_type i;
3245 Elf_Internal_Verneed need;
3246 Elf_Internal_Vernaux needaux;
3247
3248 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3249 p = s->contents;
3250 do
3251 {
3252 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3253 &need);
3254 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3255 _bfd_elf_swap_verneed_out (output_bfd, &need,
3256 (Elf_External_Verneed *) p);
3257 p += sizeof (Elf_External_Verneed);
3258 for (i = 0; i < need.vn_cnt; ++i)
3259 {
3260 _bfd_elf_swap_vernaux_in (output_bfd,
3261 (Elf_External_Vernaux *) p, &needaux);
3262 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3263 needaux.vna_name);
3264 _bfd_elf_swap_vernaux_out (output_bfd,
3265 &needaux,
3266 (Elf_External_Vernaux *) p);
3267 p += sizeof (Elf_External_Vernaux);
3268 }
3269 }
3270 while (need.vn_next);
3271 }
3272
3273 return TRUE;
3274 }
3275 \f
3276 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3277 The default is to only match when the INPUT and OUTPUT are exactly
3278 the same target. */
3279
3280 bfd_boolean
3281 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3282 const bfd_target *output)
3283 {
3284 return input == output;
3285 }
3286
3287 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3288 This version is used when different targets for the same architecture
3289 are virtually identical. */
3290
3291 bfd_boolean
3292 _bfd_elf_relocs_compatible (const bfd_target *input,
3293 const bfd_target *output)
3294 {
3295 const struct elf_backend_data *obed, *ibed;
3296
3297 if (input == output)
3298 return TRUE;
3299
3300 ibed = xvec_get_elf_backend_data (input);
3301 obed = xvec_get_elf_backend_data (output);
3302
3303 if (ibed->arch != obed->arch)
3304 return FALSE;
3305
3306 /* If both backends are using this function, deem them compatible. */
3307 return ibed->relocs_compatible == obed->relocs_compatible;
3308 }
3309
3310 /* Add symbols from an ELF object file to the linker hash table. */
3311
3312 static bfd_boolean
3313 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3314 {
3315 Elf_Internal_Ehdr *ehdr;
3316 Elf_Internal_Shdr *hdr;
3317 bfd_size_type symcount;
3318 bfd_size_type extsymcount;
3319 bfd_size_type extsymoff;
3320 struct elf_link_hash_entry **sym_hash;
3321 bfd_boolean dynamic;
3322 Elf_External_Versym *extversym = NULL;
3323 Elf_External_Versym *ever;
3324 struct elf_link_hash_entry *weaks;
3325 struct elf_link_hash_entry **nondeflt_vers = NULL;
3326 bfd_size_type nondeflt_vers_cnt = 0;
3327 Elf_Internal_Sym *isymbuf = NULL;
3328 Elf_Internal_Sym *isym;
3329 Elf_Internal_Sym *isymend;
3330 const struct elf_backend_data *bed;
3331 bfd_boolean add_needed;
3332 struct elf_link_hash_table *htab;
3333 bfd_size_type amt;
3334 void *alloc_mark = NULL;
3335 struct bfd_hash_entry **old_table = NULL;
3336 unsigned int old_size = 0;
3337 unsigned int old_count = 0;
3338 void *old_tab = NULL;
3339 void *old_hash;
3340 void *old_ent;
3341 struct bfd_link_hash_entry *old_undefs = NULL;
3342 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3343 long old_dynsymcount = 0;
3344 bfd_size_type old_dynstr_size = 0;
3345 size_t tabsize = 0;
3346 size_t hashsize = 0;
3347
3348 htab = elf_hash_table (info);
3349 bed = get_elf_backend_data (abfd);
3350
3351 if ((abfd->flags & DYNAMIC) == 0)
3352 dynamic = FALSE;
3353 else
3354 {
3355 dynamic = TRUE;
3356
3357 /* You can't use -r against a dynamic object. Also, there's no
3358 hope of using a dynamic object which does not exactly match
3359 the format of the output file. */
3360 if (info->relocatable
3361 || !is_elf_hash_table (htab)
3362 || info->output_bfd->xvec != abfd->xvec)
3363 {
3364 if (info->relocatable)
3365 bfd_set_error (bfd_error_invalid_operation);
3366 else
3367 bfd_set_error (bfd_error_wrong_format);
3368 goto error_return;
3369 }
3370 }
3371
3372 ehdr = elf_elfheader (abfd);
3373 if (info->warn_alternate_em
3374 && bed->elf_machine_code != ehdr->e_machine
3375 && ((bed->elf_machine_alt1 != 0
3376 && ehdr->e_machine == bed->elf_machine_alt1)
3377 || (bed->elf_machine_alt2 != 0
3378 && ehdr->e_machine == bed->elf_machine_alt2)))
3379 info->callbacks->einfo
3380 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3381 ehdr->e_machine, abfd, bed->elf_machine_code);
3382
3383 /* As a GNU extension, any input sections which are named
3384 .gnu.warning.SYMBOL are treated as warning symbols for the given
3385 symbol. This differs from .gnu.warning sections, which generate
3386 warnings when they are included in an output file. */
3387 /* PR 12761: Also generate this warning when building shared libraries. */
3388 if (info->executable || info->shared)
3389 {
3390 asection *s;
3391
3392 for (s = abfd->sections; s != NULL; s = s->next)
3393 {
3394 const char *name;
3395
3396 name = bfd_get_section_name (abfd, s);
3397 if (CONST_STRNEQ (name, ".gnu.warning."))
3398 {
3399 char *msg;
3400 bfd_size_type sz;
3401
3402 name += sizeof ".gnu.warning." - 1;
3403
3404 /* If this is a shared object, then look up the symbol
3405 in the hash table. If it is there, and it is already
3406 been defined, then we will not be using the entry
3407 from this shared object, so we don't need to warn.
3408 FIXME: If we see the definition in a regular object
3409 later on, we will warn, but we shouldn't. The only
3410 fix is to keep track of what warnings we are supposed
3411 to emit, and then handle them all at the end of the
3412 link. */
3413 if (dynamic)
3414 {
3415 struct elf_link_hash_entry *h;
3416
3417 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3418
3419 /* FIXME: What about bfd_link_hash_common? */
3420 if (h != NULL
3421 && (h->root.type == bfd_link_hash_defined
3422 || h->root.type == bfd_link_hash_defweak))
3423 {
3424 /* We don't want to issue this warning. Clobber
3425 the section size so that the warning does not
3426 get copied into the output file. */
3427 s->size = 0;
3428 continue;
3429 }
3430 }
3431
3432 sz = s->size;
3433 msg = (char *) bfd_alloc (abfd, sz + 1);
3434 if (msg == NULL)
3435 goto error_return;
3436
3437 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3438 goto error_return;
3439
3440 msg[sz] = '\0';
3441
3442 if (! (_bfd_generic_link_add_one_symbol
3443 (info, abfd, name, BSF_WARNING, s, 0, msg,
3444 FALSE, bed->collect, NULL)))
3445 goto error_return;
3446
3447 if (! info->relocatable)
3448 {
3449 /* Clobber the section size so that the warning does
3450 not get copied into the output file. */
3451 s->size = 0;
3452
3453 /* Also set SEC_EXCLUDE, so that symbols defined in
3454 the warning section don't get copied to the output. */
3455 s->flags |= SEC_EXCLUDE;
3456 }
3457 }
3458 }
3459 }
3460
3461 add_needed = TRUE;
3462 if (! dynamic)
3463 {
3464 /* If we are creating a shared library, create all the dynamic
3465 sections immediately. We need to attach them to something,
3466 so we attach them to this BFD, provided it is the right
3467 format. FIXME: If there are no input BFD's of the same
3468 format as the output, we can't make a shared library. */
3469 if (info->shared
3470 && is_elf_hash_table (htab)
3471 && info->output_bfd->xvec == abfd->xvec
3472 && !htab->dynamic_sections_created)
3473 {
3474 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3475 goto error_return;
3476 }
3477 }
3478 else if (!is_elf_hash_table (htab))
3479 goto error_return;
3480 else
3481 {
3482 asection *s;
3483 const char *soname = NULL;
3484 char *audit = NULL;
3485 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3486 int ret;
3487
3488 /* ld --just-symbols and dynamic objects don't mix very well.
3489 ld shouldn't allow it. */
3490 if ((s = abfd->sections) != NULL
3491 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3492 abort ();
3493
3494 /* If this dynamic lib was specified on the command line with
3495 --as-needed in effect, then we don't want to add a DT_NEEDED
3496 tag unless the lib is actually used. Similary for libs brought
3497 in by another lib's DT_NEEDED. When --no-add-needed is used
3498 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3499 any dynamic library in DT_NEEDED tags in the dynamic lib at
3500 all. */
3501 add_needed = (elf_dyn_lib_class (abfd)
3502 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3503 | DYN_NO_NEEDED)) == 0;
3504
3505 s = bfd_get_section_by_name (abfd, ".dynamic");
3506 if (s != NULL)
3507 {
3508 bfd_byte *dynbuf;
3509 bfd_byte *extdyn;
3510 unsigned int elfsec;
3511 unsigned long shlink;
3512
3513 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3514 {
3515 error_free_dyn:
3516 free (dynbuf);
3517 goto error_return;
3518 }
3519
3520 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3521 if (elfsec == SHN_BAD)
3522 goto error_free_dyn;
3523 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3524
3525 for (extdyn = dynbuf;
3526 extdyn < dynbuf + s->size;
3527 extdyn += bed->s->sizeof_dyn)
3528 {
3529 Elf_Internal_Dyn dyn;
3530
3531 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3532 if (dyn.d_tag == DT_SONAME)
3533 {
3534 unsigned int tagv = dyn.d_un.d_val;
3535 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3536 if (soname == NULL)
3537 goto error_free_dyn;
3538 }
3539 if (dyn.d_tag == DT_NEEDED)
3540 {
3541 struct bfd_link_needed_list *n, **pn;
3542 char *fnm, *anm;
3543 unsigned int tagv = dyn.d_un.d_val;
3544
3545 amt = sizeof (struct bfd_link_needed_list);
3546 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3547 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3548 if (n == NULL || fnm == NULL)
3549 goto error_free_dyn;
3550 amt = strlen (fnm) + 1;
3551 anm = (char *) bfd_alloc (abfd, amt);
3552 if (anm == NULL)
3553 goto error_free_dyn;
3554 memcpy (anm, fnm, amt);
3555 n->name = anm;
3556 n->by = abfd;
3557 n->next = NULL;
3558 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3559 ;
3560 *pn = n;
3561 }
3562 if (dyn.d_tag == DT_RUNPATH)
3563 {
3564 struct bfd_link_needed_list *n, **pn;
3565 char *fnm, *anm;
3566 unsigned int tagv = dyn.d_un.d_val;
3567
3568 amt = sizeof (struct bfd_link_needed_list);
3569 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3570 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3571 if (n == NULL || fnm == NULL)
3572 goto error_free_dyn;
3573 amt = strlen (fnm) + 1;
3574 anm = (char *) bfd_alloc (abfd, amt);
3575 if (anm == NULL)
3576 goto error_free_dyn;
3577 memcpy (anm, fnm, amt);
3578 n->name = anm;
3579 n->by = abfd;
3580 n->next = NULL;
3581 for (pn = & runpath;
3582 *pn != NULL;
3583 pn = &(*pn)->next)
3584 ;
3585 *pn = n;
3586 }
3587 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3588 if (!runpath && dyn.d_tag == DT_RPATH)
3589 {
3590 struct bfd_link_needed_list *n, **pn;
3591 char *fnm, *anm;
3592 unsigned int tagv = dyn.d_un.d_val;
3593
3594 amt = sizeof (struct bfd_link_needed_list);
3595 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3596 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3597 if (n == NULL || fnm == NULL)
3598 goto error_free_dyn;
3599 amt = strlen (fnm) + 1;
3600 anm = (char *) bfd_alloc (abfd, amt);
3601 if (anm == NULL)
3602 goto error_free_dyn;
3603 memcpy (anm, fnm, amt);
3604 n->name = anm;
3605 n->by = abfd;
3606 n->next = NULL;
3607 for (pn = & rpath;
3608 *pn != NULL;
3609 pn = &(*pn)->next)
3610 ;
3611 *pn = n;
3612 }
3613 if (dyn.d_tag == DT_AUDIT)
3614 {
3615 unsigned int tagv = dyn.d_un.d_val;
3616 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3617 }
3618 }
3619
3620 free (dynbuf);
3621 }
3622
3623 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3624 frees all more recently bfd_alloc'd blocks as well. */
3625 if (runpath)
3626 rpath = runpath;
3627
3628 if (rpath)
3629 {
3630 struct bfd_link_needed_list **pn;
3631 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3632 ;
3633 *pn = rpath;
3634 }
3635
3636 /* We do not want to include any of the sections in a dynamic
3637 object in the output file. We hack by simply clobbering the
3638 list of sections in the BFD. This could be handled more
3639 cleanly by, say, a new section flag; the existing
3640 SEC_NEVER_LOAD flag is not the one we want, because that one
3641 still implies that the section takes up space in the output
3642 file. */
3643 bfd_section_list_clear (abfd);
3644
3645 /* Find the name to use in a DT_NEEDED entry that refers to this
3646 object. If the object has a DT_SONAME entry, we use it.
3647 Otherwise, if the generic linker stuck something in
3648 elf_dt_name, we use that. Otherwise, we just use the file
3649 name. */
3650 if (soname == NULL || *soname == '\0')
3651 {
3652 soname = elf_dt_name (abfd);
3653 if (soname == NULL || *soname == '\0')
3654 soname = bfd_get_filename (abfd);
3655 }
3656
3657 /* Save the SONAME because sometimes the linker emulation code
3658 will need to know it. */
3659 elf_dt_name (abfd) = soname;
3660
3661 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3662 if (ret < 0)
3663 goto error_return;
3664
3665 /* If we have already included this dynamic object in the
3666 link, just ignore it. There is no reason to include a
3667 particular dynamic object more than once. */
3668 if (ret > 0)
3669 return TRUE;
3670
3671 /* Save the DT_AUDIT entry for the linker emulation code. */
3672 elf_dt_audit (abfd) = audit;
3673 }
3674
3675 /* If this is a dynamic object, we always link against the .dynsym
3676 symbol table, not the .symtab symbol table. The dynamic linker
3677 will only see the .dynsym symbol table, so there is no reason to
3678 look at .symtab for a dynamic object. */
3679
3680 if (! dynamic || elf_dynsymtab (abfd) == 0)
3681 hdr = &elf_tdata (abfd)->symtab_hdr;
3682 else
3683 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3684
3685 symcount = hdr->sh_size / bed->s->sizeof_sym;
3686
3687 /* The sh_info field of the symtab header tells us where the
3688 external symbols start. We don't care about the local symbols at
3689 this point. */
3690 if (elf_bad_symtab (abfd))
3691 {
3692 extsymcount = symcount;
3693 extsymoff = 0;
3694 }
3695 else
3696 {
3697 extsymcount = symcount - hdr->sh_info;
3698 extsymoff = hdr->sh_info;
3699 }
3700
3701 sym_hash = NULL;
3702 if (extsymcount != 0)
3703 {
3704 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3705 NULL, NULL, NULL);
3706 if (isymbuf == NULL)
3707 goto error_return;
3708
3709 /* We store a pointer to the hash table entry for each external
3710 symbol. */
3711 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3712 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3713 if (sym_hash == NULL)
3714 goto error_free_sym;
3715 elf_sym_hashes (abfd) = sym_hash;
3716 }
3717
3718 if (dynamic)
3719 {
3720 /* Read in any version definitions. */
3721 if (!_bfd_elf_slurp_version_tables (abfd,
3722 info->default_imported_symver))
3723 goto error_free_sym;
3724
3725 /* Read in the symbol versions, but don't bother to convert them
3726 to internal format. */
3727 if (elf_dynversym (abfd) != 0)
3728 {
3729 Elf_Internal_Shdr *versymhdr;
3730
3731 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3732 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3733 if (extversym == NULL)
3734 goto error_free_sym;
3735 amt = versymhdr->sh_size;
3736 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3737 || bfd_bread (extversym, amt, abfd) != amt)
3738 goto error_free_vers;
3739 }
3740 }
3741
3742 /* If we are loading an as-needed shared lib, save the symbol table
3743 state before we start adding symbols. If the lib turns out
3744 to be unneeded, restore the state. */
3745 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3746 {
3747 unsigned int i;
3748 size_t entsize;
3749
3750 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3751 {
3752 struct bfd_hash_entry *p;
3753 struct elf_link_hash_entry *h;
3754
3755 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3756 {
3757 h = (struct elf_link_hash_entry *) p;
3758 entsize += htab->root.table.entsize;
3759 if (h->root.type == bfd_link_hash_warning)
3760 entsize += htab->root.table.entsize;
3761 }
3762 }
3763
3764 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3765 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3766 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3767 if (old_tab == NULL)
3768 goto error_free_vers;
3769
3770 /* Remember the current objalloc pointer, so that all mem for
3771 symbols added can later be reclaimed. */
3772 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3773 if (alloc_mark == NULL)
3774 goto error_free_vers;
3775
3776 /* Make a special call to the linker "notice" function to
3777 tell it that we are about to handle an as-needed lib. */
3778 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3779 notice_as_needed, 0, NULL))
3780 goto error_free_vers;
3781
3782 /* Clone the symbol table and sym hashes. Remember some
3783 pointers into the symbol table, and dynamic symbol count. */
3784 old_hash = (char *) old_tab + tabsize;
3785 old_ent = (char *) old_hash + hashsize;
3786 memcpy (old_tab, htab->root.table.table, tabsize);
3787 memcpy (old_hash, sym_hash, hashsize);
3788 old_undefs = htab->root.undefs;
3789 old_undefs_tail = htab->root.undefs_tail;
3790 old_table = htab->root.table.table;
3791 old_size = htab->root.table.size;
3792 old_count = htab->root.table.count;
3793 old_dynsymcount = htab->dynsymcount;
3794 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3795
3796 for (i = 0; i < htab->root.table.size; i++)
3797 {
3798 struct bfd_hash_entry *p;
3799 struct elf_link_hash_entry *h;
3800
3801 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3802 {
3803 memcpy (old_ent, p, htab->root.table.entsize);
3804 old_ent = (char *) old_ent + htab->root.table.entsize;
3805 h = (struct elf_link_hash_entry *) p;
3806 if (h->root.type == bfd_link_hash_warning)
3807 {
3808 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3809 old_ent = (char *) old_ent + htab->root.table.entsize;
3810 }
3811 }
3812 }
3813 }
3814
3815 weaks = NULL;
3816 ever = extversym != NULL ? extversym + extsymoff : NULL;
3817 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3818 isym < isymend;
3819 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3820 {
3821 int bind;
3822 bfd_vma value;
3823 asection *sec, *new_sec;
3824 flagword flags;
3825 const char *name;
3826 struct elf_link_hash_entry *h;
3827 struct elf_link_hash_entry *hi;
3828 bfd_boolean definition;
3829 bfd_boolean size_change_ok;
3830 bfd_boolean type_change_ok;
3831 bfd_boolean new_weakdef;
3832 bfd_boolean new_weak;
3833 bfd_boolean old_weak;
3834 bfd_boolean override;
3835 bfd_boolean common;
3836 unsigned int old_alignment;
3837 bfd *old_bfd;
3838
3839 override = FALSE;
3840
3841 flags = BSF_NO_FLAGS;
3842 sec = NULL;
3843 value = isym->st_value;
3844 *sym_hash = NULL;
3845 common = bed->common_definition (isym);
3846
3847 bind = ELF_ST_BIND (isym->st_info);
3848 switch (bind)
3849 {
3850 case STB_LOCAL:
3851 /* This should be impossible, since ELF requires that all
3852 global symbols follow all local symbols, and that sh_info
3853 point to the first global symbol. Unfortunately, Irix 5
3854 screws this up. */
3855 continue;
3856
3857 case STB_GLOBAL:
3858 if (isym->st_shndx != SHN_UNDEF && !common)
3859 flags = BSF_GLOBAL;
3860 break;
3861
3862 case STB_WEAK:
3863 flags = BSF_WEAK;
3864 break;
3865
3866 case STB_GNU_UNIQUE:
3867 flags = BSF_GNU_UNIQUE;
3868 break;
3869
3870 default:
3871 /* Leave it up to the processor backend. */
3872 break;
3873 }
3874
3875 if (isym->st_shndx == SHN_UNDEF)
3876 sec = bfd_und_section_ptr;
3877 else if (isym->st_shndx == SHN_ABS)
3878 sec = bfd_abs_section_ptr;
3879 else if (isym->st_shndx == SHN_COMMON)
3880 {
3881 sec = bfd_com_section_ptr;
3882 /* What ELF calls the size we call the value. What ELF
3883 calls the value we call the alignment. */
3884 value = isym->st_size;
3885 }
3886 else
3887 {
3888 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3889 if (sec == NULL)
3890 sec = bfd_abs_section_ptr;
3891 else if (discarded_section (sec))
3892 {
3893 /* Symbols from discarded section are undefined. We keep
3894 its visibility. */
3895 sec = bfd_und_section_ptr;
3896 isym->st_shndx = SHN_UNDEF;
3897 }
3898 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3899 value -= sec->vma;
3900 }
3901
3902 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3903 isym->st_name);
3904 if (name == NULL)
3905 goto error_free_vers;
3906
3907 if (isym->st_shndx == SHN_COMMON
3908 && (abfd->flags & BFD_PLUGIN) != 0)
3909 {
3910 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3911
3912 if (xc == NULL)
3913 {
3914 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3915 | SEC_EXCLUDE);
3916 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3917 if (xc == NULL)
3918 goto error_free_vers;
3919 }
3920 sec = xc;
3921 }
3922 else if (isym->st_shndx == SHN_COMMON
3923 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3924 && !info->relocatable)
3925 {
3926 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3927
3928 if (tcomm == NULL)
3929 {
3930 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3931 | SEC_LINKER_CREATED);
3932 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3933 if (tcomm == NULL)
3934 goto error_free_vers;
3935 }
3936 sec = tcomm;
3937 }
3938 else if (bed->elf_add_symbol_hook)
3939 {
3940 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3941 &sec, &value))
3942 goto error_free_vers;
3943
3944 /* The hook function sets the name to NULL if this symbol
3945 should be skipped for some reason. */
3946 if (name == NULL)
3947 continue;
3948 }
3949
3950 /* Sanity check that all possibilities were handled. */
3951 if (sec == NULL)
3952 {
3953 bfd_set_error (bfd_error_bad_value);
3954 goto error_free_vers;
3955 }
3956
3957 /* Silently discard TLS symbols from --just-syms. There's
3958 no way to combine a static TLS block with a new TLS block
3959 for this executable. */
3960 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
3961 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3962 continue;
3963
3964 if (bfd_is_und_section (sec)
3965 || bfd_is_com_section (sec))
3966 definition = FALSE;
3967 else
3968 definition = TRUE;
3969
3970 size_change_ok = FALSE;
3971 type_change_ok = bed->type_change_ok;
3972 old_weak = FALSE;
3973 old_alignment = 0;
3974 old_bfd = NULL;
3975 new_sec = sec;
3976
3977 if (is_elf_hash_table (htab))
3978 {
3979 Elf_Internal_Versym iver;
3980 unsigned int vernum = 0;
3981 bfd_boolean skip;
3982
3983 if (ever == NULL)
3984 {
3985 if (info->default_imported_symver)
3986 /* Use the default symbol version created earlier. */
3987 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3988 else
3989 iver.vs_vers = 0;
3990 }
3991 else
3992 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3993
3994 vernum = iver.vs_vers & VERSYM_VERSION;
3995
3996 /* If this is a hidden symbol, or if it is not version
3997 1, we append the version name to the symbol name.
3998 However, we do not modify a non-hidden absolute symbol
3999 if it is not a function, because it might be the version
4000 symbol itself. FIXME: What if it isn't? */
4001 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4002 || (vernum > 1
4003 && (!bfd_is_abs_section (sec)
4004 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4005 {
4006 const char *verstr;
4007 size_t namelen, verlen, newlen;
4008 char *newname, *p;
4009
4010 if (isym->st_shndx != SHN_UNDEF)
4011 {
4012 if (vernum > elf_tdata (abfd)->cverdefs)
4013 verstr = NULL;
4014 else if (vernum > 1)
4015 verstr =
4016 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4017 else
4018 verstr = "";
4019
4020 if (verstr == NULL)
4021 {
4022 (*_bfd_error_handler)
4023 (_("%B: %s: invalid version %u (max %d)"),
4024 abfd, name, vernum,
4025 elf_tdata (abfd)->cverdefs);
4026 bfd_set_error (bfd_error_bad_value);
4027 goto error_free_vers;
4028 }
4029 }
4030 else
4031 {
4032 /* We cannot simply test for the number of
4033 entries in the VERNEED section since the
4034 numbers for the needed versions do not start
4035 at 0. */
4036 Elf_Internal_Verneed *t;
4037
4038 verstr = NULL;
4039 for (t = elf_tdata (abfd)->verref;
4040 t != NULL;
4041 t = t->vn_nextref)
4042 {
4043 Elf_Internal_Vernaux *a;
4044
4045 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4046 {
4047 if (a->vna_other == vernum)
4048 {
4049 verstr = a->vna_nodename;
4050 break;
4051 }
4052 }
4053 if (a != NULL)
4054 break;
4055 }
4056 if (verstr == NULL)
4057 {
4058 (*_bfd_error_handler)
4059 (_("%B: %s: invalid needed version %d"),
4060 abfd, name, vernum);
4061 bfd_set_error (bfd_error_bad_value);
4062 goto error_free_vers;
4063 }
4064 }
4065
4066 namelen = strlen (name);
4067 verlen = strlen (verstr);
4068 newlen = namelen + verlen + 2;
4069 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4070 && isym->st_shndx != SHN_UNDEF)
4071 ++newlen;
4072
4073 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4074 if (newname == NULL)
4075 goto error_free_vers;
4076 memcpy (newname, name, namelen);
4077 p = newname + namelen;
4078 *p++ = ELF_VER_CHR;
4079 /* If this is a defined non-hidden version symbol,
4080 we add another @ to the name. This indicates the
4081 default version of the symbol. */
4082 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4083 && isym->st_shndx != SHN_UNDEF)
4084 *p++ = ELF_VER_CHR;
4085 memcpy (p, verstr, verlen + 1);
4086
4087 name = newname;
4088 }
4089
4090 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4091 sym_hash, &old_bfd, &old_weak,
4092 &old_alignment, &skip, &override,
4093 &type_change_ok, &size_change_ok))
4094 goto error_free_vers;
4095
4096 if (skip)
4097 continue;
4098
4099 if (override)
4100 definition = FALSE;
4101
4102 h = *sym_hash;
4103 while (h->root.type == bfd_link_hash_indirect
4104 || h->root.type == bfd_link_hash_warning)
4105 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4106
4107 if (elf_tdata (abfd)->verdef != NULL
4108 && vernum > 1
4109 && definition)
4110 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4111 }
4112
4113 if (! (_bfd_generic_link_add_one_symbol
4114 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4115 (struct bfd_link_hash_entry **) sym_hash)))
4116 goto error_free_vers;
4117
4118 h = *sym_hash;
4119 /* We need to make sure that indirect symbol dynamic flags are
4120 updated. */
4121 hi = h;
4122 while (h->root.type == bfd_link_hash_indirect
4123 || h->root.type == bfd_link_hash_warning)
4124 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4125
4126 *sym_hash = h;
4127
4128 new_weak = (flags & BSF_WEAK) != 0;
4129 new_weakdef = FALSE;
4130 if (dynamic
4131 && definition
4132 && new_weak
4133 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4134 && is_elf_hash_table (htab)
4135 && h->u.weakdef == NULL)
4136 {
4137 /* Keep a list of all weak defined non function symbols from
4138 a dynamic object, using the weakdef field. Later in this
4139 function we will set the weakdef field to the correct
4140 value. We only put non-function symbols from dynamic
4141 objects on this list, because that happens to be the only
4142 time we need to know the normal symbol corresponding to a
4143 weak symbol, and the information is time consuming to
4144 figure out. If the weakdef field is not already NULL,
4145 then this symbol was already defined by some previous
4146 dynamic object, and we will be using that previous
4147 definition anyhow. */
4148
4149 h->u.weakdef = weaks;
4150 weaks = h;
4151 new_weakdef = TRUE;
4152 }
4153
4154 /* Set the alignment of a common symbol. */
4155 if ((common || bfd_is_com_section (sec))
4156 && h->root.type == bfd_link_hash_common)
4157 {
4158 unsigned int align;
4159
4160 if (common)
4161 align = bfd_log2 (isym->st_value);
4162 else
4163 {
4164 /* The new symbol is a common symbol in a shared object.
4165 We need to get the alignment from the section. */
4166 align = new_sec->alignment_power;
4167 }
4168 if (align > old_alignment)
4169 h->root.u.c.p->alignment_power = align;
4170 else
4171 h->root.u.c.p->alignment_power = old_alignment;
4172 }
4173
4174 if (is_elf_hash_table (htab))
4175 {
4176 /* Set a flag in the hash table entry indicating the type of
4177 reference or definition we just found. A dynamic symbol
4178 is one which is referenced or defined by both a regular
4179 object and a shared object. */
4180 bfd_boolean dynsym = FALSE;
4181
4182 /* Plugin symbols aren't normal. Don't set def_regular or
4183 ref_regular for them, or make them dynamic. */
4184 if ((abfd->flags & BFD_PLUGIN) != 0)
4185 ;
4186 else if (! dynamic)
4187 {
4188 if (! definition)
4189 {
4190 h->ref_regular = 1;
4191 if (bind != STB_WEAK)
4192 h->ref_regular_nonweak = 1;
4193 }
4194 else
4195 {
4196 h->def_regular = 1;
4197 if (h->def_dynamic)
4198 {
4199 h->def_dynamic = 0;
4200 h->ref_dynamic = 1;
4201 }
4202 }
4203
4204 /* If the indirect symbol has been forced local, don't
4205 make the real symbol dynamic. */
4206 if ((h == hi || !hi->forced_local)
4207 && (! info->executable
4208 || h->def_dynamic
4209 || h->ref_dynamic))
4210 dynsym = TRUE;
4211 }
4212 else
4213 {
4214 if (! definition)
4215 {
4216 h->ref_dynamic = 1;
4217 hi->ref_dynamic = 1;
4218 }
4219 else
4220 {
4221 h->def_dynamic = 1;
4222 hi->def_dynamic = 1;
4223 }
4224
4225 /* If the indirect symbol has been forced local, don't
4226 make the real symbol dynamic. */
4227 if ((h == hi || !hi->forced_local)
4228 && (h->def_regular
4229 || h->ref_regular
4230 || (h->u.weakdef != NULL
4231 && ! new_weakdef
4232 && h->u.weakdef->dynindx != -1)))
4233 dynsym = TRUE;
4234 }
4235
4236 /* Check to see if we need to add an indirect symbol for
4237 the default name. */
4238 if (definition
4239 || (!override && h->root.type == bfd_link_hash_common))
4240 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4241 sec, value, &old_bfd, &dynsym))
4242 goto error_free_vers;
4243
4244 /* Check the alignment when a common symbol is involved. This
4245 can change when a common symbol is overridden by a normal
4246 definition or a common symbol is ignored due to the old
4247 normal definition. We need to make sure the maximum
4248 alignment is maintained. */
4249 if ((old_alignment || common)
4250 && h->root.type != bfd_link_hash_common)
4251 {
4252 unsigned int common_align;
4253 unsigned int normal_align;
4254 unsigned int symbol_align;
4255 bfd *normal_bfd;
4256 bfd *common_bfd;
4257
4258 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4259 || h->root.type == bfd_link_hash_defweak);
4260
4261 symbol_align = ffs (h->root.u.def.value) - 1;
4262 if (h->root.u.def.section->owner != NULL
4263 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4264 {
4265 normal_align = h->root.u.def.section->alignment_power;
4266 if (normal_align > symbol_align)
4267 normal_align = symbol_align;
4268 }
4269 else
4270 normal_align = symbol_align;
4271
4272 if (old_alignment)
4273 {
4274 common_align = old_alignment;
4275 common_bfd = old_bfd;
4276 normal_bfd = abfd;
4277 }
4278 else
4279 {
4280 common_align = bfd_log2 (isym->st_value);
4281 common_bfd = abfd;
4282 normal_bfd = old_bfd;
4283 }
4284
4285 if (normal_align < common_align)
4286 {
4287 /* PR binutils/2735 */
4288 if (normal_bfd == NULL)
4289 (*_bfd_error_handler)
4290 (_("Warning: alignment %u of common symbol `%s' in %B is"
4291 " greater than the alignment (%u) of its section %A"),
4292 common_bfd, h->root.u.def.section,
4293 1 << common_align, name, 1 << normal_align);
4294 else
4295 (*_bfd_error_handler)
4296 (_("Warning: alignment %u of symbol `%s' in %B"
4297 " is smaller than %u in %B"),
4298 normal_bfd, common_bfd,
4299 1 << normal_align, name, 1 << common_align);
4300 }
4301 }
4302
4303 /* Remember the symbol size if it isn't undefined. */
4304 if (isym->st_size != 0
4305 && isym->st_shndx != SHN_UNDEF
4306 && (definition || h->size == 0))
4307 {
4308 if (h->size != 0
4309 && h->size != isym->st_size
4310 && ! size_change_ok)
4311 (*_bfd_error_handler)
4312 (_("Warning: size of symbol `%s' changed"
4313 " from %lu in %B to %lu in %B"),
4314 old_bfd, abfd,
4315 name, (unsigned long) h->size,
4316 (unsigned long) isym->st_size);
4317
4318 h->size = isym->st_size;
4319 }
4320
4321 /* If this is a common symbol, then we always want H->SIZE
4322 to be the size of the common symbol. The code just above
4323 won't fix the size if a common symbol becomes larger. We
4324 don't warn about a size change here, because that is
4325 covered by --warn-common. Allow changes between different
4326 function types. */
4327 if (h->root.type == bfd_link_hash_common)
4328 h->size = h->root.u.c.size;
4329
4330 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4331 && ((definition && !new_weak)
4332 || (old_weak && h->root.type == bfd_link_hash_common)
4333 || h->type == STT_NOTYPE))
4334 {
4335 unsigned int type = ELF_ST_TYPE (isym->st_info);
4336
4337 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4338 symbol. */
4339 if (type == STT_GNU_IFUNC
4340 && (abfd->flags & DYNAMIC) != 0)
4341 type = STT_FUNC;
4342
4343 if (h->type != type)
4344 {
4345 if (h->type != STT_NOTYPE && ! type_change_ok)
4346 (*_bfd_error_handler)
4347 (_("Warning: type of symbol `%s' changed"
4348 " from %d to %d in %B"),
4349 abfd, name, h->type, type);
4350
4351 h->type = type;
4352 }
4353 }
4354
4355 /* Merge st_other field. */
4356 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4357
4358 /* We don't want to make debug symbol dynamic. */
4359 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4360 dynsym = FALSE;
4361
4362 /* Nor should we make plugin symbols dynamic. */
4363 if ((abfd->flags & BFD_PLUGIN) != 0)
4364 dynsym = FALSE;
4365
4366 if (definition)
4367 {
4368 h->target_internal = isym->st_target_internal;
4369 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4370 }
4371
4372 if (definition && !dynamic)
4373 {
4374 char *p = strchr (name, ELF_VER_CHR);
4375 if (p != NULL && p[1] != ELF_VER_CHR)
4376 {
4377 /* Queue non-default versions so that .symver x, x@FOO
4378 aliases can be checked. */
4379 if (!nondeflt_vers)
4380 {
4381 amt = ((isymend - isym + 1)
4382 * sizeof (struct elf_link_hash_entry *));
4383 nondeflt_vers =
4384 (struct elf_link_hash_entry **) bfd_malloc (amt);
4385 if (!nondeflt_vers)
4386 goto error_free_vers;
4387 }
4388 nondeflt_vers[nondeflt_vers_cnt++] = h;
4389 }
4390 }
4391
4392 if (dynsym && h->dynindx == -1)
4393 {
4394 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4395 goto error_free_vers;
4396 if (h->u.weakdef != NULL
4397 && ! new_weakdef
4398 && h->u.weakdef->dynindx == -1)
4399 {
4400 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4401 goto error_free_vers;
4402 }
4403 }
4404 else if (dynsym && h->dynindx != -1)
4405 /* If the symbol already has a dynamic index, but
4406 visibility says it should not be visible, turn it into
4407 a local symbol. */
4408 switch (ELF_ST_VISIBILITY (h->other))
4409 {
4410 case STV_INTERNAL:
4411 case STV_HIDDEN:
4412 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4413 dynsym = FALSE;
4414 break;
4415 }
4416
4417 /* Don't add DT_NEEDED for references from the dummy bfd. */
4418 if (!add_needed
4419 && definition
4420 && ((dynsym
4421 && h->ref_regular_nonweak
4422 && (old_bfd == NULL
4423 || (old_bfd->flags & BFD_PLUGIN) == 0))
4424 || (h->ref_dynamic_nonweak
4425 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4426 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4427 {
4428 int ret;
4429 const char *soname = elf_dt_name (abfd);
4430
4431 /* A symbol from a library loaded via DT_NEEDED of some
4432 other library is referenced by a regular object.
4433 Add a DT_NEEDED entry for it. Issue an error if
4434 --no-add-needed is used and the reference was not
4435 a weak one. */
4436 if (old_bfd != NULL
4437 && h->ref_regular_nonweak
4438 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4439 {
4440 (*_bfd_error_handler)
4441 (_("%B: undefined reference to symbol '%s'"),
4442 old_bfd, name);
4443 (*_bfd_error_handler)
4444 (_("note: '%s' is defined in DSO %B"
4445 " so try adding it to the linker command line"),
4446 abfd, name);
4447 bfd_set_error (bfd_error_invalid_operation);
4448 goto error_free_vers;
4449 }
4450
4451 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4452 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4453
4454 add_needed = TRUE;
4455 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4456 if (ret < 0)
4457 goto error_free_vers;
4458
4459 BFD_ASSERT (ret == 0);
4460 }
4461 }
4462 }
4463
4464 if (extversym != NULL)
4465 {
4466 free (extversym);
4467 extversym = NULL;
4468 }
4469
4470 if (isymbuf != NULL)
4471 {
4472 free (isymbuf);
4473 isymbuf = NULL;
4474 }
4475
4476 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4477 {
4478 unsigned int i;
4479
4480 /* Restore the symbol table. */
4481 if (bed->as_needed_cleanup)
4482 (*bed->as_needed_cleanup) (abfd, info);
4483 old_hash = (char *) old_tab + tabsize;
4484 old_ent = (char *) old_hash + hashsize;
4485 sym_hash = elf_sym_hashes (abfd);
4486 htab->root.table.table = old_table;
4487 htab->root.table.size = old_size;
4488 htab->root.table.count = old_count;
4489 memcpy (htab->root.table.table, old_tab, tabsize);
4490 memcpy (sym_hash, old_hash, hashsize);
4491 htab->root.undefs = old_undefs;
4492 htab->root.undefs_tail = old_undefs_tail;
4493 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4494 for (i = 0; i < htab->root.table.size; i++)
4495 {
4496 struct bfd_hash_entry *p;
4497 struct elf_link_hash_entry *h;
4498 bfd_size_type size;
4499 unsigned int alignment_power;
4500
4501 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4502 {
4503 h = (struct elf_link_hash_entry *) p;
4504 if (h->root.type == bfd_link_hash_warning)
4505 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4506 if (h->dynindx >= old_dynsymcount
4507 && h->dynstr_index < old_dynstr_size)
4508 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4509
4510 /* Preserve the maximum alignment and size for common
4511 symbols even if this dynamic lib isn't on DT_NEEDED
4512 since it can still be loaded at run time by another
4513 dynamic lib. */
4514 if (h->root.type == bfd_link_hash_common)
4515 {
4516 size = h->root.u.c.size;
4517 alignment_power = h->root.u.c.p->alignment_power;
4518 }
4519 else
4520 {
4521 size = 0;
4522 alignment_power = 0;
4523 }
4524 memcpy (p, old_ent, htab->root.table.entsize);
4525 old_ent = (char *) old_ent + htab->root.table.entsize;
4526 h = (struct elf_link_hash_entry *) p;
4527 if (h->root.type == bfd_link_hash_warning)
4528 {
4529 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4530 old_ent = (char *) old_ent + htab->root.table.entsize;
4531 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4532 }
4533 if (h->root.type == bfd_link_hash_common)
4534 {
4535 if (size > h->root.u.c.size)
4536 h->root.u.c.size = size;
4537 if (alignment_power > h->root.u.c.p->alignment_power)
4538 h->root.u.c.p->alignment_power = alignment_power;
4539 }
4540 }
4541 }
4542
4543 /* Make a special call to the linker "notice" function to
4544 tell it that symbols added for crefs may need to be removed. */
4545 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4546 notice_not_needed, 0, NULL))
4547 goto error_free_vers;
4548
4549 free (old_tab);
4550 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4551 alloc_mark);
4552 if (nondeflt_vers != NULL)
4553 free (nondeflt_vers);
4554 return TRUE;
4555 }
4556
4557 if (old_tab != NULL)
4558 {
4559 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4560 notice_needed, 0, NULL))
4561 goto error_free_vers;
4562 free (old_tab);
4563 old_tab = NULL;
4564 }
4565
4566 /* Now that all the symbols from this input file are created, handle
4567 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4568 if (nondeflt_vers != NULL)
4569 {
4570 bfd_size_type cnt, symidx;
4571
4572 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4573 {
4574 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4575 char *shortname, *p;
4576
4577 p = strchr (h->root.root.string, ELF_VER_CHR);
4578 if (p == NULL
4579 || (h->root.type != bfd_link_hash_defined
4580 && h->root.type != bfd_link_hash_defweak))
4581 continue;
4582
4583 amt = p - h->root.root.string;
4584 shortname = (char *) bfd_malloc (amt + 1);
4585 if (!shortname)
4586 goto error_free_vers;
4587 memcpy (shortname, h->root.root.string, amt);
4588 shortname[amt] = '\0';
4589
4590 hi = (struct elf_link_hash_entry *)
4591 bfd_link_hash_lookup (&htab->root, shortname,
4592 FALSE, FALSE, FALSE);
4593 if (hi != NULL
4594 && hi->root.type == h->root.type
4595 && hi->root.u.def.value == h->root.u.def.value
4596 && hi->root.u.def.section == h->root.u.def.section)
4597 {
4598 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4599 hi->root.type = bfd_link_hash_indirect;
4600 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4601 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4602 sym_hash = elf_sym_hashes (abfd);
4603 if (sym_hash)
4604 for (symidx = 0; symidx < extsymcount; ++symidx)
4605 if (sym_hash[symidx] == hi)
4606 {
4607 sym_hash[symidx] = h;
4608 break;
4609 }
4610 }
4611 free (shortname);
4612 }
4613 free (nondeflt_vers);
4614 nondeflt_vers = NULL;
4615 }
4616
4617 /* Now set the weakdefs field correctly for all the weak defined
4618 symbols we found. The only way to do this is to search all the
4619 symbols. Since we only need the information for non functions in
4620 dynamic objects, that's the only time we actually put anything on
4621 the list WEAKS. We need this information so that if a regular
4622 object refers to a symbol defined weakly in a dynamic object, the
4623 real symbol in the dynamic object is also put in the dynamic
4624 symbols; we also must arrange for both symbols to point to the
4625 same memory location. We could handle the general case of symbol
4626 aliasing, but a general symbol alias can only be generated in
4627 assembler code, handling it correctly would be very time
4628 consuming, and other ELF linkers don't handle general aliasing
4629 either. */
4630 if (weaks != NULL)
4631 {
4632 struct elf_link_hash_entry **hpp;
4633 struct elf_link_hash_entry **hppend;
4634 struct elf_link_hash_entry **sorted_sym_hash;
4635 struct elf_link_hash_entry *h;
4636 size_t sym_count;
4637
4638 /* Since we have to search the whole symbol list for each weak
4639 defined symbol, search time for N weak defined symbols will be
4640 O(N^2). Binary search will cut it down to O(NlogN). */
4641 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4642 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4643 if (sorted_sym_hash == NULL)
4644 goto error_return;
4645 sym_hash = sorted_sym_hash;
4646 hpp = elf_sym_hashes (abfd);
4647 hppend = hpp + extsymcount;
4648 sym_count = 0;
4649 for (; hpp < hppend; hpp++)
4650 {
4651 h = *hpp;
4652 if (h != NULL
4653 && h->root.type == bfd_link_hash_defined
4654 && !bed->is_function_type (h->type))
4655 {
4656 *sym_hash = h;
4657 sym_hash++;
4658 sym_count++;
4659 }
4660 }
4661
4662 qsort (sorted_sym_hash, sym_count,
4663 sizeof (struct elf_link_hash_entry *),
4664 elf_sort_symbol);
4665
4666 while (weaks != NULL)
4667 {
4668 struct elf_link_hash_entry *hlook;
4669 asection *slook;
4670 bfd_vma vlook;
4671 size_t i, j, idx;
4672
4673 hlook = weaks;
4674 weaks = hlook->u.weakdef;
4675 hlook->u.weakdef = NULL;
4676
4677 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4678 || hlook->root.type == bfd_link_hash_defweak
4679 || hlook->root.type == bfd_link_hash_common
4680 || hlook->root.type == bfd_link_hash_indirect);
4681 slook = hlook->root.u.def.section;
4682 vlook = hlook->root.u.def.value;
4683
4684 i = 0;
4685 j = sym_count;
4686 while (i != j)
4687 {
4688 bfd_signed_vma vdiff;
4689 idx = (i + j) / 2;
4690 h = sorted_sym_hash[idx];
4691 vdiff = vlook - h->root.u.def.value;
4692 if (vdiff < 0)
4693 j = idx;
4694 else if (vdiff > 0)
4695 i = idx + 1;
4696 else
4697 {
4698 long sdiff = slook->id - h->root.u.def.section->id;
4699 if (sdiff < 0)
4700 j = idx;
4701 else if (sdiff > 0)
4702 i = idx + 1;
4703 else
4704 break;
4705 }
4706 }
4707
4708 /* We didn't find a value/section match. */
4709 if (i == j)
4710 continue;
4711
4712 /* With multiple aliases, or when the weak symbol is already
4713 strongly defined, we have multiple matching symbols and
4714 the binary search above may land on any of them. Step
4715 one past the matching symbol(s). */
4716 while (++idx != j)
4717 {
4718 h = sorted_sym_hash[idx];
4719 if (h->root.u.def.section != slook
4720 || h->root.u.def.value != vlook)
4721 break;
4722 }
4723
4724 /* Now look back over the aliases. Since we sorted by size
4725 as well as value and section, we'll choose the one with
4726 the largest size. */
4727 while (idx-- != i)
4728 {
4729 h = sorted_sym_hash[idx];
4730
4731 /* Stop if value or section doesn't match. */
4732 if (h->root.u.def.section != slook
4733 || h->root.u.def.value != vlook)
4734 break;
4735 else if (h != hlook)
4736 {
4737 hlook->u.weakdef = h;
4738
4739 /* If the weak definition is in the list of dynamic
4740 symbols, make sure the real definition is put
4741 there as well. */
4742 if (hlook->dynindx != -1 && h->dynindx == -1)
4743 {
4744 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4745 {
4746 err_free_sym_hash:
4747 free (sorted_sym_hash);
4748 goto error_return;
4749 }
4750 }
4751
4752 /* If the real definition is in the list of dynamic
4753 symbols, make sure the weak definition is put
4754 there as well. If we don't do this, then the
4755 dynamic loader might not merge the entries for the
4756 real definition and the weak definition. */
4757 if (h->dynindx != -1 && hlook->dynindx == -1)
4758 {
4759 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4760 goto err_free_sym_hash;
4761 }
4762 break;
4763 }
4764 }
4765 }
4766
4767 free (sorted_sym_hash);
4768 }
4769
4770 if (bed->check_directives
4771 && !(*bed->check_directives) (abfd, info))
4772 return FALSE;
4773
4774 /* If this object is the same format as the output object, and it is
4775 not a shared library, then let the backend look through the
4776 relocs.
4777
4778 This is required to build global offset table entries and to
4779 arrange for dynamic relocs. It is not required for the
4780 particular common case of linking non PIC code, even when linking
4781 against shared libraries, but unfortunately there is no way of
4782 knowing whether an object file has been compiled PIC or not.
4783 Looking through the relocs is not particularly time consuming.
4784 The problem is that we must either (1) keep the relocs in memory,
4785 which causes the linker to require additional runtime memory or
4786 (2) read the relocs twice from the input file, which wastes time.
4787 This would be a good case for using mmap.
4788
4789 I have no idea how to handle linking PIC code into a file of a
4790 different format. It probably can't be done. */
4791 if (! dynamic
4792 && is_elf_hash_table (htab)
4793 && bed->check_relocs != NULL
4794 && elf_object_id (abfd) == elf_hash_table_id (htab)
4795 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4796 {
4797 asection *o;
4798
4799 for (o = abfd->sections; o != NULL; o = o->next)
4800 {
4801 Elf_Internal_Rela *internal_relocs;
4802 bfd_boolean ok;
4803
4804 if ((o->flags & SEC_RELOC) == 0
4805 || o->reloc_count == 0
4806 || ((info->strip == strip_all || info->strip == strip_debugger)
4807 && (o->flags & SEC_DEBUGGING) != 0)
4808 || bfd_is_abs_section (o->output_section))
4809 continue;
4810
4811 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4812 info->keep_memory);
4813 if (internal_relocs == NULL)
4814 goto error_return;
4815
4816 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4817
4818 if (elf_section_data (o)->relocs != internal_relocs)
4819 free (internal_relocs);
4820
4821 if (! ok)
4822 goto error_return;
4823 }
4824 }
4825
4826 /* If this is a non-traditional link, try to optimize the handling
4827 of the .stab/.stabstr sections. */
4828 if (! dynamic
4829 && ! info->traditional_format
4830 && is_elf_hash_table (htab)
4831 && (info->strip != strip_all && info->strip != strip_debugger))
4832 {
4833 asection *stabstr;
4834
4835 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4836 if (stabstr != NULL)
4837 {
4838 bfd_size_type string_offset = 0;
4839 asection *stab;
4840
4841 for (stab = abfd->sections; stab; stab = stab->next)
4842 if (CONST_STRNEQ (stab->name, ".stab")
4843 && (!stab->name[5] ||
4844 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4845 && (stab->flags & SEC_MERGE) == 0
4846 && !bfd_is_abs_section (stab->output_section))
4847 {
4848 struct bfd_elf_section_data *secdata;
4849
4850 secdata = elf_section_data (stab);
4851 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4852 stabstr, &secdata->sec_info,
4853 &string_offset))
4854 goto error_return;
4855 if (secdata->sec_info)
4856 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4857 }
4858 }
4859 }
4860
4861 if (is_elf_hash_table (htab) && add_needed)
4862 {
4863 /* Add this bfd to the loaded list. */
4864 struct elf_link_loaded_list *n;
4865
4866 n = (struct elf_link_loaded_list *)
4867 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4868 if (n == NULL)
4869 goto error_return;
4870 n->abfd = abfd;
4871 n->next = htab->loaded;
4872 htab->loaded = n;
4873 }
4874
4875 return TRUE;
4876
4877 error_free_vers:
4878 if (old_tab != NULL)
4879 free (old_tab);
4880 if (nondeflt_vers != NULL)
4881 free (nondeflt_vers);
4882 if (extversym != NULL)
4883 free (extversym);
4884 error_free_sym:
4885 if (isymbuf != NULL)
4886 free (isymbuf);
4887 error_return:
4888 return FALSE;
4889 }
4890
4891 /* Return the linker hash table entry of a symbol that might be
4892 satisfied by an archive symbol. Return -1 on error. */
4893
4894 struct elf_link_hash_entry *
4895 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4896 struct bfd_link_info *info,
4897 const char *name)
4898 {
4899 struct elf_link_hash_entry *h;
4900 char *p, *copy;
4901 size_t len, first;
4902
4903 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4904 if (h != NULL)
4905 return h;
4906
4907 /* If this is a default version (the name contains @@), look up the
4908 symbol again with only one `@' as well as without the version.
4909 The effect is that references to the symbol with and without the
4910 version will be matched by the default symbol in the archive. */
4911
4912 p = strchr (name, ELF_VER_CHR);
4913 if (p == NULL || p[1] != ELF_VER_CHR)
4914 return h;
4915
4916 /* First check with only one `@'. */
4917 len = strlen (name);
4918 copy = (char *) bfd_alloc (abfd, len);
4919 if (copy == NULL)
4920 return (struct elf_link_hash_entry *) 0 - 1;
4921
4922 first = p - name + 1;
4923 memcpy (copy, name, first);
4924 memcpy (copy + first, name + first + 1, len - first);
4925
4926 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4927 if (h == NULL)
4928 {
4929 /* We also need to check references to the symbol without the
4930 version. */
4931 copy[first - 1] = '\0';
4932 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4933 FALSE, FALSE, TRUE);
4934 }
4935
4936 bfd_release (abfd, copy);
4937 return h;
4938 }
4939
4940 /* Add symbols from an ELF archive file to the linker hash table. We
4941 don't use _bfd_generic_link_add_archive_symbols because of a
4942 problem which arises on UnixWare. The UnixWare libc.so is an
4943 archive which includes an entry libc.so.1 which defines a bunch of
4944 symbols. The libc.so archive also includes a number of other
4945 object files, which also define symbols, some of which are the same
4946 as those defined in libc.so.1. Correct linking requires that we
4947 consider each object file in turn, and include it if it defines any
4948 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4949 this; it looks through the list of undefined symbols, and includes
4950 any object file which defines them. When this algorithm is used on
4951 UnixWare, it winds up pulling in libc.so.1 early and defining a
4952 bunch of symbols. This means that some of the other objects in the
4953 archive are not included in the link, which is incorrect since they
4954 precede libc.so.1 in the archive.
4955
4956 Fortunately, ELF archive handling is simpler than that done by
4957 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4958 oddities. In ELF, if we find a symbol in the archive map, and the
4959 symbol is currently undefined, we know that we must pull in that
4960 object file.
4961
4962 Unfortunately, we do have to make multiple passes over the symbol
4963 table until nothing further is resolved. */
4964
4965 static bfd_boolean
4966 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4967 {
4968 symindex c;
4969 bfd_boolean *defined = NULL;
4970 bfd_boolean *included = NULL;
4971 carsym *symdefs;
4972 bfd_boolean loop;
4973 bfd_size_type amt;
4974 const struct elf_backend_data *bed;
4975 struct elf_link_hash_entry * (*archive_symbol_lookup)
4976 (bfd *, struct bfd_link_info *, const char *);
4977
4978 if (! bfd_has_map (abfd))
4979 {
4980 /* An empty archive is a special case. */
4981 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4982 return TRUE;
4983 bfd_set_error (bfd_error_no_armap);
4984 return FALSE;
4985 }
4986
4987 /* Keep track of all symbols we know to be already defined, and all
4988 files we know to be already included. This is to speed up the
4989 second and subsequent passes. */
4990 c = bfd_ardata (abfd)->symdef_count;
4991 if (c == 0)
4992 return TRUE;
4993 amt = c;
4994 amt *= sizeof (bfd_boolean);
4995 defined = (bfd_boolean *) bfd_zmalloc (amt);
4996 included = (bfd_boolean *) bfd_zmalloc (amt);
4997 if (defined == NULL || included == NULL)
4998 goto error_return;
4999
5000 symdefs = bfd_ardata (abfd)->symdefs;
5001 bed = get_elf_backend_data (abfd);
5002 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5003
5004 do
5005 {
5006 file_ptr last;
5007 symindex i;
5008 carsym *symdef;
5009 carsym *symdefend;
5010
5011 loop = FALSE;
5012 last = -1;
5013
5014 symdef = symdefs;
5015 symdefend = symdef + c;
5016 for (i = 0; symdef < symdefend; symdef++, i++)
5017 {
5018 struct elf_link_hash_entry *h;
5019 bfd *element;
5020 struct bfd_link_hash_entry *undefs_tail;
5021 symindex mark;
5022
5023 if (defined[i] || included[i])
5024 continue;
5025 if (symdef->file_offset == last)
5026 {
5027 included[i] = TRUE;
5028 continue;
5029 }
5030
5031 h = archive_symbol_lookup (abfd, info, symdef->name);
5032 if (h == (struct elf_link_hash_entry *) 0 - 1)
5033 goto error_return;
5034
5035 if (h == NULL)
5036 continue;
5037
5038 if (h->root.type == bfd_link_hash_common)
5039 {
5040 /* We currently have a common symbol. The archive map contains
5041 a reference to this symbol, so we may want to include it. We
5042 only want to include it however, if this archive element
5043 contains a definition of the symbol, not just another common
5044 declaration of it.
5045
5046 Unfortunately some archivers (including GNU ar) will put
5047 declarations of common symbols into their archive maps, as
5048 well as real definitions, so we cannot just go by the archive
5049 map alone. Instead we must read in the element's symbol
5050 table and check that to see what kind of symbol definition
5051 this is. */
5052 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5053 continue;
5054 }
5055 else if (h->root.type != bfd_link_hash_undefined)
5056 {
5057 if (h->root.type != bfd_link_hash_undefweak)
5058 defined[i] = TRUE;
5059 continue;
5060 }
5061
5062 /* We need to include this archive member. */
5063 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5064 if (element == NULL)
5065 goto error_return;
5066
5067 if (! bfd_check_format (element, bfd_object))
5068 goto error_return;
5069
5070 /* Doublecheck that we have not included this object
5071 already--it should be impossible, but there may be
5072 something wrong with the archive. */
5073 if (element->archive_pass != 0)
5074 {
5075 bfd_set_error (bfd_error_bad_value);
5076 goto error_return;
5077 }
5078 element->archive_pass = 1;
5079
5080 undefs_tail = info->hash->undefs_tail;
5081
5082 if (!(*info->callbacks
5083 ->add_archive_element) (info, element, symdef->name, &element))
5084 goto error_return;
5085 if (!bfd_link_add_symbols (element, info))
5086 goto error_return;
5087
5088 /* If there are any new undefined symbols, we need to make
5089 another pass through the archive in order to see whether
5090 they can be defined. FIXME: This isn't perfect, because
5091 common symbols wind up on undefs_tail and because an
5092 undefined symbol which is defined later on in this pass
5093 does not require another pass. This isn't a bug, but it
5094 does make the code less efficient than it could be. */
5095 if (undefs_tail != info->hash->undefs_tail)
5096 loop = TRUE;
5097
5098 /* Look backward to mark all symbols from this object file
5099 which we have already seen in this pass. */
5100 mark = i;
5101 do
5102 {
5103 included[mark] = TRUE;
5104 if (mark == 0)
5105 break;
5106 --mark;
5107 }
5108 while (symdefs[mark].file_offset == symdef->file_offset);
5109
5110 /* We mark subsequent symbols from this object file as we go
5111 on through the loop. */
5112 last = symdef->file_offset;
5113 }
5114 }
5115 while (loop);
5116
5117 free (defined);
5118 free (included);
5119
5120 return TRUE;
5121
5122 error_return:
5123 if (defined != NULL)
5124 free (defined);
5125 if (included != NULL)
5126 free (included);
5127 return FALSE;
5128 }
5129
5130 /* Given an ELF BFD, add symbols to the global hash table as
5131 appropriate. */
5132
5133 bfd_boolean
5134 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5135 {
5136 switch (bfd_get_format (abfd))
5137 {
5138 case bfd_object:
5139 return elf_link_add_object_symbols (abfd, info);
5140 case bfd_archive:
5141 return elf_link_add_archive_symbols (abfd, info);
5142 default:
5143 bfd_set_error (bfd_error_wrong_format);
5144 return FALSE;
5145 }
5146 }
5147 \f
5148 struct hash_codes_info
5149 {
5150 unsigned long *hashcodes;
5151 bfd_boolean error;
5152 };
5153
5154 /* This function will be called though elf_link_hash_traverse to store
5155 all hash value of the exported symbols in an array. */
5156
5157 static bfd_boolean
5158 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5159 {
5160 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5161 const char *name;
5162 char *p;
5163 unsigned long ha;
5164 char *alc = NULL;
5165
5166 /* Ignore indirect symbols. These are added by the versioning code. */
5167 if (h->dynindx == -1)
5168 return TRUE;
5169
5170 name = h->root.root.string;
5171 p = strchr (name, ELF_VER_CHR);
5172 if (p != NULL)
5173 {
5174 alc = (char *) bfd_malloc (p - name + 1);
5175 if (alc == NULL)
5176 {
5177 inf->error = TRUE;
5178 return FALSE;
5179 }
5180 memcpy (alc, name, p - name);
5181 alc[p - name] = '\0';
5182 name = alc;
5183 }
5184
5185 /* Compute the hash value. */
5186 ha = bfd_elf_hash (name);
5187
5188 /* Store the found hash value in the array given as the argument. */
5189 *(inf->hashcodes)++ = ha;
5190
5191 /* And store it in the struct so that we can put it in the hash table
5192 later. */
5193 h->u.elf_hash_value = ha;
5194
5195 if (alc != NULL)
5196 free (alc);
5197
5198 return TRUE;
5199 }
5200
5201 struct collect_gnu_hash_codes
5202 {
5203 bfd *output_bfd;
5204 const struct elf_backend_data *bed;
5205 unsigned long int nsyms;
5206 unsigned long int maskbits;
5207 unsigned long int *hashcodes;
5208 unsigned long int *hashval;
5209 unsigned long int *indx;
5210 unsigned long int *counts;
5211 bfd_vma *bitmask;
5212 bfd_byte *contents;
5213 long int min_dynindx;
5214 unsigned long int bucketcount;
5215 unsigned long int symindx;
5216 long int local_indx;
5217 long int shift1, shift2;
5218 unsigned long int mask;
5219 bfd_boolean error;
5220 };
5221
5222 /* This function will be called though elf_link_hash_traverse to store
5223 all hash value of the exported symbols in an array. */
5224
5225 static bfd_boolean
5226 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5227 {
5228 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5229 const char *name;
5230 char *p;
5231 unsigned long ha;
5232 char *alc = NULL;
5233
5234 /* Ignore indirect symbols. These are added by the versioning code. */
5235 if (h->dynindx == -1)
5236 return TRUE;
5237
5238 /* Ignore also local symbols and undefined symbols. */
5239 if (! (*s->bed->elf_hash_symbol) (h))
5240 return TRUE;
5241
5242 name = h->root.root.string;
5243 p = strchr (name, ELF_VER_CHR);
5244 if (p != NULL)
5245 {
5246 alc = (char *) bfd_malloc (p - name + 1);
5247 if (alc == NULL)
5248 {
5249 s->error = TRUE;
5250 return FALSE;
5251 }
5252 memcpy (alc, name, p - name);
5253 alc[p - name] = '\0';
5254 name = alc;
5255 }
5256
5257 /* Compute the hash value. */
5258 ha = bfd_elf_gnu_hash (name);
5259
5260 /* Store the found hash value in the array for compute_bucket_count,
5261 and also for .dynsym reordering purposes. */
5262 s->hashcodes[s->nsyms] = ha;
5263 s->hashval[h->dynindx] = ha;
5264 ++s->nsyms;
5265 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5266 s->min_dynindx = h->dynindx;
5267
5268 if (alc != NULL)
5269 free (alc);
5270
5271 return TRUE;
5272 }
5273
5274 /* This function will be called though elf_link_hash_traverse to do
5275 final dynaminc symbol renumbering. */
5276
5277 static bfd_boolean
5278 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5279 {
5280 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5281 unsigned long int bucket;
5282 unsigned long int val;
5283
5284 /* Ignore indirect symbols. */
5285 if (h->dynindx == -1)
5286 return TRUE;
5287
5288 /* Ignore also local symbols and undefined symbols. */
5289 if (! (*s->bed->elf_hash_symbol) (h))
5290 {
5291 if (h->dynindx >= s->min_dynindx)
5292 h->dynindx = s->local_indx++;
5293 return TRUE;
5294 }
5295
5296 bucket = s->hashval[h->dynindx] % s->bucketcount;
5297 val = (s->hashval[h->dynindx] >> s->shift1)
5298 & ((s->maskbits >> s->shift1) - 1);
5299 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5300 s->bitmask[val]
5301 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5302 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5303 if (s->counts[bucket] == 1)
5304 /* Last element terminates the chain. */
5305 val |= 1;
5306 bfd_put_32 (s->output_bfd, val,
5307 s->contents + (s->indx[bucket] - s->symindx) * 4);
5308 --s->counts[bucket];
5309 h->dynindx = s->indx[bucket]++;
5310 return TRUE;
5311 }
5312
5313 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5314
5315 bfd_boolean
5316 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5317 {
5318 return !(h->forced_local
5319 || h->root.type == bfd_link_hash_undefined
5320 || h->root.type == bfd_link_hash_undefweak
5321 || ((h->root.type == bfd_link_hash_defined
5322 || h->root.type == bfd_link_hash_defweak)
5323 && h->root.u.def.section->output_section == NULL));
5324 }
5325
5326 /* Array used to determine the number of hash table buckets to use
5327 based on the number of symbols there are. If there are fewer than
5328 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5329 fewer than 37 we use 17 buckets, and so forth. We never use more
5330 than 32771 buckets. */
5331
5332 static const size_t elf_buckets[] =
5333 {
5334 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5335 16411, 32771, 0
5336 };
5337
5338 /* Compute bucket count for hashing table. We do not use a static set
5339 of possible tables sizes anymore. Instead we determine for all
5340 possible reasonable sizes of the table the outcome (i.e., the
5341 number of collisions etc) and choose the best solution. The
5342 weighting functions are not too simple to allow the table to grow
5343 without bounds. Instead one of the weighting factors is the size.
5344 Therefore the result is always a good payoff between few collisions
5345 (= short chain lengths) and table size. */
5346 static size_t
5347 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5348 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5349 unsigned long int nsyms,
5350 int gnu_hash)
5351 {
5352 size_t best_size = 0;
5353 unsigned long int i;
5354
5355 /* We have a problem here. The following code to optimize the table
5356 size requires an integer type with more the 32 bits. If
5357 BFD_HOST_U_64_BIT is set we know about such a type. */
5358 #ifdef BFD_HOST_U_64_BIT
5359 if (info->optimize)
5360 {
5361 size_t minsize;
5362 size_t maxsize;
5363 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5364 bfd *dynobj = elf_hash_table (info)->dynobj;
5365 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5366 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5367 unsigned long int *counts;
5368 bfd_size_type amt;
5369 unsigned int no_improvement_count = 0;
5370
5371 /* Possible optimization parameters: if we have NSYMS symbols we say
5372 that the hashing table must at least have NSYMS/4 and at most
5373 2*NSYMS buckets. */
5374 minsize = nsyms / 4;
5375 if (minsize == 0)
5376 minsize = 1;
5377 best_size = maxsize = nsyms * 2;
5378 if (gnu_hash)
5379 {
5380 if (minsize < 2)
5381 minsize = 2;
5382 if ((best_size & 31) == 0)
5383 ++best_size;
5384 }
5385
5386 /* Create array where we count the collisions in. We must use bfd_malloc
5387 since the size could be large. */
5388 amt = maxsize;
5389 amt *= sizeof (unsigned long int);
5390 counts = (unsigned long int *) bfd_malloc (amt);
5391 if (counts == NULL)
5392 return 0;
5393
5394 /* Compute the "optimal" size for the hash table. The criteria is a
5395 minimal chain length. The minor criteria is (of course) the size
5396 of the table. */
5397 for (i = minsize; i < maxsize; ++i)
5398 {
5399 /* Walk through the array of hashcodes and count the collisions. */
5400 BFD_HOST_U_64_BIT max;
5401 unsigned long int j;
5402 unsigned long int fact;
5403
5404 if (gnu_hash && (i & 31) == 0)
5405 continue;
5406
5407 memset (counts, '\0', i * sizeof (unsigned long int));
5408
5409 /* Determine how often each hash bucket is used. */
5410 for (j = 0; j < nsyms; ++j)
5411 ++counts[hashcodes[j] % i];
5412
5413 /* For the weight function we need some information about the
5414 pagesize on the target. This is information need not be 100%
5415 accurate. Since this information is not available (so far) we
5416 define it here to a reasonable default value. If it is crucial
5417 to have a better value some day simply define this value. */
5418 # ifndef BFD_TARGET_PAGESIZE
5419 # define BFD_TARGET_PAGESIZE (4096)
5420 # endif
5421
5422 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5423 and the chains. */
5424 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5425
5426 # if 1
5427 /* Variant 1: optimize for short chains. We add the squares
5428 of all the chain lengths (which favors many small chain
5429 over a few long chains). */
5430 for (j = 0; j < i; ++j)
5431 max += counts[j] * counts[j];
5432
5433 /* This adds penalties for the overall size of the table. */
5434 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5435 max *= fact * fact;
5436 # else
5437 /* Variant 2: Optimize a lot more for small table. Here we
5438 also add squares of the size but we also add penalties for
5439 empty slots (the +1 term). */
5440 for (j = 0; j < i; ++j)
5441 max += (1 + counts[j]) * (1 + counts[j]);
5442
5443 /* The overall size of the table is considered, but not as
5444 strong as in variant 1, where it is squared. */
5445 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5446 max *= fact;
5447 # endif
5448
5449 /* Compare with current best results. */
5450 if (max < best_chlen)
5451 {
5452 best_chlen = max;
5453 best_size = i;
5454 no_improvement_count = 0;
5455 }
5456 /* PR 11843: Avoid futile long searches for the best bucket size
5457 when there are a large number of symbols. */
5458 else if (++no_improvement_count == 100)
5459 break;
5460 }
5461
5462 free (counts);
5463 }
5464 else
5465 #endif /* defined (BFD_HOST_U_64_BIT) */
5466 {
5467 /* This is the fallback solution if no 64bit type is available or if we
5468 are not supposed to spend much time on optimizations. We select the
5469 bucket count using a fixed set of numbers. */
5470 for (i = 0; elf_buckets[i] != 0; i++)
5471 {
5472 best_size = elf_buckets[i];
5473 if (nsyms < elf_buckets[i + 1])
5474 break;
5475 }
5476 if (gnu_hash && best_size < 2)
5477 best_size = 2;
5478 }
5479
5480 return best_size;
5481 }
5482
5483 /* Size any SHT_GROUP section for ld -r. */
5484
5485 bfd_boolean
5486 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5487 {
5488 bfd *ibfd;
5489
5490 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5491 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5492 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5493 return FALSE;
5494 return TRUE;
5495 }
5496
5497 /* Set a default stack segment size. The value in INFO wins. If it
5498 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5499 undefined it is initialized. */
5500
5501 bfd_boolean
5502 bfd_elf_stack_segment_size (bfd *output_bfd,
5503 struct bfd_link_info *info,
5504 const char *legacy_symbol,
5505 bfd_vma default_size)
5506 {
5507 struct elf_link_hash_entry *h = NULL;
5508
5509 /* Look for legacy symbol. */
5510 if (legacy_symbol)
5511 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5512 FALSE, FALSE, FALSE);
5513 if (h && (h->root.type == bfd_link_hash_defined
5514 || h->root.type == bfd_link_hash_defweak)
5515 && h->def_regular
5516 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5517 {
5518 /* The symbol has no type if specified on the command line. */
5519 h->type = STT_OBJECT;
5520 if (info->stacksize)
5521 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5522 output_bfd, legacy_symbol);
5523 else if (h->root.u.def.section != bfd_abs_section_ptr)
5524 (*_bfd_error_handler) (_("%B: %s not absolute"),
5525 output_bfd, legacy_symbol);
5526 else
5527 info->stacksize = h->root.u.def.value;
5528 }
5529
5530 if (!info->stacksize)
5531 /* If the user didn't set a size, or explicitly inhibit the
5532 size, set it now. */
5533 info->stacksize = default_size;
5534
5535 /* Provide the legacy symbol, if it is referenced. */
5536 if (h && (h->root.type == bfd_link_hash_undefined
5537 || h->root.type == bfd_link_hash_undefweak))
5538 {
5539 struct bfd_link_hash_entry *bh = NULL;
5540
5541 if (!(_bfd_generic_link_add_one_symbol
5542 (info, output_bfd, legacy_symbol,
5543 BSF_GLOBAL, bfd_abs_section_ptr,
5544 info->stacksize >= 0 ? info->stacksize : 0,
5545 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5546 return FALSE;
5547
5548 h = (struct elf_link_hash_entry *) bh;
5549 h->def_regular = 1;
5550 h->type = STT_OBJECT;
5551 }
5552
5553 return TRUE;
5554 }
5555
5556 /* Set up the sizes and contents of the ELF dynamic sections. This is
5557 called by the ELF linker emulation before_allocation routine. We
5558 must set the sizes of the sections before the linker sets the
5559 addresses of the various sections. */
5560
5561 bfd_boolean
5562 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5563 const char *soname,
5564 const char *rpath,
5565 const char *filter_shlib,
5566 const char *audit,
5567 const char *depaudit,
5568 const char * const *auxiliary_filters,
5569 struct bfd_link_info *info,
5570 asection **sinterpptr)
5571 {
5572 bfd_size_type soname_indx;
5573 bfd *dynobj;
5574 const struct elf_backend_data *bed;
5575 struct elf_info_failed asvinfo;
5576
5577 *sinterpptr = NULL;
5578
5579 soname_indx = (bfd_size_type) -1;
5580
5581 if (!is_elf_hash_table (info->hash))
5582 return TRUE;
5583
5584 bed = get_elf_backend_data (output_bfd);
5585
5586 /* Any syms created from now on start with -1 in
5587 got.refcount/offset and plt.refcount/offset. */
5588 elf_hash_table (info)->init_got_refcount
5589 = elf_hash_table (info)->init_got_offset;
5590 elf_hash_table (info)->init_plt_refcount
5591 = elf_hash_table (info)->init_plt_offset;
5592
5593 if (info->relocatable
5594 && !_bfd_elf_size_group_sections (info))
5595 return FALSE;
5596
5597 /* The backend may have to create some sections regardless of whether
5598 we're dynamic or not. */
5599 if (bed->elf_backend_always_size_sections
5600 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5601 return FALSE;
5602
5603 /* Determine any GNU_STACK segment requirements, after the backend
5604 has had a chance to set a default segment size. */
5605 if (info->execstack)
5606 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5607 else if (info->noexecstack)
5608 elf_stack_flags (output_bfd) = PF_R | PF_W;
5609 else
5610 {
5611 bfd *inputobj;
5612 asection *notesec = NULL;
5613 int exec = 0;
5614
5615 for (inputobj = info->input_bfds;
5616 inputobj;
5617 inputobj = inputobj->link_next)
5618 {
5619 asection *s;
5620
5621 if (inputobj->flags
5622 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5623 continue;
5624 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5625 if (s)
5626 {
5627 if (s->flags & SEC_CODE)
5628 exec = PF_X;
5629 notesec = s;
5630 }
5631 else if (bed->default_execstack)
5632 exec = PF_X;
5633 }
5634 if (notesec || info->stacksize > 0)
5635 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5636 if (notesec && exec && info->relocatable
5637 && notesec->output_section != bfd_abs_section_ptr)
5638 notesec->output_section->flags |= SEC_CODE;
5639 }
5640
5641 dynobj = elf_hash_table (info)->dynobj;
5642
5643 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5644 {
5645 struct elf_info_failed eif;
5646 struct elf_link_hash_entry *h;
5647 asection *dynstr;
5648 struct bfd_elf_version_tree *t;
5649 struct bfd_elf_version_expr *d;
5650 asection *s;
5651 bfd_boolean all_defined;
5652
5653 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5654 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5655
5656 if (soname != NULL)
5657 {
5658 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5659 soname, TRUE);
5660 if (soname_indx == (bfd_size_type) -1
5661 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5662 return FALSE;
5663 }
5664
5665 if (info->symbolic)
5666 {
5667 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5668 return FALSE;
5669 info->flags |= DF_SYMBOLIC;
5670 }
5671
5672 if (rpath != NULL)
5673 {
5674 bfd_size_type indx;
5675 bfd_vma tag;
5676
5677 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5678 TRUE);
5679 if (indx == (bfd_size_type) -1)
5680 return FALSE;
5681
5682 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5683 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5684 return FALSE;
5685 }
5686
5687 if (filter_shlib != NULL)
5688 {
5689 bfd_size_type indx;
5690
5691 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5692 filter_shlib, TRUE);
5693 if (indx == (bfd_size_type) -1
5694 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5695 return FALSE;
5696 }
5697
5698 if (auxiliary_filters != NULL)
5699 {
5700 const char * const *p;
5701
5702 for (p = auxiliary_filters; *p != NULL; p++)
5703 {
5704 bfd_size_type indx;
5705
5706 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5707 *p, TRUE);
5708 if (indx == (bfd_size_type) -1
5709 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5710 return FALSE;
5711 }
5712 }
5713
5714 if (audit != NULL)
5715 {
5716 bfd_size_type indx;
5717
5718 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5719 TRUE);
5720 if (indx == (bfd_size_type) -1
5721 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5722 return FALSE;
5723 }
5724
5725 if (depaudit != NULL)
5726 {
5727 bfd_size_type indx;
5728
5729 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5730 TRUE);
5731 if (indx == (bfd_size_type) -1
5732 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5733 return FALSE;
5734 }
5735
5736 eif.info = info;
5737 eif.failed = FALSE;
5738
5739 /* If we are supposed to export all symbols into the dynamic symbol
5740 table (this is not the normal case), then do so. */
5741 if (info->export_dynamic
5742 || (info->executable && info->dynamic))
5743 {
5744 elf_link_hash_traverse (elf_hash_table (info),
5745 _bfd_elf_export_symbol,
5746 &eif);
5747 if (eif.failed)
5748 return FALSE;
5749 }
5750
5751 /* Make all global versions with definition. */
5752 for (t = info->version_info; t != NULL; t = t->next)
5753 for (d = t->globals.list; d != NULL; d = d->next)
5754 if (!d->symver && d->literal)
5755 {
5756 const char *verstr, *name;
5757 size_t namelen, verlen, newlen;
5758 char *newname, *p, leading_char;
5759 struct elf_link_hash_entry *newh;
5760
5761 leading_char = bfd_get_symbol_leading_char (output_bfd);
5762 name = d->pattern;
5763 namelen = strlen (name) + (leading_char != '\0');
5764 verstr = t->name;
5765 verlen = strlen (verstr);
5766 newlen = namelen + verlen + 3;
5767
5768 newname = (char *) bfd_malloc (newlen);
5769 if (newname == NULL)
5770 return FALSE;
5771 newname[0] = leading_char;
5772 memcpy (newname + (leading_char != '\0'), name, namelen);
5773
5774 /* Check the hidden versioned definition. */
5775 p = newname + namelen;
5776 *p++ = ELF_VER_CHR;
5777 memcpy (p, verstr, verlen + 1);
5778 newh = elf_link_hash_lookup (elf_hash_table (info),
5779 newname, FALSE, FALSE,
5780 FALSE);
5781 if (newh == NULL
5782 || (newh->root.type != bfd_link_hash_defined
5783 && newh->root.type != bfd_link_hash_defweak))
5784 {
5785 /* Check the default versioned definition. */
5786 *p++ = ELF_VER_CHR;
5787 memcpy (p, verstr, verlen + 1);
5788 newh = elf_link_hash_lookup (elf_hash_table (info),
5789 newname, FALSE, FALSE,
5790 FALSE);
5791 }
5792 free (newname);
5793
5794 /* Mark this version if there is a definition and it is
5795 not defined in a shared object. */
5796 if (newh != NULL
5797 && !newh->def_dynamic
5798 && (newh->root.type == bfd_link_hash_defined
5799 || newh->root.type == bfd_link_hash_defweak))
5800 d->symver = 1;
5801 }
5802
5803 /* Attach all the symbols to their version information. */
5804 asvinfo.info = info;
5805 asvinfo.failed = FALSE;
5806
5807 elf_link_hash_traverse (elf_hash_table (info),
5808 _bfd_elf_link_assign_sym_version,
5809 &asvinfo);
5810 if (asvinfo.failed)
5811 return FALSE;
5812
5813 if (!info->allow_undefined_version)
5814 {
5815 /* Check if all global versions have a definition. */
5816 all_defined = TRUE;
5817 for (t = info->version_info; t != NULL; t = t->next)
5818 for (d = t->globals.list; d != NULL; d = d->next)
5819 if (d->literal && !d->symver && !d->script)
5820 {
5821 (*_bfd_error_handler)
5822 (_("%s: undefined version: %s"),
5823 d->pattern, t->name);
5824 all_defined = FALSE;
5825 }
5826
5827 if (!all_defined)
5828 {
5829 bfd_set_error (bfd_error_bad_value);
5830 return FALSE;
5831 }
5832 }
5833
5834 /* Find all symbols which were defined in a dynamic object and make
5835 the backend pick a reasonable value for them. */
5836 elf_link_hash_traverse (elf_hash_table (info),
5837 _bfd_elf_adjust_dynamic_symbol,
5838 &eif);
5839 if (eif.failed)
5840 return FALSE;
5841
5842 /* Add some entries to the .dynamic section. We fill in some of the
5843 values later, in bfd_elf_final_link, but we must add the entries
5844 now so that we know the final size of the .dynamic section. */
5845
5846 /* If there are initialization and/or finalization functions to
5847 call then add the corresponding DT_INIT/DT_FINI entries. */
5848 h = (info->init_function
5849 ? elf_link_hash_lookup (elf_hash_table (info),
5850 info->init_function, FALSE,
5851 FALSE, FALSE)
5852 : NULL);
5853 if (h != NULL
5854 && (h->ref_regular
5855 || h->def_regular))
5856 {
5857 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5858 return FALSE;
5859 }
5860 h = (info->fini_function
5861 ? elf_link_hash_lookup (elf_hash_table (info),
5862 info->fini_function, FALSE,
5863 FALSE, FALSE)
5864 : NULL);
5865 if (h != NULL
5866 && (h->ref_regular
5867 || h->def_regular))
5868 {
5869 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5870 return FALSE;
5871 }
5872
5873 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5874 if (s != NULL && s->linker_has_input)
5875 {
5876 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5877 if (! info->executable)
5878 {
5879 bfd *sub;
5880 asection *o;
5881
5882 for (sub = info->input_bfds; sub != NULL;
5883 sub = sub->link_next)
5884 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5885 for (o = sub->sections; o != NULL; o = o->next)
5886 if (elf_section_data (o)->this_hdr.sh_type
5887 == SHT_PREINIT_ARRAY)
5888 {
5889 (*_bfd_error_handler)
5890 (_("%B: .preinit_array section is not allowed in DSO"),
5891 sub);
5892 break;
5893 }
5894
5895 bfd_set_error (bfd_error_nonrepresentable_section);
5896 return FALSE;
5897 }
5898
5899 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5900 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5901 return FALSE;
5902 }
5903 s = bfd_get_section_by_name (output_bfd, ".init_array");
5904 if (s != NULL && s->linker_has_input)
5905 {
5906 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5907 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5908 return FALSE;
5909 }
5910 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5911 if (s != NULL && s->linker_has_input)
5912 {
5913 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5914 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5915 return FALSE;
5916 }
5917
5918 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5919 /* If .dynstr is excluded from the link, we don't want any of
5920 these tags. Strictly, we should be checking each section
5921 individually; This quick check covers for the case where
5922 someone does a /DISCARD/ : { *(*) }. */
5923 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5924 {
5925 bfd_size_type strsize;
5926
5927 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5928 if ((info->emit_hash
5929 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5930 || (info->emit_gnu_hash
5931 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5932 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5933 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5934 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5935 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5936 bed->s->sizeof_sym))
5937 return FALSE;
5938 }
5939 }
5940
5941 /* The backend must work out the sizes of all the other dynamic
5942 sections. */
5943 if (dynobj != NULL
5944 && bed->elf_backend_size_dynamic_sections != NULL
5945 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5946 return FALSE;
5947
5948 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5949 return FALSE;
5950
5951 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5952 {
5953 unsigned long section_sym_count;
5954 struct bfd_elf_version_tree *verdefs;
5955 asection *s;
5956
5957 /* Set up the version definition section. */
5958 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
5959 BFD_ASSERT (s != NULL);
5960
5961 /* We may have created additional version definitions if we are
5962 just linking a regular application. */
5963 verdefs = info->version_info;
5964
5965 /* Skip anonymous version tag. */
5966 if (verdefs != NULL && verdefs->vernum == 0)
5967 verdefs = verdefs->next;
5968
5969 if (verdefs == NULL && !info->create_default_symver)
5970 s->flags |= SEC_EXCLUDE;
5971 else
5972 {
5973 unsigned int cdefs;
5974 bfd_size_type size;
5975 struct bfd_elf_version_tree *t;
5976 bfd_byte *p;
5977 Elf_Internal_Verdef def;
5978 Elf_Internal_Verdaux defaux;
5979 struct bfd_link_hash_entry *bh;
5980 struct elf_link_hash_entry *h;
5981 const char *name;
5982
5983 cdefs = 0;
5984 size = 0;
5985
5986 /* Make space for the base version. */
5987 size += sizeof (Elf_External_Verdef);
5988 size += sizeof (Elf_External_Verdaux);
5989 ++cdefs;
5990
5991 /* Make space for the default version. */
5992 if (info->create_default_symver)
5993 {
5994 size += sizeof (Elf_External_Verdef);
5995 ++cdefs;
5996 }
5997
5998 for (t = verdefs; t != NULL; t = t->next)
5999 {
6000 struct bfd_elf_version_deps *n;
6001
6002 /* Don't emit base version twice. */
6003 if (t->vernum == 0)
6004 continue;
6005
6006 size += sizeof (Elf_External_Verdef);
6007 size += sizeof (Elf_External_Verdaux);
6008 ++cdefs;
6009
6010 for (n = t->deps; n != NULL; n = n->next)
6011 size += sizeof (Elf_External_Verdaux);
6012 }
6013
6014 s->size = size;
6015 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6016 if (s->contents == NULL && s->size != 0)
6017 return FALSE;
6018
6019 /* Fill in the version definition section. */
6020
6021 p = s->contents;
6022
6023 def.vd_version = VER_DEF_CURRENT;
6024 def.vd_flags = VER_FLG_BASE;
6025 def.vd_ndx = 1;
6026 def.vd_cnt = 1;
6027 if (info->create_default_symver)
6028 {
6029 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6030 def.vd_next = sizeof (Elf_External_Verdef);
6031 }
6032 else
6033 {
6034 def.vd_aux = sizeof (Elf_External_Verdef);
6035 def.vd_next = (sizeof (Elf_External_Verdef)
6036 + sizeof (Elf_External_Verdaux));
6037 }
6038
6039 if (soname_indx != (bfd_size_type) -1)
6040 {
6041 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6042 soname_indx);
6043 def.vd_hash = bfd_elf_hash (soname);
6044 defaux.vda_name = soname_indx;
6045 name = soname;
6046 }
6047 else
6048 {
6049 bfd_size_type indx;
6050
6051 name = lbasename (output_bfd->filename);
6052 def.vd_hash = bfd_elf_hash (name);
6053 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6054 name, FALSE);
6055 if (indx == (bfd_size_type) -1)
6056 return FALSE;
6057 defaux.vda_name = indx;
6058 }
6059 defaux.vda_next = 0;
6060
6061 _bfd_elf_swap_verdef_out (output_bfd, &def,
6062 (Elf_External_Verdef *) p);
6063 p += sizeof (Elf_External_Verdef);
6064 if (info->create_default_symver)
6065 {
6066 /* Add a symbol representing this version. */
6067 bh = NULL;
6068 if (! (_bfd_generic_link_add_one_symbol
6069 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6070 0, NULL, FALSE,
6071 get_elf_backend_data (dynobj)->collect, &bh)))
6072 return FALSE;
6073 h = (struct elf_link_hash_entry *) bh;
6074 h->non_elf = 0;
6075 h->def_regular = 1;
6076 h->type = STT_OBJECT;
6077 h->verinfo.vertree = NULL;
6078
6079 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6080 return FALSE;
6081
6082 /* Create a duplicate of the base version with the same
6083 aux block, but different flags. */
6084 def.vd_flags = 0;
6085 def.vd_ndx = 2;
6086 def.vd_aux = sizeof (Elf_External_Verdef);
6087 if (verdefs)
6088 def.vd_next = (sizeof (Elf_External_Verdef)
6089 + sizeof (Elf_External_Verdaux));
6090 else
6091 def.vd_next = 0;
6092 _bfd_elf_swap_verdef_out (output_bfd, &def,
6093 (Elf_External_Verdef *) p);
6094 p += sizeof (Elf_External_Verdef);
6095 }
6096 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6097 (Elf_External_Verdaux *) p);
6098 p += sizeof (Elf_External_Verdaux);
6099
6100 for (t = verdefs; t != NULL; t = t->next)
6101 {
6102 unsigned int cdeps;
6103 struct bfd_elf_version_deps *n;
6104
6105 /* Don't emit the base version twice. */
6106 if (t->vernum == 0)
6107 continue;
6108
6109 cdeps = 0;
6110 for (n = t->deps; n != NULL; n = n->next)
6111 ++cdeps;
6112
6113 /* Add a symbol representing this version. */
6114 bh = NULL;
6115 if (! (_bfd_generic_link_add_one_symbol
6116 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6117 0, NULL, FALSE,
6118 get_elf_backend_data (dynobj)->collect, &bh)))
6119 return FALSE;
6120 h = (struct elf_link_hash_entry *) bh;
6121 h->non_elf = 0;
6122 h->def_regular = 1;
6123 h->type = STT_OBJECT;
6124 h->verinfo.vertree = t;
6125
6126 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6127 return FALSE;
6128
6129 def.vd_version = VER_DEF_CURRENT;
6130 def.vd_flags = 0;
6131 if (t->globals.list == NULL
6132 && t->locals.list == NULL
6133 && ! t->used)
6134 def.vd_flags |= VER_FLG_WEAK;
6135 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6136 def.vd_cnt = cdeps + 1;
6137 def.vd_hash = bfd_elf_hash (t->name);
6138 def.vd_aux = sizeof (Elf_External_Verdef);
6139 def.vd_next = 0;
6140
6141 /* If a basever node is next, it *must* be the last node in
6142 the chain, otherwise Verdef construction breaks. */
6143 if (t->next != NULL && t->next->vernum == 0)
6144 BFD_ASSERT (t->next->next == NULL);
6145
6146 if (t->next != NULL && t->next->vernum != 0)
6147 def.vd_next = (sizeof (Elf_External_Verdef)
6148 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6149
6150 _bfd_elf_swap_verdef_out (output_bfd, &def,
6151 (Elf_External_Verdef *) p);
6152 p += sizeof (Elf_External_Verdef);
6153
6154 defaux.vda_name = h->dynstr_index;
6155 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6156 h->dynstr_index);
6157 defaux.vda_next = 0;
6158 if (t->deps != NULL)
6159 defaux.vda_next = sizeof (Elf_External_Verdaux);
6160 t->name_indx = defaux.vda_name;
6161
6162 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6163 (Elf_External_Verdaux *) p);
6164 p += sizeof (Elf_External_Verdaux);
6165
6166 for (n = t->deps; n != NULL; n = n->next)
6167 {
6168 if (n->version_needed == NULL)
6169 {
6170 /* This can happen if there was an error in the
6171 version script. */
6172 defaux.vda_name = 0;
6173 }
6174 else
6175 {
6176 defaux.vda_name = n->version_needed->name_indx;
6177 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6178 defaux.vda_name);
6179 }
6180 if (n->next == NULL)
6181 defaux.vda_next = 0;
6182 else
6183 defaux.vda_next = sizeof (Elf_External_Verdaux);
6184
6185 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6186 (Elf_External_Verdaux *) p);
6187 p += sizeof (Elf_External_Verdaux);
6188 }
6189 }
6190
6191 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6192 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6193 return FALSE;
6194
6195 elf_tdata (output_bfd)->cverdefs = cdefs;
6196 }
6197
6198 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6199 {
6200 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6201 return FALSE;
6202 }
6203 else if (info->flags & DF_BIND_NOW)
6204 {
6205 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6206 return FALSE;
6207 }
6208
6209 if (info->flags_1)
6210 {
6211 if (info->executable)
6212 info->flags_1 &= ~ (DF_1_INITFIRST
6213 | DF_1_NODELETE
6214 | DF_1_NOOPEN);
6215 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6216 return FALSE;
6217 }
6218
6219 /* Work out the size of the version reference section. */
6220
6221 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6222 BFD_ASSERT (s != NULL);
6223 {
6224 struct elf_find_verdep_info sinfo;
6225
6226 sinfo.info = info;
6227 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6228 if (sinfo.vers == 0)
6229 sinfo.vers = 1;
6230 sinfo.failed = FALSE;
6231
6232 elf_link_hash_traverse (elf_hash_table (info),
6233 _bfd_elf_link_find_version_dependencies,
6234 &sinfo);
6235 if (sinfo.failed)
6236 return FALSE;
6237
6238 if (elf_tdata (output_bfd)->verref == NULL)
6239 s->flags |= SEC_EXCLUDE;
6240 else
6241 {
6242 Elf_Internal_Verneed *t;
6243 unsigned int size;
6244 unsigned int crefs;
6245 bfd_byte *p;
6246
6247 /* Build the version dependency section. */
6248 size = 0;
6249 crefs = 0;
6250 for (t = elf_tdata (output_bfd)->verref;
6251 t != NULL;
6252 t = t->vn_nextref)
6253 {
6254 Elf_Internal_Vernaux *a;
6255
6256 size += sizeof (Elf_External_Verneed);
6257 ++crefs;
6258 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6259 size += sizeof (Elf_External_Vernaux);
6260 }
6261
6262 s->size = size;
6263 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6264 if (s->contents == NULL)
6265 return FALSE;
6266
6267 p = s->contents;
6268 for (t = elf_tdata (output_bfd)->verref;
6269 t != NULL;
6270 t = t->vn_nextref)
6271 {
6272 unsigned int caux;
6273 Elf_Internal_Vernaux *a;
6274 bfd_size_type indx;
6275
6276 caux = 0;
6277 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6278 ++caux;
6279
6280 t->vn_version = VER_NEED_CURRENT;
6281 t->vn_cnt = caux;
6282 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6283 elf_dt_name (t->vn_bfd) != NULL
6284 ? elf_dt_name (t->vn_bfd)
6285 : lbasename (t->vn_bfd->filename),
6286 FALSE);
6287 if (indx == (bfd_size_type) -1)
6288 return FALSE;
6289 t->vn_file = indx;
6290 t->vn_aux = sizeof (Elf_External_Verneed);
6291 if (t->vn_nextref == NULL)
6292 t->vn_next = 0;
6293 else
6294 t->vn_next = (sizeof (Elf_External_Verneed)
6295 + caux * sizeof (Elf_External_Vernaux));
6296
6297 _bfd_elf_swap_verneed_out (output_bfd, t,
6298 (Elf_External_Verneed *) p);
6299 p += sizeof (Elf_External_Verneed);
6300
6301 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6302 {
6303 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6304 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6305 a->vna_nodename, FALSE);
6306 if (indx == (bfd_size_type) -1)
6307 return FALSE;
6308 a->vna_name = indx;
6309 if (a->vna_nextptr == NULL)
6310 a->vna_next = 0;
6311 else
6312 a->vna_next = sizeof (Elf_External_Vernaux);
6313
6314 _bfd_elf_swap_vernaux_out (output_bfd, a,
6315 (Elf_External_Vernaux *) p);
6316 p += sizeof (Elf_External_Vernaux);
6317 }
6318 }
6319
6320 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6321 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6322 return FALSE;
6323
6324 elf_tdata (output_bfd)->cverrefs = crefs;
6325 }
6326 }
6327
6328 if ((elf_tdata (output_bfd)->cverrefs == 0
6329 && elf_tdata (output_bfd)->cverdefs == 0)
6330 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6331 &section_sym_count) == 0)
6332 {
6333 s = bfd_get_linker_section (dynobj, ".gnu.version");
6334 s->flags |= SEC_EXCLUDE;
6335 }
6336 }
6337 return TRUE;
6338 }
6339
6340 /* Find the first non-excluded output section. We'll use its
6341 section symbol for some emitted relocs. */
6342 void
6343 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6344 {
6345 asection *s;
6346
6347 for (s = output_bfd->sections; s != NULL; s = s->next)
6348 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6349 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6350 {
6351 elf_hash_table (info)->text_index_section = s;
6352 break;
6353 }
6354 }
6355
6356 /* Find two non-excluded output sections, one for code, one for data.
6357 We'll use their section symbols for some emitted relocs. */
6358 void
6359 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6360 {
6361 asection *s;
6362
6363 /* Data first, since setting text_index_section changes
6364 _bfd_elf_link_omit_section_dynsym. */
6365 for (s = output_bfd->sections; s != NULL; s = s->next)
6366 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6367 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6368 {
6369 elf_hash_table (info)->data_index_section = s;
6370 break;
6371 }
6372
6373 for (s = output_bfd->sections; s != NULL; s = s->next)
6374 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6375 == (SEC_ALLOC | SEC_READONLY))
6376 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6377 {
6378 elf_hash_table (info)->text_index_section = s;
6379 break;
6380 }
6381
6382 if (elf_hash_table (info)->text_index_section == NULL)
6383 elf_hash_table (info)->text_index_section
6384 = elf_hash_table (info)->data_index_section;
6385 }
6386
6387 bfd_boolean
6388 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6389 {
6390 const struct elf_backend_data *bed;
6391
6392 if (!is_elf_hash_table (info->hash))
6393 return TRUE;
6394
6395 bed = get_elf_backend_data (output_bfd);
6396 (*bed->elf_backend_init_index_section) (output_bfd, info);
6397
6398 if (elf_hash_table (info)->dynamic_sections_created)
6399 {
6400 bfd *dynobj;
6401 asection *s;
6402 bfd_size_type dynsymcount;
6403 unsigned long section_sym_count;
6404 unsigned int dtagcount;
6405
6406 dynobj = elf_hash_table (info)->dynobj;
6407
6408 /* Assign dynsym indicies. In a shared library we generate a
6409 section symbol for each output section, which come first.
6410 Next come all of the back-end allocated local dynamic syms,
6411 followed by the rest of the global symbols. */
6412
6413 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6414 &section_sym_count);
6415
6416 /* Work out the size of the symbol version section. */
6417 s = bfd_get_linker_section (dynobj, ".gnu.version");
6418 BFD_ASSERT (s != NULL);
6419 if (dynsymcount != 0
6420 && (s->flags & SEC_EXCLUDE) == 0)
6421 {
6422 s->size = dynsymcount * sizeof (Elf_External_Versym);
6423 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6424 if (s->contents == NULL)
6425 return FALSE;
6426
6427 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6428 return FALSE;
6429 }
6430
6431 /* Set the size of the .dynsym and .hash sections. We counted
6432 the number of dynamic symbols in elf_link_add_object_symbols.
6433 We will build the contents of .dynsym and .hash when we build
6434 the final symbol table, because until then we do not know the
6435 correct value to give the symbols. We built the .dynstr
6436 section as we went along in elf_link_add_object_symbols. */
6437 s = bfd_get_linker_section (dynobj, ".dynsym");
6438 BFD_ASSERT (s != NULL);
6439 s->size = dynsymcount * bed->s->sizeof_sym;
6440
6441 if (dynsymcount != 0)
6442 {
6443 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6444 if (s->contents == NULL)
6445 return FALSE;
6446
6447 /* The first entry in .dynsym is a dummy symbol.
6448 Clear all the section syms, in case we don't output them all. */
6449 ++section_sym_count;
6450 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6451 }
6452
6453 elf_hash_table (info)->bucketcount = 0;
6454
6455 /* Compute the size of the hashing table. As a side effect this
6456 computes the hash values for all the names we export. */
6457 if (info->emit_hash)
6458 {
6459 unsigned long int *hashcodes;
6460 struct hash_codes_info hashinf;
6461 bfd_size_type amt;
6462 unsigned long int nsyms;
6463 size_t bucketcount;
6464 size_t hash_entry_size;
6465
6466 /* Compute the hash values for all exported symbols. At the same
6467 time store the values in an array so that we could use them for
6468 optimizations. */
6469 amt = dynsymcount * sizeof (unsigned long int);
6470 hashcodes = (unsigned long int *) bfd_malloc (amt);
6471 if (hashcodes == NULL)
6472 return FALSE;
6473 hashinf.hashcodes = hashcodes;
6474 hashinf.error = FALSE;
6475
6476 /* Put all hash values in HASHCODES. */
6477 elf_link_hash_traverse (elf_hash_table (info),
6478 elf_collect_hash_codes, &hashinf);
6479 if (hashinf.error)
6480 {
6481 free (hashcodes);
6482 return FALSE;
6483 }
6484
6485 nsyms = hashinf.hashcodes - hashcodes;
6486 bucketcount
6487 = compute_bucket_count (info, hashcodes, nsyms, 0);
6488 free (hashcodes);
6489
6490 if (bucketcount == 0)
6491 return FALSE;
6492
6493 elf_hash_table (info)->bucketcount = bucketcount;
6494
6495 s = bfd_get_linker_section (dynobj, ".hash");
6496 BFD_ASSERT (s != NULL);
6497 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6498 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6499 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6500 if (s->contents == NULL)
6501 return FALSE;
6502
6503 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6504 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6505 s->contents + hash_entry_size);
6506 }
6507
6508 if (info->emit_gnu_hash)
6509 {
6510 size_t i, cnt;
6511 unsigned char *contents;
6512 struct collect_gnu_hash_codes cinfo;
6513 bfd_size_type amt;
6514 size_t bucketcount;
6515
6516 memset (&cinfo, 0, sizeof (cinfo));
6517
6518 /* Compute the hash values for all exported symbols. At the same
6519 time store the values in an array so that we could use them for
6520 optimizations. */
6521 amt = dynsymcount * 2 * sizeof (unsigned long int);
6522 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6523 if (cinfo.hashcodes == NULL)
6524 return FALSE;
6525
6526 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6527 cinfo.min_dynindx = -1;
6528 cinfo.output_bfd = output_bfd;
6529 cinfo.bed = bed;
6530
6531 /* Put all hash values in HASHCODES. */
6532 elf_link_hash_traverse (elf_hash_table (info),
6533 elf_collect_gnu_hash_codes, &cinfo);
6534 if (cinfo.error)
6535 {
6536 free (cinfo.hashcodes);
6537 return FALSE;
6538 }
6539
6540 bucketcount
6541 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6542
6543 if (bucketcount == 0)
6544 {
6545 free (cinfo.hashcodes);
6546 return FALSE;
6547 }
6548
6549 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6550 BFD_ASSERT (s != NULL);
6551
6552 if (cinfo.nsyms == 0)
6553 {
6554 /* Empty .gnu.hash section is special. */
6555 BFD_ASSERT (cinfo.min_dynindx == -1);
6556 free (cinfo.hashcodes);
6557 s->size = 5 * 4 + bed->s->arch_size / 8;
6558 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6559 if (contents == NULL)
6560 return FALSE;
6561 s->contents = contents;
6562 /* 1 empty bucket. */
6563 bfd_put_32 (output_bfd, 1, contents);
6564 /* SYMIDX above the special symbol 0. */
6565 bfd_put_32 (output_bfd, 1, contents + 4);
6566 /* Just one word for bitmask. */
6567 bfd_put_32 (output_bfd, 1, contents + 8);
6568 /* Only hash fn bloom filter. */
6569 bfd_put_32 (output_bfd, 0, contents + 12);
6570 /* No hashes are valid - empty bitmask. */
6571 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6572 /* No hashes in the only bucket. */
6573 bfd_put_32 (output_bfd, 0,
6574 contents + 16 + bed->s->arch_size / 8);
6575 }
6576 else
6577 {
6578 unsigned long int maskwords, maskbitslog2, x;
6579 BFD_ASSERT (cinfo.min_dynindx != -1);
6580
6581 x = cinfo.nsyms;
6582 maskbitslog2 = 1;
6583 while ((x >>= 1) != 0)
6584 ++maskbitslog2;
6585 if (maskbitslog2 < 3)
6586 maskbitslog2 = 5;
6587 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6588 maskbitslog2 = maskbitslog2 + 3;
6589 else
6590 maskbitslog2 = maskbitslog2 + 2;
6591 if (bed->s->arch_size == 64)
6592 {
6593 if (maskbitslog2 == 5)
6594 maskbitslog2 = 6;
6595 cinfo.shift1 = 6;
6596 }
6597 else
6598 cinfo.shift1 = 5;
6599 cinfo.mask = (1 << cinfo.shift1) - 1;
6600 cinfo.shift2 = maskbitslog2;
6601 cinfo.maskbits = 1 << maskbitslog2;
6602 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6603 amt = bucketcount * sizeof (unsigned long int) * 2;
6604 amt += maskwords * sizeof (bfd_vma);
6605 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6606 if (cinfo.bitmask == NULL)
6607 {
6608 free (cinfo.hashcodes);
6609 return FALSE;
6610 }
6611
6612 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6613 cinfo.indx = cinfo.counts + bucketcount;
6614 cinfo.symindx = dynsymcount - cinfo.nsyms;
6615 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6616
6617 /* Determine how often each hash bucket is used. */
6618 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6619 for (i = 0; i < cinfo.nsyms; ++i)
6620 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6621
6622 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6623 if (cinfo.counts[i] != 0)
6624 {
6625 cinfo.indx[i] = cnt;
6626 cnt += cinfo.counts[i];
6627 }
6628 BFD_ASSERT (cnt == dynsymcount);
6629 cinfo.bucketcount = bucketcount;
6630 cinfo.local_indx = cinfo.min_dynindx;
6631
6632 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6633 s->size += cinfo.maskbits / 8;
6634 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6635 if (contents == NULL)
6636 {
6637 free (cinfo.bitmask);
6638 free (cinfo.hashcodes);
6639 return FALSE;
6640 }
6641
6642 s->contents = contents;
6643 bfd_put_32 (output_bfd, bucketcount, contents);
6644 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6645 bfd_put_32 (output_bfd, maskwords, contents + 8);
6646 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6647 contents += 16 + cinfo.maskbits / 8;
6648
6649 for (i = 0; i < bucketcount; ++i)
6650 {
6651 if (cinfo.counts[i] == 0)
6652 bfd_put_32 (output_bfd, 0, contents);
6653 else
6654 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6655 contents += 4;
6656 }
6657
6658 cinfo.contents = contents;
6659
6660 /* Renumber dynamic symbols, populate .gnu.hash section. */
6661 elf_link_hash_traverse (elf_hash_table (info),
6662 elf_renumber_gnu_hash_syms, &cinfo);
6663
6664 contents = s->contents + 16;
6665 for (i = 0; i < maskwords; ++i)
6666 {
6667 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6668 contents);
6669 contents += bed->s->arch_size / 8;
6670 }
6671
6672 free (cinfo.bitmask);
6673 free (cinfo.hashcodes);
6674 }
6675 }
6676
6677 s = bfd_get_linker_section (dynobj, ".dynstr");
6678 BFD_ASSERT (s != NULL);
6679
6680 elf_finalize_dynstr (output_bfd, info);
6681
6682 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6683
6684 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6685 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6686 return FALSE;
6687 }
6688
6689 return TRUE;
6690 }
6691 \f
6692 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6693
6694 static void
6695 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6696 asection *sec)
6697 {
6698 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6699 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6700 }
6701
6702 /* Finish SHF_MERGE section merging. */
6703
6704 bfd_boolean
6705 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6706 {
6707 bfd *ibfd;
6708 asection *sec;
6709
6710 if (!is_elf_hash_table (info->hash))
6711 return FALSE;
6712
6713 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6714 if ((ibfd->flags & DYNAMIC) == 0)
6715 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6716 if ((sec->flags & SEC_MERGE) != 0
6717 && !bfd_is_abs_section (sec->output_section))
6718 {
6719 struct bfd_elf_section_data *secdata;
6720
6721 secdata = elf_section_data (sec);
6722 if (! _bfd_add_merge_section (abfd,
6723 &elf_hash_table (info)->merge_info,
6724 sec, &secdata->sec_info))
6725 return FALSE;
6726 else if (secdata->sec_info)
6727 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6728 }
6729
6730 if (elf_hash_table (info)->merge_info != NULL)
6731 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6732 merge_sections_remove_hook);
6733 return TRUE;
6734 }
6735
6736 /* Create an entry in an ELF linker hash table. */
6737
6738 struct bfd_hash_entry *
6739 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6740 struct bfd_hash_table *table,
6741 const char *string)
6742 {
6743 /* Allocate the structure if it has not already been allocated by a
6744 subclass. */
6745 if (entry == NULL)
6746 {
6747 entry = (struct bfd_hash_entry *)
6748 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6749 if (entry == NULL)
6750 return entry;
6751 }
6752
6753 /* Call the allocation method of the superclass. */
6754 entry = _bfd_link_hash_newfunc (entry, table, string);
6755 if (entry != NULL)
6756 {
6757 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6758 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6759
6760 /* Set local fields. */
6761 ret->indx = -1;
6762 ret->dynindx = -1;
6763 ret->got = htab->init_got_refcount;
6764 ret->plt = htab->init_plt_refcount;
6765 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6766 - offsetof (struct elf_link_hash_entry, size)));
6767 /* Assume that we have been called by a non-ELF symbol reader.
6768 This flag is then reset by the code which reads an ELF input
6769 file. This ensures that a symbol created by a non-ELF symbol
6770 reader will have the flag set correctly. */
6771 ret->non_elf = 1;
6772 }
6773
6774 return entry;
6775 }
6776
6777 /* Copy data from an indirect symbol to its direct symbol, hiding the
6778 old indirect symbol. Also used for copying flags to a weakdef. */
6779
6780 void
6781 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6782 struct elf_link_hash_entry *dir,
6783 struct elf_link_hash_entry *ind)
6784 {
6785 struct elf_link_hash_table *htab;
6786
6787 /* Copy down any references that we may have already seen to the
6788 symbol which just became indirect. */
6789
6790 dir->ref_dynamic |= ind->ref_dynamic;
6791 dir->ref_regular |= ind->ref_regular;
6792 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6793 dir->non_got_ref |= ind->non_got_ref;
6794 dir->needs_plt |= ind->needs_plt;
6795 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6796
6797 if (ind->root.type != bfd_link_hash_indirect)
6798 return;
6799
6800 /* Copy over the global and procedure linkage table refcount entries.
6801 These may have been already set up by a check_relocs routine. */
6802 htab = elf_hash_table (info);
6803 if (ind->got.refcount > htab->init_got_refcount.refcount)
6804 {
6805 if (dir->got.refcount < 0)
6806 dir->got.refcount = 0;
6807 dir->got.refcount += ind->got.refcount;
6808 ind->got.refcount = htab->init_got_refcount.refcount;
6809 }
6810
6811 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6812 {
6813 if (dir->plt.refcount < 0)
6814 dir->plt.refcount = 0;
6815 dir->plt.refcount += ind->plt.refcount;
6816 ind->plt.refcount = htab->init_plt_refcount.refcount;
6817 }
6818
6819 if (ind->dynindx != -1)
6820 {
6821 if (dir->dynindx != -1)
6822 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6823 dir->dynindx = ind->dynindx;
6824 dir->dynstr_index = ind->dynstr_index;
6825 ind->dynindx = -1;
6826 ind->dynstr_index = 0;
6827 }
6828 }
6829
6830 void
6831 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6832 struct elf_link_hash_entry *h,
6833 bfd_boolean force_local)
6834 {
6835 /* STT_GNU_IFUNC symbol must go through PLT. */
6836 if (h->type != STT_GNU_IFUNC)
6837 {
6838 h->plt = elf_hash_table (info)->init_plt_offset;
6839 h->needs_plt = 0;
6840 }
6841 if (force_local)
6842 {
6843 h->forced_local = 1;
6844 if (h->dynindx != -1)
6845 {
6846 h->dynindx = -1;
6847 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6848 h->dynstr_index);
6849 }
6850 }
6851 }
6852
6853 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6854 caller. */
6855
6856 bfd_boolean
6857 _bfd_elf_link_hash_table_init
6858 (struct elf_link_hash_table *table,
6859 bfd *abfd,
6860 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6861 struct bfd_hash_table *,
6862 const char *),
6863 unsigned int entsize,
6864 enum elf_target_id target_id)
6865 {
6866 bfd_boolean ret;
6867 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6868
6869 table->init_got_refcount.refcount = can_refcount - 1;
6870 table->init_plt_refcount.refcount = can_refcount - 1;
6871 table->init_got_offset.offset = -(bfd_vma) 1;
6872 table->init_plt_offset.offset = -(bfd_vma) 1;
6873 /* The first dynamic symbol is a dummy. */
6874 table->dynsymcount = 1;
6875
6876 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6877
6878 table->root.type = bfd_link_elf_hash_table;
6879 table->hash_table_id = target_id;
6880
6881 return ret;
6882 }
6883
6884 /* Create an ELF linker hash table. */
6885
6886 struct bfd_link_hash_table *
6887 _bfd_elf_link_hash_table_create (bfd *abfd)
6888 {
6889 struct elf_link_hash_table *ret;
6890 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6891
6892 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
6893 if (ret == NULL)
6894 return NULL;
6895
6896 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6897 sizeof (struct elf_link_hash_entry),
6898 GENERIC_ELF_DATA))
6899 {
6900 free (ret);
6901 return NULL;
6902 }
6903
6904 return &ret->root;
6905 }
6906
6907 /* Destroy an ELF linker hash table. */
6908
6909 void
6910 _bfd_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
6911 {
6912 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) hash;
6913 if (htab->dynstr != NULL)
6914 _bfd_elf_strtab_free (htab->dynstr);
6915 _bfd_merge_sections_free (htab->merge_info);
6916 _bfd_generic_link_hash_table_free (hash);
6917 }
6918
6919 /* This is a hook for the ELF emulation code in the generic linker to
6920 tell the backend linker what file name to use for the DT_NEEDED
6921 entry for a dynamic object. */
6922
6923 void
6924 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6925 {
6926 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6927 && bfd_get_format (abfd) == bfd_object)
6928 elf_dt_name (abfd) = name;
6929 }
6930
6931 int
6932 bfd_elf_get_dyn_lib_class (bfd *abfd)
6933 {
6934 int lib_class;
6935 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6936 && bfd_get_format (abfd) == bfd_object)
6937 lib_class = elf_dyn_lib_class (abfd);
6938 else
6939 lib_class = 0;
6940 return lib_class;
6941 }
6942
6943 void
6944 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6945 {
6946 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6947 && bfd_get_format (abfd) == bfd_object)
6948 elf_dyn_lib_class (abfd) = lib_class;
6949 }
6950
6951 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6952 the linker ELF emulation code. */
6953
6954 struct bfd_link_needed_list *
6955 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6956 struct bfd_link_info *info)
6957 {
6958 if (! is_elf_hash_table (info->hash))
6959 return NULL;
6960 return elf_hash_table (info)->needed;
6961 }
6962
6963 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6964 hook for the linker ELF emulation code. */
6965
6966 struct bfd_link_needed_list *
6967 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6968 struct bfd_link_info *info)
6969 {
6970 if (! is_elf_hash_table (info->hash))
6971 return NULL;
6972 return elf_hash_table (info)->runpath;
6973 }
6974
6975 /* Get the name actually used for a dynamic object for a link. This
6976 is the SONAME entry if there is one. Otherwise, it is the string
6977 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6978
6979 const char *
6980 bfd_elf_get_dt_soname (bfd *abfd)
6981 {
6982 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6983 && bfd_get_format (abfd) == bfd_object)
6984 return elf_dt_name (abfd);
6985 return NULL;
6986 }
6987
6988 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6989 the ELF linker emulation code. */
6990
6991 bfd_boolean
6992 bfd_elf_get_bfd_needed_list (bfd *abfd,
6993 struct bfd_link_needed_list **pneeded)
6994 {
6995 asection *s;
6996 bfd_byte *dynbuf = NULL;
6997 unsigned int elfsec;
6998 unsigned long shlink;
6999 bfd_byte *extdyn, *extdynend;
7000 size_t extdynsize;
7001 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7002
7003 *pneeded = NULL;
7004
7005 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7006 || bfd_get_format (abfd) != bfd_object)
7007 return TRUE;
7008
7009 s = bfd_get_section_by_name (abfd, ".dynamic");
7010 if (s == NULL || s->size == 0)
7011 return TRUE;
7012
7013 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7014 goto error_return;
7015
7016 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7017 if (elfsec == SHN_BAD)
7018 goto error_return;
7019
7020 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7021
7022 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7023 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7024
7025 extdyn = dynbuf;
7026 extdynend = extdyn + s->size;
7027 for (; extdyn < extdynend; extdyn += extdynsize)
7028 {
7029 Elf_Internal_Dyn dyn;
7030
7031 (*swap_dyn_in) (abfd, extdyn, &dyn);
7032
7033 if (dyn.d_tag == DT_NULL)
7034 break;
7035
7036 if (dyn.d_tag == DT_NEEDED)
7037 {
7038 const char *string;
7039 struct bfd_link_needed_list *l;
7040 unsigned int tagv = dyn.d_un.d_val;
7041 bfd_size_type amt;
7042
7043 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7044 if (string == NULL)
7045 goto error_return;
7046
7047 amt = sizeof *l;
7048 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7049 if (l == NULL)
7050 goto error_return;
7051
7052 l->by = abfd;
7053 l->name = string;
7054 l->next = *pneeded;
7055 *pneeded = l;
7056 }
7057 }
7058
7059 free (dynbuf);
7060
7061 return TRUE;
7062
7063 error_return:
7064 if (dynbuf != NULL)
7065 free (dynbuf);
7066 return FALSE;
7067 }
7068
7069 struct elf_symbuf_symbol
7070 {
7071 unsigned long st_name; /* Symbol name, index in string tbl */
7072 unsigned char st_info; /* Type and binding attributes */
7073 unsigned char st_other; /* Visibilty, and target specific */
7074 };
7075
7076 struct elf_symbuf_head
7077 {
7078 struct elf_symbuf_symbol *ssym;
7079 bfd_size_type count;
7080 unsigned int st_shndx;
7081 };
7082
7083 struct elf_symbol
7084 {
7085 union
7086 {
7087 Elf_Internal_Sym *isym;
7088 struct elf_symbuf_symbol *ssym;
7089 } u;
7090 const char *name;
7091 };
7092
7093 /* Sort references to symbols by ascending section number. */
7094
7095 static int
7096 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7097 {
7098 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7099 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7100
7101 return s1->st_shndx - s2->st_shndx;
7102 }
7103
7104 static int
7105 elf_sym_name_compare (const void *arg1, const void *arg2)
7106 {
7107 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7108 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7109 return strcmp (s1->name, s2->name);
7110 }
7111
7112 static struct elf_symbuf_head *
7113 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7114 {
7115 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7116 struct elf_symbuf_symbol *ssym;
7117 struct elf_symbuf_head *ssymbuf, *ssymhead;
7118 bfd_size_type i, shndx_count, total_size;
7119
7120 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7121 if (indbuf == NULL)
7122 return NULL;
7123
7124 for (ind = indbuf, i = 0; i < symcount; i++)
7125 if (isymbuf[i].st_shndx != SHN_UNDEF)
7126 *ind++ = &isymbuf[i];
7127 indbufend = ind;
7128
7129 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7130 elf_sort_elf_symbol);
7131
7132 shndx_count = 0;
7133 if (indbufend > indbuf)
7134 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7135 if (ind[0]->st_shndx != ind[1]->st_shndx)
7136 shndx_count++;
7137
7138 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7139 + (indbufend - indbuf) * sizeof (*ssym));
7140 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7141 if (ssymbuf == NULL)
7142 {
7143 free (indbuf);
7144 return NULL;
7145 }
7146
7147 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7148 ssymbuf->ssym = NULL;
7149 ssymbuf->count = shndx_count;
7150 ssymbuf->st_shndx = 0;
7151 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7152 {
7153 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7154 {
7155 ssymhead++;
7156 ssymhead->ssym = ssym;
7157 ssymhead->count = 0;
7158 ssymhead->st_shndx = (*ind)->st_shndx;
7159 }
7160 ssym->st_name = (*ind)->st_name;
7161 ssym->st_info = (*ind)->st_info;
7162 ssym->st_other = (*ind)->st_other;
7163 ssymhead->count++;
7164 }
7165 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7166 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7167 == total_size));
7168
7169 free (indbuf);
7170 return ssymbuf;
7171 }
7172
7173 /* Check if 2 sections define the same set of local and global
7174 symbols. */
7175
7176 static bfd_boolean
7177 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7178 struct bfd_link_info *info)
7179 {
7180 bfd *bfd1, *bfd2;
7181 const struct elf_backend_data *bed1, *bed2;
7182 Elf_Internal_Shdr *hdr1, *hdr2;
7183 bfd_size_type symcount1, symcount2;
7184 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7185 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7186 Elf_Internal_Sym *isym, *isymend;
7187 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7188 bfd_size_type count1, count2, i;
7189 unsigned int shndx1, shndx2;
7190 bfd_boolean result;
7191
7192 bfd1 = sec1->owner;
7193 bfd2 = sec2->owner;
7194
7195 /* Both sections have to be in ELF. */
7196 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7197 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7198 return FALSE;
7199
7200 if (elf_section_type (sec1) != elf_section_type (sec2))
7201 return FALSE;
7202
7203 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7204 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7205 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7206 return FALSE;
7207
7208 bed1 = get_elf_backend_data (bfd1);
7209 bed2 = get_elf_backend_data (bfd2);
7210 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7211 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7212 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7213 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7214
7215 if (symcount1 == 0 || symcount2 == 0)
7216 return FALSE;
7217
7218 result = FALSE;
7219 isymbuf1 = NULL;
7220 isymbuf2 = NULL;
7221 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7222 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7223
7224 if (ssymbuf1 == NULL)
7225 {
7226 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7227 NULL, NULL, NULL);
7228 if (isymbuf1 == NULL)
7229 goto done;
7230
7231 if (!info->reduce_memory_overheads)
7232 elf_tdata (bfd1)->symbuf = ssymbuf1
7233 = elf_create_symbuf (symcount1, isymbuf1);
7234 }
7235
7236 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7237 {
7238 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7239 NULL, NULL, NULL);
7240 if (isymbuf2 == NULL)
7241 goto done;
7242
7243 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7244 elf_tdata (bfd2)->symbuf = ssymbuf2
7245 = elf_create_symbuf (symcount2, isymbuf2);
7246 }
7247
7248 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7249 {
7250 /* Optimized faster version. */
7251 bfd_size_type lo, hi, mid;
7252 struct elf_symbol *symp;
7253 struct elf_symbuf_symbol *ssym, *ssymend;
7254
7255 lo = 0;
7256 hi = ssymbuf1->count;
7257 ssymbuf1++;
7258 count1 = 0;
7259 while (lo < hi)
7260 {
7261 mid = (lo + hi) / 2;
7262 if (shndx1 < ssymbuf1[mid].st_shndx)
7263 hi = mid;
7264 else if (shndx1 > ssymbuf1[mid].st_shndx)
7265 lo = mid + 1;
7266 else
7267 {
7268 count1 = ssymbuf1[mid].count;
7269 ssymbuf1 += mid;
7270 break;
7271 }
7272 }
7273
7274 lo = 0;
7275 hi = ssymbuf2->count;
7276 ssymbuf2++;
7277 count2 = 0;
7278 while (lo < hi)
7279 {
7280 mid = (lo + hi) / 2;
7281 if (shndx2 < ssymbuf2[mid].st_shndx)
7282 hi = mid;
7283 else if (shndx2 > ssymbuf2[mid].st_shndx)
7284 lo = mid + 1;
7285 else
7286 {
7287 count2 = ssymbuf2[mid].count;
7288 ssymbuf2 += mid;
7289 break;
7290 }
7291 }
7292
7293 if (count1 == 0 || count2 == 0 || count1 != count2)
7294 goto done;
7295
7296 symtable1 = (struct elf_symbol *)
7297 bfd_malloc (count1 * sizeof (struct elf_symbol));
7298 symtable2 = (struct elf_symbol *)
7299 bfd_malloc (count2 * sizeof (struct elf_symbol));
7300 if (symtable1 == NULL || symtable2 == NULL)
7301 goto done;
7302
7303 symp = symtable1;
7304 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7305 ssym < ssymend; ssym++, symp++)
7306 {
7307 symp->u.ssym = ssym;
7308 symp->name = bfd_elf_string_from_elf_section (bfd1,
7309 hdr1->sh_link,
7310 ssym->st_name);
7311 }
7312
7313 symp = symtable2;
7314 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7315 ssym < ssymend; ssym++, symp++)
7316 {
7317 symp->u.ssym = ssym;
7318 symp->name = bfd_elf_string_from_elf_section (bfd2,
7319 hdr2->sh_link,
7320 ssym->st_name);
7321 }
7322
7323 /* Sort symbol by name. */
7324 qsort (symtable1, count1, sizeof (struct elf_symbol),
7325 elf_sym_name_compare);
7326 qsort (symtable2, count1, sizeof (struct elf_symbol),
7327 elf_sym_name_compare);
7328
7329 for (i = 0; i < count1; i++)
7330 /* Two symbols must have the same binding, type and name. */
7331 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7332 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7333 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7334 goto done;
7335
7336 result = TRUE;
7337 goto done;
7338 }
7339
7340 symtable1 = (struct elf_symbol *)
7341 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7342 symtable2 = (struct elf_symbol *)
7343 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7344 if (symtable1 == NULL || symtable2 == NULL)
7345 goto done;
7346
7347 /* Count definitions in the section. */
7348 count1 = 0;
7349 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7350 if (isym->st_shndx == shndx1)
7351 symtable1[count1++].u.isym = isym;
7352
7353 count2 = 0;
7354 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7355 if (isym->st_shndx == shndx2)
7356 symtable2[count2++].u.isym = isym;
7357
7358 if (count1 == 0 || count2 == 0 || count1 != count2)
7359 goto done;
7360
7361 for (i = 0; i < count1; i++)
7362 symtable1[i].name
7363 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7364 symtable1[i].u.isym->st_name);
7365
7366 for (i = 0; i < count2; i++)
7367 symtable2[i].name
7368 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7369 symtable2[i].u.isym->st_name);
7370
7371 /* Sort symbol by name. */
7372 qsort (symtable1, count1, sizeof (struct elf_symbol),
7373 elf_sym_name_compare);
7374 qsort (symtable2, count1, sizeof (struct elf_symbol),
7375 elf_sym_name_compare);
7376
7377 for (i = 0; i < count1; i++)
7378 /* Two symbols must have the same binding, type and name. */
7379 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7380 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7381 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7382 goto done;
7383
7384 result = TRUE;
7385
7386 done:
7387 if (symtable1)
7388 free (symtable1);
7389 if (symtable2)
7390 free (symtable2);
7391 if (isymbuf1)
7392 free (isymbuf1);
7393 if (isymbuf2)
7394 free (isymbuf2);
7395
7396 return result;
7397 }
7398
7399 /* Return TRUE if 2 section types are compatible. */
7400
7401 bfd_boolean
7402 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7403 bfd *bbfd, const asection *bsec)
7404 {
7405 if (asec == NULL
7406 || bsec == NULL
7407 || abfd->xvec->flavour != bfd_target_elf_flavour
7408 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7409 return TRUE;
7410
7411 return elf_section_type (asec) == elf_section_type (bsec);
7412 }
7413 \f
7414 /* Final phase of ELF linker. */
7415
7416 /* A structure we use to avoid passing large numbers of arguments. */
7417
7418 struct elf_final_link_info
7419 {
7420 /* General link information. */
7421 struct bfd_link_info *info;
7422 /* Output BFD. */
7423 bfd *output_bfd;
7424 /* Symbol string table. */
7425 struct bfd_strtab_hash *symstrtab;
7426 /* .dynsym section. */
7427 asection *dynsym_sec;
7428 /* .hash section. */
7429 asection *hash_sec;
7430 /* symbol version section (.gnu.version). */
7431 asection *symver_sec;
7432 /* Buffer large enough to hold contents of any section. */
7433 bfd_byte *contents;
7434 /* Buffer large enough to hold external relocs of any section. */
7435 void *external_relocs;
7436 /* Buffer large enough to hold internal relocs of any section. */
7437 Elf_Internal_Rela *internal_relocs;
7438 /* Buffer large enough to hold external local symbols of any input
7439 BFD. */
7440 bfd_byte *external_syms;
7441 /* And a buffer for symbol section indices. */
7442 Elf_External_Sym_Shndx *locsym_shndx;
7443 /* Buffer large enough to hold internal local symbols of any input
7444 BFD. */
7445 Elf_Internal_Sym *internal_syms;
7446 /* Array large enough to hold a symbol index for each local symbol
7447 of any input BFD. */
7448 long *indices;
7449 /* Array large enough to hold a section pointer for each local
7450 symbol of any input BFD. */
7451 asection **sections;
7452 /* Buffer to hold swapped out symbols. */
7453 bfd_byte *symbuf;
7454 /* And one for symbol section indices. */
7455 Elf_External_Sym_Shndx *symshndxbuf;
7456 /* Number of swapped out symbols in buffer. */
7457 size_t symbuf_count;
7458 /* Number of symbols which fit in symbuf. */
7459 size_t symbuf_size;
7460 /* And same for symshndxbuf. */
7461 size_t shndxbuf_size;
7462 /* Number of STT_FILE syms seen. */
7463 size_t filesym_count;
7464 };
7465
7466 /* This struct is used to pass information to elf_link_output_extsym. */
7467
7468 struct elf_outext_info
7469 {
7470 bfd_boolean failed;
7471 bfd_boolean localsyms;
7472 bfd_boolean need_second_pass;
7473 bfd_boolean second_pass;
7474 struct elf_final_link_info *flinfo;
7475 };
7476
7477
7478 /* Support for evaluating a complex relocation.
7479
7480 Complex relocations are generalized, self-describing relocations. The
7481 implementation of them consists of two parts: complex symbols, and the
7482 relocations themselves.
7483
7484 The relocations are use a reserved elf-wide relocation type code (R_RELC
7485 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7486 information (start bit, end bit, word width, etc) into the addend. This
7487 information is extracted from CGEN-generated operand tables within gas.
7488
7489 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7490 internal) representing prefix-notation expressions, including but not
7491 limited to those sorts of expressions normally encoded as addends in the
7492 addend field. The symbol mangling format is:
7493
7494 <node> := <literal>
7495 | <unary-operator> ':' <node>
7496 | <binary-operator> ':' <node> ':' <node>
7497 ;
7498
7499 <literal> := 's' <digits=N> ':' <N character symbol name>
7500 | 'S' <digits=N> ':' <N character section name>
7501 | '#' <hexdigits>
7502 ;
7503
7504 <binary-operator> := as in C
7505 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7506
7507 static void
7508 set_symbol_value (bfd *bfd_with_globals,
7509 Elf_Internal_Sym *isymbuf,
7510 size_t locsymcount,
7511 size_t symidx,
7512 bfd_vma val)
7513 {
7514 struct elf_link_hash_entry **sym_hashes;
7515 struct elf_link_hash_entry *h;
7516 size_t extsymoff = locsymcount;
7517
7518 if (symidx < locsymcount)
7519 {
7520 Elf_Internal_Sym *sym;
7521
7522 sym = isymbuf + symidx;
7523 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7524 {
7525 /* It is a local symbol: move it to the
7526 "absolute" section and give it a value. */
7527 sym->st_shndx = SHN_ABS;
7528 sym->st_value = val;
7529 return;
7530 }
7531 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7532 extsymoff = 0;
7533 }
7534
7535 /* It is a global symbol: set its link type
7536 to "defined" and give it a value. */
7537
7538 sym_hashes = elf_sym_hashes (bfd_with_globals);
7539 h = sym_hashes [symidx - extsymoff];
7540 while (h->root.type == bfd_link_hash_indirect
7541 || h->root.type == bfd_link_hash_warning)
7542 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7543 h->root.type = bfd_link_hash_defined;
7544 h->root.u.def.value = val;
7545 h->root.u.def.section = bfd_abs_section_ptr;
7546 }
7547
7548 static bfd_boolean
7549 resolve_symbol (const char *name,
7550 bfd *input_bfd,
7551 struct elf_final_link_info *flinfo,
7552 bfd_vma *result,
7553 Elf_Internal_Sym *isymbuf,
7554 size_t locsymcount)
7555 {
7556 Elf_Internal_Sym *sym;
7557 struct bfd_link_hash_entry *global_entry;
7558 const char *candidate = NULL;
7559 Elf_Internal_Shdr *symtab_hdr;
7560 size_t i;
7561
7562 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7563
7564 for (i = 0; i < locsymcount; ++ i)
7565 {
7566 sym = isymbuf + i;
7567
7568 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7569 continue;
7570
7571 candidate = bfd_elf_string_from_elf_section (input_bfd,
7572 symtab_hdr->sh_link,
7573 sym->st_name);
7574 #ifdef DEBUG
7575 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7576 name, candidate, (unsigned long) sym->st_value);
7577 #endif
7578 if (candidate && strcmp (candidate, name) == 0)
7579 {
7580 asection *sec = flinfo->sections [i];
7581
7582 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7583 *result += sec->output_offset + sec->output_section->vma;
7584 #ifdef DEBUG
7585 printf ("Found symbol with value %8.8lx\n",
7586 (unsigned long) *result);
7587 #endif
7588 return TRUE;
7589 }
7590 }
7591
7592 /* Hmm, haven't found it yet. perhaps it is a global. */
7593 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7594 FALSE, FALSE, TRUE);
7595 if (!global_entry)
7596 return FALSE;
7597
7598 if (global_entry->type == bfd_link_hash_defined
7599 || global_entry->type == bfd_link_hash_defweak)
7600 {
7601 *result = (global_entry->u.def.value
7602 + global_entry->u.def.section->output_section->vma
7603 + global_entry->u.def.section->output_offset);
7604 #ifdef DEBUG
7605 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7606 global_entry->root.string, (unsigned long) *result);
7607 #endif
7608 return TRUE;
7609 }
7610
7611 return FALSE;
7612 }
7613
7614 static bfd_boolean
7615 resolve_section (const char *name,
7616 asection *sections,
7617 bfd_vma *result)
7618 {
7619 asection *curr;
7620 unsigned int len;
7621
7622 for (curr = sections; curr; curr = curr->next)
7623 if (strcmp (curr->name, name) == 0)
7624 {
7625 *result = curr->vma;
7626 return TRUE;
7627 }
7628
7629 /* Hmm. still haven't found it. try pseudo-section names. */
7630 for (curr = sections; curr; curr = curr->next)
7631 {
7632 len = strlen (curr->name);
7633 if (len > strlen (name))
7634 continue;
7635
7636 if (strncmp (curr->name, name, len) == 0)
7637 {
7638 if (strncmp (".end", name + len, 4) == 0)
7639 {
7640 *result = curr->vma + curr->size;
7641 return TRUE;
7642 }
7643
7644 /* Insert more pseudo-section names here, if you like. */
7645 }
7646 }
7647
7648 return FALSE;
7649 }
7650
7651 static void
7652 undefined_reference (const char *reftype, const char *name)
7653 {
7654 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7655 reftype, name);
7656 }
7657
7658 static bfd_boolean
7659 eval_symbol (bfd_vma *result,
7660 const char **symp,
7661 bfd *input_bfd,
7662 struct elf_final_link_info *flinfo,
7663 bfd_vma dot,
7664 Elf_Internal_Sym *isymbuf,
7665 size_t locsymcount,
7666 int signed_p)
7667 {
7668 size_t len;
7669 size_t symlen;
7670 bfd_vma a;
7671 bfd_vma b;
7672 char symbuf[4096];
7673 const char *sym = *symp;
7674 const char *symend;
7675 bfd_boolean symbol_is_section = FALSE;
7676
7677 len = strlen (sym);
7678 symend = sym + len;
7679
7680 if (len < 1 || len > sizeof (symbuf))
7681 {
7682 bfd_set_error (bfd_error_invalid_operation);
7683 return FALSE;
7684 }
7685
7686 switch (* sym)
7687 {
7688 case '.':
7689 *result = dot;
7690 *symp = sym + 1;
7691 return TRUE;
7692
7693 case '#':
7694 ++sym;
7695 *result = strtoul (sym, (char **) symp, 16);
7696 return TRUE;
7697
7698 case 'S':
7699 symbol_is_section = TRUE;
7700 case 's':
7701 ++sym;
7702 symlen = strtol (sym, (char **) symp, 10);
7703 sym = *symp + 1; /* Skip the trailing ':'. */
7704
7705 if (symend < sym || symlen + 1 > sizeof (symbuf))
7706 {
7707 bfd_set_error (bfd_error_invalid_operation);
7708 return FALSE;
7709 }
7710
7711 memcpy (symbuf, sym, symlen);
7712 symbuf[symlen] = '\0';
7713 *symp = sym + symlen;
7714
7715 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7716 the symbol as a section, or vice-versa. so we're pretty liberal in our
7717 interpretation here; section means "try section first", not "must be a
7718 section", and likewise with symbol. */
7719
7720 if (symbol_is_section)
7721 {
7722 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7723 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7724 isymbuf, locsymcount))
7725 {
7726 undefined_reference ("section", symbuf);
7727 return FALSE;
7728 }
7729 }
7730 else
7731 {
7732 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7733 isymbuf, locsymcount)
7734 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7735 result))
7736 {
7737 undefined_reference ("symbol", symbuf);
7738 return FALSE;
7739 }
7740 }
7741
7742 return TRUE;
7743
7744 /* All that remains are operators. */
7745
7746 #define UNARY_OP(op) \
7747 if (strncmp (sym, #op, strlen (#op)) == 0) \
7748 { \
7749 sym += strlen (#op); \
7750 if (*sym == ':') \
7751 ++sym; \
7752 *symp = sym; \
7753 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7754 isymbuf, locsymcount, signed_p)) \
7755 return FALSE; \
7756 if (signed_p) \
7757 *result = op ((bfd_signed_vma) a); \
7758 else \
7759 *result = op a; \
7760 return TRUE; \
7761 }
7762
7763 #define BINARY_OP(op) \
7764 if (strncmp (sym, #op, strlen (#op)) == 0) \
7765 { \
7766 sym += strlen (#op); \
7767 if (*sym == ':') \
7768 ++sym; \
7769 *symp = sym; \
7770 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7771 isymbuf, locsymcount, signed_p)) \
7772 return FALSE; \
7773 ++*symp; \
7774 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7775 isymbuf, locsymcount, signed_p)) \
7776 return FALSE; \
7777 if (signed_p) \
7778 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7779 else \
7780 *result = a op b; \
7781 return TRUE; \
7782 }
7783
7784 default:
7785 UNARY_OP (0-);
7786 BINARY_OP (<<);
7787 BINARY_OP (>>);
7788 BINARY_OP (==);
7789 BINARY_OP (!=);
7790 BINARY_OP (<=);
7791 BINARY_OP (>=);
7792 BINARY_OP (&&);
7793 BINARY_OP (||);
7794 UNARY_OP (~);
7795 UNARY_OP (!);
7796 BINARY_OP (*);
7797 BINARY_OP (/);
7798 BINARY_OP (%);
7799 BINARY_OP (^);
7800 BINARY_OP (|);
7801 BINARY_OP (&);
7802 BINARY_OP (+);
7803 BINARY_OP (-);
7804 BINARY_OP (<);
7805 BINARY_OP (>);
7806 #undef UNARY_OP
7807 #undef BINARY_OP
7808 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7809 bfd_set_error (bfd_error_invalid_operation);
7810 return FALSE;
7811 }
7812 }
7813
7814 static void
7815 put_value (bfd_vma size,
7816 unsigned long chunksz,
7817 bfd *input_bfd,
7818 bfd_vma x,
7819 bfd_byte *location)
7820 {
7821 location += (size - chunksz);
7822
7823 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7824 {
7825 switch (chunksz)
7826 {
7827 default:
7828 case 0:
7829 abort ();
7830 case 1:
7831 bfd_put_8 (input_bfd, x, location);
7832 break;
7833 case 2:
7834 bfd_put_16 (input_bfd, x, location);
7835 break;
7836 case 4:
7837 bfd_put_32 (input_bfd, x, location);
7838 break;
7839 case 8:
7840 #ifdef BFD64
7841 bfd_put_64 (input_bfd, x, location);
7842 #else
7843 abort ();
7844 #endif
7845 break;
7846 }
7847 }
7848 }
7849
7850 static bfd_vma
7851 get_value (bfd_vma size,
7852 unsigned long chunksz,
7853 bfd *input_bfd,
7854 bfd_byte *location)
7855 {
7856 int shift;
7857 bfd_vma x = 0;
7858
7859 /* Sanity checks. */
7860 BFD_ASSERT (chunksz <= sizeof (x)
7861 && size >= chunksz
7862 && chunksz != 0
7863 && (size % chunksz) == 0
7864 && input_bfd != NULL
7865 && location != NULL);
7866
7867 if (chunksz == sizeof (x))
7868 {
7869 BFD_ASSERT (size == chunksz);
7870
7871 /* Make sure that we do not perform an undefined shift operation.
7872 We know that size == chunksz so there will only be one iteration
7873 of the loop below. */
7874 shift = 0;
7875 }
7876 else
7877 shift = 8 * chunksz;
7878
7879 for (; size; size -= chunksz, location += chunksz)
7880 {
7881 switch (chunksz)
7882 {
7883 case 1:
7884 x = (x << shift) | bfd_get_8 (input_bfd, location);
7885 break;
7886 case 2:
7887 x = (x << shift) | bfd_get_16 (input_bfd, location);
7888 break;
7889 case 4:
7890 x = (x << shift) | bfd_get_32 (input_bfd, location);
7891 break;
7892 #ifdef BFD64
7893 case 8:
7894 x = (x << shift) | bfd_get_64 (input_bfd, location);
7895 break;
7896 #endif
7897 default:
7898 abort ();
7899 }
7900 }
7901 return x;
7902 }
7903
7904 static void
7905 decode_complex_addend (unsigned long *start, /* in bits */
7906 unsigned long *oplen, /* in bits */
7907 unsigned long *len, /* in bits */
7908 unsigned long *wordsz, /* in bytes */
7909 unsigned long *chunksz, /* in bytes */
7910 unsigned long *lsb0_p,
7911 unsigned long *signed_p,
7912 unsigned long *trunc_p,
7913 unsigned long encoded)
7914 {
7915 * start = encoded & 0x3F;
7916 * len = (encoded >> 6) & 0x3F;
7917 * oplen = (encoded >> 12) & 0x3F;
7918 * wordsz = (encoded >> 18) & 0xF;
7919 * chunksz = (encoded >> 22) & 0xF;
7920 * lsb0_p = (encoded >> 27) & 1;
7921 * signed_p = (encoded >> 28) & 1;
7922 * trunc_p = (encoded >> 29) & 1;
7923 }
7924
7925 bfd_reloc_status_type
7926 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7927 asection *input_section ATTRIBUTE_UNUSED,
7928 bfd_byte *contents,
7929 Elf_Internal_Rela *rel,
7930 bfd_vma relocation)
7931 {
7932 bfd_vma shift, x, mask;
7933 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7934 bfd_reloc_status_type r;
7935
7936 /* Perform this reloc, since it is complex.
7937 (this is not to say that it necessarily refers to a complex
7938 symbol; merely that it is a self-describing CGEN based reloc.
7939 i.e. the addend has the complete reloc information (bit start, end,
7940 word size, etc) encoded within it.). */
7941
7942 decode_complex_addend (&start, &oplen, &len, &wordsz,
7943 &chunksz, &lsb0_p, &signed_p,
7944 &trunc_p, rel->r_addend);
7945
7946 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7947
7948 if (lsb0_p)
7949 shift = (start + 1) - len;
7950 else
7951 shift = (8 * wordsz) - (start + len);
7952
7953 /* FIXME: octets_per_byte. */
7954 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7955
7956 #ifdef DEBUG
7957 printf ("Doing complex reloc: "
7958 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7959 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7960 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7961 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7962 oplen, (unsigned long) x, (unsigned long) mask,
7963 (unsigned long) relocation);
7964 #endif
7965
7966 r = bfd_reloc_ok;
7967 if (! trunc_p)
7968 /* Now do an overflow check. */
7969 r = bfd_check_overflow ((signed_p
7970 ? complain_overflow_signed
7971 : complain_overflow_unsigned),
7972 len, 0, (8 * wordsz),
7973 relocation);
7974
7975 /* Do the deed. */
7976 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7977
7978 #ifdef DEBUG
7979 printf (" relocation: %8.8lx\n"
7980 " shifted mask: %8.8lx\n"
7981 " shifted/masked reloc: %8.8lx\n"
7982 " result: %8.8lx\n",
7983 (unsigned long) relocation, (unsigned long) (mask << shift),
7984 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7985 #endif
7986 /* FIXME: octets_per_byte. */
7987 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7988 return r;
7989 }
7990
7991 /* When performing a relocatable link, the input relocations are
7992 preserved. But, if they reference global symbols, the indices
7993 referenced must be updated. Update all the relocations found in
7994 RELDATA. */
7995
7996 static void
7997 elf_link_adjust_relocs (bfd *abfd,
7998 struct bfd_elf_section_reloc_data *reldata)
7999 {
8000 unsigned int i;
8001 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8002 bfd_byte *erela;
8003 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8004 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8005 bfd_vma r_type_mask;
8006 int r_sym_shift;
8007 unsigned int count = reldata->count;
8008 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8009
8010 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8011 {
8012 swap_in = bed->s->swap_reloc_in;
8013 swap_out = bed->s->swap_reloc_out;
8014 }
8015 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8016 {
8017 swap_in = bed->s->swap_reloca_in;
8018 swap_out = bed->s->swap_reloca_out;
8019 }
8020 else
8021 abort ();
8022
8023 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8024 abort ();
8025
8026 if (bed->s->arch_size == 32)
8027 {
8028 r_type_mask = 0xff;
8029 r_sym_shift = 8;
8030 }
8031 else
8032 {
8033 r_type_mask = 0xffffffff;
8034 r_sym_shift = 32;
8035 }
8036
8037 erela = reldata->hdr->contents;
8038 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8039 {
8040 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8041 unsigned int j;
8042
8043 if (*rel_hash == NULL)
8044 continue;
8045
8046 BFD_ASSERT ((*rel_hash)->indx >= 0);
8047
8048 (*swap_in) (abfd, erela, irela);
8049 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8050 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8051 | (irela[j].r_info & r_type_mask));
8052 (*swap_out) (abfd, irela, erela);
8053 }
8054 }
8055
8056 struct elf_link_sort_rela
8057 {
8058 union {
8059 bfd_vma offset;
8060 bfd_vma sym_mask;
8061 } u;
8062 enum elf_reloc_type_class type;
8063 /* We use this as an array of size int_rels_per_ext_rel. */
8064 Elf_Internal_Rela rela[1];
8065 };
8066
8067 static int
8068 elf_link_sort_cmp1 (const void *A, const void *B)
8069 {
8070 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8071 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8072 int relativea, relativeb;
8073
8074 relativea = a->type == reloc_class_relative;
8075 relativeb = b->type == reloc_class_relative;
8076
8077 if (relativea < relativeb)
8078 return 1;
8079 if (relativea > relativeb)
8080 return -1;
8081 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8082 return -1;
8083 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8084 return 1;
8085 if (a->rela->r_offset < b->rela->r_offset)
8086 return -1;
8087 if (a->rela->r_offset > b->rela->r_offset)
8088 return 1;
8089 return 0;
8090 }
8091
8092 static int
8093 elf_link_sort_cmp2 (const void *A, const void *B)
8094 {
8095 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8096 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8097 int copya, copyb;
8098
8099 if (a->u.offset < b->u.offset)
8100 return -1;
8101 if (a->u.offset > b->u.offset)
8102 return 1;
8103 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
8104 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
8105 if (copya < copyb)
8106 return -1;
8107 if (copya > copyb)
8108 return 1;
8109 if (a->rela->r_offset < b->rela->r_offset)
8110 return -1;
8111 if (a->rela->r_offset > b->rela->r_offset)
8112 return 1;
8113 return 0;
8114 }
8115
8116 static size_t
8117 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8118 {
8119 asection *dynamic_relocs;
8120 asection *rela_dyn;
8121 asection *rel_dyn;
8122 bfd_size_type count, size;
8123 size_t i, ret, sort_elt, ext_size;
8124 bfd_byte *sort, *s_non_relative, *p;
8125 struct elf_link_sort_rela *sq;
8126 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8127 int i2e = bed->s->int_rels_per_ext_rel;
8128 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8129 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8130 struct bfd_link_order *lo;
8131 bfd_vma r_sym_mask;
8132 bfd_boolean use_rela;
8133
8134 /* Find a dynamic reloc section. */
8135 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8136 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8137 if (rela_dyn != NULL && rela_dyn->size > 0
8138 && rel_dyn != NULL && rel_dyn->size > 0)
8139 {
8140 bfd_boolean use_rela_initialised = FALSE;
8141
8142 /* This is just here to stop gcc from complaining.
8143 It's initialization checking code is not perfect. */
8144 use_rela = TRUE;
8145
8146 /* Both sections are present. Examine the sizes
8147 of the indirect sections to help us choose. */
8148 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8149 if (lo->type == bfd_indirect_link_order)
8150 {
8151 asection *o = lo->u.indirect.section;
8152
8153 if ((o->size % bed->s->sizeof_rela) == 0)
8154 {
8155 if ((o->size % bed->s->sizeof_rel) == 0)
8156 /* Section size is divisible by both rel and rela sizes.
8157 It is of no help to us. */
8158 ;
8159 else
8160 {
8161 /* Section size is only divisible by rela. */
8162 if (use_rela_initialised && (use_rela == FALSE))
8163 {
8164 _bfd_error_handler
8165 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8166 bfd_set_error (bfd_error_invalid_operation);
8167 return 0;
8168 }
8169 else
8170 {
8171 use_rela = TRUE;
8172 use_rela_initialised = TRUE;
8173 }
8174 }
8175 }
8176 else if ((o->size % bed->s->sizeof_rel) == 0)
8177 {
8178 /* Section size is only divisible by rel. */
8179 if (use_rela_initialised && (use_rela == TRUE))
8180 {
8181 _bfd_error_handler
8182 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8183 bfd_set_error (bfd_error_invalid_operation);
8184 return 0;
8185 }
8186 else
8187 {
8188 use_rela = FALSE;
8189 use_rela_initialised = TRUE;
8190 }
8191 }
8192 else
8193 {
8194 /* The section size is not divisible by either - something is wrong. */
8195 _bfd_error_handler
8196 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8197 bfd_set_error (bfd_error_invalid_operation);
8198 return 0;
8199 }
8200 }
8201
8202 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8203 if (lo->type == bfd_indirect_link_order)
8204 {
8205 asection *o = lo->u.indirect.section;
8206
8207 if ((o->size % bed->s->sizeof_rela) == 0)
8208 {
8209 if ((o->size % bed->s->sizeof_rel) == 0)
8210 /* Section size is divisible by both rel and rela sizes.
8211 It is of no help to us. */
8212 ;
8213 else
8214 {
8215 /* Section size is only divisible by rela. */
8216 if (use_rela_initialised && (use_rela == FALSE))
8217 {
8218 _bfd_error_handler
8219 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8220 bfd_set_error (bfd_error_invalid_operation);
8221 return 0;
8222 }
8223 else
8224 {
8225 use_rela = TRUE;
8226 use_rela_initialised = TRUE;
8227 }
8228 }
8229 }
8230 else if ((o->size % bed->s->sizeof_rel) == 0)
8231 {
8232 /* Section size is only divisible by rel. */
8233 if (use_rela_initialised && (use_rela == TRUE))
8234 {
8235 _bfd_error_handler
8236 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8237 bfd_set_error (bfd_error_invalid_operation);
8238 return 0;
8239 }
8240 else
8241 {
8242 use_rela = FALSE;
8243 use_rela_initialised = TRUE;
8244 }
8245 }
8246 else
8247 {
8248 /* The section size is not divisible by either - something is wrong. */
8249 _bfd_error_handler
8250 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8251 bfd_set_error (bfd_error_invalid_operation);
8252 return 0;
8253 }
8254 }
8255
8256 if (! use_rela_initialised)
8257 /* Make a guess. */
8258 use_rela = TRUE;
8259 }
8260 else if (rela_dyn != NULL && rela_dyn->size > 0)
8261 use_rela = TRUE;
8262 else if (rel_dyn != NULL && rel_dyn->size > 0)
8263 use_rela = FALSE;
8264 else
8265 return 0;
8266
8267 if (use_rela)
8268 {
8269 dynamic_relocs = rela_dyn;
8270 ext_size = bed->s->sizeof_rela;
8271 swap_in = bed->s->swap_reloca_in;
8272 swap_out = bed->s->swap_reloca_out;
8273 }
8274 else
8275 {
8276 dynamic_relocs = rel_dyn;
8277 ext_size = bed->s->sizeof_rel;
8278 swap_in = bed->s->swap_reloc_in;
8279 swap_out = bed->s->swap_reloc_out;
8280 }
8281
8282 size = 0;
8283 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8284 if (lo->type == bfd_indirect_link_order)
8285 size += lo->u.indirect.section->size;
8286
8287 if (size != dynamic_relocs->size)
8288 return 0;
8289
8290 sort_elt = (sizeof (struct elf_link_sort_rela)
8291 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8292
8293 count = dynamic_relocs->size / ext_size;
8294 if (count == 0)
8295 return 0;
8296 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8297
8298 if (sort == NULL)
8299 {
8300 (*info->callbacks->warning)
8301 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8302 return 0;
8303 }
8304
8305 if (bed->s->arch_size == 32)
8306 r_sym_mask = ~(bfd_vma) 0xff;
8307 else
8308 r_sym_mask = ~(bfd_vma) 0xffffffff;
8309
8310 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8311 if (lo->type == bfd_indirect_link_order)
8312 {
8313 bfd_byte *erel, *erelend;
8314 asection *o = lo->u.indirect.section;
8315
8316 if (o->contents == NULL && o->size != 0)
8317 {
8318 /* This is a reloc section that is being handled as a normal
8319 section. See bfd_section_from_shdr. We can't combine
8320 relocs in this case. */
8321 free (sort);
8322 return 0;
8323 }
8324 erel = o->contents;
8325 erelend = o->contents + o->size;
8326 /* FIXME: octets_per_byte. */
8327 p = sort + o->output_offset / ext_size * sort_elt;
8328
8329 while (erel < erelend)
8330 {
8331 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8332
8333 (*swap_in) (abfd, erel, s->rela);
8334 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8335 s->u.sym_mask = r_sym_mask;
8336 p += sort_elt;
8337 erel += ext_size;
8338 }
8339 }
8340
8341 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8342
8343 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8344 {
8345 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8346 if (s->type != reloc_class_relative)
8347 break;
8348 }
8349 ret = i;
8350 s_non_relative = p;
8351
8352 sq = (struct elf_link_sort_rela *) s_non_relative;
8353 for (; i < count; i++, p += sort_elt)
8354 {
8355 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8356 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8357 sq = sp;
8358 sp->u.offset = sq->rela->r_offset;
8359 }
8360
8361 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8362
8363 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8364 if (lo->type == bfd_indirect_link_order)
8365 {
8366 bfd_byte *erel, *erelend;
8367 asection *o = lo->u.indirect.section;
8368
8369 erel = o->contents;
8370 erelend = o->contents + o->size;
8371 /* FIXME: octets_per_byte. */
8372 p = sort + o->output_offset / ext_size * sort_elt;
8373 while (erel < erelend)
8374 {
8375 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8376 (*swap_out) (abfd, s->rela, erel);
8377 p += sort_elt;
8378 erel += ext_size;
8379 }
8380 }
8381
8382 free (sort);
8383 *psec = dynamic_relocs;
8384 return ret;
8385 }
8386
8387 /* Flush the output symbols to the file. */
8388
8389 static bfd_boolean
8390 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8391 const struct elf_backend_data *bed)
8392 {
8393 if (flinfo->symbuf_count > 0)
8394 {
8395 Elf_Internal_Shdr *hdr;
8396 file_ptr pos;
8397 bfd_size_type amt;
8398
8399 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8400 pos = hdr->sh_offset + hdr->sh_size;
8401 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8402 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8403 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8404 return FALSE;
8405
8406 hdr->sh_size += amt;
8407 flinfo->symbuf_count = 0;
8408 }
8409
8410 return TRUE;
8411 }
8412
8413 /* Add a symbol to the output symbol table. */
8414
8415 static int
8416 elf_link_output_sym (struct elf_final_link_info *flinfo,
8417 const char *name,
8418 Elf_Internal_Sym *elfsym,
8419 asection *input_sec,
8420 struct elf_link_hash_entry *h)
8421 {
8422 bfd_byte *dest;
8423 Elf_External_Sym_Shndx *destshndx;
8424 int (*output_symbol_hook)
8425 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8426 struct elf_link_hash_entry *);
8427 const struct elf_backend_data *bed;
8428
8429 bed = get_elf_backend_data (flinfo->output_bfd);
8430 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8431 if (output_symbol_hook != NULL)
8432 {
8433 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8434 if (ret != 1)
8435 return ret;
8436 }
8437
8438 if (name == NULL || *name == '\0')
8439 elfsym->st_name = 0;
8440 else if (input_sec->flags & SEC_EXCLUDE)
8441 elfsym->st_name = 0;
8442 else
8443 {
8444 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8445 name, TRUE, FALSE);
8446 if (elfsym->st_name == (unsigned long) -1)
8447 return 0;
8448 }
8449
8450 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8451 {
8452 if (! elf_link_flush_output_syms (flinfo, bed))
8453 return 0;
8454 }
8455
8456 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8457 destshndx = flinfo->symshndxbuf;
8458 if (destshndx != NULL)
8459 {
8460 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8461 {
8462 bfd_size_type amt;
8463
8464 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8465 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8466 amt * 2);
8467 if (destshndx == NULL)
8468 return 0;
8469 flinfo->symshndxbuf = destshndx;
8470 memset ((char *) destshndx + amt, 0, amt);
8471 flinfo->shndxbuf_size *= 2;
8472 }
8473 destshndx += bfd_get_symcount (flinfo->output_bfd);
8474 }
8475
8476 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8477 flinfo->symbuf_count += 1;
8478 bfd_get_symcount (flinfo->output_bfd) += 1;
8479
8480 return 1;
8481 }
8482
8483 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8484
8485 static bfd_boolean
8486 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8487 {
8488 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8489 && sym->st_shndx < SHN_LORESERVE)
8490 {
8491 /* The gABI doesn't support dynamic symbols in output sections
8492 beyond 64k. */
8493 (*_bfd_error_handler)
8494 (_("%B: Too many sections: %d (>= %d)"),
8495 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8496 bfd_set_error (bfd_error_nonrepresentable_section);
8497 return FALSE;
8498 }
8499 return TRUE;
8500 }
8501
8502 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8503 allowing an unsatisfied unversioned symbol in the DSO to match a
8504 versioned symbol that would normally require an explicit version.
8505 We also handle the case that a DSO references a hidden symbol
8506 which may be satisfied by a versioned symbol in another DSO. */
8507
8508 static bfd_boolean
8509 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8510 const struct elf_backend_data *bed,
8511 struct elf_link_hash_entry *h)
8512 {
8513 bfd *abfd;
8514 struct elf_link_loaded_list *loaded;
8515
8516 if (!is_elf_hash_table (info->hash))
8517 return FALSE;
8518
8519 /* Check indirect symbol. */
8520 while (h->root.type == bfd_link_hash_indirect)
8521 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8522
8523 switch (h->root.type)
8524 {
8525 default:
8526 abfd = NULL;
8527 break;
8528
8529 case bfd_link_hash_undefined:
8530 case bfd_link_hash_undefweak:
8531 abfd = h->root.u.undef.abfd;
8532 if ((abfd->flags & DYNAMIC) == 0
8533 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8534 return FALSE;
8535 break;
8536
8537 case bfd_link_hash_defined:
8538 case bfd_link_hash_defweak:
8539 abfd = h->root.u.def.section->owner;
8540 break;
8541
8542 case bfd_link_hash_common:
8543 abfd = h->root.u.c.p->section->owner;
8544 break;
8545 }
8546 BFD_ASSERT (abfd != NULL);
8547
8548 for (loaded = elf_hash_table (info)->loaded;
8549 loaded != NULL;
8550 loaded = loaded->next)
8551 {
8552 bfd *input;
8553 Elf_Internal_Shdr *hdr;
8554 bfd_size_type symcount;
8555 bfd_size_type extsymcount;
8556 bfd_size_type extsymoff;
8557 Elf_Internal_Shdr *versymhdr;
8558 Elf_Internal_Sym *isym;
8559 Elf_Internal_Sym *isymend;
8560 Elf_Internal_Sym *isymbuf;
8561 Elf_External_Versym *ever;
8562 Elf_External_Versym *extversym;
8563
8564 input = loaded->abfd;
8565
8566 /* We check each DSO for a possible hidden versioned definition. */
8567 if (input == abfd
8568 || (input->flags & DYNAMIC) == 0
8569 || elf_dynversym (input) == 0)
8570 continue;
8571
8572 hdr = &elf_tdata (input)->dynsymtab_hdr;
8573
8574 symcount = hdr->sh_size / bed->s->sizeof_sym;
8575 if (elf_bad_symtab (input))
8576 {
8577 extsymcount = symcount;
8578 extsymoff = 0;
8579 }
8580 else
8581 {
8582 extsymcount = symcount - hdr->sh_info;
8583 extsymoff = hdr->sh_info;
8584 }
8585
8586 if (extsymcount == 0)
8587 continue;
8588
8589 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8590 NULL, NULL, NULL);
8591 if (isymbuf == NULL)
8592 return FALSE;
8593
8594 /* Read in any version definitions. */
8595 versymhdr = &elf_tdata (input)->dynversym_hdr;
8596 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8597 if (extversym == NULL)
8598 goto error_ret;
8599
8600 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8601 || (bfd_bread (extversym, versymhdr->sh_size, input)
8602 != versymhdr->sh_size))
8603 {
8604 free (extversym);
8605 error_ret:
8606 free (isymbuf);
8607 return FALSE;
8608 }
8609
8610 ever = extversym + extsymoff;
8611 isymend = isymbuf + extsymcount;
8612 for (isym = isymbuf; isym < isymend; isym++, ever++)
8613 {
8614 const char *name;
8615 Elf_Internal_Versym iver;
8616 unsigned short version_index;
8617
8618 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8619 || isym->st_shndx == SHN_UNDEF)
8620 continue;
8621
8622 name = bfd_elf_string_from_elf_section (input,
8623 hdr->sh_link,
8624 isym->st_name);
8625 if (strcmp (name, h->root.root.string) != 0)
8626 continue;
8627
8628 _bfd_elf_swap_versym_in (input, ever, &iver);
8629
8630 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8631 && !(h->def_regular
8632 && h->forced_local))
8633 {
8634 /* If we have a non-hidden versioned sym, then it should
8635 have provided a definition for the undefined sym unless
8636 it is defined in a non-shared object and forced local.
8637 */
8638 abort ();
8639 }
8640
8641 version_index = iver.vs_vers & VERSYM_VERSION;
8642 if (version_index == 1 || version_index == 2)
8643 {
8644 /* This is the base or first version. We can use it. */
8645 free (extversym);
8646 free (isymbuf);
8647 return TRUE;
8648 }
8649 }
8650
8651 free (extversym);
8652 free (isymbuf);
8653 }
8654
8655 return FALSE;
8656 }
8657
8658 /* Add an external symbol to the symbol table. This is called from
8659 the hash table traversal routine. When generating a shared object,
8660 we go through the symbol table twice. The first time we output
8661 anything that might have been forced to local scope in a version
8662 script. The second time we output the symbols that are still
8663 global symbols. */
8664
8665 static bfd_boolean
8666 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8667 {
8668 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8669 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8670 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8671 bfd_boolean strip;
8672 Elf_Internal_Sym sym;
8673 asection *input_sec;
8674 const struct elf_backend_data *bed;
8675 long indx;
8676 int ret;
8677
8678 if (h->root.type == bfd_link_hash_warning)
8679 {
8680 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8681 if (h->root.type == bfd_link_hash_new)
8682 return TRUE;
8683 }
8684
8685 /* Decide whether to output this symbol in this pass. */
8686 if (eoinfo->localsyms)
8687 {
8688 if (!h->forced_local)
8689 return TRUE;
8690 if (eoinfo->second_pass
8691 && !((h->root.type == bfd_link_hash_defined
8692 || h->root.type == bfd_link_hash_defweak)
8693 && h->root.u.def.section->output_section != NULL))
8694 return TRUE;
8695 }
8696 else
8697 {
8698 if (h->forced_local)
8699 return TRUE;
8700 }
8701
8702 bed = get_elf_backend_data (flinfo->output_bfd);
8703
8704 if (h->root.type == bfd_link_hash_undefined)
8705 {
8706 /* If we have an undefined symbol reference here then it must have
8707 come from a shared library that is being linked in. (Undefined
8708 references in regular files have already been handled unless
8709 they are in unreferenced sections which are removed by garbage
8710 collection). */
8711 bfd_boolean ignore_undef = FALSE;
8712
8713 /* Some symbols may be special in that the fact that they're
8714 undefined can be safely ignored - let backend determine that. */
8715 if (bed->elf_backend_ignore_undef_symbol)
8716 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8717
8718 /* If we are reporting errors for this situation then do so now. */
8719 if (!ignore_undef
8720 && h->ref_dynamic
8721 && (!h->ref_regular || flinfo->info->gc_sections)
8722 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8723 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8724 {
8725 if (!(flinfo->info->callbacks->undefined_symbol
8726 (flinfo->info, h->root.root.string,
8727 h->ref_regular ? NULL : h->root.u.undef.abfd,
8728 NULL, 0,
8729 (flinfo->info->unresolved_syms_in_shared_libs
8730 == RM_GENERATE_ERROR))))
8731 {
8732 bfd_set_error (bfd_error_bad_value);
8733 eoinfo->failed = TRUE;
8734 return FALSE;
8735 }
8736 }
8737 }
8738
8739 /* We should also warn if a forced local symbol is referenced from
8740 shared libraries. */
8741 if (!flinfo->info->relocatable
8742 && flinfo->info->executable
8743 && h->forced_local
8744 && h->ref_dynamic
8745 && h->def_regular
8746 && !h->dynamic_def
8747 && h->ref_dynamic_nonweak
8748 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8749 {
8750 bfd *def_bfd;
8751 const char *msg;
8752 struct elf_link_hash_entry *hi = h;
8753
8754 /* Check indirect symbol. */
8755 while (hi->root.type == bfd_link_hash_indirect)
8756 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8757
8758 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8759 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8760 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8761 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8762 else
8763 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8764 def_bfd = flinfo->output_bfd;
8765 if (hi->root.u.def.section != bfd_abs_section_ptr)
8766 def_bfd = hi->root.u.def.section->owner;
8767 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8768 h->root.root.string);
8769 bfd_set_error (bfd_error_bad_value);
8770 eoinfo->failed = TRUE;
8771 return FALSE;
8772 }
8773
8774 /* We don't want to output symbols that have never been mentioned by
8775 a regular file, or that we have been told to strip. However, if
8776 h->indx is set to -2, the symbol is used by a reloc and we must
8777 output it. */
8778 if (h->indx == -2)
8779 strip = FALSE;
8780 else if ((h->def_dynamic
8781 || h->ref_dynamic
8782 || h->root.type == bfd_link_hash_new)
8783 && !h->def_regular
8784 && !h->ref_regular)
8785 strip = TRUE;
8786 else if (flinfo->info->strip == strip_all)
8787 strip = TRUE;
8788 else if (flinfo->info->strip == strip_some
8789 && bfd_hash_lookup (flinfo->info->keep_hash,
8790 h->root.root.string, FALSE, FALSE) == NULL)
8791 strip = TRUE;
8792 else if ((h->root.type == bfd_link_hash_defined
8793 || h->root.type == bfd_link_hash_defweak)
8794 && ((flinfo->info->strip_discarded
8795 && discarded_section (h->root.u.def.section))
8796 || (h->root.u.def.section->owner != NULL
8797 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8798 strip = TRUE;
8799 else if ((h->root.type == bfd_link_hash_undefined
8800 || h->root.type == bfd_link_hash_undefweak)
8801 && h->root.u.undef.abfd != NULL
8802 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8803 strip = TRUE;
8804 else
8805 strip = FALSE;
8806
8807 /* If we're stripping it, and it's not a dynamic symbol, there's
8808 nothing else to do unless it is a forced local symbol or a
8809 STT_GNU_IFUNC symbol. */
8810 if (strip
8811 && h->dynindx == -1
8812 && h->type != STT_GNU_IFUNC
8813 && !h->forced_local)
8814 return TRUE;
8815
8816 sym.st_value = 0;
8817 sym.st_size = h->size;
8818 sym.st_other = h->other;
8819 if (h->forced_local)
8820 {
8821 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8822 /* Turn off visibility on local symbol. */
8823 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8824 }
8825 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
8826 else if (h->unique_global && h->def_regular)
8827 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8828 else if (h->root.type == bfd_link_hash_undefweak
8829 || h->root.type == bfd_link_hash_defweak)
8830 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8831 else
8832 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8833 sym.st_target_internal = h->target_internal;
8834
8835 switch (h->root.type)
8836 {
8837 default:
8838 case bfd_link_hash_new:
8839 case bfd_link_hash_warning:
8840 abort ();
8841 return FALSE;
8842
8843 case bfd_link_hash_undefined:
8844 case bfd_link_hash_undefweak:
8845 input_sec = bfd_und_section_ptr;
8846 sym.st_shndx = SHN_UNDEF;
8847 break;
8848
8849 case bfd_link_hash_defined:
8850 case bfd_link_hash_defweak:
8851 {
8852 input_sec = h->root.u.def.section;
8853 if (input_sec->output_section != NULL)
8854 {
8855 if (eoinfo->localsyms && flinfo->filesym_count == 1)
8856 {
8857 bfd_boolean second_pass_sym
8858 = (input_sec->owner == flinfo->output_bfd
8859 || input_sec->owner == NULL
8860 || (input_sec->flags & SEC_LINKER_CREATED) != 0
8861 || (input_sec->owner->flags & BFD_LINKER_CREATED) != 0);
8862
8863 eoinfo->need_second_pass |= second_pass_sym;
8864 if (eoinfo->second_pass != second_pass_sym)
8865 return TRUE;
8866 }
8867
8868 sym.st_shndx =
8869 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
8870 input_sec->output_section);
8871 if (sym.st_shndx == SHN_BAD)
8872 {
8873 (*_bfd_error_handler)
8874 (_("%B: could not find output section %A for input section %A"),
8875 flinfo->output_bfd, input_sec->output_section, input_sec);
8876 bfd_set_error (bfd_error_nonrepresentable_section);
8877 eoinfo->failed = TRUE;
8878 return FALSE;
8879 }
8880
8881 /* ELF symbols in relocatable files are section relative,
8882 but in nonrelocatable files they are virtual
8883 addresses. */
8884 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8885 if (!flinfo->info->relocatable)
8886 {
8887 sym.st_value += input_sec->output_section->vma;
8888 if (h->type == STT_TLS)
8889 {
8890 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
8891 if (tls_sec != NULL)
8892 sym.st_value -= tls_sec->vma;
8893 else
8894 {
8895 /* The TLS section may have been garbage collected. */
8896 BFD_ASSERT (flinfo->info->gc_sections
8897 && !input_sec->gc_mark);
8898 }
8899 }
8900 }
8901 }
8902 else
8903 {
8904 BFD_ASSERT (input_sec->owner == NULL
8905 || (input_sec->owner->flags & DYNAMIC) != 0);
8906 sym.st_shndx = SHN_UNDEF;
8907 input_sec = bfd_und_section_ptr;
8908 }
8909 }
8910 break;
8911
8912 case bfd_link_hash_common:
8913 input_sec = h->root.u.c.p->section;
8914 sym.st_shndx = bed->common_section_index (input_sec);
8915 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8916 break;
8917
8918 case bfd_link_hash_indirect:
8919 /* These symbols are created by symbol versioning. They point
8920 to the decorated version of the name. For example, if the
8921 symbol foo@@GNU_1.2 is the default, which should be used when
8922 foo is used with no version, then we add an indirect symbol
8923 foo which points to foo@@GNU_1.2. We ignore these symbols,
8924 since the indirected symbol is already in the hash table. */
8925 return TRUE;
8926 }
8927
8928 /* Give the processor backend a chance to tweak the symbol value,
8929 and also to finish up anything that needs to be done for this
8930 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8931 forced local syms when non-shared is due to a historical quirk.
8932 STT_GNU_IFUNC symbol must go through PLT. */
8933 if ((h->type == STT_GNU_IFUNC
8934 && h->def_regular
8935 && !flinfo->info->relocatable)
8936 || ((h->dynindx != -1
8937 || h->forced_local)
8938 && ((flinfo->info->shared
8939 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8940 || h->root.type != bfd_link_hash_undefweak))
8941 || !h->forced_local)
8942 && elf_hash_table (flinfo->info)->dynamic_sections_created))
8943 {
8944 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8945 (flinfo->output_bfd, flinfo->info, h, &sym)))
8946 {
8947 eoinfo->failed = TRUE;
8948 return FALSE;
8949 }
8950 }
8951
8952 /* If we are marking the symbol as undefined, and there are no
8953 non-weak references to this symbol from a regular object, then
8954 mark the symbol as weak undefined; if there are non-weak
8955 references, mark the symbol as strong. We can't do this earlier,
8956 because it might not be marked as undefined until the
8957 finish_dynamic_symbol routine gets through with it. */
8958 if (sym.st_shndx == SHN_UNDEF
8959 && h->ref_regular
8960 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8961 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8962 {
8963 int bindtype;
8964 unsigned int type = ELF_ST_TYPE (sym.st_info);
8965
8966 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8967 if (type == STT_GNU_IFUNC)
8968 type = STT_FUNC;
8969
8970 if (h->ref_regular_nonweak)
8971 bindtype = STB_GLOBAL;
8972 else
8973 bindtype = STB_WEAK;
8974 sym.st_info = ELF_ST_INFO (bindtype, type);
8975 }
8976
8977 /* If this is a symbol defined in a dynamic library, don't use the
8978 symbol size from the dynamic library. Relinking an executable
8979 against a new library may introduce gratuitous changes in the
8980 executable's symbols if we keep the size. */
8981 if (sym.st_shndx == SHN_UNDEF
8982 && !h->def_regular
8983 && h->def_dynamic)
8984 sym.st_size = 0;
8985
8986 /* If a non-weak symbol with non-default visibility is not defined
8987 locally, it is a fatal error. */
8988 if (!flinfo->info->relocatable
8989 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8990 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8991 && h->root.type == bfd_link_hash_undefined
8992 && !h->def_regular)
8993 {
8994 const char *msg;
8995
8996 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
8997 msg = _("%B: protected symbol `%s' isn't defined");
8998 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
8999 msg = _("%B: internal symbol `%s' isn't defined");
9000 else
9001 msg = _("%B: hidden symbol `%s' isn't defined");
9002 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9003 bfd_set_error (bfd_error_bad_value);
9004 eoinfo->failed = TRUE;
9005 return FALSE;
9006 }
9007
9008 /* If this symbol should be put in the .dynsym section, then put it
9009 there now. We already know the symbol index. We also fill in
9010 the entry in the .hash section. */
9011 if (flinfo->dynsym_sec != NULL
9012 && h->dynindx != -1
9013 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9014 {
9015 bfd_byte *esym;
9016
9017 /* Since there is no version information in the dynamic string,
9018 if there is no version info in symbol version section, we will
9019 have a run-time problem. */
9020 if (h->verinfo.verdef == NULL)
9021 {
9022 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9023
9024 if (p && p [1] != '\0')
9025 {
9026 (*_bfd_error_handler)
9027 (_("%B: No symbol version section for versioned symbol `%s'"),
9028 flinfo->output_bfd, h->root.root.string);
9029 eoinfo->failed = TRUE;
9030 return FALSE;
9031 }
9032 }
9033
9034 sym.st_name = h->dynstr_index;
9035 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9036 if (!check_dynsym (flinfo->output_bfd, &sym))
9037 {
9038 eoinfo->failed = TRUE;
9039 return FALSE;
9040 }
9041 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9042
9043 if (flinfo->hash_sec != NULL)
9044 {
9045 size_t hash_entry_size;
9046 bfd_byte *bucketpos;
9047 bfd_vma chain;
9048 size_t bucketcount;
9049 size_t bucket;
9050
9051 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9052 bucket = h->u.elf_hash_value % bucketcount;
9053
9054 hash_entry_size
9055 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9056 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9057 + (bucket + 2) * hash_entry_size);
9058 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9059 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9060 bucketpos);
9061 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9062 ((bfd_byte *) flinfo->hash_sec->contents
9063 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9064 }
9065
9066 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9067 {
9068 Elf_Internal_Versym iversym;
9069 Elf_External_Versym *eversym;
9070
9071 if (!h->def_regular)
9072 {
9073 if (h->verinfo.verdef == NULL)
9074 iversym.vs_vers = 0;
9075 else
9076 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9077 }
9078 else
9079 {
9080 if (h->verinfo.vertree == NULL)
9081 iversym.vs_vers = 1;
9082 else
9083 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9084 if (flinfo->info->create_default_symver)
9085 iversym.vs_vers++;
9086 }
9087
9088 if (h->hidden)
9089 iversym.vs_vers |= VERSYM_HIDDEN;
9090
9091 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9092 eversym += h->dynindx;
9093 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9094 }
9095 }
9096
9097 /* If we're stripping it, then it was just a dynamic symbol, and
9098 there's nothing else to do. */
9099 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
9100 return TRUE;
9101
9102 indx = bfd_get_symcount (flinfo->output_bfd);
9103 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9104 if (ret == 0)
9105 {
9106 eoinfo->failed = TRUE;
9107 return FALSE;
9108 }
9109 else if (ret == 1)
9110 h->indx = indx;
9111 else if (h->indx == -2)
9112 abort();
9113
9114 return TRUE;
9115 }
9116
9117 /* Return TRUE if special handling is done for relocs in SEC against
9118 symbols defined in discarded sections. */
9119
9120 static bfd_boolean
9121 elf_section_ignore_discarded_relocs (asection *sec)
9122 {
9123 const struct elf_backend_data *bed;
9124
9125 switch (sec->sec_info_type)
9126 {
9127 case SEC_INFO_TYPE_STABS:
9128 case SEC_INFO_TYPE_EH_FRAME:
9129 return TRUE;
9130 default:
9131 break;
9132 }
9133
9134 bed = get_elf_backend_data (sec->owner);
9135 if (bed->elf_backend_ignore_discarded_relocs != NULL
9136 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9137 return TRUE;
9138
9139 return FALSE;
9140 }
9141
9142 /* Return a mask saying how ld should treat relocations in SEC against
9143 symbols defined in discarded sections. If this function returns
9144 COMPLAIN set, ld will issue a warning message. If this function
9145 returns PRETEND set, and the discarded section was link-once and the
9146 same size as the kept link-once section, ld will pretend that the
9147 symbol was actually defined in the kept section. Otherwise ld will
9148 zero the reloc (at least that is the intent, but some cooperation by
9149 the target dependent code is needed, particularly for REL targets). */
9150
9151 unsigned int
9152 _bfd_elf_default_action_discarded (asection *sec)
9153 {
9154 if (sec->flags & SEC_DEBUGGING)
9155 return PRETEND;
9156
9157 if (strcmp (".eh_frame", sec->name) == 0)
9158 return 0;
9159
9160 if (strcmp (".gcc_except_table", sec->name) == 0)
9161 return 0;
9162
9163 return COMPLAIN | PRETEND;
9164 }
9165
9166 /* Find a match between a section and a member of a section group. */
9167
9168 static asection *
9169 match_group_member (asection *sec, asection *group,
9170 struct bfd_link_info *info)
9171 {
9172 asection *first = elf_next_in_group (group);
9173 asection *s = first;
9174
9175 while (s != NULL)
9176 {
9177 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9178 return s;
9179
9180 s = elf_next_in_group (s);
9181 if (s == first)
9182 break;
9183 }
9184
9185 return NULL;
9186 }
9187
9188 /* Check if the kept section of a discarded section SEC can be used
9189 to replace it. Return the replacement if it is OK. Otherwise return
9190 NULL. */
9191
9192 asection *
9193 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9194 {
9195 asection *kept;
9196
9197 kept = sec->kept_section;
9198 if (kept != NULL)
9199 {
9200 if ((kept->flags & SEC_GROUP) != 0)
9201 kept = match_group_member (sec, kept, info);
9202 if (kept != NULL
9203 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9204 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9205 kept = NULL;
9206 sec->kept_section = kept;
9207 }
9208 return kept;
9209 }
9210
9211 /* Link an input file into the linker output file. This function
9212 handles all the sections and relocations of the input file at once.
9213 This is so that we only have to read the local symbols once, and
9214 don't have to keep them in memory. */
9215
9216 static bfd_boolean
9217 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9218 {
9219 int (*relocate_section)
9220 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9221 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9222 bfd *output_bfd;
9223 Elf_Internal_Shdr *symtab_hdr;
9224 size_t locsymcount;
9225 size_t extsymoff;
9226 Elf_Internal_Sym *isymbuf;
9227 Elf_Internal_Sym *isym;
9228 Elf_Internal_Sym *isymend;
9229 long *pindex;
9230 asection **ppsection;
9231 asection *o;
9232 const struct elf_backend_data *bed;
9233 struct elf_link_hash_entry **sym_hashes;
9234 bfd_size_type address_size;
9235 bfd_vma r_type_mask;
9236 int r_sym_shift;
9237 bfd_boolean have_file_sym = FALSE;
9238
9239 output_bfd = flinfo->output_bfd;
9240 bed = get_elf_backend_data (output_bfd);
9241 relocate_section = bed->elf_backend_relocate_section;
9242
9243 /* If this is a dynamic object, we don't want to do anything here:
9244 we don't want the local symbols, and we don't want the section
9245 contents. */
9246 if ((input_bfd->flags & DYNAMIC) != 0)
9247 return TRUE;
9248
9249 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9250 if (elf_bad_symtab (input_bfd))
9251 {
9252 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9253 extsymoff = 0;
9254 }
9255 else
9256 {
9257 locsymcount = symtab_hdr->sh_info;
9258 extsymoff = symtab_hdr->sh_info;
9259 }
9260
9261 /* Read the local symbols. */
9262 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9263 if (isymbuf == NULL && locsymcount != 0)
9264 {
9265 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9266 flinfo->internal_syms,
9267 flinfo->external_syms,
9268 flinfo->locsym_shndx);
9269 if (isymbuf == NULL)
9270 return FALSE;
9271 }
9272
9273 /* Find local symbol sections and adjust values of symbols in
9274 SEC_MERGE sections. Write out those local symbols we know are
9275 going into the output file. */
9276 isymend = isymbuf + locsymcount;
9277 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9278 isym < isymend;
9279 isym++, pindex++, ppsection++)
9280 {
9281 asection *isec;
9282 const char *name;
9283 Elf_Internal_Sym osym;
9284 long indx;
9285 int ret;
9286
9287 *pindex = -1;
9288
9289 if (elf_bad_symtab (input_bfd))
9290 {
9291 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9292 {
9293 *ppsection = NULL;
9294 continue;
9295 }
9296 }
9297
9298 if (isym->st_shndx == SHN_UNDEF)
9299 isec = bfd_und_section_ptr;
9300 else if (isym->st_shndx == SHN_ABS)
9301 isec = bfd_abs_section_ptr;
9302 else if (isym->st_shndx == SHN_COMMON)
9303 isec = bfd_com_section_ptr;
9304 else
9305 {
9306 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9307 if (isec == NULL)
9308 {
9309 /* Don't attempt to output symbols with st_shnx in the
9310 reserved range other than SHN_ABS and SHN_COMMON. */
9311 *ppsection = NULL;
9312 continue;
9313 }
9314 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9315 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9316 isym->st_value =
9317 _bfd_merged_section_offset (output_bfd, &isec,
9318 elf_section_data (isec)->sec_info,
9319 isym->st_value);
9320 }
9321
9322 *ppsection = isec;
9323
9324 /* Don't output the first, undefined, symbol. */
9325 if (ppsection == flinfo->sections)
9326 continue;
9327
9328 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9329 {
9330 /* We never output section symbols. Instead, we use the
9331 section symbol of the corresponding section in the output
9332 file. */
9333 continue;
9334 }
9335
9336 /* If we are stripping all symbols, we don't want to output this
9337 one. */
9338 if (flinfo->info->strip == strip_all)
9339 continue;
9340
9341 /* If we are discarding all local symbols, we don't want to
9342 output this one. If we are generating a relocatable output
9343 file, then some of the local symbols may be required by
9344 relocs; we output them below as we discover that they are
9345 needed. */
9346 if (flinfo->info->discard == discard_all)
9347 continue;
9348
9349 /* If this symbol is defined in a section which we are
9350 discarding, we don't need to keep it. */
9351 if (isym->st_shndx != SHN_UNDEF
9352 && isym->st_shndx < SHN_LORESERVE
9353 && bfd_section_removed_from_list (output_bfd,
9354 isec->output_section))
9355 continue;
9356
9357 /* Get the name of the symbol. */
9358 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9359 isym->st_name);
9360 if (name == NULL)
9361 return FALSE;
9362
9363 /* See if we are discarding symbols with this name. */
9364 if ((flinfo->info->strip == strip_some
9365 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9366 == NULL))
9367 || (((flinfo->info->discard == discard_sec_merge
9368 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9369 || flinfo->info->discard == discard_l)
9370 && bfd_is_local_label_name (input_bfd, name)))
9371 continue;
9372
9373 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9374 {
9375 have_file_sym = TRUE;
9376 flinfo->filesym_count += 1;
9377 }
9378 if (!have_file_sym)
9379 {
9380 /* In the absence of debug info, bfd_find_nearest_line uses
9381 FILE symbols to determine the source file for local
9382 function symbols. Provide a FILE symbol here if input
9383 files lack such, so that their symbols won't be
9384 associated with a previous input file. It's not the
9385 source file, but the best we can do. */
9386 have_file_sym = TRUE;
9387 flinfo->filesym_count += 1;
9388 memset (&osym, 0, sizeof (osym));
9389 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9390 osym.st_shndx = SHN_ABS;
9391 if (!elf_link_output_sym (flinfo, input_bfd->filename, &osym,
9392 bfd_abs_section_ptr, NULL))
9393 return FALSE;
9394 }
9395
9396 osym = *isym;
9397
9398 /* Adjust the section index for the output file. */
9399 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9400 isec->output_section);
9401 if (osym.st_shndx == SHN_BAD)
9402 return FALSE;
9403
9404 /* ELF symbols in relocatable files are section relative, but
9405 in executable files they are virtual addresses. Note that
9406 this code assumes that all ELF sections have an associated
9407 BFD section with a reasonable value for output_offset; below
9408 we assume that they also have a reasonable value for
9409 output_section. Any special sections must be set up to meet
9410 these requirements. */
9411 osym.st_value += isec->output_offset;
9412 if (!flinfo->info->relocatable)
9413 {
9414 osym.st_value += isec->output_section->vma;
9415 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9416 {
9417 /* STT_TLS symbols are relative to PT_TLS segment base. */
9418 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9419 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9420 }
9421 }
9422
9423 indx = bfd_get_symcount (output_bfd);
9424 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9425 if (ret == 0)
9426 return FALSE;
9427 else if (ret == 1)
9428 *pindex = indx;
9429 }
9430
9431 if (bed->s->arch_size == 32)
9432 {
9433 r_type_mask = 0xff;
9434 r_sym_shift = 8;
9435 address_size = 4;
9436 }
9437 else
9438 {
9439 r_type_mask = 0xffffffff;
9440 r_sym_shift = 32;
9441 address_size = 8;
9442 }
9443
9444 /* Relocate the contents of each section. */
9445 sym_hashes = elf_sym_hashes (input_bfd);
9446 for (o = input_bfd->sections; o != NULL; o = o->next)
9447 {
9448 bfd_byte *contents;
9449
9450 if (! o->linker_mark)
9451 {
9452 /* This section was omitted from the link. */
9453 continue;
9454 }
9455
9456 if (flinfo->info->relocatable
9457 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9458 {
9459 /* Deal with the group signature symbol. */
9460 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9461 unsigned long symndx = sec_data->this_hdr.sh_info;
9462 asection *osec = o->output_section;
9463
9464 if (symndx >= locsymcount
9465 || (elf_bad_symtab (input_bfd)
9466 && flinfo->sections[symndx] == NULL))
9467 {
9468 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9469 while (h->root.type == bfd_link_hash_indirect
9470 || h->root.type == bfd_link_hash_warning)
9471 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9472 /* Arrange for symbol to be output. */
9473 h->indx = -2;
9474 elf_section_data (osec)->this_hdr.sh_info = -2;
9475 }
9476 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9477 {
9478 /* We'll use the output section target_index. */
9479 asection *sec = flinfo->sections[symndx]->output_section;
9480 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9481 }
9482 else
9483 {
9484 if (flinfo->indices[symndx] == -1)
9485 {
9486 /* Otherwise output the local symbol now. */
9487 Elf_Internal_Sym sym = isymbuf[symndx];
9488 asection *sec = flinfo->sections[symndx]->output_section;
9489 const char *name;
9490 long indx;
9491 int ret;
9492
9493 name = bfd_elf_string_from_elf_section (input_bfd,
9494 symtab_hdr->sh_link,
9495 sym.st_name);
9496 if (name == NULL)
9497 return FALSE;
9498
9499 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9500 sec);
9501 if (sym.st_shndx == SHN_BAD)
9502 return FALSE;
9503
9504 sym.st_value += o->output_offset;
9505
9506 indx = bfd_get_symcount (output_bfd);
9507 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9508 if (ret == 0)
9509 return FALSE;
9510 else if (ret == 1)
9511 flinfo->indices[symndx] = indx;
9512 else
9513 abort ();
9514 }
9515 elf_section_data (osec)->this_hdr.sh_info
9516 = flinfo->indices[symndx];
9517 }
9518 }
9519
9520 if ((o->flags & SEC_HAS_CONTENTS) == 0
9521 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9522 continue;
9523
9524 if ((o->flags & SEC_LINKER_CREATED) != 0)
9525 {
9526 /* Section was created by _bfd_elf_link_create_dynamic_sections
9527 or somesuch. */
9528 continue;
9529 }
9530
9531 /* Get the contents of the section. They have been cached by a
9532 relaxation routine. Note that o is a section in an input
9533 file, so the contents field will not have been set by any of
9534 the routines which work on output files. */
9535 if (elf_section_data (o)->this_hdr.contents != NULL)
9536 contents = elf_section_data (o)->this_hdr.contents;
9537 else
9538 {
9539 contents = flinfo->contents;
9540 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9541 return FALSE;
9542 }
9543
9544 if ((o->flags & SEC_RELOC) != 0)
9545 {
9546 Elf_Internal_Rela *internal_relocs;
9547 Elf_Internal_Rela *rel, *relend;
9548 int action_discarded;
9549 int ret;
9550
9551 /* Get the swapped relocs. */
9552 internal_relocs
9553 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9554 flinfo->internal_relocs, FALSE);
9555 if (internal_relocs == NULL
9556 && o->reloc_count > 0)
9557 return FALSE;
9558
9559 /* We need to reverse-copy input .ctors/.dtors sections if
9560 they are placed in .init_array/.finit_array for output. */
9561 if (o->size > address_size
9562 && ((strncmp (o->name, ".ctors", 6) == 0
9563 && strcmp (o->output_section->name,
9564 ".init_array") == 0)
9565 || (strncmp (o->name, ".dtors", 6) == 0
9566 && strcmp (o->output_section->name,
9567 ".fini_array") == 0))
9568 && (o->name[6] == 0 || o->name[6] == '.'))
9569 {
9570 if (o->size != o->reloc_count * address_size)
9571 {
9572 (*_bfd_error_handler)
9573 (_("error: %B: size of section %A is not "
9574 "multiple of address size"),
9575 input_bfd, o);
9576 bfd_set_error (bfd_error_on_input);
9577 return FALSE;
9578 }
9579 o->flags |= SEC_ELF_REVERSE_COPY;
9580 }
9581
9582 action_discarded = -1;
9583 if (!elf_section_ignore_discarded_relocs (o))
9584 action_discarded = (*bed->action_discarded) (o);
9585
9586 /* Run through the relocs evaluating complex reloc symbols and
9587 looking for relocs against symbols from discarded sections
9588 or section symbols from removed link-once sections.
9589 Complain about relocs against discarded sections. Zero
9590 relocs against removed link-once sections. */
9591
9592 rel = internal_relocs;
9593 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9594 for ( ; rel < relend; rel++)
9595 {
9596 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9597 unsigned int s_type;
9598 asection **ps, *sec;
9599 struct elf_link_hash_entry *h = NULL;
9600 const char *sym_name;
9601
9602 if (r_symndx == STN_UNDEF)
9603 continue;
9604
9605 if (r_symndx >= locsymcount
9606 || (elf_bad_symtab (input_bfd)
9607 && flinfo->sections[r_symndx] == NULL))
9608 {
9609 h = sym_hashes[r_symndx - extsymoff];
9610
9611 /* Badly formatted input files can contain relocs that
9612 reference non-existant symbols. Check here so that
9613 we do not seg fault. */
9614 if (h == NULL)
9615 {
9616 char buffer [32];
9617
9618 sprintf_vma (buffer, rel->r_info);
9619 (*_bfd_error_handler)
9620 (_("error: %B contains a reloc (0x%s) for section %A "
9621 "that references a non-existent global symbol"),
9622 input_bfd, o, buffer);
9623 bfd_set_error (bfd_error_bad_value);
9624 return FALSE;
9625 }
9626
9627 while (h->root.type == bfd_link_hash_indirect
9628 || h->root.type == bfd_link_hash_warning)
9629 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9630
9631 s_type = h->type;
9632
9633 ps = NULL;
9634 if (h->root.type == bfd_link_hash_defined
9635 || h->root.type == bfd_link_hash_defweak)
9636 ps = &h->root.u.def.section;
9637
9638 sym_name = h->root.root.string;
9639 }
9640 else
9641 {
9642 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9643
9644 s_type = ELF_ST_TYPE (sym->st_info);
9645 ps = &flinfo->sections[r_symndx];
9646 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9647 sym, *ps);
9648 }
9649
9650 if ((s_type == STT_RELC || s_type == STT_SRELC)
9651 && !flinfo->info->relocatable)
9652 {
9653 bfd_vma val;
9654 bfd_vma dot = (rel->r_offset
9655 + o->output_offset + o->output_section->vma);
9656 #ifdef DEBUG
9657 printf ("Encountered a complex symbol!");
9658 printf (" (input_bfd %s, section %s, reloc %ld\n",
9659 input_bfd->filename, o->name,
9660 (long) (rel - internal_relocs));
9661 printf (" symbol: idx %8.8lx, name %s\n",
9662 r_symndx, sym_name);
9663 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9664 (unsigned long) rel->r_info,
9665 (unsigned long) rel->r_offset);
9666 #endif
9667 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9668 isymbuf, locsymcount, s_type == STT_SRELC))
9669 return FALSE;
9670
9671 /* Symbol evaluated OK. Update to absolute value. */
9672 set_symbol_value (input_bfd, isymbuf, locsymcount,
9673 r_symndx, val);
9674 continue;
9675 }
9676
9677 if (action_discarded != -1 && ps != NULL)
9678 {
9679 /* Complain if the definition comes from a
9680 discarded section. */
9681 if ((sec = *ps) != NULL && discarded_section (sec))
9682 {
9683 BFD_ASSERT (r_symndx != STN_UNDEF);
9684 if (action_discarded & COMPLAIN)
9685 (*flinfo->info->callbacks->einfo)
9686 (_("%X`%s' referenced in section `%A' of %B: "
9687 "defined in discarded section `%A' of %B\n"),
9688 sym_name, o, input_bfd, sec, sec->owner);
9689
9690 /* Try to do the best we can to support buggy old
9691 versions of gcc. Pretend that the symbol is
9692 really defined in the kept linkonce section.
9693 FIXME: This is quite broken. Modifying the
9694 symbol here means we will be changing all later
9695 uses of the symbol, not just in this section. */
9696 if (action_discarded & PRETEND)
9697 {
9698 asection *kept;
9699
9700 kept = _bfd_elf_check_kept_section (sec,
9701 flinfo->info);
9702 if (kept != NULL)
9703 {
9704 *ps = kept;
9705 continue;
9706 }
9707 }
9708 }
9709 }
9710 }
9711
9712 /* Relocate the section by invoking a back end routine.
9713
9714 The back end routine is responsible for adjusting the
9715 section contents as necessary, and (if using Rela relocs
9716 and generating a relocatable output file) adjusting the
9717 reloc addend as necessary.
9718
9719 The back end routine does not have to worry about setting
9720 the reloc address or the reloc symbol index.
9721
9722 The back end routine is given a pointer to the swapped in
9723 internal symbols, and can access the hash table entries
9724 for the external symbols via elf_sym_hashes (input_bfd).
9725
9726 When generating relocatable output, the back end routine
9727 must handle STB_LOCAL/STT_SECTION symbols specially. The
9728 output symbol is going to be a section symbol
9729 corresponding to the output section, which will require
9730 the addend to be adjusted. */
9731
9732 ret = (*relocate_section) (output_bfd, flinfo->info,
9733 input_bfd, o, contents,
9734 internal_relocs,
9735 isymbuf,
9736 flinfo->sections);
9737 if (!ret)
9738 return FALSE;
9739
9740 if (ret == 2
9741 || flinfo->info->relocatable
9742 || flinfo->info->emitrelocations)
9743 {
9744 Elf_Internal_Rela *irela;
9745 Elf_Internal_Rela *irelaend, *irelamid;
9746 bfd_vma last_offset;
9747 struct elf_link_hash_entry **rel_hash;
9748 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9749 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9750 unsigned int next_erel;
9751 bfd_boolean rela_normal;
9752 struct bfd_elf_section_data *esdi, *esdo;
9753
9754 esdi = elf_section_data (o);
9755 esdo = elf_section_data (o->output_section);
9756 rela_normal = FALSE;
9757
9758 /* Adjust the reloc addresses and symbol indices. */
9759
9760 irela = internal_relocs;
9761 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9762 rel_hash = esdo->rel.hashes + esdo->rel.count;
9763 /* We start processing the REL relocs, if any. When we reach
9764 IRELAMID in the loop, we switch to the RELA relocs. */
9765 irelamid = irela;
9766 if (esdi->rel.hdr != NULL)
9767 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9768 * bed->s->int_rels_per_ext_rel);
9769 rel_hash_list = rel_hash;
9770 rela_hash_list = NULL;
9771 last_offset = o->output_offset;
9772 if (!flinfo->info->relocatable)
9773 last_offset += o->output_section->vma;
9774 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9775 {
9776 unsigned long r_symndx;
9777 asection *sec;
9778 Elf_Internal_Sym sym;
9779
9780 if (next_erel == bed->s->int_rels_per_ext_rel)
9781 {
9782 rel_hash++;
9783 next_erel = 0;
9784 }
9785
9786 if (irela == irelamid)
9787 {
9788 rel_hash = esdo->rela.hashes + esdo->rela.count;
9789 rela_hash_list = rel_hash;
9790 rela_normal = bed->rela_normal;
9791 }
9792
9793 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9794 flinfo->info, o,
9795 irela->r_offset);
9796 if (irela->r_offset >= (bfd_vma) -2)
9797 {
9798 /* This is a reloc for a deleted entry or somesuch.
9799 Turn it into an R_*_NONE reloc, at the same
9800 offset as the last reloc. elf_eh_frame.c and
9801 bfd_elf_discard_info rely on reloc offsets
9802 being ordered. */
9803 irela->r_offset = last_offset;
9804 irela->r_info = 0;
9805 irela->r_addend = 0;
9806 continue;
9807 }
9808
9809 irela->r_offset += o->output_offset;
9810
9811 /* Relocs in an executable have to be virtual addresses. */
9812 if (!flinfo->info->relocatable)
9813 irela->r_offset += o->output_section->vma;
9814
9815 last_offset = irela->r_offset;
9816
9817 r_symndx = irela->r_info >> r_sym_shift;
9818 if (r_symndx == STN_UNDEF)
9819 continue;
9820
9821 if (r_symndx >= locsymcount
9822 || (elf_bad_symtab (input_bfd)
9823 && flinfo->sections[r_symndx] == NULL))
9824 {
9825 struct elf_link_hash_entry *rh;
9826 unsigned long indx;
9827
9828 /* This is a reloc against a global symbol. We
9829 have not yet output all the local symbols, so
9830 we do not know the symbol index of any global
9831 symbol. We set the rel_hash entry for this
9832 reloc to point to the global hash table entry
9833 for this symbol. The symbol index is then
9834 set at the end of bfd_elf_final_link. */
9835 indx = r_symndx - extsymoff;
9836 rh = elf_sym_hashes (input_bfd)[indx];
9837 while (rh->root.type == bfd_link_hash_indirect
9838 || rh->root.type == bfd_link_hash_warning)
9839 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9840
9841 /* Setting the index to -2 tells
9842 elf_link_output_extsym that this symbol is
9843 used by a reloc. */
9844 BFD_ASSERT (rh->indx < 0);
9845 rh->indx = -2;
9846
9847 *rel_hash = rh;
9848
9849 continue;
9850 }
9851
9852 /* This is a reloc against a local symbol. */
9853
9854 *rel_hash = NULL;
9855 sym = isymbuf[r_symndx];
9856 sec = flinfo->sections[r_symndx];
9857 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9858 {
9859 /* I suppose the backend ought to fill in the
9860 section of any STT_SECTION symbol against a
9861 processor specific section. */
9862 r_symndx = STN_UNDEF;
9863 if (bfd_is_abs_section (sec))
9864 ;
9865 else if (sec == NULL || sec->owner == NULL)
9866 {
9867 bfd_set_error (bfd_error_bad_value);
9868 return FALSE;
9869 }
9870 else
9871 {
9872 asection *osec = sec->output_section;
9873
9874 /* If we have discarded a section, the output
9875 section will be the absolute section. In
9876 case of discarded SEC_MERGE sections, use
9877 the kept section. relocate_section should
9878 have already handled discarded linkonce
9879 sections. */
9880 if (bfd_is_abs_section (osec)
9881 && sec->kept_section != NULL
9882 && sec->kept_section->output_section != NULL)
9883 {
9884 osec = sec->kept_section->output_section;
9885 irela->r_addend -= osec->vma;
9886 }
9887
9888 if (!bfd_is_abs_section (osec))
9889 {
9890 r_symndx = osec->target_index;
9891 if (r_symndx == STN_UNDEF)
9892 {
9893 irela->r_addend += osec->vma;
9894 osec = _bfd_nearby_section (output_bfd, osec,
9895 osec->vma);
9896 irela->r_addend -= osec->vma;
9897 r_symndx = osec->target_index;
9898 }
9899 }
9900 }
9901
9902 /* Adjust the addend according to where the
9903 section winds up in the output section. */
9904 if (rela_normal)
9905 irela->r_addend += sec->output_offset;
9906 }
9907 else
9908 {
9909 if (flinfo->indices[r_symndx] == -1)
9910 {
9911 unsigned long shlink;
9912 const char *name;
9913 asection *osec;
9914 long indx;
9915
9916 if (flinfo->info->strip == strip_all)
9917 {
9918 /* You can't do ld -r -s. */
9919 bfd_set_error (bfd_error_invalid_operation);
9920 return FALSE;
9921 }
9922
9923 /* This symbol was skipped earlier, but
9924 since it is needed by a reloc, we
9925 must output it now. */
9926 shlink = symtab_hdr->sh_link;
9927 name = (bfd_elf_string_from_elf_section
9928 (input_bfd, shlink, sym.st_name));
9929 if (name == NULL)
9930 return FALSE;
9931
9932 osec = sec->output_section;
9933 sym.st_shndx =
9934 _bfd_elf_section_from_bfd_section (output_bfd,
9935 osec);
9936 if (sym.st_shndx == SHN_BAD)
9937 return FALSE;
9938
9939 sym.st_value += sec->output_offset;
9940 if (!flinfo->info->relocatable)
9941 {
9942 sym.st_value += osec->vma;
9943 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9944 {
9945 /* STT_TLS symbols are relative to PT_TLS
9946 segment base. */
9947 BFD_ASSERT (elf_hash_table (flinfo->info)
9948 ->tls_sec != NULL);
9949 sym.st_value -= (elf_hash_table (flinfo->info)
9950 ->tls_sec->vma);
9951 }
9952 }
9953
9954 indx = bfd_get_symcount (output_bfd);
9955 ret = elf_link_output_sym (flinfo, name, &sym, sec,
9956 NULL);
9957 if (ret == 0)
9958 return FALSE;
9959 else if (ret == 1)
9960 flinfo->indices[r_symndx] = indx;
9961 else
9962 abort ();
9963 }
9964
9965 r_symndx = flinfo->indices[r_symndx];
9966 }
9967
9968 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9969 | (irela->r_info & r_type_mask));
9970 }
9971
9972 /* Swap out the relocs. */
9973 input_rel_hdr = esdi->rel.hdr;
9974 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
9975 {
9976 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9977 input_rel_hdr,
9978 internal_relocs,
9979 rel_hash_list))
9980 return FALSE;
9981 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9982 * bed->s->int_rels_per_ext_rel);
9983 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9984 }
9985
9986 input_rela_hdr = esdi->rela.hdr;
9987 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
9988 {
9989 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9990 input_rela_hdr,
9991 internal_relocs,
9992 rela_hash_list))
9993 return FALSE;
9994 }
9995 }
9996 }
9997
9998 /* Write out the modified section contents. */
9999 if (bed->elf_backend_write_section
10000 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10001 contents))
10002 {
10003 /* Section written out. */
10004 }
10005 else switch (o->sec_info_type)
10006 {
10007 case SEC_INFO_TYPE_STABS:
10008 if (! (_bfd_write_section_stabs
10009 (output_bfd,
10010 &elf_hash_table (flinfo->info)->stab_info,
10011 o, &elf_section_data (o)->sec_info, contents)))
10012 return FALSE;
10013 break;
10014 case SEC_INFO_TYPE_MERGE:
10015 if (! _bfd_write_merged_section (output_bfd, o,
10016 elf_section_data (o)->sec_info))
10017 return FALSE;
10018 break;
10019 case SEC_INFO_TYPE_EH_FRAME:
10020 {
10021 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10022 o, contents))
10023 return FALSE;
10024 }
10025 break;
10026 default:
10027 {
10028 /* FIXME: octets_per_byte. */
10029 if (! (o->flags & SEC_EXCLUDE))
10030 {
10031 file_ptr offset = (file_ptr) o->output_offset;
10032 bfd_size_type todo = o->size;
10033 if ((o->flags & SEC_ELF_REVERSE_COPY))
10034 {
10035 /* Reverse-copy input section to output. */
10036 do
10037 {
10038 todo -= address_size;
10039 if (! bfd_set_section_contents (output_bfd,
10040 o->output_section,
10041 contents + todo,
10042 offset,
10043 address_size))
10044 return FALSE;
10045 if (todo == 0)
10046 break;
10047 offset += address_size;
10048 }
10049 while (1);
10050 }
10051 else if (! bfd_set_section_contents (output_bfd,
10052 o->output_section,
10053 contents,
10054 offset, todo))
10055 return FALSE;
10056 }
10057 }
10058 break;
10059 }
10060 }
10061
10062 return TRUE;
10063 }
10064
10065 /* Generate a reloc when linking an ELF file. This is a reloc
10066 requested by the linker, and does not come from any input file. This
10067 is used to build constructor and destructor tables when linking
10068 with -Ur. */
10069
10070 static bfd_boolean
10071 elf_reloc_link_order (bfd *output_bfd,
10072 struct bfd_link_info *info,
10073 asection *output_section,
10074 struct bfd_link_order *link_order)
10075 {
10076 reloc_howto_type *howto;
10077 long indx;
10078 bfd_vma offset;
10079 bfd_vma addend;
10080 struct bfd_elf_section_reloc_data *reldata;
10081 struct elf_link_hash_entry **rel_hash_ptr;
10082 Elf_Internal_Shdr *rel_hdr;
10083 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10084 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10085 bfd_byte *erel;
10086 unsigned int i;
10087 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10088
10089 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10090 if (howto == NULL)
10091 {
10092 bfd_set_error (bfd_error_bad_value);
10093 return FALSE;
10094 }
10095
10096 addend = link_order->u.reloc.p->addend;
10097
10098 if (esdo->rel.hdr)
10099 reldata = &esdo->rel;
10100 else if (esdo->rela.hdr)
10101 reldata = &esdo->rela;
10102 else
10103 {
10104 reldata = NULL;
10105 BFD_ASSERT (0);
10106 }
10107
10108 /* Figure out the symbol index. */
10109 rel_hash_ptr = reldata->hashes + reldata->count;
10110 if (link_order->type == bfd_section_reloc_link_order)
10111 {
10112 indx = link_order->u.reloc.p->u.section->target_index;
10113 BFD_ASSERT (indx != 0);
10114 *rel_hash_ptr = NULL;
10115 }
10116 else
10117 {
10118 struct elf_link_hash_entry *h;
10119
10120 /* Treat a reloc against a defined symbol as though it were
10121 actually against the section. */
10122 h = ((struct elf_link_hash_entry *)
10123 bfd_wrapped_link_hash_lookup (output_bfd, info,
10124 link_order->u.reloc.p->u.name,
10125 FALSE, FALSE, TRUE));
10126 if (h != NULL
10127 && (h->root.type == bfd_link_hash_defined
10128 || h->root.type == bfd_link_hash_defweak))
10129 {
10130 asection *section;
10131
10132 section = h->root.u.def.section;
10133 indx = section->output_section->target_index;
10134 *rel_hash_ptr = NULL;
10135 /* It seems that we ought to add the symbol value to the
10136 addend here, but in practice it has already been added
10137 because it was passed to constructor_callback. */
10138 addend += section->output_section->vma + section->output_offset;
10139 }
10140 else if (h != NULL)
10141 {
10142 /* Setting the index to -2 tells elf_link_output_extsym that
10143 this symbol is used by a reloc. */
10144 h->indx = -2;
10145 *rel_hash_ptr = h;
10146 indx = 0;
10147 }
10148 else
10149 {
10150 if (! ((*info->callbacks->unattached_reloc)
10151 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10152 return FALSE;
10153 indx = 0;
10154 }
10155 }
10156
10157 /* If this is an inplace reloc, we must write the addend into the
10158 object file. */
10159 if (howto->partial_inplace && addend != 0)
10160 {
10161 bfd_size_type size;
10162 bfd_reloc_status_type rstat;
10163 bfd_byte *buf;
10164 bfd_boolean ok;
10165 const char *sym_name;
10166
10167 size = (bfd_size_type) bfd_get_reloc_size (howto);
10168 buf = (bfd_byte *) bfd_zmalloc (size);
10169 if (buf == NULL)
10170 return FALSE;
10171 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10172 switch (rstat)
10173 {
10174 case bfd_reloc_ok:
10175 break;
10176
10177 default:
10178 case bfd_reloc_outofrange:
10179 abort ();
10180
10181 case bfd_reloc_overflow:
10182 if (link_order->type == bfd_section_reloc_link_order)
10183 sym_name = bfd_section_name (output_bfd,
10184 link_order->u.reloc.p->u.section);
10185 else
10186 sym_name = link_order->u.reloc.p->u.name;
10187 if (! ((*info->callbacks->reloc_overflow)
10188 (info, NULL, sym_name, howto->name, addend, NULL,
10189 NULL, (bfd_vma) 0)))
10190 {
10191 free (buf);
10192 return FALSE;
10193 }
10194 break;
10195 }
10196 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10197 link_order->offset, size);
10198 free (buf);
10199 if (! ok)
10200 return FALSE;
10201 }
10202
10203 /* The address of a reloc is relative to the section in a
10204 relocatable file, and is a virtual address in an executable
10205 file. */
10206 offset = link_order->offset;
10207 if (! info->relocatable)
10208 offset += output_section->vma;
10209
10210 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10211 {
10212 irel[i].r_offset = offset;
10213 irel[i].r_info = 0;
10214 irel[i].r_addend = 0;
10215 }
10216 if (bed->s->arch_size == 32)
10217 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10218 else
10219 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10220
10221 rel_hdr = reldata->hdr;
10222 erel = rel_hdr->contents;
10223 if (rel_hdr->sh_type == SHT_REL)
10224 {
10225 erel += reldata->count * bed->s->sizeof_rel;
10226 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10227 }
10228 else
10229 {
10230 irel[0].r_addend = addend;
10231 erel += reldata->count * bed->s->sizeof_rela;
10232 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10233 }
10234
10235 ++reldata->count;
10236
10237 return TRUE;
10238 }
10239
10240
10241 /* Get the output vma of the section pointed to by the sh_link field. */
10242
10243 static bfd_vma
10244 elf_get_linked_section_vma (struct bfd_link_order *p)
10245 {
10246 Elf_Internal_Shdr **elf_shdrp;
10247 asection *s;
10248 int elfsec;
10249
10250 s = p->u.indirect.section;
10251 elf_shdrp = elf_elfsections (s->owner);
10252 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10253 elfsec = elf_shdrp[elfsec]->sh_link;
10254 /* PR 290:
10255 The Intel C compiler generates SHT_IA_64_UNWIND with
10256 SHF_LINK_ORDER. But it doesn't set the sh_link or
10257 sh_info fields. Hence we could get the situation
10258 where elfsec is 0. */
10259 if (elfsec == 0)
10260 {
10261 const struct elf_backend_data *bed
10262 = get_elf_backend_data (s->owner);
10263 if (bed->link_order_error_handler)
10264 bed->link_order_error_handler
10265 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10266 return 0;
10267 }
10268 else
10269 {
10270 s = elf_shdrp[elfsec]->bfd_section;
10271 return s->output_section->vma + s->output_offset;
10272 }
10273 }
10274
10275
10276 /* Compare two sections based on the locations of the sections they are
10277 linked to. Used by elf_fixup_link_order. */
10278
10279 static int
10280 compare_link_order (const void * a, const void * b)
10281 {
10282 bfd_vma apos;
10283 bfd_vma bpos;
10284
10285 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10286 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10287 if (apos < bpos)
10288 return -1;
10289 return apos > bpos;
10290 }
10291
10292
10293 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10294 order as their linked sections. Returns false if this could not be done
10295 because an output section includes both ordered and unordered
10296 sections. Ideally we'd do this in the linker proper. */
10297
10298 static bfd_boolean
10299 elf_fixup_link_order (bfd *abfd, asection *o)
10300 {
10301 int seen_linkorder;
10302 int seen_other;
10303 int n;
10304 struct bfd_link_order *p;
10305 bfd *sub;
10306 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10307 unsigned elfsec;
10308 struct bfd_link_order **sections;
10309 asection *s, *other_sec, *linkorder_sec;
10310 bfd_vma offset;
10311
10312 other_sec = NULL;
10313 linkorder_sec = NULL;
10314 seen_other = 0;
10315 seen_linkorder = 0;
10316 for (p = o->map_head.link_order; p != NULL; p = p->next)
10317 {
10318 if (p->type == bfd_indirect_link_order)
10319 {
10320 s = p->u.indirect.section;
10321 sub = s->owner;
10322 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10323 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10324 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10325 && elfsec < elf_numsections (sub)
10326 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10327 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10328 {
10329 seen_linkorder++;
10330 linkorder_sec = s;
10331 }
10332 else
10333 {
10334 seen_other++;
10335 other_sec = s;
10336 }
10337 }
10338 else
10339 seen_other++;
10340
10341 if (seen_other && seen_linkorder)
10342 {
10343 if (other_sec && linkorder_sec)
10344 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10345 o, linkorder_sec,
10346 linkorder_sec->owner, other_sec,
10347 other_sec->owner);
10348 else
10349 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10350 o);
10351 bfd_set_error (bfd_error_bad_value);
10352 return FALSE;
10353 }
10354 }
10355
10356 if (!seen_linkorder)
10357 return TRUE;
10358
10359 sections = (struct bfd_link_order **)
10360 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10361 if (sections == NULL)
10362 return FALSE;
10363 seen_linkorder = 0;
10364
10365 for (p = o->map_head.link_order; p != NULL; p = p->next)
10366 {
10367 sections[seen_linkorder++] = p;
10368 }
10369 /* Sort the input sections in the order of their linked section. */
10370 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10371 compare_link_order);
10372
10373 /* Change the offsets of the sections. */
10374 offset = 0;
10375 for (n = 0; n < seen_linkorder; n++)
10376 {
10377 s = sections[n]->u.indirect.section;
10378 offset &= ~(bfd_vma) 0 << s->alignment_power;
10379 s->output_offset = offset;
10380 sections[n]->offset = offset;
10381 /* FIXME: octets_per_byte. */
10382 offset += sections[n]->size;
10383 }
10384
10385 free (sections);
10386 return TRUE;
10387 }
10388
10389 static void
10390 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10391 {
10392 asection *o;
10393
10394 if (flinfo->symstrtab != NULL)
10395 _bfd_stringtab_free (flinfo->symstrtab);
10396 if (flinfo->contents != NULL)
10397 free (flinfo->contents);
10398 if (flinfo->external_relocs != NULL)
10399 free (flinfo->external_relocs);
10400 if (flinfo->internal_relocs != NULL)
10401 free (flinfo->internal_relocs);
10402 if (flinfo->external_syms != NULL)
10403 free (flinfo->external_syms);
10404 if (flinfo->locsym_shndx != NULL)
10405 free (flinfo->locsym_shndx);
10406 if (flinfo->internal_syms != NULL)
10407 free (flinfo->internal_syms);
10408 if (flinfo->indices != NULL)
10409 free (flinfo->indices);
10410 if (flinfo->sections != NULL)
10411 free (flinfo->sections);
10412 if (flinfo->symbuf != NULL)
10413 free (flinfo->symbuf);
10414 if (flinfo->symshndxbuf != NULL)
10415 free (flinfo->symshndxbuf);
10416 for (o = obfd->sections; o != NULL; o = o->next)
10417 {
10418 struct bfd_elf_section_data *esdo = elf_section_data (o);
10419 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10420 free (esdo->rel.hashes);
10421 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10422 free (esdo->rela.hashes);
10423 }
10424 }
10425
10426 /* Do the final step of an ELF link. */
10427
10428 bfd_boolean
10429 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10430 {
10431 bfd_boolean dynamic;
10432 bfd_boolean emit_relocs;
10433 bfd *dynobj;
10434 struct elf_final_link_info flinfo;
10435 asection *o;
10436 struct bfd_link_order *p;
10437 bfd *sub;
10438 bfd_size_type max_contents_size;
10439 bfd_size_type max_external_reloc_size;
10440 bfd_size_type max_internal_reloc_count;
10441 bfd_size_type max_sym_count;
10442 bfd_size_type max_sym_shndx_count;
10443 file_ptr off;
10444 Elf_Internal_Sym elfsym;
10445 unsigned int i;
10446 Elf_Internal_Shdr *symtab_hdr;
10447 Elf_Internal_Shdr *symtab_shndx_hdr;
10448 Elf_Internal_Shdr *symstrtab_hdr;
10449 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10450 struct elf_outext_info eoinfo;
10451 bfd_boolean merged;
10452 size_t relativecount = 0;
10453 asection *reldyn = 0;
10454 bfd_size_type amt;
10455 asection *attr_section = NULL;
10456 bfd_vma attr_size = 0;
10457 const char *std_attrs_section;
10458
10459 if (! is_elf_hash_table (info->hash))
10460 return FALSE;
10461
10462 if (info->shared)
10463 abfd->flags |= DYNAMIC;
10464
10465 dynamic = elf_hash_table (info)->dynamic_sections_created;
10466 dynobj = elf_hash_table (info)->dynobj;
10467
10468 emit_relocs = (info->relocatable
10469 || info->emitrelocations);
10470
10471 flinfo.info = info;
10472 flinfo.output_bfd = abfd;
10473 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10474 if (flinfo.symstrtab == NULL)
10475 return FALSE;
10476
10477 if (! dynamic)
10478 {
10479 flinfo.dynsym_sec = NULL;
10480 flinfo.hash_sec = NULL;
10481 flinfo.symver_sec = NULL;
10482 }
10483 else
10484 {
10485 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10486 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10487 /* Note that dynsym_sec can be NULL (on VMS). */
10488 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10489 /* Note that it is OK if symver_sec is NULL. */
10490 }
10491
10492 flinfo.contents = NULL;
10493 flinfo.external_relocs = NULL;
10494 flinfo.internal_relocs = NULL;
10495 flinfo.external_syms = NULL;
10496 flinfo.locsym_shndx = NULL;
10497 flinfo.internal_syms = NULL;
10498 flinfo.indices = NULL;
10499 flinfo.sections = NULL;
10500 flinfo.symbuf = NULL;
10501 flinfo.symshndxbuf = NULL;
10502 flinfo.symbuf_count = 0;
10503 flinfo.shndxbuf_size = 0;
10504 flinfo.filesym_count = 0;
10505
10506 /* The object attributes have been merged. Remove the input
10507 sections from the link, and set the contents of the output
10508 secton. */
10509 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10510 for (o = abfd->sections; o != NULL; o = o->next)
10511 {
10512 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10513 || strcmp (o->name, ".gnu.attributes") == 0)
10514 {
10515 for (p = o->map_head.link_order; p != NULL; p = p->next)
10516 {
10517 asection *input_section;
10518
10519 if (p->type != bfd_indirect_link_order)
10520 continue;
10521 input_section = p->u.indirect.section;
10522 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10523 elf_link_input_bfd ignores this section. */
10524 input_section->flags &= ~SEC_HAS_CONTENTS;
10525 }
10526
10527 attr_size = bfd_elf_obj_attr_size (abfd);
10528 if (attr_size)
10529 {
10530 bfd_set_section_size (abfd, o, attr_size);
10531 attr_section = o;
10532 /* Skip this section later on. */
10533 o->map_head.link_order = NULL;
10534 }
10535 else
10536 o->flags |= SEC_EXCLUDE;
10537 }
10538 }
10539
10540 /* Count up the number of relocations we will output for each output
10541 section, so that we know the sizes of the reloc sections. We
10542 also figure out some maximum sizes. */
10543 max_contents_size = 0;
10544 max_external_reloc_size = 0;
10545 max_internal_reloc_count = 0;
10546 max_sym_count = 0;
10547 max_sym_shndx_count = 0;
10548 merged = FALSE;
10549 for (o = abfd->sections; o != NULL; o = o->next)
10550 {
10551 struct bfd_elf_section_data *esdo = elf_section_data (o);
10552 o->reloc_count = 0;
10553
10554 for (p = o->map_head.link_order; p != NULL; p = p->next)
10555 {
10556 unsigned int reloc_count = 0;
10557 struct bfd_elf_section_data *esdi = NULL;
10558
10559 if (p->type == bfd_section_reloc_link_order
10560 || p->type == bfd_symbol_reloc_link_order)
10561 reloc_count = 1;
10562 else if (p->type == bfd_indirect_link_order)
10563 {
10564 asection *sec;
10565
10566 sec = p->u.indirect.section;
10567 esdi = elf_section_data (sec);
10568
10569 /* Mark all sections which are to be included in the
10570 link. This will normally be every section. We need
10571 to do this so that we can identify any sections which
10572 the linker has decided to not include. */
10573 sec->linker_mark = TRUE;
10574
10575 if (sec->flags & SEC_MERGE)
10576 merged = TRUE;
10577
10578 if (esdo->this_hdr.sh_type == SHT_REL
10579 || esdo->this_hdr.sh_type == SHT_RELA)
10580 /* Some backends use reloc_count in relocation sections
10581 to count particular types of relocs. Of course,
10582 reloc sections themselves can't have relocations. */
10583 reloc_count = 0;
10584 else if (info->relocatable || info->emitrelocations)
10585 reloc_count = sec->reloc_count;
10586 else if (bed->elf_backend_count_relocs)
10587 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10588
10589 if (sec->rawsize > max_contents_size)
10590 max_contents_size = sec->rawsize;
10591 if (sec->size > max_contents_size)
10592 max_contents_size = sec->size;
10593
10594 /* We are interested in just local symbols, not all
10595 symbols. */
10596 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10597 && (sec->owner->flags & DYNAMIC) == 0)
10598 {
10599 size_t sym_count;
10600
10601 if (elf_bad_symtab (sec->owner))
10602 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10603 / bed->s->sizeof_sym);
10604 else
10605 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10606
10607 if (sym_count > max_sym_count)
10608 max_sym_count = sym_count;
10609
10610 if (sym_count > max_sym_shndx_count
10611 && elf_symtab_shndx (sec->owner) != 0)
10612 max_sym_shndx_count = sym_count;
10613
10614 if ((sec->flags & SEC_RELOC) != 0)
10615 {
10616 size_t ext_size = 0;
10617
10618 if (esdi->rel.hdr != NULL)
10619 ext_size = esdi->rel.hdr->sh_size;
10620 if (esdi->rela.hdr != NULL)
10621 ext_size += esdi->rela.hdr->sh_size;
10622
10623 if (ext_size > max_external_reloc_size)
10624 max_external_reloc_size = ext_size;
10625 if (sec->reloc_count > max_internal_reloc_count)
10626 max_internal_reloc_count = sec->reloc_count;
10627 }
10628 }
10629 }
10630
10631 if (reloc_count == 0)
10632 continue;
10633
10634 o->reloc_count += reloc_count;
10635
10636 if (p->type == bfd_indirect_link_order
10637 && (info->relocatable || info->emitrelocations))
10638 {
10639 if (esdi->rel.hdr)
10640 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10641 if (esdi->rela.hdr)
10642 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10643 }
10644 else
10645 {
10646 if (o->use_rela_p)
10647 esdo->rela.count += reloc_count;
10648 else
10649 esdo->rel.count += reloc_count;
10650 }
10651 }
10652
10653 if (o->reloc_count > 0)
10654 o->flags |= SEC_RELOC;
10655 else
10656 {
10657 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10658 set it (this is probably a bug) and if it is set
10659 assign_section_numbers will create a reloc section. */
10660 o->flags &=~ SEC_RELOC;
10661 }
10662
10663 /* If the SEC_ALLOC flag is not set, force the section VMA to
10664 zero. This is done in elf_fake_sections as well, but forcing
10665 the VMA to 0 here will ensure that relocs against these
10666 sections are handled correctly. */
10667 if ((o->flags & SEC_ALLOC) == 0
10668 && ! o->user_set_vma)
10669 o->vma = 0;
10670 }
10671
10672 if (! info->relocatable && merged)
10673 elf_link_hash_traverse (elf_hash_table (info),
10674 _bfd_elf_link_sec_merge_syms, abfd);
10675
10676 /* Figure out the file positions for everything but the symbol table
10677 and the relocs. We set symcount to force assign_section_numbers
10678 to create a symbol table. */
10679 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10680 BFD_ASSERT (! abfd->output_has_begun);
10681 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10682 goto error_return;
10683
10684 /* Set sizes, and assign file positions for reloc sections. */
10685 for (o = abfd->sections; o != NULL; o = o->next)
10686 {
10687 struct bfd_elf_section_data *esdo = elf_section_data (o);
10688 if ((o->flags & SEC_RELOC) != 0)
10689 {
10690 if (esdo->rel.hdr
10691 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10692 goto error_return;
10693
10694 if (esdo->rela.hdr
10695 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10696 goto error_return;
10697 }
10698
10699 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10700 to count upwards while actually outputting the relocations. */
10701 esdo->rel.count = 0;
10702 esdo->rela.count = 0;
10703 }
10704
10705 _bfd_elf_assign_file_positions_for_relocs (abfd);
10706
10707 /* We have now assigned file positions for all the sections except
10708 .symtab and .strtab. We start the .symtab section at the current
10709 file position, and write directly to it. We build the .strtab
10710 section in memory. */
10711 bfd_get_symcount (abfd) = 0;
10712 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10713 /* sh_name is set in prep_headers. */
10714 symtab_hdr->sh_type = SHT_SYMTAB;
10715 /* sh_flags, sh_addr and sh_size all start off zero. */
10716 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10717 /* sh_link is set in assign_section_numbers. */
10718 /* sh_info is set below. */
10719 /* sh_offset is set just below. */
10720 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10721
10722 off = elf_next_file_pos (abfd);
10723 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10724
10725 /* Note that at this point elf_next_file_pos (abfd) is
10726 incorrect. We do not yet know the size of the .symtab section.
10727 We correct next_file_pos below, after we do know the size. */
10728
10729 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10730 continuously seeking to the right position in the file. */
10731 if (! info->keep_memory || max_sym_count < 20)
10732 flinfo.symbuf_size = 20;
10733 else
10734 flinfo.symbuf_size = max_sym_count;
10735 amt = flinfo.symbuf_size;
10736 amt *= bed->s->sizeof_sym;
10737 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10738 if (flinfo.symbuf == NULL)
10739 goto error_return;
10740 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10741 {
10742 /* Wild guess at number of output symbols. realloc'd as needed. */
10743 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10744 flinfo.shndxbuf_size = amt;
10745 amt *= sizeof (Elf_External_Sym_Shndx);
10746 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10747 if (flinfo.symshndxbuf == NULL)
10748 goto error_return;
10749 }
10750
10751 /* Start writing out the symbol table. The first symbol is always a
10752 dummy symbol. */
10753 if (info->strip != strip_all
10754 || emit_relocs)
10755 {
10756 elfsym.st_value = 0;
10757 elfsym.st_size = 0;
10758 elfsym.st_info = 0;
10759 elfsym.st_other = 0;
10760 elfsym.st_shndx = SHN_UNDEF;
10761 elfsym.st_target_internal = 0;
10762 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10763 NULL) != 1)
10764 goto error_return;
10765 }
10766
10767 /* Output a symbol for each section. We output these even if we are
10768 discarding local symbols, since they are used for relocs. These
10769 symbols have no names. We store the index of each one in the
10770 index field of the section, so that we can find it again when
10771 outputting relocs. */
10772 if (info->strip != strip_all
10773 || emit_relocs)
10774 {
10775 elfsym.st_size = 0;
10776 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10777 elfsym.st_other = 0;
10778 elfsym.st_value = 0;
10779 elfsym.st_target_internal = 0;
10780 for (i = 1; i < elf_numsections (abfd); i++)
10781 {
10782 o = bfd_section_from_elf_index (abfd, i);
10783 if (o != NULL)
10784 {
10785 o->target_index = bfd_get_symcount (abfd);
10786 elfsym.st_shndx = i;
10787 if (!info->relocatable)
10788 elfsym.st_value = o->vma;
10789 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10790 goto error_return;
10791 }
10792 }
10793 }
10794
10795 /* Allocate some memory to hold information read in from the input
10796 files. */
10797 if (max_contents_size != 0)
10798 {
10799 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10800 if (flinfo.contents == NULL)
10801 goto error_return;
10802 }
10803
10804 if (max_external_reloc_size != 0)
10805 {
10806 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10807 if (flinfo.external_relocs == NULL)
10808 goto error_return;
10809 }
10810
10811 if (max_internal_reloc_count != 0)
10812 {
10813 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10814 amt *= sizeof (Elf_Internal_Rela);
10815 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10816 if (flinfo.internal_relocs == NULL)
10817 goto error_return;
10818 }
10819
10820 if (max_sym_count != 0)
10821 {
10822 amt = max_sym_count * bed->s->sizeof_sym;
10823 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10824 if (flinfo.external_syms == NULL)
10825 goto error_return;
10826
10827 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10828 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10829 if (flinfo.internal_syms == NULL)
10830 goto error_return;
10831
10832 amt = max_sym_count * sizeof (long);
10833 flinfo.indices = (long int *) bfd_malloc (amt);
10834 if (flinfo.indices == NULL)
10835 goto error_return;
10836
10837 amt = max_sym_count * sizeof (asection *);
10838 flinfo.sections = (asection **) bfd_malloc (amt);
10839 if (flinfo.sections == NULL)
10840 goto error_return;
10841 }
10842
10843 if (max_sym_shndx_count != 0)
10844 {
10845 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10846 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10847 if (flinfo.locsym_shndx == NULL)
10848 goto error_return;
10849 }
10850
10851 if (elf_hash_table (info)->tls_sec)
10852 {
10853 bfd_vma base, end = 0;
10854 asection *sec;
10855
10856 for (sec = elf_hash_table (info)->tls_sec;
10857 sec && (sec->flags & SEC_THREAD_LOCAL);
10858 sec = sec->next)
10859 {
10860 bfd_size_type size = sec->size;
10861
10862 if (size == 0
10863 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10864 {
10865 struct bfd_link_order *ord = sec->map_tail.link_order;
10866
10867 if (ord != NULL)
10868 size = ord->offset + ord->size;
10869 }
10870 end = sec->vma + size;
10871 }
10872 base = elf_hash_table (info)->tls_sec->vma;
10873 /* Only align end of TLS section if static TLS doesn't have special
10874 alignment requirements. */
10875 if (bed->static_tls_alignment == 1)
10876 end = align_power (end,
10877 elf_hash_table (info)->tls_sec->alignment_power);
10878 elf_hash_table (info)->tls_size = end - base;
10879 }
10880
10881 /* Reorder SHF_LINK_ORDER sections. */
10882 for (o = abfd->sections; o != NULL; o = o->next)
10883 {
10884 if (!elf_fixup_link_order (abfd, o))
10885 return FALSE;
10886 }
10887
10888 /* Since ELF permits relocations to be against local symbols, we
10889 must have the local symbols available when we do the relocations.
10890 Since we would rather only read the local symbols once, and we
10891 would rather not keep them in memory, we handle all the
10892 relocations for a single input file at the same time.
10893
10894 Unfortunately, there is no way to know the total number of local
10895 symbols until we have seen all of them, and the local symbol
10896 indices precede the global symbol indices. This means that when
10897 we are generating relocatable output, and we see a reloc against
10898 a global symbol, we can not know the symbol index until we have
10899 finished examining all the local symbols to see which ones we are
10900 going to output. To deal with this, we keep the relocations in
10901 memory, and don't output them until the end of the link. This is
10902 an unfortunate waste of memory, but I don't see a good way around
10903 it. Fortunately, it only happens when performing a relocatable
10904 link, which is not the common case. FIXME: If keep_memory is set
10905 we could write the relocs out and then read them again; I don't
10906 know how bad the memory loss will be. */
10907
10908 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10909 sub->output_has_begun = FALSE;
10910 for (o = abfd->sections; o != NULL; o = o->next)
10911 {
10912 for (p = o->map_head.link_order; p != NULL; p = p->next)
10913 {
10914 if (p->type == bfd_indirect_link_order
10915 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10916 == bfd_target_elf_flavour)
10917 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10918 {
10919 if (! sub->output_has_begun)
10920 {
10921 if (! elf_link_input_bfd (&flinfo, sub))
10922 goto error_return;
10923 sub->output_has_begun = TRUE;
10924 }
10925 }
10926 else if (p->type == bfd_section_reloc_link_order
10927 || p->type == bfd_symbol_reloc_link_order)
10928 {
10929 if (! elf_reloc_link_order (abfd, info, o, p))
10930 goto error_return;
10931 }
10932 else
10933 {
10934 if (! _bfd_default_link_order (abfd, info, o, p))
10935 {
10936 if (p->type == bfd_indirect_link_order
10937 && (bfd_get_flavour (sub)
10938 == bfd_target_elf_flavour)
10939 && (elf_elfheader (sub)->e_ident[EI_CLASS]
10940 != bed->s->elfclass))
10941 {
10942 const char *iclass, *oclass;
10943
10944 if (bed->s->elfclass == ELFCLASS64)
10945 {
10946 iclass = "ELFCLASS32";
10947 oclass = "ELFCLASS64";
10948 }
10949 else
10950 {
10951 iclass = "ELFCLASS64";
10952 oclass = "ELFCLASS32";
10953 }
10954
10955 bfd_set_error (bfd_error_wrong_format);
10956 (*_bfd_error_handler)
10957 (_("%B: file class %s incompatible with %s"),
10958 sub, iclass, oclass);
10959 }
10960
10961 goto error_return;
10962 }
10963 }
10964 }
10965 }
10966
10967 /* Free symbol buffer if needed. */
10968 if (!info->reduce_memory_overheads)
10969 {
10970 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10971 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10972 && elf_tdata (sub)->symbuf)
10973 {
10974 free (elf_tdata (sub)->symbuf);
10975 elf_tdata (sub)->symbuf = NULL;
10976 }
10977 }
10978
10979 /* Output a FILE symbol so that following locals are not associated
10980 with the wrong input file. */
10981 memset (&elfsym, 0, sizeof (elfsym));
10982 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10983 elfsym.st_shndx = SHN_ABS;
10984
10985 if (flinfo.filesym_count > 1
10986 && !elf_link_output_sym (&flinfo, NULL, &elfsym,
10987 bfd_und_section_ptr, NULL))
10988 return FALSE;
10989
10990 /* Output any global symbols that got converted to local in a
10991 version script or due to symbol visibility. We do this in a
10992 separate step since ELF requires all local symbols to appear
10993 prior to any global symbols. FIXME: We should only do this if
10994 some global symbols were, in fact, converted to become local.
10995 FIXME: Will this work correctly with the Irix 5 linker? */
10996 eoinfo.failed = FALSE;
10997 eoinfo.flinfo = &flinfo;
10998 eoinfo.localsyms = TRUE;
10999 eoinfo.need_second_pass = FALSE;
11000 eoinfo.second_pass = FALSE;
11001 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11002 if (eoinfo.failed)
11003 return FALSE;
11004
11005 if (flinfo.filesym_count == 1
11006 && !elf_link_output_sym (&flinfo, NULL, &elfsym,
11007 bfd_und_section_ptr, NULL))
11008 return FALSE;
11009
11010 if (eoinfo.need_second_pass)
11011 {
11012 eoinfo.second_pass = TRUE;
11013 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11014 if (eoinfo.failed)
11015 return FALSE;
11016 }
11017
11018 /* If backend needs to output some local symbols not present in the hash
11019 table, do it now. */
11020 if (bed->elf_backend_output_arch_local_syms)
11021 {
11022 typedef int (*out_sym_func)
11023 (void *, const char *, Elf_Internal_Sym *, asection *,
11024 struct elf_link_hash_entry *);
11025
11026 if (! ((*bed->elf_backend_output_arch_local_syms)
11027 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11028 return FALSE;
11029 }
11030
11031 /* That wrote out all the local symbols. Finish up the symbol table
11032 with the global symbols. Even if we want to strip everything we
11033 can, we still need to deal with those global symbols that got
11034 converted to local in a version script. */
11035
11036 /* The sh_info field records the index of the first non local symbol. */
11037 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11038
11039 if (dynamic
11040 && flinfo.dynsym_sec != NULL
11041 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11042 {
11043 Elf_Internal_Sym sym;
11044 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11045 long last_local = 0;
11046
11047 /* Write out the section symbols for the output sections. */
11048 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11049 {
11050 asection *s;
11051
11052 sym.st_size = 0;
11053 sym.st_name = 0;
11054 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11055 sym.st_other = 0;
11056 sym.st_target_internal = 0;
11057
11058 for (s = abfd->sections; s != NULL; s = s->next)
11059 {
11060 int indx;
11061 bfd_byte *dest;
11062 long dynindx;
11063
11064 dynindx = elf_section_data (s)->dynindx;
11065 if (dynindx <= 0)
11066 continue;
11067 indx = elf_section_data (s)->this_idx;
11068 BFD_ASSERT (indx > 0);
11069 sym.st_shndx = indx;
11070 if (! check_dynsym (abfd, &sym))
11071 return FALSE;
11072 sym.st_value = s->vma;
11073 dest = dynsym + dynindx * bed->s->sizeof_sym;
11074 if (last_local < dynindx)
11075 last_local = dynindx;
11076 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11077 }
11078 }
11079
11080 /* Write out the local dynsyms. */
11081 if (elf_hash_table (info)->dynlocal)
11082 {
11083 struct elf_link_local_dynamic_entry *e;
11084 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11085 {
11086 asection *s;
11087 bfd_byte *dest;
11088
11089 /* Copy the internal symbol and turn off visibility.
11090 Note that we saved a word of storage and overwrote
11091 the original st_name with the dynstr_index. */
11092 sym = e->isym;
11093 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11094
11095 s = bfd_section_from_elf_index (e->input_bfd,
11096 e->isym.st_shndx);
11097 if (s != NULL)
11098 {
11099 sym.st_shndx =
11100 elf_section_data (s->output_section)->this_idx;
11101 if (! check_dynsym (abfd, &sym))
11102 return FALSE;
11103 sym.st_value = (s->output_section->vma
11104 + s->output_offset
11105 + e->isym.st_value);
11106 }
11107
11108 if (last_local < e->dynindx)
11109 last_local = e->dynindx;
11110
11111 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11112 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11113 }
11114 }
11115
11116 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11117 last_local + 1;
11118 }
11119
11120 /* We get the global symbols from the hash table. */
11121 eoinfo.failed = FALSE;
11122 eoinfo.localsyms = FALSE;
11123 eoinfo.flinfo = &flinfo;
11124 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11125 if (eoinfo.failed)
11126 return FALSE;
11127
11128 /* If backend needs to output some symbols not present in the hash
11129 table, do it now. */
11130 if (bed->elf_backend_output_arch_syms)
11131 {
11132 typedef int (*out_sym_func)
11133 (void *, const char *, Elf_Internal_Sym *, asection *,
11134 struct elf_link_hash_entry *);
11135
11136 if (! ((*bed->elf_backend_output_arch_syms)
11137 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11138 return FALSE;
11139 }
11140
11141 /* Flush all symbols to the file. */
11142 if (! elf_link_flush_output_syms (&flinfo, bed))
11143 return FALSE;
11144
11145 /* Now we know the size of the symtab section. */
11146 off += symtab_hdr->sh_size;
11147
11148 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11149 if (symtab_shndx_hdr->sh_name != 0)
11150 {
11151 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11152 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11153 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11154 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11155 symtab_shndx_hdr->sh_size = amt;
11156
11157 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11158 off, TRUE);
11159
11160 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11161 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11162 return FALSE;
11163 }
11164
11165
11166 /* Finish up and write out the symbol string table (.strtab)
11167 section. */
11168 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11169 /* sh_name was set in prep_headers. */
11170 symstrtab_hdr->sh_type = SHT_STRTAB;
11171 symstrtab_hdr->sh_flags = 0;
11172 symstrtab_hdr->sh_addr = 0;
11173 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11174 symstrtab_hdr->sh_entsize = 0;
11175 symstrtab_hdr->sh_link = 0;
11176 symstrtab_hdr->sh_info = 0;
11177 /* sh_offset is set just below. */
11178 symstrtab_hdr->sh_addralign = 1;
11179
11180 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
11181 elf_next_file_pos (abfd) = off;
11182
11183 if (bfd_get_symcount (abfd) > 0)
11184 {
11185 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11186 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11187 return FALSE;
11188 }
11189
11190 /* Adjust the relocs to have the correct symbol indices. */
11191 for (o = abfd->sections; o != NULL; o = o->next)
11192 {
11193 struct bfd_elf_section_data *esdo = elf_section_data (o);
11194 if ((o->flags & SEC_RELOC) == 0)
11195 continue;
11196
11197 if (esdo->rel.hdr != NULL)
11198 elf_link_adjust_relocs (abfd, &esdo->rel);
11199 if (esdo->rela.hdr != NULL)
11200 elf_link_adjust_relocs (abfd, &esdo->rela);
11201
11202 /* Set the reloc_count field to 0 to prevent write_relocs from
11203 trying to swap the relocs out itself. */
11204 o->reloc_count = 0;
11205 }
11206
11207 if (dynamic && info->combreloc && dynobj != NULL)
11208 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11209
11210 /* If we are linking against a dynamic object, or generating a
11211 shared library, finish up the dynamic linking information. */
11212 if (dynamic)
11213 {
11214 bfd_byte *dyncon, *dynconend;
11215
11216 /* Fix up .dynamic entries. */
11217 o = bfd_get_linker_section (dynobj, ".dynamic");
11218 BFD_ASSERT (o != NULL);
11219
11220 dyncon = o->contents;
11221 dynconend = o->contents + o->size;
11222 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11223 {
11224 Elf_Internal_Dyn dyn;
11225 const char *name;
11226 unsigned int type;
11227
11228 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11229
11230 switch (dyn.d_tag)
11231 {
11232 default:
11233 continue;
11234 case DT_NULL:
11235 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11236 {
11237 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11238 {
11239 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11240 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11241 default: continue;
11242 }
11243 dyn.d_un.d_val = relativecount;
11244 relativecount = 0;
11245 break;
11246 }
11247 continue;
11248
11249 case DT_INIT:
11250 name = info->init_function;
11251 goto get_sym;
11252 case DT_FINI:
11253 name = info->fini_function;
11254 get_sym:
11255 {
11256 struct elf_link_hash_entry *h;
11257
11258 h = elf_link_hash_lookup (elf_hash_table (info), name,
11259 FALSE, FALSE, TRUE);
11260 if (h != NULL
11261 && (h->root.type == bfd_link_hash_defined
11262 || h->root.type == bfd_link_hash_defweak))
11263 {
11264 dyn.d_un.d_ptr = h->root.u.def.value;
11265 o = h->root.u.def.section;
11266 if (o->output_section != NULL)
11267 dyn.d_un.d_ptr += (o->output_section->vma
11268 + o->output_offset);
11269 else
11270 {
11271 /* The symbol is imported from another shared
11272 library and does not apply to this one. */
11273 dyn.d_un.d_ptr = 0;
11274 }
11275 break;
11276 }
11277 }
11278 continue;
11279
11280 case DT_PREINIT_ARRAYSZ:
11281 name = ".preinit_array";
11282 goto get_size;
11283 case DT_INIT_ARRAYSZ:
11284 name = ".init_array";
11285 goto get_size;
11286 case DT_FINI_ARRAYSZ:
11287 name = ".fini_array";
11288 get_size:
11289 o = bfd_get_section_by_name (abfd, name);
11290 if (o == NULL)
11291 {
11292 (*_bfd_error_handler)
11293 (_("%B: could not find output section %s"), abfd, name);
11294 goto error_return;
11295 }
11296 if (o->size == 0)
11297 (*_bfd_error_handler)
11298 (_("warning: %s section has zero size"), name);
11299 dyn.d_un.d_val = o->size;
11300 break;
11301
11302 case DT_PREINIT_ARRAY:
11303 name = ".preinit_array";
11304 goto get_vma;
11305 case DT_INIT_ARRAY:
11306 name = ".init_array";
11307 goto get_vma;
11308 case DT_FINI_ARRAY:
11309 name = ".fini_array";
11310 goto get_vma;
11311
11312 case DT_HASH:
11313 name = ".hash";
11314 goto get_vma;
11315 case DT_GNU_HASH:
11316 name = ".gnu.hash";
11317 goto get_vma;
11318 case DT_STRTAB:
11319 name = ".dynstr";
11320 goto get_vma;
11321 case DT_SYMTAB:
11322 name = ".dynsym";
11323 goto get_vma;
11324 case DT_VERDEF:
11325 name = ".gnu.version_d";
11326 goto get_vma;
11327 case DT_VERNEED:
11328 name = ".gnu.version_r";
11329 goto get_vma;
11330 case DT_VERSYM:
11331 name = ".gnu.version";
11332 get_vma:
11333 o = bfd_get_section_by_name (abfd, name);
11334 if (o == NULL)
11335 {
11336 (*_bfd_error_handler)
11337 (_("%B: could not find output section %s"), abfd, name);
11338 goto error_return;
11339 }
11340 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11341 {
11342 (*_bfd_error_handler)
11343 (_("warning: section '%s' is being made into a note"), name);
11344 bfd_set_error (bfd_error_nonrepresentable_section);
11345 goto error_return;
11346 }
11347 dyn.d_un.d_ptr = o->vma;
11348 break;
11349
11350 case DT_REL:
11351 case DT_RELA:
11352 case DT_RELSZ:
11353 case DT_RELASZ:
11354 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11355 type = SHT_REL;
11356 else
11357 type = SHT_RELA;
11358 dyn.d_un.d_val = 0;
11359 dyn.d_un.d_ptr = 0;
11360 for (i = 1; i < elf_numsections (abfd); i++)
11361 {
11362 Elf_Internal_Shdr *hdr;
11363
11364 hdr = elf_elfsections (abfd)[i];
11365 if (hdr->sh_type == type
11366 && (hdr->sh_flags & SHF_ALLOC) != 0)
11367 {
11368 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11369 dyn.d_un.d_val += hdr->sh_size;
11370 else
11371 {
11372 if (dyn.d_un.d_ptr == 0
11373 || hdr->sh_addr < dyn.d_un.d_ptr)
11374 dyn.d_un.d_ptr = hdr->sh_addr;
11375 }
11376 }
11377 }
11378 break;
11379 }
11380 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11381 }
11382 }
11383
11384 /* If we have created any dynamic sections, then output them. */
11385 if (dynobj != NULL)
11386 {
11387 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11388 goto error_return;
11389
11390 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11391 if (((info->warn_shared_textrel && info->shared)
11392 || info->error_textrel)
11393 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11394 {
11395 bfd_byte *dyncon, *dynconend;
11396
11397 dyncon = o->contents;
11398 dynconend = o->contents + o->size;
11399 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11400 {
11401 Elf_Internal_Dyn dyn;
11402
11403 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11404
11405 if (dyn.d_tag == DT_TEXTREL)
11406 {
11407 if (info->error_textrel)
11408 info->callbacks->einfo
11409 (_("%P%X: read-only segment has dynamic relocations.\n"));
11410 else
11411 info->callbacks->einfo
11412 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11413 break;
11414 }
11415 }
11416 }
11417
11418 for (o = dynobj->sections; o != NULL; o = o->next)
11419 {
11420 if ((o->flags & SEC_HAS_CONTENTS) == 0
11421 || o->size == 0
11422 || o->output_section == bfd_abs_section_ptr)
11423 continue;
11424 if ((o->flags & SEC_LINKER_CREATED) == 0)
11425 {
11426 /* At this point, we are only interested in sections
11427 created by _bfd_elf_link_create_dynamic_sections. */
11428 continue;
11429 }
11430 if (elf_hash_table (info)->stab_info.stabstr == o)
11431 continue;
11432 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11433 continue;
11434 if (strcmp (o->name, ".dynstr") != 0)
11435 {
11436 /* FIXME: octets_per_byte. */
11437 if (! bfd_set_section_contents (abfd, o->output_section,
11438 o->contents,
11439 (file_ptr) o->output_offset,
11440 o->size))
11441 goto error_return;
11442 }
11443 else
11444 {
11445 /* The contents of the .dynstr section are actually in a
11446 stringtab. */
11447 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11448 if (bfd_seek (abfd, off, SEEK_SET) != 0
11449 || ! _bfd_elf_strtab_emit (abfd,
11450 elf_hash_table (info)->dynstr))
11451 goto error_return;
11452 }
11453 }
11454 }
11455
11456 if (info->relocatable)
11457 {
11458 bfd_boolean failed = FALSE;
11459
11460 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11461 if (failed)
11462 goto error_return;
11463 }
11464
11465 /* If we have optimized stabs strings, output them. */
11466 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11467 {
11468 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11469 goto error_return;
11470 }
11471
11472 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11473 goto error_return;
11474
11475 elf_final_link_free (abfd, &flinfo);
11476
11477 elf_linker (abfd) = TRUE;
11478
11479 if (attr_section)
11480 {
11481 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11482 if (contents == NULL)
11483 return FALSE; /* Bail out and fail. */
11484 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11485 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11486 free (contents);
11487 }
11488
11489 return TRUE;
11490
11491 error_return:
11492 elf_final_link_free (abfd, &flinfo);
11493 return FALSE;
11494 }
11495 \f
11496 /* Initialize COOKIE for input bfd ABFD. */
11497
11498 static bfd_boolean
11499 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11500 struct bfd_link_info *info, bfd *abfd)
11501 {
11502 Elf_Internal_Shdr *symtab_hdr;
11503 const struct elf_backend_data *bed;
11504
11505 bed = get_elf_backend_data (abfd);
11506 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11507
11508 cookie->abfd = abfd;
11509 cookie->sym_hashes = elf_sym_hashes (abfd);
11510 cookie->bad_symtab = elf_bad_symtab (abfd);
11511 if (cookie->bad_symtab)
11512 {
11513 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11514 cookie->extsymoff = 0;
11515 }
11516 else
11517 {
11518 cookie->locsymcount = symtab_hdr->sh_info;
11519 cookie->extsymoff = symtab_hdr->sh_info;
11520 }
11521
11522 if (bed->s->arch_size == 32)
11523 cookie->r_sym_shift = 8;
11524 else
11525 cookie->r_sym_shift = 32;
11526
11527 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11528 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11529 {
11530 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11531 cookie->locsymcount, 0,
11532 NULL, NULL, NULL);
11533 if (cookie->locsyms == NULL)
11534 {
11535 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11536 return FALSE;
11537 }
11538 if (info->keep_memory)
11539 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11540 }
11541 return TRUE;
11542 }
11543
11544 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11545
11546 static void
11547 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11548 {
11549 Elf_Internal_Shdr *symtab_hdr;
11550
11551 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11552 if (cookie->locsyms != NULL
11553 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11554 free (cookie->locsyms);
11555 }
11556
11557 /* Initialize the relocation information in COOKIE for input section SEC
11558 of input bfd ABFD. */
11559
11560 static bfd_boolean
11561 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11562 struct bfd_link_info *info, bfd *abfd,
11563 asection *sec)
11564 {
11565 const struct elf_backend_data *bed;
11566
11567 if (sec->reloc_count == 0)
11568 {
11569 cookie->rels = NULL;
11570 cookie->relend = NULL;
11571 }
11572 else
11573 {
11574 bed = get_elf_backend_data (abfd);
11575
11576 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11577 info->keep_memory);
11578 if (cookie->rels == NULL)
11579 return FALSE;
11580 cookie->rel = cookie->rels;
11581 cookie->relend = (cookie->rels
11582 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11583 }
11584 cookie->rel = cookie->rels;
11585 return TRUE;
11586 }
11587
11588 /* Free the memory allocated by init_reloc_cookie_rels,
11589 if appropriate. */
11590
11591 static void
11592 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11593 asection *sec)
11594 {
11595 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11596 free (cookie->rels);
11597 }
11598
11599 /* Initialize the whole of COOKIE for input section SEC. */
11600
11601 static bfd_boolean
11602 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11603 struct bfd_link_info *info,
11604 asection *sec)
11605 {
11606 if (!init_reloc_cookie (cookie, info, sec->owner))
11607 goto error1;
11608 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11609 goto error2;
11610 return TRUE;
11611
11612 error2:
11613 fini_reloc_cookie (cookie, sec->owner);
11614 error1:
11615 return FALSE;
11616 }
11617
11618 /* Free the memory allocated by init_reloc_cookie_for_section,
11619 if appropriate. */
11620
11621 static void
11622 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11623 asection *sec)
11624 {
11625 fini_reloc_cookie_rels (cookie, sec);
11626 fini_reloc_cookie (cookie, sec->owner);
11627 }
11628 \f
11629 /* Garbage collect unused sections. */
11630
11631 /* Default gc_mark_hook. */
11632
11633 asection *
11634 _bfd_elf_gc_mark_hook (asection *sec,
11635 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11636 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11637 struct elf_link_hash_entry *h,
11638 Elf_Internal_Sym *sym)
11639 {
11640 const char *sec_name;
11641
11642 if (h != NULL)
11643 {
11644 switch (h->root.type)
11645 {
11646 case bfd_link_hash_defined:
11647 case bfd_link_hash_defweak:
11648 return h->root.u.def.section;
11649
11650 case bfd_link_hash_common:
11651 return h->root.u.c.p->section;
11652
11653 case bfd_link_hash_undefined:
11654 case bfd_link_hash_undefweak:
11655 /* To work around a glibc bug, keep all XXX input sections
11656 when there is an as yet undefined reference to __start_XXX
11657 or __stop_XXX symbols. The linker will later define such
11658 symbols for orphan input sections that have a name
11659 representable as a C identifier. */
11660 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11661 sec_name = h->root.root.string + 8;
11662 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11663 sec_name = h->root.root.string + 7;
11664 else
11665 sec_name = NULL;
11666
11667 if (sec_name && *sec_name != '\0')
11668 {
11669 bfd *i;
11670
11671 for (i = info->input_bfds; i; i = i->link_next)
11672 {
11673 sec = bfd_get_section_by_name (i, sec_name);
11674 if (sec)
11675 sec->flags |= SEC_KEEP;
11676 }
11677 }
11678 break;
11679
11680 default:
11681 break;
11682 }
11683 }
11684 else
11685 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11686
11687 return NULL;
11688 }
11689
11690 /* COOKIE->rel describes a relocation against section SEC, which is
11691 a section we've decided to keep. Return the section that contains
11692 the relocation symbol, or NULL if no section contains it. */
11693
11694 asection *
11695 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11696 elf_gc_mark_hook_fn gc_mark_hook,
11697 struct elf_reloc_cookie *cookie)
11698 {
11699 unsigned long r_symndx;
11700 struct elf_link_hash_entry *h;
11701
11702 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11703 if (r_symndx == STN_UNDEF)
11704 return NULL;
11705
11706 if (r_symndx >= cookie->locsymcount
11707 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11708 {
11709 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11710 while (h->root.type == bfd_link_hash_indirect
11711 || h->root.type == bfd_link_hash_warning)
11712 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11713 h->mark = 1;
11714 /* If this symbol is weak and there is a non-weak definition, we
11715 keep the non-weak definition because many backends put
11716 dynamic reloc info on the non-weak definition for code
11717 handling copy relocs. */
11718 if (h->u.weakdef != NULL)
11719 h->u.weakdef->mark = 1;
11720 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11721 }
11722
11723 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11724 &cookie->locsyms[r_symndx]);
11725 }
11726
11727 /* COOKIE->rel describes a relocation against section SEC, which is
11728 a section we've decided to keep. Mark the section that contains
11729 the relocation symbol. */
11730
11731 bfd_boolean
11732 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11733 asection *sec,
11734 elf_gc_mark_hook_fn gc_mark_hook,
11735 struct elf_reloc_cookie *cookie)
11736 {
11737 asection *rsec;
11738
11739 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11740 if (rsec && !rsec->gc_mark)
11741 {
11742 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11743 || (rsec->owner->flags & DYNAMIC) != 0)
11744 rsec->gc_mark = 1;
11745 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11746 return FALSE;
11747 }
11748 return TRUE;
11749 }
11750
11751 /* The mark phase of garbage collection. For a given section, mark
11752 it and any sections in this section's group, and all the sections
11753 which define symbols to which it refers. */
11754
11755 bfd_boolean
11756 _bfd_elf_gc_mark (struct bfd_link_info *info,
11757 asection *sec,
11758 elf_gc_mark_hook_fn gc_mark_hook)
11759 {
11760 bfd_boolean ret;
11761 asection *group_sec, *eh_frame;
11762
11763 sec->gc_mark = 1;
11764
11765 /* Mark all the sections in the group. */
11766 group_sec = elf_section_data (sec)->next_in_group;
11767 if (group_sec && !group_sec->gc_mark)
11768 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11769 return FALSE;
11770
11771 /* Look through the section relocs. */
11772 ret = TRUE;
11773 eh_frame = elf_eh_frame_section (sec->owner);
11774 if ((sec->flags & SEC_RELOC) != 0
11775 && sec->reloc_count > 0
11776 && sec != eh_frame)
11777 {
11778 struct elf_reloc_cookie cookie;
11779
11780 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11781 ret = FALSE;
11782 else
11783 {
11784 for (; cookie.rel < cookie.relend; cookie.rel++)
11785 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11786 {
11787 ret = FALSE;
11788 break;
11789 }
11790 fini_reloc_cookie_for_section (&cookie, sec);
11791 }
11792 }
11793
11794 if (ret && eh_frame && elf_fde_list (sec))
11795 {
11796 struct elf_reloc_cookie cookie;
11797
11798 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11799 ret = FALSE;
11800 else
11801 {
11802 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11803 gc_mark_hook, &cookie))
11804 ret = FALSE;
11805 fini_reloc_cookie_for_section (&cookie, eh_frame);
11806 }
11807 }
11808
11809 return ret;
11810 }
11811
11812 /* Keep debug and special sections. */
11813
11814 bfd_boolean
11815 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11816 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11817 {
11818 bfd *ibfd;
11819
11820 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11821 {
11822 asection *isec;
11823 bfd_boolean some_kept;
11824
11825 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11826 continue;
11827
11828 /* Ensure all linker created sections are kept, and see whether
11829 any other section is already marked. */
11830 some_kept = FALSE;
11831 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11832 {
11833 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11834 isec->gc_mark = 1;
11835 else if (isec->gc_mark)
11836 some_kept = TRUE;
11837 }
11838
11839 /* If no section in this file will be kept, then we can
11840 toss out debug sections. */
11841 if (!some_kept)
11842 continue;
11843
11844 /* Keep debug and special sections like .comment when they are
11845 not part of a group, or when we have single-member groups. */
11846 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11847 if ((elf_next_in_group (isec) == NULL
11848 || elf_next_in_group (isec) == isec)
11849 && ((isec->flags & SEC_DEBUGGING) != 0
11850 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
11851 isec->gc_mark = 1;
11852 }
11853 return TRUE;
11854 }
11855
11856 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11857
11858 struct elf_gc_sweep_symbol_info
11859 {
11860 struct bfd_link_info *info;
11861 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11862 bfd_boolean);
11863 };
11864
11865 static bfd_boolean
11866 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11867 {
11868 if (!h->mark
11869 && (((h->root.type == bfd_link_hash_defined
11870 || h->root.type == bfd_link_hash_defweak)
11871 && !(h->def_regular
11872 && h->root.u.def.section->gc_mark))
11873 || h->root.type == bfd_link_hash_undefined
11874 || h->root.type == bfd_link_hash_undefweak))
11875 {
11876 struct elf_gc_sweep_symbol_info *inf;
11877
11878 inf = (struct elf_gc_sweep_symbol_info *) data;
11879 (*inf->hide_symbol) (inf->info, h, TRUE);
11880 h->def_regular = 0;
11881 h->ref_regular = 0;
11882 h->ref_regular_nonweak = 0;
11883 }
11884
11885 return TRUE;
11886 }
11887
11888 /* The sweep phase of garbage collection. Remove all garbage sections. */
11889
11890 typedef bfd_boolean (*gc_sweep_hook_fn)
11891 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11892
11893 static bfd_boolean
11894 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11895 {
11896 bfd *sub;
11897 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11898 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11899 unsigned long section_sym_count;
11900 struct elf_gc_sweep_symbol_info sweep_info;
11901
11902 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11903 {
11904 asection *o;
11905
11906 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11907 continue;
11908
11909 for (o = sub->sections; o != NULL; o = o->next)
11910 {
11911 /* When any section in a section group is kept, we keep all
11912 sections in the section group. If the first member of
11913 the section group is excluded, we will also exclude the
11914 group section. */
11915 if (o->flags & SEC_GROUP)
11916 {
11917 asection *first = elf_next_in_group (o);
11918 o->gc_mark = first->gc_mark;
11919 }
11920
11921 if (o->gc_mark)
11922 continue;
11923
11924 /* Skip sweeping sections already excluded. */
11925 if (o->flags & SEC_EXCLUDE)
11926 continue;
11927
11928 /* Since this is early in the link process, it is simple
11929 to remove a section from the output. */
11930 o->flags |= SEC_EXCLUDE;
11931
11932 if (info->print_gc_sections && o->size != 0)
11933 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11934
11935 /* But we also have to update some of the relocation
11936 info we collected before. */
11937 if (gc_sweep_hook
11938 && (o->flags & SEC_RELOC) != 0
11939 && o->reloc_count > 0
11940 && !bfd_is_abs_section (o->output_section))
11941 {
11942 Elf_Internal_Rela *internal_relocs;
11943 bfd_boolean r;
11944
11945 internal_relocs
11946 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11947 info->keep_memory);
11948 if (internal_relocs == NULL)
11949 return FALSE;
11950
11951 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11952
11953 if (elf_section_data (o)->relocs != internal_relocs)
11954 free (internal_relocs);
11955
11956 if (!r)
11957 return FALSE;
11958 }
11959 }
11960 }
11961
11962 /* Remove the symbols that were in the swept sections from the dynamic
11963 symbol table. GCFIXME: Anyone know how to get them out of the
11964 static symbol table as well? */
11965 sweep_info.info = info;
11966 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11967 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11968 &sweep_info);
11969
11970 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11971 return TRUE;
11972 }
11973
11974 /* Propagate collected vtable information. This is called through
11975 elf_link_hash_traverse. */
11976
11977 static bfd_boolean
11978 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11979 {
11980 /* Those that are not vtables. */
11981 if (h->vtable == NULL || h->vtable->parent == NULL)
11982 return TRUE;
11983
11984 /* Those vtables that do not have parents, we cannot merge. */
11985 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11986 return TRUE;
11987
11988 /* If we've already been done, exit. */
11989 if (h->vtable->used && h->vtable->used[-1])
11990 return TRUE;
11991
11992 /* Make sure the parent's table is up to date. */
11993 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11994
11995 if (h->vtable->used == NULL)
11996 {
11997 /* None of this table's entries were referenced. Re-use the
11998 parent's table. */
11999 h->vtable->used = h->vtable->parent->vtable->used;
12000 h->vtable->size = h->vtable->parent->vtable->size;
12001 }
12002 else
12003 {
12004 size_t n;
12005 bfd_boolean *cu, *pu;
12006
12007 /* Or the parent's entries into ours. */
12008 cu = h->vtable->used;
12009 cu[-1] = TRUE;
12010 pu = h->vtable->parent->vtable->used;
12011 if (pu != NULL)
12012 {
12013 const struct elf_backend_data *bed;
12014 unsigned int log_file_align;
12015
12016 bed = get_elf_backend_data (h->root.u.def.section->owner);
12017 log_file_align = bed->s->log_file_align;
12018 n = h->vtable->parent->vtable->size >> log_file_align;
12019 while (n--)
12020 {
12021 if (*pu)
12022 *cu = TRUE;
12023 pu++;
12024 cu++;
12025 }
12026 }
12027 }
12028
12029 return TRUE;
12030 }
12031
12032 static bfd_boolean
12033 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12034 {
12035 asection *sec;
12036 bfd_vma hstart, hend;
12037 Elf_Internal_Rela *relstart, *relend, *rel;
12038 const struct elf_backend_data *bed;
12039 unsigned int log_file_align;
12040
12041 /* Take care of both those symbols that do not describe vtables as
12042 well as those that are not loaded. */
12043 if (h->vtable == NULL || h->vtable->parent == NULL)
12044 return TRUE;
12045
12046 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12047 || h->root.type == bfd_link_hash_defweak);
12048
12049 sec = h->root.u.def.section;
12050 hstart = h->root.u.def.value;
12051 hend = hstart + h->size;
12052
12053 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12054 if (!relstart)
12055 return *(bfd_boolean *) okp = FALSE;
12056 bed = get_elf_backend_data (sec->owner);
12057 log_file_align = bed->s->log_file_align;
12058
12059 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12060
12061 for (rel = relstart; rel < relend; ++rel)
12062 if (rel->r_offset >= hstart && rel->r_offset < hend)
12063 {
12064 /* If the entry is in use, do nothing. */
12065 if (h->vtable->used
12066 && (rel->r_offset - hstart) < h->vtable->size)
12067 {
12068 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12069 if (h->vtable->used[entry])
12070 continue;
12071 }
12072 /* Otherwise, kill it. */
12073 rel->r_offset = rel->r_info = rel->r_addend = 0;
12074 }
12075
12076 return TRUE;
12077 }
12078
12079 /* Mark sections containing dynamically referenced symbols. When
12080 building shared libraries, we must assume that any visible symbol is
12081 referenced. */
12082
12083 bfd_boolean
12084 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12085 {
12086 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12087
12088 if ((h->root.type == bfd_link_hash_defined
12089 || h->root.type == bfd_link_hash_defweak)
12090 && (h->ref_dynamic
12091 || ((!info->executable || info->export_dynamic)
12092 && h->def_regular
12093 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12094 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12095 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12096 || !bfd_hide_sym_by_version (info->version_info,
12097 h->root.root.string)))))
12098 h->root.u.def.section->flags |= SEC_KEEP;
12099
12100 return TRUE;
12101 }
12102
12103 /* Keep all sections containing symbols undefined on the command-line,
12104 and the section containing the entry symbol. */
12105
12106 void
12107 _bfd_elf_gc_keep (struct bfd_link_info *info)
12108 {
12109 struct bfd_sym_chain *sym;
12110
12111 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12112 {
12113 struct elf_link_hash_entry *h;
12114
12115 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12116 FALSE, FALSE, FALSE);
12117
12118 if (h != NULL
12119 && (h->root.type == bfd_link_hash_defined
12120 || h->root.type == bfd_link_hash_defweak)
12121 && !bfd_is_abs_section (h->root.u.def.section))
12122 h->root.u.def.section->flags |= SEC_KEEP;
12123 }
12124 }
12125
12126 /* Do mark and sweep of unused sections. */
12127
12128 bfd_boolean
12129 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12130 {
12131 bfd_boolean ok = TRUE;
12132 bfd *sub;
12133 elf_gc_mark_hook_fn gc_mark_hook;
12134 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12135
12136 if (!bed->can_gc_sections
12137 || !is_elf_hash_table (info->hash))
12138 {
12139 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12140 return TRUE;
12141 }
12142
12143 bed->gc_keep (info);
12144
12145 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12146 at the .eh_frame section if we can mark the FDEs individually. */
12147 _bfd_elf_begin_eh_frame_parsing (info);
12148 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12149 {
12150 asection *sec;
12151 struct elf_reloc_cookie cookie;
12152
12153 sec = bfd_get_section_by_name (sub, ".eh_frame");
12154 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12155 {
12156 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12157 if (elf_section_data (sec)->sec_info
12158 && (sec->flags & SEC_LINKER_CREATED) == 0)
12159 elf_eh_frame_section (sub) = sec;
12160 fini_reloc_cookie_for_section (&cookie, sec);
12161 sec = bfd_get_next_section_by_name (sec);
12162 }
12163 }
12164 _bfd_elf_end_eh_frame_parsing (info);
12165
12166 /* Apply transitive closure to the vtable entry usage info. */
12167 elf_link_hash_traverse (elf_hash_table (info),
12168 elf_gc_propagate_vtable_entries_used,
12169 &ok);
12170 if (!ok)
12171 return FALSE;
12172
12173 /* Kill the vtable relocations that were not used. */
12174 elf_link_hash_traverse (elf_hash_table (info),
12175 elf_gc_smash_unused_vtentry_relocs,
12176 &ok);
12177 if (!ok)
12178 return FALSE;
12179
12180 /* Mark dynamically referenced symbols. */
12181 if (elf_hash_table (info)->dynamic_sections_created)
12182 elf_link_hash_traverse (elf_hash_table (info),
12183 bed->gc_mark_dynamic_ref,
12184 info);
12185
12186 /* Grovel through relocs to find out who stays ... */
12187 gc_mark_hook = bed->gc_mark_hook;
12188 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12189 {
12190 asection *o;
12191
12192 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12193 continue;
12194
12195 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12196 Also treat note sections as a root, if the section is not part
12197 of a group. */
12198 for (o = sub->sections; o != NULL; o = o->next)
12199 if (!o->gc_mark
12200 && (o->flags & SEC_EXCLUDE) == 0
12201 && ((o->flags & SEC_KEEP) != 0
12202 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12203 && elf_next_in_group (o) == NULL )))
12204 {
12205 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12206 return FALSE;
12207 }
12208 }
12209
12210 /* Allow the backend to mark additional target specific sections. */
12211 bed->gc_mark_extra_sections (info, gc_mark_hook);
12212
12213 /* ... and mark SEC_EXCLUDE for those that go. */
12214 return elf_gc_sweep (abfd, info);
12215 }
12216 \f
12217 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12218
12219 bfd_boolean
12220 bfd_elf_gc_record_vtinherit (bfd *abfd,
12221 asection *sec,
12222 struct elf_link_hash_entry *h,
12223 bfd_vma offset)
12224 {
12225 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12226 struct elf_link_hash_entry **search, *child;
12227 bfd_size_type extsymcount;
12228 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12229
12230 /* The sh_info field of the symtab header tells us where the
12231 external symbols start. We don't care about the local symbols at
12232 this point. */
12233 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12234 if (!elf_bad_symtab (abfd))
12235 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12236
12237 sym_hashes = elf_sym_hashes (abfd);
12238 sym_hashes_end = sym_hashes + extsymcount;
12239
12240 /* Hunt down the child symbol, which is in this section at the same
12241 offset as the relocation. */
12242 for (search = sym_hashes; search != sym_hashes_end; ++search)
12243 {
12244 if ((child = *search) != NULL
12245 && (child->root.type == bfd_link_hash_defined
12246 || child->root.type == bfd_link_hash_defweak)
12247 && child->root.u.def.section == sec
12248 && child->root.u.def.value == offset)
12249 goto win;
12250 }
12251
12252 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12253 abfd, sec, (unsigned long) offset);
12254 bfd_set_error (bfd_error_invalid_operation);
12255 return FALSE;
12256
12257 win:
12258 if (!child->vtable)
12259 {
12260 child->vtable = (struct elf_link_virtual_table_entry *)
12261 bfd_zalloc (abfd, sizeof (*child->vtable));
12262 if (!child->vtable)
12263 return FALSE;
12264 }
12265 if (!h)
12266 {
12267 /* This *should* only be the absolute section. It could potentially
12268 be that someone has defined a non-global vtable though, which
12269 would be bad. It isn't worth paging in the local symbols to be
12270 sure though; that case should simply be handled by the assembler. */
12271
12272 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12273 }
12274 else
12275 child->vtable->parent = h;
12276
12277 return TRUE;
12278 }
12279
12280 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12281
12282 bfd_boolean
12283 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12284 asection *sec ATTRIBUTE_UNUSED,
12285 struct elf_link_hash_entry *h,
12286 bfd_vma addend)
12287 {
12288 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12289 unsigned int log_file_align = bed->s->log_file_align;
12290
12291 if (!h->vtable)
12292 {
12293 h->vtable = (struct elf_link_virtual_table_entry *)
12294 bfd_zalloc (abfd, sizeof (*h->vtable));
12295 if (!h->vtable)
12296 return FALSE;
12297 }
12298
12299 if (addend >= h->vtable->size)
12300 {
12301 size_t size, bytes, file_align;
12302 bfd_boolean *ptr = h->vtable->used;
12303
12304 /* While the symbol is undefined, we have to be prepared to handle
12305 a zero size. */
12306 file_align = 1 << log_file_align;
12307 if (h->root.type == bfd_link_hash_undefined)
12308 size = addend + file_align;
12309 else
12310 {
12311 size = h->size;
12312 if (addend >= size)
12313 {
12314 /* Oops! We've got a reference past the defined end of
12315 the table. This is probably a bug -- shall we warn? */
12316 size = addend + file_align;
12317 }
12318 }
12319 size = (size + file_align - 1) & -file_align;
12320
12321 /* Allocate one extra entry for use as a "done" flag for the
12322 consolidation pass. */
12323 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12324
12325 if (ptr)
12326 {
12327 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12328
12329 if (ptr != NULL)
12330 {
12331 size_t oldbytes;
12332
12333 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12334 * sizeof (bfd_boolean));
12335 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12336 }
12337 }
12338 else
12339 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12340
12341 if (ptr == NULL)
12342 return FALSE;
12343
12344 /* And arrange for that done flag to be at index -1. */
12345 h->vtable->used = ptr + 1;
12346 h->vtable->size = size;
12347 }
12348
12349 h->vtable->used[addend >> log_file_align] = TRUE;
12350
12351 return TRUE;
12352 }
12353
12354 /* Map an ELF section header flag to its corresponding string. */
12355 typedef struct
12356 {
12357 char *flag_name;
12358 flagword flag_value;
12359 } elf_flags_to_name_table;
12360
12361 static elf_flags_to_name_table elf_flags_to_names [] =
12362 {
12363 { "SHF_WRITE", SHF_WRITE },
12364 { "SHF_ALLOC", SHF_ALLOC },
12365 { "SHF_EXECINSTR", SHF_EXECINSTR },
12366 { "SHF_MERGE", SHF_MERGE },
12367 { "SHF_STRINGS", SHF_STRINGS },
12368 { "SHF_INFO_LINK", SHF_INFO_LINK},
12369 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12370 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12371 { "SHF_GROUP", SHF_GROUP },
12372 { "SHF_TLS", SHF_TLS },
12373 { "SHF_MASKOS", SHF_MASKOS },
12374 { "SHF_EXCLUDE", SHF_EXCLUDE },
12375 };
12376
12377 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12378 bfd_boolean
12379 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12380 struct flag_info *flaginfo,
12381 asection *section)
12382 {
12383 const bfd_vma sh_flags = elf_section_flags (section);
12384
12385 if (!flaginfo->flags_initialized)
12386 {
12387 bfd *obfd = info->output_bfd;
12388 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12389 struct flag_info_list *tf = flaginfo->flag_list;
12390 int with_hex = 0;
12391 int without_hex = 0;
12392
12393 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12394 {
12395 unsigned i;
12396 flagword (*lookup) (char *);
12397
12398 lookup = bed->elf_backend_lookup_section_flags_hook;
12399 if (lookup != NULL)
12400 {
12401 flagword hexval = (*lookup) ((char *) tf->name);
12402
12403 if (hexval != 0)
12404 {
12405 if (tf->with == with_flags)
12406 with_hex |= hexval;
12407 else if (tf->with == without_flags)
12408 without_hex |= hexval;
12409 tf->valid = TRUE;
12410 continue;
12411 }
12412 }
12413 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12414 {
12415 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12416 {
12417 if (tf->with == with_flags)
12418 with_hex |= elf_flags_to_names[i].flag_value;
12419 else if (tf->with == without_flags)
12420 without_hex |= elf_flags_to_names[i].flag_value;
12421 tf->valid = TRUE;
12422 break;
12423 }
12424 }
12425 if (!tf->valid)
12426 {
12427 info->callbacks->einfo
12428 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12429 return FALSE;
12430 }
12431 }
12432 flaginfo->flags_initialized = TRUE;
12433 flaginfo->only_with_flags |= with_hex;
12434 flaginfo->not_with_flags |= without_hex;
12435 }
12436
12437 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12438 return FALSE;
12439
12440 if ((flaginfo->not_with_flags & sh_flags) != 0)
12441 return FALSE;
12442
12443 return TRUE;
12444 }
12445
12446 struct alloc_got_off_arg {
12447 bfd_vma gotoff;
12448 struct bfd_link_info *info;
12449 };
12450
12451 /* We need a special top-level link routine to convert got reference counts
12452 to real got offsets. */
12453
12454 static bfd_boolean
12455 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12456 {
12457 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12458 bfd *obfd = gofarg->info->output_bfd;
12459 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12460
12461 if (h->got.refcount > 0)
12462 {
12463 h->got.offset = gofarg->gotoff;
12464 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12465 }
12466 else
12467 h->got.offset = (bfd_vma) -1;
12468
12469 return TRUE;
12470 }
12471
12472 /* And an accompanying bit to work out final got entry offsets once
12473 we're done. Should be called from final_link. */
12474
12475 bfd_boolean
12476 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12477 struct bfd_link_info *info)
12478 {
12479 bfd *i;
12480 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12481 bfd_vma gotoff;
12482 struct alloc_got_off_arg gofarg;
12483
12484 BFD_ASSERT (abfd == info->output_bfd);
12485
12486 if (! is_elf_hash_table (info->hash))
12487 return FALSE;
12488
12489 /* The GOT offset is relative to the .got section, but the GOT header is
12490 put into the .got.plt section, if the backend uses it. */
12491 if (bed->want_got_plt)
12492 gotoff = 0;
12493 else
12494 gotoff = bed->got_header_size;
12495
12496 /* Do the local .got entries first. */
12497 for (i = info->input_bfds; i; i = i->link_next)
12498 {
12499 bfd_signed_vma *local_got;
12500 bfd_size_type j, locsymcount;
12501 Elf_Internal_Shdr *symtab_hdr;
12502
12503 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12504 continue;
12505
12506 local_got = elf_local_got_refcounts (i);
12507 if (!local_got)
12508 continue;
12509
12510 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12511 if (elf_bad_symtab (i))
12512 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12513 else
12514 locsymcount = symtab_hdr->sh_info;
12515
12516 for (j = 0; j < locsymcount; ++j)
12517 {
12518 if (local_got[j] > 0)
12519 {
12520 local_got[j] = gotoff;
12521 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12522 }
12523 else
12524 local_got[j] = (bfd_vma) -1;
12525 }
12526 }
12527
12528 /* Then the global .got entries. .plt refcounts are handled by
12529 adjust_dynamic_symbol */
12530 gofarg.gotoff = gotoff;
12531 gofarg.info = info;
12532 elf_link_hash_traverse (elf_hash_table (info),
12533 elf_gc_allocate_got_offsets,
12534 &gofarg);
12535 return TRUE;
12536 }
12537
12538 /* Many folk need no more in the way of final link than this, once
12539 got entry reference counting is enabled. */
12540
12541 bfd_boolean
12542 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12543 {
12544 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12545 return FALSE;
12546
12547 /* Invoke the regular ELF backend linker to do all the work. */
12548 return bfd_elf_final_link (abfd, info);
12549 }
12550
12551 bfd_boolean
12552 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12553 {
12554 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12555
12556 if (rcookie->bad_symtab)
12557 rcookie->rel = rcookie->rels;
12558
12559 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12560 {
12561 unsigned long r_symndx;
12562
12563 if (! rcookie->bad_symtab)
12564 if (rcookie->rel->r_offset > offset)
12565 return FALSE;
12566 if (rcookie->rel->r_offset != offset)
12567 continue;
12568
12569 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12570 if (r_symndx == STN_UNDEF)
12571 return TRUE;
12572
12573 if (r_symndx >= rcookie->locsymcount
12574 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12575 {
12576 struct elf_link_hash_entry *h;
12577
12578 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12579
12580 while (h->root.type == bfd_link_hash_indirect
12581 || h->root.type == bfd_link_hash_warning)
12582 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12583
12584 if ((h->root.type == bfd_link_hash_defined
12585 || h->root.type == bfd_link_hash_defweak)
12586 && discarded_section (h->root.u.def.section))
12587 return TRUE;
12588 else
12589 return FALSE;
12590 }
12591 else
12592 {
12593 /* It's not a relocation against a global symbol,
12594 but it could be a relocation against a local
12595 symbol for a discarded section. */
12596 asection *isec;
12597 Elf_Internal_Sym *isym;
12598
12599 /* Need to: get the symbol; get the section. */
12600 isym = &rcookie->locsyms[r_symndx];
12601 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12602 if (isec != NULL && discarded_section (isec))
12603 return TRUE;
12604 }
12605 return FALSE;
12606 }
12607 return FALSE;
12608 }
12609
12610 /* Discard unneeded references to discarded sections.
12611 Returns TRUE if any section's size was changed. */
12612 /* This function assumes that the relocations are in sorted order,
12613 which is true for all known assemblers. */
12614
12615 bfd_boolean
12616 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12617 {
12618 struct elf_reloc_cookie cookie;
12619 asection *stab, *eh;
12620 const struct elf_backend_data *bed;
12621 bfd *abfd;
12622 bfd_boolean ret = FALSE;
12623
12624 if (info->traditional_format
12625 || !is_elf_hash_table (info->hash))
12626 return FALSE;
12627
12628 _bfd_elf_begin_eh_frame_parsing (info);
12629 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12630 {
12631 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12632 continue;
12633
12634 bed = get_elf_backend_data (abfd);
12635
12636 eh = NULL;
12637 if (!info->relocatable)
12638 {
12639 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12640 while (eh != NULL
12641 && (eh->size == 0
12642 || bfd_is_abs_section (eh->output_section)))
12643 eh = bfd_get_next_section_by_name (eh);
12644 }
12645
12646 stab = bfd_get_section_by_name (abfd, ".stab");
12647 if (stab != NULL
12648 && (stab->size == 0
12649 || bfd_is_abs_section (stab->output_section)
12650 || stab->sec_info_type != SEC_INFO_TYPE_STABS))
12651 stab = NULL;
12652
12653 if (stab == NULL
12654 && eh == NULL
12655 && bed->elf_backend_discard_info == NULL)
12656 continue;
12657
12658 if (!init_reloc_cookie (&cookie, info, abfd))
12659 return FALSE;
12660
12661 if (stab != NULL
12662 && stab->reloc_count > 0
12663 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12664 {
12665 if (_bfd_discard_section_stabs (abfd, stab,
12666 elf_section_data (stab)->sec_info,
12667 bfd_elf_reloc_symbol_deleted_p,
12668 &cookie))
12669 ret = TRUE;
12670 fini_reloc_cookie_rels (&cookie, stab);
12671 }
12672
12673 while (eh != NULL
12674 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12675 {
12676 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12677 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12678 bfd_elf_reloc_symbol_deleted_p,
12679 &cookie))
12680 ret = TRUE;
12681 fini_reloc_cookie_rels (&cookie, eh);
12682 eh = bfd_get_next_section_by_name (eh);
12683 }
12684
12685 if (bed->elf_backend_discard_info != NULL
12686 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12687 ret = TRUE;
12688
12689 fini_reloc_cookie (&cookie, abfd);
12690 }
12691 _bfd_elf_end_eh_frame_parsing (info);
12692
12693 if (info->eh_frame_hdr
12694 && !info->relocatable
12695 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12696 ret = TRUE;
12697
12698 return ret;
12699 }
12700
12701 bfd_boolean
12702 _bfd_elf_section_already_linked (bfd *abfd,
12703 asection *sec,
12704 struct bfd_link_info *info)
12705 {
12706 flagword flags;
12707 const char *name, *key;
12708 struct bfd_section_already_linked *l;
12709 struct bfd_section_already_linked_hash_entry *already_linked_list;
12710
12711 if (sec->output_section == bfd_abs_section_ptr)
12712 return FALSE;
12713
12714 flags = sec->flags;
12715
12716 /* Return if it isn't a linkonce section. A comdat group section
12717 also has SEC_LINK_ONCE set. */
12718 if ((flags & SEC_LINK_ONCE) == 0)
12719 return FALSE;
12720
12721 /* Don't put group member sections on our list of already linked
12722 sections. They are handled as a group via their group section. */
12723 if (elf_sec_group (sec) != NULL)
12724 return FALSE;
12725
12726 /* For a SHT_GROUP section, use the group signature as the key. */
12727 name = sec->name;
12728 if ((flags & SEC_GROUP) != 0
12729 && elf_next_in_group (sec) != NULL
12730 && elf_group_name (elf_next_in_group (sec)) != NULL)
12731 key = elf_group_name (elf_next_in_group (sec));
12732 else
12733 {
12734 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12735 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12736 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12737 key++;
12738 else
12739 /* Must be a user linkonce section that doesn't follow gcc's
12740 naming convention. In this case we won't be matching
12741 single member groups. */
12742 key = name;
12743 }
12744
12745 already_linked_list = bfd_section_already_linked_table_lookup (key);
12746
12747 for (l = already_linked_list->entry; l != NULL; l = l->next)
12748 {
12749 /* We may have 2 different types of sections on the list: group
12750 sections with a signature of <key> (<key> is some string),
12751 and linkonce sections named .gnu.linkonce.<type>.<key>.
12752 Match like sections. LTO plugin sections are an exception.
12753 They are always named .gnu.linkonce.t.<key> and match either
12754 type of section. */
12755 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12756 && ((flags & SEC_GROUP) != 0
12757 || strcmp (name, l->sec->name) == 0))
12758 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
12759 {
12760 /* The section has already been linked. See if we should
12761 issue a warning. */
12762 if (!_bfd_handle_already_linked (sec, l, info))
12763 return FALSE;
12764
12765 if (flags & SEC_GROUP)
12766 {
12767 asection *first = elf_next_in_group (sec);
12768 asection *s = first;
12769
12770 while (s != NULL)
12771 {
12772 s->output_section = bfd_abs_section_ptr;
12773 /* Record which group discards it. */
12774 s->kept_section = l->sec;
12775 s = elf_next_in_group (s);
12776 /* These lists are circular. */
12777 if (s == first)
12778 break;
12779 }
12780 }
12781
12782 return TRUE;
12783 }
12784 }
12785
12786 /* A single member comdat group section may be discarded by a
12787 linkonce section and vice versa. */
12788 if ((flags & SEC_GROUP) != 0)
12789 {
12790 asection *first = elf_next_in_group (sec);
12791
12792 if (first != NULL && elf_next_in_group (first) == first)
12793 /* Check this single member group against linkonce sections. */
12794 for (l = already_linked_list->entry; l != NULL; l = l->next)
12795 if ((l->sec->flags & SEC_GROUP) == 0
12796 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12797 {
12798 first->output_section = bfd_abs_section_ptr;
12799 first->kept_section = l->sec;
12800 sec->output_section = bfd_abs_section_ptr;
12801 break;
12802 }
12803 }
12804 else
12805 /* Check this linkonce section against single member groups. */
12806 for (l = already_linked_list->entry; l != NULL; l = l->next)
12807 if (l->sec->flags & SEC_GROUP)
12808 {
12809 asection *first = elf_next_in_group (l->sec);
12810
12811 if (first != NULL
12812 && elf_next_in_group (first) == first
12813 && bfd_elf_match_symbols_in_sections (first, sec, info))
12814 {
12815 sec->output_section = bfd_abs_section_ptr;
12816 sec->kept_section = first;
12817 break;
12818 }
12819 }
12820
12821 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12822 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12823 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12824 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12825 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12826 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12827 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12828 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12829 The reverse order cannot happen as there is never a bfd with only the
12830 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12831 matter as here were are looking only for cross-bfd sections. */
12832
12833 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12834 for (l = already_linked_list->entry; l != NULL; l = l->next)
12835 if ((l->sec->flags & SEC_GROUP) == 0
12836 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12837 {
12838 if (abfd != l->sec->owner)
12839 sec->output_section = bfd_abs_section_ptr;
12840 break;
12841 }
12842
12843 /* This is the first section with this name. Record it. */
12844 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
12845 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12846 return sec->output_section == bfd_abs_section_ptr;
12847 }
12848
12849 bfd_boolean
12850 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12851 {
12852 return sym->st_shndx == SHN_COMMON;
12853 }
12854
12855 unsigned int
12856 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12857 {
12858 return SHN_COMMON;
12859 }
12860
12861 asection *
12862 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12863 {
12864 return bfd_com_section_ptr;
12865 }
12866
12867 bfd_vma
12868 _bfd_elf_default_got_elt_size (bfd *abfd,
12869 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12870 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12871 bfd *ibfd ATTRIBUTE_UNUSED,
12872 unsigned long symndx ATTRIBUTE_UNUSED)
12873 {
12874 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12875 return bed->s->arch_size / 8;
12876 }
12877
12878 /* Routines to support the creation of dynamic relocs. */
12879
12880 /* Returns the name of the dynamic reloc section associated with SEC. */
12881
12882 static const char *
12883 get_dynamic_reloc_section_name (bfd * abfd,
12884 asection * sec,
12885 bfd_boolean is_rela)
12886 {
12887 char *name;
12888 const char *old_name = bfd_get_section_name (NULL, sec);
12889 const char *prefix = is_rela ? ".rela" : ".rel";
12890
12891 if (old_name == NULL)
12892 return NULL;
12893
12894 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12895 sprintf (name, "%s%s", prefix, old_name);
12896
12897 return name;
12898 }
12899
12900 /* Returns the dynamic reloc section associated with SEC.
12901 If necessary compute the name of the dynamic reloc section based
12902 on SEC's name (looked up in ABFD's string table) and the setting
12903 of IS_RELA. */
12904
12905 asection *
12906 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12907 asection * sec,
12908 bfd_boolean is_rela)
12909 {
12910 asection * reloc_sec = elf_section_data (sec)->sreloc;
12911
12912 if (reloc_sec == NULL)
12913 {
12914 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12915
12916 if (name != NULL)
12917 {
12918 reloc_sec = bfd_get_linker_section (abfd, name);
12919
12920 if (reloc_sec != NULL)
12921 elf_section_data (sec)->sreloc = reloc_sec;
12922 }
12923 }
12924
12925 return reloc_sec;
12926 }
12927
12928 /* Returns the dynamic reloc section associated with SEC. If the
12929 section does not exist it is created and attached to the DYNOBJ
12930 bfd and stored in the SRELOC field of SEC's elf_section_data
12931 structure.
12932
12933 ALIGNMENT is the alignment for the newly created section and
12934 IS_RELA defines whether the name should be .rela.<SEC's name>
12935 or .rel.<SEC's name>. The section name is looked up in the
12936 string table associated with ABFD. */
12937
12938 asection *
12939 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12940 bfd * dynobj,
12941 unsigned int alignment,
12942 bfd * abfd,
12943 bfd_boolean is_rela)
12944 {
12945 asection * reloc_sec = elf_section_data (sec)->sreloc;
12946
12947 if (reloc_sec == NULL)
12948 {
12949 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12950
12951 if (name == NULL)
12952 return NULL;
12953
12954 reloc_sec = bfd_get_linker_section (dynobj, name);
12955
12956 if (reloc_sec == NULL)
12957 {
12958 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
12959 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12960 if ((sec->flags & SEC_ALLOC) != 0)
12961 flags |= SEC_ALLOC | SEC_LOAD;
12962
12963 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
12964 if (reloc_sec != NULL)
12965 {
12966 /* _bfd_elf_get_sec_type_attr chooses a section type by
12967 name. Override as it may be wrong, eg. for a user
12968 section named "auto" we'll get ".relauto" which is
12969 seen to be a .rela section. */
12970 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
12971 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12972 reloc_sec = NULL;
12973 }
12974 }
12975
12976 elf_section_data (sec)->sreloc = reloc_sec;
12977 }
12978
12979 return reloc_sec;
12980 }
12981
12982 /* Copy the ELF symbol type associated with a linker hash entry. */
12983 void
12984 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
12985 struct bfd_link_hash_entry * hdest,
12986 struct bfd_link_hash_entry * hsrc)
12987 {
12988 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
12989 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
12990
12991 ehdest->type = ehsrc->type;
12992 ehdest->target_internal = ehsrc->target_internal;
12993 }
12994
12995 /* Append a RELA relocation REL to section S in BFD. */
12996
12997 void
12998 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
12999 {
13000 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13001 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13002 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13003 bed->s->swap_reloca_out (abfd, rel, loc);
13004 }
13005
13006 /* Append a REL relocation REL to section S in BFD. */
13007
13008 void
13009 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13010 {
13011 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13012 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13013 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13014 bed->s->swap_reloc_out (abfd, rel, loc);
13015 }